
MySQL 8.0 Reference Manual

Including MySQL NDB Cluster 8.0

Abstract

This is the MySQL Reference Manual. It documents MySQL 8.0 through 8.0.43, as well as NDB Cluster releases
based on version 8.0 of NDB through 8.0.42, respectively. It may include documentation of features of MySQL
versions that have not yet been released. For information about which versions have been released, see the
MySQL 8.0 Release Notes.

MySQL 8.0 features. This manual describes features that are not included in every edition of MySQL 8.0; such
features may not be included in the edition of MySQL 8.0 licensed to you. If you have any questions about the
features included in your edition of MySQL 8.0, refer to your MySQL 8.0 license agreement or contact your Oracle
sales representative.

For notes detailing the changes in each release, see the MySQL 8.0 Release Notes.

For legal information, including licensing information, see the Preface and Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2025-07-04 (revision: 82753)

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/
http://forums.mysql.com

Table of Contents
Preface and Legal Notices ... xxvii
1 General Information ... 1

1.1 About This Manual .. 2
1.2 Overview of the MySQL Database Management System ... 4

1.2.1 What is MySQL? .. 4
1.2.2 The Main Features of MySQL ... 5
1.2.3 History of MySQL ... 8

1.3 What Is New in MySQL 8.0 ... 8
1.4 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL
8.0 .. 62
1.5 How to Report Bugs or Problems .. 90
1.6 MySQL Standards Compliance .. 94

1.6.1 MySQL Extensions to Standard SQL ... 95
1.6.2 MySQL Differences from Standard SQL .. 98
1.6.3 How MySQL Deals with Constraints .. 101

2 Installing MySQL .. 105
2.1 General Installation Guidance .. 107

2.1.1 Supported Platforms ... 107
2.1.2 Which MySQL Version and Distribution to Install .. 107
2.1.3 How to Get MySQL .. 108
2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG 109
2.1.5 Installation Layouts ... 125
2.1.6 Compiler-Specific Build Characteristics .. 125

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .. 125
2.3 Installing MySQL on Microsoft Windows ... 129

2.3.1 MySQL Installation Layout on Microsoft Windows ... 131
2.3.2 Choosing an Installation Package .. 131
2.3.3 MySQL Installer for Windows .. 133
2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive 162
2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation 170
2.3.6 Windows Postinstallation Procedures .. 172
2.3.7 Windows Platform Restrictions .. 174

2.4 Installing MySQL on macOS .. 175
2.4.1 General Notes on Installing MySQL on macOS .. 176
2.4.2 Installing MySQL on macOS Using Native Packages .. 177
2.4.3 Installing and Using the MySQL Launch Daemon ... 181
2.4.4 Installing and Using the MySQL Preference Pane .. 185

2.5 Installing MySQL on Linux ... 190
2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository 191
2.5.2 Installing MySQL on Linux Using the MySQL APT Repository 195
2.5.3 Installing MySQL on Linux Using the MySQL SLES Repository 196
2.5.4 Installing MySQL on Linux Using RPM Packages from Oracle 196
2.5.5 Installing MySQL on Linux Using Debian Packages from Oracle 201
2.5.6 Deploying MySQL on Linux with Docker Containers ... 202
2.5.7 Installing MySQL on Linux from the Native Software Repositories 214
2.5.8 Installing MySQL on Linux with Juju .. 217
2.5.9 Managing MySQL Server with systemd ... 217

2.6 Installing MySQL Using Unbreakable Linux Network (ULN) ... 222
2.7 Installing MySQL on Solaris ... 222

2.7.1 Installing MySQL on Solaris Using a Solaris PKG .. 223
2.8 Installing MySQL from Source ... 224

2.8.1 Source Installation Methods .. 224
2.8.2 Source Installation Prerequisites ... 225
2.8.3 MySQL Layout for Source Installation .. 227
2.8.4 Installing MySQL Using a Standard Source Distribution 227

iii

MySQL 8.0 Reference Manual

2.8.5 Installing MySQL Using a Development Source Tree .. 231
2.8.6 Configuring SSL Library Support ... 232
2.8.7 MySQL Source-Configuration Options ... 233
2.8.8 Dealing with Problems Compiling MySQL .. 265
2.8.9 MySQL Configuration and Third-Party Tools .. 267
2.8.10 Generating MySQL Doxygen Documentation Content 267

2.9 Postinstallation Setup and Testing ... 268
2.9.1 Initializing the Data Directory .. 269
2.9.2 Starting the Server ... 274
2.9.3 Testing the Server .. 277
2.9.4 Securing the Initial MySQL Account .. 278
2.9.5 Starting and Stopping MySQL Automatically .. 280

2.10 Perl Installation Notes .. 281
2.10.1 Installing Perl on Unix ... 282
2.10.2 Installing ActiveState Perl on Windows .. 282
2.10.3 Problems Using the Perl DBI/DBD Interface ... 283

3 Upgrading MySQL ... 285
3.1 Before You Begin .. 285
3.2 Upgrade Paths .. 286
3.3 Upgrade Best Practices ... 287
3.4 What the MySQL Upgrade Process Upgrades .. 289
3.5 Changes in MySQL 8.0 ... 293
3.6 Preparing Your Installation for Upgrade .. 310
3.7 Upgrading MySQL Binary or Package-based Installations on Unix/Linux 314
3.8 Upgrading MySQL with the MySQL Yum Repository ... 318
3.9 Upgrading MySQL with the MySQL APT Repository ... 320
3.10 Upgrading MySQL with the MySQL SLES Repository .. 320
3.11 Upgrading MySQL on Windows ... 320
3.12 Upgrading a Docker Installation of MySQL ... 322
3.13 Upgrade Troubleshooting ... 322
3.14 Rebuilding or Repairing Tables or Indexes ... 323
3.15 Copying MySQL Databases to Another Machine ... 324

4 Downgrading MySQL ... 327
5 Tutorial .. 329

5.1 Connecting to and Disconnecting from the Server ... 329
5.2 Entering Queries ... 330
5.3 Creating and Using a Database ... 333

5.3.1 Creating and Selecting a Database ... 334
5.3.2 Creating a Table .. 335
5.3.3 Loading Data into a Table .. 336
5.3.4 Retrieving Information from a Table ... 337

5.4 Getting Information About Databases and Tables ... 350
5.5 Using mysql in Batch Mode ... 351
5.6 Examples of Common Queries .. 352

5.6.1 The Maximum Value for a Column .. 353
5.6.2 The Row Holding the Maximum of a Certain Column .. 353
5.6.3 Maximum of Column per Group .. 353
5.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 354
5.6.5 Using User-Defined Variables ... 355
5.6.6 Using Foreign Keys .. 355
5.6.7 Searching on Two Keys .. 357
5.6.8 Calculating Visits Per Day ... 357
5.6.9 Using AUTO_INCREMENT ... 358

5.7 Using MySQL with Apache .. 360
6 MySQL Programs .. 363

6.1 Overview of MySQL Programs ... 364
6.2 Using MySQL Programs .. 368

6.2.1 Invoking MySQL Programs ... 368

iv

MySQL 8.0 Reference Manual

6.2.2 Specifying Program Options .. 368
6.2.3 Command Options for Connecting to the Server .. 382
6.2.4 Connecting to the MySQL Server Using Command Options 395
6.2.5 Connecting to the Server Using URI-Like Strings or Key-Value Pairs 398
6.2.6 Connecting to the Server Using DNS SRV Records ... 405
6.2.7 Connection Transport Protocols .. 406
6.2.8 Connection Compression Control .. 408
6.2.9 Setting Environment Variables .. 411

6.3 Server and Server-Startup Programs ... 412
6.3.1 mysqld — The MySQL Server .. 412
6.3.2 mysqld_safe — MySQL Server Startup Script .. 413
6.3.3 mysql.server — MySQL Server Startup Script .. 421
6.3.4 mysqld_multi — Manage Multiple MySQL Servers .. 423

6.4 Installation-Related Programs .. 428
6.4.1 comp_err — Compile MySQL Error Message File .. 428
6.4.2 mysql_secure_installation — Improve MySQL Installation Security 431
6.4.3 mysql_ssl_rsa_setup — Create SSL/RSA Files .. 437
6.4.4 mysql_tzinfo_to_sql — Load the Time Zone Tables .. 440
6.4.5 mysql_upgrade — Check and Upgrade MySQL Tables 440

6.5 Client Programs .. 454
6.5.1 mysql — The MySQL Command-Line Client .. 454
6.5.2 mysqladmin — A MySQL Server Administration Program 500
6.5.3 mysqlcheck — A Table Maintenance Program ... 516
6.5.4 mysqldump — A Database Backup Program ... 532
6.5.5 mysqlimport — A Data Import Program ... 572
6.5.6 mysqlpump — A Database Backup Program ... 586
6.5.7 mysqlshow — Display Database, Table, and Column Information 613
6.5.8 mysqlslap — A Load Emulation Client ... 625

6.6 Administrative and Utility Programs .. 644
6.6.1 ibd2sdi — InnoDB Tablespace SDI Extraction Utility ... 644
6.6.2 innochecksum — Offline InnoDB File Checksum Utility 649
6.6.3 myisam_ftdump — Display Full-Text Index information 655
6.6.4 myisamchk — MyISAM Table-Maintenance Utility .. 657
6.6.5 myisamlog — Display MyISAM Log File Contents .. 676
6.6.6 myisampack — Generate Compressed, Read-Only MyISAM Tables 677
6.6.7 mysql_config_editor — MySQL Configuration Utility ... 683
6.6.8 mysql_migrate_keyring — Keyring Key Migration Utility 690
6.6.9 mysqlbinlog — Utility for Processing Binary Log Files ... 699
6.6.10 mysqldumpslow — Summarize Slow Query Log Files 731

6.7 Program Development Utilities ... 733
6.7.1 mysql_config — Display Options for Compiling Clients 734
6.7.2 my_print_defaults — Display Options from Option Files 735

6.8 Miscellaneous Programs .. 736
6.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed Output 736
6.8.2 perror — Display MySQL Error Message Information .. 737
6.8.3 zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output 738

6.9 Environment Variables ... 738
6.10 Unix Signal Handling in MySQL ... 740

7 MySQL Server Administration ... 745
7.1 The MySQL Server ... 746

7.1.1 Configuring the Server .. 747
7.1.2 Server Configuration Defaults ... 748
7.1.3 Server Configuration Validation ... 748
7.1.4 Server Option, System Variable, and Status Variable Reference 749
7.1.5 Server System Variable Reference .. 797
7.1.6 Server Status Variable Reference ... 822
7.1.7 Server Command Options ... 839
7.1.8 Server System Variables .. 867

v

MySQL 8.0 Reference Manual

7.1.9 Using System Variables .. 1033
7.1.10 Server Status Variables .. 1064
7.1.11 Server SQL Modes ... 1092
7.1.12 Connection Management ... 1103
7.1.13 IPv6 Support .. 1111
7.1.14 Network Namespace Support .. 1115
7.1.15 MySQL Server Time Zone Support .. 1120
7.1.16 Resource Groups .. 1125
7.1.17 Server-Side Help Support ... 1130
7.1.18 Server Tracking of Client Session State ... 1130
7.1.19 The Server Shutdown Process .. 1134

7.2 The MySQL Data Directory .. 1135
7.3 The mysql System Schema ... 1136
7.4 MySQL Server Logs .. 1141

7.4.1 Selecting General Query Log and Slow Query Log Output Destinations 1142
7.4.2 The Error Log ... 1144
7.4.3 The General Query Log .. 1165
7.4.4 The Binary Log ... 1167
7.4.5 The Slow Query Log ... 1183
7.4.6 Server Log Maintenance ... 1187

7.5 MySQL Components ... 1189
7.5.1 Installing and Uninstalling Components .. 1189
7.5.2 Obtaining Component Information ... 1190
7.5.3 Error Log Components .. 1190
7.5.4 Query Attribute Components ... 1193
7.5.5 Scheduler Component .. 1193

7.6 MySQL Server Plugins .. 1194
7.6.1 Installing and Uninstalling Plugins .. 1195
7.6.2 Obtaining Server Plugin Information .. 1199
7.6.3 MySQL Enterprise Thread Pool ... 1200
7.6.4 The Rewriter Query Rewrite Plugin ... 1208
7.6.5 The ddl_rewriter Plugin ... 1217
7.6.6 Version Tokens .. 1219
7.6.7 The Clone Plugin .. 1231
7.6.8 The Keyring Proxy Bridge Plugin ... 1256
7.6.9 MySQL Plugin Services .. 1257

7.7 MySQL Server Loadable Functions .. 1264
7.7.1 Installing and Uninstalling Loadable Functions ... 1265
7.7.2 Obtaining Information About Loadable Functions .. 1266

7.8 Running Multiple MySQL Instances on One Machine .. 1266
7.8.1 Setting Up Multiple Data Directories .. 1268
7.8.2 Running Multiple MySQL Instances on Windows .. 1269
7.8.3 Running Multiple MySQL Instances on Unix ... 1271
7.8.4 Using Client Programs in a Multiple-Server Environment 1273

7.9 Debugging MySQL .. 1273
7.9.1 Debugging a MySQL Server ... 1273
7.9.2 Debugging a MySQL Client ... 1279
7.9.3 The LOCK_ORDER Tool .. 1279
7.9.4 The DBUG Package ... 1285

8 Security ... 1289
8.1 General Security Issues ... 1290

8.1.1 Security Guidelines ... 1290
8.1.2 Keeping Passwords Secure .. 1292
8.1.3 Making MySQL Secure Against Attackers .. 1295
8.1.4 Security-Related mysqld Options and Variables ... 1297
8.1.5 How to Run MySQL as a Normal User .. 1297
8.1.6 Security Considerations for LOAD DATA LOCAL ... 1298
8.1.7 Client Programming Security Guidelines .. 1301

vi

MySQL 8.0 Reference Manual

8.2 Access Control and Account Management .. 1303
8.2.1 Account User Names and Passwords .. 1304
8.2.2 Privileges Provided by MySQL .. 1306
8.2.3 Grant Tables .. 1324
8.2.4 Specifying Account Names ... 1334
8.2.5 Specifying Role Names ... 1336
8.2.6 Access Control, Stage 1: Connection Verification ... 1337
8.2.7 Access Control, Stage 2: Request Verification .. 1340
8.2.8 Adding Accounts, Assigning Privileges, and Dropping Accounts 1342
8.2.9 Reserved Accounts ... 1345
8.2.10 Using Roles .. 1345
8.2.11 Account Categories ... 1352
8.2.12 Privilege Restriction Using Partial Revokes .. 1356
8.2.13 When Privilege Changes Take Effect ... 1362
8.2.14 Assigning Account Passwords ... 1363
8.2.15 Password Management ... 1364
8.2.16 Server Handling of Expired Passwords .. 1375
8.2.17 Pluggable Authentication ... 1377
8.2.18 Multifactor Authentication .. 1382
8.2.19 Proxy Users ... 1386
8.2.20 Account Locking ... 1393
8.2.21 Setting Account Resource Limits ... 1394
8.2.22 Troubleshooting Problems Connecting to MySQL ... 1396
8.2.23 SQL-Based Account Activity Auditing ... 1400

8.3 Using Encrypted Connections .. 1402
8.3.1 Configuring MySQL to Use Encrypted Connections .. 1403
8.3.2 Encrypted Connection TLS Protocols and Ciphers .. 1410
8.3.3 Creating SSL and RSA Certificates and Keys .. 1419
8.3.4 Connecting to MySQL Remotely from Windows with SSH 1428
8.3.5 Reusing SSL Sessions ... 1428

8.4 Security Components and Plugins .. 1431
8.4.1 Authentication Plugins ... 1432
8.4.2 Connection Control Plugins ... 1520
8.4.3 The Password Validation Component .. 1526
8.4.4 The MySQL Keyring ... 1538
8.4.5 MySQL Enterprise Audit .. 1611
8.4.6 The Audit Message Component .. 1696
8.4.7 MySQL Enterprise Firewall .. 1699

8.5 MySQL Enterprise Data Masking and De-Identification .. 1727
8.5.1 Data-Masking Components Versus the Data-Masking Plugin 1728
8.5.2 MySQL Enterprise Data Masking and De-Identification Components 1729
8.5.3 MySQL Enterprise Data Masking and De-Identification Plugin 1753

8.6 MySQL Enterprise Encryption .. 1770
8.6.1 MySQL Enterprise Encryption Installation and Upgrading 1771
8.6.2 Configuring MySQL Enterprise Encryption ... 1774
8.6.3 MySQL Enterprise Encryption Usage and Examples ... 1775
8.6.4 MySQL Enterprise Encryption Function Reference ... 1777
8.6.5 MySQL Enterprise Encryption Component Function Descriptions 1777
8.6.6 MySQL Enterprise Encryption Legacy Function Descriptions 1781

8.7 SELinux .. 1786
8.7.1 Check if SELinux is Enabled ... 1786
8.7.2 Changing the SELinux Mode ... 1787
8.7.3 MySQL Server SELinux Policies .. 1787
8.7.4 SELinux File Context .. 1787
8.7.5 SELinux TCP Port Context .. 1789
8.7.6 Troubleshooting SELinux .. 1790

8.8 FIPS Support .. 1791
9 Backup and Recovery .. 1795

vii

MySQL 8.0 Reference Manual

9.1 Backup and Recovery Types ... 1796
9.2 Database Backup Methods .. 1799
9.3 Example Backup and Recovery Strategy .. 1801

9.3.1 Establishing a Backup Policy .. 1801
9.3.2 Using Backups for Recovery ... 1803
9.3.3 Backup Strategy Summary .. 1804

9.4 Using mysqldump for Backups ... 1804
9.4.1 Dumping Data in SQL Format with mysqldump .. 1805
9.4.2 Reloading SQL-Format Backups ... 1806
9.4.3 Dumping Data in Delimited-Text Format with mysqldump 1806
9.4.4 Reloading Delimited-Text Format Backups ... 1807
9.4.5 mysqldump Tips ... 1808

9.5 Point-in-Time (Incremental) Recovery ... 1810
9.5.1 Point-in-Time Recovery Using Binary Log .. 1810
9.5.2 Point-in-Time Recovery Using Event Positions ... 1811

9.6 MyISAM Table Maintenance and Crash Recovery ... 1813
9.6.1 Using myisamchk for Crash Recovery ... 1813
9.6.2 How to Check MyISAM Tables for Errors ... 1814
9.6.3 How to Repair MyISAM Tables ... 1815
9.6.4 MyISAM Table Optimization .. 1817
9.6.5 Setting Up a MyISAM Table Maintenance Schedule ... 1817

10 Optimization ... 1819
10.1 Optimization Overview ... 1821
10.2 Optimizing SQL Statements ... 1822

10.2.1 Optimizing SELECT Statements .. 1822
10.2.2 Optimizing Subqueries, Derived Tables, View References, and Common Table
Expressions .. 1874
10.2.3 Optimizing INFORMATION_SCHEMA Queries ... 1888
10.2.4 Optimizing Performance Schema Queries .. 1891
10.2.5 Optimizing Data Change Statements ... 1892
10.2.6 Optimizing Database Privileges ... 1893
10.2.7 Other Optimization Tips .. 1894

10.3 Optimization and Indexes ... 1894
10.3.1 How MySQL Uses Indexes ... 1894
10.3.2 Primary Key Optimization .. 1896
10.3.3 SPATIAL Index Optimization ... 1896
10.3.4 Foreign Key Optimization .. 1896
10.3.5 Column Indexes .. 1897
10.3.6 Multiple-Column Indexes ... 1898
10.3.7 Verifying Index Usage ... 1899
10.3.8 InnoDB and MyISAM Index Statistics Collection ... 1900
10.3.9 Comparison of B-Tree and Hash Indexes ... 1901
10.3.10 Use of Index Extensions ... 1902
10.3.11 Optimizer Use of Generated Column Indexes ... 1905
10.3.12 Invisible Indexes ... 1906
10.3.13 Descending Indexes .. 1908
10.3.14 Indexed Lookups from TIMESTAMP Columns .. 1909

10.4 Optimizing Database Structure ... 1911
10.4.1 Optimizing Data Size .. 1911
10.4.2 Optimizing MySQL Data Types .. 1913
10.4.3 Optimizing for Many Tables ... 1914
10.4.4 Internal Temporary Table Use in MySQL ... 1916
10.4.5 Limits on Number of Databases and Tables ... 1920
10.4.6 Limits on Table Size ... 1920
10.4.7 Limits on Table Column Count and Row Size ... 1921

10.5 Optimizing for InnoDB Tables .. 1923
10.5.1 Optimizing Storage Layout for InnoDB Tables .. 1924
10.5.2 Optimizing InnoDB Transaction Management ... 1924

viii

MySQL 8.0 Reference Manual

10.5.3 Optimizing InnoDB Read-Only Transactions ... 1925
10.5.4 Optimizing InnoDB Redo Logging .. 1926
10.5.5 Bulk Data Loading for InnoDB Tables .. 1927
10.5.6 Optimizing InnoDB Queries ... 1929
10.5.7 Optimizing InnoDB DDL Operations ... 1929
10.5.8 Optimizing InnoDB Disk I/O ... 1929
10.5.9 Optimizing InnoDB Configuration Variables .. 1934
10.5.10 Optimizing InnoDB for Systems with Many Tables .. 1935

10.6 Optimizing for MyISAM Tables ... 1935
10.6.1 Optimizing MyISAM Queries .. 1935
10.6.2 Bulk Data Loading for MyISAM Tables ... 1936
10.6.3 Optimizing REPAIR TABLE Statements ... 1938

10.7 Optimizing for MEMORY Tables ... 1939
10.8 Understanding the Query Execution Plan .. 1939

10.8.1 Optimizing Queries with EXPLAIN ... 1940
10.8.2 EXPLAIN Output Format ... 1940
10.8.3 Extended EXPLAIN Output Format .. 1954
10.8.4 Obtaining Execution Plan Information for a Named Connection 1956
10.8.5 Estimating Query Performance .. 1957

10.9 Controlling the Query Optimizer ... 1957
10.9.1 Controlling Query Plan Evaluation ... 1957
10.9.2 Switchable Optimizations ... 1958
10.9.3 Optimizer Hints ... 1968
10.9.4 Index Hints ... 1982
10.9.5 The Optimizer Cost Model .. 1985
10.9.6 Optimizer Statistics ... 1988

10.10 Buffering and Caching ... 1991
10.10.1 InnoDB Buffer Pool Optimization .. 1991
10.10.2 The MyISAM Key Cache ... 1992
10.10.3 Caching of Prepared Statements and Stored Programs 1996

10.11 Optimizing Locking Operations ... 1997
10.11.1 Internal Locking Methods .. 1997
10.11.2 Table Locking Issues .. 2000
10.11.3 Concurrent Inserts .. 2001
10.11.4 Metadata Locking .. 2002
10.11.5 External Locking ... 2005

10.12 Optimizing the MySQL Server .. 2006
10.12.1 Optimizing Disk I/O ... 2006
10.12.2 Using Symbolic Links .. 2007
10.12.3 Optimizing Memory Use .. 2010

10.13 Measuring Performance (Benchmarking) ... 2017
10.13.1 Measuring the Speed of Expressions and Functions 2017
10.13.2 Using Your Own Benchmarks .. 2018
10.13.3 Measuring Performance with performance_schema 2018

10.14 Examining Server Thread (Process) Information .. 2018
10.14.1 Accessing the Process List .. 2019
10.14.2 Thread Command Values .. 2020
10.14.3 General Thread States .. 2022
10.14.4 Replication Source Thread States .. 2029
10.14.5 Replication I/O (Receiver) Thread States ... 2029
10.14.6 Replication SQL Thread States .. 2031
10.14.7 Replication Connection Thread States ... 2032
10.14.8 NDB Cluster Thread States ... 2033
10.14.9 Event Scheduler Thread States ... 2034

10.15 Tracing the Optimizer .. 2034
10.15.1 Typical Usage ... 2034
10.15.2 System Variables Controlling Tracing ... 2034
10.15.3 Traceable Statements ... 2035

ix

MySQL 8.0 Reference Manual

10.15.4 Tuning Trace Purging .. 2035
10.15.5 Tracing Memory Usage ... 2036
10.15.6 Privilege Checking .. 2037
10.15.7 Interaction with the --debug Option .. 2037
10.15.8 The optimizer_trace System Variable ... 2037
10.15.9 The end_markers_in_json System Variable .. 2037
10.15.10 Selecting Optimizer Features to Trace ... 2037
10.15.11 Trace General Structure .. 2037
10.15.12 Example ... 2038
10.15.13 Displaying Traces in Other Applications ... 2048
10.15.14 Preventing the Use of Optimizer Trace ... 2048
10.15.15 Testing Optimizer Trace .. 2048
10.15.16 Optimizer Trace Implementation .. 2048

11 Language Structure .. 2049
11.1 Literal Values .. 2049

11.1.1 String Literals ... 2049
11.1.2 Numeric Literals .. 2052
11.1.3 Date and Time Literals .. 2052
11.1.4 Hexadecimal Literals ... 2057
11.1.5 Bit-Value Literals .. 2059
11.1.6 Boolean Literals .. 2061
11.1.7 NULL Values .. 2061

11.2 Schema Object Names .. 2061
11.2.1 Identifier Length Limits .. 2063
11.2.2 Identifier Qualifiers .. 2064
11.2.3 Identifier Case Sensitivity .. 2065
11.2.4 Mapping of Identifiers to File Names .. 2067
11.2.5 Function Name Parsing and Resolution ... 2069

11.3 Keywords and Reserved Words ... 2072
11.4 User-Defined Variables .. 2105
11.5 Expressions ... 2108
11.6 Query Attributes .. 2112
11.7 Comments ... 2115

12 Character Sets, Collations, Unicode .. 2117
12.1 Character Sets and Collations in General ... 2118
12.2 Character Sets and Collations in MySQL .. 2119

12.2.1 Character Set Repertoire .. 2121
12.2.2 UTF-8 for Metadata .. 2123

12.3 Specifying Character Sets and Collations ... 2124
12.3.1 Collation Naming Conventions ... 2124
12.3.2 Server Character Set and Collation ... 2125
12.3.3 Database Character Set and Collation ... 2126
12.3.4 Table Character Set and Collation ... 2127
12.3.5 Column Character Set and Collation .. 2128
12.3.6 Character String Literal Character Set and Collation 2129
12.3.7 The National Character Set ... 2131
12.3.8 Character Set Introducers ... 2131
12.3.9 Examples of Character Set and Collation Assignment 2133
12.3.10 Compatibility with Other DBMSs .. 2134

12.4 Connection Character Sets and Collations .. 2134
12.5 Configuring Application Character Set and Collation .. 2140
12.6 Error Message Character Set ... 2142
12.7 Column Character Set Conversion ... 2143
12.8 Collation Issues ... 2144

12.8.1 Using COLLATE in SQL Statements .. 2144
12.8.2 COLLATE Clause Precedence .. 2145
12.8.3 Character Set and Collation Compatibility .. 2145
12.8.4 Collation Coercibility in Expressions ... 2145

x

MySQL 8.0 Reference Manual

12.8.5 The binary Collation Compared to _bin Collations ... 2146
12.8.6 Examples of the Effect of Collation .. 2149
12.8.7 Using Collation in INFORMATION_SCHEMA Searches 2150

12.9 Unicode Support .. 2152
12.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding) 2154
12.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding) 2154
12.9.3 The utf8 Character Set (Deprecated alias for utf8mb3) 2155
12.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding) 2156
12.9.5 The utf16 Character Set (UTF-16 Unicode Encoding) 2156
12.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding) 2157
12.9.7 The utf32 Character Set (UTF-32 Unicode Encoding) 2157
12.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets 2157

12.10 Supported Character Sets and Collations .. 2160
12.10.1 Unicode Character Sets .. 2160
12.10.2 West European Character Sets ... 2168
12.10.3 Central European Character Sets .. 2169
12.10.4 South European and Middle East Character Sets ... 2170
12.10.5 Baltic Character Sets .. 2171
12.10.6 Cyrillic Character Sets ... 2171
12.10.7 Asian Character Sets .. 2172
12.10.8 The Binary Character Set .. 2176

12.11 Restrictions on Character Sets ... 2177
12.12 Setting the Error Message Language .. 2177
12.13 Adding a Character Set ... 2178

12.13.1 Character Definition Arrays .. 2180
12.13.2 String Collating Support for Complex Character Sets 2181
12.13.3 Multi-Byte Character Support for Complex Character Sets 2181

12.14 Adding a Collation to a Character Set ... 2181
12.14.1 Collation Implementation Types ... 2182
12.14.2 Choosing a Collation ID .. 2185
12.14.3 Adding a Simple Collation to an 8-Bit Character Set 2186
12.14.4 Adding a UCA Collation to a Unicode Character Set 2187

12.15 Character Set Configuration ... 2193
12.16 MySQL Server Locale Support ... 2194

13 Data Types .. 2199
13.1 Numeric Data Types .. 2200

13.1.1 Numeric Data Type Syntax ... 2200
13.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT .. 2204
13.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC 2204
13.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE 2205
13.1.5 Bit-Value Type - BIT ... 2205
13.1.6 Numeric Type Attributes .. 2205
13.1.7 Out-of-Range and Overflow Handling ... 2207

13.2 Date and Time Data Types .. 2208
13.2.1 Date and Time Data Type Syntax .. 2209
13.2.2 The DATE, DATETIME, and TIMESTAMP Types ... 2211
13.2.3 The TIME Type .. 2213
13.2.4 The YEAR Type ... 2213
13.2.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME 2214
13.2.6 Fractional Seconds in Time Values .. 2217
13.2.7 What Calendar Is Used By MySQL? .. 2218
13.2.8 Conversion Between Date and Time Types .. 2219
13.2.9 2-Digit Years in Dates ... 2220

13.3 String Data Types ... 2220
13.3.1 String Data Type Syntax ... 2220
13.3.2 The CHAR and VARCHAR Types ... 2224
13.3.3 The BINARY and VARBINARY Types ... 2225

xi

MySQL 8.0 Reference Manual

13.3.4 The BLOB and TEXT Types ... 2227
13.3.5 The ENUM Type ... 2228
13.3.6 The SET Type .. 2231

13.4 Spatial Data Types .. 2233
13.4.1 Spatial Data Types ... 2235
13.4.2 The OpenGIS Geometry Model ... 2236
13.4.3 Supported Spatial Data Formats .. 2241
13.4.4 Geometry Well-Formedness and Validity .. 2244
13.4.5 Spatial Reference System Support .. 2245
13.4.6 Creating Spatial Columns .. 2246
13.4.7 Populating Spatial Columns ... 2246
13.4.8 Fetching Spatial Data .. 2247
13.4.9 Optimizing Spatial Analysis ... 2248
13.4.10 Creating Spatial Indexes ... 2248
13.4.11 Using Spatial Indexes ... 2249

13.5 The JSON Data Type .. 2251
13.6 Data Type Default Values .. 2266
13.7 Data Type Storage Requirements .. 2269
13.8 Choosing the Right Type for a Column ... 2274
13.9 Using Data Types from Other Database Engines .. 2274

14 Functions and Operators .. 2277
14.1 Built-In Function and Operator Reference ... 2279
14.2 Loadable Function Reference ... 2300
14.3 Type Conversion in Expression Evaluation ... 2305
14.4 Operators .. 2309

14.4.1 Operator Precedence .. 2311
14.4.2 Comparison Functions and Operators .. 2311
14.4.3 Logical Operators ... 2318
14.4.4 Assignment Operators ... 2320

14.5 Flow Control Functions .. 2321
14.6 Numeric Functions and Operators .. 2324

14.6.1 Arithmetic Operators ... 2325
14.6.2 Mathematical Functions ... 2327

14.7 Date and Time Functions ... 2336
14.8 String Functions and Operators .. 2359

14.8.1 String Comparison Functions and Operators .. 2374
14.8.2 Regular Expressions ... 2378
14.8.3 Character Set and Collation of Function Results ... 2387

14.9 Full-Text Search Functions .. 2388
14.9.1 Natural Language Full-Text Searches .. 2390
14.9.2 Boolean Full-Text Searches .. 2393
14.9.3 Full-Text Searches with Query Expansion .. 2398
14.9.4 Full-Text Stopwords .. 2399
14.9.5 Full-Text Restrictions .. 2403
14.9.6 Fine-Tuning MySQL Full-Text Search .. 2404
14.9.7 Adding a User-Defined Collation for Full-Text Indexing 2407
14.9.8 ngram Full-Text Parser ... 2409
14.9.9 MeCab Full-Text Parser Plugin .. 2411

14.10 Cast Functions and Operators .. 2415
14.11 XML Functions .. 2429
14.12 Bit Functions and Operators ... 2439
14.13 Encryption and Compression Functions .. 2451
14.14 Locking Functions .. 2459
14.15 Information Functions ... 2461
14.16 Spatial Analysis Functions ... 2472

14.16.1 Spatial Function Reference ... 2473
14.16.2 Argument Handling by Spatial Functions .. 2476
14.16.3 Functions That Create Geometry Values from WKT Values 2477

xii

MySQL 8.0 Reference Manual

14.16.4 Functions That Create Geometry Values from WKB Values 2479
14.16.5 MySQL-Specific Functions That Create Geometry Values 2481
14.16.6 Geometry Format Conversion Functions .. 2482
14.16.7 Geometry Property Functions .. 2484
14.16.8 Spatial Operator Functions .. 2496
14.16.9 Functions That Test Spatial Relations Between Geometry Objects 2504
14.16.10 Spatial Geohash Functions .. 2514
14.16.11 Spatial GeoJSON Functions .. 2515
14.16.12 Spatial Aggregate Functions .. 2517
14.16.13 Spatial Convenience Functions .. 2519

14.17 JSON Functions .. 2524
14.17.1 JSON Function Reference ... 2524
14.17.2 Functions That Create JSON Values ... 2526
14.17.3 Functions That Search JSON Values ... 2527
14.17.4 Functions That Modify JSON Values .. 2542
14.17.5 Functions That Return JSON Value Attributes .. 2551
14.17.6 JSON Table Functions .. 2553
14.17.7 JSON Schema Validation Functions ... 2558
14.17.8 JSON Utility Functions .. 2564

14.18 Replication Functions ... 2569
14.18.1 Group Replication Functions .. 2570
14.18.2 Functions Used with Global Transaction Identifiers (GTIDs) 2578
14.18.3 Asynchronous Replication Channel Failover Functions 2580
14.18.4 Position-Based Synchronization Functions ... 2584

14.19 Aggregate Functions .. 2586
14.19.1 Aggregate Function Descriptions ... 2586
14.19.2 GROUP BY Modifiers .. 2596
14.19.3 MySQL Handling of GROUP BY .. 2602
14.19.4 Detection of Functional Dependence .. 2606

14.20 Window Functions ... 2609
14.20.1 Window Function Descriptions ... 2609
14.20.2 Window Function Concepts and Syntax ... 2615
14.20.3 Window Function Frame Specification .. 2619
14.20.4 Named Windows ... 2622
14.20.5 Window Function Restrictions .. 2623

14.21 Performance Schema Functions ... 2624
14.22 Internal Functions .. 2627
14.23 Miscellaneous Functions .. 2628
14.24 Precision Math .. 2642

14.24.1 Types of Numeric Values .. 2643
14.24.2 DECIMAL Data Type Characteristics .. 2643
14.24.3 Expression Handling ... 2644
14.24.4 Rounding Behavior ... 2646
14.24.5 Precision Math Examples .. 2647

15 SQL Statements ... 2651
15.1 Data Definition Statements ... 2652

15.1.1 Atomic Data Definition Statement Support .. 2652
15.1.2 ALTER DATABASE Statement .. 2658
15.1.3 ALTER EVENT Statement ... 2663
15.1.4 ALTER FUNCTION Statement ... 2665
15.1.5 ALTER INSTANCE Statement ... 2665
15.1.6 ALTER LOGFILE GROUP Statement .. 2667
15.1.7 ALTER PROCEDURE Statement ... 2668
15.1.8 ALTER SERVER Statement .. 2669
15.1.9 ALTER TABLE Statement ... 2669
15.1.10 ALTER TABLESPACE Statement .. 2692
15.1.11 ALTER VIEW Statement ... 2694
15.1.12 CREATE DATABASE Statement ... 2694

xiii

MySQL 8.0 Reference Manual

15.1.13 CREATE EVENT Statement .. 2695
15.1.14 CREATE FUNCTION Statement .. 2700
15.1.15 CREATE INDEX Statement ... 2700
15.1.16 CREATE LOGFILE GROUP Statement .. 2714
15.1.17 CREATE PROCEDURE and CREATE FUNCTION Statements 2715
15.1.18 CREATE SERVER Statement ... 2721
15.1.19 CREATE SPATIAL REFERENCE SYSTEM Statement 2722
15.1.20 CREATE TABLE Statement ... 2726
15.1.21 CREATE TABLESPACE Statement ... 2786
15.1.22 CREATE TRIGGER Statement .. 2793
15.1.23 CREATE VIEW Statement ... 2795
15.1.24 DROP DATABASE Statement ... 2799
15.1.25 DROP EVENT Statement .. 2800
15.1.26 DROP FUNCTION Statement .. 2800
15.1.27 DROP INDEX Statement ... 2800
15.1.28 DROP LOGFILE GROUP Statement .. 2801
15.1.29 DROP PROCEDURE and DROP FUNCTION Statements 2801
15.1.30 DROP SERVER Statement ... 2802
15.1.31 DROP SPATIAL REFERENCE SYSTEM Statement 2802
15.1.32 DROP TABLE Statement .. 2803
15.1.33 DROP TABLESPACE Statement ... 2803
15.1.34 DROP TRIGGER Statement .. 2805
15.1.35 DROP VIEW Statement .. 2805
15.1.36 RENAME TABLE Statement .. 2805
15.1.37 TRUNCATE TABLE Statement .. 2807

15.2 Data Manipulation Statements .. 2808
15.2.1 CALL Statement ... 2808
15.2.2 DELETE Statement ... 2810
15.2.3 DO Statement ... 2814
15.2.4 EXCEPT Clause ... 2814
15.2.5 HANDLER Statement .. 2816
15.2.6 IMPORT TABLE Statement ... 2817
15.2.7 INSERT Statement ... 2820
15.2.8 INTERSECT Clause .. 2829
15.2.9 LOAD DATA Statement .. 2831
15.2.10 LOAD XML Statement ... 2842
15.2.11 Parenthesized Query Expressions ... 2849
15.2.12 REPLACE Statement .. 2851
15.2.13 SELECT Statement ... 2854
15.2.14 Set Operations with UNION, INTERSECT, and EXCEPT 2869
15.2.15 Subqueries ... 2874
15.2.16 TABLE Statement ... 2890
15.2.17 UPDATE Statement .. 2893
15.2.18 UNION Clause .. 2896
15.2.19 VALUES Statement ... 2897
15.2.20 WITH (Common Table Expressions) .. 2899

15.3 Transactional and Locking Statements ... 2911
15.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements 2911
15.3.2 Statements That Cannot Be Rolled Back ... 2914
15.3.3 Statements That Cause an Implicit Commit .. 2914
15.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT
Statements .. 2915
15.3.5 LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements 2916
15.3.6 LOCK TABLES and UNLOCK TABLES Statements .. 2916
15.3.7 SET TRANSACTION Statement .. 2922
15.3.8 XA Transactions ... 2925

15.4 Replication Statements .. 2930
15.4.1 SQL Statements for Controlling Source Servers ... 2930

xiv

MySQL 8.0 Reference Manual

15.4.2 SQL Statements for Controlling Replica Servers ... 2933
15.4.3 SQL Statements for Controlling Group Replication .. 2975

15.5 Prepared Statements ... 2977
15.5.1 PREPARE Statement .. 2980
15.5.2 EXECUTE Statement .. 2982
15.5.3 DEALLOCATE PREPARE Statement ... 2982

15.6 Compound Statement Syntax ... 2983
15.6.1 BEGIN ... END Compound Statement .. 2983
15.6.2 Statement Labels .. 2983
15.6.3 DECLARE Statement .. 2984
15.6.4 Variables in Stored Programs .. 2984
15.6.5 Flow Control Statements ... 2986
15.6.6 Cursors .. 2990
15.6.7 Condition Handling .. 2992
15.6.8 Restrictions on Condition Handling .. 3018

15.7 Database Administration Statements .. 3019
15.7.1 Account Management Statements ... 3019
15.7.2 Resource Group Management Statements ... 3071
15.7.3 Table Maintenance Statements ... 3074
15.7.4 Component, Plugin, and Loadable Function Statements 3089
15.7.5 CLONE Statement .. 3094
15.7.6 SET Statements ... 3095
15.7.7 SHOW Statements .. 3100
15.7.8 Other Administrative Statements .. 3155

15.8 Utility Statements .. 3168
15.8.1 DESCRIBE Statement ... 3168
15.8.2 EXPLAIN Statement ... 3168
15.8.3 HELP Statement ... 3174
15.8.4 USE Statement ... 3176

16 MySQL Data Dictionary .. 3177
16.1 Data Dictionary Schema .. 3177
16.2 Removal of File-based Metadata Storage ... 3178
16.3 Transactional Storage of Dictionary Data .. 3179
16.4 Dictionary Object Cache .. 3179
16.5 INFORMATION_SCHEMA and Data Dictionary Integration .. 3180
16.6 Serialized Dictionary Information (SDI) ... 3182
16.7 Data Dictionary Usage Differences ... 3182
16.8 Data Dictionary Limitations ... 3184

17 The InnoDB Storage Engine ... 3185
17.1 Introduction to InnoDB ... 3186

17.1.1 Benefits of Using InnoDB Tables ... 3188
17.1.2 Best Practices for InnoDB Tables .. 3189
17.1.3 Verifying that InnoDB is the Default Storage Engine 3189
17.1.4 Testing and Benchmarking with InnoDB ... 3190

17.2 InnoDB and the ACID Model .. 3190
17.3 InnoDB Multi-Versioning ... 3191
17.4 InnoDB Architecture ... 3193
17.5 InnoDB In-Memory Structures .. 3193

17.5.1 Buffer Pool ... 3193
17.5.2 Change Buffer .. 3198
17.5.3 Adaptive Hash Index ... 3201
17.5.4 Log Buffer .. 3202

17.6 InnoDB On-Disk Structures .. 3202
17.6.1 Tables .. 3202
17.6.2 Indexes .. 3226
17.6.3 Tablespaces ... 3233
17.6.4 Doublewrite Buffer .. 3256
17.6.5 Redo Log ... 3257

xv

MySQL 8.0 Reference Manual

17.6.6 Undo Logs ... 3264
17.7 InnoDB Locking and Transaction Model .. 3265

17.7.1 InnoDB Locking .. 3266
17.7.2 InnoDB Transaction Model .. 3270
17.7.3 Locks Set by Different SQL Statements in InnoDB .. 3279
17.7.4 Phantom Rows ... 3282
17.7.5 Deadlocks in InnoDB .. 3283
17.7.6 Transaction Scheduling ... 3288

17.8 InnoDB Configuration ... 3289
17.8.1 InnoDB Startup Configuration .. 3289
17.8.2 Configuring InnoDB for Read-Only Operation ... 3295
17.8.3 InnoDB Buffer Pool Configuration .. 3297
17.8.4 Configuring Thread Concurrency for InnoDB .. 3311
17.8.5 Configuring the Number of Background InnoDB I/O Threads 3312
17.8.6 Using Asynchronous I/O on Linux .. 3313
17.8.7 Configuring InnoDB I/O Capacity ... 3313
17.8.8 Configuring Spin Lock Polling .. 3315
17.8.9 Purge Configuration .. 3316
17.8.10 Configuring Optimizer Statistics for InnoDB .. 3317
17.8.11 Configuring the Merge Threshold for Index Pages .. 3328
17.8.12 Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server 3330

17.9 InnoDB Table and Page Compression .. 3333
17.9.1 InnoDB Table Compression ... 3333
17.9.2 InnoDB Page Compression ... 3347

17.10 InnoDB Row Formats .. 3350
17.11 InnoDB Disk I/O and File Space Management .. 3356

17.11.1 InnoDB Disk I/O .. 3357
17.11.2 File Space Management ... 3357
17.11.3 InnoDB Checkpoints ... 3359
17.11.4 Defragmenting a Table .. 3359
17.11.5 Reclaiming Disk Space with TRUNCATE TABLE .. 3360

17.12 InnoDB and Online DDL .. 3360
17.12.1 Online DDL Operations ... 3361
17.12.2 Online DDL Performance and Concurrency .. 3377
17.12.3 Online DDL Space Requirements .. 3380
17.12.4 Online DDL Memory Management ... 3381
17.12.5 Configuring Parallel Threads for Online DDL Operations 3381
17.12.6 Simplifying DDL Statements with Online DDL ... 3382
17.12.7 Online DDL Failure Conditions .. 3382
17.12.8 Online DDL Limitations .. 3383

17.13 InnoDB Data-at-Rest Encryption ... 3383
17.14 InnoDB Startup Options and System Variables .. 3392
17.15 InnoDB INFORMATION_SCHEMA Tables .. 3482

17.15.1 InnoDB INFORMATION_SCHEMA Tables about Compression 3483
17.15.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information 3484
17.15.3 InnoDB INFORMATION_SCHEMA Schema Object Tables 3492
17.15.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables 3497
17.15.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables 3500
17.15.6 InnoDB INFORMATION_SCHEMA Metrics Table ... 3504
17.15.7 InnoDB INFORMATION_SCHEMA Temporary Table Info Table 3513
17.15.8 Retrieving InnoDB Tablespace Metadata from
INFORMATION_SCHEMA.FILES ... 3514

17.16 InnoDB Integration with MySQL Performance Schema .. 3515
17.16.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance
Schema .. 3517
17.16.2 Monitoring InnoDB Mutex Waits Using Performance Schema 3519

17.17 InnoDB Monitors .. 3522
17.17.1 InnoDB Monitor Types .. 3522

xvi

MySQL 8.0 Reference Manual

17.17.2 Enabling InnoDB Monitors ... 3523
17.17.3 InnoDB Standard Monitor and Lock Monitor Output 3524

17.18 InnoDB Backup and Recovery .. 3529
17.18.1 InnoDB Backup ... 3529
17.18.2 InnoDB Recovery .. 3530

17.19 InnoDB and MySQL Replication ... 3532
17.20 InnoDB memcached Plugin .. 3534

17.20.1 Benefits of the InnoDB memcached Plugin ... 3534
17.20.2 InnoDB memcached Architecture ... 3535
17.20.3 Setting Up the InnoDB memcached Plugin ... 3537
17.20.4 InnoDB memcached Multiple get and Range Query Support 3542
17.20.5 Security Considerations for the InnoDB memcached Plugin 3544
17.20.6 Writing Applications for the InnoDB memcached Plugin 3546
17.20.7 The InnoDB memcached Plugin and Replication ... 3558
17.20.8 InnoDB memcached Plugin Internals .. 3561
17.20.9 Troubleshooting the InnoDB memcached Plugin ... 3566

17.21 InnoDB Troubleshooting ... 3568
17.21.1 Troubleshooting InnoDB I/O Problems ... 3569
17.21.2 Troubleshooting Recovery Failures .. 3569
17.21.3 Forcing InnoDB Recovery ... 3569
17.21.4 Troubleshooting InnoDB Data Dictionary Operations 3571
17.21.5 InnoDB Error Handling .. 3572

17.22 InnoDB Limits .. 3572
17.23 InnoDB Restrictions and Limitations ... 3574

18 Alternative Storage Engines .. 3575
18.1 Setting the Storage Engine .. 3578
18.2 The MyISAM Storage Engine ... 3579

18.2.1 MyISAM Startup Options ... 3581
18.2.2 Space Needed for Keys .. 3583
18.2.3 MyISAM Table Storage Formats .. 3583
18.2.4 MyISAM Table Problems ... 3586

18.3 The MEMORY Storage Engine .. 3587
18.4 The CSV Storage Engine .. 3592

18.4.1 Repairing and Checking CSV Tables ... 3592
18.4.2 CSV Limitations .. 3593

18.5 The ARCHIVE Storage Engine ... 3593
18.6 The BLACKHOLE Storage Engine ... 3595
18.7 The MERGE Storage Engine ... 3597

18.7.1 MERGE Table Advantages and Disadvantages .. 3599
18.7.2 MERGE Table Problems ... 3600

18.8 The FEDERATED Storage Engine ... 3602
18.8.1 FEDERATED Storage Engine Overview ... 3602
18.8.2 How to Create FEDERATED Tables .. 3603
18.8.3 FEDERATED Storage Engine Notes and Tips .. 3606
18.8.4 FEDERATED Storage Engine Resources ... 3607

18.9 The EXAMPLE Storage Engine .. 3607
18.10 Other Storage Engines .. 3608
18.11 Overview of MySQL Storage Engine Architecture .. 3608

18.11.1 Pluggable Storage Engine Architecture .. 3609
18.11.2 The Common Database Server Layer .. 3609

19 Replication ... 3611
19.1 Configuring Replication .. 3613

19.1.1 Binary Log File Position Based Replication Configuration Overview 3613
19.1.2 Setting Up Binary Log File Position Based Replication 3614
19.1.3 Replication with Global Transaction Identifiers .. 3625
19.1.4 Changing GTID Mode on Online Servers ... 3649
19.1.5 MySQL Multi-Source Replication ... 3655
19.1.6 Replication and Binary Logging Options and Variables 3662

xvii

MySQL 8.0 Reference Manual

19.1.7 Common Replication Administration Tasks ... 3778
19.2 Replication Implementation .. 3785

19.2.1 Replication Formats .. 3785
19.2.2 Replication Channels .. 3793
19.2.3 Replication Threads .. 3797
19.2.4 Relay Log and Replication Metadata Repositories .. 3799
19.2.5 How Servers Evaluate Replication Filtering Rules ... 3806

19.3 Replication Security ... 3815
19.3.1 Setting Up Replication to Use Encrypted Connections 3815
19.3.2 Encrypting Binary Log Files and Relay Log Files .. 3818
19.3.3 Replication Privilege Checks ... 3821

19.4 Replication Solutions ... 3828
19.4.1 Using Replication for Backups ... 3828
19.4.2 Handling an Unexpected Halt of a Replica ... 3832
19.4.3 Monitoring Row-based Replication ... 3834
19.4.4 Using Replication with Different Source and Replica Storage Engines 3835
19.4.5 Using Replication for Scale-Out ... 3836
19.4.6 Replicating Different Databases to Different Replicas 3838
19.4.7 Improving Replication Performance .. 3839
19.4.8 Switching Sources During Failover .. 3840
19.4.9 Switching Sources and Replicas with Asynchronous Connection Failover 3842
19.4.10 Semisynchronous Replication .. 3846
19.4.11 Delayed Replication .. 3852

19.5 Replication Notes and Tips .. 3855
19.5.1 Replication Features and Issues .. 3855
19.5.2 Replication Compatibility Between MySQL Versions 3882
19.5.3 Upgrading a Replication Topology ... 3883
19.5.4 Troubleshooting Replication .. 3885
19.5.5 How to Report Replication Bugs or Problems ... 3886

20 Group Replication .. 3889
20.1 Group Replication Background ... 3890

20.1.1 Replication Technologies ... 3891
20.1.2 Group Replication Use Cases ... 3894
20.1.3 Multi-Primary and Single-Primary Modes .. 3895
20.1.4 Group Replication Services ... 3899
20.1.5 Group Replication Plugin Architecture .. 3902

20.2 Getting Started .. 3903
20.2.1 Deploying Group Replication in Single-Primary Mode 3903
20.2.2 Deploying Group Replication Locally .. 3916

20.3 Requirements and Limitations .. 3917
20.3.1 Group Replication Requirements ... 3917
20.3.2 Group Replication Limitations .. 3920

20.4 Monitoring Group Replication ... 3923
20.4.1 GTIDs and Group Replication .. 3924
20.4.2 Group Replication Server States .. 3925
20.4.3 The replication_group_members Table .. 3926
20.4.4 The replication_group_member_stats Table ... 3927

20.5 Group Replication Operations .. 3927
20.5.1 Configuring an Online Group ... 3927
20.5.2 Restarting a Group ... 3933
20.5.3 Transaction Consistency Guarantees ... 3935
20.5.4 Distributed Recovery ... 3941
20.5.5 Support For IPv6 And For Mixed IPv6 And IPv4 Groups 3956
20.5.6 Using MySQL Enterprise Backup with Group Replication 3958

20.6 Group Replication Security ... 3964
20.6.1 Communication Stack for Connection Security Management 3964
20.6.2 Securing Group Communication Connections with Secure Socket Layer (SSL) . 3967
20.6.3 Securing Distributed Recovery Connections ... 3970

xviii

MySQL 8.0 Reference Manual

20.6.4 Group Replication IP Address Permissions .. 3974
20.7 Group Replication Performance and Troubleshooting .. 3976

20.7.1 Fine Tuning the Group Communication Thread .. 3977
20.7.2 Flow Control ... 3977
20.7.3 Single Consensus Leader ... 3978
20.7.4 Message Compression .. 3979
20.7.5 Message Fragmentation .. 3981
20.7.6 XCom Cache Management ... 3982
20.7.7 Responses to Failure Detection and Network Partitioning 3984
20.7.8 Handling a Network Partition and Loss of Quorum .. 3990
20.7.9 Monitoring Group Replication Memory Usage with Performance Schema
Memory Instrumentation .. 3994

20.8 Upgrading Group Replication ... 4003
20.8.1 Combining Different Member Versions in a Group .. 4003
20.8.2 Group Replication Offline Upgrade .. 4005
20.8.3 Group Replication Online Upgrade .. 4006

20.9 Group Replication Variables ... 4009
20.9.1 Group Replication System Variables .. 4011
20.9.2 Group Replication Status Variables .. 4054

20.10 Frequently Asked Questions ... 4054
21 MySQL Shell .. 4059
22 Using MySQL as a Document Store ... 4061

22.1 Interfaces to a MySQL Document Store .. 4062
22.2 Document Store Concepts ... 4062
22.3 JavaScript Quick-Start Guide: MySQL Shell for Document Store 4063

22.3.1 MySQL Shell .. 4064
22.3.2 Download and Import world_x Database .. 4065
22.3.3 Documents and Collections ... 4066
22.3.4 Relational Tables .. 4076
22.3.5 Documents in Tables .. 4082

22.4 Python Quick-Start Guide: MySQL Shell for Document Store 4083
22.4.1 MySQL Shell .. 4083
22.4.2 Download and Import world_x Database .. 4085
22.4.3 Documents and Collections ... 4085
22.4.4 Relational Tables .. 4096
22.4.5 Documents in Tables .. 4102

22.5 X Plugin .. 4103
22.5.1 Checking X Plugin Installation ... 4103
22.5.2 Disabling X Plugin .. 4103
22.5.3 Using Encrypted Connections with X Plugin ... 4103
22.5.4 Using X Plugin with the Caching SHA-2 Authentication Plugin 4104
22.5.5 Connection Compression with X Plugin .. 4105
22.5.6 X Plugin Options and Variables ... 4108
22.5.7 Monitoring X Plugin .. 4128

23 InnoDB Cluster ... 4131
24 InnoDB ReplicaSet ... 4133
25 MySQL NDB Cluster 8.0 .. 4135

25.1 General Information ... 4137
25.2 NDB Cluster Overview ... 4139

25.2.1 NDB Cluster Core Concepts .. 4140
25.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions 4143
25.2.3 NDB Cluster Hardware, Software, and Networking Requirements 4146
25.2.4 What is New in MySQL NDB Cluster 8.0 ... 4147
25.2.5 Options, Variables, and Parameters Added, Deprecated or Removed in NDB
8.0 .. 4176
25.2.6 MySQL Server Using InnoDB Compared with NDB Cluster 4181
25.2.7 Known Limitations of NDB Cluster ... 4184

25.3 NDB Cluster Installation ... 4196

xix

MySQL 8.0 Reference Manual

25.3.1 Installation of NDB Cluster on Linux .. 4198
25.3.2 Installing NDB Cluster on Windows ... 4208
25.3.3 Initial Configuration of NDB Cluster ... 4217
25.3.4 Initial Startup of NDB Cluster .. 4218
25.3.5 NDB Cluster Example with Tables and Data .. 4219
25.3.6 Safe Shutdown and Restart of NDB Cluster ... 4222
25.3.7 Upgrading and Downgrading NDB Cluster ... 4223
25.3.8 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED) 4229

25.4 Configuration of NDB Cluster ... 4229
25.4.1 Quick Test Setup of NDB Cluster .. 4229
25.4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables 4231
25.4.3 NDB Cluster Configuration Files .. 4253
25.4.4 Using High-Speed Interconnects with NDB Cluster ... 4461

25.5 NDB Cluster Programs .. 4461
25.5.1 ndbd — The NDB Cluster Data Node Daemon ... 4461
25.5.2 ndbinfo_select_all — Select From ndbinfo Tables ... 4472
25.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded) 4477
25.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon 4478
25.5.5 ndb_mgm — The NDB Cluster Management Client .. 4490
25.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables ... 4495
25.5.7 ndb_config — Extract NDB Cluster Configuration Information 4501
25.5.8 ndb_delete_all — Delete All Rows from an NDB Table 4514
25.5.9 ndb_desc — Describe NDB Tables ... 4519
25.5.10 ndb_drop_index — Drop Index from an NDB Table 4528
25.5.11 ndb_drop_table — Drop an NDB Table .. 4533
25.5.12 ndb_error_reporter — NDB Error-Reporting Utility ... 4537
25.5.13 ndb_import — Import CSV Data Into NDB .. 4538
25.5.14 ndb_index_stat — NDB Index Statistics Utility .. 4555
25.5.15 ndb_move_data — NDB Data Copy Utility ... 4562
25.5.16 ndb_perror — Obtain NDB Error Message Information 4568
25.5.17 ndb_print_backup_file — Print NDB Backup File Contents 4570
25.5.18 ndb_print_file — Print NDB Disk Data File Contents 4576
25.5.19 ndb_print_frag_file — Print NDB Fragment List File Contents 4577
25.5.20 ndb_print_schema_file — Print NDB Schema File Contents 4578
25.5.21 ndb_print_sys_file — Print NDB System File Contents 4578
25.5.22 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log 4579
25.5.23 ndb_restore — Restore an NDB Cluster Backup ... 4582
25.5.24 ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB
Data File ... 4613
25.5.25 ndb_select_all — Print Rows from an NDB Table ... 4616
25.5.26 ndb_select_count — Print Row Counts for NDB Tables 4622
25.5.27 ndb_show_tables — Display List of NDB Tables ... 4626
25.5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator 4631
25.5.29 ndb_top — View CPU usage information for NDB threads 4634
25.5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status 4640
25.5.31 ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by
NDB Cluster .. 4647

25.6 Management of NDB Cluster ... 4654
25.6.1 Commands in the NDB Cluster Management Client .. 4654
25.6.2 NDB Cluster Log Messages .. 4660
25.6.3 Event Reports Generated in NDB Cluster .. 4679
25.6.4 Summary of NDB Cluster Start Phases .. 4690
25.6.5 Performing a Rolling Restart of an NDB Cluster ... 4692
25.6.6 NDB Cluster Single User Mode ... 4694
25.6.7 Adding NDB Cluster Data Nodes Online .. 4695
25.6.8 Online Backup of NDB Cluster .. 4705
25.6.9 Importing Data Into MySQL Cluster ... 4712

xx

MySQL 8.0 Reference Manual

25.6.10 MySQL Server Usage for NDB Cluster ... 4712
25.6.11 NDB Cluster Disk Data Tables .. 4714
25.6.12 Online Operations with ALTER TABLE in NDB Cluster 4720
25.6.13 Privilege Synchronization and NDB_STORED_USER 4723
25.6.14 File System Encryption for NDB Cluster ... 4724
25.6.15 NDB API Statistics Counters and Variables .. 4727
25.6.16 ndbinfo: The NDB Cluster Information Database ... 4739
25.6.17 INFORMATION_SCHEMA Tables for NDB Cluster 4827
25.6.18 NDB Cluster and the Performance Schema .. 4828
25.6.19 Quick Reference: NDB Cluster SQL Statements ... 4829
25.6.20 NDB Cluster Security Issues ... 4835

25.7 NDB Cluster Replication .. 4842
25.7.1 NDB Cluster Replication: Abbreviations and Symbols 4844
25.7.2 General Requirements for NDB Cluster Replication .. 4845
25.7.3 Known Issues in NDB Cluster Replication .. 4846
25.7.4 NDB Cluster Replication Schema and Tables ... 4853
25.7.5 Preparing the NDB Cluster for Replication ... 4860
25.7.6 Starting NDB Cluster Replication (Single Replication Channel) 4862
25.7.7 Using Two Replication Channels for NDB Cluster Replication 4864
25.7.8 Implementing Failover with NDB Cluster Replication 4865
25.7.9 NDB Cluster Backups With NDB Cluster Replication 4867
25.7.10 NDB Cluster Replication: Bidirectional and Circular Replication 4873
25.7.11 NDB Cluster Replication Using the Multithreaded Applier 4877
25.7.12 NDB Cluster Replication Conflict Resolution ... 4881

25.8 NDB Cluster Release Notes ... 4898
26 Partitioning ... 4899

26.1 Overview of Partitioning in MySQL ... 4900
26.2 Partitioning Types .. 4903

26.2.1 RANGE Partitioning .. 4904
26.2.2 LIST Partitioning ... 4908
26.2.3 COLUMNS Partitioning ... 4911
26.2.4 HASH Partitioning ... 4918
26.2.5 KEY Partitioning ... 4921
26.2.6 Subpartitioning .. 4922
26.2.7 How MySQL Partitioning Handles NULL .. 4924

26.3 Partition Management .. 4928
26.3.1 Management of RANGE and LIST Partitions .. 4929
26.3.2 Management of HASH and KEY Partitions ... 4935
26.3.3 Exchanging Partitions and Subpartitions with Tables 4936
26.3.4 Maintenance of Partitions .. 4943
26.3.5 Obtaining Information About Partitions ... 4944

26.4 Partition Pruning .. 4946
26.5 Partition Selection .. 4949
26.6 Restrictions and Limitations on Partitioning ... 4955

26.6.1 Partitioning Keys, Primary Keys, and Unique Keys ... 4961
26.6.2 Partitioning Limitations Relating to Storage Engines .. 4964
26.6.3 Partitioning Limitations Relating to Functions .. 4965

27 Stored Objects ... 4967
27.1 Defining Stored Programs .. 4968
27.2 Using Stored Routines ... 4969

27.2.1 Stored Routine Syntax .. 4970
27.2.2 Stored Routines and MySQL Privileges ... 4970
27.2.3 Stored Routine Metadata .. 4971
27.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 4971

27.3 Using Triggers ... 4971
27.3.1 Trigger Syntax and Examples .. 4972
27.3.2 Trigger Metadata .. 4976

27.4 Using the Event Scheduler .. 4976

xxi

MySQL 8.0 Reference Manual

27.4.1 Event Scheduler Overview .. 4977
27.4.2 Event Scheduler Configuration .. 4977
27.4.3 Event Syntax .. 4980
27.4.4 Event Metadata .. 4980
27.4.5 Event Scheduler Status ... 4981
27.4.6 The Event Scheduler and MySQL Privileges .. 4981

27.5 Using Views .. 4984
27.5.1 View Syntax ... 4984
27.5.2 View Processing Algorithms .. 4984
27.5.3 Updatable and Insertable Views .. 4985
27.5.4 The View WITH CHECK OPTION Clause .. 4988
27.5.5 View Metadata .. 4989

27.6 Stored Object Access Control .. 4989
27.7 Stored Program Binary Logging ... 4993
27.8 Restrictions on Stored Programs .. 4999
27.9 Restrictions on Views .. 5002

28 INFORMATION_SCHEMA Tables ... 5005
28.1 Introduction ... 5006
28.2 INFORMATION_SCHEMA Table Reference ... 5009
28.3 INFORMATION_SCHEMA General Tables ... 5014

28.3.1 INFORMATION_SCHEMA General Table Reference 5014
28.3.2 The INFORMATION_SCHEMA ADMINISTRABLE_ROLE_AUTHORIZATIONS
Table .. 5016
28.3.3 The INFORMATION_SCHEMA APPLICABLE_ROLES Table 5017
28.3.4 The INFORMATION_SCHEMA CHARACTER_SETS Table 5017
28.3.5 The INFORMATION_SCHEMA CHECK_CONSTRAINTS Table 5018
28.3.6 The INFORMATION_SCHEMA COLLATIONS Table 5018
28.3.7 The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY Table ... 5019
28.3.8 The INFORMATION_SCHEMA COLUMNS Table ... 5019
28.3.9 The INFORMATION_SCHEMA COLUMNS_EXTENSIONS Table 5022
28.3.10 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table 5023
28.3.11 The INFORMATION_SCHEMA COLUMN_STATISTICS Table 5023
28.3.12 The INFORMATION_SCHEMA ENABLED_ROLES Table 5024
28.3.13 The INFORMATION_SCHEMA ENGINES Table ... 5024
28.3.14 The INFORMATION_SCHEMA EVENTS Table .. 5025
28.3.15 The INFORMATION_SCHEMA FILES Table .. 5029
28.3.16 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 5036
28.3.17 The INFORMATION_SCHEMA KEYWORDS Table 5037
28.3.18 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table 5038
28.3.19 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table 5039
28.3.20 The INFORMATION_SCHEMA PARAMETERS Table 5040
28.3.21 The INFORMATION_SCHEMA PARTITIONS Table 5041
28.3.22 The INFORMATION_SCHEMA PLUGINS Table ... 5044
28.3.23 The INFORMATION_SCHEMA PROCESSLIST Table 5045
28.3.24 The INFORMATION_SCHEMA PROFILING Table .. 5047
28.3.25 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 5048
28.3.26 The INFORMATION_SCHEMA RESOURCE_GROUPS Table 5049
28.3.27 The INFORMATION_SCHEMA ROLE_COLUMN_GRANTS Table 5049
28.3.28 The INFORMATION_SCHEMA ROLE_ROUTINE_GRANTS Table 5050
28.3.29 The INFORMATION_SCHEMA ROLE_TABLE_GRANTS Table 5051
28.3.30 The INFORMATION_SCHEMA ROUTINES Table .. 5052
28.3.31 The INFORMATION_SCHEMA SCHEMATA Table 5054
28.3.32 The INFORMATION_SCHEMA SCHEMATA_EXTENSIONS Table 5055
28.3.33 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 5056
28.3.34 The INFORMATION_SCHEMA STATISTICS Table 5056
28.3.35 The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table 5059

xxii

MySQL 8.0 Reference Manual

28.3.36 The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS
Table .. 5059
28.3.37 The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table 5061
28.3.38 The INFORMATION_SCHEMA TABLES Table ... 5061
28.3.39 The INFORMATION_SCHEMA TABLES_EXTENSIONS Table 5065
28.3.40 The INFORMATION_SCHEMA TABLESPACES Table 5065
28.3.41 The INFORMATION_SCHEMA TABLESPACES_EXTENSIONS Table 5066
28.3.42 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 5066
28.3.43 The INFORMATION_SCHEMA TABLE_CONSTRAINTS_EXTENSIONS Table 5067
28.3.44 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table 5067
28.3.45 The INFORMATION_SCHEMA TRIGGERS Table .. 5068
28.3.46 The INFORMATION_SCHEMA USER_ATTRIBUTES Table 5070
28.3.47 The INFORMATION_SCHEMA USER_PRIVILEGES Table 5071
28.3.48 The INFORMATION_SCHEMA VIEWS Table ... 5071
28.3.49 The INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Table 5073
28.3.50 The INFORMATION_SCHEMA VIEW_TABLE_USAGE Table 5073

28.4 INFORMATION_SCHEMA InnoDB Tables .. 5074
28.4.1 INFORMATION_SCHEMA InnoDB Table Reference 5074
28.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table 5075
28.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 5079
28.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 5082
28.4.5 The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table 5085
28.4.6 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET
Tables ... 5086
28.4.7 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables .. 5087
28.4.8 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables ... 5089
28.4.9 The INFORMATION_SCHEMA INNODB_COLUMNS Table 5090
28.4.10 The INFORMATION_SCHEMA INNODB_DATAFILES Table 5092
28.4.11 The INFORMATION_SCHEMA INNODB_FIELDS Table 5092
28.4.12 The INFORMATION_SCHEMA INNODB_FOREIGN Table 5093
28.4.13 The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table 5094
28.4.14 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 5094
28.4.15 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table 5095
28.4.16 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table . 5096
28.4.17 The INFORMATION_SCHEMA INNODB_FT_DELETED Table 5097
28.4.18 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 5098
28.4.19 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 5099
28.4.20 The INFORMATION_SCHEMA INNODB_INDEXES Table 5101
28.4.21 The INFORMATION_SCHEMA INNODB_METRICS Table 5102
28.4.22 The INFORMATION_SCHEMA INNODB_SESSION_TEMP_TABLESPACES
Table .. 5104
28.4.23 The INFORMATION_SCHEMA INNODB_TABLES Table 5105
28.4.24 The INFORMATION_SCHEMA INNODB_TABLESPACES Table 5106
28.4.25 The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table 5109
28.4.26 The INFORMATION_SCHEMA INNODB_TABLESTATS View 5109
28.4.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table 5111
28.4.28 The INFORMATION_SCHEMA INNODB_TRX Table 5112
28.4.29 The INFORMATION_SCHEMA INNODB_VIRTUAL Table 5114

28.5 INFORMATION_SCHEMA Thread Pool Tables ... 5116
28.5.1 INFORMATION_SCHEMA Thread Pool Table Reference 5116
28.5.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table 5116
28.5.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table 5117
28.5.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table 5117

28.6 INFORMATION_SCHEMA Connection Control Tables ... 5118
28.6.1 INFORMATION_SCHEMA Connection Control Table Reference 5118

xxiii

MySQL 8.0 Reference Manual

28.6.2 The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table 5118

28.7 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables 5118
28.7.1 INFORMATION_SCHEMA Firewall Table Reference 5118
28.7.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table 5119
28.7.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table 5119

28.8 Extensions to SHOW Statements ... 5119
29 MySQL Performance Schema ... 5123

29.1 Performance Schema Quick Start .. 5125
29.2 Performance Schema Build Configuration ... 5131
29.3 Performance Schema Startup Configuration .. 5131
29.4 Performance Schema Runtime Configuration .. 5133

29.4.1 Performance Schema Event Timing ... 5134
29.4.2 Performance Schema Event Filtering ... 5136
29.4.3 Event Pre-Filtering .. 5137
29.4.4 Pre-Filtering by Instrument .. 5138
29.4.5 Pre-Filtering by Object .. 5140
29.4.6 Pre-Filtering by Thread ... 5141
29.4.7 Pre-Filtering by Consumer ... 5143
29.4.8 Example Consumer Configurations .. 5146
29.4.9 Naming Instruments or Consumers for Filtering Operations 5151
29.4.10 Determining What Is Instrumented ... 5151

29.5 Performance Schema Queries ... 5152
29.6 Performance Schema Instrument Naming Conventions .. 5152
29.7 Performance Schema Status Monitoring ... 5156
29.8 Performance Schema Atom and Molecule Events ... 5159
29.9 Performance Schema Tables for Current and Historical Events 5159
29.10 Performance Schema Statement Digests and Sampling ... 5161
29.11 Performance Schema General Table Characteristics ... 5165
29.12 Performance Schema Table Descriptions .. 5166

29.12.1 Performance Schema Table Reference .. 5166
29.12.2 Performance Schema Setup Tables ... 5171
29.12.3 Performance Schema Instance Tables ... 5180
29.12.4 Performance Schema Wait Event Tables ... 5185
29.12.5 Performance Schema Stage Event Tables ... 5190
29.12.6 Performance Schema Statement Event Tables ... 5196
29.12.7 Performance Schema Transaction Tables .. 5207
29.12.8 Performance Schema Connection Tables ... 5214
29.12.9 Performance Schema Connection Attribute Tables 5218
29.12.10 Performance Schema User-Defined Variable Tables 5222
29.12.11 Performance Schema Replication Tables ... 5223
29.12.12 Performance Schema NDB Cluster Tables ... 5246
29.12.13 Performance Schema Lock Tables ... 5249
29.12.14 Performance Schema System Variable Tables ... 5258
29.12.15 Performance Schema Status Variable Tables ... 5263
29.12.16 Performance Schema Thread Pool Tables ... 5264
29.12.17 Performance Schema Firewall Tables .. 5269
29.12.18 Performance Schema Keyring Tables .. 5271
29.12.19 Performance Schema Clone Tables ... 5272
29.12.20 Performance Schema Summary Tables ... 5275
29.12.21 Performance Schema Miscellaneous Tables ... 5303

29.13 Performance Schema Option and Variable Reference ... 5322
29.14 Performance Schema Command Options ... 5326
29.15 Performance Schema System Variables ... 5327
29.16 Performance Schema Status Variables ... 5346
29.17 The Performance Schema Memory-Allocation Model ... 5349
29.18 Performance Schema and Plugins .. 5350
29.19 Using the Performance Schema to Diagnose Problems ... 5350

xxiv

MySQL 8.0 Reference Manual

29.19.1 Query Profiling Using Performance Schema ... 5351
29.19.2 Obtaining Parent Event Information .. 5353

29.20 Restrictions on Performance Schema ... 5355
30 MySQL sys Schema ... 5357

30.1 Prerequisites for Using the sys Schema ... 5357
30.2 Using the sys Schema ... 5358
30.3 sys Schema Progress Reporting .. 5359
30.4 sys Schema Object Reference ... 5360

30.4.1 sys Schema Object Index ... 5360
30.4.2 sys Schema Tables and Triggers .. 5365
30.4.3 sys Schema Views ... 5367
30.4.4 sys Schema Stored Procedures .. 5407
30.4.5 sys Schema Stored Functions ... 5425

31 Connectors and APIs ... 5439
31.1 MySQL Connector/C++ .. 5441
31.2 MySQL Connector/J .. 5442
31.3 MySQL Connector/NET ... 5442
31.4 MySQL Connector/ODBC ... 5442
31.5 MySQL Connector/Python .. 5442
31.6 MySQL Connector/Node.js ... 5442
31.7 MySQL C API ... 5442
31.8 MySQL PHP API ... 5442
31.9 MySQL Perl API .. 5442
31.10 MySQL Python API .. 5443
31.11 MySQL Ruby APIs .. 5443

31.11.1 The MySQL/Ruby API ... 5444
31.11.2 The Ruby/MySQL API ... 5444

31.12 MySQL Tcl API ... 5444
31.13 MySQL Eiffel Wrapper ... 5444

32 MySQL Enterprise Edition ... 5445
32.1 MySQL Enterprise Backup Overview .. 5445
32.2 MySQL Enterprise Security Overview ... 5446
32.3 MySQL Enterprise Encryption Overview ... 5446
32.4 MySQL Enterprise Audit Overview ... 5447
32.5 MySQL Enterprise Firewall Overview .. 5447
32.6 MySQL Enterprise Thread Pool Overview ... 5447
32.7 MySQL Enterprise Data Masking and De-Identification Overview 5447
32.8 MySQL Enterprise Monitor Overview .. 5448
32.9 MySQL Telemetry .. 5449

33 MySQL Workbench .. 5451
34 MySQL on OCI Marketplace ... 5453

34.1 Prerequisites to Deploying MySQL EE on Oracle Cloud Infrastructure 5453
34.2 Deploying MySQL EE on Oracle Cloud Infrastructure .. 5453
34.3 Configuring Network Access .. 5455
34.4 Connecting .. 5455
34.5 Maintenance .. 5456

A MySQL 8.0 Frequently Asked Questions ... 5457
A.1 MySQL 8.0 FAQ: General ... 5457
A.2 MySQL 8.0 FAQ: Storage Engines .. 5459
A.3 MySQL 8.0 FAQ: Server SQL Mode .. 5460
A.4 MySQL 8.0 FAQ: Stored Procedures and Functions ... 5461
A.5 MySQL 8.0 FAQ: Triggers ... 5464
A.6 MySQL 8.0 FAQ: Views .. 5466
A.7 MySQL 8.0 FAQ: INFORMATION_SCHEMA .. 5467
A.8 MySQL 8.0 FAQ: Migration ... 5468
A.9 MySQL 8.0 FAQ: Security ... 5468
A.10 MySQL 8.0 FAQ: NDB Cluster ... 5470
A.11 MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 5483

xxv

MySQL 8.0 Reference Manual

A.12 MySQL 8.0 FAQ: Connectors & APIs ... 5493
A.13 MySQL 8.0 FAQ: C API, libmysql .. 5493
A.14 MySQL 8.0 FAQ: Replication ... 5494
A.15 MySQL 8.0 FAQ: MySQL Enterprise Thread Pool ... 5498
A.16 MySQL 8.0 FAQ: InnoDB Change Buffer .. 5499
A.17 MySQL 8.0 FAQ: InnoDB Data-at-Rest Encryption .. 5501
A.18 MySQL 8.0 FAQ: Virtualization Support .. 5503

B Error Messages and Common Problems ... 5505
B.1 Error Message Sources and Elements ... 5505
B.2 Error Information Interfaces ... 5507
B.3 Problems and Common Errors .. 5509

B.3.1 How to Determine What Is Causing a Problem .. 5509
B.3.2 Common Errors When Using MySQL Programs ... 5510
B.3.3 Administration-Related Issues ... 5521
B.3.4 Query-Related Issues ... 5529
B.3.5 Optimizer-Related Issues .. 5535
B.3.6 Table Definition-Related Issues ... 5536
B.3.7 Known Issues in MySQL .. 5537

C Indexes ... 5541
MySQL Glossary ... 6341

xxvi

Preface and Legal Notices
This is the Reference Manual for the MySQL Database System, version 8.0, through release 8.0.42.
Differences between minor versions of MySQL 8.0 are noted in the present text with reference to
release numbers (8.0.x). For license information, see the Legal Notices.

This manual is not intended for use with older versions of the MySQL software due to the many
functional and other differences between MySQL 8.0 and previous versions. If you are using an earlier
release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.7
Reference Manual covers the 5.7 series of MySQL software releases.

If you are using MySQL 8.4, please refer to the MySQL 8.4 Reference Manual.

Licensing information—MySQL 8.0. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 8.0, see the MySQL 8.0 Commercial Release
License Information User Manual for licensing information, including licensing information relating to
third-party software that may be included in this Commercial release. If you are using a Community
release of MySQL 8.0, see the MySQL 8.0 Community Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Licensing information—MySQL NDB Cluster 8.0. If you are using a Commercial release of
MySQL NDB Cluster 8.0, see the MySQL NDB Cluster 8.0 Commercial Release License Information
User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL NDB
Cluster 8.0, see the MySQL NDB Cluster 8.0 Community Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Legal Notices
Copyright © 1997, 2025, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs

xxvii

https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/8.4/en/
https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf

Documentation Accessibility

(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

xxviii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support for Accessibility

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

xxix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

xxx

Chapter 1 General Information

Table of Contents
1.1 About This Manual .. 2
1.2 Overview of the MySQL Database Management System .. 4

1.2.1 What is MySQL? .. 4
1.2.2 The Main Features of MySQL ... 5
1.2.3 History of MySQL ... 8

1.3 What Is New in MySQL 8.0 ... 8
1.4 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 8.0 62
1.5 How to Report Bugs or Problems .. 90
1.6 MySQL Standards Compliance .. 94

1.6.1 MySQL Extensions to Standard SQL ... 95
1.6.2 MySQL Differences from Standard SQL .. 98
1.6.3 How MySQL Deals with Constraints .. 101

The MySQL software delivers a very fast, multithreaded, multi-user, and robust SQL (Structured Query
Language) database server. MySQL Server is intended for mission-critical, heavy-load production
systems as well as for embedding into mass-deployed software. Oracle is a registered trademark
of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/or its
affiliates, and shall not be used by Customer without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open
Source product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or
can purchase a standard commercial license from Oracle. See http://www.mysql.com/company/legal/
licensing/ for more information on our licensing policies.

The following list describes some sections of particular interest in this manual:

• For a discussion of MySQL Database Server capabilities, see Section 1.2.2, “The Main Features of
MySQL”.

• For an overview of new MySQL features, see Section 1.3, “What Is New in MySQL 8.0”. For
information about the changes in each version, see the Release Notes.

• For installation instructions, see Chapter 2, Installing MySQL. For information about upgrading
MySQL, see Chapter 3, Upgrading MySQL.

• For a tutorial introduction to the MySQL Database Server, see Chapter 5, Tutorial.

• For information about configuring and administering MySQL Server, see Chapter 7, MySQL Server
Administration.

• For information about security in MySQL, see Chapter 8, Security.

• For information about setting up replication servers, see Chapter 19, Replication.

• For information about MySQL Enterprise, the commercial MySQL release with advanced features
and management tools, see Chapter 32, MySQL Enterprise Edition.

• For answers to a number of questions that are often asked concerning the MySQL Database Server
and its capabilities, see Appendix A, MySQL 8.0 Frequently Asked Questions.

• For a history of new features and bug fixes, see the Release Notes.

1

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/
https://dev.mysql.com/doc/relnotes/mysql/8.0/en/

About This Manual

Important

To report problems or bugs, please use the instructions at Section 1.5,
“How to Report Bugs or Problems”. If you find a security bug in MySQL
Server, please let us know immediately by sending an email message to
<secalert_us@oracle.com>. Exception: Support customers should report
all problems, including security bugs, to Oracle Support.

1.1 About This Manual
This is the Reference Manual for the MySQL Database System, version 8.0, through release 8.0.42.
Differences between minor versions of MySQL 8.0 are noted in the present text with reference to
release numbers (8.0.x). For license information, see the Legal Notices.

This manual is not intended for use with older versions of the MySQL software due to the many
functional and other differences between MySQL 8.0 and previous versions. If you are using an earlier
release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.7
Reference Manual covers the 5.7 series of MySQL software releases.

If you are using MySQL 8.4, please refer to the MySQL 8.4 Reference Manual.

Because this manual serves as a reference, it does not provide general instruction on SQL or relational
database concepts. It also does not teach you how to use your operating system or command-line
interpreter.

The MySQL Database Software is under constant development, and the Reference Manual is updated
frequently as well. The most recent version of the manual is available online in searchable form at
https://dev.mysql.com/doc/. Other formats also are available there, including downloadable HTML and
PDF versions.

The source code for MySQL itself contains internal documentation written using Doxygen. The
generated Doxygen content is available from https://dev.mysql.com/doc/index-other.html. It is also
possible to generate this content locally from a MySQL source distribution using the instructions at
Section 2.8.10, “Generating MySQL Doxygen Documentation Content”.

If you have questions about using MySQL, join the MySQL Community Slack. If you have suggestions
concerning additions or corrections to the manual itself, please send them to the http://www.mysql.com/
company/contact/.

Typographical and Syntax Conventions

This manual uses certain typographical conventions:

• Text in this style is used for SQL statements; database, table, and column names; program
listings and source code; and environment variables. Example: “To reload the grant tables, use the
FLUSH PRIVILEGES statement.”

• Text in this style indicates input that you type in examples.

• Text in this style indicates the names of executable programs and scripts, examples being
mysql (the MySQL command-line client program) and mysqld (the MySQL server executable).

• Text in this style is used for variable input for which you should substitute a value of your
own choosing.

• Text in this style is used for emphasis.

• Text in this style is used in table headings and to convey especially strong emphasis.

• Text in this style is used to indicate a program option that affects how the program is
executed, or that supplies information that is needed for the program to function in a certain way.

2

https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/8.4/en/
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/index-other.html
https://mysqlcommunity.slack.com/
http://www.mysql.com/company/contact/
http://www.mysql.com/company/contact/

Typographical and Syntax Conventions

Example: “The --host option (short form -h) tells the mysql client program the hostname or IP
address of the MySQL server that it should connect to”.

• File names and directory names are written like this: “The global my.cnf file is located in the /etc
directory.”

• Character sequences are written like this: “To specify a wildcard, use the ‘%’ character.”

When commands or statements are prefixed by a prompt, we use these:

$> type a command here
#> type a command as root here
C:\> type a command here (Windows only)
mysql> type a mysql statement here

Commands are issued in your command interpreter. On Unix, this is typically a program such as sh,
csh, or bash. On Windows, the equivalent program is command.com or cmd.exe, typically run in a
console window. Statements prefixed by mysql are issued in the mysql command-line client.

Note

When you enter a command or statement shown in an example, do not type the
prompt shown in the example.

In some areas different systems may be distinguished from each other to show that commands should
be executed in two different environments. For example, while working with replication the commands
might be prefixed with source and replica:

source> type a mysql statement on the replication source here
replica> type a mysql statement on the replica here

Database, table, and column names must often be substituted into statements. To indicate that such
substitution is necessary, this manual uses db_name, tbl_name, and col_name. For example, you
might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own database, table,
and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case-sensitive and may be written in any lettercase. This manual uses
uppercase.

In syntax descriptions, square brackets (“[” and “]”) indicate optional words or clauses. For example, in
the following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by vertical
bars (“|”). When one member from a set of choices may be chosen, the alternatives are listed within
square brackets (“[” and “]”):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within braces (“{”
and “}”):

{DESCRIBE | DESC} tbl_name [col_name | wild]

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a shorter
version of more complex syntax. For example, SELECT ... INTO OUTFILE is shorthand for the form
of SELECT statement that has an INTO OUTFILE clause following other parts of the statement.

3

Manual Authorship

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In
the following example, multiple reset_option values may be given, with each of those after the first
preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the sequence
to set the CC environment variable and run the configure command looks like this in Bourne shell
syntax:

$> CC=gcc ./configure

If you are using csh or tcsh, you must issue commands somewhat differently:

$> setenv CC gcc
$> ./configure

Manual Authorship

The Reference Manual source files are written in DocBook XML format. The HTML version and other
formats are produced automatically, primarily using the DocBook XSL stylesheets. For information
about DocBook, see http://docbook.org/

This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained by
the MySQL Documentation Team, consisting of Edward Gilmore, Sudharsana Gomadam, Kim seong
Loh, Garima Sharma, Carlos Ortiz, Daniel So, and Jon Stephens.

1.2 Overview of the MySQL Database Management System

1.2.1 What is MySQL?

MySQL, the most popular Open Source SQL database management system, is developed, distributed,
and supported by Oracle Corporation.

The MySQL website (http://www.mysql.com/) provides the latest information about MySQL software.

• MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping list to
a picture gallery or the vast amounts of information in a corporate network. To add, access, and
process data stored in a computer database, you need a database management system such
as MySQL Server. Since computers are very good at handling large amounts of data, database
management systems play a central role in computing, as standalone utilities, or as parts of other
applications.

• MySQL databases are relational.

 A relational database stores data in separate tables rather than putting all the data in one big
storeroom. The database structures are organized into physical files optimized for speed. The
logical model, with objects such as databases, tables, views, rows, and columns, offers a flexible
programming environment. You set up rules governing the relationships between different data
fields, such as one-to-one, one-to-many, unique, required or optional, and “pointers” between
different tables. The database enforces these rules, so that with a well-designed database, your
application never sees inconsistent, duplicate, orphan, out-of-date, or missing data.

The SQL part of “MySQL” stands for “Structured Query Language”. SQL is the most common
standardized language used to access databases. Depending on your programming environment,
you might enter SQL directly (for example, to generate reports), embed SQL statements into code
written in another language, or use a language-specific API that hides the SQL syntax.

SQL is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986
and several versions exist. In this manual, “SQL-92” refers to the standard released in 1992,

4

http://docbook.org/
http://www.mysql.com/

The Main Features of MySQL

“SQL:1999” refers to the standard released in 1999, and “SQL:2003” refers to the current version
of the standard. We use the phrase “the SQL standard” to mean the current version of the SQL
Standard at any time.

• MySQL software is Open Source.

 Open Source means that it is possible for anyone to use and modify the software. Anybody can
download the MySQL software from the Internet and use it without paying anything. If you wish, you
may study the source code and change it to suit your needs. The MySQL software uses the GPL
(GNU General Public License), http://www.fsf.org/licenses/, to define what you may and may not do
with the software in different situations. If you feel uncomfortable with the GPL or need to embed
MySQL code into a commercial application, you can buy a commercially licensed version from us.
See the MySQL Licensing Overview for more information (http://www.mysql.com/company/legal/
licensing/).

• The MySQL Database Server is very fast, reliable, scalable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server can run comfortably on a
desktop or laptop, alongside your other applications, web servers, and so on, requiring little or no
attention. If you dedicate an entire machine to MySQL, you can adjust the settings to take advantage
of all the memory, CPU power, and I/O capacity available. MySQL can also scale up to clusters of
machines, networked together.

MySQL Server was originally developed to handle large databases much faster than existing
solutions and has been successfully used in highly demanding production environments for several
years. Although under constant development, MySQL Server today offers a rich and useful set of
functions. Its connectivity, speed, and security make MySQL Server highly suited for accessing
databases on the Internet.

• MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multithreaded SQL server
that supports different back ends, several different client programs and libraries, administrative tools,
and a wide range of application programming interfaces (APIs).

We also provide MySQL Server as an embedded multithreaded library that you can link into your
application to get a smaller, faster, easier-to-manage standalone product.

• A large amount of contributed MySQL software is available.

MySQL Server has a practical set of features developed in close cooperation with our users. It is
very likely that your favorite application or language supports the MySQL Database Server.

• HeatWave.

HeatWave is a fully managed database service, powered by the HeatWave in-memory query
accelerator. It is the only cloud service that combines transactions, real-time analytics across data
warehouses and data lakes, and machine learning in one MySQL Database; without the complexity,
latency, risks, and cost of ETL duplication. It is available on OCI, AWS, and Azure. Learn more at:
https://www.oracle.com/mysql/.

The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we do not mind if you
pronounce it as “my sequel” or in some other localized way.

1.2.2 The Main Features of MySQL

This section describes some of the important characteristics of the MySQL Database Software. In most
respects, the roadmap applies to all versions of MySQL. For information about features as they are
introduced into MySQL on a series-specific basis, see the “In a Nutshell” section of the appropriate
Manual:

5

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
https://www.oracle.com/mysql/

The Main Features of MySQL

• MySQL 8.4: What Is New in MySQL 8.4 since MySQL 8.0

• MySQL 8.0: Section 1.3, “What Is New in MySQL 8.0”

• MySQL 5.7: What Is New in MySQL 5.7

Internals and Portability

• Written in C and C++.

• Tested with a broad range of different compilers.

• Works on many different platforms. See https://www.mysql.com/support/supportedplatforms/
database.html.

• For portability, configured using CMake.

• Tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool
(https://valgrind.org/).

• Uses multi-layered server design with independent modules.

• Designed to be fully multithreaded using kernel threads, to easily use multiple CPUs if they are
available.

• Provides transactional and nontransactional storage engines.

• Uses very fast B-tree disk tables (MyISAM) with index compression.

• Designed to make it relatively easy to add other storage engines. This is useful if you want to provide
an SQL interface for an in-house database.

• Uses a very fast thread-based memory allocation system.

• Executes very fast joins using an optimized nested-loop join.

• Implements in-memory hash tables, which are used as temporary tables.

• Implements SQL functions using a highly optimized class library that should be as fast as possible.
Usually there is no memory allocation at all after query initialization.

• Provides the server as a separate program for use in a client/server networked environment.

Data Types

• Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE, CHAR,
VARCHAR, BINARY, VARBINARY, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET,
ENUM, and OpenGIS spatial types. See Chapter 13, Data Types.

• Fixed-length and variable-length string types.

Statements and Functions

• Full operator and function support in the SELECT list and WHERE clause of queries. For example:

mysql> SELECT CONCAT(first_name, ' ', last_name)
 -> FROM citizen
 -> WHERE income/dependents > 10000 AND age > 30;

• Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT(),
AVG(), STD(), SUM(), MAX(), MIN(), and GROUP_CONCAT()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and ODBC
syntax.

• Support for aliases on tables and columns as required by standard SQL.

6

https://dev.mysql.com/doc/refman/8.4/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-nutshell.html
https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html
https://valgrind.org/

The Main Features of MySQL

• Support for DELETE, INSERT, REPLACE, and UPDATE to return the number of rows that were
changed (affected), or to return the number of rows matched instead by setting a flag when
connecting to the server.

• Support for MySQL-specific SHOW statements that retrieve information about databases, storage
engines, tables, and indexes. Support for the INFORMATION_SCHEMA database, implemented
according to standard SQL.

• An EXPLAIN statement to show how the optimizer resolves a query.

• Independence of function names from table or column names. For example, ABS is a valid column
name. The only restriction is that for a function call, no spaces are permitted between the function
name and the “(” that follows it. See Section 11.3, “Keywords and Reserved Words”.

• You can refer to tables from different databases in the same statement.

Security

• A privilege and password system that is very flexible and secure, and that enables host-based
verification.

• Password security by encryption of all password traffic when you connect to a server.

Scalability and Limits

• Support for large databases. We use MySQL Server with databases that contain 50 million records.
We also know of users who use MySQL Server with 200,000 tables and about 5,000,000,000 rows.

• Support for up to 64 indexes per table. Each index may consist of 1 to 16 columns or parts of
columns. The maximum index width for InnoDB tables is either 767 bytes or 3072 bytes. See
Section 17.22, “InnoDB Limits”. The maximum index width for MyISAM tables is 1000 bytes. See
Section 18.2, “The MyISAM Storage Engine”. An index may use a prefix of a column for CHAR,
VARCHAR, BLOB, or TEXT column types.

Connectivity

• Clients can connect to MySQL Server using several protocols:

• Clients can connect using TCP/IP sockets on any platform.

• On Windows systems, clients can connect using named pipes if the server is started with
the named_pipe system variable enabled. Windows servers also support shared-memory
connections if started with the shared_memory system variable enabled. Clients can connect
through shared memory by using the --protocol=memory option.

• On Unix systems, clients can connect using Unix domain socket files.

• MySQL client programs can be written in many languages. A client library written in C is available for
clients written in C or C++, or for any language that provides C bindings.

• APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, enabling MySQL
clients to be written in many languages. See Chapter 31, Connectors and APIs.

• The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use
ODBC (Open Database Connectivity) connections. For example, you can use MS Access to connect
to your MySQL server. Clients can be run on Windows or Unix. Connector/ODBC source is available.
All ODBC 2.5 functions are supported, as are many others. See MySQL Connector/ODBC Developer
Guide.

• The Connector/J interface provides MySQL support for Java client programs that use JDBC
connections. Clients can be run on Windows or Unix. Connector/J source is available. See MySQL
Connector/J Developer Guide.

7

https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/connector-j/en/

History of MySQL

• MySQL Connector/NET enables developers to easily create .NET applications that require secure,
high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces and
integrates into ADO.NET aware tools. Developers can build applications using their choice of .NET
languages. MySQL Connector/NET is a fully managed ADO.NET driver written in 100% pure C#.
See MySQL Connector/NET Developer Guide.

Localization

• The server can provide error messages to clients in many languages. See Section 12.12, “Setting
the Error Message Language”.

• Full support for several different character sets, including latin1 (cp1252), german, big5, ujis,
several Unicode character sets, and more. For example, the Scandinavian characters “å”, “ä” and “ö”
are permitted in table and column names.

• All data is saved in the chosen character set.

• Sorting and comparisons are done according to the default character set and collation. It is possible
to change this when the MySQL server is started (see Section 12.3.2, “Server Character Set and
Collation”). To see an example of very advanced sorting, look at the Czech sorting code. MySQL
Server supports many different character sets that can be specified at compile time and runtime.

• The server time zone can be changed dynamically, and individual clients can specify their own time
zone. See Section 7.1.15, “MySQL Server Time Zone Support”.

Clients and Tools

• MySQL includes several client and utility programs. These include both command-line programs
such as mysqldump and mysqladmin, and graphical programs such as MySQL Workbench.

• MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These
statements are available from the command line through the mysqlcheck client. MySQL also
includes myisamchk, a very fast command-line utility for performing these operations on MyISAM
tables. See Chapter 6, MySQL Programs.

• MySQL programs can be invoked with the --help or -? option to obtain online assistance.

1.2.3 History of MySQL

We started out with the intention of using the mSQL database system to connect to our tables using
our own fast low-level (ISAM) routines. However, after some testing, we came to the conclusion that
mSQL was not fast enough or flexible enough for our needs. This resulted in a new SQL interface to our
database but with almost the same API interface as mSQL. This API was designed to enable third-party
code that was written for use with mSQL to be ported easily for use with MySQL.

MySQL is named after co-founder Monty Widenius's daughter, My.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen from a huge list of names
suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose
Twebaze, an Open Source software developer from Eswatini (formerly Swaziland), Africa. According
to Ambrose, the feminine name Sakila has its roots in SiSwati, the local language of Eswatini. Sakila is
also the name of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.

1.3 What Is New in MySQL 8.0
This section summarizes what has been added to, deprecated in, and removed from MySQL 8.0.
A companion section lists MySQL server options and variables that have been added, deprecated,
or removed in MySQL 8.0; see Section 1.4, “Server and Status Variables and Options Added,
Deprecated, or Removed in MySQL 8.0”.

• Features Added in MySQL 8.0

8

https://dev.mysql.com/doc/connector-net/en/

Features Added in MySQL 8.0

• Features Deprecated in MySQL 8.0

• Features Removed in MySQL 8.0

Features Added in MySQL 8.0

The following features have been added to MySQL 8.0:

• Data dictionary. MySQL now incorporates a transactional data dictionary that stores information
about database objects. In previous MySQL releases, dictionary data was stored in metadata files
and nontransactional tables. For more information, see Chapter 16, MySQL Data Dictionary.

• Atomic data definition statements (Atomic DDL). An atomic DDL statement combines the data
dictionary updates, storage engine operations, and binary log writes associated with a DDL operation
into a single, atomic transaction. For more information, see Section 15.1.1, “Atomic Data Definition
Statement Support”.

• Upgrade procedure. Previously, after installation of a new version of MySQL, the MySQL server
automatically upgrades the data dictionary tables at the next startup, after which the DBA is expected
to invoke mysql_upgrade manually to upgrade the system tables in the mysql schema, as well as
objects in other schemas such as the sys schema and user schemas.

As of MySQL 8.0.16, the server performs the tasks previously handled by mysql_upgrade. After
installation of a new MySQL version, the server now automatically performs all necessary upgrade
tasks at the next startup and is not dependent on the DBA invoking mysql_upgrade. In addition,
the server updates the contents of the help tables (something mysql_upgrade did not do). A new
--upgrade server option provides control over how the server performs automatic data dictionary
and server upgrade operations. For more information, see Section 3.4, “What the MySQL Upgrade
Process Upgrades”.

• Session Reuse. MySQL Server now supports SSL session reuse by default with a timeout setting
to control how long the server maintains a session cache that establishes the period during which a
client is permitted to request session reuse for new connections. All MySQL client programs support
session reuse. For server-side and client-side configuration information, see Section 8.3.5, “Reusing
SSL Sessions”.

In addition, C applications now can use the C API capabilities to enable session reuse for encrypted
connections (see SSL Session Reuse).

• Security and account management. These enhancements were added to improve security and
enable greater DBA flexibility in account management:

• MySQL Enterprise Audit now supports using the scheduler component to configure and execute
a recurring task to flush the in-memory cache. For setup instructions, see Enabling the Audit Log
Flush Task.

• A new password-validation system variable permits the configuration and enforcement
of a minimum number of characters that users must change when attempting
to replace their own MySQL account passwords. This new verification setting
is a percentage of the total characters in the current password. For example, if
validate_password.changed_characters_percentage has a value of 50, at least half of
the characters in the replacement account password must not be present in the current password,
or the password is rejected. For more information, see Section 8.4.3, “The Password Validation
Component”.

• MySQL Enterprise Edition now provides data masking and de-identification capabilities based
on components, rather than being based on a plugin library that was introduced in MySQL
8.0.13. MySQL Enterprise Data Masking and De-Identification components support for multibyte
characters, masking dictionaries stored in a database table, and several new functions. For more
information, see Section 8.5.1, “Data-Masking Components Versus the Data-Masking Plugin”.

9

https://dev.mysql.com/doc/c-api/8.0/en/c-api-ssl-session-reuse.html

Features Added in MySQL 8.0

• Prior to MySQL 8.0.33, the mysql system database was used for MySQL Enterprise
Audit's persistent storage of filter and user account data. For enhanced flexibility, the new
audit_log_database server system variable now permits specifying other databases in the
global schema namespace at server startup. The mysql system database is the default setting for
table storage.

• The grant tables in the mysql system database are now InnoDB (transactional) tables.
Previously, these were MyISAM (nontransactional) tables. The change of grant table storage
engine underlies an accompanying change to the behavior of account-management statements.
Previously, an account-management statement (such as CREATE USER or DROP USER) that
named multiple users could succeed for some users and fail for others. Now, each statement is
transactional and either succeeds for all named users or rolls back and has no effect if any error
occurs. The statement is written to the binary log if it succeeds, but not if it fails; in that case,
rollback occurs and no changes are made. For more information, see Section 15.1.1, “Atomic Data
Definition Statement Support”.

• A new caching_sha2_password authentication plugin is available. Like the sha256_password
plugin, caching_sha2_password implements SHA-256 password hashing, but uses caching
to address latency issues at connect time. It also supports more transport protocols and does not
require linking against OpenSSL for RSA key pair-based password-exchange capabilities. See
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”.

The caching_sha2_password and sha256_password authentication plugins provide more
secure password encryption than the mysql_native_password plugin (deprecated in 8.0.34),
and caching_sha2_password provides better performance than sha256_password. Due
to these superior security and performance characteristics of caching_sha2_password, it is
now the preferred authentication plugin, and is also the default authentication plugin rather than
mysql_native_password. For information about the implications of this change of default
plugin for server operation and compatibility of the server with clients and connectors, see
caching_sha2_password as the Preferred Authentication Plugin.

• The MySQL Enterprise Edition SASL LDAP authentication plugin now supports GSSAPI/Kerberos
as an authentication method for MySQL clients and servers on Linux. This is useful in Linux
environments where applications access LDAP using Microsoft Active Directory, which has
Kerberos enabled by default. See LDAP Authentication Methods.

• MySQL Enterprise Edition now supports an authentication method that enables users to
authenticate to MySQL Server using Kerberos, provided that appropriate Kerberos tickets
are available or can be obtained. For details, see Section 8.4.1.8, “Kerberos Pluggable
Authentication”.

• MySQL now supports roles, which are named collections of privileges. Roles can be created and
dropped. Roles can have privileges granted to and revoked from them. Roles can be granted to
and revoked from user accounts. The active applicable roles for an account can be selected from
among those granted to the account, and can be changed during sessions for that account. For
more information, see Section 8.2.10, “Using Roles”.

• MySQL now incorporates the concept of user account categories, with system and regular users
distinguished according to whether they have the SYSTEM_USER privilege. See Section 8.2.11,
“Account Categories”.

• Previously, it was not possible to grant privileges that apply globally except for certain schemas.
This is now possible if the partial_revokes system variable is enabled. See Section 8.2.12,
“Privilege Restriction Using Partial Revokes”.

• The GRANT statement has an AS user [WITH ROLE] clause that specifies additional information
about the privilege context to use for statement execution. This syntax is visible at the SQL level,
although its primary purpose is to enable uniform replication across all nodes of grantor privilege

10

Features Added in MySQL 8.0

restrictions imposed by partial revokes, by causing those restrictions to appear in the binary log.
See Section 15.7.1.6, “GRANT Statement”.

• MySQL now maintains information about password history, enabling restrictions on reuse of
previous passwords. DBAs can require that new passwords not be selected from previous
passwords for some number of password changes or period of time. It is possible to establish
password-reuse policy globally as well as on a per-account basis.

It is now possible to require that attempts to change account passwords be verified by specifying
the current password to be replaced. This enables DBAs to prevent users from changing password
without proving that they know the current password. It is possible to establish password-
verification policy globally as well as on a per-account basis.

Accounts are now permitted to have dual passwords, which enables phased password changes to
be performed seamlessly in complex multiple-server systems, without downtime.

MySQL now enables administrators to configure user accounts such that too many consecutive
login failures due to incorrect passwords cause temporary account locking. The required number
of failures and the lock time are configurable per account.

These new capabilities provide DBAs more complete control over password management. For
more information, see Section 8.2.15, “Password Management”.

• MySQL now supports FIPS mode, if compiled using OpenSSL, and an OpenSSL library and
FIPS Object Module are available at runtime. FIPS mode imposes conditions on cryptographic
operations such as restrictions on acceptable encryption algorithms or requirements for longer key
lengths. See Section 8.8, “FIPS Support”.

• The TLS context the server uses for new connections now is reconfigurable at runtime. This
capability may be useful, for example, to avoid restarting a MySQL server that has been running
so long that its SSL certificate has expired. See Server-Side Runtime Configuration and Monitoring
for Encrypted Connections.

• OpenSSL 1.1.1 supports the TLS v1.3 protocol for encrypted connections, and MySQL 8.0.16 and
higher supports TLS v1.3 as well, if both the server and client are compiled using OpenSSL 1.1.1
or higher. See Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”.

• MySQL now sets the access control granted to clients on the named pipe to the minimum
necessary for successful communication on Windows. Newer MySQL client software can open
named pipe connections without any additional configuration. If older client software cannot be
upgraded immediately, the new named_pipe_full_access_group system variable can be
used to give a Windows group the necessary permissions to open a named pipe connection.
Membership in the full-access group should be restricted and temporary.

• Previously, MySQL user accounts authenticated to the server using a single authentication
method. As of MySQL 8.0.27, MySQL supports multifactor authentication (MFA), which makes it
possible to create accounts that have up to three authentication methods. MFA support entails
these changes:

• CREATE USER and ALTER USER syntax has been extended to permit specification of multiple
authentication methods.

• The authentication_policy system variable enables MFA policy to be established by
controlling how many factors can be used and the types of authentication permitted for each
factor. This places constraints on how the authentication-related clauses of CREATE USER and
ALTER USER statements may be used.

• Client programs have new --password1, --password2, and --password3 command-
line options for specifying multiple passwords. For applications that use the C API, the new

11

Features Added in MySQL 8.0

MYSQL_OPT_USER_PASSWORD option for the mysql_options4() C API function enables the
same capability.

In addition, MySQL Enterprise Edition now supports authentication to MySQL Server using devices
such as smart cards, security keys, and biometric readers. This authentication method is based on
the Fast Identity Online (FIDO) standard, and uses a pair of plugins, authentication_fido on
the server side and authentication_fido_client on the client side. The server-side FIDO
authentication plugin is included only in MySQL Enterprise Edition distributions. It is not included
in MySQL community distributions. However, the client-side plugin is included in all distributions,
including community distributions. This enables clients from any distribution to connect to a server
that has the server-side plugin loaded.

Multifactor authentication can use existing MySQL authentication methods, the new FIDO
authentication method, or a combination of both. For more information, see Section 8.2.18,
“Multifactor Authentication”, and Section 8.4.1.11, “FIDO Pluggable Authentication”.

• Resource management. MySQL now supports creation and management of resource groups,
and permits assigning threads running within the server to particular groups so that threads execute
according to the resources available to the group. Group attributes enable control over its resources,
to enable or restrict resource consumption by threads in the group. DBAs can modify these attributes
as appropriate for different workloads. Currently, CPU time is a manageable resource, represented
by the concept of “virtual CPU” as a term that includes CPU cores, hyperthreads, hardware threads,
and so forth. The server determines at startup how many virtual CPUs are available, and database
administrators with appropriate privileges can associate these CPUs with resource groups and
assign threads to groups. For more information, see Section 7.1.16, “Resource Groups”.

• Table encryption management. Table encryption can now be managed globally by defining
and enforcing encryption defaults. The default_table_encryption variable defines an
encryption default for newly created schemas and general tablespace. The encryption default for
a schema can also be defined using the DEFAULT ENCRYPTION clause when creating a schema.
By default, a table inherits the encryption of the schema or general tablespace it is created in.
Encryption defaults are enforced by enabling the table_encryption_privilege_check
variable. The privilege check occurs when creating or altering a schema or general tablespace
with an encryption setting that differs from the default_table_encryption setting, or when
creating or altering a table with an encryption setting that differs from the default schema encryption.
The TABLE_ENCRYPTION_ADMIN privilege permits overriding default encryption settings when
table_encryption_privilege_check is enabled. For more information, see Defining an
Encryption Default for Schemas and General Tablespaces.

• InnoDB enhancements. These InnoDB enhancements were added:

• The current maximum auto-increment counter value is written to the redo log each time the value
changes, and saved to an engine-private system table on each checkpoint. These changes make
the current maximum auto-increment counter value persistent across server restarts. Additionally:

• A server restart no longer cancels the effect of the AUTO_INCREMENT = N table option. If you
initialize the auto-increment counter to a specific value, or if you alter the auto-increment counter
value to a larger value, the new value is persisted across server restarts.

• A server restart immediately following a ROLLBACK operation no longer results in the reuse of
auto-increment values that were allocated to the rolled-back transaction.

• If you modify an AUTO_INCREMENT column value to a value larger than the current maximum
auto-increment value (in an UPDATE operation, for example), the new value is persisted, and

12

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options4.html

Features Added in MySQL 8.0

subsequent INSERT operations allocate auto-increment values starting from the new, larger
value.

For more information, see Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”, and
InnoDB AUTO_INCREMENT Counter Initialization.

• When encountering index tree corruption, InnoDB writes a corruption flag to the redo log, which
makes the corruption flag crash safe. InnoDB also writes in-memory corruption flag data to an
engine-private system table on each checkpoint. During recovery, InnoDB reads corruption flags
from both locations and merges results before marking in-memory table and index objects as
corrupt.

• The InnoDB memcached plugin supports multiple get operations (fetching multiple key-value
pairs in a single memcached query) and range queries. See Section 17.20.4, “InnoDB memcached
Multiple get and Range Query Support”.

• A new dynamic variable, innodb_deadlock_detect, may be used to disable deadlock
detection. On high concurrency systems, deadlock detection can cause a slowdown when
numerous threads wait for the same lock. At times, it may be more efficient to disable deadlock
detection and rely on the innodb_lock_wait_timeout setting for transaction rollback when a
deadlock occurs.

• The new Information Schema INNODB_CACHED_INDEXES table reports the number of index
pages cached in the InnoDB buffer pool for each index.

• InnoDB temporary tables are now created in the shared temporary tablespace, ibtmp1.

• The InnoDB tablespace encryption feature supports encryption of redo log and undo log data. See
Redo Log Encryption, and Undo Log Encryption.

• InnoDB supports NOWAIT and SKIP LOCKED options with SELECT ... FOR SHARE and
SELECT ... FOR UPDATE locking read statements. NOWAIT causes the statement to return
immediately if a requested row is locked by another transaction. SKIP LOCKED removes locked
rows from the result set. See Locking Read Concurrency with NOWAIT and SKIP LOCKED.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE, but LOCK IN
SHARE MODE remains available for backward compatibility. The statements are equivalent.
However, FOR UPDATE and FOR SHARE support NOWAIT, SKIP LOCKED, and OF tbl_name
options. See Section 15.2.13, “SELECT Statement”.

OF tbl_name applies locking queries to named tables.

• ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REORGANIZE PARTITION, and
REBUILD PARTITION ALTER TABLE options are supported by native partitioning in-place APIs
and may be used with ALGORITHM={COPY|INPLACE} and LOCK clauses.

DROP PARTITION with ALGORITHM=INPLACE deletes data stored in the partition and drops
the partition. However, DROP PARTITION with ALGORITHM=COPY or old_alter_table=ON
rebuilds the partitioned table and attempts to move data from the dropped partition to another

13

Features Added in MySQL 8.0

partition with a compatible PARTITION ... VALUES definition. Data that cannot be moved to
another partition is deleted.

• The InnoDB storage engine now uses the MySQL data dictionary rather than its own storage
engine-specific data dictionary. For information about the data dictionary, see Chapter 16, MySQL
Data Dictionary.

• mysql system tables and data dictionary tables are now created in a single InnoDB tablespace
file named mysql.ibd in the MySQL data directory. Previously, these tables were created in
individual InnoDB tablespace files in the mysql database directory.

• The following undo tablespace changes are introduced in MySQL 8.0:

• By default, undo logs now reside in two undo tablespaces that are created when the MySQL
instance is initialized. Undo logs are no longer created in the system tablespace.

• As of MySQL 8.0.14, additional undo tablespaces can be created in a chosen location at runtime
using CREATE UNDO TABLESPACE syntax.

CREATE UNDO TABLESPACE tablespace_name ADD DATAFILE 'file_name.ibu';

Undo tablespaces created using CREATE UNDO TABLESPACE syntax can be dropped at
runtime using DROP UNDO TABLESPACE syntax.

DROP UNDO TABLESPACE tablespace_name;

ALTER UNDO TABLESPACE syntax can be used to mark an undo tablespace as active or
inactive.

ALTER UNDO TABLESPACE tablespace_name SET {ACTIVE|INACTIVE};

A STATE column that shows the state of a tablespace was added to the Information Schema
INNODB_TABLESPACES table. An undo tablespace must be in an empty state before it can be
dropped.

• The innodb_undo_log_truncate variable is enabled by default.

• The innodb_rollback_segments variable defines the number of rollback segments per undo
tablespace. Previously, innodb_rollback_segments specified the total number of rollback
segments for the MySQL instance. This change increases the number of rollback segments
available for concurrent transactions. More rollback segments increases the likelihood that
concurrent transactions use separate rollback segments for undo logs, resulting in less resource
contention.

• Default values for variables that affect buffer pool preflushing and flushing behavior were modified:

• The innodb_max_dirty_pages_pct_lwm default value is now 10. The previous default
value of 0 disables buffer pool preflushing. A value of 10 enables preflushing when the
percentage of dirty pages in the buffer pool exceeds 10%. Enabling preflushing improves
performance consistency.

• The innodb_max_dirty_pages_pct default value was increased from 75 to 90. InnoDB
attempts to flush data from the buffer pool so that the percentage of dirty pages does not exceed
this value. The increased default value permits a greater percentage of dirty pages in the buffer
pool.

• The default innodb_autoinc_lock_mode setting is now 2 (interleaved). Interleaved lock mode
permits the execution of multi-row inserts in parallel, which improves concurrency and scalability.
The new innodb_autoinc_lock_mode default setting reflects the change from statement-
based replication to row based replication as the default replication type in MySQL 5.7. Statement-
based replication requires the consecutive auto-increment lock mode (the previous default) to

14

Features Added in MySQL 8.0

ensure that auto-increment values are assigned in a predictable and repeatable order for a given
sequence of SQL statements, whereas row-based replication is not sensitive to the execution
order of SQL statements. For more information, see InnoDB AUTO_INCREMENT Lock Modes.

For systems that use statement-based replication, the new innodb_autoinc_lock_mode
default setting may break applications that depend on sequential auto-increment values. To
restore the previous default, set innodb_autoinc_lock_mode to 1.

• Renaming a general tablespace is supported by ALTER TABLESPACE ... RENAME TO syntax.

• The --innodb-dedicated-server server option, which is disabled by default, can be used to
have InnoDB automatically set values the following system variables according to the amount of
memory detected on the server:

• innodb_buffer_pool_size

• innodb_log_file_size

• innodb_flush_method

This option is intended for MySQL server instances that run on a dedicated server. For more
information, see Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated
MySQL Server”.

• The new Information Schema INNODB_TABLESPACES_BRIEF view provides space, name, path,
flag, and space type data for InnoDB tablespaces.

• The zlib library version bundled with MySQL was raised from version 1.2.3 to version 1.2.11.
MySQL implements compression with the help of the zlib library.

If you use InnoDB compressed tables, see Section 3.5, “Changes in MySQL 8.0” for related
upgrade implications.

• Serialized dictionary information (SDI) is present in all InnoDB tablespace files except for
global temporary tablespace and undo tablespace files. SDI is serialized metadata for table and
tablespace objects. The presence of SDI data provides metadata redundancy. For example,
dictionary object metadata may be extracted from tablespace files if the data dictionary becomes

15

http://www.zlib.net/

Features Added in MySQL 8.0

unavailable. SDI extraction is performed using the ibd2sdi tool. SDI data is stored in JSON
format.

The inclusion of SDI data in tablespace files increases tablespace file size. An SDI record requires
a single index page, which is 16KB in size by default. However, SDI data is compressed when it is
stored to reduce the storage footprint.

• The InnoDB storage engine now supports atomic DDL, which ensures that DDL operations
are either fully committed or rolled back, even if the server halts during the operation. For more
information, see Section 15.1.1, “Atomic Data Definition Statement Support”.

• Tablespace files can be moved or restored to a new location while the server is offline using the
innodb_directories option. For more information, see Section 17.6.3.6, “Moving Tablespace
Files While the Server is Offline”.

• The following redo logging optimizations were implemented:

• User threads can now write concurrently to the log buffer without synchronizing writes.

• User threads can now add dirty pages to the flush list in a relaxed order.

• A dedicated log thread is now responsible for writing the log buffer to the system buffers,
flushing system buffers to disk, notifying user threads about written and flushed redo,
maintaining the lag required for the relaxed flush list order, and write checkpoints.

• System variables were added for configuring the use of spin delay by user threads waiting for
flushed redo:

• innodb_log_wait_for_flush_spin_hwm: Defines the maximum average log flush time
beyond which user threads no longer spin while waiting for flushed redo.

• innodb_log_spin_cpu_abs_lwm: Defines the minimum amount of CPU usage below
which user threads no longer spin while waiting for flushed redo.

• innodb_log_spin_cpu_pct_hwm: Defines the maximum amount of CPU usage above
which user threads no longer spin while waiting for flushed redo.

• The innodb_log_buffer_size variable is now dynamic, which permits resizing of the log
buffer while the server is running.

For more information, see Section 10.5.4, “Optimizing InnoDB Redo Logging”.

• As of MySQL 8.0.12, undo logging is supported for small updates to large object (LOB) data, which
improves performance of LOB updates that are 100 bytes in size or less. Previously, LOB updates
were a minimum of one LOB page in size, which is less than optimal for updates that might only

16

Features Added in MySQL 8.0

modify a few bytes. This enhancement builds upon support added in MySQL 8.0.4 for partial
update of LOB data.

• As of MySQL 8.0.12, ALGORITHM=INSTANT is supported for the following ALTER TABLE
operations:

• Adding a column. This feature is also referred to as “Instant ADD COLUMN”. Limitations apply.
See Section 17.12.1, “Online DDL Operations”.

• Adding or dropping a virtual column.

• Adding or dropping a column default value.

• Modifying the definition of an ENUM or SET column.

• Changing the index type.

• Renaming a table.

Operations that support ALGORITHM=INSTANT only modify metadata in the data dictionary.
No metadata locks are taken on the table, and table data is unaffected, making the operations
instantaneous. If not specified explicitly, ALGORITHM=INSTANT is used by default by operations
that support it. If ALGORITHM=INSTANT is specified but not supported, the operation fails
immediately with an error.

For more information about operations that support ALGORITHM=INSTANT, see Section 17.12.1,
“Online DDL Operations”.

• As of MySQL 8.0.13, the TempTable storage engine supports storage of binary large object
(BLOB) type columns. This enhancement improves performance for queries that use temporary
tables containing BLOB data. Previously, temporary tables that contained BLOB data were stored
in the on-disk storage engine defined by internal_tmp_disk_storage_engine. For more
information, see Section 10.4.4, “Internal Temporary Table Use in MySQL”.

• As of MySQL 8.0.13, the InnoDB data-at-rest encryption feature supports general tablespaces.
Previously, only file-per-table tablespaces could be encrypted. To support encryption of general
tablespaces, CREATE TABLESPACE and ALTER TABLESPACE syntax was extended to include an
ENCRYPTION clause.

The Information Schema INNODB_TABLESPACES table now includes an ENCRYPTION column that
indicates whether or not a tablespace is encrypted.

The stage/innodb/alter tablespace (encryption) Performance Schema stage
instrument was added to permit monitoring of general tablespace encryption operations.

• Disabling the innodb_buffer_pool_in_core_file variable reduces the size of core files
by excluding InnoDB buffer pool pages. To use this variable, the core_file variable must be
enabled and the operating system must support the MADV_DONTDUMP non-POSIX extension to
madvise(), which is supported in Linux 3.4 and later. For more information, see Section 17.8.3.7,
“Excluding Buffer Pool Pages from Core Files”.

• As of MySQL 8.0.13, user-created temporary tables and internal temporary tables created by the
optimizer are stored in session temporary tablespaces that are allocated to a session from a pool
of temporary tablespaces. When a session disconnects, its temporary tablespaces are truncated
and released back to the pool. In previous releases, temporary tables were created in the global

17

Features Added in MySQL 8.0

temporary tablespace (ibtmp1), which did not return disk space to the operating system after
temporary tables were dropped.

The innodb_temp_tablespaces_dir variable defines the location where session temporary
tablespaces are created. The default location is the #innodb_temp directory in the data directory.

The INNODB_SESSION_TEMP_TABLESPACES table provides metadata about session temporary
tablespaces.

The global temporary tablespace (ibtmp1) now stores rollback segments for changes made to
user-created temporary tables.

• As of MySQL 8.0.14, InnoDB supports parallel clustered index reads, which can improve
CHECK TABLE performance. This feature does not apply to secondary index scans. The
innodb_parallel_read_threads session variable must be set to a value greater
than 1 for parallel clustered index reads to occur. The default value is 4. The actual
number of threads used to perform a parallel clustered index read is determined by the
innodb_parallel_read_threads setting or the number of index subtrees to scan, whichever
is smaller.

• As of 8.0.14, when the server is started with --innodb-dedicated-server, the size and
number of log files are configured according to the automatically configured buffer pool size.
Previously, log file size was configured according to the amount of memory detected on the server,
and the number of log files was not configured automatically.

• As of 8.0.14, the ADD DATAFILE clause of the CREATE TABLESPACE statement is optional,
which permits users without the FILE privilege to create tablespaces. A CREATE TABLESPACE
statement executed without an ADD DATAFILE clause implicitly creates a tablespace data file with
a unique file name.

• By default, when the amount of memory occupied by the TempTable storage engine exceeds
the memory limit defined by the temptable_max_ram variable, the TempTable storage engine
begins allocating memory-mapped temporary files from disk. As of MySQL 8.0.16, this behavior is
controlled by the temptable_use_mmap variable. Disabling temptable_use_mmap causes the
TempTable storage engine to use InnoDB on-disk internal temporary tables instead of memory-
mapped files as its overflow mechanism. For more information, see Internal Temporary Table
Storage Engine.

• As of MySQL 8.0.16, the InnoDB data-at-rest encryption feature supports encryption of the mysql
system tablespace. The mysql system tablespace contains the mysql system database and the
MySQL data dictionary tables. For more information, see Section 17.13, “InnoDB Data-at-Rest
Encryption”.

• The innodb_spin_wait_pause_multiplier variable, introduced in MySQL 8.0.16, provides
greater control over the duration of spin-lock polling delays that occur when a thread waits to
acquire a mutex or rw-lock. Delays can be tuned more finely to account for differences in PAUSE

18

Features Added in MySQL 8.0

instruction duration on different processor architectures. For more information, see Section 17.8.8,
“Configuring Spin Lock Polling”.

• InnoDB parallel read thread performance for large data sets was improved in MySQL 8.0.17
through better utilization of read threads, through a reduction in read thread I/O for prefetch activity
that occurs during parallel scans, and through support for parallel scanning of partitions.

The parallel read thread feature is controlled by the innodb_parallel_read_threads
variable. The maximum setting is now 256, which is the total number of threads for all client
connections. If the thread limit is reached, connections fall back to using a single thread.

• The innodb_idle_flush_pct variable, introduced in MySQL 8.0.18, permits placing a limit on
page flushing during idle periods, which can help extend the life of solid state storage devices. See
Limiting Buffer Flushing During Idle Periods.

• Efficient sampling of InnoDB data for the purpose of generating histogram statistics is supported
as of MySQL 8.0.19. See Histogram Statistics Analysis.

• As of MySQL 8.0.20, the doublewrite buffer storage area resides in doublewrite files. In previous
releases, the storage area resided in the system tablespace. Moving the storage area out of
the system tablespace reduces write latency, increases throughput, and provides flexibility with
respect to placement of doublewrite buffer pages. The following system variables were introduced
for advanced doublewrite buffer configuration:

• innodb_doublewrite_dir

Defines the doublewrite buffer file directory.

• innodb_doublewrite_files

Defines the number of doublewrite files.

• innodb_doublewrite_pages

Defines the maximum number of doublewrite pages per thread for a batch write.

• innodb_doublewrite_batch_size

Defines the number of doublewrite pages to write in a batch.

For more information, see Section 17.6.4, “Doublewrite Buffer”.

• The Contention-Aware Transaction Scheduling (CATS) algorithm, which prioritizes transactions
that are waiting for locks, was improved in MySQL 8.0.20. Transaction scheduling weight
computation is now performed a separate thread entirely, which improves computation
performance and accuracy.

The First In First Out (FIFO) algorithm, which had also been used for transaction scheduling,
was removed. The FIFO algorithm was rendered redundant by CATS algorithm enhancements.

19

Features Added in MySQL 8.0

Transaction scheduling previously performed by the FIFO algorithm is now performed by the
CATS algorithm.

A TRX_SCHEDULE_WEIGHT column was added to the INFORMATION_SCHEMA.INNODB_TRX
table, which permits querying transaction scheduling weights assigned by the CATS algorithm.

The following INNODB_METRICS counters were added for monitoring code-level transaction
scheduling events:

• lock_rec_release_attempts

The number of attempts to release record locks.

• lock_rec_grant_attempts

The number of attempts to grant record locks.

• lock_schedule_refreshes

The number of times the wait-for graph was analyzed to update transaction schedule weights.

For more information, see Section 17.7.6, “Transaction Scheduling”.

• As of MySQL 8.0.21, to improve concurrency for operations that require access to lock queues
for table and row resources, the lock system mutex (lock_sys->mutex) was replaced in by
sharded latches, and lock queues were grouped into table and page lock queue shards, with each
shard protected by a dedicated mutex. Previously, the single lock system mutex protected all
lock queues, which was a point of contention on high-concurrency systems. The new sharded
implementation permits more granular access to lock queues.

The lock system mutex (lock_sys->mutex) was replaced by the following sharded latches:

• A global latch (lock_sys->latches.global_latch) consisting of 64 read-write lock objects
(rw_lock_t). Access to an individual lock queue requires a shared global latch and a latch on
the lock queue shard. Operations that require access to all lock queues take an exclusive global
latch, which latches all table and page lock queue shards.

• Table shard latches (lock_sys->latches.table_shards.mutexes), implemented as an
array of 512 mutexes, with each mutex dedicated to one of 512 table lock queue shards.

• Page shard latches (lock_sys->latches.page_shards.mutexes), implemented as an
array of 512 mutexes, with each mutex dedicated to one of 512 page lock queue shards.

The Performance Schema wait/synch/mutex/innodb/lock_mutex instrument for monitoring
the single lock system mutex was replaced by instruments for monitoring the new global, table
shard, and page shard latches:

• wait/synch/sxlock/innodb/lock_sys_global_rw_lock

• wait/synch/mutex/innodb/lock_sys_table_mutex

• wait/synch/mutex/innodb/lock_sys_page_mutex

• As of MySQL 8.0.21, table and table partition data files created outside of the data directory using
the DATA DIRECTORY clause are restricted to directories known to InnoDB. This change permits

20

Features Added in MySQL 8.0

database administrators to control where tablespace data files are created and ensures that the
data files can be found during recovery.

General and file-per-table tablespaces data files (.ibd files) can no longer be created in the undo
tablespace directory (innodb_undo_directory) unless that directly is known to InnoDB.

Known directories are those defined by the datadir, innodb_data_home_dir, and
innodb_directories variables.

Truncating an InnoDB table that resides in a file-per-table tablespace drops the existing
tablespace and creates a new one. As of MySQL 8.0.21, InnoDB creates the new tablespace
in the default location and writes a warning to the error log if the current tablespace directory
is unknown. To have TRUNCATE TABLE create the tablespace in its current location, add the
directory to the innodb_directories setting before running TRUNCATE TABLE.

• As of MySQL 8.0.21, redo logging can be enabled and disabled using ALTER INSTANCE
{ENABLE|DISABLE} INNODB REDO_LOG syntax. This functionality is intended for loading data
into a new MySQL instance. Disabling redo logging helps speed up data loading by avoiding redo
log writes.

The new INNODB_REDO_LOG_ENABLE privilege permits enabling and disabling redo logging.

The new Innodb_redo_log_enabled status variable permits monitoring redo logging status.

See Disabling Redo Logging.

• At startup, InnoDB validates the paths of known tablespace files against tablespace file paths
stored in the data dictionary in case tablespace files have been moved to a different location. The
new innodb_validate_tablespace_paths variable, introduced in MySQL 8.0.21, permits
disabling tablespace path validation. This feature is intended for environments where tablespaces
files are not moved. Disabling tablespace path validation improves startup time on systems with a
large number of tablespace files.

For more information, see Section 17.6.3.7, “Disabling Tablespace Path Validation”.

• As of MySQL 8.0.21, on storage engines that support atomic DDL, the CREATE TABLE ...
SELECT statement is logged as one transaction in the binary log when row-based replication is
in use. Previously, it was logged as two transactions, one to create the table, and the other to
insert data. With this change, CREATE TABLE ... SELECT statements are now safe for row-
based replication and permitted for use with GTID-based replication. For more information, see
Section 15.1.1, “Atomic Data Definition Statement Support”.

• Truncating an undo tablespace on a busy system could affect performance due to associated
flushing operations that remove old undo tablespace pages from the buffer pool and flush the
initial pages of the new undo tablespace to disk. To address this issue, the flushing operations are
removed as of MySQL 8.0.21.

Old undo tablespace pages are released passively as they become least recently used, or are
removed at the next full checkpoint. The initial pages of the new undo tablespace are now redo
logged instead of flushed to disk during the truncate operation, which also improves durability of
the undo tablespace truncate operation.

To prevent potential issues caused by an excessive number of undo tablespace truncate
operations, truncate operations on the same undo tablespace between checkpoints are now
limited to 64. If the limit is exceeded, an undo tablespace can still be made inactive, but it is not
truncated until after the next checkpoint.

INNODB_METRICS counters associated with defunct undo truncate flushing operations
were removed. Removed counters include: undo_truncate_sweep_count,

21

Features Added in MySQL 8.0

undo_truncate_sweep_usec, undo_truncate_flush_count, and
undo_truncate_flush_usec.

See Section 17.6.3.4, “Undo Tablespaces”.

• As of MySQL 8.0.22, the new innodb_extend_and_initialize variable permits configuring
how InnoDB allocates space to file-per-table and general tablespaces on Linux. By default,
when an operation requires additional space in a tablespace, InnoDB allocates pages to the
tablespace and physically writes NULLs to those pages. This behavior affects performance if
new pages are allocated frequently. You can disable innodb_extend_and_initialize on
Linux systems to avoid physically writing NULLs to newly allocated tablespace pages. When
innodb_extend_and_initialize is disabled, space is allocated using posix_fallocate()
calls, which reserve space without physically writing NULLs.

A posix_fallocate() operation is not atomic, which makes it possible for a failure to occur
between allocating space to a tablespace file and updating the file metadata. Such a failure can
leave newly allocated pages in an uninitialized state, resulting in a failure when InnoDB attempts
to access those pages. To prevent this scenario, InnoDB writes a redo log record before allocating
a new tablespace page. If a page allocation operation is interrupted, the operation is replayed from
the redo log record during recovery.

• As of MySQL 8.0.23, InnoDB supports encryption of doublewrite file pages belonging to encrypted
tablespaces. The pages are encrypted using the encryption key of the associated tablespace. For
more information, see Section 17.13, “InnoDB Data-at-Rest Encryption”.

• The temptable_max_mmap variable, introduced in MySQL 8.0.23, defines the maximum amount
of memory the TempTable storage engine is permitted to allocate from memory-mapped (MMAP)
files before it starts storing internal temporary table data on disk. A setting of 0 disables allocation
from MMAP files. For more information, see Section 10.4.4, “Internal Temporary Table Use in
MySQL”.

• The AUTOEXTEND_SIZE option, introduced in MySQL 8.0.23, defines the amount by which
InnoDB extends the size of a tablespace when it becomes full, making it possible to extend
tablespace size in larger increments. The AUTOEXTEND_SIZE option is supported with the
CREATE TABLE, ALTER TABLE, CREATE TABLESPACE, and ALTER TABLESPACE statements.
For more information, see Section 17.6.3.9, “Tablespace AUTOEXTEND_SIZE Configuration”.

An AUTOEXTEND_SIZE size column was added to the Information Schema
INNODB_TABLESPACES table.

• The innodb_segment_reserve_factor system variable, introduced in MySQL 8.0.26, permits
configuring the percentage of tablespace file segment pages that are reserved as empty pages.
For more information, see Configuring the Percentage of Reserved File Segment Pages.

• On platforms that support fdatasync() system calls, the innodb_use_fdatasync variable,
introduced in MySQL 8.0.26, permits using fdatasync() instead of fsync() for operating
system flushes. An fdatasync() system call does not flush changes to file metadata unless
required for subsequent data retrieval, providing a potential performance benefit.

• As of MySQL 8.0.28, the tmp_table_size variable defines the maximum size of any individual
in-memory internal temporary table created by the TempTable storage engine. An appropriate
size limit prevents individual queries from consuming an inordinate amount global TempTable
resources. See Internal Temporary Table Storage Engine.

• From MySQL 8.0.28, the innodb_open_files variable, which defines the number
of files InnoDB can have open at one time, can be set at runtime using a SELECT

22

Features Added in MySQL 8.0

innodb_set_open_files_limit(N) statement. The statement executes a stored procedure
that sets the new limit.

To prevent non-LRU manged files from consuming the entire innodb_open_files limit, non-
LRU managed files are limited to 90 percent of the innodb_open_files limit, which reserves 10
percent of the innodb_open_files limit for LRU managed files.

The innodb_open_files limit includes temporary tablespace files, which were not counted
toward the limit previously.

• From MySQL 8.0.28, InnoDB supports ALTER TABLE ... RENAME COLUMN operations using
ALGORITHM=INSTANT.

For more information about this and other DDL operations that support ALGORITHM=INSTANT,
see Section 17.12.1, “Online DDL Operations”.

• From MySQL 8.0.29, InnoDB supports ALTER TABLE ... DROP COLUMN operations using
ALGORITHM=INSTANT.

Prior to MySQL 8.0.29, an instantly added column could only be added as the last column of the
table. From MySQL 8.0.29, an instantly added column can be added to any position in the table.

Instantly added or dropped columns create a new version of the affected row. Up to 64 row
versions are permitted. A new TOTAL_ROW_VERSIONS column was added to the Information
Schema INNODB_TABLES table to track the number of row versions.

For more information about DDL operations that support ALGORITHM=INSTANT, see
Section 17.12.1, “Online DDL Operations”.

• From MySQL 8.0.30, the innodb_doublewrite system variable supports DETECT_ONLY and
DETECT_AND_RECOVER settings. With the DETECT_ONLY setting, database page content is not
written to the doublewrite buffer, and recovery does not use the doublewrite buffer to fix incomplete
page writes. This lightweight setting is intended for detecting incomplete page writes only. The
DETECT_AND_RECOVER setting is equivalent to the existing ON setting. For more information, see
Section 17.6.4, “Doublewrite Buffer”.

• From MySQL 8.0.30, InnoDB supports dynamic configuration of redo log capacity. The
innodb_redo_log_capacity system variable can be set at runtime to increase or decrease the
total amount of disk space occupied by redo log files.

With this change, the number of redo log files and their default location has also changed. From
MySQL 8.0.30, InnoDB maintains 32 redo log files in the #innodb_redo directory in the data
directory. Previously, InnoDB created two redo log files in the data directory by default, and the
number and size of redo log files were controlled by the innodb_log_files_in_group and
innodb_log_file_size variables. These two variables are now deprecated.

When the innodb_redo_log_capacity setting is defined, innodb_log_files_in_group
and innodb_log_file_size settings are ignored; otherwise, those settings are used to
compute the innodb_redo_log_capacity setting (innodb_log_files_in_group *
innodb_log_file_size = innodb_redo_log_capacity). If none of those variables are set,
redo log capacity is set to the innodb_redo_log_capacity default value, which is 104857600
bytes (100MB).

Several status variables are provided for monitoring the redo log and redo log resizing operations.

For more information, see Section 17.6.5, “Redo Log”.

• With MySQL 8.0.31, there are two new status variables for monitoring online buffer pool
resizing operations. The Innodb_buffer_pool_resize_status_code status variable
reports a status code indicating the stage of an online buffer pool resizing operation. The

23

Features Added in MySQL 8.0

Innodb_buffer_pool_resize_status_progress status variable reports a percentage value
indicating the progress of each stage.

For more information, see Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”.

• Character set support. The default character set has changed from latin1 to utf8mb4. The
utf8mb4 character set has several new collations, including utf8mb4_ja_0900_as_cs, the first
Japanese language-specific collation available for Unicode in MySQL. For more information, see
Section 12.10.1, “Unicode Character Sets”.

• JSON enhancements. The following enhancements or additions were made to MySQL's JSON
functionality:

• Added the ->> (inline path) operator, which is equivalent to calling JSON_UNQUOTE() on the
result of JSON_EXTRACT().

This is a refinement of the column path operator -> introduced in MySQL 5.7; col->>"$.path"
is equivalent to JSON_UNQUOTE(col->"$.path"). The inline path operator can be used
wherever you can use JSON_UNQUOTE(JSON_EXTRACT()), such SELECT column lists, WHERE
and HAVING clauses, and ORDER BY and GROUP BY clauses. For more information, see the
description of the operator, as well as JSON Path Syntax.

• Added two JSON aggregation functions JSON_ARRAYAGG() and JSON_OBJECTAGG().
JSON_ARRAYAGG() takes a column or expression as its argument, and aggregates the result as a
single JSON array. The expression can evaluate to any MySQL data type; this does not have to be
a JSON value. JSON_OBJECTAGG() takes two columns or expressions which it interprets as a key
and a value; it returns the result as a single JSON object. For more information and examples, see
Section 14.19, “Aggregate Functions”.

• Added the JSON utility function JSON_PRETTY(), which outputs an existing JSON value in an
easy-to-read format; each JSON object member or array value is printed on a separate line, and a
child object or array is intended 2 spaces with respect to its parent.

This function also works with a string that can be parsed as a JSON value.

For more detailed information and examples, see Section 14.17.8, “JSON Utility Functions”.

• When sorting JSON values in a query using ORDER BY, each value is now represented by a
variable-length part of the sort key, rather than a part of a fixed 1K in size. In many cases this can
reduce excessive usage. For example, a scalar INT or even BIGINT value actually requires very
few bytes, so that the remainder of this space (up to 90% or more) was taken up by padding. This
change has the following benefits for performance:

• Sort buffer space is now used more effectively, so that filesorts need not flush to disk as early
or often as with fixed-length sort keys. This means that more data can be sorted in memory,
avoiding unnecessary disk access.

• Shorter keys can be compared more quickly than longer ones, providing a noticeable
improvement in performance. This is true for sorts performed entirely in memory as well as for
sorts that require writing to and reading from disk.

• Added support in MySQL 8.0.2 for partial, in-place updates of JSON column values, which is more
efficient than completely removing an existing JSON value and writing a new one in its place,
as was done previously when updating any JSON column. For this optimization to be applied,
the update must be applied using JSON_SET(), JSON_REPLACE(), or JSON_REMOVE(). New
elements cannot be added to the JSON document being updated; values within the document

24

Features Added in MySQL 8.0

cannot take more space than they did before the update. See Partial Updates of JSON Values, for
a detailed discussion of the requirements.

Partial updates of JSON documents can be written to the binary log, taking up less space
than logging complete JSON documents. Partial updates are always logged as such when
statement-based replication is in use. For this to work with row-based replication, you must first
set binlog_row_value_options=PARTIAL_JSON; see this variable's description for more
information.

• Added the JSON utility functions JSON_STORAGE_SIZE() and JSON_STORAGE_FREE().
JSON_STORAGE_SIZE() returns the storage space in bytes used for the binary representation of
a JSON document prior to any partial update (see previous item). JSON_STORAGE_FREE() shows
the amount of space remaining in a table column of type JSON after it has been partially updated
using JSON_SET() or JSON_REPLACE(); this is greater than zero if the binary representation of
the new value is less than that of the previous value.

Each of these functions also accepts a valid string representation of a JSON document. For such
a value, JSON_STORAGE_SIZE() returns the space used by its binary representation following
its conversion to a JSON document. For a variable containing the string representation of a JSON
document, JSON_STORAGE_FREE() returns zero. Either function produces an error if its (non-null)
argument cannot be parsed as a valid JSON document, and NULL if the argument is NULL.

For more information and examples, see Section 14.17.8, “JSON Utility Functions”.

JSON_STORAGE_SIZE() and JSON_STORAGE_FREE() were implemented in MySQL 8.0.2.

• Added support in MySQL 8.0.2 for ranges such as $[1 to 5] in XPath expressions. Also added
support in this version for the last keyword and relative addressing, such that $[last] always
selects the last (highest-numbered) element in the array and $[last-1] the next to last element.
last and expressions using it can also be included in range definitions. For example, $[last-2
to last-1] returns the last two elements but one from an array. See Searching and Modifying
JSON Values, for additional information and examples.

• Added a JSON merge function intended to conform to RFC 7396. JSON_MERGE_PATCH(), when
used on 2 JSON objects, merges them into a single JSON object that has as members a union of
the following sets:

• Each member of the first object for which there is no member with the same key in the second
object.

• Each member of the second object for which there is no member having the same key in the first
object, and whose value is not the JSON null literal.

• Each member having a key that exists in both objects, and whose value in the second object is
not the JSON null literal.

As part of this work, the JSON_MERGE() function has been renamed JSON_MERGE_PRESERVE().
JSON_MERGE() continues to be recognized as an alias for JSON_MERGE_PRESERVE() in MySQL
8.0, but is now deprecated and is subject to removal in a future version of MySQL.

For more information and examples, see Section 14.17.4, “Functions That Modify JSON Values”.

• Implemented “last duplicate key wins” normalization of duplicate keys, consistent with RFC 7159
and most JavaScript parsers. An example of this behavior is shown here, where only the rightmost
member having the key x is preserved:

mysql> SELECT JSON_OBJECT('x', '32', 'y', '[true, false]',
 > 'x', '"abc"', 'x', '100') AS Result;
+------------------------------------+
| Result |
+------------------------------------+

25

https://tools.ietf.org/html/rfc7396
https://tools.ietf.org/html/rfc7159

Features Added in MySQL 8.0

| {"x": "100", "y": "[true, false]"} |
+------------------------------------+
1 row in set (0.00 sec)

Values inserted into MySQL JSON columns are also normalized in this way, as shown in this
example:

mysql> CREATE TABLE t1 (c1 JSON);

mysql> INSERT INTO t1 VALUES ('{"x": 17, "x": "red", "x": [3, 5, 7]}');

mysql> SELECT c1 FROM t1;
+------------------+
| c1 |
+------------------+
| {"x": [3, 5, 7]} |
+------------------+

This is an incompatible change from previous versions of MySQL, where a “first duplicate key
wins” algorithm was used in such cases.

See Normalization, Merging, and Autowrapping of JSON Values, for more information and
examples.

• Added the JSON_TABLE() function in MySQL 8.0.4. This function accepts JSON data and returns
it as a relational table having the specified columns.

This function has the syntax JSON_TABLE(expr, path COLUMNS column_list) [AS]
alias), where expr is an expression that returns JSON data, path is a JSON path applied to
the source, and column_list is a list of column definitions. An example is shown here:

mysql> SELECT *
 -> FROM
 -> JSON_TABLE(
 -> '[{"a":3,"b":"0"},{"a":"3","b":"1"},{"a":2,"b":1},{"a":0},{"b":[1,2]}]',
 -> "$[*]" COLUMNS(
 -> rowid FOR ORDINALITY,
 ->
 -> xa INT EXISTS PATH "$.a",
 -> xb INT EXISTS PATH "$.b",
 ->
 -> sa VARCHAR(100) PATH "$.a",
 -> sb VARCHAR(100) PATH "$.b",
 ->
 -> ja JSON PATH "$.a",
 -> jb JSON PATH "$.b"
 ->)
 ->) AS jt1;
+-------+------+------+------+------+------+--------+
| rowid | xa | xb | sa | sb | ja | jb |
+-------+------+------+------+------+------+--------+
1	1	1	3	0	3	"0"
2	1	1	3	1	"3"	"1"
3	1	1	2	1	2	1
4	1	0	0	NULL	0	NULL
5	0	1	NULL	NULL	NULL	[1, 2]
+-------+------+------+------+------+------+--------+

The JSON source expression can be any expression that yields a valid JSON document, including
a JSON literal, a table column, or a function call that returns JSON such as JSON_EXTRACT(t1,
data, '$.post.comments'). For more information, see Section 14.17.6, “JSON Table
Functions”.

• Data type support. MySQL now supports use of expressions as default values in data
type specifications. This includes the use of expressions as default values for the BLOB, TEXT,
GEOMETRY, and JSON data types, which previously could not be assigned default values at all. For
details, see Section 13.6, “Data Type Default Values”.

26

Features Added in MySQL 8.0

• Optimizer. These optimizer enhancements were added:

• MySQL now supports invisible indexes. An invisible index is not used by the optimizer at all, but is
otherwise maintained normally. Indexes are visible by default. Invisible indexes make it possible to
test the effect of removing an index on query performance, without making a destructive change
that must be undone should the index turn out to be required. See Section 10.3.12, “Invisible
Indexes”.

• MySQL now supports descending indexes: DESC in an index definition is no longer ignored but
causes storage of key values in descending order. Previously, indexes could be scanned in
reverse order but at a performance penalty. A descending index can be scanned in forward order,
which is more efficient. Descending indexes also make it possible for the optimizer to use multiple-
column indexes when the most efficient scan order mixes ascending order for some columns and
descending order for others. See Section 10.3.13, “Descending Indexes”.

• MySQL now supports creation of functional index key parts that index expression values rather
than column values. Functional key parts enable indexing of values that cannot be indexed
otherwise, such as JSON values. For details, see Section 15.1.15, “CREATE INDEX Statement”.

• In MySQL 8.0.14 and later, trivial WHERE conditions arising from constant literal expressions are
removed during preparation, rather than later on during optimization. Removal of the condition
earlier in the process makes it possible to simplify joins for queries with outer joins having trivial
conditions, such as this one:

SELECT * FROM t1 LEFT JOIN t2 ON condition_1 WHERE condition_2 OR 0 = 1

The optimizer now sees during preparation that 0 = 1 is always false, making OR 0 = 1
redundant, and removes it, leaving this:

SELECT * FROM t1 LEFT JOIN t2 ON condition_1 where condition_2

Now the optimizer can rewrite the query as an inner join, like this:

SELECT * FROM t1 LEFT JOIN t2 WHERE condition_1 AND condition_2

For more information, see Section 10.2.1.9, “Outer Join Optimization”.

• In MySQL 8.0.16 and later, MySQL can use constant folding at optimization time to handle
comparisons between a column and a constant value where the constant is out of range or on
a range boundary with respect to the type of the column, rather than doing so for each row at
execution time. For example, given a table t with a TINYINT UNSIGNED column c, the optimizer
can rewrite a condition such as WHERE c < 256 to WHERE 1 (and optimize the condition away
altogether), or WHERE c >= 255 to WHERE c = 255.

See Section 10.2.1.14, “Constant-Folding Optimization”, for more information.

• Beginning with MySQL 8.0.16, the semijoin optimizations used with IN subqueries can now
be applied to EXISTS subqueries as well. In addition, the optimizer now decorrelates trivially-
correlated equality predicates in the WHERE condition attached to the subquery, so that they can be
treated similarly to expressions in IN subqueries; this applies to both EXISTS and IN subqueries.

For more information, see Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with
Semijoin Transformations”.

• As of MySQL 8.0.17, the server rewrites any incomplete SQL predicates (that is, predicates
having the form WHERE value, in which value is a column name or constant expression and
no comparison operator is used) internally as WHERE value <> 0 during the contextualization

27

Features Added in MySQL 8.0

phase, so that the query resolver, query optimizer, and query executor need work only with
complete predicates.

One visible effect of this change is that, for Boolean values, EXPLAIN output now shows true and
false, rather than 1 and 0.

Another effect of this change is that evaluation of a JSON value in an SQL boolean context
performs an implicit comparison against JSON integer 0. Consider the table created and populated
as shown here:

mysql> CREATE TABLE test (id INT, col JSON);

mysql> INSERT INTO test VALUES (1, '{"val":true}'), (2, '{"val":false}');

Previously, the server attempted to convert an extracted true or false value to an SQL boolean
when comparing it in an SQL boolean context, as shown by the following query using IS TRUE:

mysql> SELECT id, col, col->"$.val" FROM test WHERE col->"$.val" IS TRUE;
+------+---------------+--------------+
| id | col | col->"$.val" |
+------+---------------+--------------+
| 1 | {"val": true} | true |
+------+---------------+--------------+

In MySQL 8.0.17 and later, the implicit comparison of the extracted value with JSON integer 0
leads to a different result:

mysql> SELECT id, col, col->"$.val" FROM test WHERE col->"$.val" IS TRUE;
+------+----------------+--------------+
| id | col | col->"$.val" |
+------+----------------+--------------+
| 1 | {"val": true} | true |
| 2 | {"val": false} | false |
+------+----------------+--------------+

Beginning with MySQL 8.0.21, you can use JSON_VALUE() on the extracted value to perform type
conversion prior to performing the test, as shown here:

mysql> SELECT id, col, col->"$.val" FROM test
 -> WHERE JSON_VALUE(col, "$.val" RETURNING UNSIGNED) IS TRUE;
+------+---------------+--------------+
| id | col | col->"$.val" |
+------+---------------+--------------+
| 1 | {"val": true} | true |
+------+---------------+--------------+

Also beginning with MySQL 8.0.21, the server provides the warning Evaluating a JSON
value in SQL boolean context does an implicit comparison against JSON
integer 0; if this is not what you want, consider converting JSON to an
SQL numeric type with JSON_VALUE RETURNING when comparing extracted values in an
SQL boolean context in this manner.

• In MySQL 8.0.17 and later a WHERE condition having NOT IN (subquery) or NOT EXISTS
(subquery) is transformed internally into an antijoin. (An antijoin returns all rows from the table
for which there is no row in the table to which it is joined matching the join condition.) This removes
the subquery which can result in faster query execution since the subquery's tables are now
handled on the top level.

This is similar to, and reuses, the existing IS NULL (Not exists) optimization for outer joins;
see EXPLAIN Extra Information.

28

Features Added in MySQL 8.0

• Beginning with MySQL 8.0.21, a single-table UPDATE or DELETE statement can now in many
cases make use of a semijoin transformation or subquery materialization. This applies to
statements of the forms shown here:

• UPDATE t1 SET t1.a=value WHERE t1.a IN (SELECT t2.a FROM t2)

• DELETE FROM t1 WHERE t1.a IN (SELECT t2.a FROM t2)

This can be done for a single-table UPDATE or DELETE meeting the following conditions:

• The UPDATE or DELETE statement uses a subquery having a [NOT] IN or [NOT] EXISTS
predicate.

• The statement has no ORDER BY clause, and has no LIMIT clause.

(The multi-table versions of UPDATE and DELETE do not support ORDER BY or LIMIT.)

• The target table does not support read-before-write removal (relevant only for NDB tables).

• Semijoin or subquery materialization is allowed, based on any hints contained in the subquery
and the value of optimizer_switch.

When the semijoin optimization is used for an eligible single-table DELETE or UPDATE, this is
visible in the optimizer trace: for a multi-table statement there is a join_optimization object
in the trace, while there is none for a single-table statement. The conversion is also visible in the
output of EXPLAIN FORMAT=TREE or EXPLAIN ANALYZE; a single-table statement shows <not
executable by iterator executor>, while a multi-table statement reports a full plan.

Also beginning with MySQL 8.0.21, semi-consistent reads are supported by multi-table UPDATE
statements using InnoDB tables, for transaction isolation levels weaker than REPEATABLE READ.

• Improved hash join performance. MySQL 8.0.23 reimplements the hash table used for hash
joins, resulting in several improvements in hash join performance. This work includes a fix for an
issue (Bug #31516149, Bug #99933) whereby only roughly 2/3 of the memory allocated for the join
buffer (join_buffer_size) could actually be used by a hash join.

The new hash table is generally faster than the old one, and uses less memory for alignment,
keys/values, and in scenarios where there are many equal keys. In addition, the server can now
free old memory when the size of the hash table increases.

• Common table expressions. MySQL now supports common table expressions, both
nonrecursive and recursive. Common table expressions enable use of named temporary result
sets, implemented by permitting a WITH clause preceding SELECT statements and certain other
statements. For more information, see Section 15.2.20, “WITH (Common Table Expressions)”.

As of MySQL 8.0.19, the recursive SELECT part of a recursive common table expression (CTE)
supports a LIMIT clause. LIMIT with OFFSET is also supported. See Recursive Common Table
Expressions, for more information.

• Window functions. MySQL now supports window functions that, for each row from a query,
perform a calculation using rows related to that row. These include functions such as RANK(),
LAG(), and NTILE(). In addition, several existing aggregate functions now can be used as window
functions (for example, SUM() and AVG()). For more information, see Section 14.20, “Window
Functions”.

• Lateral derived tables. A derived table now may be preceded by the LATERAL keyword to
specify that it is permitted to refer to (depend on) columns of preceding tables in the same FROM
clause. Lateral derived tables make possible certain SQL operations that cannot be done with
nonlateral derived tables or that require less-efficient workarounds. See Section 15.2.15.9, “Lateral
Derived Tables”.

29

Features Added in MySQL 8.0

• Aliases in single-table DELETE statements. In MySQL 8.0.16 and later, single-table DELETE
statements support the use of table aliases.

• Regular expression support. Previously, MySQL used the Henry Spencer regular expression
library to support regular expression operators (REGEXP, RLIKE). Regular expression support has
been reimplemented using International Components for Unicode (ICU), which provides full Unicode
support and is multibyte safe. The REGEXP_LIKE() function performs regular expression matching
in the manner of the REGEXP and RLIKE operators, which now are synonyms for that function. In
addition, the REGEXP_INSTR(), REGEXP_REPLACE(), and REGEXP_SUBSTR() functions are
available to find match positions and perform substring substitution and extraction, respectively. The
regexp_stack_limit and regexp_time_limit system variables provide control over resource
consumption by the match engine. For more information, see Section 14.8.2, “Regular Expressions”.
For information about ways in which applications that use regular expressions may be affected by
the implementation change, see Regular Expression Compatibility Considerations.

One effect of this change is that [a-zA-Z] and [0-9] perform much better in MySQL 8.0 than
[[:alpha:]] and [[:digit:]], respectively. Existing applications that use the character classes
in pattern matching should be upgraded to use the ranges instead.

• Internal temporary tables. The TempTable storage engine replaces the MEMORY storage
engine as the default engine for in-memory internal temporary tables. The TempTable
storage engine provides efficient storage for VARCHAR and VARBINARY columns. The
internal_tmp_mem_storage_engine session variable defines the storage engine for in-
memory internal temporary tables. Permitted values are TempTable (the default) and MEMORY.
The temptable_max_ram variable defines the maximum amount of memory that the TempTable
storage engine can use before data is stored to disk.

• Logging. These enhancements were added to improve logging:

• Error logging was rewritten to use the MySQL component architecture. Traditional error logging
is implemented using built-in components, and logging using the system log is implemented as a
loadable component. In addition, a loadable JSON log writer is available. For more information,
see Section 7.4.2, “The Error Log”.

• From MySQL 8.0.30, error log components can be loaded implicitly at startup before the InnoDB
storage engine is available. This new method of loading error log components loads and enables
the components defined by the log_error_services variable.

Previously, error log components had to be installed first using INSTALL COMPONENT and could
only be loaded after InnoDB was fully available, as the list of components to load was read from
the mysql.components table, which is an InnoDB table.

Implicit loading of error log components has these advantages:

• Log components are loaded earlier in the startup sequence, making logged information available
sooner.

• It helps avoid loss of buffered log information should a failure occur during startup.

• Loading log components using INSTALL COMPONENT is not required, simplifying error log
configuration.

The explicit method of loading log components using INSTALL COMPONENT remains supported
for backward compatibility.

For more information, see Section 7.4.2.1, “Error Log Configuration”.

• Backup lock. A new type of backup lock permits DML during an online backup while preventing
operations that could result in an inconsistent snapshot. The new backup lock is supported by LOCK
INSTANCE FOR BACKUP and UNLOCK INSTANCE syntax. The BACKUP_ADMIN privilege is required
to use these statements.

30

Features Added in MySQL 8.0

• Replication. The following enhancements have been made to MySQL Replication:

• MySQL Replication now supports binary logging of partial updates to JSON documents using a
compact binary format, saving space in the log over logging complete JSON documents. Such
compact logging is done automatically when statement-based logging is in use, and can be
enabled by setting the new binlog_row_value_options system variable to PARTIAL_JSON.
For more information, see Partial Updates of JSON Values, as well as the description of
binlog_row_value_options.

• Connection management. MySQL Server now permits a TCP/IP port to be configured
specifically for administrative connections. This provides an alternative to the single administrative
connection that is permitted on the network interfaces used for ordinary connections even when
max_connections connections are already established. See Section 7.1.12.1, “Connection
Interfaces”.

MySQL now provides more control over the use of compression to minimize the number of bytes
sent over connections to the server. Previously, a given connection was either uncompressed or
used the zlib compression algorithm. Now, it is also possible to use the zstd algorithm, and to
select a compression level for zstd connections. The permitted compression algorithms can be
configured on the server side, as well as on the connection-origination side for connections by client
programs and by servers participating in source/replica replication or Group Replication. For more
information, see Section 6.2.8, “Connection Compression Control”.

• Configuration. The maximum permitted length of host names throughout MySQL has been
raised to 255 ASCII characters, up from the previous limit of 60 characters. This applies to, for
example, host name-related columns in the data dictionary, mysql system schema, Performance
Schema, INFORMATION_SCHEMA, and sys schema; the MASTER_HOST value for the CHANGE
MASTER TO statement; the Host column in SHOW PROCESSLIST statement output; host names in
account names (such as used in account-management statements and in DEFINER attributes); and
host name-related command options and system variables.

Caveats:

• The increase in permitted host name length can affect tables with indexes on host name columns.
For example, tables in the mysql system schema that index host names now have an explicit
ROW_FORMAT attribute of DYNAMIC to accommodate longer index values.

• Some file name-valued configuration settings might be constructed based on the server host
name. The permitted values are constrained by the underlying operating system, which may
not permit file names long enough to include 255-character host names. This affects the
general_log_file, log_error, pid_file, relay_log, and slow_query_log_file
system variables and corresponding options. If host name-based values are too long for the OS,
explicit shorter values must be provided.

• Although the server now supports 255-character host names, connections to the server
established using the --ssl-mode=VERIFY_IDENTITY option are constrained by maximum host
name length supported by OpenSSL. Host name matches pertain to two fields of SSL certificates,
which have maximum lengths as follows: Common Name: maximum length 64; Subject Alternative
Name: maximum length as per RFC#1034.

• Plugins. Previously, MySQL plugins could be written in C or C++. MySQL header files used by
plugins now contain C++ code, which means that plugins must be written in C++, not C.

• C API. The MySQL C API now supports asynchronous functions for nonblocking communication
with the MySQL server. Each function is the asynchronous counterpart to an existing synchronous
function. The synchronous functions block if reads from or writes to the server connection must wait.
The asynchronous functions enable an application to check whether work on the server connection
is ready to proceed. If not, the application can perform other work before checking again later. See C
API Asynchronous Interface.

31

https://dev.mysql.com/doc/c-api/8.0/en/c-api-asynchronous-interface.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-asynchronous-interface.html

Features Added in MySQL 8.0

• Additional target types for casts. The functions CAST() and CONVERT() now support
conversions to types DOUBLE, FLOAT, and REAL. Added in MySQL 8.0.17. See Section 14.10, “Cast
Functions and Operators”.

• JSON schema validation. MySQL 8.0.17 adds two functions JSON_SCHEMA_VALID() and
JSON_SCHEMA_VALIDATION_REPORT() for validating JSON documents again JSON schemas.
JSON_SCHEMA_VALID() returns TRUE (1) if the document validates against the schema and
FALSE (0) if it does not. JSON_SCHEMA_VALIDATION_REPORT() returns a JSON document
containing detailed information about the results of the validation. The following statements apply to
both of these functions:

• The schema must conform to Draft 4 of the JSON Schema specification.

• required attributes are supported.

• External resources and the $ref keyword are not supported.

• Regular expression patterns are supported; invalid patterns are silently ignored.

See Section 14.17.7, “JSON Schema Validation Functions”, for more information and examples.

• Multi-valued indexes. Beginning with MySQL 8.0.17, InnoDB supports the creation of a multi-
valued index, which is a secondary index defined on a JSON column that stores an array of values
and which can have multiple index records for a single data record. Such an index uses a key part
definition such as CAST(data->'$.zipcode' AS UNSIGNED ARRAY). A multi-valued index is
used automatically by the MySQL optimizer for suitable queries, as can be viewed in the output of
EXPLAIN.

As part of this work, MySQL adds a new function JSON_OVERLAPS() and a new MEMBER OF()
operator for working with JSON documents, additionally extending the CAST() function with a new
ARRAY keyword, as described in the following list:

• JSON_OVERLAPS() compares two JSON documents. If they contain any key-value pairs or array
elements in common, the function returns TRUE (1); otherwise it returns FALSE (0). If both values
are scalars, the function performs a simple test for equality. If one argument is a JSON array and
the other is a scalar, the scalar is treated as an array element. Thus, JSON_OVERLAPS() acts as
a complement to JSON_CONTAINS().

• MEMBER OF() tests whether the first operand (a scalar or JSON document) is a member of the
JSON array passed as the second operand, returning TRUE (1) if it is, and FALSE (0) if it is not.
No type conversion of the operand is performed.

• CAST(expression AS type ARRAY) permits creation of a functional index by casting the
JSON array found in a JSON document at json_path to an SQL array. Type specifiers are
limited to those already supported by CAST(), with the exception of BINARY (not supported). This
usage of CAST() (and the ARRAY keyword) is supported only by InnoDB, and only for the creation
of a multi-valued index.

For detailed information about multi-valued indexes, including examples, see Multi-Valued
Indexes. Section 14.17.3, “Functions That Search JSON Values”, provides information about
JSON_OVERLAPS() and MEMBER OF(), along with examples of use.

• Hintable time_zone. As of MySQL 8.0.17, the time_zone session variable is hintable using
SET_VAR.

• Redo Log Archiving. As of MySQL 8.0.17, InnoDB supports redo log archiving. Backup utilities
that copy redo log records may sometimes fail to keep pace with redo log generation while a backup
operation is in progress, resulting in lost redo log records due to those records being overwritten. The
redo log archiving feature addresses this issue by sequentially writing redo log records to an archive
file. Backup utilities can copy redo log records from the archive file as necessary, thereby avoiding
the potential loss of data. For more information, see Redo Log Archiving.

32

Features Added in MySQL 8.0

• The Clone Plugin. As of MySQL 8.0.17, MySQL provides a clone plugin that permits cloning
InnoDB data locally or from a remote MySQL server instance. A local cloning operation stores
cloned data on the same server or node where the MySQL instance runs. A remote cloning operation
transfers cloned data over the network from a donor MySQL server instance to the recipient server or
node where the cloning operation was initiated.

The clone plugin supports replication. In addition to cloning data, a cloning operation extracts and
transfers replication coordinates from the donor and applies them on the recipient, which enables
using the clone plugin for provisioning Group Replication members and replicas. Using the clone
plugin for provisioning is considerably faster and more efficient than replicating a large number of
transactions. Group Replication members can also be configured to use the clone plugin as an
alternative method of recovery, so that members automatically choose the most efficient way to
retrieve group data from seed members.

For more information, see Section 7.6.7, “The Clone Plugin”, and Section 20.5.4.2, “Cloning for
Distributed Recovery”.

As of MySQL 8.0.27, concurrent DDL operations on the donor MySQL Server instance are permitted
while a cloning operation is in progress. Previously, a backup lock was held during the cloning
operation, preventing concurrent DDL on the donor. To revert to the previous behavior of blocking
concurrent DDL on the donor during a clone operation, enable the clone_block_ddl variable. See
Section 7.6.7.4, “Cloning and Concurrent DDL”.

As of MySQL 8.0.29, the clone_delay_after_data_drop variable permits specifying a delay
period immediately after removing existing data on the recipient MySQL Server instance at the start
of a remote cloning operation. The delay is intended to provide enough time for the file system on the
recipient host to free space before data is cloned from the donor MySQL Server instance. Certain file
systems free space asynchronously in a background process. On these file systems, cloning data
too soon after dropping existing data can result in clone operation failures due to insufficient space.
The maximum delay period is 3600 seconds (1 hour). The default setting is 0 (no delay).

As of MySQL 8.0.37, cloning is allowed between different point releases. In other words, only the
major and minor version numbers must match when previously the point release number also had to
match.

For example, clone functionality now permits cloning 8.0.37 to 8.0.41 or 8.0.51 to 8.0.39. Previous
restrictions still apply to versions older than 8.0.37, so cloning the likes of 8.0.36 to 8.0.42 or vice-
versa is not permitted.

• Hash Join Optimization. Beginning with MySQL 8.0.18, a hash join is used whenever each pair
of tables in a join includes at least one equi-join condition, and no indexes apply to any join condition.
A hash join does not require indexes, although it can be used with indexes applying to single-table
predicates only. A hash join is more efficient in most cases than the block-nested loop algorithm.
Joins such as those shown here can be optimized in this manner:

SELECT *
 FROM t1
 JOIN t2
 ON t1.c1=t2.c1;

SELECT *
 FROM t1
 JOIN t2
 ON (t1.c1 = t2.c1 AND t1.c2 < t2.c2)
 JOIN t3

33

Features Added in MySQL 8.0

 ON (t2.c1 = t3.c1)

Hash joins can also be used for Cartesian products—that is, when no join condition is specified.

You can see when the hash join optimization is being used for a particular query using EXPLAIN
FORMAT=TREE or EXPLAIN ANALYZE. (In MySQL 8.0.20 and later, you can also use EXPLAIN,
omitting FORMAT=TREE.)

The amount of memory available to a hash join is limited by the value of join_buffer_size. A
hash join that requires more than this much memory is executed on disk; the number of disk files that
can be used by an on-disk hash join is limited by open_files_limit.

As of MySQL 8.0.19, the hash_join optimizer switch which was introduced in MySQL 8.0.18 no
longer supported (hash_join=on still appears as part of the value of optimizer_switch, but setting it
no longer has any effect). The HASH_JOIN and NO_HASH_JOIN optimizer hints are also no longer
supported. The switch and the hint are both now deprecated; expect them to be removed in a future
MySQL release. In MySQL 8.0.18 and later, hash joins can be disabled using the NO_BNL optimizer
switch.

In MySQL 8.0.20 and later, block nested loop is no longer used in the MySQL server, and a hash join
is employed any time a block nested loop would have been used previously, even when the query
contains no equi-join conditions. This applies to inner non-equijoins, semijoins, antijoins, left outer
joins, and right outer joins. The block_nested_loop flag for the optimizer_switch system
variable as well as the BNL and NO_BNL optimizer hints are still supported, but henceforth control
use of hash joins only. In addition, both inner and outer joins (including semijoins and antijoins) can
now employ batched key access (BKA), which allocates join buffer memory incrementally so that
individual queries need not use up large amounts of resources that they do not actually require for
resolution. BKA for inner joins only is supported starting with MySQL 8.0.18.

MySQL 8.0.20 also replaces the executor used in previous versions of MySQL with the iterator
executor. This work includes replacement of the old index subquery engines that governed queries of
the form WHERE value IN (SELECT column FROM table WHERE ...) for those IN queries
which have not been optimized as semijoins, as well as queries materialized in the same form, which
formerly depended on the old executor.

For more information and examples, see Section 10.2.1.4, “Hash Join Optimization”. See also
Batched Key Access Joins.

• EXPLAIN ANALYZE Statement. A new form of the EXPLAIN statement, EXPLAIN ANALYZE,
is implemented in MySQL 8.0.18, providing expanded information about the execution of SELECT
statements in TREE format for each iterator used in processing the query, and making it possible to
compare estimated cost with the actual cost of the query. This information includes startup cost, total
cost, number of rows returned by this iterator, and the number of loops executed.

In MySQL 8.0.21 and later, this statement also supports a FORMAT=TREE specifier. TREE is the only
supported format.

See Obtaining Information with EXPLAIN ANALYZE, for more information.

• Query cast injection. In version 8.0.18 and later, MySQL injects cast operations into the query
item tree inside expressions and conditions in which the data type of the argument and the expected
data type do not match. This has no effect on query results or speed of execution, but makes the
query as executed equivalent to one which is compliant with the SQL standard while maintaining
backwards compatibility with previous releases of MySQL.

Such implicit casts are now performed between temporal types (DATE, DATETIME, TIMESTAMP,
TIME) and numeric types (SMALLINT, TINYINT, MEDIUMINT, INT/INTEGER, BIGINT;
DECIMAL/NUMERIC; FLOAT, DOUBLE, REAL; BIT) whenever they are compared using any of the
standard numeric comparison operators (=, >=, >, <, <=, <>/!=, or <=>). In this case, any value
that is not already a DOUBLE is cast as one. Cast injection is also now performed for comparisons

34

Features Added in MySQL 8.0

between DATE or TIME values and DATETIME values, where the arguments are cast whenever
necessary as DATETIME.

Beginning with MySQL 8.0.21, such casts are also performed when comparing string types with
other types. String types that are cast include CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT,
ENUM, and SET. When comparing a value of a string type with a numeric type or YEAR, the string
cast is to DOUBLE; if the type of the other argument is not FLOAT, DOUBLE, or REAL, it is also cast to
DOUBLE. When comparing a string type to a DATETIME or TIMESTAMP value, the string is cast is to
DATETIME; when comparing a string type with DATE, the string is cast to DATE.

It is possible to see when casts are injected into a given query by viewing the output of EXPLAIN
ANALYZE, EXPLAIN FORMAT=JSON, or, as shown here, EXPLAIN FORMAT=TREE:

mysql> CREATE TABLE d (dt DATETIME, d DATE, t TIME);
Query OK, 0 rows affected (0.62 sec)

mysql> CREATE TABLE n (i INT, d DECIMAL, f FLOAT, dc DECIMAL);
Query OK, 0 rows affected (0.51 sec)

mysql> CREATE TABLE s (c CHAR(25), vc VARCHAR(25),
 -> bn BINARY(50), vb VARBINARY(50), b BLOB, t TEXT,
 -> e ENUM('a', 'b', 'c'), se SET('x' ,'y', 'z'));
Query OK, 0 rows affected (0.50 sec)

mysql> EXPLAIN FORMAT=TREE SELECT * from d JOIN n ON d.dt = n.i\G
*************************** 1. row ***************************
EXPLAIN: -> Inner hash join (cast(d.dt as double) = cast(n.i as double))
(cost=0.70 rows=1)
 -> Table scan on n (cost=0.35 rows=1)
 -> Hash
 -> Table scan on d (cost=0.35 rows=1)

mysql> EXPLAIN FORMAT=TREE SELECT * from s JOIN d ON d.dt = s.c\G
*************************** 1. row ***************************
EXPLAIN: -> Inner hash join (d.dt = cast(s.c as datetime(6))) (cost=0.72 rows=1)
 -> Table scan on d (cost=0.37 rows=1)
 -> Hash
 -> Table scan on s (cost=0.35 rows=1)

1 row in set (0.01 sec)

mysql> EXPLAIN FORMAT=TREE SELECT * from n JOIN s ON n.d = s.c\G
*************************** 1. row ***************************
EXPLAIN: -> Inner hash join (cast(n.d as double) = cast(s.c as double)) (cost=0.70 rows=1)
 -> Table scan on s (cost=0.35 rows=1)
 -> Hash
 -> Table scan on n (cost=0.35 rows=1)

1 row in set (0.00 sec)

Such casts can also be seen by executing EXPLAIN [FORMAT=TRADITIONAL], in which case it is
also necessary to issue SHOW WARNINGS after executing the EXPLAIN statement.

• Time zone support for TIMESTAMP and DATETIME. As of MySQL 8.0.19, the server accepts
a time zone offset with inserted datetime (TIMESTAMP and DATETIME) values. This offset uses the
same format as that employed when setting the time_zone system variable, except that a leading
zero is required when the hours portion of the offset is less than 10, and '-00:00' is not allowed.

35

Features Added in MySQL 8.0

Examples of datetime literals that include time zone offsets are '2019-12-11 10:40:30-05:00',
'2003-04-14 03:30:00+10:00', and '2020-01-01 15:35:45+05:30'.

Time zone offsets are not displayed when selecting datetime values.

Datetime literals incorporating time zone offsets can be used as prepared statement parameter
values.

As part of this work, the value used to set the time_zone system variable is now also restricted to
the range -13:59 to +14:00, inclusive. (It remains possible to assign name values to time_zone
such as 'EST', 'Posix/Australia/Brisbane', and 'Europe/Stockholm' to this variable,
provided that the MySQL time zone tables are loaded; see Populating the Time Zone Tables).

For more information and examples, see Section 7.1.15, “MySQL Server Time Zone Support”, as
well as Section 13.2.2, “The DATE, DATETIME, and TIMESTAMP Types”.

• Precise information for JSON schema CHECK constraint failures. When using
JSON_SCHEMA_VALID() to specify a CHECK constraint, MySQL 8.0.19 and later provides precise
information about the reasons for failures of such constraints.

For examples and more information, see JSON_SCHEMA_VALID() and CHECK constraints. See
also Section 15.1.20.6, “CHECK Constraints”.

• Row and column aliases with ON DUPLICATE KEY UPDATE. Beginning with MySQL 8.0.19,
it is possible to reference the row to be inserted, and, optionally, its columns, using aliases. Consider
the following INSERT statement on a table t having columns a and b:

INSERT INTO t SET a=9,b=5
 ON DUPLICATE KEY UPDATE a=VALUES(a)+VALUES(b);

Using the alias new for the new row, and, in some cases, the aliases m and n for this row's columns,
the INSERT statement can be rewritten in many different ways, some examples of which are shown
here:

INSERT INTO t SET a=9,b=5 AS new
 ON DUPLICATE KEY UPDATE a=new.a+new.b;

INSERT INTO t VALUES(9,5) AS new
 ON DUPLICATE KEY UPDATE a=new.a+new.b;

INSERT INTO t SET a=9,b=5 AS new(m,n)
 ON DUPLICATE KEY UPDATE a=m+n;

INSERT INTO t VALUES(9,5) AS new(m,n)
 ON DUPLICATE KEY UPDATE a=m+n;

For more information and examples, see Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY
UPDATE Statement”.

• SQL standard explicit table clause and table value constructor. Added table value
constructors and explicit table clauses according to the SQL standard. These are implemented in
MySQL 8.0.19, respectively, as the TABLE statement and the VALUES statement.

The TABLE statement has the format TABLE table_name, and is equivalent to SELECT * FROM
table_name. It supports ORDER BY and LIMIT clauses (the latter with optional OFFSET), but
does not allow for the selection of individual table columns. TABLE can be used anywhere that you

36

Features Added in MySQL 8.0

would employ the equivalent SELECT statement; this includes joins, unions, INSERT ... SELECT,
REPLACE, CREATE TABLE ... SELECT statements, and subqueries. For example:

• TABLE t1 UNION TABLE t2 is equivalent to SELECT * FROM t1 UNION SELECT * FROM
t2

• CREATE TABLE t2 TABLE t1 is equivalent to CREATE TABLE t2 SELECT * FROM t1

• SELECT a FROM t1 WHERE b > ANY (TABLE t2) is equivalent to SELECT a FROM t1
WHERE b > ANY (SELECT * FROM t2).

VALUES can be used to supply a table value to an INSERT, REPLACE, or SELECT statement, and
consists of the VALUES keyword followed by a series of row constructors (ROW()) separated by
commas. For example, the statement INSERT INTO t1 VALUES ROW(1,2,3), ROW(4,5,6),
ROW(7,8,9) provides an SQL-compliant equivalent to the MySQL-specific INSERT INTO t1
VALUES (1,2,3), (4,5,6), (7,8,9). You can also select from a VALUES table value
constructor just as you would a table, bearing in mind that you must supply a table alias when doing
so, and use this SELECT just as you would any other; this includes joins, unions, and subqueries.

For more information about TABLE and VALUES, and for examples of their use, see the following
sections of this documentation:

• Section 15.2.16, “TABLE Statement”

• Section 15.2.19, “VALUES Statement”

• Section 15.1.20.4, “CREATE TABLE ... SELECT Statement”

• Section 15.2.7.1, “INSERT ... SELECT Statement”

• Section 15.2.13.2, “JOIN Clause”

• Section 15.2.15, “Subqueries”

• Section 15.2.18, “UNION Clause”

• Optimizer hints for FORCE INDEX, IGNORE INDEX. MySQL 8.0 introduces index-level
optimizer hints which serve as analogs to the traditional index hints as described in Section 10.9.4,
“Index Hints”. The new hints are listed here, along with their FORCE INDEX or IGNORE INDEX
equivalents:

• GROUP_INDEX: Equivalent to FORCE INDEX FOR GROUP BY

NO_GROUP_INDEX: Equivalent to IGNORE INDEX FOR GROUP BY

• JOIN_INDEX: Equivalent to FORCE INDEX FOR JOIN

NO_JOIN_INDEX: Equivalent to IGNORE INDEX FOR JOIN

• ORDER_INDEX: Equivalent to FORCE INDEX FOR ORDER BY

NO_ORDER_INDEX: Equivalent to IGNORE INDEX FOR ORDER BY

• INDEX: Same as GROUP_INDEX plus JOIN_INDEX plus ORDER_INDEX; equivalent to FORCE
INDEX with no modifier

NO_INDEX: Same as NO_GROUP_INDEX plus NO_JOIN_INDEX plus NO_ORDER_INDEX;
equivalent to IGNORE INDEX with no modifier

For example, the following two queries are equivalent:

SELECT a FROM t1 FORCE INDEX (i_a) FOR JOIN WHERE a=1 AND b=2;

37

Features Added in MySQL 8.0

SELECT /*+ JOIN_INDEX(t1 i_a) */ a FROM t1 WHERE a=1 AND b=2;

The optimizer hints listed previously follow the same basic rules for syntax and usage as existing
index-level optimizer hints.

These optimizer hints are intended to replace FORCE INDEX and IGNORE INDEX, which we plan
to deprecate in a future MySQL release, and subsequently to remove from MySQL. They do not
implement a single exact equivalent for USE INDEX; instead, you can employ one or more of
NO_INDEX, NO_JOIN_INDEX, NO_GROUP_INDEX, or NO_ORDER_INDEX to achieve the same effect.

For further information and examples of use, see Index-Level Optimizer Hints.

• JSON_VALUE() function. MySQL 8.0.21 implements a new function JSON_VALUE() intended to
simplify indexing of JSON columns. In its most basic form, it takes as arguments a JSON document
and a JSON path pointing to a single value in that document, as well as (optionally) allowing you to
specify a return type with the RETURNING keyword. JSON_VALUE(json_doc, path RETURNING
type) is equivalent to this:

CAST(
 JSON_UNQUOTE(JSON_EXTRACT(json_doc, path))
 AS type
);

You can also specify ON EMPTY, ON ERROR, or both clauses, similar to those employed with
JSON_TABLE().

You can use JSON_VALUE() to create an index on an expression on a JSON column like this:

CREATE TABLE t1(
 j JSON,
 INDEX i1 ((JSON_VALUE(j, '$.id' RETURNING UNSIGNED)))
);

INSERT INTO t1 VALUES ROW('{"id": "123", "name": "shoes", "price": "49.95"}');

A query using this expression, such as that shown here, can make use of the index:

SELECT j->"$.name" as name, j->"$.price" as price
 FROM t1
 WHERE JSON_VALUE(j, '$.id' RETURNING UNSIGNED) = 123;

In many cases, this is simpler than creating a generated column from the JSON column and then
creating an index on the generated column.

For more information and examples, see the description of JSON_VALUE().

• User comments and user attributes. MySQL 8.0.21 introduces the ability to set user comments
and user attributes when creating or updating user accounts. A user comment consists of arbitrary
text passed as the argument to a COMMENT clause used with a CREATE USER or ALTER USER
statement. A user attribute consists of data in the form of a JSON object passed as the argument
to an ATTRIBUTE clause used with either of these two statements. The attribute can contain any
valid key-value pairs in JSON object notation. Only one of COMMENT or ATTRIBUTE can be used in a
single CREATE USER or ALTER USER statement.

User comments and user attributes are stored together internally as a JSON object, the comment
text as the value of an element having comment as its key. This information can be retrieved from
the ATTRIBUTE column of the Information Schema USER_ATTRIBUTES table; since it is in JSON
format, you can use MySQL's JSON function and operators to parse its contents (see Section 14.17,

38

Features Added in MySQL 8.0

“JSON Functions”). Successive changes to the user attribute are merged with its current value as
when using the JSON_MERGE_PATCH() function.

Example:

mysql> CREATE USER 'mary'@'localhost' COMMENT 'This is Mary Smith\'s account';
Query OK, 0 rows affected (0.33 sec)

mysql> ALTER USER 'mary'@'localhost'
 -≫ ATTRIBUTE '{"fname":"Mary", "lname":"Smith"}';
Query OK, 0 rows affected (0.14 sec)

mysql> ALTER USER 'mary'@'localhost'
 -≫ ATTRIBUTE '{"email":"mary.smith@example.com"}';
Query OK, 0 rows affected (0.12 sec)

mysql> SELECT
 -> USER,
 -> HOST,
 -> ATTRIBUTE->>"$.fname" AS 'First Name',
 -> ATTRIBUTE->>"$.lname" AS 'Last Name',
 -> ATTRIBUTE->>"$.email" AS 'Email',
 -> ATTRIBUTE->>"$.comment" AS 'Comment'
 -> FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER='mary' AND HOST='localhost'\G
*************************** 1. row ***************************
 USER: mary
 HOST: localhost
First Name: Mary
 Last Name: Smith
 Email: mary.smith@example.com
 Comment: This is Mary Smith's account
1 row in set (0.00 sec)

For more information and examples, see Section 15.7.1.3, “CREATE USER Statement”,
Section 15.7.1.1, “ALTER USER Statement”, and Section 28.3.46, “The INFORMATION_SCHEMA
USER_ATTRIBUTES Table”.

• New optimizer_switch flags. MySQL 8.0.21 adds two new flags for the optimizer_switch
system variable, as described in the following list:

• prefer_ordering_index flag

By default, MySQL attempts to use an ordered index for any ORDER BY or GROUP BY query
that has a LIMIT clause, whenever the optimizer determines that this would result in faster
execution. Because it is possible in some cases that choosing a different optimization for such
queries actually performs better, it is now possible to disable this optimization by setting the
prefer_ordering_index flag to off.

The default value for this flag is on.

• subquery_to_derived flag

When this flag is set to on, the optimizer transforms eligible scalar subqueries into joins on derived
tables. For example, the query SELECT * FROM t1 WHERE t1.a > (SELECT COUNT(a)
FROM t2) is rewritten as SELECT t1.a FROM t1 JOIN (SELECT COUNT(t2.a) AS c
FROM t2) AS d WHERE t1.a > d.c.

This optimization can be applied to a subquery which is part of a SELECT, WHERE, JOIN, or
HAVING clause; contains one or more aggregate functions but no GROUP BY clause; is not
correlated; and does not use any nondeterministic functions.

The optimization can also be applied to a table subquery which is the argument to IN, NOT IN,
EXISTS, or NOT EXISTS, and which does not contain a GROUP BY. For example, the query
SELECT * FROM t1 WHERE t1.b < 0 OR t1.a IN (SELECT t2.a + 1 FROM t2) is

39

Features Added in MySQL 8.0

rewritten as SELECT a, b FROM t1 LEFT JOIN (SELECT DISTINCT 1 AS e1, t2.a AS
e2 FROM t2) d ON t1.a + 1 = d.e2 WHERE t1.b < 0 OR d.e1 IS NOT NULL.

Starting with MySQL 8.0.24, this optimization can also be applied to a correlated scalar subquery
by applying an extra grouping to it, and then an outer join on the lifted predicate. For example, a
query such as SELECT * FROM t1 WHERE (SELECT a FROM t2 WHERE t2.a=t1.a) > 0
can be rewritten as SELECT t1.* FROM t1 LEFT OUTER JOIN (SELECT a, COUNT(*) AS
ct FROM t2 GROUP BY a) AS derived ON t1.a = derived.a WHERE derived.a >
0. MySQL performs a cardinality check to make sure that the subquery does not return more than
one row (ER_SUBQUERY_NO_1_ROW). See Section 15.2.15.7, “Correlated Subqueries”, for more
information.

This optimization is normally disabled, since it does not yield a noticeable performance benefit in
most cases; the flag is set to off by default.

For more information, see Section 10.9.2, “Switchable Optimizations”. See also Section 10.2.1.19,
“LIMIT Query Optimization”, Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with
Semijoin Transformations”, and Section 10.2.2.4, “Optimizing Derived Tables, View References, and
Common Table Expressions with Merging or Materialization”.

• XML enhancements. As of MySQL 8.0.21, the LOAD XML statement now supports CDATA
sections in the XML to be imported.

• Casting to the YEAR type now supported. Beginning with MySQL 8.0.22, the server allows
casting to YEAR. Both the CAST() and CONVERT() functions support single-digit, two-digit, and four-
digit YEAR values. For one-digit and two-digit values, the allowed range is 0-99. Four-digit values
must be in the range 1901-2155. YEAR can also be used as the return type for the JSON_VALUE()
function; this function supports four-digit years only.

String, time-and-date, and floating-point values can all be cast to YEAR. Casting of GEOMETRY values
to YEAR is not supported.

For more information, including conversion rules, see the description of the CONVERT() function.

• Retrieval of TIMESTAMP values as UTC. MySQL 8.0.22 and later supports conversion of
a TIMESTAMP column value from the system time zone to a UTC DATETIME on retrieval, using
CAST(value AT TIME ZONE specifier AS DATETIME), where the specifier is one of
[INTERVAL] '+00:00' or 'UTC'. The precision of the DATETIME value returned by the cast
can be specified up to 6 decimal places, if desired. The ARRAY keyword is not supported with this
construct.

TIMESTAMP values inserted into a table using a timezone offset are also supported. Use of AT TIME
ZONE is not supported for CONVERT() or any other MySQL function or construct.

For further information and examples, see the description of the CAST() function.

• Dump file output synchronization. MySQL 8.0.22 and later supports periodic synchronization
when writing to files by SELECT INTO DUMPFILE and SELECT INTO OUTFILE statements. This
can be enabled by setting the select_into_disk_sync system variable to ON; the size of the
write buffer is determined by the value set for select_into_buffer_size; the default is 131072
(217) bytes.

In addition, an optional delay following synchronization to disk can be set using
select_into_disk_sync_delay; the default is no delay (0 milliseconds).

For more information, see the descriptions of the variables referenced previously in this item.

• Single preparation of statements. As of MySQL 8.0.22, a prepared statement is prepared a
single time, rather than once each time it is executed. This is done when executing PREPARE. This
is also true for any statement inside a stored procedure; the statement is prepared once, when the
stored procedure is first executed.

40

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_subquery_no_1_row

Features Added in MySQL 8.0

One result of this change is that the fashion in which dynamic parameters used in prepared
statements are resolved is also changed in the ways listed here:

• A prepared statement parameter is assigned a data type when the statement is prepared; the type
persists for each subsequent execution of the statement (unless the statement is reprepared; see
following).

Using a different data type for a given parameter or user variable within a prepared statement
for executions of the statement subsequent to the first execution may cause the statement to be
reprepared; for this reason, it is advisable to use the same data type for a given parameter when
re-executing a prepared statement.

• The following constructs employing window functions are no longer accepted, in order to align with
the SQL standard:

• NTILE(NULL)

• NTH_VALUE(expr, NULL)

• LEAD(expr, nn) and LAG(expr, nn), where nn is a negative number

This facilitates greater compliance with the SQL standard. See the individual function descriptions
for further details.

• A user variable referenced within a prepared statement now has its data type determined when the
statement is prepared; the type persists for each subsequent execution of the statement.

• A user variable referenced by a statement occurring within a stored procedure now has its data
type determined the first time the statement is executed; the type persists for any subsequent
invocation of the containing stored procedure.

• When executing a prepared statement of the form SELECT expr1, expr2, ... FROM table
ORDER BY ?, passing an integer value N for the parameter no longer causes ordering of the
results by the Nth expression in the select list; the results are no longer ordered, as is expected
with ORDER BY constant.

Preparing a statement used as a prepared statement or within a stored procedure only once
enhances the performance of the statement, since it negates the added cost of repeated preparation.
Doing so also avoids possible multiple rollbacks of preparation structures, which has been the source
of numerous issues in MySQL.

For more information, see Section 15.5.1, “PREPARE Statement”.

• RIGHT JOIN as LEFT JOIN handling. As of MySQL 8.0.22, the server handles all instances of
RIGHT JOIN internally as LEFT JOIN, eliminating a number of special cases in which a complete
conversion was not performed at parse time.

• Derived condition pushdown optimization. MySQL 8.0.22 (and later) implements derived
condition pushdown for queries having materialized derived tables. For a query such as SELECT
* FROM (SELECT i, j FROM t1) AS dt WHERE i > constant, it is now possible in many
cases to push the outer WHERE condition down to the derived table, in this case resulting in SELECT
* FROM (SELECT i, j FROM t1 WHERE i > constant) AS dt.

Previously, if the derived table was materialized and not merged, MySQL materialized the entire
table, then qualified the rows with the WHERE condition. Moving the WHERE condition into the
subquery using the derived condition pushdown optimization can often reduce the number of rows
must be processed, which can decrease the time needed to execute the query.

An outer WHERE condition can be pushed down directly to a materialized derived table when the
derived table does not use any aggregate or window functions. When the derived table has a GROUP

41

Features Added in MySQL 8.0

BY and does not use any window functions, the outer WHERE condition can be pushed down to the
derived table as a HAVING condition. The WHERE condition can also be pushed down when the
derived table uses a window function and the outer WHERE references columns used in the window
function's PARTITION clause.

Derived condition pushdown is enabled by default, as indicated by the optimizer_switch
system variable's derived_condition_pushdown flag. The flag, added in MySQL 8.0.22,
is set to on by default; to disable the optimization for a specific query, you can use the
NO_DERIVED_CONDITION_PUSHDOWN optimizer hint (also added in MySQL 8.0.22). If the
optimization is disabled due to derived_condition_pushdown being set to off, you can enable
it for a given query using DERIVED_CONDITION_PUSHDOWN.

The derived condition pushdown optimization cannot be employed for a derived table that contains
a LIMIT clause. Prior to MySQL 8.0.29, the optimization also cannot be used when the query
contains UNION. In MySQL 8.0.29 and later, conditions can be pushed down to both query blocks of
a union in most cases; see Section 10.2.2.5, “Derived Condition Pushdown Optimization”, for more
information.

In addition, a condition that itself uses a subquery cannot be pushed down, and a WHERE condition
cannot be pushed down to a derived table that is also an inner table of an outer join. For additional
information and examples, see Section 10.2.2.5, “Derived Condition Pushdown Optimization”.

• Non-locking reads on MySQL grant tables. As of MySQL 8.0.22, to permit concurrent DML
and DDL operations on MySQL grant tables, read operations that previously acquired row locks on
MySQL grant tables are executed as non-locking reads.

The operations that are now performed as non-locking reads on MySQL grant tables include:

• SELECT statements and other read-only statements that read data from grant tables through join
lists and subqueries, including SELECT ... FOR SHARE statements, using any transaction
isolation level.

• DML operations that read data from grant tables (through join lists or subqueries) but do not
modify them, using any transaction isolation level.

For additional information, see Grant Table Concurrency.

• 64-bit support for FROM_UNIXTIME(), UNIX_TIMESTAMP(), CONVERT_TZ(). As of MySQL
8.0.28, the functions FROM_UNIXTIME(), UNIX_TIMESTAMP(), and CONVERT_TZ() handle 64-bit
values on platforms that support them. This includes 64-bit versions of Linux, MacOS, and Windows.

On compatible platforms, UNIX_TIMESTAMP() now handles values up to '3001-01-18
23:59:59.999999' UTC, and FROM_UNIXTIME() can convert values up to 32536771199.999999
seconds since the Unix Epoch; CONVERT_TZ() now accepts values that do not exceed
'3001-01-18 23:59:59.999999' UTC following conversion.

The behavior of these functions on 32-bit platforms is unaffected by these changes. The behavior
of the TIMESTAMP type is also not affected (on any platform); for working with datetimes after
'2038-01-19 03:14:07.999999', UTC, use the DATETIME type instead.

For more information, see the descriptions of the individual functions just discussed, in Section 14.7,
“Date and Time Functions”.

• Resource allocation control. Beginning with MySQL 8.0.28, you can see the amount of memory
used for queries issued by all regular users by checking the Global_connection_memory status

42

Features Added in MySQL 8.0

variable. (This total does not include resources used by system users such as MySQL root. It is also
exclusive of any memory taken by the InnoDB buffer pool.)

To enable updates of Global_connection_memory, it is necessary to set
global_connection_memory_tracking = 1; this is 0 (off) by default. You can control how
often Global_connection_memory is updated by setting connection_memory_chunk_size.

It is also possible to set memory usage limits for normal users on the session or global level, or both,
by setting either or both of the system variables listed here:

• connection_memory_limit: Amount of memory allocated for each connection. Whenever this
limit is exceeded for any user, new queries from this user are rejected.

• global_connection_memory_limit: Amount of memory allocated for all connections.
Whenever this limit is exceeded, new queries from any regular user are rejected.

These limits do not apply to system processes or administrative accounts.

See the descriptions of the referenced variables for more information.

• Detached XA transactions. MySQL 8.0.29 adds support for XA transactions which, once
prepared, are no longer connected to the originating connection. This means that they can be
committed or rolled back by another connection, and that the current session can immediately begin
another transaction.

A system variable xa_detach_on_prepare controls whether XA transaction are detached; the
default is ON, which causes all XA transactions to be detached. Use of temporary tables is disallowed
for XA transactions when this is in effect.

For more information, see Section 15.3.8.2, “XA Transaction States”.

• Automatic binary log purge control. MySQL 8.0.29 adds the
binlog_expire_logs_auto_purge system variable, which provides a single interface for
enabling and disabling automatic purging of the binary logs. This is enabled (ON) by default; to
disable automatic purging of the binary log files, set this variable to OFF.

binlog_expire_logs_auto_purge must be ON in order for automatic purging of the binary log
files to proceed; the value of this variable takes precedence over that of any other server option or
variable, including (but not exclusive to) binlog_expire_logs_seconds.

The setting for binlog_expire_logs_auto_purge has no effect on PURGE BINARY LOGS.

• Conditional routine and trigger creation statements. Beginning with MySQL 8.0.29, the
following statements support an IF NOT EXISTS option:

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

For CREATE FUNCTION when creating a stored function and CREATE PROCEDURE, this option
prevents an error from occurring if there is already a routine having the same name. For CREATE
FUNCTION when used to create a loadable function, the option prevents an error if there already
exists a loadable function having that name. For CREATE TRIGGER, the option prevents an error
from occurring if there already exists in the same schema and on the same table a trigger having the
same name.

This enhancement aligns the syntax of these statements more closely with that of CREATE
DATABASE, CREATE TABLE, CREATE USER, and CREATE EVENT (all of which already support IF

43

Features Added in MySQL 8.0

NOT EXISTS), and acts to complement the IF EXISTS option supported by DROP PROCEDURE,
DROP FUNCTION, and DROP TRIGGER statements.

For more information, see the descriptions of the indicated SQL statements, as well as Function
Name Resolution. See also Section 19.5.1.7, “Replication of CREATE TABLE ... SELECT
Statements”.

• Included FIDO library upgrade. MySQL 8.0.30 upgrades the included fido2 library (used with
the authentication_fido plugin) from version 1.5.0 to version 1.8.0.

See Section 8.4.1.11, “FIDO Pluggable Authentication”, for more information.

• Character sets: Language-specific collations. Previously, when more than one language had
the exact same collation definition, MySQL implemented collations for only one of the languages,
which meant that some languages were covered only by utf8mb4 Unicode 9.0 collations specific
to other languages. MySQL 8.0.30 (and later) fixes such issues by providing language-specific
collations for those languages that were previously covered only by language-specific collations for
other languages. Languages covered by the new collations are listed here:

• Norwegian (Nynorsk)

and

Norwegian (Bokmål)

• Serbian (Latin characters)

• Bosnian (Latin characters)

• Bulgarian

• Galician

• Mongolian (Cyrillic characters)

MySQL provides *_as_cs and *_ai_ci collations for each of the languages just listed.

For more information, see Language-Specific Collations.

• IF EXISTS and IGNORE UNKNOWN USER options for REVOKE. MySQL 8.0.30 implements
two new options for REVOKE which can be used to determine whether a statement yields an error or
a warning when a user, role, or privilege specified in the statement cannot be found, or cannot be
assigned. Very basic syntax showing the placement of these new options is provided here:

REVOKE [IF EXISTS] privilege_or_role
 ON object
 FROM user_or_role [IGNORE UNKNOWN USER]

IF EXISTS causes an unsuccessful REVOKE statement to raise a warning instead of an error, as
long as the named target user or role actually exists, despite any references in the statement to any
roles or privileges which cannot be found.

IGNORE UNKNOWN USER causes an unsuccessful REVOKE to raise a warning rather than an error
when the target user or role named in the statement cannot be found.

For further information and examples, see Section 15.7.1.8, “REVOKE Statement”.

• Generated invisible primary keys. Beginning with MySQL 8.0.30, it is possible to run a
replication source server such that a generated invisible primary key (GIPK) is added to any InnoDB
table that is created without an explicit primary key. The generated key column definition added to
such a table is equivalent to what is shown here:

my_row_id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT INVISIBLE PRIMARY KEY

44

Features Added in MySQL 8.0

GIPK mode is not enabled by default. To enable it, set the
sql_generate_invisible_primary_key server system variable to ON.

Generated invisible primary keys are normally visible in the output of statements such as SHOW
CREATE TABLE and SHOW INDEX, as well as in MySQL Information Schema tables such as the
COLUMNS and STATISTICS tables. You can cause them to be hidden in such cases instead, by
setting show_gipk_in_create_table_and_information_schema to OFF.

As part of this work, a new --skip-generated-invisible-primary-key option is added to
mysqldump and mysqlpump to exclude generated invisible primary keys, columns, and column
values from their output.

GIPKs and replication between tables with or without primary keys. In MySQL Replication,
a replica effectively ignores any setting for sql_generate_invisible_primary_key on the
source, such that it has no effect on replicated tables. MySQL 8.0.32 and later makes it possible
for the replica to add a generated invisible primary key to any InnoDB table that otherwise, as
replicated, has no primary key. You can do this by invoking CHANGE REPLICATION SOURCE
TO ... REQUIRE_TABLE_PRIMARY_KEY_CHECK = GENERATE on the replica.

REQUIRE_TABLE_PRIMARY_KEY_CHECK = GENERATE is not compatible with MySQL Group
Replication.

For further information, see Section 15.1.20.11, “Generated Invisible Primary Keys”.

• Crash-safe XA transactions. Previously, XA transactions were not fully resilient to an
unexpected halt with respect to the binary log, and if this occurred while the server was executing XA
PREPARE, XA COMMIT, or XA ROLLBACK, the server was not guaranteed to be recoverable to the
correct state, possibly leaving the binary log with extra XA transactions that had not been applied, or
missing one or more XA transactions that had been applied. Beginning with MySQL 8.0.30, this is no
longer an issue, and a server that drops out of a replication topology for whatever reason can always
be brought back to a consistent XA transaction state when rejoining.

Known issue: When the same transaction XID is used to execute XA transactions sequentially
and a break occurs during the execution of XA COMMIT ... ONE PHASE, using this same XID,
after this transaction has been prepared in the storage engine, it may not be possible any longer to
synchronize the state between the binary log and the storage engine.

For more information, see Section 15.3.8.3, “Restrictions on XA Transactions”.

• Nesting with UNION. Beginning with MySQL 8.0.31, bodies of parenthesized query expressions
can be nested up to 63 levels deep in combination with UNION. Such queries were previously
rejected with error ER_NOT_SUPPORTED_YET, but are now allowed. EXPLAIN output for such a
query is shown here:

mysql> EXPLAIN FORMAT=TREE (
 -> (SELECT a, b, c FROM t ORDER BY a LIMIT 3) ORDER BY b LIMIT 2
 ->) ORDER BY c LIMIT 1\G
*************************** 1. row ***************************
EXPLAIN: -> Limit: 1 row(s) (cost=5.55..5.55 rows=1)
 -> Sort: c, limit input to 1 row(s) per chunk (cost=2.50 rows=0)
 -> Table scan on <result temporary> (cost=2.50 rows=0)
 -> Temporary table (cost=5.55..5.55 rows=1)
 -> Limit: 2 row(s) (cost=2.95..2.95 rows=1)
 -> Sort: b, limit input to 2 row(s) per chunk (cost=2.50 rows=0)
 -> Table scan on <result temporary> (cost=2.50 rows=0)
 -> Temporary table (cost=2.95..2.95 rows=1)
 -> Limit: 3 row(s) (cost=0.35 rows=1)
 -> Sort: t.a, limit input to 3 row(s) per chunk (cost=0.35 rows=1)
 -> Table scan on t (cost=0.35 rows=1)

45

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_supported_yet

Features Added in MySQL 8.0

1 row in set (0.00 sec)

MySQL follows SQL standard semantics when collapsing bodies of parenthesized query
expressions, so that a higher outer limit cannot override an inner lower one. For example,
(SELECT ... LIMIT 5) LIMIT 10 can return no more than five rows.

The 63-level limit is imposed only after the MySQL Optimizer's parser has performed any
simplifications or merges which it can.

For more information, see Section 15.2.11, “Parenthesized Query Expressions”.

• Disabling query rewrites. Previously, when using the Rewriter plugin, all queries were subject
to being rewritten, regardless of user. This could be problematic in certain cases, such as when
administering the system, or when applying statements originating from a replication source or a
dump file created by mysqldump or another MySQL program. MySQL 8.0.31 provides a solution to
such issues by implementing a new user privilege SKIP_QUERY_REWRITE; statements issued by a
user having this privilege are ignored by Rewriter and not rewritten.

MySQL 8.0.31 also adds a new server system variable
rewriter_enabled_for_threads_without_privilege_checks. When set to OFF, rewritable
statements issued by threads for which PRIVILEGE_CHECKS_USER is NULL (such as replication
applier threads) are not rewritten by the Rewriter plugin. The default is ON, which means such
statements are rewritten.

For more information, see Section 7.6.4, “The Rewriter Query Rewrite Plugin”.

• Replication filtering of XA statements. Previously, the statements XA START, XA END, XA
COMMIT, and XA ROLLBACK were filtered by the default database whenever using --replicate-
do-db or --replicate-ignore-db, which could lead to missed transactions. As of MySQL
8.0.31, these statements are not filtered in such cases, regardless of the value of binlog_format.

• Replication filtering and privilege checks. Beginning with MySQL 8.0.31, when replication
filtering is in use, a replica no longer raises replication errors related to privilege checks or
require_row_format validation for events which are filtered out, making it possible to filter out
any transactions that fail validation.

Because privilege checks on filtered rows can no longer cause replication to stop, a replica can now
accept only the portion of a database to which a given user has been granted access; this is true as
long as updates to this part of the database are replicated only in row-based format.

This capability may also be of use when migrating to HeatWave Service from an on-premise or cloud
service which uses tables for administration or other purposes to which the inbound replication user
does not have access.

For more information, see Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”, as
well as Section 19.5.1.29, “Replica Errors During Replication”.

• INTERSECT and EXCEPT table operators. MySQL 8.0.31 adds support for the SQL
INTERSECT and EXCEPT table operators. Where a and b represent result sets of queries, these
operators behave as follows:

• a INTERSECT b includes only rows appearing in both result sets a and b.

• a EXCEPT b returns only those rows from result set a which do not also appear in b.

INTERSECT DISTINCT, INTERSECT ALL, EXCEPT DISTINCT, and EXCEPT ALL are all
supported; DISTINCT is the default for both INTERSECT and EXCEPT (this is the same as for
UNION).

For more information and examples, see Section 15.2.8, “INTERSECT Clause”, and Section 15.2.4,
“EXCEPT Clause”.

46

Features Added in MySQL 8.0

• User-defined histograms. Beginning with MySQL 8.0.31, it is possible to set the histogram of a
column to a user-specified JSON value. This can be done using the following SQL syntax:

ANALYZE TABLE tbl_name
 UPDATE HISTOGRAM ON col_name
 USING DATA 'json_data'

This statement creates or overwrites a histogram for column col_name of table tbl_name using the
histogram's JSON representation json_data. After executing this statement, you can verify that the
histogram was created or updated by querying the Information Schema COLUMN_STATISTICS table,
like this:

SELECT HISTOGRAM FROM INFORMATION_SCHEMA.COLUMN_STATISTICS
 WHERE TABLE_NAME='tbl_name'
 AND COLUMN_NAME='col_name';

The column value returned should be the same json_data used in the previous ANALYZE TABLE
statement.

This can be of use in cases where values deemed important are missed by the histogram sampling
process. When this happens, you may want to modify the histogram or set your own histogram
based on the complete data set. In addition, sampling a large user data set and building a histogram
from it are resource-heavy operations which can impact user queries. With this enhancement,
histogram generation can be moved off the (primary) server and performed on a replica instead; the
generated histograms can then be assigned to the proper table columns on the source server.

For more information and examples, see Histogram Statistics Analysis.

• Server build ID (Linux). MySQL 8.0.31 adds the read-only build_id system variable for Linux
systems, where a 160-bit SHA1 signature is generated at compile time; the value of build_id is that
of the generated value converted to a hexadecimal string, providing a unique identifier for the build.

build_id is written to the server log each time MySQL starts.

If you build MySQL from source, you can observe that this value changes each time you recompile
the server. See Section 2.8, “Installing MySQL from Source”, for more information.

This variable is not supported on platforms other than Linux.

• Default EXPLAIN output format. MySQL 8.0.32 adds a system variable explain_format
which determines the format of the output from an EXPLAIN statement used to obtain a query
execution plan in the absence of any FORMAT option. For example, if the value of explain_format
is TREE, then the output from any such EXPLAIN uses the tree-like format, just as if the statement
had specified FORMAT=TREE.

This behavior is overridden by the value set in a FORMAT option. Suppose that explain_format
is set to TREE; even so, EXPLAIN FORMAT=JSON stmt displays the result using the JSON output
format.

For more information and examples, see the description of the explain_format system variable,
as well as Obtaining Execution Plan Information. There are also implications for the behavior of
EXPLAIN ANALYZE; see Obtaining Information with EXPLAIN ANALYZE.

• ST_TRANSFORM() Cartesian SRS support. Prior to MySQL 8.0.30, the ST_TRANSFORM()
function did not support Cartesian Spatial Reference Systems. In MySQL 8.0.30 and later, this
function provides support for the Popular Visualisation Pseudo Mercator (EPSG 1024) projection
method, used for WGS 84 Pseudo-Mercator (SRID 3857). MySQL 8.0.32 and later supports all
Cartesian SRSs, except for EPSG 1042, EPSG 1043, EPSG 9816, and EPSG 9826.

47

Features Deprecated in MySQL 8.0

• mysql client --system-command option. The --system-command option for the mysql client,
available in MySQL 8.0.40 and later, enables or disables the system command.

This option is enabled by default. To disable it, use --system-command=OFF or --skip-system-
command, which causes the system command to be rejected with an error.

• mysql client --commands option. The mysql client --commands option, introduced in MySQL
8.0.43, enables or disables most mysql client commands.

This option is enabled by default. To disable it, start the mysql client with --commands=OFF or --
skip-commands.

For more information, see Section 6.5.1.1, “mysql Client Options”.

Features Deprecated in MySQL 8.0

The following features are deprecated in MySQL 8.0 and may be removed in a future series. Where
alternatives are shown, applications should be updated to use them.

For applications that use features deprecated in MySQL 8.0 that have been removed in a higher
MySQL series, statements may fail when replicated from a MySQL 8.0 source to a higher-series
replica, or may have different effects on source and replica. To avoid such problems, applications that
use features deprecated in 8.0 should be revised to avoid them and use alternatives when possible.

• Wildcard characters in database grants. The use of the characters % and _ as wildcards in
database grants is deprecated as of MySQL 8.0.35. You should expect for the wildcard functionality
to removed in a future MySQL release and for these characters always to be treated as literals, as
they are already whenever the value of the partial_revokes server system variable is ON.

In addition, the treatment of % by the server as a synonym for localhost when checking privileges
is now also deprecated as of MySQL 8.0.35, and thus subject to removal in a future version of
MySQL.

• Pluggable FIDO authentication is deprecated in MySQL 8.0.35 and later.

• The --character-set-client-handshake option, originally intended for use with upgrades
from very old versions of MySQL, is now deprecated in MySQL 8.0.35 and later MySQL 8.0 releases,
where a warning is issued whenever it is used. You should expect this option to be removed in a
future version of MySQL; applications depending on this option should begin migration away from it
as soon as possible.

• The old and new server system variables and related server options are deprecated in MySQL 8.0,
beginning with MySQL 8.0.35. A warning is now issued whenever either of these variables is set or
read. Because these variables are destined for removal in a future version of MySQL, applications
which depend on them should begin migration away from them as soon as possible.

• Legacy audit log filtering mode is deprecated as of MySQL 8.0.34. New deprecation warnings are
emitted for legacy audit log filtering system variables. These deprecated variables are either read-
only or dynamic.

(Read-only) audit_log_policy now writes a warning message to the MySQL server error log
during server startup when the value is not ALL (default value).

(Dynamic) audit_log_include_accounts, audit_log_exclude_accounts,
audit_log_statement_policy, and audit_log_connection_policy. Dynamic variables
print a warning message based on usage:

• Passing in a non-NULL value to audit_log_include_accounts or
audit_log_exclude_accounts during MySQL server startup now writes a warning message to
the server error log.

48

Features Deprecated in MySQL 8.0

• Passing in a non-default value to audit_log_statement_policy or
audit_log_connection_policy during MySQL server startup now writes a warning message
to the server error log. ALL is the default value for both variables.

• Changing an existing value using SET syntax during a MySQL client session now writes a warning
message to the client log.

• Persisting a variable using SET PERSIST syntax during a MySQL client session now writes a
warning message to the client log.

• In MySQL 8.0.34 and later, the mysql_native_password authentication plugin is deprecated and
it now produces a deprecation warning in the server error log if an account attempts to authenticate
using mysql_native_password as an authentication method.

• The ssl_fips_mode server system variable, --ssl-fips-mode client option, and the
MYSQL_OPT_SSL_FIPS_MODE option are deprecated and subject to removal in a future version of
MySQL.

• The keyring_file and keyring_encrypted_file plugins are deprecated as of MySQL
8.0.34. These keyring plugins are superseded by the component_keyring_file and
component_keyring_encrypted_file components. For a concise comparison of keyring
components and plugins, see Section 8.4.4.1, “Keyring Components Versus Keyring Plugins”.

• As of MySQL 8.0.31, the keyring_oci plugin is deprecated and subject to removal in a future
release of MySQL. Instead, consider using the component_keyring_oci component for
storing keyring data (see Section 8.4.4.11, “Using the Oracle Cloud Infrastructure Vault Keyring
Component”).

• The utf8mb3 character set is deprecated. Please use utf8mb4 instead.

• The following character sets are deprecated:

• ucs2 (see Section 12.9.4, “The ucs2 Character Set (UCS-2 Unicode Encoding)”)

• macroman and macce (see Section 12.10.2, “West European Character Sets”, and
Section 12.10.3, “Central European Character Sets”)

• dec (see Section 12.10.2, “West European Character Sets”)

• hp8 (see Section 12.10.2, “West European Character Sets”)

In MySQL 8.0.28 and later, any of these character sets or their collations produces a deprecation
warning when used in either of the following ways:

• When starting the MySQL server with --character-set-server or --collation-server

• When specified in any SQL statement, including but not limited to CREATE TABLE, CREATE
DATABASE, SET NAMES, and ALTER TABLE

You should use utf8mb4 instead any of the character sets listed previously.

User-defined collations are deprecated. Beginning with MySQL 8.0.33, either of the following causes
a warning to be written to the log:

• Use of COLLATE in any SQL statement together with the name of a user-defined collation

• Using the name of a user-defined collation for the value of collation_server,
collation_database, or collation_connection.

You should expect support for user-defined collations to be removed in a future version of MySQL.

49

Features Deprecated in MySQL 8.0

• Because caching_sha2_password is the default authentication plugin in MySQL 8.0 and provides
a superset of the capabilities of the sha256_password authentication plugin, sha256_password
is deprecated; expect it to be removed in a future version of MySQL. MySQL accounts that
authenticate using sha256_password should be migrated to use caching_sha2_password
instead.

• The validate_password plugin has been reimplemented to use the component infrastructure. The
plugin form of validate_password is still available but is now deprecated; expect it to be removed
in a future version of MySQL. MySQL installations that use the plugin should make the transition
to using the component instead. See Section 8.4.3.3, “Transitioning to the Password Validation
Component”.

• The ENGINE clause for the ALTER TABLESPACE and DROP TABLESPACE statements is deprecated.

• The PAD_CHAR_TO_FULL_LENGTH SQL mode is deprecated.

• AUTO_INCREMENT support is deprecated for columns of type FLOAT and DOUBLE (and any
synonyms). Consider removing the AUTO_INCREMENT attribute from such columns, or convert them
to an integer type.

• The UNSIGNED attribute is deprecated for columns of type FLOAT, DOUBLE, and DECIMAL (and any
synonyms). Consider using a simple CHECK constraint instead for such columns.

• FLOAT(M,D) and DOUBLE(M,D) syntax to specify the number of digits for columns of type FLOAT
and DOUBLE (and any synonyms) is a nonstandard MySQL extension. This syntax is deprecated.

• The ZEROFILL attribute is deprecated for numeric data types, as is the display width attribute for
integer data types. Consider using an alternative means of producing the effect of these attributes.
For example, applications could use the LPAD() function to zero-pad numbers up to the desired
width, or they could store the formatted numbers in CHAR columns.

• For string data types, the BINARY attribute is a nonstandard MySQL extension that is shorthand
for specifying the binary (_bin) collation of the column character set (or of the table default
character set if no column character set is specified). In MySQL 8.0, this nonstandard use of
BINARY is ambiguous because the utf8mb4 character set has multiple _bin collations, so the
BINARY attribute is deprecated; expect support for it to be removed in a future version of MySQL.
Applications should be adjusted to use an explicit _bin collation instead.

The use of BINARY to specify a data type or character set remains unchanged.

• Previous versions of MySQL supported the nonstandard shorthand expressions ASCII and
UNICODE, respectively, for CHARACTER SET latin1 and CHARACTER SET ucs2. ASCII and
UNICODE are deprecated (MySQL 8.0.28 and later) and now produce a warning. Use CHARACTER
SET instead, in both cases.

• The nonstandard C-style &&, ||, and ! operators that are synonyms for the standard SQL AND, OR,
and NOT operators, respectively, are deprecated. Applications that use the nonstandard operators
should be adjusted to use the standard operators.

Note

Use of || is deprecated unless the PIPES_AS_CONCAT SQL mode is
enabled. In that case, || signifies the SQL-standard string concatenation
operator).

• The JSON_MERGE() function is deprecated. Use JSON_MERGE_PRESERVE() instead.

• The SQL_CALC_FOUND_ROWS query modifier and accompanying FOUND_ROWS() function are
deprecated. See the FOUND_ROWS() description for information about an alternative strategy.

• Support for TABLESPACE = innodb_file_per_table and TABLESPACE =
innodb_temporary clauses with CREATE TEMPORARY TABLE is deprecated as of MySQL 8.0.13.

50

Features Deprecated in MySQL 8.0

• For SELECT statements, use of an INTO clause after FROM but not at the end of the SELECT is
deprecated as of MySQL 8.0.20. It is preferred to place the INTO at the end of the statement.

For UNION statements, these two variants containing INTO are deprecated as of MySQL 8.0.20:

• In the trailing query block of a query expression, use of INTO before FROM.

• In a parenthesized trailing block of a query expression, use of INTO, regardless of its position
relative to FROM.

See Section 15.2.13.1, “SELECT ... INTO Statement”, and Section 15.2.18, “UNION Clause”.

• FLUSH HOSTS is deprecated as of MySQL 8.0.23. Instead, truncate the Performance Schema
host_cache table:

TRUNCATE TABLE performance_schema.host_cache;

The TRUNCATE TABLE operation requires the DROP privilege for the table.

• The mysql_upgrade client is deprecated because its capabilities for upgrading the system tables in
the mysql system schema and objects in other schemas have been moved into the MySQL server.
See Section 3.4, “What the MySQL Upgrade Process Upgrades”.

• The --no-dd-upgrade server option is deprecated. It is superseded by the --upgrade option,
which provides finer control over data dictionary and server upgrade behavior.

• The mysql_upgrade_info file, which is created data directory and used to store the MySQL
version number, is deprecated; expect it to be removed in a future version of MySQL.

• The relay_log_info_file system variable and --master-info-file option are deprecated.
Previously, these were used to specify the name of the relay log info log and source info log when
relay_log_info_repository=FILE and master_info_repository=FILE were set, but
those settings have been deprecated. The use of files for the relay log info log and source info log
has been superseded by crash-safe replica tables, which are the default in MySQL 8.0.

• The max_length_for_sort_data system variable is now deprecated due to optimizer changes
that make it obsolete and of no effect.

• These legacy parameters for compression of connections to the server are deprecated:
The --compress client command-line option; the MYSQL_OPT_COMPRESS option for the
mysql_options() C API function; the slave_compressed_protocol system variable. For
information about parameters to use instead, see Section 6.2.8, “Connection Compression Control”.

• Use of the MYSQL_PWD environment variable to specify a MySQL password is deprecated.

• Use of VALUES() to access new row values in INSERT ... ON DUPLICATE KEY UPDATE is
deprecated as of MySQL 8.0.20. Use aliases for the new row and columns, instead.

• Because specifying ON ERROR before ON EMPTY when invoking JSON_TABLE() is counter to the
SQL standard, this syntax is now deprecated in MySQL. Beginning with MySQL 8.0.20, the server
prints a warning whenever you attempt to do so. When specifying both of these clauses in a single
JSON_TABLE() invocation, make sure that ON EMPTY is used first.

• Columns with index prefixes have never been supported as part of a table's partitioning key;
previously, these were allowed when creating, altering, or upgrading partitioned tables but were
excluded by the table's partitioning function, and no warning that this had occurred was issued by
the server. This permissive behavior is now deprecated, and subject to removal in a future version
of MySQL in which using any such columns in the partitioning key causes the CREATE TABLE or
ALTER TABLE statement in they occur to be rejected.

As of MySQL 8.0.21, whenever columns using index prefixes are specified as part of the partitioning
key, a warning is generated for each such column. Whenever a CREATE TABLE or ALTER TABLE

51

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Features Deprecated in MySQL 8.0

statement is rejected because all columns in the proposed partitioning key would have index
prefixes, the resulting error now provides the exact reason for the rejection. In either instance, this
includes cases in which the columns used in the partitioning function are defined implicitly as those in
the table's primary key by employing an empty PARTITION BY KEY() clause.

For more information and examples, see Column index prefixes not supported for key partitioning.

• The InnoDB memcached plugin is deprecated as of MySQL 8.0.22; expect support for it to be
removed in a future version of MySQL.

• The temptable_use_mmap variable is deprecated as of MySQL 8.0.26; expect support for it to be
removed in a future version of MySQL.

• The BINARY operator is deprecated as of MySQL 8.0.27, and you should expect its removal in a
future version of MySQL. Use of BINARY now causes a warning. Use CAST(... AS BINARY)
instead.

• The default_authentication_plugin variable is deprecated as of MySQL 8.0.27; expect
support for it to be removed in a future version of MySQL.

The default_authentication_plugin variable is still used in MySQL 8.0.27, but in conjunction
with and at a lower precedence than the new authentication_policy system variable, which is
introduced in MySQL 8.0.27 with the multifactor authentication feature. For details, see The Default
Authentication Plugin.

• The --abort-slave-event-count and --disconnect-slave-event-count server options,
used by the MySQL test suite and not normally used in production, are deprecated as of MySQL
8.0.29; expect both options to be removed in a future version of MySQL.

• The myisam_repair_threads system variable and myisamchk --parallel-recover option
are deprecated as of MySQL 8.0.29; expect support for both to be removed in a future release of
MySQL.

From MySQL 8.0.29, values other than 1 (the default) for myisam_repair_threads produce a
warning.

• Previously, MySQL accepted DATE, TIME, DATETIME, and TIMESTAMP literals containing an
arbitrary number of (arbitrary) delimiter characters, as well as DATETIME and TIMESTAMP literals
with an arbitrary number of whitespace characters before, after, and between the date and time
parts. As of MySQL 8.0.29, the server raises a deprecation warning whenever the literal value
contains any of the following:

• One or more nonstandard delimiter characters

• Excess delimiter characters

• Whitespace other than the space character (' ', 0x20)

• Excess space characters

One deprecation warning is issued per temporal value, even if there are multiple issues with it. This
warning is not promoted to an error in strict mode, so that performing an INSERT of such a value still
succeeds when strict mode is in effect.

You should expect the nonstandard behavior to be removed in a future version of MySQL, and take
steps now to insure that your applications do not depend on it.

See String and Numeric Literals in Date and Time Context, for more information and examples.

• The replica_parallel_type system variable and its associated server option --replica-
parallel-type are deprecated as of MySQL 8.0.29. Beginning with this release, reading or setting
this value raises a deprecation warning; expect it to be removed in a future version of MySQL.

52

Features Deprecated in MySQL 8.0

• Beginning with MySQL 8.0.30, setting the replica_parallel_workers system variable (or the
equivalent server option) to 0 is deprecated, and elicits a warning. When you want a replica to use
single threading, use replica_parallel_workers=1 instead, which produces the same result,
but with no warning.

• The --skip-host-cache server option is deprecated beginning with MySQL 8.0.30; expect its
removal in a future MySQL release. Use the host_cache_size system variable instead.

• The --old-style-user-limits option, intended for backwards compatibility with very old
(pre-5.0.3) releases, is deprecated as of MySQL 8.0.30; using it now raises a warning. You should
expect this option to be removed in a future release of MySQL.

• The innodb_log_files_in_group and innodb_log_file_size variables are deprecated as
of MySQL 8.0.30. These variables are superseded by the innodb_redo_log_capacity variable.
For more information, see Section 17.6.5, “Redo Log”.

• As of MySQL 8.0.32, the use of “FULL” as an unquoted identifier is deprecated, due to the fact that
it is a reserved keyword in the SQL standard. This means that a statement such as CREATE TABLE
full (c1 INT, c2 INT) now raises a warning (ER_WARN_DEPRECATED_IDENT). To prevent
this from happening, change the name or, as shown here, encase it in backticks (`):

CREATE TABLE `full` (c1 INT, c2 INT);

For more information, see Section 11.3, “Keywords and Reserved Words”.

• Beginning with MySQL 8.0.32, the use of the dollar sign ($) as the leading character of an unquoted
identifier is deprecated and produces a warning. Such usage is subject to removal in a future release
of MySQL. This includes identifiers used as names of databases, tables, views, columns, or stored
programs, as well as aliases for any of these. The dollar sign may still be used as the first character
of a quoted identifier. See Section 11.2, “Schema Object Names”, for more information.

• The binlog_format server system variable is deprecated as of MySQL 8.0.34, and is subject
to being removed in a future release. Changing the binary logging format, is also deprecated, with
the expectation that the removal of binlog_format will leave row-based binary logging, already
the default in MySQL 8.0, as the only binary logging format used or supported by MySQL. For this
reason, new MySQL installations should use only row-based binary logging; existing replication
setups using binlog_format=STATEMENT or binlog_format=MIXED logging format should be
migrated to the row-based format.

The system variables log_bin_trust_function_creators and
log_statements_unsafe_for_binlog, are used exclusively for statement-based logging and
replication. For this reason, they are now also deprecated, and subject to removal in a future version
of MySQL.

Setting or selecting the value of binlog_format, log_bin_trust_function_creators, or
log_statements_unsafe_for_binlog raises a warning in MySQL 8.0.34 and later.

• The mysqlpump client utility program is deprecated beginning with MySQL 8.0.34, and produces a
deprecation warning when invoked. This program is subject to removal in a future version of MySQL.
Since MySQL provides other means of performing database dumps and backups with the same or
additional functionality, including mysqldump and MySQL Shell, this program is now considered
redundant.

The associated lz4_decompress and zlib_decompress utilities are also deprecated as of
MySQL 8.0.34.

• The use of a version number without a whitespace character following (or end of comment) is
deprecated as of MySQL 8.0.34, and raises a warning. This statement raises a warning in MySQL
8.0.34 or later, as shown here:

mysql> CREATE TABLE t1(a INT, KEY (a)) /*!50110KEY_BLOCK_SIZE=1024*/ ENGINE=MYISAM;
Query OK, 0 rows affected, 1 warning (0.01 sec)

53

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warn_deprecated_ident
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities.html

Features Removed in MySQL 8.0

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 4164
Message: Immediately starting the version comment after the version number is
deprecated and may change behavior in a future release. Please insert a
white-space character after the version number.
1 row in set (0.00 sec)

To avoid such warnings, insert one or more whitespace characters after the version number, like this:

mysql> CREATE TABLE t2(a INT, KEY (a)) /*!50110 KEY_BLOCK_SIZE=1024*/ ENGINE=MYISAM;
Query OK, 0 rows affected (0.00 sec)

See also Section 11.7, “Comments”.

• As of MySQL 8.0.34, the sync_relay_log_info system variable is deprecated, along with its
equivalent server startup option --sync-relay-log-info. You should expect support for this
variable, and for storing replication applier metadata in a file, to be removed in a future version of
MySQL. You are advised to update any of your MySQL applications which may depend on it before
this occurs.

• The binlog_transaction_dependency_tracking server system variable is deprecated as
of MySQL 8.0.35, and subject to removal in a future version of MySQL. Referencing this variable or
the equivalent mysqld startup option --binlog-transaction-dependency-tracking now
triggers a warning. There are no plans to replace this variable or its functionality, which is expected
later to be made internal to the server.

Features Removed in MySQL 8.0

The following items are obsolete and have been removed in MySQL 8.0. Where alternatives are
shown, applications should be updated to use them.

For MySQL 5.7 applications that use features removed in MySQL 8.0, statements may fail when
replicated from a MySQL 5.7 source to a MySQL 8.0 replica, or may have different effects on source
and replica. To avoid such problems, applications that use features removed in MySQL 8.0 should be
revised to avoid them and use alternatives when possible.

• The innodb_locks_unsafe_for_binlog system variable was removed. The READ COMMITTED
isolation level provides similar functionality.

• The information_schema_stats variable, introduced in MySQL 8.0.0, was removed and
replaced by information_schema_stats_expiry in MySQL 8.0.3.

information_schema_stats_expiry defines an expiration setting for cached
INFORMATION_SCHEMA table statistics. For more information, see Section 10.2.3, “Optimizing
INFORMATION_SCHEMA Queries”.

• Code related to obsolete InnoDB system tables was removed in MySQL 8.0.3.
INFORMATION_SCHEMA views based on InnoDB system tables were replaced by internal system
views on data dictionary tables. Affected InnoDB INFORMATION_SCHEMA views were renamed:

Table 1.1 Renamed InnoDB Information Schema Views

Old Name New Name

INNODB_SYS_COLUMNS INNODB_COLUMNS

INNODB_SYS_DATAFILES INNODB_DATAFILES

INNODB_SYS_FIELDS INNODB_FIELDS

INNODB_SYS_FOREIGN INNODB_FOREIGN

INNODB_SYS_FOREIGN_COLS INNODB_FOREIGN_COLS

54

Features Removed in MySQL 8.0

Old Name New Name

INNODB_SYS_INDEXES INNODB_INDEXES

INNODB_SYS_TABLES INNODB_TABLES

INNODB_SYS_TABLESPACES INNODB_TABLESPACES

INNODB_SYS_TABLESTATS INNODB_TABLESTATS

INNODB_SYS_VIRTUAL INNODB_VIRTUAL

After upgrading to MySQL 8.0.3 or later, update any scripts that reference previous InnoDB
INFORMATION_SCHEMA view names.

• The following features related to account management are removed:

• Using GRANT to create users. Instead, use CREATE USER. Following this practice makes the
NO_AUTO_CREATE_USER SQL mode immaterial for GRANT statements, so it too is removed, and
an error now is written to the server log when the presence of this value for the sql_mode option
in the options file prevents mysqld from starting.

• Using GRANT to modify account properties other than privilege assignments. This includes
authentication, SSL, and resource-limit properties. Instead, establish such properties at account-
creation time with CREATE USER or modify them afterward with ALTER USER.

• IDENTIFIED BY PASSWORD 'auth_string' syntax for CREATE USER and GRANT. Instead,
use IDENTIFIED WITH auth_plugin AS 'auth_string' for CREATE USER and ALTER
USER, where the 'auth_string' value is in a format compatible with the named plugin.

Additionally, because IDENTIFIED BY PASSWORD syntax was removed, the
log_builtin_as_identified_by_password system variable is superfluous and was
removed.

• The PASSWORD() function. Additionally, PASSWORD() removal means that SET PASSWORD ...
= PASSWORD('auth_string') syntax is no longer available.

• The old_passwords system variable.

55

Features Removed in MySQL 8.0

• The query cache was removed. Removal includes these items:

• The FLUSH QUERY CACHE and RESET QUERY CACHE statements.

• These system variables: query_cache_limit, query_cache_min_res_unit,
query_cache_size, query_cache_type, query_cache_wlock_invalidate.

• These status variables: Qcache_free_blocks, Qcache_free_memory,
Qcache_hits, Qcache_inserts, Qcache_lowmem_prunes, Qcache_not_cached,
Qcache_queries_in_cache, Qcache_total_blocks.

• These thread states: checking privileges on cached query, checking query cache
for query, invalidating query cache entries, sending cached result to
client, storing result in query cache, Waiting for query cache lock.

• The SQL_CACHE SELECT modifier.

These deprecated query cache items remain deprecated, but have no effect; expect them to be
removed in a future MySQL release:

• The SQL_NO_CACHE SELECT modifier.

• The ndb_cache_check_time system variable.

The have_query_cache system variable remains deprecated, and always has a value of NO;
expect it to be removed in a future MySQL release.

• The data dictionary provides information about database objects, so the server no longer checks
directory names in the data directory to find databases. Consequently, the --ignore-db-dir
option and ignore_db_dirs system variables are extraneous and are removed.

• The DDL log, also known as the metadata log, has been removed. Beginning with MySQL 8.0.3, this
functionality is handled by the data dictionary innodb_ddl_log table. See Viewing DDL Logs.

• The tx_isolation and tx_read_only system variables have been removed. Use
transaction_isolation and transaction_read_only instead.

• The sync_frm system variable has been removed because .frm files have become obsolete.

• The secure_auth system variable and --secure-auth client option have been removed. The
MYSQL_SECURE_AUTH option for the mysql_options() C API function was removed.

• The multi_range_count system variable is removed.

• The log_warnings system variable and --log-warnings server option have been removed. Use
the log_error_verbosity system variable instead.

• The global scope for the sql_log_bin system variable was removed. sql_log_bin has session
scope only, and applications that rely on accessing @@GLOBAL.sql_log_bin should be adjusted.

• The metadata_locks_cache_size and metadata_locks_hash_instances system variables
are removed.

• The unused date_format, datetime_format, time_format, and max_tmp_tables system
variables are removed.

• These deprecated compatibility SQL modes are removed: DB2, MAXDB, MSSQL, MYSQL323,
MYSQL40, ORACLE, POSTGRESQL, NO_FIELD_OPTIONS, NO_KEY_OPTIONS, NO_TABLE_OPTIONS.
They can no longer be assigned to the sql_mode system variable or used as permitted values for
the mysqldump --compatible option.

Removal of MAXDB means that the TIMESTAMP data type for CREATE TABLE or ALTER TABLE is
treated as TIMESTAMP, and is no longer treated as DATETIME.

56

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Features Removed in MySQL 8.0

• The deprecated ASC or DESC qualifiers for GROUP BY clauses are removed. Queries that previously
relied on GROUP BY sorting may produce results that differ from previous MySQL versions. To
produce a given sort order, provide an ORDER BY clause.

• The EXTENDED and PARTITIONS keywords for the EXPLAIN statement have been removed. These
keywords are unnecessary because their effect is always enabled.

• These encryption-related items are removed:

• The ENCODE() and DECODE() functions.

• The ENCRYPT() function.

• The DES_ENCRYPT(), and DES_DECRYPT() functions, the --des-key-file option, the
have_crypt system variable, the DES_KEY_FILE option for the FLUSH statement, and the
HAVE_CRYPT CMake option.

In place of the removed encryption functions: For ENCRYPT(), consider using SHA2() instead for
one-way hashing. For the others, consider using AES_ENCRYPT() and AES_DECRYPT() instead.

• In MySQL 5.7, several spatial functions available under multiple names were deprecated to move
in the direction of making the spatial function namespace more consistent, the goal being that each
spatial function name begin with ST_ if it performs an exact operation, or with MBR if it performs an
operation based on minimum bounding rectangles. In MySQL 8.0, the deprecated functions are
removed to leave only the corresponding ST_ and MBR functions:

• These functions are removed in favor of the MBR names: Contains(), Disjoint(), Equals(),
Intersects(), Overlaps(), Within().

• These functions are removed in favor of the ST_ names: Area(), AsBinary(),
AsText(), AsWKB(), AsWKT(), Buffer(), Centroid(), ConvexHull(), Crosses(),
Dimension(), Distance(), EndPoint(), Envelope(), ExteriorRing(),
GeomCollFromText(), GeomCollFromWKB(), GeomFromText(), GeomFromWKB(),
GeometryCollectionFromText(), GeometryCollectionFromWKB(),
GeometryFromText(), GeometryFromWKB(), GeometryN(), GeometryType(),
InteriorRingN(), IsClosed(), IsEmpty(), IsSimple(), LineFromText(),
LineFromWKB(), LineStringFromText(), LineStringFromWKB(), MLineFromText(),
MLineFromWKB(), MPointFromText(), MPointFromWKB(), MPolyFromText(),
MPolyFromWKB(), MultiLineStringFromText(), MultiLineStringFromWKB(),
MultiPointFromText(), MultiPointFromWKB(), MultiPolygonFromText(),
MultiPolygonFromWKB(), NumGeometries(), NumInteriorRings(), NumPoints(),
PointFromText(), PointFromWKB(), PointN(), PolyFromText(), PolyFromWKB(),
PolygonFromText(), PolygonFromWKB(), SRID(), StartPoint(), Touches(), X(), Y().

• GLength() is removed in favor of ST_Length().

• The functions described in Section 14.16.4, “Functions That Create Geometry Values from WKB
Values” previously accepted either WKB strings or geometry arguments. Geometry arguments are
no longer permitted and produce an error. See that section for guidelines for migrating queries away
from using geometry arguments.

• The parser no longer treats \N as a synonym for NULL in SQL statements. Use NULL instead.

This change does not affect text file import or export operations performed with LOAD DATA
or SELECT ... INTO OUTFILE, for which NULL continues to be represented by \N. See
Section 15.2.9, “LOAD DATA Statement”.

• PROCEDURE ANALYSE() syntax is removed.

• The client-side --ssl and --ssl-verify-server-cert options have been removed. Use --
ssl-mode=REQUIRED instead of --ssl=1 or --enable-ssl. Use --ssl-mode=DISABLED

57

Features Removed in MySQL 8.0

instead of --ssl=0, --skip-ssl, or --disable-ssl. Use --ssl-mode=VERIFY_IDENTITY
instead of --ssl-verify-server-cert options. (The server-side --ssl option is still available,
but is deprecated as of MySQL 8.0.26 and subject to removal in a future MySQL version.)

For the C API, MYSQL_OPT_SSL_ENFORCE and MYSQL_OPT_SSL_VERIFY_SERVER_CERT
options for mysql_options() correspond to the client-side --ssl and --ssl-verify-
server-cert options and are removed. Use MYSQL_OPT_SSL_MODE with an option value of
SSL_MODE_REQUIRED or SSL_MODE_VERIFY_IDENTITY instead.

• The --temp-pool server option was removed.

• The ignore_builtin_innodb system variable is removed.

• The server no longer performs conversion of pre-MySQL 5.1 database names containing special
characters to 5.1 format with the addition of a #mysql50# prefix. Because these conversions are
no longer performed, the --fix-db-names and --fix-table-names options for mysqlcheck,
the UPGRADE DATA DIRECTORY NAME clause for the ALTER DATABASE statement, and the
Com_alter_db_upgrade status variable are removed.

Upgrades are supported only from one major version to another (for example, 5.0 to 5.1, or 5.1 to
5.5), so there should be little remaining need for conversion of older 5.0 database names to current
versions of MySQL. As a workaround, upgrade a MySQL 5.0 installation to MySQL 5.1 before
upgrading to a more recent release.

• The mysql_install_db program has been removed from MySQL distributions. Data directory
initialization should be performed by invoking mysqld with the --initialize or --initialize-
insecure option instead. In addition, the --bootstrap option for mysqld that was used by
mysql_install_db was removed, and the INSTALL_SCRIPTDIR CMake option that controlled the
installation location for mysql_install_db was removed.

• The generic partitioning handler was removed from the MySQL server. In order to support
partitioning of a given table, the storage engine used for the table must now provide its own (“native”)
partitioning handler. The --partition and --skip-partition options are removed from the
MySQL Server, and partitioning-related entries are no longer shown in the output of SHOW PLUGINS
or in the Information Schema PLUGINS table.

Two MySQL storage engines currently provide native partitioning support: InnoDB and NDB. Of
these, only InnoDB is supported in MySQL 8.0. Any attempt to create partitioned tables in MySQL
8.0 using any other storage engine fails.

Ramifications for upgrades. The direct upgrade of a partitioned table using a storage engine
other than InnoDB (such as MyISAM) from MySQL 5.7 (or earlier) to MySQL 8.0 is not supported.
There are two options for handling such a table:

• Remove the table's partitioning, using ALTER TABLE ... REMOVE PARTITIONING.

• Change the storage engine used for the table to InnoDB, with ALTER TABLE ...
ENGINE=INNODB.

At least one of the two operations just listed must be performed for each partitioned non-InnoDB
table prior to upgrading the server to MySQL 8.0. Otherwise, such a table cannot be used following
the upgrade.

Due to the fact that table creation statements that would result in a partitioned table using a storage
engine without partitioning support now fail with an error (ER_CHECK_NOT_IMPLEMENTED), you must
make sure that any statements in a dump file (such as that written by mysqldump) from an older
version of MySQL that you wish to import into a MySQL 8.0 server that create partitioned tables do

58

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Features Removed in MySQL 8.0

not also specify a storage engine such as MyISAM that has no native partitioning handler. You can
do this by performing either of the following:

• Remove any references to partitioning from CREATE TABLE statements that use a value for the
STORAGE ENGINE option other than InnoDB.

• Specifying the storage engine as InnoDB, or allow InnoDB to be used as the table's storage
engine by default.

For more information, see Section 26.6.2, “Partitioning Limitations Relating to Storage Engines”.

• System and status variable information is no longer maintained in the INFORMATION_SCHEMA.
These tables are removed: GLOBAL_VARIABLES, SESSION_VARIABLES, GLOBAL_STATUS,
SESSION_STATUS. Use the corresponding Performance Schema tables instead. See
Section 29.12.14, “Performance Schema System Variable Tables”, and Section 29.12.15,
“Performance Schema Status Variable Tables”. In addition, the show_compatibility_56
system variable was removed. It was used in the transition period during which system and status
variable information in INFORMATION_SCHEMA tables was moved to Performance Schema tables,
and is no longer needed. These status variables are removed: Slave_heartbeat_period,
Slave_last_heartbeat, Slave_received_heartbeats, Slave_retried_transactions,
Slave_running. The information they provided is available in Performance Schema tables; see
Migrating to Performance Schema System and Status Variable Tables.

• The Performance Schema setup_timers table was removed, as was the TICK row in the
performance_timers table.

• The libmysqld embedded server library is removed, along with:

• The mysql_options() MYSQL_OPT_GUESS_CONNECTION,
MYSQL_OPT_USE_EMBEDDED_CONNECTION, MYSQL_OPT_USE_REMOTE_CONNECTION, and
MYSQL_SET_CLIENT_IP options

• The mysql_config --libmysqld-libs, --embedded-libs, and --embedded options

• The CMake WITH_EMBEDDED_SERVER, WITH_EMBEDDED_SHARED_LIBRARY, and
INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR options

• The (undocumented) mysql --server-arg option

• The mysqltest --embedded-server, --server-arg, and --server-file options

• The mysqltest_embedded and mysql_client_test_embedded test programs

• The mysql_plugin utility was removed. Alternatives include loading plugins at server startup using
the --plugin-load or --plugin-load-add option, or at runtime using the INSTALL PLUGIN
statement.

• The resolveip utility is removed. nslookup, host, or dig can be used instead.

• The resolve_stack_dump utility is removed. Stack traces from official MySQL builds are always
symbolized, so there is no need to use resolve_stack_dump.

• The following server error codes are not used and have been removed. Applications that test
specifically for any of these errors should be updated.

ER_BINLOG_READ_EVENT_CHECKSUM_FAILURE
ER_BINLOG_ROW_RBR_TO_SBR
ER_BINLOG_ROW_WRONG_TABLE_DEF
ER_CANT_ACTIVATE_LOG
ER_CANT_CHANGE_GTID_NEXT_IN_TRANSACTION
ER_CANT_CREATE_FEDERATED_TABLE
ER_CANT_CREATE_SROUTINE
ER_CANT_DELETE_FILE
ER_CANT_GET_WD

59

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-variable-table-migration.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Features Removed in MySQL 8.0

ER_CANT_SET_GTID_PURGED_WHEN_GTID_MODE_IS_OFF
ER_CANT_SET_WD
ER_CANT_WRITE_LOCK_LOG_TABLE
ER_CREATE_DB_WITH_READ_LOCK
ER_CYCLIC_REFERENCE
ER_DB_DROP_DELETE
ER_DELAYED_NOT_SUPPORTED
ER_DIFF_GROUPS_PROC
ER_DISK_FULL
ER_DROP_DB_WITH_READ_LOCK
ER_DROP_USER
ER_DUMP_NOT_IMPLEMENTED
ER_ERROR_DURING_CHECKPOINT
ER_ERROR_ON_CLOSE
ER_EVENTS_DB_ERROR
ER_EVENT_CANNOT_DELETE
ER_EVENT_CANT_ALTER
ER_EVENT_COMPILE_ERROR
ER_EVENT_DATA_TOO_LONG
ER_EVENT_DROP_FAILED
ER_EVENT_MODIFY_QUEUE_ERROR
ER_EVENT_NEITHER_M_EXPR_NOR_M_AT
ER_EVENT_OPEN_TABLE_FAILED
ER_EVENT_STORE_FAILED
ER_EXEC_STMT_WITH_OPEN_CURSOR
ER_FAILED_ROUTINE_BREAK_BINLOG
ER_FLUSH_MASTER_BINLOG_CLOSED
ER_FORM_NOT_FOUND
ER_FOUND_GTID_EVENT_WHEN_GTID_MODE_IS_OFF__UNUSED
ER_FRM_UNKNOWN_TYPE
ER_GOT_SIGNAL
ER_GRANT_PLUGIN_USER_EXISTS
ER_GTID_MODE_REQUIRES_BINLOG
ER_GTID_NEXT_IS_NOT_IN_GTID_NEXT_LIST
ER_HASHCHK
ER_INDEX_REBUILD
ER_INNODB_NO_FT_USES_PARSER
ER_LIST_OF_FIELDS_ONLY_IN_HASH_ERROR
ER_LOAD_DATA_INVALID_COLUMN_UNUSED
ER_LOGGING_PROHIBIT_CHANGING_OF
ER_MALFORMED_DEFINER
ER_MASTER_KEY_ROTATION_ERROR_BY_SE
ER_NDB_CANT_SWITCH_BINLOG_FORMAT
ER_NEVER_USED
ER_NISAMCHK
ER_NO_CONST_EXPR_IN_RANGE_OR_LIST_ERROR
ER_NO_FILE_MAPPING
ER_NO_GROUP_FOR_PROC
ER_NO_RAID_COMPILED
ER_NO_SUCH_KEY_VALUE
ER_NO_SUCH_PARTITION__UNUSED
ER_OBSOLETE_CANNOT_LOAD_FROM_TABLE
ER_OBSOLETE_COL_COUNT_DOESNT_MATCH_CORRUPTED
ER_ORDER_WITH_PROC
ER_PARTITION_SUBPARTITION_ERROR
ER_PARTITION_SUBPART_MIX_ERROR
ER_PART_STATE_ERROR
ER_PASSWD_LENGTH
ER_QUERY_ON_MASTER
ER_RBR_NOT_AVAILABLE
ER_SKIPPING_LOGGED_TRANSACTION
ER_SLAVE_CHANNEL_DELETE
ER_SLAVE_MULTIPLE_CHANNELS_HOST_PORT
ER_SLAVE_MUST_STOP
ER_SLAVE_WAS_NOT_RUNNING
ER_SLAVE_WAS_RUNNING
ER_SP_GOTO_IN_HNDLR
ER_SP_PROC_TABLE_CORRUPT
ER_SQL_MODE_NO_EFFECT
ER_SR_INVALID_CREATION_CTX
ER_TABLE_NEEDS_UPG_PART
ER_TOO_MUCH_AUTO_TIMESTAMP_COLS

60

Features Removed in MySQL 8.0

ER_UNEXPECTED_EOF
ER_UNION_TABLES_IN_DIFFERENT_DIR
ER_UNSUPPORTED_BY_REPLICATION_THREAD
ER_UNUSED1
ER_UNUSED2
ER_UNUSED3
ER_UNUSED4
ER_UNUSED5
ER_UNUSED6
ER_VIEW_SELECT_DERIVED_UNUSED
ER_WRONG_MAGIC
ER_WSAS_FAILED

• The deprecated INFORMATION_SCHEMA INNODB_LOCKS and INNODB_LOCK_WAITS tables are
removed. Use the Performance Schema data_locks and data_lock_waits tables instead.

Note

In MySQL 5.7, the LOCK_TABLE column in the INNODB_LOCKS table and the
locked_table column in the sys schema innodb_lock_waits and x
$innodb_lock_waits views contain combined schema/table name values.
In MySQL 8.0, the data_locks table and the sys schema views contain
separate schema name and table name columns. See Section 30.4.3.9, “The
innodb_lock_waits and x$innodb_lock_waits Views”.

• InnoDB no longer supports compressed temporary tables. When innodb_strict_mode is enabled
(the default), CREATE TEMPORARY TABLE returns an error if ROW_FORMAT=COMPRESSED or
KEY_BLOCK_SIZE is specified. If innodb_strict_mode is disabled, warnings are issued and the
temporary table is created using a non-compressed row format.

• InnoDB no longer creates .isl files (InnoDB Symbolic Link files) when creating tablespace data
files outside of the MySQL data directory. The innodb_directories option now supports locating
tablespace files created outside of the data directory.

With this change, moving a remote tablespace while the server is offline by manually modifying
an .isl file is no longer supported. Moving remote tablespace files is now supported by the
innodb_directories option. See Section 17.6.3.6, “Moving Tablespace Files While the Server is
Offline”.

• The following InnoDB file format variables were removed:

• innodb_file_format

• innodb_file_format_check

• innodb_file_format_max

• innodb_large_prefix

File format variables were necessary for creating tables compatible with earlier versions of InnoDB
in MySQL 5.1. Now that MySQL 5.1 has reached the end of its product lifecycle, these options are no
longer required.

The FILE_FORMAT column was removed from the INNODB_TABLES and INNODB_TABLESPACES
Information Schema tables.

• The innodb_support_xa system variable, which enables support for two-phase commit in XA
transactions, was removed. InnoDB support for two-phase commit in XA transactions is always
enabled.

• Support for DTrace was removed.

• The JSON_APPEND() function was removed. Use JSON_ARRAY_APPEND() instead.

61

Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 8.0

• Support for placing table partitions in shared InnoDB tablespaces was removed in MySQL
8.0.13. Shared tablespaces include the InnoDB system tablespace and general tablespaces. For
information about identifying partitions in shared tablespaces and moving them to file-per-table
tablespaces, see Section 3.6, “Preparing Your Installation for Upgrade”.

• Support for setting user variables in statements other than SET was deprecated in MySQL 8.0.13.
This functionality is subject to removal in MySQL 8.4.

• The --ndb perror option was removed. Use the ndb_perror utility instead.

• The innodb_undo_logs variable was removed. The innodb_rollback_segments variables
performs the same function and should be used instead.

• The Innodb_available_undo_logs status variable was removed. The number of
available rollback segments per tablespace may be retrieved using SHOW VARIABLES LIKE
'innodb_rollback_segments';

• As of MySQL 8.0.14, the previously deprecated innodb_undo_tablespaces variable is no longer
configurable. For more information, see Section 17.6.3.4, “Undo Tablespaces”.

• Support for the ALTER TABLE ... UPGRADE PARTITIONING statement has been removed.

• As of MySQL 8.0.16, support for the internal_tmp_disk_storage_engine system variable has
been removed; internal temporary tables on disk now always use the InnoDB storage engine. See
Storage Engine for On-Disk Internal Temporary Tables,for more information.

• The DISABLE_SHARED CMake option was unused and has been removed.

• The myisam_repair_threads system variable is removed as of MySQL 8.0.30.

1.4 Server and Status Variables and Options Added, Deprecated,
or Removed in MySQL 8.0

• Options and Variables Introduced in MySQL 8.0

• Options and Variables Deprecated in MySQL 8.0

• Options and Variables Removed in MySQL 8.0

This section lists server variables, status variables, and options that were added for the first time, have
been deprecated, or have been removed in MySQL 8.0.

Options and Variables Introduced in MySQL 8.0

The following system variables, status variables, and server options have been added in MySQL 8.0.

• Acl_cache_items_count: Number of cached privilege objects. Added in MySQL 8.0.0.

• Audit_log_current_size: Audit log file current size. Added in MySQL 8.0.11.

• Audit_log_event_max_drop_size: Size of largest dropped audited event. Added in MySQL
8.0.11.

• Audit_log_events: Number of handled audited events. Added in MySQL 8.0.11.

• Audit_log_events_filtered: Number of filtered audited events. Added in MySQL 8.0.11.

• Audit_log_events_lost: Number of dropped audited events. Added in MySQL 8.0.11.

• Audit_log_events_written: Number of written audited events. Added in MySQL 8.0.11.

• Audit_log_total_size: Combined size of written audited events. Added in MySQL 8.0.11.

• Audit_log_write_waits: Number of write-delayed audited events. Added in MySQL 8.0.11.

62

Options and Variables Introduced in MySQL 8.0

• Authentication_ldap_sasl_supported_methods: Supported authentication methods for
SASL LDAP authentication. Added in MySQL 8.0.21.

• Caching_sha2_password_rsa_public_key: caching_sha2_password authentication plugin
RSA public key value. Added in MySQL 8.0.4.

• Com_alter_resource_group: Count of ALTER RESOURCE GROUP statements. Added in
MySQL 8.0.3.

• Com_alter_user_default_role: Count of ALTER USER ... DEFAULT ROLE statements. Added
in MySQL 8.0.0.

• Com_change_replication_source: Count of CHANGE REPLICATION SOURCE TO and
CHANGE MASTER TO statements. Added in MySQL 8.0.23.

• Com_clone: Count of CLONE statements. Added in MySQL 8.0.2.

• Com_create_resource_group: Count of CREATE RESOURCE GROUP statements. Added in
MySQL 8.0.3.

• Com_create_role: Count of CREATE ROLE statements. Added in MySQL 8.0.0.

• Com_drop_resource_group: Count of DROP RESOURCE GROUP statements. Added in MySQL
8.0.3.

• Com_drop_role: Count of DROP ROLE statements. Added in MySQL 8.0.0.

• Com_grant_roles: Count of GRANT ROLE statements. Added in MySQL 8.0.0.

• Com_install_component: Count of INSTALL COMPONENT statements. Added in MySQL 8.0.0.

• Com_replica_start: Count of START REPLICA and START SLAVE statements. Added in
MySQL 8.0.22.

• Com_replica_stop: Count of STOP REPLICA and STOP SLAVE statements. Added in MySQL
8.0.22.

• Com_restart: Count of RESTART statements. Added in MySQL 8.0.4.

• Com_revoke_roles: Count of REVOKE ROLES statements. Added in MySQL 8.0.0.

• Com_set_resource_group: Count of SET RESOURCE GROUP statements. Added in MySQL
8.0.3.

• Com_set_role: Count of SET ROLE statements. Added in MySQL 8.0.0.

• Com_show_replica_status: Count of SHOW REPLICA STATUS and SHOW SLAVE STATUS
statements. Added in MySQL 8.0.22.

• Com_show_replicas: Count of SHOW REPLICAS and SHOW SLAVE HOSTS statements. Added
in MySQL 8.0.22.

• Com_uninstall_component: Count of UINSTALL COMPONENT statements. Added in MySQL
8.0.0.

• Compression_algorithm: Compression algorithm for current connection. Added in MySQL
8.0.18.

• Compression_level: Compression level for current connection. Added in MySQL 8.0.18.

• Connection_control_delay_generated: How many times server delayed connection request.
Added in MySQL 8.0.1.

• Current_tls_ca: Current value of ssl_ca system variable. Added in MySQL 8.0.16.

63

Options and Variables Introduced in MySQL 8.0

• Current_tls_capath: Current value of ssl_capath system variable. Added in MySQL 8.0.16.

• Current_tls_cert: Current value of ssl_cert system variable. Added in MySQL 8.0.16.

• Current_tls_cipher: Current value of ssl_cipher system variable. Added in MySQL 8.0.16.

• Current_tls_ciphersuites: Current value of tsl_ciphersuites system variable. Added in MySQL
8.0.16.

• Current_tls_crl: Current value of ssl_crl system variable. Added in MySQL 8.0.16.

• Current_tls_crlpath: Current value of ssl_crlpath system variable. Added in MySQL 8.0.16.

• Current_tls_key: Current value of ssl_key system variable. Added in MySQL 8.0.16.

• Current_tls_version: Current value of tls_version system variable. Added in MySQL 8.0.16.

• Error_log_buffered_bytes: Number of bytes used in error_log table. Added in MySQL 8.0.22.

• Error_log_buffered_events: Number of events in error_log table. Added in MySQL 8.0.22.

• Error_log_expired_events: Number of events discarded from error_log table. Added in MySQL
8.0.22.

• Error_log_latest_write: Time of last write to error_log table. Added in MySQL 8.0.22.

• Firewall_access_denied: Number of statements rejected by MySQL Enterprise Firewall plugin.
Added in MySQL 8.0.11.

• Firewall_access_granted: Number of statements accepted by MySQL Enterprise Firewall
plugin. Added in MySQL 8.0.11.

• Firewall_cached_entries: Number of statements recorded by MySQL Enterprise Firewall
plugin. Added in MySQL 8.0.11.

• Global_connection_memory: Amount of memory currently used by all user threads. Added in
MySQL 8.0.28.

• Innodb_buffer_pool_resize_status_code: InnoDB buffer pool resize status code. Added in
MySQL 8.0.31.

• Innodb_buffer_pool_resize_status_progress: InnoDB buffer pool resize status progress.
Added in MySQL 8.0.31.

• Innodb_redo_log_capacity_resized: Redo log capacity after the last completed capacity
resize operation. Added in MySQL 8.0.30.

• Innodb_redo_log_checkpoint_lsn: The redo log checkpoint LSN. Added in MySQL 8.0.30.

• Innodb_redo_log_current_lsn: The redo log current LSN. Added in MySQL 8.0.30.

• Innodb_redo_log_enabled: InnoDB redo log status. Added in MySQL 8.0.21.

• Innodb_redo_log_flushed_to_disk_lsn: The red log flushed-to-disk LSN. Added in MySQL
8.0.30.

• Innodb_redo_log_logical_size: The redo log logical size. Added in MySQL 8.0.30.

• Innodb_redo_log_physical_size: The redo log physical size. Added in MySQL 8.0.30.

• Innodb_redo_log_read_only: Whether the redo log is read-only. Added in MySQL 8.0.30.

• Innodb_redo_log_resize_status: The redo log resize status. Added in MySQL 8.0.30.

• Innodb_redo_log_uuid: The redo log UUID. Added in MySQL 8.0.30.

64

Options and Variables Introduced in MySQL 8.0

• Innodb_system_rows_deleted: Number of rows deleted from system schema tables. Added in
MySQL 8.0.19.

• Innodb_system_rows_inserted: Number of rows inserted into system schema tables. Added in
MySQL 8.0.19.

• Innodb_system_rows_read: Number of rows read from system schema tables. Added in MySQL
8.0.19.

• Innodb_system_rows_updated: Number of rows updated in system schema tables. Added in
MySQL 8.0.19.

• Innodb_undo_tablespaces_active: Number of active undo tablespaces. Added in MySQL
8.0.14.

• Innodb_undo_tablespaces_explicit: Number of user-created undo tablespaces. Added in
MySQL 8.0.14.

• Innodb_undo_tablespaces_implicit: Number of undo tablespaces created by InnoDB. Added
in MySQL 8.0.14.

• Innodb_undo_tablespaces_total: Total number of undo tablespaces. Added in MySQL 8.0.14.

• Mysqlx_bytes_received_compressed_payload: Number of bytes received as compressed
message payloads, measured before decompression. Added in MySQL 8.0.19.

• Mysqlx_bytes_received_uncompressed_frame: Number of bytes received as compressed
message payloads, measured after decompression. Added in MySQL 8.0.19.

• Mysqlx_bytes_sent_compressed_payload: Number of bytes sent as compressed message
payloads, measured after compression. Added in MySQL 8.0.19.

• Mysqlx_bytes_sent_uncompressed_frame: Number of bytes sent as compressed message
payloads, measured before compression. Added in MySQL 8.0.19.

• Mysqlx_compression_algorithm: Compression algorithm in use for X Protocol connection for
this session. Added in MySQL 8.0.20.

• Mysqlx_compression_level: Compression level in use for X Protocol connection for this
session. Added in MySQL 8.0.20.

• Replica_open_temp_tables: Number of temporary tables that replication SQL thread currently
has open. Added in MySQL 8.0.26.

• Replica_rows_last_search_algorithm_used: Search algorithm most recently used by this
replica to locate rows for row-based replication (index, table, or hash scan). Added in MySQL 8.0.26.

• Resource_group_supported: Whether server supports the resource group feature. Added in
MySQL 8.0.31.

• Rpl_semi_sync_replica_status: Whether semisynchronous replication is operational on
replica. Added in MySQL 8.0.26.

• Rpl_semi_sync_source_clients: Number of semisynchronous replicas. Added in MySQL
8.0.26.

• Rpl_semi_sync_source_net_avg_wait_time: Average time source has waited for replies from
replica. Added in MySQL 8.0.26.

• Rpl_semi_sync_source_net_wait_time: Total time source has waited for replies from replica.
Added in MySQL 8.0.26.

• Rpl_semi_sync_source_net_waits: Total number of times source waited for replies from
replica. Added in MySQL 8.0.26.

65

Options and Variables Introduced in MySQL 8.0

• Rpl_semi_sync_source_no_times: Number of times source turned off semisynchronous
replication. Added in MySQL 8.0.26.

• Rpl_semi_sync_source_no_tx: Number of commits not acknowledged successfully. Added in
MySQL 8.0.26.

• Rpl_semi_sync_source_status: Whether semisynchronous replication is operational on source.
Added in MySQL 8.0.26.

• Rpl_semi_sync_source_timefunc_failures: Number of times source failed when calling time
functions. Added in MySQL 8.0.26.

• Rpl_semi_sync_source_tx_avg_wait_time: Average time source waited for each transaction.
Added in MySQL 8.0.26.

• Rpl_semi_sync_source_tx_wait_time: Total time source waited for transactions. Added in
MySQL 8.0.26.

• Rpl_semi_sync_source_tx_waits: Total number of times source waited for transactions. Added
in MySQL 8.0.26.

• Rpl_semi_sync_source_wait_pos_backtraverse: Total number of times source has waited
for event with binary coordinates lower than events waited for previously. Added in MySQL 8.0.26.

• Rpl_semi_sync_source_wait_sessions: Number of sessions currently waiting for replica
replies. Added in MySQL 8.0.26.

• Rpl_semi_sync_source_yes_tx: Number of commits acknowledged successfully. Added in
MySQL 8.0.26.

• Secondary_engine_execution_count: Number of queries offloaded to a secondary engine.
Added in MySQL 8.0.13.

• Ssl_session_cache_timeout: Current SSL session timeout value in cache. Added in MySQL
8.0.29.

• Telemetry_traces_supported: Whether server telemetry traces is supported. Added in MySQL
8.0.33.

• Tls_library_version: Runtime version of OpenSSL library in use. Added in MySQL 8.0.30.

• activate_all_roles_on_login: Whether to activate all user roles at connect time. Added in
MySQL 8.0.2.

• admin-ssl: Enable connection encryption. Added in MySQL 8.0.21.

• admin_address: IP address to bind to for connections on administrative interface. Added in MySQL
8.0.14.

• admin_port: TCP/IP number to use for connections on administrative interface. Added in MySQL
8.0.14.

• admin_ssl_ca: File that contains list of trusted SSL Certificate Authorities. Added in MySQL 8.0.21.

• admin_ssl_capath: Directory that contains trusted SSL Certificate Authority certificate files. Added
in MySQL 8.0.21.

• admin_ssl_cert: File that contains X.509 certificate. Added in MySQL 8.0.21.

• admin_ssl_cipher: Permissible ciphers for connection encryption. Added in MySQL 8.0.21.

• admin_ssl_crl: File that contains certificate revocation lists. Added in MySQL 8.0.21.

• admin_ssl_crlpath: Directory that contains certificate revocation list files. Added in MySQL
8.0.21.

66

Options and Variables Introduced in MySQL 8.0

• admin_ssl_key: File that contains X.509 key. Added in MySQL 8.0.21.

• admin_tls_ciphersuites: Permissible TLSv1.3 ciphersuites for encrypted connections. Added
in MySQL 8.0.21.

• admin_tls_version: Permissible TLS protocols for encrypted connections. Added in MySQL
8.0.21.

• audit-log: Whether to activate audit log plugin. Added in MySQL 8.0.11.

• audit_log_buffer_size: Size of audit log buffer. Added in MySQL 8.0.11.

• audit_log_compression: Audit log file compression method. Added in MySQL 8.0.11.

• audit_log_connection_policy: Audit logging policy for connection-related events. Added in
MySQL 8.0.11.

• audit_log_current_session: Whether to audit current session. Added in MySQL 8.0.11.

• audit_log_database: Schema where audit tables are stored. Added in MySQL 8.0.33.

• audit_log_disable: Whether to disable the audit log. Added in MySQL 8.0.28.

• audit_log_encryption: Audit log file encryption method. Added in MySQL 8.0.11.

• audit_log_exclude_accounts: Accounts not to audit. Added in MySQL 8.0.11.

• audit_log_file: Name of audit log file. Added in MySQL 8.0.11.

• audit_log_filter_id: ID of current audit log filter. Added in MySQL 8.0.11.

• audit_log_flush: Close and reopen audit log file. Added in MySQL 8.0.11.

• audit_log_flush_interval_seconds: Whether to perform a recurring flush of the memory
cache. Added in MySQL 8.0.34.

• audit_log_format: Audit log file format. Added in MySQL 8.0.11.

• audit_log_format_unix_timestamp: Whether to include Unix timestamp in JSON-format audit
log. Added in MySQL 8.0.26.

• audit_log_include_accounts: Accounts to audit. Added in MySQL 8.0.11.

• audit_log_max_size: Limit on combined size of JSON audit log files. Added in MySQL 8.0.26.

• audit_log_password_history_keep_days: Number of days to retain archived audit log
encryption passwords. Added in MySQL 8.0.17.

• audit_log_policy: Audit logging policy. Added in MySQL 8.0.11.

• audit_log_prune_seconds: The number of seconds after which audit log files become subject to
pruning. Added in MySQL 8.0.24.

• audit_log_read_buffer_size: Audit log file read buffer size. Added in MySQL 8.0.11.

• audit_log_rotate_on_size: Close and reopen audit log file at this size. Added in MySQL
8.0.11.

• audit_log_statement_policy: Audit logging policy for statement-related events. Added in
MySQL 8.0.11.

• audit_log_strategy: Audit logging strategy. Added in MySQL 8.0.11.

• authentication_fido_rp_id: Relying party ID for FIDO multifactor authentication. Added in
MySQL 8.0.27.

67

Options and Variables Introduced in MySQL 8.0

• authentication_kerberos_service_key_tab: File containing Kerberos service keys to
authenticate TGS ticket. Added in MySQL 8.0.26.

• authentication_kerberos_service_principal: Kerberos service principal name. Added in
MySQL 8.0.26.

• authentication_ldap_sasl_auth_method_name: Authentication method name. Added in
MySQL 8.0.11.

• authentication_ldap_sasl_bind_base_dn: LDAP server base distinguished name. Added in
MySQL 8.0.11.

• authentication_ldap_sasl_bind_root_dn: LDAP server root distinguished name. Added in
MySQL 8.0.11.

• authentication_ldap_sasl_bind_root_pwd: LDAP server root bind password. Added in
MySQL 8.0.11.

• authentication_ldap_sasl_ca_path: LDAP server certificate authority file name. Added in
MySQL 8.0.11.

• authentication_ldap_sasl_group_search_attr: LDAP server group search attribute.
Added in MySQL 8.0.11.

• authentication_ldap_sasl_group_search_filter: LDAP custom group search filter.
Added in MySQL 8.0.11.

• authentication_ldap_sasl_init_pool_size: LDAP server initial connection pool size.
Added in MySQL 8.0.11.

• authentication_ldap_sasl_log_status: LDAP server log level. Added in MySQL 8.0.11.

• authentication_ldap_sasl_max_pool_size: LDAP server maximum connection pool size.
Added in MySQL 8.0.11.

• authentication_ldap_sasl_referral: Whether to enable LDAP search referral. Added in
MySQL 8.0.20.

• authentication_ldap_sasl_server_host: LDAP server host name or IP address. Added in
MySQL 8.0.11.

• authentication_ldap_sasl_server_port: LDAP server port number. Added in MySQL
8.0.11.

• authentication_ldap_sasl_tls: Whether to use encrypted connections to LDAP server.
Added in MySQL 8.0.11.

• authentication_ldap_sasl_user_search_attr: LDAP server user search attribute. Added in
MySQL 8.0.11.

• authentication_ldap_simple_auth_method_name: Authentication method name. Added in
MySQL 8.0.11.

• authentication_ldap_simple_bind_base_dn: LDAP server base distinguished name. Added
in MySQL 8.0.11.

• authentication_ldap_simple_bind_root_dn: LDAP server root distinguished name. Added
in MySQL 8.0.11.

• authentication_ldap_simple_bind_root_pwd: LDAP server root bind password. Added in
MySQL 8.0.11.

• authentication_ldap_simple_ca_path: LDAP server certificate authority file name. Added in
MySQL 8.0.11.

68

Options and Variables Introduced in MySQL 8.0

• authentication_ldap_simple_group_search_attr: LDAP server group search attribute.
Added in MySQL 8.0.11.

• authentication_ldap_simple_group_search_filter: LDAP custom group search filter.
Added in MySQL 8.0.11.

• authentication_ldap_simple_init_pool_size: LDAP server initial connection pool size.
Added in MySQL 8.0.11.

• authentication_ldap_simple_log_status: LDAP server log level. Added in MySQL 8.0.11.

• authentication_ldap_simple_max_pool_size: LDAP server maximum connection pool size.
Added in MySQL 8.0.11.

• authentication_ldap_simple_referral: Whether to enable LDAP search referral. Added in
MySQL 8.0.20.

• authentication_ldap_simple_server_host: LDAP server host name or IP address. Added in
MySQL 8.0.11.

• authentication_ldap_simple_server_port: LDAP server port number. Added in MySQL
8.0.11.

• authentication_ldap_simple_tls: Whether to use encrypted connections to LDAP server.
Added in MySQL 8.0.11.

• authentication_ldap_simple_user_search_attr: LDAP server user search attribute.
Added in MySQL 8.0.11.

• authentication_policy: Plugins for multifactor authentication; see documentation for syntax.
Added in MySQL 8.0.27.

• authentication_windows_log_level: Windows authentication plugin logging level. Added in
MySQL 8.0.11.

• authentication_windows_use_principal_name: Whether to use Windows authentication
plugin principal name. Added in MySQL 8.0.11.

• binlog_encryption: Enable encryption for binary log files and relay log files on this server. Added
in MySQL 8.0.14.

• binlog_expire_logs_auto_purge: Controls automatic purging of binary log files; can be
overridden when enabled, by setting both binlog_expire_logs_seconds and expire_logs_days to 0.
Added in MySQL 8.0.29.

• binlog_expire_logs_seconds: Purge binary logs after this many seconds. Added in MySQL
8.0.1.

• binlog_rotate_encryption_master_key_at_startup: Rotate binary log master key at
server startup. Added in MySQL 8.0.14.

• binlog_row_metadata: Whether to record all or only minimal table related metadata to binary log
when using row-based logging. Added in MySQL 8.0.1.

• binlog_row_value_options: Enables binary logging of partial JSON updates for row-based
replication. Added in MySQL 8.0.3.

• binlog_transaction_compression: Enable compression for transaction payloads in binary log
files. Added in MySQL 8.0.20.

• binlog_transaction_compression_level_zstd: Compression level for transaction payloads
in binary log files. Added in MySQL 8.0.20.

69

Options and Variables Introduced in MySQL 8.0

• binlog_transaction_dependency_history_size: Number of row hashes kept for looking up
transaction that last updated some row. Added in MySQL 8.0.1.

• binlog_transaction_dependency_tracking: Source of dependency information (commit
timestamps or transaction write sets) from which to assess which transactions can be executed in
parallel by replica's multithreaded applier. Added in MySQL 8.0.1.

• build_id: A unique build ID generated at compile time (Linux only). Added in MySQL 8.0.31.

• caching_sha2_password_auto_generate_rsa_keys: Whether to autogenerate RSA key-pair
files. Added in MySQL 8.0.4.

• caching_sha2_password_digest_rounds: Number of hash rounds for
caching_sha2_password authentication plugin. Added in MySQL 8.0.24.

• caching_sha2_password_private_key_path: SHA2 authentication plugin private key path
name. Added in MySQL 8.0.3.

• caching_sha2_password_public_key_path: SHA2 authentication plugin public key path
name. Added in MySQL 8.0.3.

• check-table-functions: How to proceed when scanning data dictionary for functions used in
table constraints and other expressions, and such a function causes an error. Use WARN to log
warnings; ABORT (default) also logs warnings, and halts any upgrade in progress. Added in MySQL
8.0.42.

• clone_autotune_concurrency: Enables dynamic spawning of threads for remote cloning
operations. Added in MySQL 8.0.17.

• clone_block_ddl: Enables an exclusive backup lock during clone operations. Added in MySQL
8.0.27.

• clone_buffer_size: Defines size of intermediate buffer on donor MySQL server instance. Added
in MySQL 8.0.17.

• clone_ddl_timeout: Number of seconds cloning operation waits for backup lock. Added in
MySQL 8.0.17.

• clone_delay_after_data_drop: The time delay in seconds before the clone process starts.
Added in MySQL 8.0.29.

• clone_donor_timeout_after_network_failure: The time allowed to restart a cloning
operation after a network failure. Added in MySQL 8.0.24.

• clone_enable_compression: Enables compression of data at network layer during cloning.
Added in MySQL 8.0.17.

• clone_max_concurrency: Maximum number of concurrent threads used to perform cloning
operation. Added in MySQL 8.0.17.

• clone_max_data_bandwidth: Maximum data transfer rate in MiB per second for remote cloning
operation. Added in MySQL 8.0.17.

• clone_max_network_bandwidth: Maximum network transfer rate in MiB per second for remote
cloning operation. Added in MySQL 8.0.17.

• clone_ssl_ca: Specifies path to certificate authority (CA) file. Added in MySQL 8.0.14.

• clone_ssl_cert: Specifies path to public key certificate file. Added in MySQL 8.0.14.

• clone_ssl_key: Specifies path to private key file. Added in MySQL 8.0.14.

• clone_valid_donor_list: Defines donor host addresses for remote cloning operations. Added
in MySQL 8.0.17.

70

Options and Variables Introduced in MySQL 8.0

• component_scheduler.enabled: Whether the scheduler is actively executing tasks. Added in
MySQL 8.0.34.

• connection_control_failed_connections_threshold: Consecutive failed connection
attempts before delays occur. Added in MySQL 8.0.1.

• connection_control_max_connection_delay: Maximum delay (milliseconds) for server
response to failed connection attempts. Added in MySQL 8.0.1.

• connection_control_min_connection_delay: Minimum delay (milliseconds) for server
response to failed connection attempts. Added in MySQL 8.0.1.

• connection_memory_chunk_size: Update Global_connection_memory only when user memory
usage changes by this amount or more; 0 disables updating. Added in MySQL 8.0.28.

• connection_memory_limit: Maximum amount of memory that can be consumed by any one
user connection before all queries by this user are rejected. Does not apply to system users such as
MySQL root. Added in MySQL 8.0.28.

• create_admin_listener_thread: Whether to use dedicated listening thread for connections on
administrative interface. Added in MySQL 8.0.14.

• cte_max_recursion_depth: Common table expression maximum recursion depth. Added in
MySQL 8.0.3.

• ddl-rewriter: Whether to activate ddl_rewriter plugin. Added in MySQL 8.0.16.

• default_collation_for_utf8mb4: Default collation for utf8mb4 character set; for internal use
by MySQL Replication only. Added in MySQL 8.0.11.

• default_table_encryption: Default schema and tablespace encryption setting. Added in
MySQL 8.0.16.

• dragnet.Status: Result of most recent assignment to dragnet.log_error_filter_rules. Added in
MySQL 8.0.12.

• dragnet.log_error_filter_rules: Filter rules for error logging. Added in MySQL 8.0.4.

• early-plugin-load: Specify plugins to load before loading mandatory built-in plugins and before
storage engine initialization. Added in MySQL 8.0.0.

• enterprise_encryption.maximum_rsa_key_size: Maximum size of RSA keys generated by
MySQL Enterprise Encryption. Added in MySQL 8.0.30.

• enterprise_encryption.rsa_support_legacy_padding: Decrypt and verify legacy MySQL
Enterprise Encryption content. Added in MySQL 8.0.30.

• explain_format: Determines default output format used by EXPLAIN statements. Added in
MySQL 8.0.32.

• generated_random_password_length: Maximum length of generated passwords. Added in
MySQL 8.0.18.

• global_connection_memory_limit: Maximum total amount of memory that can be consumed
by all user connections. When exceeded by Global_connection_memory, all queries from regular
users are rejected. Does not apply to system users such as MySQL root. Added in MySQL 8.0.28.

• global_connection_memory_tracking: Whether or not to calculate global connection memory
usage (as shown by Global_connection_memory); default is disabled. Added in MySQL 8.0.28.

• group_replication_advertise_recovery_endpoints: Connections offered for distributed
recovery. Added in MySQL 8.0.21.

71

Options and Variables Introduced in MySQL 8.0

• group_replication_autorejoin_tries: Number of tries that member makes to rejoin group
automatically. Added in MySQL 8.0.16.

• group_replication_clone_threshold: Transaction number gap between donor and recipient
above which remote cloning operation is used for state transfer. Added in MySQL 8.0.17.

• group_replication_communication_debug_options: Level of debugging messages for
Group Replication components. Added in MySQL 8.0.3.

• group_replication_communication_max_message_size: Maximum message size for Group
Replication communications, larger messages are fragmented. Added in MySQL 8.0.16.

• group_replication_communication_stack: Specifies which communication stack (XCom or
MySQL) should be used to establish group communication connections between members. Added in
MySQL 8.0.27.

• group_replication_consistency: Type of transaction consistency guarantee which group
provides. Added in MySQL 8.0.14.

• group_replication_exit_state_action: How instance behaves when it leaves group
involuntarily. Added in MySQL 8.0.12.

• group_replication_flow_control_hold_percent: Percentage of group quota to remain
unused. Added in MySQL 8.0.2.

• group_replication_flow_control_max_quota: Maximum flow control quota for group.
Added in MySQL 8.0.2.

• group_replication_flow_control_member_quota_percent: Percentage of quota which
member should assume is available for itself when calculating quotas. Added in MySQL 8.0.2.

• group_replication_flow_control_min_quota: Lowest flow control quota which can be
assigned per member. Added in MySQL 8.0.2.

• group_replication_flow_control_min_recovery_quota: Lowest quota which can be
assigned per member because another group member is recovering. Added in MySQL 8.0.2.

• group_replication_flow_control_period: Defines how many seconds to wait between flow
control iterations. Added in MySQL 8.0.2.

• group_replication_flow_control_release_percent: How group quota should be released
when flow control no longer needs to throttle writer members. Added in MySQL 8.0.2.

• group_replication_ip_allowlist: List of hosts permitted to connect to group (MySQL 8.0.22
and later). Added in MySQL 8.0.22.

• group_replication_member_expel_timeout: Time between suspected failure of group
member and expelling it from group, causing group membership reconfiguration. Added in MySQL
8.0.13.

• group_replication_member_weight: Chance of this member being elected as primary. Added
in MySQL 8.0.2.

• group_replication_message_cache_size: Maximum memory for group communication
engine message cache (XCom). Added in MySQL 8.0.16.

• group_replication_paxos_single_leader: Use a single consensus leader in single-primary
mode. Added in MySQL 8.0.27.

• group_replication_recovery_compression_algorithms: Permitted compression
algorithms for outgoing recovery connections. Added in MySQL 8.0.18.

• group_replication_recovery_get_public_key: Whether to accept preference about
fetching public key from donor. Added in MySQL 8.0.4.

72

Options and Variables Introduced in MySQL 8.0

• group_replication_recovery_public_key_path: To accept public key information. Added in
MySQL 8.0.4.

• group_replication_recovery_tls_ciphersuites: Permitted cipher suites when TLSv1.3 is
used for connection encryption with this instance as client (joining member). Added in MySQL 8.0.19.

• group_replication_recovery_tls_version: Permitted TLS protocols for connection
encryption as client (joining member). Added in MySQL 8.0.19.

• group_replication_recovery_zstd_compression_level: Compression level for recovery
connections that use zstd compression. Added in MySQL 8.0.18.

• group_replication_tls_source: Source of TLS material for Group Replication. Added in
MySQL 8.0.21.

• group_replication_unreachable_majority_timeout: How long to wait for network
partitions that result in minority to leave group. Added in MySQL 8.0.2.

• group_replication_view_change_uuid: UUID for view change event GTIDs. Added in MySQL
8.0.26.

• histogram_generation_max_mem_size: Maximum memory for creating histogram statistics.
Added in MySQL 8.0.2.

• immediate_server_version: MySQL Server release number of server which is immediate
replication source. Added in MySQL 8.0.14.

• information_schema_stats_expiry: Expiration setting for cached table statistics. Added in
MySQL 8.0.3.

• init_replica: Statements that are executed when replica connects to source. Added in MySQL
8.0.26.

• innodb-dedicated-server: Enables automatic configuration of buffer pool size, log file size, and
flush method. Added in MySQL 8.0.3.

• innodb_buffer_pool_debug: Permits multiple buffer pool instances when buffer pool is less than
1GB in size. Added in MySQL 8.0.0.

• innodb_buffer_pool_in_core_file: Controls writing of buffer pool pages to core files, defaults
to OFF (as of 8.4) on systems that support MADV_DONTDUMP. Added in MySQL 8.0.14.

• innodb_checkpoint_disabled: Disables checkpoints so that deliberate server exit always
initiates recovery. Added in MySQL 8.0.2.

• innodb_ddl_buffer_size: The maximum buffer size for DDL operations. Added in MySQL
8.0.27.

• innodb_ddl_log_crash_reset_debug: Debug option that resets DDL log crash injection
counters. Added in MySQL 8.0.3.

• innodb_ddl_threads: The maximum number of parallel threads for index creation. Added in
MySQL 8.0.27.

• innodb_deadlock_detect: Enables or disables deadlock detection. Added in MySQL 8.0.0.

• innodb_directories: Defines directories to scan at startup for tablespace data files. Added in
MySQL 8.0.4.

• innodb_doublewrite_batch_size: This functionality was replaced by
innodb_doublewrite_pages. Added in MySQL 8.0.20.

• innodb_doublewrite_dir: Doublewrite buffer file directory. Added in MySQL 8.0.20.

73

Options and Variables Introduced in MySQL 8.0

• innodb_doublewrite_files: Number of doublewrite files. Added in MySQL 8.0.20.

• innodb_doublewrite_pages: Number of doublewrite pages per thread. Added in MySQL 8.0.20.

• innodb_extend_and_initialize: Controls how new tablespace pages are allocated on Linux.
Added in MySQL 8.0.22.

• innodb_fsync_threshold: Controls how often InnoDB calls fsync when creating new file. Added
in MySQL 8.0.13.

• innodb_idle_flush_pct: Limits I/0 operations when InnoDB is idle. Added in MySQL 8.0.18.

• innodb_log_checkpoint_fuzzy_now: Debug option that forces InnoDB to write fuzzy
checkpoint. Added in MySQL 8.0.13.

• innodb_log_spin_cpu_abs_lwm: Minimum amount of CPU usage below which user threads no
longer spin while waiting for flushed redo. Added in MySQL 8.0.11.

• innodb_log_spin_cpu_pct_hwm: Maximum amount of CPU usage above which user threads no
longer spin while waiting for flushed redo. Added in MySQL 8.0.11.

• innodb_log_wait_for_flush_spin_hwm: Maximum average log flush time beyond which user
threads no longer spin while waiting for flushed redo. Added in MySQL 8.0.11.

• innodb_log_writer_threads: Enables dedicated log writer threads for writing and flushing redo
logs. Added in MySQL 8.0.22.

• innodb_parallel_read_threads: Number of threads for parallel index reads. Added in MySQL
8.0.14.

• innodb_print_ddl_logs: Whether or not to print DDL logs to error log. Added in MySQL 8.0.3.

• innodb_redo_log_archive_dirs: Labeled redo log archive directories. Added in MySQL 8.0.17.

• innodb_redo_log_capacity: The size limit for redo log files. Added in MySQL 8.0.30.

• innodb_redo_log_encrypt: Controls encryption of redo log data for encrypted tablespaces.
Added in MySQL 8.0.1.

• innodb_scan_directories: Defines directories to scan for tablespace files during InnoDB
recovery. Added in MySQL 8.0.2.

• innodb_segment_reserve_factor: The percentage of tablespace file segment pages reserved
as empty pages. Added in MySQL 8.0.26.

• innodb_spin_wait_pause_multiplier: Multiplier value used to determine number of PAUSE
instructions in spin-wait loops. Added in MySQL 8.0.16.

• innodb_stats_include_delete_marked: Include delete-marked records when calculating
persistent InnoDB statistics. Added in MySQL 8.0.1.

• innodb_temp_tablespaces_dir: Session temporary tablespaces path. Added in MySQL 8.0.13.

• innodb_tmpdir: Directory location for temporary table files created during online ALTER TABLE
operations. Added in MySQL 8.0.0.

• innodb_undo_log_encrypt: Controls encryption of undo log data for encrypted tablespaces.
Added in MySQL 8.0.1.

• innodb_use_fdatasync: Whether InnoDB uses fdatasync() instead of fsync() when flushing data
to the operating system. Added in MySQL 8.0.26.

• innodb_validate_tablespace_paths: Enables tablespace path validation at startup. Added in
MySQL 8.0.21.

74

Options and Variables Introduced in MySQL 8.0

• internal_tmp_mem_storage_engine: Storage engine to use for internal in-memory temporary
tables. Added in MySQL 8.0.2.

• keyring-migration-destination: Key migration destination keyring plugin. Added in MySQL
8.0.4.

• keyring-migration-host: Host name for connecting to running server for key migration. Added
in MySQL 8.0.4.

• keyring-migration-password: Password for connecting to running server for key migration.
Added in MySQL 8.0.4.

• keyring-migration-port: TCP/IP port number for connecting to running server for key
migration. Added in MySQL 8.0.4.

• keyring-migration-socket: Unix socket file or Windows named pipe for connecting to running
server for key migration. Added in MySQL 8.0.4.

• keyring-migration-source: Key migration source keyring plugin. Added in MySQL 8.0.4.

• keyring-migration-to-component: Keyring migration is from plugin to component. Added in
MySQL 8.0.24.

• keyring-migration-user: User name for connecting to running server for key migration. Added
in MySQL 8.0.4.

• keyring_aws_cmk_id: AWS keyring plugin customer master key ID value. Added in MySQL
8.0.11.

• keyring_aws_conf_file: AWS keyring plugin configuration file location. Added in MySQL 8.0.11.

• keyring_aws_data_file: AWS keyring plugin storage file location. Added in MySQL 8.0.11.

• keyring_aws_region: AWS keyring plugin region. Added in MySQL 8.0.11.

• keyring_encrypted_file_data: keyring_encrypted_file plugin data file. Added in MySQL
8.0.11.

• keyring_encrypted_file_password: keyring_encrypted_file plugin password. Added in
MySQL 8.0.11.

• keyring_hashicorp_auth_path: HashiCorp Vault AppRole authentication path. Added in
MySQL 8.0.18.

• keyring_hashicorp_ca_path: Path to keyring_hashicorp CA file. Added in MySQL 8.0.18.

• keyring_hashicorp_caching: Whether to enable keyring_hashicorp caching. Added in MySQL
8.0.18.

• keyring_hashicorp_commit_auth_path: keyring_hashicorp_auth_path value in use. Added in
MySQL 8.0.18.

• keyring_hashicorp_commit_ca_path: keyring_hashicorp_ca_path value in use. Added in
MySQL 8.0.18.

• keyring_hashicorp_commit_caching: keyring_hashicorp_caching value in use. Added in
MySQL 8.0.18.

• keyring_hashicorp_commit_role_id: keyring_hashicorp_role_id value in use. Added in
MySQL 8.0.18.

• keyring_hashicorp_commit_server_url: keyring_hashicorp_server_url value in use. Added
in MySQL 8.0.18.

75

Options and Variables Introduced in MySQL 8.0

• keyring_hashicorp_commit_store_path: keyring_hashicorp_store_path value in use. Added
in MySQL 8.0.18.

• keyring_hashicorp_role_id: HashiCorp Vault AppRole authentication role ID. Added in
MySQL 8.0.18.

• keyring_hashicorp_secret_id: HashiCorp Vault AppRole authentication secret ID. Added in
MySQL 8.0.18.

• keyring_hashicorp_server_url: HashiCorp Vault server URL. Added in MySQL 8.0.18.

• keyring_hashicorp_store_path: HashiCorp Vault store path. Added in MySQL 8.0.18.

• keyring_oci_ca_certificate: CA certificate file for peer authentication. Added in MySQL
8.0.22.

• keyring_oci_compartment: OCI compartment OCID. Added in MySQL 8.0.22.

• keyring_oci_encryption_endpoint: OCI encryption server endpoint. Added in MySQL 8.0.22.

• keyring_oci_key_file: OCI RSA private key file. Added in MySQL 8.0.22.

• keyring_oci_key_fingerprint: OCI RSA private key file fingerprint. Added in MySQL 8.0.22.

• keyring_oci_management_endpoint: OCI management server endpoint. Added in MySQL
8.0.22.

• keyring_oci_master_key: OCI master key OCID. Added in MySQL 8.0.22.

• keyring_oci_secrets_endpoint: OCI secrets server endpoint. Added in MySQL 8.0.22.

• keyring_oci_tenancy: OCI tenancy OCID. Added in MySQL 8.0.22.

• keyring_oci_user: OCI user OCID. Added in MySQL 8.0.22.

• keyring_oci_vaults_endpoint: OCI vaults server endpoint. Added in MySQL 8.0.22.

• keyring_oci_virtual_vault: OCI vault OCID. Added in MySQL 8.0.22.

• keyring_okv_conf_dir: Oracle Key Vault keyring plugin configuration directory. Added in
MySQL 8.0.11.

• keyring_operations: Whether keyring operations are enabled. Added in MySQL 8.0.4.

• lock_order: Whether to enable LOCK_ORDER tool at runtime. Added in MySQL 8.0.17.

• lock_order_debug_loop: Whether to cause debug assert when LOCK_ORDER tool encounters
dependency flagged as loop. Added in MySQL 8.0.17.

• lock_order_debug_missing_arc: Whether to cause debug assert when LOCK_ORDER tool
encounters undeclared dependency. Added in MySQL 8.0.17.

• lock_order_debug_missing_key: Whether to cause debug assert when LOCK_ORDER tool
encounters object not properly instrumented with Performance Schema. Added in MySQL 8.0.17.

• lock_order_debug_missing_unlock: Whether to cause debug assert when LOCK_ORDER
tool encounters lock that is destroyed while still held. Added in MySQL 8.0.17.

• lock_order_dependencies: Path to lock_order_dependencies.txt file. Added in MySQL 8.0.17.

• lock_order_extra_dependencies: Path to second dependency file. Added in MySQL 8.0.17.

• lock_order_output_directory: Directory where LOCK_ORDER tool writes logs. Added in
MySQL 8.0.17.

76

Options and Variables Introduced in MySQL 8.0

• lock_order_print_txt: Whether to perform lock-order graph analysis and print textual report.
Added in MySQL 8.0.17.

• lock_order_trace_loop: Whether to print log file trace when LOCK_ORDER tool encounters
dependency flagged as loop. Added in MySQL 8.0.17.

• lock_order_trace_missing_arc: Whether to print log file trace when LOCK_ORDER tool
encounters undeclared dependency. Added in MySQL 8.0.17.

• lock_order_trace_missing_key: Whether to print log file trace when LOCK_ORDER tool
encounters object not properly instrumented with Performance Schema. Added in MySQL 8.0.17.

• lock_order_trace_missing_unlock: Whether to print log file trace when LOCK_ORDER tool
encounters lock that is destroyed while still held. Added in MySQL 8.0.17.

• log_error_filter_rules: Filter rules for error logging. Added in MySQL 8.0.2.

• log_error_services: Components to use for error logging. Added in MySQL 8.0.2.

• log_error_suppression_list: Warning/information error log messages to suppress. Added in
MySQL 8.0.13.

• log_replica_updates: Whether replica should log updates performed by its replication SQL
thread to its own binary log. Added in MySQL 8.0.26.

• log_slow_extra: Whether to write extra information to slow query log file. Added in MySQL
8.0.14.

• log_slow_replica_statements: Cause slow statements as executed by replica to be written to
slow query log. Added in MySQL 8.0.26.

• mandatory_roles: Automatically granted roles for all users. Added in MySQL 8.0.2.

• mysql_firewall_mode: Whether MySQL Enterprise Firewall plugin is operational. Added in
MySQL 8.0.11.

• mysql_firewall_trace: Whether to enable MySQL Enterprise Firewall plugin trace. Added in
MySQL 8.0.11.

• mysqlx: Whether X Plugin is initialized. Added in MySQL 8.0.11.

• mysqlx_compression_algorithms: Compression algorithms permitted for X Protocol
connections. Added in MySQL 8.0.19.

• mysqlx_deflate_default_compression_level: Default compression level for Deflate
algorithm on X Protocol connections. Added in MySQL 8.0.20.

• mysqlx_deflate_max_client_compression_level: Maximum permitted compression level
for Deflate algorithm on X Protocol connections. Added in MySQL 8.0.20.

• mysqlx_interactive_timeout: Number of seconds to wait for interactive clients to time out.
Added in MySQL 8.0.4.

• mysqlx_lz4_default_compression_level: Default compression level for LZ4 algorithm on X
Protocol connections. Added in MySQL 8.0.20.

• mysqlx_lz4_max_client_compression_level: Maximum permitted compression level for LZ4
algorithm on X Protocol connections. Added in MySQL 8.0.20.

• mysqlx_read_timeout: Number of seconds to wait for blocking read operations to complete.
Added in MySQL 8.0.4.

• mysqlx_wait_timeout: Number of seconds to wait for activity from connection. Added in MySQL
8.0.4.

77

Options and Variables Introduced in MySQL 8.0

• mysqlx_write_timeout: Number of seconds to wait for blocking write operations to complete.
Added in MySQL 8.0.4.

• mysqlx_zstd_default_compression_level: Default compression level for zstd algorithm on X
Protocol connections. Added in MySQL 8.0.20.

• mysqlx_zstd_max_client_compression_level: Maximum permitted compression level for
zstd algorithm on X Protocol connections. Added in MySQL 8.0.20.

• named_pipe_full_access_group: Name of Windows group granted full access to named pipe.
Added in MySQL 8.0.14.

• no-dd-upgrade: Prevent automatic upgrade of data dictionary tables at startup. Added in MySQL
8.0.4.

• no-monitor: Do not fork monitor process required for RESTART. Added in MySQL 8.0.12.

• original_commit_timestamp: Time when transaction was committed on original source. Added
in MySQL 8.0.1.

• original_server_version: MySQL Server release number of server on which transaction was
originally committed. Added in MySQL 8.0.14.

• partial_revokes: Whether partial revocation is enabled. Added in MySQL 8.0.16.

• password_history: Number of password changes required before password reuse. Added in
MySQL 8.0.3.

• password_require_current: Whether password changes require current password verification.
Added in MySQL 8.0.13.

• password_reuse_interval: Number of days elapsed required before password reuse. Added in
MySQL 8.0.3.

• performance-schema-consumer-events-statements-cpu: Configure statement CPU-usage
consumer. Added in MySQL 8.0.28.

• performance_schema_max_digest_sample_age: Query resample age in seconds. Added in
MySQL 8.0.3.

• performance_schema_show_processlist: Select SHOW PROCESSLIST implementation.
Added in MySQL 8.0.22.

• persist_only_admin_x509_subject: SSL certificate X.509 Subject that enables persisting
persist-restricted system variables. Added in MySQL 8.0.14.

• persist_sensitive_variables_in_plaintext: Whether the server is permitted to store the
values of sensitive system variables in an unencrypted format. Added in MySQL 8.0.29.

• persisted_globals_load: Whether to load persisted configuration settings. Added in MySQL
8.0.0.

• print_identified_with_as_hex: For SHOW CREATE USER, print hash values containing
unprintable characters in hex. Added in MySQL 8.0.17.

• protocol_compression_algorithms: Permitted compression algorithms for incoming
connections. Added in MySQL 8.0.18.

• pseudo_replica_mode: For internal server use. Added in MySQL 8.0.26.

• regexp_stack_limit: Regular expression match stack size limit. Added in MySQL 8.0.4.

• regexp_time_limit: Regular expression match timeout. Added in MySQL 8.0.4.

78

Options and Variables Introduced in MySQL 8.0

• replica_checkpoint_group: Maximum number of transactions processed by multithreaded
replica before checkpoint operation is called to update progress status. Not supported by NDB
Cluster. Added in MySQL 8.0.26.

• replica_checkpoint_period: Update progress status of multithreaded replica and flush relay
log info to disk after this number of milliseconds. Not supported by NDB Cluster. Added in MySQL
8.0.26.

• replica_compressed_protocol: Use compression of source/replica protocol. Added in MySQL
8.0.26.

• replica_exec_mode: Allows for switching replication thread between IDEMPOTENT mode (key
and some other errors suppressed) and STRICT mode; STRICT mode is default, except for NDB
Cluster, where IDEMPOTENT is always used. Added in MySQL 8.0.26.

• replica_load_tmpdir: Location where replica should put its temporary files when replicating
LOAD DATA statements. Added in MySQL 8.0.26.

• replica_max_allowed_packet: Maximum size, in bytes, of packet that can be sent from
replication source server to replica; overrides max_allowed_packet. Added in MySQL 8.0.26.

• replica_net_timeout: Number of seconds to wait for more data from source/replica connection
before aborting read. Added in MySQL 8.0.26.

• replica_parallel_type: Tells replica to use timestamp information (LOGICAL_CLOCK) or
database partitioning (DATABASE) to parallelize transactions. Added in MySQL 8.0.26.

• replica_parallel_workers: Number of applier threads for executing replication transactions.
NDB Cluster: see documentation. Added in MySQL 8.0.26.

• replica_pending_jobs_size_max: Maximum size of replica worker queues holding events not
yet applied. Added in MySQL 8.0.26.

• replica_preserve_commit_order: Ensures that all commits by replica workers happen in same
order as on source to maintain consistency when using parallel applier threads. Added in MySQL
8.0.26.

• replica_skip_errors: Tells replication thread to continue replication when query returns error
from provided list. Added in MySQL 8.0.26.

• replica_sql_verify_checksum: Cause replica to examine checksums when reading from relay
log. Added in MySQL 8.0.26.

• replica_transaction_retries: Number of times replication SQL thread retries transaction in
case it failed with deadlock or elapsed lock wait timeout, before giving up and stopping. Added in
MySQL 8.0.26.

• replica_type_conversions: Controls type conversion mode on replica. Value is list of zero or
more elements from this list: ALL_LOSSY, ALL_NON_LOSSY. Set to empty string to disallow type
conversions between source and replica. Added in MySQL 8.0.26.

• replication_optimize_for_static_plugin_config: Shared locks for semisynchronous
replication. Added in MySQL 8.0.23.

• replication_sender_observe_commit_only: Limited callbacks for semisynchronous
replication. Added in MySQL 8.0.23.

• require_row_format: For internal server use. Added in MySQL 8.0.19.

• resultset_metadata: Whether server returns result set metadata. Added in MySQL 8.0.3.

• rewriter_enabled_for_threads_without_privilege_checks: If this is set to OFF,
rewrites are skipped for replication threads which execute with privilege checks disabled
(PRIVILEGE_CHECKS_USER is NULL). Added in MySQL 8.0.31.

79

Options and Variables Introduced in MySQL 8.0

• rpl_read_size: Set minimum amount of data in bytes which is read from binary log files and relay
log files. Added in MySQL 8.0.11.

• rpl_semi_sync_replica_enabled: Whether semisynchronous replication is enabled on replica.
Added in MySQL 8.0.26.

• rpl_semi_sync_replica_trace_level: Semisynchronous replication debug trace level on
replica. Added in MySQL 8.0.26.

• rpl_semi_sync_source_enabled: Whether semisynchronous replication is enabled on source.
Added in MySQL 8.0.26.

• rpl_semi_sync_source_timeout: Number of milliseconds to wait for replica acknowledgment.
Added in MySQL 8.0.26.

• rpl_semi_sync_source_trace_level: Semisynchronous replication debug trace level on
source. Added in MySQL 8.0.26.

• rpl_semi_sync_source_wait_for_replica_count: Number of replica acknowledgments
source must receive per transaction before proceeding. Added in MySQL 8.0.26.

• rpl_semi_sync_source_wait_no_replica: Whether source waits for timeout even with no
replicas. Added in MySQL 8.0.26.

• rpl_semi_sync_source_wait_point: Wait point for replica transaction receipt
acknowledgment. Added in MySQL 8.0.26.

• rpl_stop_replica_timeout: Number of seconds that STOP REPLICA waits before timing out.
Added in MySQL 8.0.26.

• schema_definition_cache: Number of schema definition objects that can be kept in dictionary
object cache. Added in MySQL 8.0.0.

• secondary_engine_cost_threshold: Optimizer cost threshold for query offload to a secondary
engine. Added in MySQL 8.0.16.

• select_into_buffer_size: Size of buffer used for OUTFILE or DUMPFILE export file; overrides
read_buffer_size. Added in MySQL 8.0.22.

• select_into_disk_sync: Synchronize data with storage device after flushing buffer for OUTFILE
or DUMPFILE export file; OFF disables synchronization and is default value. Added in MySQL
8.0.22.

• select_into_disk_sync_delay: When select_into_sync_disk = ON, sets delay in milliseconds
after each synchronization of OUTFILE or DUMPFILE export file buffer, no effect otherwise. Added in
MySQL 8.0.22.

• show-replica-auth-info: Show user name and password in SHOW REPLICAS on this source.
Added in MySQL 8.0.26.

• show_create_table_skip_secondary_engine: Whether to exclude the SECONDARY
ENGINE clause from SHOW CREATE TABLE output. Added in MySQL 8.0.18.

• show_create_table_verbosity: Whether to display ROW_FORMAT in SHOW CREATE
TABLE even if it has default value. Added in MySQL 8.0.11.

• show_gipk_in_create_table_and_information_schema: Whether generated invisible
primary keys are displayed in SHOW statements and INFORMATION_SCHEMA tables. Added in
MySQL 8.0.30.

• skip-replica-start: If set, replication is not autostarted when replica server starts. Added in
MySQL 8.0.26.

80

Options and Variables Introduced in MySQL 8.0

• source_verify_checksum: Cause source to examine checksums when reading from binary log.
Added in MySQL 8.0.26.

• sql_generate_invisible_primary_key: Whether to generate invisible primary keys for any
InnoDB tables which were created on this server and which have no explicit PKs. Added in MySQL
8.0.30.

• sql_replica_skip_counter: Number of events from source that replica should skip. Not
compatible with GTID replication. Added in MySQL 8.0.26.

• sql_require_primary_key: Whether tables must have primary key. Added in MySQL 8.0.13.

• ssl_fips_mode: Whether to enable FIPS mode on server side. Added in MySQL 8.0.11.

• ssl_session_cache_mode: Whether to enable session ticket generation by server. Added in
MySQL 8.0.29.

• ssl_session_cache_timeout: SSL Session timeout value in seconds. Added in MySQL 8.0.29.

• sync_source_info: Synchronize source information after every #th event. Added in MySQL
8.0.26.

• syseventlog.facility: Facility for syslog messages. Added in MySQL 8.0.13.

• syseventlog.include_pid: Whether to include server PID in syslog messages. Added in
MySQL 8.0.13.

• syseventlog.tag: Tag for server identifier in syslog messages. Added in MySQL 8.0.13.

• table_encryption_privilege_check: Enables TABLE_ENCRYPTION_ADMIN privilege
check. Added in MySQL 8.0.16.

• tablespace_definition_cache: Number of tablespace definition objects that can be kept in
dictionary object cache. Added in MySQL 8.0.0.

• temptable_max_mmap: The maximum amount of memory the TempTable storage engine can
allocate from memory-mapped temporary files. Added in MySQL 8.0.23.

• temptable_max_ram: Defines maximum amount of memory that can occupied by TempTable
storage engine before data is stored on disk. Added in MySQL 8.0.2.

• temptable_use_mmap: Defines whether TempTable storage engine allocates memory-mapped
files when the temptable_max_ram threshold is reached. Added in MySQL 8.0.16.

• terminology_use_previous: Use terminology from before specified version where changes are
incompatible. Added in MySQL 8.0.26.

• thread_pool_algorithm: Thread pool algorithm. Added in MySQL 8.0.11.

• thread_pool_dedicated_listeners: Dedicates a listener thread in each thread group to listen
for network events. Added in MySQL 8.0.23.

• thread_pool_high_priority_connection: Whether current session is high priority. Added in
MySQL 8.0.11.

• thread_pool_max_active_query_threads: Maximum permissible number of active query
threads per group. Added in MySQL 8.0.19.

• thread_pool_max_transactions_limit: Maximum number of transactions permitted during
thread pool operation. Added in MySQL 8.0.23.

• thread_pool_max_unused_threads: Maximum permissible number of unused threads. Added in
MySQL 8.0.11.

81

Options and Variables Deprecated in MySQL 8.0

• thread_pool_prio_kickup_timer: How long before statement is moved to high-priority
execution. Added in MySQL 8.0.11.

• thread_pool_query_threads_per_group: Maximum number of query threads for a thread
group. Added in MySQL 8.0.31.

• thread_pool_size: Number of thread groups in thread pool. Added in MySQL 8.0.11.

• thread_pool_stall_limit: How long before statement is defined as stalled. Added in MySQL
8.0.11.

• thread_pool_transaction_delay: Delay period before thread pool executes a new transaction.
Added in MySQL 8.0.31.

• tls_ciphersuites: Permissible TLSv1.3 ciphersuites for encrypted connections. Added in
MySQL 8.0.16.

• upgrade: Control automatic upgrade at startup. Added in MySQL 8.0.16.

• use_secondary_engine: Whether to execute queries using a secondary engine. Added in MySQL
8.0.13.

• validate-config: Validate server configuration. Added in MySQL 8.0.16.

• validate_password.changed_characters_percentage: Minimum percentage of changed
characters required for new passwords. Added in MySQL 8.0.34.

• validate_password.check_user_name: Whether to check passwords against user name.
Added in MySQL 8.0.4.

• validate_password.dictionary_file: validate_password dictionary file. Added in MySQL
8.0.4.

• validate_password.dictionary_file_last_parsed: When dictionary file was last parsed.
Added in MySQL 8.0.4.

• validate_password.dictionary_file_words_count: Number of words in dictionary file.
Added in MySQL 8.0.4.

• validate_password.length: validate_password required password length. Added in MySQL
8.0.4.

• validate_password.mixed_case_count: validate_password required number of uppercase/
lowercase characters. Added in MySQL 8.0.4.

• validate_password.number_count: validate_password required number of digit characters.
Added in MySQL 8.0.4.

• validate_password.policy: validate_password password policy. Added in MySQL 8.0.4.

• validate_password.special_char_count: validate_password required number of special
characters. Added in MySQL 8.0.4.

• version_compile_zlib: Version of compiled-in zlib library. Added in MySQL 8.0.11.

• windowing_use_high_precision: Whether to compute window functions to high precision.
Added in MySQL 8.0.2.

Options and Variables Deprecated in MySQL 8.0

The following system variables, status variables, and options have been deprecated in MySQL 8.0.

• Compression: Whether client connection uses compression in client/server protocol. Deprecated in
MySQL 8.0.18.

82

Options and Variables Deprecated in MySQL 8.0

• Rsa_public_key: sha256_password authentication plugin RSA public key value. Deprecated in
MySQL 8.0.16.

• Slave_open_temp_tables: Number of temporary tables that replication SQL thread currently has
open. Deprecated in MySQL 8.0.26.

• Slave_rows_last_search_algorithm_used: Search algorithm most recently used by this
replica to locate rows for row-based replication (index, table, or hash scan). Deprecated in MySQL
8.0.26.

• abort-slave-event-count: Option used by mysql-test for debugging and testing of replication.
Deprecated in MySQL 8.0.29.

• admin-ssl: Enable connection encryption. Deprecated in MySQL 8.0.26.

• audit_log_connection_policy: Audit logging policy for connection-related events. Deprecated
in MySQL 8.0.34.

• audit_log_exclude_accounts: Accounts not to audit. Deprecated in MySQL 8.0.34.

• audit_log_include_accounts: Accounts to audit. Deprecated in MySQL 8.0.34.

• audit_log_policy: Audit logging policy. Deprecated in MySQL 8.0.34.

• audit_log_statement_policy: Audit logging policy for statement-related events. Deprecated in
MySQL 8.0.34.

• authentication_fido_rp_id: Relying party ID for FIDO multifactor authentication. Deprecated
in MySQL 8.0.35.

• binlog_format: Specifies format of binary log. Deprecated in MySQL 8.0.34.

• binlog_transaction_dependency_tracking: Source of dependency information (commit
timestamps or transaction write sets) from which to assess which transactions can be executed in
parallel by replica's multithreaded applier. Deprecated in MySQL 8.0.35.

• character-set-client-handshake: Do not ignore client side character set value sent during
handshake. Deprecated in MySQL 8.0.35.

• daemon_memcached_enable_binlog: . Deprecated in MySQL 8.0.22.

• daemon_memcached_engine_lib_name: Shared library implementing InnoDB memcached
plugin. Deprecated in MySQL 8.0.22.

• daemon_memcached_engine_lib_path: Directory which contains shared library implementing
InnoDB memcached plugin. Deprecated in MySQL 8.0.22.

• daemon_memcached_option: Space-separated options which are passed to underlying
memcached daemon on startup. Deprecated in MySQL 8.0.22.

• daemon_memcached_r_batch_size: Specifies how many memcached read operations to perform
before doing COMMIT to start new transaction. Deprecated in MySQL 8.0.22.

• daemon_memcached_w_batch_size: Specifies how many memcached write operations to
perform before doing COMMIT to start new transaction. Deprecated in MySQL 8.0.22.

• default_authentication_plugin: Default authentication plugin. Deprecated in MySQL 8.0.27.

• disconnect-slave-event-count: Option used by mysql-test for debugging and testing of
replication. Deprecated in MySQL 8.0.29.

• expire_logs_days: Purge binary logs after this many days. Deprecated in MySQL 8.0.3.

• group_replication_ip_whitelist: List of hosts permitted to connect to group. Deprecated in
MySQL 8.0.22.

83

Options and Variables Deprecated in MySQL 8.0

• group_replication_primary_member: Primary member UUID when group operates in single-
primary mode. Empty string if group is operating in multi-primary mode. Deprecated in MySQL 8.0.4.

• group_replication_recovery_complete_at: Recovery policies when handling cached
transactions after state transfer. Deprecated in MySQL 8.0.34.

• have_openssl: Whether mysqld supports SSL connections. Deprecated in MySQL 8.0.26.

• have_ssl: Whether mysqld supports SSL connections. Deprecated in MySQL 8.0.26.

• init_slave: Statements that are executed when replica connects to source. Deprecated in MySQL
8.0.26.

• innodb_api_bk_commit_interval: How often to auto-commit idle connections which use
InnoDB memcached interface, in seconds. Deprecated in MySQL 8.0.22.

• innodb_api_disable_rowlock: . Deprecated in MySQL 8.0.22.

• innodb_api_enable_binlog: Allows use of InnoDB memcached plugin with MySQL binary log.
Deprecated in MySQL 8.0.22.

• innodb_api_enable_mdl: Locks table used by InnoDB memcached plugin, so that it cannot be
dropped or altered by DDL through SQL interface. Deprecated in MySQL 8.0.22.

• innodb_api_trx_level: Allows control of transaction isolation level on queries processed by
memcached interface. Deprecated in MySQL 8.0.22.

• innodb_log_file_size: Size of each log file in log group. Deprecated in MySQL 8.0.30.

• innodb_log_files_in_group: Number of InnoDB log files in log group. Deprecated in MySQL
8.0.30.

• innodb_undo_tablespaces: Number of tablespace files that rollback segments are divided
between. Deprecated in MySQL 8.0.4.

• keyring_encrypted_file_data: keyring_encrypted_file plugin data file. Deprecated in MySQL
8.0.34.

• keyring_encrypted_file_password: keyring_encrypted_file plugin password. Deprecated in
MySQL 8.0.34.

• keyring_file_data: keyring_file plugin data file. Deprecated in MySQL 8.0.34.

• keyring_oci_ca_certificate: CA certificate file for peer authentication. Deprecated in MySQL
8.0.31.

• keyring_oci_compartment: OCI compartment OCID. Deprecated in MySQL 8.0.31.

• keyring_oci_encryption_endpoint: OCI encryption server endpoint. Deprecated in MySQL
8.0.31.

• keyring_oci_key_file: OCI RSA private key file. Deprecated in MySQL 8.0.31.

• keyring_oci_key_fingerprint: OCI RSA private key file fingerprint. Deprecated in MySQL
8.0.31.

• keyring_oci_management_endpoint: OCI management server endpoint. Deprecated in MySQL
8.0.31.

• keyring_oci_master_key: OCI master key OCID. Deprecated in MySQL 8.0.31.

• keyring_oci_secrets_endpoint: OCI secrets server endpoint. Deprecated in MySQL 8.0.31.

• keyring_oci_tenancy: OCI tenancy OCID. Deprecated in MySQL 8.0.31.

84

Options and Variables Deprecated in MySQL 8.0

• keyring_oci_user: OCI user OCID. Deprecated in MySQL 8.0.31.

• keyring_oci_vaults_endpoint: OCI vaults server endpoint. Deprecated in MySQL 8.0.31.

• keyring_oci_virtual_vault: OCI vault OCID. Deprecated in MySQL 8.0.31.

• log_bin_trust_function_creators: If equal to 0 (default), then when --log-bin is used, stored
function creation is allowed only to users having SUPER privilege and only if function created does
not break binary logging. Deprecated in MySQL 8.0.34.

• log_bin_use_v1_row_events: Whether server is using version 1 binary log row events.
Deprecated in MySQL 8.0.18.

• log_slave_updates: Whether replica should log updates performed by its replication SQL thread
to its own binary log. Deprecated in MySQL 8.0.26.

• log_slow_slave_statements: Cause slow statements as executed by replica to be written to
slow query log. Deprecated in MySQL 8.0.26.

• log_statements_unsafe_for_binlog: Disables error 1592 warnings being written to error log.
Deprecated in MySQL 8.0.34.

• log_syslog: Whether to write error log to syslog. Deprecated in MySQL 8.0.2.

• master-info-file: Location and name of file that remembers source and where I/O replication
thread is in source's binary log. Deprecated in MySQL 8.0.18.

• master_info_repository: Whether to write connection metadata repository, containing source
information and replication I/O thread location in source's binary log, to file or table. Deprecated in
MySQL 8.0.23.

• master_verify_checksum: Cause source to examine checksums when reading from binary log.
Deprecated in MySQL 8.0.26.

• max_length_for_sort_data: Max number of bytes in sorted records. Deprecated in MySQL
8.0.20.

• myisam_repair_threads: Number of threads to use when repairing MyISAM tables. 1 disables
parallel repair. Deprecated in MySQL 8.0.29.

• mysql_native_password_proxy_users: Whether mysql_native_password authentication plugin
does proxying. Deprecated in MySQL 8.0.16.

• new: Use very new, possibly 'unsafe' functions. Deprecated in MySQL 8.0.35.

• no-dd-upgrade: Prevent automatic upgrade of data dictionary tables at startup. Deprecated in
MySQL 8.0.16.

• old: Cause server to revert to certain behaviors present in older versions. Deprecated in MySQL
8.0.35.

• old-style-user-limits: Enable old-style user limits (before 5.0.3, user resources were counted
per each user+host vs. per account). Deprecated in MySQL 8.0.30.

• performance_schema_show_processlist: Select SHOW PROCESSLIST implementation.
Deprecated in MySQL 8.0.35.

• pseudo_slave_mode: For internal server use. Deprecated in MySQL 8.0.26.

• query_prealloc_size: Persistent buffer for query parsing and execution. Deprecated in MySQL
8.0.29.

• relay_log_info_file: File name for applier metadata repository in which replica records
information about relay logs. Deprecated in MySQL 8.0.18.

85

Options and Variables Deprecated in MySQL 8.0

• relay_log_info_repository: Whether to write location of replication SQL thread in relay logs to
file or table. Deprecated in MySQL 8.0.23.

• replica_parallel_type: Tells replica to use timestamp information (LOGICAL_CLOCK) or
database partitioning (DATABASE) to parallelize transactions. Deprecated in MySQL 8.0.29.

• rpl_stop_slave_timeout: Number of seconds that STOP REPLICA or STOP SLAVE waits
before timing out. Deprecated in MySQL 8.0.26.

• safe-user-create: Do not allow new user creation by user who has no write privileges to
mysql.user table; this option is deprecated and ignored. Deprecated in MySQL 8.0.11.

• sha256_password_auto_generate_rsa_keys: Whether to generate RSA key-pair files
automatically. Deprecated in MySQL 8.0.16.

• sha256_password_private_key_path: SHA256 authentication plugin private key path name.
Deprecated in MySQL 8.0.16.

• sha256_password_proxy_users: Whether sha256_password authentication plugin does
proxying. Deprecated in MySQL 8.0.16.

• sha256_password_public_key_path: SHA256 authentication plugin public key path name.
Deprecated in MySQL 8.0.16.

• show-slave-auth-info: Show user name and password in SHOW REPLICAS and SHOW
SLAVE HOSTS on this source. Deprecated in MySQL 8.0.26.

• skip-character-set-client-handshake: Ignore client side character set value sent during
handshake. Deprecated in MySQL 8.0.35.

• skip-host-cache: Do not cache host names. Deprecated in MySQL 8.0.30.

• skip-new: Do not use new, possibly wrong routines. Deprecated in MySQL 8.0.35.

• skip-slave-start: If set, replication is not autostarted when replica server starts. Deprecated in
MySQL 8.0.26.

• skip-ssl: Disable connection encryption. Deprecated in MySQL 8.0.26.

• slave-skip-errors: Tells replication thread to continue replication when query returns error from
provided list. Deprecated in MySQL 8.0.26.

• slave_checkpoint_group: Maximum number of transactions processed by multithreaded replica
before checkpoint operation is called to update progress status. Not supported by NDB Cluster.
Deprecated in MySQL 8.0.26.

• slave_checkpoint_period: Update progress status of multithreaded replica and flush relay log
info to disk after this number of milliseconds. Not supported by NDB Cluster. Deprecated in MySQL
8.0.26.

• slave_compressed_protocol: Use compression of source/replica protocol. Deprecated in
MySQL 8.0.18.

• slave_load_tmpdir: Location where replica should put its temporary files when replicating LOAD
DATA statements. Deprecated in MySQL 8.0.26.

• slave_max_allowed_packet: Maximum size, in bytes, of packet that can be sent from replication
source server to replica; overrides max_allowed_packet. Deprecated in MySQL 8.0.26.

• slave_net_timeout: Number of seconds to wait for more data from source/replica connection
before aborting read. Deprecated in MySQL 8.0.26.

• slave_parallel_type: Tells replica to use timestamp information (LOGICAL_CLOCK) or
database partioning (DATABASE) to parallelize transactions. Deprecated in MySQL 8.0.26.

86

Options and Variables Removed in MySQL 8.0

• slave_parallel_workers: Number of applier threads for executing replication transactions in
parallel; 0 or 1 disables replica multithreading. NDB Cluster: see documentation. Deprecated in
MySQL 8.0.26.

• slave_pending_jobs_size_max: Maximum size of replica worker queues holding events not yet
applied. Deprecated in MySQL 8.0.26.

• slave_preserve_commit_order: Ensures that all commits by replica workers happen in same
order as on source to maintain consistency when using parallel applier threads. Deprecated in
MySQL 8.0.26.

• slave_rows_search_algorithms: Determines search algorithms used for replica update
batching. Any 2 or 3 from this list: INDEX_SEARCH, TABLE_SCAN, HASH_SCAN. Deprecated in
MySQL 8.0.18.

• slave_sql_verify_checksum: Cause replica to examine checksums when reading from relay
log. Deprecated in MySQL 8.0.26.

• slave_transaction_retries: Number of times replication SQL thread retries transaction in
case it failed with deadlock or elapsed lock wait timeout, before giving up and stopping. Deprecated
in MySQL 8.0.26.

• slave_type_conversions: Controls type conversion mode on replica. Value is list of zero or
more elements from this list: ALL_LOSSY, ALL_NON_LOSSY. Set to empty string to disallow type
conversions between source and replica. Deprecated in MySQL 8.0.26.

• sql_slave_skip_counter: Number of events from source that replica should skip. Not
compatible with GTID replication. Deprecated in MySQL 8.0.26.

• ssl: Enable connection encryption. Deprecated in MySQL 8.0.26.

• ssl_fips_mode: Whether to enable FIPS mode on server side. Deprecated in MySQL 8.0.34.

• symbolic-links: Permit symbolic links for MyISAM tables. Deprecated in MySQL 8.0.2.

• sync_master_info: Synchronize source information after every #th event. Deprecated in MySQL
8.0.26.

• sync_relay_log_info: Synchronize relay.info file to disk after every #th event. Deprecated in
MySQL 8.0.34.

• temptable_use_mmap: Defines whether TempTable storage engine allocates memory-mapped
files when the temptable_max_ram threshold is reached. Deprecated in MySQL 8.0.26.

• transaction_prealloc_size: Persistent buffer for transactions to be stored in binary log.
Deprecated in MySQL 8.0.29.

• transaction_write_set_extraction: Defines algorithm used to hash writes extracted during
transaction. Deprecated in MySQL 8.0.26.

Options and Variables Removed in MySQL 8.0

The following system variables, status variables, and options have been removed in MySQL 8.0.

• Com_alter_db_upgrade: Count of ALTER DATABASE ... UPGRADE DATA DIRECTORY NAME
statements. Removed in MySQL 8.0.0.

• Innodb_available_undo_logs: Total number of InnoDB rollback segments; different from
innodb_rollback_segments, which displays number of active rollback segments. Removed in MySQL
8.0.2.

• Qcache_free_blocks: Number of free memory blocks in query cache. Removed in MySQL 8.0.3.

87

Options and Variables Removed in MySQL 8.0

• Qcache_free_memory: Amount of free memory for query cache. Removed in MySQL 8.0.3.

• Qcache_hits: Number of query cache hits. Removed in MySQL 8.0.3.

• Qcache_inserts: Number of query cache inserts. Removed in MySQL 8.0.3.

• Qcache_lowmem_prunes: Number of queries which were deleted from query cache due to lack of
free memory in cache. Removed in MySQL 8.0.3.

• Qcache_not_cached: Number of noncached queries (not cacheable, or not cached due to
query_cache_type setting). Removed in MySQL 8.0.3.

• Qcache_queries_in_cache: Number of queries registered in query cache. Removed in MySQL
8.0.3.

• Qcache_total_blocks: Total number of blocks in query cache. Removed in MySQL 8.0.3.

• Slave_heartbeat_period: Replica's replication heartbeat interval, in seconds. Removed in
MySQL 8.0.1.

• Slave_last_heartbeat: Shows when latest heartbeat signal was received, in TIMESTAMP
format. Removed in MySQL 8.0.1.

• Slave_received_heartbeats: Number of heartbeats received by replica since previous reset.
Removed in MySQL 8.0.1.

• Slave_retried_transactions: Total number of times since startup that replication SQL thread
has retried transactions. Removed in MySQL 8.0.1.

• Slave_running: State of this server as replica (replication I/O thread status). Removed in MySQL
8.0.1.

• bootstrap: Used by mysql installation scripts. Removed in MySQL 8.0.0.

• date_format: DATE format (unused). Removed in MySQL 8.0.3.

• datetime_format: DATETIME/TIMESTAMP format (unused). Removed in MySQL 8.0.3.

• des-key-file: Load keys for des_encrypt() and des_encrypt from given file. Removed in MySQL
8.0.3.

• group_replication_allow_local_disjoint_gtids_join: Allow current server to join group
even if it has transactions not present in group. Removed in MySQL 8.0.4.

• have_crypt: Availability of crypt() system call. Removed in MySQL 8.0.3.

• ignore-db-dir: Treat directory as nondatabase directory. Removed in MySQL 8.0.0.

• ignore_builtin_innodb: Ignore built-in InnoDB. Removed in MySQL 8.0.3.

• ignore_db_dirs: Directories treated as nondatabase directories. Removed in MySQL 8.0.0.

• innodb_checksums: Enable InnoDB checksums validation. Removed in MySQL 8.0.0.

• innodb_disable_resize_buffer_pool_debug: Disables resizing of InnoDB buffer pool.
Removed in MySQL 8.0.0.

• innodb_file_format: Format for new InnoDB tables. Removed in MySQL 8.0.0.

• innodb_file_format_check: Whether InnoDB performs file format compatibility checking.
Removed in MySQL 8.0.0.

• innodb_file_format_max: File format tag in shared tablespace. Removed in MySQL 8.0.0.

• innodb_large_prefix: Enables longer keys for column prefix indexes. Removed in MySQL 8.0.0.

88

Options and Variables Removed in MySQL 8.0

• innodb_locks_unsafe_for_binlog: Force InnoDB not to use next-key locking. Instead use only
row-level locking. Removed in MySQL 8.0.0.

• innodb_scan_directories: Defines directories to scan for tablespace files during InnoDB
recovery. Removed in MySQL 8.0.4.

• innodb_stats_sample_pages: Number of index pages to sample for index distribution statistics.
Removed in MySQL 8.0.0.

• innodb_support_xa: Enable InnoDB support for XA two-phase commit. Removed in MySQL
8.0.0.

• innodb_undo_logs: Number of undo logs (rollback segments) used by InnoDB; alias for
innodb_rollback_segments. Removed in MySQL 8.0.2.

• internal_tmp_disk_storage_engine: Storage engine for internal temporary tables. Removed
in MySQL 8.0.16.

• log-warnings: Write some noncritical warnings to log file. Removed in MySQL 8.0.3.

• log_builtin_as_identified_by_password: Whether to log CREATE/ALTER USER, GRANT
in backward-compatible fashion. Removed in MySQL 8.0.11.

• log_error_filter_rules: Filter rules for error logging. Removed in MySQL 8.0.4.

• log_syslog: Whether to write error log to syslog. Removed in MySQL 8.0.13.

• log_syslog_facility: Facility for syslog messages. Removed in MySQL 8.0.13.

• log_syslog_include_pid: Whether to include server PID in syslog messages. Removed in
MySQL 8.0.13.

• log_syslog_tag: Tag for server identifier in syslog messages. Removed in MySQL 8.0.13.

• max_tmp_tables: Unused. Removed in MySQL 8.0.3.

• metadata_locks_cache_size: Size of metadata locks cache. Removed in MySQL 8.0.13.

• metadata_locks_hash_instances: Number of metadata lock hashes. Removed in MySQL
8.0.13.

• multi_range_count: Maximum number of ranges to send to table handler at once during range
selects. Removed in MySQL 8.0.3.

• myisam_repair_threads: Number of threads to use when repairing MyISAM tables. 1 disables
parallel repair. Removed in MySQL 8.0.30.

• old_passwords: Selects password hashing method for PASSWORD(). Removed in MySQL 8.0.11.

• partition: Enable (or disable) partitioning support. Removed in MySQL 8.0.0.

• query_cache_limit: Do not cache results that are bigger than this. Removed in MySQL 8.0.3.

• query_cache_min_res_unit: Minimal size of unit in which space for results is allocated (last unit
is trimmed after writing all result data). Removed in MySQL 8.0.3.

• query_cache_size: Memory allocated to store results from old queries. Removed in MySQL 8.0.3.

• query_cache_type: Query cache type. Removed in MySQL 8.0.3.

• query_cache_wlock_invalidate: Invalidate queries in query cache on LOCK for write.
Removed in MySQL 8.0.3.

• secure_auth: Disallow authentication for accounts that have old (pre-4.1) passwords. Removed in
MySQL 8.0.3.

89

How to Report Bugs or Problems

• show_compatibility_56: Compatibility for SHOW STATUS/VARIABLES. Removed in MySQL
8.0.1.

• skip-partition: Do not enable user-defined partitioning. Removed in MySQL 8.0.0.

• sync_frm: Sync .frm to disk on create. Enabled by default. Removed in MySQL 8.0.0.

• temp-pool: Using this option causes most temporary files created to use small set of names, rather
than unique name for each new file. Removed in MySQL 8.0.1.

• time_format: TIME format (unused). Removed in MySQL 8.0.3.

• tx_isolation: Default transaction isolation level. Removed in MySQL 8.0.3.

• tx_read_only: Default transaction access mode. Removed in MySQL 8.0.3.

1.5 How to Report Bugs or Problems
Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been
reported already:

• Start by searching the MySQL online manual at https://dev.mysql.com/doc/. We try to keep the
manual up to date by updating it frequently with solutions to newly found problems. In addition, the
release notes accompanying the manual can be particularly useful since it is quite possible that a
newer version contains a solution to your problem. The release notes are available at the location
just given for the manual.

• If you get a parse error for an SQL statement, please check your syntax closely. If you cannot find
something wrong with it, it is extremely likely that your current version of MySQL Server doesn't
support the syntax you are using. If you are using the current version and the manual doesn't cover
the syntax that you are using, MySQL Server doesn't support your statement.

If the manual covers the syntax you are using, but you have an older version of MySQL Server, you
should check the MySQL change history to see when the syntax was implemented. In this case, you
have the option of upgrading to a newer version of MySQL Server.

• For solutions to some common problems, see Section B.3, “Problems and Common Errors”.

• Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and
fixed.

• You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual)
that are located at the MySQL website.

If you cannot find an answer in the manual, the bugs database, or the mailing list archives, check with
your local MySQL expert. If you still cannot find an answer to your question, please use the following
guidelines for reporting the bug.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are
noted in the release notes.

If you find a security bug in MySQL Server, please let us know immediately by sending an email
message to <secalert_us@oracle.com>. Exception: Support customers should report all
problems, including security bugs, to Oracle Support at http://support.oracle.com/.

To discuss problems with other users, you can use the MySQL Community Slack.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix

90

https://dev.mysql.com/doc/
http://bugs.mysql.com/
http://www.mysql.com/search/
http://bugs.mysql.com/
http://bugs.mysql.com/
http://support.oracle.com/
https://mysqlcommunity.slack.com/

How to Report Bugs or Problems

the bug in the next release. This section helps you write your report correctly so that you do not waste
your time doing things that may not help us much or at all. Please read this section carefully and make
sure that all the information described here is included in your report.

Preferably, you should test the problem using the latest production or development version of MySQL
Server before posting. Anyone should be able to repeat the bug by just using mysql test <
script_file on your test case or by running the shell or Perl script that you include in the bug report.
Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

It is most helpful when a good description of the problem is included in the bug report. That is, give a
good example of everything you did that led to the problem and describe, in exact detail, the problem
itself. The best reports are those that include a full example showing how to reproduce the bug or
problem. See Section 7.9, “Debugging MySQL”.

Remember that it is possible for us to respond to a report containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem
and assume that some details do not matter. A good principle to follow is that if you are in doubt about
stating something, state it. It is faster and less troublesome to write a couple more lines in your report
than to wait longer for the answer if we must ask you to provide information that was missing from the
initial report.

The most common errors made in bug reports are (a) not including the version number of the MySQL
distribution that you use, and (b) not fully describing the platform on which the MySQL server is
installed (including the platform type and version number). These are highly relevant pieces of
information, and in 99 cases out of 100, the bug report is useless without them. Very often we get
questions like, “Why doesn't this work for me?” Then we find that the feature requested wasn't
implemented in that MySQL version, or that a bug described in a report has been fixed in newer
MySQL versions. Errors often are platform-dependent. In such cases, it is next to impossible for us to
fix anything without knowing the operating system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your compiler if
it is related to the problem. Often people find bugs in compilers and think the problem is MySQL-
related. Most compilers are under development all the time and become better version by version. To
determine whether your problem depends on your compiler, we need to know what compiler you used.
Note that every compiling problem should be regarded as a bug and reported accordingly.

If a program produces an error message, it is very important to include the message in your report. If
we try to search for something from the archives, it is better that the error message reported exactly
matches the one that the program produces. (Even the lettercase should be observed.) It is best
to copy and paste the entire error message into your report. You should never try to reproduce the
message from memory.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it
with your report. See How to Report Connector/ODBC Problems or Bugs.

If your report includes long query output lines from test cases that you run with the mysql command-
line tool, you can make the output more readable by using the --vertical option or the \G statement
terminator. The EXPLAIN SELECT example later in this section demonstrates the use of \G.

Please include the following information in your report:

• The version number of the MySQL distribution you are using (for example, MySQL 5.7.10). You can
find out which version you are running by executing mysqladmin version. The mysqladmin
program can be found in the bin directory under your MySQL installation directory.

• The manufacturer and model of the machine on which you experience the problem.

• The operating system name and version. If you work with Windows, you can usually get the name
and version number by double-clicking your My Computer icon and pulling down the “Help/About
Windows” menu. For most Unix-like operating systems, you can get this information by executing the
command uname -a.

91

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-support-bug-report.html

How to Report Bugs or Problems

• Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.

• The contents of the docs/INFO_BIN file from your MySQL installation. This file contains information
about how MySQL was configured and compiled.

• If you are using a source distribution of the MySQL software, include the name and version number
of the compiler that you used. If you have a binary distribution, include the distribution name.

• If the problem occurs during compilation, include the exact error messages and also a few lines of
context around the offending code in the file where the error occurs.

• If mysqld died, you should also report the statement that caused mysqld to unexpectedly exit. You
can usually get this information by running mysqld with query logging enabled, and then looking in
the log after mysqld exits. See Section 7.9, “Debugging MySQL”.

• If a database table is related to the problem, include the output from the SHOW CREATE TABLE
db_name.tbl_name statement in the bug report. This is a very easy way to get the definition of
any table in a database. The information helps us create a situation matching the one that you have
experienced.

• The SQL mode in effect when the problem occurred can be significant, so please report the value
of the sql_mode system variable. For stored procedure, stored function, and trigger objects, the
relevant sql_mode value is the one in effect when the object was created. For a stored procedure
or function, the SHOW CREATE PROCEDURE or SHOW CREATE FUNCTION statement shows the
relevant SQL mode, or you can query INFORMATION_SCHEMA for the information:

SELECT ROUTINE_SCHEMA, ROUTINE_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.ROUTINES;

For triggers, you can use this statement:

SELECT EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE, TRIGGER_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.TRIGGERS;

• For performance-related bugs or problems with SELECT statements, you should always include
the output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT statement
produces. You should also include the output from SHOW CREATE TABLE tbl_name for each
table that is involved. The more information you provide about your situation, the more likely it is that
someone can help you.

The following is an example of a very good bug report. The statements are run using the mysql
command-line tool. Note the use of the \G statement terminator for statements that would otherwise
provide very long output lines that are difficult to read.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G
 <output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G
 <output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;
 <A short version of the output from SELECT,
 including the time taken to run the query>
mysql> SHOW STATUS;
 <output from SHOW STATUS>

• If a bug or problem occurs while running mysqld, try to provide an input script that reproduces the
anomaly. This script should include any necessary source files. The more closely the script can
reproduce your situation, the better. If you can make a reproducible test case, you should upload it to
be attached to the bug report.

If you cannot provide a script, you should at least include the output from mysqladmin variables
extended-status processlist in your report to provide some information on how your system
is performing.

92

How to Report Bugs or Problems

• If you cannot produce a test case with only a few rows, or if the test table is too big to be included in
the bug report (more than 10 rows), you should dump your tables using mysqldump and create a
README file that describes your problem. Create a compressed archive of your files using tar and
gzip or zip. After you initiate a bug report for our bugs database at http://bugs.mysql.com/, click the
Files tab in the bug report for instructions on uploading the archive to the bugs database.

• If you believe that the MySQL server produces a strange result from a statement, include not only the
result, but also your opinion of what the result should be, and an explanation describing the basis for
your opinion.

• When you provide an example of the problem, it is better to use the table names, variable names,
and so forth that exist in your actual situation than to come up with new names. The problem could
be related to the name of a table or variable. These cases are rare, perhaps, but it is better to be
safe than sorry. After all, it should be easier for you to provide an example that uses your actual
situation, and it is by all means better for us. If you have data that you do not want to be visible
to others in the bug report, you can upload it using the Files tab as previously described. If the
information is really top secret and you do not want to show it even to us, go ahead and provide an
example using other names, but please regard this as the last choice.

• Include all the options given to the relevant programs, if possible. For example, indicate the
options that you use when you start the mysqld server, as well as the options that you use to run
any MySQL client programs. The options to programs such as mysqld and mysql, and to the
configure script, are often key to resolving problems and are very relevant. It is never a bad idea
to include them. If your problem involves a program written in a language such as Perl or PHP,
please include the language processor's version number, as well as the version for any modules
that the program uses. For example, if you have a Perl script that uses the DBI and DBD::mysql
modules, include the version numbers for Perl, DBI, and DBD::mysql.

• If your question is related to the privilege system, please include the output of mysqladmin
reload, and all the error messages you get when trying to connect. When you test your privileges,
you should execute mysqladmin reload version and try to connect with the program that gives
you trouble.

• If you have a patch for a bug, do include it. But do not assume that the patch is all we need, or that
we can use it, if you do not provide some necessary information such as test cases showing the bug
that your patch fixes. We might find problems with your patch or we might not understand it at all. If
so, we cannot use it.

If we cannot verify the exact purpose of the patch, we will not use it. Test cases help us here. Show
that the patch handles all the situations that may occur. If we find a borderline case (even a rare one)
where the patch will not work, it may be useless.

• Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the
MySQL team cannot guess such things without first using a debugger to determine the real cause of
a bug.

• Indicate in your bug report that you have checked the reference manual and mail archive so that
others know you have tried to solve the problem yourself.

• If your data appears corrupt or you get errors when you access a particular table, first check your
tables with CHECK TABLE. If that statement reports any errors:

• The InnoDB crash recovery mechanism handles cleanup when the server is restarted after being
killed, so in typical operation there is no need to “repair” tables. If you encounter an error with
InnoDB tables, restart the server and see whether the problem persists, or whether the error
affected only cached data in memory. If data is corrupted on disk, consider restarting with the
innodb_force_recovery option enabled so that you can dump the affected tables.

• For non-transactional tables, try to repair them with REPAIR TABLE or with myisamchk. See
Chapter 7, MySQL Server Administration.

93

http://bugs.mysql.com/

MySQL Standards Compliance

If you are running Windows, please verify the value of lower_case_table_names using the SHOW
VARIABLES LIKE 'lower_case_table_names' statement. This variable affects how the server
handles lettercase of database and table names. Its effect for a given value should be as described
in Section 11.2.3, “Identifier Case Sensitivity”.

• If you often get corrupted tables, you should try to find out when and why this happens. In this case,
the error log in the MySQL data directory may contain some information about what happened. (This
is the file with the .err suffix in the name.) See Section 7.4.2, “The Error Log”. Please include any
relevant information from this file in your bug report. Normally mysqld should never corrupt a table
if nothing killed it in the middle of an update. If you can find the cause of mysqld dying, it is much
easier for us to provide you with a fix for the problem. See Section B.3.1, “How to Determine What Is
Causing a Problem”.

• If possible, download and install the most recent version of MySQL Server and check whether it
solves your problem. All versions of the MySQL software are thoroughly tested and should work
without problems. We believe in making everything as backward-compatible as possible, and you
should be able to switch MySQL versions without difficulty. See Section 2.1.2, “Which MySQL
Version and Distribution to Install”.

1.6 MySQL Standards Compliance

This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many
extensions to the SQL standard, and here you can find out what they are and how to use them. You
can also find information about functionality missing from MySQL Server, and how to work around
some of the differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92”
refers to the standard released in 1992. “SQL:1999”, “SQL:2003”, “SQL:2008”, and “SQL:2011” refer
to the versions of the standard released in the corresponding years, with the last being the most recent
version. We use the phrase “the SQL standard” or “standard SQL” to mean the current version of the
SQL Standard at any time.

One of our main goals with the product is to continue to work toward compliance with the SQL
standard, but without sacrificing speed or reliability. We are not afraid to add extensions to SQL
or support for non-SQL features if this greatly increases the usability of MySQL Server for a large
segment of our user base. The HANDLER interface is an example of this strategy. See Section 15.2.5,
“HANDLER Statement”.

We continue to support transactional and nontransactional databases to satisfy both mission-critical
24/7 usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium-sized databases (10-100 million rows,
or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-sized
databases.

We are not targeting real-time support, although MySQL replication capabilities offer significant
functionality.

MySQL supports ODBC levels 0 to 3.51.

MySQL supports high-availability database clustering using the NDBCLUSTER storage engine. See
Chapter 25, MySQL NDB Cluster 8.0.

We implement XML functionality which supports most of the W3C XPath standard. See Section 14.11,
“XML Functions”.

MySQL supports a native JSON data type as defined by RFC 7159, and based on the ECMAScript
standard (ECMA-262). See Section 13.5, “The JSON Data Type”. MySQL also implements a subset

94

Selecting SQL Modes

of the SQL/JSON functions specified by a pre-publication draft of the SQL:2016 standard; see
Section 14.17, “JSON Functions”, for more information.

Selecting SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for
different clients, depending on the value of the sql_mode system variable. DBAs can set the global
SQL mode to match site server operating requirements, and each application can set its session SQL
mode to its own requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes
it easier to use MySQL in different environments and to use MySQL together with other database
servers.

For more information on setting the SQL mode, see Section 7.1.11, “Server SQL Modes”.

Running MySQL in ANSI Mode

To run MySQL Server in ANSI mode, start mysqld with the --ansi option. Running the server in
ANSI mode is the same as starting it with the following options:

--transaction-isolation=SERIALIZABLE --sql-mode=ANSI

To achieve the same effect at runtime, execute these two statements:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = 'ANSI';

You can see that setting the sql_mode system variable to 'ANSI' enables all SQL mode options that
are relevant for ANSI mode as follows:

mysql> SET GLOBAL sql_mode='ANSI';
mysql> SELECT @@GLOBAL.sql_mode;
 -> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'

Running the server in ANSI mode with --ansi is not quite the same as setting the SQL mode to
'ANSI' because the --ansi option also sets the transaction isolation level.

See Section 7.1.7, “Server Command Options”.

1.6.1 MySQL Extensions to Standard SQL

MySQL Server supports some extensions that you are not likely to find in other SQL DBMSs. Be
warned that if you use them, your code is most likely not portable to other SQL servers. In some cases,
you can write code that includes MySQL extensions, but is still portable, by using comments of the
following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other
SQL statement, but other SQL servers should ignore the extensions. For example, MySQL Server
recognizes the STRAIGHT_JOIN keyword in the following statement, but other servers should not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the ! character, the syntax within the comment is executed only if the
MySQL version is greater than or equal to the specified version number. The KEY_BLOCK_SIZE clause
in the following comment is executed only by servers from MySQL 5.1.10 or higher:

CREATE TABLE t1(a INT, KEY (a)) /*!50110 KEY_BLOCK_SIZE=1024 */;

The following descriptions list MySQL extensions, organized by category.

95

MySQL Extensions to Standard SQL

• Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory, and maps tables
within a database to file names in the database directory. Consequently, database and table names
are case-sensitive in MySQL Server on operating systems that have case-sensitive file names (such
as most Unix systems). See Section 11.2.3, “Identifier Case Sensitivity”.

• General language syntax

• By default, strings can be enclosed by " as well as '. If the ANSI_QUOTES SQL mode is enabled,
strings can be enclosed only by ' and the server interprets strings enclosed by " as identifiers.

• \ is the escape character in strings.

• In SQL statements, you can access tables from different databases with the db_name.tbl_name
syntax. Some SQL servers provide the same functionality but call this User space. MySQL
Server doesn't support tablespaces such as used in statements like this: CREATE TABLE
ralph.my_table ... IN my_tablespace.

• SQL statement syntax

• The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

• The CREATE DATABASE, DROP DATABASE, and ALTER DATABASE statements. See
Section 15.1.12, “CREATE DATABASE Statement”, Section 15.1.24, “DROP DATABASE
Statement”, and Section 15.1.2, “ALTER DATABASE Statement”.

• The DO statement.

• EXPLAIN SELECT to obtain a description of how tables are processed by the query optimizer.

• The FLUSH and RESET statements.

• The SET statement. See Section 15.7.6.1, “SET Syntax for Variable Assignment”.

• The SHOW statement. See Section 15.7.7, “SHOW Statements”. The information produced by
many of the MySQL-specific SHOW statements can be obtained in more standard fashion by using
SELECT to query INFORMATION_SCHEMA. See Chapter 28, INFORMATION_SCHEMA Tables.

• Use of LOAD DATA. In many cases, this syntax is compatible with Oracle LOAD DATA. See
Section 15.2.9, “LOAD DATA Statement”.

• Use of RENAME TABLE. See Section 15.1.36, “RENAME TABLE Statement”.

• Use of REPLACE instead of DELETE plus INSERT. See Section 15.2.12, “REPLACE Statement”.

• Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in ALTER
TABLE statements. Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE
statement. See Section 15.1.9, “ALTER TABLE Statement”.

• Use of index names, indexes on a prefix of a column, and use of INDEX or KEY in CREATE TABLE
statements. See Section 15.1.20, “CREATE TABLE Statement”.

• Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

• Use of IF EXISTS with DROP TABLE and DROP DATABASE.

• The capability of dropping multiple tables with a single DROP TABLE statement.

• The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.

• INSERT INTO tbl_name SET col_name = ... syntax.

96

MySQL Extensions to Standard SQL

• The DELAYED clause of the INSERT and REPLACE statements.

• The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.

• Use of INTO OUTFILE or INTO DUMPFILE in SELECT statements. See Section 15.2.13,
“SELECT Statement”.

• Options such as STRAIGHT_JOIN or SQL_SMALL_RESULT in SELECT statements.

• You don't need to name all selected columns in the GROUP BY clause. This gives better
performance for some very specific, but quite normal queries. See Section 14.19, “Aggregate
Functions”.

• You can specify ASC and DESC with GROUP BY, not just with ORDER BY.

• The ability to set variables in a statement with the := assignment operator. See Section 11.4,
“User-Defined Variables”.

• Data types

• The MEDIUMINT, SET, and ENUM data types, and the various BLOB and TEXT data types.

• The AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL data type attributes.

• Functions and operators

• To make it easier for users who migrate from other SQL environments, MySQL Server supports
aliases for many functions. For example, all string functions support both standard SQL syntax and
ODBC syntax.

• MySQL Server understands the || and && operators to mean logical OR and AND, as in the C
programming language. In MySQL Server, || and OR are synonyms, as are && and AND. Because
of this nice syntax, MySQL Server doesn't support the standard SQL || operator for string
concatenation; use CONCAT() instead. Because CONCAT() takes any number of arguments, it is
easy to convert use of the || operator to MySQL Server.

• Use of COUNT(DISTINCT value_list) where value_list has more than one element.

• String comparisons are case-insensitive by default, with sort ordering determined by the collation
of the current character set, which is utf8mb4 by default. To perform case-sensitive comparisons
instead, you should declare your columns with the BINARY attribute or use the BINARY cast, which
causes comparisons to be done using the underlying character code values rather than a lexical
ordering.

• The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is
supported for C programmers and for compatibility with PostgreSQL.

• The =, <>, <=, <, >=, >, <<, >>, <=>, AND, OR, or LIKE operators may be used in expressions in
the output column list (to the left of the FROM) in SELECT statements. For example:

mysql> SELECT col1=1 AND col2=2 FROM my_table;

• The LAST_INSERT_ID() function returns the most recent AUTO_INCREMENT value. See
Section 14.15, “Information Functions”.

• LIKE is permitted on numeric values.

• The REGEXP and NOT REGEXP extended regular expression operators.

• CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server, these
functions can take a variable number of arguments.)

97

MySQL Differences from Standard SQL

• The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), MD5(), PERIOD_ADD(),
PERIOD_DIFF(), TO_DAYS(), and WEEKDAY() functions.

• Use of TRIM() to trim substrings. Standard SQL supports removal of single characters only.

• The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and GROUP_CONCAT().
See Section 14.19, “Aggregate Functions”.

1.6.2 MySQL Differences from Standard SQL

We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but
MySQL Server performs operations differently in some cases:

• There are several differences between the MySQL and standard SQL privilege systems. For
example, in MySQL, privileges for a table are not automatically revoked when you delete a table.
You must explicitly issue a REVOKE statement to revoke privileges for a table. For more information,
see Section 15.7.1.8, “REVOKE Statement”.

• The CAST() function does not support cast to REAL or BIGINT. See Section 14.10, “Cast Functions
and Operators”.

1.6.2.1 SELECT INTO TABLE Differences

MySQL Server doesn't support the SELECT ... INTO TABLE Sybase SQL extension. Instead,
MySQL Server supports the INSERT INTO ... SELECT standard SQL syntax, which is basically the
same thing. See Section 15.2.7.1, “INSERT ... SELECT Statement”. For example:

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id
 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

Alternatively, you can use SELECT ... INTO OUTFILE or CREATE TABLE ... SELECT.

You can use SELECT ... INTO with user-defined variables. The same syntax can also be used
inside stored routines using cursors and local variables. See Section 15.2.13.1, “SELECT ... INTO
Statement”.

1.6.2.2 UPDATE Differences

If you access a column from the table to be updated in an expression, UPDATE uses the current value
of the column. The second assignment in the following statement sets col2 to the current (updated)
col1 value, not the original col1 value. The result is that col1 and col2 have the same value. This
behavior differs from standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

1.6.2.3 FOREIGN KEY Constraint Differences

The MySQL implementation of foreign key constraints differs from the SQL standard in the following
key respects:

• If there are several rows in the parent table with the same referenced key value, InnoDB performs
a foreign key check as if the other parent rows with the same key value do not exist. For example, if
you define a RESTRICT type constraint, and there is a child row with several parent rows, InnoDB
does not permit the deletion of any of the parent rows.

• If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has
previously updated during the same cascade, it acts like RESTRICT. This means that you cannot
use self-referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent
infinite loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the

98

MySQL Differences from Standard SQL

other hand, is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not
be nested more than 15 levels deep.

• In an SQL statement that inserts, deletes, or updates many rows, foreign key constraints (like unique
constraints) are checked row-by-row. When performing foreign key checks, InnoDB sets shared row-
level locks on child or parent records that it must examine. MySQL checks foreign key constraints
immediately; the check is not deferred to transaction commit. According to the SQL standard, the
default behavior should be deferred checking. That is, constraints are only checked after the entire
SQL statement has been processed. This means that it is not possible to delete a row that refers to
itself using a foreign key.

• No storage engine, including InnoDB, recognizes or enforces the MATCH clause used in referential-
integrity constraint definitions. Use of an explicit MATCH clause does not have the specified effect,
and it causes ON DELETE and ON UPDATE clauses to be ignored. Specifying the MATCH should be
avoided.

The MATCH clause in the SQL standard controls how NULL values in a composite (multiple-column)
foreign key are handled when comparing to a primary key in the referenced table. MySQL essentially
implements the semantics defined by MATCH SIMPLE, which permits a foreign key to be all or
partially NULL. In that case, a (child table) row containing such a foreign key can be inserted even
though it does not match any row in the referenced (parent) table. (It is possible to implement other
semantics using triggers.)

• MySQL requires that the referenced columns be indexed for performance reasons. However, MySQL
does not enforce a requirement that the referenced columns be UNIQUE or be declared NOT NULL.

A FOREIGN KEY constraint that references a non-UNIQUE key is not standard SQL but rather an
InnoDB extension. The NDB storage engine, on the other hand, requires an explicit unique key (or
primary key) on any column referenced as a foreign key.

The handling of foreign key references to nonunique keys or keys that contain NULL values is not
well defined for operations such as UPDATE or DELETE CASCADE. You are advised to use foreign
keys that reference only UNIQUE (including PRIMARY) and NOT NULL keys.

• For storage engines that do not support foreign keys (such as MyISAM), MySQL Server parses and
ignores foreign key specifications.

• MySQL parses but ignores “inline REFERENCES specifications” (as defined in the SQL standard)
where the references are defined as part of the column specification. MySQL accepts REFERENCES
clauses only when specified as part of a separate FOREIGN KEY specification.

Defining a column to use a REFERENCES tbl_name(col_name) clause has no actual effect
and serves only as a memo or comment to you that the column which you are currently defining is
intended to refer to a column in another table. It is important to realize when using this syntax that:

• MySQL does not perform any sort of check to make sure that col_name actually exists in
tbl_name (or even that tbl_name itself exists).

• MySQL does not perform any sort of action on tbl_name such as deleting rows in response to
actions taken on rows in the table which you are defining; in other words, this syntax induces no
ON DELETE or ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON
UPDATE clause as part of the REFERENCES clause, it is also ignored.)

• This syntax creates a column; it does not create any sort of index or key.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 name CHAR(60) NOT NULL,
 PRIMARY KEY (id)
);

99

MySQL Differences from Standard SQL

CREATE TABLE shirt (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
 color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
 owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
 PRIMARY KEY (id)
);

INSERT INTO person VALUES (NULL, 'Antonio Paz');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);

INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);

SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+

SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | color | owner |
+----+---------+--------+-------+
1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
+----+---------+--------+-------+

SELECT s.* FROM person p INNER JOIN shirt s
 ON s.owner = p.id
 WHERE p.name LIKE 'Lilliana%'
 AND s.color <> 'white';

+----+-------+--------+-------+
| id | style | color | owner |
+----+-------+--------+-------+
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
+----+-------+--------+-------+

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE
TABLE or DESCRIBE:

SHOW CREATE TABLE shirt\G
*************************** 1. row ***************************
Table: shirt
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,
`style` enum('t-shirt','polo','dress') NOT NULL,

100

How MySQL Deals with Constraints

`color` enum('red','blue','orange','white','black') NOT NULL,
`owner` smallint(5) unsigned NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

For information about foreign key constraints, see Section 15.1.20.5, “FOREIGN KEY Constraints”.

1.6.2.4 '--' as the Start of a Comment

Standard SQL uses the C syntax /* this is a comment */ for comments, and MySQL Server
supports this syntax as well. MySQL also support extensions to this syntax that enable MySQL-specific
SQL to be embedded in the comment; see Section 11.7, “Comments”.

MySQL Server also uses # as the start comment character. This is nonstandard.

Standard SQL also uses “--” as a start-comment sequence. MySQL Server supports a variant of the
-- comment style; the -- start-comment sequence is accepted as such, but must be followed by a
whitespace character such as a space or newline. The space is intended to prevent problems with
generated SQL queries that use constructs such as the following, which updates the balance to reflect
a charge:

UPDATE account SET balance=balance-charge
WHERE account_id=user_id

Consider what happens when charge has a negative value such as -1, which might be the case when
an amount is credited to the account. In this case, the generated statement looks like this:

UPDATE account SET balance=balance--1
WHERE account_id=5752;

balance--1 is valid standard SQL, but -- is interpreted as the start of a comment, and part of
the expression is discarded. The result is a statement that has a completely different meaning than
intended:

UPDATE account SET balance=balance
WHERE account_id=5752;

This statement produces no change in value at all. To keep this from happening, MySQL requires a
whitespace character following the -- for it to be recognized as a start-comment sequence in MySQL
Server, so that an expression such as balance--1 is always safe to use.

1.6.3 How MySQL Deals with Constraints

MySQL enables you to work both with transactional tables that permit rollback and with
nontransactional tables that do not. Because of this, constraint handling is a bit different in MySQL
than in other DBMSs. We must handle the case when you have inserted or updated a lot of rows in a
nontransactional table for which changes cannot be rolled back when an error occurs.

The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect
while parsing a statement to be executed, and tries to recover from any errors that occur while
executing the statement. We do this in most cases, but not yet for all.

The options MySQL has when an error occurs are to stop the statement in the middle or to recover as
well as possible from the problem and continue. By default, the server follows the latter course. This
means, for example, that the server may coerce invalid values to the closest valid values.

Several SQL mode options are available to provide greater control over handling of bad data values
and whether to continue statement execution or abort when errors occur. Using these options, you
can configure MySQL Server to act in a more traditional fashion that is like other DBMSs that reject
improper input. The SQL mode can be set globally at server startup to affect all clients. Individual
clients can set the SQL mode at runtime, which enables each client to select the behavior most
appropriate for its requirements. See Section 7.1.11, “Server SQL Modes”.

101

How MySQL Deals with Constraints

The following sections describe how MySQL Server handles different types of constraints.

1.6.3.1 PRIMARY KEY and UNIQUE Index Constraints

Normally, errors occur for data-change statements (such as INSERT or UPDATE) that would violate
primary-key, unique-key, or foreign-key constraints. If you are using a transactional storage engine
such as InnoDB, MySQL automatically rolls back the statement. If you are using a nontransactional
storage engine, MySQL stops processing the statement at the row for which the error occurred and
leaves any remaining rows unprocessed.

MySQL supports an IGNORE keyword for INSERT, UPDATE, and so forth. If you use it, MySQL ignores
primary-key or unique-key violations and continues processing with the next row. See the section for
the statement that you are using (Section 15.2.7, “INSERT Statement”, Section 15.2.17, “UPDATE
Statement”, and so forth).

You can get information about the number of rows actually inserted or updated with the
mysql_info() C API function. You can also use the SHOW WARNINGS statement. See mysql_info(),
and Section 15.7.7.42, “SHOW WARNINGS Statement”.

InnoDB and NDB tables support foreign keys. See Section 1.6.3.2, “FOREIGN KEY Constraints”.

1.6.3.2 FOREIGN KEY Constraints

Foreign keys let you cross-reference related data across tables, and foreign key constraints help keep
this spread-out data consistent.

MySQL supports ON UPDATE and ON DELETE foreign key references in CREATE TABLE and ALTER
TABLE statements. The available referential actions are RESTRICT, CASCADE, SET NULL, and NO
ACTION (the default).

SET DEFAULT is also supported by the MySQL Server but is currently rejected as invalid by InnoDB.
Since MySQL does not support deferred constraint checking, NO ACTION is treated as RESTRICT.
For the exact syntax supported by MySQL for foreign keys, see Section 15.1.20.5, “FOREIGN KEY
Constraints”.

MATCH FULL, MATCH PARTIAL, and MATCH SIMPLE are allowed, but their use should be avoided,
as they cause the MySQL Server to ignore any ON DELETE or ON UPDATE clause used in the same
statement. MATCH options do not have any other effect in MySQL, which in effect enforces MATCH
SIMPLE semantics full-time.

MySQL requires that foreign key columns be indexed; if you create a table with a foreign key constraint
but no index on a given column, an index is created.

You can obtain information about foreign keys from the Information Schema KEY_COLUMN_USAGE
table. An example of a query against this table is shown here:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, CONSTRAINT_NAME
 > FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 > WHERE REFERENCED_TABLE_SCHEMA IS NOT NULL;
+--------------+---------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | CONSTRAINT_NAME |
+--------------+---------------+-------------+-----------------+
fk1	myuser	myuser_id	f
fk1	product_order	customer_id	f2
fk1	product_order	product_id	f1
+--------------+---------------+-------------+-----------------+
3 rows in set (0.01 sec)

Information about foreign keys on InnoDB tables can also be found in the INNODB_FOREIGN and
INNODB_FOREIGN_COLS tables, in the INFORMATION_SCHEMA database.

InnoDB and NDB tables support foreign keys.

102

https://dev.mysql.com/doc/c-api/8.0/en/mysql-info.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-info.html

How MySQL Deals with Constraints

1.6.3.3 Enforced Constraints on Invalid Data

By default, MySQL 8.0 rejects invalid or improper data values and aborts the statement in which they
occur. It is possible to alter this behavior to be more forgiving of invalid values, such that the server
coerces them to valid ones for data entry, by disabling strict SQL mode (see Section 7.1.11, “Server
SQL Modes”), but this is not recommended.

Older versions of MySQL employed the forgiving behavior by default; for a description of this behavior,
see Constraints on Invalid Data.

1.6.3.4 ENUM and SET Constraints

ENUM and SET columns provide an efficient way to define columns that can contain only a given set of
values. See Section 13.3.5, “The ENUM Type”, and Section 13.3.6, “The SET Type”.

Unless strict mode is disabled (not recommended, but see Section 7.1.11, “Server SQL Modes”), the
definition of a ENUM or SET column acts as a constraint on values entered into the column. An error
occurs for values that do not satisfy these conditions:

• An ENUM value must be one of those listed in the column definition, or the internal numeric equivalent
thereof. The value cannot be the error value (that is, 0 or the empty string). For a column defined as
ENUM('a','b','c'), values such as '', 'd', or 'ax' are invalid and are rejected.

• A SET value must be the empty string or a value consisting only of the values listed in the column
definition separated by commas. For a column defined as SET('a','b','c'), values such as 'd'
or 'a,b,c,d' are invalid and are rejected.

Errors for invalid values can be suppressed in strict mode if you use INSERT IGNORE or UPDATE
IGNORE. In this case, a warning is generated rather than an error. For ENUM, the value is inserted as
the error member (0). For SET, the value is inserted as given except that any invalid substrings are
deleted. For example, 'a,x,b,y' results in a value of 'a,b'.

103

https://dev.mysql.com/doc/refman/5.7/en/constraint-invalid-data.html

104

Chapter 2 Installing MySQL

Table of Contents
2.1 General Installation Guidance .. 107

2.1.1 Supported Platforms ... 107
2.1.2 Which MySQL Version and Distribution to Install .. 107
2.1.3 How to Get MySQL .. 108
2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG 109
2.1.5 Installation Layouts ... 125
2.1.6 Compiler-Specific Build Characteristics .. 125

2.2 Installing MySQL on Unix/Linux Using Generic Binaries .. 125
2.3 Installing MySQL on Microsoft Windows ... 129

2.3.1 MySQL Installation Layout on Microsoft Windows .. 131
2.3.2 Choosing an Installation Package ... 131
2.3.3 MySQL Installer for Windows .. 133
2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive 162
2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation 170
2.3.6 Windows Postinstallation Procedures .. 172
2.3.7 Windows Platform Restrictions .. 174

2.4 Installing MySQL on macOS .. 175
2.4.1 General Notes on Installing MySQL on macOS .. 176
2.4.2 Installing MySQL on macOS Using Native Packages .. 177
2.4.3 Installing and Using the MySQL Launch Daemon ... 181
2.4.4 Installing and Using the MySQL Preference Pane .. 185

2.5 Installing MySQL on Linux ... 190
2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository 191
2.5.2 Installing MySQL on Linux Using the MySQL APT Repository 195
2.5.3 Installing MySQL on Linux Using the MySQL SLES Repository 196
2.5.4 Installing MySQL on Linux Using RPM Packages from Oracle 196
2.5.5 Installing MySQL on Linux Using Debian Packages from Oracle 201
2.5.6 Deploying MySQL on Linux with Docker Containers ... 202
2.5.7 Installing MySQL on Linux from the Native Software Repositories 214
2.5.8 Installing MySQL on Linux with Juju .. 217
2.5.9 Managing MySQL Server with systemd ... 217

2.6 Installing MySQL Using Unbreakable Linux Network (ULN) ... 222
2.7 Installing MySQL on Solaris ... 222

2.7.1 Installing MySQL on Solaris Using a Solaris PKG .. 223
2.8 Installing MySQL from Source ... 224

2.8.1 Source Installation Methods .. 224
2.8.2 Source Installation Prerequisites ... 225
2.8.3 MySQL Layout for Source Installation .. 227
2.8.4 Installing MySQL Using a Standard Source Distribution .. 227
2.8.5 Installing MySQL Using a Development Source Tree .. 231
2.8.6 Configuring SSL Library Support ... 232
2.8.7 MySQL Source-Configuration Options ... 233
2.8.8 Dealing with Problems Compiling MySQL .. 265
2.8.9 MySQL Configuration and Third-Party Tools .. 267
2.8.10 Generating MySQL Doxygen Documentation Content ... 267

2.9 Postinstallation Setup and Testing ... 268
2.9.1 Initializing the Data Directory .. 269
2.9.2 Starting the Server ... 274
2.9.3 Testing the Server .. 277
2.9.4 Securing the Initial MySQL Account .. 278
2.9.5 Starting and Stopping MySQL Automatically .. 280

2.10 Perl Installation Notes .. 281

105

2.10.1 Installing Perl on Unix ... 282
2.10.2 Installing ActiveState Perl on Windows .. 282
2.10.3 Problems Using the Perl DBI/DBD Interface ... 283

This chapter describes how to obtain and install MySQL. A summary of the procedure follows and later
sections provide the details. If you plan to upgrade an existing version of MySQL to a newer version
rather than install MySQL for the first time, see Chapter 3, Upgrading MySQL, for information about
upgrade procedures and about issues that you should consider before upgrading.

If you are interested in migrating to MySQL from another database system, see Section A.8, “MySQL
8.0 FAQ: Migration”, which contains answers to some common questions concerning migration issues.

Installation of MySQL generally follows the steps outlined here:

1. Determine whether MySQL runs and is supported on your platform.

Please note that not all platforms are equally suitable for running MySQL, and that not all
platforms on which MySQL is known to run are officially supported by Oracle Corporation. For
information about those platforms that are officially supported, see https://www.mysql.com/support/
supportedplatforms/database.html on the MySQL website.

2. Choose which distribution to install.

Several versions of MySQL are available, and most are available in several distribution formats.
You can choose from pre-packaged distributions containing binary (precompiled) programs or
source code. When in doubt, use a binary distribution. Oracle also provides access to the MySQL
source code for those who want to see recent developments and test new code. To determine
which version and type of distribution you should use, see Section 2.1.2, “Which MySQL Version
and Distribution to Install”.

3. Choose which track to install.

MySQL offers a bugfix track (such as MySQL 8.4), and an innovation track (today it's MySQL 9.3)
and each track addresses different use cases. Both tracks are considered production-ready and
include bug fixes, while innovation releases also include new features and potential for modified
behavior.

A bugfix track upgrade includes point releases, such as MySQL 8.4.x upgrading to 8.4.y, while
innovation track releases typically only have minor releases, such as MySQL 9.3.0 upgrading to
9.4.0. However, an innovation track does have the occasional point release.

4. Download the distribution that you want to install.

For instructions, see Section 2.1.3, “How to Get MySQL”. To verify the integrity of the distribution,
use the instructions in Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums or
GnuPG”.

5. Install the distribution.

To install MySQL from a binary distribution, use the instructions in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”. Alternatively, use the Secure Deployment Guide, which
provides procedures for deploying a generic binary distribution of MySQL Enterprise Edition Server
with features for managing the security of your MySQL installation.

To install MySQL from a source distribution or from the current development source tree, use the
instructions in Section 2.8, “Installing MySQL from Source”.

6. Perform any necessary postinstallation setup.

After installing MySQL, see Section 2.9, “Postinstallation Setup and Testing” for information
about making sure the MySQL server is working properly. Also refer to the information provided
in Section 2.9.4, “Securing the Initial MySQL Account”. This section describes how to secure the

106

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/

General Installation Guidance

initial MySQL root user account, which has no password until you assign one. The section applies
whether you install MySQL using a binary or source distribution.

7. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See
Section 2.10, “Perl Installation Notes”.

Instructions for installing MySQL on different platforms and environments is available on a platform by
platform basis:

• Unix, Linux

For instructions on installing MySQL on most Linux and Unix platforms using a generic binary (for
example, a .tar.gz package), see Section 2.2, “Installing MySQL on Unix/Linux Using Generic
Binaries”.

For information on building MySQL entirely from the source code distributions or the source code
repositories, see Section 2.8, “Installing MySQL from Source”

For specific platform help on installation, configuration, and building from source see the
corresponding platform section:

• Linux, including notes on distribution specific methods, see Section 2.5, “Installing MySQL on
Linux”.

• IBM AIX, see Section 2.7, “Installing MySQL on Solaris”.

• Microsoft Windows

For instructions on installing MySQL on Microsoft Windows, using either the MySQL Installer or
Zipped binary, see Section 2.3, “Installing MySQL on Microsoft Windows”.

For details and instructions on building MySQL from source code using Microsoft Visual Studio, see
Section 2.8, “Installing MySQL from Source”.

• macOS

For installation on macOS, including using both the binary package and native PKG formats, see
Section 2.4, “Installing MySQL on macOS”.

For information on making use of an macOS Launch Daemon to automatically start and stop MySQL,
see Section 2.4.3, “Installing and Using the MySQL Launch Daemon”.

For information on the MySQL Preference Pane, see Section 2.4.4, “Installing and Using the MySQL
Preference Pane”.

2.1 General Installation Guidance
The immediately following sections contain the information necessary to choose, download, and verify
your distribution. The instructions in later sections of the chapter describe how to install the distribution
that you choose. For binary distributions, see the instructions at Section 2.2, “Installing MySQL on
Unix/Linux Using Generic Binaries” or the corresponding section for your platform if available. To build
MySQL from source, use the instructions in Section 2.8, “Installing MySQL from Source”.

2.1.1 Supported Platforms

MySQL platform support evolves over time; please refer to https://www.mysql.com/support/
supportedplatforms/database.html for the latest updates.

2.1.2 Which MySQL Version and Distribution to Install

When preparing to install MySQL, decide which version and distribution format (binary or source) to
use.

107

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

How to Get MySQL

First, decide whether to install from a bugfix series like MySQL 8.4, or use an innovation release like
MySQL 9.3. Both tracks include bug fixes while an innovation release includes the newest features.
Both bugfix and innovation releases are meant for production use.

The naming scheme in MySQL 8.0 uses release names that consist of three numbers and an optional
suffix (for example, mysql-8.0.34). The numbers within the release name are interpreted as follows:

• The first number (8) is the major version number.

• The second number (0) is the minor version number. Taken together, the major and minor numbers
constitute the release series number. The series number describes the stable feature set.

• The third number (34) is the version number within the release series. This is incremented for each
new bugfix release; for an innovation release, it will likely always be 0. For a bugfix series such as
MySQL 8.0, the most recent version within the series is the best choice.

After choosing which MySQL version to install, decide which distribution format to install for your
operating system. For most use cases, a binary distribution is the right choice. Binary distributions are
available in native format for many platforms, such as RPM packages for Linux or DMG packages for
macOS. Distributions are also available in more generic formats such as Zip archives or compressed
tar files. On Windows, you can use the MySQL Installer to install a binary distribution.

Under some circumstances, it may be preferable to install MySQL from a source distribution:

• You want to install MySQL at some explicit location. The standard binary distributions are ready
to run at any installation location, but you might require even more flexibility to place MySQL
components where you want.

• You want to configure mysqld with features that might not be included in the standard binary
distributions. Here is a list of the most common extra options used to ensure feature availability:

• -DWITH_LIBWRAP=1 for TCP wrappers support.

• -DWITH_ZLIB={system|bundled} for features that depend on compression

• -DWITH_DEBUG=1 for debugging support

For additional information, see Section 2.8.7, “MySQL Source-Configuration Options”.

• You want to configure mysqld without some features that are included in the standard binary
distributions.

• You want to read or modify the C and C++ code that makes up MySQL. For this purpose, obtain a
source distribution.

• Source distributions contain more tests and examples than binary distributions.

2.1.3 How to Get MySQL

Check our downloads page at https://dev.mysql.com/downloads/ for information about the current
version of MySQL and for downloading instructions.

For RPM-based Linux platforms that use Yum as their package management system, MySQL can be
installed using the MySQL Yum Repository. See Section 2.5.1, “Installing MySQL on Linux Using the
MySQL Yum Repository” for details.

For Debian-based Linux platforms, MySQL can be installed using the MySQL APT Repository. See
Section 2.5.2, “Installing MySQL on Linux Using the MySQL APT Repository” for details.

For SUSE Linux Enterprise Server (SLES) platforms, MySQL can be installed using the MySQL SLES
Repository. See Section 2.5.3, “Installing MySQL on Linux Using the MySQL SLES Repository” for
details.

108

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/

Verifying Package Integrity Using MD5 Checksums or GnuPG

To obtain the latest development source, see Section 2.8.5, “Installing MySQL Using a Development
Source Tree”.

2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG

After downloading the MySQL package that suits your needs and before attempting to install it, make
sure that it is intact and has not been tampered with. There are three means of integrity checking:

• MD5 checksums

• Cryptographic signatures using GnuPG, the GNU Privacy Guard

• For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the
respective package one more time, perhaps from another mirror site.

2.1.4.1 Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches
the one provided on the MySQL download pages. Each package has an individual checksum that
you can verify against the package that you downloaded. The correct MD5 checksum is listed on the
downloads page for each MySQL product; you should compare it against the MD5 checksum of the file
(product) that you download.

Each operating system and setup offers its own version of tools for checking the MD5 checksum.
Typically the command is named md5sum, or it may be named md5, and some operating systems do
not ship it at all. On Linux, it is part of the GNU Text Utilities package, which is available for a wide
range of platforms. You can also download the source code from http://www.gnu.org/software/textutils/.
If you have OpenSSL installed, you can use the command openssl md5 package_name instead.
A Windows implementation of the md5 command line utility is available from http://www.fourmilab.ch/
md5/. winMd5Sum is a graphical MD5 checking tool that can be obtained from http://www.nullriver.com/
index/products/winmd5sum. Our Microsoft Windows examples assume the name md5.exe.

Linux and Microsoft Windows examples:

$> md5sum mysql-standard-8.0.42-linux-i686.tar.gz
aaab65abbec64d5e907dcd41b8699945 mysql-standard-8.0.42-linux-i686.tar.gz

$> md5.exe mysql-installer-community-8.0.42.msi
aaab65abbec64d5e907dcd41b8699945 mysql-installer-community-8.0.42.msi

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one
displayed on the download page immediately below the respective package.

Note

Make sure to verify the checksum of the archive file (for example, the .zip,
.tar.gz, or .msi file) and not of the files that are contained inside of the
archive. In other words, verify the file before extracting its contents.

2.1.4.2 Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic
signatures. This is more reliable than using MD5 checksums, but requires more work.

We sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is an Open Source
alternative to the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. Most Linux distributions
ship with GnuPG installed by default. Otherwise, see http://www.gnupg.org/ for more information about
GnuPG and how to obtain and install it.

109

http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.fourmilab.ch/md5/
http://www.nullriver.com/index/products/winmd5sum
http://www.nullriver.com/index/products/winmd5sum
http://www.gnupg.org/

Verifying Package Integrity Using MD5 Checksums or GnuPG

To verify the signature for a specific package, you first need to obtain a copy of our public GPG build
key, which you can download from http://pgp.mit.edu/. The key that you want to obtain is named
mysql-build@oss.oracle.com. The keyID for MySQL 8.0.36 packages and higher, and MySQL
8.3.0 and higher, is A8D3785C. After obtaining this key, you should compare it with the key following
value before using it verify MySQL packages. Alternatively, you can copy and paste the key directly
from the text below.

Note

The public GPG build key for earlier MySQL release packages (keyID
5072E1F5 or 3A79BD29), see Section 2.1.4.5, “GPG Public Build Key for
Archived Packages”.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: SKS 1.1.6
Comment: Hostname: pgp.mit.edu

mQINBGU2rNoBEACSi5t0nL6/Hj3d0PwsbdnbY+SqLUIZ3uWZQm6tsNhvTnahvPPZBGdl99iW
YTt2KmXp0KeN2s9pmLKkGAbacQP1RqzMFnoHawSMf0qTUVjAvhnI4+qzMDjTNSBq9fa3nHmO
YxownnrRkpiQUM/yD7/JmVENgwWb6akZeGYrXch9jd4XV3t8OD6TGzTedTki0TDNr6YZYhC7
jUm9fK9Zs299pzOXSxRRNGd+3H9gbXizrBu4L/3lUrNf//rM7OvV9Ho7u9YYyAQ3L3+OABK9
FKHNhrpi8Q0cbhvWkD4oCKJ+YZ54XrOG0YTg/YUAs5/3//FATI1sWdtLjJ5pSb0onV3LIbar
RTN8lC4Le/5kd3lcot9J8b3EMXL5p9OGW7wBfmNVRSUI74Vmwt+v9gyp0Hd0keRCUn8lo/1V
0YD9i92KsE+/IqoYTjnya/5kX41jB8vr1ebkHFuJ404+G6ETd0owwxq64jLIcsp/GBZHGU0R
KKAo9DRLH7rpQ7PVlnw8TDNlOtWt5EJlBXFcPL+NgWbqkADAyA/XSNeWlqonvPlYfmasnAHA
pMd9NhPQhC7hJTjCiAwG8UyWpV8Dj07DHFQ5xBbkTnKH2OrJtguPqSNYtTASbsWz09S8ujoT
DXFT17NbFM2dMIiq0a4VQB3SzH13H2io9Cbg/TzJrJGmwgoXgwARAQABtDZNeVNRTCBSZWxl
YXNlIEVuZ2luZWVyaW5nIDxteXNxbC1idWlsZEBvc3Mub3JhY2xlLmNvbT6JAlQEEwEIAD4W
IQS8pDQXw7SF3RKOxtS3s7eIqNN4XAUCZTas2gIbAwUJA8JnAAULCQgHAgYVCgkICwIEFgID
AQIeAQIXgAAKCRC3s7eIqNN4XLzoD/9PlpWtfHlI8eQTHwGsGIwFA+fgipyDElapHw3MO+K9
VOEYRZCZSuBXHJe9kjGEVCGUDrfImvgTuNuqYmVUV+wyhP+w46W/cWVkqZKAW0hNp0TTvu3e
Dwap7gdk80VF24Y2Wo0bbiGkpPiPmB59oybGKaJ756JlKXIL4hTtK3/hjIPFnb64Ewe4YLZy
oJu0fQOyA8gXuBoalHhUQTbRpXI0XI3tpZiQemNbfBfJqXo6LP3/LgChAuOfHIQ8alvnhCwx
hNUSYGIRqx+BEbJw1X99Az8XvGcZ36VOQAZztkW7mEfH9NDPz7MXwoEvduc61xwlMvEsUIaS
fn6SGLFzWPClA98UMSJgF6sKb+JNoNbzKaZ8V5w13msLb/pq7hab72HH99XJbyKNliYj3+KA
3q0YLf+Hgt4Y4EhIJ8x2+g690Np7zJF4KXNFbi1BGloLGm78akY1rQlzpndKSpZq5KWw8FY/
1PEXORezg/BPD3Etp0AVKff4YdrDlOkNB7zoHRfFHAvEuuqti8aMBrbRnRSG0xunMUOEhbYS
/wOOTl0g3bF9NpAkfU1Fun57N96Us2T9gKo9AiOY5DxMe+IrBg4zaydEOovgqNi2wbU0MOBQ
b23Puhj7ZCIXcpILvcx9ygjkONr75w+XQrFDNeux4Znzay3ibXtAPqEykPMZHsZ2sbkCDQRl
NqzaARAAsdvBo8WRqZ5WVVk6lReD8b6Zx83eJUkV254YX9zn5t8KDRjYOySwS75mJIaZLsv0
YQjJk+5rt10tejyCrJIFo9CMvCmjUKtVbgmhfS5+fUDRrYCEZBBSa0Dvn68EBLiHugr+SPXF
6o1hXEUqdMCpB6oVp6X45JVQroCKIH5vsCtw2jU8S2/IjjV0V+E/zitGCiZaoZ1f6NG7ozyF
ep1CSAReZu/sssk0pCLlfCebRd9Rz3QjSrQhWYuJa+eJmiF4oahnpUGktxMD632I9aG+IMfj
tNJNtX32MbO+Se+cCtVc3cxSa/pR+89a3cb9IBA5tFF2Qoekhqo/1mmLi93Xn6uDUhl5tVxT
nB217dBT27tw+p0hjd9hXZRQbrIZUTyh3+8EMfmAjNSIeR+th86xRd9XFRr9EOqrydnALOUr
9cT7TfXWGEkFvn6ljQX7f4RvjJOTbc4jJgVFyu8K+VU6u1NnFJgDiNGsWvnYxAf7gDDbUSXE
uC2anhWvxPvpLGmsspngge4yl+3nv+UqZ9sm6LCebR/7UZ67tYz3p6xzAOVgYsYcxoIUuEZX
jHQtsYfTZZhrjUWBJ09jrMvlKUHLnS437SLbgoXVYZmcqwAWpVNOLZf+fFm4IE5aGBG5Dho2
CZ6ujngW9Zkn98T1d4N0MEwwXa2V6T1ijzcqD7GApZUAEQEAAYkCPAQYAQgAJhYhBLykNBfD
tIXdEo7G1Lezt4io03hcBQJlNqzaAhsMBQkDwmcAAAoJELezt4io03hcXqMP/01aPT3A3Sg7
oTQoHdCxj04ELkzrezNWGM+YwbSKrR2LoXR8zf2tBFzc2/Tl98V0+68f/eCvkvqCuOtq4392
Ps23j9W3r5XG+GDOwDsx0gl0E+Qkw07pwdJctA6efsmnRkjF2YVO0N9MiJA1tc8NbNXpEEHJ
Z7F8Ri5cpQrGUz/AY0eae2b7QefyP4rpUELpMZPjc8Px39Fe1DzRbT+5E19TZbrpbwlSYs1i
CzS5YGFmpCRyZcLKXo3zS6N22+82cnRBSPPipiO6WaQawcVMlQO1SX0giB+3/DryfN9VuIYd
1EWCGQa3O0MVu6o5KVHwPgl9R1P6xPZhurkDpAd0b1s4fFxin+MdxwmG7RslZA9CXRPpzo7/
fCMW8sYOH15DP+YfUckoEreBt+zezBxbIX2CGGWEV9v3UBXadRtwxYQ6sN9bqW4jm1b41vNA
17b6CVH6sVgtU3eN+5Y9an1e5jLD6kFYx+OIeqIIId/TEqwS61csY9aav4j4KLOZFCGNU0FV
ji7NQewSpepTcJwfJDOzmtiDP4vol1ApJGLRwZZZ9PB6wsOgDOoP6sr0YrDI/NNX2RyXXbgl
nQ1yJZVSH3/3eo6knG2qTthUKHCRDNKdy9Qqc1x4WWWtSRjh+zX8AvJK2q1rVLH2/3ilxe9w
cAZUlaj3id3TxquAlud4lWDz
=h5nH
-----END PGP PUBLIC KEY BLOCK-----

To import the build key into your personal public GPG keyring, use gpg --import. For example, if
you have saved the key in a file named mysql_pubkey.asc, the import command looks like this:

$> gpg --import mysql_pubkey.asc
gpg: key B7B3B788A8D3785C: public key "MySQL Release Engineering
<mysql-build@oss.oracle.com>" imported

110

http://pgp.mit.edu/

Verifying Package Integrity Using MD5 Checksums or GnuPG

gpg: Total number processed: 1
gpg: imported: 1

You can also download the key from the public keyserver using the public key id, A8D3785C:

$> gpg --recv-keys A8D3785C
gpg: requesting key A8D3785C from hkp server keys.gnupg.net
gpg: key A8D3785C: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
1 new user ID
gpg: key A8D3785C: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
53 new signatures
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: new user IDs: 1
gpg: new signatures: 53

If you want to import the key into your RPM configuration to validate RPM install packages, you should
be able to import the key directly:

$> rpm --import mysql_pubkey.asc

If you experience problems or require RPM specific information, see Section 2.1.4.4, “Signature
Checking Using RPM”.

After you have downloaded and imported the public build key, download your desired MySQL package
and the corresponding signature, which also is available from the download page. The signature file
has the same name as the distribution file with an .asc extension, as shown by the examples in the
following table.

Table 2.1 MySQL Package and Signature Files for Source files

File Type File Name

Distribution file mysql-8.0.42-linux-glibc2.28-
x86_64.tar.xz

Signature file mysql-8.0.42-linux-glibc2.28-
x86_64.tar.xz.asc

Make sure that both files are stored in the same directory and then run the following command to verify
the signature for the distribution file:

$> gpg --verify package_name.asc

If the downloaded package is valid, you should see a Good signature message similar to this:

$> gpg --verify mysql-8.0.42-linux-glibc2.28-x86_64.tar.xz.asc
gpg: Signature made Fri 15 Dec 2023 06:55:13 AM EST
gpg: using RSA key BCA43417C3B485DD128EC6D4B7B3B788A8D3785C
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"

The Good signature message indicates that the file signature is valid, when compared to the
signature listed on our site. But you might also see warnings, like so:

$> gpg --verify mysql-8.0.42-linux-glibc2.28-x86_64.tar.xz.asc
gpg: Signature made Fri 15 Dec 2023 06:55:13 AM EST
gpg: using RSA key BCA43417C3B485DD128EC6D4B7B3B788A8D3785C
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: BCA4 3417 C3B4 85DD 128E C6D4 B7B3 B788 A8D3 785C

That is normal, as they depend on your setup and configuration. Here are explanations for these
warnings:

• gpg: no ultimately trusted keys found: This means that the specific key is not "ultimately trusted" by
you or your web of trust, which is okay for the purposes of verifying file signatures.

111

Verifying Package Integrity Using MD5 Checksums or GnuPG

• WARNING: This key is not certified with a trusted signature! There is no indication that the signature
belongs to the owner.: This refers to your level of trust in your belief that you possess our real public
key. This is a personal decision. Ideally, a MySQL developer would hand you the key in person,
but more commonly, you downloaded it. Was the download tampered with? Probably not, but this
decision is up to you. Setting up a web of trust is one method for trusting them.

See the GPG documentation for more information on how to work with public keys.

2.1.4.3 Signature Checking Using Gpg4win for Windows

The Section 2.1.4.2, “Signature Checking Using GnuPG” section describes how to verify MySQL
downloads using GPG. That guide also applies to Microsoft Windows, but another option is to use a
GUI tool like Gpg4win. You may use a different tool but our examples are based on Gpg4win, and
utilize its bundled Kleopatra GUI.

Download and install Gpg4win, and then load Kleopatra. The dialog should look similar to:

Figure 2.1 Kleopatra: Initial Screen

Next, add the MySQL Release Engineering certificate. Do this by clicking File, Lookup Certificates on
Server. Type "Mysql Release Engineering" into the search box and press Search.

Figure 2.2 Kleopatra: Lookup Certificates on Server Wizard: Finding a Certificate

112

http://www.gpg4win.org/

Verifying Package Integrity Using MD5 Checksums or GnuPG

Select the "MySQL Release Engineering" certificate. The Fingerprint and Key-ID must be "3A79BD29"
for MySQL 8.0.28 and higher or "5072E1F5" for MySQL 8.0.27 and earlier, or choose Details... to
confirm the certificate is valid. Now, import it by clicking Import. When the import dialog is displayed,
choose Okay, and this certificate should now be listed under the Imported Certificates tab.

Next, configure the trust level for our certificate. Select our certificate, then from the main menu select
Certificates, Change Owner Trust.... We suggest choosing I believe checks are very accurate for
our certificate, as otherwise you might not be able to verify our signature. Select I believe checks are
very accurate to enable "full trust" and then press OK.

Figure 2.3 Kleopatra: Change Trust level for MySQL Release Engineering

Next, verify the downloaded MySQL package file. This requires files for both the packaged file, and
the signature. The signature file must have the same name as the packaged file but with an appended
.asc extension, as shown by the example in the following table. The signature is linked to on the
downloads page for each MySQL product. You must create the .asc file with this signature.

Table 2.2 MySQL Package and Signature Files for MySQL Installer for Microsoft Windows

File Type File Name

Distribution file mysql-installer-community-8.0.42.msi

Signature file mysql-installer-
community-8.0.42.msi.asc

Make sure that both files are stored in the same directory and then run the following command to verify
the signature for the distribution file. Either drag and drop the signature (.asc) file into Kleopatra, or
load the dialog from File, Decrypt/Verify Files..., and then choose either the .msi or .asc file.

113

Verifying Package Integrity Using MD5 Checksums or GnuPG

Figure 2.4 Kleopatra: The Decrypt and Verify Files Dialog

Click Decrypt/Verify to check the file. The two most common results look like the following figure;
although the yellow warning may look problematic, the following means that the file check passed with
success. You may now run this installer.

Figure 2.5 Kleopatra: the Decrypt and Verify Results Dialog: All operations completed

Seeing a red The signature is bad error means the file is invalid. Do not execute the MSI file if
you see this error.

114

Verifying Package Integrity Using MD5 Checksums or GnuPG

Figure 2.6 Kleopatra: the Decrypt and Verify Results Dialog: Bad

The Section 2.1.4.2, “Signature Checking Using GnuPG”, section explains why you do not see a green
Good signature result.

2.1.4.4 Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and
MD5 checksum. You can verify a package by running the following command:

$> rpm --checksig package_name.rpm

Example:

$> rpm --checksig mysql-community-server-8.0.42-1.el8.x86_64.rpm
mysql-community-server-8.0.42-1.el8.x86_64.rpm: digests signatures OK

Note

If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING
KEYS: GPG#3a79bd29), even though you have imported the MySQL public
build key into your own GPG keyring, you need to import the key into the RPM
keyring first. RPM 4.1 no longer uses your personal GPG keyring (or GPG
itself). Rather, RPM maintains a separate keyring because it is a system-wide
application and a user's GPG public keyring is a user-specific file. To import the
MySQL public key into the RPM keyring, first obtain the key, then use rpm --
import to import the key. For example:

$> gpg --export -a 3a79bd29 > 3a79bd29.asc
$> rpm --import 3a79bd29.asc

Alternatively, rpm also supports loading the key directly from a URL:

$> rpm --import https://repo.mysql.com/RPM-GPG-KEY-mysql-2023

You can also obtain the MySQL public key from this manual page: Section 2.1.4.2, “Signature
Checking Using GnuPG”.

115

Verifying Package Integrity Using MD5 Checksums or GnuPG

2.1.4.5 GPG Public Build Key for Archived Packages

The following GPG public build key (keyID 3A79BD29) can be used to verify the authenticity and
integrity of MySQL packages versions 8.0.28 through 8.0.35, 8.1.0, and 8.2.0. For signature checking
instructions, see Section 2.1.4.2, “Signature Checking Using GnuPG”. It expired on December 14,
2023.

GPG Public Build Key for MySQL 8.0.28 through 8.0.35, and 8.1.0/8.2.0 Packages

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGG4urcBEACrbsRa7tSSyxSfFkB+KXSbNM9rxYqoB78u107skReefq4/+Y72
TpDvlDZLmdv/lK0IpLa3bnvsM9IE1trNLrfi+JES62kaQ6hePPgn2RqxyIirt2se
Si3Z3n3jlEg+mSdhAvW+b+hFnqxo+TY0U+RBwDi4oO0YzHefkYPSmNPdlxRPQBMv
4GPTNfxERx6XvVSPcL1+jQ4R2cQFBryNhidBFIkoCOszjWhm+WnbURsLheBp757l
qEyrpCufz77zlq2gEi+wtPHItfqsx3rzxSRqatztMGYZpNUHNBJkr13npZtGW+kd
N/xu980QLZxN+bZ88pNoOuzD6dKcpMJ0LkdUmTx5z9ewiFiFbUDzZ7PECOm2g3ve
Jrwr79CXDLE1+39Hr8rDM2kDhSr9tAlPTnHVDcaYIGgSNIBcYfLmt91133klHQHB
IdWCNVtWJjq5YcLQJ9TxG9GQzgABPrm6NDd1t9j7w1L7uwBvMB1wgpirRTPVfnUS
Cd+025PEF+wTcBhfnzLtFj5xD7mNsmDmeHkF/sDfNOfAzTE1v2wq0ndYU60xbL6/
yl/Nipyr7WiQjCG0m3WfkjjVDTfs7/DXUqHFDOu4WMF9v+oqwpJXmAeGhQTWZC/Q
hWtrjrNJAgwKpp263gDSdW70ekhRzsok1HJwX1SfxHJYCMFs2aH6ppzNsQARAQAB
tDZNeVNRTCBSZWxlYXNlIEVuZ2luZWVyaW5nIDxteXNxbC1idWlsZEBvc3Mub3Jh
Y2xlLmNvbT6JAlQEEwEIAD4WIQSFm+jXxYb1OEMLGcJGe5QtOnm9KQUCYbi6twIb
AwUJA8JnAAULCQgHAgYVCgkICwIEFgIDAQIeAQIXgAAKCRBGe5QtOnm9KUewD/99
2sS31WLGoUQ6NoL7qOB4CErkqXtMzpJAKKg2jtBGG3rKE1/0VAg1D8AwEK4LcCO4
07wohnH0hNiUbeDck5x20pgS5SplQpuXX1K9vPzHeL/WNTb98S3H2Mzj4o9obED6
Ey52tTupttMF8pC9TJ93LxbJlCHIKKwCA1cXud3GycRN72eqSqZfJGdsaeWLmFmH
f6oee27d8XLoNjbyAxna/4jdWoTqmp8oT3bgv/TBco23NzqUSVPi+7ljS1hHvcJu
oJYqaztGrAEf/lWIGdfl/kLEh8IYx8OBNUojh9mzCDlwbs83CBqoUdlzLNDdwmzu
34Aw7xK14RAVinGFCpo/7EWoX6weyB/zqevUIIE89UABTeFoGih/hx2jdQV/NQNt
hWTW0jH0hmPnajBVAJPYwAuO82rx2pnZCxDATMn0elOkTue3PCmzHBF/GT6c65aQ
C4aojj0+Veh787QllQ9FrWbwnTz+4fNzU/MBZtyLZ4JnsiWUs9eJ2V1g/A+RiIKu
357Qgy1ytLqlgYiWfzHFlYjdtbPYKjDaScnvtY8VO2Rktm7XiV4zKFKiaWp+vuVY
pR0/7Adgnlj5Jt9lQQGOr+Z2VYx8SvBcC+by3XAtYkRHtX5u4MLlVS3gcoWfDiWw
CpvqdK21EsXjQJxRr3dbSn0HaVj4FJZX0QQ7WZm6WLkCDQRhuLq3ARAA6RYjqfC0
YcLGKvHhoBnsX29vy9Wn1y2JYpEnPUIB8X0VOyz5/ALv4Hqtl4THkH+mmMuhtndo
q2BkCCk508jWBvKS1S+Bd2esB45BDDmIhuX3ozu9Xza4i1FsPnLkQ0uMZJv30ls2
pXFmskhYyzmo6aOmH2536LdtPSlXtywfNV1HEr69V/AHbrEzfoQkJ/qvPzELBOjf
jwtDPDePiVgW9LhktzVzn/BjO7XlJxw4PGcxJG6VApsXmM3t2fPN9eIHDUq8ocbH
dJ4en8/bJDXZd9ebQoILUuCg46hE3p6nTXfnPwSRnIRnsgCzeAz4rxDR4/Gv1Xpz
v5wqpL21XQi3nvZKlcv7J1IRVdphK66De9GpVQVTqC102gqJUErdjGmxmyCA1OOO
RqEPfKTrXz5YUGsWwpH+4xCuNQP0qmreRw3ghrH8potIr0iOVXFic5vJfBTgtcuE
B6E6ulAN+3jqBGTaBML0jxgj3Z5VC5HKVbpg2DbB/wMrLwFHNAbzV5hj2Os5Zmva
0ySP1YHB26pAW8dwB38GBaQvfZq3ezM4cRAo/iJ/GsVE98dZEBO+Ml+0KYj+ZG+v
yxzo20sweun7ZKT+9qZM90f6cQ3zqX6IfXZHHmQJBNv73mcZWNhDQOHs4wBoq+FG
QWNqLU9xaZxdXw80r1viDAwOy13EUtcVbTkAEQEAAYkCPAQYAQgAJhYhBIWb6NfF
hvU4QwsZwkZ7lC06eb0pBQJhuLq3AhsMBQkDwmcAAAoJEEZ7lC06eb0pSi8P/iy+
dNnxrtiENn9vkkA7AmZ8RsvPXYVeDCDSsL7UfhbS77r2L1qTa2aB3gAZUDIOXln5
1lSxMeeLtOequLMEV2Xi5km70rdtnja5SmWfc9fyExunXnsOhg6UG872At5CGEZU
0c2Nt/hlGtOR3xbt3O/Uwl+dErQPA4BUbW5K1T7OC6oPvtlKfF4bGZFloHgt2yE9
YSNWZsTPe6XJSapemHZLPOxJLnhs3VBirWE31QS0bRl5AzlO/fg7ia65vQGMOCOT
LpgChTbcZHtozeFqva4IeEgE4xN+6r8WtgSYeGGDRmeMEVjPM9dzQObf+SvGd58u
2z9f2agPK1H32c69RLoA0mHRe7Wkv4izeJUc5tumUY0e8OjdenZZjT3hjLh6tM+m
rp2oWnQIoed4LxUw1dhMOj0rYXv6laLGJ1FsW5eSke7ohBLcfBBTKnMCBohROHy2
E63Wggfsdn3UYzfqZ8cfbXetkXuLS/OM3MXbiNjg+ElYzjgWrkayu7yLakZx+mx6
sHPIJYm2hzkniMG29d5mGl7ZT9emP9b+CfqGUxoXJkjs0gnDl44bwGJ0dmIBu3aj
VAaHODXyY/zdDMGjskfEYbNXCAY2FRZSE58tgTvPKD++Kd2KGplMU2EIFT7JYfKh
HAB5DGMkx92HUMidsTSKHe+QnnnoFmu4gnmDU31i
=Xqbo
-----END PGP PUBLIC KEY BLOCK-----

The following GPG public build key (keyID 5072E1F5) can be used to verify the authenticity
and integrity of MySQL 8.0.27 packages and earlier. For signature checking instructions, see
Section 2.1.4.2, “Signature Checking Using GnuPG”.

GPG Public Build Key for MySQL 8.0.27 Packages and Earlier

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: SKS 1.1.6

116

Verifying Package Integrity Using MD5 Checksums or GnuPG

Comment: Hostname: pgp.mit.edu

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3RODjQRey
CITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZfw2vOUgCmYv2hW0h
yDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3BqOxRznNCRCRxAuAuVztHRcE
AJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNWhxwR9pRWVArNYJdDRT+rf2RUe3vpquKN
QU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLVK2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sB
gACyP/Vb7hiPwxh6rDZ7ITnEkYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgt
obZX9qnrAXw+uNDIQJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAn
Wqcyefeprv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q2TXlTUUwgUmVs
ZWFzZSBFbmdpbmVlcmluZyA8bXlzcWwtYnVpbGRAb3NzLm9yYWNsZS5jb20+iEYEEBECAAYF
AlldBJ4ACgkQvcMmpx2w8a2MYQCgga9wXfwOe/52xg0RTkhsbDQhvdAAn30njwoLBhKdDBxk
hVmwZQvzdYYNiGYEExECACYCGyMGCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAUCTnc+KgUJE/sC
FQAKCRCMcY07UHLh9SbMAJ4l1+qBz2BZNSGCZwwA6YbhGPC7FwCgp8z5TzIw4YQuL5NGJ/sy
0oSazqmIZgQTEQIAJgUCTnc9dgIbIwUJEPPzpwYLCQgHAwIEFQIIAwQWAgMBAh4BAheAAAoJ
EIxxjTtQcuH1Ut4AoIKjhdf70899d+7JFq3LD7zeeyI0AJ9Z+YyE1HZSnzYi73brScilbIV6
sYhpBBMRAgApAhsjBgsJCAcDAgQVAggDBBYCAwECHgECF4ACGQEFAlGUkToFCRU3IaoACgkQ
jHGNO1By4fWLQACfV6wP8ppZqMz2Z/gPZbPP7sDHE7EAn2kDDatXTZIR9pMgcnN0cff1tsX6
iGkEExECACkCGyMGCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAIZAQUCUwHUZgUJGmbLywAKCRCM
cY07UHLh9V+DAKCjS1gGwgVI/eut+5L+l2v3ybl+ZgCcD7ZoA341HtoroV3U6xRD09fUgeqI
bAQTEQIALAIbIwIeAQIXgAIZAQYLCQgHAwIGFQoJCAIDBRYCAwEABQJYpXsIBQkeKT7NAAoJ
EIxxjTtQcuH1wrMAnRGuZVbriMR077KTGAVhJF2uKJiPAJ9rCpXYFve2IdxST2i7w8nygefV
a4hsBBMRAgAsAhsjAh4BAheAAhkBBgsJCAcDAgYVCgkIAgMFFgIDAQAFAlinBSAFCR4qyRQA
CgkQjHGNO1By4fVXBQCeOqVMlXfAWdq+QqaTAtbZskN3HkYAn1T8LlbIktFREeVlKrQEA7fg
6HrQiGwEExECACwCGyMCHgECF4ACGQEGCwkIBwMCBhUKCQgCAwUWAgMBAAUCXEBY+wUJI87e
5AAKCRCMcY07UHLh9RZPAJ9uvm0zlzfCN+DHxHVaoFLFjdVYTQCfborsC9tmEZYawhhogjeB
kZkorbyJARwEEAECAAYFAlAS6+UACgkQ8aIC+GoXHivrWwf/dtLk/x+NC2VMDlg+vOeM0qgG
1IlhXZfiNsEisvvGaz4m8fSFRGe+1bvvfDoKRhxiGXU48RusjixzvBb6KTMuY6JpOVfz9Dj3
H9spYriHa+i6rYySXZIpOhfLiMnTy7NH2OvYCyNzSS/ciIUACIfH/2NH8zNT5CNF1uPNRs7H
sHzzz7pOlTjtTWiF4cq/Ij6Z6CNrmdj+SiMvjYN9u6sdEKGtoNtpycgD5HGKR+I7Nd/7v56y
haUe4FpuvsNXig86K9tI6MUFS8CUyy7Hj3kVBZOUWVBM053knGdALSygQr50DA3jMGKVl4Zn
Hje2RVWRmFTr5YWoRTMxUSQPMLpBNIkBHAQQAQIABgUCU1B+vQAKCRAohbcD0zcc8dWwCACW
XXWDXIcAWRUw+j3ph8dr9u3SItljn3wBc7clpclKWPuLvTz7lGgzlVB0s8hH4xgkSA+zLzl6
u56mpUzskFl7f1I3Ac9GGpM40M5vmmR9hwlD1HdZtGfbD+wkjlqgitNLoRcGdRf/+U7x09Gh
SS7Bf339sunIX6sMgXSC4L32D3zDjF5icGdb0kj+3lCrRmp853dGyA3ff9yUiBkxcKNawpi7
Vz3D2ddUpOF3BP+8NKPg4P2+srKgkFbd4HidcISQCt3rY4vaTkEkLKg0nNA6U4r0YgOa7wIT
SsxFlntMMzaRg53QtK0+YkH0KuZR3GY8B7pi+tlgycyVR7mIFo7riQEcBBABAgAGBQJcSESc
AAoJENwpi/UwTWr2X/YH/0JLr/qBW7cDIx9admk5+vjPoUl6U6SGzCkIlfK24j90kU0oJxDn
FVwc9tcxGtxK8n6AEc5G0FQzjuXeYQ1SAHXquZ9CeGjidmsrRLVKXwOIcFZPBmfS9JBzdHa9
W1b99NWHOehWWnyIITVZ1KeBLbI7uoyXkvZgVp0REd37XWGgYEhT0JwAXnk4obH6djY3T/Hf
D70piuvFU7w84IRAqevUcaDppU/1QluDiOnViq6MAki85Z+uoM6ojUZtwmqXDSYIPzRHctfx
Vdv3HS423RUvcfpMUGG94r7tTOSXhHS9rcs6lzLnKl84J0xzI5bWS/Fw+5h40Gpd4HTR/kiE
Xu2JARwEEAEIAAYFAlaBV3QACgkQRm7hv+CThQqT0wf9Ge3sRxw+NIkLkKsHYBTktjYOyv49
48ja5s9awR0bzapKOMaluEgfwtKD8/NCgYeIVYyaZlYmS1FP51yAtuzdvZXAI0DAITyM4d1S
RCESjCCiZ028eIEcoeM/j+UXrwo4+I7/abFhiSakzsFZ/eQHnsMnkJOLf8kug3vMXjSoiz+n
T14++fBK2mCVtu1Sftc877X8R7xUfOKYAGibnY+RAi7E2JVTMtWfdtJaqt3l5y6ouTrLOM9d
3ZeEMdYL1PCmXrwZ4+u7oTNC26yLSbpL+weAReqH8jGsVlUmWWMXvkm+ixmrnN66WvSLqQ6K
P5jWnowV9+KEhNnWBOaT4Iu8rYkBIgQQAQIADAUCTndBLgUDABJ1AAAKCRCXELibyletfAnx
B/9t79Q72ap+hzawzKHAyk3j990FbB8uQDXYVdAM5Ay/Af0eyYSOd9SBgpexyFlGL4O4dd7U
/uXwbZpAu5uEGxB/16Mq9EVPO5YxCR0ir7oqi6XG/qh+QJy/d3XG07ZbudvnLFylUE+tF8YU
Z5sm9lrnwPKYI2DIa0BToA7Pi95q82Yjb4YgNCxjrr61gO9n4LHDN1i74cNX0easl9zp14zS
acGftJGOrPEk+ChNCGKFNq/qr9Hn/ank29D8fzg6BLoaOix8ZzZ25QPMI/+SF4xEp/O7IoI4
dA+0m4iPz76B+ke0RTsgNRfVKjdz2fQ92l4G9yWwNulGcI3FBZTiYGi3iQEiBBABAgAMBQJO
iLYZBQMAEnUAAAoJEJcQuJvKV618tkAH/2hGrH40L3xRAP/CXEJHK3O+L8y4+duBBQ8scRqn
XS28SLfdL8f/ENH+1wah9jhyMC+jmyRldd5ar3cC/s8AJRvOSDRfR5KvagvrDLrrF+i/vYDB
K5f6JQrryq0poupEuK0zTbLxo1FX+CAq+3tQy8aY6+znItpiWhvK8ZoULYKV+Q063YyVWdBk
KadgELA6S08aQTGK7bJkyJ9xgbFBykcpUUbn0p4XZwzZ3jFgzwcmqRIYZbfTosVVLJ5HAb7B
u22AukPlsz9PZvd8X8nfmtoJIwtl5qtFOrxrKA+X5czswzZ5H3jprDqOY6yA0EStu+8h1CPo
u50BmP7yKZxdXYqJASIEEAECAAwFAk6Z2dEFAwASdQAACgkQlxC4m8pXrXwC8ggAgQXVkn5H
LtY50oXmh5D/KdphSKDM33Z9b/3MHzK5CWeCQUkaJ1gxtyLW1HWyLOIhUkW6xHdmieoA8Yr9
JS1r1jopYuGZztzlScQeSWr8190xnZZVIjKReVy2rDSxtv7PV5wR3gby72PmKWUw7UHfqtBr
JgA+h5ctfx1jhXIUtUZpDTStZAFgVmunDXoBNZtYYk/ffY1J8KTjNmrqRcRbTurSy3dgGAAA
Z01DIR5kJrh3ikFFJfrXz0qODoYOchxqI4Xoc7o8uv19GUuvk5sKBT4b2ASF+JXAMRX0T7v8
Gralhn3CGGQGpZDN2ldM1Mzbi5oSETTUQ87nN4I7bXirqYkBIgQQAQIADAUCTqumAQUDABJ1
AAAKCRCXELibyletfMCHB/9/0733PXrdjkVlUjF7HKpdD8xy324oe5cRWdEVhsDj11AsPhLv
c37M3uCf2MV5BwGjjDypVRX3hT+1r9VsuR201ETKmU8zhdjxgTlZ931t/KDerU9sSJWOT33m
wEX7b5Oj31hgqy2Bc+qOUfSNR8TIOZ7E6P6GynxFzreS+QjHfpUFrg41FgV58YCEoMyKAvZg
CFzVSQa2QZO4uaUIbAhXqW+INkPdEl/nfvlUWdoe/t5d/BDELAT4HEbcJRGuN/GNrExOYw/I
AbauEOnmhNQS+oNg1uSjlTFg6atKO8XgXNfCp6sSVclSRTNKHSmntHEcH/WULEOzsPUXWGWA
VC40iQEiBBABAgAMBQJOvNkcBQMAEnUAAAoJEJcQuJvKV618xSkH/izTt1ERQsgGcDUPqqvd
8exAk1mpsC7IOW+AYYtbOjIQOz7UkwUWVpr4R4sijXfzoZTYNqaYMLbencgHv25CEl4PZnVN
xWDhwDrhJ8X8Idxrlyh5FKt0CK53NT9yAsa1cg/85oVqZeB0zECGWgsVtIc8JmTJvTSmFVrz

117

Verifying Package Integrity Using MD5 Checksums or GnuPG

7F4hUOsrUcHJmw0hfL9JIrxTbpLY9VnajXh9a8psnUCBrw3oO5Zj8Pw/aaLdEBuK5mB/OSYo
vmJ0f/BIp+cUp1OAnOyx0JzWNkQZWTmsVhxY6skBEd4/+2ydv9TEoESw207t7c3Z7+stWcTK
RUg7TrqHPvFkr9U0FKnHeTeqPhc8rjUgfLaJASIEEAECAAwFAk7Oo7wFAwASdQAACgkQlxC4
m8pXrXza3Af/QjONcvE3jme8h8SMLvlr6L1lIuWpHyWwcvgakRJwUojRrSVPghUAhjZEob4w
CzZ4ebRR8q7AazmOW5Fn1GoqtzrWxjRdBX3/vOdj0NvXqCFfTgmOSc4qz98+Lzuu8qQH9DEl
ZLyptv96tGZb5w82NtHFMU9LkkjAVYcDXqJ4USm90CApXqd+8lVOrWuM8NycgD0Ik3ZKZQXH
1DHdJFzohNtqbWGMWdjqwKHoBSHEsjZ/WarXEf0+oTLjZSbrymtGpPInsijHWD9QMOR55RwC
DtPW+JPPu5elLdaurjPOjjI6lol8sNHekjmDZmRI0ZMyjprJITg4AG3yLU9zU+boCYkBIgQQ
AQIADAUCTvI8VgUDABJ1AAAKCRCXELibyletfNeIB/0Wtd7SWBw8z61g5YwuG/mBcmLZVQFo
vGnJFeb+QlybEicqrUYJ3fIPj8Usc27dlwLP+6SU8BtldYjQ7p7CrQtaxG2SWYmNaJ50f6Eb
JpO/3lWSWiNEgF3ycFonoz3yuWMwEdMXBa+NAVV/gUtElBmoeW+NwKSrYN30FYmkZe+v+Ckq
SYwlg0r9+19lFwKFvfk0jX1ZGk6GP27zTw49yopW9kFw/AUZXlwQHOYAL3gnslwPz5LwiTyJ
QkxAYYvdByZk4GjOi+HzqGPspNIQEeUteXzfbPz0fWEt64tudegYu/fN5QVLGS/WHfkuFkuo
gwNBFcu5TPEYcwGkuE/IZZEniQEiBBABAgAMBQJPBAkXBQMAEnUAAAoJEJcQuJvKV618AG8H
/0LLr1yM6osbLAhOzcKmD//jSOZ2FIBXGKUmK8/onlu5sUcMmVVPHnjUO/mHiFMbYFC655Di
rVUKlIZb6sdx2E/K+ZkZHPWvF1BAaHUO/QGh3Zzc8lVJg9KtFLAJkmQkc61VEF2MriaRlvlo
VPNr5Oiv2THOPgVxdV3goBL6EdAdgdwCvy23Z44vOp0QVNQt4aJKg2f49XO/N1+Gd2mEr7wX
aN9DZQq5zTU7uTRif3FlXHQ4bp8TWBK3Mu/sLlqZYtF3z7GH4w3QbwyA2CWkGgTGwQwyU8Fh
JQdrqXGl0w0y6JusjJWdwT1fxA6Eia3wrSw2f8R1u6V0k0ZhsMu3s7iJASIEEAECAAwFAk8V
1NwFAwASdQAACgkQlxC4m8pXrXzijAf7Bn+4ul7NedLGKB4fWyKDvZARcys13kNUcIl2KDdu
j4rliaY3vXT+bnP7rdcpQRal3r+SdqM5uByROHNZ+014rVJIVAY+ahhk/0RmdJTsv791JSkT
FuPzjYbkthqCsLIwa2XFHLBYSZuLvZMpL8k4rSMuI529XL48etlK7QNNVDtwmHUGY+xvPvPP
GOZwjmX7sHsrtEdkerjmcMughpvANpyPsFe8ErQCOrPhDIkZBSNcLur7zwj6m0+85eUTmcj8
1uIIk4wjp39tY3UrBisLzR9m4VrOd9AVw/JRoPDJFq6f4reQSOLbBd5yr7IyYtQSnTVMqxR4
4vnQcPqEcfTtb4kBIgQQAQIADAUCTzltCwUDABJ1AAAKCRCXELibyletfAo9CACWRtSxOvue
Sr6Fo6TSMqlodYRtEwQYysEjcXsT5EM7pX/zLgm2fTgRgNzwaBkwFqH6Y6B4g2rfLyNExhXm
NW1le/YxZgVRyMyRUEp6qGL+kYSOZR2Z23cOU+/dn58xMxGYChwj3zWJj+Cjw9U+D/6etHpw
UrbHGc5HxNpyKQkEV5J+SQ5GDW0POONi/UHlkgSSmmV6mXlqEkEGrtyliFN1jpiTRLPQnzAR
198tJo3GtG5YutGFbNlTun1sXN9v/s4dzbV0mcHvAq/lW+2AT6OJDD204pp/mFxKBFi4XqF6
74HbmBzlS7zyWjjT2ZnujFDqEMKfske/OHSuGZI34qJ3iQEiBBABAgAMBQJPSpCtBQMAEnUA
AAoJEJcQuJvKV618L1QH/ijaCAlgzQIvESk/QZTxQo6Hf7/ObUM3tB7iRjaIK0XWmUodBpOC
3kWWBEIVqJdxW/tbMbP8WebGidHWV4uX6R9GXDI8+egj8BY8LL807gKXkqeOxKax0NSk5vBn
gpix2KVlHtWIm7azB0AiCdcFTCuVElHsIrhMAqtN6idGBVKtXHxW3//z9xiPvcIuryhj8orS
IeJCtLCjji7KF2IUgCyyPJefr/YT7DTOC897E1I01E4dDymNur41NjobAogaxp6PdRNHBDum
y8pfPzLvF3OY4Cv+SEa/EHmCOTHTamKaN6Jry/rpofqtueiMkwCi81RLgQd0ee6W/iui8Lwp
/2KJASIEEAECAAwFAk9V2xoFAwASdQAACgkQlxC4m8pXrXy9UQgAsVc8HNwA7VKdBqsEvPJg
xVlm6Y+9JcqdQcA77qSMClc8n6oVF1RpI2yFnFUpj1mvJuW7iiX98tRO3QKWJIMjEPovgZcS
bhVhgKXiU87dtWwmcYhMsXBAYczbsSaNWhOIPwKHuQ+rYRevd0xGDOOl3P7pocZJR850tM9e
58O9bzdsRYZpFW5MkrD7Aity5GpD65xYmAkbBwTjN4eNlp0nHVdSbVf4Fsjve6JC6yzKOGFB
VU1TtAR2uPK6xxpn8ffzCNTA1vKXEM8Hgjyq4LWSdDTBIevuAqkz4T2eGJLXimhGpTXy7vz+
wnYxQ9edADrnfcgLbfz8s/wmCoH4GJAFNIkBIgQQAQIADAUCT2eDdwUDABJ1AAAKCRCXELib
yletfFBEB/9RmWSSkUmPWib2EhHPuBL6Xti9NopLOmj5MFzHcLtqoommKvpOUwr1xv0cZMej
ZenU3cW1AvvY287oJwmkFRFu9LJviLSGub9hxtQLhjd5qNaGRFLeJV8Y0Vtz+se2FWLPSvpj
mWFdfXppWQO/kIgVZoXcGJQrQWcetmLLgU9pxRcLASO/e5/wynFXmgSajxWzWHhMvehvJTOq
siYWsQxgT/XaWQTyJHkpYJoXx4XKXnocvc8+X3QkxAFfOHCwWhYI+7CN8znDqxYuX//PKfDG
2Un0JHP1za8rponwNG7c58Eo3WKIRw0TKeSwOc1cSufnFcrPenmlh2p70EvNRAINiQEiBBAB
AgAMBQJPeKdGBQMAEnUAAAoJEJcQuJvKV618YwoIAMn3uqSB4Ge1D61m0pIXJfOcC6BhCZvM
mV3xTp4ZJCdCQzjRV3rZRkt0DwyOVYpLzLgDgvbRwjXjOzm0ob1DvYHFA7DnGTGUsBLDX/xZ
5gRvDtkD6w8b/+r2/eQiSu7ey/riYwB6dm3GzKR7FEbIK6bEuPOUBwvV2tYkZRgTYqXq7NBL
uNv7c80GWhC/PqdvdhFn4KAvL0PjVIgr5+mdXyviKqG7uvguYBDtDUMX1qgZpi+fb7EsbJYf
EkBR63jGQw04unqT1EXWds17gj+yp4IHbkJmEJMS8d2NIZMPbIlHmN+haTA73DwNkbVD1ata
qSLiFIGXRyZy87fikLVIljOJASIEEAECAAwFAk+KdAUFAwASdQAACgkQlxC4m8pXrXwIUQgA
mnkFtxXv4kExFK+ShRwBYOglI/a6D3MbDkUHwn3Q8N58pYIqzlONrJ/ZO8zme2rkMT1IZpdu
WgjBrvgWhmWCqWExngC1j0Gv6jI8nlLzjjCkCZYwVzo2cQ8VodCRD5t0lilFU132XNqAk/br
U/dL5L1PZR4dV04kGBYir0xuziWdnNaydl9DguzPRo+p7jy2RTyHD6d+VvL33iojA06WT+74
j+Uls3PnMNj3WixxdNGXaNXWoGApjDAJfHIHeP1/JWlGX7tCeptNZwIgJUUv665ik/QeN2go
2qHMSC4BRBAs4H2aw9Nd9raEb7fZliDmnMjlXsYIerQo7q7kK2PdMYkBIgQQAQIADAUCT5xA
QQUDABJ1AAAKCRCXELibyletfOLsCADHzAnM10PtSWB0qasAr/9ioftqtKyxvfdd/jmxUcOl
RUDjngNd4GtmmL7MS6jTejkGEC5/fxzB9uRXqM3WYLY3QVl+nLi/tHEcotivu2vqv4NGfUvW
CJfnJvEKBjR8sDGTCxxZQoYoAFbGTP1v9t4Rdo7asy37sMFR2kA4/kU1FDxYtFYFwwZCJpNL
hhw0MCI2StI/wIwtA/7TiFCNqHHAKAGeSzKVyKrPdjn8yt7Js2dM6t2NUOwXQ563S4s6JZdR
lXUV9oYh1v+gFAuD57UHvinn6rdoXxgj3uoBmk9rWqJDNYgNfwtf1BcQXJnea+rMavGQWihx
eV40+BZPx9G6iQEiBBABAgAMBQJPrg39BQMAEnUAAAoJEJcQuJvKV618M4YIAIp9yNCVLGta
URSthhmmgE/sMT5h2Uga6a3mXq8GbGa3/k4SGqv51bC6iLILm2b0K8lu5m6nxqdZ8XNNMmY9
E+yYTjPsST7cI0xUzbAjKews63WlEUrj/lE2NEtvAjoS2gJB+ktxkn/9IHnqwrgOgUofbw6T
hymURI+egyoDdBp91IQD8Uuq9lX+I+C1PPu+NCQyCtcAhQzh+8p7eJeQATEZe2aB1cdUWgqY
evEnYNNK8zv/X3OMYl67YyEgofKoSYKTqEuPHIITmkAfn0qVsBA4/VtLbzGVGyQECmbbA34s
5lbMLrYeERF5DnSKcIa665srQ+pRCfJhz6VQXGsWlyWJASIEEAECAAwFAk+/2VUFAwASdQAA
CgkQlxC4m8pXrXwDOAf+JEUUKLiqO+iqOLV+LvI09lU4ww7YfXcqz4B9yNG0e5VprfS7nQ0P
tMf5dB7rJ6tNqkuHdoCb+w0/31pPEi7BFKXIoSgOz3f5dVKBGo8GBsX+/G/TKSiTenov0PEU
7/DlwvwmsGExmgmsSQgEWTA3y1aVxc9EVC9x0Fi/czcNNlSpj5Qec7Ee9LOyX4snRL1dx30L
lu9h9puZgm8bl5FLemPUv/LdrrLDqG9j4m2dACS3TlN14cwiBAf/NvxX3DEPOYTS6fwvKgLY

118

Verifying Package Integrity Using MD5 Checksums or GnuPG

nHlOmKRCwlJ6PArpvdyjFUGWeCS7r4KoMCKY5tkvDof3FhggrQWgmzuPltBkTBQ7s4sGCNww
6okBIgQQAQIADAUCT9GlzwUDABJ1AAAKCRCXELibyletfDj1B/9N01u6faG1D5xFZquzM7Hw
EsSJb/Ho9XJRClmdX/Sq+ErOUlSMz2FA9wDQCw6OGq0I3oLLwpdsr9O8+b0P82TodbAPU+ib
OslUWTbLAYUi5NH6WW4pKnubObnKbTAmzlw+rvfUibfVFRBTyd2Muur1g5/kVUvw2qZw4BTg
Tx3rwFuZUJALkwyvT3TUUrArOdKF+nLtVg3bn8EBKPx2GfKcFhASupOg4kHoKd0mF1OVt9Hh
KKuoBhlmDdd6oaEHLK0QcTXHsUxZYViF022ycBWFgFtaoDMGzyUX0l0yFp/RVBT/jPXSBWtG
1ctH+LGsKL4/hwz985CSp3qnCpaRpe3qiQEiBBABAgAMBQJP43EgBQMAEnUAAAoJEJcQuJvK
V618UEEIALr7RNQkNw1qo7E4bUpWJjopiD00IvynA0r5Eo0r83VX5YYlAfuoMzBGg6ffKiCs
drHjEh45aIguu8crQ7p2tLUOOzKYiFFKbZdsT/yliYRu4n28eHdv8VMKGZIA7t0ONIp1YPd2
9pjyVKy4MOo91NfwXM5+tcIzbYL9g+DuhQbYDmy8TVv7KKyY/gqZU1YB6kS49lycQw8WCine
FoeD1fb6aP9u0MFivqn2QCAhjXueKC01M2O0jR0wu7jdojN50Jgeo6U0eIHTj2OQmznh8wYG
MX2o+1ybSTjjHIp3X8ldYx01Sa3AqwKEBclLdg5yIyAjHq2phROd2s/gjqrWt+uJASIEEAEC
AAwFAk/1PVUFAwASdQAACgkQlxC4m8pXrXwn3AgAjWUh31IxsQcXo8pdF7XniUSlqnmKYxT+
UZOP71lxeaV/yjY+gwyZvf8TWT4RlRp5IGg6aNLwLaDB3lcXBGuXAANGUr+kblewviHnCY3Z
+PWiuiusle+ofjbs8tFAr3LN3Abj70dME7GOhLyplP2mXIoAlnMDJ0AyrKx5EeA2jS8zCWCu
ziiOj4ZwUZAesXchpSO9V9Q86YiPtp+ikV0hmYgZpIXRNcHOpxnVyEW/95MFwi4gpG+VoN57
kWBXv6csfaco4BEIu9X/7y4OLbNuvzcinnHa0Pde5RnRlbEPQBBZyst2YZviWTFsbG8K2xok
dotdZDabvrRGMhRzBUwQEokBIgQQAQIADAUCUAZhawUDABJ1AAAKCRCXELibyletfDJUCAC+
68SXrK4aSeJY6W+4cS6xS//7YYIGDqpX4gSlW1tMIKCIWNhHkZqxKnWClnmvgGhw6VsZ2N0k
YdOnIrzEPWL7qplZRiE1GDY85dRXNw0SXaGGi7A8s6J9yZPAApTvpMS/cvlJO+IveFaBRHbI
RRndS3QgZVXq48RH2OlHep3o7c964WTB/41oZPJ7iOKgsDLdpjC1kJRfO9iY0s/3QrjL7nJq
5m14uY16rbqaIoL81C7iyc0UKU9sZGMcPV7H0oOIAy206A3hYSruytOtiC1PnfVZjh14ek2C
g+Uc+4B8LQf5Lpha4xuB9xvp1X5Gt3wiPrMzcH89yOaxhR8490+0iQEiBBABAgAMBQJQGC19
BQMAEnUAAAoJEJcQuJvKV618CbcIAJCXDbUt96B3xGYghOx+cUb+x8zcy9lyNV8QC2xjd9Mr
02LJTQHfJfQ9Td6LfuoRb7nQHOqJK1/lWE28t9tlH7I+i7ujYwA/fWardRzqCulNXrgFEiQK
ZFaDjRYyM0jWG/sA3/Rq2CMBNhBeCcTDuZ8VvRdm0xMPpyavP8D2dM9WBkPHOik4yAIILVkr
hWmr0Up0JhRoelfeyqcN/6ClUgeRMIyBYthA55fk2X5+CerommlpDfJJlFQOv64VSzS68NG8
j9yf66uuL3bB0OdzOMW6Yq/P9wskCDlMbYm/UnHfB5wAuxWpDeAvt/u+vU4xqqEjkUQGp03b
0v1xl79maSuJASIEEgEKAAwFAlWg3HIFgweGH4AACgkQSjPs1SbI/EsPUQf/Z6Htrj7wDWU8
vLYv3Fw23ZuJ8t8U/akSNwbq6UGgwqke+5MKC1fpk90ekzu5Q6N78XUII3Qg8HnfdTU0ihYg
qd3A1QmO6CG2hEz5xoxR1jJziRCbb1J7qEw8N/KzBcTkHB4+ag6bjFY9U4f9xU3TjPIu7F2V
Bk1AX+cmDo8yzPjDnP4ro0Yabbg0Q9xzvaK/7pFRz+vL/u/lxW7iE7n6vXTiaY1XnIt5xAXX
dwfLYmWeAgdc9KXFNlt4lfuqrETtNCHme+JI+B2Tz2gHmMVLHiDV59eLC0uU/uVsOXEd26ib
JC4f3KqY9kxuQm325kNzxnMxiwMPCVzsEh7lsYp+OokBMwQQAQgAHRYhBADTXowDFGilEoOK
6kPAyq+7WPawBQJasiYMAAoJEEPAyq+7WPawox0H/i96nkg1ID61ux+i20cOhVZylNJ770Vv
0zfXddWRN/67SuMVjLLiD/WfnDpw6ow6NM7vfEwbmvo1qeFF7rWWTPLm57uZfTk73un3fbaL
JiDZyrUStQKK/yhGAZmwulOQq7XBm+u8G9UcFi4XQxuoc5I/v/lUgbxXBADlxlfzpkIDwOaB
s23RDiMcWZGcosUkYHXlm8scU0tRANVLQ/PHgttlUl3x2PLzrdQm3YUDKUJ9+ynO2jN2sYwt
laSohj4UbLnq6pI4CXWZR7XWQs+NX7P3R359FDtw7OhyKoVuIkRFZljY0i3wQgwl/Sm2DAg9
3lsZDVc/avEUaOO+VuJuvJ+JATMEEAEIAB0WIQQGFx4znGT7HFjpuwT3iPLIbOWZfAUCXJ7Q
KwAKCRD3iPLIbOWZfGoXB/wN0P3m27fY/6UXTl0Ua3H+24ueUdLipsvR8ZTwEfnwkhLrbggE
0Em7ZuhZkzv7j856gv/tOekYYqWGg1CLalD3y371LAGq1tjY3k/g2RWLxLXNdzgXEyFvaNQA
oQa9aC2Q7FOyEMwVkkXrGa4MML7IBkrtMds9QPKtfipachPf6tQOFc12zHRjXMZi0eRWyQue
0sLLiJZPn7N8bBAJyZ9IJEpkhNrKS+9J5D1Refj++DwBKDh04kQXZFEZZhxcungQW5oMBQgr
uW2hULTLeiEV+C516OnwWJOz6XKJpOJp8PY0bO8pGgToGIYHkoX2x64yoROuZasFDv7sFGX6
7QxyiQEzBBABCAAdFiEEEN0MfMPATUAxIpzAoiiOmODCOrwFAlv/EJIACgkQoiiOmODCOrwg
uAf+IVXpOb2S3UQzWJLSQyWG0wQ51go4IBVpHv6hKUhDFj47YdUbYWO+cgGNBjC7FVz54PUM
PIdxImGHE1NHH+DNR8hvvAi+YpnqqdT3g+OgZ6XoYevret5B2b5fRgN1/HWUjaJ/n5g6SMsC
+3DrmdMu1FEDnKv/1HwQvOQXKt/U2rXE1ILOmVdMavRJEwkrk2SVwbdeass2EInZVsmWL+ot
9dU5hrkmLAl6iHUoK6zF6WaI1oi7UU2kgUF2DNyZG/5AumsNhxE608EAs1zEdN8wibXL48vq
Z4Ue9GvImokdlq/r/4BMUdF1qLEZHBkbaklK1zXxl7uMiW3ZIcqpg5HgwYkBMwQQAQgAHRYh
BBTHGHD/tHbAjAF4NhhrZPEl5/iCBQJZ+o/oAAoJEBhrZPEl5/iCyfMH/3YP3ND8jFqIWkmG
JaITHP9GhAQda73g7BFIrBHeL033tcLtUbEHXvnIZzulo7jiu9oQBjQvgGgIl5AqH1m7lHaD
iAL3VmuUFZ4wys7SODHvSZUW1aPLEdOoLKeiG9J6elu0d/xWZmj86IaHMHrUEm1itMoo0m+U
MwVNLFNZrAjCn82DiS6sS0A52tOlpq/jR4v9AYfMZSnd1MLm/CZaZpzWq6aqm7ef7CDfsUvU
w7VsL3p1s+Jgo6+8RwQ1W2Lgt5ORthvpjPKE1z0qgDpoXTkPOi8M20taD5UZbpByzMZPJXXr
+LBrRbs48IcPVHx8sxHMh1HsQCiXHDGiTNSaJ1qJATMEEAEIAB0WIQQazDqcUxAL9VrKN9zD
LyvJ+reoRgUCW4YZiAAKCRDDLyvJ+reoRptWCACoIgFrvhbr3c1WVq16LJ8UmQLk/6uFFZPN
CiR6ZbvzOd+a3gk1G8AhDEW2zoNhFg9+I7yqUBGqn+B1nDZ6psyu8d5EoRUFTm3PghqEccy5
KixqoPxBTquzkKGbN8PDLUY5KvpTOLLlYZxlHzSHw4roPsU4rxZtxyu98sSW0cm47VPr069p
91p9rCoHY8Fng7r3w28tVfvLuZ1SK4jtykIvw+M/pVBk9rQVCAJ0JjkAHkTOpkHqsVBYhtu7
mzsXfkQZkeuxdNx6X1fMrbJofzH0GYTT8Knn75Ljhr3hozrsL4Kz4J9gsLHCjkD5XKzLwCFK
R6UhhZZr7uhufbqZIyTLiQEzBBABCAAdFiEELLeCvUfxyJI8qMqHHSPVZ6Jn8NcFAltZjFMA
CgkQHSPVZ6Jn8NfKSggApk065wFrxq2uqkZKfJGw2mdsGeDVjGq9tMKUWeYVxTNxjiYly8Dc
/jrOS3AU6q7X7tAAcmvaXoBfW3xEIXMSH73GeinVG7wnlab6GKPDRKJzXfJ88rF07pX8R1pc
ZH+eikiFsN9bcnEycH82bonS7dzyoo6yg2zBqNtsmWYLDg2hcoTw4UHAPwdX6+n99m3VzOqO
8ThQI9hqpUYGvP5qyYahFf+39HSViof+Kq5KKhvSoiS9NzFzYZ0ZszYt+2jozUpAM6XqtEGu
TMzXHkE+/V4yI3hIsvHNkXKgDrqjwA+UmT1R4/gBoiRhZ8r4mn1gYI08darQmkppf9MEbcDz
U4kBMwQQAQgAHRYhBC1hIxvZohEBMIEUf5vAD7YffmHCBQJcns2XAAoJEJvAD7YffmHCC0UH
/R8c5xY96ntPI2u6hwn5i0BGD/2IdO+VdnBUnyE4k9t2fXKDRtq6LAR2PAD0OehSe4qiR6hw
ldaC8yiyg+zgpZusbCLGxbsBdYEqMwTIeFsa8DyPMANpJ0XLkGGf8oC7+6RuAJvlm6DRlurr
U93/QIG6M2SNsmnPgSZWYV4Y5/G7Xxyj0Fc3gNjjjGGP61CBR01W6rgNPn35sZ9GYCZcGlQA

119

Verifying Package Integrity Using MD5 Checksums or GnuPG

GGrT8mSVoUhPgPCXKz2dZDzsmDHn7rULB6bXcsHiC/nW/wFBpoVOIFIxND0rb1SYyJzPdPtO
K6S+o+ancZct8ed/4fUJPBGqrBsuFS1SKzvJfPXjHGtZBitqOE7h57SJATMEEAEIAB0WIQQt
9h/1MHY0zPQ0K+NHN096zf0O3AUCXK2H5QAKCRBHN096zf0O3OJtB/wKbQN4IjVNkmWxSaBc
JABRu/WSbNjoTo/auJV6IRUBpwR130izMw239w5suuWx1phjPq3PdglBaKKeQNdeRoiudUjd
hydON1cq2wh9O073wU2GHeZLi48MopUNksrhHfd/XWV//0LcSpERsqIBVIUi+8DHwFvpCzCz
zIRg9lOcQmEtJAFFUtkF9FEeZgO2NPO3fEwkjKDeJYUiB+mD9BliyxhU8apUx/c2zaFGQOCr
MllN/gHztAWDcIadK/tujqRWR4wnJ0+ny/HP+bWd18+YjhcWzUQ8FytG+DA3oylQ1d0w0emt
qfn0zqiFkJQdG0M4qtItJYEYHlYpG2yoQHcCiQEzBBABCAAdFiEERVx3frY8YaOOhcAGjZrN
vi2vIgUFAlnScGAACgkQjZrNvi2vIgW5IQf8DKjeoHF9ChDcb4T01uJJiAUu6lxewSRD7iwD
6MjCsaxgMifTD7Bzvdem4finoOul2YAPtlLfIfVtVRtGG97R/Wvs3yjI9NSzxkDGuuE7/IIi
4dKlcKkvijg7G6A8+MGXaQTw8iOePI/44IyG5yogKjno7L4h0f3WguGzmCRUJcgYm23IsaTh
Pvdq39ARyHAlrk0hXZ+OqsYBrlW7KLyPrbPA3N+/2RkMz6m+T8ZksOrEdF/90nC9Rky4Wbg4
SJqWQNNSMfgT0rQL2Qvne598FKmltrTJuwBtIrSeuL/dbKt+hkLgnRjnmtA5yPaf0gXvMtfU
P9goQMWD+A2BU/bXJokBMwQQAQgAHRYhBFBgHh7ZZZpG0pg7f1ToXvZveJ/LBQJblegpAAoJ
EFToXvZveJ/LS0YH/jpcVprmEGnqlC0mYG2MlRqeK4T8Y6UnHE2zBPc125P4QcQfhgUJ98m4
0B5UkzljreFr9Zebk3pE8r4NBsamlJvi8sGbZONTsX4D3oW9ks0eicKOcTZJgtX5RmSNFh63
+EHbqTneK/NTQIuqRSCOufqCOH6QY1PVsICBlFZUPMfuxRlO7EwHKNIHPVBZNlM7AXxdjCMU
kXvda8V14kActb1w7NWxWxo5q4hkQ2K3FsmbWXvz+YBhJ8FnRjdzWNUoWveggOD6u4H7GuOg
kCyXn1fVnbCyJWsXQT9polJRnIAJMAtykcYVLNS/IS65U+K1cMshcF+Gil9BuGyckbRuNaSJ
ATMEEAEIAB0WIQRh2+o6RdTFb7cSlWG3d+zE2Q5m7gUCWdJutAAKCRC3d+zE2Q5m7rgJB/9k
c+prmrnjsq/Lt6d90LqYoavvIeFkAoDhhWgQeEOAD1wgyHIpS6qoMKgvBlvda2r0bmk1kUL2
xQaiDj36wB5yJHauOnFX+3ZJ6QCYUaeoWtqO2ROHvTiuyUdVKC5NtKaHpM1/lP/jl/1ZRWay
idggH7EnwDMt+9O0xD02n5J29Vp9uPO1GtMVsVSiJCGcOxwNBgNiXX1BpZbN4bRm5F8DAGiN
v4ZI69QZFWbpj8wFVJ/rV4ouvCFPlutVEAuIlKpAj35joXDFJhMvPpnPj84iocGqYPZHKR6j
a90+o8dZw3hXObFowjcxsJuQUTVkPuhzqr6kEu1ampaQ8OGpXCZHiQEzBBABCAAdFiEEZ/mR
TQQxCZjglXUwgzhtKKq2evsFAltbmWkACgkQgzhtKKq2evsdrAgAubfuG1vWX3TTG/VYYrfM
1aS1Roc034ePoJHK5rLT0O/TnnnObw38kJM1juyu4Ebfou+ZAlspiWgHad62R1B29Kys/6uC
qG2Jvbf716da4oLXeLYd9eb+IKVEiSb2yfbsLtLLB0c/kBdcHUp6A1zz0HV8l1HWj1Wx8cFU
MV7aAQoOfnNBbnNWLzNXXLYGHh47/QmjifE5V8r6UJZGsyv/1hP4JHsQ2nqcM8Vfj+K+HEuu
nnxzgWAcQXP/0IhIllVwoWhsJlHW+4kwW02DDopdBfLTzCtzcdOkfBcCg8hsmC4Jpxww5eHm
saY6sIB32keCpikVOGwdGDbRH7+da8knzokBMwQQAQgAHRYhBG4VA/IlW5kLV/VchhLcHkBr
mersBQJaX4N4AAoJEBLcHkBrmersksUH/3M0cypXBnyGIl/yE576MDa0G1xJvciup0ELeyhj
48Y7IAr7XiqDtiPt8tlIiPFF8iaw56vJw5H6UKraOcjZHOH1SwDr5gAWJgMqnqlFX/DxVKif
USt81KX0tHN6t6oMESgm2jRKvcWjh6PvEZlIArxZG4IjrErqWIJjUJR86xzkLyhRVTkUL/Yk
uNl1i013AlaD/0CGuAnjrluUUXypadtNr7/qsBx8dG6B/VMLWToEDEon76b8BzL/Cqr0eRyg
Qz6KWi3hmsK+mE4+2VoDGwuHquM90R0uS9Z+7LUws24mX5QE7fz+AT9F5pthJQzN9BTVgvGc
kpI2sz3PNvzBL5WJATMEEAEIAB0WIQR00X0/mB27LBoNhwQL60sMns+mzQUCWoyYfgAKCRAL
60sMns+mzYgnB/9y+G1B/9tGDC+9pitnVtCL2yCHGpGAg+TKhQsabXzzQfyykTgzCHhvqRQc
XHz5NSgR0Io+kbGMUUqCaen6OlcORVxYIuivZekJOAG+9kiqWRbyTv4aR6zvh8O5wCyEhhyi
ifi65PM7y9lD6i22qTt/JoDnFkP5Ri6Af/fZ9iaIaluQKJCU5xY1Lt/BorGlrGvX5KiZD8xc
AjhJRATZ0CJ21gbxISSxELAfH42KzGAvJw/0hARrMkl/eK0HVDpD47mcmC5h/O/HlwPYi0hn
xB+6/nuwwtRgMDBufNV0StU43njxCYmGI9/I1z5Vs+zhz8ypw/xCr1U7aAPZQdSSsfEViQEz
BBABCAAdFiEEelR8OpStCJs7bhrK1TniJxBsvzsFAlv+8d0ACgkQ1TniJxBsvzsiFwf/a3lt
OuSrFs4M03YVp6LoCM6CwZfvcFl+6B0TAurOiCja9lsNmbusSx0ad7bZy6/kHDXH/eqomXeu
O4hkxxBvGK3gZt7iQsr9vsUSbbJnc1zMyOZKlhdxAOLOskttqtPs6hiJ9kUHFGZe47V3c77G
GMgi/akIU5PkxhK7+/bbAsW0iK60aXCZ5nAbWlzTQLgJnYrlk4b920rzGe8nDTGzGmSjIGnb
YvuD9ZI40DZRWVf1tXqCY643AXFYoOhRxj54uHnMLYhc0I65u2ZGwRiTI0g/en5E8i7WoejA
/sR0+cYs7l1IJwlNRwfqmnJWRGREEHcJ3N52k3X7ayq3qmr3K4kBMwQQAQgAHRYhBJSRYHFB
cqf4Tl2vzE+YN4Ly8sn+BQJae/KHAAoJEE+YN4Ly8sn+5ckH/juc2h7bC4OGmRHcZBLAG2vW
WEMTc8dAr9ZyJYXzR25W1/Cz/JXgJgMjSrE6m9ptycpvWc6IRlrQM/IqG+ywYFPwNp3PYsc0
1N33yC15W7DPRDTtJE+9yUbSY9FeYraV4ghxiBxD1cDwtd7DFNGNRvBDH7yQHmXBW0K8x6yX
Mwl1gj2/MvdFUKmz8Lku94OmrbDOi83cnAjUNbN15Wle7hWAIRALt3P1VusjV/XyzxvcSffb
mt3CgBCyK9CNyEr27CVkhZ8pcabITx9afMd1UTEii90+qzgcJwcR46bJPZBdavMt56kVCeC0
kG44O3OOk+OahKXzw4YspZMO046gYRKJATMEEAEIAB0WIQSm5fcyEkLUw6FcN0ZJlMJhNZ28
bgUCXTJMCQAKCRBJlMJhNZ28bsgCB/96PlBUdsKgnh/RpmPB+piFQf6Og+97L4fxHuQbzKOe
UNCSWNF7saVa5VaPxbV/9jDCTPZI5vBtnJebXtkmLoWFSZaXCYb49SijfvRsRAeX5QSqIRd4
3KMuO7nAvbPVYtMChCO/g1T3riF2icC6pgvmNZWm5Nu4pkLzRmQv8U33BAkL7EYIjZZaC/9h
o4Sh4l/gLNItOxMdsD34sJwBLvEi1pQOa1xNJ4kfQSRD/8ufakE5wfSie/s04w/2Cp7RD9H0
VlD+7FwPO1HQ3XJjONvOzj6uVdwCC5fcmbXbb2bbJ/xe4YVL3xmwWz5m2w+kBSpaZ6VHNocB
8S2OmIIPpr7OiQEzBBABCAAdFiEEp6WxZJrn5Z0o967I/htVRVZtQSYFAlqnkGEACgkQ/htV
RVZtQSYV2Af9E7FLIUi8lqOyYyZuX6skkNf5rNSew+7i5NsiNpQzZMdscJh9eJzyLrePLp7q
9HUOhMF/Fc0SgbDtKSWbfSidXkeaQ2twPj4rP1xxYBc0OY0OX4fNVA5O/pTI9nxIVQCDTljl
/WIY+fnj88lCkaKWoRJITaotjFmYt+gbJMBn3MMYf0VODeIRozV7//NdkzFXKmJ3fsCDGXXF
CVWM1Fn3M91o1fh3FSgKd+0sexUDn5afwWCqjGgiXDsE7fEdwsbnz1rDzWvuqCoZyIh1RXQf
QVbiakpzfvtDytC3Vo6F2KzpZ9d69Adhfn2ydAYxL/Xuvk9pWdEBNF4T+HfS9Z30BokBMwQQ
AQgAHRYhBPJCF6TG7RrucA13q1lkfneVsjZHBQJawgLrAAoJEFlkfneVsjZHgNsIAIaSJ3gF
tBtf0WLxYIo5zhNclXOnfgUUNjGrXHm5NxoI4Eulpx9dQYCJ++whMFbxpZQTgFAUq8q342EZ
raLCWwALZEZmkZjv+FX6bk8sgqZESpUOLJAIqpobKpaawOQ7LS+XWO0SchH1oLFAgDyBeIDZ
N/LiTlIdkJe1xpDQDtgUHawksqMCbIaBe60B5xvm1NkhnrmnM1p+e3LUd4j+XxACdcY5LSqV
zVT4OyD1WkKzk8EAASUI8xysNBEeX9/8/EXaAciECQb3MkYxTQZ4WqCLU0GCGl6Sx2fY5zI6
4Y1j/Sfn3JHikJots8eR1D/UxrXOuG5n9VUY/4tTa0UGPuCJAU4EEAEIADgWIQRLXddYAQl0
69GnwU+qS4a3H5yDGgUCX6xjgBoUgAAAAAANAARyZW1AZ251cGcub3JnYW5uaQAKCRCqS4a3

120

Verifying Package Integrity Using MD5 Checksums or GnuPG

H5yDGkRfB/9z/5MuAWLwoRLJtnJQzEOW7jsfzYpepL3ocT9tdGcs8jJTH3vh2x4Kp2d0Zaxx
Zs7R8ehZO5XJQ/DWdhH+7cifoeXmAEqDnlKSXZQZY/bG054tM6zes3tFTH3dCrn7LF59fQOG
OaZHgbFRQJO6F++90Mj9WAgeqGxyEhAlFIxFw4Cuul8OZAUIfq7YISnpkg2Tm/Q0SRRDJE4i
/7WJE/HVMB0Rf9KJXuk2BJlRIpQz8Cf+GVZ5aGIlXdM58QknprnollxoTKhrE74rAGHW7nRD
xIxOoP8odiXbLzn//g2m123usqncCKWZONDdVupax3RQ7xsIuFc9Kx4OtjwPQftziQFOBBAB
CAA4FiEE6hBKAqPbygqOC7fUwpbDMFwG9MsFAl8u+m8aFIAAAAAADQAEcmVtQGdudXBnLm9y
Z2FubmkACgkQwpbDMFwG9MsIvggAhRfd2Z5WLR6hGxOHu+A+ysjX6xKjcqshCYr8jRuOflFN
vxugQQoFM5pQr15TyhokaU78aDUoIbLnKcxxmH1l4hXxcRtg/9Y22TidOVN4jjNbc69KvCC4
uANYuAJaI3o5fb1jv8Lx82OiRDMhtRqyTdSGdU5//8X5FXCt+HhhzpSNoNtpxyhsKP0PAWao
zuETqvxy7t0uy0f1OTbZLI5nb52DxjBdZlThnJ2L9RwR2nSGhxjhTFg8LrZWgWNtY5HG+vk9
qbCwaC6ovNJ0G98i0DMrlbyGCbxa4Rv332n1xPfl/EPYWmNPlMu0V3bSCqxVa5u3etA5fw3r
qIm333vgFIkBswQQAQoAHRYhBJTatFFgHAZYHkTw9GcRGDP/RljgBQJa7LubAAoJEGcRGDP/
RljgNu8L/jN8j4HSggpnzJ0+3dFjVg7FUHJF6BZ84tv9huhmyrByaIrEfFf9ARn8OizKgdpC
/wJT1+KXarvsxdnEDlYSat3HS/sEw3BmZjAeTwPi0ShloiSjYgYRbg3irDskqUHML4hhvMx0
x9nZIag2XoSSH7kPEd5jOb8cd7jJeoGg6Z9Z9lMHuyqTGi0T/EbnhjQfVTxWkSkcDvdxbSuW
D96mvZrbRnrMebXKkISb0uVUn3/o11iUo9jXs+Q/03Tb9i0H3eOliP1kcB/kggu9xblIPM+J
VaK5Z+zAVLPKTQJi+sP/ayEux0xZzfbZ96WERnzT4E7Wwv8MvaLbybtID28Oy9YoBBYv7CrC
tyfrHh1t4v2AedRSZcTPKAaQ5NtLAvIdex0kOvvofaGi+7nmgV00vCZFBSXetvBMZkCapW09
vF7wcahaXpF+0Spl9vE2JiesST7uQobCUm1EjxJP0vMDcO1vIfJHlbIhB/f3PE3rXZIzYTdL
s3Kb4OONaUfNy9jYtYkCHAQQAQIABgUCVJqcUgAKCRB3MepTnaVyot2+D/9wAQ+p03lVMpYS
gMWMNLgjq3z7QrN0NYNpxUXAonxECjUzZKSUPGci+fPKxl3ZUenk+ruLgtgJmjmUOR6u1Dov
BpDFzhfqbIpjgtMDrnY5sWqxJ+CH2Rb5okEEDJ5qE9DwIMP5iXbf4xjnBOyPiq3sp983PLvy
8ttidWe9FDf8JuhWLHRJHODQjc6LufcHSWKG9fLmCjL2KSPNl696MwR+N95EKCivLL2PlG8c
f08Xd8lW1S0cJLh/6TEuZtAnVeo0NUOGUXOPPyhTPP/xhfLeKbkxjtm6rg/jBaIjuuQgUyNN
hKnP96/GRWWRHvio6eBPalhUcvImSrCHnqLRpdyMxmK67ZzKZS3YsH0ixozJYE0mNevZ2hEY
wB+O5HllqK22YwvJnCLH2ZZWTu2TCUjGZP8hbo2nSoyENlxZio9Gl/v4ypjdlgwrjnnZvxoM
yOFeuc47AuzP5QjhtlrWv12C4hYi3YLZvkLVFD0CxAE/CDuHk/4eFG4UC4Mor6+BXwVG7NEl
4qQWrAHjLQ2/sHMpsUqY/5X7+StG/78PLP0HP+PIBCDDTa7W0+6kf0EaGVHKW43IIkVNI2Ps
b44tTT+Xhc2mHk44LuzL4Axlywv+CxP9NcKLNFwK4Ck1M8Np6cAKlu+Dw6gjOY1aGHgtdsBQ
cIqZj/+ETD0+9NkDXEoeDIkCHAQSAQIABgUCUliwpAAKCRCiKuTrQynFRXZdD/9vb+69OGSR
t456C6wMLgBl+Ocv9XeaCTiJjLgAL2G6bRH2g2VcNHnU/VMTD2YLVu0eP7ubsirVrmR7nAgL
sQ1mKKWvTI+p5aAvn4sL3x3P8vzmGoDAigZ458yGuVpVsBkSPjJBMAkMDfm9kdWxCanzuKXS
b59lfTg4EtcHPDzoSgABntASgfioVxP2TVPfre282cibeYS+RDlaMTVH25yElrWDuF2U1CVW
SMWY9mskr1+XjPnoO2jz0+jhKB7jyMMfSmJqzgcBNgezFbzX2fPmNnMZzEucVFFHmIhNVmL2
rOwc/s1tSHerG5YIdL3HOJek5xJljzjzFfDrdjmMMl+nO6nO78oePoLNdglQQSqn0yW6gZv8
EIIQ/N1nSi/LEW60z8FFxzoO8TqxMMX9QRLbVE6p+7C0nqolhZf6UEiDIIm+PihF1vPFSV54
+7OoLObCshe2g4pbRGWPhIJ4X3ILBQwFMZbn+cIuY3h3B/UpbZE/YSDgRFu5TLtCfBE/lQKX
7QhJknJhQhJ+Dx+Y8h1Cx61Qr0KP5DmOkHYZfAQtdacgrqEr/qNen4QYRdKp0gTne8AV7svB
8eI/8PkzvUPaHrax0g6ZSbeWbvEw6czm0qUGJX7iMlJSauIJPrbOjvXT7qIsaqZRRiUSWXo+
m+jzK5qdeRhEIUmlJI/tU/RsGokCMwQQAQgAHRYhBEW+vuyVCr0Fzw71w1CgTQw7ZRfyBQJd
hy3eAAoJEFCgTQw7ZRfyRf4P/3Igs5dYm0fhposI5iwBGtN5SsxYTZGte2cZ+dXVcnLwLIZc
Ry1nDu/SFXPUS0lQBj7/Bc2kl8934+pUtte+B5KZI2s/28Gn98C2IjxxU+YZ1X1LbUkx0cPA
jFWjUh/JSfu6Hif2J0NAG3meySnlmpxl6oZeTojeWo1t39PF4N/ay7S2TqIjGSBfxvD1peIU
bnziKsyM5ULbkMdgHssQvyZvrVzQxacRzPK424jXtKR6B2oA0wqMcP4c69UmVKEKIzJNYrn4
Kjs+An8vZvJYAVbiWEyEseTTo3XJePdBNs1xxK2vWLA5PeLkE8bmzHr8iQ3hA0NaY7jSJp3e
GrhWIdXV+nfclrFUPghYr5z+ljCSK5sow+aRiED39qd1Y+0iUAy94cqY3MQ4ayGgnB/+YuSx
B5jNjCBYJetFWWSJXnkbiYRLjU88dflXCrTbhkSuCu3agOjsBJYUyg/c1Z4eCQgpTWB2cjYQ
0ucKOsWt8U6qsl12qwYLr0RfcP2aCwTTnWIxqIN9F6iMafOsG+za8JY+B8PDJxxwWWz8vCvX
ChTYrfiFei8oUqoHYTbw07cxaxkDd2CgXsQMmOcZSoXZZPAe8AhsUibDl+BZs/vLZT7HrXtt
/ggz8LzVCcyQqwmCHurvgjauwjk6IcyZ5CzHFUTYWUjvFqYfAoN15xUZbvPYiQIzBBABCAAd
FiEERsRGITzmkUU5TZu635zONxKwpCkFAlxFLcAACgkQ35zONxKwpClKVw/+PfrtIVHFsOdl
2crWBSo5Hifvx9Vn2nPiNKErygB+tPWDS4UwzVUnpZfXCM7bKJFFPeKbitYxN3BlDmVhZMkc
1DZMAtIPSstO2oX7Tv/C0WOZPlAWkp5m0DPV3iGbGZjwmy5wz8fNtaWyxtcUeaEXY8j151gm
Wfl1LMvgwnFsQ74xobnCpssLgmogXfoLFQNF/VUfRveJ2Ci8raWyAdXFBdAIrejawAx5MMhO
/lEfQ3W3f9bqtJZ5DzLbxQ3Xtqs+RY1ihv1y12lr9vLpgKKGmZ92KDvjv2UXHd7XZ90aPMj7
Rx0MQ1d+5d/tNQ8rLJGuj1I7NqHmLHMz67TvRtPl4aNP7Mss8OHiEKLYq23kGqXN+6cjG3UM
i290uJZaAnTno65Cgsyn7JFKyXDdTOmp3TSoyVsPFq92qgd/jFBf3dJj8c+mZEVXkUFeeUEK
31EMGFCH+oE8un7nu+XWqFyFSw5wn+PGYDXkSd6z/NyIN5DXa326KV+qpUmIWOlcymm7cmZ4
KJQt7zgWCxh2DuWQzRlTjeQd8Iw62V8tIOBokWP9Thes18Qk2GOUeCnvczLdevT4lqr8IzvV
nSwX/LQyxmmz2/dmPhzJ6kA6KQKGOSF6WnV/WuD4kESFKwtABFi6mYQi1F6CynpVw/nu535C
4fFG4d+A5G6sKJx//hjOCgmJAjMEEAEIAB0WIQRGxEYhPOaRRTlNm7rfnM43ErCkKQUCXa6e
YgAKCRDfnM43ErCkKfNXD/0cTEjvQlgyy3UI3xfhYtRng8fsRXcACjMajnrvYCoRceWwF6D+
Ekvh5hNQqrZsxrD6nozY+iJhkkaQitIj4qw7i4KY03fo613FjeLFXWqf4sfLTANSsRNxawEo
/JxP1JeOToOgYTkikWOkgZWSs/mqvHAxJZrVq/Zhz06OugfOYVGmGZonU7zP12toiwParIZ9
hcZ/byxfNoXEtsQyUHO1Tu8Fdypmk0zYUgZK2kGwXslfOGj5m0M5nfUuVWq5C5mWtOI6ZngT
LPJ32tRW526KIXXZMTc0PzrQqQvTFHEWRLdc3MAOI1gumHzSE9fgIBjvzBUvs665ChAVE7p2
BU6nx1tC4DojuwXWECVMlqLOHKjC5xvmil12QhseV7Da341I0k5TcLRcomkbkv8IhcCI5gO8
1gUq1YwZAMflienJt4zRPVSPyYKa4sfPuIzlPYxXB01lGEpuE5UKJ94ld+BJu04alQJ6jKz2
DUdH/Vg/1L7YJNALV2cHKsis2z9JBaRg/AsFGN139XqoOatJ8yDs+FtSy1t12u1waT33TqJ0
nHZ8nuAfyUmpdG74RC0twbv94EvCebmqVg2lJIxcxaRdU0ZiSDZJNbXjcgVA4gvIRCYbadl9
OTHPTKUYrOZ2hN1LUKVoLmWkpsO4J2D1T5wXgcSH5DfdToMd88RGhkhH7YkCMwQQAQgAHRYh
BH+P4y2Z05oUXOVHZQXCWLGt3v4UBQJhrDYPAAoJEAXCWLGt3v4Uh2oQAMS3sK0MEnTPE+gu

121

Verifying Package Integrity Using MD5 Checksums or GnuPG

7lLi9rMbD/3O5nlAxBJLX4MzLi2xP1648YV5nq9WMMt6qyp+OVwDXefneYNMgfU2/uu/Wi/o
XTHBJuU36lmFzhRWPj2h/vtfgDIYG2wio0DNJyaUQwLEi6gqPm0AHhKS4td69R+7qyQsbUIa
BFgoytxFzxDb5o2hicEOXa573m4myfAdCx5ucYfq+jlXJW9Wgw7ERnF1v9xQDXiuryXWFRdv
UOOWzVPu9T0gPkcG8NABwqxs28Oc7n9Al9HM2FtDAkD0LIcm/I4ZEhFVqvG6Hj966+FeuICw
OaefFhthOoi3ycO+pkj1IePz/TmnsplTvvZOXH+6XEMPpPRQpvf5IZKJyrvuzoU8vkXYY2h/
gJHi9HiSIIQ/BVEpvp6UjXvIbNP1K31II88qx9EfT/tv434wlZpC6V1FzE2LtxyNcj/+OUvj
9hKOJ7lKOVpsnBbGiWg809s4sCIZ/ifLfWAKOJgxAEk/GcRkkkCqGNx7HA+coteNHqXLa/Lb
2/r8gGn6kH9YhQootJsGhhSsY+6CW5TM5E+FhSRJU7MFHRpA94N7Hn6OFUK2OXtHyRhxE867
R+ChJaZXbtoQJVNv2Rv9yoZrBki3RoQ6/6/fcnR1x2moTMYg7K8AMMv7ZCfaP6AjPOjTVnMV
CpNy1Ao7smOzLAfKbbeXiQIzBBABCAAdFiEEjy2YV7IZJ8NHv36cSrDCiwqTaaEFAmF9XbsA
CgkQSrDCiwqTaaFUGw//WSUO22Csa60I6VN8yJQmf0wCo9sieWDXCdHZ+CB0+gu0I3EMYR2a
gL8lqCd6M79fpP8DiLKOJvn9mhXCsjYjTJQUsuNi5kQ/O9gwarRsr7EjJ7R8u8lpSh9YPlMS
yN6XXfOa4Qy5HOw9idJdb3owKAXSjuRdi/hUExjA8TWliyWrfwiVDQi/aCoLZ4b9p6SfGR3Y
gE8UIZLZtdWgsPJHkvdvntTPi4fwMsadBfa2f+m4Wq2CAU5KSfYsVpKAwSQ1OsdUZUK7g+Ui
jy//ad7eZ+BAc75blHs7ua2iiF8Sc7MC55ZM5ldkv+0lqJ7td5vOCT1LKJg5PKKUC7YTTh9U
PHlERJ/SWcHNES1YhwLvUO2VROlPN9H1QkPnEMBOObpmYkNQyLBfFwioJ3ilptYY0IUX5qBM
5UkwgyqMsdyrL+2ozIYc+/A8KUnZXozOAG9LP8gBE5jBJSIkbqsi9Fumf7Q63++g4ojcYpOZ
F92X6kQMGqBvkvs8UajR5f/n6QH0je4XFPj4l4lVM/PPfZSShNGdOOi4l+KwozICnQ1+fhwh
N0VG4eALSJ6XQEEfJ18PrBRS3sdC7OVEMLevEC8ojSQeZE1lCLe1qAUoEcmgmXjsODaJn2tt
qNYYUxcFOycFnzgWL679C9FVp+DAg9jzDMKsqWo/Lt3IDNF19ZUc93WJAjMEEAEKAB0WIQSC
piWCWP+fBOH/9bx9bbut3FAu7gUCW8ygHQAKCRB9bbut3FAu7mOaD/9QJ1MiyKvw9rYqTvkU
OSDSLu88g6NP5R9ozgGZegInZ/NzT8u5emYccflnLlfvRQZPnT7YIH4+h25CCGQ5HzXUGENx
ndeuG4dm3B10A8hxv+abEM9VYDGqSIvF6z1xObvENOpMgmlmFdDi9O9d6jFFy4Hd6/BWejbU
4M3kfuD39RxaT1OEWfqvTVf4GKiLqM71glNB8WrTqxt2t/Mo2h6UPCF7/wPF/idMAbKEn0ye
b1WDCaZVXxAQETfNo129hPb2qxPGoCWGw24ySpGrM5We4Nd3bbdGItSZ0mATNM1+m9FY9j30
vpePFzzYGZ+23EcpxWU+7jWbjZ42ssCW6kx2/ERLVma7FuneEAqUc3gZr/3ZdZOVMvseg8c0
n66D/NRLgMcpOQK62qJfSrxQj6sJCGRY4dxAfdTZWrcxu8UvvcINezGIToQ0y+Mc5LM1vMOd
srXcaVnuJTfWorOeqnFecnClcOwKNAKBXjE8bSANUBKlrw0RIpye/IilrKGEMaYkP2nnnNZE
GPmumGkejDstWGmnHi5IogN8ibzyywsbNsO+qDdlUFA2bmVhh2uK7M95kyuMH3GnWbz4IiMx
RyUVEyK8yKnEmgOmLG4WiJjksP1jIPf3ztTEVVDJxy1gT3R36lsxd+OabnPOgiz1oFewKaur
aWX1e0E6eBWJ95ufookCMwQQAQoAHRYhBM8z5mfkMwAXdpGlbLdWs0L0i1qEBQJcBMl7AAoJ
ELdWs0L0i1qEmxwP/jDweTwTh1s+7Pp39L6aLB7nuQzdMleTksPGgmtguRBZipbOYOryEozK
9hI3Hq/ymV/loINv6GZhieDoZvxrv9eEKgO2eUE0IletSy7znlhV6MB7PBOc29dbCMf5L4qo
xUG/f+XfHkRZEkjZRWMlitlERlDU5gHAQ3skLuT9bu3aZkGdBgw0U5qjVvGzYxp2LFpNHXlf
TrlN3RZoDbRI+E9BPILqZFIZczp/fxRRNkXyogkrGD+0PANFsjySQKd/rr8/Z4isl3AM8CZ7
s4tMWM4EVJ2OygnrcMuIEJdXVsR0Ln1gJLuQ9HpWehve0d7/cIZkN7a0fqgE7bMvSPyxWL3m
yTA4FwdbrebBr2y7ixlXZ6WtX/rqTvo2HTDFLle0ZwMbbfAtoFX0M0lPtXTLmJAl5w1G8Nj8
bthWdN4KVFyOpqPt7OXc/G1YNLzcyYQXX5e8Uskmg40OH5cQV5OFEG8qpxTg53wANDdxXGzs
NUQe84Qkoyk75nwzVfsi00/OhTZmfIC48esXcs0kTrkSPrFcHktSMoYPmHfV3dTF17ifjz5a
C2SL22R+RokWuzGxxpvEaQAWIyCt6izf1a+CjnXPD2Jw3yDC/Oeg68XYiSrbeFdCRzQbS9YP
ipUFIlHuCiNZeGg3rFL2N2JodXg2LGORJz1RKazT7uAfRr5z7W1FtDtNeVNRTCBQYWNrYWdl
IHNpZ25pbmcga2V5ICh3d3cubXlzcWwuY29tKSA8YnVpbGRAbXlzcWwuY29tPohGBBARAgAG
BQI/rOOvAAoJEK/FI0h4g3QP9pYAoNtSISDDAAU2HafyAYlLD/yUC4hKAJ0czMsBLbo0M/xP
aJ6Ox9Q5Hmw2uIhGBBARAgAGBQI/tEN3AAoJEIWWr6swc05mxsMAnRag9X61Ygu1kbfBiqDk
u4czTd9pAJ4q5W8KZ0+2ujTrEPN55NdWtnXj4YhGBBARAgAGBQJDW7PqAAoJEIvYLm8wuUtc
f3QAnRCyqF0CpMCTdIGc7bDO5I7CIMhTAJ0UTGx0O1d/VwvdDiKWj45N2tNbYIhGBBARAgAG
BQJEgG8nAAoJEAssGHlMQ+b1g3AAn0LFZP1xoiExchVUNyEf91re86gTAKDYbKP3F/FVH7Ng
c8T77xkt8vuUPYhGBBARAgAGBQJFMJ7XAAoJEDiOJeizQZWJMhYAmwXMOYCIotEUwybHTYri
Q3LvzT6hAJ4kqvYk2i44BR2W2os1FPGq7FQgeYhGBBARAgAGBQJFoaNrAAoJELvbtoQbsCq+
m48An2u2Sujvl5k9PEsrIOAxKGZyuC/VAKC1oB7mIN+cG2WMfmVE4ffHYhlP5ohGBBMRAgAG
BQJE8TMmAAoJEPZJxPRgk1MMCnEAoIm2pP0sIcVh9Yo0YYGAqORrTOL3AJwIbcy+e8HMNSoN
V5u51RnrVKie34hMBBARAgAMBQJBgcsBBYMGItmLAAoJEBhZ0B9ne6HsQo0AnA/LCTQ3P5kv
JvDhg1DsfVTFnJxpAJ49WFjg/kIcaN5iP1JfaBAITZI3H4hMBBARAgAMBQJBgcs0BYMGItlY
AAoJEIHC9+viE7aSIiMAnRVTVVAfMXvJhV6D5uHfWeeD046TAJ4kjwP2bHyd6DjCymq+BdED
z63axohMBBARAgAMBQJBgctiBYMGItkqAAoJEGtw7Nldw/RzCaoAmwWM6+Rj1zl4D/PIys5n
W48Hql3hAJ0bLOBthv96g+7oUy9Uj09Uh41lF4hMBBARAgAMBQJB0JMkBYMF1BFoAAoJEH0l
ygrBKafCYlUAoIb1r5D6qMLMPMO1krHk3MNbX5b5AJ4vryx5fw6iJctC5GWJ+Y8ytXab34hM
BBARAgAMBQJCK1u6BYMFeUjSAAoJEOYbpIkV67mr8xMAoJMy+UJC0sqXMPSxh3BUsdcmtFS+
AJ9+Z15LpoOnAidTT/K9iODXGViK6ohMBBIRAgAMBQJAKlk6BYMHektSAAoJEDyhHzSU+vhh
JlwAnA/gOdwOThjO8O+dFtdbpKuImfXJAJ0TL53QKp92EzscZSz49lD2YkoEqohMBBIRAgAM
BQJAPfq6BYMHZqnSAAoJEPLXXGPjnGWcst8AoLQ3MJWqttMNHDblxSyzXhFGhRU8AJ4ukRzf
NJqElQHQ00ZM2WnCVNzOUIhMBBIRAgAMBQJBDgqEBYMGlpoIAAoJEDnKK/Q9aopf/N0AniE2
fcCKO1wDIwusuGVlC+JvnnWbAKDDoUSEYuNn5qzRbrzWW5zBno/Nb4hMBBIRAgAMBQJCgKU0
BYMFI/9YAAoJEAQNwIV8g5+o4yQAnA9QOFLV5POCddyUMqB/fnctuO9eAJ4sJbLKP/Z3SAiT
pKrNo+XZRxauqIhMBBMRAgAMBQI+PqPRBYMJZgC7AAoJEElQ4SqycpHyJOEAn1mxHijft00b
KXvucSo/pECUmppiAJ41M9MRVj5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJYiKJ
AAoJELb1zU3GuiQ/lpEAoIhpp6BozKI8p6eaabzF5MlJH58pAKCu/ROofK8JEg2aLos+5zEY
rB/LsohMBBMRAgAMBQI+TU2EBYMJV1cIAAoJEC27dr+t1MkzBQwAoJU+RuTVSn+TI+uWxUpT
82/ds5NkAJ9bnNodffyMMK7GyMiv/TzifiTD+4hMBBMRAgAMBQJB14B2BYMFzSQWAAoJEGbv
28jNgv0+P7wAn13uu8YkhwfNMJJhWdpK2/qM/4AQAJ40drnKW2qJ5EEIJwtxpwapgrzWiYhM
BBMRAgAMBQJCGIEOBYMFjCN+AAoJEHbBAxyiMW6hoO4An0Ith3Kx5/sixbjZR9aEjoePGTNK
AJ94SldLiESaYaJx2lGIlD9bbVoHQYhdBBMRAgAdBQI+PqMMBQkJZgGABQsHCgMEAxUDAgMW

122

Verifying Package Integrity Using MD5 Checksums or GnuPG

AgECF4AACgkQjHGNO1By4fVxjgCeKVTBNefwxq1A6IbRr9s/Gu8r+AIAniiKdI1lFhOduUKH
AVprO3s8XerMiF0EExECAB0FAkeslLQFCQ0wWKgFCwcKAwQDFQMCAxYCAQIXgAAKCRCMcY07
UHLh9a6SAJ9/PgZQSPNeQ6LvVVzCALEBJOBt7QCffgs+vWP18JutdZc7XiawgAN9vmmIXQQT
EQIAHQUCR6yUzwUJDTBYqAULBwoDBAMVAwIDFgIBAheAAAoJEIxxjTtQcuH1dCoAoLC6RtsD
9K3N7NOxcp3PYOzH2oqzAKCFHn0jSqxk7E8by3sh+Ay8yVv0BYhdBBMRAgAdBQsHCgMEAxUD
AgMWAgECF4AFAkequSEFCQ0ufRUACgkQjHGNO1By4fUdtwCfRNcueXikBMy7tE2BbfwEyTLB
TFAAnifQGbkmcARVS7nqauGhe1ED/vdgiF0EExECAB0FCwcKAwQDFQMCAxYCAQIXgAUCS3Au
ZQUJEPPyWQAKCRCMcY07UHLh9aA+AKCHDkOBKBrGb8tOg9BIub3LFhMvHQCeIOOot1hHHUls
TIXAUrD8+ubIeZaIZQQTEQIAHQUCPj6jDAUJCWYBgAULBwoDBAMVAwIDFgIBAheAABIJEIxx
jTtQcuH1B2VHUEcAAQFxjgCeKVTBNefwxq1A6IbRr9s/Gu8r+AIAniiKdI1lFhOduUKHAVpr
O3s8XerMiGUEExECAB0FAkeslLQFCQ0wWKgFCwcKAwQDFQMCAxYCAQIXgAASCRCMcY07UHLh
9QdlR1BHAAEBrpIAn38+BlBI815Dou9VXMIAsQEk4G3tAJ9+Cz69Y/Xwm611lzteJrCAA32+
aYhlBBMRAgAdBQsHCgMEAxUDAgMWAgECF4AFAktwL8oFCRDz86cAEgdlR1BHAAEBCRCMcY07
UHLh9bDbAJ4mKWARqsvx4TJ8N1hPJF2oTjkeSgCeMVJljxmD+Jd4SscjSvTgFG6Q1WCIbwQw
EQIALwUCTnc9rSgdIGJ1aWxkQG15c3FsLmNvbSB3aWxsIHN0b3Agd29ya2luZyBzb29uAAoJ
EIxxjTtQcuH1tT0An3EMrSjEkUv29OX05JkLiVfQr0DPAJwKtL1ycnLPv15pGMvSzav8JyWN
3Ih7BDARAgA7BQJCdzX1NB0AT29wcy4uLiBzaG91bGQgaGF2ZSBiZWVuIGxvY2FsISBJJ20g
KnNvKiBzdHVwaWQuLi4ACgkQOcor9D1qil/vRwCdFo08f66oKLiuEAqzlf9iDlPozEEAn2Eg
vCYLCCHjfGosrkrU3WK5NFVgiI8EMBECAE8FAkVvAL9IHQBTaG91bGQgaGF2ZSBiZWVuIGEg
bG9jYWwgc2lnbmF0dXJlLCBvciBzb21ldGhpbmcgLSBXVEYgd2FzIEkgdGhpbmtpbmc/AAoJ
EDnKK/Q9aopfoPsAn3BVqKOalJeF0xPSvLR90PsRlnmGAJ44oisY7Tl3NJbPgZal8W32fbqg
bIkBHAQSAQIABgUCS8IiAwAKCRDc9Osew28OLx5CB/91LHRH0qWjPPyIrv3DTQ06x2gljQ1r
Q1MWZNuoeDfRcmgbrZxdiBzf5Mmd36liFiLmDIGLEX8vyT+Q9U/Nf1bRh/AKFkOx9PDSINWY
bE6zCI2PNKjSWFarzr+cQvfQqGX0CEILVcU1HDxZlir1nWpRcccnasMBFp52+koc6PNFjQ13
HpHbM3IcPHaaV8JD3ANyFYS4l0C/S4etDQdX37GruVb9Dcv9XkC5TS2KjDIBsEs89isHrH2+
3ZlxdLsE7LxJ9DWLxbZAND9OiiuThjAGK/pYJb+hyLLuloCg85ZX81/ZLqEOKyl55xuTvCql
tSPmSUObCuWAH+OagBdYSduxiQEiBBABAgAMBQJJKmigBQMAEnUAAAoJEJcQuJvKV618U4wI
AKk/45VnuUf9w1j7fvdzgWdIjT9Lk9dLQAGB13gEVZEVYqtYF5cEZzyxl8c7NUTCTNX3qLId
ul114A4CQQDg5U9bUwwUKaUfGLaz380mtKtM9V9A4fl9H2Gfsdumr8RPDQihfUUqju+d0ycd
mcUScj48Nctx0xhCCWNjOFPERHi9hjRQq7x6RKyFTLjM5ftdInHCo9S+mzyqz9O+iMgX68Mm
+AVgdWSC9L6yGnw6H97GD28oRMGWBTzsmCyqf9I3YutH8mGXRot3QbSJD7/AeZVh1BQwVoJn
CT8Eo1pc/OYZkRRndE1thrX0yjuFwTeOzvqeHlgzEW/FtOCBW7iR0WSJASIEEAECAAwFAkoz
TogFAwASdQAACgkQlxC4m8pXrXwXiAf+Ked6Mgd98YyTyNiLHhllPulboCnKgj430jLzkfgv
7ytVCu1xMfKrRWRw3fA9LC19mzNQX/So/o/ywsk0nUG2sfEs5FiMk+aC957Ic/MDagmXqKap
ZROJbzbZ/KNj9rPCG9kXPGa9sUn6vk39nnv4hri30tNKpM0fMxRhpcoNoCrNl4rs/QTpdRpp
7KBuNaMEtDU7R7OjMDL4qT+BcCmYMIYW4dIV7tmaC0VxtcszZcVCkxSigRMPZHwxSx37GdCx
9/+TqlA4vGL6NQSxZKv+Kqa+WTqBngOl6YGO6FxdiXEliNRpf1mafmz6h8XgYXFGpehjuX1n
60Iz0BffuWbpL4kBIgQQAQIADAUCSkRyCgUDABJ1AAAKCRCXELibyletfPaaB/9FCSmYwz7m
vzOfHZOlEAYeLnCS290XGW89o4FYTbw0PBOulygyqj2TMCK68RCNU2KFs/bXBHeS+dDzitMA
fSaULYi7LJuCCmrDM5SX5aLSj6+TxkDQDR1K1ZE3y6qd4Kx3VeeoN7Wu+oLj/3Jjbbe0uYCQ
+/PniRra9f0Z0neTExZ7CGtVBIsKS1CnKBTR26MZMOom2eTRZwGFUX1PzuW/dbZ4Z0+J6XMd
Tm2td7OYYWPbV3noblkUrxyjtGtO3ip3Oe3zSCWHUFMaaEuXOMw8tN51wy6ybcPVAH0hOiBw
b3iCFJ/20QqaZEno6edYzkqf0pwvrcTmiPb+Vj0fnjBJiQEiBBABAgAMBQJKVj5HBQMAEnUA
AAoJEJcQuJvKV61845AH/R3IkGIGOB/7x3fI0gOkOS0uFljDxysiM8FV06BfXbFpRgFMZxAh
NFUdKCDN98MDkFBd5S5aGkvhAHS7PVwQ8/BIyJaJeUG3AXmrpFV/c9kYn1+YW5OQ9E7tKu5l
5UOj1Y/weNtC04u6Rh/nrp6CvMBhH2nvhSBZ+2kO2auqtFOhuK6+wUHGixt5EK8RAKs3Sf6n
kP2EJUHzy1Q8ec5YDiaV24AVkPFBZMCkpD3Z+seIGrL4zUkV7PPY4zd9g34Oqj8JvtnA4AD/
Z1vBLujLixcQdt9aieOySA9DAVgHbe2wVS4zi5nBURsmD5u96CUOwNK1sOV+ACtdIv/T5qSU
VweJASIEEAECAAwFAkpoCoQFAwASdQAACgkQlxC4m8pXrXysfQf+IJyIPhTphk0kGPQY3v9e
3znW30VahyZxoL6q25eeQWGmVeTFlU4JThUEyzgYGip8i9qBsFPJ9XgOL5bxTGv7/WOK7eX8
e+gXHB3A2QYbrM0GFZKN3BCkbA++HmvJXU58tf+aBCB0ObG+rPn6QUNSPibu4tp65TaPVPSV
HjNTTICxu3sneHB+okJcc5z1ubme8nAytKb6x0JM/keNSXAev2ZN7zG5m+Pqw7/DQ/gCogzG
ML1bulP2rSh8bYpJPC3vAVuHTmxsbhRBg4l7j5KiHf4qMBrVzRy+YiHhwpf2p8JbCGF141+H
UD1VMeGeXnNO/9SO+dC2OGUf8WrV4FIpxIkBIgQQAQIADAUCSnkuCgUDABJ1AAAKCRCXELib
yletfBjrCACDd/zvoveoNlNiUUBazelcGXwaxSvUMSROUQNkxkoMzfA+aFpYFHWEwDfLqndp
oJTIkgkESd5fODJT26oLFekLvx3mpzfGz8l39KzDM1i6+7Mtg7DnA3kvfVIuZBNDwqoTS6hH
KcGa0MJDgzZQqJ9Ke/7T7eY+HzktUBLjzUY2kv5VV8Ji0p6xY27jT73xiDov00ZbBFN+xBtx
2iRmjjgnPtjt/zU5sLiv9fUOA+Pb53gBT+mXMNx2tsg07Kmuz7vfjR5ydoY7guyB3X1vUK9y
AmCW1Gq67eRG934SujZFikO/oZUrwRrQu2jj5v8B7xwtcCFCdpZAIRabD4BTglvPiQEiBBAB
AgAMBQJKjl+9BQMAEnUAAAoJEJcQuJvKV618DTwH/3DzIl1zwr6TTtTfTBH9FSDdhvaUEPKC
bLT3WZWzIHREaLEENcQ85cGoYoBeJXVBIwBczZUpGy4pqFjYcWQ9vKFm2Nt1Nrs+v9tKc+9G
ECH0Y1a+9GDYqnepcN2O/3HLASCEpXFwQhVe01G+lupGgqYfMgTG9RByTkMzVXB9ER5gijGC
zjTflYAOFUx2eBBLYa3w/ZZpT+nwRmEUaDpfwq06UPrzMZuhol7SGPZUNz4lz4p2NF8Td9bk
hOiJ3+gORRohbq0HdaRdvSDoP/aGsQltfeF5p0KEcpIHx5B05H1twIkOGFTxyx3nTWqauEJy
2a+Wl5ZBl0hB2TqwAE9Z54KJASIEEAECAAwFAkqgEkcFAwASdQAACgkQlxC4m8pXrXwyXwf/
UPzz+D+n19JWivha7laUxuDzMQCKTcEjFCu4QVZ1rqcBFPoz0Tt74/X75QdmxZizqX1E6lbF
EsbVjL2Mt5zZjedS1vbSbrmn4hV4pHZr08dbflZkNX105g8ZlpsqQ7VyUt5YtWCn0tGNn4B5
Eb6WMeqxQteujV3B7AtMH+CD0ja+A2/p0rHIpqScz8aupksBMCrYqhoT+7/qXNEVkjNmcu2N
mHxfv6dL5Xy/0iJjie2umStu8WTfRTpYmnv2gEhbCdb/zhFvG61GgTBJqv9MvBVGRxnJFd4l
NqlucsadD+UM7WjV3v5VuN2r9KD9wocd/s22ELCRA2wKccvR/nWBkIkBIgQQAQIADAUCSqgQ
AAUDABJ1AAAKCRCXELibyletfAT8B/9cPhH8DlHoiv+cK8rAJMomZqVqOyy4BwsRrakycVlg
7/yvMs74anynSoUf0LgsXADQ29Hmrpf+zC5E5/jPGWNK81x2VBVoB8nZkMSAnkZfOw+mWu9I

123

Verifying Package Integrity Using MD5 Checksums or GnuPG

Aj2NLcsvt9JYNmAq5R7RrirHsDQ2DIYxRgaE/5CVEVry9YQEj18A13/SYyoB4FWpDI4fRfUW
JbUJrYmfg0p+4zL0YS9F11UhsHUu+g1W1c83N54ozI1v0l3HUwVayzII4E/YNrIkpOaO+o8R
z9g6M6jCg3mwn+OfiZVJO++VOiguJF5KzoZIICMxXE3t5hL87Kroi7UkNwm+YHw3ZaLEBm0B
WAXw4DsJZcpViQEiBBABAgAMBQJKuceJBQMAEnUAAAoJEJcQuJvKV6188KEH/24QK2LV1l42
4Wx3T9G4bJFRWWuuEkTpYJw6ss72lqus9t7BsoGaNLMHQzKAlca9wLTqY826q4nv9anEqwWZ
+Di8kE+UAMUq2BFTL0EvOMJ6i1ZyE8cUFVb1+09tpBWJJS7t3z00uMMMznGuHzSm4MgCnGhA
sOgiuHdPWSlnHnqNJa/SB6UVQxtcDOaqQlLIvhd2HVqrOBRtER3td/YgLO6HSxXpXtz8DBa2
NYQYSwAdlqJAPLBnBsLXwbCswuIDMZZv8BJwUNBEJkokOMv5CXxhPrP5kxWvyBvsIhTk8ph2
GIh/ZRVNDAsChbuU1EJBACpwaMrcgwjPtI7/KTgeZVSJASIEEAECAAwFAkreCMYFAwASdQAA
CgkQlxC4m8pXrXyOQQf7BvRm/3PvFCCksyjBW4EVBW7z/Ps/kBK6bIE9Q7f7QlXFIcGGUIpA
rufXWbV+G4a3Z8LFeFJTovNePfquwpFjneUZn1CG+oVS1AfddvYhAsgkLhQqMbaNJIJ1y4D/
H3xvCna/s7Teufud0JLXoLBedFXeB5Cg2KlEoxINqMo+lm/VGJmbykwqoRvxZLDfnbFag5zG
59+OWw4TC8nzlIQYIBn22YiWRk5zsCJA40O+KL1vwBiFDrREhALQc/YBJKYrRX3ZV4U/EeYD
KB0NCBk1W1tXGCee3uhM0S5VFc1j7Pg58ECuntH5xOy+KMNFljiQwvWfbaFTJvCjFQS+OplX
b4kBIgQQAQIADAUCSu86VAUDABJ1AAAKCRCXELibyletfGs8CACteI2BmKs24GF80JeWTOQI
cvHnCdV7hKZOltbNPBbDv6qTt3iX2GVa10iYhI5Eg3Ojt/hKFJTMlfYZyI1peFodGjv7Lk5l
u7zaNBvT1pBCP+eJspi6rGpSuhtMSb4O5jPclRBmbY+w9wctLyZf1zG+slSdw8adcRXQNFqr
vVIZYOmu2S8FunqLfxpjewiFiDPzAzmbWzMoO2PLCYFhwV6Eh2jO33OGbvBmyHNFZBfX5F/+
kiyeT47MEhrfhytJ6ZOdpxtX8HvbvzPZcDLOI80W6rPTG76KW06ZiZrJ81YCa6a7D01y7BYy
W2HoxzYcuumjRkGF4nqK4Mw+wefCp0H/iQEiBBABAgAMBQJLAF3aBQMAEnUAAAoJEJcQuJvK
V618/q0H/ibXDQG2WQmC1LoT4H+ezXjPgDg8aiuz6f4xibTmrO+L4ScMX+zK0KZVwp6Kau28
Nx+gO0oAUW8mNxhd+cl0ZaY+7RIkxEvkooKKsArBmZT+xrE6CgHlAs3D4Mc+14nfD0aZaUbE
iobWvXlYLl27MELLcWyeMlgbeNoucc473JddvmHSRRM5F9Qp28CvWDEXYqhq1laoaho8+cei
pvzyuO3OTwjuAOqhefOHzAvFrRli99ML8xzF1ZOvBct+36SuYxDXyIhkSd7aG9Us0lW6W5Si
JYt4cDyI0JDhbhZN0tzWYKcKMZMxf8w3jW4sfQL0prhHrARqqPiU8OTUH/VNX5CJASIEEAEC
AAwFAksRgasFAwASdQAACgkQlxC4m8pXrXydogf/a31ofmYFMoE3p9SqGt/v28iyO0j9A1Lm
qKwEhJkxff/X/Qa7pafGQ9J90JQkxYKMxydWPspTbDFMccZWkBK132vZp9Q3FHKpnDPDLK2S
25miTReeAAQNgMMFLeyy7ZHi5YsKwLbKxcSo7/m0jlitNYlmt94imFNpg/mHGsy6O+rLeQTA
opuIzP3VwN6ItL5gIFxqWPmf/V0xh/vxTwLqJ66vECD8vyHrHblUzgiXHgyYbZPxAa2SRRd3
4V38phaZ/QsTkss+Sd/QeHChWyU9d6KengWwcr/nDO+K/hhmnO5Oqz02Upwyxrgi6484HQUN
/Smf44VBsSD1DBjaAKjMr4kBIgQQAQIADAUCSyNN1AUDABJ1AAAKCRCXELibyletfCWiB/9c
EZtdFVcsxpE3hJzM6PBPf+1QKuJORve/7MqNEb3TMWFgBxyOfvD7uMpCJyOrqq5AbUQfZfj9
K7qmzWUMuoYceGIlbdmHFBJwtmaF0BiyHaobgY/9RbdCNcbtzrW34feiW9aDZyvCoLHEVkCC
QACSv3FwdYVkkRB5eihvpwJk5tpScdIA12YLqzmVTFdhrZuYvtDdQHjgoLMO8B9s9kok7D2T
SpveVzXXPH68Z3JkVubhHT7cs+n+9PRvcaVJtsX2VTUY5eFVqmGuAUVrvp2aN8cKQ+mVcCQr
VVIhT9o8YB5925MUx2VJml0y0nkBQuMZyzMEOVGkuU/G+pVrRmmAiQEiBBABAgAMBQJLJyaS
BQMAEnUAAAoJEJcQuJvKV618eU0IAKnVh6ymId9C3ZqVyxwTnOB8RMQceJzwCLqk2RT0dPhN
5ZwUcQN7lCp9hymMutC8FdKRK/ESK21vJF2/576Pln4fIeOIbycBAEvqrL14epATj53uBizo
NOTuwb1kximFERuW3MP4XiFUJB0tPws2vR5UU3t6GoQJJwNoIbz9DK2L6X/Qz3Tb9if6bPSK
U6JR1Yn3Hos9ogg21vWCxgMTKUuPAYhmYjSvkqH3BihXi+c17MVvE7W5GJbQHuJo+MgSxu04
4qnvDHZpf4Mzc30XcG1ohjxefNyeiY2bzdI2yCaCtmWOlCW1Sc2oiE0zwO6lD4hY5XmC2Xql
MLsKB5VNXJGJASIEEAECAAwFAks4Ze4FAwASdQAACgkQlxC4m8pXrXyWXggAon2abiNvRzx9
7364Mjx4IlFvM1tVebzNbOkDwZS1ABqTDGgq/ffZA/VZrU+h2eL97cQyGxJEQ5kkm/v1iobE
ZEFMT0pv9WMzfidqzhdKdcpbbxdaErIjD5fBACKdjazAUeH7zce2v+bBN0l9LZoRiXbNugG9
38lkJ2E4ZTYYfvftL/e4RzOgqR9VD/A5MzxfXFbCVharHbeT8OwZy4Oz2UDaDszHsNKoG1WN
pOSf2HTMBPNcsOSY/hIBRWNxnzdYOkWt7laeLNmN1eUEwzk4J7GnlambPIctOdoEUriMSaey
TkLZGejKnwi/PqARyDW1FsReKNHD753ZMViUnAsq2IkBIgQQAQIADAUCS0oyJwUDABJ1AAAK
CRCXELibyletfGodCAC5hjmxwquHSb8ZL0RifIL3j3iU6U7qLK1TQKkTqgELfUzeF9f8NuNR
txLmzNk1T7YI9iji6NAtnuy43v61OMbqlkV8x69qNP36Owv408wXxEt0s5ViZuVOZJAY075c
YRhopgfmhkh4hbkAoKCLajOR0WUEEsDHsqqj8XLJuGRREURy8TJWaB/cotXsgiJf99gt+gIw
In8tyb3+WVIUHWfw2+Drpd3nfcMqgeO54PePJo0BWWjaar+wgC/76Se286IHcYMrml/Adnvx
ZaIKmxZmkTmDMCfMnVjRYSKBGjQ9Uu7dws7SMsbbd34f8Jt9nyuRqMcl4INAXthWY/S3Sdil
iQEiBBABAgAMBQJLW/5mBQMAEnUAAAoJEJcQuJvKV6181L8IAKq3ZOQHzqaOoz5wnvj51YG8
nZoW5RG7HOb3mL1D9b+FTTzaIxsLf7STagPwKtM57rU/7ehHIuO/9QQNQ3Mudw17ZiwD0l5X
7iG8/AflWnc6bXfTz18IplRuqyVc0qQeJZhT7MBpklcS4ZGZHPQdtAh4Aw5YXihrbbq6jV7j
CzUmFz4XcT8CkJHIUGoFR0vTmFqlAt2K1imwGMh2IEamPOJ0wsTbBfZbhmkB03RToEjIipGZ
M+NtKS/NL2RJYWZ+FCCcEMoRgmlVmATWw3natgLWwN4Z6K4rGXONWi/0wyFgxZpmjdHmjcXa
Igz8EroVsLbnaV/8yG7cgK5e6M0Fk1iJASIEEAECAAwFAkttIfgFAwASdQAACgkQlxC4m8pX
rXyR3QgAksvAMfqC+ACUEWSVAlepDFR1xI45UwBa2UeBY7KjOOCiZlkGREvx20IOv1gExyPl
zNxDeqmYsl2mleEoH6QlXaJRd8MxIVfAnjAt8izwU2dfDwflTTWgGQYf8q7qeAv1XC34yNge
0JaTD1C55QpmcO51f2ojMsAi36bBJO4Dr59jhVYiDjQADS/d7FpAznlhH9SGUq6ekYb2jxCS
rvt0wRtMyk6YGgts4xEHcN0wC9VTobaXo9xvsqhtUK44Gdvptq1cBFX8byzD6fN8nXp+v8qh
tlPYDqb4muqTh2UXXiWMtvPXo7kkZQ8CvI3YbZ10F1IDLt20VJWFZaJYL2fzyokCIgQQAQIA
DAUCQYHLhQWDBiLZBwAKCRCq4+bOZqFEaKgvEACCErnaHGyUYa0wETjj6DLEXsqeOiXad4i9
aBQxnD35GUgcFofC/nCY4XcnCMMEnmdQ9ofUuU3OBJ6BNJIbEusAabgLooebP/3KEaiCIiyh
HYU5jarpZAh+Zopgs3Oc11mQ1tIaS69iJxrGTLodkAsAJAeEUwTPq9fHFFzC1eGBysoyFWg4
bIjz/zClI+qyTbFA5g6tRoiXTo8ko7QhY2AA5UGEg+83Hdb6akC04Z2QRErxKAqrphHzj8Xp
jVOsQAdAi/qVKQeNKROlJ+iq6+YesmcWGfzeb87dGNweVFDJIGA0qY27pTb2lExYjsRFN4Cb
13NfodAbMTOxcAWZ7jAPCxAPlHUG++mHMrhQXEToZnBFE4nbnC7vOBNgWdjUgXcpkUCkop4b
17BFpR+k8ZtYLSS8p2LLz4uAeCcSm2/msJxT7rC/FvoH8428oHincqs2ICo9zO/Ud4HmmO0O
+SsZdVKIIjinGyOVWb4OOzkAlnnhEZ3o6hAHcREIsBgPwEYVTj/9ZdC0AO44Nj9cU7awaqgt
rnwwfr/o4V2gl8bLSkltZU27/29HeuOeFGjlFe0YrDd/aRNsxbyb2O28H4sG1CVZmC5uK1iQ

124

Installation Layouts

BDiSyA7Q0bbdofCWoQzm5twlpKWnY8Oe0ub9XP5p/sVfck4FceWFHwv+/PC9RzSl33lQ6vM2
wIkCIgQTAQIADAUCQp8KHAWDBQWacAAKCRDYwgoJWiRXzyE+D/9uc7z6fIsalfOYoLN60ajA
bQbI/uRKBFugyZ5RoaItusn9Z2rAtn61WrFhu4uCSJtFN1ny2RERg40f56pTghKrD+YEt+Nz
e6+FKQ5AbGIdFsR/2bUk+ZZRSt83e14Lcb6ii/fJfzkoIox9ltkifQxqY7Tvk4noKu4oLSc8
O1Wsfc/y0B9sYUUCmUfcnq58DEmGie9ovUslmyt5NPnveXxp5UeaRc5Rqt9tK2B4A+7/cqEN
rdZJbAMSunt2+2fkYiRunAFPKPBdJBsY1sxeL/A9aKe0viKEXQdAWqdNZKNCi8rd/oOP99/9
lMbFudAbX6nL2DSb1OG2Z7NWEqgIAzjmpwYYPCKeVz5Q8R+if9/fe5+STY/55OaI33fJ2H3v
+U435VjYqbrerWe36xJItcJeqUzW71fQtXi1CTEl3w2ch7VF5oj/QyjabLnAlHgSlkSi6p7B
y5C2MnbCHlCfPnIinPhFoRcRGPjJe9nFwGs+QblvS/Chzc2WX3s/2SWm4gEUKRX4zsAJ5ocy
fa/vkxCkSxK/erWlCPf/J1T70+i5waXDN/E3enSet/WL7h94pQKpjz8OdGL4JSBHuAVGA+a+
dknqnPF0KMKLhjrgV+L7O84FhbmAP7PXm3xmiMPriXf+el5fZZequQoIagf8rdRHHhRJxQgI
0HNknkaOqs8dtrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWsEN/lxaZoJYc3a6M0
2WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLmRDRiRjd1DTCHqeyX7CHhcghj
/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hkAWzE7zaD5cH9J7yv/6xuZVw411x0h4Uq
sTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkbf4fmLe11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRs
KTfozBu74F47D8Ilbf5vSYHbuE5p/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnl
LzKUb/F5GwADBQf+Lwqqa8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPD
sDD9MZ1ZaSafanFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGo
TbOWI39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev42LmuQT5N
dKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkKHt926s/ymfdf5Hkd
Q1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUOetdZWhe70YGNPw1yjWJT1IhM
BBgRAgAMBQI+PqMdBQkJZgGAAAoJEIxxjTtQcuH17p4An3r1QpVC9yhnW2cSAjq+kr72GX0e
AJ4295kl6NxYEuFApmr1+0uUq/SlsYhMBBgRAgAMBQJHrJT8BQkNMFjfAAoJEIxxjTtQcuH1
pc4An0I965H3JY2GTrizp+dCezxbhexaAJ48FhocFYvfhZtgeUWb6aPvgQZHT4hUBBgRAgAM
BQI+PqMdBQkJZgGAABIJEIxxjTtQcuH1B2VHUEcAAQHungCfevVClUL3KGdbZxICOr6SvvYZ
fR4Anjb3mSXo3FgS4UCmavX7S5Sr9KWxiFQEGBECAAwFAk53Pe0FCRP7AbgAEgdlR1BHAAEB
CRCMcY07UHLh9RSbAJsFivb5sESf8vYE5yfD1n9AVa6FEwCgpWAIWbl9p1DcB+L5RCUBw6mG
uck=
=yia9
-----END PGP PUBLIC KEY BLOCK-----

2.1.5 Installation Layouts

The installation layout differs for different installation types (for example, native packages, binary
tarballs, and source tarballs), which can lead to confusion when managing different systems or using
different installation sources. The individual layouts are given in the corresponding installation type or
platform chapter, as described following. Note that the layout of installations from vendors other than
Oracle may differ from these layouts.

• Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”

• Section 2.8.3, “MySQL Layout for Source Installation”

• Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”

• Table 2.12, “MySQL Installation Layout for Linux RPM Packages from the MySQL Developer Zone”

• Table 2.7, “MySQL Installation Layout on macOS”

2.1.6 Compiler-Specific Build Characteristics

In some cases, the compiler used to build MySQL affects the features available for use. The notes in
this section apply for binary distributions provided by Oracle Corporation or that you compile yourself
from source.

icc (Intel C++ Compiler) Builds

A server built with icc has these characteristics:

• SSL support is not included.

2.2 Installing MySQL on Unix/Linux Using Generic Binaries
Oracle provides a set of binary distributions of MySQL. These include generic binary distributions in the
form of compressed tar files (files with a .tar.xz extension) for a number of platforms, and binaries
in platform-specific package formats for selected platforms.

125

Installing MySQL on Unix/Linux Using Generic Binaries

This section covers the installation of MySQL from a compressed tar file binary distribution on
Unix/Linux platforms. For Linux-generic binary distribution installation instructions with a focus on
MySQL security features, refer to the Secure Deployment Guide. For other platform-specific binary
package formats, see the other platform-specific sections in this manual. For example, for Windows
distributions, see Section 2.3, “Installing MySQL on Microsoft Windows”. See Section 2.1.3, “How to
Get MySQL” on how to obtain MySQL in different distribution formats.

MySQL compressed tar file binary distributions have names of the form
mysql-VERSION-OS.tar.xz, where VERSION is a number (for example, 8.0.42), and OS indicates
the type of operating system for which the distribution is intended (for example, pc-linux-i686 or
winx64).

There is also a “minimal install” version of the MySQL compressed tar file for the Linux generic
binary distribution, which has a name of the form mysql-VERSION-OS-GLIBCVER-ARCH-
minimal.tar.xz. The minimal install distribution excludes debug binaries and is stripped of debug
symbols, making it significantly smaller than the regular binary distribution. If you choose to install the
minimal install distribution, remember to adjust for the difference in file name format in the instructions
that follow.

Warnings

• If you have previously installed MySQL using your operating system native
package management system, such as Yum or APT, you may experience
problems installing using a native binary. Make sure your previous MySQL
installation has been removed entirely (using your package management
system), and that any additional files, such as old versions of your data files,
have also been removed. You should also check for configuration files such
as /etc/my.cnf or the /etc/mysql directory and delete them.

For information about replacing third-party packages with official MySQL
packages, see the related APT guide or Yum guide.

• MySQL has a dependency on the libaio library. Data directory initialization
and subsequent server startup steps fail if this library is not installed locally. If
necessary, install it using the appropriate package manager. For example, on
Yum-based systems:

$> yum search libaio # search for info
$> yum install libaio # install library

Or, on APT-based systems:

$> apt-cache search libaio # search for info
$> apt-get install libaio1 # install library

• Oracle Linux 8 / Red Hat 8 (EL8): These platforms by default do not install
the file /lib64/libtinfo.so.5, which is required by the MySQL client
bin/mysql for packages mysql-VERSION-el7-x86_64.tar.gz and
mysql-VERSION-linux-glibc2.12-x86_64.tar.xz. To work around
this issue, install the ncurses-compat-libs package:

$> yum install ncurses-compat-libs

• If no RPM or .deb file specific to your distribution is provided by Oracle
(or by your Linux vendor), you can try the generic binaries. In some cases,
due to library incompatibilities or other issues, these may not work with your
Linux installation. In such cases, you can try to compile and install MySQL
from source. See Section 2.8, “Installing MySQL from Source”, for more
information and instructions

126

https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/
http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/refman/5.7/en/replace-third-party-yum.html

Create a mysql User and Group

To install a compressed tar file binary distribution, unpack it at the installation location you choose
(typically /usr/local/mysql). This creates the directories shown in the following table.

Table 2.3 MySQL Installation Layout for Generic Unix/Linux Binary Package

Directory Contents of Directory

bin mysqld server, client and utility programs

docs MySQL manual in Info format

man Unix manual pages

include Include (header) files

lib Libraries

share Error messages, dictionary, and SQL for database
installation

support-files Miscellaneous support files

Debug versions of the mysqld binary are available as mysqld-debug. To compile your own debug
version of MySQL from a source distribution, use the appropriate configuration options to enable
debugging support. See Section 2.8, “Installing MySQL from Source”.

To install and use a MySQL binary distribution, the command sequence looks like this:

$> groupadd mysql
$> useradd -r -g mysql -s /bin/false mysql
$> cd /usr/local
$> tar xvf /path/to/mysql-VERSION-OS.tar.xz
$> ln -s full-path-to-mysql-VERSION-OS mysql
$> cd mysql
$> mkdir mysql-files
$> chown mysql:mysql mysql-files
$> chmod 750 mysql-files
$> bin/mysqld --initialize --user=mysql
$> bin/mysql_ssl_rsa_setup
$> bin/mysqld_safe --user=mysql &
Next command is optional
$> cp support-files/mysql.server /etc/init.d/mysql.server

Note

This procedure assumes that you have root (administrator) access to your
system. Alternatively, you can prefix each command using the sudo (Linux) or
pfexec (Solaris) command.

The mysql-files directory provides a convenient location to use as the value for the
secure_file_priv system variable, which limits import and export operations to a specific directory.
See Section 7.1.8, “Server System Variables”.

A more detailed version of the preceding description for installing a binary distribution follows.

Create a mysql User and Group

If your system does not already have a user and group to use for running mysqld, you may need to
create them. The following commands add the mysql group and the mysql user. You might want to
call the user and group something else instead of mysql. If so, substitute the appropriate name in the
following instructions. The syntax for useradd and groupadd may differ slightly on different versions
of Unix/Linux, or they may have different names such as adduser and addgroup.

$> groupadd mysql
$> useradd -r -g mysql -s /bin/false mysql

127

Obtain and Unpack the Distribution

Note

Because the user is required only for ownership purposes, not login purposes,
the useradd command uses the -r and -s /bin/false options to create
a user that does not have login permissions to your server host. Omit these
options if your useradd does not support them.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it. The
example here unpacks the distribution under /usr/local. The instructions, therefore, assume that
you have permission to create files and directories in /usr/local. If that directory is protected, you
must perform the installation as root.

$> cd /usr/local

Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”. For a given
release, binary distributions for all platforms are built from the same MySQL source distribution.

Unpack the distribution, which creates the installation directory. tar can uncompress and unpack the
distribution if it has z option support:

$> tar xvf /path/to/mysql-VERSION-OS.tar.xz

The tar command creates a directory named mysql-VERSION-OS.

To install MySQL from a compressed tar file binary distribution, your system must have GNU XZ
Utils to uncompress the distribution and a reasonable tar to unpack it.

Note

The compression algorithm changed from Gzip to XZ in MySQL Server 8.0.12;
and the generic binary's file extension changed from .tar.gz to .tar.xz.

GNU tar is known to work. The standard tar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU tar, or if
available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar
within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is
available from http://www.gnu.org/software/tar/.

If your tar does not support the xz format then use the xz command to unpack the distribution and
tar to unpack it. Replace the preceding tar command with the following alternative command to
uncompress and extract the distribution:

$> xz -dc /path/to/mysql-VERSION-OS.tar.xz | tar x

Next, create a symbolic link to the installation directory created by tar:

$> ln -s full-path-to-mysql-VERSION-OS mysql

The ln command makes a symbolic link to the installation directory. This enables you to refer more
easily to it as /usr/local/mysql. To avoid having to type the path name of client programs always
when you are working with MySQL, you can add the /usr/local/mysql/bin directory to your PATH
variable:

$> export PATH=$PATH:/usr/local/mysql/bin

Perform Postinstallation Setup

The remainder of the installation process involves setting distribution ownership and access
permissions, initializing the data directory, starting the MySQL server, and setting up the configuration
file. For instructions, see Section 2.9, “Postinstallation Setup and Testing”.

128

http://www.gnu.org/software/tar/

Installing MySQL on Microsoft Windows

2.3 Installing MySQL on Microsoft Windows
Important

MySQL 8.0 Server requires the Microsoft Visual C++ 2019 Redistributable
Package to run on Windows platforms. Users should make sure the package
has been installed on the system before installing the server. The package is
available at the Microsoft Download Center. Additionally, MySQL debug binaries
require Visual Studio 2019 to be installed.

MySQL is available for Microsoft Windows 64-bit operating systems only. For supported Windows
platform information, see https://www.mysql.com/support/supportedplatforms/database.html.

There are different methods to install MySQL on Microsoft Windows.

MySQL Installer Method

The simplest and recommended method is to download MySQL Installer (for Windows) and let it install
and configure a specific version of MySQL Server as follows:

1. Download MySQL Installer from https://dev.mysql.com/downloads/installer/ and execute it.

Note

Unlike the standard MySQL Installer, the smaller web-community version
does not bundle any MySQL applications, but downloads only the MySQL
products you choose to install.

2. Determine the setup type to use for the initial installation of MySQL products. For example:

• Developer Default: Provides a setup type that includes the selected version of MySQL Server
and other MySQL tools related to MySQL development, such as MySQL Workbench.

• Server Only: Provides a setup for the selected version of MySQL Server without other products.

• Custom: Enables you to select any version of MySQL Server and other MySQL products.

3. Install the server instance (and products) and then begin the server configuration by following
the onscreen instructions. For more information about each individual step, see MySQL Server
Configuration with MySQL Installer.

MySQL is now installed. If you configured MySQL as a service, then Windows automatically starts
the MySQL server every time you restart the system. Also, this process installs the MySQL Installer
application on the local host, which you can use later to upgrade or reconfigure MySQL server.

Note

If you installed MySQL Workbench on your system, consider using it to check
your new MySQL server connection. By default, the program automatically start
after installing MySQL.

Additional Installation Information

It is possible to run MySQL as a standard application or as a Windows service. By using a service,
you can monitor and control the operation of the server through the standard Windows service
management tools. For more information, see Section 2.3.4.8, “Starting MySQL as a Windows
Service”.

To accommodate the RESTART statement, the MySQL server forks when run as a service or
standalone, to enable a monitor process to supervise the server process. In this case, there are two
mysqld processes. If RESTART capability is not required, the server can be started with the --no-
monitor option. See Section 15.7.8.8, “RESTART Statement”.

129

http://www.microsoft.com/en-us/download/default.aspx
https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/downloads/installer/

MySQL on Windows Considerations

Generally, you should install MySQL on Windows using an account that has administrator rights.
Otherwise, you may encounter problems with certain operations such as editing the PATH environment
variable or accessing the Service Control Manager. When installed, MySQL does not need to be
executed using a user with Administrator privileges.

For a list of limitations on the use of MySQL on the Windows platform, see Section 2.3.7, “Windows
Platform Restrictions”.

In addition to the MySQL Server package, you may need or want additional components to use MySQL
with your application or development environment. These include, but are not limited to:

• To connect to the MySQL server using ODBC, you must have a Connector/ODBC driver. For more
information, including installation and configuration instructions, see MySQL Connector/ODBC
Developer Guide.

Note

MySQL Installer installs and configures Connector/ODBC for you.

• To use MySQL server with .NET applications, you must have the Connector/NET driver. For more
information, including installation and configuration instructions, see MySQL Connector/NET
Developer Guide.

Note

MySQL Installer installs and configures MySQL Connector/NET for you.

MySQL distributions for Windows can be downloaded from https://dev.mysql.com/downloads/. See
Section 2.1.3, “How to Get MySQL”.

MySQL for Windows is available in several distribution formats, detailed here. Generally speaking,
you should use MySQL Installer. It contains more features and MySQL products than the older MSI,
is simpler to use than the compressed file, and you need no additional tools to get MySQL up and
running. MySQL Installer automatically installs MySQL Server and additional MySQL products, creates
an options file, starts the server, and enables you to create default user accounts. For more information
on choosing a package, see Section 2.3.2, “Choosing an Installation Package”.

• A MySQL Installer distribution includes MySQL Server and additional MySQL products including
MySQL Workbench, and MySQL for Visual Studio. MySQL Installer can also be used to upgrade
these products in the future (see https://dev.mysql.com/doc/mysql-compat-matrix/en/).

For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “MySQL Installer for
Windows”.

• The standard binary distribution (packaged as a compressed file) contains all of the necessary files
that you unpack into your chosen location. This package contains all of the files in the full Windows
MSI Installer package, but does not include an installation program.

For instructions on installing MySQL using the compressed file, see Section 2.3.4, “Installing MySQL
on Microsoft Windows Using a noinstall ZIP Archive”.

• The source distribution format contains all the code and support files for building the executables
using the Visual Studio compiler system.

For instructions on building MySQL from source on Windows, see Section 2.8, “Installing MySQL
from Source”.

MySQL on Windows Considerations

• Large Table Support

130

https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/downloads/
https://dev.mysql.com/doc/mysql-compat-matrix/en/

MySQL Installation Layout on Microsoft Windows

If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer file system. Do
not forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables. See Section 15.1.20,
“CREATE TABLE Statement”.

• MySQL and Virus Checking Software

Virus-scanning software such as Norton/Symantec Anti-Virus on directories containing MySQL data
and temporary tables can cause issues, both in terms of the performance of MySQL and the virus-
scanning software misidentifying the contents of the files as containing spam. This is due to the
fingerprinting mechanism used by the virus-scanning software, and the way in which MySQL rapidly
updates different files, which may be identified as a potential security risk.

After installing MySQL Server, it is recommended that you disable virus scanning on the main
directory (datadir) used to store your MySQL table data. There is usually a system built into the
virus-scanning software to enable specific directories to be ignored.

In addition, by default, MySQL creates temporary files in the standard Windows temporary directory.
To prevent the temporary files also being scanned, configure a separate temporary directory for
MySQL temporary files and add this directory to the virus scanning exclusion list. To do this, add
a configuration option for the tmpdir parameter to your my.ini configuration file. For more
information, see Section 2.3.4.2, “Creating an Option File”.

2.3.1 MySQL Installation Layout on Microsoft Windows

For MySQL 8.0 on Windows, the default installation directory is C:\Program Files\MySQL\MySQL
Server 8.0 for installations performed with MySQL Installer. If you use the ZIP archive method
to install MySQL, you may prefer to install in C:\mysql. However, the layout of the subdirectories
remains the same.

All of the files are located within this parent directory, using the structure shown in the following table.

Table 2.4 Default MySQL Installation Layout for Microsoft Windows

Directory Contents of Directory Notes

bin mysqld server, client and utility
programs

%PROGRAMDATA%\MySQL
\MySQL Server 8.0\

Log files, databases The Windows system variable
%PROGRAMDATA% defaults to C:
\ProgramData.

docs Release documentation With MySQL Installer, use the
Modify operation to select this
optional folder.

include Include (header) files

lib Libraries

share Miscellaneous support files,
including error messages,
character set files, sample
configuration files, SQL for
database installation

Silent Installation Methods

Use MySQL Installer, see Section 2.3.3.5, “MySQL Installer Console Reference”.

2.3.2 Choosing an Installation Package

For MySQL 8.0, there are multiple installation package formats to choose from when installing MySQL
on Windows. The package formats described in this section are:

131

Choosing an Installation Package

• MySQL Installer

• MySQL noinstall ZIP Archives

• MySQL Docker Images

Program Database (PDB) files (with file name extension pdb) provide information for debugging your
MySQL installation in the event of a problem. These files are included in ZIP Archive distributions (but
not MSI distributions) of MySQL.

MySQL Installer

This package has a file name similar to mysql-installer-community-8.0.42.0.msi or mysql-
installer-commercial-8.0.42.0.msi, and utilizes MSIs to install MySQL server and other
products automatically. MySQL Installer downloads and applies updates to itself, and to each of the
installed products. It also configures the installed MySQL server (including a sandbox InnoDB cluster
test setup) and MySQL Router. MySQL Installer is recommended for most users.

MySQL Installer can install and manage (add, modify, upgrade, and remove) many other MySQL
products, including:

• Applications – MySQL Workbench, MySQL for Visual Studio, MySQL Shell, and MySQL Router (see
https://dev.mysql.com/doc/mysql-compat-matrix/en/)

• Connectors – MySQL Connector/C++, MySQL Connector/NET, Connector/ODBC, MySQL
Connector/Python, MySQL Connector/J, MySQL Connector/Node.js

• Documentation – MySQL Manual (PDF format), samples and examples

MySQL Installer operates on all MySQL supported versions of Windows (see https://www.mysql.com/
support/supportedplatforms/database.html).

Note

Because MySQL Installer is not a native component of Microsoft Windows and
depends on .NET, it does not work with minimal installation options like the
Server Core version of Windows Server.

For instructions on how to install MySQL using MySQL Installer, see Section 2.3.3, “MySQL Installer for
Windows”.

MySQL noinstall ZIP Archives

These packages contain the files found in the complete MySQL Server installation package, with the
exception of the GUI. This format does not include an automated installer, and must be manually
installed and configured.

The noinstall ZIP archives are split into two separate compressed files. The main package is
named mysql-VERSION-winx64.zip. This contains the components needed to use MySQL on your
system. The optional MySQL test suite, MySQL benchmark suite, and debugging binaries/information
components (including PDB files) are in a separate compressed file named mysql-VERSION-
winx64-debug-test.zip.

If you choose to install a noinstall ZIP archive, see Section 2.3.4, “Installing MySQL on Microsoft
Windows Using a noinstall ZIP Archive”.

MySQL Docker Images

For information on using the MySQL Docker images provided by Oracle on Windows platform, see
Section 2.5.6.3, “Deploying MySQL on Windows and Other Non-Linux Platforms with Docker”.

132

https://dev.mysql.com/doc/mysql-compat-matrix/en/
https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

MySQL Installer for Windows

Warning

The MySQL Docker images provided by Oracle are built specifically for Linux
platforms. Other platforms are not supported, and users running the MySQL
Docker images from Oracle on them are doing so at their own risk.

2.3.3 MySQL Installer for Windows

MySQL Installer is a standalone application designed to ease the complexity of installing and
configuring MySQL products that run on Microsoft Windows. It is downloaded with and supports the
following MySQL products:

• MySQL Servers

MySQL Installer can install and manage multiple, separate MySQL server instances on the same
host at the same time. For example, MySQL Installer can install, configure, and upgrade separate
instances of MySQL 5.7 and MySQL 8.0 on the same host. MySQL Installer does not permit server
upgrades between major and minor version numbers, but does permit upgrades within a release
series (such as 8.0.36 to 8.0.37).

Note

MySQL Installer cannot install both Community and Commercial releases of
MySQL server on the same host. If you require both releases on the same
host, consider using the ZIP archive distribution to install one of the releases.

• MySQL Applications

MySQL Workbench, MySQL Shell, and MySQL Router.

• MySQL Connectors

These are not supported, instead install from https://dev.mysql.com/downloads/. These connectors
include MySQL Connector/NET, MySQL Connector/Python, MySQL Connector/ODBC, MySQL
Connector/J, MySQL Connector/Node.js, and MySQL Connector/C++.

Note

The connectors were bundled before MySQL Installer 1.6.7 (MySQL Server
8.0.34), and MySQL Installer could install each connector up to version 8.0.33
until MySQL Installer 1.6.11 (MySQL Server 8.0.37). MySQL Installer now
only detects these old connector versions to uninstall them.

Installation Requirements

MySQL Installer requires Microsoft .NET Framework 4.5.2 or later. If this version is not installed on the
host computer, you can download it by visiting the Microsoft website.

To invoke MySQL Installer after a successful installation:

1. Right-click Windows Start, select Run, and then click Browse. Navigate to Program Files
(x86) > MySQL > MySQL Installer for Windows to open the program folder.

2. Select one of the following files:

• MySQLInstaller.exe to open the graphical application.

• MySQLInstallerConsole.exe to open the command-line application.

3. Click Open and then click OK in the Run window. If you are prompted to allow the application to
make changes to the device, select Yes.

133

https://dev.mysql.com/downloads/
https://www.microsoft.com/en-us/download/details.aspx?id=42643

MySQL Installer for Windows

Each time you invoke MySQL Installer, the initialization process looks for the presence of an internet
connection and prompts you to enable offline mode if it finds no internet access (and offline mode
is disabled). Select Yes to run MySQL Installer without internet-connection capabilities. MySQL
product availability is limited to only those products currently in the product cache when you enable
offline mode. To download MySQL products, click the offline mode Disable quick action shown on the
dashboard.

An internet connection is required to download a manifest containing metadata for the latest MySQL
products that are not part of a full bundle. MySQL Installer attempts to download the manifest when
you start the application for the first time and then periodically in configurable intervals (see MySQL
Installer options). Alternatively, you can retrieve an updated manifest manually by clicking Catalog in
the MySQL Installer dashboard.

Note

If the first-time or subsequent manifest download is unsuccessful, an error
is logged and you may have limited access to MySQL products during your
session. MySQL Installer attempts to download the manifest with each startup
until the initial manifest structure is updated. For help finding a product, see
Locating Products to Install.

MySQL Installer Community Release

Download software from https://dev.mysql.com/downloads/installer/ to install the Community release of
all MySQL products for Windows. Select one of the following MySQL Installer package options:

• Web: Contains MySQL Installer and configuration files only. The web package option downloads only
the MySQL products you select to install, but it requires an internet connection for each download.
The size of this file is approximately 2 MB. The file name has the form mysql-installer-
community-web-VERSION.N.msi in which VERSION is the MySQL server version number such
as 8.0 and N is the package number, which begins at 0.

• Full or Current Bundle: Bundles all of the MySQL products for Windows (including the MySQL
server). The file size is over 300 MB, and the name has the form mysql-installer-
community-VERSION.N.msi in which VERSION is the MySQL Server version number such as 8.0
and N is the package number, which begins at 0.

MySQL Installer Commercial Release

Download software from https://edelivery.oracle.com/ to install the Commercial release (Standard or
Enterprise Edition) of MySQL products for Windows. If you are logged in to your My Oracle Support
(MOS) account, the Commercial release includes all of the current and previous GA versions available
in the Community release, but it excludes development-milestone versions. When you are not logged
in, you see only the list of bundled products that you downloaded already.

The Commercial release also includes the following products:

• Workbench SE/EE

• MySQL Enterprise Backup

• MySQL Enterprise Firewall

The Commercial release integrates with your MOS account. For knowledge-base content and patches,
see My Oracle Support.

2.3.3.1 MySQL Installer Initial Setup

• Choosing a Setup Type

• Path Conflicts

• Check Requirements

134

https://dev.mysql.com/downloads/installer/
https://edelivery.oracle.com/
https://support.oracle.com/

MySQL Installer for Windows

• MySQL Installer Configuration Files

When you download MySQL Installer for the first time, a setup wizard guides you through the initial
installation of MySQL products. As the following figure shows, the initial setup is a one-time activity in
the overall process. MySQL Installer detects existing MySQL products installed on the host during its
initial setup and adds them to the list of products to be managed.

Figure 2.7 MySQL Installer Process Overview

MySQL Installer extracts configuration files (described later) to the hard drive of the host during the
initial setup. Although MySQL Installer is a 32-bit application, it can install both 32-bit and 64-bit
binaries.

The initial setup adds a link to the Start menu under the MySQL folder group. Click Start, MySQL, and
MySQL Installer - [Community | Commercial] to open the community or commercial release of the
graphical tool.

Choosing a Setup Type

During the initial setup, you are prompted to select the MySQL products to be installed on the host.
One alternative is to use a predetermined setup type that matches your setup requirements. By default,
both GA and pre-release products are included in the download and installation with the Client only
and Full setup types. Select the Only install GA products option to restrict the product set to include
GA products only when using these setup types.

Note

Commercial-only MySQL products, such as MySQL Enterprise Backup, are
available to select and install if you are using the Commercial version of MySQL
Installer (see MySQL Installer Commercial Release).

Choosing one of the following setup types determines the initial installation only and does not limit your
ability to install or update MySQL products for Windows later:

• Server only: Only install the MySQL server. This setup type installs the general availability (GA) or
development release server that you selected when you downloaded MySQL Installer. It uses the
default installation and data paths.

• Client only: Only install the most recent MySQL applications (such as MySQL Shell, MySQL Router,
and MySQL Workbench). This setup type excludes MySQL server or the client programs typically
bundled with the server, such as mysql or mysqladmin.

• Full: Install all available MySQL products, excluding MySQL connectors.

• Custom: The custom setup type enables you to filter and select individual MySQL products from the
MySQL Installer catalog.

Use the Custom setup type to install:

• A product or product version that is not available from the usual download locations. The catalog
contains all product releases, including the other releases between pre-release (or development)
and GA.

135

MySQL Installer for Windows

• An instance of MySQL server using an alternative installation path, data path, or both. For
instructions on how to adjust the paths, see Section 2.3.3.2, “Setting Alternative Server Paths with
MySQL Installer”.

• Two or more MySQL server versions on the same host at the same time (for example, 5.7 and
8.0).

• A specific combination of products and features not offered as a predetermine setup type. For
example, you can install a single product, such as MySQL Workbench, instead of installing all
client applications for Windows.

Path Conflicts

When the default installation or data folder (required by MySQL server) for a product to be installed
already exists on the host, the wizard displays the Path Conflict step to identify each conflict and
enable you to take action to avoid having files in the existing folder overwritten by the new installation.
You see this step in the initial setup only when MySQL Installer detects a conflict.

To resolve the path conflict, do one of the following:

• Select a product from the list to display the conflict options. A warning symbol indicates which path is
in conflict. Use the browse button to choose a new path and then click Next.

• Click Back to choose a different setup type or product version, if applicable. The Custom setup type
enables you to select individual product versions.

• Click Next to ignore the conflict and overwrite files in the existing folder.

• Delete the existing product. Click Cancel to stop the initial setup and close MySQL Installer. Open
MySQL Installer again from the Start menu and delete the installed product from the host using the
Delete operation from the MySQL Installer dashboard.

Check Requirements

MySQL Installer uses entries in the package-rules.xml file to determine whether the prerequisite
software for each product is installed on the host. When the requirements check fails, MySQL Installer
displays the Check Requirements step to help you update the host. Requirements are evaluated
each time you download a new product (or version) for installation. The following figure identifies and
describes the key areas of this step.

Figure 2.8 Check Requirements

136

MySQL Installer for Windows

Description of Check Requirements Elements

1. Shows the current step in the initial setup. Steps in this list may change slightly depending on the
products already installed on the host, the availability of prerequisite software, and the products to
be installed on the host.

2. Lists all pending installation requirements by product and indicates the status as follows:

• A blank space in the Status column means that MySQL Installer can attempt to download and
install the required software for you.

• The word Manual in the Status column means that you must satisfy the requirement manually.
Select each product in the list to see its requirement details.

3. Describes the requirement in detail to assist you with each manual resolution. When possible, a
download URL is provided. After you download and install the required software, click Check to
verify that the requirement has been met.

4. Provides the following set operations to proceed:

• Back – Return to the previous step. This action enables you to select a different the setup type.

• Execute – Have MySQL Installer attempt to download and install the required software for all
items without a manual status. Manual requirements are resolved by you and verified by clicking
Check.

• Next – Do not execute the request to apply the requirements automatically and proceed to the
installation without including the products that fail the check requirements step.

• Cancel – Stop the installation of MySQL products. Because MySQL Installer is already installed,
the initial setup begins again when you open MySQL Installer from the Start menu and click Add
from the dashboard. For a description of the available management operations, see Product
Catalog.

MySQL Installer Configuration Files

All MySQL Installer files are located within the C:\Program Files (x86) and C:\ProgramData
folders. The following table describes the files and folders that define MySQL Installer as a standalone
application.

Note

Installed MySQL products are neither altered nor removed when you update or
uninstall MySQL Installer.

Table 2.5 MySQL Installer Configuration Files

File or Folder Description Folder Hierarchy

MySQL Installer for
Windows

This folder contains all
of the files needed to
run MySQL Installer and
MySQLInstallerConsole.exe,
a command-line program with
similar functionality.

C:\Program Files (x86)

Templates The Templates folder has one
file for each version of MySQL
server. Template files contain
keys and formulas to calculate
some values dynamically.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest

137

MySQL Installer for Windows

File or Folder Description Folder Hierarchy

package-rules.xml This file contains the
prerequisites for every product to
be installed.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest

products.xml The products file (or product
catalog) contains a list of all
products available for download.

C:\ProgramData\MySQL
\MySQL Installer for
Windows\Manifest

Product Cache The Product Cache folder
contains all standalone .msi
files bundled with the full
package or downloaded
afterward.

C:\ProgramData\MySQL
\MySQL Installer for
Windows

2.3.3.2 Setting Alternative Server Paths with MySQL Installer

You can change the default installation path, the data path, or both when you install MySQL server.
After you have installed the server, the paths cannot be altered without removing and reinstalling the
server instance.

Note

Starting with MySQL Installer 1.4.39, if you move the data directory of an
installed server manually, MySQL Installer identifies the change and can
process a reconfiguration operation without errors.

To change paths for MySQL server

1. Identify the MySQL server to change and enable the Advanced Options link as follows:

a. Navigate to the Select Products page by doing one of the following:

i. If this is an initial setup of MySQL Installer, select the Custom setup type and click Next.

ii. If MySQL Installer is installed on your computer, click Add from the dashboard.

b. Click Edit to apply a filter on the product list shown in Available Products (see Locating
Products to Install).

c. With the server instance selected, use the arrow to move the selected server to the Products
To Be Installed list.

d. Click the server to select it. When you select the server, the Advanced Options link is
enabled below the list of products to be installed (see the following figure).

2. Click Advanced Options to open a dialog box where you can enter alternative path names. After
the path names are validated, click Next to continue with the configuration steps.

138

MySQL Installer for Windows

Figure 2.9 Change MySQL Server Path

2.3.3.3 Installation Workflows with MySQL Installer

MySQL Installer provides a wizard-like tool to install and configure new MySQL products for Windows.
Unlike the initial setup, which runs only once, MySQL Installer invokes the wizard each time you
download or install a new product. For first-time installations, the steps of the initial setup proceed
directly into the steps of the installation. For assistance with product selection, see Locating Products to
Install.

Note

Full permissions are granted to the user executing MySQL Installer to all
generated files, such as my.ini. This does not apply to files and directories for
specific products, such as the MySQL server data directory in %ProgramData%
that is owned by SYSTEM.

Products installed and configured on a host follow a general pattern that might require your input during
the various steps. If you attempt to install a product that is incompatible with the existing MySQL server
version (or a version selected for upgrade), you are alerted about the possible mismatch.

MySQL Installer provides the following sequence of actions that apply to different workflows:

• Select Products. If you selected the Custom setup type during the initial setup or clicked Add
from the MySQL Installer dashboard, MySQL Installer includes this action in the sidebar. From
this page, you can apply a filter to modify the Available Products list and then select one or more
products to move (using arrow keys) to the Products To Be Installed list.

Select the check box on this page to activate the Select Features action where you can customize
the products features after the product is downloaded.

• Download. If you installed the full (not web) MySQL Installer package, all .msi files were loaded
to the Product Cache folder during the initial setup and are not downloaded again. Otherwise, click
Execute to begin the download. The status of each product changes from Ready to Download, to
Downloading, and then to Downloaded.

To retry a single unsuccessful download, click the Try Again link.

To retry all unsuccessful downloads, click Try All.

139

MySQL Installer for Windows

• Select Features To Install (disabled by default). After MySQL Installer downloads a product's
.msi file, you can customize the features if you enabled the optional check box previously during the
Select Products action.

To customize product features after the installation, click Modify in the MySQL Installer dashboard.

• Installation. The status of each product in the list changes from Ready to Install, to
Installing, and lastly to Complete. During the process, click Show Details to view the
installation actions.

If you cancel the installation at this point, the products are installed, but the server (if installed) is not
yet configured. To restart the server configuration, open MySQL Installer from the Start menu and
click Reconfigure next to the appropriate server in the dashboard.

• Product configuration. This step applies to MySQL Server, MySQL Router, and samples only.
The status for each item in the list should indicate Ready to Configure. Click Next to start the
configuration wizard for all items in the list. The configuration options presented during this step are
specific to the version of database or router that you selected to install.

Click Execute to begin applying the configuration options or click Back (repeatedly) to return to each
configuration page.

• Installation complete. This step finalizes the installation for products that do not require
configuration. It enables you to copy the log to a clipboard and to start certain applications, such as
MySQL Workbench and MySQL Shell. Click Finish to open the MySQL Installer dashboard.

MySQL Server Configuration with MySQL Installer

MySQL Installer performs the initial configuration of the MySQL server. For example:

• It creates the configuration file (my.ini) that is used to configure the MySQL server. The values
written to this file are influenced by choices you make during the installation process. Some
definitions are host dependent.

• By default, a Windows service for the MySQL server is added.

• Provides default installation and data paths for MySQL server. For instructions on how to change the
default paths, see Section 2.3.3.2, “Setting Alternative Server Paths with MySQL Installer”.

• It can optionally create MySQL server user accounts with configurable permissions based on general
roles, such as DB Administrator, DB Designer, and Backup Admin. It optionally creates a Windows
user named MysqlSys with limited privileges, which would then run the MySQL Server.

User accounts may also be added and configured in MySQL Workbench.

• Checking Show Advanced Options enables additional Logging Options to be set. This includes
defining custom file paths for the error log, general log, slow query log (including the configuration of
seconds it requires to execute a query), and the binary log.

During the configuration process, click Next to proceed to the next step or Back to return to the
previous step. Click Execute at the final step to apply the server configuration.

The sections that follow describe the server configuration options that apply to MySQL server on
Windows. The server version you installed will determine which steps and options you can configure.
Configuring MySQL server may include some or all of the steps.

Type and Networking

• Server Configuration Type

Choose the MySQL server configuration type that describes your setup. This setting defines the
amount of system resources (memory) to assign to your MySQL server instance.

140

MySQL Installer for Windows

• Development: A computer that hosts many other applications, and typically this is your personal
workstation. This setting configures MySQL to use the least amount of memory.

• Server: Several other applications are expected to run on this computer, such as a web server.
The Server setting configures MySQL to use a medium amount of memory.

• Dedicated: A computer that is dedicated to running the MySQL server. Because no other major
applications run on this server, this setting configures MySQL to use the majority of available
memory.

• Manual

Prevents MySQL Installer from attempting to optimize the server installation, and instead, sets the
default values to the server variables included in the my.ini configuration file. With the Manual
type selected, MySQL Installer uses the default value of 16M for the tmp_table_size variable
assignment.

• Connectivity

Connectivity options control how the connection to MySQL is made. Options include:

• TCP/IP: This option is selected by default. You may disable TCP/IP Networking to permit local host
connections only. With the TCP/IP connection option selected, you can modify the following items:

• Port for classic MySQL protocol connections. The default value is 3306.

• X Protocol Port shown when configuring MySQL 8.0 server only. The default value is 33060

• Open Windows Firewall port for network access, which is selected by default for TCP/IP
connections.

If a port number is in use already, you will see the information icon () next to the default value
and Next is disabled until you provide a new port number.

• Named Pipe: Enable and define the pipe name, similar to setting the named_pipe system
variable. The default name is MySQL.

When you select Named Pipe connectivity, and then proceed to the next step, you are prompted
to set the level of access control granted to client software on named-pipe connections. Some
clients require only minimum access control for communication, while other clients require full
access to the named pipe.

You can set the level of access control based on the Windows user (or users) running the client as
follows:

• Minimum access to all users (RECOMMENDED). This level is enabled by default because
it is the most secure.

• Full access to members of a local group. If the minimum-access option is too restrictive
for the client software, use this option to reduce the number of users who have full access on
the named pipe. The group must be established on Windows before you can select it from the
list. Membership in this group should be limited and managed. Windows requires a newly added
member to first log out and then log in again to join a local group.

• Full access to all users (NOT RECOMMENDED). This option is less secure and should be
set only when other safeguards are implemented.

• Shared Memory: Enable and define the memory name, similar to setting the shared_memory
system variable. The default name is MySQL.

141

MySQL Installer for Windows

• Advanced Configuration

Check Show Advanced and Logging Options to set custom logging and advanced options in later
steps. The Logging Options step enables you to define custom file paths for the error log, general
log, slow query log (including the configuration of seconds it requires to execute a query), and the
binary log. The Advanced Options step enables you to set the unique server ID required when binary
logging is enabled in a replication topology.

• MySQL Enterprise Firewall (Enterprise Edition only)

The Enable MySQL Enterprise Firewall check box is deselected by default. Select this option to
enable a security list that offers protection against certain types of attacks. Additional post-installation
configuration is required (see Section 8.4.7, “MySQL Enterprise Firewall”).

Authentication Method

The Authentication Method step is visible only during the installation or upgrade of MySQL 8.0.4
or higher. It introduces a choice between two server-side authentication options. The MySQL user
accounts that you create in the next step will use the authentication method that you select in this step.

MySQL 8.0 connectors and community drivers that use libmysqlclient 8.0 now support the
caching_sha2_password default authentication plugin. However, if you are unable to update your
clients and applications to support this new authentication method, you can configure the MySQL
server to use mysql_native_password for legacy authentication. For more information about the
implications of this change, see caching_sha2_password as the Preferred Authentication Plugin.

If you are installing or upgrading to MySQL 8.0.4 or higher, select one of the following authentication
methods:

• Use Strong Password Encryption for Authentication (RECOMMENDED)

MySQL 8.0 supports a new authentication based on improved, stronger SHA256-based password
methods. It is recommended that all new MySQL server installations use this method going forward.

Important

The caching_sha2_password authentication plugin on the server requires
new versions of connectors and clients, which add support for the new
MySQL 8.0 default authentication.

• Use Legacy Authentication Method (Retain MySQL 5.x Compatibility)

Using the old MySQL 5.x legacy authentication method should be considered only in the following
cases:

• Applications cannot be updated to use MySQL 8.0 connectors and drivers.

• Recompilation of an existing application is not feasible.

• An updated, language-specific connector or driver is not available yet.

Accounts and Roles

• Root Account Password

Assigning a root password is required and you will be asked for it when performing other MySQL
Installer operations. Password strength is evaluated when you repeat the password in the box
provided. For descriptive information regarding password requirements or status, move your mouse

pointer over the information icon () when it appears.

• MySQL User Accounts (Optional)

142

MySQL Installer for Windows

Click Add User or Edit User to create or modify MySQL user accounts with predefined roles. Next,
enter the required account credentials:

• User Name: MySQL user names can be up to 32 characters long.

• Host: Select localhost for local connections only or <All Hosts (%)> when remote
connections to the server are required.

• Role: Each predefined role, such as DB Admin, is configured with its own set of privileges. For
example, the DB Admin role has more privileges than the DB Designer role. The Role drop-
down list contains a description of each role.

• Password: Password strength assessment is performed while you type the password. Passwords
must be confirmed. MySQL permits a blank or empty password (considered to be insecure).

MySQL Installer Commercial Release Only: MySQL Enterprise Edition for Windows, a
commercial product, also supports an authentication method that performs external authentication on
Windows. Accounts authenticated by the Windows operating system can access the MySQL server
without providing an additional password.

To create a new MySQL account that uses Windows authentication, enter the user name
and then select a value for Host and Role. Click Windows authentication to enable the
authentication_windows plugin. In the Windows Security Tokens area, enter a token for each
Windows user (or group) who can authenticate with the MySQL user name. MySQL accounts can
include security tokens for both local Windows users and Windows users that belong to a domain.
Multiple security tokens are separated by the semicolon character (;) and use the following format
for local and domain accounts:

• Local account

Enter the simple Windows user name as the security token for each local user or group; for
example, finley;jeffrey;admin.

• Domain account

Use standard Windows syntax (domain\domainuser) or MySQL syntax (domain\
\domainuser) to enter Windows domain users and groups.

For domain accounts, you may need to use the credentials of an administrator within the domain
if the account running MySQL Installer lacks the permissions to query the Active Directory. If this
is the case, select Validate Active Directory users with to activate the domain administrator
credentials.

Windows authentication permits you to test all of the security tokens each time you add or modify
a token. Click Test Security Tokens to validate (or revalidate) each token. Invalid tokens generate
a descriptive error message along with a red X icon and red token text. When all tokens resolve as
valid (green text without an X icon), you can click OK to save the changes.

Windows Service

On the Windows platform, MySQL server can run as a named service managed by the operating
system and be configured to start up automatically when Windows starts. Alternatively, you can
configure MySQL server to run as an executable program that requires manual configuration.

• Configure MySQL server as a Windows service (Selected by default.)

When the default configuration option is selected, you can also select the following:

• Start the MySQL Server at System Startup

143

MySQL Installer for Windows

When selected (default), the service startup type is set to Automatic; otherwise, the startup type is
set to Manual.

• Run Windows Service as

When Standard System Account is selected (default), the service logs on as Network Service.

The Custom User option must have privileges to log on to Microsoft Windows as a service. The
Next button will be disabled until this user is configured with the required privileges.

A custom user account is configured in Windows by searching for "local security policy" in the Start
menu. In the Local Security Policy window, select Local Policies, User Rights Assignment,
and then Log On As A Service to open the property dialog. Click Add User or Group to add the
custom user and then click OK in each dialog to save the changes.

• Deselect the Windows Service option.

Server File Permissions

Optionally, permissions set on the folders and files located at C:\ProgramData\MySQL\MySQL
Server 8.0\Data can be managed during the server configuration operation. You have the following
options:

• MySQL Installer can configure the folders and files with full control granted exclusively to the user
running the Windows service, if applicable, and to the Administrators group.

All other groups and users are denied access. This is the default option.

• Have MySQL Installer use a configuration option similar to the one just described, but also have
MySQL Installer show which users could have full control.

You are then able to decide if a group or user should be given full control. If not, you can move the
qualified members from this list to a second list that restricts all access.

• Have MySQL Installer skip making file-permission changes during the configuration operation.

If you select this option, you are responsible for securing the Data folder and its related files
manually after the server configuration finishes.

Logging Options

This step is available if the Show Advanced Configuration check box was selected during the Type
and Networking step. To enable this step now, click Back to return to the Type and Networking step
and select the check box.

Advanced configuration options are related to the following MySQL log files:

• Error Log

• General Log

• Slow Query Log

• Bin Log

Note

The binary log is enabled by default.

144

MySQL Installer for Windows

Advanced Options

This step is available if the Show Advanced Configuration check box was selected during the Type
and Networking step. To enable this step now, click Back to return to the Type and Networking step
and select the check box.

The advanced-configuration options include:

• Server ID

Set the unique identifier used in a replication topology. If binary logging is enabled, you must specify
a server ID. The default ID value depends on the server version. For more information, see the
description of the server_id system variable.

• Table Names Case

You can set the following options during the initial and subsequent configuration the server. For the
MySQL 8.0 release series, these options apply only to the initial configuration of the server.

• Lower Case

Sets the lower_case_table_names option value to 1 (default), in which table names are stored
in lowercase on disk and comparisons are not case-sensitive.

• Preserve Given Case

Sets the lower_case_table_names option value to 2, in which table names are stored as given
but compared in lowercase.

Apply Server Configuration

All configuration settings are applied to the MySQL server when you click Execute. Use the
Configuration Steps tab to follow the progress of each action; the icon for each toggles from white to
green (with a check mark) on success. Otherwise, the process stops and displays an error message if
an individual action times out. Click the Log tab to view the log.

When the installation completes successfully and you click Finish, MySQL Installer and the installed
MySQL products are added to the Microsoft Windows Start menu under the MySQL group. Opening
MySQL Installer loads the dashboard where installed MySQL products are listed and other MySQL
Installer operations are available.

MySQL Router Configuration with MySQL Installer

During the initial setup, choose any predetermined setup type, except Server only, to install the
latest GA version of the tools. Use the Custom setup type to install an individual tool or specific
version. If MySQL Installer is installed on the host already, use the Add operation to select and install
tools from the MySQL Installer dashboard.

MySQL Router Configuration

MySQL Installer provides a configuration wizard that can bootstrap an installed instance of MySQL
Router 8.0 to direct traffic between MySQL applications and an InnoDB Cluster. When configured,
MySQL Router runs as a local Windows service.

Note

You are prompted to configure MySQL Router after the initial installation and
when you reconfigure an installed router explicitly. In contrast, the upgrade
operation does not require or prompt you to configure the upgraded product.

To configure MySQL Router, do the following:

145

MySQL Installer for Windows

1. Set up InnoDB Cluster.

2. Using MySQL Installer, download and install the MySQL Router application. After the installation
finishes, the configuration wizard prompts you for information. Select the Configure MySQL
Router for InnoDB Cluster check box to begin the configuration and provide the following
configuration values:

• Hostname: Host name of the primary (seed) server in the InnoDB Cluster (localhost by
default).

• Port: The port number of the primary (seed) server in the InnoDB Cluster (3306 by default).

• Management User: An administrative user with root-level privileges.

• Password: The password for the management user.

• Classic MySQL protocol connections to InnoDB Cluster

Read/Write: Set the first base port number to one that is unused (between 80 and 65532) and
the wizard will select the remaining ports for you.

The figure that follows shows an example of the MySQL Router configuration page, with the first
base port number specified as 6446 and the remaining ports set by the wizard to 6447, 6448, and
6449.

Figure 2.10 MySQL Router Configuration

3. Click Next and then Execute to apply the configuration. Click Finish to close MySQL Installer or
return to the MySQL Installer dashboard.

After configuring MySQL Router, the root account exists in the user table as root@localhost (local)
only, instead of root@% (remote). Regardless of where the router and client are located, even if both
are located on the same host as the seed server, any connection that passes through the router is
viewed by server as being remote, not local. As a result, a connection made to the server using the
local host (see the example that follows), does not authenticate.

$> \c root@localhost:6446

2.3.3.4 MySQL Installer Product Catalog and Dashboard

This section describes the MySQL Installer product catalog, the dashboard, and other actions related to
product selection and upgrades.

146

MySQL Installer for Windows

• Product Catalog

• MySQL Installer Dashboard

• Locating Products to Install

• Upgrading MySQL Server

• Removing MySQL Server

• Upgrading MySQL Installer

Product Catalog

The product catalog stores the complete list of released MySQL products for Microsoft Windows that
are available to download from MySQL Downloads. By default, and when an Internet connection is
present, MySQL Installer attempts to update the catalog at startup every seven days. You can also
update the catalog manually from the dashboard (described later).

An up-to-date catalog performs the following actions:

• Populates the Available Products pane of the Select Products page. This step appears when you
select:

• The Custom setup type during the initial setup.

• The Add operation from the dashboard.

• Identifies when product updates are available for the installed products listed in the dashboard.

The catalog includes all development releases (Pre-Release), general releases (Current GA), and
minor releases (Other Releases). Products in the catalog will vary somewhat, depending on the
MySQL Installer release that you download.

MySQL Installer Dashboard

The MySQL Installer dashboard is the default view that you see when you start MySQL Installer after
the initial setup finishes. If you closed MySQL Installer before the setup was finished, MySQL Installer
resumes the initial setup before it displays the dashboard.

Note

Products covered under Oracle Lifetime Sustaining Support, if installed, may
appear in the dashboard. These products, such as MySQL for Excel and
MySQL Notifier, can be modified or removed only.

147

https://dev.mysql.com/downloads/

MySQL Installer for Windows

Figure 2.11 MySQL Installer Dashboard Elements

Description of MySQL Installer Dashboard Elements

1. MySQL Installer dashboard operations provide a variety of actions that apply to installed products
or products listed in the catalog. To initiate the following operations, first click the operation link and
then select the product or products to manage:

• Add: This operation opens the Select Products page. From there you can adjust the filter, select
one or more products to download (as needed), and begin the installation. For hints about using
the filter, see Locating Products to Install.

Use the directional arrows to move each product from the Available Products column to
the Products To Be Installed column. To enable the Product Features page where you can
customize features, click the related check box (disabled by default).

• Modify: Use this operation to add or remove the features associated with installed products.
Features that you can modify vary in complexity by product. When the Program Shortcut check
box is selected, the product appears in the Start menu under the MySQL group.

• Upgrade: This operation loads the Select Products to Upgrade page and populates it with all
the upgrade candidates. An installed product can have more than one upgrade version and
the operation requires a current product catalog. MySQL Installer upgrades all of the selected
products in one action. Click Show Details to view the actions performed by MySQL Installer.

• Remove: This operation opens the Remove Products page and populates it with the MySQL
products installed on the host. Select the MySQL products you want to remove (uninstall) and
then click Execute to begin the removal process. During the operation, an indicator shows the
number of steps that are executed as a percentage of all steps.

To select products to remove, do one of the following:

• Select the check box for one or more products.

• Select the Product check box to select all products.

2. The Reconfigure link in the Quick Action column next to each installed server loads the current
configuration values for the server and then cycles through all configuration steps enabling you to
change the options and values. You must provide credentials with root privileges to reconfigure

148

MySQL Installer for Windows

these items. Click the Log tab to show the output of each configuration step performed by MySQL
Installer.

On completion, MySQL Installer stops the server, applies the configuration changes, and restarts
the server for you. For a description of each configuration option, see MySQL Server Configuration
with MySQL Installer. Installed Samples and Examples associated with a specific MySQL server
version can be also be reconfigured to apply new feature settings, if any.

3. The Catalog link enables you to download the latest catalog of MySQL products manually and
then to integrate those product changes with MySQL Installer. The catalog-download action does
not perform an upgrade of the products already installed on the host. Instead, it returns to the
dashboard and adds an arrow icon to the Version column for each installed product that has a
newer version. Use the Upgrade operation to install the newer product version.

You can also use the Catalog link to display the current change history of each product without
downloading the new catalog. Select the Do not update at this time check box to view the change
history only.

4.
The MySQL Installer About icon () shows the current version of MySQL Installer and general
information about MySQL. The version number is located above the Back button.

Tip

Always include this version number when reporting a problem with MySQL
Installer.

In addition to the About MySQL information (), you can also select the following icons from the
side panel:

•
License icon () for MySQL Installer.

This product may include third-party software, used under license. If you are using a Commercial
release of MySQL Installer, the icon opens the MySQL Installer Commercial License Information
User Manual for licensing information, including licensing information relating to third-party
software that may be included in this Commercial release. If you are using a Community release
of MySQL Installer, the icon opens the MySQL Installer Community License Information User
Manual for licensing information, including licensing information relating to third-party software
that may be included in this Community release.

•
Resource links icon () to the latest MySQL product documentation, blogs, webinars, and
more.

5.
The MySQL Installer Options icon () includes the following tabs:

• General: Enables or disables the Offline mode option. If selected, this option configures
MySQL Installer to run without depending on internet-connection capabilities. When running
MySQL Installer in offline mode, you see a warning together with a Disable quick action on
the dashboard. The warning serves to remind you that running MySQL Installer in offline mode
prevents you from downloading the latest MySQL products and product catalog updates. Offline
mode persists until you disable the option.

At startup, MySQL Installer determines whether an internet connection is present, and, if not,
prompts you to enable offline mode to resume working without a connection.

• Product Catalog: Manages the automatic catalog updates. By default, MySQL Installer checks
for catalog updates at startup every seven days. When new products or product versions are

149

MySQL Installer for Windows

available, MySQL Installer adds them to the catalog and then inserts an arrow icon () next to
the version number of installed products listed in the dashboard.

Use the product catalog option to enable or disable automatic updates and to reset the number of
days between automatic catalog downloads. At startup, MySQL Installer uses the number of days
you set to determine whether a download should be attempted. This action is repeated during
next startup if MySQL Installer encounters an error downloading the catalog.

• Connectivity Settings: Several operations performed by MySQL Installer require internet
access. This option enables you to use a default value to validate the connection or to use
a different URL, one selected from a list or added by you manually. With the Manual option
selected, new URLs can be added and all URLs in the list can be moved or deleted. When the
Automatic option is selected, MySQL Installer attempts to connect to each default URL in the list
(in order) until a connection is made. If no connection can be made, it raises an error.

• Proxy: MySQL Installer provides multiple proxy modes that enable you to download MySQL
products, updates, or even the product catalog in most network environments. The mode are:

• No proxy

Select this mode to prevent MySQL Installer from looking for system settings. This mode
disables any proxy settings.

• Automatic

Select this mode to have MySQL Installer look for system settings and to use those settings if
found, or to use no proxy if nothing is found. This mode is the default.

• Manual

Select this mode to have MySQL Installer use your authentication details to configuration proxy
access to the internet. Specifically:

• A proxy-server address (http://address-to-server) and port number

• A user name and password for authentication

Locating Products to Install

MySQL products in the catalog are listed by category: MySQL Servers, Applications, MySQL
Connectors, and Documentation. Only the latest GA versions appear in the Available Products pane
by default. If you are looking for a pre-release or older version of a product, it may not be visible in the
default list.

Note

Keep the product catalog up-to-date. Click Catalog on the MySQL Installer
dashboard to download the latest manifest.

To change the default product list, click Add in the dashboard to open the Select Products page, and
then click Edit to open the dialog box shown in the figure that follows. Modify the settings and then click
Filter.

150

MySQL Installer for Windows

Figure 2.12 Filter Available Products

Reset one or more of the following fields to modify the list of available products:

• Text: Filter by text.

• Category: All Software (default), MySQL Servers, Applications, MySQL Connectors, or
Documentation (for samples and documentation).

• Maturity: Current Bundle (appears initially with the full package only), Pre-Release, Current GA, or
Other Releases. If you see a warning, confirm that you have the most recent product manifest by
clicking Catalog on the MySQL Installer dashboard. If MySQL Installer is unable to download the
manifest, the range of products you see is limited to bundled products, standalone product MSIs
located in the Product Cache folder already, or both.

Note

The Commercial release of MySQL Installer does not display any MySQL
products when you select the Pre-Release maturity filter. Products in
development are available from the Community release of MySQL Installer
only.

• Already Downloaded (the check box is deselected by default). Permits you to view and manage
downloaded products only.

• Architecture: Any (default), 32-bit, or 64-bit.

Upgrading MySQL Server

Important server upgrade conditions:

• MySQL Installer does not permit server upgrades between major release versions or minor release
versions, but does permit upgrades within a release series, such as an upgrade from 8.0.36 to
8.0.37.

• Upgrades between milestone releases (or from a milestone release to a GA release) are not
supported. Significant development changes take place in milestone releases and you may
encounter compatibility issues or problems starting the server.

• For upgrades, a check box enables you to skip the upgrade check and process for system tables,
while checking and processing data dictionary tables normally. MySQL Installer does not prompt
you with the check box when the previous server upgrade was skipped or when the server was
configured as a sandbox InnoDB Cluster. This behavior represents a change in how MySQL Server
performs an upgrade (see Section 3.4, “What the MySQL Upgrade Process Upgrades”) and it alters
the sequence of steps that MySQL Installer applies to the configuration process.

If you select Skip system tables upgrade check and process. (Not recommended), MySQL
Installer starts the upgraded server with the --upgrade=MINIMAL server option, which upgrades
the data dictionary only. If you stop and then restart the server without the --upgrade=MINIMAL
option, the server upgrades the system tables automatically, if needed.

151

MySQL Installer for Windows

The following information appears in the Log tab and log file after the upgrade configuration (with
system tables skipped) is complete:

WARNING: The system tables upgrade was skipped after upgrading MySQL Server. The
server will be started now with the --upgrade=MINIMAL option, but then each
time the server is started it will attempt to upgrade the system tables, unless
you modify the Windows service (command line) to add --upgrade=MINIMAL to bypass
the upgrade.

FOR THE BEST RESULTS: Run mysqld.exe --upgrade=FORCE on the command line to upgrade
the system tables manually.

To choose a new server version:

1. Click Upgrade. Confirm that the check box next to product name in the Upgradeable Products
pane has a check mark. Deselect the products that you do not intend to upgrade at this time.

Note

For server milestone releases in the same release series, MySQL Installer
deselects the server upgrade and displays a warning to indicate that the
upgrade is not supported, identifies the risks of continuing, and provides
a summary of the steps to perform a logical upgrade manually. You can
reselect server upgrade at your own risk. For instructions on how to perform
a logical upgrade with a milestone release, see Logical Upgrade.

2. Click a product in the list to highlight it. This action populates the Upgradeable Versions pane with
the details of each available version for the selected product: version number, published date, and
a Changes link to open the release notes for that version.

Removing MySQL Server

To remove a local MySQL server:

1. Determine whether the local data directory should be removed. If you retain the data directory,
another server installation can reuse the data. This option is enabled by default (removes the data
directory).

2. Click Execute to begin uninstalling the local server. Note that all products that you selected to
remove are also uninstalled at this time.

3. (Optional) Click the Log tab to display the current actions performed by MySQL Installer.

Upgrading MySQL Installer

MySQL Installer remains installed on your computer, and like other software, MySQL Installer can
be upgraded from the previous version. In some cases, other MySQL software may require that you
upgrade MySQL Installer for compatibility. This section describes how to identify the current version of
MySQL Installer and how to upgrade MySQL Installer manually.

To locate the installed version of MySQL Installer:

1. Start MySQL Installer from the search menu. The MySQL Installer dashboard opens.

2.
Click the MySQL Installer About icon (). The version number is located above the Back button.

To initiate an on-demand upgrade of MySQL Installer:

1. Connect the computer with MySQL Installer installed to the internet.

2. Start MySQL Installer from the search menu. The MySQL Installer dashboard opens.

3. Click Catalog on the bottom of the dashboard to open the Update Catalog window.

152

MySQL Installer for Windows

4. Click Execute to begin the process. If the installed version of MySQL Installer can be upgraded,
you will be prompted to start the upgrade.

5. Click Next to review all changes to the catalog and then click Finish to return to the dashboard.

6. Verify the (new) installed version of MySQL Installer (see the previous procedure).

2.3.3.5 MySQL Installer Console Reference

MySQLInstallerConsole.exe provides command-line functionality that is similar to MySQL
Installer. This reference includes:

• MySQL Product Names

• Command Syntax

• Command Actions

The console is installed when MySQL Installer is initially executed and then available within the MySQL
Installer for Windows directory. By default, the directory location is C:\Program Files
(x86)\MySQL\MySQL Installer for Windows. You must run the console as administrator.

To use the console:

1. Open a command prompt with administrative privileges by selecting Windows System from Start,
then right-click Command Prompt, select More, and select Run as administrator.

2. From the command line, optionally change the directory to where the
MySQLInstallerConsole.exe command is located. For example, to use the default installation
location:

cd Program Files (x86)\MySQL\MySQL Installer for Windows

3. Type MySQLInstallerConsole.exe (or mysqlinstallerconsole) followed by a command
action to perform a task. For example, to show the console's help:

MySQLInstallerConsole.exe --help

=================== Start Initialization ===================
MySQL Installer is running in Community mode

Attempting to update manifest.
Initializing product requirements.
Loading product catalog.
Checking for product packages in the bundle.
Categorizing product catalog.
Finding all installed packages.
Your product catalog was last updated at 23/08/2022 12:41:05 p. m.
Your product catalog has version number 671.
=================== End Initialization ===================

The following actions are available:

Configure - Configures one or more of your installed programs.
Help - Provides list of available command actions.
Install - Installs and configures one or more available MySQL programs.
List - Lists all available MySQL products.
Modify - Modifies the features of installed products.
Remove - Removes one or more products from your system.
Set - Configures the general options of MySQL Installer.
Status - Shows the status of all installed products.
Update - Updates the current product catalog.
Upgrade - Upgrades one or more of your installed programs.

The basic syntax for using MySQL Installer command actions. Brackets denote optional entities.
Curly braces denote a list of possible entities.

...

153

MySQL Installer for Windows

MySQL Product Names

Many of the MySQLInstallerConsole command actions accept one or more abbreviated phrases
that can match a MySQL product (or products) in the catalog. The current set of valid short phrases for
use with commands is shown in the following table.

Note

Starting with MySQL Installer 1.6.7 (8.0.34), the install, list, and upgrade
command options no longer apply to MySQL for Visual Studio (now EOL),
MySQL Connector/NET, MySQL Connector/ODBC, MySQL Connector/C++,
MySQL Connector/Python, and MySQL Connector/J. To install newer MySQL
connectors, visit https://dev.mysql.com/downloads/.

Table 2.6 MySQL Product Phrases for use with the MySQLInstallerConsole.exe command

Phrase MySQL Product

server MySQL Server

workbench MySQL Workbench

shell MySQL Shell

visual MySQL for Visual Studio

router MySQL Router

backup MySQL Enterprise Backup (requires the
commercial release)

net MySQL Connector/NET

odbc MySQL Connector/ODBC

c++ MySQL Connector/C++

python MySQL Connector/Python

j MySQL Connector/J

documentation MySQL Server Documentation

samples MySQL Samples (sakila and world databases)

Command Syntax

The MySQLInstallerConsole.exe command can be issued with or without the file extension
(.exe) and the command is not case-sensitive.

mysqlinstallerconsole[.exe] [[[--]action] [action_blocks_list] [options_list]]

Description:

action One of the permitted operational actions. If omitted, the default
action is equivalent to the --status action. Using the -- prefix is
optional for all actions.

Possible actions are: [--]configure, [--]help, [--]install,
[--]list, [--]modify, [--]remove, [--]set, [--]status, [--]update,
and [--]upgrade.

action_blocks_list A list of blocks in which each represents a different item depending
on the selected action. Blocks are separated by commas.

The --remove and --upgrade actions permit specifying an
asterisk character (*) to indicate all products. If the * character is
detected at the start of this block, it is assumed all products are to
be processed and the remainder of the block is ignored.

154

MySQL Installer for Windows

Syntax: *|action_block[,action_block]
[,action_block]...

action_block: Contains a product selector followed by an
indefinite number of argument blocks that behave differently
depending on the selected action (see Command Actions).

options_list Zero or more options with possible values separated by spaces.
See Command Actions to identify the options permitted for the
corresponding action.

Syntax: option_value_pair[option_value_pair][
option_value_pair]...

option_value_pair: A single option (for example, --silent)
or a tuple of a key and a corresponding value with an options prefix.
The key-value pair is in the form of --key[=value].

Command Actions

MySQLInstallerConsole.exe supports the following command actions:

Note

Configuration block (or arguments_block) values that contain a colon character
(:) must be wrapped in quotation marks. For example, install_dir="C:
\MySQL\MySQL Server 8.0".

• [--]configure [product1]:[configuration_argument]=[value], [product2]:
[configuration_argument]=[value], [...]

Configures one or more MySQL products on your system. Multiple
configuration_argument=value pairs can be configured for each product.

Options:

--continue Continues processing the next product when an error is caught
while processing the action blocks containing arguments for each
product. If not specified the whole operation is aborted in case of
an error.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is
shown, so other action-related options are ignored as well.

--show-settings Displays the available options for the selected product by passing
in the product name after --show-settings.

--silent Disables confirmation prompts.

Examples:

MySQLInstallerConsole --configure --show-settings server

mysqlinstallerconsole.exe --configure server:port=3307

• [--]help

Displays a help message with usage examples and then exits. Pass in an additional command action
to receive help specific to that action.

Options:

155

MySQL Installer for Windows

--action=[action] Shows the help for a specific action. Same as using the --help
option with an action.

Permitted values are: all, configure, help (default),
install, list, modify, remove, status, update, upgrade,
and set.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is
shown, so other action-related options are ignored as well.

Examples:

MySQLInstallerConsole help

MySQLInstallerConsole help --action=install

• [--]install [product1]:[features]:[config block]:[config block],
[product2]:[config block], [...]

Installs one or more MySQL products on your system. If pre-release products are available, both
GA and pre-release products are installed when the value of the --type option value is Client or
Full. Use the --only_ga_products option to restrict the product set to GA products only when
using these setup types.

Description:

[product] Each product can be specified by a product phrase with or without
a semicolon-separated version qualifier. Passing in a product
keyword alone selects the latest version of the product. If multiple
architectures are available for that version of the product, the
command returns the first one in the manifest list for interactive
confirmation. Alternatively, you can pass in the exact version and
architecture (x86 or x64) after the product keyword using the --
silent option.

[features] All features associated with a MySQL product are installed by
default. The feature block is a semicolon-separated list of features
or an asterisk character (*) that selects all features. To remove a
feature, use the modify command.

[config block] One or more configuration blocks can be specified. Each
configuration block is a semicolon-separated list of key-value
pairs. A block can include either a config or user type key;
config is the default type if one is not defined.

Configuration block values that contain a colon character (:) must
be wrapped in quotation marks. For example, installdir="C:
\MySQL\MySQL Server 8.0". Only one configuration type

156

MySQL Installer for Windows

block can be defined for each product. A user block should be
defined for each user to be created during the product installation.

Note

The user type key is not supported when
a product is being reconfigured.

Options:

--auto-handle-prereqs If present, MySQL Installer attempts to download and install some
software prerequisites, not currently present. that can be resolved
with minimal intervention. If the --silent option is not present,
you are presented with installation pages for each prerequisite. If
the --auto-handle-prereqs options is omitted, packages with
missing prerequisites are not installed.

--continue Continues processing the next product when an error is caught
while processing the action blocks containing arguments for each
product. If not specified the whole operation is aborted in case of
an error.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is
shown, so other action-related options are ignored as well.

--mos-password=password Sets the My Oracle Support (MOS) user's password for
commercial versions of the MySQL Installer.

--mos-user=user_name Specifies the My Oracle Support (MOS) user name for access to
the commercial version of MySQL Installer. If not present, only the
products in the bundle, if any, are available to be installed.

157

MySQL Installer for Windows

--only-ga-products Restricts the product set to include GA products only.

--setup-type=setup_type Installs a predefined set of software. The setup type can be one of
the following:

• Server: Installs a single MySQL server

• Client: Installs client programs and libraries (excludes MySQL
connectors)

• Full: Installs everything (excludes MySQL connectors)

• Custom: Installs user-selected products. This is the default
option.

Note

Non-custom setup types are valid only
when no other MySQL products are
installed.

--show-settings Displays the available options for the selected product, by passing
in the product name after -showsettings.

--silent Disable confirmation prompts.

Examples:

mysqlinstallerconsole.exe --install j;8.0.29, net;8.0.28 --silent

MySQLInstallerConsole install server;8.0.30:*:port=3307;server_id=2:type=user;user=foo

An example that passes in additional configuration blocks, separated by ^ to fit:

MySQLInstallerConsole --install server;8.0.30;x64:*:type=config;open_win_firewall=true; ^
 general_log=true;bin_log=true;server_id=3306;tcp_ip=true;port=3306;root_passwd=pass; ^
 install_dir="C:\MySQL\MySQL Server 8.0":type=user;user_name=foo;password=bar;role=DBManager

158

MySQL Installer for Windows

• [--]list

When this action is used without options, it activates an interactive list from which all of the available
MySQL products can be searched. Enter MySQLInstallerConsole --list and specify a
substring to search.

Options:

--all Lists all available products. If this option is used, all other options
are ignored.

--arch=architecture Lists that contain the specified architecture. Permitted values are:
x86, x64, and any (default). This option can be combined with
the --name and --version options.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is
shown, so other action-related options are ignored as well.

--name=package_name Lists products that contain the specified name (see product
phrase), This option can be combined with the --version and
--arch options.

--version=version Lists products that contain the specified version, such as 8.0 or
5.7. This option can be combined with the --name and --arch
options.

Examples:

MySQLInstallerConsole --list --name=net --version=8.0

• [--]modify [product1:-removelist|+addlist], [product2:-removelist|
+addlist] [...]

Modifies or displays features of a previously installed MySQL product. To display the features of a
product, append the product keyword to the command, for example:

MySQLInstallerConsole --modify server

Options:

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is
shown, so other action-related options are ignored as well.

--silent Disable confirmation prompts.

Examples:

MySQLInstallerConsole --modify server:+documentation

MySQLInstallerConsole modify server:-debug

159

MySQL Installer for Windows

• [--]remove [product1], [product2] [...]

Removes one ore more products from your system. An asterisk character (*) can be passed in to
remove all MySQL products with one command.

Options:

--continue Continue the operation even if an error occurs.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is
shown, so other action-related options are ignored as well.

--keep-datadir Skips the removal of the data directory when removing MySQL
Server products.

--silent Disable confirmation prompts.

Examples:

mysqlinstallerconsole.exe remove *

MySQLInstallerConsole --remove server --continue

• [--]set

Sets one or more configurable options that affect how the MySQL Installer program connects to the
internet and whether the automatic products-catalog updates feature is activated.

Options:

--catalog-
update=bool_value

Enables (true, default) or disables (false) the automatic
products catalog update. This option requires an active
connection to the internet.

--catalog-update-
days=int_value

Accepts an integer between 1 (default) and 365 to indicate the
number of days between checks for a new catalog update when
MySQL Installer is started. If --catalog-update is false, this
option is ignored.

--connection-
validation=validation_type

Sets how MySQL Installer performs the check for an internet
connection. Permitted values are automatic (default) and
manual.

--connection-validation-
urls=url_list

A double-quote enclosed and comma-separated string that
defines the list of URLs to use for checking the internet
connection when --connection-validation is set to

160

MySQL Installer for Windows

manual. Checks are made in the same order provided. If the first
URL fails, the next URL in the list is used and so on.

--offline-
mode=bool_value

Enables MySQL Installer to run with or without internet
capabilities. Valid modes are:

• True to enable offline mode (run without an internet
connection).

• False (default) to disable offline mode (run with an internet
connection). Set this mode before downloading the product
catalog or any products to install.

--proxy-mode Specifies the proxy mode. Valid modes are:

• Automatic to automatically identify the proxy based on the
system settings.

• None to ensure that no proxy is configured.

• Manual to set the proxy details manually (--proxy-server,
--proxy-port, --proxy-username, --proxy-password).

--proxy-password The password used to authenticate to the proxy server.

--proxy-port The port used for the proxy server.

--proxy-server The URL that point to the proxy server.

--proxy-username The user name used to authenticate to the proxy server.

--reset-defaults Resets the MySQL Installer options associated with the --set
action to the default values.

Examples:

MySQLIntallerConsole.exe set --reset-defaults

mysqlintallerconsole.exe --set --catalog-update=false

MySQLIntallerConsole --set --catalog-update-days=3

mysqlintallerconsole --set --connection-validation=manual
--connection-validation-urls="https://www.bing.com,http://www.google.com"

• [--]status

Provides a quick overview of the MySQL products that are installed on the system. Information
includes product name and version, architecture, date installed, and install location.

Options:

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is
shown, so other action-related options are ignored as well.

Examples:

MySQLInstallerConsole status

161

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

• [--]update

Downloads the latest MySQL product catalog to your system. On success, the catalog is applied the
next time either MySQLInstaller or MySQLInstallerConsole.exe is executed.

MySQL Installer automatically checks for product catalog updates when it is started if n days
have passed since the last check. Starting with MySQL Installer 1.6.4, the default value is 1 day.
Previously, the default value was 7 days.

Options:

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is
shown, so other action-related options are ignored as well.

Examples:

MySQLInstallerConsole update

• [--]upgrade [product1:version], [product2:version] [...]

Upgrades one or more products on your system. The following characters are permitted for this
action:

* Pass in * to upgrade all products to the latest version, or pass in
specific products.

! Pass in ! as a version number to upgrade the MySQL product to
its latest version.

Options:

--continue Continue the operation even if an error occurs.

--help Shows the options and available arguments for the corresponding
action. If present the action is not executed, only the help is
shown, so other action-related options are ignored as well.

--mos-password=password Sets the My Oracle Support (MOS) user's password for
commercial versions of the MySQL Installer.

--mos-user=user_name Specifies the My Oracle Support (MOS) user name for access to
the commercial version of MySQL Installer. If not present, only the
products in the bundle, if any, are available to be installed.

--silent Disable confirmation prompts.

Examples:

MySQLInstallerConsole upgrade *

MySQLInstallerConsole upgrade workbench:8.0.31

MySQLInstallerConsole upgrade workbench:!

MySQLInstallerConsole --upgrade server;8.0.30:!, j;8.0.29:!

2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP
Archive

Users who are installing from the noinstall package can use the instructions in this section to
manually install MySQL. The process for installing MySQL from a ZIP Archive package is as follows:

162

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

1. Extract the main archive to the desired install directory

Optional: also extract the debug-test archive if you plan to execute the MySQL benchmark and test
suite

2. Create an option file

3. Choose a MySQL server type

4. Initialize MySQL

5. Start the MySQL server

6. Secure the default user accounts

This process is described in the sections that follow.

2.3.4.1 Extracting the Install Archive

To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 3.11, “Upgrading MySQL on
Windows”, before beginning the upgrade process.

2. Make sure that you are logged in as a user with administrator privileges.

3. Choose an installation location. Traditionally, the MySQL server is installed in C:\mysql. If you do
not install MySQL at C:\mysql, you must specify the path to the install directory during startup or
in an option file. See Section 2.3.4.2, “Creating an Option File”.

Note

The MySQL Installer installs MySQL under C:\Program Files\MySQL.

4. Extract the install archive to the chosen installation location using your preferred file-compression
tool. Some tools may extract the archive to a folder within your chosen installation location. If this
occurs, you can move the contents of the subfolder into the chosen installation location.

2.3.4.2 Creating an Option File

If you need to specify startup options when you run the server, you can indicate them on the command
line or place them in an option file. For options that are used every time the server starts, you may find
it most convenient to use an option file to specify your MySQL configuration. This is particularly true
under the following circumstances:

• The installation or data directory locations are different from the default locations (C:\Program
Files\MySQL\MySQL Server 8.0 and C:\Program Files\MySQL\MySQL Server
8.0\data).

• You need to tune the server settings, such as memory, cache, or InnoDB configuration information.

When the MySQL server starts on Windows, it looks for option files in several locations, such as
the Windows directory, C:\, and the MySQL installation directory (for the full list of locations, see
Section 6.2.2.2, “Using Option Files”). The Windows directory typically is named something like C:
\WINDOWS. You can determine its exact location from the value of the WINDIR environment variable
using the following command:

C:\> echo %WINDIR%

MySQL looks for options in each location first in the my.ini file, and then in the my.cnf file. However,
to avoid confusion, it is best if you use only one file. If your PC uses a boot loader where C: is not the

163

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

boot drive, your only option is to use the my.ini file. Whichever option file you use, it must be a plain
text file.

Note

When using the MySQL Installer to install MySQL Server, it creates the my.ini
at the default location, and the user executing MySQL Installer is granted full
permissions to this new my.ini file.

In other words, be sure that the MySQL Server user has permission to read the
my.ini file.

You can also make use of the example option files included with your MySQL distribution; see
Section 7.1.2, “Server Configuration Defaults”.

An option file can be created and modified with any text editor, such as Notepad. For example, if
MySQL is installed in E:\mysql and the data directory is in E:\mydata\data, you can create an
option file containing a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=E:/mydata/data

Microsoft Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
set basedir to your installation path
basedir=E:\\mysql
set datadir to the location of your data directory
datadir=E:\\mydata\\data

The rules for use of backslash in option file values are given in Section 6.2.2.2, “Using Option Files”.

The ZIP archive does not include a data directory. To initialize a MySQL installation by creating the
data directory and populating the tables in the mysql system database, initialize MySQL using either --
initialize or --initialize-insecure. For additional information, see Section 2.9.1, “Initializing
the Data Directory”.

If you would like to use a data directory in a different location, you should copy the entire contents
of the data directory to the new location. For example, if you want to use E:\mydata as the data
directory instead, you must do two things:

1. Move the entire data directory and all of its contents from the default location (for example C:
\Program Files\MySQL\MySQL Server 8.0\data) to E:\mydata.

2. Use a --datadir option to specify the new data directory location each time you start the server.

2.3.4.3 Selecting a MySQL Server Type

The following table shows the available servers for Windows in MySQL 8.0.

Binary Description

mysqld Optimized binary with named-pipe support

mysqld-debug Like mysqld, but compiled with full debugging
and automatic memory allocation checking

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel
i386-class or higher processor.

164

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

Each of the servers in a distribution support the same set of storage engines. The SHOW ENGINES
statement displays which engines a given server supports.

All Windows MySQL 8.0 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. MySQL servers on Windows also support named
pipes, if you start the server with the named_pipe system variable enabled. It is necessary to enable
this variable explicitly because some users have experienced problems with shutting down the MySQL
server when named pipes were used. The default is to use TCP/IP regardless of platform because
named pipes are slower than TCP/IP in many Windows configurations.

2.3.4.4 Initializing the Data Directory

If you installed MySQL using the noinstall package, no data directory is included. To initialize the
data directory, use the instructions at Section 2.9.1, “Initializing the Data Directory”.

2.3.4.5 Starting the Server for the First Time

This section gives a general overview of starting the MySQL server. The following sections provide
more specific information for starting the MySQL server from the command line or as a Windows
service.

The information here applies primarily if you installed MySQL using the noinstall version, or if you
wish to configure and test MySQL manually rather than with the MySQL Installer.

The examples in these sections assume that MySQL is installed under the default location of C:
\Program Files\MySQL\MySQL Server 8.0. Adjust the path names shown in the examples if
you have MySQL installed in a different location.

Clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports
named-pipe connections.

MySQL for Windows also supports shared-memory connections if the server is started with the
shared_memory system variable enabled. Clients can connect through shared memory by using the
--protocol=MEMORY option.

For information about which server binary to run, see Section 2.3.4.3, “Selecting a MySQL Server
Type”.

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you
can have the server display status messages in the window where they are easy to see. If something is
wrong with your configuration, these messages make it easier for you to identify and fix any problems.

Note

The database must be initialized before MySQL can be started. For additional
information about the initialization process, see Section 2.9.1, “Initializing the
Data Directory”.

To start the server, enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqld" --console

You should see messages similar to those following as it starts (the path names and sizes may
differ). The ready for connections messages indicate that the server is ready to service client
connections.

[Server] C:\mysql\bin\mysqld.exe (mysqld 8.0.30) starting as process 21236
[InnoDB] InnoDB initialization has started.
[InnoDB] InnoDB initialization has ended.
[Server] CA certificate ca.pem is self signed.

165

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

[Server] Channel mysql_main configured to support TLS.
Encrypted connections are now supported for this channel.
[Server] X Plugin ready for connections. Bind-address: '::' port: 33060
[Server] C:\mysql\bin\mysqld.exe: ready for connections.
Version: '8.0.30' socket: '' port: 3306 MySQL Community Server - GPL.

You can now open a new console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data
directory (C:\Program Files\MySQL\MySQL Server 8.0\data by default). The error log is the
file with the .err extension, and may be set using the --log-error option.

Note

The initial root account in the MySQL grant tables has no password. After
starting the server, you should set up a password for it using the instructions in
Section 2.9.4, “Securing the Initial MySQL Account”.

2.3.4.6 Starting MySQL from the Windows Command Line

The MySQL server can be started manually from the command line. This can be done on any version
of Windows.

To start the mysqld server from the command line, you should start a console window (or “DOS
window”) and enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqld"

The path to mysqld may vary depending on the install location of MySQL on your system.

You can stop the MySQL server by executing this command:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke
mysqladmin with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell
it to shut down. The command connects as the MySQL root user, which is the default administrative
account in the MySQL grant system.

Note

Users in the MySQL grant system are wholly independent from any operating
system users under Microsoft Windows.

If mysqld doesn't start, check the error log to see whether the server wrote any messages there to
indicate the cause of the problem. By default, the error log is located in the C:\Program Files
\MySQL\MySQL Server 8.0\data directory. It is the file with a suffix of .err, or may be specified
by passing in the --log-error option. Alternatively, you can try to start the server with the --
console option; in this case, the server may display some useful information on the screen to help
solve the problem.

The last option is to start mysqld with the --standalone and --debug options. In this case, mysqld
writes a log file C:\mysqld.trace that should contain the reason why mysqld doesn't start. See
Section 7.9.4, “The DBUG Package”.

Use mysqld --verbose --help to display all the options that mysqld supports.

2.3.4.7 Customizing the PATH for MySQL Tools

166

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

Warning

You must exercise great care when editing your system PATH by hand;
accidental deletion or modification of any portion of the existing PATH value can
leave you with a malfunctioning or even unusable system.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory
to your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the
End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter
the complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL
\MySQL Server 8.0\bin)

Note

There must be a semicolon separating this path from any values present in
this field.

Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues that were
opened have been dismissed. The new PATH value should now be available to any new command
shell you open, allowing you to invoke any MySQL executable program by typing its name at the
DOS prompt from any directory on the system, without having to supply the path. This includes
the servers, the mysql client, and all MySQL command-line utilities such as mysqladmin and
mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple
MySQL servers on the same machine.

2.3.4.8 Starting MySQL as a Windows Service

On Windows, the recommended way to run MySQL is to install it as a Windows service, so that MySQL
starts and stops automatically when Windows starts and stops. A MySQL server installed as a service
can also be controlled from the command line using NET commands, or with the graphical Services
utility. Generally, to install MySQL as a Windows service you should be logged in using an account that
has administrator rights.

The Services utility (the Windows Service Control Manager) can be found in the Windows
Control Panel. To avoid conflicts, it is advisable to close the Services utility while performing server
installation or removal operations from the command line.

Installing the service

Before installing MySQL as a Windows service, you should first stop the current server if it is running
by using the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqladmin"
 -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke
mysqladmin with the -p option and supply the password when prompted.

167

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell
it to shut down. The command connects as the MySQL root user, which is the default administrative
account in the MySQL grant system.

Note

Users in the MySQL grant system are wholly independent from any operating
system users under Windows.

Install the server as a service using this command:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqld" --install

The service-installation command does not start the server. Instructions for that are given later in this
section.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory
to your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the
End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter
the complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL
\MySQL Server 8.0\bin), and there should be a semicolon separating this path from any values
present in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the
dialogues that were opened have been dismissed. You should now be able to invoke any MySQL
executable program by typing its name at the DOS prompt from any directory on the system, without
having to supply the path. This includes the servers, the mysql client, and all MySQL command-line
utilities such as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple
MySQL servers on the same machine.

Warning

You must exercise great care when editing your system PATH by hand;
accidental deletion or modification of any portion of the existing PATH value can
leave you with a malfunctioning or even unusable system.

The following additional arguments can be used when installing the service:

• You can specify a service name immediately following the --install option. The default service
name is MySQL.

• If a service name is given, it can be followed by a single option. By convention, this should be --
defaults-file=file_name to specify the name of an option file from which the server should
read options when it starts.

The use of a single option other than --defaults-file is possible but discouraged. --
defaults-file is more flexible because it enables you to specify multiple startup options for the
server by placing them in the named option file.

• You can also specify a --local-service option following the service name. This causes the
server to run using the LocalService Windows account that has limited system privileges. If both
--defaults-file and --local-service are given following the service name, they can be in
any order.

168

Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive

For a MySQL server that is installed as a Windows service, the following rules determine the service
name and option files that the server uses:

• If the service-installation command specifies no service name or the default service name (MySQL)
following the --install option, the server uses the service name of MySQL and reads options from
the [mysqld] group in the standard option files.

• If the service-installation command specifies a service name other than MySQL following the --
install option, the server uses that service name. It reads options from the [mysqld] group
and the group that has the same name as the service in the standard option files. This enables you
to use the [mysqld] group for options that should be used by all MySQL services, and an option
group with the service name for use by the server installed with that service name.

• If the service-installation command specifies a --defaults-file option after the service name,
the server reads options the same way as described in the previous item, except that it reads options
only from the named file and ignores the standard option files.

As a more complex example, consider the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqld"
 --install MySQL --defaults-file=C:\my-opts.cnf

Here, the default service name (MySQL) is given after the --install option. If no --defaults-
file option had been given, this command would have the effect of causing the server to read the
[mysqld] group from the standard option files. However, because the --defaults-file option is
present, the server reads options from the [mysqld] option group, and only from the named file.

Note

On Windows, if the server is started with the --defaults-file and --
install options, --install must be first. Otherwise, mysqld.exe attempts
to start the MySQL server.

You can also specify options as Start parameters in the Windows Services utility before you start the
MySQL service.

Finally, before trying to start the MySQL service, make sure the user variables %TEMP% and %TMP%
(and also %TMPDIR%, if it has ever been set) for the operating system user who is to run the service are
pointing to a folder to which the user has write access. The default user for running the MySQL service
is LocalSystem, and the default value for its %TEMP% and %TMP% is C:\Windows\Temp, a directory
LocalSystem has write access to by default. However, if there are any changes to that default setup
(for example, changes to the user who runs the service or to the mentioned user variables, or the --
tmpdir option has been used to put the temporary directory somewhere else), the MySQL service
might fail to run because write access to the temporary directory has not been granted to the proper
user.

Starting the service

After a MySQL server instance has been installed as a service, Windows starts the service
automatically whenever Windows starts. The service also can be started immediately from
the Services utility, or by using an sc start mysqld_service_name or NET START
mysqld_service_name command. SC and NET commands are not case-sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be seen
there. If mysqld does not start, check the error log to see whether the server wrote any messages
there to indicate the cause of the problem. The error log is located in the MySQL data directory (for
example, C:\Program Files\MySQL\MySQL Server 8.0\data). It is the file with a suffix of
.err.

When a MySQL server has been installed as a service, and the service is running, Windows stops
the service automatically when Windows shuts down. The server also can be stopped manually

169

Troubleshooting a Microsoft Windows MySQL Server Installation

using the Services utility, the sc stop mysqld_service_name command, the NET STOP
mysqld_service_name command, or the mysqladmin shutdown command.

You also have the choice of installing the server as a manual service if you do not wish for the service
to be started automatically during the boot process. To do this, use the --install-manual option
rather than the --install option:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqld" --install-manual

Removing the service

To remove a server that is installed as a service, first stop it if it is running by executing SC STOP
mysqld_service_name or NET STOP mysqld_service_name. Then use SC DELETE
mysqld_service_name to remove it:

C:\> SC DELETE mysql

Alternatively, use the mysqld --remove option to remove the service.

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqld" --remove

If mysqld is not running as a service, you can start it from the command line. For instructions, see
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”.

If you encounter difficulties during installation, see Section 2.3.5, “Troubleshooting a Microsoft
Windows MySQL Server Installation”.

For more information about stopping or removing a Windows service, see Section 7.8.2.2, “Starting
Multiple MySQL Instances as Windows Services”.

2.3.4.9 Testing The MySQL Installation

You can test whether the MySQL server is working by executing any of the following commands:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqlshow"
C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqlshow" -u root mysql
C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqladmin" version status proc
C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysql" test

If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem
with your DNS. In this case, start mysqld with the skip_name_resolve system variable enabled and
use only localhost and IP addresses in the Host column of the MySQL grant tables. (Be sure that
an account exists that specifies an IP address or you may not be able to connect.)

You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the --
pipe or --protocol=PIPE option, or by specifying . (period) as the host name. Use the --socket
option to specify the name of the pipe if you do not want to use the default pipe name.

If you have set a password for the root account, deleted the anonymous account, or created a new
user account, then to connect to the MySQL server you must use the appropriate -u and -p options
with the commands shown previously. See Section 6.2.4, “Connecting to the MySQL Server Using
Command Options”.

For more information about mysqlshow, see Section 6.5.7, “mysqlshow — Display Database, Table,
and Column Information”.

2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation

When installing and running MySQL for the first time, you may encounter certain errors that prevent the
MySQL server from starting. This section helps you diagnose and correct some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the
error log to record information relevant to the error that prevents the server from starting. The error log
is located in the data directory specified in your my.ini file. The default data directory location is C:
\Program Files\MySQL\MySQL Server 8.0\data, or C:\ProgramData\Mysql on Windows

170

Troubleshooting a Microsoft Windows MySQL Server Installation

7 and Windows Server 2008. The C:\ProgramData directory is hidden by default. You need to
change your folder options to see the directory and contents. For more information on the error log and
understanding the content, see Section 7.4.2, “The Error Log”.

For information regarding possible errors, also consult the console messages displayed when
the MySQL service is starting. Use the SC START mysqld_service_name or NET START
mysqld_service_name command from the command line after installing mysqld as a service to
see any error messages regarding the starting of the MySQL server as a service. See Section 2.3.4.8,
“Starting MySQL as a Windows Service”.

The following examples show other common error messages you might encounter when installing
MySQL and starting the server for the first time:

• If the MySQL server cannot find the mysql privileges database or other critical files, it displays these
messages:

System error 1067 has occurred.
Fatal error: Can't open and lock privilege tables:
Table 'mysql.user' doesn't exist

These messages often occur when the MySQL base or data directories are installed in different
locations than the default locations (C:\Program Files\MySQL\MySQL Server 8.0 and C:
\Program Files\MySQL\MySQL Server 8.0\data, respectively).

This situation can occur when MySQL is upgraded and installed to a new location, but the
configuration file is not updated to reflect the new location. In addition, old and new configuration files
might conflict. Be sure to delete or rename any old configuration files when upgrading MySQL.

If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL Server
8.0, ensure that the MySQL server is aware of this through the use of a configuration (my.ini)
file. Put the my.ini file in your Windows directory, typically C:\WINDOWS. To determine its exact
location from the value of the WINDIR environment variable, issue the following command from the
command prompt:

C:\> echo %WINDIR%

You can create or modify an option file with any text editor, such as Notepad. For example, if MySQL
is installed in E:\mysql and the data directory is D:\MySQLdata, you can create the option file and
set up a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=D:/MySQLdata

Microsoft Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
set basedir to your installation path
basedir=C:\\Program Files\\MySQL\\MySQL Server 8.0
set datadir to the location of your data directory
datadir=D:\\MySQLdata

The rules for use of backslash in option file values are given in Section 6.2.2.2, “Using Option Files”.

If you change the datadir value in your MySQL configuration file, you must move the contents of
the existing MySQL data directory before restarting the MySQL server.

See Section 2.3.4.2, “Creating an Option File”.

• If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service
and install MySQL using the MySQL Installer, you might see this error:

171

Windows Postinstallation Procedures

Error: Cannot create Windows service for MySql. Error: 0

This occurs when the Configuration Wizard tries to install the service and finds an existing service
with the same name.

One solution to this problem is to choose a service name other than mysql when using the
configuration wizard. This enables the new service to be installed correctly, but leaves the outdated
service in place. Although this is harmless, it is best to remove old services that are no longer in use.

To permanently remove the old mysql service, execute the following command as a user with
administrative privileges, on the command line:

C:\> SC DELETE mysql
[SC] DeleteService SUCCESS

If the SC utility is not available for your version of Windows, download the delsrv utility from http://
www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the delsrv
mysql syntax.

2.3.6 Windows Postinstallation Procedures

GUI tools exist that perform most of the tasks described in this section, including:

• MySQL Installer: Used to install and upgrade MySQL products.

• MySQL Workbench: Manages the MySQL server and edits SQL statements.

If necessary, initialize the data directory and create the MySQL grant tables. Windows installation
operations performed by MySQL Installer initialize the data directory automatically. For installation from
a ZIP Archive package, initialize the data directory as described at Section 2.9.1, “Initializing the Data
Directory”.

Regarding passwords, if you installed MySQL using the MySQL Installer, you may have already
assigned a password to the initial root account. (See Section 2.3.3, “MySQL Installer for Windows”.)
Otherwise, use the password-assignment procedure given in Section 2.9.4, “Securing the Initial MySQL
Account”.

Before assigning a password, you might want to try running some client programs to make sure that
you can connect to the server and that it is operating properly. Make sure that the server is running
(see Section 2.3.4.5, “Starting the Server for the First Time”). You can also set up a MySQL service
that runs automatically when Windows starts (see Section 2.3.4.8, “Starting MySQL as a Windows
Service”).

These instructions assume that your current location is the MySQL installation directory and that it has
a bin subdirectory containing the MySQL programs used here. If that is not true, adjust the command
path names accordingly.

If you installed MySQL using MySQL Installer (see Section 2.3.3, “MySQL Installer for Windows”), the
default installation directory is C:\Program Files\MySQL\MySQL Server 8.0:

C:\> cd "C:\Program Files\MySQL\MySQL Server 8.0"

A common installation location for installation from a ZIP archive is C:\mysql:

C:\> cd C:\mysql

Alternatively, add the bin directory to your PATH environment variable setting. That enables your
command interpreter to find MySQL programs properly, so that you can run a program by typing only
its name, not its path name. See Section 2.3.4.7, “Customizing the PATH for MySQL Tools”.

172

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp

Windows Postinstallation Procedures

With the server running, issue the following commands to verify that you can retrieve information from
the server. The output should be similar to that shown here.

Use mysqlshow to see what databases exist:

C:\> bin\mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+

The list of installed databases may vary, but always includes at least mysql and
information_schema.

The preceding command (and commands for other MySQL programs such as mysql) may not work
if the correct MySQL account does not exist. For example, the program may fail with an error, or you
may not be able to view all databases. If you install MySQL using MySQL Installer, the root user is
created automatically with the password you supplied. In this case, you should use the -u root and -
p options. (You must use those options if you have already secured the initial MySQL accounts.) With -
p, the client program prompts for the root password. For example:

C:\> bin\mysqlshow -u root -p
Enter password: (enter root password here)
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+

If you specify a database name, mysqlshow displays a list of the tables within the database:

C:\> bin\mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| component |
| db |
| default_roles |
| engine_cost |
| func |
| general_log |
| global_grants |
| gtid_executed |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| innodb_index_stats |
| innodb_table_stats |
| ndb_binlog_index |
| password_history |
| plugin |
| procs_priv |
| proxies_priv |
| role_edges |
| server_cost |
| servers |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
| slow_log |

173

Windows Platform Restrictions

| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

C:\> bin\mysql -e "SELECT User, Host, plugin FROM mysql.user" mysql
+------+-----------+-----------------------+
| User | Host | plugin |
+------+-----------+-----------------------+
| root | localhost | caching_sha2_password |
+------+-----------+-----------------------+

For more information about mysql and mysqlshow, see Section 6.5.1, “mysql — The MySQL
Command-Line Client”, and Section 6.5.7, “mysqlshow — Display Database, Table, and Column
Information”.

2.3.7 Windows Platform Restrictions

The following restrictions apply to use of MySQL on the Windows platform:

• Process memory

On Windows 32-bit platforms, it is not possible by default to use more than 2GB of RAM within a
single process, including MySQL. This is because the physical address limit on Windows 32-bit
is 4GB and the default setting within Windows is to split the virtual address space between kernel
(2GB) and user/applications (2GB).

Some versions of Windows have a boot time setting to enable larger applications by reducing the
kernel application. Alternatively, to use more than 2GB, use a 64-bit version of Windows.

• File system aliases

When using MyISAM tables, you cannot use aliases within Windows link to the data files on another
volume and then link back to the main MySQL datadir location.

This facility is often used to move the data and index files to a RAID or other fast solution.

• Limited number of ports

Windows systems have about 4,000 ports available for client connections, and after a connection on
a port closes, it takes two to four minutes before the port can be reused. In situations where clients
connect to and disconnect from the server at a high rate, it is possible for all available ports to be
used up before closed ports become available again. If this happens, the MySQL server appears to
be unresponsive even though it is running. Ports may be used by other applications running on the
machine as well, in which case the number of ports available to MySQL is lower.

For more information about this problem, see https://support.microsoft.com/kb/196271.

• DATA DIRECTORY and INDEX DIRECTORY

The DATA DIRECTORY clause of the CREATE TABLE statement is supported on Windows for
InnoDB tables only, as described in Section 17.6.1.2, “Creating Tables Externally”. For MyISAM and
other storage engines, the DATA DIRECTORY and INDEX DIRECTORY clauses for CREATE TABLE
are ignored on Windows and any other platforms with a nonfunctional realpath() call.

• DROP DATABASE

You cannot drop a database that is in use by another session.

174

https://support.microsoft.com/kb/196271

Installing MySQL on macOS

• Case-insensitive names

File names are not case-sensitive on Windows, so MySQL database and table names are also not
case-sensitive on Windows. The only restriction is that database and table names must be specified
using the same case throughout a given statement. See Section 11.2.3, “Identifier Case Sensitivity”.

• Directory and file names

On Windows, MySQL Server supports only directory and file names that are compatible with the
current ANSI code pages. For example, the following Japanese directory name does not work in the
Western locale (code page 1252):

datadir="C:/私たちのプロジェクトのデータ"

The same limitation applies to directory and file names referred to in SQL statements, such as the
data file path name in LOAD DATA.

• The \ path name separator character

Path name components in Windows are separated by the \ character, which is also the escape
character in MySQL. If you are using LOAD DATA or SELECT ... INTO OUTFILE, use Unix-style
file names with / characters:

mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;

Alternatively, you must double the \ character:

mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;

• Problems with pipes

Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character
^Z / CHAR(24), Windows thinks that it has encountered end-of-file and aborts the program.

This is mainly a problem when you try to apply a binary log as follows:

C:\> mysqlbinlog binary_log_file | mysql --user=root

If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character,
you can use the following workaround:

C:\> mysqlbinlog binary_log_file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read any SQL file that may contain binary data.

2.4 Installing MySQL on macOS
For a list of macOS versions that the MySQL server supports, see https://www.mysql.com/support/
supportedplatforms/database.html.

MySQL for macOS is available in a number of different forms:

• Native Package Installer, which uses the native macOS installer (DMG) to walk you through the
installation of MySQL. For more information, see Section 2.4.2, “Installing MySQL on macOS Using
Native Packages”. You can use the package installer with macOS. The user you use to perform the
installation must have administrator privileges.

• Compressed TAR archive, which uses a file packaged using the Unix tar and gzip commands.
To use this method, you need to open a Terminal window. You do not need administrator
privileges using this method; you can install the MySQL server anywhere using this method. For

175

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html

General Notes on Installing MySQL on macOS

more information on using this method, you can use the generic instructions for using a tarball,
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”.

In addition to the core installation, the Package Installer also includes Section 2.4.3, “Installing and
Using the MySQL Launch Daemon” and Section 2.4.4, “Installing and Using the MySQL Preference
Pane” to simplify the management of your installation.

For additional information on using MySQL on macOS, see Section 2.4.1, “General Notes on Installing
MySQL on macOS”.

2.4.1 General Notes on Installing MySQL on macOS

You should keep the following issues and notes in mind:

• Other MySQL installations: The installation procedure does not recognize MySQL installations
by package managers such as Homebrew. The installation and upgrade process is for MySQL
packages provided by us. If other installations are present, then consider stopping them before
executing this installer to avoid port conflicts.

Homebrew: For example, if you installed MySQL Server using Homebrew to its default location then
the MySQL installer installs to a different location and won't upgrade the version from Homebrew. In
this scenario you would end up with multiple MySQL installations that, by default, attempt to use the
same ports. Stop the other MySQL Server instances before running this installer, such as executing
brew services stop mysql to stop the Homebrew's MySQL service.

• Launchd: A launchd daemon is installed that alters MySQL configuration options. Consider editing
it if needed, see the documentation below for additional information. Also, macOS 10.10 removed
startup item support in favor of launchd daemons. The optional MySQL preference pane under
macOS System Preferences uses the launchd daemon.

• Users: You may need (or want) to create a specific mysql user to own the MySQL directory and
data. You can do this through the Directory Utility, and the mysql user should already exist.
For use in single user mode, an entry for _mysql (note the underscore prefix) should already exist
within the system /etc/passwd file.

• Data: Because the MySQL package installer installs the MySQL contents into a version and platform
specific directory, you can use this to upgrade and migrate your database between versions. You
need either to copy the data directory from the old version to the new version, or to specify an
alternative datadir value to set location of the data directory. By default, the MySQL directories are
installed under /usr/local/.

• Aliases: You might want to add aliases to your shell's resource file to make it easier to access
commonly used programs such as mysql and mysqladmin from the command line. The syntax for
bash is:

alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

For tcsh, use:

alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. You can do this
by modifying the appropriate startup file for your shell. For more information, see Section 6.2.1,
“Invoking MySQL Programs”.

• Removing: After you have copied over the MySQL database files from the previous installation and
have successfully started the new server, you should consider removing the old installation files
to save disk space. Additionally, you should also remove older versions of the Package Receipt
directories located in /Library/Receipts/mysql-VERSION.pkg.

176

Installing MySQL on macOS Using Native Packages

2.4.2 Installing MySQL on macOS Using Native Packages

The package is located inside a disk image (.dmg) file that you first need to mount by double-clicking
its icon in the Finder. It should then mount the image and display its contents.

Note

Before proceeding with the installation, be sure to stop all running MySQL
server instances by using either the MySQL Manager Application (on macOS
Server), the preference pane, or mysqladmin shutdown on the command
line.

To install MySQL using the package installer:

1. Download the disk image (.dmg) file (the community version is available here) that contains the
MySQL package installer. Double-click the file to mount the disk image and see its contents.

Double-click the MySQL installer package from the disk. It is named according to the version
of MySQL you have downloaded. For example, for MySQL server 8.0.42 it might be named
mysql-8.0.42-macos-10.13-x86_64.pkg.

2. The initial wizard introduction screen references the MySQL server version to install. Click
Continue to begin the installation.

The MySQL community edition shows a copy of the relevant GNU General Public License. Click
Continue and then Agree to continue.

3. From the Installation Type page you can either click Install to execute the installation wizard using
all defaults, click Customize to alter which components to install (MySQL server, MySQL Test,
Preference Pane, Launchd Support -- all but MySQL Test are enabled by default).

Note

Although the Change Install Location option is visible, the installation
location cannot be changed.

177

https://dev.mysql.com/downloads/mysql/

Installing MySQL on macOS Using Native Packages

Figure 2.13 MySQL Package Installer Wizard: Installation Type

Figure 2.14 MySQL Package Installer Wizard: Customize

178

Installing MySQL on macOS Using Native Packages

4. Click Install to install MySQL Server. The installation process ends here if upgrading a current
MySQL Server installation, otherwise follow the wizard's additional configuration steps for your new
MySQL Server installation.

5. After a successful new MySQL Server installation, complete the configuration steps by choosing
the default encryption type for passwords, define the root password, and also enable (or disable)
MySQL server at startup.

6. The default MySQL 8.0 password mechanism is caching_sha2_password (Strong), and this
step allows you to change it to mysql_native_password (Legacy).

Figure 2.15 MySQL Package Installer Wizard: Choose a Password Encryption Type

Choosing the legacy password mechanism alters the generated launchd file to set --
default_authentication_plugin=mysql_native_password under ProgramArguments.
Choosing strong password encryption does not set --default_authentication_plugin
because the default MySQL Server value is used, which is caching_sha2_password.

179

Installing MySQL on macOS Using Native Packages

7. Define a password for the root user, and also toggle whether MySQL Server should start after the
configuration step is complete.

Figure 2.16 MySQL Package Installer Wizard: Define Root Password

8. Summary is the final step and references a successful and complete MySQL Server installation.
Close the wizard.

Figure 2.17 MySQL Package Installer Wizard: Summary

180

Installing and Using the MySQL Launch Daemon

MySQL server is now installed. If you chose to not start MySQL, then use either launchctl from the
command line or start MySQL by clicking "Start" using the MySQL preference pane. For additional
information, see Section 2.4.3, “Installing and Using the MySQL Launch Daemon”, and Section 2.4.4,
“Installing and Using the MySQL Preference Pane”. Use the MySQL Preference Pane or launchd to
configure MySQL to automatically start at bootup.

When installing using the package installer, the files are installed into a directory within /usr/
local matching the name of the installation version and platform. For example, the installer file
mysql-8.0.42-macos10.15-x86_64.dmg installs MySQL into /usr/local/mysql-8.0.42-
macos10.15-x86_64/ with a symlink to /usr/local/mysql. The following table shows the layout
of this MySQL installation directory.

Note

The macOS installation process does not create nor install a sample my.cnf
MySQL configuration file.

Table 2.7 MySQL Installation Layout on macOS

Directory Contents of Directory

bin mysqld server, client and utility programs

data Log files, databases, where /usr/local/
mysql/data/mysqld.local.err is the default
error log

docs Helper documents, like the Release Notes and
build information

include Include (header) files

lib Libraries

man Unix manual pages

mysql-test MySQL test suite ('MySQL Test' is disabled by
default during the installation process when using
the installer package (DMG))

share Miscellaneous support files, including error
messages, dictionary.txt, and rewriter SQL

support-files Support scripts, such as
mysqld_multi.server, mysql.server, and
mysql-log-rotate.

/tmp/mysql.sock Location of the MySQL Unix socket

2.4.3 Installing and Using the MySQL Launch Daemon

macOS uses launch daemons to automatically start, stop, and manage processes and applications
such as MySQL.

By default, the installation package (DMG) on macOS installs a launchd file named /Library/
LaunchDaemons/com.oracle.oss.mysql.mysqld.plist that contains a plist definition similar
to:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key> <string>com.oracle.oss.mysql.mysqld</string>
 <key>ProcessType</key> <string>Interactive</string>
 <key>Disabled</key> <false/>

181

Installing and Using the MySQL Launch Daemon

 <key>RunAtLoad</key> <true/>
 <key>KeepAlive</key> <true/>
 <key>SessionCreate</key> <true/>
 <key>LaunchOnlyOnce</key> <false/>
 <key>UserName</key> <string>_mysql</string>
 <key>GroupName</key> <string>_mysql</string>
 <key>ExitTimeOut</key> <integer>600</integer>
 <key>Program</key> <string>/usr/local/mysql/bin/mysqld</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/mysql/bin/mysqld</string>
 <string>--user=_mysql</string>
 <string>--basedir=/usr/local/mysql</string>
 <string>--datadir=/usr/local/mysql/data</string>
 <string>--plugin-dir=/usr/local/mysql/lib/plugin</string>
 <string>--log-error=/usr/local/mysql/data/mysqld.local.err</string>
 <string>--pid-file=/usr/local/mysql/data/mysqld.local.pid</string>
 <string>--keyring-file-data=/usr/local/mysql/keyring/keyring</string>
 <string>--early-plugin-load=keyring_file=keyring_file.so</string>
 </array>
 <key>WorkingDirectory</key> <string>/usr/local/mysql</string>
</dict>
</plist>

Note

Some users report that adding a plist DOCTYPE declaration causes the
launchd operation to fail, despite it passing the lint check. We suspect it's a
copy-n-paste error. The md5 checksum of a file containing the above snippet is
d925f05f6d1b6ee5ce5451b596d6baed.

To enable the launchd service, you can either:

• Open macOS system preferences and select the MySQL preference panel, and then execute Start
MySQL Server.

182

Installing and Using the MySQL Launch Daemon

Figure 2.18 MySQL Preference Pane: Location

The Instances page includes an option to start or stop MySQL, and Initialize Database recreates
the data/ directory. Uninstall uninstalls MySQL Server and optionally the MySQL preference panel
and launchd information.

183

Installing and Using the MySQL Launch Daemon

Figure 2.19 MySQL Preference Pane: Instances

• Or, manually load the launchd file.

$> cd /Library/LaunchDaemons
$> sudo launchctl load -F com.oracle.oss.mysql.mysqld.plist

• To configure MySQL to automatically start at bootup, you can:

$> sudo launchctl load -w com.oracle.oss.mysql.mysqld.plist

Note

When upgrading MySQL server, the launchd installation process removes the
old startup items that were installed with MySQL server 5.7.7 and below.

Upgrading also replaces your existing launchd file named
com.oracle.oss.mysql.mysqld.plist.

Additional launchd related information:

• The plist entries override my.cnf entries, because they are passed in as command line arguments.
For additional information about passing in program options, see Section 6.2.2, “Specifying Program
Options”.

• The ProgramArguments section defines the command line options that are passed into the
program, which is the mysqld binary in this case.

184

Installing and Using the MySQL Preference Pane

• The default plist definition is written with less sophisticated use cases in mind. For more complicated
setups, you may want to remove some of the arguments and instead rely on a MySQL configuration
file, such as my.cnf.

• If you edit the plist file, then uncheck the installer option when reinstalling or upgrading MySQL.
Otherwise, your edited plist file is overwritten, and all edits are lost.

Because the default plist definition defines several ProgramArguments, you might remove most of
these arguments and instead rely upon your my.cnf MySQL configuration file to define them. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key> <string>com.oracle.oss.mysql.mysqld</string>
 <key>ProcessType</key> <string>Interactive</string>
 <key>Disabled</key> <false/>
 <key>RunAtLoad</key> <true/>
 <key>KeepAlive</key> <true/>
 <key>SessionCreate</key> <true/>
 <key>LaunchOnlyOnce</key> <false/>
 <key>UserName</key> <string>_mysql</string>
 <key>GroupName</key> <string>_mysql</string>
 <key>ExitTimeOut</key> <integer>600</integer>
 <key>Program</key> <string>/usr/local/mysql/bin/mysqld</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/mysql/bin/mysqld</string>
 <string>--user=_mysql</string>
 <string>--basedir=/usr/local/mysql</string>
 <string>--datadir=/usr/local/mysql/data</string>
 <string>--plugin-dir=/usr/local/mysql/lib/plugin</string>
 <string>--log-error=/usr/local/mysql/data/mysqld.local.err</string>
 <string>--pid-file=/usr/local/mysql/data/mysqld.local.pid</string>
 <string>--keyring-file-data=/usr/local/mysql/keyring/keyring</string>
 <string>--early-plugin-load=keyring_file=keyring_file.so</string>
 </array>
 <key>WorkingDirectory</key> <string>/usr/local/mysql</string>
</dict>
</plist>

In this case, the basedir, datadir, plugin_dir, log_error, pid_file, keyring_file_data,
and --early-plugin-load options were removed from the default plist ProgramArguments
definition, which you might have defined in my.cnf instead.

2.4.4 Installing and Using the MySQL Preference Pane

The MySQL Installation Package includes a MySQL preference pane that enables you to start, stop,
and control automated startup during boot of your MySQL installation.

This preference pane is installed by default, and is listed under your system's System Preferences
window.

185

Installing and Using the MySQL Preference Pane

Figure 2.20 MySQL Preference Pane: Location

The MySQL preference pane is installed with the same DMG file that installs MySQL Server. Typically
it is installed with MySQL Server but it can be installed by itself too.

To install the MySQL preference pane:

1. Go through the process of installing the MySQL server, as described in the documentation at
Section 2.4.2, “Installing MySQL on macOS Using Native Packages”.

2. Click Customize at the Installation Type step. The "Preference Pane" option is listed there and
enabled by default; make sure it is not deselected. The other options, such as MySQL Server, can
be selected or deselected.

186

Installing and Using the MySQL Preference Pane

Figure 2.21 MySQL Package Installer Wizard: Customize

3. Complete the installation process.

Note

The MySQL preference pane only starts and stops MySQL installation installed
from the MySQL package installation that have been installed in the default
location.

Once the MySQL preference pane has been installed, you can control your MySQL server instance
using this preference pane.

The Instances page includes an option to start or stop MySQL, and Initialize Database recreates the
data/ directory. Uninstall uninstalls MySQL Server and optionally the MySQL preference panel and
launchd information.

187

Installing and Using the MySQL Preference Pane

Figure 2.22 MySQL Preference Pane: Instances

188

Installing and Using the MySQL Preference Pane

Figure 2.23 MySQL Preference Pane: Initialize Database

The Configuration page shows MySQL Server options including the path to the MySQL configuration
file.

189

Installing MySQL on Linux

Figure 2.24 MySQL Preference Pane: Configuration

The MySQL Preference Pane shows the current status of the MySQL server, showing stopped (in
red) if the server is not running and running (in green) if the server has already been started. The
preference pane also shows the current setting for whether the MySQL server has been set to start
automatically.

2.5 Installing MySQL on Linux
Linux supports a number of different solutions for installing MySQL. We recommend that you use one
of the distributions from Oracle, for which several methods for installation are available:

Table 2.8 Linux Installation Methods and Information

Type Setup Method Additional Information

Apt Enable the MySQL Apt
repository

Documentation

Yum Enable the MySQL Yum
repository

Documentation

Zypper Enable the MySQL SLES
repository

Documentation

RPM Download a specific package Documentation

DEB Download a specific package Documentation

Generic Download a generic package Documentation

190

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/

Installing MySQL on Linux Using the MySQL Yum Repository

Type Setup Method Additional Information

Source Compile from source Documentation

Docker Use the Oracle Container
Registry. You can also use My
Oracle Support for the MySQL
Enterprise Edition.

Documentation

Oracle Unbreakable Linux
Network

Use ULN channels Documentation

As an alternative, you can use the package manager on your system to automatically download and
install MySQL with packages from the native software repositories of your Linux distribution. These
native packages are often several versions behind the currently available release. You are also
normally unable to install innovation releases, since these are not usually made available in the native
repositories. For more information on using the native package installers, see Section 2.5.7, “Installing
MySQL on Linux from the Native Software Repositories”.

Note

For many Linux installations, you want to set up MySQL to be started
automatically when your machine starts. Many of the native package
installations perform this operation for you, but for source, binary and RPM
solutions you may need to set this up separately. The required script,
mysql.server, can be found in the support-files directory under the
MySQL installation directory or in a MySQL source tree. You can install it
as /etc/init.d/mysql for automatic MySQL startup and shutdown. See
Section 6.3.3, “mysql.server — MySQL Server Startup Script”.

2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository

The MySQL Yum repository for Oracle Linux, Red Hat Enterprise Linux, CentOS, and Fedora provides
RPM packages for installing the MySQL server, client, MySQL Workbench, MySQL Utilities, MySQL
Router, MySQL Shell, Connector/ODBC, Connector/Python and so on (not all packages are available
for all the distributions; see Installing Additional MySQL Products and Components with Yum for
details).

Before You Start

As a popular, open-source software, MySQL, in its original or re-packaged form, is widely installed on
many systems from various sources, including different software download sites, software repositories,
and so on. The following instructions assume that MySQL is not already installed on your system
using a third-party-distributed RPM package; if that is not the case, follow the instructions given
in Section 3.8, “Upgrading MySQL with the MySQL Yum Repository” or Replacing a Third-Party
Distribution of MySQL Using the MySQL Yum Repository.

Important

Repository setup RPM file names begin with mysql-84-lts-community to
highlight the default active MySQL subrepository, which is MySQL 8.4 today.
MySQL 8.0 must be manually enabled via your local repository configuration to
install MySQL 8.0 instead of MySQL 8.4.

Steps for a Fresh Installation of MySQL

Follow the steps below to install the latest GA version of MySQL with the MySQL Yum repository:

1.Adding the MySQL Yum Repository

First, add the MySQL Yum repository to your system's repository list. This is a one-time operation,
which can be performed by installing an RPM provided by MySQL. Follow these steps:

191

https://dev.mysql.com/downloads/mysql/
https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://support.oracle.com/
https://support.oracle.com/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/refman/5.7/en/replace-third-party-yum.html
https://dev.mysql.com/doc/refman/5.7/en/replace-third-party-yum.html

Installing MySQL on Linux Using the MySQL Yum Repository

a. Go to the Download MySQL Yum Repository page (https://dev.mysql.com/downloads/repo/
yum/) in the MySQL Developer Zone.

b. Select and download the release package for your platform.

c. Install the downloaded release package with the following command, replacing platform-
and-version-specific-package-name with the name of the downloaded RPM package:

$> sudo yum install platform-and-version-specific-package-name.rpm

For an EL6-based system, the command is in the form of (note the mysql80 prefix instead of
mysql84 because EL6-based systems do not support MySQL 8.4):

$> sudo yum install mysql80-community-release-el6-{version-number}.noarch.rpm

For an EL7-based system:

$> sudo yum install mysql84-community-release-el7-{version-number}.noarch.rpm

Fpr EL8 or later, change el7 to the version number of your Enterprise Linux.

For Fedora 41 and 42:

$> sudo dnf install mysql84-community-release-fcnn-{rpm-version-number}.noarch.rpm

Replace nn with the Fedora version and {rpm-version-number} with the rpm's version
number. For example, for:

mysql84-community-release-fc42-1.noarch.rpm

The installation command adds the MySQL Yum repository to your system's repository list and
downloads the GnuPG key to check the integrity of the software packages. See Section 2.1.4.2,
“Signature Checking Using GnuPG” for details on GnuPG key checking.

You can check that the MySQL Yum repository has been successfully added by the following
command (for dnf-enabled systems, replace yum in the command with dnf):

$> yum repolist enabled | grep "mysql.*-community.*"

Note

Once the MySQL Yum repository is enabled on your system, any system-
wide update by the yum update command (or dnf upgrade for dnf-
enabled systems) upgrades MySQL packages on your system and replaces
any native third-party packages, if Yum finds replacements for them in
the MySQL Yum repository; see Section 3.8, “Upgrading MySQL with the
MySQL Yum Repository”, for a discussion on some possible effects of that
on your system, see Upgrading the Shared Client Libraries.

2.Selecting a Release Series

When using the MySQL Yum repository, the latest LTS series (currently MySQL 8.4) is selected for
installation by default. If you want to install MySQL 8.4 instead of 8.0 then skip this step.

Within the MySQL Yum repository, different release series of the MySQL Community Server are
hosted in different subrepositories. The subrepository for the latest GA series (currently MySQL
8.4) is enabled by default, and the subrepositories for all other series (for example, the MySQL 8.0
series) are disabled by default. Use this command to see all the subrepositories in the MySQL Yum

192

https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/

Installing MySQL on Linux Using the MySQL Yum Repository

repository, and see which of them are enabled or disabled (for dnf-enabled systems, replace yum in
the command with dnf):

$> yum repolist all | grep mysql

To install the latest release from the latest LTS series, no configuration is needed. To install the
latest release from a specific series other than the latest LTS series, disable the subrepository
for the latest LTS series and enable the subrepository for the specific series before running the
installation command. If your platform supports yum-config-manager, you can do that by issuing
these commands, which disable the subrepository for the 8.4 series and enable the one for the 8.0
series:

$> sudo yum-config-manager --disable mysql-8.4-lts-community
$> sudo yum-config-manager --disable mysql-tools-8.4-lts-community

$> sudo yum-config-manager --enable mysql80-community
$> sudo yum-config-manager --enable mysql-tools-community

For dnf-enabled platforms:

$> sudo dnf config-manager --disable mysql-8.4-lts-community
$> sudo dnf config-manager --disable mysql-tools-8.4-lts-community

$> sudo dnf config-manager --enable mysql80-community
$> sudo dnf config-manager --enable mysql-tools-community

Besides using yum-config-manager or the dnf config-manager command, you can also
select a release series by editing manually the /etc/yum.repos.d/mysql-community.repo
file. This is a typical entry for a MySQL 8.0 subrepository:

[mysql80-community]
name=MySQL 8.0 Community Server
baseurl=http://repo.mysql.com/yum/mysql-8.0-community/el/9/$basearch/
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql-2023

Find the entry for the subrepository you want to configure, and edit the enabled option. Specify
enabled=0 to disable a subrepository, or enabled=1 to enable a subrepository. For example,
to install MySQL 8.0, make sure you have enabled=0 for the other MySQL series entries and
enabled=1 for MySQL 8.0.

You should only enable subrepository for one release series at any time. When subrepositories for
more than one release series are enabled, Yum uses the latest series.

Verify that the correct subrepositories have been enabled and disabled by running the following
command and checking its output (for dnf-enabled systems, replace yum in the command with
dnf):

$> yum repolist enabled | grep mysql

3.Disabling the Default MySQL Module

(EL8 systems only) EL8-based systems such as RHEL8 and Oracle Linux 8 include a MySQL
module that is enabled by default. Unless this module is disabled, it masks packages provided by
MySQL repositories. To disable the included module and make the MySQL repository packages
visible, use the following command (for dnf-enabled systems, replace yum in the command with
dnf):

$> sudo yum module disable mysql

193

Installing MySQL on Linux Using the MySQL Yum Repository

4.Installing MySQL

Install MySQL by the following command (for dnf-enabled systems, replace yum in the command
with dnf):

$> sudo yum install mysql-community-server

This installs the package for MySQL server (mysql-community-server) and also packages for
the components required to run the server, including packages for the client (mysql-community-
client), the common error messages and character sets for client and server (mysql-
community-common), and the shared client libraries (mysql-community-libs).

5.Starting the MySQL Server

Start the MySQL server with the following command:

$> systemctl start mysqld

You can check the status of the MySQL server with the following command:

$> systemctl status mysqld

If the operating system is systemd enabled, standard systemctl (or alternatively, service with the
arguments reversed) commands such as stop, start, status, and restart should be used to
manage the MySQL server service. The mysqld service is enabled by default, and it starts at system
reboot. See Section 2.5.9, “Managing MySQL Server with systemd” for additional information.

At the initial start up of the server, the following happens, given that the data directory of the server is
empty:

• The server is initialized.

• SSL certificate and key files are generated in the data directory.

• validate_password is installed and enabled.

• A superuser account 'root'@'localhost is created. A password for the superuser is set and
stored in the error log file. To reveal it, use the following command:

$> sudo grep 'temporary password' /var/log/mysqld.log

Change the root password as soon as possible by logging in with the generated, temporary
password and set a custom password for the superuser account:

$> mysql -uroot -p

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass4!';

Note

validate_password is installed by default. The default password policy
implemented by validate_password requires that passwords contain at
least one uppercase letter, one lowercase letter, one digit, and one special
character, and that the total password length is at least 8 characters.

For more information on the postinstallation procedures, see Section 2.9, “Postinstallation Setup and
Testing”.

Note

Compatibility Information for EL7-based platforms: The following RPM packages
from the native software repositories of the platforms are incompatible with the
package from the MySQL Yum repository that installs the MySQL server. Once

194

Installing MySQL on Linux Using the MySQL APT Repository

you have installed MySQL using the MySQL Yum repository, you cannot install
these packages (and vice versa).

• akonadi-mysql

Installing Additional MySQL Products and Components with Yum

You can use Yum to install and manage individual components of MySQL. Some of these components
are hosted in sub-repositories of the MySQL Yum repository: for example, the MySQL Connectors
are to be found in the MySQL Connectors Community sub-repository, and the MySQL Workbench in
MySQL Tools Community. You can use the following command to list the packages for all the MySQL
components available for your platform from the MySQL Yum repository (for dnf-enabled systems,
replace yum in the command with dnf):

$> sudo yum --disablerepo=* --enablerepo='mysql*-community*' list available

Install any packages of your choice with the following command, replacing package-name with name
of the package (for dnf-enabled systems, replace yum in the command with dnf):

$> sudo yum install package-name

For example, to install MySQL Workbench on Fedora:

$> sudo dnf install mysql-workbench-community

To install the shared client libraries (for dnf-enabled systems, replace yum in the command with dnf):

$> sudo yum install mysql-community-libs

Platform Specific Notes

ARM Support

ARM 64-bit (aarch64) is supported on Oracle Linux 7 and requires the Oracle Linux 7 Software
Collections Repository (ol7_software_collections). For example, to install the server:

$> yum-config-manager --enable ol7_software_collections
$> yum install mysql-community-server

Note

ARM 64-bit (aarch64) is supported on Oracle Linux 7 as of MySQL 8.0.12.

Known Limitation

The 8.0.12 release requires you to adjust the libstdc++7 path by executing ln
-s /opt/oracle/oracle-armtoolset-1/root/usr/lib64 /usr/
lib64/gcc7 after executing the yum install step.

Updating MySQL with Yum

Besides installation, you can also perform updates for MySQL products and components using the
MySQL Yum repository. See Section 3.8, “Upgrading MySQL with the MySQL Yum Repository” for
details.

2.5.2 Installing MySQL on Linux Using the MySQL APT Repository

The MySQL APT repository provides deb packages for installing and managing the MySQL server,
client, and other components on the current Debian and Ubuntu releases.

Instructions for using the MySQL APT Repository are available in A Quick Guide to Using the MySQL
APT Repository.

195

https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/

Installing MySQL on Linux Using the MySQL SLES Repository

2.5.3 Installing MySQL on Linux Using the MySQL SLES Repository

The MySQL SLES repository provides RPM packages for installing and managing the MySQL server,
client, and other components on SUSE Enterprise Linux Server.

Instructions for using the MySQL SLES repository are available in A Quick Guide to Using the MySQL
SLES Repository.

2.5.4 Installing MySQL on Linux Using RPM Packages from Oracle

The recommended way to install MySQL on RPM-based Linux distributions is by using the RPM
packages provided by Oracle. There are two sources for obtaining them, for the Community Edition of
MySQL:

• From the MySQL software repositories:

• The MySQL Yum repository (see Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum
Repository” for details).

• The MySQL SLES repository (see Section 2.5.3, “Installing MySQL on Linux Using the MySQL
SLES Repository” for details).

• From the Download MySQL Community Server page in the MySQL Developer Zone.

Note

RPM distributions of MySQL are also provided by other vendors. Be aware
that they may differ from those built by Oracle in features, capabilities,
and conventions (including communication setup), and that the installation
instructions in this manual do not necessarily apply to them. The vendor's
instructions should be consulted instead.

MySQL RPM Packages

Table 2.9 RPM Packages for MySQL Community Edition

Package Name Summary

mysql-community-client MySQL client applications and tools

mysql-community-client-plugins Shared plugins for MySQL client applications

mysql-community-common Common files for server and client libraries

mysql-community-devel Development header files and libraries for MySQL
database client applications

mysql-community-embedded-compat MySQL server as an embedded library with
compatibility for applications using version 18 of
the library

mysql-community-icu-data-files MySQL packaging of ICU data files needed by
MySQL regular expressions

mysql-community-libs Shared libraries for MySQL database client
applications

mysql-community-libs-compat Shared compatibility libraries for previous MySQL
installations; only present if previous MySQL
versions are supported by the platform

mysql-community-server Database server and related tools

mysql-community-server-debug Debug server and plugin binaries

mysql-community-test Test suite for the MySQL server

196

https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/

Installing MySQL on Linux Using RPM Packages from Oracle

Package Name Summary

mysql-community The source code RPM looks similar to mysql-
community-8.0.42-1.el7.src.rpm, depending on
selected OS

Additional *debuginfo* RPMs There are several debuginfo packages: mysql-
community-client-debuginfo, mysql-community-
libs-debuginfo mysql-community-server-debug-
debuginfo mysql-community-server-debuginfo,
and mysql-community-test-debuginfo.

Table 2.10 RPM Packages for the MySQL Enterprise Edition

Package Name Summary

mysql-commercial-backup MySQL Enterprise Backup (added in 8.0.11)

mysql-commercial-client MySQL client applications and tools

mysql-commercial-client-plugins Shared plugins for MySQL client applications

mysql-commercial-common Common files for server and client libraries

mysql-commercial-devel Development header files and libraries for MySQL
database client applications

mysql-commercial-embedded-compat MySQL server as an embedded library with
compatibility for applications using version 18 of
the library

mysql-commercial-icu-data-files MySQL packaging of ICU data files needed by
MySQL regular expressions

mysql-commercial-libs Shared libraries for MySQL database client
applications

mysql-commercial-libs-compat Shared compatibility libraries for previous MySQL
installations; only present if previous MySQL
versions are supported by the platform. The
version of the libraries matches the version of the
libraries installed by default by the distribution you
are using.

mysql-commercial-server Database server and related tools

mysql-commercial-test Test suite for the MySQL server

Additional *debuginfo* RPMs There are several debuginfo packages: mysql-
commercial-client-debuginfo, mysql-commercial-
libs-debuginfo mysql-commercial-server-debug-
debuginfo mysql-commercial-server-debuginfo,
and mysql-commercial-test-debuginfo.

The full names for the RPMs have the following syntax:

packagename-version-distribution-arch.rpm

The distribution and arch values indicate the Linux distribution and the processor type for which
the package was built. See the table below for lists of the distribution identifiers:

Table 2.11 MySQL Linux RPM Package Distribution Identifiers

Distribution Value Intended Use

el{version} where {version} is the major
Enterprise Linux version, such as el8

EL6 (8.0), EL7, EL8, EL9, and EL10-based
platforms (for example, the corresponding

197

Installing MySQL on Linux Using RPM Packages from Oracle

Distribution Value Intended Use
versions of Oracle Linux, Red Hat Enterprise
Linux, and CentOS)

fc{version} where {version} is the major
Fedora version, such as fc37

Fedora 41 and 42

sles12 SUSE Linux Enterprise Server 12

To see all files in an RPM package (for example, mysql-community-server), use the following
command:

$> rpm -qpl mysql-community-server-version-distribution-arch.rpm

The discussion in the rest of this section applies only to an installation process using the RPM
packages directly downloaded from Oracle, instead of through a MySQL repository.

Dependency relationships exist among some of the packages. If you plan to install many of the
packages, you may wish to download the RPM bundle tar file instead, which contains all the RPM
packages listed above, so that you need not download them separately.

In most cases, you need to install the mysql-community-server, mysql-community-client,
mysql-community-client-plugins, mysql-community-libs, mysql-community-icu-
data-files, mysql-community-common, and mysql-community-libs-compat packages to
get a functional, standard MySQL installation. To perform such a standard, basic installation, go to the
folder that contains all those packages (and, preferably, no other RPM packages with similar names),
and issue the following command:

$> sudo yum install mysql-community-{server,client,client-plugins,icu-data-files,common,libs}-*

Replace yum with zypper for SLES, and with dnf for Fedora.

While it is much preferable to use a high-level package management tool like yum to install the
packages, users who prefer direct rpm commands can replace the yum install command with the
rpm -Uvh command; however, using rpm -Uvh instead makes the installation process more prone to
failure, due to potential dependency issues the installation process might run into.

To install only the client programs, you can skip mysql-community-server in your list of packages
to install; issue the following command:

$> sudo yum install mysql-community-{client,client-plugins,common,libs}-*

Replace yum with zypper for SLES, and with dnf for Fedora.

A standard installation of MySQL using the RPM packages result in files and resources created under
the system directories, shown in the following table.

Table 2.12 MySQL Installation Layout for Linux RPM Packages from the MySQL Developer Zone

Files or Resources Location

Client programs and scripts /usr/bin

mysqld server /usr/sbin

Configuration file /etc/my.cnf

Data directory /var/lib/mysql

Error log file For RHEL, Oracle Linux, CentOS or Fedora
platforms: /var/log/mysqld.log

For SLES: /var/log/mysql/mysqld.log

198

Installing MySQL on Linux Using RPM Packages from Oracle

Files or Resources Location

Value of secure_file_priv /var/lib/mysql-files

System V init script For RHEL, Oracle Linux, CentOS or Fedora
platforms: /etc/init.d/mysqld

For SLES: /etc/init.d/mysql

Systemd service For RHEL, Oracle Linux, CentOS or Fedora
platforms: mysqld

For SLES: mysql

Pid file /var/run/mysql/mysqld.pid

Socket /var/lib/mysql/mysql.sock

Keyring directory /var/lib/mysql-keyring

Unix manual pages /usr/share/man

Include (header) files /usr/include/mysql

Libraries /usr/lib/mysql

Miscellaneous support files (for example, error
messages, and character set files)

/usr/share/mysql

The installation also creates a user named mysql and a group named mysql on the system.

Notes

• The mysql user is created using the -r and -s /bin/false options of the
useradd command, so that it does not have login permissions to your server
host (see Creating the mysql User and Group for details). To switch to the
mysql user on your OS, use the --shell=/bin/bash option for the su
command:

su - mysql --shell=/bin/bash

• Installation of previous versions of MySQL using older packages might have
created a configuration file named /usr/my.cnf. It is highly recommended
that you examine the contents of the file and migrate the desired settings
inside to the file /etc/my.cnf file, then remove /usr/my.cnf.

MySQL is NOT automatically started at the end of the installation process. For Red Hat Enterprise
Linux, Oracle Linux, CentOS, and Fedora systems, use the following command to start MySQL:

$> systemctl start mysqld

For SLES systems, the command is the same, but the service name is different:

$> systemctl start mysql

If the operating system is systemd enabled, standard systemctl (or alternatively, service with the
arguments reversed) commands such as stop, start, status, and restart should be used to
manage the MySQL server service. The mysqld service is enabled by default, and it starts at system
reboot. Notice that certain things might work differently on systemd platforms: for example, changing
the location of the data directory might cause issues. See Section 2.5.9, “Managing MySQL Server with
systemd” for additional information.

During an upgrade installation using RPM and DEB packages, if the MySQL server is running when
the upgrade occurs then the MySQL server is stopped, the upgrade occurs, and the MySQL server
is restarted. One exception: if the edition also changes during an upgrade (such as community to
commercial, or vice-versa), then MySQL server is not restarted.

199

https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/secure-deployment-install.html#secure-deployment-mysql-user

Installing MySQL on Linux Using RPM Packages from Oracle

At the initial start up of the server, the following happens, given that the data directory of the server is
empty:

• The server is initialized.

• An SSL certificate and key files are generated in the data directory.

• validate_password is installed and enabled.

• A superuser account 'root'@'localhost' is created. A password for the superuser is set and
stored in the error log file. To reveal it, use the following command for RHEL, Oracle Linux, CentOS,
and Fedora systems:

$> sudo grep 'temporary password' /var/log/mysqld.log

Use the following command for SLES systems:

$> sudo grep 'temporary password' /var/log/mysql/mysqld.log

The next step is to log in with the generated, temporary password and set a custom password for the
superuser account:

$> mysql -uroot -p

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass4!';

Note

validate_password is installed by default. The default password policy
implemented by validate_password requires that passwords contain at least
one uppercase letter, one lowercase letter, one digit, and one special character,
and that the total password length is at least 8 characters.

If something goes wrong during installation, you might find debug information in the error log file /var/
log/mysqld.log.

For some Linux distributions, it might be necessary to increase the limit on number of file descriptors
available to mysqld. See Section B.3.2.16, “File Not Found and Similar Errors”

Installing Client Libraries from Multiple MySQL Versions. It is possible to install multiple client
library versions, such as for the case that you want to maintain compatibility with older applications
linked against previous libraries. To install an older client library, use the --oldpackage option
with rpm. For example, to install mysql-community-libs-5.5 on an EL6 system that has
libmysqlclient.21 from MySQL 8.0, use a command like this:

$> rpm --oldpackage -ivh mysql-community-libs-5.5.50-2.el6.x86_64.rpm

Debug Package. A special variant of MySQL Server compiled with the debug package has been
included in the server RPM packages. It performs debugging and memory allocation checks and
produces a trace file when the server is running. To use that debug version, start MySQL with /
usr/sbin/mysqld-debug, instead of starting it as a service or with /usr/sbin/mysqld. See
Section 7.9.4, “The DBUG Package” for the debug options you can use.

Note

The default plugin directory for debug builds changed from /usr/lib64/
mysql/plugin to /usr/lib64/mysql/plugin/debug in MySQL 8.0.4.
Previously, it was necessary to change plugin_dir to /usr/lib64/mysql/
plugin/debug for debug builds.

Rebuilding RPMs from source SRPMs. Source code SRPM packages for MySQL are available for
download. They can be used as-is to rebuild the MySQL RPMs with the standard rpmbuild tool chain.

200

Installing MySQL on Linux Using Debian Packages from Oracle

2.5.5 Installing MySQL on Linux Using Debian Packages from Oracle

Oracle provides Debian packages for installing MySQL on Debian or Debian-like Linux systems. The
packages are available through two different channels:

• The MySQL APT Repository. This is the preferred method for installing MySQL on Debian-like
systems, as it provides a simple and convenient way to install and update MySQL products. For
details, see Section 2.5.2, “Installing MySQL on Linux Using the MySQL APT Repository”.

• The MySQL Developer Zone's Download Area. For details, see Section 2.1.3, “How to Get MySQL”.
The following are some information on the Debian packages available there and the instructions for
installing them:

• Various Debian packages are provided in the MySQL Developer Zone for installing different
components of MySQL on the current Debian and Ubuntu platforms. The preferred method is
to use the tarball bundle, which contains the packages needed for a basic setup of MySQL.
The tarball bundles have names in the format of mysql-server_MVER-DVER_CPU.deb-
bundle.tar. MVER is the MySQL version and DVER is the Linux distribution version. The CPU
value indicates the processor type or family for which the package is built, as shown in the
following table:

Table 2.13 MySQL Debian and Ubuntu Installation Packages CPU Identifiers

CPU Value Intended Processor Type or Family

i386 Pentium processor or better, 32 bit

amd64 64-bit x86 processor

• After downloading the tarball, unpack it with the following command:

$> tar -xvf mysql-server_MVER-DVER_CPU.deb-bundle.tar

• You may need to install the libaio library if it is not already present on your system:

$> sudo apt-get install libaio1

• Preconfigure the MySQL server package with the following command:

$> sudo dpkg-preconfigure mysql-community-server_*.deb

You are asked to provide a password for the root user for your MySQL installation. You might also
be asked other questions regarding the installation.

Important

Make sure you remember the root password you set. Users who want
to set a password later can leave the password field blank in the
dialogue box and just press OK; in that case, root access to the server is
authenticated using the MySQL Socket Peer-Credential Authentication
Plugin for connections using a Unix socket file. You can set the root
password later using mysql_secure_installation.

• For a basic installation of the MySQL server, install the database common files package, the client
package, the client metapackage, the server package, and the server metapackage (in that order);
you can do that with a single command:

$> sudo dpkg -i mysql-{common,community-client-plugins,community-client-core,community-client,client,community-server-core,community-server,server}_*.deb

There are also packages with server-core and client-core in the package names. These
contain binaries only and are installed automatically by the standard packages. Installing them by
themselves does not result in a functioning MySQL setup.

201

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/

Deploying MySQL on Linux with Docker Containers

If you are being warned of unmet dependencies by dpkg (such as libmecab2), you can fix them
using apt-get:

sudo apt-get -f install

Here are where the files are installed on the system:

• All configuration files (like my.cnf) are under /etc/mysql

• All binaries, libraries, headers, etc., are under /usr/bin and /usr/sbin

• The data directory is under /var/lib/mysql

Note

Debian distributions of MySQL are also provided by other vendors. Be aware
that they may differ from those built by Oracle in features, capabilities, and
conventions (including communication setup), and that the instructions in this
manual do not necessarily apply to installing them. The vendor's instructions
should be consulted instead.

2.5.6 Deploying MySQL on Linux with Docker Containers

This section explains how to deploy MySQL Server using Docker containers.

While the docker client is used in the following instructions for demonstration purposes, in general, the
MySQL container images provided by Oracle work with any container tools that are compliant with the
OCI 1.0 specification.

Warning

Before deploying MySQL with Docker containers, make sure you understand
the security risks of running containers and mitigate them properly.

2.5.6.1 Basic Steps for MySQL Server Deployment with Docker

Warning

The MySQL Docker images maintained by the MySQL team are built
specifically for Linux platforms. Other platforms are not supported, and users
using these MySQL Docker images on them are doing so at their own risk. See
the discussion here for some known limitations for running these containers on
non-Linux operating systems.

• Downloading a MySQL Server Docker Image

• Starting a MySQL Server Instance

• Connecting to MySQL Server from within the Container

• Container Shell Access

• Stopping and Deleting a MySQL Container

• Upgrading a MySQL Server Container

• More Topics on Deploying MySQL Server with Docker

202

https://opencontainers.org/posts/announcements/2021-05-04-oci-dist-spec-v1/

Deploying MySQL on Linux with Docker Containers

Downloading a MySQL Server Docker Image

Important

For users of MySQL Enterprise Edition: A subscription is required to use the
Docker images for MySQL Enterprise Edition. Subscriptions work by a Bring
Your Own License model; see How to Buy MySQL Products and Services for
details.

Downloading the server image in a separate step is not strictly necessary; however, performing this
step before you create your Docker container ensures your local image is up to date. To download the
MySQL Community Edition image from the Oracle Container Registry (OCR), run this command:

docker pull container-registry.oracle.com/mysql/community-server:tag

The tag is the label for the image version you want to pull (for example, 5.7, 8.0, or latest). If :tag
is omitted, the latest label is used, and the image for the latest GA version of MySQL Community
Server is downloaded.

To download the MySQL Enterprise Edition image from the OCR, you need to first accept the license
agreement on the OCR and log in to the container repository with your Docker client. Follow these
steps:

• Visit the OCR at https://container-registry.oracle.com/ and choose MySQL.

• Under the list of MySQL repositories, choose enterprise-server.

• If you have not signed in to the OCR yet, click the Sign in button on the right of the page, and then
enter your Oracle account credentials when prompted to.

• Follow the instructions on the right of the page to accept the license agreement.

• Log in to the OCR with your container client using, for example, the docker login command:

docker login container-registry.oracle.com
Username: Oracle-Account-ID
Password: password
Login successful.

Download the Docker image for MySQL Enterprise Edition from the OCR with this command:

docker pull container-registry.oracle.com/mysql/enterprise-server:tag

To download the MySQL Enterprise Edition image from My Oracle Support website, go onto the
website, sign in to your Oracle account, and perform these steps once you are on the landing page:

• Select the Patches and Updates tab.

• Go to the Patch Search region and, on the Search tab, switch to the Product or Family
(Advanced) subtab.

• Enter “MySQL Server” for the Product field, and the desired version number in the Release field.

• Use the dropdowns for additional filters to select Description—contains, and enter “Docker” in the
text field.

The following figure shows the search settings for the MySQL Enterprise Edition image for MySQL
Server 8.0:

203

https://www.mysql.com/buy-mysql/
https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://support.oracle.com/

Deploying MySQL on Linux with Docker Containers

• Click the Search button and, from the result list, select the version you want, and click the Download
button.

• In the File Download dialogue box that appears, click and download the .zip file for the Docker
image.

Unzip the downloaded .zip archive to obtain the tarball inside (mysql-enterprise-
server-version.tar), and then load the image by running this command:

docker load -i mysql-enterprise-server-version.tar

You can list downloaded Docker images with this command:

$> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
container-registry.oracle.com/mysql/community-server latest 1d9c2219ff69 2 months ago 496MB

Starting a MySQL Server Instance

To start a new Docker container for a MySQL Server, use the following command:

docker run --name=container_name --restart on-failure -d image_name:tag

image_name is the name of the image to be used to start the container; see Downloading a MySQL
Server Docker Image for more information.

The --name option, for supplying a custom name for your server container, is optional; if no container
name is supplied, a random one is generated.

The --restart option is for configuring the restart policy for your container; it should be set to the
value on-failure, to enable support for server restart within a client session (which happens, for
example, when the RESTART statement is executed by a client or during the configuration of an
InnoDB cluster instance). With the support for restart enabled, issuing a restart within a client session
causes the server and the container to stop and then restart. Support for server restart is available for
MySQL 8.0.21 and later.

For example, to start a new Docker container for the MySQL Community Server, use this command:

docker run --name=mysql1 --restart on-failure -d container-registry.oracle.com/mysql/community-server:latest

To start a new Docker container for the MySQL Enterprise Server with a Docker image downloaded
from the OCR, use this command:

docker run --name=mysql1 --restart on-failure -d container-registry.oracle.com/mysql/enterprise-server:latest

To start a new Docker container for the MySQL Enterprise Server with a Docker image downloaded
from My Oracle Support, use this command:

docker run --name=mysql1 --restart on-failure -d mysql/enterprise-server:latest

If the Docker image of the specified name and tag has not been downloaded by an earlier docker
pull or docker run command, the image is now downloaded. Initialization for the container begins,

204

https://docs.docker.com/config/containers/start-containers-automatically/
https://dev.mysql.com/doc/mysql-shell/8.0/en/configuring-production-instances.html#configuring-local-instances
https://dev.mysql.com/doc/mysql-shell/8.0/en/configuring-production-instances.html#configuring-local-instances

Deploying MySQL on Linux with Docker Containers

and the container appears in the list of running containers when you run the docker ps command.
For example:

$> docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4cd4129b3211 container-registry.oracle.com/mysql/community-server:latest "/entrypoint.sh mysq…" 8 seconds ago Up 7 seconds (health: starting) 3306/tcp, 33060-33061/tcp mysql1

The container initialization might take some time. When the server is ready for use, the STATUS of
the container in the output of the docker ps command changes from (health: starting) to
(healthy).

The -d option used in the docker run command above makes the container run in the background.
Use this command to monitor the output from the container:

docker logs mysql1

Once initialization is finished, the command's output is going to contain the random password
generated for the root user; check the password with, for example, this command:

$> docker logs mysql1 2>&1 | grep GENERATED
GENERATED ROOT PASSWORD: Axegh3kAJyDLaRuBemecis&EShOs

Connecting to MySQL Server from within the Container

Once the server is ready, you can run the mysql client within the MySQL Server container you just
started, and connect it to the MySQL Server. Use the docker exec -it command to start a mysql
client inside the Docker container you have started, like the following:

docker exec -it mysql1 mysql -uroot -p

When asked, enter the generated root password (see the last step in Starting a MySQL Server
Instance above on how to find the password). Because the MYSQL_ONETIME_PASSWORD option is
true by default, after you have connected a mysql client to the server, you must reset the server root
password by issuing this statement:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'password';

Substitute password with the password of your choice. Once the password is reset, the server is
ready for use.

Container Shell Access

To have shell access to your MySQL Server container, use the docker exec -it command to start
a bash shell inside the container:

$> docker exec -it mysql1 bash
bash-4.2#

You can then run Linux commands inside the container. For example, to view contents in the server's
data directory inside the container, use this command:

bash-4.2# ls /var/lib/mysql
auto.cnf ca.pem client-key.pem ib_logfile0 ibdata1 mysql mysql.sock.lock private_key.pem server-cert.pem sys
ca-key.pem client-cert.pem ib_buffer_pool ib_logfile1 ibtmp1 mysql.sock performance_schema public_key.pem server-key.pem

Stopping and Deleting a MySQL Container

To stop the MySQL Server container we have created, use this command:

docker stop mysql1

docker stop sends a SIGTERM signal to the mysqld process, so that the server is shut down
gracefully.

Also notice that when the main process of a container (mysqld in the case of a MySQL Server
container) is stopped, the Docker container stops automatically.

To start the MySQL Server container again:

205

Deploying MySQL on Linux with Docker Containers

docker start mysql1

To stop and start again the MySQL Server container with a single command:

docker restart mysql1

To delete the MySQL container, stop it first, and then use the docker rm command:

docker stop mysql1

docker rm mysql1

If you want the Docker volume for the server's data directory to be deleted at the same time, add the -
v option to the docker rm command.

Upgrading a MySQL Server Container

Important

• Before performing any upgrade to MySQL, follow carefully the instructions in
Chapter 3, Upgrading MySQL. Among other instructions discussed there, it is
especially important to back up your database before the upgrade.

• The instructions in this section require that the server's data and configuration
have been persisted on the host. See Persisting Data and Configuration
Changes for details.

Follow these steps to upgrade a Docker installation of MySQL 5.7 to 8.0:

• Stop the MySQL 5.7 server (container name is mysql57 in this example):

docker stop mysql57

• Download the MySQL 8.0 Server Docker image. See instructions in Downloading a MySQL Server
Docker Image. Make sure you use the right tag for MySQL 8.0.

• Start a new MySQL 8.0 Docker container (named mysql80 in this example) with the old server data
and configuration (with proper modifications if needed—see Chapter 3, Upgrading MySQL) that have
been persisted on the host (by bind-mounting in this example). For the MySQL Community Server,
run this command:

docker run --name=mysql80 \
 --mount type=bind,src=/path-on-host-machine/my.cnf,dst=/etc/my.cnf \
 --mount type=bind,src=/path-on-host-machine/datadir,dst=/var/lib/mysql \
 -d container-registry.oracle.com/mysql/community-server:8.0

If needed, adjust container-registry.oracle.com/mysql/community-server to the
correct image name—for example, replace it with container-registry.oracle.com/mysql/
enterprise-server for MySQL Enterprise Edition images downloaded from the OCR, or mysql/
enterprise-server for MySQL Enterprise Edition images downloaded from My Oracle Support.

• Wait for the server to finish startup. You can check the status of the server using the docker ps
command (see Starting a MySQL Server Instance for how to do that).

Follow the same steps for upgrading within the 8.0 series (that is, from release 8.0.x to 8.0.y): stop the
original container, and start a new one with a newer image on the old server data and configuration.
If you used the 8.0 or the latest tag when starting your original container and there is now a new
MySQL 8.0 release you want to upgrade to it, you must first pull the image for the new release with the
command:

docker pull container-registry.oracle.com/mysql/community-server:8.0

You can then upgrade by starting a new container with the same tag on the old data and configuration
(adjust the image name if you are using the MySQL Enterprise Edition; see Downloading a MySQL
Server Docker Image):

206

https://docs.docker.com/engine/reference/commandline/service_create/#add-bind-mounts-or-volumes

Deploying MySQL on Linux with Docker Containers

docker run --name=mysql80new \
 --mount type=bind,src=/path-on-host-machine/my.cnf,dst=/etc/my.cnf \
 --mount type=bind,src=/path-on-host-machine/datadir,dst=/var/lib/mysql \
 -d container-registry.oracle.com/mysql/community-server:8.0

Note

For MySQL 8.0.15 and earlier: You need to complete the upgrade process by
running the mysql_upgrade utility in the MySQL 8.0 Server container (the step is
not required for MySQL 8.0.16 and later):

• docker exec -it mysql80 mysql_upgrade -uroot -p

When prompted, enter the root password for your old server.

• Finish the upgrade by restarting the new container:

docker restart mysql80

More Topics on Deploying MySQL Server with Docker

For more topics on deploying MySQL Server with Docker like server configuration, persisting data and
configuration, server error log, and container environment variables, see Section 2.5.6.2, “More Topics
on Deploying MySQL Server with Docker”.

2.5.6.2 More Topics on Deploying MySQL Server with Docker

Note

Most of the following sample commands have container-
registry.oracle.com/mysql/community-server as the Docker image
being used (like with the docker pull and docker run commands); change
that if your image is from another repository—for example, replace it with
container-registry.oracle.com/mysql/enterprise-server for
MySQL Enterprise Edition images downloaded from the Oracle Container
Registry (OCR), or mysql/enterprise-server for MySQL Enterprise
Edition images downloaded from My Oracle Support.

• The Optimized MySQL Installation for Docker

• Configuring the MySQL Server

• Persisting Data and Configuration Changes

• Running Additional Initialization Scripts

• Connect to MySQL from an Application in Another Docker Container

• Server Error Log

• Using MySQL Enterprise Backup with Docker

• Using mysqldump with Docker

• Known Issues

• Docker Environment Variables

The Optimized MySQL Installation for Docker

Docker images for MySQL are optimized for code size, which means they only include crucial
components that are expected to be relevant for the majority of users who run MySQL instances in

207

https://support.oracle.com/

Deploying MySQL on Linux with Docker Containers

Docker containers. A MySQL Docker installation is different from a common, non-Docker installation in
the following aspects:

• Only a limited number of binaries are included.

• All binaries are stripped; they contain no debug information.

Warning

Any software updates or installations users perform to the Docker container
(including those for MySQL components) may conflict with the optimized
MySQL installation created by the Docker image. Oracle does not provide
support for MySQL products running in such an altered container, or a container
created from an altered Docker image.

Configuring the MySQL Server

When you start the MySQL Docker container, you can pass configuration options to the server through
the docker run command. For example:

docker run --name mysql1 -d container-registry.oracle.com/mysql/community-server:tag --character-set-server=utf8mb4 --collation-server=utf8mb4_col

The command starts the MySQL Server with utf8mb4 as the default character set and utf8mb4_col
as the default collation for databases.

Another way to configure the MySQL Server is to prepare a configuration file and mount it at the
location of the server configuration file inside the container. See Persisting Data and Configuration
Changes for details.

Persisting Data and Configuration Changes

Docker containers are in principle ephemeral, and any data or configuration are expected to be lost if
the container is deleted or corrupted (see discussions here). Docker volumes provides a mechanism to
persist data created inside a Docker container. At its initialization, the MySQL Server container creates
a Docker volume for the server data directory. The JSON output from the docker inspect command
on the container includes a Mount key, whose value provides information on the data directory volume:

$> docker inspect mysql1
...
 "Mounts": [
 {
 "Type": "volume",
 "Name": "4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652",
 "Source": "/var/lib/docker/volumes/4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652/_data",
 "Destination": "/var/lib/mysql",
 "Driver": "local",
 "Mode": "",
 "RW": true,
 "Propagation": ""
 }
],
...

The output shows that the source directory /var/lib/docker/
volumes/4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652/
_data, in which data is persisted on the host, has been mounted at /var/lib/mysql, the server
data directory inside the container.

Another way to preserve data is to bind-mount a host directory using the --mount option when
creating the container. The same technique can be used to persist the configuration of the server. The
following command creates a MySQL Server container and bind-mounts both the data directory and
the server configuration file:

docker run --name=mysql1 \
--mount type=bind,src=/path-on-host-machine/my.cnf,dst=/etc/my.cnf \

208

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/reference/commandline/service_create/#add-bind-mounts-volumes-or-memory-filesystems

Deploying MySQL on Linux with Docker Containers

--mount type=bind,src=/path-on-host-machine/datadir,dst=/var/lib/mysql \
-d container-registry.oracle.com/mysql/community-server:tag

The command mounts path-on-host-machine/my.cnf at /etc/my.cnf (the server configuration
file inside the container), and path-on-host-machine/datadir at /var/lib/mysql (the data
directory inside the container). The following conditions must be met for the bind-mounting to work:

• The configuration file path-on-host-machine/my.cnf must already exist, and it must contain the
specification for starting the server by the user mysql:

[mysqld]
user=mysql

You can also include other server configuration options in the file.

• The data directory path-on-host-machine/datadir must already exist. For server initialization
to happen, the directory must be empty. You can also mount a directory prepopulated with data
and start the server with it; however, you must make sure you start the Docker container with the
same configuration as the server that created the data, and any host files or directories required are
mounted when starting the container.

Running Additional Initialization Scripts

If there are any .sh or .sql scripts you want to run on the database immediately after it has
been created, you can put them into a host directory and then mount the directory at /docker-
entrypoint-initdb.d/ inside the container. For example:

docker run --name=mysql1 \
--mount type=bind,src=/path-on-host-machine/scripts/,dst=/docker-entrypoint-initdb.d/ \
-d container-registry.oracle.com/mysql/community-server:tag

Connect to MySQL from an Application in Another Docker Container

By setting up a Docker network, you can allow multiple Docker containers to communicate with each
other, so that a client application in another Docker container can access the MySQL Server in the
server container. First, create a Docker network:

docker network create my-custom-net

Then, when you are creating and starting the server and the client containers, use the --network
option to put them on network you created. For example:

docker run --name=mysql1 --network=my-custom-net -d container-registry.oracle.com/mysql/community-server

docker run --name=myapp1 --network=my-custom-net -d myapp

The myapp1 container can then connect to the mysql1 container with the mysql1 hostname and
vice versa, as Docker automatically sets up a DNS for the given container names. In the following
example, we run the mysql client from inside the myapp1 container to connect to host mysql1 in its
own container:

docker exec -it myapp1 mysql --host=mysql1 --user=myuser --password

For other networking techniques for containers, see the Docker container networking section in the
Docker Documentation.

Server Error Log

When the MySQL Server is first started with your server container, a server error log is NOT generated
if either of the following conditions is true:

• A server configuration file from the host has been mounted, but the file does not contain the system
variable log_error (see Persisting Data and Configuration Changes on bind-mounting a server
configuration file).

209

https://docs.docker.com/engine/userguide/networking/

Deploying MySQL on Linux with Docker Containers

• A server configuration file from the host has not been mounted, but the Docker environment
variable MYSQL_LOG_CONSOLE is true (which is the variable's default state for MySQL 8.0 server
containers). The MySQL Server's error log is then redirected to stderr, so that the error log goes
into the Docker container's log and is viewable using the docker logs mysqld-container
command.

To make MySQL Server generate an error log when either of the two conditions is true, use the --
log-error option to configure the server to generate the error log at a specific location inside the
container. To persist the error log, mount a host file at the location of the error log inside the container
as explained in Persisting Data and Configuration Changes. However, you must make sure your
MySQL Server inside its container has write access to the mounted host file.

Using MySQL Enterprise Backup with Docker

MySQL Enterprise Backup is a commercially-licensed backup utility for MySQL Server, available with
MySQL Enterprise Edition. MySQL Enterprise Backup is included in the Docker installation of MySQL
Enterprise Edition.

In the following example, we assume that you already have a MySQL Server running in a Docker
container (see Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker” on how to
start a MySQL Server instance with Docker). For MySQL Enterprise Backup to back up the MySQL
Server, it must have access to the server's data directory. This can be achieved by, for example, bind-
mounting a host directory on the data directory of the MySQL Server when you start the server:

docker run --name=mysqlserver \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
-d mysql/enterprise-server:8.0

With this command, the MySQL Server is started with a Docker image of the MySQL Enterprise
Edition, and the host directory /path-on-host-machine/datadir/ has been mounted onto the
server's data directory (/var/lib/mysql) inside the server container. We also assume that, after the
server has been started, the required privileges have also been set up for MySQL Enterprise Backup to
access the server (see Grant MySQL Privileges to Backup Administrator, for details). Use the following
steps to back up and restore a MySQL Server instance.

To back up a MySQL Server instance running in a Docker container using MySQL Enterprise Backup
with Docker, follow the steps listed here:

1. On the same host where the MySQL Server container is running, start another container with
an image of MySQL Enterprise Edition to perform a back up with the MySQL Enterprise Backup
command backup-to-image. Provide access to the server's data directory using the bind mount
we created in the last step. Also, mount a host directory (/path-on-host-machine/backups/
in this example) onto the storage folder for backups in the container (/data/backups in the
example) to persist the backups we are creating. Here is a sample command for this step, in which
MySQL Enterprise Backup is started with a Docker image downloaded from My Oracle Support:

$> docker run \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
--mount type=bind,src=/path-on-host-machine/backups/,dst=/data/backups \
--rm mysql/enterprise-server:8.0 \
mysqlbackup -umysqlbackup -ppassword --backup-dir=/tmp/backup-tmp --with-timestamp \
--backup-image=/data/backups/db.mbi backup-to-image

[Entrypoint] MySQL Docker Image 8.0.11-1.1.5
MySQL Enterprise Backup version 8.0.11 Linux-4.1.12-61.1.16.el7uek.x86_64-x86_64 [2018-04-08 07:06:45]
Copyright (c) 2003, 2018, Oracle and/or its affiliates. All Rights Reserved.

180921 17:27:25 MAIN INFO: A thread created with Id '140594390935680'
180921 17:27:25 MAIN INFO: Starting with following command line ...
...

 Parameters Summary

210

https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/
https://www.mysql.com/products/enterprise/
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/mysqlbackup.privileges.html
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/backup-commands-backup.html#option_meb_backup-to-image
https://support.oracle.com/

Deploying MySQL on Linux with Docker Containers

 Start LSN : 29615616
 End LSN : 29651854

mysqlbackup completed OK!

It is important to check the end of the output by mysqlbackup to make sure the backup has been
completed successfully.

2. The container exits once the backup job is finished and, with the --rm option used to start it, it is
removed after it exits. An image backup has been created, and can be found in the host directory
mounted in the last step for storing backups, as shown here:

$> ls /tmp/backups
db.mbi

To restore a MySQL Server instance in a Docker container using MySQL Enterprise Backup with
Docker, follow the steps listed here:

1. Stop the MySQL Server container, which also stops the MySQL Server running inside:

docker stop mysqlserver

2. On the host, delete all contents in the bind mount for the MySQL Server data directory:

rm -rf /path-on-host-machine/datadir/*

3. Start a container with an image of MySQL Enterprise Edition to perform the restore with the
MySQL Enterprise Backup command copy-back-and-apply-log. Bind-mount the server's data
directory and the storage folder for the backups, like what we did when we backed up the server:

$> docker run \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
--mount type=bind,src=/path-on-host-machine/backups/,dst=/data/backups \
--rm mysql/enterprise-server:8.0 \
mysqlbackup --backup-dir=/tmp/backup-tmp --with-timestamp \
--datadir=/var/lib/mysql --backup-image=/data/backups/db.mbi copy-back-and-apply-log

[Entrypoint] MySQL Docker Image 8.0.11-1.1.5
MySQL Enterprise Backup version 8.0.11 Linux-4.1.12-61.1.16.el7uek.x86_64-x86_64 [2018-04-08 07:06:45]
Copyright (c) 2003, 2018, Oracle and/or its affiliates. All Rights Reserved.

180921 22:06:52 MAIN INFO: A thread created with Id '139768047519872'
180921 22:06:52 MAIN INFO: Starting with following command line ...
...
180921 22:06:52 PCR1 INFO: We were able to parse ibbackup_logfile up to
 lsn 29680612.
180921 22:06:52 PCR1 INFO: Last MySQL binlog file position 0 155, file name binlog.000003
180921 22:06:52 PCR1 INFO: The first data file is '/var/lib/mysql/ibdata1'
 and the new created log files are at '/var/lib/mysql'
180921 22:06:52 MAIN INFO: No Keyring file to process.
180921 22:06:52 MAIN INFO: Apply-log operation completed successfully.
180921 22:06:52 MAIN INFO: Full Backup has been restored successfully.

mysqlbackup completed OK! with 3 warnings

The container exits once the backup job is finished and, with the --rm option used when starting it,
it is removed after it exits.

4. Restart the server container, which also restarts the restored server, using the following command:

docker restart mysqlserver

Or, start a new MySQL Server on the restored data directory, as shown here:

docker run --name=mysqlserver2 \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
-d mysql/enterprise-server:8.0

211

https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/backup-commands-restore.html#option_meb_copy-back-and-apply-log

Deploying MySQL on Linux with Docker Containers

Log on to the server to check that the server is running with the restored data.

Using mysqldump with Docker

Besides using MySQL Enterprise Backup to back up a MySQL Server running in a Docker container,
you can perform a logical backup of your server by using the mysqldump utility, run inside a Docker
container.

The following instructions assume that you already have a MySQL Server running in a Docker
container and, when the container was first started, a host directory /path-on-host-machine/
datadir/ has been mounted onto the server's data directory /var/lib/mysql (see bind-mounting
a host directory on the data directory of the MySQL Server for details), which contains the Unix socket
file by which mysqldump and mysql can connect to the server. We also assume that, after the server
has been started, a user with the proper privileges (admin in this example) has been created, with
which mysqldump can access the server. Use the following steps to back up and restore MySQL
Server data:

Backing up MySQL Server data using mysqldump with Docker:

1. On the same host where the MySQL Server container is running, start another container with an
image of MySQL Server to perform a backup with the mysqldump utility (see documentation of
the utility for its functionality, options, and limitations). Provide access to the server's data directory
by bind mounting /path-on-host-machine/datadir/. Also, mount a host directory (/path-
on-host-machine/backups/ in this example) onto a storage folder for backups inside the
container (/data/backups is used in this example) to persist the backups you are creating. Here
is a sample command for backing up all databases on the server using this setup:

$> docker run --entrypoint "/bin/sh" \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
--mount type=bind,src=/path-on-host-machine/backups/,dst=/data/backups \
--rm container-registry.oracle.com/mysql/community-server:8.0 \
-c "mysqldump -uadmin --password='password' --all-databases > /data/backups/all-databases.sql"

In the command, the --entrypoint option is used so that the system shell is invoked after the
container is started, and the -c option is used to specify the mysqldump command to be run in the
shell, whose output is redirected to the file all-databases.sql in the backup directory.

2. The container exits once the backup job is finished and, with the --rm option used to start it, it
is removed after it exits. A logical backup been created, and can be found in the host directory
mounted for storing the backup, as shown here:

$> ls /path-on-host-machine/backups/
all-databases.sql

Restoring MySQL Server data using mysqldump with Docker:

1. Make sure you have a MySQL Server running in a container, onto which you want your backed-up
data to be restored.

2. Start a container with an image of MySQL Server to perform the restore with a mysql client. Bind-
mount the server's data directory, as well as the storage folder that contains your backup:

$> docker run \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
--mount type=bind,src=/path-on-host-machine/backups/,dst=/data/backups \
--rm container-registry.oracle.com/mysql/community-server:8.0 \
mysql -uadmin --password='password' -e "source /data/backups/all-databases.sql"

The container exits once the backup job is finished and, with the --rm option used when starting it,
it is removed after it exits.

3. Log on to the server to check that the restored data is now on the server.

212

Deploying MySQL on Linux with Docker Containers

Known Issues

• When using the server system variable audit_log_file to configure the audit log file name, use
the loose option modifier with it; otherwise, Docker cannot start the server.

Docker Environment Variables

When you create a MySQL Server container, you can configure the MySQL instance by using the --
env option (short form -e) and specifying one or more environment variables. No server initialization is
performed if the mounted data directory is not empty, in which case setting any of these variables has
no effect (see Persisting Data and Configuration Changes), and no existing contents of the directory,
including server settings, are modified during container startup.

Environment variables which can be used to configure a MySQL instance are listed here:

• The boolean variables including MYSQL_RANDOM_ROOT_PASSWORD, MYSQL_ONETIME_PASSWORD,
MYSQL_ALLOW_EMPTY_PASSWORD, and MYSQL_LOG_CONSOLE are made true by setting them with
any strings of nonzero lengths. Therefore, setting them to, for example, “0”, “false”, or “no” does not
make them false, but actually makes them true. This is a known issue.

• MYSQL_RANDOM_ROOT_PASSWORD: When this variable is true (which is its default state, unless
MYSQL_ROOT_PASSWORD is set or MYSQL_ALLOW_EMPTY_PASSWORD is set to true), a random
password for the server's root user is generated when the Docker container is started. The password
is printed to stdout of the container and can be found by looking at the container’s log (see Starting
a MySQL Server Instance).

• MYSQL_ONETIME_PASSWORD: When the variable is true (which is its default state, unless
MYSQL_ROOT_PASSWORD is set or MYSQL_ALLOW_EMPTY_PASSWORD is set to true), the root user's
password is set as expired and must be changed before MySQL can be used normally.

• MYSQL_DATABASE: This variable allows you to specify the name of a database to be
created on image startup. If a user name and a password are supplied with MYSQL_USER
and MYSQL_PASSWORD, the user is created and granted superuser access to this database
(corresponding to GRANT ALL). The specified database is created by a CREATE DATABASE IF
NOT EXIST statement, so that the variable has no effect if the database already exists.

• MYSQL_USER, MYSQL_PASSWORD: These variables are used in conjunction to create a user and set
that user's password, and the user is granted superuser permissions for the database specified by
the MYSQL_DATABASE variable. Both MYSQL_USER and MYSQL_PASSWORD are required for a user
to be created—if any of the two variables is not set, the other is ignored. If both variables are set but
MYSQL_DATABASE is not, the user is created without any privileges.

Note

There is no need to use this mechanism to create the root
superuser, which is created by default with the password set by
either one of the mechanisms discussed in the descriptions for
MYSQL_ROOT_PASSWORD and MYSQL_RANDOM_ROOT_PASSWORD, unless
MYSQL_ALLOW_EMPTY_PASSWORD is true.

• MYSQL_ROOT_HOST: By default, MySQL creates the 'root'@'localhost' account. This account
can only be connected to from inside the container as described in Connecting to MySQL Server
from within the Container. To allow root connections from other hosts, set this environment variable.
For example, the value 172.17.0.1, which is the default Docker gateway IP, allows connections
from the host machine that runs the container. The option accepts only one entry, but wildcards are
allowed (for example, MYSQL_ROOT_HOST=172.*.*.* or MYSQL_ROOT_HOST=%).

• MYSQL_LOG_CONSOLE: When the variable is true (which is its default state for MySQL 8.0 server
containers), the MySQL Server's error log is redirected to stderr, so that the error log goes into the
Docker container's log and is viewable using the docker logs mysqld-container command.

213

Installing MySQL on Linux from the Native Software Repositories

Note

The variable has no effect if a server configuration file from the host has been
mounted (see Persisting Data and Configuration Changes on bind-mounting a
configuration file).

• MYSQL_ROOT_PASSWORD: This variable specifies a password that is set for the MySQL root account.

Warning

Setting the MySQL root user password on the command line is insecure. As
an alternative to specifying the password explicitly, you can set the variable
with a container file path for a password file, and then mount a file from
your host that contains the password at the container file path. This is still
not very secure, as the location of the password file is still exposed. It is
preferable to use the default settings of MYSQL_RANDOM_ROOT_PASSWORD
and MYSQL_ONETIME_PASSWORD both being true.

• MYSQL_ALLOW_EMPTY_PASSWORD. Set it to true to allow the container to be started with a blank
password for the root user.

Warning

Setting this variable to true is insecure, because it is going to leave
your MySQL instance completely unprotected, allowing anyone to gain
complete superuser access. It is preferable to use the default settings of
MYSQL_RANDOM_ROOT_PASSWORD and MYSQL_ONETIME_PASSWORD both
being true.

2.5.6.3 Deploying MySQL on Windows and Other Non-Linux Platforms with Docker

Warning

The MySQL Docker images provided by Oracle are built specifically for Linux
platforms. Other platforms are not supported, and users running the MySQL
Docker images from Oracle on them are doing so at their own risk. This
section discusses some known issues for the images when used on non-Linux
platforms.

Known Issues for using the MySQL Server Docker images from Oracle on Windows include:

• If you are bind-mounting on the container's MySQL data directory (see Persisting Data and
Configuration Changes for details), you have to set the location of the server socket file with the --
socket option to somewhere outside of the MySQL data directory; otherwise, the server fails to
start. This is because the way Docker for Windows handles file mounting does not allow a host file
from being bind-mounted on the socket file.

2.5.7 Installing MySQL on Linux from the Native Software Repositories

Many Linux distributions include a version of the MySQL server, client tools, and development
components in their native software repositories and can be installed with the platforms' standard
package management systems. This section provides basic instructions for installing MySQL using
those package management systems.

Important

Native packages are often several versions behind the currently available
release. You are also normally unable to install development milestone releases
(DMRs), since these are not usually made available in the native repositories.

214

Installing MySQL on Linux from the Native Software Repositories

Before proceeding, we recommend that you check out the other installation
options described in Section 2.5, “Installing MySQL on Linux”.

Distribution specific instructions are shown below:

• Red Hat Linux, Fedora, CentOS

Note

For a number of Linux distributions, you can install MySQL using the MySQL
Yum repository instead of the platform's native software repository. See
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
for details.

For Red Hat and similar distributions, the MySQL distribution is divided into a number of separate
packages, mysql for the client tools, mysql-server for the server and associated tools, and
mysql-libs for the libraries. The libraries are required if you want to provide connectivity from
different languages and environments such as Perl, Python and others.

To install, use the yum command to specify the packages that you want to install. For example:

#> yum install mysql mysql-server mysql-libs mysql-server
Loaded plugins: presto, refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package mysql.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-libs.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-server.x86_64 0:5.1.48-2.fc13 set to be updated
--> Processing Dependency: perl-DBD-MySQL for package: mysql-server-5.1.48-2.fc13.x86_64
--> Running transaction check
---> Package perl-DBD-MySQL.x86_64 0:4.017-1.fc13 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Installing:
 mysql x86_64 5.1.48-2.fc13 updates 889 k
 mysql-libs x86_64 5.1.48-2.fc13 updates 1.2 M
 mysql-server x86_64 5.1.48-2.fc13 updates 8.1 M
Installing for dependencies:
 perl-DBD-MySQL x86_64 4.017-1.fc13 updates 136 k

Transaction Summary
==
Install 4 Package(s)
Upgrade 0 Package(s)

Total download size: 10 M
Installed size: 30 M
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
Processing delta metadata
Package(s) data still to download: 10 M
(1/4): mysql-5.1.48-2.fc13.x86_64.rpm | 889 kB 00:04
(2/4): mysql-libs-5.1.48-2.fc13.x86_64.rpm | 1.2 MB 00:06
(3/4): mysql-server-5.1.48-2.fc13.x86_64.rpm | 8.1 MB 00:40
(4/4): perl-DBD-MySQL-4.017-1.fc13.x86_64.rpm | 136 kB 00:00
--
Total 201 kB/s | 10 MB 00:52
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : mysql-libs-5.1.48-2.fc13.x86_64 1/4

215

Installing MySQL on Linux from the Native Software Repositories

 Installing : mysql-5.1.48-2.fc13.x86_64 2/4
 Installing : perl-DBD-MySQL-4.017-1.fc13.x86_64 3/4
 Installing : mysql-server-5.1.48-2.fc13.x86_64 4/4

Installed:
 mysql.x86_64 0:5.1.48-2.fc13 mysql-libs.x86_64 0:5.1.48-2.fc13
 mysql-server.x86_64 0:5.1.48-2.fc13

Dependency Installed:
 perl-DBD-MySQL.x86_64 0:4.017-1.fc13

Complete!

MySQL and the MySQL server should now be installed. A sample configuration file is installed into /
etc/my.cnf. To start the MySQL server use systemctl:

$> systemctl start mysqld

The database tables are automatically created for you, if they do not already exist. You should,
however, run mysql_secure_installation to set the root passwords on your server.

• Debian, Ubuntu, Kubuntu

Note

For supported Debian and Ubuntu versions, MySQL can be installed
using the MySQL APT Repository instead of the platform's native software
repository. See Section 2.5.2, “Installing MySQL on Linux Using the MySQL
APT Repository” for details.

On Debian and related distributions, there are two packages for MySQL in their software
repositories, mysql-client and mysql-server, for the client and server components
respectively. You should specify an explicit version, for example mysql-client-5.1, to ensure
that you install the version of MySQL that you want.

To download and install, including any dependencies, use the apt-get command, specifying the
packages that you want to install.

Note

Before installing, make sure that you update your apt-get index files to
ensure you are downloading the latest available version.

Note

The apt-get command installs a number of packages, including the MySQL
server, in order to provide the typical tools and application environment. This
can mean that you install a large number of packages in addition to the main
MySQL package.

During installation, the initial database is created, and you are prompted for the MySQL root
password (and confirmation). A configuration file is created in /etc/mysql/my.cnf. An init script is
created in /etc/init.d/mysql.

The server should already be started. You can manually start and stop the server using:

#> service mysql [start|stop]

The service is automatically added to the 2, 3 and 4 run levels, with stop scripts in the single,
shutdown and restart levels.

216

https://dev.mysql.com/downloads/repo/apt/

Installing MySQL on Linux with Juju

2.5.8 Installing MySQL on Linux with Juju

The Juju deployment framework supports easy installation and configuration of MySQL servers. For
instructions, see https://jujucharms.com/mysql/.

2.5.9 Managing MySQL Server with systemd

If you install MySQL using an RPM or Debian package on the following Linux platforms, server startup
and shutdown is managed by systemd:

• RPM package platforms:

• Enterprise Linux variants version 7 and higher

• SUSE Linux Enterprise Server 12 and higher

• Fedora 29 and higher

• Debian family platforms:

• Debian platforms

• Ubuntu platforms

If you install MySQL from a generic binary distribution on a platform that uses systemd, you can
manually configure systemd support for MySQL following the instructions provided in the post-
installation setup section of the MySQL Secure Deployment Guide.

If you install MySQL from a source distribution on a platform that uses systemd, obtain systemd
support for MySQL by configuring the distribution using the -DWITH_SYSTEMD=1 CMake option. See
Section 2.8.7, “MySQL Source-Configuration Options”.

The following discussion covers these topics:

• Overview of systemd

• Configuring systemd for MySQL

• Configuring Multiple MySQL Instances Using systemd

• Migrating from mysqld_safe to systemd

Note

On platforms for which systemd support for MySQL is installed, scripts such
as mysqld_safe and the System V initialization script are unnecessary and
are not installed. For example, mysqld_safe can handle server restarts, but
systemd provides the same capability, and does so in a manner consistent
with management of other services rather than by using an application-specific
program.

One implication of the non-use of mysqld_safe on platforms that use systemd
for server management is that use of [mysqld_safe] or [safe_mysqld]
sections in option files is not supported and might lead to unexpected behavior.

Because systemd has the capability of managing multiple MySQL instances on
platforms for which systemd support for MySQL is installed, mysqld_multi
and mysqld_multi.server are unnecessary and are not installed.

Overview of systemd

systemd provides automatic MySQL server startup and shutdown. It also enables manual server
management using the systemctl command. For example:

217

https://jujucharms.com/mysql/
https://dev.mysql.com/doc/mysql-secure-deployment-guide/en/

Managing MySQL Server with systemd

$> systemctl {start|stop|restart|status} mysqld

Alternatively, use the service command (with the arguments reversed), which is compatible with
System V systems:

$> service mysqld {start|stop|restart|status}

Note

For the systemctl command (and the alternative service command), if
the MySQL service name is not mysqld then use the appropriate name. For
example, use mysql rather than mysqld on Debian-based and SLES systems.

Support for systemd includes these files:

• mysqld.service (RPM platforms), mysql.service (Debian platforms): systemd service unit
configuration file, with details about the MySQL service.

• mysqld@.service (RPM platforms), mysql@.service (Debian platforms): Like
mysqld.service or mysql.service, but used for managing multiple MySQL instances.

• mysqld.tmpfiles.d: File containing information to support the tmpfiles feature. This file is
installed under the name mysql.conf.

• mysqld_pre_systemd (RPM platforms), mysql-system-start (Debian platforms): Support
script for the unit file. This script assists in creating the error log file only if the log location matches
a pattern (/var/log/mysql*.log for RPM platforms, /var/log/mysql/*.log for Debian
platforms). In other cases, the error log directory must be writable or the error log must be present
and writable for the user running the mysqld process.

Configuring systemd for MySQL

To add or change systemd options for MySQL, these methods are available:

• Use a localized systemd configuration file.

• Arrange for systemd to set environment variables for the MySQL server process.

• Set the MYSQLD_OPTS systemd variable.

To use a localized systemd configuration file, create the /etc/systemd/system/
mysqld.service.d directory if it does not exist. In that directory, create a file that contains a
[Service] section listing the desired settings. For example:

[Service]
LimitNOFILE=max_open_files
Nice=nice_level
LimitCore=core_file_limit
Environment="LD_PRELOAD=/path/to/malloc/library"
Environment="TZ=time_zone_setting"

The discussion here uses override.conf as the name of this file. Newer versions of systemd
support the following command, which opens an editor and permits you to edit the file:

systemctl edit mysqld # RPM platforms
systemctl edit mysql # Debian platforms

Whenever you create or change override.conf, reload the systemd configuration, then tell systemd
to restart the MySQL service:

systemctl daemon-reload
systemctl restart mysqld # RPM platforms
systemctl restart mysql # Debian platforms

With systemd, the override.conf configuration method must be used for certain parameters, rather
than settings in a [mysqld], [mysqld_safe], or [safe_mysqld] group in a MySQL option file:

218

Managing MySQL Server with systemd

• For some parameters, override.conf must be used because systemd itself must know their
values and it cannot read MySQL option files to get them.

• Parameters that specify values otherwise settable only using options known to mysqld_safe must
be specified using systemd because there is no corresponding mysqld parameter.

For additional information about using systemd rather than mysqld_safe, see Migrating from
mysqld_safe to systemd.

You can set the following parameters in override.conf:

• To set the number of file descriptors available to the MySQL server, use LimitNOFILE in
override.conf rather than the open_files_limit system variable for mysqld or --open-
files-limit option for mysqld_safe.

• To set the maximum core file size, use LimitCore in override.conf rather than the --core-
file-size option for mysqld_safe.

• To set the scheduling priority for the MySQL server, use Nice in override.conf rather than the
--nice option for mysqld_safe.

Some MySQL parameters are configured using environment variables:

• LD_PRELOAD: Set this variable if the MySQL server should use a specific memory-allocation library.

• NOTIFY_SOCKET: This environment variable specifies the socket that mysqld uses to communicate
notification of startup completion and service status change with systemd. It is set by systemd when
the mysqld service is started. The mysqld service reads the variable setting and writes to the
defined location.

In MySQL 8.0, mysqld uses the Type=notify process startup type. (Type=forking was used
in MySQL 5.7.) With Type=notify, systemd automatically configures a socket file and exports the
path to the NOTIFY_SOCKET environment variable.

• TZ: Set this variable to specify the default time zone for the server.

There are multiple ways to specify environment variable values for use by the MySQL server process
managed by systemd:

• Use Environment lines in the override.conf file. For the syntax, see the example in the
preceding discussion that describes how to use this file.

• Specify the values in the /etc/sysconfig/mysql file (create the file if it does not exist). Assign
values using the following syntax:

LD_PRELOAD=/path/to/malloc/library
TZ=time_zone_setting

After modifying /etc/sysconfig/mysql, restart the server to make the changes effective:

systemctl restart mysqld # RPM platforms
systemctl restart mysql # Debian platforms

To specify options for mysqld without modifying systemd configuration files directly, set or unset the
MYSQLD_OPTS systemd variable. For example:

systemctl set-environment MYSQLD_OPTS="--general_log=1"
systemctl unset-environment MYSQLD_OPTS

MYSQLD_OPTS can also be set in the /etc/sysconfig/mysql file.

After modifying the systemd environment, restart the server to make the changes effective:

systemctl restart mysqld # RPM platforms
systemctl restart mysql # Debian platforms

219

Managing MySQL Server with systemd

For platforms that use systemd, the data directory is initialized if empty at server startup. This might be
a problem if the data directory is a remote mount that has temporarily disappeared: The mount point
would appear to be an empty data directory, which then would be initialized as a new data directory.
To suppress this automatic initialization behavior, specify the following line in the /etc/sysconfig/
mysql file (create the file if it does not exist):

NO_INIT=true

Configuring Multiple MySQL Instances Using systemd

This section describes how to configure systemd for multiple instances of MySQL.

Note

Because systemd has the capability of managing multiple MySQL instances
on platforms for which systemd support is installed, mysqld_multi and
mysqld_multi.server are unnecessary and are not installed.

To use multiple-instance capability, modify the my.cnf option file to include configuration of key
options for each instance. These file locations are typical:

• /etc/my.cnf or /etc/mysql/my.cnf (RPM platforms)

• /etc/mysql/mysql.conf.d/mysqld.cnf (Debian platforms)

For example, to manage two instances named replica01 and replica02, add something like this to
the option file:

RPM platforms:

[mysqld@replica01]
datadir=/var/lib/mysql-replica01
socket=/var/lib/mysql-replica01/mysql.sock
port=3307
log-error=/var/log/mysqld-replica01.log

[mysqld@replica02]
datadir=/var/lib/mysql-replica02
socket=/var/lib/mysql-replica02/mysql.sock
port=3308
log-error=/var/log/mysqld-replica02.log

Debian platforms:

[mysqld@replica01]
datadir=/var/lib/mysql-replica01
socket=/var/lib/mysql-replica01/mysql.sock
port=3307
log-error=/var/log/mysql/replica01.log

[mysqld@replica02]
datadir=/var/lib/mysql-replica02
socket=/var/lib/mysql-replica02/mysql.sock
port=3308
log-error=/var/log/mysql/replica02.log

The replica names shown here use @ as the delimiter because that is the only delimiter supported by
systemd.

Instances then are managed by normal systemd commands, such as:

systemctl start mysqld@replica01
systemctl start mysqld@replica02

To enable instances to run at boot time, do this:

systemctl enable mysqld@replica01
systemctl enable mysqld@replica02

220

Managing MySQL Server with systemd

Use of wildcards is also supported. For example, this command displays the status of all replica
instances:

systemctl status 'mysqld@replica*'

For management of multiple MySQL instances on the same machine, systemd automatically uses a
different unit file:

• mysqld@.service rather than mysqld.service (RPM platforms)

• mysql@.service rather than mysql.service (Debian platforms)

In the unit file, %I and %i reference the parameter passed in after the @ marker and are used to
manage the specific instance. For a command such as this:

systemctl start mysqld@replica01

systemd starts the server using a command such as this:

mysqld --defaults-group-suffix=@%I ...

The result is that the [server], [mysqld], and [mysqld@replica01] option groups are read and
used for that instance of the service.

Note

On Debian platforms, AppArmor prevents the server from reading or writing /
var/lib/mysql-replica*, or anything other than the default locations. To
address this, you must customize or disable the profile in /etc/apparmor.d/
usr.sbin.mysqld.

Note

On Debian platforms, the packaging scripts for MySQL uninstallation cannot
currently handle mysqld@ instances. Before removing or upgrading the
package, you must stop any extra instances manually first.

Migrating from mysqld_safe to systemd

Because mysqld_safe is not installed on platforms that use systemd to manage MySQL, options
previously specified for that program (for example, in an [mysqld_safe] or [safe_mysqld] option
group) must be specified another way:

• Some mysqld_safe options are also understood by mysqld and can be moved from the
[mysqld_safe] or [safe_mysqld] option group to the [mysqld] group. This does not
include --pid-file, --open-files-limit, or --nice. To specify those options, use the
override.conf systemd file, described previously.

Note

On systemd platforms, use of [mysqld_safe] and [safe_mysqld] option
groups is not supported and may lead to unexpected behavior.

• For some mysqld_safe options, there are alternative mysqld procedures. For example, the
mysqld_safe option for enabling syslog logging is --syslog, which is deprecated. To write error
log output to the system log, use the instructions at Section 7.4.2.8, “Error Logging to the System
Log”.

• mysqld_safe options not understood by mysqld can be specified in override.conf or
environment variables. For example, with mysqld_safe, if the server should use a specific memory
allocation library, this is specified using the --malloc-lib option. For installations that manage the
server with systemd, arrange to set the LD_PRELOAD environment variable instead, as described
previously.

221

Installing MySQL Using Unbreakable Linux Network (ULN)

2.6 Installing MySQL Using Unbreakable Linux Network (ULN)
Linux supports a number of different solutions for installing MySQL, covered in Section 2.5,
“Installing MySQL on Linux”. One of the methods, covered in this section, is installing from Oracle's
Unbreakable Linux Network (ULN). You can find information about Oracle Linux and ULN under http://
linux.oracle.com/.

To use ULN, you need to obtain a ULN login and register the machine used for installation with
ULN. This is described in detail in the ULN FAQ. The page also describes how to install and update
packages.

Both Community and Commercial packages are supported, and each offers three MySQL channels:

• Server: MySQL Server

• Connectors: MySQL Connector/C++, MySQL Connector/J, MySQL Connector/ODBC, and MySQL
Connector/Python.

• Tools: MySQL Router, MySQL Shell, and MySQL Workbench

The Community channels are available to all ULN users.

Accessing commercial MySQL ULN packages at oracle.linux.com requires you to provide a CSI with
a valid commercial license for MySQL (Enterprise or Standard). As of this writing, valid purchases
are 60944, 60945, 64911, and 64912. The appropriate CSI makes commercial MySQL subscription
channels available in your ULN GUI interface.

Once MySQL has been installed using ULN, you can find information on starting and stopping the
server, and more, at Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”,
particularly under Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”.

If you are changing your package source to use ULN and not changing which build of MySQL you are
using, then back up your data, remove your existing binaries, and replace them with those from ULN.
If a change of build is involved, we recommend the backup be a dump (mysqldump or mysqlpump
or from MySQL Shell's backup utility) just in case you need to rebuild your data after the new binaries
are in place. If this shift to ULN crosses a version boundary, consult this section before proceeding:
Chapter 3, Upgrading MySQL.

Note

Oracle Linux 8 is supported as of MySQL 8.0.17, and the community Tools and
Connectors channels were added with the MySQL 8.0.24 release.

2.7 Installing MySQL on Solaris
Note

MySQL 8.0 supports Solaris 11.4 and higher

MySQL on Solaris is available in a number of different formats.

• For information on installing using the native Solaris PKG format, see Section 2.7.1, “Installing
MySQL on Solaris Using a Solaris PKG”.

• To use a standard tar binary installation, use the notes provided in Section 2.2, “Installing MySQL
on Unix/Linux Using Generic Binaries”. Check the notes and hints at the end of this section for
Solaris specific notes that you may need before or after installation.

Note

MySQL 5.7 has a dependency on the Oracle Developer Studio Runtime
Libraries; but this does not apply to MySQL 8.0.

222

http://linux.oracle.com/
http://linux.oracle.com/
https://linux.oracle.com/uln_faq.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html

Installing MySQL on Solaris Using a Solaris PKG

To obtain a binary MySQL distribution for Solaris in tarball or PKG format, https://dev.mysql.com/
downloads/mysql/8.0.html.

Additional notes to be aware of when installing and using MySQL on Solaris:

• If you want to use MySQL with the mysql user and group, use the groupadd and useradd
commands:

groupadd mysql
useradd -g mysql -s /bin/false mysql

• If you install MySQL using a binary tarball distribution on Solaris, because the Solaris tar cannot
handle long file names, use GNU tar (gtar) to unpack the distribution. If you do not have GNU tar
on your system, install it with the following command:

pkg install archiver/gnu-tar

• You should mount any file systems on which you intend to store InnoDB files with the
forcedirectio option. (By default mounting is done without this option.) Failing to do so causes a
significant drop in performance when using the InnoDB storage engine on this platform.

• If you would like MySQL to start automatically, you can copy support-files/mysql.server to /
etc/init.d and create a symbolic link to it named /etc/rc3.d/S99mysql.server.

• If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL
log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this.

• To configure the generation of core files on Solaris you should use the coreadm command. Because
of the security implications of generating a core on a setuid() application, by default, Solaris
does not support core files on setuid() programs. However, you can modify this behavior using
coreadm. If you enable setuid() core files for the current user, they are generated using mode
600 and are owned by the superuser.

2.7.1 Installing MySQL on Solaris Using a Solaris PKG

You can install MySQL on Solaris using a binary package of the native Solaris PKG format instead of
the binary tarball distribution.

Note

MySQL 5.7 has a dependency on the Oracle Developer Studio Runtime
Libraries; but this does not apply to MySQL 8.0.

To use this package, download the corresponding mysql-VERSION-solaris11-
PLATFORM.pkg.gz file, then uncompress it. For example:

$> gunzip mysql-8.0.42-solaris11-x86_64.pkg.gz

To install a new package, use pkgadd and follow the onscreen prompts. You must have root privileges
to perform this operation:

$> pkgadd -d mysql-8.0.42-solaris11-x86_64.pkg

The following packages are available:
 1 mysql MySQL Community Server (GPL)
 (i86pc) 8.0.42

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]:

223

https://dev.mysql.com/downloads/mysql/8.0.html
https://dev.mysql.com/downloads/mysql/8.0.html

Installing MySQL from Source

The PKG installer installs all of the files and tools needed, and then initializes your database if
one does not exist. To complete the installation, you should set the root password for MySQL
as provided in the instructions at the end of the installation. Alternatively, you can run the
mysql_secure_installation script that comes with the installation.

By default, the PKG package installs MySQL under the root path /opt/mysql. You can change only
the installation root path when using pkgadd, which can be used to install MySQL in a different Solaris
zone. If you need to install in a specific directory, use a binary tar file distribution.

The pkg installer copies a suitable startup script for MySQL into /etc/init.d/mysql. To enable
MySQL to startup and shutdown automatically, you should create a link between this file and the init
script directories. For example, to ensure safe startup and shutdown of MySQL you could use the
following commands to add the right links:

$> ln /etc/init.d/mysql /etc/rc3.d/S91mysql
$> ln /etc/init.d/mysql /etc/rc0.d/K02mysql

To remove MySQL, the installed package name is mysql. You can use this in combination with the
pkgrm command to remove the installation.

To upgrade when using the Solaris package file format, you must remove the existing installation
before installing the updated package. Removal of the package does not delete the existing database
information, only the server, binaries and support files. The typical upgrade sequence is therefore:

$> mysqladmin shutdown
$> pkgrm mysql
$> pkgadd -d mysql-8.0.42-solaris11-x86_64.pkg
$> mysqld_safe &
$> mysql_upgrade # prior to MySQL 8.0.16 only

You should check the notes in Chapter 3, Upgrading MySQL before performing any upgrade.

2.8 Installing MySQL from Source
Building MySQL from the source code enables you to customize build parameters, compiler
optimizations, and installation location. For a list of systems on which MySQL is known to run, see
https://www.mysql.com/support/supportedplatforms/database.html.

Before you proceed with an installation from source, check whether Oracle produces a precompiled
binary distribution for your platform and whether it works for you. We put a great deal of effort into
ensuring that our binaries are built with the best possible options for optimal performance. Instructions
for installing binary distributions are available in Section 2.2, “Installing MySQL on Unix/Linux Using
Generic Binaries”.

If you are interested in building MySQL from a source distribution using build options the same as
or similar to those use by Oracle to produce binary distributions on your platform, obtain a binary
distribution, unpack it, and look in the docs/INFO_BIN file, which contains information about how that
MySQL distribution was configured and compiled.

Warning

Building MySQL with nonstandard options may lead to reduced functionality,
performance, or security.

The MySQL source code contains internal documentation written using Doxygen. The generated
Doxygen content is available at https://dev.mysql.com/doc/index-other.html. It is also possible to
generate this content locally from a MySQL source distribution using the instructions at Section 2.8.10,
“Generating MySQL Doxygen Documentation Content”.

2.8.1 Source Installation Methods

There are two methods for installing MySQL from source:

224

https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/doc/index-other.html

Source Installation Prerequisites

• Use a standard MySQL source distribution. To obtain a standard distribution, see Section 2.1.3,
“How to Get MySQL”. For instructions on building from a standard distribution, see Section 2.8.4,
“Installing MySQL Using a Standard Source Distribution”.

Standard distributions are available as compressed tar files, Zip archives, or RPM packages.
Distribution files have names of the form mysql-VERSION.tar.gz, mysql-VERSION.zip,
or mysql-VERSION.rpm, where VERSION is a number like 8.0.42. File names for source
distributions can be distinguished from those for precompiled binary distributions in that source
distribution names are generic and include no platform name, whereas binary distribution names
include a platform name indicating the type of system for which the distribution is intended (for
example, pc-linux-i686 or winx64).

• Use a MySQL development tree. For information on building from one of the development trees, see
Section 2.8.5, “Installing MySQL Using a Development Source Tree”.

2.8.2 Source Installation Prerequisites

Installation of MySQL from source requires several development tools. Some of these tools are needed
no matter whether you use a standard source distribution or a development source tree. Other tool
requirements depend on which installation method you use.

To install MySQL from source, the following system requirements must be satisfied, regardless of
installation method:

• CMake, which is used as the build framework on all platforms. CMake can be downloaded from http://
www.cmake.org.

• A good make program. Although some platforms come with their own make implementations, it
is highly recommended that you use GNU make 3.75 or later. It may already be available on your
system as gmake. GNU make is available from http://www.gnu.org/software/make/.

On Unix-like systems, including Linux, you can check your system's version of make like this:

$> make --version
GNU Make 4.2.1

• As of MySQL 8.0.26, MySQL 8.0 source code permits use of C++17 features. To enable the
necessary level of C++17 support across all supported platforms, the following minimum compiler
versions apply:

• Linux: GCC 10 or Clang 5

• macOS: XCode 10

• Solaris: (MySQL 8.0.40 and earlier) GCC 10; (MySQL 8.0.41 and later) GCC 11.4

• Windows: Visual Studio 2019

• Building MySQL on Windows requires Windows version 10 or later. (MySQL binaries built on recent
versions of Windows can generally be run on older versions.) You can determine the Windows
version by executing WMIC.exe os get version in the Windows Command Prompt.

• The MySQL C API requires a C++ or C99 compiler to compile.

• An SSL library is required for support of encrypted connections, entropy for random number
generation, and other encryption-related operations. By default, the build uses the OpenSSL library
installed on the host system. To specify the library explicitly, use the WITH_SSL option when you
invoke CMake. For additional information, see Section 2.8.6, “Configuring SSL Library Support”.

• The Boost C++ libraries are required to build MySQL (but not to use it). MySQL compilation requires
a particular Boost version. Typically, that is the current Boost version, but if a specific MySQL
source distribution requires a different version, the configuration process stops with a message

225

http://www.cmake.org
http://www.cmake.org
http://www.gnu.org/software/make/

Source Installation Prerequisites

indicating the Boost version that it requires. To obtain Boost and its installation instructions, visit the
official Boost web site. After Boost is installed, tell the build system where the Boost files are placed
according to the value set for the WITH_BOOST option when you invoke CMake. For example:

cmake . -DWITH_BOOST=/usr/local/boost_version_number

Adjust the path as necessary to match your installation.

• The ncurses library.

• Sufficient free memory. If you encounter build errors such as internal compiler error when
compiling large source files, it may be that you have too little memory. If compiling on a virtual
machine, try increasing the memory allocation.

• Perl is needed if you intend to run test scripts. Most Unix-like systems include Perl. For Windows,
you can use ActiveState Perl. or Strawberry Perl.

To install MySQL from a standard source distribution, one of the following tools is required to unpack
the distribution file:

• For a .tar.gz compressed tar file: GNU gunzip to uncompress the distribution and a reasonable
tar to unpack it. If your tar program supports the z option, it can both uncompress and unpack the
file.

GNU tar is known to work. The standard tar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU tar, or
if available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as
tar within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU
tar is available from https://www.gnu.org/software/tar/.

• For a .zip Zip archive: WinZip or another tool that can read .zip files.

• For an .rpm RPM package: The rpmbuild program used to build the distribution unpacks it.

To install MySQL from a development source tree, the following additional tools are required:

• The Git revision control system is required to obtain the development source code. GitHub Help
provides instructions for downloading and installing Git on different platforms.

• bison 2.1 or later, available from http://www.gnu.org/software/bison/. (Version 1 is no longer
supported.) Use the latest version of bison where possible; if you experience problems, upgrade to
a later version, rather than revert to an earlier one.

bison is available from http://www.gnu.org/software/bison/. bison for Windows can be downloaded
from http://gnuwin32.sourceforge.net/packages/bison.htm. Download the package labeled “Complete
package, excluding sources”. On Windows, the default location for bison is the C:\Program
Files\GnuWin32 directory. Some utilities may fail to find bison because of the space in the
directory name. Also, Visual Studio may simply hang if there are spaces in the path. You can
resolve these problems by installing into a directory that does not contain a space (for example C:
\GnuWin32).

• On Solaris Express, m4 must be installed in addition to bison. m4 is available from http://
www.gnu.org/software/m4/.

Note

If you have to install any programs, modify your PATH environment variable to
include any directories in which the programs are located. See Section 6.2.9,
“Setting Environment Variables”.

If you run into problems and need to file a bug report, please use the instructions in Section 1.5, “How
to Report Bugs or Problems”.

226

https://www.boost.org
https://www.boost.org
https://www.gnu.org/software/ncurses/ncurses.html
https://www.activestate.com/products/perl/
https://strawberryperl.com/
https://www.gnu.org/software/tar/
https://help.github.com/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://gnuwin32.sourceforge.net/packages/bison.htm
http://www.gnu.org/software/m4/
http://www.gnu.org/software/m4/

MySQL Layout for Source Installation

2.8.3 MySQL Layout for Source Installation

By default, when you install MySQL after compiling it from source, the installation step installs files
under /usr/local/mysql. The component locations under the installation directory are the same
as for binary distributions. See Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary
Package”, and Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”. To configure
installation locations different from the defaults, use the options described at Section 2.8.7, “MySQL
Source-Configuration Options”.

2.8.4 Installing MySQL Using a Standard Source Distribution

To install MySQL from a standard source distribution:

1. Verify that your system satisfies the tool requirements listed at Section 2.8.2, “Source Installation
Prerequisites”.

2. Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.

3. Configure, build, and install the distribution using the instructions in this section.

4. Perform postinstallation procedures using the instructions in Section 2.9, “Postinstallation Setup
and Testing”.

MySQL uses CMake as the build framework on all platforms. The instructions given here should enable
you to produce a working installation. For additional information on using CMake to build MySQL, see
How to Build MySQL Server with CMake.

If you start from a source RPM, use the following command to make a binary RPM that you can install.
If you do not have rpmbuild, use rpm instead.

$> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

The result is one or more binary RPM packages that you install as indicated in Section 2.5.4, “Installing
MySQL on Linux Using RPM Packages from Oracle”.

The sequence for installation from a compressed tar file or Zip archive source distribution is similar to
the process for installing from a generic binary distribution (see Section 2.2, “Installing MySQL on Unix/
Linux Using Generic Binaries”), except that it is used on all platforms and includes steps to configure
and compile the distribution. For example, with a compressed tar file source distribution on Unix, the
basic installation command sequence looks like this:

Preconfiguration setup
$> groupadd mysql
$> useradd -r -g mysql -s /bin/false mysql
Beginning of source-build specific instructions
$> tar zxvf mysql-VERSION.tar.gz
$> cd mysql-VERSION
$> mkdir bld
$> cd bld
$> cmake ..
$> make
$> make install
End of source-build specific instructions
Postinstallation setup
$> cd /usr/local/mysql
$> mkdir mysql-files
$> chown mysql:mysql mysql-files
$> chmod 750 mysql-files
$> bin/mysqld --initialize --user=mysql
$> bin/mysql_ssl_rsa_setup
$> bin/mysqld_safe --user=mysql &
Next command is optional
$> cp support-files/mysql.server /etc/init.d/mysql.server

A more detailed version of the source-build specific instructions is shown following.

227

https://dev.mysql.com/doc/internals/en/cmake.html

Installing MySQL Using a Standard Source Distribution

Note

The procedure shown here does not set up any passwords for MySQL
accounts. After following the procedure, proceed to Section 2.9, “Postinstallation
Setup and Testing”, for postinstallation setup and testing.

• Perform Preconfiguration Setup

• Obtain and Unpack the Distribution

• Configure the Distribution

• Build the Distribution

• Install the Distribution

• Perform Postinstallation Setup

Perform Preconfiguration Setup

On Unix, set up the mysql user that owns the database directory and that should be used to run and
execute the MySQL server, and the group to which this user belongs. For details, see Create a mysql
User and Group. Then perform the following steps as the mysql user, except as noted.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it.

Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.

Unpack the distribution into the current directory:

• To unpack a compressed tar file, tar can decompress and unpack the distribution if it has z option
support:

$> tar zxvf mysql-VERSION.tar.gz

If your tar does not have z option support, use gunzip to decompress the distribution and tar to
unpack it:

$> gunzip < mysql-VERSION.tar.gz | tar xvf -

Alternatively, CMake can decompress and unpack the distribution:

$> cmake -E tar zxvf mysql-VERSION.tar.gz

• To unpack a Zip archive, use WinZip or another tool that can read .zip files.

Unpacking the distribution file creates a directory named mysql-VERSION.

Configure the Distribution

Change location into the top-level directory of the unpacked distribution:

$> cd mysql-VERSION

Build outside of the source tree to keep the tree clean. If the top-level source directory is named
mysql-src under your current working directory, you can build in a directory named build at the
same level. Create the directory and go there:

$> mkdir bld
$> cd bld

Configure the build directory. The minimum configuration command includes no options to override
configuration defaults:

228

Installing MySQL Using a Standard Source Distribution

$> cmake ../mysql-src

The build directory need not be outside the source tree. For example, you can build in a directory
named build under the top-level source tree. To do this, starting with mysql-src as your current
working directory, create the directory build and then go there:

$> mkdir build
$> cd build

Configure the build directory. The minimum configuration command includes no options to override
configuration defaults:

$> cmake ..

If you have multiple source trees at the same level (for example, to build multiple versions of MySQL),
the second strategy can be advantageous. The first strategy places all build directories at the same
level, which requires that you choose a unique name for each. With the second strategy, you can use
the same name for the build directory within each source tree. The following instructions assume this
second strategy.

On Windows, specify the development environment. For example, the following commands configure
MySQL for 32-bit or 64-bit builds, respectively:

$> cmake .. -G "Visual Studio 12 2013"

$> cmake .. -G "Visual Studio 12 2013 Win64"

On macOS, to use the Xcode IDE:

$> cmake .. -G Xcode

When you run Cmake, you might want to add options to the command line. Here are some examples:

• -DBUILD_CONFIG=mysql_release: Configure the source with the same build options used by
Oracle to produce binary distributions for official MySQL releases.

• -DCMAKE_INSTALL_PREFIX=dir_name: Configure the distribution for installation under a
particular location.

• -DCPACK_MONOLITHIC_INSTALL=1: Cause make package to generate a single installation file
rather than multiple files.

• -DWITH_DEBUG=1: Build the distribution with debugging support.

For a more extensive list of options, see Section 2.8.7, “MySQL Source-Configuration Options”.

To list the configuration options, use one of the following commands:

$> cmake .. -L # overview

$> cmake .. -LH # overview with help text

$> cmake .. -LAH # all params with help text

$> ccmake .. # interactive display

If CMake fails, you might need to reconfigure by running it again with different options. If you do
reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts, it looks for
that file and reads its contents if it exists, on the assumption that the information is still correct. That
assumption is invalid when you reconfigure.

• Each time you run CMake, you must run make again to recompile. However, you may want to
remove old object files from previous builds first because they were compiled using different
configuration options.

229

Installing MySQL Using a Standard Source Distribution

To prevent old object files or configuration information from being used, run these commands in the
build directory on Unix before re-running CMake:

$> make clean
$> rm CMakeCache.txt

Or, on Windows:

$> devenv MySQL.sln /clean
$> del CMakeCache.txt

Before asking on the MySQL Community Slack, check the files in the CMakeFiles directory for useful
information about the failure. To file a bug report, please use the instructions in Section 1.5, “How to
Report Bugs or Problems”.

Build the Distribution

On Unix:

$> make
$> make VERBOSE=1

The second command sets VERBOSE to show the commands for each compiled source.

Use gmake instead on systems where you are using GNU make and it has been installed as gmake.

On Windows:

$> devenv MySQL.sln /build RelWithDebInfo

If you have gotten to the compilation stage, but the distribution does not build, see Section 2.8.8,
“Dealing with Problems Compiling MySQL”, for help. If that does not solve the problem, please enter it
into our bugs database using the instructions given in Section 1.5, “How to Report Bugs or Problems”.
If you have installed the latest versions of the required tools, and they crash trying to process our
configuration files, please report that also. However, if you get a command not found error or a
similar problem for required tools, do not report it. Instead, make sure that all the required tools are
installed and that your PATH variable is set correctly so that your shell can find them.

Install the Distribution

On Unix:

$> make install

This installs the files under the configured installation directory (by default, /usr/local/mysql). You
might need to run the command as root.

To install in a specific directory, add a DESTDIR parameter to the command line:

$> make install DESTDIR="/opt/mysql"

Alternatively, generate installation package files that you can install where you like:

$> make package

This operation produces one or more .tar.gz files that can be installed like generic binary distribution
packages. See Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”. If you run CMake
with -DCPACK_MONOLITHIC_INSTALL=1, the operation produces a single file. Otherwise, it produces
multiple files.

On Windows, generate the data directory, then create a .zip archive installation package:

$> devenv MySQL.sln /build RelWithDebInfo /project initial_database
$> devenv MySQL.sln /build RelWithDebInfo /project package

230

https://mysqlcommunity.slack.com/

Installing MySQL Using a Development Source Tree

You can install the resulting .zip archive where you like. See Section 2.3.4, “Installing MySQL on
Microsoft Windows Using a noinstall ZIP Archive”.

Perform Postinstallation Setup

The remainder of the installation process involves setting up the configuration file, creating the core
databases, and starting the MySQL server. For instructions, see Section 2.9, “Postinstallation Setup
and Testing”.

Note

The accounts that are listed in the MySQL grant tables initially have no
passwords. After starting the server, you should set up passwords for them
using the instructions in Section 2.9, “Postinstallation Setup and Testing”.

2.8.5 Installing MySQL Using a Development Source Tree

This section describes how to install MySQL from the latest development source code, which is hosted
on GitHub. To obtain the MySQL Server source code from this repository hosting service, you can set
up a local MySQL Git repository.

On GitHub, MySQL Server and other MySQL projects are found on the MySQL page. The MySQL
Server project is a single repository that contains branches for several MySQL series.

• Prerequisites for Installing from Development Source

• Setting Up a MySQL Git Repository

Prerequisites for Installing from Development Source

To install MySQL from a development source tree, your system must satisfy the tool requirements
listed at Section 2.8.2, “Source Installation Prerequisites”.

Setting Up a MySQL Git Repository

To set up a MySQL Git repository on your machine:

1. Clone the MySQL Git repository to your machine. The following command clones the MySQL
Git repository to a directory named mysql-server. The initial download may take some time to
complete, depending on the speed of your connection.

$> git clone https://github.com/mysql/mysql-server.git
Cloning into 'mysql-server'...
remote: Counting objects: 1198513, done.
remote: Total 1198513 (delta 0), reused 0 (delta 0), pack-reused 1198513
Receiving objects: 100% (1198513/1198513), 1.01 GiB | 7.44 MiB/s, done.
Resolving deltas: 100% (993200/993200), done.
Checking connectivity... done.
Checking out files: 100% (25510/25510), done.

2. When the clone operation completes, the contents of your local MySQL Git repository appear
similar to the following:

~> cd mysql-server
~/mysql-server> ls
client extra mysys storage
cmake include packaging strings
CMakeLists.txt INSTALL plugin support-files
components libbinlogevents README testclients
config.h.cmake libchangestreams router unittest
configure.cmake libmysql run_doxygen.cmake utilities
Docs libservices scripts VERSION
Doxyfile-ignored LICENSE share vio
Doxyfile.in man sql win
doxygen_resources mysql-test sql-common

231

https://github.com/
https://github.com/
https://github.com/mysql

Configuring SSL Library Support

3. Use the git branch -r command to view the remote tracking branches for the MySQL
repository.

~/mysql-server> git branch -r
 origin/5.7
 origin/8.0
 origin/HEAD -> origin/trunk
 origin/cluster-7.4
 origin/cluster-7.5
 origin/cluster-7.6
 origin/trunk

4. To view the branch that is checked out in your local repository, issue the git branch command.
When you clone the MySQL Git repository, the latest MySQL branch is checked out automatically.
The asterisk identifies the active branch.

~/mysql-server$ git branch
* trunk

5. To check out an earlier MySQL branch, run the git checkout command, specifying the branch
name. For example, to check out the MySQL 5.7 branch:

~/mysql-server$ git checkout 5.7
Checking out files: 100% (9600/9600), done.
Branch 5.7 set up to track remote branch 5.7 from origin.
Switched to a new branch '5.7'

6. To obtain changes made after your initial setup of the MySQL Git repository, switch to the branch
you want to update and issue the git pull command:

~/mysql-server$ git checkout 8.0
~/mysql-server$ git pull

To examine the commit history, use the git log command:

~/mysql-server$ git log

You can also browse commit history and source code on the GitHub MySQL site.

If you see changes or code that you have a question about, ask on MySQL Community Slack.

7. After you have cloned the MySQL Git repository and have checked out the branch you want to
build, you can build MySQL Server from the source code. Instructions are provided in Section 2.8.4,
“Installing MySQL Using a Standard Source Distribution”, except that you skip the part about
obtaining and unpacking the distribution.

Be careful about installing a build from a distribution source tree on a production machine. The
installation command may overwrite your live release installation. If you already have MySQL
installed and do not want to overwrite it, run CMake with values for the CMAKE_INSTALL_PREFIX,
MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options different from those used by your production
server. For additional information about preventing multiple servers from interfering with each other,
see Section 7.8, “Running Multiple MySQL Instances on One Machine”.

Play hard with your new installation. For example, try to make new features crash. Start by running
make test. See The MySQL Test Suite.

2.8.6 Configuring SSL Library Support

An SSL library is required for support of encrypted connections, entropy for random number
generation, and other encryption-related operations.

If you compile MySQL from a source distribution, CMake configures the distribution to use the installed
OpenSSL library by default.

To compile using OpenSSL, use this procedure:

232

https://github.com/mysql
https://mysqlcommunity.slack.com/
https://dev.mysql.com/doc/extending-mysql/8.0/en/mysql-test-suite.html

MySQL Source-Configuration Options

1. Ensure that OpenSSL 1.0.1 or newer is installed on your system. If the installed OpenSSL version
is older than 1.0.1, CMake produces an error at MySQL configuration time. If it is necessary to
obtain OpenSSL, visit http://www.openssl.org.

2. The WITH_SSL CMake option determines which SSL library to use for compiling MySQL (see
Section 2.8.7, “MySQL Source-Configuration Options”). The default is -DWITH_SSL=system,
which uses OpenSSL. To make this explicit, specify that option. For example:

cmake . -DWITH_SSL=system

That command configures the distribution to use the installed OpenSSL library. Alternatively, to
explicitly specify the path name to the OpenSSL installation, use the following syntax. This can
be useful if you have multiple versions of OpenSSL installed, to prevent CMake from choosing the
wrong one:

cmake . -DWITH_SSL=path_name

Alternative OpenSSL system packages are supported as of MySQL 8.0.30 by using
WITH_SSL=openssl11 on EL7 or WITH_SSL=openssl3 on EL8. Authentication plugins, such as
LDAP and Kerberos, are disabled since they do not support these alternative versions of OpenSSL.

3. Compile and install the distribution.

To check whether a mysqld server supports encrypted connections, examine the value of the
have_ssl system variable:

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+

If the value is YES, the server supports encrypted connections. If the value is DISABLED, the server
is capable of supporting encrypted connections but was not started with the appropriate --ssl-xxx
options to enable encrypted connections to be used; see Section 8.3.1, “Configuring MySQL to Use
Encrypted Connections”.

2.8.7 MySQL Source-Configuration Options

The CMake program provides a great deal of control over how you configure a MySQL source
distribution. Typically, you do this using options on the CMake command line. For information about
options supported by CMake, run either of these commands in the top-level source directory:

$> cmake . -LH

$> ccmake .

You can also affect CMake using certain environment variables. See Section 6.9, “Environment
Variables”.

For boolean options, the value may be specified as 1 or ON to enable the option, or as 0 or OFF to
disable the option.

Many options configure compile-time defaults that can be overridden at server startup. For example,
the CMAKE_INSTALL_PREFIX, MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options that configure the
default installation base directory location, TCP/IP port number, and Unix socket file can be changed at
server startup with the --basedir, --port, and --socket options for mysqld. Where applicable,
configuration option descriptions indicate the corresponding mysqld startup option.

The following sections provide more information about CMake options.

• CMake Option Reference

233

http://www.openssl.org

MySQL Source-Configuration Options

• General Options

• Installation Layout Options

• Storage Engine Options

• Feature Options

• Compiler Flags

• CMake Options for Compiling NDB Cluster

CMake Option Reference

The following table shows the available CMake options. In the Default column, PREFIX stands for
the value of the CMAKE_INSTALL_PREFIX option, which specifies the installation base directory. This
value is used as the parent location for several of the installation subdirectories.

Table 2.14 MySQL Source-Configuration Option Reference (CMake)

Formats Description Default Introduced Removed

ADD_GDB_INDEX Whether to
enable generation
of .gdb_index
section in binaries

8.0.18

BUILD_CONFIG Use same build
options as official
releases

BUNDLE_RUNTIME_LIBRARIESBundle runtime
libraries with
server MSI and
Zip packages for
Windows

OFF

CMAKE_BUILD_TYPEType of build to
produce

RelWithDebInfo

CMAKE_CXX_FLAGSFlags for C++
Compiler

CMAKE_C_FLAGS Flags for C
Compiler

CMAKE_INSTALL_PREFIXInstallation base
directory

/usr/local/
mysql

COMPILATION_COMMENTComment about
compilation
environment

COMPILATION_COMMENT_SERVERComment about
compilation
environment for
use by mysqld

8.0.14

COMPRESS_DEBUG_SECTIONSCompress debug
sections of binary
executables

OFF 8.0.22

CPACK_MONOLITHIC_INSTALLWhether package
build produces
single file

OFF

DEFAULT_CHARSETThe default server
character set

utf8mb4

234

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

DEFAULT_COLLATIONThe default server
collation

utf8mb4_0900_ai_ci

DISABLE_PSI_CONDExclude
Performance
Schema condition
instrumentation

OFF

DISABLE_PSI_DATA_LOCKExclude the
performance
schema data lock
instrumentation

OFF

DISABLE_PSI_ERRORExclude the
performance
schema
server error
instrumentation

OFF

DISABLE_PSI_FILEExclude
Performance
Schema file
instrumentation

OFF

DISABLE_PSI_IDLEExclude
Performance
Schema idle
instrumentation

OFF

DISABLE_PSI_MEMORYExclude
Performance
Schema memory
instrumentation

OFF

DISABLE_PSI_METADATAExclude
Performance
Schema metadata
instrumentation

OFF

DISABLE_PSI_MUTEXExclude
Performance
Schema mutex
instrumentation

OFF

DISABLE_PSI_PS Exclude the
performance
schema prepared
statements

OFF

DISABLE_PSI_RWLOCKExclude
Performance
Schema rwlock
instrumentation

OFF

DISABLE_PSI_SOCKETExclude
Performance
Schema socket
instrumentation

OFF

DISABLE_PSI_SP Exclude
Performance
Schema stored

OFF

235

MySQL Source-Configuration Options

Formats Description Default Introduced Removed
program
instrumentation

DISABLE_PSI_STAGEExclude
Performance
Schema stage
instrumentation

OFF

DISABLE_PSI_STATEMENTExclude
Performance
Schema statement
instrumentation

OFF

DISABLE_PSI_STATEMENT_DIGESTExclude
Performance
Schema
statements_digest
instrumentation

OFF

DISABLE_PSI_TABLEExclude
Performance
Schema table
instrumentation

OFF

DISABLE_PSI_THREADExclude the
performance
schema thread
instrumentation

OFF

DISABLE_PSI_TRANSACTIONExclude the
performance
schema transaction
instrumentation

OFF

DISABLE_SHARED Do not build shared
libraries, compile
position-dependent
code

OFF 8.0.18

DOWNLOAD_BOOST Whether to
download the
Boost library

OFF

DOWNLOAD_BOOST_TIMEOUTTimeout in seconds
for downloading
the Boost library

600

ENABLED_LOCAL_INFILEWhether to enable
LOCAL for LOAD
DATA

OFF

ENABLED_PROFILINGWhether to enable
query profiling
code

ON

ENABLE_DOWNLOADSWhether to
download optional
files

OFF 8.0.26

ENABLE_EXPERIMENTAL_SYSVARSWhether
to enabled
experimental
InnoDB system
variables

OFF

236

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

ENABLE_GCOV Whether to include
gcov support

ENABLE_GPROF Enable gprof
(optimized Linux
builds only)

OFF

FORCE_COLORED_OUTPUTWhether to colorize
compiler output

OFF 8.0.33

FORCE_INSOURCE_BUILDWhether to force
an in-source build

OFF 8.0.14

FORCE_UNSUPPORTED_COMPILERWhether to permit
unsupported
compilers

OFF

FPROFILE_GENERATEWhether to
generate profile
guided optimization
data

OFF 8.0.19

FPROFILE_USE Whether to use
profile guided
optimization data

OFF 8.0.19

HAVE_PSI_MEMORY_INTERFACEEnable
performance
schema memory
tracing module for
memory allocation
functions used in
dynamic storage of
over-aligned types

OFF 8.0.26

IGNORE_AIO_CHECKWith -
DBUILD_CONFIG=mysql_release,
ignore libaio check

OFF

INSTALL_BINDIR User executables
directory

PREFIX/bin

INSTALL_DOCDIR Documentation
directory

PREFIX/docs

INSTALL_DOCREADMEDIRREADME file
directory

PREFIX

INSTALL_INCLUDEDIRHeader file
directory

PREFIX/include

INSTALL_INFODIR Info file directory PREFIX/docs

INSTALL_LAYOUT Select predefined
installation layout

STANDALONE

INSTALL_LIBDIR Library file
directory

PREFIX/lib

INSTALL_MANDIR Manual page
directory

PREFIX/man

INSTALL_MYSQLKEYRINGDIRDirectory for
keyring_file plugin
data file

platform
specific

237

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

INSTALL_MYSQLSHAREDIRShared data
directory

PREFIX/share

INSTALL_MYSQLTESTDIRmysql-test directory PREFIX/mysql-
test

INSTALL_PKGCONFIGDIRDirectory for
mysqlclient.pc pkg-
config file

INSTALL_LIBDIR/
pkgconfig

INSTALL_PLUGINDIRPlugin directory PREFIX/lib/
plugin

INSTALL_PRIV_LIBDIRInstallation private
library directory

8.0.18

INSTALL_SBINDIRServer executable
directory

PREFIX/bin

INSTALL_SECURE_FILE_PRIVDIRsecure_file_priv
default value

platform
specific

INSTALL_SHAREDIRaclocal/mysql.m4
installation
directory

PREFIX/share

INSTALL_STATIC_LIBRARIESWhether to install
static libraries

ON

INSTALL_SUPPORTFILESDIRExtra support files
directory

PREFIX/
support-files

LINK_RANDOMIZE Whether to
randomize order of
symbols in mysqld
binary

OFF

LINK_RANDOMIZE_SEEDSeed value for
LINK_RANDOMIZE
option

mysql

MAX_INDEXES Maximum indexes
per table

64

MEMCACHED_HOME Path to
memcached;
obsolete

[none] 8.0.23

MSVC_CPPCHECK Enable MSVC
code analysis.

OFF 8.0.33

MUTEX_TYPE InnoDB mutex type event

MYSQLX_TCP_PORTTCP/IP port
number used by X
Plugin

33060

MYSQLX_UNIX_ADDRUnix socket file
used by X Plugin

/tmp/
mysqlx.sock

MYSQL_DATADIR Data directory

MYSQL_MAINTAINER_MODEWhether to
enable MySQL
maintainer-specific
development
environment

OFF

238

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

MYSQL_PROJECT_NAMEWindows/macOS
project name

MySQL

MYSQL_TCP_PORT TCP/IP port
number

3306

MYSQL_UNIX_ADDRUnix socket file /tmp/
mysql.sock

NDB_UTILS_LINK_DYNAMICCause NDB tools
to be dynamically
linked to ndbclient

8.0.22

ODBC_INCLUDES ODBC includes
directory

ODBC_LIB_DIR ODBC library
directory

OPTIMIZER_TRACEWhether to support
optimizer tracing

OPTIMIZE_SANITIZER_BUILDSWhether to
optimize sanitizer
builds

ON 8.0.34

REPRODUCIBLE_BUILDTake extra care
to create a build
result independent
of build location
and time

SHOW_SUPPRESSED_COMPILER_WARNINGWhether to show
suppressed
compiler warnings
and not fail with -
Werror.

OFF 8.0.30

SYSCONFDIR Option file directory

SYSTEMD_PID_DIRDirectory for PID
file under systemd

/var/run/
mysqld

SYSTEMD_SERVICE_NAMEName of MySQL
service under
systemd

mysqld

TMPDIR tmpdir default
value

USE_LD_GOLD Whether to use
GNU gold linker

ON 8.0.31

USE_LD_LLD Whether to use
LLVM lld linker

ON 8.0.16

WIN_DEBUG_NO_INLINEWhether to disable
function inlining

OFF

WITHOUT_SERVER Do not build the
server; internal use
only

OFF

WITHOUT_xxx_STORAGE_ENGINEExclude storage
engine xxx from
build

239

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

WITH_ANT Path to Ant for
building GCS Java
wrapper

WITH_ASAN Enable
AddressSanitizer

OFF

WITH_ASAN_SCOPEEnable
AddressSanitizer -
fsanitize-address-
use-after-scope
Clang flag

OFF

WITH_AUTHENTICATION_CLIENT_PLUGINSEnabled
automatically if
any corresponding
server
authentication
plugins are built

8.0.26

WITH_AUTHENTICATION_LDAPWhether to report
error if LDAP
authentication
plugins cannot be
built

OFF

WITH_AUTHENTICATION_PAMBuild PAM
authentication
plugin

OFF

WITH_AWS_SDK Location of
Amazon Web
Services software
development kit

WITH_BOOST The location of
the Boost library
sources

WITH_BUILD_ID On Linux systems,
generate a unique
build ID

ON 8.0.31

WITH_BUNDLED_LIBEVENTUse bundled
libevent
when building
ndbmemcache;
obsolete

ON 8.0.23

WITH_BUNDLED_MEMCACHEDUse bundled
memcached
when building
ndbmemcache;
obsolete

ON 8.0.23

WITH_CLASSPATH Classpath to use
when building
MySQL Cluster
Connector for
Java. Default is an
empty string.

240

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

WITH_CLIENT_PROTOCOL_TRACINGBuild client-side
protocol tracing
framework

ON

WITH_CURL Location of curl
library

WITH_DEBUG Whether to include
debugging support

OFF

WITH_DEFAULT_COMPILER_OPTIONSWhether to use
default compiler
options

ON

WITH_DEFAULT_FEATURE_SETWhether to use
default feature set

ON 8.0.22

WITH_DEVELOPER_ENTITLEMENTSWhether to add
the 'get-task-allow'
entitlement to all
executables on
macOS to generate
a core dump in
the event of an
unexpected server
halt

OFF 8.0.30

WITH_EDITLINE Which libedit/
editline library to
use

bundled

WITH_ERROR_INSERTEnable error
injection in the
NDB storage
engine. Should
not be used for
building binaries
intended for
production.

OFF

WITH_FIDO Type of FIDO
library support

bundled 8.0.27

WITH_GMOCK Path to
googlemock
distribution

8.0.26

WITH_ICU Type of ICU
support

bundled

WITH_INNODB_EXTRA_DEBUGWhether to include
extra debugging
support for InnoDB.

OFF

WITH_INNODB_MEMCACHEDWhether to
generate
memcached
shared libraries.

OFF

WITH_JEMALLOC Whether to link
with -ljemalloc

OFF 8.0.16

WITH_KEYRING_TESTBuild the keyring
test program

OFF

241

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

WITH_LIBEVENT Which libevent
library to use

bundled

WITH_LIBWRAP Whether to include
libwrap (TCP
wrappers) support

OFF

WITH_LOCK_ORDERWhether to enable
LOCK_ORDER
tooling

OFF 8.0.17

WITH_LSAN Whether to run
LeakSanitizer,
without
AddressSanitizer

OFF 8.0.16

WITH_LTO Enable link-time
optimizer

OFF 8.0.13

WITH_LZ4 Type of LZ4 library
support

bundled

WITH_LZMA Type of LZMA
library support

bundled 8.0.16

WITH_MECAB Compiles MeCab

WITH_MSAN Enable
MemorySanitizer

OFF

WITH_MSCRT_DEBUGEnable Visual
Studio CRT
memory leak
tracing

OFF

WITH_MYSQLX Whether to disable
X Protocol

ON

WITH_NDB Build MySQL NDB
Cluster, including
NDB storage
engine and all NDB
programs

OFF 8.0.31

WITH_NDBAPI_EXAMPLESBuild API example
programs.

OFF

WITH_NDBCLUSTERNDB 8.0.30 and
earlier: Build NDB
storage engine.
NDB 8.0.31 and
later: Deprecated;
use WITH_NDB
instead

OFF

WITH_NDBCLUSTER_STORAGE_ENGINEPrior to NDB
8.0.31, this was
for internal use
only. NDB 8.0.31
and later: toggles
(only) inclusion of
NDBCLUSTER
storage engine

ON

242

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

WITH_NDBMTD Build multithreaded
data node binary

ON

WITH_NDB_DEBUG Produce a debug
build for testing or
troubleshooting.

OFF

WITH_NDB_JAVA Enable building
of Java and
ClusterJ support.
Enabled by default.
Supported in
MySQL Cluster
only.

ON

WITH_NDB_PORT Default port used
by a management
server built with
this option. If this
option was not
used to build it,
the management
server's default
port is 1186.

[none]

WITH_NDB_TEST Include NDB API
test programs.

OFF

WITH_NUMA Set NUMA memory
allocation policy

WITH_PACKAGE_FLAGSFor flags typically
used for RPM/DEB
packages, whether
to add them to
standalone builds
on those platforms

8.0.26

WITH_PLUGIN_NDBCLUSTERFor internal use;
may not work as
expected in all
circumstances.
Instead, users
should employ
WITH_NDBCLUSTER

8.0.13 8.0.31

WITH_PROTOBUF Which Protocol
Buffers package to
use

bundled

WITH_RAPID Whether to build
rapid development
cycle plugins

ON

WITH_RAPIDJSON Type of
RapidJSON
support

bundled 8.0.13

WITH_RE2 Type of RE2 library
support

bundled 8.0.18

WITH_ROUTER Whether to build
MySQL Router

ON 8.0.16

243

MySQL Source-Configuration Options

Formats Description Default Introduced Removed

WITH_SASL Internal use only

WITH_SSL Type of SSL
support

system

WITH_SYSTEMD Enable installation
of systemd support
files

OFF

WITH_SYSTEMD_DEBUGEnable additional
systemd debug
information

OFF 8.0.22

WITH_SYSTEM_LIBSSet system value
of library options
not set explicitly

OFF

WITH_TCMALLOC Whether to link
with -ltcmalloc.
BUNDLED is
supported on Linux
only

OFF 8.0.22

WITH_TEST_TRACE_PLUGINBuild test protocol
trace plugin

OFF

WITH_TSAN Enable
ThreadSanitizer

OFF

WITH_UBSAN Enable Undefined
Behavior Sanitizer

OFF

WITH_UNIT_TESTSCompile MySQL
with unit tests

ON

WITH_UNIXODBC Enable unixODBC
support

OFF

WITH_VALGRIND Whether to compile
in Valgrind header
files

OFF

WITH_WIN_JEMALLOCPath to directory
containing
jemalloc.dll

8.0.29

WITH_ZLIB Type of zlib
support

bundled

WITH_ZSTD Type of zstd
support

bundled 8.0.18

WITH_xxx_STORAGE_ENGINECompile storage
engine xxx
statically into
server

General Options

• -DBUILD_CONFIG=mysql_release

This option configures a source distribution with the same build options used by Oracle to produce
binary distributions for official MySQL releases.

• -DWITH_BUILD_ID=bool

244

MySQL Source-Configuration Options

On Linux systems, generates a unique build ID which is used as the value of the build_id system
variable and written to the MySQL server log on startup. Set this option to OFF to disable this feature.

Added in MySQL 8.0.31, this option has no effect on platforms other than Linux.

• -DBUNDLE_RUNTIME_LIBRARIES=bool

Whether to bundle runtime libraries with server MSI and Zip packages for Windows.

• -DCMAKE_BUILD_TYPE=type

The type of build to produce:

• RelWithDebInfo: Enable optimizations and generate debugging information. This is the default
MySQL build type.

• Release: Enable optimizations but omit debugging information to reduce the build size. This build
type was added in MySQL 8.0.13.

• Debug: Disable optimizations and generate debugging information. This build type is also used
if the WITH_DEBUG option is enabled. That is, -DWITH_DEBUG=1 has the same effect as -
DCMAKE_BUILD_TYPE=Debug.

The option values None and MinSizeRel are not supported.

• -DCPACK_MONOLITHIC_INSTALL=bool

This option affects whether the make package operation produces multiple installation package
files or a single file. If disabled, the operation produces multiple installation package files, which may
be useful if you want to install only a subset of a full MySQL installation. If enabled, it produces a
single file for installing everything.

• -DFORCE_INSOURCE_BUILD=bool

Defines whether to force an in-source build. Out-of-source builds are recommended, as they permit
multiple builds from the same source, and cleanup can be performed quickly by removing the build
directory. To force an in-source build, invoke CMake with -DFORCE_INSOURCE_BUILD=ON.

• -DFORCE_COLORED_OUTPUT=bool

Defines whether to enable colorized compiler output for gcc and clang when compiling on the
command line. Defaults to OFF.

Installation Layout Options

The CMAKE_INSTALL_PREFIX option indicates the base installation directory. Other options with
names of the form INSTALL_xxx that indicate component locations are interpreted relative to the
prefix and their values are relative pathnames. Their values should not include the prefix.

• -DCMAKE_INSTALL_PREFIX=dir_name

The installation base directory.

This value can be set at server startup using the --basedir option.

• -DINSTALL_BINDIR=dir_name

Where to install user programs.

• -DINSTALL_DOCDIR=dir_name

Where to install documentation.

245

MySQL Source-Configuration Options

• -DINSTALL_DOCREADMEDIR=dir_name

Where to install README files.

• -DINSTALL_INCLUDEDIR=dir_name

Where to install header files.

• -DINSTALL_INFODIR=dir_name

Where to install Info files.

• -DINSTALL_LAYOUT=name

Select a predefined installation layout:

• STANDALONE: Same layout as used for .tar.gz and .zip packages. This is the default.

• RPM: Layout similar to RPM packages.

• SVR4: Solaris package layout.

• DEB: DEB package layout (experimental).

You can select a predefined layout but modify individual component installation locations by
specifying other options. For example:

cmake . -DINSTALL_LAYOUT=SVR4 -DMYSQL_DATADIR=/var/mysql/data

The INSTALL_LAYOUT value determines the default value of the secure_file_priv,
keyring_encrypted_file_data, and keyring_file_data system variables. See the
descriptions of those variables in Section 7.1.8, “Server System Variables”, and Section 8.4.4.19,
“Keyring System Variables”.

• -DINSTALL_LIBDIR=dir_name

Where to install library files.

• -DINSTALL_MANDIR=dir_name

Where to install manual pages.

• -DINSTALL_MYSQLKEYRINGDIR=dir_path

The default directory to use as the location of the keyring_file plugin data file. The default
value is platform specific and depends on the value of the INSTALL_LAYOUT CMake option; see
the description of the keyring_file_data system variable in Section 7.1.8, “Server System
Variables”.

• -DINSTALL_MYSQLSHAREDIR=dir_name

Where to install shared data files.

• -DINSTALL_MYSQLTESTDIR=dir_name

Where to install the mysql-test directory. To suppress installation of this directory, explicitly set the
option to the empty value (-DINSTALL_MYSQLTESTDIR=).

• -DINSTALL_PKGCONFIGDIR=dir_name

The directory in which to install the mysqlclient.pc file for use by pkg-config. The default
value is INSTALL_LIBDIR/pkgconfig, unless INSTALL_LIBDIR ends with /mysql, in which
case that is removed first.

246

MySQL Source-Configuration Options

• -DINSTALL_PLUGINDIR=dir_name

The location of the plugin directory.

This value can be set at server startup with the --plugin_dir option.

• -DINSTALL_PRIV_LIBDIR=dir_name

The location of the dynamic library directory.

Default location. For RPM builds, this is /usr/lib64/mysql/private/, for DEB it is /usr/
lib/mysql/private/, and for TAR it is lib/private/.

Protobuf. Because this is a private location, the loader (such as ld-linux.so on Linux) may
not find the libprotobuf.so files without help. To guide the loader, RPATH=$ORIGIN/../
$INSTALL_PRIV_LIBDIR is added to mysqld and mysqlxtest. This works for most cases but
when using the Resource Group feature, mysqld is setsuid, and the loader ignores any RPATH
which contains $ORIGIN. To overcome this, an explicit full path to the directory is set in the DEB
and RPM versions of mysqld, since the target destination is known. For tarball installs, patching of
mysqld with a tool like patchelf is required.

This option was added in MySQL 8.0.18.

• -DINSTALL_SBINDIR=dir_name

Where to install the mysqld server.

• -DINSTALL_SECURE_FILE_PRIVDIR=dir_name

The default value for the secure_file_priv system variable. The default value is platform
specific and depends on the value of the INSTALL_LAYOUT CMake option; see the description of the
secure_file_priv system variable in Section 7.1.8, “Server System Variables”.

• -DINSTALL_SHAREDIR=dir_name

Where to install aclocal/mysql.m4.

• -DINSTALL_STATIC_LIBRARIES=bool

Whether to install static libraries. The default is ON. If set to OFF, these library files are not installed:
libmysqlclient.a, libmysqlservices.a.

• -DINSTALL_SUPPORTFILESDIR=dir_name

Where to install extra support files.

• -DLINK_RANDOMIZE=bool

Whether to randomize the order of symbols in the mysqld binary. The default is OFF. This option
should be enabled only for debugging purposes.

• -DLINK_RANDOMIZE_SEED=val

Seed value for the LINK_RANDOMIZE option. The value is a string. The default is mysql, an
arbitrary choice.

• -DMYSQL_DATADIR=dir_name

The location of the MySQL data directory.

This value can be set at server startup with the --datadir option.

• -DODBC_INCLUDES=dir_name

247

MySQL Source-Configuration Options

The location of the ODBC includes directory, which may be used while configuring Connector/ODBC.

• -DODBC_LIB_DIR=dir_name

The location of the ODBC library directory, which may be used while configuring Connector/ODBC.

• -DSYSCONFDIR=dir_name

The default my.cnf option file directory.

This location cannot be set at server startup, but you can start the server with a given option file
using the --defaults-file=file_name option, where file_name is the full path name to the
file.

• -DSYSTEMD_PID_DIR=dir_name

The name of the directory in which to create the PID file when MySQL is managed by systemd. The
default is /var/run/mysqld; this might be changed implicitly according to the INSTALL_LAYOUT
value.

This option is ignored unless WITH_SYSTEMD is enabled.

• -DSYSTEMD_SERVICE_NAME=name

The name of the MySQL service to use when MySQL is managed by systemd. The default is
mysqld; this might be changed implicitly according to the INSTALL_LAYOUT value.

This option is ignored unless WITH_SYSTEMD is enabled.

• -DTMPDIR=dir_name

The default location to use for the tmpdir system variable. If unspecified, the value defaults to
P_tmpdir in <stdio.h>.

Storage Engine Options

Storage engines are built as plugins. You can build a plugin as a static module (compiled into the
server) or a dynamic module (built as a dynamic library that must be installed into the server using the
INSTALL PLUGIN statement or the --plugin-load option before it can be used). Some plugins
might not support static or dynamic building.

The InnoDB, MyISAM, MERGE, MEMORY, and CSV engines are mandatory (always compiled into the
server) and need not be installed explicitly.

To compile a storage engine statically into the server, use -DWITH_engine_STORAGE_ENGINE=1.
Some permissible engine values are ARCHIVE, BLACKHOLE, EXAMPLE, and FEDERATED. Examples:

-DWITH_ARCHIVE_STORAGE_ENGINE=1
-DWITH_BLACKHOLE_STORAGE_ENGINE=1

To build MySQL with support for NDB Cluster, use the WITH_NDB option. (NDB 8.0.30 and earlier: Use
WITH_NDBCLUSTER.)

Note

It is not possible to compile without Performance Schema support. If it is desired
to compile without particular types of instrumentation, that can be done with the
following CMake options:

DISABLE_PSI_COND
DISABLE_PSI_DATA_LOCK
DISABLE_PSI_ERROR
DISABLE_PSI_FILE

248

MySQL Source-Configuration Options

DISABLE_PSI_IDLE
DISABLE_PSI_MEMORY
DISABLE_PSI_METADATA
DISABLE_PSI_MUTEX
DISABLE_PSI_PS
DISABLE_PSI_RWLOCK
DISABLE_PSI_SOCKET
DISABLE_PSI_SP
DISABLE_PSI_STAGE
DISABLE_PSI_STATEMENT
DISABLE_PSI_STATEMENT_DIGEST
DISABLE_PSI_TABLE
DISABLE_PSI_THREAD
DISABLE_PSI_TRANSACTION

For example, to compile without mutex instrumentation, configure MySQL using
-DDISABLE_PSI_MUTEX=1.

To exclude a storage engine from the build, use -DWITH_engine_STORAGE_ENGINE=0. Examples:

-DWITH_ARCHIVE_STORAGE_ENGINE=0
-DWITH_EXAMPLE_STORAGE_ENGINE=0
-DWITH_FEDERATED_STORAGE_ENGINE=0

It is also possible to exclude a storage engine from the build using -
DWITHOUT_engine_STORAGE_ENGINE=1 (but -DWITH_engine_STORAGE_ENGINE=0 is preferred).
Examples:

-DWITHOUT_ARCHIVE_STORAGE_ENGINE=1
-DWITHOUT_EXAMPLE_STORAGE_ENGINE=1
-DWITHOUT_FEDERATED_STORAGE_ENGINE=1

If neither -DWITH_engine_STORAGE_ENGINE nor -DWITHOUT_engine_STORAGE_ENGINE are
specified for a given storage engine, the engine is built as a shared module, or excluded if it cannot be
built as a shared module.

Feature Options

• -DADD_GDB_INDEX=bool

This option determines whether to enable generation of a .gdb_index section in binaries, which
makes loading them in a debugger faster. The option is disabled by default. lld linker is used, and is
disabled by It has no effect if a linker other than lld or GNU gold is used.

This option was added in MySQL 8.0.18.

• -DCOMPILATION_COMMENT=string

A descriptive comment about the compilation environment. As of MySQL 8.0.14, mysqld uses
COMPILATION_COMMENT_SERVER. Other programs continue to use COMPILATION_COMMENT.

• -DCOMPRESS_DEBUG_SECTIONS=bool

Whether to compress the debug sections of binary executables (Linux only). Compressing
executable debug sections saves space at the cost of extra CPU time during the build process.

The default is OFF. If this option is not set explicitly but the COMPRESS_DEBUG_SECTIONS
environment variable is set, the option takes its value from that variable.

This option was added in MySQL 8.0.22.

• -DCOMPILATION_COMMENT_SERVER=string

A descriptive comment about the compilation environment for use by mysqld (for example, to set
the version_comment system variable). This option was added in MySQL 8.0.14. Prior to 8.0.14,
the server uses COMPILATION_COMMENT.

249

MySQL Source-Configuration Options

• -DDEFAULT_CHARSET=charset_name

The server character set. By default, MySQL uses the utf8mb4 character set.

charset_name may be one of binary, armscii8, ascii, big5, cp1250, cp1251, cp1256,
cp1257, cp850, cp852, cp866, cp932, dec8, eucjpms, euckr, gb2312, gbk, geostd8, greek,
hebrew, hp8, keybcs2, koi8r, koi8u, latin1, latin2, latin5, latin7, macce, macroman,
sjis, swe7, tis620, ucs2, ujis, utf8mb3, utf8mb4, utf16, utf16le, utf32.

This value can be set at server startup with the --character-set-server option.

• -DDEFAULT_COLLATION=collation_name

The server collation. By default, MySQL uses utf8mb4_0900_ai_ci. Use the SHOW COLLATION
statement to determine which collations are available for each character set.

This value can be set at server startup with the --collation_server option.

• -DDISABLE_PSI_COND=bool

Whether to exclude the Performance Schema condition instrumentation. The default is OFF (include).

• -DDISABLE_PSI_FILE=bool

Whether to exclude the Performance Schema file instrumentation. The default is OFF (include).

• -DDISABLE_PSI_IDLE=bool

Whether to exclude the Performance Schema idle instrumentation. The default is OFF (include).

• -DDISABLE_PSI_MEMORY=bool

Whether to exclude the Performance Schema memory instrumentation. The default is OFF (include).

• -DDISABLE_PSI_METADATA=bool

Whether to exclude the Performance Schema metadata instrumentation. The default is OFF
(include).

• -DDISABLE_PSI_MUTEX=bool

Whether to exclude the Performance Schema mutex instrumentation. The default is OFF (include).

• -DDISABLE_PSI_RWLOCK=bool

Whether to exclude the Performance Schema rwlock instrumentation. The default is OFF (include).

• -DDISABLE_PSI_SOCKET=bool

Whether to exclude the Performance Schema socket instrumentation. The default is OFF (include).

• -DDISABLE_PSI_SP=bool

Whether to exclude the Performance Schema stored program instrumentation. The default is OFF
(include).

• -DDISABLE_PSI_STAGE=bool

Whether to exclude the Performance Schema stage instrumentation. The default is OFF (include).

• -DDISABLE_PSI_STATEMENT=bool

Whether to exclude the Performance Schema statement instrumentation. The default is OFF
(include).

250

MySQL Source-Configuration Options

• -DDISABLE_PSI_STATEMENT_DIGEST=bool

Whether to exclude the Performance Schema statement digest instrumentation. The default is OFF
(include).

• -DDISABLE_PSI_TABLE=bool

Whether to exclude the Performance Schema table instrumentation. The default is OFF (include).

• -DDISABLE_SHARED=bool

Whether to disable building build shared libraries and compile position-dependent code. The default
is OFF (compile position-independent code).

This option is unused, and was removed in MySQL 8.0.18.

• -DDISABLE_PSI_PS=bool

Exclude the Performance Schema prepared statements instances instrumentation. The default is
OFF (include).

• -DDISABLE_PSI_THREAD=bool

Exclude the Performance Schema thread instrumentation. The default is OFF (include).

Only disable threads when building without any instrumentation, because other instrumentations
have a dependency on threads.

• -DDISABLE_PSI_TRANSACTION=bool

Exclude the Performance Schema transaction instrumentation. The default is OFF (include).

• -DDISABLE_PSI_DATA_LOCK=bool

Exclude the performance schema data lock instrumentation. The default is OFF (include).

• -DDISABLE_PSI_ERROR=bool

Exclude the performance schema server error instrumentation. The default is OFF (include).

• -DDOWNLOAD_BOOST=bool

Whether to download the Boost library. The default is OFF.

See the WITH_BOOST option for additional discussion about using Boost.

• -DDOWNLOAD_BOOST_TIMEOUT=seconds

The timeout in seconds for downloading the Boost library. The default is 600 seconds.

See the WITH_BOOST option for additional discussion about using Boost.

• -DENABLE_DOWNLOADS=bool

Whether to download optional files. For example, with this option enabled, CMake downloads the
Google Test distribution that is used by the test suite to run unit tests, or Ant and JUnit, required for
building the GCS Java wrapper.

As of MySQL 8.0.26, MySQL source distributions bundle the Google Test source code used to run
unit tests. Consequently, as of that version the WITH_GMOCK and ENABLE_DOWNLOADS CMake
options are removed and are ignored if specified.

• -DENABLE_EXPERIMENTAL_SYSVARS=bool

251

MySQL Source-Configuration Options

Whether to enable experimental InnoDB system variables. Experimental system variables are
intended for those engaged in MySQL development, should only be used in a development or
test environment, and may be removed without notice in a future MySQL release. For information
about experimental system variables, refer to /storage/innobase/handler/ha_innodb.cc
in the MySQL source tree. Experimental system variables can be identified by searching for
“PLUGIN_VAR_EXPERIMENTAL”.

• -DENABLE_GCOV=bool

Whether to include gcov support (Linux only).

• -DENABLE_GPROF=bool

Whether to enable gprof (optimized Linux builds only).

• -DENABLED_LOCAL_INFILE=bool

This option controls the compiled-in default LOCAL capability for the MySQL client library. Clients that
make no explicit arrangements therefore have LOCAL capability disabled or enabled according to the
ENABLED_LOCAL_INFILE setting specified at MySQL build time.

By default, the client library in MySQL binary distributions is compiled with
ENABLED_LOCAL_INFILE disabled. If you compile MySQL from source, configure it with
ENABLED_LOCAL_INFILE disabled or enabled based on whether clients that make no explicit
arrangements should have LOCAL capability disabled or enabled, respectively.

ENABLED_LOCAL_INFILE controls the default for client-side LOCAL capability. For the server, the
local_infile system variable controls server-side LOCAL capability. To explicitly cause the server
to refuse or permit LOAD DATA LOCAL statements (regardless of how client programs and libraries
are configured at build time or runtime), start mysqld with --local-infile disabled or enabled,
respectively. local_infile can also be set at runtime. See Section 8.1.6, “Security Considerations
for LOAD DATA LOCAL”.

• -DENABLED_PROFILING=bool

Whether to enable query profiling code (for the SHOW PROFILE and SHOW PROFILES statements).

• -DFORCE_UNSUPPORTED_COMPILER=bool

By default, CMake checks for minimum versions of supported compilers; to disable this check, use -
DFORCE_UNSUPPORTED_COMPILER=ON.

• -DFPROFILE_GENERATE=bool

Whether to generate profile guided optimization (PGO) data. This option is available for
experimenting with PGO with GCC. See cmake/fprofile.cmake in the MySQL source
distribution for information about using FPROFILE_GENERATE and FPROFILE_USE. These options
have been tested with GCC 8 and 9.

This option was added in MySQL 8.0.19.

• -DFPROFILE_USE=bool

Whether to use profile guided optimization (PGO) data. This option is available for experimenting
with PGO with GCC. See the cmake/fprofile.cmake file in a MySQL source distribution for
information about using FPROFILE_GENERATE and FPROFILE_USE. These options have been
tested with GCC 8 and 9.

Enabling FPROFILE_USE also enables WITH_LTO.

This option was added in MySQL 8.0.19.

252

MySQL Source-Configuration Options

• -DHAVE_PSI_MEMORY_INTERFACE=bool

Whether to enable the performance schema memory tracing module for memory allocation functions
(ut::aligned_name library functions) used in dynamic storage of over-aligned types.

• -DIGNORE_AIO_CHECK=bool

If the -DBUILD_CONFIG=mysql_release option is given on Linux, the libaio library must be
linked in by default. If you do not have libaio or do not want to install it, you can suppress the
check for it by specifying -DIGNORE_AIO_CHECK=1.

• -DMAX_INDEXES=num

The maximum number of indexes per table. The default is 64. The maximum is 255. Values smaller
than 64 are ignored and the default of 64 is used.

• -DMYSQL_MAINTAINER_MODE=bool

Whether to enable a MySQL maintainer-specific development environment. If enabled, this option
causes compiler warnings to become errors.

• -DWITH_DEVELOPER_ENTITLEMENTS=bool

Whether to add the get-task-allow entitlement to all executables to generate a core dump in the
event of an unexpected server halt.

On macOS 11+, core dumps are limited to processes with the com.apple.security.get-task-
allow entitlement, which this CMake option enables. The entitlement allows other processes to
attach and read/modify the processes memory, and allows --core-file to function as expected.

This option was added in MySQL 8.0.30.

• -DMUTEX_TYPE=type

The mutex type used by InnoDB. Options include:

• event: Use event mutexes. This is the default value and the original InnoDB mutex
implementation.

• sys: Use POSIX mutexes on UNIX systems. Use CRITICAL_SECTION objects on Windows, if
available.

• futex: Use Linux futexes instead of condition variables to schedule waiting threads.

• -DMYSQLX_TCP_PORT=port_num

The port number on which X Plugin listens for TCP/IP connections. The default is 33060.

This value can be set at server startup with the mysqlx_port system variable.

• -DMYSQLX_UNIX_ADDR=file_name

The Unix socket file path on which the server listens for X Plugin socket connections. This must be
an absolute path name. The default is /tmp/mysqlx.sock.

This value can be set at server startup with the mysqlx_port system variable.

• -DMYSQL_PROJECT_NAME=name

For Windows or macOS, the project name to incorporate into the project file name.

253

MySQL Source-Configuration Options

• -DMYSQL_TCP_PORT=port_num

The port number on which the server listens for TCP/IP connections. The default is 3306.

This value can be set at server startup with the --port option.

• -DMYSQL_UNIX_ADDR=file_name

The Unix socket file path on which the server listens for socket connections. This must be an
absolute path name. The default is /tmp/mysql.sock.

This value can be set at server startup with the --socket option.

• -DOPTIMIZER_TRACE=bool

Whether to support optimizer tracing. See Section 10.15, “Tracing the Optimizer”.

• -DREPRODUCIBLE_BUILD=bool

For builds on Linux systems, this option controls whether to take extra care to create a build result
independent of build location and time.

This option was added in MySQL 8.0.11. As of MySQL 8.0.12, it defaults to ON for
RelWithDebInfo builds.

• -DSHOW_SUPPRESSED_COMPILER_WARNINGS=bool

Show suppressed compiler warnings, and do so without failing with -Werror. Defaults to OFF.

This option was added in MySQL 8.0.30.

• -DUSE_LD_GOLD=bool

GNU gold linker support was removed in MySQL 8.0.31; this CMake option was also removed.

CMake causes the build process to link with the GNU gold linker if it is available and not explicitly
disabled. To disable use of this linker, specify the -DUSE_LD_GOLD=OFF option.

• -DUSE_LD_LLD=bool

CMake causes the build process to link using the LLVM lld linker for Clang if it is available and not
explicitly disabled. To disable use of this linker, specify the -DUSE_LD_LLD=OFF option.

This option was added in MySQL 8.0.16.

• -DWIN_DEBUG_NO_INLINE=bool

Whether to disable function inlining on Windows. The default is OFF (inlining enabled).

• -DWITH_ANT=path_name

Set the path to Ant, required when building GCS Java wrapper. Set WITH_ANT to the path of a
directory where the Ant tarball or unpacked archive is saved. When WITH_ANT is not set, or is set
with the special value system, the build process assumes a binary ant exists in $PATH.

• -DWITH_ASAN=bool

Whether to enable the AddressSanitizer, for compilers that support it. The default is OFF.

• -DWITH_ASAN_SCOPE=bool

Whether to enable the AddressSanitizer -fsanitize-address-use-after-scope Clang flag
for use-after-scope detection. The default is off. To use this option, -DWITH_ASAN must also be
enabled.

254

MySQL Source-Configuration Options

• -DWITH_AUTHENTICATION_CLIENT_PLUGINS=bool

This option is enabled automatically if any corresponding server authentication plugins are built. Its
value thus depends on other CMake options and it should not be set explicitly.

This option was added in MySQL 8.0.26.

• -DWITH_AUTHENTICATION_LDAP=bool

Whether to report an error if the LDAP authentication plugins cannot be built:

• If this option is disabled (the default), the LDAP plugins are built if the required header files and
libraries are found. If they are not, CMake displays a note about it.

• If this option is enabled, a failure to find the required header file and libraries causes CMake to
produce an error, preventing the server from being built.

For information about LDAP authentication, see Section 8.4.1.7, “LDAP Pluggable Authentication”.

• -DWITH_AUTHENTICATION_PAM=bool

Whether to build the PAM authentication plugin, for source trees that include this plugin. (See
Section 8.4.1.5, “PAM Pluggable Authentication”.) If this option is specified and the plugin cannot be
compiled, the build fails.

• -DWITH_AWS_SDK=path_name

The location of the Amazon Web Services software development kit.

• -DWITH_BOOST=path_name

The Boost library is required to build MySQL. These CMake options enable control over the library
source location, and whether to download it automatically:

• -DWITH_BOOST=path_name specifies the Boost library directory location. It is also possible to
specify the Boost location by setting the BOOST_ROOT or WITH_BOOST environment variable.

-DWITH_BOOST=system is also permitted and indicates that the correct version of Boost is
installed on the compilation host in the standard location. In this case, the installed version of
Boost is used rather than any version included with a MySQL source distribution.

• -DDOWNLOAD_BOOST=bool specifies whether to download the Boost source if it is not present in
the specified location. The default is OFF.

• -DDOWNLOAD_BOOST_TIMEOUT=seconds the timeout in seconds for downloading the Boost
library. The default is 600 seconds.

For example, if you normally build MySQL placing the object output in the bld subdirectory of your
MySQL source tree, you can build with Boost like this:

mkdir bld
cd bld
cmake .. -DDOWNLOAD_BOOST=ON -DWITH_BOOST=$HOME/my_boost

This causes Boost to be downloaded into the my_boost directory under your home directory. If the
required Boost version is already there, no download is done. If the required Boost version changes,
the newer version is downloaded.

If Boost is already installed locally and your compiler finds the Boost header files on its own, it may
not be necessary to specify the preceding CMake options. However, if the version of Boost required

255

MySQL Source-Configuration Options

by MySQL changes and the locally installed version has not been upgraded, you may have build
problems. Using the CMake options should give you a successful build.

With the above settings that allow Boost download into a specified location, when the required Boost
version changes, you need to remove the bld folder, recreate it, and perform the cmake step again.
Otherwise, the new Boost version might not get downloaded, and compilation might fail.

• -DWITH_CLIENT_PROTOCOL_TRACING=bool

Whether to build the client-side protocol tracing framework into the client library. By default, this
option is enabled.

For information about writing protocol trace client plugins, see Writing Protocol Trace Plugins.

See also the WITH_TEST_TRACE_PLUGIN option.

• -DWITH_CURL=curl_type

The location of the curl library. curl_type can be system (use the system curl library) or a path
name to the curl library.

• -DWITH_DEBUG=bool

Whether to include debugging support.

Configuring MySQL with debugging support enables you to use the --debug="d,parser_debug"
option when you start the server. This causes the Bison parser that is used to process SQL
statements to dump a parser trace to the server's standard error output. Typically, this output is
written to the error log.

Sync debug checking for the InnoDB storage engine is defined under UNIV_DEBUG and is available
when debugging support is compiled in using the WITH_DEBUG option. When debugging support
is compiled in, the innodb_sync_debug configuration option can be used to enable or disable
InnoDB sync debug checking.

Enabling WITH_DEBUG also enables Debug Sync. This facility is used for testing and debugging.
When compiled in, Debug Sync is disabled by default at runtime. To enable it, start mysqld with the
--debug-sync-timeout=N option, where N is a timeout value greater than 0. (The default value is
0, which disables Debug Sync.) N becomes the default timeout for individual synchronization points.

Sync debug checking for the InnoDB storage engine is available when debugging support is
compiled in using the WITH_DEBUG option.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• -DWITH_DEFAULT_FEATURE_SET=bool

Whether to use the flags from cmake/build_configurations/feature_set.cmake. This
option was removed in MySQL 8.0.22.

• -DWITH_EDITLINE=value

Which libedit/editline library to use. The permitted values are bundled (the default) and
system.

256

https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-protocol-trace-plugins.html
https://dev.mysql.com/doc/internals/en/test-synchronization.html
https://dev.mysql.com/doc/internals/en/test-synchronization.html

MySQL Source-Configuration Options

• -DWITH_FIDO=fido_type

The authentication_fido authentication plugin is implemented using a FIDO library (see
Section 8.4.1.11, “FIDO Pluggable Authentication”). The WITH_FIDO option indicates the source of
FIDO support:

• bundled: Use the FIDO library bundled with the distribution. This is the default.

As of MySQL 8.0.30, MySQL includes fido2 version 1.8.0. (Prior releases used fido2 1.5.0).

• system: Use the system FIDO library.

WITH_FIDO is disabled (set to none) if all authentication plugins are disabled.

This option was added in MySQL 8.0.27.

• -DWITH_GMOCK=path_name

The path to the googlemock distribution, for use with Google Test-based unit tests. The option value
is the path to the distribution zip file. Alternatively, set the WITH_GMOCK environment variable to
the path name. It is also possible to use -DENABLE_DOWNLOADS=1, so that CMake downloads the
distribution from GitHub.

If you build MySQL without the Google Test unit tests (by configuring without WITH_GMOCK), CMake
displays a message indicating how to download it.

As of MySQL 8.0.26, MySQL source distributions bundle the Google Test source code.
Consequently, as of that version, the WITH_GMOCK and ENABLE_DOWNLOADS CMake options are
removed and are ignored if specified.

• -DWITH_ICU={icu_type|path_name}

MySQL uses International Components for Unicode (ICU) to support regular expression operations.
The WITH_ICU option indicates the type of ICU support to include or the path name to the ICU
installation to use.

• icu_type can be one of the following values:

• bundled: Use the ICU library bundled with the distribution. This is the default, and is the only
supported option for Windows.

• system: Use the system ICU library.

• path_name is the path name to the ICU installation to use. This can be preferable to using the
icu_type value of system because it can prevent CMake from detecting and using an older or
incorrect ICU version installed on the system. (Another permitted way to do the same thing is to
set WITH_ICU to system and set the CMAKE_PREFIX_PATH option to path_name.)

• -DWITH_INNODB_EXTRA_DEBUG=bool

Whether to include extra InnoDB debugging support.

Enabling WITH_INNODB_EXTRA_DEBUG turns on extra InnoDB debug checks. This option can only
be enabled when WITH_DEBUG is enabled.

• -DWITH_INNODB_MEMCACHED=bool

Whether to generate memcached shared libraries (libmemcached.so and innodb_engine.so).

257

MySQL Source-Configuration Options

• -DWITH_JEMALLOC=bool

Whether to link with -ljemalloc. If enabled, built-in malloc(), calloc(), realloc(), and
free() routines are disabled. The default is OFF.

WITH_JEMALLOC and WITH_TCMALLOC are mutually exclusive.

This option was added in MySQL 8.0.16.

• -DWITH_KEYRING_TEST=bool

Whether to build the test program that accompanies the keyring_file plugin. The default is OFF.
Test file source code is located in the plugin/keyring/keyring-test directory.

• -DWITH_LIBEVENT=string

Which libevent library to use. Permitted values are bundled (default) and system. Prior to
MySQL 8.0.21, if you specify system, the system libevent library is used if present, and an error
occurs otherwise. In MySQL 8.0.21 and later, if system is specified and no system libevent
library can be found, an error occurs regardless, and the bundled libevent is not used.

The libevent library is required by InnoDB memcached, X Plugin, and MySQL Router.

• -DWITH_LIBWRAP=bool

Whether to include libwrap (TCP wrappers) support.

• -DWITH_LOCK_ORDER=bool

Whether to enable LOCK_ORDER tooling. By default, this option is disabled and server builds
contain no tooling. If tooling is enabled, the LOCK_ORDER tool is available and can be used as
described in Section 7.9.3, “The LOCK_ORDER Tool”.

Note

With the WITH_LOCK_ORDER option enabled, MySQL builds require the flex
program.

This option was added in MySQL 8.0.17.

• -DWITH_LSAN=bool

Whether to run LeakSanitizer, without AddressSanitizer. The default is OFF.

This option was added in MySQL 8.0.16.

• -DWITH_LTO=bool

Whether to enable the link-time optimizer, if the compiler supports it. The default is OFF unless
FPROFILE_USE is enabled.

This option was added in MySQL 8.0.13.

• -DWITH_LZ4=lz4_type

The WITH_LZ4 option indicates the source of zlib support:

• bundled: Use the lz4 library bundled with the distribution. This is the default.

• system: Use the system lz4 library. If WITH_LZ4 is set to this value, the lz4_decompress utility
is not built. In this case, the system lz4 command can be used instead.

• -DWITH_LZMA=lzma_type

258

MySQL Source-Configuration Options

The type of LZMA library support to include. lzma_type can be one of the following values:

• bundled: Use the LZMA library bundled with the distribution. This is the default.

• system: Use the system LZMA library.

This option was removed in MySQL 8.0.16.

• -DWITH_MECAB={disabled|system|path_name}

Use this option to compile the MeCab parser. If you have installed MeCab to its default installation
directory, set -DWITH_MECAB=system. The system option applies to MeCab installations
performed from source or from binaries using a native package management utility. If you installed
MeCab to a custom installation directory, specify the path to the MeCab installation, for example, -
DWITH_MECAB=/opt/mecab. If the system option does not work, specifying the MeCab installation
path should work in all cases.

For related information, see Section 14.9.9, “MeCab Full-Text Parser Plugin”.

• -DWITH_MSAN=bool

Whether to enable MemorySanitizer, for compilers that support it. The default is off.

For this option to have an effect if enabled, all libraries linked to MySQL must also have been
compiled with the option enabled.

• -DWITH_MSCRT_DEBUG=bool

Whether to enable Visual Studio CRT memory leak tracing. The default is OFF.

• -DMSVC_CPPCHECK=bool

Whether to enable MSVC code analysis. The default is OFF.

• -DWITH_MYSQLX=bool

Whether to build with support for X Plugin. The default is ON. See Chapter 22, Using MySQL as a
Document Store.

• -DWITH_NUMA=bool

Explicitly set the NUMA memory allocation policy. CMake sets the default WITH_NUMA value based
on whether the current platform has NUMA support. For platforms without NUMA support, CMake
behaves as follows:

• With no NUMA option (the normal case), CMake continues normally, producing only this warning:
NUMA library missing or required version not available.

• With -DWITH_NUMA=ON, CMake aborts with this error: NUMA library missing or required
version not available.

• -DWITH_PACKAGE_FLAGS=bool

For flags typically used for RPM and Debian packages, whether to add them to standalone builds on
those platforms. The default is ON for nondebug builds.

This option was added in MySQL 8.0.26.

259

MySQL Source-Configuration Options

• -DWITH_PROTOBUF=protobuf_type

Which Protocol Buffers package to use. protobuf_type can be one of the following values:

• bundled: Use the package bundled with the distribution. This is the default. Optionally use
INSTALL_PRIV_LIBDIR to modify the dynamic Protobuf library directory.

• system: Use the package installed on the system.

Other values are ignored, with a fallback to bundled.

• -DWITH_RAPID=bool

Whether to build the rapid development cycle plugins. When enabled, a rapid directory is created
in the build tree containing these plugins. When disabled, no rapid directory is created in the build
tree. The default is ON, unless the rapid directory is removed from the source tree, in which case
the default becomes OFF.

• -DWITH_RAPIDJSON=rapidjson_type

The type of RapidJSON library support to include. rapidjson_type can be one of the following
values:

• bundled: Use the RapidJSON library bundled with the distribution. This is the default.

• system: Use the system RapidJSON library. Version 1.1.0 or later is required.

This option was added in MySQL 8.0.13.

• -DWITH_RE2=re2_type

The type of RE2 library support to include. re2_type can be one of the following values:

• bundled: Use the RE2 library bundled with the distribution. This is the default.

• system: Use the system RE2 library.

As of MySQL 8.0.18, MySQL no longer uses the RE2 library, and this option has been removed.

• -DWITH_ROUTER=bool

Whether to build MySQL Router. The default is ON.

This option was added in MySQL 8.0.16.

• -DWITH_SASL=value

Internal use only. This option was added in 8.0.20. Not supported on Windows.

• -DWITH_SSL={ssl_type|path_name}

For support of encrypted connections, entropy for random number generation, and other encryption-
related operations, MySQL must be built using an SSL library. This option specifies which SSL library
to use.

• ssl_type can be one of the following values:

• system: Use the system OpenSSL library. This is the default.

On macOS and Windows, using system configures MySQL to build as if CMake was invoked
with path_name points to a manually installed OpenSSL library. This is because they do not
have system SSL libraries. On macOS, brew install openssl installs to /usr/local/opt/
openssl so that system can find it. On Windows, it checks %ProgramFiles%/OpenSSL,

260

MySQL Source-Configuration Options

%ProgramFiles%/OpenSSL-Win32, %ProgramFiles%/OpenSSL-Win64, C:/OpenSSL,
C:/OpenSSL-Win32, and C:/OpenSSL-Win64.

• yes: This is a synonym for system.

• opensslversion: (MySQL 8.0.30 and later:) Use an alternate OpenSSL system package such
as openssl11 on EL7, or openssl3 on EL8.

Authentication plugins, such as LDAP and Kerberos, are disabled as they do not support these
alternative versions of OpenSSL.

• path_name is the path name to the OpenSSL installation to use. This can be preferable to using
the ssl_type value of system because it can prevent CMake from detecting and using an older
or incorrect OpenSSL version installed on the system. (Another permitted way to do the same
thing is to set WITH_SSL to system and set the CMAKE_PREFIX_PATH option to path_name.)

For additional information about configuring the SSL library, see Section 2.8.6, “Configuring SSL
Library Support”.

• -DWITH_SYSTEMD=bool

Whether to enable installation of systemd support files. By default, this option is disabled. When
enabled, systemd support files are installed, and scripts such as mysqld_safe and the System
V initialization script are not installed. On platforms where systemd is not available, enabling
WITH_SYSTEMD results in an error from CMake.

For more information about using systemd, see Section 2.5.9, “Managing MySQL Server with
systemd”. That section also includes information about specifying options otherwise specified in
[mysqld_safe] option groups. Because mysqld_safe is not installed when systemd is used,
such options must be specified another way.

• -DWITH_SYSTEM_LIBS=bool

This option serves as an “umbrella” option to set the system value of any of the following CMake
options that are not set explicitly: WITH_CURL, WITH_EDITLINE, WITH_FIDO, WITH_ICU,
WITH_LIBEVENT, WITH_LZ4, WITH_LZMA, WITH_PROTOBUF, WITH_RE2, WITH_SSL, WITH_ZSTD.

WITH_ZLIB was included here priot MySQL 8.0.30.

• -DWITH_SYSTEMD_DEBUG=bool

Whether to produce additional systemd debugging information, for platforms on which systemd is
used to run MySQL. The default is OFF.

This option was added in MySQL 8.0.22.

• -DWITH_TCMALLOC=bool

Whether to link with -ltcmalloc. If enabled, built-in malloc(), calloc(), realloc(), and
free() routines are disabled. The default is OFF.

Beginning with MySQL 8.0.38, a tcmalloc library is included in the source; you can cause the
build to use the bundled version by setting this option to BUNDLED. BUNDLED is supported on Linux
systems only.

WITH_TCMALLOC and WITH_JEMALLOC are mutually exclusive.

This option was added in MySQL 8.0.22.

261

MySQL Source-Configuration Options

• -DWITH_TEST_TRACE_PLUGIN=bool

Whether to build the test protocol trace client plugin (see Using the Test Protocol Trace
Plugin). By default, this option is disabled. Enabling this option has no effect unless the
WITH_CLIENT_PROTOCOL_TRACING option is enabled. If MySQL is configured with both options
enabled, the libmysqlclient client library is built with the test protocol trace plugin built in, and all
the standard MySQL clients load the plugin. However, even when the test plugin is enabled, it has no
effect by default. Control over the plugin is afforded using environment variables; see Using the Test
Protocol Trace Plugin.

Note

Do not enable the WITH_TEST_TRACE_PLUGIN option if you want to use
your own protocol trace plugins because only one such plugin can be loaded
at a time and an error occurs for attempts to load a second one. If you have
already built MySQL with the test protocol trace plugin enabled to see how
it works, you must rebuild MySQL without it before you can use your own
plugins.

For information about writing trace plugins, see Writing Protocol Trace Plugins.

• -DWITH_TSAN=bool

Whether to enable the ThreadSanitizer, for compilers that support it. The default is off.

• -DWITH_UBSAN=bool

Whether to enable the Undefined Behavior Sanitizer, for compilers that support it. The default is off.

• -DWITH_UNIT_TESTS={ON|OFF}

If enabled, compile MySQL with unit tests. The default is ON unless the server is not being compiled.

• -DWITH_UNIXODBC=1

Enables unixODBC support, for Connector/ODBC.

• -DWITH_VALGRIND=bool

Whether to compile in the Valgrind header files, which exposes the Valgrind API to MySQL code.
The default is OFF.

To generate a Valgrind-aware debug build, -DWITH_VALGRIND=1 normally is combined with -
DWITH_DEBUG=1. See Building Debug Configurations.

• -DWITH_WIN_JEMALLOC=string

On Windows, pass in a path to a directory containing jemalloc.dll to enable jemalloc
functionality. The build system copies jemalloc.dll to the same directory as mysqld.exe and/
or mysqld-debug.exe and utilizes it for memory management operations. Standard memory
functions are used if jemalloc.dll is not found or does not export the required functions. An
INFORMATION level log message records whether or not jemalloc is found and used.

This option is enabled for official MySQL binaries for Windows.

This option was added in MySQL 8.0.29.

• -DWITH_ZLIB=zlib_type

Some features require that the server be built with compression library support, such as the
COMPRESS() and UNCOMPRESS() functions, and compression of the client/server protocol. The
WITH_ZLIB option indicates the source of zlib support:

262

https://dev.mysql.com/doc/extending-mysql/8.0/en/test-protocol-trace-plugin.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/test-protocol-trace-plugin.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/test-protocol-trace-plugin.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/test-protocol-trace-plugin.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-protocol-trace-plugins.html
https://dev.mysql.com/doc/internals/en/debug-configurations.html

MySQL Source-Configuration Options

In MYSQL 8.0.32 and later, the minimum supported version of zlib is 1.2.13.

• bundled: Use the zlib library bundled with the distribution. This is the default.

• system: Use the system zlib library. If WITH_ZLIB is set to this value, the zlib_decompress
utility is not built. In this case, the system openssl zlib command can be used instead.

• -DWITH_ZSTD=zstd_type

Connection compression using the zstd algorithm (see Section 6.2.8, “Connection Compression
Control”) requires that the server be built with zstd library support. The WITH_ZSTD option indicates
the source of zstd support:

• bundled: Use the zstd library bundled with the distribution. This is the default.

• system: Use the system zstd library.

This option was added in MySQL 8.0.18.

• -DWITHOUT_SERVER=bool

Whether to build without MySQL Server. The default is OFF, which does build the server.

This is considered an experimental option; it is preferred to build with the server.

This option also prevents building of the NDB storage engine or any NDB binaries including
management and data node programs.

Compiler Flags

• -DCMAKE_C_FLAGS="flags"

Flags for the C compiler.

• -DCMAKE_CXX_FLAGS="flags"

Flags for the C++ compiler.

• -DWITH_DEFAULT_COMPILER_OPTIONS=bool

Whether to use the flags from cmake/build_configurations/compiler_options.cmake.

Note

All optimization flags are carefully chosen and tested by the MySQL build
team. Overriding them can lead to unexpected results and is done at your
own risk.

• -DOPTIMIZE_SANITIZER_BUILDS=bool

Whether to add -O1 -fno-inline to sanitizer builds. The default is ON.

To specify your own C and C++ compiler flags, for flags that do not affect optimization, use the
CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options.

When providing your own compiler flags, you might want to specify CMAKE_BUILD_TYPE as well.

For example, to create a 32-bit release build on a 64-bit Linux machine, do this:

$> mkdir build
$> cd build
$> cmake .. -DCMAKE_C_FLAGS=-m32 \
 -DCMAKE_CXX_FLAGS=-m32 \
 -DCMAKE_BUILD_TYPE=RelWithDebInfo

263

MySQL Source-Configuration Options

If you set flags that affect optimization (-Onumber), you must set the CMAKE_C_FLAGS_build_type
and/or CMAKE_CXX_FLAGS_build_type options, where build_type corresponds
to the CMAKE_BUILD_TYPE value. To specify a different optimization for the default
build type (RelWithDebInfo) set the CMAKE_C_FLAGS_RELWITHDEBINFO and
CMAKE_CXX_FLAGS_RELWITHDEBINFO options. For example, to compile on Linux with -O3 and with
debug symbols, do this:

$> cmake .. -DCMAKE_C_FLAGS_RELWITHDEBINFO="-O3 -g" \
 -DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-O3 -g"

CMake Options for Compiling NDB Cluster

To compile with support for NDB Cluster, you can use -DWITH_NDB, which causes the build to include
the NDB storage engine and all NDB programs. This option is enabled by default. To prevent building
of the NDB storage engine plugin, use -DWITH_NDBCLUSTER_STORAGE_ENGINE=OFF. Other aspects
of the build can be controlled using the other options listed in this section.

The following options apply when building the MySQL sources with NDB Cluster support.

• -DMEMCACHED_HOME=dir_name

NDB support for memcached was removed in NDB 8.0.23; thus, this option is no longer supported for
building NDB in this or later versions.

• -DNDB_UTILS_LINK_DYNAMIC={ON|OFF}

Controls whether NDB utilities such as ndb_drop_table are linked with ndbclient statically
(OFF) or dynamically (ON); OFF (static linking) is the default. Normally static linking is used when
building these to avoid problems with LD_LIBRARY_PATH, or when multiple versions of ndbclient
are installed. This option is intended for creating Docker images and possibly other cases in which
the target environment is subject to precise control and it is desirable to reduce image size.

Added in NDB 8.0.22.

• -DWITH_BUNDLED_LIBEVENT={ON|OFF}

NDB support for memcached was removed in NDB 8.0.23; thus, this option is no longer supported for
building NDB in this or later versions.

• -DWITH_BUNDLED_MEMCACHED={ON|OFF}

NDB support for memcached was removed in NDB 8.0.23; thus, this option is no longer supported for
building NDB in this or later versions.

• -DWITH_CLASSPATH=path

Sets the classpath for building MySQL NDB Cluster Connector for Java. The default is empty. This
option is ignored if -DWITH_NDB_JAVA=OFF is used.

• -DWITH_ERROR_INSERT={ON|OFF}

Enables error injection in the NDB kernel. For testing only; not intended for use in building production
binaries. The default is OFF.

• -DWITH_NDB={ON|OFF}

Build MySQL NDB Cluster; build the NDB plugin and all NDB Cluster programs.

Added in NDB 8.0.31.

• -DWITH_NDBAPI_EXAMPLES={ON|OFF}

264

Dealing with Problems Compiling MySQL

Build NDB API example programs in storage/ndb/ndbapi-examples/. See NDB API
Examples, for information about these.

• -DWITH_NDBCLUSTER_STORAGE_ENGINE={ON|OFF}

NDB 8.0.30 and earlier: For internal use only; may not always work as expected. To build with NDB
support, use WITH_NDBCLUSTER instead.

NDB 8.0.31 and later: Controls (only) whether the NDBCLUSTER storage engine is included in the
build; WITH_NDB enables this option automatically, so it is recommended that you use WITH_NDB
instead.

• -DWITH_NDBCLUSTER={ON|OFF} (DEPRECATED)

Build and link in support for the NDB storage engine in mysqld.

This option is deprecated as of NDB 8.0.31, and subject to eventual removal; use WITH_NDB
instead.

• -DWITH_NDBMTD={ON|OFF}

Build the multithreaded data node executable ndbmtd. The default is ON.

• -DWITH_NDB_DEBUG={ON|OFF}

Enable building the debug versions of the NDB Cluster binaries. This is OFF by default.

• -DWITH_NDB_JAVA={ON|OFF}

Enable building NDB Cluster with Java support, including support for ClusterJ (see MySQL NDB
Cluster Connector for Java).

This option is ON by default. If you do not wish to compile NDB Cluster with Java support, you must
disable it explicitly by specifying -DWITH_NDB_JAVA=OFF when running CMake. Otherwise, if Java
cannot be found, configuration of the build fails.

• -DWITH_NDB_PORT=port

Causes the NDB Cluster management server (ndb_mgmd) that is built to use this port by default. If
this option is unset, the resulting management server tries to use port 1186 by default.

• -DWITH_NDB_TEST={ON|OFF}

If enabled, include a set of NDB API test programs. The default is OFF.

• -DWITH_PLUGIN_NDBCLUSTER={ON|OFF}

For internal use only; may not always work as expected. This option was removed in NDB
8.0.31; use WITH_NDB instead to build MySQL NDB Cluster. (NDB 8.0.30 and earlier: Use
WITH_NDBCLUSTER.)

2.8.8 Dealing with Problems Compiling MySQL

The solution to many problems involves reconfiguring. If you do reconfigure, take note of the following:

• If CMake is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in CMakeCache.txt. When CMake starts, it looks for
that file and reads its contents if it exists, on the assumption that the information is still correct. That
assumption is invalid when you reconfigure.

265

https://dev.mysql.com/doc/ndbapi/en/ndb-examples.html
https://dev.mysql.com/doc/ndbapi/en/ndb-examples.html
https://dev.mysql.com/doc/ndbapi/en/mccj.html
https://dev.mysql.com/doc/ndbapi/en/mccj.html

Dealing with Problems Compiling MySQL

• Each time you run CMake, you must run make again to recompile. However, you may want to
remove old object files from previous builds first because they were compiled using different
configuration options.

To prevent old object files or configuration information from being used, run the following commands
before re-running CMake:

On Unix:

$> make clean
$> rm CMakeCache.txt

On Windows:

$> devenv MySQL.sln /clean
$> del CMakeCache.txt

If you build outside of the source tree, remove and recreate your build directory before re-running
CMake. For instructions on building outside of the source tree, see How to Build MySQL Server with
CMake.

On some systems, warnings may occur due to differences in system include files. The following list
describes other problems that have been found to occur most often when compiling MySQL:

• To define which C and C++ compilers to use, you can define the CC and CXX environment
variables. For example:

$> CC=gcc
$> CXX=g++
$> export CC CXX

While this can be done on the command line, as just shown, you may prefer to define these values in
a build script, in which case the export command is not needed.

To specify your own C and C++ compiler flags, use the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS
CMake options. See Compiler Flags.

To see what flags you might need to specify, invoke mysql_config with the --cflags and --
cxxflags options.

• To see what commands are executed during the compile stage, after using CMake to configure
MySQL, run make VERBOSE=1 rather than just make.

• If compilation fails, check whether the MYSQL_MAINTAINER_MODE option is enabled. This mode
causes compiler warnings to become errors, so disabling it may enable compilation to proceed.

• If your compile fails with errors such as any of the following, you must upgrade your version of make
to GNU make:

make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

Or:

make: file `Makefile' line 18: Must be a separator (:

Or:

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.

GNU make 3.75 is known to work.

266

https://dev.mysql.com/doc/internals/en/cmake.html
https://dev.mysql.com/doc/internals/en/cmake.html

MySQL Configuration and Third-Party Tools

• The sql_yacc.cc file is generated from sql_yacc.yy. Normally, the build process does not need
to create sql_yacc.cc because MySQL comes with a pregenerated copy. However, if you do need
to re-create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install a recent version of
bison (the GNU version of yacc) and use that instead.

Versions of bison older than 1.75 may report this error:

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

The maximum table size is not actually exceeded; the error is caused by bugs in older versions of
bison.

For information about acquiring or updating tools, see the system requirements in Section 2.8,
“Installing MySQL from Source”.

2.8.9 MySQL Configuration and Third-Party Tools

Third-party tools that need to determine the MySQL version from the MySQL source can read the
MYSQL_VERSION file in the top-level source directory. The file lists the pieces of the version separately.
For example, if the version is MySQL 8.0.36, the file looks like this:

MYSQL_VERSION_MAJOR=8
MYSQL_VERSION_MINOR=0
MYSQL_VERSION_PATCH=36
MYSQL_VERSION_EXTRA=
MYSQL_VERSION_STABILITY="LTS"

Note

In MySQL 5.7 and earlier, this file was named VERSION.

To construct a five-digit number from the version components, use this formula:

MYSQL_VERSION_MAJOR*10000 + MYSQL_VERSION_MINOR*100 + MYSQL_VERSION_PATCH

2.8.10 Generating MySQL Doxygen Documentation Content

The MySQL source code contains internal documentation written using Doxygen. The generated
Doxygen content is available at https://dev.mysql.com/doc/index-other.html. It is also possible to
generate this content locally from a MySQL source distribution using the following procedure:

1. Install doxygen 1.9.2 or later. Distributions are available here at http://www.doxygen.nl/.

After installing doxygen, verify the version number:

$> doxygen --version
1.9.2

2. Install PlantUML.

When you install PlantUML on Windows (tested on Windows 10), you must run it at least once as
administrator so it creates the registry keys. Open an administrator console and run this command:

$> java -jar path-to-plantuml.jar

The command should open a GUI window and return no errors on the console.

3. Set the PLANTUML_JAR_PATH environment to the location where you installed PlantUML. For
example:

267

https://dev.mysql.com/doc/index-other.html
http://www.doxygen.nl/
http://plantuml.com/download.html

Postinstallation Setup and Testing

$> export PLANTUML_JAR_PATH=path-to-plantuml.jar

4. Install the Graphviz dot command.

After installing Graphviz, verify dot availability. For example:

$> which dot
/usr/bin/dot

$> dot -V
dot - graphviz version 2.40.1 (20161225.0304)

5. Change location to the top-level directory of your MySQL source distribution and do the following:

First, execute cmake:

$> cd mysql-source-directory
$> mkdir build
$> cd build
$> cmake ..

Next, generate the doxygen documentation:

$> make doxygen

Inspect the error log, which is available in the doxyerror.log file in the top-level directory.
Assuming that the build executed successfully, view the generated output using a browser. For
example:

$> firefox doxygen/html/index.html

2.9 Postinstallation Setup and Testing
This section discusses tasks that you should perform after installing MySQL:

• If necessary, initialize the data directory and create the MySQL grant tables. For some MySQL
installation methods, data directory initialization may be done for you automatically:

• Windows installation operations performed by MySQL Installer.

• Installation on Linux using a server RPM or Debian distribution from Oracle.

• Installation using the native packaging system on many platforms, including Debian Linux, Ubuntu
Linux, Gentoo Linux, and others.

• Installation on macOS using a DMG distribution.

For other platforms and installation types, you must initialize the data directory manually. These
include installation from generic binary and source distributions on Unix and Unix-like system, and
installation from a ZIP Archive package on Windows. For instructions, see Section 2.9.1, “Initializing
the Data Directory”.

• Start the server and make sure that it can be accessed. For instructions, see Section 2.9.2, “Starting
the Server”, and Section 2.9.3, “Testing the Server”.

• Assign passwords to the initial root account in the grant tables, if that was not already done during
data directory initialization. Passwords prevent unauthorized access to the MySQL server. For
instructions, see Section 2.9.4, “Securing the Initial MySQL Account”.

• Optionally, arrange for the server to start and stop automatically when your system starts and stops.
For instructions, see Section 2.9.5, “Starting and Stopping MySQL Automatically”.

• Optionally, populate time zone tables to enable recognition of named time zones. For instructions,
see Section 7.1.15, “MySQL Server Time Zone Support”.

268

http://www.graphviz.org/

Initializing the Data Directory

When you are ready to create additional user accounts, you can find information on the MySQL access
control system and account management in Section 8.2, “Access Control and Account Management”.

2.9.1 Initializing the Data Directory

After MySQL is installed, the data directory must be initialized, including the tables in the mysql
system schema:

• For some MySQL installation methods, data directory initialization is automatic, as described in
Section 2.9, “Postinstallation Setup and Testing”.

• For other installation methods, you must initialize the data directory manually. These include
installation from generic binary and source distributions on Unix and Unix-like systems, and
installation from a ZIP Archive package on Windows.

This section describes how to initialize the data directory manually for MySQL installation methods for
which data directory initialization is not automatic. For some suggested commands that enable testing
whether the server is accessible and working properly, see Section 2.9.3, “Testing the Server”.

Note

In MySQL 8.0, the default authentication plugin has changed from
mysql_native_password to caching_sha2_password,
and the 'root'@'localhost' administrative account uses
caching_sha2_password by default. If you prefer that the root account use
the previous default authentication plugin (mysql_native_password), see
caching_sha2_password and the root Administrative Account.

The mysql_native_password plugin is deprecated as of MySQL 8.0.34,
disabled by default as of MySQL 8.4.0, and removed as of MySQL 9.0.0.

• Data Directory Initialization Overview

• Data Directory Initialization Procedure

• Server Actions During Data Directory Initialization

• Post-Initialization root Password Assignment

Data Directory Initialization Overview

In the examples shown here, the server is intended to run under the user ID of the mysql login
account. Either create the account if it does not exist (see Create a mysql User and Group), or
substitute the name of a different existing login account that you plan to use for running the server.

1. Change location to the top-level directory of your MySQL installation, which is typically /usr/
local/mysql (adjust the path name for your system as necessary):

cd /usr/local/mysql

Within this directory you can find several files and subdirectories, including the bin subdirectory
that contains the server, as well as client and utility programs.

2. The secure_file_priv system variable limits import and export operations to a specific
directory. Create a directory whose location can be specified as the value of that variable:

mkdir mysql-files

Grant directory user and group ownership to the mysql user and mysql group, and set the
directory permissions appropriately:

chown mysql:mysql mysql-files
chmod 750 mysql-files

269

Initializing the Data Directory

3. Use the server to initialize the data directory, including the mysql schema containing the initial
MySQL grant tables that determine how users are permitted to connect to the server. For example:

bin/mysqld --initialize --user=mysql

For important information about the command, especially regarding command options you might
use, see Data Directory Initialization Procedure. For details about how the server performs
initialization, see Server Actions During Data Directory Initialization.

Typically, data directory initialization need be done only after you first install MySQL. (For upgrades
to an existing installation, perform the upgrade procedure instead; see Chapter 3, Upgrading
MySQL.) However, the command that initializes the data directory does not overwrite any existing
mysql schema tables, so it is safe to run in any circumstances.

4. If you want to deploy the server with automatic support for secure connections, use the
mysql_ssl_rsa_setup utility to create default SSL and RSA files:

bin/mysql_ssl_rsa_setup

For more information, see Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”.

Note

The mysql_ssl_rsa_setup utility is deprecated as of MySQL 8.0.34.

5. In the absence of any option files, the server starts with its default settings. (See Section 7.1.2,
“Server Configuration Defaults”.) To explicitly specify options that the MySQL server should
use at startup, put them in an option file such as /etc/my.cnf or /etc/mysql/my.cnf.
(See Section 6.2.2.2, “Using Option Files”.) For example, you can use an option file to set the
secure_file_priv system variable.

6. To arrange for MySQL to start without manual intervention at system boot time, see Section 2.9.5,
“Starting and Stopping MySQL Automatically”.

7. Data directory initialization creates time zone tables in the mysql schema but does not populate
them. To do so, use the instructions in Section 7.1.15, “MySQL Server Time Zone Support”.

Data Directory Initialization Procedure

Change location to the top-level directory of your MySQL installation, which is typically /usr/local/
mysql (adjust the path name for your system as necessary):

cd /usr/local/mysql

To initialize the data directory, invoke mysqld with the --initialize or --initialize-insecure
option, depending on whether you want the server to generate a random initial password for the
'root'@'localhost' account, or to create that account with no password:

• Use --initialize for “secure by default” installation (that is, including generation of a random
initial root password). In this case, the password is marked as expired and you must choose a new
one.

• With --initialize-insecure, no root password is generated. This is insecure; it is assumed
that you intend to assign a password to the account in a timely fashion before putting the server into
production use.

For instructions on assigning a new 'root'@'localhost' password, see Post-Initialization root
Password Assignment.

Note

The server writes any messages (including any initial password) to its standard
error output. This may be redirected to the error log, so look there if you do not

270

Initializing the Data Directory

see the messages on your screen. For information about the error log, including
where it is located, see Section 7.4.2, “The Error Log”.

On Windows, use the --console option to direct messages to the console.

On Unix and Unix-like systems, it is important for the database directories and files to be owned by
the mysql login account so that the server has read and write access to them when you run it later.
To ensure this, start mysqld from the system root account and include the --user option as shown
here:

bin/mysqld --initialize --user=mysql
bin/mysqld --initialize-insecure --user=mysql

Alternatively, execute mysqld while logged in as mysql, in which case you can omit the --user
option from the command.

On Windows, use one of these commands:

bin\mysqld --initialize --console
bin\mysqld --initialize-insecure --console

Note

Data directory initialization might fail if required system libraries are missing. For
example, you might see an error like this:

bin/mysqld: error while loading shared libraries:
libnuma.so.1: cannot open shared object file:
No such file or directory

If this happens, you must install the missing libraries manually or with your
system's package manager. Then retry the data directory initialization
command.

It might be necessary to specify other options such as --basedir or --datadir if mysqld cannot
identify the correct locations for the installation directory or data directory. For example (enter the
command on a single line):

bin/mysqld --initialize --user=mysql
 --basedir=/opt/mysql/mysql
 --datadir=/opt/mysql/mysql/data

Alternatively, put the relevant option settings in an option file and pass the name of that file to mysqld.
For Unix and Unix-like systems, suppose that the option file name is /opt/mysql/mysql/etc/
my.cnf. Put these lines in the file:

[mysqld]
basedir=/opt/mysql/mysql
datadir=/opt/mysql/mysql/data

Then invoke mysqld as follows (enter the command on a single line, with the --defaults-file
option first):

bin/mysqld --defaults-file=/opt/mysql/mysql/etc/my.cnf
 --initialize --user=mysql

On Windows, suppose that C:\my.ini contains these lines:

[mysqld]
basedir=C:\\Program Files\\MySQL\\MySQL Server 8.0
datadir=D:\\MySQLdata

Then invoke mysqld as follows (again, you should enter the command on a single line, with the --
defaults-file option first):

bin\mysqld --defaults-file=C:\my.ini

271

Initializing the Data Directory

 --initialize --console

Important

When initializing the data directory, you should not specify any options other
than those used for setting directory locations such as --basedir or --
datadir, and the --user option if needed. Options to be employed by
the MySQL server during normal use can be set when restarting it following
initialization. See the description of the --initialize option for further
information.

Server Actions During Data Directory Initialization

Note

The data directory initialization sequence performed by the server does not
substitute for the actions performed by mysql_secure_installation and
mysql_ssl_rsa_setup. See Section 6.4.2, “mysql_secure_installation —
Improve MySQL Installation Security”, and Section 6.4.3, “mysql_ssl_rsa_setup
— Create SSL/RSA Files”.

When invoked with the --initialize or --initialize-insecure option, mysqld performs the
following actions during the data directory initialization sequence:

1. The server checks for the existence of the data directory as follows:

• If no data directory exists, the server creates it.

• If the data directory exists but is not empty (that is, it contains files or subdirectories), the server
exits after producing an error message:

[ERROR] --initialize specified but the data directory exists. Aborting.

In this case, remove or rename the data directory and try again.

An existing data directory is permitted to be nonempty if every entry has a name that begins with
a period (.).

2. Within the data directory, the server creates the mysql system schema and its tables, including the
data dictionary tables, grant tables, time zone tables, and server-side help tables. See Section 7.3,
“The mysql System Schema”.

3. The server initializes the system tablespace and related data structures needed to manage InnoDB
tables.

Note

After mysqld sets up the InnoDB system tablespace, certain
changes to tablespace characteristics require setting up a whole
new instance. Qualifying changes include the file name of the first
file in the system tablespace and the number of undo logs. If you
do not want to use the default values, make sure that the settings
for the innodb_data_file_path and innodb_log_file_size
configuration parameters are in place in the MySQL configuration file
before running mysqld. Also make sure to specify as necessary other
parameters that affect the creation and location of InnoDB files, such as
innodb_data_home_dir and innodb_log_group_home_dir.

If those options are in your configuration file but that file is not in a location
that MySQL reads by default, specify the file location using the --
defaults-extra-file option when you run mysqld.

272

Initializing the Data Directory

4. The server creates a 'root'@'localhost' superuser account and other reserved accounts (see
Section 8.2.9, “Reserved Accounts”). Some reserved accounts are locked and cannot be used by
clients, but 'root'@'localhost' is intended for administrative use and you should assign it a
password.

Server actions with respect to a password for the 'root'@'localhost' account depend on how
you invoke it:

• With --initialize but not --initialize-insecure, the server generates a random
password, marks it as expired, and writes a message displaying the password:

[Warning] A temporary password is generated for root@localhost:
iTag*AfrH5ej

• With --initialize-insecure, (either with or without --initialize because --
initialize-insecure implies --initialize), the server does not generate a password or
mark it expired, and writes a warning message:

[Warning] root@localhost is created with an empty password ! Please
consider switching off the --initialize-insecure option.

For instructions on assigning a new 'root'@'localhost' password, see Post-Initialization root
Password Assignment.

5. The server populates the server-side help tables used for the HELP statement (see Section 15.8.3,
“HELP Statement”). The server does not populate the time zone tables. To do so manually, see
Section 7.1.15, “MySQL Server Time Zone Support”.

6. If the init_file system variable was given to name a file of SQL statements, the server executes
the statements in the file. This option enables you to perform custom bootstrapping sequences.

When the server operates in bootstrap mode, some functionality is unavailable that limits the
statements permitted in the file. These include statements that relate to account management (such
as CREATE USER or GRANT), replication, and global transaction identifiers.

7. The server exits.

Post-Initialization root Password Assignment

After you initialize the data directory by starting the server with --initialize or --initialize-
insecure, start the server normally (that is, without either of those options) and assign the
'root'@'localhost' account a new password:

1. Start the server. For instructions, see Section 2.9.2, “Starting the Server”.

2. Connect to the server:

• If you used --initialize but not --initialize-insecure to initialize the data directory,
connect to the server as root:

mysql -u root -p

Then, at the password prompt, enter the random password that the server generated during the
initialization sequence:

Enter password: (enter the random root password here)

Look in the server error log if you do not know this password.

• If you used --initialize-insecure to initialize the data directory, connect to the server as
root without a password:

mysql -u root --skip-password

273

Starting the Server

3. After connecting, use an ALTER USER statement to assign a new root password:

ALTER USER 'root'@'localhost' IDENTIFIED BY 'root-password';

See also Section 2.9.4, “Securing the Initial MySQL Account”.

Note

Attempts to connect to the host 127.0.0.1 normally resolve to the localhost
account. However, this fails if the server is run with skip_name_resolve
enabled. If you plan to do that, make sure that an account exists that can
accept a connection. For example, to be able to connect as root using --
host=127.0.0.1 or --host=::1, create these accounts:

CREATE USER 'root'@'127.0.0.1' IDENTIFIED BY 'root-password';
CREATE USER 'root'@'::1' IDENTIFIED BY 'root-password';

It is possible to put those statements in a file to be executed using the
init_file system variable, as discussed in Server Actions During Data
Directory Initialization.

2.9.2 Starting the Server

This section describes how start the server on Unix and Unix-like systems. (For Windows, see
Section 2.3.4.5, “Starting the Server for the First Time”.) For some suggested commands that you
can use to test whether the server is accessible and working properly, see Section 2.9.3, “Testing the
Server”.

Start the MySQL server like this if your installation includes mysqld_safe:

$> bin/mysqld_safe --user=mysql &

Note

For Linux systems on which MySQL is installed using RPM packages, server
startup and shutdown is managed using systemd rather than mysqld_safe,
and mysqld_safe is not installed. See Section 2.5.9, “Managing MySQL
Server with systemd”.

Start the server like this if your installation includes systemd support:

$> systemctl start mysqld

Substitute the appropriate service name if it differs from mysqld (for example, mysql on SLES
systems).

It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure
this, run mysqld_safe as root and include the --user option as shown. Otherwise, you should
execute the program while logged in as mysql, in which case you can omit the --user option from the
command.

For further instructions for running MySQL as an unprivileged user, see Section 8.1.5, “How to Run
MySQL as a Normal User”.

If the command fails immediately and prints mysqld ended, look for information in the error log (which
by default is the host_name.err file in the data directory).

If the server is unable to access the data directory it starts or read the grant tables in the mysql
schema, it writes a message to its error log. Such problems can occur if you neglected to create the
grant tables by initializing the data directory before proceeding to this step, or if you ran the command
that initializes the data directory without the --user option. Remove the data directory and run the
command with the --user option.

274

Starting the Server

If you have other problems starting the server, see Section 2.9.2.1, “Troubleshooting Problems Starting
the MySQL Server”. For more information about mysqld_safe, see Section 6.3.2, “mysqld_safe
— MySQL Server Startup Script”. For more information about systemd support, see Section 2.5.9,
“Managing MySQL Server with systemd”.

2.9.2.1 Troubleshooting Problems Starting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server. For additional
suggestions for Windows systems, see Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL
Server Installation”.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start. Log files are located in the data directory
(typically C:\Program Files\MySQL\MySQL Server 8.0\data on Windows, /usr/local/
mysql/data for a Unix/Linux binary distribution, and /usr/local/var for a Unix/Linux source
distribution). Look in the data directory for files with names of the form host_name.err and
host_name.log, where host_name is the name of your server host. Then examine the last few
lines of these files. Use tail to display them:

$> tail host_name.err
$> tail host_name.log

• Specify any special options needed by the storage engines you are using. You can create a my.cnf
file and specify startup options for the engines that you plan to use. If you are going to use storage
engines that support transactional tables (InnoDB, NDB), be sure that you have them configured the
way you want before starting the server. If you are using InnoDB tables, see Section 17.8, “InnoDB
Configuration” for guidelines and Section 17.14, “InnoDB Startup Options and System Variables” for
option syntax.

Although storage engines use default values for options that you omit, Oracle recommends that
you review the available options and specify explicit values for any options whose defaults are not
appropriate for your installation.

• Make sure that the server knows where to find the data directory. The mysqld server uses this
directory as its current directory. This is where it expects to find databases and where it expects to
write log files. The server also writes the pid (process ID) file in the data directory.

The default data directory location is hardcoded when the server is compiled. To determine what
the default path settings are, invoke mysqld with the --verbose and --help options. If the data
directory is located somewhere else on your system, specify that location with the --datadir option
to mysqld or mysqld_safe, on the command line or in an option file. Otherwise, the server does
not work properly. As an alternative to the --datadir option, you can specify mysqld the location
of the base directory under which MySQL is installed with the --basedir, and mysqld looks for the
data directory there.

To check the effect of specifying path options, invoke mysqld with those options followed by the --
verbose and --help options. For example, if you change location to the directory where mysqld
is installed and then run the following command, it shows the effect of starting the server with a base
directory of /usr/local:

$> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be
the last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this
command:

$> mysqladmin variables

275

Starting the Server

Or:

$> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

• Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must allow the server to read and modify them.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means
that the privileges of the data directory or its contents do not permit server access. In this case, you
change the permissions for the involved files and directories so that the server has the right to use
them. You can also start the server as root, but this raises security issues and should be avoided.

Change location to the data directory and check the ownership of the data directory and its contents
to make sure the server has access. For example, if the data directory is /usr/local/mysql/var,
use this command:

$> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use
for running the server, change their ownership to that account. If the account is named mysql, use
these commands:

$> chown -R mysql /usr/local/mysql/var
$> chgrp -R mysql /usr/local/mysql/var

Even with correct ownership, MySQL might fail to start up if there is other security software running
on your system that manages application access to various parts of the file system. In this case,
reconfigure that software to enable mysqld to access the directories it uses during normal operation.

• Verify that the network interfaces the server wants to use are available.

If either of the following errors occur, it means that some other program (perhaps another mysqld
server) is using the TCP/IP port or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another mysqld server running. If so, shut down the server
before starting mysqld again. (If another server is running, and you really want to run multiple
servers, you can find information about how to do so in Section 7.8, “Running Multiple MySQL
Instances on One Machine”.)

If no other server is running, execute the command telnet your_host_name
tcp_ip_port_number. (The default MySQL port number is 3306.) Then press Enter a couple
of times. If you do not get an error message like telnet: Unable to connect to remote
host: Connection refused, some other program is using the TCP/IP port that mysqld is trying
to use. Track down what program this is and disable it, or tell mysqld to listen to a different port with
the --port option. In this case, specify the same non-default port number for client programs when
connecting to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks
connections to it. If so, modify the firewall settings to permit access to the port.

If the server starts but you cannot connect to it, make sure that you have an entry in /etc/hosts
that looks like this:

127.0.0.1 localhost

• If you cannot get mysqld to start, try to make a trace file to find the problem by using the --debug
option. See Section 7.9.4, “The DBUG Package”.

276

Testing the Server

2.9.3 Testing the Server

After the data directory is initialized and you have started the server, perform some simple tests to
make sure that it works satisfactorily. This section assumes that your current location is the MySQL
installation directory and that it has a bin subdirectory containing the MySQL programs used here. If
that is not true, adjust the command path names accordingly.

Alternatively, add the bin directory to your PATH environment variable setting. That enables your shell
(command interpreter) to find MySQL programs properly, so that you can run a program by typing only
its name, not its path name. See Section 6.2.9, “Setting Environment Variables”.

Use mysqladmin to verify that the server is running. The following commands provide simple tests to
check whether the server is up and responding to connections:

$> bin/mysqladmin version
$> bin/mysqladmin variables

If you cannot connect to the server, specify a -u root option to connect as root. If you have
assigned a password for the root account already, you'll also need to specify -p on the command line
and enter the password when prompted. For example:

$> bin/mysqladmin -u root -p version
Enter password: (enter root password here)

The output from mysqladmin version varies slightly depending on your platform and version of
MySQL, but should be similar to that shown here:

$> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 8.0.42, for pc-linux-gnu on i686
...

Server version 8.0.42
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 14 days 5 hours 5 min 21 sec

Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

To see what else you can do with mysqladmin, invoke it with the --help option.

Verify that you can shut down the server (include a -p option if the root account has a password
already):

$> bin/mysqladmin -u root shutdown

Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld
directly. For example:

$> bin/mysqld_safe --user=mysql &

If mysqld_safe fails, see Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”.

Run some simple tests to verify that you can retrieve information from the server. The output should be
similar to that shown here.

Use mysqlshow to see what databases exist:

$> bin/mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |

277

Securing the Initial MySQL Account

| mysql |
| performance_schema |
| sys |
+--------------------+

The list of installed databases may vary, but always includes at least mysql and
information_schema.

If you specify a database name, mysqlshow displays a list of the tables within the database:

$> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| component |
| db |
| default_roles |
| engine_cost |
| func |
| general_log |
| global_grants |
| gtid_executed |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| innodb_index_stats |
| innodb_table_stats |
| ndb_binlog_index |
| password_history |
| plugin |
| procs_priv |
| proxies_priv |
| role_edges |
| server_cost |
| servers |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql schema:

$> bin/mysql -e "SELECT User, Host, plugin FROM mysql.user" mysql
+------+-----------+-----------------------+
| User | Host | plugin |
+------+-----------+-----------------------+
| root | localhost | caching_sha2_password |
+------+-----------+-----------------------+

At this point, your server is running and you can access it. To tighten security if you have not yet
assigned a password to the initial account, follow the instructions in Section 2.9.4, “Securing the Initial
MySQL Account”.

For more information about mysql, mysqladmin, and mysqlshow, see Section 6.5.1, “mysql —
The MySQL Command-Line Client”, Section 6.5.2, “mysqladmin — A MySQL Server Administration
Program”, and Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”.

2.9.4 Securing the Initial MySQL Account

278

Securing the Initial MySQL Account

The MySQL installation process involves initializing the data directory, including the grant tables in the
mysql system schema that define MySQL accounts. For details, see Section 2.9.1, “Initializing the
Data Directory”.

This section describes how to assign a password to the initial root account created during the MySQL
installation procedure, if you have not already done so.

Note

Alternative means for performing the process described in this section:

• On Windows, you can perform the process during installation with MySQL
Installer (see Section 2.3.3, “MySQL Installer for Windows”).

• On all platforms, the MySQL distribution includes
mysql_secure_installation, a command-line utility that automates
much of the process of securing a MySQL installation.

• On all platforms, MySQL Workbench is available and offers the ability to
manage user accounts (see Chapter 33, MySQL Workbench).

A password may already be assigned to the initial account under these circumstances:

• On Windows, installations performed using MySQL Installer give you the option of assigning a
password.

• Installation using the macOS installer generates an initial random password, which the installer
displays to the user in a dialog box.

• Installation using RPM packages generates an initial random password, which is written to the server
error log.

• Installations using Debian packages give you the option of assigning a password.

• For data directory initialization performed manually using mysqld --initialize, mysqld
generates an initial random password, marks it expired, and writes it to the server error log. See
Section 2.9.1, “Initializing the Data Directory”.

The mysql.user grant table defines the initial MySQL user account and its access privileges.
Installation of MySQL creates only a 'root'@'localhost' superuser account that has all privileges
and can do anything. If the root account has an empty password, your MySQL installation is
unprotected: Anyone can connect to the MySQL server as root without a password and be granted all
privileges.

The 'root'@'localhost' account also has a row in the mysql.proxies_priv table that enables
granting the PROXY privilege for ''@'', that is, for all users and all hosts. This enables root to set
up proxy users, as well as to delegate to other accounts the authority to set up proxy users. See
Section 8.2.19, “Proxy Users”.

To assign a password for the initial MySQL root account, use the following procedure. Replace
root-password in the examples with the password that you want to use.

Start the server if it is not running. For instructions, see Section 2.9.2, “Starting the Server”.

The initial root account may or may not have a password. Choose whichever of the following
procedures applies:

• If the root account exists with an initial random password that has been expired, connect to the
server as root using that password, then choose a new password. This is the case if the data
directory was initialized using mysqld --initialize, either manually or using an installer that

279

Starting and Stopping MySQL Automatically

does not give you the option of specifying a password during the install operation. Because the
password exists, you must use it to connect to the server. But because the password is expired, you
cannot use the account for any purpose other than to choose a new password, until you do choose
one.

1. If you do not know the initial random password, look in the server error log.

2. Connect to the server as root using the password:

$> mysql -u root -p
Enter password: (enter the random root password here)

3. Choose a new password to replace the random password:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'root-password';

• If the root account exists but has no password, connect to the server as root using no password,
then assign a password. This is the case if you initialized the data directory using mysqld --
initialize-insecure.

1. Connect to the server as root using no password:

$> mysql -u root --skip-password

2. Assign a password:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'root-password';

After assigning the root account a password, you must supply that password whenever you connect
to the server using the account. For example, to connect to the server using the mysql client, use this
command:

$> mysql -u root -p
Enter password: (enter root password here)

To shut down the server with mysqladmin, use this command:

$> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Note

For additional information about setting passwords, see Section 8.2.14,
“Assigning Account Passwords”. If you forget your root password after setting
it, see Section B.3.3.2, “How to Reset the Root Password”.

To set up additional accounts, see Section 8.2.8, “Adding Accounts, Assigning
Privileges, and Dropping Accounts”.

2.9.5 Starting and Stopping MySQL Automatically

This section discusses methods for starting and stopping the MySQL server.

Generally, you start the mysqld server in one of these ways:

• Invoke mysqld directly. This works on any platform.

• On Windows, you can set up a MySQL service that runs automatically when Windows starts. See
Section 2.3.4.8, “Starting MySQL as a Windows Service”.

• On Unix and Unix-like systems, you can invoke mysqld_safe, which tries to determine the proper
options for mysqld and then runs it with those options. See Section 6.3.2, “mysqld_safe — MySQL
Server Startup Script”.

280

Perl Installation Notes

• On Linux systems that support systemd, you can use it to control the server. See Section 2.5.9,
“Managing MySQL Server with systemd”.

• On systems that use System V-style run directories (that is, /etc/init.d and run-level specific
directories), invoke mysql.server. This script is used primarily at system startup and shutdown. It
usually is installed under the name mysql. The mysql.server script starts the server by invoking
mysqld_safe. See Section 6.3.3, “mysql.server — MySQL Server Startup Script”.

• On macOS, install a launchd daemon to enable automatic MySQL startup at system startup. The
daemon starts the server by invoking mysqld_safe. For details, see Section 2.4.3, “Installing and
Using the MySQL Launch Daemon”. A MySQL Preference Pane also provides control for starting
and stopping MySQL through the System Preferences. See Section 2.4.4, “Installing and Using the
MySQL Preference Pane”.

• On Solaris, use the service management framework (SMF) system to initiate and control MySQL
startup.

systemd, the mysqld_safe and mysql.server scripts, Solaris SMF, and the macOS Startup Item
(or MySQL Preference Pane) can be used to start the server manually, or automatically at system
startup time. systemd, mysql.server, and the Startup Item also can be used to stop the server.

The following table shows which option groups the server and startup scripts read from option files.

Table 2.15 MySQL Startup Scripts and Supported Server Option Groups

Script Option Groups

mysqld [mysqld], [server],
[mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-5.7] and
[mysqld-8.0] are read by servers having versions 5.7.x, 8.0.x, and so forth. This feature can be
used to specify options that can be read only by servers within a given release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and
mysqld_safe also reads the [safe_mysqld] group. To be current, you should update your option
files to use the [mysql.server] and [mysqld_safe] groups instead.

For more information on MySQL configuration files and their structure and contents, see
Section 6.2.2.2, “Using Option Files”.

2.10 Perl Installation Notes

The Perl DBI module provides a generic interface for database access. You can write a DBI script
that works with many different database engines without change. To use DBI, you must install the DBI
module, as well as a DataBase Driver (DBD) module for each type of database server you want to
access. For MySQL, this driver is the DBD::mysql module.

Note

Perl support is not included with MySQL distributions. You can obtain the
necessary modules from http://search.cpan.org for Unix, or by using the
ActiveState ppm program on Windows. The following sections describe how to
do this.

The DBI/DBD interface requires Perl 5.6.0, and 5.6.1 or later is preferred. DBI does not work if you
have an older version of Perl. You should use DBD::mysql 4.009 or higher. Although earlier versions
are available, they do not support the full functionality of MySQL 8.0.

281

http://search.cpan.org

Installing Perl on Unix

2.10.1 Installing Perl on Unix

MySQL Perl support requires that you have installed MySQL client programming support (libraries and
header files). Most installation methods install the necessary files. If you install MySQL from RPM files
on Linux, be sure to install the developer RPM as well. The client programs are in the client RPM, but
client programming support is in the developer RPM.

The files you need for Perl support can be obtained from the CPAN (Comprehensive Perl Archive
Network) at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

$> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local
MySQL server using the default user name and password. (The default user name is your login name
on Unix, and ODBC on Windows. The default password is “no password.”) If you cannot connect to
the server with those values (for example, if your account has a password), the tests fail. You can use
force install DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before
installing DBI.

It is also possible to download the module distributions in the form of compressed tar archives and
build the modules manually. For example, to unpack and build a DBI distribution, use a procedure such
as this:

1. Unpack the distribution into the current directory:

$> gunzip < DBI-VERSION.tar.gz | tar xvf -

This command creates a directory named DBI-VERSION.

2. Change location into the top-level directory of the unpacked distribution:

$> cd DBI-VERSION

3. Build the distribution and compile everything:

$> perl Makefile.PL
$> make
$> make test
$> make install

The make test command is important because it verifies that the module is working. Note that when
you run that command during the DBD::mysql installation to exercise the interface code, the MySQL
server must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new
release of MySQL. This ensures that the latest versions of the MySQL client libraries are installed
correctly.

If you do not have access rights to install Perl modules in the system directory or if you want to install
local Perl modules, the following reference may be useful: http://learn.perl.org/faq/perlfaq8.html#How-
do-I-keep-my-own-module-library-directory-

2.10.2 Installing ActiveState Perl on Windows

On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

282

http://search.cpan.org
http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-my-own-module-library-directory-
http://learn.perl.org/faq/perlfaq8.html#How-do-I-keep-my-own-module-library-directory-
http://www.activestate.com/Products/ActivePerl/

Problems Using the Perl DBI/DBD Interface

2. Open a console window.

3. If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:

C:\> set HTTP_proxy=my.proxy.com:3128

4. Start the PPM program:

C:\> C:\perl\bin\ppm.pl

5. If you have not previously done so, install DBI:

ppm> install DBI

6. If this succeeds, run the following command:

ppm> install DBD-mysql

This procedure should work with ActiveState Perl 5.6 or higher.

If you cannot get the procedure to work, you should install the ODBC driver instead and connect to the
MySQL server through ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
 die "Got error $DBI::errstr when connecting to $dsn\n";

2.10.3 Problems Using the Perl DBI/DBD Interface

If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl
cannot locate the libmysqlclient.so shared library. You should be able to fix this problem by one
of the following methods:

• Copy libmysqlclient.so to the directory where your other shared libraries are located (probably
/usr/lib or /lib).

• Modify the -L options used to compile DBD::mysql to reflect the actual location of
libmysqlclient.so.

• On Linux, you can add the path name of the directory where libmysqlclient.so is located to the
/etc/ld.so.conf file.

• Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable. Some systems use LD_LIBRARY_PATH instead.

Note that you may also need to modify the -L options if there are other libraries that the linker fails to
find. For example, if the linker cannot find libc because it is in /lib and the link command specifies -
L/usr/lib, change the -L option to -L/lib or add -L/lib to the existing link command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary
compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets built
(check the output from make for mysql.so when you compile the Perl client). The -L option should
specify the path name of the directory where libgcc.a is located on your system.

Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this
case, you can solve the mismatch by compiling both with gcc.

283

284

Chapter 3 Upgrading MySQL

Table of Contents
3.1 Before You Begin .. 285
3.2 Upgrade Paths .. 286
3.3 Upgrade Best Practices ... 287
3.4 What the MySQL Upgrade Process Upgrades .. 289
3.5 Changes in MySQL 8.0 ... 293
3.6 Preparing Your Installation for Upgrade .. 310
3.7 Upgrading MySQL Binary or Package-based Installations on Unix/Linux 314
3.8 Upgrading MySQL with the MySQL Yum Repository ... 318
3.9 Upgrading MySQL with the MySQL APT Repository ... 320
3.10 Upgrading MySQL with the MySQL SLES Repository ... 320
3.11 Upgrading MySQL on Windows ... 320
3.12 Upgrading a Docker Installation of MySQL ... 322
3.13 Upgrade Troubleshooting ... 322
3.14 Rebuilding or Repairing Tables or Indexes ... 323
3.15 Copying MySQL Databases to Another Machine ... 324

This chapter describes the steps to upgrade a MySQL installation.

Upgrading is a common procedure, as you pick up bug fixes within the same MySQL release series
or significant features between major MySQL releases. You perform this procedure first on some test
systems to make sure everything works smoothly, and then on the production systems.

Note

In the following discussion, MySQL commands that must be run using a MySQL
account with administrative privileges include -u root on the command
line to specify the MySQL root user. Commands that require a password for
root also include a -p option. Because -p is followed by no option value, such
commands prompt for the password. Type the password when prompted and
press Enter.

SQL statements can be executed using the mysql command-line client
(connect as root to ensure that you have the necessary privileges).

3.1 Before You Begin

Review the information in this section before upgrading. Perform any recommended actions.

• Understand what may occur during an upgrade. See Section 3.4, “What the MySQL Upgrade
Process Upgrades”.

• Protect your data by creating a backup. The backup should include the mysql system database,
which contains the MySQL data dictionary tables and system tables. See Section 9.2, “Database
Backup Methods”.

Important

Downgrade from MySQL 8.0 to MySQL 5.7, or from a MySQL 8.0 release to a
previous MySQL 8.0 release, is not supported. The only supported alternative
is to restore a backup taken before upgrading. It is therefore imperative that
you back up your data before starting the upgrade process.

285

Upgrade Paths

• Review Section 3.2, “Upgrade Paths” to ensure that your intended upgrade path is supported.

• Review Section 3.5, “Changes in MySQL 8.0” for changes that you should be aware of before
upgrading. Some changes may require action.

• Review Section 1.3, “What Is New in MySQL 8.0” for deprecated and removed features. An upgrade
may require changes with respect to those features if you use any of them.

• Review Section 1.4, “Server and Status Variables and Options Added, Deprecated, or Removed
in MySQL 8.0”. If you use deprecated or removed variables, an upgrade may require configuration
changes.

• Review the Release Notes for information about fixes, changes, and new features.

• If you use replication, review Section 19.5.3, “Upgrading a Replication Topology”.

• Review Section 3.3, “Upgrade Best Practices” and plan accordingly.

• Upgrade procedures vary by platform and how the initial installation was performed. Use the
procedure that applies to your current MySQL installation:

• For binary and package-based installations on non-Windows platforms, refer to Section 3.7,
“Upgrading MySQL Binary or Package-based Installations on Unix/Linux”.

Note

For supported Linux distributions, the preferred method for upgrading
package-based installations is to use the MySQL software repositories
(MySQL Yum Repository, MySQL APT Repository, and MySQL SLES
Repository).

• For installations on an Enterprise Linux platform or Fedora using the MySQL Yum Repository,
refer to Section 3.8, “Upgrading MySQL with the MySQL Yum Repository”.

• For installations on Ubuntu using the MySQL APT repository, refer to Section 3.9, “Upgrading
MySQL with the MySQL APT Repository”.

• For installations on SLES using the MySQL SLES repository, refer to Section 3.10, “Upgrading
MySQL with the MySQL SLES Repository”.

• For installations performed using Docker, refer to Section 3.12, “Upgrading a Docker Installation of
MySQL”.

• For installations on Windows, refer to Section 3.11, “Upgrading MySQL on Windows”.

• If your MySQL installation contains a large amount of data that might take a long time to convert
after an in-place upgrade, it may be useful to create a test instance for assessing the conversions
that are required and the work involved to perform them. To create a test instance, make a copy of
your MySQL instance that contains the mysql database and other databases without the data. Run
the upgrade procedure on the test instance to assess the work involved to perform the actual data
conversion.

• Rebuilding and reinstalling MySQL language interfaces is recommended when you install or upgrade
to a new release of MySQL. This applies to MySQL interfaces such as PHP mysql extensions and
the Perl DBD::mysql module.

3.2 Upgrade Paths
• Upgrade from MySQL 5.7 to 8.0 is supported. However, upgrade is only supported between General

Availability (GA) releases. For MySQL 8.0, it is required that you upgrade from a MySQL 5.7 GA
release (5.7.9 or higher). Upgrades from non-GA releases of MySQL 5.7 are not supported.

286

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/

Upgrade Best Practices

• Upgrading to the latest release is recommended before upgrading to the next version. For example,
upgrade to the latest MySQL 5.7 release before upgrading to MySQL 8.0.

• Upgrade that skips versions is not supported. For example, upgrading directly from MySQL 5.6 to 8.0
is not supported.

• Once a release series reaches General Availability (GA) status, upgrade within the release series
(from one GA version to another GA version) is supported. For example, upgrading from MySQL
8.0.x to 8.0.y is supported. (Upgrade involving development-status non-GA releases is not
supported.) Skipping a release is also supported. For example, upgrading from MySQL 8.0.x to 8.0.z
is supported. MySQL 8.0.11 is the first GA status release within the MySQL 8.0 release series.

3.3 Upgrade Best Practices
MySQL supports upgrading between minor versions (within an LTS series) and to the next major
version (across an LTS series). Upgrading provides the latest features, performance, and security
fixes.

To prepare and help ensure that your upgrade to the latest MySQL release is successful, we
recommend the following best practices:

• Decide on Major or Minor Version for Upgrade

• Decide on Upgrade Type

• Review Supported Platforms

• Understand MySQL Server Changes

• Run Upgrade Checker and Fix Incompatibilities

• Run Applications in a Test Environment

• Benchmark Applications and Workload Performance

• Run Both MySQL Versions in Parallel

• Run Final Test Upgrade

• Check MySQL Backup

• Upgrade Production Server

• Enterprise Support

Decide on Major or Minor Version for Upgrade

The MySQL Release Model makes a distinction between LTS (Long Term Support) and Innovation
Releases. LTS releases have 8+ years of support and are meant for production use. Innovation
Releases provide users with the latest features and capabilities. Learn more about the MySQL Release
Model.

Performing a minor version upgrade is straightforward while major version upgrades require strategic
planning and additional testing before the upgrade. This guide is especially useful for major version
upgrades.

Decide on Upgrade Type

There are three main ways to upgrade MySQL, read the associated documentation to determine which
type of upgrade is best suited for your situation.

• An in-place upgrade: Replacing the MySQL Server packages.

287

https://blogs.oracle.com/mysql/post/introducing-mysql-innovation-and-longterm-support-lts-versions
https://blogs.oracle.com/mysql/post/introducing-mysql-innovation-and-longterm-support-lts-versions

Review Supported Platforms

• A logical upgrade: exporting SQL from the old MySQL instance to the new.

• A replication topology upgrade: account for each server's topology role.

Review Supported Platforms

If your current operating system is not supported by the new version of MySQL, then plan to upgrade
the operating system as otherwise an in-place upgrade is not supported.

For a current list of supported platforms, see: https://www.mysql.com/support/supportedplatforms/
database.html

Understand MySQL Server Changes

Each major version comes with new features, changes in behavior, deprecations, and removals. It is
important to understand the impact of each of these to existing applications.

See: Section 3.5, “Changes in MySQL 8.0”.

Run Upgrade Checker and Fix Incompatibilities

MySQL Shell's Upgrade Checker Utility detects incompatibilities between database versions that must
be addressed before performing the upgrade. The util.checkForServerUpgrade() function
verifies that MySQL server instances are ready to upgrade. Connect to the existing MySQL server and
select the MySQL Server version you plan to upgrade to for the utility to report issues to address prior
to an upgrade. These include incompatibilities in data types, storage engines, and so on.

You are ready to upgrade when the upgrade checking utility no longer reports any issues.

Run Applications in a Test Environment

After completing the upgrade checker's requirements, next test your applications on the new target
MySQL server. Check for errors and warnings in the MySQL error log and application logs.

Benchmark Applications and Workload Performance

We recommend benchmarking your own applications and workloads by comparing how they perform
using the previous and new versions of MySQL. Usually, newer MySQL versions add features and
improve performance but there are cases where an upgrade might run slower for specific queries.
Possible issues resulting in performance regressions:

• Prior server configuration is not optimal for newer version

• Changes to data types

• Additional storage required by Multi-byte character set support

• Storage engines changes

• Dropped or changed indexes

• Stronger encryption

• Stronger authentication

• SQL optimizer changes

• Newer version of MySQL require additional memory

• Physical or Virtual Hardware is slower - compute or storage

288

https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-upgrade.html

Run Both MySQL Versions in Parallel

For related information and potential mitigation techniques, see Valid Performance Regressions.

Run Both MySQL Versions in Parallel

To minimize risk, it is best keep the current system running while running the upgraded system in
parallel.

Run Final Test Upgrade

Practice and do a run though prior to upgrading your production server. Thoroughly test the upgrade
procedures before upgrading a production system.

Check MySQL Backup

Check that the full backup exists and is viable before performing the upgrade.

Upgrade Production Server

You are ready to complete the upgrade.

Enterprise Support

If you're a MySQL Enterprise Edition customer, you can also contact the MySQL Support Team experts
with any questions you may have.

3.4 What the MySQL Upgrade Process Upgrades

Installing a new version of MySQL may require upgrading these parts of the existing installation:

• The mysql system schema, which contains tables that store information required by the MySQL
server as it runs (see Section 7.3, “The mysql System Schema”). mysql schema tables fall into two
broad categories:

• Data dictionary tables, which store database object metadata.

• System tables (that is, the remaining non-data dictionary tables), which are used for other
operational purposes.

• Other schemas, some of which are built in and may be considered “owned” by the server, and others
which are not:

• The performance_schema, INFORMATION_SCHEMA, ndbinfo, and sys schemas.

• User schemas.

Two distinct version numbers are associated with parts of the installation that may require upgrading:

• The data dictionary version. This applies to the data dictionary tables.

• The server version, also known as the MySQL version. This applies to the system tables and objects
in other schemas.

In both cases, the actual version applicable to the existing MySQL installation is stored in the data
dictionary, and the current expected version is compiled into the new version of MySQL. When an
actual version is lower than the current expected version, those parts of the installation associated with
that version must be upgraded to the current version. If both versions indicate an upgrade is needed,
the data dictionary upgrade must occur first.

As a reflection of the two distinct versions just mentioned, the upgrade occurs in two steps:

289

What the MySQL Upgrade Process Upgrades

• Step 1: Data dictionary upgrade.

This step upgrades:

• The data dictionary tables in the mysql schema. If the actual data dictionary version is lower than
the current expected version, the server creates data dictionary tables with updated definitions,
copies persisted metadata to the new tables, atomically replaces the old tables with the new ones,
and reinitializes the data dictionary.

• The Performance Schema, INFORMATION_SCHEMA, and ndbinfo.

• Step 2: Server upgrade.

This step comprises all other upgrade tasks. If the server version of the existing MySQL installation is
lower than that of the new installed MySQL version, everything else must be upgraded:

• The system tables in the mysql schema (the remaining non-data dictionary tables).

• The sys schema.

• User schemas.

The data dictionary upgrade (step 1) is the responsibility of the server, which performs this task as
necessary at startup unless invoked with an option that prevents it from doing so. The option is --
upgrade=NONE as of MySQL 8.0.16, --no-dd-upgrade prior to MySQL 8.0.16.

If the data dictionary is out of date but the server is prevented from upgrading it, the server does not
run, and exits with an error instead. For example:

[ERROR] [MY-013381] [Server] Server shutting down because upgrade is
required, yet prohibited by the command line option '--upgrade=NONE'.
[ERROR] [MY-010334] [Server] Failed to initialize DD Storage Engine
[ERROR] [MY-010020] [Server] Data Dictionary initialization failed.

Some changes to the responsibility for step 2 occurred in MySQL 8.0.16:

• Prior to MySQL 8.0.16, mysql_upgrade upgrades the Performance Schema, the
INFORMATION_SCHEMA, and the objects described in step 2. The DBA is expected to invoke
mysql_upgrade manually after starting the server.

• As of MySQL 8.0.16, the server performs all tasks previously handled by mysql_upgrade. Although
upgrading remains a two-step operation, the server performs them both, resulting in a simpler
process.

Depending on the version of MySQL to which you are upgrading, the instructions in In-Place Upgrade
and Logical Upgrade indicate whether the server performs all upgrade tasks or whether you must also
invoke mysql_upgrade after server startup.

Note

Because the server upgrades the Performance Schema,
INFORMATION_SCHEMA, and the objects described in step 2 as of MySQL
8.0.16, mysql_upgrade is unneeded and is deprecated as of that version;
expect it to be removed in a future version of MySQL.

Most aspects of what occurs during step 2 are the same prior to and as of MySQL 8.0.16, although
different command options may be needed to achieve a particular effect.

As of MySQL 8.0.16, the --upgrade server option controls whether and how the server performs an
automatic upgrade at startup:

• With no option or with --upgrade=AUTO, the server upgrades anything it determines to be out of
date (steps 1 and 2).

290

What the MySQL Upgrade Process Upgrades

• With --upgrade=NONE, the server upgrades nothing (skips steps 1 and 2), but also exits with an
error if the data dictionary must be upgraded. It is not possible to run the server with an out-of-date
data dictionary; the server insists on either upgrading it or exiting.

• With --upgrade=MINIMAL, the server upgrades the data dictionary, the Performance Schema, and
the INFORMATION_SCHEMA, if necessary (step 1). Note that following an upgrade with this option,
Group Replication cannot be started, because system tables on which the replication internals
depend are not updated, and reduced functionality might also be apparent in other areas.

• With --upgrade=FORCE, the server upgrades the data dictionary, the Performance Schema, and
the INFORMATION_SCHEMA, if necessary (step 1), and forces an upgrade of everything else (step
2). Expect server startup to take longer with this option because the server checks all objects in all
schemas.

FORCE is useful to force step 2 actions to be performed if the server thinks they are not necessary. One
way that FORCE differs from AUTO is that with FORCE, the server re-creates system tables such as help
tables or time zone tables if they are missing.

The following list shows upgrade commands prior to MySQL 8.0.16 and the equivalent commands for
MySQL 8.0.16 and higher:

• Perform a normal upgrade (steps 1 and 2 as necessary):

• Prior to MySQL 8.0.16: mysqld followed by mysql_upgrade

• As of MySQL 8.0.16: mysqld

• Perform only step 1 as necessary:

• Prior to MySQL 8.0.16: It is not possible to perform all upgrade tasks described in step 1 while
excluding those described in step 2. However, you can avoid upgrading user schemas and the
sys schema using mysqld followed by mysql_upgrade with the --upgrade-system-tables
and --skip-sys-schema options.

• As of MySQL 8.0.16: mysqld --upgrade=MINIMAL

• Perform step 1 as necessary, and force step 2:

• Prior to MySQL 8.0.16: mysqld followed by mysql_upgrade --force

• As of MySQL 8.0.16: mysqld --upgrade=FORCE

Prior to MySQL 8.0.16, certain mysql_upgrade options affect the actions it performs. The following
table shows which server --upgrade option values to use as of MySQL 8.0.16 to achieve similar
effects. (These are not necessarily exact equivalents because a given --upgrade option value may
have additional effects.)

mysql_upgrade Option Server Option

--skip-sys-schema --upgrade=NONE or --upgrade=MINIMAL

--upgrade-system-tables --upgrade=NONE or --upgrade=MINIMAL

--force --upgrade=FORCE

Additional notes about what occurs during upgrade step 2:

• Step 2 installs the sys schema if it is not installed, and upgrades it to the current version otherwise.
An error occurs if a sys schema exists but has no version view, on the assumption that its
absence indicates a user-created schema:

A sys schema exists with no sys.version view. If
you have a user created sys schema, this must be renamed for the

291

What the MySQL Upgrade Process Upgrades

upgrade to succeed.

To upgrade in this case, remove or rename the existing sys schema first. Then perform the upgrade
procedure again. (It may be necessary to force step 2.)

To prevent the sys schema check:

• As of MySQL 8.0.16: Start the server with the --upgrade=NONE or --upgrade=MINIMAL option.

• Prior to MySQL 8.0.16: Invoke mysql_upgrade with the --skip-sys-schema option.

• Step 2 upgrades the system tables to ensure that they have the current structure. This is true
whether the server or mysql_upgrade performs the step. With respect to the content of the help
tables and time zone tables, mysql_upgrade does not load either type of table, whereas the server
loads the help tables, but not the time zone tables. (That is, prior to MySQL 8.0.16, the server loads
the help tables only at data directory initialization time. As of MySQL 8.0.16, it loads the help tables
at initialization and upgrade time.) The procedure for loading time zone tables is platform dependent
and requires decision making by the DBA, so it cannot be done automatically.

• From MySQL 8.0.30, when Step 2 is upgrading the system tables in the mysql schema, the column
order in the primary key of the mysql.db, mysql.tables_priv, mysql.columns_priv and
mysql.procs_priv tables is changed to place the host name and user name columns together.
Placing the host name and user name together means that index lookup can be used, which
improves performance for CREATE USER, DROP USER, and RENAME USER statements, and for ACL
checks for multiple users with multiple privileges. Dropping and re-creating the index is necessary
and might take some time if the system has a large number of users and privileges.

• Step 2 processes all tables in all user schemas as necessary. Table checking might take a long
time to complete. Each table is locked and therefore unavailable to other sessions while it is being
processed. Check and repair operations can be time-consuming, particularly for large tables. Table
checking uses the FOR UPGRADE option of the CHECK TABLE statement. For details about what this
option entails, see Section 15.7.3.2, “CHECK TABLE Statement”.

To prevent table checking:

• As of MySQL 8.0.16: Start the server with the --upgrade=NONE or --upgrade=MINIMAL option.

• Prior to MySQL 8.0.16: Invoke mysql_upgrade with the --upgrade-system-tables option.

To force table checking:

• As of MySQL 8.0.16: Start the server with the --upgrade=FORCE option.

• Prior to MySQL 8.0.16: Invoke mysql_upgrade with the --force option.

• Step 2 saves the MySQL version number in a file named mysql_upgrade_info in the data
directory.

To ignore the mysql_upgrade_info file and perform the check regardless:

• As of MySQL 8.0.16: Start the server with the --upgrade=FORCE option.

• Prior to MySQL 8.0.16: Invoke mysql_upgrade with the --force option.

Note

The mysql_upgrade_info file is deprecated; expect it to be removed in a
future version of MySQL.

• Step 2 marks all checked and repaired tables with the current MySQL version number. This ensures
that the next time upgrade checking occurs with the same version of the server, it can be determined
whether there is any need to check or repair a given table again.

292

Changes in MySQL 8.0

3.5 Changes in MySQL 8.0
Before upgrading to MySQL 8.0, review the changes described in this section to identify those that
apply to your current MySQL installation and applications. Perform any recommended actions.

Changes marked as Incompatible change are incompatibilities with earlier versions of MySQL, and
may require your attention before upgrading. Our aim is to avoid these changes, but occasionally they
are necessary to correct problems that would be worse than an incompatibility between releases. If an
upgrade issue applicable to your installation involves an incompatibility, follow the instructions given in
the description.

• Data Dictionary Changes

• caching_sha2_password as the Preferred Authentication Plugin

• Configuration Changes

• Server Changes

• InnoDB Changes

• SQL Changes

• Changed Server Defaults

• Valid Performance Regressions

Data Dictionary Changes

MySQL Server 8.0 incorporates a global data dictionary containing information about database objects
in transactional tables. In previous MySQL series, dictionary data was stored in metadata files and
nontransactional system tables. As a result, the upgrade procedure requires that you verify the upgrade
readiness of your installation by checking specific prerequisites. For more information, see Section 3.6,
“Preparing Your Installation for Upgrade”. A data dictionary-enabled server entails some general
operational differences; see Section 16.7, “Data Dictionary Usage Differences”.

caching_sha2_password as the Preferred Authentication Plugin

The caching_sha2_password and sha256_password authentication plugins provide more secure
password encryption than the mysql_native_password plugin, and caching_sha2_password
provides better performance than sha256_password. Due to these superior security and performance
characteristics of caching_sha2_password, it is as of MySQL 8.0 the preferred authentication
plugin, and is also the default authentication plugin rather than mysql_native_password. This
change affects both the server and the libmysqlclient client library:

• For the server, the default value of the default_authentication_plugin system variable
changes from mysql_native_password to caching_sha2_password.

This change applies only to new accounts created after installing or upgrading to MySQL 8.0 or
higher. For accounts already existing in an upgraded installation, their authentication plugin remains
unchanged. Existing users who wish to switch to caching_sha2_password can do so using the
ALTER USER statement:

ALTER USER user
 IDENTIFIED WITH caching_sha2_password
 BY 'password';

• The libmysqlclient library treats caching_sha2_password as the default authentication
plugin rather than mysql_native_password.

The following sections discuss the implications of the more prominent role of
caching_sha2_password:

293

caching_sha2_password as the Preferred Authentication Plugin

• caching_sha2_password Compatibility Issues and Solutions

• caching_sha2_password-Compatible Clients and Connectors

• caching_sha2_password and the root Administrative Account

• caching_sha2_password and Replication

caching_sha2_password Compatibility Issues and Solutions

Important

If your MySQL installation must serve pre-8.0 clients and you encounter
compatibility issues after upgrading to MySQL 8.0 or higher, the simplest
way to address those issues and restore pre-8.0 compatibility is to
reconfigure the server to revert to the previous default authentication plugin
(mysql_native_password). For example, use these lines in the server option
file:

[mysqld]
default_authentication_plugin=mysql_native_password

That setting enables pre-8.0 clients to connect to 8.0 servers until such time
as the clients and connectors in use at your installation are upgraded to know
about caching_sha2_password. However, the setting should be viewed as
temporary, not as a long term or permanent solution, because it causes new
accounts created with the setting in effect to forego the improved authentication
security provided by caching_sha2_password.

The use of caching_sha2_password offers more secure password hashing than
mysql_native_password (and consequent improved client connection authentication). However, it
also has compatibility implications that may affect existing MySQL installations:

• Clients and connectors that have not been updated to know about caching_sha2_password
may have trouble connecting to a MySQL 8.0 server configured with caching_sha2_password
as the default authentication plugin, even to use accounts that do not authenticate with
caching_sha2_password. This issue occurs because the server specifies the name of its
default authentication plugin to clients. If a client or connector is based on a client/server protocol
implementation that does not gracefully handle an unrecognized default authentication plugin, it may
fail with an error such as one of these:

Authentication plugin 'caching_sha2_password' is not supported

Authentication plugin 'caching_sha2_password' cannot be loaded:
dlopen(/usr/local/mysql/lib/plugin/caching_sha2_password.so, 2):
image not found

Warning: mysqli_connect(): The server requested authentication
method unknown to the client [caching_sha2_password]

For information about writing connectors to gracefully handle requests from the server for unknown
default authentication plugins, see Authentication Plugin Connector-Writing Considerations.

• Clients that use an account that authenticates with caching_sha2_password must use either
a secure connection (made using TCP using TLS/SSL credentials, a Unix socket file, or shared
memory), or an unencrypted connection that supports password exchange using an RSA key
pair. This security requirement does not apply to mysql_native_passsword, so the switch to
caching_sha2_password may require additional configuration (see Section 8.4.1.2, “Caching
SHA-2 Pluggable Authentication”). However, client connections in MySQL 8.0 prefer use of TLS/SSL
by default, so clients that already conform to that preference may need no additional configuration.

• Clients and connectors that have not been updated to know about caching_sha2_password
cannot connect to accounts that authenticate with caching_sha2_password because they do not

294

caching_sha2_password as the Preferred Authentication Plugin

recognize this plugin as valid. (This is a particular instance of how client/server authentication plugin
compatibility requirements apply, as discussed at Authentication Plugin Client/Server Compatibility.)
To work around this issue, relink clients against libmysqlclient from MySQL 8.0 or higher, or
obtain an updated connector that recognizes caching_sha2_password.

• Because caching_sha2_password is also now the default authentication plugin in the
libmysqlclient client library, authentication requires an extra round trip in the client/server
protocol for connections from MySQL 8.0 clients to accounts that use mysql_native_password
(the previous default authentication plugin), unless the client program is invoked with a --default-
auth=mysql_native_password option.

The libmysqlclient client library for pre-8.0 MySQL versions is able to connect to MySQL 8.0
servers (except for accounts that authenticate with caching_sha2_password). That means pre-8.0
clients based on libmysqlclient should also be able to connect. Examples:

• Standard MySQL clients such as mysql and mysqladmin are libmysqlclient-based.

• The DBD::mysql driver for Perl DBI is libmysqlclient-based.

• MySQL Connector/Python has a C Extension module that is libmysqlclient-based. To use it,
include the use_pure=False option at connect time.

When an existing MySQL 8.0 installation is upgraded to MySQL 8.0.4 or higher, some older
libmysqlclient-based clients may “automatically” upgrade if they are dynamically linked, because
they use the new client library installed by the upgrade. For example, if the DBD::mysql driver for Perl
DBI uses dynamic linking, it can use the libmysqlclient in place after an upgrade to MySQL 8.0.4
or higher, with this result:

• Prior to the upgrade, DBI scripts that use DBD::mysql can connect to a MySQL 8.0 server, except for
accounts that authenticate with caching_sha2_password.

• After the upgrade, the same scripts become able to use caching_sha2_password accounts as
well.

However, the preceding results occur because libmysqlclient instances from MySQL 8.0
installations prior to 8.0.4 are binary compatible: They both use a shared library major version number
of 21. For clients linked to libmysqlclient from MySQL 5.7 or older, they link to a shared library
with a different version number that is not binary compatible. In this case, the client must be recompiled
against libmysqlclient from 8.0.4 or higher for full compatibility with MySQL 8.0 servers and
caching_sha2_password accounts.

MySQL Connector/J 5.1 through 8.0.8 is able to connect to MySQL 8.0 servers, except for accounts
that authenticate with caching_sha2_password. (Connector/J 8.0.9 or higher is required to connect
to caching_sha2_password accounts.)

Clients that use an implementation of the client/server protocol other than libmysqlclient may
need to be upgraded to a newer version that understands the new authentication plugin. For example,
in PHP, MySQL connectivity usually is based on mysqlnd, which currently does not know about
caching_sha2_password. Until an updated version of mysqlnd is available, the way to enable PHP
clients to connect to MySQL 8.0 is to reconfigure the server to revert to mysql_native_password as
the default authentication plugin, as previously discussed.

If a client or connector supports an option to explicitly specify a default authentication plugin, use it to
name a plugin other than caching_sha2_password. Examples:

• Some MySQL clients support a --default-auth option. (Standard MySQL clients such as
mysql and mysqladmin support this option but can successfully connect to 8.0 servers without it.
However, other clients may support a similar option. If so, it is worth trying it.)

• Programs that use the libmysqlclient C API can call the mysql_options() function with the
MYSQL_DEFAULT_AUTH option.

295

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

caching_sha2_password as the Preferred Authentication Plugin

• MySQL Connector/Python scripts that use the native Python implementation of the client/server
protocol can specify the auth_plugin connection option. (Alternatively, use the Connector/Python
C Extension, which is able to connect to MySQL 8.0 servers without the need for auth_plugin.)

caching_sha2_password-Compatible Clients and Connectors

If a client or connector is available that has been updated to know about caching_sha2_password,
using it is the best way to ensure compatibility when connecting to a MySQL 8.0 server configured with
caching_sha2_password as the default authentication plugin.

These clients and connectors have been upgraded to support caching_sha2_password:

• The libmysqlclient client library in MySQL 8.0 (8.0.4 or higher). Standard MySQL clients such
as mysql and mysqladmin are libmysqlclient-based, so they are compatible as well.

• The libmysqlclient client library in MySQL 5.7 (5.7.23 or higher). Standard MySQL clients such
as mysql and mysqladmin are libmysqlclient-based, so they are compatible as well.

• MySQL Connector/C++ 1.1.11 or higher or 8.0.7 or higher.

• MySQL Connector/J 8.0.9 or higher.

• MySQL Connector/NET 8.0.10 or higher (through the classic MySQL protocol).

• MySQL Connector/Node.js 8.0.9 or higher.

• PHP: the X DevAPI PHP extension (mysql_xdevapi) supports caching_sha2_password.

PHP: the PDO_MySQL and ext/mysqli extensions do not support caching_sha2_password.
In addition, when used with PHP versions before 7.1.16 and PHP 7.2 before 7.2.4, they fail
to connect with default_authentication_plugin=caching_sha2_password even if
caching_sha2_password is not used.

caching_sha2_password and the root Administrative Account

For upgrades to MySQL 8.0, the authentication plugin existing accounts remains unchanged, including
the plugin for the 'root'@'localhost' administrative account.

For new MySQL 8.0 installations, when you initialize the data directory (using the instructions at
Section 2.9.1, “Initializing the Data Directory”), the 'root'@'localhost' account is created, and that
account uses caching_sha2_password by default. To connect to the server following data directory
initialization, you must therefore use a client or connector that supports caching_sha2_password.
If you can do this but prefer that the root account use mysql_native_password after installation,
install MySQL and initialize the data directory as you normally would. Then connect to the server as
root and use ALTER USER as follows to change the account authentication plugin and password:

ALTER USER 'root'@'localhost'
 IDENTIFIED WITH mysql_native_password
 BY 'password';

If the client or connector that you use does not yet support caching_sha2_password, you
can use a modified data directory-initialization procedure that associates the root account with
mysql_native_password as soon as the account is created. To do so, use either of these
techniques:

• Supply a --default-authentication-plugin=mysql_native_password option along with
--initialize or --initialize-insecure.

• Set default_authentication_plugin to mysql_native_password in an option file,
and name that option file using a --defaults-file option along with --initialize or --
initialize-insecure. (In this case, if you continue to use that option file for subsequent
server startups, new accounts are created with mysql_native_password rather than
caching_sha2_password unless you remove the default_authentication_plugin setting
from the option file.)

296

Configuration Changes

caching_sha2_password and Replication

In replication scenarios for which all servers have been upgraded to MySQL 8.0.4 or higher, replica
connections to source servers can use accounts that authenticate with caching_sha2_password.
For such connections, the same requirement applies as for other clients that use accounts that
authenticate with caching_sha2_password: Use a secure connection or RSA-based password
exchange.

To connect to a caching_sha2_password account for source/replica replication:

• Use any of the following CHANGE MASTER TO options:

MASTER_SSL = 1
GET_MASTER_PUBLIC_KEY = 1
MASTER_PUBLIC_KEY_PATH='path to RSA public key file'

• Alternatively, you can use the RSA public key-related options if the required keys are supplied at
server startup.

To connect to a caching_sha2_password account for Group Replication:

• For MySQL built using OpenSSL, set any of the following system variables:

SET GLOBAL group_replication_recovery_use_ssl = ON;
SET GLOBAL group_replication_recovery_get_public_key = 1;
SET GLOBAL group_replication_recovery_public_key_path = 'path to RSA public key file';

• Alternatively, you can use the RSA public key-related options if the required keys are supplied at
server startup.

Configuration Changes

• Incompatible change: A MySQL storage engine is now responsible for providing its own partitioning
handler, and the MySQL server no longer provides generic partitioning support. InnoDB and NDB are
the only storage engines that provide a native partitioning handler that is supported in MySQL 8.0. A
partitioned table using any other storage engine must be altered—either to convert it to InnoDB or
NDB, or to remove its partitioning—before upgrading the server, else it cannot be used afterwards.

For information about converting MyISAM tables to InnoDB, see Section 17.6.1.5, “Converting
Tables from MyISAM to InnoDB”.

A table creation statement that would result in a partitioned table using a storage engine without such
support fails with an error (ER_CHECK_NOT_IMPLEMENTED) in MySQL 8.0. If you import databases
from a dump file created in MySQL 5.7 (or earlier) using mysqldump into a MySQL 8.0 server, you
must make sure that any statements creating partitioned tables do not also specify an unsupported
storage engine, either by removing any references to partitioning, or by specifying the storage engine
as InnoDB or allowing it to be set as InnoDB by default.

Note

The procedure given at Section 3.6, “Preparing Your Installation for Upgrade”,
describes how to identify partitioned tables that must be altered before
upgrading to MySQL 8.0.

See Section 26.6.2, “Partitioning Limitations Relating to Storage Engines”, for further information.

• Incompatible change: Several server error codes are not used and have been removed (for a list,
see Features Removed in MySQL 8.0). Applications that test specifically for any of them should be
updated.

• Important change: The default character set has changed from latin1 to utf8mb4. These system
variables are affected:

297

Server Changes

• The default value of the character_set_server and character_set_database system
variables has changed from latin1 to utf8mb4.

• The default value of the collation_server and collation_database system variables has
changed from latin1_swedish_ci to utf8mb4_0900_ai_ci.

As a result, the default character set and collation for new objects differ from previously unless an
explicit character set and collation are specified. This includes databases and objects within them,
such as tables, views, and stored programs. Assuming that the previous defaults were used, one
way to preserve them is to start the server with these lines in the my.cnf file:

[mysqld]
character_set_server=latin1
collation_server=latin1_swedish_ci

In a replicated setting, when upgrading from MySQL 5.7 to 8.0, it is advisable to change the default
character set back to the character set used in MySQL 5.7 before upgrading. After the upgrade is
completed, the default character set can be changed to utf8mb4.

In addition, you should be aware that MySQL 8.0 enforces checks on permitted characters in a given
character set which MySQL 5.7 does not; this is a known issue. This means that, prior to attempting
to upgrade, you should ensure that no comments contain characters that are not defined for the
character set in use. You can fix this in either of two ways:

• Change the character set to one that includes the character or characters in question.

• Remove the offending character or characters.

The preceding applies to table, file, and index comments.

• Incompatible change: As of MySQL 8.0.11, it is prohibited to start the server with a
lower_case_table_names setting that is different from the setting used when the server was
initialized. The restriction is necessary because collations used by various data dictionary table
fields are based on the lower_case_table_names setting that was defined when the server was
initialized, and restarting the server with a different setting would introduce inconsistencies with
respect to how identifiers are ordered and compared.

Server Changes

• In MySQL 8.0.11, several deprecated features related to account management have been removed,
such as use of the GRANT statement to modify nonprivilege characteristics of user accounts, the
NO_AUTO_CREATE_USER SQL mode, the PASSWORD() function, and the old_passwords system
variable.

Replication from MySQL 5.7 to 8.0 of statements that refer to these removed features can cause
replication failure. Applications that use any of the removed features should be revised to avoid them
and use alternatives when possible, as described in Features Removed in MySQL 8.0.

To avoid a startup failure on MySQL 8.0, remove any instance of NO_AUTO_CREATE_USER from
sql_mode system variable settings in MySQL option files.

Loading a dump file that includes the NO_AUTO_CREATE_USER SQL mode in stored program
definitions into a MySQL 8.0 server causes a failure. As of MySQL 5.7.24 and MySQL 8.0.13,
mysqldump removes NO_AUTO_CREATE_USER from stored program definitions. Dump files
created with an earlier version of mysqldump must be modified manually to remove instances of
NO_AUTO_CREATE_USER.

• In MySQL 8.0.11, these deprecated compatibility SQL modes were removed: DB2, MAXDB,
MSSQL, MYSQL323, MYSQL40, ORACLE, POSTGRESQL, NO_FIELD_OPTIONS, NO_KEY_OPTIONS,

298

Server Changes

NO_TABLE_OPTIONS. They can no longer be assigned to the sql_mode system variable or used as
permitted values for the mysqldump --compatible option.

Removal of MAXDB means that the TIMESTAMP data type for CREATE TABLE or ALTER TABLE is no
longer treated as DATETIME.

Replication from MySQL 5.7 to 8.0 of statements that refer to the removed SQL modes can cause
replication failure. This includes replication of CREATE statements for stored programs (stored
procedures and functions, triggers, and events) that are executed while the current sql_mode value
includes any of the removed modes. Applications that use any of the removed modes should be
revised to avoid them.

• The text of many MySQL 8.0 error messages has been revised and improved to provide more and
better information than in MySQL 5.7. If your application depends on specific content or formatting of
error messages, you should test these and be prepared to update the application accordingly prior to
performing an upgrade.

• As of MySQL 8.0.3, spatial data types permit an SRID attribute, to explicitly indicate the spatial
reference system (SRS) for values stored in the column. See Section 13.4.1, “Spatial Data Types”.

A spatial column with an explicit SRID attribute is SRID-restricted: The column takes only values with
that ID, and SPATIAL indexes on the column become subject to use by the optimizer. The optimizer
ignores SPATIAL indexes on spatial columns with no SRID attribute. See Section 10.3.3, “SPATIAL
Index Optimization”. If you want the optimizer to consider SPATIAL indexes on spatial columns that
are not SRID-restricted, each such column should be modified:

• Verify that all values within the column have the same SRID. To determine the SRIDs contained in
a geometry column col_name, use the following query:

SELECT DISTINCT ST_SRID(col_name) FROM tbl_name;

If the query returns more than one row, the column contains a mix of SRIDs. In that case, modify
its contents so all values have the same SRID.

• Redefine the column to have an explicit SRID attribute.

• Recreate the SPATIAL index.

• Several spatial functions were removed in MySQL 8.0.0 due to a spatial function namespace change
that implemented an ST_ prefix for functions that perform an exact operation, or an MBR prefix for
functions that perform an operation based on minimum bounding rectangles. The use of removed
spatial functions in generated column definitions could cause an upgrade failure. Before upgrading,
run mysqlcheck --check-upgrade for removed spatial functions and replace any that you find
with their ST_ or MBR named replacements. For a list of removed spatial functions, refer to Features
Removed in MySQL 8.0.

• The BACKUP_ADMIN privilege is automatically granted to users with the RELOAD privilege when
performing an in-place upgrade to MySQL 8.0.3 or higher.

• From MySQL 8.0.13, because of differences between row-based or mixed replication mode and
statement-based replication mode in the way that temporary tables are handled, there are new
restrictions on switching the binary logging format at runtime.

• SET @@SESSION.binlog_format cannot be used if the session has any open temporary tables.

• SET @@global.binlog_format and SET @@persist.binlog_format
cannot be used if any replication channel has any open temporary tables. SET
@@persist_only.binlog_format is allowed if replication channels have open temporary
tables, because unlike PERSIST, PERSIST_ONLY does not modify the runtime global system
variable value.

299

InnoDB Changes

• SET @@global.binlog_format and SET @@persist.binlog_format cannot be
used if any replication channel applier is running. This is because the change only takes
effect on a replication channel when its applier is restarted, at which time the replication
channel might have open temporary tables. This behavior is more restrictive than before. SET
@@persist_only.binlog_format is allowed if any replication channel applier is running.

• From MySQL 8.0.27, configuring a session setting for internal_tmp_mem_storage_engine
requires the SESSION_VARIABLES_ADMIN or SYSTEM_VARIABLES_ADMIN privilege.

• As of MySQL 8.0.27, the clone plugin permits concurrent DDL operations on the donor MySQL
Server instance while a cloning operation is in progress. Previously, a backup lock was held during
the cloning operation, preventing concurrent DDL on the donor. To revert to the previous behavior
of blocking concurrent DDL on the donor during a clone operation, enable the clone_block_ddl
variable. See Section 7.6.7.4, “Cloning and Concurrent DDL”.

• From MySQL 8.0.30, error log components listed in the log_error_services value at startup
are loaded implicitly early in the MySQL Server startup sequence. If you have previously installed
loadable error log components using INSTALL COMPONENT and you list those components in
a log_error_services setting that is read at startup (from an option file, for example), your
configuration should be updated to avoid startup warnings. For more information, see Error Log
Configuration Methods.

InnoDB Changes

• INFORMATION_SCHEMA views based on InnoDB system tables were replaced by internal system
views on data dictionary tables. Affected InnoDB INFORMATION_SCHEMA views were renamed:

Table 3.1 Renamed InnoDB Information Schema Views

Old Name New Name

INNODB_SYS_COLUMNS INNODB_COLUMNS

INNODB_SYS_DATAFILES INNODB_DATAFILES

INNODB_SYS_FIELDS INNODB_FIELDS

INNODB_SYS_FOREIGN INNODB_FOREIGN

INNODB_SYS_FOREIGN_COLS INNODB_FOREIGN_COLS

INNODB_SYS_INDEXES INNODB_INDEXES

INNODB_SYS_TABLES INNODB_TABLES

INNODB_SYS_TABLESPACES INNODB_TABLESPACES

INNODB_SYS_TABLESTATS INNODB_TABLESTATS

INNODB_SYS_VIRTUAL INNODB_VIRTUAL

After upgrading to MySQL 8.0.3 or higher, update any scripts that reference previous InnoDB
INFORMATION_SCHEMA view names.

• The zlib library version bundled with MySQL was raised from version 1.2.3 to version 1.2.11.

The zlib compressBound() function in zlib 1.2.11 returns a slightly higher estimate of the
buffer size required to compress a given length of bytes than it did in zlib version 1.2.3. The
compressBound() function is called by InnoDB functions that determine the maximum row size
permitted when creating compressed InnoDB tables or inserting and updating rows in compressed
InnoDB tables. As a result, CREATE TABLE ... ROW_FORMAT=COMPRESSED, INSERT, and
UPDATE operations with row sizes very close to the maximum row size that were successful in
earlier releases could now fail. To avoid this issue, test CREATE TABLE statements for compressed
InnoDB tables with large rows on a MySQL 8.0 test instance prior to upgrading.

300

http://www.zlib.net/

InnoDB Changes

• With the introduction of the --innodb-directories feature, the location of file-per-table and
general tablespace files created with an absolute path or in a location outside of the data directory
should be added to the innodb_directories argument value. Otherwise, InnoDB is not able to
locate these files during recovery. To view tablespace file locations, query the Information Schema
FILES table:

SELECT TABLESPACE_NAME, FILE_NAME FROM INFORMATION_SCHEMA.FILES \G

• Undo logs can no longer reside in the system tablespace. In MySQL 8.0, undo logs reside in two
undo tablespaces by default. For more information, see Section 17.6.3.4, “Undo Tablespaces”.

When upgrading from MySQL 5.7 to MySQL 8.0, any undo tablespaces that exist in the MySQL
5.7 instance are removed and replaced by two new default undo tablespaces. Default undo
tablespaces are created in the location defined by the innodb_undo_directory variable. If
the innodb_undo_directory variable is undefined, undo tablespaces are created in the data
directory. Upgrade from MySQL 5.7 to MySQL 8.0 requires a slow shutdown which ensures that
undo tablespaces in the MySQL 5.7 instance are empty, permitting them to be removed safely.

When upgrading to MySQL 8.0.14 or later from an earlier MySQL 8.0 release, undo tablespaces that
exist in the pre-upgrade instance as a result of an innodb_undo_tablespaces setting greater
than 2 are treated as user-defined undo tablespaces, which can be deactivated and dropped using
ALTER UNDO TABLESPACE and DROP UNDO TABLESPACE syntax, respectively, after upgrading.
Upgrade within the MySQL 8.0 release series may not always require a slow shutdown which means
that existing undo tablespaces could contain undo logs. Therefore, existing undo tablespaces are not
removed by the upgrade process.

• Incompatible change: As of MySQL 8.0.17, the CREATE TABLESPACE ... ADD DATAFILE
clause does not permit circular directory references. For example, the circular directory reference
(/../) in the following statement is not permitted:

CREATE TABLESPACE ts1 ADD DATAFILE ts1.ibd 'any_directory/../ts1.ibd';

An exception to the restriction exists on Linux, where a circular directory reference is permitted if
the preceding directory is a symbolic link. For example, the data file path in the example above is
permitted if any_directory is a symbolic link. (It is still permitted for data file paths to begin with
'../'.)

To avoid upgrade issues, remove any circular directory references from tablespace data file paths
before upgrading to MySQL 8.0.17 or higher. To inspect tablespace paths, query the Information
Schema INNODB_DATAFILES table.

• Due to a regression introduced in MySQL 8.0.14, in-place upgrade on a case-sensitive file system
from MySQL 5.7 or a MySQL 8.0 release prior to MySQL 8.0.14 to MySQL 8.0.16 failed for instances
with partitioned tables and lower_case_table_names=1. The failure was caused by a case
mismatch issue related to partitioned table file names. The fix that introduced the regression was
reverted, which permits upgrades to MySQL 8.0.17 from MySQL 5.7 or MySQL 8.0 releases prior to
MySQL 8.0.14 to function as normal. However, the regression is still present in the MySQL 8.0.14,
8.0.15, and 8.0.16 releases.

In-place upgrade on a case-sensitive file system from MySQL 8.0.14, 8.0.15, or 8.0.16 to MySQL
8.0.17 fails with the following error when starting the server after upgrading binaries or packages to
MySQL 8.0.17 if partitioned tables are present and lower_case_table_names=1:

Upgrading from server version version_number with
partitioned tables and lower_case_table_names == 1 on a case sensitive file
system may cause issues, and is therefore prohibited. To upgrade anyway, restart
the new server version with the command line option 'upgrade=FORCE'. When
upgrade is completed, please execute 'RENAME TABLE part_table_name
TO new_table_name; RENAME TABLE new_table_name
TO part_table_name;' for each of the partitioned tables.

301

InnoDB Changes

Please see the documentation for further information.

If you encounter this error when upgrading to MySQL 8.0.17, perform the following workaround:

1. Restart the server with --upgrade=force to force the upgrade operation to proceed.

2. Identify partitioned table file names with lowercase partition name delimiters (#p# or #sp#):

mysql> SELECT FILE_NAME FROM INFORMATION_SCHEMA.FILES WHERE FILE_NAME LIKE '%#p#%' OR FILE_NAME LIKE '%#sp#%';

3. For each file identified, rename the associated table using a temporary name, then rename the
table back to its original name.

mysql> RENAME TABLE table_name TO temporary_table_name;
mysql> RENAME TABLE temporary_table_name TO table_name;

4. Verify that there are no partitioned table file names lowercase partition name delimiters (an empty
result set should be returned).

mysql> SELECT FILE_NAME FROM INFORMATION_SCHEMA.FILES WHERE FILE_NAME LIKE '%#p#%' OR FILE_NAME LIKE '%#sp#%';
Empty set (0.00 sec)

5. Run ANALYZE TABLE on each renamed table to update the optimizer statistics in the
mysql.innodb_index_stats and mysql.innodb_table_stats tables.

Because of the regression still present in the MySQL 8.0.14, 8.0.15, and 8.0.16 releases, importing
partitioned tables from MySQL 8.0.14, 8.0.15, or 8.0.16 to MySQL 8.0.17 is not supported on case-
sensitive file systems where lower_case_table_names=1. Attempting to do so results in a
“Tablespace is missing for table” error.

• MySQL uses delimiter strings when constructing tablespace names and file names for table
partitions. A “ #p# ” delimiter string precedes partition names, and an “ #sp# ” delimiter string
precedes subpartition names, as shown:

 schema_name.table_name#p#partition_name#sp#subpartition_name
 table_name#p#partition_name#sp#subpartition_name.ibd

Historically, delimiter strings have been uppercase (#P# and #SP#) on case-sensitive file systems
such as Linux, and lowercase (#p# and #sp#) on case-insensitive file systems such as Windows.
As of MySQL 8.0.19, delimiter strings are lowercase on all file systems. This change prevents
issues when migrating data directories between case-sensitive and case-insensitive file systems.
Uppercase delimiter strings are no longer used.

Additionally, partition tablespace names and file names generated based on user-specified partition
or subpartition names, which can be specified in uppercase or lowercase, are now generated (and
stored internally) in lowercase regardless of the lower_case_table_names setting to ensure
case-insensitivity. For example, if a table partition is created with the name PART_1, the tablespace
name and file name are generated in lowercase:

 schema_name.table_name#p#part_1
 table_name#p#part_1.ibd

During upgrade, MySQL checks and modifies if necessary:

• Partition file names on disk and in the data dictionary to ensure lowercase delimiters and partition
names.

• Partition metadata in the data dictionary for related issues introduced by previous bug fixes.

• InnoDB statistics data for related issues introduced by previous bug fixes.

During tablespace import operations, partition tablespace file names on disk are checked and
modified if necessary to ensure lowercase delimiters and partition names.

302

SQL Changes

• As of MySQL 8.0.21, a warning is written to the error log at startup or when upgrading from MySQL
5.7 if tablespace data files are found to reside in unknown directories. Known directories are those
defined by the datadir, innodb_data_home_dir, and innodb_directories variables.
To make a directory known, add it to the innodb_directories setting. Making directories
known ensures that data files can be found during recovery. For more information, see Tablespace
Discovery During Crash Recovery.

• Important change: From MySQL 8.0.30, the innodb_redo_log_capacity variable controls
the amount of disk space occupied by redo log files. With this change, the default number of redo
log files and their location has also changed. From MySQL 8.0.30, InnoDB maintains 32 redo log
files in the #innodb_redo directory in the data directory. Previously, InnoDB created two redo log
files in the data directory by default, and the number and size of redo log files were controlled by the
innodb_log_files_in_group and innodb_log_file_size variables. These two variables are
now deprecated.

When the innodb_redo_log_capacity setting is defined, innodb_log_files_in_group
and innodb_log_file_size settings are ignored; otherwise, those settings are used to
compute the innodb_redo_log_capacity setting (innodb_log_files_in_group *
innodb_log_file_size = innodb_redo_log_capacity). If none of those variables are set,
redo log capacity is set to the innodb_redo_log_capacity default value, which is 104857600
bytes (100MB).

As is generally required for any upgrade, this change requires a clean shutdown before upgrading.

For more information about this feature, see Section 17.6.5, “Redo Log”.

• Before MySQL 5.7.35, there was no size limitation for indexes in tables with redundant or compact
row format. As of MySQL 5.7.35, the limit is 767 bytes. An upgrade from a MySQL version before
5.7.35 to MySQL 8.0 can produce inaccessible tables. If a table with redundant or compact row
format has an index larger than 767 bytes, drop the index and re-create it before an upgrade to
MySQL 8.0. The error message is:

mysql> ERROR 1709 (HY000): Index column size too large. The maximum column size is 767 bytes.

SQL Changes

• Incompatible change: As of MySQL 8.0.13, the deprecated ASC or DESC qualifiers for GROUP BY
clauses have been removed. Queries that previously relied on GROUP BY sorting may produce
results that differ from previous MySQL versions. To produce a given sort order, provide an ORDER
BY clause.

Queries and stored program definitions from MySQL 8.0.12 or lower that use ASC or DESC qualifiers
for GROUP BY clauses should be amended. Otherwise, upgrading to MySQL 8.0.13 or higher may
fail, as may replicating to MySQL 8.0.13 or higher replica servers.

• Some keywords may be reserved in MySQL 8.0 that were not reserved in MySQL 5.7. See
Section 11.3, “Keywords and Reserved Words”. This can cause words previously used as identifiers
to become illegal. To fix affected statements, use identifier quoting. See Section 11.2, “Schema
Object Names”.

• After upgrading, it is recommended that you test optimizer hints specified in application code
to ensure that the hints are still required to achieve the desired optimization strategy. Optimizer
enhancements can sometimes render certain optimizer hints unnecessary. In some cases, an
unnecessary optimizer hint may even be counterproductive.

• Incompatible change: In MySQL 5.7, specifying a FOREIGN KEY definition for an InnoDB table
without a CONSTRAINT symbol clause, or specifying the CONSTRAINT keyword without a
symbol, causes InnoDB to use a generated constraint name. That behavior changed in MySQL 8.0,
with InnoDB using the FOREIGN KEY index_name value instead of a generated name. Because
constraint names must be unique per schema (database), the change caused errors due to foreign
key index names that were not unique per schema. To avoid such errors, the new constraint naming

303

Changed Server Defaults

behavior has been reverted in MySQL 8.0.16, and InnoDB once again uses a generated constraint
name.

For consistency with InnoDB, NDB releases based on MySQL 8.0.16 or higher use a generated
constraint name if the CONSTRAINT symbol clause is not specified, or the CONSTRAINT keyword
is specified without a symbol. NDB releases based on MySQL 5.7 and earlier MySQL 8.0 releases
used the FOREIGN KEY index_name value.

The changes described above may introduce incompatibilities for applications that depend on the
previous foreign key constraint naming behavior.

• The handling of system variable values by MySQL flow control functions such as IFNULL() and
CASE() changed in MySQL 8.0.22; system variable values are now handled as column values of
the same character and collation, rather than as constants. Some queries using these functions with
system variables that were previously successful may subsequently be rejected with Illegal mix
of collations. In such cases, cast the system variable to the correct character set and collation.

• Incompatible change: MySQL 8.0.28 fixes an issue in previous MySQL 8.0 releases whereby the
CONVERT() function sometimes allowed invalid casts of BINARY values to nonbinary character sets.
Applications which may have relied on this behavior should be checked and if necessary modified
prior to upgrade.

In particular, where CONVERT() was used as part of an expression for an indexed generated
column, the change in the function's behavior may result in index corruption following an upgrade to
MySQL 8.0.28. You can prevent this from happening by following these steps:

1. Prior to performing the upgrade, correct any invalid input data.

2. Drop and then re-create the index.

You can also force a table rebuild using ALTER TABLE table FORCE, instead.

3. Upgrade the MySQL software.

If you cannot validate the input data beforehand, you should not re-create the index or rebuild the
table until after you perform the upgrade to MySQL 8.0.28.

Changed Server Defaults

MySQL 8.0 comes with improved defaults, aiming at the best out of the box experience possible. These
changes are driven by the fact that technology is advancing (machines have more CPUS, use SSDs
and so on), more data is being stored, MySQL is evolving (InnoDB, Group Replication, AdminAPI),
and so on. The following table summarizes the defaults which have been changed to provide the best
MySQL experience for the majority of users.

Option/Parameter Old Default New Default

Server changes

character_set_server latin1 utf8mb4

collation_server latin1_swedish_ci utf8mb4_0900_ai_ci

explicit_defaults_for_timestampOFF ON

optimizer_trace_max_mem_size16KB 1MB

validate_password_check_user_nameOFF ON

back_log -1 (autosize) changed
from : back_log = 50 +
(max_connections / 5)

-1 (autosize) changed to :
back_log = max_connections

max_allowed_packet 4194304 (4MB) 67108864 (64MB)

max_error_count 64 1024

304

Changed Server Defaults

Option/Parameter Old Default New Default

event_scheduler OFF ON

table_open_cache 2000 4000

log_error_verbosity 3 (Notes) 2 (Warning)

local_infile ON (5.7) OFF

InnoDB changes

innodb_undo_tablespaces 0 2

innodb_undo_log_truncate OFF ON

innodb_flush_method NULL fsync (Unix), unbuffered
(Windows)

innodb_autoinc_lock_mode 1 (consecutive) 2 (interleaved)

innodb_flush_neighbors 1 (enable) 0 (disable)

innodb_max_dirty_pages_pct_lwm0 (%) 10 (%)

innodb_max_dirty_pages_pct75 (%) 90 (%)

Performance Schema changes

performance-schema-
instrument='wait/lock/
metadata/sql/%=ON'

OFF ON

performance-schema-
instrument='memory/
%=COUNTED'

OFF COUNTED

performance-schema-
consumer-events-
transactions-current=ON

OFF ON

performance-schema-
consumer-events-
transactions-history=ON

OFF ON

performance-schema-
instrument='transaction
%=ON'

OFF ON

Replication changes

log_bin OFF ON

server_id 0 1

log-slave-updates OFF ON

expire_logs_days 0 30

master-info-repository FILE TABLE

relay-log-info-
repository

FILE TABLE

transaction-write-set-
extraction

OFF XXHASH64

slave_rows_search_algorithmsINDEX_SCAN, TABLE_SCAN INDEX_SCAN, HASH_SCAN

slave_pending_jobs_size_max16M 128M

gtid_executed_compression_period1000 0

Group Replication changes

group_replication_autorejoin_tries0 3

305

Changed Server Defaults

Option/Parameter Old Default New Default

group_replication_exit_state_actionABORT_SERVER READ_ONLY

group_replication_member_expel_timeout0 5

For more information about options or variables which have been added, see Option and Variable
Changes for MySQL 8.0, in the MySQL Server Version Reference.

The following sections explain the changes to defaults and any impact they might have on your
deployment.

Server Defaults

• The default value of the character_set_server system variable and command line option
--character-set-server changed from latin1 to utf8mb4. This is the server’s default
character set. At this time, UTF8MB4 is the dominant character encoding for the web, and
this change makes life easier for the vast majority of MySQL users. The upgrade from 5.7 to
8.0 does not change the character set for any existing database objects, but, unless you set
character_set_server explicitly (either back to the previous value, or to a new one), a new
schema uses utf8mb4 by default. We recommend that you move to utf8mb4 whenever possible.

• The default value of the collation_server system variable and command line argument --
collation-server changed from latin1_swedish_ci to utf8mb4_0900_ai_ci. This is
the server’s default collation, the ordering of characters in a character set. There is a link between
collations and character sets as each character set comes with a list of possible collations. The
upgrade from 5.7 to 8.0 does not change any collation for any existing database objects, but takes
effect for new objects.

• The default value of the explicit_defaults_for_timestamp system variable changed from
OFF (MySQL legacy behavior) to ON (SQL standard behavior). This option was originally introduced
in 5.6 and was OFF in 5.6 and 5.7.

• The default value of the optimizer_trace_max_mem_size system variable changed from 16KB
to 1MB. The old default caused the optimizer trace to be truncated for any non-trivial query. This
change ensures useful optimizer traces for most queries.

• The default value of the validate_password_check_user_name system variable changed from
OFF to ON. This means that when the validate_password plugin is enabled, by default it now
rejects passwords that match the current session user name.

• The autosize algorithm for the back_log system variable has changed. The value for autosize
(-1) is now set to the value of max_connections, which is bigger than the calculated by 50
+ (max_connections / 5). The back_log queues up incoming IP connect requests in
situations where the server is not able to keep up with incoming requests. In the worst case, with
max_connections number of clients trying to reconnect at the same time, for example after a
network failure, they can all be buffered and reject-retry loops are avoided.

• The default value of the max_allowed_packet system variable changed from 4194304 (4M) to
67108864 (64M). The main advantage with this larger default is less chance of receiving errors
about an insert or query being larger than max_allowed_packet. It should be as big as the largest
Section 13.3.4, “The BLOB and TEXT Types” you want to use. To revert to the previous behavior,
set max_allowed_packet=4194304.

• The default value of the max_error_count system variable changed from 64 to 1024. This
ensures that MySQL handles a larger number of warnings, such as an UPDATE statement that
touches 1000s of rows and many of them give conversion warnings. It is common for many tools
to batch updates, to help reduce replication lag. External tools such as pt-online-schema-change
defaults to 1000, and gh-ost defaults to 100. MySQL 8.0 covers full error history for these two
use cases. There are no static allocations, so this change only affects memory consumption for
statements that generate lots of warnings.

306

https://dev.mysql.com/doc/mysqld-version-reference/en/optvar-changes-8-0.html
https://dev.mysql.com/doc/mysqld-version-reference/en/optvar-changes-8-0.html

Changed Server Defaults

• The default value of the event_scheduler system variable changed from OFF to ON. In other
words, the event scheduler is enabled by default. This is an enabler for new features in SYS, for
example “kill idle transactions”.

• The default value of the table_open_cache system variable changed from 2000 to 4000. This is a
minor change which increases session concurrency on table access.

• The default value of the log_error_verbosity system variable changed from 3 (Notes) to 2
(Warning). The purpose is to make the MySQL 8.0 error log less verbose by default.

InnoDB Defaults

• Incompatible change The default value of the innodb_undo_tablespaces system variable
changed from 0 to 2. The configures the number of undo tablespaces used by InnoDB. In MySQL
8.0 the minimum value for innodb_undo_tablespaces is 2 and rollback segments cannot be
created in the system tablespace anymore. Thus, this is a case where you cannot revert back to
5.7 behavior. The purpose of this change is to be able to auto-truncate Undo logs (see next item),
reclaiming disk space used by (occasional) long transactions such as a mysqldump.

• The default value of the innodb_undo_log_truncate system variable changed from
OFF to ON. When enabled, undo tablespaces that exceed the threshold value defined by
innodb_max_undo_log_size are marked for truncation. Only undo tablespaces can be truncated.
Truncating undo logs that reside in the system tablespace is not supported. An upgrade from 5.7 to
8.0 automatically converts your system to use undo tablespaces, using the system tablespace is not
an option in 8.0.

• The default value of the innodb_flush_method system variable changed from NULL to
fsync on Unix-like systems and from NULL to unbuffered on Windows systems. This is
more of a terminology and option cleanup without any tangible impact. For Unix this is just a
documentation change as the default was fsync also in 5.7 (the default NULL meant fsync).
Similarly on Windows, innodb_flush_method default NULL meant async_unbuffered in
5.7, and is replaced by default unbuffered in 8.0, which in combination with the existing default
innodb_use_native_aio=ON has the same effect.

• Incompatible change The default value of the innodb_autoinc_lock_mode system variable
changed from 1 (consecutive) to 2 (interleaved). The change to interleaved lock mode as the
default setting reflects the change from statement-based to row-based replication as the default
replication type, which occurred in MySQL 5.7. Statement-based replication requires the consecutive
auto-increment lock mode to ensure that auto-increment values are assigned in a predictable
and repeatable order for a given sequence of SQL statements, whereas row-based replication
is not sensitive to the execution order of SQL statements. Thus, this change is known to be
incompatible with statement based replication, and may break some applications or user-generated
test suites that depend on sequential auto increment. The previous default can be restored by setting
innodb_autoinc_lock_mode=1;

• The default value of the innodb_flush_neighbors system variable changes from 1 (enable) to
0 (disable). This is done because fast IO (SSDs) is now the default for deployment. We expect that
for the majority of users, this results in a small performance gain. Users who are using slower hard
drives may see a performance loss, and are encouraged to revert to the previous defaults by setting
innodb_flush_neighbors=1.

• The default value of the innodb_max_dirty_pages_pct_lwm system variable changed from
0 (%) to 10 (%). With innodb_max_dirty_pages_pct_lwm=10, InnoDB increases its flushing
activity when >10% of the buffer pool contains modified (‘dirty’) pages. The purpose of this change is
to trade off peak throughput slightly, in exchange for more consistent performance.

• The default value of the innodb_max_dirty_pages_pct system variable changed from 75
(%) to 90 (%). This change combines with the change to innodb_max_dirty_pages_pct_lwm
and together they ensure a smooth InnoDB flushing behavior, avoiding flushing bursts.
To revert to the previous behavior, set innodb_max_dirty_pages_pct=75 and
innodb_max_dirty_pages_pct_lwm=0.

307

Changed Server Defaults

Performance Schema Defaults

• Performance Schema Meta Data Locking (MDL) instrumentation is turned on by default. The
compiled default for performance-schema-instrument='wait/lock/metadata/sql/%=ON'
changed from OFF to ON. This is an enabler for adding MDL oriented views in SYS.

• Performance Schema Memory instrumentation is turned on by default. The compiled default for
performance-schema-instrument='memory/%=COUNTED' changed from OFF to COUNTED.
This is important because the accounting is incorrect if instrumentation is enabled after server start,
and you could get a negative balance from missing an allocation, but catching a free.

• Performance Schema Transaction instrumentation is turned on by default. The compiled default for
 performance-schema-consumer-events-transactions-current=ON, performance-
schema-consumer-events-transactions-history=ON, and performance-schema-
instrument='transaction%=ON' changed from OFF to ON.

Replication Defaults

• The default value of the log_bin system variable changed from OFF to ON. In other words, binary
logging is enabled by default. Nearly all production installations have the binary log enabled as it is
used for replication and point-in-time recovery. Thus, by enabling binary log by default we eliminate
one configuration step, enabling it later requires a mysqld restart. Enabling it by default also
provides better test coverage and it becomes easier to spot performance regressions. Remember to
also set server_id (see following change). The 8.0 default behavior is as if you issued ./mysqld
--log-bin --server-id=1. If you are on 8.0 and want 5.7 behavior you can issue ./mysqld
--skip-log-bin --server-id=0.

• The default value of the server_id system variable changed from 0 to 1 (combines with the
change to log_bin=ON). The server can be started with this default ID, but in practice you must set
the server-id according to the replication infrastructure being deployed, to avoid having duplicate
server ids.

• The default value of the log-slave-updates system variable changed from OFF to ON. This
causes a replica to log replicated events into its own binary log. This option is required for Group
Replication, and also ensures correct behavior in various replication chain setups, which have
become the norm today.

• The default value of the expire_logs_days system variable changed from 0 to 30. The new
default 30 causes mysqld to periodically purge unused binary logs that are older than 30 days. This
change helps prevent excessive amounts of disk space being wasted on binary logs that are no
longer needed for replication or recovery purposes. The old value of 0 disables any automatic binary
log purges.

• The default value of the master_info_repository and relay_log_info_repository system
variables change from FILE to TABLE. Thus in 8.0, replication metadata is stored in InnoDB by
default. This increases reliability to try and achieve crash safe replication by default.

• The default value of the transaction-write-set-extraction system variable changed from
OFF to XXHASH64. This change enables transaction write sets by default. By using Transaction Write
Sets, the source has to do slightly more work to generate the write sets, but the result is helpful in
conflict detection. This is a requirement for Group Replication and the new default makes it easy to
enable binary log writeset parallelization on the source to speed up replication.

• The default value of the slave_rows_search_algorithms system variable changed from
INDEX_SCAN,TABLE_SCAN to INDEX_SCAN,HASH_SCAN. This change speeds up row-based
replication by reducing the number of table scans the replica applier has to do to apply the changes
to a table without a primary key.

• The default value of the slave_pending_jobs_size_max system variable changed from 16M to
128M. This change increases the amount of memory available to multithreaded replicas.

308

Valid Performance Regressions

• The default value of the gtid_executed_compression_period system variable changed from
1000 to 0. This change ensures that compression of the mysql.gtid_executed table only occurs
implicitly as required.

Group Replication Defaults

• The default value of group_replication_autorejoin_tries changed from 0 to 3, which
means that automatic rejoin is enabled by default. This system variable specifies the number of tries
that a member makes to automatically rejoin the group if it is expelled, or if it is unable to contact
a majority of the group before the group_replication_unreachable_majority_timeout
setting is reached.

• The default value of group_replication_exit_state_action changed from ABORT_SERVER
to READ_ONLY. This means that when a member exits the group, for example after a network failure,
the instance becomes read-only, rather than being shut down.

• The default value of group_replication_member_expel_timeout changed from 0 to 5,
meaning that a member suspected of having lost contact with the group is liable for expulsion 5
seconds after the 5-second detection period.

Most of these defaults are reasonably good for both development and production environments. An
exception to this is the --innodb-dedicated-server option, whose default value remains OFF,
although we recommend ON for production environments. The reason for defaulting to OFF is that it
causes shared environments such as developer laptops to become unusable, because it takes all the
memory it can find.

For production environments we recommend using --innodb-dedicated-server, which
determines values for the following InnoDB variables (if not specified explicitly), based on available
memory: innodb_buffer_pool_size, innodb_log_file_size, and innodb_flush_method.
See Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server”.

Although the new defaults are the best configuration choices for most use cases, there are special
cases, as well as legacy reasons for using existing 5.7 configuration choices. For example, some
people prefer to upgrade to 8.0 with as few changes to their applications or operational environment
as possible. We recommend to evaluate all the new defaults and use as many as you can. Most new
defaults can be tested in 5.7, so you can validate the new defaults in 5.7 production before upgrading
to 8.0. For the few defaults where you need your old 5.7 value, set the corresponding configuration
variable or startup option in your operational environment.

MySQL 8.0 has the Performance Schema variables_info table, which shows for each system
variable the source from which it was most recently set, as well as its range of values. This provides
SQL access to all there is to know about a configuration variable and its values.

Valid Performance Regressions

Performance regressions are expected between MySQL versions 5.7 and 8.0. MySQL 8.0 has more
features, changes default values, is more robust, and adds security functionality and additional
diagnostic information. Listed here are valid reasons for regressions between these versions which
includes potential mediation options. This is not an exhaustive list.

Changes related to default values changing between MySQL versions 5.7 and 8.0:

• Binary logs are disabled by default in 5.7, and enabled by default in 8.0.

Mediation: Disable binary logging by specifying the --skip-log-bin or --disable-log-bin
option at startup.

• The default character set changed from latin1 to utf8mb4 in 8.0. While utf8mb4 performs
significantly better in 8.0 than it did in 5.7, latin1 is faster than utf8mb4.

Mediation: Use latin1 in 8.0 if utf8mb4 is not needed.

309

Preparing Your Installation for Upgrade

Transactional Data Dictionary (atomic DDL) was introduced in 8.0.

• This increases robustness/reliability at the expense of DDL performance (CREATE / DROP intensive
loads), but it should not impact the DML load (SELECT / INSERT / UPDATE / DELETE).

Mediation: None

The more modern TLS ciphers/algorithms used as of 5.7.28 has an effect when TLS (SSL) is enabled
(the default):

• Before MySQL 5.7.28, MySQL uses the yaSSL library for the community edition and OpenSSL for
the enterprise edition.

As of MySQL 5.7.28, MySQL only uses OpenSSL with its stronger TLS ciphers, which are more
costly in terms of performance.

Upgrading to MySQL 8.0 from MySQL 5.7.28 or earlier can cause a TLS performance regression.

Mediation: None (if TLS is required for security reasons)

Performance Schema (PFS) instrumentation is much wider in 8.0 than in 5.7:

• PFS cannot be compiled out in MySQL 8.0 but it can be turned off. Some performance schema
instrumentation will still exist even when turned off, but overhead will be smaller.

Mediation: Set performance_schema = OFF in 8.0, or turn off performance schema instrumentation
at finer granularity if some but not all PFS functionality is needed.

Truncating undo tablespaces is enabled by default in 8.0 which can significantly impact performance:

• Historically InnoDB stored undo logs in the system tablespace but there was no way to reclaim space
used by undo log. The system tablespace would only grow and not shrink, and this inspired feature
requests to remedy this.

MySQL 8.0 moved the undo log to separate tablespaces which allows both manual and automatic
undo log truncation.

However, auto-truncation has a permanent performance overhead and it can potentially cause stalls.

Mediation: Set innodb_undo_log_truncate = OFF in 8.0, and manually truncate undo logs as needed.
For related information, see Truncating Undo Tablespaces.

The character classes [[:alpha:]] or [[:digit:]] do not perform as well with regular expression
functions such as REGEXP() and RLIKE() in MySQL 8.0 as they did in MySQL 5.7. This is due to the
replacement in MySQL 8.0 of the Spencer regular expression library with the ICU library, which uses
UTF-16 internally.

Mediation: In place of [[:alpha:]], use [a-zA-Z]; in place of [[:digit:]], use [0-9].

3.6 Preparing Your Installation for Upgrade

Before upgrading to the latest MySQL 8.0 release, ensure the upgrade readiness of your current
MySQL 5.7 or MySQL 8.0 server instance by performing the preliminary checks described below. The
upgrade process may fail otherwise.

Tip

Consider using the MySQL Shell upgrade checker utility that enables you to
verify whether MySQL server instances are ready for upgrade. You can select
a target MySQL Server release to which you plan to upgrade, ranging from the
MySQL Server 8.0.11 up to the MySQL Server release number that matches

310

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-upgrade.html

Preparing Your Installation for Upgrade

the current MySQL Shell release number. The upgrade checker utility carries
out the automated checks that are relevant for the specified target release, and
advises you of further relevant checks that you should make manually. The
upgrade checker works for all Bugfix, Innovation, and LTS releases of MySQL.
Installation instructions for MySQL Shell can be found here.

Preliminary checks:

1. The following issues must not be present:

• There must be no tables that use obsolete data types or functions.

In-place upgrade to MySQL 8.0 is not supported if tables contain old temporal columns in
pre-5.6.4 format (TIME, DATETIME, and TIMESTAMP columns without support for fractional
seconds precision). If your tables still use the old temporal column format, upgrade them using
REPAIR TABLE before attempting an in-place upgrade to MySQL 8.0. For more information, see
Server Changes, in MySQL 5.7 Reference Manual.

• There must be no orphan .frm files.

• Triggers must not have a missing or empty definer or an invalid creation context (indicated by
the character_set_client, collation_connection, Database Collation attributes
displayed by SHOW TRIGGERS or the INFORMATION_SCHEMA TRIGGERS table). Any such
triggers must be dumped and restored to fix the issue.

To check for these issues, execute this command:

mysqlcheck -u root -p --all-databases --check-upgrade

If mysqlcheck reports any errors, correct the issues.

2. There must be no partitioned tables that use a storage engine that does not have native partitioning
support. To identify such tables, execute this query:

SELECT TABLE_SCHEMA, TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES
WHERE ENGINE NOT IN ('innodb', 'ndbcluster')
AND CREATE_OPTIONS LIKE '%partitioned%';

Any table reported by the query must be altered to use InnoDB or be made nonpartitioned. To
change a table storage engine to InnoDB, execute this statement:

ALTER TABLE table_name ENGINE = INNODB;

For information about converting MyISAM tables to InnoDB, see Section 17.6.1.5, “Converting
Tables from MyISAM to InnoDB”.

To make a partitioned table nonpartitioned, execute this statement:

ALTER TABLE table_name REMOVE PARTITIONING;

3. Some keywords may be reserved in MySQL 8.0 that were not reserved previously. See
Section 11.3, “Keywords and Reserved Words”. This can cause words previously used as
identifiers to become illegal. To fix affected statements, use identifier quoting. See Section 11.2,
“Schema Object Names”.

4. There must be no tables in the MySQL 5.7 mysql system database that have the same name as
a table used by the MySQL 8.0 data dictionary. To identify tables with those names, execute this
query:

SELECT TABLE_SCHEMA, TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES
WHERE LOWER(TABLE_SCHEMA) = 'mysql'
and LOWER(TABLE_NAME) IN

311

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/refman/5.7/en/upgrading-from-previous-series.html#upgrade-server-changes
https://dev.mysql.com/doc/refman/5.7/en/

Preparing Your Installation for Upgrade

(
'catalogs',
'character_sets',
'check_constraints',
'collations',
'column_statistics',
'column_type_elements',
'columns',
'dd_properties',
'events',
'foreign_key_column_usage',
'foreign_keys',
'index_column_usage',
'index_partitions',
'index_stats',
'indexes',
'parameter_type_elements',
'parameters',
'resource_groups',
'routines',
'schemata',
'st_spatial_reference_systems',
'table_partition_values',
'table_partitions',
'table_stats',
'tables',
'tablespace_files',
'tablespaces',
'triggers',
'view_routine_usage',
'view_table_usage'
);

Any tables reported by the query must be dropped or renamed (use RENAME TABLE). This may
also entail changes to applications that use the affected tables.

5. There must be no tables that have foreign key constraint names longer than 64 characters. Use this
query to identify tables with constraint names that are too long:

SELECT TABLE_SCHEMA, TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME IN
 (SELECT LEFT(SUBSTR(ID,INSTR(ID,'/')+1),
 INSTR(SUBSTR(ID,INSTR(ID,'/')+1),'_ibfk_')-1)
 FROM INFORMATION_SCHEMA.INNODB_SYS_FOREIGN
 WHERE CHAR_LENGTH(SUBSTR(ID,INSTR(ID,'/')+1))>64);

For a table with a constraint name that exceeds 64 characters, drop the constraint and add it back
with constraint name that does not exceed 64 characters (use ALTER TABLE).

6. There must be no obsolete SQL modes defined by sql_mode system variable. Attempting to use
an obsolete SQL mode prevents MySQL 8.0 from starting. Applications that use obsolete SQL
modes should be revised to avoid them. For information about SQL modes removed in MySQL 8.0,
see Server Changes.

7. Only upgrade a MySQL server instance that was properly shut down. If the instance unexpectedly
shutdown, then restart the instance and shut it down with innodb_fast_shutdown=0 before
upgrade.

8. There must be no views with explicitly defined columns names that exceed 64 characters (views
with column names up to 255 characters were permitted in MySQL 5.7). To avoid upgrade errors,
such views should be altered before upgrading. Currently, the only method of identify views with
column names that exceed 64 characters is to inspect the view definition using SHOW CREATE
VIEW. You can also inspect view definitions by querying the Information Schema VIEWS table.

9. There must be no tables or stored procedures with individual ENUM or SET column elements that
exceed 255 characters or 1020 bytes in length. Prior to MySQL 8.0, the maximum combined length
of ENUM or SET column elements was 64K. In MySQL 8.0, the maximum character length of an

312

Preparing Your Installation for Upgrade

individual ENUM or SET column element is 255 characters, and the maximum byte length is 1020
bytes. (The 1020 byte limit supports multibyte character sets). Before upgrading to MySQL 8.0,
modify any ENUM or SET column elements that exceed the new limits. Failing to do so causes the
upgrade to fail with an error.

10. Before upgrading to MySQL 8.0.13 or higher, there must be no table partitions that reside in shared
InnoDB tablespaces, which include the system tablespace and general tablespaces. Identify table
partitions in shared tablespaces by querying INFORMATION_SCHEMA:

If upgrading from MySQL 5.7, run this query:

SELECT DISTINCT NAME, SPACE, SPACE_TYPE FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES
 WHERE NAME LIKE '%#P#%' AND SPACE_TYPE NOT LIKE 'Single';

If upgrading from an earlier MySQL 8.0 release, run this query:

SELECT DISTINCT NAME, SPACE, SPACE_TYPE FROM INFORMATION_SCHEMA.INNODB_TABLES
 WHERE NAME LIKE '%#P#%' AND SPACE_TYPE NOT LIKE 'Single';

Move table partitions from shared tablespaces to file-per-table tablespaces using ALTER
TABLE ... REORGANIZE PARTITION:

ALTER TABLE table_name REORGANIZE PARTITION partition_name
 INTO (partition_definition TABLESPACE=innodb_file_per_table);

11. There must be no queries and stored program definitions from MySQL 8.0.12 or lower that use ASC
or DESC qualifiers for GROUP BY clauses. Otherwise, upgrading to MySQL 8.0.13 or higher may
fail, as may replicating to MySQL 8.0.13 or higher replica servers. For additional details, see SQL
Changes.

12. Your MySQL 5.7 installation must not use features that are not supported by MySQL 8.0. Any
changes here are necessarily installation specific, but the following example illustrates the kind of
thing to look for:

Some server startup options and system variables have been removed in MySQL 8.0. See
Features Removed in MySQL 8.0, and Section 1.4, “Server and Status Variables and Options
Added, Deprecated, or Removed in MySQL 8.0”. If you use any of these, an upgrade requires
configuration changes.

Example: Because the data dictionary provides information about database objects, the server
no longer checks directory names in the data directory to find databases. Consequently, the
--ignore-db-dir option is extraneous and has been removed. To handle this, remove any
instances of --ignore-db-dir from your startup configuration. In addition, remove or move
the named data directory subdirectories before upgrading to MySQL 8.0. (Alternatively, let the
8.0 server add those directories to the data dictionary as databases, then remove each of those
databases using DROP DATABASE.)

13. If you intend to change the lower_case_table_names setting to 1 at upgrade time, ensure that
schema and table names are lowercase before upgrading. Otherwise, a failure could occur due to a
schema or table name lettercase mismatch. You can use the following queries to check for schema
and table names containing uppercase characters:

mysql> select TABLE_NAME, if(sha(TABLE_NAME) !=sha(lower(TABLE_NAME)),'Yes','No') as UpperCase from information_schema.tables;

As of MySQL 8.0.19, if lower_case_table_names=1, table and schema names are checked
by the upgrade process to ensure that all characters are lowercase. If table or schema names are
found to contain uppercase characters, the upgrade process fails with an error.

Note

Changing the lower_case_table_names setting at upgrade time is not
recommended.

313

Upgrading MySQL Binary or Package-based Installations on Unix/Linux

If upgrade to MySQL 8.0 fails due to any of the issues outlined above, the server reverts all changes
to the data directory. In this case, remove all redo log files and restart the MySQL 5.7 server on
the existing data directory to address the errors. The redo log files (ib_logfile*) reside in the
MySQL data directory by default. After the errors are fixed, perform a slow shutdown (by setting
innodb_fast_shutdown=0) before attempting the upgrade again.

3.7 Upgrading MySQL Binary or Package-based Installations on
Unix/Linux

This section describes how to upgrade MySQL binary and package-based installations on Unix/Linux.
In-place and logical upgrade methods are described.

• In-Place Upgrade

• Logical Upgrade

• MySQL Cluster Upgrade

In-Place Upgrade

An in-place upgrade involves shutting down the old MySQL server, replacing the old MySQL binaries
or packages with the new ones, restarting MySQL on the existing data directory, and upgrading any
remaining parts of the existing installation that require upgrading. For details about what may need
upgrading, see Section 3.4, “What the MySQL Upgrade Process Upgrades”.

Note

If you are upgrading an installation originally produced by installing multiple
RPM packages, upgrade all the packages, not just some. For example, if you
previously installed the server and client RPMs, do not upgrade just the server
RPM.

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown.
On these platforms, mysqld_safe is not installed. In such cases, use systemd
for server startup and shutdown instead of the methods used in the following
instructions. See Section 2.5.9, “Managing MySQL Server with systemd”.

For upgrades to MySQL Cluster installations, see also MySQL Cluster Upgrade.

To perform an in-place upgrade:

1. Review the information in Section 3.1, “Before You Begin”.

2. Ensure the upgrade readiness of your installation by completing the preliminary checks in
Section 3.6, “Preparing Your Installation for Upgrade”.

3. If you use XA transactions with InnoDB, run XA RECOVER before upgrading to check for
uncommitted XA transactions. If results are returned, either commit or rollback the XA transactions
by issuing an XA COMMIT or XA ROLLBACK statement.

4. If you are upgrading from MySQL 5.7.11 or earlier to MySQL 8.0, and there are encrypted InnoDB
tablespaces, rotate the keyring master key by executing this statement:

ALTER INSTANCE ROTATE INNODB MASTER KEY;

5. If you normally run your MySQL server configured with innodb_fast_shutdown set to 2 (cold
shutdown), configure it to perform a fast or slow shutdown by executing either of these statements:

SET GLOBAL innodb_fast_shutdown = 1; -- fast shutdown

314

In-Place Upgrade

SET GLOBAL innodb_fast_shutdown = 0; -- slow shutdown

With a fast or slow shutdown, InnoDB leaves its undo logs and data files in a state that can be
dealt with in case of file format differences between releases.

6. Shut down the old MySQL server. For example:

mysqladmin -u root -p shutdown

7. Upgrade the MySQL binaries or packages. If upgrading a binary installation, unpack the new
MySQL binary distribution package. See Obtain and Unpack the Distribution. For package-based
installations, install the new packages.

8. Start the MySQL 8.0 server, using the existing data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/existing-datadir &

If there are encrypted InnoDB tablespaces, use the --early-plugin-load option to load the
keyring plugin.

When you start the MySQL 8.0 server, it automatically detects whether data dictionary tables are
present. If not, the server creates them in the data directory, populates them with metadata, and
then proceeds with its normal startup sequence. During this process, the server upgrades metadata
for all database objects, including databases, tablespaces, system and user tables, views, and
stored programs (stored procedures and functions, triggers, and Event Scheduler events). The
server also removes files that previously were used for metadata storage. For example, after
upgrading from MySQL 5.7 to MySQL 8.0, you may notice that tables no longer have .frm files.

If this step fails, the server reverts all changes to the data directory. In this case, you should remove
all redo log files, start your MySQL 5.7 server on the same data directory, and fix the cause of any
errors. Then perform another slow shutdown of the 5.7 server and start the MySQL 8.0 server to try
again.

9. In the previous step, the server upgrades the data dictionary as necessary. Now it is necessary to
perform any remaining upgrade operations:

• As of MySQL 8.0.16, the server does so as part of the previous step, making any changes
required in the mysql system database between MySQL 5.7 and MySQL 8.0, so that you
can take advantage of new privileges or capabilities. It also brings the Performance Schema,
INFORMATION_SCHEMA, and sys databases up to date for MySQL 8.0, and examines all user
databases for incompatibilities with the current version of MySQL.

• Prior to MySQL 8.0.16, the server upgrades only the data dictionary in the previous step. After
the MySQL 8.0 server starts successfully, execute mysql_upgrade to perform the remaining
upgrade tasks:

mysql_upgrade -u root -p

Then shut down and restart the MySQL server to ensure that any changes made to the system
tables take effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/existing-datadir &

The first time you start the MySQL 8.0 server (in an earlier step), you may notice messages in
the error log regarding nonupgraded tables. If mysql_upgrade has been run successfully, there
should be no such messages the second time you start the server.

Note

The upgrade process does not upgrade the contents of the time zone tables.
For upgrade instructions, see Section 7.1.15, “MySQL Server Time Zone
Support”.

315

Logical Upgrade

If the upgrade process uses mysql_upgrade (that is, prior to MySQL 8.0.16),
the process does not upgrade the contents of the help tables, either. For
upgrade instructions in that case, see Section 7.1.17, “Server-Side Help
Support”.

Logical Upgrade

A logical upgrade involves exporting SQL from the old MySQL instance using a backup or export utility
such as mysqldump or mysqlpump, installing the new MySQL server, and applying the SQL to your
new MySQL instance. For details about what may need upgrading, see Section 3.4, “What the MySQL
Upgrade Process Upgrades”.

Note

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown.
On these platforms, mysqld_safe is not installed. In such cases, use systemd
for server startup and shutdown instead of the methods used in the following
instructions. See Section 2.5.9, “Managing MySQL Server with systemd”.

Warning

Applying SQL extracted from a previous MySQL release to a new MySQL
release may result in errors due to incompatibilities introduced by new,
changed, deprecated, or removed features and capabilities. Consequently, SQL
extracted from a previous MySQL release may require modification to enable a
logical upgrade.

To identify incompatibilities before upgrading to the latest MySQL 8.0 release,
perform the steps described in Section 3.6, “Preparing Your Installation for
Upgrade”.

To perform a logical upgrade:

1. Review the information in Section 3.1, “Before You Begin”.

2. Export your existing data from the previous MySQL installation:

mysqldump -u root -p
 --add-drop-table --routines --events
 --all-databases --force > data-for-upgrade.sql

Note

Use the --routines and --events options with mysqldump (as shown
above) if your databases include stored programs. The --all-databases
option includes all databases in the dump, including the mysql database
that holds the system tables.

Important

If you have tables that contain generated columns, use the mysqldump
utility provided with MySQL 5.7.9 or higher to create your dump files. The
mysqldump utility provided in earlier releases uses incorrect syntax for
generated column definitions (Bug #20769542). You can use the Information
Schema COLUMNS table to identify tables with generated columns.

3. Shut down the old MySQL server. For example:

mysqladmin -u root -p shutdown

4. Install MySQL 8.0. For installation instructions, see Chapter 2, Installing MySQL.

316

Logical Upgrade

5. Initialize a new data directory, as described in Section 2.9.1, “Initializing the Data Directory”. For
example:

mysqld --initialize --datadir=/path/to/8.0-datadir

Copy the temporary 'root'@'localhost' password displayed to your screen or written to your
error log for later use.

6. Start the MySQL 8.0 server, using the new data directory. For example:

mysqld_safe --user=mysql --datadir=/path/to/8.0-datadir &

7. Reset the root password:

$> mysql -u root -p
Enter password: **** <- enter temporary root password

mysql> ALTER USER USER() IDENTIFIED BY 'your new password';

8. Load the previously created dump file into the new MySQL server. For example:

mysql -u root -p --force < data-for-upgrade.sql

Note

It is not recommended to load a dump file when GTIDs are enabled on
the server (gtid_mode=ON), if your dump file includes system tables.
mysqldump issues DML instructions for the system tables which use the
non-transactional MyISAM storage engine, and this combination is not
permitted when GTIDs are enabled. Also be aware that loading a dump file
from a server with GTIDs enabled, into another server with GTIDs enabled,
causes different transaction identifiers to be generated.

9. Perform any remaining upgrade operations:

• In MySQL 8.0.16 and higher, shut down the server, then restart it with the --upgrade=FORCE
option to perform the remaining upgrade tasks:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/8.0-datadir --upgrade=FORCE &

Upon restart with --upgrade=FORCE, the server makes any changes required in the mysql
system schema between MySQL 5.7 and MySQL 8.0, so that you can take advantage of new
privileges or capabilities. It also brings the Performance Schema, INFORMATION_SCHEMA, and
sys schema up to date for MySQL 8.0, and examines all user schemas for incompatibilities with
the current version of MySQL.

• Prior to MySQL 8.0.16, execute mysql_upgrade to perform the remaining upgrade tasks:

mysql_upgrade -u root -p

Then shut down and restart the MySQL server to ensure that any changes made to the system
tables take effect. For example:

mysqladmin -u root -p shutdown
mysqld_safe --user=mysql --datadir=/path/to/8.0-datadir &

Note

The upgrade process does not upgrade the contents of the time zone tables.
For upgrade instructions, see Section 7.1.15, “MySQL Server Time Zone
Support”.

317

MySQL Cluster Upgrade

If the upgrade process uses mysql_upgrade (that is, prior to MySQL 8.0.16),
the process does not upgrade the contents of the help tables, either. For
upgrade instructions in that case, see Section 7.1.17, “Server-Side Help
Support”.

Note

Loading a dump file that contains a MySQL 5.7 mysql schema re-creates two
tables that are no longer used: event and proc. (The corresponding MySQL
8.0 tables are events and routines, both of which are data dictionary tables
and are protected.) After you are satisfied that the upgrade was successful, you
can remove the event and proc tables by executing these SQL statements:

DROP TABLE mysql.event;
DROP TABLE mysql.proc;

MySQL Cluster Upgrade

The information in this section is an adjunct to the in-place upgrade procedure described in In-Place
Upgrade, for use if you are upgrading MySQL Cluster.

As of MySQL 8.0.16, a MySQL Cluster upgrade can be performed as a regular rolling upgrade,
following the usual three ordered steps:

1. Upgrade MGM nodes.

2. Upgrade data nodes one at a time.

3. Upgrade API nodes one at a time (including MySQL servers).

The way to upgrade each of the nodes remains almost the same as prior to MySQL 8.0.16 because
there is a separation between upgrading the data dictionary and upgrading the system tables. There
are two steps to upgrading each individual mysqld:

1. Import the data dictionary.

Start the new server with the --upgrade=MINIMAL option to upgrade the data dictionary but
not the system tables. This is essentially the same as the pre-MySQL 8.0.16 action of starting the
server and not invoking mysql_upgrade.

The MySQL server must be connected to NDB for this phase to complete. If any NDB or NDBINFO
tables exist, and the server cannot connect to the cluster, it exits with an error message:

Failed to Populate DD tables.

2. Upgrade the system tables.

Prior to MySQL 8.0.16, the DBA invokes the mysql_upgrade client to upgrade the system tables.
As of MySQL 8.0.16, the server performs this action: To upgrade the system tables, restart each
individual mysqld without the --upgrade=MINIMAL option.

3.8 Upgrading MySQL with the MySQL Yum Repository
For supported Yum-based platforms (see Section 2.5.1, “Installing MySQL on Linux Using the MySQL
Yum Repository”, for a list), you can perform an in-place upgrade for MySQL (that is, replacing the old
version and then running the new version using the old data files) with the MySQL Yum repository.

Notes

• Before performing any update to MySQL, follow carefully the instructions in
Chapter 3, Upgrading MySQL. Among other instructions discussed there, it is
especially important to back up your database before the update.

318

Selecting a Target Series

• The following instructions assume you have installed MySQL with the MySQL
Yum repository or with an RPM package directly downloaded from MySQL
Developer Zone's MySQL Download page; if that is not the case, following
the instructions in Replacing a Third-Party Distribution of MySQL Using the
MySQL Yum Repository.

1.Selecting a Target Series

By default, the MySQL Yum repository updates MySQL to the latest version in the release series
you have chosen during installation (see Selecting a Release Series for details), which means, for
example, a 5.7.x installation is not updated to a 8.0.x release automatically. To update to another
release series, you must first disable the subrepository for the series that has been selected
(by default, or by yourself) and enable the subrepository for your target series. To do that, see
the general instructions given in Selecting a Release Series. For upgrading from MySQL 5.7
to 8.0, perform the reverse of the steps illustrated in Selecting a Release Series, disabling the
subrepository for the MySQL 5.7 series and enabling that for the MySQL 8.0 series.

As a general rule, to upgrade from one release series to another, go to the next series rather than
skipping a series. For example, if you are currently running MySQL 5.6 and wish to upgrade to 8.0,
upgrade to MySQL 5.7 first before upgrading to 8.0.

Important

For important information about upgrading from MySQL 5.7 to 8.0, see
Upgrading from MySQL 5.7 to 8.0.

2.Upgrading MySQL

Upgrade MySQL and its components by the following command, for platforms that are not dnf-
enabled:

sudo yum update mysql-server

For platforms that are dnf-enabled:

sudo dnf upgrade mysql-server

Alternatively, you can update MySQL by telling Yum to update everything on your system, which
might take considerably more time. For platforms that are not dnf-enabled:

sudo yum update

For platforms that are dnf-enabled:

sudo dnf upgrade

3.Restarting MySQL

The MySQL server always restarts after an update by Yum. Prior to MySQL 8.0.16, run
mysql_upgrade after the server restarts to check and possibly resolve any incompatibilities
between the old data and the upgraded software. mysql_upgrade also performs other functions;
for details, see Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”. As of
MySQL 8.0.16, this step is not required, as the server performs all tasks previously handled by
mysql_upgrade.

You can also update only a specific component. Use the following command to list all the installed
packages for the MySQL components (for dnf-enabled systems, replace yum in the command with
dnf):

sudo yum list installed | grep "^mysql"

319

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/doc/refman/5.7/en/replace-third-party-yum.html
https://dev.mysql.com/doc/refman/5.7/en/replace-third-party-yum.html

Upgrading the Shared Client Libraries

After identifying the package name of the component of your choice, update the package with the
following command, replacing package-name with the name of the package. For platforms that are
not dnf-enabled:

sudo yum update package-name

For dnf-enabled platforms:

sudo dnf upgrade package-name

Upgrading the Shared Client Libraries

After updating MySQL using the Yum repository, applications compiled with older versions of the
shared client libraries should continue to work.

If you recompile applications and dynamically link them with the updated libraries: As typical with new
versions of shared libraries where there are differences or additions in symbol versioning between
the newer and older libraries (for example, between the newer, standard 8.0 shared client libraries
and some older—prior or variant—versions of the shared libraries shipped natively by the Linux
distributions' software repositories, or from some other sources), any applications compiled using the
updated, newer shared libraries require those updated libraries on systems where the applications are
deployed. As expected, if those libraries are not in place, the applications requiring the shared libraries
fail. For this reason, be sure to deploy the packages for the shared libraries from MySQL on those
systems. To do this, add the MySQL Yum repository to the systems (see Adding the MySQL Yum
Repository) and install the latest shared libraries using the instructions given in Installing Additional
MySQL Products and Components with Yum.

3.9 Upgrading MySQL with the MySQL APT Repository
On Debian and Ubuntu platforms, to perform an in-place upgrade of MySQL and its components, use
the MySQL APT repository. See Upgrading MySQL with the MySQL APT Repository in A Quick Guide
to Using the MySQL APT Repository.

3.10 Upgrading MySQL with the MySQL SLES Repository
On the SUSE Linux Enterprise Server (SLES) platform, to perform an in-place upgrade of MySQL
and its components, use the MySQL SLES repository. See Upgrading MySQL with the MySQL SLES
Repository in A Quick Guide to Using the MySQL SLES Repository.

3.11 Upgrading MySQL on Windows
There are two approaches for upgrading MySQL on Windows:

• Using MySQL Installer

• Using the Windows ZIP archive distribution

The approach you select depends on how the existing installation was performed. Before proceeding,
review Chapter 3, Upgrading MySQL for additional information on upgrading MySQL that is not specific
to Windows.

Note

Whichever approach you choose, always back up your current MySQL
installation before performing an upgrade. See Section 9.2, “Database Backup
Methods”.

Upgrades between non-GA releases (or from a non-GA release to a GA release) are not supported.
Significant development changes take place in non-GA releases and you may encounter compatibility
issues or problems starting the server.

320

https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/index.html#repo-qg-apt-upgrading
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/index.html#repo-qg-sles-upgrading
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/index.html#repo-qg-sles-upgrading
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/

Upgrading MySQL with MySQL Installer

Note

MySQL Installer does not support upgrades between Community releases and
Commercial releases. If you require this type of upgrade, perform it using the
ZIP archive approach.

Upgrading MySQL with MySQL Installer

Performing an upgrade with MySQL Installer is the best approach when the current server installation
was performed with it and the upgrade is within the current release series. MySQL Installer does
not support upgrades between release series, such as from 5.7 to 8.0, and it does not provide an
upgrade indicator to prompt you to upgrade. For instructions on upgrading between release series, see
Upgrading MySQL Using the Windows ZIP Distribution.

To perform an upgrade using MySQL Installer:

1. Start MySQL Installer.

2. From the dashboard, click Catalog to download the latest changes to the catalog. The installed
server can be upgraded only if the dashboard displays an arrow next to the version number of the
server.

3. Click Upgrade. All products that have a newer version now appear in a list.

Note

MySQL Installer deselects the server upgrade option for milestone
releases (Pre-Release) in the same release series. In addition, it displays
a warning to indicate that the upgrade is not supported, identifies the risks
of continuing, and provides a summary of the steps to perform an upgrade
manually. You can reselect server upgrade and proceed at your own risk.

4. Deselect all but the MySQL server product, unless you intend to upgrade other products at this
time, and click Next.

5. Click Execute to start the download. When the download finishes, click Next to begin the upgrade
operation.

Upgrades to MySQL 8.0.16 and higher may show an option to skip the upgrade check and process
for system tables. For more information about this option, see Important server upgrade conditions.

6. Configure the server.

Upgrading MySQL Using the Windows ZIP Distribution

To perform an upgrade using the Windows ZIP archive distribution:

1. Download the latest Windows ZIP Archive distribution of MySQL from https://dev.mysql.com/
downloads/.

2. If the server is running, stop it. If the server is installed as a service, stop the service with the
following command from the command prompt:

C:\> SC STOP mysqld_service_name

Alternatively, use NET STOP mysqld_service_name .

If you are not running the MySQL server as a service, use mysqladmin to stop it. For example,
before upgrading from MySQL 5.7 to 8.0, use mysqladmin from MySQL 5.7 as follows:

321

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/

Upgrading a Docker Installation of MySQL

C:\> "C:\Program Files\MySQL\MySQL Server 5.7\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, invoke mysqladmin with
the -p option and enter the password when prompted.

3. Extract the ZIP archive. You may either overwrite your existing MySQL installation (usually located
at C:\mysql), or install it into a different directory, such as C:\mysql8. Overwriting the existing
installation is recommended.

4. Restart the server. For example, use the SC START mysqld_service_name or NET START
mysqld_service_name command if you run MySQL as a service, or invoke mysqld directly
otherwise.

5. Prior to MySQL 8.0.16, run mysql_upgrade as Administrator to check your tables, attempt to
repair them if necessary, and update your grant tables if they have changed so that you can take
advantage of any new capabilities. See Section 6.4.5, “mysql_upgrade — Check and Upgrade
MySQL Tables”. As of MySQL 8.0.16, this step is not required, as the server performs all tasks
previously handled by mysql_upgrade.

6. If you encounter errors, see Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server
Installation”.

3.12 Upgrading a Docker Installation of MySQL

To upgrade a Docker installation of MySQL, refer to Upgrading a MySQL Server Container.

3.13 Upgrade Troubleshooting

• A schema mismatch in a MySQL 5.7 instance between the .frm file of a table and the InnoDB data
dictionary can cause an upgrade to MySQL 8.0 to fail. Such mismatches may be due to .frm file
corruption. To address this issue, dump and restore affected tables before attempting the upgrade
again.

• If problems occur, such as that the new mysqld server does not start, verify that you do not have
an old my.cnf file from your previous installation. You can check this with the --print-defaults
option (for example, mysqld --print-defaults). If this command displays anything other than
the program name, you have an active my.cnf file that affects server or client operation.

• If, after an upgrade, you experience problems with compiled client programs, such as Commands
out of sync or unexpected core dumps, you probably have used old header or library
files when compiling your programs. In this case, check the date for your mysql.h file and
libmysqlclient.a library to verify that they are from the new MySQL distribution. If not, recompile
your programs with the new headers and libraries. Recompilation might also be necessary for
programs compiled against the shared client library if the library major version number has changed
(for example, from libmysqlclient.so.20 to libmysqlclient.so.21).

• If you have created a loadable function with a given name and upgrade MySQL to a version
that implements a new built-in function with the same name, the loadable function becomes
inaccessible. To correct this, use DROP FUNCTION to drop the loadable function, and then use
CREATE FUNCTION to re-create the loadable function with a different nonconflicting name. The
same is true if the new version of MySQL implements a built-in function with the same name as an
existing stored function. See Section 11.2.5, “Function Name Parsing and Resolution”, for the rules
describing how the server interprets references to different kinds of functions.

• If upgrade to MySQL 8.0 fails due to any of the issues outlined in Section 3.6, “Preparing Your
Installation for Upgrade”, the server reverts all changes to the data directory. In this case, remove all

322

Rebuilding or Repairing Tables or Indexes

redo log files and restart the MySQL 5.7 server on the existing data directory to address the errors.
The redo log files (ib_logfile*) reside in the MySQL data directory by default. After the errors
are fixed, perform a slow shutdown (by setting innodb_fast_shutdown=0) before attempting the
upgrade again.

3.14 Rebuilding or Repairing Tables or Indexes
This section describes how to rebuild or repair tables or indexes, which may be necessitated by:

• Changes to how MySQL handles data types or character sets. For example, an error in a collation
might have been corrected, necessitating a table rebuild to update the indexes for character columns
that use the collation.

• Required table repairs or upgrades reported by CHECK TABLE, mysqlcheck, or mysql_upgrade.

Methods for rebuilding a table include:

• Dump and Reload Method

• ALTER TABLE Method

• REPAIR TABLE Method

Dump and Reload Method

If you are rebuilding tables because a different version of MySQL cannot handle them after a binary
(in-place) upgrade or downgrade, you must use the dump-and-reload method. Dump the tables
before upgrading or downgrading using your original version of MySQL. Then reload the tables after
upgrading or downgrading.

If you use the dump-and-reload method of rebuilding tables only for the purpose of rebuilding indexes,
you can perform the dump either before or after upgrading or downgrading. Reloading still must be
done afterward.

If you need to rebuild an InnoDB table because a CHECK TABLE operation indicates that a table
upgrade is required, use mysqldump to create a dump file and mysql to reload the file. If the CHECK
TABLE operation indicates that there is a corruption or causes InnoDB to fail, refer to Section 17.21.3,
“Forcing InnoDB Recovery” for information about using the innodb_force_recovery option to
restart InnoDB. To understand the type of problem that CHECK TABLE may be encountering, refer to
the InnoDB notes in Section 15.7.3.2, “CHECK TABLE Statement”.

To rebuild a table by dumping and reloading it, use mysqldump to create a dump file and mysql to
reload the file:

mysqldump db_name t1 > dump.sql
mysql db_name < dump.sql

To rebuild all the tables in a single database, specify the database name without any following table
name:

mysqldump db_name > dump.sql
mysql db_name < dump.sql

To rebuild all tables in all databases, use the --all-databases option:

mysqldump --all-databases > dump.sql
mysql < dump.sql

ALTER TABLE Method

To rebuild a table with ALTER TABLE, use a “null” alteration; that is, an ALTER TABLE statement that
“changes” the table to use the storage engine that it already has. For example, if t1 is an InnoDB
table, use this statement:

323

REPAIR TABLE Method

ALTER TABLE t1 ENGINE = InnoDB;

If you are not sure which storage engine to specify in the ALTER TABLE statement, use SHOW CREATE
TABLE to display the table definition.

REPAIR TABLE Method

The REPAIR TABLE method is only applicable to MyISAM, ARCHIVE, and CSV tables.

You can use REPAIR TABLE if the table checking operation indicates that there is a corruption or that
an upgrade is required. For example, to repair a MyISAM table, use this statement:

REPAIR TABLE t1;

mysqlcheck --repair provides command-line access to the REPAIR TABLE statement. This can
be a more convenient means of repairing tables because you can use the --databases or --all-
databases option to repair all tables in specific databases or all databases, respectively:

mysqlcheck --repair --databases db_name ...
mysqlcheck --repair --all-databases

3.15 Copying MySQL Databases to Another Machine

In cases where you need to transfer databases between different architectures, you can use
mysqldump to create a file containing SQL statements. You can then transfer the file to the other
machine and feed it as input to the mysql client.

Use mysqldump --help to see what options are available.

Note

If GTIDs are in use on the server where you create the dump (gtid_mode=ON),
by default, mysqldump includes the contents of the gtid_executed set in
the dump to transfer these to the new machine. The results of this can vary
depending on the MySQL Server versions involved. Check the description for
mysqldump's --set-gtid-purged option to find what happens with the
versions you are using, and how to change the behavior if the outcome of the
default behavior is not suitable for your situation.

The easiest (although not the fastest) way to move a database between two machines is to run the
following commands on the machine on which the database is located:

mysqladmin -h 'other_hostname' create db_name
mysqldump db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use these
commands:

mysqladmin create db_name
mysqldump -h 'other_hostname' --compress db_name | mysql db_name

You can also store the dump in a file, transfer the file to the target machine, and then load the file
into the database there. For example, you can dump a database to a compressed file on the source
machine like this:

mysqldump --quick db_name | gzip > db_name.gz

Transfer the file containing the database contents to the target machine and run these commands
there:

mysqladmin create db_name

324

Copying MySQL Databases to Another Machine

gunzip < db_name.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is
much faster than simply using mysqldump. In the following commands, DUMPDIR represents the full
path name of the directory you use to store the output from mysqldump.

First, create the directory for the output files and dump the database:

mkdir DUMPDIR
mysqldump --tab=DUMPDIR
 db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine
and load the files into MySQL there:

mysqladmin create db_name # create database
cat DUMPDIR/*.sql | mysql db_name # create tables in database
mysqlimport db_name
 DUMPDIR/*.txt # load data into tables

Do not forget to copy the mysql database because that is where the grant tables are stored. You
might have to run commands as the MySQL root user on the new machine until you have the mysql
database in place.

After you import the mysql database on the new machine, execute mysqladmin flush-
privileges so that the server reloads the grant table information.

325

326

Chapter 4 Downgrading MySQL
Downgrading from MySQL 8.0 to MySQL 5.7 is not supported.

In-place downgrades are supported from within the MySQL 8.0 series as of MySQL 8.0.35. In-place
means starting and running a new MySQL server binary on an existing MySQL data directory that was
created by a different MySQL server version.

Attempting to downgrade below MySQL 8.0.35 yields an error similar to:

[ERROR] [MY-013171] [InnoDB] Cannot boot server version 80034 on data directory built by version 80035. Downgrade is not supported

Here's a successful log message from an in-place MySQL 8.0.36 to 8.0.35 downgrade:

[System] [MY-014064] [Server] Server downgrade from '80036' to '80035' started.
[System] [MY-014064] [Server] Server downgrade from '80036' to '80035' completed.

An alternative is to restore a backup taken before an upgrade.

327

328

Chapter 5 Tutorial

Table of Contents
5.1 Connecting to and Disconnecting from the Server ... 329
5.2 Entering Queries ... 330
5.3 Creating and Using a Database ... 333

5.3.1 Creating and Selecting a Database ... 334
5.3.2 Creating a Table .. 335
5.3.3 Loading Data into a Table .. 336
5.3.4 Retrieving Information from a Table ... 337

5.4 Getting Information About Databases and Tables ... 350
5.5 Using mysql in Batch Mode ... 351
5.6 Examples of Common Queries .. 352

5.6.1 The Maximum Value for a Column .. 353
5.6.2 The Row Holding the Maximum of a Certain Column ... 353
5.6.3 Maximum of Column per Group .. 353
5.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 354
5.6.5 Using User-Defined Variables ... 355
5.6.6 Using Foreign Keys .. 355
5.6.7 Searching on Two Keys .. 357
5.6.8 Calculating Visits Per Day .. 357
5.6.9 Using AUTO_INCREMENT ... 358

5.7 Using MySQL with Apache .. 360

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client
program to create and use a simple database. mysql (sometimes referred to as the “terminal monitor”
or just “monitor”) is an interactive program that enables you to connect to a MySQL server, run
queries, and view the results. mysql may also be used in batch mode: you place your queries in a file
beforehand, then tell mysql to execute the contents of the file. Both ways of using mysql are covered
here.

To see a list of options provided by mysql, invoke it with the --help option:

$> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available
to which you can connect. If this is not true, contact your MySQL administrator. (If you are the
administrator, you need to consult the relevant portions of this manual, such as Chapter 7, MySQL
Server Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only
in accessing an existing database, you may want to skip the sections that describe how to create the
database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant
sections of the manual for more information on the topics covered here.

5.1 Connecting to and Disconnecting from the Server

To connect to the server, you usually need to provide a MySQL user name when you invoke mysql
and, most likely, a password. If the server runs on a machine other than the one where you log in, you
must also specify a host name. Contact your administrator to find out what connection parameters you
should use to connect (that is, what host, user name, and password to use). Once you know the proper
parameters, you should be able to connect like this:

329

Entering Queries

$> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of
your MySQL account. Substitute appropriate values for your setup. The ******** represents your
password; enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

$> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 8.0.42-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> prompt tells you that mysql is ready for you to enter SQL statements.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply
use the following:

$> mysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't
connect to local MySQL server through socket '/tmp/mysql.sock' (2), it means
that the MySQL server daemon (Unix) or service (Windows) is not running. Consult the administrator or
see the section of Chapter 2, Installing MySQL that is appropriate to your operating system.

For help with other problems often encountered when trying to log in, see Section B.3.2, “Common
Errors When Using MySQL Programs”.

Some MySQL installations permit users to connect as the anonymous (unnamed) user to the server
running on the local host. If this is the case on your machine, you should be able to connect to that
server by invoking mysql without any options:

$> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the
mysql> prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control+D.

Most examples in the following sections assume that you are connected to the server. They indicate
this by the mysql> prompt.

5.2 Entering Queries

Make sure that you are connected to the server, as discussed in the previous section. Doing so does
not in itself select any database to work with, but that is okay. At this point, it is more important to find
out a little about how to issue queries than to jump right in creating tables, loading data into them, and
retrieving data from them. This section describes the basic principles of entering queries, using several
queries you can try out to familiarize yourself with how mysql works.

Here is a simple query that asks the server to tell you its version number and the current date. Type it
in as shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+-----------+--------------+
| VERSION() | CURRENT_DATE |

330

Entering Queries

+-----------+--------------+
| 5.8.0-m17 | 2015-12-21 |
+-----------+--------------+
1 row in set (0.02 sec)
mysql>

This query illustrates several things about mysql:

• A query normally consists of an SQL statement followed by a semicolon. (There are some
exceptions where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to
others later.)

• When you issue a query, mysql sends it to the server for execution and displays the results, then
prints another mysql> prompt to indicate that it is ready for another query.

• mysql displays query output in tabular form (rows and columns). The first row contains labels for
the columns. The rows following are the query results. Normally, column labels are the names of the
columns you fetch from database tables. If you're retrieving the value of an expression rather than a
table column (as in the example just shown), mysql labels the column using the expression itself.

• mysql shows how many rows were returned and how long the query took to execute, which gives
you a rough idea of server performance. These values are imprecise because they represent wall
clock time (not CPU or machine time), and because they are affected by factors such as server load
and network latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining
examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here is another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 | 25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter
multiple statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+-----------+
| VERSION() |
+-----------+
| 8.0.13 |
+-----------+
1 row in set (0.00 sec)

+---------------------+
| NOW() |
+---------------------+
| 2018-08-24 00:56:40 |
+---------------------+
1 row in set (0.00 sec)

A query need not be given all on a single line, so lengthy queries that require several lines are not a
problem. mysql determines where your statement ends by looking for the terminating semicolon, not
by looking for the end of the input line. (In other words, mysql accepts free-format input: it collects
input lines but does not execute them until it sees the semicolon.)

Here is a simple multiple-line statement:

331

Entering Queries

mysql> SELECT
 -> USER()
 -> ,
 -> CURRENT_DATE;
+---------------+--------------+
| USER() | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2018-08-24 |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a
multiple-line query. This is how mysql indicates that it has not yet seen a complete statement and is
waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that
feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a query that you are in the process of entering, cancel it by
typing \c:

mysql> SELECT
 -> USER()
 -> \c
mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to
indicate that mysql is ready for a new query.

The following table shows each of the prompts you may see and summarizes what they mean about
the state that mysql is in.

Prompt Meaning

mysql> Ready for new query

-> Waiting for next line of multiple-line query

'> Waiting for next line, waiting for completion of a
string that began with a single quote (')

"> Waiting for next line, waiting for completion of a
string that began with a double quote (")

`> Waiting for next line, waiting for completion of an
identifier that began with a backtick (`)

/*> Waiting for next line, waiting for completion of a
comment that began with /*

Multiple-line statements commonly occur by accident when you intend to issue a query on a single line,
but forget the terminating semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
 ->

If this happens to you (you think you've entered a statement but the only response is a -> prompt),
most likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you
might sit there for a while before realizing what you need to do. Enter a semicolon to complete the
statement, and mysql executes it:

mysql> SELECT USER()
 -> ;
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting
for completion of a string). In MySQL, you can write strings surrounded by either ' or " characters (for

332

Creating and Using a Database

example, 'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines. When
you see a '> or "> prompt, it means that you have entered a line containing a string that begins with
a ' or " quote character, but have not yet entered the matching quote that terminates the string. This
often indicates that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead
of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that
mysql expects to see the rest of an unterminated string. (Do you see the error in the statement? The
string 'Smith is missing the second single quotation mark.)

At this point, what do you do? The simplest thing is to cancel the query. However, you cannot just type
\c in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter the
closing quote character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '> '\c
mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new query.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not
completed a backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter
an unterminated string, any further lines you type appear to be ignored by mysql—including a line
containing QUIT. This can be quite confusing, especially if you do not know that you need to supply the
terminating quote before you can cancel the current query.

Note

Multiline statements from this point on are written without the secondary (->
or other) prompts, to make it easier to copy and paste the statements to try for
yourself.

5.3 Creating and Using a Database

Once you know how to enter SQL statements, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track
of various types of information about them. You can do so by creating tables to hold your data and
loading them with the desired information. Then you can answer different sorts of questions about
your animals by retrieving data from the tables. This section shows you how to perform the following
operations:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations
in which a similar type of database might be used. For example, a database like this could be used by
a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie
distribution containing some of the queries and sample data used in the following sections can be

333

Creating and Selecting a Database

obtained from the MySQL website. It is available in both compressed tar file and Zip formats at https://
dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The mysql database describes user access privileges. The test database often is available as a
workspace for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES
does not show databases that you have no privileges for if you do not have the SHOW DATABASES
privilege. See Section 15.7.7.14, “SHOW DATABASES Statement”.

If the test database exists, try to access it:

mysql> USE test
Database changed

USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon
if you like; it does no harm.) The USE statement is special in another way, too: it must be given on a
single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you
create in that database can be removed by anyone else with access to it. For this reason, you should
probably ask your MySQL administrator for permission to use a database of your own. Suppose that
you want to call yours menagerie. The administrator needs to execute a statement like this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is the
host from which you connect to the server.

5.3.1 Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you can begin
using it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case-sensitive (unlike SQL keywords), so you must always refer
to your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is
also true for table names. (Under Windows, this restriction does not apply, although you must refer to
databases and tables using the same lettercase throughout a given query. However, for a variety of
reasons, the recommended best practice is always to use the same lettercase that was used when the
database was created.)

Note

If you get an error such as ERROR 1044 (42000): Access denied
for user 'micah'@'localhost' to database 'menagerie' when
attempting to create a database, this means that your user account does not
have the necessary privileges to do so. Discuss this with the administrator or
see Section 8.2, “Access Control and Account Management”.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the
current database, use this statement:

334

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/

Creating a Table

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a
mysql session. You can do this by issuing a USE statement as shown in the example. Alternatively,
you can select the database on the command line when you invoke mysql. Just specify its name after
any connection parameters that you might need to provide. For example:

$> mysql -h host -u user -p menagerie
Enter password: ********

Important

menagerie in the command just shown is not your password. If you want
to supply your password on the command line after the -p option, you must
do so with no intervening space (for example, as -ppassword, not as -p
password). However, putting your password on the command line is not
recommended, because doing so exposes it to snooping by other users logged
in on your machine.

Note

You can see at any time which database is currently selected using SELECT
DATABASE().

5.3.2 Creating a Table

Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and
what columns should be in each of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and
it should contain, as a bare minimum, each animal's name. Because the name by itself is not very
interesting, the table should contain other information. For example, if more than one person in your
family keeps pets, you might want to list each animal's owner. You might also want to record some
basic descriptive information such as species and sex.

How about age? That might be of interest, but it is not a good thing to store in a database. Age
changes as time passes, which means you'd have to update your records often. Instead, it is better
to store a fixed value such as date of birth. Then, whenever you need age, you can calculate it as
the difference between the current date and the birth date. MySQL provides functions for doing date
arithmetic, so this is not difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If
you think this type of query is somewhat silly, note that it is the same question you might ask in the
context of a business database to identify clients to whom you need to send out birthday greetings in
the current week or month, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store death
date in the database, you can easily calculate how old a pet was when it died.

You can probably think of other types of information that would be useful in the pet table, but the ones
identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
 species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

335

Loading Data into a Table

VARCHAR is a good choice for the name, owner, and species columns because the column values
vary in length. The lengths in those column definitions need not all be the same, and need not be 20.
You can normally pick any length from 1 to 65535, whatever seems most reasonable to you. If you
make a poor choice and it turns out later that you need a longer field, MySQL provides an ALTER
TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or
perhaps 'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or
what types they have.

For more information about MySQL data types, see Chapter 13, Data Types.

5.3.3 Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful
for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates
in 'YYYY-MM-DD' format; this may differ from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file
containing a row for each of your animals, then load the contents of the file into the table with a single
statement.

336

Retrieving Information from a Table

You could create a text file pet.txt containing one record per line, with values separated by tabs,
and given in the order in which the columns were listed in the CREATE TABLE statement. For missing
values (such as unknown sexes or death dates for animals that are still living), you can use NULL
values. To represent these in your text file, use \N (backslash, capital-N). For example, the record for
Whistler the bird would look like this (where the whitespace between values is a single tab character):

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this statement:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

If you created the file on Windows with an editor that uses \r\n as a line terminator, you should use
this statement instead:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
 LINES TERMINATED BY '\r\n';

(On an Apple machine running macOS, you would likely want to use LINES TERMINATED BY '\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA
statement if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to
read the file pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled
by default. See Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”, for information on
how to change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest
form, you supply values for each column, in the order in which the columns were listed in the CREATE
TABLE statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new
record using an INSERT statement like this:

mysql> INSERT INTO pet
 VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

String and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL
directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load
your records initially using several INSERT statements rather than a single LOAD DATA statement.

5.3.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all
columns.” which_table indicates the table from which you want to retrieve data. The WHERE clause
is optional. If it is present, conditions_to_satisfy specifies one or more conditions that rows must
satisfy to qualify for retrieval.

5.3.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+

337

Retrieving Information from a Table

Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

This form of SELECT uses *, which is shorthand for “select all columns.” This is useful if you want to
review your entire table, for example, after you've just loaded it with your initial data set. For example,
you may happen to think that the birth date for Bowser doesn't seem quite right. Consulting your
original pedigree papers, you find that the correct birth year should be 1989, not 1979.

There are at least two ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD
DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE 'pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

There is an exception to the principle that SELECT * selects all columns. If a table contains invisible
columns, * does not include them. For more information, see Section 15.1.20.10, “Invisible Columns”.

5.3.4.2 Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause
from the SELECT statement. But typically you don't want to see the entire table, particularly when it
becomes large. Instead, you're usually more interested in answering a particular question, in which
case you specify some constraints on the information you want. Let's look at some selection queries in
terms of questions about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that
you made to Bowser's birth date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser',
'BOWSER', and so forth. The query result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which
animals were born during or after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+

338

Retrieving Information from a Table

| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both
operators, it is a good idea to use parentheses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
 OR (species = 'dog' AND sex = 'f');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

5.3.4.3 Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are
interested, separated by commas. For example, if you want to know when your animals were born,
select the name and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
Fluffy	1993-02-04
Claws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |

339

Retrieving Information from a Table

| Benny |
| Diane |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear
more than once. To minimize the output, retrieve each unique output record just once by adding the
keyword DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get birth
dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
 WHERE species = 'dog' OR species = 'cat';
+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

5.3.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular
order. It is often easier to examine query output when the rows are sorted in some meaningful way. To
sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+
| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting—like all other comparison operations—is normally performed in a
case-insensitive fashion. This means that the order is undefined for columns that are identical except
for their case. You can force a case-sensitive sort for a column by using BINARY like so: ORDER BY
BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order,
add the DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |

340

Retrieving Information from a Table

+----------+------------+
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
+----------+------------+

You can sort on multiple columns, and you can sort different columns in different directions. For
example, to sort by type of animal in ascending order, then by birth date within animal type in
descending order (youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
 ORDER BY species, birth DESC;
+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

The DESC keyword applies only to the column name immediately preceding it (birth); it does not
affect the species column sort order.

5.3.4.5 Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example, to
calculate ages or extract parts of dates.

To determine how many years old each of your pets is, use the TIMESTAMPDIFF() function. Its
arguments are the unit in which you want the result expressed, and the two dates for which to take
the difference. The following query shows, for each pet, the birth date, the current date, and the age in
years. An alias (age) is used to make the final output column label more meaningful.

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

The query works, but the result could be scanned more easily if the rows were presented in some
order. This can be done by adding an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet ORDER BY name;

341

Retrieving Information from a Table

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet ORDER BY age;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine
which animals these are by checking whether the death value is NULL. Then, for those with non-NULL
values, compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
 TIMESTAMPDIFF(YEAR,birth,death) AS age
 FROM pet WHERE death IS NOT NULL ORDER BY age;
+--------+------------+------------+------+
| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special
value that cannot be compared using the usual comparison operators. This is discussed later. See
Section 5.3.4.6, “Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation,
year and day are irrelevant; you simply want to extract the month part of the birth column.
MySQL provides several functions for extracting parts of dates, such as YEAR(), MONTH(), and
DAYOFMONTH(). MONTH() is the appropriate function here. To see how it works, run a simple query
that displays the value of both birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3

342

Retrieving Information from a Table

+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is
April. Then the month value is 4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the
month number (12) and look for animals born in month 13, because there is no such month. Instead,
you look for animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to
use the number for a particular month. DATE_ADD() enables you to add a time interval to a given date.
If you add a month to the value of CURDATE(), then extract the month part with MONTH(), the result
produces the month in which to look for birthdays:

mysql> SELECT name, birth FROM pet
 WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after
using the modulo function (MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
 WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between
0 and 11. So the addition has to be after the MOD(), otherwise we would go from November (11) to
January (1).

If a calculation uses invalid dates, the calculation fails and produces warnings:

mysql> SELECT '2018-10-31' + INTERVAL 1 DAY;
+-------------------------------+
| '2018-10-31' + INTERVAL 1 DAY |
+-------------------------------+
| 2018-11-01 |
+-------------------------------+
mysql> SELECT '2018-10-32' + INTERVAL 1 DAY;
+-------------------------------+
| '2018-10-32' + INTERVAL 1 DAY |
+-------------------------------+
| NULL |
+-------------------------------+
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '2018-10-32' |
+---------+------+--+

5.3.4.6 Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing
unknown value” and it is treated somewhat differently from other values.

To test for NULL, use the IS NULL and IS NOT NULL operators, as shown here:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |

343

Retrieving Information from a Table

+-----------+---------------+

You cannot use arithmetic comparison operators such as =, <, or <> to test for NULL. To demonstrate
this for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Because the result of any arithmetic comparison with NULL is also NULL, you cannot obtain any
meaningful results from such comparisons.

In MySQL, 0 or NULL means false and anything else means true. The default truth value from a
boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which
animals are no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if
you do ORDER BY ... DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an
empty string into a column defined as NOT NULL, but this is not the case. These are in fact values,
whereas NULL means “not having a value.” You can test this easily enough by using IS [NOT] NULL
as shown:

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
| 0 | 1 | 0 | 1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact
NOT NULL. See Section B.3.4.3, “Problems with NULL Values”.

5.3.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on
extended regular expressions similar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching enables you to use _ to match any single character and % to match an arbitrary
number of characters (including zero characters). In MySQL, SQL patterns are case-insensitive by
default. Some examples are shown here. Do not use = or <> when you use SQL patterns. Use the
LIKE or NOT LIKE comparison operators instead.

To find names beginning with b:

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with fy:

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+

344

Retrieving Information from a Table

| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a w:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the _ pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When you
test for a match for this type of pattern, use the REGEXP_LIKE() function (or the REGEXP or RLIKE
operators, which are synonyms for REGEXP_LIKE()).

The following list describes some characteristics of extended regular expressions:

• . matches any single character.

• A character class [...] matches any character within the brackets. For example, [abc] matches
a, b, or c. To name a range of characters, use a dash. [a-z] matches any letter, whereas [0-9]
matches any digit.

• * matches zero or more instances of the thing preceding it. For example, x* matches any number of
x characters, [0-9]* matches any number of digits, and .* matches any number of anything.

• A regular expression pattern match succeeds if the pattern matches anywhere in the value being
tested. (This differs from a LIKE pattern match, which succeeds only if the pattern matches the
entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use ^ at the
beginning or $ at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are
rewritten here to use REGEXP_LIKE().

To find names beginning with b, use ^ to match the beginning of the name:

mysql> SELECT * FROM pet WHERE REGEXP_LIKE(name, '^b');
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1979-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To force a regular expression comparison to be case-sensitive, use a case-sensitive collation, or
use the BINARY keyword to make one of the strings a binary string, or specify the c match-control
character. Each of these queries matches only lowercase b at the beginning of a name:

SELECT * FROM pet WHERE REGEXP_LIKE(name, '^b' COLLATE utf8mb4_0900_as_cs);

345

Retrieving Information from a Table

SELECT * FROM pet WHERE REGEXP_LIKE(name, BINARY '^b');
SELECT * FROM pet WHERE REGEXP_LIKE(name, '^b', 'c');

To find names ending with fy, use $ to match the end of the name:

mysql> SELECT * FROM pet WHERE REGEXP_LIKE(name, 'fy$');
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a w, use this query:

mysql> SELECT * FROM pet WHERE REGEXP_LIKE(name, 'w');
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in
the previous query to put a wildcard on either side of the pattern to get it to match the entire value as
would be true with an SQL pattern.

To find names containing exactly five characters, use ^ and $ to match the beginning and end of the
name, and five instances of . in between:

mysql> SELECT * FROM pet WHERE REGEXP_LIKE(name, '^.....$');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE REGEXP_LIKE(name, '^.{5}$');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

For more information about the syntax for regular expressions, see Section 14.8.2, “Regular
Expressions”.

5.3.4.8 Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a
table?” For example, you might want to know how many pets you have, or how many pets each owner
has, or you might want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet
table?” because there is one record per pet. COUNT(*) counts the number of rows, so the query to
count your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |

346

Retrieving Information from a Table

+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to
find out how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3
Harold	2
+--------+----------+

The preceding query uses GROUP BY to group all records for each owner. The use of COUNT()
in conjunction with GROUP BY is useful for characterizing your data under various groupings. The
following examples show different ways to perform animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
bird	2
cat	2
dog	3
hamster	1
snake	1
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when
performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
 WHERE species = 'dog' OR species = 'cat'
 GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |

347

Retrieving Information from a Table

+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1
dog	m	2
+---------+------+----------+

Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
 WHERE sex IS NOT NULL
 GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

If you name columns to select in addition to the COUNT() value, a GROUP BY clause should be present
that names those same columns. Otherwise, the following occurs:

• If the ONLY_FULL_GROUP_BY SQL mode is enabled, an error occurs:

mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): In aggregated query without GROUP BY, expression
#1 of SELECT list contains nonaggregated column 'menagerie.pet.owner';
this is incompatible with sql_mode=only_full_group_by

• If ONLY_FULL_GROUP_BY is not enabled, the query is processed by treating all rows as a single
group, but the value selected for each named column is nondeterministic. The server is free to select
the value from any row:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
| Harold | 8 |
+--------+----------+
1 row in set (0.00 sec)

See also Section 14.19.3, “MySQL Handling of GROUP BY”. See Section 14.19.1, “Aggregate
Function Descriptions” for information about COUNT(expr) behavior and related optimizations.

5.3.4.9 Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about them,
such as events in their lives like visits to the vet or when litters are born, you need another table. What
should this table look like? It needs to contain the following information:

• The pet name so that you know which animal each event pertains to.

• A date so that you know when the event occurred.

• A field to describe the event.

• An event type field, if you want to be able to categorize events.

348

Retrieving Information from a Table

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
 type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it is easiest to load the initial records by creating a tab-delimited text file
containing the following information.

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1
male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3
male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak
straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew
toy

Claws 1998-03-17 birthday Gave him a new flea
collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be
able to perform retrievals on the records in the event table; the principles are the same. But when is
the event table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to
calculate ages from two dates. The litter date of the mother is in the event table, but to calculate
her age on that date you need her birth date, which is stored in the pet table. This means the query
requires both tables:

mysql> SELECT pet.name,
 TIMESTAMPDIFF(YEAR,birth,date) AS age,
 remark
 FROM pet INNER JOIN event
 ON pet.name = event.name
 WHERE event.type = 'litter';
+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

There are several things to note about this query:

• The FROM clause joins two tables because the query needs to pull information from both of them.

• When combining (joining) information from multiple tables, you need to specify how records in one
table can be matched to records in the other. This is easy because they both have a name column.
The query uses an ON clause to match up records in the two tables based on the name values.

349

Getting Information About Databases and Tables

The query uses an INNER JOIN to combine the tables. An INNER JOIN permits rows from either
table to appear in the result if and only if both tables meet the conditions specified in the ON clause.
In this example, the ON clause specifies that the name column in the pet table must match the name
column in the event table. If a name appears in one table but not the other, the row does not appear
in the result because the condition in the ON clause fails.

• Because the name column occurs in both tables, you must be specific about which table you mean
when referring to the column. This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself,
if you want to compare records in a table to other records in that same table. For example, to find
breeding pairs among your pets, you can join the pet table with itself to produce candidate pairs of live
males and females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
 FROM pet AS p1 INNER JOIN pet AS p2
 ON p1.species = p2.species
 AND p1.sex = 'f' AND p1.death IS NULL
 AND p2.sex = 'm' AND p2.death IS NULL;
+--------+------+-------+------+---------+
| name | sex | name | sex | species |
+--------+------+-------+------+---------+
| Fluffy | f | Claws | m | cat |
| Buffy | f | Fang | m | dog |
+--------+------+-------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which
instance of the table each column reference is associated with.

5.4 Getting Information About Databases and Tables
What if you forget the name of a database or table, or what the structure of a given table is (for
example, what its columns are called)? MySQL addresses this problem through several statements
that provide information about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To
find out which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the
name of a table), use this statement:

mysql> SHOW TABLES;
+---------------------+
| Tables_in_menagerie |
+---------------------+
| event |
| pet |
+---------------------+

The name of the column in the output produced by this statement is always Tables_in_db_name,
where db_name is the name of the database. See Section 15.7.7.39, “SHOW TABLES Statement”, for
more information.

If you want to find out about the structure of a table, the DESCRIBE statement is useful; it displays
information about each of a table's columns:

350

Using mysql in Batch Mode

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the
column can contain NULL values, Key indicates whether the column is indexed, and Default specifies
the column's default value. Extra displays special information about columns: If a column was created
with the AUTO_INCREMENT option, the value is auto_increment rather than empty.

DESC is a short form of DESCRIBE. See Section 15.8.1, “DESCRIBE Statement”, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW
CREATE TABLE statement. See Section 15.7.7.10, “SHOW CREATE TABLE Statement”.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See
Section 15.7.7.22, “SHOW INDEX Statement”, for more about this statement.

5.5 Using mysql in Batch Mode

In the previous sections, you used mysql interactively to enter statements and view the results. You
can also run mysql in batch mode. To do this, put the statements you want to run in a file, then tell
mysql to read its input from the file:

$> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause
problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

$> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use
the --force command-line option.

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script enables you to avoid
retyping it each time you execute it.

• You can generate new queries from existing ones that are similar by copying and editing script files.

• Batch mode can also be useful while you're developing a query, particularly for multiple-line
statements or multiple-statement sequences. If you make a mistake, you don't have to retype
everything. Just edit your script to correct the error, then tell mysql to execute it again.

• If you have a query that produces a lot of output, you can run the output through a pager rather than
watching it scroll off the top of your screen:

$> mysql < batch-file | more

351

Examples of Common Queries

• You can catch the output in a file for further processing:

$> mysql < batch-file > mysql.out

• You can distribute your script to other people so that they can also run the statements.

• Some situations do not allow for interactive use, for example, when you run a query from a cron job.
In this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when
you use it interactively. For example, the output of SELECT DISTINCT species FROM pet looks
like this when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output
the statements that are executed, use mysql -v.

You can also use scripts from the mysql prompt by using the source command or \. command:

mysql> source filename;
mysql> \. filename

See Section 6.5.1.5, “Executing SQL Statements from a Text File”, for more information.

5.6 Examples of Common Queries

Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain
traders (dealers). Supposing that each trader has a single fixed price per article, then (article,
dealer) is a primary key for the records.

Start the command-line tool mysql and select a database:

$> mysql your-database-name

To create and populate the example table, use these statements:

CREATE TABLE shop (
 article INT UNSIGNED DEFAULT '0000' NOT NULL,
 dealer CHAR(20) DEFAULT '' NOT NULL,
 price DECIMAL(16,2) DEFAULT '0.00' NOT NULL,
 PRIMARY KEY(article, dealer));
INSERT INTO shop VALUES
 (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
 (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

352

The Maximum Value for a Column

SELECT * FROM shop ORDER BY article;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
1	A	3.45
1	B	3.99
2	A	10.99
3	B	1.45
3	C	1.69
3	D	1.25
4	D	19.95
+---------+--------+-------+

5.6.1 The Maximum Value for a Column

“What is the highest item number?”

SELECT MAX(article) AS article FROM shop;

+---------+
| article |
+---------+
| 4 |
+---------+

5.6.2 The Row Holding the Maximum of a Certain Column

Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0004 | D | 19.95 |
+---------+--------+-------+

Another solution is to use a LEFT JOIN, as shown here:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.price < s2.price
WHERE s2.article IS NULL;

You can also do this by sorting all rows descending by price and get only the first row using the
MySQL-specific LIMIT clause, like this:

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

Note

If there were several most expensive articles, each with a price of 19.95, the
LIMIT solution would show only one of them.

5.6.3 Maximum of Column per Group

Task: Find the highest price per article.

SELECT article, MAX(price) AS price

353

The Rows Holding the Group-wise Maximum of a Certain Column

FROM shop
GROUP BY article
ORDER BY article;

+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

5.6.4 The Rows Holding the Group-wise Maximum of a Certain Column

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)
 FROM shop s2
 WHERE s1.article = s2.article)
ORDER BY article;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
+---------+--------+-------+

The preceding example uses a correlated subquery, which can be inefficient (see Section 15.2.15.7,
“Correlated Subqueries”). Other possibilities for solving the problem are to use an uncorrelated
subquery in the FROM clause, a LEFT JOIN, or a common table expression with a window function.

Uncorrelated subquery:

SELECT s1.article, dealer, s1.price
FROM shop s1
JOIN (
 SELECT article, MAX(price) AS price
 FROM shop
 GROUP BY article) AS s2
 ON s1.article = s2.article AND s1.price = s2.price
ORDER BY article;

LEFT JOIN:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price
WHERE s2.article IS NULL
ORDER BY s1.article;

The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no
s2.price with a greater value and thus the corresponding s2.article value is NULL. See
Section 15.2.13.2, “JOIN Clause”.

Common table expression with window function:

WITH s1 AS (
 SELECT article, dealer, price,
 RANK() OVER (PARTITION BY article
 ORDER BY price DESC
) AS `Rank`

354

Using User-Defined Variables

 FROM shop
)
SELECT article, dealer, price
 FROM s1
 WHERE `Rank` = 1
ORDER BY article;

5.6.5 Using User-Defined Variables

You can employ MySQL user variables to remember results without having to store them in temporary
variables in the client. (See Section 11.4, “User-Defined Variables”.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

Note

It is also possible to store the name of a database object such as a table or a
column in a user variable and then to use this variable in an SQL statement;
however, this requires the use of a prepared statement. See Section 15.5,
“Prepared Statements”, for more information.

5.6.6 Using Foreign Keys

MySQL supports foreign keys, which permit cross-referencing related data across tables, and foreign
key constraints, which help keep the related data consistent.

A foreign key relationship involves a parent table that holds the initial column values, and a child table
with column values that reference the parent column values. A foreign key constraint is defined on the
child table.

This following example relates parent and child tables through a single-column foreign key and
shows how a foreign key constraint enforces referential integrity.

Create the parent and child tables using the following SQL statements:

CREATE TABLE parent (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
) ENGINE=INNODB;

Insert a row into the parent table, like this:

mysql> INSERT INTO parent (id) VALUES ROW(1);

Verify that the data was inserted. You can do this simply by selecting all rows from parent, as shown
here:

mysql> TABLE parent;

355

Using Foreign Keys

+----+
| id |
+----+
| 1 |
+----+

Insert a row into the child table using the following SQL statement:

mysql> INSERT INTO child (id,parent_id) VALUES ROW(1,1);

The insert operation is successful because parent_id 1 is present in the parent table.

Insertion of a row into the child table with a parent_id value that is not present in the parent table is
rejected with an error, as you can see here:

mysql> INSERT INTO child (id,parent_id) VALUES ROW(2,2);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails
(`test`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
REFERENCES `parent` (`id`))

The operation fails because the specified parent_id value does not exist in the parent table.

Trying to delete the previously inserted row from the parent table also fails, as shown here:

mysql> DELETE FROM parent WHERE id = 1;
ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint fails
(`test`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
REFERENCES `parent` (`id`))

This operation fails because the record in the child table contains the referenced id (parent_id)
value.

When an operation affects a key value in the parent table that has matching rows in the child table,
the result depends on the referential action specified by ON UPDATE and ON DELETE subclauses of
the FOREIGN KEY clause. Omitting ON DELETE and ON UPDATE clauses (as in the current child table
definition) is the same as specifying the RESTRICT option, which rejects operations that affect a key
value in the parent table that has matching rows in the parent table.

To demonstrate ON DELETE and ON UPDATE referential actions, drop the child table and recreate it
to include ON UPDATE and ON DELETE subclauses with the CASCADE option. The CASCADE option
automatically deletes or updates matching rows in the child table when deleting or updating rows in the
parent table.

DROP TABLE child;

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
 ON UPDATE CASCADE
 ON DELETE CASCADE
) ENGINE=INNODB;

Insert some rows into the child table using the statement shown here:

mysql> INSERT INTO child (id,parent_id) VALUES ROW(1,1), ROW(2,1), ROW(3,1);

Verify that the data was inserted, like this:

mysql> TABLE child;
+------+-----------+
| id | parent_id |
+------+-----------+
1	1
2	1
3	1

356

Searching on Two Keys

+------+-----------+

Update the ID in the parent table, changing it from 1 to 2, using the SQL statement shown here:

mysql> UPDATE parent SET id = 2 WHERE id = 1;

Verify that the update was successful by selecting all rows from the parent table, as shown here:

mysql> TABLE parent;
+----+
| id |
+----+
| 2 |
+----+

Verify that the ON UPDATE CASCADE referential action updated the child table, like this:

mysql> TABLE child;
+------+-----------+
| id | parent_id |
+------+-----------+
1	2
2	2
3	2
+------+-----------+

To demonstrate the ON DELETE CASCADE referential action, delete records from the parent table
where parent_id = 2; this deletes all records in the parent table.

mysql> DELETE FROM parent WHERE id = 2;

Because all records in the child table are associated with parent_id = 2, the ON DELETE CASCADE
referential action removes all records from the child table, as shown here:

mysql> TABLE child;
Empty set (0.00 sec)

For more information about foreign key constraints, see Section 15.1.20.5, “FOREIGN KEY
Constraints”.

5.6.7 Searching on Two Keys

An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized. See Section 10.2.1.3, “Index Merge Optimization”.

You can also solve the problem efficiently by using a UNION that combines the output of two separate
SELECT statements. See Section 15.2.18, “UNION Clause”.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
 FROM test_table WHERE field1_index = '1'
UNION
SELECT field1_index, field2_index
 FROM test_table WHERE field2_index = '1';

5.6.8 Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the number of days
per month a user has visited a Web page.

357

Using AUTO_INCREMENT

CREATE TABLE t1 (year YEAR, month INT UNSIGNED,
 day INT UNSIGNED);
INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
 (2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To
determine how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
 GROUP BY year,month;

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 1 | 3 |
| 2000 | 2 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination,
with automatic removal of duplicate entries.

5.6.9 Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (id)
);

INSERT INTO animals (name) VALUES
 ('dog'),('cat'),('penguin'),
 ('lax'),('whale'),('ostrich');

SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

No value was specified for the AUTO_INCREMENT column, so MySQL assigned sequence numbers
automatically. You can also explicitly assign 0 to the column to generate sequence numbers, unless
the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled. For example:

INSERT INTO animals (id,name) VALUES(0,'groundhog');

If the column is declared NOT NULL, it is also possible to assign NULL to the column to generate
sequence numbers. For example:

INSERT INTO animals (id,name) VALUES(NULL,'squirrel');

When you insert any other value into an AUTO_INCREMENT column, the column is set to that value
and the sequence is reset so that the next automatically generated value follows sequentially from the
largest column value. For example:

INSERT INTO animals (id,name) VALUES(100,'rabbit');

358

Using AUTO_INCREMENT

INSERT INTO animals (id,name) VALUES(NULL,'mouse');
SELECT * FROM animals;
+-----+-----------+
| id | name |
+-----+-----------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
7	groundhog
8	squirrel
100	rabbit
101	mouse
+-----+-----------+

Updating an existing AUTO_INCREMENT column value also resets the AUTO_INCREMENT sequence.

You can retrieve the most recent automatically generated AUTO_INCREMENT value with the
LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. These functions
are connection-specific, so their return values are not affected by another connection which is also
performing inserts.

Use the smallest integer data type for the AUTO_INCREMENT column that is large enough to hold the
maximum sequence value you require. When the column reaches the upper limit of the data type, the
next attempt to generate a sequence number fails. Use the UNSIGNED attribute if possible to allow a
greater range. For example, if you use TINYINT, the maximum permissible sequence number is 127.
For TINYINT UNSIGNED, the maximum is 255. See Section 13.1.2, “Integer Types (Exact Value) -
INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT” for the ranges of all the integer types.

Note

For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id()
actually return the AUTO_INCREMENT key from the first of the inserted rows.
This enables multiple-row inserts to be reproduced correctly on other servers in
a replication setup.

To start with an AUTO_INCREMENT value other than 1, set that value with CREATE TABLE or ALTER
TABLE, like this:

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

InnoDB Notes

For information about AUTO_INCREMENT usage specific to InnoDB, see Section 17.6.1.6,
“AUTO_INCREMENT Handling in InnoDB”.

MyISAM Notes

• For MyISAM tables, you can specify AUTO_INCREMENT on a secondary column in a multiple-
column index. In this case, the generated value for the AUTO_INCREMENT column is calculated as
MAX(auto_increment_column) + 1 WHERE prefix=given-prefix. This is useful when you
want to put data into ordered groups.

CREATE TABLE animals (
 grp ENUM('fish','mammal','bird') NOT NULL,
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (grp,id)
) ENGINE=MyISAM;

INSERT INTO animals (grp,name) VALUES
 ('mammal','dog'),('mammal','cat'),
 ('bird','penguin'),('fish','lax'),('mammal','whale'),

359

https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html

Using MySQL with Apache

 ('bird','ostrich');

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

In this case (when the AUTO_INCREMENT column is part of a multiple-column index),
AUTO_INCREMENT values are reused if you delete the row with the biggest AUTO_INCREMENT value
in any group. This happens even for MyISAM tables, for which AUTO_INCREMENT values normally
are not reused.

• If the AUTO_INCREMENT column is part of multiple indexes, MySQL generates sequence values
using the index that begins with the AUTO_INCREMENT column, if there is one. For example, if the
animals table contained indexes PRIMARY KEY (grp, id) and INDEX (id), MySQL would
ignore the PRIMARY KEY for generating sequence values. As a result, the table would contain a
single sequence, not a sequence per grp value.

Further Reading

More information about AUTO_INCREMENT is available here:

• How to assign the AUTO_INCREMENT attribute to a column: Section 15.1.20, “CREATE TABLE
Statement”, and Section 15.1.9, “ALTER TABLE Statement”.

• How AUTO_INCREMENT behaves depending on the NO_AUTO_VALUE_ON_ZERO SQL mode:
Section 7.1.11, “Server SQL Modes”.

• How to use the LAST_INSERT_ID() function to find the row that contains the most recent
AUTO_INCREMENT value: Section 14.15, “Information Functions”.

• Setting the AUTO_INCREMENT value to be used: Section 7.1.8, “Server System Variables”.

• Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”

• AUTO_INCREMENT and replication: Section 19.5.1.1, “Replication and AUTO_INCREMENT”.

• Server-system variables related to AUTO_INCREMENT (auto_increment_increment and
auto_increment_offset) that can be used for replication: Section 7.1.8, “Server System
Variables”.

5.7 Using MySQL with Apache
There are programs that let you authenticate your users from a MySQL database and also let you write
your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the following
into the Apache configuration file:

LogFormat \
 "\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
 \"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

360

Using MySQL with Apache

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat line
writes to the log file.

361

362

Chapter 6 MySQL Programs

Table of Contents
6.1 Overview of MySQL Programs ... 364
6.2 Using MySQL Programs .. 368

6.2.1 Invoking MySQL Programs ... 368
6.2.2 Specifying Program Options .. 368
6.2.3 Command Options for Connecting to the Server .. 382
6.2.4 Connecting to the MySQL Server Using Command Options .. 395
6.2.5 Connecting to the Server Using URI-Like Strings or Key-Value Pairs 398
6.2.6 Connecting to the Server Using DNS SRV Records ... 405
6.2.7 Connection Transport Protocols .. 406
6.2.8 Connection Compression Control .. 408
6.2.9 Setting Environment Variables .. 411

6.3 Server and Server-Startup Programs ... 412
6.3.1 mysqld — The MySQL Server .. 412
6.3.2 mysqld_safe — MySQL Server Startup Script .. 413
6.3.3 mysql.server — MySQL Server Startup Script .. 421
6.3.4 mysqld_multi — Manage Multiple MySQL Servers ... 423

6.4 Installation-Related Programs .. 428
6.4.1 comp_err — Compile MySQL Error Message File .. 428
6.4.2 mysql_secure_installation — Improve MySQL Installation Security 431
6.4.3 mysql_ssl_rsa_setup — Create SSL/RSA Files .. 437
6.4.4 mysql_tzinfo_to_sql — Load the Time Zone Tables .. 440
6.4.5 mysql_upgrade — Check and Upgrade MySQL Tables .. 440

6.5 Client Programs .. 454
6.5.1 mysql — The MySQL Command-Line Client .. 454
6.5.2 mysqladmin — A MySQL Server Administration Program ... 500
6.5.3 mysqlcheck — A Table Maintenance Program ... 516
6.5.4 mysqldump — A Database Backup Program ... 532
6.5.5 mysqlimport — A Data Import Program ... 572
6.5.6 mysqlpump — A Database Backup Program ... 586
6.5.7 mysqlshow — Display Database, Table, and Column Information 613
6.5.8 mysqlslap — A Load Emulation Client ... 625

6.6 Administrative and Utility Programs .. 644
6.6.1 ibd2sdi — InnoDB Tablespace SDI Extraction Utility ... 644
6.6.2 innochecksum — Offline InnoDB File Checksum Utility ... 649
6.6.3 myisam_ftdump — Display Full-Text Index information ... 655
6.6.4 myisamchk — MyISAM Table-Maintenance Utility .. 657
6.6.5 myisamlog — Display MyISAM Log File Contents .. 676
6.6.6 myisampack — Generate Compressed, Read-Only MyISAM Tables 677
6.6.7 mysql_config_editor — MySQL Configuration Utility ... 683
6.6.8 mysql_migrate_keyring — Keyring Key Migration Utility .. 690
6.6.9 mysqlbinlog — Utility for Processing Binary Log Files ... 699
6.6.10 mysqldumpslow — Summarize Slow Query Log Files ... 731

6.7 Program Development Utilities ... 733
6.7.1 mysql_config — Display Options for Compiling Clients ... 734
6.7.2 my_print_defaults — Display Options from Option Files .. 735

6.8 Miscellaneous Programs .. 736
6.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed Output 736
6.8.2 perror — Display MySQL Error Message Information ... 737
6.8.3 zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output 738

6.9 Environment Variables ... 738
6.10 Unix Signal Handling in MySQL ... 740

363

Overview of MySQL Programs

This chapter provides a brief overview of the MySQL command-line programs provided by Oracle
Corporation. It also discusses the general syntax for specifying options when you run these programs.
Most programs have options that are specific to their own operation, but the option syntax is similar for
all of them. Finally, the chapter provides more detailed descriptions of individual programs, including
which options they recognize.

6.1 Overview of MySQL Programs

There are many different programs in a MySQL installation. This section provides a brief overview
of them. Later sections provide a more detailed description of each one, with the exception of NDB
Cluster programs. Each program's description indicates its invocation syntax and the options that it
supports. Section 25.5, “NDB Cluster Programs”, describes programs specific to NDB Cluster.

Most MySQL distributions include all of these programs, except for those programs that are platform-
specific. (For example, the server startup scripts are not used on Windows.) The exception is that
RPM distributions are more specialized. There is one RPM for the server, another for client programs,
and so forth. If you appear to be missing one or more programs, see Chapter 2, Installing MySQL, for
information on types of distributions and what they contain. It may be that you have a distribution that
does not include all programs and you need to install an additional package.

Each MySQL program takes many different options. Most programs provide a --help option that you
can use to get a description of the program's different options. For example, try mysql --help.

You can override default option values for MySQL programs by specifying options on the command
line or in an option file. See Section 6.2, “Using MySQL Programs”, for general information on invoking
programs and specifying program options.

The MySQL server, mysqld, is the main program that does most of the work in a MySQL installation.
The server is accompanied by several related scripts that assist you in starting and stopping the server:

• mysqld

The SQL daemon (that is, the MySQL server). To use client programs, mysqld must be running,
because clients gain access to databases by connecting to the server. See Section 6.3.1, “mysqld —
The MySQL Server”.

• mysqld_safe

A server startup script. mysqld_safe attempts to start mysqld. See Section 6.3.2, “mysqld_safe —
MySQL Server Startup Script”.

• mysql.server

A server startup script. This script is used on systems that use System V-style run directories
containing scripts that start system services for particular run levels. It invokes mysqld_safe to start
the MySQL server. See Section 6.3.3, “mysql.server — MySQL Server Startup Script”.

• mysqld_multi

A server startup script that can start or stop multiple servers installed on the system. See
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”.

Several programs perform setup operations during MySQL installation or upgrading:

• comp_err

This program is used during the MySQL build/installation process. It compiles error message files
from the error source files. See Section 6.4.1, “comp_err — Compile MySQL Error Message File”.

• mysql_secure_installation

364

Overview of MySQL Programs

This program enables you to improve the security of your MySQL installation. See Section 6.4.2,
“mysql_secure_installation — Improve MySQL Installation Security”.

• mysql_ssl_rsa_setup

Note

mysql_ssl_rsa_setup is deprecated as of MySQL 8.0.34.

This program creates the SSL certificate and key files and RSA key-pair files required to support
secure connections, if those files are missing. Files created by mysql_ssl_rsa_setup can be
used for secure connections using SSL or RSA. See Section 6.4.3, “mysql_ssl_rsa_setup — Create
SSL/RSA Files”.

• mysql_tzinfo_to_sql

This program loads the time zone tables in the mysql database using the contents of the
host system zoneinfo database (the set of files describing time zones). See Section 6.4.4,
“mysql_tzinfo_to_sql — Load the Time Zone Tables”.

• mysql_upgrade

Prior to MySQL 8.0.16, this program is used after a MySQL upgrade operation. It updates the grant
tables with any changes that have been made in newer versions of MySQL, and checks tables for
incompatibilities and repairs them if necessary. See Section 6.4.5, “mysql_upgrade — Check and
Upgrade MySQL Tables”.

As of MySQL 8.0.16, the MySQL server performs the upgrade tasks previously handled by
mysql_upgrade (for details, see Section 3.4, “What the MySQL Upgrade Process Upgrades”).

MySQL client programs that connect to the MySQL server:

• mysql

The command-line tool for interactively entering SQL statements or executing them from a file in
batch mode. See Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• mysqladmin

A client that performs administrative operations, such as creating or dropping databases, reloading
the grant tables, flushing tables to disk, and reopening log files. mysqladmin can also be used to
retrieve version, process, and status information from the server. See Section 6.5.2, “mysqladmin —
A MySQL Server Administration Program”.

• mysqlcheck

A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 6.5.3,
“mysqlcheck — A Table Maintenance Program”.

• mysqldump

A client that dumps a MySQL database into a file as SQL, text, or XML. See Section 6.5.4,
“mysqldump — A Database Backup Program”.

• mysqlimport

A client that imports text files into their respective tables using LOAD DATA. See Section 6.5.5,
“mysqlimport — A Data Import Program”.

• mysqlpump

365

Overview of MySQL Programs

A client that dumps a MySQL database into a file as SQL. See Section 6.5.6, “mysqlpump — A
Database Backup Program”.

• mysqlsh

MySQL Shell is an advanced client and code editor for MySQL Server. See MySQL Shell 8.0.
In addition to the provided SQL functionality, similar to mysql, MySQL Shell provides scripting
capabilities for JavaScript and Python and includes APIs for working with MySQL. X DevAPI enables
you to work with both relational and document data, see Chapter 22, Using MySQL as a Document
Store. AdminAPI enables you to work with InnoDB Cluster, see MySQL AdminAPI.

• mysqlshow

A client that displays information about databases, tables, columns, and indexes. See Section 6.5.7,
“mysqlshow — Display Database, Table, and Column Information”.

• mysqlslap

A client that is designed to emulate client load for a MySQL server and report the timing of each
stage. It works as if multiple clients are accessing the server. See Section 6.5.8, “mysqlslap — A
Load Emulation Client”.

MySQL administrative and utility programs:

• innochecksum

An offline InnoDB offline file checksum utility. See Section 6.6.2, “innochecksum — Offline InnoDB
File Checksum Utility”.

• myisam_ftdump

A utility that displays information about full-text indexes in MyISAM tables. See Section 6.6.3,
“myisam_ftdump — Display Full-Text Index information”.

• myisamchk

A utility to describe, check, optimize, and repair MyISAM tables. See Section 6.6.4, “myisamchk —
MyISAM Table-Maintenance Utility”.

• myisamlog

A utility that processes the contents of a MyISAM log file. See Section 6.6.5, “myisamlog — Display
MyISAM Log File Contents”.

• myisampack

A utility that compresses MyISAM tables to produce smaller read-only tables. See Section 6.6.6,
“myisampack — Generate Compressed, Read-Only MyISAM Tables”.

• mysql_config_editor

A utility that enables you to store authentication credentials in a secure, encrypted login path file
named .mylogin.cnf. See Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

• mysql_migrate_keyring

A utility for migrating keys between one keyring component and another. See Section 6.6.8,
“mysql_migrate_keyring — Keyring Key Migration Utility”.

• mysqlbinlog

366

https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

Overview of MySQL Programs

A utility for reading statements from a binary log. The log of executed statements contained in the
binary log files can be used to help recover from a crash. See Section 6.6.9, “mysqlbinlog — Utility
for Processing Binary Log Files”.

• mysqldumpslow

A utility to read and summarize the contents of a slow query log. See Section 6.6.10,
“mysqldumpslow — Summarize Slow Query Log Files”.

MySQL program-development utilities:

• mysql_config

A shell script that produces the option values needed when compiling MySQL programs. See
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”.

• my_print_defaults

A utility that shows which options are present in option groups of option files. See Section 6.7.2,
“my_print_defaults — Display Options from Option Files”.

Miscellaneous utilities:

• lz4_decompress

A utility that decompresses mysqlpump output that was created using LZ4 compression. See
Section 6.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”.

• perror

A utility that displays the meaning of system or MySQL error codes. See Section 6.8.2, “perror —
Display MySQL Error Message Information”.

• zlib_decompress

A utility that decompresses mysqlpump output that was created using ZLIB compression. See
Section 6.8.3, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”.

Oracle Corporation also provides the MySQL Workbench GUI tool, which is used to administer MySQL
servers and databases, to create, execute, and evaluate queries, and to migrate schemas and data
from other relational database management systems for use with MySQL.

MySQL client programs that communicate with the server using the MySQL client/server library use the
following environment variables.

Environment Variable Meaning

MYSQL_UNIX_PORT The default Unix socket file; used for connections
to localhost

MYSQL_TCP_PORT The default port number; used for TCP/IP
connections

MYSQL_DEBUG Debug trace options when debugging

TMPDIR The directory where temporary tables and files are
created

For a full list of environment variables used by MySQL programs, see Section 6.9, “Environment
Variables”.

367

Using MySQL Programs

6.2 Using MySQL Programs

6.2.1 Invoking MySQL Programs

To invoke a MySQL program from the command line (that is, from your shell or command prompt),
enter the program name followed by any options or other arguments needed to instruct the program
what you want it to do. The following commands show some sample program invocations. $>
represents the prompt for your command interpreter; it is not part of what you type. The particular
prompt you see depends on your command interpreter. Typical prompts are $ for sh, ksh, or bash, %
for csh or tcsh, and C:\> for the Windows command.com or cmd.exe command interpreters.

$> mysql --user=root test
$> mysqladmin extended-status variables
$> mysqlshow --help
$> mysqldump -u root personnel

Arguments that begin with a single or double dash (-, --) specify program options. Options typically
indicate the type of connection a program should make to the server or affect its operational mode.
Option syntax is described in Section 6.2.2, “Specifying Program Options”.

Nonoption arguments (arguments with no leading dash) provide additional information to the program.
For example, the mysql program interprets the first nonoption argument as a database name, so the
command mysql --user=root test indicates that you want to use the test database.

Later sections that describe individual programs indicate which options a program supports and
describe the meaning of any additional nonoption arguments.

Some options are common to a number of programs. The most frequently used of these are the --
host (or -h), --user (or -u), and --password (or -p) options that specify connection parameters.
They indicate the host where the MySQL server is running, and the user name and password of your
MySQL account. All MySQL client programs understand these options; they enable you to specify
which server to connect to and the account to use on that server. Other connection options are --port
(or -P) to specify a TCP/IP port number and --socket (or -S) to specify a Unix socket file on Unix (or
named-pipe name on Windows). For more information on options that specify connection options, see
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”.

You may find it necessary to invoke MySQL programs using the path name to the bin directory in
which they are installed. This is likely to be the case if you get a “program not found” error whenever
you attempt to run a MySQL program from any directory other than the bin directory. To make it more
convenient to use MySQL, you can add the path name of the bin directory to your PATH environment
variable setting. That enables you to run a program by typing only its name, not its entire path name.
For example, if mysql is installed in /usr/local/mysql/bin, you can run the program by invoking it
as mysql, and it is not necessary to invoke it as /usr/local/mysql/bin/mysql.

Consult the documentation for your command interpreter for instructions on setting your PATH variable.
The syntax for setting environment variables is interpreter-specific. (Some information is given in
Section 6.2.9, “Setting Environment Variables”.) After modifying your PATH setting, open a new console
window on Windows or log in again on Unix so that the setting goes into effect.

6.2.2 Specifying Program Options

There are several ways to specify options for MySQL programs:

• List the options on the command line following the program name. This is common for options that
apply to a specific invocation of the program.

• List the options in an option file that the program reads when it starts. This is common for options
that you want the program to use each time it runs.

• List the options in environment variables (see Section 6.2.9, “Setting Environment Variables”).
This method is useful for options that you want to apply each time the program runs. In practice,

368

Specifying Program Options

option files are used more commonly for this purpose, but Section 7.8.3, “Running Multiple MySQL
Instances on Unix”, discusses one situation in which environment variables can be very helpful. It
describes a handy technique that uses such variables to specify the TCP/IP port number and Unix
socket file for the server and for client programs.

Options are processed in order, so if an option is specified multiple times, the last occurrence takes
precedence. The following command causes mysql to connect to the server running on localhost:

mysql -h example.com -h localhost

There is one exception: For mysqld, the first instance of the --user option is used as a security
precaution, to prevent a user specified in an option file from being overridden on the command line.

If conflicting or related options are given, later options take precedence over earlier options. The
following command runs mysql in “no column names” mode:

mysql --column-names --skip-column-names

MySQL programs determine which options are given first by examining environment variables, then
by processing option files, and then by checking the command line. Because later options take
precedence over earlier ones, the processing order means that environment variables have the lowest
precedence and command-line options the highest.

For the server, one exception applies: The mysqld-auto.cnf option file in the data directory is
processed last, so it takes precedence even over command-line options.

You can take advantage of the way that MySQL programs process options by specifying default option
values for a program in an option file. That enables you to avoid typing them each time you run the
program while enabling you to override the defaults if necessary by using command-line options.

6.2.2.1 Using Options on the Command Line

Program options specified on the command line follow these rules:

• Options are given after the command name.

• An option argument begins with one dash or two dashes, depending on whether it is a short form or
long form of the option name. Many options have both short and long forms. For example, -? and --
help are the short and long forms of the option that instructs a MySQL program to display its help
message.

• Option names are case-sensitive. -v and -V are both legal and have different meanings. (They are
the corresponding short forms of the --verbose and --version options.)

• Some options take a value following the option name. For example, -h localhost or --
host=localhost indicate the MySQL server host to a client program. The option value tells the
program the name of the host where the MySQL server is running.

• For a long option that takes a value, separate the option name and the value by an = sign. For a
short option that takes a value, the option value can immediately follow the option letter, or there
can be a space between: -hlocalhost and -h localhost are equivalent. An exception to this
rule is the option for specifying your MySQL password. This option can be given in long form as --
password=pass_val or as --password. In the latter case (with no password value given), the
program interactively prompts you for the password. The password option also may be given in short
form as -ppass_val or as -p. However, for the short form, if the password value is given, it must
follow the option letter with no intervening space: If a space follows the option letter, the program
has no way to tell whether a following argument is supposed to be the password value or some
other kind of argument. Consequently, the following two commands have two completely different
meanings:

mysql -ptest
mysql -p test

369

Specifying Program Options

The first command instructs mysql to use a password value of test, but specifies no default
database. The second instructs mysql to prompt for the password value and to use test as the
default database.

• Within option names, dash (-) and underscore (_) may be used interchangeably in most cases,
although the leading dashes cannot be given as underscores. For example, --skip-grant-
tables and --skip_grant_tables are equivalent.

In this Manual, we use dashes in option names, except where underscores are significant. This is the
case with, for example, --log-bin and --log_bin, which are different options. We encourage you
to do so as well.

• The MySQL server has certain command options that may be specified only at startup, and a set of
system variables, some of which may be set at startup, at runtime, or both. System variable names
use underscores rather than dashes, and when referenced at runtime (for example, using SET or
SELECT statements), must be written using underscores:

SET GLOBAL general_log = ON;
SELECT @@GLOBAL.general_log;

At server startup, the syntax for system variables is the same as for command options, so
within variable names, dashes and underscores may be used interchangeably. For example, --
general_log=ON and --general-log=ON are equivalent. (This is also true for system variables
set within option files.)

• For options that take a numeric value, the value can be given with a suffix of K, M, or G to indicate a
multiplier of 1024, 10242 or 10243. As of MySQL 8.0.14, a suffix can also be T, P, and E to indicate a
multiplier of 10244, 10245 or 10246. Suffix letters can be uppercase or lowercase.

For example, the following command tells mysqladmin to ping the server 1024 times, sleeping 10
seconds between each ping:

mysqladmin --count=1K --sleep=10 ping

• When specifying file names as option values, avoid the use of the ~ shell metacharacter. It might not
be interpreted as you expect.

Option values that contain spaces must be quoted when given on the command line. For example, the
--execute (or -e) option can be used with mysql to pass one or more semicolon-separated SQL
statements to the server. When this option is used, mysql executes the statements in the option value
and exits. The statements must be enclosed by quotation marks. For example:

$> mysql -u root -p -e "SELECT VERSION();SELECT NOW()"
Enter password: ******
+------------+
| VERSION() |
+------------+
| 8.0.19 |
+------------+
+---------------------+
| NOW() |
+---------------------+
| 2019-09-03 10:36:48 |
+---------------------+
$>

Note

The long form (--execute) is followed by an equal sign (=).

To use quoted values within a statement, you must either escape the inner quotation marks, or use a
different type of quotation marks within the statement from those used to quote the statement itself.
The capabilities of your command processor dictate your choices for whether you can use single or

370

Specifying Program Options

double quotation marks and the syntax for escaping quote characters. For example, if your command
processor supports quoting with single or double quotation marks, you can use double quotation marks
around the statement, and single quotation marks for any quoted values within the statement.

6.2.2.2 Using Option Files

Most MySQL programs can read startup options from option files (sometimes called configuration
files). Option files provide a convenient way to specify commonly used options so that they need not be
entered on the command line each time you run a program.

To determine whether a program reads option files, invoke it with the --help option. (For mysqld, use
--verbose and --help.) If the program reads option files, the help message indicates which files it
looks for and which option groups it recognizes.

Note

A MySQL program started with the --no-defaults option reads no option
files other than .mylogin.cnf.

A server started with the persisted_globals_load system variable disabled
does not read mysqld-auto.cnf.

Many option files are plain text files, created using any text editor. The exceptions are:

• The .mylogin.cnf file that contains login path options. This is an encrypted file created by the
mysql_config_editor utility. See Section 6.6.7, “mysql_config_editor — MySQL Configuration
Utility”. A “login path” is an option group that permits only certain options: host, user, password,
port and socket. Client programs specify which login path to read from .mylogin.cnf using the
--login-path option.

To specify an alternative login path file name, set the MYSQL_TEST_LOGIN_FILE environment
variable. This variable is used by the mysql-test-run.pl testing utility, but also is recognized by
mysql_config_editor and by MySQL clients such as mysql, mysqladmin, and so forth.

• The mysqld-auto.cnf file in the data directory. This JSON-format file contains persisted
system variable settings. It is created by the server upon execution of SET PERSIST or SET
PERSIST_ONLY statements. See Section 7.1.9.3, “Persisted System Variables”. Management of
mysqld-auto.cnf should be left to the server and not performed manually.

• Option File Processing Order

• Option File Syntax

• Option File Inclusions

Option File Processing Order

MySQL looks for option files in the order described in the following discussion and reads any that
exist. If an option file you want to use does not exist, create it using the appropriate method, as just
discussed.

Note

For information about option files used with NDB Cluster programs, see
Section 25.4, “Configuration of NDB Cluster”.

On Windows, MySQL programs read startup options from the files shown in the following table, in the
specified order (files listed first are read first, files read later take precedence).

Table 6.1 Option Files Read on Windows Systems

File Name Purpose

%WINDIR%\my.ini, %WINDIR%\my.cnf Global options

371

Specifying Program Options

File Name Purpose

C:\my.ini, C:\my.cnf Global options

BASEDIR\my.ini, BASEDIR\my.cnf Global options

defaults-extra-file The file specified with --defaults-extra-
file, if any

%APPDATA%\MySQL\.mylogin.cnf Login path options (clients only)

DATADIR\mysqld-auto.cnf System variables persisted with SET PERSIST or
SET PERSIST_ONLY (server only)

In the preceding table, %WINDIR% represents the location of your Windows directory. This is commonly
C:\WINDOWS. Use the following command to determine its exact location from the value of the WINDIR
environment variable:

C:\> echo %WINDIR%

%APPDATA% represents the value of the Windows application data directory. Use the following
command to determine its exact location from the value of the APPDATA environment variable:

C:\> echo %APPDATA%

BASEDIR represents the MySQL base installation directory. When MySQL 8.0 has been installed
using MySQL Installer, this is typically C:\PROGRAMDIR\MySQL\MySQL Server 8.0 in which
PROGRAMDIR represents the programs directory (usually Program Files for English-language
versions of Windows). See Section 2.3.3, “MySQL Installer for Windows”.

Important

Although MySQL Installer places most files under PROGRAMDIR, it installs
my.ini under the C:\ProgramData\MySQL\MySQL Server 8.0\ directory
by default.

DATADIR represents the MySQL data directory. As used to find mysqld-auto.cnf, its default value
is the data directory location built in when MySQL was compiled, but can be changed by --datadir
specified as an option-file or command-line option processed before mysqld-auto.cnf is processed.

On Unix and Unix-like systems, MySQL programs read startup options from the files shown in the
following table, in the specified order (files listed first are read first, files read later take precedence).

Note

On Unix platforms, MySQL ignores configuration files that are world-writable.
This is intentional as a security measure.

Table 6.2 Option Files Read on Unix and Unix-Like Systems

File Name Purpose

/etc/my.cnf Global options

/etc/mysql/my.cnf Global options

SYSCONFDIR/my.cnf Global options

$MYSQL_HOME/my.cnf Server-specific options (server only)

defaults-extra-file The file specified with --defaults-extra-
file, if any

~/.my.cnf User-specific options

~/.mylogin.cnf User-specific login path options (clients only)

DATADIR/mysqld-auto.cnf System variables persisted with SET PERSIST or
SET PERSIST_ONLY (server only)

372

Specifying Program Options

In the preceding table, ~ represents the current user's home directory (the value of $HOME).

SYSCONFDIR represents the directory specified with the SYSCONFDIR option to CMake when MySQL
was built. By default, this is the etc directory located under the compiled-in installation directory.

MYSQL_HOME is an environment variable containing the path to the directory in which the
server-specific my.cnf file resides. If MYSQL_HOME is not set and you start the server using the
mysqld_safe program, mysqld_safe sets it to BASEDIR, the MySQL base installation directory.

DATADIR represents the MySQL data directory. As used to find mysqld-auto.cnf, its default value
is the data directory location built in when MySQL was compiled, but can be changed by --datadir
specified as an option-file or command-line option processed before mysqld-auto.cnf is processed.

If multiple instances of a given option are found, the last instance takes precedence, with one
exception: For mysqld, the first instance of the --user option is used as a security precaution, to
prevent a user specified in an option file from being overridden on the command line.

Option File Syntax

The following description of option file syntax applies to files that you edit manually. This excludes
.mylogin.cnf, which is created using mysql_config_editor and is encrypted, and mysqld-
auto.cnf, which the server creates in JSON format.

Any long option that may be given on the command line when running a MySQL program can be given
in an option file as well. To get the list of available options for a program, run it with the --help option.
(For mysqld, use --verbose and --help.)

The syntax for specifying options in an option file is similar to command-line syntax (see
Section 6.2.2.1, “Using Options on the Command Line”). However, in an option file, you omit
the leading two dashes from the option name and you specify only one option per line. For
example, --quick and --host=localhost on the command line should be specified as quick
and host=localhost on separate lines in an option file. To specify an option of the form --
loose-opt_name in an option file, write it as loose-opt_name.

Empty lines in option files are ignored. Nonempty lines can take any of the following forms:

• #comment, ;comment

Comment lines start with # or ;. A # comment can start in the middle of a line as well.

• [group]

group is the name of the program or group for which you want to set options. After a group line, any
option-setting lines apply to the named group until the end of the option file or another group line is
given. Option group names are not case-sensitive.

• opt_name

This is equivalent to --opt_name on the command line.

• opt_name=value

This is equivalent to --opt_name=value on the command line. In an option file, you can have
spaces around the = character, something that is not true on the command line. The value optionally
can be enclosed within single quotation marks or double quotation marks, which is useful if the value
contains a # comment character.

Leading and trailing spaces are automatically deleted from option names and values.

You can use the escape sequences \b, \t, \n, \r, \\, and \s in option values to represent the
backspace, tab, newline, carriage return, backslash, and space characters. In option files, these
escaping rules apply:

373

Specifying Program Options

• A backslash followed by a valid escape sequence character is converted to the character
represented by the sequence. For example, \s is converted to a space.

• A backslash not followed by a valid escape sequence character remains unchanged. For example,
\S is retained as is.

The preceding rules mean that a literal backslash can be given as \\, or as \ if it is not followed by a
valid escape sequence character.

The rules for escape sequences in option files differ slightly from the rules for escape sequences in
string literals in SQL statements. In the latter context, if “x” is not a valid escape sequence character,
\x becomes “x” rather than \x. See Section 11.1.1, “String Literals”.

The escaping rules for option file values are especially pertinent for Windows path names, which use \
as a path name separator. A separator in a Windows path name must be written as \\ if it is followed
by an escape sequence character. It can be written as \\ or \ if it is not. Alternatively, / may be used
in Windows path names and is treated as \. Suppose that you want to specify a base directory of C:
\Program Files\MySQL\MySQL Server 8.0 in an option file. This can be done several ways.
Some examples:

basedir="C:\Program Files\MySQL\MySQL Server 8.0"
basedir="C:\\Program Files\\MySQL\\MySQL Server 8.0"
basedir="C:/Program Files/MySQL/MySQL Server 8.0"
basedir=C:\\Program\sFiles\\MySQL\\MySQL\sServer\s8.0

If an option group name is the same as a program name, options in the group apply specifically to
that program. For example, the [mysqld] and [mysql] groups apply to the mysqld server and the
mysql client program, respectively.

The [client] option group is read by all client programs provided in MySQL distributions (but not by
mysqld). To understand how third-party client programs that use the C API can use option files, see
the C API documentation at mysql_options().

The [client] group enables you to specify options that apply to all clients. For example, [client]
is the appropriate group to use to specify the password for connecting to the server. (But make sure
that the option file is accessible only by yourself, so that other people cannot discover your password.)
Be sure not to put an option in the [client] group unless it is recognized by all client programs that
you use. Programs that do not understand the option quit after displaying an error message if you try to
run them.

List more general option groups first and more specific groups later. For example, a [client] group
is more general because it is read by all client programs, whereas a [mysqldump] group is read only
by mysqldump. Options specified later override options specified earlier, so putting the option groups
in the order [client], [mysqldump] enables mysqldump-specific options to override [client]
options.

Here is a typical global option file:

[client]
port=3306
socket=/tmp/mysql.sock

[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=128M

[mysqldump]
quick

Here is a typical user option file:

[client]
The following password is sent to all standard MySQL clients
password="my password"

374

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Specifying Program Options

[mysql]
no-auto-rehash
connect_timeout=2

To create option groups to be read only by mysqld servers from specific MySQL release series, use
groups with names of [mysqld-5.7], [mysqld-8.0], and so forth. The following group indicates
that the sql_mode setting should be used only by MySQL servers with 8.0.x version numbers:

[mysqld-8.0]
sql_mode=TRADITIONAL

Option File Inclusions

It is possible to use !include directives in option files to include other option files and !includedir
to search specific directories for option files. For example, to include the /home/mydir/myopt.cnf
file, use the following directive:

!include /home/mydir/myopt.cnf

To search the /home/mydir directory and read option files found there, use this directive:

!includedir /home/mydir

MySQL makes no guarantee about the order in which option files in the directory are read.

Note

Any files to be found and included using the !includedir directive on Unix
operating systems must have file names ending in .cnf. On Windows, this
directive checks for files with the .ini or .cnf extension.

Write the contents of an included option file like any other option file. That is, it should contain groups of
options, each preceded by a [group] line that indicates the program to which the options apply.

While an included file is being processed, only those options in groups that the current program is
looking for are used. Other groups are ignored. Suppose that a my.cnf file contains this line:

!include /home/mydir/myopt.cnf

And suppose that /home/mydir/myopt.cnf looks like this:

[mysqladmin]
force

[mysqld]
key_buffer_size=16M

If my.cnf is processed by mysqld, only the [mysqld] group in /home/mydir/myopt.cnf is used.
If the file is processed by mysqladmin, only the [mysqladmin] group is used. If the file is processed
by any other program, no options in /home/mydir/myopt.cnf are used.

The !includedir directive is processed similarly except that all option files in the named directory
are read.

If an option file contains !include or !includedir directives, files named by those directives are
processed whenever the option file is processed, no matter where they appear in the file.

For inclusion directives to work, the file path should not be specified within quotes and should have
no escape sequences. For example, the following statements provided in my.ini read the option file
myopts.ini:

!include C:/ProgramData/MySQL/MySQL Server/myopts.ini
!include C:\ProgramData\MySQL\MySQL Server\myopts.ini
!include C:\\ProgramData\\MySQL\\MySQL Server\\myopts.ini

On Windows, if !include /path/to/extra.ini is the last line in the file, make sure that a newline
is appended at the end; otherwise, the line is ignored.

375

Specifying Program Options

6.2.2.3 Command-Line Options that Affect Option-File Handling

Most MySQL programs that support option files handle the following options. Because these options
affect option-file handling, they must be given on the command line and not in an option file. To work
properly, each of these options must be given before other options, with these exceptions:

• --print-defaults may be used immediately after --defaults-file, --defaults-extra-
file, or --login-path.

• On Windows, if the server is started with the --defaults-file and --install options, --
install must be first. See Section 2.3.4.8, “Starting MySQL as a Windows Service”.

When specifying file names as option values, avoid the use of the ~ shell metacharacter because it
might not be interpreted as you expect.

Table 6.3 Option File Option Summary

Option Name Description

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--login-path Read login path options from .mylogin.cnf

--no-defaults Read no option files

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=filename

Type File name

Default Value [none]

Read this option file after the global option file but (on Unix) before the user option file and (on all
platforms) before the login path file. (For information about the order in which option files are used,
see Section 6.2.2.2, “Using Option Files”.) If the file does not exist or is otherwise inaccessible, an
error occurs. If file_name is not an absolute path name, it is interpreted relative to the current
directory.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

• --defaults-file=file_name

Command-Line Format --defaults-file=filename

Type File name

Default Value [none]

Read only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than
a full path name.

Exceptions: Even with --defaults-file, mysqld reads mysqld-auto.cnf and client programs
read .mylogin.cnf.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

376

Specifying Program Options

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, the mysql client normally reads the [client] and [mysql] groups. If this option is
given as --defaults-group-suffix=_other, mysql also reads the [client_other] and
[mysql_other] groups.

• --login-path=name

Command-Line Format --login-path=name

Type String

Default Value [none]

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

A client program reads the option group corresponding to the named login path, in addition to option
groups that the program reads by default. Consider this command:

mysql --login-path=mypath

By default, the mysql client reads the [client] and [mysql] option groups. So for the command
shown, mysql reads [client] and [mysql] from other option files, and [client], [mysql],
and [mypath] from the login path file.

Client programs read the login path file even when the --no-defaults option is used.

To specify an alternate login path file name, set the MYSQL_TEST_LOGIN_FILE environment
variable.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

• --no-defaults

Command-Line Format --no-defaults

Type Boolean

Default Value false

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that client programs read the .mylogin.cnf login path file, if it exists, even
when --no-defaults is used. This permits passwords to be specified in a safer way than
on the command line even if --no-defaults is present. To create .mylogin.cnf, use the
mysql_config_editor utility. See Section 6.6.7, “mysql_config_editor — MySQL Configuration
Utility”.

377

Specifying Program Options

• --print-defaults

Command-Line Format --print-defaults

Type Boolean

Default Value false

Print the program name and all options that it gets from option files. Password values are masked.

See the introduction to this section regarding constraints on the position in which this option may be
specified.

6.2.2.4 Program Option Modifiers

Some options are “boolean” and control behavior that can be turned on or off. For example, the mysql
client supports a --column-names option that determines whether or not to display a row of column
names at the beginning of query results. By default, this option is enabled. However, you may want
to disable it in some instances, such as when sending the output of mysql into another program that
expects to see only data and not an initial header line.

To disable column names, you can specify the option using any of these forms:

--disable-column-names
--skip-column-names
--column-names=0

The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn the option
off.

The “enabled” form of the option may be specified in any of these ways:

--column-names
--enable-column-names
--column-names=1

The values ON, TRUE, OFF, and FALSE are also recognized for boolean options (not case-sensitive).

If an option is prefixed by --loose, a program does not exit with an error if it does not recognize the
option, but instead issues only a warning:

$> mysql --loose-no-such-option
mysql: WARNING: unknown option '--loose-no-such-option'

The --loose prefix can be useful when you run programs from multiple installations of MySQL on the
same machine and list options in an option file. An option that may not be recognized by all versions of
a program can be given using the --loose prefix (or loose in an option file). Versions of the program
that recognize the option process it normally, and versions that do not recognize it issue a warning and
ignore it.

The --maximum prefix is available for mysqld only and permits a limit to be placed on how large client
programs can set session system variables. To do this, use a --maximum prefix with the variable
name. For example, --maximum-max_heap_table_size=32M prevents any client from making the
heap table size limit larger than 32M.

The --maximum prefix is intended for use with system variables that have a session value. If applied
to a system variable that has only a global value, an error occurs. For example, with --maximum-
back_log=200, the server produces this error:

Maximum value of 'back_log' cannot be set

6.2.2.5 Using Options to Set Program Variables

378

Specifying Program Options

Many MySQL programs have internal variables that can be set at runtime using the SET statement.
See Section 15.7.6.1, “SET Syntax for Variable Assignment”, and Section 7.1.9, “Using System
Variables”.

Most of these program variables also can be set at server startup by using the same syntax that
applies to specifying program options. For example, mysql has a max_allowed_packet variable that
controls the maximum size of its communication buffer. To set the max_allowed_packet variable for
mysql to a value of 16MB, use either of the following commands:

mysql --max_allowed_packet=16777216
mysql --max_allowed_packet=16M

The first command specifies the value in bytes. The second specifies the value in megabytes. For
variables that take a numeric value, the value can be given with a suffix of K, M, or G to indicate a
multiplier of 1024, 10242 or 10243. (For example, when used to set max_allowed_packet, the
suffixes indicate units of kilobytes, megabytes, or gigabytes.) As of MySQL 8.0.14, a suffix can also
be T, P, and E to indicate a multiplier of 10244, 10245 or 10246. Suffix letters can be uppercase or
lowercase.

In an option file, variable settings are given without the leading dashes:

[mysql]
max_allowed_packet=16777216

Or:

[mysql]
max_allowed_packet=16M

If you like, underscores in an option name can be specified as dashes. The following option groups are
equivalent. Both set the size of the server's key buffer to 512MB:

[mysqld]
key_buffer_size=512M

[mysqld]
key-buffer-size=512M

Suffixes for specifying a value multiplier can be used when setting a variable at program invocation
time, but not to set the value with SET at runtime. On the other hand, with SET, you can assign a
variable's value using an expression, which is not true when you set a variable at server startup. For
example, the first of the following lines is legal at program invocation time, but the second is not:

$> mysql --max_allowed_packet=16M
$> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

6.2.2.6 Option Defaults, Options Expecting Values, and the = Sign

By convention, long forms of options that assign a value are written with an equals (=) sign, like this:

mysql --host=tonfisk --user=jon

For options that require a value (that is, not having a default value), the equal sign is not required, and
so the following is also valid:

mysql --host tonfisk --user jon

In both cases, the mysql client attempts to connect to a MySQL server running on the host named
“tonfisk” using an account with the user name “jon”.

379

Specifying Program Options

Due to this behavior, problems can occasionally arise when no value is provided for an option that
expects one. Consider the following example, where a user connects to a MySQL server running on
host tonfisk as user jon:

$> mysql --host 85.224.35.45 --user jon
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 8.0.42 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| jon@% |
+----------------+
1 row in set (0.00 sec)

Omitting the required value for one of these option yields an error, such as the one shown here:

$> mysql --host 85.224.35.45 --user
mysql: option '--user' requires an argument

In this case, mysql was unable to find a value following the --user option because nothing came
after it on the command line. However, if you omit the value for an option that is not the last option to
be used, you obtain a different error that you may not be expecting:

$> mysql --host --user jon
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

Because mysql assumes that any string following --host on the command line is a host name, --
host --user is interpreted as --host=--user, and the client attempts to connect to a MySQL
server running on a host named “--user”.

Options having default values always require an equal sign when assigning a value; failing to do
so causes an error. For example, the MySQL server --log-error option has the default value
host_name.err, where host_name is the name of the host on which MySQL is running. Assume
that you are running MySQL on a computer whose host name is “tonfisk”, and consider the following
invocation of mysqld_safe:

$> mysqld_safe &
[1] 11699
$> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
$>

After shutting down the server, restart it as follows:

$> mysqld_safe --log-error &
[1] 11699
$> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
$>

The result is the same, since --log-error is not followed by anything else on the command line,
and it supplies its own default value. (The & character tells the operating system to run MySQL in the
background; it is ignored by MySQL itself.) Now suppose that you wish to log errors to a file named
my-errors.err. You might try starting the server with --log-error my-errors, but this does not
have the intended effect, as shown here:

$> mysqld_safe --log-error my-errors &
[1] 31357
$> 080111 22:53:31 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080111 22:53:32 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

[1]+ Done ./mysqld_safe --log-error my-errors

380

Specifying Program Options

The server attempted to start using /usr/local/mysql/var/tonfisk.err as the error log, but
then shut down. Examining the last few lines of this file shows the reason:

$> tail /usr/local/mysql/var/tonfisk.err
2013-09-24T15:36:22.278034Z 0 [ERROR] Too many arguments (first extra is 'my-errors').
2013-09-24T15:36:22.278059Z 0 [Note] Use --verbose --help to get a list of available options!
2013-09-24T15:36:22.278076Z 0 [ERROR] Aborting
2013-09-24T15:36:22.279704Z 0 [Note] InnoDB: Starting shutdown...
2013-09-24T15:36:23.777471Z 0 [Note] InnoDB: Shutdown completed; log sequence number 2319086
2013-09-24T15:36:23.780134Z 0 [Note] mysqld: Shutdown complete

Because the --log-error option supplies a default value, you must use an equal sign to assign a
different value to it, as shown here:

$> mysqld_safe --log-error=my-errors &
[1] 31437
$> 080111 22:54:15 mysqld_safe Logging to '/usr/local/mysql/var/my-errors.err'.
080111 22:54:15 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var

$>

Now the server has been started successfully, and is logging errors to the file /usr/local/mysql/
var/my-errors.err.

Similar issues can arise when specifying option values in option files. For example, consider a my.cnf
file that contains the following:

[mysql]

host
user

When the mysql client reads this file, these entries are parsed as --host --user or --host=--
user, with the result shown here:

$> mysql
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

However, in option files, an equal sign is not assumed. Suppose the my.cnf file is as shown here:

[mysql]

user jon

Trying to start mysql in this case causes a different error:

$> mysql
mysql: unknown option '--user jon'

A similar error would occur if you were to write host tonfisk in the option file rather than
host=tonfisk. Instead, you must use the equal sign:

[mysql]

user=jon

Now the login attempt succeeds:

$> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5
Server version: 8.0.42 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+

381

Command Options for Connecting to the Server

| jon@localhost |
+---------------+
1 row in set (0.00 sec)

This is not the same behavior as with the command line, where the equal sign is not required:

$> mysql --user jon --host tonfisk
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 8.0.42 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@tonfisk |
+---------------+
1 row in set (0.00 sec)

Specifying an option requiring a value without a value in an option file causes the server to abort with
an error.

6.2.3 Command Options for Connecting to the Server

This section describes options supported by most MySQL client programs that control how client
programs establish connections to the server, whether connections are encrypted, and whether
connections are compressed. These options can be given on the command line or in an option file.

• Command Options for Connection Establishment

• Command Options for Encrypted Connections

• Command Options for Connection Compression

Command Options for Connection Establishment

This section describes options that control how client programs establish connections to the server. For
additional information and examples showing how to use them, see Section 6.2.4, “Connecting to the
MySQL Server Using Command Options”.

Table 6.4 Connection-Establishment Option Summary

Option Name Description Introduced

--default-auth Authentication plugin to use

--host Host on which MySQL server is
located

--password Password to use when
connecting to server

--password1 First multifactor authentication
password to use when
connecting to server

8.0.27

--password2 Second multifactor authentication
password to use when
connecting to server

8.0.27

--password3 Third multifactor authentication
password to use when
connecting to server

8.0.27

--pipe Connect to server using named
pipe (Windows only)

382

Command Options for Connecting to the Server

Option Name Description Introduced

--plugin-dir Directory where plugins are
installed

--port TCP/IP port number for
connection

--protocol Transport protocol to use

--shared-memory-base-name Shared-memory name for
shared-memory connections
(Windows only)

--socket Unix socket file or Windows
named pipe to use

--user MySQL user name to use when
connecting to server

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 8.2.17, “Pluggable
Authentication”.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

The host on which the MySQL server is running. The value can be a host name, IPv4 address, or
IPv6 address. The default value is localhost.

• --password[=pass_val], -p[pass_val]

Command-Line Format --password[=password]

Type String

Default Value [none]

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, the client program prompts for one. If given, there must be no space between
--password= or -p and the password following it. If no password option is specified, the default is
to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that the client program should not prompt for one,
use the --skip-password option.

• --password1[=pass_val]

Command-Line Format --password1[=password]

383

Command Options for Connecting to the Server

Introduced 8.0.27

Type String

The password for multifactor authentication factor 1 of the MySQL account used for connecting to
the server. The password value is optional. If not given, the client program prompts for one. If given,
there must be no space between --password1= and the password following it. If no password
option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that the client program should not prompt for one,
use the --skip-password1 option.

--password1 and --password are synonymous, as are --skip-password1 and --skip-
password.

• --password2[=pass_val]

Command-Line Format --password2[=password]

Introduced 8.0.27

Type String

The password for multifactor authentication factor 2 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --password3[=pass_val]

Command-Line Format --password3[=password]

Introduced 8.0.27

Type String

The password for multifactor authentication factor 3 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

384

Command Options for Connecting to the Server

The directory in which to look for plugins. Specify this option if the --default-auth option is
used to specify an authentication plugin but the client program does not find it. See Section 8.2.17,
“Pluggable Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use. The default port number is 3306.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

This option explicitly specifies which transport protocol to use for connecting to the server. It is useful
when other connection parameters normally result in use of a protocol other than the one you want.
For example, connections on Unix to localhost are made using a Unix socket file by default:

mysql --host=localhost

To force TCP/IP transport to be used instead, specify a --protocol option:

mysql --host=localhost --protocol=TCP

The following table shows the permissible --protocol option values and indicates the applicable
platforms for each value. The values are not case-sensitive.

--protocol Value Transport Protocol Used Applicable Platforms

TCP TCP/IP transport to local or
remote server

All

SOCKET Unix socket-file transport to local
server

Unix and Unix-like systems

PIPE Named-pipe transport to local
server

Windows

MEMORY Shared-memory transport to
local server

Windows

See also Section 6.2.7, “Connection Transport Protocols”

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

385

Command Options for Connecting to the Server

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled
to support shared-memory connections.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

On Unix, the name of the Unix socket file to use for connections made using a named pipe to a local
server. The default Unix socket file name is /tmp/mysql.sock.

On Windows, the name of the named pipe to use for connections to a local server. The default
Windows pipe name is MySQL. The pipe name is not case-sensitive.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --user=user_name, -u user_name

Command-Line Format --user=user_name

Type String

The user name of the MySQL account to use for connecting to the server. The default user name is
ODBC on Windows or your Unix login name on Unix.

Command Options for Encrypted Connections

This section describes options for client programs that specify whether to use encrypted connections to
the server, the names of certificate and key files, and other parameters related to encrypted-connection
support. For examples of suggested use and how to check whether a connection is encrypted, see
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”.

Note

These options have an effect only for connections that use a transport protocol
subject to encryption; that is, TCP/IP and Unix socket-file connections. See
Section 6.2.7, “Connection Transport Protocols”

For information about using encrypted connections from the MySQL C API, see Support for Encrypted
Connections.

Table 6.5 Connection-Encryption Option Summary

Option Name Description Introduced Deprecated

--get-server-public-key Request RSA public key
from server

--server-public-key-path Path name to file
containing RSA public
key

386

https://dev.mysql.com/doc/c-api/8.0/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-encrypted-connections.html

Command Options for Connecting to the Server

Option Name Description Introduced Deprecated

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This
option applies to clients that authenticate with the caching_sha2_password authentication
plugin. For that plugin, the server does not send the public key unless requested. This option
is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

387

Command Options for Connecting to the Server

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

This option is available only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --ssl-ca=file_name

Command-Line Format --ssl-ca=file_name

Type File name

The path name of the Certificate Authority (CA) certificate file in PEM format. The file contains a list
of trusted SSL Certificate Authorities.

To tell the client not to authenticate the server certificate when establishing an encrypted connection
to the server, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client
according to any applicable requirements established for the client account, and it still uses any
ssl_ca or ssl_capath system variable values specified on the server side.

To specify the CA file for the server, set the ssl_ca system variable.

• --ssl-capath=dir_name

Command-Line Format --ssl-capath=dir_name

Type Directory name

The path name of the directory that contains trusted SSL certificate authority (CA) certificate files in
PEM format.

To tell the client not to authenticate the server certificate when establishing an encrypted connection
to the server, specify neither --ssl-ca nor --ssl-capath. The server still verifies the client
according to any applicable requirements established for the client account, and it still uses any
ssl_ca or ssl_capath system variable values specified on the server side.

To specify the CA directory for the server, set the ssl_capath system variable.

• --ssl-cert=file_name

Command-Line Format --ssl-cert=file_name

Type File name

388

Command Options for Connecting to the Server

The path name of the client SSL public key certificate file in PEM format.

To specify the server SSL public key certificate file, set the ssl_cert system variable.

Note

Chained SSL certificate support was added in v8.0.30; previously only the
first certificate was read.

• --ssl-cipher=cipher_list

Command-Line Format --ssl-cipher=name

Type String

The list of permissible encryption ciphers for connections that use TLS protocols up through
TLSv1.2. If no cipher in the list is supported, encrypted connections that use these TLS protocols do
not work.

For greatest portability, cipher_list should be a list of one or more cipher names, separated by
colons. Examples:

--ssl-cipher=AES128-SHA
--ssl-cipher=DHE-RSA-AES128-GCM-SHA256:AES128-SHA

OpenSSL supports the syntax for specifying ciphers described in the OpenSSL documentation at
https://www.openssl.org/docs/manmaster/man1/ciphers.html.

For information about which encryption ciphers MySQL supports, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

To specify the encryption ciphers for the server, set the ssl_cipher system variable.

• --ssl-crl=file_name

Command-Line Format --ssl-crl=file_name

Type File name

The path name of the file containing certificate revocation lists in PEM format.

If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA
path contains certificate revocation lists.

To specify the revocation-list file for the server, set the ssl_crl system variable.

• --ssl-crlpath=dir_name

Command-Line Format --ssl-crlpath=dir_name

Type Directory name

The path name of the directory that contains certificate revocation-list files in PEM format.

If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA
path contains certificate revocation lists.

To specify the revocation-list directory for the server, set the ssl_crlpath system variable.

• --ssl-fips-mode={OFF|ON|STRICT}

389

https://www.openssl.org/docs/manmaster/man1/ciphers.html

Command Options for Connecting to the Server

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

Default Value OFF

Valid Values OFF

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permissible:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permissible
value for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-
mode to ON or STRICT causes the client to produce a warning at startup and
to operate in non-FIPS mode.

To specify the FIPS mode for the server, set the ssl_fips_mode system variable.

• --ssl-key=file_name

Command-Line Format --ssl-key=file_name

Type File name

The path name of the client SSL private key file in PEM format. For better security, use a certificate
with an RSA key size of at least 2048 bits.

If the key file is protected by a passphrase, the client program prompts the user for the passphrase.
The password must be given interactively; it cannot be stored in a file. If the passphrase is incorrect,
the program continues as if it could not read the key.

To specify the server SSL private key file, set the ssl_key system variable.

• --ssl-mode=mode

Command-Line Format --ssl-mode=mode

Type Enumeration

Default Value PREFERRED

Valid Values DISABLED

PREFERRED

REQUIRED

390

Command Options for Connecting to the Server

VERIFY_CA

VERIFY_IDENTITY

This option specifies the desired security state of the connection to the server. These mode values
are permissible, in order of increasing strictness:

• DISABLED: Establish an unencrypted connection.

• PREFERRED: Establish an encrypted connection if the server supports encrypted connections,
falling back to an unencrypted connection if an encrypted connection cannot be established. This
is the default if --ssl-mode is not specified.

Connections over Unix socket files are not encrypted with a mode of PREFERRED. To enforce
encryption for Unix socket-file connections, use a mode of REQUIRED or stricter. (However,
socket-file transport is secure by default, so encrypting a socket-file connection makes it no more
secure and increases CPU load.)

• REQUIRED: Establish an encrypted connection if the server supports encrypted connections. The
connection attempt fails if an encrypted connection cannot be established.

• VERIFY_CA: Like REQUIRED, but additionally verify the server Certificate Authority (CA) certificate
against the configured CA certificates. The connection attempt fails if no valid matching CA
certificates are found.

• VERIFY_IDENTITY: Like VERIFY_CA, but additionally perform host name identity verification
by checking the host name the client uses for connecting to the server against the identity in the
certificate that the server sends to the client:

• As of MySQL 8.0.12, if the client uses OpenSSL 1.0.2 or higher, the client checks whether the
host name that it uses for connecting matches either the Subject Alternative Name value or the
Common Name value in the server certificate. Host name identity verification also works with
certificates that specify the Common Name using wildcards.

• Otherwise, the client checks whether the host name that it uses for connecting matches the
Common Name value in the server certificate.

The connection fails if there is a mismatch. For encrypted connections, this option helps prevent
man-in-the-middle attacks.

Note

Host name identity verification with VERIFY_IDENTITY does not work
with self-signed certificates that are created automatically by the server or
manually using mysql_ssl_rsa_setup (see Section 8.3.3.1, “Creating
SSL and RSA Certificates and Keys using MySQL”). Such self-signed
certificates do not contain the server name as the Common Name value.

Important

The default setting, --ssl-mode=PREFERRED, produces an encrypted
connection if the other default settings are unchanged. However, to help
prevent sophisticated man-in-the-middle attacks, it is important for the client
to verify the server’s identity. The settings --ssl-mode=VERIFY_CA and --
ssl-mode=VERIFY_IDENTITY are a better choice than the default setting to
help prevent this type of attack. To implement one of these settings, you must
first ensure that the CA certificate for the server is reliably available to all the

391

Command Options for Connecting to the Server

clients that use it in your environment, otherwise availability issues will result.
For this reason, they are not the default setting.

The --ssl-mode option interacts with CA certificate options as follows:

• If --ssl-mode is not explicitly set otherwise, use of --ssl-ca or --ssl-capath implies --
ssl-mode=VERIFY_CA.

• For --ssl-mode values of VERIFY_CA or VERIFY_IDENTITY, --ssl-ca or --ssl-capath is
also required, to supply a CA certificate that matches the one used by the server.

• An explicit --ssl-mode option with a value other than VERIFY_CA or VERIFY_IDENTITY,
together with an explicit --ssl-ca or --ssl-capath option, produces a warning that no
verification of the server certificate is performed, despite a CA certificate option being specified.

To require use of encrypted connections by a MySQL account, use CREATE USER to create the
account with a REQUIRE SSL clause, or use ALTER USER for an existing account to add a REQUIRE
SSL clause. This causes connection attempts by clients that use the account to be rejected unless
MySQL supports encrypted connections and an encrypted connection can be established.

The REQUIRE clause permits other encryption-related options, which can be used to enforce security
requirements stricter than REQUIRE SSL. For additional details about which command options may
or must be specified by clients that connect using accounts configured using the various REQUIRE
options, see CREATE USER SSL/TLS Options.

• --ssl-session-data=file_name

Command-Line Format --ssl-session-data=file_name

Introduced 8.0.29

Type File name

The path name of the client SSL session data file in PEM format for session reuse.

When you invoke a MySQL client program with the --ssl-session-data option, the client
attempts to deserialize session data from the file, if provided, and then use it to establish a new
connection. If you supply a file, but the session is not reused, then the connection fails unless you
also specified the --ssl-session-data-continue-on-failed-reuse option on the command
line when you invoked the client program.

The mysql command, ssl_session_data_print, generates the session data file (see
Section 6.5.1.2, “mysql Client Commands”).

• ssl-session-data-continue-on-failed-reuse

Command-Line Format --ssl-session-data-continue-on-
failed-reuse

Introduced 8.0.29

Type Boolean

Default Value OFF

Controls whether a new connection is started to replace an attempted connection that tried but failed
to reuse session data specified with the --ssl-session-data command-line option. By default,

392

Command Options for Connecting to the Server

the --ssl-session-data-continue-on-failed-reuse command-line option is off, which
causes a client program to return a connect failure when session data are supplied and not reused.

To ensure that a new, unrelated connection opens after session reuse fails silently, invoke MySQL
client programs with both the --ssl-session-data and --ssl-session-data-continue-on-
failed-reuse command-line options.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

Default Value empty string

This option specifies which ciphersuites the client permits for encrypted connections that use
TLSv1.3. The value is a list of zero or more colon-separated ciphersuite names. For example:

mysql --tls-ciphersuites="suite1:suite2:suite3"

The ciphersuites that can be named for this option depend on the SSL library used to compile
MySQL. If this option is not set, the client permits the default set of ciphersuites. If the option is set to
the empty string, no ciphersuites are enabled and encrypted connections cannot be established. For
more information, see Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

To specify which ciphersuites the server permits, set the tls_ciphersuites system variable.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

This option specifies the TLS protocols the client permits for encrypted connections. The value is a
list of one or more comma-separated protocol versions. For example:

mysql --tls-version="TLSv1.2,TLSv1.3"

The protocols that can be named for this option depend on the SSL library used to compile MySQL,
and on the MySQL Server release.

Important

• Support for the TLSv1 and TLSv1.1 connection protocols is removed
from MySQL Server as of MySQL 8.0.28. The protocols were deprecated
from MySQL 8.0.26, though MySQL Server clients do not return warnings
to the user if a deprecated TLS protocol version is used. From MySQL
8.0.28 onwards, clients, including MySQL Shell, that support the --tls-
version option cannot make a TLS/SSL connection with the protocol set
to TLSv1 or TLSv1.1. If a client attempts to connect using these protocols,
for TCP connections, the connection fails, and an error is returned to

393

Command Options for Connecting to the Server

the client. For socket connections, if --ssl-mode is set to REQUIRED,
the connection fails, otherwise the connection is made but with TLS/SSL
disabled. See Removal of Support for the TLSv1 and TLSv1.1 Protocols for
more information.

• Support for the TLSv1.3 protocol is available in MySQL Server as of
MySQL 8.0.16, provided that MySQL Server was compiled using OpenSSL
1.1.1 or higher. The server checks the version of OpenSSL at startup,
and if it is lower than 1.1.1, TLSv1.3 is removed from the default value
for the server system variables relating to the TLS version (such as the
tls_version system variable).

Permitted protocols should be chosen such as not to leave “holes” in the list. For example, these
values do not have holes:

--tls-version="TLSv1,TLSv1.1,TLSv1.2,TLSv1.3"
--tls-version="TLSv1.1,TLSv1.2,TLSv1.3"
--tls-version="TLSv1.2,TLSv1.3"
--tls-version="TLSv1.3"

From MySQL 8.0.28, only the last two values are suitable.

These values do have holes and should not be used:

--tls-version="TLSv1,TLSv1.2"
--tls-version="TLSv1.1,TLSv1.3"

For details, see Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”.

To specify which TLS protocols the server permits, set the tls_version system variable.

Command Options for Connection Compression

This section describes options that enable client programs to control use of compression for
connections to the server. For additional information and examples showing how to use them, see
Section 6.2.8, “Connection Compression Control”.

Table 6.6 Connection-Compression Option Summary

Option Name Description Introduced Deprecated

--compress Compress all
information sent
between client and
server

8.0.18

--compression-
algorithms

Permitted compression
algorithms for
connections to server

8.0.18

--zstd-compression-level Compression level
for connections to
server that use zstd
compression

8.0.18

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Deprecated 8.0.18

Type Boolean

Default Value OFF

394

Connecting to the MySQL Server Using Command Options

Compress all information sent between the client and the server if possible.

As of MySQL 8.0.18, this option is deprecated. Expect it to be removed in a future version of MySQL.
See Configuring Legacy Connection Compression.

• --compression-algorithms=value

Command-Line Format --compression-algorithms=value

Introduced 8.0.18

Type Set

Default Value uncompressed

Valid Values zlib

zstd

uncompressed

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the protocol_compression_algorithms system variable. The default value is
uncompressed.

This option was added in MySQL 8.0.18.

• --zstd-compression-level=level

Command-Line Format --zstd-compression-level=#

Introduced 8.0.18

Type Integer

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
The default zstd compression level is 3. The compression level setting has no effect on connections
that do not use zstd compression.

This option was added in MySQL 8.0.18.

6.2.4 Connecting to the MySQL Server Using Command Options

This section describes use of command-line options to specify how to establish connections to
the MySQL server, for clients such as mysql or mysqldump. For information on establishing
connections using URI-like connection strings or key-value pairs, for clients such as MySQL Shell, see
Section 6.2.5, “Connecting to the Server Using URI-Like Strings or Key-Value Pairs”. For additional
information if you are unable to connect, see Section 8.2.22, “Troubleshooting Problems Connecting to
MySQL”.

For a client program to connect to the MySQL server, it must use the proper connection parameters,
such as the name of the host where the server is running and the user name and password of your
MySQL account. Each connection parameter has a default value, but you can override default values
as necessary using program options specified either on the command line or in an option file.

The examples here use the mysql client program, but the principles apply to other clients such as
mysqldump, mysqladmin, or mysqlshow.

This command invokes mysql without specifying any explicit connection parameters:

mysql

395

Connecting to the MySQL Server Using Command Options

Because there are no parameter options, the default values apply:

• The default host name is localhost. On Unix, this has a special meaning, as described later.

• The default user name is ODBC on Windows or your Unix login name on Unix.

• No password is sent because neither --password nor -p is given.

• For mysql, the first nonoption argument is taken as the name of the default database. Because
there is no such argument, mysql selects no default database.

To specify the host name and user name explicitly, as well as a password, supply appropriate options
on the command line. To select a default database, add a database-name argument. Examples:

mysql --host=localhost --user=myname --password=password mydb
mysql -h localhost -u myname -ppassword mydb

For password options, the password value is optional:

• If you use a --password or -p option and specify a password value, there must be no space
between --password= or -p and the password following it.

• If you use --password or -p but do not specify a password value, the client program prompts
you to enter the password. The password is not displayed as you enter it. This is more secure than
giving the password on the command line, which might enable other users on your system to see the
password line by executing a command such as ps. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

• To explicitly specify that there is no password and that the client program should not prompt for one,
use the --skip-password option.

As just mentioned, including the password value on the command line is a security risk. To avoid this
risk, specify the --password or -p option without any following password value:

mysql --host=localhost --user=myname --password mydb
mysql -h localhost -u myname -p mydb

When the --password or -p option is given with no password value, the client program prints a
prompt and waits for you to enter the password. (In these examples, mydb is not interpreted as a
password because it is separated from the preceding password option by a space.)

On some systems, the library routine that MySQL uses to prompt for a password automatically limits
the password to eight characters. That limitation is a property of the system library, not MySQL.
Internally, MySQL does not have any limit for the length of the password. To work around the limitation
on systems affected by it, specify your password in an option file (see Section 6.2.2.2, “Using Option
Files”). Another workaround is to change your MySQL password to a value that has eight or fewer
characters, but that has the disadvantage that shorter passwords tend to be less secure.

Client programs determine what type of connection to make as follows:

• If the host is not specified or is localhost, a connection to the local host occurs:

• On Windows, the client connects using shared memory, if the server was started with the
shared_memory system variable enabled to support shared-memory connections.

• On Unix, MySQL programs treat the host name localhost specially, in a way that is likely
different from what you expect compared to other network-based programs: the client connects
using a Unix socket file. The --socket option or the MYSQL_UNIX_PORT environment variable
may be used to specify the socket name.

• On Windows, if host is . (period), or TCP/IP is not enabled and --socket is not specified
or the host is empty, the client connects using a named pipe, if the server was started with
the named_pipe system variable enabled to support named-pipe connections. If named-pipe

396

Connecting to the MySQL Server Using Command Options

connections are not supported or if the user making the connection is not a member of the Windows
group specified by the named_pipe_full_access_group system variable, an error occurs.

• Otherwise, the connection uses TCP/IP.

The --protocol option enables you to use a particular transport protocol even when other options
normally result in use of a different protocol. That is, --protocol specifies the transport protocol
explicitly and overrides the preceding rules, even for localhost.

Only connection options that are relevant to the selected transport protocol are used or checked. Other
connection options are ignored. For example, with --host=localhost on Unix, the client attempts to
connect to the local server using a Unix socket file, even if a --port or -P option is given to specify a
TCP/IP port number.

To ensure that the client makes a TCP/IP connection to the local server, use --host or -h to specify
a host name value of 127.0.0.1 (instead of localhost), or the IP address or name of the local
server. You can also specify the transport protocol explicitly, even for localhost, by using the --
protocol=TCP option. Examples:

mysql --host=127.0.0.1
mysql --protocol=TCP

If the server is configured to accept IPv6 connections, clients can connect to the local server over IPv6
using --host=::1. See Section 7.1.13, “IPv6 Support”.

On Windows, to force a MySQL client to use a named-pipe connection, specify the --pipe
or --protocol=PIPE option, or specify . (period) as the host name. If the server was not
started with the named_pipe system variable enabled to support named-pipe connections
or if the user making the connection is not a member of the Windows group specified by the
named_pipe_full_access_group system variable, an error occurs. Use the --socket option to
specify the name of the pipe if you do not want to use the default pipe name.

Connections to remote servers use TCP/IP. This command connects to the server running on
remote.example.com using the default port number (3306):

mysql --host=remote.example.com

To specify a port number explicitly, use the --port or -P option:

mysql --host=remote.example.com --port=13306

You can specify a port number for connections to a local server, too. However, as indicated previously,
connections to localhost on Unix use a socket file by default, so unless you force a TCP/IP
connection as previously described, any option that specifies a port number is ignored.

For this command, the program uses a socket file on Unix and the --port option is ignored:

mysql --port=13306 --host=localhost

To cause the port number to be used, force a TCP/IP connection. For example, invoke the program in
either of these ways:

mysql --port=13306 --host=127.0.0.1
mysql --port=13306 --protocol=TCP

For additional information about options that control how client programs establish connections to the
server, see Section 6.2.3, “Command Options for Connecting to the Server”.

It is possible to specify connection parameters without entering them on the command line each time
you invoke a client program:

• Specify the connection parameters in the [client] section of an option file. The relevant section of
the file might look like this:

[client]
host=host_name

397

Connecting to the Server Using URI-Like Strings or Key-Value Pairs

user=user_name
password=password

For more information, see Section 6.2.2.2, “Using Option Files”.

• Some connection parameters can be specified using environment variables. Examples:

• To specify the host for mysql, use MYSQL_HOST.

• On Windows, to specify the MySQL user name, use USER.

For a list of supported environment variables, see Section 6.9, “Environment Variables”.

6.2.5 Connecting to the Server Using URI-Like Strings or Key-Value Pairs

This section describes use of URI-like connection strings or key-value pairs to specify how to establish
connections to the MySQL server, for clients such as MySQL Shell. For information on establishing
connections using command-line options, for clients such as mysql or mysqldump, see Section 6.2.4,
“Connecting to the MySQL Server Using Command Options”. For additional information if you are
unable to connect, see Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”.

Note

The term “URI-like” signifies connection-string syntax that is similar to but not
identical to the URI (uniform resource identifier) syntax defined by RFC 3986.

The following MySQL clients support connecting to a MySQL server using a URI-like connection string
or key-value pairs:

• MySQL Shell

• MySQL Connectors which implement X DevAPI

This section documents all valid URI-like string and key-value pair connection parameters, many of
which are similar to those specified with command-line options:

• Parameters specified with a URI-like string use a syntax such as myuser@example.com:3306/
main-schema. For the full syntax, see Connecting Using URI-Like Connection Strings.

• Parameters specified with key-value pairs use a syntax such as {user:'myuser',
host:'example.com', port:3306, schema:'main-schema'}. For the full syntax, see
Connecting Using Key-Value Pairs.

Connection parameters are not case-sensitive. Each parameter, if specified, can be given only once. If
a parameter is specified more than once, an error occurs.

This section covers the following topics:

• Base Connection Parameters

• Additional Connection parameters

• Connecting Using URI-Like Connection Strings

• Connecting Using Key-Value Pairs

Base Connection Parameters

The following discussion describes the parameters available when specifying a connection to MySQL.
These parameters can be provided using either a string that conforms to the base URI-like syntax (see
Connecting Using URI-Like Connection Strings), or as key-value pairs (see Connecting Using Key-
Value Pairs).

• scheme: The transport protocol to use. Use mysqlx for X Protocol connections and mysql for
classic MySQL protocol connections. If no protocol is specified, the server attempts to guess the

398

https://tools.ietf.org/html/rfc3986

Connecting to the Server Using URI-Like Strings or Key-Value Pairs

protocol. Connectors that support DNS SRV can use the mysqlx+srv scheme (see Connections
Using DNS SRV Records).

• user: The MySQL user account to provide for the authentication process.

• password: The password to use for the authentication process.

Warning

Specifying an explicit password in the connection specification is insecure
and not recommended. Later discussion shows how to cause an interactive
prompt for the password to occur.

• host: The host on which the server instance is running. The value can be a host name, IPv4
address, or IPv6 address. If no host is specified, the default is localhost.

• port: The TCP/IP network port on which the target MySQL server is listening for connections. If
no port is specified, the default is 33060 for X Protocol connections and 3306 for classic MySQL
protocol connections.

• socket: The path to a Unix socket file or the name of a Windows named pipe. Values are local file
paths. In URI-like strings, they must be encoded, using either percent encoding or by surrounding
the path with parentheses. Parentheses eliminate the need to percent encode characters such
as the / directory separator character. For example, to connect as root@localhost using the
Unix socket /tmp/mysql.sock, specify the path using percent encoding as root@localhost?
socket=%2Ftmp%2Fmysql.sock, or using parentheses as root@localhost?socket=(/tmp/
mysql.sock).

• schema: The default database for the connection. If no database is specified, the connection has no
default database.

The handling of localhost on Unix depends on the type of transport protocol. Connections using
classic MySQL protocol handle localhost the same way as other MySQL clients, which means that
localhost is assumed to be for socket-based connections. For connections using X Protocol, the
behavior of localhost differs in that it is assumed to represent the loopback address, for example,
IPv4 address 127.0.0.1.

Additional Connection parameters

You can specify options for the connection, either as attributes in a URI-like string by appending
?attribute=value, or as key-value pairs. The following options are available:

• ssl-mode: The desired security state for the connection. The following modes are permissible:

• DISABLED

• PREFERRED

• REQUIRED

• VERIFY_CA

• VERIFY_IDENTITY

Important

VERIFY_CA and VERIFY_IDENTITY are better choices than the default
PREFERRED, because they help prevent man-in-the-middle attacks.

For information about these modes, see the --ssl-mode option description in Command Options
for Encrypted Connections.

• ssl-ca: The path to the X.509 certificate authority file in PEM format.

399

https://dev.mysql.com/doc/x-devapi-userguide/en/connecting-dns-srv.html
https://dev.mysql.com/doc/x-devapi-userguide/en/connecting-dns-srv.html

Connecting to the Server Using URI-Like Strings or Key-Value Pairs

• ssl-capath: The path to the directory that contains the X.509 certificates authority files in PEM
format.

• ssl-cert: The path to the X.509 certificate file in PEM format.

• ssl-cipher: The encryption cipher to use for connections that use TLS protocols up through
TLSv1.2.

• ssl-crl: The path to the file that contains certificate revocation lists in PEM format.

• ssl-crlpath: The path to the directory that contains certificate revocation-list files in PEM format.

• ssl-key: The path to the X.509 key file in PEM format.

• tls-version: The TLS protocols permitted for classic MySQL protocol encrypted connections.
This option is supported by MySQL Shell only. The value of tls-version (singular) is a comma
separated list, for example TLSv1.2,TLSv1.3. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”. This option depends on the ssl-mode option not being set
to DISABLED.

• tls-versions: The permissible TLS protocols for encrypted X Protocol connections. The value of
tls-versions (plural) is an array such as [TLSv1.2,TLSv1.3]. For details, see Section 8.3.2,
“Encrypted Connection TLS Protocols and Ciphers”. This option depends on the ssl-mode option
not being set to DISABLED.

• tls-ciphersuites: The permitted TLS cipher suites. The value of tls-ciphersuites is a list
of IANA cipher suite names as listed at TLS Ciphersuites. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”. This option depends on the ssl-mode option not being set
to DISABLED.

• auth-method: The authentication method to use for the connection. The default is AUTO, meaning
that the server attempts to guess. The following methods are permissible:

• AUTO

• MYSQL41

• SHA256_MEMORY

• FROM_CAPABILITIES

• FALLBACK

• PLAIN

For X Protocol connections, any configured auth-method is overridden to this sequence of
authentication methods: MYSQL41, SHA256_MEMORY, PLAIN.

• get-server-public-key: Request from the server the public key required for RSA key pair-
based password exchange. Use when connecting to MySQL 8.0 servers over classic MySQL
protocol with SSL mode DISABLED. You must specify the protocol in this case. For example:

mysql://user@localhost:3306?get-server-public-key=true

This option applies to clients that authenticate with the caching_sha2_password authentication
plugin. For that plugin, the server does not send the public key unless requested. This option
is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over get-server-public-key.

400

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4

Connecting to the Server Using URI-Like Strings or Key-Value Pairs

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• server-public-key-path: The path name to a file in PEM format containing a client-side copy
of the public key required by the server for RSA key pair-based password exchange. Use when
connecting to MySQL 8.0 servers over classic MySQL protocol with SSL mode DISABLED.

This option applies to clients that authenticate with the sha256_password or
caching_sha2_password authentication plugin. This option is ignored for accounts that do not
authenticate with one of those plugins. It is also ignored if RSA-based password exchange is not
used, as is the case when the client connects to the server using a secure connection.

If server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over get-server-public-key.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• ssh: The URI for connection to an SSH server to access a MySQL server instance using SSH
tunneling. The URI format is [user@]host[:port]. Use the uri option to specify the URI of the
target MySQL server instance. For information on SSH tunnel connections from MySQL Shell, see
Using an SSH Tunnel.

• uri: The URI for a MySQL server instance that is to be accessed through an SSH tunnel from the
server specified by the ssh option. The URI format is [scheme://][user@]host[:port]. Do
not use the base connection parameters (scheme, user, host, port) to specify the MySQL server
connection for SSH tunneling, just use the uri option.

• ssh-password: The password for the connection to the SSH server.

Warning

Specifying an explicit password in the connection specification is insecure
and not recommended. MySQL Shell prompts for a password interactively
when one is required.

• ssh-config-file: The SSH configuration file for the connection to the SSH server. You can
use the MySQL Shell configuration option ssh.configFile to set a custom file as the default if
this option is not specified. If ssh.configFile has not been set, the default is the standard SSH
configuration file ~/.ssh/config.

• ssh-identity-file: The identity file to use for the connection to the SSH server. The default
if this option is not specified is any identity file configured in an SSH agent (if used), or in the SSH
configuration file, or the standard private key file in the SSH configuration folder (~/.ssh/id_rsa).

• ssh-identity-pass: The passphrase for the identity file specified by the ssh-identity-file
option.

Warning

Specifying an explicit password in the connection specification is insecure
and not recommended. MySQL Shell prompts for a password interactively
when one is required.

• connect-timeout: An integer value used to configure the number of seconds that clients, such as
MySQL Shell, wait until they stop trying to connect to an unresponsive MySQL server.

• compression: This option requests or disables compression for the connection. Up to MySQL
8.0.19 it operates for classic MySQL protocol connections only, and from MySQL 8.0.20 it also
operates for X Protocol connections.

401

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-connection-ssh.html

Connecting to the Server Using URI-Like Strings or Key-Value Pairs

• Up to MySQL 8.0.19, the values for this option are true (or 1) which enables compression, and
the default false (or 0) which disables compression.

• From MySQL 8.0.20, the values for this option are required, which requests compression and
fails if the server does not support it; preferred, which requests compression and falls back to
an uncompressed connection; and disabled, which requests an uncompressed connection and
fails if the server does not permit those. preferred is the default for X Protocol connections,
and disabled is the default for classic MySQL protocol connections. For information on X Plugin
connection compression control, see Section 22.5.5, “Connection Compression with X Plugin”.

Note that different MySQL clients implement their support for connection compression differently.
Consult your client's documentation for details.

• compression-algorithms and compression-level: These options are available in MySQL
Shell 8.0.20 and later for more control over connection compression. You can specify them to select
the compression algorithm used for the connection, and the numeric compression level used with
that algorithm. You can also use compression-algorithms in place of compression to request
compression for the connection. For information on MySQL Shell's connection compression control,
see Using Compressed Connections.

• connection-attributes: Controls the key-value pairs that application programs pass to the
server at connect time. For general information about connection attributes, see Section 29.12.9,
“Performance Schema Connection Attribute Tables”. Clients usually define a default set of attributes,
which can be disabled or enabled. For example:

mysqlx://user@host?connection-attributes
mysqlx://user@host?connection-attributes=true
mysqlx://user@host?connection-attributes=false

The default behavior is to send the default attribute set. Applications can specify attributes to
be passed in addition to the default attributes. You specify additional connection attributes as a
connection-attributes parameter in a connection string. The connection-attributes
parameter value must be empty (the same as specifying true), a Boolean value (true or false to
enable or disable the default attribute set), or a list or zero or more key=value specifiers separated
by commas (to be sent in addition to the default attribute set). Within a list, a missing key value
evaluates as an empty string. Further examples:

mysqlx://user@host?connection-attributes=[attr1=val1,attr2,attr3=]
mysqlx://user@host?connection-attributes=[]

Application-defined attribute names cannot begin with _ because such names are reserved for
internal attributes.

Connecting Using URI-Like Connection Strings

You can specify a connection to MySQL Server using a URI-like string. Such strings can be used
with the MySQL Shell with the --uri command option, the MySQL Shell \connect command, and
MySQL Connectors which implement X DevAPI.

Note

The term “URI-like” signifies connection-string syntax that is similar to but not
identical to the URI (uniform resource identifier) syntax defined by RFC 3986.

A URI-like connection string has the following syntax:

[scheme://][user[:[password]]@]host[:port][/schema][?attribute1=value1&attribute2=value2...

Important

Percent encoding must be used for reserved characters in the elements of the
URI-like string. For example, if you specify a string that includes the @ character,

402

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-compressed-connections.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysqlsh.html#option_mysqlsh_uri
https://tools.ietf.org/html/rfc3986

Connecting to the Server Using URI-Like Strings or Key-Value Pairs

the character must be replaced by %40. If you include a zone ID in an IPv6
address, the % character used as the separator must be replaced with %25.

The parameters you can use in a URI-like connection string are described at Base Connection
Parameters.

MySQL Shell's shell.parseUri() and shell.unparseUri() methods can be used
to deconstruct and assemble a URI-like connection string. Given a URI-like connection
string, shell.parseUri() returns a dictionary containing each element found in the string.
shell.unparseUri() converts a dictionary of URI components and connection options into a valid
URI-like connection string for connecting to MySQL, which can be used in MySQL Shell or by MySQL
Connectors which implement X DevAPI.

If no password is specified in the URI-like string, which is recommended, interactive clients prompt
for the password. The following examples show how to specify URI-like strings with the user name
user_name. In each case, the password is prompted for.

• An X Protocol connection to a local server instance listening at port 33065.

mysqlx://user_name@localhost:33065

• A classic MySQL protocol connection to a local server instance listening at port 3333.

mysql://user_name@localhost:3333

• An X Protocol connection to a remote server instance, using a host name, an IPv4 address, and an
IPv6 address.

mysqlx://user_name@server.example.com/
mysqlx://user_name@198.51.100.14:123
mysqlx://user_name@[2001:db8:85a3:8d3:1319:8a2e:370:7348]

• An X Protocol connection using a socket, with the path provided using either percent encoding or
parentheses.

mysqlx://user_name@/path%2Fto%2Fsocket.sock
mysqlx://user_name@(/path/to/socket.sock)

• An optional path can be specified, which represents a database.

use 'world' as the default database
mysqlx://user_name@198.51.100.1/world

use 'world_x' as the default database, encoding _ as %5F
mysqlx://user_name@198.51.100.2:33060/world%5Fx

• An optional query can be specified, consisting of values each given as a key=value pair or as a
single key. To specify multiple values, separate them by , characters. A mix of key=value and key
values is permissible. Values can be of type list, with list values ordered by appearance. Strings must
be either percent encoded or surrounded by parentheses. The following are equivalent.

ssluser@127.0.0.1?ssl-ca=%2Froot%2Fclientcert%2Fca-cert.pem\
&ssl-cert=%2Froot%2Fclientcert%2Fclient-cert.pem\
&ssl-key=%2Froot%2Fclientcert%2Fclient-key

ssluser@127.0.0.1?ssl-ca=(/root/clientcert/ca-cert.pem)\
&ssl-cert=(/root/clientcert/client-cert.pem)\
&ssl-key=(/root/clientcert/client-key)

• To specify a TLS version and ciphersuite to use for encrypted connections:

mysql://user_name@198.51.100.2:3306/world%5Fx?\
tls-versions=[TLSv1.2,TLSv1.3]&tls-ciphersuites=[TLS_DHE_PSK_WITH_AES_128_\
GCM_SHA256, TLS_CHACHA20_POLY1305_SHA256]

The previous examples assume that connections require a password. With interactive clients, the
specified user's password is requested at the login prompt. If the user account has no password (which

403

Connecting to the Server Using URI-Like Strings or Key-Value Pairs

is insecure and not recommended), or if socket peer-credential authentication is in use (for example,
with Unix socket connections), you must explicitly specify in the connection string that no password is
being provided and the password prompt is not required. To do this, place a : after the user_name in
the string but do not specify a password after it. For example:

mysqlx://user_name:@localhost

Connecting Using Key-Value Pairs

In MySQL Shell and some MySQL Connectors which implement X DevAPI, you can specify a
connection to MySQL Server using key-value pairs, supplied in language-natural constructs for the
implementation. For example, you can supply connection parameters using key-value pairs as a
JSON object in JavaScript, or as a dictionary in Python. Regardless of the way the key-value pairs are
supplied, the concept remains the same: the keys as described in this section can be assigned values
that are used to specify a connection. You can specify connections using key-value pairs in MySQL
Shell's shell.connect() method or InnoDB Cluster's dba.createCluster() method, and with
some of the MySQL Connectors which implement X DevAPI.

Generally, key-value pairs are surrounded by { and } characters and the , character is used as a
separator between key-value pairs. The : character is used between keys and values, and strings
must be delimited (for example, using the ' character). It is not necessary to percent encode strings,
unlike URI-like connection strings.

A connection specified as key-value pairs has the following format:

{ key: value, key: value, ...}

The parameters you can use as keys for a connection are described at Base Connection Parameters.

If no password is specified in the key-value pairs, which is recommended, interactive clients prompt for
the password. The following examples show how to specify connections using key-value pairs with the
user name 'user_name'. In each case, the password is prompted for.

• An X Protocol connection to a local server instance listening at port 33065.

{user:'user_name', host:'localhost', port:33065}

• A classic MySQL protocol connection to a local server instance listening at port 3333.

{user:'user_name', host:'localhost', port:3333}

• An X Protocol connection to a remote server instance, using a host name, an IPv4 address, and an
IPv6 address.

{user:'user_name', host:'server.example.com'}
{user:'user_name', host:198.51.100.14:123}
{user:'user_name', host:[2001:db8:85a3:8d3:1319:8a2e:370:7348]}

• An X Protocol connection using a socket.

{user:'user_name', socket:'/path/to/socket/file'}

• An optional schema can be specified, which represents a database.

{user:'user_name', host:'localhost', schema:'world'}

The previous examples assume that connections require a password. With interactive clients, the
specified user's password is requested at the login prompt. If the user account has no password (which
is insecure and not recommended), or if socket peer-credential authentication is in use (for example,
with Unix socket connections), you must explicitly specify that no password is being provided and the
password prompt is not required. To do this, provide an empty string using '' after the password key.
For example:

{user:'user_name', password:'', host:'localhost'}

404

Connecting to the Server Using DNS SRV Records

6.2.6 Connecting to the Server Using DNS SRV Records

In the Domain Name System (DNS), a SRV record (service location record) is a type of resource
record that enables a client to specify a name that indicates a service, protocol, and domain. A DNS
lookup on the name returns a reply containing the names of multiple available servers in the domain
that provide the required service. For information about DNS SRV, including how a record defines the
preference order of the listed servers, see RFC 2782.

MySQL supports the use of DNS SRV records for connecting to servers. A client that receives a DNS
SRV lookup result attempts to connect to the MySQL server on each of the listed hosts in order of
preference, based on the priority and weighting assigned to each host by the DNS administrator. A
failure to connect occurs only if the client cannot connect to any of the servers.

When multiple MySQL instances, such as a cluster of servers, provide the same service for your
applications, DNS SRV records can be used to assist with failover, load balancing, and replication
services. It is cumbersome for applications to directly manage the set of candidate servers for
connection attempts, and DNS SRV records provide an alternative:

• DNS SRV records enable a DNS administrator to map a single DNS domain to multiple servers. DNS
SRV records also can be updated centrally by administrators when servers are added or removed
from the configuration or when their host names are changed.

• Central management of DNS SRV records eliminates the need for individual clients to identify each
possible host in connection requests, or for connections to be handled by an additional software
component. An application can use the DNS SRV record to obtain information about candidate
MySQL servers, instead of managing the server information itself.

• DNS SRV records can be used in combination with connection pooling, in which case connections to
hosts that are no longer in the current list of DNS SRV records are removed from the pool when they
become idle.

MySQL supports use of DNS SRV records to connect to servers in these contexts:

• Several MySQL Connectors implement DNS SRV support; connector-specific options enable
requesting DNS SRV record lookup both for X Protocol connections and for classic MySQL protocol
connections. For general information, see Connections Using DNS SRV Records. For details, see
the documentation for individual MySQL Connectors.

• The C API provides a mysql_real_connect_dns_srv() function that is similar to
mysql_real_connect(), except that the argument list does not specify the particular host of the
MySQL server to connect to. Instead, it names a DNS SRV record that specifies a group of servers.
See mysql_real_connect_dns_srv().

• The mysql client has a --dns-srv-name option to indicate a DNS SRV record that specifies a
group of servers. See Section 6.5.1, “mysql — The MySQL Command-Line Client”.

A DNS SRV name consists of a service, protocol, and domain, with the service and protocol each
prefixed by an underscore:

_service._protocol.domain

The following DNS SRV record identifies multiple candidate servers, such as might be used by clients
for establishing X Protocol connections:

Name TTL Class Priority Weight Port Target
_mysqlx._tcp.example.com. 86400 IN SRV 0 5 33060 server1.example.com.
_mysqlx._tcp.example.com. 86400 IN SRV 0 10 33060 server2.example.com.
_mysqlx._tcp.example.com. 86400 IN SRV 10 5 33060 server3.example.com.
_mysqlx._tcp.example.com. 86400 IN SRV 20 5 33060 server4.example.com.

Here, mysqlx indicates the X Protocol service and tcp indicates the TCP protocol. A client can
request this DNS SRV record using the name _mysqlx._tcp.example.com. The particular syntax

405

https://tools.ietf.org/html/rfc2782
https://dev.mysql.com/doc/x-devapi-userguide/en/connecting-dns-srv.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect-dns-srv.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect-dns-srv.html

Connection Transport Protocols

for specifying the name in the connection request depends on the type of client. For example, a client
might support specifying the name within a URI-like connection string or as a key-value pair.

A DNS SRV record for classic protocol connections might look like this:

Name TTL Class Priority Weight Port Target
_mysql._tcp.example.com. 86400 IN SRV 0 5 3306 server1.example.com.
_mysql._tcp.example.com. 86400 IN SRV 0 10 3306 server2.example.com.
_mysql._tcp.example.com. 86400 IN SRV 10 5 3306 server3.example.com.
_mysql._tcp.example.com. 86400 IN SRV 20 5 3306 server4.example.com.

Here, the name mysql designates the classic MySQL protocol service, and the port is 3306 (the
default classic MySQL protocol port) rather than 33060 (the default X Protocol port).

When DNS SRV record lookup is used, clients generally must apply these rules for connection
requests (there may be client- or connector-specific exceptions):

• The request must specify the full DNS SRV record name, with the service and protocol names
prefixed by underscores.

• The request must not specify multiple host names.

• The request must not specify a port number.

• Only TCP connections are supported. Unix socket files, Windows named pipes, and shared memory
cannot be used.

For more information on using DNS SRV based connections in X DevAPI, see Connections Using DNS
SRV Records.

6.2.7 Connection Transport Protocols

For programs that use the MySQL client library (for example, mysql and mysqldump), MySQL
supports connections to the server based on several transport protocols: TCP/IP, Unix socket file,
named pipe, and shared memory. This section describes how to select these protocols, and how they
are similar and different.

• Transport Protocol Selection

• Transport Support for Local and Remote Connections

• Interpretation of localhost

• Encryption and Security Characteristics

• Connection Compression

Transport Protocol Selection

For a given connection, if the transport protocol is not specified explicitly, it is determined implicitly. For
example, connections to localhost result in a socket file connection on Unix and Unix-like systems,
and a TCP/IP connection to 127.0.0.1 otherwise. For additional information, see Section 6.2.4,
“Connecting to the MySQL Server Using Command Options”.

To specify the protocol explicitly, use the --protocol command option. The following table shows the
permissible values for --protocol and indicates the applicable platforms for each value. The values
are not case-sensitive.

--protocol Value Transport Protocol Used Applicable Platforms

TCP TCP/IP All

406

https://dev.mysql.com/doc/x-devapi-userguide/en/connecting-dns-srv.html
https://dev.mysql.com/doc/x-devapi-userguide/en/connecting-dns-srv.html

Connection Transport Protocols

--protocol Value Transport Protocol Used Applicable Platforms

SOCKET Unix socket file Unix and Unix-like systems

PIPE Named pipe Windows

MEMORY Shared memory Windows

Transport Support for Local and Remote Connections

TCP/IP transport supports connections to local or remote MySQL servers.

Socket-file, named-pipe, and shared-memory transports support connections only to local MySQL
servers. (Named-pipe transport does allow for remote connections, but this capability is not
implemented in MySQL.)

Interpretation of localhost

If the transport protocol is not specified explicitly, localhost is interpreted as follows:

• On Unix and Unix-like systems, a connection to localhost results in a socket-file connection.

• Otherwise, a connection to localhost results in a TCP/IP connection to 127.0.0.1.

If the transport protocol is specified explicitly, localhost is interpreted with respect to that protocol.
For example, with --protocol=TCP, a connection to localhost results in a TCP/IP connection to
127.0.0.1 on all platforms.

Encryption and Security Characteristics

TCP/IP and socket-file transports are subject to TLS/SSL encryption, using the options described in
Command Options for Encrypted Connections. Named-pipe and shared-memory transports are not
subject to TLS/SSL encryption.

A connection is secure by default if made over a transport protocol that is secure by default. Otherwise,
for protocols that are subject to TLS/SSL encryption, a connection may be made secure using
encryption:

• TCP/IP connections are not secure by default, but can be encrypted to make them secure.

• Socket-file connections are secure by default. They can also be encrypted, but encrypting a socket-
file connection makes it no more secure and increases CPU load.

• Named-pipe connections are not secure by default, and are not subject to encryption to make them
secure. However, the named_pipe_full_access_group system variable is available to control
which MySQL users are permitted to use named-pipe connections.

• Shared-memory connections are secure by default.

If the require_secure_transport system variable is enabled, the server permits only connections
that use some form of secure transport. Per the preceding remarks, connections that use TCP/
IP encrypted using TLS/SSL, a socket file, or shared memory are secure connections. TCP/IP
connections not encrypted using TLS/SSL and named-pipe connections are not secure.

See also Configuring Encrypted Connections as Mandatory.

Connection Compression

All transport protocols are subject to use of compression on the traffic between the client and server.
If both compression and encryption are used for a given connection, compression occurs before
encryption. For more information, see Section 6.2.8, “Connection Compression Control”.

407

Connection Compression Control

6.2.8 Connection Compression Control

Connections to the server can use compression on the traffic between client and server to reduce the
number of bytes sent over the connection. By default, connections are uncompressed, but can be
compressed if the server and the client agree on a mutually permitted compression algorithm.

Compressed connections originate on the client side but affect CPU load on both the client and server
sides because both sides perform compression and decompression operations. Because enabling
compression decreases performance, its benefits occur primarily when there is low network bandwidth,
network transfer time dominates the cost of compression and decompression operations, and result
sets are large.

This section describes the available compression-control configuration parameters and the information
sources available for monitoring use of compression. It applies to classic MySQL protocol connections.

Compression control applies to connections to the server by client programs and by servers
participating in source/replica replication or Group Replication. Compression control does not apply
to connections for FEDERATED tables. In the following discussion, “client connection” is shorthand for
a connection to the server originating from any source for which compression is supported, unless
context indicates a specific connection type.

Note

X Protocol connections to a MySQL Server instance support compression
from MySQL 8.0.19, but compression for X Protocol connections operates
independently from the compression for classic MySQL protocol connections
described here, and is controlled separately. See Section 22.5.5, “Connection
Compression with X Plugin” for information on X Protocol connection
compression.

• Configuring Connection Compression

• Configuring Legacy Connection Compression

• Monitoring Connection Compression

Configuring Connection Compression

As of MySQL 8.0.18, these configuration parameters are available for controlling connection
compression:

• The protocol_compression_algorithms system variable configures which compression
algorithms the server permits for incoming connections.

• The --compression-algorithms and --zstd-compression-level command-line options
configure permitted compression algorithms and zstd compression level for these client programs:
mysql, mysqladmin, mysqlbinlog, mysqlcheck, mysqldump, mysqlimport, mysqlpump,
mysqlshow, mysqlslap, and mysqltest, and mysql_upgrade. MySQL Shell also offers these
command-line options from its 8.0.20 release.

• The MYSQL_OPT_COMPRESSION_ALGORITHMS and MYSQL_OPT_ZSTD_COMPRESSION_LEVEL
options for the mysql_options() function configure permitted compression algorithms and zstd
compression level for client programs that use the MySQL C API.

• The MASTER_COMPRESSION_ALGORITHMS and MASTER_ZSTD_COMPRESSION_LEVEL
options for the CHANGE MASTER TO statement configure permitted compression algorithms
and zstd compression level for replica servers participating in source/replica replication.
From MySQL 8.0.23, use the statement CHANGE REPLICATION SOURCE TO and the options
SOURCE_COMPRESSION_ALGORITHMS and SOURCE_ZSTD_COMPRESSION_LEVEL instead.

408

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Connection Compression Control

• The group_replication_recovery_compression_algorithms and
group_replication_recovery_zstd_compression_level system variables configure
permitted compression algorithms and zstd compression level for Group Replication recovery
connections when a new member joins a group and connects to a donor.

Configuration parameters that enable specifying compression algorithms are string-valued and take
a list of one or more comma-separated compression algorithm names, in any order, chosen from the
following items (not case-sensitive):

• zlib: Permit connections that use the zlib compression algorithm.

• zstd: Permit connections that use the zstd compression algorithm.

• uncompressed: Permit uncompressed connections.

Note

Because uncompressed is an algorithm name that may or may not be
configured, it is possible to configure MySQL not to permit uncompressed
connections.

Examples:

• To configure which compression algorithms the server permits for incoming connections, set
the protocol_compression_algorithms system variable. By default, the server permits all
available algorithms. To configure that setting explicitly at startup, use these lines in the server
my.cnf file:

[mysqld]
protocol_compression_algorithms=zlib,zstd,uncompressed

To set and persist the protocol_compression_algorithms system variable to that value at
runtime, use this statement:

SET PERSIST protocol_compression_algorithms='zlib,zstd,uncompressed';

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it
to carry over to subsequent server restarts. To change the value for the running MySQL instance
without having it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST.
See Section 15.7.6.1, “SET Syntax for Variable Assignment”.

• To permit only incoming connections that use zstd compression, configure the server at startup like
this:

[mysqld]
protocol_compression_algorithms=zstd

Or, to make the change at runtime:

SET PERSIST protocol_compression_algorithms='zstd';

• To permit the mysql client to initiate zlib or uncompressed connections, invoke it like this:

mysql --compression-algorithms=zlib,uncompressed

• To configure replicas to connect to the source using zlib or zstd connections, with a compression
level of 7 for zstd connections, use a CHANGE REPLICATION SOURCE TO statement (from MySQL
8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23):

CHANGE REPLICATION SOURCE TO
 SOURCE_COMPRESSION_ALGORITHMS = 'zlib,zstd',
 SOURCE_ZSTD_COMPRESSION_LEVEL = 7;

This assumes that the replica_compressed_protocol or slave_compressed_protocol
system variable is disabled, for reasons described in Configuring Legacy Connection Compression.

409

Connection Compression Control

For successful connection setup, both sides of the connection must agree on a mutually permitted
compression algorithm. The algorithm-negotiation process attempts to use zlib, then zstd, then
uncompressed. If the two sides can find no common algorithm, the connection attempt fails.

Because both sides must agree on the compression algorithm, and because uncompressed is an
algorithm value that is not necessarily permitted, fallback to an uncompressed connection does not
necessarily occur. For example, if the server is configured to permit zstd and a client is configured to
permit zlib,uncompressed, the client cannot connect at all. In this case, no algorithm is common to
both sides, so connection attempts fail.

Configuration parameters that enable specifying the zstd compression level take an integer value
from 1 to 22, with larger values indicating increasing levels of compression. The default zstd
compression level is 3. The compression level setting has no effect on connections that do not use
zstd compression.

A configurable zstd compression level enables choosing between less network traffic and higher
CPU load versus more network traffic and lower CPU load. Higher compression levels reduce network
congestion but the additional CPU load may reduce server performance.

Configuring Legacy Connection Compression

Prior to MySQL 8.0.18, these configuration parameters are available for controlling connection
compression:

• Client programs support a --compress command-line option to specify use of compression for the
connection to the server.

• For programs that use the MySQL C API, enabling the MYSQL_OPT_COMPRESS option for the
mysql_options() function specifies use of compression for the connection to the server.

• For source/replica replication, enabling the system variable replica_compressed_protocol
(from MySQL 8.0.26) or slave_compressed_protocol (before MySQL 8.0.26) specifies use of
compression for replica connections to the source.

In each case, when use of compression is specified, the connection uses the zlib compression
algorithm if both sides permit it, with fallback to an uncompressed connection otherwise.

As of MySQL 8.0.18, the compression parameters just described become legacy parameters, due to
the additional compression parameters introduced for more control over connection compression that
are described in Configuring Connection Compression. An exception is MySQL Shell, where the --
compress command-line option remains current, and can be used to request compression without
selecting compression algorithms. For information on MySQL Shell's connection compression control,
see Using Compressed Connections.

The legacy compression parameters interact with the newer parameters and their semantics change as
follows:

• The meaning of the legacy --compress option depends on whether --compression-
algorithms is specified:

• When --compression-algorithms is not specified, --compress is equivalent to specifying a
client-side algorithm set of zlib,uncompressed.

• When --compression-algorithms is specified, --compress is equivalent to specifying
an algorithm set of zlib and the full client-side algorithm set is the union of zlib plus
the algorithms specified by --compression-algorithms. For example, with both --
compress and --compression-algorithms=zlib,zstd, the permitted-algorithm
set is zlib plus zlib,zstd; that is, zlib,zstd. With both --compress and --
compression-algorithms=zstd,uncompressed, the permitted-algorithm set is zlib plus
zstd,uncompressed; that is, zlib,zstd,uncompressed.

410

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysqlsh.html#option_mysqlsh_compress
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysqlsh.html#option_mysqlsh_compress
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-compressed-connections.html

Setting Environment Variables

• The same type of interaction occurs between the legacy MYSQL_OPT_COMPRESS option and the
MYSQL_OPT_COMPRESSION_ALGORITHMS option for the mysql_options() C API function.

• If the replica_compressed_protocol or slave_compressed_protocol system variable
is enabled, it takes precedence over MASTER_COMPRESSION_ALGORITHMS and connections
to the source use zlib compression if both source and replica permit that algorithm. If
replica_compressed_protocol or slave_compressed_protocol is disabled, the value of
MASTER_COMPRESSION_ALGORITHMS applies.

Note

The legacy compression-control parameters are deprecated as of MySQL
8.0.18; expect it to be removed in a future version of MySQL.

Monitoring Connection Compression

The Compression status variable is ON or OFF to indicate whether the current connection uses
compression.

The mysql client \status command displays a line that says Protocol: Compressed if
compression is enabled for the current connection. If that line is not present, the connection is
uncompressed.

As of 8.0.14, the MySQL Shell \status command displays a Compression: line that says
Disabled or Enabled to indicate whether the connection is compressed.

As of MySQL 8.0.18, these additional sources of information are available for monitoring connection
compression:

• To monitor compression in use for client connections, use the Compression_algorithm and
Compression_level status variables. For the current connection, their values indicate the
compression algorithm and compression level, respectively.

• To determine which compression algorithms the server is configured to permit for incoming
connections, check the protocol_compression_algorithms system variable.

• For source/replica replication connections, the configured compression algorithms and compression
level are available from multiple sources:

• The Performance Schema replication_connection_configuration table has
COMPRESSION_ALGORITHMS and ZSTD_COMPRESSION_LEVEL columns.

• The mysql.slave_master_info system table has Master_compression_algorithms and
Master_zstd_compression_level columns. If the master.info file exists, it contains lines
for those values as well.

6.2.9 Setting Environment Variables

Environment variables can be set at the command prompt to affect the current invocation of your
command processor, or set permanently to affect future invocations. To set a variable permanently,
you can set it in a startup file or by using the interface provided by your system for this purpose.
Consult the documentation for your command interpreter for specific details. Section 6.9, “Environment
Variables”, lists all environment variables that affect MySQL program operation.

To specify a value for an environment variable, use the syntax appropriate for your command
processor. For example, on Windows, you can set the USER variable to specify your MySQL account
name. To do so, use this syntax:

SET USER=your_name

411

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Server and Server-Startup Programs

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port number
using the MYSQL_TCP_PORT variable. Typical syntax (such as for sh, ksh, bash, zsh, and so on) is as
follows:

MYSQL_TCP_PORT=3306
export MYSQL_TCP_PORT

The first command sets the variable, and the export command exports the variable to the shell
environment so that its value becomes accessible to MySQL and other processes.

For csh and tcsh, use setenv to make the shell variable available to the environment:

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt to take effect
immediately, but the settings persist only until you log out. To have the settings take effect each time
you log in, use the interface provided by your system or place the appropriate command or commands
in a startup file that your command interpreter reads each time it starts.

On Windows, you can set environment variables using the System Control Panel (under Advanced).

On Unix, typical shell startup files are .bashrc or .bash_profile for bash, or .tcshrc for tcsh.

Suppose that your MySQL programs are installed in /usr/local/mysql/bin and that you want to
make it easy to invoke these programs. To do this, set the value of the PATH environment variable to
include that directory. For example, if your shell is bash, add the following line to your .bashrc file:

PATH=${PATH}:/usr/local/mysql/bin

bash uses different startup files for login and nonlogin shells, so you might want to add the setting to
.bashrc for login shells and to .bash_profile for nonlogin shells to make sure that PATH is set
regardless.

If your shell is tcsh, add the following line to your .tcshrc file:

setenv PATH ${PATH}:/usr/local/mysql/bin

If the appropriate startup file does not exist in your home directory, create it with a text editor.

After modifying your PATH setting, open a new console window on Windows or log in again on Unix so
that the setting goes into effect.

6.3 Server and Server-Startup Programs

This section describes mysqld, the MySQL server, and several programs that are used to start the
server.

6.3.1 mysqld — The MySQL Server

mysqld, also known as MySQL Server, is a single multithreaded program that does most of the work
in a MySQL installation. It does not spawn additional processes. MySQL Server manages access to
the MySQL data directory that contains databases and tables. The data directory is also the default
location for other information such as log files and status files.

Note

Some installation packages contain a debugging version of the server named
mysqld-debug. Invoke this version instead of mysqld for debugging support,
memory allocation checking, and trace file support (see Section 7.9.1.2,
“Creating Trace Files”).

412

mysqld_safe — MySQL Server Startup Script

When MySQL server starts, it listens for network connections from client programs and manages
access to databases on behalf of those clients.

The mysqld program has many options that can be specified at startup. For a complete list of options,
run this command:

mysqld --verbose --help

MySQL Server also has a set of system variables that affect its operation as it runs. System variables
can be set at server startup, and many of them can be changed at runtime to effect dynamic server
reconfiguration. MySQL Server also has a set of status variables that provide information about its
operation. You can monitor these status variables to access runtime performance characteristics.

For a full description of MySQL Server command options, system variables, and status variables, see
Section 7.1, “The MySQL Server”. For information about installing MySQL and setting up the initial
configuration, see Chapter 2, Installing MySQL.

6.3.2 mysqld_safe — MySQL Server Startup Script

mysqld_safe is the recommended way to start a mysqld server on Unix. mysqld_safe adds some
safety features such as restarting the server when an error occurs and logging runtime information to
an error log. A description of error logging is given later in this section.

Note

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown.
On these platforms, mysqld_safe is not installed because it is unnecessary.
For more information, see Section 2.5.9, “Managing MySQL Server with
systemd”.

One implication of the non-use of mysqld_safe on platforms that use systemd
for server management is that use of [mysqld_safe] or [safe_mysqld]
sections in option files is not supported and might lead to unexpected behavior.

mysqld_safe tries to start an executable named mysqld. To override the default behavior and
specify explicitly the name of the server you want to run, specify a --mysqld or --mysqld-version
option to mysqld_safe. You can also use --ledir to indicate the directory where mysqld_safe
should look for the server.

Many of the options to mysqld_safe are the same as the options to mysqld. See Section 7.1.7,
“Server Command Options”.

Options unknown to mysqld_safe are passed to mysqld if they are specified on the command line,
but ignored if they are specified in the [mysqld_safe] group of an option file. See Section 6.2.2.2,
“Using Option Files”.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections in
option files. For example, if you specify a [mysqld] section like this, mysqld_safe finds and uses
the --log-error option:

[mysqld]
log-error=error.log

For backward compatibility, mysqld_safe also reads [safe_mysqld] sections, but to be current you
should rename such sections to [mysqld_safe].

mysqld_safe accepts options on the command line and in option files, as described in the following
table. For information about option files used by MySQL programs, see Section 6.2.2.2, “Using Option
Files”.

413

mysqld_safe — MySQL Server Startup Script

Table 6.7 mysqld_safe Options

Option Name Description

--basedir Path to MySQL installation directory

--core-file-size Size of core file that mysqld should be able to
create

--datadir Path to data directory

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--help Display help message and exit

--ledir Path to directory where server is located

--log-error Write error log to named file

--malloc-lib Alternative malloc library to use for mysqld

--mysqld Name of server program to start (in ledir directory)

--mysqld-safe-log-timestamps Timestamp format for logging

--mysqld-version Suffix for server program name

--nice Use nice program to set server scheduling priority

--no-defaults Read no option files

--open-files-limit Number of files that mysqld should be able to
open

--pid-file Path name of server process ID file

--plugin-dir Directory where plugins are installed

--port Port number on which to listen for TCP/IP
connections

--skip-kill-mysqld Do not try to kill stray mysqld processes

--skip-syslog Do not write error messages to syslog; use error
log file

--socket Socket file on which to listen for Unix socket
connections

--syslog Write error messages to syslog

--syslog-tag Tag suffix for messages written to syslog

--timezone Set TZ time zone environment variable to named
value

--user Run mysqld as user having name user_name or
numeric user ID user_id

• --help

Command-Line Format --help

Display a help message and exit.

• --basedir=dir_name

Command-Line Format --basedir=dir_name

Type Directory name

414

mysqld_safe — MySQL Server Startup Script

The path to the MySQL installation directory.

• --core-file-size=size

Command-Line Format --core-file-size=size

Type String

The size of the core file that mysqld should be able to create. The option value is passed to ulimit
-c.

Note

The innodb_buffer_pool_in_core_file variable can be used to
reduce the size of core files on operating systems that support it. For more
information, see Section 17.8.3.7, “Excluding Buffer Pool Pages from Core
Files”.

• --datadir=dir_name

Command-Line Format --datadir=dir_name

Type Directory name

The path to the data directory.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file in addition to the usual option files. If the file does not exist or is otherwise
inaccessible, the server exits with an error. If file_name is not an absolute path name, it is
interpreted relative to the current directory. This must be the first option on the command line if it is
used.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, the server exits
with an error. If file_name is not an absolute path name, it is interpreted relative to the current
directory. This must be the first option on the command line if it is used.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --ledir=dir_name

Command-Line Format --ledir=dir_name

Type Directory name

415

mysqld_safe — MySQL Server Startup Script

If mysqld_safe cannot find the server, use this option to indicate the path name to the directory
where the server is located.

This option is accepted only on the command line, not in option files. On platforms that use systemd,
the value can be specified in the value of MYSQLD_OPTS. See Section 2.5.9, “Managing MySQL
Server with systemd”.

• --log-error=file_name

Command-Line Format --log-error=file_name

Type File name

Write the error log to the given file. See Section 7.4.2, “The Error Log”.

• --mysqld-safe-log-timestamps

Command-Line Format --mysqld-safe-log-timestamps=type

Type Enumeration

Default Value utc

Valid Values system

hyphen

legacy

This option controls the format for timestamps in log output produced by mysqld_safe. The
following list describes the permitted values. For any other value, mysqld_safe logs a warning and
uses UTC format.

• UTC, utc

ISO 8601 UTC format (same as --log_timestamps=UTC for the server). This is the default.

• SYSTEM, system

ISO 8601 local time format (same as --log_timestamps=SYSTEM for the server).

• HYPHEN, hyphen

YY-MM-DD h:mm:ss format, as in mysqld_safe for MySQL 5.6.

• LEGACY, legacy

YYMMDD hh:mm:ss format, as in mysqld_safe prior to MySQL 5.6.

• --malloc-lib=[lib_name]

Command-Line Format --malloc-lib=[lib-name]

416

mysqld_safe — MySQL Server Startup Script

Type String

The name of the library to use for memory allocation instead of the system malloc() library. The
option value must be one of the directories /usr/lib, /usr/lib64, /usr/lib/i386-linux-
gnu, or /usr/lib/x86_64-linux-gnu.

The --malloc-lib option works by modifying the LD_PRELOAD environment value to affect
dynamic linking to enable the loader to find the memory-allocation library when mysqld runs:

• If the option is not given, or is given without a value (--malloc-lib=), LD_PRELOAD is not
modified and no attempt is made to use tcmalloc.

• Prior to MySQL 8.0.21, if the option is given as --malloc-lib=tcmalloc, mysqld_safe looks
for a tcmalloc library in /usr/lib. If tmalloc is found, its path name is added to the beginning
of the LD_PRELOAD value for mysqld. If tcmalloc is not found, mysqld_safe aborts with an
error.

As of MySQL 8.0.21, tcmalloc is not a permitted value for the --malloc-lib option.

• If the option is given as --malloc-lib=/path/to/some/library, that full path is added to
the beginning of the LD_PRELOAD value. If the full path points to a nonexistent or unreadable file,
mysqld_safe aborts with an error.

• For cases where mysqld_safe adds a path name to LD_PRELOAD, it adds the path to the
beginning of any existing value the variable already has.

Note

On systems that manage the server using systemd, mysqld_safe is not
available. Instead, specify the allocation library by setting LD_PRELOAD in /
etc/sysconfig/mysql.

Linux users can use the libtcmalloc_minimal.so library on any platform for which a tcmalloc
package is installed in /usr/lib by adding these lines to the my.cnf file:

[mysqld_safe]
malloc-lib=tcmalloc

To use a specific tcmalloc library, specify its full path name. Example:

[mysqld_safe]
malloc-lib=/opt/lib/libtcmalloc_minimal.so

• --mysqld=prog_name

Command-Line Format --mysqld=file_name

Type File name

The name of the server program (in the ledir directory) that you want to start. This option is
needed if you use the MySQL binary distribution but have the data directory outside of the binary
distribution. If mysqld_safe cannot find the server, use the --ledir option to indicate the path
name to the directory where the server is located.

This option is accepted only on the command line, not in option files. On platforms that use systemd,
the value can be specified in the value of MYSQLD_OPTS. See Section 2.5.9, “Managing MySQL
Server with systemd”.

417

mysqld_safe — MySQL Server Startup Script

• --mysqld-version=suffix

Command-Line Format --mysqld-version=suffix

Type String

This option is similar to the --mysqld option, but you specify only the suffix for the server
program name. The base name is assumed to be mysqld. For example, if you use --mysqld-
version=debug, mysqld_safe starts the mysqld-debug program in the ledir directory. If the
argument to --mysqld-version is empty, mysqld_safe uses mysqld in the ledir directory.

This option is accepted only on the command line, not in option files. On platforms that use systemd,
the value can be specified in the value of MYSQLD_OPTS. See Section 2.5.9, “Managing MySQL
Server with systemd”.

• --nice=priority

Command-Line Format --nice=priority

Type Numeric

Use the nice program to set the server's scheduling priority to the given value.

• --no-defaults

Command-Line Format --no-defaults

Type String

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read. This must be the first option on
the command line if it is used.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --open-files-limit=count

Command-Line Format --open-files-limit=count

Type String

The number of files that mysqld should be able to open. The option value is passed to ulimit -n.

Note

You must start mysqld_safe as root for this to function properly.

• --pid-file=file_name

Command-Line Format --pid-file=file_name

Type File name

The path name that mysqld should use for its process ID file.

418

mysqld_safe — MySQL Server Startup Script

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The path name of the plugin directory.

• --port=port_num

Command-Line Format --port=number

Type Numeric

The port number that the server should use when listening for TCP/IP connections. The port number
must be 1024 or higher unless the server is started by the root operating system user.

• --skip-kill-mysqld

Command-Line Format --skip-kill-mysqld

Do not try to kill stray mysqld processes at startup. This option works only on Linux.

• --socket=path

Command-Line Format --socket=file_name

Type File name

The Unix socket file that the server should use when listening for local connections.

• --syslog, --skip-syslog

Command-Line Format --syslog

Deprecated Yes

Command-Line Format --skip-syslog

Deprecated Yes

--syslog causes error messages to be sent to syslog on systems that support the logger
program. --skip-syslog suppresses the use of syslog; messages are written to an error log file.

When syslog is used for error logging, the daemon.err facility/severity is used for all log
messages.

Using these options to control mysqld logging is deprecated. To write error log output to the system
log, use the instructions at Section 7.4.2.8, “Error Logging to the System Log”. To control the facility,
use the server log_syslog_facility system variable.

• --syslog-tag=tag

Command-Line Format --syslog-tag=tag

419

mysqld_safe — MySQL Server Startup Script

Deprecated Yes

For logging to syslog, messages from mysqld_safe and mysqld are written with identifiers of
mysqld_safe and mysqld, respectively. To specify a suffix for the identifiers, use --syslog-
tag=tag, which modifies the identifiers to be mysqld_safe-tag and mysqld-tag.

Using this option to control mysqld logging is deprecated. Use the server log_syslog_tag system
variable instead. See Section 7.4.2.8, “Error Logging to the System Log”.

• --timezone=timezone

Command-Line Format --timezone=timezone

Type String

Set the TZ time zone environment variable to the given option value. Consult your operating system
documentation for legal time zone specification formats.

• --user={user_name|user_id}

Command-Line Format --user={user_name|user_id}

Type String

Type Numeric

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

If you execute mysqld_safe with the --defaults-file or --defaults-extra-file option to
name an option file, the option must be the first one given on the command line or the option file is not
used. For example, this command does not use the named option file:

mysql> mysqld_safe --port=port_num --defaults-file=file_name

Instead, use the following command:

mysql> mysqld_safe --defaults-file=file_name --port=port_num

The mysqld_safe script is written so that it normally can start a server that was installed from either
a source or a binary distribution of MySQL, even though these types of distributions typically install the
server in slightly different locations. (See Section 2.1.5, “Installation Layouts”.) mysqld_safe expects
one of the following conditions to be true:

• The server and databases can be found relative to the working directory (the directory from which
mysqld_safe is invoked). For binary distributions, mysqld_safe looks under its working directory
for bin and data directories. For source distributions, it looks for libexec and var directories. This
condition should be met if you execute mysqld_safe from your MySQL installation directory (for
example, /usr/local/mysql for a binary distribution).

• If the server and databases cannot be found relative to the working directory, mysqld_safe
attempts to locate them by absolute path names. Typical locations are /usr/local/libexec
and /usr/local/var. The actual locations are determined from the values configured into the
distribution at the time it was built. They should be correct if MySQL is installed in the location
specified at configuration time.

Because mysqld_safe tries to find the server and databases relative to its own working directory,
you can install a binary distribution of MySQL anywhere, as long as you run mysqld_safe from the
MySQL installation directory:

420

mysql.server — MySQL Server Startup Script

cd mysql_installation_directory
bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, specify the --ledir
and --datadir options to indicate the directories in which the server and databases are located on
your system.

mysqld_safe tries to use the sleep and date system utilities to determine how many times per
second it has attempted to start. If these utilities are present and the attempted starts per second is
greater than 5, mysqld_safe waits 1 full second before starting again. This is intended to prevent
excessive CPU usage in the event of repeated failures. (Bug #11761530, Bug #54035)

When you use mysqld_safe to start mysqld, mysqld_safe arranges for error (and notice)
messages from itself and from mysqld to go to the same destination.

There are several mysqld_safe options for controlling the destination of these messages:

• --log-error=file_name: Write error messages to the named error file.

• --syslog: Write error messages to syslog on systems that support the logger program.

• --skip-syslog: Do not write error messages to syslog. Messages are written to the default error
log file (host_name.err in the data directory), or to a named file if the --log-error option is
given.

If none of these options is given, the default is --skip-syslog.

When mysqld_safe writes a message, notices go to the logging destination (syslog or the error log
file) and stdout. Errors go to the logging destination and stderr.

Note

Controlling mysqld logging from mysqld_safe is deprecated. Use the server's
native syslog support instead. For more information, see Section 7.4.2.8,
“Error Logging to the System Log”.

6.3.3 mysql.server — MySQL Server Startup Script

MySQL distributions on Unix and Unix-like system include a script named mysql.server, which starts
the MySQL server using mysqld_safe. It can be used on systems such as Linux and Solaris that use
System V-style run directories to start and stop system services. It is also used by the macOS Startup
Item for MySQL.

mysql.server is the script name as used within the MySQL source tree. The installed name might be
different (for example, mysqld or mysql). In the following discussion, adjust the name mysql.server
as appropriate for your system.

Note

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown.
On these platforms, mysql.server and mysqld_safe are not installed
because they are unnecessary. For more information, see Section 2.5.9,
“Managing MySQL Server with systemd”.

To start or stop the server manually using the mysql.server script, invoke it from the command line
with start or stop arguments:

mysql.server start
mysql.server stop

mysql.server changes location to the MySQL installation directory, then invokes mysqld_safe.
To run the server as some specific user, add an appropriate user option to the [mysqld] group of

421

mysql.server — MySQL Server Startup Script

the global /etc/my.cnf option file, as shown later in this section. (It is possible that you must edit
mysql.server if you've installed a binary distribution of MySQL in a nonstandard location. Modify it
to change location into the proper directory before it runs mysqld_safe. If you do this, your modified
version of mysql.server may be overwritten if you upgrade MySQL in the future; make a copy of
your edited version that you can reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server
manually by executing mysqladmin shutdown.

To start and stop MySQL automatically on your server, you must add start and stop commands to the
appropriate places in your /etc/rc* files:

• If you use the Linux server RPM package (MySQL-server-VERSION.rpm), or a native Linux
package installation, the mysql.server script may be installed in the /etc/init.d directory with
the name mysqld or mysql. See Section 2.5.4, “Installing MySQL on Linux Using RPM Packages
from Oracle”, for more information on the Linux RPM packages.

• If you install MySQL from a source distribution or using a binary distribution format that does not
install mysql.server automatically, you can install the script manually. It can be found in the
support-files directory under the MySQL installation directory or in a MySQL source tree. Copy
the script to the /etc/init.d directory with the name mysql and make it executable:

cp mysql.server /etc/init.d/mysql
chmod +x /etc/init.d/mysql

After installing the script, the commands needed to activate it to run at system startup depend on
your operating system. On Linux, you can use chkconfig:

chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the
mysql script:

chkconfig --level 345 mysql on

• On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. Install the
mysql.server script as /usr/local/etc/rc.d/mysql.server.sh to enable automatic
startup. The rc(8) manual page states that scripts in this directory are executed only if their base
name matches the *.sh shell file name pattern. Any other files or directories present within the
directory are silently ignored.

• As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /
etc/init.d/boot.local to start additional services on startup. To start up MySQL using this
method, append a command like the one following to the appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

• For other systems, consult your operating system documentation to see how to install startup scripts.

mysql.server reads options from the [mysql.server] and [mysqld] sections of option files. For
backward compatibility, it also reads [mysql_server] sections, but to be current you should rename
such sections to [mysql.server].

You can add options for mysql.server in a global /etc/my.cnf file. A typical my.cnf file might
look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql

[mysql.server]
basedir=/usr/local/mysql

422

mysqld_multi — Manage Multiple MySQL Servers

The mysql.server script supports the options shown in the following table. If specified, they must be
placed in an option file, not on the command line. mysql.server supports only start and stop as
command-line arguments.

Table 6.8 mysql.server Option-File Options

Option Name Description Type

basedir Path to MySQL installation
directory

Directory name

datadir Path to MySQL data directory Directory name

pid-file File in which server should write
its process ID

File name

service-startup-timeout How long to wait for server
startup

Integer

• basedir=dir_name

The path to the MySQL installation directory.

• datadir=dir_name

The path to the MySQL data directory.

• pid-file=file_name

The path name of the file in which the server should write its process ID. The server creates the file
in the data directory unless an absolute path name is given to specify a different directory.

If this option is not given, mysql.server uses a default value of host_name.pid. The PID file
value passed to mysqld_safe overrides any value specified in the [mysqld_safe] option file
group. Because mysql.server reads the [mysqld] option file group but not the [mysqld_safe]
group, you can ensure that mysqld_safe gets the same value when invoked from mysql.server
as when invoked manually by putting the same pid-file setting in both the [mysqld_safe] and
[mysqld] groups.

• service-startup-timeout=seconds

How long in seconds to wait for confirmation of server startup. If the server does not start within this
time, mysql.server exits with an error. The default value is 900. A value of 0 means not to wait at
all for startup. Negative values mean to wait forever (no timeout).

6.3.4 mysqld_multi — Manage Multiple MySQL Servers

mysqld_multi is designed to manage several mysqld processes that listen for connections on
different Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status.

Note

For some Linux platforms, MySQL installation from RPM or Debian packages
includes systemd support for managing MySQL server startup and shutdown.
On these platforms, mysqld_multi is not installed because it is unnecessary.
For information about using systemd to handle multiple MySQL instances, see
Section 2.5.9, “Managing MySQL Server with systemd”.

mysqld_multi searches for groups named [mysqldN] in my.cnf (or in the file named by the --
defaults-file option). N can be any positive integer. This number is referred to in the following
discussion as the option group number, or GNR. Group numbers distinguish option groups from one
another and are used as arguments to mysqld_multi to specify which servers you want to start,
stop, or obtain a status report for. Options listed in these groups are the same that you would use in the
[mysqld] group used for starting mysqld. (See, for example, Section 2.9.5, “Starting and Stopping

423

mysqld_multi — Manage Multiple MySQL Servers

MySQL Automatically”.) However, when using multiple servers, it is necessary that each one use its
own value for options such as the Unix socket file and TCP/IP port number. For more information on
which options must be unique per server in a multiple-server environment, see Section 7.8, “Running
Multiple MySQL Instances on One Machine”.

To invoke mysqld_multi, use the following syntax:

mysqld_multi [options] {start|stop|reload|report} [GNR[,GNR] ...]

start, stop, reload (stop and restart), and report indicate which operation to perform. You can
perform the designated operation for a single server or multiple servers, depending on the GNR list that
follows the option name. If there is no list, mysqld_multi performs the operation for all servers in the
option file.

Each GNR value represents an option group number or range of group numbers. The value should be
the number at the end of the group name in the option file. For example, the GNR for a group named
[mysqld17] is 17. To specify a range of numbers, separate the first and last numbers by a dash. The
GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups or group
ranges can be specified on the command line, separated by commas. There must be no whitespace
characters (spaces or tabs) in the GNR list; anything after a whitespace character is ignored.

This command starts a single server using option group [mysqld17]:

mysqld_multi start 17

This command stops several servers, using option groups [mysqld8] and [mysqld10] through
[mysqld13]:

mysqld_multi stop 8,10-13

For an example of how you might set up an option file, use this command:

mysqld_multi --example

mysqld_multi searches for option files as follows:

• With --no-defaults, no option files are read.

Command-Line Format --no-defaults

Type Boolean

Default Value false

• With --defaults-file=file_name, only the named file is read.

Command-Line Format --defaults-file=filename

Type File name

Default Value [none]

• Otherwise, option files in the standard list of locations are read, including any file named by the --
defaults-extra-file=file_name option, if one is given. (If the option is given multiple times,
the last value is used.)

Command-Line Format --defaults-extra-file=filename

Type File name

Default Value [none]

For additional information about these and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

424

mysqld_multi — Manage Multiple MySQL Servers

Option files read are searched for [mysqld_multi] and [mysqldN] option groups. The
[mysqld_multi] group can be used for options to mysqld_multi itself. [mysqldN] groups can be
used for options passed to specific mysqld instances.

The [mysqld] or [mysqld_safe] groups can be used for common options read by all instances
of mysqld or mysqld_safe. You can specify a --defaults-file=file_name option to use a
different configuration file for that instance, in which case the [mysqld] or [mysqld_safe] groups
from that file are used for that instance.

mysqld_multi supports the following options.

• --help

Command-Line Format --help

Type Boolean

Default Value false

Display a help message and exit.

• --example

Command-Line Format --example

Type Boolean

Default Value false

Display a sample option file.

• --log=file_name

Command-Line Format --log=path

Type File name

Default Value /var/log/mysqld_multi.log

Specify the name of the log file. If the file exists, log output is appended to it.

• --mysqladmin=prog_name

Command-Line Format --mysqladmin=file

Type File name

Default Value [none]

The mysqladmin binary to be used to stop servers.

• --mysqld=prog_name

Command-Line Format --mysqld=file

Type File name

Default Value [none]

The mysqld binary to be used. Note that you can specify mysqld_safe as the value for this option
also. If you use mysqld_safe to start the server, you can include the mysqld or ledir options

425

mysqld_multi — Manage Multiple MySQL Servers

in the corresponding [mysqldN] option group. These options indicate the name of the server that
mysqld_safe should start and the path name of the directory where the server is located. (See
the descriptions for these options in Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”.)
Example:

[mysqld38]
mysqld = mysqld-debug
ledir = /opt/local/mysql/libexec

• --no-log

Command-Line Format --no-log

Type Boolean

Default Value false

Print log information to stdout rather than to the log file. By default, output goes to the log file.

• --password=password

Command-Line Format --password=string

Type String

Default Value [none]

The password of the MySQL account to use when invoking mysqladmin. Note that the password
value is not optional for this option, unlike for other MySQL programs.

• --silent

Command-Line Format --silent

Type Boolean

Default Value false

Silent mode; disable warnings.

• --tcp-ip

Command-Line Format --tcp-ip

Type Boolean

Default Value false

Connect to each MySQL server through the TCP/IP port instead of the Unix socket file. (If a socket
file is missing, the server might still be running, but accessible only through the TCP/IP port.) By
default, connections are made using the Unix socket file. This option affects stop and report
operations.

• --user=user_name

Command-Line Format --user=name

Type String

Default Value root

The user name of the MySQL account to use when invoking mysqladmin.

426

mysqld_multi — Manage Multiple MySQL Servers

• --verbose

Command-Line Format --verbose

Type Boolean

Default Value false

Be more verbose.

• --version

Command-Line Format --version

Type Boolean

Default Value false

Display version information and exit.

Some notes about mysqld_multi:

• Most important: Before using mysqld_multi be sure that you understand the meanings of the
options that are passed to the mysqld servers and why you would want to have separate mysqld
processes. Beware of the dangers of using multiple mysqld servers with the same data directory.
Use separate data directories, unless you know what you are doing. Starting multiple servers with
the same data directory does not give you extra performance in a threaded system. See Section 7.8,
“Running Multiple MySQL Instances on One Machine”.

Important

Make sure that the data directory for each server is fully accessible to the
Unix account that the specific mysqld process is started as. Do not use
the Unix root account for this, unless you know what you are doing. See
Section 8.1.5, “How to Run MySQL as a Normal User”.

• Make sure that the MySQL account used for stopping the mysqld servers (with the mysqladmin
program) has the same user name and password for each server. Also, make sure that the account
has the SHUTDOWN privilege. If the servers that you want to manage have different user names or
passwords for the administrative accounts, you might want to create an account on each server that
has the same user name and password. For example, you might set up a common multi_admin
account by executing the following commands for each server:

$> mysql -u root -S /tmp/mysql.sock -p
Enter password:
mysql> CREATE USER 'multi_admin'@'localhost' IDENTIFIED BY 'multipass';
mysql> GRANT SHUTDOWN ON *.* TO 'multi_admin'@'localhost';

See Section 8.2, “Access Control and Account Management”. You have to do this for each mysqld
server. Change the connection parameters appropriately when connecting to each one. Note that
the host name part of the account name must permit you to connect as multi_admin from the host
where you want to run mysqld_multi.

• The Unix socket file and the TCP/IP port number must be different for every mysqld. (Alternatively, if
the host has multiple network addresses, you can set the bind_address system variable to cause
different servers to listen to different interfaces.)

• The --pid-file option is very important if you are using mysqld_safe to start mysqld (for
example, --mysqld=mysqld_safe) Every mysqld should have its own process ID file. The
advantage of using mysqld_safe instead of mysqld is that mysqld_safe monitors its mysqld
process and restarts it if the process terminates due to a signal sent using kill -9 or for other
reasons, such as a segmentation fault.

427

Installation-Related Programs

• You might want to use the --user option for mysqld, but to do this you need to run the
mysqld_multi script as the Unix superuser (root). Having the option in the option file doesn't
matter; you just get a warning if you are not the superuser and the mysqld processes are started
under your own Unix account.

The following example shows how you might set up an option file for use with mysqld_multi. The
order in which the mysqld programs are started or stopped depends on the order in which they appear
in the option file. Group numbers need not form an unbroken sequence. The first and fifth [mysqldN]
groups were intentionally omitted from the example to illustrate that you can have “gaps” in the option
file. This gives you more flexibility.

This is an example of a my.cnf file for mysqld_multi.
Usually this file is located in home dir ~/.my.cnf or /etc/my.cnf

[mysqld_multi]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user = multi_admin
password = my_password

[mysqld2]
socket = /tmp/mysql.sock2
port = 3307
pid-file = /usr/local/mysql/data2/hostname.pid2
datadir = /usr/local/mysql/data2
language = /usr/local/mysql/share/mysql/english
user = unix_user1

[mysqld3]
mysqld = /path/to/mysqld_safe
ledir = /path/to/mysqld-binary/
mysqladmin = /path/to/mysqladmin
socket = /tmp/mysql.sock3
port = 3308
pid-file = /usr/local/mysql/data3/hostname.pid3
datadir = /usr/local/mysql/data3
language = /usr/local/mysql/share/mysql/swedish
user = unix_user2

[mysqld4]
socket = /tmp/mysql.sock4
port = 3309
pid-file = /usr/local/mysql/data4/hostname.pid4
datadir = /usr/local/mysql/data4
language = /usr/local/mysql/share/mysql/estonia
user = unix_user3

[mysqld6]
socket = /tmp/mysql.sock6
port = 3311
pid-file = /usr/local/mysql/data6/hostname.pid6
datadir = /usr/local/mysql/data6
language = /usr/local/mysql/share/mysql/japanese
user = unix_user4

See Section 6.2.2.2, “Using Option Files”.

6.4 Installation-Related Programs

The programs in this section are used when installing or upgrading MySQL.

6.4.1 comp_err — Compile MySQL Error Message File

comp_err creates the errmsg.sys file that is used by mysqld to determine the error messages
to display for different error codes. comp_err normally is run automatically when MySQL is built. It
compiles the errmsg.sys file from text-format error information in MySQL source distributions:

428

comp_err — Compile MySQL Error Message File

• As of MySQL 8.0.19, the error information comes from the messages_to_error_log.txt and
messages_to_clients.txt files in the share directory.

For more information about defining error messages, see the comments within those files, along with
the errmsg_readme.txt file.

• Prior to MySQL 8.0.19, the error information comes from the errmsg-utf8.txt file in the sql/
share directory.

comp_err also generates the mysqld_error.h, mysqld_ername.h, and mysqld_errmsg.h
header files.

Invoke comp_err like this:

comp_err [options]

comp_err supports the following options.

• --help, -?

Command-Line Format --help

Type Boolean

Default Value false

Display a help message and exit.

• --charset=dir_name, -C dir_name

Command-Line Format --charset

Type String

Default Value ../share/charsets

The character set directory. The default is ../sql/share/charsets.

• --debug=debug_options, -# debug_options

Command-Line Format --debug=options

Type String

Default Value d:t:O,/tmp/comp_err.trace

Write a debugging log. A typical debug_options string is d:t:O,file_name. The default is
d:t:O,/tmp/comp_err.trace.

• --debug-info, -T

Command-Line Format --debug-info

Type Boolean

Default Value false

Print some debugging information when the program exits.

• --errmsg-file=file_name, -H file_name

Command-Line Format --errmsg-file=name

429

comp_err — Compile MySQL Error Message File

Type File name

Default Value mysqld_errmsg.h

The name of the error message file. The default is mysqld_errmsg.h. This option was added in
MySQL 8.0.18.

• --header-file=file_name, -H file_name

Command-Line Format --header-file=name

Type File name

Default Value mysqld_error.h

The name of the error header file. The default is mysqld_error.h.

• --in-file=file_name, -F file_name

Command-Line Format --in-file=path

Type File name

Default Value [none]

The name of the input file. The default is ../share/errmsg-utf8.txt.

This option was removed in MySQL 8.0.19 and replaced by the --in-file-errlog and --in-
file-toclient options.

• --in-file-errlog=file_name, -e file_name

Command-Line Format --in-file-errlog

Type File name

Default Value ../share/messages_to_error_log.txt

The name of the input file that defines error messages intended to be written to the error log. The
default is ../share/messages_to_error_log.txt.

This option was added in MySQL 8.0.19.

• --in-file-toclient=file_name, -c file_name

Command-Line Format --in-file-toclient=path

Type File name

Default Value ../share/messages_to_clients.txt

The name of the input file that defines error messages intended to be written to clients. The default is
../share/messages_to_clients.txt.

This option was added in MySQL 8.0.19.

• --name-file=file_name, -N file_name

Command-Line Format --name-file=name

Type File name

430

mysql_secure_installation — Improve MySQL Installation Security

Default Value mysqld_ername.h

The name of the error name file. The default is mysqld_ername.h.

• --out-dir=dir_name, -D dir_name

Command-Line Format --out-dir=path

Type String

Default Value ../share/

The name of the output base directory. The default is ../sql/share/.

• --out-file=file_name, -O file_name

Command-Line Format --out-file=name

Type File name

Default Value errmsg.sys

The name of the output file. The default is errmsg.sys.

• --version, -V

Command-Line Format --version

Type Boolean

Default Value false

Display version information and exit.

6.4.2 mysql_secure_installation — Improve MySQL Installation Security

This program enables you to improve the security of your MySQL installation in the following ways:

• You can set a password for root accounts.

• You can remove root accounts that are accessible from outside the local host.

• You can remove anonymous-user accounts.

• You can remove the test database (which by default can be accessed by all users, even
anonymous users), and privileges that permit anyone to access databases with names that start with
test_.

mysql_secure_installation helps you implement security recommendations similar to those
described at Section 2.9.4, “Securing the Initial MySQL Account”.

Normal usage is to connect to the local MySQL server; invoke mysql_secure_installation
without arguments:

mysql_secure_installation

When executed, mysql_secure_installation prompts you to determine which actions to perform.

The validate_password component can be used for password strength checking. If the plugin is
not installed, mysql_secure_installation prompts the user whether to install it. Any passwords
entered later are checked using the plugin if it is enabled.

431

mysql_secure_installation — Improve MySQL Installation Security

Most of the usual MySQL client options such as --host and --port can be used on the command
line and in option files. For example, to connect to the local server over IPv6 using port 3307, use this
command:

mysql_secure_installation --host=::1 --port=3307

mysql_secure_installation supports the following options, which can be specified on the
command line or in the [mysql_secure_installation] and [client] groups of an option file.
For information about option files used by MySQL programs, see Section 6.2.2.2, “Using Option Files”.

Table 6.9 mysql_secure_installation Options

Option Name Description Introduced Deprecated

--defaults-extra-file Read named option
file in addition to usual
option files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--help Display help message
and exit

--host Host on which MySQL
server is located

--no-defaults Read no option files

--password Accepted but always
ignored. Whenever
mysql_secure_installation
is invoked, the user
is prompted for a
password, regardless

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to
use

--socket Unix socket file or
Windows named pipe to
use

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

432

mysql_secure_installation — Improve MySQL Installation Security

Option Name Description Introduced Deprecated

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

--use-default Execute with no user
interactivity

--user MySQL user name to
use when connecting to
server

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

433

mysql_secure_installation — Improve MySQL Installation Security

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix
of str. For example, mysql_secure_installation normally reads the [client] and
[mysql_secure_installation] groups. If this option is given as --defaults-group-
suffix=_other, mysql_secure_installation also reads the [client_other] and
[mysql_secure_installation_other] groups.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --host=host_name, -h host_name

Command-Line Format --host

Connect to the MySQL server on the given host.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --password=password, -p password

Command-Line Format --password=password

Type String

Default Value [none]

This option is accepted but ignored. Whether or not this option is used,
mysql_secure_installation always prompts the user for a password.

434

mysql_secure_installation — Improve MySQL Installation Security

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 6.2.7, “Connection Transport Protocols”.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the connection must be a member of the
Windows group specified by the named_pipe_full_access_group system variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

435

mysql_secure_installation — Improve MySQL Installation Security

Deprecated 8.0.34

Type Enumeration

Default Value OFF

Valid Values OFF

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON
or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

436

mysql_ssl_rsa_setup — Create SSL/RSA Files

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

• --use-default

Command-Line Format --use-default

Type Boolean

Execute noninteractively. This option can be used for unattended installation operations.

• --user=user_name, -u user_name

Command-Line Format --user=user_name

Type String

The user name of the MySQL account to use for connecting to the server.

6.4.3 mysql_ssl_rsa_setup — Create SSL/RSA Files

Note

mysql_ssl_rsa_setup is deprecated as of MySQL 8.0.34. Instead, consider
using MySQL server to generate missing SSL and RSA files automatically at
startup (see Automatic SSL and RSA File Generation).

This program creates the SSL certificate and key files and RSA key-pair files required to support
secure connections using SSL and secure password exchange using RSA over unencrypted
connections, if those files are missing. mysql_ssl_rsa_setup can also be used to create new SSL
files if the existing ones have expired.

Note

mysql_ssl_rsa_setup uses the openssl command, so its use is contingent
on having OpenSSL installed on your machine.

Another way to generate SSL and RSA files, for MySQL distributions compiled
using OpenSSL, is to have the server generate them automatically. See
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

Important

mysql_ssl_rsa_setup helps lower the barrier to using SSL by making
it easier to generate the required files. However, certificates generated by
mysql_ssl_rsa_setup are self-signed, which is not very secure. After you
gain experience using the files created by mysql_ssl_rsa_setup, consider
obtaining a CA certificate from a registered certificate authority.

Invoke mysql_ssl_rsa_setup like this:

mysql_ssl_rsa_setup [options]

Typical options are --datadir to specify where to create the files, and --verbose to see the
openssl commands that mysql_ssl_rsa_setup executes.

437

mysql_ssl_rsa_setup — Create SSL/RSA Files

mysql_ssl_rsa_setup attempts to create SSL and RSA files using a default set of file names. It
works as follows:

1. mysql_ssl_rsa_setup checks for the openssl binary at the locations specified by the PATH
environment variable. If openssl is not found, mysql_ssl_rsa_setup does nothing. If openssl
is present, mysql_ssl_rsa_setup looks for default SSL and RSA files in the MySQL data
directory specified by the --datadir option, or the compiled-in data directory if the --datadir
option is not given.

2. mysql_ssl_rsa_setup checks the data directory for SSL files with the following names:

ca.pem
server-cert.pem
server-key.pem

3. If any of those files are present, mysql_ssl_rsa_setup creates no SSL files. Otherwise, it
invokes openssl to create them, plus some additional files:

ca.pem Self-signed CA certificate
ca-key.pem CA private key
server-cert.pem Server certificate
server-key.pem Server private key
client-cert.pem Client certificate
client-key.pem Client private key

These files enable secure client connections using SSL; see Section 8.3.1, “Configuring MySQL to
Use Encrypted Connections”.

4. mysql_ssl_rsa_setup checks the data directory for RSA files with the following names:

private_key.pem Private member of private/public key pair
public_key.pem Public member of private/public key pair

5. If any of these files are present, mysql_ssl_rsa_setup creates no RSA files. Otherwise,
it invokes openssl to create them. These files enable secure password exchange using
RSA over unencrypted connections for accounts authenticated by the sha256_password or
caching_sha2_password plugin; see Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”.

For information about the characteristics of files created by mysql_ssl_rsa_setup, see
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

At startup, the MySQL server automatically uses the SSL files created by mysql_ssl_rsa_setup to
enable SSL if no explicit SSL options are given other than --ssl (possibly along with ssl_cipher).
If you prefer to designate the files explicitly, invoke clients with the --ssl-ca, --ssl-cert, and --
ssl-key options at startup to name the ca.pem, server-cert.pem, and server-key.pem files,
respectively.

The server also automatically uses the RSA files created by mysql_ssl_rsa_setup to enable RSA if
no explicit RSA options are given.

If the server is SSL-enabled, clients use SSL by default for the connection. To specify certificate and
key files explicitly, use the --ssl-ca, --ssl-cert, and --ssl-key options to name the ca.pem,
client-cert.pem, and client-key.pem files, respectively. However, some additional client setup
may be required first because mysql_ssl_rsa_setup by default creates those files in the data
directory. The permissions for the data directory normally enable access only to the system account
that runs the MySQL server, so client programs cannot use files located there. To make the files
available, copy them to a directory that is readable (but not writable) by clients:

• For local clients, the MySQL installation directory can be used. For example, if the data directory is a
subdirectory of the installation directory and your current location is the data directory, you can copy
the files like this:

cp ca.pem client-cert.pem client-key.pem ..

438

mysql_ssl_rsa_setup — Create SSL/RSA Files

• For remote clients, distribute the files using a secure channel to ensure they are not tampered with
during transit.

If the SSL files used for a MySQL installation have expired, you can use mysql_ssl_rsa_setup to
create new ones:

1. Stop the server.

2. Rename or remove the existing SSL files. You may wish to make a backup of them first. (The RSA
files do not expire, so you need not remove them. mysql_ssl_rsa_setup can see that they exist
and does not overwrite them.)

3. Run mysql_ssl_rsa_setup with the --datadir option to specify where to create the new files.

4. Restart the server.

mysql_ssl_rsa_setup supports the following command-line options, which can be specified on
the command line or in the [mysql_ssl_rsa_setup] and [mysqld] groups of an option file. For
information about option files used by MySQL programs, see Section 6.2.2.2, “Using Option Files”.

Table 6.10 mysql_ssl_rsa_setup Options

Option Name Description

--datadir Path to data directory

--help Display help message and exit

--suffix Suffix for X.509 certificate Common Name
attribute

--uid Name of effective user to use for file permissions

--verbose Verbose mode

--version Display version information and exit

• --help, ?

Command-Line Format --help

Display a help message and exit.

• --datadir=dir_name

Command-Line Format --datadir=dir_name

Type Directory name

The path to the directory that mysql_ssl_rsa_setup should check for default SSL and RSA files
and in which it should create files if they are missing. The default is the compiled-in data directory.

• --suffix=str

Command-Line Format --suffix=str

Type String

The suffix for the Common Name attribute in X.509 certificates. The suffix value is limited to 17
characters. The default is based on the MySQL version number.

• --uid=name, -v
439

mysql_tzinfo_to_sql — Load the Time Zone Tables

Command-Line Format --uid=name

The name of the user who should be the owner of any created files. The value is a user name, not
a numeric user ID. In the absence of this option, files created by mysql_ssl_rsa_setup are
owned by the user who executes it. This option is valid only if you execute the program as root on a
system that supports the chown() system call.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Produce more output about what the program does. For example, the program
shows the openssl commands it runs, and produces output to indicate whether it skips SSL or RSA
file creation because some default file already exists.

• --version, -V

Command-Line Format --version

Display version information and exit.

6.4.4 mysql_tzinfo_to_sql — Load the Time Zone Tables

The mysql_tzinfo_to_sql program loads the time zone tables in the mysql database. It is used
on systems that have a zoneinfo database (the set of files describing time zones). Examples of such
systems are Linux, FreeBSD, Solaris, and macOS. One likely location for these files is the /usr/
share/zoneinfo directory (/usr/share/lib/zoneinfo on Solaris). If your system does not have
a zoneinfo database, you can use the downloadable package described in Section 7.1.15, “MySQL
Server Time Zone Support”.

mysql_tzinfo_to_sql can be invoked several ways:

mysql_tzinfo_to_sql tz_dir
mysql_tzinfo_to_sql tz_file tz_name
mysql_tzinfo_to_sql --leap tz_file

For the first invocation syntax, pass the zoneinfo directory path name to mysql_tzinfo_to_sql and
send the output into the mysql program. For example:

mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from
them. mysql processes those statements to load the time zone tables.

The second syntax causes mysql_tzinfo_to_sql to load a single time zone file tz_file that
corresponds to a time zone name tz_name:

mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

If your time zone needs to account for leap seconds, invoke mysql_tzinfo_to_sql using the third
syntax, which initializes the leap second information. tz_file is the name of your time zone file:

mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to
use any previously cached time zone data.

6.4.5 mysql_upgrade — Check and Upgrade MySQL Tables

440

mysql_upgrade — Check and Upgrade MySQL Tables

Note

As of MySQL 8.0.16, the MySQL server performs the upgrade tasks previously
handled by mysql_upgrade (for details, see Section 3.4, “What the MySQL
Upgrade Process Upgrades”). Consequently, mysql_upgrade is unneeded
and is deprecated as of that version; expect it to be removed in a future version
of MySQL. Because mysql_upgrade no longer performs upgrade tasks, it
exits with status 0 unconditionally.

Each time you upgrade MySQL, you should execute mysql_upgrade, which looks for incompatibilities
with the upgraded MySQL server:

• It upgrades the system tables in the mysql schema so that you can take advantage of new
privileges or capabilities that might have been added.

• It upgrades the Performance Schema, INFORMATION_SCHEMA, and sys schema.

• It examines user schemas.

If mysql_upgrade finds that a table has a possible incompatibility, it performs a table check and,
if problems are found, attempts a table repair. If the table cannot be repaired, see Section 3.14,
“Rebuilding or Repairing Tables or Indexes” for manual table repair strategies.

mysql_upgrade communicates directly with the MySQL server, sending it the SQL statements
required to perform an upgrade.

Caution

You should always back up your current MySQL installation before performing
an upgrade. See Section 9.2, “Database Backup Methods”.

Some upgrade incompatibilities may require special handling before upgrading
your MySQL installation and running mysql_upgrade. See Chapter 3,
Upgrading MySQL, for instructions on determining whether any such
incompatibilities apply to your installation and how to handle them.

Use mysql_upgrade like this:

1. Ensure that the server is running.

2. Invoke mysql_upgrade to upgrade the system tables in the mysql schema and check and repair
tables in other schemas:

mysql_upgrade [options]

3. Stop the server and restart it so that any system table changes take effect.

If you have multiple MySQL server instances to upgrade, invoke mysql_upgrade with connection
parameters appropriate for connecting to each of the desired servers. For example, with servers
running on the local host on parts 3306 through 3308, upgrade each of them by connecting to the
appropriate port:

mysql_upgrade --protocol=tcp -P 3306 [other_options]
mysql_upgrade --protocol=tcp -P 3307 [other_options]
mysql_upgrade --protocol=tcp -P 3308 [other_options]

For local host connections on Unix, the --protocol=tcp option forces a connection using TCP/IP
rather than the Unix socket file.

By default, mysql_upgrade runs as the MySQL root user. If the root password is expired when you
run mysql_upgrade, it displays a message that your password is expired and that mysql_upgrade
failed as a result. To correct this, reset the root password to unexpire it and run mysql_upgrade
again. First, connect to the server as root:

441

mysql_upgrade — Check and Upgrade MySQL Tables

$> mysql -u root -p
Enter password: **** <- enter root password here

Reset the password using ALTER USER:

mysql> ALTER USER USER() IDENTIFIED BY 'root-password';

Then exit mysql and run mysql_upgrade again:

$> mysql_upgrade [options]

Note

If you run the server with the disabled_storage_engines system variable
set to disable certain storage engines (for example, MyISAM), mysql_upgrade
might fail with an error like this:

mysql_upgrade: [ERROR] 3161: Storage engine MyISAM is disabled
(Table creation is disallowed).

To handle this, restart the server with disabled_storage_engines disabled.
Then you should be able to run mysql_upgrade successfully. After that,
restart the server with disabled_storage_engines set to its original value.

Unless invoked with the --upgrade-system-tables option, mysql_upgrade processes all
tables in all user schemas as necessary. Table checking might take a long time to complete. Each
table is locked and therefore unavailable to other sessions while it is being processed. Check and
repair operations can be time-consuming, particularly for large tables. Table checking uses the FOR
UPGRADE option of the CHECK TABLE statement. For details about what this option entails, see
Section 15.7.3.2, “CHECK TABLE Statement”.

mysql_upgrade marks all checked and repaired tables with the current MySQL version number. This
ensures that the next time you run mysql_upgrade with the same version of the server, it can be
determined whether there is any need to check or repair a given table again.

mysql_upgrade saves the MySQL version number in a file named mysql_upgrade_info in the
data directory. This is used to quickly check whether all tables have been checked for this release so
that table-checking can be skipped. To ignore this file and perform the check regardless, use the --
force option.

Note

The mysql_upgrade_info file is deprecated; expect it to be removed in a
future version of MySQL.

mysql_upgrade checks mysql.user system table rows and, for any row with an empty plugin
column, sets that column to 'mysql_native_password' if the credentials use a hash format
compatible with that plugin. Rows with a pre-4.1 password hash must be upgraded manually.

mysql_upgrade does not upgrade the contents of the time zone tables or help tables. For upgrade
instructions, see Section 7.1.15, “MySQL Server Time Zone Support”, and Section 7.1.17, “Server-Side
Help Support”.

Unless invoked with the --skip-sys-schema option, mysql_upgrade installs the sys schema if it
is not installed, and upgrades it to the current version otherwise. An error occurs if a sys schema exists
but has no version view, on the assumption that its absence indicates a user-created schema:

A sys schema exists with no sys.version view. If
you have a user created sys schema, this must be renamed for the
upgrade to succeed.

To upgrade in this case, remove or rename the existing sys schema first.

442

mysql_upgrade — Check and Upgrade MySQL Tables

mysql_upgrade supports the following options, which can be specified on the command line or in the
[mysql_upgrade] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 6.2.2.2, “Using Option Files”.

Table 6.11 mysql_upgrade Options

Option Name Description Introduced Deprecated

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets are
installed

--compress Compress all
information sent
between client and
server

8.0.18

--compression-
algorithms

Permitted compression
algorithms for
connections to server

8.0.18

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default
character set

--defaults-extra-file Read named option
file in addition to usual
option files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--force Force execution even
if mysql_upgrade has
already been executed
for current MySQL
version

--get-server-public-key Request RSA public key
from server

--help Display help message
and exit

--host Host on which MySQL
server is located

--login-path Read login path options
from .mylogin.cnf

443

mysql_upgrade — Check and Upgrade MySQL Tables

Option Name Description Introduced Deprecated

--max-allowed-packet Maximum packet length
to send to or receive
from server

--net-buffer-length Buffer size for
TCP/IP and socket
communication

--no-defaults Read no option files

--password Password to use when
connecting to server

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to
use

--server-public-key-path Path name to file
containing RSA public
key

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--skip-sys-schema Do not install or upgrade
sys schema

--socket Unix socket file or
Windows named pipe to
use

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

444

mysql_upgrade — Check and Upgrade MySQL Tables

Option Name Description Introduced Deprecated

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

--upgrade-system-tables Update only system
tables, not user
schemas

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version-check Check for proper server
version

--write-binlog Write all statements to
binary log

--zstd-compression-level Compression level
for connections to
server that use zstd
compression

8.0.18

• --help

Command-Line Format --help

Display a short help message and exit.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Type Directory name

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

445

mysql_upgrade — Check and Upgrade MySQL Tables

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Deprecated 8.0.18

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 6.2.8,
“Connection Compression Control”.

As of MySQL 8.0.18, this option is deprecated. Expect it to be removed in a future version of MySQL.
See Configuring Legacy Connection Compression.

• --compression-algorithms=value

Command-Line Format --compression-algorithms=value

Introduced 8.0.18

Type Set

Default Value uncompressed

Valid Values zlib

zstd

uncompressed

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the protocol_compression_algorithms system variable. The default value is
uncompressed.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=#]

Type String

Default Value d:t:O,/tmp/mysql_upgrade.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:O,/tmp/mysql_upgrade.trace.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Print some debugging information when the program exits.

• --debug-info, -T

Command-Line Format --debug-info

446

mysql_upgrade — Check and Upgrade MySQL Tables

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 8.2.17, “Pluggable
Authentication”.

• --default-character-set=charset_name

Command-Line Format --default-character-set=name

Type String

Use charset_name as the default character set. See Section 12.15, “Character Set Configuration”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysql_upgrade normally reads the [client] and [mysql_upgrade] groups. If
this option is given as --defaults-group-suffix=_other, mysql_upgrade also reads the
[client_other] and [mysql_upgrade_other] groups.

447

mysql_upgrade — Check and Upgrade MySQL Tables

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --force

Command-Line Format --force

Type Boolean

Ignore the mysql_upgrade_info file and force execution even if mysql_upgrade has already
been executed for the current version of MySQL.

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This
option applies to clients that authenticate with the caching_sha2_password authentication
plugin. For that plugin, the server does not send the public key unless requested. This option
is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --host=host_name, -h host_name

Command-Line Format --host=name

Type String

Connect to the MySQL server on the given host.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --max-allowed-packet=value

Command-Line Format --max-allowed-packet=value

Type Integer

448

mysql_upgrade — Check and Upgrade MySQL Tables

Default Value 25165824

Minimum Value 4096

Maximum Value 2147483648

The maximum size of the buffer for client/server communication. The default value is 24MB. The
minimum and maximum values are 4KB and 2GB.

• --net-buffer-length=value

Command-Line Format --net-buffer-length=value

Type Integer

Default Value 1047552

Minimum Value 4096

Maximum Value 16777216

The initial size of the buffer for client/server communication. The default value is 1MB − 1KB. The
minimum and maximum values are 4KB and 16MB.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --password[=password], -p[password]

Command-Line Format --password[=name]

Type String

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, mysql_upgrade prompts for one. If given, there must be no space between
--password= or -p and the password following it. If no password option is specified, the default is
to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysql_upgrade should not prompt for one,
use the --skip-password option.

• --pipe, -W

Command-Line Format --pipe

449

mysql_upgrade — Check and Upgrade MySQL Tables

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is
used to specify an authentication plugin but mysql_upgrade does not find it. See Section 8.2.17,
“Pluggable Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=#

Type Numeric

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=name

Type String

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 6.2.7, “Connection Transport Protocols”.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-

450

mysql_upgrade — Check and Upgrade MySQL Tables

based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled
to support shared-memory connections.

• --skip-sys-schema

Command-Line Format --skip-sys-schema

Type Boolean

Default Value FALSE

By default, mysql_upgrade installs the sys schema if it is not installed, and upgrades it to the
current version otherwise. The --skip-sys-schema option suppresses this behavior.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

451

mysql_upgrade — Check and Upgrade MySQL Tables

Default Value OFF

Valid Values OFF

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON
or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

452

mysql_upgrade — Check and Upgrade MySQL Tables

• --upgrade-system-tables, -s

Command-Line Format --upgrade-system-tables

Type Boolean

Upgrade only the system tables in the mysql schema, do not upgrade user schemas.

• --user=user_name, -u user_name

Command-Line Format --user=name

Type String

The user name of the MySQL account to use for connecting to the server. The default user name is
root.

• --verbose

Command-Line Format --verbose

Type Boolean

Verbose mode. Print more information about what the program does.

• --version-check, -k

Command-Line Format --version-check

Type Boolean

Check the version of the server to which mysql_upgrade is connecting to verify that it is the same
as the version for which mysql_upgrade was built. If not, mysql_upgrade exits. This option is
enabled by default; to disable the check, use --skip-version-check.

• --write-binlog

Command-Line Format --write-binlog

Type Boolean

Default Value OFF

By default, binary logging by mysql_upgrade is disabled. Invoke the program with --write-
binlog if you want its actions to be written to the binary log.

When the server is running with global transaction identifiers (GTIDs) enabled (gtid_mode=ON), do
not enable binary logging by mysql_upgrade.

• --zstd-compression-level=level

Command-Line Format --zstd-compression-level=#

Introduced 8.0.18

Type Integer

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.

453

Client Programs

The default zstd compression level is 3. The compression level setting has no effect on connections
that do not use zstd compression.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

6.5 Client Programs
This section describes client programs that connect to the MySQL server.

6.5.1 mysql — The MySQL Command-Line Client

mysql is a simple SQL shell with input line editing capabilities. It supports interactive and
noninteractive use. When used interactively, query results are presented in an ASCII-table format.
When used noninteractively (for example, as a filter), the result is presented in tab-separated format.
The output format can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the --quick option.
This forces mysql to retrieve results from the server a row at a time rather than retrieving the
entire result set and buffering it in memory before displaying it. This is done by returning the
result set using the mysql_use_result() C API function in the client/server library rather than
mysql_store_result().

Note

Alternatively, MySQL Shell offers access to the X DevAPI. For details, see
MySQL Shell 8.0.

Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:

mysql db_name

Or:

mysql --user=user_name --password db_name

In this case, you'll need to enter your password in response to the prompt that mysql displays:

Enter password: your_password

Then type an SQL statement, end it with ;, \g, or \G and press Enter.

Typing Control+C interrupts the current statement if there is one, or cancels any partial input line
otherwise.

You can execute SQL statements in a script file (batch file) like this:

mysql db_name < script.sql > output.tab

On Unix, the mysql client logs statements executed interactively to a history file. See Section 6.5.1.3,
“mysql Client Logging”.

6.5.1.1 mysql Client Options

mysql supports the following options, which can be specified on the command line or in the [mysql]
and [client] groups of an option file. For information about option files used by MySQL programs,
see Section 6.2.2.2, “Using Option Files”.

Table 6.12 mysql Client Options

Option Name Description Introduced Deprecated

--auto-rehash Enable automatic
rehashing

454

https://dev.mysql.com/doc/c-api/8.0/en/mysql-use-result.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-store-result.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/

mysql — The MySQL Command-Line Client

Option Name Description Introduced Deprecated

--auto-vertical-output Enable automatic
vertical result set display

--batch Do not use history file

--binary-as-hex Display binary values in
hexadecimal notation

--binary-mode Disable \r\n - to -
\n translation and
treatment of \0 as end-
of-query

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets are
installed

--column-names Write column names in
results

--column-type-info Display result set
metadata

--commands Enable or disable
processing of local
mysql client commands

8.0.43

--comments Whether to retain or
strip comments in
statements sent to the
server

--compress Compress all
information sent
between client and
server

8.0.18

--compression-
algorithms

Permitted compression
algorithms for
connections to server

8.0.18

--connect-expired-
password

Indicate to server
that client can handle
expired-password
sandbox mode

--connect-timeout Number of seconds
before connection
timeout

--database The database to use

--debug Write debugging log;
supported only if MySQL
was built with debugging
support

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,

455

mysql — The MySQL Command-Line Client

Option Name Description Introduced Deprecated
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default
character set

--defaults-extra-file Read named option
file in addition to usual
option files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--delimiter Set the statement
delimiter

--dns-srv-name Use DNS SRV lookup
for host information

8.0.22

--enable-cleartext-plugin Enable cleartext
authentication plugin

--execute Execute the statement
and quit

--fido-register-factor Multifactor
authentication factors for
which registration must
be done

8.0.27 8.0.35

--force Continue even if an SQL
error occurs

--get-server-public-key Request RSA public key
from server

--help Display help message
and exit

--histignore Patterns specifying
which statements to
ignore for logging

--host Host on which MySQL
server is located

--html Produce HTML output

--ignore-spaces Ignore spaces after
function names

--init-command SQL statement to
execute after connecting

--line-numbers Write line numbers for
errors

--load-data-local-dir Directory for files named
in LOAD DATA LOCAL
statements

8.0.21

456

mysql — The MySQL Command-Line Client

Option Name Description Introduced Deprecated

--local-infile Enable or disable for
LOCAL capability for
LOAD DATA

--login-path Read login path options
from .mylogin.cnf

--max-allowed-packet Maximum packet length
to send to or receive
from server

--max-join-size The automatic limit for
rows in a join when
using --safe-updates

--named-commands Enable named mysql
commands

--net-buffer-length Buffer size for
TCP/IP and socket
communication

--network-namespace Specify network
namespace

8.0.22

--no-auto-rehash Disable automatic
rehashing

--no-beep Do not beep when
errors occur

--no-defaults Read no option files

--oci-config-file Defines an alternate
location for the Oracle
Cloud Infrastructure CLI
configuration file.

8.0.27

--one-database Ignore statements
except those for the
default database named
on the command line

--pager Use the given command
for paging query output

--password Password to use when
connecting to server

--password1 First multifactor
authentication password
to use when connecting
to server

8.0.27

--password2 Second multifactor
authentication password
to use when connecting
to server

8.0.27

--password3 Third multifactor
authentication password
to use when connecting
to server

8.0.27

--pipe Connect to server using
named pipe (Windows
only)

457

mysql — The MySQL Command-Line Client

Option Name Description Introduced Deprecated

--plugin-authentication-
kerberos-client-mode

Permit GSSAPI
pluggable authentication
through the MIT
Kerberos library on
Windows

8.0.32

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--prompt Set the prompt to the
specified format

--protocol Transport protocol to
use

--quick Do not cache each
query result

--raw Write column values
without escape
conversion

--reconnect If the connection to
the server is lost,
automatically try to
reconnect

--safe-updates, --i-am-a-
dummy

Allow only UPDATE and
DELETE statements
that specify key values

--select-limit The automatic limit for
SELECT statements
when using --safe-
updates

--server-public-key-path Path name to file
containing RSA public
key

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--show-warnings Show warnings after
each statement if there
are any

--sigint-ignore Ignore SIGINT signals
(typically the result of
typing Control+C)

--silent Silent mode

--skip-auto-rehash Disable automatic
rehashing

--skip-column-names Do not write column
names in results

458

mysql — The MySQL Command-Line Client

Option Name Description Introduced Deprecated

--skip-line-numbers Skip line numbers for
errors

--skip-named-
commands

Disable named mysql
commands

--skip-pager Disable paging

--skip-reconnect Disable reconnecting

--skip-system-command Disable system (\!)
command

8.0.40

--socket Unix socket file or
Windows named pipe to
use

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--syslog Log interactive
statements to syslog

--system-command Enable or disable
system (\!) command

8.0.40

--table Display output in tabular
format

--tee Append a copy of output
to named file

459

mysql — The MySQL Command-Line Client

Option Name Description Introduced Deprecated

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

--unbuffered Flush the buffer after
each query

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

--vertical Print query output rows
vertically (one line per
column value)

--wait If the connection cannot
be established, wait and
retry instead of aborting

--xml Produce XML output

--zstd-compression-level Compression level
for connections to
server that use zstd
compression

8.0.18

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --auto-rehash

Command-Line Format --auto-rehash

Disabled by skip-auto-rehash

Enable automatic rehashing. This option is on by default, which enables database, table, and column
name completion. Use --disable-auto-rehash to disable rehashing. That causes mysql to
start faster, but you must issue the rehash command or its \# shortcut if you want to use name
completion.

To complete a name, enter the first part and press Tab. If the name is unambiguous, mysql
completes it. Otherwise, you can press Tab again to see the possible names that begin with what
you have typed so far. Completion does not occur if there is no default database.

Note

This feature requires a MySQL client that is compiled with the readline
library. Typically, the readline library is not available on Windows.

• --auto-vertical-output

460

mysql — The MySQL Command-Line Client

Command-Line Format --auto-vertical-output

Cause result sets to be displayed vertically if they are too wide for the current window, and using
normal tabular format otherwise. (This applies to statements terminated by ; or \G.)

• --batch, -B

Command-Line Format --batch

Print results using tab as the column separator, with each row on a new line. With this option, mysql
does not use the history file.

Batch mode results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

• --binary-as-hex

Command-Line Format --binary-as-hex

Type Boolean

Default Value (≥ 8.0.19) FALSE in noninteractive mode

Default Value (≤ 8.0.18) FALSE

When this option is given, mysql displays binary data using hexadecimal notation (0xvalue). This
occurs whether the overall output display format is tabular, vertical, HTML, or XML.

--binary-as-hex when enabled affects display of all binary strings, including those returned by
functions such as CHAR() and UNHEX(). The following example demonstrates this using the ASCII
code for A (65 decimal, 41 hexadecimal):

• --binary-as-hex disabled:

mysql> SELECT CHAR(0x41), UNHEX('41');
+------------+-------------+
| CHAR(0x41) | UNHEX('41') |
+------------+-------------+
| A | A |
+------------+-------------+

• --binary-as-hex enabled:

mysql> SELECT CHAR(0x41), UNHEX('41');
+------------------------+--------------------------+
| CHAR(0x41) | UNHEX('41') |
+------------------------+--------------------------+
| 0x41 | 0x41 |
+------------------------+--------------------------+

To write a binary string expression so that it displays as a character string regardless of whether --
binary-as-hex is enabled, use these techniques:

• The CHAR() function has a USING charset clause:

mysql> SELECT CHAR(0x41 USING utf8mb4);
+--------------------------+
| CHAR(0x41 USING utf8mb4) |
+--------------------------+
| A |
+--------------------------+

461

mysql — The MySQL Command-Line Client

• More generally, use CONVERT() to convert an expression to a given character set:

mysql> SELECT CONVERT(UNHEX('41') USING utf8mb4);
+------------------------------------+
| CONVERT(UNHEX('41') USING utf8mb4) |
+------------------------------------+
| A |
+------------------------------------+

As of MySQL 8.0.19, when mysql operates in interactive mode, this option is enabled by default.
In addition, output from the status (or \s) command includes this line when the option is enabled
implicitly or explicitly:

Binary data as: Hexadecimal

To disable hexadecimal notation, use --skip-binary-as-hex

• --binary-mode

Command-Line Format --binary-mode

This option helps when processing mysqlbinlog output that may contain BLOB values. By default,
mysql translates \r\n in statement strings to \n and interprets \0 as the statement terminator.
--binary-mode disables both features. It also disables all mysql commands except charset
and delimiter in noninteractive mode (for input piped to mysql or loaded using the source
command).

(MySQL 8.0.43 and later:) --binary-mode, when enabled, causes the server to disregard any
setting for --commands .

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Type Directory name

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

• --column-names

Command-Line Format --column-names

Write column names in results.

• --column-type-info

Command-Line Format --column-type-info

Display result set metadata. This information corresponds to the contents of C API MYSQL_FIELD
data structures. See C API Basic Data Structures.

462

https://dev.mysql.com/doc/c-api/8.0/en/c-api-data-structures.html

mysql — The MySQL Command-Line Client

• --commands

Command-Line Format --commands

Introduced 8.0.43

Type Boolean

463

mysql — The MySQL Command-Line Client

Default Value TRUE

Whether to enable or disable processing of local mysql client commands. Setting this option to
FALSE disables such processing, and has the effects listed here:

• The following mysql client commands are disabled:

• charset (/C remains enabled)

• clear

• connect

• edit

• ego

• exit

• go

• help

• nopager

• notee

• nowarning

• pager

• print

• prompt

• query_attributes

• quit

• rehash

• resetconnection

• ssl_session_data_print

• source

• status

• system

• tee

• \u (use is passed to the server)

• warnings

• The \C and delimiter commands remain enabled.

• The --system-command option is ignored, and has no effect.

464

mysql — The MySQL Command-Line Client

This option has no effect when --binary-mode is enabled.

When --commands is enabled, it is possible to disable (only) the system command using the --
system-command option.

This option was added in MySQL 8.0.43.

• --comments, -c

Command-Line Format --comments

Type Boolean

Default Value FALSE

Whether to strip or preserve comments in statements sent to the server. The default is --skip-
comments (strip comments), enable with --comments (preserve comments).

Note

The mysql client always passes optimizer hints to the server, regardless of
whether this option is given.

Comment stripping is deprecated. Expect this feature and the options to
control it to be removed in a future MySQL release.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Deprecated 8.0.18

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 6.2.8,
“Connection Compression Control”.

As of MySQL 8.0.18, this option is deprecated. Expect it to be removed in a future version of MySQL.
See Configuring Legacy Connection Compression.

• --compression-algorithms=value

Command-Line Format --compression-algorithms=value

Introduced 8.0.18

Type Set

Default Value uncompressed

Valid Values zlib

zstd

465

mysql — The MySQL Command-Line Client

uncompressed

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the protocol_compression_algorithms system variable. The default value is
uncompressed.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

• --connect-expired-password

Command-Line Format --connect-expired-password

Indicate to the server that the client can handle sandbox mode if the account used to connect has an
expired password. This can be useful for noninteractive invocations of mysql because normally the
server disconnects noninteractive clients that attempt to connect using an account with an expired
password. (See Section 8.2.16, “Server Handling of Expired Passwords”.)

• --connect-timeout=value

Command-Line Format --connect-timeout=value

Type Numeric

Default Value 0

The number of seconds before connection timeout. (Default value is 0.)

• --database=db_name, -D db_name

Command-Line Format --database=dbname

Type String

The database to use. This is useful primarily in an option file.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o,/tmp/mysql.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysql.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

466

mysql — The MySQL Command-Line Client

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-info, -T

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 8.2.17, “Pluggable
Authentication”.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Use charset_name as the default character set for the client and connection.

This option can be useful if the operating system uses one character set and the mysql client by
default uses another. In this case, output may be formatted incorrectly. You can usually fix such
issues by using this option to force the client to use the system character set instead.

For more information, see Section 12.4, “Connection Character Sets and Collations”, and
Section 12.15, “Character Set Configuration”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

467

mysql — The MySQL Command-Line Client

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of
str. For example, mysql normally reads the [client] and [mysql] groups. If this option is
given as --defaults-group-suffix=_other, mysql also reads the [client_other] and
[mysql_other] groups.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --delimiter=str

Command-Line Format --delimiter=str

Type String

Default Value ;

Set the statement delimiter. The default is the semicolon character (;).

• --disable-named-commands

Disable named commands. Use the * form only, or use named commands only at the beginning
of a line ending with a semicolon (;). mysql starts with this option enabled by default. However,
even with this option, long-format commands still work from the first line. See Section 6.5.1.2, “mysql
Client Commands”.

• --dns-srv-name=name

Command-Line Format --dns-srv-name=name

Introduced 8.0.22

Type String

Specifies the name of a DNS SRV record that determines the candidate hosts to use for establishing
a connection to a MySQL server. For information about DNS SRV support in MySQL, see
Section 6.2.6, “Connecting to the Server Using DNS SRV Records”.

Suppose that DNS is configured with this SRV information for the example.com domain:

Name TTL Class Priority Weight Port Target
_mysql._tcp.example.com. 86400 IN SRV 0 5 3306 host1.example.com
_mysql._tcp.example.com. 86400 IN SRV 0 10 3306 host2.example.com
_mysql._tcp.example.com. 86400 IN SRV 10 5 3306 host3.example.com

468

mysql — The MySQL Command-Line Client

_mysql._tcp.example.com. 86400 IN SRV 20 5 3306 host4.example.com

To use that DNS SRV record, invoke mysql like this:

mysql --dns-srv-name=_mysql._tcp.example.com

mysql then attempts a connection to each server in the group until a successful connection is
established. A failure to connect occurs only if a connection cannot be established to any of the
servers. The priority and weight values in the DNS SRV record determine the order in which servers
should be tried.

When invoked with --dns-srv-name, mysql attempts to establish TCP connections only.

The --dns-srv-name option takes precedence over the --host option if both are given. --dns-
srv-name causes connection establishment to use the mysql_real_connect_dns_srv() C API
function rather than mysql_real_connect(). However, if the connect command is subsequently
used at runtime and specifies a host name argument, that host name takes precedence over any --
dns-srv-name option given at mysql startup to specify a DNS SRV record.

This option was added in MySQL 8.0.22.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Type Boolean

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 8.4.1.4, “Client-
Side Cleartext Pluggable Authentication”.)

• --execute=statement, -e statement

Command-Line Format --execute=statement

Type String

Execute the statement and quit. The default output format is like that produced with --batch. See
Section 6.2.2.1, “Using Options on the Command Line”, for some examples. With this option, mysql
does not use the history file.

• --fido-register-factor=value

Command-Line Format --fido-register-factor=value

Introduced 8.0.27

Deprecated 8.0.35

469

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect-dns-srv.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html

mysql — The MySQL Command-Line Client

Type String

Note

As of MySQL 8.0.35, this option is deprecated and subject to removal in a
future MySQL release.

The factor or factors for which FIDO device registration must be performed. This option value must
be a single value, or two values separated by commas. Each value must be 2 or 3, so the permitted
option values are '2', '3', '2,3' and '3,2'.

For example, an account that requires registration for a 3rd authentication factor invokes the mysql
client as follows:

mysql --user=user_name --fido-register-factor=3

An account that requires registration for a 2nd and 3rd authentication factor invokes the mysql client
as follows:

mysql --user=user_name --fido-register-factor=2,3

If registration is successful, a connection is established. If there is an authentication factor with a
pending registration, a connection is placed into pending registration mode when attempting to
connect to the server. In this case, disconnect and reconnect with the correct --fido-register-
factor value to complete the registration.

Registration is a two step process comprising initiate registration and finish registration steps. The
initiate registration step executes this statement:

ALTER USER user factor INITIATE REGISTRATION

The statement returns a result set containing a 32 byte challenge, the user name, and the relying
party ID (see authentication_fido_rp_id).

The finish registration step executes this statement:

ALTER USER user factor FINISH REGISTRATION SET CHALLENGE_RESPONSE AS 'auth_string'

The statement completes the registration and sends the following information to the server as part
of the auth_string: authenticator data, an optional attestation certificate in X.509 format, and a
signature.

The initiate and registration steps must be performed in a single connection, as the challenge
received by the client during the initiate step is saved to the client connection handler. Registration
would fail if the registration step was performed by a different connection. The --fido-register-
factor option executes both the initiate and registration steps, which avoids the failure scenario
described above and prevents having to execute the ALTER USER initiate and registration
statements manually.

The --fido-register-factor option is only available for the mysql client and MySQL Shell.
Other MySQL client programs do not support it.

For related information, see Using FIDO Authentication.

• --force, -f

Command-Line Format --force

Continue even if an SQL error occurs.

470

mysql — The MySQL Command-Line Client

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This
option applies to clients that authenticate with the caching_sha2_password authentication
plugin. For that plugin, the server does not send the public key unless requested. This option
is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --histignore

Command-Line Format --histignore=pattern_list

Type String

A list of one or more colon-separated patterns specifying statements to ignore for logging purposes.
These patterns are added to the default pattern list ("*IDENTIFIED*:*PASSWORD*"). The value
specified for this option affects logging of statements written to the history file, and to syslog if the
--syslog option is given. For more information, see Section 6.5.1.3, “mysql Client Logging”.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

Connect to the MySQL server on the given host.

The --dns-srv-name option takes precedence over the --host option if both are given. --dns-
srv-name causes connection establishment to use the mysql_real_connect_dns_srv() C API
function rather than mysql_real_connect(). However, if the connect command is subsequently
used at runtime and specifies a host name argument, that host name takes precedence over any --
dns-srv-name option given at mysql startup to specify a DNS SRV record.

• --html, -H

Command-Line Format --html

Produce HTML output.

• --ignore-spaces, -i

Command-Line Format --ignore-spaces

Ignore spaces after function names. The effect of this is described in the discussion for the
IGNORE_SPACE SQL mode (see Section 7.1.11, “Server SQL Modes”).

471

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect-dns-srv.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html

mysql — The MySQL Command-Line Client

• --init-command=str

Command-Line Format --init-command=str

Single SQL statement to execute after connecting to the server. If auto-reconnect is enabled, the
statement is executed again after reconnection occurs.

• --line-numbers

Command-Line Format --line-numbers

Disabled by skip-line-numbers

Write line numbers for errors. Disable this with --skip-line-numbers.

• --load-data-local-dir=dir_name

Command-Line Format --load-data-local-dir=dir_name

Introduced 8.0.21

Type Directory name

Default Value empty string

This option affects the client-side LOCAL capability for LOAD DATA operations. It specifies the
directory in which files named in LOAD DATA LOCAL statements must be located. The effect of --
load-data-local-dir depends on whether LOCAL data loading is enabled or disabled:

• If LOCAL data loading is enabled, either by default in the MySQL client library or by specifying --
local-infile[=1], the --load-data-local-dir option is ignored.

• If LOCAL data loading is disabled, either by default in the MySQL client library or by specifying --
local-infile=0, the --load-data-local-dir option applies.

When --load-data-local-dir applies, the option value designates the directory in which local
data files must be located. Comparison of the directory path name and the path name of files to be
loaded is case-sensitive regardless of the case sensitivity of the underlying file system. If the option
value is the empty string, it names no directory, with the result that no files are permitted for local
data loading.

For example, to explicitly disable local data loading except for files located in the /my/local/data
directory, invoke mysql like this:

mysql --local-infile=0 --load-data-local-dir=/my/local/data

When both --local-infile and --load-data-local-dir are given, the order in which they
are given does not matter.

Successful use of LOCAL load operations within mysql also requires that the server permits local
loading; see Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”

The --load-data-local-dir option was added in MySQL 8.0.21.

• --local-infile[={0|1}]

Command-Line Format --local-infile[={0|1}]

Type Boolean

472

mysql — The MySQL Command-Line Client

Default Value FALSE

By default, LOCAL capability for LOAD DATA is determined by the default compiled into the MySQL
client library. To enable or disable LOCAL data loading explicitly, use the --local-infile option.
When given with no value, the option enables LOCAL data loading. When given as --local-
infile=0 or --local-infile=1, the option disables or enables LOCAL data loading.

If LOCAL capability is disabled, the --load-data-local-dir option can be used to permit
restricted local loading of files located in a designated directory.

Successful use of LOCAL load operations within mysql also requires that the server permits local
loading; see Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --max-allowed-packet=value

Command-Line Format --max-allowed-packet=value

Type Numeric

Default Value 16777216

The maximum size of the buffer for client/server communication. The default is 16MB, the maximum
is 1GB.

• --max-join-size=value

Command-Line Format --max-join-size=value

Type Numeric

Default Value 1000000

The automatic limit for rows in a join when using --safe-updates. (Default value is 1,000,000.)

• --named-commands, -G

Command-Line Format --named-commands

Disabled by skip-named-commands

Enable named mysql commands. Long-format commands are permitted, not just short-format
commands. For example, quit and \q both are recognized. Use --skip-named-commands to
disable named commands. See Section 6.5.1.2, “mysql Client Commands”.

• --net-buffer-length=value

473

mysql — The MySQL Command-Line Client

Command-Line Format --net-buffer-length=value

Type Numeric

Default Value 16384

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

• --network-namespace=name

Command-Line Format --network-namespace=name

Introduced 8.0.22

Type String

The network namespace to use for TCP/IP connections. If omitted, the connection uses the default
(global) namespace. For information about network namespaces, see Section 7.1.14, “Network
Namespace Support”.

This option was added in MySQL 8.0.22. It is available only on platforms that implement network
namespace support.

• --no-auto-rehash, -A

Command-Line Format --no-auto-rehash

Deprecated Yes

This has the same effect as --skip-auto-rehash. See the description for --auto-rehash.

• --no-beep, -b

Command-Line Format --no-beep

Do not beep when errors occur.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

474

mysql — The MySQL Command-Line Client

• --one-database, -o

Command-Line Format --one-database

Ignore statements except those that occur while the default database is the one named on the
command line. This option is rudimentary and should be used with care. Statement filtering is based
only on USE statements.

Initially, mysql executes statements in the input because specifying a database db_name on the
command line is equivalent to inserting USE db_name at the beginning of the input. Then, for each
USE statement encountered, mysql accepts or rejects following statements depending on whether
the database named is the one on the command line. The content of the statements is immaterial.

Suppose that mysql is invoked to process this set of statements:

DELETE FROM db2.t2;
USE db2;
DROP TABLE db1.t1;
CREATE TABLE db1.t1 (i INT);
USE db1;
INSERT INTO t1 (i) VALUES(1);
CREATE TABLE db2.t1 (j INT);

If the command line is mysql --force --one-database db1, mysql handles the input as
follows:

• The DELETE statement is executed because the default database is db1, even though the
statement names a table in a different database.

• The DROP TABLE and CREATE TABLE statements are not executed because the default database
is not db1, even though the statements name a table in db1.

• The INSERT and CREATE TABLE statements are executed because the default database is db1,
even though the CREATE TABLE statement names a table in a different database.

• --pager[=command]

Command-Line Format --pager[=command]

Disabled by skip-pager

Type String

Use the given command for paging query output. If the command is omitted, the default pager is the
value of your PAGER environment variable. Valid pagers are less, more, cat [> filename],
and so forth. This option works only on Unix and only in interactive mode. To disable paging, use --
skip-pager. Section 6.5.1.2, “mysql Client Commands”, discusses output paging further.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value
is optional. If not given, mysql prompts for one. If given, there must be no space between --

475

mysql — The MySQL Command-Line Client

password= or -p and the password following it. If no password option is specified, the default is to
send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysql should not prompt for one, use the --
skip-password option.

• --password1[=pass_val]

The password for multifactor authentication factor 1 of the MySQL account used for connecting to the
server. The password value is optional. If not given, mysql prompts for one. If given, there must be
no space between --password1= and the password following it. If no password option is specified,
the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysql should not prompt for one, use the --
skip-password1 option.

--password1 and --password are synonymous, as are --skip-password1 and --skip-
password.

• --password2[=pass_val]

The password for multifactor authentication factor 2 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --password3[=pass_val]

The password for multifactor authentication factor 3 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-authentication-kerberos-client-mode=value

Command-Line Format --plugin-authentication-kerberos-
client-mode

Introduced 8.0.32

Type String

Default Value SSPI

Valid Values GSSAPI
476

mysql — The MySQL Command-Line Client

SSPI

On Windows, the authentication_kerberos_client authentication plugin supports this plugin
option. It provides two possible values that the client user can set at runtime: SSPI and GSSAPI.

The default value for the client-side plugin option uses Security Support Provider Interface (SSPI),
which is capable of acquiring credentials from the Windows in-memory cache. Alternatively, the
client user can select a mode that supports Generic Security Service Application Program Interface
(GSSAPI) through the MIT Kerberos library on Windows. GSSAPI is capable of acquiring cached
credentials previously generated by using the kinit command.

For more information, see Commands for Windows Clients in GSSAPI Mode.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is
used to specify an authentication plugin but mysql does not find it. See Section 8.2.17, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --prompt=format_str

Command-Line Format --prompt=format_str

Type String

Default Value mysql>

Set the prompt to the specified format. The default is mysql>. The special sequences that the
prompt can contain are described in Section 6.5.1.2, “mysql Client Commands”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

477

mysql — The MySQL Command-Line Client

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 6.2.7, “Connection Transport Protocols”.

• --quick, -q

Command-Line Format --quick

Do not cache each query result, print each row as it is received. This may slow down the server if the
output is suspended. With this option, mysql does not use the history file.

By default, mysql fetches all result rows before producing any output; while storing these, it
calculates a running maximum column length from the actual value of each column in succession.
When printing the output, it uses this maximum to format it. When --quick is specified, mysql
does not have the rows for which to calculate the length before starting, and so uses the maximum
length. In the following example, table t1 has a single column of type BIGINT and containing 4
rows. The default output is 9 characters wide; this width is equal the maximum number of characters
in any of the column values in the rows returned (5), plus 2 characters each for the spaces used
as padding and the | characters used as column delimiters). The output when using the --
quick option is 25 characters wide; this is equal to the number of characters needed to represent
-9223372036854775808, which is the longest possible value that can be stored in a (signed)
BIGINT column, or 19 characters, plus the 4 characters used for padding and column delimiters.
The difference can be seen here:

$> mysql -t test -e "SELECT * FROM t1"
+-------+
| c1 |
+-------+
| 100 |
| 1000 |
| 10000 |
| 10 |
+-------+

$> mysql --quick -t test -e "SELECT * FROM t1"
+----------------------+
| c1 |
+----------------------+
| 100 |
| 1000 |
| 10000 |
| 10 |
+----------------------+

• --raw, -r

Command-Line Format --raw

For tabular output, the “boxing” around columns enables one column value to be distinguished from
another. For nontabular output (such as is produced in batch mode or when the --batch or --
silent option is given), special characters are escaped in the output so they can be identified

478

mysql — The MySQL Command-Line Client

easily. Newline, tab, NUL, and backslash are written as \n, \t, \0, and \\. The --raw option
disables this character escaping.

The following example demonstrates tabular versus nontabular output and the use of raw mode to
disable escaping:

% mysql
mysql> SELECT CHAR(92);
+----------+
| CHAR(92) |
+----------+
| \ |
+----------+

% mysql -s
mysql> SELECT CHAR(92);
CHAR(92)
\\

% mysql -s -r
mysql> SELECT CHAR(92);
CHAR(92)
\

• --reconnect

Command-Line Format --reconnect

Disabled by skip-reconnect

If the connection to the server is lost, automatically try to reconnect. A single reconnect attempt
is made each time the connection is lost. To suppress reconnection behavior, use --skip-
reconnect.

• --safe-updates, --i-am-a-dummy, -U

Command-Line Format --safe-updates

--i-am-a-dummy

Type Boolean

Default Value FALSE

If this option is enabled, UPDATE and DELETE statements that do not use a key in the WHERE clause
or a LIMIT clause produce an error. In addition, restrictions are placed on SELECT statements that
produce (or are estimated to produce) very large result sets. If you have set this option in an option
file, you can use --skip-safe-updates on the command line to override it. For more information
about this option, see Using Safe-Updates Mode (--safe-updates).

• --select-limit=value

Command-Line Format --select-limit=value

Type Numeric

Default Value 1000

The automatic limit for SELECT statements when using --safe-updates. (Default value is 1,000.)

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

479

mysql — The MySQL Command-Line Client

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled
to support shared-memory connections.

• --show-warnings

Command-Line Format --show-warnings

Cause warnings to be shown after each statement if there are any. This option applies to interactive
and batch mode.

• --sigint-ignore

Command-Line Format --sigint-ignore

Ignore SIGINT signals (typically the result of typing Control+C).

Without this option, typing Control+C interrupts the current statement if there is one, or cancels any
partial input line otherwise.

• --silent, -s

Command-Line Format --silent

Silent mode. Produce less output. This option can be given multiple times to produce less and less
output.

This option results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

480

mysql — The MySQL Command-Line Client

• --skip-column-names, -N

Command-Line Format --skip-column-names

Do not write column names in results. Use of this option causes the output to be right-aligned, as
shown here:

$> echo "SELECT * FROM t1" | mysql -t test
+-------+
| c1 |
+-------+
| a,c,d |
| c |
+-------+
$> echo "SELECT * FROM t1" | ./mysql -uroot -Nt test
+-------+
| a,c,d |
| c |
+-------+

• --skip-line-numbers, -L

Command-Line Format --skip-line-numbers

Do not write line numbers for errors. Useful when you want to compare result files that include error
messages.

• --skip-system-command

Command-Line Format --skip-system-command

Introduced 8.0.40

Disables the system (\!) command. Equivalent to --system-command=OFF.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

481

mysql — The MySQL Command-Line Client

Default Value OFF

Valid Values OFF

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON
or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --syslog, -j

Command-Line Format --syslog

This option causes mysql to send interactive statements to the system logging facility. On Unix,
this is syslog; on Windows, it is the Windows Event Log. The destination where logged messages
appear is system dependent. On Linux, the destination is often the /var/log/messages file.

Here is a sample of output generated on Linux by using --syslog. This output is formatted for
readability; each logged message actually takes a single line.

Mar 7 12:39:25 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'--', QUERY:'USE test;'
Mar 7 12:39:28 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'test', QUERY:'SHOW TABLES;'

For more information, see Section 6.5.1.3, “mysql Client Logging”.

• --system-command[={ON|OFF}]

Command-Line Format --system-command[={ON|OFF}]

Introduced 8.0.40

Disabled by skip-system-command

Type Boolean

482

mysql — The MySQL Command-Line Client

Default Value ON

Enable or disable the system (\!) command. When this option is disabled, either by --system-
command=OFF or by --skip-system-command, the system command is rejected with an error.

(MySQL 8.0.43 and later:) --commands, when disabled (set to FALSE), causes the server to
disregard any setting for this option.

• --table, -t

Command-Line Format --table

Display output in table format. This is the default for interactive use, but can be used to produce table
output in batch mode.

• --tee=file_name

Command-Line Format --tee=file_name

Type File name

Append a copy of output to the given file. This option works only in interactive mode. Section 6.5.1.2,
“mysql Client Commands”, discusses tee files further.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

483

mysql — The MySQL Command-Line Client

• --unbuffered, -n

Command-Line Format --unbuffered

Flush the buffer after each query.

• --user=user_name, -u user_name

Command-Line Format --user=user_name

Type String

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Produce more output about what the program does. This option can be given
multiple times to produce more and more output. (For example, -v -v -v produces table output
format even in batch mode.)

• --version, -V

Command-Line Format --version

Display version information and exit.

• --vertical, -E

Command-Line Format --vertical

Print query output rows vertically (one line per column value). Without this option, you can specify
vertical output for individual statements by terminating them with \G.

• --wait, -w

Command-Line Format --wait

If the connection cannot be established, wait and retry instead of aborting.

• --xml, -X

Command-Line Format --xml

Produce XML output.

<field name="column_name">NULL</field>

The output when --xml is used with mysql matches that of mysqldump --xml. See Section 6.5.4,
“mysqldump — A Database Backup Program”, for details.

The XML output also uses an XML namespace, as shown here:

$> mysql --xml -uroot -e "SHOW VARIABLES LIKE 'version%'"

484

mysql — The MySQL Command-Line Client

<?xml version="1.0"?>

<resultset statement="SHOW VARIABLES LIKE 'version%'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<row>
<field name="Variable_name">version</field>
<field name="Value">5.0.40-debug</field>
</row>

<row>
<field name="Variable_name">version_comment</field>
<field name="Value">Source distribution</field>
</row>

<row>
<field name="Variable_name">version_compile_machine</field>
<field name="Value">i686</field>
</row>

<row>
<field name="Variable_name">version_compile_os</field>
<field name="Value">suse-linux-gnu</field>
</row>
</resultset>

• --zstd-compression-level=level

Command-Line Format --zstd-compression-level=#

Introduced 8.0.18

Type Integer

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
The default zstd compression level is 3. The compression level setting has no effect on connections
that do not use zstd compression.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

6.5.1.2 mysql Client Commands

mysql sends each SQL statement that you issue to the server to be executed. There is also a set of
commands that mysql itself interprets. For a list of these commands, type help or \h at the mysql>
prompt:

mysql> help

List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
? (\?) Synonym for `help'.
clear (\c) Clear the current input statement.
connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result vertically.
exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file. Takes a file name as an argument.

485

mysql — The MySQL Command-Line Client

status (\s) Get status information from the server.
system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile]. Append everything into given
 outfile.
use (\u) Use another database. Takes database name as argument.
charset (\C) Switch to another charset. Might be needed for processing
 binlog with multi-byte charsets.
warnings (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.
resetconnection(\x) Clean session context.
query_attributes Sets string parameters (name1 value1 name2 value2 ...)
for the next query to pick up.
ssl_session_data_print Serializes the current SSL session data to stdout
or file.

For server side help, type 'help contents'

If mysql is invoked with the --binary-mode option, all mysql commands are disabled except
charset and delimiter in noninteractive mode (for input piped to mysql or loaded using the
source command). Beginning with MySQL 8.0.43, the --commands option can be used to enable or
disable all commands except /C, delimiter, and use.

Each command has both a long and short form. The long form is not case-sensitive; the short form is.
The long form can be followed by an optional semicolon terminator, but the short form should not.

The use of short-form commands within multiple-line /* ... */ comments is not supported. Short-
form commands do work within single-line /*! ... */ version comments, as do /*+ ... */
optimizer-hint comments, which are stored in object definitions. If there is a concern that optimizer-
hint comments may be stored in object definitions so that dump files when reloaded with mysql would
result in execution of such commands, either invoke mysql with the --binary-mode option or use a
reload client other than mysql.

• help [arg], \h [arg], \? [arg], ? [arg]

Display a help message listing the available mysql commands.

If you provide an argument to the help command, mysql uses it as a search string to access
server-side help from the contents of the MySQL Reference Manual. For more information, see
Section 6.5.1.4, “mysql Client Server-Side Help”.

• charset charset_name, \C charset_name

Change the default character set and issue a SET NAMES statement. This enables the character set
to remain synchronized on the client and server if mysql is run with auto-reconnect enabled (which
is not recommended), because the specified character set is used for reconnects.

• clear, \c

Clear the current input. Use this if you change your mind about executing the statement that you are
entering.

• connect [db_name [host_name]], \r [db_name [host_name]]

Reconnect to the server. The optional database name and host name arguments may be given to
specify the default database or the host where the server is running. If omitted, the current values are
used.

If the connect command specifies a host name argument, that host takes precedence over any --
dns-srv-name option given at mysql startup to specify a DNS SRV record.

• delimiter str, \d str

Change the string that mysql interprets as the separator between SQL statements. The default is
the semicolon character (;).

486

mysql — The MySQL Command-Line Client

The delimiter string can be specified as an unquoted or quoted argument on the delimiter
command line. Quoting can be done with either single quote ('), double quote ("), or backtick (`)
characters. To include a quote within a quoted string, either quote the string with a different quote
character or escape the quote with a backslash (\) character. Backslash should be avoided outside
of quoted strings because it is the escape character for MySQL. For an unquoted argument, the
delimiter is read up to the first space or end of line. For a quoted argument, the delimiter is read up to
the matching quote on the line.

mysql interprets instances of the delimiter string as a statement delimiter anywhere it occurs, except
within quoted strings. Be careful about defining a delimiter that might occur within other words. For
example, if you define the delimiter as X, it is not possible to use the word INDEX in statements.
mysql interprets this as INDE followed by the delimiter X.

When the delimiter recognized by mysql is set to something other than the default of ;, instances of
that character are sent to the server without interpretation. However, the server itself still interprets
; as a statement delimiter and processes statements accordingly. This behavior on the server side
comes into play for multiple-statement execution (see Multiple Statement Execution Support), and
for parsing the body of stored procedures and functions, triggers, and events (see Section 27.1,
“Defining Stored Programs”).

• edit, \e

Edit the current input statement. mysql checks the values of the EDITOR and VISUAL environment
variables to determine which editor to use. The default editor is vi if neither variable is set.

The edit command works only in Unix.

• ego, \G

Send the current statement to the server to be executed and display the result using vertical format.

• exit, \q

Exit mysql.

• go, \g

Send the current statement to the server to be executed.

• nopager, \n

Disable output paging. See the description for pager.

The nopager command works only in Unix.

• notee, \t

Disable output copying to the tee file. See the description for tee.

• nowarning, \w

Disable display of warnings after each statement.

• pager [command], \P [command]

Enable output paging. By using the --pager option when you invoke mysql, it is possible to
browse or search query results in interactive mode with Unix programs such as less, more, or any
other similar program. If you specify no value for the option, mysql checks the value of the PAGER
environment variable and sets the pager to that. Pager functionality works only in interactive mode.

Output paging can be enabled interactively with the pager command and disabled with nopager.
The command takes an optional argument; if given, the paging program is set to that. With no

487

https://dev.mysql.com/doc/c-api/8.0/en/c-api-multiple-queries.html

mysql — The MySQL Command-Line Client

argument, the pager is set to the pager that was set on the command line, or stdout if no pager
was specified.

Output paging works only in Unix because it uses the popen() function, which does not exist on
Windows. For Windows, the tee option can be used instead to save query output, although it is not
as convenient as pager for browsing output in some situations.

• print, \p

Print the current input statement without executing it.

• prompt [str], \R [str]

Reconfigure the mysql prompt to the given string. The special character sequences that can be
used in the prompt are described later in this section.

If you specify the prompt command with no argument, mysql resets the prompt to the default of
mysql>.

• query_attributes name value [name value ...]

Define query attributes that apply to the next query sent to the server. For discussion of the purpose
and use of query attributes, see Section 11.6, “Query Attributes”.

The query_attributes command follows these rules:

• The format and quoting rules for attribute names and values are the same as for the delimiter
command.

• The command permits up to 32 attribute name/value pairs. Names and values may be up to 1024
characters long. If a name is given without a value, an error occurs.

• If multiple query_attributes commands are issued prior to query execution, only the last
command applies. After sending the query, mysql clears the attribute set.

• If multiple attributes are defined with the same name, attempts to retrieve the attribute value have
an undefined result.

• An attribute defined with an empty name cannot be retrieved by name.

• If a reconnect occurs while mysql executes the query, mysql restores the attributes after
reconnecting so the query can be executed again with the same attributes.

• quit, \q

Exit mysql.

• rehash, \#

Rebuild the completion hash that enables database, table, and column name completion while you
are entering statements. (See the description for the --auto-rehash option.)

• resetconnection, \x

Reset the connection to clear the session state. This includes clearing any current query attributes
defined using the query_attributes command.

Resetting a connection has effects similar to mysql_change_user() or an auto-reconnect
except that the connection is not closed and reopened, and re-authentication is not done. See
mysql_change_user(), and Automatic Reconnection Control.

This example shows how resetconnection clears a value maintained in the session state:

488

https://dev.mysql.com/doc/c-api/8.0/en/mysql-change-user.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-change-user.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-auto-reconnect.html

mysql — The MySQL Command-Line Client

mysql> SELECT LAST_INSERT_ID(3);
+-------------------+
| LAST_INSERT_ID(3) |
+-------------------+
| 3 |
+-------------------+

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 3 |
+------------------+

mysql> resetconnection;

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 0 |
+------------------+

• source file_name, \. file_name

Read the named file and executes the statements contained therein. On Windows, specify path
name separators as / or \\.

Quote characters are taken as part of the file name itself. For best results, the name should not
include space characters.

• ssl_session_data_print [file_name]

Fetches, serializes, and optionally stores the session data of a successful connection. The optional
file name and arguments may be given to specify the file to store serialized session data. If omitted,
the session data is printed to stdout.

If the MySQL session is configured for reuse, session data from the file is deserialized and supplied
to the connect command to reconnect. When the session is reused successfully, the status
command contains a row showing SSL session reused: true while the client remains
reconnected to the server.

• status, \s

Provide status information about the connection and the server you are using. If you are running with
--safe-updates enabled, status also prints the values for the mysql variables that affect your
queries.

• system command, \! command

Execute the given command using your default command interpreter.

Prior to MySQL 8.0.19, the system command works only in Unix. As of 8.0.19, it also works on
Windows.

In MySQL 8.0.40 and later, this command can be disabled by starting the client with --system-
command=OFF or --skip-system-command.

• tee [file_name], \T [file_name]

By using the --tee option when you invoke mysql, you can log statements and their output. All the
data displayed on the screen is appended into a given file. This can be very useful for debugging

489

mysql — The MySQL Command-Line Client

purposes also. mysql flushes results to the file after each statement, just before it prints its next
prompt. Tee functionality works only in interactive mode.

You can enable this feature interactively with the tee command. Without a parameter, the previous
file is used. The tee file can be disabled with the notee command. Executing tee again re-enables
logging.

• use db_name, \u db_name

Use db_name as the default database.

• warnings, \W

Enable display of warnings after each statement (if there are any).

Here are a few tips about the pager command:

• You can use it to write to a file and the results go only to the file:

mysql> pager cat > /tmp/log.txt

You can also pass any options for the program that you want to use as your pager:

mysql> pager less -n -i -S

• In the preceding example, note the -S option. You may find it very useful for browsing wide query
results. Sometimes a very wide result set is difficult to read on the screen. The -S option to less
can make the result set much more readable because you can scroll it horizontally using the left-
arrow and right-arrow keys. You can also use -S interactively within less to switch the horizontal-
browse mode on and off. For more information, read the less manual page:

man less

• The -F and -X options may be used with less to cause it to exit if output fits on one screen, which
is convenient when no scrolling is necessary:

mysql> pager less -n -i -S -F -X

• You can specify very complex pager commands for handling query output:

mysql> pager cat | tee /dr1/tmp/res.txt \
 | tee /dr2/tmp/res2.txt | less -n -i -S

In this example, the command would send query results to two files in two different directories on two
different file systems mounted on /dr1 and /dr2, yet still display the results onscreen using less.

You can also combine the tee and pager functions. Have a tee file enabled and pager set to less,
and you are able to browse the results using the less program and still have everything appended
into a file the same time. The difference between the Unix tee used with the pager command and
the mysql built-in tee command is that the built-in tee works even if you do not have the Unix tee
available. The built-in tee also logs everything that is printed on the screen, whereas the Unix tee
used with pager does not log quite that much. Additionally, tee file logging can be turned on and
off interactively from within mysql. This is useful when you want to log some queries to a file, but not
others.

The prompt command reconfigures the default mysql> prompt. The string for defining the prompt can
contain the following special sequences.

Option Description

\C The current connection identifier

\c A counter that increments for each statement you
issue

\D The full current date

490

mysql — The MySQL Command-Line Client

Option Description

\d The default database

\h The server host

\l The current delimiter

\m Minutes of the current time

\n A newline character

\O The current month in three-letter format (Jan, Feb,
…)

\o The current month in numeric format

\P am/pm

\p The current TCP/IP port or socket file

\R The current time, in 24-hour military time (0–23)

\r The current time, standard 12-hour time (1–12)

\S Semicolon

\s Seconds of the current time

\T Print an asterisk (*) if the current session is inside
a transaction block (from MySQL 8.0.28)

\t A tab character

\U Your full user_name@host_name account name

\u Your user name

\v The server version

\w The current day of the week in three-letter format
(Mon, Tue, …)

\Y The current year, four digits

\y The current year, two digits

_ A space

\ A space (a space follows the backslash)

\' Single quote

\" Double quote

\\ A literal \ backslash character

\x x, for any “x” not listed above

You can set the prompt in several ways:

• Use an environment variable. You can set the MYSQL_PS1 environment variable to a prompt string.
For example:

export MYSQL_PS1="(\u@\h) [\d]> "

• Use a command-line option. You can set the --prompt option on the command line to mysql. For
example:

$> mysql --prompt="(\u@\h) [\d]> "
(user@host) [database]>

• Use an option file. You can set the prompt option in the [mysql] group of any MySQL option file,
such as /etc/my.cnf or the .my.cnf file in your home directory. For example:

[mysql]
prompt=(\\u@\\h) [\\d]>_

491

mysql — The MySQL Command-Line Client

In this example, note that the backslashes are doubled. If you set the prompt using the prompt
option in an option file, it is advisable to double the backslashes when using the special prompt
options. There is some overlap in the set of permissible prompt options and the set of special escape
sequences that are recognized in option files. (The rules for escape sequences in option files are
listed in Section 6.2.2.2, “Using Option Files”.) The overlap may cause you problems if you use
single backslashes. For example, \s is interpreted as a space rather than as the current seconds
value. The following example shows how to define a prompt within an option file to include the
current time in hh:mm:ss> format:

[mysql]
prompt="\\r:\\m:\\s> "

• Set the prompt interactively. You can change your prompt interactively by using the prompt (or \R)
command. For example:

mysql> prompt (\u@\h) [\d]>_
PROMPT set to '(\u@\h) [\d]>_'
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>

6.5.1.3 mysql Client Logging

The mysql client can do these types of logging for statements executed interactively:

• On Unix, mysql writes the statements to a history file. By default, this file is named
.mysql_history in your home directory. To specify a different file, set the value of the
MYSQL_HISTFILE environment variable.

• On all platforms, if the --syslog option is given, mysql writes the statements to the system logging
facility. On Unix, this is syslog; on Windows, it is the Windows Event Log. The destination where
logged messages appear is system dependent. On Linux, the destination is often the /var/log/
messages file.

The following discussion describes characteristics that apply to all logging types and provides
information specific to each logging type.

• How Logging Occurs

• Controlling the History File

• syslog Logging Characteristics

How Logging Occurs

For each enabled logging destination, statement logging occurs as follows:

• Statements are logged only when executed interactively. Statements are noninteractive, for example,
when read from a file or a pipe. It is also possible to suppress statement logging by using the --
batch or --execute option.

• Statements are ignored and not logged if they match any pattern in the “ignore” list. This list is
described later.

• mysql logs each nonignored, nonempty statement line individually.

• If a nonignored statement spans multiple lines (not including the terminating delimiter), mysql
concatenates the lines to form the complete statement, maps newlines to spaces, and logs the
result, plus a delimiter.

Consequently, an input statement that spans multiple lines can be logged twice. Consider this input:

mysql> SELECT

492

mysql — The MySQL Command-Line Client

 -> 'Today is'
 -> ,
 -> CURDATE()
 -> ;

In this case, mysql logs the “SELECT”, “'Today is'”, “,”, “CURDATE()”, and “;” lines as it reads them.
It also logs the complete statement, after mapping SELECT\n'Today is'\n,\nCURDATE() to
SELECT 'Today is' , CURDATE(), plus a delimiter. Thus, these lines appear in logged output:

SELECT
'Today is'
,
CURDATE()
;
SELECT 'Today is' , CURDATE();

mysql ignores for logging purposes statements that match any pattern in the “ignore” list. By default,
the pattern list is "*IDENTIFIED*:*PASSWORD*", to ignore statements that refer to passwords.
Pattern matching is not case-sensitive. Within patterns, two characters are special:

• ? matches any single character.

• * matches any sequence of zero or more characters.

To specify additional patterns, use the --histignore option or set the MYSQL_HISTIGNORE
environment variable. (If both are specified, the option value takes precedence.) The value should be a
list of one or more colon-separated patterns, which are appended to the default pattern list.

Patterns specified on the command line might need to be quoted or escaped to prevent your command
interpreter from treating them specially. For example, to suppress logging for UPDATE and DELETE
statements in addition to statements that refer to passwords, invoke mysql like this:

mysql --histignore="*UPDATE*:*DELETE*"

Controlling the History File

The .mysql_history file should be protected with a restrictive access mode because sensitive
information might be written to it, such as the text of SQL statements that contain passwords. See
Section 8.1.2.1, “End-User Guidelines for Password Security”. Statements in the file are accessible
from the mysql client when the up-arrow key is used to recall the history. See Disabling Interactive
History.

If you do not want to maintain a history file, first remove .mysql_history if it exists. Then use either
of the following techniques to prevent it from being created again:

• Set the MYSQL_HISTFILE environment variable to /dev/null. To cause this setting to take effect
each time you log in, put it in one of your shell's startup files.

• Create .mysql_history as a symbolic link to /dev/null; this need be done only once:

ln -s /dev/null $HOME/.mysql_history

syslog Logging Characteristics

If the --syslog option is given, mysql writes interactive statements to the system logging facility.
Message logging has the following characteristics.

Logging occurs at the “information” level. This corresponds to the LOG_INFO priority for syslog on
Unix/Linux syslog capability and to EVENTLOG_INFORMATION_TYPE for the Windows Event Log.
Consult your system documentation for configuration of your logging capability.

Message size is limited to 1024 bytes.

Messages consist of the identifier MysqlClient followed by these values:

• SYSTEM_USER

493

mysql — The MySQL Command-Line Client

The operating system user name (login name) or -- if the user is unknown.

• MYSQL_USER

The MySQL user name (specified with the --user option) or -- if the user is unknown.

• CONNECTION_ID:

The client connection identifier. This is the same as the CONNECTION_ID() function value within the
session.

• DB_SERVER

The server host or -- if the host is unknown.

• DB

The default database or -- if no database has been selected.

• QUERY

The text of the logged statement.

Here is a sample of output generated on Linux by using --syslog. This output is formatted for
readability; each logged message actually takes a single line.

Mar 7 12:39:25 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'--', QUERY:'USE test;'
Mar 7 12:39:28 myhost MysqlClient[20824]:
 SYSTEM_USER:'oscar', MYSQL_USER:'my_oscar', CONNECTION_ID:23,
 DB_SERVER:'127.0.0.1', DB:'test', QUERY:'SHOW TABLES;'

6.5.1.4 mysql Client Server-Side Help

mysql> help search_string

If you provide an argument to the help command, mysql uses it as a search string to access server-
side help from the contents of the MySQL Reference Manual. The proper operation of this command
requires that the help tables in the mysql database be initialized with help topic information (see
Section 7.1.17, “Server-Side Help Support”).

If there is no match for the search string, the search fails:

mysql> help me

Nothing found
Please try to run 'help contents' for a list of all accessible topics

Use help contents to see a list of the help categories:

mysql> help contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the
following categories:
 Account Management
 Administration
 Data Definition
 Data Manipulation
 Data Types
 Functions
 Functions and Modifiers for Use with GROUP BY
 Geographic Features
 Language Structure
 Plugins
 Storage Engines
 Stored Routines
 Table Maintenance

494

mysql — The MySQL Command-Line Client

 Transactions
 Triggers

If the search string matches multiple items, mysql shows a list of matching topics:

mysql> help logs
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:
 SHOW
 SHOW BINARY LOGS
 SHOW ENGINE
 SHOW LOGS

Use a topic as the search string to see the help entry for that topic:

mysql> help show binary logs
Name: 'SHOW BINARY LOGS'
Description:
Syntax:
SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as
part of the procedure described in [purge-binary-logs], that shows how
to determine which logs can be purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+---------------+-----------+-----------+
| binlog.000015 | 724935 | Yes |
| binlog.000016 | 733481 | Yes |
+---------------+-----------+-----------+

The search string can contain the wildcard characters % and _. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. For example, HELP rep% returns a list
of topics that begin with rep:

mysql> HELP rep%
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following
topics:
 REPAIR TABLE
 REPEAT FUNCTION
 REPEAT LOOP
 REPLACE
 REPLACE FUNCTION

6.5.1.5 Executing SQL Statements from a Text File

The mysql client typically is used interactively, like this:

mysql db_name

However, it is also possible to put your SQL statements in a file and then tell mysql to read its input
from that file. To do so, create a text file text_file that contains the statements you wish to execute.
Then invoke mysql as shown here:

mysql db_name < text_file

If you place a USE db_name statement as the first statement in the file, it is unnecessary to specify the
database name on the command line:

mysql < text_file

If you are already running mysql, you can execute an SQL script file using the source command or
\. command:

mysql> source file_name

495

mysql — The MySQL Command-Line Client

mysql> \. file_name

Sometimes you may want your script to display progress information to the user. For this you can insert
statements like this:

SELECT '<info_to_display>' AS ' ';

The statement shown outputs <info_to_display>.

You can also invoke mysql with the --verbose option, which causes each statement to be displayed
before the result that it produces.

mysql ignores Unicode byte order mark (BOM) characters at the beginning of input files. Previously,
it read them and sent them to the server, resulting in a syntax error. Presence of a BOM does not
cause mysql to change its default character set. To do that, invoke mysql with an option such as --
default-character-set=utf8mb4.

For more information about batch mode, see Section 5.5, “Using mysql in Batch Mode”.

6.5.1.6 mysql Client Tips

This section provides information about techniques for more effective use of mysql and about mysql
operational behavior.

• Input-Line Editing

• Disabling Interactive History

• Unicode Support on Windows

• Displaying Query Results Vertically

• Using Safe-Updates Mode (--safe-updates)

• Disabling mysql Auto-Reconnect

• mysql Client Parser Versus Server Parser

Input-Line Editing

mysql supports input-line editing, which enables you to modify the current input line in place or recall
previous input lines. For example, the left-arrow and right-arrow keys move horizontally within the
current input line, and the up-arrow and down-arrow keys move up and down through the set of
previously entered lines. Backspace deletes the character before the cursor and typing new characters
enters them at the cursor position. To enter the line, press Enter.

On Windows, the editing key sequences are the same as supported for command editing in console
windows. On Unix, the key sequences depend on the input library used to build mysql (for example,
the libedit or readline library).

Documentation for the libedit and readline libraries is available online. To change the set of key
sequences permitted by a given input library, define key bindings in the library startup file. This is a file
in your home directory: .editrc for libedit and .inputrc for readline.

For example, in libedit, Control+W deletes everything before the current cursor position and
Control+U deletes the entire line. In readline, Control+W deletes the word before the cursor and
Control+U deletes everything before the current cursor position. If mysql was built using libedit, a
user who prefers the readline behavior for these two keys can put the following lines in the .editrc
file (creating the file if necessary):

bind "^W" ed-delete-prev-word
bind "^U" vi-kill-line-prev

To see the current set of key bindings, temporarily put a line that says only bind at the end of
.editrc. mysql shows the bindings when it starts.

496

mysql — The MySQL Command-Line Client

Disabling Interactive History

The up-arrow key enables you to recall input lines from current and previous sessions. In cases where
a console is shared, this behavior may be unsuitable. mysql supports disabling the interactive history
partially or fully, depending on the host platform.

On Windows, the history is stored in memory. Alt+F7 deletes all input lines stored in memory for the
current history buffer. It also deletes the list of sequential numbers in front of the input lines displayed
with F7 and recalled (by number) with F9. New input lines entered after you press Alt+F7 repopulate
the current history buffer. Clearing the buffer does not prevent logging to the Windows Event Viewer,
if the --syslog option was used to start mysql. Closing the console window also clears the current
history buffer.

To disable interactive history on Unix, first delete the .mysql_history file, if it exists (previous
entries are recalled otherwise). Then start mysql with the --histignore="*" option to ignore all
new input lines. To re-enable the recall (and logging) behavior, restart mysql without the option.

If you prevent the .mysql_history file from being created (see Controlling the History File) and use
--histignore="*" to start the mysql client, the interactive history recall facility is disabled fully.
Alternatively, if you omit the --histignore option, you can recall the input lines entered during the
current session.

Unicode Support on Windows

Windows provides APIs based on UTF-16LE for reading from and writing to the console; the mysql
client for Windows is able to use these APIs. The Windows installer creates an item in the MySQL
menu named MySQL command line client - Unicode. This item invokes the mysql client with
properties set to communicate through the console to the MySQL server using Unicode.

To take advantage of this support manually, run mysql within a console that uses a compatible
Unicode font and set the default character set to a Unicode character set that is supported for
communication with the server:

1. Open a console window.

2. Go to the console window properties, select the font tab, and choose Lucida Console or some other
compatible Unicode font. This is necessary because console windows start by default using a DOS
raster font that is inadequate for Unicode.

3. Execute mysql.exe with the --default-character-set=utf8mb4 (or utf8mb3) option. This
option is necessary because utf16le is one of the character sets that cannot be used as the client
character set. See Impermissible Client Character Sets.

With those changes, mysql uses the Windows APIs to communicate with the console using
UTF-16LE, and communicate with the server using UTF-8. (The menu item mentioned previously sets
the font and character set as just described.)

To avoid those steps each time you run mysql, you can create a shortcut that invokes mysql.exe.
The shortcut should set the console font to Lucida Console or some other compatible Unicode font, and
pass the --default-character-set=utf8mb4 (or utf8mb3) option to mysql.exe.

Alternatively, create a shortcut that only sets the console font, and set the character set in the [mysql]
group of your my.ini file:

[mysql]
default-character-set=utf8mb4 # or utf8mb3

Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the usual
horizontal table format. Queries can be displayed vertically by terminating the query with \G instead of
a semicolon. For example, longer text values that include newlines often are much easier to read with
vertical output:

497

mysql — The MySQL Command-Line Client

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G
*************************** 1. row ***************************
 msg_nro: 3068
 date: 2000-03-01 23:29:50
time_zone: +0200
mail_from: Jones
 reply: jones@example.com
 mail_to: "John Smith" <smith@example.com>
 sbj: UTF-8
 txt: >>>>> "John" == John Smith writes:

John> Hi. I think this is a good idea. Is anyone familiar
John> with UTF-8 or Unicode? Otherwise, I'll put this on my
John> TODO list and see what happens.

Yes, please do that.

Regards,
Jones
 file: inbox-jani-1
 hash: 190402944
1 row in set (0.09 sec)

Using Safe-Updates Mode (--safe-updates)

For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has the
same effect). Safe-updates mode is helpful for cases when you might have issued an UPDATE or
DELETE statement but forgotten the WHERE clause indicating which rows to modify. Normally, such
statements update or delete all rows in the table. With --safe-updates, you can modify rows only by
specifying the key values that identify them, or a LIMIT clause, or both. This helps prevent accidents.
Safe-updates mode also restricts SELECT statements that produce (or are estimated to produce) very
large result sets.

The --safe-updates option causes mysql to execute the following statement when it connects to
the MySQL server, to set the session values of the sql_safe_updates, sql_select_limit, and
max_join_size system variables:

SET sql_safe_updates=1, sql_select_limit=1000, max_join_size=1000000;

The SET statement affects statement processing as follows:

• Enabling sql_safe_updates causes UPDATE and DELETE statements to produce an error if
they do not specify a key constraint in the WHERE clause, or provide a LIMIT clause, or both. For
example:

UPDATE tbl_name SET not_key_column=val WHERE key_column=val;

UPDATE tbl_name SET not_key_column=val LIMIT 1;

• Setting sql_select_limit to 1,000 causes the server to limit all SELECT result sets to 1,000 rows
unless the statement includes a LIMIT clause.

• Setting max_join_size to 1,000,000 causes multiple-table SELECT statements to produce an error
if the server estimates it must examine more than 1,000,000 row combinations.

To specify result set limits different from 1,000 and 1,000,000, you can override the defaults by using
the --select-limit and --max-join-size options when you invoke mysql:

mysql --safe-updates --select-limit=500 --max-join-size=10000

It is possible for UPDATE and DELETE statements to produce an error in safe-updates mode even with
a key specified in the WHERE clause, if the optimizer decides not to use the index on the key column:

• Range access on the index cannot be used if memory usage exceeds that permitted by the
range_optimizer_max_mem_size system variable. The optimizer then falls back to a table scan.
See Limiting Memory Use for Range Optimization.

498

mysql — The MySQL Command-Line Client

• If key comparisons require type conversion, the index may not be used (see Section 10.3.1, “How
MySQL Uses Indexes”). Suppose that an indexed string column c1 is compared to a numeric value
using WHERE c1 = 2222. For such comparisons, the string value is converted to a number and the
operands are compared numerically (see Section 14.3, “Type Conversion in Expression Evaluation”),
preventing use of the index. If safe-updates mode is enabled, an error occurs.

As of MySQL 8.0.13, safe-updates mode also includes these behaviors:

• EXPLAIN with UPDATE and DELETE statements does not produce safe-updates errors. This enables
use of EXPLAIN plus SHOW WARNINGS to see why an index is not used, which can be helpful in
cases such as when a range_optimizer_max_mem_size violation or type conversion occurs and
the optimizer does not use an index even though a key column was specified in the WHERE clause.

• When a safe-updates error occurs, the error message includes the first diagnostic that was
produced, to provide information about the reason for failure. For example, the message may
indicate that the range_optimizer_max_mem_size value was exceeded or type conversion
occurred, either of which can preclude use of an index.

• For multiple-table deletes and updates, an error is produced with safe updates enabled only if any
target table uses a table scan.

Disabling mysql Auto-Reconnect

If the mysql client loses its connection to the server while sending a statement, it immediately and
automatically tries to reconnect once to the server and send the statement again. However, even if
mysql succeeds in reconnecting, your first connection has ended and all your previous session objects
and settings are lost: temporary tables, the autocommit mode, and user-defined and session variables.
Also, any current transaction rolls back. This behavior may be dangerous for you, as in the following
example where the server was shut down and restarted between the first and second statements
without you knowing it:

mysql> SET @a=1;
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t VALUES(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 1
Current database: test

Query OK, 1 row affected (1.30 sec)

mysql> SELECT * FROM t;
+------+
| a |
+------+
| NULL |
+------+
1 row in set (0.05 sec)

The @a user variable has been lost with the connection, and after the reconnection it is undefined. If it
is important to have mysql terminate with an error if the connection has been lost, you can start the
mysql client with the --skip-reconnect option.

For more information about auto-reconnect and its effect on state information when a reconnection
occurs, see Automatic Reconnection Control.

mysql Client Parser Versus Server Parser

The mysql client uses a parser on the client side that is not a duplicate of the complete parser used by
the mysqld server on the server side. This can lead to differences in treatment of certain constructs.
Examples:

• The server parser treats strings delimited by " characters as identifiers rather than as plain strings if
the ANSI_QUOTES SQL mode is enabled.

499

https://dev.mysql.com/doc/c-api/8.0/en/c-api-auto-reconnect.html

mysqladmin — A MySQL Server Administration Program

The mysql client parser does not take the ANSI_QUOTES SQL mode into account. It treats strings
delimited by ", ', and ` characters the same, regardless of whether ANSI_QUOTES is enabled.

• Within /*! ... */ and /*+ ... */ comments, the mysql client parser interprets short-form
mysql commands. The server parser does not interpret them because these commands have no
meaning on the server side.

If it is desirable for mysql not to interpret short-form commands within comments, a partial
workaround is to use the --binary-mode option, which causes all mysql commands to be
disabled except \C and \d in noninteractive mode (for input piped to mysql or loaded using the
source command).

6.5.2 mysqladmin — A MySQL Server Administration Program

mysqladmin is a client for performing administrative operations. You can use it to check the server's
configuration and current status, to create and drop databases, and more.

Invoke mysqladmin like this:

mysqladmin [options] command [command-arg] [command [command-arg]] ...

mysqladmin supports the following commands. Some of the commands take an argument following
the command name.

• create db_name

Create a new database named db_name.

• debug

Prior to MySQL 8.0.20, tell the server to write debug information to the error log. The connected user
must have the SUPER privilege. Format and content of this information is subject to change.

This includes information about the Event Scheduler. See Section 27.4.5, “Event Scheduler Status”.

• drop db_name

Delete the database named db_name and all its tables.

• extended-status

Display the server status variables and their values.

• flush-hosts

Flush all information in the host cache. See Section 7.1.12.3, “DNS Lookups and the Host Cache”.

• flush-logs [log_type ...]

Flush all logs.

The mysqladmin flush-logs command permits optional log types to be given, to specify which
logs to flush. Following the flush-logs command, you can provide a space-separated list of
one or more of the following log types: binary, engine, error, general, relay, slow. These
correspond to the log types that can be specified for the FLUSH LOGS SQL statement.

• flush-privileges

Reload the grant tables (same as reload).

• flush-status

Clear status variables.

500

mysqladmin — A MySQL Server Administration Program

• flush-tables

Flush all tables.

• flush-threads

Flush the thread cache.

• kill id,id,...

Kill server threads. If multiple thread ID values are given, there must be no spaces in the list.

To kill threads belonging to other users, the connected user must have the CONNECTION_ADMIN
privilege (or the deprecated SUPER privilege).

• password new_password

Set a new password. This changes the password to new_password for the account that you use
with mysqladmin for connecting to the server. Thus, the next time you invoke mysqladmin (or any
other client program) using the same account, you must specify the new password.

Warning

Setting a password using mysqladmin should be considered insecure. On
some systems, your password becomes visible to system status programs
such as ps that may be invoked by other users to display command lines.
MySQL clients typically overwrite the command-line password argument with
zeros during their initialization sequence. However, there is still a brief interval
during which the value is visible. Also, on some systems this overwriting
strategy is ineffective and the password remains visible to ps. (SystemV Unix
systems and perhaps others are subject to this problem.)

If the new_password value contains spaces or other characters that are special to your command
interpreter, you need to enclose it within quotation marks. On Windows, be sure to use double
quotation marks rather than single quotation marks; single quotation marks are not stripped from the
password, but rather are interpreted as part of the password. For example:

mysqladmin password "my new password"

The new password can be omitted following the password command. In this case, mysqladmin
prompts for the password value, which enables you to avoid specifying the password on the
command line. Omitting the password value should be done only if password is the final command
on the mysqladmin command line. Otherwise, the next argument is taken as the password.

Caution

Do not use this command used if the server was started with the --skip-
grant-tables option. No password change is applied. This is true even
if you precede the password command with flush-privileges on
the same command line to re-enable the grant tables because the flush
operation occurs after you connect. However, you can use mysqladmin
flush-privileges to re-enable the grant tables and then use a separate
mysqladmin password command to change the password.

• ping

Check whether the server is available. The return status from mysqladmin is 0 if the server is
running, 1 if it is not. This is 0 even in case of an error such as Access denied, because this
means that the server is running but refused the connection, which is different from the server not
running.

• processlist

501

mysqladmin — A MySQL Server Administration Program

Show a list of active server threads. This is like the output of the SHOW PROCESSLIST statement.
If the --verbose option is given, the output is like that of SHOW FULL PROCESSLIST. (See
Section 15.7.7.29, “SHOW PROCESSLIST Statement”.)

• reload

Reload the grant tables.

• refresh

Flush all tables and close and open log files.

• shutdown

Stop the server.

• start-replica

Start replication on a replica server. Use this command from MySQL 8.0.26.

• start-slave

Start replication on a replica server. Use this command before MySQL 8.0.26.

• status

Display a short server status message.

• stop-replica

Stop replication on a replica server. Use this command from MySQL 8.0.26.

• stop-slave

Stop replication on a replica server. Use this command before MySQL 8.0.26.

• variables

Display the server system variables and their values.

• version

Display version information from the server.

All commands can be shortened to any unique prefix. For example:

$> mysqladmin proc stat
+----+-------+-----------+----+---------+------+-------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+---------+------+-------+------------------+
| 51 | jones | localhost | | Query | 0 | | show processlist |
+----+-------+-----------+----+---------+------+-------+------------------+
Uptime: 1473624 Threads: 1 Questions: 39487
Slow queries: 0 Opens: 541 Flush tables: 1
Open tables: 19 Queries per second avg: 0.0268

The mysqladmin status command result displays the following values:

• Uptime

The number of seconds the MySQL server has been running.

• Threads

The number of active threads (clients).

502

mysqladmin — A MySQL Server Administration Program

• Questions

The number of questions (queries) from clients since the server was started.

• Slow queries

The number of queries that have taken more than long_query_time seconds. See Section 7.4.5,
“The Slow Query Log”.

• Opens

The number of tables the server has opened.

• Flush tables

The number of flush-*, refresh, and reload commands the server has executed.

• Open tables

The number of tables that currently are open.

If you execute mysqladmin shutdown when connecting to a local server using a Unix socket file,
mysqladmin waits until the server's process ID file has been removed, to ensure that the server has
stopped properly.

mysqladmin supports the following options, which can be specified on the command line or in the
[mysqladmin] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 6.2.2.2, “Using Option Files”.

Table 6.13 mysqladmin Options

Option Name Description Introduced Deprecated

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets can be
found

--compress Compress all
information sent
between client and
server

8.0.18

--compression-
algorithms

Permitted compression
algorithms for
connections to server

8.0.18

--connect-timeout Number of seconds
before connection
timeout

--count Number of iterations
to make for repeated
command execution

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,

503

mysqladmin — A MySQL Server Administration Program

Option Name Description Introduced Deprecated
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default
character set

--defaults-extra-file Read named option
file in addition to usual
option files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--enable-cleartext-plugin Enable cleartext
authentication plugin

--force Continue even if an SQL
error occurs

--get-server-public-key Request RSA public key
from server

--help Display help message
and exit

--host Host on which MySQL
server is located

--login-path Read login path options
from .mylogin.cnf

--no-beep Do not beep when
errors occur

--no-defaults Read no option files

--password Password to use when
connecting to server

--password1 First multifactor
authentication password
to use when connecting
to server

8.0.27

--password2 Second multifactor
authentication password
to use when connecting
to server

8.0.27

--password3 Third multifactor
authentication password
to use when connecting
to server

8.0.27

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

504

mysqladmin — A MySQL Server Administration Program

Option Name Description Introduced Deprecated

--print-defaults Print default options

--protocol Transport protocol to
use

--relative Show the difference
between the current and
previous values when
used with the --sleep
option

--server-public-key-path Path name to file
containing RSA public
key

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--show-warnings Show warnings after
statement execution

--shutdown-timeout The maximum number
of seconds to wait for
server shutdown

--silent Silent mode

--sleep Execute commands
repeatedly, sleeping
for delay seconds in
between

--socket Unix socket file or
Windows named pipe to
use

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

--ssl-key File that contains X.509
key

505

mysqladmin — A MySQL Server Administration Program

Option Name Description Introduced Deprecated

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

--vertical Print query output rows
vertically (one line per
column value)

--wait If the connection cannot
be established, wait and
retry instead of aborting

--zstd-compression-level Compression level
for connections to
server that use zstd
compression

8.0.18

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=path

Type String

Default Value [none]

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

506

mysqladmin — A MySQL Server Administration Program

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Deprecated 8.0.18

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 6.2.8,
“Connection Compression Control”.

As of MySQL 8.0.18, this option is deprecated. Expect it to be removed in a future version of MySQL.
See Configuring Legacy Connection Compression.

• --compression-algorithms=value

Command-Line Format --compression-algorithms=value

Introduced 8.0.18

Type Set

Default Value uncompressed

Valid Values zlib

zstd

uncompressed

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the protocol_compression_algorithms system variable. The default value is
uncompressed.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

• --connect-timeout=value

Command-Line Format --connect-timeout=value

Type Numeric

Default Value 43200

The maximum number of seconds before connection timeout. The default value is 43200 (12 hours).

• --count=N, -c N

Command-Line Format --count=#

The number of iterations to make for repeated command execution if the --sleep option is given.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o,/tmp/mysqladmin.trace

507

mysqladmin — A MySQL Server Administration Program

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqladmin.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 8.2.17, “Pluggable
Authentication”.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Use charset_name as the default character set. See Section 12.15, “Character Set Configuration”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

508

mysqladmin — A MySQL Server Administration Program

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqladmin normally reads the [client] and [mysqladmin] groups. If this option is
given as --defaults-group-suffix=_other, mysqladmin also reads the [client_other]
and [mysqladmin_other] groups.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Type Boolean

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 8.4.1.4, “Client-
Side Cleartext Pluggable Authentication”.)

• --force, -f

Command-Line Format --force

Do not ask for confirmation for the drop db_name command. With multiple commands, continue
even if an error occurs.

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This
option applies to clients that authenticate with the caching_sha2_password authentication
plugin. For that plugin, the server does not send the public key unless requested. This option

509

mysqladmin — A MySQL Server Administration Program

is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

Connect to the MySQL server on the given host.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --no-beep, -b

Command-Line Format --no-beep

Suppress the warning beep that is emitted by default for errors such as a failure to connect to the
server.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

510

mysqladmin — A MySQL Server Administration Program

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, mysqladmin prompts for one. If given, there must be no space between --
password= or -p and the password following it. If no password option is specified, the default is to
send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqladmin should not prompt for one, use
the --skip-password option.

• --password1[=pass_val]

The password for multifactor authentication factor 1 of the MySQL account used for connecting to the
server. The password value is optional. If not given, mysql prompts for one. If given, there must be
no space between --password1= and the password following it. If no password option is specified,
the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqladmin should not prompt for one, use
the --skip-password1 option.

--password1 and --password are synonymous, as are --skip-password1 and --skip-
password.

• --password2[=pass_val]

The password for multifactor authentication factor 2 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --password3[=pass_val]

The password for multifactor authentication factor 3 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

511

mysqladmin — A MySQL Server Administration Program

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqladmin does not find it. See Section 8.2.17, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 6.2.7, “Connection Transport Protocols”.

• --relative, -r

Command-Line Format --relative

Show the difference between the current and previous values when used with the --sleep option.
This option works only with the extended-status command.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

512

mysqladmin — A MySQL Server Administration Program

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled
to support shared-memory connections.

• --show-warnings

Command-Line Format --show-warnings

Show warnings resulting from execution of statements sent to the server.

• --shutdown-timeout=value

Command-Line Format --shutdown-timeout=seconds

Type Numeric

Default Value 3600

The maximum number of seconds to wait for server shutdown. The default value is 3600 (1 hour).

• --silent, -s

Command-Line Format --silent

Exit silently if a connection to the server cannot be established. 513

mysqladmin — A MySQL Server Administration Program

• --sleep=delay, -i delay

Command-Line Format --sleep=delay

Execute commands repeatedly, sleeping for delay seconds in between. The --count option
determines the number of iterations. If --count is not given, mysqladmin executes commands
indefinitely until interrupted.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

Default Value OFF

Valid Values OFF

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON
or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

514

mysqladmin — A MySQL Server Administration Program

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use for connecting to the server.

If you are using the Rewriter plugin with MySQL 8.0.31 or later, you should grant this user the
SKIP_QUERY_REWRITE privilege.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does.

• --version, -V

Command-Line Format --version

Display version information and exit.

• --vertical, -E

515

mysqlcheck — A Table Maintenance Program

Command-Line Format --vertical

Print output vertically. This is similar to --relative, but prints output vertically.

• --wait[=count], -w[count]

Command-Line Format --wait

If the connection cannot be established, wait and retry instead of aborting. If a count value is given,
it indicates the number of times to retry. The default is one time.

• --zstd-compression-level=level

Command-Line Format --zstd-compression-level=#

Introduced 8.0.18

Type Integer

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
The default zstd compression level is 3. The compression level setting has no effect on connections
that do not use zstd compression.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

6.5.3 mysqlcheck — A Table Maintenance Program

The mysqlcheck client performs table maintenance: It checks, repairs, optimizes, or analyzes tables.

Each table is locked and therefore unavailable to other sessions while it is being processed, although
for check operations, the table is locked with a READ lock only (see Section 15.3.6, “LOCK TABLES
and UNLOCK TABLES Statements”, for more information about READ and WRITE locks). Table
maintenance operations can be time-consuming, particularly for large tables. If you use the --
databases or --all-databases option to process all tables in one or more databases, an
invocation of mysqlcheck might take a long time. (This is also true for the MySQL upgrade procedure
if it determines that table checking is needed because it processes tables the same way.)

mysqlcheck must be used when the mysqld server is running, which means that you do not have to
stop the server to perform table maintenance.

mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and
OPTIMIZE TABLE in a convenient way for the user. It determines which statements to use for the
operation you want to perform, and then sends the statements to the server to be executed. For details
about which storage engines each statement works with, see the descriptions for those statements in
Section 15.7.3, “Table Maintenance Statements”.

All storage engines do not necessarily support all four maintenance operations. In such cases, an error
message is displayed. For example, if test.t is an MEMORY table, an attempt to check it produces this
result:

$> mysqlcheck test t
test.t
note : The storage engine for the table doesn't support check

516

mysqlcheck — A Table Maintenance Program

If mysqlcheck is unable to repair a table, see Section 3.14, “Rebuilding or Repairing Tables or
Indexes” for manual table repair strategies. This is the case, for example, for InnoDB tables, which can
be checked with CHECK TABLE, but not repaired with REPAIR TABLE.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible
causes include but are not limited to file system errors.

There are three general ways to invoke mysqlcheck:

mysqlcheck [options] db_name [tbl_name ...]
mysqlcheck [options] --databases db_name ...
mysqlcheck [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or --all-
databases option, entire databases are checked.

mysqlcheck has a special feature compared to other client programs. The default behavior of
checking tables (--check) can be changed by renaming the binary. If you want to have a tool that
repairs tables by default, you should just make a copy of mysqlcheck named mysqlrepair, or make
a symbolic link to mysqlcheck named mysqlrepair. If you invoke mysqlrepair, it repairs tables.

The names shown in the following table can be used to change mysqlcheck default behavior.

Command Meaning

mysqlrepair The default option is --repair

mysqlanalyze The default option is --analyze

mysqloptimize The default option is --optimize

mysqlcheck supports the following options, which can be specified on the command line or in the
[mysqlcheck] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 6.2.2.2, “Using Option Files”.

Table 6.14 mysqlcheck Options

Option Name Description Introduced Deprecated

--all-databases Check all tables in all
databases

--all-in-1 Execute a single
statement for each
database that names
all the tables from that
database

--analyze Analyze the tables

--auto-repair If a checked table is
corrupted, automatically
fix it

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets are
installed

--check Check the tables for
errors

517

mysqlcheck — A Table Maintenance Program

Option Name Description Introduced Deprecated

--check-only-changed Check only tables that
have changed since the
last check

--check-upgrade Invoke CHECK
TABLE with the FOR
UPGRADE option

--compress Compress all
information sent
between client and
server

8.0.18

--compression-
algorithms

Permitted compression
algorithms for
connections to server

8.0.18

--databases Interpret all arguments
as database names

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default
character set

--defaults-extra-file Read named option
file in addition to usual
option files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--enable-cleartext-plugin Enable cleartext
authentication plugin

--extended Check and repair tables

--fast Check only tables that
have not been closed
properly

--force Continue even if an SQL
error occurs

--get-server-public-key Request RSA public key
from server

--help Display help message
and exit

--host Host on which MySQL
server is located

518

mysqlcheck — A Table Maintenance Program

Option Name Description Introduced Deprecated

--login-path Read login path options
from .mylogin.cnf

--medium-check Do a check that is faster
than an --extended
operation

--no-defaults Read no option files

--optimize Optimize the tables

--password Password to use when
connecting to server

--password1 First multifactor
authentication password
to use when connecting
to server

8.0.27

--password2 Second multifactor
authentication password
to use when connecting
to server

8.0.27

--password3 Third multifactor
authentication password
to use when connecting
to server

8.0.27

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to
use

--quick The fastest method of
checking

--repair Perform a repair that
can fix almost anything
except unique keys that
are not unique

--server-public-key-path Path name to file
containing RSA public
key

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--silent Silent mode

--skip-database Omit this database from
performed operations

519

mysqlcheck — A Table Maintenance Program

Option Name Description Introduced Deprecated

--socket Unix socket file or
Windows named pipe to
use

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--tables Overrides the --
databases or -B option

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

--use-frm For repair operations on
MyISAM tables

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

--write-binlog Log ANALYZE,
OPTIMIZE, REPAIR
statements to binary log.

520

mysqlcheck — A Table Maintenance Program

Option Name Description Introduced Deprecated
--skip-write-binlog adds
NO_WRITE_TO_BINLOG
to these statements

--zstd-compression-level Compression level
for connections to
server that use zstd
compression

8.0.18

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --all-databases, -A

Command-Line Format --all-databases

Check all tables in all databases. This is the same as using the --databases option and
naming all the databases on the command line, except that the INFORMATION_SCHEMA and
performance_schema databases are not checked. They can be checked by explicitly naming them
with the --databases option.

• --all-in-1, -1

Command-Line Format --all-in-1

Instead of issuing a statement for each table, execute a single statement for each database that
names all the tables from that database to be processed.

• --analyze, -a

Command-Line Format --analyze

Analyze the tables.

• --auto-repair

Command-Line Format --auto-repair

If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all tables
have been checked.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

521

mysqlcheck — A Table Maintenance Program

Type Directory name

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

• --check, -c

Command-Line Format --check

Check the tables for errors. This is the default operation.

• --check-only-changed, -C

Command-Line Format --check-only-changed

Check only tables that have changed since the last check or that have not been closed properly.

• --check-upgrade, -g

Command-Line Format --check-upgrade

Invoke CHECK TABLE with the FOR UPGRADE option to check tables for incompatibilities with the
current version of the server.

• --compress

Command-Line Format --compress[={OFF|ON}]

Deprecated 8.0.18

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 6.2.8,
“Connection Compression Control”.

As of MySQL 8.0.18, this option is deprecated. Expect it to be removed in a future version of MySQL.
See Configuring Legacy Connection Compression.

• --compression-algorithms=value

Command-Line Format --compression-algorithms=value

Introduced 8.0.18

Type Set

Default Value uncompressed

Valid Values zlib

zstd
522

mysqlcheck — A Table Maintenance Program

uncompressed

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the protocol_compression_algorithms system variable. The default value is
uncompressed.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

• --databases, -B

Command-Line Format --databases

Process all tables in the named databases. Normally, mysqlcheck treats the first name argument
on the command line as a database name and any following names as table names. With this option,
it treats all name arguments as database names.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --default-character-set=charset_name

523

mysqlcheck — A Table Maintenance Program

Command-Line Format --default-character-set=charset_name

Type String

Use charset_name as the default character set. See Section 12.15, “Character Set Configuration”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqlcheck normally reads the [client] and [mysqlcheck] groups. If this option is
given as --defaults-group-suffix=_other, mysqlcheck also reads the [client_other]
and [mysqlcheck_other] groups.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --extended, -e

Command-Line Format --extended

If you are using this option to check tables, it ensures that they are 100% consistent but takes a long
time.

If you are using this option to repair tables, it runs an extended repair that may not only take a long
time to execute, but may produce a lot of garbage rows also!

524

mysqlcheck — A Table Maintenance Program

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 8.2.17, “Pluggable
Authentication”.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Type Boolean

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 8.4.1.4, “Client-
Side Cleartext Pluggable Authentication”.)

• --fast, -F

Command-Line Format --fast

Check only tables that have not been closed properly.

• --force, -f

Command-Line Format --force

Continue even if an SQL error occurs.

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This
option applies to clients that authenticate with the caching_sha2_password authentication
plugin. For that plugin, the server does not send the public key unless requested. This option
is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

525

mysqlcheck — A Table Maintenance Program

Connect to the MySQL server on the given host.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --medium-check, -m

Command-Line Format --medium-check

Do a check that is faster than an --extended operation. This finds only 99.99% of all errors, which
should be good enough in most cases.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --optimize, -o

Command-Line Format --optimize

Optimize the tables.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, mysqlcheck prompts for one. If given, there must be no space between --

526

mysqlcheck — A Table Maintenance Program

password= or -p and the password following it. If no password option is specified, the default is to
send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlcheck should not prompt for one, use
the --skip-password option.

• --password1[=pass_val]

The password for multifactor authentication factor 1 of the MySQL account used for connecting to
the server. The password value is optional. If not given, mysqlcheck prompts for one. If given, there
must be no space between --password1= and the password following it. If no password option is
specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlcheck should not prompt for one, use
the --skip-password1 option.

--password1 and --password are synonymous, as are --skip-password1 and --skip-
password.

• --password2[=pass_val]

The password for multifactor authentication factor 2 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --password3[=pass_val]

The password for multifactor authentication factor 3 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlcheck does not find it. See Section 8.2.17, “Pluggable
Authentication”.

527

mysqlcheck — A Table Maintenance Program

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 6.2.7, “Connection Transport Protocols”.

• --quick, -q

Command-Line Format --quick

If you are using this option to check tables, it prevents the check from scanning the rows to check for
incorrect links. This is the fastest check method.

If you are using this option to repair tables, it tries to repair only the index tree. This is the fastest
repair method.

• --repair, -r

Command-Line Format --repair

Perform a repair that can fix almost anything except unique keys that are not unique.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

528

mysqlcheck — A Table Maintenance Program

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled
to support shared-memory connections.

• --silent, -s

Command-Line Format --silent

Silent mode. Print only error messages.

• --skip-database=db_name

Command-Line Format --skip-database=db_name

Do not include the named database (case-sensitive) in the operations performed by mysqlcheck.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --ssl*

529

mysqlcheck — A Table Maintenance Program

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

Default Value OFF

Valid Values OFF

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON
or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --tables

Command-Line Format --tables

Override the --databases or -B option. All name arguments following the option are regarded as
table names.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

530

mysqlcheck — A Table Maintenance Program

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

• --use-frm

Command-Line Format --use-frm

For repair operations on MyISAM tables, get the table structure from the data dictionary so that the
table can be repaired even if the .MYI header is corrupted.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print information about the various stages of program operation.

• --version, -V

Command-Line Format --version

Display version information and exit.

• --write-binlog

Command-Line Format --write-binlog

This option is enabled by default, so that ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements generated by mysqlcheck are written to the binary log. Use --skip-write-binlog
to cause NO_WRITE_TO_BINLOG to be added to the statements so that they are not logged. Use the
--skip-write-binlog when these statements should not be sent to replicas or run when using
the binary logs for recovery from backup.

531

mysqldump — A Database Backup Program

• --zstd-compression-level=level

Command-Line Format --zstd-compression-level=#

Introduced 8.0.18

Type Integer

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
The default zstd compression level is 3. The compression level setting has no effect on connections
that do not use zstd compression.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

6.5.4 mysqldump — A Database Backup Program

The mysqldump client utility performs logical backups, producing a set of SQL statements that can be
executed to reproduce the original database object definitions and table data. It dumps one or more
MySQL databases for backup or transfer to another SQL server. The mysqldump command can also
generate output in CSV, other delimited text, or XML format.

Tip

Consider using the MySQL Shell dump utilities, which provide parallel
dumping with multiple threads, file compression, and progress information
display, as well as cloud features such as Oracle Cloud Infrastructure Object
Storage streaming, and MySQL HeatWave Service compatibility checks and
modifications. Dumps can be easily imported into a MySQL Server instance
or a MySQL HeatWave Service DB System using the MySQL Shell load dump
utilities. Installation instructions for MySQL Shell can be found here.

• Performance and Scalability Considerations

• Invocation Syntax

• Option Syntax - Alphabetical Summary

• Connection Options

• Option-File Options

• DDL Options

• Debug Options

• Help Options

• Internationalization Options

• Replication Options

• Format Options

• Filtering Options

• Performance Options

• Transactional Options

• Option Groups

532

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

mysqldump — A Database Backup Program

• Examples

• Restrictions

mysqldump requires at least the SELECT privilege for dumped tables, SHOW VIEW for dumped
views, TRIGGER for dumped triggers, LOCK TABLES if the --single-transaction option is
not used, PROCESS (as of MySQL 8.0.21) if the --no-tablespaces option is not used, and (as
of MySQL 8.0.32) the RELOAD or FLUSH_TABLES privilege with --single-transaction if both
gtid_mode=ON and gtid_purged=ON|AUTO. Certain options might require other privileges as noted
in the option descriptions.

To reload a dump file, you must have the privileges required to execute the statements that it contains,
such as the appropriate CREATE privileges for objects created by those statements.

mysqldump output can include ALTER DATABASE statements that change the database collation.
These may be used when dumping stored programs to preserve their character encodings. To reload a
dump file containing such statements, the ALTER privilege for the affected database is required.

Note

A dump made using PowerShell on Windows with output redirection creates a
file that has UTF-16 encoding:

mysqldump [options] > dump.sql

However, UTF-16 is not permitted as a connection character set (see
Impermissible Client Character Sets), so the dump file cannot be loaded
correctly. To work around this issue, use the --result-file option, which
creates the output in ASCII format:

mysqldump [options] --result-file=dump.sql

It is not recommended to load a dump file when GTIDs are enabled on the server (gtid_mode=ON),
if your dump file includes system tables. mysqldump issues DML instructions for the system tables
which use the non-transactional MyISAM storage engine, and this combination is not permitted when
GTIDs are enabled.

Performance and Scalability Considerations

mysqldump advantages include the convenience and flexibility of viewing or even editing the output
before restoring. You can clone databases for development and DBA work, or produce slight variations
of an existing database for testing. It is not intended as a fast or scalable solution for backing up
substantial amounts of data. With large data sizes, even if the backup step takes a reasonable time,
restoring the data can be very slow because replaying the SQL statements involves disk I/O for
insertion, index creation, and so on.

For large-scale backup and restore, a physical backup is more appropriate, to copy the data files in
their original format so that they can be restored quickly.

If your tables are primarily InnoDB tables, or if you have a mix of InnoDB and MyISAM tables,
consider using mysqlbackup, which is available as part of MySQL Enterprise. This tool provides high
performance for InnoDB backups with minimal disruption; it can also back up tables from MyISAM
and other storage engines; it also provides a number of convenient options to accommodate different
backup scenarios. See Section 32.1, “MySQL Enterprise Backup Overview”.

mysqldump can retrieve and dump table contents row by row, or it can retrieve the entire content from
a table and buffer it in memory before dumping it. Buffering in memory can be a problem if you are
dumping large tables. To dump tables row by row, use the --quick option (or --opt, which enables
--quick). The --opt option (and hence --quick) is enabled by default, so to enable memory
buffering, use --skip-quick.

If you are using a recent version of mysqldump to generate a dump to be reloaded into a very old
MySQL server, use the --skip-opt option instead of the --opt or --extended-insert option.

533

mysqldump — A Database Backup Program

For additional information about mysqldump, see Section 9.4, “Using mysqldump for Backups”.

Invocation Syntax

There are in general three ways to use mysqldump—in order to dump a set of one or more tables, a
set of one or more complete databases, or an entire MySQL server—as shown here:

mysqldump [options] db_name [tbl_name ...]
mysqldump [options] --databases db_name ...
mysqldump [options] --all-databases

To dump entire databases, do not name any tables following db_name, or use the --databases or
--all-databases option.

To see a list of the options your version of mysqldump supports, issue the command mysqldump --
help.

Option Syntax - Alphabetical Summary

mysqldump supports the following options, which can be specified on the command line or in the
[mysqldump] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 6.2.2.2, “Using Option Files”.

Table 6.15 mysqldump Options

Option Name Description Introduced Deprecated

--add-drop-database Add DROP DATABASE
statement before each
CREATE DATABASE
statement

--add-drop-table Add DROP TABLE
statement before
each CREATE TABLE
statement

--add-drop-trigger Add DROP TRIGGER
statement before each
CREATE TRIGGER
statement

--add-locks Surround each table
dump with LOCK
TABLES and UNLOCK
TABLES statements

--all-databases Dump all tables in all
databases

--allow-keywords Allow creation of
column names that are
keywords

--apply-replica-
statements

Include STOP REPLICA
prior to CHANGE
REPLICATION
SOURCE TO statement
and START REPLICA at
end of output

8.0.26

--apply-slave-statements Include STOP SLAVE
prior to CHANGE
MASTER statement and
START SLAVE at end of
output

8.0.26

534

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets are
installed

--column-statistics Write ANALYZE TABLE
statements to generate
statistics histograms

--comments Add comments to dump
file

--compact Produce more compact
output

--compatible Produce output that is
more compatible with
other database systems
or with older MySQL
servers

--complete-insert Use complete INSERT
statements that include
column names

--compress Compress all
information sent
between client and
server

8.0.18

--compression-
algorithms

Permitted compression
algorithms for
connections to server

8.0.18

--create-options Include all MySQL-
specific table options
in CREATE TABLE
statements

--databases Interpret all name
arguments as database
names

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default
character set

--defaults-extra-file Read named option
file in addition to usual
option files

535

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--delete-master-logs On a replication source
server, delete the binary
logs after performing the
dump operation

8.0.26

--delete-source-logs On a replication source
server, delete the binary
logs after performing the
dump operation

8.0.26

--disable-keys For each table, surround
INSERT statements with
statements to disable
and enable keys

--dump-date Include dump date as
"Dump completed on"
comment if --comments
is given

--dump-replica Include CHANGE
REPLICATION
SOURCE TO statement
that lists binary log
coordinates of replica's
source

8.0.26

--dump-slave Include CHANGE
MASTER statement
that lists binary log
coordinates of replica's
source

8.0.26

--enable-cleartext-plugin Enable cleartext
authentication plugin

--events Dump events from
dumped databases

--extended-insert Use multiple-row
INSERT syntax

--fields-enclosed-by This option is used with
the --tab option and
has the same meaning
as the corresponding
clause for LOAD DATA

--fields-escaped-by This option is used with
the --tab option and
has the same meaning
as the corresponding
clause for LOAD DATA

--fields-optionally-
enclosed-by

This option is used with
the --tab option and
has the same meaning

536

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated
as the corresponding
clause for LOAD DATA

--fields-terminated-by This option is used with
the --tab option and
has the same meaning
as the corresponding
clause for LOAD DATA

--flush-logs Flush MySQL server
log files before starting
dump

--flush-privileges Emit a FLUSH
PRIVILEGES statement
after dumping mysql
database

--force Continue even if an SQL
error occurs during a
table dump

--get-server-public-key Request RSA public key
from server

--help Display help message
and exit

--hex-blob Dump binary columns
using hexadecimal
notation

--host Host on which MySQL
server is located

--ignore-error Ignore specified errors

--ignore-table Do not dump given table

--include-master-host-
port

Include
MASTER_HOST/
MASTER_PORT
options in CHANGE
MASTER statement
produced with --dump-
slave

8.0.26

--include-source-host-
port

Include
SOURCE_HOST
and SOURCE_PORT
options in CHANGE
REPLICATION
SOURCE TO statement
produced with --dump-
replica

8.0.26

--insert-ignore Write INSERT IGNORE
rather than INSERT
statements

--lines-terminated-by This option is used with
the --tab option and
has the same meaning
as the corresponding
clause for LOAD DATA

537

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--lock-all-tables Lock all tables across all
databases

--lock-tables Lock all tables before
dumping them

--log-error Append warnings and
errors to named file

--login-path Read login path options
from .mylogin.cnf

--master-data Write the binary log file
name and position to the
output

8.0.26

--max-allowed-packet Maximum packet length
to send to or receive
from server

--mysqld-long-query-
time

Session value for slow
query threshold

8.0.30

--net-buffer-length Buffer size for
TCP/IP and socket
communication

--network-timeout Increase network
timeouts to permit larger
table dumps

--no-autocommit Enclose the INSERT
statements for each
dumped table within
SET autocommit
= 0 and COMMIT
statements

--no-create-db Do not write CREATE
DATABASE statements

--no-create-info Do not write CREATE
TABLE statements that
re-create each dumped
table

--no-data Do not dump table
contents

--no-defaults Read no option files

--no-set-names Same as --skip-set-
charset

--no-tablespaces Do not write any
CREATE LOGFILE
GROUP or CREATE
TABLESPACE
statements in output

--opt Shorthand for --add-
drop-table --add-locks --
create-options --disable-
keys --extended-insert --
lock-tables --quick --set-
charset

538

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--order-by-primary Dump each table's rows
sorted by its primary
key, or by its first unique
index

--password Password to use when
connecting to server

--password1 First multifactor
authentication password
to use when connecting
to server

8.0.27

--password2 Second multifactor
authentication password
to use when connecting
to server

8.0.27

--password3 Third multifactor
authentication password
to use when connecting
to server

8.0.27

--pipe Connect to server using
named pipe (Windows
only)

--plugin-authentication-
kerberos-client-mode

Permit GSSAPI
pluggable authentication
through the MIT
Kerberos library on
Windows

8.0.32

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to
use

--quick Retrieve rows for a table
from the server a row at
a time

--quote-names Quote identifiers within
backtick characters

--replace Write REPLACE
statements rather than
INSERT statements

--result-file Direct output to a given
file

--routines Dump stored routines
(procedures and
functions) from dumped
databases

--server-public-key-path Path name to file
containing RSA public
key

539

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--set-charset Add SET NAMES
default_character_set to
output

--set-gtid-purged Whether to add SET
@@GLOBAL.GTID_PURGED
to output

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--show-create-skip-
secondary-engine

Exclude SECONDARY
ENGINE clause from
CREATE TABLE
statements

8.0.18

--single-transaction Issue a BEGIN SQL
statement before
dumping data from
server

--skip-add-drop-table Do not add a DROP
TABLE statement before
each CREATE TABLE
statement

--skip-add-locks Do not add locks

--skip-comments Do not add comments to
dump file

--skip-compact Do not produce more
compact output

--skip-disable-keys Do not disable keys

--skip-extended-insert Turn off extended-insert

--skip-generated-
invisible-primary-key

Do not include
generated invisible
primary keys in dump
file

8.0.30

--skip-opt Turn off options set by --
opt

--skip-quick Do not retrieve rows for
a table from the server a
row at a time

--skip-quote-names Do not quote identifiers

--skip-set-charset Do not write SET
NAMES statement

--skip-triggers Do not dump triggers

--skip-tz-utc Turn off tz-utc

--socket Unix socket file or
Windows named pipe to
use

--source-data Write the binary log file
name and position to the
output

8.0.26

540

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--tab Produce tab-separated
data files

--tables Override --databases or
-B option

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

--triggers Dump triggers for each
dumped table

--tz-utc Add SET
TIME_ZONE='+00:00' to
dump file

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

541

mysqldump — A Database Backup Program

Option Name Description Introduced Deprecated

--where Dump only rows
selected by given
WHERE condition

--xml Produce XML output

--zstd-compression-level Compression level
for connections to
server that use zstd
compression

8.0.18

Connection Options

The mysqldump command logs into a MySQL server to extract information. The following options
specify how to connect to the MySQL server, either on the same machine or a remote system.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Deprecated 8.0.18

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 6.2.8,
“Connection Compression Control”.

As of MySQL 8.0.18, this option is deprecated. Expect it to be removed in a future version of MySQL.
See Configuring Legacy Connection Compression.

• --compression-algorithms=value

Command-Line Format --compression-algorithms=value

Introduced 8.0.18

Type Set

Default Value uncompressed

Valid Values zlib

zstd

uncompressed

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the protocol_compression_algorithms system variable. The default value is
uncompressed.

For more information, see Section 6.2.8, “Connection Compression Control”.

542

mysqldump — A Database Backup Program

This option was added in MySQL 8.0.18.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 8.2.17, “Pluggable
Authentication”.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Type Boolean

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 8.4.1.4, “Client-
Side Cleartext Pluggable Authentication”.)

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This
option applies to clients that authenticate with the caching_sha2_password authentication
plugin. For that plugin, the server does not send the public key unless requested. This option
is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --host=host_name, -h host_name

Command-Line Format --host

Dump data from the MySQL server on the given host. The default host is localhost.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to

543

mysqldump — A Database Backup Program

authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, mysqldump prompts for one. If given, there must be no space between --
password= or -p and the password following it. If no password option is specified, the default is to
send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqldump should not prompt for one, use
the --skip-password option.

• --password1[=pass_val]

The password for multifactor authentication factor 1 of the MySQL account used for connecting to
the server. The password value is optional. If not given, mysqldump prompts for one. If given, there
must be no space between --password1= and the password following it. If no password option is
specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqldump should not prompt for one, use
the --skip-password1 option.

--password1 and --password are synonymous, as are --skip-password1 and --skip-
password.

• --password2[=pass_val]

The password for multifactor authentication factor 2 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --password3[=pass_val]

The password for multifactor authentication factor 3 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --pipe, -W

Command-Line Format --pipe

544

mysqldump — A Database Backup Program

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-authentication-kerberos-client-mode=value

Command-Line Format --plugin-authentication-kerberos-
client-mode

Introduced 8.0.32

Type String

Default Value SSPI

Valid Values GSSAPI

On Windows, the authentication_kerberos_client authentication plugin supports this plugin
option. It provides two possible values that the client user can set at runtime: SSPI and GSSAPI.

The default value for the client-side plugin option uses Security Support Provider Interface (SSPI),
which is capable of acquiring credentials from the Windows in-memory cache. Alternatively, the
client user can select a mode that supports Generic Security Service Application Program Interface
(GSSAPI) through the MIT Kerberos library on Windows. GSSAPI is capable of acquiring cached
credentials previously generated by using the kinit command.

For more information, see Commands for Windows Clients in GSSAPI Mode.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqldump does not find it. See Section 8.2.17, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

545

mysqldump — A Database Backup Program

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 6.2.7, “Connection Transport Protocols”.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

Default Value OFF

Valid Values OFF

546

mysqldump — A Database Backup Program

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON
or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

547

mysqldump — A Database Backup Program

• --user=user_name, -u user_name

Command-Line Format --user=user_name

Type String

The user name of the MySQL account to use for connecting to the server.

If you are using the Rewriter plugin with MySQL 8.0.31 or later, you should grant this user the
SKIP_QUERY_REWRITE privilege.

• --zstd-compression-level=level

Command-Line Format --zstd-compression-level=#

Introduced 8.0.18

Type Integer

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
The default zstd compression level is 3. The compression level setting has no effect on connections
that do not use zstd compression.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

Option-File Options

These options are used to control which option files to read.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

548

mysqldump — A Database Backup Program

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqldump normally reads the [client] and [mysqldump] groups. If this option
is given as --defaults-group-suffix=_other, mysqldump also reads the [client_other]
and [mysqldump_other] groups.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

DDL Options

Usage scenarios for mysqldump include setting up an entire new MySQL instance (including database
tables), and replacing data inside an existing instance with existing databases and tables. The following
options let you specify which things to tear down and set up when restoring a dump, by encoding
various DDL statements within the dump file.

• --add-drop-database

Command-Line Format --add-drop-database

Write a DROP DATABASE statement before each CREATE DATABASE statement. This option is
typically used in conjunction with the --all-databases or --databases option because no
CREATE DATABASE statements are written unless one of those options is specified.

Note

In MySQL 8.0, the mysql schema is considered a system schema that
cannot be dropped by end users. If --add-drop-database is used with
--all-databases or with --databases where the list of schemas to

549

mysqldump — A Database Backup Program

be dumped includes mysql, the dump file contains a DROP DATABASE
`mysql` statement that causes an error when the dump file is reloaded.

Instead, to use --add-drop-database, use --databases with a list of
schemas to be dumped, where the list does not include mysql.

• --add-drop-table

Command-Line Format --add-drop-table

Write a DROP TABLE statement before each CREATE TABLE statement.

• --add-drop-trigger

Command-Line Format --add-drop-trigger

Write a DROP TRIGGER statement before each CREATE TRIGGER statement.

• --all-tablespaces, -Y

Command-Line Format --all-tablespaces

Adds to a table dump all SQL statements needed to create any tablespaces used by an NDB table.
This information is not otherwise included in the output from mysqldump. This option is currently
relevant only to NDB Cluster tables.

• --no-create-db, -n

Command-Line Format --no-create-db

Suppress the CREATE DATABASE statements that are otherwise included in the output if the --
databases or --all-databases option is given.

• --no-create-info, -t

Command-Line Format --no-create-info

Do not write CREATE TABLE statements that create each dumped table.

Note

This option does not exclude statements creating log file groups or
tablespaces from mysqldump output; however, you can use the --no-
tablespaces option for this purpose.

• --no-tablespaces, -y

Command-Line Format --no-tablespaces

This option suppresses all CREATE LOGFILE GROUP and CREATE TABLESPACE statements in the
output of mysqldump.

• --replace

Command-Line Format --replace

550

mysqldump — A Database Backup Program

Write REPLACE statements rather than INSERT statements.

Debug Options

The following options print debugging information, encode debugging information in the dump file, or let
the dump operation proceed regardless of potential problems.

• --allow-keywords

Command-Line Format --allow-keywords

Permit creation of column names that are keywords. This works by prefixing each column name with
the table name.

• --comments, -i

Command-Line Format --comments

Write additional information in the dump file such as program version, server version, and host. This
option is enabled by default. To suppress this additional information, use --skip-comments.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o,/tmp/mysqldump.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default value is
d:t:o,/tmp/mysqldump.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.
551

mysqldump — A Database Backup Program

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --dump-date

Command-Line Format --dump-date

Type Boolean

Default Value TRUE

If the --comments option is given, mysqldump produces a comment at the end of the dump of the
following form:

-- Dump completed on DATE

However, the date causes dump files taken at different times to appear to be different, even if the
data are otherwise identical. --dump-date and --skip-dump-date control whether the date is
added to the comment. The default is --dump-date (include the date in the comment). --skip-
dump-date suppresses date printing.

• --force, -f

Command-Line Format --force

Ignore all errors; continue even if an SQL error occurs during a table dump.

One use for this option is to cause mysqldump to continue executing even when it encounters a
view that has become invalid because the definition refers to a table that has been dropped. Without
--force, mysqldump exits with an error message. With --force, mysqldump prints the error
message, but it also writes an SQL comment containing the view definition to the dump output and
continues executing.

If the --ignore-error option is also given to ignore specific errors, --force takes precedence.

• --log-error=file_name

Command-Line Format --log-error=file_name

Type File name

Log warnings and errors by appending them to the named file. The default is to do no logging.

• --skip-comments

Command-Line Format --skip-comments

See the description for the --comments option.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does.

552

mysqldump — A Database Backup Program

Help Options

The following options display information about the mysqldump command itself.

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --version, -V

Command-Line Format --version

Display version information and exit.

Internationalization Options

The following options change how the mysqldump command represents character data with national
language settings.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Type Directory name

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Default Value utf8

Use charset_name as the default character set. See Section 12.15, “Character Set Configuration”.
If no character set is specified, mysqldump uses utf8mb4.

• --no-set-names, -N

Command-Line Format --no-set-names

Deprecated Yes

Turns off the --set-charset setting, the same as specifying --skip-set-charset.

• --set-charset

Command-Line Format --set-charset

Disabled by skip-set-charset

Write SET NAMES default_character_set to the output. This option is enabled by default. To
suppress the SET NAMES statement, use --skip-set-charset.

553

mysqldump — A Database Backup Program

Replication Options

The mysqldump command is frequently used to create an empty instance, or an instance including
data, on a replica server in a replication configuration. The following options apply to dumping and
restoring data on replication source servers and replicas.

• --apply-replica-statements

Command-Line Format --apply-replica-statements

Introduced 8.0.26

Type Boolean

Default Value FALSE

From MySQL 8.0.26, use --apply-replica-statements, and before MySQL 8.0.26, use --
apply-slave-statements. Both options have the same effect. For a replica dump produced
with the --dump-replica or --dump-slave option, the options add a STOP REPLICA (or before
MySQL 8.0.22, STOP SLAVE) statement before the statement with the binary log coordinates, and a
START REPLICA statement at the end of the output.

• --apply-slave-statements

Command-Line Format --apply-slave-statements

Deprecated 8.0.26

Type Boolean

Default Value FALSE

Use this option before MySQL 8.0.26 rather than --apply-replica-statements. Both options
have the same effect.

• --delete-source-logs

Command-Line Format --delete-source-logs

Introduced 8.0.26

From MySQL 8.0.26, use --delete-source-logs, and before MySQL 8.0.26, use --delete-
master-logs. Both options have the same effect. On a replication source server, the options delete
the binary logs by sending a PURGE BINARY LOGS statement to the server after performing the
dump operation. The options require the RELOAD privilege as well as privileges sufficient to execute
that statement. The options automatically enable --source-data or --master-data.

• --delete-master-logs

Command-Line Format --delete-master-logs

Deprecated 8.0.26

Use this option before MySQL 8.0.26 rather than --delete-source-logs. Both options have the
same effect.

• --dump-replica[=value]

Command-Line Format --dump-replica[=value]

Introduced 8.0.26

554

mysqldump — A Database Backup Program

Type Numeric

Default Value 1

Valid Values 1

2

From MySQL 8.0.26, use --dump-replica, and before MySQL 8.0.26, use --dump-slave. Both
options have the same effect. The options are similar to --source-data, except that they are
used to dump a replica server to produce a dump file that can be used to set up another server as
a replica that has the same source as the dumped server. The options cause the dump output to
include a CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER
TO statement (before MySQL 8.0.23) that indicates the binary log coordinates (file name and
position) of the dumped replica's source. The CHANGE REPLICATION SOURCE TO statement reads
the values of Relay_Master_Log_File and Exec_Master_Log_Pos from the SHOW REPLICA
STATUS output and uses them for SOURCE_LOG_FILE and SOURCE_LOG_POS respectively. These
are the replication source server coordinates from which the replica starts replicating.

Note

Inconsistencies in the sequence of transactions from the relay log which
have been executed can cause the wrong position to be used. See
Section 19.5.1.34, “Replication and Transaction Inconsistencies” for more
information.

--dump-replica or --dump-slave causes the coordinates from the source to be used rather
than those of the dumped server, as is done by the --source-data or --master-data option.
In addition, specifying this option causes the --source-data or --master-data option to be
overridden, if used, and effectively ignored.

Warning

--dump-replica or --dump-slave should not be used if the server
where the dump is going to be applied uses gtid_mode=ON and
SOURCE_AUTO_POSITION=1 or MASTER_AUTO_POSITION=1.

The option value is handled the same way as for --source-data. Setting no value or 1 causes
a CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO
statement (before MySQL 8.0.23) to be written to the dump. Setting 2 causes the statement to
be written but encased in SQL comments. It has the same effect as --source-data in terms of
enabling or disabling other options and in how locking is handled.

--dump-replica or --dump-slave causes mysqldump to stop the replication SQL thread before
the dump and restart it again after.

--dump-replica or --dump-slave sends a SHOW REPLICA STATUS statement to the server to
obtain information, so they require privileges sufficient to execute that statement.

--apply-replica-statements and --include-source-host-port options can be used in
conjunction with --dump-replica or --dump-slave.

• --dump-slave[=value]

Command-Line Format --dump-slave[=value]

Deprecated 8.0.26

Type Numeric

Default Value 1
555

mysqldump — A Database Backup Program

Valid Values 1

2

Use this option before MySQL 8.0.26 rather than --dump-replica. Both options have the same
effect.

• --include-source-host-port

Command-Line Format --include-source-host-port

Introduced 8.0.26

Type Boolean

Default Value FALSE

From MySQL 8.0.26, use --include-source-host-port, and before MySQL 8.0.26, use
--include-master-host-port. Both options have the same effect. The options add the
SOURCE_HOST | MASTER_HOST and SOURCE_PORT | MASTER_PORT options for the host name and
TCP/IP port number of the replica's source, to the CHANGE REPLICATION SOURCE TO statement
(from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) in a replica dump
produced with the --dump-replica or --dump-slave option.

• --include-master-host-port

Command-Line Format --include-master-host-port

Deprecated 8.0.26

Type Boolean

Default Value FALSE

Use this option before MySQL 8.0.26 rather than --include-source-host-port. Both options
have the same effect.

• --source-data[=value]

Command-Line Format --source-data[=value]

Introduced 8.0.26

Type Numeric

Default Value 1

Valid Values 1

2

From MySQL 8.0.26, use --source-data, and before MySQL 8.0.26, use --master-data. Both
options have the same effect. The options are used to dump a replication source server to produce a
dump file that can be used to set up another server as a replica of the source. The options cause the
dump output to include a CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or
CHANGE MASTER TO statement (before MySQL 8.0.23) that indicates the binary log coordinates (file
name and position) of the dumped server. These are the replication source server coordinates from
which the replica should start replicating after you load the dump file into the replica.

If the option value is 2, the CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement
is written as an SQL comment, and thus is informative only; it has no effect when the dump file is

556

mysqldump — A Database Backup Program

reloaded. If the option value is 1, the statement is not written as a comment and takes effect when
the dump file is reloaded. If no option value is specified, the default value is 1.

--source-data and --master-data send a SHOW MASTER STATUS statement to the server to
obtain information, so they require privileges sufficient to execute that statement. This option also
requires the RELOAD privilege and the binary log must be enabled.

--source-data and --master-data automatically turn off --lock-tables. They also turn on
--lock-all-tables, unless --single-transaction also is specified, in which case, a global
read lock is acquired only for a short time at the beginning of the dump (see the description for --
single-transaction). In all cases, any action on logs happens at the exact moment of the dump.

It is also possible to set up a replica by dumping an existing replica of the source, using the --dump-
replica or --dump-slave option, which overrides --source-data and --master-data and
causes them to be ignored.

• --master-data[=value]

Command-Line Format --master-data[=value]

Deprecated 8.0.26

Type Numeric

Default Value 1

Valid Values 1

2

Use this option before MySQL 8.0.26 rather than --source-data. Both options have the same
effect.

• --set-gtid-purged=value

Command-Line Format --set-gtid-purged=value

Type Enumeration

Default Value AUTO

Valid Values OFF

ON

AUTO

This option is for servers that use GTID-based replication (gtid_mode=ON). It controls the inclusion
of a SET @@GLOBAL.gtid_purged statement in the dump output, which updates the value of
gtid_purged on a server where the dump file is reloaded, to add the GTID set from the source
server's gtid_executed system variable. gtid_purged holds the GTIDs of all transactions that
have been applied on the server, but do not exist on any binary log file on the server. mysqldump
therefore adds the GTIDs for the transactions that were executed on the source server, so that the
target server records these transactions as applied, although it does not have them in its binary
logs. --set-gtid-purged also controls the inclusion of a SET @@SESSION.sql_log_bin=0
statement, which disables binary logging while the dump file is being reloaded. This statement
prevents new GTIDs from being generated and assigned to the transactions in the dump file as they
are executed, so that the original GTIDs for the transactions are used.

If you do not set the --set-gtid-purged option, the default is that a SET
@@GLOBAL.gtid_purged statement is included in the dump output if GTIDs are enabled on the
server you are backing up, and the set of GTIDs in the global value of the gtid_executed system

557

mysqldump — A Database Backup Program

variable is not empty. A SET @@SESSION.sql_log_bin=0 statement is also included if GTIDs are
enabled on the server.

You can either replace the value of gtid_purged with a specified GTID set, or add a plus
sign (+) to the statement to append a specified GTID set to the GTID set that is already held by
gtid_purged. The SET @@GLOBAL.gtid_purged statement recorded by mysqldump includes a
plus sign (+) in a version-specific comment, such that MySQL adds the GTID set from the dump file
to the existing gtid_purged value.

It is important to note that the value that is included by mysqldump for the SET
@@GLOBAL.gtid_purged statement includes the GTIDs of all transactions in the gtid_executed
set on the server, even those that changed suppressed parts of the database, or other databases
on the server that were not included in a partial dump. This can mean that after the gtid_purged
value has been updated on the server where the dump file is replayed, GTIDs are present that do
not relate to any data on the target server. If you do not replay any further dump files on the target
server, the extraneous GTIDs do not cause any problems with the future operation of the server,
but they make it harder to compare or reconcile GTID sets on different servers in the replication
topology. If you do replay a further dump file on the target server that contains the same GTIDs (for
example, another partial dump from the same origin server), any SET @@GLOBAL.gtid_purged
statement in the second dump file fails. In this case, either remove the statement manually before
replaying the dump file, or output the dump file without the statement.

Before MySQL 8.0.32: Using this option with the --single-transaction option could lead to
inconsistencies in the output. If --set-gtid-purged=ON is required, it can be used with --lock-
all-tables, but this can prevent parallel queries while mysqldump is being run.

If the SET @@GLOBAL.gtid_purged statement would not have the desired result on your target
server, you can exclude the statement from the output, or (from MySQL 8.0.17) include it but
comment it out so that it is not actioned automatically. You can also include the statement but
manually edit it in the dump file to achieve the desired result.

The possible values for the --set-gtid-purged option are as follows:

AUTO The default value. If GTIDs are enabled on the server you
are backing up and gtid_executed is not empty, SET
@@GLOBAL.gtid_purged is added to the output, containing
the GTID set from gtid_executed. If GTIDs are enabled, SET
@@SESSION.sql_log_bin=0 is added to the output. If GTIDs
are not enabled on the server, the statements are not added to
the output.

OFF SET @@GLOBAL.gtid_purged is not added to the output, and
SET @@SESSION.sql_log_bin=0 is not added to the output.
For a server where GTIDs are not in use, use this option or
AUTO. Only use this option for a server where GTIDs are in use
if you are sure that the required GTID set is already present in
gtid_purged on the target server and should not be changed,
or if you plan to identify and add any missing GTIDs manually.

ON If GTIDs are enabled on the server you are backing
up, SET @@GLOBAL.gtid_purged is added to the
output (unless gtid_executed is empty), and SET
@@SESSION.sql_log_bin=0 is added to the output. An error
occurs if you set this option but GTIDs are not enabled on the
server. For a server where GTIDs are in use, use this option or
AUTO, unless you are sure that the GTIDs in gtid_executed are
not needed on the target server.

558

mysqldump — A Database Backup Program

COMMENTED Available from MySQL 8.0.17. If GTIDs are enabled on the
server you are backing up, SET @@GLOBAL.gtid_purged is
added to the output (unless gtid_executed is empty), but it is
commented out. This means that the value of gtid_executed is
available in the output, but no action is taken automatically when
the dump file is reloaded. SET @@SESSION.sql_log_bin=0
is added to the output, and it is not commented out. With
COMMENTED, you can control the use of the gtid_executed set
manually or through automation. For example, you might prefer to
do this if you are migrating data to another server that already has
different active databases.

Format Options

The following options specify how to represent the entire dump file or certain kinds of data in the dump
file. They also control whether certain optional information is written to the dump file.

• --compact

Command-Line Format --compact

Produce more compact output. This option enables the --skip-add-drop-table, --skip-add-
locks, --skip-comments, --skip-disable-keys, and --skip-set-charset options.

• --compatible=name

Command-Line Format --compatible=name[,name,...]

Type String

Default Value ''

Valid Values ansi

mysql323

mysql40

postgresql

oracle

mssql

db2

maxdb

no_key_options

no_table_options

no_key_options

Produce output that is more compatible with other database systems or with older MySQL servers.
The only permitted value for this option is ansi, which has the same meaning as the corresponding
option for setting the server SQL mode. See Section 7.1.11, “Server SQL Modes”.

• --complete-insert, -c
559

mysqldump — A Database Backup Program

Command-Line Format --complete-insert

Use complete INSERT statements that include column names.

• --create-options

Command-Line Format --create-options

Include all MySQL-specific table options in the CREATE TABLE statements.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-
enclosed-by=..., --fields-escaped-by=...

Command-Line Format --fields-terminated-by=string

Type String

Command-Line Format --fields-enclosed-by=string

Type String

Command-Line Format --fields-optionally-enclosed-
by=string

Type String

Command-Line Format --fields-escaped-by

Type String

These options are used with the --tab option and have the same meaning as the corresponding
FIELDS clauses for LOAD DATA. See Section 15.2.9, “LOAD DATA Statement”.

• --hex-blob

Command-Line Format --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The
affected data types are BINARY, VARBINARY, BLOB types, BIT, all spatial data types, and other non-
binary data types when used with the binary character set.

The --hex-blob option is ignored when the --tab is used.

• --lines-terminated-by=...

Command-Line Format --lines-terminated-by=string

Type String

This option is used with the --tab option and has the same meaning as the corresponding LINES
clause for LOAD DATA. See Section 15.2.9, “LOAD DATA Statement”.

560

mysqldump — A Database Backup Program

• --quote-names, -Q

Command-Line Format --quote-names

Disabled by skip-quote-names

Quote identifiers (such as database, table, and column names) within ` characters. If the
ANSI_QUOTES SQL mode is enabled, identifiers are quoted within " characters. This option is
enabled by default. It can be disabled with --skip-quote-names, but this option should be given
after any option such as --compatible that may enable --quote-names.

• --result-file=file_name, -r file_name

Command-Line Format --result-file=file_name

Type File name

Direct output to the named file. The result file is created and its previous contents overwritten, even if
an error occurs while generating the dump.

This option should be used on Windows to prevent newline \n characters from being converted to
\r\n carriage return/newline sequences.

• --show-create-skip-secondary-engine=value

Command-Line Format --show-create-skip-secondary-engine

Introduced 8.0.18

Excludes the SECONDARY ENGINE clause from CREATE TABLE statements. It does
so by enabling the show_create_table_skip_secondary_engine system
variable for the duration of the dump operation. Alternatively, you can enable the
show_create_table_skip_secondary_engine system variable prior to using mysqldump.

This option was added in MySQL 8.0.18. Attempting a mysqldump operation with the --show-
create-skip-secondary-engine option on a release prior to MySQL 8.0.18 that does not
support the show_create_table_skip_secondary_engine variable causes an error.

• --tab=dir_name, -T dir_name

Command-Line Format --tab=dir_name

Type Directory name

Produce tab-separated text-format data files. For each dumped table, mysqldump creates a
tbl_name.sql file that contains the CREATE TABLE statement that creates the table, and the
server writes a tbl_name.txt file that contains its data. The option value is the directory in which to
write the files.

Note

This option should be used only when mysqldump is run on the same
machine as the mysqld server. Because the server creates *.txt files in
the directory that you specify, the directory must be writable by the server
and the MySQL account that you use must have the FILE privilege. Because

561

mysqldump — A Database Backup Program

mysqldump creates *.sql in the same directory, it must be writable by your
system login account.

By default, the .txt data files are formatted using tab characters between column values and a
newline at the end of each line. The format can be specified explicitly using the --fields-xxx and
--lines-terminated-by options.

Column values are converted to the character set specified by the --default-character-set
option.

• --tz-utc

Command-Line Format --tz-utc

Disabled by skip-tz-utc

This option enables TIMESTAMP columns to be dumped and reloaded between servers
in different time zones. mysqldump sets its connection time zone to UTC and adds SET
TIME_ZONE='+00:00' to the dump file. Without this option, TIMESTAMP columns are dumped and
reloaded in the time zones local to the source and destination servers, which can cause the values
to change if the servers are in different time zones. --tz-utc also protects against changes due to
daylight saving time. --tz-utc is enabled by default. To disable it, use --skip-tz-utc.

• --xml, -X

Command-Line Format --xml

Write dump output as well-formed XML.

NULL, 'NULL', and Empty Values: For a column named column_name, the NULL value, an empty
string, and the string value 'NULL' are distinguished from one another in the output generated by
this option as follows.

Value: XML Representation:

NULL (unknown value) <field name="column_name"
xsi:nil="true" />

'' (empty string) <field name="column_name"></field>

'NULL' (string value) <field name="column_name">NULL</
field>

The output from the mysql client when run using the --xml option also follows the preceding rules.
(See Section 6.5.1.1, “mysql Client Options”.)

XML output from mysqldump includes the XML namespace, as shown here:

$> mysqldump --xml -u root world City
<?xml version="1.0"?>
<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<database name="world">
<table_structure name="City">
<field Field="ID" Type="int(11)" Null="NO" Key="PRI" Extra="auto_increment" />
<field Field="Name" Type="char(35)" Null="NO" Key="" Default="" Extra="" />
<field Field="CountryCode" Type="char(3)" Null="NO" Key="" Default="" Extra="" />
<field Field="District" Type="char(20)" Null="NO" Key="" Default="" Extra="" />
<field Field="Population" Type="int(11)" Null="NO" Key="" Default="0" Extra="" />
<key Table="City" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="ID"
Collation="A" Cardinality="4079" Null="" Index_type="BTREE" Comment="" />
<options Name="City" Engine="MyISAM" Version="10" Row_format="Fixed" Rows="4079"
Avg_row_length="67" Data_length="273293" Max_data_length="18858823439613951"
Index_length="43008" Data_free="0" Auto_increment="4080"

562

mysqldump — A Database Backup Program

Create_time="2007-03-31 01:47:01" Update_time="2007-03-31 01:47:02"
Collation="latin1_swedish_ci" Create_options="" Comment="" />
</table_structure>
<table_data name="City">
<row>
<field name="ID">1</field>
<field name="Name">Kabul</field>
<field name="CountryCode">AFG</field>
<field name="District">Kabol</field>
<field name="Population">1780000</field>
</row>

...

<row>
<field name="ID">4079</field>
<field name="Name">Rafah</field>
<field name="CountryCode">PSE</field>
<field name="District">Rafah</field>
<field name="Population">92020</field>
</row>
</table_data>
</database>
</mysqldump>

Filtering Options

The following options control which kinds of schema objects are written to the dump file: by category,
such as triggers or events; by name, for example, choosing which databases and tables to dump; or
even filtering rows from the table data using a WHERE clause.

• --all-databases, -A

Command-Line Format --all-databases

Dump all tables in all databases. This is the same as using the --databases option and naming all
the databases on the command line.

Note

See the --add-drop-database description for information about an
incompatibility of that option with --all-databases.

Prior to MySQL 8.0, the --routines and --events options for mysqldump and mysqlpump were
not required to include stored routines and events when using the --all-databases option: The
dump included the mysql system database, and therefore also the mysql.proc and mysql.event
tables containing stored routine and event definitions. As of MySQL 8.0, the mysql.event and
mysql.proc tables are not used. Definitions for the corresponding objects are stored in data
dictionary tables, but those tables are not dumped. To include stored routines and events in a dump
made using --all-databases, use the --routines and --events options explicitly.

• --databases, -B

Command-Line Format --databases

Dump several databases. Normally, mysqldump treats the first name argument on the command
line as a database name and following names as table names. With this option, it treats all name
arguments as database names. CREATE DATABASE and USE statements are included in the output
before each new database.

This option may be used to dump the performance_schema database, which normally is not
dumped even with the --all-databases option. (Also use the --skip-lock-tables option.)563

mysqldump — A Database Backup Program

Note

See the --add-drop-database description for information about an
incompatibility of that option with --databases.

• --events, -E

Command-Line Format --events

Include Event Scheduler events for the dumped databases in the output. This option requires the
EVENT privileges for those databases.

The output generated by using --events contains CREATE EVENT statements to create the events.

• --ignore-error=error[,error]...

Command-Line Format --ignore-error=error[,error]...

Type String

Ignore the specified errors. The option value is a list of comma-separated error numbers specifying
the errors to ignore during mysqldump execution. If the --force option is also given to ignore all
errors, --force takes precedence.

• --ignore-table=db_name.tbl_name

Command-Line Format --ignore-table=db_name.tbl_name

Type String

Do not dump the given table, which must be specified using both the database and table names. To
ignore multiple tables, use this option multiple times. This option also can be used to ignore views.

• --no-data, -d

Command-Line Format --no-data

Do not write any table row information (that is, do not dump table contents). This is useful if you want
to dump only the CREATE TABLE statement for the table (for example, to create an empty copy of
the table by loading the dump file).

• --routines, -R

Command-Line Format --routines

Include stored routines (procedures and functions) for the dumped databases in the output. This
option requires the global SELECT privilege.

The output generated by using --routines contains CREATE PROCEDURE and CREATE
FUNCTION statements to create the routines.

• --skip-generated-invisible-primary-key

Command-Line Format --skip-generated-invisible-primary-
key

Introduced 8.0.30

564

mysqldump — A Database Backup Program

Type Boolean

Default Value FALSE

This option is available beginning with MySQL 8.0.30, and causes generated invisible primary keys
to be excluded from the output. For more information, see Section 15.1.20.11, “Generated Invisible
Primary Keys”.

• --tables

Command-Line Format --tables

Override the --databases or -B option. mysqldump regards all name arguments following the
option as table names.

• --triggers

Command-Line Format --triggers

Disabled by skip-triggers

Include triggers for each dumped table in the output. This option is enabled by default; disable it with
--skip-triggers.

To be able to dump a table's triggers, you must have the TRIGGER privilege for the table.

Multiple triggers are permitted. mysqldump dumps triggers in activation order so that when the dump
file is reloaded, triggers are created in the same activation order. However, if a mysqldump dump
file contains multiple triggers for a table that have the same trigger event and action time, an error
occurs for attempts to load the dump file into an older server that does not support multiple triggers.
(For a workaround, see Downgrade Notes; you can convert triggers to be compatible with older
servers.)

• --where='where_condition', -w 'where_condition'

Command-Line Format --where='where_condition'

Dump only rows selected by the given WHERE condition. Quotes around the condition are mandatory
if it contains spaces or other characters that are special to your command interpreter.

Examples:

--where="user='jimf'"
-w"userid>1"
-w"userid<1"

Performance Options

The following options are the most relevant for the performance particularly of the restore operations.
For large data sets, restore operation (processing the INSERT statements in the dump file) is the most
time-consuming part. When it is urgent to restore data quickly, plan and test the performance of this
stage in advance. For restore times measured in hours, you might prefer an alternative backup and
restore solution, such as MySQL Enterprise Backup for InnoDB-only and mixed-use databases.

Performance is also affected by the transactional options, primarily for the dump operation.

• --column-statistics

565

https://dev.mysql.com/doc/refman/5.7/en/downgrading-to-previous-series.html

mysqldump — A Database Backup Program

Command-Line Format --column-statistics

Type Boolean

Default Value OFF

Add ANALYZE TABLE statements to the output to generate histogram statistics for dumped tables
when the dump file is reloaded. This option is disabled by default because histogram generation for
large tables can take a long time.

• --disable-keys, -K

Command-Line Format --disable-keys

For each table, surround the INSERT statements with /*!40000 ALTER TABLE tbl_name
DISABLE KEYS */; and /*!40000 ALTER TABLE tbl_name ENABLE KEYS */; statements.
This makes loading the dump file faster because the indexes are created after all rows are inserted.
This option is effective only for nonunique indexes of MyISAM tables.

• --extended-insert, -e

Command-Line Format --extended-insert

Disabled by skip-extended-insert

Write INSERT statements using multiple-row syntax that includes several VALUES lists. This results
in a smaller dump file and speeds up inserts when the file is reloaded.

• --insert-ignore

Command-Line Format --insert-ignore

Write INSERT IGNORE statements rather than INSERT statements.

• --max-allowed-packet=value

Command-Line Format --max-allowed-packet=value

Type Numeric

Default Value 25165824

The maximum size of the buffer for client/server communication. The default is 24MB, the maximum
is 1GB.

Note

The value of this option is specific to mysqldump and should not be confused
with the MySQL server's max_allowed_packet system variable; the server
value cannot be exceeded by a single packet from mysqldump, regardless of
any setting for the mysqldump option, even if the latter is larger.

• --mysqld-long-query-time=value

Command-Line Format --mysqld-long-query-time=value

Introduced 8.0.30

566

mysqldump — A Database Backup Program

Type Numeric

Default Value Server global setting

Set the session value of the long_query_time system variable. Use this option, which is available
from MySQL 8.0.30, if you want to increase the time allowed for queries from mysqldump before
they are logged to the slow query log file. mysqldump performs a full table scan, which means its
queries can often exceed a global long_query_time setting that is useful for regular queries. The
default global setting is 10 seconds.

You can use --mysqld-long-query-time to specify a session value from 0 (meaning that every
query from mysqldump is logged to the slow query log) to 31536000, which is 365 days in seconds.
For mysqldump’s option, you can only specify whole seconds. When you do not specify this option,
the server’s global setting applies to mysqldump’s queries.

• --net-buffer-length=value

Command-Line Format --net-buffer-length=value

Type Numeric

Default Value 16384

The initial size of the buffer for client/server communication. When creating multiple-row INSERT
statements (as with the --extended-insert or --opt option), mysqldump creates rows up to
--net-buffer-length bytes long. If you increase this variable, ensure that the MySQL server
net_buffer_length system variable has a value at least this large.

• --network-timeout, -M

Command-Line Format --network-timeout[={0|1}]

Type Boolean

Default Value TRUE

Enable large tables to be dumped by setting --max-allowed-packet to its maximum value and
network read and write timeouts to a large value. This option is enabled by default. To disable it, use
--skip-network-timeout.

• --opt

Command-Line Format --opt

Disabled by skip-opt

This option, enabled by default, is shorthand for the combination of --add-drop-table --add-
locks --create-options --disable-keys --extended-insert --lock-tables --quick
--set-charset. It gives a fast dump operation and produces a dump file that can be reloaded into
a MySQL server quickly.

Because the --opt option is enabled by default, you only specify its converse, the --skip-opt
to turn off several default settings. See the discussion of mysqldump option groups for information
about selectively enabling or disabling a subset of the options affected by --opt.

• --quick, -q

Command-Line Format --quick

Disabled by skip-quick

567

mysqldump — A Database Backup Program

This option is useful for dumping large tables. It forces mysqldump to retrieve rows for a table from
the server a row at a time rather than retrieving the entire row set and buffering it in memory before
writing it out.

• --skip-opt

Command-Line Format --skip-opt

See the description for the --opt option.

Transactional Options

The following options trade off the performance of the dump operation, against the reliability and
consistency of the exported data.

• --add-locks

Command-Line Format --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results
in faster inserts when the dump file is reloaded. See Section 10.2.5.1, “Optimizing INSERT
Statements”.

• --flush-logs, -F

Command-Line Format --flush-logs

Flush the MySQL server log files before starting the dump. This option requires the RELOAD
privilege. If you use this option in combination with the --all-databases option, the logs are
flushed for each database dumped. The exception is when using --lock-all-tables, --
source-data or --master-data, or --single-transaction. In these cases, the logs are
flushed only once, corresponding to the moment that all tables are locked by FLUSH TABLES WITH
READ LOCK. If you want your dump and the log flush to happen at exactly the same moment, you
should use --flush-logs together with --lock-all-tables, --source-data or --master-
data, or --single-transaction.

• --flush-privileges

Command-Line Format --flush-privileges

Add a FLUSH PRIVILEGES statement to the dump output after dumping the mysql database. This
option should be used any time the dump contains the mysql database and any other database that
depends on the data in the mysql database for proper restoration.

Because the dump file contains a FLUSH PRIVILEGES statement, reloading the file requires
privileges sufficient to execute that statement.

Note

For upgrades to MySQL 5.7 or higher from older versions, do not use --
flush-privileges. For upgrade instructions in this case, see Section 3.5,
“Changes in MySQL 8.0”.

• --lock-all-tables, -x

568

mysqldump — A Database Backup Program

Command-Line Format --lock-all-tables

Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration
of the whole dump. This option automatically turns off --single-transaction and --lock-
tables.

• --lock-tables, -l

Command-Line Format --lock-tables

For each dumped database, lock all tables to be dumped before dumping them. The tables are
locked with READ LOCAL to permit concurrent inserts in the case of MyISAM tables. For transactional
tables such as InnoDB, --single-transaction is a much better option than --lock-tables
because it does not need to lock the tables at all.

Because --lock-tables locks tables for each database separately, this option does not guarantee
that the tables in the dump file are logically consistent between databases. Tables in different
databases may be dumped in completely different states.

Some options, such as --opt, automatically enable --lock-tables. If you want to override this,
use --skip-lock-tables at the end of the option list.

• --no-autocommit

Command-Line Format --no-autocommit

Enclose the INSERT statements for each dumped table within SET autocommit = 0 and COMMIT
statements.

• --order-by-primary

Command-Line Format --order-by-primary

Dump each table's rows sorted by its primary key, or by its first unique index, if such an index exists.
This is useful when dumping a MyISAM table to be loaded into an InnoDB table, but makes the
dump operation take considerably longer.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled
to support shared-memory connections.

569

mysqldump — A Database Backup Program

• --single-transaction

Command-Line Format --single-transaction

This option sets the transaction isolation mode to REPEATABLE READ and sends a START
TRANSACTION SQL statement to the server before dumping data. It is useful only with transactional
tables such as InnoDB, because then it dumps the consistent state of the database at the time when
START TRANSACTION was issued without blocking any applications.

The RELOAD or FLUSH_TABLES privilege is required with --single-transaction if both
gtid_mode=ON and gtid_purged=ON|AUTO. This requirement was added in MySQL 8.0.32.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent
state. For example, any MyISAM or MEMORY tables dumped while using this option may still change
state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table
contents and binary log coordinates), no other connection should use the following statements:
ALTER TABLE, CREATE TABLE, DROP TABLE, RENAME TABLE, TRUNCATE TABLE. A consistent
read is not isolated from those statements, so use of them on a table to be dumped can cause the
SELECT that is performed by mysqldump to retrieve the table contents to obtain incorrect contents
or fail.

The --single-transaction option and the --lock-tables option are mutually exclusive
because LOCK TABLES causes any pending transactions to be committed implicitly.

Before 8.0.32: Using --single-transaction together with the --set-gtid-purged option was
not recommended; doing so could lead to inconsistencies in the output of mysqldump.

To dump large tables, combine the --single-transaction option with the --quick option.

Option Groups

• The --opt option turns on several settings that work together to perform a fast dump operation.
All of these settings are on by default, because --opt is on by default. Thus you rarely if ever
specify --opt. Instead, you can turn these settings off as a group by specifying --skip-opt, then
optionally re-enable certain settings by specifying the associated options later on the command line.

• The --compact option turns off several settings that control whether optional statements and
comments appear in the output. Again, you can follow this option with other options that re-enable
certain settings, or turn all the settings on by using the --skip-compact form.

When you selectively enable or disable the effect of a group option, order is important because options
are processed first to last. For example, --disable-keys --lock-tables --skip-opt would not
have the intended effect; it is the same as --skip-opt by itself.

Examples

To make a backup of an entire database:

mysqldump db_name > backup-file.sql

To load the dump file back into the server:

mysql db_name < backup-file.sql

Another way to reload the dump file:

mysql -e "source /path-to-backup/backup-file.sql" db_name

mysqldump is also very useful for populating databases by copying data from one MySQL server to
another:

570

mysqldump — A Database Backup Program

mysqldump --opt db_name | mysql --host=remote_host -C db_name

You can dump several databases with one command:

mysqldump --databases db_name1 [db_name2 ...] > my_databases.sql

To dump all databases, use the --all-databases option:

mysqldump --all-databases > all_databases.sql

For InnoDB tables, mysqldump provides a way of making an online backup:

mysqldump --all-databases --master-data --single-transaction > all_databases.sql

Or, in MySQL 8.0.26 and later:

mysqldump --all-databases --source-data --single-transaction > all_databases.sql

This backup acquires a global read lock on all tables (using FLUSH TABLES WITH READ LOCK) at
the beginning of the dump. As soon as this lock has been acquired, the binary log coordinates are read
and the lock is released. If long updating statements are running when the FLUSH statement is issued,
the MySQL server may get stalled until those statements finish. After that, the dump becomes lock free
and does not disturb reads and writes on the tables. If the update statements that the MySQL server
receives are short (in terms of execution time), the initial lock period should not be noticeable, even
with many updates.

For point-in-time recovery (also known as “roll-forward,” when you need to restore an old backup
and replay the changes that happened since that backup), it is often useful to rotate the binary log
(see Section 7.4.4, “The Binary Log”) or at least know the binary log coordinates to which the dump
corresponds:

mysqldump --all-databases --master-data=2 > all_databases.sql

Or, in MySQL 8.0.26 and later:

mysqldump --all-databases --source-data=2 > all_databases.sql

Or:

mysqldump --all-databases --flush-logs --master-data=2 > all_databases.sql

Or, in MySQL 8.0.26 and later:

mysqldump --all-databases --flush-logs --source-data=2 > all_databases.sql

The --source-data or --master-data option can be used simultaneously with the --single-
transaction option, which provides a convenient way to make an online backup suitable for use
prior to point-in-time recovery if tables are stored using the InnoDB storage engine.

For more information on making backups, see Section 9.2, “Database Backup Methods”, and
Section 9.3, “Example Backup and Recovery Strategy”.

• To select the effect of --opt except for some features, use the --skip option for each feature. To
disable extended inserts and memory buffering, use --opt --skip-extended-insert --skip-
quick. (Actually, --skip-extended-insert --skip-quick is sufficient because --opt is on
by default.)

• To reverse --opt for all features except disabling of indexes and table locking, use --skip-opt --
disable-keys --lock-tables.

Restrictions

mysqldump does not dump the performance_schema or sys schema by default. To dump any of
these, name them explicitly on the command line. You can also name them with the --databases
option. For performance_schema, also use the --skip-lock-tables option.

mysqldump does not dump the INFORMATION_SCHEMA schema.

571

mysqlimport — A Data Import Program

mysqldump does not dump InnoDB CREATE TABLESPACE statements.

mysqldump does not dump the NDB Cluster ndbinfo information database.

mysqldump includes statements to recreate the general_log and slow_query_log tables for
dumps of the mysql database. Log table contents are not dumped.

If you encounter problems backing up views due to insufficient privileges, see Section 27.9,
“Restrictions on Views” for a workaround.

6.5.5 mysqlimport — A Data Import Program

The mysqlimport client provides a command-line interface to the LOAD DATA SQL statement. Most
options to mysqlimport correspond directly to clauses of LOAD DATA syntax. See Section 15.2.9,
“LOAD DATA Statement”.

Invoke mysqlimport like this:

mysqlimport [options] db_name textfile1 [textfile2 ...]

For each text file named on the command line, mysqlimport strips any extension from the file name
and uses the result to determine the name of the table into which to import the file's contents. For
example, files named patient.txt, patient.text, and patient all would be imported into a table
named patient.

mysqlimport supports the following options, which can be specified on the command line or in the
[mysqlimport] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 6.2.2.2, “Using Option Files”.

Table 6.16 mysqlimport Options

Option Name Description Introduced Deprecated

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets can be
found

--columns This option takes a
comma-separated list
of column names as its
value

--compress Compress all
information sent
between client and
server

8.0.18

--compression-
algorithms

Permitted compression
algorithms for
connections to server

8.0.18

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

572

mysqlimport — A Data Import Program

Option Name Description Introduced Deprecated

--default-auth Authentication plugin to
use

--default-character-set Specify default
character set

--defaults-extra-file Read named option
file in addition to usual
option files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--delete Empty the table before
importing the text file

--enable-cleartext-plugin Enable cleartext
authentication plugin

--fields-enclosed-by This option has the
same meaning as the
corresponding clause for
LOAD DATA

--fields-escaped-by This option has the
same meaning as the
corresponding clause for
LOAD DATA

--fields-optionally-
enclosed-by

This option has the
same meaning as the
corresponding clause for
LOAD DATA

--fields-terminated-by This option has the
same meaning as the
corresponding clause for
LOAD DATA

--force Continue even if an SQL
error occurs

--get-server-public-key Request RSA public key
from server

--help Display help message
and exit

--host Host on which MySQL
server is located

--ignore See the description for
the --replace option

--ignore-lines Ignore the first N lines of
the data file

--lines-terminated-by This option has the
same meaning as the
corresponding clause for
LOAD DATA

--local Read input files locally
from the client host

573

mysqlimport — A Data Import Program

Option Name Description Introduced Deprecated

--lock-tables Lock all tables for writing
before processing any
text files

--login-path Read login path options
from .mylogin.cnf

--low-priority Use LOW_PRIORITY
when loading the table

--no-defaults Read no option files

--password Password to use when
connecting to server

--password1 First multifactor
authentication password
to use when connecting
to server

8.0.27

--password2 Second multifactor
authentication password
to use when connecting
to server

8.0.27

--password3 Third multifactor
authentication password
to use when connecting
to server

8.0.27

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to
use

--replace The --replace and --
ignore options control
handling of input rows
that duplicate existing
rows on unique key
values

--server-public-key-path Path name to file
containing RSA public
key

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--silent Produce output only
when errors occur

--socket Unix socket file or
Windows named pipe to
use

574

mysqlimport — A Data Import Program

Option Name Description Introduced Deprecated

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

--use-threads Number of threads for
parallel file-loading

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

--zstd-compression-level Compression level
for connections to
server that use zstd
compression

8.0.18

575

mysqlimport — A Data Import Program

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=path

Type String

Default Value [none]

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

• --columns=column_list, -c column_list

Command-Line Format --columns=column_list

This option takes a list of comma-separated column names as its value. The order of the column
names indicates how to match data file columns with table columns.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Deprecated 8.0.18

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 6.2.8,
“Connection Compression Control”.

As of MySQL 8.0.18, this option is deprecated. Expect it to be removed in a future version of MySQL.
See Configuring Legacy Connection Compression.

• --compression-algorithms=value

Command-Line Format --compression-algorithms=value

Introduced 8.0.18

Type Set

Default Value uncompressed

Valid Values zlib

zstd

uncompressed

576

mysqlimport — A Data Import Program

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the protocol_compression_algorithms system variable. The default value is
uncompressed.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Use charset_name as the default character set. See Section 12.15, “Character Set Configuration”.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

577

mysqlimport — A Data Import Program

Type String

A hint about which client-side authentication plugin to use. See Section 8.2.17, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlimport normally reads the [client] and [mysqlimport] groups. If
this option is given as --defaults-group-suffix=_other, mysqlimport also reads the
[client_other] and [mysqlimport_other] groups.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --delete, -D

Command-Line Format --delete

Empty the table before importing the text file.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Type Boolean

578

mysqlimport — A Data Import Program

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 8.4.1.4, “Client-
Side Cleartext Pluggable Authentication”.)

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-
enclosed-by=..., --fields-escaped-by=...

Command-Line Format --fields-terminated-by=string

Type String

Command-Line Format --fields-enclosed-by=string

Type String

Command-Line Format --fields-optionally-enclosed-
by=string

Type String

Command-Line Format --fields-escaped-by

Type String

These options have the same meaning as the corresponding clauses for LOAD DATA. See
Section 15.2.9, “LOAD DATA Statement”.

• --force, -f

Command-Line Format --force

Ignore errors. For example, if a table for a text file does not exist, continue processing any remaining
files. Without --force, mysqlimport exits if a table does not exist.

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This
option applies to clients that authenticate with the caching_sha2_password authentication
plugin. For that plugin, the server does not send the public key unless requested. This option
is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

579

mysqlimport — A Data Import Program

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

Import data to the MySQL server on the given host. The default host is localhost.

• --ignore, -i

Command-Line Format --ignore

See the description for the --replace option.

• --ignore-lines=N

Command-Line Format --ignore-lines=#

Type Numeric

Ignore the first N lines of the data file.

• --lines-terminated-by=...

Command-Line Format --lines-terminated-by=string

Type String

This option has the same meaning as the corresponding clause for LOAD DATA. For example, to
import Windows files that have lines terminated with carriage return/linefeed pairs, use --lines-
terminated-by="\r\n". (You might have to double the backslashes, depending on the escaping
conventions of your command interpreter.) See Section 15.2.9, “LOAD DATA Statement”.

• --local, -L

Command-Line Format --local

Type Boolean

Default Value FALSE

By default, files are read by the server on the server host. With this option, mysqlimport reads
input files locally on the client host.

Successful use of LOCAL load operations within mysqlimport also requires that the server permits
local loading; see Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”

• --lock-tables, -l

Command-Line Format --lock-tables

Lock all tables for writing before processing any text files. This ensures that all tables are
synchronized on the server.

580

mysqlimport — A Data Import Program

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --low-priority

Command-Line Format --low-priority

Use LOW_PRIORITY when loading the table. This affects only storage engines that use only table-
level locking (such as MyISAM, MEMORY, and MERGE).

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, mysqlimport prompts for one. If given, there must be no space between --
password= or -p and the password following it. If no password option is specified, the default is to
send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlimport should not prompt for one, use
the --skip-password option.

• --password1[=pass_val]

The password for multifactor authentication factor 1 of the MySQL account used for connecting to the
server. The password value is optional. If not given, mysqlimport prompts for one. If given, there

581

mysqlimport — A Data Import Program

must be no space between --password1= and the password following it. If no password option is
specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlimport should not prompt for one, use
the --skip-password1 option.

--password1 and --password are synonymous, as are --skip-password1 and --skip-
password.

• --password2[=pass_val]

The password for multifactor authentication factor 2 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --password3[=pass_val]

The password for multifactor authentication factor 3 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is
used to specify an authentication plugin but mysqlimport does not find it. See Section 8.2.17,
“Pluggable Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

582

mysqlimport — A Data Import Program

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 6.2.7, “Connection Transport Protocols”.

• --replace, -r

Command-Line Format --replace

The --replace and --ignore options control handling of input rows that duplicate existing rows
on unique key values. If you specify --replace, new rows replace existing rows that have the same
unique key value. If you specify --ignore, input rows that duplicate an existing row on a unique key
value are skipped. If you do not specify either option, an error occurs when a duplicate key value is
found, and the rest of the text file is ignored.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

583

mysqlimport — A Data Import Program

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled
to support shared-memory connections.

• --silent, -s

Command-Line Format --silent

Silent mode. Produce output only when errors occur.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

Default Value OFF

Valid Values OFF

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

584

mysqlimport — A Data Import Program

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON
or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use for connecting to the server.

• --use-threads=N

Command-Line Format --use-threads=# 585

mysqlpump — A Database Backup Program

Type Numeric

Load files in parallel using N threads.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does.

• --version, -V

Command-Line Format --version

Display version information and exit.

• --zstd-compression-level=level

Command-Line Format --zstd-compression-level=#

Introduced 8.0.18

Type Integer

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
The default zstd compression level is 3. The compression level setting has no effect on connections
that do not use zstd compression.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

Here is a sample session that demonstrates use of mysqlimport:

$> mysql -e 'CREATE TABLE imptest(id INT, n VARCHAR(30))' test
$> ed
a
100 Max Sydow
101 Count Dracula
.
w imptest.txt
32
q
$> od -c imptest.txt
0000000 1 0 0 \t M a x S y d o w \n 1 0
0000020 1 \t C o u n t D r a c u l a \n
0000040
$> mysqlimport --local test imptest.txt
test.imptest: Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
$> mysql -e 'SELECT * FROM imptest' test
+------+---------------+
| id | n |
+------+---------------+
| 100 | Max Sydow |
| 101 | Count Dracula |
+------+---------------+

6.5.6 mysqlpump — A Database Backup Program

• mysqlpump Invocation Syntax
586

mysqlpump — A Database Backup Program

• mysqlpump Option Summary

• mysqlpump Option Descriptions

• mysqlpump Object Selection

• mysqlpump Parallel Processing

• mysqlpump Restrictions

The mysqlpump client utility performs logical backups, producing a set of SQL statements that can be
executed to reproduce the original database object definitions and table data. It dumps one or more
MySQL databases for backup or transfer to another SQL server.

Note

mysqlpump is deprecated as of MySQL 8.0.34; expect it to be removed in a
future version of MySQL. You can use such MySQL programs as mysqldump
and MySQL Shell to perform logical backups, dump databases, and similar
tasks instead.

Tip

Consider using the MySQL Shell dump utilities, which provide parallel
dumping with multiple threads, file compression, and progress information
display, as well as cloud features such as Oracle Cloud Infrastructure Object
Storage streaming, and MySQL HeatWave Service compatibility checks and
modifications. Dumps can be easily imported into a MySQL Server instance
or a MySQL HeatWave Service DB System using the MySQL Shell load dump
utilities. Installation instructions for MySQL Shell can be found here.

mysqlpump features include:

• Parallel processing of databases, and of objects within databases, to speed up the dump process

• Better control over which databases and database objects (tables, stored programs, user accounts)
to dump

• Dumping of user accounts as account-management statements (CREATE USER, GRANT) rather than
as inserts into the mysql system database

• Capability of creating compressed output

• Progress indicator (the values are estimates)

• For dump file reloading, faster secondary index creation for InnoDB tables by adding indexes after
rows are inserted

Note

mysqlpump uses MySQL features introduced in MySQL 5.7, and thus assumes
use with MySQL 5.7 or higher.

mysqlpump requires at least the SELECT privilege for dumped tables, SHOW VIEW for dumped views,
TRIGGER for dumped triggers, and LOCK TABLES if the --single-transaction option is not used.
The SELECT privilege on the mysql system database is required to dump user definitions. Certain
options might require other privileges as noted in the option descriptions.

To reload a dump file, you must have the privileges required to execute the statements that it contains,
such as the appropriate CREATE privileges for objects created by those statements.

587

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

mysqlpump — A Database Backup Program

Note

A dump made using PowerShell on Windows with output redirection creates a
file that has UTF-16 encoding:

mysqlpump [options] > dump.sql

However, UTF-16 is not permitted as a connection character set (see
Section 12.4, “Connection Character Sets and Collations”), so the dump file
cannot be loaded correctly. To work around this issue, use the --result-
file option, which creates the output in ASCII format:

mysqlpump [options] --result-file=dump.sql

mysqlpump Invocation Syntax

By default, mysqlpump dumps all databases (with certain exceptions noted in mysqlpump
Restrictions). To specify this behavior explicitly, use the --all-databases option:

mysqlpump --all-databases

To dump a single database, or certain tables within that database, name the database on the
command line, optionally followed by table names:

mysqlpump db_name
mysqlpump db_name tbl_name1 tbl_name2 ...

To treat all name arguments as database names, use the --databases option:

mysqlpump --databases db_name1 db_name2 ...

By default, mysqlpump does not dump user account definitions, even if you dump the mysql system
database that contains the grant tables. To dump grant table contents as logical definitions in the
form of CREATE USER and GRANT statements, use the --users option and suppress all database
dumping:

mysqlpump --exclude-databases=% --users

In the preceding command, % is a wildcard that matches all database names for the --exclude-
databases option.

mysqlpump supports several options for including or excluding databases, tables, stored programs,
and user definitions. See mysqlpump Object Selection.

To reload a dump file, execute the statements that it contains. For example, use the mysql client:

mysqlpump [options] > dump.sql
mysql < dump.sql

The following discussion provides additional mysqlpump usage examples.

To see a list of the options mysqlpump supports, issue the command mysqlpump --help.

mysqlpump Option Summary

mysqlpump supports the following options, which can be specified on the command line or in the
[mysqlpump] and [client] groups of an option file. (Prior to MySQL 8.0.20, mysqlpump read the
[mysql_dump] group rather than [mysqlpump]. As of 8.0.20, [mysql_dump] is still accepted but is
deprecated.) For information about option files used by MySQL programs, see Section 6.2.2.2, “Using
Option Files”.

Table 6.17 mysqlpump Options

Option Name Description Introduced Deprecated

--add-drop-database Add DROP DATABASE
statement before each

588

mysqlpump — A Database Backup Program

Option Name Description Introduced Deprecated
CREATE DATABASE
statement

--add-drop-table Add DROP TABLE
statement before
each CREATE TABLE
statement

--add-drop-user Add DROP USER
statement before
each CREATE USER
statement

--add-locks Surround each table
dump with LOCK
TABLES and UNLOCK
TABLES statements

--all-databases Dump all databases

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets are
installed

--column-statistics Write ANALYZE TABLE
statements to generate
statistics histograms

--complete-insert Use complete INSERT
statements that include
column names

--compress Compress all
information sent
between client and
server

8.0.18

--compress-output Output compression
algorithm

--compression-
algorithms

Permitted compression
algorithms for
connections to server

8.0.18

--databases Interpret all name
arguments as database
names

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

589

mysqlpump — A Database Backup Program

Option Name Description Introduced Deprecated

--default-character-set Specify default
character set

--default-parallelism Default number of
threads for parallel
processing

--defaults-extra-file Read named option
file in addition to usual
option files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--defer-table-indexes For reloading, defer
index creation until after
loading table rows

--events Dump events from
dumped databases

--exclude-databases Databases to exclude
from dump

--exclude-events Events to exclude from
dump

--exclude-routines Routines to exclude
from dump

--exclude-tables Tables to exclude from
dump

--exclude-triggers Triggers to exclude from
dump

--exclude-users Users to exclude from
dump

--extended-insert Use multiple-row
INSERT syntax

--get-server-public-key Request RSA public key
from server

--help Display help message
and exit

--hex-blob Dump binary columns
using hexadecimal
notation

--host Host on which MySQL
server is located

--include-databases Databases to include in
dump

--include-events Events to include in
dump

--include-routines Routines to include in
dump

--include-tables Tables to include in
dump

590

mysqlpump — A Database Backup Program

Option Name Description Introduced Deprecated

--include-triggers Triggers to include in
dump

--include-users Users to include in
dump

--insert-ignore Write INSERT IGNORE
rather than INSERT
statements

--log-error-file Append warnings and
errors to named file

--login-path Read login path options
from .mylogin.cnf

--max-allowed-packet Maximum packet length
to send to or receive
from server

--net-buffer-length Buffer size for
TCP/IP and socket
communication

--no-create-db Do not write CREATE
DATABASE statements

--no-create-info Do not write CREATE
TABLE statements that
re-create each dumped
table

--no-defaults Read no option files

--parallel-schemas Specify schema-
processing parallelism

--password Password to use when
connecting to server

--password1 First multifactor
authentication password
to use when connecting
to server

8.0.27

--password2 Second multifactor
authentication password
to use when connecting
to server

8.0.27

--password3 Third multifactor
authentication password
to use when connecting
to server

8.0.27

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to
use

591

mysqlpump — A Database Backup Program

Option Name Description Introduced Deprecated

--replace Write REPLACE
statements rather than
INSERT statements

--result-file Direct output to a given
file

--routines Dump stored routines
(procedures and
functions) from dumped
databases

--server-public-key-path Path name to file
containing RSA public
key

--set-charset Add SET NAMES
default_character_set to
output

--set-gtid-purged Whether to add SET
@@GLOBAL.GTID_PURGED
to output

--single-transaction Dump tables within
single transaction

--skip-definer Omit DEFINER and
SQL SECURITY
clauses from view
and stored program
CREATE statements

--skip-dump-rows Do not dump table rows

--skip-generated-
invisible-primary-key

Do not dump information
about generated
invisible primary keys

8.0.30

--socket Unix socket file or
Windows named pipe to
use

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

592

mysqlpump — A Database Backup Program

Option Name Description Introduced Deprecated

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

--triggers Dump triggers for each
dumped table

--tz-utc Add SET
TIME_ZONE='+00:00' to
dump file

--user MySQL user name to
use when connecting to
server

--users Dump user accounts

--version Display version
information and exit

--watch-progress Display progress
indicator

--zstd-compression-level Compression level
for connections to
server that use zstd
compression

8.0.18

mysqlpump Option Descriptions

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --add-drop-database

Command-Line Format --add-drop-database

Write a DROP DATABASE statement before each CREATE DATABASE statement.

Note

In MySQL 8.0, the mysql schema is considered a system schema that
cannot be dropped by end users. If --add-drop-database is used with

593

mysqlpump — A Database Backup Program

--all-databases or with --databases where the list of schemas to
be dumped includes mysql, the dump file contains a DROP DATABASE
`mysql` statement that causes an error when the dump file is reloaded.

Instead, to use --add-drop-database, use --databases with a list of
schemas to be dumped, where the list does not include mysql.

• --add-drop-table

Command-Line Format --add-drop-table

Write a DROP TABLE statement before each CREATE TABLE statement.

• --add-drop-user

Command-Line Format --add-drop-user

Write a DROP USER statement before each CREATE USER statement.

• --add-locks

Command-Line Format --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results
in faster inserts when the dump file is reloaded. See Section 10.2.5.1, “Optimizing INSERT
Statements”.

This option does not work with parallelism because INSERT statements from different tables can be
interleaved and UNLOCK TABLES following the end of the inserts for one table could release locks on
tables for which inserts remain.

--add-locks and --single-transaction are mutually exclusive.

• --all-databases, -A

Command-Line Format --all-databases

Dump all databases (with certain exceptions noted in mysqlpump Restrictions). This is the default
behavior if no other is specified explicitly.

--all-databases and --databases are mutually exclusive.

Note

See the --add-drop-database description for information about an
incompatibility of that option with --all-databases.

Prior to MySQL 8.0, the --routines and --events options for mysqldump and mysqlpump were
not required to include stored routines and events when using the --all-databases option: The
dump included the mysql system database, and therefore also the mysql.proc and mysql.event
tables containing stored routine and event definitions. As of MySQL 8.0, the mysql.event and
mysql.proc tables are not used. Definitions for the corresponding objects are stored in data
dictionary tables, but those tables are not dumped. To include stored routines and events in a dump
made using --all-databases, use the --routines and --events options explicitly.

594

mysqlpump — A Database Backup Program

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=path

Command-Line Format --character-sets-dir=dir_name

Type Directory name

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

• --column-statistics

Command-Line Format --column-statistics

Type Boolean

Default Value OFF

Add ANALYZE TABLE statements to the output to generate histogram statistics for dumped tables
when the dump file is reloaded. This option is disabled by default because histogram generation for
large tables can take a long time.

• --complete-insert

Command-Line Format --complete-insert

Write complete INSERT statements that include column names.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Deprecated 8.0.18

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 6.2.8,
“Connection Compression Control”.

As of MySQL 8.0.18, this option is deprecated. Expect it to be removed in a future version of MySQL.
See Configuring Legacy Connection Compression.

• --compress-output=algorithm

Command-Line Format --compress-output=algorithm

Type Enumeration

Valid Values LZ4

595

mysqlpump — A Database Backup Program

ZLIB

By default, mysqlpump does not compress output. This option specifies output compression using
the specified algorithm. Permitted algorithms are LZ4 and ZLIB.

To uncompress compressed output, you must have an appropriate utility. If the system commands
lz4 and openssl zlib are not available, MySQL distributions include lz4_decompress
and zlib_decompress utilities that can be used to decompress mysqlpump output that was
compressed using the --compress-output=LZ4 and --compress-output=ZLIB options. For
more information, see Section 6.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed
Output”, and Section 6.8.3, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed
Output”.

• --compression-algorithms=value

Command-Line Format --compression-algorithms=value

Introduced 8.0.18

Type Set

Default Value uncompressed

Valid Values zlib

zstd

uncompressed

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the protocol_compression_algorithms system variable. The default value is
uncompressed.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

• --databases, -B

Command-Line Format --databases

Normally, mysqlpump treats the first name argument on the command line as a database name
and any following names as table names. With this option, it treats all name arguments as database
names. CREATE DATABASE statements are included in the output before each new database.

--all-databases and --databases are mutually exclusive.

Note

See the --add-drop-database description for information about an
incompatibility of that option with --databases.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String596

mysqlpump — A Database Backup Program

Default Value d:t:O,/tmp/mysqlpump.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:O,/tmp/mysqlpump.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-info, -T

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 8.2.17, “Pluggable
Authentication”.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Default Value utf8

Use charset_name as the default character set. See Section 12.15, “Character Set Configuration”.
If no character set is specified, mysqlpump uses utf8mb4.

• --default-parallelism=N

Command-Line Format --default-parallelism=N

Type Integer

Default Value 2

597

mysqlpump — A Database Backup Program

The default number of threads for each parallel processing queue. The default is 2.

The --parallel-schemas option also affects parallelism and can be used to override the default
number of threads. For more information, see mysqlpump Parallel Processing.

With --default-parallelism=0 and no --parallel-schemas options, mysqlpump runs as a
single-threaded process and creates no queues.

With parallelism enabled, it is possible for output from different databases to be interleaved.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlpump normally reads the [client] and [mysqlpump] groups. If this option
is given as --defaults-group-suffix=_other, mysqlpump also reads the [client_other]
and [mysqlpump_other] groups.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defer-table-indexes

Command-Line Format --defer-table-indexes

Type Boolean

Default Value TRUE

598

mysqlpump — A Database Backup Program

In the dump output, defer index creation for each table until after its rows have been loaded. This
works for all storage engines, but for InnoDB applies only for secondary indexes.

This option is enabled by default; use --skip-defer-table-indexes to disable it.

• --events

Command-Line Format --events

Type Boolean

Default Value TRUE

Include Event Scheduler events for the dumped databases in the output. Event dumping requires the
EVENT privileges for those databases.

The output generated by using --events contains CREATE EVENT statements to create the events.

This option is enabled by default; use --skip-events to disable it.

• --exclude-databases=db_list

Command-Line Format --exclude-databases=db_list

Type String

Do not dump the databases in db_list, which is a list of one or more comma-separated database
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --exclude-events=event_list

Command-Line Format --exclude-events=event_list

Type String

Do not dump the databases in event_list, which is a list of one or more comma-separated event
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --exclude-routines=routine_list

Command-Line Format --exclude-routines=routine_list

Type String

Do not dump the events in routine_list, which is a list of one or more comma-separated routine
(stored procedure or function) names. Multiple instances of this option are additive. For more
information, see mysqlpump Object Selection.

• --exclude-tables=table_list

Command-Line Format --exclude-tables=table_list 599

mysqlpump — A Database Backup Program

Type String

Do not dump the tables in table_list, which is a list of one or more comma-separated table
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --exclude-triggers=trigger_list

Command-Line Format --exclude-triggers=trigger_list

Type String

Do not dump the triggers in trigger_list, which is a list of one or more comma-separated trigger
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --exclude-users=user_list

Command-Line Format --exclude-users=user_list

Type String

Do not dump the user accounts in user_list, which is a list of one or more comma-separated
account names. Multiple instances of this option are additive. For more information, see mysqlpump
Object Selection.

• --extended-insert=N

Command-Line Format --extended-insert=N

Write INSERT statements using multiple-row syntax that includes several VALUES lists. This results
in a smaller dump file and speeds up inserts when the file is reloaded.

The option value indicates the number of rows to include in each INSERT statement. The default is
250. A value of 1 produces one INSERT statement per table row.

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This
option applies to clients that authenticate with the caching_sha2_password authentication
plugin. For that plugin, the server does not send the public key unless requested. This option
is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

600

mysqlpump — A Database Backup Program

• --hex-blob

Command-Line Format --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The
affected data types are BINARY, VARBINARY, BLOB types, BIT, all spatial data types, and other non-
binary data types when used with the binary character set.

• --host=host_name, -h host_name

Command-Line Format --host

Dump data from the MySQL server on the given host.

• --include-databases=db_list

Command-Line Format --include-databases=db_list

Type String

Dump the databases in db_list, which is a list of one or more comma-separated database names.
The dump includes all objects in the named databases. Multiple instances of this option are additive.
For more information, see mysqlpump Object Selection.

• --include-events=event_list

Command-Line Format --include-events=event_list

Type String

Dump the events in event_list, which is a list of one or more comma-separated event names.
Multiple instances of this option are additive. For more information, see mysqlpump Object Selection.

• --include-routines=routine_list

Command-Line Format --include-routines=routine_list

Type String

Dump the routines in routine_list, which is a list of one or more comma-separated routine
(stored procedure or function) names. Multiple instances of this option are additive. For more
information, see mysqlpump Object Selection.

• --include-tables=table_list

Command-Line Format --include-tables=table_list

Type String

Dump the tables in table_list, which is a list of one or more comma-separated table names.
Multiple instances of this option are additive. For more information, see mysqlpump Object Selection.

• --include-triggers=trigger_list

Command-Line Format --include-triggers=trigger_list

Type String

601

mysqlpump — A Database Backup Program

Dump the triggers in trigger_list, which is a list of one or more comma-separated trigger names.
Multiple instances of this option are additive. For more information, see mysqlpump Object Selection.

• --include-users=user_list

Command-Line Format --include-users=user_list

Type String

Dump the user accounts in user_list, which is a list of one or more comma-separated user
names. Multiple instances of this option are additive. For more information, see mysqlpump Object
Selection.

• --insert-ignore

Command-Line Format --insert-ignore

Write INSERT IGNORE statements rather than INSERT statements.

• --log-error-file=file_name

Command-Line Format --log-error-file=file_name

Type File name

Log warnings and errors by appending them to the named file. If this option is not given, mysqlpump
writes warnings and errors to the standard error output.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --max-allowed-packet=N

Command-Line Format --max-allowed-packet=N

Type Numeric

Default Value 25165824

The maximum size of the buffer for client/server communication. The default is 24MB, the maximum
is 1GB.

• --net-buffer-length=N

Command-Line Format --net-buffer-length=N

602

mysqlpump — A Database Backup Program

Type Numeric

Default Value 1047552

The initial size of the buffer for client/server communication. When creating multiple-row INSERT
statements (as with the --extended-insert option), mysqlpump creates rows up to N bytes long.
If you use this option to increase the value, ensure that the MySQL server net_buffer_length
system variable has a value at least this large.

• --no-create-db

Command-Line Format --no-create-db

Suppress any CREATE DATABASE statements that might otherwise be included in the output.

• --no-create-info, -t

Command-Line Format --no-create-info

Do not write CREATE TABLE statements that create each dumped table.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --parallel-schemas=[N:]db_list

Command-Line Format --parallel-schemas=[N:]schema_list

Type String

Create a queue for processing the databases in db_list, which is a list of one or more comma-
separated database names. If N is given, the queue uses N threads. If N is not given, the --
default-parallelism option determines the number of queue threads.

Multiple instances of this option create multiple queues. mysqlpump also creates a default
queue to use for databases not named in any --parallel-schemas option, and for dumping
user definitions if command options select them. For more information, see mysqlpump Parallel
Processing.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

603

mysqlpump — A Database Backup Program

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, mysqlpump prompts for one. If given, there must be no space between --
password= or -p and the password following it. If no password option is specified, the default is to
send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlpump should not prompt for one, use
the --skip-password option.

• --password1[=pass_val]

The password for multifactor authentication factor 1 of the MySQL account used for connecting to
the server. The password value is optional. If not given, mysqlpump prompts for one. If given, there
must be no space between --password1= and the password following it. If no password option is
specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlpump should not prompt for one, use
the --skip-password1 option.

--password1 and --password are synonymous, as are --skip-password1 and --skip-
password.

• --password2[=pass_val]

The password for multifactor authentication factor 2 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --password3[=pass_val]

The password for multifactor authentication factor 3 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlpump does not find it. See Section 8.2.17, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

604

mysqlpump — A Database Backup Program

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 6.2.7, “Connection Transport Protocols”.

• --replace

Command-Line Format --replace

Write REPLACE statements rather than INSERT statements.

• --result-file=file_name

Command-Line Format --result-file=file_name

Type File name

Direct output to the named file. The result file is created and its previous contents overwritten, even if
an error occurs while generating the dump.

This option should be used on Windows to prevent newline \n characters from being converted to
\r\n carriage return/newline sequences.

• --routines

Command-Line Format --routines

Type Boolean

605

mysqlpump — A Database Backup Program

Default Value TRUE

Include stored routines (procedures and functions) for the dumped databases in the output. This
option requires the global SELECT privilege.

The output generated by using --routines contains CREATE PROCEDURE and CREATE
FUNCTION statements to create the routines.

This option is enabled by default; use --skip-routines to disable it.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --set-charset

Command-Line Format --set-charset

Write SET NAMES default_character_set to the output.

This option is enabled by default. To disable it and suppress the SET NAMES statement, use --
skip-set-charset.

• --set-gtid-purged=value

Command-Line Format --set-gtid-purged=value

Type Enumeration

Default Value AUTO

Valid Values OFF

ON

AUTO

This option enables control over global transaction ID (GTID) information written to the dump file,
by indicating whether to add a SET @@GLOBAL.gtid_purged statement to the output. This option
may also cause a statement to be written to the output that disables binary logging while the dump
file is being reloaded.

606

mysqlpump — A Database Backup Program

The following table shows the permitted option values. The default value is AUTO.

Value Meaning

OFF Add no SET statement to the output.

ON Add a SET statement to the output. An error
occurs if GTIDs are not enabled on the server.

AUTO Add a SET statement to the output if GTIDs are
enabled on the server.

The --set-gtid-purged option has the following effect on binary logging when the dump file is
reloaded:

• --set-gtid-purged=OFF: SET @@SESSION.SQL_LOG_BIN=0; is not added to the output.

• --set-gtid-purged=ON: SET @@SESSION.SQL_LOG_BIN=0; is added to the output.

• --set-gtid-purged=AUTO: SET @@SESSION.SQL_LOG_BIN=0; is added to the output if
GTIDs are enabled on the server you are backing up (that is, if AUTO evaluates to ON).

• --single-transaction

Command-Line Format --single-transaction

This option sets the transaction isolation mode to REPEATABLE READ and sends a START
TRANSACTION SQL statement to the server before dumping data. It is useful only with transactional
tables such as InnoDB, because then it dumps the consistent state of the database at the time when
START TRANSACTION was issued without blocking any applications.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent
state. For example, any MyISAM or MEMORY tables dumped while using this option may still change
state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table
contents and binary log coordinates), no other connection should use the following statements:
ALTER TABLE, CREATE TABLE, DROP TABLE, RENAME TABLE, TRUNCATE TABLE. A consistent
read is not isolated from those statements, so use of them on a table to be dumped can cause the
SELECT that is performed by mysqlpump to retrieve the table contents to obtain incorrect contents
or fail.

--add-locks and --single-transaction are mutually exclusive.

• --skip-definer

Command-Line Format --skip-definer

Type Boolean

Default Value FALSE

Omit DEFINER and SQL SECURITY clauses from the CREATE statements for views and stored
programs. The dump file, when reloaded, creates objects that use the default DEFINER and SQL
SECURITY values. See Section 27.6, “Stored Object Access Control”.

• --skip-dump-rows, -d

Command-Line Format --skip-dump-rows

Type Boolean

607

mysqlpump — A Database Backup Program

Default Value FALSE

Do not dump table rows.

• --skip-generated-invisible-primary-key

Command-Line Format --skip-generated-invisible-primary-
key

Introduced 8.0.30

Type Boolean

Default Value FALSE

This option is available beginning with MySQL 8.0.30, and causes generated invisible primary keys
(GIPKs) to be excluded from the dump. See Section 15.1.20.11, “Generated Invisible Primary Keys”,
for more information about GIPKs and GIPK mode.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

Default Value OFF

Valid Values OFF

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

608

mysqlpump — A Database Backup Program

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON
or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

• --triggers

Command-Line Format --triggers

Type Boolean

Default Value TRUE

Include triggers for each dumped table in the output.

This option is enabled by default; use --skip-triggers to disable it.

• --tz-utc

Command-Line Format --tz-utc

609

mysqlpump — A Database Backup Program

This option enables TIMESTAMP columns to be dumped and reloaded between servers
in different time zones. mysqlpump sets its connection time zone to UTC and adds SET
TIME_ZONE='+00:00' to the dump file. Without this option, TIMESTAMP columns are dumped and
reloaded in the time zones local to the source and destination servers, which can cause the values
to change if the servers are in different time zones. --tz-utc also protects against changes due to
daylight saving time.

This option is enabled by default; use --skip-tz-utc to disable it.

• --user=user_name, -u user_name

Command-Line Format --user=user_name

Type String

The user name of the MySQL account to use for connecting to the server.

If you are using the Rewriter plugin with MySQL 8.0.31 or later, you should grant this user the
SKIP_QUERY_REWRITE privilege.

• --users

Command-Line Format --users

Type Boolean

Default Value FALSE

Dump user accounts as logical definitions in the form of CREATE USER and GRANT statements.

User definitions are stored in the grant tables in the mysql system database. By default, mysqlpump
does not include the grant tables in mysql database dumps. To dump the contents of the grant
tables as logical definitions, use the --users option and suppress all database dumping:

mysqlpump --exclude-databases=% --users

• --version, -V

Command-Line Format --version

Display version information and exit.

• --watch-progress

Command-Line Format --watch-progress

Type Boolean

Default Value TRUE

Periodically display a progress indicator that provides information about the completed and total
number of tables, rows, and other objects.

This option is enabled by default; use --skip-watch-progress to disable it.

• --zstd-compression-level=level

Command-Line Format --zstd-compression-level=#

610

mysqlpump — A Database Backup Program

Introduced 8.0.18

Type Integer

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
The default zstd compression level is 3. The compression level setting has no effect on connections
that do not use zstd compression.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

mysqlpump Object Selection

mysqlpump has a set of inclusion and exclusion options that enable filtering of several object types
and provide flexible control over which objects to dump:

• --include-databases and --exclude-databases apply to databases and all objects within
them.

• --include-tables and --exclude-tables apply to tables. These options also affect triggers
associated with tables unless the trigger-specific options are given.

• --include-triggers and --exclude-triggers apply to triggers.

• --include-routines and --exclude-routines apply to stored procedures and functions. If
a routine option matches a stored procedure name, it also matches a stored function of the same
name.

• --include-events and --exclude-events apply to Event Scheduler events.

• --include-users and --exclude-users apply to user accounts.

Any inclusion or exclusion option may be given multiple times. The effect is additive. Order of these
options does not matter.

The value of each inclusion and exclusion option is a list of comma-separated names of the appropriate
object type. For example:

--exclude-databases=test,world
--include-tables=customer,invoice

Wildcard characters are permitted in the object names:

• % matches any sequence of zero or more characters.

• _ matches any single character.

For example, --include-tables=t%,__tmp matches all table names that begin with t and all five-
character table names that end with tmp.

For users, a name specified without a host part is interpreted with an implied host of %. For example,
u1 and u1@% are equivalent. This is the same equivalence that applies in MySQL generally (see
Section 8.2.4, “Specifying Account Names”).

Inclusion and exclusion options interact as follows:

• By default, with no inclusion or exclusion options, mysqlpump dumps all databases (with certain
exceptions noted in mysqlpump Restrictions).

• If inclusion options are given in the absence of exclusion options, only the objects named as included
are dumped.

611

mysqlpump — A Database Backup Program

• If exclusion options are given in the absence of inclusion options, all objects are dumped except
those named as excluded.

• If inclusion and exclusion options are given, all objects named as excluded and not named as
included are not dumped. All other objects are dumped.

If multiple databases are being dumped, it is possible to name tables, triggers, and routines in a
specific database by qualifying the object names with the database name. The following command
dumps databases db1 and db2, but excludes tables db1.t1 and db2.t2:

mysqlpump --include-databases=db1,db2 --exclude-tables=db1.t1,db2.t2

The following options provide alternative ways to specify which databases to dump:

• The --all-databases option dumps all databases (with certain exceptions noted in mysqlpump
Restrictions). It is equivalent to specifying no object options at all (the default mysqlpump action is to
dump everything).

--include-databases=% is similar to --all-databases, but selects all databases for dumping,
even those that are exceptions for --all-databases.

• The --databases option causes mysqlpump to treat all name arguments as names of databases
to dump. It is equivalent to an --include-databases option that names the same databases.

mysqlpump Parallel Processing

mysqlpump can use parallelism to achieve concurrent processing. You can select concurrency
between databases (to dump multiple databases simultaneously) and within databases (to dump
multiple objects from a given database simultaneously).

By default, mysqlpump sets up one queue with two threads. You can create additional queues and
control the number of threads assigned to each one, including the default queue:

• --default-parallelism=N specifies the default number of threads used for each queue. In the
absence of this option, N is 2.

The default queue always uses the default number of threads. Additional queues use the default
number of threads unless you specify otherwise.

• --parallel-schemas=[N:]db_list sets up a processing queue for dumping the databases
named in db_list and optionally specifies how many threads the queue uses. db_list is a
list of comma-separated database names. If the option argument begins with N:, the queue uses
N threads. Otherwise, the --default-parallelism option determines the number of queue
threads.

Multiple instances of the --parallel-schemas option create multiple queues.

Names in the database list are permitted to contain the same % and _ wildcard characters supported
for filtering options (see mysqlpump Object Selection).

mysqlpump uses the default queue for processing any databases not named explicitly with a --
parallel-schemas option, and for dumping user definitions if command options select them.

In general, with multiple queues, mysqlpump uses parallelism between the sets of databases
processed by the queues, to dump multiple databases simultaneously. For a queue that uses multiple
threads, mysqlpump uses parallelism within databases, to dump multiple objects from a given
database simultaneously. Exceptions can occur; for example, mysqlpump may block queues while it
obtains from the server lists of objects in databases.

With parallelism enabled, it is possible for output from different databases to be interleaved. For
example, INSERT statements from multiple tables dumped in parallel can be interleaved; the
statements are not written in any particular order. This does not affect reloading because output
statements qualify object names with database names or are preceded by USE statements as required.

612

mysqlshow — Display Database, Table, and Column Information

The granularity for parallelism is a single database object. For example, a single table cannot be
dumped in parallel using multiple threads.

Examples:

mysqlpump --parallel-schemas=db1,db2 --parallel-schemas=db3

mysqlpump sets up a queue to process db1 and db2, another queue to process db3, and a default
queue to process all other databases. All queues use two threads.

mysqlpump --parallel-schemas=db1,db2 --parallel-schemas=db3
 --default-parallelism=4

This is the same as the previous example except that all queues use four threads.

mysqlpump --parallel-schemas=5:db1,db2 --parallel-schemas=3:db3

The queue for db1 and db2 uses five threads, the queue for db3 uses three threads, and the default
queue uses the default of two threads.

As a special case, with --default-parallelism=0 and no --parallel-schemas options,
mysqlpump runs as a single-threaded process and creates no queues.

mysqlpump Restrictions

mysqlpump does not dump the performance_schema, ndbinfo, or sys schema by default. To
dump any of these, name them explicitly on the command line. You can also name them with the --
databases or --include-databases option.

mysqlpump does not dump the INFORMATION_SCHEMA schema.

mysqlpump does not dump InnoDB CREATE TABLESPACE statements.

mysqlpump dumps user accounts in logical form using CREATE USER and GRANT statements (for
example, when you use the --include-users or --users option). For this reason, dumps of the
mysql system database do not by default include the grant tables that contain user definitions: user,
db, tables_priv, columns_priv, procs_priv, or proxies_priv. To dump any of the grant
tables, name the mysql database followed by the table names:

mysqlpump mysql user db ...

6.5.7 mysqlshow — Display Database, Table, and Column Information

The mysqlshow client can be used to quickly see which databases exist, their tables, or a table's
columns or indexes.

mysqlshow provides a command-line interface to several SQL SHOW statements. See Section 15.7.7,
“SHOW Statements”. The same information can be obtained by using those statements directly. For
example, you can issue them from the mysql client program.

Invoke mysqlshow like this:

mysqlshow [options] [db_name [tbl_name [col_name]]]

• If no database is given, a list of database names is shown.

• If no table is given, all matching tables in the database are shown.

• If no column is given, all matching columns and column types in the table are shown.

The output displays only the names of those databases, tables, or columns for which you have some
privileges.

If the last argument contains shell or SQL wildcard characters (*, ?, %, or _), only those names that are
matched by the wildcard are shown. If a database name contains any underscores, those should be

613

mysqlshow — Display Database, Table, and Column Information

escaped with a backslash (some Unix shells require two) to get a list of the proper tables or columns.
* and ? characters are converted into SQL % and _ wildcard characters. This might cause some
confusion when you try to display the columns for a table with a _ in the name, because in this case,
mysqlshow shows you only the table names that match the pattern. This is easily fixed by adding an
extra % last on the command line as a separate argument.

mysqlshow supports the following options, which can be specified on the command line or in the
[mysqlshow] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 6.2.2.2, “Using Option Files”.

Table 6.18 mysqlshow Options

Option Name Description Introduced Deprecated

--bind-address Use specified network
interface to connect to
MySQL Server

--character-sets-dir Directory where
character sets can be
found

--compress Compress all
information sent
between client and
server

8.0.18

--compression-
algorithms

Permitted compression
algorithms for
connections to server

8.0.18

--count Show the number of
rows per table

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--default-character-set Specify default
character set

--defaults-extra-file Read named option
file in addition to usual
option files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--enable-cleartext-plugin Enable cleartext
authentication plugin

--get-server-public-key Request RSA public key
from server

--help Display help message
and exit

614

mysqlshow — Display Database, Table, and Column Information

Option Name Description Introduced Deprecated

--host Host on which MySQL
server is located

--keys Show table indexes

--login-path Read login path options
from .mylogin.cnf

--no-defaults Read no option files

--password Password to use when
connecting to server

--password1 First multifactor
authentication password
to use when connecting
to server

8.0.27

--password2 Second multifactor
authentication password
to use when connecting
to server

8.0.27

--password3 Third multifactor
authentication password
to use when connecting
to server

8.0.27

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--protocol Transport protocol to
use

--server-public-key-path Path name to file
containing RSA public
key

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--show-table-type Show a column
indicating the table type

--socket Unix socket file or
Windows named pipe to
use

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

615

mysqlshow — Display Database, Table, and Column Information

Option Name Description Introduced Deprecated

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--status Display extra
information about each
table

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

--zstd-compression-level Compression level
for connections to
server that use zstd
compression

8.0.18

• --help, -?

Command-Line Format --help

Display a help message and exit.

616

mysqlshow — Display Database, Table, and Column Information

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=path

Type String

Default Value [none]

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Deprecated 8.0.18

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 6.2.8,
“Connection Compression Control”.

As of MySQL 8.0.18, this option is deprecated. Expect it to be removed in a future version of MySQL.
See Configuring Legacy Connection Compression.

• --compression-algorithms=value

Command-Line Format --compression-algorithms=value

Introduced 8.0.18

Type Set

Default Value uncompressed

Valid Values zlib

zstd

uncompressed

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the protocol_compression_algorithms system variable. The default value is
uncompressed.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.
617

mysqlshow — Display Database, Table, and Column Information

• --count

Command-Line Format --count

Show the number of rows per table. This can be slow for non-MyISAM tables.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --default-character-set=charset_name

Command-Line Format --default-character-set=charset_name

Type String

Use charset_name as the default character set. See Section 12.15, “Character Set Configuration”.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

618

mysqlshow — Display Database, Table, and Column Information

Type String

A hint about which client-side authentication plugin to use. See Section 8.2.17, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlshow normally reads the [client] and [mysqlshow] groups. If this option
is given as --defaults-group-suffix=_other, mysqlshow also reads the [client_other]
and [mysqlshow_other] groups.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Type Boolean

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 8.4.1.4, “Client-
Side Cleartext Pluggable Authentication”.)

619

mysqlshow — Display Database, Table, and Column Information

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the RSA public key that it uses for key pair-based password exchange.
This option applies to clients that connect to the server using an account that authenticates with the
caching_sha2_password authentication plugin. For connections by such accounts, the server
does not send the public key to the client unless requested. The option is ignored for accounts
that do not authenticate with that plugin. It is also ignored if RSA-based password exchange is not
needed, as is the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

Connect to the MySQL server on the given host.

• --keys, -k

Command-Line Format --keys

Show table indexes.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults

620

mysqlshow — Display Database, Table, and Column Information

is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, mysqlshow prompts for one. If given, there must be no space between --
password= or -p and the password following it. If no password option is specified, the default is to
send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlshow should not prompt for one, use
the --skip-password option.

• --password1[=pass_val]

The password for multifactor authentication factor 1 of the MySQL account used for connecting to
the server. The password value is optional. If not given, mysqlshow prompts for one. If given, there
must be no space between --password1= and the password following it. If no password option is
specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlshow should not prompt for one, use
the --skip-password1 option.

--password1 and --password are synonymous, as are --skip-password1 and --skip-
password.

• --password2[=pass_val]

The password for multifactor authentication factor 2 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --password3[=pass_val]

The password for multifactor authentication factor 3 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --pipe, -W

Command-Line Format --pipe

621

mysqlshow — Display Database, Table, and Column Information

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlshow does not find it. See Section 8.2.17, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 6.2.7, “Connection Transport Protocols”.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

622

mysqlshow — Display Database, Table, and Column Information

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled
to support shared-memory connections.

• --show-table-type, -t

Command-Line Format --show-table-type

Show a column indicating the table type, as in SHOW FULL TABLES. The type is BASE TABLE or
VIEW.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

623

mysqlshow — Display Database, Table, and Column Information

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

Default Value OFF

Valid Values OFF

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON
or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --status, -i

Command-Line Format --status

Display extra information about each table.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

624

mysqlslap — A Load Emulation Client

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

• --version, -V

Command-Line Format --version

Display version information and exit.

• --zstd-compression-level=level

Command-Line Format --zstd-compression-level=#

Introduced 8.0.18

Type Integer

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
The default zstd compression level is 3. The compression level setting has no effect on connections
that do not use zstd compression.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

6.5.8 mysqlslap — A Load Emulation Client

mysqlslap is a diagnostic program designed to emulate client load for a MySQL server and to report
the timing of each stage. It works as if multiple clients are accessing the server.

Invoke mysqlslap like this:

625

mysqlslap — A Load Emulation Client

mysqlslap [options]

Some options such as --create or --query enable you to specify a string containing an SQL
statement or a file containing statements. If you specify a file, by default it must contain one statement
per line. (That is, the implicit statement delimiter is the newline character.) Use the --delimiter
option to specify a different delimiter, which enables you to specify statements that span multiple lines
or place multiple statements on a single line. You cannot include comments in a file; mysqlslap does
not understand them.

mysqlslap runs in three stages:

1. Create schema, table, and optionally any stored programs or data to use for the test. This stage
uses a single client connection.

2. Run the load test. This stage can use many client connections.

3. Clean up (disconnect, drop table if specified). This stage uses a single client connection.

Examples:

Supply your own create and query SQL statements, with 50 clients querying and 200 selects for each
(enter the command on a single line):

mysqlslap --delimiter=";"
 --create="CREATE TABLE a (b int);INSERT INTO a VALUES (23)"
 --query="SELECT * FROM a" --concurrency=50 --iterations=200

Let mysqlslap build the query SQL statement with a table of two INT columns and three VARCHAR
columns. Use five clients querying 20 times each. Do not create the table or insert the data (that is, use
the previous test's schema and data):

mysqlslap --concurrency=5 --iterations=20
 --number-int-cols=2 --number-char-cols=3
 --auto-generate-sql

Tell the program to load the create, insert, and query SQL statements from the specified files, where
the create.sql file has multiple table creation statements delimited by ';' and multiple insert
statements delimited by ';'. The --query file should contain multiple queries delimited by ';'. Run
all the load statements, then run all the queries in the query file with five clients (five times each):

mysqlslap --concurrency=5
 --iterations=5 --query=query.sql --create=create.sql
 --delimiter=";"

mysqlslap supports the following options, which can be specified on the command line or in the
[mysqlslap] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 6.2.2.2, “Using Option Files”.

Table 6.19 mysqlslap Options

Option Name Description Introduced Deprecated

--auto-generate-sql Generate SQL
statements
automatically when
they are not supplied in
files or using command
options

--auto-generate-sql-add-
autoincrement

Add
AUTO_INCREMENT
column to automatically
generated tables

626

mysqlslap — A Load Emulation Client

Option Name Description Introduced Deprecated

--auto-generate-sql-
execute-number

Specify how many
queries to generate
automatically

--auto-generate-sql-
guid-primary

Add a GUID-based
primary key to
automatically generated
tables

--auto-generate-sql-
load-type

Specify the test load
type

--auto-generate-sql-
secondary-indexes

Specify how many
secondary indexes to
add to automatically
generated tables

--auto-generate-sql-
unique-query-number

How many different
queries to generate for
automatic tests

--auto-generate-sql-
unique-write-number

How many different
queries to generate for
--auto-generate-sql-
write-number

--auto-generate-sql-
write-number

How many row inserts to
perform on each thread

--commit How many statements
to execute before
committing

--compress Compress all
information sent
between client and
server

8.0.18

--compression-
algorithms

Permitted compression
algorithms for
connections to server

8.0.18

--concurrency Number of clients to
simulate when issuing
the SELECT statement

--create File or string containing
the statement to use for
creating the table

--create-schema Schema in which to run
the tests

--csv Generate output in
comma-separated
values format

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,

627

mysqlslap — A Load Emulation Client

Option Name Description Introduced Deprecated
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--defaults-extra-file Read named option
file in addition to usual
option files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--delimiter Delimiter to use in SQL
statements

--detach Detach (close
and reopen) each
connection after each N
statements

--enable-cleartext-plugin Enable cleartext
authentication plugin

--engine Storage engine to use
for creating the table

--get-server-public-key Request RSA public key
from server

--help Display help message
and exit

--host Host on which MySQL
server is located

--iterations Number of times to run
the tests

--login-path Read login path options
from .mylogin.cnf

--no-defaults Read no option files

--no-drop Do not drop any schema
created during the test
run

--number-char-cols Number of VARCHAR
columns to use if --auto-
generate-sql is specified

--number-int-cols Number of INT columns
to use if --auto-
generate-sql is specified

--number-of-queries Limit each client to
approximately this
number of queries

--only-print Do not connect to
databases. mysqlslap
only prints what it would
have done

628

mysqlslap — A Load Emulation Client

Option Name Description Introduced Deprecated

--password Password to use when
connecting to server

--password1 First multifactor
authentication password
to use when connecting
to server

8.0.27

--password2 Second multifactor
authentication password
to use when connecting
to server

8.0.27

--password3 Third multifactor
authentication password
to use when connecting
to server

8.0.27

--pipe Connect to server using
named pipe (Windows
only)

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--post-query File or string containing
the statement to execute
after the tests have
completed

--post-system String to execute using
system() after the tests
have completed

--pre-query File or string containing
the statement to execute
before running the tests

--pre-system String to execute using
system() before running
the tests

--print-defaults Print default options

--protocol Transport protocol to
use

--query File or string containing
the SELECT statement
to use for retrieving data

--server-public-key-path Path name to file
containing RSA public
key

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--silent Silent mode

629

mysqlslap — A Load Emulation Client

Option Name Description Introduced Deprecated

--socket Unix socket file or
Windows named pipe to
use

--sql-mode Set SQL mode for client
session

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

--zstd-compression-level Compression level
for connections to
server that use zstd
compression

8.0.18

630

mysqlslap — A Load Emulation Client

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --auto-generate-sql, -a

Command-Line Format --auto-generate-sql

Type Boolean

Default Value FALSE

Generate SQL statements automatically when they are not supplied in files or using command
options.

• --auto-generate-sql-add-autoincrement

Command-Line Format --auto-generate-sql-add-
autoincrement

Type Boolean

Default Value FALSE

Add an AUTO_INCREMENT column to automatically generated tables.

• --auto-generate-sql-execute-number=N

Command-Line Format --auto-generate-sql-execute-number=#

Type Numeric

Specify how many queries to generate automatically.

• --auto-generate-sql-guid-primary

Command-Line Format --auto-generate-sql-guid-primary

Type Boolean

Default Value FALSE

Add a GUID-based primary key to automatically generated tables.

• --auto-generate-sql-load-type=type

Command-Line Format --auto-generate-sql-load-type=type

Type Enumeration

Default Value mixed

Valid Values read

write

key

update

631

mysqlslap — A Load Emulation Client

mixed

Specify the test load type. The permissible values are read (scan tables), write (insert into tables),
key (read primary keys), update (update primary keys), or mixed (half inserts, half scanning
selects). The default is mixed.

• --auto-generate-sql-secondary-indexes=N

Command-Line Format --auto-generate-sql-secondary-
indexes=#

Type Numeric

Default Value 0

Specify how many secondary indexes to add to automatically generated tables. By default, none are
added.

• --auto-generate-sql-unique-query-number=N

Command-Line Format --auto-generate-sql-unique-query-
number=#

Type Numeric

Default Value 10

How many different queries to generate for automatic tests. For example, if you run a key test that
performs 1000 selects, you can use this option with a value of 1000 to run 1000 unique queries, or
with a value of 50 to perform 50 different selects. The default is 10.

• --auto-generate-sql-unique-write-number=N

Command-Line Format --auto-generate-sql-unique-write-
number=#

Type Numeric

Default Value 10

How many different queries to generate for --auto-generate-sql-write-number. The default
is 10.

• --auto-generate-sql-write-number=N

Command-Line Format --auto-generate-sql-write-number=#

Type Numeric

Default Value 100

How many row inserts to perform. The default is 100.

• --commit=N

Command-Line Format --commit=#

Type Numeric

Default Value 0

632

mysqlslap — A Load Emulation Client

How many statements to execute before committing. The default is 0 (no commits are done).

• --compress, -C

Command-Line Format --compress[={OFF|ON}]

Deprecated 8.0.18

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 6.2.8,
“Connection Compression Control”.

As of MySQL 8.0.18, this option is deprecated. Expect it to be removed in a future version of MySQL.
See Configuring Legacy Connection Compression.

• --compression-algorithms=value

Command-Line Format --compression-algorithms=value

Introduced 8.0.18

Type Set

Default Value uncompressed

Valid Values zlib

zstd

uncompressed

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the protocol_compression_algorithms system variable. The default value is
uncompressed.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

• --concurrency=N, -c N

Command-Line Format --concurrency=#

Type Numeric

The number of parallel clients to simulate.

• --create=value

Command-Line Format --create=value

Type String

The file or string containing the statement to use for creating the table.
633

mysqlslap — A Load Emulation Client

• --create-schema=value

Command-Line Format --create-schema=value

Type String

The schema in which to run the tests.

Note

If the --auto-generate-sql option is also given, mysqlslap drops the
schema at the end of the test run. To avoid this, use the --no-drop option
as well.

• --csv[=file_name]

Command-Line Format --csv=[file]

Type File name

Generate output in comma-separated values format. The output goes to the named file, or to the
standard output if no file is given.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o,/tmp/mysqlslap.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqlslap.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-info, -T

Command-Line Format --debug-info

Type Boolean
634

mysqlslap — A Load Emulation Client

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 8.2.17, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlslap normally reads the [client] and [mysqlslap] groups. If this option
is given as --defaults-group-suffix=_other, mysqlslap also reads the [client_other]
and [mysqlslap_other] groups.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --delimiter=str, -F str

635

mysqlslap — A Load Emulation Client

Command-Line Format --delimiter=str

Type String

The delimiter to use in SQL statements supplied in files or using command options.

• --detach=N

Command-Line Format --detach=#

Type Numeric

Default Value 0

Detach (close and reopen) each connection after each N statements. The default is 0 (connections
are not detached).

• --enable-cleartext-plugin

Command-Line Format --enable-cleartext-plugin

Type Boolean

Default Value FALSE

Enable the mysql_clear_password cleartext authentication plugin. (See Section 8.4.1.4, “Client-
Side Cleartext Pluggable Authentication”.)

• --engine=engine_name, -e engine_name

Command-Line Format --engine=engine_name

Type String

The storage engine to use for creating tables.

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the RSA public key that it uses for key pair-based password exchange.
This option applies to clients that connect to the server using an account that authenticates with the
caching_sha2_password authentication plugin. For connections by such accounts, the server
does not send the public key to the client unless requested. The option is ignored for accounts
that do not authenticate with that plugin. It is also ignored if RSA-based password exchange is not
needed, as is the case when the client connects to the server using a secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

636

mysqlslap — A Load Emulation Client

Type String

Default Value localhost

Connect to the MySQL server on the given host.

• --iterations=N, -i N

Command-Line Format --iterations=#

Type Numeric

The number of times to run the tests.

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --no-drop

Command-Line Format --no-drop

Type Boolean

Default Value FALSE

Prevent mysqlslap from dropping any schema it creates during the test run.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --number-char-cols=N, -x N

Command-Line Format --number-char-cols=#

Type Numeric

637

mysqlslap — A Load Emulation Client

The number of VARCHAR columns to use if --auto-generate-sql is specified.

• --number-int-cols=N, -y N

Command-Line Format --number-int-cols=#

Type Numeric

The number of INT columns to use if --auto-generate-sql is specified.

• --number-of-queries=N

Command-Line Format --number-of-queries=#

Type Numeric

Limit each client to approximately this many queries. Query counting takes into account the
statement delimiter. For example, if you invoke mysqlslap as follows, the ; delimiter is recognized
so that each instance of the query string counts as two queries. As a result, 5 rows (not 10) are
inserted.

mysqlslap --delimiter=";" --number-of-queries=10
 --query="use test;insert into t values(null)"

• --only-print

Command-Line Format --only-print

Type Boolean

Default Value FALSE

Do not connect to databases. mysqlslap only prints what it would have done.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, mysqlslap prompts for one. If given, there must be no space between --
password= or -p and the password following it. If no password option is specified, the default is to
send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlslap should not prompt for one, use
the --skip-password option.

• --password1[=pass_val]

The password for multifactor authentication factor 1 of the MySQL account used for connecting to
the server. The password value is optional. If not given, mysqlslap prompts for one. If given, there

638

mysqlslap — A Load Emulation Client

must be no space between --password1= and the password following it. If no password option is
specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlslap should not prompt for one, use
the --skip-password1 option.

--password1 and --password are synonymous, as are --skip-password1 and --skip-
password.

• --password2[=pass_val]

The password for multifactor authentication factor 2 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --password3[=pass_val]

The password for multifactor authentication factor 3 of the MySQL account used for connecting to
the server. The semantics of this option are similar to the semantics for --password1; see the
description of that option for details.

• --pipe, -W

Command-Line Format --pipe

Type String

On Windows, connect to the server using a named pipe. This option applies only if the server was
started with the named_pipe system variable enabled to support named-pipe connections. In
addition, the user making the connection must be a member of the Windows group specified by the
named_pipe_full_access_group system variable.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is used
to specify an authentication plugin but mysqlslap does not find it. See Section 8.2.17, “Pluggable
Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number to use.

• --post-query=value

Command-Line Format --post-query=value

Type String

639

mysqlslap — A Load Emulation Client

The file or string containing the statement to execute after the tests have completed. This execution
is not counted for timing purposes.

• --post-system=str

Command-Line Format --post-system=str

Type String

The string to execute using system() after the tests have completed. This execution is not counted
for timing purposes.

• --pre-query=value

Command-Line Format --pre-query=value

Type String

The file or string containing the statement to execute before running the tests. This execution is not
counted for timing purposes.

• --pre-system=str

Command-Line Format --pre-system=str

Type String

The string to execute using system() before running the tests. This execution is not counted for
timing purposes.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 6.2.7, “Connection Transport Protocols”.

640

mysqlslap — A Load Emulation Client

• --query=value, -q value

Command-Line Format --query=value

Type String

The file or string containing the SELECT statement to use for retrieving data.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled
to support shared-memory connections.

• --silent, -s

Command-Line Format --silent

Silent mode. No output.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}
641

mysqlslap — A Load Emulation Client

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --sql-mode=mode

Command-Line Format --sql-mode=mode

Type String

Set the SQL mode for the client session.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

Default Value OFF

Valid Values OFF

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON
or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --tls-ciphersuites=ciphersuite_list

642

mysqlslap — A Load Emulation Client

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use for connecting to the server.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does. This option can be used
multiple times to increase the amount of information.

• --version, -V

Command-Line Format --version

Display version information and exit.

• --zstd-compression-level=level

Command-Line Format --zstd-compression-level=#

Introduced 8.0.18

Type Integer

643

Administrative and Utility Programs

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
The default zstd compression level is 3. The compression level setting has no effect on connections
that do not use zstd compression.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

6.6 Administrative and Utility Programs
This section describes administrative programs and programs that perform miscellaneous utility
operations.

6.6.1 ibd2sdi — InnoDB Tablespace SDI Extraction Utility

ibd2sdi is a utility for extracting serialized dictionary information (SDI) from InnoDB tablespace files.
SDI data is present in all persistent InnoDB tablespace files.

ibd2sdi can be run on file-per-table tablespace files (*.ibd files), general tablespace files (*.ibd
files), system tablespace files (ibdata* files), and the data dictionary tablespace (mysql.ibd). It is
not supported for use with temporary tablespaces or undo tablespaces.

ibd2sdi can be used at runtime or while the server is offline. During DDL operations, ROLLBACK
operations, and undo log purge operations related to SDI, there may be a short interval of time when
ibd2sdi fails to read SDI data stored in the tablespace.

ibd2sdi performs an uncommitted read of SDI from the specified tablespace. Redo logs and undo
logs are not accessed.

Invoke the ibd2sdi utility like this:

ibd2sdi [options] file_name1 [file_name2 file_name3 ...]

ibd2sdi supports multi-file tablespaces like the InnoDB system tablespace, but it cannot be run on
more than one tablespace at a time. For multi-file tablespaces, specify each file:

ibd2sdi ibdata1 ibdata2

The files of a multi-file tablespace must be specified in order of the ascending page number. If two
successive files have the same space ID, the later file must start with the last page number of the
previous file + 1.

ibd2sdi outputs SDI (containing id, type, and data fields) in JSON format.

ibd2sdi Options

ibd2sdi supports the following options:

• --help, -h

Command-Line Format --help

Type Boolean

Default Value false

Display a help message and exit. For example:

Usage: ./ibd2sdi [-v] [-c <strict-check>] [-d <dump file name>] [-n] filename1 [filenames]

644

ibd2sdi — InnoDB Tablespace SDI Extraction Utility

See http://dev.mysql.com/doc/refman/8.0/en/ibd2sdi.html for usage hints.
 -h, --help Display this help and exit.
 -v, --version Display version information and exit.
 -#, --debug[=name] Output debug log. See
 http://dev.mysql.com/doc/refman/8.0/en/dbug-package.html
 -d, --dump-file=name
 Dump the tablespace SDI into the file passed by user.
 Without the filename, it will default to stdout
 -s, --skip-data Skip retrieving data from SDI records. Retrieve only id
 and type.
 -i, --id=# Retrieve the SDI record matching the id passed by user.
 -t, --type=# Retrieve the SDI records matching the type passed by
 user.
 -c, --strict-check=name
 Specify the strict checksum algorithm by the user.
 Allowed values are innodb, crc32, none.
 -n, --no-check Ignore the checksum verification.
 -p, --pretty Pretty format the SDI output.If false, SDI would be not
 human readable but it will be of less size
 (Defaults to on; use --skip-pretty to disable.)

Variables (--variable-name=value)
and boolean options {FALSE|TRUE} Value (after reading options)
--------------------------------- --
debug (No default value)
dump-file (No default value)
skip-data FALSE
id 0
type 0
strict-check crc32
no-check FALSE
pretty TRUE

• --version, -v

Command-Line Format --version

Type Boolean

Default Value false

Display version information and exit. For example:

ibd2sdi Ver 8.0.3-dmr for Linux on x86_64 (Source distribution)

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug=options

Type String

Default Value [none]

Prints a debug log. For debug options, refer to Section 7.9.4, “The DBUG Package”.

ibd2sdi --debug=d:t /tmp/ibd2sdi.trace

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --dump-file=, -d

Command-Line Format --dump-file=file

Type File name

Default Value [none]

645

ibd2sdi — InnoDB Tablespace SDI Extraction Utility

Dumps serialized dictionary information (SDI) into the specified dump file. If a dump file is not
specified, the tablespace SDI is dumped to stdout.

ibd2sdi --dump-file=file_name ../data/test/t1.ibd

• --skip-data, -s

Command-Line Format --skip-data

Type Boolean

Default Value false

Skips retrieval of data field values from the serialized dictionary information (SDI) and only retrieves
the id and type field values, which are primary keys for SDI records.

$> ibd2sdi --skip-data ../data/test/t1.ibd
["ibd2sdi"
,
{
 "type": 1,
 "id": 330
}
,
{
 "type": 2,
 "id": 7
}
]

• --id=#, -i #

Command-Line Format --id=#

Type Integer

Default Value 0

Retrieves serialized dictionary information (SDI) matching the specified table or tablespace object
id. An object id is unique to the object type. Table and tablespace object IDs are also found in the
id column of the mysql.tables and mysql.tablespace data dictionary tables. For information
about data dictionary tables, see Section 16.1, “Data Dictionary Schema”.

$> ibd2sdi --id=7 ../data/test/t1.ibd
["ibd2sdi"
,
{
 "type": 2,
 "id": 7,
 "object":
 {
 "mysqld_version_id": 80003,
 "dd_version": 80003,
 "sdi_version": 1,
 "dd_object_type": "Tablespace",
 "dd_object": {
 "name": "test/t1",
 "comment": "",
 "options": "",
 "se_private_data": "flags=16417;id=2;server_version=80003;space_version=1;",
 "engine": "InnoDB",
 "files": [
 {
 "ordinal_position": 1,
 "filename": "./test/t1.ibd",
 "se_private_data": "id=2;"646

ibd2sdi — InnoDB Tablespace SDI Extraction Utility

 }
]
 }
}
}
]

• --type=#, -t #

Command-Line Format --type=#

Type Enumeration

Default Value 0

Valid Values 1

2

Retrieves serialized dictionary information (SDI) matching the specified object type. SDI is provided
for table (type=1) and tablespace (type=2) objects.

This example shows output for a tablespace ts1 in the test database:

$> ibd2sdi --type=2 ../data/test/ts1.ibd
["ibd2sdi"
,
{
 "type": 2,
 "id": 7,
 "object":
 {
 "mysqld_version_id": 80003,
 "dd_version": 80003,
 "sdi_version": 1,
 "dd_object_type": "Tablespace",
 "dd_object": {
 "name": "test/ts1",
 "comment": "",
 "options": "",
 "se_private_data": "flags=16417;id=2;server_version=80003;space_version=1;",
 "engine": "InnoDB",
 "files": [
 {
 "ordinal_position": 1,
 "filename": "./test/ts1.ibd",
 "se_private_data": "id=2;"
 }
]
 }
}
}
]

Due to the way in which InnoDB handles default value metadata, a default value may be present
and non-empty in ibd2sdi output for a given table column even if it is not defined using DEFAULT.
Consider the two tables created using the following statements, in the database named i:

CREATE TABLE t1 (c VARCHAR(16) NOT NULL);

CREATE TABLE t2 (c VARCHAR(16) NOT NULL DEFAULT "Sakila");

Using ibd2sdi, we can see that the default_value for column c is nonempty and is in fact
padded to length in both tables, like this:

$> ibd2sdi ../data/i/t1.ibd | grep -m1 '\"default_value\"' | cut -b34- | sed -e s/,//
"AA\nAAAAAAAAAAA="

$> ibd2sdi ../data/i/t2.ibd | grep -m1 '\"default_value\"' | cut -b34- | sed -e s/,//

647

ibd2sdi — InnoDB Tablespace SDI Extraction Utility

"BlNha2lsYQAA\nAAAAAAAAAAA="

Examination of ibd2sdi output may be easier using a JSON-aware utility like jq, as shown here:

$> ibd2sdi ../data/i/t1.ibd | jq '.[1]["object"]["dd_object"]["columns"][0]["default_value"]'
"AA\nAAAAAAAAAAA="

$> ibd2sdi ../data/i/t2.ibd | jq '.[1]["object"]["dd_object"]["columns"][0]["default_value"]'
"BlNha2lsYQAA\nAAAAAAAAAAA="

For more information, see the MySQL Internals documentation.

• --strict-check, -c

Command-Line Format --strict-check=algorithm

Type Enumeration

Default Value crc32

Valid Values crc32

innodb

none

Specifies a strict checksum algorithm for validating the checksum of pages that are read. Options
include innodb, crc32, and none.

In this example, the strict version of the innodb checksum algorithm is specified:

ibd2sdi --strict-check=innodb ../data/test/t1.ibd

In this example, the strict version of crc32 checksum algorithm is specified:

ibd2sdi -c crc32 ../data/test/t1.ibd

If you do not specify the --strict-check option, validation is performed against non-strict
innodb, crc32 and none checksums.

• --no-check, -n

Command-Line Format --no-check

Type Boolean

Default Value false

Skips checksum validation for pages that are read.

ibd2sdi --no-check ../data/test/t1.ibd

• --pretty, -p

Command-Line Format --pretty

Type Boolean

Default Value false

Outputs SDI data in JSON pretty print format. Enabled by default. If disabled, SDI is not human
readable but is smaller in size. Use --skip-pretty to disable.

ibd2sdi --skip-pretty ../data/test/t1.ibd

648

https://stedolan.github.io/jq/
https://dev.mysql.com/doc/dev/mysql-server/latest/

innochecksum — Offline InnoDB File Checksum Utility

6.6.2 innochecksum — Offline InnoDB File Checksum Utility

innochecksum prints checksums for InnoDB files. This tool reads an InnoDB tablespace file,
calculates the checksum for each page, compares the calculated checksum to the stored checksum,
and reports mismatches, which indicate damaged pages. It was originally developed to speed up
verifying the integrity of tablespace files after power outages but can also be used after file copies.
Because checksum mismatches cause InnoDB to deliberately shut down a running server, it may be
preferable to use this tool rather than waiting for an in-production server to encounter the damaged
pages.

innochecksum cannot be used on tablespace files that the server already has open. For such
files, you should use CHECK TABLE to check tables within the tablespace. Attempting to run
innochecksum on a tablespace that the server already has open results in an Unable to lock
file error.

If checksum mismatches are found, restore the tablespace from backup or start the server and attempt
to use mysqldump to make a backup of the tables within the tablespace.

Invoke innochecksum like this:

innochecksum [options] file_name

innochecksum Options

innochecksum supports the following options. For options that refer to page numbers, the numbers
are zero-based.

• --help, -?

Command-Line Format --help

Type Boolean

Default Value false

Displays command line help. Example usage:

innochecksum --help

• --info, -I

Command-Line Format --info

Type Boolean

Default Value false

Synonym for --help. Displays command line help. Example usage:

innochecksum --info

• --version, -V

Command-Line Format --version

Type Boolean

Default Value false

Displays version information. Example usage:

innochecksum --version

649

innochecksum — Offline InnoDB File Checksum Utility

• --verbose, -v

Command-Line Format --verbose

Type Boolean

Default Value false

Verbose mode; prints a progress indicator to the log file every five seconds. In order for the progress
indicator to be printed, the log file must be specified using the --log option. To turn on verbose
mode, run:

innochecksum --verbose

To turn off verbose mode, run:

innochecksum --verbose=FALSE

The --verbose option and --log option can be specified at the same time. For example:

innochecksum --verbose --log=/var/lib/mysql/test/logtest.txt

To locate the progress indicator information in the log file, you can perform the following search:

cat ./logtest.txt | grep -i "okay"

The progress indicator information in the log file appears similar to the following:

page 1663 okay: 2.863% done
page 8447 okay: 14.537% done
page 13695 okay: 23.568% done
page 18815 okay: 32.379% done
page 23039 okay: 39.648% done
page 28351 okay: 48.789% done
page 33023 okay: 56.828% done
page 37951 okay: 65.308% done
page 44095 okay: 75.881% done
page 49407 okay: 85.022% done
page 54463 okay: 93.722% done
...

• --count, -c

Command-Line Format --count

Type Base name

Default Value true

Print a count of the number of pages in the file and exit. Example usage:

innochecksum --count ../data/test/tab1.ibd

• --start-page=num, -s num

Command-Line Format --start-page=#

Type Numeric

650

innochecksum — Offline InnoDB File Checksum Utility

Default Value 0

Start at this page number. Example usage:

innochecksum --start-page=600 ../data/test/tab1.ibd

or:

innochecksum -s 600 ../data/test/tab1.ibd

• --end-page=num, -e num

Command-Line Format --end-page=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

End at this page number. Example usage:

innochecksum --end-page=700 ../data/test/tab1.ibd

or:

innochecksum --p 700 ../data/test/tab1.ibd

• --page=num, -p num

Command-Line Format --page=#

Type Integer

Default Value 0

Check only this page number. Example usage:

innochecksum --page=701 ../data/test/tab1.ibd

• --strict-check, -C

Command-Line Format --strict-check=algorithm

Type Enumeration

Default Value crc32

Valid Values innodb

crc32

651

innochecksum — Offline InnoDB File Checksum Utility

none

Specify a strict checksum algorithm. Options include innodb, crc32, and none.

In this example, the innodb checksum algorithm is specified:

innochecksum --strict-check=innodb ../data/test/tab1.ibd

In this example, the crc32 checksum algorithm is specified:

innochecksum -C crc32 ../data/test/tab1.ibd

The following conditions apply:

• If you do not specify the --strict-check option, innochecksum validates against innodb,
crc32 and none.

• If you specify the none option, only checksums generated by none are allowed.

• If you specify the innodb option, only checksums generated by innodb are allowed.

• If you specify the crc32 option, only checksums generated by crc32 are allowed.

• --no-check, -n

Command-Line Format --no-check

Type Boolean

Default Value false

Ignore the checksum verification when rewriting a checksum. This option may only be used with
the innochecksum --write option. If the --write option is not specified, innochecksum
terminates.

In this example, an innodb checksum is rewritten to replace an invalid checksum:

innochecksum --no-check --write innodb ../data/test/tab1.ibd

• --allow-mismatches, -a

Command-Line Format --allow-mismatches=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

The maximum number of checksum mismatches allowed before innochecksum terminates. The
default setting is 0. If --allow-mismatches=N, where N>=0, N mismatches are permitted and
innochecksum terminates at N+1. When --allow-mismatches is set to 0, innochecksum
terminates on the first checksum mismatch.

In this example, an existing innodb checksum is rewritten to set --allow-mismatches to 1.

innochecksum --allow-mismatches=1 --write innodb ../data/test/tab1.ibd

With --allow-mismatches set to 1, if there is a mismatch at page 600 and another at page 700
on a file with 1000 pages, the checksum is updated for pages 0-599 and 601-699. Because --

652

innochecksum — Offline InnoDB File Checksum Utility

allow-mismatches is set to 1, the checksum tolerates the first mismatch and terminates on the
second mismatch, leaving page 600 and pages 700-999 unchanged.

• --write=name, -w num

Command-Line Format --write=algorithm

Type Enumeration

Default Value crc32

Valid Values innodb

crc32

none

Rewrite a checksum. When rewriting an invalid checksum, the --no-check option must be
used together with the --write option. The --no-check option tells innochecksum to ignore
verification of the invalid checksum. You do not have to specify the --no-check option if the current
checksum is valid.

An algorithm must be specified when using the --write option. Possible values for the --write
option are:

• innodb: A checksum calculated in software, using the original algorithm from InnoDB.

• crc32: A checksum calculated using the crc32 algorithm, possibly done with a hardware assist.

• none: A constant number.

The --write option rewrites entire pages to disk. If the new checksum is identical to the existing
checksum, the new checksum is not written to disk in order to minimize I/O.

innochecksum obtains an exclusive lock when the --write option is used.

In this example, a crc32 checksum is written for tab1.ibd:

innochecksum -w crc32 ../data/test/tab1.ibd

In this example, a crc32 checksum is rewritten to replace an invalid crc32 checksum:

innochecksum --no-check --write crc32 ../data/test/tab1.ibd

• --page-type-summary, -S

Command-Line Format --page-type-summary

Type Boolean

Default Value false

Display a count of each page type in a tablespace. Example usage:

innochecksum --page-type-summary ../data/test/tab1.ibd

Sample output for --page-type-summary:

File::../data/test/tab1.ibd
================PAGE TYPE SUMMARY==============
#PAGE_COUNT PAGE_TYPE
===
 2 Index page
 0 Undo log page

653

innochecksum — Offline InnoDB File Checksum Utility

 1 Inode page
 0 Insert buffer free list page
 2 Freshly allocated page
 1 Insert buffer bitmap
 0 System page
 0 Transaction system page
 1 File Space Header
 0 Extent descriptor page
 0 BLOB page
 0 Compressed BLOB page
 0 Other type of page
===
Additional information:
Undo page type: 0 insert, 0 update, 0 other
Undo page state: 0 active, 0 cached, 0 to_free, 0 to_purge, 0 prepared, 0 other

• --page-type-dump, -D

Command-Line Format --page-type-dump=name

Type String

Default Value [none]

Dump the page type information for each page in a tablespace to stderr or stdout. Example
usage:

innochecksum --page-type-dump=/tmp/a.txt ../data/test/tab1.ibd

• --log, -l

Command-Line Format --log=path

Type File name

Default Value [none]

Log output for the innochecksum tool. A log file name must be provided. Log output contains
checksum values for each tablespace page. For uncompressed tables, LSN values are also
provided. The --log replaces the --debug option, which was available in earlier releases. Example
usage:

innochecksum --log=/tmp/log.txt ../data/test/tab1.ibd

or:

innochecksum -l /tmp/log.txt ../data/test/tab1.ibd

• - option.

Specify the - option to read from standard input. If the - option is missing when “read from standard
in” is expected, innochecksum prints innochecksum usage information indicating that the “-”
option was omitted. Example usages:

cat t1.ibd | innochecksum -

In this example, innochecksum writes the crc32 checksum algorithm to a.ibd without changing
the original t1.ibd file.

cat t1.ibd | innochecksum --write=crc32 - > a.ibd

Running innochecksum on Multiple User-defined Tablespace Files

The following examples demonstrate how to run innochecksum on multiple user-defined tablespace
files (.ibd files).

654

myisam_ftdump — Display Full-Text Index information

Run innochecksum for all tablespace (.ibd) files in the “test” database:

innochecksum ./data/test/*.ibd

Run innochecksum for all tablespace files (.ibd files) that have a file name starting with “t”:

innochecksum ./data/test/t*.ibd

Run innochecksum for all tablespace files (.ibd files) in the data directory:

innochecksum ./data/*/*.ibd

Note

Running innochecksum on multiple user-defined tablespace files is not
supported on Windows operating systems, as Windows shells such as
cmd.exe do not support glob pattern expansion. On Windows systems,
innochecksum must be run separately for each user-defined tablespace file.
For example:

innochecksum.exe t1.ibd
innochecksum.exe t2.ibd
innochecksum.exe t3.ibd

Running innochecksum on Multiple System Tablespace Files

By default, there is only one InnoDB system tablespace file (ibdata1) but multiple files for the system
tablespace can be defined using the innodb_data_file_path option. In the following example,
three files for the system tablespace are defined using the innodb_data_file_path option:
ibdata1, ibdata2, and ibdata3.

./bin/mysqld --no-defaults --innodb-data-file-path="ibdata1:10M;ibdata2:10M;ibdata3:10M:autoextend"

The three files (ibdata1, ibdata2, and ibdata3) form one logical system tablespace. To run
innochecksum on multiple files that form one logical system tablespace, innochecksum requires the
- option to read tablespace files in from standard input, which is equivalent to concatenating multiple
files to create one single file. For the example provided above, the following innochecksum command
would be used:

cat ibdata* | innochecksum -

Refer to the innochecksum options information for more information about the “-” option.

Note

Running innochecksum on multiple files in the same tablespace is not
supported on Windows operating systems, as Windows shells such as
cmd.exe do not support glob pattern expansion. On Windows systems,
innochecksum must be run separately for each system tablespace file. For
example:

innochecksum.exe ibdata1
innochecksum.exe ibdata2
innochecksum.exe ibdata3

6.6.3 myisam_ftdump — Display Full-Text Index information

myisam_ftdump displays information about FULLTEXT indexes in MyISAM tables. It reads the
MyISAM index file directly, so it must be run on the server host where the table is located. Before using
myisam_ftdump, be sure to issue a FLUSH TABLES statement first if the server is running.

myisam_ftdump scans and dumps the entire index, which is not particularly fast. On the other hand,
the distribution of words changes infrequently, so it need not be run often.

Invoke myisam_ftdump like this:

655

myisam_ftdump — Display Full-Text Index information

myisam_ftdump [options] tbl_name index_num

The tbl_name argument should be the name of a MyISAM table. You can also specify a table by
naming its index file (the file with the .MYI suffix). If you do not invoke myisam_ftdump in the
directory where the table files are located, the table or index file name must be preceded by the path
name to the table's database directory. Index numbers begin with 0.

Example: Suppose that the test database contains a table named mytexttable that has the
following definition:

CREATE TABLE mytexttable
(
 id INT NOT NULL,
 txt TEXT NOT NULL,
 PRIMARY KEY (id),
 FULLTEXT (txt)
) ENGINE=MyISAM;

The index on id is index 0 and the FULLTEXT index on txt is index 1. If your working directory is the
test database directory, invoke myisam_ftdump as follows:

myisam_ftdump mytexttable 1

If the path name to the test database directory is /usr/local/mysql/data/test, you can
also specify the table name argument using that path name. This is useful if you do not invoke
myisam_ftdump in the database directory:

myisam_ftdump /usr/local/mysql/data/test/mytexttable 1

You can use myisam_ftdump to generate a list of index entries in order of frequency of occurrence
like this on Unix-like systems:

myisam_ftdump -c mytexttable 1 | sort -r

On Windows, use:

myisam_ftdump -c mytexttable 1 | sort /R

myisam_ftdump supports the following options:

• --help, -h -?

Command-Line Format --help

Display a help message and exit.

• --count, -c

Command-Line Format --count

Calculate per-word statistics (counts and global weights).

• --dump, -d

Command-Line Format --dump

Dump the index, including data offsets and word weights.

• --length, -l

Command-Line Format --length

656

myisamchk — MyISAM Table-Maintenance Utility

Report the length distribution.

• --stats, -s

Command-Line Format --stats

Report global index statistics. This is the default operation if no other operation is specified.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more output about what the program does.

6.6.4 myisamchk — MyISAM Table-Maintenance Utility

The myisamchk utility gets information about your database tables or checks, repairs, or optimizes
them. myisamchk works with MyISAM tables (tables that have .MYD and .MYI files for storing data
and indexes).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM
tables. See Section 15.7.3.2, “CHECK TABLE Statement”, and Section 15.7.3.5, “REPAIR TABLE
Statement”.

The use of myisamchk with partitioned tables is not supported.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible
causes include but are not limited to file system errors.

Invoke myisamchk like this:

myisamchk [options] tbl_name ...

The options specify what you want myisamchk to do. They are described in the following sections.
You can also get a list of options by invoking myisamchk --help.

With no options, myisamchk simply checks your table as the default operation. To get more
information or to tell myisamchk to take corrective action, specify options as described in the following
discussion.

tbl_name is the database table you want to check or repair. If you run myisamchk somewhere
other than in the database directory, you must specify the path to the database directory, because
myisamchk has no idea where the database is located. In fact, myisamchk does not actually care
whether the files you are working on are located in a database directory. You can copy the files that
correspond to a database table into some other location and perform recovery operations on them
there.

You can name several tables on the myisamchk command line if you wish. You can also specify a
table by naming its index file (the file with the .MYI suffix). This enables you to specify all tables in a
directory by using the pattern *.MYI. For example, if you are in a database directory, you can check all
the MyISAM tables in that directory like this:

myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to the
directory:

myisamchk /path/to/database_dir/*.MYI

657

myisamchk — MyISAM Table-Maintenance Utility

You can even check all tables in all databases by specifying a wildcard with the path to the MySQL
data directory:

myisamchk /path/to/datadir/*/*.MYI

The recommended way to quickly check all MyISAM tables is:

myisamchk --silent --fast /path/to/datadir/*/*.MYI

If you want to check all MyISAM tables and repair any that are corrupted, you can use the following
command:

myisamchk --silent --force --fast --update-state \
 --key_buffer_size=64M --myisam_sort_buffer_size=64M \
 --read_buffer_size=1M --write_buffer_size=1M \
 /path/to/datadir/*/*.MYI

This command assumes that you have more than 64MB free. For more information about memory
allocation with myisamchk, see Section 6.6.4.6, “myisamchk Memory Usage”.

For additional information about using myisamchk, see Section 9.6, “MyISAM Table Maintenance and
Crash Recovery”.

Important

You must ensure that no other program is using the tables while you are
running myisamchk. The most effective means of doing so is to shut down the
MySQL server while running myisamchk, or to lock all tables that myisamchk
is being used on.

Otherwise, when you run myisamchk, it may display the following error
message:

warning: clients are using or haven't closed the table properly

This means that you are trying to check a table that has been updated by
another program (such as the mysqld server) that hasn't yet closed the file or
that has died without closing the file properly, which can sometimes lead to the
corruption of one or more MyISAM tables.

If mysqld is running, you must force it to flush any table modifications that are
still buffered in memory by using FLUSH TABLES. You should then ensure that
no one is using the tables while you are running myisamchk

However, the easiest way to avoid this problem is to use CHECK TABLE
instead of myisamchk to check tables. See Section 15.7.3.2, “CHECK TABLE
Statement”.

myisamchk supports the following options, which can be specified on the command line or in the
[myisamchk] group of an option file. For information about option files used by MySQL programs, see
Section 6.2.2.2, “Using Option Files”.

Table 6.20 myisamchk Options

Option Name Description

--analyze Analyze the distribution of key values

--backup Make a backup of the .MYD file as file_name-
time.BAK

--block-search Find the record that a block at the given offset
belongs to

--character-sets-dir Directory where character sets can be found

--check Check the table for errors

658

myisamchk — MyISAM Table-Maintenance Utility

Option Name Description

--check-only-changed Check only tables that have changed since the
last check

--correct-checksum Correct the checksum information for the table

--data-file-length Maximum length of the data file (when re-creating
data file when it is full)

--debug Write debugging log

--decode_bits Decode_bits

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value

--description Print some descriptive information about the table

--extend-check Do very thorough table check or repair that tries to
recover every possible row from the data file

--fast Check only tables that haven't been closed
properly

--force Do a repair operation automatically if myisamchk
finds any errors in the table

--force Overwrite old temporary files. For use with the -r
or -o option

--ft_max_word_len Maximum word length for FULLTEXT indexes

--ft_min_word_len Minimum word length for FULLTEXT indexes

--ft_stopword_file Use stopwords from this file instead of built-in list

--HELP Display help message and exit

--help Display help message and exit

--information Print informational statistics about the table that is
checked

--key_buffer_size Size of buffer used for index blocks for MyISAM
tables

--keys-used A bit-value that indicates which indexes to update

--max-record-length Skip rows larger than the given length if
myisamchk cannot allocate memory to hold them

--medium-check Do a check that is faster than an --extend-check
operation

--myisam_block_size Block size to be used for MyISAM index pages

--myisam_sort_buffer_size The buffer that is allocated when sorting the index
when doing a REPAIR or when creating indexes
with CREATE INDEX or ALTER TABLE

--no-defaults Read no option files

--parallel-recover Uses the same technique as -r and -n, but creates
all the keys in parallel, using different threads
(beta)

--print-defaults Print default options

--quick Achieve a faster repair by not modifying the data
file

659

myisamchk — MyISAM Table-Maintenance Utility

Option Name Description

--read_buffer_size Each thread that does a sequential scan allocates
a buffer of this size for each table it scans

--read-only Do not mark the table as checked

--recover Do a repair that can fix almost any problem except
unique keys that aren't unique

--safe-recover Do a repair using an old recovery method that
reads through all rows in order and updates all
index trees based on the rows found

--set-auto-increment Force AUTO_INCREMENT numbering for new
records to start at the given value

--set-collation Specify the collation to use for sorting table
indexes

--silent Silent mode

--sort_buffer_size The buffer that is allocated when sorting the index
when doing a REPAIR or when creating indexes
with CREATE INDEX or ALTER TABLE

--sort-index Sort the index tree blocks in high-low order

--sort_key_blocks sort_key_blocks

--sort-records Sort records according to a particular index

--sort-recover Force myisamchk to use sorting to resolve the
keys even if the temporary files would be very
large

--stats_method Specifies how MyISAM index statistics collection
code should treat NULLs

--tmpdir Directory to be used for storing temporary files

--unpack Unpack a table that was packed with myisampack

--update-state Store information in the .MYI file to indicate when
the table was checked and whether the table
crashed

--verbose Verbose mode

--version Display version information and exit

--wait Wait for locked table to be unlocked, instead of
terminating

--write_buffer_size Write buffer size

6.6.4.1 myisamchk General Options

The options described in this section can be used for any type of table maintenance operation
performed by myisamchk. The sections following this one describe options that pertain only to specific
operations, such as table checking or repairing.

• --help, -?

Command-Line Format --help

Display a help message and exit. Options are grouped by type of operation.

• --HELP, -H

660

myisamchk — MyISAM Table-Maintenance Utility

Command-Line Format --HELP

Display a help message and exit. Options are presented in a single list.

• --debug=debug_options, -# debug_options

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o,/tmp/myisamchk.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/myisamchk.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, myisamchk normally reads the [myisamchk] group. If this option is given as --
defaults-group-suffix=_other, myisamchk also reads the [myisamchk_other] group.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

661

myisamchk — MyISAM Table-Maintenance Utility

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --silent, -s

Command-Line Format --silent

Silent mode. Write output only when errors occur. You can use -s twice (-ss) to make myisamchk
very silent.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does. This can be used with -d and -
e. Use -v multiple times (-vv, -vvv) for even more output.

• --version, -V

Command-Line Format --version

Display version information and exit.

• --wait, -w

Command-Line Format --wait

Type Boolean

Default Value false

Instead of terminating with an error if the table is locked, wait until the table is unlocked before
continuing. If you are running mysqld with external locking disabled, the table can be locked only by
another myisamchk command.

662

myisamchk — MyISAM Table-Maintenance Utility

You can also set the following variables by using --var_name=value syntax:

Variable Default Value

decode_bits 9

ft_max_word_len version-dependent

ft_min_word_len 4

ft_stopword_file built-in list

key_buffer_size 523264

myisam_block_size 1024

myisam_sort_key_blocks 16

read_buffer_size 262136

sort_buffer_size 2097144

sort_key_blocks 16

stats_method nulls_unequal

write_buffer_size 262136

The possible myisamchk variables and their default values can be examined with myisamchk --
help:

myisam_sort_buffer_size is used when the keys are repaired by sorting keys, which is
the normal case when you use --recover. sort_buffer_size is a deprecated synonym for
myisam_sort_buffer_size.

key_buffer_size is used when you are checking the table with --extend-check or when the keys
are repaired by inserting keys row by row into the table (like when doing normal inserts). Repairing
through the key buffer is used in the following cases:

• You use --safe-recover.

• The temporary files needed to sort the keys would be more than twice as big as when creating the
key file directly. This is often the case when you have large key values for CHAR, VARCHAR, or TEXT
columns, because the sort operation needs to store the complete key values as it proceeds. If you
have lots of temporary space and you can force myisamchk to repair by sorting, you can use the --
sort-recover option.

Repairing through the key buffer takes much less disk space than using sorting, but is also much
slower.

If you want a faster repair, set the key_buffer_size and myisam_sort_buffer_size variables to
about 25% of your available memory. You can set both variables to large values, because only one of
them is used at a time.

myisam_block_size is the size used for index blocks.

stats_method influences how NULL values are treated for index statistics collection when the
--analyze option is given. It acts like the myisam_stats_method system variable. For more
information, see the description of myisam_stats_method in Section 7.1.8, “Server System
Variables”, and Section 10.3.8, “InnoDB and MyISAM Index Statistics Collection”.

ft_min_word_len and ft_max_word_len indicate the minimum and maximum word length for
FULLTEXT indexes on MyISAM tables. ft_stopword_file names the stopword file. These need to
be set under the following circumstances.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze),
the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum and

663

myisamchk — MyISAM Table-Maintenance Utility

maximum word length and the stopword file unless you specify otherwise. This can result in queries
failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length
or the stopword file in the server, specify the same ft_min_word_len, ft_max_word_len, and
ft_stopword_file values to myisamchk that you use for mysqld. For example, if you have set the
minimum word length to 3, you can repair a table with myisamchk like this:

myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, you can place
each one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE
TABLE, or ALTER TABLE. These statements are performed by the server, which knows the proper full-
text parameter values to use.

6.6.4.2 myisamchk Check Options

myisamchk supports the following options for table checking operations:

• --check, -c

Command-Line Format --check

Check the table for errors. This is the default operation if you specify no option that selects an
operation type explicitly.

• --check-only-changed, -C

Command-Line Format --check-only-changed

Check only tables that have changed since the last check.

• --extend-check, -e

Command-Line Format --extend-check

Check the table very thoroughly. This is quite slow if the table has many indexes. This option should
only be used in extreme cases. Normally, myisamchk or myisamchk --medium-check should be
able to determine whether there are any errors in the table.

If you are using --extend-check and have plenty of memory, setting the key_buffer_size
variable to a large value helps the repair operation run faster.

See also the description of this option under table repair options.

For a description of the output format, see Section 6.6.4.5, “Obtaining Table Information with
myisamchk”.

• --fast, -F

Command-Line Format --fast

664

myisamchk — MyISAM Table-Maintenance Utility

Check only tables that haven't been closed properly.

• --force, -f

Command-Line Format --force

Do a repair operation automatically if myisamchk finds any errors in the table. The repair type is the
same as that specified with the --recover or -r option.

• --information, -i

Command-Line Format --information

Print informational statistics about the table that is checked.

• --medium-check, -m

Command-Line Format --medium-check

Do a check that is faster than an --extend-check operation. This finds only 99.99% of all errors,
which should be good enough in most cases.

• --read-only, -T

Command-Line Format --read-only

Do not mark the table as checked. This is useful if you use myisamchk to check a table that is in use
by some other application that does not use locking, such as mysqld when run with external locking
disabled.

• --update-state, -U

Command-Line Format --update-state

Store information in the .MYI file to indicate when the table was checked and whether the table
crashed. This should be used to get full benefit of the --check-only-changed option, but you
shouldn't use this option if the mysqld server is using the table and you are running it with external
locking disabled.

6.6.4.3 myisamchk Repair Options

myisamchk supports the following options for table repair operations (operations performed when an
option such as --recover or --safe-recover is given):

• --backup, -B

Command-Line Format --backup

Make a backup of the .MYD file as file_name-time.BAK

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=path

665

myisamchk — MyISAM Table-Maintenance Utility

Type String

Default Value [none]

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

• --correct-checksum

Command-Line Format --correct-checksum

Correct the checksum information for the table.

• --data-file-length=len, -D len

Command-Line Format --data-file-length=len

Type Numeric

The maximum length of the data file (when re-creating data file when it is “full”).

• --extend-check, -e

Command-Line Format --extend-check

Do a repair that tries to recover every possible row from the data file. Normally, this also finds a lot of
garbage rows. Do not use this option unless you are desperate.

See also the description of this option under table checking options.

For a description of the output format, see Section 6.6.4.5, “Obtaining Table Information with
myisamchk”.

• --force, -f

Command-Line Format --force

Overwrite old intermediate files (files with names like tbl_name.TMD) instead of aborting.

• --keys-used=val, -k val

Command-Line Format --keys-used=val

Type Numeric

For myisamchk, the option value is a bit value that indicates which indexes to update. Each binary
bit of the option value corresponds to a table index, where the first index is bit 0. An option value of 0
disables updates to all indexes, which can be used to get faster inserts. Deactivated indexes can be
reactivated by using myisamchk -r.

• --max-record-length=len

Command-Line Format --max-record-length=len

Type Numeric

Skip rows larger than the given length if myisamchk cannot allocate memory to hold them.

666

myisamchk — MyISAM Table-Maintenance Utility

• --parallel-recover, -p

Command-Line Format --parallel-recover

Note

This option is deprecated in MySQL 8.0.28 and removed in MySQL 8.0.30.

Use the same technique as -r and -n, but create all the keys in parallel, using different threads.
This is beta-quality code. Use at your own risk!

• --quick, -q

Command-Line Format --quick

Achieve a faster repair by modifying only the index file, not the data file. You can specify this option
twice to force myisamchk to modify the original data file in case of duplicate keys.

• --recover, -r

Command-Line Format --recover

Do a repair that can fix almost any problem except unique keys that are not unique (which is an
extremely unlikely error with MyISAM tables). If you want to recover a table, this is the option to try
first. You should try --safe-recover only if myisamchk reports that the table cannot be recovered
using --recover. (In the unlikely case that --recover fails, the data file remains intact.)

If you have lots of memory, you should increase the value of myisam_sort_buffer_size.

• --safe-recover, -o

Command-Line Format --safe-recover

Do a repair using an old recovery method that reads through all rows in order and updates all index
trees based on the rows found. This is an order of magnitude slower than --recover, but can
handle a couple of very unlikely cases that --recover cannot. This recovery method also uses
much less disk space than --recover. Normally, you should repair first using --recover, and
then with --safe-recover only if --recover fails.

If you have lots of memory, you should increase the value of key_buffer_size.

• --set-collation=name

Command-Line Format --set-collation=name

Type String

Specify the collation to use for sorting table indexes. The character set name is implied by the first
part of the collation name.

• --sort-recover, -n

Command-Line Format --sort-recover

Force myisamchk to use sorting to resolve the keys even if the temporary files would be very large.

667

myisamchk — MyISAM Table-Maintenance Utility

• --tmpdir=dir_name, -t dir_name

Command-Line Format --tmpdir=dir_name

Type Directory name

The path of the directory to be used for storing temporary files. If this is not set, myisamchk uses
the value of the TMPDIR environment variable. --tmpdir can be set to a list of directory paths that
are used successively in round-robin fashion for creating temporary files. The separator character
between directory names is the colon (:) on Unix and the semicolon (;) on Windows.

• --unpack, -u

Command-Line Format --unpack

Unpack a table that was packed with myisampack.

6.6.4.4 Other myisamchk Options

myisamchk supports the following options for actions other than table checks and repairs:

• --analyze, -a

Command-Line Format --analyze

Analyze the distribution of key values. This improves join performance by enabling the join
optimizer to better choose the order in which to join the tables and which indexes it should use. To
obtain information about the key distribution, use a myisamchk --description --verbose
tbl_name command or the SHOW INDEX FROM tbl_name statement.

• --block-search=offset, -b offset

Command-Line Format --block-search=offset

Type Numeric

Find the record that a block at the given offset belongs to.

• --description, -d

Command-Line Format --description

Print some descriptive information about the table. Specifying the --verbose option once or twice
produces additional information. See Section 6.6.4.5, “Obtaining Table Information with myisamchk”.

• --set-auto-increment[=value], -A[value]

Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if
there are existing records with AUTO_INCREMENT values this large). If value is not specified,
AUTO_INCREMENT numbers for new records begin with the largest value currently in the table, plus
one.

• --sort-index, -S

Command-Line Format --sort-index

668

myisamchk — MyISAM Table-Maintenance Utility

Sort the index tree blocks in high-low order. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=N, -R N

Command-Line Format --sort-records=#

Type Numeric

Sort records according to a particular index. This makes your data much more localized and may
speed up range-based SELECT and ORDER BY operations that use this index. (The first time you
use this option to sort a table, it may be very slow.) To determine a table's index numbers, use SHOW
INDEX, which displays a table's indexes in the same order that myisamchk sees them. Indexes are
numbered beginning with 1.

If keys are not packed (PACK_KEYS=0), they have the same length, so when myisamchk sorts and
moves records, it just overwrites record offsets in the index. If keys are packed (PACK_KEYS=1),
myisamchk must unpack key blocks first, then re-create indexes and pack the key blocks again. (In
this case, re-creating indexes is faster than updating offsets for each index.)

6.6.4.5 Obtaining Table Information with myisamchk

To obtain a description of a MyISAM table or statistics about it, use the commands shown here. The
output from these commands is explained later in this section.

• myisamchk -d tbl_name

Runs myisamchk in “describe mode” to produce a description of your table. If you start the MySQL
server with external locking disabled, myisamchk may report an error for a table that is updated
while it runs. However, because myisamchk does not change the table in describe mode, there is no
risk of destroying data.

• myisamchk -dv tbl_name

Adding -v runs myisamchk in verbose mode so that it produces more information about the table.
Adding -v a second time produces even more information.

• myisamchk -eis tbl_name

Shows only the most important information from a table. This operation is slow because it must read
the entire table.

• myisamchk -eiv tbl_name

This is like -eis, but tells you what is being done.

The tbl_name argument can be either the name of a MyISAM table or the name of its index file, as
described in Section 6.6.4, “myisamchk — MyISAM Table-Maintenance Utility”. Multiple tbl_name
arguments can be given.

Suppose that a table named person has the following structure. (The MAX_ROWS table option is
included so that in the example output from myisamchk shown later, some values are smaller and fit
the output format more easily.)

CREATE TABLE person
(
 id INT NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(20) NOT NULL,
 first_name VARCHAR(20) NOT NULL,
 birth DATE,
 death DATE,
 PRIMARY KEY (id),

669

myisamchk — MyISAM Table-Maintenance Utility

 INDEX (last_name, first_name),
 INDEX (birth)
) MAX_ROWS = 1000000 ENGINE=MYISAM;

Suppose also that the table has these data and index file sizes:

-rw-rw---- 1 mysql mysql 9347072 Aug 19 11:47 person.MYD
-rw-rw---- 1 mysql mysql 6066176 Aug 19 11:47 person.MYI

Example of myisamchk -dvv output:

MyISAM file: person
Record format: Packed
Character set: utf8mb4_0900_ai_ci (255)
File-version: 1
Creation time: 2017-03-30 21:21:30
Status: checked,analyzed,optimized keys,sorted index pages
Auto increment key: 1 Last value: 306688
Data records: 306688 Deleted blocks: 0
Datafile parts: 306688 Deleted data: 0
Datafile pointer (bytes): 4 Keyfile pointer (bytes): 3
Datafile length: 9347072 Keyfile length: 6066176
Max datafile length: 4294967294 Max keyfile length: 17179868159
Recordlength: 54

table description:
Key Start Len Index Type Rec/key Root Blocksize
1 2 4 unique long 1 1024
2 6 80 multip. varchar prefix 0 1024
 87 80 varchar 0
3 168 3 multip. uint24 NULL 0 1024

Field Start Length Nullpos Nullbit Type
1 1 1
2 2 4 no zeros
3 6 81 varchar
4 87 81 varchar
5 168 3 1 1 no zeros
6 171 3 1 2 no zeros

Explanations for the types of information myisamchk produces are given here. “Keyfile” refers to the
index file. “Record” and “row” are synonymous, as are “field” and “column.”

The initial part of the table description contains these values:

• MyISAM file

Name of the MyISAM (index) file.

• Record format

The format used to store table rows. The preceding examples use Fixed length. Other possible
values are Compressed and Packed. (Packed corresponds to what SHOW TABLE STATUS reports
as Dynamic.)

• Chararacter set

The table default character set.

• File-version

Version of MyISAM format. Always 1.

• Creation time

When the data file was created.

• Recover time

670

myisamchk — MyISAM Table-Maintenance Utility

When the index/data file was last reconstructed.

• Status

Table status flags. Possible values are crashed, open, changed, analyzed, optimized keys,
and sorted index pages.

• Auto increment key, Last value

The key number associated the table's AUTO_INCREMENT column, and the most recently generated
value for this column. These fields do not appear if there is no such column.

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this
space. See Section 9.6.4, “MyISAM Table Optimization”.

• Datafile parts

For dynamic-row format, this indicates how many data blocks there are. For an optimized table
without fragmented rows, this is the same as Data records.

• Deleted data

How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize this
space. See Section 9.6.4, “MyISAM Table Optimization”.

• Datafile pointer

The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage with
2 bytes, but this cannot be controlled from MySQL yet. For fixed tables, this is a row address. For
dynamic tables, this is a byte address.

• Keyfile pointer

The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with 2
bytes, but this is calculated automatically by MySQL. It is always a block address.

• Max datafile length

How long the table data file can become, in bytes.

• Max keyfile length

How long the table index file can become, in bytes.

• Recordlength

How much space each row takes, in bytes.

The table description part of the output includes a list of all keys in the table. For each key,
myisamchk displays some low-level information:

• Key

This key's number. This value is shown only for the first column of the key. If this value is missing,
the line corresponds to the second or later column of a multiple-column key. For the table shown in
the example, there are two table description lines for the second index. This indicates that it is
a multiple-part index with two parts.

671

myisamchk — MyISAM Table-Maintenance Utility

• Start

Where in the row this portion of the index starts.

• Len

How long this portion of the index is. For packed numbers, this should always be the full length of the
column. For strings, it may be shorter than the full length of the indexed column, because you can
index a prefix of a string column. The total length of a multiple-part key is the sum of the Len values
for all key parts.

• Index

Whether a key value can exist multiple times in the index. Possible values are unique or multip.
(multiple).

• Type

What data type this portion of the index has. This is a MyISAM data type with the possible values
packed, stripped, or empty.

• Root

Address of the root index block.

• Blocksize

The size of each index block. By default this is 1024, but the value may be changed at compile time
when MySQL is built from source.

• Rec/key

This is a statistical value used by the optimizer. It tells how many rows there are per value for this
index. A unique index always has a value of 1. This may be updated after a table is loaded (or
greatly changed) with myisamchk -a. If this is not updated at all, a default value of 30 is given.

The last part of the output provides information about each column:

• Field

The column number.

• Start

The byte position of the column within table rows.

• Length

The length of the column in bytes.

• Nullpos, Nullbit

For columns that can be NULL, MyISAM stores NULL values as a flag in a byte. Depending on
how many nullable columns there are, there can be one or more bytes used for this purpose. The
Nullpos and Nullbit values, if nonempty, indicate which byte and bit contains that flag indicating
whether the column is NULL.

The position and number of bytes used to store NULL flags is shown in the line for field 1. This is why
there are six Field lines for the person table even though it has only five columns.

• Type

The data type. The value may contain any of the following descriptors:

672

myisamchk — MyISAM Table-Maintenance Utility

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

The Huff tree and Bits fields are displayed if the table has been compressed with myisampack.
See Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”, for an
example of this information.

Example of myisamchk -eiv output:

Checking MyISAM file: person
Data records: 306688 Deleted blocks: 0
- check file-size
- check record delete-chain
No recordlinks
- check key delete-chain
block_size 1024:
- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 98% Packed: 0% Max levels: 3
- check data record references index: 2
Key: 2: Keyblocks used: 99% Packed: 97% Max levels: 3
- check data record references index: 3
Key: 3: Keyblocks used: 98% Packed: -14% Max levels: 3
Total: Keyblocks used: 98% Packed: 89%

- check records and index references
*** LOTS OF ROW NUMBERS DELETED ***

673

myisamchk — MyISAM Table-Maintenance Utility

Records: 306688 M.recordlength: 25 Packed: 83%
Recordspace used: 97% Empty space: 2% Blocks/Record: 1.00
Record blocks: 306688 Delete blocks: 0
Record data: 7934464 Deleted data: 0
Lost space: 256512 Linkdata: 1156096

User time 43.08, System time 1.68
Maximum resident set size 0, Integral resident set size 0
Non-physical pagefaults 0, Physical pagefaults 0, Swaps 0
Blocks in 0 out 7, Messages in 0 out 0, Signals 0
Voluntary context switches 0, Involuntary context switches 0
Maximum memory usage: 1046926 bytes (1023k)

myisamchk -eiv output includes the following information:

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this
space. See Section 9.6.4, “MyISAM Table Optimization”.

• Key

The key number.

• Keyblocks used

What percentage of the keyblocks are used. When a table has just been reorganized with
myisamchk, the values are very high (very near theoretical maximum).

• Packed

MySQL tries to pack key values that have a common suffix. This can only be used for indexes on
CHAR and VARCHAR columns. For long indexed strings that have similar leftmost parts, this can
significantly reduce the space used. In the preceding example, the second key is 40 bytes long and a
97% reduction in space is achieved.

• Max levels

How deep the B-tree for this key is. Large tables with long key values get high values.

• Records

How many rows are in the table.

• M.recordlength

The average row length. This is the exact row length for tables with fixed-length rows, because all
rows have the same length.

• Packed

MySQL strips spaces from the end of strings. The Packed value indicates the percentage of savings
achieved by doing this.

• Recordspace used

What percentage of the data file is used.

• Empty space

What percentage of the data file is unused.

674

myisamchk — MyISAM Table-Maintenance Utility

• Blocks/Record

Average number of blocks per row (that is, how many links a fragmented row is composed of). This
is always 1.0 for fixed-format tables. This value should stay as close to 1.0 as possible. If it gets too
large, you can reorganize the table. See Section 9.6.4, “MyISAM Table Optimization”.

• Recordblocks

How many blocks (links) are used. For fixed-format tables, this is the same as the number of rows.

• Deleteblocks

How many blocks (links) are deleted.

• Recorddata

How many bytes in the data file are used.

• Deleted data

How many bytes in the data file are deleted (unused).

• Lost space

If a row is updated to a shorter length, some space is lost. This is the sum of all such losses, in
bytes.

• Linkdata

When the dynamic table format is used, row fragments are linked with pointers (4 to 7 bytes each).
Linkdata is the sum of the amount of storage used by all such pointers.

6.6.4.6 myisamchk Memory Usage

Memory allocation is important when you run myisamchk. myisamchk uses no more memory than
its memory-related variables are set to. If you are going to use myisamchk on very large tables, you
should first decide how much memory you want it to use. The default is to use only about 3MB to
perform repairs. By using larger values, you can get myisamchk to operate faster. For example, if you
have more than 512MB RAM available, you could use options such as these (in addition to any other
options you might specify):

myisamchk --myisam_sort_buffer_size=256M \
 --key_buffer_size=512M \
 --read_buffer_size=64M \
 --write_buffer_size=64M ...

Using --myisam_sort_buffer_size=16M is probably enough for most cases.

Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory file system,
out of memory errors can easily occur. If this happens, run myisamchk with the --tmpdir=dir_name
option to specify a directory located on a file system that has more space.

When performing repair operations, myisamchk also needs a lot of disk space:

• Twice the size of the data file (the original file and a copy). This space is not needed if you do a
repair with --quick; in this case, only the index file is re-created. This space must be available on
the same file system as the original data file, as the copy is created in the same directory as the
original.

• Space for the new index file that replaces the old one. The old index file is truncated at the start of
the repair operation, so you usually ignore this space. This space must be available on the same file
system as the original data file.

675

myisamlog — Display MyISAM Log File Contents

• When using --recover or --sort-recover (but not when using --safe-recover), you need
space on disk for sorting. This space is allocated in the temporary directory (specified by TMPDIR or
--tmpdir=dir_name). The following formula yields the amount of space required:

(largest_key + row_pointer_length) * number_of_rows * 2

You can check the length of the keys and the row_pointer_length with myisamchk -
dv tbl_name (see Section 6.6.4.5, “Obtaining Table Information with myisamchk”). The
row_pointer_length and number_of_rows values are the Datafile pointer and Data
records values in the table description. To determine the largest_key value, check the Key
lines in the table description. The Len column indicates the number of bytes for each key part. For a
multiple-column index, the key size is the sum of the Len values for all key parts.

If you have a problem with disk space during repair, you can try --safe-recover instead of --
recover.

6.6.5 myisamlog — Display MyISAM Log File Contents

myisamlog processes the contents of a MyISAM log file. To create such a file, start the server with a
--log-isam=log_file option.

Invoke myisamlog like this:

myisamlog [options] [file_name [tbl_name] ...]

The default operation is update (-u). If a recovery is done (-r), all writes and possibly updates
and deletes are done and errors are only counted. The default log file name is myisam.log if no
log_file argument is given. If tables are named on the command line, only those tables are updated.

myisamlog supports the following options:

• -?, -I

Display a help message and exit.

• -c N

Execute only N commands.

• -f N

Specify the maximum number of open files.

• -F filepath/

Specify the file path with a trailing slash.

• -i

Display extra information before exiting.

• -o offset

Specify the starting offset.

• -p N

Remove N components from path.

• -r

Perform a recovery operation.

• -R record_pos_file record_pos

676

myisampack — Generate Compressed, Read-Only MyISAM Tables

Specify record position file and record position.

• -u

Perform an update operation.

• -v

Verbose mode. Print more output about what the program does. This option can be given multiple
times to produce more and more output.

• -w write_file

Specify the write file.

• -V

Display version information.

6.6.6 myisampack — Generate Compressed, Read-Only MyISAM Tables

The myisampack utility compresses MyISAM tables. myisampack works by compressing each column
in the table separately. Usually, myisampack packs the data file 40% to 70%.

When the table is used later, the server reads into memory the information needed to decompress
columns. This results in much better performance when accessing individual rows, because you only
have to uncompress exactly one row.

MySQL uses mmap() when possible to perform memory mapping on compressed tables. If mmap()
does not work, MySQL falls back to normal read/write file operations.

Please note the following:

• If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke
myisampack if the table might be updated by the server during the packing process. It is safest to
compress tables with the server stopped.

• After packing a table, it becomes read only. This is generally intended (such as when accessing
packed tables on a CD).

• myisampack does not support partitioned tables.

Invoke myisampack like this:

myisampack [options] file_name ...

Each file name argument should be the name of an index (.MYI) file. If you are not in the database
directory, you should specify the path name to the file. It is permissible to omit the .MYI extension.

After you compress a table with myisampack, use myisamchk -rq to rebuild its indexes.
Section 6.6.4, “myisamchk — MyISAM Table-Maintenance Utility”.

myisampack supports the following options. It also reads option files and supports the options
for processing them described at Section 6.2.2.3, “Command-Line Options that Affect Option-File
Handling”.

• --help, -?

Command-Line Format --help

Display a help message and exit.

677

myisampack — Generate Compressed, Read-Only MyISAM Tables

• --backup, -b

Command-Line Format --backup

Make a backup of each table's data file using the name tbl_name.OLD.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Type Directory name

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --force, -f

Command-Line Format --force

Produce a packed table even if it becomes larger than the original or if the intermediate file from
an earlier invocation of myisampack exists. (myisampack creates an intermediate file named
tbl_name.TMD in the database directory while it compresses the table. If you kill myisampack,
the .TMD file might not be deleted.) Normally, myisampack exits with an error if it finds that
tbl_name.TMD exists. With --force, myisampack packs the table anyway.

• --join=big_tbl_name, -j big_tbl_name

Command-Line Format --join=big_tbl_name

Type String

Join all tables named on the command line into a single packed table big_tbl_name. All tables that
are to be combined must have identical structure (same column names and types, same indexes,
and so forth).

big_tbl_name must not exist prior to the join operation. All source tables named on the command
line to be merged into big_tbl_name must exist. The source tables are read for the join operation
but not modified.

• --silent, -s

Command-Line Format --silent

Silent mode. Write output only when errors occur.

678

myisampack — Generate Compressed, Read-Only MyISAM Tables

• --test, -t

Command-Line Format --test

Do not actually pack the table, just test packing it.

• --tmpdir=dir_name, -T dir_name

Command-Line Format --tmpdir=dir_name

Type Directory name

Use the named directory as the location where myisampack creates temporary files.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Write information about the progress of the packing operation and its result.

• --version, -V

Command-Line Format --version

Display version information and exit.

• --wait, -w

Command-Line Format --wait

Wait and retry if the table is in use. If the mysqld server was invoked with external locking disabled,
it is not a good idea to invoke myisampack if the table might be updated by the server during the
packing process.

The following sequence of commands illustrates a typical table compression session:

$> ls -l station.*
-rw-rw-r-- 1 jones my 994128 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 jones my 53248 Apr 17 19:00 station.MYI

$> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-02-02 3:06:43
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 2
Max datafile length: 54657023 Max keyfile length: 33554431
Recordlength: 834
Record format: Fixed length

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 1024 1024 1
2 32 30 multip. text 10240 1024 1

Field Start Length Type
1 1 1

679

myisampack — Generate Compressed, Read-Only MyISAM Tables

2 2 4
3 6 4
4 10 1
5 11 20
6 31 1
7 32 30
8 62 35
9 97 35
10 132 35
11 167 4
12 171 16
13 187 35
14 222 4
15 226 16
16 242 20
17 262 20
18 282 20
19 302 30
20 332 4
21 336 4
22 340 1
23 341 8
24 349 8
25 357 8
26 365 2
27 367 2
28 369 4
29 373 4
30 377 1
31 378 2
32 380 8
33 388 4
34 392 4
35 396 4
36 400 4
37 404 1
38 405 4
39 409 4
40 413 4
41 417 4
42 421 4
43 425 4
44 429 20
45 449 30
46 479 1
47 480 1
48 481 79
49 560 79
50 639 79
51 718 79
52 797 8
53 805 1
54 806 1
55 807 20
56 827 4
57 831 4

$> myisampack station.MYI
Compressing station.MYI: (1192 records)
- Calculating statistics

normal: 20 empty-space: 16 empty-zero: 12 empty-fill: 11
pre-space: 0 end-space: 12 table-lookups: 5 zero: 7
Original trees: 57 After join: 17
- Compressing file
87.14%
Remember to run myisamchk -rq on compressed tables

$> myisamchk -rq station
- check record delete-chain
- recovering (with sort) MyISAM-table 'station'
Data records: 1192

680

myisampack — Generate Compressed, Read-Only MyISAM Tables

- Fixing index 1
- Fixing index 2

$> mysqladmin -uroot flush-tables

$> ls -l station.*
-rw-rw-r-- 1 jones my 127874 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 jones my 55296 Apr 17 19:04 station.MYI

$> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-04-17 19:04:26
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 1
Max datafile length: 16777215 Max keyfile length: 131071
Recordlength: 834
Record format: Compressed

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 10240 1024 1
2 32 30 multip. text 54272 1024 1

Field Start Length Type Huff tree Bits
1 1 1 constant 1 0
2 2 4 zerofill(1) 2 9
3 6 4 no zeros, zerofill(1) 2 9
4 10 1 3 9
5 11 20 table-lookup 4 0
6 31 1 3 9
7 32 30 no endspace, not_always 5 9
8 62 35 no endspace, not_always, no empty 6 9
9 97 35 no empty 7 9
10 132 35 no endspace, not_always, no empty 6 9
11 167 4 zerofill(1) 2 9
12 171 16 no endspace, not_always, no empty 5 9
13 187 35 no endspace, not_always, no empty 6 9
14 222 4 zerofill(1) 2 9
15 226 16 no endspace, not_always, no empty 5 9
16 242 20 no endspace, not_always 8 9
17 262 20 no endspace, no empty 8 9
18 282 20 no endspace, no empty 5 9
19 302 30 no endspace, no empty 6 9
20 332 4 always zero 2 9
21 336 4 always zero 2 9
22 340 1 3 9
23 341 8 table-lookup 9 0
24 349 8 table-lookup 10 0
25 357 8 always zero 2 9
26 365 2 2 9
27 367 2 no zeros, zerofill(1) 2 9
28 369 4 no zeros, zerofill(1) 2 9
29 373 4 table-lookup 11 0
30 377 1 3 9
31 378 2 no zeros, zerofill(1) 2 9
32 380 8 no zeros 2 9
33 388 4 always zero 2 9
34 392 4 table-lookup 12 0
35 396 4 no zeros, zerofill(1) 13 9
36 400 4 no zeros, zerofill(1) 2 9
37 404 1 2 9
38 405 4 no zeros 2 9
39 409 4 always zero 2 9
40 413 4 no zeros 2 9
41 417 4 always zero 2 9
42 421 4 no zeros 2 9
43 425 4 always zero 2 9
44 429 20 no empty 3 9

681

myisampack — Generate Compressed, Read-Only MyISAM Tables

45 449 30 no empty 3 9
46 479 1 14 4
47 480 1 14 4
48 481 79 no endspace, no empty 15 9
49 560 79 no empty 2 9
50 639 79 no empty 2 9
51 718 79 no endspace 16 9
52 797 8 no empty 2 9
53 805 1 17 1
54 806 1 3 9
55 807 20 no empty 3 9
56 827 4 no zeros, zerofill(2) 2 9
57 831 4 no zeros, zerofill(1) 2 9

myisampack displays the following kinds of information:

• normal

The number of columns for which no extra packing is used.

• empty-space

The number of columns containing values that are only spaces. These occupy one bit.

• empty-zero

The number of columns containing values that are only binary zeros. These occupy one bit.

• empty-fill

The number of integer columns that do not occupy the full byte range of their type. These are
changed to a smaller type. For example, a BIGINT column (eight bytes) can be stored as a
TINYINT column (one byte) if all its values are in the range from -128 to 127.

• pre-space

The number of decimal columns that are stored with leading spaces. In this case, each value
contains a count for the number of leading spaces.

• end-space

The number of columns that have a lot of trailing spaces. In this case, each value contains a count
for the number of trailing spaces.

• table-lookup

The column had only a small number of different values, which were converted to an ENUM before
Huffman compression.

• zero

The number of columns for which all values are zero.

• Original trees

The initial number of Huffman trees.

• After join

The number of distinct Huffman trees left after joining trees to save some header space.

After a table has been compressed, the Field lines displayed by myisamchk -dvv include additional
information about each column:

• Type

682

mysql_config_editor — MySQL Configuration Utility

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

After you run myisampack, use myisamchk to re-create any indexes. At this time, you can also sort
the index blocks and create statistics needed for the MySQL optimizer to work more efficiently:

myisamchk -rq --sort-index --analyze tbl_name.MYI

After you have installed the packed table into the MySQL database directory, you should execute
mysqladmin flush-tables to force mysqld to start using the new table.

To unpack a packed table, use the --unpack option to myisamchk.

6.6.7 mysql_config_editor — MySQL Configuration Utility

The mysql_config_editor utility enables you to store authentication credentials in an obfuscated
login path file named .mylogin.cnf. The file location is the %APPDATA%\MySQL directory on
Windows and the current user's home directory on non-Windows systems. The file can be read later by
MySQL client programs to obtain authentication credentials for connecting to MySQL Server.

The unobfuscated format of the .mylogin.cnf login path file consists of option groups, similar
to other option files. Each option group in .mylogin.cnf is called a “login path,” which is a group
that permits only certain options: host, user, password, port and socket. Think of a login path

683

mysql_config_editor — MySQL Configuration Utility

option group as a set of options that specify which MySQL server to connect to and which account to
authenticate as. Here is an unobfuscated example:

[client]
user = mydefaultname
password = mydefaultpass
host = 127.0.0.1
[mypath]
user = myothername
password = myotherpass
host = localhost

When you invoke a client program to connect to the server, the client uses .mylogin.cnf in
conjunction with other option files. Its precedence is higher than other option files, but less than options
specified explicitly on the client command line. For information about the order in which option files are
used, see Section 6.2.2.2, “Using Option Files”.

To specify an alternate login path file name, set the MYSQL_TEST_LOGIN_FILE environment
variable. This variable is recognized by mysql_config_editor, by standard MySQL clients (mysql,
mysqladmin, and so forth), and by the mysql-test-run.pl testing utility.

Programs use groups in the login path file as follows:

• mysql_config_editor operates on the client login path by default if you specify no --login-
path=name option to indicate explicitly which login path to use.

• Without a --login-path option, client programs read the same option groups from the login path
file that they read from other option files. Consider this command:

mysql

By default, the mysql client reads the [client] and [mysql] groups from other option files, so it
reads them from the login path file as well.

• With a --login-path option, client programs additionally read the named login path from the login
path file. The option groups read from other option files remain the same. Consider this command:

mysql --login-path=mypath

The mysql client reads [client] and [mysql] from other option files, and [client], [mysql],
and [mypath] from the login path file.

• Client programs read the login path file even when the --no-defaults option is used, unless
--no-login-paths is set. This permits passwords to be specified in a safer way than on the
command line even if --no-defaults is present.

mysql_config_editor obfuscates the .mylogin.cnf file so it cannot be read as cleartext, and
its contents when unobfuscated by client programs are used only in memory. In this way, passwords
can be stored in a file in non-cleartext format and used later without ever needing to be exposed on the
command line or in an environment variable. mysql_config_editor provides a print command for
displaying the login path file contents, but even in this case, password values are masked so as never
to appear in a way that other users can see them.

The obfuscation used by mysql_config_editor prevents passwords from appearing in
.mylogin.cnf as cleartext and provides a measure of security by preventing inadvertent password
exposure. For example, if you display a regular unobfuscated my.cnf option file on the screen,
any passwords it contains are visible for anyone to see. With .mylogin.cnf, that is not true, but
the obfuscation used is not likely to deter a determined attacker and you should not consider it
unbreakable. A user who can gain system administration privileges on your machine to access your
files could unobfuscate the .mylogin.cnf file with some effort.

The login path file must be readable and writable to the current user, and inaccessible to other users.
Otherwise, mysql_config_editor ignores it, and client programs do not use it, either.

684

https://dev.mysql.com/doc/refman/8.4/en/option-file-options.html#option_general_no-login-paths

mysql_config_editor — MySQL Configuration Utility

Invoke mysql_config_editor like this:

mysql_config_editor [program_options] command [command_options]

If the login path file does not exist, mysql_config_editor creates it.

Command arguments are given as follows:

• program_options consists of general mysql_config_editor options.

• command indicates what action to perform on the .mylogin.cnf login path file. For example, set
writes a login path to the file, remove removes a login path, and print displays login path contents.

• command_options indicates any additional options specific to the command, such as the login path
name and the values to use in the login path.

The position of the command name within the set of program arguments is significant. For example,
these command lines have the same arguments, but produce different results:

mysql_config_editor --help set
mysql_config_editor set --help

The first command line displays a general mysql_config_editor help message, and ignores the
set command. The second command line displays a help message specific to the set command.

Suppose that you want to establish a client login path that defines your default connection
parameters, and an additional login path named remote for connecting to the MySQL server the host
remote.example.com. You want to log in as follows:

• By default, to the local server with a user name and password of localuser and localpass

• To the remote server with a user name and password of remoteuser and remotepass

To set up the login paths in the .mylogin.cnf file, use the following set commands. Enter each
command on a single line, and enter the appropriate passwords when prompted:

$> mysql_config_editor set --login-path=client
 --host=localhost --user=localuser --password
Enter password: enter password "localpass" here
$> mysql_config_editor set --login-path=remote
 --host=remote.example.com --user=remoteuser --password
Enter password: enter password "remotepass" here

mysql_config_editor uses the client login path by default, so the --login-path=client
option can be omitted from the first command without changing its effect.

To see what mysql_config_editor writes to the .mylogin.cnf file, use the print command:

$> mysql_config_editor print --all
[client]
user = localuser
password = *****
host = localhost
[remote]
user = remoteuser
password = *****
host = remote.example.com

The print command displays each login path as a set of lines beginning with a group header
indicating the login path name in square brackets, followed by the option values for the login path.
Password values are masked and do not appear as cleartext.

If you do not specify --all to display all login paths or --login-path=name to display a named
login path, the print command displays the client login path by default, if there is one.

As shown by the preceding example, the login path file can contain multiple login paths. In this way,
mysql_config_editor makes it easy to set up multiple “personalities” for connecting to different
MySQL servers, or for connecting to a given server using different accounts. Any of these can be

685

mysql_config_editor — MySQL Configuration Utility

selected by name later using the --login-path option when you invoke a client program. For
example, to connect to the remote server, use this command:

mysql --login-path=remote

Here, mysql reads the [client] and [mysql] option groups from other option files, and the
[client], [mysql], and [remote] groups from the login path file.

To connect to the local server, use this command:

mysql --login-path=client

Because mysql reads the client and mysql login paths by default, the --login-path option does
not add anything in this case. That command is equivalent to this one:

mysql

Options read from the login path file take precedence over options read from other option files. Options
read from login path groups appearing later in the login path file take precedence over options read
from groups appearing earlier in the file.

mysql_config_editor adds login paths to the login path file in the order you create them, so you
should create more general login paths first and more specific paths later. If you need to move a login
path within the file, you can remove it, then recreate it to add it to the end. For example, a client
login path is more general because it is read by all client programs, whereas a mysqldump login path
is read only by mysqldump. Options specified later override options specified earlier, so putting the
login paths in the order client, mysqldump enables mysqldump-specific options to override client
options.

When you use the set command with mysql_config_editor to create a login path, you need
not specify all possible option values (host name, user name, password, port, socket). Only those
values given are written to the path. Any missing values required later can be specified when you
invoke a client path to connect to the MySQL server, either in other option files or on the command
line. Any options specified on the command line override those specified in the login path file or
other option files. For example, if the credentials in the remote login path also apply for the host
remote2.example.com, connect to the server on that host like this:

mysql --login-path=remote --host=remote2.example.com

mysql_config_editor General Options

mysql_config_editor supports the following general options, which may be used preceding
any command named on the command line. For descriptions of command-specific options, see
mysql_config_editor Commands and Command-Specific Options.

Table 6.21 mysql_config_editor General Options

Option Name Description

--debug Write debugging log

--help Display help message and exit

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Command-Line Format --help

Display a general help message and exit.

To see a command-specific help message, invoke mysql_config_editor as follows, where
command is a command other than help:

686

mysql_config_editor — MySQL Configuration Utility

mysql_config_editor command --help

• --debug[=debug_options], -# debug_options

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysql_config_editor.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does. This option may be helpful in
diagnosing problems if an operation does not have the effect you expect.

• --version, -V

Command-Line Format --version

Display version information and exit.

mysql_config_editor Commands and Command-Specific Options

This section describes the permitted mysql_config_editor commands, and, for each one, the
command-specific options permitted following the command name on the command line.

In addition, mysql_config_editor supports general options that can be used preceding any
command. For descriptions of these options, see mysql_config_editor General Options.

mysql_config_editor supports these commands:

• help

Display a general help message and exit. This command takes no following options.

To see a command-specific help message, invoke mysql_config_editor as follows, where
command is a command other than help:

mysql_config_editor command --help

• print [options]

Print the contents of the login path file in unobfuscated form, with the exception that passwords are
displayed as *****.

The default login path name is client if no login path is named. If both --all and --login-path
are given, --all takes precedence.

The print command permits these options following the command name:

• --help, -?

687

mysql_config_editor — MySQL Configuration Utility

Display a help message for the print command and exit.

To see a general help message, use mysql_config_editor --help.

• --all

Print the contents of all login paths in the login path file.

• --login-path=name, -G name

Print the contents of the named login path.

• remove [options]

Remove a login path from the login path file, or modify a login path by removing options from it.

This command removes from the login path only such options as are specified with the --host, --
password, --port, --socket, and --user options. If none of those options are given, remove

688

mysql_config_editor — MySQL Configuration Utility

removes the entire login path. For example, this command removes only the user option from the
mypath login path rather than the entire mypath login path:

mysql_config_editor remove --login-path=mypath --user

This command removes the entire mypath login path:

mysql_config_editor remove --login-path=mypath

The remove command permits these options following the command name:

• --help, -?

Display a help message for the remove command and exit.

To see a general help message, use mysql_config_editor --help.

• --host, -h

Remove the host name from the login path.

• --login-path=name, -G name

The login path to remove or modify. The default login path name is client if this option is not
given.

• --password, -p

Remove the password from the login path.

• --port, -P

Remove the TCP/IP port number from the login path.

• --socket, -S

Remove the Unix socket file name from the login path.

• --user, -u

Remove the user name from the login path.

• --warn, -w

Warn and prompt the user for confirmation if the command attempts to remove the default login
path (client) and --login-path=client was not specified. This option is enabled by default;
use --skip-warn to disable it.

• reset [options]

Empty the contents of the login path file.

The reset command permits these options following the command name:

• --help, -?

Display a help message for the reset command and exit.

To see a general help message, use mysql_config_editor --help.

689

mysql_migrate_keyring — Keyring Key Migration Utility

• set [options]

Write a login path to the login path file.

This command writes to the login path only such options as are specified with the --host,
--password, --port, --socket, and --user options. If none of those options are given,
mysql_config_editor writes the login path as an empty group.

The set command permits these options following the command name:

• --help, -?

Display a help message for the set command and exit.

To see a general help message, use mysql_config_editor --help.

• --host=host_name, -h host_name

The host name to write to the login path.

• --login-path=name, -G name

The login path to create. The default login path name is client if this option is not given.

• --password, -p

Prompt for a password to write to the login path. After mysql_config_editor displays the
prompt, type the password and press Enter. To prevent other users from seeing the password,
mysql_config_editor does not echo it.

To specify an empty password, press Enter at the password prompt. The resulting login path
written to the login path file includes a line like this:

password =

• --port=port_num, -P port_num

The TCP/IP port number to write to the login path.

• --socket=file_name, -S file_name

The Unix socket file name to write to the login path.

• --user=user_name, -u user_name

The user name to write to the login path.

• --warn, -w

Warn and prompt the user for confirmation if the command attempts to overwrite an existing login
path. This option is enabled by default; use --skip-warn to disable it.

6.6.8 mysql_migrate_keyring — Keyring Key Migration Utility

The mysql_migrate_keyring utility migrates keys between one keyring component and another. It
supports offline and online migrations.

Invoke mysql_migrate_keyring like this (enter the command on a single line):

mysql_migrate_keyring
 --component-dir=dir_name
 --source-keyring=name
 --destination-keyring=name

690

mysql_migrate_keyring — Keyring Key Migration Utility

 [other options]

For information about key migrations and instructions describing how to perform them using
mysql_migrate_keyring and other methods, see Section 8.4.4.14, “Migrating Keys Between
Keyring Keystores”.

mysql_migrate_keyring supports the following options, which can be specified on the command
line or in the [mysql_migrate_keyring] group of an option file. For information about option files
used by MySQL programs, see Section 6.2.2.2, “Using Option Files”.

Table 6.22 mysql_migrate_keyring Options

Option Name Description Introduced Deprecated

--component-dir Directory for keyring
components

--defaults-extra-file Read named option
file in addition to usual
option files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--destination-keyring Destination keyring
component name

--destination-keyring-
configuration-dir

Destination keyring
component configuration
directory

--get-server-public-key Request RSA public key
from server

--help Display help message
and exit

--host Host on which MySQL
server is located

--login-path Read login path options
from .mylogin.cnf

--no-defaults Read no option files

--online-migration Migration source is an
active server

--password Password to use when
connecting to server

--port TCP/IP port number for
connection

--print-defaults Print default options

--server-public-key-path Path name to file
containing RSA public
key

--socket Unix socket file or
Windows named pipe to
use

--source-keyring Source keyring
component name

691

mysql_migrate_keyring — Keyring Key Migration Utility

Option Name Description Introduced Deprecated

--source-keyring-
configuration-dir

Source keyring
component configuration
directory

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

--tls-version Permissible TLS
protocols for encrypted
connections

--user MySQL user name to
use when connecting to
server

--verbose Verbose mode

--version Display version
information and exit

• --help, -h

Command-Line Format --help

Display a help message and exit.

• --component-dir=dir_name

692

mysql_migrate_keyring — Keyring Key Migration Utility

Command-Line Format --component-dir=dir_name

Type Directory name

The directory where keyring components are located. This is typically the value of the plugin_dir
system variable for the local MySQL server.

Note

--component-dir, --source-keyring, and --destination-
keyring are mandatory for all keyring migration operations performed
by mysql_migrate_keyring. In addition, the source and destination
components must differ, and both components must be properly configured
so that mysql_migrate_keyring can load and use them.

• --defaults-extra-file=file_name

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysql_migrate_keyring normally reads the [mysql_migrate_keyring] group. If
this option is given as --defaults-group-suffix=_other, mysql_migrate_keyring also
reads the [mysql_migrate_keyring_other] group.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

693

mysql_migrate_keyring — Keyring Key Migration Utility

• --destination-keyring=name

Command-Line Format --destination-keyring=name

Type String

The destination keyring component for key migration. The format and interpretation of the option
value is the same as described for the --source-keyring option.

Note

--component-dir, --source-keyring, and --destination-
keyring are mandatory for all keyring migration operations performed
by mysql_migrate_keyring. In addition, the source and destination
components must differ, and both components must be properly configured
so that mysql_migrate_keyring can load and use them.

• --destination-keyring-configuration-dir=dir_name

Command-Line Format --destination-keyring-configuration-
dir=dir_name

Type Directory name

This option applies only if the destination keyring component global configuration file contains
"read_local_config": true, indicating that component configuration is contained in the local
configuration file. The option value specifies the directory containing that local file.

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This
option applies to clients that authenticate with the caching_sha2_password authentication
plugin. For that plugin, the server does not send the public key unless requested. This option
is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

The host location of the running server that is currently using one of the key migration keystores.
Migration always occurs on the local host, so the option always specifies a value for connecting to a
local server, such as localhost, 127.0.0.1, ::1, or the local host IP address or host name.

694

mysql_migrate_keyring — Keyring Key Migration Utility

• --login-path=name

Command-Line Format --login-path=name

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --online-migration

Command-Line Format --online-migration

Type Boolean

Default Value FALSE

This option is mandatory when a running server is using the keyring. It tells
mysql_migrate_keyring to perform an online key migration. The option has these effects:

• mysql_migrate_keyring connects to the server using any connection options specified; these
options are otherwise ignored.

• After mysql_migrate_keyring connects to the server, it tells the server to pause keyring
operations. When key copying is complete, mysql_migrate_keyring tells the server it can
resume keyring operations before disconnecting.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the running server that is currently
using one of the key migration keystores. The password value is optional. If not given,
mysql_migrate_keyring prompts for one. If given, there must be no space between --

695

mysql_migrate_keyring — Keyring Key Migration Utility

password= or -p and the password following it. If no password option is specified, the default is to
send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysql_migrate_keyring should not
prompt for one, use the --skip-password option.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 0

For TCP/IP connections, the port number for connecting to the running server that is currently using
one of the key migration keystores.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}696

mysql_migrate_keyring — Keyring Key Migration Utility

Type String

For Unix socket file or Windows named pipe connections, the socket file or named pipe for
connecting to the running server that is currently using one of the key migration keystores.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --source-keyring=name

Command-Line Format --source-keyring=name

Type String

The source keyring component for key migration. This is the component library file name specified
without any platform-specific extension such as .so or .dll. For example, to use the component
for which the library file is component_keyring_file.so, specify the option as --source-
keyring=component_keyring_file.

Note

--component-dir, --source-keyring, and --destination-
keyring are mandatory for all keyring migration operations performed
by mysql_migrate_keyring. In addition, the source and destination
components must differ, and both components must be properly configured
so that mysql_migrate_keyring can load and use them.

• --source-keyring-configuration-dir=dir_name

Command-Line Format --source-keyring-configuration-
dir=dir_name

Type Directory name

This option applies only if the source keyring component global configuration file contains
"read_local_config": true, indicating that component configuration is contained in the local
configuration file. The option value specifies the directory containing that local file.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

Default Value OFF

Valid Values OFF

ON

STRICT

697

mysql_migrate_keyring — Keyring Key Migration Utility

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON
or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

• --tls-version=protocol_list

Command-Line Format --tls-version=protocol_list

Type String

Default Value TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

• --user=user_name, -u user_name

Command-Line Format --user=user_name

Type String

The user name of the MySQL account used for connecting to the running server that is currently
using one of the key migration keystores.

698

mysqlbinlog — Utility for Processing Binary Log Files

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Produce more output about what the program does.

• --version, -V

Command-Line Format --version

Display version information and exit.

6.6.9 mysqlbinlog — Utility for Processing Binary Log Files

The server's binary log consists of files containing “events” that describe modifications to database
contents. The server writes these files in binary format. To display their contents in text format, use the
mysqlbinlog utility. You can also use mysqlbinlog to display the contents of relay log files written
by a replica server in a replication setup because relay logs have the same format as binary logs. The
binary log and relay log are discussed further in Section 7.4.4, “The Binary Log”, and Section 19.2.4,
“Relay Log and Replication Metadata Repositories”.

Invoke mysqlbinlog like this:

mysqlbinlog [options] log_file ...

For example, to display the contents of the binary log file named binlog.000003, use this command:

mysqlbinlog binlog.000003

The output includes events contained in binlog.000003. For statement-based logging, event
information includes the SQL statement, the ID of the server on which it was executed, the timestamp
when the statement was executed, how much time it took, and so forth. For row-based logging,
the event indicates a row change rather than an SQL statement. See Section 19.2.1, “Replication
Formats”, for information about logging modes.

Events are preceded by header comments that provide additional information. For example:

at 141
#100309 9:28:36 server id 123 end_log_pos 245
 Query thread_id=3350 exec_time=11 error_code=0

In the first line, the number following at indicates the file offset, or starting position, of the event in the
binary log file.

The second line starts with a date and time indicating when the statement started on the server where
the event originated. For replication, this timestamp is propagated to replica servers. server id is the
server_id value of the server where the event originated. end_log_pos indicates where the next
event starts (that is, it is the end position of the current event + 1). thread_id indicates which thread
executed the event. exec_time is the time spent executing the event, on a replication source server.
On a replica, it is the difference of the end execution time on the replica minus the beginning execution
time on the source. The difference serves as an indicator of how much replication lags behind the
source. error_code indicates the result from executing the event. Zero means that no error occurred.

Note

When using event groups, the file offsets of events may be grouped together
and the comments of events may be grouped together. Do not mistake these
grouped events for blank file offsets.

The output from mysqlbinlog can be re-executed (for example, by using it as input to mysql)
to redo the statements in the log. This is useful for recovery operations after an unexpected

699

mysqlbinlog — Utility for Processing Binary Log Files

server exit. For other usage examples, see the discussion later in this section and in Section 9.5,
“Point-in-Time (Incremental) Recovery”. To execute the internal-use BINLOG statements used by
mysqlbinlog, the user requires the BINLOG_ADMIN privilege (or the deprecated SUPER privilege), or
the REPLICATION_APPLIER privilege plus the appropriate privileges to execute each log event.

You can use mysqlbinlog to read binary log files directly and apply them to the local MySQL server.
You can also read binary logs from a remote server by using the --read-from-remote-server
option. To read remote binary logs, the connection parameter options can be given to indicate how to
connect to the server. These options are --host, --password, --port, --protocol, --socket,
and --user.

When binary log files have been encrypted, which can be done from MySQL 8.0.14 onwards,
mysqlbinlog cannot read them directly, but can read them from the server using the --read-from-
remote-server option. Binary log files are encrypted when the server's binlog_encryption
system variable is set to ON. The SHOW BINARY LOGS statement shows whether a particular
binary log file is encrypted or unencrypted. Encrypted and unencrypted binary log files can also
be distinguished using the magic number at the start of the file header for encrypted log files
(0xFD62696E), which differs from that used for unencrypted log files (0xFE62696E). Note that from
MySQL 8.0.14, mysqlbinlog returns a suitable error if you attempt to read an encrypted binary log
file directly, but older versions of mysqlbinlog do not recognise the file as a binary log file at all. For
more information on binary log encryption, see Section 19.3.2, “Encrypting Binary Log Files and Relay
Log Files”.

When binary log transaction payloads have been compressed, which can be done from MySQL
8.0.20 onwards, mysqlbinlog versions from that release on automatically decompress
and decode the transaction payloads, and print them as they would uncompressed events.
Older versions of mysqlbinlog cannot read compressed transaction payloads. When the
server's binlog_transaction_compression system variable is set to ON, transaction
payloads are compressed and then written to the server's binary log file as a single event (a
Transaction_payload_event). With the --verbose option, mysqlbinlog adds comments
stating the compression algorithm used, the compressed payload size that was originally received, and
the resulting payload size after decompression.

Note

The end position (end_log_pos) that mysqlbinlog states for an individual
event that was part of a compressed transaction payload is the same as the end
position of the original compressed payload. Multiple decompressed events can
therefore have the same end position.

mysqlbinlog's own connection compression does less if transaction payloads
are already compressed, but still operates on uncompressed transactions and
headers.

For more information on binary log transaction compression, see Section 7.4.4.5, “Binary Log
Transaction Compression”.

When running mysqlbinlog against a large binary log, be careful that the filesystem has enough
space for the resulting files. To configure the directory that mysqlbinlog uses for temporary files, use
the TMPDIR environment variable.

mysqlbinlog sets the value of pseudo_replica_mode or pseudo_slave_mode to true before
executing any SQL statements. This system variable affects the handling of XA transactions, the
original_commit_timestamp replication delay timestamp and the original_server_version
system variable, and unsupported SQL modes.

mysqlbinlog supports the following options, which can be specified on the command line or in the
[mysqlbinlog] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 6.2.2.2, “Using Option Files”.

700

mysqlbinlog — Utility for Processing Binary Log Files

Table 6.23 mysqlbinlog Options

Option Name Description Introduced Deprecated

--base64-output Print binary log entries
using base-64 encoding

--bind-address Use specified network
interface to connect to
MySQL Server

--binlog-row-event-max-
size

Binary log max event
size

--character-sets-dir Directory where
character sets are
installed

--compress Compress all
information sent
between client and
server

8.0.17 8.0.18

--compression-
algorithms

Permitted compression
algorithms for
connections to server

8.0.18

--connection-server-id Used for testing and
debugging. See text for
applicable default values
and other particulars

--database List entries for just this
database

--debug Write debugging log

--debug-check Print debugging
information when
program exits

--debug-info Print debugging
information, memory,
and CPU statistics when
program exits

--default-auth Authentication plugin to
use

--defaults-extra-file Read named option
file in addition to usual
option files

--defaults-file Read only named option
file

--defaults-group-suffix Option group suffix
value

--disable-log-bin Disable binary logging

--exclude-gtids Do not show any of the
groups in the GTID set
provided

--force-if-open Read binary log files
even if open or not
closed properly

701

mysqlbinlog — Utility for Processing Binary Log Files

Option Name Description Introduced Deprecated

--force-read If mysqlbinlog reads a
binary log event that it
does not recognize, it
prints a warning

--get-server-public-key Request RSA public key
from server

--help Display help message
and exit

--hexdump Display a hex dump of
the log in comments

--host Host on which MySQL
server is located

--idempotent Cause the server to
use idempotent mode
while processing binary
log updates from this
session only

--include-gtids Show only the groups in
the GTID set provided

--local-load Prepare local temporary
files for LOAD DATA in
the specified directory

--login-path Read login path options
from .mylogin.cnf

--no-defaults Read no option files

--offset Skip the first N entries in
the log

--password Password to use when
connecting to server

--plugin-dir Directory where plugins
are installed

--port TCP/IP port number for
connection

--print-defaults Print default options

--print-table-metadata Print table metadata

--protocol Transport protocol to
use

--raw Write events in raw
(binary) format to output
files

--read-from-remote-
master

Read the binary log from
a MySQL replication
source server rather
than reading a local log
file

8.0.26

--read-from-remote-
server

Read binary log from
MySQL server rather
than local log file

702

mysqlbinlog — Utility for Processing Binary Log Files

Option Name Description Introduced Deprecated

--read-from-remote-
source

Read the binary log from
a MySQL replication
source server rather
than reading a local log
file

8.0.26

--require-row-format Require row-based
binary logging format

8.0.19

--result-file Direct output to named
file

--rewrite-db Create rewrite rules for
databases when playing
back from logs written in
row-based format. Can
be used multiple times

--server-id Extract only those
events created by the
server having the given
server ID

--server-id-bits Tell mysqlbinlog how
to interpret server IDs
in binary log when log
was written by a mysqld
having its server-id-
bits set to less than the
maximum; supported
only by MySQL Cluster
version of mysqlbinlog

--server-public-key-path Path name to file
containing RSA public
key

--set-charset Add a SET NAMES
charset_name
statement to the output

--shared-memory-base-
name

Shared-memory name
for shared-memory
connections (Windows
only)

--short-form Display only the
statements contained in
the log

--skip-gtids Do not include the
GTIDs from the binary
log files in the output
dump file

--socket Unix socket file or
Windows named pipe to
use

--ssl-ca File that contains list of
trusted SSL Certificate
Authorities

703

mysqlbinlog — Utility for Processing Binary Log Files

Option Name Description Introduced Deprecated

--ssl-capath Directory that contains
trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509
certificate

--ssl-cipher Permissible ciphers for
connection encryption

--ssl-crl File that contains
certificate revocation
lists

--ssl-crlpath Directory that contains
certificate revocation-list
files

--ssl-fips-mode Whether to enable FIPS
mode on client side

8.0.34

--ssl-key File that contains X.509
key

--ssl-mode Desired security state of
connection to server

--ssl-session-data File that contains SSL
session data

8.0.29

--ssl-session-data-
continue-on-failed-reuse

Whether to establish
connections if session
reuse fails

8.0.29

--start-datetime Read binary log
from first event with
timestamp equal to
or later than datetime
argument

--start-position Decode binary log from
first event with position
equal to or greater than
argument

--stop-datetime Stop reading binary
log at first event with
timestamp equal to or
greater than datetime
argument

--stop-never Stay connected to
server after reading last
binary log file

--stop-never-slave-
server-id

Slave server ID to report
when connecting to
server

--stop-position Stop decoding binary
log at first event with
position equal to or
greater than argument

704

mysqlbinlog — Utility for Processing Binary Log Files

Option Name Description Introduced Deprecated

--tls-ciphersuites Permissible TLSv1.3
ciphersuites for
encrypted connections

8.0.16

--tls-version Permissible TLS
protocols for encrypted
connections

--to-last-log Do not stop at the end
of requested binary log
from a MySQL server,
but rather continue
printing to end of last
binary log

--user MySQL user name to
use when connecting to
server

--verbose Reconstruct row events
as SQL statements

--verify-binlog-checksum Verify checksums in
binary log

--version Display version
information and exit

--zstd-compression-level Compression level
for connections to
server that use zstd
compression

8.0.18

• --help, -?

Command-Line Format --help

Display a help message and exit.

• --base64-output=value

Command-Line Format --base64-output=value

Type String

Default Value AUTO

Valid Values AUTO

NEVER

705

mysqlbinlog — Utility for Processing Binary Log Files

DECODE-ROWS

This option determines when events should be displayed encoded as base-64 strings using BINLOG
statements. The option has these permissible values (not case-sensitive):

• AUTO ("automatic") or UNSPEC ("unspecified") displays BINLOG statements automatically when
necessary (that is, for format description events and row events). If no --base64-output option
is given, the effect is the same as --base64-output=AUTO.

Note

Automatic BINLOG display is the only safe behavior if you intend to use the
output of mysqlbinlog to re-execute binary log file contents. The other
option values are intended only for debugging or testing purposes because
they may produce output that does not include all events in executable
form.

• NEVER causes BINLOG statements not to be displayed. mysqlbinlog exits with an error if a row
event is found that must be displayed using BINLOG.

• DECODE-ROWS specifies to mysqlbinlog that you intend for row events to be decoded and
displayed as commented SQL statements by also specifying the --verbose option. Like NEVER,
DECODE-ROWS suppresses display of BINLOG statements, but unlike NEVER, it does not exit with
an error if a row event is found.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 6.6.9.2, “mysqlbinlog Row Event Display”.

• --bind-address=ip_address

Command-Line Format --bind-address=ip_address

On a computer having multiple network interfaces, use this option to select which interface to use for
connecting to the MySQL server.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

Type Numeric

Default Value 4294967040

Minimum Value 256

Maximum Value 18446744073709547520

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. The default is 4GB.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Type Directory name

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

• --compress

706

mysqlbinlog — Utility for Processing Binary Log Files

Command-Line Format --compress[={OFF|ON}]

Introduced 8.0.17

Deprecated 8.0.18

Type Boolean

Default Value OFF

Compress all information sent between the client and the server if possible. See Section 6.2.8,
“Connection Compression Control”.

This option was added in MySQL 8.0.17. As of MySQL 8.0.18 it is deprecated. Expect it to be
removed in a future version of MySQL. See Configuring Legacy Connection Compression.

• --compression-algorithms=value

Command-Line Format --compression-algorithms=value

Introduced 8.0.18

Type Set

Default Value uncompressed

Valid Values zlib

zstd

uncompressed

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the protocol_compression_algorithms system variable. The default value is
uncompressed.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

• --connection-server-id=server_id

Command-Line Format --connection-server-id=#]

Type Integer

Default Value 0 (1)

Minimum Value 0 (1)

Maximum Value 4294967295

--connection-server-id specifies the server ID that mysqlbinlog reports when it connects to
the server. It can be used to avoid a conflict with the ID of a replica server or another mysqlbinlog
process.

If the --read-from-remote-server option is specified, mysqlbinlog reports a server ID of 0,
which tells the server to disconnect after sending the last log file (nonblocking behavior). If the --
stop-never option is also specified to maintain the connection to the server, mysqlbinlog reports
a server ID of 1 by default instead of 0, and --connection-server-id can be used to replace
that server ID if required. See Section 6.6.9.4, “Specifying the mysqlbinlog Server ID”.

707

mysqlbinlog — Utility for Processing Binary Log Files

• --database=db_name, -d db_name

Command-Line Format --database=db_name

Type String

This option causes mysqlbinlog to output entries from the binary log (local log only) that occur
while db_name is been selected as the default database by USE.

The --database option for mysqlbinlog is similar to the --binlog-do-db option for mysqld,
but can be used to specify only one database. If --database is given multiple times, only the last
instance is used.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --binlog-do-db depend on whether statement-based or
row-based logging is in use.

Statement-based logging. The --database option works as follows:

• While db_name is the default database, statements are output whether they modify tables in
db_name or a different database.

• Unless db_name is selected as the default database, statements are not output, even if they
modify tables in db_name.

• There is an exception for CREATE DATABASE, ALTER DATABASE, and DROP DATABASE. The
database being created, altered, or dropped is considered to be the default database when
determining whether to output the statement.

Suppose that the binary log was created by executing these statements using statement-based-
logging:

INSERT INTO test.t1 (i) VALUES(100);
INSERT INTO db2.t2 (j) VALUES(200);
USE test;
INSERT INTO test.t1 (i) VALUES(101);
INSERT INTO t1 (i) VALUES(102);
INSERT INTO db2.t2 (j) VALUES(201);
USE db2;
INSERT INTO test.t1 (i) VALUES(103);
INSERT INTO db2.t2 (j) VALUES(202);
INSERT INTO t2 (j) VALUES(203);

mysqlbinlog --database=test does not output the first two INSERT statements because there
is no default database. It outputs the three INSERT statements following USE test, but not the
three INSERT statements following USE db2.

mysqlbinlog --database=db2 does not output the first two INSERT statements because there
is no default database. It does not output the three INSERT statements following USE test, but
does output the three INSERT statements following USE db2.

Row-based logging. mysqlbinlog outputs only entries that change tables belonging to
db_name. The default database has no effect on this. Suppose that the binary log just described
was created using row-based logging rather than statement-based logging. mysqlbinlog --

708

mysqlbinlog — Utility for Processing Binary Log Files

database=test outputs only those entries that modify t1 in the test database, regardless of
whether USE was issued or what the default database is.

If a server is running with binlog_format set to MIXED and you want it to be possible to use
mysqlbinlog with the --database option, you must ensure that tables that are modified are in the
database selected by USE. (In particular, no cross-database updates should be used.)

When used together with the --rewrite-db option, the --rewrite-db option is applied first;
then the --database option is applied, using the rewritten database name. The order in which the
options are provided makes no difference in this regard.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Type String

Default Value d:t:o,/tmp/mysqlbinlog.trace

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/mysqlbinlog.trace.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-check

Command-Line Format --debug-check

Type Boolean

Default Value FALSE

Print some debugging information when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --debug-info

Command-Line Format --debug-info

Type Boolean

Default Value FALSE

Print debugging information and memory and CPU usage statistics when the program exits.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• --default-auth=plugin

Command-Line Format --default-auth=plugin

Type String

A hint about which client-side authentication plugin to use. See Section 8.2.17, “Pluggable
Authentication”.

• --defaults-extra-file=file_name

709

mysqlbinlog — Utility for Processing Binary Log Files

Command-Line Format --defaults-extra-file=file_name

Type File name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Command-Line Format --defaults-file=file_name

Type File name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs. If
file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, client programs read .mylogin.cnf.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Command-Line Format --defaults-group-suffix=str

Type String

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlbinlog normally reads the [client] and [mysqlbinlog] groups. If
this option is given as --defaults-group-suffix=_other, mysqlbinlog also reads the
[client_other] and [mysqlbinlog_other] groups.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --disable-log-bin, -D

Command-Line Format --disable-log-bin

Disable binary logging. This is useful for avoiding an endless loop if you use the --to-last-
log option and are sending the output to the same MySQL server. This option also is useful when
restoring after an unexpected exit to avoid duplication of the statements you have logged.

This option causes mysqlbinlog to include a SET sql_log_bin = 0 statement in its output to
disable binary logging of the remaining output. Manipulating the session value of the sql_log_bin
system variable is a restricted operation, so this option requires that you have privileges sufficient to
set restricted session variables. See Section 7.1.9.1, “System Variable Privileges”.

• --exclude-gtids=gtid_set

Command-Line Format --exclude-gtids=gtid_set

Type String

710

mysqlbinlog — Utility for Processing Binary Log Files

Default Value

Do not display any of the groups listed in the gtid_set.

• --force-if-open, -F

Command-Line Format --force-if-open

Read binary log files even if they are open or were not closed properly (IN_USE flag is set); do not
fail if the file ends with a truncated event.

The IN_USE flag is set only for the binary log that is currently written by the server; if the server has
crashed, the flag remains set until the server is started up again and recovers the binary log. Without
this option, mysqlbinlog refuses to process a file with this flag set. Since the server may be in the
process of writing the file, truncation of the last event is considered normal.

• --force-read, -f

Command-Line Format --force-read

With this option, if mysqlbinlog reads a binary log event that it does not recognize, it prints a
warning, ignores the event, and continues. Without this option, mysqlbinlog stops if it reads such
an event.

• --get-server-public-key

Command-Line Format --get-server-public-key

Type Boolean

Request from the server the public key required for RSA key pair-based password exchange. This
option applies to clients that authenticate with the caching_sha2_password authentication
plugin. For that plugin, the server does not send the public key unless requested. This option
is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For information about the caching_sha2_password plugin, see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --hexdump, -H

Command-Line Format --hexdump

Display a hex dump of the log in comments, as described in Section 6.6.9.1, “mysqlbinlog Hex Dump
Format”. The hex output can be helpful for replication debugging.

• --host=host_name, -h host_name

Command-Line Format --host=host_name

Type String

Default Value localhost

711

mysqlbinlog — Utility for Processing Binary Log Files

Get the binary log from the MySQL server on the given host.

• --idempotent

Command-Line Format --idempotent

Type Boolean

Default Value true

Tell the MySQL Server to use idempotent mode while processing updates; this causes suppression
of any duplicate-key or key-not-found errors that the server encounters in the current session while
processing updates. This option may prove useful whenever it is desirable or necessary to replay
one or more binary logs to a MySQL Server which may not contain all of the data to which the logs
refer.

The scope of effect for this option includes the current mysqlbinlog client and session only.

• --include-gtids=gtid_set

Command-Line Format --include-gtids=gtid_set

Type String

Default Value

Display only the groups listed in the gtid_set.

• --local-load=dir_name, -l dir_name

Command-Line Format --local-load=dir_name

Type Directory name

For data loading operations corresponding to LOAD DATA statements, mysqlbinlog extracts the
files from the binary log events, writes them as temporary files to the local file system, and writes
LOAD DATA LOCAL statements to cause the files to be loaded. By default, mysqlbinlog writes
these temporary files to an operating system-specific directory. The --local-load option can be
used to explicitly specify the directory where mysqlbinlog should prepare local temporary files.

Because other processes can write files to the default system-specific directory, it is advisable to
specify the --local-load option to mysqlbinlog to designate a different directory for data files,
and then designate that same directory by specifying the --load-data-local-dir option to
mysql when processing the output from mysqlbinlog. For example:

mysqlbinlog --local-load=/my/local/data ...
 | mysql --load-data-local-dir=/my/local/data ...

Important

These temporary files are not automatically removed by mysqlbinlog or
any other MySQL program.

• --login-path=name

Command-Line Format --login-path=name
712

mysqlbinlog — Utility for Processing Binary Log Files

Type String

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --no-defaults

Command-Line Format --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read.

The exception is that the .mylogin.cnf file is read in all cases, if it exists. This permits
passwords to be specified in a safer way than on the command line even when --no-defaults
is used. To create .mylogin.cnf, use the mysql_config_editor utility. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --offset=N, -o N

Command-Line Format --offset=#

Type Numeric

Skip the first N entries in the log.

• --open-files-limit=N

Command-Line Format --open-files-limit=#

Type Numeric

Default Value 8

Minimum Value 1

Maximum Value [platform dependent]

Specify the number of open file descriptors to reserve.

• --password[=password], -p[password]

Command-Line Format --password[=password]

Type String

The password of the MySQL account used for connecting to the server. The password value is
optional. If not given, mysqlbinlog prompts for one. If given, there must be no space between --

713

mysqlbinlog — Utility for Processing Binary Log Files

password= or -p and the password following it. If no password option is specified, the default is to
send no password.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See Section 8.1.2.1, “End-User Guidelines for
Password Security”.

To explicitly specify that there is no password and that mysqlbinlog should not prompt for one, use
the --skip-password option.

• --plugin-dir=dir_name

Command-Line Format --plugin-dir=dir_name

Type Directory name

The directory in which to look for plugins. Specify this option if the --default-auth option is
used to specify an authentication plugin but mysqlbinlog does not find it. See Section 8.2.17,
“Pluggable Authentication”.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

Type Numeric

Default Value 3306

The TCP/IP port number to use for connecting to a remote server.

• --print-defaults

Command-Line Format --print-defaults

Print the program name and all options that it gets from option files.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --print-table-metadata

Command-Line Format --print-table-metadata

Print table related metadata from the binary log. Configure the amount of table related metadata
binary logged using binlog-row-metadata.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

Command-Line Format --protocol=type

Type String

Default Value [see text]

Valid Values TCP

SOCKET

PIPE

714

mysqlbinlog — Utility for Processing Binary Log Files

MEMORY

The transport protocol to use for connecting to the server. It is useful when the other connection
parameters normally result in use of a protocol other than the one you want. For details on the
permissible values, see Section 6.2.7, “Connection Transport Protocols”.

• --raw

Command-Line Format --raw

Type Boolean

Default Value FALSE

By default, mysqlbinlog reads binary log files and writes events in text format. The --raw option
tells mysqlbinlog to write them in their original binary format. Its use requires that --read-from-
remote-server also be used because the files are requested from a server. mysqlbinlog writes
one output file for each file read from the server. The --raw option can be used to make a backup
of a server's binary log. With the --stop-never option, the backup is “live” because mysqlbinlog
stays connected to the server. By default, output files are written in the current directory with the
same names as the original log files. Output file names can be modified using the --result-file
option. For more information, see Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”.

• --read-from-remote-source=type

Command-Line Format --read-from-remote-source=type

Introduced 8.0.26

From MySQL 8.0.26, use --read-from-remote-source, and before MySQL 8.0.26, use --
read-from-remote-master. Both options have the same effect. The options read binary logs
from a MySQL server with the COM_BINLOG_DUMP or COM_BINLOG_DUMP_GTID commands
by setting the option value to either BINLOG-DUMP-NON-GTIDS or BINLOG-DUMP-GTIDS,
respectively. If --read-from-remote-source=BINLOG-DUMP-GTIDS or --read-from-
remote-master=BINLOG-DUMP-GTIDS is combined with --exclude-gtids, transactions can
be filtered out on the source, avoiding unnecessary network traffic.

The connection parameter options are used with these options or the --read-from-remote-
server option. These options are --host, --password, --port, --protocol, --socket, and
--user. If none of the remote options is specified, the connection parameter options are ignored.

The REPLICATION SLAVE privilege is required to use these options.

• --read-from-remote-master=type

Command-Line Format --read-from-remote-master=type

Deprecated 8.0.26

Use this option before MySQL 8.0.26 rather than --read-from-remote-source. Both options
have the same effect.

715

mysqlbinlog — Utility for Processing Binary Log Files

• --read-from-remote-server=file_name, -R

Command-Line Format --read-from-remote-server=file_name

Read the binary log from a MySQL server rather than reading a local log file. This option requires
that the remote server be running. It works only for binary log files on the remote server and not relay
log files. This accepts the binary log file name (including the numeric suffix) without the file path.

The connection parameter options are used with this option or the --read-from-remote-master
option. These options are --host, --password, --port, --protocol, --socket, and --user.
If neither of the remote options is specified, the connection parameter options are ignored.

The REPLICATION SLAVE privilege is required to use this option.

This option is like --read-from-remote-master=BINLOG-DUMP-NON-GTIDS.

• --result-file=name, -r name

Command-Line Format --result-file=name

Without the --raw option, this option indicates the file to which mysqlbinlog writes text output.
With --raw, mysqlbinlog writes one binary output file for each log file transferred from the server,
writing them by default in the current directory using the same names as the original log file. In this
case, the --result-file option value is treated as a prefix that modifies output file names.

• --require-row-format

Command-Line Format --require-row-format

Introduced 8.0.19

Type Boolean

Default Value false

Require row-based binary logging format for events. This option enforces row-based replication
events for mysqlbinlog output. The stream of events produced with this option would be accepted
by a replication channel that is secured using the REQUIRE_ROW_FORMAT option of the CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement
(before MySQL 8.0.23). binlog_format=ROW must be set on the server where the binary log was
written. When you specify this option, mysqlbinlog stops with an error message if it encounters
any events that are disallowed under the REQUIRE_ROW_FORMAT restrictions, including LOAD
DATA INFILE instructions, creating or dropping temporary tables, INTVAR, RAND, or USER_VAR
events, and non-row-based events within a DML transaction. mysqlbinlog also prints a SET
@@session.require_row_format statement at the start of its output to apply the restrictions
when the output is executed, and does not print the SET @@session.pseudo_thread_id
statement.

This option was added in MySQL 8.0.19.

• --rewrite-db='from_name->to_name'

Command-Line Format --rewrite-db='oldname->newname'

Type String716

mysqlbinlog — Utility for Processing Binary Log Files

Default Value [none]

When reading from a row-based or statement-based log, rewrite all occurrences of from_name
to to_name. Rewriting is done on the rows, for row-based logs, as well as on the USE clauses, for
statement-based logs.

Warning

Statements in which table names are qualified with database names are not
rewritten to use the new name when using this option.

The rewrite rule employed as a value for this option is a string having the form 'from_name-
>to_name', as shown previously, and for this reason must be enclosed by quotation marks.

To employ multiple rewrite rules, specify the option multiple times, as shown here:

mysqlbinlog --rewrite-db='dbcurrent->dbold' --rewrite-db='dbtest->dbcurrent' \
 binlog.00001 > /tmp/statements.sql

When used together with the --database option, the --rewrite-db option is applied first; then
--database option is applied, using the rewritten database name. The order in which the options
are provided makes no difference in this regard.

This means that, for example, if mysqlbinlog is started with --rewrite-db='mydb->yourdb'
--database=yourdb, then all updates to any tables in databases mydb and yourdb are included
in the output. On the other hand, if it is started with --rewrite-db='mydb->yourdb' --
database=mydb, then mysqlbinlog outputs no statements at all: since all updates to mydb are
first rewritten as updates to yourdb before applying the --database option, there remain no
updates that match --database=mydb.

• --server-id=id

Command-Line Format --server-id=id

Type Numeric

Display only those events created by the server having the given server ID.

• --server-id-bits=N

Command-Line Format --server-id-bits=#

Type Numeric

Default Value 32

Minimum Value 7

Maximum Value 32

Use only the first N bits of the server_id to identify the server. If the binary log was written by a
mysqld with server-id-bits set to less than 32 and user data stored in the most significant bit, running
mysqlbinlog with --server-id-bits set to 32 enables this data to be seen.

This option is supported only by the version of mysqlbinlog supplied with the NDB Cluster
distribution, or built with NDB Cluster support.

• --server-public-key-path=file_name

Command-Line Format --server-public-key-path=file_name

717

mysqlbinlog — Utility for Processing Binary Log Files

Type File name

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_password or caching_sha2_password authentication plugin. This option is
ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

For sha256_password, this option applies only if MySQL was built using OpenSSL.

For information about the sha256_password and caching_sha2_password plugins, see
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

• --set-charset=charset_name

Command-Line Format --set-charset=charset_name

Type String

Add a SET NAMES charset_name statement to the output to specify the character set to be used
for processing log files.

• --shared-memory-base-name=name

Command-Line Format --shared-memory-base-name=name

Platform Specific Windows

On Windows, the shared-memory name to use for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case-sensitive.

This option applies only if the server was started with the shared_memory system variable enabled
to support shared-memory connections.

• --short-form, -s

Command-Line Format --short-form

Display only the statements contained in the log, without any extra information or row-based events.
This is for testing only, and should not be used in production systems. It is deprecated, and you
should expect it to be removed in a future release.

• --skip-gtids[=(true|false)]

Command-Line Format --skip-gtids[=true|false]

Type Boolean

Default Value false

Do not include the GTIDs from the binary log files in the output dump file. For example:

mysqlbinlog --skip-gtids binlog.000001 > /tmp/dump.sql

718

mysqlbinlog — Utility for Processing Binary Log Files

mysql -u root -p -e "source /tmp/dump.sql"

You should not normally use this option in production or in recovery, except in the specific, and rare,
scenarios where the GTIDs are actively unwanted. For example, an administrator might want to
duplicate selected transactions (such as table definitions) from a deployment to another, unrelated,
deployment that will not replicate to or from the original. In that scenario, --skip-gtids can be
used to enable the administrator to apply the transactions as if they were new, and ensure that
the deployments remain unrelated. However, you should only use this option if the inclusion of the
GTIDs causes a known issue for your use case.

• --socket=path, -S path

Command-Line Format --socket={file_name|pipe_name}

Type String

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use.

On Windows, this option applies only if the server was started with the named_pipe system variable
enabled to support named-pipe connections. In addition, the user making the connection must be
a member of the Windows group specified by the named_pipe_full_access_group system
variable.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using encryption and indicate
where to find SSL keys and certificates. See Command Options for Encrypted Connections.

• --ssl-fips-mode={OFF|ON|STRICT}

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

Type Enumeration

Default Value OFF

Valid Values OFF

ON

STRICT

Controls whether to enable FIPS mode on the client side. The --ssl-fips-mode option differs
from other --ssl-xxx options in that it is not used to establish encrypted connections, but rather to
affect which cryptographic operations to permit. See Section 8.8, “FIPS Support”.

These --ssl-fips-mode values are permitted:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for --ssl-fips-mode is OFF. In this case, setting --ssl-fips-mode to ON

719

mysqlbinlog — Utility for Processing Binary Log Files

or STRICT causes the client to produce a warning at startup and to operate in
non-FIPS mode.

As of MySQL 8.0.34, this option is deprecated. Expect it to be removed in a future version of MySQL.

• --start-datetime=datetime

Command-Line Format --start-datetime=datetime

Type Datetime

Start reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. The datetime value is relative to the local time zone on the machine where you run
mysqlbinlog. The value should be in a format accepted for the DATETIME or TIMESTAMP data
types. For example:

mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003

This option is useful for point-in-time recovery. See Section 9.5, “Point-in-Time (Incremental)
Recovery”.

• --start-position=N, -j N

Command-Line Format --start-position=#

Type Numeric

Start decoding the binary log at the log position N, including in the output any events that begin at
position N or after. The position is a byte point in the log file, not an event counter; it needs to point
to the starting position of an event to generate useful output. This option applies to the first log file
named on the command line.

Prior to MySQL 8.0.33, the maximum value supported for this option was 4294967295 (232-1). In
MySQL 8.0.33 and later, it is 18446744073709551616 (264-1), unless --read-from-remote-
server or --read-from-remote-source is also used, in which case the maximum is
4294967295.

This option is useful for point-in-time recovery. See Section 9.5, “Point-in-Time (Incremental)
Recovery”.

• --stop-datetime=datetime

Command-Line Format --stop-datetime=datetime

Stop reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. See the description of the --start-datetime option for information about the
datetime value.

This option is useful for point-in-time recovery. See Section 9.5, “Point-in-Time (Incremental)
Recovery”.

• --stop-never

Command-Line Format --stop-never

Type Boolean
720

mysqlbinlog — Utility for Processing Binary Log Files

Default Value FALSE

This option is used with --read-from-remote-server. It tells mysqlbinlog to remain
connected to the server. Otherwise mysqlbinlog exits when the last log file has been transferred
from the server. --stop-never implies --to-last-log, so only the first log file to transfer need
be named on the command line.

--stop-never is commonly used with --raw to make a live binary log backup, but also can be
used without --raw to maintain a continuous text display of log events as the server generates
them.

With --stop-never, by default, mysqlbinlog reports a server ID of 1 when it connects to the
server. Use --connection-server-id to explicitly specify an alternative ID to report. It can
be used to avoid a conflict with the ID of a replica server or another mysqlbinlog process. See
Section 6.6.9.4, “Specifying the mysqlbinlog Server ID”.

• --stop-never-slave-server-id=id

Command-Line Format --stop-never-slave-server-id=#

Type Numeric

Default Value 65535

Minimum Value 1

This option is deprecated; expect it to be removed in a future release. Use the --connection-
server-id option instead to specify a server ID for mysqlbinlog to report.

• --stop-position=N

Command-Line Format --stop-position=#

Type Numeric

Stop decoding the binary log at the log position N, excluding from the output any events that begin at
position N or after. The position is a byte point in the log file, not an event counter; it needs to point to
a spot after the starting position of the last event you want to include in the output. The event starting
before position N and finishing at or after the position is the last event to be processed. This option
applies to the last log file named on the command line.

This option is useful for point-in-time recovery. See Section 9.5, “Point-in-Time (Incremental)
Recovery”.

• --tls-ciphersuites=ciphersuite_list

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

Type String

The permissible ciphersuites for encrypted connections that use TLSv1.3. The value is a list of one
or more colon-separated ciphersuite names. The ciphersuites that can be named for this option
depend on the SSL library used to compile MySQL. For details, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

This option was added in MySQL 8.0.16.

• --tls-version=protocol_list

721

mysqlbinlog — Utility for Processing Binary Log Files

Command-Line Format --tls-version=protocol_list

Type String

Default Value (≥ 8.0.16) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
(OpenSSL 1.1.1 or higher)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

The permissible TLS protocols for encrypted connections. The value is a list of one or more comma-
separated protocol names. The protocols that can be named for this option depend on the SSL
library used to compile MySQL. For details, see Section 8.3.2, “Encrypted Connection TLS Protocols
and Ciphers”.

• --to-last-log, -t

Command-Line Format --to-last-log

Do not stop at the end of the requested binary log from a MySQL server, but rather continue printing
until the end of the last binary log. If you send the output to the same MySQL server, this may lead to
an endless loop. This option requires --read-from-remote-server.

• --user=user_name, -u user_name

Command-Line Format --user=user_name,

Type String

The user name of the MySQL account to use when connecting to a remote server.

If you are using the Rewriter plugin with MySQL 8.0.31 or later, you should grant this user the
SKIP_QUERY_REWRITE privilege.

• --verbose, -v

Command-Line Format --verbose

Reconstruct row events and display them as commented SQL statements, with table partition
information where applicable. If this option is given twice (by passing in either "-vv" or "--verbose --
verbose"), the output includes comments to indicate column data types and some metadata, and
informational log events such as row query log events if the binlog_rows_query_log_events
system variable is set to TRUE.

For examples that show the effect of --base64-output and --verbose on row event output, see
Section 6.6.9.2, “mysqlbinlog Row Event Display”.

• --verify-binlog-checksum, -c

Command-Line Format --verify-binlog-checksum

Verify checksums in binary log files.

• --version, -V

Command-Line Format --version

722

mysqlbinlog — Utility for Processing Binary Log Files

Display version information and exit.

Unlike the case with previous versions of MySQL, the version number shown by mysqlbinlog
when using this option is the same as the MySQL Server version.

• --zstd-compression-level=level

Command-Line Format --zstd-compression-level=#

Introduced 8.0.18

Type Integer

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
The default zstd compression level is 3. The compression level setting has no effect on connections
that do not use zstd compression.

For more information, see Section 6.2.8, “Connection Compression Control”.

This option was added in MySQL 8.0.18.

You can pipe the output of mysqlbinlog into the mysql client to execute the events contained in the
binary log. This technique is used to recover from an unexpected exit when you have an old backup
(see Section 9.5, “Point-in-Time (Incremental) Recovery”). For example:

mysqlbinlog binlog.000001 | mysql -u root -p

Or:

mysqlbinlog binlog.[0-9]* | mysql -u root -p

If the statements produced by mysqlbinlog may contain BLOB values, these may cause problems
when mysql processes them. In this case, invoke mysql with the --binary-mode option.

You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the
statement log first (for example, to remove statements that you do not want to execute for some
reason). After editing the file, execute the statements that it contains by using it as input to the mysql
program:

mysqlbinlog binlog.000001 > tmpfile
... edit tmpfile ...
mysql -u root -p < tmpfile

When mysqlbinlog is invoked with the --start-position option, it displays only those events
with an offset in the binary log greater than or equal to a given position (the given position must match
the start of one event). It also has options to stop and start when it sees an event with a given date and
time. This enables you to perform point-in-time recovery using the --stop-datetime option (to be
able to say, for example, “roll forward my databases to how they were today at 10:30 a.m.”).

Processing multiple files. If you have more than one binary log to execute on the MySQL server,
the safe method is to process them all using a single connection to the server. Here is an example that
demonstrates what may be unsafe:

mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using multiple connections to the server causes problems if the first log
file contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that
uses the temporary table. When the first mysql process terminates, the server drops the temporary
table. When the second mysql process attempts to use the table, the server reports “unknown table.”

723

mysqlbinlog — Utility for Processing Binary Log Files

To avoid problems like this, use a single mysql process to execute the contents of all binary logs that
you want to process. Here is one way to do so:

mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

mysqlbinlog binlog.000001 > /tmp/statements.sql
mysqlbinlog binlog.000002 >> /tmp/statements.sql
mysql -u root -p -e "source /tmp/statements.sql"

From MySQL 8.0.12, you can also supply multiple binary log files to mysqlbinlog as streamed input
using a shell pipe. An archive of compressed binary log files can be decompressed and provided
directly to mysqlbinlog. In this example, binlog-files_1.gz contains multiple binary log files
for processing. The pipeline extracts the contents of binlog-files_1.gz, pipes the binary log files
to mysqlbinlog as standard input, and pipes the output of mysqlbinlog into the mysql client for
execution:

gzip -cd binlog-files_1.gz | ./mysqlbinlog - | ./mysql -uroot -p

You can specify more than one archive file, for example:

gzip -cd binlog-files_1.gz binlog-files_2.gz | ./mysqlbinlog - | ./mysql -uroot -p

For streamed input, do not use --stop-position, because mysqlbinlog cannot identify the last
log file to apply this option.

LOAD DATA operations. mysqlbinlog can produce output that reproduces a LOAD DATA
operation without the original data file. mysqlbinlog copies the data to a temporary file and writes a
LOAD DATA LOCAL statement that refers to the file. The default location of the directory where these
files are written is system-specific. To specify a directory explicitly, use the --local-load option.

Because mysqlbinlog converts LOAD DATA statements to LOAD DATA LOCAL statements (that
is, it adds LOCAL), both the client and the server that you use to process the statements must be
configured with the LOCAL capability enabled. See Section 8.1.6, “Security Considerations for LOAD
DATA LOCAL”.

Warning

The temporary files created for LOAD DATA LOCAL statements are not
automatically deleted because they are needed until you actually execute those
statements. You should delete the temporary files yourself after you no longer
need the statement log. The files can be found in the temporary file directory
and have names like original_file_name-#-#.

6.6.9.1 mysqlbinlog Hex Dump Format

The --hexdump option causes mysqlbinlog to produce a hex dump of the binary log contents:

mysqlbinlog --hexdump source-bin.000001

The hex output consists of comment lines beginning with #, so the output might look like this for the
preceding command:

/*!40019 SET @@SESSION.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
at 4
#051024 17:24:13 server id 1 end_log_pos 98
Position Timestamp Type Master ID Size Master Pos Flags
00000004 9d fc 5c 43 0f 01 00 00 00 5e 00 00 00 62 00 00 00 00 00
00000017 04 00 35 2e 30 2e 31 35 2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|
00000027 6f 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |og..............|
00000037 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000047 00 00 00 00 9d fc 5c 43 13 38 0d 00 08 00 12 00 |.......C.8......|
00000057 04 04 04 04 12 00 00 4b 00 04 1a |.......K...|
Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13
at startup

724

mysqlbinlog — Utility for Processing Binary Log Files

ROLLBACK;

Hex dump output currently contains the elements in the following list. This format is subject to change.
For more information about binary log format, see MySQL Internals: The Binary Log.

• Position: The byte position within the log file.

• Timestamp: The event timestamp. In the example shown, '9d fc 5c 43' is the representation of
'051024 17:24:13' in hexadecimal.

• Type: The event type code.

• Master ID: The server ID of the replication source server that created the event.

• Size: The size in bytes of the event.

• Master Pos: The position of the next event in the original source log file.

• Flags: Event flag values.

6.6.9.2 mysqlbinlog Row Event Display

The following examples illustrate how mysqlbinlog displays row events that specify data
modifications. These correspond to events with the WRITE_ROWS_EVENT, UPDATE_ROWS_EVENT, and
DELETE_ROWS_EVENT type codes. The --base64-output=DECODE-ROWS and --verbose options
may be used to affect row event output.

Suppose that the server is using row-based binary logging and that you execute the following
sequence of statements:

CREATE TABLE t
(
 id INT NOT NULL,
 name VARCHAR(20) NOT NULL,
 date DATE NULL
) ENGINE = InnoDB;

START TRANSACTION;
INSERT INTO t VALUES(1, 'apple', NULL);
UPDATE t SET name = 'pear', date = '2009-01-01' WHERE id = 1;
DELETE FROM t WHERE id = 1;
COMMIT;

By default, mysqlbinlog displays row events encoded as base-64 strings using BINLOG statements.
Omitting extraneous lines, the output for the row events produced by the preceding statement
sequence looks like this:

$> mysqlbinlog log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '

725

https://dev.mysql.com/doc/internals/en/binary-log.html

mysqlbinlog — Utility for Processing Binary Log Files

fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;

To see the row events as comments in the form of “pseudo-SQL” statements, run mysqlbinlog with
the --verbose or -v option. This output level also shows table partition information where applicable.
The output contains lines beginning with ###:

$> mysqlbinlog -v log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1
@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'

Specify --verbose or -v twice to also display data types and some metadata for each column, and
informational log events such as row query log events if the binlog_rows_query_log_events
system variable is set to TRUE. The output contains an additional comment following each column
change:

$> mysqlbinlog -vv log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
INSERT INTO test.t
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

726

mysqlbinlog — Utility for Processing Binary Log Files

@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F

BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

You can tell mysqlbinlog to suppress the BINLOG statements for row events by using the --
base64-output=DECODE-ROWS option. This is similar to --base64-output=NEVER but does not
exit with an error if a row event is found. The combination of --base64-output=DECODE-ROWS and
--verbose provides a convenient way to see row events only as SQL statements:

$> mysqlbinlog -v --base64-output=DECODE-ROWS log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1
@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'

Note

You should not suppress BINLOG statements if you intend to re-execute
mysqlbinlog output.

727

mysqlbinlog — Utility for Processing Binary Log Files

The SQL statements produced by --verbose for row events are much more readable than the
corresponding BINLOG statements. However, they do not correspond exactly to the original SQL
statements that generated the events. The following limitations apply:

• The original column names are lost and replaced by @N, where N is a column number.

• Character set information is not available in the binary log, which affects string column display:

• There is no distinction made between corresponding binary and nonbinary string types (BINARY
and CHAR, VARBINARY and VARCHAR, BLOB and TEXT). The output uses a data type of STRING
for fixed-length strings and VARSTRING for variable-length strings.

• For multibyte character sets, the maximum number of bytes per character is not present in the
binary log, so the length for string types is displayed in bytes rather than in characters. For
example, STRING(4) is used as the data type for values from either of these column types:

CHAR(4) CHARACTER SET latin1
CHAR(2) CHARACTER SET ucs2

• Due to the storage format for events of type UPDATE_ROWS_EVENT, UPDATE statements are
displayed with the WHERE clause preceding the SET clause.

Proper interpretation of row events requires the information from the format description event at the
beginning of the binary log. Because mysqlbinlog does not know in advance whether the rest of the
log contains row events, by default it displays the format description event using a BINLOG statement
in the initial part of the output.

If the binary log is known not to contain any events requiring a BINLOG statement (that is, no row
events), the --base64-output=NEVER option can be used to prevent this header from being written.

6.6.9.3 Using mysqlbinlog to Back Up Binary Log Files

By default, mysqlbinlog reads binary log files and displays their contents in text format. This enables
you to examine events within the files more easily and to re-execute them (for example, by using the
output as input to mysql). mysqlbinlog can read log files directly from the local file system, or, with
the --read-from-remote-server option, it can connect to a server and request binary log contents
from that server. mysqlbinlog writes text output to its standard output, or to the file named as the
value of the --result-file=file_name option if that option is given.

• mysqlbinlog Backup Capabilities

• mysqlbinlog Backup Options

• Static and Live Backups

• Output File Naming

• Example: mysqldump + mysqlbinlog for Backup and Restore

• mysqlbinlog Backup Restrictions

mysqlbinlog Backup Capabilities

mysqlbinlog can read binary log files and write new files containing the same content—that is,
in binary format rather than text format. This capability enables you to easily back up a binary log
in its original format. mysqlbinlog can make a static backup, backing up a set of log files and
stopping when the end of the last file is reached. It can also make a continuous (“live”) backup, staying
connected to the server when it reaches the end of the last log file and continuing to copy new events
as they are generated. In continuous-backup operation, mysqlbinlog runs until the connection ends
(for example, when the server exits) or mysqlbinlog is forcibly terminated. When the connection
ends, mysqlbinlog does not wait and retry the connection, unlike a replica server. To continue a live
backup after the server has been restarted, you must also restart mysqlbinlog.

728

mysqlbinlog — Utility for Processing Binary Log Files

Important

mysqlbinlog can back up both encrypted and unencrypted binary log
files . However, copies of encrypted binary log files that are generated using
mysqlbinlog are stored in an unencrypted format.

mysqlbinlog Backup Options

Binary log backup requires that you invoke mysqlbinlog with two options at minimum:

• The --read-from-remote-server (or -R) option tells mysqlbinlog to connect to a server and
request its binary log. (This is similar to a replica server connecting to its replication source server.)

• The --raw option tells mysqlbinlog to write raw (binary) output, not text output.

Along with --read-from-remote-server, it is common to specify other options: --host indicates
where the server is running, and you may also need to specify connection options such as --user and
--password.

Several other options are useful in conjunction with --raw:

• --stop-never: Stay connected to the server after reaching the end of the last log file and continue
to read new events.

• --connection-server-id=id: The server ID that mysqlbinlog reports when it connects to a
server. When --stop-never is used, the default reported server ID is 1. If this causes a conflict
with the ID of a replica server or another mysqlbinlog process, use --connection-server-id
to specify an alternative server ID. See Section 6.6.9.4, “Specifying the mysqlbinlog Server ID”.

• --result-file: A prefix for output file names, as described later.

Static and Live Backups

To back up a server's binary log files with mysqlbinlog, you must specify file names that actually
exist on the server. If you do not know the names, connect to the server and use the SHOW BINARY
LOGS statement to see the current names. Suppose that the statement produces this output:

mysql> SHOW BINARY LOGS;
+---------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+---------------+-----------+-----------+
binlog.000130	27459	No
binlog.000131	13719	No
binlog.000132	43268	No
+---------------+-----------+-----------+

With that information, you can use mysqlbinlog to back up the binary log to the current directory as
follows (enter each command on a single line):

• To make a static backup of binlog.000130 through binlog.000132, use either of these
commands:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 binlog.000130 binlog.000131 binlog.000132

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --to-last-log binlog.000130

The first command specifies every file name explicitly. The second names only the first file and uses
--to-last-log to read through the last. A difference between these commands is that if the server
happens to open binlog.000133 before mysqlbinlog reaches the end of binlog.000132, the
first command does not read it, but the second command does.

• To make a live backup in which mysqlbinlog starts with binlog.000130 to copy existing log
files, then stays connected to copy new events as the server generates them:

729

mysqlbinlog — Utility for Processing Binary Log Files

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --stop-never binlog.000130

With --stop-never, it is not necessary to specify --to-last-log to read to the last log file
because that option is implied.

Output File Naming

Without --raw, mysqlbinlog produces text output and the --result-file option, if given,
specifies the name of the single file to which all output is written. With --raw, mysqlbinlog writes
one binary output file for each log file transferred from the server. By default, mysqlbinlog writes
the files in the current directory with the same names as the original log files. To modify the output file
names, use the --result-file option. In conjunction with --raw, the --result-file option value
is treated as a prefix that modifies the output file names.

Suppose that a server currently has binary log files named binlog.000999 and up. If you use
mysqlbinlog --raw to back up the files, the --result-file option produces output file names as
shown in the following table. You can write the files to a specific directory by beginning the --result-
file value with the directory path. If the --result-file value consists only of a directory name, the
value must end with the pathname separator character. Output files are overwritten if they exist.

--result-file Option Output File Names

--result-file=x xbinlog.000999 and up

--result-file=/tmp/ /tmp/binlog.000999 and up

--result-file=/tmp/x /tmp/xbinlog.000999 and up

Example: mysqldump + mysqlbinlog for Backup and Restore

The following example describes a simple scenario that shows how to use mysqldump and
mysqlbinlog together to back up a server's data and binary log, and how to use the backup to
restore the server if data loss occurs. The example assumes that the server is running on host
host_name and its first binary log file is named binlog.000999. Enter each command on a single
line.

Use mysqlbinlog to make a continuous backup of the binary log:

mysqlbinlog --read-from-remote-server --host=host_name --raw
 --stop-never binlog.000999

Use mysqldump to create a dump file as a snapshot of the server's data. Use --all-databases, --
events, and --routines to back up all data, and --master-data=2 to include the current binary
log coordinates in the dump file.

mysqldump --host=host_name --all-databases --events --routines --master-data=2> dump_file

Execute the mysqldump command periodically to create newer snapshots as desired.

If data loss occurs (for example, if the server unexpectedly exits), use the most recent dump file to
restore the data:

mysql --host=host_name -u root -p < dump_file

Then use the binary log backup to re-execute events that were written after the coordinates listed in the
dump file. Suppose that the coordinates in the file look like this:

-- CHANGE MASTER TO MASTER_LOG_FILE='binlog.001002', MASTER_LOG_POS=27284;

If the most recent backed-up log file is named binlog.001004, re-execute the log events like this:

mysqlbinlog --start-position=27284 binlog.001002 binlog.001003 binlog.001004
 | mysql --host=host_name -u root -p

730

mysqldumpslow — Summarize Slow Query Log Files

You might find it easier to copy the backup files (dump file and binary log files) to the server host to
make it easier to perform the restore operation, or if MySQL does not allow remote root access.

mysqlbinlog Backup Restrictions

Binary log backups with mysqlbinlog are subject to these restrictions:

• mysqlbinlog does not automatically reconnect to the MySQL server if the connection is lost (for
example, if a server restart occurs or there is a network outage).

• The delay for a backup is similar to the delay for a replica server.

6.6.9.4 Specifying the mysqlbinlog Server ID

When invoked with the --read-from-remote-server option, mysqlbinlog connects to a MySQL
server, specifies a server ID to identify itself, and requests binary log files from the server. You can use
mysqlbinlog to request log files from a server in several ways:

• Specify an explicitly named set of files: For each file, mysqlbinlog connects and issues a Binlog
dump command. The server sends the file and disconnects. There is one connection per file.

• Specify the beginning file and --to-last-log: mysqlbinlog connects and issues a Binlog
dump command for all files. The server sends all files and disconnects.

• Specify the beginning file and --stop-never (which implies --to-last-log): mysqlbinlog
connects and issues a Binlog dump command for all files. The server sends all files, but does not
disconnect after sending the last one.

With --read-from-remote-server only, mysqlbinlog connects using a server ID of 0, which
tells the server to disconnect after sending the last requested log file.

With --read-from-remote-server and --stop-never, mysqlbinlog connects using a nonzero
server ID, so the server does not disconnect after sending the last log file. The server ID is 1 by default,
but this can be changed with --connection-server-id.

Thus, for the first two ways of requesting files, the server disconnects because mysqlbinlog specifies
a server ID of 0. It does not disconnect if --stop-never is given because mysqlbinlog specifies a
nonzero server ID.

6.6.10 mysqldumpslow — Summarize Slow Query Log Files

The MySQL slow query log contains information about queries that take a long time to execute (see
Section 7.4.5, “The Slow Query Log”). mysqldumpslow parses MySQL slow query log files and
summarizes their contents.

Normally, mysqldumpslow groups queries that are similar except for the particular values of number
and string data values. It “abstracts” these values to N and 'S' when displaying summary output. To
modify value abstracting behavior, use the -a and -n options.

Invoke mysqldumpslow like this:

mysqldumpslow [options] [log_file ...]

Example output with no options given:

Reading mysql slow query log from /usr/local/mysql/data/mysqld80-slow.log
Count: 1 Time=4.32s (4s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1

Count: 3 Time=2.53s (7s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1 limit N

Count: 3 Time=2.13s (6s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t1 select * from t1

731

mysqldumpslow — Summarize Slow Query Log Files

mysqldumpslow supports the following options.

Table 6.24 mysqldumpslow Options

Option Name Description

-a Do not abstract all numbers to N and strings to 'S'

-n Abstract numbers with at least the specified digits

--debug Write debugging information

-g Only consider statements that match the pattern

--help Display help message and exit

-h Host name of the server in the log file name

-i Name of the server instance

-l Do not subtract lock time from total time

-r Reverse the sort order

-s How to sort output

-t Display only first num queries

--verbose Verbose mode

• --help

Command-Line Format --help

Display a help message and exit.

• -a

Do not abstract all numbers to N and strings to 'S'.

• --debug, -d

Command-Line Format --debug

Run in debug mode.

This option is available only if MySQL was built using WITH_DEBUG. MySQL release binaries
provided by Oracle are not built using this option.

• -g pattern

Type String

Consider only queries that match the (grep-style) pattern.

• -h host_name

Type String

Default Value *

Host name of MySQL server for *-slow.log file name. The value can contain a wildcard. The
default is * (match all).

• -i name

732

Program Development Utilities

Type String

Name of server instance (if using mysql.server startup script).

• -l

Do not subtract lock time from total time.

• -n N

Type Numeric

Abstract numbers with at least N digits within names.

• -r

Reverse the sort order.

• -s sort_type

Type String

Default Value at

How to sort the output. The value of sort_type should be chosen from the following list:

• t, at: Sort by query time or average query time

• l, al: Sort by lock time or average lock time

• r, ar: Sort by rows sent or average rows sent

• c: Sort by count

By default, mysqldumpslow sorts by average query time (equivalent to -s at).

• -t N

Type Numeric

Display only the first N queries in the output.

• --verbose, -v

Command-Line Format --verbose

Verbose mode. Print more information about what the program does.

6.7 Program Development Utilities
This section describes some utilities that you may find useful when developing MySQL programs.

In shell scripts, you can use the my_print_defaults program to parse option files and see
what options would be used by a given program. The following example shows the output that
my_print_defaults might produce when asked to show the options found in the [client] and
[mysql] groups:

733

mysql_config — Display Options for Compiling Clients

$> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash

Note for developers: Option file handling is implemented in the C client library simply by processing
all options in the appropriate group or groups before any command-line arguments. This works well
for programs that use the last instance of an option that is specified multiple times. If you have a C or
C++ program that handles multiply specified options this way but that doesn't read option files, you
need add only two lines to give it that capability. Check the source code of any of the standard MySQL
clients to see how to do this.

Several other language interfaces to MySQL are based on the C client library, and some of them
provide a way to access option file contents. These include Perl and Python. For details, see the
documentation for your preferred interface.

6.7.1 mysql_config — Display Options for Compiling Clients

mysql_config provides you with useful information for compiling your MySQL client and connecting it
to MySQL. It is a shell script, so it is available only on Unix and Unix-like systems.

Note

pkg-config can be used as an alternative to mysql_config for obtaining
information such as compiler flags or link libraries required to compile MySQL
applications. For more information, see Building C API Client Programs Using
pkg-config.

mysql_config supports the following options.

• --cflags

C Compiler flags to find include files and critical compiler flags and defines used when compiling the
libmysqlclient library. The options returned are tied to the specific compiler that was used when
the library was created and might clash with the settings for your own compiler. Use --include for
more portable options that contain only include paths.

• --cxxflags

Like --cflags, but for C++ compiler flags.

• --include

Compiler options to find MySQL include files.

• --libs

Libraries and options required to link with the MySQL client library.

• --libs_r

Libraries and options required to link with the thread-safe MySQL client library. In MySQL 8.0, all
client libraries are thread-safe, so this option need not be used. The --libs option can be used in
all cases.

• --plugindir

The default plugin directory path name, defined when configuring MySQL.

• --port

The default TCP/IP port number, defined when configuring MySQL.

734

https://dev.mysql.com/doc/c-api/8.0/en/c-api-building-clients-pkg-config.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-building-clients-pkg-config.html

my_print_defaults — Display Options from Option Files

• --socket

The default Unix socket file, defined when configuring MySQL.

• --variable=var_name

Display the value of the named configuration variable. Permitted var_name values are
pkgincludedir (the header file directory), pkglibdir (the library directory), and plugindir (the
plugin directory).

• --version

Version number for the MySQL distribution.

If you invoke mysql_config with no options, it displays a list of all options that it supports, and their
values:

$> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [options]
Options:
 --cflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
 --cxxflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
 --include [-I/usr/local/mysql/include/mysql]
 --libs [-L/usr/local/mysql/lib/mysql -lmysqlclient
 -lpthread -lm -lrt -lssl -lcrypto -ldl]
 --libs_r [-L/usr/local/mysql/lib/mysql -lmysqlclient_r
 -lpthread -lm -lrt -lssl -lcrypto -ldl]
 --plugindir [/usr/local/mysql/lib/plugin]
 --socket [/tmp/mysql.sock]
 --port [3306]
 --version [5.8.0-m17]
 --variable=VAR VAR is one of:
 pkgincludedir [/usr/local/mysql/include]
 pkglibdir [/usr/local/mysql/lib]
 plugindir [/usr/local/mysql/lib/plugin]

You can use mysql_config within a command line using backticks to include the output that it
produces for particular options. For example, to compile and link a MySQL client program, use
mysql_config as follows:

gcc -c `mysql_config --cflags` progname.c
gcc -o progname progname.o `mysql_config --libs`

6.7.2 my_print_defaults — Display Options from Option Files

my_print_defaults displays the options that are present in option groups of option files. The output
indicates what options are used by programs that read the specified option groups. For example, the
mysqlcheck program reads the [mysqlcheck] and [client] option groups. To see what options
are present in those groups in the standard option files, invoke my_print_defaults like this:

$> my_print_defaults mysqlcheck client
--user=myusername
--password=password
--host=localhost

The output consists of options, one per line, in the form that they would be specified on the command
line.

my_print_defaults supports the following options.

• --help, -?

Display a help message and exit.

• --config-file=file_name, --defaults-file=file_name, -c file_name

Read only the given option file.

735

Miscellaneous Programs

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is
d:t:o,/tmp/my_print_defaults.trace.

• --defaults-extra-file=file_name, --extra-file=file_name, -e file_name

Read this option file after the global option file but (on Unix) before the user option file.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=suffix, -g suffix

In addition to the groups named on the command line, read groups that have the given suffix.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --login-path=name, -l name

Read options from the named login path in the .mylogin.cnf login path file. A “login path” is an
option group containing options that specify which MySQL server to connect to and which account to
authenticate as. To create or modify a login path file, use the mysql_config_editor utility. See
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --no-defaults, -n

Return an empty string.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --show, -s

my_print_defaults masks passwords by default. Use this option to display passwords as
cleartext.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

6.8 Miscellaneous Programs

6.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed Output

The lz4_decompress utility decompresses mysqlpump output that was created using LZ4
compression.

Note

lz4_decompress is deprecated as of MySQL 8.0.34; expect it to be removed
in a future version of MySQL. This is because the associated mysqlpump utility
is deprecated as of MySQL 8.0.34.

736

perror — Display MySQL Error Message Information

Note

If MySQL was configured with the -DWITH_LZ4=system option,
lz4_decompress is not built. In this case, the system lz4 command can be
used instead.

Invoke lz4_decompress like this:

lz4_decompress input_file output_file

Example:

mysqlpump --compress-output=LZ4 > dump.lz4
lz4_decompress dump.lz4 dump.txt

To see a help message, invoke lz4_decompress with no arguments.

To decompress mysqlpump ZLIB-compressed output, use zlib_decompress. See Section 6.8.3,
“zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”.

6.8.2 perror — Display MySQL Error Message Information

perror displays the error message for MySQL or operating system error codes. Invoke perror like
this:

perror [options] errorcode ...

perror attempts to be flexible in understanding its arguments. For example, for the
ER_WRONG_VALUE_FOR_VAR error, perror understands any of these arguments: 1231, 001231,
MY-1231, or MY-001231, or ER_WRONG_VALUE_FOR_VAR.

$> perror 1231
MySQL error code MY-001231 (ER_WRONG_VALUE_FOR_VAR): Variable '%-.64s'
can't be set to the value of '%-.200s'

If an error number is in the range where MySQL and operating system errors overlap, perror displays
both error messages:

$> perror 1 13
OS error code 1: Operation not permitted
MySQL error code MY-000001: Can't create/write to file '%s' (OS errno %d - %s)
OS error code 13: Permission denied
MySQL error code MY-000013: Can't get stat of '%s' (OS errno %d - %s)

To obtain the error message for a MySQL Cluster error code, use the ndb_perror utility.

The meaning of system error messages may be dependent on your operating system. A given error
code may mean different things on different operating systems.

perror supports the following options.

• --help, --info, -I, -?

Display a help message and exit.

• --ndb

Print the error message for a MySQL Cluster error code.

This option was removed in MySQL 8.0.13. Use the ndb_perror utility instead.

• --silent, -s

Silent mode. Print only the error message.

• --verbose, -v

737

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_value_for_var
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_value_for_var

zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output

Verbose mode. Print error code and message. This is the default behavior.

• --version, -V

Display version information and exit.

6.8.3 zlib_decompress — Decompress mysqlpump ZLIB-Compressed
Output

The zlib_decompress utility decompresses mysqlpump output that was created using ZLIB
compression.

Note

zlib_decompress is deprecated as of MySQL 8.0.34; expect it to be removed
in a future version of MySQL. This is because the associated mysqlpump utility
is deprecated as of MySQL 8.0.34.

Note

If MySQL was configured with the -DWITH_ZLIB=system option,
zlib_decompress is not built. In this case, the system openssl zlib
command can be used instead.

Invoke zlib_decompress like this:

zlib_decompress input_file output_file

Example:

mysqlpump --compress-output=ZLIB > dump.zlib
zlib_decompress dump.zlib dump.txt

To see a help message, invoke zlib_decompress with no arguments.

To decompress mysqlpump LZ4-compressed output, use lz4_decompress. See Section 6.8.1,
“lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”.

6.9 Environment Variables
This section lists environment variables that are used directly or indirectly by MySQL. Most of these
can also be found in other places in this manual.

Options on the command line take precedence over values specified in option files and environment
variables, and values in option files take precedence over values in environment variables. In many
cases, it is preferable to use an option file instead of environment variables to modify the behavior of
MySQL. See Section 6.2.2.2, “Using Option Files”.

Variable Description

AUTHENTICATION_KERBEROS_CLIENT_LOG Kerberos authentication logging level.

AUTHENTICATION_LDAP_CLIENT_LOG Client-side LDAP authentication logging level.

AUTHENTICATION_PAM_LOG PAM authentication plugin debug logging settings.

CC The name of your C compiler (for running CMake).

CXX The name of your C++ compiler (for running
CMake).

CC The name of your C compiler (for running CMake).

DBI_USER The default user name for Perl DBI.

DBI_TRACE Trace options for Perl DBI.

738

Environment Variables

Variable Description

HOME The default path for the mysql history file is
$HOME/.mysql_history.

LD_RUN_PATH Used to specify the location of
libmysqlclient.so.

LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN Enable mysql_clear_password authentication
plugin; see Section 8.4.1.4, “Client-Side Cleartext
Pluggable Authentication”.

LIBMYSQL_PLUGIN_DIR Directory in which to look for client plugins.

LIBMYSQL_PLUGINS Client plugins to preload.

MYSQL_DEBUG Debug trace options when debugging.

MYSQL_GROUP_SUFFIX Option group suffix value (like specifying --
defaults-group-suffix).

MYSQL_HISTFILE The path to the mysql history file. If this
variable is set, its value overrides the default for
$HOME/.mysql_history.

MYSQL_HISTIGNORE Patterns specifying statements that mysql should
not log to $HOME/.mysql_history, or syslog
if --syslog is given.

MYSQL_HOME The path to the directory in which the server-
specific my.cnf file resides.

MYSQL_HOST The default host name used by the mysql
command-line client.

MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD Maximum key length for
create_dh_parameters(). See Section 8.6.3,
“MySQL Enterprise Encryption Usage and
Examples”.

MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD Maximum DSA key length for
create_asymmetric_priv_key(). See
Section 8.6.3, “MySQL Enterprise Encryption
Usage and Examples”.

MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD Maximum RSA key length for
create_asymmetric_priv_key(). See
Section 8.6.3, “MySQL Enterprise Encryption
Usage and Examples”.

MYSQL_PS1 The command prompt to use in the mysql
command-line client.

MYSQL_PWD The default password when connecting to
mysqld. Using this is insecure. See note following
table.

MYSQL_TCP_PORT The default TCP/IP port number.

MYSQL_TEST_LOGIN_FILE The name of the .mylogin.cnf login path file.

MYSQL_TEST_TRACE_CRASH Whether the test protocol trace plugin crashes
clients. See note following table.

MYSQL_TEST_TRACE_DEBUG Whether the test protocol trace plugin produces
output. See note following table.

MYSQL_UNIX_PORT The default Unix socket file name; used for
connections to localhost.

MYSQLX_TCP_PORT The X Plugin default TCP/IP port number.

739

Unix Signal Handling in MySQL

Variable Description

MYSQLX_UNIX_PORT The X Plugin default Unix socket file name; used
for connections to localhost.

NOTIFY_SOCKET Socket used by mysqld to communicate with
systemd.

PATH Used by the shell to find MySQL programs.

PKG_CONFIG_PATH Location of mysqlclient.pc pkg-config file.
See note following table.

TMPDIR The directory in which temporary files are created.

TZ This should be set to your local time zone. See
Section B.3.3.7, “Time Zone Problems”.

UMASK The user-file creation mode when creating files.
See note following table.

UMASK_DIR The user-directory creation mode when creating
directories. See note following table.

USER The default user name on Windows when
connecting to mysqld.

For information about the mysql history file, see Section 6.5.1.3, “mysql Client Logging”.

Use of MYSQL_PWD to specify a MySQL password must be considered extremely insecure and should
not be used. Some versions of ps include an option to display the environment of running processes.
On some systems, if you set MYSQL_PWD, your password is exposed to any other user who runs ps.
Even on systems without such a version of ps, it is unwise to assume that there are no other methods
by which users can examine process environments.

MYSQL_PWD is deprecated as of MySQL 8.0; expect it to be removed in a future version of MySQL.

MYSQL_TEST_LOGIN_FILE is the path name of the login path file (the file created by
mysql_config_editor). If not set, the default value is %APPDATA%\MySQL\.mylogin.cnf
directory on Windows and $HOME/.mylogin.cnf on non-Windows systems. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

The MYSQL_TEST_TRACE_DEBUG and MYSQL_TEST_TRACE_CRASH variables control the test protocol
trace client plugin, if MySQL is built with that plugin enabled. For more information, see Using the Test
Protocol Trace Plugin.

The default UMASK and UMASK_DIR values are 0640 and 0750, respectively. MySQL assumes that the
value for UMASK or UMASK_DIR is in octal if it starts with a zero. For example, setting UMASK=0600 is
equivalent to UMASK=384 because 0600 octal is 384 decimal.

The UMASK and UMASK_DIR variables, despite their names, are used as modes, not masks:

• If UMASK is set, mysqld uses ($UMASK | 0600) as the mode for file creation, so that newly
created files have a mode in the range from 0600 to 0666 (all values octal).

• If UMASK_DIR is set, mysqld uses ($UMASK_DIR | 0700) as the base mode for directory
creation, which then is AND-ed with ~(~$UMASK & 0666), so that newly created directories have
a mode in the range from 0700 to 0777 (all values octal). The AND operation may remove read and
write permissions from the directory mode, but not execute permissions.

See also Section B.3.3.1, “Problems with File Permissions”.

It may be necessary to set PKG_CONFIG_PATH if you use pkg-config for building MySQL programs.
See Building C API Client Programs Using pkg-config.

6.10 Unix Signal Handling in MySQL

740

https://dev.mysql.com/doc/extending-mysql/8.0/en/test-protocol-trace-plugin.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/test-protocol-trace-plugin.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-building-clients-pkg-config.html

Server Response to Signals

On Unix and Unix-like systems, a process can be the recipient of signals sent to it by the root system
account or the system account that owns the process. Signals can be sent using the kill command.
Some command interpreters associate certain key sequences with signals, such as Control+C to
send a SIGINT signal. This section describes how the MySQL server and client programs respond to
signals.

• Server Response to Signals

• Client Response to Signals

Server Response to Signals

mysqld responds to signals as follows:

• SIGTERM causes the server to shut down. This is like executing a SHUTDOWN statement without
having to connect to the server (which for shutdown requires an account that has the SHUTDOWN
privilege).

• SIGHUP causes the server to reload the grant tables and to flush tables, logs, the thread cache, and
the host cache. These actions are like various forms of the FLUSH statement. Sending the signal
enables the flush operations to be performed without having to connect to the server, which requires
a MySQL account that has privileges sufficient for those operations. Prior to MySQL 8.0.20, the
server also writes a status report to the error log that has this format:

Status information:

Current dir: /var/mysql/data/
Running threads: 4 Stack size: 262144
Current locks:
lock: 0x7f742c02c0e0:

lock: 0x2cee2a20:
:
lock: 0x207a080:

Key caches:
default
Buffer_size: 8388608
Block_size: 1024
Division_limit: 100
Age_limit: 300
blocks used: 4
not flushed: 0
w_requests: 0
writes: 0
r_requests: 8
reads: 4

handler status:
read_key: 13
read_next: 4
read_rnd 0
read_first: 13
write: 1
delete 0
update: 0

Table status:
Opened tables: 121
Open tables: 114
Open files: 18
Open streams: 0

Memory status:
<malloc version="1">
<heap nr="0">
<sizes>

741

Client Response to Signals

 <size from="17" to="32" total="32" count="1"/>
 <size from="33" to="48" total="96" count="2"/>
 <size from="33" to="33" total="33" count="1"/>
 <size from="97" to="97" total="6014" count="62"/>
 <size from="113" to="113" total="904" count="8"/>
 <size from="193" to="193" total="193" count="1"/>
 <size from="241" to="241" total="241" count="1"/>
 <size from="609" to="609" total="609" count="1"/>
 <size from="16369" to="16369" total="49107" count="3"/>
 <size from="24529" to="24529" total="98116" count="4"/>
 <size from="32689" to="32689" total="32689" count="1"/>
 <unsorted from="241" to="7505" total="7746" count="2"/>
</sizes>
<total type="fast" count="3" size="128"/>
<total type="rest" count="84" size="195652"/>
<system type="current" size="690774016"/>
<system type="max" size="690774016"/>
<aspace type="total" size="690774016"/>
<aspace type="mprotect" size="690774016"/>
</heap>
:
<total type="fast" count="85" size="5520"/>
<total type="rest" count="116" size="316820"/>
<total type="mmap" count="82" size="939954176"/>
<system type="current" size="695717888"/>
<system type="max" size="695717888"/>
<aspace type="total" size="695717888"/>
<aspace type="mprotect" size="695717888"/>
</malloc>

Events status:
LLA = Last Locked At LUA = Last Unlocked At
WOC = Waiting On Condition DL = Data Locked

Event scheduler status:
State : INITIALIZED
Thread id : 0
LLA : n/a:0
LUA : n/a:0
WOC : NO
Workers : 0
Executed : 0
Data locked: NO

Event queue status:
Element count : 0
Data locked : NO
Attempting lock : NO
LLA : init_queue:95
LUA : init_queue:103
WOC : NO
Next activation : never

• As of MySQL 8.0.19, SIGUSR1 causes the server to flush the error log, general query log, and slow
query log. One use for SIGUSR1 is to implement log rotation without having to connect to the server,
which requires a MySQL account that has privileges sufficient for those operations. For information
about log rotation, see Section 7.4.6, “Server Log Maintenance”.

The server response to SIGUSR1 is a subset of the response to SIGHUP, enabling SIGUSR1 to be
used as a more “lightweight” signal that flushes certain logs without the other SIGHUP effects such
as flushing the thread and host caches and writing a status report to the error log.

• SIGINT normally is ignored by the server. Starting the server with the --gdb option installs an
interrupt handler for SIGINT for debugging purposes. See Section 7.9.1.4, “Debugging mysqld under
gdb”.

Client Response to Signals

MySQL client programs respond to signals as follows:

742

Client Response to Signals

• The mysql client interprets SIGINT (typically the result of typing Control+C) as instruction to
interrupt the current statement if there is one, or to cancel any partial input line otherwise. This
behavior can be disabled using the --sigint-ignore option to ignore SIGINT signals.

• Client programs that use the MySQL client library block SIGPIPE signals by default. These
variations are possible:

• Client can install their own SIGPIPE handler to override the default behavior. See Writing C API
Threaded Client Programs.

• Clients can prevent installation of SIGPIPE handlers by specifying the
CLIENT_IGNORE_SIGPIPE option to mysql_real_connect() at connect time. See
mysql_real_connect().

743

https://dev.mysql.com/doc/c-api/8.0/en/c-api-threaded-clients.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-threaded-clients.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html

744

Chapter 7 MySQL Server Administration

Table of Contents
7.1 The MySQL Server ... 746

7.1.1 Configuring the Server .. 747
7.1.2 Server Configuration Defaults ... 748
7.1.3 Server Configuration Validation ... 748
7.1.4 Server Option, System Variable, and Status Variable Reference 749
7.1.5 Server System Variable Reference .. 797
7.1.6 Server Status Variable Reference ... 822
7.1.7 Server Command Options ... 839
7.1.8 Server System Variables .. 867
7.1.9 Using System Variables .. 1033
7.1.10 Server Status Variables .. 1064
7.1.11 Server SQL Modes ... 1092
7.1.12 Connection Management .. 1103
7.1.13 IPv6 Support .. 1111
7.1.14 Network Namespace Support .. 1115
7.1.15 MySQL Server Time Zone Support .. 1120
7.1.16 Resource Groups .. 1125
7.1.17 Server-Side Help Support ... 1130
7.1.18 Server Tracking of Client Session State ... 1130
7.1.19 The Server Shutdown Process .. 1134

7.2 The MySQL Data Directory .. 1135
7.3 The mysql System Schema ... 1136
7.4 MySQL Server Logs .. 1141

7.4.1 Selecting General Query Log and Slow Query Log Output Destinations 1142
7.4.2 The Error Log ... 1144
7.4.3 The General Query Log .. 1165
7.4.4 The Binary Log ... 1167
7.4.5 The Slow Query Log .. 1183
7.4.6 Server Log Maintenance ... 1187

7.5 MySQL Components ... 1189
7.5.1 Installing and Uninstalling Components .. 1189
7.5.2 Obtaining Component Information ... 1190
7.5.3 Error Log Components .. 1190
7.5.4 Query Attribute Components ... 1193
7.5.5 Scheduler Component .. 1193

7.6 MySQL Server Plugins .. 1194
7.6.1 Installing and Uninstalling Plugins ... 1195
7.6.2 Obtaining Server Plugin Information .. 1199
7.6.3 MySQL Enterprise Thread Pool ... 1200
7.6.4 The Rewriter Query Rewrite Plugin ... 1208
7.6.5 The ddl_rewriter Plugin ... 1217
7.6.6 Version Tokens .. 1219
7.6.7 The Clone Plugin .. 1231
7.6.8 The Keyring Proxy Bridge Plugin ... 1256
7.6.9 MySQL Plugin Services .. 1257

7.7 MySQL Server Loadable Functions .. 1264
7.7.1 Installing and Uninstalling Loadable Functions ... 1265
7.7.2 Obtaining Information About Loadable Functions .. 1266

7.8 Running Multiple MySQL Instances on One Machine .. 1266
7.8.1 Setting Up Multiple Data Directories .. 1268
7.8.2 Running Multiple MySQL Instances on Windows .. 1269
7.8.3 Running Multiple MySQL Instances on Unix ... 1271

745

The MySQL Server

7.8.4 Using Client Programs in a Multiple-Server Environment ... 1273
7.9 Debugging MySQL .. 1273

7.9.1 Debugging a MySQL Server ... 1273
7.9.2 Debugging a MySQL Client ... 1279
7.9.3 The LOCK_ORDER Tool .. 1279
7.9.4 The DBUG Package ... 1285

MySQL Server (mysqld) is the main program that does most of the work in a MySQL installation. This
chapter provides an overview of MySQL Server and covers general server administration:

• Server configuration

• The data directory, particularly the mysql system schema

• The server log files

• Management of multiple servers on a single machine

For additional information on administrative topics, see also:

• Chapter 8, Security

• Chapter 9, Backup and Recovery

• Chapter 19, Replication

7.1 The MySQL Server

mysqld is the MySQL server. The following discussion covers these MySQL server configuration
topics:

• Startup options that the server supports. You can specify these options on the command line,
through configuration files, or both.

• Server system variables. These variables reflect the current state and values of the startup options,
some of which can be modified while the server is running.

• Server status variables. These variables contain counters and statistics about runtime operation.

• How to set the server SQL mode. This setting modifies certain aspects of SQL syntax and
semantics, for example for compatibility with code from other database systems, or to control the
error handling for particular situations.

• How the server manages client connections.

• Configuring and using IPv6 and network namespace support.

• Configuring and using time zone support.

• Using resource groups.

• Server-side help capabilities.

• Capabilities provided to enable client session state changes.

• The server shutdown process. There are performance and reliability considerations depending on
the type of table (transactional or nontransactional) and whether you use replication.

For listings of MySQL server variables and options that have been added, deprecated, or removed
in MySQL 8.0, see Section 1.4, “Server and Status Variables and Options Added, Deprecated, or
Removed in MySQL 8.0”.

746

Configuring the Server

Note

Not all storage engines are supported by all MySQL server binaries and
configurations. To find out how to determine which storage engines your
MySQL server installation supports, see Section 15.7.7.16, “SHOW ENGINES
Statement”.

7.1.1 Configuring the Server

The MySQL server, mysqld, has many command options and system variables that can be set at
startup to configure its operation. To determine the default command option and system variable values
used by the server, execute this command:

$> mysqld --verbose --help

The command produces a list of all mysqld options and configurable system variables. Its output
includes the default option and variable values and looks something like this:

abort-slave-event-count 0
allow-suspicious-udfs FALSE
archive ON
auto-increment-increment 1
auto-increment-offset 1
autocommit TRUE
automatic-sp-privileges TRUE
avoid-temporal-upgrade FALSE
back-log 80
basedir /home/jon/bin/mysql-8.0/
...
tmpdir /tmp
transaction-alloc-block-size 8192
transaction-isolation REPEATABLE-READ
transaction-prealloc-size 4096
transaction-read-only FALSE
transaction-write-set-extraction XXHASH64
updatable-views-with-limit YES
validate-user-plugins TRUE
verbose TRUE
wait-timeout 28800

To see the current system variable values actually used by the server as it runs, connect to it and
execute this statement:

mysql> SHOW VARIABLES;

To see some statistical and status indicators for a running server, execute this statement:

mysql> SHOW STATUS;

System variable and status information also is available using the mysqladmin command:

$> mysqladmin variables
$> mysqladmin extended-status

For a full description of all command options, system variables, and status variables, see these
sections:

• Section 7.1.7, “Server Command Options”

• Section 7.1.8, “Server System Variables”

• Section 7.1.10, “Server Status Variables”

More detailed monitoring information is available from the Performance Schema; see Chapter 29,
MySQL Performance Schema. In addition, the MySQL sys schema is a set of objects that provides

747

Server Configuration Defaults

convenient access to data collected by the Performance Schema; see Chapter 30, MySQL sys
Schema.

If you specify an option on the command line for mysqld or mysqld_safe, it remains in effect only for
that invocation of the server. To use the option every time the server runs, put it in an option file. See
Section 6.2.2.2, “Using Option Files”.

7.1.2 Server Configuration Defaults

The MySQL server has many operating parameters, which you can change at server startup using
command-line options or configuration files (option files). It is also possible to change many parameters
at runtime. For general instructions on setting parameters at startup or runtime, see Section 7.1.7,
“Server Command Options”, and Section 7.1.8, “Server System Variables”.

On Windows, MySQL Installer interacts with the user and creates a file named my.ini in the base
installation directory as the default option file.

Note

On Windows, the .ini or .cnf option file extension might not be displayed.

After completing the installation process, you can edit the default option file at any time to modify the
parameters used by the server. For example, to use a parameter setting in the file that is commented
with a # character at the beginning of the line, remove the #, and modify the parameter value if
necessary. To disable a setting, either add a # to the beginning of the line or remove it.

For non-Windows platforms, no default option file is created during either the server installation or
the data directory initialization process. Create your option file by following the instructions given
in Section 6.2.2.2, “Using Option Files”. Without an option file, the server just starts with its default
settings—see Section 7.1.2, “Server Configuration Defaults” on how to check those settings.

For additional information about option file format and syntax, see Section 6.2.2.2, “Using Option Files”.

7.1.3 Server Configuration Validation

As of MySQL 8.0.16, MySQL Server supports a --validate-config option that enables the startup
configuration to be checked for problems without running the server in normal operational mode:

mysqld --validate-config

If no errors are found, the server terminates with an exit code of 0. If an error is found, the server
displays a diagnostic message and terminates with an exit code of 1. For example:

$> mysqld --validate-config --no-such-option
2018-11-05T17:50:12.738919Z 0 [ERROR] [MY-000068] [Server] unknown
option '--no-such-option'.
2018-11-05T17:50:12.738962Z 0 [ERROR] [MY-010119] [Server] Aborting

The server terminates as soon as any error is found. For additional checks to occur, correct the initial
problem and run the server with --validate-config again.

For the preceding example, where use of --validate-config results in display of an error
message, the server exit code is 1. Warning and information messages may also be displayed,
depending on the log_error_verbosity value, but do not produce immediate validation termination
or an exit code of 1. For example, this command produces multiple warnings, both of which are
displayed. But no error occurs, so the exit code is 0:

$> mysqld --validate-config --log_error_verbosity=2
 --read-only=s --transaction_read_only=s

748

Server Option, System Variable, and Status Variable Reference

2018-11-05T15:43:18.445863Z 0 [Warning] [MY-000076] [Server] option
'read_only': boolean value 's' was not recognized. Set to OFF.
2018-11-05T15:43:18.445882Z 0 [Warning] [MY-000076] [Server] option
'transaction-read-only': boolean value 's' was not recognized. Set to OFF.

This command produces the same warnings, but also an error, so the error message is displayed along
with the warnings and the exit code is 1:

$> mysqld --validate-config --log_error_verbosity=2
 --no-such-option --read-only=s --transaction_read_only=s
2018-11-05T15:43:53.152886Z 0 [Warning] [MY-000076] [Server] option
'read_only': boolean value 's' was not recognized. Set to OFF.
2018-11-05T15:43:53.152913Z 0 [Warning] [MY-000076] [Server] option
'transaction-read-only': boolean value 's' was not recognized. Set to OFF.
2018-11-05T15:43:53.164889Z 0 [ERROR] [MY-000068] [Server] unknown
option '--no-such-option'.
2018-11-05T15:43:53.165053Z 0 [ERROR] [MY-010119] [Server] Aborting

The scope of the --validate-config option is limited to configuration checking that the server
can perform without undergoing its normal startup process. As such, the configuration check does not
initialize storage engines and other plugins, components, and so forth, and does not validate options
associated with those uninitialized subsystems.

--validate-config can be used any time, but is particularly useful after an upgrade, to check
whether any options previously used with the older server are considered by the upgraded server
to be deprecated or obsolete. For example, the tx_read_only system variable was deprecated in
MySQL 5.7 and removed in 8.0. Suppose that a MySQL 5.7 server was run using that system variable
in its my.cnf file and then upgraded to MySQL 8.0. Running the upgraded server with --validate-
config to check the configuration produces this result:

$> mysqld --validate-config
2018-11-05T10:40:02.712141Z 0 [ERROR] [MY-000067] [Server] unknown variable
'tx_read_only=ON'.
2018-11-05T10:40:02.712178Z 0 [ERROR] [MY-010119] [Server] Aborting

--validate-config can be used with the --defaults-file option to validate only the options in
a specific file:

$> mysqld --defaults-file=./my.cnf-test --validate-config
2018-11-05T10:40:02.712141Z 0 [ERROR] [MY-000067] [Server] unknown variable
'tx_read_only=ON'.
2018-11-05T10:40:02.712178Z 0 [ERROR] [MY-010119] [Server] Aborting

Remember that --defaults-file, if specified, must be the first option on the command line.
(Executing the preceding example with the option order reversed produces a message that --
defaults-file itself is unknown.)

7.1.4 Server Option, System Variable, and Status Variable Reference

The following table lists all command-line options, system variables, and status variables applicable
within mysqld.

The table lists command-line options (Cmd-line), options valid in configuration files (Option file), server
system variables (System Var), and status variables (Status var) in one unified list, with an indication
of where each option or variable is valid. If a server option set on the command line or in an option file
differs from the name of the corresponding system variable, the variable name is noted immediately
below the corresponding option. For system and status variables, the scope of the variable (Var Scope)
is Global, Session, or both. Please see the corresponding item descriptions for details on setting and
using the options and variables. Where appropriate, direct links to further information about the items
are provided.

For a version of this table that is specific to NDB Cluster, see Section 25.4.2.5, “NDB Cluster mysqld
Option and Variable Reference”.

749

Server Option, System Variable, and Status Variable Reference

Table 7.1 Command-Line Option, System Variable, and Status Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

abort-slave-
event-count

Yes Yes

Aborted_clients Yes Global No

Aborted_connects Yes Global No

Acl_cache_items_count Yes Global No

activate_all_roles_on_loginYes Yes Yes Global Yes

admin_addressYes Yes Yes Global No

admin_port Yes Yes Yes Global No

admin-ssl Yes Yes

admin_ssl_ca Yes Yes Yes Global Yes

admin_ssl_capathYes Yes Yes Global Yes

admin_ssl_certYes Yes Yes Global Yes

admin_ssl_cipherYes Yes Yes Global Yes

admin_ssl_crl Yes Yes Yes Global Yes

admin_ssl_crlpathYes Yes Yes Global Yes

admin_ssl_keyYes Yes Yes Global Yes

admin_tls_ciphersuitesYes Yes Yes Global Yes

admin_tls_versionYes Yes Yes Global Yes

allow-
suspicious-
udfs

Yes Yes

ansi Yes Yes

audit-log Yes Yes

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_compressionYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

Audit_log_current_size Yes Global No

audit_log_databaseYes Yes Yes Global No

audit_log_disableYes Yes Yes Global Yes

audit_log_encryptionYes Yes Yes Global No

Audit_log_event_max_drop_size Yes Global No

Audit_log_events Yes Global No

Audit_log_events_filtered Yes Global No

Audit_log_events_lost Yes Global No

Audit_log_events_written Yes Global No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_filter_id Yes Both No

audit_log_flush Yes Global Yes

audit_log_flush_interval_secondsYes Yes Global No

750

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

audit_log_formatYes Yes Yes Global No

audit_log_format_unix_timestampYes Yes Yes Global Yes

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_max_sizeYes Yes Yes Global Yes

audit_log_password_history_keep_daysYes Yes Yes Global Yes

audit_log_policyYes Yes Yes Global No

audit_log_prune_secondsYes Yes Yes Global Yes

audit_log_read_buffer_sizeYes Yes Yes Varies Varies

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategyYes Yes Yes Global No

Audit_log_total_size Yes Global No

Audit_log_write_waits Yes Global No

authentication_fido_rp_idYes Yes Yes Global Yes

authentication_kerberos_service_key_tabYes Yes Yes Global No

authentication_kerberos_service_principalYes Yes Yes Global Yes

authentication_ldap_sasl_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_sasl_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_sasl_ca_pathYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_attrYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_filterYes Yes Yes Global Yes

authentication_ldap_sasl_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_log_statusYes Yes Yes Global Yes

authentication_ldap_sasl_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_referralYes Yes Yes Global Yes

authentication_ldap_sasl_server_hostYes Yes Yes Global Yes

authentication_ldap_sasl_server_portYes Yes Yes Global Yes

Authentication_ldap_sasl_supported_methods Yes Global No

authentication_ldap_sasl_tlsYes Yes Yes Global Yes

authentication_ldap_sasl_user_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_simple_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_simple_ca_pathYes Yes Yes Global Yes

authentication_ldap_simple_group_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_group_search_filterYes Yes Yes Global Yes

authentication_ldap_simple_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_log_statusYes Yes Yes Global Yes

751

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

authentication_ldap_simple_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_referralYes Yes Yes Global Yes

authentication_ldap_simple_server_hostYes Yes Yes Global Yes

authentication_ldap_simple_server_portYes Yes Yes Global Yes

authentication_ldap_simple_tlsYes Yes Yes Global Yes

authentication_ldap_simple_user_search_attrYes Yes Yes Global Yes

authentication_policyYes Yes Yes Global Yes

authentication_windows_log_levelYes Yes Yes Global No

authentication_windows_use_principal_nameYes Yes Yes Global No

auto_generate_certsYes Yes Yes Global No

auto_increment_incrementYes Yes Yes Both Yes

auto_increment_offsetYes Yes Yes Both Yes

autocommit Yes Yes Yes Both Yes

automatic_sp_privilegesYes Yes Yes Global Yes

avoid_temporal_upgradeYes Yes Yes Global Yes

back_log Yes Yes Yes Global No

basedir Yes Yes Yes Global No

big_tables Yes Yes Yes Both Yes

bind_address Yes Yes Yes Global No

Binlog_cache_disk_use Yes Global No

binlog_cache_sizeYes Yes Yes Global Yes

Binlog_cache_use Yes Global No

binlog-
checksum

Yes Yes

binlog_checksumYes Yes Yes Global Yes

binlog_direct_non_transactional_updatesYes Yes Yes Both Yes

binlog-do-db Yes Yes

binlog_encryptionYes Yes Yes Global Yes

binlog_error_actionYes Yes Yes Global Yes

binlog_expire_logs_auto_purgeYes Yes Yes Global Yes

binlog_expire_logs_secondsYes Yes Yes Global Yes

binlog_format Yes Yes Yes Both Yes

binlog_group_commit_sync_delayYes Yes Yes Global Yes

binlog_group_commit_sync_no_delay_countYes Yes Yes Global Yes

binlog_gtid_simple_recoveryYes Yes Yes Global No

binlog-
ignore-db

Yes Yes

binlog_max_flush_queue_timeYes Yes Yes Global Yes

binlog_order_commitsYes Yes Yes Global Yes

binlog_rotate_encryption_master_key_at_startupYes Yes Yes Global No

binlog_row_event_max_sizeYes Yes Yes Global No

752

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

binlog_row_imageYes Yes Yes Both Yes

binlog_row_metadataYes Yes Yes Global Yes

binlog_row_value_optionsYes Yes Yes Both Yes

binlog_rows_query_log_eventsYes Yes Yes Both Yes

Binlog_stmt_cache_disk_use Yes Global No

binlog_stmt_cache_sizeYes Yes Yes Global Yes

Binlog_stmt_cache_use Yes Global No

binlog_transaction_compressionYes Yes Yes Both Yes

binlog_transaction_compression_level_zstdYes Yes Yes Both Yes

binlog_transaction_dependency_history_sizeYes Yes Yes Global Yes

binlog_transaction_dependency_trackingYes Yes Yes Global Yes

block_encryption_modeYes Yes Yes Both Yes

build_id Yes Global No

bulk_insert_buffer_sizeYes Yes Yes Both Yes

Bytes_received Yes Both No

Bytes_sent Yes Both No

caching_sha2_password_auto_generate_rsa_keysYes Yes Yes Global No

caching_sha2_password_digest_roundsYes Yes Yes Global No

caching_sha2_password_private_key_pathYes Yes Yes Global No

caching_sha2_password_public_key_pathYes Yes Yes Global No

Caching_sha2_password_rsa_public_key Yes Global No

character_set_client Yes Both Yes

character-
set-client-
handshake

Yes Yes

character_set_connection Yes Both Yes

character_set_database
(note 1)

Yes Both Yes

character_set_filesystemYes Yes Yes Both Yes

character_set_results Yes Both Yes

character_set_serverYes Yes Yes Both Yes

character_set_system Yes Global No

character_sets_dirYes Yes Yes Global No

check_proxy_usersYes Yes Yes Global Yes

check-table-
functions

Yes Yes

chroot Yes Yes

clone_autotune_concurrencyYes Yes Yes Global Yes

clone_block_ddlYes Yes Yes Global Yes

clone_buffer_sizeYes Yes Yes Global Yes

clone_ddl_timeoutYes Yes Yes Global Yes

clone_delay_after_data_dropYes Yes Yes Global Yes

753

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

clone_donor_timeout_after_network_failureYes Yes Yes Global Yes

clone_enable_compressionYes Yes Yes Global Yes

clone_max_concurrencyYes Yes Yes Global Yes

clone_max_data_bandwidthYes Yes Yes Global Yes

clone_max_network_bandwidthYes Yes Yes Global Yes

clone_ssl_ca Yes Yes Yes Global Yes

clone_ssl_cert Yes Yes Yes Global Yes

clone_ssl_key Yes Yes Yes Global Yes

clone_valid_donor_listYes Yes Yes Global Yes

collation_connection Yes Both Yes

collation_database
(note 1)

Yes Both Yes

collation_serverYes Yes Yes Both Yes

Com_admin_commands Yes Both No

Com_alter_db Yes Both No

Com_alter_event Yes Both No

Com_alter_function Yes Both No

Com_alter_procedure Yes Both No

Com_alter_resource_group Yes Global No

Com_alter_server Yes Both No

Com_alter_table Yes Both No

Com_alter_tablespace Yes Both No

Com_alter_user Yes Both No

Com_alter_user_default_role Yes Global No

Com_analyze Yes Both No

Com_assign_to_keycache Yes Both No

Com_begin Yes Both No

Com_binlog Yes Both No

Com_call_procedure Yes Both No

Com_change_db Yes Both No

Com_change_master Yes Both No

Com_change_repl_filter Yes Both No

Com_change_replication_source Yes Both No

Com_check Yes Both No

Com_checksum Yes Both No

Com_clone Yes Global No

Com_commit Yes Both No

Com_create_db Yes Both No

Com_create_event Yes Both No

Com_create_function Yes Both No

Com_create_index Yes Both No

754

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_create_procedure Yes Both No

Com_create_resource_group Yes Global No

Com_create_role Yes Global No

Com_create_server Yes Both No

Com_create_table Yes Both No

Com_create_trigger Yes Both No

Com_create_udf Yes Both No

Com_create_user Yes Both No

Com_create_view Yes Both No

Com_dealloc_sql Yes Both No

Com_delete Yes Both No

Com_delete_multi Yes Both No

Com_do Yes Both No

Com_drop_db Yes Both No

Com_drop_event Yes Both No

Com_drop_function Yes Both No

Com_drop_index Yes Both No

Com_drop_procedure Yes Both No

Com_drop_resource_group Yes Global No

Com_drop_role Yes Global No

Com_drop_server Yes Both No

Com_drop_table Yes Both No

Com_drop_trigger Yes Both No

Com_drop_user Yes Both No

Com_drop_view Yes Both No

Com_empty_query Yes Both No

Com_execute_sql Yes Both No

Com_explain_other Yes Both No

Com_flush Yes Both No

Com_get_diagnostics Yes Both No

Com_grant Yes Both No

Com_grant_roles Yes Global No

Com_group_replication_start Yes Global No

Com_group_replication_stop Yes Global No

Com_ha_close Yes Both No

Com_ha_open Yes Both No

Com_ha_read Yes Both No

Com_help Yes Both No

Com_insert Yes Both No

Com_insert_select Yes Both No

Com_install_component Yes Global No

755

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_install_plugin Yes Both No

Com_kill Yes Both No

Com_load Yes Both No

Com_lock_tables Yes Both No

Com_optimize Yes Both No

Com_preload_keys Yes Both No

Com_prepare_sql Yes Both No

Com_purge Yes Both No

Com_purge_before_date Yes Both No

Com_release_savepoint Yes Both No

Com_rename_table Yes Both No

Com_rename_user Yes Both No

Com_repair Yes Both No

Com_replace Yes Both No

Com_replace_select Yes Both No

Com_replica_start Yes Both No

Com_replica_stop Yes Both No

Com_reset Yes Both No

Com_resignal Yes Both No

Com_restart Yes Both No

Com_revoke Yes Both No

Com_revoke_all Yes Both No

Com_revoke_roles Yes Global No

Com_rollback Yes Both No

Com_rollback_to_savepoint Yes Both No

Com_savepoint Yes Both No

Com_select Yes Both No

Com_set_option Yes Both No

Com_set_resource_group Yes Global No

Com_set_role Yes Global No

Com_show_authors Yes Both No

Com_show_binlog_events Yes Both No

Com_show_binlogs Yes Both No

Com_show_charsets Yes Both No

Com_show_collations Yes Both No

Com_show_contributors Yes Both No

Com_show_create_db Yes Both No

Com_show_create_event Yes Both No

Com_show_create_func Yes Both No

Com_show_create_proc Yes Both No

Com_show_create_table Yes Both No

756

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_show_create_trigger Yes Both No

Com_show_create_user Yes Both No

Com_show_databases Yes Both No

Com_show_engine_logs Yes Both No

Com_show_engine_mutex Yes Both No

Com_show_engine_status Yes Both No

Com_show_errors Yes Both No

Com_show_events Yes Both No

Com_show_fields Yes Both No

Com_show_function_code Yes Both No

Com_show_function_status Yes Both No

Com_show_grants Yes Both No

Com_show_keys Yes Both No

Com_show_master_status Yes Both No

Com_show_ndb_status Yes Both No

Com_show_open_tables Yes Both No

Com_show_plugins Yes Both No

Com_show_privileges Yes Both No

Com_show_procedure_code Yes Both No

Com_show_procedure_status Yes Both No

Com_show_processlist Yes Both No

Com_show_profile Yes Both No

Com_show_profiles Yes Both No

Com_show_relaylog_events Yes Both No

Com_show_replica_status Yes Both No

Com_show_replicas Yes Both No

Com_show_slave_hosts Yes Both No

Com_show_slave_status Yes Both No

Com_show_status Yes Both No

Com_show_storage_engines Yes Both No

Com_show_table_status Yes Both No

Com_show_tables Yes Both No

Com_show_triggers Yes Both No

Com_show_variables Yes Both No

Com_show_warnings Yes Both No

Com_shutdown Yes Both No

Com_signal Yes Both No

Com_slave_start Yes Both No

Com_slave_stop Yes Both No

Com_stmt_close Yes Both No

Com_stmt_execute Yes Both No

757

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_stmt_fetch Yes Both No

Com_stmt_prepare Yes Both No

Com_stmt_reprepare Yes Both No

Com_stmt_reset Yes Both No

Com_stmt_send_long_data Yes Both No

Com_truncate Yes Both No

Com_uninstall_component Yes Global No

Com_uninstall_plugin Yes Both No

Com_unlock_tables Yes Both No

Com_update Yes Both No

Com_update_multi Yes Both No

Com_xa_commit Yes Both No

Com_xa_end Yes Both No

Com_xa_prepare Yes Both No

Com_xa_recover Yes Both No

Com_xa_rollback Yes Both No

Com_xa_start Yes Both No

completion_typeYes Yes Yes Both Yes

component_scheduler.enabledYes Yes Yes Global Yes

Compression Yes Session No

Compression_algorithm Yes Global No

Compression_level Yes Global No

concurrent_insertYes Yes Yes Global Yes

connect_timeoutYes Yes Yes Global Yes

Connection_control_delay_generated Yes Global No

connection_control_failed_connections_thresholdYes Yes Yes Global Yes

connection_control_max_connection_delayYes Yes Yes Global Yes

connection_control_min_connection_delayYes Yes Yes Global Yes

Connection_errors_accept Yes Global No

Connection_errors_internal Yes Global No

Connection_errors_max_connections Yes Global No

Connection_errors_peer_address Yes Global No

Connection_errors_select Yes Global No

Connection_errors_tcpwrap Yes Global No

connection_memory_chunk_sizeYes Yes Yes Both Yes

connection_memory_limitYes Yes Yes Both Yes

Connections Yes Global No

console Yes Yes

core-file Yes Yes

core_file Yes Global No

create_admin_listener_threadYes Yes Yes Global No

758

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Created_tmp_disk_tables Yes Both No

Created_tmp_files Yes Global No

Created_tmp_tables Yes Both No

cte_max_recursion_depthYes Yes Yes Both Yes

Current_tls_ca Yes Global No

Current_tls_capath Yes Global No

Current_tls_cert Yes Global No

Current_tls_cipher Yes Global No

Current_tls_ciphersuites Yes Global No

Current_tls_crl Yes Global No

Current_tls_crlpath Yes Global No

Current_tls_key Yes Global No

Current_tls_version Yes Global No

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

daemonize Yes Yes

datadir Yes Yes Yes Global No

ddl-rewriter Yes Yes

debug Yes Yes Yes Both Yes

debug_sync Yes Session Yes

debug-sync-
timeout

Yes Yes

default_authentication_pluginYes Yes Yes Global No

default_collation_for_utf8mb4 Yes Both Yes

default_password_lifetimeYes Yes Yes Global Yes

default_storage_engineYes Yes Yes Both Yes

default_table_encryptionYes Yes Yes Both Yes

default-time-
zone

Yes Yes

default_tmp_storage_engineYes Yes Yes Both Yes

default_week_formatYes Yes Yes Both Yes

defaults-
extra-file

Yes

defaults-file Yes

defaults-
group-suffix

Yes

delay_key_writeYes Yes Yes Global Yes

Delayed_errors Yes Global No

759

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

delayed_insert_limitYes Yes Yes Global Yes

Delayed_insert_threads Yes Global No

delayed_insert_timeoutYes Yes Yes Global Yes

delayed_queue_sizeYes Yes Yes Global Yes

Delayed_writes Yes Global No

disabled_storage_enginesYes Yes Yes Global No

disconnect_on_expired_passwordYes Yes Yes Global No

disconnect-
slave-event-
count

Yes Yes

div_precision_incrementYes Yes Yes Both Yes

dragnet.log_error_filter_rulesYes Yes Yes Global Yes

dragnet.Status Yes Global No

early-plugin-
load

Yes Yes

end_markers_in_jsonYes Yes Yes Both Yes

enforce_gtid_consistencyYes Yes Yes Global Yes

enterprise_encryption.maximum_rsa_key_sizeYes Yes Yes Global Yes

enterprise_encryption.rsa_support_legacy_paddingYes Yes Yes Global Yes

eq_range_index_dive_limitYes Yes Yes Both Yes

error_count Yes Session No

Error_log_buffered_bytes Yes Global No

Error_log_buffered_events Yes Global No

Error_log_expired_events Yes Global No

Error_log_latest_write Yes Global No

event_schedulerYes Yes Yes Global Yes

exit-info Yes Yes

expire_logs_daysYes Yes Yes Global Yes

explain_formatYes Yes Yes Both Yes

explicit_defaults_for_timestampYes Yes Yes Both Yes

external-
locking

Yes Yes

- Variable:
skip_external_locking

external_user Yes Session No

federated Yes Yes

Firewall_access_denied Yes Global No

Firewall_access_granted Yes Global No

Firewall_access_suspicious Yes Global No

Firewall_cached_entries Yes Global No

flush Yes Yes Yes Global Yes

Flush_commands Yes Global No

760

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Both Yes

ft_boolean_syntaxYes Yes Yes Global Yes

ft_max_word_lenYes Yes Yes Global No

ft_min_word_lenYes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_fileYes Yes Yes Global No

gdb Yes Yes

general_log Yes Yes Yes Global Yes

general_log_fileYes Yes Yes Global Yes

generated_random_password_lengthYes Yes Yes Both Yes

Global_connection_memory Yes Global No

global_connection_memory_limitYes Yes Yes Global Yes

global_connection_memory_trackingYes Yes Yes Both Yes

group_concat_max_lenYes Yes Yes Both Yes

group_replication_advertise_recovery_endpointsYes Yes Yes Global Yes

group_replication_allow_local_lower_version_joinYes Yes Yes Global Yes

group_replication_auto_increment_incrementYes Yes Yes Global Yes

group_replication_autorejoin_triesYes Yes Yes Global Yes

group_replication_bootstrap_groupYes Yes Yes Global Yes

group_replication_clone_thresholdYes Yes Yes Global Yes

group_replication_communication_debug_optionsYes Yes Yes Global Yes

group_replication_communication_max_message_sizeYes Yes Yes Global Yes

group_replication_communication_stack Yes Global Yes

group_replication_components_stop_timeoutYes Yes Yes Global Yes

group_replication_compression_thresholdYes Yes Yes Global Yes

group_replication_consistencyYes Yes Yes Both Yes

group_replication_enforce_update_everywhere_checksYes Yes Yes Global Yes

group_replication_exit_state_actionYes Yes Yes Global Yes

group_replication_flow_control_applier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_certifier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_hold_percentYes Yes Yes Global Yes

group_replication_flow_control_max_quotaYes Yes Yes Global Yes

group_replication_flow_control_member_quota_percentYes Yes Yes Global Yes

group_replication_flow_control_min_quotaYes Yes Yes Global Yes

group_replication_flow_control_min_recovery_quotaYes Yes Yes Global Yes

group_replication_flow_control_modeYes Yes Yes Global Yes

group_replication_flow_control_periodYes Yes Yes Global Yes

group_replication_flow_control_release_percentYes Yes Yes Global Yes

group_replication_force_membersYes Yes Yes Global Yes

group_replication_group_nameYes Yes Yes Global Yes

761

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

group_replication_group_seedsYes Yes Yes Global Yes

group_replication_gtid_assignment_block_sizeYes Yes Yes Global Yes

group_replication_ip_allowlistYes Yes Yes Global Yes

group_replication_ip_whitelistYes Yes Yes Global Yes

group_replication_local_addressYes Yes Yes Global Yes

group_replication_member_expel_timeoutYes Yes Yes Global Yes

group_replication_member_weightYes Yes Yes Global Yes

group_replication_message_cache_sizeYes Yes Yes Global Yes

group_replication_paxos_single_leaderYes Yes Yes Global Yes

group_replication_poll_spin_loopsYes Yes Yes Global Yes

group_replication_primary_member Yes Global No

group_replication_recovery_complete_atYes Yes Yes Global Yes

group_replication_recovery_compression_algorithmsYes Yes Yes Global Yes

group_replication_recovery_get_public_keyYes Yes Yes Global Yes

group_replication_recovery_public_key_pathYes Yes Yes Global Yes

group_replication_recovery_reconnect_intervalYes Yes Yes Global Yes

group_replication_recovery_retry_countYes Yes Yes Global Yes

group_replication_recovery_ssl_caYes Yes Yes Global Yes

group_replication_recovery_ssl_capathYes Yes Yes Global Yes

group_replication_recovery_ssl_certYes Yes Yes Global Yes

group_replication_recovery_ssl_cipherYes Yes Yes Global Yes

group_replication_recovery_ssl_crlYes Yes Yes Global Yes

group_replication_recovery_ssl_crlpathYes Yes Yes Global Yes

group_replication_recovery_ssl_keyYes Yes Yes Global Yes

group_replication_recovery_ssl_verify_server_certYes Yes Yes Global Yes

group_replication_recovery_tls_ciphersuitesYes Yes Yes Global Yes

group_replication_recovery_tls_versionYes Yes Yes Global Yes

group_replication_recovery_use_sslYes Yes Yes Global Yes

group_replication_recovery_zstd_compression_levelYes Yes Yes Global Yes

group_replication_single_primary_modeYes Yes Yes Global Yes

group_replication_ssl_modeYes Yes Yes Global Yes

group_replication_start_on_bootYes Yes Yes Global Yes

group_replication_tls_sourceYes Yes Yes Global Yes

group_replication_transaction_size_limitYes Yes Yes Global Yes

group_replication_unreachable_majority_timeoutYes Yes Yes Global Yes

group_replication_view_change_uuidYes Yes Yes Global Yes

gtid_executed Yes Global No

gtid_executed_compression_periodYes Yes Yes Global Yes

gtid_mode Yes Yes Yes Global Yes

gtid_next Yes Session Yes

gtid_owned Yes Both No

762

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

gtid_purged Yes Global Yes

Handler_commit Yes Both No

Handler_delete Yes Both No

Handler_discover Yes Both No

Handler_external_lock Yes Both No

Handler_mrr_init Yes Both No

Handler_prepare Yes Both No

Handler_read_first Yes Both No

Handler_read_key Yes Both No

Handler_read_last Yes Both No

Handler_read_next Yes Both No

Handler_read_prev Yes Both No

Handler_read_rnd Yes Both No

Handler_read_rnd_next Yes Both No

Handler_rollback Yes Both No

Handler_savepoint Yes Both No

Handler_savepoint_rollback Yes Both No

Handler_update Yes Both No

Handler_write Yes Both No

have_compress Yes Global No

have_dynamic_loading Yes Global No

have_geometry Yes Global No

have_openssl Yes Global No

have_profiling Yes Global No

have_query_cache Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_statement_timeout Yes Global No

have_symlink Yes Global No

help Yes Yes

histogram_generation_max_mem_sizeYes Yes Yes Both Yes

host_cache_sizeYes Yes Yes Global Yes

hostname Yes Global No

identity Yes Session Yes

immediate_server_version Yes Session Yes

information_schema_stats_expiryYes Yes Yes Both Yes

init_connect Yes Yes Yes Global Yes

init_file Yes Yes Yes Global No

init_replica Yes Yes Yes Global Yes

init_slave Yes Yes Yes Global Yes

initialize Yes Yes

763

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

initialize-
insecure

Yes Yes

innodb Yes Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_hash_index_partsYes Yes Yes Global No

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

innodb_background_drop_list_emptyYes Yes Yes Global Yes

Innodb_buffer_pool_bytes_data Yes Global No

Innodb_buffer_pool_bytes_dirty Yes Global No

innodb_buffer_pool_chunk_sizeYes Yes Yes Global No

innodb_buffer_pool_debugYes Yes Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

Innodb_buffer_pool_dump_status Yes Global No

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_in_core_fileYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

Innodb_buffer_pool_load_status Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead Yes Global No

Innodb_buffer_pool_read_ahead_evicted Yes Global No

Innodb_buffer_pool_read_ahead_rnd Yes Global No

764

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

Innodb_buffer_pool_resize_status Yes Global No

Innodb_buffer_pool_resize_status_code Yes Global No

Innodb_buffer_pool_resize_status_progress Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global Yes

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checkpoint_disabledYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compress_debugYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

Innodb_data_written Yes Global No

Innodb_dblwr_pages_written Yes Global No

Innodb_dblwr_writes Yes Global No

innodb_ddl_buffer_sizeYes Yes Yes Session Yes

innodb_ddl_log_crash_reset_debugYes Yes Yes Global Yes

innodb_ddl_threadsYes Yes Yes Session Yes

innodb_deadlock_detectYes Yes Yes Global Yes

innodb_dedicated_serverYes Yes Yes Global No

innodb_default_row_formatYes Yes Yes Global Yes

innodb_directoriesYes Yes Yes Global No

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global Varies

765

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_doublewrite_batch_sizeYes Yes Yes Global No

innodb_doublewrite_dirYes Yes Yes Global No

innodb_doublewrite_filesYes Yes Yes Global No

innodb_doublewrite_pagesYes Yes Yes Global No

innodb_extend_and_initializeYes Yes Yes Global Yes

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_fill_factorYes Yes Yes Global Yes

innodb_flush_log_at_timeoutYes Yes Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flush_syncYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_fsync_thresholdYes Yes Yes Global Yes

innodb_ft_aux_table Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Both Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

Innodb_have_atomic_builtins Yes Global No

innodb_idle_flush_pctYes Yes Yes Global Yes

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_log_buffer_sizeYes Yes Yes Global Varies

innodb_log_checkpoint_fuzzy_nowYes Yes Yes Global Yes

innodb_log_checkpoint_nowYes Yes Yes Global Yes

innodb_log_checksumsYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

766

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

innodb_log_spin_cpu_abs_lwmYes Yes Yes Global Yes

innodb_log_spin_cpu_pct_hwmYes Yes Yes Global Yes

innodb_log_wait_for_flush_spin_hwmYes Yes Yes Global Yes

Innodb_log_waits Yes Global No

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

Innodb_log_write_requests Yes Global No

innodb_log_writer_threadsYes Yes Yes Global Yes

Innodb_log_writes Yes Global No

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_max_undo_log_sizeYes Yes Yes Global Yes

innodb_merge_threshold_set_all_debugYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

Innodb_num_open_files Yes Global No

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_filesYes Yes Yes Global Varies

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

Innodb_os_log_fsyncs Yes Global No

Innodb_os_log_pending_fsyncs Yes Global No

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

innodb_page_cleanersYes Yes Yes Global No

Innodb_page_size Yes Global No

innodb_page_sizeYes Yes Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_parallel_read_threadsYes Yes Yes Session Yes

innodb_print_all_deadlocksYes Yes Yes Global Yes

767

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_print_ddl_logsYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_rseg_truncate_frequencyYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_onlyYes Yes Yes Global No

innodb_redo_log_archive_dirsYes Yes Yes Global Yes

innodb_redo_log_capacityYes Yes Yes Global Yes

Innodb_redo_log_capacity_resized Yes Global No

Innodb_redo_log_checkpoint_lsn Yes Global No

Innodb_redo_log_current_lsn Yes Global No

Innodb_redo_log_enabled Yes Global No

innodb_redo_log_encryptYes Yes Yes Global Yes

Innodb_redo_log_flushed_to_disk_lsn Yes Global No

Innodb_redo_log_logical_size Yes Global No

Innodb_redo_log_physical_size Yes Global No

Innodb_redo_log_read_only Yes Global No

Innodb_redo_log_resize_status Yes Global No

Innodb_redo_log_uuid Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

Innodb_rows_deleted Yes Global No

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_segment_reserve_factorYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_spin_wait_pause_multiplierYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_include_delete_markedYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

768

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb-
status-file

Yes Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_debugYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

Innodb_system_rows_deleted Yes Global No

Innodb_system_rows_inserted Yes Global No

Innodb_system_rows_read Yes Global No

Innodb_system_rows_updated Yes Global No

innodb_table_locksYes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_temp_tablespaces_dirYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Both Yes

Innodb_truncated_status_writes Yes Global No

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_log_encryptYes Yes Yes Global Yes

innodb_undo_log_truncateYes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global Varies

Innodb_undo_tablespaces_active Yes Global No

Innodb_undo_tablespaces_explicit Yes Global No

Innodb_undo_tablespaces_implicit Yes Global No

Innodb_undo_tablespaces_total Yes Global No

innodb_use_fdatasyncYes Yes Yes Global Yes

innodb_use_native_aioYes Yes Yes Global No

innodb_validate_tablespace_pathsYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

insert_id Yes Session Yes

install Yes

769

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

install-
manual

Yes

interactive_timeoutYes Yes Yes Both Yes

internal_tmp_disk_storage_engineYes Yes Yes Global Yes

internal_tmp_mem_storage_engineYes Yes Yes Both Yes

join_buffer_sizeYes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

Key_blocks_not_flushed Yes Global No

Key_blocks_unused Yes Global No

Key_blocks_used Yes Global No

key_buffer_sizeYes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

Key_read_requests Yes Global No

Key_reads Yes Global No

Key_write_requests Yes Global No

Key_writes Yes Global No

keyring_aws_cmk_idYes Yes Yes Global Yes

keyring_aws_conf_fileYes Yes Yes Global No

keyring_aws_data_fileYes Yes Yes Global No

keyring_aws_regionYes Yes Yes Global Yes

keyring_encrypted_file_dataYes Yes Yes Global Yes

keyring_encrypted_file_passwordYes Yes Yes Global Yes

keyring_file_dataYes Yes Yes Global Yes

keyring_hashicorp_auth_pathYes Yes Yes Global Yes

keyring_hashicorp_ca_pathYes Yes Yes Global Yes

keyring_hashicorp_cachingYes Yes Yes Global Yes

keyring_hashicorp_commit_auth_path Yes Global No

keyring_hashicorp_commit_ca_path Yes Global No

keyring_hashicorp_commit_caching Yes Global No

keyring_hashicorp_commit_role_id Yes Global No

keyring_hashicorp_commit_server_url Yes Global No

keyring_hashicorp_commit_store_path Yes Global No

keyring_hashicorp_role_idYes Yes Yes Global Yes

keyring_hashicorp_secret_idYes Yes Yes Global Yes

keyring_hashicorp_server_urlYes Yes Yes Global Yes

keyring_hashicorp_store_pathYes Yes Yes Global Yes

keyring-
migration-
destination

Yes Yes

770

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

keyring-
migration-
host

Yes Yes

keyring-
migration-
password

Yes Yes

keyring-
migration-
port

Yes Yes

keyring-
migration-
socket

Yes Yes

keyring-
migration-
source

Yes Yes

keyring-
migration-to-
component

Yes Yes

keyring-
migration-
user

Yes Yes

keyring_oci_ca_certificateYes Yes Yes Global No

keyring_oci_compartmentYes Yes Yes Global No

keyring_oci_encryption_endpointYes Yes Yes Global No

keyring_oci_key_fileYes Yes Yes Global No

keyring_oci_key_fingerprintYes Yes Yes Global No

keyring_oci_management_endpointYes Yes Yes Global No

keyring_oci_master_keyYes Yes Yes Global No

keyring_oci_secrets_endpointYes Yes Yes Global No

keyring_oci_tenancyYes Yes Yes Global No

keyring_oci_userYes Yes Yes Global No

keyring_oci_vaults_endpointYes Yes Yes Global No

keyring_oci_virtual_vaultYes Yes Yes Global No

keyring_okv_conf_dirYes Yes Yes Global Yes

keyring_operations Yes Global Yes

large_files_support Yes Global No

large_page_size Yes Global No

large_pages Yes Yes Yes Global No

last_insert_id Yes Session Yes

Last_query_cost Yes Session No

Last_query_partial_plans Yes Session No

lc_messages Yes Yes Yes Both Yes

lc_messages_dirYes Yes Yes Global No

lc_time_namesYes Yes Yes Both Yes

license Yes Global No

771

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

local_infile Yes Yes Yes Global Yes

local-service Yes

lock_order Yes Yes Yes Global No

lock_order_debug_loopYes Yes Yes Global No

lock_order_debug_missing_arcYes Yes Yes Global No

lock_order_debug_missing_keyYes Yes Yes Global No

lock_order_debug_missing_unlockYes Yes Yes Global No

lock_order_dependenciesYes Yes Yes Global No

lock_order_extra_dependenciesYes Yes Yes Global No

lock_order_output_directoryYes Yes Yes Global No

lock_order_print_txtYes Yes Yes Global No

lock_order_trace_loopYes Yes Yes Global No

lock_order_trace_missing_arcYes Yes Yes Global No

lock_order_trace_missing_keyYes Yes Yes Global No

lock_order_trace_missing_unlockYes Yes Yes Global No

lock_wait_timeoutYes Yes Yes Both Yes

Locked_connects Yes Global No

locked_in_memory Yes Global No

log-bin Yes Yes

log_bin Yes Global No

log_bin_basename Yes Global No

log_bin_index Yes Yes Yes Global No

log_bin_trust_function_creatorsYes Yes Yes Global Yes

log_bin_use_v1_row_eventsYes Yes Yes Global Yes

log_error Yes Yes Yes Global No

log_error_servicesYes Yes Yes Global Yes

log_error_suppression_listYes Yes Yes Global Yes

log_error_verbosityYes Yes Yes Global Yes

log-isam Yes Yes

log_output Yes Yes Yes Global Yes

log_queries_not_using_indexesYes Yes Yes Global Yes

log_raw Yes Yes Yes Global Yes

log_replica_updatesYes Yes Yes Global No

log-short-
format

Yes Yes

log_slave_updatesYes Yes Yes Global No

log_slow_admin_statementsYes Yes Yes Global Yes

log_slow_extraYes Yes Yes Global Yes

log_slow_replica_statementsYes Yes Yes Global Yes

log_slow_slave_statementsYes Yes Yes Global Yes

log_statements_unsafe_for_binlogYes Yes Yes Global Yes

772

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

log_syslog Yes Yes Yes Global Yes

log_syslog_facilityYes Yes Yes Global Yes

log_syslog_include_pidYes Yes Yes Global Yes

log_syslog_tagYes Yes Yes Global Yes

log-tc Yes Yes

log-tc-size Yes Yes

log_throttle_queries_not_using_indexesYes Yes Yes Global Yes

log_timestampsYes Yes Yes Global Yes

long_query_timeYes Yes Yes Both Yes

low_priority_updatesYes Yes Yes Both Yes

lower_case_file_system Yes Global No

lower_case_table_namesYes Yes Yes Global No

mandatory_rolesYes Yes Yes Global Yes

master-info-
file

Yes Yes

master_info_repositoryYes Yes Yes Global Yes

master-retry-
count

Yes Yes

master_verify_checksumYes Yes Yes Global Yes

max_allowed_packetYes Yes Yes Both Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max-binlog-
dump-events

Yes Yes

max_binlog_sizeYes Yes Yes Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes Global Yes

max_connect_errorsYes Yes Yes Global Yes

max_connectionsYes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_digest_lengthYes Yes Yes Global No

max_error_countYes Yes Yes Both Yes

max_execution_timeYes Yes Yes Both Yes

Max_execution_time_exceeded Yes Both No

Max_execution_time_set Yes Both No

Max_execution_time_set_failed Yes Both No

max_heap_table_sizeYes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_points_in_geometryYes Yes Yes Both Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_sizeYes Yes Yes Global Yes

max_seeks_for_keyYes Yes Yes Both Yes

773

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

max_sort_lengthYes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

Max_used_connections Yes Global No

Max_used_connections_time Yes Global No

max_user_connectionsYes Yes Yes Both Yes

max_write_lock_countYes Yes Yes Global Yes

mecab_charset Yes Global No

mecab_rc_file Yes Yes Yes Global No

memlock Yes Yes

- Variable:
locked_in_memory

metadata_locks_cache_sizeYes Yes Yes Global No

metadata_locks_hash_instancesYes Yes Yes Global No

min_examined_row_limitYes Yes Yes Both Yes

myisam-
block-size

Yes Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam_recover_optionsYes Yes Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

mysql_firewall_modeYes Yes Yes Global Yes

mysql_firewall_traceYes Yes Yes Global Yes

mysql_native_password_proxy_usersYes Yes Yes Global Yes

mysqlx Yes Yes

Mysqlx_aborted_clients Yes Global No

Mysqlx_address Yes Global No

mysqlx_bind_addressYes Yes Yes Global No

Mysqlx_bytes_received Yes Both No

Mysqlx_bytes_received_compressed_payload Yes Both No

Mysqlx_bytes_received_uncompressed_frame Yes Both No

Mysqlx_bytes_sent Yes Both No

Mysqlx_bytes_sent_compressed_payload Yes Both No

Mysqlx_bytes_sent_uncompressed_frame Yes Both No

Mysqlx_compression_algorithm Yes Session No

mysqlx_compression_algorithmsYes Yes Yes Global Yes

Mysqlx_compression_level Yes Session No

mysqlx_connect_timeoutYes Yes Yes Global Yes

774

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Mysqlx_connection_accept_errors Yes Both No

Mysqlx_connection_errors Yes Both No

Mysqlx_connections_accepted Yes Global No

Mysqlx_connections_closed Yes Global No

Mysqlx_connections_rejected Yes Global No

Mysqlx_crud_create_view Yes Both No

Mysqlx_crud_delete Yes Both No

Mysqlx_crud_drop_view Yes Both No

Mysqlx_crud_find Yes Both No

Mysqlx_crud_insert Yes Both No

Mysqlx_crud_modify_view Yes Both No

Mysqlx_crud_update Yes Both No

Mysqlx_cursor_close Yes Both No

Mysqlx_cursor_fetch Yes Both No

Mysqlx_cursor_open Yes Both No

mysqlx_deflate_default_compression_levelYes Yes Yes Global Yes

mysqlx_deflate_max_client_compression_levelYes Yes Yes Global Yes

mysqlx_document_id_unique_prefixYes Yes Yes Global Yes

mysqlx_enable_hello_noticeYes Yes Yes Global Yes

Mysqlx_errors_sent Yes Both No

Mysqlx_errors_unknown_message_type Yes Both No

Mysqlx_expect_close Yes Both No

Mysqlx_expect_open Yes Both No

mysqlx_idle_worker_thread_timeoutYes Yes Yes Global Yes

Mysqlx_init_error Yes Both No

mysqlx_interactive_timeoutYes Yes Yes Global Yes

mysqlx_lz4_default_compression_levelYes Yes Yes Global Yes

mysqlx_lz4_max_client_compression_levelYes Yes Yes Global Yes

mysqlx_max_allowed_packetYes Yes Yes Global Yes

mysqlx_max_connectionsYes Yes Yes Global Yes

Mysqlx_messages_sent Yes Both No

mysqlx_min_worker_threadsYes Yes Yes Global Yes

Mysqlx_notice_global_sent Yes Both No

Mysqlx_notice_other_sent Yes Both No

Mysqlx_notice_warning_sent Yes Both No

Mysqlx_notified_by_group_replication Yes Both No

Mysqlx_port Yes Global No

mysqlx_port Yes Yes Yes Global No

mysqlx_port_open_timeoutYes Yes Yes Global No

Mysqlx_prep_deallocate Yes Both No

Mysqlx_prep_execute Yes Both No

775

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Mysqlx_prep_prepare Yes Both No

mysqlx_read_timeoutYes Yes Yes Session Yes

Mysqlx_rows_sent Yes Both No

Mysqlx_sessions Yes Global No

Mysqlx_sessions_accepted Yes Global No

Mysqlx_sessions_closed Yes Global No

Mysqlx_sessions_fatal_error Yes Global No

Mysqlx_sessions_killed Yes Global No

Mysqlx_sessions_rejected Yes Global No

Mysqlx_socket Yes Global No

mysqlx_socketYes Yes Yes Global No

Mysqlx_ssl_accept_renegotiates Yes Global No

Mysqlx_ssl_accepts Yes Global No

Mysqlx_ssl_active Yes Both No

mysqlx_ssl_caYes Yes Yes Global No

mysqlx_ssl_capathYes Yes Yes Global No

mysqlx_ssl_certYes Yes Yes Global No

Mysqlx_ssl_cipher Yes Both No

mysqlx_ssl_cipherYes Yes Yes Global No

Mysqlx_ssl_cipher_list Yes Both No

mysqlx_ssl_crlYes Yes Yes Global No

mysqlx_ssl_crlpathYes Yes Yes Global No

Mysqlx_ssl_ctx_verify_depth Yes Both No

Mysqlx_ssl_ctx_verify_mode Yes Both No

Mysqlx_ssl_finished_accepts Yes Global No

mysqlx_ssl_keyYes Yes Yes Global No

Mysqlx_ssl_server_not_after Yes Global No

Mysqlx_ssl_server_not_before Yes Global No

Mysqlx_ssl_verify_depth Yes Global No

Mysqlx_ssl_verify_mode Yes Global No

Mysqlx_ssl_version Yes Both No

Mysqlx_stmt_create_collection Yes Both No

Mysqlx_stmt_create_collection_index Yes Both No

Mysqlx_stmt_disable_notices Yes Both No

Mysqlx_stmt_drop_collection Yes Both No

Mysqlx_stmt_drop_collection_index Yes Both No

Mysqlx_stmt_enable_notices Yes Both No

Mysqlx_stmt_ensure_collection Yes Both No

Mysqlx_stmt_execute_mysqlx Yes Both No

Mysqlx_stmt_execute_sql Yes Both No

Mysqlx_stmt_execute_xplugin Yes Both No

776

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Mysqlx_stmt_get_collection_options Yes Both No

Mysqlx_stmt_kill_client Yes Both No

Mysqlx_stmt_list_clients Yes Both No

Mysqlx_stmt_list_notices Yes Both No

Mysqlx_stmt_list_objects Yes Both No

Mysqlx_stmt_modify_collection_options Yes Both No

Mysqlx_stmt_ping Yes Both No

mysqlx_wait_timeoutYes Yes Yes Session Yes

Mysqlx_worker_threads Yes Global No

Mysqlx_worker_threads_active Yes Global No

mysqlx_write_timeoutYes Yes Yes Session Yes

mysqlx_zstd_default_compression_levelYes Yes Yes Global Yes

mysqlx_zstd_max_client_compression_levelYes Yes Yes Global Yes

named_pipe Yes Yes Yes Global No

named_pipe_full_access_groupYes Yes Yes Global No

ndb_allow_copying_alter_tableYes Yes Yes Both Yes

Ndb_api_adaptive_send_deferred_count Yes Global No

Ndb_api_adaptive_send_deferred_count_replica Yes Global No

Ndb_api_adaptive_send_deferred_count_session Yes Global No

Ndb_api_adaptive_send_deferred_count_slave Yes Global No

Ndb_api_adaptive_send_forced_count Yes Global No

Ndb_api_adaptive_send_forced_count_replica Yes Global No

Ndb_api_adaptive_send_forced_count_session Yes Global No

Ndb_api_adaptive_send_forced_count_slave Yes Global No

Ndb_api_adaptive_send_unforced_count Yes Global No

Ndb_api_adaptive_send_unforced_count_replica Yes Global No

Ndb_api_adaptive_send_unforced_count_session Yes Global No

Ndb_api_adaptive_send_unforced_count_slave Yes Global No

Ndb_api_bytes_received_count Yes Global No

Ndb_api_bytes_received_count_replica Yes Global No

Ndb_api_bytes_received_count_session Yes Session No

Ndb_api_bytes_received_count_slave Yes Global No

Ndb_api_bytes_sent_count Yes Global No

Ndb_api_bytes_sent_count_replica Yes Global No

Ndb_api_bytes_sent_count_session Yes Session No

Ndb_api_bytes_sent_count_slave Yes Global No

Ndb_api_event_bytes_count Yes Global No

Ndb_api_event_bytes_count_injector Yes Global No

Ndb_api_event_data_count Yes Global No

Ndb_api_event_data_count_injector Yes Global No

Ndb_api_event_nondata_count Yes Global No

777

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_api_event_nondata_count_injector Yes Global No

Ndb_api_pk_op_count Yes Global No

Ndb_api_pk_op_count_replica Yes Global No

Ndb_api_pk_op_count_session Yes Session No

Ndb_api_pk_op_count_slave Yes Global No

Ndb_api_pruned_scan_count Yes Global No

Ndb_api_pruned_scan_count_replica Yes Global No

Ndb_api_pruned_scan_count_session Yes Session No

Ndb_api_pruned_scan_count_slave Yes Global No

Ndb_api_range_scan_count Yes Global No

Ndb_api_range_scan_count_replica Yes Global No

Ndb_api_range_scan_count_session Yes Session No

Ndb_api_range_scan_count_slave Yes Global No

Ndb_api_read_row_count Yes Global No

Ndb_api_read_row_count_replica Yes Global No

Ndb_api_read_row_count_session Yes Session No

Ndb_api_read_row_count_slave Yes Global No

Ndb_api_scan_batch_count Yes Global No

Ndb_api_scan_batch_count_replica Yes Global No

Ndb_api_scan_batch_count_session Yes Session No

Ndb_api_scan_batch_count_slave Yes Global No

Ndb_api_table_scan_count Yes Global No

Ndb_api_table_scan_count_replica Yes Global No

Ndb_api_table_scan_count_session Yes Session No

Ndb_api_table_scan_count_slave Yes Global No

Ndb_api_trans_abort_count Yes Global No

Ndb_api_trans_abort_count_replica Yes Global No

Ndb_api_trans_abort_count_session Yes Session No

Ndb_api_trans_abort_count_slave Yes Global No

Ndb_api_trans_close_count Yes Global No

Ndb_api_trans_close_count_replica Yes Global No

Ndb_api_trans_close_count_session Yes Session No

Ndb_api_trans_close_count_slave Yes Global No

Ndb_api_trans_commit_count Yes Global No

Ndb_api_trans_commit_count_replica Yes Global No

Ndb_api_trans_commit_count_session Yes Session No

Ndb_api_trans_commit_count_slave Yes Global No

Ndb_api_trans_local_read_row_count Yes Global No

Ndb_api_trans_local_read_row_count_replica Yes Global No

Ndb_api_trans_local_read_row_count_session Yes Session No

Ndb_api_trans_local_read_row_count_slave Yes Global No

778

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_api_trans_start_count Yes Global No

Ndb_api_trans_start_count_replica Yes Global No

Ndb_api_trans_start_count_session Yes Session No

Ndb_api_trans_start_count_slave Yes Global No

Ndb_api_uk_op_count Yes Global No

Ndb_api_uk_op_count_replica Yes Global No

Ndb_api_uk_op_count_session Yes Session No

Ndb_api_uk_op_count_slave Yes Global No

Ndb_api_wait_exec_complete_count Yes Global No

Ndb_api_wait_exec_complete_count_replica Yes Global No

Ndb_api_wait_exec_complete_count_session Yes Session No

Ndb_api_wait_exec_complete_count_slave Yes Global No

Ndb_api_wait_meta_request_count Yes Global No

Ndb_api_wait_meta_request_count_replica Yes Global No

Ndb_api_wait_meta_request_count_session Yes Session No

Ndb_api_wait_meta_request_count_slave Yes Global No

Ndb_api_wait_nanos_count Yes Global No

Ndb_api_wait_nanos_count_replica Yes Global No

Ndb_api_wait_nanos_count_session Yes Session No

Ndb_api_wait_nanos_count_slave Yes Global No

Ndb_api_wait_scan_result_count Yes Global No

Ndb_api_wait_scan_result_count_replica Yes Global No

Ndb_api_wait_scan_result_count_session Yes Session No

Ndb_api_wait_scan_result_count_slave Yes Global No

ndb_applier_allow_skip_epochYes Yes Yes Global No

ndb_autoincrement_prefetch_szYes Yes Yes Both Yes

ndb_batch_sizeYes Yes Yes Both Yes

ndb_blob_read_batch_bytesYes Yes Yes Both Yes

ndb_blob_write_batch_bytesYes Yes Yes Both Yes

ndb_clear_apply_statusYes Yes Global Yes

ndb_cluster_connection_poolYes Yes Yes Global No

ndb_cluster_connection_pool_nodeidsYes Yes Yes Global No

Ndb_cluster_node_id Yes Global No

Ndb_config_from_host Yes Both No

Ndb_config_from_port Yes Both No

Ndb_config_generation Yes Global No

Ndb_conflict_fn_epoch Yes Global No

Ndb_conflict_fn_epoch_trans Yes Global No

Ndb_conflict_fn_epoch2 Yes Global No

Ndb_conflict_fn_epoch2_trans Yes Global No

Ndb_conflict_fn_max Yes Global No

779

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Ndb_conflict_fn_max_del_win Yes Global No

Ndb_conflict_fn_max_del_win_ins Yes Global No

Ndb_conflict_fn_max_ins Yes Global No

Ndb_conflict_fn_old Yes Global No

Ndb_conflict_last_conflict_epoch Yes Global No

Ndb_conflict_last_stable_epoch Yes Global No

Ndb_conflict_reflected_op_discard_count Yes Global No

Ndb_conflict_reflected_op_prepare_count Yes Global No

Ndb_conflict_refresh_op_count Yes Global No

ndb_conflict_roleYes Yes Yes Global Yes

Ndb_conflict_trans_conflict_commit_count Yes Global No

Ndb_conflict_trans_detect_iter_count Yes Global No

Ndb_conflict_trans_reject_count Yes Global No

Ndb_conflict_trans_row_conflict_count Yes Global No

Ndb_conflict_trans_row_reject_count Yes Global No

ndb-
connectstring

Yes Yes

ndb_data_node_neighbourYes Yes Yes Global Yes

ndb_dbg_check_sharesYes Yes Yes Both Yes

ndb_default_column_formatYes Yes Yes Global Yes

ndb_default_column_formatYes Yes Yes Global Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_distributionYes Yes Yes Global Yes

ndb_distributionYes Yes Yes Global Yes

Ndb_epoch_delete_delete_count Yes Global No

ndb_eventbuffer_free_percentYes Yes Yes Global Yes

ndb_eventbuffer_max_allocYes Yes Yes Global Yes

Ndb_execute_count Yes Global No

ndb_extra_loggingYes Yes Yes Global Yes

Ndb_fetch_table_stats Yes Global No

ndb_force_sendYes Yes Yes Both Yes

ndb_fully_replicatedYes Yes Yes Both Yes

ndb_index_stat_enableYes Yes Yes Both Yes

ndb_index_stat_optionYes Yes Yes Both Yes

ndb_join_pushdown Yes Both Yes

Ndb_last_commit_epoch_server Yes Global No

Ndb_last_commit_epoch_session Yes Session No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_bin Yes Yes Both No

780

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ndb_log_binlog_indexYes Yes Global Yes

ndb_log_cache_sizeYes Yes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_fail_terminateYes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb_log_transaction_compressionYes Yes Yes Global Yes

ndb_log_transaction_compression_level_zstdYes Yes Yes Global Yes

ndb_log_transaction_dependencyYes Yes Yes Global No

ndb_log_transaction_idYes Yes Yes Global No

ndb_log_transaction_id Yes Global No

ndb_log_update_as_writeYes Yes Yes Global Yes

ndb_log_update_minimalYes Yes Yes Global Yes

ndb_log_updated_onlyYes Yes Yes Global Yes

Ndb_metadata_blacklist_size Yes Global No

ndb_metadata_checkYes Yes Yes Global Yes

ndb_metadata_check_intervalYes Yes Yes Global Yes

Ndb_metadata_detected_count Yes Global No

Ndb_metadata_excluded_count Yes Global No

ndb_metadata_sync Yes Global Yes

Ndb_metadata_synced_count Yes Global No

ndb-mgmd-
host

Yes Yes

ndb_nodeid Yes Yes Yes Global No

Ndb_number_of_data_nodes Yes Global No

ndb_optimization_delayYes Yes Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global No

Ndb_pruned_scan_count Yes Global No

Ndb_pushed_queries_defined Yes Global No

Ndb_pushed_queries_dropped Yes Global No

Ndb_pushed_queries_executed Yes Global No

Ndb_pushed_reads Yes Global No

ndb_read_backupYes Yes Yes Global Yes

ndb_recv_thread_activation_thresholdYes Yes Yes Global Yes

ndb_recv_thread_cpu_maskYes Yes Yes Global Yes

781

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ndb_replica_batch_sizeYes Yes Yes Global Yes

ndb_replica_blob_write_batch_bytesYes Yes Yes Global Yes

Ndb_replica_max_replicated_epoch Yes Global No

ndb_report_thresh_binlog_epoch_slipYes Yes Yes Global Yes

ndb_report_thresh_binlog_mem_usageYes Yes Yes Global Yes

ndb_row_checksum Yes Both Yes

Ndb_scan_count Yes Global No

ndb_schema_dist_lock_wait_timeoutYes Yes Yes Global Yes

ndb_schema_dist_timeoutYes Yes Yes Global No

ndb_schema_dist_timeoutYes Yes Yes Global No

ndb_schema_dist_upgrade_allowedYes Yes Yes Global No

Ndb_schema_participant_count Yes Global No

ndb_show_foreign_key_mock_tablesYes Yes Yes Global Yes

ndb_slave_conflict_roleYes Yes Yes Global Yes

Ndb_slave_max_replicated_epoch Yes Global No

Ndb_system_name Yes Global No

ndb_table_no_logging Yes Session Yes

ndb_table_temporary Yes Session Yes

Ndb_trans_hint_count_session Yes Both No

ndb-transid-
mysql-
connection-
map

Yes

ndb_use_copying_alter_table Yes Both No

ndb_use_exact_count Yes Both Yes

ndb_use_transactionsYes Yes Yes Both Yes

ndb_version Yes Global No

ndb_version_string Yes Global No

ndb_wait_connectedYes Yes Yes Global No

ndb_wait_setupYes Yes Yes Global No

ndbcluster Yes Yes

ndbinfo Yes

ndbinfo_database Yes Global No

ndbinfo_max_bytesYes Yes Both Yes

ndbinfo_max_rowsYes Yes Both Yes

ndbinfo_offline Yes Global Yes

ndbinfo_show_hiddenYes Yes Both Yes

ndbinfo_table_prefix Yes Global No

ndbinfo_version Yes Global No

net_buffer_lengthYes Yes Yes Both Yes

net_read_timeoutYes Yes Yes Both Yes

net_retry_countYes Yes Yes Both Yes

782

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

net_write_timeoutYes Yes Yes Both Yes

new Yes Yes Yes Both Yes

ngram_token_sizeYes Yes Yes Global No

no-dd-
upgrade

Yes Yes

no-defaults Yes

no-monitor Yes Yes

Not_flushed_delayed_rows Yes Global No

offline_mode Yes Yes Yes Global Yes

old Yes Yes Yes Global No

old_alter_tableYes Yes Yes Both Yes

old-style-
user-limits

Yes Yes

Ongoing_anonymous_gtid_violating_transaction_count Yes Global No

Ongoing_anonymous_transaction_count Yes Global No

Ongoing_automatic_gtid_violating_transaction_count Yes Global No

Open_files Yes Global No

open_files_limitYes Yes Yes Global No

Open_streams Yes Global No

Open_table_definitions Yes Global No

Open_tables Yes Both No

Opened_files Yes Global No

Opened_table_definitions Yes Both No

Opened_tables Yes Both No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

optimizer_switchYes Yes Yes Both Yes

optimizer_traceYes Yes Yes Both Yes

optimizer_trace_featuresYes Yes Yes Both Yes

optimizer_trace_limitYes Yes Yes Both Yes

optimizer_trace_max_mem_sizeYes Yes Yes Both Yes

optimizer_trace_offsetYes Yes Yes Both Yes

original_commit_timestamp Yes Session Yes

original_server_version Yes Session Yes

parser_max_mem_sizeYes Yes Yes Both Yes

partial_revokesYes Yes Yes Global Yes

password_historyYes Yes Yes Global Yes

password_require_currentYes Yes Yes Global Yes

password_reuse_intervalYes Yes Yes Global Yes

performance_schemaYes Yes Yes Global No

Performance_schema_accounts_lost Yes Global No

783

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schema_accounts_sizeYes Yes Yes Global No

Performance_schema_cond_classes_lost Yes Global No

Performance_schema_cond_instances_lost Yes Global No

performance-
schema-
consumer-
events-
stages-
current

Yes Yes

performance-
schema-
consumer-
events-
stages-
history

Yes Yes

performance-
schema-
consumer-
events-
stages-
history-long

Yes Yes

performance-
schema-
consumer-
events-
statements-
cpu

Yes Yes

performance-
schema-
consumer-
events-
statements-
current

Yes Yes

performance-
schema-
consumer-
events-
statements-
history

Yes Yes

performance-
schema-
consumer-
events-
statements-
history-long

Yes Yes

performance-
schema-
consumer-
events-
transactions-
current

Yes Yes

784

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance-
schema-
consumer-
events-
transactions-
history

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history-long

Yes Yes

performance-
schema-
consumer-
events-waits-
current

Yes Yes

performance-
schema-
consumer-
events-waits-
history

Yes Yes

performance-
schema-
consumer-
events-waits-
history-long

Yes Yes

performance-
schema-
consumer-
global-
instrumentation

Yes Yes

performance-
schema-
consumer-
statements-
digest

Yes Yes

performance-
schema-
consumer-
thread-
instrumentation

Yes Yes

Performance_schema_digest_lost Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_error_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

785

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

Performance_schema_file_classes_lost Yes Global No

Performance_schema_file_handles_lost Yes Global No

Performance_schema_file_instances_lost Yes Global No

Performance_schema_hosts_lost Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

Performance_schema_index_stat_lost Yes Global No

performance-
schema-
instrument

Yes Yes

Performance_schema_locker_lost Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_digest_sample_ageYes Yes Yes Global Yes

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_index_statYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

performance_schema_max_metadata_locksYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_sql_text_lengthYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_table_lock_statYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

Performance_schema_memory_classes_lost Yes Global No

786

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Performance_schema_metadata_lock_lost Yes Global No

Performance_schema_mutex_classes_lost Yes Global No

Performance_schema_mutex_instances_lost Yes Global No

Performance_schema_nested_statement_lost Yes Global No

Performance_schema_prepared_statements_lost Yes Global No

Performance_schema_program_lost Yes Global No

Performance_schema_rwlock_classes_lost Yes Global No

Performance_schema_rwlock_instances_lost Yes Global No

Performance_schema_session_connect_attrs_longest_seenYes Global No

Performance_schema_session_connect_attrs_lost Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

performance_schema_show_processlistYes Yes Yes Global Yes

Performance_schema_socket_classes_lost Yes Global No

Performance_schema_socket_instances_lost Yes Global No

Performance_schema_stage_classes_lost Yes Global No

Performance_schema_statement_classes_lost Yes Global No

Performance_schema_table_handles_lost Yes Global No

Performance_schema_table_instances_lost Yes Global No

Performance_schema_table_lock_stat_lost Yes Global No

Performance_schema_thread_classes_lost Yes Global No

Performance_schema_thread_instances_lost Yes Global No

Performance_schema_users_lost Yes Global No

performance_schema_users_sizeYes Yes Yes Global No

persist_only_admin_x509_subjectYes Yes Yes Global No

persist_sensitive_variables_in_plaintextYes Yes Yes Global No

persisted_globals_loadYes Yes Yes Global No

pid_file Yes Yes Yes Global No

plugin_dir Yes Yes Yes Global No

plugin-load Yes Yes

plugin-load-
add

Yes Yes

plugin-xxx Yes Yes

port Yes Yes Yes Global No

port-open-
timeout

Yes Yes

preload_buffer_sizeYes Yes Yes Both Yes

Prepared_stmt_count Yes Global No

print-defaults Yes

print_identified_with_as_hexYes Yes Yes Both Yes

787

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

profiling Yes Both Yes

profiling_history_sizeYes Yes Yes Both Yes

protocol_compression_algorithmsYes Yes Yes Global Yes

protocol_version Yes Global No

proxy_user Yes Session No

pseudo_replica_mode Yes Session Yes

pseudo_slave_mode Yes Session Yes

pseudo_thread_id Yes Session Yes

Queries Yes Both No

query_alloc_block_sizeYes Yes Yes Both Yes

query_prealloc_sizeYes Yes Yes Both Yes

Questions Yes Both No

rand_seed1 Yes Session Yes

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

range_optimizer_max_mem_sizeYes Yes Yes Both Yes

rbr_exec_mode Yes Session Yes

read_buffer_sizeYes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_sizeYes Yes Yes Both Yes

regexp_stack_limitYes Yes Yes Global Yes

regexp_time_limitYes Yes Yes Global Yes

relay_log Yes Yes Yes Global No

relay_log_basename Yes Global No

relay_log_indexYes Yes Yes Global No

relay_log_info_fileYes Yes Yes Global No

relay_log_info_repositoryYes Yes Yes Global Yes

relay_log_purgeYes Yes Yes Global Yes

relay_log_recoveryYes Yes Yes Global No

relay_log_space_limitYes Yes Yes Global No

remove Yes

replica_allow_batchingYes Yes Yes Global Yes

replica_checkpoint_groupYes Yes Yes Global Yes

replica_checkpoint_periodYes Yes Yes Global Yes

replica_compressed_protocolYes Yes Yes Global Yes

replica_exec_modeYes Yes Yes Global Yes

replica_load_tmpdirYes Yes Yes Global No

replica_max_allowed_packetYes Yes Yes Global Yes

replica_net_timeoutYes Yes Yes Global Yes

Replica_open_temp_tables Yes Global No

replica_parallel_typeYes Yes Yes Global Yes

788

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

replica_parallel_workersYes Yes Yes Global Yes

replica_pending_jobs_size_maxYes Yes Yes Global Yes

replica_preserve_commit_orderYes Yes Yes Global Yes

Replica_rows_last_search_algorithm_used Yes Global No

replica_skip_errorsYes Yes Yes Global No

replica_sql_verify_checksumYes Yes Yes Global Yes

replica_transaction_retriesYes Yes Yes Global Yes

replica_type_conversionsYes Yes Yes Global Yes

replicate-do-
db

Yes Yes

replicate-do-
table

Yes Yes

replicate-
ignore-db

Yes Yes

replicate-
ignore-table

Yes Yes

replicate-
rewrite-db

Yes Yes

replicate-
same-server-
id

Yes Yes

replicate-
wild-do-table

Yes Yes

replicate-
wild-ignore-
table

Yes Yes

replication_optimize_for_static_plugin_configYes Yes Yes Global Yes

replication_sender_observe_commit_onlyYes Yes Yes Global Yes

report_host Yes Yes Yes Global No

report_passwordYes Yes Yes Global No

report_port Yes Yes Yes Global No

report_user Yes Yes Yes Global No

require_row_format Yes Session Yes

require_secure_transportYes Yes Yes Global Yes

Resource_group_supported Yes Global No

resultset_metadata Yes Session Yes

rewriter_enabled Yes Global Yes

rewriter_enabled_for_threads_without_privilege_checksYes Global Yes

Rewriter_number_loaded_rules Yes Global No

Rewriter_number_reloads Yes Global No

Rewriter_number_rewritten_queries Yes Global No

Rewriter_reload_error Yes Global No

rewriter_verbose Yes Global Yes

rpl_read_size Yes Yes Yes Global Yes

789

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Rpl_semi_sync_master_clients Yes Global No

rpl_semi_sync_master_enabledYes Yes Yes Global Yes

Rpl_semi_sync_master_net_avg_wait_time Yes Global No

Rpl_semi_sync_master_net_wait_time Yes Global No

Rpl_semi_sync_master_net_waits Yes Global No

Rpl_semi_sync_master_no_times Yes Global No

Rpl_semi_sync_master_no_tx Yes Global No

Rpl_semi_sync_master_status Yes Global No

Rpl_semi_sync_master_timefunc_failures Yes Global No

rpl_semi_sync_master_timeoutYes Yes Yes Global Yes

rpl_semi_sync_master_trace_levelYes Yes Yes Global Yes

Rpl_semi_sync_master_tx_avg_wait_time Yes Global No

Rpl_semi_sync_master_tx_wait_time Yes Global No

Rpl_semi_sync_master_tx_waits Yes Global No

rpl_semi_sync_master_wait_for_slave_countYes Yes Yes Global Yes

rpl_semi_sync_master_wait_no_slaveYes Yes Yes Global Yes

rpl_semi_sync_master_wait_pointYes Yes Yes Global Yes

Rpl_semi_sync_master_wait_pos_backtraverse Yes Global No

Rpl_semi_sync_master_wait_sessions Yes Global No

Rpl_semi_sync_master_yes_tx Yes Global No

rpl_semi_sync_replica_enabledYes Yes Yes Global Yes

Rpl_semi_sync_replica_status Yes Global No

rpl_semi_sync_replica_trace_levelYes Yes Yes Global Yes

rpl_semi_sync_slave_enabledYes Yes Yes Global Yes

Rpl_semi_sync_slave_status Yes Global No

rpl_semi_sync_slave_trace_levelYes Yes Yes Global Yes

Rpl_semi_sync_source_clients Yes Global No

rpl_semi_sync_source_enabledYes Yes Yes Global Yes

Rpl_semi_sync_source_net_avg_wait_time Yes Global No

Rpl_semi_sync_source_net_wait_time Yes Global No

Rpl_semi_sync_source_net_waits Yes Global No

Rpl_semi_sync_source_no_times Yes Global No

Rpl_semi_sync_source_no_tx Yes Global No

Rpl_semi_sync_source_status Yes Global No

Rpl_semi_sync_source_timefunc_failures Yes Global No

rpl_semi_sync_source_timeoutYes Yes Yes Global Yes

rpl_semi_sync_source_trace_levelYes Yes Yes Global Yes

Rpl_semi_sync_source_tx_avg_wait_time Yes Global No

Rpl_semi_sync_source_tx_wait_time Yes Global No

Rpl_semi_sync_source_tx_waits Yes Global No

rpl_semi_sync_source_wait_for_replica_countYes Yes Yes Global Yes

790

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

rpl_semi_sync_source_wait_no_replicaYes Yes Yes Global Yes

rpl_semi_sync_source_wait_pointYes Yes Yes Global Yes

Rpl_semi_sync_source_wait_pos_backtraverse Yes Global No

Rpl_semi_sync_source_wait_sessions Yes Global No

Rpl_semi_sync_source_yes_tx Yes Global No

rpl_stop_replica_timeoutYes Yes Yes Global Yes

rpl_stop_slave_timeoutYes Yes Yes Global Yes

Rsa_public_key Yes Global No

safe-user-
create

Yes Yes

schema_definition_cacheYes Yes Yes Global Yes

secondary_engine_cost_threshold Yes Session Yes

Secondary_engine_execution_count Yes Both No

secure_file_privYes Yes Yes Global No

Select_full_join Yes Both No

Select_full_range_join Yes Both No

select_into_buffer_sizeYes Yes Yes Both Yes

select_into_disk_syncYes Yes Yes Both Yes

select_into_disk_sync_delayYes Yes Yes Both Yes

Select_range Yes Both No

Select_range_check Yes Both No

Select_scan Yes Both No

server_id Yes Yes Yes Global Yes

server_id_bits Yes Yes Yes Global No

server_uuid Yes Global No

session_track_gtidsYes Yes Yes Both Yes

session_track_schemaYes Yes Yes Both Yes

session_track_state_changeYes Yes Yes Both Yes

session_track_system_variablesYes Yes Yes Both Yes

session_track_transaction_infoYes Yes Yes Both Yes

sha256_password_auto_generate_rsa_keysYes Yes Yes Global No

sha256_password_private_key_pathYes Yes Yes Global No

sha256_password_proxy_usersYes Yes Yes Global Yes

sha256_password_public_key_pathYes Yes Yes Global No

shared_memoryYes Yes Yes Global No

shared_memory_base_nameYes Yes Yes Global No

show_create_table_skip_secondary_engineYes Yes Yes Session Yes

show_create_table_verbosityYes Yes Yes Both Yes

show_gipk_in_create_table_and_information_schemaYes Yes Yes Both Yes

show_old_temporalsYes Yes Yes Both Yes

791

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

show-replica-
auth-info

Yes Yes

show-slave-
auth-info

Yes Yes

skip-
character-
set-client-
handshake

Yes Yes

skip_external_lockingYes Yes Yes Global No

skip-grant-
tables

Yes Yes

skip-host-
cache

Yes Yes

skip_name_resolveYes Yes Yes Global No

skip-
ndbcluster

Yes Yes

skip_networkingYes Yes Yes Global No

skip-new Yes Yes

skip_replica_startYes Yes Yes Global No

skip_show_databaseYes Yes Yes Global No

skip_slave_startYes Yes Yes Global No

skip-ssl Yes Yes

skip-stack-
trace

Yes Yes

slave_allow_batchingYes Yes Yes Global Yes

slave_checkpoint_groupYes Yes Yes Global Yes

slave_checkpoint_periodYes Yes Yes Global Yes

slave_compressed_protocolYes Yes Yes Global Yes

slave_exec_modeYes Yes Yes Global Yes

slave_load_tmpdirYes Yes Yes Global No

slave_max_allowed_packetYes Yes Yes Global Yes

slave_net_timeoutYes Yes Yes Global Yes

Slave_open_temp_tables Yes Global No

slave_parallel_typeYes Yes Yes Global Yes

slave_parallel_workersYes Yes Yes Global Yes

slave_pending_jobs_size_maxYes Yes Yes Global Yes

slave_preserve_commit_orderYes Yes Yes Global Yes

Slave_rows_last_search_algorithm_used Yes Global No

slave_rows_search_algorithmsYes Yes Yes Global Yes

slave_skip_errorsYes Yes Yes Global No

slave-sql-
verify-
checksum

Yes Yes

slave_sql_verify_checksumYes Yes Yes Global Yes

792

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

slave_transaction_retriesYes Yes Yes Global Yes

slave_type_conversionsYes Yes Yes Global Yes

Slow_launch_threads Yes Both No

slow_launch_timeYes Yes Yes Global Yes

Slow_queries Yes Both No

slow_query_logYes Yes Yes Global Yes

slow_query_log_fileYes Yes Yes Global Yes

slow-start-
timeout

Yes Yes

socket Yes Yes Yes Global No

sort_buffer_sizeYes Yes Yes Both Yes

Sort_merge_passes Yes Both No

Sort_range Yes Both No

Sort_rows Yes Both No

Sort_scan Yes Both No

source_verify_checksumYes Yes Yes Global Yes

sporadic-
binlog-dump-
fail

Yes Yes

sql_auto_is_null Yes Both Yes

sql_big_selects Yes Both Yes

sql_buffer_result Yes Both Yes

sql_generate_invisible_primary_keyYes Yes Yes Both Yes

sql_log_bin Yes Session Yes

sql_log_off Yes Both Yes

sql_mode Yes Yes Yes Both Yes

sql_notes Yes Both Yes

sql_quote_show_create Yes Both Yes

sql_replica_skip_counter Yes Global Yes

sql_require_primary_keyYes Yes Yes Both Yes

sql_safe_updates Yes Both Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Both Yes

ssl Yes Yes

Ssl_accept_renegotiates Yes Global No

Ssl_accepts Yes Global No

ssl_ca Yes Yes Yes Global Varies

Ssl_callback_cache_hits Yes Global No

ssl_capath Yes Yes Yes Global Varies

ssl_cert Yes Yes Yes Global Varies

Ssl_cipher Yes Both No

793

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

ssl_cipher Yes Yes Yes Global Varies

Ssl_cipher_list Yes Both No

Ssl_client_connects Yes Global No

Ssl_connect_renegotiates Yes Global No

ssl_crl Yes Yes Yes Global Varies

ssl_crlpath Yes Yes Yes Global Varies

Ssl_ctx_verify_depth Yes Global No

Ssl_ctx_verify_mode Yes Global No

Ssl_default_timeout Yes Both No

Ssl_finished_accepts Yes Global No

Ssl_finished_connects Yes Global No

ssl_fips_mode Yes Yes Yes Global No

ssl_key Yes Yes Yes Global Varies

Ssl_server_not_after Yes Both No

Ssl_server_not_before Yes Both No

Ssl_session_cache_hits Yes Global No

Ssl_session_cache_misses Yes Global No

Ssl_session_cache_mode Yes Global No

ssl_session_cache_modeYes Yes Yes Global Yes

Ssl_session_cache_overflows Yes Global No

Ssl_session_cache_size Yes Global No

Ssl_session_cache_timeout Yes Global No

ssl_session_cache_timeoutYes Yes Yes Global Yes

Ssl_session_cache_timeouts Yes Global No

Ssl_sessions_reused Yes Session No

Ssl_used_session_cache_entries Yes Global No

Ssl_verify_depth Yes Both No

Ssl_verify_mode Yes Both No

Ssl_version Yes Both No

standalone Yes Yes

statement_id Yes Session No

stored_program_cacheYes Yes Yes Global Yes

stored_program_definition_cacheYes Yes Yes Global Yes

super-large-
pages

Yes Yes

super_read_onlyYes Yes Yes Global Yes

symbolic-
links

Yes Yes

sync_binlog Yes Yes Yes Global Yes

sync_master_infoYes Yes Yes Global Yes

sync_relay_logYes Yes Yes Global Yes

794

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

sync_relay_log_infoYes Yes Yes Global Yes

sync_source_infoYes Yes Yes Global Yes

sysdate-is-
now

Yes Yes

syseventlog.facilityYes Yes Yes Global Yes

syseventlog.include_pidYes Yes Yes Global Yes

syseventlog.tagYes Yes Yes Global Yes

system_time_zone Yes Global No

table_definition_cacheYes Yes Yes Global Yes

table_encryption_privilege_checkYes Yes Yes Global Yes

Table_locks_immediate Yes Global No

Table_locks_waited Yes Global No

table_open_cacheYes Yes Yes Global Yes

Table_open_cache_hits Yes Both No

table_open_cache_instancesYes Yes Yes Global No

Table_open_cache_misses Yes Both No

Table_open_cache_overflows Yes Both No

tablespace_definition_cacheYes Yes Yes Global Yes

tc-heuristic-
recover

Yes Yes

Tc_log_max_pages_used Yes Global No

Tc_log_page_size Yes Global No

Tc_log_page_waits Yes Global No

Telemetry_traces_supported Yes Global No

temptable_max_mmapYes Yes Yes Global Yes

temptable_max_ramYes Yes Yes Global Yes

temptable_use_mmapYes Yes Yes Global Yes

terminology_use_previousYes Yes Yes Both Yes

thread_cache_sizeYes Yes Yes Global Yes

thread_handlingYes Yes Yes Global No

thread_pool_algorithmYes Yes Yes Global No

thread_pool_dedicated_listenersYes Yes Yes Global No

thread_pool_high_priority_connectionYes Yes Yes Both Yes

thread_pool_max_active_query_threadsYes Yes Yes Global Yes

thread_pool_max_transactions_limitYes Yes Yes Global Yes

thread_pool_max_unused_threadsYes Yes Yes Global Yes

thread_pool_prio_kickup_timerYes Yes Yes Global Yes

thread_pool_query_threads_per_groupYes Yes Yes Global Yes

thread_pool_sizeYes Yes Yes Global No

thread_pool_stall_limitYes Yes Yes Global Yes

thread_pool_transaction_delayYes Yes Yes Global Yes

795

Server Option, System Variable, and Status Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

thread_stack Yes Yes Yes Global No

Threads_cached Yes Global No

Threads_connected Yes Global No

Threads_created Yes Global No

Threads_running Yes Global No

time_zone Yes Both Yes

timestamp Yes Session Yes

tls_ciphersuitesYes Yes Yes Global Yes

Tls_library_version Yes Global No

tls_version Yes Yes Yes Global Varies

tmp_table_sizeYes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction_allow_batching Yes Session Yes

transaction_isolationYes Yes Yes Both Yes

transaction_prealloc_sizeYes Yes Yes Both Yes

transaction_read_onlyYes Yes Yes Both Yes

transaction_write_set_extractionYes Yes Yes Both Yes

unique_checks Yes Both Yes

updatable_views_with_limitYes Yes Yes Both Yes

upgrade Yes Yes

Uptime Yes Global No

Uptime_since_flush_status Yes Global No

use_secondary_engine Yes Session Yes

user Yes Yes

validate-
config

Yes Yes

validate-
password

Yes Yes

validate_password_check_user_nameYes Yes Yes Global Yes

validate_password_dictionary_fileYes Yes Yes Global Yes

validate_password_dictionary_file_last_parsed Yes Global No

validate_password_dictionary_file_words_count Yes Global No

validate_password_lengthYes Yes Yes Global Yes

validate_password_mixed_case_countYes Yes Yes Global Yes

validate_password_number_countYes Yes Yes Global Yes

validate_password_policyYes Yes Yes Global Yes

validate_password_special_char_countYes Yes Yes Global Yes

validate_password.changed_characters_percentageYes Yes Yes Global Yes

validate_password.check_user_nameYes Yes Yes Global Yes

validate_password.dictionary_fileYes Yes Yes Global Yes

796

Server System Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

validate_password.dictionary_file_last_parsed Yes Global No

validate_password.dictionary_file_words_count Yes Global No

validate_password.lengthYes Yes Yes Global Yes

validate_password.mixed_case_countYes Yes Yes Global Yes

validate_password.number_countYes Yes Yes Global Yes

validate_password.policyYes Yes Yes Global Yes

validate_password.special_char_countYes Yes Yes Global Yes

validate-user-
plugins

Yes Yes

verbose Yes Yes

version Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

version_compile_zlib Yes Global No

version_tokens_sessionYes Yes Yes Both Yes

version_tokens_session_numberYes Yes Yes Both No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No

windowing_use_high_precisionYes Yes Yes Both Yes

xa_detach_on_prepareYes Yes Yes Both Yes

Notes:

1. This option is dynamic, but should be set only by server. You should not set this variable manually.

7.1.5 Server System Variable Reference

The following table lists all system variables applicable within mysqld.

The table lists command-line options (Cmd-line), options valid in configuration files (Option file), server
system variables (System Var), and status variables (Status var) in one unified list, with an indication
of where each option or variable is valid. If a server option set on the command line or in an option file
differs from the name of the corresponding system variable, the variable name is noted immediately
below the corresponding option. The scope of the variable (Var Scope) is Global, Session, or both.
Please see the corresponding item descriptions for details on setting and using the variables. Where
appropriate, direct links to further information about the items are provided.

Table 7.2 System Variable Summary

Name Cmd-Line Option File System Var Var Scope Dynamic

activate_all_roles_on_loginYes Yes Yes Global Yes

admin_address Yes Yes Yes Global No

admin_port Yes Yes Yes Global No

admin_ssl_ca Yes Yes Yes Global Yes

admin_ssl_capathYes Yes Yes Global Yes

admin_ssl_cert Yes Yes Yes Global Yes

admin_ssl_cipherYes Yes Yes Global Yes

797

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

admin_ssl_crl Yes Yes Yes Global Yes

admin_ssl_crlpathYes Yes Yes Global Yes

admin_ssl_key Yes Yes Yes Global Yes

admin_tls_ciphersuitesYes Yes Yes Global Yes

admin_tls_versionYes Yes Yes Global Yes

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_compressionYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

audit_log_databaseYes Yes Yes Global No

audit_log_disableYes Yes Yes Global Yes

audit_log_encryptionYes Yes Yes Global No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_filter_id Yes Both No

audit_log_flush Yes Global Yes

audit_log_flush_interval_secondsYes Yes Global No

audit_log_format Yes Yes Yes Global No

audit_log_format_unix_timestampYes Yes Yes Global Yes

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_max_sizeYes Yes Yes Global Yes

audit_log_password_history_keep_daysYes Yes Yes Global Yes

audit_log_policy Yes Yes Yes Global No

audit_log_prune_secondsYes Yes Yes Global Yes

audit_log_read_buffer_sizeYes Yes Yes Varies Varies

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategyYes Yes Yes Global No

authentication_fido_rp_idYes Yes Yes Global Yes

authentication_kerberos_service_key_tabYes Yes Yes Global No

authentication_kerberos_service_principalYes Yes Yes Global Yes

authentication_ldap_sasl_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_sasl_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_sasl_ca_pathYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_attrYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_filterYes Yes Yes Global Yes

authentication_ldap_sasl_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_log_statusYes Yes Yes Global Yes

authentication_ldap_sasl_max_pool_sizeYes Yes Yes Global Yes

798

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

authentication_ldap_sasl_referralYes Yes Yes Global Yes

authentication_ldap_sasl_server_hostYes Yes Yes Global Yes

authentication_ldap_sasl_server_portYes Yes Yes Global Yes

authentication_ldap_sasl_tlsYes Yes Yes Global Yes

authentication_ldap_sasl_user_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_simple_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_simple_ca_pathYes Yes Yes Global Yes

authentication_ldap_simple_group_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_group_search_filterYes Yes Yes Global Yes

authentication_ldap_simple_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_log_statusYes Yes Yes Global Yes

authentication_ldap_simple_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_referralYes Yes Yes Global Yes

authentication_ldap_simple_server_hostYes Yes Yes Global Yes

authentication_ldap_simple_server_portYes Yes Yes Global Yes

authentication_ldap_simple_tlsYes Yes Yes Global Yes

authentication_ldap_simple_user_search_attrYes Yes Yes Global Yes

authentication_policyYes Yes Yes Global Yes

authentication_windows_log_levelYes Yes Yes Global No

authentication_windows_use_principal_nameYes Yes Yes Global No

auto_generate_certsYes Yes Yes Global No

auto_increment_incrementYes Yes Yes Both Yes

auto_increment_offsetYes Yes Yes Both Yes

autocommit Yes Yes Yes Both Yes

automatic_sp_privilegesYes Yes Yes Global Yes

avoid_temporal_upgradeYes Yes Yes Global Yes

back_log Yes Yes Yes Global No

basedir Yes Yes Yes Global No

big_tables Yes Yes Yes Both Yes

bind_address Yes Yes Yes Global No

binlog_cache_sizeYes Yes Yes Global Yes

binlog_checksumYes Yes Yes Global Yes

binlog_direct_non_transactional_updatesYes Yes Yes Both Yes

binlog_encryptionYes Yes Yes Global Yes

binlog_error_actionYes Yes Yes Global Yes

binlog_expire_logs_auto_purgeYes Yes Yes Global Yes

binlog_expire_logs_secondsYes Yes Yes Global Yes

binlog_format Yes Yes Yes Both Yes

799

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

binlog_group_commit_sync_delayYes Yes Yes Global Yes

binlog_group_commit_sync_no_delay_countYes Yes Yes Global Yes

binlog_gtid_simple_recoveryYes Yes Yes Global No

binlog_max_flush_queue_timeYes Yes Yes Global Yes

binlog_order_commitsYes Yes Yes Global Yes

binlog_rotate_encryption_master_key_at_startupYes Yes Yes Global No

binlog_row_event_max_sizeYes Yes Yes Global No

binlog_row_imageYes Yes Yes Both Yes

binlog_row_metadataYes Yes Yes Global Yes

binlog_row_value_optionsYes Yes Yes Both Yes

binlog_rows_query_log_eventsYes Yes Yes Both Yes

binlog_stmt_cache_sizeYes Yes Yes Global Yes

binlog_transaction_compressionYes Yes Yes Both Yes

binlog_transaction_compression_level_zstdYes Yes Yes Both Yes

binlog_transaction_dependency_history_sizeYes Yes Yes Global Yes

binlog_transaction_dependency_trackingYes Yes Yes Global Yes

block_encryption_modeYes Yes Yes Both Yes

build_id Yes Global No

bulk_insert_buffer_sizeYes Yes Yes Both Yes

caching_sha2_password_auto_generate_rsa_keysYes Yes Yes Global No

caching_sha2_password_digest_roundsYes Yes Yes Global No

caching_sha2_password_private_key_pathYes Yes Yes Global No

caching_sha2_password_public_key_pathYes Yes Yes Global No

character_set_client Yes Both Yes

character_set_connection Yes Both Yes

character_set_database
(note 1)

Yes Both Yes

character_set_filesystemYes Yes Yes Both Yes

character_set_results Yes Both Yes

character_set_serverYes Yes Yes Both Yes

character_set_system Yes Global No

character_sets_dirYes Yes Yes Global No

check_proxy_usersYes Yes Yes Global Yes

clone_autotune_concurrencyYes Yes Yes Global Yes

clone_block_ddl Yes Yes Yes Global Yes

clone_buffer_sizeYes Yes Yes Global Yes

clone_ddl_timeoutYes Yes Yes Global Yes

clone_delay_after_data_dropYes Yes Yes Global Yes

clone_donor_timeout_after_network_failureYes Yes Yes Global Yes

clone_enable_compressionYes Yes Yes Global Yes

clone_max_concurrencyYes Yes Yes Global Yes

800

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

clone_max_data_bandwidthYes Yes Yes Global Yes

clone_max_network_bandwidthYes Yes Yes Global Yes

clone_ssl_ca Yes Yes Yes Global Yes

clone_ssl_cert Yes Yes Yes Global Yes

clone_ssl_key Yes Yes Yes Global Yes

clone_valid_donor_listYes Yes Yes Global Yes

collation_connection Yes Both Yes

collation_database
(note 1)

Yes Both Yes

collation_server Yes Yes Yes Both Yes

completion_type Yes Yes Yes Both Yes

component_scheduler.enabledYes Yes Yes Global Yes

concurrent_insertYes Yes Yes Global Yes

connect_timeout Yes Yes Yes Global Yes

connection_control_failed_connections_thresholdYes Yes Yes Global Yes

connection_control_max_connection_delayYes Yes Yes Global Yes

connection_control_min_connection_delayYes Yes Yes Global Yes

connection_memory_chunk_sizeYes Yes Yes Both Yes

connection_memory_limitYes Yes Yes Both Yes

core_file Yes Global No

create_admin_listener_threadYes Yes Yes Global No

cte_max_recursion_depthYes Yes Yes Both Yes

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

datadir Yes Yes Yes Global No

debug Yes Yes Yes Both Yes

debug_sync Yes Session Yes

default_authentication_pluginYes Yes Yes Global No

default_collation_for_utf8mb4 Yes Both Yes

default_password_lifetimeYes Yes Yes Global Yes

default_storage_engineYes Yes Yes Both Yes

default_table_encryptionYes Yes Yes Both Yes

default_tmp_storage_engineYes Yes Yes Both Yes

default_week_formatYes Yes Yes Both Yes

delay_key_write Yes Yes Yes Global Yes

delayed_insert_limitYes Yes Yes Global Yes

delayed_insert_timeoutYes Yes Yes Global Yes

801

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

delayed_queue_sizeYes Yes Yes Global Yes

disabled_storage_enginesYes Yes Yes Global No

disconnect_on_expired_passwordYes Yes Yes Global No

div_precision_incrementYes Yes Yes Both Yes

dragnet.log_error_filter_rulesYes Yes Yes Global Yes

end_markers_in_jsonYes Yes Yes Both Yes

enforce_gtid_consistencyYes Yes Yes Global Yes

enterprise_encryption.maximum_rsa_key_sizeYes Yes Yes Global Yes

enterprise_encryption.rsa_support_legacy_paddingYes Yes Yes Global Yes

eq_range_index_dive_limitYes Yes Yes Both Yes

error_count Yes Session No

event_scheduler Yes Yes Yes Global Yes

expire_logs_daysYes Yes Yes Global Yes

explain_format Yes Yes Yes Both Yes

explicit_defaults_for_timestampYes Yes Yes Both Yes

external_user Yes Session No

flush Yes Yes Yes Global Yes

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Both Yes

ft_boolean_syntaxYes Yes Yes Global Yes

ft_max_word_lenYes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

general_log Yes Yes Yes Global Yes

general_log_file Yes Yes Yes Global Yes

generated_random_password_lengthYes Yes Yes Both Yes

global_connection_memory_limitYes Yes Yes Global Yes

global_connection_memory_trackingYes Yes Yes Both Yes

group_concat_max_lenYes Yes Yes Both Yes

group_replication_advertise_recovery_endpointsYes Yes Yes Global Yes

group_replication_allow_local_lower_version_joinYes Yes Yes Global Yes

group_replication_auto_increment_incrementYes Yes Yes Global Yes

group_replication_autorejoin_triesYes Yes Yes Global Yes

group_replication_bootstrap_groupYes Yes Yes Global Yes

group_replication_clone_thresholdYes Yes Yes Global Yes

group_replication_communication_debug_optionsYes Yes Yes Global Yes

group_replication_communication_max_message_sizeYes Yes Yes Global Yes

group_replication_communication_stack Yes Global Yes

group_replication_components_stop_timeoutYes Yes Yes Global Yes

group_replication_compression_thresholdYes Yes Yes Global Yes

802

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

group_replication_consistencyYes Yes Yes Both Yes

group_replication_enforce_update_everywhere_checksYes Yes Yes Global Yes

group_replication_exit_state_actionYes Yes Yes Global Yes

group_replication_flow_control_applier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_certifier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_hold_percentYes Yes Yes Global Yes

group_replication_flow_control_max_quotaYes Yes Yes Global Yes

group_replication_flow_control_member_quota_percentYes Yes Yes Global Yes

group_replication_flow_control_min_quotaYes Yes Yes Global Yes

group_replication_flow_control_min_recovery_quotaYes Yes Yes Global Yes

group_replication_flow_control_modeYes Yes Yes Global Yes

group_replication_flow_control_periodYes Yes Yes Global Yes

group_replication_flow_control_release_percentYes Yes Yes Global Yes

group_replication_force_membersYes Yes Yes Global Yes

group_replication_group_nameYes Yes Yes Global Yes

group_replication_group_seedsYes Yes Yes Global Yes

group_replication_gtid_assignment_block_sizeYes Yes Yes Global Yes

group_replication_ip_allowlistYes Yes Yes Global Yes

group_replication_ip_whitelistYes Yes Yes Global Yes

group_replication_local_addressYes Yes Yes Global Yes

group_replication_member_expel_timeoutYes Yes Yes Global Yes

group_replication_member_weightYes Yes Yes Global Yes

group_replication_message_cache_sizeYes Yes Yes Global Yes

group_replication_paxos_single_leaderYes Yes Yes Global Yes

group_replication_poll_spin_loopsYes Yes Yes Global Yes

group_replication_recovery_complete_atYes Yes Yes Global Yes

group_replication_recovery_compression_algorithmsYes Yes Yes Global Yes

group_replication_recovery_get_public_keyYes Yes Yes Global Yes

group_replication_recovery_public_key_pathYes Yes Yes Global Yes

group_replication_recovery_reconnect_intervalYes Yes Yes Global Yes

group_replication_recovery_retry_countYes Yes Yes Global Yes

group_replication_recovery_ssl_caYes Yes Yes Global Yes

group_replication_recovery_ssl_capathYes Yes Yes Global Yes

group_replication_recovery_ssl_certYes Yes Yes Global Yes

group_replication_recovery_ssl_cipherYes Yes Yes Global Yes

group_replication_recovery_ssl_crlYes Yes Yes Global Yes

group_replication_recovery_ssl_crlpathYes Yes Yes Global Yes

group_replication_recovery_ssl_keyYes Yes Yes Global Yes

group_replication_recovery_ssl_verify_server_certYes Yes Yes Global Yes

group_replication_recovery_tls_ciphersuitesYes Yes Yes Global Yes

group_replication_recovery_tls_versionYes Yes Yes Global Yes

803

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

group_replication_recovery_use_sslYes Yes Yes Global Yes

group_replication_recovery_zstd_compression_levelYes Yes Yes Global Yes

group_replication_single_primary_modeYes Yes Yes Global Yes

group_replication_ssl_modeYes Yes Yes Global Yes

group_replication_start_on_bootYes Yes Yes Global Yes

group_replication_tls_sourceYes Yes Yes Global Yes

group_replication_transaction_size_limitYes Yes Yes Global Yes

group_replication_unreachable_majority_timeoutYes Yes Yes Global Yes

group_replication_view_change_uuidYes Yes Yes Global Yes

gtid_executed Yes Global No

gtid_executed_compression_periodYes Yes Yes Global Yes

gtid_mode Yes Yes Yes Global Yes

gtid_next Yes Session Yes

gtid_owned Yes Both No

gtid_purged Yes Global Yes

have_compress Yes Global No

have_dynamic_loading Yes Global No

have_geometry Yes Global No

have_openssl Yes Global No

have_profiling Yes Global No

have_query_cache Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_statement_timeout Yes Global No

have_symlink Yes Global No

histogram_generation_max_mem_sizeYes Yes Yes Both Yes

host_cache_size Yes Yes Yes Global Yes

hostname Yes Global No

identity Yes Session Yes

immediate_server_version Yes Session Yes

information_schema_stats_expiryYes Yes Yes Both Yes

init_connect Yes Yes Yes Global Yes

init_file Yes Yes Yes Global No

init_replica Yes Yes Yes Global Yes

init_slave Yes Yes Yes Global Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_hash_index_partsYes Yes Yes Global No

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

804

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

innodb_background_drop_list_emptyYes Yes Yes Global Yes

innodb_buffer_pool_chunk_sizeYes Yes Yes Global No

innodb_buffer_pool_debugYes Yes Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_in_core_fileYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

innodb_buffer_pool_sizeYes Yes Yes Global Yes

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checkpoint_disabledYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compress_debugYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

innodb_data_home_dirYes Yes Yes Global No

innodb_ddl_buffer_sizeYes Yes Yes Session Yes

innodb_ddl_log_crash_reset_debugYes Yes Yes Global Yes

innodb_ddl_threadsYes Yes Yes Session Yes

innodb_deadlock_detectYes Yes Yes Global Yes

innodb_dedicated_serverYes Yes Yes Global No

innodb_default_row_formatYes Yes Yes Global Yes

innodb_directoriesYes Yes Yes Global No

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

805

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_doublewriteYes Yes Yes Global Varies

innodb_doublewrite_batch_sizeYes Yes Yes Global No

innodb_doublewrite_dirYes Yes Yes Global No

innodb_doublewrite_filesYes Yes Yes Global No

innodb_doublewrite_pagesYes Yes Yes Global No

innodb_extend_and_initializeYes Yes Yes Global Yes

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_fill_factorYes Yes Yes Global Yes

innodb_flush_log_at_timeoutYes Yes Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flush_syncYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_fsync_thresholdYes Yes Yes Global Yes

innodb_ft_aux_table Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Both Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

innodb_idle_flush_pctYes Yes Yes Global Yes

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_log_buffer_sizeYes Yes Yes Global Varies

innodb_log_checkpoint_fuzzy_nowYes Yes Yes Global Yes

innodb_log_checkpoint_nowYes Yes Yes Global Yes

innodb_log_checksumsYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

806

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

innodb_log_spin_cpu_abs_lwmYes Yes Yes Global Yes

innodb_log_spin_cpu_pct_hwmYes Yes Yes Global Yes

innodb_log_wait_for_flush_spin_hwmYes Yes Yes Global Yes

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

innodb_log_writer_threadsYes Yes Yes Global Yes

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_max_undo_log_sizeYes Yes Yes Global Yes

innodb_merge_threshold_set_all_debugYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_filesYes Yes Yes Global Varies

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

innodb_page_cleanersYes Yes Yes Global No

innodb_page_sizeYes Yes Yes Global No

innodb_parallel_read_threadsYes Yes Yes Session Yes

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_print_ddl_logsYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_rseg_truncate_frequencyYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_onlyYes Yes Yes Global No

innodb_redo_log_archive_dirsYes Yes Yes Global Yes

innodb_redo_log_capacityYes Yes Yes Global Yes

innodb_redo_log_encryptYes Yes Yes Global Yes

innodb_replication_delayYes Yes Yes Global Yes

807

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_segment_reserve_factorYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_spin_wait_pause_multiplierYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_include_delete_markedYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_debugYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_temp_tablespaces_dirYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Both Yes

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_log_encryptYes Yes Yes Global Yes

innodb_undo_log_truncateYes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global Varies

innodb_use_fdatasyncYes Yes Yes Global Yes

innodb_use_native_aioYes Yes Yes Global No

innodb_validate_tablespace_pathsYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

insert_id Yes Session Yes

interactive_timeoutYes Yes Yes Both Yes

internal_tmp_disk_storage_engineYes Yes Yes Global Yes

internal_tmp_mem_storage_engineYes Yes Yes Both Yes

808

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

keyring_aws_cmk_idYes Yes Yes Global Yes

keyring_aws_conf_fileYes Yes Yes Global No

keyring_aws_data_fileYes Yes Yes Global No

keyring_aws_regionYes Yes Yes Global Yes

keyring_encrypted_file_dataYes Yes Yes Global Yes

keyring_encrypted_file_passwordYes Yes Yes Global Yes

keyring_file_dataYes Yes Yes Global Yes

keyring_hashicorp_auth_pathYes Yes Yes Global Yes

keyring_hashicorp_ca_pathYes Yes Yes Global Yes

keyring_hashicorp_cachingYes Yes Yes Global Yes

keyring_hashicorp_commit_auth_path Yes Global No

keyring_hashicorp_commit_ca_path Yes Global No

keyring_hashicorp_commit_caching Yes Global No

keyring_hashicorp_commit_role_id Yes Global No

keyring_hashicorp_commit_server_url Yes Global No

keyring_hashicorp_commit_store_path Yes Global No

keyring_hashicorp_role_idYes Yes Yes Global Yes

keyring_hashicorp_secret_idYes Yes Yes Global Yes

keyring_hashicorp_server_urlYes Yes Yes Global Yes

keyring_hashicorp_store_pathYes Yes Yes Global Yes

keyring_oci_ca_certificateYes Yes Yes Global No

keyring_oci_compartmentYes Yes Yes Global No

keyring_oci_encryption_endpointYes Yes Yes Global No

keyring_oci_key_fileYes Yes Yes Global No

keyring_oci_key_fingerprintYes Yes Yes Global No

keyring_oci_management_endpointYes Yes Yes Global No

keyring_oci_master_keyYes Yes Yes Global No

keyring_oci_secrets_endpointYes Yes Yes Global No

keyring_oci_tenancyYes Yes Yes Global No

keyring_oci_userYes Yes Yes Global No

keyring_oci_vaults_endpointYes Yes Yes Global No

keyring_oci_virtual_vaultYes Yes Yes Global No

keyring_okv_conf_dirYes Yes Yes Global Yes

keyring_operations Yes Global Yes

large_files_support Yes Global No

809

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

large_page_size Yes Global No

large_pages Yes Yes Yes Global No

last_insert_id Yes Session Yes

lc_messages Yes Yes Yes Both Yes

lc_messages_dirYes Yes Yes Global No

lc_time_names Yes Yes Yes Both Yes

license Yes Global No

local_infile Yes Yes Yes Global Yes

lock_order Yes Yes Yes Global No

lock_order_debug_loopYes Yes Yes Global No

lock_order_debug_missing_arcYes Yes Yes Global No

lock_order_debug_missing_keyYes Yes Yes Global No

lock_order_debug_missing_unlockYes Yes Yes Global No

lock_order_dependenciesYes Yes Yes Global No

lock_order_extra_dependenciesYes Yes Yes Global No

lock_order_output_directoryYes Yes Yes Global No

lock_order_print_txtYes Yes Yes Global No

lock_order_trace_loopYes Yes Yes Global No

lock_order_trace_missing_arcYes Yes Yes Global No

lock_order_trace_missing_keyYes Yes Yes Global No

lock_order_trace_missing_unlockYes Yes Yes Global No

lock_wait_timeoutYes Yes Yes Both Yes

locked_in_memory Yes Global No

log_bin Yes Global No

log_bin_basename Yes Global No

log_bin_index Yes Yes Yes Global No

log_bin_trust_function_creatorsYes Yes Yes Global Yes

log_bin_use_v1_row_eventsYes Yes Yes Global Yes

log_error Yes Yes Yes Global No

log_error_servicesYes Yes Yes Global Yes

log_error_suppression_listYes Yes Yes Global Yes

log_error_verbosityYes Yes Yes Global Yes

log_output Yes Yes Yes Global Yes

log_queries_not_using_indexesYes Yes Yes Global Yes

log_raw Yes Yes Yes Global Yes

log_replica_updatesYes Yes Yes Global No

log_slave_updatesYes Yes Yes Global No

log_slow_admin_statementsYes Yes Yes Global Yes

log_slow_extra Yes Yes Yes Global Yes

log_slow_replica_statementsYes Yes Yes Global Yes

log_slow_slave_statementsYes Yes Yes Global Yes

810

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

log_statements_unsafe_for_binlogYes Yes Yes Global Yes

log_syslog Yes Yes Yes Global Yes

log_syslog_facilityYes Yes Yes Global Yes

log_syslog_include_pidYes Yes Yes Global Yes

log_syslog_tag Yes Yes Yes Global Yes

log_throttle_queries_not_using_indexesYes Yes Yes Global Yes

log_timestamps Yes Yes Yes Global Yes

long_query_time Yes Yes Yes Both Yes

low_priority_updatesYes Yes Yes Both Yes

lower_case_file_system Yes Global No

lower_case_table_namesYes Yes Yes Global No

mandatory_roles Yes Yes Yes Global Yes

master_info_repositoryYes Yes Yes Global Yes

master_verify_checksumYes Yes Yes Global Yes

max_allowed_packetYes Yes Yes Both Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max_binlog_size Yes Yes Yes Global Yes

max_binlog_stmt_cache_sizeYes Yes Yes Global Yes

max_connect_errorsYes Yes Yes Global Yes

max_connectionsYes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_digest_lengthYes Yes Yes Global No

max_error_countYes Yes Yes Both Yes

max_execution_timeYes Yes Yes Both Yes

max_heap_table_sizeYes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_points_in_geometryYes Yes Yes Both Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_sizeYes Yes Yes Global Yes

max_seeks_for_keyYes Yes Yes Both Yes

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_user_connectionsYes Yes Yes Both Yes

max_write_lock_countYes Yes Yes Global Yes

mecab_rc_file Yes Yes Yes Global No

metadata_locks_cache_sizeYes Yes Yes Global No

metadata_locks_hash_instancesYes Yes Yes Global No

min_examined_row_limitYes Yes Yes Both Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

811

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam_recover_optionsYes Yes Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

mysql_firewall_modeYes Yes Yes Global Yes

mysql_firewall_traceYes Yes Yes Global Yes

mysql_native_password_proxy_usersYes Yes Yes Global Yes

mysqlx_bind_addressYes Yes Yes Global No

mysqlx_compression_algorithmsYes Yes Yes Global Yes

mysqlx_connect_timeoutYes Yes Yes Global Yes

mysqlx_deflate_default_compression_levelYes Yes Yes Global Yes

mysqlx_deflate_max_client_compression_levelYes Yes Yes Global Yes

mysqlx_document_id_unique_prefixYes Yes Yes Global Yes

mysqlx_enable_hello_noticeYes Yes Yes Global Yes

mysqlx_idle_worker_thread_timeoutYes Yes Yes Global Yes

mysqlx_interactive_timeoutYes Yes Yes Global Yes

mysqlx_lz4_default_compression_levelYes Yes Yes Global Yes

mysqlx_lz4_max_client_compression_levelYes Yes Yes Global Yes

mysqlx_max_allowed_packetYes Yes Yes Global Yes

mysqlx_max_connectionsYes Yes Yes Global Yes

mysqlx_min_worker_threadsYes Yes Yes Global Yes

mysqlx_port Yes Yes Yes Global No

mysqlx_port_open_timeoutYes Yes Yes Global No

mysqlx_read_timeoutYes Yes Yes Session Yes

mysqlx_socket Yes Yes Yes Global No

mysqlx_ssl_ca Yes Yes Yes Global No

mysqlx_ssl_capathYes Yes Yes Global No

mysqlx_ssl_cert Yes Yes Yes Global No

mysqlx_ssl_cipherYes Yes Yes Global No

mysqlx_ssl_crl Yes Yes Yes Global No

mysqlx_ssl_crlpathYes Yes Yes Global No

mysqlx_ssl_key Yes Yes Yes Global No

mysqlx_wait_timeoutYes Yes Yes Session Yes

mysqlx_write_timeoutYes Yes Yes Session Yes

mysqlx_zstd_default_compression_levelYes Yes Yes Global Yes

mysqlx_zstd_max_client_compression_levelYes Yes Yes Global Yes

named_pipe Yes Yes Yes Global No

named_pipe_full_access_groupYes Yes Yes Global No

812

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

ndb_allow_copying_alter_tableYes Yes Yes Both Yes

ndb_applier_allow_skip_epochYes Yes Yes Global No

ndb_autoincrement_prefetch_szYes Yes Yes Both Yes

ndb_batch_size Yes Yes Yes Both Yes

ndb_blob_read_batch_bytesYes Yes Yes Both Yes

ndb_blob_write_batch_bytesYes Yes Yes Both Yes

ndb_clear_apply_statusYes Yes Global Yes

ndb_cluster_connection_poolYes Yes Yes Global No

ndb_cluster_connection_pool_nodeidsYes Yes Yes Global No

ndb_conflict_roleYes Yes Yes Global Yes

ndb_data_node_neighbourYes Yes Yes Global Yes

ndb_dbg_check_sharesYes Yes Yes Both Yes

ndb_default_column_formatYes Yes Yes Global Yes

ndb_default_column_formatYes Yes Yes Global Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_deferred_constraintsYes Yes Yes Both Yes

ndb_distribution Yes Yes Yes Global Yes

ndb_distribution Yes Yes Yes Global Yes

ndb_eventbuffer_free_percentYes Yes Yes Global Yes

ndb_eventbuffer_max_allocYes Yes Yes Global Yes

ndb_extra_loggingYes Yes Yes Global Yes

ndb_force_send Yes Yes Yes Both Yes

ndb_fully_replicatedYes Yes Yes Both Yes

ndb_index_stat_enableYes Yes Yes Both Yes

ndb_index_stat_optionYes Yes Yes Both Yes

ndb_join_pushdown Yes Both Yes

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_apply_statusYes Yes Yes Global No

ndb_log_bin Yes Yes Both No

ndb_log_binlog_indexYes Yes Global Yes

ndb_log_cache_sizeYes Yes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_epochsYes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

ndb_log_empty_updateYes Yes Yes Global Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_exclusive_readsYes Yes Yes Both Yes

ndb_log_fail_terminateYes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb_log_orig Yes Yes Yes Global No

ndb_log_transaction_compressionYes Yes Yes Global Yes

813

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

ndb_log_transaction_compression_level_zstdYes Yes Yes Global Yes

ndb_log_transaction_dependencyYes Yes Yes Global No

ndb_log_transaction_idYes Yes Yes Global No

ndb_log_transaction_id Yes Global No

ndb_log_update_as_writeYes Yes Yes Global Yes

ndb_log_update_minimalYes Yes Yes Global Yes

ndb_log_updated_onlyYes Yes Yes Global Yes

ndb_metadata_checkYes Yes Yes Global Yes

ndb_metadata_check_intervalYes Yes Yes Global Yes

ndb_metadata_sync Yes Global Yes

ndb_optimization_delayYes Yes Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global Yes

ndb_optimized_node_selectionYes Yes Yes Global No

ndb_read_backupYes Yes Yes Global Yes

ndb_recv_thread_activation_thresholdYes Yes Yes Global Yes

ndb_recv_thread_cpu_maskYes Yes Yes Global Yes

ndb_replica_batch_sizeYes Yes Yes Global Yes

ndb_replica_blob_write_batch_bytesYes Yes Yes Global Yes

Ndb_replica_max_replicated_epoch Yes Global No

ndb_report_thresh_binlog_epoch_slipYes Yes Yes Global Yes

ndb_report_thresh_binlog_mem_usageYes Yes Yes Global Yes

ndb_row_checksum Yes Both Yes

ndb_schema_dist_lock_wait_timeoutYes Yes Yes Global Yes

ndb_schema_dist_timeoutYes Yes Yes Global No

ndb_schema_dist_timeoutYes Yes Yes Global No

ndb_schema_dist_upgrade_allowedYes Yes Yes Global No

Ndb_schema_participant_count Yes Global No

ndb_show_foreign_key_mock_tablesYes Yes Yes Global Yes

ndb_slave_conflict_roleYes Yes Yes Global Yes

Ndb_system_name Yes Global No

ndb_table_no_logging Yes Session Yes

ndb_table_temporary Yes Session Yes

ndb_use_copying_alter_table Yes Both No

ndb_use_exact_count Yes Both Yes

ndb_use_transactionsYes Yes Yes Both Yes

ndb_version Yes Global No

ndb_version_string Yes Global No

ndb_wait_connectedYes Yes Yes Global No

ndb_wait_setup Yes Yes Yes Global No

ndbinfo_database Yes Global No

ndbinfo_max_bytesYes Yes Both Yes

814

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

ndbinfo_max_rowsYes Yes Both Yes

ndbinfo_offline Yes Global Yes

ndbinfo_show_hiddenYes Yes Both Yes

ndbinfo_table_prefix Yes Global No

ndbinfo_version Yes Global No

net_buffer_lengthYes Yes Yes Both Yes

net_read_timeoutYes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeoutYes Yes Yes Both Yes

new Yes Yes Yes Both Yes

ngram_token_sizeYes Yes Yes Global No

offline_mode Yes Yes Yes Global Yes

old Yes Yes Yes Global No

old_alter_table Yes Yes Yes Both Yes

open_files_limit Yes Yes Yes Global No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

optimizer_switch Yes Yes Yes Both Yes

optimizer_trace Yes Yes Yes Both Yes

optimizer_trace_featuresYes Yes Yes Both Yes

optimizer_trace_limitYes Yes Yes Both Yes

optimizer_trace_max_mem_sizeYes Yes Yes Both Yes

optimizer_trace_offsetYes Yes Yes Both Yes

original_commit_timestamp Yes Session Yes

original_server_version Yes Session Yes

parser_max_mem_sizeYes Yes Yes Both Yes

partial_revokes Yes Yes Yes Global Yes

password_historyYes Yes Yes Global Yes

password_require_currentYes Yes Yes Global Yes

password_reuse_intervalYes Yes Yes Global Yes

performance_schemaYes Yes Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_error_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

815

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

performance_schema_events_waits_history_sizeYes Yes Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_digest_sample_ageYes Yes Yes Global Yes

performance_schema_max_file_classesYes Yes Yes Global No

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_index_statYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

performance_schema_max_metadata_locksYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_sql_text_lengthYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_table_lock_statYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

performance_schema_show_processlistYes Yes Yes Global Yes

performance_schema_users_sizeYes Yes Yes Global No

persist_only_admin_x509_subjectYes Yes Yes Global No

persist_sensitive_variables_in_plaintextYes Yes Yes Global No

persisted_globals_loadYes Yes Yes Global No

pid_file Yes Yes Yes Global No

plugin_dir Yes Yes Yes Global No

port Yes Yes Yes Global No

preload_buffer_sizeYes Yes Yes Both Yes

816

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

print_identified_with_as_hexYes Yes Yes Both Yes

profiling Yes Both Yes

profiling_history_sizeYes Yes Yes Both Yes

protocol_compression_algorithmsYes Yes Yes Global Yes

protocol_version Yes Global No

proxy_user Yes Session No

pseudo_replica_mode Yes Session Yes

pseudo_slave_mode Yes Session Yes

pseudo_thread_id Yes Session Yes

query_alloc_block_sizeYes Yes Yes Both Yes

query_prealloc_sizeYes Yes Yes Both Yes

rand_seed1 Yes Session Yes

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

range_optimizer_max_mem_sizeYes Yes Yes Both Yes

rbr_exec_mode Yes Session Yes

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_sizeYes Yes Yes Both Yes

regexp_stack_limitYes Yes Yes Global Yes

regexp_time_limitYes Yes Yes Global Yes

relay_log Yes Yes Yes Global No

relay_log_basename Yes Global No

relay_log_index Yes Yes Yes Global No

relay_log_info_fileYes Yes Yes Global No

relay_log_info_repositoryYes Yes Yes Global Yes

relay_log_purge Yes Yes Yes Global Yes

relay_log_recoveryYes Yes Yes Global No

relay_log_space_limitYes Yes Yes Global No

replica_allow_batchingYes Yes Yes Global Yes

replica_checkpoint_groupYes Yes Yes Global Yes

replica_checkpoint_periodYes Yes Yes Global Yes

replica_compressed_protocolYes Yes Yes Global Yes

replica_exec_modeYes Yes Yes Global Yes

replica_load_tmpdirYes Yes Yes Global No

replica_max_allowed_packetYes Yes Yes Global Yes

replica_net_timeoutYes Yes Yes Global Yes

replica_parallel_typeYes Yes Yes Global Yes

replica_parallel_workersYes Yes Yes Global Yes

replica_pending_jobs_size_maxYes Yes Yes Global Yes

replica_preserve_commit_orderYes Yes Yes Global Yes

817

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

replica_skip_errorsYes Yes Yes Global No

replica_sql_verify_checksumYes Yes Yes Global Yes

replica_transaction_retriesYes Yes Yes Global Yes

replica_type_conversionsYes Yes Yes Global Yes

replication_optimize_for_static_plugin_configYes Yes Yes Global Yes

replication_sender_observe_commit_onlyYes Yes Yes Global Yes

report_host Yes Yes Yes Global No

report_password Yes Yes Yes Global No

report_port Yes Yes Yes Global No

report_user Yes Yes Yes Global No

require_row_format Yes Session Yes

require_secure_transportYes Yes Yes Global Yes

resultset_metadata Yes Session Yes

rewriter_enabled Yes Global Yes

rewriter_enabled_for_threads_without_privilege_checksYes Global Yes

rewriter_verbose Yes Global Yes

rpl_read_size Yes Yes Yes Global Yes

rpl_semi_sync_master_enabledYes Yes Yes Global Yes

rpl_semi_sync_master_timeoutYes Yes Yes Global Yes

rpl_semi_sync_master_trace_levelYes Yes Yes Global Yes

rpl_semi_sync_master_wait_for_slave_countYes Yes Yes Global Yes

rpl_semi_sync_master_wait_no_slaveYes Yes Yes Global Yes

rpl_semi_sync_master_wait_pointYes Yes Yes Global Yes

rpl_semi_sync_replica_enabledYes Yes Yes Global Yes

rpl_semi_sync_replica_trace_levelYes Yes Yes Global Yes

rpl_semi_sync_slave_enabledYes Yes Yes Global Yes

rpl_semi_sync_slave_trace_levelYes Yes Yes Global Yes

rpl_semi_sync_source_enabledYes Yes Yes Global Yes

rpl_semi_sync_source_timeoutYes Yes Yes Global Yes

rpl_semi_sync_source_trace_levelYes Yes Yes Global Yes

rpl_semi_sync_source_wait_for_replica_countYes Yes Yes Global Yes

rpl_semi_sync_source_wait_no_replicaYes Yes Yes Global Yes

rpl_semi_sync_source_wait_pointYes Yes Yes Global Yes

rpl_stop_replica_timeoutYes Yes Yes Global Yes

rpl_stop_slave_timeoutYes Yes Yes Global Yes

schema_definition_cacheYes Yes Yes Global Yes

secondary_engine_cost_threshold Yes Session Yes

secure_file_priv Yes Yes Yes Global No

select_into_buffer_sizeYes Yes Yes Both Yes

select_into_disk_syncYes Yes Yes Both Yes

select_into_disk_sync_delayYes Yes Yes Both Yes

818

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

server_id Yes Yes Yes Global Yes

server_id_bits Yes Yes Yes Global No

server_uuid Yes Global No

session_track_gtidsYes Yes Yes Both Yes

session_track_schemaYes Yes Yes Both Yes

session_track_state_changeYes Yes Yes Both Yes

session_track_system_variablesYes Yes Yes Both Yes

session_track_transaction_infoYes Yes Yes Both Yes

sha256_password_auto_generate_rsa_keysYes Yes Yes Global No

sha256_password_private_key_pathYes Yes Yes Global No

sha256_password_proxy_usersYes Yes Yes Global Yes

sha256_password_public_key_pathYes Yes Yes Global No

shared_memory Yes Yes Yes Global No

shared_memory_base_nameYes Yes Yes Global No

show_create_table_skip_secondary_engineYes Yes Yes Session Yes

show_create_table_verbosityYes Yes Yes Both Yes

show_gipk_in_create_table_and_information_schemaYes Yes Yes Both Yes

show_old_temporalsYes Yes Yes Both Yes

skip_external_lockingYes Yes Yes Global No

skip_name_resolveYes Yes Yes Global No

skip_networking Yes Yes Yes Global No

skip_replica_startYes Yes Yes Global No

skip_show_databaseYes Yes Yes Global No

skip_slave_start Yes Yes Yes Global No

slave_allow_batchingYes Yes Yes Global Yes

slave_checkpoint_groupYes Yes Yes Global Yes

slave_checkpoint_periodYes Yes Yes Global Yes

slave_compressed_protocolYes Yes Yes Global Yes

slave_exec_modeYes Yes Yes Global Yes

slave_load_tmpdirYes Yes Yes Global No

slave_max_allowed_packetYes Yes Yes Global Yes

slave_net_timeoutYes Yes Yes Global Yes

slave_parallel_typeYes Yes Yes Global Yes

slave_parallel_workersYes Yes Yes Global Yes

slave_pending_jobs_size_maxYes Yes Yes Global Yes

slave_preserve_commit_orderYes Yes Yes Global Yes

slave_rows_search_algorithmsYes Yes Yes Global Yes

slave_skip_errorsYes Yes Yes Global No

slave_sql_verify_checksumYes Yes Yes Global Yes

slave_transaction_retriesYes Yes Yes Global Yes

slave_type_conversionsYes Yes Yes Global Yes

819

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

slow_launch_timeYes Yes Yes Global Yes

slow_query_log Yes Yes Yes Global Yes

slow_query_log_fileYes Yes Yes Global Yes

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

source_verify_checksumYes Yes Yes Global Yes

sql_auto_is_null Yes Both Yes

sql_big_selects Yes Both Yes

sql_buffer_result Yes Both Yes

sql_generate_invisible_primary_keyYes Yes Yes Both Yes

sql_log_bin Yes Session Yes

sql_log_off Yes Both Yes

sql_mode Yes Yes Yes Both Yes

sql_notes Yes Both Yes

sql_quote_show_create Yes Both Yes

sql_replica_skip_counter Yes Global Yes

sql_require_primary_keyYes Yes Yes Both Yes

sql_safe_updates Yes Both Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Both Yes

ssl_ca Yes Yes Yes Global Varies

ssl_capath Yes Yes Yes Global Varies

ssl_cert Yes Yes Yes Global Varies

ssl_cipher Yes Yes Yes Global Varies

ssl_crl Yes Yes Yes Global Varies

ssl_crlpath Yes Yes Yes Global Varies

ssl_fips_mode Yes Yes Yes Global No

ssl_key Yes Yes Yes Global Varies

ssl_session_cache_modeYes Yes Yes Global Yes

ssl_session_cache_timeoutYes Yes Yes Global Yes

statement_id Yes Session No

stored_program_cacheYes Yes Yes Global Yes

stored_program_definition_cacheYes Yes Yes Global Yes

super_read_only Yes Yes Yes Global Yes

sync_binlog Yes Yes Yes Global Yes

sync_master_infoYes Yes Yes Global Yes

sync_relay_log Yes Yes Yes Global Yes

sync_relay_log_infoYes Yes Yes Global Yes

sync_source_infoYes Yes Yes Global Yes

syseventlog.facilityYes Yes Yes Global Yes

820

Server System Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

syseventlog.include_pidYes Yes Yes Global Yes

syseventlog.tag Yes Yes Yes Global Yes

system_time_zone Yes Global No

table_definition_cacheYes Yes Yes Global Yes

table_encryption_privilege_checkYes Yes Yes Global Yes

table_open_cacheYes Yes Yes Global Yes

table_open_cache_instancesYes Yes Yes Global No

tablespace_definition_cacheYes Yes Yes Global Yes

temptable_max_mmapYes Yes Yes Global Yes

temptable_max_ramYes Yes Yes Global Yes

temptable_use_mmapYes Yes Yes Global Yes

terminology_use_previousYes Yes Yes Both Yes

thread_cache_sizeYes Yes Yes Global Yes

thread_handling Yes Yes Yes Global No

thread_pool_algorithmYes Yes Yes Global No

thread_pool_dedicated_listenersYes Yes Yes Global No

thread_pool_high_priority_connectionYes Yes Yes Both Yes

thread_pool_max_active_query_threadsYes Yes Yes Global Yes

thread_pool_max_transactions_limitYes Yes Yes Global Yes

thread_pool_max_unused_threadsYes Yes Yes Global Yes

thread_pool_prio_kickup_timerYes Yes Yes Global Yes

thread_pool_query_threads_per_groupYes Yes Yes Global Yes

thread_pool_sizeYes Yes Yes Global No

thread_pool_stall_limitYes Yes Yes Global Yes

thread_pool_transaction_delayYes Yes Yes Global Yes

thread_stack Yes Yes Yes Global No

time_zone Yes Both Yes

timestamp Yes Session Yes

tls_ciphersuites Yes Yes Yes Global Yes

tls_version Yes Yes Yes Global Varies

tmp_table_size Yes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction_allow_batching Yes Session Yes

transaction_isolationYes Yes Yes Both Yes

transaction_prealloc_sizeYes Yes Yes Both Yes

transaction_read_onlyYes Yes Yes Both Yes

transaction_write_set_extractionYes Yes Yes Both Yes

unique_checks Yes Both Yes

updatable_views_with_limitYes Yes Yes Both Yes

use_secondary_engine Yes Session Yes

821

Server Status Variable Reference

Name Cmd-Line Option File System Var Var Scope Dynamic

validate_password_check_user_nameYes Yes Yes Global Yes

validate_password_dictionary_fileYes Yes Yes Global Yes

validate_password_lengthYes Yes Yes Global Yes

validate_password_mixed_case_countYes Yes Yes Global Yes

validate_password_number_countYes Yes Yes Global Yes

validate_password_policyYes Yes Yes Global Yes

validate_password_special_char_countYes Yes Yes Global Yes

validate_password.changed_characters_percentageYes Yes Yes Global Yes

validate_password.check_user_nameYes Yes Yes Global Yes

validate_password.dictionary_fileYes Yes Yes Global Yes

validate_password.lengthYes Yes Yes Global Yes

validate_password.mixed_case_countYes Yes Yes Global Yes

validate_password.number_countYes Yes Yes Global Yes

validate_password.policyYes Yes Yes Global Yes

validate_password.special_char_countYes Yes Yes Global Yes

version Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

version_compile_zlib Yes Global No

version_tokens_sessionYes Yes Yes Both Yes

version_tokens_session_numberYes Yes Yes Both No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No

windowing_use_high_precisionYes Yes Yes Both Yes

xa_detach_on_prepareYes Yes Yes Both Yes

Notes:

1. This option is dynamic, but should be set only by server. You should not set this variable manually.

7.1.6 Server Status Variable Reference

The following table lists all status variables applicable within mysqld.

The table lists each variable's data type and scope. The last column indicates whether the scope for
each variable is Global, Session, or both. Please see the corresponding item descriptions for details on
setting and using the variables. Where appropriate, direct links to further information about the items
are provided.

Table 7.3 Status Variable Summary

Variable Name Variable Type Variable Scope

Aborted_clients Integer Global

Aborted_connects Integer Global

Acl_cache_items_count Integer Global

Audit_log_current_size Integer Global

822

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Audit_log_event_max_drop_size Integer Global

Audit_log_events Integer Global

Audit_log_events_filtered Integer Global

Audit_log_events_lost Integer Global

Audit_log_events_written Integer Global

Audit_log_total_size Integer Global

Audit_log_write_waits Integer Global

Authentication_ldap_sasl_supported_methodsString Global

Binlog_cache_disk_use Integer Global

Binlog_cache_use Integer Global

Binlog_stmt_cache_disk_use Integer Global

Binlog_stmt_cache_use Integer Global

Bytes_received Integer Both

Bytes_sent Integer Both

Caching_sha2_password_rsa_public_keyString Global

Com_admin_commands Integer Both

Com_alter_db Integer Both

Com_alter_event Integer Both

Com_alter_function Integer Both

Com_alter_procedure Integer Both

Com_alter_resource_group Integer Global

Com_alter_server Integer Both

Com_alter_table Integer Both

Com_alter_tablespace Integer Both

Com_alter_user Integer Both

Com_alter_user_default_role Integer Global

Com_analyze Integer Both

Com_assign_to_keycache Integer Both

Com_begin Integer Both

Com_binlog Integer Both

Com_call_procedure Integer Both

Com_change_db Integer Both

Com_change_master Integer Both

Com_change_repl_filter Integer Both

Com_change_replication_source Integer Both

Com_check Integer Both

Com_checksum Integer Both

Com_clone Integer Global

Com_commit Integer Both

Com_create_db Integer Both

Com_create_event Integer Both

823

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_create_function Integer Both

Com_create_index Integer Both

Com_create_procedure Integer Both

Com_create_resource_group Integer Global

Com_create_role Integer Global

Com_create_server Integer Both

Com_create_table Integer Both

Com_create_trigger Integer Both

Com_create_udf Integer Both

Com_create_user Integer Both

Com_create_view Integer Both

Com_dealloc_sql Integer Both

Com_delete Integer Both

Com_delete_multi Integer Both

Com_do Integer Both

Com_drop_db Integer Both

Com_drop_event Integer Both

Com_drop_function Integer Both

Com_drop_index Integer Both

Com_drop_procedure Integer Both

Com_drop_resource_group Integer Global

Com_drop_role Integer Global

Com_drop_server Integer Both

Com_drop_table Integer Both

Com_drop_trigger Integer Both

Com_drop_user Integer Both

Com_drop_view Integer Both

Com_empty_query Integer Both

Com_execute_sql Integer Both

Com_explain_other Integer Both

Com_flush Integer Both

Com_get_diagnostics Integer Both

Com_grant Integer Both

Com_grant_roles Integer Global

Com_group_replication_start Integer Global

Com_group_replication_stop Integer Global

Com_ha_close Integer Both

Com_ha_open Integer Both

Com_ha_read Integer Both

Com_help Integer Both

Com_insert Integer Both

824

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_insert_select Integer Both

Com_install_component Integer Global

Com_install_plugin Integer Both

Com_kill Integer Both

Com_load Integer Both

Com_lock_tables Integer Both

Com_optimize Integer Both

Com_preload_keys Integer Both

Com_prepare_sql Integer Both

Com_purge Integer Both

Com_purge_before_date Integer Both

Com_release_savepoint Integer Both

Com_rename_table Integer Both

Com_rename_user Integer Both

Com_repair Integer Both

Com_replace Integer Both

Com_replace_select Integer Both

Com_replica_start Integer Both

Com_replica_stop Integer Both

Com_reset Integer Both

Com_resignal Integer Both

Com_restart Integer Both

Com_revoke Integer Both

Com_revoke_all Integer Both

Com_revoke_roles Integer Global

Com_rollback Integer Both

Com_rollback_to_savepoint Integer Both

Com_savepoint Integer Both

Com_select Integer Both

Com_set_option Integer Both

Com_set_resource_group Integer Global

Com_set_role Integer Global

Com_show_authors Integer Both

Com_show_binlog_events Integer Both

Com_show_binlogs Integer Both

Com_show_charsets Integer Both

Com_show_collations Integer Both

Com_show_contributors Integer Both

Com_show_create_db Integer Both

Com_show_create_event Integer Both

Com_show_create_func Integer Both

825

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_show_create_proc Integer Both

Com_show_create_table Integer Both

Com_show_create_trigger Integer Both

Com_show_create_user Integer Both

Com_show_databases Integer Both

Com_show_engine_logs Integer Both

Com_show_engine_mutex Integer Both

Com_show_engine_status Integer Both

Com_show_errors Integer Both

Com_show_events Integer Both

Com_show_fields Integer Both

Com_show_function_code Integer Both

Com_show_function_status Integer Both

Com_show_grants Integer Both

Com_show_keys Integer Both

Com_show_master_status Integer Both

Com_show_ndb_status Integer Both

Com_show_open_tables Integer Both

Com_show_plugins Integer Both

Com_show_privileges Integer Both

Com_show_procedure_code Integer Both

Com_show_procedure_status Integer Both

Com_show_processlist Integer Both

Com_show_profile Integer Both

Com_show_profiles Integer Both

Com_show_relaylog_events Integer Both

Com_show_replica_status Integer Both

Com_show_replicas Integer Both

Com_show_slave_hosts Integer Both

Com_show_slave_status Integer Both

Com_show_status Integer Both

Com_show_storage_engines Integer Both

Com_show_table_status Integer Both

Com_show_tables Integer Both

Com_show_triggers Integer Both

Com_show_variables Integer Both

Com_show_warnings Integer Both

Com_shutdown Integer Both

Com_signal Integer Both

Com_slave_start Integer Both

Com_slave_stop Integer Both

826

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Com_stmt_close Integer Both

Com_stmt_execute Integer Both

Com_stmt_fetch Integer Both

Com_stmt_prepare Integer Both

Com_stmt_reprepare Integer Both

Com_stmt_reset Integer Both

Com_stmt_send_long_data Integer Both

Com_truncate Integer Both

Com_uninstall_component Integer Global

Com_uninstall_plugin Integer Both

Com_unlock_tables Integer Both

Com_update Integer Both

Com_update_multi Integer Both

Com_xa_commit Integer Both

Com_xa_end Integer Both

Com_xa_prepare Integer Both

Com_xa_recover Integer Both

Com_xa_rollback Integer Both

Com_xa_start Integer Both

Compression Integer Session

Compression_algorithm String Global

Compression_level Integer Global

Connection_control_delay_generatedInteger Global

Connection_errors_accept Integer Global

Connection_errors_internal Integer Global

Connection_errors_max_connectionsInteger Global

Connection_errors_peer_address Integer Global

Connection_errors_select Integer Global

Connection_errors_tcpwrap Integer Global

Connections Integer Global

Created_tmp_disk_tables Integer Both

Created_tmp_files Integer Global

Created_tmp_tables Integer Both

Current_tls_ca File name Global

Current_tls_capath Directory name Global

Current_tls_cert File name Global

Current_tls_cipher String Global

Current_tls_ciphersuites String Global

Current_tls_crl File name Global

Current_tls_crlpath Directory name Global

Current_tls_key File name Global

827

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Current_tls_version String Global

Delayed_errors Integer Global

Delayed_insert_threads Integer Global

Delayed_writes Integer Global

dragnet.Status String Global

Error_log_buffered_bytes Integer Global

Error_log_buffered_events Integer Global

Error_log_expired_events Integer Global

Error_log_latest_write Integer Global

Firewall_access_denied Integer Global

Firewall_access_granted Integer Global

Firewall_access_suspicious Integer Global

Firewall_cached_entries Integer Global

Flush_commands Integer Global

Global_connection_memory Integer Global

group_replication_primary_memberString Global

Handler_commit Integer Both

Handler_delete Integer Both

Handler_discover Integer Both

Handler_external_lock Integer Both

Handler_mrr_init Integer Both

Handler_prepare Integer Both

Handler_read_first Integer Both

Handler_read_key Integer Both

Handler_read_last Integer Both

Handler_read_next Integer Both

Handler_read_prev Integer Both

Handler_read_rnd Integer Both

Handler_read_rnd_next Integer Both

Handler_rollback Integer Both

Handler_savepoint Integer Both

Handler_savepoint_rollback Integer Both

Handler_update Integer Both

Handler_write Integer Both

Innodb_buffer_pool_bytes_data Integer Global

Innodb_buffer_pool_bytes_dirty Integer Global

Innodb_buffer_pool_dump_status String Global

Innodb_buffer_pool_load_status String Global

Innodb_buffer_pool_pages_data Integer Global

Innodb_buffer_pool_pages_dirty Integer Global

Innodb_buffer_pool_pages_flushedInteger Global

828

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Innodb_buffer_pool_pages_free Integer Global

Innodb_buffer_pool_pages_latchedInteger Global

Innodb_buffer_pool_pages_misc Integer Global

Innodb_buffer_pool_pages_total Integer Global

Innodb_buffer_pool_read_ahead Integer Global

Innodb_buffer_pool_read_ahead_evictedInteger Global

Innodb_buffer_pool_read_ahead_rndInteger Global

Innodb_buffer_pool_read_requestsInteger Global

Innodb_buffer_pool_reads Integer Global

Innodb_buffer_pool_resize_status String Global

Innodb_buffer_pool_resize_status_codeInteger Global

Innodb_buffer_pool_resize_status_progressInteger Global

Innodb_buffer_pool_wait_free Integer Global

Innodb_buffer_pool_write_requestsInteger Global

Innodb_data_fsyncs Integer Global

Innodb_data_pending_fsyncs Integer Global

Innodb_data_pending_reads Integer Global

Innodb_data_pending_writes Integer Global

Innodb_data_read Integer Global

Innodb_data_reads Integer Global

Innodb_data_writes Integer Global

Innodb_data_written Integer Global

Innodb_dblwr_pages_written Integer Global

Innodb_dblwr_writes Integer Global

Innodb_have_atomic_builtins Integer Global

Innodb_log_waits Integer Global

Innodb_log_write_requests Integer Global

Innodb_log_writes Integer Global

Innodb_num_open_files Integer Global

Innodb_os_log_fsyncs Integer Global

Innodb_os_log_pending_fsyncs Integer Global

Innodb_os_log_pending_writes Integer Global

Innodb_os_log_written Integer Global

Innodb_page_size Integer Global

Innodb_pages_created Integer Global

Innodb_pages_read Integer Global

Innodb_pages_written Integer Global

Innodb_redo_log_capacity_resizedInteger Global

Innodb_redo_log_checkpoint_lsn Integer Global

Innodb_redo_log_current_lsn Integer Global

Innodb_redo_log_enabled Boolean Global

829

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Innodb_redo_log_flushed_to_disk_lsnInteger Global

Innodb_redo_log_logical_size Integer Global

Innodb_redo_log_physical_size Boolean Global

Innodb_redo_log_read_only Boolean Global

Innodb_redo_log_resize_status String Global

Innodb_redo_log_uuid Integer Global

Innodb_row_lock_current_waits Integer Global

Innodb_row_lock_time Integer Global

Innodb_row_lock_time_avg Integer Global

Innodb_row_lock_time_max Integer Global

Innodb_row_lock_waits Integer Global

Innodb_rows_deleted Integer Global

Innodb_rows_inserted Integer Global

Innodb_rows_read Integer Global

Innodb_rows_updated Integer Global

Innodb_system_rows_deleted Integer Global

Innodb_system_rows_inserted Integer Global

Innodb_system_rows_read Integer Global

Innodb_system_rows_updated Integer Global

Innodb_truncated_status_writes Integer Global

Innodb_undo_tablespaces_active Integer Global

Innodb_undo_tablespaces_explicitInteger Global

Innodb_undo_tablespaces_implicitInteger Global

Innodb_undo_tablespaces_total Integer Global

Key_blocks_not_flushed Integer Global

Key_blocks_unused Integer Global

Key_blocks_used Integer Global

Key_read_requests Integer Global

Key_reads Integer Global

Key_write_requests Integer Global

Key_writes Integer Global

Last_query_cost Numeric Session

Last_query_partial_plans Integer Session

Locked_connects Integer Global

Max_execution_time_exceeded Integer Both

Max_execution_time_set Integer Both

Max_execution_time_set_failed Integer Both

Max_used_connections Integer Global

Max_used_connections_time Datetime Global

mecab_charset String Global

Mysqlx_aborted_clients Integer Global

830

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Mysqlx_address String Global

Mysqlx_bytes_received Integer Both

Mysqlx_bytes_received_compressed_payloadInteger Both

Mysqlx_bytes_received_uncompressed_frameInteger Both

Mysqlx_bytes_sent Integer Both

Mysqlx_bytes_sent_compressed_payloadInteger Both

Mysqlx_bytes_sent_uncompressed_frameInteger Both

Mysqlx_compression_algorithm String Session

Mysqlx_compression_level String Session

Mysqlx_connection_accept_errorsInteger Both

Mysqlx_connection_errors Integer Both

Mysqlx_connections_accepted Integer Global

Mysqlx_connections_closed Integer Global

Mysqlx_connections_rejected Integer Global

Mysqlx_crud_create_view Integer Both

Mysqlx_crud_delete Integer Both

Mysqlx_crud_drop_view Integer Both

Mysqlx_crud_find Integer Both

Mysqlx_crud_insert Integer Both

Mysqlx_crud_modify_view Integer Both

Mysqlx_crud_update Integer Both

Mysqlx_cursor_close Integer Both

Mysqlx_cursor_fetch Integer Both

Mysqlx_cursor_open Integer Both

Mysqlx_errors_sent Integer Both

Mysqlx_errors_unknown_message_typeInteger Both

Mysqlx_expect_close Integer Both

Mysqlx_expect_open Integer Both

Mysqlx_init_error Integer Both

Mysqlx_messages_sent Integer Both

Mysqlx_notice_global_sent Integer Both

Mysqlx_notice_other_sent Integer Both

Mysqlx_notice_warning_sent Integer Both

Mysqlx_notified_by_group_replicationInteger Both

Mysqlx_port String Global

Mysqlx_prep_deallocate Integer Both

Mysqlx_prep_execute Integer Both

Mysqlx_prep_prepare Integer Both

Mysqlx_rows_sent Integer Both

Mysqlx_sessions Integer Global

Mysqlx_sessions_accepted Integer Global

831

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Mysqlx_sessions_closed Integer Global

Mysqlx_sessions_fatal_error Integer Global

Mysqlx_sessions_killed Integer Global

Mysqlx_sessions_rejected Integer Global

Mysqlx_socket String Global

Mysqlx_ssl_accept_renegotiates Integer Global

Mysqlx_ssl_accepts Integer Global

Mysqlx_ssl_active Integer Both

Mysqlx_ssl_cipher Integer Both

Mysqlx_ssl_cipher_list Integer Both

Mysqlx_ssl_ctx_verify_depth Integer Both

Mysqlx_ssl_ctx_verify_mode Integer Both

Mysqlx_ssl_finished_accepts Integer Global

Mysqlx_ssl_server_not_after Integer Global

Mysqlx_ssl_server_not_before Integer Global

Mysqlx_ssl_verify_depth Integer Global

Mysqlx_ssl_verify_mode Integer Global

Mysqlx_ssl_version Integer Both

Mysqlx_stmt_create_collection Integer Both

Mysqlx_stmt_create_collection_indexInteger Both

Mysqlx_stmt_disable_notices Integer Both

Mysqlx_stmt_drop_collection Integer Both

Mysqlx_stmt_drop_collection_indexInteger Both

Mysqlx_stmt_enable_notices Integer Both

Mysqlx_stmt_ensure_collection String Both

Mysqlx_stmt_execute_mysqlx Integer Both

Mysqlx_stmt_execute_sql Integer Both

Mysqlx_stmt_execute_xplugin Integer Both

Mysqlx_stmt_get_collection_optionsInteger Both

Mysqlx_stmt_kill_client Integer Both

Mysqlx_stmt_list_clients Integer Both

Mysqlx_stmt_list_notices Integer Both

Mysqlx_stmt_list_objects Integer Both

Mysqlx_stmt_modify_collection_optionsInteger Both

Mysqlx_stmt_ping Integer Both

Mysqlx_worker_threads Integer Global

Mysqlx_worker_threads_active Integer Global

Ndb_api_adaptive_send_deferred_countInteger Global

Ndb_api_adaptive_send_deferred_count_replicaInteger Global

Ndb_api_adaptive_send_deferred_count_sessionInteger Global

Ndb_api_adaptive_send_deferred_count_slaveInteger Global

832

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Ndb_api_adaptive_send_forced_countInteger Global

Ndb_api_adaptive_send_forced_count_replicaInteger Global

Ndb_api_adaptive_send_forced_count_sessionInteger Global

Ndb_api_adaptive_send_forced_count_slaveInteger Global

Ndb_api_adaptive_send_unforced_countInteger Global

Ndb_api_adaptive_send_unforced_count_replicaInteger Global

Ndb_api_adaptive_send_unforced_count_sessionInteger Global

Ndb_api_adaptive_send_unforced_count_slaveInteger Global

Ndb_api_bytes_received_count Integer Global

Ndb_api_bytes_received_count_replicaInteger Global

Ndb_api_bytes_received_count_sessionInteger Session

Ndb_api_bytes_received_count_slaveInteger Global

Ndb_api_bytes_sent_count Integer Global

Ndb_api_bytes_sent_count_replicaInteger Global

Ndb_api_bytes_sent_count_sessionInteger Session

Ndb_api_bytes_sent_count_slave Integer Global

Ndb_api_event_bytes_count Integer Global

Ndb_api_event_bytes_count_injectorInteger Global

Ndb_api_event_data_count Integer Global

Ndb_api_event_data_count_injectorInteger Global

Ndb_api_event_nondata_count Integer Global

Ndb_api_event_nondata_count_injectorInteger Global

Ndb_api_pk_op_count Integer Global

Ndb_api_pk_op_count_replica Integer Global

Ndb_api_pk_op_count_session Integer Session

Ndb_api_pk_op_count_slave Integer Global

Ndb_api_pruned_scan_count Integer Global

Ndb_api_pruned_scan_count_replicaInteger Global

Ndb_api_pruned_scan_count_sessionInteger Session

Ndb_api_pruned_scan_count_slaveInteger Global

Ndb_api_range_scan_count Integer Global

Ndb_api_range_scan_count_replicaInteger Global

Ndb_api_range_scan_count_sessionInteger Session

Ndb_api_range_scan_count_slaveInteger Global

Ndb_api_read_row_count Integer Global

Ndb_api_read_row_count_replica Integer Global

Ndb_api_read_row_count_sessionInteger Session

Ndb_api_read_row_count_slave Integer Global

Ndb_api_scan_batch_count Integer Global

Ndb_api_scan_batch_count_replicaInteger Global

Ndb_api_scan_batch_count_sessionInteger Session

833

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Ndb_api_scan_batch_count_slaveInteger Global

Ndb_api_table_scan_count Integer Global

Ndb_api_table_scan_count_replicaInteger Global

Ndb_api_table_scan_count_sessionInteger Session

Ndb_api_table_scan_count_slave Integer Global

Ndb_api_trans_abort_count Integer Global

Ndb_api_trans_abort_count_replicaInteger Global

Ndb_api_trans_abort_count_sessionInteger Session

Ndb_api_trans_abort_count_slaveInteger Global

Ndb_api_trans_close_count Integer Global

Ndb_api_trans_close_count_replicaInteger Global

Ndb_api_trans_close_count_sessionInteger Session

Ndb_api_trans_close_count_slaveInteger Global

Ndb_api_trans_commit_count Integer Global

Ndb_api_trans_commit_count_replicaInteger Global

Ndb_api_trans_commit_count_sessionInteger Session

Ndb_api_trans_commit_count_slaveInteger Global

Ndb_api_trans_local_read_row_countInteger Global

Ndb_api_trans_local_read_row_count_replicaInteger Global

Ndb_api_trans_local_read_row_count_sessionInteger Session

Ndb_api_trans_local_read_row_count_slaveInteger Global

Ndb_api_trans_start_count Integer Global

Ndb_api_trans_start_count_replicaInteger Global

Ndb_api_trans_start_count_sessionInteger Session

Ndb_api_trans_start_count_slave Integer Global

Ndb_api_uk_op_count Integer Global

Ndb_api_uk_op_count_replica Integer Global

Ndb_api_uk_op_count_session Integer Session

Ndb_api_uk_op_count_slave Integer Global

Ndb_api_wait_exec_complete_countInteger Global

Ndb_api_wait_exec_complete_count_replicaInteger Global

Ndb_api_wait_exec_complete_count_sessionInteger Session

Ndb_api_wait_exec_complete_count_slaveInteger Global

Ndb_api_wait_meta_request_countInteger Global

Ndb_api_wait_meta_request_count_replicaInteger Global

Ndb_api_wait_meta_request_count_sessionInteger Session

Ndb_api_wait_meta_request_count_slaveInteger Global

Ndb_api_wait_nanos_count Integer Global

Ndb_api_wait_nanos_count_replicaInteger Global

Ndb_api_wait_nanos_count_sessionInteger Session

Ndb_api_wait_nanos_count_slaveInteger Global

834

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Ndb_api_wait_scan_result_count Integer Global

Ndb_api_wait_scan_result_count_replicaInteger Global

Ndb_api_wait_scan_result_count_sessionInteger Session

Ndb_api_wait_scan_result_count_slaveInteger Global

Ndb_cluster_node_id Integer Global

Ndb_config_from_host Integer Both

Ndb_config_from_port Integer Both

Ndb_config_generation Integer Global

Ndb_conflict_fn_epoch Integer Global

Ndb_conflict_fn_epoch_trans Integer Global

Ndb_conflict_fn_epoch2 Integer Global

Ndb_conflict_fn_epoch2_trans Integer Global

Ndb_conflict_fn_max Integer Global

Ndb_conflict_fn_max_del_win Integer Global

Ndb_conflict_fn_max_del_win_ins Integer Global

Ndb_conflict_fn_max_ins Integer Global

Ndb_conflict_fn_old Integer Global

Ndb_conflict_last_conflict_epoch Integer Global

Ndb_conflict_last_stable_epoch Integer Global

Ndb_conflict_reflected_op_discard_countInteger Global

Ndb_conflict_reflected_op_prepare_countInteger Global

Ndb_conflict_refresh_op_count Integer Global

Ndb_conflict_trans_conflict_commit_countInteger Global

Ndb_conflict_trans_detect_iter_countInteger Global

Ndb_conflict_trans_reject_count Integer Global

Ndb_conflict_trans_row_conflict_countInteger Global

Ndb_conflict_trans_row_reject_countInteger Global

Ndb_epoch_delete_delete_count Integer Global

Ndb_execute_count Integer Global

Ndb_fetch_table_stats Integer Global

Ndb_last_commit_epoch_server Integer Global

Ndb_last_commit_epoch_session Integer Session

Ndb_metadata_blacklist_size Integer Global

Ndb_metadata_detected_count Integer Global

Ndb_metadata_excluded_count Integer Global

Ndb_metadata_synced_count Integer Global

Ndb_cluster_node_id Integer Global

Ndb_number_of_data_nodes Integer Global

Ndb_pruned_scan_count Integer Global

Ndb_pushed_queries_defined Integer Global

Ndb_pushed_queries_dropped Integer Global

835

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Ndb_pushed_queries_executed Integer Global

Ndb_pushed_reads Integer Global

Ndb_scan_count Integer Global

Ndb_slave_max_replicated_epochInteger Global

Ndb_trans_hint_count_session Integer Both

Not_flushed_delayed_rows Integer Global

Ongoing_anonymous_gtid_violating_transaction_countInteger Global

Ongoing_anonymous_transaction_countInteger Global

Ongoing_automatic_gtid_violating_transaction_countInteger Global

Open_files Integer Global

Open_streams Integer Global

Open_table_definitions Integer Global

Open_tables Integer Both

Opened_files Integer Global

Opened_table_definitions Integer Both

Opened_tables Integer Both

Performance_schema_accounts_lostInteger Global

Performance_schema_cond_classes_lostInteger Global

Performance_schema_cond_instances_lostInteger Global

Performance_schema_digest_lost Integer Global

Performance_schema_file_classes_lostInteger Global

Performance_schema_file_handles_lostInteger Global

Performance_schema_file_instances_lostInteger Global

Performance_schema_hosts_lost Integer Global

Performance_schema_index_stat_lostInteger Global

Performance_schema_locker_lost Integer Global

Performance_schema_memory_classes_lostInteger Global

Performance_schema_metadata_lock_lostInteger Global

Performance_schema_mutex_classes_lostInteger Global

Performance_schema_mutex_instances_lostInteger Global

Performance_schema_nested_statement_lostInteger Global

Performance_schema_prepared_statements_lostInteger Global

Performance_schema_program_lostInteger Global

Performance_schema_rwlock_classes_lostInteger Global

Performance_schema_rwlock_instances_lostInteger Global

Performance_schema_session_connect_attrs_longest_seenInteger Global

Performance_schema_session_connect_attrs_lostInteger Global

Performance_schema_socket_classes_lostInteger Global

Performance_schema_socket_instances_lostInteger Global

Performance_schema_stage_classes_lostInteger Global

Performance_schema_statement_classes_lostInteger Global

836

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Performance_schema_table_handles_lostInteger Global

Performance_schema_table_instances_lostInteger Global

Performance_schema_table_lock_stat_lostInteger Global

Performance_schema_thread_classes_lostInteger Global

Performance_schema_thread_instances_lostInteger Global

Performance_schema_users_lost Integer Global

Prepared_stmt_count Integer Global

Queries Integer Both

Questions Integer Both

Replica_open_temp_tables Integer Global

Replica_rows_last_search_algorithm_usedString Global

Resource_group_supported Boolean Global

Rewriter_number_loaded_rules Integer Global

Rewriter_number_reloads Integer Global

Rewriter_number_rewritten_queriesInteger Global

Rewriter_reload_error Boolean Global

Rpl_semi_sync_master_clients Integer Global

Rpl_semi_sync_master_net_avg_wait_timeInteger Global

Rpl_semi_sync_master_net_wait_timeInteger Global

Rpl_semi_sync_master_net_waitsInteger Global

Rpl_semi_sync_master_no_times Integer Global

Rpl_semi_sync_master_no_tx Integer Global

Rpl_semi_sync_master_status Boolean Global

Rpl_semi_sync_master_timefunc_failuresInteger Global

Rpl_semi_sync_master_tx_avg_wait_timeInteger Global

Rpl_semi_sync_master_tx_wait_timeInteger Global

Rpl_semi_sync_master_tx_waits Integer Global

Rpl_semi_sync_master_wait_pos_backtraverseInteger Global

Rpl_semi_sync_master_wait_sessionsInteger Global

Rpl_semi_sync_master_yes_tx Integer Global

Rpl_semi_sync_replica_status Boolean Global

Rpl_semi_sync_slave_status Boolean Global

Rpl_semi_sync_source_clients Integer Global

Rpl_semi_sync_source_net_avg_wait_timeInteger Global

Rpl_semi_sync_source_net_wait_timeInteger Global

Rpl_semi_sync_source_net_waits Integer Global

Rpl_semi_sync_source_no_times Integer Global

Rpl_semi_sync_source_no_tx Integer Global

Rpl_semi_sync_source_status Boolean Global

Rpl_semi_sync_source_timefunc_failuresInteger Global

Rpl_semi_sync_source_tx_avg_wait_timeInteger Global

837

Server Status Variable Reference

Variable Name Variable Type Variable Scope

Rpl_semi_sync_source_tx_wait_timeInteger Global

Rpl_semi_sync_source_tx_waits Integer Global

Rpl_semi_sync_source_wait_pos_backtraverseInteger Global

Rpl_semi_sync_source_wait_sessionsInteger Global

Rpl_semi_sync_source_yes_tx Integer Global

Rsa_public_key String Global

Secondary_engine_execution_countInteger Both

Select_full_join Integer Both

Select_full_range_join Integer Both

Select_range Integer Both

Select_range_check Integer Both

Select_scan Integer Both

Slave_open_temp_tables Integer Global

Slave_rows_last_search_algorithm_usedString Global

Slow_launch_threads Integer Both

Slow_queries Integer Both

Sort_merge_passes Integer Both

Sort_range Integer Both

Sort_rows Integer Both

Sort_scan Integer Both

Ssl_accept_renegotiates Integer Global

Ssl_accepts Integer Global

Ssl_callback_cache_hits Integer Global

Ssl_cipher String Both

Ssl_cipher_list String Both

Ssl_client_connects Integer Global

Ssl_connect_renegotiates Integer Global

Ssl_ctx_verify_depth Integer Global

Ssl_ctx_verify_mode Integer Global

Ssl_default_timeout Integer Both

Ssl_finished_accepts Integer Global

Ssl_finished_connects Integer Global

Ssl_server_not_after Integer Both

Ssl_server_not_before Integer Both

Ssl_session_cache_hits Integer Global

Ssl_session_cache_misses Integer Global

Ssl_session_cache_mode String Global

Ssl_session_cache_overflows Integer Global

Ssl_session_cache_size Integer Global

Ssl_session_cache_timeout Integer Global

Ssl_session_cache_timeouts Integer Global

838

Server Command Options

Variable Name Variable Type Variable Scope

Ssl_sessions_reused Integer Session

Ssl_used_session_cache_entries Integer Global

Ssl_verify_depth Integer Both

Ssl_verify_mode Integer Both

Ssl_version String Both

Table_locks_immediate Integer Global

Table_locks_waited Integer Global

Table_open_cache_hits Integer Both

Table_open_cache_misses Integer Both

Table_open_cache_overflows Integer Both

Tc_log_max_pages_used Integer Global

Tc_log_page_size Integer Global

Tc_log_page_waits Integer Global

Telemetry_traces_supported Boolean Global

Threads_cached Integer Global

Threads_connected Integer Global

Threads_created Integer Global

Threads_running Integer Global

Tls_library_version String Global

Uptime Integer Global

Uptime_since_flush_status Integer Global

validate_password_dictionary_file_last_parsedDatetime Global

validate_password_dictionary_file_words_countInteger Global

validate_password.dictionary_file_last_parsedDatetime Global

validate_password.dictionary_file_words_countInteger Global

7.1.7 Server Command Options

When you start the mysqld server, you can specify program options using any of the methods
described in Section 6.2.2, “Specifying Program Options”. The most common methods are to provide
options in an option file or on the command line. However, in most cases it is desirable to make sure
that the server uses the same options each time it runs. The best way to ensure this is to list them in an
option file. See Section 6.2.2.2, “Using Option Files”. That section also describes option file format and
syntax.

mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options from
the [mysqld], [server], [mysqld_safe], and [safe_mysqld] groups. mysql.server reads
options from the [mysqld] and [mysql.server] groups.

mysqld accepts many command options. For a brief summary, execute this command:

mysqld --help

To see the full list, use this command:

mysqld --verbose --help

Some of the items in the list are actually system variables that can be set at server startup. These
can be displayed at runtime using the SHOW VARIABLES statement. Some items displayed by the

839

Server Command Options

preceding mysqld command do not appear in SHOW VARIABLES output; this is because they are
options only and not system variables.

The following list shows some of the most common server options. Additional options are described in
other sections:

• Options that affect security: See Section 8.1.4, “Security-Related mysqld Options and Variables”.

• SSL-related options: See Command Options for Encrypted Connections.

• Binary log control options: See Section 7.4.4, “The Binary Log”.

• Replication-related options: See Section 19.1.6, “Replication and Binary Logging Options and
Variables”.

• Options for loading plugins such as pluggable storage engines: See Section 7.6.1, “Installing and
Uninstalling Plugins”.

• Options specific to particular storage engines: See Section 17.14, “InnoDB Startup Options and
System Variables” and Section 18.2.1, “MyISAM Startup Options”.

Some options control the size of buffers or caches. For a given buffer, the server might need to allocate
internal data structures. These structures typically are allocated from the total memory allocated to
the buffer, and the amount of space required might be platform dependent. This means that when you
assign a value to an option that controls a buffer size, the amount of space actually available might
differ from the value assigned. In some cases, the amount might be less than the value assigned. It
is also possible that the server adjusts a value upward. For example, if you assign a value of 0 to an
option for which the minimal value is 1024, the server sets the value to 1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some options take file name values. Unless otherwise specified, the default file location is the data
directory if the value is a relative path name. To specify the location explicitly, use an absolute path
name. Suppose that the data directory is /var/mysql/data. If a file-valued option is given as a
relative path name, it is located under /var/mysql/data. If the value is an absolute path name, its
location is as given by the path name.

You can also set the values of server system variables at server startup by using variable names as
options. To assign a value to a server system variable, use an option of the form --var_name=value.
For example, --sort_buffer_size=384M sets the sort_buffer_size variable to a value of
384MB.

When you assign a value to a variable, MySQL might automatically correct the value to stay within a
given range, or adjust the value to the closest permissible value if only certain values are permitted.

To restrict the maximum value to which a system variable can be set at runtime with the SET
statement, specify this maximum by using an option of the form --maximum-var_name=value at
server startup.

You can change the values of most system variables at runtime with the SET statement. See
Section 15.7.6.1, “SET Syntax for Variable Assignment”.

Section 7.1.8, “Server System Variables”, provides a full description for all variables, and additional
information for setting them at server startup and runtime. For information on changing system
variables, see Section 7.1.1, “Configuring the Server”.

• --help, -?

Command-Line Format --help

Display a short help message and exit. Use both the --verbose and --help options to see the full
message.

840

Server Command Options

• --admin-ssl, --skip-admin-ssl

Command-Line Format --admin-ssl[={OFF|ON}]

Introduced 8.0.21

Deprecated 8.0.26

Type Boolean

Default Value ON

The --admin-ssl option is like the --ssl option, except that it applies to the administrative
connection interface rather than the main connection interface. For information about these
interfaces, see Section 7.1.12.1, “Connection Interfaces”.

The --admin-ssl option specifies that the server permits but does not require encrypted
connections on the administrative interface. This option is enabled by default.

--admin-ssl can be specified in negated form as --skip-admin-ssl or a synonym (--
admin-ssl=OFF, --disable-admin-ssl). In this case, the option specifies that the server
does not permit encrypted connections, regardless of the settings of the admin_tsl_xxx and
admin_ssl_xxx system variables.

The --admin-ssl option has an effect only at server startup on whether the administrative
interface supports encrypted connections. It is ignored and has no effect on the operation of ALTER
INSTANCE RELOAD TLS at runtime. For example, you can use --admin-ssl=OFF to start the
administrative interface with encrypted connections disabled, then reconfigure TLS and execute
ALTER INSTANCE RELOAD TLS FOR CHANNEL mysql_admin to enable encrypted connections
at runtime.

For general information about configuring connection-encryption support, see Section 8.3.1,
“Configuring MySQL to Use Encrypted Connections”. That discussion is written for the main
connection interface, but the parameter names are similar for the administrative connection interface.
Consider setting at least the admin_ssl_cert and admin_ssl_key system variables on the
server side and the --ssl-ca (or --ssl-capath) option on the client side. For additional
information specifically about the administrative interface, see Administrative Interface Support for
Encrypted Connections.

Because support for encrypted connections is enabled by default, it is normally unnecessary to
specify --admin-ssl. As of MySQL 8.0.26, --admin-ssl is deprecated and subject to removal
in a future MySQL version. If it is desired to disable encrypted connections, that can be done without
specifying --admin-ssl in negated form. Set the admin_tls_version system variable to the
empty value to indicate that no TLS versions are supported. For example, these lines in the server
my.cnf file disable encrypted connections:

[mysqld]
admin_tls_version=''

• --allow-suspicious-udfs

Command-Line Format --allow-suspicious-udfs[={OFF|ON}]

Type Boolean

Default Value OFF

This option controls whether loadable functions that have only an xxx symbol for the main function
can be loaded. By default, the option is off and only loadable functions that have at least one
auxiliary symbol can be loaded; this prevents attempts at loading functions from shared object files
other than those containing legitimate functions. See Loadable Function Security Precautions.

841

https://dev.mysql.com/doc/extending-mysql/8.0/en/adding-loadable-function.html#loadable-function-security

Server Command Options

• --ansi

Command-Line Format --ansi

Use standard (ANSI) SQL syntax instead of MySQL syntax. For more precise control over the server
SQL mode, use the --sql-mode option instead. See Section 1.6, “MySQL Standards Compliance”,
and Section 7.1.11, “Server SQL Modes”.

• --basedir=dir_name, -b dir_name

Command-Line Format --basedir=dir_name

System Variable basedir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value parent of mysqld installation
directory

The path to the MySQL installation directory. This option sets the basedir system variable.

The server executable determines its own full path name at startup and uses the parent of the
directory in which it is located as the default basedir value. This in turn enables the server to use
that basedir when searching for server-related information such as the share directory containing
error messages.

• --character-set-client-handshake

Command-Line Format --character-set-client-
handshake[={OFF|ON}]

Deprecated 8.0.35

Type Boolean

Default Value ON

Do not ignore character set information sent by the client. To ignore client information and use the
default server character set, use --skip-character-set-client-handshake.

This option is deprecated in MySQL 8.0.35 and later MySQL 8.0 releases, where a warning is issued
whenever it is used, and is to be removed in a future version of MySQL. Applications which depen on
this option should begin migration away from it as soon as possible.

• --check-table-functions=value

Command-Line Format --check-table-functions=value

Introduced 8.0.42

Type Enumeration

Default Value ABORT

Valid Values WARN

ABORT

When performing an upgade of the server, we scan the data dictionary for functions used in table
constraints and other expressions, including DEFAULT expressions, partitioning expressions, and
virtual columns. It is possible that a change in the behavior of the function causes it to raise an error

842

Server Command Options

in the new version of the server, where no such error occurred before in which case the table cannot
be opened. This option provides a choice in how to handle such problems, according to which of the
two values shown here is used:

• WARN: Log a warning for each table that cannot be opened.

• ABORT: Also logs a warning; in addition, the upgrade is stopped. This is the default. For a
sufficiently high value of --log-error-verbosity, it also logs a note with a streamlined table
definition listing only those expressions that potentially contain SQL functions.

The default behaviour is to abort the upgrade, so that the user can fix the issue using the older
version of the server, before upgrading to the newer one. Use WARN to continue the upgrade in
interactive mode while reporting any issues.

The --check-table-functions option was introduced in MySQL 8.0.42.

• --chroot=dir_name, -r dir_name

Command-Line Format --chroot=dir_name

Type Directory name

Put the mysqld server in a closed environment during startup by using the chroot() system call.
This is a recommended security measure. Use of this option somewhat limits LOAD DATA and
SELECT ... INTO OUTFILE.

• --console

Command-Line Format --console

Platform Specific Windows

(Windows only.) Cause the default error log destination to be the console. This affects log sinks that
base their own output destination on the default destination. See Section 7.4.2, “The Error Log”.
mysqld does not close the console window if this option is used.

--console takes precedence over --log-error if both are given.

• --core-file

Command-Line Format --core-file

When this option is used, write a core file if mysqld dies; no arguments are needed (or accepted).
The name and location of the core file is system dependent. On Linux, a core file named core.pid
is written to the current working directory of the process, which for mysqld is the data directory. pid
represents the process ID of the server process. On macOS, a core file named core.pid is written
to the /cores directory. On Solaris, use the coreadm command to specify where to write the core
file and how to name it.

For some systems, to get a core file you must also specify the --core-file-size option to
mysqld_safe. See Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”. On some
systems, such as Solaris, you do not get a core file if you are also using the --user option. There
might be additional restrictions or limitations. For example, it might be necessary to execute ulimit
-c unlimited before starting the server. Consult your system documentation.

The innodb_buffer_pool_in_core_file variable can be used to reduce the size of core files
on operating systems that support it. For more information, see Section 17.8.3.7, “Excluding Buffer
Pool Pages from Core Files”.

843

Server Command Options

• --daemonize, -D

Command-Line Format --daemonize[={OFF|ON}]

Type Boolean

Default Value OFF

This option causes the server to run as a traditional, forking daemon, permitting it to work with
operating systems that use systemd for process control. For more information, see Section 2.5.9,
“Managing MySQL Server with systemd”.

--daemonize is mutually exclusive with --initialize and --initialize-insecure.

If the server is started using the --daemonize option and is not connected to a tty device, a default
error logging option of --log-error="" is used in the absence of an explicit logging option, to
direct error output to the default log file.

-D is a synonym for --daemonize.

• --datadir=dir_name, -h dir_name

Command-Line Format --datadir=dir_name

System Variable datadir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

The path to the MySQL server data directory. This option sets the datadir system variable. See the
description of that variable.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

System Variable debug

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value (Unix) d:t:i:o,/tmp/mysqld.trace

Default Value (Windows) d:t:i:O,\mysqld.trace

If MySQL is configured with the -DWITH_DEBUG=1 CMake option, you can use this option to get a
trace file of what mysqld is doing. A typical debug_options string is d:t:o,file_name. The
default is d:t:i:o,/tmp/mysqld.trace on Unix and d:t:i:O,\mysqld.trace on Windows.

Using -DWITH_DEBUG=1 to configure MySQL with debugging support enables you to use the --
debug="d,parser_debug" option when you start the server. This causes the Bison parser that
is used to process SQL statements to dump a parser trace to the server's standard error output.
Typically, this output is written to the error log.

This option may be given multiple times. Values that begin with + or - are added to or subtracted
from the previous value. For example, --debug=T --debug=+P sets the value to P:T.

For more information, see Section 7.9.4, “The DBUG Package”.
844

Server Command Options

• --debug-sync-timeout[=N]

Command-Line Format --debug-sync-timeout[=#]

Type Integer

Controls whether the Debug Sync facility for testing and debugging is enabled. Use of Debug Sync
requires that MySQL be configured with the -DWITH_DEBUG=ON CMake option (see Section 2.8.7,
“MySQL Source-Configuration Options”); otherwise, this option is not available. The option value is a
timeout in seconds. The default value is 0, which disables Debug Sync. To enable it, specify a value
greater than 0; this value also becomes the default timeout for individual synchronization points. If
the option is given without a value, the timeout is set to 300 seconds.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

• --default-time-zone=timezone

Command-Line Format --default-time-zone=name

Type String

Set the default server time zone. This option sets the global time_zone system variable. If this
option is not given, the default time zone is the same as the system time zone (given by the value of
the system_time_zone system variable.

The system_time_zone variable differs from time_zone. Although they might have the same
value, the latter variable is used to initialize the time zone for each client that connects. See
Section 7.1.15, “MySQL Server Time Zone Support”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. If file_name is not an absolute path name, it
is interpreted relative to the current directory. This must be the first option on the command line if it is
used.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-file=file_name

Read only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
If file_name is not an absolute path name, it is interpreted relative to the current directory.

Exception: Even with --defaults-file, mysqld reads mysqld-auto.cnf.

Note

This must be the first option on the command line if it is used, except that if
the server is started with the --defaults-file and --install (or --
install-manual) options, --install (or --install-manual) must be
first.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqld normally reads the [mysqld] group. If this option is given as --defaults-
group-suffix=_other, mysqld also reads the [mysqld_other] group.

845

https://dev.mysql.com/doc/internals/en/test-synchronization.html
https://dev.mysql.com/doc/internals/en/test-synchronization.html

Server Command Options

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --early-plugin-load=plugin_list

Command-Line Format --early-plugin-load=plugin_list

Type String

Default Value empty string

This option tells the server which plugins to load before loading mandatory built-in plugins and
before storage engine initialization. Early loading is supported only for plugins compiled with
PLUGIN_OPT_ALLOW_EARLY. If multiple --early-plugin-load options are given, only the last
one applies.

The option value is a semicolon-separated list of plugin_library and name=plugin_library
values. Each plugin_library is the name of a library file that contains plugin code, and each
name is the name of a plugin to load. If a plugin library is named without any preceding plugin name,
the server loads all plugins in the library. With a preceding plugin name, the server loads only the
named plugin from the library. The server looks for plugin library files in the directory named by the
plugin_dir system variable.

For example, if plugins named myplug1 and myplug2 are contained in the plugin library files
myplug1.so and myplug2.so, use this option to perform an early plugin load:

mysqld --early-plugin-load="myplug1=myplug1.so;myplug2=myplug2.so"

Quotes surround the argument value because otherwise some command interpreters interpret
semicolon (;) as a special character. (For example, Unix shells treat it as a command terminator.)

Each named plugin is loaded early for a single invocation of mysqld only. After a restart, the plugin
is not loaded early unless --early-plugin-load is used again.

If the server is started using --initialize or --initialize-insecure, plugins specified by --
early-plugin-load are not loaded.

If the server is run with --help, plugins specified by --early-plugin-load are loaded but not
initialized. This behavior ensures that plugin options are displayed in the help message.

InnoDB tablespace encryption relies on the MySQL Keyring for encryption key management, and
the keyring plugin to be used must be loaded prior to storage engine initialization to facilitate InnoDB
recovery for encrypted tables. For example, administrators who want the keyring_file plugin
loaded at startup should use --early-plugin-load with the appropriate option value (such as
keyring_file.so on Unix and Unix-like systems or keyring_file.dll on Windows).

For information about InnoDB tablespace encryption, see Section 17.13, “InnoDB Data-at-Rest
Encryption”. For general information about plugin loading, see Section 7.6.1, “Installing and
Uninstalling Plugins”.

Note

For MySQL Keyring, this option is used only when the keystore is managed
with a keyring plugin. If keystore management uses a keyring component
rather than a plugin, specify component loading using a manifest file; see
Section 8.4.4.2, “Keyring Component Installation”.

• --exit-info[=flags], -T [flags]

Command-Line Format --exit-info[=flags]
846

Server Command Options

Type Integer

This is a bitmask of different flags that you can use for debugging the mysqld server. Do not use this
option unless you know exactly what it does!

• --external-locking

Command-Line Format --external-locking[={OFF|ON}]

Type Boolean

Default Value OFF

Enable external locking (system locking), which is disabled by default. If you use this option on a
system on which lockd does not fully work (such as Linux), it is easy for mysqld to deadlock.

To disable external locking explicitly, use --skip-external-locking.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 10.11.5, “External Locking”.

• --flush

Command-Line Format --flush[={OFF|ON}]

System Variable flush

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Flush (synchronize) all changes to disk after each SQL statement. Normally, MySQL does a write
of all changes to disk only after each SQL statement and lets the operating system handle the
synchronizing to disk. See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

Note

If --flush is specified, the value of flush_time does not matter and
changes to flush_time have no effect on flush behavior.

• --gdb

Command-Line Format --gdb[={OFF|ON}]

Type Boolean

Default Value OFF

Install an interrupt handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and
disable stack tracing and core file handling. See Section 7.9.1.4, “Debugging mysqld under gdb”.

On Windows, this option also suppresses the forking that is used to implement the RESTART
statement: Forking enables one process to act as a monitor to the other, which acts as the server.
However, forking makes determining the server process to attach to for debugging more difficult, so
starting the server with --gdb suppresses forking. For a server started with this option, RESTART
simply exits and does not restart.

In non-debug settings, --no-monitor may be used to suppress forking the monitor process.

• --initialize, -I

847

Server Command Options

Command-Line Format --initialize[={OFF|ON}]

Type Boolean

Default Value OFF

This option is used to initialize a MySQL installation by creating the data directory and populating the
tables in the mysql system schema. For more information, see Section 2.9.1, “Initializing the Data
Directory”.

This option limits the effects of, or is not compatible with, a number of other startup options for the
MySQL server. Some of the most common issues of this sort are noted here:

• We strongly recommend, when initializing the data directory with --initialize, that you specify
no additional options other than --datadir, other options used for setting directory locations
such as --basedir, and possibly --user, if required. Options for the running MySQL server can
be specified when starting it once initialization has been completed and mysqld has shut down.
This also applies when using --initialize-insecure instead of --initialize.

• When the server is started with --initialize, some functionality is unavailable that limits the
statements permitted in any file named by the init_file system variable. For more information,
see the description of that variable. In addition, the disabled_storage_engines system
variable has no effect.

• The --ndbcluster option is ignored when used together with --initialize.

• --initialize is mutually exclusive with --bootstrap and --daemonize.

The items in the preceding list also apply when initializing the server using the --initialize-
insecure option.

• --initialize-insecure

Command-Line Format --initialize-insecure[={OFF|ON}]

Type Boolean

Default Value OFF

This option is used to initialize a MySQL installation by creating the data directory and populating the
tables in the mysql system schema. This option implies --initialize, and the same restrictions
and limitations apply; for more information, see the description of that option, and Section 2.9.1,
“Initializing the Data Directory”.

Warning

This option creates a MySQL root user with an empty password, which
is insecure. For this reason, do not use it in production without setting this
password manually. See Post-Initialization root Password Assignment, for
information about how to do this.

• --innodb-xxx

Set an option for the InnoDB storage engine. The InnoDB options are listed in Section 17.14,
“InnoDB Startup Options and System Variables”.

• --install [service_name]

Command-Line Format --install [service_name]

848

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_bootstrap

Server Command Options

Platform Specific Windows

(Windows only) Install the server as a Windows service that starts automatically during Windows
startup. The default service name is MySQL if no service_name value is given. For more
information, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install options,
--install must be first.

• --install-manual [service_name]

Command-Line Format --install-manual [service_name]

Platform Specific Windows

(Windows only) Install the server as a Windows service that must be started manually. It does not
start automatically during Windows startup. The default service name is MySQL if no service_name
value is given. For more information, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install-manual
options, --install-manual must be first.

• --language=lang_name, -L lang_name

Command-Line Format --language=name

Deprecated Yes; use lc-messages-dir instead

System Variable language

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value /usr/local/mysql/share/mysql/
english/

The language to use for error messages. lang_name can be given as the language name or as the
full path name to the directory where the language files are installed. See Section 12.12, “Setting the
Error Message Language”.

--lc-messages-dir and --lc-messages should be used rather than --language, which
is deprecated (and handled as a synonym for --lc-messages-dir). You should expect the --
language option to be removed in a future MySQL release.

• --large-pages

Command-Line Format --large-pages[={OFF|ON}]

System Variable large_pages

Scope Global

Dynamic No

SET_VAR Hint Applies No

Platform Specific Linux

Type Boolean

849

Server Command Options

Default Value OFF

Some hardware/operating system architectures support memory pages greater than the default
(usually 4KB). The actual implementation of this support depends on the underlying hardware and
operating system. Applications that perform a lot of memory accesses may obtain performance
improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

MySQL supports the Linux implementation of large page support (which is called HugeTLB in Linux).
See Section 10.12.3.3, “Enabling Large Page Support”. For Solaris support of large pages, see the
description of the --super-large-pages option.

--large-pages is disabled by default.

• --lc-messages=locale_name

Command-Line Format --lc-messages=name

System Variable lc_messages

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value en_US

The locale to use for error messages. The default is en_US. The server converts the argument to a
language name and combines it with the value of --lc-messages-dir to produce the location for
the error message file. See Section 12.12, “Setting the Error Message Language”.

• --lc-messages-dir=dir_name

Command-Line Format --lc-messages-dir=dir_name

System Variable lc_messages_dir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

The directory where error messages are located. The server uses the value together with the value
of --lc-messages to produce the location for the error message file. See Section 12.12, “Setting
the Error Message Language”.

• --local-service

Command-Line Format --local-service

(Windows only) A --local-service option following the service name causes the server to
run using the LocalService Windows account that has limited system privileges. If both --
defaults-file and --local-service are given following the service name, they can be in any
order. See Section 2.3.4.8, “Starting MySQL as a Windows Service”.

• --log-error[=file_name]

Command-Line Format --log-error[=file_name]

System Variable log_error

Scope Global

850

Server Command Options

Dynamic No

SET_VAR Hint Applies No

Type File name

Set the default error log destination to the named file. This affects log sinks that base their own
output destination on the default destination. See Section 7.4.2, “The Error Log”.

If the option names no file, the default error log destination on Unix and Unix-like systems is a file
named host_name.err in the data directory. The default destination on Windows is the same,
unless the --pid-file option is specified. In that case, the file name is the PID file base name with
a suffix of .err in the data directory.

If the option names a file, the default destination is that file (with an .err suffix added if the name
has no suffix), located under the data directory unless an absolute path name is given to specify a
different location.

If error log output cannot be redirected to the error log file, an error occurs and startup fails.

On Windows, --console takes precedence over --log-error if both are given. In this case, the
default error log destination is the console rather than a file.

• --log-isam[=file_name]

Command-Line Format --log-isam[=file_name]

Type File name

Log all MyISAM changes to this file (used only when debugging MyISAM).

• --log-raw

Command-Line Format --log-raw[={OFF|ON}]

System Variable (≥ 8.0.19) log_raw

Scope (≥ 8.0.19) Global

Dynamic (≥ 8.0.19) Yes

SET_VAR Hint Applies (≥ 8.0.19) No

Type Boolean

Default Value OFF

Passwords in certain statements written to the general query log, slow query log, and binary log are
rewritten by the server not to occur literally in plain text. Password rewriting can be suppressed for
the general query log by starting the server with the --log-raw option. This option may be useful
for diagnostic purposes, to see the exact text of statements as received by the server, but for security
reasons is not recommended for production use.

If a query rewrite plugin is installed, the --log-raw option affects statement logging as follows:

• Without --log-raw, the server logs the statement returned by the query rewrite plugin. This may
differ from the statement as received.

• With --log-raw, the server logs the original statement as received.

For more information, see Section 8.1.2.3, “Passwords and Logging”.

• --log-short-format

Command-Line Format --log-short-format[={OFF|ON}]
851

Server Command Options

Type Boolean

Default Value OFF

Log less information to the slow query log, if it has been activated.

• --log-tc=file_name

Command-Line Format --log-tc=file_name

Type File name

Default Value tc.log

The name of the memory-mapped transaction coordinator log file (for XA transactions that affect
multiple storage engines when the binary log is disabled). The default name is tc.log. The file is
created under the data directory if not given as a full path name. This option is unused.

• --log-tc-size=size

Command-Line Format --log-tc-size=#

Type Integer

Default Value 6 * page size

Minimum Value 6 * page size

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

The size in bytes of the memory-mapped transaction coordinator log. The default and minimum
values are 6 times the page size, and the value must be a multiple of the page size.

• --memlock

Command-Line Format --memlock[={OFF|ON}]

Type Boolean

Default Value OFF

Lock the mysqld process in memory. This option might help if you have a problem where the
operating system is causing mysqld to swap to disk.

--memlock works on systems that support the mlockall() system call; this includes Solaris,
most Linux distributions that use a 2.4 or higher kernel, and perhaps other Unix systems. On Linux

852

Server Command Options

systems, you can tell whether or not mlockall() (and thus this option) is supported by checking to
see whether or not it is defined in the system mman.h file, like this:

$> grep mlockall /usr/include/sys/mman.h

If mlockall() is supported, you should see in the output of the previous command something like
the following:

extern int mlockall (int __flags) __THROW;

Important

Use of this option may require you to run the server as root, which, for
reasons of security, is normally not a good idea. See Section 8.1.5, “How to
Run MySQL as a Normal User”.

On Linux and perhaps other systems, you can avoid the need to run the
server as root by changing the limits.conf file. See the notes regarding
the memlock limit in Section 10.12.3.3, “Enabling Large Page Support”.

You must not use this option on a system that does not support the
mlockall() system call; if you do so, mysqld is very likely to exit as soon
as you try to start it.

• --myisam-block-size=N

Command-Line Format --myisam-block-size=#

Type Integer

Default Value 1024

Minimum Value 1024

Maximum Value 16384

The block size to be used for MyISAM index pages.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option
file, --no-defaults can be used to prevent them from being read. This must be the first option on
the command line if it is used.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --no-dd-upgrade

Command-Line Format --no-dd-upgrade[={OFF|ON}]

Deprecated 8.0.16

Type Boolean

Default Value OFF

Note

This option is deprecated as of MySQL 8.0.16. It is superseded by the --
upgrade option, which provides finer control over data dictionary and server
upgrade behavior.

Prevent automatic upgrade of the data dictionary tables during the MySQL server startup process.
This option is typically used when starting the MySQL server following an in-place upgrade of an

853

Server Command Options

existing installation to a newer MySQL version, which may include changes to data dictionary table
definitions.

When --no-dd-upgrade is specified, and the server finds that its expected version of the data
dictionary differs from the version stored in the data dictionary itself, startup fails with an error stating
that data dictionary upgrade is prohibited;

[ERROR] [MY-011091] [Server] Data dictionary upgrade prohibited by the
command line option '--no_dd_upgrade'.
[ERROR] [MY-010020] [Server] Data Dictionary initialization failed.

During a normal startup, the data dictionary version of the server is compared to the version stored
in the data dictionary to determine whether data dictionary table definitions should be upgraded.
If an upgrade is necessary and supported, the server creates data dictionary tables with updated
definitions, copies persisted metadata to the new tables, atomically replaces the old tables with the
new ones, and reinitializes the data dictionary. If an upgrade is not necessary, startup continues
without updating data dictionary tables.

• --no-monitor

Command-Line Format --no-monitor[={OFF|ON}]

Introduced 8.0.12

Platform Specific Windows

Type Boolean

Default Value OFF

(Windows only). This option suppresses the forking that is used to implement the RESTART
statement: Forking enables one process to act as a monitor to the other, which acts as the server.
For a server started with this option, RESTART simply exits and does not restart.

--no-monitor is not available prior to MySQL 8.0.12. The --gdb option can be used as a
workaround.

• --old-style-user-limits

Command-Line Format --old-style-user-limits[={OFF|ON}]

Deprecated 8.0.30

Type Boolean

Default Value OFF

Enable old-style user limits. (Before MySQL 5.0.3, account resource limits were counted separately
for each host from which a user connected rather than per account row in the user table.) See
Section 8.2.21, “Setting Account Resource Limits”.

This option is deprecated, and, as of MySQL 8.0.30, using it on the command line or in an option
file causes MySQL to raise a warning. Expect this option to be removed in a future release; you
should check your applications now for use of --old-style-user-limits and remove any
dependencies they might have on it, before this happens.

• --performance-schema-xxx

Configure a Performance Schema option. For details, see Section 29.14, “Performance Schema
Command Options”.

• --plugin-load=plugin_list

Command-Line Format --plugin-load=plugin_list854

Server Command Options

Type String

This option tells the server to load the named plugins at startup. If multiple --plugin-load options
are given, only the last one applies. Additional plugins to load may be specified using --plugin-
load-add options.

The option value is a semicolon-separated list of plugin_library and name=plugin_library
values. Each plugin_library is the name of a library file that contains plugin code, and each
name is the name of a plugin to load. If a plugin library is named without any preceding plugin name,
the server loads all plugins in the library. With a preceding plugin name, the server loads only the
named plugin from the library. The server looks for plugin library files in the directory named by the
plugin_dir system variable.

For example, if plugins named myplug1 and myplug2 are contained in the plugin library files
myplug1.so and myplug2.so, use this option to perform an early plugin load:

mysqld --plugin-load="myplug1=myplug1.so;myplug2=myplug2.so"

Quotes surround the argument value because otherwise some command interpreters interpret
semicolon (;) as a special character. (For example, Unix shells treat it as a command terminator.)

Each named plugin is loaded for a single invocation of mysqld only. After a restart, the plugin is
not loaded unless --plugin-load is used again. This is in contrast to INSTALL PLUGIN, which
adds an entry to the mysql.plugins table to cause the plugin to be loaded for every normal server
startup.

During the normal startup sequence, the server determines which plugins to load by reading the
mysql.plugins system table. If the server is started with the --skip-grant-tables option,
plugins registered in the mysql.plugins table are not loaded and are unavailable. --plugin-
load enables plugins to be loaded even when --skip-grant-tables is given. --plugin-load
also enables plugins to be loaded at startup that cannot be loaded at runtime.

This option does not set a corresponding system variable. The output of SHOW PLUGINS provides
information about loaded plugins. More detailed information can be found in the Information Schema
PLUGINS table. See Section 7.6.2, “Obtaining Server Plugin Information”.

For additional information about plugin loading, see Section 7.6.1, “Installing and Uninstalling
Plugins”.

• --plugin-load-add=plugin_list

Command-Line Format --plugin-load-add=plugin_list

Type String

This option complements the --plugin-load option. --plugin-load-add adds a plugin or
plugins to the set of plugins to be loaded at startup. The argument format is the same as for --

855

Server Command Options

plugin-load. --plugin-load-add can be used to avoid specifying a large set of plugins as a
single long unwieldy --plugin-load argument.

--plugin-load-add can be given in the absence of --plugin-load, but any instance of --
plugin-load-add that appears before --plugin-load. has no effect because --plugin-load
resets the set of plugins to load. In other words, these options:

--plugin-load=x --plugin-load-add=y

are equivalent to this option:

--plugin-load="x;y"

But these options:

--plugin-load-add=y --plugin-load=x

are equivalent to this option:

--plugin-load=x

This option does not set a corresponding system variable. The output of SHOW PLUGINS provides
information about loaded plugins. More detailed information can be found in the Information Schema
PLUGINS table. See Section 7.6.2, “Obtaining Server Plugin Information”.

For additional information about plugin loading, see Section 7.6.1, “Installing and Uninstalling
Plugins”.

• --plugin-xxx

Specifies an option that pertains to a server plugin. For example, many storage engines can be built
as plugins, and for such engines, options for them can be specified with a --plugin prefix. Thus,
the --innodb-file-per-table option for InnoDB can be specified as --plugin-innodb-
file-per-table.

For boolean options that can be enabled or disabled, the --skip prefix and other alternative formats
are supported as well (see Section 6.2.2.4, “Program Option Modifiers”). For example, --skip-
plugin-innodb-file-per-table disables innodb-file-per-table.

The rationale for the --plugin prefix is that it enables plugin options to be specified unambiguously
if there is a name conflict with a built-in server option. For example, were a plugin writer to name a
plugin “sql” and implement a “mode” option, the option name might be --sql-mode, which would
conflict with the built-in option of the same name. In such cases, references to the conflicting name
are resolved in favor of the built-in option. To avoid the ambiguity, users can specify the plugin option
as --plugin-sql-mode. Use of the --plugin prefix for plugin options is recommended to avoid
any question of ambiguity.

• --port=port_num, -P port_num

Command-Line Format --port=port_num

System Variable port

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 3306

Minimum Value 0

856

Server Command Options

Maximum Value 65535

The port number to use when listening for TCP/IP connections. On Unix and Unix-like systems, the
port number must be 1024 or higher unless the server is started by the root operating system user.
Setting this option to 0 causes the default value to be used.

• --port-open-timeout=num

Command-Line Format --port-open-timeout=#

Type Integer

Default Value 0

On some systems, when the server is stopped, the TCP/IP port might not become available
immediately. If the server is restarted quickly afterward, its attempt to reopen the port can fail. This
option indicates how many seconds the server should wait for the TCP/IP port to become free if it
cannot be opened. The default is not to wait.

• --print-defaults

Print the program name and all options that it gets from option files. Password values are masked.
This must be the first option on the command line if it is used, except that it may be used immediately
after --defaults-file or --defaults-extra-file.

For additional information about this and other option-file options, see Section 6.2.2.3, “Command-
Line Options that Affect Option-File Handling”.

• --remove [service_name]

Command-Line Format --remove [service_name]

Platform Specific Windows

(Windows only) Remove a MySQL Windows service. The default service name is MySQL if no
service_name value is given. For more information, see Section 2.3.4.8, “Starting MySQL as a
Windows Service”.

• --safe-user-create

Command-Line Format --safe-user-create[={OFF|ON}]

Deprecated Yes

Type Boolean

Default Value OFF

This option is deprecated, and ignored as of MySQL 8.0.11. For related information, see Server
Changes.

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement
unless the user has the INSERT privilege for the mysql.user system table or any column in the
table. If you want a user to have the ability to create new users that have those privileges that the
user has the right to grant, you should grant the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT
statement to give privileges to other users.

• --skip-grant-tables

Command-Line Format --skip-grant-tables[={OFF|ON}]

857

Server Command Options

Type Boolean

Default Value OFF

This option affects the server startup sequence:

• --skip-grant-tables causes the server not to read the grant tables in the mysql system
schema, and thus to start without using the privilege system at all. This gives anyone with access
to the server unrestricted access to all databases.

Because starting the server with --skip-grant-tables disables authentication checks, the
server also disables remote connections in that case by enabling skip_networking.

To cause a server started with --skip-grant-tables to load the grant tables at runtime,
perform a privilege-flushing operation, which can be done in these ways:

• Issue a MySQL FLUSH PRIVILEGES statement after connecting to the server.

• Execute a mysqladmin flush-privileges or mysqladmin reload command from the
command line.

Privilege flushing might also occur implicitly as a result of other actions performed after startup,
thus causing the server to start using the grant tables. For example, the server flushes the
privileges if it performs an upgrade during the startup sequence.

• --skip-grant-tables disables failed-login tracking and temporary account locking because
those capabilities depend on the grant tables. See Section 8.2.15, “Password Management”.

• --skip-grant-tables causes the server not to load certain other objects registered in the data
dictionary or the mysql system schema:

• Scheduled events installed using CREATE EVENT and registered in the events data dictionary
table.

• Plugins installed using INSTALL PLUGIN and registered in the mysql.plugin system table.

To cause plugins to be loaded even when using --skip-grant-tables, use the --plugin-
load or --plugin-load-add option.

• Loadable functions installed using CREATE FUNCTION and registered in the mysql.func
system table.

--skip-grant-tables does not suppress loading during startup of components.

• --skip-grant-tables causes the disabled_storage_engines system variable to have no
effect.

• --skip-host-cache

Command-Line Format --skip-host-cache

Deprecated 8.0.30

Disable use of the internal host cache for faster name-to-IP resolution. With the cache disabled, the
server performs a DNS lookup every time a client connects.

Use of --skip-host-cache is similar to setting the host_cache_size system variable to 0, but
host_cache_size is more flexible because it can also be used to resize, enable, or disable the
host cache at runtime, not just at server startup.

Beginning with MySQL 8.0.30, this option is deprecated; you should use SET GLOBAL
host_cache_size = 0 instead.

858

Server Command Options

Starting the server with --skip-host-cache does not prevent runtime changes to the value
of host_cache_size, but such changes have no effect and the cache is not re-enabled even if
host_cache_size is set larger than 0.

For more information about how the host cache works, see Section 7.1.12.3, “DNS Lookups and the
Host Cache”.

• --skip-innodb

Disable the InnoDB storage engine. In this case, because the default storage engine is InnoDB,
the server does not start unless you also use --default-storage-engine and --default-
tmp-storage-engine to set the default to some other engine for both permanent and TEMPORARY
tables.

The InnoDB storage engine cannot be disabled, and the --skip-innodb option is deprecated
and has no effect. Its use results in a warning. Expect this option to be removed in a future MySQL
release.

• --skip-new

Command-Line Format --skip-new

Deprecated 8.0.35

This option disables (what used to be considered) new, possibly unsafe behaviors. It
results in these settings: delay_key_write=OFF, concurrent_insert=NEVER,
automatic_sp_privileges=OFF. It also causes OPTIMIZE TABLE to be mapped to ALTER
TABLE for storage engines for which OPTIMIZE TABLE is not supported.

This option is deprecated as of MySQL 8.0.35, and is subject to removal in a future release.

• --skip-show-database

Command-Line Format --skip-show-database

System Variable skip_show_database

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This option sets the skip_show_database system variable that controls who is permitted to use
the SHOW DATABASES statement. See Section 7.1.8, “Server System Variables”.

• --skip-stack-trace

Command-Line Format --skip-stack-trace

Do not write stack traces. This option is useful when you are running mysqld under a debugger.
On some systems, you also must use this option to get a core file. See Section 7.9, “Debugging
MySQL”.

• --slow-start-timeout=timeout

Command-Line Format --slow-start-timeout=#

Type Integer 859

Server Command Options

Default Value 15000

This option controls the Windows service control manager's service start timeout. The value is the
maximum number of milliseconds that the service control manager waits before trying to kill the
windows service during startup. The default value is 15000 (15 seconds). If the MySQL service takes
too long to start, you may need to increase this value. A value of 0 means there is no timeout.

• --socket=path

Command-Line Format --socket={file_name|pipe_name}

System Variable socket

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value (Windows) MySQL

Default Value (Other) /tmp/mysql.sock

On Unix, this option specifies the Unix socket file to use when listening for local connections. The
default value is /tmp/mysql.sock. If this option is given, the server creates the file in the data
directory unless an absolute path name is given to specify a different directory. On Windows, the
option specifies the pipe name to use when listening for local connections that use a named pipe.
The default value is MySQL (not case-sensitive).

• --sql-mode=value[,value[,value...]]

Command-Line Format --sql-mode=name

System Variable sql_mode

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Set

Default Value ONLY_FULL_GROUP_BY
STRICT_TRANS_TABLES
NO_ZERO_IN_DATE NO_ZERO_DATE
ERROR_FOR_DIVISION_BY_ZERO
NO_ENGINE_SUBSTITUTION

Valid Values ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

860

Server Command Options

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

STRICT_TRANS_TABLES

TIME_TRUNCATE_FRACTIONAL

Set the SQL mode. See Section 7.1.11, “Server SQL Modes”.

Note

MySQL installation programs may configure the SQL mode during the
installation process.

If the SQL mode differs from the default or from what you expect, check for a
setting in an option file that the server reads at startup.

• --ssl, --skip-ssl

Command-Line Format --ssl[={OFF|ON}]

Deprecated 8.0.26

Disabled by skip-ssl

Type Boolean

Default Value ON

The --ssl option specifies that the server permits but does not require encrypted connections on
the main connection interface. This option is enabled by default.

A similar option, --admin-ssl, is like the --ssl, except that it applies to the administrative
connection interface rather than the main connection interface. For information about these
interfaces, see Section 7.1.12.1, “Connection Interfaces”.

--ssl can be specified in negated form as --skip-ssl or a synonym (--ssl=OFF, --disable-
ssl). In this case, the option specifies that the server does not permit encrypted connections,
regardless of the settings of the tls_xxx and ssl_xxx system variables.

The --ssl option has an effect only at server startup on whether the server supports encrypted
connections. It is ignored and has no effect on the operation of ALTER INSTANCE RELOAD TLS
at runtime. For example, you can use --ssl=OFF to start the server with encrypted connections
disabled, then reconfigure TLS and execute ALTER INSTANCE RELOAD TLS to enable encrypted
connections at runtime.

For more information about configuring whether the server permits clients to connect using SSL
and indicating where to find SSL keys and certificates, see Section 8.3.1, “Configuring MySQL to
Use Encrypted Connections”, which also describes server capabilities for certificate and key file

861

Server Command Options

autogeneration and autodiscovery. Consider setting at least the ssl_cert and ssl_key system
variables on the server side and the --ssl-ca (or --ssl-capath) option on the client side.

Because support for encrypted connections is enabled by default, it is normally unnecessary to
specify --ssl. As of MySQL 8.0.26, --ssl is deprecated and subject to removal in a future MySQL
version. If it is desired to disable encrypted connections, that can be done without specifying --
ssl in negated form. Set the tls_version system variable to the empty value to indicate that no
TLS versions are supported. For example, these lines in the server my.cnf file disable encrypted
connections:

[mysqld]
tls_version=''

• --standalone

Command-Line Format --standalone

Platform Specific Windows

Available on Windows only; instructs the MySQL server not to run as a service.

• --super-large-pages

Command-Line Format --super-large-pages[={OFF|ON}]

Platform Specific Solaris

Type Boolean

Default Value OFF

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available
for recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or
--skip-super-large-pages option.

• --symbolic-links, --skip-symbolic-links

Command-Line Format --symbolic-links[={OFF|ON}]

Deprecated Yes

Type Boolean

Default Value OFF

Enable or disable symbolic link support. On Unix, enabling symbolic links means that you can link a
MyISAM index file or data file to another directory with the INDEX DIRECTORY or DATA DIRECTORY
option of the CREATE TABLE statement. If you delete or rename the table, the files that its symbolic
links point to also are deleted or renamed. See Section 10.12.2.2, “Using Symbolic Links for MyISAM
Tables on Unix”.

Note

Symbolic link support, along with the --symbolic-links option that
controls it, is deprecated; you should expect it to be removed in a future
version of MySQL. In addition, the option is disabled by default. The related
have_symlink system variable also is deprecated; expect it to be removed
in a future version of MySQL.

This option has no meaning on Windows.

862

Server Command Options

• --sysdate-is-now

Command-Line Format --sysdate-is-now[={OFF|ON}]

Type Boolean

Default Value OFF

SYSDATE() by default returns the time at which it executes, not the time at which the statement
in which it occurs begins executing. This differs from the behavior of NOW(). This option causes
SYSDATE() to be a synonym for NOW(). For information about the implications for binary logging
and replication, see the description for SYSDATE() in Section 14.7, “Date and Time Functions” and
for SET TIMESTAMP in Section 7.1.8, “Server System Variables”.

• --tc-heuristic-recover={COMMIT|ROLLBACK}

Command-Line Format --tc-heuristic-recover=name

Type Enumeration

Default Value OFF

Valid Values OFF

COMMIT

ROLLBACK

The decision to use in a manual heuristic recovery.

If a --tc-heuristic-recover option is specified, the server exits regardless of whether manual
heuristic recovery is successful.

On systems with more than one storage engine capable of two-phase commit, the ROLLBACK option
is not safe and causes recovery to halt with the following error:

[ERROR] --tc-heuristic-recover rollback
strategy is not safe on systems with more than one 2-phase-commit-capable
storage engine. Aborting crash recovery.

• --transaction-isolation=level

Command-Line Format --transaction-isolation=name

System Variable transaction_isolation

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value REPEATABLE-READ

Valid Values READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

863

Server Command Options

SERIALIZABLE

Sets the default transaction isolation level. The level value can be READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, or SERIALIZABLE. See Section 15.3.7, “SET TRANSACTION
Statement”.

The default transaction isolation level can also be set at runtime using the SET TRANSACTION
statement or by setting the transaction_isolation system variable.

• --transaction-read-only

Command-Line Format --transaction-read-only[={OFF|ON}]

System Variable transaction_read_only

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Sets the default transaction access mode. By default, read-only mode is disabled, so the mode is
read/write.

To set the default transaction access mode at runtime, use the SET TRANSACTION statement or
set the transaction_read_only system variable. See Section 15.3.7, “SET TRANSACTION
Statement”.

• --tmpdir=dir_name, -t dir_name

Command-Line Format --tmpdir=dir_name

System Variable tmpdir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

The path of the directory to use for creating temporary files. It might be useful if your default /tmp
directory resides on a partition that is too small to hold temporary tables. This option accepts several
paths that are used in round-robin fashion. Paths should be separated by colon characters (:) on
Unix and semicolon characters (;) on Windows.

--tmpdir can be a non-permanent location, such as a directory on a memory-based file system or
a directory that is cleared when the server host restarts. If the MySQL server is acting as a replica,
and you are using a non-permanent location for --tmpdir, consider setting a different temporary
directory for the replica using the replica_load_tmpdir or slave_load_tmpdir system
variable. For a replica, the temporary files used to replicate LOAD DATA statements are stored in this
directory, so with a permanent location they can survive machine restarts, although replication can
now continue after a restart if the temporary files have been removed.

For more information about the storage location of temporary files, see Section B.3.3.5, “Where
MySQL Stores Temporary Files”.

• --upgrade=value

Command-Line Format --upgrade=value864

Server Command Options

Introduced 8.0.16

Type Enumeration

Default Value AUTO

Valid Values AUTO

NONE

MINIMAL

FORCE

This option controls whether and how the server performs an automatic upgrade at startup.
Automatic upgrade involves two steps:

• Step 1: Data dictionary upgrade.

This step upgrades:

• The data dictionary tables in the mysql schema. If the actual data dictionary version is lower
than the current expected version, the server upgrades the data dictionary. If it cannot, or is
prevented from doing so, the server cannot run.

• The Performance Schema and INFORMATION_SCHEMA.

• Step 2: Server upgrade.

This step comprises all other upgrade tasks. If the existing installation data has a lower MySQL
version than the server expects, it must be upgraded:

• The system tables in the mysql schema (the remaining non-data dictionary tables).

• The sys schema.

• User schemas.

For details about upgrade steps 1 and 2, see Section 3.4, “What the MySQL Upgrade Process
Upgrades”.

These --upgrade option values are permitted:

• AUTO

The server performs an automatic upgrade of anything it finds to be out of date (steps 1 and 2).
This is the default action if --upgrade is not specified explicitly.

• NONE

The server performs no automatic upgrade steps during the startup process (skips steps 1 and 2).
Because this option value prevents a data dictionary upgrade, the server exits with an error if the
data dictionary is found to be out of date:

[ERROR] [MY-013381] [Server] Server shutting down because upgrade is
required, yet prohibited by the command line option '--upgrade=NONE'.
[ERROR] [MY-010334] [Server] Failed to initialize DD Storage Engine
[ERROR] [MY-010020] [Server] Data Dictionary initialization failed.

• MINIMAL

The server upgrades the data dictionary, the Performance Schema, and the
INFORMATION_SCHEMA, if necessary (step 1). Note that following an upgrade with this option,

865

Server Command Options

Group Replication cannot be started, because system tables on which the replication internals
depend are not updated, and reduced functionality might also be apparent in other areas.

• FORCE

The server upgrades the data dictionary, the Performance Schema, and the
INFORMATION_SCHEMA, if necessary (step 1). In addition, the server forces an upgrade of
everything else (step 2). Expect server startup to take longer with this option because the server
checks all objects in all schemas.

FORCE is useful to force step 2 actions to be performed if the server thinks they are not necessary.
For example, you may believe that a system table is missing or has become damaged and want to
force a repair.

The following table summarizes the actions taken by the server for each option value.

Option Value Server Performs Step 1? Server Performs Step 2?

AUTO If necessary If necessary

NONE No No

MINIMAL If necessary No

FORCE If necessary Yes

• --user={user_name|user_id}, -u {user_name|user_id}

Command-Line Format --user=name

Type String

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

This option is mandatory when starting mysqld as root. The server changes its user ID during its
startup sequence, causing it to run as that particular user rather than as root. See Section 8.1.1,
“Security Guidelines”.

To avoid a possible security hole where a user adds a --user=root option to a my.cnf file
(thus causing the server to run as root), mysqld uses only the first --user option specified
and produces a warning if there are multiple --user options. Options in /etc/my.cnf and
$MYSQL_HOME/my.cnf are processed before command-line options, so it is recommended that you
put a --user option in /etc/my.cnf and specify a value other than root. The option in /etc/
my.cnf is found before any other --user options, which ensures that the server runs as a user
other than root, and that a warning results if any other --user option is found.

• --validate-config

Command-Line Format --validate-config[={OFF|ON}]

Introduced 8.0.16

Type Boolean

Default Value OFF

Validate the server startup configuration. If no errors are found, the server terminates with an
exit code of 0. If an error is found, the server displays a diagnostic message and terminates with
an exit code of 1. Warning and information messages may also be displayed, depending on the
log_error_verbosity value, but do not produce immediate validation termination or an exit code
of 1. For more information, see Section 7.1.3, “Server Configuration Validation”.

866

Server System Variables

• --validate-user-plugins[={OFF|ON}]

Command-Line Format --validate-user-plugins[={OFF|ON}]

Type Boolean

Default Value ON

If this option is enabled (the default), the server checks each user account and produces a warning if
conditions are found that would make the account unusable:

• The account requires an authentication plugin that is not loaded.

• The account requires the sha256_password or caching_sha2_password authentication
plugin but the server was started with neither SSL nor RSA enabled as required by the plugin.

Enabling --validate-user-plugins slows down server initialization and FLUSH PRIVILEGES.
If you do not require the additional checking, you can disable this option at startup to avoid the
performance decrement.

• --verbose, -v

Use this option with the --help option for detailed help.

• --version, -V

Display version information and exit.

7.1.8 Server System Variables

The MySQL server maintains many system variables that affect its operation. Most system variables
can be set at server startup using options on the command line or in an option file. Most of them can
be changed dynamically at runtime using the SET statement, which enables you to modify operation
of the server without having to stop and restart it. Some variables are read-only, and their values are
determined by the system environment, by how MySQL is installed on the system, or possibly by the
options used to compile MySQL. Most system variables have a default value, but there are exceptions,
including read-only variables. You can also use system variable values in expressions.

Setting a global system variable runtime value normally requires the SYSTEM_VARIABLES_ADMIN
privilege (or the deprecated SUPER privilege). Setting a session system runtime variable value normally
requires no special privileges and can be done by any user, although there are exceptions. For more
information, see Section 7.1.9.1, “System Variable Privileges”

There are several ways to see the names and values of system variables:

• To see the values that a server uses based on its compiled-in defaults and any option files that it
reads, use this command:

mysqld --verbose --help

• To see the values that a server uses based only on its compiled-in defaults, ignoring the settings in
any option files, use this command:

mysqld --no-defaults --verbose --help

• To see the current values used by a running server, use the SHOW VARIABLES statement or the
Performance Schema system variable tables. See Section 29.12.14, “Performance Schema System
Variable Tables”.

This section provides a description of each system variable. For a system variable summary table, see
Section 7.1.5, “Server System Variable Reference”. For more information about manipulation of system
variables, see Section 7.1.9, “Using System Variables”.

For additional system variable information, see these sections:

867

Server System Variables

• Section 7.1.9, “Using System Variables”, discusses the syntax for setting and displaying system
variable values.

• Section 7.1.9.2, “Dynamic System Variables”, lists the variables that can be set at runtime.

• Information on tuning system variables can be found in Section 7.1.1, “Configuring the Server”.

• Section 17.14, “InnoDB Startup Options and System Variables”, lists InnoDB system variables.

• NDB Cluster System Variables, lists system variables which are specific to NDB Cluster.

• For information on server system variables specific to replication, see Section 19.1.6, “Replication
and Binary Logging Options and Variables”.

Note

Some of the following variable descriptions refer to “enabling” or “disabling” a
variable. These variables can be enabled with the SET statement by setting
them to ON or 1, or disabled by setting them to OFF or 0. Boolean variables can
be set at startup to the values ON, TRUE, OFF, and FALSE (not case-sensitive),
as well as 1 and 0. See Section 6.2.2.4, “Program Option Modifiers”.

Some system variables control the size of buffers or caches. For a given buffer, the server might need
to allocate internal data structures. These structures typically are allocated from the total memory
allocated to the buffer, and the amount of space required might be platform dependent. This means
that when you assign a value to a system variable that controls a buffer size, the amount of space
actually available might differ from the value assigned. In some cases, the amount might be less than
the value assigned. It is also possible that the server adjusts a value upward. For example, if you
assign a value of 0 to a variable for which the minimal value is 1024, the server sets the value to 1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Note

Some system variable descriptions include a block size, in which case a value
that is not an integer multiple of the stated block size is rounded down to the
next lower multiple of the block size before being stored by the server, that is to
FLOOR(value) * block_size.

Example: Suppose that the block size for a given variable is given as
4096, and you set the value of the variable to 100000 (we assume that the
variable's maximum value is greater than this number). Since 100000 / 4096
= 24.4140625, the server automatically lowers the value to 98304 (24 * 4096)
before storing it.

In some cases, the stated maximum for a variable is the maximum allowed by
the MySQL parser, but is not an exact multiple of the block size. In such cases,
the effective maximum is the next lower multiple of the block size.

Example: A system variable's maxmum value is shown as 4294967295 (232-1),
and its block size is 1024. 4294967295 / 1024 = 4194303.9990234375, so if you
set this variable to its stated maximum, the value actually stored is 4194303 *
1024 = 4294966272.

Some system variables take file name values. Unless otherwise specified, the default file location is
the data directory if the value is a relative path name. To specify the location explicitly, use an absolute
path name. Suppose that the data directory is /var/mysql/data. If a file-valued variable is given as
a relative path name, it is located under /var/mysql/data. If the value is an absolute path name, its
location is as given by the path name.

• activate_all_roles_on_login

868

Server System Variables

Command-Line Format --activate-all-roles-on-login[={OFF|
ON}]

System Variable activate_all_roles_on_login

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether to enable automatic activation of all granted roles when users log in to the server:

• If activate_all_roles_on_login is enabled, the server activates all roles granted to each
account at login time. This takes precedence over default roles specified with SET DEFAULT
ROLE.

• If activate_all_roles_on_login is disabled, the server activates the default roles specified
with SET DEFAULT ROLE, if any, at login time.

Granted roles include those granted explicitly to the user and those named in the
mandatory_roles system variable value.

activate_all_roles_on_login applies only at login time, and at the beginning of execution
for stored programs and views that execute in definer context. To change the active roles within a
session, use SET ROLE. To change the active roles for a stored program, the program body should
execute SET ROLE.

• admin_address

Command-Line Format --admin-address=addr

Introduced 8.0.14

System Variable admin_address

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The IP address on which to listen for TCP/IP connections on the administrative network interface
(see Section 7.1.12.1, “Connection Interfaces”). There is no default admin_address value. If this
variable is not specified at startup, the server maintains no administrative interface. The server also
has a bind_address system variable for configuring regular (nonadministrative) client TCP/IP
connections. See Section 7.1.12.1, “Connection Interfaces”.

If admin_address is specified, its value must satisfy these requirements:

• The value must be a single IPv4 address, IPv6 address, or host name.

• The value cannot specify a wildcard address format (*, 0.0.0.0, or ::).

869

Server System Variables

• As of MySQL 8.0.22, the value may include a network namespace specifier.

An IP address can be specified as an IPv4 or IPv6 address. If the value is a host name, the server
resolves the name to an IP address and binds to that address. If a host name resolves to multiple IP
addresses, the server uses the first IPv4 address if there are any, or the first IPv6 address otherwise.

The server treats different types of addresses as follows:

• If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that
address, in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1,
clients can connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts
TCP/IP connections only for that IPv4 or IPv6 address.

These rules apply to specifying a network namespace for an address:

• A network namespace can be specified for an IP address or a host name.

• A network namespace cannot be specified for a wildcard IP address.

• For a given address, the network namespace is optional. If given, it must be specified as a /ns
suffix immediately following the address.

• An address with no /ns suffix uses the host system global namespace. The global namespace is
therefore the default.

• An address with a /ns suffix uses the namespace named ns.

• The host system must support network namespaces and each named namespace must previously
have been set up. Naming a nonexistent namespace produces an error.

For additional information about network namespaces, see Section 7.1.14, “Network Namespace
Support”.

If binding to the address fails, the server produces an error and does not start.

The admin_address system variable is similar to the bind_address system variable that binds
the server to an address for ordinary client connections, but with these differences:

• bind_address permits multiple addresses. admin_address permits a single address.

• bind_address permits wildcard addresses. admin_address does not.

• admin_port

Command-Line Format --admin-port=port_num

Introduced 8.0.14

System Variable admin_port

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 33062

Minimum Value 0

870

Server System Variables

Maximum Value 65535

The TCP/IP port number to use for connections on the administrative network interface (see
Section 7.1.12.1, “Connection Interfaces”). Setting this variable to 0 causes the default value to be
used.

Setting admin_port has no effect if admin_address is not specified because in that case the
server maintains no administrative network interface.

• admin_ssl_ca

Command-Line Format --admin-ssl-ca=file_name

Introduced 8.0.21

System Variable admin_ssl_ca

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value NULL

The admin_ssl_ca system variable is like ssl_ca, except that it applies to the administrative
connection interface rather than the main connection interface. For information about configuring
encryption support for the administrative interface, see Administrative Interface Support for
Encrypted Connections.

• admin_ssl_capath

Command-Line Format --admin-ssl-capath=dir_name

Introduced 8.0.21

System Variable admin_ssl_capath

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Directory name

Default Value NULL

The admin_ssl_capath system variable is like ssl_capath, except that it applies to the
administrative connection interface rather than the main connection interface. For information about
configuring encryption support for the administrative interface, see Administrative Interface Support
for Encrypted Connections.

• admin_ssl_cert

Command-Line Format --admin-ssl-cert=file_name

Introduced 8.0.21

System Variable admin_ssl_cert

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name
871

Server System Variables

Default Value NULL

The admin_ssl_cert system variable is like ssl_cert, except that it applies to the administrative
connection interface rather than the main connection interface. For information about configuring
encryption support for the administrative interface, see Administrative Interface Support for
Encrypted Connections.

• admin_ssl_cipher

Command-Line Format --admin-ssl-cipher=name

Introduced 8.0.21

System Variable admin_ssl_cipher

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

The admin_ssl_cipher system variable is like ssl_cipher, except that it applies to the
administrative connection interface rather than the main connection interface. For information about
configuring encryption support for the administrative interface, see Administrative Interface Support
for Encrypted Connections.

• admin_ssl_crl

Command-Line Format --admin-ssl-crl=file_name

Introduced 8.0.21

System Variable admin_ssl_crl

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value NULL

The admin_ssl_crl system variable is like ssl_crl, except that it applies to the administrative
connection interface rather than the main connection interface. For information about configuring
encryption support for the administrative interface, see Administrative Interface Support for
Encrypted Connections.

• admin_ssl_crlpath

Command-Line Format --admin-ssl-crlpath=dir_name

Introduced 8.0.21

System Variable admin_ssl_crlpath

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Directory name

872

Server System Variables

Default Value NULL

The admin_ssl_crlpath system variable is like ssl_crlpath, except that it applies to the
administrative connection interface rather than the main connection interface. For information about
configuring encryption support for the administrative interface, see Administrative Interface Support
for Encrypted Connections.

• admin_ssl_key

Command-Line Format --admin-ssl-key=file_name

Introduced 8.0.21

System Variable admin_ssl_key

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value NULL

The admin_ssl_key system variable is like ssl_key, except that it applies to the administrative
connection interface rather than the main connection interface. For information about configuring
encryption support for the administrative interface, see Administrative Interface Support for
Encrypted Connections.

• admin_tls_ciphersuites

Command-Line Format --admin-tls-
ciphersuites=ciphersuite_list

Introduced 8.0.21

System Variable admin_tls_ciphersuites

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

The admin_tls_ciphersuites system variable is like tls_ciphersuites, except that it
applies to the administrative connection interface rather than the main connection interface. For
information about configuring encryption support for the administrative interface, see Administrative
Interface Support for Encrypted Connections.

• admin_tls_version

Command-Line Format --admin-tls-version=protocol_list

Introduced 8.0.21

System Variable admin_tls_version

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value (≥ 8.0.28) TLSv1.2,TLSv1.3
873

Server System Variables

Default Value (≥ 8.0.21, ≤ 8.0.27) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3

The admin_tls_version system variable is like tls_version, except that it applies to the
administrative connection interface rather than the main connection interface. For information about
configuring encryption support for the administrative interface, see Administrative Interface Support
for Encrypted Connections.

Important

• Support for the TLSv1 and TLSv1.1 connection protocols is removed
from MySQL Server as of MySQL 8.0.28. The protocols were deprecated
from MySQL 8.0.26. See Removal of Support for the TLSv1 and TLSv1.1
Protocols for more information.

• Support for the TLSv1.3 protocol is available in MySQL Server as
of MySQL 8.0.16, provided that MySQL Server was compiled using
OpenSSL 1.1.1 or higher. The server checks the version of OpenSSL
at startup, and if it is lower than 1.1.1, TLSv1.3 is removed from the
default value for the system variable. In that case, the defaults are
“TLSv1,TLSv1.1,TLSv1.2” up to and including MySQL 8.0.27, and
“TLSv1.2” from MySQL 8.0.28.

• authentication_policy

Command-Line Format --authentication-policy=value

Introduced 8.0.27

System Variable authentication_policy

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value *,,

This variable is used to administer multifactor authentication (MFA) capabilities. It applies to the
authentication factor-related clauses of CREATE USER and ALTER USER statements used to
manage MySQL account definitions, where “factor” corresponds to an authentication method or
plugin associated with an account:

• authentication_policy controls the number of authentication factors that accounts may have.
That is, it controls which factors are required or permitted.

• authentication_policy also controls, for each factor, which plugins (or methods) are
permitted.

• authentication_policy, in conjunction with default_authentication_plugin,
determines the default authentication plugin for authentication specifications that do not name a
plugin explicitly.

Because authentication_policy applies only when accounts are created or altered, changes to
its value have no effect on existing user accounts.

Note

Although the authentication_policy system variable places
certain constraints on the authentication-related clauses of
CREATE USER and ALTER USER statements, a user who has the

874

Server System Variables

AUTHENTICATION_POLICY_ADMIN privilege is not subject to the constraints.
(A warning does occur for statements that otherwise would not be permitted.)

The value of authentication_policy is a list of 1, 2, or 3 comma-separated elements.
Each element present can be an authentication plugin name, an asterisk (*), empty, or missing.
(Exception: Element 1 cannot be empty or missing.) In all cases, an element may be surrounded by
whitespace characters and the entire list is enclosed in single quotes.

The type of value specified for element N in the list has implications for whether factor N must be
present in account definitions, and which authentication plugins can be used:

• If element N is an authentication plugin name, an authentication method for factor N is required and
must use the named plugin.

In addition, the plugin becomes the default plugin for factor N authentication methods that do not
name a plugin explicitly. For details, see The Default Authentication Plugin.

Authentication plugins that use internal credentials storage can be specified for the first element
only, and cannot repeat. For example, the following settings are not permitted:

• authentication_policy = 'caching_sha2_password, sha256_password'

• authentication_policy = 'caching_sha2_password, authentication_fido,
sha256_password'

• If element N is an asterisk (*), an authentication method for factor N is required. It may use any
authentication plugin that is valid for element N (as described later).

• If element N is empty, an authentication method for factor N is optional. If given, it may use any
authentication plugin that is valid for element N (as described later).

• If element N is missing from the list (that is, there are fewer than N−1 commas in the value), an
authentication method for factor N is forbidden. For example, a value of '*' permits only a single
factor and thus enforces single-factor authentication (1FA) for new accounts created with CREATE

875

Server System Variables

USER or changes to existing accounts made with ALTER USER. In this case, such statements
cannot specify authentication for factors 2 or 3.

When an authentication_policy element names an authentication plugin, the permitted plugin
names for the element are subject to these conditions:

• Element 1 must name a plugin that does not require a registration step. For example,
authentication_fido cannot be named.

• Elements 2 and 3 must name a plugin that does not use internal credentials storage.

For information about which authentication plugins use internal credentials storage, see
Section 8.2.15, “Password Management”.

When authentication_policy element N is *, the permitted plugin names for factor N in account
definitions are subject to these conditions:

• For factor 1, account definitions can use any plugin. Default authentication plugin rules apply for
authentication specifications that do not name a plugin. See The Default Authentication Plugin.

• For factors 2 and 3, account definitions cannot name a plugin that uses internal credentials
storage. For example, with '*,*', '*,*,*', '*,', '*,,' authentication_policy settings, plugins
that use internal credentials storage are only permitted for the first factor and cannot repeat.

When authentication_policy element N is empty, the permitted plugin names for factor N in
account definitions are subject to these conditions:

• For factor 1, this does not apply because element 1 cannot be empty.

• For factors 2 and 3, account definitions cannot name a plugin that uses internal credentials
storage.

Empty elements must occur at the end of the list, following a nonempty element. In other words, the
first element cannot be empty, and either no element is empty or the last element is empty or the last
two elements are empty. For example, a value of ',,' is not permitted because it would signify that
all factors are optional. That cannot be; accounts must have at least one authentication factor.

The default value of authentication_policy is '*,,'. This means that factor 1 is required in
account definitions and can use any authentication plugin, and that factors 2 and 3 are optional and
each can use any authentication plugin that does not use internal credentials storage.

The following table shows some authentication_policy values and the policy that each
establishes for creating or altering accounts.

Table 7.4 Example authentication_policy Values

authentication_policy Value Effective Policy

'*' Permit only creating or altering accounts with one
factor.

'*,*' Permit only creating or altering accounts with two
factors.

'*,*,*' Permit only creating or altering accounts with
three factors.

'*,' Permit creating or altering accounts with one or
two factors.

'*,,' Permit creating or altering accounts with one,
two, or three factors.

876

Server System Variables

authentication_policy Value Effective Policy

'*,*,' Permit creating or altering accounts with two or
three factors.

'*,auth_plugin' Permit creating or altering accounts with two
factors, where the first factor can be any
authentication method, and the second factor
must be the named plugin.

'auth_plugin,*,' Permit creating or altering accounts with two or
three factors, where the first factor must be the
named plugin.

'auth_plugin,' Permit creating or altering accounts with one or
two factors, where the first factor must be the
named plugin.

'auth_plugin,auth_plugin,auth_plugin'Permits creating or altering accounts with three
factors, where the factors must use the named
plugins.

• authentication_windows_log_level

Command-Line Format --authentication-windows-log-level=#

System Variable authentication_windows_log_level

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 2

Minimum Value 0

Maximum Value 4

This variable is available only if the authentication_windows Windows authentication plugin is
enabled and debugging code is enabled. See Section 8.4.1.6, “Windows Pluggable Authentication”.

This variable sets the logging level for the Windows authentication plugin. The following table shows
the permitted values.

Value Description

0 No logging

1 Log only error messages

2 Log level 1 messages and warning messages

3 Log level 2 messages and information notes

4 Log level 3 messages and debug messages

• authentication_windows_use_principal_name

Command-Line Format --authentication-windows-use-
principal-name[={OFF|ON}]

System Variable authentication_windows_use_principal_name

Scope Global

Dynamic No

877

Server System Variables

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This variable is available only if the authentication_windows Windows authentication plugin is
enabled. See Section 8.4.1.6, “Windows Pluggable Authentication”.

A client that authenticates using the InitSecurityContext() function should provide a string
identifying the service to which it connects (targetName). MySQL uses the principal name (UPN) of
the account under which the server is running. The UPN has the form user_id@computer_name
and need not be registered anywhere to be used. This UPN is sent by the server at the beginning of
authentication handshake.

This variable controls whether the server sends the UPN in the initial challenge. By default, the
variable is enabled. For security reasons, it can be disabled to avoid sending the server's account
name to a client as cleartext. If the variable is disabled, the server always sends a 0x00 byte in the
first challenge, the client does not specify targetName, and as a result, NTLM authentication is
used.

If the server fails to obtain its UPN (which happens primarily in environments that do not support
Kerberos authentication), the UPN is not sent by the server and NTLM authentication is used.

• autocommit

Command-Line Format --autocommit[={OFF|ON}]

System Variable autocommit

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

The autocommit mode. If set to 1, all changes to a table take effect immediately. If set to 0, you
must use COMMIT to accept a transaction or ROLLBACK to cancel it. If autocommit is 0 and you
change it to 1, MySQL performs an automatic COMMIT of any open transaction. Another way to begin
a transaction is to use a START TRANSACTION or BEGIN statement. See Section 15.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Statements”.

By default, client connections begin with autocommit set to 1. To cause clients to begin with a
default of 0, set the global autocommit value by starting the server with the --autocommit=0
option. To set the variable using an option file, include these lines:

[mysqld]
autocommit=0

• automatic_sp_privileges

Command-Line Format --automatic-sp-privileges[={OFF|ON}]

System Variable automatic_sp_privileges

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

878

Server System Variables

Default Value ON

When this variable has a value of 1 (the default), the server automatically grants the EXECUTE and
ALTER ROUTINE privileges to the creator of a stored routine, if the user cannot already execute
and alter or drop the routine. (The ALTER ROUTINE privilege is required to drop the routine.) The
server also automatically drops those privileges from the creator when the routine is dropped. If
automatic_sp_privileges is 0, the server does not automatically add or drop these privileges.

The creator of a routine is the account used to execute the CREATE statement for it. This might not
be the same as the account named as the DEFINER in the routine definition.

If you start mysqld with --skip-new, automatic_sp_privileges is set to OFF.

See also Section 27.2.2, “Stored Routines and MySQL Privileges”.

• auto_generate_certs

Command-Line Format --auto-generate-certs[={OFF|ON}]

System Variable auto_generate_certs

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This variable controls whether the server autogenerates SSL key and certificate files in the data
directory, if they do not already exist.

At startup, the server automatically generates server-side and client-side SSL certificate and key
files in the data directory if the auto_generate_certs system variable is enabled, no SSL options
other than --ssl are specified, and the server-side SSL files are missing from the data directory.
These files enable secure client connections using SSL; see Section 8.3.1, “Configuring MySQL to
Use Encrypted Connections”.

For more information about SSL file autogeneration, including file names and characteristics, see
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”

The sha256_password_auto_generate_rsa_keys and
caching_sha2_password_auto_generate_rsa_keys system variables are related but
control autogeneration of RSA key-pair files needed for secure password exchange using RSA over
unencrypted connections.

• avoid_temporal_upgrade

Command-Line Format --avoid-temporal-upgrade[={OFF|ON}]

Deprecated Yes

System Variable avoid_temporal_upgrade

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

879

Server System Variables

Default Value OFF

This variable controls whether ALTER TABLE implicitly upgrades temporal columns found to be
in pre-5.6.4 format (TIME, DATETIME, and TIMESTAMP columns without support for fractional
seconds precision). Upgrading such columns requires a table rebuild, which prevents any use of fast
alterations that might otherwise apply to the operation to be performed.

This variable is disabled by default. Enabling it causes ALTER TABLE not to rebuild temporal
columns and thereby be able to take advantage of possible fast alterations.

This variable is deprecated; expect it to be removed in a future MySQL release.

• back_log

Command-Line Format --back-log=#

System Variable back_log

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 1

Maximum Value 65535

The number of outstanding connection requests MySQL can have. This comes into play when the
main MySQL thread gets very many connection requests in a very short time. It then takes some
time (although very little) for the main thread to check the connection and start a new thread. The
back_log value indicates how many requests can be stacked during this short time before MySQL
momentarily stops answering new requests. You need to increase this only if you expect a large
number of connections in a short period of time.

In other words, this value is the size of the listen queue for incoming TCP/IP connections. Your
operating system has its own limit on the size of this queue. The manual page for the Unix
listen() system call should have more details. Check your OS documentation for the maximum
value for this variable. back_log cannot be set higher than your operating system limit.

The default value is the value of max_connections, which enables the permitted backlog to adjust
to the maximum permitted number of connections.

• basedir

Command-Line Format --basedir=dir_name

System Variable basedir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value parent of mysqld installation
directory

The path to the MySQL installation base directory.

• big_tables

880

Server System Variables

Command-Line Format --big-tables[={OFF|ON}]

System Variable big_tables

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

If enabled, the server stores all temporary tables on disk rather than in memory. This prevents most
The table tbl_name is full errors for SELECT operations that require a large temporary
table, but also slows down queries for which in-memory tables would suffice.

The default value for new connections is OFF (use in-memory temporary tables). Normally, it should
never be necessary to enable this variable. When in-memory internal temporary tables are managed
by the TempTable storage engine (the default), and the maximum amount of memory that can be
occupied by the TempTable storage engine is exceeded, the TempTable storage engine starts
storing data to temporary files on disk. When in-memory temporary tables are managed by the
MEMORY storage engine, in-memory tables are automatically converted to disk-based tables as
required. For more information, see Section 10.4.4, “Internal Temporary Table Use in MySQL”.

• bind_address

Command-Line Format --bind-address=addr

System Variable bind_address

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value *

The MySQL server listens on one or more network sockets for TCP/IP connections. Each socket
is bound to one address, but it is possible for an address to map onto multiple network interfaces.
To specify how the server should listen for TCP/IP connections, set the bind_address system
variable at server startup. The server also has an admin_address system variable that enables
administrative connections on a dedicated interface. See Section 7.1.12.1, “Connection Interfaces”.

If bind_address is specified, its value must satisfy these requirements:

• Prior to MySQL 8.0.13, bind_address accepts a single address value, which may specify a
single non-wildcard IP address or host name, or one of the wildcard address formats that permit
listening on multiple network interfaces (*, 0.0.0.0, or ::).

• As of MySQL 8.0.13, bind_address accepts either a single value as just described, or a list of
comma-separated values. When the variable names a list of multiple values, each value must
specify a single non-wildcard IP address (either IPv4 or IPv6) or a host name. Wildcard address
formats (*, 0.0.0.0, or ::) are not allowed in a list of values.

• As of MySQL 8.0.22, addresses may include a network namespace specifier.

IP addresses can be specified as IPv4 or IPv6 addresses. For any value that is a host name, the
server resolves the name to an IP address and binds to that address. If a host name resolves to
multiple IP addresses, the server uses the first IPv4 address if there are any, or the first IPv6 address
otherwise.

881

Server System Variables

The server treats different types of addresses as follows:

• If the address is *, the server accepts TCP/IP connections on all server host IPv4 interfaces, and,
if the server host supports IPv6, on all IPv6 interfaces. Use this address to permit both IPv4 and
IPv6 connections on all server interfaces. This value is the default. If the variable specifies a list of
multiple values, this value is not permitted.

• If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4
interfaces. If the variable specifies a list of multiple values, this value is not permitted.

• If the address is ::, the server accepts TCP/IP connections on all server host IPv4 and IPv6
interfaces. If the variable specifies a list of multiple values, this value is not permitted.

• If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that
address, in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1,
clients can connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts
TCP/IP connections only for that IPv4 or IPv6 address.

These rules apply to specifying a network namespace for an address:

• A network namespace can be specified for an IP address or a host name.

• A network namespace cannot be specified for a wildcard IP address.

• For a given address, the network namespace is optional. If given, it must be specified as a /ns
suffix immediately following the address.

• An address with no /ns suffix uses the host system global namespace. The global namespace is
therefore the default.

• An address with a /ns suffix uses the namespace named ns.

• The host system must support network namespaces and each named namespace must previously
have been set up. Naming a nonexistent namespace produces an error.

• If the variable value specifies multiple addresses, it can include addresses in the global
namespace, in named namespaces, or a mix.

For additional information about network namespaces, see Section 7.1.14, “Network Namespace
Support”.

If binding to any address fails, the server produces an error and does not start.

Examples:

• bind_address=*

The server listens on all IPv4 or IPv6 addresses, as specified by the * wildcard.

• bind_address=198.51.100.20

The server listens only on the 198.51.100.20 IPv4 address.

• bind_address=198.51.100.20,2001:db8:0:f101::1

The server listens on the 198.51.100.20 IPv4 address and the 2001:db8:0:f101::1 IPv6
address.

882

Server System Variables

• bind_address=198.51.100.20,*

This produces an error because wildcard addresses are not permitted when bind_address
names a list of multiple values.

• bind_address=198.51.100.20/red,2001:db8:0:f101::1/blue,192.0.2.50

The server listens on the 198.51.100.20 IPv4 address in the red namespace, the
2001:db8:0:f101::1 IPv6 address in the blue namespace, and the 192.0.2.50 IPv4
address in the global namespace.

When bind_address names a single value (wildcard or non-wildcard), the server listens on a
single socket, which for a wildcard address may be bound to multiple network interfaces. When
bind_address names a list of multiple values, the server listens on one socket per value, with
each socket bound to a single network interface. The number of sockets is linear with the number of
values specified. Depending on operating system connection-acceptance efficiency, long value lists
might incur a performance penalty for accepting TCP/IP connections.

 Because file descriptors are allocated for listening sockets and network namespace files, it may be
necessary to increase the open_files_limit system variable.

If you intend to bind the server to a specific address, be sure that the mysql.user system table
contains an account with administrative privileges that you can use to connect to that address.
Otherwise, you cannot shut down the server. For example, if you bind the server to *, you can
connect to it using all existing accounts. But if you bind the server to ::1, it accepts connections
only on that address. In that case, first make sure that the 'root'@'::1' account is present in the
mysql.user table so you can still connect to the server to shut it down.

• block_encryption_mode

Command-Line Format --block-encryption-mode=#

System Variable block_encryption_mode

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value aes-128-ecb

This variable controls the block encryption mode for block-based algorithms such as AES. It affects
encryption for AES_ENCRYPT() and AES_DECRYPT().

block_encryption_mode takes a value in aes-keylen-mode format, where keylen is the key
length in bits and mode is the encryption mode. The value is not case-sensitive. Permitted keylen
values are 128, 192, and 256. Permitted mode values are ECB, CBC, CFB1, CFB8, CFB128, and OFB.

For example, this statement causes the AES encryption functions to use a key length of 256 bits and
the CBC mode:

SET block_encryption_mode = 'aes-256-cbc';

An error occurs for attempts to set block_encryption_mode to a value containing an unsupported
key length or a mode that the SSL library does not support.

• build_id

Introduced 8.0.31

883

Server System Variables

System Variable build_id

Scope Global

Dynamic No

SET_VAR Hint Applies No

Platform Specific Linux

This is a 160-bit SHA1 signature which is generated by the linker when compiling the server on Linux
systems with -DWITH_BUILD_ID=ON (enabled by default), and converted to a hexadecimal string.
This read-only value serves as a unique build ID, and is written into the server log at startup.

build_id is not supported on platforms other than Linux.

• bulk_insert_buffer_size

Command-Line Format --bulk-insert-buffer-size=#

System Variable bulk_insert_buffer_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 8388608

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes/thread

MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT,
INSERT ... VALUES (...), (...), ..., and LOAD DATA when adding data to nonempty
tables. This variable limits the size of the cache tree in bytes per thread. Setting it to 0 disables this
optimization. The default value is 8MB.

As of MySQL 8.0.14, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• caching_sha2_password_digest_rounds

Command-Line Format --caching-sha2-password-digest-
rounds=#

Introduced 8.0.24

System Variable caching_sha2_password_digest_rounds

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 5000

Minimum Value 5000

884

Server System Variables

Maximum Value 4095000

The number of hash rounds used by the caching_sha2_password authentication plugin for
password storage.

Increasing the number of hashing rounds above the default value incurs a performance penalty that
correlates with the amount of increase:

• Creating an account that uses the caching_sha2_password plugin has no impact on the client
session within which the account is created, but the server must perform the hashing rounds to
complete the operation.

• For client connections that use the account, the server must perform the hashing rounds and save
the result in the cache. The result is longer login time for the first client connection, but not for
subsequent connections. This behavior occurs after each server restart.

• caching_sha2_password_auto_generate_rsa_keys

Command-Line Format --caching-sha2-password-auto-
generate-rsa-keys[={OFF|ON}]

System Variable caching_sha2_password_auto_generate_rsa_keys

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

The server uses this variable to determine whether to autogenerate RSA private/public key-pair files
in the data directory if they do not already exist.

At startup, the server automatically generates RSA private/public key-pair files in the data directory
if all of these conditions are true: The sha256_password_auto_generate_rsa_keys or
caching_sha2_password_auto_generate_rsa_keys system variable is enabled; no RSA
options are specified; the RSA files are missing from the data directory. These key-pair files enable
secure password exchange using RSA over unencrypted connections for accounts authenticated
by the sha256_password or caching_sha2_password plugin; see Section 8.4.1.3, “SHA-256
Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”.

For more information about RSA file autogeneration, including file names and characteristics, see
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”

The auto_generate_certs system variable is related but controls autogeneration of SSL
certificate and key files needed for secure connections using SSL.

• caching_sha2_password_private_key_path

Command-Line Format --caching-sha2-password-private-key-
path=file_name

System Variable caching_sha2_password_private_key_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

885

Server System Variables

Default Value private_key.pem

This variable specifies the path name of the RSA private key file for the caching_sha2_password
authentication plugin. If the file is named as a relative path, it is interpreted relative to the server data
directory. The file must be in PEM format.

Important

Because this file stores a private key, its access mode should be restricted so
that only the MySQL server can read it.

For information about caching_sha2_password, see Section 8.4.1.2, “Caching SHA-2 Pluggable
Authentication”.

• caching_sha2_password_public_key_path

Command-Line Format --caching-sha2-password-public-key-
path=file_name

System Variable caching_sha2_password_public_key_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value public_key.pem

This variable specifies the path name of the RSA public key file for the caching_sha2_password
authentication plugin. If the file is named as a relative path, it is interpreted relative to the server data
directory. The file must be in PEM format.

For information about caching_sha2_password, including information about how clients request
the RSA public key, see Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”.

• character_set_client

System Variable character_set_client

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value utf8mb4

The character set for statements that arrive from the client. The session value of this variable is
set using the character set requested by the client when the client connects to the server. (Many
clients support a --default-character-set option to enable this character set to be specified
explicitly. See also Section 12.4, “Connection Character Sets and Collations”.) The global value of
the variable is used to set the session value in cases when the client-requested value is unknown or
not available, or the server is configured to ignore client requests:

• The client requests a character set not known to the server. For example, a Japanese-enabled
client requests sjis when connecting to a server not configured with sjis support.

• The client is from a version of MySQL older than MySQL 4.1, and thus does not request a
character set.

886

Server System Variables

• mysqld was started with the --skip-character-set-client-handshake option, which
causes it to ignore client character set configuration.

Some character sets cannot be used as the client character set. Attempting to use them as the
character_set_client value produces an error. See Impermissible Client Character Sets.

• character_set_connection

System Variable character_set_connection

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value utf8mb4

The character set used for literals specified without a character set introducer and for number-to-
string conversion. For information about introducers, see Section 12.3.8, “Character Set Introducers”.

• character_set_database

System Variable character_set_database

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value utf8mb4

Footnote This option is dynamic, but should be set only by
server. You should not set this variable manually.

The character set used by the default database. The server sets this variable whenever the
default database changes. If there is no default database, the variable has the same value as
character_set_server.

As of MySQL 8.0.14, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

The global character_set_database and collation_database system variables are
deprecated; expect them to be removed in a future version of MySQL.

Assigning a value to the session character_set_database and collation_database system
variables is deprecated and assignments produce a warning. Expect the session variables to
become read-only (and assignments to them to produce an error) in a future version of MySQL in
which it remains possible to access the session variables to determine the database character set
and collation for the default database.

• character_set_filesystem

Command-Line Format --character-set-filesystem=name

System Variable character_set_filesystem

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

887

Server System Variables

Type String

Default Value binary

The file system character set. This variable is used to interpret string literals that refer to file
names, such as in the LOAD DATA and SELECT ... INTO OUTFILE statements and the
LOAD_FILE() function. Such file names are converted from character_set_client to
character_set_filesystem before the file opening attempt occurs. The default value is
binary, which means that no conversion occurs. For systems on which multibyte file names are
permitted, a different value may be more appropriate. For example, if the system represents file
names using UTF-8, set character_set_filesystem to 'utf8mb4'.

As of MySQL 8.0.14, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• character_set_results

System Variable character_set_results

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value utf8mb4

The character set used for returning query results to the client. This includes result data such as
column values, result metadata such as column names, and error messages.

• character_set_server

Command-Line Format --character-set-server=name

System Variable character_set_server

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value utf8mb4

The servers default character set. See Section 12.15, “Character Set Configuration”. If you set this
variable, you should also set collation_server to specify the collation for the character set.

• character_set_system

System Variable character_set_system

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value utf8mb3

The character set used by the server for storing identifiers. The value is always utf8mb3.

888

Server System Variables

• character_sets_dir

Command-Line Format --character-sets-dir=dir_name

System Variable character_sets_dir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

The directory where character sets are installed. See Section 12.15, “Character Set Configuration”.

• check_proxy_users

Command-Line Format --check-proxy-users[={OFF|ON}]

System Variable check_proxy_users

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Some authentication plugins implement proxy user mapping for themselves (for example, the PAM
and Windows authentication plugins). Other authentication plugins do not support proxy users by
default. Of these, some can request that the MySQL server itself map proxy users according to
granted proxy privileges: mysql_native_password, sha256_password.

If the check_proxy_users system variable is enabled, the server performs proxy user mapping for
any authentication plugins that make such a request. However, it may also be necessary to enable
plugin-specific system variables to take advantage of server proxy user mapping support:

• For the mysql_native_password plugin, enable mysql_native_password_proxy_users.

• For the sha256_password plugin, enable sha256_password_proxy_users.

For information about user proxying, see Section 8.2.19, “Proxy Users”.

• collation_connection

System Variable collation_connection

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

The collation of the connection character set. collation_connection is important
for comparisons of literal strings. For comparisons of strings with column values,
collation_connection does not matter because columns have their own collation, which has a
higher collation precedence (see Section 12.8.4, “Collation Coercibility in Expressions”).

In MySQL 8.0.33 and later, using the name of a user-defined collation for this variable raises a
warning.

889

Server System Variables

• collation_database

System Variable collation_database

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value utf8mb4_0900_ai_ci

Footnote This option is dynamic, but should be set only by
server. You should not set this variable manually.

The collation used by the default database. The server sets this variable whenever the
default database changes. If there is no default database, the variable has the same value as
collation_server.

As of MySQL 8.0.18, setting the session value of this system variable is no longer a restricted
operation.

The global character_set_database and collation_database system variables are
deprecated; expect them to be removed in a future version of MySQL.

Assigning a value to the session character_set_database and collation_database system
variables is deprecated and assignments produce a warning. Expect the session variables to
become read-only (and assignments to produce an error) in a future version of MySQL in which
it remains possible to access the session variables to determine the database character set and
collation for the default database.

In MySQL 8.0.33 and later, using the name of a user-defined collation for collation_database
raises a warning.

• collation_server

Command-Line Format --collation-server=name

System Variable collation_server

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value utf8mb4_0900_ai_ci

The server's default collation. See Section 12.15, “Character Set Configuration”.

Beginning with MySQL 8.0.33, setting this to the name of a user-defined collation raises a warning.

• completion_type

Command-Line Format --completion-type=#

System Variable completion_type

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration890

Server System Variables

Default Value NO_CHAIN

Valid Values NO_CHAIN

CHAIN

RELEASE

0

1

2

The transaction completion type. This variable can take the values shown in the following table. The
variable can be assigned using either the name values or corresponding integer values.

Value Description

NO_CHAIN (or 0) COMMIT and ROLLBACK are unaffected. This is
the default value.

CHAIN (or 1) COMMIT and ROLLBACK are equivalent to
COMMIT AND CHAIN and ROLLBACK AND
CHAIN, respectively. (A new transaction starts
immediately with the same isolation level as the
just-terminated transaction.)

RELEASE (or 2) COMMIT and ROLLBACK are equivalent to
COMMIT RELEASE and ROLLBACK RELEASE,
respectively. (The server disconnects after
terminating the transaction.)

completion_type affects transactions that begin with START TRANSACTION or BEGIN and end
with COMMIT or ROLLBACK. It does not apply to implicit commits resulting from execution of the
statements listed in Section 15.3.3, “Statements That Cause an Implicit Commit”. It also does not
apply for XA COMMIT, XA ROLLBACK, or when autocommit=1.

• component_scheduler.enabled

Command-Line Format --component-
scheduler.enabled[=value]

Introduced 8.0.34

System Variable component_scheduler.enabled

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

When set to OFF at startup, the background thread does not start. Tasks can still be scheduled, but
they do not run until component_scheduler is enabled. When set to ON at startup, the component
is fully operational.

It is also possible to set the value dynamically to get the following effects:

• ON starts the background thread that begins servicing the queue immediately.

891

Server System Variables

• OFF signals a termination of the background thread, which waits for it to end. The background
thread checks the termination flag before accessing the queue to check for tasks to execute.

• concurrent_insert

Command-Line Format --concurrent-insert[=value]

System Variable concurrent_insert

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value AUTO

Valid Values NEVER

AUTO

ALWAYS

0

1

2

If AUTO (the default), MySQL permits INSERT and SELECT statements to run concurrently for
MyISAM tables that have no free blocks in the middle of the data file.

This variable can take the values shown in the following table. The variable can be assigned using
either the name values or corresponding integer values.

Value Description

NEVER (or 0) Disables concurrent inserts

AUTO (or 1) (Default) Enables concurrent insert for MyISAM
tables that do not have holes

ALWAYS (or 2) Enables concurrent inserts for all MyISAM tables,
even those that have holes. For a table with a
hole, new rows are inserted at the end of the
table if it is in use by another thread. Otherwise,
MySQL acquires a normal write lock and inserts
the row into the hole.

If you start mysqld with --skip-new, concurrent_insert is set to NEVER.

See also Section 10.11.3, “Concurrent Inserts”.

• connect_timeout

Command-Line Format --connect-timeout=#

System Variable connect_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

892

Server System Variables

Default Value 10

Minimum Value 2

Maximum Value 31536000

Unit seconds

The number of seconds that the mysqld server waits for a connect packet before responding with
Bad handshake. The default value is 10 seconds.

Increasing the connect_timeout value might help if clients frequently encounter errors of the form
Lost connection to MySQL server at 'XXX', system error: errno.

• connection_memory_chunk_size

Command-Line Format --connection-memory-chunk-size=#

Introduced 8.0.28

System Variable connection_memory_chunk_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.34) 8192

Default Value (≥ 8.0.28, ≤ 8.0.33) 8912

Minimum Value 0

Maximum Value 536870912

Unit bytes

Set the chunking size for updates to the global memory usage counter
Global_connection_memory. The status variable is updated only when total memory
consumption by all user connections changes by more than this amount. Disable updates by setting
connection_memory_chunk_size = 0.

The memory calculation is exclusive of any memory used by system users such as the MySQL root
user. Memory used by the InnoDB buffer pool is also not included.

You must have the SYSTEM_VARIABLES_ADMIN or SUPER privilege to set this variable.

• connection_memory_limit

Command-Line Format --connection-memory-limit=#

Introduced 8.0.28

System Variable connection_memory_limit

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 18446744073709551615

Minimum Value 2097152

Maximum Value 18446744073709551615

893

Server System Variables

Unit bytes

Set the maximum amount of memory that can be used by a single user connection. If any
user connection uses more than this amount, all queries from this connection are rejected with
ER_CONN_LIMIT, including any queries currently running.

The limit set by this variable does not apply to system users, or to the MySQL root account. Memory
used by the InnoDB buffer pool is also not included.

You must have the SYSTEM_VARIABLES_ADMIN or SUPER privilege to set this variable.

• core_file

System Variable core_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether to write a core file if the server unexpectedly exits. This variable is set by the --core-file
option.

• create_admin_listener_thread

Command-Line Format --create-admin-listener-
thread[={OFF|ON}]

Introduced 8.0.14

System Variable create_admin_listener_thread

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether to use a dedicated listening thread for client connections on the administrative network
interface (see Section 7.1.12.1, “Connection Interfaces”). The default is OFF; that is, the manager
thread for ordinary connections on the main interface also handles connections for the administrative
interface.

Depending on factors such as platform type and workload, you may find one setting for this variable
yields better performance than the other setting.

Setting create_admin_listener_thread has no effect if admin_address is not specified
because in that case the server maintains no administrative network interface.

• cte_max_recursion_depth

Command-Line Format --cte-max-recursion-depth=#

System Variable cte_max_recursion_depth

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

894

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_conn_limit

Server System Variables

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 4294967295

The common table expression (CTE) maximum recursion depth. The server terminates execution of
any CTE that recurses more levels than the value of this variable. For more information, see Limiting
Common Table Expression Recursion.

• datadir

Command-Line Format --datadir=dir_name

System Variable datadir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

The path to the MySQL server data directory. Relative paths are resolved with respect to the current
directory. If you expect the server to be started automatically (that is, in contexts for which you
cannot know the current directory in advance), it is best to specify the datadir value as an absolute
path.

• debug

Command-Line Format --debug[=debug_options]

System Variable debug

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value (Unix) d:t:i:o,/tmp/mysqld.trace

Default Value (Windows) d:t:i:O,\mysqld.trace

This variable indicates the current debugging settings. It is available only for servers built with
debugging support. The initial value comes from the value of instances of the --debug option given
at server startup. The global and session values may be set at runtime.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

Assigning a value that begins with + or - cause the value to added to or subtracted from the current
value:

mysql> SET debug = 'T';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |
+---------+

mysql> SET debug = '+P';
mysql> SELECT @@debug;

895

Server System Variables

+---------+
| @@debug |
+---------+
| P:T |
+---------+

mysql> SET debug = '-P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |
+---------+

For more information, see Section 7.9.4, “The DBUG Package”.

• debug_sync

System Variable debug_sync

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

This variable is the user interface to the Debug Sync facility. Use of Debug Sync requires that
MySQL be configured with the -DWITH_DEBUG=ON CMake option (see Section 2.8.7, “MySQL
Source-Configuration Options”); otherwise, this system variable is not available.

The global variable value is read only and indicates whether the facility is enabled. By default, Debug
Sync is disabled and the value of debug_sync is OFF. If the server is started with --debug-sync-
timeout=N, where N is a timeout value greater than 0, Debug Sync is enabled and the value of
debug_sync is ON - current signal followed by the signal name. Also, N becomes the default
timeout for individual synchronization points.

The session value can be read by any user and has the same value as the global variable. The
session value can be set to control synchronization points.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Server Doxygen Documentation.

• default_authentication_plugin

Command-Line Format --default-authentication-
plugin=plugin_name

Deprecated 8.0.27

System Variable default_authentication_plugin

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value caching_sha2_password

Valid Values mysql_native_password

896

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Server System Variables

sha256_password

caching_sha2_password

The default authentication plugin. This must be a plugin that uses internal credentials storage, so
these values are permitted:

• mysql_native_password: Use MySQL native passwords; see Section 8.4.1.1, “Native
Pluggable Authentication”.

• sha256_password: Use SHA-256 passwords; see Section 8.4.1.3, “SHA-256 Pluggable
Authentication”.

• caching_sha2_password: Use SHA-256 passwords; see Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”.

For information about which authentication plugins use internal credentials storage, see
Section 8.2.15, “Password Management”.

Note

In MySQL 8.0, caching_sha2_password is the default authentication
plugin rather than mysql_native_password. For information about the
implications of this change for server operation and compatibility of the server
with clients and connectors, see caching_sha2_password as the Preferred
Authentication Plugin.

Prior to MySQL 8.0.27, the default_authentication_plugin value affects these aspects of
server operation:

• It determines which authentication plugin the server assigns to new accounts created by CREATE
USER statements that do not explicitly specify an authentication plugin.

• For an account created with a statement of the following form, the server associates the account
with the default authentication plugin and assigns the account the given password, hashed as
required by that plugin:

CREATE USER ... IDENTIFIED BY 'cleartext password';

As of MySQL 8.0.27, which introduces multifactor authentication,
default_authentication_plugin is still used, but in conjunction with and at a lower
precedence than the authentication_policy system variable. For details, see The Default
Authentication Plugin. Because of this diminished role, default_authentication_plugin is
deprecated as of MySQL 8.0.27 and subject to removal in a future MySQL version.

• default_collation_for_utf8mb4

System Variable default_collation_for_utf8mb4

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value utf8mb4_0900_ai_ci

Valid Values utf8mb4_0900_ai_ci

897

Server System Variables

utf8mb4_general_ci

Important

The default_collation_for_utf8mb4 system variable is for internal
use by MySQL Replication only.

This variable is set by the server to the default collation for the utf8mb4 character set. The value
of the variable is replicated from a source to a replica so that the replica can correctly process data
originating from a source with a different default collation for utf8mb4. This variable is primarily
intended to support replication from a MySQL 5.7 or older replication source server to a MySQL
8.0 replica server, or group replication with a MySQL 5.7 primary node and one or more MySQL
8.0 secondaries. The default collation for utf8mb4 in MySQL 5.7 is utf8mb4_general_ci, but
utf8mb4_0900_ai_ci in MySQL 8.0. The variable is not present in releases earlier than MySQL
8.0, so if the replica does not receive a value for the variable, it assumes the source is from an earlier
release and sets the value to the previous default collation utf8mb4_general_ci.

As of MySQL 8.0.18, setting the session value of this system variable is no longer a restricted
operation.

The default utf8mb4 collation is used in the following statements:

• SHOW COLLATION and SHOW CHARACTER SET.

• CREATE TABLE and ALTER TABLE having a CHARACTER SET utf8mb4 clause without a
COLLATION clause, either for the table character set or for a column character set.

• CREATE DATABASE and ALTER DATABASE having a CHARACTER SET utf8mb4 clause without
a COLLATION clause.

• Any statement containing a string literal of the form _utf8mb4'some text' without a COLLATE
clause.

See also Section 12.9, “Unicode Support”.

• default_password_lifetime

Command-Line Format --default-password-lifetime=#

System Variable default_password_lifetime

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 65535

Unit days

This variable defines the global automatic password expiration policy. The default
default_password_lifetime value is 0, which disables automatic password expiration. If the

898

Server System Variables

value of default_password_lifetime is a positive integer N, it indicates the permitted password
lifetime; passwords must be changed every N days.

The global password expiration policy can be overridden as desired for individual accounts using the
password expiration option of the CREATE USER and ALTER USER statements. See Section 8.2.15,
“Password Management”.

• default_storage_engine

Command-Line Format --default-storage-engine=name

System Variable default_storage_engine

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value InnoDB

The default storage engine for tables. See Chapter 18, Alternative Storage Engines. This variable
sets the storage engine for permanent tables only. To set the storage engine for TEMPORARY tables,
set the default_tmp_storage_engine system variable.

To see which storage engines are available and enabled, use the SHOW ENGINES statement or
query the INFORMATION_SCHEMA ENGINES table.

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine, or else the server does not start.

• default_table_encryption

Command-Line Format --default-table-encryption[={OFF|
ON}]

Introduced 8.0.16

System Variable default_table_encryption

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value OFF

Defines the default encryption setting applied to schemas and general tablespaces when they are
created without specifying an ENCRYPTION clause.

The default_table_encryption variable is only applicable to user-created schemas and
general tablespaces. It does not govern encryption of the mysql system tablespace.

Setting the runtime value of default_table_encryption requires the
SYSTEM_VARIABLES_ADMIN and TABLE_ENCRYPTION_ADMIN privileges, or the deprecated
SUPER privilege.

The value of default_table_encryption cannot be changed while Group Replication is running.

default_table_encryption supports SET PERSIST and SET PERSIST_ONLY syntax. See
Section 7.1.9.3, “Persisted System Variables”.

For more information, see Defining an Encryption Default for Schemas and General Tablespaces.

899

Server System Variables

• default_tmp_storage_engine

Command-Line Format --default-tmp-storage-engine=name

System Variable default_tmp_storage_engine

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Enumeration

Default Value InnoDB

The default storage engine for TEMPORARY tables (created with CREATE TEMPORARY TABLE). To
set the storage engine for permanent tables, set the default_storage_engine system variable.
Also see the discussion of that variable regarding possible values.

If you disable the default storage engine at server startup, you must set the default engine for both
permanent and TEMPORARY tables to a different engine, or else the server does not start.

• default_week_format

Command-Line Format --default-week-format=#

System Variable default_week_format

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 7

The default mode value to use for the WEEK() function. See Section 14.7, “Date and Time
Functions”.

• delay_key_write

Command-Line Format --delay-key-write[={OFF|ON|ALL}]

System Variable delay_key_write

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value ON

Valid Values OFF

ON

900

Server System Variables

ALL

This variable specifies how to use delayed key writes. It applies only to MyISAM tables. Delayed
key writing causes key buffers not to be flushed between writes. See also Section 18.2.1, “MyISAM
Startup Options”.

This variable can have one of the following values to affect handling of the DELAY_KEY_WRITE table
option that can be used in CREATE TABLE statements.

Option Description

OFF DELAY_KEY_WRITE is ignored.

ON MySQL honors any DELAY_KEY_WRITE option
specified in CREATE TABLE statements. This is
the default value.

ALL All new opened tables are treated as if they were
created with the DELAY_KEY_WRITE option
enabled.

Note

If you set this variable to ALL, you should not use MyISAM tables from within
another program (such as another MySQL server or myisamchk) when the
tables are in use. Doing so leads to index corruption.

If DELAY_KEY_WRITE is enabled for a table, the key buffer is not flushed for the table on
every index update, but only when the table is closed. This speeds up writes on keys a
lot, but if you use this feature, you should add automatic checking of all MyISAM tables by
starting the server with the myisam_recover_options system variable set (for example,
myisam_recover_options='BACKUP,FORCE'). See Section 7.1.8, “Server System Variables”,
and Section 18.2.1, “MyISAM Startup Options”.

If you start mysqld with --skip-new, delay_key_write is set to OFF.

Warning

If you enable external locking with --external-locking, there is no
protection against index corruption for tables that use delayed key writes.

• delayed_insert_limit

Command-Line Format --delayed-insert-limit=#

Deprecated Yes

System Variable delayed_insert_limit

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 100

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

901

Server System Variables

Maximum Value (32-bit platforms) 4294967295

This system variable is deprecated (because DELAYED inserts are not supported), and you should
expect it to be removed in a future release.

• delayed_insert_timeout

Command-Line Format --delayed-insert-timeout=#

Deprecated Yes

System Variable delayed_insert_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 300

Minimum Value 1

Maximum Value 31536000

Unit seconds

This system variable is deprecated (because DELAYED inserts are not supported), and you should
expect it to be removed in a future release.

• delayed_queue_size

Command-Line Format --delayed-queue-size=#

Deprecated Yes

System Variable delayed_queue_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1000

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

This system variable is deprecated (because DELAYED inserts are not supported), and you should
expect it to be removed in a future release.

• disabled_storage_engines

Command-Line Format --disabled-storage-
engines=engine[,engine]...

System Variable disabled_storage_engines

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String
902

Server System Variables

Default Value empty string

This variable indicates which storage engines cannot be used to create tables or tablespaces. For
example, to prevent new MyISAM or FEDERATED tables from being created, start the server with
these lines in the server option file:

[mysqld]
disabled_storage_engines="MyISAM,FEDERATED"

By default, disabled_storage_engines is empty (no engines disabled), but it can be set to a
comma-separated list of one or more engines (not case-sensitive). Any engine named in the value
cannot be used to create tables or tablespaces with CREATE TABLE or CREATE TABLESPACE,
and cannot be used with ALTER TABLE ... ENGINE or ALTER TABLESPACE ... ENGINE
to change the storage engine of existing tables or tablespaces. Attempts to do so result in an
ER_DISABLED_STORAGE_ENGINE error.

disabled_storage_engines does not restrict other DDL statements for existing tables, such
as CREATE INDEX, TRUNCATE TABLE, ANALYZE TABLE, DROP TABLE, or DROP TABLESPACE.
This permits a smooth transition so that existing tables or tablespaces that use a disabled
engine can be migrated to a permitted engine by means such as ALTER TABLE ... ENGINE
permitted_engine.

It is permitted to set the default_storage_engine or default_tmp_storage_engine system
variable to a storage engine that is disabled. This could cause applications to behave erratically
or fail, although that might be a useful technique in a development environment for identifying
applications that use disabled engines, so that they can be modified.

disabled_storage_engines is disabled and has no effect if the server is started with any of
these options: --initialize, --initialize-insecure, --skip-grant-tables.

Note

Setting disabled_storage_engines might cause an issue with
mysql_upgrade. For details, see Section 6.4.5, “mysql_upgrade — Check
and Upgrade MySQL Tables”.

• disconnect_on_expired_password

Command-Line Format --disconnect-on-expired-
password[={OFF|ON}]

System Variable disconnect_on_expired_password

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This variable controls how the server handles clients with expired passwords:

• If the client indicates that it can handle expired passwords, the value of
disconnect_on_expired_password is irrelevant. The server permits the client to connect but
puts it in sandbox mode.

903

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_disabled_storage_engine

Server System Variables

• If the client does not indicate that it can handle expired passwords, the server handles the client
according to the value of disconnect_on_expired_password:

• If disconnect_on_expired_password: is enabled, the server disconnects the client.

• If disconnect_on_expired_password: is disabled, the server permits the client to connect
but puts it in sandbox mode.

For more information about the interaction of client and server settings relating to expired-password
handling, see Section 8.2.16, “Server Handling of Expired Passwords”.

• div_precision_increment

Command-Line Format --div-precision-increment=#

System Variable div_precision_increment

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 4

Minimum Value 0

Maximum Value 30

This variable indicates the number of digits by which to increase the scale of the result of division
operations performed with the / operator. The default value is 4. The minimum and maximum values
are 0 and 30, respectively. The following example illustrates the effect of increasing the default value.

mysql> SELECT 1/7;
+--------+
| 1/7 |
+--------+
| 0.1429 |
+--------+
mysql> SET div_precision_increment = 12;
mysql> SELECT 1/7;
+----------------+
| 1/7 |
+----------------+
| 0.142857142857 |
+----------------+

• dragnet.log_error_filter_rules

Command-Line Format --dragnet.log-error-filter-
rules=value

System Variable dragnet.log_error_filter_rules

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

904

Server System Variables

Default Value IF prio>=INFORMATION THEN drop.
IF EXISTS source_line THEN unset
source_line.

The filter rules that control operation of the log_filter_dragnet error log filter component.
If log_filter_dragnet is not installed, dragnet.log_error_filter_rules
is unavailable. If log_filter_dragnet is installed but not enabled, changes to
dragnet.log_error_filter_rules have no effect.

The effect of the default value is similar to the filtering performed by the log_sink_internal filter
with a setting of log_error_verbosity=2.

As of MySQL 8.0.12, the dragnet.Status status variable can be consulted to determine the result
of the most recent assignment to dragnet.log_error_filter_rules.

Prior to MySQL 8.0.12, successful assignments to dragnet.log_error_filter_rules at
runtime produce a note confirming the new value:

mysql> SET GLOBAL dragnet.log_error_filter_rules = 'IF prio <> 0 THEN unset prio.';
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 4569
Message: filter configuration accepted:
 SET @@GLOBAL.dragnet.log_error_filter_rules=
 'IF prio!=ERROR THEN unset prio.';

The value displayed by SHOW WARNINGS indicates the “decompiled” canonical representation
after the rule set has been successfully parsed and compiled into internal form. Semantically, this
canonical form is identical to the value assigned to dragnet.log_error_filter_rules, but
there may be some differences between the assigned and canonical values, as illustrated by the
preceding example:

• The <> operator is changed to !=.

• The numeric priority of 0 is changed to the corresponding priority symbol ERROR.

• Optional spaces are removed.

For additional information, see Section 7.4.2.4, “Types of Error Log Filtering”, and Section 7.5.3,
“Error Log Components”.

• enterprise_encryption.maximum_rsa_key_size

Command-Line Format --enterprise-encryption.maximum-rsa-
key-size=#

Introduced 8.0.30

System Variable enterprise_encryption.maximum_rsa_key_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 4096

Minimum Value 2048

905

Server System Variables

Maximum Value 16384

This variable limits the maximum size of RSA keys generated by MySQL Enterprise
Encryption. The variable is available only if the MySQL Enterprise Encryption component
component_enterprise_encryption is installed, which is available from MySQL 8.0.30. The
variable is not available if the openssl_udf shared library is used to provide MySQL Enterprise
Encryption functions.

The lowest setting is 2048 bits, which is the minimum RSA key length that is acceptable by current
best practice. The default setting is 4096 bits. The highest setting is 16384 bits. Generating longer
keys can consume significant CPU resources, so you can use this setting to limit keys to a length
that provides adequate security for your requirements while balancing this with resource usage. Note
that the functions provided by the openssl_udf shared library allow key lengths starting at 1024
bits, and following an upgrade to the component, the minimum key length is greater than this. See
Section 8.6.2, “Configuring MySQL Enterprise Encryption” for more information.

• enterprise_encryption.rsa_support_legacy_padding

Command-Line Format --enterprise-
encryption.rsa_support_legacy_padding[={OFF|
ON}]

Introduced 8.0.30

System Variable enterprise_encryption.rsa_support_legacy_padding

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This variable controls whether encrypted data and signatures that MySQL Enterprise Encryption
produced with the openssl_udf shared library functions used before MySQL 8.0.30, can
be decrypted or verified by the functions of the MySQL Enterprise Encryption component
component_enterprise_encryption, which is available from MySQL 8.0.30. The variable is
available only if the MySQL Enterprise Encryption component is installed, and it is not available if the
openssl_udf shared library is used to provide MySQL Enterprise Encryption functions.

For the component functions to support decryption and verification for content produced by the
legacy openssl_udf shared library functions, you must set the system variable padding to ON.
When ON is set, if the component functions cannot decrypt or verify content when assuming it has
the RSAES-OAEP or RSASSA-PSS scheme (as used by the component), they make another
attempt assuming it has the RSAES-PKCS1-v1_5 or RSASSA-PKCS1-v1_5 scheme (as used by the
openssl_udf shared library functions). When OFF is set, if the component functions cannot decrypt
or verify content using their normal schemes, they return null output. See Section 8.6.2, “Configuring
MySQL Enterprise Encryption” for more information.

• end_markers_in_json

Command-Line Format --end-markers-in-json[={OFF|ON}]

System Variable end_markers_in_json

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

906

Server System Variables

Default Value OFF

Whether optimizer JSON output should add end markers. See Section 10.15.9, “The
end_markers_in_json System Variable”.

• eq_range_index_dive_limit

Command-Line Format --eq-range-index-dive-limit=#

System Variable eq_range_index_dive_limit

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 200

Minimum Value 0

Maximum Value 4294967295

This variable indicates the number of equality ranges in an equality comparison condition when
the optimizer should switch from using index dives to index statistics in estimating the number of
qualifying rows. It applies to evaluation of expressions that have either of these equivalent forms,
where the optimizer uses a nonunique index to look up col_name values:

col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN

In both cases, the expression contains N equality ranges. The optimizer can make row
estimates using index dives or index statistics. If eq_range_index_dive_limit is
greater than 0, the optimizer uses existing index statistics instead of index dives if there are
eq_range_index_dive_limit or more equality ranges. Thus, to permit use of index dives for up
to N equality ranges, set eq_range_index_dive_limit to N + 1. To disable use of index statistics
and always use index dives regardless of N, set eq_range_index_dive_limit to 0.

For more information, see Equality Range Optimization of Many-Valued Comparisons.

To update table index statistics for best estimates, use ANALYZE TABLE.

• error_count

The number of errors that resulted from the last statement that generated messages. This variable is
read only. See Section 15.7.7.17, “SHOW ERRORS Statement”.

• event_scheduler

Command-Line Format --event-scheduler[=value]

System Variable event_scheduler

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value ON

Valid Values ON

OFF

907

Server System Variables

DISABLED

This variable enables or disables, and starts or stops, the Event Scheduler. The possible status
values are ON, OFF, and DISABLED. Turning the Event Scheduler OFF is not the same as disabling
the Event Scheduler, which requires setting the status to DISABLED. This variable and its effects on
the Event Scheduler's operation are discussed in greater detail in Section 27.4.2, “Event Scheduler
Configuration”

• explain_format

Command-Line Format --explain-format=format

Introduced 8.0.32

System Variable explain_format

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value TRADITIONAL

Valid Values TRADITIONAL (DEFAULT)

JSON

TREE

This variable determines the default output format used by EXPLAIN in the absence of a FORMAT
option when displaying a query execution plan. Possible values and their effects are listed here:

• TRADITIONAL: Use MySQL's traditional table-based output, as if FORMAT=TRADITIONAL had
been specified as part of the EXPLAIN statement. This is the variable's default value. DEFAULT is
also supported as a synonym for TRADITIONAL, and has exactly the same effect.

Note

DEFAULT cannot be used as part of an EXPLAIN statement's FORMAT
option.

• JSON: Use the JSON output format, as if FORMAT=JSON had been specified.

• TREE: Use the tree-based output format, as if FORMAT=TREE had been specified.

The setting for this variable also affects EXPLAIN ANALYZE. For this purpose, DEFAULT and
TRADITIONAL are interpeted as TREE. If the value of explain_format is JSON and an
EXPLAIN ANALYZE statement having no FORMAT option is issued, the statement raises an error
(ER_NOT_SUPPORTED_YET).

Using a format specifier with EXPLAIN or EXPLAIN ANALYZE overrides any setting for
explain_format.

The explain_format system variable has no effect on EXPLAIN output when this statement is
used to display information about table columns.

Setting the session value of explain_format requires no special privileges; setting it on the
global level requires SYSTEM_VARIABLES_ADMIN (or the deprecated SUPER privilege). See
Section 7.1.9.1, “System Variable Privileges”.

For more information and examples, see Obtaining Execution Plan Information.

908

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_supported_yet

Server System Variables

• explicit_defaults_for_timestamp

Command-Line Format --explicit-defaults-for-
timestamp[={OFF|ON}]

Deprecated Yes

System Variable explicit_defaults_for_timestamp

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This system variable determines whether the server enables certain nonstandard
behaviors for default values and NULL-value handling in TIMESTAMP columns. By default,
explicit_defaults_for_timestamp is enabled, which disables the nonstandard behaviors.
Disabling explicit_defaults_for_timestamp results in a warning.

As of MySQL 8.0.18, setting the session value of this system variable is no longer a restricted
operation.

If explicit_defaults_for_timestamp is disabled, the server enables the nonstandard
behaviors and handles TIMESTAMP columns as follows:

• TIMESTAMP columns not explicitly declared with the NULL attribute are automatically declared
with the NOT NULL attribute. Assigning such a column a value of NULL is permitted and sets the
column to the current timestamp. Exception: As of MySQL 8.0.22, attempting to insert NULL into a
generated column declared as TIMESTAMP NOT NULL is rejected with an error.

• The first TIMESTAMP column in a table, if not explicitly declared with the NULL attribute or
an explicit DEFAULT or ON UPDATE attribute, is automatically declared with the DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP attributes.

• TIMESTAMP columns following the first one, if not explicitly declared with the NULL attribute or an
explicit DEFAULT attribute, are automatically declared as DEFAULT '0000-00-00 00:00:00'
(the “zero” timestamp). For inserted rows that specify no explicit value for such a column, the
column is assigned '0000-00-00 00:00:00' and no warning occurs.

Depending on whether strict SQL mode or the NO_ZERO_DATE SQL mode is enabled, a default
value of '0000-00-00 00:00:00' may be invalid. Be aware that the TRADITIONAL SQL mode
includes strict mode and NO_ZERO_DATE. See Section 7.1.11, “Server SQL Modes”.

The nonstandard behaviors just described are deprecated; expect them to be removed in a future
MySQL release.

If explicit_defaults_for_timestamp is enabled, the server disables the nonstandard
behaviors and handles TIMESTAMP columns as follows:

• It is not possible to assign a TIMESTAMP column a value of NULL to set it to the current timestamp.
To assign the current timestamp, set the column to CURRENT_TIMESTAMP or a synonym such as
NOW().

• TIMESTAMP columns not explicitly declared with the NOT NULL attribute are automatically
declared with the NULL attribute and permit NULL values. Assigning such a column a value of
NULL sets it to NULL, not the current timestamp.

• TIMESTAMP columns declared with the NOT NULL attribute do not permit NULL values. For inserts
that specify NULL for such a column, the result is either an error for a single-row insert if strict SQL

909

Server System Variables

mode is enabled, or '0000-00-00 00:00:00' is inserted for multiple-row inserts with strict
SQL mode disabled. In no case does assigning the column a value of NULL set it to the current
timestamp.

• TIMESTAMP columns explicitly declared with the NOT NULL attribute and without an explicit
DEFAULT attribute are treated as having no default value. For inserted rows that specify no explicit
value for such a column, the result depends on the SQL mode. If strict SQL mode is enabled, an
error occurs. If strict SQL mode is not enabled, the column is declared with the implicit default
of '0000-00-00 00:00:00' and a warning occurs. This is similar to how MySQL treats other
temporal types such as DATETIME.

• No TIMESTAMP column is automatically declared with the DEFAULT CURRENT_TIMESTAMP or ON
UPDATE CURRENT_TIMESTAMP attributes. Those attributes must be explicitly specified.

• The first TIMESTAMP column in a table is not handled differently from TIMESTAMP columns
following the first one.

If explicit_defaults_for_timestamp is disabled at server startup, this warning appears in the
error log:

[Warning] TIMESTAMP with implicit DEFAULT value is deprecated.
Please use --explicit_defaults_for_timestamp server option (see
documentation for more details).

As indicated by the warning, to disable the deprecated nonstandard behaviors, enable the
explicit_defaults_for_timestamp system variable at server startup.

Note

explicit_defaults_for_timestamp is itself deprecated because its
only purpose is to permit control over deprecated TIMESTAMP behaviors
that are to be removed in a future MySQL release. When removal of those
behaviors occurs, expect explicit_defaults_for_timestamp to be
removed as well.

For additional information, see Section 13.2.5, “Automatic Initialization and Updating for
TIMESTAMP and DATETIME”.

• external_user

System Variable external_user

Scope Session

Dynamic No

SET_VAR Hint Applies No

Type String

The external user name used during the authentication process, as set by the plugin used to
authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set the
value, this variable is NULL. See Section 8.2.19, “Proxy Users”.

• flush

Command-Line Format --flush[={OFF|ON}]

System Variable flush

Scope Global

Dynamic Yes

SET_VAR Hint Applies No
910

Server System Variables

Type Boolean

Default Value OFF

Applies to MyISAM, only.

If ON, the server flushes (synchronizes) all changes to disk after each SQL statement. Normally,
MySQL does a write of all changes to disk only after each SQL statement and lets the operating
system handle the synchronizing to disk. See Section B.3.3.3, “What to Do If MySQL Keeps
Crashing”. This variable is set to ON if you start mysqld with the --flush option.

Note

If flush is enabled, the value of flush_time does not matter and changes
to flush_time have no effect on flush behavior.

• flush_time

Command-Line Format --flush-time=#

System Variable flush_time

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 31536000

Unit seconds

If this is set to a nonzero value, all tables are closed every flush_time seconds to free up
resources and synchronize unflushed data to disk. This option is best used only on systems with
minimal resources.

Note

If flush is enabled, the value of flush_time does not matter and changes
to flush_time have no effect on flush behavior.

• foreign_key_checks

System Variable foreign_key_checks

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value ON

If set to 1 (the default), foreign key constraints are checked. If set to 0, foreign key constraints are
ignored, with a couple of exceptions. When re-creating a table that was dropped, an error is returned
if the table definition does not conform to the foreign key constraints referencing the table. Likewise,

911

Server System Variables

an ALTER TABLE operation returns an error if a foreign key definition is incorrectly formed. For more
information, see Section 15.1.20.5, “FOREIGN KEY Constraints”.

Setting this variable has the same effect on NDB tables as it does for InnoDB tables. Typically you
leave this setting enabled during normal operation, to enforce referential integrity. Disabling foreign
key checking can be useful for reloading InnoDB tables in an order different from that required by
their parent/child relationships. See Section 15.1.20.5, “FOREIGN KEY Constraints”.

Setting foreign_key_checks to 0 also affects data definition statements: DROP SCHEMA drops
a schema even if it contains tables that have foreign keys that are referred to by tables outside the
schema, and DROP TABLE drops tables that have foreign keys that are referred to by other tables.

Note

Setting foreign_key_checks to 1 does not trigger a scan of the existing
table data. Therefore, rows added to the table while foreign_key_checks
= 0 are not verified for consistency.

Dropping an index required by a foreign key constraint is not permitted, even
with foreign_key_checks=0. The foreign key constraint must be removed
before dropping the index.

• ft_boolean_syntax

Command-Line Format --ft-boolean-syntax=name

System Variable ft_boolean_syntax

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value + -><()~*:""&|

The list of operators supported by boolean full-text searches performed using IN BOOLEAN MODE.
See Section 14.9.2, “Boolean Full-Text Searches”.

The default variable value is '+ -><()~*:""&|'. The rules for changing the value are as follows:

• Operator function is determined by position within the string.

• The replacement value must be 14 characters.

• Each character must be an ASCII nonalphanumeric character.

• Either the first or second character must be a space.

• No duplicates are permitted except the phrase quoting operators in positions 11 and 12. These two
characters are not required to be the same, but they are the only two that may be.

• Positions 10, 13, and 14 (which by default are set to :, &, and |) are reserved for future
extensions.

• ft_max_word_len

Command-Line Format --ft-max-word-len=#

System Variable ft_max_word_len

Scope Global

Dynamic No

912

Server System Variables

SET_VAR Hint Applies No

Type Integer

Default Value 84

Minimum Value 10

Maximum Value 84

The maximum length of the word to be included in a MyISAM FULLTEXT index.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this
variable. Use REPAIR TABLE tbl_name QUICK.

• ft_min_word_len

Command-Line Format --ft-min-word-len=#

System Variable ft_min_word_len

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 82

The minimum length of the word to be included in a MyISAM FULLTEXT index.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this
variable. Use REPAIR TABLE tbl_name QUICK.

• ft_query_expansion_limit

Command-Line Format --ft-query-expansion-limit=#

System Variable ft_query_expansion_limit

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 20

Minimum Value 0

Maximum Value 1000

The number of top matches to use for full-text searches performed using WITH QUERY EXPANSION.

• ft_stopword_file

Command-Line Format --ft-stopword-file=file_name

System Variable ft_stopword_file

Scope Global

913

Server System Variables

Dynamic No

SET_VAR Hint Applies No

Type File name

The file from which to read the list of stopwords for full-text searches on MyISAM tables. The server
looks for the file in the data directory unless an absolute path name is given to specify a different
directory. All the words from the file are used; comments are not honored. By default, a built-in list of
stopwords is used (as defined in the storage/myisam/ft_static.c file). Setting this variable to
the empty string ('') disables stopword filtering. See also Section 14.9.4, “Full-Text Stopwords”.

Note

FULLTEXT indexes on MyISAM tables must be rebuilt after changing this
variable or the contents of the stopword file. Use REPAIR TABLE tbl_name
QUICK.

• general_log

Command-Line Format --general-log[={OFF|ON}]

System Variable general_log

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether the general query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON)
to enable the log. The destination for log output is controlled by the log_output system variable; if
that value is NONE, no log entries are written even if the log is enabled.

• general_log_file

Command-Line Format --general-log-file=file_name

System Variable general_log_file

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value host_name.log

The name of the general query log file. The default value is host_name.log, but the initial value
can be changed with the --general_log_file option.

• generated_random_password_length

Command-Line Format --generated-random-password-length=#

Introduced 8.0.18

System Variable generated_random_password_length

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No914

Server System Variables

Type Integer

Default Value 20

Minimum Value 5

Maximum Value 255

The maximum number of characters permitted in random passwords generated for CREATE USER,
ALTER USER, and SET PASSWORD statements. For more information, see Random Password
Generation.

• global_connection_memory_limit

Command-Line Format --global-connection-memory-limit=#

Introduced 8.0.28

System Variable global_connection_memory_limit

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 18446744073709551615

Minimum Value 16777216

Maximum Value 18446744073709551615

Unit bytes

Set the total amount of memory that can be used by all user connections; that is,
Global_connection_memory should not exceed this amount. Any time that it does, all queries
(including any currently running) from regular users are rejected with ER_GLOBAL_CONN_LIMIT.

Memory used by the system users such as the MySQL root user is included in this total, but is not
counted towards the disconnection limit; such users are never disconnected due to memory usage.

Memory used by the InnoDB buffer pool is excluded from the total.

You must have the SYSTEM_VARIABLES_ADMIN or SUPER privilege to set this variable.

• global_connection_memory_tracking

Command-Line Format --global-connection-memory-
tracking={TRUE|FALSE}

Introduced 8.0.28

System Variable global_connection_memory_tracking

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value FALSE

Determines whether the server calculates Global_connection_memory. This variable
must be enabled explicitly; otherwise, the memory calculation is not performed, and
Global_connection_memory is not set.

You must have the SYSTEM_VARIABLES_ADMIN or SUPER privilege to set this variable.
915

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_global_conn_limit

Server System Variables

• group_concat_max_len

Command-Line Format --group-concat-max-len=#

System Variable group_concat_max_len

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 1024

Minimum Value 4

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

The maximum permitted result length in bytes for the GROUP_CONCAT() function. The default is
1024.

• have_compress

YES if the zlib compression library is available to the server, NO if not. If not, the COMPRESS() and
UNCOMPRESS() functions cannot be used.

• have_dynamic_loading

YES if mysqld supports dynamic loading of plugins, NO if not. If the value is NO, you cannot use
options such as --plugin-load to load plugins at server startup, or the INSTALL PLUGIN
statement to load plugins at runtime.

• have_geometry

YES if the server supports spatial data types, NO if not.

• have_openssl

This variable is a synonym for have_ssl.

As of MySQL 8.0.26, have_openssl is deprecated and subject to removal in a future MySQL
version. For information about TLS properties of MySQL connection interfaces, use the
tls_channel_status table.

• have_profiling

YES if statement profiling capability is present, NO if not. If present, the profiling system variable
controls whether this capability is enabled or disabled. See Section 15.7.7.31, “SHOW PROFILES
Statement”.

This variable is deprecated and you should expect it to be removed in a future MySQL release.

• have_query_cache

The query cache was removed in MySQL 8.0.3. have_query_cache is deprecated, always has a
value of NO, and you should expect it to be removed in a future MySQL release.

• have_rtree_keys

YES if RTREE indexes are available, NO if not. (These are used for spatial indexes in MyISAM tables.)

916

Server System Variables

• have_ssl

Deprecated 8.0.26

System Variable have_ssl

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Valid Values YES (SSL support available)

DISABLED (SSL support was compiled into
server, but server was not started with necessary
options to enable it)

YES if mysqld supports SSL connections, DISABLED if the server was compiled with SSL support,
but was not started with the appropriate connection-encryption options. For more information, see
Section 2.8.6, “Configuring SSL Library Support”.

As of MySQL 8.0.26, have_ssl is deprecated and subject to removal in a future MySQL
version. For information about TLS properties of MySQL connection interfaces, use the
tls_channel_status table.

• have_statement_timeout

System Variable have_statement_timeout

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Whether the statement execution timeout feature is available (see Statement Execution Time
Optimizer Hints). The value can be NO if the background thread used by this feature could not be
initialized.

• have_symlink

YES if symbolic link support is enabled, NO if not. This is required on Unix for support of the DATA
DIRECTORY and INDEX DIRECTORY table options. If the server is started with the --skip-
symbolic-links option, the value is DISABLED.

This variable has no meaning on Windows.

Note

Symbolic link support, along with the --symbolic-links option that
controls it, is deprecated; expect these to be removed in a future version
of MySQL. In addition, the option is disabled by default. The related
have_symlink system variable also is deprecated and you should expect it
to be removed in a future version of MySQL.

• histogram_generation_max_mem_size

Command-Line Format --histogram-generation-max-mem-
size=#

System Variable histogram_generation_max_mem_size 917

Server System Variables

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 20000000

Minimum Value 1000000

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

The maximum amount of memory available for generating histogram statistics. See Section 10.9.6,
“Optimizer Statistics”, and Section 15.7.3.1, “ANALYZE TABLE Statement”.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

• host_cache_size

Command-Line Format --host-cache-size=#

System Variable host_cache_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 0

Maximum Value 65536

The MySQL server maintains an in-memory host cache that contains client host name and
IP address information and is used to avoid Domain Name System (DNS) lookups; see
Section 7.1.12.3, “DNS Lookups and the Host Cache”.

The host_cache_size variable controls the size of the host cache, as well as the size
of the Performance Schema host_cache table that exposes the cache contents. Setting
host_cache_size has these effects:

• Setting the size to 0 disables the host cache. With the cache disabled, the server performs a DNS
lookup every time a client connects.

918

Server System Variables

• Changing the size at runtime causes an implicit host cache flushing operation that clears the host
cache, truncates the host_cache table, and unblocks any blocked hosts.

The default value is autosized to 128, plus 1 for a value of max_connections up to 500, plus 1 for
every increment of 20 over 500 in the max_connections value, capped to a limit of 2000.

Using the --skip-host-cache option is similar to setting the host_cache_size system variable
to 0, but host_cache_size is more flexible because it can also be used to resize, enable, and
disable the host cache at runtime, not just at server startup.

Starting the server with --skip-host-cache does not prevent runtime changes to the value
of host_cache_size, but such changes have no effect and the cache is not re-enabled even if
host_cache_size is set larger than 0.

Setting the host_cache_size system variable rather than the --skip-host-cache option is
preferred for the reasons given in the previous paragraph. In addition, the --skip-host-cache
option is deprecated and its removal is expected in a future version of MySQL; in MySQL 8.0.29 and
later, using the option raises a warning.

• hostname

System Variable hostname

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The server sets this variable to the server host name at startup. The maximum length is 255
characters as of MySQL 8.0.17, per RFC 1034, and 60 characters before that.

• identity

This variable is a synonym for the last_insert_id variable. It exists for compatibility with
other database systems. You can read its value with SELECT @@identity, and set it using SET
identity.

• init_connect

Command-Line Format --init-connect=name

System Variable init_connect

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

A string to be executed by the server for each client that connects. The string consists of one or more
SQL statements, separated by semicolon characters.

For users that have the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege),
the content of init_connect is not executed. This is done so that an erroneous value for
init_connect does not prevent all clients from connecting. For example, the value might
contain a statement that has a syntax error, thus causing client connections to fail. Not executing

919

Server System Variables

init_connect for users that have the CONNECTION_ADMIN or SUPER privilege enables them to
open a connection and fix the init_connect value.

init_connect execution is skipped for any client user with an expired password. This is done
because such a user cannot execute arbitrary statements, and thus init_connect execution fails,
leaving the client unable to connect. Skipping init_connect execution enables the user to connect
and change password.

The server discards any result sets produced by statements in the value of init_connect.

• information_schema_stats_expiry

Command-Line Format --information-schema-stats-expiry=#

System Variable information_schema_stats_expiry

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 86400

Minimum Value 0

Maximum Value 31536000

Unit seconds

Some INFORMATION_SCHEMA tables contain columns that provide table statistics:

STATISTICS.CARDINALITY
TABLES.AUTO_INCREMENT
TABLES.AVG_ROW_LENGTH
TABLES.CHECKSUM
TABLES.CHECK_TIME
TABLES.CREATE_TIME
TABLES.DATA_FREE
TABLES.DATA_LENGTH
TABLES.INDEX_LENGTH
TABLES.MAX_DATA_LENGTH
TABLES.TABLE_ROWS
TABLES.UPDATE_TIME

Those columns represent dynamic table metadata; that is, information that changes as table
contents change.

By default, MySQL retrieves cached values for those columns from the mysql.index_stats and
mysql.table_stats dictionary tables when the columns are queried, which is more efficient
than retrieving statistics directly from the storage engine. If cached statistics are not available or
have expired, MySQL retrieves the latest statistics from the storage engine and caches them in
the mysql.index_stats and mysql.table_stats dictionary tables. Subsequent queries
retrieve the cached statistics until the cached statistics expire. A server restart or the first opening

920

Server System Variables

of the mysql.index_stats and mysql.table_stats tables do not update cached statistics
automatically.

The information_schema_stats_expiry session variable defines the period of time before
cached statistics expire. The default is 86400 seconds (24 hours), but the time period can be
extended to as much as one year.

To update cached values at any time for a given table, use ANALYZE TABLE.

To always retrieve the latest statistics directly from the storage engine and bypass cached values,
set information_schema_stats_expiry to 0.

Querying statistics columns does not store or update statistics in the mysql.index_stats and
mysql.table_stats dictionary tables under these circumstances:

• When cached statistics have not expired.

• When information_schema_stats_expiry is set to 0.

• When the server is in read_only, super_read_only, transaction_read_only, or
innodb_read_only mode.

• When the query also fetches Performance Schema data.

The statistics cache may be updated during a multiple-statement transaction before it is known
whether the transaction commits. As a result, the cache may contain information that does not
correspond to a known committed state. This can occur with autocommit=0 or after START
TRANSACTION.

information_schema_stats_expiry is a session variable, and each client session can define
its own expiration value. Statistics that are retrieved from the storage engine and cached by one
session are available to other sessions.

For related information, see Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”.

• init_file

Command-Line Format --init-file=file_name

System Variable init_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

If specified, this variable names a file containing SQL statements to be read and executed during
the startup process. Prior to MySQL 8.0.18, each statement must be on a single line and should not
include comments. As of MySQL 8.0.18, the acceptable format for statements in the file is expanded
to support these constructs:

• delimiter ;, to set the statement delimiter to the ; character.

• delimiter $$, to set the statement delimiter to the $$ character sequence.

• Multiple statements on the same line, delimited by the current delimiter.

• Multiple-line statements.

• Comments from a # character to the end of the line.

921

Server System Variables

• Comments from a -- sequence to the end of the line.

• C-style comments from a /* sequence to the following */ sequence, including over multiple lines.

• Multiple-line string literals enclosed within either single quote (') or double quote (") characters.

If the server is started with the --initialize or --initialize-insecure option, it operates
in bootstrap mode and some functionality is unavailable that limits the statements permitted in
the file. These include statements that relate to account management (such as CREATE USER or
GRANT), replication, and global transaction identifiers. See Section 19.1.3, “Replication with Global
Transaction Identifiers”.

As of MySQL 8.0.17, threads created during server startup are used for tasks such as
creating the data dictionary, running upgrade procedures, and creating system tables. To
ensure a stable and predictable environment, these threads are executed with the server
built-in defaults for some system variables, such as sql_mode, character_set_server,
collation_server, completion_type, explicit_defaults_for_timestamp, and
default_table_encryption.

These threads are also used to execute the statements in any file specified with init_file when
starting the server, so such statements execute with the server's built-in default values for those
system variables.

• innodb_xxx

InnoDB system variables are listed in Section 17.14, “InnoDB Startup Options and System
Variables”. These variables control many aspects of storage, memory use, and I/O patterns for
InnoDB tables, and are especially important now that InnoDB is the default storage engine.

• insert_id

The value to be used by the following INSERT or ALTER TABLE statement when inserting an
AUTO_INCREMENT value. This is mainly used with the binary log.

• interactive_timeout

Command-Line Format --interactive-timeout=#

System Variable interactive_timeout

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 28800

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds the server waits for activity on an interactive connection before closing
it. An interactive client is defined as a client that uses the CLIENT_INTERACTIVE option to
mysql_real_connect(). See also wait_timeout.

• internal_tmp_disk_storage_engine

Command-Line Format --internal-tmp-disk-storage-engine=#

Removed 8.0.16

922

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html

Server System Variables

System Variable internal_tmp_disk_storage_engine

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value INNODB

Valid Values MYISAM

INNODB

Important

In MySQL 8.0.16 and later, on-disk internal temporary tables always use the
InnoDB storage engine; as of MySQL 8.0.16, this variable has been removed
and is thus no longer supported.

Prior to MySQL 8.0.16, this variable determines the storage engine used for on-disk internal
temporary tables (see Storage Engine for On-Disk Internal Temporary Tables). Permitted values are
MYISAM and INNODB (the default).

• internal_tmp_mem_storage_engine

Command-Line Format --internal-tmp-mem-storage-engine=#

System Variable internal_tmp_mem_storage_engine

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Enumeration

Default Value TempTable

Valid Values MEMORY

TempTable

The storage engine for in-memory internal temporary tables (see Section 10.4.4, “Internal Temporary
Table Use in MySQL”). Permitted values are TempTable (the default) and MEMORY.

The optimizer uses the storage engine defined by internal_tmp_mem_storage_engine for in-
memory internal temporary tables.

From MySQL 8.0.27, configuring a session setting for internal_tmp_mem_storage_engine
requires the SESSION_VARIABLES_ADMIN or SYSTEM_VARIABLES_ADMIN privilege.

• join_buffer_size

Command-Line Format --join-buffer-size=#

System Variable join_buffer_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 262144

923

Server System Variables

Minimum Value 128

Maximum Value (Windows) 4294967168

Maximum Value (Other, 64-bit platforms) 18446744073709551488

Maximum Value (Other, 32-bit platforms) 4294967168

Unit bytes

Block Size 128

The minimum size of the buffer that is used for plain index scans, range index scans, and joins that
do not use indexes and thus perform full table scans. In MySQL 8.0.18 and later, this variable also
controls the amount of memory used for hash joins. Normally, the best way to get fast joins is to add
indexes. Increase the value of join_buffer_size to get a faster full join when adding indexes
is not possible. One join buffer is allocated for each full join between two tables. For a complex join
between several tables for which indexes are not used, multiple join buffers might be necessary.

The default is 256KB. The maximum permissible setting for join_buffer_size is 4GB−1.
Larger values are permitted for 64-bit platforms (except 64-bit Windows, for which large values
are truncated to 4GB−1 with a warning). The block size is 128, and a value that is not an exact
multiple of the block size is rounded down to the next lower multiple of the block size by MySQL
Server before storing the value for the system variable. The parser allows values up to the
maximum unsigned integer value for the platform (4294967295 or 232−1 for a 32-bit system,
18446744073709551615 or 264−1 for a 64-bit system) but the actual maximum is a block size lower.

Unless a Block Nested-Loop or Batched Key Access algorithm is used, there is no gain from
setting the buffer larger than required to hold each matching row, and all joins allocate at least the
minimum size, so use caution in setting this variable to a large value globally. It is better to keep
the global setting small and change the session setting to a larger value only in sessions that are
doing large joins, or change the setting on a per-query basis by using a SET_VAR optimizer hint (see
Section 10.9.3, “Optimizer Hints”). Memory allocation time can cause substantial performance drops
if the global size is larger than needed by most queries that use it.

When Block Nested-Loop is used, a larger join buffer can be beneficial up to the point where all
required columns from all rows in the first table are stored in the join buffer. This depends on the
query; the optimal size may be smaller than holding all rows from the first tables.

When Batched Key Access is used, the value of join_buffer_size defines how large the batch
of keys is in each request to the storage engine. The larger the buffer, the more sequential access is
made to the right hand table of a join operation, which can significantly improve performance.

For additional information about join buffering, see Section 10.2.1.7, “Nested-Loop Join Algorithms”.
For information about Batched Key Access, see Section 10.2.1.12, “Block Nested-Loop and Batched
Key Access Joins”. For information about hash joins, see Section 10.2.1.4, “Hash Join Optimization”.

• keep_files_on_create

Command-Line Format --keep-files-on-create[={OFF|ON}]

System Variable keep_files_on_create

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the
database directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The

924

Server System Variables

same applies to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this
behavior, set the keep_files_on_create variable to ON (1), in which case MyISAM does not
overwrite existing files and returns an error instead. The default value is OFF (0).

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It does not overwrite a file in the
specified directory.

• key_buffer_size

Command-Line Format --key-buffer-size=#

System Variable key_buffer_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8388608

Minimum Value 0

Maximum Value (64-bit platforms) OS_PER_PROCESS_LIMIT

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Index blocks for MyISAM tables are buffered and are shared by all threads. key_buffer_size is
the size of the buffer used for index blocks. The key buffer is also known as the key cache.

The minimum permissible setting is 0, but you cannot set key_buffer_size to 0 dynamically.
A setting of 0 drops the key cache, which is not permitted at runtime. Setting key_buffer_size
to 0 is permitted only at startup, in which case the key cache is not initialized. Changing the
key_buffer_size setting at runtime from a value of 0 to a permitted non-zero value initializes the
key cache.

key_buffer_size can be increased or decreased only in increments or multiples of 4096 bytes.
Increasing or decreasing the setting by a nonconforming value produces a warning and truncates the
setting to a conforming value.

The maximum permissible setting for key_buffer_size is 4GB−1 on 32-bit platforms. Larger
values are permitted for 64-bit platforms. The effective maximum size might be less, depending
on your available physical RAM and per-process RAM limits imposed by your operating system or
hardware platform. The value of this variable indicates the amount of memory requested. Internally,
the server allocates as much memory as possible up to this amount, but the actual allocation might
be less.

You can increase the value to get better index handling for all reads and multiple writes; on a system
whose primary function is to run MySQL using the MyISAM storage engine, 25% of the machine's
total memory is an acceptable value for this variable. However, you should be aware that, if you
make the value too large (for example, more than 50% of the machine's total memory), your system
might start to page and become extremely slow. This is because MySQL relies on the operating
system to perform file system caching for data reads, so you must leave some room for the file

925

Server System Variables

system cache. You should also consider the memory requirements of any other storage engines that
you may be using in addition to MyISAM.

For even more speed when writing many rows at the same time, use LOCK TABLES. See
Section 10.2.5.1, “Optimizing INSERT Statements”.

You can check the performance of the key buffer by issuing a SHOW STATUS statement
and examining the Key_read_requests, Key_reads, Key_write_requests, and
Key_writes status variables. (See Section 15.7.7, “SHOW Statements”.) The Key_reads/
Key_read_requests ratio should normally be less than 0.01. The Key_writes/
Key_write_requests ratio is usually near 1 if you are using mostly updates and deletes, but might
be much smaller if you tend to do updates that affect many rows at the same time or if you are using
the DELAY_KEY_WRITE table option.

The fraction of the key buffer in use can be determined using key_buffer_size in conjunction
with the Key_blocks_unused status variable and the buffer block size, which is available from the
key_cache_block_size system variable:

1 - ((Key_blocks_unused * key_cache_block_size) / key_buffer_size)

This value is an approximation because some space in the key buffer is allocated internally for
administrative structures. Factors that influence the amount of overhead for these structures
include block size and pointer size. As block size increases, the percentage of the key buffer lost to
overhead tends to decrease. Larger blocks results in a smaller number of read operations (because
more keys are obtained per read), but conversely an increase in reads of keys that are not examined
(if not all keys in a block are relevant to a query).

It is possible to create multiple MyISAM key caches. The size limit of 4GB applies to each cache
individually, not as a group. See Section 10.10.2, “The MyISAM Key Cache”.

• key_cache_age_threshold

Command-Line Format --key-cache-age-threshold=#

System Variable key_cache_age_threshold

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 300

Minimum Value 100

Maximum Value (64-bit platforms) 18446744073709551516

Maximum Value (32-bit platforms) 4294967196

Block Size 100

This value controls the demotion of buffers from the hot sublist of a key cache to the warm sublist.
Lower values cause demotion to happen more quickly. The minimum value is 100. The default value
is 300. See Section 10.10.2, “The MyISAM Key Cache”.

• key_cache_block_size

Command-Line Format --key-cache-block-size=#

System Variable key_cache_block_size

Scope Global

Dynamic Yes
926

Server System Variables

SET_VAR Hint Applies No

Type Integer

Default Value 1024

Minimum Value 512

Maximum Value 16384

Unit bytes

Block Size 512

The size in bytes of blocks in the key cache. The default value is 1024. See Section 10.10.2, “The
MyISAM Key Cache”.

• key_cache_division_limit

Command-Line Format --key-cache-division-limit=#

System Variable key_cache_division_limit

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 100

Minimum Value 1

Maximum Value 100

The division point between the hot and warm sublists of the key cache buffer list. The value is the
percentage of the buffer list to use for the warm sublist. Permissible values range from 1 to 100. The
default value is 100. See Section 10.10.2, “The MyISAM Key Cache”.

• large_files_support

System Variable large_files_support

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Whether mysqld was compiled with options for large file support.

• large_pages

Command-Line Format --large-pages[={OFF|ON}]

System Variable large_pages

Scope Global

Dynamic No

SET_VAR Hint Applies No

Platform Specific Linux

Type Boolean

927

Server System Variables

Default Value OFF

Whether large page support is enabled (via the --large-pages option). See Section 10.12.3.3,
“Enabling Large Page Support”.

• large_page_size

System Variable large_page_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 65535

Unit bytes

If large page support is enabled, this shows the size of memory pages. Large memory pages
are supported only on Linux; on other platforms, the value of this variable is always 0. See
Section 10.12.3.3, “Enabling Large Page Support”.

• last_insert_id

The value to be returned from LAST_INSERT_ID(). This is stored in the binary log when you use
LAST_INSERT_ID() in a statement that updates a table. Setting this variable does not update the
value returned by the mysql_insert_id() C API function.

• lc_messages

Command-Line Format --lc-messages=name

System Variable lc_messages

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value en_US

The locale to use for error messages. The default is en_US. The server converts the argument to a
language name and combines it with the value of lc_messages_dir to produce the location for the
error message file. See Section 12.12, “Setting the Error Message Language”.

• lc_messages_dir

Command-Line Format --lc-messages-dir=dir_name

System Variable lc_messages_dir

Scope Global

Dynamic No

SET_VAR Hint Applies No

928

https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html

Server System Variables

Type Directory name

The directory where error messages are located. The server uses the value together with the value
of lc_messages to produce the location for the error message file. See Section 12.12, “Setting the
Error Message Language”.

• lc_time_names

Command-Line Format --lc-time-names=value

System Variable lc_time_names

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

This variable specifies the locale that controls the language used to display day and month names
and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and
MONTHNAME() functions. Locale names are POSIX-style values such as 'ja_JP' or 'pt_BR'.
The default value is 'en_US' regardless of your system's locale setting. For further information, see
Section 12.16, “MySQL Server Locale Support”.

• license

System Variable license

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value GPL

The type of license the server has.

• local_infile

Command-Line Format --local-infile[={OFF|ON}]

System Variable local_infile

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This variable controls server-side LOCAL capability for LOAD DATA statements. Depending on the
local_infile setting, the server refuses or permits local data loading by clients that have LOCAL
enabled on the client side.

To explicitly cause the server to refuse or permit LOAD DATA LOCAL statements (regardless
of how client programs and libraries are configured at build time or runtime), start mysqld with
local_infile disabled or enabled, respectively. local_infile can also be set at runtime. For
more information, see Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”.

929

Server System Variables

• lock_wait_timeout

Command-Line Format --lock-wait-timeout=#

System Variable lock_wait_timeout

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 31536000

Minimum Value 1

Maximum Value 31536000

Unit seconds

This variable specifies the timeout in seconds for attempts to acquire metadata locks. The
permissible values range from 1 to 31536000 (1 year). The default is 31536000.

This timeout applies to all statements that use metadata locks. These include DML and DDL
operations on tables, views, stored procedures, and stored functions, as well as LOCK TABLES,
FLUSH TABLES WITH READ LOCK, and HANDLER statements.

This timeout does not apply to implicit accesses to system tables in the mysql database, such as
grant tables modified by GRANT or REVOKE statements or table logging statements. The timeout does
apply to system tables accessed directly, such as with SELECT or UPDATE.

The timeout value applies separately for each metadata lock attempt. A given statement can
require more than one lock, so it is possible for the statement to block for longer than the
lock_wait_timeout value before reporting a timeout error. When lock timeout occurs,
ER_LOCK_WAIT_TIMEOUT is reported.

lock_wait_timeout also defines the amount of time that a LOCK INSTANCE FOR BACKUP
statement waits for a lock before giving up.

• locked_in_memory

System Variable locked_in_memory

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether mysqld was locked in memory with --memlock.

• log_error

Command-Line Format --log-error[=file_name]

System Variable log_error

Scope Global

Dynamic No

SET_VAR Hint Applies No

930

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_lock_wait_timeout

Server System Variables

Type File name

The default error log destination. If the destination is the console, the value is stderr. Otherwise,
the destination is a file and the log_error value is the file name. See Section 7.4.2, “The Error
Log”.

• log_error_services

Command-Line Format --log-error-services=value

System Variable log_error_services

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value log_filter_internal;
log_sink_internal

The components to enable for error logging. The variable may contain a list with 0, 1, or many
elements. In the latter case, elements may be delimited by semicolon or (as of MySQL 8.0.12)
comma, optionally followed by space. A given setting cannot use both semicolon and comma
separators. Component order is significant because the server executes components in the order
listed.

From MySQL 8.0.30, any loadable (not built in) component named in the log_error_services
is implicitly loaded if it is not already loaded. Before MySQL 8.0.30, any loadable (not built in)
component named in the log_error_services value must first be installed with INSTALL
COMPONENT. For more information, see Section 7.4.2.1, “Error Log Configuration”.

• log_error_suppression_list

Command-Line Format --log-error-suppression-list=value

Introduced 8.0.13

System Variable log_error_suppression_list

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value empty string

The log_error_suppression_list system variable applies to events intended for the
error log and specifies which events to suppress when they occur with a priority of WARNING or
INFORMATION. For example, if a particular type of warning is considered undesirable “noise” in the
error log because it occurs frequently but is not of interest, it can be suppressed. This variable affects
filtering performed by the log_filter_internal error log filter component, which is enabled
by default (see Section 7.5.3, “Error Log Components”). If log_filter_internal is disabled,
log_error_suppression_list has no effect.

The log_error_suppression_list value may be the empty string for no suppression, or a list
of one or more comma-separated values indicating the error codes to suppress. Error codes may
be specified in symbolic or numeric form. A numeric code may be specified with or without the MY-
prefix. Leading zeros in the numeric part are not significant. Examples of permitted code formats:

ER_SERVER_SHUTDOWN_COMPLETE
MY-000031

931

Server System Variables

000031
MY-31
31

Symbolic values are preferable to numeric values for readability and portability. For information about
the permitted error symbols and numbers, see MySQL 8.0 Error Message Reference.

The effect of log_error_suppression_list combines with that of log_error_verbosity.
For additional information, see Section 7.4.2.5, “Priority-Based Error Log Filtering
(log_filter_internal)”.

• log_error_verbosity

Command-Line Format --log-error-verbosity=#

System Variable log_error_verbosity

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2

Minimum Value 1

Maximum Value 3

The log_error_verbosity system variable specifies the verbosity for handling events intended
for the error log. This variable affects filtering performed by the log_filter_internal error
log filter component, which is enabled by default (see Section 7.5.3, “Error Log Components”). If
log_filter_internal is disabled, log_error_verbosity has no effect.

Events intended for the error log have a priority of ERROR, WARNING, or INFORMATION.
log_error_verbosity controls verbosity based on which priorities to permit for messages written
to the log, as shown in the following table.

log_error_verbosity Value Permitted Message Priorities

1 ERROR

2 ERROR, WARNING

3 ERROR, WARNING, INFORMATION

There is also a priority of SYSTEM. System messages about non-error situations are printed to the
error log regardless of the log_error_verbosity value. These messages include startup and
shutdown messages, and some significant changes to settings.

The effect of log_error_verbosity combines with that of log_error_suppression_list.
For additional information, see Section 7.4.2.5, “Priority-Based Error Log Filtering
(log_filter_internal)”.

• log_output

Command-Line Format --log-output=name

System Variable log_output

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Set932

https://dev.mysql.com/doc/mysql-errors/8.0/en/

Server System Variables

Default Value FILE

Valid Values TABLE

FILE

NONE

The destination or destinations for general query log and slow query log output. The value is a list
one or more comma-separated words chosen from TABLE, FILE, and NONE. TABLE selects logging
to the general_log and slow_log tables in the mysql system schema. FILE selects logging to
log files. NONE disables logging. If NONE is present in the value, it takes precedence over any other
words that are present. TABLE and FILE can both be given to select both log output destinations.

This variable selects log output destinations, but does not enable log output. To do that,
enable the general_log and slow_query_log system variables. For FILE logging, the
general_log_file and slow_query_log_file system variables determine the log file
locations. For more information, see Section 7.4.1, “Selecting General Query Log and Slow Query
Log Output Destinations”.

• log_queries_not_using_indexes

Command-Line Format --log-queries-not-using-
indexes[={OFF|ON}]

System Variable log_queries_not_using_indexes

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

If you enable this variable with the slow query log enabled, queries that are expected to retrieve all
rows are logged. See Section 7.4.5, “The Slow Query Log”. This option does not necessarily mean
that no index is used. For example, a query that uses a full index scan uses an index but would be
logged because the index would not limit the number of rows.

• log_raw

Command-Line Format --log-raw[={OFF|ON}]

System Variable (≥ 8.0.19) log_raw

Scope (≥ 8.0.19) Global

Dynamic (≥ 8.0.19) Yes

SET_VAR Hint Applies (≥ 8.0.19) No

Type Boolean

Default Value OFF

The log_raw system variable is initially set to the value of the --log-raw option. See the
description of that option for more information. The system variable may also be set at runtime to
change password masking behavior.

• log_slow_admin_statements

Command-Line Format --log-slow-admin-statements[={OFF|
ON}]

933

Server System Variables

System Variable log_slow_admin_statements

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Include slow administrative statements in the statements written to the slow query log. Administrative
statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP
INDEX, OPTIMIZE TABLE, and REPAIR TABLE.

• log_slow_extra

Command-Line Format --log-slow-extra[={OFF|ON}]

Introduced 8.0.14

System Variable log_slow_extra

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

If the slow query log is enabled and the output destination includes FILE, the server writes additional
fields to log file lines that provide information about slow statements. See Section 7.4.5, “The Slow
Query Log”. TABLE output is unaffected.

• log_syslog

Command-Line Format --log-syslog[={OFF|ON}]

Deprecated Yes (removed in 8.0.13)

System Variable log_syslog

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON (when error logging to system log is enabled)

Prior to MySQL 8.0, this variable controlled whether to perform error logging to the system log (the
Event Log on Windows, and syslog on Unix and Unix-like systems).

In MySQL 8.0, the log_sink_syseventlog log component implements error logging to the system
log (see Section 7.4.2.8, “Error Logging to the System Log”), so this type of logging can be enabled
by adding that component to the log_error_services system variable. log_syslog is removed.
(Prior to MySQL 8.0.13, log_syslog exists but is deprecated and has no effect.)

• log_syslog_facility

Command-Line Format --log-syslog-facility=value

Removed 8.0.13

System Variable log_syslog_facility
934

Server System Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value daemon

This variable was removed in MySQL 8.0.13 and replaced by syseventlog.facility.

• log_syslog_include_pid

Command-Line Format --log-syslog-include-pid[={OFF|ON}]

Removed 8.0.13

System Variable log_syslog_include_pid

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This variable was removed in MySQL 8.0.13 and replaced by syseventlog.include_pid.

• log_syslog_tag

Command-Line Format --log-syslog-tag=tag

Removed 8.0.13

System Variable log_syslog_tag

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value empty string

This variable was removed in MySQL 8.0.13 and replaced by syseventlog.tag.

• log_timestamps

Command-Line Format --log-timestamps=#

System Variable log_timestamps

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value UTC

Valid Values UTC

SYSTEM

This variable controls the time zone of timestamps in messages written to the error log, and in
general query log and slow query log messages written to files. It does not affect the time zone 935

Server System Variables

of general query log and slow query log messages written to tables (mysql.general_log,
mysql.slow_log). Rows retrieved from those tables can be converted from the local system time
zone to any desired time zone with CONVERT_TZ() or by setting the session time_zone system
variable.

Permitted log_timestamps values are UTC (the default) and SYSTEM (the local system time zone).

Timestamps are written using ISO 8601 / RFC 3339 format: YYYY-MM-DDThh:mm:ss.uuuuuu plus
a tail value of Z signifying Zulu time (UTC) or ±hh:mm (an offset from UTC).

• log_throttle_queries_not_using_indexes

Command-Line Format --log-throttle-queries-not-using-
indexes=#

System Variable log_throttle_queries_not_using_indexes

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

If log_queries_not_using_indexes is enabled, the
log_throttle_queries_not_using_indexes variable limits the number of such queries per
minute that can be written to the slow query log. A value of 0 (the default) means “no limit”. For more
information, see Section 7.4.5, “The Slow Query Log”.

• long_query_time

Command-Line Format --long-query-time=#

System Variable long_query_time

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Numeric

Default Value 10

Minimum Value 0

Maximum Value 31536000

Unit seconds

If a query takes longer than this many seconds, the server increments the Slow_queries status
variable. If the slow query log is enabled, the query is logged to the slow query log file. This value
is measured in real time, not CPU time, so a query that is under the threshold on a lightly loaded
system might be above the threshold on a heavily loaded one. The minimum and default values of
long_query_time are 0 and 10, respectively. The maximum is 31536000, which is 365 days in
seconds. The value can be specified to a resolution of microseconds. See Section 7.4.5, “The Slow
Query Log”.

Smaller values of this variable result in more statements being considered long-running, with
the result that more space is required for the slow query log. For very small values (less than
one second), the log may grow quite large in a small time. Increasing the number of statements

936

Server System Variables

considered long-running may also result in false positives for the “excessive Number of Long
Running Processes” alert in MySQL Enterprise Monitor, especially if Group Replication is enabled.
For these reasons, very small values should be used in test environments only, or, in production
environments, only for a short period.

mysqldump performs a full table scan, which means its queries can often exceed a
long_query_time setting that is useful for regular queries. From MySQL 8.0.30, if you want to
exclude most or all of mysqldump’s queries from the slow query log, you can set mysqldump’s
--mysqld-long-query-time command line option to change the session value of the system
variable to a higher value.

• low_priority_updates

Command-Line Format --low-priority-updates[={OFF|ON}]

System Variable low_priority_updates

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait until there is
no pending SELECT or LOCK TABLE READ on the affected table. The same effect can be obtained
using {INSERT | REPLACE | DELETE | UPDATE} LOW_PRIORITY ... to lower the priority of
only one query. This variable affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE). See Section 10.11.2, “Table Locking Issues”.

As of MySQL 8.0.27, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• lower_case_file_system

System Variable lower_case_file_system

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

This variable describes the case sensitivity of file names on the file system where the data directory
is located. OFF means file names are case-sensitive, ON means they are not case-sensitive. This
variable is read only because it reflects a file system attribute and setting it would have no effect on
the file system.

• lower_case_table_names

Command-Line Format --lower-case-table-names[=#]

System Variable lower_case_table_names

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (macOS) 2

937

Server System Variables

Default Value (Unix) 0

Default Value (Windows) 1

Minimum Value 0

Maximum Value 2

If set to 0, table names are stored as specified and comparisons are case-sensitive. If set to 1, table
names are stored in lowercase on disk and comparisons are not case-sensitive. If set to 2, table
names are stored as given but compared in lowercase. This option also applies to database names
and table aliases. For additional details, see Section 11.2.3, “Identifier Case Sensitivity”.

The default value of this variable is platform-dependent (see lower_case_file_system). On
Linux and other Unix-like systems, the default is 0. On Windows the default value is 1. On macOS,
the default value is 2. On Linux (and other Unix-like systems), setting the value to 2 is not supported;
the server forces the value to 0 instead.

You should not set lower_case_table_names to 0 if you are running MySQL on a system where
the data directory resides on a case-insensitive file system (such as on Windows or macOS). It is an
unsupported combination that could result in a hang condition when running an INSERT INTO ...
SELECT ... FROM tbl_name operation with the wrong tbl_name lettercase. With MyISAM,
accessing table names using different lettercases could cause index corruption.

An error message is printed and the server exits if you attempt to start the server with --
lower_case_table_names=0 on a case-insensitive file system.

The setting of this variable affects the behavior of replication filtering options with regard to case
sensitivity. For more information, see Section 19.2.5, “How Servers Evaluate Replication Filtering
Rules”.

It is prohibited to start the server with a lower_case_table_names setting that is different from
the setting used when the server was initialized. The restriction is necessary because collations
used by various data dictionary table fields are determined by the setting defined when the server
is initialized, and restarting the server with a different setting would introduce inconsistencies with
respect to how identifiers are ordered and compared.

It is therefore necessary to configure lower_case_table_names to the desired setting before
initializing the server. In most cases, this requires configuring lower_case_table_names in a
MySQL option file before starting the MySQL server for the first time. For APT installations on Debian
and Ubuntu, however, the server is initialized for you, and there is no opportunity to configure the
setting in an option file beforehand. You must therefore use the debconf-set-selection utility
prior to installing MySQL using APT to enable lower_case_table_names. To do so, run this
command before installing MySQL using APT:

$> sudo debconf-set-selections <<< "mysql-server mysql-server/lowercase-table-names select Enabled"

Note

The ability to enable lower_case_table_names using debconf-
set-selections was added in MySQL 8.0.17. Enabling
lower_case_table_names sets the value to 1.

• mandatory_roles

Command-Line Format --mandatory-roles=value

System Variable mandatory_roles

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

938

Server System Variables

Type String

Default Value empty string

Roles the server should treat as mandatory. In effect, these roles are automatically granted to every
user, although setting mandatory_roles does not actually change any user accounts, and the
granted roles are not visible in the mysql.role_edges system table.

The variable value is a comma-separated list of role names. Example:

SET PERSIST mandatory_roles = '`role1`@`%`,`role2`,role3,role4@localhost';

Setting the runtime value of mandatory_roles requires the ROLE_ADMIN privilege, in addition to
the SYSTEM_VARIABLES_ADMIN privilege (or the deprecated SUPER privilege) normally required to
set a global system variable runtime value.

Role names consist of a user part and host part in user_name@host_name format. The host part, if
omitted, defaults to %. For additional information, see Section 8.2.5, “Specifying Role Names”.

The mandatory_roles value is a string, so user names and host names, if quoted, must be written
in a fashion permitted for quoting within quoted strings.

Roles named in the value of mandatory_roles cannot be revoked with REVOKE or dropped with
DROP ROLE or DROP USER.

To prevent sessions from being made system sessions by default, a role that has the SYSTEM_USER
privilege cannot be listed in the value of the mandatory_roles system variable:

• If mandatory_roles is assigned a role at startup that has the SYSTEM_USER privilege, the server
writes a message to the error log and exits.

• If mandatory_roles is assigned a role at runtime that has the SYSTEM_USER privilege, an error
occurs and the mandatory_roles value remains unchanged.

Mandatory roles, like explicitly granted roles, do not take effect until activated (see Activating Roles).
At login time, role activation occurs for all granted roles if the activate_all_roles_on_login
system variable is enabled; otherwise, or for roles that are set as default roles otherwise. At runtime,
SET ROLE activates roles.

Roles that do not exist when assigned to mandatory_roles but are created later may require
special treatment to be considered mandatory. For details, see Defining Mandatory Roles.

SHOW GRANTS displays mandatory roles according to the rules described in Section 15.7.7.21,
“SHOW GRANTS Statement”.

• max_allowed_packet

Command-Line Format --max-allowed-packet=#

System Variable max_allowed_packet

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 67108864

Minimum Value 1024

Maximum Value 1073741824

Unit bytes
939

Server System Variables

Block Size 1024

The maximum size of one packet or any generated/intermediate string, or any parameter sent by the
mysql_stmt_send_long_data() C API function. The default is 64MB.

The packet message buffer is initialized to net_buffer_length bytes, but can grow up to
max_allowed_packet bytes when needed. This value by default is small, to catch large (possibly
incorrect) packets.

You must increase this value if you are using large BLOB columns or long strings. It should be as
big as the largest BLOB you want to use. The protocol limit for max_allowed_packet is 1GB. The
value should be a multiple of 1024; nonmultiples are rounded down to the nearest multiple.

When you change the message buffer size by changing the value of the max_allowed_packet
variable, you should also change the buffer size on the client side if your client program permits
it. The default max_allowed_packet value built in to the client library is 1GB, but individual
client programs might override this. For example, mysql and mysqldump have defaults of
16MB and 24MB, respectively. They also enable you to change the client-side value by setting
max_allowed_packet on the command line or in an option file.

The session value of this variable is read only. The client can receive up to as many bytes as the
session value. However, the server does not send to the client more bytes than the current global
max_allowed_packet value. (The global value could be less than the session value if the global
value is changed after the client connects.)

• max_connect_errors

Command-Line Format --max-connect-errors=#

System Variable max_connect_errors

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 100

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

After max_connect_errors successive connection requests from a host are interrupted without a
successful connection, the server blocks that host from further connections. If a connection from a
host is established successfully within fewer than max_connect_errors attempts after a previous
connection was interrupted, the error count for the host is cleared to zero. To unblock blocked hosts,
flush the host cache; see Flushing the Host Cache.

• max_connections

Command-Line Format --max-connections=#

System Variable max_connections

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 151
940

https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-send-long-data.html

Server System Variables

Minimum Value 1

Maximum Value 100000

The maximum permitted number of simultaneous client connections. The maximum effective value
is the lesser of the effective value of open_files_limit - 810, and the value actually set for
max_connections.

For more information, see Section 7.1.12.1, “Connection Interfaces”.

• max_delayed_threads

Command-Line Format --max-delayed-threads=#

Deprecated Yes

System Variable max_delayed_threads

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 20

Minimum Value 0

Maximum Value 16384

This system variable is deprecated (because DELAYED inserts are not supported) and subject to
removal in a future MySQL release.

As of MySQL 8.0.27, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• max_digest_length

Command-Line Format --max-digest-length=#

System Variable max_digest_length

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes of memory reserved per session for computation of normalized
statement digests. Once that amount of space is used during digest computation, truncation occurs:
no further tokens from a parsed statement are collected or figure into its digest value. Statements
that differ only after that many bytes of parsed tokens produce the same normalized statement digest
and are considered identical if compared or if aggregated for digest statistics.

The length used for calculating a normalized statement digest is the sum of the length of the
normalized statement digest and the length of the statement digest. Since the length of the statement
digest is always 64, this is equivalent to LENGTH (STATEMENT_DIGEST_TEXT(statement)) +

941

Server System Variables

64. This means that, when the value of max_digest_length is 1024 (the default), the maximum
length for a normalized SQL statement before truncation occurs is in effect 960 bytes.

Warning

Setting max_digest_length to zero disables digest production, which also
disables server functionality that requires digests, such as MySQL Enterprise
Firewall.

Decreasing the max_digest_length value reduces memory use but causes the digest value
of more statements to become indistinguishable if they differ only at the end. Increasing the value
permits longer statements to be distinguished but increases memory use, particularly for workloads
that involve large numbers of simultaneous sessions (the server allocates max_digest_length
bytes per session).

The parser uses this system variable as a limit on the maximum length of normalized statement
digests that it computes. The Performance Schema, if it tracks statement digests, makes
a copy of the digest value, using the performance_schema_max_digest_length.
system variable as a limit on the maximum length of digests that it stores. Consequently, if
performance_schema_max_digest_length is less than max_digest_length, digest values
stored in the Performance Schema are truncated relative to the original digest values.

For more information about statement digesting, see Section 29.10, “Performance Schema
Statement Digests and Sampling”.

• max_error_count

Command-Line Format --max-error-count=#

System Variable max_error_count

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 65535

The maximum number of error, warning, and information messages to be stored for display by the
SHOW ERRORS and SHOW WARNINGS statements. This is the same as the number of condition
areas in the diagnostics area, and thus the number of conditions that can be inspected by GET
DIAGNOSTICS.

As of MySQL 8.0.27, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• max_execution_time

Command-Line Format --max-execution-time=#

System Variable max_execution_time

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer
942

Server System Variables

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit milliseconds

The execution timeout for SELECT statements, in milliseconds. If the value is 0, timeouts are not
enabled.

max_execution_time applies as follows:

• The global max_execution_time value provides the default for the session value for new
connections. The session value applies to SELECT executions executed within the session that
include no MAX_EXECUTION_TIME(N) optimizer hint or for which N is 0.

• max_execution_time applies to read-only SELECT statements. Statements that are not read
only are those that invoke a stored function that modifies data as a side effect.

• max_execution_time is ignored for SELECT statements in stored programs.

• max_heap_table_size

Command-Line Format --max-heap-table-size=#

System Variable max_heap_table_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 16777216

Minimum Value 16384

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value (32-bit platforms) 4294966272

Unit bytes

Block Size 1024

This variable sets the maximum size to which user-created MEMORY tables are permitted to grow.
The value of the variable is used to calculate MEMORY table MAX_ROWS values.

Setting this variable has no effect on any existing MEMORY table, unless the table is re-created with
a statement such as CREATE TABLE or altered with ALTER TABLE or TRUNCATE TABLE. A server
restart also sets the maximum size of existing MEMORY tables to the global max_heap_table_size
value.

This variable is also used in conjunction with tmp_table_size to limit the size of internal in-
memory tables. See Section 10.4.4, “Internal Temporary Table Use in MySQL”.

max_heap_table_size is not replicated. See Section 19.5.1.21, “Replication and MEMORY
Tables”, and Section 19.5.1.39, “Replication and Variables”, for more information.

• max_insert_delayed_threads

Deprecated Yes

System Variable max_insert_delayed_threads

Scope Global, Session
943

Server System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 20

Maximum Value 16384

This variable is a synonym for max_delayed_threads. Like max_delayed_threads, it is
deprecated (because DELAYED inserts are not supported) and subject to removal in a future MySQL
release.

As of MySQL 8.0.27, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• max_join_size

Command-Line Format --max-join-size=#

System Variable max_join_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 18446744073709551615

Minimum Value 1

Maximum Value 18446744073709551615

As of MySQL 8.0.31, this represents a limit on the maximum number of row accesses in base
tables made by a join. If the server's estimate indicates that a greater number of rows than
max_join_size must be read from the base tables, the statement is rejected with an error.

MySQL 8.0.30 and earlier: Do not permit statements that probably need to examine more than
max_join_size rows (for single-table statements) or row combinations (for multiple-table
statements) or that are likely to do more than max_join_size disk seeks. By setting this value, you
can catch statements where keys are not used properly and that would probably take a long time.
Set it if your users tend to perform joins that lack a WHERE clause, that take a long time, or that return
millions of rows. For more information, see Using Safe-Updates Mode (--safe-updates).

Regardless of MySQL release version, setting this variable to a value other than DEFAULT
resets the value of sql_big_selects to 0. If you set the sql_big_selects value again, the
max_join_size variable is ignored.

• max_length_for_sort_data

Command-Line Format --max-length-for-sort-data=#

Deprecated 8.0.20

System Variable max_length_for_sort_data

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer
944

Server System Variables

Default Value 4096

Minimum Value 4

Maximum Value 8388608

Unit bytes

This variable is deprecated as of MySQL 8.0.20 due to optimizer changes that make it obsolete
and of no effect. Previously, it acted as the cutoff on the size of index values that determines which
filesort algorithm to use. See Section 10.2.1.16, “ORDER BY Optimization”.

• max_points_in_geometry

Command-Line Format --max-points-in-geometry=#

System Variable max_points_in_geometry

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 65536

Minimum Value 3

Maximum Value 1048576

The maximum value of the points_per_circle argument to the ST_Buffer_Strategy()
function.

• max_prepared_stmt_count

Command-Line Format --max-prepared-stmt-count=#

System Variable max_prepared_stmt_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 16382

Minimum Value 0

Maximum Value (≥ 8.0.18) 4194304

Maximum Value (≤ 8.0.17) 1048576

This variable limits the total number of prepared statements in the server. It can be used in
environments where there is the potential for denial-of-service attacks based on running the server
out of memory by preparing huge numbers of statements. If the value is set lower than the current
number of prepared statements, existing statements are not affected and can be used, but no new
statements can be prepared until the current number drops below the limit. Setting the value to 0
disables prepared statements.

• max_seeks_for_key

Command-Line Format --max-seeks-for-key=#

System Variable max_seeks_for_key

Scope Global, Session

Dynamic Yes

945

Server System Variables

SET_VAR Hint Applies Yes

Type Integer

Default Value (Windows) 4294967295

Default Value (Other, 64-bit platforms) 18446744073709551615

Default Value (Other, 32-bit platforms) 4294967295

Minimum Value 1

Maximum Value (Windows) 4294967295

Maximum Value (Other, 64-bit platforms) 18446744073709551615

Maximum Value (Other, 32-bit platforms) 4294967295

Limit the assumed maximum number of seeks when looking up rows based on a key. The MySQL
optimizer assumes that no more than this number of key seeks are required when searching for
matching rows in a table by scanning an index, regardless of the actual cardinality of the index (see
Section 15.7.7.22, “SHOW INDEX Statement”). By setting this to a low value (say, 100), you can
force MySQL to prefer indexes instead of table scans.

• max_sort_length

Command-Line Format --max-sort-length=#

System Variable max_sort_length

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 1024

Minimum Value 4

Maximum Value 8388608

Unit bytes

The number of bytes to use when sorting string values which use PAD SPACE collations. The server
uses only the first max_sort_length bytes of any such value and ignores the rest. Consequently,
such values that differ only after the first max_sort_length bytes compare as equal for GROUP
BY, ORDER BY, and DISTINCT operations. (This behavior differs from previous versions of MySQL,
where this setting was applied to all values used in comparisons.)

Increasing the value of max_sort_length may require increasing the value of
sort_buffer_size as well. For details, see Section 10.2.1.16, “ORDER BY Optimization”

• max_sp_recursion_depth

Command-Line Format --max-sp-recursion-depth[=#]

System Variable max_sp_recursion_depth

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 255

946

Server System Variables

The number of times that any given stored procedure may be called recursively. The default value
for this option is 0, which completely disables recursion in stored procedures. The maximum value is
255.

Stored procedure recursion increases the demand on thread stack space. If you increase the value
of max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the
value of thread_stack at server startup.

• max_user_connections

Command-Line Format --max-user-connections=#

System Variable max_user_connections

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

The maximum number of simultaneous connections permitted to any given MySQL user account. A
value of 0 (the default) means “no limit.”

This variable has a global value that can be set at server startup or runtime. It also has a read-only
session value that indicates the effective simultaneous-connection limit that applies to the account
associated with the current session. The session value is initialized as follows:

• If the user account has a nonzero MAX_USER_CONNECTIONS resource limit, the session
max_user_connections value is set to that limit.

• Otherwise, the session max_user_connections value is set to the global value.

Account resource limits are specified using the CREATE USER or ALTER USER statement. See
Section 8.2.21, “Setting Account Resource Limits”.

• max_write_lock_count

Command-Line Format --max-write-lock-count=#

System Variable max_write_lock_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (Windows) 4294967295

Default Value (Other, 64-bit platforms) 18446744073709551615

Default Value (Other, 32-bit platforms) 4294967295

Minimum Value 1

Maximum Value (Windows) 4294967295

Maximum Value (Other, 64-bit platforms) 18446744073709551615

947

Server System Variables

Maximum Value (Other, 32-bit platforms) 4294967295

After this many write locks, permit some pending read lock requests to be processed in
between. Write lock requests have higher priority than read lock requests. However, if
max_write_lock_count is set to some low value (say, 10), read lock requests may be preferred
over pending write lock requests if the read lock requests have already been passed over in favor of
10 write lock requests. Normally this behavior does not occur because max_write_lock_count by
default has a very large value.

• mecab_rc_file

Command-Line Format --mecab-rc-file=file_name

System Variable mecab_rc_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

The mecab_rc_file option is used when setting up the MeCab full-text parser.

The mecab_rc_file option defines the path to the mecabrc configuration file, which is the
configuration file for MeCab. The option is read-only and can only be set at startup. The mecabrc
configuration file is required to initialize MeCab.

For information about the MeCab full-text parser, see Section 14.9.9, “MeCab Full-Text Parser
Plugin”.

For information about options that can be specified in the MeCab mecabrc configuration file, refer to
the MeCab Documentation on the Google Developers site.

• metadata_locks_cache_size

Command-Line Format --metadata-locks-cache-size=#

Deprecated Yes (removed in 8.0.13)

System Variable metadata_locks_cache_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 1024

Minimum Value 1

Maximum Value 1048576

Unit bytes

This system variable was removed in MySQL 8.0.13.

• metadata_locks_hash_instances

Command-Line Format --metadata-locks-hash-instances=#

Deprecated Yes (removed in 8.0.13)

System Variable metadata_locks_hash_instances

Scope Global

948

http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html
https://code.google.com/

Server System Variables

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 8

Minimum Value 1

Maximum Value 1024

This system variable was removed in MySQL 8.0.13.

• min_examined_row_limit

Command-Line Format --min-examined-row-limit=#

System Variable min_examined_row_limit

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Queries that examine fewer than this number of rows are not logged to the slow query log.

As of MySQL 8.0.27, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• myisam_data_pointer_size

Command-Line Format --myisam-data-pointer-size=#

System Variable myisam_data_pointer_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 6

Minimum Value 2

Maximum Value 7

Unit bytes

The default pointer size in bytes, to be used by CREATE TABLE for MyISAM tables when no
MAX_ROWS option is specified. This variable cannot be less than 2 or larger than 7. The default value
is 6. See Section B.3.2.10, “The table is full”.

• myisam_max_sort_file_size

Command-Line Format --myisam-max-sort-file-size=#

System Variable myisam_max_sort_file_size 949

Server System Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (Windows) 2146435072

Default Value (Other, 64-bit platforms) 9223372036853727232

Default Value (Other, 32-bit platforms) 2147483648

Minimum Value 0

Maximum Value (Windows) 2146435072

Maximum Value (Other, 64-bit platforms) 9223372036853727232

Maximum Value (Other, 32-bit platforms) 2147483648

Unit bytes

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA). If the file size would be larger than
this value, the index is created using the key cache instead, which is slower. The value is given in
bytes.

If MyISAM index files exceed this size and disk space is available, increasing the value may help
performance. The space must be available in the file system containing the directory where the
original index file is located.

• myisam_mmap_size

Command-Line Format --myisam-mmap-size=#

System Variable myisam_mmap_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (64-bit platforms) 18446744073709551615

Default Value (32-bit platforms) 4294967295

Minimum Value 7

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

The maximum amount of memory to use for memory mapping compressed MyISAM files. If many
compressed MyISAM tables are used, the value can be decreased to reduce the likelihood of
memory-swapping problems.

• myisam_recover_options

Command-Line Format --myisam-recover-options[=list]

System Variable myisam_recover_options

Scope Global

Dynamic No

SET_VAR Hint Applies No

950

Server System Variables

Type Enumeration

Default Value OFF

Valid Values OFF

DEFAULT

BACKUP

FORCE

QUICK

Set the MyISAM storage engine recovery mode. The variable value is any combination of the values
of OFF, DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple values, separate them by
commas. Specifying the variable with no value at server startup is the same as specifying DEFAULT,
and specifying with an explicit value of "" disables recovery (same as a value of OFF). If recovery
is enabled, each time mysqld opens a MyISAM table, it checks whether the table is marked as
crashed or was not closed properly. (The last option works only if you are running with external
locking disabled.) If this is the case, mysqld runs a check on the table. If the table was corrupted,
mysqld attempts to repair it.

The following options affect how the repair works.

Option Description

OFF No recovery.

DEFAULT Recovery without backup, forcing, or quick
checking.

BACKUP If the data file was changed during recovery,
save a backup of the tbl_name.MYD file as
tbl_name-datetime.BAK.

FORCE Run recovery even if we would lose more than
one row from the .MYD file.

QUICK Do not check the rows in the table if there are not
any delete blocks.

Before the server automatically repairs a table, it writes a note about the repair to the error log. If you
want to be able to recover from most problems without user intervention, you should use the options
BACKUP,FORCE. This forces a repair of a table even if some rows would be deleted, but it keeps the
old data file as a backup so that you can later examine what happened.

See Section 18.2.1, “MyISAM Startup Options”.

• myisam_repair_threads

Command-Line Format --myisam-repair-threads=#

Deprecated 8.0.29 (removed in 8.0.30)

System Variable myisam_repair_threads

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

951

Server System Variables

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Note

This system variable is deprecated in MySQL 8.0.29 and removed in MySQL
8.0.30.

From MySQL 8.0.29, values other than 1 produce a warning.

If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its own
thread) during the Repair by sorting process. The default value is 1.

Note

Multithreaded repair is beta-quality code.

• myisam_sort_buffer_size

Command-Line Format --myisam-sort-buffer-size=#

System Variable myisam_sort_buffer_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8388608

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or
when creating indexes with CREATE INDEX or ALTER TABLE.

• myisam_stats_method

Command-Line Format --myisam-stats-method=name

System Variable myisam_stats_method

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value nulls_unequal

Valid Values nulls_unequal

nulls_equal

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values
for MyISAM tables. This variable has three possible values, nulls_equal, nulls_unequal, and
nulls_ignored. For nulls_equal, all NULL index values are considered equal and form a single952

Server System Variables

value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values
are considered unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored,
NULL values are ignored.

The method that is used for generating table statistics influences how the optimizer chooses
indexes for query execution, as described in Section 10.3.8, “InnoDB and MyISAM Index Statistics
Collection”.

• myisam_use_mmap

Command-Line Format --myisam-use-mmap[={OFF|ON}]

System Variable myisam_use_mmap

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Use memory mapping for reading and writing MyISAM tables.

• mysql_native_password_proxy_users

Command-Line Format --mysql-native-password-proxy-
users[={OFF|ON}]

Deprecated 8.0.16

System Variable mysql_native_password_proxy_users

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This variable controls whether the mysql_native_password built-in authentication plugin supports
proxy users. It has no effect unless the check_proxy_users system variable is enabled. For
information about user proxying, see Section 8.2.19, “Proxy Users”.

• named_pipe

Command-Line Format --named-pipe[={OFF|ON}]

System Variable named_pipe

Scope Global

Dynamic No

SET_VAR Hint Applies No

Platform Specific Windows

Type Boolean

Default Value OFF

(Windows only.) Indicates whether the server supports connections over named pipes.

953

Server System Variables

• named_pipe_full_access_group

Command-Line Format --named-pipe-full-access-group=value

Introduced 8.0.14

System Variable named_pipe_full_access_group

Scope Global

Dynamic No

SET_VAR Hint Applies No

Platform Specific Windows

Type String

Default Value empty string

Valid Values empty string

valid Windows local group name

everyone

(Windows only.) The access control granted to clients on the named pipe created by the MySQL
server is set to the minimum necessary for successful communication when the named_pipe
system variable is enabled to support named-pipe connections. Some MySQL client software can
open named pipe connections without any additional configuration; however, other client software
may still require full access to open a named pipe connection.

This variable sets the name of a Windows local group whose members are granted sufficient access
by the MySQL server to use named-pipe clients. As of MySQL 8.0.24, the default value is set to an
empty string, which means that no Windows user is granted full access to the named pipe.

A new Windows local group name (for example, mysql_access_client_users) can be created
in Windows and then used to replace the default value when access is absolutely necessary. In
this case, limit the membership of the group to as few users as possible, removing users from the
group when their client software is upgraded. A non-member of the group who attempts to open
a connection to MySQL with the affected named-pipe client is denied access until a Windows
administrator adds the user to the group. Newly added users must log out and log in again to join the
group (required by Windows).

Setting the value to '*everyone*' provides a language-independent way of referring to the
Everyone group on Windows. The Everyone group is not secure by default.

• net_buffer_length

Command-Line Format --net-buffer-length=#

System Variable net_buffer_length

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 16384

Minimum Value 1024

Maximum Value 1048576

Unit bytes

954

Server System Variables

Block Size 1024

Each client thread is associated with a connection buffer and result buffer. Both begin with a size
given by net_buffer_length but are dynamically enlarged up to max_allowed_packet bytes
as needed. The result buffer shrinks to net_buffer_length after each SQL statement.

This variable should not normally be changed, but if you have very little memory, you can set it to the
expected length of statements sent by clients. If statements exceed this length, the connection buffer
is automatically enlarged. The maximum value to which net_buffer_length can be set is 1MB.

The session value of this variable is read only.

• net_read_timeout

Command-Line Format --net-read-timeout=#

System Variable net_read_timeout

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 30

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds to wait for more data from a connection before aborting the read. When the
server is reading from the client, net_read_timeout is the timeout value controlling when to abort.
When the server is writing to the client, net_write_timeout is the timeout value controlling when
to abort. See also replica_net_timeout and slave_net_timeout.

• net_retry_count

Command-Line Format --net-retry-count=#

System Variable net_retry_count

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 1

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

If a read or write on a communication port is interrupted, retry this many times before giving up. This
value should be set quite high on FreeBSD because internal interrupts are sent to all threads.

• net_write_timeout

Command-Line Format --net-write-timeout=#

System Variable net_write_timeout

Scope Global, Session

955

Server System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

Minimum Value 1

Maximum Value 31536000

Unit seconds

The number of seconds to wait for a block to be written to a connection before aborting the write.
See also net_read_timeout.

• new

Command-Line Format --new[={OFF|ON}]

Deprecated 8.0.35

System Variable new

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Disabled by skip-new

Type Boolean

Default Value OFF

This variable was used in MySQL 4.0 to turn on some 4.1 behaviors, and is retained for backward
compatibility. Its value is always OFF.

This variable is deprecated as of MySQL 8.0.35, and is subject to removal in a future release.

In NDB Cluster, setting this variable to ON makes it possible to employ partitioning types other than
KEY or LINEAR KEY with NDB tables. This experimental feature is not supported in production, and
is now deprecated and thus subject to removal in a future release. For additional information, see
User-defined partitioning and the NDB storage engine (NDB Cluster).

• ngram_token_size

Command-Line Format --ngram-token-size=#

System Variable ngram_token_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 2

Minimum Value 1

956

Server System Variables

Maximum Value 10

Defines the n-gram token size for the n-gram full-text parser. The ngram_token_size option is
read-only and can only be modified at startup. The default value is 2 (bigram). The maximum value is
10.

For more information about how to configure this variable, see Section 14.9.8, “ngram Full-Text
Parser”.

• offline_mode

Command-Line Format --offline-mode[={OFF|ON}]

System Variable offline_mode

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

In offline mode, the MySQL instance disconnects client users unless they have relevant privileges,
and does not allow them to initiate new connections. Clients that are refused access receive an
ER_SERVER_OFFLINE_MODE error.

To put a server in offline mode, change the value of the offline_mode system variable from
OFF to ON. To resume normal operations, change offline_mode from ON to OFF. To control
offline mode, an administrator account must have the SYSTEM_VARIABLES_ADMIN privilege and
the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege, which covers both these
privileges). CONNECTION_ADMIN is required from MySQL 8.0.31 and recommended in all releases to
prevent accidental lockout.

Offline mode has these characteristics:

• Connected client users who do not have the CONNECTION_ADMIN privilege (or the deprecated
SUPER privilege) are disconnected on the next request, with an appropriate error. Disconnection
includes terminating running statements and releasing locks. Such clients also cannot initiate new
connections, and receive an appropriate error.

• Connected client users who have the CONNECTION_ADMIN or SUPER privilege are not
disconnected, and can initiate new connections to manage the server.

• From MySQL 8.0.30, if the user that puts a server in offline mode does not have the
SYSTEM_USER privilege, connected client users who have the SYSTEM_USER privilege are also
not disconnected. However, these users cannot initiate new connections to the server while it is in
offline mode, unless they have the CONNECTION_ADMIN or SUPER privilege as well. It is only their
existing connection that cannot be terminated, because the SYSTEM_USER privilege is required to
kill a session or statement that is executing with the SYSTEM_USER privilege.

• Replication threads are permitted to keep applying data to the server.

• old

Command-Line Format --old[={OFF|ON}]

Deprecated 8.0.35

System Variable old

Scope Global

957

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_server_offline_mode

Server System Variables

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

old is a compatibility variable. It is disabled by default, but can be enabled at startup to revert the
server to behaviors present in older versions.

When old is enabled, it changes the default scope of index hints to that used prior to MySQL 5.1.17.
That is, index hints with no FOR clause apply only to how indexes are used for row retrieval and not
to resolution of ORDER BY or GROUP BY clauses. (See Section 10.9.4, “Index Hints”.) Take care
about enabling this in a replication setup. With statement-based binary logging, having different
modes for the source and replicas might lead to replication errors.

This variable is deprecated as of MySQL 8.0.35, and is subject to removal in a future release.

• old_alter_table

Command-Line Format --old-alter-table[={OFF|ON}]

System Variable old_alter_table

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When this variable is enabled, the server does not use the optimized method of processing
an ALTER TABLE operation. It reverts to using a temporary table, copying over the data, and
then renaming the temporary table to the original, as used by MySQL 5.0 and earlier. For more
information on the operation of ALTER TABLE, see Section 15.1.9, “ALTER TABLE Statement”.

ALTER TABLE ... DROP PARTITION with old_alter_table=ON rebuilds the partitioned
table and attempts to move data from the dropped partition to another partition with a compatible
PARTITION ... VALUES definition. Data that cannot be moved to another partition is deleted. In
earlier releases, ALTER TABLE ... DROP PARTITION with old_alter_table=ON deletes data
stored in the partition and drops the partition.

• open_files_limit

Command-Line Format --open-files-limit=#

System Variable open_files_limit

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 5000, with possible adjustment

Minimum Value 0

958

Server System Variables

Maximum Value platform dependent

The number of file descriptors available to mysqld from the operating system:

• At startup, mysqld reserves descriptors with setrlimit(), using the value requested at by
setting this variable directly or by using the --open-files-limit option to mysqld_safe. If
mysqld produces the error Too many open files, try increasing the open_files_limit
value. Internally, the maximum value for this variable is the maximum unsigned integer value, but
the actual maximum is platform dependent.

• At runtime, the value of open_files_limit indicates the number of file descriptors actually
permitted to mysqld by the operating system, which might differ from the value requested at
startup. If the number of file descriptors requested during startup cannot be allocated, mysqld
writes a warning to the error log.

The effective open_files_limit value is based on the value specified at system startup (if any)
and the values of max_connections and table_open_cache, using these formulas:

• 10 + max_connections + (table_open_cache * 2). Using the defaults for these
variables yields 8161.

On Windows only, 2048 (the value of the C Run-Time Library file descriptor maximum) is added to
this number. This totals 10209, again using the default values for the indicated system variables.

• max_connections * 5

• MySQL 8.0.19 and higher: The operating system limit.

• Prior to MySQL 8.0.19:

• The operating system limit if that limit is positive but not Infinity.

• If the operating system limit is Infinity: open_files_limit value if specified at startup, 5000 if
not.

The server attempts to obtain the number of file descriptors using the maximum of those values,
capped to the maximum unsigned integer value. If that many descriptors cannot be obtained, the
server attempts to obtain as many as the system permits.

The effective value is 0 on systems where MySQL cannot change the number of open files.

On Unix, the value cannot be set greater than the value displayed by the ulimit -n command.
On Linux systems using systemd, the value cannot be set greater than LimitNOFILE (this
is DefaultLimitNOFILE, if LimitNOFILE is not set); otherwise, on Linux, the value of
open_files_limit cannot exceed ulimit -n.

• optimizer_prune_level

Command-Line Format --optimizer-prune-level=#

System Variable optimizer_prune_level

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 1

Minimum Value 0

959

Server System Variables

Maximum Value 1

Controls the heuristics applied during query optimization to prune less-promising partial plans
from the optimizer search space. A value of 0 disables heuristics so that the optimizer performs an
exhaustive search. A value of 1 causes the optimizer to prune plans based on the number of rows
retrieved by intermediate plans.

• optimizer_search_depth

Command-Line Format --optimizer-search-depth=#

System Variable optimizer_search_depth

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 62

Minimum Value 0

Maximum Value 62

The maximum depth of search performed by the query optimizer. Values larger than the number of
relations in a query result in better query plans, but take longer to generate an execution plan for
a query. Values smaller than the number of relations in a query return an execution plan quicker,
but the resulting plan may be far from being optimal. If set to 0, the system automatically picks a
reasonable value.

• optimizer_switch

Command-Line Format --optimizer-switch=value

System Variable optimizer_switch

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Set

Valid Values (≥ 8.0.22) batched_key_access={on|off}

block_nested_loop={on|off}

condition_fanout_filter={on|off}

derived_condition_pushdown={on|off}

derived_merge={on|off}

duplicateweedout={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

hash_join={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

960

Server System Variables

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

prefer_ordering_index={on|off}

semijoin={on|off}

skip_scan={on|off}

subquery_materialization_cost_based={on|
off}

subquery_to_derived={on|off}

use_index_extensions={on|off}

use_invisible_indexes={on|off}

Valid Values (≥ 8.0.21, ≤ 8.0.22) batched_key_access={on|off}

block_nested_loop={on|off}

condition_fanout_filter={on|off}

derived_merge={on|off}

duplicateweedout={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

hash_join={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

961

Server System Variables

prefer_ordering_index={on|off}

semijoin={on|off}

skip_scan={on|off}

subquery_materialization_cost_based={on|
off}

subquery_to_derived={on|off}

use_index_extensions={on|off}

use_invisible_indexes={on|off}

Valid Values (≥ 8.0.18, ≤ 8.0.20) batched_key_access={on|off}

block_nested_loop={on|off}

condition_fanout_filter={on|off}

derived_merge={on|off}

duplicateweedout={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

hash_join={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

semijoin={on|off}

skip_scan={on|off}

subquery_materialization_cost_based={on|
off}

use_index_extensions={on|off}

use_invisible_indexes={on|off}

Valid Values (≥ 8.0.13, ≤ 8.0.17) batched_key_access={on|off}

block_nested_loop={on|off}

962

Server System Variables

condition_fanout_filter={on|off}

derived_merge={on|off}

duplicateweedout={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

semijoin={on|off}

skip_scan={on|off}

subquery_materialization_cost_based={on|
off}

use_index_extensions={on|off}

use_invisible_indexes={on|off}

Valid Values (≤ 8.0.12) batched_key_access={on|off}

block_nested_loop={on|off}

condition_fanout_filter={on|off}

derived_merge={on|off}

duplicateweedout={on|off}

engine_condition_pushdown={on|off}

firstmatch={on|off}

index_condition_pushdown={on|off}

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_union={on|off}

index_merge_union={on|off}

963

Server System Variables

loosescan={on|off}

materialization={on|off}

mrr={on|off}

mrr_cost_based={on|off}

semijoin={on|off}

subquery_materialization_cost_based={on|
off}

use_index_extensions={on|off}

use_invisible_indexes={on|off}

The optimizer_switch system variable enables control over optimizer behavior. The value
of this variable is a set of flags, each of which has a value of on or off to indicate whether the
corresponding optimizer behavior is enabled or disabled. This variable has global and session values
and can be changed at runtime. The global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,index_merge_intersection=on,
 engine_condition_pushdown=on,index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,block_nested_loop=on,
 batched_key_access=off,materialization=on,semijoin=on,
 loosescan=on,firstmatch=on,duplicateweedout=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on,condition_fanout_filter=on,
 derived_merge=on,use_invisible_indexes=off,skip_scan=on,
 hash_join=on,subquery_to_derived=off,
 prefer_ordering_index=on,hypergraph_optimizer=off,
 derived_condition_pushdown=on

For more information about the syntax of this variable and the optimizer behaviors that it controls,
see Section 10.9.2, “Switchable Optimizations”.

• optimizer_trace

Command-Line Format --optimizer-trace=value

System Variable optimizer_trace

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

This variable controls optimizer tracing. For details, see Section 10.15, “Tracing the Optimizer”.

• optimizer_trace_features

Command-Line Format --optimizer-trace-features=value

System Variable optimizer_trace_features

Scope Global, Session

Dynamic Yes

964

Server System Variables

SET_VAR Hint Applies No

Type String

This variable enables or disables selected optimizer tracing features. For details, see Section 10.15,
“Tracing the Optimizer”.

• optimizer_trace_limit

Command-Line Format --optimizer-trace-limit=#

System Variable optimizer_trace_limit

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 2147483647

The maximum number of optimizer traces to display. For details, see Section 10.15, “Tracing the
Optimizer”.

• optimizer_trace_max_mem_size

Command-Line Format --optimizer-trace-max-mem-size=#

System Variable optimizer_trace_max_mem_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 1048576

Minimum Value 0

Maximum Value 4294967295

Unit bytes

The maximum cumulative size of stored optimizer traces. For details, see Section 10.15, “Tracing the
Optimizer”.

• optimizer_trace_offset

Command-Line Format --optimizer-trace-offset=#

System Variable optimizer_trace_offset

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value -1

Minimum Value -2147483647

965

Server System Variables

Maximum Value 2147483647

The offset of optimizer traces to display. For details, see Section 10.15, “Tracing the Optimizer”.

• performance_schema_xxx

Performance Schema system variables are listed in Section 29.15, “Performance Schema System
Variables”. These variables may be used to configure Performance Schema operation.

• parser_max_mem_size

Command-Line Format --parser-max-mem-size=#

System Variable parser_max_mem_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (64-bit platforms) 18446744073709551615

Default Value (32-bit platforms) 4294967295

Minimum Value 10000000

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

The maximum amount of memory available to the parser. The default value places no limit on
memory available. The value can be reduced to protect against out-of-memory situations caused by
parsing long or complex SQL statements.

• partial_revokes

Command-Line Format --partial-revokes[={OFF|ON}]

Introduced 8.0.16

System Variable partial_revokes

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF (if partial revokes do not exist)

ON (if partial revokes exist)

Enabling this variable makes it possible to revoke privileges partially. Specifically, for users who
have privileges at the global level, partial_revokes enables privileges for specific schemas to
be revoked while leaving the privileges in place for other schemas. For example, a user who has
the global UPDATE privilege can be restricted from exercising this privilege on the mysql system
schema. (Or, stated another way, the user is enabled to exercise the UPDATE privilege on all

966

Server System Variables

schemas except the mysql schema.) In this sense, the user's global UPDATE privilege is partially
revoked.

Once enabled, partial_revokes cannot be disabled if any account has privilege restrictions. If
any such account exists, disabling partial_revokes fails:

• For attempts to disable partial_revokes at startup, the server logs an error message and
enables partial_revokes.

• For attempts to disable partial_revokes at runtime, an error occurs and the
partial_revokes value remains unchanged.

To disable partial_revokes in this case, first modify each account that has partially revoked
privileges, either by re-granting the privileges or by removing the account.

Note

In privilege assignments, enabling partial_revokes causes MySQL to
interpret occurrences of unescaped _ and % SQL wildcard characters in
schema names as literal characters, just as if they had been escaped as _
and \%. Because this changes how MySQL interprets privileges, it may be
advisable to avoid unescaped wildcard characters in privilege assignments for
installations where partial_revokes may be enabled.

In addition, use of _ and % as wildcard characters in grants is deprecated as
of MySQL 8.0.35, and you should expect support for them to be removed in a
future version of MySQL.

For more information, including instructions for removing partial revokes, see Section 8.2.12,
“Privilege Restriction Using Partial Revokes”.

• password_history

Command-Line Format --password-history=#

System Variable password_history

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

This variable defines the global policy for controlling reuse of previous passwords based on required
minimum number of password changes. For an account password used previously, this variable
indicates the number of subsequent account password changes that must occur before the password
can be reused. If the value is 0 (the default), there is no reuse restriction based on number of
password changes.

Changes to this variable apply immediately to all accounts defined with the PASSWORD HISTORY
DEFAULT option.

The global number-of-changes password reuse policy can be overridden as desired for individual
accounts using the PASSWORD HISTORY option of the CREATE USER and ALTER USER statements.
See Section 8.2.15, “Password Management”.

967

Server System Variables

• password_require_current

Command-Line Format --password-require-current[={OFF|
ON}]

Introduced 8.0.13

System Variable password_require_current

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This variable defines the global policy for controlling whether attempts to change an account
password must specify the current password to be replaced.

Changes to this variable apply immediately to all accounts defined with the PASSWORD REQUIRE
CURRENT DEFAULT option.

The global verification-required policy can be overridden as desired for individual accounts
using the PASSWORD REQUIRE option of the CREATE USER and ALTER USER statements. See
Section 8.2.15, “Password Management”.

• password_reuse_interval

Command-Line Format --password-reuse-interval=#

System Variable password_reuse_interval

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit days

This variable defines the global policy for controlling reuse of previous passwords based on time
elapsed. For an account password used previously, this variable indicates the number of days
that must pass before the password can be reused. If the value is 0 (the default), there is no reuse
restriction based on time elapsed.

Changes to this variable apply immediately to all accounts defined with the PASSWORD REUSE
INTERVAL DEFAULT option.

The global time-elapsed password reuse policy can be overridden as desired for individual accounts
using the PASSWORD REUSE INTERVAL option of the CREATE USER and ALTER USER statements.
See Section 8.2.15, “Password Management”.

• persisted_globals_load

Command-Line Format --persisted-globals-load[={OFF|ON}]

System Variable persisted_globals_load

Scope Global968

Server System Variables

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether to load persisted configuration settings from the mysqld-auto.cnf file in the data
directory. The server normally processes this file at startup after all other option files (see
Section 6.2.2.2, “Using Option Files”). Disabling persisted_globals_load causes the server
startup sequence to skip mysqld-auto.cnf.

To modify the contents of mysqld-auto.cnf, use the SET PERSIST, SET PERSIST_ONLY, and
RESET PERSIST statements. See Section 7.1.9.3, “Persisted System Variables”.

• persist_only_admin_x509_subject

Command-Line Format --persist-only-admin-x509-
subject=string

Introduced 8.0.14

System Variable persist_only_admin_x509_subject

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value empty string

SET PERSIST and SET PERSIST_ONLY enable system variables to be persisted to the mysqld-
auto.cnf option file in the data directory (see Section 15.7.6.1, “SET Syntax for Variable
Assignment”). Persisting system variables enables runtime configuration changes that affect
subsequent server restarts, which is convenient for remote administration not requiring direct access
to MySQL server host option files. However, some system variables are nonpersistible or can be
persisted only under certain restrictive conditions.

The persist_only_admin_x509_subject system variable specifies the SSL certificate X.509
Subject value that users must have to be able to persist system variables that are persist-restricted.
The default value is the empty string, which disables the Subject check so that persist-restricted
system variables cannot be persisted by any user.

If persist_only_admin_x509_subject is nonempty, users who connect to the server using
an encrypted connection and supply an SSL certificate with the designated Subject value then
can use SET PERSIST_ONLY to persist persist-restricted system variables. For information
about persist-restricted system variables and instructions for configuring MySQL to enable
persist_only_admin_x509_subject, see Section 7.1.9.4, “Nonpersistible and Persist-
Restricted System Variables”.

• persist_sensitive_variables_in_plaintext

Command-Line Format --
persist_sensitive_variables_in_plaintext[={OFF|
ON}]

Introduced 8.0.29

System Variable persist_sensitive_variables_in_plaintext

Scope Global

Dynamic No
969

Server System Variables

SET_VAR Hint Applies No

Type Boolean

Default Value ON

persist_sensitive_variables_in_plaintext controls whether the server is permitted
to store the values of sensitive system variables in an unencrypted format, if keyring component
support is not available at the time when SET PERSIST is used to set the value of the system
variable. It also controls whether or not the server can start if the encrypted values cannot be
decrypted. Note that keyring plugins do not support secure storage of sensitive system variables;
a keyring component (see Section 8.4.4, “The MySQL Keyring”) must be enabled on the MySQL
Server instance to support secure storage.

The default setting, ON, encrypts the values if keyring component support is available, and persists
them unencrypted (with a warning) if it is not. The next time any persisted system variable is set, if
keyring support is available at that time, the server encrypts the values of any unencrypted sensitive
system variables. The ON setting also allows the server to start if encrypted system variable values
cannot be decrypted, in which case a warning is issued and the default values for the system
variables are used. In that situation, their values cannot be changed until they can be decrypted.

The most secure setting, OFF, means sensitive system variable values cannot be persisted if keyring
component support is unavailable. The OFF setting also means the server does not start if encrypted
system variable values cannot be decrypted.

For more information, see Persisting Sensitive System Variables.

• pid_file

Command-Line Format --pid-file=file_name

System Variable pid_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

The path name of the file in which the server writes its process ID. The server creates the file in the
data directory unless an absolute path name is given to specify a different directory. If you specify
this variable, you must specify a value. If you do not specify this variable, MySQL uses a default
value of host_name.pid, where host_name is the name of the host machine.

The process ID file is used by other programs such as mysqld_safe to determine the server's
process ID. On Windows, this variable also affects the default error log file name. See Section 7.4.2,
“The Error Log”.

• plugin_dir

Command-Line Format --plugin-dir=dir_name

System Variable plugin_dir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value BASEDIR/lib/plugin

The path name of the plugin directory.

970

Server System Variables

If the plugin directory is writable by the server, it may be possible for a user to write executable
code to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by
making plugin_dir read only to the server or by setting secure_file_priv to a directory where
SELECT writes can be made safely.

• port

Command-Line Format --port=port_num

System Variable port

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 3306

Minimum Value 0

Maximum Value 65535

The number of the port on which the server listens for TCP/IP connections. This variable can be set
with the --port option.

• preload_buffer_size

Command-Line Format --preload-buffer-size=#

System Variable preload_buffer_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32768

Minimum Value 1024

Maximum Value 1073741824

Unit bytes

The size of the buffer that is allocated when preloading indexes.

As of MySQL 8.0.27, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• print_identified_with_as_hex

Command-Line Format --print-identified-with-as-
hex[={OFF|ON}]

Introduced 8.0.17

System Variable print_identified_with_as_hex

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean
971

Server System Variables

Default Value OFF

Password hash values displayed in the IDENTIFIED WITH clause of output from SHOW CREATE
USER may contain unprintable characters that have adverse effects on terminal displays and in other
environments. Enabling print_identified_with_as_hex causes SHOW CREATE USER to
display such hash values as hexadecimal strings rather than as regular string literals. Hash values
that do not contain unprintable characters still display as regular string literals, even with this variable
enabled.

• profiling

If set to 0 or OFF (the default), statement profiling is disabled. If set to 1 or ON, statement profiling
is enabled and the SHOW PROFILE and SHOW PROFILES statements provide access to profiling
information. See Section 15.7.7.31, “SHOW PROFILES Statement”.

This variable is deprecated; expect it to be removed in a future MySQL release.

• profiling_history_size

The number of statements for which to maintain profiling information if profiling is enabled. The
default value is 15. The maximum value is 100. Setting the value to 0 effectively disables profiling.
See Section 15.7.7.31, “SHOW PROFILES Statement”.

This variable is deprecated; expect it to be removed in a future MySQL release.

• protocol_compression_algorithms

Command-Line Format --protocol-compression-
algorithms=value

Introduced 8.0.18

System Variable protocol_compression_algorithms

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Set

Default Value zlib,zstd,uncompressed

Valid Values zlib

zstd

uncompressed

The compression algorithms that the server permits for incoming connections. These include
connections by client programs and by servers participating in source/replica replication or Group
Replication. Compression does not apply to connections for FEDERATED tables.

protocol_compression_algorithms does not control connection compression for X Protocol.
See Section 22.5.5, “Connection Compression with X Plugin” for information on how this operates.

The variable value is a list of one or more comma-separated compression algorithm names, in any
order, chosen from the following items (not case-sensitive):

• zlib: Permit connections that use the zlib compression algorithm.

• zstd: Permit connections that use the zstd compression algorithm.

972

Server System Variables

• uncompressed: Permit uncompressed connections. If this algorithm name is not included in
the protocol_compression_algorithms value, the server does not permit uncompressed
connections. It permits only compressed connections that use whichever other algorithms are
specified in the value, and there is no fallback to uncompressed connections.

The default value of zlib,zstd,uncompressed indicates that the server permits all compression
algorithms.

For more information, see Section 6.2.8, “Connection Compression Control”.

• protocol_version

System Variable protocol_version

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 4294967295

The version of the client/server protocol used by the MySQL server.

• proxy_user

System Variable proxy_user

Scope Session

Dynamic No

SET_VAR Hint Applies No

Type String

If the current client is a proxy for another user, this variable is the proxy user account name.
Otherwise, this variable is NULL. See Section 8.2.19, “Proxy Users”.

• pseudo_replica_mode

Introduced 8.0.26

System Variable pseudo_replica_mode

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

973

Server System Variables

Type Boolean

From MySQL 8.0.26, pseudo_replica_mode is used in place of pseudo_slave_mode, which
is deprecated from that release. The operation and effects are the same, only the terminology has
changed.

pseudo_replica_mode is for internal server use. It assists with the correct handling of transactions
that originated on older or newer servers than the server currently processing them. mysqlbinlog
sets the value of pseudo_replica_mode to true before executing any SQL statements.

Setting the session value of pseudo_replica_mode is a restricted operation. The session user
must have either the REPLICATION_APPLIER privilege (see Section 19.3.3, “Replication Privilege
Checks”), or privileges sufficient to set restricted session variables (see Section 7.1.9.1, “System
Variable Privileges”). However, note that the variable is not intended for users to set; it is set
automatically by the replication infrastructure.

pseudo_replica_mode has the following effects on the handling of prepared XA transactions,
which can be attached to or detached from the handling session (by default, the session that issues
XA START):

• If true, and the handling session has executed an internal-use BINLOG statement, XA transactions
are automatically detached from the session as soon as the first part of the transaction up to
XA PREPARE finishes, so they can be committed or rolled back by any session that has the
XA_RECOVER_ADMIN privilege.

• If false, XA transactions remain attached to the handling session as long as that session is alive,
during which time no other session can commit the transaction. The prepared transaction is only
detached if the session disconnects or the server restarts.

pseudo_replica_mode has the following effects on the original_commit_timestamp
replication delay timestamp and the original_server_version system variable:

• If true, transactions that do not explicitly set original_commit_timestamp or
original_server_version are assumed to originate on another, unknown server, so the value
0, meaning unknown, is assigned to both the timestamp and the system variable.

• If false, transactions that do not explicitly set original_commit_timestamp or
original_server_version are assumed to originate on the current server, so the current
timestamp and the current server's version are assigned to the timestamp and the system variable.

In MySQL 8.0.14 and later, pseudo_replica_mode has the following effects on the handling of a
statement that sets one or more unsupported (removed or unknown) SQL modes:

• If true, the server ignores the unsupported mode and raises a warning.

• If false, the server rejects the statement with ER_UNSUPPORTED_SQL_MODE.

• pseudo_slave_mode

Deprecated 8.0.26

System Variable pseudo_slave_mode

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

From MySQL 8.0.26, pseudo_slave_mode is deprecated and the alias pseudo_replica_mode
is used instead. pseudo_slave_mode is for internal server use. It assists with the correct handling

974

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unsupported_sql_mode

Server System Variables

of transactions that originated on older or newer servers than the server currently processing
them. mysqlbinlog sets the value of pseudo_slave_mode to true before executing any SQL
statements.

Setting the session value of this system variable is a restricted operation. The session user must
have either the REPLICATION_APPLIER privilege (see Section 19.3.3, “Replication Privilege
Checks”), or privileges sufficient to set restricted session variables (see Section 7.1.9.1, “System
Variable Privileges”). However, note that the variable is not intended for users to set; it is set
automatically by the replication infrastructure.

See the description of the pseudo_replica_mode system variable for the effects of
pseudo_slave_mode.

• pseudo_thread_id

System Variable pseudo_thread_id

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2147483647

Minimum Value 0

Maximum Value 2147483647

This variable is for internal server use.

Warning

Changing the session value of the pseudo_thread_id system variable
changes the value returned by the CONNECTION_ID() function.

As of MySQL 8.0.14, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• query_alloc_block_size

Command-Line Format --query-alloc-block-size=#

System Variable query_alloc_block_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8192

Minimum Value 1024

Maximum Value 4294966272

Unit bytes

975

Server System Variables

Block Size 1024

The allocation size in bytes of memory blocks that are allocated for objects created during statement
parsing and execution. If you have problems with memory fragmentation, it might help to increase
this parameter.

The block size for the byte number is 1024. A value that is not an exact multiple of the block size is
rounded down to the next lower multiple of the block size by MySQL Server before storing the value
for the system variable. The parser allows values up to the maximum unsigned integer value for the
platform (4294967295 or 232−1 for a 32-bit system, 18446744073709551615 or 264−1 for a 64-bit
system) but the actual maximum is a block size lower.

• query_prealloc_size

Command-Line Format --query-prealloc-size=#

Deprecated 8.0.29

System Variable query_prealloc_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8192

Minimum Value 8192

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value (32-bit platforms) 4294966272

Unit bytes

Block Size 1024

MySQL 8.0.28 and earlier: This sets the size in bytes of the persistent buffer used for statement
parsing and execution. This buffer is not freed between statements. If you are running complex
queries, a larger query_prealloc_size value might be helpful in improving performance,
because it can reduce the need for the server to perform memory allocation during query execution
operations. You should be aware that doing this does not necessarily eliminate allocation
completely; the server may still allocate memory in some situations, such as for operations relating to
transactions, or to stored programs.

As of MySQL 8.0.29, query_prealloc_size is deprecated, and setting it no longer has any effect;
you should expect its removal in a future release of MySQL.

• rand_seed1

System Variable rand_seed1

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value N/A

Minimum Value 0

976

Server System Variables

Maximum Value 4294967295

The rand_seed1 and rand_seed2 variables exist as session variables only, and can be set but not
read. The variables—but not their values—are shown in the output of SHOW VARIABLES.

The purpose of these variables is to support replication of the RAND() function. For statements
that invoke RAND(), the source passes two values to the replica, where they are used to seed the
random number generator. The replica uses these values to set the session variables rand_seed1
and rand_seed2 so that RAND() on the replica generates the same value as on the source.

• rand_seed2

See the description for rand_seed1.

• range_alloc_block_size

Command-Line Format --range-alloc-block-size=#

System Variable range_alloc_block_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 4096

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value 4294966272

Unit bytes

Block Size 1024

The size in bytes of blocks that are allocated when doing range optimization.

The block size for the byte number is 1024. A value that is not an exact multiple of the block size is
rounded down to the next lower multiple of the block size by MySQL Server before storing the value
for the system variable. The parser allows values up to the maximum unsigned integer value for the
platform (4294967295 or 232−1 for a 32-bit system, 18446744073709551615 or 264−1 for a 64-bit
system) but the actual maximum is a block size lower.

• range_optimizer_max_mem_size

Command-Line Format --range-optimizer-max-mem-size=#

System Variable range_optimizer_max_mem_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 8388608

Minimum Value 0

Maximum Value 18446744073709551615

977

Server System Variables

Unit bytes

The limit on memory consumption for the range optimizer. A value of 0 means “no limit.” If an
execution plan considered by the optimizer uses the range access method but the optimizer
estimates that the amount of memory needed for this method would exceed the limit, it abandons
the plan and considers other plans. For more information, see Limiting Memory Use for Range
Optimization.

• rbr_exec_mode

System Variable rbr_exec_mode

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value STRICT

Valid Values STRICT

IDEMPOTENT

For internal use by mysqlbinlog. This variable switches the server between IDEMPOTENT mode
and STRICT mode. IDEMPOTENT mode causes suppression of duplicate-key and no-key-found
errors in BINLOG statements generated by mysqlbinlog. This mode is useful when replaying a
row-based binary log on a server that causes conflicts with existing data. mysqlbinlog sets this
mode when you specify the --idempotent option by writing the following to the output:

SET SESSION RBR_EXEC_MODE=IDEMPOTENT;

As of MySQL 8.0.18, setting the session value of this system variable is no longer a restricted
operation.

• read_buffer_size

Command-Line Format --read-buffer-size=#

System Variable read_buffer_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 131072

Minimum Value 8192

Maximum Value 2147479552

Unit bytes

Block Size 4096

Each thread that does a sequential scan for a MyISAM table allocates a buffer of this size (in bytes)
for each table it scans. If you do many sequential scans, you might want to increase this value, which

978

Server System Variables

defaults to 131072. The value of this variable should be a multiple of 4KB. If it is set to a value that is
not a multiple of 4KB, its value is rounded down to the nearest multiple of 4KB.

This option is also used in the following context for all other storage engines with the exception of
InnoDB:

• For caching the indexes in a temporary file (not a temporary table), when sorting rows for ORDER
BY.

• For bulk insert into partitions.

• For caching results of nested queries.

read_buffer_size is also used in one other storage engine-specific way: to determine the
memory block size for MEMORY tables.

Beginning with MySQL 8.0.22, the value of select_into_buffer_size is used in place of
the value of read_buffer_size for the I/O cache buffer used when executing SELECT INTO
DUMPFILE and SELECT INTO OUTFILE statements. (read_buffer_size is used for the I/O
cache buffer size in all other cases.)

For more information about memory use during different operations, see Section 10.12.3.1, “How
MySQL Uses Memory”.

• read_only

Command-Line Format --read-only[={OFF|ON}]

System Variable read_only

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

If the read_only system variable is enabled, the server permits no client updates except from users
who have the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege). This variable is
disabled by default.

The server also supports a super_read_only system variable (disabled by default), which has
these effects:

• If super_read_only is enabled, the server prohibits client updates, even from users who have
the CONNECTION_ADMIN or SUPER privilege.

• Setting super_read_only to ON implicitly forces read_only to ON.

• Setting read_only to OFF implicitly forces super_read_only to OFF.

When read_only is enabled and when super_read_only is enabled, the server still permits
these operations:

• Updates performed by replication threads, if the server is a replica. In replication setups, it can be
useful to enable read_only on replica servers to ensure that replicas accept updates only from
the source server and not from clients.

• Writes to the system table mysql.gtid_executed, which stores GTIDs for executed
transactions that are not present in the current binary log file.

979

Server System Variables

• Use of ANALYZE TABLE or OPTIMIZE TABLE statements. The purpose of read-only mode is
to prevent changes to table structure or contents. Analysis and optimization do not qualify as
such changes. This means, for example, that consistency checks on read-only replicas can be
performed with mysqlcheck --all-databases --analyze.

• Use of FLUSH STATUS statements, which are always written to the binary log.

• Operations on TEMPORARY tables.

• Inserts into the log tables (mysql.general_log and mysql.slow_log); see Section 7.4.1,
“Selecting General Query Log and Slow Query Log Output Destinations”.

• Updates to Performance Schema tables, such as UPDATE or TRUNCATE TABLE operations.

Changes to read_only on a replication source server are not replicated to replica servers. The
value can be set on a replica independent of the setting on the source.

The following conditions apply to attempts to enable read_only (including implicit attempts resulting
from enabling super_read_only):

• The attempt fails and an error occurs if you have any explicit locks (acquired with LOCK TABLES)
or have a pending transaction.

• The attempt blocks while other clients have any ongoing statement, active LOCK TABLES WRITE,
or ongoing commit, until the locks are released and the statements and transactions end. While
the attempt to enable read_only is pending, requests by other clients for table locks or to begin
transactions also block until read_only has been set.

• The attempt blocks if there are active transactions that hold metadata locks, until those
transactions end.

• read_only can be enabled while you hold a global read lock (acquired with FLUSH TABLES
WITH READ LOCK) because that does not involve table locks.

• read_rnd_buffer_size

Command-Line Format --read-rnd-buffer-size=#

System Variable read_rnd_buffer_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 262144

Minimum Value 1

Maximum Value 2147483647

Unit bytes

This variable is used for reads from MyISAM tables, and, for any storage engine, for Multi-Range
Read optimization.

When reading rows from a MyISAM table in sorted order following a key-sorting operation, the rows
are read through this buffer to avoid disk seeks. See Section 10.2.1.16, “ORDER BY Optimization”.
Setting the variable to a large value can improve ORDER BY performance by a lot. However, this is

980

Server System Variables

a buffer allocated for each client, so you should not set the global variable to a large value. Instead,
change the session variable only from within those clients that need to run large queries.

For more information about memory use during different operations, see Section 10.12.3.1, “How
MySQL Uses Memory”. For information about Multi-Range Read optimization, see Section 10.2.1.11,
“Multi-Range Read Optimization”.

• regexp_stack_limit

Command-Line Format --regexp-stack-limit=#

System Variable regexp_stack_limit

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8000000

Minimum Value 0

Maximum Value 2147483647

Unit bytes

The maximum available memory in bytes for the internal stack used for regular expression matching
operations performed by REGEXP_LIKE() and similar functions (see Section 14.8.2, “Regular
Expressions”).

• regexp_time_limit

Command-Line Format --regexp-time-limit=#

System Variable regexp_time_limit

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 2147483647

The time limit for regular expression matching operations performed by REGEXP_LIKE() and similar
functions (see Section 14.8.2, “Regular Expressions”). This limit is expressed as the maximum
permitted number of steps performed by the match engine, and thus affects execution time only
indirectly. Typically, it is on the order of milliseconds.

• require_row_format

Introduced 8.0.19

System Variable require_row_format

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

981

Server System Variables

This variable is for internal server use by replication and mysqlbinlog. It restricts DML events
executed in the session to events encoded in row-based binary logging format only, and temporary
tables cannot be created. Queries that do not respect the restrictions fail.

Setting the session value of this system variable to ON requires no privileges. Setting the session
value of this system variable to OFF is a restricted operation, and the session user must have
privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

• require_secure_transport

Command-Line Format --require-secure-transport[={OFF|
ON}]

System Variable require_secure_transport

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether client connections to the server are required to use some form of secure transport. When
this variable is enabled, the server permits only TCP/IP connections encrypted using TLS/SSL, or
connections that use a socket file (on Unix) or shared memory (on Windows). The server rejects
nonsecure connection attempts, which fail with an ER_SECURE_TRANSPORT_REQUIRED error.

This capability supplements per-account SSL requirements, which take precedence. For example, if
an account is defined with REQUIRE SSL, enabling require_secure_transport does not make
it possible to use the account to connect using a Unix socket file.

It is possible for a server to have no secure transports available. For example, a server on
Windows supports no secure transports if started without specifying any SSL certificate or
key files and with the shared_memory system variable disabled. Under these conditions,
attempts to enable require_secure_transport at startup cause the server to write a
message to the error log and exit. Attempts to enable the variable at runtime fail with an
ER_NO_SECURE_TRANSPORTS_CONFIGURED error.

All replication group members should have the same value for this variable; otherwise, some
members may not be able to join.

See also Configuring Encrypted Connections as Mandatory.

• resultset_metadata

System Variable resultset_metadata

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value FULL

Valid Values FULL

982

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_secure_transport_required
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_no_secure_transports_configured

Server System Variables

NONE

For connections for which metadata transfer is optional, the client sets the resultset_metadata
system variable to control whether the server returns result set metadata. Permitted values are FULL
(return all metadata; this is the default) and NONE (return no metadata).

For connections that are not metadata-optional, setting resultset_metadata to NONE produces
an error.

For details about managing result set metadata transfer, see Optional Result Set Metadata.

• secondary_engine_cost_threshold

Introduced 8.0.16

System Variable secondary_engine_cost_threshold

Scope Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Numeric

Default Value 100000.000000

Minimum Value 0

Maximum Value DBL_MAX (maximum double value)

The optimizer cost threshold for query offload to a secondary engine.

For use with HeatWave. See HeatWave User Guide.

• schema_definition_cache

Command-Line Format --schema-definition-cache=#

System Variable schema_definition_cache

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 256

Minimum Value 256

Maximum Value 524288

Defines a limit for the number of schema definition objects, both used and unused, that can be kept
in the dictionary object cache.

Unused schema definition objects are only kept in the dictionary object cache when the number in
use is less than the capacity defined by schema_definition_cache.

A setting of 0 means that schema definition objects are only kept in the dictionary object cache while
they are in use.

For more information, see Section 16.4, “Dictionary Object Cache”.

• secure_file_priv

Command-Line Format --secure-file-priv=dir_name

983

https://dev.mysql.com/doc/c-api/8.0/en/c-api-optional-metadata.html
https://dev.mysql.com/doc/heatwave/en/

Server System Variables

System Variable secure_file_priv

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value platform specific

Valid Values empty string

dirname

NULL

This variable is used to limit the effect of data import and export operations, such as those performed
by the LOAD DATA and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function.
These operations are permitted only to users who have the FILE privilege.

secure_file_priv may be set as follows:

• If empty, the variable has no effect. This is not a secure setting.

• If set to the name of a directory, the server limits import and export operations to work only with
files in that directory. The directory must exist; the server does not create it.

• If set to NULL, the server disables import and export operations.

The default value is platform specific and depends on the value of the INSTALL_LAYOUT CMake
option, as shown in the following table. To specify the default secure_file_priv value explicitly if
you are building from source, use the INSTALL_SECURE_FILE_PRIVDIR CMake option.

INSTALL_LAYOUT Value Default secure_file_priv Value

STANDALONE empty

DEB, RPM, SVR4 /var/lib/mysql-files

Otherwise mysql-files under the
CMAKE_INSTALL_PREFIX value

The server checks the value of secure_file_priv at startup and writes a warning to the
error log if the value is insecure. A non-NULL value is considered insecure if it is empty, or the
value is the data directory or a subdirectory of it, or a directory that is accessible by all users. If
secure_file_priv is set to a nonexistent path, the server writes an error message to the error log
and exits.

• select_into_buffer_size

Command-Line Format --select-into-buffer-size=#

Introduced 8.0.22

System Variable select_into_buffer_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 131072

Minimum Value 8192

984

Server System Variables

Maximum Value 2147479552

Unit bytes

Block Size 4096

When using SELECT INTO OUTFILE or SELECT INTO DUMPFILE to dump data into one or more
files for backup creation, data migration, or other purposes, writes can often be buffered and then
trigger a large burst of write I/O activity to the disk or other storage device and stall other queries
that are more sensitive to latency. You can use this variable to control the size of the buffer used to
write data to the storage device to determine when buffer synchronization should occur, and thus to
prevent write stalls of the kind just described from occurring.

select_into_buffer_size overrides any value set for read_buffer_size.
(select_into_buffer_size and read_buffer_size have the same default, maximum, and
minimum values.) You can also use select_into_disk_sync_delay to set a timeout to be
observed afterwards, each time synchronization takes place.

As of MySQL 8.0.27, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• select_into_disk_sync

Command-Line Format --select-into-disk-sync={ON|OFF}

Introduced 8.0.22

System Variable select_into_disk_sync

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value OFF

Valid Values OFF

ON

When set on ON, enables buffer synchronization of writes to an output file by a long-running SELECT
INTO OUTFILE or SELECT INTO DUMPFILE statement using select_into_buffer_size.

• select_into_disk_sync_delay

Command-Line Format --select-into-disk-sync-delay=#

Introduced 8.0.22

System Variable select_into_disk_sync_delay

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 31536000

985

Server System Variables

Unit milliseconds

When buffer synchronization of writes to an output file by a long-running SELECT INTO OUTFILE or
SELECT INTO DUMPFILE statement is enabled by select_into_disk_sync, this variable sets
an optional delay (in milliseconds) following synchronization. 0 (the default) means no delay.

As of MySQL 8.0.27, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• session_track_gtids

Command-Line Format --session-track-gtids=value

System Variable session_track_gtids

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value OFF

Valid Values OFF

OWN_GTID

ALL_GTIDS

Controls whether the server returns GTIDs to the client, enabling the client to use them to track the
server state. Depending on the variable value, at the end of executing each transaction, the server’s
GTIDs are captured and returned to the client as part of the acknowledgement. The possible values
for session_track_gtids are as follows:

• OFF: The server does not return GTIDs to the client. This is the default.

• OWN_GTID: The server returns the GTIDs for all transactions that were successfully committed by
this client in its current session since the last acknowledgement. Typically, this is the single GTID
for the last transaction committed, but if a single client request resulted in multiple transactions, the
server returns a GTID set containing all the relevant GTIDs.

• ALL_GTIDS: The server returns the global value of its gtid_executed system variable, which
it reads at a point after the transaction is successfully committed. As well as the GTID for the
transaction just committed, this GTID set includes all transactions committed on the server by any
client, and can include transactions committed after the point when the transaction currently being
acknowledged was committed.

session_track_gtids cannot be set within transactional context.

For more information about session state tracking, see Section 7.1.18, “Server Tracking of Client
Session State”.

• session_track_schema

Command-Line Format --session-track-schema[={OFF|ON}]

System Variable session_track_schema

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No
986

Server System Variables

Type Boolean

Default Value ON

Controls whether the server tracks when the default schema (database) is set within the current
session and notifies the client to make the schema name available.

If the schema name tracker is enabled, name notification occurs each time the default schema is set,
even if the new schema name is the same as the old.

For more information about session state tracking, see Section 7.1.18, “Server Tracking of Client
Session State”.

• session_track_state_change

Command-Line Format --session-track-state-change[={OFF|
ON}]

System Variable session_track_state_change

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Controls whether the server tracks changes to the state of the current session and notifies the client
when state changes occur. Changes can be reported for these attributes of client session state:

• The default schema (database).

• Session-specific values for system variables.

• User-defined variables.

• Temporary tables.

• Prepared statements.

If the session state tracker is enabled, notification occurs for each change that involves tracked
session attributes, even if the new attribute values are the same as the old. For example, setting a
user-defined variable to its current value results in a notification.

The session_track_state_change variable controls only notification of when changes occur,
not what the changes are. For example, state-change notifications occur when the default schema
is set or tracked session system variables are assigned, but the notification does not include the
schema name or variable values. To receive notification of the schema name or session system
variable values, use the session_track_schema or session_track_system_variables
system variable, respectively.

Note

Assigning a value to session_track_state_change itself is not
considered a state change and is not reported as such. However, if its
name listed in the value of session_track_system_variables, any
assignments to it do result in notification of the new value.

For more information about session state tracking, see Section 7.1.18, “Server Tracking of Client
Session State”.

987

Server System Variables

• session_track_system_variables

Command-Line Format --session-track-system-variables=#

System Variable session_track_system_variables

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value time_zone, autocommit,
character_set_client,
character_set_results,
character_set_connection

Controls whether the server tracks assignments to session system variables and notifies
the client of the name and value of each assigned variable. The variable value is a comma-
separated list of variables for which to track assignments. By default, notification is enabled
for time_zone, autocommit, character_set_client, character_set_results, and
character_set_connection. (The latter three variables are those affected by SET NAMES.)

To enable display of the Statement ID for each statement processed, use the statement_id
variable. For example:

mysql> SET @@SESSION.session_track_system_variables='statement_id'
mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.0006 sec)
Statement ID: 603835

The special value * causes the server to track assignments to all session variables. If given, this
value must be specified by itself without specific system variable names. This value also enables
display of the Statement ID for each successful statement processed.

To disable notification of session variable assignments, set session_track_system_variables
to the empty string.

If session system variable tracking is enabled, notification occurs for all assignments to tracked
session variables, even if the new values are the same as the old.

For more information about session state tracking, see Section 7.1.18, “Server Tracking of Client
Session State”.

• session_track_transaction_info

Command-Line Format --session-track-transaction-
info=value

System Variable session_track_transaction_info

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value OFF
988

Server System Variables

Valid Values OFF

STATE

CHARACTERISTICS

Controls whether the server tracks the state and characteristics of transactions within
the current session and notifies the client to make this information available. These
session_track_transaction_info values are permitted:

• OFF: Disable transaction state tracking. This is the default.

• STATE: Enable transaction state tracking without characteristics tracking. State tracking enables
the client to determine whether a transaction is in progress and whether it could be moved to a
different session without being rolled back.

• CHARACTERISTICS: Enable transaction state tracking, including characteristics tracking.
Characteristics tracking enables the client to determine how to restart a transaction in another
session so that it has the same characteristics as in the original session. The following
characteristics are relevant for this purpose:

ISOLATION LEVEL
READ ONLY
READ WRITE
WITH CONSISTENT SNAPSHOT

For a client to safely relocate a transaction to another session, it must track not only transaction state
but also transaction characteristics. In addition, the client must track the transaction_isolation
and transaction_read_only system variables to correctly determine the session defaults. (To
track these variables, list them in the value of the session_track_system_variables system
variable.)

For more information about session state tracking, see Section 7.1.18, “Server Tracking of Client
Session State”.

• sha256_password_auto_generate_rsa_keys

Command-Line Format --sha256-password-auto-generate-rsa-
keys[={OFF|ON}]

Deprecated 8.0.16

System Variable sha256_password_auto_generate_rsa_keys

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

The server uses this variable to determine whether to autogenerate RSA private/public key-pair files
in the data directory if they do not already exist.

At startup, the server automatically generates RSA private/public key-pair files in the data directory
if all of these conditions are true: The sha256_password_auto_generate_rsa_keys or
caching_sha2_password_auto_generate_rsa_keys system variable is enabled; no RSA
options are specified; the RSA files are missing from the data directory. These key-pair files enable
secure password exchange using RSA over unencrypted connections for accounts authenticated

989

Server System Variables

by the sha256_password or caching_sha2_password plugin; see Section 8.4.1.3, “SHA-256
Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”.

For more information about RSA file autogeneration, including file names and characteristics, see
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”

The auto_generate_certs system variable is related but controls autogeneration of SSL
certificate and key files needed for secure connections using SSL.

• sha256_password_private_key_path

Command-Line Format --sha256-password-private-key-
path=file_name

Deprecated 8.0.16

System Variable sha256_password_private_key_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value private_key.pem

The value of this variable is the path name of the RSA private key file for the sha256_password
authentication plugin. If the file is named as a relative path, it is interpreted relative to the server data
directory. The file must be in PEM format.

Important

Because this file stores a private key, its access mode should be restricted so
that only the MySQL server can read it.

For information about sha256_password, see Section 8.4.1.3, “SHA-256 Pluggable
Authentication”.

• sha256_password_proxy_users

Command-Line Format --sha256-password-proxy-users[={OFF|
ON}]

Deprecated 8.0.16

System Variable sha256_password_proxy_users

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This variable controls whether the sha256_password built-in authentication plugin supports proxy
users. It has no effect unless the check_proxy_users system variable is enabled. For information
about user proxying, see Section 8.2.19, “Proxy Users”.

• sha256_password_public_key_path

Command-Line Format --sha256-password-public-key-
path=file_name

Deprecated 8.0.16

990

Server System Variables

System Variable sha256_password_public_key_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value public_key.pem

The value of this variable is the path name of the RSA public key file for the sha256_password
authentication plugin. If the file is named as a relative path, it is interpreted relative to the server data
directory. The file must be in PEM format. Because this file stores a public key, copies can be freely
distributed to client users. (Clients that explicitly specify a public key when connecting to the server
using RSA password encryption must use the same public key as that used by the server.)

For information about sha256_password, including information about how clients specify the RSA
public key, see Section 8.4.1.3, “SHA-256 Pluggable Authentication”.

• shared_memory

Command-Line Format --shared-memory[={OFF|ON}]

System Variable shared_memory

Scope Global

Dynamic No

SET_VAR Hint Applies No

Platform Specific Windows

Type Boolean

Default Value OFF

(Windows only.) Whether the server permits shared-memory connections.

• shared_memory_base_name

Command-Line Format --shared-memory-base-name=name

System Variable shared_memory_base_name

Scope Global

Dynamic No

SET_VAR Hint Applies No

Platform Specific Windows

Type String

Default Value MYSQL

(Windows only.) The name of shared memory to use for shared-memory connections. This is useful
when running multiple MySQL instances on a single physical machine. The default name is MYSQL.
The name is case-sensitive.

This variable applies only if the server is started with the shared_memory system variable enabled
to support shared-memory connections.

• show_create_table_skip_secondary_engine

Command-Line Format --show-create-table-skip-secondary-
engine[={OFF|ON}] 991

Server System Variables

Introduced 8.0.18

System Variable show_create_table_skip_secondary_engine

Scope Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value OFF

Enabling show_create_table_skip_secondary_engine causes the SECONDARY ENGINE
clause to be excluded from SHOW CREATE TABLE output, and from CREATE TABLE statements
dumped by the mysqldump utility.

mysqldump provides the --show-create-skip-secondary-engine option. When specified, it
enables the show_create_table_skip_secondary_engine system variable for the duration of
the dump operation.

Attempting a mysqldump operation with the --show-create-skip-secondary-
engine option on a release prior to MySQL 8.0.18 that does not support the
show_create_table_skip_secondary_engine variable causes an error.

For use with HeatWave. See HeatWave User Guide.

• show_create_table_verbosity

Command-Line Format --show-create-table-verbosity[={OFF|
ON}]

System Variable show_create_table_verbosity

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

SHOW CREATE TABLE normally does not show the ROW_FORMAT table option if the row format is
the default format. Enabling this variable causes SHOW CREATE TABLE to display ROW_FORMAT
regardless of whether it is the default format.

• show_gipk_in_create_table_and_information_schema

Command-Line Format --show-gipk-in-create-table-and-
information-schema[={OFF|ON}]

Introduced 8.0.30

System Variable show_gipk_in_create_table_and_information_schema

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

992

https://dev.mysql.com/doc/heatwave/en/

Server System Variables

Default Value ON

Whether generated invisible primary keys are visible in the output of SHOW statements and in
Information Schema tables. When this variable is set to OFF, such keys are not shown.

This variable is not replicated.

For more information, see Section 15.1.20.11, “Generated Invisible Primary Keys”.

• show_old_temporals

Command-Line Format --show-old-temporals[={OFF|ON}]

Deprecated Yes

System Variable show_old_temporals

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether SHOW CREATE TABLE output includes comments to flag temporal columns found to be in
pre-5.6.4 format (TIME, DATETIME, and TIMESTAMP columns without support for fractional seconds
precision). This variable is disabled by default. If enabled, SHOW CREATE TABLE output looks like
this:

CREATE TABLE `mytbl` (
 `ts` timestamp /* 5.5 binary format */ NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `dt` datetime /* 5.5 binary format */ DEFAULT NULL,
 `t` time /* 5.5 binary format */ DEFAULT NULL
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

Output for the COLUMN_TYPE column of the Information Schema COLUMNS table is affected similarly.

This variable is deprecated and subject to removal in a future MySQL release.

As of MySQL 8.0.27, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• skip_external_locking

Command-Line Format --skip-external-locking[={OFF|ON}]

System Variable skip_external_locking

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

993

Server System Variables

Default Value ON

This is OFF if mysqld uses external locking (system locking), ON if external locking is disabled. This
affects only MyISAM table access.

This variable is set by the --external-locking or --skip-external-locking option.
External locking is disabled by default.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 10.11.5, “External Locking”.

• skip_name_resolve

Command-Line Format --skip-name-resolve[={OFF|ON}]

System Variable skip_name_resolve

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether to resolve host names when checking client connections. If this variable is OFF, mysqld
resolves host names when checking client connections. If it is ON, mysqld uses only IP numbers; in
this case, all Host column values in the grant tables must be IP addresses. See Section 7.1.12.3,
“DNS Lookups and the Host Cache”.

Depending on the network configuration of your system and the Host values for your accounts,
clients may need to connect using an explicit --host option, such as --host=127.0.0.1 or --
host=::1.

An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account.
However, this fails if the server is run with skip_name_resolve enabled. If you plan to do that,
make sure an account exists that can accept a connection. For example, to be able to connect as
root using --host=127.0.0.1 or --host=::1, create these accounts:

CREATE USER 'root'@'127.0.0.1' IDENTIFIED BY 'root-password';
CREATE USER 'root'@'::1' IDENTIFIED BY 'root-password';

• skip_networking

Command-Line Format --skip-networking[={OFF|ON}]

System Variable skip_networking

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This variable controls whether the server permits TCP/IP connections. By default, it is disabled
(permit TCP connections). If enabled, the server permits only local (non-TCP/IP) connections and all
interaction with mysqld must be made using named pipes or shared memory (on Windows) or Unix

994

Server System Variables

socket files (on Unix). This option is highly recommended for systems where only local clients are
permitted. See Section 7.1.12.3, “DNS Lookups and the Host Cache”.

Because starting the server with --skip-grant-tables disables authentication checks, the
server also disables remote connections in that case by enabling skip_networking.

• skip_show_database

Command-Line Format --skip-show-database

System Variable skip_show_database

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This prevents people from using the SHOW DATABASES statement if they do not have the SHOW
DATABASES privilege. This can improve security if you have concerns about users being able to see
databases belonging to other users. Its effect depends on the SHOW DATABASES privilege: If the
variable value is ON, the SHOW DATABASES statement is permitted only to users who have the SHOW
DATABASES privilege, and the statement displays all database names. If the value is OFF, SHOW
DATABASES is permitted to all users, but displays the names of only those databases for which the
user has the SHOW DATABASES or other privilege.

Caution

Because any static global privilege is considered a privilege for all
databases, any static global privilege enables a user to see all database
names with SHOW DATABASES or by examining the SCHEMATA table of
INFORMATION_SCHEMA, except databases that have been restricted at the
database level by partial revokes.

• slow_launch_time

Command-Line Format --slow-launch-time=#

System Variable slow_launch_time

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2

Minimum Value 0

Maximum Value 31536000

Unit seconds

If creating a thread takes longer than this many seconds, the server increments the
Slow_launch_threads status variable.

• slow_query_log

Command-Line Format --slow-query-log[={OFF|ON}]

System Variable slow_query_log
995

Server System Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether the slow query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON)
to enable the log. The destination for log output is controlled by the log_output system variable; if
that value is NONE, no log entries are written even if the log is enabled.

“Slow” is determined by the value of the long_query_time variable. See Section 7.4.5, “The Slow
Query Log”.

• slow_query_log_file

Command-Line Format --slow-query-log-file=file_name

System Variable slow_query_log_file

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value host_name-slow.log

The name of the slow query log file. The default value is host_name-slow.log, but the initial value
can be changed with the --slow_query_log_file option.

• socket

Command-Line Format --socket={file_name|pipe_name}

System Variable socket

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value (Windows) MySQL

Default Value (Other) /tmp/mysql.sock

On Unix platforms, this variable is the name of the socket file that is used for local client connections.
The default is /tmp/mysql.sock. (For some distribution formats, the directory might be different,
such as /var/lib/mysql for RPMs.)

On Windows, this variable is the name of the named pipe that is used for local client connections.
The default value is MySQL (not case-sensitive).

• sort_buffer_size

Command-Line Format --sort-buffer-size=#

System Variable sort_buffer_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

996

Server System Variables

Type Integer

Default Value 262144

Minimum Value 32768

Maximum Value (Windows) 4294967295

Maximum Value (Other, 64-bit platforms) 18446744073709551615

Maximum Value (Other, 32-bit platforms) 4294967295

Unit bytes

Each session that must perform a sort allocates a buffer of this size. sort_buffer_size is
not specific to any storage engine and applies in a general manner for optimization. At minimum
the sort_buffer_size value must be large enough to accommodate fifteen tuples in the sort
buffer. Also, increasing the value of max_sort_length may require increasing the value of
sort_buffer_size. For more information, see Section 10.2.1.16, “ORDER BY Optimization”

If you see many Sort_merge_passes per second in SHOW GLOBAL STATUS output, you can
consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations
that cannot be improved with query optimization or improved indexing.

The optimizer tries to work out how much space is needed but can allocate more, up to the limit.
Setting it larger than required globally slows down most queries that perform sorts. It is best to
increase it as a session setting, and only for the sessions that need a larger size. On Linux, there are
thresholds of 256KB and 2MB where larger values may significantly slow down memory allocation,
so you should consider staying below one of those values. Experiment to find the best value for your
workload. See Section B.3.3.5, “Where MySQL Stores Temporary Files”.

The maximum permissible setting for sort_buffer_size is 4GB−1. Larger values are permitted
for 64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB−1 with a
warning).

• sql_auto_is_null

System Variable sql_auto_is_null

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value OFF

If this variable is enabled, then after a statement that successfully inserts an automatically generated
AUTO_INCREMENT value, you can find that value by issuing a statement of the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the
LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert, see
Section 14.15, “Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the
SELECT statement returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison is used by
some ODBC programs, such as Access. See Obtaining Auto-Increment Values. This behavior can
be disabled by setting sql_auto_is_null to OFF.

Prior to MySQL 8.0.16, the transformation of WHERE auto_col IS NULL to WHERE auto_col =
LAST_INSERT_ID() was performed only when the statement was executed, so that the value of

997

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

Server System Variables

sql_auto_is_null during execution determined whether the query was transformed. In MySQL
8.0.16 and later, the transformation is performed during statement preparation.

The default value of sql_auto_is_null is OFF.

• sql_big_selects

System Variable sql_big_selects

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value ON

If set to OFF, MySQL aborts SELECT statements that are likely to take a very long time to execute
(that is, statements for which the optimizer estimates that the number of examined rows exceeds the
value of max_join_size). This is useful when an inadvisable WHERE statement has been issued.
The default value for a new connection is ON, which permits all SELECT statements.

If you set the max_join_size system variable to a value other than DEFAULT, sql_big_selects
is set to OFF.

• sql_buffer_result

System Variable sql_buffer_result

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value OFF

If enabled, sql_buffer_result forces results from SELECT statements to be put into temporary
tables. This helps MySQL free the table locks early and can be beneficial in cases where it takes a
long time to send results to the client. The default value is OFF.

• sql_generate_invisible_primary_key

Command-Line Format --sql-generate-invisible-primary-
key[={OFF|ON}]

Introduced 8.0.30

System Variable sql_generate_invisible_primary_key

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether this server adds a generated invisible primary key to any InnoDB table that is created
without one.

This variable is not replicated. In addition, even if set on the replica, it is ignored by replication
applier threads; this means that, by default, a replica does not generate a primary key for
any replicated table which, on the source, was created without one. In MySQL 8.0.32 and

998

Server System Variables

later, you can cause the replica to generate invisible primary keys for such tables by setting
REQUIRE_TABLE_PRIMARY_KEY_CHECK = GENERATE as part of a CHANGE REPLICATION
SOURCE TO statement, optionally specifying a replication channel.

For more information and examples, see Section 15.1.20.11, “Generated Invisible Primary Keys”.

• sql_log_off

System Variable sql_log_off

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Valid Values OFF (enable logging)

ON (disable logging)

This variable controls whether logging to the general query log is disabled for the current session
(assuming that the general query log itself is enabled). The default value is OFF (that is, enable
logging). To disable or enable general query logging for the current session, set the session
sql_log_off variable to ON or OFF.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

• sql_mode

Command-Line Format --sql-mode=name

System Variable sql_mode

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Set

Default Value ONLY_FULL_GROUP_BY
STRICT_TRANS_TABLES
NO_ZERO_IN_DATE NO_ZERO_DATE
ERROR_FOR_DIVISION_BY_ZERO
NO_ENGINE_SUBSTITUTION

Valid Values ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE
999

Server System Variables

NO_ENGINE_SUBSTITUTION

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

STRICT_TRANS_TABLES

TIME_TRUNCATE_FRACTIONAL

The current server SQL mode, which can be set dynamically. For details, see Section 7.1.11, “Server
SQL Modes”.

Note

MySQL installation programs may configure the SQL mode during the
installation process.

If the SQL mode differs from the default or from what you expect, check for a
setting in an option file that the server reads at startup.

• sql_notes

System Variable sql_notes

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

If enabled (the default), diagnostics of Note level increment warning_count and the server records
them. If disabled, Note diagnostics do not increment warning_count and the server does not
record them. mysqldump includes output to disable this variable so that reloading the dump file does
not produce warnings for events that do not affect the integrity of the reload operation.

• sql_quote_show_create

System Variable sql_quote_show_create

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

1000

Server System Variables

Default Value ON

If enabled (the default), the server quotes identifiers for SHOW CREATE TABLE and SHOW CREATE
DATABASE statements. If disabled, quoting is disabled. This option is enabled by default so that
replication works for identifiers that require quoting. See Section 15.7.7.10, “SHOW CREATE TABLE
Statement”, and Section 15.7.7.6, “SHOW CREATE DATABASE Statement”.

• sql_require_primary_key

Command-Line Format --sql-require-primary-key[={OFF|ON}]

Introduced 8.0.13

System Variable sql_require_primary_key

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value OFF

Whether statements that create new tables or alter the structure of existing tables enforce the
requirement that tables have a primary key.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

Enabling this variable helps avoid performance problems in row-based replication that can occur
when tables have no primary key. Suppose that a table has no primary key and an update or delete
modifies multiple rows. On the replication source server, this operation can be performed using a
single table scan but, when replicated using row-based replication, results in a table scan for each
row to be modified on the replica. With a primary key, these table scans do not occur.

sql_require_primary_key applies to both base tables and TEMPORARY tables, and changes to
its value are replicated to replica servers. As of MySQL 8.0.18, it applies only to storage engines that
can participate in replication.

When enabled, sql_require_primary_key has these effects:

• Attempts to create a new table with no primary key fail with an error. This includes CREATE
TABLE ... LIKE. It also includes CREATE TABLE ... SELECT, unless the CREATE TABLE
part includes a primary key definition.

• Attempts to drop the primary key from an existing table fail with an error, with the exception that
dropping the primary key and adding a primary key in the same ALTER TABLE statement is
permitted.

Dropping the primary key fails even if the table also contains a UNIQUE NOT NULL index.

• Attempts to import a table with no primary key fail with an error.

The REQUIRE_TABLE_PRIMARY_KEY_CHECK option of the CHANGE REPLICATION SOURCE TO
statement (MySQL 8.0.23 and later) or CHANGE MASTER TO statement (before MySQL 8.0.23)
enables a replica to select its own policy for primary key checks. When the option is set to ON for
a replication channel, the replica always uses the value ON for the sql_require_primary_key
system variable in replication operations, requiring a primary key. When the option is set to OFF,
the replica always uses the value OFF for the sql_require_primary_key system variable
in replication operations, so that a primary key is never required, even if the source required
one. When the REQUIRE_TABLE_PRIMARY_KEY_CHECK option is set to STREAM, which is

1001

Server System Variables

the default, the replica uses whatever value is replicated from the source for each transaction.
With the STREAM setting for the REQUIRE_TABLE_PRIMARY_KEY_CHECK option, if privilege
checks are in use for the replication channel, the PRIVILEGE_CHECKS_USER account needs
privileges sufficient to set restricted session variables, so that it can set the session value for the
sql_require_primary_key system variable. With the ON or OFF settings, the account does not
need these privileges. For more information, see Section 19.3.3, “Replication Privilege Checks”.

• sql_safe_updates

System Variable sql_safe_updates

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value OFF

If this variable is enabled, UPDATE and DELETE statements that do not use a key in the WHERE
clause or a LIMIT clause produce an error. This makes it possible to catch UPDATE and DELETE
statements where keys are not used properly and that would probably change or delete a large
number of rows. The default value is OFF.

For the mysql client, sql_safe_updates can be enabled by using the --safe-updates option.
For more information, see Using Safe-Updates Mode (--safe-updates).

• sql_select_limit

System Variable sql_select_limit

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 18446744073709551615

Minimum Value 0

Maximum Value 18446744073709551615

The maximum number of rows to return from SELECT statements. For more information, see Using
Safe-Updates Mode (--safe-updates).

The default value for a new connection is the maximum number of rows that the server permits per
table. Typical default values are (232)−1 or (264)−1. If you have changed the limit, the default value
can be restored by assigning a value of DEFAULT.

If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of
sql_select_limit.

• sql_warnings

System Variable sql_warnings

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean
1002

Server System Variables

Default Value OFF

This variable controls whether single-row INSERT statements produce an information string if
warnings occur. The default is OFF. Set the value to ON to produce an information string.

• ssl_ca

Command-Line Format --ssl-ca=file_name

System Variable ssl_ca

Scope Global

Dynamic (≥ 8.0.16) Yes

Dynamic (≤ 8.0.15) No

SET_VAR Hint Applies No

Type File name

Default Value NULL

The path name of the Certificate Authority (CA) certificate file in PEM format. The file contains a list
of trusted SSL Certificate Authorities.

As of MySQL 8.0.16, this variable is dynamic and can be modified at runtime to affect the TLS
context the server uses for new connections established after the execution of ALTER INSTANCE
RELOAD TLS or after a restart if the variable value was persisted. See Server-Side Runtime
Configuration and Monitoring for Encrypted Connections. Prior to MySQL 8.0.16, this variable can be
set only at server startup.

• ssl_capath

Command-Line Format --ssl-capath=dir_name

System Variable ssl_capath

Scope Global

Dynamic (≥ 8.0.16) Yes

Dynamic (≤ 8.0.15) No

SET_VAR Hint Applies No

Type Directory name

Default Value NULL

The path name of the directory that contains trusted SSL Certificate Authority (CA) certificate files in
PEM format. You must run OpenSSL rehash on the directory specified by this option prior to using
it. On Linux systems, you can invoke rehash like this:

$> openssl rehash path/to/directory

On Windows platforms, you can use the c_rehash script in a command prompt, like this:

\> c_rehash path/to/directory

See openssl-rehash for complete syntax and other information.

As of MySQL 8.0.16, this variable is dynamic and can be modified at runtime to affect the TLS
context the server uses for new connections established after the execution of ALTER INSTANCE
RELOAD TLS or after a restart if the variable value was persisted. See Server-Side Runtime
Configuration and Monitoring for Encrypted Connections. Prior to MySQL 8.0.16, this variable can be
set only at server startup.

1003

https://docs.openssl.org/3.1/man1/openssl-rehash/

Server System Variables

• ssl_cert

Command-Line Format --ssl-cert=file_name

System Variable ssl_cert

Scope Global

Dynamic (≥ 8.0.16) Yes

Dynamic (≤ 8.0.15) No

SET_VAR Hint Applies No

Type File name

Default Value NULL

The path name of the server SSL public key certificate file in PEM format.

If the server is started with ssl_cert set to a certificate that uses any restricted cipher or cipher
category, the server starts with support for encrypted connections disabled. For information about
cipher restrictions, see Connection Cipher Configuration.

As of MySQL 8.0.16, this variable is dynamic and can be modified at runtime to affect the TLS
context the server uses for new connections established after the execution of ALTER INSTANCE
RELOAD TLS or after a restart if the variable value was persisted. See Server-Side Runtime
Configuration and Monitoring for Encrypted Connections. Prior to MySQL 8.0.16, this variable can be
set only at server startup.

Note

Chained SSL certificate support was added in v8.0.30; previously only the
first certificate was read.

• ssl_cipher

Command-Line Format --ssl-cipher=name

System Variable ssl_cipher

Scope Global

Dynamic (≥ 8.0.16) Yes

Dynamic (≤ 8.0.15) No

SET_VAR Hint Applies No

Type String

Default Value NULL

The list of permissible encryption ciphers for connections that use TLS protocols up through
TLSv1.2. If no cipher in the list is supported, encrypted connections that use these TLS protocols do
not work.

For greatest portability, the cipher list should be a list of one or more cipher names, separated by
colons. The following example shows two cipher names separated by a colon:

[mysqld]

1004

Server System Variables

ssl_cipher="DHE-RSA-AES128-GCM-SHA256:AES128-SHA"

OpenSSL supports the syntax for specifying ciphers described in the OpenSSL documentation at
https://www.openssl.org/docs/manmaster/man1/ciphers.html.

For information about which encryption ciphers MySQL supports, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

As of MySQL 8.0.16, this variable is dynamic and can be modified at runtime to affect the TLS
context the server uses for new connections established after the execution of ALTER INSTANCE
RELOAD TLS or after a restart if the variable value was persisted. See Server-Side Runtime
Configuration and Monitoring for Encrypted Connections. Prior to MySQL 8.0.16, this variable can be
set only at server startup.

• ssl_crl

Command-Line Format --ssl-crl=file_name

System Variable ssl_crl

Scope Global

Dynamic (≥ 8.0.16) Yes

Dynamic (≤ 8.0.15) No

SET_VAR Hint Applies No

Type File name

Default Value NULL

The path name of the file containing certificate revocation lists in PEM format.

As of MySQL 8.0.16, this variable is dynamic and can be modified at runtime to affect the TLS
context the server uses for new connections established after the execution of ALTER INSTANCE
RELOAD TLS or after a restart if the variable value was persisted. See Server-Side Runtime
Configuration and Monitoring for Encrypted Connections. Prior to MySQL 8.0.16, this variable can be
set only at server startup.

• ssl_crlpath

Command-Line Format --ssl-crlpath=dir_name

System Variable ssl_crlpath

Scope Global

Dynamic (≥ 8.0.16) Yes

Dynamic (≤ 8.0.15) No

SET_VAR Hint Applies No

Type Directory name

Default Value NULL

The path of the directory that contains certificate revocation-list files in PEM format.

As of MySQL 8.0.16, this variable is dynamic and can be modified at runtime to affect the TLS
context the server uses for new connections established after the execution of ALTER INSTANCE
RELOAD TLS or after a restart if the variable value was persisted. See Server-Side Runtime
Configuration and Monitoring for Encrypted Connections. Prior to MySQL 8.0.16, this variable can be
set only at server startup.

1005

https://www.openssl.org/docs/manmaster/man1/ciphers.html

Server System Variables

• ssl_fips_mode

Command-Line Format --ssl-fips-mode={OFF|ON|STRICT}

Deprecated 8.0.34

System Variable ssl_fips_mode

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value OFF

Valid Values OFF (or 0)

ON (or 1)

STRICT (or 2)

Controls whether to enable FIPS mode on the server side. The ssl_fips_mode system variable
differs from other ssl_xxx system variables in that it is not used to control whether the server
permits encrypted connections, but rather to affect which cryptographic operations are permitted.
See Section 8.8, “FIPS Support”.

These ssl_fips_mode values are permitted:

• OFF (or 0): Disable FIPS mode.

• ON (or 1): Enable FIPS mode.

• STRICT (or 2): Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for ssl_fips_mode is OFF. In this case, setting ssl_fips_mode to ON or
STRICT at startup causes the server to produce an error message and exit.

As of MySQL 8.0.34, this option is deprecated and made read-only. Expect it to be removed in a
future version of MySQL.

• ssl_key

Command-Line Format --ssl-key=file_name

System Variable ssl_key

Scope Global

Dynamic (≥ 8.0.16) Yes

Dynamic (≤ 8.0.15) No

SET_VAR Hint Applies No

Type File name

1006

Server System Variables

Default Value NULL

The path name of the server SSL private key file in PEM format. For better security, use a certificate
with an RSA key size of at least 2048 bits.

If the key file is protected by a passphrase, the server prompts the user for the passphrase. The
password must be given interactively; it cannot be stored in a file. If the passphrase is incorrect, the
program continues as if it could not read the key.

As of MySQL 8.0.16, this variable is dynamic and can be modified at runtime to affect the TLS
context the server uses for new connections established after the execution of ALTER INSTANCE
RELOAD TLS or after a restart if the variable value was persisted. See Server-Side Runtime
Configuration and Monitoring for Encrypted Connections. Prior to MySQL 8.0.16, this variable can be
set only at server startup.

• ssl_session_cache_mode

Command-Line Format --ssl_session_cache_mode={ON|OFF}

Introduced 8.0.29

System Variable ssl_session_cache_mode

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Valid Values ON

OFF

Controls whether to enable the session cache in memory on the server side and session-ticket
generation by the server. The default mode is ON (enable session cache mode). A change to the
ssl_session_cache_mode system variable has an effect only after the ALTER INSTANCE
RELOAD TLS statement has been executed, or after a restart if the variable value was persisted.

These ssl_session_cache_mode values are permitted:

• ON: Enable session cache mode.

• OFF: Disable session cache mode.

The server does not advertise its support for session resumption if the value of this system variable
is OFF. When running on OpenSSL 1.0.x the session tickets are always generated, but the tickets
are not usable when ssl_session_cache_mode is enabled.

The current value in effect for ssl_session_cache_mode can be observed with the
Ssl_session_cache_mode status variable.

• ssl_session_cache_timeout

Command-Line Format --ssl_session_cache_timeout

Introduced 8.0.29

System Variable ssl_session_cache_timeout

Scope Global

Dynamic Yes

1007

Server System Variables

SET_VAR Hint Applies No

Type Integer

Default Value 300

Minimum Value 0

Maximum Value 84600

Unit seconds

Sets a period of time during which prior session reuse is permitted when establishing a new
encrypted connection to the server, provided the ssl_session_cache_mode system variable is
enabled and prior session data is available. If the session timeout expires, a session can no longer
be reused.

The default value is 300 seconds and the maximum value is 84600 (or one day in seconds). A
change to the ssl_session_cache_timeout system variable has an effect only after the ALTER
INSTANCE RELOAD TLS statement has been executed, or after a restart if the variable value was
persisted. The current value in effect for ssl_session_cache_timeout can be observed with the
Ssl_session_cache_timeout status variable.

• statement_id

System Variable statement_id

Scope Session

Dynamic No

SET_VAR Hint Applies No

Type Integer

Each statement executed in the current session is assigned a sequence number. This can be used
together with the session_track_system_variables system variable to identify this statement
in Performance Schema tables such as the events_statements_history table.

• stored_program_cache

Command-Line Format --stored-program-cache=#

System Variable stored_program_cache

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 256

Minimum Value 16

Maximum Value 524288

Sets a soft upper limit for the number of cached stored routines per connection. The value of
this variable is specified in terms of the number of stored routines held in each of the two caches
maintained by the MySQL Server for, respectively, stored procedures and stored functions.

Whenever a stored routine is executed this cache size is checked before the first or top-level
statement in the routine is parsed; if the number of routines of the same type (stored procedures or
stored functions according to which is being executed) exceeds the limit specified by this variable,
the corresponding cache is flushed and memory previously allocated for cached objects is freed.

1008

Server System Variables

This allows the cache to be flushed safely, even when there are dependencies between stored
routines.

The stored procedure and stored function caches exists in parallel with the stored program definition
cache partition of the dictionary object cache. The stored procedure and stored function caches are
per connection, while the stored program definition cache is shared. The existence of objects in the
stored procedure and stored function caches have no dependence on the existence of objects in the
stored program definition cache, and vice versa. For more information, see Section 16.4, “Dictionary
Object Cache”.

• stored_program_definition_cache

Command-Line Format --stored-program-definition-cache=#

System Variable stored_program_definition_cache

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 256

Minimum Value 256

Maximum Value 524288

Defines a limit for the number of stored program definition objects, both used and unused, that can
be kept in the dictionary object cache.

Unused stored program definition objects are only kept in the dictionary object cache when the
number in use is less than the capacity defined by stored_program_definition_cache.

A setting of 0 means that stored program definition objects are only kept in the dictionary object
cache while they are in use.

The stored program definition cache partition exists in parallel with the stored procedure and stored
function caches that are configured using the stored_program_cache option.

The stored_program_cache option sets a soft upper limit for the number of cached stored
procedures or functions per connection, and the limit is checked each time a connection executes
a stored procedure or function. The stored program definition cache partition, on the other hand,
is a shared cache that stores stored program definition objects for other purposes. The existence
of objects in the stored program definition cache partition has no dependence on the existence of
objects in the stored procedure cache or stored function cache, and vice versa.

For related information, see Section 16.4, “Dictionary Object Cache”.

• super_read_only

Command-Line Format --super-read-only[={OFF|ON}]

System Variable super_read_only

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

1009

Server System Variables

Default Value OFF

If the read_only system variable is enabled, the server permits no client updates except from
users who have the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege). If the
super_read_only system variable is also enabled, the server prohibits client updates even
from users who have CONNECTION_ADMIN or SUPER. See the description of the read_only
system variable for a description of read-only mode and information about how read_only and
super_read_only interact.

Client updates prevented when super_read_only is enabled include operations that do not
necessarily appear to be updates, such as CREATE FUNCTION (to install a loadable function),
INSTALL PLUGIN, and INSTALL COMPONENT. These operations are prohibited because they
involve changes to tables in the mysql system schema.

Similarly, if the Event Scheduler is enabled, enabling the super_read_only system variable
prevents it from updating event “last executed” timestamps in the events data dictionary table. This
causes the Event Scheduler to stop the next time it tries to execute a scheduled event, after writing
a message to the server error log. (In this situation the event_scheduler system variable does
not change from ON to OFF. An implication is that this variable rejects the DBA intent that the Event
Scheduler be enabled or disabled, where its actual status of started or stopped may be distinct.). If
super_read_only is subsequently disabled after being enabled, the server automatically restarts
the Event Scheduler as needed, as of MySQL 8.0.26. Prior to MySQL 8.0.26, it is necessary to
manually restart the Event Scheduler by enabling it again.

Changes to super_read_only on a replication source server are not replicated to replica servers.
The value can be set on a replica independent of the setting on the source.

• syseventlog.facility

Command-Line Format --syseventlog.facility=value

Introduced 8.0.13

System Variable syseventlog.facility

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value daemon

The facility for error log output written to syslog (what type of program is sending the message).
This variable is unavailable unless the log_sink_syseventlog error log component is installed.
See Section 7.4.2.8, “Error Logging to the System Log”.

The permitted values can vary per operating system; consult your system syslog documentation.

This variable does not exist on Windows.

• syseventlog.include_pid

Command-Line Format --syseventlog.include-pid[={OFF|ON}]

Introduced 8.0.13

System Variable syseventlog.include_pid

Scope Global

Dynamic Yes

SET_VAR Hint Applies No
1010

Server System Variables

Type Boolean

Default Value ON

Whether to include the server process ID in each line of error log output written to syslog. This
variable is unavailable unless the log_sink_syseventlog error log component is installed. See
Section 7.4.2.8, “Error Logging to the System Log”.

This variable does not exist on Windows.

• syseventlog.tag

Command-Line Format --syseventlog.tag=tag

Introduced 8.0.13

System Variable syseventlog.tag

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value empty string

The tag to be added to the server identifier in error log output written to syslog or the Windows
Event Log. This variable is unavailable unless the log_sink_syseventlog error log component is
installed. See Section 7.4.2.8, “Error Logging to the System Log”.

By default, no tag is set, so the server identifier is simply MySQL on Windows, and mysqld on other
platforms. If a tag value of tag is specified, it is appended to the server identifier with a leading
hyphen, resulting in a syslog identifier of mysqld-tag (or MySQL-tag on Windows).

On Windows, to use a tag that does not already exist, the server must be run from an account with
Administrator privileges, to permit creation of a registry entry for the tag. Elevated privileges are not
required if the tag already exists.

• system_time_zone

System Variable system_time_zone

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The server system time zone. When the server begins executing, it inherits a time zone setting
from the machine defaults, possibly modified by the environment of the account used for running
the server or the startup script. The value is used to set system_time_zone. To explicitly specify
the system time zone, set the TZ environment variable or use the --timezone option of the
mysqld_safe script.

As of MySQL 8.0.26, in addition to startup time initialization, if the server host time zone changes (for
example, due to daylight saving time), system_time_zone reflects that change, which has these
implications for applications:

• Queries that reference system_time_zone will get one value before a daylight saving change
and a different value after the change.

1011

Server System Variables

• For queries that begin executing before a daylight saving change and end after the change, the
system_time_zone remains constant within the query because the value is usually cached at
the beginning of execution.

The system_time_zone variable differs from the time_zone variable. Although they might have
the same value, the latter variable is used to initialize the time zone for each client that connects.
See Section 7.1.15, “MySQL Server Time Zone Support”.

• table_definition_cache

Command-Line Format --table-definition-cache=#

System Variable table_definition_cache

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 400

Maximum Value 524288

The number of table definitions that can be stored in the table definition cache. If you use a large
number of tables, you can create a large table definition cache to speed up opening of tables. The
table definition cache takes less space and does not use file descriptors, unlike the normal table
cache. The minimum value is 400. The default value is based on the following formula, capped to a
limit of 2000:

MIN(400 + table_open_cache / 2, 2000)

For InnoDB, the table_definition_cache setting acts as a soft limit for the number of table
instances in the dictionary object cache and the number file-per-table tablespaces that can be open
at one time.

If the number of table instances in the dictionary object cache exceeds the
table_definition_cache limit, an LRU mechanism begins marking table instances for eviction
and eventually removes them from the dictionary object cache. The number of open tables with
cached metadata can be higher than the table_definition_cache limit due to table instances
with foreign key relationships, which are not placed on the LRU list.

The number of file-per-table tablespaces that can be open at one time is limited by both the
table_definition_cache and innodb_open_files settings. If both variables are set, the
highest setting is used. If neither variable is set, the table_definition_cache setting, which
has a higher default value, is used. If the number of open tablespaces exceeds the limit defined by
table_definition_cache or innodb_open_files, an LRU mechanism searches the LRU list
for tablespace files that are fully flushed and not currently being extended. This process is performed
each time a new tablespace is opened. Only inactive tablespaces are closed.

The table definition cache exists in parallel with the table definition cache partition of the dictionary
object cache. Both caches store table definitions but serve different parts of the MySQL server.
Objects in one cache have no dependence on the existence of objects in the other. For more
information, see Section 16.4, “Dictionary Object Cache”.

1012

Server System Variables

• table_encryption_privilege_check

Command-Line Format --table-encryption-privilege-
check[={OFF|ON}]

Introduced 8.0.16

System Variable table_encryption_privilege_check

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Controls the TABLE_ENCRYPTION_ADMIN privilege check that occurs when creating or altering a
schema or general tablespace with encryption that differs from the default_table_encryption
setting, or when creating or altering a table with an encryption setting that differs from the default
schema encryption. The check is disabled by default.

Setting table_encryption_privilege_check at runtime requires the SUPER privilege.

table_encryption_privilege_check supports SET PERSIST and SET PERSIST_ONLY
syntax. See Section 7.1.9.3, “Persisted System Variables”.

For more information, see Defining an Encryption Default for Schemas and General Tablespaces.

• table_open_cache

Command-Line Format --table-open-cache=#

System Variable table_open_cache

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 4000

Minimum Value 1

Maximum Value 524288

The number of open tables for all threads. Increasing this value increases the number of file
descriptors that mysqld requires. The effective value of this variable is the greater of the effective
value of open_files_limit - 10 - the effective value of max_connections / 2, and 400;
that is

MAX(
 (open_files_limit - 10 - max_connections) / 2,
 400
)

You can check whether you need to increase the table cache by checking the Opened_tables
status variable. If the value of Opened_tables is large and you do not use FLUSH TABLES often
(which just forces all tables to be closed and reopened), then you should increase the value of the
table_open_cache variable. For more information about the table cache, see Section 10.4.3.1,
“How MySQL Opens and Closes Tables”.

1013

Server System Variables

• table_open_cache_instances

Command-Line Format --table-open-cache-instances=#

System Variable table_open_cache_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 16

Minimum Value 1

Maximum Value 64

The number of open tables cache instances. To improve scalability by reducing contention among
sessions, the open tables cache can be partitioned into several smaller cache instances of size
table_open_cache / table_open_cache_instances . A session needs to lock only one
instance to access it for DML statements. This segments cache access among instances, permitting
higher performance for operations that use the cache when there are many sessions accessing
tables. (DDL statements still require a lock on the entire cache, but such statements are much less
frequent than DML statements.)

A value of 8 or 16 is recommended on systems that routinely use 16 or more cores. However, if
you have many large triggers on your tables that cause a high memory load, the default setting for
table_open_cache_instances might lead to excessive memory usage. In that situation, it can
be helpful to set table_open_cache_instances to 1 in order to restrict memory usage.

• tablespace_definition_cache

Command-Line Format --tablespace-definition-cache=#

System Variable tablespace_definition_cache

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 256

Minimum Value 256

Maximum Value 524288

Defines a limit for the number of tablespace definition objects, both used and unused, that can be
kept in the dictionary object cache.

Unused tablespace definition objects are only kept in the dictionary object cache when the number in
use is less than the capacity defined by tablespace_definition_cache.

A setting of 0 means that tablespace definition objects are only kept in the dictionary object cache
while they are in use.

For more information, see Section 16.4, “Dictionary Object Cache”.

• temptable_max_mmap

Command-Line Format --temptable-max-mmap=#

Introduced 8.0.231014

Server System Variables

System Variable temptable_max_mmap

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1073741824

Minimum Value 0

Maximum Value 2^64-1

Unit bytes

Defines the maximum amount of memory (in bytes) the TempTable storage engine is permitted
to allocate from memory-mapped temporary files before it starts storing data to InnoDB internal
temporary tables on disk. A setting of 0 disables allocation of memory from memory-mapped
temporary files. For more information, see Section 10.4.4, “Internal Temporary Table Use in MySQL”.

• temptable_max_ram

Command-Line Format --temptable-max-ram=#

System Variable temptable_max_ram

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1073741824

Minimum Value 2097152

Maximum Value 2^64-1

Unit bytes

Defines the maximum amount of memory that can be occupied by the TempTable storage engine
before it starts storing data on disk. The default value is 1073741824 bytes (1GiB). For more
information, see Section 10.4.4, “Internal Temporary Table Use in MySQL”.

• temptable_use_mmap

Command-Line Format --temptable-use-mmap[={OFF|ON}]

Introduced 8.0.16

Deprecated 8.0.26

System Variable temptable_use_mmap

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Defines whether the TempTable storage engine allocates space for internal in-memory temporary
tables as memory-mapped temporary files when the amount of memory occupied by the
TempTable storage engine exceeds the limit defined by the temptable_max_ram variable. When
temptable_use_mmap is disabled, the TempTable storage engine uses InnoDB on-disk internal

1015

Server System Variables

temporary tables instead. For more information, see Section 10.4.4, “Internal Temporary Table Use
in MySQL”.

• thread_cache_size

Command-Line Format --thread-cache-size=#

System Variable thread_cache_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 0

Maximum Value 16384

How many threads the server should cache for reuse. When a client disconnects, the client's
threads are put in the cache if there are fewer than thread_cache_size threads there. Requests
for threads are satisfied by reusing threads taken from the cache if possible, and only when the
cache is empty is a new thread created. This variable can be increased to improve performance
if you have a lot of new connections. Normally, this does not provide a notable performance
improvement if you have a good thread implementation. However, if your server sees hundreds of
connections per second you should normally set thread_cache_size high enough so that most
new connections use cached threads. By examining the difference between the Connections and
Threads_created status variables, you can see how efficient the thread cache is. For details, see
Section 7.1.10, “Server Status Variables”.

The default value is based on the following formula, capped to a limit of 100:

8 + (max_connections / 100)

• thread_handling

Command-Line Format --thread-handling=name

System Variable thread_handling

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value one-thread-per-connection

Valid Values no-threads

one-thread-per-connection

loaded-dynamically

The thread-handling model used by the server for connection threads. The permissible values
are no-threads (the server uses a single thread to handle one connection), one-thread-
per-connection (the server uses one thread to handle each client connection), and loaded-
dynamically (set by the thread pool plugin when it initializes). no-threads is useful for
debugging under Linux; see Section 7.9, “Debugging MySQL”.

1016

Server System Variables

• thread_pool_algorithm

Command-Line Format --thread-pool-algorithm=#

System Variable thread_pool_algorithm

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

This variable controls which algorithm the thread pool plugin uses:

• 0: Use a conservative low-concurrency algorithm.

• 1: Use an aggressive high-currency algorithm which performs better with optimal thread counts,
but performance may be degraded if the number of connections reaches extremely high values.

This variable is available only if the thread pool plugin is enabled. See Section 7.6.3, “MySQL
Enterprise Thread Pool”.

• thread_pool_dedicated_listeners

Command-Line Format --thread-pool-dedicated-listeners

Introduced 8.0.23

System Variable thread_pool_dedicated_listeners

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Dedicates a listener thread in each thread group to listen for incoming statements from connections
assigned to the group.

• OFF: (Default) Disables dedicated listener threads.

• ON: Dedicates a listener thread in each thread group to listen for incoming statements from
connections assigned to the group. Dedicated listener threads do not execute queries.

Enabling thread_pool_dedicated_listeners is only useful when a transaction
limit is defined by thread_pool_max_transactions_limit. Otherwise,
thread_pool_dedicated_listeners should not be enabled.

HeatWave Service introduced this variable in MySQL 8.0.23. It is available with MySQL Enterprise
Edition from MySQL 8.0.31.

• thread_pool_high_priority_connection

Command-Line Format --thread-pool-high-priority-
connection=#

System Variable thread_pool_high_priority_connection1017

Server System Variables

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

This variable affects queuing of new statements prior to execution. If the value is 0 (false, the
default), statement queuing uses both the low-priority and high-priority queues. If the value is 1
(true), queued statements always go to the high-priority queue.

This variable is available only if the thread pool plugin is enabled. See Section 7.6.3, “MySQL
Enterprise Thread Pool”.

• thread_pool_max_active_query_threads

Command-Line Format --thread-pool-max-active-query-
threads

Introduced 8.0.19

System Variable thread_pool_max_active_query_threads

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 512

The maximum permissible number of active (running) query threads per group. If the value is 0, the
thread pool plugin uses up to as many threads as are available.

This variable is available only if the thread pool plugin is enabled. See Section 7.6.3, “MySQL
Enterprise Thread Pool”.

• thread_pool_max_transactions_limit

Command-Line Format --thread-pool-max-transactions-limit

Introduced 8.0.23

System Variable thread_pool_max_transactions_limit

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

1018

Server System Variables

Maximum Value 1000000

The maximum number of transactions permitted by the thread pool plugin. Defining a transaction
limit binds a thread to a transaction until it commits, which helps stabilize throughput during high
concurrency.

The default value of 0 means that there is no transaction limit. The variable is dynamic but cannot
be changed from 0 to a higher value at runtime and vice versa. A non-zero value at startup permits
dynamic configuration at runtime. The CONNECTION_ADMIN privilege is required to configure
thread_pool_max_transactions_limit at runtime.

When you define a transaction limit, enabling thread_pool_dedicated_listeners creates a
dedicated listener thread in each thread group. The additional dedicated listener thread consumes
more resources and affects thread pool performance. thread_pool_dedicated_listeners
should therefore be used cautiously.

When the limit defined by thread_pool_max_transactions_limit has been reached, new
connections appear to hang until one or more existing transactions are completed. The same occurs
when attempting to start a new transaction on an existing connection. If existing connections are
blocked or long-running, a privileged connection may be required to access the server to increase
the limit, remove the limit, or kill running transactions. See Privileged Connections.

HeatWave Service introduced this variable in MySQL 8.0.23. It is available with MySQL Enterprise
Edition in from MySQL 8.0.31.

• thread_pool_max_unused_threads

Command-Line Format --thread-pool-max-unused-threads=#

System Variable thread_pool_max_unused_threads

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4096

The maximum permitted number of unused threads in the thread pool. This variable makes it
possible to limit the amount of memory used by sleeping threads.

A value of 0 (the default) means no limit on the number of sleeping threads. A value of N where N is
greater than 0 means 1 consumer thread and N−1 reserve threads. In this case, if a thread is ready
to sleep but the number of sleeping threads is already at the maximum, the thread exits rather than
going to sleep.

A sleeping thread is either sleeping as a consumer thread or a reserve thread. The thread pool
permits one thread to be the consumer thread when sleeping. If a thread goes to sleep and there
is no existing consumer thread, it sleeps as a consumer thread. When a thread must be woken up,
a consumer thread is selected if there is one. A reserve thread is selected only when there is no
consumer thread to wake up.

This variable is available only if the thread pool plugin is enabled. See Section 7.6.3, “MySQL
Enterprise Thread Pool”.

1019

Server System Variables

• thread_pool_prio_kickup_timer

Command-Line Format --thread-pool-prio-kickup-timer=#

System Variable thread_pool_prio_kickup_timer

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 4294967294

Unit milliseconds

This variable affects statements waiting for execution in the low-priority queue. The value is the
number of milliseconds before a waiting statement is moved to the high-priority queue. The default is
1000 (1 second).

This variable is available only if the thread pool plugin is enabled. See Section 7.6.3, “MySQL
Enterprise Thread Pool”.

• thread_pool_query_threads_per_group

Command-Line Format --thread-pool-query-threads-per-
group

Introduced 8.0.31

System Variable thread_pool_query_threads_per_group

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 4096

The maximum number of query threads permitted in a thread group. The maximum
value is 4096, but if thread_pool_max_transactions_limit is set,
thread_pool_query_threads_per_group must not exceed that value.

The default value of 1 means there is one active query thread in each thread group, which
works well for many loads. When you are using the high concurrency thread pool algorithm
(thread_pool_algorithm = 1), consider increasing the value if you experience slower response
times due to long-running transactions.

The CONNECTION_ADMIN privilege is required to configure
thread_pool_query_threads_per_group at runtime.

If you decrease the value of thread_pool_query_threads_per_group at runtime, threads
that are currently running user queries are allowed to complete, then moved to the reserve pool or
terminated. if you increment the value at runtime and the thread group needs more threads, these
are taken from the reserve pool if possible, otherwise they are created.

This variable is available from MySQL 8.0.31 in HeatWave Service and MySQL Enterprise Edition.
1020

Server System Variables

• thread_pool_size

Command-Line Format --thread-pool-size=#

System Variable thread_pool_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 16

Minimum Value 1

Maximum Value (≥ 8.0.19) 512

Maximum Value (≤ 8.0.18) 64

The number of thread groups in the thread pool. This is the most important parameter controlling
thread pool performance. It affects how many statements can execute simultaneously. If a value
outside the range of permissible values is specified, the thread pool plugin does not load and the
server writes a message to the error log.

This variable is available only if the thread pool plugin is enabled. See Section 7.6.3, “MySQL
Enterprise Thread Pool”.

• thread_pool_stall_limit

Command-Line Format --thread-pool-stall-limit=#

System Variable thread_pool_stall_limit

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 6

Minimum Value 4

Maximum Value 600

Unit milliseconds * 10

This variable affects executing statements. The value is the amount of time a statement has to finish
after starting to execute before it becomes defined as stalled, at which point the thread pool permits
the thread group to begin executing another statement. The value is measured in 10 millisecond
units, so the default of 6 means 60ms. Short wait values permit threads to start more quickly. Short
values are also better for avoiding deadlock situations. Long wait values are useful for workloads that
include long-running statements, to avoid starting too many new statements while the current ones
execute.

This variable is available only if the thread pool plugin is enabled. See Section 7.6.3, “MySQL
Enterprise Thread Pool”.

• thread_pool_transaction_delay

Command-Line Format --thread-pool-transaction-delay

Introduced 8.0.31

System Variable thread_pool_transaction_delay
1021

Server System Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 300000

The delay period before executing a new transaction, in milliseconds. The maximum value is 300000
(5 minutes).

A transaction delay can be used in cases where parallel transactions affect the performance of other
operations due to resource contention. For example, if parallel transactions affect index creation or
an online buffer pool resizing operation, you can configure a transaction delay to reduce resource
contention while those operations are running.

Worker threads sleep for the number of milliseconds specified by
thread_pool_transaction_delay before executing a new transaction.

The thread_pool_transaction_delay setting does not affect queries issued from a privileged
connection (a connection assigned to the Admin thread group). These queries are not subject to a
configured transaction delay.

• thread_stack

Command-Line Format --thread-stack=#

System Variable thread_stack

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (64-bit platforms, ≥ 8.0.27) 1048576

Default Value (64-bit platforms, ≤ 8.0.26) 286720

Default Value (32-bit platforms, ≥ 8.0.27) 1048576

Default Value (32-bit platforms, ≤ 8.0.26) 221184

Minimum Value 131072

Maximum Value (64-bit platforms) 18446744073709550592

Maximum Value (32-bit platforms) 4294966272

Unit bytes

Block Size 1024

The stack size for each thread. The default is large enough for normal operation. If the thread stack
size is too small, it limits the complexity of the SQL statements that the server can handle, the
recursion depth of stored procedures, and other memory-consuming actions.

• time_zone

System Variable time_zone

Scope Global, Session

Dynamic Yes
1022

Server System Variables

SET_VAR Hint Applies (≥ 8.0.17) Yes

SET_VAR Hint Applies (≤ 8.0.16) No

Type String

Default Value SYSTEM

Minimum Value (≥ 8.0.19) -13:59

Minimum Value (≤ 8.0.18) -12:59

Maximum Value (≥ 8.0.19) +14:00

Maximum Value (≤ 8.0.18) +13:00

The current time zone. This variable is used to initialize the time zone for each client that
connects. By default, the initial value of this is 'SYSTEM' (which means, “use the value of
system_time_zone”). The value can be specified explicitly at server startup with the --default-
time-zone option. See Section 7.1.15, “MySQL Server Time Zone Support”.

Note

If set to SYSTEM, every MySQL function call that requires a time zone
calculation makes a system library call to determine the current system time
zone. This call may be protected by a global mutex, resulting in contention.

• timestamp

System Variable timestamp

Scope Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Numeric

Default Value UNIX_TIMESTAMP()

Minimum Value 1

Maximum Value 2147483647

Set the time for this client. This is used to get the original timestamp if you use the binary log to
restore rows. timestamp_value should be a Unix epoch timestamp (a value like that returned by
UNIX_TIMESTAMP(), not a value in 'YYYY-MM-DD hh:mm:ss' format) or DEFAULT.

Setting timestamp to a constant value causes it to retain that value until it is changed again.
Setting timestamp to DEFAULT causes its value to be the current date and time as of the time it is
accessed.

timestamp is a DOUBLE rather than BIGINT because its value includes a microseconds part. The
maximum value corresponds to '2038-01-19 03:14:07' UTC, the same as for the TIMESTAMP
data type.

SET timestamp affects the value returned by NOW() but not by SYSDATE(). This means that
timestamp settings in the binary log have no effect on invocations of SYSDATE(). The server can be
started with the --sysdate-is-now option to cause SYSDATE() to be a synonym for NOW(), in
which case SET timestamp affects both functions.

• tls_ciphersuites

Command-Line Format --tls-ciphersuites=ciphersuite_list

Introduced 8.0.16

System Variable tls_ciphersuites

1023

Server System Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

Which ciphersuites the server permits for encrypted connections that use TLSv1.3. The value is a list
of zero or more colon-separated ciphersuite names.

The ciphersuites that can be named for this variable depend on the SSL library used to compile
MySQL. If this variable is not set, its default value is NULL, which means that the server permits the
default set of ciphersuites. If the variable is set to the empty string, no ciphersuites are enabled and
encrypted connections cannot be established. For more information, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

• tls_version

Command-Line Format --tls-version=protocol_list

System Variable tls_version

Scope Global

Dynamic (≥ 8.0.16) Yes

Dynamic (≤ 8.0.15) No

SET_VAR Hint Applies No

Type String

Default Value (≥ 8.0.28) TLSv1.2,TLSv1.3

Default Value (≥ 8.0.16, ≤ 8.0.27) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3

Default Value (≤ 8.0.15) TLSv1,TLSv1.1,TLSv1.2

Which protocols the server permits for encrypted connections. The value is a list of one or more
comma-separated protocol names, which are not case-sensitive. The protocols that can be named
for this variable depend on the SSL library used to compile MySQL. Permitted protocols should be
chosen such as not to leave “holes” in the list. For details, see Section 8.3.2, “Encrypted Connection
TLS Protocols and Ciphers”.

As of MySQL 8.0.16, this variable is dynamic and can be modified at runtime to affect the TLS
context the server uses for new connections. See Server-Side Runtime Configuration and Monitoring
for Encrypted Connections. Prior to MySQL 8.0.16, this variable can be set only at server startup.

Important

• Support for the TLSv1 and TLSv1.1 connection protocols is removed
from MySQL Server as of MySQL 8.0.28. The protocols were deprecated
from MySQL 8.0.26. See Removal of Support for the TLSv1 and TLSv1.1
Protocols for more information.

• Support for the TLSv1.3 protocol is available in MySQL Server as
of MySQL 8.0.16, provided that MySQL Server was compiled using
OpenSSL 1.1.1 or higher. The server checks the version of OpenSSL
at startup, and if it is lower than 1.1.1, TLSv1.3 is removed from the
default value for the system variable. In that case, the defaults are
“TLSv1,TLSv1.1,TLSv1.2” up to and including MySQL 8.0.27, and
“TLSv1.2” from MySQL 8.0.28.

Setting this variable to an empty string disables encrypted connections.

1024

Server System Variables

• tmp_table_size

Command-Line Format --tmp-table-size=#

System Variable tmp_table_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 16777216

Minimum Value 1024

Maximum Value 18446744073709551615

Unit bytes

Defines the maximum size of internal in-memory temporary tables created by the MEMORY storage
engine and, as of MySQL 8.0.28, the TempTable storage engine. If an internal in-memory temporary
table exceeds this size, it is automatically converted to an on-disk internal temporary table.

The tmp_table_size variable does not apply to user-created MEMORY tables. User-created
TempTable tables are not supported.

When using the MEMORY storage engine for internal in-memory temporary tables, the actual size limit
is the smaller of tmp_table_size and max_heap_table_size. The max_heap_table_size
setting does not apply to TempTable tables.

Increase the value of tmp_table_size (and max_heap_table_size if necessary when using the
MEMORY storage engine for internal in-memory temporary tables) if you do many advanced GROUP
BY queries and you have lots of memory.

You can compare the number of internal on-disk temporary tables created to the total number
of internal temporary tables created by comparing Created_tmp_disk_tables and
Created_tmp_tables values.

See also Section 10.4.4, “Internal Temporary Table Use in MySQL”.

• tmpdir

Command-Line Format --tmpdir=dir_name

System Variable tmpdir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

The path of the directory to use for creating temporary files. It might be useful if your default /tmp
directory resides on a partition that is too small to hold temporary tables. This variable can be set
to a list of several paths that are used in round-robin fashion. Paths should be separated by colon
characters (:) on Unix and semicolon characters (;) on Windows.

tmpdir can be a non-permanent location, such as a directory on a memory-based file system or a
directory that is cleared when the server host restarts. If the MySQL server is acting as a replica, and
you are using a non-permanent location for tmpdir, consider setting a different temporary directory
for the replica using the replica_load_tmpdir or slave_load_tmpdir variable. For a replica,
the temporary files used to replicate LOAD DATA statements are stored in this directory, so with a

1025

Server System Variables

permanent location they can survive machine restarts, although replication can now continue after a
restart if the temporary files have been removed.

For more information about the storage location of temporary files, see Section B.3.3.5, “Where
MySQL Stores Temporary Files”.

• transaction_alloc_block_size

Command-Line Format --transaction-alloc-block-size=#

System Variable transaction_alloc_block_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8192

Minimum Value 1024

Maximum Value 131072

Unit bytes

Block Size 1024

The amount in bytes by which to increase a per-transaction memory pool which needs memory. See
the description of transaction_prealloc_size.

• transaction_isolation

Command-Line Format --transaction-isolation=name

System Variable transaction_isolation

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value REPEATABLE-READ

Valid Values READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

SERIALIZABLE

The transaction isolation level. The default is REPEATABLE-READ.

The transaction isolation level has three scopes: global, session, and next transaction. This
three-scope implementation leads to some nonstandard isolation-level assignment semantics, as
described later.

To set the global transaction isolation level at startup, use the --transaction-isolation server
option.

At runtime, the isolation level can be set directly using the SET statement to assign a value to the
transaction_isolation system variable, or indirectly using the SET TRANSACTION statement.
If you set transaction_isolation directly to an isolation level name that contains a space, the

1026

Server System Variables

name should be enclosed within quotation marks, with the space replaced by a dash. For example,
use this SET statement to set the global value:

SET GLOBAL transaction_isolation = 'READ-COMMITTED';

Setting the global transaction_isolation value sets the isolation level for all subsequent
sessions. Existing sessions are unaffected.

To set the session or next-level transaction_isolation value, use the SET statement. For most
session system variables, these statements are equivalent ways to set the value:

SET @@SESSION.var_name = value;
SET SESSION var_name = value;
SET var_name = value;
SET @@var_name = value;

As mentioned previously, the transaction isolation level has a next-transaction scope, in
addition to the global and session scopes. To enable the next-transaction scope to be set,
SET syntax for assigning session system variable values has nonstandard semantics for
transaction_isolation:

• To set the session isolation level, use any of these syntaxes:

SET @@SESSION.transaction_isolation = value;
SET SESSION transaction_isolation = value;
SET transaction_isolation = value;

For each of those syntaxes, these semantics apply:

• Sets the isolation level for all subsequent transactions performed within the session.

• Permitted within transactions, but does not affect the current ongoing transaction.

• If executed between transactions, overrides any preceding statement that sets the next-
transaction isolation level.

• Corresponds to SET SESSION TRANSACTION ISOLATION LEVEL (with the SESSION
keyword).

• To set the next-transaction isolation level, use this syntax:

SET @@transaction_isolation = value;

For that syntax, these semantics apply:

• Sets the isolation level only for the next single transaction performed within the session.

• Subsequent transactions revert to the session isolation level.

• Not permitted within transactions.

• Corresponds to SET TRANSACTION ISOLATION LEVEL (without the SESSION keyword).

For more information about SET TRANSACTION and its relationship to the
transaction_isolation system variable, see Section 15.3.7, “SET TRANSACTION Statement”.

• transaction_prealloc_size

Command-Line Format --transaction-prealloc-size=#

Deprecated 8.0.29

System Variable transaction_prealloc_size

Scope Global, Session
1027

Server System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 4096

Minimum Value 1024

Maximum Value 131072

Unit bytes

Block Size 1024

There is a per-transaction memory pool from which various transaction-related allocations
take memory. The initial size of the pool in bytes is transaction_prealloc_size. For
every allocation that cannot be satisfied from the pool because it has insufficient memory
available, the pool is increased by transaction_alloc_block_size bytes. When the
transaction ends, the pool is truncated to transaction_prealloc_size bytes. By making
transaction_prealloc_size sufficiently large to contain all statements within a single
transaction, you can avoid many malloc() calls.

Beginning with MySQL 8.0.29, transaction_prealloc_size is deprecated; the initial size
of the transaction memory pool is fixed, and setting this variable no longer has any effect. (The
functioning of transaction_alloc_block_size is unaffected by this change.) Expect
transaction_prealloc_size to be removed in a future release of MySQL.

• transaction_read_only

Command-Line Format --transaction-read-only[={OFF|ON}]

System Variable transaction_read_only

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

The transaction access mode. The value can be OFF (read/write; the default) or ON (read only).

The transaction access mode has three scopes: global, session, and next transaction. This three-
scope implementation leads to some nonstandard access-mode assignment semantics, as described
later.

To set the global transaction access mode at startup, use the --transaction-read-only server
option.

At runtime, the access mode can be set directly using the SET statement to assign a value to the
transaction_read_only system variable, or indirectly using the SET TRANSACTION statement.
For example, use this SET statement to set the global value:

SET GLOBAL transaction_read_only = ON;

Setting the global transaction_read_only value sets the access mode for all subsequent
sessions. Existing sessions are unaffected.

To set the session or next-level transaction_read_only value, use the SET statement. For most
session system variables, these statements are equivalent ways to set the value:

SET @@SESSION.var_name = value;
SET SESSION var_name = value;

1028

Server System Variables

SET var_name = value;
SET @@var_name = value;

As mentioned previously, the transaction access mode has a next-transaction scope, in
addition to the global and session scopes. To enable the next-transaction scope to be set,
SET syntax for assigning session system variable values has nonstandard semantics for
transaction_read_only,

• To set the session access mode, use any of these syntaxes:

SET @@SESSION.transaction_read_only = value;
SET SESSION transaction_read_only = value;
SET transaction_read_only = value;

For each of those syntaxes, these semantics apply:

• Sets the access mode for all subsequent transactions performed within the session.

• Permitted within transactions, but does not affect the current ongoing transaction.

• If executed between transactions, overrides any preceding statement that sets the next-
transaction access mode.

• Corresponds to SET SESSION TRANSACTION {READ WRITE | READ ONLY} (with the
SESSION keyword).

• To set the next-transaction access mode, use this syntax:

SET @@transaction_read_only = value;

For that syntax, these semantics apply:

• Sets the access mode only for the next single transaction performed within the session.

• Subsequent transactions revert to the session access mode.

• Not permitted within transactions.

• Corresponds to SET TRANSACTION {READ WRITE | READ ONLY} (without the SESSION
keyword).

For more information about SET TRANSACTION and its relationship to the
transaction_read_only system variable, see Section 15.3.7, “SET TRANSACTION Statement”.

• unique_checks

System Variable unique_checks

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value ON

If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are performed. If
set to 0, storage engines are permitted to assume that duplicate keys are not present in input data.
If you know for certain that your data does not contain uniqueness violations, you can set this to 0 to
speed up large table imports to InnoDB.

Setting this variable to 0 does not require storage engines to ignore duplicate keys. An engine is still
permitted to check for them and issue duplicate-key errors if it detects them.

1029

Server System Variables

• updatable_views_with_limit

Command-Line Format --updatable-views-with-limit[={OFF|
ON}]

System Variable updatable_views_with_limit

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value 1

This variable controls whether updates to a view can be made when the view does not contain
all columns of the primary key defined in the underlying table, if the update statement contains a
LIMIT clause. (Such updates often are generated by GUI tools.) An update is an UPDATE or DELETE
statement. Primary key here means a PRIMARY KEY, or a UNIQUE index in which no column can
contain NULL.

The variable can have two values:

• 1 or YES: Issue a warning only (not an error message). This is the default value.

• 0 or NO: Prohibit the update.

• use_secondary_engine

Introduced 8.0.13

System Variable use_secondary_engine

Scope Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Enumeration

Default Value ON

Valid Values OFF

ON

FORCED

For future use.

Whether to execute queries using a secondary engine.

For use with HeatWave. See HeatWave User Guide.

• validate_password.xxx

The validate_password component implements a set of system variables having names of the
form validate_password.xxx. These variables affect password testing by that component; see
Section 8.4.3.2, “Password Validation Options and Variables”.

• version

The version number for the server. The value might also include a suffix indicating server build
or configuration information. -debug indicates that the server was built with debugging support
enabled.1030

https://dev.mysql.com/doc/heatwave/en/

Server System Variables

• version_comment

System Variable version_comment

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The CMake configuration program has a COMPILATION_COMMENT_SERVER option that permits a
comment to be specified when building MySQL. This variable contains the value of that comment.
(Prior to MySQL 8.0.14, version_comment is set by the COMPILATION_COMMENT option.) See
Section 2.8.7, “MySQL Source-Configuration Options”.

• version_compile_machine

System Variable version_compile_machine

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The type of the server binary.

• version_compile_os

System Variable version_compile_os

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The type of operating system on which MySQL was built.

• version_compile_zlib

System Variable version_compile_zlib

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The version of the compiled-in zlib library.

• wait_timeout

Command-Line Format --wait-timeout=#

System Variable wait_timeout

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

1031

Server System Variables

Default Value 28800

Minimum Value 1

Maximum Value (Windows) 2147483

Maximum Value (Other) 31536000

Unit seconds

The number of seconds the server waits for activity on a noninteractive connection before closing it.

On thread startup, the session wait_timeout value is initialized from the global wait_timeout
value or from the global interactive_timeout value, depending on the type of client (as
defined by the CLIENT_INTERACTIVE connect option to mysql_real_connect()). See also
interactive_timeout.

• warning_count

The number of errors, warnings, and notes that resulted from the last statement that generated
messages. This variable is read only. See Section 15.7.7.42, “SHOW WARNINGS Statement”.

• windowing_use_high_precision

Command-Line Format --windowing-use-high-
precision[={OFF|ON}]

System Variable windowing_use_high_precision

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Boolean

Default Value ON

Whether to compute window operations without loss of precision. See Section 10.2.1.21, “Window
Function Optimization”.

• xa_detach_on_prepare

Command-Line Format --xa-detach-on-prepare[={OFF|ON}]

Introduced 8.0.29

System Variable xa_detach_on_prepare

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

When set to ON (enabled), all XA transactions are detached (disconnected) from the connection
(session) as part of XA PREPARE. This means that the XA transaction can be committed or
rolled back by another connection, even if the originating connection has not terminated, and this
connection can start new transactions.

Temporary tables cannot be used inside detached XA transactions.

When this is OFF (disabled), an XA transaction is strictly associated with the same connection until
the session disconnects. It is recommended that you allow it to be enabled (the default behavior) for
replication.

1032

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html

Using System Variables

For more information, see Section 15.3.8.2, “XA Transaction States”.

7.1.9 Using System Variables

The MySQL server maintains many system variables that configure its operation. Section 7.1.8, “Server
System Variables”, describes the meaning of these variables. Each system variable has a default
value. System variables can be set at server startup using options on the command line or in an
option file. Most of them can be changed dynamically while the server is running by means of the SET
statement, which enables you to modify operation of the server without having to stop and restart it.
You can also use system variable values in expressions.

Many system variables are built in. System variables may also be installed by server plugins or
components:

• System variables implemented by a server plugin are exposed when the plugin is installed and have
names that begin with the plugin name. For example, the audit_log plugin implements a system
variable named audit_log_policy.

• System variables implemented by a component are exposed when the component is installed and
have names that begin with a component-specific prefix. For example, the log_filter_dragnet
error log filter component implements a system variable named log_error_filter_rules, the
full name of which is dragnet.log_error_filter_rules. To refer to this variable, use the full
name.

There are two scopes in which system variables exist. Global variables affect the overall operation
of the server. Session variables affect its operation for individual client connections. A given system
variable can have both a global and a session value. Global and session system variables are related
as follows:

• When the server starts, it initializes each global variable to its default value. These defaults can
be changed by options specified on the command line or in an option file. (See Section 6.2.2,
“Specifying Program Options”.)

• The server also maintains a set of session variables for each client that connects. The client's
session variables are initialized at connect time using the current values of the corresponding global
variables. For example, a client's SQL mode is controlled by the session sql_mode value, which is
initialized when the client connects to the value of the global sql_mode value.

For some system variables, the session value is not initialized from the corresponding global value; if
so, that is indicated in the variable description.

System variable values can be set globally at server startup by using options on the command line
or in an option file. At startup, the syntax for system variables is the same as for command options,
so within variable names, dashes and underscores may be used interchangeably. For example, --
general_log=ON and --general-log=ON are equivalent.

When you use a startup option to set a variable that takes a numeric value, the value can be given with
a suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024, 10242 or 10243;
that is, units of kilobytes, megabytes, or gigabytes, respectively. As of MySQL 8.0.14, a suffix can also
be T, P, and E to indicate a multiplier of 10244, 10245 or 10246. Thus, the following command starts the
server with a sort buffer size of 256 kilobytes and a maximum packet size of one gigabyte:

mysqld --sort-buffer-size=256K --max-allowed-packet=1G

Within an option file, those variables are set like this:

[mysqld]
sort_buffer_size=256K
max_allowed_packet=1G

The lettercase of suffix letters does not matter; 256K and 256k are equivalent, as are 1G and 1g.

1033

Using System Variables

To restrict the maximum value to which a system variable can be set at runtime with the SET
statement, specify this maximum by using an option of the form --maximum-var_name=value at
server startup. For example, to prevent the value of sort_buffer_size from being increased to
more than 32MB at runtime, use the option --maximum-sort-buffer-size=32M.

Many system variables are dynamic and can be changed at runtime by using the SET statement. For a
list, see Section 7.1.9.2, “Dynamic System Variables”. To change a system variable with SET, refer to
it by name, optionally preceded by a modifier. At runtime, system variable names must be written using
underscores, not dashes. The following examples briefly illustrate this syntax:

• Set a global system variable:

SET GLOBAL max_connections = 1000;
SET @@GLOBAL.max_connections = 1000;

• Persist a global system variable to the mysqld-auto.cnf file (and set the runtime value):

SET PERSIST max_connections = 1000;
SET @@PERSIST.max_connections = 1000;

• Persist a global system variable to the mysqld-auto.cnf file (without setting the runtime value):

SET PERSIST_ONLY back_log = 1000;
SET @@PERSIST_ONLY.back_log = 1000;

• Set a session system variable:

SET SESSION sql_mode = 'TRADITIONAL';
SET @@SESSION.sql_mode = 'TRADITIONAL';
SET @@sql_mode = 'TRADITIONAL';

For complete details about SET syntax, see Section 15.7.6.1, “SET Syntax for Variable Assignment”.
For a description of the privilege requirements for setting and persisting system variables, see
Section 7.1.9.1, “System Variable Privileges”

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not
to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value
using an expression, which is not true when you set a variable at server startup. For example, the first
of the following lines is legal at server startup, but the second is not:

$> mysql --max_allowed_packet=16M
$> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

To display system variable names and values, use the SHOW VARIABLES statement:

mysql> SHOW VARIABLES;
+---------------------------------+-----------------------------------+
| Variable_name | Value |
+---------------------------------+-----------------------------------+
auto_increment_increment	1
auto_increment_offset	1
automatic_sp_privileges	ON
back_log	151
basedir	/home/mysql/
binlog_cache_size	32768
bulk_insert_buffer_size	8388608
character_set_client	utf8mb4
character_set_connection	utf8mb4
character_set_database	utf8mb4
character_set_filesystem	binary
character_set_results	utf8mb4
character_set_server	utf8mb4
character_set_system	utf8mb3

1034

Using System Variables

character_sets_dir	/home/mysql/share/charsets/
check_proxy_users	OFF
collation_connection	utf8mb4_0900_ai_ci
collation_database	utf8mb4_0900_ai_ci
collation_server	utf8mb4_0900_ai_ci
...	
innodb_autoextend_increment	8
innodb_buffer_pool_size	8388608
innodb_commit_concurrency	0
innodb_concurrency_tickets	500
innodb_data_file_path	ibdata1:10M:autoextend
innodb_data_home_dir	
...	
version	8.0.31
version_comment	Source distribution
version_compile_machine	x86_64
version_compile_os	Linux
version_compile_zlib	1.2.12
wait_timeout	28800
+---------------------------------+-----------------------------------+

With a LIKE clause, the statement displays only those variables that match the pattern. To obtain a
specific variable name, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the % wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because _ is a wildcard that matches any single character, you should escape it as _ to match it
literally. In practice, this is rarely necessary.

For SHOW VARIABLES, if you specify neither GLOBAL nor SESSION, MySQL returns SESSION values.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when
retrieving them is to prevent problems in the future:

• Were a SESSION variable to be removed that has the same name as a GLOBAL variable, a client
with privileges sufficient to modify global variables might accidentally change the GLOBAL variable
rather than just the SESSION variable for its own session.

• Were a SESSION variable to be added with the same name as a GLOBAL variable, a client that
intends to change the GLOBAL variable might find only its own SESSION variable changed.

7.1.9.1 System Variable Privileges

A system variable can have a global value that affects server operation as a whole, a session value
that affects only the current session, or both:

• For dynamic system variables, the SET statement can be used to change their global or session
runtime value (or both), to affect operation of the current server instance. (For information about
dynamic variables, see Section 7.1.9.2, “Dynamic System Variables”.)

• For certain global system variables, SET can be used to persist their value to the mysqld-
auto.cnf file in the data directory, to affect server operation for subsequent startups. (For
information about persisting system variables and the mysqld-auto.cnf file, see Section 7.1.9.3,
“Persisted System Variables”.)

• For persisted global system variables, RESET PERSIST can be used to remove their value from
mysqld-auto.cnf, to affect server operation for subsequent startups.

This section describes the privileges required for operations that assign values to system variables at
runtime. This includes operations that affect runtime values, and operations that persist values.

1035

Using System Variables

To set a global system variable, use a SET statement with the appropriate keyword. These privileges
apply:

• To set a global system variable runtime value, use the SET GLOBAL statement, which requires the
SYSTEM_VARIABLES_ADMIN privilege (or the deprecated SUPER privilege).

• To persist a global system variable to the mysqld-auto.cnf file (and set the runtime value), use
the SET PERSIST statement, which requires the SYSTEM_VARIABLES_ADMIN or SUPER privilege.

• To persist a global system variable to the mysqld-auto.cnf file (without setting the runtime value),
use the SET PERSIST_ONLY statement, which requires the SYSTEM_VARIABLES_ADMIN and
PERSIST_RO_VARIABLES_ADMIN privileges. SET PERSIST_ONLY can be used for both dynamic
and read-only system variables, but is particularly useful for persisting read-only variables, for which
SET PERSIST cannot be used.

• Some global system variables are persist-restricted (see Section 7.1.9.4, “Nonpersistible and Persist-
Restricted System Variables”). To persist these variables, use the SET PERSIST_ONLY statement,
which requires the privileges described previously. In addition, you must connect to the server
using an encrypted connection and supply an SSL certificate with the Subject value specified by the
persist_only_admin_x509_subject system variable.

To remove a persisted global system variable from the mysqld-auto.cnf file, use the RESET
PERSIST statement. These privileges apply:

• For dynamic system variables, RESET PERSIST requires the SYSTEM_VARIABLES_ADMIN or
SUPER privilege.

• For read-only system variables, RESET PERSIST requires the SYSTEM_VARIABLES_ADMIN and
PERSIST_RO_VARIABLES_ADMIN privileges.

• For persist-restricted variables, RESET PERSIST does not require an encrypted connection to the
server made using a particular SSL certificate.

If a global system variable has any exceptions to the preceding privilege requirements, the variable
description indicates those exceptions. Examples include default_table_encryption and
mandatory_roles, which require additional privileges. These additional privileges apply to operations
that set the global runtime value, but not operations that persist the value.

To set a session system variable runtime value, use the SET SESSION statement. In contrast to
setting global runtime values, setting session runtime values normally requires no special privileges
and can be done by any user to affect the current session. For some system variables, setting the
session value may have effects outside the current session and thus is a restricted operation that can
be done only by users who have a special privilege:

• As of MySQL 8.0.14, the privilege required is SESSION_VARIABLES_ADMIN.

Note

Any user who has SYSTEM_VARIABLES_ADMIN or SUPER effectively has
SESSION_VARIABLES_ADMIN by implication and need not be granted
SESSION_VARIABLES_ADMIN explicitly.

• Prior to MySQL 8.0.14, the privilege required is SYSTEM_VARIABLES_ADMIN or SUPER.

If a session system variable is restricted, the variable description indicates that restriction. Examples
include binlog_format and sql_log_bin. Setting the session value of these variables affects
binary logging for the current session, but may also have wider implications for the integrity of server
replication and backups.

SESSION_VARIABLES_ADMIN enables administrators to minimize the privilege footprint of users who
may previously have been granted SYSTEM_VARIABLES_ADMIN or SUPER for the purpose of enabling
them to modify restricted session system variables. Suppose that an administrator has created the
following role to confer the ability to set restricted session system variables:

1036

Using System Variables

CREATE ROLE set_session_sysvars;
GRANT SYSTEM_VARIABLES_ADMIN ON *.* TO set_session_sysvars;

Any user granted the set_session_sysvars role (and who has that role active) is able to set
restricted session system variables. However, that user is also able to set global system variables,
which may be undesirable.

By modifying the role to have SESSION_VARIABLES_ADMIN instead of SYSTEM_VARIABLES_ADMIN,
the role privileges can be reduced to the ability to set restricted session system variables and nothing
else. To modify the role, use these statements:

GRANT SESSION_VARIABLES_ADMIN ON *.* TO set_session_sysvars;
REVOKE SYSTEM_VARIABLES_ADMIN ON *.* FROM set_session_sysvars;

Modifying the role has an immediate effect: Any account granted the set_session_sysvars role no
longer has SYSTEM_VARIABLES_ADMIN and is not able to set global system variables without being
granted that ability explicitly. A similar GRANT/REVOKE sequence can be applied to any account that
was granted SYSTEM_VARIABLES_ADMIN directly rather than by means of a role.

7.1.9.2 Dynamic System Variables

Many server system variables are dynamic and can be set at runtime. See Section 15.7.6.1, “SET
Syntax for Variable Assignment”. For a description of the privilege requirements for setting system
variables, see Section 7.1.9.1, “System Variable Privileges”

The following table lists all dynamic system variables applicable within mysqld.

The table lists each variable's data type and scope. The last column indicates whether the scope for
each variable is Global, Session, or both. Please see the corresponding item descriptions for details on
setting and using the variables. Where appropriate, direct links to further information about the items
are provided.

Variables that have a type of “string” take a string value. Variables that have a type of “numeric” take a
numeric value. Variables that have a type of “boolean” can be set to 0, 1, ON or OFF. Variables that are
marked as “enumeration” normally should be set to one of the available values for the variable, but can
also be set to the number that corresponds to the desired enumeration value. For enumerated system
variables, the first enumeration value corresponds to 0. This differs from the ENUM data type used for
table columns, for which the first enumeration value corresponds to 1.

Table 7.5 Dynamic System Variable Summary

Variable Name Variable Type Variable Scope

activate_all_roles_on_login Boolean Global

admin_ssl_ca File name Global

admin_ssl_capath Directory name Global

admin_ssl_cert File name Global

admin_ssl_cipher String Global

admin_ssl_crl File name Global

admin_ssl_crlpath Directory name Global

admin_ssl_key File name Global

admin_tls_ciphersuites String Global

admin_tls_version String Global

audit_log_connection_policy Enumeration Global

audit_log_disable Boolean Global

audit_log_exclude_accounts String Global

audit_log_flush Boolean Global

1037

Using System Variables

Variable Name Variable Type Variable Scope

audit_log_format_unix_timestamp Boolean Global

audit_log_include_accounts String Global

audit_log_max_size Integer Global

audit_log_password_history_keep_daysInteger Global

audit_log_prune_seconds Integer Global

audit_log_read_buffer_size Integer Varies

audit_log_rotate_on_size Integer Global

audit_log_statement_policy Enumeration Global

authentication_fido_rp_id String Global

authentication_kerberos_service_principalString Global

authentication_ldap_sasl_auth_method_nameString Global

authentication_ldap_sasl_bind_base_dnString Global

authentication_ldap_sasl_bind_root_dnString Global

authentication_ldap_sasl_bind_root_pwdString Global

authentication_ldap_sasl_ca_pathString Global

authentication_ldap_sasl_group_search_attrString Global

authentication_ldap_sasl_group_search_filterString Global

authentication_ldap_sasl_init_pool_sizeInteger Global

authentication_ldap_sasl_log_statusInteger Global

authentication_ldap_sasl_max_pool_sizeInteger Global

authentication_ldap_sasl_referral Boolean Global

authentication_ldap_sasl_server_hostString Global

authentication_ldap_sasl_server_portInteger Global

authentication_ldap_sasl_tls Boolean Global

authentication_ldap_sasl_user_search_attrString Global

authentication_ldap_simple_auth_method_nameString Global

authentication_ldap_simple_bind_base_dnString Global

authentication_ldap_simple_bind_root_dnString Global

authentication_ldap_simple_bind_root_pwdString Global

authentication_ldap_simple_ca_pathString Global

authentication_ldap_simple_group_search_attrString Global

authentication_ldap_simple_group_search_filterString Global

authentication_ldap_simple_init_pool_sizeInteger Global

authentication_ldap_simple_log_statusInteger Global

authentication_ldap_simple_max_pool_sizeInteger Global

authentication_ldap_simple_referralBoolean Global

authentication_ldap_simple_server_hostString Global

authentication_ldap_simple_server_portInteger Global

authentication_ldap_simple_tls Boolean Global

authentication_ldap_simple_user_search_attrString Global

authentication_policy String Global

1038

Using System Variables

Variable Name Variable Type Variable Scope

auto_increment_increment Integer Both

auto_increment_offset Integer Both

autocommit Boolean Both

automatic_sp_privileges Boolean Global

avoid_temporal_upgrade Boolean Global

big_tables Boolean Both

binlog_cache_size Integer Global

binlog_checksum String Global

binlog_direct_non_transactional_updatesBoolean Both

binlog_encryption Boolean Global

binlog_error_action Enumeration Global

binlog_expire_logs_auto_purge Boolean Global

binlog_expire_logs_seconds Integer Global

binlog_format Enumeration Both

binlog_group_commit_sync_delay Integer Global

binlog_group_commit_sync_no_delay_countInteger Global

binlog_max_flush_queue_time Integer Global

binlog_order_commits Boolean Global

binlog_row_image Enumeration Both

binlog_row_metadata Enumeration Global

binlog_row_value_options Set Both

binlog_rows_query_log_events Boolean Both

binlog_stmt_cache_size Integer Global

binlog_transaction_compression Boolean Both

binlog_transaction_compression_level_zstdInteger Both

binlog_transaction_dependency_history_sizeInteger Global

binlog_transaction_dependency_trackingEnumeration Global

block_encryption_mode String Both

bulk_insert_buffer_size Integer Both

character_set_client String Both

character_set_connection String Both

character_set_database String Both

character_set_filesystem String Both

character_set_results String Both

character_set_server String Both

check_proxy_users Boolean Global

clone_autotune_concurrency Boolean Global

clone_block_ddl Boolean Global

clone_buffer_size Integer Global

clone_ddl_timeout Integer Global

clone_delay_after_data_drop Integer Global

1039

Using System Variables

Variable Name Variable Type Variable Scope

clone_donor_timeout_after_network_failureInteger Global

clone_enable_compression Boolean Global

clone_max_concurrency Integer Global

clone_max_data_bandwidth Integer Global

clone_max_network_bandwidth Integer Global

clone_ssl_ca File name Global

clone_ssl_cert File name Global

clone_ssl_key File name Global

clone_valid_donor_list String Global

collation_connection String Both

collation_database String Both

collation_server String Both

completion_type Enumeration Both

component_scheduler.enabled Boolean Global

concurrent_insert Enumeration Global

connect_timeout Integer Global

connection_control_failed_connections_thresholdInteger Global

connection_control_max_connection_delayInteger Global

connection_control_min_connection_delayInteger Global

connection_memory_chunk_size Integer Both

connection_memory_limit Integer Both

cte_max_recursion_depth Integer Both

debug String Both

debug_sync String Session

default_collation_for_utf8mb4 Enumeration Both

default_password_lifetime Integer Global

default_storage_engine Enumeration Both

default_table_encryption Boolean Both

default_tmp_storage_engine Enumeration Both

default_week_format Integer Both

delay_key_write Enumeration Global

delayed_insert_limit Integer Global

delayed_insert_timeout Integer Global

delayed_queue_size Integer Global

div_precision_increment Integer Both

dragnet.log_error_filter_rules String Global

end_markers_in_json Boolean Both

enforce_gtid_consistency Enumeration Global

enterprise_encryption.maximum_rsa_key_sizeInteger Global

enterprise_encryption.rsa_support_legacy_paddingBoolean Global

eq_range_index_dive_limit Integer Both

1040

Using System Variables

Variable Name Variable Type Variable Scope

event_scheduler Enumeration Global

expire_logs_days Integer Global

explain_format Enumeration Both

explicit_defaults_for_timestamp Boolean Both

flush Boolean Global

flush_time Integer Global

foreign_key_checks Boolean Both

ft_boolean_syntax String Global

general_log Boolean Global

general_log_file File name Global

generated_random_password_lengthInteger Both

global_connection_memory_limit Integer Global

global_connection_memory_trackingBoolean Both

group_concat_max_len Integer Both

group_replication_advertise_recovery_endpointsString Global

group_replication_allow_local_lower_version_joinBoolean Global

group_replication_auto_increment_incrementInteger Global

group_replication_autorejoin_tries Integer Global

group_replication_bootstrap_groupBoolean Global

group_replication_clone_thresholdInteger Global

group_replication_communication_debug_optionsString Global

group_replication_communication_max_message_sizeInteger Global

group_replication_communication_stackString Global

group_replication_components_stop_timeoutInteger Global

group_replication_compression_thresholdInteger Global

group_replication_consistency Enumeration Both

group_replication_enforce_update_everywhere_checksBoolean Global

group_replication_exit_state_actionEnumeration Global

group_replication_flow_control_applier_thresholdInteger Global

group_replication_flow_control_certifier_thresholdInteger Global

group_replication_flow_control_hold_percentInteger Global

group_replication_flow_control_max_quotaInteger Global

group_replication_flow_control_member_quota_percentInteger Global

group_replication_flow_control_min_quotaInteger Global

group_replication_flow_control_min_recovery_quotaInteger Global

group_replication_flow_control_modeEnumeration Global

group_replication_flow_control_periodInteger Global

group_replication_flow_control_release_percentInteger Global

group_replication_force_membersString Global

group_replication_group_name String Global

group_replication_group_seeds String Global

1041

Using System Variables

Variable Name Variable Type Variable Scope

group_replication_gtid_assignment_block_sizeInteger Global

group_replication_ip_allowlist String Global

group_replication_ip_whitelist String Global

group_replication_local_address String Global

group_replication_member_expel_timeoutInteger Global

group_replication_member_weightInteger Global

group_replication_message_cache_sizeInteger Global

group_replication_paxos_single_leaderBoolean Global

group_replication_poll_spin_loops Integer Global

group_replication_recovery_complete_atEnumeration Global

group_replication_recovery_compression_algorithmsSet Global

group_replication_recovery_get_public_keyBoolean Global

group_replication_recovery_public_key_pathFile name Global

group_replication_recovery_reconnect_intervalInteger Global

group_replication_recovery_retry_countInteger Global

group_replication_recovery_ssl_caString Global

group_replication_recovery_ssl_capathString Global

group_replication_recovery_ssl_certString Global

group_replication_recovery_ssl_cipherString Global

group_replication_recovery_ssl_crlFile name Global

group_replication_recovery_ssl_crlpathDirectory name Global

group_replication_recovery_ssl_keyString Global

group_replication_recovery_ssl_verify_server_certBoolean Global

group_replication_recovery_tls_ciphersuitesString Global

group_replication_recovery_tls_versionString Global

group_replication_recovery_use_sslBoolean Global

group_replication_recovery_zstd_compression_levelInteger Global

group_replication_single_primary_modeBoolean Global

group_replication_ssl_mode Enumeration Global

group_replication_start_on_boot Boolean Global

group_replication_tls_source Enumeration Global

group_replication_transaction_size_limitInteger Global

group_replication_unreachable_majority_timeoutInteger Global

group_replication_view_change_uuidString Global

gtid_executed_compression_periodInteger Global

gtid_mode Enumeration Global

gtid_next Enumeration Session

gtid_purged String Global

histogram_generation_max_mem_sizeInteger Both

host_cache_size Integer Global

identity Integer Session

1042

Using System Variables

Variable Name Variable Type Variable Scope

immediate_server_version Integer Session

information_schema_stats_expiry Integer Both

init_connect String Global

init_replica String Global

init_slave String Global

innodb_adaptive_flushing Boolean Global

innodb_adaptive_flushing_lwm Integer Global

innodb_adaptive_hash_index Boolean Global

innodb_adaptive_max_sleep_delayInteger Global

innodb_api_bk_commit_interval Integer Global

innodb_api_trx_level Integer Global

innodb_autoextend_increment Integer Global

innodb_background_drop_list_emptyBoolean Global

innodb_buffer_pool_dump_at_shutdownBoolean Global

innodb_buffer_pool_dump_now Boolean Global

innodb_buffer_pool_dump_pct Integer Global

innodb_buffer_pool_filename File name Global

innodb_buffer_pool_in_core_file Boolean Global

innodb_buffer_pool_load_abort Boolean Global

innodb_buffer_pool_load_now Boolean Global

innodb_buffer_pool_size Integer Global

innodb_change_buffer_max_size Integer Global

innodb_change_buffering Enumeration Global

innodb_change_buffering_debug Integer Global

innodb_checkpoint_disabled Boolean Global

innodb_checksum_algorithm Enumeration Global

innodb_cmp_per_index_enabled Boolean Global

innodb_commit_concurrency Integer Global

innodb_compress_debug Enumeration Global

innodb_compression_failure_threshold_pctInteger Global

innodb_compression_level Integer Global

innodb_compression_pad_pct_maxInteger Global

innodb_concurrency_tickets Integer Global

innodb_ddl_buffer_size Integer Session

innodb_ddl_log_crash_reset_debugBoolean Global

innodb_ddl_threads Integer Session

innodb_deadlock_detect Boolean Global

innodb_default_row_format Enumeration Global

innodb_disable_sort_file_cache Boolean Global

innodb_doublewrite Enumeration Global

innodb_extend_and_initialize Boolean Global

1043

Using System Variables

Variable Name Variable Type Variable Scope

innodb_fast_shutdown Integer Global

innodb_fil_make_page_dirty_debugInteger Global

innodb_file_per_table Boolean Global

innodb_fill_factor Integer Global

innodb_flush_log_at_timeout Integer Global

innodb_flush_log_at_trx_commit Enumeration Global

innodb_flush_neighbors Enumeration Global

innodb_flush_sync Boolean Global

innodb_flushing_avg_loops Integer Global

innodb_fsync_threshold Integer Global

innodb_ft_aux_table String Global

innodb_ft_enable_diag_print Boolean Global

innodb_ft_enable_stopword Boolean Both

innodb_ft_num_word_optimize Integer Global

innodb_ft_result_cache_limit Integer Global

innodb_ft_server_stopword_table String Global

innodb_ft_user_stopword_table String Both

innodb_idle_flush_pct Integer Global

innodb_io_capacity Integer Global

innodb_io_capacity_max Integer Global

innodb_limit_optimistic_insert_debugInteger Global

innodb_lock_wait_timeout Integer Both

innodb_log_buffer_size Integer Global

innodb_log_checkpoint_fuzzy_nowBoolean Global

innodb_log_checkpoint_now Boolean Global

innodb_log_checksums Boolean Global

innodb_log_compressed_pages Boolean Global

innodb_log_spin_cpu_abs_lwm Integer Global

innodb_log_spin_cpu_pct_hwm Integer Global

innodb_log_wait_for_flush_spin_hwmInteger Global

innodb_log_write_ahead_size Integer Global

innodb_log_writer_threads Boolean Global

innodb_lru_scan_depth Integer Global

innodb_max_dirty_pages_pct Numeric Global

innodb_max_dirty_pages_pct_lwmNumeric Global

innodb_max_purge_lag Integer Global

innodb_max_purge_lag_delay Integer Global

innodb_max_undo_log_size Integer Global

innodb_merge_threshold_set_all_debugInteger Global

innodb_monitor_disable String Global

innodb_monitor_enable String Global

1044

Using System Variables

Variable Name Variable Type Variable Scope

innodb_monitor_reset Enumeration Global

innodb_monitor_reset_all Enumeration Global

innodb_old_blocks_pct Integer Global

innodb_old_blocks_time Integer Global

innodb_online_alter_log_max_sizeInteger Global

innodb_open_files Integer Global

innodb_optimize_fulltext_only Boolean Global

innodb_parallel_read_threads Integer Session

innodb_print_all_deadlocks Boolean Global

innodb_print_ddl_logs Boolean Global

innodb_purge_batch_size Integer Global

innodb_purge_rseg_truncate_frequencyInteger Global

innodb_random_read_ahead Boolean Global

innodb_read_ahead_threshold Integer Global

innodb_redo_log_archive_dirs String Global

innodb_redo_log_capacity Integer Global

innodb_redo_log_encrypt Boolean Global

innodb_replication_delay Integer Global

innodb_rollback_segments Integer Global

innodb_saved_page_number_debugInteger Global

innodb_segment_reserve_factor Numeric Global

innodb_spin_wait_delay Integer Global

innodb_spin_wait_pause_multiplierInteger Global

innodb_stats_auto_recalc Boolean Global

innodb_stats_include_delete_markedBoolean Global

innodb_stats_method Enumeration Global

innodb_stats_on_metadata Boolean Global

innodb_stats_persistent Boolean Global

innodb_stats_persistent_sample_pagesInteger Global

innodb_stats_transient_sample_pagesInteger Global

innodb_status_output Boolean Global

innodb_status_output_locks Boolean Global

innodb_strict_mode Boolean Both

innodb_sync_spin_loops Integer Global

innodb_table_locks Boolean Both

innodb_thread_concurrency Integer Global

innodb_thread_sleep_delay Integer Global

innodb_tmpdir Directory name Both

innodb_trx_purge_view_update_only_debugBoolean Global

innodb_trx_rseg_n_slots_debug Integer Global

innodb_undo_log_encrypt Boolean Global

1045

Using System Variables

Variable Name Variable Type Variable Scope

innodb_undo_log_truncate Boolean Global

innodb_undo_tablespaces Integer Global

innodb_use_fdatasync Boolean Global

insert_id Integer Session

interactive_timeout Integer Both

internal_tmp_disk_storage_engineEnumeration Global

internal_tmp_mem_storage_engineEnumeration Both

join_buffer_size Integer Both

keep_files_on_create Boolean Both

key_buffer_size Integer Global

key_cache_age_threshold Integer Global

key_cache_block_size Integer Global

key_cache_division_limit Integer Global

keyring_aws_cmk_id String Global

keyring_aws_region Enumeration Global

keyring_encrypted_file_data File name Global

keyring_encrypted_file_password String Global

keyring_file_data File name Global

keyring_hashicorp_auth_path String Global

keyring_hashicorp_ca_path File name Global

keyring_hashicorp_caching Boolean Global

keyring_hashicorp_role_id String Global

keyring_hashicorp_secret_id String Global

keyring_hashicorp_server_url String Global

keyring_hashicorp_store_path String Global

keyring_okv_conf_dir Directory name Global

keyring_operations Boolean Global

last_insert_id Integer Session

lc_messages String Both

lc_time_names String Both

local_infile Boolean Global

lock_wait_timeout Integer Both

log_bin_trust_function_creators Boolean Global

log_bin_use_v1_row_events Boolean Global

log_error_services String Global

log_error_suppression_list String Global

log_error_verbosity Integer Global

log_output Set Global

log_queries_not_using_indexes Boolean Global

log_raw Boolean Global

log_slow_admin_statements Boolean Global

1046

Using System Variables

Variable Name Variable Type Variable Scope

log_slow_extra Boolean Global

log_slow_replica_statements Boolean Global

log_slow_slave_statements Boolean Global

log_statements_unsafe_for_binlogBoolean Global

log_syslog Boolean Global

log_syslog_facility String Global

log_syslog_include_pid Boolean Global

log_syslog_tag String Global

log_throttle_queries_not_using_indexesInteger Global

log_timestamps Enumeration Global

long_query_time Numeric Both

low_priority_updates Boolean Both

mandatory_roles String Global

master_info_repository String Global

master_verify_checksum Boolean Global

max_allowed_packet Integer Both

max_binlog_cache_size Integer Global

max_binlog_size Integer Global

max_binlog_stmt_cache_size Integer Global

max_connect_errors Integer Global

max_connections Integer Global

max_delayed_threads Integer Both

max_error_count Integer Both

max_execution_time Integer Both

max_heap_table_size Integer Both

max_insert_delayed_threads Integer Both

max_join_size Integer Both

max_length_for_sort_data Integer Both

max_points_in_geometry Integer Both

max_prepared_stmt_count Integer Global

max_relay_log_size Integer Global

max_seeks_for_key Integer Both

max_sort_length Integer Both

max_sp_recursion_depth Integer Both

max_user_connections Integer Both

max_write_lock_count Integer Global

min_examined_row_limit Integer Both

myisam_data_pointer_size Integer Global

myisam_max_sort_file_size Integer Global

myisam_repair_threads Integer Both

myisam_sort_buffer_size Integer Both

1047

Using System Variables

Variable Name Variable Type Variable Scope

myisam_stats_method Enumeration Both

myisam_use_mmap Boolean Global

mysql_firewall_mode Boolean Global

mysql_firewall_trace Boolean Global

mysql_native_password_proxy_usersBoolean Global

mysqlx_compression_algorithms Set Global

mysqlx_connect_timeout Integer Global

mysqlx_deflate_default_compression_levelInteger Global

mysqlx_deflate_max_client_compression_levelInteger Global

mysqlx_document_id_unique_prefixInteger Global

mysqlx_enable_hello_notice Boolean Global

mysqlx_idle_worker_thread_timeoutInteger Global

mysqlx_interactive_timeout Integer Global

mysqlx_lz4_default_compression_levelInteger Global

mysqlx_lz4_max_client_compression_levelInteger Global

mysqlx_max_allowed_packet Integer Global

mysqlx_max_connections Integer Global

mysqlx_min_worker_threads Integer Global

mysqlx_read_timeout Integer Session

mysqlx_wait_timeout Integer Session

mysqlx_write_timeout Integer Session

mysqlx_zstd_default_compression_levelInteger Global

mysqlx_zstd_max_client_compression_levelInteger Global

ndb_allow_copying_alter_table Boolean Both

ndb_autoincrement_prefetch_sz Integer Both

ndb_batch_size Integer Both

ndb_blob_read_batch_bytes Integer Both

ndb_blob_write_batch_bytes Integer Both

ndb_clear_apply_status Boolean Global

ndb_conflict_role Enumeration Global

ndb_data_node_neighbour Integer Global

ndb_dbg_check_shares Integer Both

ndb_default_column_format Enumeration Global

ndb_default_column_format Enumeration Global

ndb_deferred_constraints Integer Both

ndb_deferred_constraints Integer Both

ndb_distribution Enumeration Global

ndb_distribution Enumeration Global

ndb_eventbuffer_free_percent Integer Global

ndb_eventbuffer_max_alloc Integer Global

ndb_extra_logging Integer Global

1048

Using System Variables

Variable Name Variable Type Variable Scope

ndb_force_send Boolean Both

ndb_fully_replicated Boolean Both

ndb_index_stat_enable Boolean Both

ndb_index_stat_option String Both

ndb_join_pushdown Boolean Both

ndb_log_binlog_index Boolean Global

ndb_log_cache_size Integer Global

ndb_log_empty_epochs Boolean Global

ndb_log_empty_epochs Boolean Global

ndb_log_empty_update Boolean Global

ndb_log_empty_update Boolean Global

ndb_log_exclusive_reads Boolean Both

ndb_log_exclusive_reads Boolean Both

ndb_log_transaction_compressionBoolean Global

ndb_log_transaction_compression_level_zstdInteger Global

ndb_log_update_as_write Boolean Global

ndb_log_update_minimal Boolean Global

ndb_log_updated_only Boolean Global

ndb_metadata_check Boolean Global

ndb_metadata_check_interval Integer Global

ndb_metadata_sync Boolean Global

ndb_optimization_delay Integer Global

ndb_optimized_node_selection Integer Global

ndb_read_backup Boolean Global

ndb_recv_thread_activation_thresholdInteger Global

ndb_recv_thread_cpu_mask Bitmap Global

ndb_replica_batch_size Integer Global

ndb_replica_blob_write_batch_bytesInteger Global

ndb_report_thresh_binlog_epoch_slipInteger Global

ndb_report_thresh_binlog_mem_usageInteger Global

ndb_row_checksum Integer Both

ndb_schema_dist_lock_wait_timeoutInteger Global

ndb_show_foreign_key_mock_tablesBoolean Global

ndb_slave_conflict_role Enumeration Global

ndb_table_no_logging Boolean Session

ndb_table_temporary Boolean Session

ndb_use_exact_count Boolean Both

ndb_use_transactions Boolean Both

ndbinfo_max_bytes Integer Both

ndbinfo_max_rows Integer Both

ndbinfo_offline Boolean Global

1049

Using System Variables

Variable Name Variable Type Variable Scope

ndbinfo_show_hidden Boolean Both

net_buffer_length Integer Both

net_read_timeout Integer Both

net_retry_count Integer Both

net_write_timeout Integer Both

new Boolean Both

offline_mode Boolean Global

old_alter_table Boolean Both

optimizer_prune_level Integer Both

optimizer_search_depth Integer Both

optimizer_switch Set Both

optimizer_trace String Both

optimizer_trace_features String Both

optimizer_trace_limit Integer Both

optimizer_trace_max_mem_size Integer Both

optimizer_trace_offset Integer Both

original_commit_timestamp Numeric Session

original_server_version Integer Session

parser_max_mem_size Integer Both

partial_revokes Boolean Global

password_history Integer Global

password_require_current Boolean Global

password_reuse_interval Integer Global

performance_schema_max_digest_sample_ageInteger Global

performance_schema_show_processlistBoolean Global

preload_buffer_size Integer Both

print_identified_with_as_hex Boolean Both

profiling Boolean Both

profiling_history_size Integer Both

protocol_compression_algorithms Set Global

pseudo_replica_mode Boolean Session

pseudo_slave_mode Boolean Session

pseudo_thread_id Integer Session

query_alloc_block_size Integer Both

query_prealloc_size Integer Both

rand_seed1 Integer Session

rand_seed2 Integer Session

range_alloc_block_size Integer Both

range_optimizer_max_mem_size Integer Both

rbr_exec_mode Enumeration Session

read_buffer_size Integer Both

1050

Using System Variables

Variable Name Variable Type Variable Scope

read_only Boolean Global

read_rnd_buffer_size Integer Both

regexp_stack_limit Integer Global

regexp_time_limit Integer Global

relay_log_info_repository String Global

relay_log_purge Boolean Global

replica_allow_batching Boolean Global

replica_checkpoint_group Integer Global

replica_checkpoint_period Integer Global

replica_compressed_protocol Boolean Global

replica_exec_mode Enumeration Global

replica_max_allowed_packet Integer Global

replica_net_timeout Integer Global

replica_parallel_type Enumeration Global

replica_parallel_workers Integer Global

replica_pending_jobs_size_max Integer Global

replica_preserve_commit_order Boolean Global

replica_sql_verify_checksum Boolean Global

replica_transaction_retries Integer Global

replica_type_conversions Set Global

replication_optimize_for_static_plugin_configBoolean Global

replication_sender_observe_commit_onlyBoolean Global

require_row_format Boolean Session

require_secure_transport Boolean Global

resultset_metadata Enumeration Session

rewriter_enabled Boolean Global

rewriter_enabled_for_threads_without_privilege_checksBoolean Global

rewriter_verbose Integer Global

rpl_read_size Integer Global

rpl_semi_sync_master_enabled Boolean Global

rpl_semi_sync_master_timeout Integer Global

rpl_semi_sync_master_trace_levelInteger Global

rpl_semi_sync_master_wait_for_slave_countInteger Global

rpl_semi_sync_master_wait_no_slaveBoolean Global

rpl_semi_sync_master_wait_point Enumeration Global

rpl_semi_sync_replica_enabled Boolean Global

rpl_semi_sync_replica_trace_levelInteger Global

rpl_semi_sync_slave_enabled Boolean Global

rpl_semi_sync_slave_trace_level Integer Global

rpl_semi_sync_source_enabled Boolean Global

rpl_semi_sync_source_timeout Integer Global

1051

Using System Variables

Variable Name Variable Type Variable Scope

rpl_semi_sync_source_trace_levelInteger Global

rpl_semi_sync_source_wait_for_replica_countInteger Global

rpl_semi_sync_source_wait_no_replicaBoolean Global

rpl_semi_sync_source_wait_point Enumeration Global

rpl_stop_replica_timeout Integer Global

rpl_stop_slave_timeout Integer Global

schema_definition_cache Integer Global

secondary_engine_cost_thresholdNumeric Session

select_into_buffer_size Integer Both

select_into_disk_sync Boolean Both

select_into_disk_sync_delay Integer Both

server_id Integer Global

session_track_gtids Enumeration Both

session_track_schema Boolean Both

session_track_state_change Boolean Both

session_track_system_variables String Both

session_track_transaction_info Enumeration Both

sha256_password_proxy_users Boolean Global

show_create_table_skip_secondary_engineBoolean Session

show_create_table_verbosity Boolean Both

show_gipk_in_create_table_and_information_schemaBoolean Both

show_old_temporals Boolean Both

slave_allow_batching Boolean Global

slave_checkpoint_group Integer Global

slave_checkpoint_period Integer Global

slave_compressed_protocol Boolean Global

slave_exec_mode Enumeration Global

slave_max_allowed_packet Integer Global

slave_net_timeout Integer Global

slave_parallel_type Enumeration Global

slave_parallel_workers Integer Global

slave_pending_jobs_size_max Integer Global

slave_preserve_commit_order Boolean Global

slave_rows_search_algorithms Set Global

slave_sql_verify_checksum Boolean Global

slave_transaction_retries Integer Global

slave_type_conversions Set Global

slow_launch_time Integer Global

slow_query_log Boolean Global

slow_query_log_file File name Global

sort_buffer_size Integer Both

1052

Using System Variables

Variable Name Variable Type Variable Scope

source_verify_checksum Boolean Global

sql_auto_is_null Boolean Both

sql_big_selects Boolean Both

sql_buffer_result Boolean Both

sql_generate_invisible_primary_keyBoolean Both

sql_log_bin Boolean Session

sql_log_off Boolean Both

sql_mode Set Both

sql_notes Boolean Both

sql_quote_show_create Boolean Both

sql_replica_skip_counter Integer Global

sql_require_primary_key Boolean Both

sql_safe_updates Boolean Both

sql_select_limit Integer Both

sql_slave_skip_counter Integer Global

sql_warnings Boolean Both

ssl_ca File name Global

ssl_capath Directory name Global

ssl_cert File name Global

ssl_cipher String Global

ssl_crl File name Global

ssl_crlpath Directory name Global

ssl_key File name Global

ssl_session_cache_mode Boolean Global

ssl_session_cache_timeout Integer Global

stored_program_cache Integer Global

stored_program_definition_cache Integer Global

super_read_only Boolean Global

sync_binlog Integer Global

sync_master_info Integer Global

sync_relay_log Integer Global

sync_relay_log_info Integer Global

sync_source_info Integer Global

syseventlog.facility String Global

syseventlog.include_pid Boolean Global

syseventlog.tag String Global

table_definition_cache Integer Global

table_encryption_privilege_check Boolean Global

table_open_cache Integer Global

tablespace_definition_cache Integer Global

temptable_max_mmap Integer Global

1053

Using System Variables

Variable Name Variable Type Variable Scope

temptable_max_ram Integer Global

temptable_use_mmap Boolean Global

terminology_use_previous Enumeration Both

thread_cache_size Integer Global

thread_pool_high_priority_connectionInteger Both

thread_pool_max_active_query_threadsInteger Global

thread_pool_max_transactions_limitInteger Global

thread_pool_max_unused_threadsInteger Global

thread_pool_prio_kickup_timer Integer Global

thread_pool_query_threads_per_groupInteger Global

thread_pool_stall_limit Integer Global

thread_pool_transaction_delay Integer Global

time_zone String Both

timestamp Numeric Session

tls_ciphersuites String Global

tls_version String Global

tmp_table_size Integer Both

transaction_alloc_block_size Integer Both

transaction_allow_batching Boolean Session

transaction_isolation Enumeration Both

transaction_prealloc_size Integer Both

transaction_read_only Boolean Both

transaction_write_set_extraction Enumeration Both

unique_checks Boolean Both

updatable_views_with_limit Boolean Both

use_secondary_engine Enumeration Session

validate_password_check_user_nameBoolean Global

validate_password_dictionary_file File name Global

validate_password_length Integer Global

validate_password_mixed_case_countInteger Global

validate_password_number_countInteger Global

validate_password_policy Enumeration Global

validate_password_special_char_countInteger Global

validate_password.changed_characters_percentageInteger Global

validate_password.check_user_nameBoolean Global

validate_password.dictionary_file File name Global

validate_password.length Integer Global

validate_password.mixed_case_countInteger Global

validate_password.number_count Integer Global

validate_password.policy Enumeration Global

validate_password.special_char_countInteger Global

1054

Using System Variables

Variable Name Variable Type Variable Scope

version_tokens_session String Both

wait_timeout Integer Both

windowing_use_high_precision Boolean Both

xa_detach_on_prepare Boolean Both

7.1.9.3 Persisted System Variables

The MySQL server maintains system variables that configure its operation. A system variable can have
a global value that affects server operation as a whole, a session value that affects the current session,
or both. Many system variables are dynamic and can be changed at runtime using the SET statement
to affect operation of the current server instance. SET can also be used to persist certain global system
variables to the mysqld-auto.cnf file in the data directory, to affect server operation for subsequent
startups. RESET PERSIST removes persisted settings from mysqld-auto.cnf.

The following discussion describes aspects of persisting system variables:

• Overview of Persisted System Variables

• Syntax for Persisting System Variables

• Obtaining Information About Persisted System Variables

• Format and Server Handling of the mysqld-auto.cnf File

• Persisting Sensitive System Variables

Overview of Persisted System Variables

The capability of persisting global system variables at runtime enables server configuration that
persists across server startups. Although many system variables can be set at startup from a my.cnf
option file, or at runtime using the SET statement, those methods of configuring the server either
require login access to the server host, or do not provide the capability of persistently configuring the
server at runtime or remotely:

• Modifying an option file requires direct access to that file, which requires login access to the MySQL
server host. This is not always convenient.

• Modifying system variables with SET GLOBAL is a runtime capability that can be done from clients
run locally or from remote hosts, but the changes affect only the currently running server instance.
The settings are not persistent and do not carry over to subsequent server startups.

To augment administrative capabilities for server configuration beyond what is achievable by editing
option files or using SET GLOBAL, MySQL provides variants of SET syntax that persist system variable
settings to a file named mysqld-auto.cnf file in the data directory. Examples:

SET PERSIST max_connections = 1000;
SET @@PERSIST.max_connections = 1000;

SET PERSIST_ONLY back_log = 100;
SET @@PERSIST_ONLY.back_log = 100;

MySQL also provides a RESET PERSIST statement for removing persisted system variables from
mysqld-auto.cnf.

Server configuration performed by persisting system variables has these characteristics:

• Persisted settings are made at runtime.

• Persisted settings are permanent. They apply across server restarts.

• Persisted settings can be made from local clients or clients who connect from a remote host. This
provides the convenience of remotely configuring multiple MySQL servers from a central client host.

1055

Using System Variables

• To persist system variables, you need not have login access to the MySQL server host or file system
access to option files. Ability to persist settings is controlled using the MySQL privilege system. See
Section 7.1.9.1, “System Variable Privileges”.

• An administrator with sufficient privileges can reconfigure a server by persisting system variables,
then cause the server to use the changed settings immediately by executing a RESTART statement.

• Persisted settings provide immediate feedback about errors. An error in a manually entered setting
might not be discovered until much later. SET statements that persist system variables avoid the
possibility of malformed settings because settings with syntax errors do not succeed and do not
change server configuration.

Syntax for Persisting System Variables

These SET syntax options are available for persisting system variables:

• To persist a global system variable to the mysqld-auto.cnf option file in the data directory,
precede the variable name by the PERSIST keyword or the @@PERSIST. qualifier:

SET PERSIST max_connections = 1000;
SET @@PERSIST.max_connections = 1000;

Like SET GLOBAL, SET PERSIST sets the global variable runtime value, but also writes the variable
setting to the mysqld-auto.cnf file (replacing any existing variable setting if there is one).

• To persist a global system variable to the mysqld-auto.cnf file without setting the global
variable runtime value, precede the variable name by the PERSIST_ONLY keyword or the
@@PERSIST_ONLY. qualifier:

SET PERSIST_ONLY back_log = 1000;
SET @@PERSIST_ONLY.back_log = 1000;

Like PERSIST, PERSIST_ONLY writes the variable setting to mysqld-auto.cnf. However,
unlike PERSIST, PERSIST_ONLY does not modify the global variable runtime value. This makes
PERSIST_ONLY suitable for configuring read-only system variables that can be set only at server
startup.

For more information about SET, see Section 15.7.6.1, “SET Syntax for Variable Assignment”.

These RESET PERSIST syntax options are available for removing persisted system variables:

• To remove all persisted variables from mysqld-auto.cnf, use RESET PERSIST without naming
any system variable:

RESET PERSIST;

• To remove a specific persisted variable from mysqld-auto.cnf, name it in the statement:

RESET PERSIST system_var_name;

This includes plugin system variables, even if the plugin is not currently installed. If the variable is not
present in the file, an error occurs.

• To remove a specific persisted variable from mysqld-auto.cnf, but produce a warning rather than
an error if the variable is not present in the file, add an IF EXISTS clause to the previous syntax:

RESET PERSIST IF EXISTS system_var_name;

For more information about RESET PERSIST, see Section 15.7.8.7, “RESET PERSIST Statement”.

Using SET to persist a global system variable to a value of DEFAULT or to its literal default value
assigns the variable its default value and adds a setting for the variable to mysqld-auto.cnf. To
remove the variable from the file, use RESET PERSIST.

1056

Using System Variables

Some system variables cannot be persisted. See Section 7.1.9.4, “Nonpersistible and Persist-
Restricted System Variables”.

A system variable implemented by a plugin can be persisted if the plugin is installed when the SET
statement is executed. Assignment of the persisted plugin variable takes effect for subsequent server
restarts if the plugin is still installed. If the plugin is no longer installed, the plugin variable does not exist
when the server reads the mysqld-auto.cnf file. In this case, the server writes a warning to the error
log and continues:

currently unknown variable 'var_name'
was read from the persisted config file

Obtaining Information About Persisted System Variables

The Performance Schema persisted_variables table provides an SQL interface to the mysqld-
auto.cnf file, enabling its contents to be inspected at runtime using SELECT statements. See
Section 29.12.14.1, “Performance Schema persisted_variables Table”.

The Performance Schema variables_info table contains information showing when and by which
user each system variable was most recently set. See Section 29.12.14.2, “Performance Schema
variables_info Table”.

RESET PERSIST affects the contents of the persisted_variables table because the table
contents correspond to the contents of the mysqld-auto.cnf file. On the other hand, because
RESET PERSIST does not change variable values, it has no effect on the contents of the
variables_info table until the server is restarted.

Format and Server Handling of the mysqld-auto.cnf File

The mysqld-auto.cnf file uses a JSON format like this (reformatted slightly for readability):

{
 "Version": 1,
 "mysql_server": {
 "max_connections": {
 "Value": "152",
 "Metadata": {
 "Timestamp": 1519921341372531,
 "User": "root",
 "Host": "localhost"
 }
 },
 "transaction_isolation": {
 "Value": "READ-COMMITTED",
 "Metadata": {
 "Timestamp": 1519921553880520,
 "User": "root",
 "Host": "localhost"
 }
 },
 "mysql_server_static_options": {
 "innodb_api_enable_mdl": {
 "Value": "0",
 "Metadata": {
 "Timestamp": 1519922873467872,
 "User": "root",
 "Host": "localhost"
 }
 },
 "log_slave_updates": {
 "Value": "1",
 "Metadata": {
 "Timestamp": 1519925628441588,
 "User": "root",
 "Host": "localhost"
 }
 }
 }

1057

Using System Variables

 }
}

At startup, the server processes the mysqld-auto.cnf file after all other option files (see
Section 6.2.2.2, “Using Option Files”). The server handles the file contents as follows:

• If the persisted_globals_load system variable is disabled, the server ignores the mysqld-
auto.cnf file.

• The "mysql_server_static_options" section contains read-only variables persisted using
SET PERSIST_ONLY. The section may also (despite its name) contain certain dynamic variables
that are not read only. All variables present inside this section are appended to the command line
and processed with other command-line options.

• All remaining persisted variables are set by executing the equivalent of a SET GLOBAL statement
later, just before the server starts listening for client connections. These settings therefore do not
take effect until late in the startup process, which might be unsuitable for certain system variables. It
may be preferable to set such variables in my.cnf rather than in mysqld-auto.cnf.

Management of the mysqld-auto.cnf file should be left to the server. Manipulation of the file should
be performed only using SET and RESET PERSIST statements, not manually:

• Removal of the file results in a loss of all persisted settings at the next server startup. (This is
permissible if your intent is to reconfigure the server without these settings.) To remove all settings in
the file without removing the file itself, use this statement:

RESET PERSIST;

• Manual changes to the file may result in a parse error at server startup. In this case, the server
reports an error and exits. If this issue occurs, start the server with the persisted_globals_load
system variable disabled or with the --no-defaults option. Alternatively, remove the mysqld-
auto.cnf file. However, as noted previously, removing this file results in a loss of all persisted
settings.

Persisting Sensitive System Variables

From MySQL 8.0.29, MySQL Server has the capability to securely store persisted system variable
values containing sensitive data such as private keys or passwords, and restrict viewing of the values.
No MySQL Server system variables are currently marked as sensitive, but the new capability allows
system variables containing sensitive data to be persisted securely in the future. After upgrading to
MySQL 8.0.29, the format of the mysqld-auto.cnf option file remains the same until the first time a
SET PERSIST or SET PERSIST ONLY statement is issued, and at that point it is changed to a new
format, even if the system variable involved is not sensitive. In the new format, the option file cannot be
read by older releases of MySQL Server.

Note

A keyring component must be enabled on the MySQL Server instance to
support secure storage for persisted system variable values, rather than a
keyring plugin, which do not support the function. See Section 8.4.4, “The
MySQL Keyring”.

In the mysqld-auto.cnf option file, the names and values of sensitive system variables are stored
in an encrypted format, along with a generated file key to decrypt them. The generated file key is in
turn encrypted using a master key (persisted_variables_key) that is stored in a keyring. When
the server starts up, the persisted sensitive system variables are decrypted and used. By default,
if encrypted values are present in the option file but cannot be successfully decrypted at startup,
their default settings are used. The optional most secure setting makes the server halt startup if the
encrypted values cannot be decrypted.

The system variable persist_sensitive_variables_in_plaintext controls whether the server
is permitted to store the values of sensitive system variables in an unencrypted format, if keyring

1058

Using System Variables

component support is not available at the time when SET PERSIST is used to set the value. It also
controls whether or not the server can start if the encrypted values cannot be decrypted.

• The default setting, ON, encrypts the values if keyring component support is available, and persists
them unencrypted (with a warning) if it is not. The next time any persisted system variable is set, if
keyring support is available at that time, the server encrypts the values of any unencrypted sensitive
system variables. The ON setting also allows the server to start if encrypted system variable values
cannot be decrypted, in which case a warning is issued and the default values for the system
variables are used. In that situation, their values cannot be changed until they can be decrypted.

• The most secure setting, OFF, means sensitive system variable values cannot be persisted if keyring
component support is unavailable. The OFF setting also means the server does not start if encrypted
system variable values cannot be decrypted.

The privilege SENSITIVE_VARIABLES_OBSERVER allows a holder to view the values of sensitive
system variables in the Performance Schema tables global_variables, session_variables,
variables_by_thread, and persisted_variables, to issue SELECT statements to return their
values, and to track changes to them in session trackers for connections. Users without this privilege
cannot view or track those system variable values.

If a SET statement is issued for a sensitive system variable, the query is rewritten to replace the value
with “<redacted>” before it is logged to the general log and audit log. This takes place even if secure
storage through a keyring component is not available on the server instance.

7.1.9.4 Nonpersistible and Persist-Restricted System Variables

SET PERSIST and SET PERSIST_ONLY enable global system variables to be persisted to the
mysqld-auto.cnf option file in the data directory (see Section 15.7.6.1, “SET Syntax for Variable
Assignment”). However, not all system variables can be persisted, or can be persisted only under
certain restrictive conditions. Here are some reasons why a system variable might be nonpersistible or
persist-restricted:

• Session system variables cannot be persisted. Session variables cannot be set at server startup, so
there is no reason to persist them.

• A global system variable might involve sensitive data such that it should be settable only by a user
with direct access to the server host.

• A global system variable might be read only (that is, set only by the server). In this case, it cannot be
set by users at all, whether at server startup or at runtime.

• A global system variable might be intended only for internal use.

Nonpersistible system variables cannot be persisted under any circumstances. As of MySQL 8.0.14,
persist-restricted system variables can be persisted with SET PERSIST_ONLY, but only by users for
which the following conditions are satisfied:

• The persist_only_admin_x509_subject system variable is set to an SSL certificate X.509
Subject value.

• The user connects to the server using an encrypted connection and supplies an SSL certificate with
the designated Subject value.

• The user has sufficient privileges to use SET PERSIST_ONLY (see Section 7.1.9.1, “System
Variable Privileges”).

For example, protocol_version is read only and set only by the server, so it cannot be persisted
under any circumstances. On the other hand, bind_address is persist-restricted, so it can be set by
users who satisfy the preceding conditions.

The following system variables are nonpersistible. This list may change with ongoing development.

audit_log_current_session
audit_log_filter_id

1059

Using System Variables

caching_sha2_password_digest_rounds
character_set_system
core_file
have_statement_timeout
have_symlink
hostname
innodb_version
keyring_hashicorp_auth_path
keyring_hashicorp_ca_path
keyring_hashicorp_caching
keyring_hashicorp_commit_auth_path
keyring_hashicorp_commit_ca_path
keyring_hashicorp_commit_caching
keyring_hashicorp_commit_role_id
keyring_hashicorp_commit_server_url
keyring_hashicorp_commit_store_path
keyring_hashicorp_role_id
keyring_hashicorp_secret_id
keyring_hashicorp_server_url
keyring_hashicorp_store_path
large_files_support
large_page_size
license
locked_in_memory
log_bin
log_bin_basename
log_bin_index
lower_case_file_system
ndb_version
ndb_version_string
persist_only_admin_x509_subject
persisted_globals_load
protocol_version
relay_log_basename
relay_log_index
server_uuid
skip_external_locking
system_time_zone
version_comment
version_compile_machine
version_compile_os
version_compile_zlib

Persist-restricted system variables are those that are read only and can be set on the
command line or in an option file, other than persist_only_admin_x509_subject and
persisted_globals_load. This list may change with ongoing development.

audit_log_file
audit_log_format
auto_generate_certs
basedir
bind_address
caching_sha2_password_auto_generate_rsa_keys
caching_sha2_password_private_key_path
caching_sha2_password_public_key_path
character_sets_dir
daemon_memcached_engine_lib_name
daemon_memcached_engine_lib_path
daemon_memcached_option
datadir
default_authentication_plugin
ft_stopword_file
init_file
innodb_buffer_pool_load_at_startup
innodb_data_file_path
innodb_data_home_dir
innodb_dedicated_server
innodb_directories
innodb_force_load_corrupted
innodb_log_group_home_dir
innodb_page_size
innodb_read_only

1060

Using System Variables

innodb_temp_data_file_path
innodb_temp_tablespaces_dir
innodb_undo_directory
innodb_undo_tablespaces
keyring_encrypted_file_data
keyring_encrypted_file_password
lc_messages_dir
log_error
mecab_rc_file
named_pipe
pid_file
plugin_dir
port
relay_log
relay_log_info_file
replica_load_tmpdir
secure_file_priv
sha256_password_auto_generate_rsa_keys
sha256_password_private_key_path
sha256_password_public_key_path
shared_memory
shared_memory_base_name
skip_networking
slave_load_tmpdir
socket
ssl_ca
ssl_capath
ssl_cert
ssl_crl
ssl_crlpath
ssl_key
tmpdir
version_tokens_session_number

To configure the server to enable persisting persist-restricted system variables, use this procedure:

1. Ensure that MySQL is configured to support encrypted connections. See Section 8.3.1,
“Configuring MySQL to Use Encrypted Connections”.

2. Designate an SSL certificate X.509 Subject value that signifies the ability to persist persist-
restricted system variables, and generate a certificate that has that Subject. See Section 8.3.3,
“Creating SSL and RSA Certificates and Keys”.

3. Start the server with persist_only_admin_x509_subject set to the designated Subject value.
For example, put these lines in your server my.cnf file:

[mysqld]
persist_only_admin_x509_subject="subject-value"

The format of the Subject value is the same as used for CREATE USER ... REQUIRE SUBJECT.
See Section 15.7.1.3, “CREATE USER Statement”.

You must perform this step directly on the MySQL server host because
persist_only_admin_x509_subject itself cannot be persisted at runtime.

4. Restart the server.

5. Distribute the SSL certificate that has the designated Subject value to users who are to be
permitted to persist persist-restricted system variables.

Suppose that myclient-cert.pem is the SSL certificate to be used by clients who can persist
persist-restricted system variables. Display the certificate contents using the openssl command:

$> openssl x509 -text -in myclient-cert.pem
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 2 (0x2)
 Signature Algorithm: md5WithRSAEncryption

1061

Using System Variables

 Issuer: C=US, ST=IL, L=Chicago, O=MyOrg, OU=CA, CN=MyCN
 Validity
 Not Before: Oct 18 17:03:03 2018 GMT
 Not After : Oct 15 17:03:03 2028 GMT
 Subject: C=US, ST=IL, L=Chicago, O=MyOrg, OU=client, CN=MyCN
...

The openssl output shows that the certificate Subject value is:

C=US, ST=IL, L=Chicago, O=MyOrg, OU=client, CN=MyCN

To specify the Subject for MySQL, use this format:

/C=US/ST=IL/L=Chicago/O=MyOrg/OU=client/CN=MyCN

Configure the server my.cnf file with the Subject value:

[mysqld]
persist_only_admin_x509_subject="/C=US/ST=IL/L=Chicago/O=MyOrg/OU=client/CN=MyCN"

Restart the server so that the new configuration takes effect.

Distribute the SSL certificate (and any other associated SSL files) to the appropriate users. Such a
user then connects to the server with the certificate and any other SSL options required to establish an
encrypted connection.

To use X.509, clients must specify the --ssl-key and --ssl-cert options to connect. It is
recommended but not required that --ssl-ca also be specified so that the public certificate provided
by the server can be verified. For example:

$> mysql --ssl-key=myclient-key.pem --ssl-cert=myclient-cert.pem --ssl-ca=mycacert.pem

Assuming that the user has sufficient privileges to use SET PERSIST_ONLY, persist-restricted system
variables can be persisted like this:

mysql> SET PERSIST_ONLY socket = '/tmp/mysql.sock';
Query OK, 0 rows affected (0.00 sec)

If the server is not configured to enable persisting persist-restricted system variables, or the user does
not satisfy the required conditions for that capability, an error occurs:

mysql> SET PERSIST_ONLY socket = '/tmp/mysql.sock';
ERROR 1238 (HY000): Variable 'socket' is a non persistent read only variable

7.1.9.5 Structured System Variables

A structured variable differs from a regular system variable in two respects:

• Its value is a structure with components that specify server parameters considered to be closely
related.

• There might be several instances of a given type of structured variable. Each one has a different
name and refers to a different resource maintained by the server.

MySQL supports one structured variable type, which specifies parameters governing the operation of
key caches. A key cache structured variable has these components:

• key_buffer_size

• key_cache_block_size

• key_cache_division_limit

• key_cache_age_threshold

This section describes the syntax for referring to structured variables. Key cache variables are used
for syntax examples, but specific details about how key caches operate are found elsewhere, in
Section 10.10.2, “The MyISAM Key Cache”.

1062

Using System Variables

To refer to a component of a structured variable instance, you can use a compound name in
instance_name.component_name format. Examples:

hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always predefined. If
you refer to a component of a structured variable without any instance name, the default instance
is used. Thus, default.key_buffer_size and key_buffer_size both refer to the same system
variable.

Structured variable instances and components follow these naming rules:

• For a given type of structured variable, each instance must have a name that is unique within
variables of that type. However, instance names need not be unique across structured variable
types. For example, each structured variable has an instance named default, so default is not
unique across variable types.

• The names of the components of each structured variable type must be unique across all system
variable names. If this were not true (that is, if two different types of structured variables could
share component member names), it would not be clear which default structured variable to use for
references to member names that are not qualified by an instance name.

• If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted
identifier using backticks. For example, hot-cache is not legal, but `hot-cache` is.

• global, session, and local are not legal instance names. This avoids a conflict with notation
such as @@GLOBAL.var_name for referring to nonstructured system variables.

Currently, the first two rules have no possibility of being violated because the only structured variable
type is the one for key caches. These rules may assume greater significance if some other type of
structured variable is created in the future.

With one exception, you can refer to structured variable components using compound names in any
context where simple variable names can occur. For example, you can assign a value to a structured
variable using a command-line option:

$> mysqld --hot_cache.key_buffer_size=64K

In an option file, use this syntax:

[mysqld]
hot_cache.key_buffer_size=64K

If you start the server with this option, it creates a key cache named hot_cache with a size of 64KB in
addition to the default key cache that has a default size of 8MB.

Suppose that you start the server as follows:

$> mysqld --key_buffer_size=256K \
 --extra_cache.key_buffer_size=128K \
 --extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have written
--default.key_buffer_size=256K.) In addition, the server creates a second key cache named
extra_cache that has a size of 128KB, with the size of block buffers for caching table index blocks
set to 2048 bytes.

The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:

$> mysqld --key_buffer_size=6M \
 --hot_cache.key_buffer_size=2M \
 --cold_cache.key_buffer_size=2M

1063

Server Status Variables

Structured variable values may be set and retrieved at runtime as well. For example, to set a key cache
named hot_cache to a size of 10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;
mysql> SET @@GLOBAL.hot_cache.key_buffer_size = 10*1024*1024;

To retrieve the cache size, do this:

mysql> SELECT @@GLOBAL.hot_cache.key_buffer_size;

However, the following statement does not work. The variable is not interpreted as a compound name,
but as a simple string for a LIKE pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE 'hot_cache.key_buffer_size';

This is the exception to being able to use structured variable names anywhere a simple variable name
may occur.

7.1.10 Server Status Variables

The MySQL server maintains many status variables that provide information about its operation.
You can view these variables and their values by using the SHOW [GLOBAL | SESSION] STATUS
statement (see Section 15.7.7.37, “SHOW STATUS Statement”). The optional GLOBAL keyword
aggregates the values over all connections, and SESSION shows the values for the current connection.

mysql> SHOW GLOBAL STATUS;
+-----------------------------------+------------+
| Variable_name | Value |
+-----------------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
...	
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_files	3
Created_tmp_tables	2
...	
Threads_created	217
Threads_running	88
Uptime	1389872
+-----------------------------------+------------+

Many status variables are reset to 0 by the FLUSH STATUS statement.

This section provides a description of each status variable. For a status variable summary, see
Section 7.1.6, “Server Status Variable Reference”. For information about status variables specific to
NDB Cluster, see NDB Cluster Status Variables.

The status variables have the following meanings.

• Aborted_clients

The number of connections that were aborted because the client died without closing the connection
properly. See Section B.3.2.9, “Communication Errors and Aborted Connections”.

• Aborted_connects

The number of failed attempts to connect to the MySQL server. See Section B.3.2.9,
“Communication Errors and Aborted Connections”.

For additional connection-related information, check the Connection_errors_xxx status variables
and the host_cache table.

• Authentication_ldap_sasl_supported_methods

1064

Server Status Variables

The authentication_ldap_sasl plugin that implements SASL LDAP authentication supports
multiple authentication methods, but depending on host system configuration, they might not all
be available. The Authentication_ldap_sasl_supported_methods variable provides
discoverability for the supported methods. Its value is a string consisting of supported method names
separated by spaces. Example: "SCRAM-SHA 1 SCRAM-SHA-256 GSSAPI"

This variable was added in MySQL 8.0.21.

• Binlog_cache_disk_use

The number of transactions that used the temporary binary log cache but that exceeded the value of
binlog_cache_size and used a temporary file to store statements from the transaction.

The number of nontransactional statements that caused the binary log transaction cache to be
written to disk is tracked separately in the Binlog_stmt_cache_disk_use status variable.

• Acl_cache_items_count

The number of cached privilege objects. Each object is the privilege combination of a user and its
active roles.

• Binlog_cache_use

The number of transactions that used the binary log cache.

• Binlog_stmt_cache_disk_use

The number of nontransaction statements that used the binary log statement cache but that
exceeded the value of binlog_stmt_cache_size and used a temporary file to store those
statements.

• Binlog_stmt_cache_use

The number of nontransactional statements that used the binary log statement cache.

• Bytes_received

The number of bytes received from all clients.

• Bytes_sent

The number of bytes sent to all clients.

• Caching_sha2_password_rsa_public_key

The public key used by the caching_sha2_password authentication plugin for RSA key pair-
based password exchange. The value is nonempty only if the server successfully initializes the
private and public keys in the files named by the caching_sha2_password_private_key_path
and caching_sha2_password_public_key_path system variables. The value of
Caching_sha2_password_rsa_public_key comes from the latter file.

• Com_xxx

The Com_xxx statement counter variables indicate the number of times each xxx statement has
been executed. There is one status variable for each type of statement. For example, Com_delete
and Com_update count DELETE and UPDATE statements, respectively. Com_delete_multi and
Com_update_multi are similar but apply to DELETE and UPDATE statements that use multiple-
table syntax.

All Com_stmt_xxx variables are increased even if a prepared statement argument is unknown
or an error occurred during execution. In other words, their values correspond to the number of
requests issued, not to the number of requests successfully completed. For example, because status

1065

Server Status Variables

variables are initialized for each server startup and do not persist across restarts, the Com_restart
and Com_shutdown variables that track RESTART and SHUTDOWN statements normally have a value
of zero, but can be nonzero if RESTART or SHUTDOWN statements were executed but failed.

The Com_stmt_xxx status variables are as follows:

• Com_stmt_prepare

• Com_stmt_execute

• Com_stmt_fetch

• Com_stmt_send_long_data

• Com_stmt_reset

• Com_stmt_close

Those variables stand for prepared statement commands. Their names refer to the COM_xxx
command set used in the network layer. In other words, their values increase whenever prepared
statement API calls such as mysql_stmt_prepare(), mysql_stmt_execute(), and so forth
are executed. However, Com_stmt_prepare, Com_stmt_execute and Com_stmt_close
also increase for PREPARE, EXECUTE, or DEALLOCATE PREPARE, respectively. Additionally, the
values of the older statement counter variables Com_prepare_sql, Com_execute_sql, and
Com_dealloc_sql increase for the PREPARE, EXECUTE, and DEALLOCATE PREPARE statements.
Com_stmt_fetch stands for the total number of network round-trips issued when fetching from
cursors.

Com_stmt_reprepare indicates the number of times statements were automatically reprepared by
the server, for example, after metadata changes to tables or views referred to by the statement. A
reprepare operation increments Com_stmt_reprepare, and also Com_stmt_prepare.

Com_explain_other indicates the number of EXPLAIN FOR CONNECTION statements executed.
See Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”.

Com_change_repl_filter indicates the number of CHANGE REPLICATION FILTER statements
executed.

• Compression

Whether the client connection uses compression in the client/server protocol.

As of MySQL 8.0.18, this status variable is deprecated; expect it to be removed in a future version of
MySQL. See Configuring Legacy Connection Compression.

• Compression_algorithm

The name of the compression algorithm in use for the current connection to the server. The value
can be any algorithm permitted in the value of the protocol_compression_algorithms system
variable. For example, the value is uncompressed if the connection does not use compression, or
zlib if the connection uses the zlib algorithm.

For more information, see Section 6.2.8, “Connection Compression Control”.

This variable was added in MySQL 8.0.18.

1066

Server Status Variables

• Compression_level

The compression level in use for the current connection to the server. The value is 6 for zlib
connections (the default zlib algorithm compression level), 1 to 22 for zstd connections, and 0 for
uncompressed connections.

For more information, see Section 6.2.8, “Connection Compression Control”.

This variable was added in MySQL 8.0.18.

• Connection_errors_xxx

These variables provide information about errors that occur during the client connection process.
They are global only and represent error counts aggregated across connections from all hosts.
These variables track errors not accounted for by the host cache (see Section 7.1.12.3, “DNS
Lookups and the Host Cache”), such as errors that are not associated with TCP connections, occur
very early in the connection process (even before an IP address is known), or are not specific to any
particular IP address (such as out-of-memory conditions).

• Connection_errors_accept

The number of errors that occurred during calls to accept() on the listening port.

• Connection_errors_internal

The number of connections refused due to internal errors in the server, such as failure to start a
new thread or an out-of-memory condition.

• Connection_errors_max_connections

The number of connections refused because the server max_connections limit was reached.

• Connection_errors_peer_address

The number of errors that occurred while searching for connecting client IP addresses.

• Connection_errors_select

The number of errors that occurred during calls to select() or poll() on the listening port.
(Failure of this operation does not necessarily means a client connection was rejected.)

• Connection_errors_tcpwrap

The number of connections refused by the libwrap library.

• Connections

The number of connection attempts (successful or not) to the MySQL server.

• Created_tmp_disk_tables

The number of internal on-disk temporary tables created by the server while executing statements.

You can compare the number of internal on-disk temporary tables created to the total number
of internal temporary tables created by comparing Created_tmp_disk_tables and
Created_tmp_tables values.

Note

Due to a known limitation, Created_tmp_disk_tables does not count
on-disk temporary tables created in memory-mapped files. By default,
the TempTable storage engine overflow mechanism creates internal

1067

Server Status Variables

temporary tables in memory-mapped files. This behavior is controlled by the
temptable_use_mmap variable, which is enabled by default.

See also Section 10.4.4, “Internal Temporary Table Use in MySQL”.

• Created_tmp_files

How many temporary files mysqld has created.

• Created_tmp_tables

The number of internal temporary tables created by the server while executing statements.

You can compare the number of internal on-disk temporary tables created to the total number
of internal temporary tables created by comparing Created_tmp_disk_tables and
Created_tmp_tables values.

See also Section 10.4.4, “Internal Temporary Table Use in MySQL”.

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments
the global Created_tmp_tables value.

• Current_tls_ca

The active ssl_ca value in the SSL context that the server uses for new connections. This context
value may differ from the current ssl_ca system variable value if the system variable has been
changed but ALTER INSTANCE RELOAD TLS has not subsequently been executed to reconfigure
the SSL context from the context-related system variable values and update the corresponding
status variables. (This potential difference in values applies to each corresponding pair of context-
related system and status variables. See Server-Side Runtime Configuration and Monitoring for
Encrypted Connections.)

This variable was added in MySQL 8.0.16.

As of MySQL 8.0.21, the Current_tls_xxx status variable values are also available through
the Performance Schema tls_channel_status table. See Section 29.12.21.9, “The
tls_channel_status Table”.

• Current_tls_capath

The active ssl_capath value in the TLS context that the server uses for new connections. For
notes about the relationship between this status variable and its corresponding system variable, see
the description of Current_tls_ca.

This variable was added in MySQL 8.0.16.

• Current_tls_cert

The active ssl_cert value in the TLS context that the server uses for new connections. For notes
about the relationship between this status variable and its corresponding system variable, see the
description of Current_tls_ca.

This variable was added in MySQL 8.0.16.

• Current_tls_cipher

The active ssl_cipher value in the TLS context that the server uses for new connections. For
notes about the relationship between this status variable and its corresponding system variable, see
the description of Current_tls_ca.

This variable was added in MySQL 8.0.16.
1068

Server Status Variables

• Current_tls_ciphersuites

The active tls_ciphersuites value in the TLS context that the server uses for new connections.
For notes about the relationship between this status variable and its corresponding system variable,
see the description of Current_tls_ca.

This variable was added in MySQL 8.0.16.

• Current_tls_crl

The active ssl_crl value in the TLS context that the server uses for new connections. For notes
about the relationship between this status variable and its corresponding system variable, see the
description of Current_tls_ca.

This variable was added in MySQL 8.0.16.

Note

When you reload the TLS context, OpenSSL reloads the file containing the
CRL (certificate revocation list) as part of the process. If the CRL file is large,
the server allocates a large chunk of memory (ten times the file size), which
is doubled while the new instance is being loaded and the old one has not
yet been released. The process resident memory is not immediately reduced
after a large allocation is freed, so if you issue the ALTER INSTANCE
RELOAD TLS statement repeatedly with a large CRL file, the process resident
memory usage may grow as a result of this.

• Current_tls_crlpath

The active ssl_crlpath value in the TLS context that the server uses for new connections. For
notes about the relationship between this status variable and its corresponding system variable, see
the description of Current_tls_ca.

This variable was added in MySQL 8.0.16.

• Current_tls_key

The active ssl_key value in the TLS context that the server uses for new connections. For notes
about the relationship between this status variable and its corresponding system variable, see the
description of Current_tls_ca.

This variable was added in MySQL 8.0.16.

• Current_tls_version

The active tls_version value in the TLS context that the server uses for new connections. For
notes about the relationship between this status variable and its corresponding system variable, see
the description of Current_tls_ca.

This variable was added in MySQL 8.0.16.

• Delayed_errors

This status variable is deprecated (because DELAYED inserts are not supported); expect it to be
removed in a future release.

• Delayed_insert_threads

This status variable is deprecated (because DELAYED inserts are not supported); expect it to be
removed in a future release.

• Delayed_writes

1069

Server Status Variables

This status variable is deprecated (because DELAYED inserts are not supported); expect it to be
removed in a future release.

• dragnet.Status

The result of the most recent assignment to the dragnet.log_error_filter_rules system
variable, empty if no such assignment has occurred.

This variable was added in MySQL 8.0.12.

• Error_log_buffered_bytes

The number of bytes currently used in the Performance Schema error_log table. It is possible for
the value to decrease, for example, if a new event cannot fit until discarding an old event, but the
new event is smaller than the old one.

This variable was added in MySQL 8.0.22.

• Error_log_buffered_events

The number of events currently present in the Performance Schema error_log table. As with
Error_log_buffered_bytes, it is possible for the value to decrease.

This variable was added in MySQL 8.0.22.

• Error_log_expired_events

The number of events discarded from the Performance Schema error_log table to make room for
new events.

This variable was added in MySQL 8.0.22.

• Error_log_latest_write

The time of the last write to the Performance Schema error_log table.

This variable was added in MySQL 8.0.22.

• Flush_commands

The number of times the server flushes tables, whether because a user executed a FLUSH TABLES
statement or due to internal server operation. It is also incremented by receipt of a COM_REFRESH
packet. This is in contrast to Com_flush, which indicates how many FLUSH statements have been
executed, whether FLUSH TABLES, FLUSH LOGS, and so forth.

• Global_connection_memory

The memory used by all user connections to the server. Memory used by system threads
or by the MySQL root account is included in the total, but such threads or users are not
subject to disconnection due to memory usage. This memory is not calculated unless
global_connection_memory_tracking is enabled (disabled by default). The Performance
Schema must also be enabled.

You can control (indirectly) the frequency with which this variable is updated by setting
connection_memory_chunk_size.

The Global_connection_memory status variable was introduced in MySQL 8.0.28.

• Handler_commit

The number of internal COMMIT statements.

1070

Server Status Variables

• Handler_delete

The number of times that rows have been deleted from tables.

• Handler_external_lock

The server increments this variable for each call to its external_lock() function, which generally
occurs at the beginning and end of access to a table instance. There might be differences among
storage engines. This variable can be used, for example, to discover for a statement that accesses
a partitioned table how many partitions were pruned before locking occurred: Check how much the
counter increased for the statement, subtract 2 (2 calls for the table itself), then divide by 2 to get the
number of partitions locked.

• Handler_mrr_init

The number of times the server uses a storage engine's own Multi-Range Read implementation for
table access.

• Handler_prepare

A counter for the prepare phase of two-phase commit operations.

• Handler_read_first

The number of times the first entry in an index was read. If this value is high, it suggests that the
server is doing a lot of full index scans (for example, SELECT col1 FROM foo, assuming that
col1 is indexed).

• Handler_read_key

The number of requests to read a row based on a key. If this value is high, it is a good indication that
your tables are properly indexed for your queries.

• Handler_read_last

The number of requests to read the last key in an index. With ORDER BY, the server issues a first-
key request followed by several next-key requests, whereas with ORDER BY DESC, the server issues
a last-key request followed by several previous-key requests.

• Handler_read_next

The number of requests to read the next row in key order. This value is incremented if you are
querying an index column with a range constraint or if you are doing an index scan.

• Handler_read_prev

The number of requests to read the previous row in key order. This read method is mainly used to
optimize ORDER BY ... DESC.

• Handler_read_rnd

The number of requests to read a row based on a fixed position. This value is high if you are doing a
lot of queries that require sorting of the result. You probably have a lot of queries that require MySQL
to scan entire tables or you have joins that do not use keys properly.

• Handler_read_rnd_next

The number of requests to read the next row in the data file. This value is high if you are doing a lot
of table scans. Generally this suggests that your tables are not properly indexed or that your queries
are not written to take advantage of the indexes you have.

• Handler_rollback

1071

Server Status Variables

The number of requests for a storage engine to perform a rollback operation.

• Handler_savepoint

The number of requests for a storage engine to place a savepoint.

• Handler_savepoint_rollback

The number of requests for a storage engine to roll back to a savepoint.

• Handler_update

The number of requests to update a row in a table.

• Handler_write

The number of requests to insert a row in a table.

• Innodb_buffer_pool_dump_status

The progress of an operation to record the pages held in the InnoDB buffer pool, triggered by the
setting of innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now.

For related information and examples, see Section 17.8.3.6, “Saving and Restoring the Buffer Pool
State”.

• Innodb_buffer_pool_load_status

The progress of an operation to warm up the InnoDB buffer pool by reading in a
set of pages corresponding to an earlier point in time, triggered by the setting of
innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now.
If the operation introduces too much overhead, you can cancel it by setting
innodb_buffer_pool_load_abort.

For related information and examples, see Section 17.8.3.6, “Saving and Restoring the Buffer Pool
State”.

• Innodb_buffer_pool_bytes_data

The total number of bytes in the InnoDB buffer pool containing data. The number includes
both dirty and clean pages. For more accurate memory usage calculations than with
Innodb_buffer_pool_pages_data, when compressed tables cause the buffer pool to hold
pages of different sizes.

• Innodb_buffer_pool_pages_data

The number of pages in the InnoDB buffer pool containing data. The number includes both dirty and
clean pages. When using compressed tables, the reported Innodb_buffer_pool_pages_data
value may be larger than Innodb_buffer_pool_pages_total (Bug #59550).

• Innodb_buffer_pool_bytes_dirty

The total current number of bytes held in dirty pages in the InnoDB buffer pool. For more accurate
memory usage calculations than with Innodb_buffer_pool_pages_dirty, when compressed
tables cause the buffer pool to hold pages of different sizes.

• Innodb_buffer_pool_pages_dirty

The current number of dirty pages in the InnoDB buffer pool.

• Innodb_buffer_pool_pages_flushed

The number of requests to flush pages from the InnoDB buffer pool.

1072

Server Status Variables

• Innodb_buffer_pool_pages_free

The number of free pages in the InnoDB buffer pool.

• Innodb_buffer_pool_pages_latched

The number of latched pages in the InnoDB buffer pool. These are pages currently being read or
written, or that cannot be flushed or removed for some other reason. Calculation of this variable is
expensive, so it is available only when the UNIV_DEBUG system is defined at server build time.

• Innodb_buffer_pool_pages_misc

The number of pages in the InnoDB buffer pool that are busy because they have
been allocated for administrative overhead, such as row locks or the adaptive hash
index. This value can also be calculated as Innodb_buffer_pool_pages_total −
Innodb_buffer_pool_pages_free − Innodb_buffer_pool_pages_data. When using
compressed tables, Innodb_buffer_pool_pages_misc may report an out-of-bounds value (Bug
#59550).

• Innodb_buffer_pool_pages_total

The total size of the InnoDB buffer pool, in pages. When using compressed tables,
the reported Innodb_buffer_pool_pages_data value may be larger than
Innodb_buffer_pool_pages_total (Bug #59550)

• Innodb_buffer_pool_read_ahead

The number of pages read into the InnoDB buffer pool by the read-ahead background thread.

• Innodb_buffer_pool_read_ahead_evicted

The number of pages read into the InnoDB buffer pool by the read-ahead background thread that
were subsequently evicted without having been accessed by queries.

• Innodb_buffer_pool_read_ahead_rnd

The number of “random” read-aheads initiated by InnoDB. This happens when a query scans a
large portion of a table but in random order.

• Innodb_buffer_pool_read_requests

The number of logical read requests.

• Innodb_buffer_pool_reads

The number of logical reads that InnoDB could not satisfy from the buffer pool, and had to read
directly from disk.

• Innodb_buffer_pool_resize_status

The status of an operation to resize the InnoDB buffer pool dynamically, triggered by setting
the innodb_buffer_pool_size parameter dynamically. The innodb_buffer_pool_size
parameter is dynamic, which allows you to resize the buffer pool without restarting the server. See
Configuring InnoDB Buffer Pool Size Online for related information.

• Innodb_buffer_pool_resize_status_code

Reports status codes for tracking online buffer pool resizing operations. Each status code represents
a stage in a resizing operation. Status codes include:

• 0: No Resize operation in progress

• 1: Starting Resize

1073

Server Status Variables

• 2: Disabling AHI (Adaptive Hash Index)

• 3: Withdrawing Blocks

• 4: Acquiring Global Lock

• 5: Resizing Pool

• 6: Resizing Hash

• 7: Resizing Failed

You can use this status variable in conjunction with
Innodb_buffer_pool_resize_status_progress to track the progress of each stage of a
resizing operation. The Innodb_buffer_pool_resize_status_progress variable reports a
percentage value indicating the progress of the current stage.

For more information, see Monitoring Online Buffer Pool Resizing Progress.

• Innodb_buffer_pool_resize_status_progress

Reports a percentage value indicating the progress of the current stage of an
online buffer pool resizing operation. This variable is used in conjunction with
Innodb_buffer_pool_resize_status_code, which reports a status code indicating the current
stage of an online buffer pool resizing operation.

The percentage value is updated after each buffer pool instance is processed. As the status code
(reported by Innodb_buffer_pool_resize_status_code) changes from one status to another,
the percentage value is reset to 0.

For related information, see Monitoring Online Buffer Pool Resizing Progress.

• Innodb_buffer_pool_wait_free

Normally, writes to the InnoDB buffer pool happen in the background. When InnoDB needs
to read or create a page and no clean pages are available, InnoDB flushes some dirty pages
first and waits for that operation to finish. This counter counts instances of these waits. If
innodb_buffer_pool_size has been set properly, this value should be small.

• Innodb_buffer_pool_write_requests

The number of writes done to the InnoDB buffer pool.

• Innodb_data_fsyncs

The number of fsync() operations so far. The frequency of fsync() calls is influenced by the
setting of the innodb_flush_method configuration option.

Counts the number of fdatasync() operations if innodb_use_fdatasync is enabled.

• Innodb_data_pending_fsyncs

The current number of pending fsync() operations. The frequency of fsync() calls is influenced
by the setting of the innodb_flush_method configuration option.

• Innodb_data_pending_reads

The current number of pending reads.

• Innodb_data_pending_writes

The current number of pending writes.

1074

Server Status Variables

• Innodb_data_read

The amount of data read since the server was started (in bytes).

• Innodb_data_reads

The total number of data reads (OS file reads).

• Innodb_data_writes

The total number of data writes.

• Innodb_data_written

The amount of data written so far, in bytes.

• Innodb_dblwr_pages_written

The number of pages that have been written to the doublewrite buffer. See Section 17.11.1, “InnoDB
Disk I/O”.

• Innodb_dblwr_writes

The number of doublewrite operations that have been performed. See Section 17.11.1, “InnoDB Disk
I/O”.

• Innodb_have_atomic_builtins

Indicates whether the server was built with atomic instructions.

• Innodb_log_waits

The number of times that the log buffer was too small and a wait was required for it to be flushed
before continuing.

• Innodb_log_write_requests

The number of write requests for the InnoDB redo log.

• Innodb_log_writes

The number of physical writes to the InnoDB redo log file.

• Innodb_num_open_files

The number of files InnoDB currently holds open.

• Innodb_os_log_fsyncs

The number of fsync() writes done to the InnoDB redo log files.

• Innodb_os_log_pending_fsyncs

The number of pending fsync() operations for the InnoDB redo log files.

• Innodb_os_log_pending_writes

The number of pending writes to the InnoDB redo log files.

• Innodb_os_log_written

The number of bytes written to the InnoDB redo log files.

• Innodb_page_size

1075

Server Status Variables

InnoDB page size (default 16KB). Many values are counted in pages; the page size enables them to
be easily converted to bytes.

• Innodb_pages_created

The number of pages created by operations on InnoDB tables.

• Innodb_pages_read

The number of pages read from the InnoDB buffer pool by operations on InnoDB tables.

• Innodb_pages_written

The number of pages written by operations on InnoDB tables.

• Innodb_redo_log_enabled

Whether redo logging is enabled or disabled. See Disabling Redo Logging.

This variable was added in MySQL 8.0.21.

• Innodb_redo_log_capacity_resized

The total redo log capacity for all redo log files, in bytes, after the last completed capacity resize
operation. The value includes ordinary and spare redo log files.

If there is no pending resize down operation, Innodb_redo_log_capacity_resized should be
equal to the innodb_redo_log_capacity setting if it's used, or it's ((innodb_log_files_in_group
* innodb_log_file_size)) if those are used instead. See the innodb_redo_log_capacity
documentation for further clarification. Resize up operations are instantaneous.

For related information, see Section 17.6.5, “Redo Log”.

This variable was added in MySQL 8.0.30.

• Innodb_redo_log_checkpoint_lsn

The redo log checkpoint LSN. For related information, see Section 17.6.5, “Redo Log”.

This variable was added in MySQL 8.0.30.

• Innodb_redo_log_current_lsn

The current LSN represents the last written position in the redo log buffer. InnoDB writes data to the
redo log buffer inside the MySQL process before requesting that the operating system write the data
to the current redo log file. For related information, see Section 17.6.5, “Redo Log”.

This variable was added in MySQL 8.0.30.

• Innodb_redo_log_flushed_to_disk_lsn

The flushed-to-disk LSN. InnoDB first writes data to the redo log and then requests that the
operating system flush the data to disk. The flushed-to-disk LSN represents the last position in the
redo log that InnoDB knows has been flushed to disk. For related information, see Section 17.6.5,
“Redo Log”.

This variable was added in MySQL 8.0.30.

1076

Server Status Variables

• Innodb_redo_log_logical_size

A data size value, in bytes, representing the LSN range containing in-use redo log data, spanning
from the oldest block required by redo log consumers to the latest written block. For related
information, see Section 17.6.5, “Redo Log”.

This variable was added in MySQL 8.0.30.

• Innodb_redo_log_physical_size

The amount of disk space in bytes currently consumed by all redo log files on disk, excluding spare
redo log files. For related information, see Section 17.6.5, “Redo Log”.

This variable was added in MySQL 8.0.30.

• Innodb_redo_log_read_only

Whether the redo log is read-only.

This variable was added in MySQL 8.0.30.

• Innodb_redo_log_resize_status

The redo log resize status indicating the current state of the redo log capacity resize mechanism.
Possible values include:

• OK: There are no issues and no pending redo log capacity resize operations.

• Resizing down: A resize down operation is in progress.

A resize up operation is instantaneous and therefore has no pending status.

This variable was added in MySQL 8.0.30.

• Innodb_redo_log_uuid

The redo log UUID.

This variable was added in MySQL 8.0.30.

• Innodb_row_lock_current_waits

The number of row locks currently waited for by operations on InnoDB tables.

• Innodb_row_lock_time

The total time spent in acquiring row locks for InnoDB tables, in milliseconds.

• Innodb_row_lock_time_avg

The average time to acquire a row lock for InnoDB tables, in milliseconds.

• Innodb_row_lock_time_max

The maximum time to acquire a row lock for InnoDB tables, in milliseconds.

• Innodb_row_lock_waits

The number of times operations on InnoDB tables had to wait for a row lock.

• Innodb_rows_deleted

The number of rows deleted from InnoDB tables.

1077

Server Status Variables

• Innodb_rows_inserted

The number of rows inserted into InnoDB tables.

• Innodb_rows_read

The number of rows read from InnoDB tables.

• Innodb_rows_updated

The estimated number of rows updated in InnoDB tables.

Note

This value is not meant to be 100% accurate. For an accurate (but more
expensive) result, use ROW_COUNT().

• Innodb_system_rows_deleted

The number of rows deleted from InnoDB tables belonging to system-created schemas.

• Innodb_system_rows_inserted

The number of rows inserted into InnoDB tables belonging to system-created schemas.

• Innodb_system_rows_updated

The number of rows updated in InnoDB tables belonging to system-created schemas.

• Innodb_system_rows_read

The number of rows read from InnoDB tables belonging to system-created schemas.

• Innodb_truncated_status_writes

The number of times output from the SHOW ENGINE INNODB STATUS statement has been
truncated.

• Innodb_undo_tablespaces_active

The number of active undo tablespaces. Includes both implicit (InnoDB-created) and explicit (user-
created) undo tablespaces. For information about undo tablespaces, see Section 17.6.3.4, “Undo
Tablespaces”.

• Innodb_undo_tablespaces_explicit

The number of user-created undo tablespaces. For information about undo tablespaces, see
Section 17.6.3.4, “Undo Tablespaces”.

• Innodb_undo_tablespaces_implicit

The number of undo tablespaces created by InnoDB. Two default undo tablespaces are created
by InnoDB when the MySQL instance is initialized. For information about undo tablespaces, see
Section 17.6.3.4, “Undo Tablespaces”.

• Innodb_undo_tablespaces_total

The total number of undo tablespaces. Includes both implicit (InnoDB-created) and explicit (user-
created) undo tablespaces, active and inactive. For information about undo tablespaces, see
Section 17.6.3.4, “Undo Tablespaces”.

1078

Server Status Variables

• Key_blocks_not_flushed

The number of key blocks in the MyISAM key cache that have changed but have not yet been
flushed to disk.

• Key_blocks_unused

The number of unused blocks in the MyISAM key cache. You can use this value to determine how
much of the key cache is in use; see the discussion of key_buffer_size in Section 7.1.8, “Server
System Variables”.

• Key_blocks_used

The number of used blocks in the MyISAM key cache. This value is a high-water mark that indicates
the maximum number of blocks that have ever been in use at one time.

• Key_read_requests

The number of requests to read a key block from the MyISAM key cache.

• Key_reads

The number of physical reads of a key block from disk into the MyISAM key cache. If Key_reads
is large, then your key_buffer_size value is probably too small. The cache miss rate can be
calculated as Key_reads/Key_read_requests.

• Key_write_requests

The number of requests to write a key block to the MyISAM key cache.

• Key_writes

The number of physical writes of a key block from the MyISAM key cache to disk.

• Last_query_cost

The total cost of the last compiled query as computed by the query optimizer. This is useful for
comparing the cost of different query plans for the same query. The default value of 0 means that no
query has been compiled yet. The default value is 0. Last_query_cost has session scope.

In MySQL 8.0.16 and later, this variable shows the cost of queries that have multiple query blocks,
summing the cost estimates of each query block, estimating how many times non-cacheable
subqueries are executed, and multiplying the cost of those query blocks by the number of subquery
executions. (Bug #92766, Bug #28786951) Prior to MySQL 8.0.16, Last_query_cost was
computed accurately only for simple, “flat” queries, but not for complex queries such as those
containing subqueries or UNION. (For the latter, the value was set to 0.)

• Last_query_partial_plans

The number of iterations the query optimizer made in execution plan construction for the previous
query.

Last_query_partial_plans has session scope.

• Locked_connects

The number of attempts to connect to locked user accounts. For information about account locking
and unlocking, see Section 8.2.20, “Account Locking”.

• Max_execution_time_exceeded

The number of SELECT statements for which the execution timeout was exceeded.

1079

Server Status Variables

• Max_execution_time_set

The number of SELECT statements for which a nonzero execution timeout was set. This includes
statements that include a nonzero MAX_EXECUTION_TIME optimizer hint, and statements that
include no such hint but execute while the timeout indicated by the max_execution_time system
variable is nonzero.

• Max_execution_time_set_failed

The number of SELECT statements for which the attempt to set an execution timeout failed.

• Max_used_connections

The maximum number of connections that have been in use simultaneously since the server started.

• Max_used_connections_time

The time at which Max_used_connections reached its current value.

• Not_flushed_delayed_rows

This status variable is deprecated (because DELAYED inserts are not supported); expect it to be
removed in a future release.

• mecab_charset

The character set currently used by the MeCab full-text parser plugin. For related information, see
Section 14.9.9, “MeCab Full-Text Parser Plugin”.

• Ongoing_anonymous_transaction_count

Shows the number of ongoing transactions which have been marked as anonymous. This can be
used to ensure that no further transactions are waiting to be processed.

• Ongoing_anonymous_gtid_violating_transaction_count

This status variable is only available in debug builds. Shows the number of ongoing transactions
which use gtid_next=ANONYMOUS and that violate GTID consistency.

• Ongoing_automatic_gtid_violating_transaction_count

This status variable is only available in debug builds. Shows the number of ongoing transactions
which use gtid_next=AUTOMATIC and that violate GTID consistency.

• Open_files

The number of files that are open. This count includes regular files opened by the server. It does
not include other types of files such as sockets or pipes. Also, the count does not include files that
storage engines open using their own internal functions rather than asking the server level to do so.

• Open_streams

The number of streams that are open (used mainly for logging).

• Open_table_definitions

The number of cached table definitions.

• Open_tables

The number of tables that are open.

• Opened_files

1080

Server Status Variables

The number of files that have been opened with my_open() (a mysys library function). Parts of the
server that open files without using this function do not increment the count.

• Opened_table_definitions

The number of table definitions that have been cached.

• Opened_tables

The number of tables that have been opened. If Opened_tables is big, your table_open_cache
value is probably too small.

• Performance_schema_xxx

Performance Schema status variables are listed in Section 29.16, “Performance Schema Status
Variables”. These variables provide information about instrumentation that could not be loaded or
created due to memory constraints.

• Prepared_stmt_count

The current number of prepared statements. (The maximum number of statements is given by the
max_prepared_stmt_count system variable.)

• Queries

The number of statements executed by the server. This variable includes statements executed within
stored programs, unlike the Questions variable. It does not count COM_PING or COM_STATISTICS
commands.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

• Questions

The number of statements executed by the server. This includes only statements sent to the server
by clients and not statements executed within stored programs, unlike the Queries variable. This
variable does not count COM_PING, COM_STATISTICS, COM_STMT_PREPARE, COM_STMT_CLOSE,
or COM_STMT_RESET commands.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

• Replica_open_temp_tables

From MySQL 8.0.26, use Replica_open_temp_tables in place of Slave_open_temp_tables,
which is deprecated from that release. In releases before MySQL 8.0.26, use
Slave_open_temp_tables.

Replica_open_temp_tables shows the number of temporary tables that the replication SQL
thread currently has open. If the value is greater than zero, it is not safe to shut down the replica; see
Section 19.5.1.31, “Replication and Temporary Tables”. This variable reports the total count of open
temporary tables for all replication channels.

• Replica_rows_last_search_algorithm_used

From MySQL 8.0.26, use Replica_rows_last_search_algorithm_used in place of
Slave_rows_last_search_algorithm_used, which is deprecated from that release. In
releases before MySQL 8.0.26, use Slave_rows_last_search_algorithm_used.

Replica_rows_last_search_algorithm_used shows the search algorithm that was most
recently used by this replica to locate rows for row-based replication. The result shows whether

1081

Server Status Variables

the replica used indexes, a table scan, or hashing as the search algorithm for the last transaction
executed on any channel.

The method used depends on the setting for the slave_rows_search_algorithms system
variable (which is now deprecated), and the keys that are available on the relevant table.

This variable is available only for debug builds of MySQL.

• Resource_group_supported

Indicates whether the resource group feature is supported.

On some platforms or MySQL server configurations, resource groups are unavailable or have
limitations. In particular, Linux systems might require a manual step for some installation methods.
For details, see Resource Group Restrictions.

• Rpl_semi_sync_master_clients

The number of semisynchronous replicas.

Rpl_semi_sync_master_clients is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_clients is available instead.

• Rpl_semi_sync_master_net_avg_wait_time

The average time in microseconds the source waited for a replica reply. This variable is always 0,
and is deprecated; expect it to be removed in a future version.

Rpl_semi_sync_master_net_avg_wait_time is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_net_avg_wait_time is available instead.

• Rpl_semi_sync_master_net_wait_time

The total time in microseconds the source waited for replica replies. This variable is always 0, and is
deprecated; expect it to be removed in a future version.

Rpl_semi_sync_master_net_wait_time is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_net_wait_time is available instead.

• Rpl_semi_sync_master_net_waits

The total number of times the source waited for replica replies.

Rpl_semi_sync_master_net_waits is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_net_waits is available instead.

• Rpl_semi_sync_master_no_times

The number of times the source turned off semisynchronous replication.

Rpl_semi_sync_master_no_times is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_no_times is available instead.

1082

Server Status Variables

• Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a replica.

Rpl_semi_sync_master_no_tx is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_no_tx is available instead.

• Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the source. The value is ON if the
plugin has been enabled and a commit acknowledgment has occurred. It is OFF if the plugin is not
enabled or the source has fallen back to asynchronous replication due to commit acknowledgment
timeout.

Rpl_semi_sync_master_status is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_status is available instead.

• Rpl_semi_sync_master_timefunc_failures

The number of times the source failed when calling time functions such as gettimeofday().

Rpl_semi_sync_master_timefunc_failures is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_timefunc_failures is available instead.

• Rpl_semi_sync_master_tx_avg_wait_time

The average time in microseconds the source waited for each transaction.

Rpl_semi_sync_master_tx_avg_wait_time is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_tx_avg_wait_time is available instead.

• Rpl_semi_sync_master_tx_wait_time

The total time in microseconds the source waited for transactions.

Rpl_semi_sync_master_tx_wait_time is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_tx_wait_time is available instead.

• Rpl_semi_sync_master_tx_waits

The total number of times the source waited for transactions.

Rpl_semi_sync_master_tx_waits is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_tx_waits is available instead.

• Rpl_semi_sync_master_wait_pos_backtraverse

The total number of times the source waited for an event with binary coordinates lower than events
waited for previously. This can occur when the order in which transactions start waiting for a reply is
different from the order in which their binary log events are written.

1083

Server Status Variables

Rpl_semi_sync_master_wait_pos_backtraverse is available when the
rpl_semi_sync_master (semisync_master.so library) plugin was installed on the replica to set
up semisynchronous replication. If the rpl_semi_sync_source plugin (semisync_source.so
library) was installed, Rpl_semi_sync_source_wait_pos_backtraverse is available instead.

• Rpl_semi_sync_master_wait_sessions

The number of sessions currently waiting for replica replies.

Rpl_semi_sync_master_wait_sessions is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_wait_sessions is available instead.

• Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a replica.

Rpl_semi_sync_master_yes_tx is available when the rpl_semi_sync_master
(semisync_master.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_source plugin (semisync_source.so library) was installed,
Rpl_semi_sync_source_yes_tx is available instead.

• Rpl_semi_sync_source_clients

The number of semisynchronous replicas.

Rpl_semi_sync_source_clients is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_clients is available instead.

• Rpl_semi_sync_source_net_avg_wait_time

The average time in microseconds the source waited for a replica reply. This variable is always 0,
and is deprecated; expect it to be removed in a future version.

Rpl_semi_sync_source_net_avg_wait_time is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_net_avg_wait_time is available instead.

• Rpl_semi_sync_source_net_wait_time

The total time in microseconds the source waited for replica replies. This variable is always 0, and is
deprecated; expect it to be removed in a future version.

Rpl_semi_sync_source_net_wait_time is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_net_wait_time is available instead.

• Rpl_semi_sync_source_net_waits

The total number of times the source waited for replica replies.

Rpl_semi_sync_source_net_waits is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_net_waits is available instead.

1084

Server Status Variables

• Rpl_semi_sync_source_no_times

The number of times the source turned off semisynchronous replication.

Rpl_semi_sync_source_no_times is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_no_times is available instead.

• Rpl_semi_sync_source_no_tx

The number of commits that were not acknowledged successfully by a replica.

Rpl_semi_sync_source_no_tx is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_no_tx is available instead.

• Rpl_semi_sync_source_status

Whether semisynchronous replication currently is operational on the source. The value is ON if the
plugin has been enabled and a commit acknowledgment has occurred. It is OFF if the plugin is not
enabled or the source has fallen back to asynchronous replication due to commit acknowledgment
timeout.

Rpl_semi_sync_source_status is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_status is available instead.

• Rpl_semi_sync_source_timefunc_failures

The number of times the source failed when calling time functions such as gettimeofday().

Rpl_semi_sync_source_timefunc_failures is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_timefunc_failures is available instead.

• Rpl_semi_sync_source_tx_avg_wait_time

The average time in microseconds the source waited for each transaction.

Rpl_semi_sync_source_tx_avg_wait_time is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_tx_avg_wait_time is available instead.

• Rpl_semi_sync_source_tx_wait_time

The total time in microseconds the source waited for transactions.

Rpl_semi_sync_source_tx_wait_time is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_tx_wait_time is available instead.

1085

Server Status Variables

• Rpl_semi_sync_source_tx_waits

The total number of times the source waited for transactions.

Rpl_semi_sync_source_tx_waits is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_tx_waits is available instead.

• Rpl_semi_sync_source_wait_pos_backtraverse

The total number of times the source waited for an event with binary coordinates lower than events
waited for previously. This can occur when the order in which transactions start waiting for a reply is
different from the order in which their binary log events are written.

Rpl_semi_sync_source_wait_pos_backtraverse is available when
the rpl_semi_sync_source (semisync_source.so library) plugin
was installed on the source to set up semisynchronous replication. If the
rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_wait_pos_backtraverse is available instead.

• Rpl_semi_sync_source_wait_sessions

The number of sessions currently waiting for replica replies.

Rpl_semi_sync_source_wait_sessions is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_wait_sessions is available instead.

• Rpl_semi_sync_source_yes_tx

The number of commits that were acknowledged successfully by a replica.

Rpl_semi_sync_source_yes_tx is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the source to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
Rpl_semi_sync_master_yes_tx is available instead.

• Rpl_semi_sync_replica_status

Shows whether semisynchronous replication is currently operational on the replica. This is ON if the
plugin has been enabled and the replication I/O (receiver) thread is running, OFF otherwise.

Rpl_semi_sync_replica_status is available when the rpl_semi_sync_replica
(semisync_replica.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_slave plugin (semisync_slave.so library) was installed,
Rpl_semi_sync_slave_status is available instead.

• Rpl_semi_sync_slave_status

Shows whether semisynchronous replication is currently operational on the replica. This is ON if the
plugin has been enabled and the replication I/O (receiver) thread is running, OFF otherwise.

Rpl_semi_sync_slave_status is available when the rpl_semi_sync_slave
(semisync_slave.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_replica plugin (semisync_replica.so library) was
installed, Rpl_semi_sync_replica_status is available instead.

1086

Server Status Variables

• Rsa_public_key

The value of this variable is the public key used by the sha256_password authentication
plugin for RSA key pair-based password exchange. The value is nonempty only if the
server successfully initializes the private and public keys in the files named by the
sha256_password_private_key_path and sha256_password_public_key_path system
variables. The value of Rsa_public_key comes from the latter file.

For information about sha256_password, see Section 8.4.1.3, “SHA-256 Pluggable
Authentication”.

• Secondary_engine_execution_count

The number of queries offloaded to a secondary engine. This variable was added in MySQL 8.0.13.

For use with HeatWave. See HeatWave User Guide.

• Select_full_join

The number of joins that perform table scans because they do not use indexes. If this value is not 0,
you should carefully check the indexes of your tables.

• Select_full_range_join

The number of joins that used a range search on a reference table.

• Select_range

The number of joins that used ranges on the first table. This is normally not a critical issue even if the
value is quite large.

• Select_range_check

The number of joins without keys that check for key usage after each row. If this is not 0, you should
carefully check the indexes of your tables.

• Select_scan

The number of joins that did a full scan of the first table.

• Slave_open_temp_tables

From MySQL 8.0.26, Slave_open_temp_tables is deprecated and the alias
Replica_open_temp_tables should be used instead. In releases before MySQL 8.0.26, use
Slave_open_temp_tables.

Slave_open_temp_tables shows the number of temporary tables that the replication SQL thread
currently has open. If the value is greater than zero, it is not safe to shut down the replica; see
Section 19.5.1.31, “Replication and Temporary Tables”. This variable reports the total count of open
temporary tables for all replication channels.

• Slave_rows_last_search_algorithm_used

From MySQL 8.0.26, Slave_rows_last_search_algorithm_used is deprecated and the alias
Replica_rows_last_search_algorithm_used should be used instead. In releases before
MySQL 8.0.26, use Slave_rows_last_search_algorithm_used.

Slave_rows_last_search_algorithm_used shows the search algorithm that was most
recently used by this replica to locate rows for row-based replication. The result shows whether

1087

https://dev.mysql.com/doc/heatwave/en/

Server Status Variables

the replica used indexes, a table scan, or hashing as the search algorithm for the last transaction
executed on any channel.

The method used depends on the setting for the slave_rows_search_algorithms system
variable, and the keys that are available on the relevant table.

This variable is available only for debug builds of MySQL.

• Slow_launch_threads

The number of threads that have taken more than slow_launch_time seconds to create.

• Slow_queries

The number of queries that have taken more than long_query_time seconds. This counter
increments regardless of whether the slow query log is enabled. For information about that log, see
Section 7.4.5, “The Slow Query Log”.

• Sort_merge_passes

The number of merge passes that the sort algorithm has had to do. If this value is large, you should
consider increasing the value of the sort_buffer_size system variable.

• Sort_range

The number of sorts that were done using ranges.

• Sort_rows

The number of sorted rows.

• Sort_scan

The number of sorts that were done by scanning the table.

• Ssl_accept_renegotiates

The number of negotiates needed to establish the connection.

• Ssl_accepts

The number of accepted SSL connections.

• Ssl_callback_cache_hits

The number of callback cache hits.

• Ssl_cipher

The current encryption cipher (empty for unencrypted connections).

• Ssl_cipher_list

The list of possible SSL ciphers (empty for non-SSL connections). If MySQL supports TLSv1.3, the
value includes the possible TLSv1.3 ciphersuites. See Section 8.3.2, “Encrypted Connection TLS
Protocols and Ciphers”.

• Ssl_client_connects

The number of SSL connection attempts to an SSL-enabled replication source server.

1088

Server Status Variables

• Ssl_connect_renegotiates

The number of negotiates needed to establish the connection to an SSL-enabled replication source
server.

• Ssl_ctx_verify_depth

The SSL context verification depth (how many certificates in the chain are tested).

• Ssl_ctx_verify_mode

The SSL context verification mode.

• Ssl_default_timeout

The default SSL timeout.

• Ssl_finished_accepts

The number of successful SSL connections to the server.

• Ssl_finished_connects

The number of successful replica connections to an SSL-enabled replication source server.

• Ssl_server_not_after

The last date for which the SSL certificate is valid. To check SSL certificate expiration information,
use this statement:

mysql> SHOW STATUS LIKE 'Ssl_server_not%';
+-----------------------+--------------------------+
| Variable_name | Value |
+-----------------------+--------------------------+
| Ssl_server_not_after | Apr 28 14:16:39 2025 GMT |
| Ssl_server_not_before | May 1 14:16:39 2015 GMT |
+-----------------------+--------------------------+

• Ssl_server_not_before

The first date for which the SSL certificate is valid.

• Ssl_session_cache_hits

The number of SSL session cache hits.

• Ssl_session_cache_misses

The number of SSL session cache misses.

• Ssl_session_cache_mode

The SSL session cache mode. When the value of the ssl_session_cache_mode server variable
is ON, the value of the Ssl_session_cache_mode status variable is SERVER.

• Ssl_session_cache_overflows

The number of SSL session cache overflows.

• Ssl_session_cache_size

The SSL session cache size.

• Ssl_session_cache_timeout

The timeout value in seconds of SSL sessions in the cache.

1089

Server Status Variables

• Ssl_session_cache_timeouts

The number of SSL session cache timeouts.

• Ssl_sessions_reused

This is equal to 0 if TLS was not used in the current MySQL session, or if a TLS session has not
been reused; otherwise it is equal to 1.

Ssl_sessions_reused has session scope.

• Ssl_used_session_cache_entries

How many SSL session cache entries were used.

• Ssl_verify_depth

The verification depth for replication SSL connections.

• Ssl_verify_mode

The verification mode used by the server for a connection that uses SSL. The value is a bitmask; bits
are defined in the openssl/ssl.h header file:

define SSL_VERIFY_NONE 0x00
define SSL_VERIFY_PEER 0x01
define SSL_VERIFY_FAIL_IF_NO_PEER_CERT 0x02
define SSL_VERIFY_CLIENT_ONCE 0x04

SSL_VERIFY_PEER indicates that the server asks for a client certificate. If the client
supplies one, the server performs verification and proceeds only if verification is successful.
SSL_VERIFY_CLIENT_ONCE indicates that a request for the client certificate is performed only in
the initial handshake.

• Ssl_version

The SSL protocol version of the connection (for example, TLSv1). If the connection is not encrypted,
the value is empty.

• Table_locks_immediate

The number of times that a request for a table lock could be granted immediately.

• Table_locks_waited

The number of times that a request for a table lock could not be granted immediately and a wait was
needed. If this is high and you have performance problems, you should first optimize your queries,
and then either split your table or tables or use replication.

• Table_open_cache_hits

The number of hits for open tables cache lookups.

• Table_open_cache_misses

The number of misses for open tables cache lookups.

• Table_open_cache_overflows

The number of overflows for the open tables cache. This is the number of times, after a table is
opened or closed, a cache instance has an unused entry and the size of the instance is larger than
table_open_cache / table_open_cache_instances.

• Tc_log_max_pages_used

1090

Server Status Variables

For the memory-mapped implementation of the log that is used by mysqld when it acts as
the transaction coordinator for recovery of internal XA transactions, this variable indicates
the largest number of pages used for the log since the server started. If the product of
Tc_log_max_pages_used and Tc_log_page_size is always significantly less than the log
size, the size is larger than necessary and can be reduced. (The size is set by the --log-tc-
size option. This variable is unused: It is unneeded for binary log-based recovery, and the memory-
mapped recovery log method is not used unless the number of storage engines that are capable
of two-phase commit and that support XA transactions is greater than one. (InnoDB is the only
applicable engine.)

• Tc_log_page_size

The page size used for the memory-mapped implementation of the XA recovery log. The default
value is determined using getpagesize(). This variable is unused for the same reasons as
described for Tc_log_max_pages_used.

• Tc_log_page_waits

For the memory-mapped implementation of the recovery log, this variable increments each time
the server was not able to commit a transaction and had to wait for a free page in the log. If this
value is large, you might want to increase the log size (with the --log-tc-size option). For binary
log-based recovery, this variable increments each time the binary log cannot be closed because
there are two-phase commits in progress. (The close operation waits until all such transactions are
finished.)

• Telemetry_traces_supported

Whether server telemetry traces is supported.

For more information, see the Server telemetry traces service section in the MySQL Source Code
documentation.

• Threads_cached

The number of threads in the thread cache.

• Threads_connected

The number of currently open connections.

• Threads_created

The number of threads created to handle connections. If Threads_created is big, you may
want to increase the thread_cache_size value. The cache miss rate can be calculated as
Threads_created/Connections.

• Threads_running

The number of threads that are not sleeping.

• Tls_library_version

The runtime version of the OpenSSL library that is in use for this MySQL instance.

This variable was added in MySQL 8.0.30.

• Uptime

The number of seconds that the server has been up.

• Uptime_since_flush_status

1091

Server SQL Modes

The number of seconds since the most recent FLUSH STATUS statement.

7.1.11 Server SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for
different clients, depending on the value of the sql_mode system variable. DBAs can set the global
SQL mode to match site server operating requirements, and each application can set its session SQL
mode to its own requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes
it easier to use MySQL in different environments and to use MySQL together with other database
servers.

• Setting the SQL Mode

• The Most Important SQL Modes

• Full List of SQL Modes

• Combination SQL Modes

• Strict SQL Mode

• Comparison of the IGNORE Keyword and Strict SQL Mode

For answers to questions often asked about server SQL modes in MySQL, see Section A.3, “MySQL
8.0 FAQ: Server SQL Mode”.

When working with InnoDB tables, consider also the innodb_strict_mode system variable. It
enables additional error checks for InnoDB tables.

Setting the SQL Mode

The default SQL mode in MySQL 8.0 includes these modes: ONLY_FULL_GROUP_BY,
STRICT_TRANS_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO,
and NO_ENGINE_SUBSTITUTION.

To set the SQL mode at server startup, use the --sql-mode="modes" option on the command
line, or sql-mode="modes" in an option file such as my.cnf (Unix operating systems) or my.ini
(Windows). modes is a list of different modes separated by commas. To clear the SQL mode explicitly,
set it to an empty string using --sql-mode="" on the command line, or sql-mode="" in an option
file.

Note

MySQL installation programs may configure the SQL mode during the
installation process.

If the SQL mode differs from the default or from what you expect, check for a
setting in an option file that the server reads at startup.

To change the SQL mode at runtime, set the global or session sql_mode system variable using a SET
statement:

SET GLOBAL sql_mode = 'modes';
SET SESSION sql_mode = 'modes';

Setting the GLOBAL variable requires the SYSTEM_VARIABLES_ADMIN privilege (or the deprecated
SUPER privilege) and affects the operation of all clients that connect from that time on. Setting the
SESSION variable affects only the current client. Each client can change its session sql_mode value at
any time.

1092

Server SQL Modes

To determine the current global or session sql_mode setting, select its value:

SELECT @@GLOBAL.sql_mode;
SELECT @@SESSION.sql_mode;

Important

SQL mode and user-defined partitioning. Changing the server SQL
mode after creating and inserting data into partitioned tables can cause major
changes in the behavior of such tables, and could lead to loss or corruption of
data. It is strongly recommended that you never change the SQL mode once
you have created tables employing user-defined partitioning.

When replicating partitioned tables, differing SQL modes on the source and
replica can also lead to problems. For best results, you should always use the
same server SQL mode on the source and replica.

For more information, see Section 26.6, “Restrictions and Limitations on
Partitioning”.

The Most Important SQL Modes

The most important sql_mode values are probably these:

• ANSI

This mode changes syntax and behavior to conform more closely to standard SQL. It is one of the
special combination modes listed at the end of this section.

• STRICT_TRANS_TABLES

If a value could not be inserted as given into a transactional table, abort the statement. For a
nontransactional table, abort the statement if the value occurs in a single-row statement or the first
row of a multiple-row statement. More details are given later in this section.

• TRADITIONAL

Make MySQL behave like a “traditional” SQL database system. A simple description of this mode is
“give an error instead of a warning” when inserting an incorrect value into a column. It is one of the
special combination modes listed at the end of this section.

Note

With TRADITIONAL mode enabled, an INSERT or UPDATE aborts as soon as
an error occurs. If you are using a nontransactional storage engine, this may
not be what you want because data changes made prior to the error may not
be rolled back, resulting in a “partially done” update.

When this manual refers to “strict mode,” it means a mode with either or both STRICT_TRANS_TABLES
or STRICT_ALL_TABLES enabled.

Full List of SQL Modes

The following list describes all supported SQL modes:

• ALLOW_INVALID_DATES

Do not perform full checking of dates. Check only that the month is in the range from 1 to 12 and the
day is in the range from 1 to 31. This may be useful for Web applications that obtain year, month,
and day in three different fields and store exactly what the user inserted, without date validation. This
mode applies to DATE and DATETIME columns. It does not apply to TIMESTAMP columns, which
always require a valid date.

1093

Server SQL Modes

With ALLOW_INVALID_DATES disabled, the server requires that month and day values be
legal, and not merely in the range 1 to 12 and 1 to 31, respectively. With strict mode disabled,
invalid dates such as '2004-04-31' are converted to '0000-00-00' and a warning is
generated. With strict mode enabled, invalid dates generate an error. To permit such dates, enable
ALLOW_INVALID_DATES.

• ANSI_QUOTES

Treat " as an identifier quote character (like the ` quote character) and not as a string quote
character. You can still use ` to quote identifiers with this mode enabled. With ANSI_QUOTES
enabled, you cannot use double quotation marks to quote literal strings because they are interpreted
as identifiers.

• ERROR_FOR_DIVISION_BY_ZERO

The ERROR_FOR_DIVISION_BY_ZERO mode affects handling of division by zero, which includes
MOD(N,0). For data-change operations (INSERT, UPDATE), its effect also depends on whether strict
SQL mode is enabled.

• If this mode is not enabled, division by zero inserts NULL and produces no warning.

• If this mode is enabled, division by zero inserts NULL and produces a warning.

• If this mode and strict mode are enabled, division by zero produces an error, unless IGNORE is
given as well. For INSERT IGNORE and UPDATE IGNORE, division by zero inserts NULL and
produces a warning.

For SELECT, division by zero returns NULL. Enabling ERROR_FOR_DIVISION_BY_ZERO causes a
warning to be produced as well, regardless of whether strict mode is enabled.

ERROR_FOR_DIVISION_BY_ZERO is deprecated. ERROR_FOR_DIVISION_BY_ZERO is not part of
strict mode, but should be used in conjunction with strict mode and is enabled by default. A warning
occurs if ERROR_FOR_DIVISION_BY_ZERO is enabled without also enabling strict mode or vice
versa.

Because ERROR_FOR_DIVISION_BY_ZERO is deprecated, you should expect it to be removed in a
future MySQL release as a separate mode name and its effect included in the effects of strict SQL
mode.

• HIGH_NOT_PRECEDENCE

The precedence of the NOT operator is such that expressions such as NOT a BETWEEN b AND c
are parsed as NOT (a BETWEEN b AND c). In some older versions of MySQL, the expression was
parsed as (NOT a) BETWEEN b AND c. The old higher-precedence behavior can be obtained by
enabling the HIGH_NOT_PRECEDENCE SQL mode.

mysql> SET sql_mode = '';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 0
mysql> SET sql_mode = 'HIGH_NOT_PRECEDENCE';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 1

• IGNORE_SPACE

Permit spaces between a function name and the (character. This causes built-in function names
to be treated as reserved words. As a result, identifiers that are the same as function names must
be quoted as described in Section 11.2, “Schema Object Names”. For example, because there is a
COUNT() function, the use of count as a table name in the following statement causes an error:

mysql> CREATE TABLE count (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax

1094

Server SQL Modes

The table name should be quoted:

mysql> CREATE TABLE `count` (i INT);
Query OK, 0 rows affected (0.00 sec)

The IGNORE_SPACE SQL mode applies to built-in functions, not to loadable functions or stored
functions. It is always permissible to have spaces after a loadable function or stored function name,
regardless of whether IGNORE_SPACE is enabled.

For further discussion of IGNORE_SPACE, see Section 11.2.5, “Function Name Parsing and
Resolution”.

• NO_AUTO_VALUE_ON_ZERO

NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Normally, you
generate the next sequence number for the column by inserting either NULL or 0 into it.
NO_AUTO_VALUE_ON_ZERO suppresses this behavior for 0 so that only NULL generates the next
sequence number.

This mode can be useful if 0 has been stored in a table's AUTO_INCREMENT column. (Storing
0 is not a recommended practice, by the way.) For example, if you dump the table with
mysqldump and then reload it, MySQL normally generates new sequence numbers when
it encounters the 0 values, resulting in a table with contents different from the one that was
dumped. Enabling NO_AUTO_VALUE_ON_ZERO before reloading the dump file solves this
problem. For this reason, mysqldump automatically includes in its output a statement that enables
NO_AUTO_VALUE_ON_ZERO.

• NO_BACKSLASH_ESCAPES

Enabling this mode disables the use of the backslash character (\) as an escape character within
strings and identifiers. With this mode enabled, backslash becomes an ordinary character like
any other, and the default escape sequence for LIKE expressions is changed so that no escape
character is used.

• NO_DIR_IN_CREATE

When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives. This option
is useful on replica servers.

• NO_ENGINE_SUBSTITUTION

Control automatic substitution of the default storage engine when a statement such as CREATE
TABLE or ALTER TABLE specifies a storage engine that is disabled or not compiled in.

By default, NO_ENGINE_SUBSTITUTION is enabled.

Because storage engines can be pluggable at runtime, unavailable engines are treated the same
way:

With NO_ENGINE_SUBSTITUTION disabled, for CREATE TABLE the default engine is used and a
warning occurs if the desired engine is unavailable. For ALTER TABLE, a warning occurs and the
table is not altered.

With NO_ENGINE_SUBSTITUTION enabled, an error occurs and the table is not created or altered if
the desired engine is unavailable.

• NO_UNSIGNED_SUBTRACTION

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result by
default. If the result would otherwise have been negative, an error results:

mysql> SET sql_mode = '';

1095

Server SQL Modes

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'

If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped
to the maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is
enabled. With strict SQL mode enabled, an error occurs and the column remains unchanged.

When NO_UNSIGNED_SUBTRACTION is enabled, the subtraction result is signed, even if any
operand is unsigned. For example, compare the type of column c2 in table t1 with that of column c2
in table t2:

mysql> SET sql_mode='';
mysql> CREATE TABLE test (c1 BIGINT UNSIGNED NOT NULL);
mysql> CREATE TABLE t1 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t1;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
| c2 | bigint(21) unsigned | NO | | 0 | |
+-------+---------------------+------+-----+---------+-------+

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
mysql> CREATE TABLE t2 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t2;
+-------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
| c2 | bigint(21) | NO | | 0 | |
+-------+------------+------+-----+---------+-------+

This means that BIGINT UNSIGNED is not 100% usable in all contexts. See Section 14.10, “Cast
Functions and Operators”.

• NO_ZERO_DATE

The NO_ZERO_DATE mode affects whether the server permits '0000-00-00' as a valid date. Its
effect also depends on whether strict SQL mode is enabled.

• If this mode is not enabled, '0000-00-00' is permitted and inserts produce no warning.

• If this mode is enabled, '0000-00-00' is permitted and inserts produce a warning.

• If this mode and strict mode are enabled, '0000-00-00' is not permitted and inserts produce
an error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE,
'0000-00-00' is permitted and inserts produce a warning.

NO_ZERO_DATE is deprecated. NO_ZERO_DATE is not part of strict mode, but should be used
in conjunction with strict mode and is enabled by default. A warning occurs if NO_ZERO_DATE is
enabled without also enabling strict mode or vice versa.

Because NO_ZERO_DATE is deprecated, you should expect it to be removed in a future MySQL
release as a separate mode name and its effect included in the effects of strict SQL mode.

1096

Server SQL Modes

• NO_ZERO_IN_DATE

The NO_ZERO_IN_DATE mode affects whether the server permits dates in which the year part
is nonzero but the month or day part is 0. (This mode affects dates such as '2010-00-01' or
'2010-01-00', but not '0000-00-00'. To control whether the server permits '0000-00-00',
use the NO_ZERO_DATE mode.) The effect of NO_ZERO_IN_DATE also depends on whether strict
SQL mode is enabled.

• If this mode is not enabled, dates with zero parts are permitted and inserts produce no warning.

• If this mode is enabled, dates with zero parts are inserted as '0000-00-00' and produce a
warning.

• If this mode and strict mode are enabled, dates with zero parts are not permitted and inserts
produce an error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE,
dates with zero parts are inserted as '0000-00-00' and produce a warning.

NO_ZERO_IN_DATE is deprecated. NO_ZERO_IN_DATE is not part of strict mode, but
should be used in conjunction with strict mode and is enabled by default. A warning occurs if
NO_ZERO_IN_DATE is enabled without also enabling strict mode or vice versa.

Because NO_ZERO_IN_DATE is deprecated, you should expect it to be removed in a future MySQL
release as a separate mode name and its effect included in the effects of strict SQL mode.

• ONLY_FULL_GROUP_BY

Reject queries for which the select list, HAVING condition, or ORDER BY list refer to nonaggregated
columns that are neither named in the GROUP BY clause nor are functionally dependent on (uniquely
determined by) GROUP BY columns.

A MySQL extension to standard SQL permits references in the HAVING clause to aliased
expressions in the select list. The HAVING clause can refer to aliases regardless of whether
ONLY_FULL_GROUP_BY is enabled.

For additional discussion and examples, see Section 14.19.3, “MySQL Handling of GROUP BY”.

• PAD_CHAR_TO_FULL_LENGTH

By default, trailing spaces are trimmed from CHAR column values on retrieval. If
PAD_CHAR_TO_FULL_LENGTH is enabled, trimming does not occur and retrieved CHAR values are
padded to their full length. This mode does not apply to VARCHAR columns, for which trailing spaces
are retained on retrieval.

Note

As of MySQL 8.0.13, PAD_CHAR_TO_FULL_LENGTH is deprecated. Expect it
to be removed in a future version of MySQL.

mysql> CREATE TABLE t1 (c1 CHAR(10));
Query OK, 0 rows affected (0.37 sec)

mysql> INSERT INTO t1 (c1) VALUES('xy');
Query OK, 1 row affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------+-----------------+
| xy | 2 |
+------+-----------------+

1097

Server SQL Modes

1 row in set (0.00 sec)

mysql> SET sql_mode = 'PAD_CHAR_TO_FULL_LENGTH';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------------+-----------------+
| xy | 10 |
+------------+-----------------+
1 row in set (0.00 sec)

• PIPES_AS_CONCAT

Treat || as a string concatenation operator (same as CONCAT()) rather than as a synonym for OR.

• REAL_AS_FLOAT

Treat REAL as a synonym for FLOAT. By default, MySQL treats REAL as a synonym for DOUBLE.

• STRICT_ALL_TABLES

Enable strict SQL mode for all storage engines. Invalid data values are rejected. For details, see
Strict SQL Mode.

• STRICT_TRANS_TABLES

Enable strict SQL mode for transactional storage engines, and when possible for nontransactional
storage engines. For details, see Strict SQL Mode.

• TIME_TRUNCATE_FRACTIONAL

Control whether rounding or truncation occurs when inserting a TIME, DATE, or TIMESTAMP value
with a fractional seconds part into a column having the same type but fewer fractional digits. The
default behavior is to use rounding. If this mode is enabled, truncation occurs instead. The following
sequence of statements illustrates the difference:

CREATE TABLE t (id INT, tval TIME(1));
SET sql_mode='';
INSERT INTO t (id, tval) VALUES(1, 1.55);
SET sql_mode='TIME_TRUNCATE_FRACTIONAL';
INSERT INTO t (id, tval) VALUES(2, 1.55);

The resulting table contents look like this, where the first value has been subject to rounding and the
second to truncation:

mysql> SELECT id, tval FROM t ORDER BY id;
+------+------------+
| id | tval |
+------+------------+
| 1 | 00:00:01.6 |
| 2 | 00:00:01.5 |
+------+------------+

See also Section 13.2.6, “Fractional Seconds in Time Values”.

Combination SQL Modes

The following special modes are provided as shorthand for combinations of mode values from the
preceding list.

• ANSI

Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, and
ONLY_FULL_GROUP_BY.

1098

Server SQL Modes

ANSI mode also causes the server to return an error for queries where a set function S with an
outer reference S(outer_ref) cannot be aggregated in the outer query against which the outer
reference has been resolved. This is such a query:

SELECT * FROM t1 WHERE t1.a IN (SELECT MAX(t1.b) FROM t2 WHERE ...);

Here, MAX(t1.b) cannot aggregated in the outer query because it appears in the WHERE clause of
that query. Standard SQL requires an error in this situation. If ANSI mode is not enabled, the server
treats S(outer_ref) in such queries the same way that it would interpret S(const).

See Section 1.6, “MySQL Standards Compliance”.

• TRADITIONAL

TRADITIONAL is equivalent to STRICT_TRANS_TABLES, STRICT_ALL_TABLES,
NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, and
NO_ENGINE_SUBSTITUTION.

Strict SQL Mode

Strict mode controls how MySQL handles invalid or missing values in data-change statements such as
INSERT or UPDATE. A value can be invalid for several reasons. For example, it might have the wrong
data type for the column, or it might be out of range. A value is missing when a new row to be inserted
does not contain a value for a non-NULL column that has no explicit DEFAULT clause in its definition.
(For a NULL column, NULL is inserted if the value is missing.) Strict mode also affects DDL statements
such as CREATE TABLE.

If strict mode is not in effect, MySQL inserts adjusted values for invalid or missing values and produces
warnings (see Section 15.7.7.42, “SHOW WARNINGS Statement”). In strict mode, you can produce
this behavior by using INSERT IGNORE or UPDATE IGNORE.

For statements such as SELECT that do not change data, invalid values generate a warning in strict
mode, not an error.

Strict mode produces an error for attempts to create a key that exceeds the maximum key length.
When strict mode is not enabled, this results in a warning and truncation of the key to the maximum
key length.

Strict mode does not affect whether foreign key constraints are checked. foreign_key_checks can
be used for that. (See Section 7.1.8, “Server System Variables”.)

Strict SQL mode is in effect if either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled,
although the effects of these modes differ somewhat:

• For transactional tables, an error occurs for invalid or missing values in a data-change statement
when either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled. The statement is
aborted and rolled back.

• For nontransactional tables, the behavior is the same for either mode if the bad value occurs in the
first row to be inserted or updated: The statement is aborted and the table remains unchanged. If the
statement inserts or modifies multiple rows and the bad value occurs in the second or later row, the
result depends on which strict mode is enabled:

• For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows. However,
because the earlier rows have been inserted or updated, the result is a partial update. To avoid
this, use single-row statements, which can be aborted without changing the table.

• For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for the
column and inserts the adjusted value. If a value is missing, MySQL inserts the implicit default
value for the column data type. In either case, MySQL generates a warning rather than an error

1099

Server SQL Modes

and continues processing the statement. Implicit defaults are described in Section 13.6, “Data
Type Default Values”.

Strict mode affects handling of division by zero, zero dates, and zeros in dates as follows:

• Strict mode affects handling of division by zero, which includes MOD(N,0):

For data-change operations (INSERT, UPDATE):

• If strict mode is not enabled, division by zero inserts NULL and produces no warning.

• If strict mode is enabled, division by zero produces an error, unless IGNORE is given as well. For
INSERT IGNORE and UPDATE IGNORE, division by zero inserts NULL and produces a warning.

For SELECT, division by zero returns NULL. Enabling strict mode causes a warning to be produced
as well.

• Strict mode affects whether the server permits '0000-00-00' as a valid date:

• If strict mode is not enabled, '0000-00-00' is permitted and inserts produce no warning.

• If strict mode is enabled, '0000-00-00' is not permitted and inserts produce an error, unless
IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, '0000-00-00' is
permitted and inserts produce a warning.

• Strict mode affects whether the server permits dates in which the year part is nonzero but the month
or day part is 0 (dates such as '2010-00-01' or '2010-01-00'):

• If strict mode is not enabled, dates with zero parts are permitted and inserts produce no warning.

• If strict mode is enabled, dates with zero parts are not permitted and inserts produce an error,
unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, dates with zero parts
are inserted as '0000-00-00' (which is considered valid with IGNORE) and produce a warning.

For more information about strict mode with respect to IGNORE, see Comparison of the IGNORE
Keyword and Strict SQL Mode.

Strict mode affects handling of division by zero, zero dates, and zeros in dates in conjunction with the
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes.

Comparison of the IGNORE Keyword and Strict SQL Mode

This section compares the effect on statement execution of the IGNORE keyword (which downgrades
errors to warnings) and strict SQL mode (which upgrades warnings to errors). It describes which
statements they affect, and which errors they apply to.

The following table presents a summary comparison of statement behavior when the default is to
produce an error versus a warning. An example of when the default is to produce an error is inserting a
NULL into a NOT NULL column. An example of when the default is to produce a warning is inserting a
value of the wrong data type into a column (such as inserting the string 'abc' into an integer column).

Operational Mode When Statement Default is
Error

When Statement Default is
Warning

Without IGNORE or strict SQL
mode

Error Warning

With IGNORE Warning Warning (same as without
IGNORE or strict SQL mode)

With strict SQL mode Error (same as without IGNORE
or strict SQL mode)

Error

1100

Server SQL Modes

Operational Mode When Statement Default is
Error

When Statement Default is
Warning

With IGNORE and strict SQL
mode

Warning Warning

One conclusion to draw from the table is that when the IGNORE keyword and strict SQL mode are both
in effect, IGNORE takes precedence. This means that, although IGNORE and strict SQL mode can be
considered to have opposite effects on error handling, they do not cancel when used together.

• The Effect of IGNORE on Statement Execution

• The Effect of Strict SQL Mode on Statement Execution

The Effect of IGNORE on Statement Execution

Several statements in MySQL support an optional IGNORE keyword. This keyword causes the server
to downgrade certain types of errors and generate warnings instead. For a multiple-row statement,
downgrading an error to a warning may enable a row to be processed. Otherwise, IGNORE causes
the statement to skip to the next row instead of aborting. (For nonignorable errors, an error occurs
regardless of the IGNORE keyword.)

Example: If the table t has a primary key column i containing unique values, attempting to insert the
same value of i into multiple rows normally produces a duplicate-key error:

mysql> CREATE TABLE t (i INT NOT NULL PRIMARY KEY);
mysql> INSERT INTO t (i) VALUES(1),(1);
ERROR 1062 (23000): Duplicate entry '1' for key 't.PRIMARY'

With IGNORE, the row containing the duplicate key still is not inserted, but a warning occurs instead of
an error:

mysql> INSERT IGNORE INTO t (i) VALUES(1),(1);
Query OK, 1 row affected, 1 warning (0.01 sec)
Records: 2 Duplicates: 1 Warnings: 1

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1062 | Duplicate entry '1' for key 't.PRIMARY' |
+---------+------+---+
1 row in set (0.00 sec)

Example: If the table t2 has a NOT NULL column id, attempting to insert NULL produces an error in
strict SQL mode:

mysql> CREATE TABLE t2 (id INT NOT NULL);
mysql> INSERT INTO t2 (id) VALUES(1),(NULL),(3);
ERROR 1048 (23000): Column 'id' cannot be null
mysql> SELECT * FROM t2;
Empty set (0.00 sec)

If the SQL mode is not strict, IGNORE causes the NULL to be inserted as the column implicit default (0
in this case), which enables the row to be handled without skipping it:

mysql> INSERT INTO t2 (id) VALUES(1),(NULL),(3);
mysql> SELECT * FROM t2;
+----+
| id |
+----+
| 1 |
| 0 |
| 3 |
+----+

These statements support the IGNORE keyword:

1101

Server SQL Modes

• CREATE TABLE ... SELECT: IGNORE does not apply to the CREATE TABLE or SELECT parts of
the statement but to inserts into the table of rows produced by the SELECT. Rows that duplicate an
existing row on a unique key value are discarded.

• DELETE: IGNORE causes MySQL to ignore errors during the process of deleting rows.

• INSERT: With IGNORE, rows that duplicate an existing row on a unique key value are discarded.
Rows set to values that would cause data conversion errors are set to the closest valid values
instead.

 For partitioned tables where no partition matching a given value is found, IGNORE causes the insert
operation to fail silently for rows containing the unmatched value.

• LOAD DATA, LOAD XML: With IGNORE, rows that duplicate an existing row on a unique key value
are discarded.

• UPDATE: With IGNORE, rows for which duplicate-key conflicts occur on a unique key value are not
updated. Rows updated to values that would cause data conversion errors are updated to the closest
valid values instead.

The IGNORE keyword applies to the following ignorable errors:

• ER_BAD_NULL_ERROR

• ER_DUP_ENTRY

• ER_DUP_ENTRY_WITH_KEY_NAME

• ER_DUP_KEY

• ER_NO_PARTITION_FOR_GIVEN_VALUE

• ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT

• ER_NO_REFERENCED_ROW_2

• ER_ROW_DOES_NOT_MATCH_GIVEN_PARTITION_SET

• ER_ROW_IS_REFERENCED_2

• ER_SUBQUERY_NO_1_ROW

• ER_VIEW_CHECK_FAILED

The Effect of Strict SQL Mode on Statement Execution

The MySQL server can operate in different SQL modes, and can apply these modes differently for
different clients, depending on the value of the sql_mode system variable. In “strict” SQL mode, the
server upgrades certain warnings to errors.

For example, in non-strict SQL mode, inserting the string 'abc' into an integer column results in
conversion of the value to 0 and a warning:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t (i) VALUES('abc');
Query OK, 1 row affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1366 | Incorrect integer value: 'abc' for column 'i' at row 1 |
+---------+------+--+

1102

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_bad_null_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_dup_entry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_dup_entry_with_key_name
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_dup_key
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_no_partition_for_given_value
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_no_partition_for_given_value_silent
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_no_referenced_row_2
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_row_does_not_match_given_partition_set
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_row_is_referenced_2
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_subquery_no_1_row
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_view_check_failed

Connection Management

1 row in set (0.00 sec)

In strict SQL mode, the invalid value is rejected with an error:

mysql> SET sql_mode = 'STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t (i) VALUES('abc');
ERROR 1366 (HY000): Incorrect integer value: 'abc' for column 'i' at row 1

For more information about possible settings of the sql_mode system variable, see Section 7.1.11,
“Server SQL Modes”.

Strict SQL mode applies to the following statements under conditions for which some value might be
out of range or an invalid row is inserted into or deleted from a table:

• ALTER TABLE

• CREATE TABLE

• CREATE TABLE ... SELECT

• DELETE (both single table and multiple table)

• INSERT

• LOAD DATA

• LOAD XML

• SELECT SLEEP()

• UPDATE (both single table and multiple table)

Within stored programs, individual statements of the types just listed execute in strict SQL mode if the
program was defined while strict mode was in effect.

Strict SQL mode applies to the following errors, which represent a class of errors in which an input
value is either invalid or missing. A value is invalid if it has the wrong data type for the column or might
be out of range. A value is missing if a new row to be inserted does not contain a value for a NOT NULL
column that has no explicit DEFAULT clause in its definition.

ER_BAD_NULL_ERROR
ER_CUT_VALUE_GROUP_CONCAT
ER_DATA_TOO_LONG
ER_DATETIME_FUNCTION_OVERFLOW
ER_DIVISION_BY_ZERO
ER_INVALID_ARGUMENT_FOR_LOGARITHM
ER_NO_DEFAULT_FOR_FIELD
ER_NO_DEFAULT_FOR_VIEW_FIELD
ER_TOO_LONG_KEY
ER_TRUNCATED_WRONG_VALUE
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD
ER_WARN_DATA_OUT_OF_RANGE
ER_WARN_NULL_TO_NOTNULL
ER_WARN_TOO_FEW_RECORDS
ER_WRONG_ARGUMENTS
ER_WRONG_VALUE_FOR_TYPE
WARN_DATA_TRUNCATED

Note

Because continued MySQL development defines new errors, there may be
errors not in the preceding list to which strict SQL mode applies.

7.1.12 Connection Management

1103

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_bad_null_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_cut_value_group_concat
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_too_long
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_datetime_function_overflow
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_division_by_zero
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_argument_for_logarithm
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_no_default_for_field
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_no_default_for_view_field
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_too_long_key
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_truncated_wrong_value
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_truncated_wrong_value_for_field
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warn_data_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warn_null_to_notnull
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warn_too_few_records
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_arguments
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_value_for_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_warn_data_truncated

Connection Management

This section describes how MySQL Server manages connections. This includes a description of the
available connection interfaces, how the server uses connection handler threads, details about the
administrative connection interface, and management of DNS lookups.

7.1.12.1 Connection Interfaces

This section describes aspects of how the MySQL server manages client connections.

• Network Interfaces and Connection Manager Threads

• Client Connection Thread Management

• Connection Volume Management

Network Interfaces and Connection Manager Threads

The server is capable of listening for client connections on multiple network interfaces. Connection
manager threads handle client connection requests on the network interfaces that the server listens to:

• On all platforms, one manager thread handles TCP/IP connection requests.

• On Unix, the same manager thread also handles Unix socket file connection requests.

• On Windows, one manager thread handles shared-memory connection requests, and another
handles named-pipe connection requests.

• On all platforms, an additional network interface may be enabled to accept administrative TCP/IP
connection requests. This interface can use the manager thread that handles “ordinary” TCP/IP
requests, or a separate thread.

The server does not create threads to handle interfaces that it does not listen to. For example, a
Windows server that does not have support for named-pipe connections enabled does not create a
thread to handle them.

Individual server plugins or components may implement their own connection interface:

• X Plugin enables MySQL Server to communicate with clients using X Protocol. See Section 22.5, “X
Plugin”.

Client Connection Thread Management

Connection manager threads associate each client connection with a thread dedicated to it that
handles authentication and request processing for that connection. Manager threads create a new
thread when necessary but try to avoid doing so by consulting the thread cache first to see whether it
contains a thread that can be used for the connection. When a connection ends, its thread is returned
to the thread cache if the cache is not full.

In this connection thread model, there are as many threads as there are clients currently connected,
which has some disadvantages when server workload must scale to handle large numbers of
connections. For example, thread creation and disposal becomes expensive. Also, each thread
requires server and kernel resources, such as stack space. To accommodate a large number of
simultaneous connections, the stack size per thread must be kept small, leading to a situation where
it is either too small or the server consumes large amounts of memory. Exhaustion of other resources
can occur as well, and scheduling overhead can become significant.

MySQL Enterprise Edition includes a thread pool plugin that provides an alternative thread-handling
model designed to reduce overhead and improve performance. It implements a thread pool that
increases server performance by efficiently managing statement execution threads for large numbers
of client connections. See Section 7.6.3, “MySQL Enterprise Thread Pool”.

To control and monitor how the server manages threads that handle client connections, several system
and status variables are relevant. (See Section 7.1.8, “Server System Variables”, and Section 7.1.10,
“Server Status Variables”.)

1104

Connection Management

• The thread_cache_size system variable determines the thread cache size. By default, the
server autosizes the value at startup, but it can be set explicitly to override this default. A value
of 0 disables caching, which causes a thread to be set up for each new connection and disposed
of when the connection terminates. To enable N inactive connection threads to be cached, set
thread_cache_size to N at server startup or at runtime. A connection thread becomes inactive
when the client connection with which it was associated terminates.

• To monitor the number of threads in the cache and how many threads have been created because
a thread could not be taken from the cache, check the Threads_cached and Threads_created
status variables.

• When the thread stack is too small, this limits the complexity of the SQL statements the server can
handle, the recursion depth of stored procedures, and other memory-consuming actions. To set a
stack size of N bytes for each thread, start the server with thread_stack set to N.

Connection Volume Management

To control the maximum number of clients the server permits to connect simultaneously, set the
max_connections system variable at server startup or at runtime. It may be necessary to increase
max_connections if more clients attempt to connect simultaneously then the server is configured to
handle (see Section B.3.2.5, “Too many connections”). If the server refuses a connection because the
max_connections limit is reached, it increments the Connection_errors_max_connections
status variable.

mysqld actually permits max_connections + 1 client connections. The extra connection is reserved
for use by accounts that have the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege).
By granting the privilege to administrators and not to normal users (who should not need it), an
administrator can connect to the server and use SHOW PROCESSLIST to diagnose problems even
if the maximum number of unprivileged clients are connected. See Section 15.7.7.29, “SHOW
PROCESSLIST Statement”.

As of MySQL 8.0.14, the server also permits administrative connections on an administrative network
interface, which you can set up using a dedicated IP address and port. See Section 7.1.12.2,
“Administrative Connection Management”.

The Group Replication plugin interacts with MySQL Server using internal sessions to perform SQL
API operations. In releases to MySQL 8.0.18, these sessions count towards the client connections
limit specified by the max_connections server system variable. In those releases, if the server has
reached the max_connections limit when Group Replication is started or attempts to perform an
operation, the operation is unsuccessful and Group Replication or the server itself might stop. From
MySQL 8.0.19, Group Replication's internal sessions are handled separately from client connections,
so they do not count towards the max_connections limit and are not refused if the server has
reached this limit.

The maximum number of client connections MySQL supports (that is, the maximum value to which
max_connections can be set) depends on several factors:

• The quality of the thread library on a given platform.

• The amount of RAM available.

• The amount of RAM is used for each connection.

• The workload from each connection.

• The desired response time.

• The number of file descriptors available.

Linux or Solaris should be able to support at least 500 to 1000 simultaneous connections routinely and
as many as 10,000 connections if you have many gigabytes of RAM available and the workload from
each is low or the response time target undemanding.

1105

Connection Management

Increasing the max_connections value increases the number of file descriptors that mysqld
requires. If the required number of descriptors are not available, the server reduces the value of
max_connections. For comments on file descriptor limits, see Section 10.4.3.1, “How MySQL Opens
and Closes Tables”.

Increasing the open_files_limit system variable may be necessary, which may also require
raising the operating system limit on how many file descriptors can be used by MySQL. Consult your
operating system documentation to determine whether it is possible to increase the limit and how to do
so. See also Section B.3.2.16, “File Not Found and Similar Errors”.

7.1.12.2 Administrative Connection Management

As mentioned in Connection Volume Management, to allow for the need to perform administrative
operations even when max_connections connections are already established on the interfaces used
for ordinary connections, the MySQL server permits a single administrative connection to users who
have the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege).

Additionally, as of MySQL 8.0.14, the server permits dedicating a TCP/IP port for administrative
connections, as described in the following sections.

• Administrative Interface Characteristics

• Administrative Interface Support for Encrypted Connections

Administrative Interface Characteristics

The administrative connection interface has these characteristics:

• The server enables the interface only if the admin_address system variable is set at startup to
indicate the IP address for it. If admin_address is not set, the server maintains no administrative
interface.

• The admin_port system variable specifies the interface TCP/IP port number (default 33062).

• There is no limit on the number of administrative connections, but connections are permitted only for
users who have the SERVICE_CONNECTION_ADMIN privilege.

• The create_admin_listener_thread system variable enables DBAs to choose at startup
whether the administrative interface has its own separate thread. The default is OFF; that is, the
manager thread for ordinary connections on the main interface also handles connections for the
administrative interface.

These lines in the server my.cnf file enable the administrative interface on the loopback interface and
configure it to use port number 33064 (that is, a port different from the default):

[mysqld]
admin_address=127.0.0.1
admin_port=33064

MySQL client programs connect to either the main or administrative interface by specifying appropriate
connection parameters. If the server running on the local host is using the default TCP/IP port numbers
of 3306 and 33062 for the main and administrative interfaces, these commands connect to those
interfaces:

mysql --protocol=TCP --port=3306
mysql --protocol=TCP --port=33062

Administrative Interface Support for Encrypted Connections

Prior to MySQL 8.0.21, the administrative interface supports encrypted connections using the
connection-encryption configuration that applies to the main interface. As of MySQL 8.0.21, the
administrative interface has its own configuration parameters for encrypted connections. These

1106

Connection Management

correspond to the main interface parameters but enable independent configuration of encrypted
connections for the administrative interface:

• The admin_tls_xxx and admin_ssl_xxx system variables are like the tls_xxx and ssl_xxx
system variables, but they configure the TLS context for the administrative interface rather than the
main interface.

• The --admin-ssl option is like the --ssl option, but it enables or disables support for encrypted
connections on the administrative interface rather than the main interface.

Because support for encrypted connections is enabled by default, it is normally unnecessary to
specify --admin-ssl. As of MySQL 8.0.26, --admin-ssl is deprecated and subject to removal in
a future MySQL version.

For general information about configuring connection-encryption support, see Section 8.3.1,
“Configuring MySQL to Use Encrypted Connections”, and Section 8.3.2, “Encrypted Connection TLS
Protocols and Ciphers”. That discussion is written for the main connection interface, but the parameter
names are similar for the administrative connection interface. Use that discussion together with the
following remarks, which provide information specific to the administrative interface.

TLS configuration for the administrative interface follows these rules:

• If --admin-ssl is enabled (the default), the administrative interface supports encrypted
connections. For connections on the interface, the applicable TLS context depends on whether any
nondefault administrative TLS parameter is configured:

• If all administrative TLS parameters have their default values, the administrative interface uses the
same TLS context as the main interface.

• If any administrative TLS parameter has a nondefault value, the administrative interface uses
the TLS context defined by its own parameters. (This is the case if any admin_tls_xxx or
admin_ssl_xxx system variable is set to a value different from its default.) If a valid TLS context
cannot be created from those parameters, the administrative interface falls back to the main
interface TLS context.

• If --admin-ssl is disabled (for example, by specifying --admin-ssl=OFF, encrypted connections
to the administrative interface are disabled. This is true even if administrative TLS parameters have
nondefault values because disabling --admin-ssl takes precedence.

It is also possible to disable encrypted connections on the administrative interface without specifying
--admin-ssl in negated form. Set the admin_tls_version system variable to the empty value
to indicate that no TLS versions are supported. For example, these lines in the server my.cnf file
disable encrypted connections on the administrative interface:

[mysqld]
admin_tls_version=''

Examples:

• This configuration in the server my.cnf file enables the administrative interface, but does not set any
of the TLS parameters specific to that interface:

[mysqld]
admin_address=127.0.0.1

As a result, the administrative interface supports encrypted connections (because encryption is
supported by default when the administrative interface is enabled), and uses the main interface TLS
context. When clients connect to the administrative interface, they should use the same certificate
and key files as for ordinary connections on the main interface. For example (enter the command on
a single line):

mysql --protocol=TCP --port=33062

1107

Connection Management

 --ssl-ca=ca.pem
 --ssl-cert=client-cert.pem
 --ssl-key=client-key.pem

• This server configuration enables the administrative interface and sets the TLS certificate and key file
parameters specific to that interface:

[mysqld]
admin_address=127.0.0.1
admin_ssl_ca=admin-ca.pem
admin_ssl_cert=admin-server-cert.pem
admin_ssl_key=admin-server-key.pem

As a result, the administrative interface supports encrypted connections using its own TLS context.
When clients connect to the administrative interface, they should use certificate and key files specific
to that interface. For example (enter the command on a single line):

mysql --protocol=TCP --port=33062
 --ssl-ca=admin-ca.pem
 --ssl-cert=admin-client-cert.pem
 --ssl-key=admin-client-key.pem

7.1.12.3 DNS Lookups and the Host Cache

The MySQL server maintains an in-memory host cache that contains information about clients: IP
address, host name, and error information. The Performance Schema host_cache table exposes the
contents of the host cache so that it can be examined using SELECT statements. This may help you
diagnose the causes of connection problems. See Section 29.12.21.3, “The host_cache Table”.

The following sections discuss how the host cache works, as well as other topics such as how to
configure and monitor the cache.

• Host Cache Operation

• Configuring the Host Cache

• Monitoring the Host Cache

• Flushing the Host Cache

• Dealing with Blocked Hosts

Host Cache Operation

The server uses the host cache only for non-localhost TCP connections. It does not use the cache for
TCP connections established using a loopback interface address (for example, 127.0.0.1 or ::1), or
for connections established using a Unix socket file, named pipe, or shared memory.

The server uses the host cache for several purposes:

• By caching the results of IP-to-host name lookups, the server avoids doing a Domain Name System
(DNS) lookup for each client connection. Instead, for a given host, it needs to perform a lookup only
for the first connection from that host.

• The cache contains information about errors that occur during the client connection process.
Some errors are considered “blocking.” If too many of these occur successively from a given
host without a successful connection, the server blocks further connections from that host. The
max_connect_errors system variable determines the permitted number of successive errors
before blocking occurs.

For each applicable new client connection, the server uses the client IP address to check whether the
client host name is in the host cache. If so, the server refuses or continues to process the connection
request depending on whether or not the host is blocked. If the host is not in the cache, the server

1108

Connection Management

attempts to resolve the host name. First, it resolves the IP address to a host name and resolves that
host name back to an IP address. Then it compares the result to the original IP address to ensure that
they are the same. The server stores information about the result of this operation in the host cache. If
the cache is full, the least recently used entry is discarded.

The server performs host name resolution using the getaddrinfo() system call.

The server handles entries in the host cache like this:

1. When the first TCP client connection reaches the server from a given IP address, a new cache
entry is created to record the client IP, host name, and client lookup validation flag. Initially, the
host name is set to NULL and the flag is false. This entry is also used for subsequent client TCP
connections from the same originating IP.

2. If the validation flag for the client IP entry is false, the server attempts an IP-to-host name-to-IP
DNS resolution. If that is successful, the host name is updated with the resolved host name and
the validation flag is set to true. If resolution is unsuccessful, the action taken depends on whether
the error is permanent or transient. For permanent failures, the host name remains NULL and
the validation flag is set to true. For transient failures, the host name and validation flag remain
unchanged. (In this case, another DNS resolution attempt occurs the next time a client connects
from this IP.)

3. If an error occurs while processing an incoming client connection from a given IP address, the
server updates the corresponding error counters in the entry for that IP. For a description of the
errors recorded, see Section 29.12.21.3, “The host_cache Table”.

To unblock blocked hosts, flush the host cache; see Dealing with Blocked Hosts.

It is possible for a blocked host to become unblocked even without flushing the host cache if activity
from other hosts occurs:

• If the cache is full when a connection arrives from a client IP not in the cache, the server discards the
least recently used cache entry to make room for the new entry.

• If the discarded entry is for a blocked host, that host becomes unblocked.

Some connection errors are not associated with TCP connections, occur very early in the connection
process (even before an IP address is known), or are not specific to any particular IP address (such as
out-of-memory conditions). For information about these errors, check the Connection_errors_xxx
status variables (see Section 7.1.10, “Server Status Variables”).

Configuring the Host Cache

The host cache is enabled by default. The host_cache_size system variable controls its size, as
well as the size of the Performance Schema host_cache table that exposes the cache contents. The
cache size can be set at server startup and changed at runtime. For example, to set the size to 100 at
startup, put these lines in the server my.cnf file:

[mysqld]
host_cache_size=200

To change the size to 300 at runtime, do this:

SET GLOBAL host_cache_size=300;

Setting host_cache_size to 0, either at server startup or at runtime, disables the host cache. With
the cache disabled, the server performs a DNS lookup every time a client connects.

Changing the cache size at runtime causes an implicit host cache flushing operation that clears the
host cache, truncates the host_cache table, and unblocks any blocked hosts; see Flushing the Host
Cache.

1109

Connection Management

Using the --skip-host-cache option is similar to setting the host_cache_size system variable to
0, but host_cache_size is more flexible because it can also be used to resize, enable, and disable
the host cache at runtime, not just at server startup. Starting the server with --skip-host-cache
does not prevent runtime changes to the value of host_cache_size, but such changes have no
effect and the cache is not re-enabled even if host_cache_size is set larger than 0.

To disable DNS host name lookups, start the server with the skip_name_resolve system variable
enabled. In this case, the server uses only IP addresses and not host names to match connecting
hosts to rows in the MySQL grant tables. Only accounts specified in those tables using IP addresses
can be used. (A client may not be able to connect if no account exists that specifies the client IP
address.)

If you have a very slow DNS and many hosts, you might be able to improve performance either
by enabling skip_name_resolve to disable DNS lookups, or by increasing the value of
host_cache_size to make the host cache larger.

To disallow TCP/IP connections entirely, start the server with the skip_networking system variable
enabled.

To adjust the permitted number of successive connection errors before host blocking occurs, set the
max_connect_errors system variable. For example, to set the value at startup put these lines in the
server my.cnf file:

[mysqld]
max_connect_errors=10000

To change the value at runtime, do this:

SET GLOBAL max_connect_errors=10000;

Monitoring the Host Cache

The Performance Schema host_cache table exposes the contents of the host cache. This table
can be examined using SELECT statements, which may help you diagnose the causes of connection
problems. For information about this table, see Section 29.12.21.3, “The host_cache Table”.

Flushing the Host Cache

Flushing the host cache might be advisable or desirable under these conditions:

• Some of your client hosts change IP address.

• The error message Host 'host_name' is blocked occurs for connections from legitimate
hosts. (See Dealing with Blocked Hosts.)

Flushing the host cache has these effects:

• It clears the in-memory host cache.

• It removes all rows from the Performance Schema host_cache table that exposes the cache
contents.

• It unblocks any blocked hosts. This enables further connection attempts from those hosts.

To flush the host cache, use any of these methods:

• Change the value of the host_cache_size system variable. This requires the
SYSTEM_VARIABLES_ADMIN privilege (or the deprecated SUPER privilege).

• Execute a TRUNCATE TABLE statement that truncates the Performance Schema host_cache
table. This requires the DROP privilege for the table.

1110

IPv6 Support

• Execute a FLUSH HOSTS statement. This requires the RELOAD privilege.

Note

FLUSH HOSTS is deprecated as of MySQL 8.0.23, and is scheduled for
removal in a future release.

• Execute a mysqladmin flush-hosts command. This requires the DROP privilege for the
Performance Schema host_cache table or the RELOAD privilege.

Dealing with Blocked Hosts

The server uses the host cache to track errors that occur during the client connection process. If the
following error occurs, it means that mysqld has received many connection requests from the given
host that were interrupted in the middle:

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

The value of the max_connect_errors system variable determines how many
successive interrupted connection requests the server permits before blocking a host. After
max_connect_errors failed requests without a successful connection, the server assumes that
something is wrong (for example, that someone is trying to break in), and blocks the host from further
connection requests.

To unblock blocked hosts, flush the host cache; see Flushing the Host Cache.

Alternatively, to avoid having the error message occur, set max_connect_errors as described
in Configuring the Host Cache. The default value of max_connect_errors is 100. Increasing
max_connect_errors to a large value makes it less likely that a host reaches the threshold and
becomes blocked. However, if the Host 'host_name' is blocked error message occurs, first
verify that there is nothing wrong with TCP/IP connections from the blocked hosts. It does no good to
increase the value of max_connect_errors if there are network problems.

7.1.13 IPv6 Support

Support for IPv6 in MySQL includes these capabilities:

• MySQL Server can accept TCP/IP connections from clients connecting over IPv6. For example, this
command connects over IPv6 to the MySQL server on the local host:

$> mysql -h ::1

To use this capability, two things must be true:

• Your system must be configured to support IPv6. See Section 7.1.13.1, “Verifying System Support
for IPv6”.

• The default MySQL server configuration permits IPv6 connections in addition to IPv4 connections.
To change the default configuration, start the server with the bind_address system variable set
to an appropriate value. See Section 7.1.8, “Server System Variables”.

• MySQL account names permit IPv6 addresses to enable DBAs to specify privileges for clients that
connect to the server over IPv6. See Section 8.2.4, “Specifying Account Names”. IPv6 addresses
can be specified in account names in statements such as CREATE USER, GRANT, and REVOKE. For
example:

mysql> CREATE USER 'bill'@'::1' IDENTIFIED BY 'secret';
mysql> GRANT SELECT ON mydb.* TO 'bill'@'::1';

• IPv6 functions enable conversion between string and internal format IPv6 address formats, and
checking whether values represent valid IPv6 addresses. For example, INET6_ATON() and

1111

IPv6 Support

INET6_NTOA() are similar to INET_ATON() and INET_NTOA(), but handle IPv6 addresses in
addition to IPv4 addresses. See Section 14.23, “Miscellaneous Functions”.

• From MySQL 8.0.14, Group Replication group members can use IPv6 addresses for
communications within the group. A group can contain a mix of members using IPv6 and members
using IPv4. See Section 20.5.5, “Support For IPv6 And For Mixed IPv6 And IPv4 Groups”.

The following sections describe how to set up MySQL so that clients can connect to the server over
IPv6.

7.1.13.1 Verifying System Support for IPv6

Before MySQL Server can accept IPv6 connections, the operating system on your server host must
support IPv6. As a simple test to determine whether that is true, try this command:

$> ping6 ::1
16 bytes from ::1, icmp_seq=0 hlim=64 time=0.171 ms
16 bytes from ::1, icmp_seq=1 hlim=64 time=0.077 ms
...

To produce a description of your system's network interfaces, invoke ifconfig -a and look for IPv6
addresses in the output.

If your host does not support IPv6, consult your system documentation for instructions on enabling it.
It might be that you need only reconfigure an existing network interface to add an IPv6 address. Or a
more extensive change might be needed, such as rebuilding the kernel with IPv6 options enabled.

These links may be helpful in setting up IPv6 on various platforms:

• Windows

• Gentoo Linux

• Ubuntu Linux

• Linux (Generic)

• macOS

7.1.13.2 Configuring the MySQL Server to Permit IPv6 Connections

The MySQL server listens on one or more network sockets for TCP/IP connections. Each socket is
bound to one address, but it is possible for an address to map onto multiple network interfaces.

Set the bind_address system variable at server startup to specify the TCP/IP connections that a
server instance accepts. As of MySQL 8.0.13, you can specify multiple values for this option, including
any combination of IPv6 addresses, IPv4 addresses, and host names that resolve to IPv6 or IPv4
addresses. Alternatively, you can specify one of the wildcard address formats that permit listening
on multiple network interfaces. A value of *, which is the default, or a value of ::, permit both IPv4
and IPv6 connections on all server host IPv4 and IPv6 interfaces. For more information, see the
bind_address description in Section 7.1.8, “Server System Variables”.

7.1.13.3 Connecting Using the IPv6 Local Host Address

The following procedure shows how to configure MySQL to permit IPv6 connections by clients that
connect to the local server using the ::1 local host address. The instructions given here assume that
your system supports IPv6.

1. Start the MySQL server with an appropriate bind_address setting to permit it to accept IPv6
connections. For example, put the following lines in the server option file and restart the server:

[mysqld]

1112

https://msdn.microsoft.com/en-us/library/dd163569.aspx
http://www.gentoo.org/doc/en/ipv6.xml
https://wiki.ubuntu.com/IPv6
http://www.tldp.org/HOWTO/Linux+IPv6-HOWTO/
https://support.apple.com/en-us/HT202237

IPv6 Support

bind_address = *

Specifying * (or ::) as the value for bind_address permits both IPv4 and IPv6 connections
on all server host IPv4 and IPv6 interfaces. If you want to bind the server to a specific list of
addresses, you can do this as of MySQL 8.0.13 by specifying a comma-separated list of values for
bind_address. This example specifies the local host addresses for both IPv4 and IPv6:

[mysqld]
bind_address = 127.0.0.1,::1

For more information, see the bind_address description in Section 7.1.8, “Server System
Variables”.

2. As an administrator, connect to the server and create an account for a local user who can connect
from the ::1 local IPv6 host address:

mysql> CREATE USER 'ipv6user'@'::1' IDENTIFIED BY 'ipv6pass';

For the permitted syntax of IPv6 addresses in account names, see Section 8.2.4, “Specifying
Account Names”. In addition to the CREATE USER statement, you can issue GRANT statements that
give specific privileges to the account, although that is not necessary for the remaining steps in this
procedure.

3. Invoke the mysql client to connect to the server using the new account:

$> mysql -h ::1 -u ipv6user -pipv6pass

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection: ::1 via TCP/IP
...

mysql> SELECT CURRENT_USER(), @@bind_address;
+----------------+----------------+
| CURRENT_USER() | @@bind_address |
+----------------+----------------+
| ipv6user@::1 | :: |
+----------------+----------------+

7.1.13.4 Connecting Using IPv6 Nonlocal Host Addresses

The following procedure shows how to configure MySQL to permit IPv6 connections by remote clients.
It is similar to the preceding procedure for local clients, but the server and client hosts are distinct and
each has its own nonlocal IPv6 address. The example uses these addresses:

Server host: 2001:db8:0:f101::1
Client host: 2001:db8:0:f101::2

These addresses are chosen from the nonroutable address range recommended by IANA for
documentation purposes and suffice for testing on your local network. To accept IPv6 connections from
clients outside the local network, the server host must have a public address. If your network provider
assigns you an IPv6 address, you can use that. Otherwise, another way to obtain an address is to use
an IPv6 broker; see Section 7.1.13.5, “Obtaining an IPv6 Address from a Broker”.

1. Start the MySQL server with an appropriate bind_address setting to permit it to accept IPv6
connections. For example, put the following lines in the server option file and restart the server:

[mysqld]
bind_address = *

Specifying * (or ::) as the value for bind_address permits both IPv4 and IPv6 connections
on all server host IPv4 and IPv6 interfaces. If you want to bind the server to a specific list of
addresses, you can do this as of MySQL 8.0.13 by specifying a comma-separated list of values for

1113

http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xml

IPv6 Support

bind_address. This example specifies an IPv4 address as well as the required server host IPv6
address:

[mysqld]
bind_address = 198.51.100.20,2001:db8:0:f101::1

For more information, see the bind_address description in Section 7.1.8, “Server System
Variables”.

2. On the server host (2001:db8:0:f101::1), create an account for a user who can connect from
the client host (2001:db8:0:f101::2):

mysql> CREATE USER 'remoteipv6user'@'2001:db8:0:f101::2' IDENTIFIED BY 'remoteipv6pass';

3. On the client host (2001:db8:0:f101::2), invoke the mysql client to connect to the server using
the new account:

$> mysql -h 2001:db8:0:f101::1 -u remoteipv6user -premoteipv6pass

4. Try some simple statements that show connection information:

mysql> STATUS
...
Connection: 2001:db8:0:f101::1 via TCP/IP
...

mysql> SELECT CURRENT_USER(), @@bind_address;
+-----------------------------------+----------------+
| CURRENT_USER() | @@bind_address |
+-----------------------------------+----------------+
| remoteipv6user@2001:db8:0:f101::2 | :: |
+-----------------------------------+----------------+

7.1.13.5 Obtaining an IPv6 Address from a Broker

If you do not have a public IPv6 address that enables your system to communicate over IPv6 outside
your local network, you can obtain one from an IPv6 broker. The Wikipedia IPv6 Tunnel Broker
page lists several brokers and their features, such as whether they provide static addresses and the
supported routing protocols.

After configuring your server host to use a broker-supplied IPv6 address, start the MySQL server
with an appropriate bind_address setting to permit the server to accept IPv6 connections. You can
specify * (or ::) as the bind_address value, or bind the server to the specific IPv6 address provided
by the broker. For more information, see the bind_address description in Section 7.1.8, “Server
System Variables”.

Note that if the broker allocates dynamic addresses, the address provided for your system might
change the next time you connect to the broker. If so, any accounts you create that name the original
address become invalid. To bind to a specific address but avoid this change-of-address problem, you
might be able to arrange with the broker for a static IPv6 address.

The following example shows how to use Freenet6 as the broker and the gogoc IPv6 client package
on Gentoo Linux.

1. Create an account at Freenet6 by visiting this URL and signing up:

http://gogonet.gogo6.com

2. After creating the account, go to this URL, sign in, and create a user ID and password for the IPv6
broker:

http://gogonet.gogo6.com/page/freenet6-registration

3. As root, install gogoc:

1114

http://en.wikipedia.org/wiki/List_of_IPv6_tunnel_brokers
http://en.wikipedia.org/wiki/List_of_IPv6_tunnel_brokers
http://gogonet.gogo6.com
http://gogonet.gogo6.com/page/freenet6-registration

Network Namespace Support

$> emerge gogoc

4. Edit /etc/gogoc/gogoc.conf to set the userid and password values. For example:

userid=gogouser
passwd=gogopass

5. Start gogoc:

$> /etc/init.d/gogoc start

To start gogoc each time your system boots, execute this command:

$> rc-update add gogoc default

6. Use ping6 to try to ping a host:

$> ping6 ipv6.google.com

7. To see your IPv6 address:

$> ifconfig tun

7.1.14 Network Namespace Support

A network namespace is a logical copy of the network stack from the host system. Network
namespaces are useful for setting up containers or virtual environments. Each namespace has its own
IP addresses, network interfaces, routing tables, and so forth. The default or global namespace is the
one in which the host system physical interfaces exist.

Namespace-specific address spaces can lead to problems when MySQL connections cross
namespaces. For example, the network address space for a MySQL instance running in a container or
virtual network may differ from the address space of the host machine. This can produce phenomena
such as a client connection from an address in one namespace appearing to the MySQL server to be
coming from a different address, even for client and server running on the same machine. Suppose
that both processes run on a host with IP address 203.0.113.10 but use different namespaces. A
connection may produce a result like this:

$> mysql --user=admin --host=203.0.113.10 --protocol=tcp

mysql> SELECT USER();
+--------------------+
| USER() |
+--------------------+
| admin@198.51.100.2 |
+--------------------+

In this case, the expected USER() value is admin@203.0.113.10. Such behavior can make it difficult
to assign account permissions properly if the address from which an connection originates is not what it
appears.

To address this issue, MySQL enables specifying the network namespace to use for TCP/IP
connections, so that both endpoints of connections use an agreed-upon common address space.

MySQL 8.0.22 and higher supports network namespaces on platforms that implement them. Support
within MySQL applies to:

• The MySQL server, mysqld.

• X Plugin.

• The mysql client and the mysqlxtest test suite client. (Other clients are not supported. They must
be invoked from within the network namespace of the server to which they are to connect.)

• Regular replication.

1115

Network Namespace Support

• Group Replication, only when using the MySQL communication stack to establish group
communication connections (from MySQL 8.0.27).

The following sections describe how to use network namespaces in MySQL:

• Host System Prerequisites

• MySQL Configuration

• Network Namespace Monitoring

Host System Prerequisites

Prior to using network namespace support in MySQL, these host system prerequisites must be
satisfied:

• The host operating system must support network namespaces. (For example, Linux.)

• Any network namespace to be used by MySQL must first be created on the host system.

• Host name resolution must be configured by the system administrator to support network
namespaces.

Note

A known limitation is that, within MySQL, host name resolution does not work
for names specified in network namespace-specific host files. For example,
if the address for a host name in the red namespace is specified in the /
etc/netns/red/hosts file, binding to the name fails on both the server
and client sides. The workaround is to use the IP address rather than the host
name.

• The system administrator must enable the CAP_SYS_ADMIN operating system privilege for the
MySQL binaries that support network namespaces (mysqld, mysql, mysqlxtest).

Important

Enabling CAP_SYS_ADMIN is a security sensitive operation because it
enables a process to perform other privileged actions in addition to setting
namespaces. For a description of its effects, see https://man7.org/linux/man-
pages/man7/capabilities.7.html.

Because CAP_SYS_ADMIN must be enabled explicitly by the system
administrator, MySQL binaries by default do not have network namespace
support enabled. The system administrator should evaluate the security
implications of running MySQL processes with CAP_SYS_ADMIN before
enabling it.

The instructions in the following example set up network namespaces named red and blue. The
names you choose may differ, as may the network addresses and interfaces on your host system.

Invoke the commands shown here either as the root operating system user or by prefixing each
command with sudo. For example, to invoke the ip or setcap command if you are not root, use
sudo ip or sudo setcap.

To configure network namespaces, use the ip command. For some operations, the ip command must
execute within a particular namespace (which must already exist). In such cases, begin the command
like this:

ip netns exec namespace_name

For example, this command executes within the red namespace to bring up the loopback interface:

1116

https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html

Network Namespace Support

ip netns exec red ip link set lo up

To add namespaces named red and blue, each with its own virtual Ethernet device used as a link
between namespaces and its own loopback interface:

ip netns add red
ip link add veth-red type veth peer name vpeer-red
ip link set vpeer-red netns red
ip addr add 192.0.2.1/24 dev veth-red
ip link set veth-red up
ip netns exec red ip addr add 192.0.2.2/24 dev vpeer-red
ip netns exec red ip link set vpeer-red up
ip netns exec red ip link set lo up

ip netns add blue
ip link add veth-blue type veth peer name vpeer-blue
ip link set vpeer-blue netns blue
ip addr add 198.51.100.1/24 dev veth-blue
ip link set veth-blue up
ip netns exec blue ip addr add 198.51.100.2/24 dev vpeer-blue
ip netns exec blue ip link set vpeer-blue up
ip netns exec blue ip link set lo up

if you want to enable inter-subnet routing...
sysctl net.ipv4.ip_forward=1
ip netns exec red ip route add default via 192.0.2.1
ip netns exec blue ip route add default via 198.51.100.1

A diagram of the links between namespaces looks like this:

red global blue

192.0.2.2 <=> 192.0.2.1
(vpeer-red) (veth-red)

 198.51.100.1 <=> 198.51.100.2
 (veth-blue) (vpeer-blue)

To check which namespaces and links exist:

ip netns list
ip link list

To see the routing tables for the global and named namespaces:

ip route show
ip netns exec red ip route show
ip netns exec blue ip route show

To remove the red and blue links and namespaces:

ip link del veth-red
ip link del veth-blue

ip netns del red
ip netns del blue

sysctl net.ipv4.ip_forward=0

So that the MySQL binaries that include network namespace support can actually use namespaces,
you must grant them the CAP_SYS_ADMIN capability. The following setcap commands assume that
you have changed location to the directory containing your MySQL binaries (adjust the pathname for
your system as necessary):

cd /usr/local/mysql/bin

To grant CAP_SYS_ADMIN capability to the appropriate binaries:

setcap cap_sys_admin+ep ./mysqld
setcap cap_sys_admin+ep ./mysql

1117

Network Namespace Support

setcap cap_sys_admin+ep ./mysqlxtest

To check CAP_SYS_ADMIN capability:

$> getcap ./mysqld ./mysql ./mysqlxtest
./mysqld = cap_sys_admin+ep
./mysql = cap_sys_admin+ep
./mysqlxtest = cap_sys_admin+ep

To remove CAP_SYS_ADMIN capability:

setcap -r ./mysqld
setcap -r ./mysql
setcap -r ./mysqlxtest

Important

If you reinstall binaries to which you have previously applied setcap, you must
use setcap again. For example, if you perform an in-place MySQL upgrade,
failure to grant the CAP_SYS_ADMIN capability again results in namespace-
related failures. The server fails with this error for attempts to bind to an address
with a named namespace:

[ERROR] [MY-013408] [Server] setns() failed with error 'Operation not permitted'

A client invoked with the --network-namespace option fails like this:

ERROR: Network namespace error: Operation not permitted

MySQL Configuration

Assuming that the preceding host system prerequisites have been satisfied, MySQL enables
configuring the server-side namespace for the listening (inbound) side of connections and the client-
side namespace for the outbound side of connections.

On the server side, the bind_address, admin_address, and mysqlx_bind_address system
variables have extended syntax for specifying the network namespace to use for a given IP address or
host name on which to listen for incoming connections. To specify a namespace for an address, add a
slash and the namespace name. For example, a server my.cnf file might contain these lines:

[mysqld]
bind_address = 127.0.1.1,192.0.2.2/red,198.51.100.2/blue
admin_address = 102.0.2.2/red
mysqlx_bind_address = 102.0.2.2/red

These rules apply:

• A network namespace can be specified for an IP address or a host name.

• A network namespace cannot be specified for a wildcard IP address.

• For a given address, the network namespace is optional. If given, it must be specified as a /ns suffix
immediately following the address.

• An address with no /ns suffix uses the host system global namespace. The global namespace is
therefore the default.

• An address with a /ns suffix uses the namespace named ns.

• The host system must support network namespaces and each named namespace must previously
have been set up. Naming a nonexistent namespace produces an error.

• bind_address and (as of MySQL 8.0.21) mysqlx_bind_address accept a list of multiple
comma-separated addresses, the variable value can specify addresses in the global namespace, in
named namespaces, or a mix.

1118

Network Namespace Support

If an error occurs during server startup for attempts to use a namespace, the server does not start. If
errors occur for X Plugin during plugin initialization such that it is unable to bind to any address, the
plugin fails its initialization sequence and the server does not load it.

On the client side, a network namespace can be specified in these contexts:

• For the mysql client and the mysqlxtest test suite client, use the --network-namespace option.
For example:

mysql --host=192.0.2.2 --network-namespace=red

If the --network-namespace option is omitted, the connection uses the default (global)
namespace.

• For replication connections from replica servers to source servers, use the CHANGE REPLICATION
SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL
8.0.23) and specify the NETWORK_NAMESPACE option. For example:

CHANGE REPLICATION SOURCE TO
 SOURCE_HOST = '192.0.2.2',
 NETWORK_NAMESPACE = 'red';

If the NETWORK_NAMESPACE option is omitted, replication connections use the default (global)
namespace.

The following example sets up a MySQL server that listens for connections in the global, red, and
blue namespaces, and shows how to configure accounts that connect from the red and blue
namespaces. It is assumed that the red and blue namespaces have already been created as shown
in Host System Prerequisites.

1. Configure the server to listen on addresses in multiple namespaces. Put these lines in the server
my.cnf file and start the server:

[mysqld]
bind_address = 127.0.1.1,192.0.2.2/red,198.51.100.2/blue

The value tells the server to listen on the loopback address 127.0.0.1 in the global namespace,
the address 192.0.2.2 in the red namespace, and the address 198.51.100.2 in the blue
namespace.

2. Connect to the server in the global namespace and create accounts that have permission to
connect from an address in the address space of each named namespace:

$> mysql -u root -h 127.0.0.1 -p
Enter password: root_password

mysql> CREATE USER 'red_user'@'192.0.2.2'
 IDENTIFIED BY 'red_user_password';
mysql> CREATE USER 'blue_user'@'198.51.100.2'
 IDENTIFIED BY 'blue_user_password';

3. Verify that you can connect to the server in each named namespace:

$> mysql -u red_user -h 192.0.2.2 --network-namespace=red -p
Enter password: red_user_password

mysql> SELECT USER();
+--------------------+
| USER() |
+--------------------+
| red_user@192.0.2.2 |
+--------------------+

$> mysql -u blue_user -h 198.51.100.2 --network-namespace=blue -p
Enter password: blue_user_password

1119

MySQL Server Time Zone Support

mysql> SELECT USER();
+------------------------+
| USER() |
+------------------------+
| blue_user@198.51.100.2 |
+------------------------+

Note

You might see different results from USER(), which can return a value that
includes a host name rather than an IP address if your DNS is configured
to be able to resolve the address to the corresponding host name and the
server is not run with the skip_name_resolve system variable enabled.

You might also try invoking mysql without the --network-namespace option to see whether the
connection attempt succeeds, and, if so, how the USER() value is affected.

Network Namespace Monitoring

For replication monitoring purposes, these information sources have a column that displays the
applicable network namespace for connections:

• The Performance Schema replication_connection_configuration table. See
Section 29.12.11.10, “The replication_connection_configuration Table”.

• The replica server connection metadata repository. See Section 19.2.4.2, “Replication Metadata
Repositories”.

• The SHOW REPLICA STATUS (or before MySQL 8.0.22, SHOW SLAVE STATUS) statement. See
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”.

7.1.15 MySQL Server Time Zone Support

This section describes the time zone settings maintained by MySQL, how to load the system tables
required for named time support, how to stay current with time zone changes, and how to enable leap-
second support.

Beginning with MySQL 8.0.19, time zone offsets are also supported for inserted datetime values; see
Section 13.2.2, “The DATE, DATETIME, and TIMESTAMP Types”, for more information.

For information about time zone settings in replication setups, see Section 19.5.1.14, “Replication and
System Functions” and Section 19.5.1.33, “Replication and Time Zones”.

• Time Zone Variables

• Populating the Time Zone Tables

• Staying Current with Time Zone Changes

• Time Zone Leap Second Support

Time Zone Variables

MySQL Server maintains several time zone settings:

• The server system time zone. When the server starts, it attempts to determine the time zone of the
host machine and uses it to set the system_time_zone system variable.

To explicitly specify the system time zone for MySQL Server at startup, set the TZ environment
variable before you start mysqld. If you start the server using mysqld_safe, its --timezone
option provides another way to set the system time zone. The permissible values for TZ and --
timezone are system dependent. Consult your operating system documentation to see what values
are acceptable.

1120

MySQL Server Time Zone Support

• The server current time zone. The global time_zone system variable indicates the time zone the
server currently is operating in. The initial time_zone value is 'SYSTEM', which indicates that the
server time zone is the same as the system time zone.

Note

If set to SYSTEM, every MySQL function call that requires a time zone
calculation makes a system library call to determine the current system time
zone. This call may be protected by a global mutex, resulting in contention.

The initial global server time zone value can be specified explicitly at startup with the --default-
time-zone option on the command line, or you can use the following line in an option file:

default-time-zone='timezone'

If you have the SYSTEM_VARIABLES_ADMIN privilege (or the deprecated SUPER privilege), you can
set the global server time zone value at runtime with this statement:

SET GLOBAL time_zone = timezone;

• Per-session time zones. Each client that connects has its own session time zone setting, given
by the session time_zone variable. Initially, the session variable takes its value from the global
time_zone variable, but the client can change its own time zone with this statement:

SET time_zone = timezone;

The session time zone setting affects display and storage of time values that are zone-sensitive. This
includes the values displayed by functions such as NOW() or CURTIME(), and values stored in and
retrieved from TIMESTAMP columns. Values for TIMESTAMP columns are converted from the session
time zone to UTC for storage, and from UTC to the session time zone for retrieval.

The session time zone setting does not affect values displayed by functions such as
UTC_TIMESTAMP() or values in DATE, TIME, or DATETIME columns. Nor are values in those data
types stored in UTC; the time zone applies for them only when converting from TIMESTAMP values. If
you want locale-specific arithmetic for DATE, TIME, or DATETIME values, convert them to UTC, perform
the arithmetic, and then convert back.

The current global and session time zone values can be retrieved like this:

SELECT @@GLOBAL.time_zone, @@SESSION.time_zone;

timezone values can be given in several formats, none of which are case-sensitive:

• As the value 'SYSTEM', indicating that the server time zone is the same as the system time zone.

• As a string indicating an offset from UTC of the form [H]H:MM, prefixed with a + or -, such as
'+10:00', '-6:00', or '+05:30'. A leading zero can optionally be used for hours values less
than 10; MySQL prepends a leading zero when storing and retrieving the value in such cases.
MySQL converts '-00:00' or '-0:00' to '+00:00'.

Prior to MySQL 8.0.19, this value had to be in the range '-12:59' to '+13:00', inclusive;
beginning with MySQL 8.0.19, the permitted range is '-13:59' to '+14:00', inclusive.

• As a named time zone, such as 'Europe/Helsinki', 'US/Eastern', 'MET', or 'UTC'.

Note

Named time zones can be used only if the time zone information tables in
the mysql database have been created and populated. Otherwise, use of a
named time zone results in an error:

mysql> SET time_zone = 'UTC';
ERROR 1298 (HY000): Unknown or incorrect time zone: 'UTC'

1121

MySQL Server Time Zone Support

Populating the Time Zone Tables

Several tables in the mysql system schema exist to store time zone information (see Section 7.3, “The
mysql System Schema”). The MySQL installation procedure creates the time zone tables, but does not
load them. To do so manually, use the following instructions.

Note

Loading the time zone information is not necessarily a one-time operation
because the information changes occasionally. When such changes occur,
applications that use the old rules become out of date and you may find it
necessary to reload the time zone tables to keep the information used by your
MySQL server current. See Staying Current with Time Zone Changes.

If your system has its own zoneinfo database (the set of files describing time zones), use the
mysql_tzinfo_to_sql program to load the time zone tables. Examples of such systems are Linux,
macOS, FreeBSD, and Solaris. One likely location for these files is the /usr/share/zoneinfo
directory. If your system has no zoneinfo database, you can use a downloadable package, as
described later in this section.

To load the time zone tables from the command line, pass the zoneinfo directory path name to
mysql_tzinfo_to_sql and send the output into the mysql program. For example:

mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root -p mysql

The mysql command shown here assumes that you connect to the server using an account such
as root that has privileges for modifying tables in the mysql system schema. Adjust the connection
parameters as required.

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from
them. mysql processes those statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file or generate leap second
information:

• To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke
mysql_tzinfo_to_sql like this:

mysql_tzinfo_to_sql tz_file tz_name | mysql -u root -p mysql

With this approach, you must execute a separate command to load the time zone file for each named
zone that the server needs to know about.

• If your time zone must account for leap seconds, initialize leap second information like this, where
tz_file is the name of your time zone file:

mysql_tzinfo_to_sql --leap tz_file | mysql -u root -p mysql

After running mysql_tzinfo_to_sql, restart the server so that it does not continue to use any
previously cached time zone data.

If your system has no zoneinfo database (for example, Windows), you can use a package containing
SQL statements that is available for download at the MySQL Developer Zone:

https://dev.mysql.com/downloads/timezones.html

Warning

Do not use a downloadable time zone package if your system has a zoneinfo
database. Use the mysql_tzinfo_to_sql utility instead. Otherwise, you may
cause a difference in datetime handling between MySQL and other applications
on your system.

1122

https://dev.mysql.com/downloads/timezones.html

MySQL Server Time Zone Support

To use an SQL-statement time zone package that you have downloaded, unpack it, then load the
unpacked file contents into the time zone tables:

mysql -u root -p mysql < file_name

Then restart the server.

Warning

Do not use a downloadable time zone package that contains MyISAM tables.
That is intended for older MySQL versions. MySQL now uses InnoDB for the
time zone tables. Trying to replace them with MyISAM tables causes problems.

Staying Current with Time Zone Changes

When time zone rules change, applications that use the old rules become out of date. To stay current,
it is necessary to make sure that your system uses current time zone information is used. For MySQL,
there are multiple factors to consider in staying current:

• The operating system time affects the value that the MySQL server uses for times if its time zone
is set to SYSTEM. Make sure that your operating system is using the latest time zone information.
For most operating systems, the latest update or service pack prepares your system for the time
changes. Check the website for your operating system vendor for an update that addresses the time
changes.

• If you replace the system's /etc/localtime time zone file with a version that uses rules differing
from those in effect at mysqld startup, restart mysqld so that it uses the updated rules. Otherwise,
mysqld might not notice when the system changes its time.

• If you use named time zones with MySQL, make sure that the time zone tables in the mysql
database are up to date:

• If your system has its own zoneinfo database, reload the MySQL time zone tables whenever the
zoneinfo database is updated.

• For systems that do not have their own zoneinfo database, check the MySQL Developer Zone for
updates. When a new update is available, download it and use it to replace the content of your
current time zone tables.

For instructions for both methods, see Populating the Time Zone Tables. mysqld caches time zone
information that it looks up, so after updating the time zone tables, restart mysqld to make sure that
it does not continue to serve outdated time zone data.

If you are uncertain whether named time zones are available, for use either as the server's time zone
setting or by clients that set their own time zone, check whether your time zone tables are empty. The
following query determines whether the table that contains time zone names has any rows:

mysql> SELECT COUNT(*) FROM mysql.time_zone_name;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

A count of zero indicates that the table is empty. In this case, no applications currently are using named
time zones, and you need not update the tables (unless you want to enable named time zone support).
A count greater than zero indicates that the table is not empty and that its contents are available to
be used for named time zone support. In this case, be sure to reload your time zone tables so that
applications that use named time zones can obtain correct query results.

To check whether your MySQL installation is updated properly for a change in Daylight Saving Time
rules, use a test like the one following. The example uses values that are appropriate for the 2007 DST
1-hour change that occurs in the United States on March 11 at 2 a.m.

1123

MySQL Server Time Zone Support

The test uses this query:

SELECT
 CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') AS time1,
 CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') AS time2;

The two time values indicate the times at which the DST change occurs, and the use of named time
zones requires that the time zone tables be used. The desired result is that both queries return the
same result (the input time, converted to the equivalent value in the 'US/Central' time zone).

Before updating the time zone tables, you see an incorrect result like this:

+---------------------+---------------------+
| time1 | time2 |
+---------------------+---------------------+
| 2007-03-11 01:00:00 | 2007-03-11 02:00:00 |
+---------------------+---------------------+

After updating the tables, you should see the correct result:

+---------------------+---------------------+
| time1 | time2 |
+---------------------+---------------------+
| 2007-03-11 01:00:00 | 2007-03-11 01:00:00 |
+---------------------+---------------------+

Time Zone Leap Second Support

Leap second values are returned with a time part that ends with :59:59. This means that a function
such as NOW() can return the same value for two or three consecutive seconds during the leap
second. It remains true that literal temporal values having a time part that ends with :59:60 or :59:61
are considered invalid.

If it is necessary to search for TIMESTAMP values one second before the leap second, anomalous
results may be obtained if you use a comparison with 'YYYY-MM-DD hh:mm:ss' values. The
following example demonstrates this. It changes the session time zone to UTC so there is no difference
between internal TIMESTAMP values (which are in UTC) and displayed values (which have time zone
correction applied).

mysql> CREATE TABLE t1 (
 a INT,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (ts)
);
Query OK, 0 rows affected (0.01 sec)

mysql> -- change to UTC
mysql> SET time_zone = '+00:00';
Query OK, 0 rows affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:59'
mysql> SET timestamp = 1230767999;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (1);
Query OK, 1 row affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:60'
mysql> SET timestamp = 1230768000;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (2);
Query OK, 1 row affected (0.00 sec)

mysql> -- values differ internally but display the same
mysql> SELECT a, ts, UNIX_TIMESTAMP(ts) FROM t1;
+------+---------------------+--------------------+
| a | ts | UNIX_TIMESTAMP(ts) |

1124

Resource Groups

+------+---------------------+--------------------+
| 1 | 2008-12-31 23:59:59 | 1230767999 |
| 2 | 2008-12-31 23:59:59 | 1230768000 |
+------+---------------------+--------------------+
2 rows in set (0.00 sec)

mysql> -- only the non-leap value matches
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:59';
+------+---------------------+
| a | ts |
+------+---------------------+
| 1 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

mysql> -- the leap value with seconds=60 is invalid
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:60';
Empty set, 2 warnings (0.00 sec)

To work around this, you can use a comparison based on the UTC value actually stored in the column,
which has the leap second correction applied:

mysql> -- selecting using UNIX_TIMESTAMP value return leap value
mysql> SELECT * FROM t1 WHERE UNIX_TIMESTAMP(ts) = 1230768000;
+------+---------------------+
| a | ts |
+------+---------------------+
| 2 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

7.1.16 Resource Groups

MySQL supports creation and management of resource groups, and permits assigning threads
running within the server to particular groups so that threads execute according to the resources
available to the group. Group attributes enable control over its resources, to enable or restrict resource
consumption by threads in the group. DBAs can modify these attributes as appropriate for different
workloads.

Currently, CPU time is a manageable resource, represented by the concept of “virtual CPU” as a term
that includes CPU cores, hyperthreads, hardware threads, and so forth. The server determines at
startup how many virtual CPUs are available, and database administrators with appropriate privileges
can associate these CPUs with resource groups and assign threads to groups.

For example, to manage execution of batch jobs that need not execute with high priority, a DBA can
create a Batch resource group, and adjust its priority up or down depending on how busy the server
is. (Perhaps batch jobs assigned to the group should run at lower priority during the day and at higher
priority during the night.) The DBA can also adjust the set of CPUs available to the group. Groups can
be enabled or disabled to control whether threads are assignable to them.

The following sections describe aspects of resource group use in MySQL:

• Resource Group Elements

• Resource Group Attributes

• Resource Group Management

• Resource Group Replication

• Resource Group Restrictions

Important

On some platforms or MySQL server configurations, resource groups are
unavailable or have limitations. In particular, Linux systems might require a

1125

Resource Groups

manual step for some installation methods. For details, see Resource Group
Restrictions.

Resource Group Elements

These capabilities provide the SQL interface for resource group management in MySQL:

• SQL statements enable creating, altering, and dropping resource groups, and enable assigning
threads to resource groups. An optimizer hint enables assigning individual statements to resource
groups.

• Resource group privileges provide control over which users can perform resource group operations.

• The Information Schema RESOURCE_GROUPS table exposes information about resource group
definitions and the Performance Schema threads table shows the resource group assignment for
each thread.

• Status variables provide execution counts for each management SQL statement.

Resource Group Attributes

Resource groups have attributes that define the group. All attributes can be set at group creation time.
Some attributes are fixed at creation time; others can be modified any time thereafter.

These attributes are defined at resource group creation time and cannot be modified:

• Each group has a name. Resource group names are identifiers like table and column names, and
need not be quoted in SQL statements unless they contain special characters or are reserved words.
Group names are not case-sensitive and may be up to 64 characters long.

• Each group has a type, which is either SYSTEM or USER. The resource group type affects the
range of priority values assignable to the group, as described later. This attribute together with the
differences in permitted priorities enables system threads to be identified so as to protect them from
contention for CPU resources against user threads.

System and user threads correspond to background and foreground threads as listed in the
Performance Schema threads table.

These attributes are defined at resource group creation time and can be modified any time thereafter:

• The CPU affinity is the set of virtual CPUs the resource group can use. An affinity can be any
nonempty subset of the available CPUs. If a group has no affinity, it can use all available CPUs.

• The thread priority is the execution priority for threads assigned to the resource group. Priority values
range from -20 (highest priority) to 19 (lowest priority). The default priority is 0, for both system and
user groups.

System groups are permitted a higher priority than user groups, ensuring that user threads never
have a higher priority than system threads:

• For system resource groups, the permitted priority range is -20 to 0.

• For user resource groups, the permitted priority range is 0 to 19.

• Each group can be enabled or disabled, affording administrators control over thread assignment.
Threads can be assigned only to enabled groups.

Resource Group Management

By default, there is one system group and one user group, named SYS_default and USR_default,
respectively. These default groups cannot be dropped and their attributes cannot be modified. Each
default group has no CPU affinity and priority 0.

1126

Resource Groups

Newly created system and user threads are assigned to the SYS_default and USR_default groups,
respectively.

For user-defined resource groups, all attributes are assigned at group creation time. After a group has
been created, its attributes can be modified, with the exception of the name and type attributes.

To create and manage user-defined resource groups, use these SQL statements:

• CREATE RESOURCE GROUP creates a new group. See Section 15.7.2.2, “CREATE RESOURCE
GROUP Statement”.

• ALTER RESOURCE GROUP modifies an existing group. See Section 15.7.2.1, “ALTER RESOURCE
GROUP Statement”.

• DROP RESOURCE GROUP drops an existing group. See Section 15.7.2.3, “DROP RESOURCE
GROUP Statement”.

Those statements require the RESOURCE_GROUP_ADMIN privilege.

To manage resource group assignments, use these capabilities:

• SET RESOURCE GROUP assigns threads to a group. See Section 15.7.2.4, “SET RESOURCE
GROUP Statement”.

• The RESOURCE_GROUP optimizer hint assigns individual statements to a group. See Section 10.9.3,
“Optimizer Hints”.

Those operations require the RESOURCE_GROUP_ADMIN or RESOURCE_GROUP_USER privilege.

Resource group definitions are stored in the resource_groups data dictionary table so that
groups persist across server restarts. Because resource_groups is part of the data dictionary,
it is not directly accessible by users. Resource group information is available using the Information
Schema RESOURCE_GROUPS table, which is implemented as a view on the data dictionary table. See
Section 28.3.26, “The INFORMATION_SCHEMA RESOURCE_GROUPS Table”.

Initially, the RESOURCE_GROUPS table has these rows describing the default groups:

mysql> SELECT * FROM INFORMATION_SCHEMA.RESOURCE_GROUPS\G
*************************** 1. row ***************************
 RESOURCE_GROUP_NAME: USR_default
 RESOURCE_GROUP_TYPE: USER
RESOURCE_GROUP_ENABLED: 1
 VCPU_IDS: 0-3
 THREAD_PRIORITY: 0
*************************** 2. row ***************************
 RESOURCE_GROUP_NAME: SYS_default
 RESOURCE_GROUP_TYPE: SYSTEM
RESOURCE_GROUP_ENABLED: 1
 VCPU_IDS: 0-3
 THREAD_PRIORITY: 0

The THREAD_PRIORITY values are 0, indicating the default priority. The VCPU_IDS values show a
range comprising all available CPUs. For the default groups, the displayed value varies depending on
the system on which the MySQL server runs.

Earlier discussion mentioned a scenario involving a resource group named Batch to manage
execution of batch jobs that need not execute with high priority. To create such a group, use a
statement similar to this:

CREATE RESOURCE GROUP Batch
 TYPE = USER
 VCPU = 2-3 -- assumes a system with at least 4 CPUs
 THREAD_PRIORITY = 10;

To verify that the resource group was created as expected, check the RESOURCE_GROUPS table:

1127

Resource Groups

mysql> SELECT * FROM INFORMATION_SCHEMA.RESOURCE_GROUPS
 WHERE RESOURCE_GROUP_NAME = 'Batch'\G
*************************** 1. row ***************************
 RESOURCE_GROUP_NAME: Batch
 RESOURCE_GROUP_TYPE: USER
RESOURCE_GROUP_ENABLED: 1
 VCPU_IDS: 2-3
 THREAD_PRIORITY: 10

If the THREAD_PRIORITY value is 0 rather than 10, check whether your platform or system
configuration limits the resource group capability; see Resource Group Restrictions.

To assign a thread to the Batch group, do this:

SET RESOURCE GROUP Batch FOR thread_id;

Thereafter, statements in the named thread execute with Batch group resources.

If a session's own current thread should be in the Batch group, execute this statement within the
session:

SET RESOURCE GROUP Batch;

Thereafter, statements in the session execute with Batch group resources.

To execute a single statement using the Batch group, use the RESOURCE_GROUP optimizer hint:

INSERT /*+ RESOURCE_GROUP(Batch) */ INTO t2 VALUES(2);

Threads assigned to the Batch group execute with its resources, which can be modified as desired:

• For times when the system is highly loaded, decrease the number of CPUs assigned to the group,
lower its priority, or (as shown) both:

ALTER RESOURCE GROUP Batch
 VCPU = 3
 THREAD_PRIORITY = 19;

• For times when the system is lightly loaded, increase the number of CPUs assigned to the group,
raise its priority, or (as shown) both:

ALTER RESOURCE GROUP Batch
 VCPU = 0-3
 THREAD_PRIORITY = 0;

Resource Group Replication

Resource group management is local to the server on which it occurs. Resource group SQL
statements and modifications to the resource_groups data dictionary table are not written to the
binary log and are not replicated.

Resource Group Restrictions

On some platforms or MySQL server configurations, resource groups are unavailable or have
limitations:

• Resource groups are unavailable if the thread pool plugin is installed.

• Resource groups are unavailable on macOS, which provides no API for binding CPUs to a thread.

• On FreeBSD and Solaris, resource group thread priorities are ignored. (Effectively, all threads run at
priority 0.) Attempts to change priorities result in a warning:

mysql> ALTER RESOURCE GROUP abc THREAD_PRIORITY = 10;
Query OK, 0 rows affected, 1 warning (0.18 sec)

1128

Resource Groups

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 4560 | Attribute thread_priority is ignored (using default value). |
+---------+------+---+

• On Linux, resource groups thread priorities are ignored unless the CAP_SYS_NICE capability is
set. Granting CAP_SYS_NICE capability to a process enables a range of privileges; consult http://
man7.org/linux/man-pages/man7/capabilities.7.html for the full list. Please be careful when enabling
this capability.

On Linux platforms using systemd and kernel support for Ambient Capabilities (Linux 4.3 or newer),
the recommended way to enable CAP_SYS_NICE capability is to modify the MySQL service file and
leave the mysqld binary unmodified. To adjust the service file for MySQL, use this procedure:

1. Run the appropriate command for your platform:

• Oracle Linux, Red Hat, and Fedora systems:

$> sudo systemctl edit mysqld

• SUSE, Ubuntu, and Debian systems:

$> sudo systemctl edit mysql

2. Using an editor, add the following text to the service file:

[Service]
AmbientCapabilities=CAP_SYS_NICE

3. Restart the MySQL service.

If you cannot enable the CAP_SYS_NICE capability as just described, it can be set manually using
the setcap command, specifying the path name to the mysqld executable (this requires sudo
access). You can check the capabilities using getcap. For example:

$> sudo setcap cap_sys_nice+ep /path/to/mysqld
$> getcap /path/to/mysqld
/path/to/mysqld = cap_sys_nice+ep

As a safety measure, restrict execution of the mysqld binary to the root user and users with mysql
group membership:

$> sudo chown root:mysql /path/to/mysqld
$> sudo chmod 0750 /path/to/mysqld

Important

If manual use of setcap is required, it must be performed after each reinstall.

• On Windows, threads run at one of five thread priority levels. The resource group thread priority
range of -20 to 19 maps onto those levels as indicated in the following table.

Table 7.6 Resource Group Thread Priority on Windows

Priority Range Windows Priority Level

-20 to -10 THREAD_PRIORITY_HIGHEST

-9 to -1 THREAD_PRIORITY_ABOVE_NORMAL

0 THREAD_PRIORITY_NORMAL

1 to 10 THREAD_PRIORITY_BELOW_NORMAL

11 to 19 THREAD_PRIORITY_LOWEST

1129

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

Server-Side Help Support

7.1.17 Server-Side Help Support

MySQL Server supports a HELP statement that returns information from the MySQL Reference Manual
(see Section 15.8.3, “HELP Statement”). This information is stored in several tables in the mysql
schema (see Section 7.3, “The mysql System Schema”). Proper operation of the HELP statement
requires that these help tables be initialized.

For a new installation of MySQL using a binary or source distribution on Unix, help-table content
initialization occurs when you initialize the data directory (see Section 2.9.1, “Initializing the Data
Directory”). For an RPM distribution on Linux or binary distribution on Windows, content initialization
occurs as part of the MySQL installation process.

For a MySQL upgrade using a binary distribution, help-table content is upgraded automatically by the
server as of MySQL 8.0.16. Prior to MySQL 8.0.16, the content is not upgraded automatically, but you
can upgrade it manually. Locate the fill_help_tables.sql file in the share or share/mysql
directory. Change location into that directory and process the file with the mysql client as follows:

mysql -u root -p mysql < fill_help_tables.sql

The command shown here assumes that you connect to the server using an account such as root
that has privileges for modifying tables in the mysql schema. Adjust the connection parameters as
required.

Prior to MySQL 8.0.16, if you are working with Git and a MySQL development source tree, the source
tree contains only a “stub” version of fill_help_tables.sql. To obtain a non-stub copy, use one
from a source or binary distribution.

Note

Each MySQL series has its own series-specific reference manual, so help-table
content is series specific as well. This has implications for replication because
help-table content should match the MySQL series. If you load MySQL 8.0 help
content into a MySQL 8.0 replication server, it does not make sense to replicate
that content to a replica server from a different MySQL series and for which that
content is not appropriate. For this reason, as you upgrade individual servers
in a replication scenario, you should upgrade each server's help tables, using
the instructions given earlier. (Manual help-content upgrade is necessary only
for replication servers from versions lower than 8.0.16. As mentioned in the
preceding instructions, content upgrades occur automatically as of MySQL
8.0.16.)

7.1.18 Server Tracking of Client Session State

The MySQL server implements several session state trackers. A client can enable these trackers to
receive notification of changes to its session state.

• Uses for Session State Trackers

• Available Session State Trackers

• C API Session State Tracker Support

• Test Suite Session State Tracker Support

Uses for Session State Trackers

Session state trackers have uses such as these:

• To facilitate session migration.

• To facilitate transaction switching.

1130

Server Tracking of Client Session State

The tracker mechanism provides a means for MySQL connectors and client applications to determine
whether any session context is available to permit session migration from one server to another. (To
change sessions in a load-balanced environment, it is necessary to detect whether there is session
state to take into consideration when deciding whether a switch can be made.)

The tracker mechanism permits applications to know when transactions can be moved from one
session to another. Transaction state tracking enables this, which is useful for applications that may
wish to move transactions from a busy server to one that is less loaded. For example, a load-balancing
connector managing a client connection pool could move transactions between available sessions in
the pool.

However, session switching cannot be done at arbitrary times. If a session is in the middle of a
transaction for which reads or writes have been done, switching to a different session implies a
transaction rollback on the original session. A session switch must be done only when a transaction
does not yet have any reads or writes performed within it.

Examples of when transactions might reasonably be switched:

• Immediately after START TRANSACTION

• After COMMIT AND CHAIN

In addition to knowing transaction state, it is useful to know transaction characteristics, so as to use the
same characteristics if the transaction is moved to a different session. The following characteristics are
relevant for this purpose:

READ ONLY
READ WRITE
ISOLATION LEVEL
WITH CONSISTENT SNAPSHOT

Available Session State Trackers

To support the session-tracking activities, notification is available for these types of client session state
information:

• Changes to these attributes of client session state:

• The default schema (database).

• Session-specific values for system variables.

• User-defined variables.

• Temporary tables.

• Prepared statements.

The session_track_state_change system variable controls this tracker.

• Changes to the default schema name. The session_track_schema system variable controls this
tracker.

• Changes to the session values of system variables. The session_track_system_variables
system variable controls this tracker. The SENSITIVE_VARIABLES_OBSERVER privilege is required
to track changes to the values of sensitive system variables.

• Available GTIDs. The session_track_gtids system variable controls this tracker.

• Information about transaction state and characteristics. The session_track_transaction_info
system variable controls this tracker.

For descriptions of the tracker-related system variables, see Section 7.1.8, “Server System Variables”.
Those system variables permit control over which change notifications occur, but do not provide a

1131

Server Tracking of Client Session State

way to access notification information. Notification occurs in the MySQL client/server protocol, which
includes tracker information in OK packets so that session state changes can be detected.

C API Session State Tracker Support

To enable client applications to extract state-change information from OK packets returned by the
server, the MySQL C API provides a pair of functions:

• mysql_session_track_get_first() fetches the first part of the state-change information
received from the server. See mysql_session_track_get_first().

• mysql_session_track_get_next() fetches any remaining state-change information received
from the server. Following a successful call to mysql_session_track_get_first(), call this
function repeatedly as long as it returns success. See mysql_session_track_get_next().

Test Suite Session State Tracker Support

The mysqltest program has disable_session_track_info and
enable_session_track_info commands that control whether session tracker notifications occur.
You can use these commands to see from the command line what notifications SQL statements
produce. Suppose that a file testscript contains the following mysqltest script:

DROP TABLE IF EXISTS test.t1;
CREATE TABLE test.t1 (i INT, f FLOAT);
--enable_session_track_info
SET @@SESSION.session_track_schema=ON;
SET @@SESSION.session_track_system_variables='*';
SET @@SESSION.session_track_state_change=ON;
USE information_schema;
SET NAMES 'utf8mb4';
SET @@SESSION.session_track_transaction_info='CHARACTERISTICS';
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION READ WRITE;
START TRANSACTION;
SELECT 1;
INSERT INTO test.t1 () VALUES();
INSERT INTO test.t1 () VALUES(1, RAND());
COMMIT;

Run the script as follows to see the information provided by the enabled trackers. For a
description of the Tracker: information displayed by mysqltest for the various trackers, see
mysql_session_track_get_first().

$> mysqltest < testscript
DROP TABLE IF EXISTS test.t1;
CREATE TABLE test.t1 (i INT, f FLOAT);
SET @@SESSION.session_track_schema=ON;
SET @@SESSION.session_track_system_variables='*';
-- Tracker : SESSION_TRACK_SYSTEM_VARIABLES
-- session_track_system_variables
-- *

SET @@SESSION.session_track_state_change=ON;
-- Tracker : SESSION_TRACK_SYSTEM_VARIABLES
-- session_track_state_change
-- ON

USE information_schema;
-- Tracker : SESSION_TRACK_SCHEMA
-- information_schema

-- Tracker : SESSION_TRACK_STATE_CHANGE
-- 1

SET NAMES 'utf8mb4';
-- Tracker : SESSION_TRACK_SYSTEM_VARIABLES
-- character_set_client
-- utf8mb4

1132

https://dev.mysql.com/doc/c-api/8.0/en/mysql-session-track-get-first.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-session-track-get-first.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-session-track-get-next.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-session-track-get-first.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-session-track-get-next.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-session-track-get-first.html

Server Tracking of Client Session State

-- character_set_connection
-- utf8mb4
-- character_set_results
-- utf8mb4

-- Tracker : SESSION_TRACK_STATE_CHANGE
-- 1

SET @@SESSION.session_track_transaction_info='CHARACTERISTICS';
-- Tracker : SESSION_TRACK_SYSTEM_VARIABLES
-- session_track_transaction_info
-- CHARACTERISTICS

-- Tracker : SESSION_TRACK_STATE_CHANGE
-- 1

-- Tracker : SESSION_TRACK_TRANSACTION_CHARACTERISTICS
--

-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- ________

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
-- Tracker : SESSION_TRACK_TRANSACTION_CHARACTERISTICS
-- SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION READ WRITE;
-- Tracker : SESSION_TRACK_TRANSACTION_CHARACTERISTICS
-- SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; SET TRANSACTION READ WRITE;

START TRANSACTION;
-- Tracker : SESSION_TRACK_TRANSACTION_CHARACTERISTICS
-- SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; START TRANSACTION READ WRITE;

-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- T_______

SELECT 1;
1
1
-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- T_____S_

INSERT INTO test.t1 () VALUES();
-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- T___W_S_

INSERT INTO test.t1 () VALUES(1, RAND());
-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- T___WsS_

COMMIT;
-- Tracker : SESSION_TRACK_TRANSACTION_CHARACTERISTICS
--

-- Tracker : SESSION_TRACK_TRANSACTION_STATE
-- ________

ok

Preceding the START TRANSACTION statement, two SET TRANSACTION statements execute
that set the isolation level and access mode characteristics for the next transaction. The
SESSION_TRACK_TRANSACTION_CHARACTERISTICS value indicates those next-transaction values
that have been set.

Following the COMMIT statement that ends the transaction, the
SESSION_TRACK_TRANSACTION_CHARACTERISTICS value is reported as empty. This indicates that
the next-transaction characteristics that were set preceding the start of the transaction have been reset,
and that the session defaults apply. To track changes to those session defaults, track the session
values of the transaction_isolation and transaction_read_only system variables.

1133

The Server Shutdown Process

To see information about GTIDs, enable the SESSION_TRACK_GTIDS tracker using the
session_track_gtids system system variable.

7.1.19 The Server Shutdown Process

The server shutdown process takes place as follows:

1. The shutdown process is initiated.

This can occur initiated several ways. For example, a user with the SHUTDOWN privilege can
execute a mysqladmin shutdown command. mysqladmin can be used on any platform
supported by MySQL. Other operating system-specific shutdown initiation methods are possible
as well: The server shuts down on Unix when it receives a SIGTERM signal. A server running as a
service on Windows shuts down when the services manager tells it to.

2. The server creates a shutdown thread if necessary.

Depending on how shutdown was initiated, the server might create a thread to handle the shutdown
process. If shutdown was requested by a client, a shutdown thread is created. If shutdown is the
result of receiving a SIGTERM signal, the signal thread might handle shutdown itself, or it might
create a separate thread to do so. If the server tries to create a shutdown thread and cannot (for
example, if memory is exhausted), it issues a diagnostic message that appears in the error log:

Error: Can't create thread to kill server

3. The server stops accepting new connections.

To prevent new activity from being initiated during shutdown, the server stops accepting new
client connections by closing the handlers for the network interfaces to which it normally listens for
connections: the TCP/IP port, the Unix socket file, the Windows named pipe, and shared memory
on Windows.

4. The server terminates current activity.

For each thread associated with a client connection, the server breaks the connection to the client
and marks the thread as killed. Threads die when they notice that they are so marked. Threads
for idle connections die quickly. Threads that currently are processing statements check their
state periodically and take longer to die. For additional information about thread termination, see
Section 15.7.8.4, “KILL Statement”, in particular for the instructions about killed REPAIR TABLE or
OPTIMIZE TABLE operations on MyISAM tables.

For threads that have an open transaction, the transaction is rolled back. If a thread is updating a
nontransactional table, an operation such as a multiple-row UPDATE or INSERT may leave the table
partially updated because the operation can terminate before completion.

If the server is a replication source server, it treats threads associated with currently connected
replicas like other client threads. That is, each one is marked as killed and exits when it next checks
its state.

If the server is a replica server, it stops the replication I/O and SQL threads, if they are active,
before marking client threads as killed. The SQL thread is permitted to finish its current statement
(to avoid causing replication problems), and then stops. If the SQL thread is in the middle of a
transaction at this point, the server waits until the current replication event group (if any) has
finished executing, or until the user issues a KILL QUERY or KILL CONNECTION statement. See
also Section 15.4.2.9, “STOP SLAVE Statement”. Since nontransactional statements cannot be
rolled back, in order to guarantee crash-safe replication, only transactional tables should be used.

Note

To guarantee crash safety on the replica, you must run the replica with --
relay-log-recovery enabled.

1134

The MySQL Data Directory

See also Section 19.2.4, “Relay Log and Replication Metadata Repositories”).

5. The server shuts down or closes storage engines.

At this stage, the server flushes the table cache and closes all open tables.

Each storage engine performs any actions necessary for tables that it manages. InnoDB flushes
its buffer pool to disk (unless innodb_fast_shutdown is 2), writes the current LSN to the
tablespace, and terminates its own internal threads. MyISAM flushes any pending index writes for a
table.

6. The server exits.

To provide information to management processes, the server returns one of the exit codes described in
the following list. The phrase in parentheses indicates the action taken by systemd in response to the
code, for platforms on which systemd is used to manage the server.

• 0 = successful termination (no restart done)

• 1 = unsuccessful termination (no restart done)

• 2 = unsuccessful termination (restart done)

7.2 The MySQL Data Directory
Information managed by the MySQL server is stored under a directory known as the data directory.
The following list briefly describes the items typically found in the data directory, with cross references
for additional information:

• Data directory subdirectories. Each subdirectory of the data directory is a database directory and
corresponds to a database managed by the server. All MySQL installations have certain standard
databases:

• The mysql directory corresponds to the mysql system schema, which contains information
required by the MySQL server as it runs. This database contains data dictionary tables and system
tables. See Section 7.3, “The mysql System Schema”.

• The performance_schema directory corresponds to the Performance Schema, which provides
information used to inspect the internal execution of the server at runtime. See Chapter 29,
MySQL Performance Schema.

• The sys directory corresponds to the sys schema, which provides a set of objects to help
interpret Performance Schema information more easily. See Chapter 30, MySQL sys Schema.

• The ndbinfo directory corresponds to the ndbinfo database that stores information specific
to NDB Cluster (present only for installations built to include NDB Cluster). See Section 25.6.16,
“ndbinfo: The NDB Cluster Information Database”.

Other subdirectories correspond to databases created by users or applications.

Note

INFORMATION_SCHEMA is a standard database, but its implementation uses
no corresponding database directory.

• Log files written by the server. See Section 7.4, “MySQL Server Logs”.

• InnoDB tablespace and log files. See Chapter 17, The InnoDB Storage Engine.

• Default/autogenerated SSL and RSA certificate and key files. See Section 8.3.3, “Creating SSL and
RSA Certificates and Keys”.

1135

The mysql System Schema

• The server process ID file (while the server is running).

• The mysqld-auto.cnf file that stores persisted global system variable settings. See
Section 15.7.6.1, “SET Syntax for Variable Assignment”.

Some items in the preceding list can be relocated elsewhere by reconfiguring the server. In addition,
the --datadir option enables the location of the data directory itself to be changed. For a given
MySQL installation, check the server configuration to determine whether items have been moved.

7.3 The mysql System Schema
The mysql schema is the system schema. It contains tables that store information required by the
MySQL server as it runs. A broad categorization is that the mysql schema contains data dictionary
tables that store database object metadata, and system tables used for other operational purposes.
The following discussion further subdivides the set of system tables into smaller categories.

• Data Dictionary Tables

• Grant System Tables

• Object Information System Tables

• Log System Tables

• Server-Side Help System Tables

• Time Zone System Tables

• Replication System Tables

• Optimizer System Tables

• Miscellaneous System Tables

The remainder of this section enumerates the tables in each category, with cross references for
additional information. Data dictionary tables and system tables use the InnoDB storage engine unless
otherwise indicated.

mysql system tables and data dictionary tables reside in a single InnoDB tablespace file named
mysql.ibd in the MySQL data directory. Previously, these tables were created in individual
tablespace files in the mysql database directory.

Data-at-rest encryption can be enabled for the mysql system schema tablespace. For more
information, see Section 17.13, “InnoDB Data-at-Rest Encryption”.

Data Dictionary Tables

These tables comprise the data dictionary, which contains metadata about database objects. For
additional information, see Chapter 16, MySQL Data Dictionary.

Important

The data dictionary is new in MySQL 8.0. A data dictionary-enabled server
entails some general operational differences compared to previous MySQL
releases. For details, see Section 16.7, “Data Dictionary Usage Differences”.
Also, for upgrades to MySQL 8.0 from MySQL 5.7, the upgrade procedure
differs somewhat from previous MySQL releases and requires that you verify
the upgrade readiness of your installation by checking specific prerequisites.
For more information, see Chapter 3, Upgrading MySQL, particularly
Section 3.6, “Preparing Your Installation for Upgrade”.

• catalogs: Catalog information.

1136

Data Dictionary Tables

• character_sets: Information about available character sets.

• check_constraints: Information about CHECK constraints defined on tables. See
Section 15.1.20.6, “CHECK Constraints”.

• collations: Information about collations for each character set.

• column_statistics: Histogram statistics for column values. See Section 10.9.6, “Optimizer
Statistics”.

• column_type_elements: Information about types used by columns.

• columns: Information about columns in tables.

• dd_properties: A table that identifies data dictionary properties, such as its version. The server
uses this to determine whether the data dictionary must be upgraded to a newer version.

• events: Information about Event Scheduler events. See Section 27.4, “Using the Event Scheduler”.
If the server is started with the --skip-grant-tables option, the event scheduler is disabled and
events registered in the table do not run. See Section 27.4.2, “Event Scheduler Configuration”.

• foreign_keys, foreign_key_column_usage: Information about foreign keys.

• index_column_usage: Information about columns used by indexes.

• index_partitions: Information about partitions used by indexes.

• index_stats: Used to store dynamic index statistics generated when ANALYZE TABLE is
executed.

• indexes: Information about table indexes.

• innodb_ddl_log: Stores DDL logs for crash-safe DDL operations.

• parameter_type_elements: Information about stored procedure and function parameters, and
about return values for stored functions.

• parameters: Information about stored procedures and functions. See Section 27.2, “Using Stored
Routines”.

• resource_groups: Information about resource groups. See Section 7.1.16, “Resource Groups”.

• routines: Information about stored procedures and functions. See Section 27.2, “Using Stored
Routines”.

• schemata: Information about schemata. In MySQL, a schema is a database, so this table provides
information about databases.

• st_spatial_reference_systems: Information about available spatial reference systems for
spatial data.

• table_partition_values: Information about values used by table partitions.

• table_partitions: Information about partitions used by tables.

• table_stats: Information about dynamic table statistics generated when ANALYZE TABLE is
executed.

• tables: Information about tables in databases.

• tablespace_files: Information about files used by tablespaces.

• tablespaces: Information about active tablespaces.

• triggers: Information about triggers.

1137

Grant System Tables

• view_routine_usage: Information about dependencies between views and stored functions used
by them.

• view_table_usage: Used to track dependencies between views and their underlying tables.

Data dictionary tables are invisible. They cannot be read with SELECT, do not appear in the output of
SHOW TABLES, are not listed in the INFORMATION_SCHEMA.TABLES table, and so forth. However, in
most cases there are corresponding INFORMATION_SCHEMA tables that can be queried. Conceptually,
the INFORMATION_SCHEMA provides a view through which MySQL exposes data dictionary metadata.
For example, you cannot select from the mysql.schemata table directly:

mysql> SELECT * FROM mysql.schemata;
ERROR 3554 (HY000): Access to data dictionary table 'mysql.schemata' is rejected.

Instead, select that information from the corresponding INFORMATION_SCHEMA table:

mysql> SELECT * FROM INFORMATION_SCHEMA.SCHEMATA\G
*************************** 1. row ***************************
 CATALOG_NAME: def
 SCHEMA_NAME: mysql
DEFAULT_CHARACTER_SET_NAME: utf8mb4
 DEFAULT_COLLATION_NAME: utf8mb4_0900_ai_ci
 SQL_PATH: NULL
 DEFAULT_ENCRYPTION: NO
*************************** 2. row ***************************
 CATALOG_NAME: def
 SCHEMA_NAME: information_schema
DEFAULT_CHARACTER_SET_NAME: utf8mb3
 DEFAULT_COLLATION_NAME: utf8mb3_general_ci
 SQL_PATH: NULL
 DEFAULT_ENCRYPTION: NO
*************************** 3. row ***************************
 CATALOG_NAME: def
 SCHEMA_NAME: performance_schema
DEFAULT_CHARACTER_SET_NAME: utf8mb4
 DEFAULT_COLLATION_NAME: utf8mb4_0900_ai_ci
 SQL_PATH: NULL
 DEFAULT_ENCRYPTION: NO
...

There is no Information Schema table that corresponds exactly to mysql.indexes, but
INFORMATION_SCHEMA.STATISTICS contains much of the same information.

As of yet, there are no INFORMATION_SCHEMA tables that correspond exactly to
mysql.foreign_keys, mysql.foreign_key_column_usage. The standard SQL way to obtain
foreign key information is by using the INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS and
KEY_COLUMN_USAGE tables; these tables are now implemented as views on the foreign_keys,
foreign_key_column_usage, and other data dictionary tables.

Some system tables from before MySQL 8.0 have been replaced by data dictionary tables and are no
longer present in the mysql system schema:

• The events data dictionary table supersedes the event table from before MySQL 8.0.

• The parameters and routines data dictionary tables together supersede the proc table from
before MySQL 8.0.

Grant System Tables

These system tables contain grant information about user accounts and the privileges held by
them. For additional information about the structure, contents, and purpose of the these tables, see
Section 8.2.3, “Grant Tables”.

As of MySQL 8.0, the grant tables are InnoDB (transactional) tables. Previously, these were MyISAM
(nontransactional) tables. The change of grant-table storage engine underlies an accompanying

1138

Object Information System Tables

change in MySQL 8.0 to the behavior of account-management statements such as CREATE USER and
GRANT. Previously, an account-management statement that named multiple users could succeed for
some users and fail for others. The statements are now transactional and either succeed for all named
users or roll back and have no effect if any error occurs.

Note

If MySQL is upgraded from an older version but the grant tables have not been
upgraded from MyISAM to InnoDB, the server considers them read only and
account-management statements produce an error. For upgrade instructions,
see Chapter 3, Upgrading MySQL.

• user: User accounts, global privileges, and other nonprivilege columns.

• global_grants: Assignments of dynamic global privileges to users; see Static Versus Dynamic
Privileges.

• db: Database-level privileges.

• tables_priv: Table-level privileges.

• columns_priv: Column-level privileges.

• procs_priv: Stored procedure and function privileges.

• proxies_priv: Proxy-user privileges.

• default_roles: This table lists default roles to be activated after a user connects and
authenticates, or executes SET ROLE DEFAULT.

• role_edges: This table lists edges for role subgraphs.

A given user table row might refer to a user account or a role. The server can distinguish whether
a row represents a user account, a role, or both by consulting the role_edges table for information
about relations between authentication IDs.

• password_history: Information about password changes.

Object Information System Tables

These system tables contain information about components, loadable functions, and server-side
plugins:

• component: The registry for server components installed using INSTALL COMPONENT. Any
components listed in this table are installed by a loader service during the server startup sequence.
See Section 7.5.1, “Installing and Uninstalling Components”.

• func: The registry for loadable functions installed using CREATE FUNCTION. During the normal
startup sequence, the server loads functions registered in this table. If the server is started with
the --skip-grant-tables option, functions registered in the table are not loaded and are
unavailable. See Section 7.7.1, “Installing and Uninstalling Loadable Functions”.

Note

Like the mysql.func system table, the Performance Schema
user_defined_functions table lists loadable functions installed
using CREATE FUNCTION. Unlike the mysql.func table, the
user_defined_functions table also lists functions installed
automatically by server components or plugins. This difference makes
user_defined_functions preferable to mysql.func for checking which
functions are installed. See Section 29.12.21.10, “The user_defined_functions
Table”.

1139

Log System Tables

• plugin: The registry for server-side plugins installed using INSTALL PLUGIN. During the normal
startup sequence, the server loads plugins registered in this table. If the server is started with the --
skip-grant-tables option, plugins registered in the table are not loaded and are unavailable.
See Section 7.6.1, “Installing and Uninstalling Plugins”.

Log System Tables

The server uses these system tables for logging:

• general_log: The general query log table.

• slow_log: The slow query log table.

Log tables use the CSV storage engine.

For more information, see Section 7.4, “MySQL Server Logs”.

Server-Side Help System Tables

These system tables contain server-side help information:

• help_category: Information about help categories.

• help_keyword: Keywords associated with help topics.

• help_relation: Mappings between help keywords and topics.

• help_topic: Help topic contents.

For more information, see Section 7.1.17, “Server-Side Help Support”.

Time Zone System Tables

These system tables contain time zone information:

• time_zone: Time zone IDs and whether they use leap seconds.

• time_zone_leap_second: When leap seconds occur.

• time_zone_name: Mappings between time zone IDs and names.

• time_zone_transition, time_zone_transition_type: Time zone descriptions.

For more information, see Section 7.1.15, “MySQL Server Time Zone Support”.

Replication System Tables

The server uses these system tables to support replication:

• gtid_executed: Table for storing GTID values. See mysql.gtid_executed Table.

• ndb_binlog_index: Binary log information for NDB Cluster replication. This table is created
only if the server is built with NDBCLUSTER support. See Section 25.7.4, “NDB Cluster Replication
Schema and Tables”.

• slave_master_info, slave_relay_log_info, slave_worker_info: Used to store
replication information on replica servers. See Section 19.2.4, “Relay Log and Replication Metadata
Repositories”.

All of the tables just listed use the InnoDB storage engine.

Optimizer System Tables

These system tables are for use by the optimizer:

1140

Miscellaneous System Tables

• innodb_index_stats, innodb_table_stats: Used for InnoDB persistent optimizer
statistics. See Section 17.8.10.1, “Configuring Persistent Optimizer Statistics Parameters”.

• server_cost, engine_cost: The optimizer cost model uses tables that contain cost estimate
information about operations that occur during query execution. server_cost contains optimizer
cost estimates for general server operations. engine_cost contains estimates for operations
specific to particular storage engines. See Section 10.9.5, “The Optimizer Cost Model”.

Miscellaneous System Tables

Other system tables do not fit the preceding categories:

• audit_log_filter, audit_log_user: If MySQL Enterprise Audit is installed, these tables
provide persistent storage of audit log filter definitions and user accounts. See Audit Log Tables.

• firewall_group_allowlist, firewall_groups, firewall_memebership,
firewall_users, firewall_whitelist: If MySQL Enterprise Firewall is installed, these tables
provide persistent storage for information used by the firewall. See Section 8.4.7, “MySQL Enterprise
Firewall”.

• servers: Used by the FEDERATED storage engine. See Section 18.8.2.2, “Creating a
FEDERATED Table Using CREATE SERVER”.

• innodb_dynamic_metadata: Used by the InnoDB storage engine to store fast-changing table
metadata such as auto-increment counter values and index tree corruption flags. Replaces the data
dictionary buffer table that resided in the InnoDB system tablespace.

7.4 MySQL Server Logs

MySQL Server has several logs that can help you find out what activity is taking place.

Log Type Information Written to Log

Error log Problems encountered starting, running, or
stopping mysqld

General query log Established client connections and statements
received from clients

Binary log Statements that change data (also used for
replication)

Relay log Data changes received from a replication source
server

Slow query log Queries that took more than long_query_time
seconds to execute

DDL log (metadata log) Metadata operations performed by DDL
statements

By default, no logs are enabled, except the error log on Windows. (The DDL log is always created
when required, and has no user-configurable options; see The DDL Log.) The following log-specific
sections provide information about the server options that enable logging.

By default, the server writes files for all enabled logs in the data directory. You can force the server
to close and reopen the log files (or in some cases switch to a new log file) by flushing the logs. Log
flushing occurs when you issue a FLUSH LOGS statement; execute mysqladmin with a flush-logs
or refresh argument; or execute mysqldump with a --flush-logs option. See Section 15.7.8.3,
“FLUSH Statement”, Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”, and
Section 6.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is flushed when
its size reaches the value of the max_binlog_size system variable.

1141

https://dev.mysql.com/doc/refman/5.7/en/ddl-log.html

Selecting General Query Log and Slow Query Log Output Destinations

You can control the general query and slow query logs during runtime. You can enable or disable
logging, or change the log file name. You can tell the server to write general query and slow query
entries to log tables, log files, or both. For details, see Section 7.4.1, “Selecting General Query Log and
Slow Query Log Output Destinations”, Section 7.4.3, “The General Query Log”, and Section 7.4.5, “The
Slow Query Log”.

The relay log is used only on replicas, to hold data changes from the replication source server
that must also be made on the replica. For discussion of relay log contents and configuration, see
Section 19.2.4.1, “The Relay Log”.

For information about log maintenance operations such as expiration of old log files, see Section 7.4.6,
“Server Log Maintenance”.

For information about keeping logs secure, see Section 8.1.2.3, “Passwords and Logging”.

7.4.1 Selecting General Query Log and Slow Query Log Output Destinations

MySQL Server provides flexible control over the destination of output written to the general query log
and the slow query log, if those logs are enabled. Possible destinations for log entries are log files or
the general_log and slow_log tables in the mysql system database. File output, table output, or
both can be selected.

• Log Control at Server Startup

• Log Control at Runtime

• Log Table Benefits and Characteristics

Log Control at Server Startup

The log_output system variable specifies the destination for log output. Setting this variable does not
in itself enable the logs; they must be enabled separately.

• If log_output is not specified at startup, the default logging destination is FILE.

• If log_output is specified at startup, its value is a list one or more comma-separated words chosen
from TABLE (log to tables), FILE (log to files), or NONE (do not log to tables or files). NONE, if present,
takes precedence over any other specifiers.

The general_log system variable controls logging to the general query log for the selected log
destinations. If specified at server startup, general_log takes an optional argument of 1 or 0
to enable or disable the log. To specify a file name other than the default for file logging, set the
general_log_file variable. Similarly, the slow_query_log variable controls logging to the slow
query log for the selected destinations and setting slow_query_log_file specifies a file name
for file logging. If either log is enabled, the server opens the corresponding log file and writes startup
messages to it. However, further logging of queries to the file does not occur unless the FILE log
destination is selected.

Examples:

• To write general query log entries to the log table and the log file, use --log_output=TABLE,FILE
to select both log destinations and --general_log to enable the general query log.

• To write general and slow query log entries only to the log tables, use --log_output=TABLE to
select tables as the log destination and --general_log and --slow_query_log to enable both
logs.

• To write slow query log entries only to the log file, use --log_output=FILE to select files as the
log destination and --slow_query_log to enable the slow query log. In this case, because the
default log destination is FILE, you could omit the log_output setting.

1142

Selecting General Query Log and Slow Query Log Output Destinations

Log Control at Runtime

The system variables associated with log tables and files enable runtime control over logging:

• The log_output variable indicates the current logging destination. It can be modified at runtime to
change the destination.

• The general_log and slow_query_log variables indicate whether the general query log and
slow query log are enabled (ON) or disabled (OFF). You can set these variables at runtime to control
whether the logs are enabled.

• The general_log_file and slow_query_log_file variables indicate the names of the general
query log and slow query log files. You can set these variables at server startup or at runtime to
change the names of the log files.

• To disable or enable general query logging for the current session, set the session sql_log_off
variable to ON or OFF. (This assumes that the general query log itself is enabled.)

Log Table Benefits and Characteristics

The use of tables for log output offers the following benefits:

• Log entries have a standard format. To display the current structure of the log tables, use these
statements:

SHOW CREATE TABLE mysql.general_log;
SHOW CREATE TABLE mysql.slow_log;

• Log contents are accessible through SQL statements. This enables the use of queries that select
only those log entries that satisfy specific criteria. For example, to select log contents associated with
a particular client (which can be useful for identifying problematic queries from that client), it is easier
to do this using a log table than a log file.

• Logs are accessible remotely through any client that can connect to the server and issue queries (if
the client has the appropriate log table privileges). It is not necessary to log in to the server host and
directly access the file system.

The log table implementation has the following characteristics:

• In general, the primary purpose of log tables is to provide an interface for users to observe the
runtime execution of the server, not to interfere with its runtime execution.

• CREATE TABLE, ALTER TABLE, and DROP TABLE are valid operations on a log table. For ALTER
TABLE and DROP TABLE, the log table cannot be in use and must be disabled, as described later.

• By default, the log tables use the CSV storage engine that writes data in comma-separated values
format. For users who have access to the .CSV files that contain log table data, the files are easy to
import into other programs such as spreadsheets that can process CSV input.

The log tables can be altered to use the MyISAM storage engine. You cannot use ALTER TABLE to
alter a log table that is in use. The log must be disabled first. No engines other than CSV or MyISAM
are legal for the log tables.

Log Tables and “Too many open files” Errors. If you select TABLE as a log destination and
the log tables use the CSV storage engine, you may find that disabling and enabling the general
query log or slow query log repeatedly at runtime results in a number of open file descriptors for the
.CSV file, possibly resulting in a “Too many open files” error. To work around this issue, execute
FLUSH TABLES or ensure that the value of open_files_limit is greater than the value of
table_open_cache_instances.

• To disable logging so that you can alter (or drop) a log table, you can use the following strategy.
The example uses the general query log; the procedure for the slow query log is similar but uses the
slow_log table and slow_query_log system variable.

1143

The Error Log

SET @old_log_state = @@GLOBAL.general_log;
SET GLOBAL general_log = 'OFF';
ALTER TABLE mysql.general_log ENGINE = MyISAM;
SET GLOBAL general_log = @old_log_state;

• TRUNCATE TABLE is a valid operation on a log table. It can be used to expire log entries.

• RENAME TABLE is a valid operation on a log table. You can atomically rename a log table (to
perform log rotation, for example) using the following strategy:

USE mysql;
DROP TABLE IF EXISTS general_log2;
CREATE TABLE general_log2 LIKE general_log;
RENAME TABLE general_log TO general_log_backup, general_log2 TO general_log;

• CHECK TABLE is a valid operation on a log table.

• LOCK TABLES cannot be used on a log table.

• INSERT, DELETE, and UPDATE cannot be used on a log table. These operations are permitted only
internally to the server itself.

• FLUSH TABLES WITH READ LOCK and the state of the read_only system variable have no effect
on log tables. The server can always write to the log tables.

• Entries written to the log tables are not written to the binary log and thus are not replicated to
replicas.

• To flush the log tables or log files, use FLUSH TABLES or FLUSH LOGS, respectively.

• Partitioning of log tables is not permitted.

• A mysqldump dump includes statements to recreate those tables so that they are not missing after
reloading the dump file. Log table contents are not dumped.

7.4.2 The Error Log

This section discusses how to configure the MySQL server for logging of diagnostic messages
to the error log. For information about selecting the error message character set and language,
see Section 12.6, “Error Message Character Set”, and Section 12.12, “Setting the Error Message
Language”.

The error log contains a record of mysqld startup and shutdown times. It also contains diagnostic
messages such as errors, warnings, and notes that occur during server startup and shutdown, and
while the server is running. For example, if mysqld notices that a table needs to be automatically
checked or repaired, it writes a message to the error log.

Depending on error log configuration, error messages may also populate the Performance Schema
error_log table, to provide an SQL interface to the log and enable its contents to be queried. See
Section 29.12.21.2, “The error_log Table”.

On some operating systems, the error log contains a stack trace if mysqld exits abnormally. The trace
can be used to determine where mysqld exited. See Section 7.9, “Debugging MySQL”.

If used to start mysqld, mysqld_safe may write messages to the error log. For example, when
mysqld_safe notices abnormal mysqld exits, it restarts mysqld and writes a mysqld restarted
message to the error log.

The following sections discuss aspects of configuring error logging.

7.4.2.1 Error Log Configuration

In MySQL 8.0, error logging uses the MySQL component architecture described at Section 7.5,
“MySQL Components”. The error log subsystem consists of components that perform log event filtering

1144

The Error Log

and writing, as well as a system variable that configures which components to load and enable to
achieve the desired logging result.

This section discusses how to load and enable components for error logging. For instructions specific
to log filters, see Section 7.4.2.4, “Types of Error Log Filtering”. For instructions specific to the JSON
and system log sinks, see Section 7.4.2.7, “Error Logging in JSON Format”, and Section 7.4.2.8,
“Error Logging to the System Log”. For additional details about all available log components, see
Section 7.5.3, “Error Log Components”.

Component-based error logging offers these features:

• Log events that can be filtered by filter components to affect the information available for writing.

• Log events that are output by sink (writer) components. Multiple sink components can be enabled, to
write error log output to multiple destinations.

• Built-in filter and sink components that implement the default error log format.

• A loadable sink that enables logging in JSON format.

• A loadable sink that enables logging to the system log.

• System variables that control which log components to load and enable and how each component
operates.

Error log configuration is described under the following topics in this section:

• The Default Error Log Configuration

• Error Log Configuration Methods

• Implicit Error Log Configuration

• Explicit Error Log Configuration

• Changing the Error Log Configuration Method

• Troubleshooting Configuration Issues

• Configuring Multiple Log Sinks

• Log Sink Performance Schema Support

The Default Error Log Configuration

The log_error_services system variable controls which loadable log components to
load (as of MySQL 8.0.30) and which log components to enable for error logging. By default,
log_error_services has this value:

mysql> SELECT @@GLOBAL.log_error_services;
+--+
| @@GLOBAL.log_error_services |
+--+
| log_filter_internal; log_sink_internal |
+--+

That value indicates that log events first pass through the log_filter_internal filter component,
then through the log_sink_internal sink component, both of which are built-in components. A
filter modifies log events seen by components named later in the log_error_services value. A sink
is a destination for log events. Typically, a sink processes log events into log messages that have a
particular format and writes these messages to its associated output, such as a file or the system log.

The combination of log_filter_internal and log_sink_internal implements the default error
log filtering and output behavior. The action of these components is affected by other server options
and system variables:

1145

The Error Log

• The output destination is determined by the --log-error option (and, on Windows, --pid-file
and --console). These determine whether to write error messages to the console or a file and, if to
a file, the error log file name. See Section 7.4.2.2, “Default Error Log Destination Configuration”.

• The log_error_verbosity and log_error_suppression_list system variables affect which
types of log events log_filter_internal permits or suppresses. See Section 7.4.2.5, “Priority-
Based Error Log Filtering (log_filter_internal)”.

When configuring log_error_services, be aware of the following characteristics:

• A list of log components may be delimited by semicolon or (as of MySQL 8.0.12) comma, optionally
followed by space. A given setting cannot use both semicolon and comma separators. Component
order is significant because the server executes components in the order listed.

• The final component in the log_error_services value cannot be a filter. This is an error because
any changes it has on events would have no effect on output:

mysql> SET GLOBAL log_error_services = 'log_filter_internal';
ERROR 1231 (42000): Variable 'log_error_services' can't be set to the value
of 'log_filter_internal'

To correct the problem, include a sink at the end of the value:

mysql> SET GLOBAL log_error_services = 'log_filter_internal; log_sink_internal';

• The order of components named in log_error_services is significant, particularly with respect to
the relative order of filters and sinks. Consider this log_error_services value:

log_filter_internal; log_sink_1; log_sink_2

In this case, log events pass to the built-in filter, then to the first sink, then to the second sink. Both
sinks receive the filtered log events.

Compare that to this log_error_services value:

log_sink_1; log_filter_internal; log_sink_2

In this case, log events pass to the first sink, then to the built-in filter, then to the second sink. The
first sink receives unfiltered events. The second sink receives filtered events. You might configure
error logging this way if you want one log that contains messages for all log events, and another log
that contains messages only for a subset of log events.

Error Log Configuration Methods

Error log configuration involves loading and enabling error log components as necessary and
performing component-specific configuration.

There are two error log configuration methods, implicit and explicit. It is recommended that one
configuration method is selected and used exclusively. Using both methods can result in warnings at
startup. For more information, see Troubleshooting Configuration Issues.

• Implicit Error Log Configuration (introduced in MySQL 8.0.30)

This configuration method loads and enables the log components defined by the
log_error_services variable. Loadable components that are not already loaded are loaded
implicitly at startup before the InnoDB storage engine is fully available. This configuration method
has the following advantages:

• Log components are loaded early in the startup sequence, before the InnoDB storage engine,
making logged information available sooner.

• It avoids loss of buffered log information should a failure occur during startup.

1146

The Error Log

• Installing error log components using INSTALL COMPONENT is not required, simplifying error log
configuration.

To use this method, see Implicit Error Log Configuration.

• Explicit Error Log Configuration

Note

This configuration method is supported for backward compatibility. The
implicit configuration method, introduced in MySQL 8.0.30, is recommended.

This configuration method requires loading error log components using INSTALL COMPONENT and
then configuring log_error_services to enable the log components. INSTALL COMPONENT
adds the component to the mysql.component table (an InnoDB table), and the components to
load at startup are read from this table, which is only accessible after InnoDB is initialized.

Logged information is buffered during the startup sequence while the InnoDB storage engine
is initialized, which is sometimes prolonged by operations such as recovery and data dictionary
upgrade that occur during the InnoDB startup sequence.

To use this method, see Explicit Error Log Configuration.

Implicit Error Log Configuration

This procedure describes how to load and enable error logging components implicitly using
log_error_services. For a discussion of error log configuration methods, see Error Log
Configuration Methods.

To load and enable error logging components implicitly:

1. List the error log components in the log_error_services value.

To load and enable the error log components at server startup, set log_error_services in an
option file. The following example configures the use of the JSON log sink (log_sink_json) in
addition to the built-in log filter and sink (log_filter_internal, log_sink_internal).

[mysqld]
log_error_services='log_filter_internal; log_sink_internal; log_sink_json'

Note

To use the JSON log sink (log_sink_syseventlog) instead of the default
sink (log_sink_internal), you would replace log_sink_internal
with log_sink_json.

To load and enable the component immediately and for subsequent restarts, set
log_error_services using SET PERSIST:

SET PERSIST log_error_services = 'log_filter_internal; log_sink_internal; log_sink_json';

2. If the error log component exposes any system variables that must be set for component
initialization to succeed, assign those variables appropriate values. You can set these variables in
an option file or using SET PERSIST.

Important

When implementing an implicit configuration, set log_error_services
first to load a component and expose its system variables, and then set
component system variables afterward. This configuration order is required
regardless of whether variable assignment is performed on the command-
line, in an option file, or using SET PERSIST.

1147

The Error Log

To disable a log component, remove it from the log_error_services value. Also remove any
associated component variables settings that you have defined.

Note

Loading a log component implicitly using log_error_services has no
effect on the mysql.component table. It does not add the component to the
mysql.component table, nor does it remove a component previously installed
using INSTALL COMPONENT from the mysql.component table.

Explicit Error Log Configuration

This procedure describes how to load and enable error logging components explicitly by loading
components using INSTALL COMPONENT and then enabling using log_error_services. For a
discussion of error log configuration methods, see Error Log Configuration Methods.

To load and enable error logging components explicitly:

1. Load the component using INSTALL COMPONENT (unless it is built in or already loaded). For
example, to load the JSON log sink, issue the following statement:

INSTALL COMPONENT 'file://component_log_sink_json';

Loading a component using INSTALL COMPONENT registers it in the mysql.component system
table so that the server loads it automatically for subsequent startups, after InnoDB is initialized.

The URN to use when loading a log component with INSTALL COMPONENT is the component
name prefixed with file://component_. For example, for the log_sink_json component, the
corresponding URN is file://component_log_sink_json. For error log component URNs,
see Section 7.5.3, “Error Log Components”.

2. If the error log component exposes any system variables that must be set for component
initialization to succeed, assign those variables appropriate values. You can set these variables in
an option file or using SET PERSIST.

3. Enable the component by listing it in the log_error_services value.

Important

From MySQL 8.0.30, when loading log components explicitly using
INSTALL COMPONENT, do not persist or set log_error_services in an
option file, which loads log components implicitly at startup. Instead, enable
log components at runtime using a SET GLOBAL statement.

The following example configures the use of the JSON log sink (log_sink_json) in addition to
the built-in log filter and sink (log_filter_internal, log_sink_internal).

SET GLOBAL log_error_services = 'log_filter_internal; log_sink_internal; log_sink_json';

Note

To use the JSON log sink (log_sink_syseventlog) instead of the default
sink (log_sink_internal), you would replace log_sink_internal
with log_sink_json.

To disable a log component, remove it from the log_error_services value. Then, if the component
is loadable and you also want to unload it, use UNINSTALL COMPONENT. Also remove any associated
component variables settings that you have defined.

Attempts to use UNINSTALL COMPONENT to unload a loadable component that is still named in the
log_error_services value produce an error.

1148

The Error Log

Changing the Error Log Configuration Method

If you have previously loaded error log components explicitly using INSTALL COMPONENT and want to
switch to an implicit configuration, as described in Implicit Error Log Configuration, the following steps
are recommended:

1. Set log_error_services back to its default configuration.

SET GLOBAL log_error_services = 'log_filter_internal,log_sink_internal';

2. Use UNINSTALL COMPONENT to uninstall any loadable logging components that you installed
previously. For example, if you installed the JSON log sink previously, uninstall it as shown:

UNINSTALL COMPONENT 'file://component_log_sink_json';

3. Remove any component variable settings for the uninstalled component. For example, if
component variables were set in an option file, remove the settings from the option file. If
component variables were set using SET PERSIST, use RESET PERSIST to clear the settings.

4. Follow the steps in Implicit Error Log Configuration to reimplement your configuration.

If you need to revert from an implicit configuration to an explicit configuration, perform the following
steps:

1. Set log_error_services back to its default configuration to unload implicitly loaded log
components.

SET GLOBAL log_error_services = 'log_filter_internal,log_sink_internal';

2. Remove any component variable settings associated with the uninstalled components. For
example, if component variables were set in an option file, remove the settings from the option file.
If component variables were set using SET PERSIST, use RESET PERSIST to clear the settings.

3. Restart the server to uninstall the log components that were implicitly loaded.

4. Follow the steps in Explicit Error Log Configuration to reimplement your configuration.

Troubleshooting Configuration Issues

From MySQL 8.0.30, log components listed in the log_error_services value at startup are loaded
implicitly early in the MySQL Server startup sequence. If the log component was loaded previously
using INSTALL COMPONENT, the server attempts to load the component again later in the startup
sequence, which produces the following warning:

Cannot load component from specified URN: 'file://component_component_name'

You can check for this warning in the error log or by querying the Performance Schema error_log
table using the following query:

SELECT error_code, data
 FROM performance_schema.error_log
 WHERE data LIKE "%'file://component_%"
 AND error_code="MY-013129" AND data LIKE "%MY-003529%";

To prevent this warning, follow the instructions in Changing the Error Log Configuration Method to
adjust your error log configuration. Either an implicit or explicit error log configuration should be used,
but not both.

A similar error occurs when attempting to explicitly load a component that was implicitly loaded at
startup. For example, if log_error_services lists the JSON log sink component, that component is
implicitly loaded at startup. Attempting to explicitly load the same component later returns this error:

mysql> INSTALL COMPONENT 'file://component_log_sink_json';
ERROR 3529 (HY000): Cannot load component from specified URN: 'file://component_log_sink_json'.

1149

The Error Log

Configuring Multiple Log Sinks

It is possible to configure multiple log sinks, which enables sending output to multiple destinations.
To enable the JSON log sink in addition to (rather than instead of) the default sink, set the
log_error_services value like this:

SET GLOBAL log_error_services = 'log_filter_internal; log_sink_internal; log_sink_json';

To revert to using only the default sink and unload the system log sink, execute these statements:

SET GLOBAL log_error_services = 'log_filter_internal; log_sink_internal;
UNINSTALL COMPONENT 'file://component_log_sink_json';

Log Sink Performance Schema Support

If enabled log components include a sink that provides Performance Schema support, events written to
the error log are also written to the Performance Schema error_log table. This enables examining
error log contents using SQL queries. Currently, the traditional-format log_sink_internal and
JSON-format log_sink_json sinks support this capability. See Section 29.12.21.2, “The error_log
Table”.

7.4.2.2 Default Error Log Destination Configuration

This section describes which server options configure the default error log destination, which can
be the console or a named file. It also indicates which log sink components base their own output
destination on the default destination.

In this discussion, “console” means stderr, the standard error output. This is your terminal or console
window unless the standard error output has been redirected to a different destination.

The server interprets options that determine the default error log destination somewhat differently for
Windows and Unix systems. Be sure to configure the destination using the information appropriate
to your platform. After the server interprets the default error log destination options, it sets the
log_error system variable to indicate the default destination, which affects where several log sink
components write error messages. The following sections address these topics.

• Default Error Log Destination on Windows

• Default Error Log Destination on Unix and Unix-Like Systems

• How the Default Error Log Destination Affects Log Sinks

Default Error Log Destination on Windows

On Windows, mysqld uses the --log-error, --pid-file, and --console options to determine
whether the default error log destination is the console or a file, and, if a file, the file name:

• If --console is given, the default destination is the console. (--console takes precedence over
--log-error if both are given, and the following items regarding --log-error do not apply.)

• If --log-error is not given, or is given without naming a file, the default destination is a file named
host_name.err in the data directory, unless the --pid-file option is specified. In that case, the
file name is the PID file base name with a suffix of .err in the data directory.

• If --log-error is given to name a file, the default destination is that file (with an .err suffix added
if the name has no suffix). The file location is under the data directory unless an absolute path name
is given to specify a different location.

If the default error log destination is the console, the server sets the log_error system variable to
stderr. Otherwise, the default destination is a file and the server sets log_error to the file name.

Default Error Log Destination on Unix and Unix-Like Systems

On Unix and Unix-like systems, mysqld uses the --log-error option to determine whether the
default error log destination is the console or a file, and, if a file, the file name:

1150

The Error Log

• If --log-error is not given, the default destination is the console.

• If --log-error is given without naming a file, the default destination is a file named
host_name.err in the data directory.

• If --log-error is given to name a file, the default destination is that file (with an .err suffix added
if the name has no suffix). The file location is under the data directory unless an absolute path name
is given to specify a different location.

• If --log-error is given in an option file in a [mysqld], [server], or [mysqld_safe] section,
on systems that use mysqld_safe to start the server, mysqld_safe finds and uses the option, and
passes it to mysqld.

Note

It is common for Yum or APT package installations to configure an error log
file location under /var/log with an option like log-error=/var/log/
mysqld.log in a server configuration file. Removing the path name from the
option causes the host_name.err file in the data directory to be used.

If the default error log destination is the console, the server sets the log_error system variable to
stderr. Otherwise, the default destination is a file and the server sets log_error to the file name.

How the Default Error Log Destination Affects Log Sinks

After the server interprets the error log destination configuration options, it sets the log_error system
variable to indicate the default error log destination. Log sink components may base their own output
destination on the log_error value, or determine their destination independently of log_error

If log_error is stderr, the default error log destination is the console, and log sinks that base their
output destination on the default destination also write to the console:

• log_sink_internal, log_sink_json, log_sink_test: These sinks write to the console. This
is true even for sinks such as log_sink_json that can be enabled multiple times; all instances
write to the console.

• log_sink_syseventlog: This sink writes to the system log, regardless of the log_error value.

If log_error is not stderr, the default error log destination is a file and log_error indicates the file
name. Log sinks that base their output destination on the default destination base output file naming on
that file name. (A sink might use exactly that name, or it might use some variant thereof.) Suppose that
the log_error value file_name. Then log sinks use the name like this:

• log_sink_internal, log_sink_test: These sinks write to file_name.

• log_sink_json: Successive instances of this sink named in the log_error_services value
write to files named file_name plus a numbered .NN.json suffix: file_name.00.json,
file_name.01.json, and so forth.

• log_sink_syseventlog: This sink writes to the system log, regardless of the log_error value.

7.4.2.3 Error Event Fields

Error events intended for the error log contain a set of fields, each of which consists of a key/value pair.
An event field may be classified as core, optional, or user-defined:

• A core field is set up automatically for error events. However, its presence in the event during event
processing is not guaranteed because a core field, like any type of field, may be unset by a log
filter. If this happens, the field cannot be found by subsequent processing within that filter and by
components that execute after the filter (such as log sinks).

• An optional field is normally absent but may be present for certain event types. When present, an
optional field provides additional event information as appropriate and available.

1151

The Error Log

• A user-defined field is any field with a name that is not already defined as a core or optional field. A
user-defined field does not exist until created by a log filter.

As implied by the preceding description, any given field may be absent during event processing, either
because it was not present in the first place, or was discarded by a filter. For log sinks, the effect of
field absence is sink specific. For example, a sink might omit the field from the log message, indicate
that the field is missing, or substitute a default. When in doubt, test: use a filter that unsets the field,
then check what the log sink does with it.

The following sections describe the core and optional error event fields. For individual log filter
components, there may be additional filter-specific considerations for these fields, or filters may add
user-defined fields not listed here. For details, see the documentation for specific filters.

• Core Error Event Fields

• Optional Error Event Fields

Core Error Event Fields

These error event fields are core fields:

• time

The event timestamp, with microsecond precision.

• msg

The event message string.

• prio

The event priority, to indicate a system, error, warning, or note/information event. This field
corresponds to severity in syslog. The following table shows the possible priority levels.

Event Type Numeric Priority

System event 0

Error event 1

Warning event 2

Note/information event 3

The prio value is numeric. Related to it, an error event may also include an optional label field
representing the priority as a string. For example, an event with a prio value of 2 may have a
label value of 'Warning'.

Filter components may include or drop error events based on priority, except that system events are
mandatory and cannot be dropped.

In general, message priorities are determined as follows:

Is the situation or event actionable?

• Yes: Is the situation or event ignorable?

• Yes: Priority is warning.

• No: Priority is error.

• No: Is the situation or event mandatory?

• Yes: Priority is system.

1152

The Error Log

• No: Priority is note/information.

• err_code

The event error code, as a number (for example, 1022).

• err_symbol

The event error symbol, as a string (for example, 'ER_DUP_KEY').

• SQL_state

The event SQLSTATE value, as a string (for example, '23000').

• subsystem

The subsystem in which the event occurred. Possible values are InnoDB (the InnoDB storage
engine), Repl (the replication subsystem), Server (otherwise).

Optional Error Event Fields

Optional error event fields fall into the following categories:

• Additional information about the error, such as the error signaled by the operating system or the error
label:

• OS_errno

The operating system error number.

• OS_errmsg

The operating system error message.

• label

The label corresponding to the prio value, as a string.

• Identification of the client for which the event occurred:

• user

The client user.

• host

The client host.

• thread

The ID of the thread within mysqld responsible for producing the error event. This ID indicates
which part of the server produced the event, and is consistent with general query log and slow
query log messages, which include the connection thread ID.

• query_id

The query ID.

• Debugging information:

• source_file

The source file in which the event occurred, without any leading path.

1153

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_dup_key

The Error Log

• source_line

The line within the source file at which the event occurred.

• function

The function in which the event occurred.

• component

The component or plugin in which the event occurred.

7.4.2.4 Types of Error Log Filtering

Error log configuration normally includes one log filter component and one or more log sink
components. For error log filtering, MySQL offers a choice of components:

• log_filter_internal: This filter component provides error log filtering based on
log event priority and error code, in combination with the log_error_verbosity and
log_error_suppression_list system variables. log_filter_internal is built in and
enabled by default. See Section 7.4.2.5, “Priority-Based Error Log Filtering (log_filter_internal)”.

• log_filter_dragnet: This filter component provides error log filtering based on user-supplied
rules, in combination with the dragnet.log_error_filter_rules system variable. See
Section 7.4.2.6, “Rule-Based Error Log Filtering (log_filter_dragnet)”.

7.4.2.5 Priority-Based Error Log Filtering (log_filter_internal)

The log_filter_internal log filter component implements a simple form of log filtering based
on error event priority and error code. To affect how log_filter_internal permits or suppresses
error, warning, and information events intended for the error log, set the log_error_verbosity and
log_error_suppression_list system variables.

log_filter_internal is built in and enabled by default. If this filter is disabled,
log_error_verbosity and log_error_suppression_list have no effect, so filtering must be
performed using another filter service instead where desired (for example, with individual filter rules
when using log_filter_dragnet). For information about filter configuration, see Section 7.4.2.1,
“Error Log Configuration”.

• Verbosity Filtering

• Suppression-List Filtering

• Verbosity and Suppression-List Interaction

Verbosity Filtering

Events intended for the error log have a priority of ERROR, WARNING, or INFORMATION. The
log_error_verbosity system variable controls verbosity based on which priorities to permit for
messages written to the log, as shown in the following table.

log_error_verbosity Value Permitted Message Priorities

1 ERROR

2 ERROR, WARNING

3 ERROR, WARNING, INFORMATION

If log_error_verbosity is 2 or greater, the server logs messages about statements that are
unsafe for statement-based logging. If the value is 3, the server logs aborted connections and access-
denied errors for new connection attempts. See Section B.3.2.9, “Communication Errors and Aborted
Connections”.

1154

The Error Log

If you use replication, a log_error_verbosity value of 2 or greater is recommended, to
obtain more information about what is happening, such as messages about network failures and
reconnections.

If log_error_verbosity is 2 or greater on a replica, the replica prints messages to the error log to
provide information about its status, such as the binary log and relay log coordinates where it starts its
job, when it is switching to another relay log, when it reconnects after a disconnect, and so forth.

There is also a message priority of SYSTEM that is not subject to verbosity filtering. System messages
about non-error situations are printed to the error log regardless of the log_error_verbosity value.
These messages include startup and shutdown messages, and some significant changes to settings.

In the MySQL error log, system messages are labeled as “System”. Other log sinks might or might
not follow the same convention, and in the resulting logs, system messages might be assigned the
label used for the information priority level, such as “Note” or “Information”. If you apply any additional
filtering or redirection for logging based on the labeling of messages, system messages do not override
your filter, but are handled by it in the same way as other messages.

Suppression-List Filtering

The log_error_suppression_list system variable applies to events intended for the error log
and specifies which events to suppress when they occur with a priority of WARNING or INFORMATION.
For example, if a particular type of warning is considered undesirable “noise” in the error log because it
occurs frequently but is not of interest, it can be suppressed. log_error_suppression_list does
not suppress messages with a priority of ERROR or SYSTEM.

The log_error_suppression_list value may be the empty string for no suppression, or a list
of one or more comma-separated values indicating the error codes to suppress. Error codes may be
specified in symbolic or numeric form. A numeric code may be specified with or without the MY- prefix.
Leading zeros in the numeric part are not significant. Examples of permitted code formats:

ER_SERVER_SHUTDOWN_COMPLETE
MY-000031
000031
MY-31
31

For readability and portability, symbolic values are preferable to numeric values.

Although codes to be suppressed can be expressed in symbolic or numeric form, the numeric value of
each code must be in a permitted range:

• 1 to 999: Global error codes that are used by the server as well as by clients.

• 10000 and higher: Server error codes intended to be written to the error log (not sent to clients).

In addition, each error code specified must actually be used by MySQL. Attempts to specify a code not
within a permitted range or within a permitted range but not used by MySQL produce an error and the
log_error_suppression_list value remains unchanged.

For information about error code ranges and the error symbols and numbers defined within each range,
see Section B.1, “Error Message Sources and Elements”, and MySQL 8.0 Error Message Reference.

The server can generate messages for a given error code at differing priorities, so suppression of a
message associated with an error code listed in log_error_suppression_list depends on its
priority. Suppose that the variable has a value of 'ER_PARSER_TRACE,MY-010001,10002'. Then
log_error_suppression_list has these effects on messages for those codes:

• Messages generated with a priority of WARNING or INFORMATION are suppressed.

• Messages generated with a priority of ERROR or SYSTEM are not suppressed.

1155

https://dev.mysql.com/doc/mysql-errors/8.0/en/

The Error Log

Verbosity and Suppression-List Interaction

The effect of log_error_verbosity combines with that of log_error_suppression_list.
Consider a server started with these settings:

[mysqld]
log_error_verbosity=2 # error and warning messages only
log_error_suppression_list='ER_PARSER_TRACE,MY-010001,10002'

In this case, log_error_verbosity permits messages with ERROR or WARNING priority
and discards messages with INFORMATION priority. Of the nondiscarded messages,
log_error_suppression_list discards messages with WARNING priority and any of the named
error codes.

Note

The log_error_verbosity value of 2 shown in the example is also its
default value, so the effect of this variable on INFORMATION messages
is as just described by default, without an explicit setting. You must set
log_error_verbosity to 3 if you want log_error_suppression_list to
affect messages with INFORMATION priority.

Consider a server started with this setting:

[mysqld]
log_error_verbosity=1 # error messages only

In this case, log_error_verbosity permits messages with ERROR priority and discards messages
with WARNING or INFORMATION priority. Setting log_error_suppression_list has no effect
because all error codes it might suppress are already discarded due to the log_error_verbosity
setting.

7.4.2.6 Rule-Based Error Log Filtering (log_filter_dragnet)

The log_filter_dragnet log filter component enables log filtering based on user-defined rules.

To enable the log_filter_dragnet filter, first load the filter component, then modify the
log_error_services value. The following example enables log_filter_dragnet in combination
with the built-in log sink:

INSTALL COMPONENT 'file://component_log_filter_dragnet';
SET GLOBAL log_error_services = 'log_filter_dragnet; log_sink_internal';

To set log_error_services to take effect at server startup, use the instructions at Section 7.4.2.1,
“Error Log Configuration”. Those instructions apply to other error-logging system variables as well.

With log_filter_dragnet enabled, define its filter rules by setting the
dragnet.log_error_filter_rules system variable. A rule set consists of zero or more rules,
where each rule is an IF statement terminated by a period (.) character. If the variable value is empty
(zero rules), no filtering occurs.

Example 1. This rule set drops information events, and, for other events, removes the source_line
field:

SET GLOBAL dragnet.log_error_filter_rules =
 'IF prio>=INFORMATION THEN drop. IF EXISTS source_line THEN unset source_line.';

The effect is similar to the filtering performed by the log_sink_internal filter with a setting of
log_error_verbosity=2.

For readability, you might find it preferable to list the rules on separate lines. For example:

SET GLOBAL dragnet.log_error_filter_rules = '
 IF prio>=INFORMATION THEN drop.
 IF EXISTS source_line THEN unset source_line.
';

1156

The Error Log

Example 2: This rule limits information events to no more than one per 60 seconds:

SET GLOBAL dragnet.log_error_filter_rules =
 'IF prio>=INFORMATION THEN throttle 1/60.';

Once you have the filtering configuration set up as you desire, consider assigning
dragnet.log_error_filter_rules using SET PERSIST rather than SET GLOBAL to make the
setting persist across server restarts. Alternatively, add the setting to the server option file.

When using log_filter_dragnet, log_error_suppression_list is ignored.

To stop using the filtering language, first remove it from the set of error logging components. Usually
this means using a different filter component rather than no filter component. For example:

SET GLOBAL log_error_services = 'log_filter_internal; log_sink_internal';

Again, consider using SET PERSIST rather than SET GLOBAL to make the setting persist across
server restarts.

Then uninstall the filter log_filter_dragnet component:

UNINSTALL COMPONENT 'file://component_log_filter_dragnet';

The following sections describe aspects of log_filter_dragnet operation in more detail:

• Grammar for log_filter_dragnet Rule Language

• Actions for log_filter_dragnet Rules

• Field References in log_filter_dragnet Rules

Grammar for log_filter_dragnet Rule Language

The following grammar defines the language for log_filter_dragnet filter rules. Each rule is an IF
statement terminated by a period (.) character. The language is not case-sensitive.

rule:
 IF condition THEN action
 [ELSEIF condition THEN action] ...
 [ELSE action]
 .

condition: {
 field comparator value
 | [NOT] EXISTS field
 | condition {AND | OR} condition
}

action: {
 drop
 | throttle {count | count / window_size}
 | set field [:= | =] value
 | unset [field]
}

field: {
 core_field
 | optional_field
 | user_defined_field
}

core_field: {
 time
 | msg
 | prio
 | err_code
 | err_symbol
 | SQL_state
 | subsystem
}

1157

The Error Log

optional_field: {
 OS_errno
 | OS_errmsg
 | label
 | user
 | host
 | thread
 | query_id
 | source_file
 | source_line
 | function
 | component
}

user_defined_field:
 sequence of characters in [a-zA-Z0-9_] class

comparator: {== | != | <> | >= | => | <= | =< | < | >}

value: {
 string_literal
 | integer_literal
 | float_literal
 | error_symbol
 | priority
}

count: integer_literal
window_size: integer_literal

string_literal:
 sequence of characters quoted as '...' or "..."

integer_literal:
 sequence of characters in [0-9] class

float_literal:
 integer_literal[.integer_literal]

error_symbol:
 valid MySQL error symbol such as ER_ACCESS_DENIED_ERROR or ER_STARTUP

priority: {
 ERROR
 | WARNING
 | INFORMATION
}

Simple conditions compare a field to a value or test field existence. To construct more complex
conditions, use the AND and OR operators. Both operators have the same precedence and evaluate left
to right.

To escape a character within a string, precede it by a backslash (\). A backslash is required to include
backslash itself or the string-quoting character, optional for other characters.

For convenience, log_filter_dragnet supports symbolic names for comparisons to certain fields.
For readability and portability, symbolic values are preferable (where applicable) to numeric values.

• Event priority values 1, 2, and 3 can be specified as ERROR, WARNING, and INFORMATION. Priority
symbols are recognized only in comparisons with the prio field. These comparisons are equivalent:

IF prio == INFORMATION THEN ...
IF prio == 3 THEN ...

• Error codes can be specified in numeric form or as the corresponding error symbol. For example,
ER_STARTUP is the symbolic name for error 1408, so these comparisons are equivalent:

IF err_code == ER_STARTUP THEN ...
IF err_code == 1408 THEN ...

1158

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_startup

The Error Log

Error symbols are recognized only in comparisons with the err_code field and user-defined fields.

To find the error symbol corresponding to a given error code number, use one of these methods:

• Check the list of server errors at Server Error Message Reference.

• Use the perror command. Given an error number argument, perror displays information about
the error, including its symbol.

Suppose that a rule set with error numbers looks like this:

IF err_code == 10927 OR err_code == 10914 THEN drop.
IF err_code == 1131 THEN drop.

Using perror, determine the error symbols:

$> perror 10927 10914 1131
MySQL error code MY-010927 (ER_ACCESS_DENIED_FOR_USER_ACCOUNT_LOCKED):
Access denied for user '%-.48s'@'%-.64s'. Account is locked.
MySQL error code MY-010914 (ER_ABORTING_USER_CONNECTION):
Aborted connection %u to db: '%-.192s' user: '%-.48s' host:
'%-.64s' (%-.64s).
MySQL error code MY-001131 (ER_PASSWORD_ANONYMOUS_USER):
You are using MySQL as an anonymous user and anonymous users
are not allowed to change passwords

Substituting error symbols for numbers, the rule set becomes:

IF err_code == ER_ACCESS_DENIED_FOR_USER_ACCOUNT_LOCKED
 OR err_code == ER_ABORTING_USER_CONNECTION THEN drop.
IF err_code == ER_PASSWORD_ANONYMOUS_USER THEN drop.

Symbolic names can be specified as quoted strings for comparison with string fields, but in such cases
the names are strings that have no special meaning and log_filter_dragnet does not resolve
them to the corresponding numeric value. Also, typos may go undetected, whereas an error occurs
immediately on SET for attempts to use an unquoted symbol unknown to the server.

Actions for log_filter_dragnet Rules

log_filter_dragnet supports these actions in filter rules:

• drop: Drop the current log event (do not log it).

• throttle: Apply rate limiting to reduce log verbosity for events matching particular conditions. The
argument indicates a rate, in the form count or count/window_size. The count value indicates
the permitted number of event occurrences to log per time window. The window_size value is the
time window in seconds; if omitted, the default window is 60 seconds. Both values must be integer
literals.

This rule throttles plugin-shutdown messages to 5 occurrences per 60 seconds:

IF err_code == ER_PLUGIN_SHUTTING_DOWN_PLUGIN THEN throttle 5.

This rule throttles errors and warnings to 1000 occurrences per hour and information messages to
100 occurrences per hour:

IF prio <= INFORMATION THEN throttle 1000/3600 ELSE throttle 100/3600.

• set: Assign a value to a field (and cause the field to exist if it did not already). In subsequent rules,
EXISTS tests against the field name are true, and the new value can be tested by comparison
conditions.

• unset: Discard a field. In subsequent rules, EXISTS tests against the field name are false, and
comparisons of the field against any value are false.

1159

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

The Error Log

In the special case that the condition refers to exactly one field name, the field name following unset
is optional and unset discards the named field. These rules are equivalent:

IF myfield == 2 THEN unset myfield.
IF myfield == 2 THEN unset.

Field References in log_filter_dragnet Rules

log_filter_dragnet rules support references to core, optional, and user-defined fields in error
events.

• Core Field References

• Optional Field References

• User-Defined Field References

Core Field References

The log_filter_dragnet grammar at Grammar for log_filter_dragnet Rule Language names the
core fields that filter rules recognize. For general descriptions of these fields, see Section 7.4.2.3,
“Error Event Fields”, with which you are assumed to be familiar. The following remarks provide
additional information only as it pertains specifically to core field references as used within
log_filter_dragnet rules.

• prio

The event priority, to indicate an error, warning, or note/information event. In comparisons, each
priority can be specified as a symbolic priority name or an integer literal. Priority symbols are
recognized only in comparisons with the prio field. These comparisons are equivalent:

IF prio == INFORMATION THEN ...
IF prio == 3 THEN ...

The following table shows the permitted priority levels.

Event Type Priority Symbol Numeric Priority

Error event ERROR 1

Warning event WARNING 2

Note/information event INFORMATION 3

There is also a message priority of SYSTEM, but system messages cannot be filtered and are always
written to the error log.

Priority values follow the principle that higher priorities have lower values, and vice versa. Priority
values begin at 1 for the most severe events (errors) and increase for events with decreasing priority.
For example, to discard events with priority lower than warnings, test for priority values higher than
WARNING:

IF prio > WARNING THEN drop.

The following examples show the log_filter_dragnet rules to achieve an effect similar to each
log_error_verbosity value permitted by the log_filter_internal filter:

• Errors only (log_error_verbosity=1):

IF prio > ERROR THEN drop.

• Errors and warnings (log_error_verbosity=2):

IF prio > WARNING THEN drop.

1160

The Error Log

• Errors, warnings, and notes (log_error_verbosity=3):

IF prio > INFORMATION THEN drop.

This rule can actually be omitted because there are no prio values greater than INFORMATION,
so effectively it drops nothing.

• err_code

The numeric event error code. In comparisons, the value to test can be specified as a symbolic error
name or an integer literal. Error symbols are recognized only in comparisons with the err_code field
and user-defined fields. These comparisons are equivalent:

IF err_code == ER_ACCESS_DENIED_ERROR THEN ...
IF err_code == 1045 THEN ...

• err_symbol

The event error symbol, as a string (for example, 'ER_DUP_KEY'). err_symbol values are
intended more for identifying particular lines in log output than for use in filter rule comparisons
because log_filter_dragnet does not resolve comparison values specified as strings to the
equivalent numeric error code. (For that to occur, an error must be specified using its unquoted
symbol.)

Optional Field References

The log_filter_dragnet grammar at Grammar for log_filter_dragnet Rule Language names the
optional fields that filter rules recognize. For general descriptions of these fields, see Section 7.4.2.3,
“Error Event Fields”, with which you are assumed to be familiar. The following remarks provide
additional information only as it pertains specifically to optional field references as used within
log_filter_dragnet rules.

• label

The label corresponding to the prio value, as a string. Filter rules can change the label for log sinks
that support custom labels. label values are intended more for identifying particular lines in log
output than for use in filter rule comparisons because log_filter_dragnet does not resolve
comparison values specified as strings to the equivalent numeric priority.

• source_file

The source file in which the event occurred, without any leading path. For example, to test for the
sql/gis/distance.cc file, write the comparison like this:

IF source_file == "distance.cc" THEN ...

User-Defined Field References

Any field name in a log_filter_dragnet filter rule not recognized as a core or optional field name
is taken to refer to a user-defined field.

7.4.2.7 Error Logging in JSON Format

This section describes how to configure error logging using the built-in filter, log_filter_internal,
and the JSON sink, log_sink_json, to take effect immediately and for subsequent server startups.
For general information about configuring error logging, see Section 7.4.2.1, “Error Log Configuration”.

To enable the JSON sink, first load the sink component, then modify the log_error_services
value:

INSTALL COMPONENT 'file://component_log_sink_json';
SET PERSIST log_error_services = 'log_filter_internal; log_sink_json';

1161

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_dup_key

The Error Log

To set log_error_services to take effect at server startup, use the instructions at Section 7.4.2.1,
“Error Log Configuration”. Those instructions apply to other error-logging system variables as well.

It is permitted to name log_sink_json multiple times in the log_error_services value. For
example, to write unfiltered events with one instance and filtered events with another instance, you
could set log_error_services like this:

SET PERSIST log_error_services = 'log_sink_json; log_filter_internal; log_sink_json';

The JSON sink determines its output destination based on the default error log destination, which
is given by the log_error system variable. If log_error names a file, the JSON sink bases
output file naming on that file name, plus a numbered .NN.json suffix, with NN starting at 00. For
example, if log_error is file_name, successive instances of log_sink_json named in the
log_error_services value write to file_name.00.json, file_name.01.json, and so forth.

If log_error is stderr, the JSON sink writes to the console. If log_sink_json is named multiple
times in the log_error_services value, they all write to the console, which is likely not useful.

7.4.2.8 Error Logging to the System Log

It is possible to have mysqld write the error log to the system log (the Event Log on Windows, and
syslog on Unix and Unix-like systems).

This section describes how to configure error logging using the built-in filter, log_filter_internal,
and the system log sink, log_sink_syseventlog, to take effect immediately and for subsequent
server startups. For general information about configuring error logging, see Section 7.4.2.1, “Error Log
Configuration”.

To enable the system log sink, first load the sink component, then modify the log_error_services
value:

INSTALL COMPONENT 'file://component_log_sink_syseventlog';
SET PERSIST log_error_services = 'log_filter_internal; log_sink_syseventlog';

To set log_error_services to take effect at server startup, use the instructions at Section 7.4.2.1,
“Error Log Configuration”. Those instructions apply to other error-logging system variables as well.

Note

For MySQL 8.0 configuration, you must enable error logging to the system log
explicitly. This differs from MySQL 5.7 and earlier, for which error logging to the
system log is enabled by default on Windows, and on all platforms requires no
component loading.

Error logging to the system log may require additional system configuration.
Consult the system log documentation for your platform.

On Windows, error messages written to the Event Log within the Application log have these
characteristics:

• Entries marked as Error, Warning, and Note are written to the Event Log, but not messages such
as information statements from individual storage engines.

• Event Log entries have a source of MySQL (or MySQL-tag if syseventlog.tag is defined as tag).

On Unix and Unix-like systems, logging to the system log uses syslog. The following system variables
affect syslog messages:

• syseventlog.facility: The default facility for syslog messages is daemon. Set this variable to
specify a different facility.

• syseventlog.include_pid: Whether to include the server process ID in each line of syslog
output.

1162

The Error Log

• syseventlog.tag: This variable defines a tag to add to the server identifier (mysqld) in syslog
messages. If defined, the tag is appended to the identifier with a leading hyphen.

Note

Prior to MySQL 8.0.13, use the log_syslog_facility,
log_syslog_include_pid, and log_syslog_tag system variables rather
than the syseventlog.xxx variables.

MySQL uses the custom label “System” for important system messages about non-error situations,
such as startup, shutdown, and some significant changes to settings. In logs that do not support
custom labels, including the Event Log on Windows, and syslog on Unix and Unix-like systems,
system messages are assigned the label used for the information priority level. However, these
messages are printed to the log even if the MySQL log_error_verbosity setting normally excludes
messages at the information level.

When a log sink must fall back to a label of “Information” instead of “System” in this way, and the
log event is further processed outside of the MySQL server (for example, filtered or forwarded by a
syslog configuration), these events may by default be processed by the secondary application as
being of “Information” priority rather than “System” priority.

7.4.2.9 Error Log Output Format

Each error log sink (writer) component has a characteristic output format it uses to write messages to
its destination, but other factors may influence the content of the messages:

• The information available to the log sink. If a log filter component executed prior to execution of the
sink component removes a log event field, that field is not available for writing. For information about
log filtering, see Section 7.4.2.4, “Types of Error Log Filtering”.

• The information relevant to the log sink. Not every sink writes all fields available in error events.

• System variables may affect log sinks. See System Variables That Affect Error Log Format.

For names and descriptions of the fields in error events, see Section 7.4.2.3, “Error Event Fields”.
For all log sinks, the thread ID included in error log messages is that of the thread within mysqld
responsible for writing the message. This ID indicates which part of the server produced the message,
and is consistent with general query log and slow query log messages, which include the connection
thread ID.

• log_sink_internal Output Format

• log_sink_json Output Format

• log_sink_syseventlog Output Format

• Early-Startup Logging Output Format

• System Variables That Affect Error Log Format

log_sink_internal Output Format

The internal log sink produces traditional error log output. For example:

2020-08-06T14:25:02.835618Z 0 [Note] [MY-012487] [InnoDB] DDL log recovery : begin
2020-08-06T14:25:02.936146Z 0 [Warning] [MY-010068] [Server] CA certificate /var/mysql/sslinfo/cacert.pem is self signed.
2020-08-06T14:25:02.963127Z 0 [Note] [MY-010253] [Server] IPv6 is available.
2020-08-06T14:25:03.109022Z 5 [Note] [MY-010051] [Server] Event Scheduler: scheduler thread started with id 5

Traditional-format messages have these fields:

time thread [label] [err_code] [subsystem] msg

The [and] square bracket characters are literal characters in the message format. They do not
indicate that fields are optional.

1163

The Error Log

The label value corresponds to the string form of the prio error event priority field.

The [err_code] and [subsystem] fields were added in MySQL 8.0. They are missing from logs
generated by older servers. Log parsers can treat these fields as parts of the message text that
is present only for logs written by servers recent enough to include them. Parsers must treat the
err_code part of [err_code] indicators as a string value, not a number, because values such as
MY-012487 and MY-010051 contain nonnumeric characters.

log_sink_json Output Format

The JSON-format log sink produces messages as JSON objects that contain key-value pairs. For
example:

{
 "prio": 3,
 "err_code": 10051,
 "source_line": 561,
 "source_file": "event_scheduler.cc",
 "function": "run",
 "msg": "Event Scheduler: scheduler thread started with id 5",
 "time": "2020-08-06T14:25:03.109022Z",
 "ts": 1596724012005,
 "thread": 5,
 "err_symbol": "ER_SCHEDULER_STARTED",
 "SQL_state": "HY000",
 "subsystem": "Server",
 "buffered": 1596723903109022,
 "label": "Note"
}

The message shown is reformatted for readability. Events written to the error log appear one message
per line.

The ts (timestamp) key was added in MySQL 8.0.20 and is unique to the JSON-format log sink. The
value is an integer indicating milliseconds since the epoch ('1970-01-01 00:00:00' UTC).

The ts and buffered values are Unix timestamp values and can be converted using
FROM_UNIXTIME() and an appropriate divisor:

mysql> SET time_zone = '+00:00';
mysql> SELECT FROM_UNIXTIME(1596724012005/1000.0);
+-------------------------------------+
| FROM_UNIXTIME(1596724012005/1000.0) |
+-------------------------------------+
| 2020-08-06 14:26:52.0050 |
+-------------------------------------+
mysql> SELECT FROM_UNIXTIME(1596723903109022/1000000.0);
+---+
| FROM_UNIXTIME(1596723903109022/1000000.0) |
+---+
| 2020-08-06 14:25:03.1090 |
+---+

log_sink_syseventlog Output Format

The system log sink produces output that conforms to the system log format used on the local platform.

Early-Startup Logging Output Format

The server generates some error log messages before startup options have been processed, and thus
before it knows error log settings such as the log_error_verbosity and log_timestamps system
variable values, and before it knows which log components are to be used. The server handles error
log messages that are generated early in the startup process as follows:

• Prior to MySQL 8.0.14, the server generates messages with the default timestamp, format,
and verbosity level, and buffers them. After the startup options are processed and the error log
configuration is known, the server flushes the buffered messages. Because these early messages

1164

The General Query Log

use the default log configuration, they may differ from what is specified by the startup options. Also,
the early messages are not flushed to log sinks other than the default. For example, logging to the
JSON sink does not include these early messages because they are not in JSON format.

• As of MySQL 8.0.14, the server buffers log events rather than formatted log messages. This enables
it to retroactively apply configuration settings to those events after the settings are known, with the
result that flushed messages use the configured settings, not the defaults. Also, messages are
flushed to all configured sinks, not just the default sink.

If a fatal error occurs before log configuration is known and the server must exit, the server formats
buffered messages using the logging defaults so they are not lost. If no fatal error occurs but startup
is excessively slow prior to processing startup options, the server periodically formats and flushes
buffered messages using the logging defaults so as not to appear unresponsive. Although this
behavior is similar to pre-8.0.14 behavior in that the defaults are used, it is preferable to losing
messages when exceptional conditions occur.

System Variables That Affect Error Log Format

The log_timestamps system variable controls the time zone of timestamps in messages written
to the error log (as well as to general query log and slow query log files). The server applies
log_timestamps to error events before they reach any log sink; it thus affects error message output
from all sinks.

Permitted log_timestamps values are UTC (the default) and SYSTEM (the local system time zone).
Timestamps are written using ISO 8601 / RFC 3339 format: YYYY-MM-DDThh:mm:ss.uuuuuu plus a
tail value of Z signifying Zulu time (UTC) or ±hh:mm (an offset that indicates the local system time zone
adjustment relative to UTC). For example:

2020-08-07T15:02:00.832521Z (UTC)
2020-08-07T10:02:00.832521-05:00 (SYSTEM)

7.4.2.10 Error Log File Flushing and Renaming

If you flush the error log using a FLUSH ERROR LOGS or FLUSH LOGS statement, or a mysqladmin
flush-logs command, the server closes and reopens any error log file to which it is writing. To
rename an error log file, do so manually before flushing. Flushing the logs then opens a new file with
the original file name. For example, assuming a log file name of host_name.err, use the following
commands to rename the file and create a new one:

mv host_name.err host_name.err-old
mysqladmin flush-logs error
mv host_name.err-old backup-directory

On Windows, use rename rather than mv.

If the location of the error log file is not writable by the server, the log-flushing operation fails to create a
new log file. For example, on Linux, the server might write the error log to the /var/log/mysqld.log
file, where the /var/log directory is owned by root and is not writable by mysqld. For information
about handling this case, see Section 7.4.6, “Server Log Maintenance”.

If the server is not writing to a named error log file, no error log file renaming occurs when the error log
is flushed.

7.4.3 The General Query Log

The general query log is a general record of what mysqld is doing. The server writes information to
this log when clients connect or disconnect, and it logs each SQL statement received from clients. The
general query log can be very useful when you suspect an error in a client and want to know exactly
what the client sent to mysqld.

Each line that shows when a client connects also includes using connection_type to indicate the
protocol used to establish the connection. connection_type is one of TCP/IP (TCP/IP connection

1165

The General Query Log

established without SSL), SSL/TLS (TCP/IP connection established with SSL), Socket (Unix socket
file connection), Named Pipe (Windows named pipe connection), or Shared Memory (Windows
shared memory connection).

mysqld writes statements to the query log in the order that it receives them, which might differ from the
order in which they are executed. This logging order is in contrast with that of the binary log, for which
statements are written after they are executed but before any locks are released. In addition, the query
log may contain statements that only select data while such statements are never written to the binary
log.

When using statement-based binary logging on a replication source server, statements received by
its replicas are written to the query log of each replica. Statements are written to the query log of the
source if a client reads events with the mysqlbinlog utility and passes them to the server.

However, when using row-based binary logging, updates are sent as row changes rather than SQL
statements, and thus these statements are never written to the query log when binlog_format is
ROW. A given update also might not be written to the query log when this variable is set to MIXED,
depending on the statement used. See Section 19.2.1.1, “Advantages and Disadvantages of
Statement-Based and Row-Based Replication”, for more information.

By default, the general query log is disabled. To specify the initial general query log state explicitly,
use --general_log[={0|1}]. With no argument or an argument of 1, --general_log enables
the log. With an argument of 0, this option disables the log. To specify a log file name, use --
general_log_file=file_name. To specify the log destination, use the log_output system
variable (as described in Section 7.4.1, “Selecting General Query Log and Slow Query Log Output
Destinations”).

Note

If you specify the TABLE log destination, see Log Tables and “Too many open
files” Errors.

If you specify no name for the general query log file, the default name is host_name.log. The server
creates the file in the data directory unless an absolute path name is given to specify a different
directory.

To disable or enable the general query log or change the log file name at runtime, use the global
general_log and general_log_file system variables. Set general_log to 0 (or OFF) to disable
the log or to 1 (or ON) to enable it. Set general_log_file to specify the name of the log file. If a log
file already is open, it is closed and the new file is opened.

When the general query log is enabled, the server writes output to any destinations specified by the
log_output system variable. If you enable the log, the server opens the log file and writes startup
messages to it. However, further logging of queries to the file does not occur unless the FILE log
destination is selected. If the destination is NONE, the server writes no queries even if the general log is
enabled. Setting the log file name has no effect on logging if the log destination value does not contain
FILE.

Server restarts and log flushing do not cause a new general query log file to be generated (although
flushing closes and reopens it). To rename the file and create a new one, use the following commands:

$> mv host_name.log host_name-old.log
$> mysqladmin flush-logs general
$> mv host_name-old.log backup-directory

On Windows, use rename rather than mv.

You can also rename the general query log file at runtime by disabling the log:

SET GLOBAL general_log = 'OFF';

With the log disabled, rename the log file externally (for example, from the command line). Then enable
the log again:

1166

The Binary Log

SET GLOBAL general_log = 'ON';

This method works on any platform and does not require a server restart.

To disable or enable general query logging for the current session, set the session sql_log_off
variable to ON or OFF. (This assumes that the general query log itself is enabled.)

Passwords in statements written to the general query log are rewritten by the server not to occur
literally in plain text. Password rewriting can be suppressed for the general query log by starting the
server with the --log-raw option. This option may be useful for diagnostic purposes, to see the
exact text of statements as received by the server, but for security reasons is not recommended for
production use. See also Section 8.1.2.3, “Passwords and Logging”.

An implication of password rewriting is that statements that cannot be parsed (due, for example, to
syntax errors) are not written to the general query log because they cannot be known to be password
free. Use cases that require logging of all statements including those with errors should use the --
log-raw option, bearing in mind that this also bypasses password rewriting.

Password rewriting occurs only when plain text passwords are expected. For statements with syntax
that expect a password hash value, no rewriting occurs. If a plain text password is supplied erroneously
for such syntax, the password is logged as given, without rewriting.

The log_timestamps system variable controls the time zone of timestamps in messages written to
the general query log file (as well as to the slow query log file and the error log). It does not affect the
time zone of general query log and slow query log messages written to log tables, but rows retrieved
from those tables can be converted from the local system time zone to any desired time zone with
CONVERT_TZ() or by setting the session time_zone system variable.

7.4.4 The Binary Log

The binary log contains “events” that describe database changes such as table creation operations or
changes to table data. It also contains events for statements that potentially could have made changes
(for example, a DELETE which matched no rows), unless row-based logging is used. The binary log
also contains information about how long each statement took that updated data. The binary log has
two important purposes:

• For replication, the binary log on a replication source server provides a record of the data changes to
be sent to replicas. The source sends the information contained in its binary log to its replicas, which
reproduce those transactions to make the same data changes that were made on the source. See
Section 19.2, “Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These
events bring databases up to date from the point of the backup. See Section 9.5, “Point-in-Time
(Incremental) Recovery”.

The binary log is not used for statements such as SELECT or SHOW that do not modify data. To log all
statements (for example, to identify a problem query), use the general query log. See Section 7.4.3,
“The General Query Log”.

Running a server with binary logging enabled makes performance slightly slower. However, the
benefits of the binary log in enabling you to set up replication and for restore operations generally
outweigh this minor performance decrement.

The binary log is resilient to unexpected halts. Only complete events or transactions are logged or read
back.

Passwords in statements written to the binary log are rewritten by the server not to occur literally in
plain text. See also Section 8.1.2.3, “Passwords and Logging”.

From MySQL 8.0.14, binary log files and relay log files can be encrypted, helping to protect these files
and the potentially sensitive data contained in them from being misused by outside attackers, and

1167

The Binary Log

also from unauthorized viewing by users of the operating system where they are stored. You enable
encryption on a MySQL server by setting the binlog_encryption system variable to ON. For more
information, see Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”.

The following discussion describes some of the server options and variables that affect the operation of
binary logging. For a complete list, see Section 19.1.6.4, “Binary Logging Options and Variables”.

Binary logging is enabled by default (the log_bin system variable is set to ON). The exception is if
you use mysqld to initialize the data directory manually by invoking it with the --initialize or --
initialize-insecure option, when binary logging is disabled by default, but can be enabled by
specifying the --log-bin option.

To disable binary logging, you can specify the --skip-log-bin or --disable-log-bin option at
startup. If either of these options is specified and --log-bin is also specified, the option specified
later takes precedence.

The --log-slave-updates and --slave-preserve-commit-order options require binary
logging. If you disable binary logging, either omit these options, or specify --log-slave-
updates=OFF and --skip-slave-preserve-commit-order. MySQL disables these options by
default when --skip-log-bin or --disable-log-bin is specified. If you specify --log-slave-
updates or --slave-preserve-commit-order together with --skip-log-bin or --disable-
log-bin, a warning or error message is issued.

The --log-bin[=base_name] option is used to specify the base name for binary log files. If you do
not supply the --log-bin option, MySQL uses binlog as the default base name for the binary log
files. For compatibility with earlier releases, if you supply the --log-bin option with no string or with
an empty string, the base name defaults to host_name-bin, using the name of the host machine. It is
recommended that you specify a base name, so that if the host name changes, you can easily continue
to use the same binary log file names (see Section B.3.7, “Known Issues in MySQL”). If you supply
an extension in the log name (for example, --log-bin=base_name.extension), the extension is
silently removed and ignored.

mysqld appends a numeric extension to the binary log base name to generate binary log file names.
The number increases each time the server creates a new log file, thus creating an ordered series of
files. The server creates a new file in the series each time any of the following events occurs:

• The server is started or restarted

• The server flushes the logs.

• The size of the current log file reaches max_binlog_size.

A binary log file may become larger than max_binlog_size if you are using large transactions
because a transaction is written to the file in one piece, never split between files.

To keep track of which binary log files have been used, mysqld also creates a binary log index file
that contains the names of the binary log files. By default, this has the same base name as the binary
log file, with the extension '.index'. You can change the name of the binary log index file with the
--log-bin-index[=file_name] option. You should not manually edit this file while mysqld is
running; doing so would confuse mysqld.

The term “binary log file” generally denotes an individual numbered file containing database events.
The term “binary log” collectively denotes the set of numbered binary log files plus the index file.

The default location for binary log files and the binary log index file is the data directory. You can use
the --log-bin option to specify an alternative location, by adding a leading absolute path name to
the base name to specify a different directory. When the server reads an entry from the binary log
index file, which tracks the binary log files that have been used, it checks whether the entry contains a
relative path. If it does, the relative part of the path is replaced with the absolute path set using the --
log-bin option. An absolute path recorded in the binary log index file remains unchanged; in such a
case, the index file must be edited manually to enable a new path or paths to be used. The binary log
file base name and any specified path are available as the log_bin_basename system variable.

1168

The Binary Log

In MySQL 5.7, a server ID had to be specified when binary logging was enabled, or the server would
not start. In MySQL 8.0, the server_id system variable is set to 1 by default. The server can be
started with this default ID when binary logging is enabled, but an informational message is issued if
you do not specify a server ID explicitly using the server_id system variable. For servers that are
used in a replication topology, you must specify a unique nonzero server ID for each server.

A client that has privileges sufficient to set restricted session system variables (see Section 7.1.9.1,
“System Variable Privileges”) can disable binary logging of its own statements by using a SET
sql_log_bin=OFF statement.

By default, the server logs the length of the event as well as the event itself and uses this to verify that
the event was written correctly. You can also cause the server to write checksums for the events by
setting the binlog_checksum system variable. When reading back from the binary log, the source
uses the event length by default, but can be made to use checksums if available by enabling the
system variable source_verify_checksum (from MySQL 8.0.26) or master_verify_checksum
(before MySQL 8.0.26). The replication I/O (receiver) thread on the replica also verifies events received
from the source. You can cause the replication SQL (applier) thread to use checksums if available
when reading from the relay log by enabling the system variable replica_sql_verify_checksum
(from MySQL 8.0.26) or slave_sql_verify_checksum (before MySQL 8.0.26).

The format of the events recorded in the binary log is dependent on the binary logging format. Three
format types are supported: row-based logging, statement-based logging and mixed-base logging. The
binary logging format used depends on the MySQL version. For general descriptions of the logging
formats, see Section 7.4.4.1, “Binary Logging Formats”. For detailed information about the format of the
binary log, see MySQL Internals: The Binary Log.

The server evaluates the --binlog-do-db and --binlog-ignore-db options in the same way
as it does the --replicate-do-db and --replicate-ignore-db options. For information about
how this is done, see Section 19.2.5.1, “Evaluation of Database-Level Replication and Binary Logging
Options”.

A replica is started with the system variable log_replica_updates (from MySQL 8.0.26) or
log_slave_updates (before MySQL 8.0.26) enabled by default, meaning that the replica writes to
its own binary log any data modifications that are received from the source. The binary log must be
enabled for this setting to work (see Section 19.1.6.3, “Replica Server Options and Variables”). This
setting enables the replica to act as a source to other replicas.

You can delete all binary log files with the RESET MASTER statement, or a subset of them with PURGE
BINARY LOGS. See Section 15.7.8.6, “RESET Statement”, and Section 15.4.1.1, “PURGE BINARY
LOGS Statement”.

If you are using replication, you should not delete old binary log files on the source until you are
sure that no replica still needs to use them. For example, if your replicas never run more than three
days behind, once a day you can execute mysqladmin flush-logs binary on the source and
then remove any logs that are more than three days old. You can remove the files manually, but it is
preferable to use PURGE BINARY LOGS, which also safely updates the binary log index file for you
(and which can take a date argument). See Section 15.4.1.1, “PURGE BINARY LOGS Statement”.

You can display the contents of binary log files with the mysqlbinlog utility. This can be useful when
you want to reprocess statements in the log for a recovery operation. For example, you can update a
MySQL server from the binary log as follows:

$> mysqlbinlog log_file | mysql -h server_name

mysqlbinlog also can be used to display the contents of the relay log file on a replica, because they
are written using the same format as binary log files. For more information on the mysqlbinlog utility
and how to use it, see Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”. For more
information about the binary log and recovery operations, see Section 9.5, “Point-in-Time (Incremental)
Recovery”.

1169

https://dev.mysql.com/doc/internals/en/binary-log.html

The Binary Log

Binary logging is done immediately after a statement or transaction completes but before any locks are
released or any commit is done. This ensures that the log is logged in commit order.

Updates to nontransactional tables are stored in the binary log immediately after execution.

Within an uncommitted transaction, all updates (UPDATE, DELETE, or INSERT) that change
transactional tables such as InnoDB tables are cached until a COMMIT statement is received by the
server. At that point, mysqld writes the entire transaction to the binary log before the COMMIT is
executed.

Modifications to nontransactional tables cannot be rolled back. If a transaction that is rolled back
includes modifications to nontransactional tables, the entire transaction is logged with a ROLLBACK
statement at the end to ensure that the modifications to those tables are replicated.

When a thread that handles the transaction starts, it allocates a buffer of binlog_cache_size to
buffer statements. If a statement is bigger than this, the thread opens a temporary file to store the
transaction. The temporary file is deleted when the thread ends. From MySQL 8.0.17, if binary log
encryption is active on the server, the temporary file is encrypted.

The Binlog_cache_use status variable shows the number of transactions that used this buffer (and
possibly a temporary file) for storing statements. The Binlog_cache_disk_use status variable
shows how many of those transactions actually had to use a temporary file. These two variables can be
used for tuning binlog_cache_size to a large enough value that avoids the use of temporary files.

The max_binlog_cache_size system variable (default 4GB, which is also the maximum) can be
used to restrict the total size used to cache a multiple-statement transaction. If a transaction is larger
than this many bytes, it fails and rolls back. The minimum value is 4096.

If you are using the binary log and row based logging, concurrent inserts are converted to normal
inserts for CREATE ... SELECT or INSERT ... SELECT statements. This is done to ensure that
you can re-create an exact copy of your tables by applying the log during a backup operation. If you are
using statement-based logging, the original statement is written to the log.

The binary log format has some known limitations that can affect recovery from backups. See
Section 19.5.1, “Replication Features and Issues”.

Binary logging for stored programs is done as described in Section 27.7, “Stored Program Binary
Logging”.

Note that the binary log format differs in MySQL 8.0 from previous versions of MySQL, due to
enhancements in replication. See Section 19.5.2, “Replication Compatibility Between MySQL
Versions”.

If the server is unable to write to the binary log, flush binary log files, or synchronize the binary log to
disk, the binary log on the replication source server can become inconsistent and replicas can lose
synchronization with the source. The binlog_error_action system variable controls the action
taken if an error of this type is encountered with the binary log.

• The default setting, ABORT_SERVER, makes the server halt binary logging and shut down. At this
point, you can identify and correct the cause of the error. On restart, recovery proceeds as in the
case of an unexpected server halt (see Section 19.4.2, “Handling an Unexpected Halt of a Replica”).

• The setting IGNORE_ERROR provides backward compatibility with older versions of MySQL. With this
setting, the server continues the ongoing transaction and logs the error, then halts binary logging,
but continues to perform updates. At this point, you can identify and correct the cause of the error.
To resume binary logging, log_bin must be enabled again, which requires a server restart. Only
use this option if you require backward compatibility, and the binary log is non-essential on this
MySQL server instance. For example, you might use the binary log only for intermittent auditing or
debugging of the server, and not use it for replication from the server or rely on it for point-in-time
restore operations.

1170

The Binary Log

By default, the binary log is synchronized to disk at each write (sync_binlog=1). If sync_binlog
was not enabled, and the operating system or machine (not only the MySQL server) crashed, there
is a chance that the last statements of the binary log could be lost. To prevent this, enable the
sync_binlog system variable to synchronize the binary log to disk after every N commit groups. See
Section 7.1.8, “Server System Variables”. The safest value for sync_binlog is 1 (the default), but this
is also the slowest.

In earlier MySQL releases, there was a chance of inconsistency between the table content and
binary log content if a crash occurred, even with sync_binlog set to 1. For example, if you are
using InnoDB tables and the MySQL server processes a COMMIT statement, it writes many prepared
transactions to the binary log in sequence, synchronizes the binary log, and then commits the
transaction into InnoDB. If the server unexpectedly exited between those two operations, the
transaction would be rolled back by InnoDB at restart but still exist in the binary log. Such an issue was
resolved in previous releases by enabling InnoDB support for two-phase commit in XA transactions. In
MySQL 8.0, InnoDB support for two-phase commit in XA transactions is always enabled.

InnoDB support for two-phase commit in XA transactions ensures that the binary log and InnoDB
data files are synchronized. However, the MySQL server should also be configured to synchronize
the binary log and the InnoDB logs to disk before committing the transaction. The InnoDB logs are
synchronized by default, and sync_binlog=1 ensures the binary log is synchronized. The effect
of implicit InnoDB support for two-phase commit in XA transactions and sync_binlog=1 is that at
restart after a crash, after doing a rollback of transactions, the MySQL server scans the latest binary
log file to collect transaction xid values and calculate the last valid position in the binary log file. The
MySQL server then tells InnoDB to complete any prepared transactions that were successfully written
to the to the binary log, and truncates the binary log to the last valid position. This ensures that the
binary log reflects the exact data of InnoDB tables, and therefore the replica remains in synchrony with
the source because it does not receive a statement which has been rolled back.

If the MySQL server discovers at crash recovery that the binary log is shorter than it should have
been, it lacks at least one successfully committed InnoDB transaction. This should not happen if
sync_binlog=1 and the disk/file system do an actual sync when they are requested to (some do
not), so the server prints an error message The binary log file_name is shorter than its
expected size. In this case, this binary log is not correct and replication should be restarted from a
fresh snapshot of the source's data.

The session values of the following system variables are written to the binary log and honored by the
replica when parsing the binary log:

• sql_mode (except that the NO_DIR_IN_CREATE mode is not replicated; see Section 19.5.1.39,
“Replication and Variables”)

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

7.4.4.1 Binary Logging Formats

The server uses several logging formats to record information in the binary log:

• Replication capabilities in MySQL originally were based on propagation of SQL statements from
source to replica. This is called statement-based logging. You can cause this format to be used by
starting the server with --binlog-format=STATEMENT.

1171

The Binary Log

• In row-based logging (the default), the source writes events to the binary log that indicate how
individual table rows are affected. You can cause the server to use row-based logging by starting it
with --binlog-format=ROW.

• A third option is also available: mixed logging. With mixed logging, statement-based logging is used
by default, but the logging mode switches automatically to row-based in certain cases as described
below. You can cause MySQL to use mixed logging explicitly by starting mysqld with the option --
binlog-format=MIXED.

The logging format can also be set or limited by the storage engine being used. This helps to eliminate
issues when replicating certain statements between a source and replica which are using different
storage engines.

With statement-based replication, there may be issues with replicating nondeterministic statements. In
deciding whether or not a given statement is safe for statement-based replication, MySQL determines
whether it can guarantee that the statement can be replicated using statement-based logging. If
MySQL cannot make this guarantee, it marks the statement as potentially unreliable and issues the
warning, Statement may not be safe to log in statement format.

You can avoid these issues by using MySQL's row-based replication instead.

7.4.4.2 Setting The Binary Log Format

You can select the binary logging format explicitly by starting the MySQL server with --binlog-
format=type. The supported values for type are:

• STATEMENT causes logging to be statement based.

• ROW causes logging to be row based. This is the default.

• MIXED causes logging to use mixed format.

Setting the binary logging format does not activate binary logging for the server. The setting only takes
effect when binary logging is enabled on the server, which is the case when the log_bin system
variable is set to ON. From MySQL 8.0, binary logging is enabled by default, and is only disabled if you
specify the --skip-log-bin or --disable-log-bin option at startup.

The logging format also can be switched at runtime, although note that there are a number of
situations in which you cannot do this, as discussed later in this section. Set the global value of the
binlog_format system variable to specify the format for clients that connect subsequent to the
change:

mysql> SET GLOBAL binlog_format = 'STATEMENT';
mysql> SET GLOBAL binlog_format = 'ROW';
mysql> SET GLOBAL binlog_format = 'MIXED';

An individual client can control the logging format for its own statements by setting the session value of
binlog_format:

mysql> SET SESSION binlog_format = 'STATEMENT';
mysql> SET SESSION binlog_format = 'ROW';
mysql> SET SESSION binlog_format = 'MIXED';

Changing the global binlog_format value requires privileges sufficient to set global system
variables. Changing the session binlog_format value requires privileges sufficient to set restricted
session system variables. See Section 7.1.9.1, “System Variable Privileges”.

There are several reasons why a client might want to set binary logging on a per-session basis:

• A session that makes many small changes to the database might want to use row-based logging.

• A session that performs updates that match many rows in the WHERE clause might want to use
statement-based logging because it is more efficient to log a few statements than many rows.

1172

The Binary Log

• Some statements require a lot of execution time on the source, but result in just a few rows being
modified. It might therefore be beneficial to replicate them using row-based logging.

There are exceptions when you cannot switch the replication format at runtime:

• The replication format cannot be changed from within a stored function or a trigger.

• If the NDB storage engine is enabled.

• If a session has open temporary tables, the replication format cannot be changed for the session
(SET @@SESSION.binlog_format).

• If any replication channel has open temporary tables, the replication format cannot be changed
globally (SET @@GLOBAL.binlog_format or SET @@PERSIST.binlog_format).

• If any replication channel applier thread is currently running, the replication format cannot be
changed globally (SET @@GLOBAL.binlog_format or SET @@PERSIST.binlog_format).

Trying to switch the replication format in any of these cases (or attempting to set the
current replication format) results in an error. You can, however, use PERSIST_ONLY (SET
@@PERSIST_ONLY.binlog_format) to change the replication format at any time, because this action
does not modify the runtime global system variable value, and takes effect only after a server restart.

Switching the replication format at runtime is not recommended when any temporary tables exist,
because temporary tables are logged only when using statement-based replication, whereas with row-
based replication and mixed replication, they are not logged.

Switching the replication format while replication is ongoing can also cause issues. Each MySQL
Server can set its own and only its own binary logging format (true whether binlog_format is set
with global or session scope). This means that changing the logging format on a replication source
server does not cause a replica to change its logging format to match. When using STATEMENT mode,
the binlog_format system variable is not replicated. When using MIXED or ROW logging mode, it is
replicated but is ignored by the replica.

A replica is not able to convert binary log entries received in ROW logging format to STATEMENT format
for use in its own binary log. The replica must therefore use ROW or MIXED format if the source does.
Changing the binary logging format on the source from STATEMENT to ROW or MIXED while replication
is ongoing to a replica with STATEMENT format can cause replication to fail with errors such as Error
executing row event: 'Cannot execute statement: impossible to write to
binary log since statement is in row format and BINLOG_FORMAT = STATEMENT.'
Changing the binary logging format on the replica to STATEMENT format when the source is still using
MIXED or ROW format also causes the same type of replication failure. To change the format safely, you
must stop replication and ensure that the same change is made on both the source and the replica.

If you are using InnoDB tables and the transaction isolation level is READ COMMITTED or READ
UNCOMMITTED, only row-based logging can be used. It is possible to change the logging format to
STATEMENT, but doing so at runtime leads very rapidly to errors because InnoDB can no longer
perform inserts.

With the binary log format set to ROW, many changes are written to the binary log using the row-based
format. Some changes, however, still use the statement-based format. Examples include all DDL (data
definition language) statements such as CREATE TABLE, ALTER TABLE, or DROP TABLE.

When row-based binary logging is used, the binlog_row_event_max_size system variable and its
corresponding startup option --binlog-row-event-max-size set a soft limit on the maximum size
of row events. The default value is 8192 bytes, and the value can only be changed at server startup.
Where possible, rows stored in the binary log are grouped into events with a size not exceeding the
value of this setting. If an event cannot be split, the maximum size can be exceeded.

The --binlog-row-event-max-size option is available for servers that are capable of row-based
replication. Rows are stored into the binary log in chunks having a size in bytes not exceeding the
value of this option. The value must be a multiple of 256. The default value is 8192.

1173

The Binary Log

Warning

When using statement-based logging for replication, it is possible for the data
on the source and replica to become different if a statement is designed in
such a way that the data modification is nondeterministic; that is, it is left up
to the query optimizer. In general, this is not a good practice even outside of
replication. For a detailed explanation of this issue, see Section B.3.7, “Known
Issues in MySQL”.

7.4.4.3 Mixed Binary Logging Format

When running in MIXED logging format, the server automatically switches from statement-based to
row-based logging under the following conditions:

• When a function contains UUID().

• When one or more tables with AUTO_INCREMENT columns are updated and a trigger or stored
function is invoked. Like all other unsafe statements, this generates a warning if binlog_format =
STATEMENT.

For more information, see Section 19.5.1.1, “Replication and AUTO_INCREMENT”.

• When the body of a view requires row-based replication, the statement creating the view also uses it.
For example, this occurs when the statement creating a view uses the UUID() function.

• When a call to a loadable function is involved.

• When FOUND_ROWS() or ROW_COUNT() is used. (Bug #12092, Bug #30244)

• When USER(), CURRENT_USER(), or CURRENT_USER is used. (Bug #28086)

• When one of the tables involved is a log table in the mysql database.

• When the LOAD_FILE() function is used. (Bug #39701)

• When a statement refers to one or more system variables. (Bug #31168)

Exception. The following system variables, when used with session scope (only), do not cause
the logging format to switch:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

1174

The Binary Log

• lc_time_names

• pseudo_thread_id

• sql_auto_is_null

• time_zone

• timestamp

• unique_checks

For information about determining system variable scope, see Section 7.1.9, “Using System
Variables”.

For information about how replication treats sql_mode, see Section 19.5.1.39, “Replication and
Variables”.

In earlier releases, when mixed binary logging format was in use, if a statement was logged by row and
the session that executed the statement had any temporary tables, all subsequent statements were
treated as unsafe and logged in row-based format until all temporary tables in use by that session were
dropped. As of MySQL 8.0, operations on temporary tables are not logged in mixed binary logging
format, and the presence of temporary tables in the session has no impact on the logging mode used
for each statement.

Note

A warning is generated if you try to execute a statement using statement-based
logging that should be written using row-based logging. The warning is shown
both in the client (in the output of SHOW WARNINGS) and through the mysqld
error log. A warning is added to the SHOW WARNINGS table each time such a
statement is executed. However, only the first statement that generated the
warning for each client session is written to the error log to prevent flooding the
log.

In addition to the decisions above, individual engines can also determine the logging format used when
information in a table is updated. The logging capabilities of an individual engine can be defined as
follows:

• If an engine supports row-based logging, the engine is said to be row-logging capable.

• If an engine supports statement-based logging, the engine is said to be statement-logging capable.

A given storage engine can support either or both logging formats. The following table lists the formats
supported by each engine.

Storage Engine Row Logging Supported Statement Logging Supported

ARCHIVE Yes Yes

BLACKHOLE Yes Yes

CSV Yes Yes

EXAMPLE Yes No

FEDERATED Yes Yes

HEAP Yes Yes

InnoDB Yes Yes when the transaction
isolation level is REPEATABLE
READ or SERIALIZABLE; No
otherwise.

1175

The Binary Log

Storage Engine Row Logging Supported Statement Logging Supported

MyISAM Yes Yes

MERGE Yes Yes

NDB Yes No

Whether a statement is to be logged and the logging mode to be used is determined according to the
type of statement (safe, unsafe, or binary injected), the binary logging format (STATEMENT, ROW, or
MIXED), and the logging capabilities of the storage engine (statement capable, row capable, both, or
neither). (Binary injection refers to logging a change that must be logged using ROW format.)

Statements may be logged with or without a warning; failed statements are not logged, but generate
errors in the log. This is shown in the following decision table. Type, binlog_format, SLC, and
RLC columns outline the conditions, and Error / Warning and Logged as columns represent the
corresponding actions. SLC stands for “statement-logging capable”, and RLC stands for “row-logging
capable”.

Type binlog_formatSLC RLC Error /
Warning

Logged as

* * No No Error:
Cannot
execute
statement:
Binary logging
is impossible
since at least
one engine is
involved that
is both row-
incapable and
statement-
incapable.

-

Safe STATEMENT Yes No - STATEMENT

Safe MIXED Yes No - STATEMENT

Safe ROW Yes No Error:
Cannot
execute
statement:
Binary logging
is impossible
since
BINLOG_FORMAT
= ROW and at
least one table
uses a storage
engine that is
not capable
of row-based
logging.

-

Unsafe STATEMENT Yes No Warning:
Unsafe
statement
binlogged
in
statement
format, since

STATEMENT

1176

The Binary Log

Type binlog_formatSLC RLC Error /
Warning

Logged as

BINLOG_FORMAT
= STATEMENT

Unsafe MIXED Yes No Error:
Cannot
execute
statement:
Binary logging
of an unsafe
statement is
impossible
when the
storage engine
is limited to
statement-
based logging,
even if
BINLOG_FORMAT
= MIXED.

-

Unsafe ROW Yes No Error:
Cannot
execute
statement:
Binary logging
is impossible
since
BINLOG_FORMAT
= ROW and at
least one table
uses a storage
engine that is
not capable
of row-based
logging.

-

Row Injection STATEMENT Yes No Error:
Cannot
execute row
injection:
Binary logging
is not possible
since at least
one table uses
a storage
engine that is
not capable
of row-based
logging.

-

Row Injection MIXED Yes No Error:
Cannot
execute row
injection:
Binary logging
is not possible
since at least
one table uses

-

1177

The Binary Log

Type binlog_formatSLC RLC Error /
Warning

Logged as

a storage
engine that is
not capable
of row-based
logging.

Row Injection ROW Yes No Error:
Cannot
execute row
injection:
Binary logging
is not possible
since at least
one table uses
a storage
engine that is
not capable
of row-based
logging.

-

Safe STATEMENT No Yes Error:
Cannot
execute
statement:
Binary logging
is impossible
since
BINLOG_FORMAT
= STATEMENT
and at least
one table uses
a storage
engine that is
not capable
of statement-
based logging.

-

Safe MIXED No Yes - ROW

Safe ROW No Yes - ROW

Unsafe STATEMENT No Yes Error:
Cannot
execute
statement:
Binary logging
is impossible
since
BINLOG_FORMAT
= STATEMENT
and at least
one table uses
a storage
engine that is
not capable
of statement-
based logging.

-

Unsafe MIXED No Yes - ROW

1178

The Binary Log

Type binlog_formatSLC RLC Error /
Warning

Logged as

Unsafe ROW No Yes - ROW

Row Injection STATEMENT No Yes Error:
Cannot
execute row
injection:
Binary
logging is not
possible since
BINLOG_FORMAT
= STATEMENT.

-

Row Injection MIXED No Yes - ROW

Row Injection ROW No Yes - ROW

Safe STATEMENT Yes Yes - STATEMENT

Safe MIXED Yes Yes - STATEMENT

Safe ROW Yes Yes - ROW

Unsafe STATEMENT Yes Yes Warning:
Unsafe
statement
binlogged
in
statement
format since
BINLOG_FORMAT
= STATEMENT.

STATEMENT

Unsafe MIXED Yes Yes - ROW

Unsafe ROW Yes Yes - ROW

Row Injection STATEMENT Yes Yes Error:
Cannot
execute row
injection:
Binary logging
is not possible
because
BINLOG_FORMAT
= STATEMENT.

-

Row Injection MIXED Yes Yes - ROW

Row Injection ROW Yes Yes - ROW

When a warning is produced by the determination, a standard MySQL warning is produced (and
is available using SHOW WARNINGS). The information is also written to the mysqld error log. Only
one error for each error instance per client connection is logged to prevent flooding the log. The log
message includes the SQL statement that was attempted.

If a replica has log_error_verbosity set to display warnings, the replica prints messages to
the error log to provide information about its status, such as the binary log and relay log coordinates
where it starts its job, when it is switching to another relay log, when it reconnects after a disconnect,
statements that are unsafe for statement-based logging, and so forth.

1179

The Binary Log

7.4.4.4 Logging Format for Changes to mysql Database Tables

The contents of the grant tables in the mysql database can be modified directly (for example, with
INSERT or DELETE) or indirectly (for example, with GRANT or CREATE USER). Statements that affect
mysql database tables are written to the binary log using the following rules:

• Data manipulation statements that change data in mysql database tables directly are logged
according to the setting of the binlog_format system variable. This pertains to statements such as
INSERT, UPDATE, DELETE, REPLACE, DO, LOAD DATA, SELECT, and TRUNCATE TABLE.

• Statements that change the mysql database indirectly are logged as statements regardless of the
value of binlog_format. This pertains to statements such as GRANT, REVOKE, SET PASSWORD,
RENAME USER, CREATE (all forms except CREATE TABLE ... SELECT), ALTER (all forms), and
DROP (all forms).

CREATE TABLE ... SELECT is a combination of data definition and data manipulation. The CREATE
TABLE part is logged using statement format and the SELECT part is logged according to the value of
binlog_format.

7.4.4.5 Binary Log Transaction Compression

Beginning with MySQL 8.0.20, you can enable binary log transaction compression on a MySQL
server instance. When binary log transaction compression is enabled, transaction payloads are
compressed using the zstd algorithm, and then written to the server's binary log file as a single event (a
Transaction_payload_event).

Compressed transaction payloads remain in a compressed state while they are sent in the replication
stream to replicas, other Group Replication group members, or clients such as mysqlbinlog. They
are not decompressed by receiver threads, and are written to the relay log still in their compressed
state. Binary log transaction compression therefore saves storage space both on the originator of
the transaction and on the recipient (and for their backups), and saves network bandwidth when the
transactions are sent between server instances.

Compressed transaction payloads are decompressed when the individual events contained in them
need to be inspected. For example, the Transaction_payload_event is decompressed by an
applier thread in order to apply the events it contains on the recipient. Decompression is also carried
out during recovery, by mysqlbinlog when replaying transactions, and by the SHOW BINLOG
EVENTS and SHOW RELAYLOG EVENTS statements.

You can enable binary log transaction compression on a MySQL server instance using the
binlog_transaction_compression system variable, which defaults to OFF. You can also use
the binlog_transaction_compression_level_zstd system variable to set the level for the
zstd algorithm that is used for compression. This value determines the compression effort, from 1
(the lowest effort) to 22 (the highest effort). As the compression level increases, the compression
ratio increases, which reduces the storage space and network bandwidth required for the transaction
payload. However, the effort required for data compression also increases, taking time and CPU and
memory resources on the originating server. Increases in the compression effort do not have a linear
relationship to increases in the compression ratio.

Setting binlog_transaction_compression or
binlog_transaction_compression_level_zstd (or both) has no immediate effect but rather
applies to all subsequent START REPLICA (START SLAVE) statements.

In NDB 8.0.31 and later, you can enable binary logging of compressed transactions for tables
using the NDB storage engine at run time using the ndb_log_transaction_compression
system variable introduced in that release, and control the level of compression using
ndb_log_transaction_compression_level_zstd. Starting mysqld with --
binlog-transaction-compression on the command line or in a my.cnf file causes
ndb_log_transaction_compression to be enabled automatically and any setting for the --
ndb-log-transaction-compression option to be ignored; to disable binary log transaction

1180

The Binary Log

compression for the NDB storage engine only, set ndb_log_transaction_compression=OFF in a
client session after starting mysqld.

(Prior to NDB 8.0.31: Binary log transaction compression can be enabled in NDB Cluster,
but only when starting the server using the --binlog-transaction-compression option
(and possibly --binlog-transaction-compression-level-zstd as well); changing the value
of either or both of the system variables binlog_transaction_compression and
binlog_transaction_compression_level_zstd at run time has no effect on the logging of NDB
tables.)

The following types of event are excluded from binary log transaction compression, so are always
written uncompressed to the binary log:

• Events relating to the GTID for the transaction (including anonymous GTID events).

• Other types of control event, such as view change events and heartbeat events.

• Incident events and the whole of any transactions that contain them.

• Non-transactional events and the whole of any transactions that contain them. A transaction
involving a mix of non-transactional and transactional storage engines does not have its payload
compressed.

• Events that are logged using statement-based binary logging. Binary log transaction compression is
only applied for the row-based binary logging format.

Binary log encryption can be used on binary log files that contain compressed transactions.

Behaviors When Binary Log Transaction Compression is Enabled

Transactions with payloads that are compressed can be rolled back like any other transaction, and they
can also be filtered out on a replica by the usual filtering options. Binary log transaction compression
can be applied to XA transactions.

When binary log transaction compression is enabled, the max_allowed_packet and
replica_max_allowed_packet or slave_max_allowed_packet limits for the server still apply,
and are measured on the compressed size of the Transaction_payload_event, plus the bytes
used for the event header.

Important

Compressed transaction payloads are sent as a single packet, rather than each
event of the transaction being sent in an individual packet, as is the case when
binary log transaction compression is not in use. If your replication topology
handles large transactions, be aware that a large transaction which can be
replicated successfully when binary log transaction compression is not in use,
might stop replication due to its size when binary log transaction compression is
in use.

For multithreaded workers, each transaction (including its GTID event and
Transaction_payload_event) is assigned to a worker thread. The worker thread decompresses
the transaction payload and applies the individual events in it one by one. If an error is found applying
any event within the Transaction_payload_event, the complete transaction is reported to the
co-ordinator as having failed. When replica_parallel_type or slave_parallel_type is
set to DATABASE, all the databases affected by the transaction are mapped before the transaction
is scheduled. The use of binary log transaction compression with the DATABASE policy can reduce
parallelism compared to uncompressed transactions, which are mapped and scheduled for each event.

For semisynchronous replication (see Section 19.4.10, “Semisynchronous Replication”), the replica
acknowledges the transaction when the complete Transaction_payload_event has been
received.

1181

The Binary Log

When binary log checksums are enabled (which is the default), the replication source server does not
write checksums for individual events in a compressed transaction payload. Instead, a checksum is
written for the complete Transaction_payload_event, and individual checksums are written for
any events that were not compressed, such as events relating to GTIDs.

For the SHOW BINLOG EVENTS and SHOW RELAYLOG EVENTS statements, the
Transaction_payload_event is first printed as a single unit, then it is unpacked and each event
inside it is printed.

For operations that reference the end position of an event, such as START REPLICA (or
before MySQL 8.0.22, START SLAVE) with the UNTIL clause, SOURCE_POS_WAIT() or
MASTER_POS_WAIT(), and sql_replica_skip_counter or sql_slave_skip_counter,
you must specify the end position of the compressed transaction payload (the
Transaction_payload_event). When skipping events using sql_replica_skip_counter or
sql_slave_skip_counter, a compressed transaction payload is counted as a single counter value,
so all the events inside it are skipped as a unit.

Combining Compressed and Uncompressed Transaction Payloads

MySQL Server releases that support binary log transaction compression can handle a mix of
compressed and uncompressed transaction payloads.

• The system variables relating to binary log transaction compression do not need to be set the
same on all Group Replication group members, and are not replicated from sources to replicas
in a replication topology. You can decide whether or not binary log transaction compression is
appropriate for each MySQL Server instance that has a binary log.

• If transaction compression is enabled then disabled on a server, compression is not applied to future
transactions originated on that server, but transaction payloads that have been compressed can still
be handled and displayed.

• If transaction compression is specified for individual sessions by setting the session value of
binlog_transaction_compression, the binary log can contain a mix of compressed and
uncompressed transaction payloads.

When a source in a replication topology and its replica both have binary log transaction compression
enabled, the replica receives compressed transaction payloads and writes them compressed to its
relay log. It decompresses the transaction payloads to apply the transactions, and then compresses
them again after applying for writing to its binary log. Any downstream replicas receive the compressed
transaction payloads.

When a source in a replication topology has binary log transaction compression enabled but its replica
does not, the replica receives compressed transaction payloads and writes them compressed to its
relay log. It decompresses the transaction payloads to apply the transactions, and then writes them
uncompressed to its own binary log, if it has one. Any downstream replicas receive the uncompressed
transaction payloads.

When a source in a replication topology does not have binary log transaction compression enabled but
its replica does, if the replica has a binary log, it compresses the transaction payloads after applying
them, and writes the compressed transaction payloads to its binary log. Any downstream replicas
receive the compressed transaction payloads.

When a MySQL server instance has no binary log, if it is at a release from MySQL 8.0.20, it
can receive, handle, and display compressed transaction payloads regardless of its value for
binlog_transaction_compression. Compressed transaction payloads received by such
server instances are written in their compressed state to the relay log, so they benefit indirectly from
compression that was carried out by other servers in the replication topology.

A replica at a release before MySQL 8.0.20 cannot replicate from a source with binary log transaction
compression enabled. A replica at or above MySQL 8.0.20 can replicate from a source at an

1182

The Slow Query Log

earlier release that does not support binary log transaction compression, and can carry out its own
compression on transactions received from that source when writing them to its own binary log.

Monitoring Binary Log Transaction Compression

You can monitor the effects of binary log transaction compression using the Performance Schema
table binary_log_transaction_compression_stats. The statistics include the data
compression ratio for the monitored period, and you can also view the effect of compression on the last
transaction on the server. You can reset the statistics by truncating the table. Statistics for binary logs
and relay logs are split out so you can see the impact of compression for each log type. The MySQL
server instance must have a binary log to produce these statistics.

The Performance Schema table events_stages_current shows when a transaction is in the stage
of decompression or compression for its transaction payload, and displays its progress for this stage.
Compression is carried out by the worker thread handling the transaction, just before the transaction is
committed, provided that there are no events in the finalized capture cache that exclude the transaction
from binary log transaction compression (for example, incident events). When decompression is
required, it is carried out for one event from the payload at a time.

mysqlbinlog with the --verbose option includes comments stating the compressed size and the
uncompressed size for compressed transaction payloads, and the compression algorithm that was
used.

You can enable connection compression at the protocol level for replication connections,
using the SOURCE_COMPRESSION_ALGORITHMS | MASTER_COMPRESSION_ALGORITHMS
and SOURCE_ZSTD_COMPRESSION_LEVEL | MASTER_ZSTD_COMPRESSION_LEVELoptions
of the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE
MASTER TO statement (before MySQL 8.0.23), or the replica_compressed_protocol or
slave_compressed_protocol system variable. If you enable binary log transaction compression
in a system where connection compression is also enabled, the impact of connection compression
is reduced, as there might be little opportunity to further compress the compressed transaction
payloads. However, connection compression can still operate on uncompressed events and on
message headers. Binary log transaction compression can be enabled in combination with connection
compression if you need to save storage space as well as network bandwidth. For more information
on connection compression for replication connections, see Section 6.2.8, “Connection Compression
Control”.

For Group Replication, compression is enabled by default for messages that exceed the threshold
set by the group_replication_compression_threshold system variable. You can also
configure compression for messages sent for distributed recovery by the method of state transfer from
a donor's binary log, using the group_replication_recovery_compression_algorithms and
group_replication_recovery_zstd_compression_level system variables. If you enable
binary log transaction compression in a system where these are configured, Group Replication's
message compression can still operate on uncompressed events and on message headers, but
its impact is reduced. For more information on message compression for Group Replication, see
Section 20.7.4, “Message Compression”.

7.4.5 The Slow Query Log

The slow query log consists of SQL statements that take more than long_query_time seconds
to execute and require at least min_examined_row_limit rows to be examined. The slow query
log can be used to find queries that take a long time to execute and are therefore candidates for
optimization. However, examining a long slow query log can be a time-consuming task. To make this
easier, you can use the mysqldumpslow command to process a slow query log file and summarize its
contents. See Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”.

The time to acquire the initial locks is not counted as execution time. mysqld writes a statement to the
slow query log after it has been executed and after all locks have been released, so log order might
differ from execution order.

1183

The Slow Query Log

• Slow Query Log Parameters

• Slow Query Log Contents

Slow Query Log Parameters

The minimum and default values of long_query_time are 0 and 10, respectively. The value can be
specified to a resolution of microseconds.

By default, administrative statements are not logged, nor are queries that do not use indexes
for lookups. This behavior can be changed using log_slow_admin_statements and
log_queries_not_using_indexes, as described later.

By default, the slow query log is disabled. To specify the initial slow query log state explicitly, use
--slow_query_log[={0|1}]. With no argument or an argument of 1, --slow_query_log
enables the log. With an argument of 0, this option disables the log. To specify a log file name, use --
slow_query_log_file=file_name. To specify the log destination, use the log_output system
variable (as described in Section 7.4.1, “Selecting General Query Log and Slow Query Log Output
Destinations”).

Note

If you specify the TABLE log destination, see Log Tables and “Too many open
files” Errors.

If you specify no name for the slow query log file, the default name is host_name-slow.log. The
server creates the file in the data directory unless an absolute path name is given to specify a different
directory.

To disable or enable the slow query log or change the log file name at runtime, use the global
slow_query_log and slow_query_log_file system variables. Set slow_query_log to 0 to
disable the log or to 1 to enable it. Set slow_query_log_file to specify the name of the log file. If a
log file already is open, it is closed and the new file is opened.

The server writes less information to the slow query log if you use the --log-short-format option.

To include slow administrative statements in the slow query log, enable the
log_slow_admin_statements system variable. Administrative statements include ALTER TABLE,
ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX, OPTIMIZE TABLE, and REPAIR
TABLE.

To include queries that do not use indexes for row lookups in the statements written to the slow query
log, enable the log_queries_not_using_indexes system variable. (Even with that variable
enabled, the server does not log queries that would not benefit from the presence of an index due to
the table having fewer than two rows.)

When queries that do not use an index are logged, the slow query log may grow quickly. It is possible
to put a rate limit on these queries by setting the log_throttle_queries_not_using_indexes
system variable. By default, this variable is 0, which means there is no limit. Positive values impose a
per-minute limit on logging of queries that do not use indexes. The first such query opens a 60-second
window within which the server logs queries up to the given limit, then suppresses additional queries.
If there are suppressed queries when the window ends, the server logs a summary that indicates how
many there were and the aggregate time spent in them. The next 60-second window begins when the
server logs the next query that does not use indexes.

The server uses the controlling parameters in the following order to determine whether to write a query
to the slow query log:

1. The query must either not be an administrative statement, or log_slow_admin_statements
must be enabled.

1184

The Slow Query Log

2. The query must have taken at least long_query_time seconds, or
log_queries_not_using_indexes must be enabled and the query used no indexes for row
lookups.

3. The query must have examined at least min_examined_row_limit rows.

4. The query must not be suppressed according to the
log_throttle_queries_not_using_indexes setting.

The log_timestamps system variable controls the time zone of timestamps in messages written to
the slow query log file (as well as to the general query log file and the error log). It does not affect the
time zone of general query log and slow query log messages written to log tables, but rows retrieved
from those tables can be converted from the local system time zone to any desired time zone with
CONVERT_TZ() or by setting the session time_zone system variable.

By default, a replica does not write replicated queries to the slow query log. To change this,
enable the system variable log_slow_replica_statements (from MySQL 8.0.26) or
log_slow_slave_statements (before MySQL 8.0.26). Note that if row-based replication is in
use (binlog_format=ROW), these system variables have no effect. Queries are only added to the
replica's slow query log when they are logged in statement format in the binary log, that is, when
binlog_format=STATEMENT is set, or when binlog_format=MIXED is set and the statement is
logged in statement format. Slow queries that are logged in row format when binlog_format=MIXED
is set, or that are logged when binlog_format=ROW is set, are not added to the replica's slow query
log, even if log_slow_replica_statements or log_slow_slave_statements is enabled.

Slow Query Log Contents

When the slow query log is enabled, the server writes output to any destinations specified by the
log_output system variable. If you enable the log, the server opens the log file and writes startup
messages to it. However, further logging of queries to the file does not occur unless the FILE log
destination is selected. If the destination is NONE, the server writes no queries even if the slow query
log is enabled. Setting the log file name has no effect on logging if FILE is not selected as an output
destination.

If the slow query log is enabled and FILE is selected as an output destination, each statement written
to the log is preceded by a line that begins with a # character and has these fields (with all fields on a
single line):

• Query_time: duration

The statement execution time in seconds.

• Lock_time: duration

The time to acquire locks in seconds.

• Rows_sent: N

The number of rows sent to the client.

• Rows_examined:

The number of rows examined by the server layer (not counting any processing internal to storage
engines).

Enabling the log_slow_extra system variable (available as of MySQL 8.0.14) causes the server
to write the following extra fields to FILE output in addition to those just listed (TABLE output is
unaffected). Some field descriptions refer to status variable names. Consult the status variable
descriptions for more information. However, in the slow query log, the counters are per-statement
values, not cumulative per-session values.

1185

The Slow Query Log

• Thread_id: ID

The statement thread identifier.

• Errno: error_number

The statement error number, or 0 if no error occurred.

• Killed: N

If the statement was terminated, the error number indicating why, or 0 if the statement terminated
normally.

• Bytes_received: N

The Bytes_received value for the statement.

• Bytes_sent: N

The Bytes_sent value for the statement.

• Read_first: N

The Handler_read_first value for the statement.

• Read_last: N

The Handler_read_last value for the statement.

• Read_key: N

The Handler_read_key value for the statement.

• Read_next: N

The Handler_read_next value for the statement.

• Read_prev: N

The Handler_read_prev value for the statement.

• Read_rnd: N

The Handler_read_rnd value for the statement.

• Read_rnd_next: N

The Handler_read_rnd_next value for the statement.

• Sort_merge_passes: N

The Sort_merge_passes value for the statement.

• Sort_range_count: N

The Sort_range value for the statement.

• Sort_rows: N

The Sort_rows value for the statement.

• Sort_scan_count: N

The Sort_scan value for the statement.

1186

Server Log Maintenance

• Created_tmp_disk_tables: N

The Created_tmp_disk_tables value for the statement.

• Created_tmp_tables: N

The Created_tmp_tables value for the statement.

• Start: timestamp

The statement execution start time.

• End: timestamp

The statement execution end time.

A given slow query log file may contain a mix of lines with and without the extra fields added by
enabling log_slow_extra. Log file analyzers can determine whether a line contains the additional
fields by the field count.

Each statement written to the slow query log file is preceded by a SET statement that includes a
timestamp. As of MySQL 8.0.14, the timestamp indicates when the slow statement began executing.
Prior to 8.0.14, the timestamp indicates when the slow statement was logged (which occurs after the
statement finishes executing).

Passwords in statements written to the slow query log are rewritten by the server not to occur literally in
plain text. See Section 8.1.2.3, “Passwords and Logging”.

From MySQL 8.0.29, statements that cannot be parsed (due, for example, to syntax errors) are not
written to the slow query log.

7.4.6 Server Log Maintenance

As described in Section 7.4, “MySQL Server Logs”, MySQL Server can create several different log files
to help you see what activity is taking place. However, you must clean up these files regularly to ensure
that the logs do not take up too much disk space.

When using MySQL with logging enabled, you may want to back up and remove old log files from time
to time and tell MySQL to start logging to new files. See Section 9.2, “Database Backup Methods”.

On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for log maintenance. If
you installed MySQL from an RPM distribution, this script should have been installed automatically. Be
careful with this script if you are using the binary log for replication. You should not remove binary logs
until you are certain that their contents have been processed by all replicas.

On other systems, you must install a short script yourself that you start from cron (or its equivalent) for
handling log files.

Binary log files are automatically removed after the server's binary log expiration period.
Removal of the files can take place at startup and when the binary log is flushed. The default
binary log expiration period is 30 days. To specify an alternative expiration period, use the
binlog_expire_logs_seconds system variable. If you are using replication, you should specify
an expiration period that is no lower than the maximum amount of time your replicas might lag behind
the source. To remove binary logs on demand, use the PURGE BINARY LOGS statement (see
Section 15.4.1.1, “PURGE BINARY LOGS Statement”).

To force MySQL to start using new log files, flush the logs. Log flushing occurs when you execute a
FLUSH LOGS statement or a mysqladmin flush-logs, mysqladmin refresh, mysqldump --
flush-logs, or mysqldump --master-data command. See Section 15.7.8.3, “FLUSH Statement”,
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”, and Section 6.5.4,

1187

Server Log Maintenance

“mysqldump — A Database Backup Program”. In addition, the server flushes the binary log
automatically when current binary log file size reaches the value of the max_binlog_size system
variable.

FLUSH LOGS supports optional modifiers to enable selective flushing of individual logs (for example,
FLUSH BINARY LOGS). See Section 15.7.8.3, “FLUSH Statement”.

A log-flushing operation has the following effects:

• If binary logging is enabled, the server closes the current binary log file and opens a new log file with
the next sequence number.

• If general query logging or slow query logging to a log file is enabled, the server closes and reopens
the log file.

• If the server was started with the --log-error option to cause the error log to be written to a file,
the server closes and reopens the log file.

Execution of log-flushing statements or commands requires connecting to the server using an account
that has the RELOAD privilege. On Unix and Unix-like systems, another way to flush the logs is to send
a signal to the server, which can be done by root or the account that owns the server process. (See
Section 6.10, “Unix Signal Handling in MySQL”.) Signals enable log flushing to be performed without
having to connect to the server:

• A SIGHUP signal flushes all the logs. However, SIGHUP has additional effects other than log flushing
that might be undesirable.

• As of MySQL 8.0.19, SIGUSR1 causes the server to flush the error log, general query log, and
slow query log. If you are interested in flushing only those logs, SIGUSR1 can be used as a more
“lightweight” signal that does not have the SIGHUP effects that are unrelated to logs.

As mentioned previously, flushing the binary log creates a new binary log file, whereas flushing the
general query log, slow query log, or error log just closes and reopens the log file. For the latter logs,
to cause a new log file to be created on Unix, rename the current log file first before flushing it. At flush
time, the server opens the new log file with the original name. For example, if the general query log,
slow query log, and error log files are named mysql.log, mysql-slow.log, and err.log, you can
use a series of commands like this from the command line:

cd mysql-data-directory
mv mysql.log mysql.log.old
mv mysql-slow.log mysql-slow.log.old
mv err.log err.log.old
mysqladmin flush-logs

On Windows, use rename rather than mv.

At this point, you can make a backup of mysql.log.old, mysql-slow.log.old, and
err.log.old, then remove them from disk.

To rename the general query log or slow query log at runtime, first connect to the server and disable
the log:

SET GLOBAL general_log = 'OFF';
SET GLOBAL slow_query_log = 'OFF';

With the logs disabled, rename the log files externally (for example, from the command line). Then
enable the logs again:

SET GLOBAL general_log = 'ON';
SET GLOBAL slow_query_log = 'ON';

This method works on any platform and does not require a server restart.

1188

MySQL Components

Note

For the server to recreate a given log file after you have renamed the file
externally, the file location must be writable by the server. This may not always
be the case. For example, on Linux, the server might write the error log as /
var/log/mysqld.log, where /var/log is owned by root and not writable
by mysqld. In this case, log-flushing operations fail to create a new log file.

To handle this situation, you must manually create the new log file with the
proper ownership after renaming the original log file. For example, execute
these commands as root:

mv /var/log/mysqld.log /var/log/mysqld.log.old
install -omysql -gmysql -m0644 /dev/null /var/log/mysqld.log

7.5 MySQL Components

MySQL Server includes a component-based infrastructure for extending server capabilities. A
component provides services that are available to the server and other components. (With respect to
service use, the server is a component, equal to other components.) Components interact with each
other only through the services they provide.

MySQL distributions include several components that implement server extensions:

• Components for configuring error logging. See Section 7.4.2, “The Error Log”, and Section 7.5.3,
“Error Log Components”.

• A component for checking passwords. See Section 8.4.3, “The Password Validation Component”.

• Keyring components provide secure storage for sensitive information. See Section 8.4.4, “The
MySQL Keyring”.

• A component that enables applications to add their own message events to the audit log. See
Section 8.4.6, “The Audit Message Component”.

• A component that implements a loadable function for accessing query attributes. See Section 11.6,
“Query Attributes”.

• A component for scheduling actively executing tasks. See Section 7.5.5, “Scheduler Component”.

System and status variables implemented by a component are exposed when the component
is installed and have names that begin with a component-specific prefix. For example, the
log_filter_dragnet error log filter component implements a system variable named
log_error_filter_rules, the full name of which is dragnet.log_error_filter_rules. To
refer to this variable, use the full name.

The following sections describe how to install and uninstall components, and how to determine at
runtime which components are installed and obtain information about them.

For information about the internal implementation of components, see the MySQL Server Doxygen
documentation, available at https://dev.mysql.com/doc/index-other.html. For example, if you intend to
write your own components, this information is important for understanding how components work.

7.5.1 Installing and Uninstalling Components

Components must be loaded into the server before they can be used. MySQL supports manual
component loading at runtime and automatic loading during server startup.

While a component is loaded, information about it is available as described in Section 7.5.2, “Obtaining
Component Information”.

1189

https://dev.mysql.com/doc/index-other.html

Obtaining Component Information

The INSTALL COMPONENT and UNINSTALL COMPONENT SQL statements enable component loading
and unloading. For example:

INSTALL COMPONENT 'file://component_validate_password';
UNINSTALL COMPONENT 'file://component_validate_password';

A loader service handles component loading and unloading, and also registers loaded components in
the mysql.component system table.

The SQL statements for component manipulation affect server operation and the mysql.component
system table as follows:

• INSTALL COMPONENT loads components into the server. The components become active
immediately. The loader service also registers loaded components in the mysql.component
system table. For subsequent server restarts, the loader service loads any components listed in
mysql.component during the startup sequence. This occurs even if the server is started with
the --skip-grant-tables option. The optional SET clause permits setting component system-
variable values when you install components.

• UNINSTALL COMPONENT deactivates components and unloads them from the server. The loader
service also unregisters the components from the mysql.component system table so that the
server no longer loads them during its startup sequence for subsequent restarts.

Compared to the corresponding INSTALL PLUGIN statement for server plugins, the INSTALL
COMPONENT statement for components offers the significant advantage that it is not necessary to know
any platform-specific file name suffix for naming the component. This means that a given INSTALL
COMPONENT statement can be executed uniformly across platforms.

A component when installed may also automatically install related loadable functions. If so, the
component when uninstalled also automatically uninstalls those functions.

7.5.2 Obtaining Component Information

The mysql.component system table contains information about currently loaded components and
shows which components have been registered using INSTALL COMPONENT. Selecting from the table
shows which components are installed. For example:

mysql> SELECT * FROM mysql.component;
+--------------+--------------------+------------------------------------+
| component_id | component_group_id | component_urn |
+--------------+--------------------+------------------------------------+
| 1 | 1 | file://component_validate_password |
| 2 | 2 | file://component_log_sink_json |
+--------------+--------------------+------------------------------------+

The component_id and component_group_id values are for internal use. The component_urn is
the URN used in INSTALL COMPONENT and UNINSTALL COMPONENT statements to load and unload
the component.

7.5.3 Error Log Components

This section describes the characteristics of individual error log components. For general information
about configuring error logging, see Section 7.4.2, “The Error Log”.

A log component can be a filter or a sink:

• A filter processes log events, to add, remove, or modify event fields, or to delete events entirely. The
resulting events pass to the next log component in the list of enabled components.

• A sink is a destination (writer) for log events. Typically, a sink processes log events into log
messages that have a particular format and writes these messages to its associated output, such as
a file or the system log. A sink may also write to the Performance Schema error_log table; see

1190

Error Log Components

Section 29.12.21.2, “The error_log Table”. Events pass unmodified to the next log component in the
list of enabled components (that is, although a sink formats events to produce output messages, it
does not modify events as they pass internally to the next component).

The log_error_services system variable value lists the enabled log components. Components not
named in the list are disabled. From MySQL 8.0.30, log_error_services also implicitly loads error
log components if they are not already loaded. For more information, see Section 7.4.2.1, “Error Log
Configuration”.

The following sections describe individual log components, grouped by component type:

• Filter Error Log Components

• Sink Error Log Components

Component descriptions include these types of information:

• The component name and intended purpose.

• Whether the component is built in or must be loaded. For a loadable component, the description
specifies the URN to use if explicitly loading or unloading the component with the INSTALL
COMPONENT and UNINSTALL COMPONENT statements. Implicitly loading error log components
requires only the component name. For more information, see Section 7.4.2.1, “Error Log
Configuration”.

• Whether the component can be listed multiple times in the log_error_services value.

• For a sink component, the destination to which the component writes output.

• For a sink component, whether it supports an interface to the Performance Schema error_log
table.

Filter Error Log Components

Error log filter components implement filtering of error log events. If no filter component is enabled, no
filtering occurs.

Any enabled filter component affects log events only for components listed later in
the log_error_services value. In particular, for any log sink component listed in
log_error_services earlier than any filter component, no log event filtering occurs.

The log_filter_internal Component

• Purpose: Implements filtering based on log event priority and error code, in combination with
the log_error_verbosity and log_error_suppression_list system variables. See
Section 7.4.2.5, “Priority-Based Error Log Filtering (log_filter_internal)”.

• URN: This component is built in and need not be loaded.

• Multiple uses permitted: No.

If log_filter_internal is disabled, log_error_verbosity and
log_error_suppression_list have no effect.

The log_filter_dragnet Component

• Purpose: Implements filtering based on the rules defined by the
dragnet.log_error_filter_rules system variable setting. See Section 7.4.2.6, “Rule-Based
Error Log Filtering (log_filter_dragnet)”.

• URN: file://component_log_filter_dragnet

1191

Error Log Components

• Multiple uses permitted: No.

Sink Error Log Components

Error log sink components are writers that implement error log output. If no sink component is enabled,
no log output occurs.

Some sink component descriptions refer to the default error log destination. This is the console or
a file and is indicated by the value of the log_error system variable, determined as described in
Section 7.4.2.2, “Default Error Log Destination Configuration”.

The log_sink_internal Component

• Purpose: Implements traditional error log message output format.

• URN: This component is built in and need not be loaded.

• Multiple uses permitted: No.

• Output destination: Writes to the default error log destination.

• Performance Schema support: Writes to the error_log table. Provides a parser for reading error
log files created by previous server instances.

The log_sink_json Component

• Purpose: Implements JSON-format error logging. See Section 7.4.2.7, “Error Logging in JSON
Format”.

• URN: file://component_log_sink_json

• Multiple uses permitted: Yes.

• Output destination: This sink determines its output destination based on the default error log
destination, which is given by the log_error system variable:

• If log_error names a file, the sink bases output file naming on that file name, plus a
numbered .NN.json suffix, with NN starting at 00. For example, if log_error is file_name,
successive instances of log_sink_json named in the log_error_services value write to
file_name.00.json, file_name.01.json, and so forth.

• If log_error is stderr, the sink writes to the console. If log_sink_json is named multiple
times in the log_error_services value, they all write to the console, which is likely not useful.

• Performance Schema support: Writes to the error_log table. Provides a parser for reading error
log files created by previous server instances.

The log_sink_syseventlog Component

• Purpose: Implements error logging to the system log. This is the Event Log on Windows, and
syslog on Unix and Unix-like systems. See Section 7.4.2.8, “Error Logging to the System Log”.

• URN: file://component_log_sink_syseventlog

• Multiple uses permitted: No.

• Output destination: Writes to the system log. Does not use the default error log destination.

• Performance Schema support: Does not write to the error_log table. Does not provide a parser for
reading error log files created by previous server instances.

The log_sink_test Component

1192

Query Attribute Components

• Purpose: Intended for internal use in writing test cases, not for production use.

• URN: file://component_log_sink_test

Sink properties such as whether multiple uses are permitted and the output destination are not
specified for log_sink_test because, as mentioned, it is for internal use. As such, its behavior is
subject to change at any time.

7.5.4 Query Attribute Components

As of MySQL 8.0.23, a component service provides access to query attributes (see Section 11.6,
“Query Attributes”). The query_attributes component uses this service to provide access to query
attributes within SQL statements.

• Purpose: Implements the mysql_query_attribute_string() function that takes an attribute
name argument and returns the attribute value as a string, or NULL if the attribute does not exist.

• URN: file://component_query_attributes

Developers who wish to incorporate the same query-attribute component service used by
query_attributes should consult the mysql_query_attributes.h file in a MySQL source
distribution.

7.5.5 Scheduler Component

Note

The scheduler component is included in MySQL Enterprise Edition, a
commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

As of MySQL 8.0.34, the scheduler component provides an implementation of the
mysql_scheduler service that enables applications, components, or plugins to configure, run, and
unconfigure tasks every N seconds. For example, the audit_log server plugin calls the scheduler
component at its initialization and configures a regular, recurring flush of its memory cache (see
Enabling the Audit Log Flush Task).

• Purpose: Implements the component_scheduler.enabled system variable that controls whether
the scheduler is actively executing tasks. At startup, the scheduler component registers the
performance_schema.component_scheduler_tasks table, which lists the currently scheduled
tasks and some runtime data about each one.

• URN: file://component_scheduler

For installation instructions, see Section 7.5.1, “Installing and Uninstalling Components”.

The scheduler component implements the service using these elements:

• A priority queue of the registered, inactive scheduled tasks sorted by the next time to run (in
ascending order).

• A list of the registered, active tasks.

• A background thread that:

• Sleeps if there are no tasks or if the top task needs more time to run. It wakes periodically to check
whether it is time to end.

• Compiles a list of the tasks that need to run, moves them from the inactive queue, adds them to
the active queue, and executes each task individually.

1193

https://www.mysql.com/products/
https://www.mysql.com/products/

MySQL Server Plugins

• After executing the task list, removes the tasks from the active list, adds them to the inactive list,
and calculates the next time they need to run.

When a caller invokes the mysql_scheduler.create() service, it creates a new scheduled task
instance to add to the queue, which signals the semaphore of the background thread. A handle to the
new task is returned to the caller. The calling code should keep this handle and the service reference
to the scheduling service until after calling the mysql_scheduler.destroy() service. When the
caller invokes destroy() and passes in the handle it received from create(), the service waits for
the task to become inactive (if running) and then removes it from the inactive queue.

The component service calls each application-provided callback (function pointer) into the same
scheduler thread, one at a time and in ascending order, based on the time each requires to run.

Developers who wish to incorporate scheduler-queueing capabilities into an application, component, or
plugin should consult the mysql_scheduler.h file in a MySQL source distribution.

7.6 MySQL Server Plugins
MySQL supports an plugin API that enables creation of server plugins. Plugins can be loaded at server
startup, or loaded and unloaded at runtime without restarting the server. The plugins supported by
this interface include, but are not limited to, storage engines, INFORMATION_SCHEMA tables, full-text
parser plugins, and server extensions.

MySQL distributions include several plugins that implement server extensions:

• Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available for
several authentication protocols. See Section 8.2.17, “Pluggable Authentication”.

• A connection control plugin that enables administrators to introduce an increasing delay after a
certain number of consecutive failed client connection attempts. See Section 8.4.2, “Connection
Control Plugins”.

• A password-validation plugin implements password strength policies and assesses the strength of
potential passwords. See Section 8.4.3, “The Password Validation Component”.

• Semisynchronous replication plugins implement an interface to replication capabilities that permit
the source to proceed as long as at least one replica has responded to each transaction. See
Section 19.4.10, “Semisynchronous Replication”.

• Group Replication enables you to create a highly available distributed MySQL service across a
group of MySQL server instances, with data consistency, conflict detection and resolution, and group
membership services all built-in. See Chapter 20, Group Replication.

• MySQL Enterprise Edition includes a thread pool plugin that manages connection threads to
increase server performance by efficiently managing statement execution threads for large numbers
of client connections. See Section 7.6.3, “MySQL Enterprise Thread Pool”.

• MySQL Enterprise Edition includes an audit plugin for monitoring and logging of connection and
query activity. See Section 8.4.5, “MySQL Enterprise Audit”.

• MySQL Enterprise Edition includes a firewall plugin that implements an application-level firewall
to enable database administrators to permit or deny SQL statement execution based on matching
against allowlists of accepted statement patterns. See Section 8.4.7, “MySQL Enterprise Firewall”.

• Query rewrite plugins examine statements received by MySQL Server and possibly rewrite them
before the server executes them. See Section 7.6.4, “The Rewriter Query Rewrite Plugin”, and
Section 7.6.5, “The ddl_rewriter Plugin”.

• Version Tokens enables creation of and synchronization around server tokens that applications can
use to prevent accessing incorrect or out-of-date data. Version Tokens is based on a plugin library

1194

Installing and Uninstalling Plugins

that implements a version_tokens plugin and a set of loadable functions. See Section 7.6.6,
“Version Tokens”.

• Keyring plugins provide secure storage for sensitive information. See Section 8.4.4, “The MySQL
Keyring”.

In MySQL 8.0.24, MySQL Keyring began transitioning from plugins to use the component
infrastructure, facilitated using the plugin named daemon_keyring_proxy_plugin that acts as
a bridge between the plugin and component service APIs. See Section 7.6.8, “The Keyring Proxy
Bridge Plugin”.

• X Plugin extends MySQL Server to be able to function as a document store. Running X Plugin
enables MySQL Server to communicate with clients using the X Protocol, which is designed to
expose the ACID compliant storage abilities of MySQL as a document store. See Section 22.5, “X
Plugin”.

• Clone permits cloning InnoDB data from a local or remote MySQL server instance. See
Section 7.6.7, “The Clone Plugin”.

• Test framework plugins test server services. For information about these plugins, see the Plugins for
Testing Plugin Services section of the MySQL Server Doxygen documentation, available at https://
dev.mysql.com/doc/index-other.html.

The following sections describe how to install and uninstall plugins, and how to determine at runtime
which plugins are installed and obtain information about them. For information about writing plugins,
see The MySQL Plugin API.

7.6.1 Installing and Uninstalling Plugins

Server plugins must be loaded into the server before they can be used. MySQL supports plugin loading
at server startup and runtime. It is also possible to control the activation state of loaded plugins at
startup, and to unload them at runtime.

While a plugin is loaded, information about it is available as described in Section 7.6.2, “Obtaining
Server Plugin Information”.

• Installing Plugins

• Controlling Plugin Activation State

• Uninstalling Plugins

• Plugins and Loadable Functions

Installing Plugins

Before a server plugin can be used, it must be installed using one of the following methods.
In the descriptions, plugin_name stands for a plugin name such as innodb, csv, or
validate_password.

• Built-in Plugins

• Plugins Registered in the mysql.plugin System Table

• Plugins Named with Command-Line Options

• Plugins Installed with the INSTALL PLUGIN Statement

Built-in Plugins

A built-in plugin is known by the server automatically. By default, the server enables
the plugin at startup. Some built-in plugins permit this to be changed with the
--plugin_name[=activation_state] option.

1195

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-api.html

Installing and Uninstalling Plugins

Plugins Registered in the mysql.plugin System Table

The mysql.plugin system table serves as a registry of plugins (other than built-in plugins, which
need not be registered). During the normal startup sequence, the server loads plugins registered in the
table. By default, for a plugin loaded from the mysql.plugin table, the server also enables the plugin.
This can be changed with the --plugin_name[=activation_state] option.

If the server is started with the --skip-grant-tables option, plugins registered in the
mysql.plugin table are not loaded and are unavailable.

Plugins Named with Command-Line Options

A plugin located in a plugin library file can be loaded at server startup with the --plugin-
load, --plugin-load-add, or --early-plugin-load option. Normally, for a plugin
loaded at startup, the server also enables the plugin. This can be changed with the
--plugin_name[=activation_state] option.

The --plugin-load and --plugin-load-add options load plugins after built-in plugins and
storage engines have initialized during the server startup sequence. The --early-plugin-load
option is used to load plugins that must be available prior to initialization of built-in plugins and storage
engines.

The value of each plugin-loading option is a semicolon-separated list of plugin_library and
name=plugin_library values. Each plugin_library is the name of a library file that contains
plugin code, and each name is the name of a plugin to load. If a plugin library is named without any
preceding plugin name, the server loads all plugins in the library. With a preceding plugin name, the
server loads only the named plugin from the library. The server looks for plugin library files in the
directory named by the plugin_dir system variable.

Plugin-loading options do not register any plugin in the mysql.plugin table. For subsequent restarts,
the server loads the plugin again only if --plugin-load, --plugin-load-add, or --early-
plugin-load is given again. That is, the option produces a one-time plugin-installation operation that
persists for a single server invocation.

--plugin-load, --plugin-load-add, and --early-plugin-load enable plugins to be loaded
even when --skip-grant-tables is given (which causes the server to ignore the mysql.plugin
table). --plugin-load, --plugin-load-add, and --early-plugin-load also enable plugins to
be loaded at startup that cannot be loaded at runtime.

The --plugin-load-add option complements the --plugin-load option:

• Each instance of --plugin-load resets the set of plugins to load at startup, whereas --plugin-
load-add adds a plugin or plugins to the set of plugins to be loaded without resetting the current
set. Consequently, if multiple instances of --plugin-load are specified, only the last one applies.
With multiple instances of --plugin-load-add, all of them apply.

• The argument format is the same as for --plugin-load, but multiple instances of --plugin-
load-add can be used to avoid specifying a large set of plugins as a single long unwieldy --
plugin-load argument.

• --plugin-load-add can be given in the absence of --plugin-load, but any instance of --
plugin-load-add that appears before --plugin-load has no effect because --plugin-load
resets the set of plugins to load.

For example, these options:

--plugin-load=x --plugin-load-add=y

are equivalent to these options:

--plugin-load-add=x --plugin-load-add=y

1196

Installing and Uninstalling Plugins

and are also equivalent to this option:

--plugin-load="x;y"

But these options:

--plugin-load-add=y --plugin-load=x

are equivalent to this option:

--plugin-load=x

Plugins Installed with the INSTALL PLUGIN Statement

A plugin located in a plugin library file can be loaded at runtime with the INSTALL PLUGIN statement.
The statement also registers the plugin in the mysql.plugin table to cause the server to load it
on subsequent restarts. For this reason, INSTALL PLUGIN requires the INSERT privilege for the
mysql.plugin table.

The plugin library file base name depends on your platform. Common suffixes are .so for Unix and
Unix-like systems, .dll for Windows.

Example: The --plugin-load-add option installs a plugin at server startup. To install a plugin
named myplugin from a plugin library file named somepluglib.so, use these lines in a my.cnf file:

[mysqld]
plugin-load-add=myplugin=somepluglib.so

In this case, the plugin is not registered in mysql.plugin. Restarting the server without the --
plugin-load-add option causes the plugin not to be loaded at startup.

Alternatively, the INSTALL PLUGIN statement causes the server to load the plugin code from the
library file at runtime:

INSTALL PLUGIN myplugin SONAME 'somepluglib.so';

INSTALL PLUGIN also causes “permanent” plugin registration: The plugin is listed in the
mysql.plugin table to ensure that the server loads it on subsequent restarts.

Many plugins can be loaded either at server startup or at runtime. However, if a plugin is designed such
that it must be loaded and initialized during server startup, attempts to load it at runtime using INSTALL
PLUGIN produce an error:

mysql> INSTALL PLUGIN myplugin SONAME 'somepluglib.so';
ERROR 1721 (HY000): Plugin 'myplugin' is marked as not dynamically
installable. You have to stop the server to install it.

In this case, you must use --plugin-load, --plugin-load-add, or --early-plugin-load.

If a plugin is named both using a --plugin-load, --plugin-load-add, or --early-plugin-
load option and (as a result of an earlier INSTALL PLUGIN statement) in the mysql.plugin table,
the server starts but writes these messages to the error log:

[ERROR] Function 'plugin_name' already exists
[Warning] Couldn't load plugin named 'plugin_name'
with soname 'plugin_object_file'.

Controlling Plugin Activation State

If the server knows about a plugin when it starts (for example, because the plugin is named using
a --plugin-load-add option or is registered in the mysql.plugin table), the server loads
and enables the plugin by default. It is possible to control activation state for such a plugin using a
--plugin_name[=activation_state] startup option, where plugin_name is the name of the
plugin to affect, such as innodb, csv, or validate_password. As with other options, dashes and

1197

Installing and Uninstalling Plugins

underscores are interchangeable in option names. Also, activation state values are not case-sensitive.
For example, --my_plugin=ON and --my-plugin=on are equivalent.

• --plugin_name=OFF

Tells the server to disable the plugin. This may not be possible for certain built-in plugins, such as
mysql_native_password.

• --plugin_name[=ON]

Tells the server to enable the plugin. (Specifying the option as --plugin_name without a value has
the same effect.) If the plugin fails to initialize, the server runs with the plugin disabled.

• --plugin_name=FORCE

Tells the server to enable the plugin, but if plugin initialization fails, the server does not start. In other
words, this option forces the server to run with the plugin enabled or not at all.

• --plugin_name=FORCE_PLUS_PERMANENT

Like FORCE, but in addition prevents the plugin from being unloaded at runtime. If a user attempts to
do so with UNINSTALL PLUGIN, an error occurs.

Plugin activation states are visible in the LOAD_OPTION column of the Information Schema PLUGINS
table.

Suppose that CSV, BLACKHOLE, and ARCHIVE are built-in pluggable storage engines and that you
want the server to load them at startup, subject to these conditions: The server is permitted to run
if CSV initialization fails, must require that BLACKHOLE initialization succeeds, and should disable
ARCHIVE. To accomplish that, use these lines in an option file:

[mysqld]
csv=ON
blackhole=FORCE
archive=OFF

The --enable-plugin_name option format is a synonym for --plugin_name=ON. The
--disable-plugin_name and --skip-plugin_name option formats are synonyms for
--plugin_name=OFF.

If a plugin is disabled, either explicitly with OFF or implicitly because it was enabled with ON but fails to
initialize, aspects of server operation requiring the plugin change. For example, if the plugin implements
a storage engine, existing tables for the storage engine become inaccessible, and attempts to create
new tables for the storage engine result in tables that use the default storage engine unless the
NO_ENGINE_SUBSTITUTION SQL mode is enabled to cause an error to occur instead.

Disabling a plugin may require adjustment to other options. For example, if you start the server using
--skip-innodb to disable InnoDB, other innodb_xxx options likely also need to be omitted
at startup. In addition, because InnoDB is the default storage engine, it cannot start unless you
specify another available storage engine with --default_storage_engine. You must also set --
default_tmp_storage_engine.

Uninstalling Plugins

At runtime, the UNINSTALL PLUGIN statement disables and uninstalls a plugin known to the server.
The statement unloads the plugin and removes it from the mysql.plugin system table, if it is
registered there. For this reason, UNINSTALL PLUGIN statement requires the DELETE privilege for the
mysql.plugin table. With the plugin no longer registered in the table, the server does not load the
plugin during subsequent restarts.

UNINSTALL PLUGIN can unload a plugin regardless of whether it was loaded at runtime with
INSTALL PLUGIN or at startup with a plugin-loading option, subject to these conditions:

1198

Obtaining Server Plugin Information

• It cannot unload plugins that are built in to the server. These can be identified as those that have a
library name of NULL in the output from the Information Schema PLUGINS table or SHOW PLUGINS.

• It cannot unload plugins for which the server was started with
--plugin_name=FORCE_PLUS_PERMANENT, which prevents plugin unloading at runtime. These
can be identified from the LOAD_OPTION column of the PLUGINS table.

To uninstall a plugin that currently is loaded at server startup with a plugin-loading option, use this
procedure.

1. Remove from the my.cnf file any options and system variables related to the plugin. If any
plugin system variables were persisted to the mysqld-auto.cnf file, remove them using RESET
PERSIST var_name for each one to remove it.

2. Restart the server.

3. Plugins normally are installed using either a plugin-loading option at startup or with INSTALL
PLUGIN at runtime, but not both. However, removing options for a plugin from the my.cnf file may
not be sufficient to uninstall it if at some point INSTALL PLUGIN has also been used. If the plugin
still appears in the output from PLUGINS or SHOW PLUGINS, use UNINSTALL PLUGIN to remove it
from the mysql.plugin table. Then restart the server again.

Plugins and Loadable Functions

A plugin when installed may also automatically install related loadable functions. If so, the plugin when
uninstalled also automatically uninstalls those functions.

7.6.2 Obtaining Server Plugin Information

There are several ways to determine which plugins are installed in the server:

• The Information Schema PLUGINS table contains a row for each loaded plugin. Any that have a
PLUGIN_LIBRARY value of NULL are built in and cannot be unloaded.

mysql> SELECT * FROM INFORMATION_SCHEMA.PLUGINS\G
*************************** 1. row ***************************
 PLUGIN_NAME: binlog
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50158.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: This is a pseudo storage engine to represent the binlog in a transaction
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: FORCE
...
*************************** 10. row ***************************
 PLUGIN_NAME: InnoDB
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 50158.0
 PLUGIN_LIBRARY: ha_innodb_plugin.so
PLUGIN_LIBRARY_VERSION: 1.0
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: Supports transactions, row-level locking,
 and foreign keys
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
...

• The SHOW PLUGINS statement displays a row for each loaded plugin. Any that have a Library
value of NULL are built in and cannot be unloaded.

1199

MySQL Enterprise Thread Pool

mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
 Name: binlog
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
...
*************************** 10. row ***************************
 Name: InnoDB
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: ha_innodb_plugin.so
License: GPL
...

• The mysql.plugin table shows which plugins have been registered with INSTALL PLUGIN. The
table contains only plugin names and library file names, so it does not provide as much information
as the PLUGINS table or the SHOW PLUGINS statement.

7.6.3 MySQL Enterprise Thread Pool

Note

MySQL Enterprise Thread Pool is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products,
https://www.mysql.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Thread Pool, implemented using a server
plugin. The default thread-handling model in MySQL Server executes statements using one thread per
client connection. As more clients connect to the server and execute statements, overall performance
degrades. The thread pool plugin provides an alternative thread-handling model designed to reduce
overhead and improve performance. The plugin implements a thread pool that increases server
performance by efficiently managing statement execution threads for large numbers of client
connections.

The thread pool addresses several problems of the model that uses one thread per connection:

• Too many thread stacks make CPU caches almost useless in highly parallel execution workloads.
The thread pool promotes thread stack reuse to minimize the CPU cache footprint.

• With too many threads executing in parallel, context switching overhead is high. This also presents a
challenge to the operating system scheduler. The thread pool controls the number of active threads
to keep the parallelism within the MySQL server at a level that it can handle and that is appropriate
for the server host on which MySQL is executing.

• Too many transactions executing in parallel increases resource contention. In InnoDB, this
increases the time spent holding central mutexes. The thread pool controls when transactions start to
ensure that not too many execute in parallel.

Additional Resources

Section A.15, “MySQL 8.0 FAQ: MySQL Enterprise Thread Pool”

7.6.3.1 Thread Pool Elements

MySQL Enterprise Thread Pool comprises these elements:

• A plugin library file implements a plugin for the thread pool code as well as several associated
monitoring tables that provide information about thread pool operation:

• As of MySQL 8.0.14, the monitoring tables are Performance Schema tables; see Section 29.12.16,
“Performance Schema Thread Pool Tables”.

1200

https://www.mysql.com/products/

MySQL Enterprise Thread Pool

• Prior to MySQL 8.0.14, the monitoring tables are INFORMATION_SCHEMA tables; see
Section 28.5, “INFORMATION_SCHEMA Thread Pool Tables”.

The INFORMATION_SCHEMA tables now are deprecated; expect them to be removed in a future
version of MySQL. Applications should transition away from the INFORMATION_SCHEMA tables to
the Performance Schema tables. For example, if an application uses this query:

SELECT * FROM INFORMATION_SCHEMA.TP_THREAD_STATE;

The application should use this query instead:

SELECT * FROM performance_schema.tp_thread_state;

Note

If you do not load all the monitoring tables, some or all MySQL Enterprise
Monitor thread pool graphs may be empty.

For a detailed description of how the thread pool works, see Section 7.6.3.3, “Thread Pool
Operation”.

• Several system variables are related to the thread pool. The thread_handling system variable
has a value of loaded-dynamically when the server successfully loads the thread pool plugin.

The other related system variables are implemented by the thread pool plugin and are not available
unless it is enabled. For information about using these variables, see Section 7.6.3.3, “Thread Pool
Operation”, and Section 7.6.3.4, “Thread Pool Tuning”.

• The Performance Schema has instruments that expose information about the thread pool and may
be used to investigate operational performance. To identify them, use this query:

SELECT * FROM performance_schema.setup_instruments
WHERE NAME LIKE '%thread_pool%';

For more information, see Chapter 29, MySQL Performance Schema.

7.6.3.2 Thread Pool Installation

This section describes how to install MySQL Enterprise Thread Pool. For general information about
installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is thread_pool. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

• Thread Pool Installation as of MySQL 8.0.14

• Thread Pool Installation Prior to MySQL 8.0.14

Thread Pool Installation as of MySQL 8.0.14

In MySQL 8.0.14 and higher, the thread pool monitoring tables are Performance Schema tables that
are loaded and unloaded along with the thread pool plugin. The INFORMATION_SCHEMA versions
of the tables are deprecated but still available; they are installed per the instructions in Thread Pool
Installation Prior to MySQL 8.0.14.

To enable thread pool capability, load the plugin by starting the server with the --plugin-load-add
option. To do this, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as
necessary:

1201

MySQL Enterprise Thread Pool

[mysqld]
plugin-load-add=thread_pool.so

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'thread%';
+-----------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-----------------------+---------------+
| thread_pool | ACTIVE |
+-----------------------+---------------+

To verify that the Performance Schema monitoring tables are available, examine the Information
Schema TABLES table or use the SHOW TABLES statement. For example:

mysql> SELECT TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema'
 AND TABLE_NAME LIKE 'tp%';
+-----------------------+
| TABLE_NAME |
+-----------------------+
| tp_thread_group_state |
| tp_thread_group_stats |
| tp_thread_state |
+-----------------------+

If the server loads the thread pool plugin successfully, it sets the thread_handling system variable
to loaded-dynamically.

If the plugin fails to initialize, check the server error log for diagnostic messages.

Thread Pool Installation Prior to MySQL 8.0.14

Prior to MySQL 8.0.14, the thread pool monitoring tables are plugins separate from the thread pool
plugin and can be installed separately.

To enable thread pool capability, load the plugins to be used by starting the server with the --plugin-
load-add option. For example, if you name only the plugin library file, the server loads all plugins that
it contains (that is, the thread pool plugin and all the INFORMATION_SCHEMA tables). To do this, put
these lines in the server my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
plugin-load-add=thread_pool.so

That is equivalent to loading all thread pool plugins by naming them individually:

[mysqld]
plugin-load-add=thread_pool=thread_pool.so
plugin-load-add=tp_thread_state=thread_pool.so
plugin-load-add=tp_thread_group_state=thread_pool.so
plugin-load-add=tp_thread_group_stats=thread_pool.so

If desired, you can load individual plugins from the library file. To load the thread pool plugin but not the
INFORMATION_SCHEMA tables, use an option like this:

[mysqld]
plugin-load-add=thread_pool=thread_pool.so

To load the thread pool plugin and only the TP_THREAD_STATE INFORMATION_SCHEMA table, use
options like this:

[mysqld]

1202

MySQL Enterprise Thread Pool

plugin-load-add=thread_pool=thread_pool.so
plugin-load-add=tp_thread_state=thread_pool.so

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'thread%' OR PLUGIN_NAME LIKE 'tp%';
+-----------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-----------------------+---------------+
thread_pool	ACTIVE
TP_THREAD_STATE	ACTIVE
TP_THREAD_GROUP_STATE	ACTIVE
TP_THREAD_GROUP_STATS	ACTIVE
+-----------------------+---------------+

If the server loads the thread pool plugin successfully, it sets the thread_handling system variable
to loaded-dynamically.

If a plugin fails to initialize, check the server error log for diagnostic messages.

7.6.3.3 Thread Pool Operation

The thread pool consists of a number of thread groups, each of which manages a set of client
connections. As connections are established, the thread pool assigns them to thread groups in round-
robin fashion.

The thread pool exposes system variables that may be used to configure its operation:

• thread_pool_algorithm: The concurrency algorithm to use for scheduling.

• thread_pool_dedicated_listeners: Dedicates a listener thread in each thread group to listen
for incoming statements from connections assigned to the group.

• thread_pool_high_priority_connection: How to schedule statement execution for a
session.

• thread_pool_max_active_query_threads: How many active threads per group to permit.

• thread_pool_max_transactions_limit: The maximum number of transactions permitted by
the thread pool plugin.

• thread_pool_max_unused_threads: How many sleeping threads to permit.

• thread_pool_prio_kickup_timer: How long before the thread pool moves a statement
awaiting execution from the low-priority queue to the high-priority queue.

• thread_pool_query_threads_per_group: The number of query threads permitted in a thread
group (the default is a single query thread). Consider increasing the value if you experience slower
response times due to long-running transactions.

• thread_pool_size: The number of thread groups in the thread pool. This is the most important
parameter controlling thread pool performance.

• thread_pool_stall_limit: The time before an executing statement is considered to be stalled.

• thread_pool_transaction_delay: The delay period before starting a new transaction.

To configure the number of thread groups, use the thread_pool_size system variable. The default
number of groups is 16. For guidelines on setting this variable, see Section 7.6.3.4, “Thread Pool
Tuning”.

1203

MySQL Enterprise Thread Pool

The maximum number of threads per group is 4096 (or 4095 on some systems where one thread is
used internally).

The thread pool separates connections and threads, so there is no fixed relationship between
connections and the threads that execute statements received from those connections. This differs
from the default thread-handling model that associates one thread with one connection such that a
given thread executes all statements from its connection.

By default, the thread pool tries to ensure a maximum of one thread executing in each group at any
time, but sometimes permits more threads to execute temporarily for best performance:

• Each thread group has a listener thread that listens for incoming statements from the connections
assigned to the group. When a statement arrives, the thread group either begins executing it
immediately or queues it for later execution:

• Immediate execution occurs if the statement is the only one received, and there are no statements
queued or currently executing.

From MySQL 8.0.31, immediate execution can be delayed by configuring
thread_pool_transaction_delay, which has a throttling effect on transactions. For more
information, refer to the description of this variable in the discussion that follows.

• Queuing occurs if the statement cannot begin executing immediately due to concurrently queued
or executing statements.

• The thread_pool_transaction_delay variable specifies a transaction delay in milliseconds.
Worker threads sleep for the specified period before executing a new transaction.

A transaction delay can be used in cases where parallel transactions affect the performance of other
operations due to resource contention. For example, if parallel transactions affect index creation or
an online buffer pool resizing operation, you can configure a transaction delay to reduce resource
contention while those operations are running. The delay has a throttling effect on transactions.

The thread_pool_transaction_delay setting does not affect queries issued from a privileged
connection (a connection assigned to the Admin thread group). These queries are not subject to a
configured transaction delay.

• If immediate execution occurs, the listener thread performs it. (This means that temporarily no thread
in the group is listening.) If the statement finishes quickly, the executing thread returns to listening
for statements. Otherwise, the thread pool considers the statement stalled and starts another thread
as a listener thread (creating it if necessary). To ensure that no thread group becomes blocked by
stalled statements, the thread pool has a background thread that regularly monitors thread group
states.

By using the listening thread to execute a statement that can begin immediately, there is no need to
create an additional thread if the statement finishes quickly. This ensures the most efficient execution
possible in the case of a low number of concurrent threads.

When the thread pool plugin starts, it creates one thread per group (the listener thread), plus the
background thread. Additional threads are created as necessary to execute statements.

• The value of the thread_pool_stall_limit system variable determines the meaning of “finishes
quickly” in the previous item. The default time before threads are considered stalled is 60ms but
can be set to a maximum of 6s. This parameter is configurable to enable you to strike a balance
appropriate for the server work load. Short wait values permit threads to start more quickly. Short
values are also better for avoiding deadlock situations. Long wait values are useful for workloads that
include long-running statements, to avoid starting too many new statements while the current ones
execute.

• If thread_pool_max_active_query_threads is 0, the default algorithm applies as just
described for determining the maximum number of active threads per group. The default

1204

MySQL Enterprise Thread Pool

algorithm takes stalled threads into account and may temporarily permit more active threads. If
thread_pool_max_active_query_threads is greater than 0, it places a limit on the number of
active threads per group.

• The thread pool focuses on limiting the number of concurrent short-running statements. Before an
executing statement reaches the stall time, it prevents other statements from beginning to execute.
If the statement executes past the stall time, it is permitted to continue but no longer prevents other
statements from starting. In this way, the thread pool tries to ensure that in each thread group there
is never more than one short-running statement, although there might be multiple long-running
statements. It is undesirable to let long-running statements prevent other statements from executing
because there is no limit on the amount of waiting that might be necessary. For example, on a
replication source server, a thread that is sending binary log events to a replica effectively runs
forever.

• A statement becomes blocked if it encounters a disk I/O operation or a user level lock (row lock
or table lock). The block would cause the thread group to become unused, so there are callbacks
to the thread pool to ensure that the thread pool can immediately start a new thread in this group
to execute another statement. When a blocked thread returns, the thread pool permits it to restart
immediately.

• There are two queues, a high-priority queue and a low-priority queue. The first statement in a
transaction goes to the low-priority queue. Any following statements for the transaction go to
the high-priority queue if the transaction is ongoing (statements for it have begun executing),
or to the low-priority queue otherwise. Queue assignment can be affected by enabling the
thread_pool_high_priority_connection system variable, which causes all queued
statements for a session to go into the high-priority queue.

Statements for a nontransactional storage engine, or a transactional engine if autocommit is
enabled, are treated as low-priority statements because in this case each statement is a transaction.
Thus, given a mix of statements for InnoDB and MyISAM tables, the thread pool prioritizes those
for InnoDB over those for MyISAM unless autocommit is enabled. With autocommit enabled, all
statements have low priority.

• When the thread group selects a queued statement for execution, it first looks in the high-priority
queue, then in the low-priority queue. If a statement is found, it is removed from its queue and begins
to execute.

• If a statement stays in the low-priority queue too long, the thread pool moves to the high-priority
queue. The value of the thread_pool_prio_kickup_timer system variable controls the time
before movement. For each thread group, a maximum of one statement per 10ms (100 per second)
is moved from the low-priority queue to the high-priority queue.

• The thread pool reuses the most active threads to obtain a much better use of CPU caches. This is a
small adjustment that has a great impact on performance.

• While a thread executes a statement from a user connection, Performance Schema instrumentation
accounts thread activity to the user connection. Otherwise, Performance Schema accounts activity to
the thread pool.

Here are examples of conditions under which a thread group might have multiple threads started to
execute statements:

• One thread begins executing a statement, but runs long enough to be considered stalled. The thread
group permits another thread to begin executing another statement even through the first thread is
still executing.

• One thread begins executing a statement, then becomes blocked and reports this back to the thread
pool. The thread group permits another thread to begin executing another statement.

• One thread begins executing a statement, becomes blocked, but does not report back that it is
blocked because the block does not occur in code that has been instrumented with thread pool

1205

MySQL Enterprise Thread Pool

callbacks. In this case, the thread appears to the thread group to be still running. If the block lasts
long enough for the statement to be considered stalled, the group permits another thread to begin
executing another statement.

The thread pool is designed to be scalable across an increasing number of connections. It is also
designed to avoid deadlocks that can arise from limiting the number of actively executing statements.
It is important that threads that do not report back to the thread pool do not prevent other statements
from executing and thus cause the thread pool to become deadlocked. Examples of such statements
follow:

• Long-running statements. These would lead to all resources used by only a few statements and they
could prevent all others from accessing the server.

• Binary log dump threads that read the binary log and send it to replicas. This is a kind of long-
running “statement” that runs for a very long time, and that should not prevent other statements from
executing.

• Statements blocked on a row lock, table lock, sleep, or any other blocking activity that has not been
reported back to the thread pool by MySQL Server or a storage engine.

In each case, to prevent deadlock, the statement is moved to the stalled category when it does not
complete quickly, so that the thread group can permit another statement to begin executing. With this
design, when a thread executes or becomes blocked for an extended time, the thread pool moves the
thread to the stalled category and for the rest of the statement's execution, it does not prevent other
statements from executing.

The maximum number of threads that can occur is the sum of max_connections and
thread_pool_size. This can happen in a situation where all connections are in execution mode and
an extra thread is created per group to listen for more statements. This is not necessarily a state that
happens often, but it is theoretically possible.

Privileged Connections

When the limit defined by thread_pool_max_transactions_limit has been reached, new
connections appear to hang until one or more existing transactions are completed. The same occurs
when attempting to start a new transaction on an existing connection. If existing connections are
blocked or long-running, the only way to access the server is using a privileged connection.

To establish a privileged connection, the user initiating the connection must have the
TP_CONNECTION_ADMIN privilege. A privileged connection ignores the limit defined by
thread_pool_max_transactions_limit and permits connecting to the server to increase the
limit, remove the limit, or kill running transactions. TP_CONNECTION_ADMIN privilege must be granted
explicitly. It is not granted to any user by default.

A privileged connection can execute statements and start transactions, and is assigned to a thread
group designated as the Admin thread group.

When querying the performance_schema.tp_thread_group_stats table, which reports
statistics per thread group, Admin thread group statistics are reported in the last row of the result set.
For example, if SELECT * FROM performance_schema.tp_thread_group_stats\G returns 17
rows (one row per thread group), the Admin thread group statistics are reported in the 17th row.

7.6.3.4 Thread Pool Tuning

This section provides guidelines on determining the best configuration for thread pool performance, as
measured using a metric such as transactions per second.

Of chief importance is the number of thread groups in the thread pool, which can be set on server
startup using the --thread-pool-size option; this cannot be changed at runtime. Recommended
values for this option depend on whether the primary storage engine in use is InnoDB or MyISAM:

1206

MySQL Enterprise Thread Pool

• If the primary storage engine is InnoDB, the recommended value for the thread pool size is the
number of physical cores available on the host machine, up to a maximum of 512.

• If the primary storage engine is MyISAM, the thread pool size should be fairly low. Optimal
performance is often seen with values from 4 to 8. Higher values tend to have a slightly negative but
not dramatic impact on performance.

The upper limit on the number of concurrent transactions that can be processed by the thread
pool plugin is determined by the value of thread_pool_max_transactions_limit. The
recommendation initial setting for this system variable is the number of physical cores times 32. You
may need to adjust the value from this starting point to suit a given workload; a reasonable upper
bound for this value is the maximum number of concurrent connections expected; the value of the
Max_used_connections status variable can serve as a guide to determining this. A good way to
proceed is to start with thread_pool_max_transactions_limit set to this value, then adjust it
downwards while observing the effect on throughput.

The maximum number of query threads permitted in a thread group is determined by the value of
thread_pool_query_threads_per_group, which can be adjusted at runtime. The product of
this value and the thread pool size is approximately equal to the total number of threads available to
process queries. Obtaining the best performance usually means striking the proper balance for your
application between thread_pool_query_threads_per_group and the thread pool size. Greater
values for thread_pool_query_threads_per_group value make it less likely that all the threads
in the thread group simultaneously execute long running queries while blocking shorter ones when the
workload includes both long and short running queries. You should bear in mind that the overhead of
the connection polling operation for each thread group increases when using smaller values for the
thread pool size with larger values for thread_pool_query_threads_per_group. For this reason,
we recommend a starting value of 2 for thread_pool_query_threads_per_group; setting this
variable to a lower value usually does not offer any performance benefit.

For best performance under normal conditions, we also recommend that you set
thread_pool_algorithm to 1 for high concurrency.

In addition, the value of the thread_pool_stall_limit system variable determines the
handling of blocked and long-running statements. If all calls blocking the MySQL Server were
reported to the thread pool, it would always know when execution threads are blocked, but this
may not always be true. For example, blocks could occur in code that has not been instrumented
with thread pool callbacks. For such cases, the thread pool must be able to identify threads
that appear to be blocked. This is done by means of a timeout determined by the value of
thread_pool_stall_limit, which ensures that the server does not become completely blocked.
The value of thread_pool_stall_limit represents a number of 10-millisecond intervals, so that
600 (the maximum) represents 6 seconds.

thread_pool_stall_limit also enables the thread pool to handle long-running statements. If a
long-running statement were permitted to block a thread group, all other connections assigned to the
group would be blocked and unable to start execution until the long-running statement completed. In
the worst case, this could take hours or even days.

The value of thread_pool_stall_limit should be chosen such that statements that execute
longer than its value are considered stalled. Stalled statements generate a lot of extra overhead since
they involve extra context switches and in some cases even extra thread creations. On the other hand,
setting the thread_pool_stall_limit parameter too high means that long-running statements
block a number of short-running statements for longer than necessary. Short wait values permit threads
to start more quickly. Short values are also better for avoiding deadlock situations. Long wait values are
useful for workloads that include long-running statements, to avoid starting too many new statements
while the current ones execute.

Suppose a server executes a workload where 99.9% of the statements complete within 100ms even
when the server is loaded, and the remaining statements take between 100ms and 2 hours fairly
evenly spread. In this case, it would make sense to set thread_pool_stall_limit to 10 (10 ×

1207

The Rewriter Query Rewrite Plugin

10ms = 100ms). The default value of 6 (60ms) is suitable for servers that primarily execute very simple
statements.

The thread_pool_stall_limit parameter can be changed at runtime to enable you to strike a
balance appropriate for the server work load. Assuming that the tp_thread_group_stats table is
enabled, you can use the following query to determine the fraction of executed statements that stalled:

SELECT SUM(STALLED_QUERIES_EXECUTED) / SUM(QUERIES_EXECUTED)
FROM performance_schema.tp_thread_group_stats;

This number should be as low as possible. To decrease the likelihood of statements stalling, increase
the value of thread_pool_stall_limit.

When a statement arrives, what is the maximum time it can be delayed before it actually starts
executing? Suppose that the following conditions apply:

• There are 200 statements queued in the low-priority queue.

• There are 10 statements queued in the high-priority queue.

• thread_pool_prio_kickup_timer is set to 10000 (10 seconds).

• thread_pool_stall_limit is set to 100 (1 second).

In the worst case, the 10 high-priority statements represent 10 transactions that continue executing for
a long time. Thus, in the worst case, no statements can be moved to the high-priority queue because it
always already contains statements awaiting execution. After 10 seconds, the new statement is eligible
to be moved to the high-priority queue. However, before it can be moved, all the statements before it
must be moved as well. This could take another 2 seconds because a maximum of 100 statements
per second are moved to the high-priority queue. Now when the statement reaches the high-priority
queue, there could potentially be many long-running statements ahead of it. In the worst case, every
one of those becomes stalled and 1 second is required for each statement before the next statement
is retrieved from the high-priority queue. Thus, in this scenario, it takes 222 seconds before the new
statement starts executing.

This example shows a worst case for an application. How to handle it depends on the application. If
the application has high requirements for the response time, it should most likely throttle users at a
higher level itself. Otherwise, it can use the thread pool configuration parameters to set some kind of a
maximum waiting time.

7.6.4 The Rewriter Query Rewrite Plugin

MySQL supports query rewrite plugins that can examine and possibly modify SQL statements received
by the server before the server executes them. See Query Rewrite Plugins.

MySQL distributions include a postparse query rewrite plugin named Rewriter and scripts for
installing the plugin and its associated elements. These elements work together to provide statement-
rewriting capability:

• A server-side plugin named Rewriter examines statements and may rewrite them, based on its in-
memory cache of rewrite rules.

• These statements are subject to rewriting:

• As of MySQL 8.0.12: SELECT, INSERT, REPLACE, UPDATE, and DELETE.

• Prior to MySQL 8.0.12: SELECT only.

Standalone statements and prepared statements are subject to rewriting. Statements occurring
within view definitions or stored programs are not subject to rewriting.

1208

https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-types.html#query-rewrite-plugin-type

The Rewriter Query Rewrite Plugin

• The Rewriter plugin uses a database named query_rewrite containing a table named
rewrite_rules. The table provides persistent storage for the rules that the plugin uses to decide
whether to rewrite statements. Users communicate with the plugin by modifying the set of rules
stored in this table. The plugin communicates with users by setting the message column of table
rows.

• The query_rewrite database contains a stored procedure named flush_rewrite_rules()
that loads the contents of the rules table into the plugin.

• A loadable function named load_rewrite_rules() is used by the flush_rewrite_rules()
stored procedure.

• The Rewriter plugin exposes system variables that enable plugin configuration and status
variables that provide runtime operational information. In MySQL 8.0.31 and later, this plugin also
supports a privilege (SKIP_QUERY_REWRITE) that protects a given user's queries from being
rewritten.

The following sections describe how to install and use the Rewriter plugin, and provide reference
information for its associated elements.

7.6.4.1 Installing or Uninstalling the Rewriter Query Rewrite Plugin

Note

If installed, the Rewriter plugin involves some overhead even when disabled.
To avoid this overhead, do not install the plugin unless you plan to use it.

To install or uninstall the Rewriter query rewrite plugin, choose the appropriate script located in the
share directory of your MySQL installation:

• install_rewriter.sql: Choose this script to install the Rewriter plugin and its associated
elements.

• uninstall_rewriter.sql: Choose this script to uninstall the Rewriter plugin and its
associated elements.

Run the chosen script as follows:

$> mysql -u root -p < install_rewriter.sql
Enter password: (enter root password here)

The example here uses the install_rewriter.sql installation script. Substitute
uninstall_rewriter.sql if you are uninstalling the plugin.

Running an installation script should install and enable the plugin. To verify that, connect to the server
and execute this statement:

mysql> SHOW GLOBAL VARIABLES LIKE 'rewriter_enabled';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| rewriter_enabled | ON |
+------------------+-------+

For usage instructions, see Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”. For reference
information, see Section 7.6.4.3, “Rewriter Query Rewrite Plugin Reference”.

7.6.4.2 Using the Rewriter Query Rewrite Plugin

To enable or disable the plugin, enable or disable the rewriter_enabled system variable. By
default, the Rewriter plugin is enabled when you install it (see Section 7.6.4.1, “Installing or

1209

The Rewriter Query Rewrite Plugin

Uninstalling the Rewriter Query Rewrite Plugin”). To set the initial plugin state explicitly, you can set the
variable at server startup. For example, to enable the plugin in an option file, use these lines:

[mysqld]
rewriter_enabled=ON

It is also possible to enable or disable the plugin at runtime:

SET GLOBAL rewriter_enabled = ON;
SET GLOBAL rewriter_enabled = OFF;

Assuming that the Rewriter plugin is enabled, it examines and possibly modifies each rewritable
statement received by the server. The plugin determines whether to rewrite statements based on
its in-memory cache of rewriting rules, which are loaded from the rewrite_rules table in the
query_rewrite database.

These statements are subject to rewriting:

• As of MySQL 8.0.12: SELECT, INSERT, REPLACE, UPDATE, and DELETE.

• Prior to MySQL 8.0.12: SELECT only.

Standalone statements and prepared statements are subject to rewriting. Statements occurring within
view definitions or stored programs are not subject to rewriting.

Beginning with MySQL 8.0.31, statements run by users with the
SKIP_QUERY_REWRITE privilege are not subject to rewriting, provided that the
rewriter_enabled_for_threads_without_privilege_checks system variable is set
to OFF (default ON). This can be used for control statements and statements that should be
replicated unchanged, such as those from the SOURCE_USER specified by CHANGE REPLICATION
SOURCE TO. This is also true for statements executed by MySQL client programs including
mysqlbinlog, mysqladmin, mysqldump, and mysqlpump; for this reason, you should grant
SKIP_QUERY_REWRITE to the user account or accounts used by these utilities to connect to MySQL.

• Adding Rewrite Rules

• How Statement Matching Works

• Rewriting Prepared Statements

• Rewriter Plugin Operational Information

• Rewriter Plugin Use of Character Sets

Adding Rewrite Rules

To add rules for the Rewriter plugin, add rows to the rewrite_rules table, then invoke the
flush_rewrite_rules() stored procedure to load the rules from the table into the plugin. The
following example creates a simple rule to match statements that select a single literal value:

INSERT INTO query_rewrite.rewrite_rules (pattern, replacement)
VALUES('SELECT ?', 'SELECT ? + 1');

The resulting table contents look like this:

mysql> SELECT * FROM query_rewrite.rewrite_rules\G
*************************** 1. row ***************************
 id: 1
 pattern: SELECT ?
 pattern_database: NULL
 replacement: SELECT ? + 1
 enabled: YES
 message: NULL
 pattern_digest: NULL

1210

The Rewriter Query Rewrite Plugin

normalized_pattern: NULL

The rule specifies a pattern template indicating which SELECT statements to match, and a
replacement template indicating how to rewrite matching statements. However, adding the rule to the
rewrite_rules table is not sufficient to cause the Rewriter plugin to use the rule. You must invoke
flush_rewrite_rules() to load the table contents into the plugin in-memory cache:

mysql> CALL query_rewrite.flush_rewrite_rules();

Tip

If your rewrite rules seem not to be working properly, make sure that you have
reloaded the rules table by calling flush_rewrite_rules().

When the plugin reads each rule from the rules table, it computes a normalized (statement digest) form
from the pattern and a digest hash value, and uses them to update the normalized_pattern and
pattern_digest columns:

mysql> SELECT * FROM query_rewrite.rewrite_rules\G
*************************** 1. row ***************************
 id: 1
 pattern: SELECT ?
 pattern_database: NULL
 replacement: SELECT ? + 1
 enabled: YES
 message: NULL
 pattern_digest: d1b44b0c19af710b5a679907e284acd2ddc285201794bc69a2389d77baedddae
normalized_pattern: select ?

For information about statement digesting, normalized statements, and digest hash values, see
Section 29.10, “Performance Schema Statement Digests and Sampling”.

If a rule cannot be loaded due to some error, calling flush_rewrite_rules() produces an error:

mysql> CALL query_rewrite.flush_rewrite_rules();
ERROR 1644 (45000): Loading of some rule(s) failed.

When this occurs, the plugin writes an error message to the message column of the rule row to
communicate the problem. Check the rewrite_rules table for rows with non-NULL message column
values to see what problems exist.

Patterns use the same syntax as prepared statements (see Section 15.5.1, “PREPARE Statement”).
Within a pattern template, ? characters act as parameter markers that match data values. The ?
characters should not be enclosed within quotation marks. Parameter markers can be used only where
data values should appear, and they cannot be used for SQL keywords, identifiers, functions, and
so on. The plugin parses a statement to identify the literal values (as defined in Section 11.1, “Literal
Values”), so you can put a parameter marker in place of any literal value.

Like the pattern, the replacement can contain ? characters. For a statement that matches a pattern
template, the plugin rewrites it, replacing ? parameter markers in the replacement using data values
matched by the corresponding markers in the pattern. The result is a complete statement string. The
plugin asks the server to parse it, and returns the result to the server as the representation of the
rewritten statement.

After adding and loading the rule, check whether rewriting occurs according to whether statements
match the rule pattern:

mysql> SELECT PI();
+----------+
| PI() |
+----------+
| 3.141593 |
+----------+
1 row in set (0.01 sec)

1211

The Rewriter Query Rewrite Plugin

mysql> SELECT 10;
+--------+
| 10 + 1 |
+--------+
| 11 |
+--------+
1 row in set, 1 warning (0.00 sec)

No rewriting occurs for the first SELECT statement, but does for the second. The second statement
illustrates that when the Rewriter plugin rewrites a statement, it produces a warning message. To
view the message, use SHOW WARNINGS:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1105
Message: Query 'SELECT 10' rewritten to 'SELECT 10 + 1' by a query rewrite plugin

A statement need not be rewritten to a statement of the same type. The following example loads a rule
that rewrites DELETE statements to UPDATE statements:

INSERT INTO query_rewrite.rewrite_rules (pattern, replacement)
VALUES('DELETE FROM db1.t1 WHERE col = ?',
 'UPDATE db1.t1 SET col = NULL WHERE col = ?');
CALL query_rewrite.flush_rewrite_rules();

To enable or disable an existing rule, modify its enabled column and reload the table into the plugin.
To disable rule 1:

UPDATE query_rewrite.rewrite_rules SET enabled = 'NO' WHERE id = 1;
CALL query_rewrite.flush_rewrite_rules();

This enables you to deactivate a rule without removing it from the table.

To re-enable rule 1:

UPDATE query_rewrite.rewrite_rules SET enabled = 'YES' WHERE id = 1;
CALL query_rewrite.flush_rewrite_rules();

The rewrite_rules table contains a pattern_database column that Rewriter uses for matching
table names that are not qualified with a database name:

• Qualified table names in statements match qualified names in the pattern if corresponding database
and table names are identical.

• Unqualified table names in statements match unqualified names in the pattern only if the default
database is the same as pattern_database and the table names are identical.

Suppose that a table named appdb.users has a column named id and that applications are
expected to select rows from the table using a query of one of these forms, where the second can be
used when appdb is the default database:

SELECT * FROM users WHERE appdb.id = id_value;
SELECT * FROM users WHERE id = id_value;

Suppose also that the id column is renamed to user_id (perhaps the table must be modified to
add another type of ID and it is necessary to indicate more specifically what type of ID the id column
represents).

The change means that applications must refer to user_id rather than id in the WHERE clause, but
old applications that cannot be updated no longer work properly. The Rewriter plugin can solve this
problem by matching and rewriting problematic statements. To match the statement SELECT * FROM
appdb.users WHERE id = value and rewrite it as SELECT * FROM appdb.users WHERE
user_id = value, you can insert a row representing a replacement rule into the rewrite rules table.

1212

The Rewriter Query Rewrite Plugin

If you also want to match this SELECT using the unqualified table name, it is also necessary to add an
explicit rule. Using ? as a value placeholder, the two INSERT statements needed look like this:

INSERT INTO query_rewrite.rewrite_rules
 (pattern, replacement) VALUES(
 'SELECT * FROM appdb.users WHERE id = ?',
 'SELECT * FROM appdb.users WHERE user_id = ?'
);
INSERT INTO query_rewrite.rewrite_rules
 (pattern, replacement, pattern_database) VALUES(
 'SELECT * FROM users WHERE id = ?',
 'SELECT * FROM users WHERE user_id = ?',
 'appdb'
);

After adding the two new rules, execute the following statement to cause them to take effect:

CALL query_rewrite.flush_rewrite_rules();

Rewriter uses the first rule to match statements that use the qualified table name, and the second
to match statements that use the unqualified name. The second rule works only when appdb is the
default database.

How Statement Matching Works

The Rewriter plugin uses statement digests and digest hash values to match incoming statements
against rewrite rules in stages. The max_digest_length system variable determines the size of
the buffer used for computing statement digests. Larger values enable computation of digests that
distinguish longer statements. Smaller values use less memory but increase the likelihood of longer
statements colliding with the same digest value.

The plugin matches each statement to the rewrite rules as follows:

1. Compute the statement digest hash value and compare it to the rule digest hash values. This is
subject to false positives, but serves as a quick rejection test.

2. If the statement digest hash value matches any pattern digest hash values, match the normalized
(statement digest) form of the statement to the normalized form of the matching rule patterns.

3. If the normalized statement matches a rule, compare the literal values in the statement and the
pattern. A ? character in the pattern matches any literal value in the statement. If the statement
prepares a statement, ? in the pattern also matches ? in the statement. Otherwise, corresponding
literals must be the same.

If multiple rules match a statement, it is nondeterministic which one the plugin uses to rewrite the
statement.

If a pattern contains more markers than the replacement, the plugin discards excess data values. If a
pattern contains fewer markers than the replacement, it is an error. The plugin notices this when the
rules table is loaded, writes an error message to the message column of the rule row to communicate
the problem, and sets the Rewriter_reload_error status variable to ON.

Rewriting Prepared Statements

Prepared statements are rewritten at parse time (that is, when they are prepared), not when they are
executed later.

Prepared statements differ from nonprepared statements in that they may contain ? characters as
parameter markers. To match a ? in a prepared statement, a Rewriter pattern must contain ? in the
same location. Suppose that a rewrite rule has this pattern:

SELECT ?, 3

1213

The Rewriter Query Rewrite Plugin

The following table shows several prepared SELECT statements and whether the rule pattern matches
them.

Prepared Statement Whether Pattern Matches Statement

PREPARE s AS 'SELECT 3, 3' Yes

PREPARE s AS 'SELECT ?, 3' Yes

PREPARE s AS 'SELECT 3, ?' No

PREPARE s AS 'SELECT ?, ?' No

Rewriter Plugin Operational Information

The Rewriter plugin makes information available about its operation by means of several status
variables:

mysql> SHOW GLOBAL STATUS LIKE 'Rewriter%';
+-----------------------------------+-------+
| Variable_name | Value |
+-----------------------------------+-------+
Rewriter_number_loaded_rules	1
Rewriter_number_reloads	5
Rewriter_number_rewritten_queries	1
Rewriter_reload_error	ON
+-----------------------------------+-------+

For descriptions of these variables, see Rewriter Query Rewrite Plugin Status Variables.

When you load the rules table by calling the flush_rewrite_rules() stored procedure, if
an error occurs for some rule, the CALL statement produces an error, and the plugin sets the
Rewriter_reload_error status variable to ON:

mysql> CALL query_rewrite.flush_rewrite_rules();
ERROR 1644 (45000): Loading of some rule(s) failed.

mysql> SHOW GLOBAL STATUS LIKE 'Rewriter_reload_error';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Rewriter_reload_error | ON |
+-----------------------+-------+

In this case, check the rewrite_rules table for rows with non-NULL message column values to see
what problems exist.

Rewriter Plugin Use of Character Sets

When the rewrite_rules table is loaded into the Rewriter plugin, the plugin interprets statements
using the current global value of the character_set_client system variable. If the global
character_set_client value is changed subsequently, the rules table must be reloaded.

A client must have a session character_set_client value identical to what the global value was
when the rules table was loaded or rule matching does not work for that client.

7.6.4.3 Rewriter Query Rewrite Plugin Reference

The following discussion serves as a reference to these elements associated with the Rewriter query
rewrite plugin:

• The Rewriter rules table in the query_rewrite database

• Rewriter procedures and functions

• Rewriter system and status variables

1214

The Rewriter Query Rewrite Plugin

Rewriter Query Rewrite Plugin Rules Table

The rewrite_rules table in the query_rewrite database provides persistent storage for the rules
that the Rewriter plugin uses to decide whether to rewrite statements.

Users communicate with the plugin by modifying the set of rules stored in this table. The plugin
communicates information to users by setting the table's message column.

Note

The rules table is loaded into the plugin by the flush_rewrite_rules stored
procedure. Unless that procedure has been called following the most recent
table modification, the table contents do not necessarily correspond to the set of
rules the plugin is using.

The rewrite_rules table has these columns:

• id

The rule ID. This column is the table primary key. You can use the ID to uniquely identify any rule.

• pattern

The template that indicates the pattern for statements that the rule matches. Use ? to represent
parameter markers that match data values.

• pattern_database

The database used to match unqualified table names in statements. Qualified table names in
statements match qualified names in the pattern if corresponding database and table names are
identical. Unqualified table names in statements match unqualified names in the pattern only if the
default database is the same as pattern_database and the table names are identical.

• replacement

The template that indicates how to rewrite statements matching the pattern column value. Use ?
to represent parameter markers that match data values. In rewritten statements, the plugin replaces
? parameter markers in replacement using data values matched by the corresponding markers in
pattern.

• enabled

Whether the rule is enabled. Load operations (performed by invoking the
flush_rewrite_rules() stored procedure) load the rule from the table into the Rewriter in-
memory cache only if this column is YES.

This column makes it possible to deactivate a rule without removing it: Set the column to a value
other than YES and reload the table into the plugin.

• message

The plugin uses this column for communicating with users. If no error occurs when the rules table is
loaded into memory, the plugin sets the message column to NULL. A non-NULL value indicates an
error and the column contents are the error message. Errors can occur under these circumstances:

• Either the pattern or the replacement is an incorrect SQL statement that produces syntax errors.

• The replacement contains more ? parameter markers than the pattern.

If a load error occurs, the plugin also sets the Rewriter_reload_error status variable to ON.

• pattern_digest

1215

The Rewriter Query Rewrite Plugin

This column is used for debugging and diagnostics. If the column exists when the rules table is
loaded into memory, the plugin updates it with the pattern digest. This column may be useful if you
are trying to determine why some statement fails to be rewritten.

• normalized_pattern

This column is used for debugging and diagnostics. If the column exists when the rules table is
loaded into memory, the plugin updates it with the normalized form of the pattern. This column may
be useful if you are trying to determine why some statement fails to be rewritten.

Rewriter Query Rewrite Plugin Procedures and Functions

Rewriter plugin operation uses a stored procedure that loads the rules table into its in-memory
cache, and a helper loadable function. Under normal operation, users invoke only the stored
procedure. The function is intended to be invoked by the stored procedure, not directly by users.

• flush_rewrite_rules()

This stored procedure uses the load_rewrite_rules() function to load the contents of the
rewrite_rules table into the Rewriter in-memory cache.

Calling flush_rewrite_rules() implies COMMIT.

Invoke this procedure after you modify the rules table to cause the plugin to update its cache from
the new table contents. If any errors occur, the plugin sets the message column for the appropriate
rule rows in the table and sets the Rewriter_reload_error status variable to ON.

• load_rewrite_rules()

This function is a helper routine used by the flush_rewrite_rules() stored procedure.

Rewriter Query Rewrite Plugin System Variables

The Rewriter query rewrite plugin supports the following system variables. These variables are
available only if the plugin is installed (see Section 7.6.4.1, “Installing or Uninstalling the Rewriter Query
Rewrite Plugin”).

• rewriter_enabled

System Variable rewriter_enabled

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Valid Values OFF

Whether the Rewriter query rewrite plugin is enabled.

• rewriter_enabled_for_threads_without_privilege_checks

Introduced 8.0.31

System Variable rewriter_enabled_for_threads_without_privilege_checks

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

1216

The ddl_rewriter Plugin

Type Boolean

Default Value ON

Valid Values OFF

Whether to apply rewrites for replication threads which execute with privilege checks disabled. If set
to OFF, such rewrites are skipped. Requires the SYSTEM_VARIABLES_ADMIN privilege or SUPER
privilege to set.

This variable has no effect if rewriter_enabled is OFF.

• rewriter_verbose

System Variable rewriter_verbose

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

For internal use.

Rewriter Query Rewrite Plugin Status Variables

The Rewriter query rewrite plugin supports the following status variables. These variables are
available only if the plugin is installed (see Section 7.6.4.1, “Installing or Uninstalling the Rewriter Query
Rewrite Plugin”).

• Rewriter_number_loaded_rules

The number of rewrite plugin rewrite rules successfully loaded from the rewrite_rules table into
memory for use by the Rewriter plugin.

• Rewriter_number_reloads

The number of times the rewrite_rules table has been loaded into the in-memory cache used by
the Rewriter plugin.

• Rewriter_number_rewritten_queries

The number of queries rewritten by the Rewriter query rewrite plugin since it was loaded.

• Rewriter_reload_error

Whether an error occurred the most recent time that the rewrite_rules table was loaded into
the in-memory cache used by the Rewriter plugin. If the value is OFF, no error occurred. If the
value is ON, an error occurred; check the message column of the rewriter_rules table for error
messages.

7.6.5 The ddl_rewriter Plugin

MySQL 8.0.16 and higher includes a ddl_rewriter plugin that modifies CREATE TABLE statements
received by the server before it parses and executes them. The plugin removes ENCRYPTION, DATA
DIRECTORY, and INDEX DIRECTORY clauses, which may be helpful when restoring tables from SQL
dump files created from databases that are encrypted or that have their tables stored outside the data
directory. For example, the plugin may enable restoring such dump files into an unencrypted instance
or in an environment where the paths outside the data directory are not accessible.

Before using the ddl_rewriter plugin, install it according to the instructions provided in
Section 7.6.5.1, “Installing or Uninstalling ddl_rewriter”.

1217

The ddl_rewriter Plugin

ddl_rewriter examines SQL statements received by the server prior to parsing, rewriting them
according to these conditions:

• ddl_rewriter considers only CREATE TABLE statements, and only if they are standalone
statements that occur at the beginning of an input line or at the beginning of prepared statement text.
ddl_rewriter does not consider CREATE TABLE statements within stored program definitions.
Statements can extend over multiple lines.

• Within statements considered for rewrite, instances of the following clauses are rewritten and each
instance replaced by a single space:

• ENCRYPTION

• DATA DIRECTORY (at the table and partition levels)

• INDEX DIRECTORY (at the table and partition levels)

• Rewriting does not depend on lettercase.

If ddl_rewriter rewrites a statement, it generates a warning:

mysql> CREATE TABLE t (i INT) DATA DIRECTORY '/var/mysql/data';
Query OK, 0 rows affected, 1 warning (0.03 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1105
Message: Query 'CREATE TABLE t (i INT) DATA DIRECTORY '/var/mysql/data''
 rewritten to 'CREATE TABLE t (i INT) ' by a query rewrite plugin
1 row in set (0.00 sec)

If the general query log or binary log is enabled, the server writes to it statements as they appear after
any rewriting by ddl_rewriter.

When installed, ddl_rewriter exposes the Performance Schema memory/rewriter/
ddl_rewriter instrument for tracking plugin memory use. See Section 29.12.20.10, “Memory
Summary Tables”

7.6.5.1 Installing or Uninstalling ddl_rewriter

This section describes how to install or uninstall the ddl_rewriter plugin. For general information
about installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.

Note

If installed, the ddl_rewriter plugin involves some minimal overhead even
when disabled. To avoid this overhead, install ddl_rewriter only for the
period during which you intend to use it.

The primary use case is modification of statements restored from dump files, so
the typical usage pattern is: 1) Install the plugin; 2) restore the dump file or files;
3) uninstall the plugin.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is ddl_rewriter. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To install the ddl_rewriter plugin, use the INSTALL PLUGIN statement, adjusting the .so suffix for
your platform as necessary:

1218

Version Tokens

INSTALL PLUGIN ddl_rewriter SONAME 'ddl_rewriter.so';

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS, PLUGIN_TYPE
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'ddl%';
+--------------+---------------+-------------+
| PLUGIN_NAME | PLUGIN_STATUS | PLUGIN_TYPE |
+--------------+---------------+-------------+
| ddl_rewriter | ACTIVE | AUDIT |
+--------------+---------------+-------------+

As the preceding result shows, ddl_rewriter is implemented as an audit plugin.

If the plugin fails to initialize, check the server error log for diagnostic messages.

Once installed as just described, ddl_rewriter remains installed until uninstalled. To remove it, use
UNINSTALL PLUGIN:

UNINSTALL PLUGIN ddl_rewriter;

If ddl_rewriter is installed, you can use the --ddl-rewriter option for subsequent server
startups to control ddl_rewriter plugin activation. For example, to prevent the plugin from being
enabled at runtime, use this option:

[mysqld]
ddl-rewriter=OFF

7.6.5.2 ddl_rewriter Plugin Options

This section describes the command options that control operation of the ddl_rewriter plugin. If
values specified at startup time are incorrect, the ddl_rewriter plugin may fail to initialize properly
and the server does not load it.

To control activation of the ddl_rewriter plugin, use this option:

• --ddl-rewriter[=value]

Command-Line Format --ddl-rewriter[=value]

Introduced 8.0.16

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

FORCE_PLUS_PERMANENT

This option controls how the server loads the ddl_rewriter plugin at startup. It is available only if
the plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load
or --plugin-load-add. See Section 7.6.5.1, “Installing or Uninstalling ddl_rewriter”.

The option value should be one of those available for plugin-loading options, as described in
Section 7.6.1, “Installing and Uninstalling Plugins”. For example, --ddl-rewriter=OFF disables
the plugin at server startup.

7.6.6 Version Tokens

1219

Version Tokens

MySQL includes Version Tokens, a feature that enables creation of and synchronization around server
tokens that applications can use to prevent accessing incorrect or out-of-date data.

The Version Tokens interface has these characteristics:

• Version tokens are pairs consisting of a name that serves as a key or identifier, plus a value.

• Version tokens can be locked. An application can use token locks to indicate to other cooperating
applications that tokens are in use and should not be modified.

• Version token lists are established per server (for example, to specify the server assignment or
operational state). In addition, an application that communicates with a server can register its own
list of tokens that indicate the state it requires the server to be in. An SQL statement sent by the
application to a server not in the required state produces an error. This is a signal to the application
that it should seek a different server in the required state to receive the SQL statement.

The following sections describe the elements of Version Tokens, discuss how to install and use it, and
provide reference information for its elements.

7.6.6.1 Version Tokens Elements

Version Tokens is based on a plugin library that implements these elements:

• A server-side plugin named version_tokens holds the list of version tokens associated with the
server and subscribes to notifications for statement execution events. The version_tokens plugin
uses the audit plugin API to monitor incoming statements from clients and matches each client's
session-specific version token list against the server version token list. If there is a match, the plugin
lets the statement through and the server continues to process it. Otherwise, the plugin returns an
error to the client and the statement fails.

• A set of loadable functions provides an SQL-level API for manipulating and inspecting the list of
server version tokens maintained by the plugin. The VERSION_TOKEN_ADMIN privilege (or the
deprecated SUPER privilege) is required to call any of the Version Token functions.

• When the version_tokens plugin loads, it defines the VERSION_TOKEN_ADMIN dynamic
privilege. This privilege can be granted to users of the functions.

• A system variable enables clients to specify the list of version tokens that register the required server
state. If the server has a different state when a client sends a statement, the client receives an error.

7.6.6.2 Installing or Uninstalling Version Tokens

Note

If installed, Version Tokens involves some overhead. To avoid this overhead, do
not install it unless you plan to use it.

This section describes how to install or uninstall Version Tokens, which is implemented in a plugin
library file containing a plugin and loadable functions. For general information about installing or
uninstalling plugins and loadable functions, see Section 7.6.1, “Installing and Uninstalling Plugins”, and
Section 7.7.1, “Installing and Uninstalling Loadable Functions”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is version_tokens. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To install the Version Tokens plugin and functions, use the INSTALL PLUGIN and CREATE
FUNCTION statements, adjusting the .so suffix for your platform as necessary:

1220

https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-types.html#audit-plugin-type

Version Tokens

INSTALL PLUGIN version_tokens SONAME 'version_token.so';
CREATE FUNCTION version_tokens_set RETURNS STRING
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_show RETURNS STRING
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_edit RETURNS STRING
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_delete RETURNS STRING
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_lock_shared RETURNS INT
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_lock_exclusive RETURNS INT
 SONAME 'version_token.so';
CREATE FUNCTION version_tokens_unlock RETURNS INT
 SONAME 'version_token.so';

You must install the functions to manage the server's version token list, but you must also install the
plugin because the functions do not work correctly without it.

If the plugin and functions are used on a replication source server, install them on all replica servers as
well to avoid replication problems.

Once installed as just described, the plugin and functions remain installed until uninstalled. To remove
them, use the UNINSTALL PLUGIN and DROP FUNCTION statements:

UNINSTALL PLUGIN version_tokens;
DROP FUNCTION version_tokens_set;
DROP FUNCTION version_tokens_show;
DROP FUNCTION version_tokens_edit;
DROP FUNCTION version_tokens_delete;
DROP FUNCTION version_tokens_lock_shared;
DROP FUNCTION version_tokens_lock_exclusive;
DROP FUNCTION version_tokens_unlock;

7.6.6.3 Using Version Tokens

Before using Version Tokens, install it according to the instructions provided at Section 7.6.6.2,
“Installing or Uninstalling Version Tokens”.

A scenario in which Version Tokens can be useful is a system that accesses a collection of MySQL
servers but needs to manage them for load balancing purposes by monitoring them and adjusting
server assignments according to load changes. Such a system comprises these elements:

• The collection of MySQL servers to be managed.

• An administrative or management application that communicates with the servers and organizes
them into high-availability groups. Groups serve different purposes, and servers within each group
may have different assignments. Assignment of a server within a certain group can change at any
time.

• Client applications that access the servers to retrieve and update data, choosing servers according
to the purposes assigned them. For example, a client should not send an update to a read-only
server.

Version Tokens permit server access to be managed according to assignment without requiring clients
to repeatedly query the servers about their assignments:

• The management application performs server assignments and establishes version tokens on each
server to reflect its assignment. The application caches this information to provide a central access
point to it.

If at some point the management application needs to change a server assignment (for example, to
change it from permitting writes to read only), it changes the server's version token list and updates
its cache.

1221

Version Tokens

• To improve performance, client applications obtain cache information from the management
application, enabling them to avoid having to retrieve information about server assignments for each
statement. Based on the type of statements it issues (for example, reads versus writes), a client
selects an appropriate server and connects to it.

• In addition, the client sends to the server its own client-specific version tokens to register the
assignment it requires of the server. For each statement sent by the client to the server, the server
compares its own token list with the client token list. If the server token list contains all tokens
present in the client token list with the same values, there is a match and the server executes the
statement.

On the other hand, perhaps the management application has changed the server assignment and its
version token list. In this case, the new server assignment may now be incompatible with the client
requirements. A token mismatch between the server and client token lists occurs and the server
returns an error in reply to the statement. This is an indication to the client to refresh its version token
information from the management application cache, and to select a new server to communicate
with.

The client-side logic for detecting version token errors and selecting a new server can be implemented
different ways:

• The client can handle all version token registration, mismatch detection, and connection switching
itself.

• The logic for those actions can be implemented in a connector that manages connections between
clients and MySQL servers. Such a connector might handle mismatch error detection and statement
resending itself, or it might pass the error to the application and leave it to the application to resend
the statement.

The following example illustrates the preceding discussion in more concrete form.

When Version Tokens initializes on a given server, the server's version token list is empty. Token
list maintenance is performed by calling functions. The VERSION_TOKEN_ADMIN privilege (or the
deprecated SUPER privilege) is required to call any of the Version Token functions, so token list
modification is expected to be done by a management or administrative application that has that
privilege.

Suppose that a management application communicates with a set of servers that are queried by clients
to access employee and product databases (named emp and prod, respectively). All servers are
permitted to process data retrieval statements, but only some of them are permitted to make database
updates. To handle this on a database-specific basis, the management application establishes a list
of version tokens on each server. In the token list for a given server, token names represent database
names and token values are read or write depending on whether the database must be used in
read-only fashion or whether it can take reads and writes.

Client applications register a list of version tokens they require the server to match by setting a system
variable. Variable setting occurs on a client-specific basis, so different clients can register different
requirements. By default, the client token list is empty, which matches any server token list. When a
client sets its token list to a nonempty value, matching may succeed or fail, depending on the server
version token list.

To define the version token list for a server, the management application calls the
version_tokens_set() function. (There are also functions for modifying and displaying the token
list, described later.) For example, the application might send these statements to a group of three
servers:

Server 1:

mysql> SELECT version_tokens_set('emp=read;prod=read');
+--+
| version_tokens_set('emp=read;prod=read') |

1222

Version Tokens

+--+
| 2 version tokens set. |
+--+

Server 2:

mysql> SELECT version_tokens_set('emp=write;prod=read');
+---+
| version_tokens_set('emp=write;prod=read') |
+---+
| 2 version tokens set. |
+---+

Server 3:

mysql> SELECT version_tokens_set('emp=read;prod=write');
+---+
| version_tokens_set('emp=read;prod=write') |
+---+
| 2 version tokens set. |
+---+

The token list in each case is specified as a semicolon-separated list of name=value pairs. The
resulting token list values result in these server assignments:

• Any server accepts reads for either database.

• Only server 2 accepts updates for the emp database.

• Only server 3 accepts updates for the prod database.

In addition to assigning each server a version token list, the management application also maintains a
cache that reflects the server assignments.

Before communicating with the servers, a client application contacts the management application
and retrieves information about server assignments. Then the client selects a server based on those
assignments. Suppose that a client wants to perform both reads and writes on the emp database.
Based on the preceding assignments, only server 2 qualifies. The client connects to server 2 and
registers its server requirements there by setting its version_tokens_session system variable:

mysql> SET @@SESSION.version_tokens_session = 'emp=write';

For subsequent statements sent by the client to server 2, the server compares its own version token list
to the client list to check whether they match. If so, statements execute normally:

mysql> UPDATE emp.employee SET salary = salary * 1.1 WHERE id = 4981;
Query OK, 1 row affected (0.07 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT last_name, first_name FROM emp.employee WHERE id = 4981;
+-----------+------------+
| last_name | first_name |
+-----------+------------+
| Smith | Abe |
+-----------+------------+
1 row in set (0.01 sec)

Discrepancies between the server and client version token lists can occur two ways:

• A token name in the version_tokens_session value is not present in the server token list. In this
case, an ER_VTOKEN_PLUGIN_TOKEN_NOT_FOUND error occurs.

• A token value in the version_tokens_session value differs from the value of the corresponding
token in the server token list. In this case, an ER_VTOKEN_PLUGIN_TOKEN_MISMATCH error occurs.

As long as the assignment of server 2 does not change, the client continues to use it for reads
and writes. But suppose that the management application wants to change server assignments so

1223

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_vtoken_plugin_token_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_vtoken_plugin_token_mismatch

Version Tokens

that writes for the emp database must be sent to server 1 instead of server 2. To do this, it uses
version_tokens_edit() to modify the emp token value on the two servers (and updates its cache
of server assignments):

Server 1:

mysql> SELECT version_tokens_edit('emp=write');
+----------------------------------+
| version_tokens_edit('emp=write') |
+----------------------------------+
| 1 version tokens updated. |
+----------------------------------+

Server 2:

mysql> SELECT version_tokens_edit('emp=read');
+---------------------------------+
| version_tokens_edit('emp=read') |
+---------------------------------+
| 1 version tokens updated. |
+---------------------------------+

version_tokens_edit() modifies the named tokens in the server token list and leaves other tokens
unchanged.

The next time the client sends a statement to server 2, its own token list no longer matches the server
token list and an error occurs:

mysql> UPDATE emp.employee SET salary = salary * 1.1 WHERE id = 4982;
ERROR 3136 (42000): Version token mismatch for emp. Correct value read

In this case, the client should contact the management application to obtain updated information about
server assignments, select a new server, and send the failed statement to the new server.

Note

Each client must cooperate with Version Tokens by sending only statements in
accordance with the token list that it registers with a given server. For example,
if a client registers a token list of 'emp=read', there is nothing in Version
Tokens to prevent the client from sending updates for the emp database. The
client itself must refrain from doing so.

For each statement received from a client, the server implicitly uses locking, as follows:

• Take a shared lock for each token named in the client token list (that is, in the
version_tokens_session value)

• Perform the comparison between the server and client token lists

• Execute the statement or produce an error depending on the comparison result

• Release the locks

The server uses shared locks so that comparisons for multiple sessions can occur without blocking,
while preventing changes to the tokens for any session that attempts to acquire an exclusive lock
before it manipulates tokens of the same names in the server token list.

The preceding example uses only a few of the functions included in the Version Tokens plugin library,
but there are others. One set of functions permits the server's list of version tokens to be manipulated
and inspected. Another set of functions permits version tokens to be locked and unlocked.

These functions permit the server's list of version tokens to be created, changed, removed, and
inspected:

1224

Version Tokens

• version_tokens_set() completely replaces the current list and assigns a new list. The argument
is a semicolon-separated list of name=value pairs.

• version_tokens_edit() enables partial modifications to the current list. It can add new tokens
or change the values of existing tokens. The argument is a semicolon-separated list of name=value
pairs.

• version_tokens_delete() deletes tokens from the current list. The argument is a semicolon-
separated list of token names.

• version_tokens_show() displays the current token list. It takes no argument.

Each of those functions, if successful, returns a binary string indicating what action occurred. The
following example establishes the server token list, modifies it by adding a new token, deletes some
tokens, and displays the resulting token list:

mysql> SELECT version_tokens_set('tok1=a;tok2=b');
+-------------------------------------+
| version_tokens_set('tok1=a;tok2=b') |
+-------------------------------------+
| 2 version tokens set. |
+-------------------------------------+
mysql> SELECT version_tokens_edit('tok3=c');
+-------------------------------+
| version_tokens_edit('tok3=c') |
+-------------------------------+
| 1 version tokens updated. |
+-------------------------------+
mysql> SELECT version_tokens_delete('tok2;tok1');
+------------------------------------+
| version_tokens_delete('tok2;tok1') |
+------------------------------------+
| 2 version tokens deleted. |
+------------------------------------+
mysql> SELECT version_tokens_show();
+-----------------------+
| version_tokens_show() |
+-----------------------+
| tok3=c; |
+-----------------------+

Warnings occur if a token list is malformed:

mysql> SELECT version_tokens_set('tok1=a; =c');
+----------------------------------+
| version_tokens_set('tok1=a; =c') |
+----------------------------------+
| 1 version tokens set. |
+----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 42000
Message: Invalid version token pair encountered. The list provided
 is only partially updated.
1 row in set (0.00 sec)

As mentioned previously, version tokens are defined using a semicolon-separated list of name=value
pairs. Consider this invocation of version_tokens_set():

mysql> SELECT version_tokens_set('tok1=b;;; tok2= a = b ; tok1 = 1\'2 3"4')
+---+
| version_tokens_set('tok1=b;;; tok2= a = b ; tok1 = 1\'2 3"4') |
+---+
| 3 version tokens set. |
+---+

Version Tokens interprets the argument as follows:

1225

Version Tokens

• Whitespace around names and values is ignored. Whitespace within names and values is permitted.
(For version_tokens_delete(), which takes a list of names without values, whitespace around
names is ignored.)

• There is no quoting mechanism.

• Order of tokens is not significant except that if a token list contains multiple instances of a given
token name, the last value takes precedence over earlier values.

Given those rules, the preceding version_tokens_set() call results in a token list with
two tokens: tok1 has the value 1'2 3"4, and tok2 has the value a = b. To verify this, call
version_tokens_show():

mysql> SELECT version_tokens_show();
+--------------------------+
| version_tokens_show() |
+--------------------------+
| tok2=a = b;tok1=1'2 3"4; |
+--------------------------+

If the token list contains two tokens, why did version_tokens_set() return the value 3 version
tokens set? That occurred because the original token list contained two definitions for tok1, and the
second definition replaced the first.

The Version Tokens token-manipulation functions place these constraints on token names and values:

• Token names cannot contain = or ; characters and have a maximum length of 64 characters.

• Token values cannot contain ; characters. Length of values is constrained by the value of the
max_allowed_packet system variable.

• Version Tokens treats token names and values as binary strings, so comparisons are case-sensitive.

Version Tokens also includes a set of functions enabling tokens to be locked and unlocked:

• version_tokens_lock_exclusive() acquires exclusive version token locks. It takes a list of
one or more lock names and a timeout value.

• version_tokens_lock_shared() acquires shared version token locks. It takes a list of one or
more lock names and a timeout value.

• version_tokens_unlock() releases version token locks (exclusive and shared). It takes no
argument.

Each locking function returns nonzero for success. Otherwise, an error occurs:

mysql> SELECT version_tokens_lock_shared('lock1', 'lock2', 0);
+---+
| version_tokens_lock_shared('lock1', 'lock2', 0) |
+---+
| 1 |
+---+

mysql> SELECT version_tokens_lock_shared(NULL, 0);
ERROR 3131 (42000): Incorrect locking service lock name '(null)'.

Locking using Version Tokens locking functions is advisory; applications must agree to cooperate.

It is possible to lock nonexisting token names. This does not create the tokens.

Note

Version Tokens locking functions are based on the locking service described at
Section 7.6.9.1, “The Locking Service”, and thus have the same semantics for
shared and exclusive locks. (Version Tokens uses the locking service routines
built into the server, not the locking service function interface, so those functions

1226

Version Tokens

need not be installed to use Version Tokens.) Locks acquired by Version
Tokens use a locking service namespace of version_token_locks. Locking
service locks can be monitored using the Performance Schema, so this is also
true for Version Tokens locks. For details, see Locking Service Monitoring.

For the Version Tokens locking functions, token name arguments are used exactly as specified.
Surrounding whitespace is not ignored and = and ; characters are permitted. This is because Version
Tokens simply passes the token names to be locked as is to the locking service.

7.6.6.4 Version Tokens Reference

The following discussion serves as a reference to these Version Tokens elements:

• Version Tokens Functions

• Version Tokens System Variables

Version Tokens Functions

The Version Tokens plugin library includes several functions. One set of functions permits the server's
list of version tokens to be manipulated and inspected. Another set of functions permits version tokens
to be locked and unlocked. The VERSION_TOKEN_ADMIN privilege (or the deprecated SUPER privilege)
is required to invoke any Version Tokens function.

The following functions permit the server's list of version tokens to be created, changed, removed, and
inspected. Interpretation of name_list and token_list arguments (including whitespace handling)
occurs as described in Section 7.6.6.3, “Using Version Tokens”, which provides details about the
syntax for specifying tokens, as well as additional examples.

• version_tokens_delete(name_list)

Deletes tokens from the server's list of version tokens using the name_list argument and returns a
binary string that indicates the outcome of the operation. name_list is a semicolon-separated list of
version token names to delete.

mysql> SELECT version_tokens_delete('tok1;tok3');
+------------------------------------+
| version_tokens_delete('tok1;tok3') |
+------------------------------------+
| 2 version tokens deleted. |
+------------------------------------+

An argument of NULL is treated as an empty string, which has no effect on the token list.

version_tokens_delete() deletes the tokens named in its argument, if they exist. (It is not an
error to delete nonexisting tokens.) To clear the token list entirely without knowing which tokens are
in the list, pass NULL or a string containing no tokens to version_tokens_set():

mysql> SELECT version_tokens_set(NULL);
+------------------------------+
| version_tokens_set(NULL) |
+------------------------------+
| Version tokens list cleared. |
+------------------------------+
mysql> SELECT version_tokens_set('');
+------------------------------+
| version_tokens_set('') |
+------------------------------+
| Version tokens list cleared. |
+------------------------------+

• version_tokens_edit(token_list)

Modifies the server's list of version tokens using the token_list argument and returns a binary
string that indicates the outcome of the operation. token_list is a semicolon-separated list of

1227

Version Tokens

name=value pairs specifying the name of each token to be defined and its value. If a token exists,
its value is updated with the given value. If a token does not exist, it is created with the given value. If
the argument is NULL or a string containing no tokens, the token list remains unchanged.

mysql> SELECT version_tokens_set('tok1=value1;tok2=value2');
+---+
| version_tokens_set('tok1=value1;tok2=value2') |
+---+
| 2 version tokens set. |
+---+
mysql> SELECT version_tokens_edit('tok2=new_value2;tok3=new_value3');
+--+
| version_tokens_edit('tok2=new_value2;tok3=new_value3') |
+--+
| 2 version tokens updated. |
+--+

• version_tokens_set(token_list)

Replaces the server's list of version tokens with the tokens defined in the token_list argument
and returns a binary string that indicates the outcome of the operation. token_list is a semicolon-
separated list of name=value pairs specifying the name of each token to be defined and its value. If
the argument is NULL or a string containing no tokens, the token list is cleared.

mysql> SELECT version_tokens_set('tok1=value1;tok2=value2');
+---+
| version_tokens_set('tok1=value1;tok2=value2') |
+---+
| 2 version tokens set. |
+---+

• version_tokens_show()

Returns the server's list of version tokens as a binary string containing a semicolon-separated list of
name=value pairs.

mysql> SELECT version_tokens_show();
+--------------------------+
| version_tokens_show() |
+--------------------------+
| tok2=value2;tok1=value1; |
+--------------------------+

The following functions permit version tokens to be locked and unlocked:

• version_tokens_lock_exclusive(token_name[, token_name] ..., timeout)

Acquires exclusive locks on one or more version tokens, specified by name as strings, timing out
with an error if the locks are not acquired within the given timeout value.

mysql> SELECT version_tokens_lock_exclusive('lock1', 'lock2', 10);
+---+
| version_tokens_lock_exclusive('lock1', 'lock2', 10) |
+---+
| 1 |
+---+

• version_tokens_lock_shared(token_name[, token_name] ..., timeout)

Acquires shared locks on one or more version tokens, specified by name as strings, timing out with
an error if the locks are not acquired within the given timeout value.

mysql> SELECT version_tokens_lock_shared('lock1', 'lock2', 10);
+--+
| version_tokens_lock_shared('lock1', 'lock2', 10) |
+--+
| 1 |
+--+

1228

Version Tokens

• version_tokens_unlock()

Releases all locks that were acquired within the current session using
version_tokens_lock_exclusive() and version_tokens_lock_shared().

mysql> SELECT version_tokens_unlock();
+-------------------------+
| version_tokens_unlock() |
+-------------------------+
| 1 |
+-------------------------+

The locking functions share these characteristics:

• The return value is nonzero for success. Otherwise, an error occurs.

• Token names are strings.

• In contrast to argument handling for the functions that manipulate the server token list, whitespace
surrounding token name arguments is not ignored and = and ; characters are permitted.

• It is possible to lock nonexisting token names. This does not create the tokens.

• Timeout values are nonnegative integers representing the time in seconds to wait to acquire locks
before timing out with an error. If the timeout is 0, there is no waiting and the function produces an
error if locks cannot be acquired immediately.

• Version Tokens locking functions are based on the locking service described at Section 7.6.9.1, “The
Locking Service”.

Version Tokens System Variables

Version Tokens supports the following system variables. These variables are unavailable unless the
Version Tokens plugin is installed (see Section 7.6.6.2, “Installing or Uninstalling Version Tokens”).

System variables:

• version_tokens_session

Command-Line Format --version-tokens-session=value

System Variable version_tokens_session

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

The session value of this variable specifies the client version token list and indicates the tokens that
the client session requires the server version token list to have.

If the version_tokens_session variable is NULL (the default) or has an empty value, any server
version token list matches. (In effect, an empty value disables matching requirements.)

If the version_tokens_session variable has a nonempty value, any mismatch between its value
and the server version token list results in an error for any statement the session sends to the server.
A mismatch occurs under these conditions:

• A token name in the version_tokens_session value is not present in the server token list. In
this case, an ER_VTOKEN_PLUGIN_TOKEN_NOT_FOUND error occurs.

1229

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_vtoken_plugin_token_not_found

Version Tokens

• A token value in the version_tokens_session value differs from the
value of the corresponding token in the server token list. In this case, an
ER_VTOKEN_PLUGIN_TOKEN_MISMATCH error occurs.

It is not a mismatch for the server version token list to include a token not named in the
version_tokens_session value.

Suppose that a management application has set the server token list as follows:

mysql> SELECT version_tokens_set('tok1=a;tok2=b;tok3=c');
+--+
| version_tokens_set('tok1=a;tok2=b;tok3=c') |
+--+
| 3 version tokens set. |
+--+

A client registers the tokens it requires the server to match by setting its
version_tokens_session value. Then, for each subsequent statement sent by the client, the
server checks its token list against the client version_tokens_session value and produces an
error if there is a mismatch:

mysql> SET @@SESSION.version_tokens_session = 'tok1=a;tok2=b';
mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+

mysql> SET @@SESSION.version_tokens_session = 'tok1=b';
mysql> SELECT 1;
ERROR 3136 (42000): Version token mismatch for tok1. Correct value a

The first SELECT succeeds because the client tokens tok1 and tok2 are present in the server
token list and each token has the same value in the server list. The second SELECT fails because,
although tok1 is present in the server token list, it has a different value than specified by the client.

At this point, any statement sent by the client fails, unless the server token list changes such that it
matches again. Suppose that the management application changes the server token list as follows:

mysql> SELECT version_tokens_edit('tok1=b');
+-------------------------------+
| version_tokens_edit('tok1=b') |
+-------------------------------+
| 1 version tokens updated. |
+-------------------------------+
mysql> SELECT version_tokens_show();
+-----------------------+
| version_tokens_show() |
+-----------------------+
| tok3=c;tok1=b;tok2=b; |
+-----------------------+

Now the client version_tokens_session value matches the server token list and the client can
once again successfully execute statements:

mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+

• version_tokens_session_number

Command-Line Format --version-tokens-session-number=#

1230

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_vtoken_plugin_token_mismatch

The Clone Plugin

System Variable version_tokens_session_number

Scope Global, Session

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 0

This variable is for internal use.

7.6.7 The Clone Plugin

The clone plugin, introduced in MySQL 8.0.17, permits cloning data locally or from a remote MySQL
server instance. Cloned data is a physical snapshot of data stored in InnoDB that includes schemas,
tables, tablespaces, and data dictionary metadata. The cloned data comprises a fully functional data
directory, which permits using the clone plugin for MySQL server provisioning.

Figure 7.1 Local Cloning Operation

A local cloning operation clones data from the MySQL server instance where the cloning operation is
initiated to a directory on the same server or node where MySQL server instance runs.

Figure 7.2 Remote Cloning Operation

A remote cloning operation involves a local MySQL server instance (the “recipient”) where the cloning
operation is initiated, and a remote MySQL server instance (the “donor”) where the source data is

1231

The Clone Plugin

located. When a remote cloning operation is initiated on the recipient, cloned data is transferred over
the network from the donor to the recipient. By default, a remote cloning operation removes existing
user-created data (schemas, tables, tablespaces) and binary logs from the recipient data directory
before cloning data from the donor. Optionally, you can clone data to a different directory on the
recipient to avoid removing data from the current recipient data directory.

There is no difference with respect to data that is cloned by a local cloning operation as compared to a
remote cloning operation. Both operations clone the same set of data.

The clone plugin supports replication. In addition to cloning data, a cloning operation extracts and
transfers replication coordinates from the donor and applies them on the recipient, which enables
using the clone plugin for provisioning Group Replication members and replicas. Using the clone
plugin for provisioning is considerably faster and more efficient than replicating a large number of
transactions (see Section 7.6.7.7, “Cloning for Replication”). Group Replication members can also be
configured to use the clone plugin as an alternative method of recovery, so that members automatically
choose the most efficient way to retrieve group data from seed members. For more information, see
Section 20.5.4.2, “Cloning for Distributed Recovery”.

The clone plugin supports cloning of encrypted and page-compressed data. See Section 7.6.7.5,
“Cloning Encrypted Data”, and Section 7.6.7.6, “Cloning Compressed Data”.

The clone plugin must be installed before you can use it. For installation instructions, see
Section 7.6.7.1, “Installing the Clone Plugin”. For cloning instructions, see Section 7.6.7.2, “Cloning
Data Locally”, and Section 7.6.7.3, “Cloning Remote Data”.

Performance Schema tables and instrumentation are provided for monitoring cloning operations. See
Section 7.6.7.10, “Monitoring Cloning Operations”.

7.6.7.1 Installing the Clone Plugin

This section describes how to install and configure the clone plugin. For remote cloning operations, the
clone plugin must be installed on the donor and recipient MySQL server instances.

For general information about installing or uninstalling plugins, see Section 7.6.1, “Installing and
Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, set the value of plugin_dir at
server startup to tell the server the plugin directory location.

The plugin library file base name is mysql_clone.so. The file name suffix differs by platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in your my.cnf file, adjusting the plugin library file name extension for your
platform as necessary. (The plugin library file name extension depends on your platform. Common
suffixes are .so for Unix and Unix-like systems, .dll for Windows.)

[mysqld]
plugin-load-add=mysql_clone.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Note

The --plugin-load-add option cannot be used to load the clone plugin
when restarting the server during an upgrade from a previous MySQL
version. For example, after upgrading binaries or packages from MySQL

1232

The Clone Plugin

5.7 to MySQL 8.0, attempting to restart the server with plugin-load-
add=mysql_clone.so causes this error: [ERROR] [MY-013238]
[Server] Error installing plugin 'clone': Cannot install
during upgrade. The workaround is to upgrade the server before attempting
to start the server with plugin-load-add=mysql_clone.so.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform
as necessary:

INSTALL PLUGIN clone SONAME 'mysql_clone.so';

INSTALL PLUGIN loads the plugin, and also registers it in the mysql.plugins system table to cause
the plugin to be loaded for each subsequent normal server startup without the need for --plugin-
load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME = 'clone';
+------------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+------------------------+---------------+
| clone | ACTIVE |
+------------------------+---------------+

If the plugin fails to initialize, check the server error log for clone or plugin-related diagnostic messages.

If the plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-
load-add, you can use the --clone option at server startup to control the plugin activation state. For
example, to load the plugin at startup and prevent it from being removed at runtime, use these options:

[mysqld]
plugin-load-add=mysql_clone.so
clone=FORCE_PLUS_PERMANENT

If you want to prevent the server from running without the clone plugin, use --clone with a value
of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not initialize
successfully.

For more information about plugin activation states, see Controlling Plugin Activation State.

7.6.7.2 Cloning Data Locally

The clone plugin supports the following syntax for cloning data locally; that is, cloning data from the
local MySQL data directory to another directory on the same server or node where the MySQL server
instance runs:

CLONE LOCAL DATA DIRECTORY [=] 'clone_dir';

To use CLONE syntax, the clone plugin must be installed. For installation instructions, see
Section 7.6.7.1, “Installing the Clone Plugin”.

The BACKUP_ADMIN privilege is required to execute CLONE LOCAL DATA DIRECTORY statements.

mysql> GRANT BACKUP_ADMIN ON *.* TO 'clone_user';

where clone_user is the MySQL user that performs the cloning operation. The user you select to
perform the cloning operation can be any MySQL user with the BACKUP_ADMIN privilege on *.*.

The following example demonstrates cloning data locally:

1233

The Clone Plugin

mysql> CLONE LOCAL DATA DIRECTORY = '/path/to/clone_dir';

where /path/to/clone_dir is the full path of the local directory that data is cloned to. An absolute
path is required, and the specified directory (“clone_dir”) must not exist, but the specified path must
be an existent path. The MySQL server must have the necessary write access to create the directory.

Note

A local cloning operation does not support cloning of user-created tables or
tablespaces that reside outside of the data directory. Attempting to clone such
tables or tablespaces causes the following error: ERROR 1086 (HY000):
File '/path/to/tablespace_name.ibd' already exists. Cloning a
tablespace with the same path as the source tablespace would cause a conflict
and is therefore prohibited.

All other user-created InnoDB tables and tablespaces, the InnoDB system
tablespace, redo logs, and undo tablespaces are cloned to the specified
directory.

If desired, you can start the MySQL server on the cloned directory after the cloning operation is
complete.

$> mysqld_safe --datadir=clone_dir

where clone_dir is the directory that data was cloned to.

For information about monitoring cloning operation status and progress, see Section 7.6.7.10,
“Monitoring Cloning Operations”.

7.6.7.3 Cloning Remote Data

The clone plugin supports the following syntax for cloning remote data; that is, cloning data from a
remote MySQL server instance (the donor) and transferring it to the MySQL instance where the cloning
operation was initiated (the recipient).

CLONE INSTANCE FROM 'user'@'host':port
IDENTIFIED BY 'password'
[DATA DIRECTORY [=] 'clone_dir']
[REQUIRE [NO] SSL];

where:

• user is the clone user on the donor MySQL server instance.

• password is the user password.

• host is the hostname address of the donor MySQL server instance. Internet Protocol version 6
(IPv6) address format is not supported. An alias to the IPv6 address can be used instead. An IPv4
address can be used as is.

• port is the port number of the donor MySQL server instance. (The X Protocol port specified by
mysqlx_port is not supported. Connecting to the donor MySQL server instance through MySQL
Router is also not supported.)

• DATA DIRECTORY [=] 'clone_dir' is an optional clause used to specify a directory on the
recipient for the data you are cloning. Use this option if you do not want to remove existing user-
created data (schemas, tables, tablespaces) and binary logs from the recipient data directory.
An absolute path is required, and the directory must not exist. The MySQL server must have the
necessary write access to create the directory.

When the optional DATA DIRECTORY [=] 'clone_dir' clause is not used, a cloning operation
removes user-created data (schemas, tables, tablespaces) and binary logs from the recipient data

1234

The Clone Plugin

directory, clones the new data to the recipient data directory, and automatically restarts the server
afterward.

• [REQUIRE [NO] SSL] explicitly specifies whether an encrypted connection is to be used or not
when transferring cloned data over the network. An error is returned if the explicit specification
cannot be satisfied. If an SSL clause is not specified, clone attempts to establish an encrypted
connection by default, falling back to an insecure connection if the secure connection attempt fails.
A secure connection is required when cloning encrypted data regardless of whether this clause is
specified. For more information, see Configuring an Encrypted Connection for Cloning.

Note

By default, user-created InnoDB tables and tablespaces that reside in the
data directory on the donor MySQL server instance are cloned to the data
directory on the recipient MySQL server instance. If the DATA DIRECTORY [=]
'clone_dir' clause is specified, they are cloned to the specified directory.

User-created InnoDB tables and tablespaces that reside outside of the data
directory on the donor MySQL server instance are cloned to the same path
on the recipient MySQL server instance. An error is reported if a table or
tablespace already exists.

By default, the InnoDB system tablespace, redo logs, and undo tablespaces
are cloned to the same locations that are configured on the donor (as
defined by innodb_data_home_dir and innodb_data_file_path,
innodb_log_group_home_dir, and innodb_undo_directory,
respectively). If the DATA DIRECTORY [=] 'clone_dir' clause is specified,
those tablespaces and logs are cloned to the specified directory.

Remote Cloning Prerequisites

To perform a cloning operation, the clone plugin must be active on both the donor and recipient MySQL
server instances. For installation instructions, see Section 7.6.7.1, “Installing the Clone Plugin”.

A MySQL user on the donor and recipient is required for executing the cloning operation (the “clone
user”).

• On the donor, the clone user requires the BACKUP_ADMIN privilege for accessing and transferring
data from the donor and blocking concurrent DDL during the cloning operation. Concurrent DDL
during the cloning operation is blocked on the donor prior to MySQL 8.0.27. From MySQL 8.0.27,
concurrent DDL is permitted on the donor by default. See Section 7.6.7.4, “Cloning and Concurrent
DDL”.

• On the recipient, the clone user requires the CLONE_ADMIN privilege for replacing recipient data,
blocking DDL on the recipient during the cloning operation, and automatically restarting the server.
The CLONE_ADMIN privilege includes BACKUP_ADMIN and SHUTDOWN privileges implicitly.

Instructions for creating the clone user and granting the required privileges are included in the remote
cloning example that follows this prerequisite information.

The following prerequisites are checked when the CLONE INSTANCE statement is executed:

• The clone plugin is supported in MySQL 8.0.17 and higher. The donor and recipient must be the
same MySQL server series, such as 8.0.37 and 8.0.41. They must also be the same point release for
versions before 8.0.37.

mysql> SHOW VARIABLES LIKE 'version';
 +---------------+--------+
| Variable_name | Value |
+---------------+--------+
| version | 8.0.42 |
+---------------+--------+

1235

The Clone Plugin

Cloning from a donor MySQL server instance to a hotfix MySQL server instance of the same version
and release is supported as of MySQL 8.0.26.

Cloning from different point releases within a series is supported as of MySQL 8.0.37. Previous
restrictions still apply to versions older than 8.0.37. For example, cloning 8.0.36 to 8.0.42 or vice-
versa is not permitted.

• The donor and recipient MySQL server instances must run on the same operating system and
platform. For example, if the donor instance runs on a Linux 64-bit platform, the recipient instance
must also run on that platform. Refer to your operating system documentation for information about
how to determine your operating system platform.

• The recipient must have enough disk space for the cloned data. By default, user-created data
(schemas, tables, tablespaces) and binary logs are removed on the recipient prior to cloning the
donor data, so you only require enough space for the donor data. If you clone to a named directory
using the DATA DIRECTORY clause, you must have enough disk space for the existing recipient
data and the cloned data. You can estimate the size of your data by checking the data directory size
on your file system and the size of any tablespaces that reside outside of the data directory. When
estimating data size on the donor, remember that only InnoDB data is cloned. If you store data in
other storage engines, adjust your data size estimate accordingly.

• InnoDB permits creating some tablespace types outside of the data directory. If the donor MySQL
server instance has tablespaces that reside outside of the data directory, the cloning operation must
be able access those tablespaces. You can query the Information Schema FILES table to identify
tablespaces that reside outside of the data directory. Files that reside outside of the data directory
have a fully qualified path to a directory other than the data directory.

mysql> SELECT FILE_NAME FROM INFORMATION_SCHEMA.FILES;

• Plugins that are active on the donor, including any keyring plugin, must also be active on the
recipient. You can identify active plugins by issuing a SHOW PLUGINS statement or by querying the
Information Schema PLUGINS table.

• The donor and recipient must have the same MySQL server character set and collation. For
information about MySQL server character set and collation configuration, see Section 12.15,
“Character Set Configuration”.

• The same innodb_page_size and innodb_data_file_path settings are required on the donor
and recipient. The innodb_data_file_path setting on the donor and recipient must specify
the same number of data files of an equivalent size. You can check variable settings using SHOW
VARIABLES syntax.

mysql> SHOW VARIABLES LIKE 'innodb_page_size';
mysql> SHOW VARIABLES LIKE 'innodb_data_file_path';

• If cloning encrypted or page-compressed data, the donor and recipient must have the same file
system block size. For page-compressed data, the recipient file system must support sparse files
and hole punching for hole punching to occur on the recipient. For information about these features
and how to identify tables and tablespaces that use them, see Section 7.6.7.5, “Cloning Encrypted
Data”, and Section 7.6.7.6, “Cloning Compressed Data”. To determine your file system block size,
refer to your operating system documentation.

• A secure connection is required if you are cloning encrypted data. See Configuring an Encrypted
Connection for Cloning.

• The clone_valid_donor_list setting on the recipient must include the host address of the donor
MySQL server instance. You can only clone data from a host on the valid donor list. A MySQL user
with the SYSTEM_VARIABLES_ADMIN privilege is required to configure this variable. Instructions
for setting the clone_valid_donor_list variable are provided in the remote cloning example
that follows this section. You can check the clone_valid_donor_list setting using SHOW
VARIABLES syntax.

1236

The Clone Plugin

mysql> SHOW VARIABLES LIKE 'clone_valid_donor_list';

• There must be no other cloning operation running. Only a single cloning operation is permitted at a
time. To determine if a clone operation is running, query the clone_status table. See Monitoring
Cloning Operations using Performance Schema Clone Tables.

• The clone plugin transfers data in 1MB packets plus metadata. The minimum required
max_allowed_packet value is therefore 2MB on the donor and the recipient MySQL server
instances. A max_allowed_packet value less than 2MB results in an error. Use the following
query to check your max_allowed_packet setting:

mysql> SHOW VARIABLES LIKE 'max_allowed_packet';

The following prerequisites also apply:

• Undo tablespace file names on the donor must be unique. When data is cloned to the recipient, undo
tablespaces, regardless of their location on the donor, are cloned to the innodb_undo_directory
location on the recipient or to the directory specified by the DATA DIRECTORY [=] 'clone_dir'
clause, if used. Duplicate undo tablespace file names on the donor are not permitted for this reason.
As of MySQL 8.0.18, an error is reported if duplicate undo tablespace file names are encountered
during a cloning operation. Prior to MySQL 8.0.18, cloning undo tablespaces with the same file name
could result in undo tablespace files being overwritten on the recipient.

To view undo tablespace file names on the donor to ensure that they are unique, query
INFORMATION_SCHEMA.FILES:

mysql> SELECT TABLESPACE_NAME, FILE_NAME FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_TYPE LIKE 'UNDO LOG';

For information about dropping and adding undo tablespace files, see Section 17.6.3.4, “Undo
Tablespaces”.

• By default, the recipient MySQL server instance is restarted (stopped and started) automatically after
the data is cloned. For an automatic restart to occur, a monitoring process must be available on the
recipient to detect server shutdowns. Otherwise, the cloning operation halts with the following error
after the data is cloned, and the recipient MySQL server instance is shut down:

ERROR 3707 (HY000): Restart server failed (mysqld is not managed by supervisor process).

This error does not indicate a cloning failure. It means that the recipient MySQL server instance
must be started again manually after the data is cloned. After starting the server manually, you can
connect to the recipient MySQL server instance and check the Performance Schema clone tables to
verify that the cloning operation completed successfully (see Monitoring Cloning Operations using
Performance Schema Clone Tables.) The RESTART statement has the same monitoring process
requirement. For more information, see Section 15.7.8.8, “RESTART Statement”. This requirement
is not applicable if cloning to a named directory using the DATA DIRECTORY clause, as an automatic
restart is not performed in this case.

• Several variables control various aspects of a remote cloning operation. Before performing a remote
cloning operation, review the variables and adjust settings as necessary to suit your computing
environment. Clone variables are set on recipient MySQL server instance where the cloning
operation is executed. See Section 7.6.7.13, “Clone System Variables”.

Cloning Remote Data

The following example demonstrates cloning remote data. By default, a remote cloning operation
removes user-created data (schemas, tables, tablespaces) and binary logs on the recipient, clones the
new data to the recipient data directory, and restarts the MySQL server afterward.

The example assumes that remote cloning prerequisites are met. See Remote Cloning Prerequisites.

1. Login to the donor MySQL server instance with an administrative user account.

1237

The Clone Plugin

a. Create a clone user with the BACKUP_ADMIN privilege.

mysql> CREATE USER 'donor_clone_user'@'example.donor.host.com' IDENTIFIED BY 'password';
mysql> GRANT BACKUP_ADMIN on *.* to 'donor_clone_user'@'example.donor.host.com';

b. Install the clone plugin:

mysql> INSTALL PLUGIN clone SONAME 'mysql_clone.so';

2. Login to the recipient MySQL server instance with an administrative user account.

a. Create a clone user with the CLONE_ADMIN privilege.

mysql> CREATE USER 'recipient_clone_user'@'example.recipient.host.com' IDENTIFIED BY 'password';
mysql> GRANT CLONE_ADMIN on *.* to 'recipient_clone_user'@'example.recipient.host.com';

b. Install the clone plugin:

mysql> INSTALL PLUGIN clone SONAME 'mysql_clone.so';

c. Add the host address of the donor MySQL server instance to the clone_valid_donor_list
variable setting.

mysql> SET GLOBAL clone_valid_donor_list = 'example.donor.host.com:3306';

3. Log on to the recipient MySQL server instance as the clone user you created previously
(recipient_clone_user'@'example.recipient.host.com) and execute the CLONE
INSTANCE statement.

mysql> CLONE INSTANCE FROM 'donor_clone_user'@'example.donor.host.com':3306
 IDENTIFIED BY 'password';

After the data is cloned, the MySQL server instance on the recipient is restarted automatically.

For information about monitoring cloning operation status and progress, see Section 7.6.7.10,
“Monitoring Cloning Operations”.

Cloning to a Named Directory

By default, a remote cloning operation removes user-created data (schemas, tables, tablespaces)
and binary logs from the recipient data directory before cloning data from the donor MySQL Server
instance. By cloning to a named directory, you can avoid removing data from the current recipient data
directory.

The procedure for cloning to a named directory is the same procedure described in Cloning Remote
Data with one exception: The CLONE INSTANCE statement must include the DATA DIRECTORY
clause. For example:

mysql> CLONE INSTANCE FROM 'user'@'example.donor.host.com':3306
 IDENTIFIED BY 'password'
 DATA DIRECTORY = '/path/to/clone_dir';

An absolute path is required, and the directory must not exist. The MySQL server must have the
necessary write access to create the directory.

When cloning to a named directory, the recipient MySQL server instance is not restarted automatically
after the data is cloned. If you want to restart the MySQL server on the named directory, you must do
so manually:

$> mysqld_safe --datadir=/path/to/clone_dir

where /path/to/clone_dir is the path to the named directory on the recipient.

Configuring an Encrypted Connection for Cloning

1238

The Clone Plugin

You can configure an encrypted connection for remote cloning operations to protect data as it is cloned
over the network. An encrypted connection is required by default when cloning encrypted data. (see
Section 7.6.7.5, “Cloning Encrypted Data”.)

The instructions that follow describe how to configure the recipient MySQL server instance to use
an encrypted connection. It is assumed that the donor MySQL server instance is already configured
to use encrypted connections. If not, refer to Section 8.3.1, “Configuring MySQL to Use Encrypted
Connections” for server-side configuration instructions.

To configure the recipient MySQL server instance to use an encrypted connection:

1. Make the client certificate and key files of the donor MySQL server instance available to the
recipient host. Either distribute the files to the recipient host using a secure channel or place them
on a mounted partition that is accessible to the recipient host. The client certificate and key files to
make available include:

• ca.pem

The self-signed certificate authority (CA) file.

• client-cert.pem

The client public key certificate file.

• client-key.pem

The client private key file.

2. Configure the following SSL options on the recipient MySQL server instance.

• clone_ssl_ca

Specifies the path to the self-signed certificate authority (CA) file.

• clone_ssl_cert

Specifies the path to the client public key certificate file.

• clone_ssl_key

Specifies the path to the client private key file.

For example:

clone_ssl_ca=/path/to/ca.pem
clone_ssl_cert=/path/to/client-cert.pem
clone_ssl_key=/path/to/client-key.pem

3. To require that an encrypted connection is used, include the REQUIRE SSL clause when issuing
the CLONE statement on the recipient.

mysql> CLONE INSTANCE FROM 'user'@'example.donor.host.com':3306
 IDENTIFIED BY 'password'
 DATA DIRECTORY = '/path/to/clone_dir'
 REQUIRE SSL;

If an SSL clause is not specified, the clone plugin attempts to establish an encrypted connection by
default, falling back to an unencrypted connection if the encrypted connection attempt fails.

Note

If you are cloning encrypted data, an encrypted connection is required by
default regardless of whether the REQUIRE SSL clause is specified. Using
REQUIRE NO SSL causes an error if you attempt to clone encrypted data.

1239

The Clone Plugin

7.6.7.4 Cloning and Concurrent DDL

Prior to MySQL 8.0.27, DDL operations on the donor and recipient MySQL Server instances,
including TRUNCATE TABLE, are not permitted during a cloning operation. This limitation should be
considered when selecting data sources. A workaround is to use dedicated donor instances, which can
accommodate DDL operations being blocked while data is cloned.

To prevent concurrent DDL during a cloning operation, an exclusive backup lock is acquired on the
donor and recipient. The clone_ddl_timeout variable defines the time in seconds on the donor
and recipient that a cloning operation waits for a backup lock. The default setting is 300 seconds. If a
backup lock is not obtained with the specified time limit, the cloning operation fails with an error.

From MySQL 8.0.27, concurrent DDL is permitted on the donor by default. Concurrent DDL support on
the donor is controlled by the clone_block_ddl variable. Concurrent DDL support can be enabled
and disabled dynamically using a SET statement.

SET GLOBAL clone_block_ddl={OFF|ON}

The default setting is clone_block_ddl=OFF, which permits concurrent DDL on the donor.

Whether the effect of a concurrent DDL operation is cloned or not depends on whether the DDL
operation finishes before the dynamic snapshot is taken by the cloning operation.

DDL operations that are not permitted during a cloning operation regardless of the clone_block_ddl
setting include:

• ALTER TABLE tbl_name DISCARD TABLESPACE;

• ALTER TABLE tbl_name IMPORT TABLESPACE;

• ALTER INSTANCE DISABLE INNODB REDO_LOG;

7.6.7.5 Cloning Encrypted Data

Cloning of encrypted data is supported. The following requirements apply:

• A secure connection is required when cloning remote data to ensure safe transfer of unencrypted
tablespace keys over the network. Tablespace keys are decrypted at the donor before transport
and re-encrypted at the recipient using the recipient master key. An error is reported if an encrypted
connection is not available or the REQUIRE NO SSL clause is used in the CLONE INSTANCE
statement. For information about configuring an encrypted connection for cloning, see Configuring an
Encrypted Connection for Cloning.

• When cloning data to a local data directory that uses a locally managed keyring, the same keyring
must be used when starting the MySQL server on the clone directory.

• When cloning data to a remote data directory (the recipient directory) that uses a locally managed
keyring, the recipient keyring must be used when starting the MySQL sever on the cloned directory.

Note

The innodb_redo_log_encrypt and innodb_undo_log_encrypt
variable settings cannot be modified while a cloning operation is in progress.

For information about the data encryption feature, see Section 17.13, “InnoDB Data-at-Rest
Encryption”.

7.6.7.6 Cloning Compressed Data

Cloning of page-compressed data is supported. The following requirements apply when cloning remote
data:

1240

The Clone Plugin

• The recipient file system must support sparse files and hole punching for hole punching to occur on
the recipient.

• The donor and recipient file systems must have the same block size. If file system block sizes differ,
an error similar to the following is reported: ERROR 3868 (HY000): Clone Configuration FS
Block Size: Donor value: 114688 is different from Recipient value: 4096.

For information about the page compression feature, see Section 17.9.2, “InnoDB Page Compression”.

7.6.7.7 Cloning for Replication

The clone plugin supports replication. In addition to cloning data, a cloning operation extracts
replication coordinates from the donor and transfers them to the recipient, which enables using the
clone plugin for provisioning Group Replication members and replicas. Using the clone plugin for
provisioning is considerably faster and more efficient than replicating a large number of transactions.

Group Replication members can also be configured to use the clone plugin as an option for distributed
recovery, in which case joining members automatically choose the most efficient way to retrieve group
data from existing group members. For more information, see Section 20.5.4.2, “Cloning for Distributed
Recovery”.

During the cloning operation, both the binary log position (filename, offset) and the gtid_executed
GTID set are extracted and transferred from the donor MySQL server instance to the recipient. This
data permits initiating replication at a consistent position in the replication stream. The binary logs and
relay logs, which are held in files, are not copied from the donor to the recipient. To initiate replication,
the binary logs required for the recipient to catch up to the donor must not be purged between the
time that the data is cloned and the time that replication is started. If the required binary logs are not
available, a replication handshake error is reported. A cloned instance should therefore be added to
a replication group without excessive delay to avoid required binary logs being purged or the new
member lagging behind significantly, requiring more recovery time.

• Issue this query on a cloned MySQL server instance to check the binary log position that was
transferred to the recipient:

mysql> SELECT BINLOG_FILE, BINLOG_POSITION FROM performance_schema.clone_status;

• Issue this query on a cloned MySQL server instance to check the gtid_executed GTID set that
was transferred to the recipient:

mysql> SELECT @@GLOBAL.GTID_EXECUTED;

By default in MySQL 8.0, the replication metadata repositories are held in tables that are copied from
the donor to the recipient during the cloning operation. The replication metadata repositories hold
replication-related configuration settings that can be used to resume replication correctly after the
cloning operation.

• In MySQL 8.0.17 and 8.0.18, only the table mysql.slave_master_info (the connection metadata
repository) is copied.

• From MySQL 8.0.19, the tables mysql.slave_relay_log_info (the applier metadata repository)
and mysql.slave_worker_info (the applier worker metadata repository) are also copied.

For a list of what is included in each table, see Section 19.2.4.2, “Replication Metadata
Repositories”. Note that if the settings master_info_repository=FILE and
relay_log_info_repository=FILE are used on the server (which is not the default in MySQL 8.0
and is deprecated), the replication metadata repositories are not cloned; they are only cloned if TABLE
is set.

To clone for replication, perform the following steps:

1. For a new group member for Group Replication, first configure the MySQL Server instance for
Group Replication, following the instructions in Section 20.2.1.6, “Adding Instances to the Group”.

1241

The Clone Plugin

Also set up the prerequisites for cloning described in Section 20.5.4.2, “Cloning for Distributed
Recovery”. When you issue START GROUP_REPLICATION on the joining member, the cloning
operation is managed automatically by Group Replication, so you do not need to carry out the
operation manually, and you do not need to perform any further setup steps on the joining member.

2. For a replica in a source/replica MySQL replication topology, first clone the data from the donor
MySQL server instance to the recipient manually. The donor must be a source or replica in the
replication topology. For cloning instructions, see Section 7.6.7.3, “Cloning Remote Data”.

3. After the cloning operation completes successfully, if you want to use the same replication channels
on the recipient MySQL server instance that were present on the donor, verify which of them can
resume replication automatically in the source/replica MySQL replication topology, and which need
to be set up manually.

• For GTID-based replication, if the recipient is configured with gtid_mode=ON and has
cloned from a donor with gtid_mode=ON, ON_PERMISSIVE, or OFF_PERMISSIVE, the
gtid_executed GTID set from the donor is applied on the recipient. If the recipient is cloned
from a replica already in the topology, replication channels on the recipient that use GTID auto-
positioning can resume replication automatically after the cloning operation when the channel
is started. You do not need to perform any manual setup if you just want to use these same
channels.

• For binary log file position based replication, if the recipient is at MySQL 8.0.17 or 8.0.18,
the binary log position from the donor is not applied on the recipient, only recorded in the
Performance Schema clone_status table. Replication channels on the recipient that use
binary log file position based replication must therefore be set up manually to resume replication
after the cloning operation. Ensure that these channels are not configured to start replication
automatically at server startup, as they do not yet have the binary log position and attempt to
start replication from the beginning.

• For binary log file position based replication, if the recipient is at MySQL 8.0.19 or above,
the binary log position from the donor is applied on the recipient. Replication channels
on the recipient that use binary log file position based replication automatically attempt
to carry out the relay log recovery process, using the cloned relay log information, before
restarting replication. For a single-threaded replica (replica_parallel_workers or
slave_parallel_workers is set to 0), relay log recovery should succeed in the absence
of any other issues, enabling the channel to resume replication with no further setup. For
a multithreaded replica (replica_parallel_workers or slave_parallel_workers
is greater than 0), relay log recovery is likely to fail because it cannot usually be completed
automatically. In this case, an error message is issued, and you must set the channel up
manually.

4. If you need to set up cloned replication channels manually, or want to use different replication
channels on the recipient, the following instructions provide a summary and abbreviated examples
for adding a recipient MySQL server instance to a replication topology. Also refer to the detailed
instructions that apply to your replication setup.

• To add a recipient MySQL server instance to a MySQL replication topology that uses GTID-
based transactions as the replication data source, configure the instance as required, following
the instructions in Section 19.1.3.4, “Setting Up Replication Using GTIDs”. Add replication
channels for the instance as shown in the following abbreviated example. The CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement
(before MySQL 8.0.23) must define the host address and port number of the source, and the
SOURCE_AUTO_POSITION | MASTER_AUTO_POSITION option should be enabled, as shown:

mysql> CHANGE MASTER TO MASTER_HOST = 'source_host_name', MASTER_PORT = source_port_num,
 ...
 MASTER_AUTO_POSITION = 1,
 FOR CHANNEL 'setup_channel';
mysql> START SLAVE USER = 'user_name' PASSWORD = 'password' FOR CHANNEL 'setup_channel';

1242

The Clone Plugin

Or from MySQL 8.0.22 and 8.0.23:

mysql> CHANGE SOURCE TO SOURCE_HOST = 'source_host_name', SOURCE_PORT = source_port_num,
 ...
 SOURCE_AUTO_POSITION = 1,
 FOR CHANNEL 'setup_channel';
mysql> START REPLICA USER = 'user_name' PASSWORD = 'password' FOR CHANNEL 'setup_channel';

• To add a recipient MySQL server instance to a MySQL replication topology that uses binary log
file position based replication, configure the instance as required, following the instructions in
Section 19.1.2, “Setting Up Binary Log File Position Based Replication”. Add replication channels
for the instance as shown in the following abbreviated example, using the binary log position that
was transferred to the recipient during the cloning operation:

mysql> SELECT BINLOG_FILE, BINLOG_POSITION FROM performance_schema.clone_status;
mysql> CHANGE MASTER TO MASTER_HOST = 'source_host_name', MASTER_PORT = source_port_num,
 ...
 MASTER_LOG_FILE = 'source_log_name',
 MASTER_LOG_POS = source_log_pos,
 FOR CHANNEL 'setup_channel';
mysql> START SLAVE USER = 'user_name' PASSWORD = 'password' FOR CHANNEL 'setup_channel';

Or from MySQL 8.0.22 and 8.0.23:

mysql> SELECT BINLOG_FILE, BINLOG_POSITION FROM performance_schema.clone_status;
mysql> CHANGE SOURCE TO SOURCE_HOST = 'source_host_name', SOURCE_PORT = source_port_num,
 ...
 SOURCE_LOG_FILE = 'source_log_name',
 SOURCE_LOG_POS = source_log_pos,
 FOR CHANNEL 'setup_channel';
mysql> START REPLICA USER = 'user_name' PASSWORD = 'password' FOR CHANNEL 'setup_channel';

7.6.7.8 Directories and Files Created During a Cloning Operation

When data is cloned, the following directories and files are created for internal use. They should not be
modified.

• #clone: Contains internal clone files used by the cloning operation. Created in the directory that
data is cloned to.

• #ib_archive: Contains internally archived log files, archived on the donor during the cloning
operation.

• *.#clone files: Temporary data files created on the recipient while data is removed from the
recipient data directory and new data is cloned during a remote cloning operation.

7.6.7.9 Remote Cloning Operation Failure Handling

This section describes failure handing at different stages of a cloning operation.

1. Prerequisites are checked (see Remote Cloning Prerequisites).

• If a failure occurs during the prerequisite check, the CLONE INSTANCE operation reports an
error.

2. Prior to MySQL 8.0.27, a backup lock on the donor and recipient blocks concurrent DDL operations.
From MySQL 8.0.27, concurrent DDL on the donor is blocked only if the clone_block_ddl
variable is set to ON (the default setting is OFF). See Section 7.6.7.4, “Cloning and Concurrent
DDL”.

• If the cloning operation is unable to obtain a DDL lock within the time limit specified by the
clone_ddl_timeout variable, an error is reported.

3. User-created data (schemas, tables, tablespaces) and binary logs on the recipient are removed
before data is cloned to the recipient data directory.

1243

The Clone Plugin

• When user-created data and binary logs are removed from the recipient data directory during a
remote cloning operation, the data is not saved and may be lost if a failure occurs. If the data is of
importance, a backup should be taken before initiating a remote cloning operation.

For informational purposes, warnings are printed to the server error log to specify when data
removal starts and finishes:

[Warning] [MY-013453] [InnoDB] Clone removing all user data for provisioning:
Started...

[Warning] [MY-013453] [InnoDB] Clone removing all user data for provisioning:
Finished

If a failure occurs while removing data, the recipient may be left with a partial set of schemas,
tables, and tablespaces that existed before the cloning operation. Any time during the execution
of a cloning operation or after a failure, the server is always in a consistent state.

4. Data is cloned from the donor. User-created data, dictionary metadata, and other system data are
cloned.

• If a failure occurs while cloning data, the cloning operation is rolled back and all cloned data
removed. At this stage, the previously existing user-created data and binary logs on the recipient
have also been removed.

Should this scenario occur, you can either rectify the cause of the failure and re-execute the
cloning operation, or forgo the cloning operation and restore the recipient data from a backup
taken before the cloning operation.

5. The server is restarted automatically (applies to remote cloning operations that do not clone to a
named directory). During startup, typical server startup tasks are performed.

• If the automatic server restart fails, you can restart the server manually to complete the cloning
operation.

Before MySQL 8.0.24, if a network error occurs during a cloning operation, the operation resumes if the
error is resolved within five minutes. From MySQL 8.0.24, the operation resumes if the error is resolved
within the time specified by the clone_donor_timeout_after_network_failure variable
defined on the donor instance. The clone_donor_timeout_after_network_failure default
setting is 5 minutes but a range of 0 to 30 minutes is supported. If the operation does not resume within
the allotted time, it aborts and returns an error, and the donor drops the snapshot. A setting of zero
causes the donor to drop the snapshot immediately when a network error occurs. Configuring a longer
timeout allows more time for resolving network issues but also increases the size of the delta on the
donor instance, which increases clone recovery time as well as replication lag in cases where the clone
is intended as a replica or replication group member.

Prior to MySQL 8.0.24, donor threads use the MySQL Server wait_timeout setting when listening
for Clone protocol commands. As a result, a low wait_timeout setting could cause a long running
remote cloning operation to timeout. From MySQL 8.0.24, the Clone idle timeout is set to the default
wait_timeout setting, which is 28800 seconds (8 hours).

7.6.7.10 Monitoring Cloning Operations

This section describes options for monitoring cloning operations.

• Monitoring Cloning Operations using Performance Schema Clone Tables

• Monitoring Cloning Operations Using Performance Schema Stage Events

• Monitoring Cloning Operations Using Performance Schema Clone Instrumentation

• The Com_clone Status Variable

1244

The Clone Plugin

Monitoring Cloning Operations using Performance Schema Clone Tables

A cloning operation may take some time to complete, depending on the amount of data and other
factors related to data transfer. You can monitor the status and progress of a cloning operation on
the recipient MySQL server instance using the clone_status and clone_progress Performance
Schema tables.

Note

The clone_status and clone_progress Performance Schema tables can
be used to monitor a cloning operation on the recipient MySQL server instance
only. To monitor a cloning operation on the donor MySQL server instance, use
the clone stage events, as described in Monitoring Cloning Operations Using
Performance Schema Stage Events.

• The clone_status table provides the state of the current or last executed cloning operation. A
clone operation has four possible states: Not Started, In Progress, Completed, and Failed.

• The clone_progress table provides progress information for the current or last executed
clone operation, by stage. The stages of a cloning operation include DROP DATA, FILE COPY,
PAGE_COPY, REDO_COPY, FILE_SYNC, RESTART, and RECOVERY.

The SELECT and EXECUTE privileges on the Performance Schema is required to access the
Performance Schema clone tables.

To check the state of a cloning operation:

1. Connect to the recipient MySQL server instance.

2. Query the clone_status table:

mysql> SELECT STATE FROM performance_schema.clone_status;
+-----------+
| STATE |
+-----------+
| Completed |
+-----------+

Should a failure occur during a cloning operation, you can query the clone_status table for error
information:

mysql> SELECT STATE, ERROR_NO, ERROR_MESSAGE FROM performance_schema.clone_status;
+-----------+----------+---------------+
| STATE | ERROR_NO | ERROR_MESSAGE |
+-----------+----------+---------------+
| Failed | xxx | "xxxxxxxxxxx" |
+-----------+----------+---------------+

To review the details of each stage of a cloning operation:

1. Connect to the recipient MySQL server instance.

2. Query the clone_progress table. For example, the following query provides state and end time
data for each stage of the cloning operation:

mysql> SELECT STAGE, STATE, END_TIME FROM performance_schema.clone_progress;
+-----------+-----------+----------------------------+
| stage | state | end_time |
+-----------+-----------+----------------------------+
DROP DATA	Completed	2019-01-27 22:45:43.141261
FILE COPY	Completed	2019-01-27 22:45:44.457572
PAGE COPY	Completed	2019-01-27 22:45:44.577330
REDO COPY	Completed	2019-01-27 22:45:44.679570
FILE SYNC	Completed	2019-01-27 22:45:44.918547
RESTART	Completed	2019-01-27 22:45:48.583565
RECOVERY	Completed	2019-01-27 22:45:49.626595

1245

The Clone Plugin

+-----------+-----------+----------------------------+

For other clone status and progress data points that you can monitor, refer to Section 29.12.19,
“Performance Schema Clone Tables”.

Monitoring Cloning Operations Using Performance Schema Stage Events

A cloning operation may take some time to complete, depending on the amount of data and other
factors related to data transfer. There are three stage events for monitoring the progress of a cloning
operation. Each stage event reports WORK_COMPLETED and WORK_ESTIMATED values. Reported
values are revised as the operation progresses.

This method of monitoring a cloning operation can be used on the donor or recipient MySQL server
instance.

In order of occurrence, cloning operation stage events include:

• stage/innodb/clone (file copy): Indicates progress of the file copy phase of the cloning
operation. WORK_ESTIMATED and WORK_COMPLETED units are file chunks. The number of files to
be transferred is known at the start of the file copy phase, and the number of chunks is estimated
based on the number of files. WORK_ESTIMATED is set to the number of estimated file chunks.
WORK_COMPLETED is updated after each chunk is sent.

• stage/innodb/clone (page copy): Indicates progress of the page copy phase of cloning
operation. WORK_ESTIMATED and WORK_COMPLETED units are pages. Once the file copy phase is
completed, the number of pages to be transferred is known, and WORK_ESTIMATED is set to this
value. WORK_COMPLETED is updated after each page is sent.

• stage/innodb/clone (redo copy): Indicates progress of the redo copy phase of cloning
operation. WORK_ESTIMATED and WORK_COMPLETED units are redo chunks. Once the page copy
phase is completed, the number of redo chunks to be transferred is known, and WORK_ESTIMATED
is set to this value. WORK_COMPLETED is updated after each chunk is sent.

The following example demonstrates how to enable stage/innodb/clone% event instruments and
related consumer tables to monitor a cloning operation. For information about Performance Schema
stage event instruments and related consumers, see Section 29.12.5, “Performance Schema Stage
Event Tables”.

1. Enable the stage/innodb/clone% instruments:

mysql> UPDATE performance_schema.setup_instruments SET ENABLED = 'YES'
 WHERE NAME LIKE 'stage/innodb/clone%';

2. Enable the stage event consumer tables, which include events_stages_current,
events_stages_history, and events_stages_history_long.

mysql> UPDATE performance_schema.setup_consumers SET ENABLED = 'YES'
 WHERE NAME LIKE '%stages%';

3. Run a cloning operation. In this example, a local data directory is cloned to a directory named
cloned_dir.

mysql> CLONE LOCAL DATA DIRECTORY = '/path/to/cloned_dir';

4. Check the progress of the cloning operation by querying the Performance Schema
events_stages_current table. The stage event shown differs depending on the cloning
phase that is in progress. The WORK_COMPLETED column shows the work completed. The
WORK_ESTIMATED column shows the work required in total.

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED FROM performance_schema.events_stages_current
 WHERE EVENT_NAME LIKE 'stage/innodb/clone%';
+--------------------------------+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |

1246

The Clone Plugin

+--------------------------------+----------------+----------------+
| stage/innodb/clone (redo copy) | 1 | 1 |
+--------------------------------+----------------+----------------+

The events_stages_current table returns an empty set if the cloning operation has finished.
In this case, you can check the events_stages_history table to view event data for the
completed operation. For example:

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED FROM events_stages_history
 WHERE EVENT_NAME LIKE 'stage/innodb/clone%';
+--------------------------------+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+--------------------------------+----------------+----------------+
stage/innodb/clone (file copy)	301	301
stage/innodb/clone (page copy)	0	0
stage/innodb/clone (redo copy)	1	1
+--------------------------------+----------------+----------------+

Monitoring Cloning Operations Using Performance Schema Clone Instrumentation

Performance Schema provides instrumentation for advanced performance monitoring of clone
operations. To view the available clone instrumentation, and issue the following query:

mysql> SELECT NAME,ENABLED FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%clone%';
+---+---------+
| NAME | ENABLED |
+---+---------+
wait/synch/mutex/innodb/clone_snapshot_mutex	NO
wait/synch/mutex/innodb/clone_sys_mutex	NO
wait/synch/mutex/innodb/clone_task_mutex	NO
wait/synch/mutex/group_rpl/LOCK_clone_donor_list	NO
wait/synch/mutex/group_rpl/LOCK_clone_handler_run	NO
wait/synch/mutex/group_rpl/LOCK_clone_query	NO
wait/synch/mutex/group_rpl/LOCK_clone_read_mode	NO
wait/synch/cond/group_rpl/COND_clone_handler_run	NO
wait/io/file/innodb/innodb_clone_file	YES
stage/innodb/clone (file copy)	YES
stage/innodb/clone (redo copy)	YES
stage/innodb/clone (page copy)	YES
statement/abstract/clone	YES
statement/clone/local	YES
statement/clone/client	YES
statement/clone/server	YES
memory/innodb/clone	YES
memory/clone/data	YES
+---+---------+

Wait Instruments

Performance schema wait instruments track events that take time. Clone wait event instruments
include:

• wait/synch/mutex/innodb/clone_snapshot_mutex: Tracks wait events for the clone
snapshot mutex, which synchronizes access to the dynamic snapshot object (on the donor and
recipient) between multiple clone threads.

• wait/synch/mutex/innodb/clone_sys_mutex: Tracks wait events for the clone sys mutex.
There is one clone system object in a MySQL server instance. This mutex synchronizes access
to the clone system object on the donor and recipient. It is acquired by clone threads and other
foreground and background threads.

• wait/synch/mutex/innodb/clone_task_mutex: Tracks wait events for the clone task mutex,
used for clone task management. The clone_task_mutex is acquired by clone threads.

• wait/io/file/innodb/innodb_clone_file: Tracks all I/O wait operations for files that clone
operates on.

1247

The Clone Plugin

For information about monitoring InnoDB mutex waits, see Section 17.16.2, “Monitoring InnoDB Mutex
Waits Using Performance Schema”. For information about monitoring wait events in general, see
Section 29.12.4, “Performance Schema Wait Event Tables”.

Stage Instruments

Performance Schema stage events track steps that occur during the statement-execution process.
Clone stage event instruments include:

• stage/innodb/clone (file copy): Indicates progress of the file copy phase of the cloning
operation.

• stage/innodb/clone (redo copy): Indicates progress of the redo copy phase of cloning
operation.

• stage/innodb/clone (page copy): Indicates progress of the page copy phase of cloning
operation.

For information about monitoring cloning operations using stage events, see Monitoring Cloning
Operations Using Performance Schema Stage Events. For general information about monitoring stage
events, see Section 29.12.5, “Performance Schema Stage Event Tables”.

Statement Instruments

Performance Schema statement events track statement execution. When a clone operation is
initiated, the different statement types tracked by clone statement instruments may be executed
in parallel. You can observe these statement events in the Performance Schema statement event
tables. The number of statements that execute depends on the clone_max_concurrency and
clone_autotune_concurrency settings.

Clone statement event instruments include:

• statement/abstract/clone: Tracks statement events for any clone operation before it is
classified as a local, client, or server operation type.

• statement/clone/local: Tracks clone statement events for local clone operations; generated
when executing a CLONE LOCAL statement.

• statement/clone/client: Tracks remote cloning statement events that occur on the recipient
MySQL server instance; generated when executing a CLONE INSTANCE statement on the recipient.

• statement/clone/server: Tracks remote cloning statement events that occur on the donor
MySQL server instance; generated when executing a CLONE INSTANCE statement on the recipient.

For information about monitoring Performance Schema statement events, see Section 29.12.6,
“Performance Schema Statement Event Tables”.

Memory Instruments

Performance Schema memory instruments track memory usage. Clone memory usage instruments
include:

• memory/innodb/clone: Tracks memory allocated by InnoDB for the dynamic snapshot.

• memory/clone/data: Tracks memory allocated by the clone plugin during a clone operation.

For information about monitoring memory usage using Performance Schema, see Section 29.12.20.10,
“Memory Summary Tables”.

The Com_clone Status Variable

The Com_clone status variable provides a count of CLONE statement executions.

For more information, refer to the discussion about Com_xxx statement counter variables in
Section 7.1.10, “Server Status Variables”.

1248

The Clone Plugin

7.6.7.11 Stopping a Cloning Operation

If necessary, you can stop a cloning operation with a KILL QUERY processlist_id statement.

On the recipient MySQL server instance, you can retrieve the processlist identifier (PID) for a cloning
operation from the PID column of the clone_status table.

mysql> SELECT * FROM performance_schema.clone_status\G
*************************** 1. row ***************************
 ID: 1
 PID: 8
 STATE: In Progress
 BEGIN_TIME: 2019-07-15 11:58:36.767
 END_TIME: NULL
 SOURCE: LOCAL INSTANCE
 DESTINATION: /path/to/clone_dir/
 ERROR_NO: 0
 ERROR_MESSAGE:
 BINLOG_FILE:
BINLOG_POSITION: 0
 GTID_EXECUTED:

You can also retrieve the processlist identifier from the ID column of the INFORMATION_SCHEMA
PROCESSLIST table, the Id column of SHOW PROCESSLIST output, or the PROCESSLIST_ID column
of the Performance Schema threads table. These methods of obtaining the PID information can be
used on the donor or recipient MySQL server instance.

7.6.7.12 Clone System Variable Reference

Table 7.7 Clone System Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

clone_autotune_concurrencyYes Yes Yes Global Yes

clone_block_ddlYes Yes Yes Global Yes

clone_buffer_sizeYes Yes Yes Global Yes

clone_ddl_timeoutYes Yes Yes Global Yes

clone_delay_after_data_dropYes Yes Yes Global Yes

clone_donor_timeout_after_network_failureYes Yes Yes Global Yes

clone_enable_compressionYes Yes Yes Global Yes

clone_max_concurrencyYes Yes Yes Global Yes

clone_max_data_bandwidthYes Yes Yes Global Yes

clone_max_network_bandwidthYes Yes Yes Global Yes

clone_ssl_ca Yes Yes Yes Global Yes

clone_ssl_cert Yes Yes Yes Global Yes

clone_ssl_key Yes Yes Yes Global Yes

clone_valid_donor_listYes Yes Yes Global Yes

7.6.7.13 Clone System Variables

This section describes the system variables that control operation of the clone plugin. If values
specified at startup are incorrect, the clone plugin may fail to initialize properly and the server does not
load it. In this case, the server may also produce error messages for other clone settings because it
does not recognize them.

Each system variable has a default value. System variables can be set at server startup using options
on the command line or in an option file. They can be changed dynamically at runtime using the SET
statement, which enables you to modify operation of the server without having to stop and restart it.

1249

The Clone Plugin

Setting a global system variable runtime value normally requires the SYSTEM_VARIABLES_ADMIN
privilege (or the deprecated SUPER privilege). For more information, see Section 7.1.9.1, “System
Variable Privileges”.

Clone variables are configured on the recipient MySQL server instance where the cloning operation is
executed.

• clone_autotune_concurrency

Command-Line Format --clone-autotune-concurrency

Introduced 8.0.17

System Variable clone_autotune_concurrency

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

When clone_autotune_concurrency is enabled (the default), additional threads for remote
cloning operations are spawned dynamically to optimize data transfer speed. The setting is
applicable to recipient MySQL server instance only.

During a cloning operation, the number of threads increases incrementally toward a target of double
the current thread count. The effect on the data transfer speed is evaluated at each increment. The
process either continues or stops according to the following rules:

• If the data transfer speed degrades more than 5% with an incremental increase, the process stops.

• If there is at least a 5% improvement after reaching 25% of the target, the process continues.
Otherwise, the process stops.

• If there is at least a 10% improvement after reaching 50% of the target, the process continues.
Otherwise, the process stops.

• If there is at least a 25% improvement after reaching the target, the process continues toward a
new target of double the current thread count. Otherwise, the process stops.

The autotuning process does not support decreasing the number of threads.

The clone_max_concurrency variable defines the maximum number of threads that can be
spawned.

If clone_autotune_concurrency is disabled, clone_max_concurrency defines the number of
threads spawned for a remote cloning operation.

• clone_buffer_size

Command-Line Format --clone-buffer-size

Introduced 8.0.17

System Variable clone_buffer_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

1250

The Clone Plugin

Default Value 4194304

Minimum Value 1048576

Maximum Value 268435456

Unit bytes

Defines the size of the intermediate buffer used when transferring data during a local cloning
operation. The default value is 4 mebibytes (MiB). A larger buffer size may permit I/O device drivers
to fetch data in parallel, which can improve cloning performance.

• clone_block_ddl

Command-Line Format --clone-block-ddl

Introduced 8.0.27

System Variable clone_block_ddl

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enables an exclusive backup lock on the donor MySQL Server instance during a cloning operation,
which blocks concurrent DDL operations on the donor. See Section 7.6.7.4, “Cloning and Concurrent
DDL”.

• clone_delay_after_data_drop

Command-Line Format --clone-delay-after-data-drop

Introduced 8.0.29

System Variable clone_delay_after_data_drop

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 3600

Unit bytes

Specifies a delay period immediately after removing existing data on the recipient MySQL Server
instance at the start of a remote cloning operation. The delay is intended to provide enough time
for the file system on the recipient host to free space before data is cloned from the donor MySQL
Server instance. Certain file systems such as VxFS free space asynchronously in a background
process. On these file systems, cloning data too soon after dropping existing data can result in clone
operation failures due to insufficient space. The maximum delay period is 3600 seconds (1 hour).
The default setting is 0 (no delay).

This variable is applicable to remote cloning operation only and is configured on the recipient MySQL
Server instance.

1251

The Clone Plugin

• clone_ddl_timeout

Command-Line Format --clone-ddl-timeout

Introduced 8.0.17

System Variable clone_ddl_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 300

Minimum Value 0

Maximum Value 2592000

Unit seconds

The time in seconds that a cloning operation waits for a backup lock. The backup lock blocks
concurrent DDL when executing a cloning operation. This setting is applied on both the donor and
recipient MySQL server instances.

A setting of 0 means that the cloning operation does not wait for a backup lock. In this case,
executing a concurrent DDL operation can cause the cloning operation to fail.

Prior to MySQL 8.0.27, the backup lock blocks concurrent DDL operations on both the donor
and recipient during a cloning operation, and a cloning operation cannot proceed until current
DDL operations finish. As of MySQL 8.0.27, concurrent DDL is permitted on the donor during a
cloning operation if clone_block_ddl variable is set to OFF (the default). In this case, the cloning
operation does not have to wait for a backup lock on the donor. See Section 7.6.7.4, “Cloning and
Concurrent DDL”.

• clone_donor_timeout_after_network_failure

Command-Line Format --clone-donor-timeout-after-network-
failure

Introduced 8.0.24

System Variable clone_donor_timeout_after_network_failure

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 30

Unit minutes

Defines the amount of time in minutes the donor allows for the recipient to reconnect and restart a
cloning operation after a network failure. For more information, see Section 7.6.7.9, “Remote Cloning
Operation Failure Handling”.

This variable is set on the donor MySQL server instance. Setting it on the recipient MySQL server
instance has no effect.

1252

The Clone Plugin

• clone_enable_compression

Command-Line Format --clone-enable-compression

Introduced 8.0.17

System Variable clone_enable_compression

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enables compression of data at the network layer during a remote cloning operation. Compression
saves network bandwidth at the cost of CPU. Enabling compression may improve the data transfer
rate. This setting is only applied on the recipient MySQL server instance.

• clone_max_concurrency

Command-Line Format --clone-max-concurrency

Introduced 8.0.17

System Variable clone_max_concurrency

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 16

Minimum Value 1

Maximum Value 128

Unit threads

Defines the maximum number of concurrent threads for a remote cloning operation. The default
value is 16. A greater number of threads can improve cloning performance but also reduces the
number of permitted simultaneous client connections, which can affect the performance of existing
client connections. This setting is only applied on the recipient MySQL server instance.

If clone_autotune_concurrency is enabled (the default), clone_max_concurrency is the
maximum number of threads that can be dynamically spawned for a remote cloning operation. If
clone_autotune_concurrency is disabled, clone_max_concurrency defines the number of
threads spawned for a remote cloning operation.

A minimum data transfer rate of 1 mebibyte (MiB) per thread is recommended for remote
cloning operations. The data transfer rate for a remote cloning operation is controlled by the
clone_max_data_bandwidth variable.

• clone_max_data_bandwidth

Command-Line Format --clone-max-data-bandwidth

Introduced 8.0.17

System Variable clone_max_data_bandwidth

Scope Global

Dynamic Yes
1253

The Clone Plugin

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1048576

Unit miB/second

Defines the maximum data transfer rate in mebibytes (MiB) per second for a remote cloning
operation. This variable helps manage the performance impact of a cloning operation. A limit should
be set only when donor disk I/O bandwidth is saturated, affecting performance. A value of 0 means
“unlimited”, which permits cloning operations to run at the highest possible data transfer rate. This
setting is only applicable to the recipient MySQL server instance.

The minimum data transfer rate is 1 MiB per second, per thread. For example, if there are 8 threads,
the minimum transfer rate is 8 MiB per second. The clone_max_concurrency variable controls
the maximum number threads spawned for a remote cloning operation.

The requested data transfer rate specified by clone_max_data_bandwidth may
differ from the actual data transfer rate reported by the DATA_SPEED column in the
performance_schema.clone_progress table. If your cloning operation is not achieving the
desired data transfer rate and you have available bandwidth, check I/O usage on the recipient and
donor. If there is underutilized bandwidth, I/O is the next mostly likely bottleneck.

• clone_max_network_bandwidth

Command-Line Format --clone-max-network-bandwidth

Introduced 8.0.17

System Variable clone_max_network_bandwidth

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1048576

Unit miB/second

Specifies the maximum approximate network transfer rate in mebibytes (MiB) per second for a
remote cloning operation. This variable can be used to manage the performance impact of a cloning
operation on network bandwidth. It should be set only when network bandwidth is saturated, affecting
performance on the donor instance. A value of 0 means “unlimited”, which permits cloning at the
highest possible data transfer rate over the network, providing the best performance. This setting is
only applicable to the recipient MySQL server instance.

• clone_ssl_ca

Command-Line Format --clone-ssl-ca=file_name

Introduced 8.0.14

System Variable clone_ssl_ca

Scope Global

Dynamic Yes
1254

The Clone Plugin

SET_VAR Hint Applies No

Type File name

Default Value empty string

Specifies the path to the certificate authority (CA) file. Used to configure an encrypted connection for
a remote cloning operation. This setting configured on the recipient and used when connecting to the
donor.

• clone_ssl_cert

Command-Line Format --clone-ssl-cert=file_name

Introduced 8.0.14

System Variable clone_ssl_cert

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value empty string

Specifies the path to the public key certificate. Used to configure an encrypted connection for a
remote cloning operation. This setting configured on the recipient and used when connecting to the
donor.

• clone_ssl_key

Command-Line Format --clone-ssl-key=file_name

Introduced 8.0.14

System Variable clone_ssl_key

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value empty string

Specifies the path to the private key file. Used to configure an encrypted connection for a remote
cloning operation. This setting configured on the recipient and used when connecting to the donor.

• clone_valid_donor_list

Command-Line Format --clone-valid-donor-list=value

Introduced 8.0.17

System Variable clone_valid_donor_list

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

1255

The Keyring Proxy Bridge Plugin

Default Value NULL

Defines valid donor host addresses for remote cloning operations. This setting is applied on the
recipient MySQL server instance. A comma-separated list of values is permitted in the following
format: “HOST1:PORT1,HOST2:PORT2,HOST3:PORT3”. Spaces are not permitted.

The clone_valid_donor_list variable adds a layer of security by providing control over
the sources of cloned data. The privilege required to configure clone_valid_donor_list is
different from the privilege required to execute remote cloning operations, which permits assigning
those responsibilities to different roles. Configuring clone_valid_donor_list requires the
SYSTEM_VARIABLES_ADMIN privilege, whereas executing a remote cloning operation requires the
CLONE_ADMIN privilege.

Internet Protocol version 6 (IPv6) address format is not supported. Internet Protocol version 6 (IPv6)
address format is not supported. An alias to the IPv6 address can be used instead. An IPv4 address
can be used as is.

7.6.7.14 Clone Plugin Limitations

The clone plugin is subject to these limitations:

• An instance cannot be cloned from a different MySQL server series. For example, you cannot clone
between MySQL 8.0 and MySQL 8.4, but can clone within a series such as MySQL 8.0.37 and
MySQL 8.0.42. Before 8.0.37, the point release number also had to match, so cloning the likes of
8.0.36 to 8.0.42 or vice-versa is not permitted

• Prior to MySQL 8.0.27, DDL on the donor and recipient, including TRUNCATE TABLE, is not
permitted during a cloning operation. This limitation should be considered when selecting data
sources. A workaround is to use dedicated donor instances, which can accommodate DDL
operations being blocked while data is cloned. Concurrent DML is permitted.

From MySQL 8.0.27, concurrent DDL is permitted on the donor by default. Support for concurrent
DDL on the donor is controlled by the clone_block_ddl variable. See Section 7.6.7.4, “Cloning
and Concurrent DDL”.

• Cloning from a donor MySQL server instance to a hotfix MySQL server instance of the same version
and release is only supported with MySQL 8.0.26 and higher.

• Only a single MySQL instance can be cloned at a time. Cloning multiple MySQL instances in a single
cloning operation is not supported.

• The X Protocol port specified by mysqlx_port is not supported for remote cloning operations (when
specifying the port number of the donor MySQL server instance in a CLONE INSTANCE statement).

• The clone plugin does not support cloning of MySQL server configurations. The recipient MySQL
server instance retains its configuration, including persisted system variable settings (see
Section 7.1.9.3, “Persisted System Variables”.)

• The clone plugin does not support cloning of binary logs.

• The clone plugin only clones data stored in InnoDB. Other storage engine data is not cloned.
MyISAM and CSV tables stored in any schema including the sys schema are cloned as empty tables.

• Connecting to the donor MySQL server instance through MySQL Router is not supported.

• Local cloning operations do not support cloning of general tablespaces that were created with an
absolute path. A cloned tablespace file with the same path as the source tablespace file would cause
a conflict.

7.6.8 The Keyring Proxy Bridge Plugin

1256

MySQL Plugin Services

MySQL Keyring originally implemented keystore capabilities using server plugins, but began
transitioning to use the component infrastructure in MySQL 8.0.24. The transition includes revising the
underlying implementation of keyring plugins to use the component infrastructure. This is facilitated
using the plugin named daemon_keyring_proxy_plugin that acts as a bridge between the plugin
and component service APIs, and enables keyring plugins to continue to be used with no change to
user-visible characteristics.

daemon_keyring_proxy_plugin is built in and nothing need be done to install or enable it.

7.6.9 MySQL Plugin Services

MySQL server plugins have access to server “plugin services.” The plugin services interface
complements the plugin API by exposing server functionality that plugins can call. For developer
information about writing plugin services, see MySQL Services for Plugins. The following sections
describe plugin services available at the SQL and C-language levels.

7.6.9.1 The Locking Service

MySQL distributions provide a locking interface that is accessible at two levels:

• At the SQL level, as a set of loadable functions that each map onto calls to the service routines.

• As a C language interface, callable as a plugin service from server plugins or loadable functions.

For general information about plugin services, see Section 7.6.9, “MySQL Plugin Services”. For general
information about loadable functions, see Adding a Loadable Function.

The locking interface has these characteristics:

• Locks have three attributes: Lock namespace, lock name, and lock mode:

• Locks are identified by the combination of namespace and lock name. The namespace enables
different applications to use the same lock names without colliding by creating locks in separate
namespaces. For example, if applications A and B use namespaces of ns1 and ns2, respectively,
each application can use lock names lock1 and lock2 without interfering with the other
application.

• A lock mode is either read or write. Read locks are shared: If a session has a read lock on a
given lock identifier, other sessions can acquire a read lock on the same identifier. Write locks are
exclusive: If a session has a write lock on a given lock identifier, other sessions cannot acquire a
read or write lock on the same identifier.

• Namespace and lock names must be non-NULL, nonempty, and have a maximum length of 64
characters. A namespace or lock name specified as NULL, the empty string, or a string longer than
64 characters results in an ER_LOCKING_SERVICE_WRONG_NAME error.

• The locking interface treats namespace and lock names as binary strings, so comparisons are case-
sensitive.

• The locking interface provides functions to acquire locks and release locks. No special privilege is
required to call these functions. Privilege checking is the responsibility of the calling application.

• Locks can be waited for if not immediately available. Lock acquisition calls take an integer timeout
value that indicates how many seconds to wait to acquire locks before giving up. If the timeout is
reached without successful lock acquisition, an ER_LOCKING_SERVICE_TIMEOUT error occurs.
If the timeout is 0, there is no waiting and the call produces an error if locks cannot be acquired
immediately.

• The locking interface detects deadlock between lock-acquisition calls in different sessions. In
this case, the locking service chooses a caller and terminates its lock-acquisition request with an
ER_LOCKING_SERVICE_DEADLOCK error. This error does not cause transactions to roll back. To

1257

https://dev.mysql.com/doc/extending-mysql/8.0/en/services-for-plugins.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/adding-loadable-function.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_locking_service_wrong_name
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_locking_service_timeout
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_locking_service_deadlock

MySQL Plugin Services

choose a session in case of deadlock, the locking service prefers sessions that hold read locks over
sessions that hold write locks.

• A session can acquire multiple locks with a single lock-acquisition call. For a given call, lock
acquisition is atomic: The call succeeds if all locks are acquired. If acquisition of any lock fails,
the call acquires no locks and fails, typically with an ER_LOCKING_SERVICE_TIMEOUT or
ER_LOCKING_SERVICE_DEADLOCK error.

• A session can acquire multiple locks for the same lock identifier (namespace and lock name
combination). These lock instances can be read locks, write locks, or a mix of both.

• Locks acquired within a session are released explicitly by calling a release-locks function, or
implicitly when the session terminates (either normally or abnormally). Locks are not released when
transactions commit or roll back.

• Within a session, all locks for a given namespace when released are released together.

The interface provided by the locking service is distinct from that provided by GET_LOCK() and
related SQL functions (see Section 14.14, “Locking Functions”). For example, GET_LOCK() does not
implement namespaces and provides only exclusive locks, not distinct read and write locks.

The Locking Service C Interface

This section describes how to use the locking service C language interface. To use the function
interface instead, see The Locking Service Function Interface For general characteristics of the locking
service interface, see Section 7.6.9.1, “The Locking Service”. For general information about plugin
services, see Section 7.6.9, “MySQL Plugin Services”.

Source files that use the locking service should include this header file:

#include <mysql/service_locking.h>

To acquire one or more locks, call this function:

int mysql_acquire_locking_service_locks(MYSQL_THD opaque_thd,
 const char* lock_namespace,
 const char**lock_names,
 size_t lock_num,
 enum enum_locking_service_lock_type lock_type,
 unsigned long lock_timeout);

The arguments have these meanings:

• opaque_thd: A thread handle. If specified as NULL, the handle for the current thread is used.

• lock_namespace: A null-terminated string that indicates the lock namespace.

• lock_names: An array of null-terminated strings that provides the names of the locks to acquire.

• lock_num: The number of names in the lock_names array.

• lock_type: The lock mode, either LOCKING_SERVICE_READ or LOCKING_SERVICE_WRITE to
acquire read locks or write locks, respectively.

• lock_timeout: An integer number of seconds to wait to acquire the locks before giving up.

To release locks acquired for a given namespace, call this function:

int mysql_release_locking_service_locks(MYSQL_THD opaque_thd,
 const char* lock_namespace);

The arguments have these meanings:

• opaque_thd: A thread handle. If specified as NULL, the handle for the current thread is used.

• lock_namespace: A null-terminated string that indicates the lock namespace.

1258

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_locking_service_timeout
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_locking_service_deadlock

MySQL Plugin Services

Locks acquired or waited for by the locking service can be monitored at the SQL level using the
Performance Schema. For details, see Locking Service Monitoring.

The Locking Service Function Interface

This section describes how to use the locking service interface provided by its loadable functions. To
use the C language interface instead, see The Locking Service C Interface For general characteristics
of the locking service interface, see Section 7.6.9.1, “The Locking Service”. For general information
about loadable functions, see Adding a Loadable Function.

• Installing or Uninstalling the Locking Service Function Interface

• Using the Locking Service Function Interface

• Locking Service Monitoring

• Locking Service Interface Function Reference

Installing or Uninstalling the Locking Service Function Interface

The locking service routines described in The Locking Service C Interface need not be installed
because they are built into the server. The same is not true of the loadable functions that map onto
calls to the service routines: The functions must be installed before use. This section describes how to
do that. For general information about loadable function installation, see Section 7.7.1, “Installing and
Uninstalling Loadable Functions”.

The locking service functions are implemented in a plugin library file located in the directory named
by the plugin_dir system variable. The file base name is locking_service. The file name suffix
differs per platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

To install the locking service functions, use the CREATE FUNCTION statement, adjusting the .so suffix
for your platform as necessary:

CREATE FUNCTION service_get_read_locks RETURNS INT
 SONAME 'locking_service.so';
CREATE FUNCTION service_get_write_locks RETURNS INT
 SONAME 'locking_service.so';
CREATE FUNCTION service_release_locks RETURNS INT
 SONAME 'locking_service.so';

If the functions are used on a replication source server, install them on all replica servers as well to
avoid replication problems.

Once installed, the functions remain installed until uninstalled. To remove them, use the DROP
FUNCTION statement:

DROP FUNCTION service_get_read_locks;
DROP FUNCTION service_get_write_locks;
DROP FUNCTION service_release_locks;

Using the Locking Service Function Interface

Before using the locking service functions, install them according to the instructions provided at
Installing or Uninstalling the Locking Service Function Interface.

To acquire one or more read locks, call this function:

mysql> SELECT service_get_read_locks('mynamespace', 'rlock1', 'rlock2', 10);
+---+
| service_get_read_locks('mynamespace', 'rlock1', 'rlock2', 10) |
+---+
| 1 |
+---+

The first argument is the lock namespace. The final argument is an integer timeout indicating how
many seconds to wait to acquire the locks before giving up. The arguments in between are the lock
names.

1259

https://dev.mysql.com/doc/extending-mysql/8.0/en/adding-loadable-function.html

MySQL Plugin Services

For the example just shown, the function acquires locks with lock identifiers (mynamespace,
rlock1) and (mynamespace, rlock2).

To acquire write locks rather than read locks, call this function:

mysql> SELECT service_get_write_locks('mynamespace', 'wlock1', 'wlock2', 10);
+--+
| service_get_write_locks('mynamespace', 'wlock1', 'wlock2', 10) |
+--+
| 1 |
+--+

In this case, the lock identifiers are (mynamespace, wlock1) and (mynamespace, wlock2).

To release all locks for a namespace, use this function:

mysql> SELECT service_release_locks('mynamespace');
+--------------------------------------+
| service_release_locks('mynamespace') |
+--------------------------------------+
| 1 |
+--------------------------------------+

Each locking function returns nonzero for success. If the function fails, an error occurs. For example,
the following error occurs because lock names cannot be empty:

mysql> SELECT service_get_read_locks('mynamespace', '', 10);
ERROR 3131 (42000): Incorrect locking service lock name ''.

A session can acquire multiple locks for the same lock identifier. As long as a different session does
not have a write lock for an identifier, the session can acquire any number of read or write locks. Each
lock request for the identifier acquires a new lock. The following statements acquire three write locks
with the same identifier, then three read locks for the same identifier:

SELECT service_get_write_locks('ns', 'lock1', 'lock1', 'lock1', 0);
SELECT service_get_read_locks('ns', 'lock1', 'lock1', 'lock1', 0);

If you examine the Performance Schema metadata_locks table at this point, you should find that
the session holds six distinct locks with the same (ns, lock1) identifier. (For details, see Locking
Service Monitoring.)

Because the session holds at least one write lock on (ns, lock1), no other session can acquire a
lock for it, either read or write. If the session held only read locks for the identifier, other sessions could
acquire read locks for it, but not write locks.

Locks for a single lock-acquisition call are acquired atomically, but atomicity does not hold across calls.
Thus, for a statement such as the following, where service_get_write_locks() is called once per
row of the result set, atomicity holds for each individual call, but not for the statement as a whole:

SELECT service_get_write_locks('ns', 'lock1', 'lock2', 0) FROM t1 WHERE ... ;

Caution

Because the locking service returns a separate lock for each successful request
for a given lock identifier, it is possible for a single statement to acquire a large
number of locks. For example:

INSERT INTO ... SELECT service_get_write_locks('ns', t1.col_name, 0) FROM t1;

These types of statements may have certain adverse effects. For example,
if the statement fails part way through and rolls back, locks acquired up to
the point of failure still exist. If the intent is for there to be a correspondence
between rows inserted and locks acquired, that intent is not satisfied. Also, if it
is important that locks are granted in a certain order, be aware that result set
order may differ depending on which execution plan the optimizer chooses. For

1260

MySQL Plugin Services

these reasons, it may be best to limit applications to a single lock-acquisition
call per statement.

Locking Service Monitoring

The locking service is implemented using the MySQL Server metadata locks framework, so you
monitor locking service locks acquired or waited for by examining the Performance Schema
metadata_locks table.

First, enable the metadata lock instrument:

mysql> UPDATE performance_schema.setup_instruments SET ENABLED = 'YES'
 -> WHERE NAME = 'wait/lock/metadata/sql/mdl';

Then acquire some locks and check the contents of the metadata_locks table:

mysql> SELECT service_get_write_locks('mynamespace', 'lock1', 0);
+--+
| service_get_write_locks('mynamespace', 'lock1', 0) |
+--+
| 1 |
+--+
mysql> SELECT service_get_read_locks('mynamespace', 'lock2', 0);
+---+
| service_get_read_locks('mynamespace', 'lock2', 0) |
+---+
| 1 |
+---+
mysql> SELECT OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME, LOCK_TYPE, LOCK_STATUS
 -> FROM performance_schema.metadata_locks
 -> WHERE OBJECT_TYPE = 'LOCKING SERVICE'\G
*************************** 1. row ***************************
 OBJECT_TYPE: LOCKING SERVICE
OBJECT_SCHEMA: mynamespace
 OBJECT_NAME: lock1
 LOCK_TYPE: EXCLUSIVE
 LOCK_STATUS: GRANTED
*************************** 2. row ***************************
 OBJECT_TYPE: LOCKING SERVICE
OBJECT_SCHEMA: mynamespace
 OBJECT_NAME: lock2
 LOCK_TYPE: SHARED
 LOCK_STATUS: GRANTED

Locking service locks have an OBJECT_TYPE value of LOCKING SERVICE. This is distinct from, for
example, locks acquired with the GET_LOCK() function, which have an OBJECT_TYPE of USER LEVEL
LOCK.

The lock namespace, name, and mode appear in the OBJECT_SCHEMA, OBJECT_NAME, and
LOCK_TYPE columns. Read and write locks have LOCK_TYPE values of SHARED and EXCLUSIVE,
respectively.

The LOCK_STATUS value is GRANTED for an acquired lock, PENDING for a lock that is being waited for.
You can expect to see PENDING if one session holds a write lock and another session is attempting to
acquire a lock having the same identifier.

Locking Service Interface Function Reference

The SQL interface to the locking service implements the loadable functions described in this section.
For usage examples, see Using the Locking Service Function Interface.

The functions share these characteristics:

• The return value is nonzero for success. Otherwise, an error occurs.

• Namespace and lock names must be non-NULL, nonempty, and have a maximum length of 64
characters.

1261

MySQL Plugin Services

• Timeout values must be integers indicating how many seconds to wait to acquire locks before giving
up with an error. If the timeout is 0, there is no waiting and the function produces an error if locks
cannot be acquired immediately.

These locking service functions are available:

• service_get_read_locks(namespace, lock_name[, lock_name] ..., timeout)

Acquires one or more read (shared) locks in the given namespace using the given lock names,
timing out with an error if the locks are not acquired within the given timeout value.

• service_get_write_locks(namespace, lock_name[, lock_name] ..., timeout)

Acquires one or more write (exclusive) locks in the given namespace using the given lock names,
timing out with an error if the locks are not acquired within the given timeout value.

• service_release_locks(namespace)

For the given namespace, releases all locks that were acquired within the current session using
service_get_read_locks() and service_get_write_locks().

It is not an error for there to be no locks in the namespace.

7.6.9.2 The Keyring Service

MySQL Server supports a keyring service that enables internal components and plugins to securely
store sensitive information for later retrieval. MySQL distributions provide a keyring interface that is
accessible at two levels:

• At the SQL level, as a set of loadable functions that each map onto calls to the service routines.

• As a C language interface, callable as a plugin service from server plugins or loadable functions.

This section describes how to use the keyring service functions to store, retrieve, and remove
keys in the MySQL keyring keystore. For information about the SQL interface that uses functions,
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”. For general keyring
information, see Section 8.4.4, “The MySQL Keyring”.

The keyring service uses whatever underlying keyring plugin is enabled, if any. If no keyring plugin is
enabled, keyring service calls fail.

A “record” in the keystore consists of data (the key itself) and a unique identifier through which the key
is accessed. The identifier has two parts:

• key_id: The key ID or name. key_id values that begin with mysql_ are reserved by MySQL
Server.

• user_id: The session effective user ID. If there is no user context, this value can be NULL. The
value need not actually be a “user”; the meaning depends on the application.

Functions that implement the keyring function interface pass the value of CURRENT_USER() as the
user_id value to keyring service functions.

The keyring service functions have these characteristics in common:

• Each function returns 0 for success, 1 for failure.

• The key_id and user_id arguments form a unique combination indicating which key in the keyring
to use.

• The key_type argument provides additional information about the key, such as its encryption
method or intended use.

1262

MySQL Plugin Services

• Keyring service functions treat key IDs, user names, types, and values as binary strings, so
comparisons are case-sensitive. For example, IDs of MyKey and mykey refer to different keys.

These keyring service functions are available:

• my_key_fetch()

Deobfuscates and retrieves a key from the keyring, along with its type. The function allocates the
memory for the buffers used to store the returned key and key type. The caller should zero or
obfuscate the memory when it is no longer needed, then free it.

Syntax:

bool my_key_fetch(const char *key_id, const char **key_type,
 const char* user_id, void **key, size_t *key_len)

Arguments:

• key_id, user_id: Null-terminated strings that as a pair form a unique identifier indicating which
key to fetch.

• key_type: The address of a buffer pointer. The function stores into it a pointer to a null-
terminated string that provides additional information about the key (stored when the key was
added).

• key: The address of a buffer pointer. The function stores into it a pointer to the buffer containing
the fetched key data.

• key_len: The address of a variable into which the function stores the size in bytes of the *key
buffer.

Return value:

Returns 0 for success, 1 for failure.

• my_key_generate()

Generates a new random key of a given type and length and stores it in the keyring. The key has a
length of key_len and is associated with the identifier formed from key_id and user_id. The type
and length values must be consistent with the values supported by the underlying keyring plugin.
See Section 8.4.4.13, “Supported Keyring Key Types and Lengths”.

Syntax:

bool my_key_generate(const char *key_id, const char *key_type,
 const char *user_id, size_t key_len)

Arguments:

• key_id, user_id: Null-terminated strings that as a pair form a unique identifier for the key to be
generated.

• key_type: A null-terminated string that provides additional information about the key.

• key_len: The size in bytes of the key to be generated.

Return value:

Returns 0 for success, 1 for failure.

• my_key_remove()

Removes a key from the keyring.

1263

MySQL Server Loadable Functions

Syntax:

bool my_key_remove(const char *key_id, const char* user_id)

Arguments:

• key_id, user_id: Null-terminated strings that as a pair form a unique identifier for the key to be
removed.

Return value:

Returns 0 for success, 1 for failure.

• my_key_store()

Obfuscates and stores a key in the keyring.

Syntax:

bool my_key_store(const char *key_id, const char *key_type,
 const char* user_id, void *key, size_t key_len)

Arguments:

• key_id, user_id: Null-terminated strings that as a pair form a unique identifier for the key to be
stored.

• key_type: A null-terminated string that provides additional information about the key.

• key: The buffer containing the key data to be stored.

• key_len: The size in bytes of the key buffer.

Return value:

Returns 0 for success, 1 for failure.

7.7 MySQL Server Loadable Functions
MySQL supports loadable functions, that is, functions that are not built in but can be loaded at runtime
(either during startup or later) to extend server capabilities, or unloaded to remove capabilities. For a
table describing the available loadable functions, see Section 14.2, “Loadable Function Reference”.
Loadable functions contrast with built-in (native) functions, which are implemented as part of the server
and are always available; for a table, see Section 14.1, “Built-In Function and Operator Reference”.

Note

Loadable functions previously were known as user-defined functions (UDFs).
That terminology was something of a misnomer because “user-defined” also
can apply to other types of functions, such as stored functions (a type of stored
object written using SQL) and native functions added by modifying the server
source code.

MySQL distributions include loadable functions that implement, in whole or in part, these server
capabilities:

• Group Replication enables you to create a highly available distributed MySQL service across a
group of MySQL server instances, with data consistency, conflict detection and resolution, and group
membership services all built-in. See Chapter 20, Group Replication.

• MySQL Enterprise Edition includes functions that perform encryption operations based on the
OpenSSL library. See Section 8.6, “MySQL Enterprise Encryption”.

1264

Installing and Uninstalling Loadable Functions

• MySQL Enterprise Edition includes functions that provide an SQL-level API for masking and de-
identification operations. See MySQL Enterprise Data Masking and De-Identification Elements.

• MySQL Enterprise Edition includes audit logging for monitoring and logging of connection and
query activity. See Section 8.4.5, “MySQL Enterprise Audit”, and Section 8.4.6, “The Audit Message
Component”.

• MySQL Enterprise Edition includes a firewall capability that implements an application-level firewall
to enable database administrators to permit or deny SQL statement execution based on matching
against patterns for accepted statement. See Section 8.4.7, “MySQL Enterprise Firewall”.

• A query rewriter examines statements received by MySQL Server and possibly rewrites them before
the server executes them. See Section 7.6.4, “The Rewriter Query Rewrite Plugin”

• Version Tokens enables creation of and synchronization around server tokens that applications can
use to prevent accessing incorrect or out-of-date data. See Section 7.6.6, “Version Tokens”.

• The MySQL Keyring provides secure storage for sensitive information. See Section 8.4.4, “The
MySQL Keyring”.

• A locking service provides a locking interface for application use. See Section 7.6.9.1, “The Locking
Service”.

• A function provides access to query attributes. See Section 11.6, “Query Attributes”.

The following sections describe how to install and uninstall loadable functions, and how to determine at
runtime which loadable functions are installed and obtain information about them.

In some cases, a loadable function is loaded by installing the component that implements the function,
rather than by loading the function directly. For details about a particular loadable function, see the
installation instructions for the server feature that includes it.

For information about writing loadable functions, see Adding Functions to MySQL.

7.7.1 Installing and Uninstalling Loadable Functions

Loadable functions, as the name implies, must be loaded into the server before they can be used.
MySQL supports automatic function loading during server startup and manual loading thereafter.

While a loadable function is loaded, information about it is available as described in Section 7.7.2,
“Obtaining Information About Loadable Functions”.

• Installing Loadable Functions

• Uninstalling Loadable Functions

• Reinstalling or Upgrading Loadable Functions

Installing Loadable Functions

To load a loadable function manually, use the CREATE FUNCTION statement. For example:

CREATE FUNCTION metaphon
 RETURNS STRING
 SONAME 'udf_example.so';

The file base name depends on your platform. Common suffixes are .so for Unix and Unix-like
systems, .dll for Windows.

CREATE FUNCTION has these effects:

• It loads the function into the server to make it available immediately.

• It registers the function in the mysql.func system table to make it persistent across server restarts.
For this reason, CREATE FUNCTION requires the INSERT privilege for the mysql system database.

1265

https://dev.mysql.com/doc/refman/5.7/en/data-masking-elements.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/adding-functions.html

Obtaining Information About Loadable Functions

• It adds the function to the Performance Schema user_defined_functions table that provides
runtime information about installed loadable functions. See Section 7.7.2, “Obtaining Information
About Loadable Functions”.

Automatic loading of loadable functions occurs during the normal server startup sequence:

• Functions registered in the mysql.func table are installed.

• Components or plugins that are installed at startup may automatically install related functions.

• Automatic function installation adds the functions to the Performance Schema
user_defined_functions table that provides runtime information about installed functions.

If the server is started with the --skip-grant-tables option, functions registered in the
mysql.func table are not loaded and are unavailable. This does not apply to functions installed
automatically by a component or plugin.

Uninstalling Loadable Functions

To remove a loadable function, use the DROP FUNCTION statement. For example:

DROP FUNCTION metaphon;

DROP FUNCTION has these effects:

• It unloads the function to make it unavailable.

• It removes the function from the mysql.func system table. For this reason, DROP FUNCTION
requires the DELETE privilege for the mysql system database. With the function no longer registered
in the mysql.func table, the server does not load the function during subsequent restarts.

• It removes the function from the Performance Schema user_defined_functions table that
provides runtime information about installed loadable functions.

DROP FUNCTION cannot be used to drop a loadable function that is installed automatically by
components or plugins rather than by using CREATE FUNCTION. Such a function is also dropped
automatically, when the component or plugin that installed it is uninstalled.

Reinstalling or Upgrading Loadable Functions

To reinstall or upgrade the shared library associated with a loadable function, issue a DROP FUNCTION
statement, upgrade the shared library, and then issue a CREATE FUNCTION statement. If you upgrade
the shared library first and then use DROP FUNCTION, the server may unexpectedly shut down.

7.7.2 Obtaining Information About Loadable Functions

The Performance Schema user_defined_functions table contains information about the currently
installed loadable functions:

SELECT * FROM performance_schema.user_defined_functions;

The mysql.func system table also lists installed loadable functions, but only those installed using
CREATE FUNCTION. The user_defined_functions table lists loadable functions installed using
CREATE FUNCTION as well as loadable functions installed automatically by components or plugins.
This difference makes user_defined_functions preferable to mysql.func for checking which
loadable functions are installed. See Section 29.12.21.10, “The user_defined_functions Table”.

7.8 Running Multiple MySQL Instances on One Machine
In some cases, you might want to run multiple instances of MySQL on a single machine. You might
want to test a new MySQL release while leaving an existing production setup undisturbed. Or you
might want to give different users access to different mysqld servers that they manage themselves.
(For example, you might be an Internet Service Provider that wants to provide independent MySQL
installations for different customers.)

1266

Running Multiple MySQL Instances on One Machine

It is possible to use a different MySQL server binary per instance, or use the same binary for multiple
instances, or any combination of the two approaches. For example, you might run a server from
MySQL 5.7 and one from MySQL 8.0, to see how different versions handle a given workload. Or
you might run multiple instances of the current production version, each managing a different set of
databases.

Whether or not you use distinct server binaries, each instance that you run must be configured with
unique values for several operating parameters. This eliminates the potential for conflict between
instances. Parameters can be set on the command line, in option files, or by setting environment
variables. See Section 6.2.2, “Specifying Program Options”. To see the values used by a given
instance, connect to it and execute a SHOW VARIABLES statement.

The primary resource managed by a MySQL instance is the data directory. Each instance should use a
different data directory, the location of which is specified using the --datadir=dir_name option. For
methods of configuring each instance with its own data directory, and warnings about the dangers of
failing to do so, see Section 7.8.1, “Setting Up Multiple Data Directories”.

In addition to using different data directories, several other options must have different values for each
server instance:

• --port=port_num

--port controls the port number for TCP/IP connections. Alternatively, if the host has multiple
network addresses, you can set the bind_address system variable to cause each server to listen
to a different address.

• --socket={file_name|pipe_name}

--socket controls the Unix socket file path on Unix or the named-pipe name on Windows. On
Windows, it is necessary to specify distinct pipe names only for those servers configured to permit
named-pipe connections.

• --shared-memory-base-name=name

This option is used only on Windows. It designates the shared-memory name used by a Windows
server to permit clients to connect using shared memory. It is necessary to specify distinct shared-
memory names only for those servers configured to permit shared-memory connections.

• --pid-file=file_name

This option indicates the path name of the file in which the server writes its process ID.

If you use the following log file options, their values must differ for each server:

• --general_log_file=file_name

• --log-bin[=file_name]

• --slow_query_log_file=file_name

• --log-error[=file_name]

For further discussion of log file options, see Section 7.4, “MySQL Server Logs”.

To achieve better performance, you can specify the following option differently for each server, to
spread the load between several physical disks:

• --tmpdir=dir_name

Having different temporary directories also makes it easier to determine which MySQL server created
any given temporary file.

If you have multiple MySQL installations in different locations, you can specify the base directory for
each installation with the --basedir=dir_name option. This causes each instance to automatically

1267

Setting Up Multiple Data Directories

use a different data directory, log files, and PID file because the default for each of those parameters
is relative to the base directory. In that case, the only other options you need to specify are the --
socket and --port options. Suppose that you install different versions of MySQL using tar file
binary distributions. These install in different locations, so you can start the server for each installation
using the command bin/mysqld_safe under its corresponding base directory. mysqld_safe
determines the proper --basedir option to pass to mysqld, and you need specify only the --
socket and --port options to mysqld_safe.

As discussed in the following sections, it is possible to start additional servers by specifying appropriate
command options or by setting environment variables. However, if you need to run multiple servers
on a more permanent basis, it is more convenient to use option files to specify for each server those
option values that must be unique to it. The --defaults-file option is useful for this purpose.

7.8.1 Setting Up Multiple Data Directories

Each MySQL Instance on a machine should have its own data directory. The location is specified using
the --datadir=dir_name option.

There are different methods of setting up a data directory for a new instance:

• Create a new data directory.

• Copy an existing data directory.

The following discussion provides more detail about each method.

Warning

Normally, you should never have two servers that update data in the same
databases. This may lead to unpleasant surprises if your operating system does
not support fault-free system locking. If (despite this warning) you run multiple
servers using the same data directory and they have logging enabled, you must
use the appropriate options to specify log file names that are unique to each
server. Otherwise, the servers try to log to the same files.

Even when the preceding precautions are observed, this kind of setup works
only with MyISAM and MERGE tables, and not with any of the other storage
engines. Also, this warning against sharing a data directory among servers
always applies in an NFS environment. Permitting multiple MySQL servers
to access a common data directory over NFS is a very bad idea. The primary
problem is that NFS is the speed bottleneck. It is not meant for such use.
Another risk with NFS is that you must devise a way to ensure that two or more
servers do not interfere with each other. Usually NFS file locking is handled
by the lockd daemon, but at the moment there is no platform that performs
locking 100% reliably in every situation.

Create a New Data Directory

With this method, the data directory is in the same state as when you first install MySQL, and has the
default set of MySQL accounts and no user data.

On Unix, initialize the data directory. See Section 2.9, “Postinstallation Setup and Testing”.

On Windows, the data directory is included in the MySQL distribution:

• MySQL Zip archive distributions for Windows contain an unmodified data directory. You can unpack
such a distribution into a temporary location, then copy it data directory to where you are setting up
the new instance.

• Windows MSI package installers create and set up the data directory that the installed server uses,
but also create a pristine “template” data directory named data under the installation directory. After

1268

Running Multiple MySQL Instances on Windows

an installation has been performed using an MSI package, the template data directory can be copied
to set up additional MySQL instances.

Copy an Existing Data Directory

With this method, any MySQL accounts or user data present in the data directory are carried over to
the new data directory.

1. Stop the existing MySQL instance using the data directory. This must be a clean shutdown so that
the instance flushes any pending changes to disk.

2. Copy the data directory to the location where the new data directory should be.

3. Copy the my.cnf or my.ini option file used by the existing instance. This serves as a basis for
the new instance.

4. Modify the new option file so that any pathnames referring to the original data directory refer to the
new data directory. Also, modify any other options that must be unique per instance, such as the
TCP/IP port number and the log files. For a list of parameters that must be unique per instance, see
Section 7.8, “Running Multiple MySQL Instances on One Machine”.

5. Start the new instance, telling it to use the new option file.

7.8.2 Running Multiple MySQL Instances on Windows

You can run multiple servers on Windows by starting them manually from the command line, each with
appropriate operating parameters, or by installing several servers as Windows services and running
them that way. General instructions for running MySQL from the command line or as a service are
given in Section 2.3, “Installing MySQL on Microsoft Windows”. The following sections describe how
to start each server with different values for those options that must be unique per server, such as the
data directory. These options are listed in Section 7.8, “Running Multiple MySQL Instances on One
Machine”.

7.8.2.1 Starting Multiple MySQL Instances at the Windows Command Line

The procedure for starting a single MySQL server manually from the command line is described in
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”. To start multiple servers this way,
you can specify the appropriate options on the command line or in an option file. It is more convenient
to place the options in an option file, but it is necessary to make sure that each server gets its own set
of options. To do this, create an option file for each server and tell the server the file name with a --
defaults-file option when you run it.

Suppose that you want to run one instance of mysqld on port 3307 with a data directory of C:
\mydata1, and another instance on port 3308 with a data directory of C:\mydata2. Use this
procedure:

1. Make sure that each data directory exists, including its own copy of the mysql database that
contains the grant tables.

2. Create two option files. For example, create one file named C:\my-opts1.cnf that looks like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Create a second file named C:\my-opts2.cnf that looks like this:

[mysqld]
datadir = C:/mydata2
port = 3308

3. Use the --defaults-file option to start each server with its own option file:

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf

1269

Running Multiple MySQL Instances on Windows

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts2.cnf

Each server starts in the foreground (no new prompt appears until the server exits later), so you
need to issue those two commands in separate console windows.

To shut down the servers, connect to each using the appropriate port number:

C:\> C:\mysql\bin\mysqladmin --port=3307 --host=127.0.0.1 --user=root --password shutdown
C:\> C:\mysql\bin\mysqladmin --port=3308 --host=127.0.0.1 --user=root --password shutdown

Servers configured as just described permit clients to connect over TCP/IP. If your version of Windows
supports named pipes and you also want to permit named-pipe connections, specify options that
enable the named pipe and specify its name. Each server that supports named-pipe connections must
use a unique pipe name. For example, the C:\my-opts1.cnf file might be written like this:

[mysqld]
datadir = C:/mydata1
port = 3307
enable-named-pipe
socket = mypipe1

Modify C:\my-opts2.cnf similarly for use by the second server. Then start the servers as described
previously.

A similar procedure applies for servers that you want to permit shared-memory connections. Enable
such connections by starting the server with the shared_memory system variable enabled and specify
a unique shared-memory name for each server by setting the shared_memory_base_name system
variable.

7.8.2.2 Starting Multiple MySQL Instances as Windows Services

On Windows, a MySQL server can run as a Windows service. The procedures for installing, controlling,
and removing a single MySQL service are described in Section 2.3.4.8, “Starting MySQL as a Windows
Service”.

To set up multiple MySQL services, you must make sure that each instance uses a different service
name in addition to the other parameters that must be unique per instance.

For the following instructions, suppose that you want to run the mysqld server from two different
versions of MySQL that are installed at C:\mysql-5.7.9 and C:\mysql-8.0.42, respectively. (This
might be the case if you are running 5.7.9 as your production server, but also want to conduct tests
using 8.0.42.)

To install MySQL as a Windows service, use the --install or --install-manual option. For
information about these options, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.

Based on the preceding information, you have several ways to set up multiple services. The following
instructions describe some examples. Before trying any of them, shut down and remove any existing
MySQL services.

• Approach 1: Specify the options for all services in one of the standard option files. To do this, use
a different service name for each server. Suppose that you want to run the 5.7.9 mysqld using the
service name of mysqld1 and the 8.0.42 mysqld using the service name mysqld2. In this case,
you can use the [mysqld1] group for 5.7.9 and the [mysqld2] group for 8.0.42. For example, you
can set up C:\my.cnf like this:

options for mysqld1 service
[mysqld1]
basedir = C:/mysql-5.7.9
port = 3307
enable-named-pipe
socket = mypipe1

options for mysqld2 service
[mysqld2]

1270

Running Multiple MySQL Instances on Unix

basedir = C:/mysql-8.0.42
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows, using the full server path names to ensure that Windows registers the
correct executable program for each service:

C:\> C:\mysql-5.7.9\bin\mysqld --install mysqld1
C:\> C:\mysql-8.0.42\bin\mysqld --install mysqld2

To start the services, use the services manager, or NET START or SC START with the appropriate
service names:

C:\> SC START mysqld1
C:\> SC START mysqld2

To stop the services, use the services manager, or use NET STOP or SC STOP with the appropriate
service names:

C:\> SC STOP mysqld1
C:\> SC STOP mysqld2

• Approach 2: Specify options for each server in separate files and use --defaults-file when
you install the services to tell each server what file to use. In this case, each file should list options
using a [mysqld] group.

With this approach, to specify options for the 5.7.9 mysqld, create a file C:\my-opts1.cnf that
looks like this:

[mysqld]
basedir = C:/mysql-5.7.9
port = 3307
enable-named-pipe
socket = mypipe1

For the 8.0.42 mysqld, create a file C:\my-opts2.cnf that looks like this:

[mysqld]
basedir = C:/mysql-8.0.42
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows (enter each command on a single line):

C:\> C:\mysql-5.7.9\bin\mysqld --install mysqld1
 --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql-8.0.42\bin\mysqld --install mysqld2
 --defaults-file=C:\my-opts2.cnf

When you install a MySQL server as a service and use a --defaults-file option, the service
name must precede the option.

After installing the services, start and stop them the same way as in the preceding example.

To remove multiple services, use SC DELETE mysqld_service_name for each one. Alternatively,
use mysqld --remove for each one, specifying a service name following the --remove option. If the
service name is the default (MySQL), you can omit it when using mysqld --remove.

7.8.3 Running Multiple MySQL Instances on Unix

Note

The discussion here uses mysqld_safe to launch multiple instances of
MySQL. For MySQL installation using an RPM distribution, server startup

1271

Running Multiple MySQL Instances on Unix

and shutdown is managed by systemd on several Linux platforms. On these
platforms, mysqld_safe is not installed because it is unnecessary. For
information about using systemd to handle multiple MySQL instances, see
Section 2.5.9, “Managing MySQL Server with systemd”.

One way is to run multiple MySQL instances on Unix is to compile different servers with different
default TCP/IP ports and Unix socket files so that each one listens on different network interfaces.
Compiling in different base directories for each installation also results automatically in a separate,
compiled-in data directory, log file, and PID file location for each server.

Assume that an existing 5.7 server is configured for the default TCP/IP port number (3306) and
Unix socket file (/tmp/mysql.sock). To configure a new 8.0.42 server to have different operating
parameters, use a CMake command something like this:

$> cmake . -DMYSQL_TCP_PORT=port_number \
 -DMYSQL_UNIX_ADDR=file_name \
 -DCMAKE_INSTALL_PREFIX=/usr/local/mysql-8.0.42

Here, port_number and file_name must be different from the default TCP/IP port number and Unix
socket file path name, and the CMAKE_INSTALL_PREFIX value should specify an installation directory
different from the one under which the existing MySQL installation is located.

If you have a MySQL server listening on a given port number, you can use the following command to
find out what operating parameters it is using for several important configurable variables, including the
base directory and Unix socket file name:

$> mysqladmin --host=host_name --port=port_number variables

With the information displayed by that command, you can tell what option values not to use when
configuring an additional server.

If you specify localhost as the host name, mysqladmin defaults to using a Unix socket file rather
than TCP/IP. To explicitly specify the transport protocol, use the --protocol={TCP|SOCKET|PIPE|
MEMORY} option.

You need not compile a new MySQL server just to start with a different Unix socket file and TCP/IP port
number. It is also possible to use the same server binary and start each invocation of it with different
parameter values at runtime. One way to do so is by using command-line options:

$> mysqld_safe --socket=file_name --port=port_number

To start a second server, provide different --socket and --port option values, and pass a --
datadir=dir_name option to mysqld_safe so that the server uses a different data directory.

Alternatively, put the options for each server in a different option file, then start each server using a --
defaults-file option that specifies the path to the appropriate option file. For example, if the option
files for two server instances are named /usr/local/mysql/my.cnf and /usr/local/mysql/
my.cnf2, start the servers like this: command:

$> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf
$> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf2

Another way to achieve a similar effect is to use environment variables to set the Unix socket file name
and TCP/IP port number:

$> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
$> MYSQL_TCP_PORT=3307
$> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
$> bin/mysqld --initialize --user=mysql
$> mysqld_safe --datadir=/path/to/datadir &

This is a quick way of starting a second server to use for testing. The nice thing about this method is
that the environment variable settings apply to any client programs that you invoke from the same shell.
Thus, connections for those clients are automatically directed to the second server.

1272

Using Client Programs in a Multiple-Server Environment

Section 6.9, “Environment Variables”, includes a list of other environment variables you can use to
affect MySQL programs.

On Unix, the mysqld_multi script provides another way to start multiple servers. See Section 6.3.4,
“mysqld_multi — Manage Multiple MySQL Servers”.

7.8.4 Using Client Programs in a Multiple-Server Environment

To connect with a client program to a MySQL server that is listening to different network interfaces from
those compiled into your client, you can use one of the following methods:

• Start the client with --host=host_name --port=port_number to connect using TCP/IP to a
remote server, with --host=127.0.0.1 --port=port_number to connect using TCP/IP to a
local server, or with --host=localhost --socket=file_name to connect to a local server using
a Unix socket file or a Windows named pipe.

• Start the client with --protocol=TCP to connect using TCP/IP, --protocol=SOCKET to
connect using a Unix socket file, --protocol=PIPE to connect using a named pipe, or --
protocol=MEMORY to connect using shared memory. For TCP/IP connections, you may also need
to specify --host and --port options. For the other types of connections, you may need to specify
a --socket option to specify a Unix socket file or Windows named-pipe name, or a --shared-
memory-base-name option to specify the shared-memory name. Shared-memory connections are
supported only on Windows.

• On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to point to the
Unix socket file and TCP/IP port number before you start your clients. If you normally use a specific
socket file or port number, you can place commands to set these environment variables in your
.login file so that they apply each time you log in. See Section 6.9, “Environment Variables”.

• Specify the default Unix socket file and TCP/IP port number in the [client] group of an option file.
For example, you can use C:\my.cnf on Windows, or the .my.cnf file in your home directory on
Unix. See Section 6.2.2.2, “Using Option Files”.

• In a C program, you can specify the socket file or port number arguments in the
mysql_real_connect() call. You can also have the program read option files by calling
mysql_options(). See C API Basic Function Descriptions.

• If you are using the Perl DBD::mysql module, you can read options from MySQL option files. For
example:

$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
 . "mysql_read_default_file=/usr/local/mysql/data/my.cnf";
$dbh = DBI->connect($dsn, $user, $password);

See Section 31.9, “MySQL Perl API”.

Other programming interfaces may provide similar capabilities for reading option files.

7.9 Debugging MySQL
This section describes debugging techniques that assist efforts to track down problems in MySQL.

7.9.1 Debugging a MySQL Server

If you are using some functionality that is very new in MySQL, you can try to run mysqld with the --
skip-new option (which disables all new, potentially unsafe functionality). See Section B.3.3.3, “What
to Do If MySQL Keeps Crashing”.

If mysqld does not want to start, verify that you have no my.cnf files that interfere with your setup!
You can check your my.cnf arguments with mysqld --print-defaults and avoid using them by
starting with mysqld --no-defaults

1273

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-function-descriptions.html

Debugging a MySQL Server

If mysqld starts to eat up CPU or memory or if it “hangs,” you can use mysqladmin processlist
status to find out if someone is executing a query that takes a long time. It may be a good idea to run
mysqladmin -i10 processlist status in some window if you are experiencing performance
problems or problems when new clients cannot connect.

The command mysqladmin debug dumps some information about locks in use, used memory and
query usage to the MySQL log file. This may help solve some problems. This command also provides
some useful information even if you have not compiled MySQL for debugging!

If the problem is that some tables are getting slower and slower you should try to optimize the table
with OPTIMIZE TABLE or myisamchk. See Chapter 7, MySQL Server Administration. You should also
check the slow queries with EXPLAIN.

You should also read the OS-specific section in this manual for problems that may be unique to your
environment. See Section 2.1, “General Installation Guidance”.

7.9.1.1 Compiling MySQL for Debugging

If you have some very specific problem, you can always try to debug MySQL. To do this you must
configure MySQL with the -DWITH_DEBUG=1 option. You can check whether MySQL was compiled
with debugging by doing: mysqld --help. If the --debug flag is listed with the options then you have
debugging enabled. mysqladmin ver also lists the mysqld version as mysql ... --debug in this
case.

If mysqld stops crashing when you configure it with the -DWITH_DEBUG=1 CMake option, you
probably have found a compiler bug or a timing bug within MySQL. In this case, you can try to add -g
using the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options and not use -DWITH_DEBUG=1.
If mysqld dies, you can at least attach to it with gdb or use gdb on the core file to find out what
happened.

When you configure MySQL for debugging you automatically enable a lot of extra safety check
functions that monitor the health of mysqld. If they find something “unexpected,” an entry is written
to stderr, which mysqld_safe directs to the error log! This also means that if you are having some
unexpected problems with MySQL and are using a source distribution, the first thing you should do is to
configure MySQL for debugging. If you believe that you have found a bug, please use the instructions
at Section 1.5, “How to Report Bugs or Problems”.

In the Windows MySQL distribution, mysqld.exe is by default compiled with support for trace files.

7.9.1.2 Creating Trace Files

If the mysqld server does not start or it crashes easily, you can try to create a trace file to find the
problem.

To do this, you must have a mysqld that has been compiled with debugging support. You can check
this by executing mysqld -V. If the version number ends with -debug, it is compiled with support for
trace files. (On Windows, the debugging server is named mysqld-debug rather than mysqld.)

Start the mysqld server with a trace log in /tmp/mysqld.trace on Unix or \mysqld.trace on
Windows:

$> mysqld --debug

On Windows, you should also use the --standalone flag to not start mysqld as a service. In a
console window, use this command:

C:\> mysqld-debug --debug --standalone

After this, you can use the mysql.exe command-line tool in a second console window to reproduce
the problem. You can stop the mysqld server with mysqladmin shutdown.

1274

Debugging a MySQL Server

The trace file can become very large! To generate a smaller trace file, you can use debugging options
something like this:

mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

This only prints information with the most interesting tags to the trace file.

If you file a bug, please add only those lines from the trace file to the bug report that indicate where
something seems to go wrong. If you cannot locate the wrong place, open a bug report and upload
the whole trace file to the report, so that a MySQL developer can take a look at it. For instructions, see
Section 1.5, “How to Report Bugs or Problems”.

The trace file is made with the DBUG package by Fred Fish. See Section 7.9.4, “The DBUG Package”.

7.9.1.3 Using WER with PDB to create a Windows crashdump

Program Database files (with suffix pdb) are included in the ZIP Archive Debug Binaries & Test
Suite distribution of MySQL. These files provide information for debugging your MySQL installation in
the event of a problem. This is a separate download from the standard MSI or Zip file.

Note

The PDB files are available in a separate file labeled "ZIP Archive Debug
Binaries & Test Suite".

The PDB file contains more detailed information about mysqld and other tools that enables more
detailed trace and dump files to be created. You can use these with WinDbg or Visual Studio to debug
mysqld.

For more information on PDB files and the debugging options available, see Debugging Tools for
Windows.

To use WinDbg, either install the full Windows Driver Kit (WDK) or install the standalone version.

Important

The .exe and .pdb files must be an exact match (both version number and
MySQL server edition); otherwise, or WinDBG complains while attempting to
load the symbols.

1. To generate a minidump mysqld.dmp, enable the core-file option under the [mysqld] section in
my.ini. Restart the MySQL server after making these changes.

2. Create a directory to store the generated files, such as c:\symbols

3. Determine the path to your windbg.exe executable using the Find GUI or from the command line,
for example: dir /s /b windbg.exe -- a common default is C:\Program Files\Debugging Tools
for Windows (x64)\windbg.exe

4. Launch windbg.exe giving it the paths to mysqld.exe, mysqld.pdb, mysqld.dmp, and the
source code. Alternatively, pass in each path from the WinDbg GUI. For example:

windbg.exe -i "C:\mysql-8.0.42-winx64\bin\"^
 -z "C:\mysql-8.0.42-winx64\data\mysqld.dmp"^
 -srcpath "E:\ade\mysql_archives\8.0\8.0.42\mysql-8.0.42"^
 -y "C:\mysql-8.0.42-winx64\bin;SRV*c:\symbols*http://msdl.microsoft.com/download/symbols"^
 -v -n -c "!analyze -vvvvv"

Note

The ^ character and newline are removed by the Windows command line
processor, so be sure the spaces remain intact.

1275

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/

Debugging a MySQL Server

7.9.1.4 Debugging mysqld under gdb

On most systems you can also start mysqld from gdb to get more information if mysqld crashes.

With some older gdb versions on Linux you must use run --one-thread if you want to be able to
debug mysqld threads. In this case, you can only have one thread active at a time.

NPTL threads (the new thread library on Linux) may cause problems while running mysqld under gdb.
Some symptoms are:

• mysqld hangs during startup (before it writes ready for connections).

• mysqld crashes during a pthread_mutex_lock() or pthread_mutex_unlock() call.

In this case, you should set the following environment variable in the shell before starting gdb:

LD_ASSUME_KERNEL=2.4.1
export LD_ASSUME_KERNEL

When running mysqld under gdb, you should disable the stack trace with --skip-stack-trace to
be able to catch segfaults within gdb.

Use the --gdb option to mysqld to install an interrupt handler for SIGINT (needed to stop mysqld
with ^C to set breakpoints) and disable stack tracing and core file handling.

It is very hard to debug MySQL under gdb if you do a lot of new connections the whole time as
gdb does not free the memory for old threads. You can avoid this problem by starting mysqld with
thread_cache_size set to a value equal to max_connections + 1. In most cases just using --
thread_cache_size=5' helps a lot!

If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld
with the --core-file option. This core file can be used to make a backtrace that may help you find
out why mysqld died:

$> gdb mysqld core
gdb> backtrace full
gdb> quit

See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

If you are using gdb on Linux, you should install a .gdb file, with the following information, in your
current directory:

set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint

Here is an example how to debug mysqld:

$> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes

Include the preceding output in a bug report, which you can file using the instructions in Section 1.5,
“How to Report Bugs or Problems”.

If mysqld hangs, you can try to use some system tools like strace or /usr/proc/bin/pstack to
examine where mysqld has hung.

strace /tmp/log libexec/mysqld

1276

Debugging a MySQL Server

If you are using the Perl DBI interface, you can turn on debugging information by using the trace
method or by setting the DBI_TRACE environment variable.

7.9.1.5 Using a Stack Trace

On some operating systems, the error log contains a stack trace if mysqld dies unexpectedly. You can
use this to find out where (and maybe why) mysqld died. See Section 7.4.2, “The Error Log”. To get
a stack trace, you must not compile mysqld with the -fomit-frame-pointer option to gcc. See
Section 7.9.1.1, “Compiling MySQL for Debugging”.

A stack trace in the error log looks something like this:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack_bottom = 0x41fd0110 thread_stack 0x40000
mysqld(my_print_stacktrace+0x32)[0x9da402]
mysqld(handle_segfault+0x28a)[0x6648e9]
/lib/libpthread.so.0[0x7f1a5af000f0]
/lib/libc.so.6(strcmp+0x2)[0x7f1a5a10f0f2]
mysqld(_Z21check_change_passwordP3THDPKcS2_Pcj+0x7c)[0x7412cb]
mysqld(_ZN16set_var_password5checkEP3THD+0xd0)[0x688354]
mysqld(_Z17sql_set_variablesP3THDP4ListI12set_var_baseE+0x68)[0x688494]
mysqld(_Z21mysql_execute_commandP3THD+0x41a0)[0x67a170]
mysqld(_Z11mysql_parseP3THDPKcjPS2_+0x282)[0x67f0ad]
mysqld(_Z16dispatch_command19enum_server_commandP3THDPcj+0xbb7[0x67fdf8]
mysqld(_Z10do_commandP3THD+0x24d)[0x6811b6]
mysqld(handle_one_connection+0x11c)[0x66e05e]

If resolution of function names for the trace fails, the trace contains less information:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack_bottom = 0x41fd0110 thread_stack 0x40000
[0x9da402]
[0x6648e9]
[0x7f1a5af000f0]
[0x7f1a5a10f0f2]
[0x7412cb]
[0x688354]
[0x688494]
[0x67a170]
[0x67f0ad]
[0x67fdf8]
[0x6811b6]
[0x66e05e]

Newer versions of glibc stack trace functions also print the address as relative to the object. On
glibc-based systems (Linux), the trace for an unexpected exit within a plugin looks something like:

plugin/auth/auth_test_plugin.so(+0x9a6)[0x7ff4d11c29a6]

To translate the relative address (+0x9a6) into a file name and line number, use this command:

$> addr2line -fie auth_test_plugin.so 0x9a6
auth_test_plugin
mysql-trunk/plugin/auth/test_plugin.c:65

The addr2line utility is part of the binutils package on Linux.

On Solaris, the procedure is similar. The Solaris printstack() already prints relative addresses:

plugin/auth/auth_test_plugin.so:0x1510

1277

Debugging a MySQL Server

To translate, use this command:

$> gaddr2line -fie auth_test_plugin.so 0x1510
mysql-trunk/plugin/auth/test_plugin.c:88

Windows already prints the address, function name and line:

000007FEF07E10A4 auth_test_plugin.dll!auth_test_plugin()[test_plugin.c:72]

7.9.1.6 Using Server Logs to Find Causes of Errors in mysqld

Note that before starting mysqld with the general query log enabled, you should check all your tables
with myisamchk. See Chapter 7, MySQL Server Administration.

If mysqld dies or hangs, you should start mysqld with the general query log enabled. See
Section 7.4.3, “The General Query Log”. When mysqld dies again, you can examine the end of the log
file for the query that killed mysqld.

If you use the default general query log file, the log is stored in the database directory as
host_name.log In most cases it is the last query in the log file that killed mysqld, but if possible you
should verify this by restarting mysqld and executing the found query from the mysql command-line
tools. If this works, you should also test all complicated queries that did not complete.

You can also try the command EXPLAIN on all SELECT statements that takes a long time to ensure
that mysqld is using indexes properly. See Section 15.8.2, “EXPLAIN Statement”.

You can find the queries that take a long time to execute by starting mysqld with the slow query log
enabled. See Section 7.4.5, “The Slow Query Log”.

If you find the text mysqld restarted in the error log (normally a file named host_name.err) you
probably have found a query that causes mysqld to fail. If this happens, you should check all your
tables with myisamchk (see Chapter 7, MySQL Server Administration), and test the queries in the
MySQL log files to see whether one fails. If you find such a query, try first upgrading to the newest
MySQL version. If this does not help, report a bug, see Section 1.5, “How to Report Bugs or Problems”.

If you have started mysqld with the myisam_recover_options system variable set, MySQL
automatically checks and tries to repair MyISAM tables if they are marked as 'not closed properly' or
'crashed'. If this happens, MySQL writes an entry in the hostname.err file 'Warning: Checking
table ...' which is followed by Warning: Repairing table if the table needs to be repaired. If
you get a lot of these errors, without mysqld having died unexpectedly just before, then something is
wrong and needs to be investigated further. See Section 7.1.7, “Server Command Options”.

When the server detects MyISAM table corruption, it writes additional information to the error log, such
as the name and line number of the source file, and the list of threads accessing the table. Example:
Got an error from thread_id=1, mi_dynrec.c:368. This is useful information to include in
bug reports.

It is not a good sign if mysqld did die unexpectedly, but in this case, you should not investigate the
Checking table... messages, but instead try to find out why mysqld died.

7.9.1.7 Making a Test Case If You Experience Table Corruption

The following procedure applies to MyISAM tables. For information about steps to take when
encountering InnoDB table corruption, see Section 1.5, “How to Report Bugs or Problems”.

If you encounter corrupted MyISAM tables or if mysqld always fails after some update statements, you
can test whether the issue is reproducible by doing the following:

1. Stop the MySQL daemon with mysqladmin shutdown.

2. Make a backup of the tables to guard against the very unlikely case that the repair does something
bad.

1278

Debugging a MySQL Client

3. Check all tables with myisamchk -s database/*.MYI. Repair any corrupted tables with
myisamchk -r database/table.MYI.

4. Make a second backup of the tables.

5. Remove (or move away) any old log files from the MySQL data directory if you need more space.

6. Start mysqld with the binary log enabled. If you want to find a statement that crashes mysqld, you
should start the server with the general query log enabled as well. See Section 7.4.3, “The General
Query Log”, and Section 7.4.4, “The Binary Log”.

7. When you have gotten a crashed table, stop the mysqld server.

8. Restore the backup.

9. Restart the mysqld server without the binary log enabled.

10. Re-execute the statements with mysqlbinlog binary-log-file | mysql. The binary log is
saved in the MySQL database directory with the name hostname-bin.NNNNNN.

11. If the tables are corrupted again or you can get mysqld to die with the above command, you
have found a reproducible bug. FTP the tables and the binary log to our bugs database using the
instructions given in Section 1.5, “How to Report Bugs or Problems”. If you are a support customer,
you can use the MySQL Customer Support Center (https://www.mysql.com/support/) to alert the
MySQL team about the problem and have it fixed as soon as possible.

7.9.2 Debugging a MySQL Client

To be able to debug a MySQL client with the integrated debug package, you should configure MySQL
with -DWITH_DEBUG=1. See Section 2.8.7, “MySQL Source-Configuration Options”.

Before running a client, you should set the MYSQL_DEBUG environment variable:

$> MYSQL_DEBUG=d:t:O,/tmp/client.trace
$> export MYSQL_DEBUG

This causes clients to generate a trace file in /tmp/client.trace.

If you have problems with your own client code, you should attempt to connect to the server and
run your query using a client that is known to work. Do this by running mysql in debugging mode
(assuming that you have compiled MySQL with debugging on):

$> mysql --debug=d:t:O,/tmp/client.trace

This provides useful information in case you mail a bug report. See Section 1.5, “How to Report Bugs
or Problems”.

If your client crashes at some 'legal' looking code, you should check that your mysql.h include file
matches your MySQL library file. A very common mistake is to use an old mysql.h file from an old
MySQL installation with new MySQL library.

7.9.3 The LOCK_ORDER Tool

The MySQL server is a multithreaded application that uses numerous internal locking and lock-related
primitives, such as mutexes, rwlocks (including prlocks and sxlocks), conditions, and files. Within
the server, the set of lock-related objects changes with implementation of new features and code
refactoring for performance improvements. As with any multithreaded application that uses locking
primitives, there is always a risk of encountering a deadlock during execution when multiple locks are
held at once. For MySQL, the effect of a deadlock is catastrophic, causing a complete loss of service.

As of MySQL 8.0.17, to enable detection of lock-acquisition deadlocks and enforcement that
runtime execution is free of them, MySQL supports LOCK_ORDER tooling. This enables a lock-order

1279

https://www.mysql.com/support/

The LOCK_ORDER Tool

dependency graph to be defined as part of server design, and server runtime checking to ensure that
lock acquisition is acyclic and that execution paths comply with the graph.

This section provides information about using the LOCK_ORDER tool, but only at a basic level. For
complete details, see the Lock Order section of the MySQL Server Doxygen documentation, available
at https://dev.mysql.com/doc/index-other.html.

The LOCK_ORDER tool is intended for debugging the server, not for production use.

To use the LOCK_ORDER tool, follow this procedure:

1. Build MySQL from source, configuring it with the -DWITH_LOCK_ORDER=ON CMake option so that
the build includes LOCK_ORDER tooling.

Note

With the WITH_LOCK_ORDER option enabled, MySQL builds require the
flex program.

2. To run the server with the LOCK_ORDER tool enabled, enable the lock_order system variable at
server startup. Several other system variables for LOCK_ORDER configuration are available as well.

3. For MySQL test suite operation, mysql-test-run.pl has a --lock-order option that controls
whether to enable the LOCK_ORDER tool during test case execution.

The system variables described following configure operation of the LOCK_ORDER tool, assuming that
MySQL has been built to include LOCK_ORDER tooling. The primary variable is lock_order, which
indicates whether to enable the LOCK_ORDER tool at runtime:

• If lock_order is disabled (the default), no other LOCK_ORDER system variables have any effect.

• If lock_order is enabled, the other system variables configure which LOCK_ORDER features to
enable.

Note

In general, it is intended that the LOCK_ORDER tool be configured by executing
mysql-test-run.pl with the --lock-order option, and for mysql-test-
run.pl to set LOCK_ORDER system variables to appropriate values.

All LOCK_ORDER system variables must be set at server startup. At runtime, their values are visible but
cannot be changed.

Some system variables exist in pairs, such as lock_order_debug_loop and
lock_order_trace_loop. For such pairs, the variables are distinguished as follows when the
condition occurs with which they are associated:

• If the _debug_ variable is enabled, a debug assertion is raised.

• If the _trace_ variable is enabled, an error is printed to the logs.

Table 7.8 LOCK_ORDER System Variable Summary

Variable Name Variable Type Variable Scope

lock_order Boolean Global

lock_order_debug_loop Boolean Global

lock_order_debug_missing_arc Boolean Global

lock_order_debug_missing_key Boolean Global

lock_order_debug_missing_unlockBoolean Global

lock_order_dependencies File name Global

1280

https://dev.mysql.com/doc/index-other.html

The LOCK_ORDER Tool

Variable Name Variable Type Variable Scope

lock_order_extra_dependencies File name Global

lock_order_output_directory Directory name Global

lock_order_print_txt Boolean Global

lock_order_trace_loop Boolean Global

lock_order_trace_missing_arc Boolean Global

lock_order_trace_missing_key Boolean Global

lock_order_trace_missing_unlock Boolean Global

• lock_order

Command-Line Format --lock-order[={OFF|ON}]

Introduced 8.0.17

System Variable lock_order

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether to enable the LOCK_ORDER tool at runtime. If lock_order is disabled (the default), no
other LOCK_ORDER system variables have any effect. If lock_order is enabled, the other system
variables configure which LOCK_ORDER features to enable.

If lock_order is enabled, an error is raised if the server encounters a lock-acquisition sequence
that is not declared in the lock-order graph.

• lock_order_debug_loop

Command-Line Format --lock-order-debug-loop[={OFF|ON}]

Introduced 8.0.17

System Variable lock_order_debug_loop

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether the LOCK_ORDER tool causes a debug assertion failure when it encounters a dependency
that is flagged as a loop in the lock-order graph.

• lock_order_debug_missing_arc

Command-Line Format --lock-order-debug-missing-
arc[={OFF|ON}]

Introduced 8.0.17

System Variable lock_order_debug_missing_arc

Scope Global

Dynamic No

1281

The LOCK_ORDER Tool

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether the LOCK_ORDER tool causes a debug assertion failure when it encounters a dependency
that is not declared in the lock-order graph.

• lock_order_debug_missing_key

Command-Line Format --lock-order-debug-missing-
key[={OFF|ON}]

Introduced 8.0.17

System Variable lock_order_debug_missing_key

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether the LOCK_ORDER tool causes a debug assertion failure when it encounters an object that is
not properly instrumented with the Performance Schema.

• lock_order_debug_missing_unlock

Command-Line Format --lock-order-debug-missing-
unlock[={OFF|ON}]

Introduced 8.0.17

System Variable lock_order_debug_missing_unlock

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether the LOCK_ORDER tool causes a debug assertion failure when it encounters a lock that is
destroyed while still held.

• lock_order_dependencies

Command-Line Format --lock-order-dependencies=file_name

Introduced 8.0.17

System Variable lock_order_dependencies

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value empty string

The path to the lock_order_dependencies.txt file that defines the server lock-order
dependency graph.

1282

The LOCK_ORDER Tool

It is permitted to specify no dependencies. An empty dependency graph is used in this case.

• lock_order_extra_dependencies

Command-Line Format --lock-order-extra-
dependencies=file_name

Introduced 8.0.17

System Variable lock_order_extra_dependencies

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value empty string

The path to a file containing additional dependencies for the lock-order dependency
graph. This is useful to amend the primary server dependency graph, defined in the
lock_order_dependencies.txt file, with additional dependencies describing the behavior of
third party code. (The alternative is to modify lock_order_dependencies.txt itself, which is not
encouraged.)

If this variable is not set, no secondary file is used.

• lock_order_output_directory

Command-Line Format --lock-order-output-
directory=dir_name

Introduced 8.0.17

System Variable lock_order_output_directory

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value empty string

The directory where the LOCK_ORDER tool writes its logs. If this variable is not set, the default is the
current directory.

• lock_order_print_txt

Command-Line Format --lock-order-print-txt[={OFF|ON}]

Introduced 8.0.17

System Variable lock_order_print_txt

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether the LOCK_ORDER tool performs a lock-order graph analysis and prints a textual report. The
report includes any lock-acquisition cycles detected.

1283

The LOCK_ORDER Tool

• lock_order_trace_loop

Command-Line Format --lock-order-trace-loop[={OFF|ON}]

Introduced 8.0.17

System Variable lock_order_trace_loop

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether the LOCK_ORDER tool prints a trace in the log file when it encounters a dependency that is
flagged as a loop in the lock-order graph.

• lock_order_trace_missing_arc

Command-Line Format --lock-order-trace-missing-
arc[={OFF|ON}]

Introduced 8.0.17

System Variable lock_order_trace_missing_arc

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether the LOCK_ORDER tool prints a trace in the log file when it encounters a dependency that is
not declared in the lock-order graph.

• lock_order_trace_missing_key

Command-Line Format --lock-order-trace-missing-
key[={OFF|ON}]

Introduced 8.0.17

System Variable lock_order_trace_missing_key

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether the LOCK_ORDER tool prints a trace in the log file when it encounters an object that is not
properly instrumented with the Performance Schema.

• lock_order_trace_missing_unlock

Command-Line Format --lock-order-trace-missing-
unlock[={OFF|ON}]

Introduced 8.0.17

System Variable lock_order_trace_missing_unlock

1284

The DBUG Package

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether the LOCK_ORDER tool prints a trace in the log file when it encounters a lock that is
destroyed while still held.

7.9.4 The DBUG Package

The MySQL server and most MySQL clients are compiled with the DBUG package originally created by
Fred Fish. When you have configured MySQL for debugging, this package makes it possible to get a
trace file of what the program is doing. See Section 7.9.1.2, “Creating Trace Files”.

This section summarizes the argument values that you can specify in debug options on the command
line for MySQL programs that have been built with debugging support.

The DBUG package can be used by invoking a program with the --debug[=debug_options] or -#
[debug_options] option. If you specify the --debug or -# option without a debug_options value,
most MySQL programs use a default value. The server default is d:t:i:o,/tmp/mysqld.trace on
Unix and d:t:i:O,\mysqld.trace on Windows. The effect of this default is:

• d: Enable output for all debug macros

• t: Trace function calls and exits

• i: Add PID to output lines

• o,/tmp/mysqld.trace, O,\mysqld.trace: Set the debug output file.

Most client programs use a default debug_options value of d:t:o,/tmp/program_name.trace,
regardless of platform.

Here are some example debug control strings as they might be specified on a shell command line:

--debug=d:t
--debug=d:f,main,subr1:F:L:t,20
--debug=d,input,output,files:n
--debug=d:t:i:O,\\mysqld.trace

For mysqld, it is also possible to change DBUG settings at runtime by setting the debug system
variable. This variable has global and session values:

mysql> SET GLOBAL debug = 'debug_options';
mysql> SET SESSION debug = 'debug_options';

Changing the global debug value requires privileges sufficient to set global system variables. Changing
the session debug value requires privileges sufficient to set restricted session system variables. See
Section 7.1.9.1, “System Variable Privileges”.

The debug_options value is a sequence of colon-separated fields:

field_1:field_2:...:field_N

Each field within the value consists of a mandatory flag character, optionally preceded by a + or -
character, and optionally followed by a comma-separated list of modifiers:

[+|-]flag[,modifier,modifier,...,modifier]

1285

The DBUG Package

The following table describes the permitted flag characters. Unrecognized flag characters are silently
ignored.

Flag Description

d Enable output from DBUG_XXX macros for
the current state. May be followed by a list of
keywords, which enables output only for the
DBUG macros with that keyword. An empty list of
keywords enables output for all macros.

In MySQL, common debug macro keywords to
enable are enter, exit, error, warning,
info, and loop.

D Delay after each debugger output line. The
argument is the delay, in tenths of seconds,
subject to machine capabilities. For example,
D,20 specifies a delay of two seconds.

f Limit debugging, tracing, and profiling to the list
of named functions. An empty list enables all
functions. The appropriate d or t flags must still
be given; this flag only limits their actions if they
are enabled.

F Identify the source file name for each line of debug
or trace output.

i Identify the process with the PID or thread ID for
each line of debug or trace output.

L Identify the source file line number for each line of
debug or trace output.

n Print the current function nesting depth for each
line of debug or trace output.

N Number each line of debug output.

o Redirect the debugger output stream to the
specified file. The default output is stderr.

O Like o, but the file is really flushed between
each write. When needed, the file is closed and
reopened between each write.

a Like o, but opens for append.

A Like O, but opens for append.

p Limit debugger actions to specified processes.
A process must be identified with the
DBUG_PROCESS macro and match one in the list
for debugger actions to occur.

P Print the current process name for each line of
debug or trace output.

r When pushing a new state, do not inherit the
previous state's function nesting level. Useful
when the output is to start at the left margin.

t Enable function call/exit trace lines. May be
followed by a list (containing only one modifier)
giving a numeric maximum trace level, beyond
which no output occurs for either debugging or

1286

The DBUG Package

Flag Description
tracing macros. The default is a compile time
option.

T Print the current timestamp for every line of
output.

The leading + or - character and trailing list of modifiers are used for flag characters such as d or f
that can enable a debug operation for all applicable modifiers or just some of them:

• With no leading + or -, the flag value is set to exactly the modifier list as given.

• With a leading + or -, the modifiers in the list are added to or subtracted from the current modifier list.

The following examples show how this works for the d flag. An empty d list enabled output for all debug
macros. A nonempty list enables output only for the macro keywords in the list.

These statements set the d value to the modifier list as given:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+
mysql> SET debug = 'd,error,warning';
mysql> SELECT @@debug;
+-----------------+
| @@debug |
+-----------------+
| d,error,warning |
+-----------------+

A leading + or - adds to or subtracts from the current d value:

mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+----------------------+
| @@debug |
+----------------------+
| d,error,warning,loop |
+----------------------+

mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+-----------+
| @@debug |
+-----------+
| d,warning |
+-----------+

Adding to “all macros enabled” results in no change:

mysql> SET debug = 'd';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |
+---------+

mysql> SET debug = '+d,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| d |

1287

The DBUG Package

+---------+

Disabling all enabled macros disables the d flag entirely:

mysql> SET debug = 'd,error,loop';
mysql> SELECT @@debug;
+--------------+
| @@debug |
+--------------+
| d,error,loop |
+--------------+

mysql> SET debug = '-d,error,loop';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| |
+---------+

1288

Chapter 8 Security

Table of Contents
8.1 General Security Issues ... 1290

8.1.1 Security Guidelines ... 1290
8.1.2 Keeping Passwords Secure .. 1292
8.1.3 Making MySQL Secure Against Attackers .. 1295
8.1.4 Security-Related mysqld Options and Variables ... 1297
8.1.5 How to Run MySQL as a Normal User .. 1297
8.1.6 Security Considerations for LOAD DATA LOCAL ... 1298
8.1.7 Client Programming Security Guidelines .. 1301

8.2 Access Control and Account Management .. 1303
8.2.1 Account User Names and Passwords .. 1304
8.2.2 Privileges Provided by MySQL .. 1306
8.2.3 Grant Tables .. 1324
8.2.4 Specifying Account Names ... 1334
8.2.5 Specifying Role Names ... 1336
8.2.6 Access Control, Stage 1: Connection Verification ... 1337
8.2.7 Access Control, Stage 2: Request Verification .. 1340
8.2.8 Adding Accounts, Assigning Privileges, and Dropping Accounts 1342
8.2.9 Reserved Accounts ... 1345
8.2.10 Using Roles .. 1345
8.2.11 Account Categories ... 1352
8.2.12 Privilege Restriction Using Partial Revokes .. 1356
8.2.13 When Privilege Changes Take Effect ... 1362
8.2.14 Assigning Account Passwords ... 1363
8.2.15 Password Management ... 1364
8.2.16 Server Handling of Expired Passwords .. 1375
8.2.17 Pluggable Authentication ... 1377
8.2.18 Multifactor Authentication .. 1382
8.2.19 Proxy Users ... 1386
8.2.20 Account Locking ... 1393
8.2.21 Setting Account Resource Limits ... 1394
8.2.22 Troubleshooting Problems Connecting to MySQL ... 1396
8.2.23 SQL-Based Account Activity Auditing ... 1400

8.3 Using Encrypted Connections .. 1402
8.3.1 Configuring MySQL to Use Encrypted Connections .. 1403
8.3.2 Encrypted Connection TLS Protocols and Ciphers .. 1410
8.3.3 Creating SSL and RSA Certificates and Keys .. 1419
8.3.4 Connecting to MySQL Remotely from Windows with SSH ... 1428
8.3.5 Reusing SSL Sessions ... 1428

8.4 Security Components and Plugins .. 1431
8.4.1 Authentication Plugins ... 1432
8.4.2 Connection Control Plugins ... 1520
8.4.3 The Password Validation Component .. 1526
8.4.4 The MySQL Keyring ... 1538
8.4.5 MySQL Enterprise Audit ... 1611
8.4.6 The Audit Message Component .. 1696
8.4.7 MySQL Enterprise Firewall .. 1699

8.5 MySQL Enterprise Data Masking and De-Identification .. 1727
8.5.1 Data-Masking Components Versus the Data-Masking Plugin 1728
8.5.2 MySQL Enterprise Data Masking and De-Identification Components 1729
8.5.3 MySQL Enterprise Data Masking and De-Identification Plugin 1753

8.6 MySQL Enterprise Encryption .. 1770
8.6.1 MySQL Enterprise Encryption Installation and Upgrading .. 1771

1289

General Security Issues

8.6.2 Configuring MySQL Enterprise Encryption ... 1774
8.6.3 MySQL Enterprise Encryption Usage and Examples ... 1775
8.6.4 MySQL Enterprise Encryption Function Reference ... 1777
8.6.5 MySQL Enterprise Encryption Component Function Descriptions 1777
8.6.6 MySQL Enterprise Encryption Legacy Function Descriptions 1781

8.7 SELinux .. 1786
8.7.1 Check if SELinux is Enabled ... 1786
8.7.2 Changing the SELinux Mode ... 1787
8.7.3 MySQL Server SELinux Policies .. 1787
8.7.4 SELinux File Context .. 1787
8.7.5 SELinux TCP Port Context .. 1789
8.7.6 Troubleshooting SELinux .. 1790

8.8 FIPS Support .. 1791

When thinking about security within a MySQL installation, you should consider a wide range of possible
topics and how they affect the security of your MySQL server and related applications:

• General factors that affect security. These include choosing good passwords, not granting
unnecessary privileges to users, ensuring application security by preventing SQL injections and data
corruption, and others. See Section 8.1, “General Security Issues”.

• Security of the installation itself. The data files, log files, and the all the application files of your
installation should be protected to ensure that they are not readable or writable by unauthorized
parties. For more information, see Section 2.9, “Postinstallation Setup and Testing”.

• Access control and security within the database system itself, including the users and databases
granted with access to the databases, views and stored programs in use within the database. For
more information, see Section 8.2, “Access Control and Account Management”.

• The features offered by security-related plugins. See Section 8.4, “Security Components and
Plugins”.

• Network security of MySQL and your system. The security is related to the grants for individual
users, but you may also wish to restrict MySQL so that it is available only locally on the MySQL
server host, or to a limited set of other hosts.

• Ensure that you have adequate and appropriate backups of your database files, configuration
and log files. Also be sure that you have a recovery solution in place and test that you are able to
successfully recover the information from your backups. See Chapter 9, Backup and Recovery.

Note

Several topics in this chapter are also addressed in the Secure Deployment
Guide, which provides procedures for deploying a generic binary distribution
of MySQL Enterprise Edition Server with features for managing the security of
your MySQL installation.

8.1 General Security Issues
This section describes general security issues to be aware of and what you can do to make your
MySQL installation more secure against attack or misuse. For information specifically about the access
control system that MySQL uses for setting up user accounts and checking database access, see
Section 2.9, “Postinstallation Setup and Testing”.

For answers to some questions that are often asked about MySQL Server security issues, see
Section A.9, “MySQL 8.0 FAQ: Security”.

8.1.1 Security Guidelines

Anyone using MySQL on a computer connected to the Internet should read this section to avoid the
most common security mistakes.

1290

https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/

Security Guidelines

In discussing security, it is necessary to consider fully protecting the entire server host (not just the
MySQL server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of
service. We do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other
operations that users can attempt to perform. There is also support for SSL-encrypted connections
between MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL
at all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the
mysql system database! This is critical.

• Learn how the MySQL access privilege system works (see Section 8.2, “Access Control and Account
Management”). Use the GRANT and REVOKE statements to control access to MySQL. Do not grant
more privileges than necessary. Never grant privileges to all hosts.

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being asked
for a password, anyone can connect to your MySQL server as the MySQL root user with full
privileges! Review the MySQL installation instructions, paying particular attention to the information
about setting a root password. See Section 2.9.4, “Securing the Initial MySQL Account”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

• Do not store cleartext passwords in your database. If your computer becomes compromised, the
intruder can take the full list of passwords and use them. Instead, use SHA2() or some other one-
way hashing function and store the hash value.

To prevent password recovery using rainbow tables, do not use these functions on a plain password;
instead, choose some string to be used as a salt, and use hash(hash(password)+salt) values.

• Assume that all passwords will be subject to automated cracking attempts using lists of known
passwords, and also to targeted guessing using publicly available information about you, such
as social media posts. Do not choose passwords that consist of easily cracked or guessed items
such as a dictionary word, proper name, sports team name, acronym, or commonly known phrase,
particularly if they are relevant to you. The use of upper case letters, number substitutions and
additions, and special characters does not help if these are used in predictable ways. Also do not
choose any password you have seen used as an example anywhere, or a variation on it, even if it
was presented as an example of a strong password.

Instead, choose passwords that are as long and as unpredictable as possible. That does not
mean the combination needs to be a random string of characters that is difficult to remember and
reproduce, although this is a good approach if you have, for example, password manager software
that can generate and fill such passwords and store them securely. A passphrase containing multiple
words is easy to create, remember, and reproduce, and is much more secure than a typical user-
selected password consisting of a single modified word or a predictable sequence of characters. To
create a secure passphrase, ensure that the words and other items in it are not a known phrase or
quotation, do not occur in a predictable order, and preferably have no previous relationship to each
other at all.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put
MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306
by default. This port should not be accessible from untrusted hosts. As a simple way to check

1291

Keeping Passwords Secure

whether your MySQL port is open, try the following command from some remote machine, where
server_host is the host name or IP address of the host on which your MySQL server runs:

$> telnet server_host 3306

If telnet hangs or the connection is refused, the port is blocked, which is how you want it to be.
If you get a connection and some garbage characters, the port is open, and should be closed on
your firewall or router, unless you really have a good reason to keep it open.

• Applications that access MySQL should not trust any data entered by users, and should be written
using proper defensive programming techniques. See Section 8.1.7, “Client Programming Security
Guidelines”.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone
who has the time and ability to intercept it and use it for their own purposes. Instead, use an
encrypted protocol such as SSL or SSH. MySQL supports internal SSL connections. Another
technique is to use SSH port-forwarding to create an encrypted (and compressed) tunnel for the
communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL
data streams are unencrypted by issuing a command like the following:

$> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

This works under Linux and should work with small modifications under other systems.

Warning

If you do not see cleartext data, this does not always mean that the
information actually is encrypted. If you need high security, consult with a
security expert.

8.1.2 Keeping Passwords Secure

Passwords occur in several contexts within MySQL. The following sections provide guidelines that
enable end users and administrators to keep these passwords secure and avoid exposing them. In
addition, the validate_password plugin can be used to enforce a policy on acceptable password.
See Section 8.4.3, “The Password Validation Component”.

8.1.2.1 End-User Guidelines for Password Security

MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your
password in a way that exposes it to discovery by other users. The methods you can use to specify
your password when you run client programs are listed here, along with an assessment of the risks of
each method. In short, the safest methods are to have the client program prompt for the password or to
specify the password in a properly protected option file.

• Use the mysql_config_editor utility, which enables you to store authentication credentials in
an encrypted login path file named .mylogin.cnf. The file can be read later by MySQL client
programs to obtain authentication credentials for connecting to MySQL Server. See Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

• Use a --password=password or -ppassword option on the command line. For example:

$> mysql -u francis -pfrank db_name

Warning

This is convenient but insecure. On some systems, your password becomes
visible to system status programs such as ps that may be invoked by

1292

Keeping Passwords Secure

other users to display command lines. MySQL clients typically overwrite
the command-line password argument with zeros during their initialization
sequence. However, there is still a brief interval during which the value is
visible. Also, on some systems this overwriting strategy is ineffective and the
password remains visible to ps. (SystemV Unix systems and perhaps others
are subject to this problem.)

If your operating environment is set up to display your current command in the title bar of your
terminal window, the password remains visible as long as the command is running, even if the
command has scrolled out of view in the window content area.

• Use the --password or -p option on the command line with no password value specified. In this
case, the client program solicits the password interactively:

$> mysql -u francis -p db_name
Enter password: ********

The * characters indicate where you enter your password. The password is not displayed as you
enter it.

It is more secure to enter your password this way than to specify it on the command line because it is
not visible to other users. However, this method of entering a password is suitable only for programs
that you run interactively. If you want to invoke a client from a script that runs noninteractively, there
is no opportunity to enter the password from the keyboard. On some systems, you may even find
that the first line of your script is read and interpreted (incorrectly) as your password.

• Store your password in an option file. For example, on Unix, you can list your password in the
[client] section of the .my.cnf file in your home directory:

[client]
password=password

To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this,
set the file access mode to 400 or 600. For example:

$> chmod 600 .my.cnf

To name from the command line a specific option file containing the password, use the --
defaults-file=file_name option, where file_name is the full path name to the file. For
example:

$> mysql --defaults-file=/home/francis/mysql-opts

Section 6.2.2.2, “Using Option Files”, discusses option files in more detail.

On Unix, the mysql client writes a record of executed statements to a history file (see Section 6.5.1.3,
“mysql Client Logging”). By default, this file is named .mysql_history and is created in your home
directory. Passwords can be written as plain text in SQL statements such as CREATE USER and ALTER
USER, so if you use these statements, they are logged in the history file. To keep this file safe, use a
restrictive access mode, the same way as described earlier for the .my.cnf file.

If your command interpreter maintains a history, any file in which the commands are saved contains
MySQL passwords entered on the command line. For example, bash uses ~/.bash_history. Any
such file should have a restrictive access mode.

8.1.2.2 Administrator Guidelines for Password Security

Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the mysql.user system table. Access to this table
should never be granted to any nonadministrative accounts.

1293

Keeping Passwords Secure

Account passwords can be expired so that users must reset them. See Section 8.2.15, “Password
Management”, and Section 8.2.16, “Server Handling of Expired Passwords”.

The validate_password plugin can be used to enforce a policy on acceptable password. See
Section 8.4.3, “The Password Validation Component”.

A user who has access to modify the plugin directory (the value of the plugin_dir system variable)
or the my.cnf file that specifies the plugin directory location can replace plugins and modify the
capabilities provided by plugins, including authentication plugins.

Files such as log files to which passwords might be written should be protected. See Section 8.1.2.3,
“Passwords and Logging”.

8.1.2.3 Passwords and Logging

Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT and SET
PASSWORD. If such statements are logged by the MySQL server as written, passwords in them become
visible to anyone with access to the logs.

Statement logging avoids writing passwords as cleartext for the following statements:

CREATE USER ... IDENTIFIED BY ...
ALTER USER ... IDENTIFIED BY ...
SET PASSWORD ...
START SLAVE ... PASSWORD = ...
START REPLICA ... PASSWORD = ...
CREATE SERVER ... OPTIONS(... PASSWORD ...)
ALTER SERVER ... OPTIONS(... PASSWORD ...)

Passwords in those statements are rewritten to not appear literally in statement text written to the
general query log, slow query log, and binary log. Rewriting does not apply to other statements.
In particular, INSERT or UPDATE statements for the mysql.user system table that refer to literal
passwords are logged as is, so you should avoid such statements. (Direct modification of grant tables
is discouraged, anyway.)

For the general query log, password rewriting can be suppressed by starting the server with the
--log-raw option. For security reasons, this option is not recommended for production use. For
diagnostic purposes, it may be useful to see the exact text of statements as received by the server.

By default, contents of audit log files produced by the audit log plugin are not encrypted and may
contain sensitive information, such as the text of SQL statements. For security reasons, audit log files
should be written to a directory accessible only to the MySQL server and to users with a legitimate
reason to view the log. See Section 8.4.5.3, “MySQL Enterprise Audit Security Considerations”.

Statements received by the server may be rewritten if a query rewrite plugin is installed (see Query
Rewrite Plugins). In this case, the --log-raw option affects statement logging as follows:

• Without --log-raw, the server logs the statement returned by the query rewrite plugin. This may
differ from the statement as received.

• With --log-raw, the server logs the original statement as received.

An implication of password rewriting is that statements that cannot be parsed (due, for example, to
syntax errors) are not written to the general query log because they cannot be known to be password
free. Use cases that require logging of all statements including those with errors should use the --
log-raw option, bearing in mind that this also bypasses password rewriting.

Password rewriting occurs only when plain text passwords are expected. For statements with syntax
that expect a password hash value, no rewriting occurs. If a plain text password is supplied erroneously
for such syntax, the password is logged as given, without rewriting.

1294

https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-types.html#query-rewrite-plugin-type
https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-types.html#query-rewrite-plugin-type

Making MySQL Secure Against Attackers

To guard log files against unwarranted exposure, locate them in a directory that restricts access to the
server and the database administrator. If the server logs to tables in the mysql database, grant access
to those tables only to the database administrator.

Replicas store the password for the replication source server in their connection metadata repository,
which by default is a table in the mysql database named slave_master_info. The use of a file
in the data directory for the connection metadata repository is now deprecated, but still possible (see
Section 19.2.4, “Relay Log and Replication Metadata Repositories”). Ensure that the connection
metadata repository can be accessed only by the database administrator. An alternative to storing
the password in the connection metadata repository is to use the START REPLICA (or before
MySQL 8.0.22, START SLAVE) or START GROUP_REPLICATION statement to specify credentials for
connecting to the source.

Use a restricted access mode to protect database backups that include log tables or log files containing
passwords.

8.1.3 Making MySQL Secure Against Attackers

When you connect to a MySQL server, you should use a password. The password is not transmitted as
cleartext over the connection.

All other information is transferred as text, and can be read by anyone who is able to watch the
connection. If the connection between the client and the server goes through an untrusted network, and
you are concerned about this, you can use the compressed protocol to make traffic much more difficult
to decipher. You can also use MySQL's internal SSL support to make the connection even more
secure. See Section 8.3, “Using Encrypted Connections”. Alternatively, use SSH to get an encrypted
TCP/IP connection between a MySQL server and a MySQL client. You can find an Open Source SSH
client at http://www.openssh.org/, and a comparison of both Open Source and Commercial SSH clients
at http://en.wikipedia.org/wiki/Comparison_of_SSH_clients.

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know
the identity of the person running it. It is common for client/server applications that the user can
specify any user name to the client program. For example, anyone can use the mysql program
to connect as any other person simply by invoking it as mysql -u other_user db_name if
other_user has no password. If all accounts have a password, connecting using another user's
account becomes much more difficult.

For a discussion of methods for setting passwords, see Section 8.2.14, “Assigning Account
Passwords”.

• Make sure that the only Unix user account with read or write privileges in the database directories is
the account that is used for running mysqld.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any
user with the FILE privilege is able to cause the server to create files as root (for example,
~root/.bashrc). To prevent this, mysqld refuses to run as root unless that is specified explicitly
using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a
separate Unix account named mysql to make everything even more secure. Use this account only
for administering MySQL. To start mysqld as a different Unix user, add a user option that specifies
the user name in the [mysqld] group of the my.cnf option file where you specify server options.
For example:

[mysqld]
user=mysql

1295

http://www.openssh.org/
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

Making MySQL Secure Against Attackers

This causes the server to start as the designated user whether you start it manually or by using
mysqld_safe or mysql.server. For more details, see Section 8.1.5, “How to Run MySQL as a
Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the root
user name in the user table. User names for MySQL accounts have nothing to do with user names
for Unix accounts.

• Do not grant the FILE privilege to nonadministrative users. Any user that has this privilege can
write a file anywhere in the file system with the privileges of the mysqld daemon. This includes
the server's data directory containing the files that implement the privilege tables. To make FILE-
privilege operations a bit safer, files generated with SELECT ... INTO OUTFILE do not overwrite
existing files and are writable by everyone.

The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix
user that the server runs as. With this privilege, you can read any file into a database table. This
could be abused, for example, by using LOAD DATA to load /etc/passwd into a table, which then
can be displayed with SELECT.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Section 7.1.8, “Server System Variables”.

• Encrypt binary log files and relay log files. Encryption helps to protect these files and the
potentially sensitive data contained in them from being misused by outside attackers, and also
from unauthorized viewing by users of the operating system where they are stored. You enable
encryption on a MySQL server by setting the binlog_encryption system variable to ON. For more
information, see Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”.

• Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of
mysqladmin processlist and SHOW PROCESSLIST shows the text of any statements currently
being executed, so any user who is permitted to see the server process list might be able to see
statements issued by other users.

mysqld reserves an extra connection for users who have the CONNECTION_ADMIN or SUPER
privilege, so that a MySQL root user can log in and check server activity even if all normal
connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by
changing the value of system variables, and control replication servers.

• Do not permit the use of symlinks to tables. (This capability can be disabled with the --skip-
symbolic-links option.) This is especially important if you run mysqld as root, because anyone
that has write access to the server's data directory then could delete any file in the system! See
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”.

• Stored programs and views should be written using the security guidelines discussed in
Section 27.6, “Stored Object Access Control”.

• If you do not trust your DNS, you should use IP addresses rather than host names in the grant
tables. In any case, you should be very careful about creating grant table entries using host name
values that contain wildcards.

• If you want to restrict the number of connections permitted to a single account, you can do so by
setting the max_user_connections variable in mysqld. The CREATE USER and ALTER USER
statements also support resource control options for limiting the extent of server use permitted to an
account. See Section 15.7.1.3, “CREATE USER Statement”, and Section 15.7.1.1, “ALTER USER
Statement”.

• If the plugin directory is writable by the server, it may be possible for a user to write executable
code to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by

1296

Security-Related mysqld Options and Variables

making plugin_dir read only to the server or by setting secure_file_priv to a directory where
SELECT writes can be made safely.

8.1.4 Security-Related mysqld Options and Variables

The following table shows mysqld options and system variables that affect security. For descriptions
of each of these, see Section 7.1.7, “Server Command Options”, and Section 7.1.8, “Server System
Variables”.

Table 8.1 Security Option and Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

allow-
suspicious-
udfs

Yes Yes

automatic_sp_privilegesYes Yes Yes Global Yes

chroot Yes Yes

local_infile Yes Yes Yes Global Yes

safe-user-
create

Yes Yes

secure_file_privYes Yes Yes Global No

skip-grant-
tables

Yes Yes

skip_name_resolveYes Yes Yes Global No

skip_networkingYes Yes Yes Global No

skip_show_databaseYes Yes Yes Global No

8.1.5 How to Run MySQL as a Normal User

On Windows, you can run the server as a Windows service using a normal user account.

On Linux, for installations performed using a MySQL repository or RPM packages, the MySQL server
mysqld should be started by the local mysql operating system user. Starting by another operating
system user is not supported by the init scripts that are included as part of the MySQL repositories.

On Unix (or Linux for installations performed using tar.gz packages) , the MySQL server mysqld can
be started and run by any user. However, you should avoid running the server as the Unix root user
for security reasons. To change mysqld to run as a normal unprivileged Unix user user_name, you
must do the following:

1. Stop the server if it is running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files
in them (you might need to do this as the Unix root user):

$> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server cannot access databases or tables when it runs as user_name.

If directories or files within the MySQL data directory are symbolic links, chown -R might not follow
symbolic links for you. If it does not, you must also follow those links and change the directories and
files they point to.

3. Start the server as user user_name. Another alternative is to start mysqld as the Unix root user
and use the --user=user_name option. mysqld starts, then switches to run as the Unix user
user_name before accepting any connections.

1297

Security Considerations for LOAD DATA LOCAL

4. To start the server as the given user automatically at system startup time, specify the user name
by adding a user option to the [mysqld] group of the /etc/my.cnf option file or the my.cnf
option file in the server's data directory. For example:

[mysqld]
user=user_name

If your Unix machine itself is not secured, you should assign passwords to the MySQL root account
in the grant tables. Otherwise, any user with a login account on that machine can run the mysql client
with a --user=root option and perform any operation. (It is a good idea to assign passwords to
MySQL accounts in any case, but especially so when other login accounts exist on the server host.)
See Section 2.9.4, “Securing the Initial MySQL Account”.

8.1.6 Security Considerations for LOAD DATA LOCAL

The LOAD DATA statement loads a data file into a table. The statement can load a file located on the
server host, or, if the LOCAL keyword is specified, on the client host.

The LOCAL version of LOAD DATA has two potential security issues:

• Because LOAD DATA LOCAL is an SQL statement, parsing occurs on the server side, and transfer
of the file from the client host to the server host is initiated by the MySQL server, which tells the
client the file named in the statement. In theory, a patched server could tell the client program to
transfer a file of the server's choosing rather than the file named in the statement. Such a server
could access any file on the client host to which the client user has read access. (A patched server
could in fact reply with a file-transfer request to any statement, not just LOAD DATA LOCAL, so a
more fundamental issue is that clients should not connect to untrusted servers.)

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD
DATA LOCAL to read any files that the Web server process has read access to (assuming that a user
could run any statement against the SQL server). In this environment, the client with respect to the
MySQL server actually is the Web server, not a remote program being run by users who connect to
the Web server.

To avoid connecting to untrusted servers, clients can establish a secure connection and verify the
server identity by connecting using the --ssl-mode=VERIFY_IDENTITY option and the appropriate
CA certificate. To implement this level of verification, you must first ensure that the CA certificate for the
server is reliably available to the replica, otherwise availability issues will result. For more information,
see Command Options for Encrypted Connections.

To avoid LOAD DATA issues, clients should avoid using LOCAL unless proper client-side precautions
have been taken.

For control over local data loading, MySQL permits the capability to be enabled or disabled. In addition,
as of MySQL 8.0.21, MySQL enables clients to restrict local data loading operations to files located in a
designated directory.

• Enabling or Disabling Local Data Loading Capability

• Restricting Files Permitted for Local Data Loading

• MySQL Shell and Local Data Loading

Enabling or Disabling Local Data Loading Capability

Administrators and applications can configure whether to permit local data loading as follows:

• On the server side:

• The local_infile system variable controls server-side LOCAL capability. Depending on the
local_infile setting, the server refuses or permits local data loading by clients that request
local data loading.

1298

Security Considerations for LOAD DATA LOCAL

• By default, local_infile is disabled. (This is a change from previous versions of MySQL.)
To cause the server to refuse or permit LOAD DATA LOCAL statements explicitly (regardless
of how client programs and libraries are configured at build time or runtime), start mysqld with
local_infile disabled or enabled. local_infile can also be set at runtime.

• On the client side:

• The ENABLED_LOCAL_INFILE CMake option controls the compiled-in default LOCAL capability for
the MySQL client library (see Section 2.8.7, “MySQL Source-Configuration Options”). Clients that
make no explicit arrangements therefore have LOCAL capability disabled or enabled according to
the ENABLED_LOCAL_INFILE setting specified at MySQL build time.

• By default, the client library in MySQL binary distributions is compiled with
ENABLED_LOCAL_INFILE disabled. If you compile MySQL from source, configure it with
ENABLED_LOCAL_INFILE disabled or enabled based on whether clients that make no explicit
arrangements should have LOCAL capability disabled or enabled.

• For client programs that use the C API, local data loading capability is determined by the
default compiled into the MySQL client library. To enable or disable it explicitly, invoke the
mysql_options() C API function to disable or enable the MYSQL_OPT_LOCAL_INFILE option.
See mysql_options().

• For the mysql client, local data loading capability is determined by the default compiled into the
MySQL client library. To disable or enable it explicitly, use the --local-infile=0 or --local-
infile[=1] option.

• For the mysqlimport client, local data loading is not used by default. To disable or enable it
explicitly, use the --local=0 or --local[=1] option.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group
from option files, you can add a local-infile option setting to that group. To prevent problems
for programs that do not understand this option, specify it using the loose- prefix:

[client]
loose-local-infile=0

or:

[client]
loose-local-infile=1

• In all cases, successful use of a LOCAL load operation by a client also requires that the server
permits local loading.

If LOCAL capability is disabled, on either the server or client side, a client that attempts to issue a LOAD
DATA LOCAL statement receives the following error message:

ERROR 3950 (42000): Loading local data is disabled; this must be
enabled on both the client and server side

Restricting Files Permitted for Local Data Loading

As of MySQL 8.0.21, the MySQL client library enables client applications to restrict local data loading
operations to files located in a designated directory. Certain MySQL client programs take advantage of
this capability.

Client programs that use the C API can control which files to permit for load data loading using
the MYSQL_OPT_LOCAL_INFILE and MYSQL_OPT_LOAD_DATA_LOCAL_DIR options of the
mysql_options() C API function (see mysql_options()).

1299

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Security Considerations for LOAD DATA LOCAL

The effect of MYSQL_OPT_LOAD_DATA_LOCAL_DIR depends on whether LOCAL data loading is
enabled or disabled:

• If LOCAL data loading is enabled, either by default in the MySQL client library or by explicitly enabling
MYSQL_OPT_LOCAL_INFILE, the MYSQL_OPT_LOAD_DATA_LOCAL_DIR option has no effect.

• If LOCAL data loading is disabled, either by default in the MySQL client library or by explicitly
disabling MYSQL_OPT_LOCAL_INFILE, the MYSQL_OPT_LOAD_DATA_LOCAL_DIR option
can be used to designate a permitted directory for locally loaded files. In this case, LOCAL data
loading is permitted but restricted to files located in the designated directory. Interpretation of the
MYSQL_OPT_LOAD_DATA_LOCAL_DIR value is as follows:

• If the value is the null pointer (the default), it names no directory, with the result that no files are
permitted for LOCAL data loading.

• If the value is a directory path name, LOCAL data loading is permitted but restricted to files located
in the named directory. Comparison of the directory path name and the path name of files to be
loaded is case-sensitive regardless of the case sensitivity of the underlying file system.

MySQL client programs use the preceding mysql_options() options as follows:

• The mysql client has a --load-data-local-dir option that takes a directory path or an empty
string. mysql uses the option value to set the MYSQL_OPT_LOAD_DATA_LOCAL_DIR option (with an
empty string setting the value to the null pointer). The effect of --load-data-local-dir depends
on whether LOCAL data loading is enabled:

• If LOCAL data loading is enabled, either by default in the MySQL client library or by specifying --
local-infile[=1], the --load-data-local-dir option is ignored.

• If LOCAL data loading is disabled, either by default in the MySQL client library or by specifying --
local-infile=0, the --load-data-local-dir option applies.

When --load-data-local-dir applies, the option value designates the directory in which local
data files must be located. Comparison of the directory path name and the path name of files to be
loaded is case-sensitive regardless of the case sensitivity of the underlying file system. If the option
value is the empty string, it names no directory, with the result that no files are permitted for local
data loading.

• mysqlimport sets MYSQL_OPT_LOAD_DATA_LOCAL_DIR for each file that it processes so that the
directory containing the file is the permitted local loading directory.

• For data loading operations corresponding to LOAD DATA statements, mysqlbinlog extracts the
files from the binary log events, writes them as temporary files to the local file system, and writes
LOAD DATA LOCAL statements to cause the files to be loaded. By default, mysqlbinlog writes
these temporary files to an operating system-specific directory. The --local-load option can be
used to explicitly specify the directory where mysqlbinlog should prepare local temporary files.

Because other processes can write files to the default system-specific directory, it is advisable to
specify the --local-load option to mysqlbinlog to designate a different directory for data files,
and then designate that same directory by specifying the --load-data-local-dir option to
mysql when processing the output from mysqlbinlog.

MySQL Shell and Local Data Loading

MySQL Shell provides a number of utilities to dump tables, schemas, or server instances and load
them into other instances. When you use these utilities to handle the data, MySQL Shell provides
additional functions such as input preprocessing, multithreaded parallel loading, file compression and
decompression, and handling access to Oracle Cloud Infrastructure Object Storage buckets. To get
the best functionality, always use the most recent version available of MySQL Shell's dump and dump
loading utilities.

1300

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Client Programming Security Guidelines

MySQL Shell's data upload utilities use LOAD DATA LOCAL INFILE statements to upload data, so
the local_infile system variable must be set to ON on the target server instance. You can do this
before uploading the data, and remove it again afterwards. The utilities handle the file transfer requests
safely to deal with the security considerations discussed in this topic.

MySQL Shell includes these dump and dump loading utilities:

Table export utility
util.exportTable()

Exports a MySQL relational table into a data file, which can be
uploaded to a MySQL server instance using MySQL Shell's parallel
table import utility, imported to a different application, or used as
a logical backup. The utility has preset options and customization
options to produce different output formats.

Parallel table import utility
util.importTable()

Imports a data file to a MySQL relational table. The data file can
be the output from MySQL Shell's table export utility or another
format supported by the utility's preset and customization options.
The utility can carry out input preprocessing before adding the data
to the table. It can accept multiple data files to merge into a single
relational table, and automatically decompresses compressed files.

Instance dump utility
util.dumpInstance(),
schema dump utility
util.dumpSchemas(),
and table dump utility
util.dumpTables()

Export an instance, schema, or table to a set of dump files, which
can then be uploaded to a MySQL instance using MySQL Shell's
dump loading utility. The utilities provide Oracle Cloud Infrastructure
Object Storage streaming, HeatWave Service compatibility checks
and modifications, and the ability to carry out a dry run to identify
issues before proceeding with the dump.

Dump loading utility
util.loadDump()

Import dump files created using MySQL Shell's instance, schema,
or table dump utility into a HeatWave Service DB System or a
MySQL Server instance. The utility manages the upload process
and provides data streaming from remote storage, parallel loading
of tables or table chunks, progress state tracking, resume and reset
capability, and the option of concurrent loading while the dump is
still taking place. MySQL Shell’s parallel table import utility can be
used in combination with the dump loading utility to modify data
before uploading it to the target MySQL instance.

For details of the utilities, see MySQL Shell Utilities.

8.1.7 Client Programming Security Guidelines

Client applications that access MySQL should use the following guidelines to avoid interpreting external
data incorrectly or exposing sensitive information.

• Handle External Data Properly

• Handle MySQL Error Messages Properly

Handle External Data Properly

Applications that access MySQL should not trust any data entered by users, who can try to trick your
code by entering special or escaped character sequences in Web forms, URLs, or whatever application
you have built. Be sure that your application remains secure if a user tries to perform SQL injection
by entering something like ; DROP DATABASE mysql; into a form. This is an extreme example, but
large security leaks and data loss might occur as a result of hackers using similar techniques, if you do
not prepare for them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If an
application generates a query such as SELECT * FROM table WHERE ID=234 when a user enters
the value 234, the user can enter the value 234 OR 1=1 to cause the application to generate the
query SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the server retrieves every row

1301

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities.html

Client Programming Security Guidelines

in the table. This exposes every row and causes excessive server load. The simplest way to protect
from this type of attack is to use single quotation marks around the numeric constants: SELECT *
FROM table WHERE ID='234'. If the user enters extra information, it all becomes part of the string.
In a numeric context, MySQL automatically converts this string to a number and strips any trailing
nonnumeric characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be
protected. This is incorrect. Even if it is permissible to display any row in the database, you should still
protect against denial of service attacks (for example, those that are based on the technique in the
preceding paragraph that causes the server to waste resources). Otherwise, your server becomes
unresponsive to legitimate users.

Checklist:

• Enable strict SQL mode to tell the server to be more restrictive of what data values it accepts. See
Section 7.1.11, “Server SQL Modes”.

• Try to enter single and double quotation marks (' and ") in all of your Web forms. If you get any kind
of MySQL error, investigate the problem right away.

• Try to modify dynamic URLs by adding %22 ("), %23 (#), and %27 (') to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters
shown in the previous examples. Your application should be safe against these and similar attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your
application should remove them before passing them to MySQL or else generate an error. Passing
unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a user name different from the one you use for
administrative purposes. Do not give your applications any access privileges they do not need.

Many application programming interfaces provide a means of escaping special characters in data
values. Properly used, this prevents application users from entering values that cause the application to
generate statements that have a different effect than you intend:

• MySQL SQL statements: Use SQL prepared statements and accept data values only by means of
placeholders; see Section 15.5, “Prepared Statements”.

• MySQL C API: Use the mysql_real_escape_string_quote() API call. Alternatively, use the C
API prepared statement interface and accept data values only by means of placeholders; see C API
Prepared Statement Interface.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use either the mysqli or pdo_mysql extensions, and not the older ext/mysql extension.
The preferred API's support the improved MySQL authentication protocol and passwords, as well as
prepared statements with placeholders. See also MySQL and PHP.

If the older ext/mysql extension must be used, then for escaping use the
mysql_real_escape_string_quote() function and not mysql_escape_string() or
addslashes() because only mysql_real_escape_string_quote() is character set-aware;
the other functions can be “bypassed” when using (invalid) multibyte character sets.

• Perl DBI: Use placeholders or the quote() method.

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

Handle MySQL Error Messages Properly

1302

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-escape-string.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html

Access Control and Account Management

It is the application's responsibility to intercept errors that occur as a result of executing SQL
statements with the MySQL database server and handle them appropriately.

The information returned in a MySQL error is not gratuitous because that information is key in
debugging MySQL using applications. It would be nearly impossible, for example, to debug a common
10-way join SELECT statement without providing information regarding which databases, tables, and
other objects are involved with problems. Thus, MySQL errors must sometimes necessarily contain
references to the names of those objects.

A simple but insecure approach for an application when it receives such an error from MySQL is
to intercept it and display it verbatim to the client. However, revealing error information is a known
application vulnerability type (CWE-209) and the application developer must ensure the application
does not have this vulnerability.

For example, an application that displays a message such as this exposes both a database name and
a table name to clients, which is information a client might attempt to exploit:

ERROR 1146 (42S02): Table 'mydb.mytable' doesn't exist

Instead, the proper behavior for an application when it receives such an error from MySQL is to log
appropriate information, including the error information, to a secure audit location only accessible to
trusted personnel. The application can return something more generic such as “Internal Error” to the
user.

8.2 Access Control and Account Management
MySQL enables the creation of accounts that permit client users to connect to the server and access
data managed by the server. The primary function of the MySQL privilege system is to authenticate a
user who connects from a given host and to associate that user with privileges on a database such as
SELECT, INSERT, UPDATE, and DELETE. Additional functionality includes the ability to grant privileges
for administrative operations.

To control which users can connect, each account can be assigned authentication credentials such
as a password. The user interface to MySQL accounts consists of SQL statements such as CREATE
USER, GRANT, and REVOKE. See Section 15.7.1, “Account Management Statements”.

The MySQL privilege system ensures that all users may perform only the operations permitted to them.
As a user, when you connect to a MySQL server, your identity is determined by the host from which
you connect and the user name you specify. When you issue requests after connecting, the system
grants privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason
to assume that a given user name belongs to the same person on all hosts. For example, the user
joe who connects from office.example.com need not be the same person as the user joe who
connects from home.example.com. MySQL handles this by enabling you to distinguish users on
different hosts that happen to have the same name: You can grant one set of privileges for connections
by joe from office.example.com, and a different set of privileges for connections by joe from
home.example.com. To see what privileges a given account has, use the SHOW GRANTS statement.
For example:

SHOW GRANTS FOR 'joe'@'office.example.com';
SHOW GRANTS FOR 'joe'@'home.example.com';

Internally, the server stores privilege information in the grant tables of the mysql system database. The
MySQL server reads the contents of these tables into memory when it starts and bases access-control
decisions on the in-memory copies of the grant tables.

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1: The server accepts or rejects the connection based on your identity and whether you can
verify your identity by supplying the correct password.

1303

http://cwe.mitre.org/data/definitions/209.html

Account User Names and Passwords

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine
whether you have sufficient privileges to perform it. For example, if you try to select rows from a table
in a database or drop a table from the database, the server verifies that you have the SELECT privilege
for the table or the DROP privilege for the database.

For a more detailed description of what happens during each stage, see Section 8.2.6, “Access
Control, Stage 1: Connection Verification”, and Section 8.2.7, “Access Control, Stage 2: Request
Verification”. For help in diagnosing privilege-related problems, see Section 8.2.22, “Troubleshooting
Problems Connecting to MySQL”.

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement that you issue. For details
about the conditions under which the server reloads the grant tables, see Section 8.2.13, “When
Privilege Changes Take Effect”.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly
match a user and then refuse the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create
or drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object
such as a database, table, or routine.

8.2.1 Account User Names and Passwords

MySQL stores accounts in the user table of the mysql system database. An account is defined in
terms of a user name and the client host or hosts from which the user can connect to the server. For
information about account representation in the user table, see Section 8.2.3, “Grant Tables”.

An account may also have authentication credentials such as a password. The credentials are handled
by the account authentication plugin. MySQL supports multiple authentication plugins. Some of them
use built-in authentication methods, whereas others enable authentication using external authentication
methods. See Section 8.2.17, “Pluggable Authentication”.

There are several distinctions between the way user names and passwords are used by MySQL and
your operating system:

• User names, as used by MySQL for authentication purposes, have nothing to do with user names
(login names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in
using the current Unix user name as the MySQL user name, but that is for convenience only. The
default can be overridden easily, because client programs permit any user name to be specified
with a -u or --user option. This means that anyone can attempt to connect to the server using any
user name, so you cannot make a database secure in any way unless all MySQL accounts have
passwords. Anyone who specifies a user name for an account that has no password can connect
successfully to the server.

• MySQL user names are up to 32 characters long. Operating system user names may have a
different maximum length.

Warning

The MySQL user name length limit is hardcoded in MySQL servers and
clients, and trying to circumvent it by modifying the definitions of the tables in
the mysql database does not work.

You should never alter the structure of tables in the mysql database in any
manner whatsoever except by means of the procedure that is described in
Chapter 3, Upgrading MySQL. Attempting to redefine the MySQL system

1304

Account User Names and Passwords

tables in any other fashion results in undefined and unsupported behavior.
The server is free to ignore rows that become malformed as a result of such
modifications.

• To authenticate client connections for accounts that use built-in authentication methods, the server
uses passwords stored in the user table. These passwords are distinct from passwords for logging
in to your operating system. There is no necessary connection between the “external” password you
use to log in to a Windows or Unix machine and the password you use to access the MySQL server
on that machine.

If the server authenticates a client using some other plugin, the authentication method that the plugin
implements may or may not use a password stored in the user table. In this case, it is possible that
an external password is also used to authenticate to the MySQL server.

• Passwords stored in the user table are encrypted using plugin-specific algorithms.

• If the user name and password contain only ASCII characters, it is possible to connect to the server
regardless of character set settings. To enable connections when the user name or password
contain non-ASCII characters, client applications should call the mysql_options() C API function
with the MYSQL_SET_CHARSET_NAME option and appropriate character set name as arguments.
This causes authentication to take place using the specified character set. Otherwise, authentication
fails unless the server default character set is the same as the encoding in the authentication
defaults.

Standard MySQL client programs support a --default-character-set option that causes
mysql_options() to be called as just described. In addition, character set autodetection is
supported as described in Section 12.4, “Connection Character Sets and Collations”. For programs
that use a connector that is not based on the C API, the connector may provide an equivalent to
mysql_options() that can be used instead. Check the connector documentation.

The preceding notes do not apply for ucs2, utf16, and utf32, which are not permitted as client
character sets.

The MySQL installation process populates the grant tables with an initial root account, as described
in Section 2.9.4, “Securing the Initial MySQL Account”, which also discusses how to assign a password
to it. Thereafter, you normally set up, modify, and remove MySQL accounts using statements such as
CREATE USER, DROP USER, GRANT, and REVOKE. See Section 8.2.8, “Adding Accounts, Assigning
Privileges, and Dropping Accounts”, and Section 15.7.1, “Account Management Statements”.

To connect to a MySQL server with a command-line client, specify user name and password options as
necessary for the account that you want to use:

$> mysql --user=finley --password db_name

If you prefer short options, the command looks like this:

$> mysql -u finley -p db_name

If you omit the password value following the --password or -p option on the command line (as just
shown), the client prompts for one. Alternatively, the password can be specified on the command line:

$> mysql --user=finley --password=password db_name
$> mysql -u finley -ppassword db_name

If you use the -p option, there must be no space between -p and the following password value.

Specifying a password on the command line should be considered insecure. See Section 8.1.2.1,
“End-User Guidelines for Password Security”. To avoid giving the password on the command line,
use an option file or a login path file. See Section 6.2.2.2, “Using Option Files”, and Section 6.6.7,
“mysql_config_editor — MySQL Configuration Utility”.

For additional information about specifying user names, passwords, and other connection parameters,
see Section 6.2.4, “Connecting to the MySQL Server Using Command Options”.

1305

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Privileges Provided by MySQL

8.2.2 Privileges Provided by MySQL

The privileges granted to a MySQL account determine which operations the account can perform.
MySQL privileges differ in the contexts in which they apply and at different levels of operation:

• Administrative privileges enable users to manage operation of the MySQL server. These privileges
are global because they are not specific to a particular database.

• Database privileges apply to a database and to all objects within it. These privileges can be granted
for specific databases, or globally so that they apply to all databases.

• Privileges for database objects such as tables, indexes, views, and stored routines can be granted
for specific objects within a database, for all objects of a given type within a database (for example,
all tables in a database), or globally for all objects of a given type in all databases.

Privileges also differ in terms of whether they are static (built in to the server) or dynamic (defined at
runtime). Whether a privilege is static or dynamic affects its availability to be granted to user accounts
and roles. For information about the differences between static and dynamic privileges, see Static
Versus Dynamic Privileges.)

Information about account privileges is stored in the grant tables in the mysql system database. For
a description of the structure and contents of these tables, see Section 8.2.3, “Grant Tables”. The
MySQL server reads the contents of the grant tables into memory when it starts, and reloads them
under the circumstances indicated in Section 8.2.13, “When Privilege Changes Take Effect”. The
server bases access-control decisions on the in-memory copies of the grant tables.

Important

Some MySQL releases introduce changes to the grant tables to add new
privileges or features. To make sure that you can take advantage of any new
capabilities, update your grant tables to the current structure whenever you
upgrade MySQL. See Chapter 3, Upgrading MySQL.

The following sections summarize the available privileges, provide more detailed descriptions of each
privilege, and offer usage guidelines.

• Summary of Available Privileges

• Static Privilege Descriptions

• Dynamic Privilege Descriptions

• Privilege-Granting Guidelines

• Static Versus Dynamic Privileges

• Migrating Accounts from SUPER to Dynamic Privileges

Summary of Available Privileges

The following table shows the static privilege names used in GRANT and REVOKE statements, along
with the column name associated with each privilege in the grant tables and the context in which the
privilege applies.

Table 8.2 Permissible Static Privileges for GRANT and REVOKE

Privilege Grant Table Column Context

ALL [PRIVILEGES] Synonym for “all privileges” Server administration

ALTER Alter_priv Tables

ALTER ROUTINE Alter_routine_priv Stored routines

CREATE Create_priv Databases, tables, or indexes

1306

Privileges Provided by MySQL

Privilege Grant Table Column Context

CREATE ROLE Create_role_priv Server administration

CREATE ROUTINE Create_routine_priv Stored routines

CREATE TABLESPACE Create_tablespace_priv Server administration

CREATE TEMPORARY TABLES Create_tmp_table_priv Tables

CREATE USER Create_user_priv Server administration

CREATE VIEW Create_view_priv Views

DELETE Delete_priv Tables

DROP Drop_priv Databases, tables, or views

DROP ROLE Drop_role_priv Server administration

EVENT Event_priv Databases

EXECUTE Execute_priv Stored routines

FILE File_priv File access on server host

GRANT OPTION Grant_priv Databases, tables, or stored
routines

INDEX Index_priv Tables

INSERT Insert_priv Tables or columns

LOCK TABLES Lock_tables_priv Databases

PROCESS Process_priv Server administration

PROXY See proxies_priv table Server administration

REFERENCES References_priv Databases or tables

RELOAD Reload_priv Server administration

REPLICATION CLIENT Repl_client_priv Server administration

REPLICATION SLAVE Repl_slave_priv Server administration

SELECT Select_priv Tables or columns

SHOW DATABASES Show_db_priv Server administration

SHOW VIEW Show_view_priv Views

SHUTDOWN Shutdown_priv Server administration

SUPER Super_priv Server administration

TRIGGER Trigger_priv Tables

UPDATE Update_priv Tables or columns

USAGE Synonym for “no privileges” Server administration

The following table shows the dynamic privilege names used in GRANT and REVOKE statements, along
with the context in which the privilege applies.

Table 8.3 Permissible Dynamic Privileges for GRANT and REVOKE

Privilege Context

APPLICATION_PASSWORD_ADMIN Dual password administration

AUDIT_ABORT_EXEMPT Allow queries blocked by audit log filter

AUDIT_ADMIN Audit log administration

AUTHENTICATION_POLICY_ADMIN Authentication administration

BACKUP_ADMIN Backup administration

BINLOG_ADMIN Backup and Replication administration

1307

Privileges Provided by MySQL

Privilege Context

BINLOG_ENCRYPTION_ADMIN Backup and Replication administration

CLONE_ADMIN Clone administration

CONNECTION_ADMIN Server administration

ENCRYPTION_KEY_ADMIN Server administration

FIREWALL_ADMIN Firewall administration

FIREWALL_EXEMPT Firewall administration

FIREWALL_USER Firewall administration

FLUSH_OPTIMIZER_COSTS Server administration

FLUSH_STATUS Server administration

FLUSH_TABLES Server administration

FLUSH_USER_RESOURCES Server administration

GROUP_REPLICATION_ADMIN Replication administration

GROUP_REPLICATION_STREAM Replication administration

INNODB_REDO_LOG_ARCHIVE Redo log archiving administration

INNODB_REDO_LOG_ENABLE Redo log administration

MASKING_DICTIONARIES_ADMIN Server administration

NDB_STORED_USER NDB Cluster

PASSWORDLESS_USER_ADMIN Authentication administration

PERSIST_RO_VARIABLES_ADMIN Server administration

REPLICATION_APPLIER PRIVILEGE_CHECKS_USER for a replication
channel

REPLICATION_SLAVE_ADMIN Replication administration

RESOURCE_GROUP_ADMIN Resource group administration

RESOURCE_GROUP_USER Resource group administration

ROLE_ADMIN Server administration

SENSITIVE_VARIABLES_OBSERVER Server administration

SESSION_VARIABLES_ADMIN Server administration

SET_USER_ID Server administration

SHOW_ROUTINE Server administration

SKIP_QUERY_REWRITE Server administration

SYSTEM_USER Server administration

SYSTEM_VARIABLES_ADMIN Server administration

TABLE_ENCRYPTION_ADMIN Server administration

TELEMETRY_LOG_ADMIN Telemetry log administration for HeatWave on
AWS

TP_CONNECTION_ADMIN Thread pool administration

VERSION_TOKEN_ADMIN Server administration

XA_RECOVER_ADMIN Server administration

Static Privilege Descriptions

Static privileges are built in to the server, in contrast to dynamic privileges, which are defined at
runtime. The following list describes each static privilege available in MySQL.

1308

Privileges Provided by MySQL

Particular SQL statements might have more specific privilege requirements than indicated here. If so,
the description for the statement in question provides the details.

• ALL, ALL PRIVILEGES

These privilege specifiers are shorthand for “all privileges available at a given privilege level” (except
GRANT OPTION). For example, granting ALL at the global or table level grants all global privileges or
all table-level privileges, respectively.

• ALTER

Enables use of the ALTER TABLE statement to change the structure of tables. ALTER TABLE also
requires the CREATE and INSERT privileges. Renaming a table requires ALTER and DROP on the old
table, CREATE, and INSERT on the new table.

• ALTER ROUTINE

Enables use of statements that alter or drop stored routines (stored procedures and functions). For
routines that fall within the scope at which the privilege is granted and for which the user is not the
user named as the routine DEFINER, also enables access to routine properties other than the routine
definition.

• CREATE

Enables use of statements that create new databases and tables.

• CREATE ROLE

Enables use of the CREATE ROLE statement. (The CREATE USER privilege also enables use of the
CREATE ROLE statement.) See Section 8.2.10, “Using Roles”.

The CREATE ROLE and DROP ROLE privileges are not as powerful as CREATE USER because
they can be used only to create and drop accounts. They cannot be used as CREATE USER can be
modify account attributes or rename accounts. See User and Role Interchangeability.

• CREATE ROUTINE

Enables use of statements that create stored routines (stored procedures and functions). For
routines that fall within the scope at which the privilege is granted and for which the user is not the
user named as the routine DEFINER, also enables access to routine properties other than the routine
definition.

• CREATE TABLESPACE

Enables use of statements that create, alter, or drop tablespaces and log file groups.

• CREATE TEMPORARY TABLES

Enables the creation of temporary tables using the CREATE TEMPORARY TABLE statement.

After a session has created a temporary table, the server performs no further privilege checks on the
table. The creating session can perform any operation on the table, such as DROP TABLE, INSERT,
UPDATE, or SELECT. For more information, see Section 15.1.20.2, “CREATE TEMPORARY TABLE
Statement”.

• CREATE USER

Enables use of the ALTER USER, CREATE ROLE, CREATE USER, DROP ROLE, DROP USER,
RENAME USER, and REVOKE ALL PRIVILEGES statements.

• CREATE VIEW

Enables use of the CREATE VIEW statement.

1309

Privileges Provided by MySQL

• DELETE

Enables rows to be deleted from tables in a database.

• DROP

Enables use of statements that drop (remove) existing databases, tables, and views. The DROP
privilege is required to use the ALTER TABLE ... DROP PARTITION statement on a partitioned
table. The DROP privilege is also required for TRUNCATE TABLE.

• DROP ROLE

Enables use of the DROP ROLE statement. (The CREATE USER privilege also enables use of the
DROP ROLE statement.) See Section 8.2.10, “Using Roles”.

The CREATE ROLE and DROP ROLE privileges are not as powerful as CREATE USER because
they can be used only to create and drop accounts. They cannot be used as CREATE USER can be
modify account attributes or rename accounts. See User and Role Interchangeability.

• EVENT

Enables use of statements that create, alter, drop, or display events for the Event Scheduler.

• EXECUTE

Enables use of statements that execute stored routines (stored procedures and functions). For
routines that fall within the scope at which the privilege is granted and for which the user is not the
user named as the routine DEFINER, also enables access to routine properties other than the routine
definition.

• FILE

Affects the following operations and server behaviors:

• Enables reading and writing files on the server host using the LOAD DATA and SELECT ...
INTO OUTFILE statements and the LOAD_FILE() function. A user who has the FILE privilege
can read any file on the server host that is either world-readable or readable by the MySQL server.
(This implies the user can read any file in any database directory, because the server can access
any of those files.)

• Enables creating new files in any directory where the MySQL server has write access. This
includes the server's data directory containing the files that implement the privilege tables.

• Enables use of the DATA DIRECTORY or INDEX DIRECTORY table option for the CREATE TABLE
statement.

As a security measure, the server does not overwrite existing files.

To limit the location in which files can be read and written, set the secure_file_priv system
variable to a specific directory. See Section 7.1.8, “Server System Variables”.

• GRANT OPTION

Enables you to grant to or revoke from other users those privileges that you yourself possess.

• INDEX

Enables use of statements that create or drop (remove) indexes. INDEX applies to existing tables. If
you have the CREATE privilege for a table, you can include index definitions in the CREATE TABLE
statement.

• INSERT

1310

Privileges Provided by MySQL

Enables rows to be inserted into tables in a database. INSERT is also required for the ANALYZE
TABLE, OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.

• LOCK TABLES

Enables use of explicit LOCK TABLES statements to lock tables for which you have the SELECT
privilege. This includes use of write locks, which prevents other sessions from reading the locked
table.

• PROCESS

The PROCESS privilege controls access to information about threads executing within the server (that
is, information about statements being executed by sessions). Thread information available using
the SHOW PROCESSLIST statement, the mysqladmin processlist command, the Information
Schema PROCESSLIST table, and the Performance Schema processlist table is accessible as
follows:

• With the PROCESS privilege, a user has access to information about all threads, even those
belonging to other users.

• Without the PROCESS privilege, nonanonymous users have access to information about their
own threads but not threads for other users, and anonymous users have no access to thread
information.

Note

The Performance Schema threads table also provides thread information,
but table access uses a different privilege model. See Section 29.12.21.8,
“The threads Table”.

The PROCESS privilege also enables use of the SHOW ENGINE statement, access to the
INFORMATION_SCHEMA InnoDB tables (tables with names that begin with INNODB_), and (as of
MySQL 8.0.21) access to the INFORMATION_SCHEMA FILES table.

• PROXY

Enables one user to impersonate or become known as another user. See Section 8.2.19, “Proxy
Users”.

• REFERENCES

Creation of a foreign key constraint requires the REFERENCES privilege for the parent table.

• RELOAD

The RELOAD enables the following operations:

• Use of the FLUSH statement.

• Use of mysqladmin commands that are equivalent to FLUSH operations: flush-hosts, flush-
logs, flush-privileges, flush-status, flush-tables, flush-threads, refresh, and
reload.

The reload command tells the server to reload the grant tables into memory. flush-
privileges is a synonym for reload. The refresh command closes and reopens the log files
and flushes all tables. The other flush-xxx commands perform functions similar to refresh, but
are more specific and may be preferable in some instances. For example, if you want to flush just
the log files, flush-logs is a better choice than refresh.

• Use of mysqldump options that perform various FLUSH operations: --flush-logs and --
master-data.

1311

Privileges Provided by MySQL

• Use of the RESET MASTER and RESET REPLICA (or before MySQL 8.0.22, RESET SLAVE)
statements.

• REPLICATION CLIENT

Enables use of the SHOW MASTER STATUS, SHOW REPLICA STATUS, and SHOW BINARY LOGS
statements.

• REPLICATION SLAVE

Enables the account to request updates that have been made to databases on the replication
source server, using the SHOW REPLICAS (or before MySQL 8.0.22, SHOW SLAVE HOSTS), SHOW
RELAYLOG EVENTS, and SHOW BINLOG EVENTS statements. This privilege is also required to
use the mysqlbinlog options --read-from-remote-server (-R), --read-from-remote-
source, and --read-from-remote-master. Grant this privilege to accounts that are used by
replicas to connect to the current server as their replication source server.

• SELECT

Enables rows to be selected from tables in a database. SELECT statements require the SELECT
privilege only if they actually access tables. Some SELECT statements do not access tables and can
be executed without permission for any database. For example, you can use SELECT as a simple
calculator to evaluate expressions that make no reference to tables:

SELECT 1+1;
SELECT PI()*2;

The SELECT privilege is also needed for other statements that read column values. For example,
SELECT is needed for columns referenced on the right hand side of col_name=expr assignment in
UPDATE statements or for columns named in the WHERE clause of DELETE or UPDATE statements.

The SELECT privilege is needed for tables or views used with EXPLAIN, including any underlying
tables in view definitions.

• SHOW DATABASES

Enables the account to see database names by issuing the SHOW DATABASE statement. Accounts
that do not have this privilege see only databases for which they have some privileges, and cannot
use the statement at all if the server was started with the --skip-show-database option.

Caution

Because any static global privilege is considered a privilege for all
databases, any static global privilege enables a user to see all database
names with SHOW DATABASES or by examining the SCHEMATA table of
INFORMATION_SCHEMA, except databases that have been restricted at the
database level by partial revokes.

• SHOW VIEW

Enables use of the SHOW CREATE VIEW statement. This privilege is also needed for views used with
EXPLAIN.

• SHUTDOWN

Enables use of the SHUTDOWN and RESTART statements, the mysqladmin shutdown command,
and the mysql_shutdown() C API function.

• SUPER

SUPER is a powerful and far-reaching privilege and should not be granted lightly. If an account needs
to perform only a subset of SUPER operations, it may be possible to achieve the desired privilege set

1312

https://dev.mysql.com/doc/c-api/8.0/en/mysql-shutdown.html

Privileges Provided by MySQL

by instead granting one or more dynamic privileges, each of which confers more limited capabilities.
See Dynamic Privilege Descriptions.

Note

SUPER is deprecated, and you should expect it to be removed in a future
version of MySQL. See Migrating Accounts from SUPER to Dynamic
Privileges.

SUPER affects the following operations and server behaviors:

• Enables system variable changes at runtime:

• Enables server configuration changes to global system variables with SET GLOBAL and SET
PERSIST.

The corresponding dynamic privilege is SYSTEM_VARIABLES_ADMIN.

• Enables setting restricted session system variables that require a special privilege.

The corresponding dynamic privilege is SESSION_VARIABLES_ADMIN.

See also Section 7.1.9.1, “System Variable Privileges”.

• Enables changes to global transaction characteristics (see Section 15.3.7, “SET TRANSACTION
Statement”).

The corresponding dynamic privilege is SYSTEM_VARIABLES_ADMIN.

• Enables the account to start and stop replication, including Group Replication.

The corresponding dynamic privilege is REPLICATION_SLAVE_ADMIN for regular replication,
GROUP_REPLICATION_ADMIN for Group Replication.

• Enables use of the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23),
CHANGE MASTER TO statement (before MySQL 8.0.23), and CHANGE REPLICATION FILTER
statements.

The corresponding dynamic privilege is REPLICATION_SLAVE_ADMIN.

• Enables binary log control by means of the PURGE BINARY LOGS and BINLOG statements.

The corresponding dynamic privilege is BINLOG_ADMIN.

• Enables setting the effective authorization ID when executing a view or stored program. A user
with this privilege can specify any account in the DEFINER attribute of a view or stored program.

The corresponding dynamic privilege is SET_USER_ID.

• Enables use of the CREATE SERVER, ALTER SERVER, and DROP SERVER statements.

• Enables use of the mysqladmin debug command.

• Enables InnoDB encryption key rotation.

The corresponding dynamic privilege is ENCRYPTION_KEY_ADMIN.

• Enables execution of Version Tokens functions.

The corresponding dynamic privilege is VERSION_TOKEN_ADMIN.

1313

Privileges Provided by MySQL

• Enables granting and revoking roles, use of the WITH ADMIN OPTION clause of the GRANT
statement, and nonempty <graphml> element content in the result from the ROLES_GRAPHML()
function.

The corresponding dynamic privilege is ROLE_ADMIN.

• Enables control over client connections not permitted to non-SUPER accounts:

• Enables use of the KILL statement or mysqladmin kill command to kill threads belonging to
other accounts. (An account can always kill its own threads.)

• The server does not execute init_connect system variable content when SUPER clients
connect.

• The server accepts one connection from a SUPER client even if the connection limit configured
by the max_connections system variable is reached.

• A server in offline mode (offline_mode enabled) does not terminate SUPER client connections
at the next client request, and accepts new connections from SUPER clients.

• Updates can be performed even when the read_only system variable is enabled. This applies
to explicit table updates, and to use of account-management statements such as GRANT and
REVOKE that update tables implicitly.

The corresponding dynamic privilege for the preceding connection control operations is
CONNECTION_ADMIN.

You may also need the SUPER privilege to create or alter stored functions if binary logging is
enabled, as described in Section 27.7, “Stored Program Binary Logging”.

• TRIGGER

Enables trigger operations. You must have this privilege for a table to create, drop, execute, or
display triggers for that table.

When a trigger is activated (by a user who has privileges to execute INSERT, UPDATE, or DELETE
statements for the table associated with the trigger), trigger execution requires that the user who
defined the trigger still have the TRIGGER privilege for the table.

• UPDATE

Enables rows to be updated in tables in a database.

• USAGE

This privilege specifier stands for “no privileges.” It is used at the global level with GRANT to specify
clauses such as WITH GRANT OPTION without naming specific account privileges in the privilege
list. SHOW GRANTS displays USAGE to indicate that an account has no privileges at a privilege level.

Dynamic Privilege Descriptions

Dynamic privileges are defined at runtime, in contrast to static privileges, which are built in to the
server. The following list describes each dynamic privilege available in MySQL.

Most dynamic privileges are defined at server startup. Others are defined by a particular component or
plugin, as indicated in the privilege descriptions. In such cases, the privilege is unavailable unless the
component or plugin that defines it is enabled.

Particular SQL statements might have more specific privilege requirements than indicated here. If so,
the description for the statement in question provides the details.

1314

Privileges Provided by MySQL

• APPLICATION_PASSWORD_ADMIN (added in MySQL 8.0.14)

For dual-password capability, this privilege enables use of the RETAIN CURRENT PASSWORD and
DISCARD OLD PASSWORD clauses for ALTER USER and SET PASSWORD statements that apply to
your own account. This privilege is required to manipulate your own secondary password because
most users require only one password.

If an account is to be permitted to manipulate secondary passwords for all accounts, it should be
granted the CREATE USER privilege rather than APPLICATION_PASSWORD_ADMIN.

For more information about use of dual passwords, see Section 8.2.15, “Password Management”.

• AUDIT_ABORT_EXEMPT (added in MySQL 8.0.28)

Allows queries blocked by an “abort” item in the audit log filter. This privilege is defined by the
audit_log plugin; see Section 8.4.5, “MySQL Enterprise Audit”.

Accounts created in MySQL 8.0.28 or later with the SYSTEM_USER privilege have the
AUDIT_ABORT_EXEMPT privilege assigned automatically when they are created. The
AUDIT_ABORT_EXEMPT privilege is also assigned to existing accounts with the SYSTEM_USER
privilege when you carry out an upgrade procedure with MySQL 8.0.28 or later, if no existing
accounts have that privilege assigned. Accounts with the SYSTEM_USER privilege can therefore be
used to regain access to a system following an audit misconfiguration.

• AUDIT_ADMIN

Enables audit log configuration. This privilege is defined by the audit_log plugin; see
Section 8.4.5, “MySQL Enterprise Audit”.

• BACKUP_ADMIN

Enables execution of the LOCK INSTANCE FOR BACKUP statement and access to the Performance
Schema log_status table.

Note

Besides BACKUP_ADMIN, the SELECT privilege on the log_status table is
also needed for its access.

The BACKUP_ADMIN privilege is automatically granted to users with the RELOAD privilege when
performing an in-place upgrade to MySQL 8.0 from an earlier version.

• AUTHENTICATION_POLICY_ADMIN (added in MySQL 8.0.27)

The authentication_policy system variable places certain constraints on how the
authentication-related clauses of CREATE USER and ALTER USER statements may be used. A user
who has the AUTHENTICATION_POLICY_ADMIN privilege is not subject to these constraints. (A
warning does occur for statements that otherwise would not be permitted.)

For details about the constraints imposed by authentication_policy, see the description of that
variable.

• BINLOG_ADMIN

Enables binary log control by means of the PURGE BINARY LOGS and BINLOG statements.

• BINLOG_ENCRYPTION_ADMIN

Enables setting the system variable binlog_encryption, which activates or deactivates
encryption for binary log files and relay log files. This ability is not provided by the BINLOG_ADMIN,
SYSTEM_VARIABLES_ADMIN, or SESSION_VARIABLES_ADMIN privileges. The related system

1315

Privileges Provided by MySQL

variable binlog_rotate_encryption_master_key_at_startup, which rotates the binary log
master key automatically when the server is restarted, does not require this privilege.

• CLONE_ADMIN

Enables execution of the CLONE statements. Includes BACKUP_ADMIN and SHUTDOWN privileges.

• CONNECTION_ADMIN

Enables use of the KILL statement or mysqladmin kill command to kill threads belonging to
other accounts. (An account can always kill its own threads.)

Enables setting system variables related to client connections, or circumventing restrictions related
to client connections. From MySQL 8.0.31, CONNECTION_ADMIN is required to activate MySQL
Server’s offline mode, which is done by changing the value of the offline_mode system variable to
ON.

The CONNECTION_ADMIN privilege enables administrators with it to bypass effects of these system
variables:

• init_connect: The server does not execute init_connect system variable content when
CONNECTION_ADMIN clients connect.

• max_connections: The server accepts one connection from a CONNECTION_ADMIN client even
if the connection limit configured by the max_connections system variable is reached.

• offline_mode: A server in offline mode (offline_mode enabled) does not terminate
CONNECTION_ADMIN client connections at the next client request, and accepts new connections
from CONNECTION_ADMIN clients.

• read_only: Updates from CONNECTION_ADMIN clients can be performed even when the
read_only system variable is enabled. This applies to explicit table updates, and to account
management statements such as GRANT and REVOKE that update tables implicitly.

Group Replication group members need the CONNECTION_ADMIN privilege so that Group
Replication connections are not terminated if one of the servers involved is placed in offline mode.
If the MySQL communication stack is in use (group_replication_communication_stack =
MYSQL), without this privilege, a member that is placed in offline mode is expelled from the group.

• ENCRYPTION_KEY_ADMIN

Enables InnoDB encryption key rotation.

• FIREWALL_ADMIN

Enables a user to administer firewall rules for any user. This privilege is defined by the
MYSQL_FIREWALL plugin; see Section 8.4.7, “MySQL Enterprise Firewall”.

• FIREWALL_EXEMPT (added in MySQL 8.0.27)

A user with this privilege is exempt from firewall restrictions. This privilege is defined by the
MYSQL_FIREWALL plugin; see Section 8.4.7, “MySQL Enterprise Firewall”.

• FIREWALL_USER

Enables users to update their own firewall rules. This privilege is defined by the MYSQL_FIREWALL
plugin; see Section 8.4.7, “MySQL Enterprise Firewall”.

• FLUSH_OPTIMIZER_COSTS (added in MySQL 8.0.23)

Enables use of the FLUSH OPTIMIZER_COSTS statement.

• FLUSH_STATUS (added in MySQL 8.0.23)

1316

Privileges Provided by MySQL

Enables use of the FLUSH STATUS statement.

• FLUSH_TABLES (added in MySQL 8.0.23)

Enables use of the FLUSH TABLES statement.

• FLUSH_USER_RESOURCES (added in MySQL 8.0.23)

Enables use of the FLUSH USER_RESOURCES statement.

• GROUP_REPLICATION_ADMIN

Enables the account to start and stop Group Replication using the START GROUP
REPLICATION and STOP GROUP REPLICATION statements, to change the
global setting for the group_replication_consistency system variable,
and to use the group_replication_set_write_concurrency() and
group_replication_set_communication_protocol() functions. Grant this privilege to
accounts that are used to administer servers that are members of a replication group.

• GROUP_REPLICATION_STREAM

Allows a user account to be used for establishing Group Replication's group communication
connections. It must be granted to a recovery user when the MySQL communication stack is used for
Group Replication (group_replication_communication_stack=MYSQL).

• INNODB_REDO_LOG_ARCHIVE

Enables the account to activate and deactivate redo log archiving.

• INNODB_REDO_LOG_ENABLE

Enables use of the ALTER INSTANCE {ENABLE|DISABLE} INNODB REDO_LOG statement to
enable or disable redo logging. Introduced in MySQL 8.0.21.

See Disabling Redo Logging.

• MASKING_DICTIONARIES_ADMIN

Enables the account to add and remove dictionary terms using the
masking_dictionary_term_add() and masking_dictionary_term_remove() component
functions. Accounts also require this dynamic privilege to remove a full dictionary using the
masking_dictionary_remove() function, which removes all of the terms associated with the
named dictionary currently in the mysql.masking_dictionaries table.

See Section 8.5, “MySQL Enterprise Data Masking and De-Identification”.

• NDB_STORED_USER

Enables the user or role and its privileges to be shared and synchronized between all NDB-enabled
MySQL servers as soon as they join a given NDB Cluster. This privilege is available only if the NDB
storage engine is enabled.

Any changes to or revocations of privileges made for the given user or role are synchronized
immediately with all connected MySQL servers (SQL nodes). You should be aware that there is
no guarantee that multiple statements affecting privileges originating from different SQL nodes are
executed on all SQL nodes in the same order. For this reason, it is highly recommended that all user
administration be done from a single designated SQL node.

NDB_STORED_USER is a global privilege and must be granted or revoked using ON *.*. Trying
to set any other scope for this privilege results in an error. This privilege can be given to most

1317

Privileges Provided by MySQL

application and administrative users, but it cannot be granted to system reserved accounts such as
mysql.session@localhost or mysql.infoschema@localhost.

A user that has been granted the NDB_STORED_USER privilege is stored in NDB (and thus shared
by all SQL nodes), as is a role with this privilege. A user that is merely granted a role that has
NDB_STORED_USER is not stored in NDB; each NDB stored user must be granted the privilege
explicitly.

For more detailed information about how this works in NDB, see Section 25.6.13, “Privilege
Synchronization and NDB_STORED_USER”.

The NDB_STORED_USER privilege is available beginning with NDB 8.0.18.

• PASSWORDLESS_USER_ADMIN (added in MySQL 8.0.27)

This privilege applies to passwordless user accounts:

• For account creation, a user who executes CREATE USER to create a passwordless account must
possess the PASSWORDLESS_USER_ADMIN privilege.

• In replication context, the PASSWORDLESS_USER_ADMIN privilege applies to replication users
and enables replication of ALTER USER ... MODIFY statements for user accounts that are
configured for passwordless authentication.

For information about passwordless authentication, see FIDO Passwordless Authentication.

• PERSIST_RO_VARIABLES_ADMIN

For users who also have SYSTEM_VARIABLES_ADMIN, PERSIST_RO_VARIABLES_ADMIN enables
use of SET PERSIST_ONLY to persist global system variables to the mysqld-auto.cnf option
file in the data directory. This statement is similar to SET PERSIST but does not modify the runtime
global system variable value. This makes SET PERSIST_ONLY suitable for configuring read-only
system variables that can be set only at server startup.

See also Section 7.1.9.1, “System Variable Privileges”.

• REPLICATION_APPLIER

Enables the account to act as the PRIVILEGE_CHECKS_USER for a replication channel, and to
execute BINLOG statements in mysqlbinlog output. Grant this privilege to accounts that are
assigned using CHANGE REPLICATION SOURCE TO (from MySQL 8.0.23) or CHANGE MASTER
TO (before MySQL 8.0.23) to provide a security context for replication channels, and to handle
replication errors on those channels. As well as the REPLICATION_APPLIER privilege, you must
also give the account the required privileges to execute the transactions received by the replication
channel or contained in the mysqlbinlog output, for example to update the affected tables. For
more information, see Section 19.3.3, “Replication Privilege Checks”.

• REPLICATION_SLAVE_ADMIN

Enables the account to connect to the replication source server, start and stop replication using the
START REPLICA and STOP REPLICA statements, and use the CHANGE REPLICATION SOURCE
TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) and
the CHANGE REPLICATION FILTER statements. Grant this privilege to accounts that are used by
replicas to connect to the current server as their replication source server. This privilege does not
apply to Group Replication; use GROUP_REPLICATION_ADMIN for that.

• RESOURCE_GROUP_ADMIN

Enables resource group management, consisting of creating, altering, and dropping resource groups,
and assignment of threads and statements to resource groups. A user with this privilege can perform
any operation relating to resource groups.

1318

Privileges Provided by MySQL

• RESOURCE_GROUP_USER

Enables assigning threads and statements to resource groups. A user with this privilege can use the
SET RESOURCE GROUP statement and the RESOURCE_GROUP optimizer hint.

• ROLE_ADMIN

Enables granting and revoking roles, use of the WITH ADMIN OPTION clause of the GRANT
statement, and nonempty <graphml> element content in the result from the ROLES_GRAPHML()
function. Required to set the value of the mandatory_roles system variable.

• SENSITIVE_VARIABLES_OBSERVER (added in MySQL 8.0.29)

Enables a holder to view the values of sensitive system variables in the Performance Schema
tables global_variables, session_variables, variables_by_thread, and
persisted_variables, to issue SELECT statements to return their values, and to track changes
to them in session trackers for connections. Users without this privilege cannot view or track those
system variable values. See Persisting Sensitive System Variables.

• SERVICE_CONNECTION_ADMIN

Enables connections to the network interface that permits only administrative connections (see
Section 7.1.12.1, “Connection Interfaces”).

• SESSION_VARIABLES_ADMIN (added in MySQL 8.0.14)

For most system variables, setting the session value requires no special privileges and can be
done by any user to affect the current session. For some system variables, setting the session
value can have effects outside the current session and thus is a restricted operation. For these, the
SESSION_VARIABLES_ADMIN privilege enables the user to set the session value.

If a system variable is restricted and requires a special privilege to set the session value, the variable
description indicates that restriction. Examples include binlog_format, sql_log_bin, and
sql_log_off.

Prior to MySQL 8.0.14 when SESSION_VARIABLES_ADMIN was added, restricted session system
variables can be set only by users who have the SYSTEM_VARIABLES_ADMIN or SUPER privilege.

The SESSION_VARIABLES_ADMIN privilege is a subset of the SYSTEM_VARIABLES_ADMIN and
SUPER privileges. A user who has either of those privileges is also permitted to set restricted session
variables and effectively has SESSION_VARIABLES_ADMIN by implication and need not be granted
SESSION_VARIABLES_ADMIN explicitly.

See also Section 7.1.9.1, “System Variable Privileges”.

• SET_USER_ID

Enables setting the effective authorization ID when executing a view or stored program. A user with
this privilege can specify any account as the DEFINER attribute of a view or stored program. Stored
programs execute with the privileges of the specified account, so ensure that you follow the risk
minimization guidelines listed in Section 27.6, “Stored Object Access Control”.

As of MySQL 8.0.22, SET_USER_ID also enables overriding security checks designed to prevent
operations that (perhaps inadvertently) cause stored objects to become orphaned or that cause
adoption of stored objects that are currently orphaned. For details, see Orphan Stored Objects.

1319

Privileges Provided by MySQL

• SHOW_ROUTINE (added in MySQL 8.0.20)

Enables a user to access definitions and properties of all stored routines (stored procedures and
functions), even those for which the user is not named as the routine DEFINER. This access
includes:

• The contents of the Information Schema ROUTINES table.

• The SHOW CREATE FUNCTION and SHOW CREATE PROCEDURE statements.

• The SHOW FUNCTION CODE and SHOW PROCEDURE CODE statements.

• The SHOW FUNCTION STATUS and SHOW PROCEDURE STATUS statements.

Prior to MySQL 8.0.20, for a user to access definitions of routines the user did not define, the user
must have the global SELECT privilege, which is very broad. As of 8.0.20, SHOW_ROUTINE may be
granted instead as a privilege with a more restricted scope that permits access to routine definitions.
(That is, an administrator can rescind global SELECT from users that do not otherwise require it and
grant SHOW_ROUTINE instead.) This enables an account to back up stored routines without requiring
a broad privilege.

• SKIP_QUERY_REWRITE (added in MySQL 8.0.31)

Queries issued by a user with this privilege are not subject to being rewritten by the Rewriter
plugin (see Section 7.6.4, “The Rewriter Query Rewrite Plugin”).

This privilege should be granted to users issuing administrative or control statements that should not
be rewritten, as well as to PRIVILEGE_CHECKS_USER accounts (see Section 19.3.3, “Replication
Privilege Checks”) used to apply statements from a replication source.

• SYSTEM_USER (added in MySQL 8.0.16)

The SYSTEM_USER privilege distinguishes system users from regular users:

• A user with the SYSTEM_USER privilege is a system user.

• A user without the SYSTEM_USER privilege is a regular user.

The SYSTEM_USER privilege has an effect on the accounts to which a given user can apply its other
privileges, as well as whether the user is protected from other accounts:

• A system user can modify both system and regular accounts. That is, a user who has the
appropriate privileges to perform a given operation on regular accounts is enabled by possession
of SYSTEM_USER to also perform the operation on system accounts. A system account can be
modified only by system users with appropriate privileges, not by regular users.

• A regular user with appropriate privileges can modify regular accounts, but not system accounts. A
regular account can be modified by both system and regular users with appropriate privileges.

This also means that database objects created by users with the SYSTEM_USER privilege cannot be
modified or dropped by users without the privilege. This also applies to routines for which the definer
has this privilege.

For more information, see Section 8.2.11, “Account Categories”.

The protection against modification by regular accounts that is afforded to system accounts by
the SYSTEM_USER privilege does not apply to regular accounts that have privileges on the mysql
system schema and thus can directly modify the grant tables in that schema. For full protection, do

1320

Privileges Provided by MySQL

not grant mysql schema privileges to regular accounts. See Protecting System Accounts Against
Manipulation by Regular Accounts.

If the audit_log plugin is in use (see Section 8.4.5, “MySQL Enterprise Audit”), from
MySQL 8.0.28, accounts with the SYSTEM_USER privilege are automatically assigned the
AUDIT_ABORT_EXEMPT privilege, which permits their queries to be executed even if an “abort” item
configured in the filter would block them. Accounts with the SYSTEM_USER privilege can therefore be
used to regain access to a system following an audit misconfiguration.

• SYSTEM_VARIABLES_ADMIN

Affects the following operations and server behaviors:

• Enables system variable changes at runtime:

• Enables server configuration changes to global system variables with SET GLOBAL and SET
PERSIST.

• Enables server configuration changes to global system variables with SET PERSIST_ONLY, if
the user also has PERSIST_RO_VARIABLES_ADMIN.

• Enables setting restricted session system variables that require a special privilege. In effect,
SYSTEM_VARIABLES_ADMIN implies SESSION_VARIABLES_ADMIN without explicitly granting
SESSION_VARIABLES_ADMIN.

See also Section 7.1.9.1, “System Variable Privileges”.

• Enables changes to global transaction characteristics (see Section 15.3.7, “SET TRANSACTION
Statement”).

• TABLE_ENCRYPTION_ADMIN (added in MySQL 8.0.16)

Enables a user to override default encryption settings when
table_encryption_privilege_check is enabled; see Defining an Encryption Default for
Schemas and General Tablespaces.

• TELEMETRY_LOG_ADMIN

Enables telemetry log configuration. This privilege is defined by the telemetry_log plugin, which
is deployed through HeatWave on AWS.

• TP_CONNECTION_ADMIN

Enables connecting to the server with a privileged connection. When the limit defined by
thread_pool_max_transactions_limit has been reached, new connections are not
permitted. A privileged connection ignores the transaction limit and permits connecting to the server
to increase the transaction limit, remove the limit, or kill running transactions. This privilege is not
granted to any user by default. To establish a privileged connection, the user initiating a connection
must have the TP_CONNECTION_ADMIN privilege.

A privileged connection can execute statements and start transactions when the limit defined by
thread_pool_max_transactions_limit has been reached. A privileged connection is placed
in the Admin thread group. See Privileged Connections.

• VERSION_TOKEN_ADMIN

Enables execution of Version Tokens functions. This privilege is defined by the version_tokens
plugin; see Section 7.6.6, “Version Tokens”.

1321

Privileges Provided by MySQL

• XA_RECOVER_ADMIN

Enables execution of the XA RECOVER statement; see Section 15.3.8.1, “XA Transaction SQL
Statements”.

Prior to MySQL 8.0, any user could execute the XA RECOVER statement to discover the XID
values for outstanding prepared XA transactions, possibly leading to commit or rollback of an XA
transaction by a user other than the one who started it. In MySQL 8.0, XA RECOVER is permitted
only to users who have the XA_RECOVER_ADMIN privilege, which is expected to be granted only to
administrative users who have need for it. This might be the case, for example, for administrators of
an XA application if it has crashed and it is necessary to find outstanding transactions started by the
application so they can be rolled back. This privilege requirement prevents users from discovering
the XID values for outstanding prepared XA transactions other than their own. It does not affect
normal commit or rollback of an XA transaction because the user who started it knows its XID.

Privilege-Granting Guidelines

It is a good idea to grant to an account only those privileges that it needs. You should exercise
particular caution in granting the FILE and administrative privileges:

• FILE can be abused to read into a database table any files that the MySQL server can read on the
server host. This includes all world-readable files and files in the server's data directory. The table
can then be accessed using SELECT to transfer its contents to the client host.

• GRANT OPTION enables users to give their privileges to other users. Two users that have different
privileges and with the GRANT OPTION privilege are able to combine privileges.

• ALTER may be used to subvert the privilege system by renaming tables.

• SHUTDOWN can be abused to deny service to other users entirely by terminating the server.

• PROCESS can be used to view the plain text of currently executing statements, including statements
that set or change passwords.

• SUPER can be used to terminate other sessions or change how the server operates.

• Privileges granted for the mysql system database itself can be used to change passwords and other
access privilege information:

• Passwords are stored encrypted, so a malicious user cannot simply read them to know the
plain text password. However, a user with write access to the mysql.user system table
authentication_string column can change an account's password, and then connect to the
MySQL server using that account.

• INSERT or UPDATE granted for the mysql system database enable a user to add privileges or
modify existing privileges, respectively.

• DROP for the mysql system database enables a user to remote privilege tables, or even the
database itself.

Static Versus Dynamic Privileges

MySQL supports static and dynamic privileges:

• Static privileges are built in to the server. They are always available to be granted to user accounts
and cannot be unregistered.

• Dynamic privileges can be registered and unregistered at runtime. This affects their availability: A
dynamic privilege that has not been registered cannot be granted.

For example, the SELECT and INSERT privileges are static and always available, whereas a dynamic
privilege becomes available only if the component that implements it has been enabled.

1322

Privileges Provided by MySQL

The remainder of this section describes how dynamic privileges work in MySQL. The discussion uses
the term “components” but applies equally to plugins.

Note

Server administrators should be aware of which server components define
dynamic privileges. For MySQL distributions, documentation of components that
define dynamic privileges describes those privileges.

Third-party components may also define dynamic privileges; an administrator
should understand those privileges and not install components that might
conflict or compromise server operation. For example, one component conflicts
with another if both define a privilege with the same name. Component
developers can reduce the likelihood of this occurrence by choosing privilege
names having a prefix based on the component name.

The server maintains the set of registered dynamic privileges internally in memory. Unregistration
occurs at server shutdown.

Normally, a component that defines dynamic privileges registers them when it is installed, during its
initialization sequence. When uninstalled, a component does not unregister its registered dynamic
privileges. (This is current practice, not a requirement. That is, components could, but do not,
unregister at any time privileges they register.)

No warning or error occurs for attempts to register an already registered dynamic privilege. Consider
the following sequence of statements:

INSTALL COMPONENT 'my_component';
UNINSTALL COMPONENT 'my_component';
INSTALL COMPONENT 'my_component';

The first INSTALL COMPONENT statement registers any privileges defined by component
my_component, but UNINSTALL COMPONENT does not unregister them. For the second INSTALL
COMPONENT statement, the component privileges it registers are found to be already registered, but no
warnings or errors occur.

Dynamic privileges apply only at the global level. The server stores information about current
assignments of dynamic privileges to user accounts in the mysql.global_grants system table:

• The server automatically registers privileges named in global_grants during server startup
(unless the --skip-grant-tables option is given).

• The GRANT and REVOKE statements modify the contents of global_grants.

• Dynamic privilege assignments listed in global_grants are persistent. They are not removed at
server shutdown.

Example: The following statement grants to user u1 the privileges required to control replication
(including Group Replication) on a replica, and to modify system variables:

GRANT REPLICATION_SLAVE_ADMIN, GROUP_REPLICATION_ADMIN, BINLOG_ADMIN
ON *.* TO 'u1'@'localhost';

Granted dynamic privileges appear in the output from the SHOW GRANTS statement and the
INFORMATION_SCHEMA USER_PRIVILEGES table.

For GRANT and REVOKE at the global level, any named privileges not recognized as static are checked
against the current set of registered dynamic privileges and granted if found. Otherwise, an error
occurs to indicate an unknown privilege identifier.

For GRANT and REVOKE the meaning of ALL [PRIVILEGES] at the global level includes all static
global privileges, as well as all currently registered dynamic privileges:

1323

Grant Tables

• GRANT ALL at the global level grants all static global privileges and all currently registered dynamic
privileges. A dynamic privilege registered subsequent to execution of the GRANT statement is not
granted retroactively to any account.

• REVOKE ALL at the global level revokes all granted static global privileges and all granted dynamic
privileges.

The FLUSH PRIVILEGES statement reads the global_grants table for dynamic privilege
assignments and registers any unregistered privileges found there.

For descriptions of the dynamic privileges provided by MySQL Server and components included in
MySQL distributions, see Section 8.2.2, “Privileges Provided by MySQL”.

Migrating Accounts from SUPER to Dynamic Privileges

In MySQL 8.0, many operations that previously required the SUPER privilege are also associated with
a dynamic privilege of more limited scope. (For descriptions of these privileges, see Section 8.2.2,
“Privileges Provided by MySQL”.) Each such operation can be permitted to an account by granting the
associated dynamic privilege rather than SUPER. This change improves security by enabling DBAs to
avoid granting SUPER and tailor user privileges more closely to the operations permitted. SUPER is now
deprecated; expect it to be removed in a future version of MySQL.

When removal of SUPER occurs, operations that formerly required SUPER fail unless accounts granted
SUPER are migrated to the appropriate dynamic privileges. Use the following instructions to accomplish
that goal so that accounts are ready prior to SUPER removal:

1. Execute this query to identify accounts that are granted SUPER:

SELECT GRANTEE FROM INFORMATION_SCHEMA.USER_PRIVILEGES
WHERE PRIVILEGE_TYPE = 'SUPER';

2. For each account identified by the preceding query, determine the operations for which it needs
SUPER. Then grant the dynamic privileges corresponding to those operations, and revoke SUPER.

For example, if 'u1'@'localhost' requires SUPER for binary log purging and system variable
modification, these statements make the required changes to the account:

GRANT BINLOG_ADMIN, SYSTEM_VARIABLES_ADMIN ON *.* TO 'u1'@'localhost';
REVOKE SUPER ON *.* FROM 'u1'@'localhost';

After you have modified all applicable accounts, the INFORMATION_SCHEMA query in the first step
should produce an empty result set.

8.2.3 Grant Tables

The mysql system database includes several grant tables that contain information about user
accounts and the privileges held by them. This section describes those tables. For information about
other tables in the system database, see Section 7.3, “The mysql System Schema”.

The discussion here describes the underlying structure of the grant tables and how the server uses
their contents when interacting with clients. However, normally you do not modify the grant tables
directly. Modifications occur indirectly when you use account-management statements such as CREATE
USER, GRANT, and REVOKE to set up accounts and control the privileges available to each one. See
Section 15.7.1, “Account Management Statements”. When you use such statements to perform
account manipulations, the server modifies the grant tables on your behalf.

Note

Direct modification of grant tables using statements such as INSERT, UPDATE,
or DELETE is discouraged and done at your own risk. The server is free to
ignore rows that become malformed as a result of such modifications.

1324

Grant Tables

For any operation that modifies a grant table, the server checks whether the
table has the expected structure and produces an error if not. To update the
tables to the expected structure, perform the MySQL upgrade procedure. See
Chapter 3, Upgrading MySQL.

• Grant Table Overview

• The user and db Grant Tables

• The tables_priv and columns_priv Grant Tables

• The procs_priv Grant Table

• The proxies_priv Grant Table

• The global_grants Grant Table

• The default_roles Grant Table

• The role_edges Grant Table

• The password_history Grant Table

• Grant Table Scope Column Properties

• Grant Table Privilege Column Properties

• Grant Table Concurrency

Grant Table Overview

These mysql database tables contain grant information:

• user: User accounts, static global privileges, and other nonprivilege columns.

• global_grants: Dynamic global privileges.

• db: Database-level privileges.

• tables_priv: Table-level privileges.

• columns_priv: Column-level privileges.

• procs_priv: Stored procedure and function privileges.

• proxies_priv: Proxy-user privileges.

• default_roles: Default user roles.

• role_edges: Edges for role subgraphs.

• password_history: Password change history.

For information about the differences between static and dynamic global privileges, see Static Versus
Dynamic Privileges.)

In MySQL 8.0, grant tables use the InnoDB storage engine and are transactional. Before MySQL 8.0,
grant tables used the MyISAM storage engine and were nontransactional. This change of grant table
storage engine enables an accompanying change to the behavior of account-management statements
such as CREATE USER or GRANT. Previously, an account-management statement that named multiple
users could succeed for some users and fail for others. Now, each statement is transactional and either
succeeds for all named users or rolls back and has no effect if any error occurs.

1325

Grant Tables

Each grant table contains scope columns and privilege columns:

• Scope columns determine the scope of each row in the tables; that is, the context in which the row
applies. For example, a user table row with Host and User values of 'h1.example.net' and
'bob' applies to authenticating connections made to the server from the host h1.example.net by
a client that specifies a user name of bob. Similarly, a db table row with Host, User, and Db column
values of 'h1.example.net', 'bob' and 'reports' applies when bob connects from the host
h1.example.net to access the reports database. The tables_priv and columns_priv
tables contain scope columns indicating tables or table/column combinations to which each row
applies. The procs_priv scope columns indicate the stored routine to which each row applies.

• Privilege columns indicate which privileges a table row grants; that is, which operations it permits to
be performed. The server combines the information in the various grant tables to form a complete
description of a user's privileges. Section 8.2.7, “Access Control, Stage 2: Request Verification”,
describes the rules for this.

In addition, a grant table may contain columns used for purposes other than scope or privilege
assessment.

The server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or permit incoming connections. For
permitted connections, any privileges granted in the user table indicate the user's static global
privileges. Any privileges granted in this table apply to all databases on the server.

Caution

Because any static global privilege is considered a privilege for all
databases, any static global privilege enables a user to see all database
names with SHOW DATABASES or by examining the SCHEMATA table of
INFORMATION_SCHEMA, except databases that have been restricted at the
database level by partial revokes.

• The global_grants table lists current assignments of dynamic global privileges to user accounts.
For each row, the scope columns determine which user has the privilege named in the privilege
column.

• The db table scope columns determine which users can access which databases from which hosts.
The privilege columns determine the permitted operations. A privilege granted at the database level
applies to the database and to all objects in the database, such as tables and stored programs.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained:
They apply at the table and column levels rather than at the database level. A privilege granted at the
table level applies to the table and to all its columns. A privilege granted at the column level applies
only to a specific column.

• The procs_priv table applies to stored routines (stored procedures and functions). A privilege
granted at the routine level applies only to a single procedure or function.

• The proxies_priv table indicates which users can act as proxies for other users and whether a
user can grant the PROXY privilege to other users.

• The default_roles and role_edges tables contain information about role relationships.

• The password_history table retains previously chosen passwords to enable restrictions on
password reuse. See Section 8.2.15, “Password Management”.

The server reads the contents of the grant tables into memory when it starts. You can tell it to reload
the tables by issuing a FLUSH PRIVILEGES statement or executing a mysqladmin flush-
privileges or mysqladmin reload command. Changes to the grant tables take effect as indicated
in Section 8.2.13, “When Privilege Changes Take Effect”.

1326

Grant Tables

When you modify an account, it is a good idea to verify that your changes have the intended effect.
To check the privileges for a given account, use the SHOW GRANTS statement. For example, to
determine the privileges that are granted to an account with user name and host name values of bob
and pc84.example.com, use this statement:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

To display nonprivilege properties of an account, use SHOW CREATE USER:

SHOW CREATE USER 'bob'@'pc84.example.com';

The user and db Grant Tables

The server uses the user and db tables in the mysql database at both the first and second stages
of access control (see Section 8.2, “Access Control and Account Management”). The columns in the
user and db tables are shown here.

Table 8.4 user and db Table Columns

Table Name user db

Scope columns Host Host

User Db

User

Privilege columns Select_priv Select_priv

Insert_priv Insert_priv

Update_priv Update_priv

Delete_priv Delete_priv

Index_priv Index_priv

Alter_priv Alter_priv

Create_priv Create_priv

Drop_priv Drop_priv

Grant_priv Grant_priv

Create_view_priv Create_view_priv

Show_view_priv Show_view_priv

Create_routine_priv Create_routine_priv

Alter_routine_priv Alter_routine_priv

Execute_priv Execute_priv

Trigger_priv Trigger_priv

Event_priv Event_priv

Create_tmp_table_priv Create_tmp_table_priv

Lock_tables_priv Lock_tables_priv

References_priv References_priv

Reload_priv

Shutdown_priv

Process_priv

File_priv

Show_db_priv

Super_priv

Repl_slave_priv

1327

Grant Tables

Table Name user db

Repl_client_priv

Create_user_priv

Create_tablespace_priv

Create_role_priv

Drop_role_priv

Security columns ssl_type

ssl_cipher

x509_issuer

x509_subject

plugin

authentication_string

password_expired

password_last_changed

password_lifetime

account_locked

Password_reuse_history

Password_reuse_time

Password_require_current

User_attributes

Resource control columns max_questions

max_updates

max_connections

max_user_connections

The user table plugin and authentication_string columns store authentication plugin and
credential information.

The server uses the plugin named in the plugin column of an account row to authenticate connection
attempts for the account.

The plugin column must be nonempty. At startup, and at runtime when FLUSH PRIVILEGES is
executed, the server checks user table rows. For any row with an empty plugin column, the server
writes a warning to the error log of this form:

[Warning] User entry 'user_name'@'host_name' has an empty plugin
value. The user will be ignored and no one can login with this user
anymore.

To assign a plugin to an account that is missing one, use the ALTER USER statement.

The password_expired column permits DBAs to expire account passwords and require users to
reset their password. The default password_expired value is 'N', but can be set to 'Y' with the
ALTER USER statement. After an account's password has been expired, all operations performed by
the account in subsequent connections to the server result in an error until the user issues an ALTER
USER statement to establish a new account password.

Note

Although it is possible to “reset” an expired password by setting it to its
current value, it is preferable, as a matter of good policy, to choose a different

1328

Grant Tables

password. DBAs can enforce non-reuse by establishing an appropriate
password-reuse policy. See Password Reuse Policy.

password_last_changed is a TIMESTAMP column indicating when the password was last
changed. The value is non-NULL only for accounts that use a MySQL built-in authentication plugin
(mysql_native_password, sha256_password, or caching_sha2_password). The value is
NULL for other accounts, such as those authenticated using an external authentication system.

password_last_changed is updated by the CREATE USER, ALTER USER, and SET PASSWORD
statements, and by GRANT statements that create an account or change an account password.

password_lifetime indicates the account password lifetime, in days. If the password is past
its lifetime (assessed using the password_last_changed column), the server considers the
password expired when clients connect using the account. A value of N greater than zero means
that the password must be changed every N days. A value of 0 disables automatic password
expiration. If the value is NULL (the default), the global expiration policy applies, as defined by the
default_password_lifetime system variable.

account_locked indicates whether the account is locked (see Section 8.2.20, “Account Locking”).

Password_reuse_history is the value of the PASSWORD HISTORY option for the account, or NULL
for the default history.

Password_reuse_time is the value of the PASSWORD REUSE INTERVAL option for the account, or
NULL for the default interval.

Password_require_current (added in MySQL 8.0.13) corresponds to the value of the PASSWORD
REQUIRE option for the account, as shown by the following table.

Table 8.5 Permitted Password_require_current Values

Password_require_current Value Corresponding PASSWORD REQUIRE Option

'Y' PASSWORD REQUIRE CURRENT

'N' PASSWORD REQUIRE CURRENT OPTIONAL

NULL PASSWORD REQUIRE CURRENT DEFAULT

User_attributes (added in MySQL 8.0.14) is a JSON-format column that stores account attributes
not stored in other columns. As of MySQL 8.0.21, the INFORMATION_SCHEMA exposes these attributes
through the USER_ATTRIBUTES table.

The User_attributes column may contain these attributes:

• additional_password: The secondary password, if any. See Dual Password Support.

• Restrictions: Restriction lists, if any. Restrictions are added by partial-revoke operations.
The attribute value is an array of elements that each have Database and Restrictions keys
indicating the name of a restricted database and the applicable restrictions on it (see Section 8.2.12,
“Privilege Restriction Using Partial Revokes”).

• Password_locking: The conditions for failed-login tracking and temporary account locking,
if any (see Failed-Login Tracking and Temporary Account Locking). The Password_locking
attribute is updated according to the FAILED_LOGIN_ATTEMPTS and PASSWORD_LOCK_TIME
options of the CREATE USER and ALTER USER statements. The attribute value is a hash with
failed_login_attempts and password_lock_time_days keys indicating the value of such
options as have been specified for the account. If a key is missing, its value is implicitly 0. If a key
value is implicitly or explicitly 0, the corresponding capability is disabled. This attribute was added in
MySQL 8.0.19.

• multi_factor_authentication: Rows in the mysql.user system table have a plugin
column that indicates an authentication plugin. For single-factor authentication, that plugin is the only

1329

Grant Tables

authentication factor. For two-factor or three-factor forms of multifactor authentication, that plugin
corresponds to the first authentication factor, but additional information must be stored for the second
and third factors. The multi_factor_authentication attribute holds this information. This
attribute was added in MySQL 8.0.27.

The multi_factor_authentication value is an array, where each array element is a hash that
describes an authentication factor using these attributes:

• plugin: The name of the authentication plugin.

• authentication_string: The authentication string value.

• passwordless: A flag that denotes whether the user is meant to be used without a password
(with a security token as the only authentication method).

• requires_registration: a flag that defines whether the user account has registered a security
token.

The first and second array elements describe multifactor authentication factors 2 and 3.

If no attributes apply, User_attributes is NULL.

Example: An account that has a secondary password and partially revoked database privileges has
additional_password and Restrictions attributes in the column value:

mysql> SELECT User_attributes FROM mysql.User WHERE User = 'u'\G
*************************** 1. row ***************************
User_attributes: {"Restrictions":
 [{"Database": "mysql", "Privileges": ["SELECT"]}],
 "additional_password": "hashed_credentials"}

To determine which attributes are present, use the JSON_KEYS() function:

SELECT User, Host, JSON_KEYS(User_attributes)
FROM mysql.user WHERE User_attributes IS NOT NULL;

To extract a particular attribute, such as Restrictions, do this:

SELECT User, Host, User_attributes->>'$.Restrictions'
FROM mysql.user WHERE User_attributes->>'$.Restrictions' <> '';

Here is an example of the kind of information stored for multi_factor_authentication:

{
 "multi_factor_authentication": [
 {
 "plugin": "authentication_ldap_simple",
 "passwordless": 0,
 "authentication_string": "ldap auth string",
 "requires_registration": 0
 },
 {
 "plugin": "authentication_fido",
 "passwordless": 0,
 "authentication_string": "",
 "requires_registration": 1
 }
]
}

The tables_priv and columns_priv Grant Tables

During the second stage of access control, the server performs request verification to ensure that
each client has sufficient privileges for each request that it issues. In addition to the user and db grant
tables, the server may also consult the tables_priv and columns_priv tables for requests that

1330

Grant Tables

involve tables. The latter tables provide finer privilege control at the table and column levels. They have
the columns shown in the following table.

Table 8.6 tables_priv and columns_priv Table Columns

Table Name tables_priv columns_priv

Scope columns Host Host

Db Db

User User

Table_name Table_name

Column_name

Privilege columns Table_priv Column_priv

Column_priv

Other columns Timestamp Timestamp

Grantor

The Timestamp and Grantor columns are set to the current timestamp and the CURRENT_USER
value, respectively, but are otherwise unused.

The procs_priv Grant Table

For verification of requests that involve stored routines, the server may consult the procs_priv table,
which has the columns shown in the following table.

Table 8.7 procs_priv Table Columns

Table Name procs_priv

Scope columns Host

Db

User

Routine_name

Routine_type

Privilege columns Proc_priv

Other columns Timestamp

Grantor

The Routine_type column is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to
indicate the type of routine the row refers to. This column enables privileges to be granted separately
for a function and a procedure with the same name.

The Timestamp and Grantor columns are unused.

The proxies_priv Grant Table

The proxies_priv table records information about proxy accounts. It has these columns:

• Host, User: The proxy account; that is, the account that has the PROXY privilege for the proxied
account.

• Proxied_host, Proxied_user: The proxied account.

• Grantor, Timestamp: Unused.

1331

Grant Tables

• With_grant: Whether the proxy account can grant the PROXY privilege to other accounts.

For an account to be able to grant the PROXY privilege to other accounts, it must have a row in
the proxies_priv table with With_grant set to 1 and Proxied_host and Proxied_user
set to indicate the account or accounts for which the privilege can be granted. For example, the
'root'@'localhost' account created during MySQL installation has a row in the proxies_priv
table that enables granting the PROXY privilege for ''@'', that is, for all users and all hosts. This
enables root to set up proxy users, as well as to delegate to other accounts the authority to set up
proxy users. See Section 8.2.19, “Proxy Users”.

The global_grants Grant Table

The global_grants table lists current assignments of dynamic global privileges to user accounts.
The table has these columns:

• USER, HOST: The user name and host name of the account to which the privilege is granted.

• PRIV: The privilege name.

• WITH_GRANT_OPTION: Whether the account can grant the privilege to other accounts.

The default_roles Grant Table

The default_roles table lists default user roles. It has these columns:

• HOST, USER: The account or role to which the default role applies.

• DEFAULT_ROLE_HOST, DEFAULT_ROLE_USER: The default role.

The role_edges Grant Table

The role_edges table lists edges for role subgraphs. It has these columns:

• FROM_HOST, FROM_USER: The account that is granted a role.

• TO_HOST, TO_USER: The role that is granted to the account.

• WITH_ADMIN_OPTION: Whether the account can grant the role to and revoke it from other accounts
by using WITH ADMIN OPTION.

The password_history Grant Table

The password_history table contains information about password changes. It has these columns:

• Host, User: The account for which the password change occurred.

• Password_timestamp: The time when the password change occurred.

• Password: The new password hash value.

The password_history table accumulates a sufficient number of nonempty passwords per account
to enable MySQL to perform checks against both the account password history length and reuse
interval. Automatic pruning of entries that are outside both limits occurs when password-change
attempts occur.

Note

The empty password does not count in the password history and is subject to
reuse at any time.

If an account is renamed, its entries are renamed to match. If an account is dropped or its
authentication plugin is changed, its entries are removed.

1332

Grant Tables

Grant Table Scope Column Properties

Scope columns in the grant tables contain strings. The default value for each is the empty string. The
following table shows the number of characters permitted in each column.

Table 8.8 Grant Table Scope Column Lengths

Column Name Maximum Permitted Characters

Host, Proxied_host 255 (60 prior to MySQL 8.0.17)

User, Proxied_user 32

Db 64

Table_name 64

Column_name 64

Routine_name 64

Host and Proxied_host values are converted to lowercase before being stored in the grant tables.

For access-checking purposes, comparisons of User, Proxied_user, authentication_string,
Db, and Table_name values are case-sensitive. Comparisons of Host, Proxied_host,
Column_name, and Routine_name values are not case-sensitive.

Grant Table Privilege Column Properties

The user and db tables list each privilege in a separate column that is declared as ENUM('N','Y')
DEFAULT 'N'. In other words, each privilege can be disabled or enabled, with the default being
disabled.

The tables_priv, columns_priv, and procs_priv tables declare the privilege columns as SET
columns. Values in these columns can contain any combination of the privileges controlled by the table.
Only those privileges listed in the column value are enabled.

Table 8.9 Set-Type Privilege Column Values

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert',
'Update', 'Delete',
'Create', 'Drop',
'Grant', 'References',
'Index', 'Alter',
'Create View', 'Show
view', 'Trigger'

tables_priv Column_priv 'Select', 'Insert',
'Update', 'References'

columns_priv Column_priv 'Select', 'Insert',
'Update', 'References'

procs_priv Proc_priv 'Execute', 'Alter
Routine', 'Grant'

Only the user and global_grants tables specify administrative privileges, such as RELOAD,
SHUTDOWN, and SYSTEM_VARIABLES_ADMIN. Administrative operations are operations on the server
itself and are not database-specific, so there is no reason to list these privileges in the other grant
tables. Consequently, the server need consult only the user and global_grants tables to determine
whether a user can perform an administrative operation.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as
such, but a user's ability to read or write files on the server host is independent of the database being
accessed.

1333

Specifying Account Names

Grant Table Concurrency

As of MySQL 8.0.22, to permit concurrent DML and DDL operations on MySQL grant tables, read
operations that previously acquired row locks on MySQL grant tables are executed as non-locking
reads. Operations that are performed as non-locking reads on MySQL grant tables include:

• SELECT statements and other read-only statements that read data from grant tables through join lists
and subqueries, including SELECT ... FOR SHARE statements, using any transaction isolation
level.

• DML operations that read data from grant tables (through join lists or subqueries) but do not modify
them, using any transaction isolation level.

Statements that no longer acquire row locks when reading data from grant tables report a warning if
executed while using statement-based replication.

When using -binlog_format=mixed, DML operations that read data from grant tables are written to
the binary log as row events to make the operations safe for mixed-mode replication.

SELECT ... FOR SHARE statements that read data from grant tables report a warning. With the FOR
SHARE clause, read locks are not supported on grant tables.

DML operations that read data from grant tables and are executed using the SERIALIZABLE isolation
level report a warning. Read locks that would normally be acquired when using the SERIALIZABLE
isolation level are not supported on grant tables.

8.2.4 Specifying Account Names

MySQL account names consist of a user name and a host name, which enables creation of distinct
accounts for users with the same user name who connect from different hosts. This section describes
the syntax for account names, including special values and wildcard rules.

In most respects, account names are similar to MySQL role names, with some differences described at
Section 8.2.5, “Specifying Role Names”.

Account names appear in SQL statements such as CREATE USER, GRANT, and SET PASSWORD and
follow these rules:

• Account name syntax is 'user_name'@'host_name'.

• The @'host_name' part is optional. An account name consisting only of a user name is equivalent
to 'user_name'@'%'. For example, 'me' is equivalent to 'me'@'%'.

• The user name and host name need not be quoted if they are legal as unquoted identifiers.
Quotes must be used if a user_name string contains special characters (such as space or -), or a
host_name string contains special characters or wildcard characters (such as . or %). For example,
in the account name 'test-user'@'%.com', both the user name and host name parts require
quotes.

• Quote user names and host names as identifiers or as strings, using either backticks (`), single
quotation marks ('), or double quotation marks ("). For string-quoting and identifier-quoting
guidelines, see Section 11.1.1, “String Literals”, and Section 11.2, “Schema Object Names”. In SHOW
statement results, user names and host names are quoted using backticks (`).

• The user name and host name parts, if quoted, must be quoted separately. That is,
write 'me'@'localhost', not 'me@localhost'. (The latter is actually equivalent to
'me@localhost'@'%', although this behavior is now deprecated.)

• A reference to the CURRENT_USER or CURRENT_USER() function is equivalent to specifying the
current client's user name and host name literally.

1334

Specifying Account Names

MySQL stores account names in grant tables in the mysql system database using separate columns
for the user name and host name parts:

• The user table contains one row for each account. The User and Host columns store the user
name and host name. This table also indicates which global privileges the account has.

• Other grant tables indicate privileges an account has for databases and objects within databases.
These tables have User and Host columns to store the account name. Each row in these tables
associates with the account in the user table that has the same User and Host values.

• For access-checking purposes, comparisons of User values are case-sensitive. Comparisons of Host
values are not case-sensitive.

For additional detail about the properties of user names and host names as stored in the grant tables,
such as maximum length, see Grant Table Scope Column Properties.

User names and host names have certain special values or wildcard conventions, as described
following.

The user name part of an account name is either a nonblank value that literally matches the user name
for incoming connection attempts, or a blank value (the empty string) that matches any user name.
An account with a blank user name is an anonymous user. To specify an anonymous user in SQL
statements, use a quoted empty user name part, such as ''@'localhost'.

The host name part of an account name can take many forms, and wildcards are permitted:

• A host value can be a host name or an IP address (IPv4 or IPv6). The name 'localhost'
indicates the local host. The IP address '127.0.0.1' indicates the IPv4 loopback interface. The IP
address '::1' indicates the IPv6 loopback interface.

• Use of the % and _ wildcard characters is permitted in host name or IP address values, but is
deprecated as of MySQL 8.0.35, and thus subject to removal in a future version of MySQL.
These characters have the same meaning as for pattern-matching operations performed with the
LIKE operator. For example, a host value of '%' matches any host name, whereas a value of
'%.mysql.com' matches any host in the mysql.com domain. '198.51.100.%' matches any
host in the 198.51.100 class C network.

Because IP wildcard values are permitted in host values (for example, '198.51.100.%' to
match every host on a subnet), someone could try to exploit this capability by naming a host
198.51.100.somewhere.com. To foil such attempts, MySQL does not perform matching on host
names that start with digits and a dot. For example, if a host is named 1.2.example.com, its name
never matches the host part of account names. An IP wildcard value can match only IP addresses,
not host names.

If partial_revokes is ON, MySQL treats % and _ in grants as literal characters, and not as
wildcards. Beginning with MySQL 8.0.35, use of these wildcards is deprecated (regardless of this
variable's value), and you should expect this functionality to be removed in a future version of
MySQL.

• For a host value specified as an IPv4 address, a netmask can be given to indicate how many
address bits to use for the network number. Netmask notation cannot be used for IPv6 addresses.

The syntax is host_ip/netmask. For example:

CREATE USER 'david'@'198.51.100.0/255.255.255.0';

This enables david to connect from any client host having an IP address client_ip for which the
following condition is true:

client_ip & netmask = host_ip

That is, for the CREATE USER statement just shown:

1335

Specifying Role Names

client_ip & 255.255.255.0 = 198.51.100.0

IP addresses that satisfy this condition range from 198.51.100.0 to 198.51.100.255.

A netmask typically begins with bits set to 1, followed by bits set to 0. Examples:

• 198.0.0.0/255.0.0.0: Any host on the 198 class A network

• 198.51.0.0/255.255.0.0: Any host on the 198.51 class B network

• 198.51.100.0/255.255.255.0: Any host on the 198.51.100 class C network

• 198.51.100.1: Only the host with this specific IP address

• As of MySQL 8.0.23, a host value specified as an IPv4 address can be written using CIDR notation,
such as 198.51.100.44/24.

The server performs matching of host values in account names against the client host using the value
returned by the system DNS resolver for the client host name or IP address. Except in the case that the
account host value is specified using netmask notation, the server performs this comparison as a string
match, even for an account host value given as an IP address. This means that you should specify
account host values in the same format used by DNS. Here are examples of problems to watch out for:

• Suppose that a host on the local network has a fully qualified name of host1.example.com. If DNS
returns name lookups for this host as host1.example.com, use that name in account host values.
If DNS returns just host1, use host1 instead.

• If DNS returns the IP address for a given host as 198.51.100.2, that matches an account host
value of 198.51.100.2 but not 198.051.100.2. Similarly, it matches an account host pattern like
198.51.100.% but not 198.051.100.%.

To avoid problems like these, it is advisable to check the format in which your DNS returns host names
and addresses. Use values in the same format in MySQL account names.

8.2.5 Specifying Role Names

MySQL role names refer to roles, which are named collections of privileges. For role usage examples,
see Section 8.2.10, “Using Roles”.

Role names have syntax and semantics similar to account names; see Section 8.2.4, “Specifying
Account Names”. As stored in the grant tables, they have the same properties as account names,
which are described in Grant Table Scope Column Properties.

Role names differ from account names in these respects:

• The user part of role names cannot be blank. Thus, there is no “anonymous role” analogous to the
concept of “anonymous user.”

• As for an account name, omitting the host part of a role name results in a host part of '%'. But unlike
'%' in an account name, a host part of '%' in a role name has no wildcard properties. For example,
for a name 'me'@'%' used as a role name, the host part ('%') is just a literal value; it has no “any
host” matching property.

• Netmask notation in the host part of a role name has no significance.

• An account name is permitted to be CURRENT_USER() in several contexts. A role name is not.

It is possible for a row in the mysql.user system table to serve as both an account and a role. In this
case, any special user or host name matching properties do not apply in contexts for which the name
is used as a role name. For example, you cannot execute the following statement with the expectation
that it sets the current session roles using all roles that have a user part of myrole and any host name:

1336

Access Control, Stage 1: Connection Verification

SET ROLE 'myrole'@'%';

Instead, the statement sets the active role for the session to the role with exactly the name
'myrole'@'%'.

For this reason, role names are often specified using only the user name part and letting the host name
part implicitly be '%'. Specifying a role with a non-'%' host part can be useful if you intend to create a
name that works both as a role an as a user account that is permitted to connect from the given host.

8.2.6 Access Control, Stage 1: Connection Verification

When you attempt to connect to a MySQL server, the server accepts or rejects the connection based
on these conditions:

• Your identity and whether you can verify it by supplying the proper credentials.

• Whether your account is locked or unlocked.

The server checks credentials first, then account locking state. A failure at either step causes the
server to deny access to you completely. Otherwise, the server accepts the connection, and then
enters Stage 2 and waits for requests.

The server performs identity and credentials checking using columns in the user table, accepting the
connection only if these conditions are satisfied:

• The client host name and user name match the Host and User columns in some user table row.
For the rules governing permissible Host and User values, see Section 8.2.4, “Specifying Account
Names”.

• The client supplies the credentials specified in the row (for example, a password), as indicated by
the authentication_string column. Credentials are interpreted using the authentication plugin
named in the plugin column.

• The row indicates that the account is unlocked. Locking state is recorded in the account_locked
column, which must have a value of 'N'. Account locking can be set or changed with the CREATE
USER or ALTER USER statement.

Your identity is based on two pieces of information:

• Your MySQL user name.

• The client host from which you connect.

If the User column value is nonblank, the user name in an incoming connection must match exactly.
If the User value is blank, it matches any user name. If the user table row that matches an incoming
connection has a blank user name, the user is considered to be an anonymous user with no name, not
a user with the name that the client actually specified. This means that a blank user name is used for
all further access checking for the duration of the connection (that is, during Stage 2).

The authentication_string column can be blank. This is not a wildcard and does not mean
that any password matches. It means that the user must connect without specifying a password. The
authentication method implemented by the plugin that authenticates the client may or may not use
the password in the authentication_string column. In this case, it is possible that an external
password is also used to authenticate to the MySQL server.

Nonblank password values stored in the authentication_string column of the user table are
encrypted. MySQL does not store passwords as cleartext for anyone to see. Rather, the password
supplied by a user who is attempting to connect is encrypted (using the password hashing method
implemented by the account authentication plugin). The encrypted password then is used during
the connection process when checking whether the password is correct. This is done without the

1337

Access Control, Stage 1: Connection Verification

encrypted password ever traveling over the connection. See Section 8.2.1, “Account User Names and
Passwords”.

From the MySQL server's point of view, the encrypted password is the real password, so you should
never give anyone access to it. In particular, do not give nonadministrative users read access to tables
in the mysql system database.

The following table shows how various combinations of User and Host values in the user table apply
to incoming connections.

User Value Host Value Permissible Connections

'fred' 'h1.example.net' fred, connecting from
h1.example.net

'' 'h1.example.net' Any user, connecting from
h1.example.net

'fred' '%' fred, connecting from any host

'' '%' Any user, connecting from any
host

'fred' '%.example.net' fred, connecting from any host
in the example.net domain

'fred' 'x.example.%' fred, connecting from
x.example.net,
x.example.com,
x.example.edu, and so on;
this is probably not useful

'fred' '198.51.100.177' fred, connecting from
the host with IP address
198.51.100.177

'fred' '198.51.100.%' fred, connecting from any host
in the 198.51.100 class C
subnet

'fred' '198.51.100.0/255.255.255.0'Same as previous example

It is possible for the client host name and user name of an incoming connection to match more than
one row in the user table. The preceding set of examples demonstrates this: Several of the entries
shown match a connection from h1.example.net by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this
issue as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client host name and user name.

The server uses sorting rules that order rows with the most-specific Host values first:

• Literal IP addresses and host names are the most specific.

• Prior to MySQL 8.0.23, the specificity of a literal IP address is not affected by whether it has a
netmask, so 198.51.100.13 and 198.51.100.0/255.255.255.0 are considered equally
specific. As of MySQL 8.0.23, accounts with an IP address in the host part have this order of
specificity:

• Accounts that have the host part given as an IP address:

CREATE USER 'user_name'@'127.0.0.1';

1338

Access Control, Stage 1: Connection Verification

CREATE USER 'user_name'@'198.51.100.44';

• Accounts that have the host part given as an IP address using CIDR notation:

CREATE USER 'user_name'@'192.0.2.21/8';
CREATE USER 'user_name'@'198.51.100.44/16';

• Accounts that have the host part given as an IP address with a subnet mask:

CREATE USER 'user_name'@'192.0.2.0/255.255.255.0';
CREATE USER 'user_name'@'198.51.0.0/255.255.0.0';

• The pattern '%' means “any host” and is least specific.

• The empty string '' also means “any host” but sorts after '%'.

Non-TCP (socket file, named pipe, and shared memory) connections are treated as local connections
and match a host part of localhost if there are any such accounts, or host parts with wildcards that
match localhost otherwise (for example, local%, l%, %).

The treatment of '%' as equivalent to localhost is deprecated as of MySQL 8.0.35, and you should
expect this behavior to removed from a future version of MySQL.

Rows with the same Host value are ordered with the most-specific User values first. A blank User
value means “any user” and is least specific, so for rows with the same Host value, nonanonymous
users sort before anonymous users.

For rows with equally-specific Host and User values, the order is nondeterministic.

To see how this works, suppose that the user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads the table into memory, it sorts the rows using the rules just described. The
result after sorting looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match
found. For a connection from localhost by jeffrey, two of the rows from the table match: the
one with Host and User values of 'localhost' and '', and the one with values of '%' and
'jeffrey'. The 'localhost' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| h1.example.net | | ...
+----------------+----------+-

The sorted table looks like this:

1339

Access Control, Stage 2: Request Verification

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| h1.example.net | | ...
| % | jeffrey | ...
+----------------+----------+-

The first row matches a connection by any user from h1.example.net, whereas the second row
matches a connection by jeffrey from any host.

Note

It is a common misconception to think that, for a given user name, all rows
that explicitly name that user are used first when the server attempts to find a
match for the connection. This is not true. The preceding example illustrates
this, where a connection from h1.example.net by jeffrey is first matched
not by the row containing 'jeffrey' as the User column value, but by the row
with no user name. As a result, jeffrey is authenticated as an anonymous
user, even though he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably are
being authenticated as some other account. To find out what account the server used to authenticate
you, use the CURRENT_USER() function. (See Section 14.15, “Information Functions”.) It returns a
value in user_name@host_name format that indicates the User and Host values from the matching
user table row. Suppose that jeffrey connects and issues the following query:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+

The result shown here indicates that the matching user table row had a blank User column value. In
other words, the server is treating jeffrey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to
see where the first match is being made.

8.2.7 Access Control, Stage 2: Request Verification

After the server accepts a connection, it enters Stage 2 of access control. For each request that you
issue through the connection, the server determines what operation you want to perform, then checks
whether your privileges are sufficient. This is where the privilege columns in the grant tables come
into play. These privileges can come from any of the user, global_grants, db, tables_priv,
columns_priv, or procs_priv tables. (You may find it helpful to refer to Section 8.2.3, “Grant
Tables”, which lists the columns present in each grant table.)

The user and global_grants tables grant global privileges. The rows in these tables for a given
account indicate the account privileges that apply on a global basis no matter what the default
database is. For example, if the user table grants you the DELETE privilege, you can delete rows from
any table in any database on the server host. It is wise to grant privileges in the user table only to
people who need them, such as database administrators. For other users, leave all privileges in the
user table set to 'N' and grant privileges at more specific levels only (for particular databases, tables,
columns, or routines). It is also possible to grant database privileges globally but use partial revokes
to restrict them from being exercised on specific databases (see Section 8.2.12, “Privilege Restriction
Using Partial Revokes”).

The db table grants database-specific privileges. Values in the scope columns of this table can take the
following forms:

• A blank User value matches the anonymous user. A nonblank value matches literally; there are no
wildcards in user names.

1340

Access Control, Stage 2: Request Verification

• The wildcard characters % and _ can be used in the Host and Db columns. These have the same
meaning as for pattern-matching operations performed with the LIKE operator. If you want to use
either character literally when granting privileges, you must escape it with a backslash. For example,
to include the underscore character (_) as part of a database name, specify it as _ in the GRANT
statement.

• A '%' or blank Host value means “any host.”

• A '%' or blank Db value means “any database.”

The server reads the db table into memory and sorts it at the same time that it reads the user table.
The server sorts the db table based on the Host, Db, and User scope columns. As with the user
table, sorting puts the most-specific values first and least-specific values last, and when the server
looks for matching rows, it uses the first match that it finds.

The tables_priv, columns_priv, and procs_priv tables grant table-specific, column-specific,
and routine-specific privileges. Values in the scope columns of these tables can take the following
forms:

• The wildcard characters % and _ can be used in the Host column. These have the same meaning as
for pattern-matching operations performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

• The Db, Table_name, Column_name, and Routine_name columns cannot contain wildcards or be
blank.

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host,
Db, and User columns. This is similar to db table sorting, but simpler because only the Host column
can contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require
administrative privileges such as SHUTDOWN or RELOAD, the server checks only the user and
global_privilege tables because those are the only tables that specify administrative privileges.
The server grants access if a row for the account in those tables permits the requested operation and
denies access otherwise. For example, if you want to execute mysqladmin shutdown but your
user table row does not grant the SHUTDOWN privilege to you, the server denies access without even
checking the db table. (The latter table contains no Shutdown_priv column, so there is no need to
check it.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global
privileges in the user table row (less any privilege restrictions imposed by partial revokes). If the
row permits the requested operation, access is granted. If the global privileges in the user table are
insufficient, the server determines the user's database-specific privileges from the db table:

• The server looks in the db table for a match on the Host, Db, and User columns.

• The Host and User columns are matched to the connecting user's host name and MySQL user
name.

• The Db column is matched to the database that the user wants to access.

• If there is no row for the Host and User, access is denied.

After determining the database-specific privileges granted by the db table rows, the server adds them
to the global privileges granted by the user table. If the result permits the requested operation, access
is granted. Otherwise, the server successively checks the user's table and column privileges in the
tables_priv and columns_priv tables, adds those to the user's privileges, and permits or denies
access based on the result. For stored-routine operations, the server uses the procs_priv table
rather than tables_priv and columns_priv.

1341

Adding Accounts, Assigning Privileges, and Dropping Accounts

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be
summarized like this:

global privileges
OR database privileges
OR table privileges
OR column privileges
OR routine privileges

It may not be apparent why, if the global privileges are initially found to be insufficient for the requested
operation, the server adds those privileges to the database, table, and column privileges later. The
reason is that a request might require more than one type of privilege. For example, if you execute
an INSERT INTO ... SELECT statement, you need both the INSERT and the SELECT privileges.
Your privileges might be such that the user table row grants one privilege global and the db table row
grants the other specifically for the relevant database. In this case, you have the necessary privileges
to perform the request, but the server cannot tell that from either your global or database privileges
alone. It must make an access-control decision based on the combined privileges.

8.2.8 Adding Accounts, Assigning Privileges, and Dropping Accounts

To manage MySQL accounts, use the SQL statements intended for that purpose:

• CREATE USER and DROP USER create and remove accounts.

• GRANT and REVOKE assign privileges to and revoke privileges from accounts.

• SHOW GRANTS displays account privilege assignments.

Account-management statements cause the server to make appropriate modifications to the underlying
grant tables, which are discussed in Section 8.2.3, “Grant Tables”.

Note

Direct modification of grant tables using statements such as INSERT, UPDATE,
or DELETE is discouraged and done at your own risk. The server is free to
ignore rows that become malformed as a result of such modifications.

For any operation that modifies a grant table, the server checks whether the
table has the expected structure and produces an error if not. To update the
tables to the expected structure, perform the MySQL upgrade procedure. See
Chapter 3, Upgrading MySQL.

Another option for creating accounts is to use the GUI tool MySQL Workbench. Also, several third-party
programs offer capabilities for MySQL account administration. phpMyAdmin is one such program.

This section discusses the following topics:

• Creating Accounts and Granting Privileges

• Checking Account Privileges and Properties

• Revoking Account Privileges

• Dropping Accounts

For additional information about the statements discussed here, see Section 15.7.1, “Account
Management Statements”.

Creating Accounts and Granting Privileges

The following examples show how to use the mysql client program to set up new accounts. These
examples assume that the MySQL root account has the CREATE USER privilege and all privileges
that it grants to other accounts.

1342

Adding Accounts, Assigning Privileges, and Dropping Accounts

At the command line, connect to the server as the MySQL root user, supplying the appropriate
password at the password prompt:

$> mysql -u root -p
Enter password: (enter root password here)

After connecting to the server, you can add new accounts. The following example uses CREATE USER
and GRANT statements to set up four accounts (where you see 'password', substitute an appropriate
password):

CREATE USER 'finley'@'localhost'
 IDENTIFIED BY 'password';
GRANT ALL
 ON *.*
 TO 'finley'@'localhost'
 WITH GRANT OPTION;

CREATE USER 'finley'@'%.example.com'
 IDENTIFIED BY 'password';
GRANT ALL
 ON *.*
 TO 'finley'@'%.example.com'
 WITH GRANT OPTION;

CREATE USER 'admin'@'localhost'
 IDENTIFIED BY 'password';
GRANT RELOAD,PROCESS
 ON *.*
 TO 'admin'@'localhost';

CREATE USER 'dummy'@'localhost';

The accounts created by those statements have the following properties:

• Two accounts have a user name of finley. Both are superuser accounts with full global privileges
to do anything. The 'finley'@'localhost' account can be used only when connecting from the
local host. The 'finley'@'%.example.com' account uses the '%' wildcard in the host part, so it
can be used to connect from any host in the example.com domain.

The 'finley'@'localhost' account is necessary if there is an anonymous-user account for
localhost. Without the 'finley'@'localhost' account, that anonymous-user account takes
precedence when finley connects from the local host and finley is treated as an anonymous
user. The reason for this is that the anonymous-user account has a more specific Host column
value than the 'finley'@'%' account and thus comes earlier in the user table sort order. (For
information about user table sorting, see Section 8.2.6, “Access Control, Stage 1: Connection
Verification”.)

• The 'admin'@'localhost' account can be used only by admin to connect from the local host.
It is granted the global RELOAD and PROCESS administrative privileges. These privileges enable
the admin user to execute the mysqladmin reload, mysqladmin refresh, and mysqladmin
flush-xxx commands, as well as mysqladmin processlist . No privileges are granted for
accessing any databases. You could add such privileges using GRANT statements.

• The 'dummy'@'localhost' account has no password (which is insecure and not recommended).
This account can be used only to connect from the local host. No privileges are granted. It is
assumed that you grant specific privileges to the account using GRANT statements.

The previous example grants privileges at the global level. The next example creates three accounts
and grants them access at lower levels; that is, to specific databases or objects within databases. Each
account has a user name of custom, but the host name parts differ:

CREATE USER 'custom'@'localhost'
 IDENTIFIED BY 'password';
GRANT ALL
 ON bankaccount.*
 TO 'custom'@'localhost';

1343

Adding Accounts, Assigning Privileges, and Dropping Accounts

CREATE USER 'custom'@'host47.example.com'
 IDENTIFIED BY 'password';
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 ON expenses.*
 TO 'custom'@'host47.example.com';

CREATE USER 'custom'@'%.example.com'
 IDENTIFIED BY 'password';
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 ON customer.addresses
 TO 'custom'@'%.example.com';

The three accounts can be used as follows:

• The 'custom'@'localhost' account has all database-level privileges to access the
bankaccount database. The account can be used to connect to the server only from the local host.

• The 'custom'@'host47.example.com' account has specific database-level privileges to access
the expenses database. The account can be used to connect to the server only from the host
host47.example.com.

• The 'custom'@'%.example.com' account has specific table-level privileges to access the
addresses table in the customer database, from any host in the example.com domain. The
account can be used to connect to the server from all machines in the domain due to use of the %
wildcard character in the host part of the account name.

Checking Account Privileges and Properties

To see the privileges for an account, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT RELOAD, PROCESS ON *.* TO `admin`@`localhost` |
+---+

To see nonprivilege properties for an account, use SHOW CREATE USER:

mysql> SET print_identified_with_as_hex = ON;
mysql> SHOW CREATE USER 'admin'@'localhost'\G
*************************** 1. row ***************************
CREATE USER for admin@localhost: CREATE USER `admin`@`localhost`
IDENTIFIED WITH 'caching_sha2_password'
AS 0x24412430303524301D0E17054E2241362B1419313C3E44326F294133734B30792F436E77764270373039612E32445250786D43594F45354532324B6169794F47457852796E32
REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT UNLOCK
PASSWORD HISTORY DEFAULT
PASSWORD REUSE INTERVAL DEFAULT
PASSWORD REQUIRE CURRENT DEFAULT

Enabling the print_identified_with_as_hex system variable (available as of MySQL
8.0.17) causes SHOW CREATE USER to display hash values that contain unprintable characters as
hexadecimal strings rather than as regular string literals.

Revoking Account Privileges

To revoke account privileges, use the REVOKE statement. Privileges can be revoked at different levels,
just as they can be granted at different levels.

Revoke global privileges:

REVOKE ALL
 ON *.*
 FROM 'finley'@'%.example.com';

REVOKE RELOAD

1344

Reserved Accounts

 ON *.*
 FROM 'admin'@'localhost';

Revoke database-level privileges:

REVOKE CREATE,DROP
 ON expenses.*
 FROM 'custom'@'host47.example.com';

Revoke table-level privileges:

REVOKE INSERT,UPDATE,DELETE
 ON customer.addresses
 FROM 'custom'@'%.example.com';

To check the effect of privilege revocation, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT PROCESS ON *.* TO `admin`@`localhost` |
+---+

Dropping Accounts

To remove an account, use the DROP USER statement. For example, to drop some of the accounts
created previously:

DROP USER 'finley'@'localhost';
DROP USER 'finley'@'%.example.com';
DROP USER 'admin'@'localhost';
DROP USER 'dummy'@'localhost';

8.2.9 Reserved Accounts

One part of the MySQL installation process is data directory initialization (see Section 2.9.1, “Initializing
the Data Directory”). During data directory initialization, MySQL creates user accounts that should be
considered reserved:

• 'root'@'localhost: Used for administrative purposes. This account has all privileges, is a
system account, and can perform any operation.

Strictly speaking, this account name is not reserved, in the sense that some installations rename
the root account to something else to avoid exposing a highly privileged account with a well-known
name.

• 'mysql.sys'@'localhost': Used as the DEFINER for sys schema objects. Use of the
mysql.sys account avoids problems that occur if a DBA renames or removes the root account.
This account is locked so that it cannot be used for client connections.

• 'mysql.session'@'localhost': Used internally by plugins to access the server. This account is
locked so that it cannot be used for client connections. The account is a system account.

• 'mysql.infoschema'@'localhost': Used as the DEFINER for INFORMATION_SCHEMA views.
Use of the mysql.infoschema account avoids problems that occur if a DBA renames or removes
the root account. This account is locked so that it cannot be used for client connections.

8.2.10 Using Roles

A MySQL role is a named collection of privileges. Like user accounts, roles can have privileges granted
to and revoked from them.

A user account can be granted roles, which grants to the account the privileges associated with each
role. This enables assignment of sets of privileges to accounts and provides a convenient alternative to

1345

Using Roles

granting individual privileges, both for conceptualizing desired privilege assignments and implementing
them.

The following list summarizes role-management capabilities provided by MySQL:

• CREATE ROLE and DROP ROLE create and remove roles.

• GRANT and REVOKE assign privileges to revoke privileges from user accounts and roles.

• SHOW GRANTS displays privilege and role assignments for user accounts and roles.

• SET DEFAULT ROLE specifies which account roles are active by default.

• SET ROLE changes the active roles within the current session.

• The CURRENT_ROLE() function displays the active roles within the current session.

• The mandatory_roles and activate_all_roles_on_login system variables enable defining
mandatory roles and automatic activation of granted roles when users log in to the server.

For descriptions of individual role-manipulation statements (including the privileges required to use
them), see Section 15.7.1, “Account Management Statements”. The following discussion provides
examples of role usage. Unless otherwise specified, SQL statements shown here should be executed
using a MySQL account with sufficient administrative privileges, such as the root account.

• Creating Roles and Granting Privileges to Them

• Defining Mandatory Roles

• Checking Role Privileges

• Activating Roles

• Revoking Roles or Role Privileges

• Dropping Roles

• User and Role Interchangeability

Creating Roles and Granting Privileges to Them

Consider this scenario:

• An application uses a database named app_db.

• Associated with the application, there can be accounts for developers who create and maintain the
application, and for users who interact with it.

• Developers need full access to the database. Some users need only read access, others need read/
write access.

To avoid granting privileges individually to possibly many user accounts, create roles as names for the
required privilege sets. This makes it easy to grant the required privileges to user accounts, by granting
the appropriate roles.

To create the roles, use the CREATE ROLE statement:

CREATE ROLE 'app_developer', 'app_read', 'app_write';

Role names are much like user account names and consist of a user part and host part in
'user_name'@'host_name' format. The host part, if omitted, defaults to '%'. The user and host
parts can be unquoted unless they contain special characters such as - or %. Unlike account names,

1346

Using Roles

the user part of role names cannot be blank. For additional information, see Section 8.2.5, “Specifying
Role Names”.

To assign privileges to the roles, execute GRANT statements using the same syntax as for assigning
privileges to user accounts:

GRANT ALL ON app_db.* TO 'app_developer';
GRANT SELECT ON app_db.* TO 'app_read';
GRANT INSERT, UPDATE, DELETE ON app_db.* TO 'app_write';

Now suppose that initially you require one developer account, two user accounts that need read-
only access, and one user account that needs read/write access. Use CREATE USER to create the
accounts:

CREATE USER 'dev1'@'localhost' IDENTIFIED BY 'dev1pass';
CREATE USER 'read_user1'@'localhost' IDENTIFIED BY 'read_user1pass';
CREATE USER 'read_user2'@'localhost' IDENTIFIED BY 'read_user2pass';
CREATE USER 'rw_user1'@'localhost' IDENTIFIED BY 'rw_user1pass';

To assign each user account its required privileges, you could use GRANT statements of the same
form as just shown, but that requires enumerating individual privileges for each user. Instead, use an
alternative GRANT syntax that permits granting roles rather than privileges:

GRANT 'app_developer' TO 'dev1'@'localhost';
GRANT 'app_read' TO 'read_user1'@'localhost', 'read_user2'@'localhost';
GRANT 'app_read', 'app_write' TO 'rw_user1'@'localhost';

The GRANT statement for the rw_user1 account grants the read and write roles, which combine to
provide the required read and write privileges.

The GRANT syntax for granting roles to an account differs from the syntax for granting privileges:
There is an ON clause to assign privileges, whereas there is no ON clause to assign roles. Because
the syntaxes are distinct, you cannot mix assigning privileges and roles in the same statement. (It
is permitted to assign both privileges and roles to an account, but you must use separate GRANT
statements, each with syntax appropriate to what is to be granted.) As of MySQL 8.0.16, roles cannot
be granted to anonymous users.

A role when created is locked, has no password, and is assigned the default authentication plugin.
(These role attributes can be changed later with the ALTER USER statement, by users who have the
global CREATE USER privilege.)

While locked, a role cannot be used to authenticate to the server. If unlocked, a role can be used to
authenticate. This is because roles and users are both authorization identifiers with much in common
and little to distinguish them. See also User and Role Interchangeability.

Defining Mandatory Roles

It is possible to specify roles as mandatory by naming them in the value of the mandatory_roles
system variable. The server treats a mandatory role as granted to all users, so that it need not be
granted explicitly to any account.

To specify mandatory roles at server startup, define mandatory_roles in your server my.cnf file:

[mysqld]
mandatory_roles='role1,role2@localhost,r3@%.example.com'

To set and persist mandatory_roles at runtime, use a statement like this:

SET PERSIST mandatory_roles = 'role1,role2@localhost,r3@%.example.com';

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to
carry over to subsequent server restarts. To change the value for the running MySQL instance without
having it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See
Section 15.7.6.1, “SET Syntax for Variable Assignment”.

1347

Using Roles

Setting mandatory_roles requires the ROLE_ADMIN privilege, in addition to the
SYSTEM_VARIABLES_ADMIN privilege (or the deprecated SUPER privilege) normally required to set a
global system variable.

Mandatory roles, like explicitly granted roles, do not take effect until activated (see Activating Roles). At
login time, role activation occurs for all granted roles if the activate_all_roles_on_login system
variable is enabled, or for roles that are set as default roles otherwise. At runtime, SET ROLE activates
roles.

Roles named in the value of mandatory_roles cannot be revoked with REVOKE or dropped with
DROP ROLE or DROP USER.

To prevent sessions from being made system sessions by default, a role that has the SYSTEM_USER
privilege cannot be listed in the value of the mandatory_roles system variable:

• If mandatory_roles is assigned a role at startup that has the SYSTEM_USER privilege, the server
writes a message to the error log and exits.

• If mandatory_roles is assigned a role at runtime that has the SYSTEM_USER privilege, an error
occurs and the mandatory_roles value remains unchanged.

Even with this safeguard, it is better to avoid granting the SYSTEM_USER privilege through a role in
order to guard against the possibility of privilege escalation.

If a role named in mandatory_roles is not present in the mysql.user system table, the role is not
granted to users. When the server attempts role activation for a user, it does not treat the nonexistent
role as mandatory and writes a warning to the error log. If the role is created later and thus becomes
valid, FLUSH PRIVILEGES may be necessary to cause the server to treat it as mandatory.

SHOW GRANTS displays mandatory roles according to the rules described in Section 15.7.7.21, “SHOW
GRANTS Statement”.

Checking Role Privileges

To verify the privileges assigned to an account, use SHOW GRANTS. For example:

mysql> SHOW GRANTS FOR 'dev1'@'localhost';
+---+
| Grants for dev1@localhost |
+---+
| GRANT USAGE ON *.* TO `dev1`@`localhost` |
| GRANT `app_developer`@`%` TO `dev1`@`localhost` |
+---+

However, that shows each granted role without “expanding” it to the privileges the role represents.
To show role privileges as well, add a USING clause naming the granted roles for which to display
privileges:

mysql> SHOW GRANTS FOR 'dev1'@'localhost' USING 'app_developer';
+--+
| Grants for dev1@localhost |
+--+
| GRANT USAGE ON *.* TO `dev1`@`localhost` |
| GRANT ALL PRIVILEGES ON `app_db`.* TO `dev1`@`localhost` |
| GRANT `app_developer`@`%` TO `dev1`@`localhost` |
+--+

Verify each other type of user similarly:

mysql> SHOW GRANTS FOR 'read_user1'@'localhost' USING 'app_read';
+--+
| Grants for read_user1@localhost |
+--+
| GRANT USAGE ON *.* TO `read_user1`@`localhost` |
| GRANT SELECT ON `app_db`.* TO `read_user1`@`localhost` |

1348

Using Roles

| GRANT `app_read`@`%` TO `read_user1`@`localhost` |
+--+
mysql> SHOW GRANTS FOR 'rw_user1'@'localhost' USING 'app_read', 'app_write';
+--+
| Grants for rw_user1@localhost |
+--+
| GRANT USAGE ON *.* TO `rw_user1`@`localhost` |
| GRANT SELECT, INSERT, UPDATE, DELETE ON `app_db`.* TO `rw_user1`@`localhost` |
| GRANT `app_read`@`%`,`app_write`@`%` TO `rw_user1`@`localhost` |
+--+

SHOW GRANTS displays mandatory roles according to the rules described in Section 15.7.7.21, “SHOW
GRANTS Statement”.

Activating Roles

Roles granted to a user account can be active or inactive within account sessions. If a granted role is
active within a session, its privileges apply; otherwise, they do not. To determine which roles are active
within the current session, use the CURRENT_ROLE() function.

By default, granting a role to an account or naming it in the mandatory_roles system variable value
does not automatically cause the role to become active within account sessions. For example, because
thus far in the preceding discussion no rw_user1 roles have been activated, if you connect to the
server as rw_user1 and invoke the CURRENT_ROLE() function, the result is NONE (no active roles):

mysql> SELECT CURRENT_ROLE();
+----------------+
| CURRENT_ROLE() |
+----------------+
| NONE |
+----------------+

To specify which roles should become active each time a user connects to the server and
authenticates, use SET DEFAULT ROLE. To set the default to all assigned roles for each account
created earlier, use this statement:

SET DEFAULT ROLE ALL TO
 'dev1'@'localhost',
 'read_user1'@'localhost',
 'read_user2'@'localhost',
 'rw_user1'@'localhost';

Now if you connect as rw_user1, the initial value of CURRENT_ROLE() reflects the new default role
assignments:

mysql> SELECT CURRENT_ROLE();
+--------------------------------+
| CURRENT_ROLE() |
+--------------------------------+
| `app_read`@`%`,`app_write`@`%` |
+--------------------------------+

To cause all explicitly granted and mandatory roles to be automatically activated when users connect to
the server, enable the activate_all_roles_on_login system variable. By default, automatic role
activation is disabled.

Within a session, a user can execute SET ROLE to change the set of active roles. For example, for
rw_user1:

mysql> SET ROLE NONE; SELECT CURRENT_ROLE();
+----------------+
| CURRENT_ROLE() |
+----------------+
| NONE |
+----------------+
mysql> SET ROLE ALL EXCEPT 'app_write'; SELECT CURRENT_ROLE();
+----------------+

1349

Using Roles

| CURRENT_ROLE() |
+----------------+
| `app_read`@`%` |
+----------------+
mysql> SET ROLE DEFAULT; SELECT CURRENT_ROLE();
+--------------------------------+
| CURRENT_ROLE() |
+--------------------------------+
| `app_read`@`%`,`app_write`@`%` |
+--------------------------------+

The first SET ROLE statement deactivates all roles. The second makes rw_user1 effectively read
only. The third restores the default roles.

The effective user for stored program and view objects is subject to the DEFINER and SQL SECURITY
attributes, which determine whether execution occurs in invoker or definer context (see Section 27.6,
“Stored Object Access Control”):

• Stored program and view objects that execute in invoker context execute with the roles that are
active within the current session.

• Stored program and view objects that execute in definer context execute with the default roles of
the user named in their DEFINER attribute. If activate_all_roles_on_login is enabled, such
objects execute with all roles granted to the DEFINER user, including mandatory roles. For stored
programs, if execution should occur with roles different from the default, the program body can
execute SET ROLE to activate the required roles. This must be done with caution since the privileges
assigned to roles can be changed.

Revoking Roles or Role Privileges

Just as roles can be granted to an account, they can be revoked from an account:

REVOKE role FROM user;

Roles named in the mandatory_roles system variable value cannot be revoked.

REVOKE can also be applied to a role to modify the privileges granted to it. This affects not only the
role itself, but any account granted that role. Suppose that you want to temporarily make all application
users read only. To do this, use REVOKE to revoke the modification privileges from the app_write
role:

REVOKE INSERT, UPDATE, DELETE ON app_db.* FROM 'app_write';

As it happens, that leaves the role with no privileges at all, as can be seen using SHOW GRANTS (which
demonstrates that this statement can be used with roles, not just users):

mysql> SHOW GRANTS FOR 'app_write';
+---------------------------------------+
| Grants for app_write@% |
+---------------------------------------+
| GRANT USAGE ON *.* TO `app_write`@`%` |
+---------------------------------------+

Because revoking privileges from a role affects the privileges for any user who is assigned the modified
role, rw_user1 now has no table modification privileges (INSERT, UPDATE, and DELETE are no longer
present):

mysql> SHOW GRANTS FOR 'rw_user1'@'localhost'
 USING 'app_read', 'app_write';
+--+
| Grants for rw_user1@localhost |
+--+
| GRANT USAGE ON *.* TO `rw_user1`@`localhost` |
| GRANT SELECT ON `app_db`.* TO `rw_user1`@`localhost` |
| GRANT `app_read`@`%`,`app_write`@`%` TO `rw_user1`@`localhost` |

1350

Using Roles

+--+

In effect, the rw_user1 read/write user has become a read-only user. This also occurs for any other
accounts that are granted the app_write role, illustrating how use of roles makes it unnecessary to
modify privileges for individual accounts.

To restore modification privileges to the role, simply re-grant them:

GRANT INSERT, UPDATE, DELETE ON app_db.* TO 'app_write';

Now rw_user1 again has modification privileges, as do any other accounts granted the app_write
role.

Dropping Roles

To drop roles, use DROP ROLE:

DROP ROLE 'app_read', 'app_write';

Dropping a role revokes it from every account to which it was granted.

Roles named in the mandatory_roles system variable value cannot be dropped.

User and Role Interchangeability

As has been hinted at earlier for SHOW GRANTS, which displays grants for user accounts or roles,
accounts and roles can be used interchangeably.

One difference between roles and users is that CREATE ROLE creates an authorization identifier
that is locked by default, whereas CREATE USER creates an authorization identifier that is unlocked
by default. You should keep in mind that this distinction is not immutable; a user with appropriate
privileges can lock or unlock roles or (other) users after they have been created.

If a database administrator has a preference that a specific authorization identifier must be a role, a
name scheme can be used to communicate this intention. For example, you could use a r_ prefix for
all authorization identifiers that you intend to be roles and nothing else.

Another difference between roles and users lies in the privileges available for administering them:

• The CREATE ROLE and DROP ROLE privileges enable only use of the CREATE ROLE and DROP
ROLE statements, respectively.

• The CREATE USER privilege enables use of the ALTER USER, CREATE ROLE, CREATE USER, DROP
ROLE, DROP USER, RENAME USER, and REVOKE ALL PRIVILEGES statements.

Thus, the CREATE ROLE and DROP ROLE privileges are not as powerful as CREATE USER and may be
granted to users who should only be permitted to create and drop roles, and not perform more general
account manipulation.

With regard to privileges and interchangeability of users and roles, you can treat a user account like a
role and grant that account to another user or a role. The effect is to grant the account's privileges and
roles to the other user or role.

This set of statements demonstrates that you can grant a user to a user, a role to a user, a user to a
role, or a role to a role:

CREATE USER 'u1';
CREATE ROLE 'r1';
GRANT SELECT ON db1.* TO 'u1';
GRANT SELECT ON db2.* TO 'r1';
CREATE USER 'u2';
CREATE ROLE 'r2';
GRANT 'u1', 'r1' TO 'u2';
GRANT 'u1', 'r1' TO 'r2';

1351

Account Categories

The result in each case is to grant to the grantee object the privileges associated with the granted
object. After executing those statements, each of u2 and r2 have been granted privileges from a user
(u1) and a role (r1):

mysql> SHOW GRANTS FOR 'u2' USING 'u1', 'r1';
+-------------------------------------+
| Grants for u2@% |
+-------------------------------------+
| GRANT USAGE ON *.* TO `u2`@`%` |
| GRANT SELECT ON `db1`.* TO `u2`@`%` |
| GRANT SELECT ON `db2`.* TO `u2`@`%` |
| GRANT `u1`@`%`,`r1`@`%` TO `u2`@`%` |
+-------------------------------------+
mysql> SHOW GRANTS FOR 'r2' USING 'u1', 'r1';
+-------------------------------------+
| Grants for r2@% |
+-------------------------------------+
| GRANT USAGE ON *.* TO `r2`@`%` |
| GRANT SELECT ON `db1`.* TO `r2`@`%` |
| GRANT SELECT ON `db2`.* TO `r2`@`%` |
| GRANT `u1`@`%`,`r1`@`%` TO `r2`@`%` |
+-------------------------------------+

The preceding example is illustrative only, but interchangeability of user accounts and roles has
practical application, such as in the following situation: Suppose that a legacy application development
project began before the advent of roles in MySQL, so all user accounts associated with the project are
granted privileges directly (rather than granted privileges by virtue of being granted roles). One of these
accounts is a developer account that was originally granted privileges as follows:

CREATE USER 'old_app_dev'@'localhost' IDENTIFIED BY 'old_app_devpass';
GRANT ALL ON old_app.* TO 'old_app_dev'@'localhost';

If this developer leaves the project, it becomes necessary to assign the privileges to another user, or
perhaps multiple users if development activities have expanded. Here are some ways to deal with the
issue:

• Without using roles: Change the account password so the original developer cannot use it, and have
a new developer use the account instead:

ALTER USER 'old_app_dev'@'localhost' IDENTIFIED BY 'new_password';

• Using roles: Lock the account to prevent anyone from using it to connect to the server:

ALTER USER 'old_app_dev'@'localhost' ACCOUNT LOCK;

Then treat the account as a role. For each developer new to the project, create a new account and
grant to it the original developer account:

CREATE USER 'new_app_dev1'@'localhost' IDENTIFIED BY 'new_password';
GRANT 'old_app_dev'@'localhost' TO 'new_app_dev1'@'localhost';

The effect is to assign the original developer account privileges to the new account.

8.2.11 Account Categories

As of MySQL 8.0.16, MySQL incorporates the concept of user account categories, based on the
SYSTEM_USER privilege.

• System and Regular Accounts

• Operations Affected by the SYSTEM_USER Privilege

• System and Regular Sessions

• Protecting System Accounts Against Manipulation by Regular Accounts

1352

Account Categories

System and Regular Accounts

MySQL incorporates the concept of user account categories, with system and regular users
distinguished according to whether they have the SYSTEM_USER privilege:

• A user with the SYSTEM_USER privilege is a system user.

• A user without the SYSTEM_USER privilege is a regular user.

The SYSTEM_USER privilege has an effect on the accounts to which a given user can apply its other
privileges, as well as whether the user is protected from other accounts:

• A system user can modify both system and regular accounts. That is, a user who has the
appropriate privileges to perform a given operation on regular accounts is enabled by possession of
SYSTEM_USER to also perform the operation on system accounts. A system account can be modified
only by system users with appropriate privileges, not by regular users.

• A regular user with appropriate privileges can modify regular accounts, but not system accounts. A
regular account can be modified by both system and regular users with appropriate privileges.

If a user has the appropriate privileges to perform a given operation on regular accounts,
SYSTEM_USER enables the user to also perform the operation on system accounts. SYSTEM_USER
does not imply any other privilege, so the ability to perform a given account operation remains
predicated on possession of any other required privileges. For example, if a user can grant the SELECT
and UPDATE privileges to regular accounts, then with SYSTEM_USER the user can also grant SELECT
and UPDATE to system accounts.

The distinction between system and regular accounts enables better control over certain account
administration issues by protecting accounts that have the SYSTEM_USER privilege from accounts
that do not have the privilege. For example, the CREATE USER privilege enables not only creation of
new accounts, but modification and removal of existing accounts. Without the system user concept, a
user who has the CREATE USER privilege can modify or drop any existing account, including the root
account. The concept of system user enables restricting modifications to the root account (itself a
system account) so they can be made only by system users. Regular users with the CREATE USER
privilege can still modify or drop existing accounts, but only regular accounts.

Operations Affected by the SYSTEM_USER Privilege

The SYSTEM_USER privilege affects these operations:

• Account manipulation.

Account manipulation includes creating and dropping accounts, granting and revoking privileges,
changing account authentication characteristics such as credentials or authentication plugin, and
changing other account characteristics such as password expiration policy.

The SYSTEM_USER privilege is required to manipulate system accounts using account-management
statements such as CREATE USER and GRANT. To prevent an account from modifying system
accounts this way, make it a regular account by not granting it the SYSTEM_USER privilege.
(However, to fully protect system accounts against regular accounts, you must also withhold
modification privileges for the mysql system schema from regular accounts. See Protecting System
Accounts Against Manipulation by Regular Accounts.)

• Killing current sessions and statements executing within them.

To kill a session or statement that is executing with the SYSTEM_USER privilege, your own
session must have the SYSTEM_USER privilege, in addition to any other required privilege
(CONNECTION_ADMIN or the deprecated SUPER privilege).

From MySQL 8.0.30, if the user that puts a server in offline mode does not have the SYSTEM_USER
privilege, connected client users who have the SYSTEM_USER privilege are also not disconnected.

1353

Account Categories

However, these users cannot initiate new connections to the server while it is in offline mode, unless
they have the CONNECTION_ADMIN or SUPER privilege as well. It is only their existing connection
that is not terminated, because the SYSTEM_USER privilege is required to do that.

Prior to MySQL 8.0.16, CONNECTION_ADMIN privilege (or the deprecated SUPER privilege) is
sufficient to kill any session or statement.

• Setting the DEFINER attribute for stored objects.

To set the DEFINER attribute for a stored object to an account that has the SYSTEM_USER
privilege, you must have the SYSTEM_USER privilege, in addition to any other required privilege
(SET_USER_ID or the deprecated SUPER privilege).

Prior to MySQL 8.0.16, the SET_USER_ID privilege (or the deprecated SUPER privilege) is sufficient
to specify any DEFINER value for stored objects.

• Specifying mandatory roles.

A role that has the SYSTEM_USER privilege cannot be listed in the value of the mandatory_roles
system variable.

Prior to MySQL 8.0.16, any role can be listed in mandatory_roles.

• Overriding “abort” items in MySQL Enterprise Audit’s audit log filter.

From MySQL 8.0.28, accounts with the SYSTEM_USER privilege are automatically assigned the
AUDIT_ABORT_EXEMPT privilege, so that queries from the account are always executed even if
an “abort” item in the audit log filter would block them. Accounts with the SYSTEM_USER privilege
can therefore be used to regain access to a system following an audit misconfiguration. See
Section 8.4.5, “MySQL Enterprise Audit”.

System and Regular Sessions

Sessions executing within the server are distinguished as system or regular sessions, similar to the
distinction between system and regular users:

• A session that possesses the SYSTEM_USER privilege is a system session.

• A session that does not possess the SYSTEM_USER privilege is a regular session.

A regular session is able to perform only operations permitted to regular users. A system session is
additionally able to perform operations permitted only to system users.

The privileges possessed by a session are those granted directly to its underlying account, plus those
granted to all roles currently active within the session. Thus, a session may be a system session
because its account has been granted the SYSTEM_USER privilege directly, or because the session has
activated a role that has the SYSTEM_USER privilege. Roles granted to an account that are not active
within the session do not affect session privileges.

Because activating and deactivating roles can change the privileges possessed by sessions, a
session may change from a regular session to a system session or vice versa. If a session activates or
deactivates a role that has the SYSTEM_USER privilege, the appropriate change between regular and
system session takes place immediately, for that session only:

• If a regular session activates a role with the SYSTEM_USER privilege, the session becomes a system
session.

• If a system session deactivates a role with the SYSTEM_USER privilege, the session becomes a
regular session, unless some other role with the SYSTEM_USER privilege remains active.

These operations have no effect on existing sessions:

1354

Account Categories

• If the SYSTEM_USER privilege is granted to or revoked from an account, existing sessions for the
account do not change between regular and system sessions. The grant or revoke operation affects
only sessions for subsequent connections by the account.

• Statements executed by a stored object invoked within a session execute with the system or regular
status of the parent session, even if the object DEFINER attribute names a system account.

Because role activation affects only sessions and not accounts, granting a role that has the
SYSTEM_USER privilege to a regular account does not protect that account against regular users.
The role protects only sessions for the account in which the role has been activated, and protects the
session only against being killed by regular sessions.

Protecting System Accounts Against Manipulation by Regular Accounts

Account manipulation includes creating and dropping accounts, granting and revoking privileges,
changing account authentication characteristics such as credentials or authentication plugin, and
changing other account characteristics such as password expiration policy.

Account manipulation can be done two ways:

• By using account-management statements such as CREATE USER and GRANT. This is the preferred
method.

• By direct grant-table modification using statements such as INSERT and UPDATE. This method is
discouraged but possible for users with the appropriate privileges on the mysql system schema that
contains the grant tables.

To fully protect system accounts against modification by a given account, make it a regular account
and do not grant it modification privileges for the mysql schema:

• The SYSTEM_USER privilege is required to manipulate system accounts using account-management
statements. To prevent an account from modifying system accounts this way, make it a regular
account by not granting SYSTEM_USER to it. This includes not granting SYSTEM_USER to any roles
granted to the account.

• Privileges for the mysql schema enable manipulation of system accounts through direct modification
of the grant tables, even if the modifying account is a regular account. To restrict unauthorized direct
modification of system accounts by a regular account, do not grant modification privileges for the
mysql schema to the account (or any roles granted to the account). If a regular account must have
global privileges that apply to all schemas, mysql schema modifications can be prevented using
privilege restrictions imposed using partial revokes. See Section 8.2.12, “Privilege Restriction Using
Partial Revokes”.

Note

Unlike withholding the SYSTEM_USER privilege, which prevents an account
from modifying system accounts but not regular accounts, withholding mysql
schema privileges prevents an account from modifying system accounts as well
as regular accounts. This should not be an issue because, as mentioned, direct
grant-table modification is discouraged.

Suppose that you want to create a user u1 who has all privileges on all schemas, except that
u1 should be a regular user without the ability to modify system accounts. Assuming that the
partial_revokes system variable is enabled, configure u1 as follows:

CREATE USER u1 IDENTIFIED BY 'password';

GRANT ALL ON *.* TO u1 WITH GRANT OPTION;
-- GRANT ALL includes SYSTEM_USER, so at this point
-- u1 can manipulate system or regular accounts

REVOKE SYSTEM_USER ON *.* FROM u1;

1355

Privilege Restriction Using Partial Revokes

-- Revoking SYSTEM_USER makes u1 a regular user;
-- now u1 can use account-management statements
-- to manipulate only regular accounts

REVOKE ALL ON mysql.* FROM u1;
-- This partial revoke prevents u1 from directly
-- modifying grant tables to manipulate accounts

To prevent all mysql system schema access by an account, revoke all its privileges on the mysql
schema, as just shown. It is also possible to permit partial mysql schema access, such as read-only
access. The following example creates an account that has SELECT, INSERT, UPDATE, and DELETE
privileges globally for all schemas, but only SELECT for the mysql schema:

CREATE USER u2 IDENTIFIED BY 'password';
GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO u2;
REVOKE INSERT, UPDATE, DELETE ON mysql.* FROM u2;

Another possibility is to revoke all mysql schema privileges but grant access to specific mysql tables
or columns. This can be done even with a partial revoke on mysql. The following statements enable
read-only access to u1 within the mysql schema, but only for the db table and the Host and User
columns of the user table:

CREATE USER u3 IDENTIFIED BY 'password';
GRANT ALL ON *.* TO u3;
REVOKE ALL ON mysql.* FROM u3;
GRANT SELECT ON mysql.db TO u3;
GRANT SELECT(Host,User) ON mysql.user TO u3;

8.2.12 Privilege Restriction Using Partial Revokes

Prior to MySQL 8.0.16, it is not possible to grant privileges that apply globally except for certain
schemas. As of MySQL 8.0.16, that is possible if the partial_revokes system variable is enabled.
Specifically, for users who have privileges at the global level, partial_revokes enables privileges
for specific schemas to be revoked while leaving the privileges in place for other schemas. Privilege
restrictions thus imposed may be useful for administration of accounts that have global privileges but
should not be permitted to access certain schemas. For example, it is possible to permit an account to
modify any table except those in the mysql system schema.

• Using Partial Revokes

• Partial Revokes Versus Explicit Schema Grants

• Disabling Partial Revokes

• Partial Revokes and Replication

Note

For brevity, CREATE USER statements shown here do not include passwords.
For production use, always assign account passwords.

Using Partial Revokes

The partial_revokes system variable controls whether privilege restrictions can be placed on
accounts. By default, partial_revokes is disabled and attempts to partially revoke global privileges
produce an error:

mysql> CREATE USER u1;
mysql> GRANT SELECT, INSERT ON *.* TO u1;
mysql> REVOKE INSERT ON world.* FROM u1;
ERROR 1141 (42000): There is no such grant defined for user 'u1' on host '%'

To permit the REVOKE operation, enable partial_revokes:

SET PERSIST partial_revokes = ON;

1356

Privilege Restriction Using Partial Revokes

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to
carry over to subsequent server restarts. To change the value for the running MySQL instance without
having it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See
Section 15.7.6.1, “SET Syntax for Variable Assignment”.

With partial_revokes enabled, the partial revoke succeeds:

mysql> REVOKE INSERT ON world.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+--+
| Grants for u1@% |
+--+
| GRANT SELECT, INSERT ON *.* TO `u1`@`%` |
| REVOKE INSERT ON `world`.* FROM `u1`@`%` |
+--+

SHOW GRANTS lists partial revokes as REVOKE statements in its output. The result indicates that u1
has global SELECT and INSERT privileges, except that INSERT cannot be exercised for tables in the
world schema. That is, access by u1 to world tables is read only.

The server records privilege restrictions implemented through partial revokes in the mysql.user
system table. If an account has partial revokes, its User_attributes column value has a
Restrictions attribute:

mysql> SELECT User, Host, User_attributes->>'$.Restrictions'
 FROM mysql.user WHERE User_attributes->>'$.Restrictions' <> '';
+------+------+--+
| User | Host | User_attributes->>'$.Restrictions' |
+------+------+--+
| u1 | % | [{"Database": "world", "Privileges": ["INSERT"]}] |
+------+------+--+

Note

Although partial revokes can be imposed for any schema, privilege restrictions
on the mysql system schema in particular are useful as part of a strategy for
preventing regular accounts from modifying system accounts. See Protecting
System Accounts Against Manipulation by Regular Accounts.

Partial revoke operations are subject to these conditions:

• It is possible to use partial revokes to place restrictions on nonexistent schemas, but only if the
revoked privilege is granted globally. If a privilege is not granted globally, revoking it for a nonexistent
schema produces an error.

• Partial revokes apply at the schema level only. You cannot use partial revokes for privileges that
apply only globally (such as FILE or BINLOG_ADMIN), or for table, column, or routine privileges.

• In privilege assignments, enabling partial_revokes causes MySQL to interpret occurrences of
unescaped _ and % SQL wildcard characters in schema names as literal characters, just as if they
had been escaped as _ and \%. Because this changes how MySQL interprets privileges, it may be
advisable to avoid unescaped wildcard characters in privilege assignments for installations where
partial_revokes may be enabled.

As mentioned previously, partial revokes of schema-level privileges appear in SHOW GRANTS output as
REVOKE statements. This differs from how SHOW GRANTS represents “plain” schema-level privileges:

• When granted, schema-level privileges are represented by their own GRANT statements in the
output:

mysql> CREATE USER u1;
mysql> GRANT UPDATE ON mysql.* TO u1;
mysql> GRANT DELETE ON world.* TO u1;
mysql> SHOW GRANTS FOR u1;
+---------------------------------------+

1357

Privilege Restriction Using Partial Revokes

| Grants for u1@% |
+---------------------------------------+
| GRANT USAGE ON *.* TO `u1`@`%` |
| GRANT UPDATE ON `mysql`.* TO `u1`@`%` |
| GRANT DELETE ON `world`.* TO `u1`@`%` |
+---------------------------------------+

• When revoked, schema-level privileges simply disappear from the output. They do not appear as
REVOKE statements:

mysql> REVOKE UPDATE ON mysql.* FROM u1;
mysql> REVOKE DELETE ON world.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+--------------------------------+
| Grants for u1@% |
+--------------------------------+
| GRANT USAGE ON *.* TO `u1`@`%` |
+--------------------------------+

When a user grants a privilege, any restriction the grantor has on the privilege is inherited by the
grantee, unless the grantee already has the privilege without the restriction. Consider the following two
users, one of whom has the global SELECT privilege:

CREATE USER u1, u2;
GRANT SELECT ON *.* TO u2;

Suppose that an administrative user admin has a global but partially revoked SELECT privilege:

mysql> CREATE USER admin;
mysql> GRANT SELECT ON *.* TO admin WITH GRANT OPTION;
mysql> REVOKE SELECT ON mysql.* FROM admin;
mysql> SHOW GRANTS FOR admin;
+--+
| Grants for admin@% |
+--+
| GRANT SELECT ON *.* TO `admin`@`%` WITH GRANT OPTION |
| REVOKE SELECT ON `mysql`.* FROM `admin`@`%` |
+--+

If admin grants SELECT globally to u1 and u2, the result differs for each user:

• If admin grants SELECT globally to u1, who has no SELECT privilege to begin with, u1 inherits the
admin privilege restriction:

mysql> GRANT SELECT ON *.* TO u1;
mysql> SHOW GRANTS FOR u1;
+--+
| Grants for u1@% |
+--+
| GRANT SELECT ON *.* TO `u1`@`%` |
| REVOKE SELECT ON `mysql`.* FROM `u1`@`%` |
+--+

• On the other hand, u2 already holds a global SELECT privilege without restriction. GRANT can only
add to a grantee's existing privileges, not reduce them, so if admin grants SELECT globally to u2, u2
does not inherit the admin restriction:

mysql> GRANT SELECT ON *.* TO u2;
mysql> SHOW GRANTS FOR u2;
+---------------------------------+
| Grants for u2@% |
+---------------------------------+
| GRANT SELECT ON *.* TO `u2`@`%` |
+---------------------------------+

If a GRANT statement includes an AS user clause, the privilege restrictions applied are those on
the user/role combination specified by the clause, rather than those on the user who executes the
statement. For information about the AS clause, see Section 15.7.1.6, “GRANT Statement”.

1358

Privilege Restriction Using Partial Revokes

Restrictions on new privileges granted to an account are added to any existing restrictions for that
account:

mysql> CREATE USER u1;
mysql> GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO u1;
mysql> REVOKE INSERT ON mysql.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO `u1`@`%` |
| REVOKE INSERT ON `mysql`.* FROM `u1`@`%` |
+---+
mysql> REVOKE DELETE, UPDATE ON db2.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO `u1`@`%` |
| REVOKE UPDATE, DELETE ON `db2`.* FROM `u1`@`%` |
| REVOKE INSERT ON `mysql`.* FROM `u1`@`%` |
+---+

Aggregation of privilege restrictions applies both when privileges are partially revoked explicitly (as just
shown) and when restrictions are inherited implicitly from the user who executes the statement or the
user mentioned in an AS user clause.

If an account has a privilege restriction on a schema:

• The account cannot grant to other accounts a privilege on the restricted schema or any object within
it.

• Another account that does not have the restriction can grant privileges to the restricted account
for the restricted schema or objects within it. Suppose that an unrestricted user executes these
statements:

CREATE USER u1;
GRANT SELECT, INSERT, UPDATE ON *.* TO u1;
REVOKE SELECT, INSERT, UPDATE ON mysql.* FROM u1;
GRANT SELECT ON mysql.user TO u1; -- grant table privilege
GRANT SELECT(Host,User) ON mysql.db TO u1; -- grant column privileges

The resulting account has these privileges, with the ability to perform limited operations within the
restricted schema:

mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE ON *.* TO `u1`@`%` |
| REVOKE SELECT, INSERT, UPDATE ON `mysql`.* FROM `u1`@`%` |
| GRANT SELECT (`Host`, `User`) ON `mysql`.`db` TO `u1`@`%` |
| GRANT SELECT ON `mysql`.`user` TO `u1`@`%` |
+---+

If an account has a restriction on a global privilege, the restriction is removed by any of these actions:

• Granting the privilege globally to the account by an account that has no restriction on the privilege.

• Granting the privilege at the schema level.

• Revoking the privilege globally.

Consider a user u1 who holds several privileges globally, but with restrictions on INSERT, UPDATE and
DELETE:

mysql> CREATE USER u1;
mysql> GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO u1;

1359

Privilege Restriction Using Partial Revokes

mysql> REVOKE INSERT, UPDATE, DELETE ON mysql.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+--+
| Grants for u1@% |
+--+
| GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO `u1`@`%` |
| REVOKE INSERT, UPDATE, DELETE ON `mysql`.* FROM `u1`@`%` |
+--+

Granting a privilege globally to u1 from an account with no restriction removes the privilege restriction.
For example, to remove the INSERT restriction:

mysql> GRANT INSERT ON *.* TO u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO `u1`@`%` |
| REVOKE UPDATE, DELETE ON `mysql`.* FROM `u1`@`%` |
+---+

Granting a privilege at the schema level to u1 removes the privilege restriction. For example, to remove
the UPDATE restriction:

mysql> GRANT UPDATE ON mysql.* TO u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO `u1`@`%` |
| REVOKE DELETE ON `mysql`.* FROM `u1`@`%` |
+---+

Revoking a global privilege removes the privilege, including any restrictions on it. For example, to
remove the DELETE restriction (at the cost of removing all DELETE access):

mysql> REVOKE DELETE ON *.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE ON *.* TO `u1`@`%` |
+---+

If an account has a privilege at both the global and schema levels, you must revoke it at the schema
level twice to effect a partial revoke. Suppose that u1 has these privileges, where INSERT is held both
globally and on the world schema:

mysql> CREATE USER u1;
mysql> GRANT SELECT, INSERT ON *.* TO u1;
mysql> GRANT INSERT ON world.* TO u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT ON *.* TO `u1`@`%` |
| GRANT INSERT ON `world`.* TO `u1`@`%` |
+---+

Revoking INSERT on world revokes the schema-level privilege (SHOW GRANTS no longer displays the
schema-level GRANT statement):

mysql> REVOKE INSERT ON world.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT ON *.* TO `u1`@`%` |
+---+

1360

Privilege Restriction Using Partial Revokes

Revoking INSERT on world again performs a partial revoke of the global privilege (SHOW GRANTS
now includes a schema-level REVOKE statement):

mysql> REVOKE INSERT ON world.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+--+
| Grants for u1@% |
+--+
| GRANT SELECT, INSERT ON *.* TO `u1`@`%` |
| REVOKE INSERT ON `world`.* FROM `u1`@`%` |
+--+

Partial Revokes Versus Explicit Schema Grants

To provide access to accounts for some schemas but not others, partial revokes provide an alternative
to the approach of explicitly granting schema-level access without granting global privileges. The two
approaches have different advantages and disadvantages.

Granting schema-level privileges and not global privileges:

• Adding a new schema: The schema is inaccessible to existing accounts by default. For any account
to which the schema should be accessible, the DBA must grant schema-level access.

• Adding a new account: The DBA must grant schema-level access for each schema to which the
account should have access.

Granting global privileges in conjunction with partial revokes:

• Adding a new schema: The schema is accessible to existing accounts that have global privileges.
For any such account to which the schema should be inaccessible, the DBA must add a partial
revoke.

• Adding a new account: The DBA must grant the global privileges, plus a partial revoke on each
restricted schema.

The approach that uses explicit schema-level grant is more convenient for accounts for which access is
limited to a few schemas. The approach that uses partial revokes is more convenient for accounts with
broad access to all schemas except a few.

Disabling Partial Revokes

Once enabled, partial_revokes cannot be disabled if any account has privilege restrictions. If any
such account exists, disabling partial_revokes fails:

• For attempts to disable partial_revokes at startup, the server logs an error message and
enables partial_revokes.

• For attempts to disable partial_revokes at runtime, an error occurs and the partial_revokes
value remains unchanged.

To disable partial_revokes when restrictions exist, the restrictions first must be removed:

1. Determine which accounts have partial revokes:

SELECT User, Host, User_attributes->>'$.Restrictions'
FROM mysql.user WHERE User_attributes->>'$.Restrictions' <> '';

2. For each such account, remove its privilege restrictions. Suppose that the previous step shows
account u1 to have these restrictions:

[{"Database": "world", "Privileges": ["INSERT", "DELETE"]

Restriction removal can be done various ways:

• Grant the privileges globally, without restrictions:

1361

When Privilege Changes Take Effect

GRANT INSERT, DELETE ON *.* TO u1;

• Grant the privileges at the schema level:

GRANT INSERT, DELETE ON world.* TO u1;

• Revoke the privileges globally (assuming that they are no longer needed):

REVOKE INSERT, DELETE ON *.* FROM u1;

• Remove the account itself (assuming that it is no longer needed):

DROP USER u1;

After all privilege restrictions are removed, it is possible to disable partial revokes:

SET PERSIST partial_revokes = OFF;

Partial Revokes and Replication

In replication scenarios, if partial_revokes is enabled on any host, it must be enabled on all hosts.
Otherwise, REVOKE statements to partially revoke a global privilege do not have the same effect for all
hosts on which replication occurs, potentially resulting in replication inconsistencies or errors.

When partial_revokes is enabled, an extended syntax is recorded in the binary log for GRANT
statements, including the current user that issued the statement and their currently active roles. If a
user or a role recorded in this way does not exist on the replica, the replication applier thread stops
at the GRANT statement with an error. Ensure that all user accounts that issue or might issue GRANT
statements on the replication source server also exist on the replica, and have the same set of roles as
they have on the source.

8.2.13 When Privilege Changes Take Effect

If the mysqld server is started without the --skip-grant-tables option, it reads all grant table
contents into memory during its startup sequence. The in-memory tables become effective for access
control at that point.

If you modify the grant tables indirectly using an account-management statement, the server notices
these changes and loads the grant tables into memory again immediately. Account-management
statements are described in Section 15.7.1, “Account Management Statements”. Examples include
GRANT, REVOKE, SET PASSWORD, and RENAME USER.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE (which is
not recommended), the changes have no effect on privilege checking until you either tell the server to
reload the tables or restart it. Thus, if you change the grant tables directly but forget to reload them, the
changes have no effect until you restart the server. This may leave you wondering why your changes
seem to make no difference!

To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by
issuing a FLUSH PRIVILEGES statement or by executing a mysqladmin flush-privileges or
mysqladmin reload command.

A grant table reload affects privileges for each existing client session as follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect the next time the client executes a USE db_name statement.

Note

Client applications may cache the database name; thus, this effect may not
be visible to them without actually changing to a different database.

1362

Assigning Account Passwords

• Static global privileges and passwords are unaffected for a connected client. These changes take
effect only in sessions for subsequent connections. Changes to dynamic global privileges apply
immediately. For information about the differences between static and dynamic privileges, see Static
Versus Dynamic Privileges.)

Changes to the set of active roles within a session take effect immediately, for that session only. The
SET ROLE statement performs session role activation and deactivation (see Section 15.7.1.11, “SET
ROLE Statement”).

If the server is started with the --skip-grant-tables option, it does not read the grant tables or
implement any access control. Any user can connect and perform any operation, which is insecure. To
cause a server thus started to read the tables and enable access checking, flush the privileges.

8.2.14 Assigning Account Passwords

Required credentials for clients that connect to the MySQL server can include a password. This section
describes how to assign passwords for MySQL accounts.

MySQL stores credentials in the user table in the mysql system database. Operations that assign
or modify passwords are permitted only to users with the CREATE USER privilege, or, alternatively,
privileges for the mysql database (INSERT privilege to create new accounts, UPDATE privilege to
modify existing accounts). If the read_only system variable is enabled, use of account-modification
statements such as CREATE USER or ALTER USER additionally requires the CONNECTION_ADMIN
privilege (or the deprecated SUPER privilege).

The discussion here summarizes syntax only for the most common password-assignment statements.
For complete details on other possibilities, see Section 15.7.1.3, “CREATE USER Statement”,
Section 15.7.1.1, “ALTER USER Statement”, and Section 15.7.1.10, “SET PASSWORD Statement”.

MySQL uses plugins to perform client authentication; see Section 8.2.17, “Pluggable Authentication”.
In password-assigning statements, the authentication plugin associated with an account performs
any hashing required of a cleartext password specified. This enables MySQL to obfuscate passwords
prior to storing them in the mysql.user system table. For the statements described here, MySQL
automatically hashes the password specified. There are also syntax for CREATE USER and ALTER
USER that permits hashed values to be specified literally. For details, see the descriptions of those
statements.

To assign a password when you create a new account, use CREATE USER and include an
IDENTIFIED BY clause:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

CREATE USER also supports syntax for specifying the account authentication plugin. See
Section 15.7.1.3, “CREATE USER Statement”.

To assign or change a password for an existing account, use the ALTER USER statement with an
IDENTIFIED BY clause:

ALTER USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

If you are not connected as an anonymous user, you can change your own password without naming
your own account literally:

ALTER USER USER() IDENTIFIED BY 'password';

To change an account password from the command line, use the mysqladmin command:

mysqladmin -u user_name -h host_name password "password"

The account for which this command sets the password is the one with a row in the mysql.user
system table that matches user_name in the User column and the client host from which you connect
in the Host column.

1363

Password Management

Warning

Setting a password using mysqladmin should be considered insecure. On
some systems, your password becomes visible to system status programs such
as ps that may be invoked by other users to display command lines. MySQL
clients typically overwrite the command-line password argument with zeros
during their initialization sequence. However, there is still a brief interval during
which the value is visible. Also, on some systems this overwriting strategy is
ineffective and the password remains visible to ps. (SystemV Unix systems and
perhaps others are subject to this problem.)

If you are using MySQL Replication, be aware that, currently, a password used by a replica as part
of a CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO
statement (before MySQL 8.0.23) is effectively limited to 32 characters in length; if the password is
longer, any excess characters are truncated. This is not due to any limit imposed by MySQL Server
generally, but rather is an issue specific to MySQL Replication.

8.2.15 Password Management

MySQL supports these password-management capabilities:

• Password expiration, to require passwords to be changed periodically.

• Password reuse restrictions, to prevent old passwords from being chosen again.

• Password verification, to require that password changes also specify the current password to be
replaced.

• Dual passwords, to enable clients to connect using either a primary or secondary password.

• Password strength assessment, to require strong passwords.

• Random password generation, as an alternative to requiring explicit administrator-specified literal
passwords.

• Password failure tracking, to enable temporary account locking after too many consecutive incorrect-
password login failures.

The following sections describe these capabilities, except password strength assessment, which is
implemented using the validate_password component and is described in Section 8.4.3, “The
Password Validation Component”.

• Internal Versus External Credentials Storage

• Password Expiration Policy

• Password Reuse Policy

• Password Verification-Required Policy

• Dual Password Support

• Random Password Generation

• Failed-Login Tracking and Temporary Account Locking

Important

MySQL implements password-management capabilities using tables in the
mysql system database. If you upgrade MySQL from an earlier version, your
system tables might not be up to date. In that case, the server writes messages

1364

Password Management

similar to these to the error log during the startup process (the exact numbers
may vary):

[ERROR] Column count of mysql.user is wrong. Expected
49, found 47. The table is probably corrupted
[Warning] ACL table mysql.password_history missing.
Some operations may fail.

To correct the issue, perform the MySQL upgrade procedure. See Chapter 3,
Upgrading MySQL. Until this is done, password changes are not possible.

Internal Versus External Credentials Storage

Some authentication plugins store account credentials internally to MySQL, in the mysql.user system
table:

• caching_sha2_password

• mysql_native_password (deprecated)

• sha256_password (deprecated)

Most discussion in this section applies to such authentication plugins because most password-
management capabilities described here are based on internal credentials storage handled by MySQL
itself. Other authentication plugins store account credentials externally to MySQL. For accounts that
use plugins that perform authentication against an external credentials system, password management
must be handled externally against that system as well.

The exception is that the options for failed-login tracking and temporary account locking apply to all
accounts, not just accounts that use internal credentials storage, because MySQL is able to assess
the status of login attempts for any account no matter whether it uses internal or external credentials
storage.

For information about individual authentication plugins, see Section 8.4.1, “Authentication Plugins”.

Password Expiration Policy

MySQL enables database administrators to expire account passwords manually, and to establish a
policy for automatic password expiration. Expiration policy can be established globally, and individual
accounts can be set to either defer to the global policy or override the global policy with specific per-
account behavior.

To expire an account password manually, use the ALTER USER statement:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

This operation marks the password expired in the corresponding row in the mysql.user system table.

Password expiration according to policy is automatic and is based on password age, which for a given
account is assessed from the date and time of its most recent password change. The mysql.user
system table indicates for each account when its password was last changed, and the server
automatically treats the password as expired at client connection time if its age is greater than its
permitted lifetime. This works with no explicit manual password expiration.

To establish automatic password-expiration policy globally, use the default_password_lifetime
system variable. Its default value is 0, which disables automatic password expiration. If the value of
default_password_lifetime is a positive integer N, it indicates the permitted password lifetime,
such that passwords must be changed every N days.

Examples:

• To establish a global policy that passwords have a lifetime of approximately six months, start the
server with these lines in a server my.cnf file:

1365

Password Management

[mysqld]
default_password_lifetime=180

• To establish a global policy such that passwords never expire, set default_password_lifetime
to 0:

[mysqld]
default_password_lifetime=0

• default_password_lifetime can also be set and persisted at runtime:

SET PERSIST default_password_lifetime = 180;
SET PERSIST default_password_lifetime = 0;

SET PERSIST sets a value for the running MySQL instance. It also saves the value to carry over to
subsequent server restarts; see Section 15.7.6.1, “SET Syntax for Variable Assignment”. To change
the value for the running MySQL instance without having it carry over to subsequent restarts, use the
GLOBAL keyword rather than PERSIST.

The global password-expiration policy applies to all accounts that have not been set to override it. To
establish policy for individual accounts, use the PASSWORD EXPIRE option of the CREATE USER and
ALTER USER statements. See Section 15.7.1.3, “CREATE USER Statement”, and Section 15.7.1.1,
“ALTER USER Statement”.

Example account-specific statements:

• Require the password to be changed every 90 days:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 90 DAY;
ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 90 DAY;

This expiration option overrides the global policy for all accounts named by the statement.

• Disable password expiration:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;
ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

This expiration option overrides the global policy for all accounts named by the statement.

• Defer to the global expiration policy for all accounts named by the statement:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;
ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

When a client successfully connects, the server determines whether the account password has
expired:

• The server checks whether the password has been manually expired.

• Otherwise, the server checks whether the password age is greater than its permitted lifetime
according to the automatic password expiration policy. If so, the server considers the password
expired.

If the password is expired (whether manually or automatically), the server either disconnects the client
or restricts the operations permitted to it (see Section 8.2.16, “Server Handling of Expired Passwords”).
Operations performed by a restricted client result in an error until the user establishes a new account
password:

mysql> SELECT 1;
ERROR 1820 (HY000): You must reset your password using ALTER USER
statement before executing this statement.

mysql> ALTER USER USER() IDENTIFIED BY 'password';

1366

Password Management

Query OK, 0 rows affected (0.01 sec)

mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

After the client resets the password, the server restores normal access for the session, as well as for
subsequent connections that use the account. It is also possible for an administrative user to reset the
account password, but any existing restricted sessions for that account remain restricted. A client using
the account must disconnect and reconnect before statements can be executed successfully.

Note

Although it is possible to “reset” an expired password by setting it to its
current value, it is preferable, as a matter of good policy, to choose a different
password. DBAs can enforce non-reuse by establishing an appropriate
password-reuse policy. See Password Reuse Policy.

Password Reuse Policy

MySQL enables restrictions to be placed on reuse of previous passwords. Reuse restrictions can
be established based on number of password changes, time elapsed, or both. Reuse policy can be
established globally, and individual accounts can be set to either defer to the global policy or override
the global policy with specific per-account behavior.

The password history for an account consists of passwords it has been assigned in the past. MySQL
can restrict new passwords from being chosen from this history:

• If an account is restricted on the basis of number of password changes, a new password cannot be
chosen from a specified number of the most recent passwords. For example, if the minimum number
of password changes is set to 3, a new password cannot be the same as any of the most recent 3
passwords.

• If an account is restricted based on time elapsed, a new password cannot be chosen from
passwords in the history that are newer than a specified number of days. For example, if the
password reuse interval is set to 60, a new password must not be among those previously chosen
within the last 60 days.

Note

The empty password does not count in the password history and is subject to
reuse at any time.

To establish password-reuse policy globally, use the password_history and
password_reuse_interval system variables.

Examples:

• To prohibit reusing any of the last 6 passwords or passwords newer than 365 days, put these lines in
the server my.cnf file:

[mysqld]
password_history=6
password_reuse_interval=365

• To set and persist the variables at runtime, use statements like this:

SET PERSIST password_history = 6;
SET PERSIST password_reuse_interval = 365;

1367

Password Management

SET PERSIST sets a value for the running MySQL instance. It also saves the value to carry over to
subsequent server restarts; see Section 15.7.6.1, “SET Syntax for Variable Assignment”. To change
the value for the running MySQL instance without having it carry over to subsequent restarts, use the
GLOBAL keyword rather than PERSIST.

The global password-reuse policy applies to all accounts that have not been set to override it. To
establish policy for individual accounts, use the PASSWORD HISTORY and PASSWORD REUSE
INTERVAL options of the CREATE USER and ALTER USER statements. See Section 15.7.1.3,
“CREATE USER Statement”, and Section 15.7.1.1, “ALTER USER Statement”.

Example account-specific statements:

• Require a minimum of 5 password changes before permitting reuse:

CREATE USER 'jeffrey'@'localhost' PASSWORD HISTORY 5;
ALTER USER 'jeffrey'@'localhost' PASSWORD HISTORY 5;

This history-length option overrides the global policy for all accounts named by the statement.

• Require a minimum of 365 days elapsed before permitting reuse:

CREATE USER 'jeffrey'@'localhost' PASSWORD REUSE INTERVAL 365 DAY;
ALTER USER 'jeffrey'@'localhost' PASSWORD REUSE INTERVAL 365 DAY;

This time-elapsed option overrides the global policy for all accounts named by the statement.

• To combine both types of reuse restrictions, use PASSWORD HISTORY and PASSWORD REUSE
INTERVAL together:

CREATE USER 'jeffrey'@'localhost'
 PASSWORD HISTORY 5
 PASSWORD REUSE INTERVAL 365 DAY;
ALTER USER 'jeffrey'@'localhost'
 PASSWORD HISTORY 5
 PASSWORD REUSE INTERVAL 365 DAY;

These options override both global policy reuse restrictions for all accounts named by the statement.

• Defer to the global policy for both types of reuse restrictions:

CREATE USER 'jeffrey'@'localhost'
 PASSWORD HISTORY DEFAULT
 PASSWORD REUSE INTERVAL DEFAULT;
ALTER USER 'jeffrey'@'localhost'
 PASSWORD HISTORY DEFAULT
 PASSWORD REUSE INTERVAL DEFAULT;

Password Verification-Required Policy

As of MySQL 8.0.13, it is possible to require that attempts to change an account password be verified
by specifying the current password to be replaced. This enables DBAs to prevent users from changing
a password without proving that they know the current password. Such changes could otherwise
occur, for example, if one user walks away from a terminal session temporarily without logging out,
and a malicious user uses the session to change the original user's MySQL password. This can have
unfortunate consequences:

• The original user becomes unable to access MySQL until the account password is reset by an
administrator.

• Until the password reset occurs, the malicious user can access MySQL with the benign user's
changed credentials.

Password-verification policy can be established globally, and individual accounts can be set to either
defer to the global policy or override the global policy with specific per-account behavior.

1368

Password Management

For each account, its mysql.user row indicates whether there is an account-specific setting requiring
verification of the current password for password change attempts. The setting is established by the
PASSWORD REQUIRE option of the CREATE USER and ALTER USER statements:

• If the account setting is PASSWORD REQUIRE CURRENT, password changes must specify the current
password.

• If the account setting is PASSWORD REQUIRE CURRENT OPTIONAL, password changes may but
need not specify the current password.

• If the account setting is PASSWORD REQUIRE CURRENT DEFAULT, the
password_require_current system variable determines the verification-required policy for the
account:

• If password_require_current is enabled, password changes must specify the current
password.

• If password_require_current is disabled, password changes may but need not specify the
current password.

In other words, if the account setting is not PASSWORD REQUIRE CURRENT DEFAULT, the account
setting takes precedence over the global policy established by the password_require_current
system variable. Otherwise, the account defers to the password_require_current setting.

By default, password verification is optional: password_require_current is disabled and accounts
created with no PASSWORD REQUIRE option default to PASSWORD REQUIRE CURRENT DEFAULT.

The following table shows how per-account settings interact with password_require_current
system variable values to determine account password verification-required policy.

Table 8.10 Password-Verification Policy

Per-Account Setting password_require_current
System Variable

Password Changes Require
Current Password?

PASSWORD REQUIRE CURRENT OFF Yes

PASSWORD REQUIRE CURRENT ON Yes

PASSWORD REQUIRE CURRENT
OPTIONAL

OFF No

PASSWORD REQUIRE CURRENT
OPTIONAL

ON No

PASSWORD REQUIRE CURRENT
DEFAULT

OFF No

PASSWORD REQUIRE CURRENT
DEFAULT

ON Yes

Note

Privileged users can change any account password without specifying the
current password, regardless of the verification-required policy. A privileged
user is one who has the global CREATE USER privilege or the UPDATE privilege
for the mysql system database.

To establish password-verification policy globally, use the password_require_current system
variable. Its default value is OFF, so it is not required that account password changes specify the
current password.

Examples:

• To establish a global policy that password changes must specify the current password, start the
server with these lines in a server my.cnf file:

1369

Password Management

[mysqld]
password_require_current=ON

• To set and persist password_require_current at runtime, use a statement such as one of
these:

SET PERSIST password_require_current = ON;
SET PERSIST password_require_current = OFF;

SET PERSIST sets a value for the running MySQL instance. It also saves the value to carry over to
subsequent server restarts; see Section 15.7.6.1, “SET Syntax for Variable Assignment”. To change
the value for the running MySQL instance without having it carry over to subsequent restarts, use the
GLOBAL keyword rather than PERSIST.

The global password verification-required policy applies to all accounts that have not been set to
override it. To establish policy for individual accounts, use the PASSWORD REQUIRE options of the
CREATE USER and ALTER USER statements. See Section 15.7.1.3, “CREATE USER Statement”, and
Section 15.7.1.1, “ALTER USER Statement”.

Example account-specific statements:

• Require that password changes specify the current password:

CREATE USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT;
ALTER USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT;

This verification option overrides the global policy for all accounts named by the statement.

• Do not require that password changes specify the current password (the current password may but
need not be given):

CREATE USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT OPTIONAL;
ALTER USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT OPTIONAL;

This verification option overrides the global policy for all accounts named by the statement.

• Defer to the global password verification-required policy for all accounts named by the statement:

CREATE USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT DEFAULT;
ALTER USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT DEFAULT;

Verification of the current password comes into play when a user changes a password using the ALTER
USER or SET PASSWORD statement. The examples use ALTER USER, which is preferred over SET
PASSWORD, but the principles described here are the same for both statements.

In password-change statements, a REPLACE clause specifies the current password to be replaced.
Examples:

• Change the current user's password:

ALTER USER USER() IDENTIFIED BY 'auth_string' REPLACE 'current_auth_string';

• Change a named user's password:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'auth_string'
 REPLACE 'current_auth_string';

• Change a named user's authentication plugin and password:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH caching_sha2_password BY 'auth_string'
 REPLACE 'current_auth_string';

The REPLACE clause works like this:

1370

Password Management

• REPLACE must be given if password changes for the account are required to specify the current
password, as verification that the user attempting to make the change actually knows the current
password.

• REPLACE is optional if password changes for the account may but need not specify the current
password.

• If REPLACE is specified, it must specify the correct current password, or an error occurs. This is true
even if REPLACE is optional.

• REPLACE can be specified only when changing the account password for the current user. (This
means that in the examples just shown, the statements that explicitly name the account for jeffrey
fail unless the current user is jeffrey.) This is true even if the change is attempted for another user
by a privileged user; however, such a user can change any password without specifying REPLACE.

• REPLACE is omitted from the binary log to avoid writing cleartext passwords to it.

Dual Password Support

As of MySQL 8.0.14, user accounts are permitted to have dual passwords, designated as primary and
secondary passwords. Dual-password capability makes it possible to seamlessly perform credential
changes in scenarios like this:

• A system has a large number of MySQL servers, possibly involving replication.

• Multiple applications connect to different MySQL servers.

• Periodic credential changes must be made to the account or accounts used by the applications to
connect to the servers.

Consider how a credential change must be performed in the preceding type of scenario when an
account is permitted only a single password. In this case, there must be close cooperation in the timing
of when the account password change is made and propagated throughout all servers, and when all
applications that use the account are updated to use the new password. This process may involve
downtime during which servers or applications are unavailable.

With dual passwords, credential changes can be made more easily, in phases, without requiring close
cooperation, and without downtime:

1. For each affected account, establish a new primary password on the servers, retaining the current
password as the secondary password. This enables servers to recognize either the primary or
secondary password for each account, while applications can continue to connect to the servers
using the same password as previously (which is now the secondary password).

2. After the password change has propagated to all servers, modify applications that use any affected
account to connect using the account primary password.

3. After all applications have been migrated from the secondary passwords to the primary passwords,
the secondary passwords are no longer needed and can be discarded. After this change has
propagated to all servers, only the primary password for each account can be used to connect. The
credential change is now complete.

MySQL implements dual-password capability with syntax that saves and discards secondary
passwords:

• The RETAIN CURRENT PASSWORD clause for the ALTER USER and SET PASSWORD statements
saves an account current password as its secondary password when you assign a new primary
password.

• The DISCARD OLD PASSWORD clause for ALTER USER discards an account secondary password,
leaving only the primary password.

1371

Password Management

Suppose that, for the previously described credential-change scenario, an account named
'appuser1'@'host1.example.com' is used by applications to connect to servers, and that the
account password is to be changed from 'password_a' to 'password_b'.

To perform this change of credentials, use ALTER USER as follows:

1. On each server that is not a replica, establish 'password_b' as the new appuser1 primary
password, retaining the current password as the secondary password:

ALTER USER 'appuser1'@'host1.example.com'
 IDENTIFIED BY 'password_b'
 RETAIN CURRENT PASSWORD;

2. Wait for the password change to replicate throughout the system to all replicas.

3. Modify each application that uses the appuser1 account so that it connects to the servers using a
password of 'password_b' rather than 'password_a'.

4. At this point, the secondary password is no longer needed. On each server that is not a replica,
discard the secondary password:

ALTER USER 'appuser1'@'host1.example.com'
 DISCARD OLD PASSWORD;

5. After the discard-password change has replicated to all replicas, the credential change is complete.

The RETAIN CURRENT PASSWORD and DISCARD OLD PASSWORD clauses have the following effects:

• RETAIN CURRENT PASSWORD retains an account current password as its secondary password,
replacing any existing secondary password. The new password becomes the primary password, but
clients can use the account to connect to the server using either the primary or secondary password.
(Exception: If the new password specified by the ALTER USER or SET PASSWORD statement is
empty, the secondary password becomes empty as well, even if RETAIN CURRENT PASSWORD is
given.)

• If you specify RETAIN CURRENT PASSWORD for an account that has an empty primary password,
the statement fails.

• If an account has a secondary password and you change its primary password without specifying
RETAIN CURRENT PASSWORD, the secondary password remains unchanged.

• For ALTER USER, if you change the authentication plugin assigned to the account, the secondary
password is discarded. If you change the authentication plugin and also specify RETAIN CURRENT
PASSWORD, the statement fails.

• For ALTER USER, DISCARD OLD PASSWORD discards the secondary password, if one exists. The
account retains only its primary password, and clients can use the account to connect to the server
only with the primary password.

Statements that modify secondary passwords require these privileges:

• The APPLICATION_PASSWORD_ADMIN privilege is required to use the RETAIN CURRENT
PASSWORD or DISCARD OLD PASSWORD clause for ALTER USER and SET PASSWORD statements
that apply to your own account. The privilege is required to manipulate your own secondary
password because most users require only one password.

• If an account is to be permitted to manipulate secondary passwords for all accounts, it should be
granted the CREATE USER privilege rather than APPLICATION_PASSWORD_ADMIN.

Random Password Generation

As of MySQL 8.0.18, the CREATE USER, ALTER USER, and SET PASSWORD statements have the
capability of generating random passwords for user accounts, as an alternative to requiring explicit

1372

Password Management

administrator-specified literal passwords. See the description of each statement for details about the
syntax. This section describes the characteristics common to generated random passwords.

By default, generated random passwords have a length of 20 characters. This length is controlled by
the generated_random_password_length system variable, which has a range from 5 to 255.

For each account for which a statement generates a random password, the statement stores the
password in the mysql.user system table, hashed appropriately for the account authentication
plugin. The statement also returns the cleartext password in a row of a result set to make it available
to the user or application executing the statement. The result set columns are named user, host,
generated password, and auth_factor indicating the user name and host name values that
identify the affected row in the mysql.user system table, the cleartext generated password, and the
authentication factor the displayed password value applies to.

mysql> CREATE USER
 'u1'@'localhost' IDENTIFIED BY RANDOM PASSWORD,
 'u2'@'%.example.com' IDENTIFIED BY RANDOM PASSWORD,
 'u3'@'%.org' IDENTIFIED BY RANDOM PASSWORD;
+------+---------------+----------------------+-------------+
| user | host | generated password | auth_factor |
+------+---------------+----------------------+-------------+
u1	localhost	iOeqf>Mh9:;XD&qn(Hl}	1
u2	%.example.com	sXTSAEvw3St-R+_-C3Vb	1
u3	%.org	nEVe%Ctw/U/*Md)Exc7&	1
+------+---------------+----------------------+-------------+
mysql> ALTER USER
 'u1'@'localhost' IDENTIFIED BY RANDOM PASSWORD,
 'u2'@'%.example.com' IDENTIFIED BY RANDOM PASSWORD;
+------+---------------+----------------------+-------------+
| user | host | generated password | auth_factor |
+------+---------------+----------------------+-------------+
| u1 | localhost | Seiei:&cw}8]@3OA64vh | 1 |
| u2 | %.example.com | j@&diTX80l8}(NiHXSae | 1 |
+------+---------------+----------------------+-------------+
mysql> SET PASSWORD FOR 'u3'@'%.org' TO RANDOM;
+------+-------+----------------------+-------------+
| user | host | generated password | auth_factor |
+------+-------+----------------------+-------------+
| u3 | %.org | n&cz2xF;P3!U)+]Vw52H | 1 |
+------+-------+----------------------+-------------+

A CREATE USER, ALTER USER, or SET PASSWORD statement that generates a random password
for an account is written to the binary log as a CREATE USER or ALTER USER statement with an
IDENTIFIED WITH auth_plugin AS 'auth_string', clause, where auth_plugin is the
account authentication plugin and 'auth_string' is the account hashed password value.

If the validate_password component is installed, the policy that it implements has no effect
on generated passwords. (The purpose of password validation is to help humans create better
passwords.)

Failed-Login Tracking and Temporary Account Locking

As of MySQL 8.0.19, administrators can configure user accounts such that too many consecutive login
failures cause temporary account locking.

“Login failure” in this context means failure of the client to provide a correct password during a
connection attempt. It does not include failure to connect for reasons such as unknown user or network
issues. For accounts that have dual passwords (see Dual Password Support), either account password
counts as correct.

The required number of login failures and the lock time are configurable per account, using the
FAILED_LOGIN_ATTEMPTS and PASSWORD_LOCK_TIME options of the CREATE USER and ALTER
USER statements. Examples:

CREATE USER 'u1'@'localhost' IDENTIFIED BY 'password'
 FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 3;

1373

Password Management

ALTER USER 'u2'@'localhost'
 FAILED_LOGIN_ATTEMPTS 4 PASSWORD_LOCK_TIME UNBOUNDED;

When too many consecutive login failures occur, the client receives an error that looks like this:

ERROR 3957 (HY000): Access denied for user user.
Account is blocked for D day(s) (R day(s) remaining)
due to N consecutive failed logins.

Use the options as follows:

• FAILED_LOGIN_ATTEMPTS N

This option indicates whether to track account login attempts that specify an incorrect password. The
number N specifies how many consecutive incorrect passwords cause temporary account locking.

• PASSWORD_LOCK_TIME {N | UNBOUNDED}

This option indicates how long to lock the account after too many consecutive login attempts provide
an incorrect password. The value is a number N to specify the number of days the account remains
locked, or UNBOUNDED to specify that when an account enters the temporarily locked state, the
duration of that state is unbounded and does not end until the account is unlocked. The conditions
under which unlocking occurs are described later.

Permitted values of N for each option are in the range from 0 to 32767. A value of 0 disables the option.

Failed-login tracking and temporary account locking have these characteristics:

• For failed-login tracking and temporary locking to occur for an account, its
FAILED_LOGIN_ATTEMPTS and PASSWORD_LOCK_TIME options both must be nonzero.

• For CREATE USER, if FAILED_LOGIN_ATTEMPTS or PASSWORD_LOCK_TIME is not specified,
its implicit default value is 0 for all accounts named by the statement. This means that failed-login
tracking and temporary account locking are disabled. (These implicit defaults also apply to accounts
created prior to the introduction of failed-login tracking.)

• For ALTER USER, if FAILED_LOGIN_ATTEMPTS or PASSWORD_LOCK_TIME is not specified, its
value remains unchanged for all accounts named by the statement.

• For temporary account locking to occur, password failures must be consecutive. Any successful
login that occurs prior to reaching the FAILED_LOGIN_ATTEMPTS value for failed logins causes
failure counting to reset. For example, if FAILED_LOGIN_ATTEMPTS is 4 and three consecutive
password failures have occurred, one more failure is necessary for locking to begin. But if the next
login succeeds, failed-login counting for the account is reset so that four consecutive failures are
again required for locking.

• Once temporary locking begins, successful login cannot occur even with the correct password until
either the lock duration has passed or the account is unlocked by one of the account-reset methods
listed in the following discussion.

When the server reads the grant tables, it initializes state information for each account regarding
whether failed-login tracking is enabled, whether the account is currently temporarily locked and when
locking began if so, and the number of failures before temporary locking occurs if the account is not
locked.

An account's state information can be reset, which means that failed-login counting is reset, and the
account is unlocked if currently temporarily locked. Account resets can be global for all accounts or per
account:

• A global reset of all accounts occurs for any of these conditions:

• A server restart.

1374

Server Handling of Expired Passwords

• Execution of FLUSH PRIVILEGES. (Starting the server with --skip-grant-tables causes the
grant tables not to be read, which disables failed-login tracking. In this case, the first execution of
FLUSH PRIVILEGES causes the server to read the grant tables and enable failed-login tracking,
in addition to resetting all accounts.)

• A per-account reset occurs for any of these conditions:

• Successful login for the account.

• The lock duration passes. In this case, failed-login counting resets at the time of the next login
attempt.

• Execution of an ALTER USER statement for the account that sets either
FAILED_LOGIN_ATTEMPTS or PASSWORD_LOCK_TIME (or both) to any value (including the
current option value), or execution of an ALTER USER ... UNLOCK statement for the account.

Other ALTER USER statements for the account have no effect on its current failed-login count or
its locking state.

Failed-login tracking is tied to the login account that is used to check credentials. If user proxying is
in use, tracking occurs for the proxy user, not the proxied user. That is, tracking is tied to the account
indicated by USER(), not the account indicated by CURRENT_USER(). For information about the
distinction between proxy and proxied users, see Section 8.2.19, “Proxy Users”.

8.2.16 Server Handling of Expired Passwords

MySQL provides password-expiration capability, which enables database administrators to require
that users reset their password. Passwords can be expired manually, and on the basis of a policy for
automatic expiration (see Section 8.2.15, “Password Management”).

The ALTER USER statement enables account password expiration. For example:

ALTER USER 'myuser'@'localhost' PASSWORD EXPIRE;

For each connection that uses an account with an expired password, the server either disconnects
the client or restricts the client to “sandbox mode,” in which the server permits the client to perform
only those operations necessary to reset the expired password. Which action is taken by the server
depends on both client and server settings, as discussed later.

If the server disconnects the client, it returns an ER_MUST_CHANGE_PASSWORD_LOGIN error:

$> mysql -u myuser -p
Password: ******
ERROR 1862 (HY000): Your password has expired. To log in you must
change it using a client that supports expired passwords.

If the server restricts the client to sandbox mode, these operations are permitted within the client
session:

• The client can reset the account password with ALTER USER or SET PASSWORD. After that has been
done, the server restores normal access for the session, as well as for subsequent connections that
use the account.

Note

Although it is possible to “reset” an expired password by setting it to its
current value, it is preferable, as a matter of good policy, to choose a different
password. DBAs can enforce non-reuse by establishing an appropriate
password-reuse policy. See Password Reuse Policy.

• Prior to MySQL 8.0.27, the client can use the SET statement. As of MySQL 8.0.27, this is no longer
permitted.

1375

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_must_change_password_login

Server Handling of Expired Passwords

For any operation not permitted within the session, the server returns an
ER_MUST_CHANGE_PASSWORD error:

mysql> USE performance_schema;
ERROR 1820 (HY000): You must reset your password using ALTER USER
statement before executing this statement.

mysql> SELECT 1;
ERROR 1820 (HY000): You must reset your password using ALTER USER
statement before executing this statement.

That is what normally happens for interactive invocations of the mysql client because by default such
invocations are put in sandbox mode. To resume normal functioning, select a new password.

For noninteractive invocations of the mysql client (for example, in batch mode), the server normally
disconnects the client if the password is expired. To permit noninteractive mysql invocations to stay
connected so that the password can be changed (using the statements permitted in sandbox mode),
add the --connect-expired-password option to the mysql command.

As mentioned previously, whether the server disconnects an expired-password client or restricts it
to sandbox mode depends on a combination of client and server settings. The following discussion
describes the relevant settings and how they interact.

Note

This discussion applies only for accounts with expired passwords. If a client
connects using a nonexpired password, the server handles the client normally.

On the client side, a given client indicates whether it can handle sandbox mode for expired passwords.
For clients that use the C client library, there are two ways to do this:

• Pass the MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_options() prior to
connecting:

bool arg = 1;
mysql_options(mysql,
 MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS,
 &arg);

This is the technique used within the mysql client, which enables
MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS if invoked interactively or with the --connect-
expired-password option.

• Pass the CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_real_connect() at
connect time:

MYSQL mysql;
mysql_init(&mysql);
if (!mysql_real_connect(&mysql,
 host, user, password, db,
 port, unix_socket,
 CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS))
{
 ... handle error ...
}

Other MySQL Connectors have their own conventions for indicating readiness to handle sandbox
mode. See the documentation for the Connector in which you are interested.

On the server side, if a client indicates that it can handle expired passwords, the server puts it in
sandbox mode.

If a client does not indicate that it can handle expired passwords (or uses an older version
of the client library that cannot so indicate), the server action depends on the value of the
disconnect_on_expired_password system variable:

1376

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_must_change_password
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html

Pluggable Authentication

• If disconnect_on_expired_password is enabled (the default), the server disconnects the client
with an ER_MUST_CHANGE_PASSWORD_LOGIN error.

• If disconnect_on_expired_password is disabled, the server puts the client in sandbox mode.

8.2.17 Pluggable Authentication

When a client connects to the MySQL server, the server uses the user name provided by the client and
the client host to select the appropriate account row from the mysql.user system table. The server
then authenticates the client, determining from the account row which authentication plugin applies to
the client:

• If the server cannot find the plugin, an error occurs and the connection attempt is rejected.

• Otherwise, the server invokes that plugin to authenticate the user, and the plugin returns a status to
the server indicating whether the user provided the correct password and is permitted to connect.

Pluggable authentication enables these important capabilities:

• Choice of authentication methods. Pluggable authentication makes it easy for DBAs to choose
and change the authentication method used for individual MySQL accounts.

• External authentication. Pluggable authentication makes it possible for clients to connect to
the MySQL server with credentials appropriate for authentication methods that store credentials
elsewhere than in the mysql.user system table. For example, plugins can be created to use
external authentication methods such as PAM, Windows login IDs, LDAP, or Kerberos.

• Proxy users: If a user is permitted to connect, an authentication plugin can return to the server
a user name different from the name of the connecting user, to indicate that the connecting user is
a proxy for another user (the proxied user). While the connection lasts, the proxy user is treated,
for purposes of access control, as having the privileges of the proxied user. In effect, one user
impersonates another. For more information, see Section 8.2.19, “Proxy Users”.

Note

If you start the server with the --skip-grant-tables option, authentication
plugins are not used even if loaded because the server performs no client
authentication and permits any client to connect. Because this is insecure, if
the server is started with the --skip-grant-tables option, it also disables
remote connections by enabling skip_networking.

• Available Authentication Plugins

• The Default Authentication Plugin

• Authentication Plugin Usage

• Authentication Plugin Client/Server Compatibility

• Authentication Plugin Connector-Writing Considerations

• Restrictions on Pluggable Authentication

Available Authentication Plugins

MySQL 8.0 provides these authentication plugins:

• A plugin that performs native authentication; that is, authentication based on the password
hashing method in use from before the introduction of pluggable authentication in MySQL. The
mysql_native_password plugin implements authentication based on this native password
hashing method. See Section 8.4.1.1, “Native Pluggable Authentication”.

1377

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_must_change_password_login

Pluggable Authentication

Note

As of MySQL 8.0.34, the mysql_native_password authentication plugin is
deprecated and subject to removal in a future version of MySQL.

• Plugins that perform authentication using SHA-256 password hashing. This is stronger encryption
than that available with native authentication. See Section 8.4.1.2, “Caching SHA-2 Pluggable
Authentication”, and Section 8.4.1.3, “SHA-256 Pluggable Authentication”.

• A client-side plugin that sends the password to the server without hashing or encryption. This
plugin is used in conjunction with server-side plugins that require access to the password exactly as
provided by the client user. See Section 8.4.1.4, “Client-Side Cleartext Pluggable Authentication”.

• A plugin that performs external authentication using PAM (Pluggable Authentication Modules),
enabling MySQL Server to use PAM to authenticate MySQL users. This plugin supports proxy users
as well. See Section 8.4.1.5, “PAM Pluggable Authentication”.

• A plugin that performs external authentication on Windows, enabling MySQL Server to use native
Windows services to authenticate client connections. Users who have logged in to Windows can
connect from MySQL client programs to the server based on the information in their environment
without specifying an additional password. This plugin supports proxy users as well. See
Section 8.4.1.6, “Windows Pluggable Authentication”.

• Plugins that perform authentication using LDAP (Lightweight Directory Access Protocol) to
authenticate MySQL users by accessing directory services such as X.500. These plugins support
proxy users as well. See Section 8.4.1.7, “LDAP Pluggable Authentication”.

• A plugin that performs authentication using Kerberos to authenticate MySQL users that correspond
to Kerberos principals. See Section 8.4.1.8, “Kerberos Pluggable Authentication”.

• A plugin that prevents all client connections to any account that uses it. Use cases for this plugin
include proxied accounts that should never permit direct login but are accessed only through proxy
accounts and accounts that must be able to execute stored programs and views with elevated
privileges without exposing those privileges to ordinary users. See Section 8.4.1.9, “No-Login
Pluggable Authentication”.

• A plugin that authenticates clients that connect from the local host through the Unix socket file. See
Section 8.4.1.10, “Socket Peer-Credential Pluggable Authentication”.

• A plugin that authenticates users to MySQL Server using FIDO authentication. See Section 8.4.1.11,
“FIDO Pluggable Authentication”.

Note

As of MySQL 8.0.35, the authentication_fido and
authentication_fido_client authentication plugins are deprecated and
subject to removal in a future version of MySQL.

• A test plugin that checks account credentials and logs success or failure to the server error log.
This plugin is intended for testing and development purposes, and as an example of how to write an
authentication plugin. See Section 8.4.1.12, “Test Pluggable Authentication”.

Note

For information about current restrictions on the use of pluggable authentication,
including which connectors support which plugins, see Restrictions on
Pluggable Authentication.

Third-party connector developers should read that section to determine the
extent to which a connector can take advantage of pluggable authentication
capabilities and what steps to take to become more compliant.

1378

Pluggable Authentication

If you are interested in writing your own authentication plugins, see Writing Authentication Plugins.

The Default Authentication Plugin

The CREATE USER and ALTER USER statements have syntax for specifying how an account
authenticates. Some forms of this syntax do not explicitly name an authentication plugin (there is no
IDENTIFIED WITH clause). For example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

In such cases, the server assigns the default authentication plugin to the account. Prior to MySQL
8.0.27, this default is the value of the default_authentication_plugin system variable.

As of MySQL 8.0.27, which introduces multifactor authentication, there can be up to three clauses that
specify how an account authenticates. The rules that determine the default authentication plugin for
authentication methods that name no plugin are factor-specific:

• Factor 1: If authentication_policy element 1 names an authentication plugin,
that plugin is the default. If authentication_policy element 1 is *, the value of
default_authentication_plugin is the default.

Given the rules above, the following statement creates a two-factor authentication account,
with the first factor authentication method determined by the authentication_policy or
default_authentication_plugin setting:

CREATE USER 'wei'@'localhost' IDENTIFIED BY 'password'
 AND IDENTIFIED WITH authentication_ldap_simple;

In the same way, this example creates a three-factor authentication account:

CREATE USER 'mateo'@'localhost' IDENTIFIED BY 'password'
 AND IDENTIFIED WITH authentication_ldap_simple
 AND IDENTIFIED WITH authentication_fido;

You can use SHOW CREATE USER to view the applied authentication methods.

• Factor 2 or 3: If the corresponding authentication_policy element names an authentication
plugin, that plugin is the default. If the authentication_policy element is * or empty, there is no
default; attempting to define an account authentication method for the factor without naming a plugin
is an error, as in the following examples:

mysql> CREATE USER 'sofia'@'localhost' IDENTIFIED WITH authentication_ldap_simple
 AND IDENTIFIED BY 'abc';
ERROR 1524 (HY000): Plugin '' is not loaded

mysql> CREATE USER 'sofia'@'localhost' IDENTIFIED WITH authentication_ldap_simple
 AND IDENTIFIED BY 'abc';
ERROR 1524 (HY000): Plugin '*' is not loaded

Authentication Plugin Usage

This section provides general instructions for installing and using authentication plugins. For
instructions specific to a given plugin, see the section that describes that plugin under Section 8.4.1,
“Authentication Plugins”.

In general, pluggable authentication uses a pair of corresponding plugins on the server and client
sides, so you use a given authentication method like this:

• If necessary, install the plugin library or libraries containing the appropriate plugins. On the server
host, install the library containing the server-side plugin, so that the server can use it to authenticate
client connections. Similarly, on each client host, install the library containing the client-side plugin for
use by client programs. Authentication plugins that are built in need not be installed.

• For each MySQL account that you create, specify the appropriate server-side plugin to use for
authentication. If the account is to use the default authentication plugin, the account-creation

1379

https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-authentication-plugins.html

Pluggable Authentication

statement need not specify the plugin explicitly. The server assigns the default authentication plugin,
determined as described in The Default Authentication Plugin.

• When a client connects, the server-side plugin tells the client program which client-side plugin to use
for authentication.

In the case that an account uses an authentication method that is the default for both the server and
the client program, the server need not communicate to the client which client-side plugin to use, and a
round trip in client/server negotiation can be avoided.

For standard MySQL clients such as mysql and mysqladmin, the --default-auth=plugin_name
option can be specified on the command line as a hint about which client-side plugin the program can
expect to use, although the server overrides this if the server-side plugin associated with the user
account requires a different client-side plugin.

If the client program does not find the client-side plugin library file, specify a --plugin-
dir=dir_name option to indicate the plugin library directory location.

Authentication Plugin Client/Server Compatibility

Pluggable authentication enables flexibility in the choice of authentication methods for MySQL
accounts, but in some cases client connections cannot be established due to authentication plugin
incompatibility between the client and server.

The general compatibility principle for a successful client connection to a given account on a given
server is that the client and server both must support the authentication method required by the
account. Because authentication methods are implemented by authentication plugins, the client and
server both must support the authentication plugin required by the account.

Authentication plugin incompatibilities can arise in various ways. Examples:

• Connect using a MySQL 5.7 client from 5.7.22 or lower to a MySQL 8.0 server account that
authenticates with caching_sha2_password. This fails because the 5.7 client does not recognize
the plugin, which was introduced in MySQL 8.0. (This issue is addressed in MySQL 5.7 as of 5.7.23,
when caching_sha2_password client-side support was added to the MySQL client library and
client programs.)

• Connect using a MySQL 5.7 client to a pre-5.7 server account that authenticates with
mysql_old_password. This fails for multiple reasons. First, such a connection requires --
secure-auth=0, which is no longer a supported option. Even were it supported, the 5.7 client does
not recognize the plugin because it was removed in MySQL 5.7.

• Connect using a MySQL 5.7 client from a Community distribution to a MySQL 5.7 Enterprise server
account that authenticates using one of the Enterprise-only LDAP authentication plugins. This fails
because the Community client does not have access to the Enterprise plugin.

In general, these compatibility issues do not arise when connections are made between a client and
server from the same MySQL distribution. When connections are made between a client and server
from different MySQL series, issues can arise. These issues are inherent in the development process
when MySQL introduces new authentication plugins or removes old ones. To minimize the potential for
incompatibilities, regularly upgrade the server, clients, and connectors on a timely basis.

Authentication Plugin Connector-Writing Considerations

Various implementations of the MySQL client/server protocol exist. The libmysqlclient C API
client library is one implementation. Some MySQL connectors (typically those not written in C) provide
their own implementation. However, not all protocol implementations handle plugin authentication the
same way. This section describes an authentication issue that protocol implementors should take into
account.

In the client/server protocol, the server tells connecting clients which authentication plugin it considers
the default. If the protocol implementation used by the client tries to load the default plugin and that

1380

Pluggable Authentication

plugin does not exist on the client side, the load operation fails. This is an unnecessary failure if the
default plugin is not the plugin actually required by the account to which the client is trying to connect.

If a client/server protocol implementation does not have its own notion of default authentication plugin
and always tries to load the default plugin specified by the server, it fails with an error if that plugin is
not available.

To avoid this problem, the protocol implementation used by the client should have its own default
plugin and should use it as its first choice (or, alternatively, fall back to this default in case of failure to
load the default plugin specified by the server). Example:

• In MySQL 5.7, libmysqlclient uses as its default choice either mysql_native_password or
the plugin specified through the MYSQL_DEFAULT_AUTH option for mysql_options().

• When a 5.7 client tries to connect to an 8.0 server, the server specifies caching_sha2_password
as its default authentication plugin, but the client still sends credential details per either
mysql_native_password or whatever is specified through MYSQL_DEFAULT_AUTH.

• The only time the client loads the plugin specified by the server is for a change-plugin request, but in
that case it can be any plugin depending on the user account. In this case, the client must try to load
the plugin, and if that plugin is not available, an error is not optional.

Restrictions on Pluggable Authentication

The first part of this section describes general restrictions on the applicability of the pluggable
authentication framework described at Section 8.2.17, “Pluggable Authentication”. The second part
describes how third-party connector developers can determine the extent to which a connector can
take advantage of pluggable authentication capabilities and what steps to take to become more
compliant.

The term “native authentication” used here refers to authentication against passwords stored in
the mysql.user system table. This is the same authentication method provided by older MySQL
servers, before pluggable authentication was implemented. “Windows native authentication” refers to
authentication using the credentials of a user who has already logged in to Windows, as implemented
by the Windows Native Authentication plugin (“Windows plugin” for short).

• General Pluggable Authentication Restrictions

• Pluggable Authentication and Third-Party Connectors

General Pluggable Authentication Restrictions

• Connector/C++: Clients that use this connector can connect to the server only through accounts that
use native authentication.

Exception: A connector supports pluggable authentication if it was built to link to libmysqlclient
dynamically (rather than statically) and it loads the current version of libmysqlclient if that
version is installed, or if the connector is recompiled from source to link against the current
libmysqlclient.

For information about writing connectors to handle information from the server about the default
server-side authentication plugin, see Authentication Plugin Connector-Writing Considerations.

• Connector/NET: Clients that use Connector/NET can connect to the server through accounts that
use native authentication or Windows native authentication.

• Connector/PHP: Clients that use this connector can connect to the server only through accounts
that use native authentication, when compiled using the MySQL native driver for PHP (mysqlnd).

• Windows native authentication: Connecting through an account that uses the Windows plugin
requires Windows Domain setup. Without it, NTLM authentication is used and then only local
connections are possible; that is, the client and server must run on the same computer.

1381

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Multifactor Authentication

• Proxy users: Proxy user support is available to the extent that clients can connect through accounts
authenticated with plugins that implement proxy user capability (that is, plugins that can return a
user name different from that of the connecting user). For example, the PAM and Windows plugins
support proxy users. The mysql_native_password and sha256_password authentication
plugins do not support proxy users by default, but can be configured to do so; see Server Support for
Proxy User Mapping.

• Replication: Replicas can not only employ replication user accounts using native authentication, but
can also connect through replication user accounts that use nonnative authentication if the required
client-side plugin is available. If the plugin is built into libmysqlclient, it is available by default.
Otherwise, the plugin must be installed on the replica side in the directory named by the replica's
plugin_dir system variable.

• FEDERATED tables: A FEDERATED table can access the remote table only through accounts on the
remote server that use native authentication.

Pluggable Authentication and Third-Party Connectors

Third-party connector developers can use the following guidelines to determine readiness of a
connector to take advantage of pluggable authentication capabilities and what steps to take to become
more compliant:

• An existing connector to which no changes have been made uses native authentication and
clients that use the connector can connect to the server only through accounts that use native
authentication. However, you should test the connector against a recent version of the server to
verify that such connections still work without problem.

Exception: A connector might work with pluggable authentication without any changes if it links
to libmysqlclient dynamically (rather than statically) and it loads the current version of
libmysqlclient if that version is installed.

• To take advantage of pluggable authentication capabilities, a connector that is libmysqlclient-
based should be relinked against the current version of libmysqlclient. This enables the
connector to support connections though accounts that require client-side plugins now built into
libmysqlclient (such as the cleartext plugin needed for PAM authentication and the Windows
plugin needed for Windows native authentication). Linking with a current libmysqlclient also
enables the connector to access client-side plugins installed in the default MySQL plugin directory
(typically the directory named by the default value of the local server's plugin_dir system
variable).

If a connector links to libmysqlclient dynamically, it must be ensured that the newer version of
libmysqlclient is installed on the client host and that the connector loads it at runtime.

• Another way for a connector to support a given authentication method is to implement it directly in
the client/server protocol. Connector/NET uses this approach to provide support for Windows native
authentication.

• If a connector should be able to load client-side plugins from a directory different from the default
plugin directory, it must implement some means for client users to specify the directory. Possibilities
for this include a command-line option or environment variable from which the connector can obtain
the directory name. Standard MySQL client programs such as mysql and mysqladmin implement a
--plugin-dir option. See also C API Client Plugin Interface.

• Proxy user support by a connector depends, as described earlier in this section, on whether the
authentication methods that it supports permit proxy users.

8.2.18 Multifactor Authentication

Authentication involves one party establishing its identity to the satisfaction of a second party.
Multifactor authentication (MFA) is the use of multiple authentication values (or “factors”) during the

1382

https://dev.mysql.com/doc/c-api/8.0/en/c-api-plugin-interface.html

Multifactor Authentication

authentication process. MFA provides greater security than one-factor/single-factor authentication
(1FA/SFA), which uses only one authentication method such as a password. MFA enables additional
authentication methods, such as authentication using multiple passwords, or authentication using
devices like smart cards, security keys, and biometric readers.

MySQL 8.0.27 and higher includes support for multifactor authentication. This capability includes forms
of MFA that require up to three authentication values. That is, MySQL account management supports
accounts that use 2FA or 3FA, in addition to the existing 1FA support.

When a client attempts a connection to the MySQL server using a single-factor account, the server
invokes the authentication plugin indicated by the account definition and accepts or rejects the
connection depending on whether the plugin reports success or failure.

For an account that has multiple authentication factors, the process is similar. The server invokes
authentication plugins in the order listed in the account definition. If a plugin reports success, the server
either accepts the connection if the plugin is the last one, or proceeds to invoke the next plugin if any
remain. If any plugin reports failure, the server rejects the connection.

The following sections cover multifactor authentication in MySQL in more detail.

• Elements of Multifactor Authentication Support

• Configuring the Multifactor Authentication Policy

• Getting Started with Multifactor Authentication

Elements of Multifactor Authentication Support

Authentication factors commonly include these types of information:

• Something you know, such as a secret password or passphrase.

• Something you have, such as a security key or smart card.

• Something you are; that is, a biometric characteristic such as a fingerprint or facial scan.

The “something you know” factor type relies on information that is kept secret on both sides of the
authentication process. Unfortunately, secrets may be subject to compromise: Someone might see you
enter your password or fool you with a phishing attack, a password stored on the server side might be
exposed by a security breach, and so forth. Security can be improved by using multiple passwords, but
each may still be subject to compromise. Use of the other factor types enables improved security with
less risk of compromise.

Implementation of multifactor authentication in MySQL comprises these elements:

• The authentication_policy system variable controls how many authentication factors can
be used and the types of authentication permitted for each factor. That is, it places constraints on
CREATE USER and ALTER USER statements with respect to multifactor authentication.

• CREATE USER and ALTER USER have syntax enabling multiple authentication methods to be
specified for new accounts, and for adding, modifying, or dropping authentication methods for
existing accounts. If an account uses 2FA or 3FA, the mysql.user system table stores information
about the additional authentication factors in the User_attributes column.

• To enable authentication to the MySQL server using accounts that require multiple passwords, client
programs have --password1, --password2, and --password3 options that permit up to three
passwords to be specified. For applications that use the C API, the MYSQL_OPT_USER_PASSWORD
option for the mysql_options4() C API function enables the same capability.

• The server-side authentication_fido plugin (deprecated) enables authentication using
devices. This server-side FIDO authentication plugin is included only in MySQL Enterprise

1383

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options4.html

Multifactor Authentication

Edition distributions. It is not included in MySQL community distributions. However, the client-
side authentication_fido_client plugin (deprecated) is included in all distributions,
including community distributions. This enables clients from any distribution to connect to accounts
that use authentication_fido to authenticate on a server that has that plugin loaded. See
Section 8.4.1.11, “FIDO Pluggable Authentication”.

• authentication_fido also enables passwordless authentication, if it is the only authentication
plugin used by an account. See FIDO Passwordless Authentication.

• Multifactor authentication can use non-FIDO MySQL authentication methods, the FIDO
authentication method, or a combination of both.

• These privileges enable users to perform certain restricted multifactor authentication-related
operations:

• A user who has the AUTHENTICATION_POLICY_ADMIN privilege is not subject to the constraints
imposed by the authentication_policy system variable. (A warning does occur for
statements that otherwise would not be permitted.)

• The PASSWORDLESS_USER_ADMIN privilege enables creation of passwordless-authentication
accounts and replication of operations on them.

Configuring the Multifactor Authentication Policy

The authentication_policy system variable defines the multifactor authentication policy.
Specifically, it defines how many authentication factors accounts may have (or are required to have)
and the authentication methods that can be used for each factor.

The value of authentication_policy is a list of 1, 2, or 3 comma-separated elements. Each
element in the list corresponds to an authentication factor and can be an authentication plugin name,
an asterisk (*), empty, or missing. (Exception: Element 1 cannot be empty or missing.) The entire list
is enclosed in single quotes. For example, the following authentication_policy value includes an
asterisk, an authentication plugin name, and an empty element:

authentication_policy = '*,authentication_fido,'

An asterisk (*) indicates that an authentication method is required but any method is permitted. An
empty element indicates that an authentication method is optional and any method is permitted.
A missing element (no asterisk, empty element, or authentication plugin name) indicates that an
authentication method is not permitted. When a plugin name is specified, that authentication method is
required for the respective factor when creating or modifying an account.

The default authentication_policy value is '*,,' (an asterisk and two empty elements),
which requires a first factor, and optionally permits second and third factors. The default
authentication_policy value is thus backward compatible with existing 1FA accounts, but also
permits creation or modification of accounts to use 2FA or 3FA.

A user who has the AUTHENTICATION_POLICY_ADMIN privilege is not subject to the constraints
imposed by the authentication_policy setting. (A warning occurs for statements that otherwise
would not be permitted.)

authentication_policy values can be defined in an option file or specified using a SET GLOBAL
statement:

SET GLOBAL authentication_policy='*,*,';

There are several rules that govern how the authentication_policy value can be defined. Refer
to the authentication_policy system variable description for a compete account of those rules.
The following table provides several authentication_policy example values and the policy
established by each.

1384

Multifactor Authentication

Table 8.11 Example authentication_policy Values

authentication_policy Value Effective Policy

'*' Permit only creating or altering accounts with one
factor.

'*,*' Permit only creating or altering accounts with two
factors.

'*,*,*' Permit only creating or altering accounts with
three factors.

'*,' Permit creating or altering accounts with one or
two factors.

'*,,' Permit creating or altering accounts with one, two,
or three factors.

'*,*,' Permit creating or altering accounts with two or
three factors.

'*,auth_plugin' Permit creating or altering accounts with two
factors, where the first factor can be any
authentication method, and the second factor
must be the named plugin.

'auth_plugin,*,' Permit creating or altering accounts with two or
three factors, where the first factor must be the
named plugin.

'auth_plugin,' Permit creating or altering accounts with one or
two factors, where the first factor must be the
named plugin.

'auth_plugin,auth_plugin,auth_plugin' Permits creating or altering accounts with three
factors, where the factors must use the named
plugins.

Getting Started with Multifactor Authentication

By default, MySQL uses a multifactor authentication policy that permits any authentication plugin
for the first factor, and optionally permits second and third authentication factors. This policy is
configurable; for details, see Configuring the Multifactor Authentication Policy.

Note

It is not permitted to use any internal credential storage plugins
(caching_sha2_password or mysql_native_password) for factor 2 or 3.

Suppose that you want an account to authenticate first using the caching_sha2_password plugin,
then using the authentication_ldap_sasl SASL LDAP plugin. (This assumes that LDAP
authentication is already set up as described in Section 8.4.1.7, “LDAP Pluggable Authentication”, and
that the user has an entry in the LDAP directory corresponding to the authentication string shown in the
example.) Create the account using a statement like this:

CREATE USER 'alice'@'localhost'
 IDENTIFIED WITH caching_sha2_password
 BY 'sha2_password'
 AND IDENTIFIED WITH authentication_ldap_sasl
 AS 'uid=u1_ldap,ou=People,dc=example,dc=com';

To connect, the user must supply two passwords. To enable authentication to the MySQL server using
accounts that require multiple passwords, client programs have --password1, --password2, and
--password3 options that permit up to three passwords to be specified. These options are similar to
the --password option in that they can take a password value following the option on the command
line (which is insecure) or if given without a password value cause the user to be prompted for one.

1385

Proxy Users

For the account just created, factors 1 and 2 take passwords, so invoke the mysql client with the --
password1 and --password2 options. mysql prompts for each password in turn:

$> mysql --user=alice --password1 --password2
Enter password: (enter factor 1 password)
Enter password: (enter factor 2 password)

Suppose you want to add a third authentication factor. This can be achieved by dropping and
recreating the user with a third factor or by using ALTER USER user ADD factor syntax. Both
methods are shown below:

DROP USER 'alice'@'localhost';

CREATE USER 'alice'@'localhost'
 IDENTIFIED WITH caching_sha2_password
 BY 'sha2_password'
 AND IDENTIFIED WITH authentication_ldap_sasl
 AS 'uid=u1_ldap,ou=People,dc=example,dc=com'
 AND IDENTIFIED WITH authentication_fido;

ADD factor syntax includes the factor number and FACTOR keyword:

ALTER USER 'alice'@'localhost' ADD 3 FACTOR IDENTIFIED WITH authentication_fido;

ALTER USER user DROP factor syntax permits dropping a factor. The following example drops the
third factor (authentication_fido) that was added in the previous example:

ALTER USER 'alice'@'localhost' DROP 3 FACTOR;

ALTER USER user MODIFY factor syntax permits changing the plugin or authentication string for
a particular factor, provided that the factor exists. The following example modifies the second factor,
changing the authentication method from authentication_ldap_sasl to authetication_fido:

ALTER USER 'alice'@'localhost' MODIFY 2 FACTOR IDENTIFIED WITH authentication_fido;

Use SHOW CREATE USER to view the authentication methods defined for an account:

SHOW CREATE USER 'u1'@'localhost'\G
*************************** 1. row ***************************
CREATE USER for u1@localhost: CREATE USER `u1`@`localhost`
IDENTIFIED WITH 'caching_sha2_password' AS 'sha2_password'
AND IDENTIFIED WITH 'authentication_fido' REQUIRE NONE
PASSWORD EXPIRE DEFAULT ACCOUNT UNLOCK PASSWORD HISTORY
DEFAULT PASSWORD REUSE INTERVAL DEFAULT PASSWORD REQUIRE
CURRENT DEFAULT

8.2.19 Proxy Users

The MySQL server authenticates client connections using authentication plugins. The plugin that
authenticates a given connection may request that the connecting (external) user be treated as a
different user for privilege-checking purposes. This enables the external user to be a proxy for the
second user; that is, to assume the privileges of the second user:

• The external user is a “proxy user” (a user who can impersonate or become known as another user).

• The second user is a “proxied user” (a user whose identity and privileges can be assumed by a proxy
user).

This section describes how the proxy user capability works. For general information about
authentication plugins, see Section 8.2.17, “Pluggable Authentication”. For information about specific
plugins, see Section 8.4.1, “Authentication Plugins”. For information about writing authentication
plugins that support proxy users, see Implementing Proxy User Support in Authentication Plugins.

• Requirements for Proxy User Support

• Simple Proxy User Example

1386

https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-authentication-plugins-proxy-users.html

Proxy Users

• Preventing Direct Login to Proxied Accounts

• Granting and Revoking the PROXY Privilege

• Default Proxy Users

• Default Proxy User and Anonymous User Conflicts

• Server Support for Proxy User Mapping

• Proxy User System Variables

Note

One administrative benefit to be gained by proxying is that the DBA can set up
a single account with a set of privileges and then enable multiple proxy users
to have those privileges without having to assign the privileges individually to
each of those users. As an alternative to proxy users, DBAs may find that roles
provide a suitable way to map users onto specific sets of named privileges.
Each user can be granted a given single role to, in effect, be granted the
appropriate set of privileges. See Section 8.2.10, “Using Roles”.

Requirements for Proxy User Support

For proxying to occur for a given authentication plugin, these conditions must be satisfied:

• Proxying must be supported, either by the plugin itself, or by the MySQL server on behalf of the
plugin. In the latter case, server support may need to be enabled explicitly; see Server Support for
Proxy User Mapping.

• The account for the external proxy user must be set up to be authenticated by the plugin. Use the
CREATE USER statement to associate an account with an authentication plugin, or ALTER USER to
change its plugin.

• The account for the proxied user must exist and be granted the privileges to be assumed by the
proxy user. Use the CREATE USER and GRANT statements for this.

• Normally, the proxied user is configured so that it can be used only in proxying scenarios and not for
direct logins.

• The proxy user account must have the PROXY privilege for the proxied account. Use the GRANT
statement for this.

• For a client connecting to the proxy account to be treated as a proxy user, the authentication plugin
must return a user name different from the client user name, to indicate the user name of the proxied
account that defines the privileges to be assumed by the proxy user.

Alternatively, for plugins that are provided proxy mapping by the server, the proxied user is
determined from the PROXY privilege held by the proxy user.

The proxy mechanism permits mapping only the external client user name to the proxied user name.
There is no provision for mapping host names:

• When a client connects to the server, the server determines the proper account based on the user
name passed by the client program and the host from which the client connects.

• If that account is a proxy account, the server attempts to determine the appropriate proxied account
by finding a match for a proxied account using the user name returned by the authentication plugin
and the host name of the proxy account. The host name in the proxied account is ignored.

Simple Proxy User Example

Consider the following account definitions:

1387

Proxy Users

-- create proxy account
CREATE USER 'employee_ext'@'localhost'
 IDENTIFIED WITH my_auth_plugin
 AS 'my_auth_string';

-- create proxied account and grant its privileges;
-- use mysql_no_login plugin to prevent direct login
CREATE USER 'employee'@'localhost'
 IDENTIFIED WITH mysql_no_login;
GRANT ALL
 ON employees.*
 TO 'employee'@'localhost';

-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
 ON 'employee'@'localhost'
 TO 'employee_ext'@'localhost';

When a client connects as employee_ext from the local host, MySQL uses the plugin named
my_auth_plugin to perform authentication. Suppose that my_auth_plugin returns a user name
of employee to the server, based on the content of 'my_auth_string' and perhaps by consulting
some external authentication system. The name employee differs from employee_ext, so returning
employee serves as a request to the server to treat the employee_ext external user, for purposes of
privilege checking, as the employee local user.

In this case, employee_ext is the proxy user and employee is the proxied user.

The server verifies that proxy authentication for employee is possible for the employee_ext user by
checking whether employee_ext (the proxy user) has the PROXY privilege for employee (the proxied
user). If this privilege has not been granted, an error occurs. Otherwise, employee_ext assumes
the privileges of employee. The server checks statements executed during the client session by
employee_ext against the privileges granted to employee. In this case, employee_ext can access
tables in the employees database.

The proxied account, employee, uses the mysql_no_login authentication plugin to prevent clients
from using the account to log in directly. (This assumes that the plugin is installed. For instructions, see
Section 8.4.1.9, “No-Login Pluggable Authentication”.) For alternative methods of protecting proxied
accounts against direct use, see Preventing Direct Login to Proxied Accounts.

When proxying occurs, the USER() and CURRENT_USER() functions can be used to see the difference
between the connecting user (the proxy user) and the account whose privileges apply during the
current session (the proxied user). For the example just described, those functions return these values:

mysql> SELECT USER(), CURRENT_USER();
+------------------------+--------------------+
| USER() | CURRENT_USER() |
+------------------------+--------------------+
| employee_ext@localhost | employee@localhost |
+------------------------+--------------------+

In the CREATE USER statement that creates the proxy user account, the IDENTIFIED WITH
clause that names the proxy-supporting authentication plugin is optionally followed by an AS
'auth_string' clause specifying a string that the server passes to the plugin when the user
connects. If present, the string provides information that helps the plugin determine how to map the
proxy (external) client user name to a proxied user name. It is up to each plugin whether it requires the
AS clause. If so, the format of the authentication string depends on how the plugin intends to use it.
Consult the documentation for a given plugin for information about the authentication string values it
accepts.

Preventing Direct Login to Proxied Accounts

Proxied accounts generally are intended to be used only by means of proxy accounts. That is, clients
connect using a proxy account, then are mapped onto and assume the privileges of the appropriate
proxied user.

1388

Proxy Users

There are multiple ways to ensure that a proxied account cannot be used directly:

• Associate the account with the mysql_no_login authentication plugin. In this case, the account
cannot be used for direct logins under any circumstances. This assumes that the plugin is installed.
For instructions, see Section 8.4.1.9, “No-Login Pluggable Authentication”.

• Include the ACCOUNT LOCK option when you create the account. See Section 15.7.1.3, “CREATE
USER Statement”. With this method, also include a password so that if the account is unlocked
later, it cannot be accessed with no password. (If the validate_password component is enabled,
creating an account without a password is not permitted, even if the account is locked. See
Section 8.4.3, “The Password Validation Component”.)

• Create the account with a password but do not tell anyone else the password. If you do not let
anyone know the password for the account, clients cannot use it to connect directly to the MySQL
server.

Granting and Revoking the PROXY Privilege

The PROXY privilege is needed to enable an external user to connect as and have the privileges of
another user. To grant this privilege, use the GRANT statement. For example:

GRANT PROXY ON 'proxied_user' TO 'proxy_user';

The statement creates a row in the mysql.proxies_priv grant table.

At connect time, proxy_user must represent a valid externally authenticated MySQL user, and
proxied_user must represent a valid locally authenticated user. Otherwise, the connection attempt
fails.

The corresponding REVOKE syntax is:

REVOKE PROXY ON 'proxied_user' FROM 'proxy_user';

MySQL GRANT and REVOKE syntax extensions work as usual. Examples:

-- grant PROXY to multiple accounts
GRANT PROXY ON 'a' TO 'b', 'c', 'd';

-- revoke PROXY from multiple accounts
REVOKE PROXY ON 'a' FROM 'b', 'c', 'd';

-- grant PROXY to an account and enable the account to grant
-- PROXY to the proxied account
GRANT PROXY ON 'a' TO 'd' WITH GRANT OPTION;

-- grant PROXY to default proxy account
GRANT PROXY ON 'a' TO ''@'';

The PROXY privilege can be granted in these cases:

• By a user that has GRANT PROXY ... WITH GRANT OPTION for proxied_user.

• By proxied_user for itself: The value of USER() must exactly match CURRENT_USER() and
proxied_user, for both the user name and host name parts of the account name.

The initial root account created during MySQL installation has the PROXY ... WITH GRANT
OPTION privilege for ''@'', that is, for all users and all hosts. This enables root to set up proxy
users, as well as to delegate to other accounts the authority to set up proxy users. For example, root
can do this:

CREATE USER 'admin'@'localhost'
 IDENTIFIED BY 'admin_password';
GRANT PROXY
 ON ''@''
 TO 'admin'@'localhost'

1389

Proxy Users

 WITH GRANT OPTION;

Those statements create an admin user that can manage all GRANT PROXY mappings. For example,
admin can do this:

GRANT PROXY ON sally TO joe;

Default Proxy Users

To specify that some or all users should connect using a given authentication plugin, create a “blank”
MySQL account with an empty user name and host name (''@''), associate it with that plugin, and let
the plugin return the real authenticated user name (if different from the blank user). Suppose that there
exists a plugin named ldap_auth that implements LDAP authentication and maps connecting users
onto either a developer or manager account. To set up proxying of users onto these accounts, use the
following statements:

-- create default proxy account
CREATE USER ''@''
 IDENTIFIED WITH ldap_auth
 AS 'O=Oracle, OU=MySQL';

-- create proxied accounts; use
-- mysql_no_login plugin to prevent direct login
CREATE USER 'developer'@'localhost'
 IDENTIFIED WITH mysql_no_login;
CREATE USER 'manager'@'localhost'
 IDENTIFIED WITH mysql_no_login;

-- grant to default proxy account the
-- PROXY privilege for proxied accounts
GRANT PROXY
 ON 'manager'@'localhost'
 TO ''@'';
GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'';

Now assume that a client connects as follows:

$> mysql --user=myuser --password ...
Enter password: myuser_password

The server does not find myuser defined as a MySQL user, but because there is a blank user account
(''@'') that matches the client user name and host name, the server authenticates the client against
that account. The server invokes the ldap_auth authentication plugin and passes myuser and
myuser_password to it as the user name and password.

If the ldap_auth plugin finds in the LDAP directory that myuser_password is not the correct
password for myuser, authentication fails and the server rejects the connection.

If the password is correct and ldap_auth finds that myuser is a developer, it returns the user name
developer to the MySQL server, rather than myuser. Returning a user name different from the client
user name of myuser signals to the server that it should treat myuser as a proxy. The server verifies
that ''@'' can authenticate as developer (because ''@'' has the PROXY privilege to do so) and
accepts the connection. The session proceeds with myuser having the privileges of the developer
proxied user. (These privileges should be set up by the DBA using GRANT statements, not shown.) The
USER() and CURRENT_USER() functions return these values:

mysql> SELECT USER(), CURRENT_USER();
+------------------+---------------------+
| USER() | CURRENT_USER() |
+------------------+---------------------+
| myuser@localhost | developer@localhost |
+------------------+---------------------+

If the plugin instead finds in the LDAP directory that myuser is a manager, it returns manager as the
user name and the session proceeds with myuser having the privileges of the manager proxied user.

1390

Proxy Users

mysql> SELECT USER(), CURRENT_USER();
+------------------+-------------------+
| USER() | CURRENT_USER() |
+------------------+-------------------+
| myuser@localhost | manager@localhost |
+------------------+-------------------+

For simplicity, external authentication cannot be multilevel: Neither the credentials for developer nor
those for manager are taken into account in the preceding example. However, they are still used if a
client tries to connect and authenticate directly as the developer or manager account, which is why
those proxied accounts should be protected against direct login (see Preventing Direct Login to Proxied
Accounts).

Default Proxy User and Anonymous User Conflicts

If you intend to create a default proxy user, check for other existing “match any user” accounts that take
precedence over the default proxy user because they can prevent that user from working as intended.

In the preceding discussion, the default proxy user account has '' in the host part, which matches any
host. If you set up a default proxy user, take care to also check whether nonproxy accounts exist with
the same user part and '%' in the host part, because '%' also matches any host, but has precedence
over '' by the rules that the server uses to sort account rows internally (see Section 8.2.6, “Access
Control, Stage 1: Connection Verification”).

Suppose that a MySQL installation includes these two accounts:

-- create default proxy account
CREATE USER ''@''
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';
-- create anonymous account
CREATE USER ''@'%'
 IDENTIFIED BY 'anon_user_password';

The first account (''@'') is intended as the default proxy user, used to authenticate connections
for users who do not otherwise match a more-specific account. The second account (''@'%') is an
anonymous-user account, which might have been created, for example, to enable users without their
own account to connect anonymously.

Both accounts have the same user part (''), which matches any user. And each account has a
host part that matches any host. Nevertheless, there is a priority in account matching for connection
attempts because the matching rules sort a host of '%' ahead of ''. For accounts that do not match
any more-specific account, the server attempts to authenticate them against ''@'%' (the anonymous
user) rather than ''@'' (the default proxy user). As a result, the default proxy account is never used.

To avoid this problem, use one of the following strategies:

• Remove the anonymous account so that it does not conflict with the default proxy user.

• Use a more-specific default proxy user that matches ahead of the anonymous user. For example, to
permit only localhost proxy connections, use ''@'localhost':

CREATE USER ''@'localhost'
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';

In addition, modify any GRANT PROXY statements to name ''@'localhost' rather than ''@'' as
the proxy user.

Be aware that this strategy prevents anonymous-user connections from localhost.

• Use a named default account rather than an anonymous default account. For an example of
this technique, consult the instructions for using the authentication_windows plugin. See
Section 8.4.1.6, “Windows Pluggable Authentication”.

1391

Proxy Users

• Create multiple proxy users, one for local connections and one for “everything else” (remote
connections). This can be useful particularly when local users should have different privileges from
remote users.

Create the proxy users:

-- create proxy user for local connections
CREATE USER ''@'localhost'
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';
-- create proxy user for remote connections
CREATE USER ''@'%'
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';

Create the proxied users:

-- create proxied user for local connections
CREATE USER 'developer'@'localhost'
 IDENTIFIED WITH mysql_no_login;
-- create proxied user for remote connections
CREATE USER 'developer'@'%'
 IDENTIFIED WITH mysql_no_login;

Grant to each proxy account the PROXY privilege for the corresponding proxied account:

GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'localhost';
GRANT PROXY
 ON 'developer'@'%'
 TO ''@'%';

Finally, grant appropriate privileges to the local and remote proxied users (not shown).

Assume that the some_plugin/'some_auth_string' combination causes some_plugin to map
the client user name to developer. Local connections match the ''@'localhost' proxy user,
which maps to the 'developer'@'localhost' proxied user. Remote connections match the
''@'%' proxy user, which maps to the 'developer'@'%' proxied user.

Server Support for Proxy User Mapping

Some authentication plugins implement proxy user mapping for themselves (for example, the PAM and
Windows authentication plugins). Other authentication plugins do not support proxy users by default.
Of these, some can request that the MySQL server itself map proxy users according to granted proxy
privileges: mysql_native_password, sha256_password. If the check_proxy_users system
variable is enabled, the server performs proxy user mapping for any authentication plugins that make
such a request:

• By default, check_proxy_users is disabled, so the server performs no proxy user mapping even
for authentication plugins that request server support for proxy users.

• If check_proxy_users is enabled, it may also be necessary to enable a plugin-specific system
variable to take advantage of server proxy user mapping support:

• For the mysql_native_password plugin, enable mysql_native_password_proxy_users.

• For the sha256_password plugin, enable sha256_password_proxy_users.

For example, to enable all the preceding capabilities, start the server with these lines in the my.cnf
file:

[mysqld]
check_proxy_users=ON
mysql_native_password_proxy_users=ON
sha256_password_proxy_users=ON

1392

Account Locking

Assuming that the relevant system variables have been enabled, create the proxy user as usual using
CREATE USER, then grant it the PROXY privilege to a single other account to be treated as the proxied
user. When the server receives a successful connection request for the proxy user, it finds that the user
has the PROXY privilege and uses it to determine the proper proxied user.

-- create proxy account
CREATE USER 'proxy_user'@'localhost'
 IDENTIFIED WITH mysql_native_password
 BY 'password';

-- create proxied account and grant its privileges;
-- use mysql_no_login plugin to prevent direct login
CREATE USER 'proxied_user'@'localhost'
 IDENTIFIED WITH mysql_no_login;
-- grant privileges to proxied account
GRANT ...
 ON ...
 TO 'proxied_user'@'localhost';

-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
 ON 'proxied_user'@'localhost'
 TO 'proxy_user'@'localhost';

To use the proxy account, connect to the server using its name and password:

$> mysql -u proxy_user -p
Enter password: (enter proxy_user password here)

Authentication succeeds, the server finds that proxy_user has the PROXY privilege for
proxied_user, and the session proceeds with proxy_user having the privileges of
proxied_user.

Proxy user mapping performed by the server is subject to these restrictions:

• The server does not proxy to or from an anonymous user, even if the associated PROXY privilege is
granted.

• When a single account has been granted proxy privileges for more than one proxied account, server
proxy user mapping is nondeterministic. Therefore, granting to a single account proxy privileges for
multiple proxied accounts is discouraged.

Proxy User System Variables

Two system variables help trace the proxy login process:

• proxy_user: This value is NULL if proxying is not used. Otherwise, it indicates the proxy user
account. For example, if a client authenticates through the ''@'' proxy account, this variable is set
as follows:

mysql> SELECT @@proxy_user;
+--------------+
| @@proxy_user |
+--------------+
| ''@'' |
+--------------+

• external_user: Sometimes the authentication plugin may use an external user to authenticate
to the MySQL server. For example, when using Windows native authentication, a plugin that
authenticates using the windows API does not need the login ID passed to it. However, it still uses a
Windows user ID to authenticate. The plugin may return this external user ID (or the first 512 UTF-8
bytes of it) to the server using the external_user read-only session variable. If the plugin does not
set this variable, its value is NULL.

8.2.20 Account Locking

1393

Setting Account Resource Limits

MySQL supports locking and unlocking user accounts using the ACCOUNT LOCK and ACCOUNT
UNLOCK clauses for the CREATE USER and ALTER USER statements:

• When used with CREATE USER, these clauses specify the initial locking state for a new account. In
the absence of either clause, the account is created in an unlocked state.

If the validate_password component is enabled, creating an account without a password is not
permitted, even if the account is locked. See Section 8.4.3, “The Password Validation Component”.

• When used with ALTER USER, these clauses specify the new locking state for an existing account.
In the absence of either clause, the account locking state remains unchanged.

As of MySQL 8.0.19, ALTER USER ... UNLOCK unlocks any account named by the statement that
is temporarily locked due to too many failed logins. See Section 8.2.15, “Password Management”.

Account locking state is recorded in the account_locked column of the mysql.user system table.
The output from SHOW CREATE USER indicates whether an account is locked or unlocked.

If a client attempts to connect to a locked account, the attempt fails. The server increments the
Locked_connects status variable that indicates the number of attempts to connect to a locked
account, returns an ER_ACCOUNT_HAS_BEEN_LOCKED error, and writes a message to the error log:

Access denied for user 'user_name'@'host_name'.
Account is locked.

Locking an account does not affect being able to connect using a proxy user that assumes the identity
of the locked account. It also does not affect the ability to execute stored programs or views that have
a DEFINER attribute naming the locked account. That is, the ability to use a proxied account or stored
programs or views is not affected by locking the account.

The account-locking capability depends on the presence of the account_locked column in the
mysql.user system table. For upgrades from MySQL versions older than 5.7.6, perform the
MySQL upgrade procedure to ensure that this column exists. See Chapter 3, Upgrading MySQL. For
nonupgraded installations that have no account_locked column, the server treats all accounts as
unlocked, and using the ACCOUNT LOCK or ACCOUNT UNLOCK clauses produces an error.

8.2.21 Setting Account Resource Limits

One means of restricting client use of MySQL server resources is to set the global
max_user_connections system variable to a nonzero value. This limits the number of simultaneous
connections that can be made by any given account, but places no limits on what a client can do once
connected. In addition, setting max_user_connections does not enable management of individual
accounts. Both types of control are of interest to MySQL administrators.

To address such concerns, MySQL permits limits for individual accounts on use of these server
resources:

• The number of queries an account can issue per hour

• The number of updates an account can issue per hour

• The number of times an account can connect to the server per hour

• The number of simultaneous connections to the server by an account

Any statement that a client can issue counts against the query limit. Only statements that modify
databases or tables count against the update limit.

An “account” in this context corresponds to a row in the mysql.user system table. That is, a
connection is assessed against the User and Host values in the user table row that applies to the
connection. For example, an account 'usera'@'%.example.com' corresponds to a row in the user
table that has User and Host values of usera and %.example.com, to permit usera to connect

1394

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_account_has_been_locked

Setting Account Resource Limits

from any host in the example.com domain. In this case, the server applies resource limits in this row
collectively to all connections by usera from any host in the example.com domain because all such
connections use the same account.

Before MySQL 5.0, an “account” was assessed against the actual host from which a user connects.
This older method of accounting may be selected by starting the server with the --old-style-
user-limits option. In this case, if usera connects simultaneously from host1.example.com and
host2.example.com, the server applies the account resource limits separately to each connection.
If usera connects again from host1.example.com, the server applies the limits for that connection
together with the existing connection from that host.

Note

The --old-style-user-limits option is deprecated in MySQL 8.0.30, and
is subject to removal in a future release of MySQL. Use of this option on the
command line or in an option file in MySQL 8.0.30 or later causes the server to
raise a warning.

To establish resource limits for an account at account-creation time, use the CREATE USER statement.
To modify the limits for an existing account, use ALTER USER. Provide a WITH clause that names each
resource to be limited. The default value for each limit is zero (no limit). For example, to create a new
account that can access the customer database, but only in a limited fashion, issue these statements:

mysql> CREATE USER 'francis'@'localhost' IDENTIFIED BY 'frank'
 -> WITH MAX_QUERIES_PER_HOUR 20
 -> MAX_UPDATES_PER_HOUR 10
 -> MAX_CONNECTIONS_PER_HOUR 5
 -> MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any
order. The value for each per-hour limit should be an integer representing a count per hour. For
MAX_USER_CONNECTIONS, the limit is an integer representing the maximum number of simultaneous
connections by the account. If this limit is set to zero, the global max_user_connections system
variable value determines the number of simultaneous connections. If max_user_connections is
also zero, there is no limit for the account.

To modify limits for an existing account, use an ALTER USER statement. The following statement
changes the query limit for francis to 100:

mysql> ALTER USER 'francis'@'localhost' WITH MAX_QUERIES_PER_HOUR 100;

The statement modifies only the limit value specified and leaves the account otherwise unchanged.

To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour
francis can connect, use this statement:

mysql> ALTER USER 'francis'@'localhost' WITH MAX_CONNECTIONS_PER_HOUR 0;

As mentioned previously, the simultaneous-connection limit for an account is determined from the
MAX_USER_CONNECTIONS limit and the max_user_connections system variable. Suppose that
the global max_user_connections value is 10 and three accounts have individual resource limits
specified as follows:

ALTER USER 'user1'@'localhost' WITH MAX_USER_CONNECTIONS 0;
ALTER USER 'user2'@'localhost' WITH MAX_USER_CONNECTIONS 5;
ALTER USER 'user3'@'localhost' WITH MAX_USER_CONNECTIONS 20;

user1 has a connection limit of 10 (the global max_user_connections value) because it has
a MAX_USER_CONNECTIONS limit of zero. user2 and user3 have connection limits of 5 and 20,
respectively, because they have nonzero MAX_USER_CONNECTIONS limits.

The server stores resource limits for an account in the user table row corresponding to the account.
The max_questions, max_updates, and max_connections columns store the per-hour limits, and

1395

Troubleshooting Problems Connecting to MySQL

the max_user_connections column stores the MAX_USER_CONNECTIONS limit. (See Section 8.2.3,
“Grant Tables”.)

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of
the resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches
its limit on number of connections within the last hour, the server rejects further connections for the
account until that hour is up. Similarly, if the account reaches its limit on the number of queries or
updates, the server rejects further queries or updates until the hour is up. In all such cases, the server
issues appropriate error messages.

Resource counting occurs per account, not per client. For example, if your account has a query limit of
50, you cannot increase your limit to 100 by making two simultaneous client connections to the server.
Queries issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a
given account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement.
The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRIVILEGES
statement or a mysqladmin reload command).

• The counts for an individual account can be reset to zero by setting any of its limits again. Specify a
limit value equal to the value currently assigned to the account.

Per-hour counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts. Counts do not carry over through server restarts.

For the MAX_USER_CONNECTIONS limit, an edge case can occur if the account currently has open the
maximum number of connections permitted to it: A disconnect followed quickly by a connect can result
in an error (ER_TOO_MANY_USER_CONNECTIONS or ER_USER_LIMIT_REACHED) if the server has not
fully processed the disconnect by the time the connect occurs. When the server finishes disconnect
processing, another connection is once more permitted.

8.2.22 Troubleshooting Problems Connecting to MySQL

If you encounter problems when you try to connect to the MySQL server, the following items describe
some courses of action you can take to correct the problem.

• Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an
attempt to connect to the server fails with a message such as one of those following, one cause
might be that the server is not running:

$> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
$> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

• It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe,
or Unix socket file different from the one on which the server is listening. To correct this when you
invoke a client program, specify a --port option to indicate the proper port number, or a --socket
option to indicate the proper named pipe or Unix socket file. To find out where the socket file is, you
can use this command:

$> netstat -ln | grep mysql

• Make sure that the server has not been configured to ignore network connections or (if you are
attempting to connect remotely) that it has not been configured to listen only locally on its network
interfaces. If the server was started with the skip_networking system variable enabled, no TCP/
IP connections are accepted. If the server was started with the bind_address system variable set

1396

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_too_many_user_connections
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_user_limit_reached

Troubleshooting Problems Connecting to MySQL

to 127.0.0.1, it listens for TCP/IP connections only locally on the loopback interface and does not
accept remote connections.

• Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be
configured on the basis of the application being executed, or the port number used by MySQL for
communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration
to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or
Windows Firewall may need to be configured not to block the MySQL port.

• The grant tables must be properly set up so that the server can use them for access control. For
some distribution types (such as binary distributions on Windows, or RPM and DEB distributions
on Linux), the installation process initializes the MySQL data directory, including the mysql system
database containing the grant tables. For distributions that do not do this, you must initialize the data
directory manually. For details, see Section 2.9, “Postinstallation Setup and Testing”.

To determine whether you need to initialize the grant tables, look for a mysql directory under the
data directory. (The data directory normally is named data or var and is located under your MySQL
installation directory.) Make sure that you have a file named user.MYD in the mysql database
directory. If not, initialize the data directory. After doing so and starting the server, you should be able
to connect to the server.

• After a fresh installation, if you try to log on to the server as root without using a password, you
might get the following error message.

$> mysql -u root
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: NO)

It means a root password has already been assigned during installation and it has to be supplied.
See Section 2.9.4, “Securing the Initial MySQL Account” on the different ways the password could
have been assigned and, in some cases, how to find it. If you need to reset the root password, see
instructions in Section B.3.3.2, “How to Reset the Root Password”. After you have found or reset
your password, log on again as root using the --password (or -p) option:

$> mysql -u root -p
Enter password:

However, the server is going to let you connect as root without using a password if you have
initialized MySQL using mysqld --initialize-insecure (see Section 2.9.1, “Initializing the
Data Directory” for details). That is a security risk, so you should set a password for the root
account; see Section 2.9.4, “Securing the Initial MySQL Account” for instructions.

• If you have updated an existing MySQL installation to a newer version, did you perform the MySQL
upgrade procedure? If not, do so. The structure of the grant tables changes occasionally when new
capabilities are added, so after an upgrade you should always make sure that your tables have the
current structure. For instructions, see Chapter 3, Upgrading MySQL.

• If a client program receives the following error message when it tries to connect, it means that the
server expects passwords in a newer format than the client is capable of generating:

$> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

• Remember that client programs use connection parameters specified in option files or
environment variables. If a client program seems to be sending incorrect default connection
parameters when you have not specified them on the command line, check any applicable option
files and your environment. For example, if you get Access denied when you run a client without
any options, make sure that you have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the --no-defaults
option. For example:

$> mysqladmin --no-defaults -u root version

1397

Troubleshooting Problems Connecting to MySQL

The option files that clients use are listed in Section 6.2.2.2, “Using Option Files”. Environment
variables are listed in Section 6.9, “Environment Variables”.

• If you get the following error, it means that you are using an incorrect root password:

$> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have
an incorrect password listed in some option file. Try the --no-defaults option as described in the
previous item.

For information on changing passwords, see Section 8.2.14, “Assigning Account Passwords”.

If you have lost or forgotten the root password, see Section B.3.3.2, “How to Reset the Root
Password”.

• localhost is a synonym for your local host name, and is also the default host to which clients try to
connect if you specify no host explicitly.

You can use a --host=127.0.0.1 option to name the server host explicitly. This causes a TCP/IP
connection to the local mysqld server. You can also use TCP/IP by specifying a --host option that
uses the actual host name of the local host. In this case, the host name must be specified in a user
table row on the server host, even though you are running the client program on the same host as
the server.

• The Access denied error message tells you who you are trying to log in as, the client host from
which you are trying to connect, and whether you were using a password. Normally, you should have
one row in the user table that exactly matches the host name and user name that were given in the
error message. For example, if you get an error message that contains using password: NO, it
means that you tried to log in without a password.

• If you get an Access denied error when trying to connect to the database with mysql -u
user_name, you may have a problem with the user table. Check this by executing mysql -u
root mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name
and your MySQL user name.

• If the following error occurs when you try to connect from a host other than the one on which the
MySQL server is running, it means that there is no row in the user table with a Host value that
matches the client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client host name and user name that
you are using when trying to connect.

If you do not know the IP address or host name of the machine from which you are connecting, you
should put a row with '%' as the Host column value in the user table. After trying to connect from
the client machine, use a SELECT USER() query to see how you really did connect. Then change
the '%' in the user table row to the actual host name that shows up in the log. Otherwise, your
system is left insecure because it permits connections from any host for the given user name.

On Linux, another reason that this error might occur is that you are using a binary MySQL version
that is compiled with a different version of the glibc library than the one you are using. In this case,
you should either upgrade your operating system or glibc, or download a source distribution of
MySQL version and compile it yourself. A source RPM is normally trivial to compile and install, so
this is not a big problem.

1398

Troubleshooting Problems Connecting to MySQL

• If you specify a host name when trying to connect, but get an error message where the host name
is not shown or is an IP address, it means that the MySQL server got an error when trying to resolve
the IP address of the client host to a name:

$> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

If you try to connect as root and get the following error, it means that you do not have a row in the
user table with a User column value of 'root' and that mysqld cannot resolve the host name for
your client:

Access denied for user ''@'unknown'

These errors indicate a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the
internal DNS host cache. See Section 7.1.12.3, “DNS Lookups and the Host Cache”.

Some permanent solutions are:

• Determine what is wrong with your DNS server and fix it.

• Specify IP addresses rather than host names in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts on Unix or \windows\hosts on
Windows.

• Start mysqld with the skip_name_resolve system variable enabled.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to
localhost. For connections to localhost, MySQL programs attempt to connect to the local
server by using a Unix socket file, unless there are connection parameters specified to ensure that
the client makes a TCP/IP connection. For more information, see Section 6.2.4, “Connecting to the
MySQL Server Using Command Options”.

• On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the host name . (period). Connections to . use a
named pipe rather than TCP/IP.

• If mysql -u root works but mysql -h your_hostname -u root results in Access denied
(where your_hostname is the actual host name of the local host), you may not have the correct
name for your host in the user table. A common problem here is that the Host value in the user
table row specifies an unqualified host name, but your system's name resolution routines return a
fully qualified domain name (or vice versa). For example, if you have a row with host 'pluto' in
the user table, but your DNS tells MySQL that your host name is 'pluto.example.com', the
row does not work. Try adding a row to the user table that contains the IP address of your host as
the Host column value. (Alternatively, you could add a row to the user table with a Host value
that contains a wildcard (for example, 'pluto.%'). However, use of Host values ending with % is
insecure and is not recommended!)

• If mysql -u user_name works but mysql -u user_name some_db does not, you have not
granted access to the given user for the database named some_db.

• If mysql -u user_name works when executed on the server host, but mysql -h host_name -
u user_name does not work when executed on a remote client host, you have not enabled access
to the server for the given user name from the remote host.

• If you cannot figure out why you get Access denied, remove from the user table all rows that
have Host values containing wildcards (rows that contain '%' or '_' characters). A very common
error is to insert a new row with Host='%' and User='some_user', thinking that this enables
you to specify localhost to connect from the same machine. The reason that this does not work
is that the default privileges include a row with Host='localhost' and User=''. Because that

1399

SQL-Based Account Activity Auditing

row has a Host value 'localhost' that is more specific than '%', it is used in preference to the
new row when connecting from localhost! The correct procedure is to insert a second row with
Host='localhost' and User='some_user', or to delete the row with Host='localhost' and
User=''. After deleting the row, remember to issue a FLUSH PRIVILEGES statement to reload the
grant tables. See also Section 8.2.6, “Access Control, Stage 1: Connection Verification”.

• If you are able to connect to the MySQL server, but get an Access denied message whenever you
issue a SELECT ... INTO OUTFILE or LOAD DATA statement, your row in the user table does
not have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE
statements) and your changes seem to be ignored, remember that you must execute a FLUSH
PRIVILEGES statement or a mysqladmin flush-privileges command to cause the server to
reload the privilege tables. Otherwise, your changes have no effect until the next time the server is
restarted. Remember that after you change the root password with an UPDATE statement, you do
not need to specify the new password until after you flush the privileges, because the server does
not know until then that you have changed the password.

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL
administrator has changed them. Reloading the grant tables affects new client connections, but it
also affects existing connections as indicated in Section 8.2.13, “When Privilege Changes Take
Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the
server with mysql -u user_name db_name or mysql -u user_name -ppassword db_name.
If you are able to connect using the mysql client, the problem lies with your program, not with the
access privileges. (There is no space between -p and the password; you can also use the --
password=password syntax to specify the password. If you use the -p or --password option with
no password value, MySQL prompts you for the password.)

• For testing purposes, start the mysqld server with the --skip-grant-tables option. Then
you can change the MySQL grant tables and use the SHOW GRANTS statement to check whether
your modifications have the desired effect. When you are satisfied with your changes, execute
mysqladmin flush-privileges to tell the mysqld server to reload the privileges. This enables
you to begin using the new grant table contents without stopping and restarting the server.

• If everything else fails, start the mysqld server with a debugging option (for example, --
debug=d,general,query). This prints host and user information about attempted connections, as
well as information about each command issued. See Section 7.9.4, “The DBUG Package”.

• If you have any other problems with the MySQL grant tables and ask on the MySQL Community
Slack, always provide a dump of the MySQL grant tables. You can dump the tables with the
mysqldump mysql command. To file a bug report, see the instructions at Section 1.5, “How to
Report Bugs or Problems”. In some cases, you may need to restart mysqld with --skip-grant-
tables to run mysqldump.

8.2.23 SQL-Based Account Activity Auditing

Applications can use the following guidelines to perform SQL-based auditing that ties database activity
to MySQL accounts.

MySQL accounts correspond to rows in the mysql.user system table. When a client connects
successfully, the server authenticates the client to a particular row in this table. The User
and Host column values in this row uniquely identify the account and correspond to the
'user_name'@'host_name' format in which account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the
CURRENT_USER() function can be invoked to determine which account this is for the client user. Its
value is constructed from the User and Host columns of the user table row for the account.

1400

https://mysqlcommunity.slack.com/
https://mysqlcommunity.slack.com/

SQL-Based Account Activity Auditing

However, there are circumstances under which the CURRENT_USER() value corresponds not to the
client user but to a different account. This occurs in contexts when privilege checking is not based the
client's account:

• Stored routines (procedures and functions) defined with the SQL SECURITY DEFINER characteristic

• Views defined with the SQL SECURITY DEFINER characteristic

• Triggers and events

In those contexts, privilege checking is done against the DEFINER account and CURRENT_USER()
refers to that account, not to the account for the client who invoked the stored routine or view or who
caused the trigger to activate. To determine the invoking user, you can call the USER() function, which
returns a value indicating the actual user name provided by the client and the host from which the client
connected. However, this value does not necessarily correspond directly to an account in the user
table, because the USER() value never contains wildcards, whereas account values (as returned by
CURRENT_USER()) may contain user name and host name wildcards.

For example, a blank user name matches any user, so an account of ''@'localhost' enables
clients to connect as an anonymous user from the local host with any user name. In this case, if a client
connects as user1 from the local host, USER() and CURRENT_USER() return different values:

mysql> SELECT USER(), CURRENT_USER();
+-----------------+----------------+
| USER() | CURRENT_USER() |
+-----------------+----------------+
| user1@localhost | @localhost |
+-----------------+----------------+

The host name part of an account can also contain wildcards. If the host name contains a '%' or
'_' pattern character or uses netmask notation, the account can be used for clients connecting from
multiple hosts and the CURRENT_USER() value does not indicate which one. For example, the account
'user2'@'%.example.com' can be used by user2 to connect from any host in the example.com
domain. If user2 connects from remote.example.com, USER() and CURRENT_USER() return
different values:

mysql> SELECT USER(), CURRENT_USER();
+--------------------------+---------------------+
| USER() | CURRENT_USER() |
+--------------------------+---------------------+
| user2@remote.example.com | user2@%.example.com |
+--------------------------+---------------------+

If an application must invoke USER() for user auditing (for example, if it does auditing from within
triggers) but must also be able to associate the USER() value with an account in the user table, it
is necessary to avoid accounts that contain wildcards in the User or Host column. Specifically, do
not permit User to be empty (which creates an anonymous-user account), and do not permit pattern
characters or netmask notation in Host values. All accounts must have a nonempty User value and
literal Host value.

With respect to the previous examples, the ''@'localhost' and 'user2'@'%.example.com'
accounts should be changed not to use wildcards:

RENAME USER ''@'localhost' TO 'user1'@'localhost';
RENAME USER 'user2'@'%.example.com' TO 'user2'@'remote.example.com';

If user2 must be able to connect from several hosts in the example.com domain, there should be a
separate account for each host.

To extract the user name or host name part from a CURRENT_USER() or USER() value, use the
SUBSTRING_INDEX() function:

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',1);
+---------------------------------------+

1401

Using Encrypted Connections

| SUBSTRING_INDEX(CURRENT_USER(),'@',1) |
+---------------------------------------+
| user1 |
+---------------------------------------+

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',-1);
+--+
| SUBSTRING_INDEX(CURRENT_USER(),'@',-1) |
+--+
| localhost |
+--+

8.3 Using Encrypted Connections

With an unencrypted connection between the MySQL client and the server, someone with access to
the network could watch all your traffic and inspect the data being sent or received between client and
server.

When you must move information over a network in a secure fashion, an unencrypted connection
is unacceptable. To make any kind of data unreadable, use encryption. Encryption algorithms must
include security elements to resist many kinds of known attacks such as changing the order of
encrypted messages or replaying data twice.

MySQL supports encrypted connections between clients and the server using the TLS (Transport
Layer Security) protocol. TLS is sometimes referred to as SSL (Secure Sockets Layer) but MySQL
does not actually use the SSL protocol for encrypted connections because its encryption is weak (see
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”).

TLS uses encryption algorithms to ensure that data received over a public network can be trusted. It
has mechanisms to detect data change, loss, or replay. TLS also incorporates algorithms that provide
identity verification using the X.509 standard.

X.509 makes it possible to identify someone on the Internet. In basic terms, there should be some
entity called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs
them. Certificates rely on asymmetric encryption algorithms that have two encryption keys (a public key
and a secret key). A certificate owner can present the certificate to another party as proof of identity. A
certificate consists of its owner's public key. Any data encrypted using this public key can be decrypted
only using the corresponding secret key, which is held by the owner of the certificate.

Support for encrypted connections in MySQL is provided using OpenSSL. For information about the
encryption protocols and ciphers that OpenSSL supports, see Section 8.3.2, “Encrypted Connection
TLS Protocols and Ciphers”.

By default, MySQL instances link to an available installed OpenSSL library at runtime for support of
encrypted connections and other encryption-related operations. You may compile MySQL from source
and use the WITH_SSL CMake option to specify the path to a particular installed OpenSSL version or
an alternative OpenSSL system package. In that case, MySQL selects that version. For instructions to
do this, see Section 2.8.6, “Configuring SSL Library Support”.

 From MySQL 8.0.11 to 8.0.17, it was possible to compile MySQL using wolfSSL as an alternative to
OpenSSL. As of MySQL 8.0.18, support for wolfSSL is removed and all MySQL builds use OpenSSL.

You can check what version of the OpenSSL library is in use at runtime using the
Tls_library_version system status variable, which is available from MySQL 8.0.30.

If you compile MySQL with one version of OpenSSL and want to change to a different version without
recompiling, you may do this by editing the dynamic library loader path (LD_LIBRARY_PATH on Unix
systems or PATH on Windows systems). Remove the path to the compiled version of OpenSSL, and
add the path to the replacement version, placing it before any other OpenSSL libraries on the path.
At startup, when MySQL cannot find the version of OpenSSL specified with WITH_SSL on the path, it
uses the first version specified on the path instead.

1402

Configuring MySQL to Use Encrypted Connections

By default, MySQL programs attempt to connect using encryption if the server supports encrypted
connections, falling back to an unencrypted connection if an encrypted connection cannot be
established. For information about options that affect use of encrypted connections, see Section 8.3.1,
“Configuring MySQL to Use Encrypted Connections” and Command Options for Encrypted
Connections.

MySQL performs encryption on a per-connection basis, and use of encryption for a given user can
be optional or mandatory. This enables you to choose an encrypted or unencrypted connection
according to the requirements of individual applications. For information on how to require users
to use encrypted connections, see the discussion of the REQUIRE clause of the CREATE USER
statement in Section 15.7.1.3, “CREATE USER Statement”. See also the description of the
require_secure_transport system variable at Section 7.1.8, “Server System Variables”

Encrypted connections can be used between source and replica servers. See Section 19.3.1, “Setting
Up Replication to Use Encrypted Connections”.

For information about using encrypted connections from the MySQL C API, see Support for Encrypted
Connections.

It is also possible to connect using encryption from within an SSH connection to the MySQL server
host. For an example, see Section 8.3.4, “Connecting to MySQL Remotely from Windows with SSH”.

8.3.1 Configuring MySQL to Use Encrypted Connections

Several configuration parameters are available to indicate whether to use encrypted connections,
and to specify the appropriate certificate and key files. This section provides general guidance about
configuring the server and clients for encrypted connections:

• Server-Side Startup Configuration for Encrypted Connections

• Server-Side Runtime Configuration and Monitoring for Encrypted Connections

• Client-Side Configuration for Encrypted Connections

• Configuring Encrypted Connections as Mandatory

Encrypted connections also can be used in other contexts, as discussed in these additional sections:

• Between source and replica replication servers. See Section 19.3.1, “Setting Up Replication to Use
Encrypted Connections”.

• Among Group Replication servers. See Section 20.6.2, “Securing Group Communication
Connections with Secure Socket Layer (SSL)”.

• By client programs that are based on the MySQL C API. See Support for Encrypted Connections.

Instructions for creating any required certificate and key files are available in Section 8.3.3, “Creating
SSL and RSA Certificates and Keys”.

Server-Side Startup Configuration for Encrypted Connections

On the server side, the --ssl option specifies that the server permits but does not require encrypted
connections. This option is enabled by default, so it need not be specified explicitly.

To require that clients connect using encrypted connections, enable the
require_secure_transport system variable. See Configuring Encrypted Connections as
Mandatory.

These system variables on the server side specify the certificate and key files the server uses when
permitting clients to establish encrypted connections:

1403

https://dev.mysql.com/doc/c-api/8.0/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-encrypted-connections.html

Configuring MySQL to Use Encrypted Connections

• ssl_ca: The path name of the Certificate Authority (CA) certificate file. (ssl_capath is similar but
specifies the path name of a directory of CA certificate files.)

• ssl_cert: The path name of the server public key certificate file. This certificate can be sent to the
client and authenticated against the CA certificate that it has.

• ssl_key: The path name of the server private key file.

For example, to enable the server for encrypted connections, start it with these lines in the my.cnf file,
changing the file names as necessary:

[mysqld]
ssl_ca=ca.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem

To specify in addition that clients are required to use encrypted connections, enable the
require_secure_transport system variable:

[mysqld]
ssl_ca=ca.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem
require_secure_transport=ON

Each certificate and key system variable names a file in PEM format. Should you need to create
the required certificate and key files, see Section 8.3.3, “Creating SSL and RSA Certificates and
Keys”. MySQL servers compiled using OpenSSL can generate missing certificate and key files
automatically at startup. See Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using
MySQL”. Alternatively, if you have a MySQL source distribution, you can test your setup using the
demonstration certificate and key files in its mysql-test/std_data directory.

The server performs certificate and key file autodiscovery. If no explicit encrypted-connection options
are given other than --ssl (possibly along with ssl_cipher) to configure encrypted connections, the
server attempts to enable encrypted-connection support automatically at startup:

• If the server discovers valid certificate and key files named ca.pem, server-cert.pem, and
server-key.pem in the data directory, it enables support for encrypted connections by clients. (The
files need not have been generated automatically; what matters is that they have those names and
are valid.)

• If the server does not find valid certificate and key files in the data directory, it continues executing
but without support for encrypted connections.

If the server automatically enables encrypted connection support, it writes a note to the error
log. If the server discovers that the CA certificate is self-signed, it writes a warning to the error
log. (The certificate is self-signed if created automatically by the server or manually using
mysql_ssl_rsa_setup.)

MySQL also provides these system variables for server-side encrypted-connection control:

• ssl_cipher: The list of permissible ciphers for connection encryption.

• ssl_crl: The path name of the file containing certificate revocation lists. (ssl_crlpath is similar
but specifies the path name of a directory of certificate revocation-list files.)

• tls_version, tls_ciphersuites: Which encryption protocols and ciphersuites the server
permits for encrypted connections; see Section 8.3.2, “Encrypted Connection TLS Protocols and
Ciphers”. For example, you can configure tls_version to prevent clients from using less-secure
protocols.

If the server cannot create a valid TLS context from the system variables for server-side encrypted-
connection control, the server executes without support for encrypted connections.

1404

Configuring MySQL to Use Encrypted Connections

Server-Side Runtime Configuration and Monitoring for Encrypted Connections

Prior to MySQL 8.0.16, the tls_xxx and ssl_xxx system variables that configure encrypted-
connection support can be set only at server startup. These system variables therefore determine the
TLS context the server uses for all new connections.

As of MySQL 8.0.16, the tls_xxx and ssl_xxx system variables are dynamic and can be set at
runtime, not just at startup. If changed with SET GLOBAL, the new values apply only until server restart.
If changed with SET PERSIST, the new values also carry over to subsequent server restarts. See
Section 15.7.6.1, “SET Syntax for Variable Assignment”. However, runtime changes to these variables
do not immediately affect the TLS context for new connections, as explained later in this section.

Along with the change in MySQL 8.0.16 that enables runtime changes to the TLS context-related
system variables, the server enables runtime updates to the actual TLS context used for new
connections. This capability may be useful, for example, to avoid restarting a MySQL server that has
been running so long that its SSL certificate has expired.

To create the initial TLS context, the server uses the values that the context-related system variables
have at startup. To expose the context values, the server also initializes a set of corresponding
status variables. The following table shows the system variables that define the TLS context and the
corresponding status variables that expose the currently active context values.

Table 8.12 System and Status Variables for Server Main Connection Interface TLS Context

System Variable Name Corresponding Status Variable Name

ssl_ca Current_tls_ca

ssl_capath Current_tls_capath

ssl_cert Current_tls_cert

ssl_cipher Current_tls_cipher

ssl_crl Current_tls_crl

ssl_crlpath Current_tls_crlpath

ssl_key Current_tls_key

tls_ciphersuites Current_tls_ciphersuites

tls_version Current_tls_version

As of MySQL 8.0.21, those active TLS context values are also exposed as properties in the
Performance Schema tls_channel_status table, along with the properties for any other active TLS
contexts.

To reconfigure the TLS context at runtime, use this procedure:

1. Set each TLS context-related system variable that should be changed to its new value.

2. Execute ALTER INSTANCE RELOAD TLS. This statement reconfigures the active TLS context
from the current values of the TLS context-related system variables. It also sets the context-
related status variables to reflect the new active context values. The statement requires the
CONNECTION_ADMIN privilege.

3. New connections established after execution of ALTER INSTANCE RELOAD TLS use the new TLS
context. Existing connections remain unaffected. If existing connections should be terminated, use
the KILL statement.

The members of each pair of system and status variables may have different values temporarily due to
the way the reconfiguration procedure works:

• Changes to the system variables prior to ALTER INSTANCE RELOAD TLS do not change the
TLS context. At this point, those changes have no effect on new connections, and corresponding

1405

Configuring MySQL to Use Encrypted Connections

context-related system and status variables may have different values. This enables you to make
any changes required to individual system variables, then update the active TLS context atomically
with ALTER INSTANCE RELOAD TLS after all system variable changes have been made.

• After ALTER INSTANCE RELOAD TLS, corresponding system and status variables have the same
values. This remains true until the next change to the system variables.

In some cases, ALTER INSTANCE RELOAD TLS by itself may suffice to reconfigure the TLS context,
without changing any system variables. Suppose that the certificate in the file named by ssl_cert
has expired. It is sufficient to replace the existing file contents with a nonexpired certificate and
execute ALTER INSTANCE RELOAD TLS to cause the new file contents to be read and used for new
connections.

As of MySQL 8.0.21, the server implements independent connection-encryption configuration for the
administrative connection interface. See Administrative Interface Support for Encrypted Connections.
In addition, ALTER INSTANCE RELOAD TLS is extended with a FOR CHANNEL clause that enables
specifying the channel (interface) for which to reload the TLS context. See Section 15.1.5, “ALTER
INSTANCE Statement”. There are no status variables to expose the administrative interface TLS
context, but the Performance Schema tls_channel_status table exposes TLS properties for both
the main and administrative interfaces. See Section 29.12.21.9, “The tls_channel_status Table”.

Updating the main interface TLS context has these effects:

• The update changes the TLS context used for new connections on the main connection interface.

• The update also changes the TLS context used for new connections on the administrative interface
unless some nondefault TLS parameter value is configured for that interface.

• The update does not affect the TLS context used by other enabled server plugins or components
such as Group Replication or X Plugin:

• To apply the main interface reconfiguration to Group Replication's group communication
connections, which take their settings from the server's TLS context-related system variables, you
must execute STOP GROUP_REPLICATION followed by START GROUP_REPLICATION to stop
and restart Group Replication.

• X Plugin initializes its TLS context at plugin initialization as described at Section 22.5.3, “Using
Encrypted Connections with X Plugin”. This context does not change thereafter.

By default, the RELOAD TLS action rolls back with an error and has no effect if the configuration values
do not permit creation of the new TLS context. The previous context values continue to be used for
new connections. If the optional NO ROLLBACK ON ERROR clause is given and the new context cannot
be created, rollback does not occur. Instead, a warning is generated and encryption is disabled for new
connections on the interface to which the statement applies.

Options that enable or disable encrypted connections on a connection interface have an effect only at
startup. For example, the --ssl and --admin-ssl options affect only at startup whether the main
and administrative interfaces support encrypted connections. Such options are ignored and have
no effect on the operation of ALTER INSTANCE RELOAD TLS at runtime. For example, you can
use --ssl=OFF to start the server with encrypted connections disabled on the main interface, then
reconfigure TLS and execute ALTER INSTANCE RELOAD TLS to enable encrypted connections at
runtime.

Client-Side Configuration for Encrypted Connections

For a complete list of client options related to establishment of encrypted connections, see Command
Options for Encrypted Connections.

By default, MySQL client programs attempt to establish an encrypted connection if the server supports
encrypted connections, with further control available through the --ssl-mode option:

1406

Configuring MySQL to Use Encrypted Connections

• In the absence of an --ssl-mode option, clients attempt to connect using encryption, falling back
to an unencrypted connection if an encrypted connection cannot be established. This is also the
behavior with an explicit --ssl-mode=PREFERRED option.

• With --ssl-mode=REQUIRED, clients require an encrypted connection and fail if one cannot be
established.

• With --ssl-mode=DISABLED, clients use an unencrypted connection.

• With --ssl-mode=VERIFY_CA or --ssl-mode=VERIFY_IDENTITY, clients require an
encrypted connection, and also perform verification against the server CA certificate and (with
VERIFY_IDENTITY) against the server host name in its certificate.

Important

The default setting, --ssl-mode=PREFERRED, produces an encrypted
connection if the other default settings are unchanged. However, to help prevent
sophisticated man-in-the-middle attacks, it is important for the client to verify
the server’s identity. The settings --ssl-mode=VERIFY_CA and --ssl-
mode=VERIFY_IDENTITY are a better choice than the default setting to help
prevent this type of attack. VERIFY_CA makes the client check that the server’s
certificate is valid. VERIFY_IDENTITY makes the client check that the server’s
certificate is valid, and also makes the client check that the host name the client
is using matches the identity in the server’s certificate. To implement one of
these settings, you must first ensure that the CA certificate for the server is
reliably available to all the clients that use it in your environment, otherwise
availability issues will result. For this reason, they are not the default setting.

Attempts to establish an unencrypted connection fail if the require_secure_transport system
variable is enabled on the server side to cause the server to require encrypted connections. See
Configuring Encrypted Connections as Mandatory.

The following options on the client side identify the certificate and key files clients use when
establishing encrypted connections to the server. They are similar to the ssl_ca, ssl_cert, and
ssl_key system variables used on the server side, but --ssl-cert and --ssl-key identify the
client public and private key:

• --ssl-ca: The path name of the Certificate Authority (CA) certificate file. This option, if used, must
specify the same certificate used by the server. (--ssl-capath is similar but specifies the path
name of a directory of CA certificate files.)

• --ssl-cert: The path name of the client public key certificate file.

• --ssl-key: The path name of the client private key file.

For additional security relative to that provided by the default encryption, clients can supply a CA
certificate matching the one used by the server and enable host name identity verification. In this way,
the server and client place their trust in the same CA certificate and the client verifies that the host to
which it connected is the one intended:

• To specify the CA certificate, use --ssl-ca (or --ssl-capath), and specify --ssl-
mode=VERIFY_CA.

• To enable host name identity verification as well, use --ssl-mode=VERIFY_IDENTITY rather than
--ssl-mode=VERIFY_CA.

Note

Host name identity verification with VERIFY_IDENTITY does not work with
self-signed certificates that are created automatically by the server or manually
using mysql_ssl_rsa_setup (see Section 8.3.3.1, “Creating SSL and RSA

1407

Configuring MySQL to Use Encrypted Connections

Certificates and Keys using MySQL”). Such self-signed certificates do not
contain the server name as the Common Name value.

Prior to MySQL 8.0.12, host name identity verification also does not work with
certificates that specify the Common Name using wildcards because that name
is compared verbatim to the server name.

MySQL also provides these options for client-side encrypted-connection control:

• --ssl-cipher: The list of permissible ciphers for connection encryption.

• --ssl-crl: The path name of the file containing certificate revocation lists. (--ssl-crlpath is
similar but specifies the path name of a directory of certificate revocation-list files.)

• --tls-version, --tls-ciphersuites: The permitted encryption protocols and ciphersuites;
see Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”.

Depending on the encryption requirements of the MySQL account used by a client, the client may be
required to specify certain options to connect using encryption to the MySQL server.

Suppose that you want to connect using an account that has no special encryption requirements or that
was created using a CREATE USER statement that included the REQUIRE SSL clause. Assuming that
the server supports encrypted connections, a client can connect using encryption with no --ssl-mode
option or with an explicit --ssl-mode=PREFERRED option:

mysql

Or:

mysql --ssl-mode=PREFERRED

For an account created with a REQUIRE SSL clause, the connection attempt fails if an encrypted
connection cannot be established. For an account with no special encryption requirements, the attempt
falls back to an unencrypted connection if an encrypted connection cannot be established. To prevent
fallback and fail if an encrypted connection cannot be obtained, connect like this:

mysql --ssl-mode=REQUIRED

If the account has more stringent security requirements, other options must be specified to establish an
encrypted connection:

• For accounts created with a REQUIRE X509 clause, clients must specify at least --ssl-cert
and --ssl-key. In addition, --ssl-ca (or --ssl-capath) is recommended so that the public
certificate provided by the server can be verified. For example (enter the command on a single line):

mysql --ssl-ca=ca.pem
 --ssl-cert=client-cert.pem
 --ssl-key=client-key.pem

• For accounts created with a REQUIRE ISSUER or REQUIRE SUBJECT clause, the encryption
requirements are the same as for REQUIRE X509, but the certificate must match the issue or
subject, respectively, specified in the account definition.

For additional information about the REQUIRE clause, see Section 15.7.1.3, “CREATE USER
Statement”.

MySQL servers can generate client certificate and key files that clients can use to connect to MySQL
server instances. See Section 8.3.3, “Creating SSL and RSA Certificates and Keys”.

Important

If a client connecting to a MySQL server instance uses an SSL certificate with
the extendedKeyUsage extension (an X.509 v3 extension), the extended key
usage must include client authentication (clientAuth). If the SSL certificate

1408

Configuring MySQL to Use Encrypted Connections

is only specified for server authentication (serverAuth) and other non-client
certificate purposes, certificate verification fails and the client connection to the
MySQL server instance fails. There is no extendedKeyUsage extension in
SSL certificates generated by MySQL Server (as described in Section 8.3.3.1,
“Creating SSL and RSA Certificates and Keys using MySQL”), and SSL
certificates created using the openssl command following the instructions
in Section 8.3.3.2, “Creating SSL Certificates and Keys Using openssl”.
If you use your own client certificate created in another way, ensure any
extendedKeyUsage extension includes client authentication.

To prevent use of encryption and override other --ssl-xxx options, invoke the client program with --
ssl-mode=DISABLED:

mysql --ssl-mode=DISABLED

To determine whether the current connection with the server uses encryption, check the session value
of the Ssl_cipher status variable. If the value is empty, the connection is not encrypted. Otherwise,
the connection is encrypted and the value indicates the encryption cipher. For example:

mysql> SHOW SESSION STATUS LIKE 'Ssl_cipher';
+---------------+---------------------------+
| Variable_name | Value |
+---------------+---------------------------+
| Ssl_cipher | DHE-RSA-AES128-GCM-SHA256 |
+---------------+---------------------------+

For the mysql client, an alternative is to use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Not in use
...

Or:

mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES128-GCM-SHA256
...

Configuring Encrypted Connections as Mandatory

For some MySQL deployments it may be not only desirable but mandatory to use encrypted
connections (for example, to satisfy regulatory requirements). This section discusses configuration
settings that enable you to do this. These levels of control are available:

• You can configure the server to require that clients connect using encrypted connections.

• You can invoke individual client programs to require an encrypted connection, even if the server
permits but does not require encryption.

• You can configure individual MySQL accounts to be usable only over encrypted connections.

To require that clients connect using encrypted connections, enable the
require_secure_transport system variable. For example, put these lines in the server my.cnf
file:

[mysqld]
require_secure_transport=ON

Alternatively, to set and persist the value at runtime, use this statement:

SET PERSIST require_secure_transport=ON;

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to be
used for subsequent server restarts. See Section 15.7.6.1, “SET Syntax for Variable Assignment”.

1409

Encrypted Connection TLS Protocols and Ciphers

With require_secure_transport enabled, client connections to the server are required to use
some form of secure transport, and the server permits only TCP/IP connections that use SSL, or
connections that use a socket file (on Unix) or shared memory (on Windows). The server rejects
nonsecure connection attempts, which fail with an ER_SECURE_TRANSPORT_REQUIRED error.

To invoke a client program such that it requires an encrypted connection whether or not the
server requires encryption, use an --ssl-mode option value of REQUIRED, VERIFY_CA, or
VERIFY_IDENTITY. For example:

mysql --ssl-mode=REQUIRED
mysqldump --ssl-mode=VERIFY_CA
mysqladmin --ssl-mode=VERIFY_IDENTITY

To configure a MySQL account to be usable only over encrypted connections, include a REQUIRE
clause in the CREATE USER statement that creates the account, specifying in that clause the
encryption characteristics you require. For example, to require an encrypted connection and the use of
a valid X.509 certificate, use REQUIRE X509:

CREATE USER 'jeffrey'@'localhost' REQUIRE X509;

For additional information about the REQUIRE clause, see Section 15.7.1.3, “CREATE USER
Statement”.

To modify existing accounts that have no encryption requirements, use the ALTER USER statement.

8.3.2 Encrypted Connection TLS Protocols and Ciphers

MySQL supports multiple TLS protocols and ciphers, and enables configuring which protocols and
ciphers to permit for encrypted connections. It is also possible to determine which protocol and cipher
the current session uses.

• Supported TLS Protocols

• Removal of Support for the TLSv1 and TLSv1.1 Protocols

• Connection TLS Protocol Configuration

• Connection Cipher Configuration

• Connection TLS Protocol Negotiation

• Monitoring Current Client Session TLS Protocol and Cipher

Supported TLS Protocols

The set of protocols permitted for connections to a given MySQL server instance is subject to multiple
factors as follows:

MySQL Server release • Up to and including MySQL 8.0.15, MySQL supports the TLSv1,
TLSv1.1, and TLSv1.2 protocols.

• As of MySQL 8.0.16, MySQL also supports the TLSv1.3 protocol.
To use TLSv1.3, both the MySQL server and the client application
must be compiled using OpenSSL 1.1.1 or higher. The Group
Replication component supports TLSv1.3 from MySQL 8.0.18
(for details, see Section 20.6.2, “Securing Group Communication
Connections with Secure Socket Layer (SSL)”).

• As of MySQL 8.0.26, the TLSv1 and TLSv1.1 protocols are
deprecated. These protocol versions are old, released in 1996
and 2006, respectively, and the algorithms used are weak and

1410

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_secure_transport_required

Encrypted Connection TLS Protocols and Ciphers

outdated. For background, refer to the IETF memo Deprecating
TLSv1.0 and TLSv1.1.

• As of MySQL 8.0.28, MySQL no longer supports the TLSv1 and
TLSv1.1 protocols. From this release, clients cannot make a TLS/
SSL connection with the protocol set to TLSv1 or TLSv1.1. For
more details, see Removal of Support for the TLSv1 and TLSv1.1
Protocols.

Table 8.13 MySQL Server TLS Protocol Support

MySQL Server Release TLS Protocols Supported

MySQL 8.0.15 and below TLSv1, TLSv1.1, TLSv1.2

MySQL 8.0.16 and MySQL
8.0.17

TLSv1, TLSv1.1, TLSv1.2,
TLSv1.3 (except Group
Replication)

MySQL 8.0.18 through MySQL
8.0.25

TLSv1, TLSv1.1, TLSv1.2,
TLSv1.3 (including Group
Replication)

MySQL 8.0.26 and MySQL
8.0.27

TLSv1 (deprecated), TLSv1.1
(deprecated), TLSv1.2, TLSv1.3

MySQL 8.0.28 and above TLSv1.2, TLSv1.3

SSL library If the SSL library does not support a particular protocol, neither
does MySQL, and any parts of the following discussion that specify
that protocol do not apply. In particular, note that to use TLSv1.3,
both the MySQL server and the client application must be compiled
using OpenSSL 1.1.1 or higher. MySQL Server checks the version
of OpenSSL at startup, and if it is lower than 1.1.1, TLSv1.3 is
removed from the default value for the server system variables
relating to TLS versions (tls_version, admin_tls_version,
and group_replication_recovery_tls_version).

MySQL instance configuration Permitted TLS protocols can be configured on both the server
side and client side to include only a subset of the supported TLS
protocols. The configuration on both sides must include at least
one protocol in common or connection attempts cannot negotiate
a protocol to use. For details, see Connection TLS Protocol
Negotiation.

System-wide host configuration The host system may permit only certain TLS protocols, which
means that MySQL connections cannot use nonpermitted protocols
even if MySQL itself permits them:

• Suppose that MySQL configuration permits TLSv1, TLSv1.1,
and TLSv1.2, but your host system configuration permits only
connections that use TLSv1.2 or higher. In this case, you cannot
establish MySQL connections that use TLSv1 or TLSv1.1, even
though MySQL is configured to permit them, because the host
system does not permit them.

• If MySQL configuration permits TLSv1, TLSv1.1, and TLSv1.2,
but your host system configuration permits only connections that
use TLSv1.3 or higher, you cannot establish MySQL connections
at all, because no protocol permitted by MySQL is permitted by
the host system.

Workarounds for this issue include:

1411

https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html
https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html

Encrypted Connection TLS Protocols and Ciphers

• Change the system-wide host configuration to permit additional
TLS protocols. Consult your operating system documentation
for instructions. For example, your system may have an /etc/
ssl/openssl.cnf file that contains these lines to restrict TLS
protocols to TLSv1.2 or higher:

[system_default_sect]
MinProtocol = TLSv1.2

Changing the value to a lower protocol version or None makes the
system more permissive. This workaround has the disadvantage
that permitting lower (less secure) protocols may have adverse
security consequences.

• If you cannot or prefer not to change the host system TLS
configuration, change MySQL applications to use higher (more
secure) TLS protocols that are permitted by the host system. This
may not be possible for older versions of MySQL that support only
lower protocol versions. For example, TLSv1 is the only supported
protocol prior to MySQL 5.6.46, so attempts to connect to a
pre-5.6.46 server fail even if the client is from a newer MySQL
version that supports higher protocol versions. In such cases,
an upgrade to a version of MySQL that supports additional TLS
versions may be required.

Removal of Support for the TLSv1 and TLSv1.1 Protocols

Support for the TLSv1 and TLSv1.1 connection protocols is removed as of MySQL 8.0.28. The
protocols were deprecated from MySQL 8.0.26. For background information, refer to RFC 8996
(Deprecating TLS 1.0 and TLS 1.1). It is recommended that connections be made using the more-
secure TLSv1.2 and TLSv1.3 protocols. TLSv1.3 requires that both the MySQL server and the client
application are compiled with OpenSSL 1.1.1.

Support for TLSv1 and TLSv1.1 is removed because those protocol versions are old, released in
1996 and 2006, respectively. The algorithms used are weak and outdated. Unless you are using very
old versions of MySQL Server or connectors, you are unlikely to have connections using TLSv1.0 or
TLSv1.1. MySQL connectors and clients select the highest TLS version available by default.

In the releases where the TLSv1 and TLSv1.1 connection protocols are unsupported (from MySQL
8.0.28 onwards), clients, including MySQL Shell, that support a --tls-version option for specifying
TLS protocols for connections to the MySQL server cannot make a TLS/SSL connection with the
protocol set to TLSv1 or TLSv1.1. If a client attempts to connect using these protocols, for TCP
connections, the connection fails, and an error is returned to the client. For socket connections, if --
ssl-mode is set to REQUIRED, the connection fails, otherwise the connection is made but with TLS/
SSL disabled.

On the server side, the following settings are changed from MySQL 8.0.28:

• The default values of the server’s tls_version and admin_tls_version system variables no
longer include TLSv1 and TLSv1.1.

• The default value of the Group Replication system variable
group_replication_recovery_tls_version no longer includes TLSv1 and TLSv1.1.

• For asynchronous replication, replicas cannot set the protocol for connections to the source server to
TLSv1 or TLSv1.1 (the SOURCE_TLS_VERSION option of the CHANGE REPLICATION SOURCE TO
statement).

In the releases where the TLSv1 and TLSv1.1 connection protocols are deprecated (MySQL 8.0.26
and MySQL 8.0.27), the server writes a warning to the error log if they are included in the values of the

1412

https://tools.ietf.org/html/rfc8996

Encrypted Connection TLS Protocols and Ciphers

tls_version or admin_tls_version system variable, and if a client successfully connects using
them. A warning is also returned if you set the deprecated protocols at runtime and implement them
using the ALTER INSTANCE RELOAD TLS statement. Clients, including replicas that specify TLS
protocols for connections to the source server and Group Replication group members that specify TLS
protocols for distributed recovery connections, do not issue warnings if they are configured to permit a
deprecated TLS protocol.

For more information, see Does MySQL 8.0 support TLS 1.0 and 1.1?

Connection TLS Protocol Configuration

On the server side, the value of the tls_version system variable determines which TLS protocols
a MySQL server permits for encrypted connections. The tls_version value applies to connections
from clients, regular source/replica replication connections where this server instance is the source,
Group Replication group communication connections, and Group Replication distributed recovery
connections where this server instance is the donor. The administrative connection interface is
configured similarly, but uses the admin_tls_version system variable (see Section 7.1.12.2,
“Administrative Connection Management”). This discussion applies to admin_tls_version as well.

The tls_version value is a list of one or more comma-separated TLS protocol versions, which is not
case-sensitive. By default, this variable lists all protocols that are supported by the SSL library used
to compile MySQL and by the MySQL Server release. The default settings are therefore as shown in
Table 8.14, “MySQL Server TLS Protocol Default Settings”.

Table 8.14 MySQL Server TLS Protocol Default Settings

MySQL Server Release tls_version Default Setting

MySQL 8.0.15 and below TLSv1,TLSv1.1,TLSv1.2

MySQL 8.0.16 and MySQL 8.0.17 TLSv1,TLSv1.1,TLSv1.2,TLSv1.3 (with
OpenSSL 1.1.1)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Group Replication does not support TLSv1.3

MySQL 8.0.18 through MySQL 8.0.25 TLSv1,TLSv1.1,TLSv1.2,TLSv1.3 (with
OpenSSL 1.1.1)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Group Replication supports TLSv1.3

MySQL 8.0.26 and MySQL 8.0.27 TLSv1,TLSv1.1,TLSv1.2,TLSv1.3 (with
OpenSSL 1.1.1)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

TLSv1 and TLSv1.1 are deprecated

MySQL 8.0.28 and above TLSv1.2,TLSv1.3

To determine the value of tls_version at runtime, use this statement:

mysql> SHOW GLOBAL VARIABLES LIKE 'tls_version';
+---------------+-----------------------+
| Variable_name | Value |
+---------------+-----------------------+
| tls_version | TLSv1.2,TLSv1.3 |
+---------------+-----------------------+

To change the value of tls_version, set it at server startup. For example, to permit connections that
use the TLSv1.2 or TLSv1.3 protocol, but prohibit connections that use the less-secure TLSv1 and
TLSv1.1 protocols, use these lines in the server my.cnf file:

1413

Encrypted Connection TLS Protocols and Ciphers

[mysqld]
tls_version=TLSv1.2,TLSv1.3

To be even more restrictive and permit only TLSv1.3 connections, set tls_version like this:

[mysqld]
tls_version=TLSv1.3

As of MySQL 8.0.16, tls_version can be changed at runtime. See Server-Side Runtime
Configuration and Monitoring for Encrypted Connections.

On the client side, the --tls-version option specifies which TLS protocols a client program permits
for connections to the server. The format of the option value is the same as for the tls_version
system variable described previously (a list of one or more comma-separated protocol versions).

For source/replica replication connections where this server instance is the replica, the
SOURCE_TLS_VERSION | MASTER_TLS_VERSION option for the CHANGE REPLICATION SOURCE TO
statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) specifies
which TLS protocols the replica permits for connections to the source. The format of the option value is
the same as for the tls_version system variable described previously. See Section 19.3.1, “Setting
Up Replication to Use Encrypted Connections”.

The protocols that can be specified for SOURCE_TLS_VERSION | MASTER_TLS_VERSION depend
on the SSL library. This option is independent of and not affected by the server tls_version value.
For example, a server that acts as a replica can be configured with tls_version set to TLSv1.3 to
permit only incoming connections that use TLSv1.3, but also configured with SOURCE_TLS_VERSION |
MASTER_TLS_VERSION set to TLSv1.2 to permit only TLSv1.2 for outgoing replica connections to the
source.

For Group Replication distributed recovery connections where this server instance
is the joining member that initiates distributed recovery (that is, the client), the
group_replication_recovery_tls_version system variable specifies which protocols
are permitted by the client. Again, this option is independent of and not affected by the server
tls_version value, which applies when this server instance is the donor. A Group Replication server
generally participates in distributed recovery both as a donor and as a joining member over the course
of its group membership, so both these system variables should be set. See Section 20.6.2, “Securing
Group Communication Connections with Secure Socket Layer (SSL)”.

TLS protocol configuration affects which protocol a given connection uses, as described in Connection
TLS Protocol Negotiation.

Permitted protocols should be chosen such as not to leave “holes” in the list. For example, these server
configuration values do not have holes:

tls_version=TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
tls_version=TLSv1.1,TLSv1.2,TLSv1.3
tls_version=TLSv1.2,TLSv1.3
tls_version=TLSv1.3

These values do have holes and should not be used:

tls_version=TLSv1,TLSv1.2 (TLSv1.1 is missing)
tls_version=TLSv1.1,TLSv1.3 (TLSv1.2 is missing)

The prohibition on holes also applies in other configuration contexts, such as for clients or replicas.

Unless you intend to disable encrypted connections, the list of permitted protocols should not be empty.
If you set a TLS version parameter to the empty string, encrypted connections cannot be established:

• tls_version: The server does not permit encrypted incoming connections.

• --tls-version: The client does not permit encrypted outgoing connections to the server.

1414

Encrypted Connection TLS Protocols and Ciphers

• SOURCE_TLS_VERSION | MASTER_TLS_VERSION: The replica does not permit encrypted outgoing
connections to the source.

• group_replication_recovery_tls_version: The joining member does not permit encrypted
connections to the distributed recovery connection.

Connection Cipher Configuration

A default set of ciphers applies to encrypted connections, which can be overridden by explicitly
configuring the permitted ciphers. During connection establishment, both sides of a connection must
permit some cipher in common or the connection fails. Of the permitted ciphers common to both sides,
the SSL library chooses the one supported by the provided certificate that has the highest priority.

To specify a cipher or ciphers applicable for encrypted connections that use TLS protocols up through
TLSv1.2:

• Set the ssl_cipher system variable on the server side, and use the --ssl-cipher option for
client programs.

• For regular source/replica replication connections, where this server instance is the source,
set the ssl_cipher system variable. Where this server instance is the replica, use the
SOURCE_SSL_CIPHER | MASTER_SSL_CIPHER option for the CHANGE REPLICATION SOURCE
TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23). See
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”.

• For a Group Replication group member, for Group Replication group communication
connections and also for Group Replication distributed recovery connections where this
server instance is the donor, set the ssl_cipher system variable. For Group Replication
distributed recovery connections where this server instance is the joining member, use the
group_replication_recovery_ssl_cipher system variable. See Section 20.6.2, “Securing
Group Communication Connections with Secure Socket Layer (SSL)”.

For encrypted connections that use TLSv1.3, OpenSSL 1.1.1 and higher supports the following
ciphersuites, the first three of which are enabled by default:

TLS_AES_128_GCM_SHA256
TLS_AES_256_GCM_SHA384
TLS_CHACHA20_POLY1305_SHA256
TLS_AES_128_CCM_SHA256

Note

Prior to MySQL 8.0.35, TLS_AES_128_CCM_8_SHA256 was supported for
use with server system variables --tls-ciphersuites or --admin-tls-
ciphersuites. TLS_AES_128_CCM_8_SHA256 generates a deprecation
warning if configured for MySQL 8.0.35 and higher.

To configure the permitted TLSv1.3 ciphersuites explicitly, set the following parameters. In each case,
the configuration value is a list of zero or more colon-separated ciphersuite names.

• On the server side, use the tls_ciphersuites system variable. If this variable is not set, its
default value is NULL, which means that the server permits the default set of ciphersuites. If the
variable is set to the empty string, no ciphersuites are enabled and encrypted connections cannot be
established.

• On the client side, use the --tls-ciphersuites option. If this option is not set, the client permits
the default set of ciphersuites. If the option is set to the empty string, no ciphersuites are enabled and
encrypted connections cannot be established.

• For regular source/replica replication connections, where this server instance is the source,
use the tls_ciphersuites system variable. Where this server instance is the replica, use

1415

Encrypted Connection TLS Protocols and Ciphers

the SOURCE_TLS_CIPHERSUITES | MASTER_TLS_CIPHERSUITES option for the CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement
(before MySQL 8.0.23). See Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”.

• For a Group Replication group member, for Group Replication group communication
connections and also for Group Replication distributed recovery connections where this server
instance is the donor, use the tls_ciphersuites system variable. For Group Replication
distributed recovery connections where this server instance is the joining member, use the
group_replication_recovery_tls_ciphersuites system variable. See Section 20.6.2,
“Securing Group Communication Connections with Secure Socket Layer (SSL)”.

Note

Ciphersuite support is available as of MySQL 8.0.16, but requires that both the
MySQL server and the client application be compiled using OpenSSL 1.1.1 or
higher.

In MySQL 8.0.16 through 8.0.18, the
group_replication_recovery_tls_ciphersuites system variable and
the SOURCE_TLS_CIPHERSUITES | MASTER_TLS_CIPHERSUITES option for
the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or
CHANGE MASTER TO statement (before MySQL 8.0.23) are not available. In
these releases, if TLSv1.3 is used for source/replica replication connections, or
in Group Replication for distributed recovery (supported from MySQL 8.0.18),
the replication source or Group Replication donor servers must permit the use
of at least one TLSv1.3 ciphersuite that is enabled by default. From MySQL
8.0.19, you can use the options to configure client support for any selection of
ciphersuites, including only non-default ciphersuites if you want.

A given cipher may work only with particular TLS protocols, which affects the TLS protocol negotiation
process. See Connection TLS Protocol Negotiation.

To determine which ciphers a given server supports, check the session value of the
Ssl_cipher_list status variable:

SHOW SESSION STATUS LIKE 'Ssl_cipher_list';

The Ssl_cipher_list status variable lists the possible SSL ciphers (empty for non-SSL
connections). If MySQL supports TLSv1.3, the value includes the possible TLSv1.3 ciphersuites.

Note

ECDSA ciphers only work in combination with an SSL certificate that uses
ECDSA for the digital signature, and they do not work with certificates that
use RSA. MySQL Server’s automatic generation process for SSL certificates
does not generate ECDSA signed certificates, it generates only RSA signed
certificates. Do not select ECDSA ciphers unless you have an ECDSA
certificate available to you.

For encrypted connections that use TLS.v1.3, MySQL uses the SSL library default ciphersuite list.

For encrypted connections that use TLS protocols up through TLSv1.2, MySQL passes the following
default cipher list to the SSL library.

ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-ECDSA-CHACHA20-POLY1305
ECDHE-RSA-CHACHA20-POLY1305
ECDHE-ECDSA-AES256-CCM
ECDHE-ECDSA-AES128-CCM

1416

Encrypted Connection TLS Protocols and Ciphers

DHE-RSA-AES128-GCM-SHA256
DHE-RSA-AES256-GCM-SHA384
DHE-RSA-AES256-CCM
DHE-RSA-AES128-CCM
DHE-RSA-CHACHA20-POLY1305

These cipher restrictions are in place:

• As of MySQL 8.0.35, the following ciphers are deprecated and produce a warning when used with
the server system variables --ssl-cipher and --admin-ssl-cipher:

ECDHE-ECDSA-AES128-SHA256
ECDHE-RSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA384
ECDHE-RSA-AES256-SHA384
DHE-DSS-AES128-GCM-SHA256
DHE-RSA-AES128-SHA256
DHE-DSS-AES128-SHA256
DHE-DSS-AES256-GCM-SHA384
DHE-RSA-AES256-SHA256
DHE-DSS-AES256-SHA256
ECDHE-RSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA
DHE-DSS-AES128-SHA
DHE-RSA-AES128-SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
DHE-RSA-AES256-SHA
AES128-GCM-SHA256
DH-DSS-AES128-GCM-SHA256
ECDH-ECDSA-AES128-GCM-SHA256
AES256-GCM-SHA384
DH-DSS-AES256-GCM-SHA384
ECDH-ECDSA-AES256-GCM-SHA384
AES128-SHA256
DH-DSS-AES128-SHA256
ECDH-ECDSA-AES128-SHA256
AES256-SHA256
DH-DSS-AES256-SHA256
ECDH-ECDSA-AES256-SHA384
AES128-SHA
DH-DSS-AES128-SHA
ECDH-ECDSA-AES128-SHA
AES256-SHA
DH-DSS-AES256-SHA
ECDH-ECDSA-AES256-SHA
DH-RSA-AES128-GCM-SHA256
ECDH-RSA-AES128-GCM-SHA256
DH-RSA-AES256-GCM-SHA384
ECDH-RSA-AES256-GCM-SHA384
DH-RSA-AES128-SHA256
ECDH-RSA-AES128-SHA256
DH-RSA-AES256-SHA256
ECDH-RSA-AES256-SHA384
ECDHE-RSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA
DHE-DSS-AES128-SHA
DHE-RSA-AES128-SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
DHE-RSA-AES256-SHA
AES128-SHA
DH-DSS-AES128-SHA
ECDH-ECDSA-AES128-SHA
AES256-SHA
DH-DSS-AES256-SHA
ECDH-ECDSA-AES256-SHA
DH-RSA-AES128-SHA
ECDH-RSA-AES128-SHA
DH-RSA-AES256-SHA

1417

Encrypted Connection TLS Protocols and Ciphers

ECDH-RSA-AES256-SHA
DES-CBC3-SHA

• The following ciphers are permanently restricted:

!DHE-DSS-DES-CBC3-SHA
!DHE-RSA-DES-CBC3-SHA
!ECDH-RSA-DES-CBC3-SHA
!ECDH-ECDSA-DES-CBC3-SHA
!ECDHE-RSA-DES-CBC3-SHA
!ECDHE-ECDSA-DES-CBC3-SHA

• The following categories of ciphers are permanently restricted:

!aNULL
!eNULL
!EXPORT
!LOW
!MD5
!DES
!RC2
!RC4
!PSK
!SSLv3

If the server is started with the ssl_cert system variable set to a certificate that uses any of
the preceding restricted ciphers or cipher categories, the server starts with support for encrypted
connections disabled.

Connection TLS Protocol Negotiation

Connection attempts in MySQL negotiate use of the highest TLS protocol version available on both
sides for which a protocol-compatible encryption cipher is available on both sides. The negotiation
process depends on factors such as the SSL library used to compile the server and client, the TLS
protocol and encryption cipher configuration, and which key size is used:

• For a connection attempt to succeed, the server and client TLS protocol configuration must permit
some protocol in common.

• Similarly, the server and client encryption cipher configuration must permit some cipher in common.
A given cipher may work only with particular TLS protocols, so a protocol available to the negotiation
process is not chosen unless there is also a compatible cipher.

• If TLSv1.3 is available, it is used if possible. (This means that server and client configuration both
must permit TLSv1.3, and both must also permit some TLSv1.3-compatible encryption cipher.)
Otherwise, MySQL continues through the list of available protocols, using TLSv1.2 if possible, and
so forth. Negotiation proceeds from more secure protocols to less secure. Negotiation order is
independent of the order in which protocols are configured. For example, negotiation order is the
same regardless of whether tls_version has a value of TLSv1,TLSv1.1,TLSv1.2,TLSv1.3 or
TLSv1.3,TLSv1.2,TLSv1.1,TLSv1.

• TLSv1.2 does not work with all ciphers that have a key size of 512 bits or less. To use this protocol
with such a key, set the ssl_cipher system variable on the server side or use the --ssl-cipher
client option to specify the cipher name explicitly:

AES128-SHA
AES128-SHA256
AES256-SHA
AES256-SHA256
CAMELLIA128-SHA
CAMELLIA256-SHA
DES-CBC3-SHA
DHE-RSA-AES256-SHA
RC4-MD5
RC4-SHA
SEED-SHA

1418

Creating SSL and RSA Certificates and Keys

• For better security, use a certificate with an RSA key size of at least 2048 bits.

If the server and client do not have a permitted protocol in common, and a protocol-compatible cipher
in common, the server terminates the connection request. Examples:

• If the server is configured with tls_version=TLSv1.1,TLSv1.2:

• Connection attempts fail for clients invoked with --tls-version=TLSv1, and for older clients
that support only TLSv1.

• Similarly, connection attempts fail for replicas configured with MASTER_TLS_VERSION =
'TLSv1', and for older replicas that support only TLSv1.

• If the server is configured with tls_version=TLSv1 or is an older server that supports only TLSv1:

• Connection attempts fail for clients invoked with --tls-version=TLSv1.1,TLSv1.2.

• Similarly, connection attempts fail for replicas configured with MASTER_TLS_VERSION =
'TLSv1.1,TLSv1.2'.

MySQL permits specifying a list of protocols to support. This list is passed directly down to the
underlying SSL library and is ultimately up to that library what protocols it actually enables from
the supplied list. Please refer to the MySQL source code and the OpenSSL SSL_CTX_new()
documentation for information about how the SSL library handles this.

Monitoring Current Client Session TLS Protocol and Cipher

To determine which encryption TLS protocol and cipher the current client session uses, check the
session values of the Ssl_version and Ssl_cipher status variables:

mysql> SELECT * FROM performance_schema.session_status
 WHERE VARIABLE_NAME IN ('Ssl_version','Ssl_cipher');
+---------------+---------------------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+---------------+---------------------------+
| Ssl_cipher | DHE-RSA-AES128-GCM-SHA256 |
| Ssl_version | TLSv1.2 |
+---------------+---------------------------+

If the connection is not encrypted, both variables have an empty value.

8.3.3 Creating SSL and RSA Certificates and Keys

The following discussion describes how to create the files required for SSL and RSA support in
MySQL. File creation can be performed using facilities provided by MySQL itself, or by invoking the
openssl command directly.

SSL certificate and key files enable MySQL to support encrypted connections using SSL. See
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”.

RSA key files enable MySQL to support secure password exchange over unencrypted connections
for accounts authenticated by the sha256_password or caching_sha2_password plugin. See
Section 8.4.1.3, “SHA-256 Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2 Pluggable
Authentication”.

8.3.3.1 Creating SSL and RSA Certificates and Keys using MySQL

MySQL provides these ways to create the SSL certificate and key files and RSA key-pair files
required to support encrypted connections using SSL and secure password exchange using RSA over
unencrypted connections, if those files are missing:

• The server can autogenerate these files at startup, for MySQL distributions.

1419

https://www.openssl.org/docs/man1.1.0/ssl/SSL_CTX_new.html

Creating SSL and RSA Certificates and Keys

• Users can invoke the mysql_ssl_rsa_setup utility manually (deprecated as of MySQL 8.0.34).

• For some distribution types, such as RPM and DEB packages, mysql_ssl_rsa_setup invocation
occurs during data directory initialization. In this case, the MySQL distribution need not have been
compiled using OpenSSL as long as the openssl command is available.

Important

Server autogeneration and mysql_ssl_rsa_setup help lower the barrier
to using SSL by making it easier to generate the required files. However,
certificates generated by these methods are self-signed, which may not be
very secure. After you gain experience using such files, consider obtaining
certificate/key material from a registered certificate authority.

Important

If a client connecting to a MySQL server instance uses an SSL certificate with
the extendedKeyUsage extension (an X.509 v3 extension), the extended key
usage must include client authentication (clientAuth). If the SSL certificate
is only specified for server authentication (serverAuth) and other non-client
certificate purposes, certificate verification fails and the client connection to
the MySQL server instance fails. There is no extendedKeyUsage extension
in SSL certificates generated by MySQL Server. If you use your own client
certificate created in another way, ensure any extendedKeyUsage extension
includes client authentication.

• Automatic SSL and RSA File Generation

• Manual SSL and RSA File Generation Using mysql_ssl_rsa_setup

• SSL and RSA File Characteristics

Automatic SSL and RSA File Generation

For MySQL distributions compiled using OpenSSL, the MySQL server has the
capability of automatically generating missing SSL and RSA files at startup. The
auto_generate_certs, sha256_password_auto_generate_rsa_keys, and
caching_sha2_password_auto_generate_rsa_keys system variables control automatic
generation of these files. These variables are enabled by default. They can be enabled at startup and
inspected but not set at runtime.

At startup, the server automatically generates server-side and client-side SSL certificate and key files
in the data directory if the auto_generate_certs system variable is enabled, no SSL options other
than --ssl are specified, and the server-side SSL files are missing from the data directory. These
files enable encrypted client connections using SSL; see Section 8.3.1, “Configuring MySQL to Use
Encrypted Connections”.

1. The server checks the data directory for SSL files with the following names:

ca.pem
server-cert.pem
server-key.pem

2. If any of those files are present, the server creates no SSL files. Otherwise, it creates them, plus
some additional files:

ca.pem Self-signed CA certificate
ca-key.pem CA private key
server-cert.pem Server certificate
server-key.pem Server private key
client-cert.pem Client certificate
client-key.pem Client private key

1420

Creating SSL and RSA Certificates and Keys

3. If the server autogenerates SSL files, it uses the names of the ca.pem, server-cert.pem, and
server-key.pem files to set the corresponding system variables (ssl_ca, ssl_cert, ssl_key).

At startup, the server automatically generates RSA private/public key-pair files in the data directory
if all of these conditions are true: The sha256_password_auto_generate_rsa_keys or
caching_sha2_password_auto_generate_rsa_keys system variable is enabled; no RSA
options are specified; the RSA files are missing from the data directory. These key-pair files enable
secure password exchange using RSA over unencrypted connections for accounts authenticated
by the sha256_password or caching_sha2_password plugin; see Section 8.4.1.3, “SHA-256
Pluggable Authentication”, and Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”.

1. The server checks the data directory for RSA files with the following names:

private_key.pem Private member of private/public key pair
public_key.pem Public member of private/public key pair

2. If any of these files are present, the server creates no RSA files. Otherwise, it creates them.

3. If the server autogenerates the RSA files, it uses their names to set the
corresponding system variables (sha256_password_private_key_path and
sha256_password_public_key_path; caching_sha2_password_private_key_path and
caching_sha2_password_public_key_path).

Manual SSL and RSA File Generation Using mysql_ssl_rsa_setup

MySQL distributions include a mysql_ssl_rsa_setup utility (deprecated as of MySQL 8.0.34)
that can be invoked manually to generate SSL and RSA files. This utility is included with all MySQL
distributions, but it does require that the openssl command be available. For usage instructions, see
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”.

SSL and RSA File Characteristics

SSL and RSA files created automatically by the server or by invoking mysql_ssl_rsa_setup have
these characteristics:

• SSL and RSA have a size of 2048 bits.

• The SSL CA certificate is self signed.

• The SSL server and client certificates are signed with the CA certificate and key, using the
sha256WithRSAEncryption signature algorithm.

• SSL certificates use these Common Name (CN) values, with the appropriate certificate type (CA,
Server, Client):

ca.pem: MySQL_Server_suffix_Auto_Generated_CA_Certificate
server-cert.pm: MySQL_Server_suffix_Auto_Generated_Server_Certificate
client-cert.pm: MySQL_Server_suffix_Auto_Generated_Client_Certificate

The suffix value is based on the MySQL version number. For files generated by
mysql_ssl_rsa_setup, the suffix can be specified explicitly using the --suffix option.

For files generated by the server, if the resulting CN values exceed 64 characters, the _suffix
portion of the name is omitted.

• SSL files have blank values for Country (C), State or Province (ST), Organization (O), Organization
Unit Name (OU) and email address.

• SSL files created by the server or by mysql_ssl_rsa_setup are valid for ten years from the time
of generation.

• RSA files do not expire.

1421

Creating SSL and RSA Certificates and Keys

• SSL files have different serial numbers for each certificate/key pair (1 for CA, 2 for Server, 3 for
Client).

• Files created automatically by the server are owned by the account that runs the server. Files
created using mysql_ssl_rsa_setup are owned by the user who invoked that program. This can
be changed on systems that support the chown() system call if the program is invoked by root and
the --uid option is given to specify the user who should own the files.

• On Unix and Unix-like systems, the file access mode is 644 for certificate files (that is, world
readable) and 600 for key files (that is, accessible only by the account that runs the server).

To see the contents of an SSL certificate (for example, to check the range of dates over which it is
valid), invoke openssl directly:

openssl x509 -text -in ca.pem
openssl x509 -text -in server-cert.pem
openssl x509 -text -in client-cert.pem

It is also possible to check SSL certificate expiration information using this SQL statement:

mysql> SHOW STATUS LIKE 'Ssl_server_not%';
+-----------------------+--------------------------+
| Variable_name | Value |
+-----------------------+--------------------------+
| Ssl_server_not_after | Apr 28 14:16:39 2027 GMT |
| Ssl_server_not_before | May 1 14:16:39 2017 GMT |
+-----------------------+--------------------------+

8.3.3.2 Creating SSL Certificates and Keys Using openssl

This section describes how to use the openssl command to set up SSL certificate and key files
for use by MySQL servers and clients. The first example shows a simplified procedure such as you
might use from the command line. The second shows a script that contains more detail. The first two
examples are intended for use on Unix and both use the openssl command that is part of OpenSSL.
The third example describes how to set up SSL files on Windows.

Note

There are easier alternatives to generating the files required for SSL than
the procedure described here: Let the server autogenerate them or use
the mysql_ssl_rsa_setup program (deprecated as of 8.0.34). See
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

Important

Whatever method you use to generate the certificate and key files, the Common
Name value used for the server and client certificates/keys must each differ
from the Common Name value used for the CA certificate. Otherwise, the
certificate and key files do not work for servers compiled using OpenSSL. A
typical error in this case is:

ERROR 2026 (HY000): SSL connection error:
error:00000001:lib(0):func(0):reason(1)

Important

If a client connecting to a MySQL server instance uses an SSL certificate with
the extendedKeyUsage extension (an X.509 v3 extension), the extended key
usage must include client authentication (clientAuth). If the SSL certificate
is only specified for server authentication (serverAuth) and other non-client
certificate purposes, certificate verification fails and the client connection to the
MySQL server instance fails. There is no extendedKeyUsage extension in
SSL certificates created using the openssl command following the instructions

1422

Creating SSL and RSA Certificates and Keys

in this topic. If you use your own client certificate created in another way, ensure
any extendedKeyUsage extension includes client authentication.

• Example 1: Creating SSL Files from the Command Line on Unix

• Example 2: Creating SSL Files Using a Script on Unix

• Example 3: Creating SSL Files on Windows

Example 1: Creating SSL Files from the Command Line on Unix

The following example shows a set of commands to create MySQL server and client certificate and
key files. You must respond to several prompts by the openssl commands. To generate test files,
you can press Enter to all prompts. To generate files for production use, you should provide nonempty
responses.

Create clean environment
rm -rf newcerts
mkdir newcerts && cd newcerts

Create CA certificate
openssl genrsa 2048 > ca-key.pem
openssl req -new -x509 -nodes -days 3600 \
 -key ca-key.pem -out ca.pem

Create server certificate, remove passphrase, and sign it
server-cert.pem = public key, server-key.pem = private key
openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout server-key.pem -out server-req.pem
openssl rsa -in server-key.pem -out server-key.pem
openssl x509 -req -in server-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem

Create client certificate, remove passphrase, and sign it
client-cert.pem = public key, client-key.pem = private key
openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout client-key.pem -out client-req.pem
openssl rsa -in client-key.pem -out client-key.pem
openssl x509 -req -in client-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem

After generating the certificates, verify them:

openssl verify -CAfile ca.pem server-cert.pem client-cert.pem

You should see a response like this:

server-cert.pem: OK
client-cert.pem: OK

To see the contents of a certificate (for example, to check the range of dates over which a certificate is
valid), invoke openssl like this:

openssl x509 -text -in ca.pem
openssl x509 -text -in server-cert.pem
openssl x509 -text -in client-cert.pem

Now you have a set of files that can be used as follows:

• ca.pem: Use this to set the ssl_ca system variable on the server side and the --ssl-ca option on
the client side. (The CA certificate, if used, must be the same on both sides.)

• server-cert.pem, server-key.pem: Use these to set the ssl_cert and ssl_key system
variables on the server side.

• client-cert.pem, client-key.pem: Use these as the arguments to the --ssl-cert and --
ssl-key options on the client side.

1423

Creating SSL and RSA Certificates and Keys

For additional usage instructions, see Section 8.3.1, “Configuring MySQL to Use Encrypted
Connections”.

Example 2: Creating SSL Files Using a Script on Unix

Here is an example script that shows how to set up SSL certificate and key files for MySQL. After
executing the script, use the files for SSL connections as described in Section 8.3.1, “Configuring
MySQL to Use Encrypted Connections”.

DIR=`pwd`/openssl
PRIV=$DIR/private

mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf

Create necessary files: $database, $serial and $new_certs_dir
directory (optional)

touch $DIR/index.txt
echo "01" > $DIR/serial

#
Generation of Certificate Authority(CA)
#

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/ca.pem \
 -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/jones/openssl/openssl.cnf
Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to '/home/jones/openssl/private/cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information to be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:

#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \
 $DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/jones/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++
..........++++++
writing new private key to '/home/jones/openssl/server-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

1424

Creating SSL and RSA Certificates and Keys

What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem

#
Sign server cert
#
openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/server-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/server-req.pem

Sample output:
Using configuration from /home/jones/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL admin'
Certificate is to be certified until Sep 13 14:22:46 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \
 $DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/jones/openssl/openssl.cnf
Generating a 1024 bit RSA private key
.....................................++++++
...++++++
writing new private key to '/home/jones/openssl/client-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

1425

Creating SSL and RSA Certificates and Keys

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem

#
Sign client cert
#

openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/client-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/client-req.pem

Sample output:
Using configuration from /home/jones/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL user'
Certificate is to be certified until Sep 13 16:45:17 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create a my.cnf file that you can use to test the certificates
#

cat <<EOF > $DIR/my.cnf
[client]
ssl-ca=$DIR/ca.pem
ssl-cert=$DIR/client-cert.pem
ssl-key=$DIR/client-key.pem
[mysqld]
ssl_ca=$DIR/ca.pem
ssl_cert=$DIR/server-cert.pem
ssl_key=$DIR/server-key.pem
EOF

Example 3: Creating SSL Files on Windows

Download OpenSSL for Windows if it is not installed on your system. An overview of available
packages can be seen here:

http://www.slproweb.com/products/Win32OpenSSL.html

Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depending on your architecture
(32-bit or 64-bit). The default installation location is C:\OpenSSL-Win32 or C:\OpenSSL-Win64,
depending on which package you downloaded. The following instructions assume a default location of
C:\OpenSSL-Win32. Modify this as necessary if you are using the 64-bit package.

1426

http://www.slproweb.com/products/Win32OpenSSL.html

Creating SSL and RSA Certificates and Keys

If a message occurs during setup indicating '...critical component is missing:
Microsoft Visual C++ 2019 Redistributables', cancel the setup and download one of the
following packages as well, again depending on your architecture (32-bit or 64-bit):

• Visual C++ 2008 Redistributables (x86), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF

• Visual C++ 2008 Redistributables (x64), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

After installing the additional package, restart the OpenSSL setup procedure.

During installation, leave the default C:\OpenSSL-Win32 as the install path, and also leave the
default option 'Copy OpenSSL DLL files to the Windows system directory' selected.

When the installation has finished, add C:\OpenSSL-Win32\bin to the Windows System Path
variable of your server (depending on your version of Windows, the following path-setting instructions
might differ slightly):

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable
dialogue should appear.

4. Add ';C:\OpenSSL-Win32\bin' to the end (notice the semicolon).

5. Press OK 3 times.

6. Check that OpenSSL was correctly integrated into the Path variable by opening a new command
console (Start>Run>cmd.exe) and verifying that OpenSSL is available:

Microsoft Windows [Version ...]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Windows\system32>cd \

C:\>openssl
OpenSSL> exit <<< If you see the OpenSSL prompt, installation was successful.

C:\>

After OpenSSL has been installed, use instructions similar to those from Example 1 (shown earlier in
this section), with the following changes:

• Change the following Unix commands:

Create clean environment
rm -rf newcerts
mkdir newcerts && cd newcerts

On Windows, use these commands instead:

Create clean environment
md c:\newcerts
cd c:\newcerts

• When a '\' character is shown at the end of a command line, this '\' character must be removed
and the command lines entered all on a single line.

After generating the certificate and key files, to use them for SSL connections, see Section 8.3.1,
“Configuring MySQL to Use Encrypted Connections”.

1427

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

Connecting to MySQL Remotely from Windows with SSH

8.3.3.3 Creating RSA Keys Using openssl

This section describes how to use the openssl command to set up the RSA key files that enable
MySQL to support secure password exchange over unencrypted connections for accounts
authenticated by the sha256_password and caching_sha2_password plugins.

Note

There are easier alternatives to generating the files required for RSA than
the procedure described here: Let the server autogenerate them or use the
mysql_ssl_rsa_setup program (deprecated as of MySQL 8.0.34). See
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

To create the RSA private and public key-pair files, run these commands while logged into the system
account used to run the MySQL server so that the files are owned by that account:

openssl genrsa -out private_key.pem 2048
openssl rsa -in private_key.pem -pubout -out public_key.pem

Those commands create 2,048-bit keys. To create stronger keys, use a larger value.

Then set the access modes for the key files. The private key should be readable only by the server,
whereas the public key can be freely distributed to client users:

chmod 400 private_key.pem
chmod 444 public_key.pem

8.3.4 Connecting to MySQL Remotely from Windows with SSH

This section describes how to get an encrypted connection to a remote MySQL server with SSH. The
information was provided by David Carlson <dcarlson@mplcomm.com>.

1. Install an SSH client on your Windows machine. For a comparison of SSH clients, see http://
en.wikipedia.org/wiki/Comparison_of_SSH_clients.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set
userid=your_userid to log in to your server. This userid value might not be the same as the
user name of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host:
yourmysqlservername_or_ip, remote_port: 3306) or a local forward (Set port: 3306,
host: localhost, remote port: 3306).

4. Save everything, otherwise you must redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally
do, except type in localhost for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

8.3.5 Reusing SSL Sessions

As of MySQL 8.0.29, MySQL client programs may elect to resume a prior SSL session, provided that
the server has the session in its runtime cache. This section describes the conditions that are favorable
for SSL session reuse, the server variables used for managing and monitoring the session cache, and
the client command-line options for storing and reusing session data.

• Server-Side Runtime Configuration and Monitoring for SSL Session Reuse

• Client-Side Configuration for SSL Session Reuse

1428

http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

Reusing SSL Sessions

Each full TLS exchange can be costly both in terms of computation and network overhead, less costly
if TLSv1.3 is used. By extracting a session ticket from an established session and then submitting
that ticket while establishing the next connection, the overall cost is reduced if the session can be
reused. For example, consider the benefit of having web pages that can open multiple connections and
generate faster.

In general, the following conditions must be satisfied before SSL sessions can be reused:

• The server must keep its session cache in memory.

• The server-side session cache timeout must not have expired.

• Each client has to maintain a cache of active sessions and keep it secure.

C applications can use the C API capabilities to enable session reuse for encrypted connections (see
SSL Session Reuse).

Server-Side Runtime Configuration and Monitoring for SSL Session Reuse

To create the initial TLS context, the server uses the values that the context-related system variables
have at startup. To expose the context values, the server also initializes a set of corresponding status
variables. The following table shows the system variables that define the server's runtime session
cache and the corresponding status variables that expose the currently active session-cache values.

Table 8.15 System and Status Variables for Session Reuse

System Variable Name Corresponding Status Variable Name

ssl_session_cache_mode Ssl_session_cache_mode

ssl_session_cache_timeout Ssl_session_cache_timeout

Note

When the value of the ssl_session_cache_mode server variable is ON,
which is the default mode, the value of the Ssl_session_cache_mode status
variable is SERVER.

SSL session cache variables apply to both the mysql_main and mysql_admin TLS channels. Their
values are also exposed as properties in the Performance Schema tls_channel_status table,
along with the properties for any other active TLS contexts.

To reconfigure the SSL session cache at runtime, use this procedure:

1. Set each cache-related system variable that should be changed to its new value. For example,
change the cache timeout value from the default (300 seconds) to 600 seconds:

mysql> SET GLOBAL ssl_session_cache_timeout = 600;

The members of each pair of system and status variables may have different values temporarily
due to the way the reconfiguration procedure works.

mysql> SHOW VARIABLES LIKE 'ssl_session_cache_timeout';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| ssl_session_cache_timeout | 600 |
+---------------------------+-------+
1 row in set (0.00 sec)

mysql> SHOW STATUS LIKE 'Ssl_session_cache_timeout';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| Ssl_session_cache_timeout | 300 |
+---------------------------+-------+

1429

https://dev.mysql.com/doc/c-api/8.0/en/c-api-ssl-session-reuse.html

Reusing SSL Sessions

1 row in set (0.00 sec)

For additional information about setting variable values, see System Variable Assignment.

2. Execute ALTER INSTANCE RELOAD TLS. This statement reconfigures the active TLS context
from the current values of the cache-related system variables. It also sets the cache-related status
variables to reflect the new active cache values. The statement requires the CONNECTION_ADMIN
privilege.

mysql> ALTER INSTANCE RELOAD TLS;
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW VARIABLES LIKE 'ssl_session_cache_timeout';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| ssl_session_cache_timeout | 600 |
+---------------------------+-------+
1 row in set (0.00 sec)

mysql> SHOW STATUS LIKE 'Ssl_session_cache_timeout';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| Ssl_session_cache_timeout | 600 |
+---------------------------+-------+
1 row in set (0.00 sec)

New connections established after execution of ALTER INSTANCE RELOAD TLS use the new TLS
context. Existing connections remain unaffected.

Client-Side Configuration for SSL Session Reuse

All MySQL client programs are capable of reusing a prior session for new encrypted connections made
to the same server, provided that you stored the session data while the original connection was still
active. Session data are stored to a file and you specify this file when you invoke the client again.

To store and reuse SSL session data, use this procedure:

1. Invoke mysql to establish an encrypted connection to a server running MySQL 8.0.29 or higher.

2. Use the ssl_session_data_print command to specify the path to a file where you can store
the currently active session data securely. For example:

mysql> ssl_session_data_print ~/private-dir/session.txt

Session data are obtained in the form of a null-terminated, PEM encoded ANSI string. If you omit
the path and file name, the string prints to standard output.

3. From the prompt of your command interpreter, invoke any MySQL client program to establish a
new encrypted connection to the same server. To reuse the session data, specify the --ssl-
session-data command-line option and the file argument.

For example, establish a new connection using mysql:

mysql -u admin -p --ssl-session-data=~/private-dir/session.txt

and then mysqlshow client:

mysqlshow -u admin -p --ssl-session-data=~/private-dir/session.txt
Enter password: *****
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |

1430

Security Components and Plugins

| sys |
| world |
+--------------------+

In each example, the client attempts to resume the original session while it establishes a new
connection to the same server.

To confirm whether mysql reused a session, see the output from the status command. If the
currently active mysql connection did resume the session, the status information includes SSL
session reused: true.

In addition to mysql and mysqlshow, SSL session reuse applies to mysqladmin, mysqlbinlog,
mysqlcheck, mysqldump, mysqlimport, mysqlpump, mysqlslap, mysqltest,
mysql_migrate_keyring, mysql_secure_installation, and mysql_upgrade.

Several conditions may prevent the successful retrieval of session data. For instance, if the session is
not fully connected, it is not an SSL session, the server has not yet sent the session data, or the SSL
session is simply not reusable. Even with properly stored session data, the server's session cache can
time out. Regardless of the cause, an error is returned by default if you specify --ssl-session-data
but the session cannot be reused. For example:

mysqlshow -u admin -p --ssl-session-data=~/private-dir/session.txt
Enter password: *****
ERROR:
--ssl-session-data specified but the session was not reused.

To suppress the error message, and to establish the connection by silently creating a new session
instead, specify --ssl-session-data-continue-on-failed-reuse on the command line,
along with --ssl-session-data . If the server's cache timeout has expired, you can store the
session data again to the same file. The default server cache timeout can be extended (see Server-
Side Runtime Configuration and Monitoring for SSL Session Reuse).

8.4 Security Components and Plugins
MySQL includes several components and plugins that implement security features:

• Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available
for several authentication protocols. For general discussion of the authentication process, see
Section 8.2.17, “Pluggable Authentication”. For characteristics of specific authentication plugins, see
Section 8.4.1, “Authentication Plugins”.

• A password-validation component for implementing password strength policies and assessing the
strength of potential passwords. See Section 8.4.3, “The Password Validation Component”.

• Keyring plugins that provide secure storage for sensitive information. See Section 8.4.4, “The
MySQL Keyring”.

• (MySQL Enterprise Edition only) MySQL Enterprise Audit, implemented using a server plugin, uses
the open MySQL Audit API to enable standard, policy-based monitoring and logging of connection
and query activity executed on specific MySQL servers. Designed to meet the Oracle audit
specification, MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance
solution for applications that are governed by both internal and external regulatory guidelines. See
Section 8.4.5, “MySQL Enterprise Audit”.

• A function enables applications to add their own message events to the audit log. See Section 8.4.6,
“The Audit Message Component”.

• (MySQL Enterprise Edition only) MySQL Enterprise Firewall, an application-level firewall that enables
database administrators to permit or deny SQL statement execution based on matching against
lists of accepted statement patterns. This helps harden MySQL Server against attacks such as SQL
injection or attempts to exploit applications by using them outside of their legitimate query workload
characteristics. See Section 8.4.7, “MySQL Enterprise Firewall”.

1431

Authentication Plugins

• (MySQL Enterprise Edition only) MySQL Enterprise Data Masking and De-Identification,
implemented as a plugin library containing a plugin and a set of functions. Data masking hides
sensitive information by replacing real values with substitutes. MySQL Enterprise Data Masking and
De-Identification functions enable masking existing data using several methods such as obfuscation
(removing identifying characteristics), generation of formatted random data, and data replacement or
substitution. See Section 8.5, “MySQL Enterprise Data Masking and De-Identification”.

8.4.1 Authentication Plugins

Note

If you are looking for information about the authentication_oci plugin,
it is HeatWave Service only. See authentication_oci plugin, in the HeatWave
Service manual.

The following sections describe pluggable authentication methods available in MySQL and the
plugins that implement these methods. For general discussion of the authentication process, see
Section 8.2.17, “Pluggable Authentication”.

The default authentication plugin is determined as described in The Default Authentication Plugin.

8.4.1.1 Native Pluggable Authentication

MySQL includes a mysql_native_password plugin that implements native authentication; that is,
authentication based on the password hashing method in use from before the introduction of pluggable
authentication.

Note

The mysql_native_password authentication plugin is deprecated as of
MySQL 8.0.34, disabled by default in MySQL 8.4, and removed as of MySQL
9.0.0.

The following table shows the plugin names on the server and client sides.

Table 8.16 Plugin and Library Names for Native Password Authentication

Plugin or File Plugin or File Name

Server-side plugin mysql_native_password

Client-side plugin mysql_native_password

Library file None (plugins are built in)

The following sections provide installation and usage information specific to native pluggable
authentication:

• Installing Native Pluggable Authentication

• Using Native Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”.

Installing Native Pluggable Authentication

The mysql_native_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

1432

https://docs.oracle.com/en-us/iaas/mysql-database/doc/connecting-db-system.html#MYAAS-GUID-232CA959-1FDD-4AA8-A77D-0A551C881C09

Authentication Plugins

Using Native Pluggable Authentication

MySQL client programs use mysql_native_password by default. The --default-auth option can
be used as a hint about which client-side plugin the program can expect to use:

$> mysql --default-auth=mysql_native_password ...

8.4.1.2 Caching SHA-2 Pluggable Authentication

MySQL provides two authentication plugins that implement SHA-256 hashing for user account
passwords:

• caching_sha2_password: Implements SHA-256 authentication (like the deprecated
sha256_password), but uses caching on the server side for better performance and has additional
features for wider applicability.

• sha256_password: Implements basic SHA-256 authentication. This is deprecated as of MySQL
8.0.16 and subject to removal in the future.

This section describes the caching SHA-2 authentication plugin. For information about the original
basic (noncaching) plugin, see Section 8.4.1.3, “SHA-256 Pluggable Authentication”.

Important

In MySQL 8.0, caching_sha2_password is the default authentication plugin
rather than mysql_native_password. For information about the implications
of this change for server operation and compatibility of the server with clients
and connectors, see caching_sha2_password as the Preferred Authentication
Plugin.

Important

To connect to the server using an account that authenticates with the
caching_sha2_password plugin, you must use either a secure connection
or an unencrypted connection that supports password exchange using
an RSA key pair, as described later in this section. Either way, the
caching_sha2_password plugin uses MySQL's encryption capabilities. See
Section 8.3, “Using Encrypted Connections”.

Note

In the name sha256_password, “sha256” refers to the 256-bit digest length
the plugin uses for encryption. In the name caching_sha2_password, “sha2”
refers more generally to the SHA-2 class of encryption algorithms, of which 256-
bit encryption is one instance. The latter name choice leaves room for future
expansion of possible digest lengths without changing the plugin name.

The caching_sha2_password plugin has these advantages, compared to sha256_password:

• On the server side, an in-memory cache enables faster reauthentication of users who have
connected previously when they connect again.

• RSA-based password exchange is available regardless of the SSL library against which MySQL is
linked.

• Support is provided for client connections that use the Unix socket-file and shared-memory protocols.

The following table shows the plugin names on the server and client sides.

Table 8.17 Plugin and Library Names for SHA-2 Authentication

Plugin or File Plugin or File Name

Server-side plugin caching_sha2_password

1433

Authentication Plugins

Plugin or File Plugin or File Name

Client-side plugin caching_sha2_password

Library file None (plugins are built in)

The following sections provide installation and usage information specific to caching SHA-2 pluggable
authentication:

• Installing SHA-2 Pluggable Authentication

• Using SHA-2 Pluggable Authentication

• Cache Operation for SHA-2 Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”.

Installing SHA-2 Pluggable Authentication

The caching_sha2_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

The server-side plugin uses the sha2_cache_cleaner audit plugin as a helper to perform password
cache management. sha2_cache_cleaner, like caching_sha2_password, is built in and need not
be installed.

Using SHA-2 Pluggable Authentication

To set up an account that uses the caching_sha2_password plugin for SHA-256 password hashing,
use the following statement, where password is the desired account password:

CREATE USER 'sha2user'@'localhost'
IDENTIFIED WITH caching_sha2_password BY 'password';

The server assigns the caching_sha2_password plugin to the account and uses it to encrypt
the password using SHA-256, storing those values in the plugin and authentication_string
columns of the mysql.user system table.

The preceding instructions do not assume that caching_sha2_password is the default
authentication plugin. If caching_sha2_password is the default authentication plugin, a simpler
CREATE USER syntax can be used.

To start the server with the default authentication plugin set to caching_sha2_password, put these
lines in the server option file:

[mysqld]
default_authentication_plugin=caching_sha2_password

That causes the caching_sha2_password plugin to be used by default for new accounts. As a
result, it is possible to create the account and set its password without naming the plugin explicitly:

CREATE USER 'sha2user'@'localhost' IDENTIFIED BY 'password';

Another consequence of setting default_authentication_plugin to
caching_sha2_password is that, to use some other plugin for account creation, you must specify
that plugin explicitly. For example, to use the deprecated mysql_native_password plugin, use this
statement:

CREATE USER 'nativeuser'@'localhost'

1434

Authentication Plugins

IDENTIFIED WITH mysql_native_password BY 'password';

caching_sha2_password supports connections over secure transport. If you follow the RSA
configuration procedure given later in this section, it also supports encrypted password exchange using
RSA over unencrypted connections. RSA support has these characteristics:

• On the server side, two system variables name the RSA private and public
key-pair files: caching_sha2_password_private_key_path and
caching_sha2_password_public_key_path. The database administrator must set these
variables at server startup if the key files to use have names that differ from the system variable
default values.

• The server uses the caching_sha2_password_auto_generate_rsa_keys system variable to
determine whether to automatically generate the RSA key-pair files. See Section 8.3.3, “Creating
SSL and RSA Certificates and Keys”.

• The Caching_sha2_password_rsa_public_key status variable displays the RSA public key
value used by the caching_sha2_password authentication plugin.

• Clients that are in possession of the RSA public key can perform RSA key pair-based password
exchange with the server during the connection process, as described later.

• For connections by accounts that authenticate with caching_sha2_password and RSA key pair-
based password exchange, the server does not send the RSA public key to clients by default. Clients
can use a client-side copy of the required public key, or request the public key from the server.

Use of a trusted local copy of the public key enables the client to avoid a round trip in the client/
server protocol, and is more secure than requesting the public key from the server. On the other
hand, requesting the public key from the server is more convenient (it requires no management of a
client-side file) and may be acceptable in secure network environments.

• For command-line clients, use the --server-public-key-path option to specify the RSA
public key file. Use the --get-server-public-key option to request the public key from
the server. The following programs support the two options: mysql, mysqlsh, mysqladmin,
mysqlbinlog, mysqlcheck, mysqldump, mysqlimport, mysqlpump, mysqlshow,
mysqlslap, mysqltest, mysql_upgrade.

• For programs that use the C API, call mysql_options() to specify the RSA public key file by
passing the MYSQL_SERVER_PUBLIC_KEY option and the name of the file, or request the public
key from the server by passing the MYSQL_OPT_GET_SERVER_PUBLIC_KEY option.

• For replicas, use the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or
CHANGE MASTER TO statement (before MySQL 8.0.23) with the SOURCE_PUBLIC_KEY_PATH
| MASTER_PUBLIC_KEY_PATH option to specify the RSA public key file, or the
GET_SOURCE_PUBLIC_KEY | GET_MASTER_PUBLIC_KEY option to request the public key from
the source. For Group Replication, the group_replication_recovery_public_key_path
and group_replication_recovery_get_public_key system variables serve the same
purpose.

In all cases, if the option is given to specify a valid public key file, it takes precedence over the option
to request the public key from the server.

For clients that use the caching_sha2_password plugin, passwords are never exposed as cleartext
when connecting to the server. How password transmission occurs depends on whether a secure
connection or RSA encryption is used:

• If the connection is secure, an RSA key pair is unnecessary and is not used. This applies to TCP
connections encrypted using TLS, as well as Unix socket-file and shared-memory connections. The
password is sent as cleartext but cannot be snooped because the connection is secure.

• If the connection is not secure, an RSA key pair is used. This applies to TCP connections not
encrypted using TLS and named-pipe connections. RSA is used only for password exchange

1435

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Authentication Plugins

between client and server, to prevent password snooping. When the server receives the encrypted
password, it decrypts it. A scramble is used in the encryption to prevent repeat attacks.

To enable use of an RSA key pair for password exchange during the client connection process, use the
following procedure:

1. Create the RSA private and public key-pair files using the instructions in Section 8.3.3, “Creating
SSL and RSA Certificates and Keys”.

2. If the private and public key files are located in the data directory and
are named private_key.pem and public_key.pem (the default
values of the caching_sha2_password_private_key_path and
caching_sha2_password_public_key_path system variables), the server uses them
automatically at startup.

Otherwise, to name the key files explicitly, set the system variables to the key file names in the
server option file. If the files are located in the server data directory, you need not specify their full
path names:

[mysqld]
caching_sha2_password_private_key_path=myprivkey.pem
caching_sha2_password_public_key_path=mypubkey.pem

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[mysqld]
caching_sha2_password_private_key_path=/usr/local/mysql/myprivkey.pem
caching_sha2_password_public_key_path=/usr/local/mysql/mypubkey.pem

3. If you want to change the number of hash rounds used by caching_sha2_password during
password generation, set the caching_sha2_password_digest_rounds system variable. For
example:

[mysqld]
caching_sha2_password_digest_rounds=10000

4. Restart the server, then connect to it and check the
Caching_sha2_password_rsa_public_key status variable value. The value actually displayed
differs from that shown here, but should be nonempty:

mysql> SHOW STATUS LIKE 'Caching_sha2_password_rsa_public_key'\G
*************************** 1. row ***************************
Variable_name: Caching_sha2_password_rsa_public_key
 Value: -----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDO9nRUDd+KvSZgY7cNBZMNpwX6
MvE1PbJFXO7u18nJ9lwc99Du/E7lw6CVXw7VKrXPeHbVQUzGyUNkf45Nz/ckaaJa
aLgJOBCIDmNVnyU54OT/1lcs2xiyfaDMe8fCJ64ZwTnKbY2gkt1IMjUAB5Ogd5kJ
g8aV7EtKwyhHb0c30QIDAQAB
-----END PUBLIC KEY-----

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, accounts that authenticate with the
caching_sha2_password plugin have the option of using those key files to connect to the server.
As mentioned previously, such accounts can use either a secure connection (in which case RSA is not
used) or an unencrypted connection that performs password exchange using RSA. Suppose that an
unencrypted connection is used. For example:

$> mysql --ssl-mode=DISABLED -u sha2user -p
Enter password: password

For this connection attempt by sha2user, the server determines that caching_sha2_password is
the appropriate authentication plugin and invokes it (because that was the plugin specified at CREATE

1436

Authentication Plugins

USER time). The plugin finds that the connection is not encrypted and thus requires the password to be
transmitted using RSA encryption. However, the server does not send the public key to the client, and
the client provided no public key, so it cannot encrypt the password and the connection fails:

ERROR 2061 (HY000): Authentication plugin 'caching_sha2_password'
reported error: Authentication requires secure connection.

To request the RSA public key from the server, specify the --get-server-public-key option:

$> mysql --ssl-mode=DISABLED -u sha2user -p --get-server-public-key
Enter password: password

In this case, the server sends the RSA public key to the client, which uses it to encrypt the password
and returns the result to the server. The plugin uses the RSA private key on the server side to decrypt
the password and accepts or rejects the connection based on whether the password is correct.

Alternatively, if the client has a file containing a local copy of the RSA public key required by the server,
it can specify the file using the --server-public-key-path option:

$> mysql --ssl-mode=DISABLED -u sha2user -p --server-public-key-path=file_name
Enter password: password

In this case, the client uses the public key to encrypt the password and returns the result to the server.
The plugin uses the RSA private key on the server side to decrypt the password and accepts or rejects
the connection based on whether the password is correct.

The public key value in the file named by the --server-public-key-path
option should be the same as the key value in the server-side file named by the
caching_sha2_password_public_key_path system variable. If the key file contains a valid public
key value but the value is incorrect, an access-denied error occurs. If the key file does not contain a
valid public key, the client program cannot use it.

Client users can obtain the RSA public key two ways:

• The database administrator can provide a copy of the public key file.

• A client user who can connect to the server some other way can use a SHOW STATUS LIKE
'Caching_sha2_password_rsa_public_key' statement and save the returned key value in a
file.

Cache Operation for SHA-2 Pluggable Authentication

On the server side, the caching_sha2_password plugin uses an in-memory cache for faster
authentication of clients who have connected previously. Entries consist of account-name/password-
hash pairs. The cache works like this:

1. When a client connects, caching_sha2_password checks whether the client and password
match some cache entry. If so, authentication succeeds.

2. If there is no matching cache entry, the plugin attempts to verify the client against the credentials in
the mysql.user system table. If this succeeds, caching_sha2_password adds an entry for the
client to the hash. Otherwise, authentication fails and the connection is rejected.

In this way, when a client first connects, authentication against the mysql.user system table occurs.
When the client connects subsequently, faster authentication against the cache occurs.

Password cache operations other than adding entries are handled by the sha2_cache_cleaner audit
plugin, which performs these actions on behalf of caching_sha2_password:

• It clears the cache entry for any account that is renamed or dropped, or any account for which the
credentials or authentication plugin are changed.

• It empties the cache when the FLUSH PRIVILEGES statement is executed.

1437

Authentication Plugins

• It empties the cache at server shutdown. (This means the cache is not persistent across server
restarts.)

Cache clearing operations affect the authentication requirements for subsequent client connections.
For each user account, the first client connection for the user after any of the following operations
must use a secure connection (made using TCP using TLS credentials, a Unix socket file, or shared
memory) or RSA key pair-based password exchange:

• After account creation.

• After a password change for the account.

• After RENAME USER for the account.

• After FLUSH PRIVILEGES.

FLUSH PRIVILEGES clears the entire cache and affects all accounts that use the
caching_sha2_password plugin. The other operations clear specific cache entries and affect only
accounts that are part of the operation.

Once the user authenticates successfully, the account is entered into the cache and subsequent
connections do not require a secure connection or the RSA key pair, until another cache clearing
event occurs that affects the account. (When the cache can be used, the server uses a challenge-
response mechanism that does not use cleartext password transmission and does not require a secure
connection.)

8.4.1.3 SHA-256 Pluggable Authentication

MySQL provides two authentication plugins that implement SHA-256 hashing for user account
passwords:

• caching_sha2_password: Implements SHA-256 authentication (like the deprecated
sha256_password), but uses caching on the server side for better performance and has additional
features for wider applicability.

• sha256_password: Implements basic SHA-256 authentication. This is deprecated as of MySQL
8.0.16 and subject to removal in the future.

This section describes the original noncaching SHA-2 authentication plugin. For information about the
caching plugin, see Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”.

Important

In MySQL 8.0, caching_sha2_password is the default authentication plugin
rather than mysql_native_password. For information about the implications
of this change for server operation and compatibility of the server with clients
and connectors, see caching_sha2_password as the Preferred Authentication
Plugin.

Because caching_sha2_password is the default authentication
plugin in MySQL 8.0 and provides a superset of the capabilities of the
sha256_password authentication plugin, sha256_password is deprecated;
expect it to be removed in a future version of MySQL. MySQL accounts
that authenticate using sha256_password should be migrated to use
caching_sha2_password instead.

Important

To connect to the server using an account that authenticates with the
sha256_password plugin, you must use either a TLS connection or an
unencrypted connection that supports password exchange using an RSA key

1438

Authentication Plugins

pair, as described later in this section. Either way, the sha256_password
plugin uses MySQL's encryption capabilities. See Section 8.3, “Using Encrypted
Connections”.

Note

In the name sha256_password, “sha256” refers to the 256-bit digest length
the plugin uses for encryption. In the name caching_sha2_password, “sha2”
refers more generally to the SHA-2 class of encryption algorithms, of which 256-
bit encryption is one instance. The latter name choice leaves room for future
expansion of possible digest lengths without changing the plugin name.

The following table shows the plugin names on the server and client sides.

Table 8.18 Plugin and Library Names for SHA-256 Authentication

Plugin or File Plugin or File Name

Server-side plugin sha256_password

Client-side plugin sha256_password

Library file None (plugins are built in)

The following sections provide installation and usage information specific to SHA-256 pluggable
authentication:

• Installing SHA-256 Pluggable Authentication

• Using SHA-256 Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”.

Installing SHA-256 Pluggable Authentication

The sha256_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

Using SHA-256 Pluggable Authentication

To set up an account that uses the deprecated sha256_password plugin for SHA-256 password
hashing, use the following statement, where password is the desired account password:

CREATE USER 'sha256user'@'localhost'
IDENTIFIED WITH sha256_password BY 'password';

The server assigns the sha256_password plugin to the account and uses it to encrypt the password
using SHA-256, storing those values in the plugin and authentication_string columns of the
mysql.user system table.

The preceding instructions do not assume that sha256_password is the default authentication plugin.
If sha256_password is the default authentication plugin, a simpler CREATE USER syntax can be
used.

To start the server with the default authentication plugin set to sha256_password, put these lines in
the server option file:

1439

Authentication Plugins

[mysqld]
default_authentication_plugin=sha256_password

That causes the sha256_password plugin to be used by default for new accounts. As a result, it is
possible to create the account and set its password without naming the plugin explicitly:

CREATE USER 'sha256user'@'localhost' IDENTIFIED BY 'password';

Another consequence of setting default_authentication_plugin to sha256_password is that,
to use some other plugin for account creation, you must specify that plugin explicitly. For example, to
use the mysql_native_password plugin, use this statement:

CREATE USER 'nativeuser'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'password';

sha256_password supports connections over secure transport. sha256_password also supports
encrypted password exchange using RSA over unencrypted connections if MySQL is compiled using
OpenSSL, and the MySQL server to which you wish to connect is configured to support RSA (using the
RSA configuration procedure given later in this section).

RSA support has these characteristics:

• On the server side, two system variables name the RSA private and public key-pair files:
sha256_password_private_key_path and sha256_password_public_key_path. The
database administrator must set these variables at server startup if the key files to use have names
that differ from the system variable default values.

• The server uses the sha256_password_auto_generate_rsa_keys system variable to
determine whether to automatically generate the RSA key-pair files. See Section 8.3.3, “Creating
SSL and RSA Certificates and Keys”.

• The Rsa_public_key status variable displays the RSA public key value used by the
sha256_password authentication plugin.

• Clients that are in possession of the RSA public key can perform RSA key pair-based password
exchange with the server during the connection process, as described later.

• For connections by accounts that authenticate with sha256_password and RSA public key pair-
based password exchange, the server sends the RSA public key to the client as needed. However, if
a copy of the public key is available on the client host, the client can use it to save a round trip in the
client/server protocol:

• For these command-line clients, use the --server-public-key-path option to specify
the RSA public key file: mysql, mysqladmin, mysqlbinlog, mysqlcheck, mysqldump,
mysqlimport, mysqlpump, mysqlshow, mysqlslap, mysqltest, mysql_upgrade.

• For programs that use the C API, call mysql_options() to specify the RSA public key file by
passing the MYSQL_SERVER_PUBLIC_KEY option and the name of the file.

• For replicas, use the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or
CHANGE MASTER TO statement (before MySQL 8.0.23) with the SOURCE_PUBLIC_KEY_PATH |
MASTER_PUBLIC_KEY_PATH option to specify the RSA public key file. For Group Replication, the
group_replication_recovery_get_public_key system variable serves the same purpose.

For clients that use the sha256_password plugin, passwords are never exposed as cleartext when
connecting to the server. How password transmission occurs depends on whether a secure connection
or RSA encryption is used:

• If the connection is secure, an RSA key pair is unnecessary and is not used. This applies to
connections encrypted using TLS. The password is sent as cleartext but cannot be snooped because
the connection is secure.

1440

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Authentication Plugins

Note

Unlike caching_sha2_password, the sha256_password plugin does not
treat shared-memory connections as secure, even though share-memory
transport is secure by default.

• If the connection is not secure, and an RSA key pair is available, the connection remains
unencrypted. This applies to connections not encrypted using TLS. RSA is used only for password
exchange between client and server, to prevent password snooping. When the server receives the
encrypted password, it decrypts it. A scramble is used in the encryption to prevent repeat attacks.

• If a secure connection is not used and RSA encryption is not available, the connection attempt fails
because the password cannot be sent without being exposed as cleartext.

Note

To use RSA password encryption with sha256_password, the client and
server both must be compiled using OpenSSL, not just one of them.

Assuming that MySQL has been compiled using OpenSSL, use the following procedure to enable use
of an RSA key pair for password exchange during the client connection process:

1. Create the RSA private and public key-pair files using the instructions in Section 8.3.3, “Creating
SSL and RSA Certificates and Keys”.

2. If the private and public key files are located in the data directory and are
named private_key.pem and public_key.pem (the default values of the
sha256_password_private_key_path and sha256_password_public_key_path system
variables), the server uses them automatically at startup.

Otherwise, to name the key files explicitly, set the system variables to the key file names in the
server option file. If the files are located in the server data directory, you need not specify their full
path names:

[mysqld]
sha256_password_private_key_path=myprivkey.pem
sha256_password_public_key_path=mypubkey.pem

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[mysqld]
sha256_password_private_key_path=/usr/local/mysql/myprivkey.pem
sha256_password_public_key_path=/usr/local/mysql/mypubkey.pem

3. Restart the server, then connect to it and check the Rsa_public_key status variable value. The
value actually displayed differs from that shown here, but should be nonempty:

mysql> SHOW STATUS LIKE 'Rsa_public_key'\G
*************************** 1. row ***************************
Variable_name: Rsa_public_key
 Value: -----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDO9nRUDd+KvSZgY7cNBZMNpwX6
MvE1PbJFXO7u18nJ9lwc99Du/E7lw6CVXw7VKrXPeHbVQUzGyUNkf45Nz/ckaaJa
aLgJOBCIDmNVnyU54OT/1lcs2xiyfaDMe8fCJ64ZwTnKbY2gkt1IMjUAB5Ogd5kJ
g8aV7EtKwyhHb0c30QIDAQAB
-----END PUBLIC KEY-----

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, accounts that authenticate with the
sha256_password plugin have the option of using those key files to connect to the server. As
mentioned previously, such accounts can use either a secure connection (in which case RSA is not

1441

Authentication Plugins

used) or an unencrypted connection that performs password exchange using RSA. Suppose that an
unencrypted connection is used. For example:

$> mysql --ssl-mode=DISABLED -u sha256user -p
Enter password: password

For this connection attempt by sha256user, the server determines that sha256_password is the
appropriate authentication plugin and invokes it (because that was the plugin specified at CREATE
USER time). The plugin finds that the connection is not encrypted and thus requires the password to
be transmitted using RSA encryption. In this case, the plugin sends the RSA public key to the client,
which uses it to encrypt the password and returns the result to the server. The plugin uses the RSA
private key on the server side to decrypt the password and accepts or rejects the connection based on
whether the password is correct.

The server sends the RSA public key to the client as needed. However, if the client has a file
containing a local copy of the RSA public key required by the server, it can specify the file using the --
server-public-key-path option:

$> mysql --ssl-mode=DISABLED -u sha256user -p --server-public-key-path=file_name
Enter password: password

The public key value in the file named by the --server-public-key-path option should be the
same as the key value in the server-side file named by the sha256_password_public_key_path
system variable. If the key file contains a valid public key value but the value is incorrect, an access-
denied error occurs. If the key file does not contain a valid public key, the client program cannot use
it. In this case, the sha256_password plugin sends the public key to the client as if no --server-
public-key-path option had been specified.

Client users can obtain the RSA public key two ways:

• The database administrator can provide a copy of the public key file.

• A client user who can connect to the server some other way can use a SHOW STATUS LIKE
'Rsa_public_key' statement and save the returned key value in a file.

8.4.1.4 Client-Side Cleartext Pluggable Authentication

A client-side authentication plugin is available that enables clients to send passwords to the server as
cleartext, without hashing or encryption. This plugin is built into the MySQL client library.

The following table shows the plugin name.

Table 8.19 Plugin and Library Names for Cleartext Authentication

Plugin or File Plugin or File Name

Server-side plugin None, see discussion

Client-side plugin mysql_clear_password

Library file None (plugin is built in)

Many client-side authentication plugins perform hashing or encryption of a password before the client
sends it to the server. This enables clients to avoid sending passwords as cleartext.

Hashing or encryption cannot be done for authentication schemes that require the server to receive
the password as entered on the client side. In such cases, the client-side mysql_clear_password
plugin is used, which enables the client to send the password to the server as cleartext. There is
no corresponding server-side plugin. Rather, mysql_clear_password can be used on the client
side in concert with any server-side plugin that needs a cleartext password. (Examples are the PAM
and simple LDAP authentication plugins; see Section 8.4.1.5, “PAM Pluggable Authentication”, and
Section 8.4.1.7, “LDAP Pluggable Authentication”.)

The following discussion provides usage information specific to cleartext pluggable authentication.
For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”.

1442

Authentication Plugins

Note

Sending passwords as cleartext may be a security problem in some
configurations. To avoid problems if there is any possibility that the password
would be intercepted, clients should connect to MySQL Server using a method
that protects the password. Possibilities include SSL (see Section 8.3, “Using
Encrypted Connections”), IPsec, or a private network.

To make inadvertent use of the mysql_clear_password plugin less likely, MySQL clients must
explicitly enable it. This can be done in several ways:

• Set the LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable to a value that begins with
1, Y, or y. This enables the plugin for all client connections.

• The mysql, mysqladmin, mysqlcheck, mysqldump, mysqlshow, and mysqlslap client
programs support an --enable-cleartext-plugin option that enables the plugin on a per-
invocation basis.

• The mysql_options() C API function supports a MYSQL_ENABLE_CLEARTEXT_PLUGIN option
that enables the plugin on a per-connection basis. Also, any program that uses libmysqlclient
and reads option files can enable the plugin by including an enable-cleartext-plugin option in
an option group read by the client library.

8.4.1.5 PAM Pluggable Authentication

Note

PAM pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition supports an authentication method that enables MySQL Server to use
PAM (Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to
use a standard interface to access various kinds of authentication methods, such as traditional Unix
passwords or an LDAP directory.

PAM pluggable authentication provides these capabilities:

• External authentication: PAM authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables and that authenticate using methods supported by
PAM.

• Proxy user support: PAM authentication can return to MySQL a user name different from the external
user name passed by the client program, based on the PAM groups the external user is a member
of and the authentication string provided. This means that the plugin can return the MySQL user that
defines the privileges the external PAM-authenticated user should have. For example, an operating
system user named joe can connect and have the privileges of a MySQL user named developer.

PAM pluggable authentication has been tested on Linux and macOS; note that Windows does not
support PAM.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable. For
installation information, see Installing PAM Pluggable Authentication.

Table 8.20 Plugin and Library Names for PAM Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_pam

Client-side plugin mysql_clear_password

Library file authentication_pam.so

1443

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://www.mysql.com/products/

Authentication Plugins

The client-side mysql_clear_password cleartext plugin that communicates with the server-side
PAM plugin is built into the libmysqlclient client library and is included in all distributions, including
community distributions. Inclusion of the client-side cleartext plugin in all MySQL distributions enables
clients from any distribution to connect to a server that has the server-side PAM plugin loaded.

The following sections provide installation and usage information specific to PAM pluggable
authentication:

• How PAM Authentication of MySQL Users Works

• Installing PAM Pluggable Authentication

• Uninstalling PAM Pluggable Authentication

• Using PAM Pluggable Authentication

• PAM Unix Password Authentication without Proxy Users

• PAM LDAP Authentication without Proxy Users

• PAM Unix Password Authentication with Proxy Users and Group Mapping

• PAM Authentication Access to Unix Password Store

• PAM Authentication Debugging

For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”. For information about the mysql_clear_password plugin, see Section 8.4.1.4,
“Client-Side Cleartext Pluggable Authentication”. For proxy user information, see Section 8.2.19, “Proxy
Users”.

How PAM Authentication of MySQL Users Works

This section provides an overview of how MySQL and PAM work together to authenticate MySQL
users. For examples showing how to set up MySQL accounts to use specific PAM services, see Using
PAM Pluggable Authentication.

1. The client program and the server communicate, with the client sending to the server the client user
name (the operating system user name by default) and password:

• The client user name is the external user name.

• For accounts that use the PAM server-side authentication plugin, the corresponding client-side
plugin is mysql_clear_password. This client-side plugin performs no password hashing, with
the result that the client sends the password to the server as cleartext.

2. The server finds a matching MySQL account based on the external user name and the host from
which the client connects. The PAM plugin uses the information passed to it by MySQL Server
(such as user name, host name, password, and authentication string). When you define a MySQL
account that authenticates using PAM, the authentication string contains:

• A PAM service name, which is a name that the system administrator can use to refer to an
authentication method for a particular application. There can be multiple applications associated
with a single database server instance, so the choice of service name is left to the SQL
application developer.

• Optionally, if proxying is to be used, a mapping from PAM groups to MySQL user names.

3. The plugin uses the PAM service named in the authentication string to check the user
credentials and returns 'Authentication succeeded, Username is user_name' or
'Authentication failed'. The password must be appropriate for the password store used by
the PAM service. Examples:

1444

Authentication Plugins

• For traditional Unix passwords, the service looks up passwords stored in the /etc/shadow file.

• For LDAP, the service looks up passwords stored in an LDAP directory.

If the credentials check fails, the server refuses the connection.

4. Otherwise, the authentication string indicates whether proxying occurs. If the string contains no
PAM group mapping, proxying does not occur. In this case, the MySQL user name is the same as
the external user name.

5. Otherwise, proxying is indicated based on the PAM group mapping, with the MySQL user name
determined based on the first matching group in the mapping list. The meaning of “PAM group”
depends on the PAM service. Examples:

• For traditional Unix passwords, groups are Unix groups defined in the /etc/group file, possibly
supplemented with additional PAM information in a file such as /etc/security/group.conf.

• For LDAP, groups are LDAP groups defined in an LDAP directory.

If the proxy user (the external user) has the PROXY privilege for the proxied MySQL user name,
proxying occurs, with the proxy user assuming the privileges of the proxied user.

Installing PAM Pluggable Authentication

This section describes how to install the server-side PAM authentication plugin. For general information
about installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is authentication_pam, and is typically compiled with the .so
suffix.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file:

[mysqld]
plugin-load-add=authentication_pam.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix as necessary:

INSTALL PLUGIN authentication_pam SONAME 'authentication_pam.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%pam%';
+--------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------------+---------------+
| authentication_pam | ACTIVE |
+--------------------+---------------+

1445

Authentication Plugins

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the PAM plugin, see Using PAM Pluggable Authentication.

Uninstalling PAM Pluggable Authentication

The method used to uninstall the PAM authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed
across server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_pam;

Using PAM Pluggable Authentication

This section describes in general terms how to use the PAM authentication plugin to connect from
MySQL client programs to the server. The following sections provide instructions for using PAM
authentication in specific ways. It is assumed that the server is running with the server-side PAM plugin
enabled, as described in Installing PAM Pluggable Authentication.

To refer to the PAM authentication plugin in the IDENTIFIED WITH clause of a CREATE USER
statement, use the name authentication_pam. For example:

CREATE USER user
 IDENTIFIED WITH authentication_pam
 AS 'auth_string';

The authentication string specifies the following types of information:

• The PAM service name (see How PAM Authentication of MySQL Users Works). Examples in the
following discussion use a service name of mysql-unix for authentication using traditional Unix
passwords, and mysql-ldap for authentication using LDAP.

• For proxy support, PAM provides a way for a PAM module to return to the server a MySQL user
name other than the external user name passed by the client program when it connects to the
server. Use the authentication string to control the mapping from external user names to MySQL
user names. If you want to take advantage of proxy user capabilities, the authentication string must
include this kind of mapping.

For example, if an account uses the mysql-unix PAM service name and should map operating
system users in the root and users PAM groups to the developer and data_entry MySQL users,
respectively, use a statement like this:

CREATE USER user
 IDENTIFIED WITH authentication_pam
 AS 'mysql-unix, root=developer, users=data_entry';

Authentication string syntax for the PAM authentication plugin follows these rules:

• The string consists of a PAM service name, optionally followed by a PAM group mapping list
consisting of one or more keyword/value pairs each specifying a PAM group name and a MySQL
user name:

pam_service_name[,pam_group_name=mysql_user_name]...

The plugin parses the authentication string for each connection attempt that uses the account. To
minimize overhead, keep the string as short as possible.

• Each pam_group_name=mysql_user_name pair must be preceded by a comma.

• Leading and trailing spaces not inside double quotation marks are ignored.

1446

Authentication Plugins

• Unquoted pam_service_name, pam_group_name, and mysql_user_name values can contain
anything except equal sign, comma, or space.

• If a pam_service_name, pam_group_name, or mysql_user_name value is quoted with double
quotation marks, everything between the quotation marks is part of the value. This is necessary, for
example, if the value contains space characters. All characters are legal except double quotation
mark and backslash (\). To include either character, escape it with a backslash.

If the plugin successfully authenticates the external user name (the name passed by the client), it looks
for a PAM group mapping list in the authentication string and, if present, uses it to return a different
MySQL user name to the MySQL server based on which PAM groups the external user is a member of:

• If the authentication string contains no PAM group mapping list, the plugin returns the external name.

• If the authentication string does contain a PAM group mapping list, the plugin examines each
pam_group_name=mysql_user_name pair in the list from left to right and tries to find a match for
the pam_group_name value in a non-MySQL directory of the groups assigned to the authenticated
user and returns mysql_user_name for the first match it finds. If the plugin finds no match for
any PAM group, it returns the external name. If the plugin is not capable of looking up a group in a
directory, it ignores the PAM group mapping list and returns the external name.

The following sections describe how to set up several authentication scenarios that use the PAM
authentication plugin:

• No proxy users. This uses PAM only to check login names and passwords. Every external user
permitted to connect to MySQL Server should have a matching MySQL account that is defined
to use PAM authentication. (For a MySQL account of 'user_name'@'host_name' to match
the external user, user_name must be the external user name and host_name must match the
host from which the client connects.) Authentication can be performed by various PAM-supported
methods. Later discussion shows how to authenticate client credentials using traditional Unix
passwords, and passwords in LDAP.

PAM authentication, when not done through proxy users or PAM groups, requires the MySQL
user name to be same as the operating system user name. MySQL user names are limited to 32
characters (see Section 8.2.3, “Grant Tables”), which limits PAM nonproxy authentication to Unix
accounts with names of at most 32 characters.

• Proxy users only, with PAM group mapping. For this scenario, create one or more MySQL accounts
that define different sets of privileges. (Ideally, nobody should connect using those accounts directly.)
Then define a default user authenticating through PAM that uses some mapping scheme (usually
based on the external PAM groups the users are members of) to map all the external user names
to the few MySQL accounts holding the privilege sets. Any client who connects and specifies an
external user name as the client user name is mapped to one of the MySQL accounts and uses its
privileges. The discussion shows how to set this up using traditional Unix passwords, but other PAM
methods such as LDAP could be used instead.

Variations on these scenarios are possible:

• You can permit some users to log in directly (without proxying) but require others to connect through
proxy accounts.

• You can use one PAM authentication method for some users, and another method for other users,
by using differing PAM service names among your PAM-authenticated accounts. For example, you
can use the mysql-unix PAM service for some users, and mysql-ldap for others.

The examples make the following assumptions. You might need to make some adjustments if your
system is set up differently.

• The login name and password are antonio and antonio_password, respectively. Change these
to correspond to the user you want to authenticate.

1447

Authentication Plugins

• The PAM configuration directory is /etc/pam.d.

• The PAM service name corresponds to the authentication method (mysql-unix or mysql-ldap
in this discussion). To use a given PAM service, you must set up a PAM file with the same name
in the PAM configuration directory (creating the file if it does not exist). In addition, you must name
the PAM service in the authentication string of the CREATE USER statement for any account that
authenticates using that PAM service.

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set in the server's startup environment. If so, the plugin enables logging of
diagnostic messages to the standard output. Depending on how your server is started, the message
might appear on the console or in the error log. These messages can be helpful for debugging PAM-
related issues that occur when the plugin performs authentication. For more information, see PAM
Authentication Debugging.

PAM Unix Password Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system
user names and Unix passwords, without proxying. Every such external user permitted to connect to
MySQL Server should have a matching MySQL account that is defined to use PAM authentication
through traditional Unix password store.

Note

Traditional Unix passwords are checked using the /etc/shadow file.
For information regarding possible issues related to this file, see PAM
Authentication Access to Unix Password Store.

1. Verify that Unix authentication permits logins to the operating system with the user name antonio
and password antonio_password.

2. Set up PAM to authenticate MySQL connections using traditional Unix passwords by creating a
mysql-unix PAM service file named /etc/pam.d/mysql-unix. The file contents are system
dependent, so check existing login-related files in the /etc/pam.d directory to see what they look
like. On Linux, the mysql-unix file might look like this:

#%PAM-1.0
auth include password-auth
account include password-auth

For macOS, use login rather than password-auth.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-
based systems, use these file contents instead:

@include common-auth
@include common-account
@include common-session-noninteractive

3. Create a MySQL account with the same user name as the operating system user name and define
it to authenticate using the PAM plugin and the mysql-unix PAM service:

CREATE USER 'antonio'@'localhost'
 IDENTIFIED WITH authentication_pam
 AS 'mysql-unix';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'antonio'@'localhost';

Here, the authentication string contains only the PAM service name, mysql-unix, which
authenticates Unix passwords.

4. Use the mysql command-line client to connect to the MySQL server as antonio. For example:

1448

Authentication Plugins

$> mysql --user=antonio --password --enable-cleartext-plugin
Enter password: antonio_password

The server should permit the connection and the following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+-------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+-------------------+--------------+
| antonio@localhost | antonio@localhost | NULL |
+-------------------+-------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges
granted to the antonio MySQL user, and that no proxying has occurred.

Note

The client-side mysql_clear_password authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as
cleartext. This enables the password to be passed as is to PAM. A cleartext
password is necessary to use the server-side PAM library, but may be a
security problem in some configurations. These measures minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less likely,
MySQL clients must explicitly enable it (for example, with the --enable-
cleartext-plugin option). See Section 8.4.1.4, “Client-Side Cleartext
Pluggable Authentication”.

• To avoid password exposure with the mysql_clear_password plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 8.3.1, “Configuring MySQL to Use
Encrypted Connections”.

PAM LDAP Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system
user names and LDAP passwords, without proxying. Every such external user permitted to connect
to MySQL Server should have a matching MySQL account that is defined to use PAM authentication
through LDAP.

To use PAM LDAP pluggable authentication for MySQL, these prerequisites must be satisfied:

• An LDAP server must be available for the PAM LDAP service to communicate with.

• Each LDAP user to be authenticated by MySQL must be present in the directory managed by the
LDAP server.

Note

Another way to use LDAP for MySQL user authentication is to use the
LDAP-specific authentication plugins. See Section 8.4.1.7, “LDAP Pluggable
Authentication”.

Configure MySQL for PAM LDAP authentication as follows:

1. Verify that Unix authentication permits logins to the operating system with the user name antonio
and password antonio_password.

2. Set up PAM to authenticate MySQL connections using LDAP by creating a mysql-ldap PAM
service file named /etc/pam.d/mysql-ldap. The file contents are system dependent, so check
existing login-related files in the /etc/pam.d directory to see what they look like. On Linux, the
mysql-ldap file might look like this:

1449

Authentication Plugins

#%PAM-1.0
auth required pam_ldap.so
account required pam_ldap.so

If PAM object files have a suffix different from .so on your system, substitute the correct suffix.

The PAM file format might differ on some systems.

3. Create a MySQL account with the same user name as the operating system user name and define
it to authenticate using the PAM plugin and the mysql-ldap PAM service:

CREATE USER 'antonio'@'localhost'
 IDENTIFIED WITH authentication_pam
 AS 'mysql-ldap';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'antonio'@'localhost';

Here, the authentication string contains only the PAM service name, mysql-ldap, which
authenticates using LDAP.

4. Connecting to the server is the same as described in PAM Unix Password Authentication without
Proxy Users.

PAM Unix Password Authentication with Proxy Users and Group Mapping

The authentication scheme described here uses proxying and PAM group mapping to map connecting
MySQL users who authenticate using PAM onto other MySQL accounts that define different sets of
privileges. Users do not connect directly through the accounts that define the privileges. Instead, they
connect through a default proxy account authenticated using PAM, such that all the external users
are mapped to the MySQL accounts that hold the privileges. Any user who connects using the proxy
account is mapped to one of those MySQL accounts, the privileges for which determine the database
operations permitted to the external user.

The procedure shown here uses Unix password authentication. To use LDAP instead, see the early
steps of PAM LDAP Authentication without Proxy Users.

Note

Traditional Unix passwords are checked using the /etc/shadow file.
For information regarding possible issues related to this file, see PAM
Authentication Access to Unix Password Store.

1. Verify that Unix authentication permits logins to the operating system with the user name antonio
and password antonio_password.

2. Verify that antonio is a member of the root or users PAM group.

3. Set up PAM to authenticate the mysql-unix PAM service through operating system users by
creating a file named /etc/pam.d/mysql-unix. The file contents are system dependent, so
check existing login-related files in the /etc/pam.d directory to see what they look like. On Linux,
the mysql-unix file might look like this:

#%PAM-1.0
auth include password-auth
account include password-auth

For macOS, use login rather than password-auth.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-
based systems, use these file contents instead:

@include common-auth

1450

Authentication Plugins

@include common-account
@include common-session-noninteractive

4. Create a default proxy user (''@'') that maps external PAM users to the proxied accounts:

CREATE USER ''@''
 IDENTIFIED WITH authentication_pam
 AS 'mysql-unix, root=developer, users=data_entry';

Here, the authentication string contains the PAM service name, mysql-unix, which authenticates
Unix passwords. The authentication string also maps external users in the root and users PAM
groups to the developer and data_entry MySQL user names, respectively.

The PAM group mapping list following the PAM service name is required when you set up proxy
users. Otherwise, the plugin cannot tell how to perform mapping from external user names to the
proper proxied MySQL user names.

Note

If your MySQL installation has anonymous users, they might conflict with
the default proxy user. For more information about this issue, and ways of
dealing with it, see Default Proxy User and Anonymous User Conflicts.

5. Create the proxied accounts and grant to each one the privileges it should have:

CREATE USER 'developer'@'localhost'
 IDENTIFIED WITH mysql_no_login;
CREATE USER 'data_entry'@'localhost'
 IDENTIFIED WITH mysql_no_login;

GRANT ALL PRIVILEGES
 ON mydevdb.*
 TO 'developer'@'localhost';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'data_entry'@'localhost';

The proxied accounts use the mysql_no_login authentication plugin to prevent clients from
using the accounts to log in directly to the MySQL server. Instead, users who authenticate using
PAM are expected to use the developer or data_entry account by proxy based on their PAM
group. (This assumes that the plugin is installed. For instructions, see Section 8.4.1.9, “No-Login
Pluggable Authentication”.) For alternative methods of protecting proxied accounts against direct
use, see Preventing Direct Login to Proxied Accounts.

6. Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'';
GRANT PROXY
 ON 'data_entry'@'localhost'
 TO ''@'';

7. Use the mysql command-line client to connect to the MySQL server as antonio.

$> mysql --user=antonio --password --enable-cleartext-plugin
Enter password: antonio_password

The server authenticates the connection using the default ''@'' proxy account. The resulting
privileges for antonio depend on which PAM groups antonio is a member of. If antonio is
a member of the root PAM group, the PAM plugin maps root to the developer MySQL user
name and returns that name to the server. The server verifies that ''@'' has the PROXY privilege
for developer and permits the connection. The following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+---------------------+--------------+

1451

Authentication Plugins

| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+---------------------+--------------+
| antonio@localhost | developer@localhost | ''@'' |
+-------------------+---------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges
granted to the developer MySQL user, and that proxying occurs through the default proxy
account.

If antonio is not a member of the root PAM group but is a member of the users PAM group,
a similar process occurs, but the plugin maps user PAM group membership to the data_entry
MySQL user name and returns that name to the server:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+----------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+----------------------+--------------+
| antonio@localhost | data_entry@localhost | ''@'' |
+-------------------+----------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges
of the data_entry MySQL user, and that proxying occurs through the default proxy account.

Note

The client-side mysql_clear_password authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as
cleartext. This enables the password to be passed as is to PAM. A cleartext
password is necessary to use the server-side PAM library, but may be a
security problem in some configurations. These measures minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less likely,
MySQL clients must explicitly enable it (for example, with the --enable-
cleartext-plugin option). See Section 8.4.1.4, “Client-Side Cleartext
Pluggable Authentication”.

• To avoid password exposure with the mysql_clear_password plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 8.3.1, “Configuring MySQL to Use
Encrypted Connections”.

PAM Authentication Access to Unix Password Store

On some systems, Unix authentication uses a password store such as /etc/shadow, a file that
typically has restricted access permissions. This can cause MySQL PAM-based authentication to
fail. Unfortunately, the PAM implementation does not permit distinguishing “password could not be
checked” (due, for example, to inability to read /etc/shadow) from “password does not match.” If you
are using Unix password store for PAM authentication, you may be able to enable access to it from
MySQL using one of the following methods:

• Assuming that the MySQL server is run from the mysql operating system account, put that account
in the shadow group that has /etc/shadow access:

1. Create a shadow group in /etc/group.

2. Add the mysql operating system user to the shadow group in /etc/group.

3. Assign /etc/group to the shadow group and enable the group read permission:

chgrp shadow /etc/shadow
chmod g+r /etc/shadow

4. Restart the MySQL server.

1452

Authentication Plugins

• If you are using the pam_unix module and the unix_chkpwd utility, enable password store access
as follows:

chmod u-s /usr/sbin/unix_chkpwd
setcap cap_dac_read_search+ep /usr/sbin/unix_chkpwd

Adjust the path to unix_chkpwd as necessary for your platform.

PAM Authentication Debugging

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set. In MySQL 8.0.35 and earlier, the value does not matter. If so, the plugin
enables logging of diagnostic messages to the standard output. These messages may be helpful for
debugging PAM-related issues that occur when the plugin performs authentication. You should be
aware that, in these versions, passwords are included in these messages.

Beginning with MySQL 8.0.36, setting AUTHENTICATION_PAM_LOG=1 (or some other arbitrary value)
produces the same diagnostic messages, but does not include any passwords. If you wish to include
passwords in these messages, set AUTHENTICATION_PAM_LOG=PAM_LOG_WITH_SECRET_INFO.

Some messages include reference to PAM plugin source files and line numbers, which enables plugin
actions to be tied more closely to the location in the code where they occur.

Another technique for debugging connection failures and determining what is happening during
connection attempts is to configure PAM authentication to permit all connections, then check the
system log files. This technique should be used only on a temporary basis, and not on a production
server.

Configure a PAM service file named /etc/pam.d/mysql-any-password with these contents (the
format may differ on some systems):

#%PAM-1.0
auth required pam_permit.so
account required pam_permit.so

Create an account that uses the PAM plugin and names the mysql-any-password PAM service:

CREATE USER 'testuser'@'localhost'
 IDENTIFIED WITH authentication_pam
 AS 'mysql-any-password';

The mysql-any-password service file causes any authentication attempt to return true, even for
incorrect passwords. If an authentication attempt fails, that tells you the configuration problem is on
the MySQL side. Otherwise, the problem is on the operating system/PAM side. To see what might be
happening, check system log files such as /var/log/secure, /var/log/audit.log, /var/log/
syslog, or /var/log/messages.

After determining what the problem is, remove the mysql-any-password PAM service file to disable
any-password access.

8.4.1.6 Windows Pluggable Authentication

Note

Windows pluggable authentication is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

MySQL Enterprise Edition for Windows supports an authentication method that performs external
authentication on Windows, enabling MySQL Server to use native Windows services to authenticate
client connections. Users who have logged in to Windows can connect from MySQL client programs to
the server based on the information in their environment without specifying an additional password.

1453

https://www.mysql.com/products/

Authentication Plugins

The client and server exchange data packets in the authentication handshake. As a result of this
exchange, the server creates a security context object that represents the identity of the client in the
Windows OS. This identity includes the name of the client account. Windows pluggable authentication
uses the identity of the client to check whether it is a given account or a member of a group. By default,
negotiation uses Kerberos to authenticate, then NTLM if Kerberos is unavailable.

Windows pluggable authentication provides these capabilities:

• External authentication: Windows authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables who have logged in to Windows.

• Proxy user support: Windows authentication can return to MySQL a user name different from
the external user name passed by the client program. This means that the plugin can return the
MySQL user that defines the privileges the external Windows-authenticated user should have. For
example, a Windows user named joe can connect and have the privileges of a MySQL user named
developer.

The following table shows the plugin and library file names. The file must be located in the directory
named by the plugin_dir system variable.

Table 8.21 Plugin and Library Names for Windows Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_windows

Client-side plugin authentication_windows_client

Library file authentication_windows.dll

The library file includes only the server-side plugin. The client-side plugin is built into the
libmysqlclient client library.

The server-side Windows authentication plugin is included only in MySQL Enterprise Edition. It is
not included in MySQL community distributions. The client-side plugin is included in all distributions,
including community distributions. This enables clients from any distribution to connect to a server that
has the server-side plugin loaded.

The following sections provide installation and usage information specific to Windows pluggable
authentication:

• Installing Windows Pluggable Authentication

• Uninstalling Windows Pluggable Authentication

• Using Windows Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”. For proxy user information, see Section 8.2.19, “Proxy Users”.

Installing Windows Pluggable Authentication

This section describes how to install the server-side Windows authentication plugin. For general
information about installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file:

1454

Authentication Plugins

[mysqld]
plugin-load-add=authentication_windows.dll

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

INSTALL PLUGIN authentication_windows SONAME 'authentication_windows.dll';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%windows%';
+------------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+------------------------+---------------+
| authentication_windows | ACTIVE |
+------------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the Windows authentication plugin,
see Using Windows Pluggable Authentication. Additional plugin control is
provided by the authentication_windows_use_principal_name and
authentication_windows_log_level system variables. See Section 7.1.8, “Server System
Variables”.

Uninstalling Windows Pluggable Authentication

The method used to uninstall the Windows authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed
across server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_windows;

In addition, remove any startup options that set Windows plugin-related system variables.

Using Windows Pluggable Authentication

The Windows authentication plugin supports the use of MySQL accounts such that users who have
logged in to Windows can connect to the MySQL server without having to specify an additional
password. It is assumed that the server is running with the server-side plugin enabled, as described in
Installing Windows Pluggable Authentication. Once the DBA has enabled the server-side plugin and set
up accounts to use it, clients can connect using those accounts with no other setup required on their
part.

To refer to the Windows authentication plugin in the IDENTIFIED WITH clause of a CREATE USER
statement, use the name authentication_windows. Suppose that the Windows users Rafal
and Tasha should be permitted to connect to MySQL, as well as any users in the Administrators
or Power Users group. To set this up, create a MySQL account named sql_admin that uses the
Windows plugin for authentication:

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows

1455

Authentication Plugins

 AS 'Rafal, Tasha, Administrators, "Power Users"';

The plugin name is authentication_windows. The string following the AS keyword is the
authentication string. It specifies that the Windows users named Rafal or Tasha are permitted
to authenticate to the server as the MySQL user sql_admin, as are any Windows users in the
Administrators or Power Users group. The latter group name contains a space, so it must be
quoted with double quote characters.

After you create the sql_admin account, a user who has logged in to Windows can attempt to connect
to the server using that account:

C:\> mysql --user=sql_admin

No password is required here. The authentication_windows plugin uses the Windows security
API to check which Windows user is connecting. If that user is named Rafal or Tasha, or is a
member of the Administrators or Power Users group, the server grants access and the client
is authenticated as sql_admin and has whatever privileges are granted to the sql_admin account.
Otherwise, the server denies access.

Authentication string syntax for the Windows authentication plugin follows these rules:

• The string consists of one or more user mappings separated by commas.

• Each user mapping associates a Windows user or group name with a MySQL user name:

win_user_or_group_name=mysql_user_name
win_user_or_group_name

For the latter syntax, with no mysql_user_name value given, the implicit value is the MySQL user
created by the CREATE USER statement. Thus, these statements are equivalent:

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal, Tasha, Administrators, "Power Users"';

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal=sql_admin, Tasha=sql_admin, Administrators=sql_admin,
 "Power Users"=sql_admin';

• Each backslash character (\) in a value must be doubled because backslash is the escape character
in MySQL strings.

• Leading and trailing spaces not inside double quotation marks are ignored.

• Unquoted win_user_or_group_name and mysql_user_name values can contain anything
except equal sign, comma, or space.

• If a win_user_or_group_name and or mysql_user_name value is quoted with double quotation
marks, everything between the quotation marks is part of the value. This is necessary, for example,
if the name contains space characters. All characters within double quotes are legal except double
quotation mark and backslash. To include either character, escape it with a backslash.

• win_user_or_group_name values use conventional syntax for Windows principals, either local or
in a domain. Examples (note the doubling of backslashes):

domain\\user
.\\user
domain\\group
.\\group
BUILTIN\\WellKnownGroup

When invoked by the server to authenticate a client, the plugin scans the authentication string left
to right for a user or group match to the Windows user. If there is a match, the plugin returns the
corresponding mysql_user_name to the MySQL server. If there is no match, authentication fails.

1456

Authentication Plugins

A user name match takes preference over a group name match. Suppose that the Windows user
named win_user is a member of win_group and the authentication string looks like this:

'win_group = sql_user1, win_user = sql_user2'

When win_user connects to the MySQL server, there is a match both to win_group and to
win_user. The plugin authenticates the user as sql_user2 because the more-specific user match
takes precedence over the group match, even though the group is listed first in the authentication
string.

Windows authentication always works for connections from the same computer on which the server
is running. For cross-computer connections, both computers must be registered with Microsoft Active
Directory. If they are in the same Windows domain, it is unnecessary to specify a domain name. It is
also possible to permit connections from a different domain, as in this example:

CREATE USER sql_accounting
 IDENTIFIED WITH authentication_windows
 AS 'SomeDomain\\Accounting';

Here SomeDomain is the name of the other domain. The backslash character is doubled because it is
the MySQL escape character within strings.

MySQL supports the concept of proxy users whereby a client can connect and authenticate to the
MySQL server using one account but while connected has the privileges of another account (see
Section 8.2.19, “Proxy Users”). Suppose that you want Windows users to connect using a single user
name but be mapped based on their Windows user and group names onto specific MySQL accounts
as follows:

• The local_user and MyDomain\domain_user local and domain Windows users should map to
the local_wlad MySQL account.

• Users in the MyDomain\Developers domain group should map to the local_dev MySQL
account.

• Local machine administrators should map to the local_admin MySQL account.

To set this up, create a proxy account for Windows users to connect to, and configure this account
so that users and groups map to the appropriate MySQL accounts (local_wlad, local_dev,
local_admin). In addition, grant the MySQL accounts the privileges appropriate to the operations
they need to perform. The following instructions use win_proxy as the proxy account, and
local_wlad, local_dev, and local_admin as the proxied accounts.

1. Create the proxy MySQL account:

CREATE USER win_proxy
 IDENTIFIED WITH authentication_windows
 AS 'local_user = local_wlad,
 MyDomain\\domain_user = local_wlad,
 MyDomain\\Developers = local_dev,
 BUILTIN\\Administrators = local_admin';

2. For proxying to work, the proxied accounts must exist, so create them:

CREATE USER local_wlad
 IDENTIFIED WITH mysql_no_login;
CREATE USER local_dev
 IDENTIFIED WITH mysql_no_login;
CREATE USER local_admin
 IDENTIFIED WITH mysql_no_login;

The proxied accounts use the mysql_no_login authentication plugin to prevent clients from using
the accounts to log in directly to the MySQL server. Instead, users who authenticate using Windows
are expected to use the win_proxy proxy account. (This assumes that the plugin is installed. For
instructions, see Section 8.4.1.9, “No-Login Pluggable Authentication”.) For alternative methods of
protecting proxied accounts against direct use, see Preventing Direct Login to Proxied Accounts.

1457

Authentication Plugins

You should also execute GRANT statements (not shown) that grant each proxied account the
privileges required for MySQL access.

3. Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY ON local_wlad TO win_proxy;
GRANT PROXY ON local_dev TO win_proxy;
GRANT PROXY ON local_admin TO win_proxy;

Now the Windows users local_user and MyDomain\domain_user can connect to the MySQL
server as win_proxy and when authenticated have the privileges of the account given in the
authentication string (in this case, local_wlad). A user in the MyDomain\Developers group
who connects as win_proxy has the privileges of the local_dev account. A user in the BUILTIN
\Administrators group has the privileges of the local_admin account.

To configure authentication so that all Windows users who do not have their own MySQL account go
through a proxy account, substitute the default proxy account (''@'') for win_proxy in the preceding
instructions. For information about default proxy accounts, see Section 8.2.19, “Proxy Users”.

Note

If your MySQL installation has anonymous users, they might conflict with the
default proxy user. For more information about this issue, and ways of dealing
with it, see Default Proxy User and Anonymous User Conflicts.

To use the Windows authentication plugin with Connector/NET connection strings in Connector/NET
8.0 and higher, see Connector/NET Authentication.

8.4.1.7 LDAP Pluggable Authentication

Note

LDAP pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition supports an authentication method that enables MySQL Server to use LDAP
(Lightweight Directory Access Protocol) to authenticate MySQL users by accessing directory services
such as X.500. MySQL uses LDAP to fetch user, credential, and group information.

LDAP pluggable authentication provides these capabilities:

• External authentication: LDAP authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables in LDAP directories.

• Proxy user support: LDAP authentication can return to MySQL a user name different from the
external user name passed by the client program, based on the LDAP groups the external user is a
member of. This means that an LDAP plugin can return the MySQL user that defines the privileges
the external LDAP-authenticated user should have. For example, an LDAP user named joe can
connect and have the privileges of a MySQL user named developer, if the LDAP group for joe is
developer.

• Security: Using TLS, connections to the LDAP server can be secure.

Server and client plugins are available for simple and SASL-based LDAP authentication. On Microsoft
Windows, the server plugin for SASL-based LDAP authentication is not supported, but the client plugin
is.

The following tables show the plugin and library file names for simple and SASL-based LDAP
authentication. The file name suffix might differ on your system. The files must be located in the
directory named by the plugin_dir system variable.

1458

https://dev.mysql.com/doc/connector-net/en/connector-net-authentication.html
https://www.mysql.com/products/

Authentication Plugins

Table 8.22 Plugin and Library Names for Simple LDAP Authentication

Plugin or File Plugin or File Name

Server-side plugin name authentication_ldap_simple

Client-side plugin name mysql_clear_password

Library file name authentication_ldap_simple.so

Table 8.23 Plugin and Library Names for SASL-Based LDAP Authentication

Plugin or File Plugin or File Name

Server-side plugin name authentication_ldap_sasl

Client-side plugin name authentication_ldap_sasl_client

Library file names authentication_ldap_sasl.so,
authentication_ldap_sasl_client.so

The library files include only the authentication_ldap_XXX authentication plugins. The client-side
mysql_clear_password plugin is built into the libmysqlclient client library.

Each server-side LDAP plugin works with a specific client-side plugin:

• The server-side authentication_ldap_simple plugin performs simple LDAP authentication.
For connections by accounts that use this plugin, client programs use the client-side
mysql_clear_password plugin, which sends the password to the server as cleartext. No
password hashing or encryption is used, so a secure connection between the MySQL client and
server is recommended to prevent password exposure.

• The server-side authentication_ldap_sasl plugin performs SASL-based LDAP
authentication. For connections by accounts that use this plugin, client programs use the client-
side authentication_ldap_sasl_client plugin. The client-side and server-side SASL LDAP
plugins use SASL messages for secure transmission of credentials within the LDAP protocol, to
avoid sending the cleartext password between the MySQL client and server.

Note

On Microsoft Windows, the server plugin for SASL-based LDAP
authentication is not supported, but the client plugin is supported. On other
platforms, both the server and client plugins are supported.

The server-side LDAP authentication plugins are included only in MySQL Enterprise Edition. They
are not included in MySQL community distributions. The client-side SASL LDAP plugin is included
in all distributions, including community distributions, and, as mentioned previously, the client-side
mysql_clear_password plugin is built into the libmysqlclient client library, which also is
included in all distributions. This enables clients from any distribution to connect to a server that has the
appropriate server-side plugin loaded.

The following sections provide installation and usage information specific to LDAP pluggable
authentication:

• Prerequisites for LDAP Pluggable Authentication

• How LDAP Authentication of MySQL Users Works

• Installing LDAP Pluggable Authentication

• Uninstalling LDAP Pluggable Authentication

• LDAP Pluggable Authentication and ldap.conf

• Using LDAP Pluggable Authentication

1459

Authentication Plugins

• Simple LDAP Authentication (Without Proxying)

• SASL-Based LDAP Authentication (Without Proxying)

• LDAP Authentication with Proxying

• LDAP Authentication Group Preference and Mapping Specification

• LDAP Authentication User DN Suffixes

• LDAP Authentication Methods

• The GSSAPI/Kerberos Authentication Method

• LDAP Search Referral

For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”. For information about the mysql_clear_password plugin, see Section 8.4.1.4,
“Client-Side Cleartext Pluggable Authentication”. For proxy user information, see Section 8.2.19, “Proxy
Users”.

Note

If your system supports PAM and permits LDAP as a PAM authentication
method, another way to use LDAP for MySQL user authentication is to use
the server-side authentication_pam plugin. See Section 8.4.1.5, “PAM
Pluggable Authentication”.

Prerequisites for LDAP Pluggable Authentication

To use LDAP pluggable authentication for MySQL, these prerequisites must be satisfied:

• An LDAP server must be available for the LDAP authentication plugins to communicate with.

• LDAP users to be authenticated by MySQL must be present in the directory managed by the LDAP
server.

• An LDAP client library must be available on systems where the server-side
authentication_ldap_sasl or authentication_ldap_simple plugin is used. Currently,
supported libraries are the Windows native LDAP library, or the OpenLDAP library on non-Windows
systems.

• To use SASL-based LDAP authentication:

• The LDAP server must be configured to communicate with a SASL server.

• A SASL client library must be available on systems where the client-side
authentication_ldap_sasl_client plugin is used. Currently, the only supported library is
the Cyrus SASL library.

• To use a particular SASL authentication method, any other services required by that method must
be available. For example, to use GSSAPI/Kerberos, a GSSAPI library and Kerberos services
must be available.

How LDAP Authentication of MySQL Users Works

This section provides an overview of how MySQL and LDAP work together to authenticate MySQL
users. For examples showing how to set up MySQL accounts to use specific LDAP authentication
plugins, see Using LDAP Pluggable Authentication. For information about authentication methods
available to the LDAP plugins, see LDAP Authentication Methods.

The client connects to the MySQL server, providing the MySQL client user name and a password:

1460

Authentication Plugins

• For simple LDAP authentication, the client-side and server-side plugins communicate the password
as cleartext. A secure connection between the MySQL client and server is recommended to prevent
password exposure.

• For SASL-based LDAP authentication, the client-side and server-side plugins avoid sending the
cleartext password between the MySQL client and server. For example, the plugins might use
SASL messages for secure transmission of credentials within the LDAP protocol. For the GSSAPI
authentication method, the client-side and server-side plugins communicate securely using Kerberos
without using LDAP messages directly.

If the client user name and host name match no MySQL account, the connection is rejected.

If there is a matching MySQL account, authentication against LDAP occurs. The LDAP server looks for
an entry matching the user and authenticates the entry against the LDAP password:

• If the MySQL account names an LDAP user distinguished name (DN), LDAP authentication uses that
value and the LDAP password provided by the client. (To associate an LDAP user DN with a MySQL
account, include a BY clause that specifies an authentication string in the CREATE USER statement
that creates the account.)

• If the MySQL account names no LDAP user DN, LDAP authentication uses the user name and LDAP
password provided by the client. In this case, the authentication plugin first binds to the LDAP server
using the root DN and password as credentials to find the user DN based on the client user name,
then authenticates that user DN against the LDAP password. This bind using the root credentials
fails if the root DN and password are set to incorrect values, or are empty (not set) and the LDAP
server does not permit anonymous connections.

If the LDAP server finds no match or multiple matches, authentication fails and the client connection is
rejected.

If the LDAP server finds a single match, LDAP authentication succeeds (assuming that the password is
correct), the LDAP server returns the LDAP entry, and the authentication plugin determines the name
of the authenticated user based on that entry:

• If the LDAP entry has a group attribute (by default, the cn attribute), the plugin returns its value as
the authenticated user name.

• If the LDAP entry has no group attribute, the authentication plugin returns the client user name as the
authenticated user name.

The MySQL server compares the client user name with the authenticated user name to determine
whether proxying occurs for the client session:

• If the names are the same, no proxying occurs: The MySQL account matching the client user name
is used for privilege checking.

• If the names differ, proxying occurs: MySQL looks for an account matching the authenticated user
name. That account becomes the proxied user, which is used for privilege checking. The MySQL
account that matched the client user name is treated as the external proxy user.

Installing LDAP Pluggable Authentication

This section describes how to install the server-side LDAP authentication plugins. For general
information about installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library files must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The server-side plugin library file base names are authentication_ldap_simple and
authentication_ldap_sasl. The file name suffix differs per platform (for example, .so for Unix
and Unix-like systems, .dll for Windows).

1461

Authentication Plugins

Note

On Microsoft Windows, the server plugin for SASL-based LDAP authentication
is not supported, but the client plugin is supported. On other platforms, both the
server and client plugins are supported.

To load the plugins at server startup, use --plugin-load-add options to name the library files that
contain them. With this plugin-loading method, the options must be given each time the server starts.
Also, specify values for any plugin-provided system variables you wish to configure.

Each server-side LDAP plugin exposes a set of system variables that enable its operation to be
configured. Setting most of these is optional, but you must set the variables that specify the LDAP
server host (so the plugin knows where to connect) and base distinguished name for LDAP bind
operations (to limit the scope of searches and obtain faster searches). For details about all LDAP
system variables, see Section 8.4.1.13, “Pluggable Authentication System Variables”.

To load the plugins and set the LDAP server host and base distinguished name for LDAP bind
operations, put lines such as these in your my.cnf file, adjusting the .so suffix for your platform as
necessary:

[mysqld]
plugin-load-add=authentication_ldap_simple.so
authentication_ldap_simple_server_host=127.0.0.1
authentication_ldap_simple_bind_base_dn="dc=example,dc=com"
plugin-load-add=authentication_ldap_sasl.so
authentication_ldap_sasl_server_host=127.0.0.1
authentication_ldap_sasl_bind_base_dn="dc=example,dc=com"

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugins at runtime, use these statements, adjusting the .so suffix for your
platform as necessary:

INSTALL PLUGIN authentication_ldap_simple
 SONAME 'authentication_ldap_simple.so';
INSTALL PLUGIN authentication_ldap_sasl
 SONAME 'authentication_ldap_sasl.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

After installing the plugins at runtime, the system variables that they expose become available and
you can add settings for them to your my.cnf file to configure the plugins for subsequent restarts. For
example:

[mysqld]
authentication_ldap_simple_server_host=127.0.0.1
authentication_ldap_simple_bind_base_dn="dc=example,dc=com"
authentication_ldap_sasl_server_host=127.0.0.1
authentication_ldap_sasl_bind_base_dn="dc=example,dc=com"

After modifying my.cnf, restart the server to cause the new settings to take effect.

To set and persist each value at runtime rather than at startup, use these statements:

SET PERSIST authentication_ldap_simple_server_host='127.0.0.1';
SET PERSIST authentication_ldap_simple_bind_base_dn='dc=example,dc=com';
SET PERSIST authentication_ldap_sasl_server_host='127.0.0.1';
SET PERSIST authentication_ldap_sasl_bind_base_dn='dc=example,dc=com';

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to
carry over to subsequent server restarts. To change a value for the running MySQL instance without
having it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See
Section 15.7.6.1, “SET Syntax for Variable Assignment”.

1462

Authentication Plugins

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%ldap%';
+----------------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+----------------------------+---------------+
| authentication_ldap_sasl | ACTIVE |
| authentication_ldap_simple | ACTIVE |
+----------------------------+---------------+

If a plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with an LDAP plugin, see Using LDAP Pluggable Authentication.

Additional Notes for SELinux

On systems running EL6 or EL that have SELinux enabled, changes to
the SELinux policy are required to enable the MySQL LDAP plugins to
communicate with the LDAP service:

1. Create a file mysqlldap.te with these contents:

module mysqlldap 1.0;

require {
 type ldap_port_t;
 type mysqld_t;
 class tcp_socket name_connect;
}

#============= mysqld_t ==============

allow mysqld_t ldap_port_t:tcp_socket name_connect;

2. Compile the security policy module into a binary representation:

checkmodule -M -m mysqlldap.te -o mysqlldap.mod

3. Create an SELinux policy module package:

semodule_package -m mysqlldap.mod -o mysqlldap.pp

4. Install the module package:

semodule -i mysqlldap.pp

5. When the SELinux policy changes have been made, restart the MySQL
server:

service mysqld restart

Uninstalling LDAP Pluggable Authentication

The method used to uninstall the LDAP authentication plugins depends on how you installed them:

• If you installed the plugins at server startup using --plugin-load-add options, restart the server
without those options.

• If you installed the plugins at runtime using INSTALL PLUGIN, they remain installed across server
restarts. To uninstall them, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_ldap_simple;
UNINSTALL PLUGIN authentication_ldap_sasl;

1463

Authentication Plugins

In addition, remove from your my.cnf file any startup options that set LDAP plugin-related system
variables. If you used SET PERSIST to persist LDAP system variables, use RESET PERSIST to
remove the settings.

LDAP Pluggable Authentication and ldap.conf

For installations that use OpenLDAP, the ldap.conf file provides global defaults for LDAP clients.
Options can be set in this file to affect LDAP clients, including the LDAP authentication plugins.
OpenLDAP uses configuration options in this order of precedence:

• Configuration specified by the LDAP client.

• Configuration specified in the ldap.conf file. To disable use of this file, set the LDAPNOINIT
environment variable.

• OpenLDAP library built-in defaults.

If the library defaults or ldap.conf values do not yield appropriate option values, an LDAP
authentication plugin may be able to set related variables to affect the LDAP configuration directly. For
example, LDAP plugins can override ldap.conf for parameters such as these:

• TLS configuration: System variables are available to enable TLS and control CA configuration, such
as authentication_ldap_simple_tls and authentication_ldap_simple_ca_path
for simple LDAP authentication, and authentication_ldap_sasl_tls and
authentication_ldap_sasl_ca_path for SASL LDAP authentication.

• LDAP referral. See LDAP Search Referral.

For more information about ldap.conf consult the ldap.conf(5) man page.

Using LDAP Pluggable Authentication

This section describes how to enable MySQL accounts to connect to the MySQL server using LDAP
pluggable authentication. It is assumed that the server is running with the appropriate server-side
plugins enabled, as described in Installing LDAP Pluggable Authentication, and that the appropriate
client-side plugins are available on the client host.

This section does not describe LDAP configuration or administration. You are assumed to be familiar
with those topics.

The two server-side LDAP plugins each work with a specific client-side plugin:

• The server-side authentication_ldap_simple plugin performs simple LDAP authentication.
For connections by accounts that use this plugin, client programs use the client-side
mysql_clear_password plugin, which sends the password to the server as cleartext. No
password hashing or encryption is used, so a secure connection between the MySQL client and
server is recommended to prevent password exposure.

• The server-side authentication_ldap_sasl plugin performs SASL-based LDAP
authentication. For connections by accounts that use this plugin, client programs use the client-
side authentication_ldap_sasl_client plugin. The client-side and server-side SASL LDAP
plugins use SASL messages for secure transmission of credentials within the LDAP protocol, to
avoid sending the cleartext password between the MySQL client and server.

Overall requirements for LDAP authentication of MySQL users:

• There must be an LDAP directory entry for each user to be authenticated.

• There must be a MySQL user account that specifies a server-side LDAP authentication plugin and
optionally names the associated LDAP user distinguished name (DN). (To associate an LDAP user
DN with a MySQL account, include a BY clause in the CREATE USER statement that creates the

1464

Authentication Plugins

account.) If an account names no LDAP string, LDAP authentication uses the user name specified by
the client to find the LDAP entry.

• Client programs connect using the connection method appropriate for the server-side
authentication plugin the MySQL account uses. For LDAP authentication, connections require
the MySQL user name and LDAP password. In addition, for accounts that use the server-side
authentication_ldap_simple plugin, invoke client programs with the --enable-cleartext-
plugin option to enable the client-side mysql_clear_password plugin.

The instructions here assume the following scenario:

• MySQL users betsy and boris authenticate to the LDAP entries for betsy_ldap and
boris_ldap, respectively. (It is not necessary that the MySQL and LDAP user names differ. The
use of different names in this discussion helps clarify whether an operation context is MySQL or
LDAP.)

• LDAP entries use the uid attribute to specify user names. This may vary depending on
LDAP server. Some LDAP servers use the cn attribute for user names rather than uid. To
change the attribute, modify the authentication_ldap_simple_user_search_attr or
authentication_ldap_sasl_user_search_attr system variable appropriately.

• These LDAP entries are available in the directory managed by the LDAP server, to provide
distinguished name values that uniquely identify each user:

uid=betsy_ldap,ou=People,dc=example,dc=com
uid=boris_ldap,ou=People,dc=example,dc=com

• CREATE USER statements that create MySQL accounts name an LDAP user in the BY clause, to
indicate which LDAP entry the MySQL account authenticates against.

The instructions for setting up an account that uses LDAP authentication depend on which server-side
LDAP plugin is used. The following sections describe several usage scenarios.

Simple LDAP Authentication (Without Proxying)

The procedure outlined in this section requires that
authentication_ldap_simple_group_search_attr be set to an empty string, like this:

SET GLOBAL.authentication_ldap_simple_group_search_attr='';

Otherwise, proxying is used by default.

To set up a MySQL account for simple LDAP authentication, use a CREATE USER statement to specify
the authentication_ldap_simple plugin, optionally including the LDAP user distinguished name
(DN), as shown here:

CREATE USER user
 IDENTIFIED WITH authentication_ldap_simple
 [BY 'LDAP user DN'];

Suppose that MySQL user betsy has this entry in the LDAP directory:

uid=betsy_ldap,ou=People,dc=example,dc=com

Then the statement to create the MySQL account for betsy looks like this:

CREATE USER 'betsy'@'localhost'
 IDENTIFIED WITH authentication_ldap_simple
 AS 'uid=betsy_ldap,ou=People,dc=example,dc=com';

The authentication string specified in the BY clause does not include the LDAP password. That must be
provided by the client user at connect time.

Clients connect to the MySQL server by providing the MySQL user name and LDAP password, and by
enabling the client-side mysql_clear_password plugin:

1465

Authentication Plugins

$> mysql --user=betsy --password --enable-cleartext-plugin
Enter password: betsy_ldap_password

Note

The client-side mysql_clear_password authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as
cleartext. This enables the password to be passed as is to the LDAP server.
A cleartext password is necessary to use the server-side LDAP library without
SASL, but may be a security problem in some configurations. These measures
minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less likely,
MySQL clients must explicitly enable it (for example, with the --enable-
cleartext-plugin option). See Section 8.4.1.4, “Client-Side Cleartext
Pluggable Authentication”.

• To avoid password exposure with the mysql_clear_password plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 8.3.1, “Configuring MySQL to Use
Encrypted Connections”.

The authentication process occurs as follows:

1. The client-side plugin sends betsy and betsy_password as the client user name and LDAP
password to the MySQL server.

2. The connection attempt matches the 'betsy'@'localhost' account. The
server-side LDAP plugin finds that this account has an authentication string of
'uid=betsy_ldap,ou=People,dc=example,dc=com' to name the LDAP user DN. The plugin
sends this string and the LDAP password to the LDAP server.

3. The LDAP server finds the LDAP entry for betsy_ldap and the password matches, so LDAP
authentication succeeds.

4. The LDAP entry has no group attribute, so the server-side plugin returns the client user name
(betsy) as the authenticated user. This is the same user name supplied by the client, so no
proxying occurs and the client session uses the 'betsy'@'localhost' account for privilege
checking.

Had the CREATE USER statement contained no BY clause to specify the betsy_ldap LDAP
distinguished name, authentication attempts would use the user name provided by the client (in this
case, betsy). In the absence of an LDAP entry for betsy, authentication would fail.

SASL-Based LDAP Authentication (Without Proxying)

The procedure outlined in this section requires that
authentication_ldap_sasl_group_search_attr be set to an empty string, like this:

SET GLOBAL.authentication_ldap_sasl_group_search_attr='';

Otherwise, proxying is used by default.

To set up a MySQL account for SALS LDAP authentication, use a CREATE USER statement to specify
the authentication_ldap_sasl plugin, optionally including the LDAP user distinguished name
(DN), as shown here:

CREATE USER user
 IDENTIFIED WITH authentication_ldap_sasl
 [BY 'LDAP user DN'];

Suppose that MySQL user boris has this entry in the LDAP directory:

1466

Authentication Plugins

uid=boris_ldap,ou=People,dc=example,dc=com

Then the statement to create the MySQL account for boris looks like this:

CREATE USER 'boris'@'localhost'
 IDENTIFIED WITH authentication_ldap_sasl
 AS 'uid=boris_ldap,ou=People,dc=example,dc=com';

The authentication string specified in the BY clause does not include the LDAP password. That must be
provided by the client user at connect time.

Clients connect to the MySQL server by providing the MySQL user name and LDAP password:

$> mysql --user=boris --password
Enter password: boris_ldap_password

For the server-side authentication_ldap_sasl plugin, clients use the client-side
authentication_ldap_sasl_client plugin. If a client program does not find the client-side
plugin, specify a --plugin-dir option that names the directory where the plugin library file is
installed.

The authentication process for boris is similar to that previously described for betsy with simple
LDAP authentication, except that the client-side and server-side SASL LDAP plugins use SASL
messages for secure transmission of credentials within the LDAP protocol, to avoid sending the
cleartext password between the MySQL client and server.

LDAP Authentication with Proxying

LDAP authentication plugins support proxying, enabling a user to connect to the MySQL server as
one user but assume the privileges of a different user. This section describes basic LDAP plugin proxy
support. The LDAP plugins also support specification of group preference and proxy user mapping; see
LDAP Authentication Group Preference and Mapping Specification.

The proxying implementation described here is based on use of LDAP group attribute values to
map connecting MySQL users who authenticate using LDAP onto other MySQL accounts that
define different sets of privileges. Users do not connect directly through the accounts that define the
privileges. Instead, they connect through a default proxy account authenticated with LDAP, such that
all external logins are mapped to the proxied MySQL accounts that hold the privileges. Any user who
connects using the proxy account is mapped to one of those proxied MySQL accounts, the privileges
for which determine the database operations permitted to the external user.

The instructions here assume the following scenario:

• LDAP entries use the uid and cn attributes to specify user name and group values, respectively. To
use different user and group attribute names, set the appropriate plugin-specific system variables:

• For the authentication_ldap_simple plugin: Set
authentication_ldap_simple_user_search_attr and
authentication_ldap_simple_group_search_attr.

• For the authentication_ldap_sasl plugin: Set
authentication_ldap_sasl_user_search_attr and
authentication_ldap_sasl_group_search_attr.

• These LDAP entries are available in the directory managed by the LDAP server, to provide
distinguished name values that uniquely identify each user:

uid=basha,ou=People,dc=example,dc=com,cn=accounting
uid=basil,ou=People,dc=example,dc=com,cn=front_office

At connect time, the group attribute values become the authenticated user names, so they name the
accounting and front_office proxied accounts.

1467

Authentication Plugins

• The examples assume use of SASL LDAP authentication. Make the appropriate adjustments for
simple LDAP authentication.

Create the default proxy MySQL account:

CREATE USER ''@'%'
 IDENTIFIED WITH authentication_ldap_sasl;

The proxy account definition has no AS 'auth_string' clause to name an LDAP user DN. Thus:

• When a client connects, the client user name becomes the LDAP user name to search for.

• The matching LDAP entry is expected to include a group attribute naming the proxied MySQL
account that defines the privileges the client should have.

Note

If your MySQL installation has anonymous users, they might conflict with the
default proxy user. For more information about this issue, and ways of dealing
with it, see Default Proxy User and Anonymous User Conflicts.

Create the proxied accounts and grant to each one the privileges it should have:

CREATE USER 'accounting'@'localhost'
 IDENTIFIED WITH mysql_no_login;
CREATE USER 'front_office'@'localhost'
 IDENTIFIED WITH mysql_no_login;

GRANT ALL PRIVILEGES
 ON accountingdb.*
 TO 'accounting'@'localhost';
GRANT ALL PRIVILEGES
 ON frontdb.*
 TO 'front_office'@'localhost';

The proxied accounts use the mysql_no_login authentication plugin to prevent clients from using
the accounts to log in directly to the MySQL server. Instead, users who authenticate using LDAP are
expected to use the default ''@'%' proxy account. (This assumes that the mysql_no_login plugin
is installed. For instructions, see Section 8.4.1.9, “No-Login Pluggable Authentication”.) For alternative
methods of protecting proxied accounts against direct use, see Preventing Direct Login to Proxied
Accounts.

Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY
 ON 'accounting'@'localhost'
 TO ''@'%';
GRANT PROXY
 ON 'front_office'@'localhost'
 TO ''@'%';

Use the mysql command-line client to connect to the MySQL server as basha.

$> mysql --user=basha --password
Enter password: basha_password (basha LDAP password)

Authentication occurs as follows:

1. The server authenticates the connection using the default ''@'%' proxy account, for client user
basha.

2. The matching LDAP entry is:

uid=basha,ou=People,dc=example,dc=com,cn=accounting

3. The matching LDAP entry has group attribute cn=accounting, so accounting becomes the
authenticated proxied user.

1468

Authentication Plugins

4. The authenticated user differs from the client user name basha, with the result that basha
is treated as a proxy for accounting, and basha assumes the privileges of the proxied
accounting account. The following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-----------------+----------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-----------------+----------------------+--------------+
| basha@localhost | accounting@localhost | ''@'%' |
+-----------------+----------------------+--------------+

This demonstrates that basha uses the privileges granted to the proxied accounting MySQL
account, and that proxying occurs through the default proxy user account.

Now connect as basil instead:

$> mysql --user=basil --password
Enter password: basil_password (basil LDAP password)

The authentication process for basil is similar to that previously described for basha:

1. The server authenticates the connection using the default ''@'%' proxy account, for client user
basil.

2. The matching LDAP entry is:

uid=basil,ou=People,dc=example,dc=com,cn=front_office

3. The matching LDAP entry has group attribute cn=front_office, so front_office becomes
the authenticated proxied user.

4. The authenticated user differs from the client user name basil, with the result that basil
is treated as a proxy for front_office, and basil assumes the privileges of the proxied
front_office account. The following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-----------------+------------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-----------------+------------------------+--------------+
| basil@localhost | front_office@localhost | ''@'%' |
+-----------------+------------------------+--------------+

This demonstrates that basil uses the privileges granted to the proxied front_office MySQL
account, and that proxying occurs through the default proxy user account.

LDAP Authentication Group Preference and Mapping Specification

As described in LDAP Authentication with Proxying, basic LDAP authentication proxying works by the
principle that the plugin uses the first group name returned by the LDAP server as the MySQL proxied
user account name. This simple capability does not enable specifying any preference about which
group name to use if the LDAP server returns multiple group names, or specifying any name other than
the group name as the proxied user name.

As of MySQL 8.0.14, for MySQL accounts that use LDAP authentication, the authentication string can
specify the following information to enable greater proxying flexibility:

• A list of groups in preference order, such that the plugin uses the first group name in the list that
matches a group returned by the LDAP server.

• A mapping from group names to proxied user names, such that a group name when matched can
provide a specified name to use as the proxied user. This provides an alternative to using the group
name as the proxied user.

Consider the following MySQL proxy account definition:

CREATE USER ''@'%'

1469

Authentication Plugins

 IDENTIFIED WITH authentication_ldap_sasl
 AS '+ou=People,dc=example,dc=com#grp1=usera,grp2,grp3=userc';

The authentication string has a user DN suffix ou=People,dc=example,dc=com prefixed by the +
character. Thus, as described in LDAP Authentication User DN Suffixes, the full user DN is constructed
from the user DN suffix as specified, plus the client user name as the uid attribute.

The remaining part of the authentication string begins with #, which signifies the beginning of group
preference and mapping information. This part of the authentication string lists group names in the
order grp1, grp2, grp3. The LDAP plugin compares that list with the set of group names returned by
the LDAP server, looking in list order for a match against the returned names. The plugin uses the first
match, or if there is no match, authentication fails.

Suppose that the LDAP server returns groups grp3, grp2, and grp7. The LDAP plugin uses grp2
because it is the first group in the authentication string that matches, even though it is not the first
group returned by the LDAP server. If the LDAP server returns grp4, grp2, and grp1, the plugin uses
grp1 even though grp2 also matches. grp1 has a precedence higher than grp2 because it is listed
earlier in the authentication string.

Assuming that the plugin finds a group name match, it performs mapping from that group name to the
MySQL proxied user name, if there is one. For the example proxy account, mapping occurs as follows:

• If the matching group name is grp1 or grp3, those are associated in the authentication string with
user names usera and userc, respectively. The plugin uses the corresponding associated user
name as the proxied user name.

• If the matching group name is grp2, there is no associated user name in the authentication string.
The plugin uses grp2 as the proxied user name.

If the LDAP server returns a group in DN format, the LDAP plugin parses the group DN to extract the
group name from it.

To specify LDAP group preference and mapping information, these principles apply:

• Begin the group preference and mapping part of the authentication string with a # prefix character.

• The group preference and mapping specification is a list of one or more items, separated by
commas. Each item has the form group_name=user_name or group_name. Items should be listed
in group name preference order. For a group name selected by the plugin as a match from set of
group names returned by the LDAP server, the two syntaxes differ in effect as follows:

• For an item specified as group_name=user_name (with a user name), the group name maps to
the user name, which is used as the MySQL proxied user name.

• For an item specified as group_name (with no user name), the group name is used as the MySQL
proxied user name.

• To quote a group or user name that contains special characters such as space, surround it by double
quote (") characters. For example, if an item has group and user names of my group name and my
user name, it must be written in a group mapping using quotes:

"my group name"="my user name"

If an item has group and user names of my_group_name and my_user_name (which contain no
special characters), it may but need not be written using quotes. Any of the following are valid:

my_group_name=my_user_name
my_group_name="my_user_name"
"my_group_name"=my_user_name
"my_group_name"="my_user_name"

• To escape a character, precede it by a backslash (\). This is useful particularly to include a literal
double quote or backslash, which are otherwise not included literally.

1470

Authentication Plugins

• A user DN need not be present in the authentication string, but if present, it must precede the group
preference and mapping part. A user DN can be given as a full user DN, or as a user DN suffix with a
+ prefix character. (See LDAP Authentication User DN Suffixes.)

LDAP Authentication User DN Suffixes

LDAP authentication plugins permit the authentication string that provides user DN information to begin
with a + prefix character:

• In the absence of a + character, the authentication string value is treated as is without modification.

• If the authentication string begins with +, the plugin constructs the full user DN value from the
user name sent by the client, together with the DN specified in the authentication string (with
the + removed). In the constructed DN, the client user name becomes the value of the attribute
that specifies LDAP user names. This is uid by default; to change the attribute, modify the
appropriate system variable (authentication_ldap_simple_user_search_attr or
authentication_ldap_sasl_user_search_attr). The authentication string is stored as given
in the mysql.user system table, with the full user DN constructed on the fly before authentication.

This account authentication string does not have + at the beginning, so it is taken as the full user DN:

CREATE USER 'baldwin'
 IDENTIFIED WITH authentication_ldap_simple
 AS 'uid=admin,ou=People,dc=example,dc=com';

The client connects with the user name specified in the account (baldwin). In this case, that name is
not used because the authentication string has no prefix and thus fully specifies the user DN.

This account authentication string does have + at the beginning, so it is taken as just part of the user
DN:

CREATE USER 'accounting'
 IDENTIFIED WITH authentication_ldap_simple
 AS '+ou=People,dc=example,dc=com';

The client connects with the user name specified in the account (accounting), which in this
case is used as the uid attribute together with the authentication string to construct the user DN:
uid=accounting,ou=People,dc=example,dc=com

The accounts in the preceding examples have a nonempty user name, so the client always connects
to the MySQL server using the same name as specified in the account definition. If an account has
an empty user name, such as the default anonymous ''@'%' proxy account described in LDAP
Authentication with Proxying, clients might connect to the MySQL server with varying user names. But
the principle is the same: If the authentication string begins with +, the plugin uses the user name sent
by the client together with the authentication string to construct the user DN.

LDAP Authentication Methods

The LDAP authentication plugins use a configurable authentication method. The appropriate system
variable and available method choices are plugin-specific:

• For the authentication_ldap_simple plugin: Set the
authentication_ldap_simple_auth_method_name system variable to configure the method.
The permitted choices are SIMPLE and AD-FOREST.

• For the authentication_ldap_sasl plugin: Set the
authentication_ldap_sasl_auth_method_name system variable to configure the method.
The permitted choices are SCRAM-SHA-1, SCRAM-SHA-256, and GSSAPI. (To determine
which SASL LDAP methods are actually available on the host system, check the value of the
Authentication_ldap_sasl_supported_methods status variable.)

See the system variable descriptions for information about each permitted method. Also, depending on
the method, additional configuration may be needed, as described in the following sections.

1471

Authentication Plugins

The GSSAPI/Kerberos Authentication Method

Generic Security Service Application Program Interface (GSSAPI) is a security abstraction interface.
Kerberos is an instance of a specific security protocol that can be used through that abstract interface.
Using GSSAPI, applications authenticate to Kerberos to obtain service credentials, then use those
credentials in turn to enable secure access to other services.

One such service is LDAP, which is used by the client-side and server-side SASL LDAP authentication
plugins. When the authentication_ldap_sasl_auth_method_name system variable is set to
GSSAPI, these plugins use the GSSAPI/Kerberos authentication method. In this case, the plugins
communicate securely using Kerberos without using LDAP messages directly. The server-side plugin
then communicates with the LDAP server to interpret LDAP authentication messages and retrieve
LDAP groups.

GSSAPI/Kerberos is supported as an LDAP authentication method for MySQL servers and clients on
Linux. It is useful in Linux environments where applications have access to LDAP through Microsoft
Active Directory, which has Kerberos enabled by default.

The following discussion provides information about the configuration requirements for using the
GSSAPI method. Familiarity is assumed with Kerberos concepts and operation. The following list
briefly defines several common Kerberos terms. You may also find the Glossary section of RFC 4120
helpful.

• Principal: A named entity, such as a user or server.

• KDC: The key distribution center, comprising the AS and TGS:

• AS: The authentication server; provides the initial ticket-granting ticket needed to obtain additional
tickets.

• TGS: The ticket-granting server; provides additional tickets to Kerberos clients that possess a valid
TGT.

• TGT: The ticket-granting ticket; presented to the TGS to obtain service tickets for service access.

LDAP authentication using Kerberos requires both a KDC server and an LDAP server. This
requirement can be satisfied in different ways:

• Active Directory includes both servers, with Kerberos authentication enabled by default in the Active
Directory LDAP server.

• OpenLDAP provides an LDAP server, but a separate KDC server may be needed, with additional
Kerberos setup required.

Kerberos must also be available on the client host. A client contacts the AS using a password to obtain
a TGT. The client then uses the TGT to obtain access from the TGS to other services, such as LDAP.

The following sections discuss the configuration steps to use GSSAPI/Kerberos for SASL LDAP
authentication in MySQL:

• Verify Kerberos and LDAP Availability

• Configure the Server-Side SASL LDAP Authentication Plugin for GSSAPI/Kerberos

• Create a MySQL Account That Uses GSSAPI/Kerberos for LDAP Authentication

• Use the MySQL Account to Connect to the MySQL Server

• Client Configuration Parameters for LDAP Authentication

Verify Kerberos and LDAP Availability

The following example shows how to test availability of Kerberos in Active Directory. The example
makes these assumptions:

1472

https://tools.ietf.org/html/rfc4120

Authentication Plugins

• Active Directory is running on the host named ldap_auth.example.com with IP address
198.51.100.10.

• MySQL-related Kerberos authentication and LDAP lookups use the MYSQL.LOCAL domain.

• A principal named bredon@MYSQL.LOCAL is registered with the KDC. (In later discussion, this
principal name is also associated with the MySQL account that authenticates to the MySQL server
using GSSAPI/Kerberos.)

With those assumptions satisfied, follow this procedure:

1. Verify that the Kerberos library is installed and configured correctly in the operating system. For
example, to configure a MYSQL.LOCAL domain for use during MySQL authentication, the /etc/
krb5.conf Kerberos configuration file should contain something like this:

[realms]
 MYSQL.LOCAL = {
 kdc = ldap_auth.example.com
 admin_server = ldap_auth.example.com
 default_domain = MYSQL.LOCAL
 }

2. You may need to add an entry to /etc/hosts for the server host:

198.51.100.10 ldap_auth ldap_auth.example.com

3. Check whether Kerberos authentication works correctly:

a. Use kinit to authenticate to Kerberos:

$> kinit bredon@MYSQL.LOCAL
Password for bredon@MYSQL.LOCAL: (enter password here)

The command authenticates for the Kerberos principal named bredon@MYSQL.LOCAL. Enter
the principal's password when the command prompts for it. The KDC returns a TGT that is
cached on the client side for use by other Kerberos-aware applications.

b. Use klist to check whether the TGT was obtained correctly. The output should be similar to
this:

$> klist
Ticket cache: FILE:/tmp/krb5cc_244306
Default principal: bredon@MYSQL.LOCAL

Valid starting Expires Service principal
03/23/2021 08:18:33 03/23/2021 18:18:33 krbtgt/MYSQL.LOCAL@MYSQL.LOCAL

4. Check whether ldapsearch works with the Kerberos TGT using this command, which searches
for users in the MYSQL.LOCAL domain:

ldapsearch -h 198.51.100.10 -Y GSSAPI -b "dc=MYSQL,dc=LOCAL"

Configure the Server-Side SASL LDAP Authentication Plugin for GSSAPI/Kerberos

Assuming that the LDAP server is accessible through Kerberos as just described, configure the server-
side SASL LDAP authentication plugin to use the GSSAPI/Kerberos authentication method. (For
general LDAP plugin installation information, see Installing LDAP Pluggable Authentication.) Here is an
example of plugin-related settings the server my.cnf file might contain:

[mysqld]
plugin-load-add=authentication_ldap_sasl.so
authentication_ldap_sasl_auth_method_name="GSSAPI"
authentication_ldap_sasl_server_host=198.51.100.10
authentication_ldap_sasl_server_port=389
authentication_ldap_sasl_bind_root_dn="cn=admin,cn=users,dc=MYSQL,dc=LOCAL"
authentication_ldap_sasl_bind_root_pwd="password"

1473

Authentication Plugins

authentication_ldap_sasl_bind_base_dn="cn=users,dc=MYSQL,dc=LOCAL"
authentication_ldap_sasl_user_search_attr="sAMAccountName"

Those option file settings configure the SASL LDAP plugin as follows:

• The --plugin-load-add option loads the plugin (adjust the .so suffix for your platform as
necessary). If you loaded the plugin previously using an INSTALL PLUGIN statement, this option is
unnecessary.

• authentication_ldap_sasl_auth_method_name must be set to GSSAPI to use GSSAPI/
Kerberos as the SASL LDAP authentication method.

• authentication_ldap_sasl_server_host and
authentication_ldap_sasl_server_port indicate the IP address and port number of the
Active Directory server host for authentication.

• authentication_ldap_sasl_bind_root_dn and
authentication_ldap_sasl_bind_root_pwd configure the root DN and password for group
search capability. This capability is required, but users may not have privileges to search. In such
cases, it is necessary to provide root DN information:

• In the DN option value, admin should be the name of an administrative LDAP account that has
privileges to perform user searches.

• In the password option value, password should be the admin account password.

• authentication_ldap_sasl_bind_base_dn indicates the user DN base path, so that searches
look for users in the MYSQL.LOCAL domain.

• authentication_ldap_sasl_user_search_attr specifies a standard Active Directory search
attribute, sAMAccountName. This attribute is used in searches to match logon names; attribute
values are not the same as the user DN values.

Create a MySQL Account That Uses GSSAPI/Kerberos for LDAP Authentication

MySQL authentication using the SASL LDAP authentication plugin with the GSSAPI/Kerberos method
is based on a user that is a Kerberos principal. The following discussion uses a principal named
bredon@MYSQL.LOCAL as this user, which must be registered in several places:

• The Kerberos administrator should register the user name as a Kerberos principal. This name should
include a domain name. Clients use the principal name and password to authenticate with Kerberos
and obtain a TGT.

• The LDAP administrator should register the user name in an LDAP entry. For example:

uid=bredon,dc=MYSQL,dc=LOCAL

Note

In Active Directory (which uses Kerberos as the default authentication
method), creating a user creates both the Kerberos principal and the LDAP
entry.

• The MySQL DBA should create an account that has the Kerberos principal name as the user name
and that authenticates using the SASL LDAP plugin.

Assume that the Kerberos principal and LDAP entry have been registered by the appropriate service
administrators, and that, as previously described in Installing LDAP Pluggable Authentication, and
Configure the Server-Side SASL LDAP Authentication Plugin for GSSAPI/Kerberos, the MySQL
server has been started with appropriate configuration settings for the server-side SASL LDAP plugin.
The MySQL DBA then creates a MySQL account that corresponds to the Kerberos principal name,
including the domain name.

1474

Authentication Plugins

Note

The SASL LDAP plugin uses a constant user DN for Kerberos authentication
and ignores any user DN configured from MySQL. This has certain implications:

• For any MySQL account that uses GSSAPI/Kerberos authentication, the
authentication string in CREATE USER or ALTER USER statements should
contain no user DN because it has no effect.

• Because the authentication string contains no user DN, it should contain
group mapping information, to enable the user to be handled as a proxy user
that is mapped onto the desired proxied user. For information about proxying
with the LDAP authentication plugin, see LDAP Authentication with Proxying.

The following statements create a proxy user named bredon@MYSQL.LOCAL that assumes the
privileges of the proxied user named proxied_krb_usr. Other GSSAPI/Kerberos users that should
have the same privileges can similarly be created as proxy users for the same proxied user.

-- create proxy account
CREATE USER 'bredon@MYSQL.LOCAL'
 IDENTIFIED WITH authentication_ldap_sasl
 BY '#krb_grp=proxied_krb_user';

-- create proxied account and grant its privileges;
-- use mysql_no_login plugin to prevent direct login
CREATE USER 'proxied_krb_user'
 IDENTIFIED WITH mysql_no_login;
GRANT ALL
 ON krb_user_db.*
 TO 'proxied_krb_user';

-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
 ON 'proxied_krb_user'
 TO 'bredon@MYSQL.LOCAL';

Observe closely the quoting for the proxy account name in the first CREATE USER statement and the
GRANT PROXY statement:

• For most MySQL accounts, the user and host are separate parts of the account name, and thus are
quoted separately as 'user_name'@'host_name'.

• For LDAP Kerberos authentication, the user part of the account name includes the principal domain,
so 'bredon@MYSQL.LOCAL' is quoted as a single value. Because no host part is given, the full
MySQL account name uses the default of '%' as the host part: 'bredon@MYSQL.LOCAL'@'%'

Note

When creating an account that authenticates using the
authentication_ldap_sasl SASL LDAP authentication plugin with the
GSSAPI/Kerberos authentication method, the CREATE USER statement
includes the realm as part of the user name. This differs from creating accounts
that use the authentication_kerberos Kerberos plugin. For such
accounts, the CREATE USER statement does not include the realm as part of
the user name. Instead, specify the realm as the authentication string in the BY
clause. See Create a MySQL Account That Uses Kerberos Authentication.

The proxied account uses the mysql_no_login authentication plugin to prevent clients from using the
account to log in directly to the MySQL server. Instead, it is expected that users who authenticate using
LDAP use the bredon@MYSQL.LOCAL proxy account. (This assumes that the mysql_no_login
plugin is installed. For instructions, see Section 8.4.1.9, “No-Login Pluggable Authentication”.) For
alternative methods of protecting proxied accounts against direct use, see Preventing Direct Login to
Proxied Accounts.

1475

Authentication Plugins

Use the MySQL Account to Connect to the MySQL Server

After a MySQL account that authenticates using GSSAPI/Kerberos has been set up, clients can use it
to connect to the MySQL server. Kerberos authentication can take place either prior to or at the time of
MySQL client program invocation:

• Prior to invoking the MySQL client program, the client user can obtain a TGT from the KDC
independently of MySQL. For example, the client user can use kinit to authenticate to Kerberos by
providing a Kerberos principal name and the principal password:

$> kinit bredon@MYSQL.LOCAL
Password for bredon@MYSQL.LOCAL: (enter password here)

The resulting TGT is cached and becomes available for use by other Kerberos-aware applications,
such as programs that use the client-side SASL LDAP authentication plugin. In this case, the MySQL
client program authenticates to the MySQL server using the TGT, so invoke the client without
specifying a user name or password:

mysql --default-auth=authentication_ldap_sasl_client

As just described, when the TGT is cached, user-name and password options are not needed in the
client command. If the command includes them anyway, they are handled as follows:

• If the command includes a user name, authentication fails if that name does not match the
principal name in the TGT.

• If the command includes a password, the client-side plugin ignores it. Because authentication is
based on the TGT, it can succeed even if the user-provided password is incorrect. For this reason,
the plugin produces a warning if a valid TGT is found that causes a password to be ignored.

• If the Kerberos cache contains no TGT, the client-side SASL LDAP authentication plugin itself can
obtain the TGT from the KDC. Invoke the client with options for the name and password of the
Kerberos principal associated with the MySQL account (enter the command on a single line, then
enter the principal password when prompted):

mysql --default-auth=authentication_ldap_sasl_client
 --user=bredon@MYSQL.LOCAL
 --password

• If the Kerberos cache contains no TGT and the client command specifies no principal name as the
user name, authentication fails.

If you are uncertain whether a TGT exists, you can use klist to check.

Authentication occurs as follows:

1. The client uses the TGT to authenticate using Kerberos.

2. The server finds the LDAP entry for the principal and uses it to authenticate the connection for the
bredon@MYSQL.LOCAL MySQL proxy account.

3. The group mapping information in the proxy account authentication string
('#krb_grp=proxied_krb_user') indicates that the authenticated proxied user should be
proxied_krb_user.

4. bredon@MYSQL.LOCAL is treated as a proxy for proxied_krb_user, and the following query
returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+------------------------------+--------------------+--------------------------+
| USER() | CURRENT_USER() | @@proxy_user |
+------------------------------+--------------------+--------------------------+
| bredon@MYSQL.LOCAL@localhost | proxied_krb_user@% | 'bredon@MYSQL.LOCAL'@'%' |
+------------------------------+--------------------+--------------------------+

1476

Authentication Plugins

The USER() value indicates the user name used for the client command (bredon@MYSQL.LOCAL)
and the host from which the client connected (localhost).

The CURRENT_USER() value is the full name of the proxied user account, which consists of the
proxied_krb_user user part and the % host part.

The @@proxy_user value indicates the full name of the account used to make the connection to
the MySQL server, which consists of the bredon@MYSQL.LOCAL user part and the % host part.

This demonstrates that proxying occurs through the bredon@MYSQL.LOCAL proxy user account,
and that bredon@MYSQL.LOCAL assumes the privileges granted to the proxied_krb_user
proxied user account.

A TGT once obtained is cached on the client side and can be used until it expires without specifying the
password again. However the TGT is obtained, the client-side plugin uses it to acquire service tickets
and communicate with the server-side plugin.

Note

When the client-side authentication plugin itself obtains the TGT, the client
user may not want the TGT to be reused. As described in Client Configuration
Parameters for LDAP Authentication, the local /etc/krb5.conf file can be
used to cause the client-side plugin to destroy the TGT when done with it.

The server-side plugin has no access to the TGT itself or the Kerberos password used to obtain it.

The LDAP authentication plugins have no control over the caching mechanism (storage in a local file,
in memory, and so forth), but Kerberos utilities such as kswitch may be available for this purpose.

Client Configuration Parameters for LDAP Authentication

The authentication_ldap_sasl_client client-side SASL LDAP plugin reads the local /
etc/krb5.conf file. If this file is missing or inaccessible, an error occurs. Assuming that the file is
accessible, it can include an optional [appdefaults] section to provide information used by the
plugin. Place the information within the mysql part of the section. For example:

[appdefaults]
 mysql = {
 ldap_server_host = "ldap_host.example.com"
 ldap_destroy_tgt = true
 }

The client-side plugin recognizes these parameters in the mysql section:

• The ldap_server_host value specifies the LDAP server host and can be useful when that host
differs from the KDC server host specified in the [realms] section. By default, the plugin uses the
KDC server host as the LDAP server host.

• The ldap_destroy_tgt value indicates whether the client-side plugin destroys the TGT after
obtaining and using it. By default, ldap_destroy_tgt is false, but can be set to true to avoid
TGT reuse. (This setting applies only to TGTs created by the client-side plugin, not TGTs created by
other plugins or externally to MySQL.)

LDAP Search Referral

An LDAP server can be configured to delegate LDAP searches to another LDAP server, a functionality
known as LDAP referral. Suppose that the server a.example.com holds a "dc=example,dc=com"
root DN and wishes to delegate searches to another server b.example.com. To enable this,
a.example.com would be configured with a named referral object having these attributes:

dn: dc=subtree,dc=example,dc=com
objectClass: referral

1477

Authentication Plugins

objectClass: extensibleObject
dc: subtree
ref: ldap://b.example.com/dc=subtree,dc=example,dc=com

An issue with enabling LDAP referral is that searches can fail with LDAP operation errors when
the search base DN is the root DN, and referral objects are not set. A MySQL DBA might wish
to avoid such referral errors for the LDAP authentication plugins, even though LDAP referral
might be set globally in the ldap.conf configuration file. To configure on a plugin-specific basis
whether the LDAP server should use LDAP referral when communicating with each plugin, set the
authentication_ldap_simple_referral and authentication_ldap_sasl_referral
system variables. Setting either variable to ON or OFF causes the corresponding LDAP authentication
plugin to tell the LDAP server whether to use referral during MySQL authentication. Each variable has
a plugin-specific effect and does not affect other applications that communicate with the LDAP server.
Both variables are OFF by default.

8.4.1.8 Kerberos Pluggable Authentication

Note

Kerberos pluggable authentication is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

MySQL Enterprise Edition supports an authentication method that enables users to authenticate to
MySQL Server using Kerberos, provided that appropriate Kerberos tickets are available or can be
obtained.

This authentication method is available in MySQL 8.0.26 and higher, for MySQL servers and clients on
Linux. It is useful in Linux environments where applications have access to Microsoft Active Directory,
which has Kerberos enabled by default. As of MySQL 8.0.27 (MySQL 8.0.32 for MIT Kerberos), the
client-side plugin is supported on Windows as well. The server-side plugin is still supported only on
Linux.

Kerberos pluggable authentication provides these capabilities:

• External authentication: Kerberos authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables who have obtained the proper Kerberos tickets.

• Security: Kerberos uses tickets together with symmetric-key cryptography, enabling authentication
without sending passwords over the network. Kerberos authentication supports userless and
passwordless scenarios.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable. For
installation information, see Installing Kerberos Pluggable Authentication.

Table 8.24 Plugin and Library Names for Kerberos Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_kerberos

Client-side plugin authentication_kerberos_client

Library file authentication_kerberos.so,
authentication_kerberos_client.so

The server-side Kerberos authentication plugin is included only in MySQL Enterprise Edition. It is
not included in MySQL community distributions. The client-side plugin is included in all distributions,
including community distributions. This enables clients from any distribution to connect to a server that
has the server-side plugin loaded.

The following sections provide installation and usage information specific to Kerberos pluggable
authentication:

1478

https://www.mysql.com/products/

Authentication Plugins

• Prerequisites for Kerberos Pluggable Authentication

• How Kerberos Authentication of MySQL Users Works

• Installing Kerberos Pluggable Authentication

• Using Kerberos Pluggable Authentication

• Kerberos Authentication Debugging

For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”.

Prerequisites for Kerberos Pluggable Authentication

To use Kerberos pluggable authentication for MySQL, these prerequisites must be satisfied:

• A Kerberos service must be available for the Kerberos authentication plugins to communicate with.

• Each Kerberos user (principal) to be authenticated by MySQL must be present in the database
managed by the KDC server.

• A Kerberos client library must be available on systems where either the server-side or client-side
Kerberos authentication plugin is used. In addition, GSSAPI is used as the interface for accessing
Kerberos authentication, so a GSSAPI library must be available.

How Kerberos Authentication of MySQL Users Works

This section provides an overview of how MySQL and Kerberos work together to authenticate MySQL
users. For examples showing how to set up MySQL accounts to use the Kerberos authentication
plugins, see Using Kerberos Pluggable Authentication.

Familiarity is assumed here with Kerberos concepts and operation. The following list briefly defines
several common Kerberos terms. You may also find the Glossary section of RFC 4120 helpful.

• Principal: A named entity, such as a user or server. In this discussion, certain principal-related terms
occur frequently:

• SPN: Service principal name; the name of a principal that represents a service.

• UPN: User principal name; the name of a principal that represents a user.

• KDC: The key distribution center, comprising the AS and TGS:

• AS: The authentication server; provides the initial ticket-granting ticket needed to obtain additional
tickets.

• TGS: The ticket-granting server; provides additional tickets to Kerberos clients that possess a valid
TGT.

• TGT: The ticket-granting ticket; presented to the TGS to obtain service tickets for service access.

• ST: A service ticket; provides access to a service such as that offered by a MySQL server.

Authentication using Kerberos requires a KDC server, for example, as provided by Microsoft Active
Directory.

Kerberos authentication in MySQL uses Generic Security Service Application Program Interface
(GSSAPI), which is a security abstraction interface. Kerberos is an instance of a specific security
protocol that can be used through that abstract interface. Using GSSAPI, applications authenticate to
Kerberos to obtain service credentials, then use those credentials in turn to enable secure access to
other services.

On Windows, the authentication_kerberos_client authentication plugin supports two modes,
which the client user can set at runtime or specify in an option file:

1479

https://tools.ietf.org/html/rfc4120

Authentication Plugins

• SSPI mode: Security Support Provider Interface (SSPI) implements GSSAPI (see Commands for
Windows Clients in SSPI Mode). SSPI, while being compatible with GSSAPI at the wire level, only
supports the Windows single sign-on scenario and specifically refers to the logged-on user. SSPI is
the default mode on most Windows clients.

• GSSAPI mode: Supports GSSAPI through the MIT Kerberos library on Windows (see Commands for
Windows Clients in GSSAPI Mode).

With the Kerberos authentication plugins, applications and MySQL servers are able to use the
Kerberos authentication protocol to mutually authenticate users and MySQL services. This way both
the user and the server are able to verify each other's identity. No passwords are sent over the network
and Kerberos protocol messages are protected against eavesdropping and replay attacks.

Kerberos authentication follows these steps, where the server-side and client-side parts are performed
using the authentication_kerberos and authentication_kerberos_client authentication
plugins, respectively:

1. The MySQL server sends to the client application its service principal name. This SPN
must be registered in the Kerberos system, and is configured on the server side using the
authentication_kerberos_service_principal system variable.

2. Using GSSAPI, the client application creates a Kerberos client-side authentication session and
exchanges Kerberos messages with the Kerberos KDC:

• The client obtains a ticket-granting ticket from the authentication server.

• Using the TGT, the client obtains a service ticket for MySQL from the ticket-granting service.

This step can be skipped or partially skipped if the TGT, ST, or both are already cached locally. The
client optionally may use a client keytab file to obtain a TGT and ST without supplying a password.

3. Using GSSAPI, the client application presents the MySQL ST to the MySQL server.

4. Using GSSAPI, the MySQL server creates a Kerberos server-side authentication session. The
server validates the user identity and the validity of the user request. It authenticates the ST using
the service key configured in its service keytab file to determine whether authentication succeeds or
fails, and returns the authentication result to the client.

Applications are able to authenticate using a provided user name and password, or using a locally
cached TGT or ST (for example, created using kinit or similar). This design therefore covers use
cases ranging from completely userless and passwordless connections, where Kerberos service
tickets are obtained from a locally stored Kerberos cache, to connections where both user name and
password are provided and used to obtain a valid Kerberos service ticket from a KDC, to send to the
MySQL server.

As indicated in the preceding description, MySQL Kerberos authentication uses two kinds of keytab
files:

• On the client host, a client keytab file may be used to obtain a TGT and ST without supplying a
password. See Client Configuration Parameters for Kerberos Authentication.

• On the MySQL server host, a server-side service keytab file is used to verify service tickets
received by the MySQL server from clients. The keytab file name is configured using the
authentication_kerberos_service_key_tab system variable.

For information about keytab files, see https://web.mit.edu/kerberos/krb5-latest/doc/basic/
keytab_def.html.

Installing Kerberos Pluggable Authentication

This section describes how to install the server-side Kerberos authentication plugin. For general
information about installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.

1480

https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html
https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html

Authentication Plugins

Note

The server-side plugin is supported only on Linux systems. On Windows
systems, only the client-side plugin is supported (as of MySQL 8.0.27), which
can be used on a Windows system to connect to a Linux server that uses
Kerberos authentication.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The server-side plugin library file base name is authentication_kerberos. The file name suffix for
Unix and Unix-like systems is .so.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. Also,
specify values for any plugin-provided system variables you wish to configure. The plugin exposes
these system variables, enabling its operation to be configured:

• authentication_kerberos_service_principal: The MySQL service principal name (SPN).
This name is sent to clients that attempt to authenticate using Kerberos. The SPN must be present in
the database managed by the KDC server. The default is mysql/host_name@realm_name.

• authentication_kerberos_service_key_tab: The keytab file for authenticating tickets
received from clients. This file must exist and contain a valid key for the SPN or authentication of
clients will fail. The default is mysql.keytab in the data directory.

For details about all Kerberos authentication system variables, see Section 8.4.1.13, “Pluggable
Authentication System Variables”.

To load the plugin and configure it, put lines such as these in your my.cnf file, using values for the
system variables that are appropriate for your installation:

[mysqld]
plugin-load-add=authentication_kerberos.so
authentication_kerberos_service_principal=mysql/krbauth.example.com@MYSQL.LOCAL
authentication_kerberos_service_key_tab=/var/mysql/data/mysql.keytab

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

INSTALL PLUGIN authentication_kerberos
 SONAME 'authentication_kerberos.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

When you install the plugin at runtime without configuring its system variables in the my.cnf file, the
system variable authentication_kerberos_service_key_tab is set to the default value of
mysql.keytab in the data directory. The value of this system variable cannot be changed at runtime,
so if you need to specify a different file, you need to add the setting to your my.cnf file then restart the
MySQL server. For example:

[mysqld]
authentication_kerberos_service_key_tab=/var/mysql/data/mysql.keytab

If the keytab file is not in the correct place or does not contain a valid SPN key, the MySQL server does
not validate this, but clients return authentication errors until you fix the issue.

The authentication_kerberos_service_principal system variable can be set and persisted
at runtime without restarting the server, by using a SET PERSIST statement:

1481

Authentication Plugins

SET PERSIST authentication_kerberos_service_principal='mysql/krbauth.example.com@MYSQL.LOCAL';

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to
carry over to subsequent server restarts. To change a value for the running MySQL instance without
having it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See
Section 15.7.6.1, “SET Syntax for Variable Assignment”.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME = 'authentication_kerberos';
+-------------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------------------+---------------+
| authentication_kerberos | ACTIVE |
+-------------------------+---------------+

If a plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the Kerberos plugin, see Using Kerberos Pluggable Authentication.

Using Kerberos Pluggable Authentication

This section describes how to enable MySQL accounts to connect to the MySQL server using Kerberos
pluggable authentication. It is assumed that the server is running with the server-side plugin enabled,
as described in Installing Kerberos Pluggable Authentication, and that the client-side plugin is available
on the client host.

• Verify Kerberos Availability

• Create a MySQL Account That Uses Kerberos Authentication

• Use the MySQL Account to Connect to the MySQL Server

• Client Configuration Parameters for Kerberos Authentication

Verify Kerberos Availability

The following example shows how to test availability of Kerberos in Active Directory. The example
makes these assumptions:

• Active Directory is running on the host named krbauth.example.com with IP address
198.51.100.11.

• MySQL-related Kerberos authentication uses the MYSQL.LOCAL domain, and also uses
MYSQL.LOCAL as the realm name.

• A principal named karl@MYSQL.LOCAL is registered with the KDC. (In later discussion, this
principal name is associated with the MySQL account that authenticates to the MySQL server using
Kerberos.)

With those assumptions satisfied, follow this procedure:

1. Verify that the Kerberos library is installed and configured correctly in the operating system. For
example, to configure a MYSQL.LOCAL domain and realm for use during MySQL authentication, the
/etc/krb5.conf Kerberos configuration file should contain something like this:

[realms]
 MYSQL.LOCAL = {
 kdc = krbauth.example.com
 admin_server = krbauth.example.com
 default_domain = MYSQL.LOCAL
 }

1482

Authentication Plugins

2. You may need to add an entry to /etc/hosts for the server host:

198.51.100.11 krbauth krbauth.example.com

3. Check whether Kerberos authentication works correctly:

a. Use kinit to authenticate to Kerberos:

$> kinit karl@MYSQL.LOCAL
Password for karl@MYSQL.LOCAL: (enter password here)

The command authenticates for the Kerberos principal named karl@MYSQL.LOCAL. Enter the
principal's password when the command prompts for it. The KDC returns a TGT that is cached
on the client side for use by other Kerberos-aware applications.

b. Use klist to check whether the TGT was obtained correctly. The output should be similar to
this:

$> klist
Ticket cache: FILE:/tmp/krb5cc_244306
Default principal: karl@MYSQL.LOCAL

Valid starting Expires Service principal
03/23/2021 08:18:33 03/23/2021 18:18:33 krbtgt/MYSQL.LOCAL@MYSQL.LOCAL

Create a MySQL Account That Uses Kerberos Authentication

MySQL authentication using the authentication_kerberos authentication plugin is based on a
Kerberos user principal name (UPN). The instructions here assume that a MySQL user named karl
authenticates to MySQL using Kerberos, that the Kerberos realm is named MYSQL.LOCAL, and that
the user principal name is karl@MYSQL.LOCAL. This UPN must be registered in several places:

• The Kerberos administrator should register the user name as a Kerberos principal. This name
includes a realm name. Clients use the principal name and password to authenticate with Kerberos
and obtain a ticket-granting ticket (TGT).

• The MySQL DBA should create an account that corresponds to the Kerberos principal name and that
authenticates using the Kerberos plugin.

Assume that the Kerberos user principal name has been registered by the appropriate service
administrator, and that, as previously described in Installing Kerberos Pluggable Authentication, the
MySQL server has been started with appropriate configuration settings for the server-side Kerberos
plugin. To create a MySQL account that corresponds to a Kerberos UPN of user@realm_name, the
MySQL DBA uses a statement like this:

CREATE USER user
 IDENTIFIED WITH authentication_kerberos
 BY 'realm_name';

The account named by user can include or omit the host name part. If the host name is omitted, it
defaults to % as usual. The realm_name is stored as the authentication_string value for the
account in the mysql.user system table.

To create a MySQL account that corresponds to the UPN karl@MYSQL.LOCAL, use this statement:

CREATE USER 'karl'
 IDENTIFIED WITH authentication_kerberos
 BY 'MYSQL.LOCAL';

If MySQL must construct the UPN for this account, for example, to obtain or validate tickets (TGTs
or STs), it does so by combining the account name (ignoring any host name part) and the realm
name. For example, the full account name resulting from the preceding CREATE USER statement is
'karl'@'%'. MySQL constructs the UPN from the user name part karl (ignoring the host name part)
and the realm name MYSQL.LOCAL to produce karl@MYSQL.LOCAL.

1483

Authentication Plugins

Note

Observe that when creating an account that authenticates using
authentication_kerberos, the CREATE USER statement does not
include the UPN realm as part of the user name. Instead, specify the realm
(MYSQL.LOCAL in this case) as the authentication string in the BY clause. This
differs from creating accounts that use the authentication_ldap_sasl
SASL LDAP authentication plugin with the GSSAPI/Kerberos authentication
method. For such accounts, the CREATE USER statement does include the
UPN realm as part of the user name. See Create a MySQL Account That Uses
GSSAPI/Kerberos for LDAP Authentication.

With the account set up, clients can use it to connect to the MySQL server. The procedure depends on
whether the client host runs Linux or Windows, as indicated in the following discussion.

Use of authentication_kerberos is subject to the restriction that UPNs with the same user part
but a different realm part are not supported. For example, you cannot create MySQL accounts that
correspond to both these UPNs:

kate@MYSQL.LOCAL
kate@EXAMPLE.COM

Both UPNs have a user part of kate but differ in the realm part (MYSQL.LOCAL versus
EXAMPLE.COM). This is disallowed.

Use the MySQL Account to Connect to the MySQL Server

After a MySQL account that authenticates using Kerberos has been set up, clients can use it to
connect to the MySQL server as follows:

1. Authenticate to Kerberos with the user principal name (UPN) and its password to obtain a ticket-
granting ticket (TGT).

2. Use the TGT to obtain a service ticket (ST) for MySQL.

3. Authenticate to the MySQL server by presenting the MySQL ST.

The first step (authenticating to Kerberos) can be performed various ways:

• Prior to connecting to MySQL:

• On Linux or on Windows in GSSAPI mode, invoke kinit to obtain the TGT and save it in the
Kerberos credentials cache.

• On Windows in SSPI mode, authentication may already have been done at login time, which
saves the TGT for the logged-in user in the Windows in-memory cache. kinit is not used and
there is no Kerberos cache.

• When connecting to MySQL, the client program itself can obtain the TGT, if it can determine the
required Kerberos UPN and password:

• That information can come from sources such as command options or the operating system.

• On Linux, clients also can use a keytab file or the /etc/krb5.conf configuration file. Windows
clients in GSSAPI mode use a configuration file. Windows clients in SSPI mode use neither.

Details of the client commands for connecting to the MySQL server differ for Linux and Windows, so
each host type is discussed separately, but these command properties apply regardless of host type:

• Each command shown includes the following options, but each one may be omitted under certain
conditions:

1484

Authentication Plugins

• The --default-auth option specifies the name of the client-side authentication plugin
(authentication_kerberos_client). This option may be omitted when the --user option is
specified because in that case MySQL can determine the plugin from the user account information
sent by MySQL server.

• The --plugin-dir option indicates to the client program the location of the
authentication_kerberos_client plugin. This option may be omitted if the plugin is
installed in the default (compiled-in) location.

• Commands should also include any other options such as --host or --port that are required to
specify which MySQL server to connect to.

• Enter each command on a single line. If the command includes a --password option to solicit
a password, enter the password of the Kerberos UPN associated with the MySQL user when
prompted.

Connection Commands for Linux Clients

On Linux, the appropriate client command for connecting to the MySQL server varies depending on
whether the command authenticates using a TGT from the Kerberos cache, or based on command
options for the MySQL user name and the UPN password:

• Prior to invoking the MySQL client program, the client user can obtain a TGT from the KDC
independently of MySQL. For example, the client user can use kinit to authenticate to Kerberos by
providing a Kerberos user principal name and the principal password:

$> kinit karl@MYSQL.LOCAL
Password for karl@MYSQL.LOCAL: (enter password here)

The resulting TGT for the UPN is cached and becomes available for use by other Kerberos-aware
applications, such as programs that use the client-side Kerberos authentication plugin. In this case,
invoke the client without specifying a user-name or password option:

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory

The client-side plugin finds the TGT in the cache, uses it to obtain a MySQL ST, and uses the ST to
authenticate to the MySQL server.

As just described, when the TGT for the UPN is cached, user-name and password options are not
needed in the client command. If the command includes them anyway, they are handled as follows:

• This command includes a user-name option:

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --user=karl

In this case, authentication fails if the user name specified by the option does not match the user
name part of the UPN in the TGT.

• This command includes a password option, which you enter when prompted:

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --password

In this case, the client-side plugin ignores the password. Because authentication is based on the
TGT, it can succeed even if the user-provided password is incorrect. For this reason, the plugin
produces a warning if a valid TGT is found that causes a password to be ignored.

1485

Authentication Plugins

• If the Kerberos cache contains no TGT, the client-side Kerberos authentication plugin itself can
obtain the TGT from the KDC. Invoke the client with options for the MySQL user name and the
password, then enter the UPN password when prompted:

mysql --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --user=karl
 --password

The client-side Kerberos authentication plugin combines the user name (karl) and the realm
specified in the user account (MYSQL.LOCAL) to construct the UPN (karl@MYSQL.LOCAL). The
client-side plugin uses the UPN and password to obtain a TGT, uses the TGT to obtain a MySQL ST,
and uses the ST to authenticate to the MySQL server.

Or, suppose that the Kerberos cache contains no TGT and the command specifies a password
option but no user-name option:

mysql --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --password

The client-side Kerberos authentication plugin uses the operating system login name as the MySQL
user name. It combines that user name and the realm in the user' MySQL account to construct the
UPN. The client-side plugin uses the UPN and the password to obtain a TGT, uses the TGT to obtain
a MySQL ST, and uses the ST to authenticate to the MySQL server.

If you are uncertain whether a TGT exists, you can use klist to check.

Note

When the client-side Kerberos authentication plugin itself obtains the TGT,
the client user may not want the TGT to be reused. As described in Client
Configuration Parameters for Kerberos Authentication, the local /etc/
krb5.conf file can be used to cause the client-side plugin to destroy the TGT
when done with it.

Connection Commands for Windows Clients in SSPI Mode

On Windows, using the default client-side plugin option (SSPI), the appropriate client command for
connecting to the MySQL server varies depending on whether the command authenticates based
on command options for the MySQL user name and the UPN password, or instead uses a TGT from
the Windows in-memory cache. For details about GSSAPI mode on Windows, see Commands for
Windows Clients in GSSAPI Mode.

A command can explicitly specify options for the MySQL user name and the UPN password, or the
command can omit those options:

• This command includes options for the MySQL user name and UPN password:

mysql --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --user=karl
 --password

The client-side Kerberos authentication plugin combines the user name (karl) and the realm
specified in the user account (MYSQL.LOCAL) to construct the UPN (karl@MYSQL.LOCAL). The
client-side plugin uses the UPN and password to obtain a TGT, uses the TGT to obtain a MySQL ST,
and uses the ST to authenticate to the MySQL server.

Any information in the Windows in-memory cache is ignored; the user-name and password option
values take precedence.

• This command includes an option for the UPN password but not for the MySQL user name:

1486

Authentication Plugins

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --password

The client-side Kerberos authentication plugin uses the logged-in user name as the MySQL user
name and combines that user name and the realm in the user's MySQL account to construct the
UPN. The client-side plugin uses the UPN and the password to obtain a TGT, uses the TGT to obtain
a MySQL ST, and uses the ST to authenticate to the MySQL server.

• This command includes no options for the MySQL user name or UPN password:

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory

The client-side plugin obtains the TGT from the Windows in-memory cache, uses the TGT to obtain a
MySQL ST, and uses the ST to authenticate to the MySQL server.

This approach requires the client host to be part of the Windows Server Active Directory (AD)
domain. If that is not the case, help the MySQL client discover the IP address for the AD domain by
manually entering the AD server and realm as the DNS server and prefix:

1. Start console.exe and select Network and Sharing Center.

2. From the sidebar of the Network and Sharing Center window, select Change adapter settings.

3. In the Network Connections window, right-click the network or VPN connection to configure and
select Properties.

4. From the Network tab, locate and click Internet Protocol Version 4 (TCP/IPv4), and then click
Properties.

5. Click Advanced in the Internet Protocol Version 4 (TCP/IPv4) Properties dialog. The Advanced
TCP/IP Settings dialog opens.

6. From the DNS tab, add the Active Directory server and realm as a DNS server and prefix.

• This command includes an option for the MySQL user name but not for the UPN password:

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --user=karl

The client-side Kerberos authentication plugin compares the name specified by the user-name option
against the logged-in user name. If the names are the same, the plugin uses the logged-in user TGT
for authentication. If the names differ, authentication fails.

Connection Commands for Windows Clients in GSSAPI Mode

On Windows, the client user must specify GSSAPI mode explicitly using the
plugin_authentication_kerberos_client_mode plugin option to enable support through the
MIT Kerberos library. The default mode is SSPI (see Commands for Windows Clients in SSPI Mode).

It is possible to specify GSSAPI mode:

• Prior to invoking the MySQL client program in an option file. The plugin variable name is valid using
either underscores or dashes:

[mysql]
plugin_authentication_kerberos_client_mode=GSSAPI

Or:

1487

Authentication Plugins

[mysql]
plugin-authentication-kerberos-client-mode=GSSAPI

• At runtime from the command line using the mysql or mysqldump client programs. For example, the
following commands (with underscores or dashes) causes mysql to connect to the server through
the MIT Kerberos library on Windows.

mysql [connection-options] --plugin_authentication_kerberos_client_mode=GSSAPI

Or:

mysql [connection-options] --plugin-authentication-kerberos-client-mode=GSSAPI

• Client users can select GSSAPI mode from MySQL Workbench and some MySQL connectors. On
client hosts running Windows, you can override the default location of:

• The Kerberos configuration file by setting the KRB5_CONFIG environment variable.

• The default credential cache name with the KRB5CCNAME environment variable (for example,
KRB5CCNAME=DIR:/mydir/).

For specific client-side plugin information, see the documentation at https://dev.mysql.com/doc/.

The appropriate client command for connecting to the MySQL server varies depending on whether the
command authenticates using a TGT from the MIT Kerberos cache, or based on command options for
the MySQL user name and the UPN password. GSSAPI support through the MIT library on Windows is
similar to GSSAPI on Linux (see Commands for Linux Clients), with the following exceptions:

• Tickets are always retrieved from or placed into the MIT Kerberos cache on hosts running Windows.

• kinit runs with Functional Accounts on Windows that have narrow permissions and specific roles.
The client user does not know the kinit password. For an overview, see https://docs.oracle.com/
en/java/javase/11/tools/kinit.html.

• If the client user supplies a password, the MIT Kerberos library on Windows decides whether to use
it or rely on the existing ticket.

• The destroy_tickets parameter, described in Client Configuration Parameters for Kerberos
Authentication, is not supported because the MIT Kerberos library on Windows does not support the
required API member (get_profile_boolean) to read its value from configuration file.

Client Configuration Parameters for Kerberos Authentication

This section applies only for client hosts running Linux, not client hosts running Windows.

Note

A client host running Windows with the authentication_kerberos_client
client-side Kerberos plugin set to GSSAPI mode does support client
configuration parameters, in general, but the MIT Kerberos library on Windows
does not support the destroy_tickets parameter described in this section.

If no valid ticket-granting ticket (TGT) exists at the time of MySQL client application invocation, the
application itself may obtain and cache the TGT. If during the Kerberos authentication process the
client application causes a TGT to be cached, any such TGT that was added can be destroyed after it
is no longer needed, by setting the appropriate configuration parameter.

The authentication_kerberos_client client-side Kerberos plugin reads the local /etc/
krb5.conf file. If this file is missing or inaccessible, an error occurs. Assuming that the file is
accessible, it can include an optional [appdefaults] section to provide information used by the
plugin. Place the information within the mysql part of the section. For example:

[appdefaults]

1488

https://dev.mysql.com/doc/
https://docs.oracle.com/en/java/javase/11/tools/kinit.html
https://docs.oracle.com/en/java/javase/11/tools/kinit.html

Authentication Plugins

 mysql = {
 destroy_tickets = true
 }

The client-side plugin recognizes these parameters in the mysql section:

• The destroy_tickets value indicates whether the client-side plugin destroys the TGT after
obtaining and using it. By default, destroy_tickets is false, but can be set to true to avoid
TGT reuse. (This setting applies only to TGTs created by the client-side plugin, not TGTs created by
other plugins or externally to MySQL.)

On the client host, a client keytab file may be used to obtain a TGT and TS without supplying a
password. For information about keytab files, see https://web.mit.edu/kerberos/krb5-latest/doc/basic/
keytab_def.html.

Kerberos Authentication Debugging

The AUTHENTICATION_KERBEROS_CLIENT_LOG environment variable enables or disables debug
output for Kerberos authentication.

Note

Despite CLIENT in the name AUTHENTICATION_KERBEROS_CLIENT_LOG,
the same environment variable applies to the server-side plugin as well as the
client-side plugin.

On the server side, the permitted values are 0 (off) and 1 (on). Log messages are written to the server
error log, subject to the server error-logging verbosity level. For example, if you are using priority-
based log filtering, the log_error_verbosity system variable controls verbosity, as described in
Section 7.4.2.5, “Priority-Based Error Log Filtering (log_filter_internal)”.

On the client side, the permitted values are from 1 to 5 and are written to the standard error output. The
following table shows the meaning of each log-level value.

Log Level Meaning

1 or not set No logging

2 Error messages

3 Error and warning messages

4 Error, warning, and information messages

5 Error, warning, information, and debug messages

8.4.1.9 No-Login Pluggable Authentication

The mysql_no_login server-side authentication plugin prevents all client connections to any account
that uses it. Use cases for this plugin include:

• Accounts that must be able to execute stored programs and views with elevated privileges without
exposing those privileges to ordinary users.

• Proxied accounts that should never permit direct login but are intended to be accessed only through
proxy accounts.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable.

Table 8.25 Plugin and Library Names for No-Login Authentication

Plugin or File Plugin or File Name

Server-side plugin mysql_no_login

1489

https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html
https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html

Authentication Plugins

Plugin or File Plugin or File Name

Client-side plugin None

Library file mysql_no_login.so

The following sections provide installation and usage information specific to no-login pluggable
authentication:

• Installing No-Login Pluggable Authentication

• Uninstalling No-Login Pluggable Authentication

• Using No-Login Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”. For proxy user information, see Section 8.2.19, “Proxy Users”.

Installing No-Login Pluggable Authentication

This section describes how to install the no-login authentication plugin. For general information about
installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is mysql_no_login. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load-add option to name the library file
that contains it. With this plugin-loading method, the option must be given each time the server starts.
For example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as
necessary:

[mysqld]
plugin-load-add=mysql_no_login.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform
as necessary:

INSTALL PLUGIN mysql_no_login SONAME 'mysql_no_login.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%login%';
+----------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+----------------+---------------+
| mysql_no_login | ACTIVE |
+----------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the no-login plugin, see Using No-Login Pluggable Authentication.

1490

Authentication Plugins

Uninstalling No-Login Pluggable Authentication

The method used to uninstall the no-login authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed
across server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN mysql_no_login;

Using No-Login Pluggable Authentication

This section describes how to use the no-login authentication plugin to prevent accounts from being
used for connecting from MySQL client programs to the server. It is assumed that the server is running
with the no-login plugin enabled, as described in Installing No-Login Pluggable Authentication.

To refer to the no-login authentication plugin in the IDENTIFIED WITH clause of a CREATE USER
statement, use the name mysql_no_login.

An account that authenticates using mysql_no_login may be used as the DEFINER for stored
program and view objects. If such an object definition also includes SQL SECURITY DEFINER, it
executes with that account's privileges. DBAs can use this behavior to provide access to confidential or
sensitive data that is exposed only through well-controlled interfaces.

The following example illustrates these principles. It defines an account that does not permit client
connections, and associates with it a view that exposes only certain columns of the mysql.user
system table:

CREATE DATABASE nologindb;
CREATE USER 'nologin'@'localhost'
 IDENTIFIED WITH mysql_no_login;
GRANT ALL ON nologindb.*
 TO 'nologin'@'localhost';
GRANT SELECT ON mysql.user
 TO 'nologin'@'localhost';
CREATE DEFINER = 'nologin'@'localhost'
 SQL SECURITY DEFINER
 VIEW nologindb.myview
 AS SELECT User, Host FROM mysql.user;

To provide protected access to the view to an ordinary user, do this:

GRANT SELECT ON nologindb.myview
 TO 'ordinaryuser'@'localhost';

Now the ordinary user can use the view to access the limited information it presents:

SELECT * FROM nologindb.myview;

Attempts by the user to access columns other than those exposed by the view result in an error, as do
attempts to select from the view by users not granted access to it.

Note

Because the nologin account cannot be used directly, the operations required
to set up objects that it uses must be performed by root or similar account that
has the privileges required to create the objects and set DEFINER values.

The mysql_no_login plugin is also useful in proxying scenarios. (For a discussion of concepts
involved in proxying, see Section 8.2.19, “Proxy Users”.) An account that authenticates using
mysql_no_login may be used as a proxied user for proxy accounts:

1491

Authentication Plugins

-- create proxied account
CREATE USER 'proxied_user'@'localhost'
 IDENTIFIED WITH mysql_no_login;
-- grant privileges to proxied account
GRANT ...
 ON ...
 TO 'proxied_user'@'localhost';
-- permit proxy_user to be a proxy account for proxied account
GRANT PROXY
 ON 'proxied_user'@'localhost'
 TO 'proxy_user'@'localhost';

This enables clients to access MySQL through the proxy account (proxy_user) but not to bypass the
proxy mechanism by connecting directly as the proxied user (proxied_user). A client who connects
using the proxy_user account has the privileges of the proxied_user account, but proxied_user
itself cannot be used to connect.

For alternative methods of protecting proxied accounts against direct use, see Preventing Direct Login
to Proxied Accounts.

8.4.1.10 Socket Peer-Credential Pluggable Authentication

The server-side auth_socket authentication plugin authenticates clients that connect from the
local host through the Unix socket file. The plugin uses the SO_PEERCRED socket option to obtain
information about the user running the client program. Thus, the plugin can be used only on systems
that support the SO_PEERCRED option, such as Linux.

The source code for this plugin can be examined as a relatively simple example demonstrating how to
write a loadable authentication plugin.

The following table shows the plugin and library file names. The file must be located in the directory
named by the plugin_dir system variable.

Table 8.26 Plugin and Library Names for Socket Peer-Credential Authentication

Plugin or File Plugin or File Name

Server-side plugin auth_socket

Client-side plugin None, see discussion

Library file auth_socket.so

The following sections provide installation and usage information specific to socket pluggable
authentication:

• Installing Socket Pluggable Authentication

• Uninstalling Socket Pluggable Authentication

• Using Socket Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”.

Installing Socket Pluggable Authentication

This section describes how to install the socket authentication plugin. For general information about
installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

1492

Authentication Plugins

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file:

[mysqld]
plugin-load-add=auth_socket.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

INSTALL PLUGIN auth_socket SONAME 'auth_socket.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%socket%';
+-------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------+---------------+
| auth_socket | ACTIVE |
+-------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the socket plugin, see Using Socket Pluggable Authentication.

Uninstalling Socket Pluggable Authentication

The method used to uninstall the socket authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed
across server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN auth_socket;

Using Socket Pluggable Authentication

The socket plugin checks whether the socket user name (the operating system user name)
matches the MySQL user name specified by the client program to the server. If the names do
not match, the plugin checks whether the socket user name matches the name specified in the
authentication_string column of the mysql.user system table row. If a match is found, the
plugin permits the connection. The authentication_string value can be specified using an
IDENTIFIED ...AS clause with CREATE USER or ALTER USER.

Suppose that a MySQL account is created for an operating system user named valerie who is to be
authenticated by the auth_socket plugin for connections from the local host through the socket file:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket;

If a user on the local host with a login name of stefanie invokes mysql with the option --
user=valerie to connect through the socket file, the server uses auth_socket to authenticate the
client. The plugin determines that the --user option value (valerie) differs from the client user's
name (stephanie) and refuses the connection. If a user named valerie tries the same thing,

1493

Authentication Plugins

the plugin finds that the user name and the MySQL user name are both valerie and permits the
connection. However, the plugin refuses the connection even for valerie if the connection is made
using a different protocol, such as TCP/IP.

To permit both the valerie and stephanie operating system users to access MySQL through
socket file connections that use the account, this can be done two ways:

• Name both users at account-creation time, one following CREATE USER, and the other in the
authentication string:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket AS 'stephanie';

• If you have already used CREATE USER to create the account for a single user, use ALTER USER to
add the second user:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket;
ALTER USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket AS 'stephanie';

To access the account, both valerie and stephanie specify --user=valerie at connect time.

8.4.1.11 FIDO Pluggable Authentication

Note

FIDO pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition supports an authentication method that enables users to authenticate to
MySQL Server using FIDO authentication. This authentication method is deprecated as of MySQL
8.0.35 and is subject to removal in a future MySQL release. For similar capabilities, consider
upgrading to MySQL 8.2 (or higher) where users can authenticate to MySQL Server using WebAuthn
authentication. You need to understand the release model for MySQL innovation and long-term support
(LTS) versions before you proceed with an upgrade. For more information, see Section 3.2, “Upgrade
Paths”.

FIDO stands for Fast Identity Online, which provides standards for authentication that does not require
use of passwords.

FIDO pluggable authentication provides these capabilities:

• FIDO enables authentication to MySQL Server using devices such as smart cards, security keys,
and biometric readers.

• Because authentication can occur other than by providing a password, FIDO enables passwordless
authentication.

• On the other hand, device authentication is often used in conjunction with password authentication,
so FIDO authentication can be used to good effect for MySQL accounts that use multifactor
authentication; see Section 8.2.18, “Multifactor Authentication”.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. Common suffixes are .so for Unix and Unix-like systems, and .dll for Windows. The
file must be located in the directory named by the plugin_dir system variable. For installation
information, see Installing FIDO Pluggable Authentication.

Table 8.27 Plugin and Library Names for FIDO Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_fido

Client-side plugin authentication_fido_client

1494

https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.4/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.4/en/webauthn-pluggable-authentication.html

Authentication Plugins

Plugin or File Plugin or File Name

Library file authentication_fido.so,
authentication_fido_client.so

Note

A libfido2 library must be available on systems where either the server-side
or client-side FIDO authentication plugin is used. If a host machine has more
than one FIDO device, the libfido2 library decides which device to use for
registration and authentication. The libfido2 library does not provide a facility
for device selection.

The server-side FIDO authentication plugin is included only in MySQL Enterprise Edition. It is not
included in MySQL community distributions. The client-side plugin is included in all distributions,
including community distributions, which enables clients from any distribution to connect to a server
that has the server-side plugin loaded.

The following sections provide installation and usage information specific to FIDO pluggable
authentication:

• Installing FIDO Pluggable Authentication

• Using FIDO Authentication

• FIDO Passwordless Authentication

• FIDO Device Unregistration

• How FIDO Authentication of MySQL Users Works

For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”.

Installing FIDO Pluggable Authentication

This section describes how to install the server-side FIDO authentication plugin. For general
information about installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The server-side plugin library file base name is authentication_fido. The file name suffix differs
per platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts.

To load the plugin, put a line such as this in your my.cnf file, adjusting the .so suffix for your platform
as necessary:

[mysqld]
plugin-load-add=authentication_fido.so

After modifying my.cnf, restart the server to cause the new setting to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform
as necessary:

INSTALL PLUGIN authentication_fido
 SONAME 'authentication_fido.so';

1495

Authentication Plugins

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME = 'authentication_fido';
+---------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+---------------------+---------------+
| authentication_fido | ACTIVE |
+---------------------+---------------+

If a plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the FIDO authentication plugin, see Using FIDO Authentication.

Using FIDO Authentication

FIDO authentication typically is used in the context of multifactor authentication (see Section 8.2.18,
“Multifactor Authentication”). This section shows how to incorporate FIDO device-based authentication
into a multifactor account, using the authentication_fido plugin.

It is assumed in the following discussion that the server is running with the server-side FIDO
authentication plugin enabled, as described in Installing FIDO Pluggable Authentication, and that the
client-side FIDO plugin is available in the plugin directory on the client host.

Note

On Windows, FIDO authentication functions only if the client process runs as a
user with administrator privileges.

It is also assumed that FIDO authentication is used in conjunction with non-FIDO authentication
(which implies a 2FA or 3FA account). FIDO can also be used by itself to create 1FA accounts
that authenticate in a passwordless manner. In this case, the setup process differs somewhat. For
instructions, see FIDO Passwordless Authentication.

An account that is configured to use the authentication_fido plugin is associated with a FIDO
device. Because of this, a one-time device registration step is required before FIDO authentication can
occur. The device registration process has these characteristics:

• Any FIDO device associated with an account must be registered before the account can be used.

• Registration requires that a FIDO device be available on the client host, or registration fails.

• The user is expected to perform the appropriate FIDO device action when prompted during
registration (for example, touching the device or performing a biometric scan).

• To perform device registration, the client user must invoke the mysql client program or MySQL
Shell and specify the --fido-register-factor option to specify the factor or factors for
which a device is being registered. For example, if the account is set to use FIDO as the second
authentication factor, the user invokes mysql with the --fido-register-factor=2 option.

• If the user account is configured with the authentication_fido plugin set as the second or third
factor, authentication for all preceding factors must succeed before the registration step can proceed.

• The server knows from the information in the user account whether the FIDO device requires
registration or has already been registered. When the client program connects, the server places
the client session in sandbox mode if the device must be registered, so that registration must occur
before anything else can be done. Sandbox mode used for FIDO device registration is similar to

1496

Authentication Plugins

that used for handling of expired passwords. See Section 8.2.16, “Server Handling of Expired
Passwords”.

• In sandbox mode, no statements other than ALTER USER are permitted. Registration is performed
using forms of this statement. When invoked with the --fido-register-factor option,
the mysql client generates the ALTER USER statements required to perform registration. After
registration has been accomplished, the server switches the session out of sandbox mode, and the
client can proceed normally. For information about the generated ALTER USER statements, refer to
the --fido-register-factor description.

• When device registration has been performed for the account, the server updates the mysql.user
system table row for that account to update the device registration status and to store the public key
and credential ID.

• The registration step can be performed only by the user named by the account. If one user attempts
to perform registration for another user, an error occurs.

• The user should use the same FIDO device during registration and authentication. If, after registering
a FIDO device on the client host, the device is reset or a different device is inserted, authentication
fails. In this case, the device associated with the account must be unregistered and registration must
be done again.

Suppose that you want an account to authenticate first using the caching_sha2_password plugin,
then using the authentication_fido plugin. Create a multifactor account using a statement like
this:

CREATE USER 'u2'@'localhost'
 IDENTIFIED WITH caching_sha2_password
 BY 'sha2_password'
 AND IDENTIFIED WITH authentication_fido;

To connect, supply the factor 1 password to satisfy authentication for that factor, and to initiate
registration of the FIDO device, set the --fido-register-factor to factor 2.

$> mysql --user=u2 --password1 --fido-register-factor=2
Enter password: (enter factor 1 password)

Once the factor 1 password is accepted, the client session enters sandbox mode so that device
registration can be performed for factor 2. During registration, you are prompted to perform the
appropriate FIDO device action, such as touching the device or performing a biometric scan.

When the registration process is complete, the connection to the server is permitted.

Note

The connection to the server is permitted following registration regardless of
additional authentication factors in the account's authentication chain. For
example, if the account in the preceding example was defined with a third
authentication factor (using non-FIDO authentication), the connection would be
permitted after a successful registration without authenticating the third factor.
However, subsequent connections would require authenticating all three factors.

FIDO Passwordless Authentication

This section describes how FIDO can be used by itself to create 1FA accounts that authenticate in
a passwordless manner. In this context, “passwordless” means that authentication occurs but uses
a method other than a password, such as a security key or biometric scan. It does not refer to an
account that uses a password-based authentication plugin for which the password is empty. That kind
of “passwordless” is completely insecure and is not recommended.

The following prerequisites apply when using the authentication_fido plugin to achieve
passwordless authentication:

1497

Authentication Plugins

• The user that creates a passwordless-authentication account requires the
PASSWORDLESS_USER_ADMIN privilege in addition to the CREATE USER privilege.

• The first element of the authentication_policy value must be an asterisk (*) and not a plugin
name. For example, the default authentication_policy value supports enabling passwordless
authentication because the first element is an asterisk:

authentication_policy='*,,'

For information about configuring the authentication_policy value, see Configuring the
Multifactor Authentication Policy.

To use authentication_fido as a passwordless authentication method, the account must be
created with authentication_fido as the first factor authentication method. The INITIAL
AUTHENTICATION IDENTIFIED BY clause must also be specified for the first factor (it is not
supported with 2nd or 3rd factors). This clause specifies whether a randomly generated or user-
specified password will be used for FIDO device registration. After device registration, the server
deletes the password and modifies the account to make authentication_fido the sole
authentication method (the 1FA method).

The required CREATE USER syntax is as follows:

CREATE USER user
 IDENTIFIED WITH authentication_fido
 INITIAL AUTHENTICATION IDENTIFIED BY {RANDOM PASSWORD | 'auth_string'};

The following example uses the RANDOM PASSWORD syntax:

mysql> CREATE USER 'u1'@'localhost'
 IDENTIFIED WITH authentication_fido
 INITIAL AUTHENTICATION IDENTIFIED BY RANDOM PASSWORD;
+------+-----------+----------------------+-------------+
| user | host | generated password | auth_factor |
+------+-----------+----------------------+-------------+
| u1 | localhost | 9XHK]M{l2rnD;VXyHzeF | 1 |
+------+-----------+----------------------+-------------+

To perform registration, the user must authenticate to the server with the password associated with the
INITIAL AUTHENTICATION IDENTIFIED BY clause, either the randomly generated password, or
the 'auth_string' value. If the account was created as just shown, the user executes this command
and pastes in the preceding randomly generated password (9XHK]M{l2rnD;VXyHzeF) at the prompt:

$> mysql --user=u1 --password --fido-register-factor=2
Enter password:

The option --fido-register-factor=2 is used because the INITIAL AUTHENTICATION
IDENTIFIED BY clause is currently acting as the first factor authentication method. The user must
therefore provide the temporary password by using the second factor. On a successful registration,
the server removes the temporary password and revises the account entry in the mysql.user system
table to list authentication_fido as the sole (1FA) authentication method.

When creating a passwordless-authentication account, it is important to include the INITIAL
AUTHENTICATION IDENTIFIED BY clause in the CREATE USER statement. The server will accept a
statement without the clause, but the resulting account is unusable because there is no way to connect
to the server to register the device. Suppose that you execute a statement like this:

CREATE USER 'u2'@'localhost'
 IDENTIFIED WITH authentication_fido;

Subsequent attempts to use the account to connect fail like this:

$> mysql --user=u2 --skip-password
Failed to open FIDO device.
ERROR 1 (HY000): Unknown MySQL error

1498

Authentication Plugins

Note

Passwordless authentication is achieved using the Universal 2nd Factor (U2F)
protocol, which does not support additional security measures such as setting a
PIN on the device to be registered. It is therefore the responsibility of the device
holder to ensure the device is handled in a secure manner.

FIDO Device Unregistration

It is possible to unregister FIDO devices associated with a MySQL account. This might be desirable or
necessary under multiple circumstances:

• A FIDO device is to be replaced with a different device. The previous device must be unregistered
and the new device registered.

In this case, the account owner or any user who has the CREATE USER privilege can unregister the
device. The account owner can register the new device.

• A FIDO device is reset or lost. Authentication attempts will fail until the current device is unregistered
and a new registration is performed.

In this case, the account owner, being unable to authenticate, cannot unregister the current device
and must contact the DBA (or any user who has the CREATE USER privilege) to do so. Then the
account owner can reregister the reset device or register a new device.

Unregistering a FIDO device can be done by the account owner or by any user who has the CREATE
USER privilege. Use this syntax:

ALTER USER user {2 | 3} FACTOR UNREGISTER;

To re-register a device or perform a new registration, refer to the instructions in Using FIDO
Authentication.

How FIDO Authentication of MySQL Users Works

This section provides an overview of how MySQL and FIDO work together to authenticate MySQL
users. For examples showing how to set up MySQL accounts to use the FIDO authentication plugins,
see Using FIDO Authentication.

An account that uses FIDO authentication must perform an initial device registration step before it can
connect to the server. After the device has been registered, authentication can proceed. FIDO device
registration process is as follows:

1. The server sends a random challenge, user ID, and relying party ID (which uniquely identifies a
server) to the client. The relying party ID is defined by the authentication_fido_rp_id system
variable. The default value is MySQL.

2. The client receives that information and sends it to the client-side FIDO authentication plugin, which
in turn provides it to the FIDO device.

3. After the user has performed the appropriate device action (for example, touching the device or
performing a biometric scan) the FIDO device generates a public/private key pair, a key handle, an
X.509 certificate, and a signature, which is returned to the server.

4. The server-side FIDO authentication plugin verifies the signature. Upon successful verification, the
server stores the credential ID and public key in the mysql.user system table.

After registration has been performed successfully, FIDO authentication follows this process:

1. The server sends a random challenge, user ID, relying party ID and credentials to the client.

2. The client sends the same information to the FIDO device.

1499

Authentication Plugins

3. The FIDO device prompts the user to perform the appropriate device action, based on the selection
made during registration.

4. This action unlocks the private key and the challenge is signed.

5. This signed challenge is returned to the server.

6. The server-side FIDO authentication plugin verifies the signature with the public key and responds
to indicate authentication success or failure.

8.4.1.12 Test Pluggable Authentication

MySQL includes a test plugin that checks account credentials and logs success or failure to the server
error log. This is a loadable plugin (not built in) and must be installed prior to use.

The test plugin source code is separate from the server source, unlike the built-in native plugin, so it
can be examined as a relatively simple example demonstrating how to write a loadable authentication
plugin.

Note

This plugin is intended for testing and development purposes, and is not for use
in production environments or on servers that are exposed to public networks.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable.

Table 8.28 Plugin and Library Names for Test Authentication

Plugin or File Plugin or File Name

Server-side plugin test_plugin_server

Client-side plugin auth_test_plugin

Library file auth_test_plugin.so

The following sections provide installation and usage information specific to test pluggable
authentication:

• Installing Test Pluggable Authentication

• Uninstalling Test Pluggable Authentication

• Using Test Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 8.2.17, “Pluggable
Authentication”.

Installing Test Pluggable Authentication

This section describes how to install the server-side test authentication plugin. For general information
about installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

To load the plugin at server startup, use the --plugin-load-add option to name the library file
that contains it. With this plugin-loading method, the option must be given each time the server starts.
For example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as
necessary:

[mysqld]
plugin-load-add=auth_test_plugin.so

1500

Authentication Plugins

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform
as necessary:

INSTALL PLUGIN test_plugin_server SONAME 'auth_test_plugin.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%test_plugin%';
+--------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------------+---------------+
| test_plugin_server | ACTIVE |
+--------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the test plugin, see Using Test Pluggable Authentication.

Uninstalling Test Pluggable Authentication

The method used to uninstall the test authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed
across server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN test_plugin_server;

Using Test Pluggable Authentication

To use the test authentication plugin, create an account and name that plugin in the IDENTIFIED
WITH clause:

CREATE USER 'testuser'@'localhost'
IDENTIFIED WITH test_plugin_server
BY 'testpassword';

The test authentication plugin also requires creating a proxy user as follows:

CREATE USER testpassword@localhost;
GRANT PROXY ON testpassword@localhost TO testuser@localhost;

Then provide the --user and --password options for that account when you connect to the server.
For example:

$> mysql --user=testuser --password
Enter password: testpassword

The plugin fetches the password as received from the client and compares it with the value stored in
the authentication_string column of the account row in the mysql.user system table. If the two
values match, the plugin returns the authentication_string value as the new effective user ID.

You can look in the server error log for a message indicating whether authentication succeeded (notice
that the password is reported as the “user”):

[Note] Plugin test_plugin_server reported:

1501

Authentication Plugins

'successfully authenticated user testpassword'

8.4.1.13 Pluggable Authentication System Variables

These variables are unavailable unless the appropriate server-side plugin is installed:

• authentication_ldap_sasl for system variables with names of the form
authentication_ldap_sasl_xxx

• authentication_ldap_simple for system variables with names of the form
authentication_ldap_simple_xxx

Table 8.29 Authentication Plugin System Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

authentication_fido_rp_idYes Yes Yes Global Yes

authentication_kerberos_service_key_tabYes Yes Yes Global No

authentication_kerberos_service_principalYes Yes Yes Global Yes

authentication_ldap_sasl_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_sasl_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_sasl_ca_pathYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_attrYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_filterYes Yes Yes Global Yes

authentication_ldap_sasl_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_log_statusYes Yes Yes Global Yes

authentication_ldap_sasl_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_referralYes Yes Yes Global Yes

authentication_ldap_sasl_server_hostYes Yes Yes Global Yes

authentication_ldap_sasl_server_portYes Yes Yes Global Yes

authentication_ldap_sasl_tlsYes Yes Yes Global Yes

authentication_ldap_sasl_user_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_simple_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_simple_ca_pathYes Yes Yes Global Yes

authentication_ldap_simple_group_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_group_search_filterYes Yes Yes Global Yes

authentication_ldap_simple_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_log_statusYes Yes Yes Global Yes

authentication_ldap_simple_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_referralYes Yes Yes Global Yes

authentication_ldap_simple_server_hostYes Yes Yes Global Yes

authentication_ldap_simple_server_portYes Yes Yes Global Yes

authentication_ldap_simple_tlsYes Yes Yes Global Yes

1502

Authentication Plugins

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

authentication_ldap_simple_user_search_attrYes Yes Yes Global Yes

authentication_policyYes Yes Yes Global Yes

authentication_windows_log_levelYes Yes Yes Global No

authentication_windows_use_principal_nameYes Yes Yes Global No

• authentication_fido_rp_id

Command-Line Format --authentication-fido-rp-id=value

Introduced 8.0.27

Deprecated 8.0.35

System Variable authentication_fido_rp_id

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value MySQL

This variable specifies the relying party ID used for FIDO device registration and FIDO
authentication. If FIDO authentication is attempted and this value is not the one expected by the
FIDO device, the device assumes that it is not talking to the correct server and an error occurs. The
maximum value length is 255 characters.

Note

As of MySQL 8.0.35, this plugin variable is deprecated and subject to removal
in a future MySQL release.

• authentication_kerberos_service_key_tab

Command-Line Format --authentication-kerberos-service-
key-tab=file_name

Introduced 8.0.26

System Variable authentication_kerberos_service_key_tab

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value datadir/mysql.keytab

The name of the server-side key-table (“keytab”) file containing Kerberos service keys to
authenticate MySQL service tickets received from clients. The file name should be given as an
absolute path name. If this variable is not set, the default is mysql.keytab in the data directory.

The file must exist and contain a valid key for the service principal name (SPN) or authentication of
clients will fail. (The SPN and same key also must be created in the Kerberos server.) The file may
contain multiple service principal names and their respective key combinations.

The file must be generated by the Kerberos server administrator and be copied to a location
accessible by the MySQL server. The file can be validated to make sure that it is correct and was
copied properly using this command:

1503

Authentication Plugins

klist -k file_name

For information about keytab files, see https://web.mit.edu/kerberos/krb5-latest/doc/basic/
keytab_def.html.

• authentication_kerberos_service_principal

Command-Line Format --authentication-kerberos-service-
principal=name

Introduced 8.0.26

System Variable authentication_kerberos_service_principal

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value mysql/host_name@realm_name

The Kerberos service principal name (SPN) that the MySQL server sends to clients.

The value is composed from the service name (mysql), a host name, and a realm name. The
default value is mysql/host_name@realm_name. The realm in the service principal name enables
retrieving the exact service key.

To use a nondefault value, set the value using the same format. For example,
to use a host name of krbauth.example.com and a realm of MYSQL.LOCAL,
set authentication_kerberos_service_principal to mysql/
krbauth.example.com@MYSQL.LOCAL.

The service principal name and service key must already be present in the database managed by
the KDC server.

There can be service principal names that differ only by realm name.

• authentication_ldap_sasl_auth_method_name

Command-Line Format --authentication-ldap-sasl-auth-
method-name=value

System Variable authentication_ldap_sasl_auth_method_name

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value SCRAM-SHA-1

Valid Values (≥ 8.0.23) SCRAM-SHA-1

SCRAM-SHA-256

GSSAPI

Valid Values (≥ 8.0.20, ≤ 8.0.22) SCRAM-SHA-1

GSSAPI

1504

https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html
https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html

Authentication Plugins

Valid Values (≤ 8.0.19) SCRAM-SHA-1

For SASL LDAP authentication, the authentication method name. Communication between the
authentication plugin and the LDAP server occurs according to this authentication method to ensure
password security.

These authentication method values are permitted:

• SCRAM-SHA-1: Use a SASL challenge-response mechanism.

The client-side authentication_ldap_sasl_client plugin communicates with the SASL
server, using the password to create a challenge and obtain a SASL request buffer, then passes
this buffer to the server-side authentication_ldap_sasl plugin. The client-side and server-
side SASL LDAP plugins use SASL messages for secure transmission of credentials within the
LDAP protocol, to avoid sending the cleartext password between the MySQL client and server.

• SCRAM-SHA-256: Use a SASL challenge-response mechanism.

This method is similar to SCRAM-SHA-1, but is more secure. It is available in MySQL 8.0.23 and
higher. It requires an OpenLDAP server built using Cyrus SASL 2.1.27 or higher.

• GSSAPI: Use Kerberos, a passwordless and ticket-based protocol.

GSSAPI/Kerberos is supported as an authentication method for MySQL clients and servers only
on Linux. It is useful in Linux environments where applications access LDAP using Microsoft Active
Directory, which has Kerberos enabled by default.

The client-side authentication_ldap_sasl_client plugin obtains a service ticket using the
ticket-granting ticket (TGT) from Kerberos, but does not use LDAP services directly. The server-
side authentication_ldap_sasl plugin routes Kerberos messages between the client-side
plugin and the LDAP server. Using the credentials thus obtained, the server-side plugin then
communicates with the LDAP server to interpret LDAP authentication messages and retrieve
LDAP groups.

• authentication_ldap_sasl_bind_base_dn

Command-Line Format --authentication-ldap-sasl-bind-
base-dn=value

System Variable authentication_ldap_sasl_bind_base_dn

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

1505

Authentication Plugins

Default Value NULL

For SASL LDAP authentication, the base distinguished name (DN). This variable can be used to limit
the scope of searches by anchoring them at a certain location (the “base”) within the search tree.

Suppose that members of one set of LDAP user entries each have this form:

uid=user_name,ou=People,dc=example,dc=com

And that members of another set of LDAP user entries each have this form:

uid=user_name,ou=Admin,dc=example,dc=com

Then searches work like this for different base DN values:

• If the base DN is ou=People,dc=example,dc=com: Searches find user entries only in the first
set.

• If the base DN is ou=Admin,dc=example,dc=com: Searches find user entries only in the
second set.

• If the base DN is ou=dc=example,dc=com: Searches find user entries in the first or second set.

In general, more specific base DN values result in faster searches because they limit the search
scope more.

• authentication_ldap_sasl_bind_root_dn

Command-Line Format --authentication-ldap-sasl-bind-
root-dn=value

System Variable authentication_ldap_sasl_bind_root_dn

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For SASL LDAP authentication, the root distinguished name (DN). This variable is used in
conjunction with authentication_ldap_sasl_bind_root_pwd as the credentials for
authenticating to the LDAP server for the purpose of performing searches. Authentication uses either
one or two LDAP bind operations, depending on whether the MySQL account names an LDAP user
DN:

• If the account does not name a user DN: authentication_ldap_sasl performs
an initial LDAP binding using authentication_ldap_sasl_bind_root_dn and
authentication_ldap_sasl_bind_root_pwd. (These are both empty by default, so
if they are not set, the LDAP server must permit anonymous connections.) The resulting
bind LDAP handle is used to search for the user DN, based on the client user name.
authentication_ldap_sasl performs a second bind using the user DN and client-supplied
password.

• If the account does name a user DN: The first bind operation is unnecessary in this case.
authentication_ldap_sasl performs a single bind using the user DN and client-supplied
password. This is faster than if the MySQL account does not specify an LDAP user DN.

1506

Authentication Plugins

• authentication_ldap_sasl_bind_root_pwd

Command-Line Format --authentication-ldap-sasl-bind-
root-pwd=value

System Variable authentication_ldap_sasl_bind_root_pwd

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For SASL LDAP authentication, the password for the root distinguished name. This variable is used
in conjunction with authentication_ldap_sasl_bind_root_dn. See the description of that
variable.

• authentication_ldap_sasl_ca_path

Command-Line Format --authentication-ldap-sasl-ca-
path=value

System Variable authentication_ldap_sasl_ca_path

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For SASL LDAP authentication, the absolute path of the certificate authority file. Specify this file if it
is desired that the authentication plugin perform verification of the LDAP server certificate.

Note

In addition to setting the authentication_ldap_sasl_ca_path variable
to the file name, you must add the appropriate certificate authority certificates
to the file and enable the authentication_ldap_sasl_tls system
variable. These variables can be set to override the default OpenLDAP TLS
configuration; see LDAP Pluggable Authentication and ldap.conf

• authentication_ldap_sasl_group_search_attr

Command-Line Format --authentication-ldap-sasl-group-
search-attr=value

System Variable authentication_ldap_sasl_group_search_attr

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value cn

For SASL LDAP authentication, the name of the attribute that specifies group names in LDAP
directory entries. If authentication_ldap_sasl_group_search_attr has its default value of
cn, searches return the cn value as the group name. For example, if an LDAP entry with a uid value
of user1 has a cn attribute of mygroup, searches for user1 return mygroup as the group name.

1507

Authentication Plugins

This variable should be the empty string if you want no group or proxy authentication.

If the group search attribute is isMemberOf, LDAP authentication directly retrieves the user
attribute isMemberOf value and assigns it as group information. If the group search attribute is not
isMemberOf, LDAP authentication searches for all groups where the user is a member. (The latter
is the default behavior.) This behavior is based on how LDAP group information can be stored two
ways: 1) A group entry can have an attribute named memberUid or member with a value that is a
user name; 2) A user entry can have an attribute named isMemberOf with values that are group
names.

• authentication_ldap_sasl_group_search_filter

Command-Line Format --authentication-ldap-sasl-group-
search-filter=value

System Variable authentication_ldap_sasl_group_search_filter

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value (|(&(objectClass=posixGroup)
(memberUid=%s))(&(objectClass=group)
(member=%s)))

For SASL LDAP authentication, the custom group search filter.

The search filter value can contain {UA} and {UD} notation to represent the user name and the
full user DN. For example, {UA} is replaced with a user name such as "admin", whereas {UD}
is replaced with a use full DN such as "uid=admin,ou=People,dc=example,dc=com". The
following value is the default, which supports both OpenLDAP and Active Directory:

(|(&(objectClass=posixGroup)(memberUid={UA}))
 (&(objectClass=group)(member={UD})))

In some cases for the user scenario, memberOf is a simple user attribute that holds no group
information. For additional flexibility, an optional {GA} prefix can be used with the group search
attribute. Any group attribute with a {GA} prefix is treated as a user attribute having group names. For
example, with a value of {GA}MemberOf, if the group value is the DN, the first attribute value from
the group DN is returned as the group name.

• authentication_ldap_sasl_init_pool_size

Command-Line Format --authentication-ldap-sasl-init-
pool-size=#

System Variable authentication_ldap_sasl_init_pool_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 32767

1508

Authentication Plugins

Unit connections

For SASL LDAP authentication, the initial size of the pool of connections to the LDAP server. Choose
the value for this variable based on the average number of concurrent authentication requests to the
LDAP server.

The plugin uses authentication_ldap_sasl_init_pool_size and
authentication_ldap_sasl_max_pool_size together for connection-pool management:

• When the authentication plugin initializes, it creates
authentication_ldap_sasl_init_pool_size connections, unless
authentication_ldap_sasl_max_pool_size=0 to disable pooling.

• If the plugin receives an authentication request when there are no free connections in the current
connection pool, the plugin can create a new connection, up to the maximum connection pool size
given by authentication_ldap_sasl_max_pool_size.

• If the plugin receives a request when the pool size is already at its maximum and there are no free
connections, authentication fails.

• When the plugin unloads, it closes all pooled connections.

Changes to plugin system variable settings may have no effect on connections already in the
pool. For example, modifying the LDAP server host, port, or TLS settings does not affect existing
connections. However, if the original variable values were invalid and the connection pool could not
be initialized, the plugin attempts to reinitialize the pool for the next LDAP request. In this case, the
new system variable values are used for the reinitialization attempt.

If authentication_ldap_sasl_max_pool_size=0 to disable pooling, each LDAP connection
opened by the plugin uses the values the system variables have at that time.

• authentication_ldap_sasl_log_status

Command-Line Format --authentication-ldap-sasl-log-
status=#

System Variable authentication_ldap_sasl_log_status

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value (≥ 8.0.18) 6

Maximum Value (≤ 8.0.17) 5

For SASL LDAP authentication, the logging level for messages written to the error log. The following
table shows the permitted level values and their meanings.

Table 8.30 Log Levels for authentication_ldap_sasl_log_status

Option Value Types of Messages Logged

1 No messages

2 Error messages

3 Error and warning messages 1509

Authentication Plugins

Option Value Types of Messages Logged

4 Error, warning, and information messages

5 Same as previous level plus debugging
messages from MySQL

6 Same as previous level plus debugging
messages from LDAP library

Log level 6 is available as of MySQL 8.0.18.

On the client side, messages can be logged to the standard output by setting the
AUTHENTICATION_LDAP_CLIENT_LOG environment variable. The permitted and default values are
the same as for authentication_ldap_sasl_log_status.

The AUTHENTICATION_LDAP_CLIENT_LOG environment variable applies only to SASL LDAP
authentication. It has no effect for simple LDAP authentication because the client plugin in that case
is mysql_clear_password, which knows nothing about LDAP operations.

• authentication_ldap_sasl_max_pool_size

Command-Line Format --authentication-ldap-sasl-max-pool-
size=#

System Variable authentication_ldap_sasl_max_pool_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 32767

Unit connections

For SASL LDAP authentication, the maximum size of the pool of connections to the LDAP server. To
disable connection pooling, set this variable to 0.

This variable is used in conjunction with authentication_ldap_sasl_init_pool_size. See
the description of that variable.

• authentication_ldap_sasl_referral

Command-Line Format --authentication-ldap-sasl-
referral[={OFF|ON}]

Introduced 8.0.20

System Variable authentication_ldap_sasl_referral

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

1510

Authentication Plugins

Default Value OFF

For SASL LDAP authentication, whether to enable LDAP search referral. See LDAP Search Referral.

This variable can be set to override the default OpenLDAP referral configuration; see LDAP
Pluggable Authentication and ldap.conf

• authentication_ldap_sasl_server_host

Command-Line Format --authentication-ldap-sasl-server-
host=host_name

System Variable authentication_ldap_sasl_server_host

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

For SASL LDAP authentication, the LDAP server host. The permitted values for this variable depend
on the authentication method:

• For authentication_ldap_sasl_auth_method_name=SCRAM-SHA-1: The LDAP server
host can be a host name or IP address.

• For authentication_ldap_sasl_auth_method_name=SCRAM-SHA-256: The LDAP server
host can be a host name or IP address.

• authentication_ldap_sasl_server_port

Command-Line Format --authentication-ldap-sasl-server-
port=port_num

System Variable authentication_ldap_sasl_server_port

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 389

Minimum Value 1

Maximum Value 32376

For SASL LDAP authentication, the LDAP server TCP/IP port number.

As of MySQL 8.0.14, if the LDAP port number is configured as 636 or 3269, the plugin uses LDAPS
(LDAP over SSL) instead of LDAP. (LDAPS differs from startTLS.)

• authentication_ldap_sasl_tls

Command-Line Format --authentication-ldap-sasl-
tls[={OFF|ON}]

System Variable authentication_ldap_sasl_tls

Scope Global

Dynamic Yes

SET_VAR Hint Applies No 1511

Authentication Plugins

Type Boolean

Default Value OFF

For SASL LDAP authentication, whether connections by the plugin to the LDAP server are
secure. If this variable is enabled, the plugin uses TLS to connect securely to the LDAP server.
This variable can be set to override the default OpenLDAP TLS configuration; see LDAP
Pluggable Authentication and ldap.conf If you enable this variable, you may also wish to set the
authentication_ldap_sasl_ca_path variable.

MySQL LDAP plugins support the StartTLS method, which initializes TLS on top of a plain LDAP
connection.

As of MySQL 8.0.14, LDAPS can be used by setting the
authentication_ldap_sasl_server_port system variable.

• authentication_ldap_sasl_user_search_attr

Command-Line Format --authentication-ldap-sasl-user-
search-attr=value

System Variable authentication_ldap_sasl_user_search_attr

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value uid

For SASL LDAP authentication, the name of the attribute that specifies user
names in LDAP directory entries. If a user distinguished name is not provided, the
authentication plugin searches for the name using this attribute. For example, if the
authentication_ldap_sasl_user_search_attr value is uid, a search for the user name
user1 finds entries with a uid value of user1.

• authentication_ldap_simple_auth_method_name

Command-Line Format --authentication-ldap-simple-auth-
method-name=value

System Variable authentication_ldap_simple_auth_method_name

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value SIMPLE

Valid Values SIMPLE

AD-FOREST

For simple LDAP authentication, the authentication method name. Communication between the
authentication plugin and the LDAP server occurs according to this authentication method.

Note

For all simple LDAP authentication methods, it is recommended to also set
TLS parameters to require that communication with the LDAP server take
place over secure connections.

1512

Authentication Plugins

These authentication method values are permitted:

• SIMPLE: Use simple LDAP authentication. This method uses either one or two LDAP bind
operations, depending on whether the MySQL account names an LDAP user distinguished name.
See the description of authentication_ldap_simple_bind_root_dn.

• AD-FOREST: A variation on SIMPLE, such that authentication searches all domains in the Active
Directory forest, performing an LDAP bind to each Active Directory domain until the user is found
in some domain.

• authentication_ldap_simple_bind_base_dn

Command-Line Format --authentication-ldap-simple-bind-
base-dn=value

System Variable authentication_ldap_simple_bind_base_dn

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For simple LDAP authentication, the base distinguished name (DN). This variable can be used to
limit the scope of searches by anchoring them at a certain location (the “base”) within the search
tree.

Suppose that members of one set of LDAP user entries each have this form:

uid=user_name,ou=People,dc=example,dc=com

And that members of another set of LDAP user entries each have this form:

uid=user_name,ou=Admin,dc=example,dc=com

Then searches work like this for different base DN values:

• If the base DN is ou=People,dc=example,dc=com: Searches find user entries only in the first
set.

• If the base DN is ou=Admin,dc=example,dc=com: Searches find user entries only in the
second set.

• If the base DN is ou=dc=example,dc=com: Searches find user entries in the first or second set.

In general, more specific base DN values result in faster searches because they limit the search
scope more.

• authentication_ldap_simple_bind_root_dn

Command-Line Format --authentication-ldap-simple-bind-
root-dn=value

System Variable authentication_ldap_simple_bind_root_dn

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

1513

Authentication Plugins

Default Value NULL

For simple LDAP authentication, the root distinguished name (DN). This variable is used in
conjunction with authentication_ldap_simple_bind_root_pwd as the credentials for
authenticating to the LDAP server for the purpose of performing searches. Authentication uses either
one or two LDAP bind operations, depending on whether the MySQL account names an LDAP user
DN:

• If the account does not name a user DN: authentication_ldap_simple performs
an initial LDAP binding using authentication_ldap_simple_bind_root_dn and
authentication_ldap_simple_bind_root_pwd. (These are both empty by default,
so if they are not set, the LDAP server must permit anonymous connections.) The resulting
bind LDAP handle is used to search for the user DN, based on the client user name.
authentication_ldap_simple performs a second bind using the user DN and client-supplied
password.

• If the account does name a user DN: The first bind operation is unnecessary in this case.
authentication_ldap_simple performs a single bind using the user DN and client-supplied
password. This is faster than if the MySQL account does not specify an LDAP user DN.

• authentication_ldap_simple_bind_root_pwd

Command-Line Format --authentication-ldap-simple-bind-
root-pwd=value

System Variable authentication_ldap_simple_bind_root_pwd

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For simple LDAP authentication, the password for the root distinguished name. This variable is used
in conjunction with authentication_ldap_simple_bind_root_dn. See the description of that
variable.

• authentication_ldap_simple_ca_path

Command-Line Format --authentication-ldap-simple-ca-
path=value

System Variable authentication_ldap_simple_ca_path

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For simple LDAP authentication, the absolute path of the certificate authority file. Specify this file if it
is desired that the authentication plugin perform verification of the LDAP server certificate.

Note

In addition to setting the authentication_ldap_simple_ca_path
variable to the file name, you must add the appropriate certificate authority
certificates to the file and enable the authentication_ldap_simple_tls

1514

Authentication Plugins

system variable. These variables can be set to override the default
OpenLDAP TLS configuration; see LDAP Pluggable Authentication and
ldap.conf

• authentication_ldap_simple_group_search_attr

Command-Line Format --authentication-ldap-simple-group-
search-attr=value

System Variable authentication_ldap_simple_group_search_attr

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value cn

For simple LDAP authentication, the name of the attribute that specifies group names in LDAP
directory entries. If authentication_ldap_simple_group_search_attr has its default value
of cn, searches return the cn value as the group name. For example, if an LDAP entry with a uid
value of user1 has a cn attribute of mygroup, searches for user1 return mygroup as the group
name.

If the group search attribute is isMemberOf, LDAP authentication directly retrieves the user
attribute isMemberOf value and assigns it as group information. If the group search attribute is not
isMemberOf, LDAP authentication searches for all groups where the user is a member. (The latter
is the default behavior.) This behavior is based on how LDAP group information can be stored two
ways: 1) A group entry can have an attribute named memberUid or member with a value that is a
user name; 2) A user entry can have an attribute named isMemberOf with values that are group
names.

• authentication_ldap_simple_group_search_filter

Command-Line Format --authentication-ldap-simple-group-
search-filter=value

System Variable authentication_ldap_simple_group_search_filter

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value (|(&(objectClass=posixGroup)
(memberUid=%s))(&(objectClass=group)
(member=%s)))

For simple LDAP authentication, the custom group search filter.

The search filter value can contain {UA} and {UD} notation to represent the user name and the
full user DN. For example, {UA} is replaced with a user name such as "admin", whereas {UD}
is replaced with a use full DN such as "uid=admin,ou=People,dc=example,dc=com". The
following value is the default, which supports both OpenLDAP and Active Directory:

(|(&(objectClass=posixGroup)(memberUid={UA}))
 (&(objectClass=group)(member={UD})))

In some cases for the user scenario, memberOf is a simple user attribute that holds no group
information. For additional flexibility, an optional {GA} prefix can be used with the group search
attribute. Any group attribute with a {GA} prefix is treated as a user attribute having group names. For

1515

Authentication Plugins

example, with a value of {GA}MemberOf, if the group value is the DN, the first attribute value from
the group DN is returned as the group name.

• authentication_ldap_simple_init_pool_size

Command-Line Format --authentication-ldap-simple-init-
pool-size=#

System Variable authentication_ldap_simple_init_pool_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 32767

Unit connections

For simple LDAP authentication, the initial size of the pool of connections to the LDAP server.
Choose the value for this variable based on the average number of concurrent authentication
requests to the LDAP server.

The plugin uses authentication_ldap_simple_init_pool_size and
authentication_ldap_simple_max_pool_size together for connection-pool management:

• When the authentication plugin initializes, it creates
authentication_ldap_simple_init_pool_size connections, unless
authentication_ldap_simple_max_pool_size=0 to disable pooling.

• If the plugin receives an authentication request when there are no free connections in the current
connection pool, the plugin can create a new connection, up to the maximum connection pool size
given by authentication_ldap_simple_max_pool_size.

• If the plugin receives a request when the pool size is already at its maximum and there are no free
connections, authentication fails.

• When the plugin unloads, it closes all pooled connections.

Changes to plugin system variable settings may have no effect on connections already in the
pool. For example, modifying the LDAP server host, port, or TLS settings does not affect existing
connections. However, if the original variable values were invalid and the connection pool could not
be initialized, the plugin attempts to reinitialize the pool for the next LDAP request. In this case, the
new system variable values are used for the reinitialization attempt.

If authentication_ldap_simple_max_pool_size=0 to disable pooling, each LDAP
connection opened by the plugin uses the values the system variables have at that time.

• authentication_ldap_simple_log_status

Command-Line Format --authentication-ldap-simple-log-
status=#

System Variable authentication_ldap_simple_log_status

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

1516

Authentication Plugins

Type Integer

Default Value 1

Minimum Value 1

Maximum Value (≥ 8.0.18) 6

Maximum Value (≤ 8.0.17) 5

For simple LDAP authentication, the logging level for messages written to the error log. The following
table shows the permitted level values and their meanings.

Table 8.31 Log Levels for authentication_ldap_simple_log_status

Option Value Types of Messages Logged

1 No messages

2 Error messages

3 Error and warning messages

4 Error, warning, and information messages

5 Same as previous level plus debugging
messages from MySQL

6 Same as previous level plus debugging
messages from LDAP library

Log level 6 is available as of MySQL 8.0.18.

• authentication_ldap_simple_max_pool_size

Command-Line Format --authentication-ldap-simple-max-
pool-size=#

System Variable authentication_ldap_simple_max_pool_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 32767

Unit connections

For simple LDAP authentication, the maximum size of the pool of connections to the LDAP server.
To disable connection pooling, set this variable to 0.

This variable is used in conjunction with authentication_ldap_simple_init_pool_size.
See the description of that variable.

• authentication_ldap_simple_referral

Command-Line Format --authentication-ldap-simple-
referral[={OFF|ON}]

Introduced 8.0.20

System Variable authentication_ldap_simple_referral1517

Authentication Plugins

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

For simple LDAP authentication, whether to enable LDAP search referral. See LDAP Search
Referral.

• authentication_ldap_simple_server_host

Command-Line Format --authentication-ldap-simple-server-
host=host_name

System Variable authentication_ldap_simple_server_host

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

For simple LDAP authentication, the LDAP server host. The permitted values for this variable depend
on the authentication method:

• For authentication_ldap_simple_auth_method_name=SIMPLE: The LDAP server host
can be a host name or IP address.

• For authentication_ldap_simple_auth_method_name=AD-FOREST. The LDAP server
host can be an Active Directory domain name. For example, for an LDAP server URL of ldap://
example.mem.local:389, the domain name can be mem.local.

An Active Directory forest setup can have multiple domains (LDAP server IPs), which can be
discovered using DNS. On Unix and Unix-like systems, some additional setup may be required to

1518

Authentication Plugins

configure your DNS server with SRV records that specify the LDAP servers for the Active Directory
domain. For information about DNS SRV, see RFC 2782.

Suppose that your configuration has these properties:

• The name server that provides information about Active Directory domains has IP address
10.172.166.100.

• The LDAP servers have names ldap1.mem.local through ldap3.mem.local and IP
addresses 10.172.166.101 through 10.172.166.103.

You want the LDAP servers to be discoverable using SRV searches. For example, at the
command line, a command like this should list the LDAP servers:

host -t SRV _ldap._tcp.mem.local

Perform the DNS configuration as follows:

1. Add a line to /etc/resolv.conf to specify the name server that provides information about
Active Directory domains:

nameserver 10.172.166.100

2. Configure the appropriate zone file for the name server with SRV records for the LDAP
servers:

_ldap._tcp.mem.local. 86400 IN SRV 0 100 389 ldap1.mem.local.
_ldap._tcp.mem.local. 86400 IN SRV 0 100 389 ldap2.mem.local.
_ldap._tcp.mem.local. 86400 IN SRV 0 100 389 ldap3.mem.local.

3. It may also be necessary to specify the IP address for the LDAP servers in /etc/hosts if the
server host cannot be resolved. For example, add lines like this to the file:

10.172.166.101 ldap1.mem.local
10.172.166.102 ldap2.mem.local
10.172.166.103 ldap3.mem.local

With the DNS configured as just described, the server-side LDAP plugin can discover the LDAP
servers and tries to authenticate in all domains until authentication succeeds or there are no more
servers.

Windows needs no such settings as just described. Given the LDAP server host in the
authentication_ldap_simple_server_host value, the Windows LDAP library searches all
domains and attempts to authenticate.

• authentication_ldap_simple_server_port

Command-Line Format --authentication-ldap-simple-server-
port=port_num

System Variable authentication_ldap_simple_server_port

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 389

Minimum Value 1

1519

https://tools.ietf.org/html/rfc2782

Connection Control Plugins

Maximum Value 32376

For simple LDAP authentication, the LDAP server TCP/IP port number.

As of MySQL 8.0.14, if the LDAP port number is configured as 636 or 3269, the plugin uses LDAPS
(LDAP over SSL) instead of LDAP. (LDAPS differs from startTLS.)

• authentication_ldap_simple_tls

Command-Line Format --authentication-ldap-simple-
tls[={OFF|ON}]

System Variable authentication_ldap_simple_tls

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

For simple LDAP authentication, whether connections by the plugin to the LDAP server are
secure. If this variable is enabled, the plugin uses TLS to connect securely to the LDAP server.
This variable can be set to override the default OpenLDAP TLS configuration; see LDAP
Pluggable Authentication and ldap.conf If you enable this variable, you may also wish to set the
authentication_ldap_simple_ca_path variable.

MySQL LDAP plugins support the StartTLS method, which initializes TLS on top of a plain LDAP
connection.

As of MySQL 8.0.14, LDAPS can be used by setting the
authentication_ldap_simple_server_port system variable.

• authentication_ldap_simple_user_search_attr

Command-Line Format --authentication-ldap-simple-user-
search-attr=value

System Variable authentication_ldap_simple_user_search_attr

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value uid

For simple LDAP authentication, the name of the attribute that specifies user
names in LDAP directory entries. If a user distinguished name is not provided, the
authentication plugin searches for the name using this attribute. For example, if the
authentication_ldap_simple_user_search_attr value is uid, a search for the user name
user1 finds entries with a uid value of user1.

8.4.2 Connection Control Plugins

MySQL Server includes a plugin library that enables administrators to introduce an increasing delay
in server response to connection attempts after a configurable number of consecutive failed attempts.
This capability provides a deterrent that slows down brute force attacks against MySQL user accounts.
The plugin library contains two plugins:

1520

Connection Control Plugins

• CONNECTION_CONTROL checks incoming connection attempts and adds a delay to server responses
as necessary. This plugin also exposes system variables that enable its operation to be configured
and a status variable that provides rudimentary monitoring information.

The CONNECTION_CONTROL plugin uses the audit plugin interface (see Writing Audit Plugins).
To collect information, it subscribes to the MYSQL_AUDIT_CONNECTION_CLASSMASK
event class, and processes MYSQL_AUDIT_CONNECTION_CONNECT and
MYSQL_AUDIT_CONNECTION_CHANGE_USER subevents to check whether the server should
introduce a delay before responding to connection attempts.

• CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS implements an INFORMATION_SCHEMA
table that exposes more detailed monitoring information for failed connection attempts.
For more information about this table, see Section 28.6.2, “The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table”.

The following sections provide information about connection control plugin installation and
configuration.

8.4.2.1 Connection Control Plugin Installation

This section describes how to install the connection control plugins, CONNECTION_CONTROL and
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS. For general information about installing plugins,
see Section 7.6.1, “Installing and Uninstalling Plugins”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is connection_control. The file name suffix differs per platform
(for example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugins at server startup, use the --plugin-load-add option to name the library file that
contains them. With this plugin-loading method, the option must be given each time the server starts.
For example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as
necessary:

[mysqld]
plugin-load-add=connection_control.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugins at runtime, use these statements, adjusting the .so suffix for your
platform as necessary:

INSTALL PLUGIN CONNECTION_CONTROL
 SONAME 'connection_control.so';
INSTALL PLUGIN CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
 SONAME 'connection_control.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'connection%';
+--+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--+---------------+
| CONNECTION_CONTROL | ACTIVE |
| CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS | ACTIVE |
+--+---------------+

1521

https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-audit-plugins.html

Connection Control Plugins

If a plugin fails to initialize, check the server error log for diagnostic messages.

If the plugins have been previously registered with INSTALL PLUGIN or are loaded with --plugin-
load-add, you can use the --connection-control and --connection-control-failed-
login-attempts options at server startup to control plugin activation. For example, to load the
plugins at startup and prevent them from being removed at runtime, use these options:

[mysqld]
plugin-load-add=connection_control.so
connection-control=FORCE_PLUS_PERMANENT
connection-control-failed-login-attempts=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without a given connection control plugin, use an
option value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not
initialize successfully.

Note

It is possible to install one plugin without the other, but both must be
installed for full connection control capability. In particular, installing only the
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS plugin is of little use
because, without the CONNECTION_CONTROL plugin to provide the data that
populates the CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table, the
table is always empty.

• Connection Delay Configuration

• Connection Failure Assessment

• Connection Failure Monitoring

Connection Delay Configuration

To enable configuring its operation, the CONNECTION_CONTROL plugin exposes these system
variables:

• connection_control_failed_connections_threshold: The number of
consecutive failed connection attempts permitted to accounts before the server adds a
delay for subsequent connection attempts. To disable failed-connection counting, set
connection_control_failed_connections_threshold to zero.

• connection_control_min_connection_delay: The minimum delay in milliseconds for
connection failures above the threshold.

• connection_control_max_connection_delay: The maximum delay in milliseconds for
connection failures above the threshold.

If connection_control_failed_connections_threshold is nonzero, failed-connection
counting is enabled and has these properties:

• The delay is zero up through connection_control_failed_connections_threshold
consecutive failed connection attempts.

• Thereafter, the server adds an increasing delay for subsequent consecutive attempts, until a
successful connection occurs. The initial unadjusted delays begin at 1000 milliseconds (1 second)
and increase by 1000 milliseconds per attempt. That is, once delay has been activated for an
account, the unadjusted delays for subsequent failed attempts are 1000 milliseconds, 2000
milliseconds, 3000 milliseconds, and so forth.

• The actual delay experienced by a client is the unadjusted delay, adjusted to lie
within the values of the connection_control_min_connection_delay and
connection_control_max_connection_delay system variables, inclusive.

1522

Connection Control Plugins

• Once delay has been activated for an account, the first successful connection thereafter by the
account also experiences a delay, but failure counting is reset for subsequent connections.

For example, with the default connection_control_failed_connections_threshold
value of 3, there is no delay for the first three consecutive failed connection attempts by an
account. The actual adjusted delays experienced by the account for the fourth and subsequent
failed connections depend on the connection_control_min_connection_delay and
connection_control_max_connection_delay values:

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 1000 and 20000, the adjusted delays
are the same as the unadjusted delays, up to a maximum of 20000 milliseconds. The fourth
and subsequent failed connections are delayed by 1000 milliseconds, 2000 milliseconds, 3000
milliseconds, and so forth.

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 1500 and 20000, the adjusted delays
for the fourth and subsequent failed connections are 1500 milliseconds, 2000 milliseconds, 3000
milliseconds, and so forth, up to a maximum of 20000 milliseconds.

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 2000 and 3000, the adjusted delays for
the fourth and subsequent failed connections are 2000 milliseconds, 2000 milliseconds, and 3000
milliseconds, with all subsequent failed connections also delayed by 3000 milliseconds.

You can set the CONNECTION_CONTROL system variables at server startup or runtime. Suppose that
you want to permit four consecutive failed connection attempts before the server starts delaying its
responses, with a minimum delay of 2000 milliseconds. To set the relevant variables at server startup,
put these lines in the server my.cnf file:

[mysqld]
plugin-load-add=connection_control.so
connection-control-failed-connections-threshold=4
connection-control-min-connection-delay=2000

To set and persist the variables at runtime, use these statements:

SET PERSIST connection_control_failed_connections_threshold = 4;
SET PERSIST connection_control_min_connection_delay = 2000;

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to
carry over to subsequent server restarts. To change a value for the running MySQL instance without
having it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See
Section 15.7.6.1, “SET Syntax for Variable Assignment”.

The connection_control_min_connection_delay and
connection_control_max_connection_delay system variables both have minimum and
maximum values of 1000 and 2147483647. In addition, the permitted range of values of each variable
also depends on the current value of the other:

• connection_control_min_connection_delay cannot be set greater than the current value of
connection_control_max_connection_delay.

• connection_control_max_connection_delay cannot be set less than the current value of
connection_control_min_connection_delay.

Thus, to make the changes required for some configurations, you might need to set the
variables in a specific order. Suppose that the current minimum and maximum delays
are 1000 and 2000, and that you want to set them to 3000 and 5000. You cannot first
set connection_control_min_connection_delay to 3000 because that is greater
than the current connection_control_max_connection_delay value of 2000.
Instead, set connection_control_max_connection_delay to 5000, then set
connection_control_min_connection_delay to 3000.

1523

Connection Control Plugins

Connection Failure Assessment

When the CONNECTION_CONTROL plugin is installed, it checks connection attempts and tracks whether
they fail or succeed. For this purpose, a failed connection attempt is one for which the client user and
host match a known MySQL account but the provided credentials are incorrect, or do not match any
known account.

Failed-connection counting is based on the user/host combination for each connection attempt.
Determination of the applicable user name and host name takes proxying into account and occurs as
follows:

• If the client user proxies another user, the account for failed-connection counting is the
proxying user, not the proxied user. For example, if external_user@example.com
proxies proxy_user@example.com, connection counting uses the proxying user,
external_user@example.com, rather than the proxied user, proxy_user@example.com.
Both external_user@example.com and proxy_user@example.com must have valid entries
in the mysql.user system table and a proxy relationship between them must be defined in the
mysql.proxies_priv system table (see Section 8.2.19, “Proxy Users”).

• If the client user does not proxy another user, but does match a mysql.user entry, counting uses
the CURRENT_USER() value corresponding to that entry. For example, if a user user1 connecting
from a host host1.example.com matches a user1@host1.example.com entry, counting uses
user1@host1.example.com. If the user matches a user1@%.example.com, user1@%.com,
or user1@% entry instead, counting uses user1@%.example.com, user1@%.com, or user1@%,
respectively.

For the cases just described, the connection attempt matches some mysql.user entry, and whether
the request succeeds or fails depends on whether the client provides the correct authentication
credentials. For example, if the client presents an incorrect password, the connection attempt fails.

If the connection attempt matches no mysql.user entry, the attempt fails. In this case, no
CURRENT_USER() value is available and connection-failure counting uses the user name provided
by the client and the client host as determined by the server. For example, if a client attempts to
connect as user user2 from host host2.example.com, the user name part is available in the client
request and the server determines the host information. The user/host combination used for counting is
user2@host2.example.com.

Note

The server maintains information about which client hosts can possibly connect
to the server (essentially the union of host values for mysql.user entries). If a
client attempts to connect from any other host, the server rejects the attempt at
an early stage of connection setup:

ERROR 1130 (HY000): Host 'host_name' is not
allowed to connect to this MySQL server

Because this type of rejection occurs so early, CONNECTION_CONTROL does
not see it, and does not count it.

Connection Failure Monitoring

To monitor failed connections, use these information sources:

• The Connection_control_delay_generated status variable indicates the number
of times the server added a delay to its response to a failed connection attempt. This
does not count attempts that occur before reaching the threshold defined by the
connection_control_failed_connections_threshold system variable.

• The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table provides
information about the current number of consecutive failed connection attempts per account (user/
host combination). This counts all failed attempts, regardless of whether they were delayed.

1524

Connection Control Plugins

Assigning a value to connection_control_failed_connections_threshold at runtime has
these effects:

• All accumulated failed-connection counters are reset to zero.

• The Connection_control_delay_generated status variable is reset to zero.

• The CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table becomes empty.

8.4.2.2 Connection Control Plugin System and Status Variables

This section describes the system and status variables that the CONNECTION_CONTROL plugin
provides to enable its operation to be configured and monitored.

• Connection Control Plugin System Variables

• Connection Control Plugin Status Variables

Connection Control Plugin System Variables

If the CONNECTION_CONTROL plugin is installed, it exposes these system variables:

• connection_control_failed_connections_threshold

Command-Line Format --connection-control-failed-
connections-threshold=#

System Variable connection_control_failed_connections_threshold

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 2147483647

The number of consecutive failed connection attempts permitted to accounts before the server adds
a delay for subsequent connection attempts:

• If the variable has a nonzero value N, the server adds a delay beginning with consecutive failed
attempt N+1. If an account has reached the point where connection responses are delayed, a
delay also occurs for the next subsequent successful connection.

• Setting this variable to zero disables failed-connection counting. In this case, the server never
adds delays.

For information about how connection_control_failed_connections_threshold interacts
with other connection control system and status variables, see Section 8.4.2.1, “Connection Control
Plugin Installation”.

• connection_control_max_connection_delay

Command-Line Format --connection-control-max-connection-
delay=#

System Variable connection_control_max_connection_delay

Scope Global

Dynamic Yes

1525

The Password Validation Component

SET_VAR Hint Applies No

Type Integer

Default Value 2147483647

Minimum Value 1000

Maximum Value 2147483647

Unit milliseconds

The maximum delay in milliseconds for server response to failed connection attempts, if
connection_control_failed_connections_threshold is greater than zero.

For information about how connection_control_max_connection_delay interacts with other
connection control system and status variables, see Section 8.4.2.1, “Connection Control Plugin
Installation”.

• connection_control_min_connection_delay

Command-Line Format --connection-control-min-connection-
delay=#

System Variable connection_control_min_connection_delay

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1000

Minimum Value 1000

Maximum Value 2147483647

Unit milliseconds

The minimum delay in milliseconds for server response to failed connection attempts, if
connection_control_failed_connections_threshold is greater than zero.

For information about how connection_control_min_connection_delay interacts with other
connection control system and status variables, see Section 8.4.2.1, “Connection Control Plugin
Installation”.

Connection Control Plugin Status Variables

If the CONNECTION_CONTROL plugin is installed, it exposes this status variable:

• Connection_control_delay_generated

The number of times the server added a delay to its response to a failed connection attempt.
This does not count attempts that occur before reaching the threshold defined by the
connection_control_failed_connections_threshold system variable.

This variable provides a simple counter. For more detailed connection
control monitoring information, examine the INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table; see Section 28.6.2, “The
INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table”.

Assigning a value to connection_control_failed_connections_threshold at runtime
resets Connection_control_delay_generated to zero.

8.4.3 The Password Validation Component

1526

The Password Validation Component

The validate_password component serves to improve security by requiring account passwords
and enabling strength testing of potential passwords. This component exposes system variables that
enable you to configure password policy, and status variables for component monitoring.

Note

In MySQL 8.0, the validate_password plugin was reimplemented as the
validate_password component. (For general information about components,
see Section 7.5, “MySQL Components”.) The following instructions describe
how to use the component, not the plugin. For instructions on using the plugin
form of validate_password, see The Password Validation Plugin, in MySQL
5.7 Reference Manual.

The plugin form of validate_password is still available but is deprecated;
expect it to be removed in a future version of MySQL. MySQL installations that
use the plugin should make the transition to using the component instead. See
Section 8.4.3.3, “Transitioning to the Password Validation Component”.

The validate_password component implements these capabilities:

• For SQL statements that assign a password supplied as a cleartext value, validate_password
checks the password against the current password policy and rejects the password if it is weak (the
statement returns an ER_NOT_VALID_PASSWORD error). This applies to the ALTER USER, CREATE
USER, and SET PASSWORD statements.

• For CREATE USER statements, validate_password requires that a password be given, and that
it satisfies the password policy. This is true even if an account is locked initially because otherwise
unlocking the account later would cause it to become accessible without a password that satisfies
the policy.

• validate_password implements a VALIDATE_PASSWORD_STRENGTH() SQL function that
assesses the strength of potential passwords. This function takes a password argument and returns
an integer from 0 (weak) to 100 (strong).

Note

For statements that assign or modify account passwords (ALTER USER,
CREATE USER, and SET PASSWORD), the validate_password capabilities
described here apply only to accounts that use an authentication plugin that
stores credentials internally to MySQL. For accounts that use plugins that
perform authentication against a credentials system external to MySQL,
password management must be handled externally against that system as well.
For more information about internal credentials storage, see Section 8.2.15,
“Password Management”.

The preceding restriction does not apply to use of the
VALIDATE_PASSWORD_STRENGTH() function because it does not affect
accounts directly.

Examples:

• validate_password checks the cleartext password in the following statement. Under the default
password policy, which requires passwords to be at least 8 characters long, the password is weak
and the statement produces an error:

mysql> ALTER USER USER() IDENTIFIED BY 'abc';
ERROR 1819 (HY000): Your password does not satisfy the current
policy requirements

• Passwords specified as hashed values are not checked because the original password value is not
available for checking:

mysql> ALTER USER 'jeffrey'@'localhost'

1527

https://dev.mysql.com/doc/refman/5.7/en/validate-password.html
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_valid_password

The Password Validation Component

 IDENTIFIED WITH mysql_native_password
 AS '*0D3CED9BEC10A777AEC23CCC353A8C08A633045E';
Query OK, 0 rows affected (0.01 sec)

• This account-creation statement fails, even though the account is locked initially, because it does not
include a password that satisfies the current password policy:

mysql> CREATE USER 'juanita'@'localhost' ACCOUNT LOCK;
ERROR 1819 (HY000): Your password does not satisfy the current
policy requirements

• To check a password, use the VALIDATE_PASSWORD_STRENGTH() function:

mysql> SELECT VALIDATE_PASSWORD_STRENGTH('weak');
+------------------------------------+
| VALIDATE_PASSWORD_STRENGTH('weak') |
+------------------------------------+
| 25 |
+------------------------------------+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('lessweak$_@123');
+--+
| VALIDATE_PASSWORD_STRENGTH('lessweak$_@123') |
+--+
| 50 |
+--+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('N0Tweak$_@123!');
+--+
| VALIDATE_PASSWORD_STRENGTH('N0Tweak$_@123!') |
+--+
| 100 |
+--+

To configure password checking, modify the system variables having names of the form
validate_password.xxx; these are the parameters that control password policy. See
Section 8.4.3.2, “Password Validation Options and Variables”.

If validate_password is not installed, the validate_password.xxx system variables are not
available, passwords in statements are not checked, and the VALIDATE_PASSWORD_STRENGTH()
function always returns 0. For example, without the plugin installed, accounts can be assigned
passwords shorter than 8 characters, or no password at all.

Assuming that validate_password is installed, it implements three levels of password
checking: LOW, MEDIUM, and STRONG. The default is MEDIUM; to change this, modify the value of
validate_password.policy. The policies implement increasingly strict password tests. The
following descriptions refer to default parameter values, which can be modified by changing the
appropriate system variables.

• LOW policy tests password length only. Passwords must be at least 8 characters long. To change this
length, modify validate_password.length.

• MEDIUM policy adds the conditions that passwords must contain at least
1 numeric character, 1 lowercase character, 1 uppercase character, and
1 special (nonalphanumeric) character. To change these values, modify
validate_password.number_count, validate_password.mixed_case_count, and
validate_password.special_char_count.

• STRONG policy adds the condition that password substrings of length 4 or longer must not match
words in the dictionary file, if one has been specified. To specify the dictionary file, modify
validate_password.dictionary_file.

In addition, validate_password supports the capability of rejecting passwords that match
the user name part of the effective user account for the current session, either forward
or in reverse. To provide control over this capability, validate_password exposes a
validate_password.check_user_name system variable, which is enabled by default.

8.4.3.1 Password Validation Component Installation and Uninstallation

1528

The Password Validation Component

This section describes how to install and uninstall the validate_password password-validation
component. For general information about installing and uninstalling components, see Section 7.5,
“MySQL Components”.

Note

If you install MySQL 8.0 using the MySQL Yum repository, MySQL SLES
Repository, or RPM packages provided by Oracle, the validate_password
component is enabled by default after you start your MySQL Server for the first
time.

Upgrades to MySQL 8.0 from 5.7 using Yum or RPM packages leave the
validate_password plugin in place. To make the transition from the
validate_password plugin to the validate_password component, see
Section 8.4.3.3, “Transitioning to the Password Validation Component”.

To be usable by the server, the component library file must be located in the MySQL plugin directory
(the directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

To install the validate_password component, use this statement:

INSTALL COMPONENT 'file://component_validate_password';

Component installation is a one-time operation that need not be done per server startup. INSTALL
COMPONENT loads the component, and also registers it in the mysql.component system table to
cause it to be loaded during subsequent server startups.

To uninstall the validate_password component, use this statement:

UNINSTALL COMPONENT 'file://component_validate_password';

UNINSTALL COMPONENT unloads the component, and unregisters it from the mysql.component
system table to cause it not to be loaded during subsequent server startups.

8.4.3.2 Password Validation Options and Variables

This section describes the system and status variables that validate_password provides to enable
its operation to be configured and monitored.

• Password Validation Component System Variables

• Password Validation Component Status Variables

• Password Validation Plugin Options

• Password Validation Plugin System Variables

• Password Validation Plugin Status Variables

Password Validation Component System Variables

If the validate_password component is enabled, it exposes several system variables that enable
configuration of password checking:

mysql> SHOW VARIABLES LIKE 'validate_password.%';
+---+--------+
| Variable_name | Value |
+---+--------+
validate_password.changed_characters_percentage	0
validate_password.check_user_name	ON
validate_password.dictionary_file	
validate_password.length	8
validate_password.mixed_case_count	1
validate_password.number_count	1
validate_password.policy	MEDIUM

1529

https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/

The Password Validation Component

| validate_password.special_char_count | 1 |
+---+--------+

To change how passwords are checked, you can set these system variables at server startup or at
runtime. The following list describes the meaning of each variable.

• validate_password.changed_characters_percentage

Command-Line Format --validate-password.changed-
characters-percentage[=value]

Introduced 8.0.34

System Variable validate_password.changed_characters_percentage

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 100

Indicates the minimum number of characters, as a percentage of all characters, in a password that
a user must change before validate_password accepts a new password for the user's own
account. This applies only when changing an existing password, and has no effect when setting a
user account's initial password.

This variable is not available unless validate_password is installed.

By default, validate_password.changed_characters_percentage permits all of the
characters from the current password to be reused in the new password. The range of valid
percentages is 0 to 100. If set to 100 percent, all of the characters from the current password
are rejected, regardless of the casing. Characters 'abc' and 'ABC' are considered to be the same
characters. If validate_password rejects the new password, it reports an error indicating the
minimum number of characters that must differ.

If the ALTER USER statement does not provide the existing password in a REPLACE clause, this
variable is not enforced. Whether the REPLACE clause is required is subject to the password
verification policy as it applies to a given account. For an overview of the policy, see Password
Verification-Required Policy.

• validate_password.check_user_name

Command-Line Format --validate-password.check-user-
name[={OFF|ON}]

System Variable validate_password.check_user_name

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether validate_password compares passwords to the user name part of the effective user
account for the current session and rejects them if they match. This variable is unavailable unless
validate_password is installed.

1530

The Password Validation Component

By default, validate_password.check_user_name is enabled. This variable controls user name
matching independent of the value of validate_password.policy.

When validate_password.check_user_name is enabled, it has these effects:

• Checking occurs in all contexts for which validate_password is invoked, which includes use of
statements such as ALTER USER or SET PASSWORD to change the current user's password, and
invocation of functions such as VALIDATE_PASSWORD_STRENGTH().

• The user names used for comparison are taken from the values of the USER() and
CURRENT_USER() functions for the current session. An implication is that a user who has
sufficient privileges to set another user's password can set the password to that user's name, and
cannot set that user' password to the name of the user executing the statement. For example,
'root'@'localhost' can set the password for 'jeffrey'@'localhost' to 'jeffrey', but
cannot set the password to 'root.

• Only the user name part of the USER() and CURRENT_USER() function values is used, not the
host name part. If a user name is empty, no comparison occurs.

• If a password is the same as the user name or its reverse, a match occurs and the password is
rejected.

• User-name matching is case-sensitive. The password and user name values are compared as
binary strings on a byte-by-byte basis.

• If a password matches the user name, VALIDATE_PASSWORD_STRENGTH() returns 0 regardless
of how other validate_password system variables are set.

• validate_password.dictionary_file

Command-Line Format --validate-password.dictionary-
file=file_name

System Variable validate_password.dictionary_file

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

The path name of the dictionary file that validate_password uses for checking passwords. This
variable is unavailable unless validate_password is installed.

By default, this variable has an empty value and dictionary checks are not performed. For dictionary
checks to occur, the variable value must be nonempty. If the file is named as a relative path, it is
interpreted relative to the server data directory. File contents should be lowercase, one word per line.
Contents are treated as having a character set of utf8mb3. The maximum permitted file size is 1MB.

For the dictionary file to be used during password checking, the password policy must be set to 2
(STRONG); see the description of the validate_password.policy system variable. Assuming
that is true, each substring of the password of length 4 up to 100 is compared to the words in the
dictionary file. Any match causes the password to be rejected. Comparisons are not case-sensitive.

For VALIDATE_PASSWORD_STRENGTH(), the password is checked against all policies,
including STRONG, so the strength assessment includes the dictionary check regardless of the
validate_password.policy value.

validate_password.dictionary_file can be set at runtime and assigning a value causes the
named file to be read without a server restart.

1531

The Password Validation Component

• validate_password.length

Command-Line Format --validate-password.length=#

System Variable validate_password.length

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8

Minimum Value 0

The minimum number of characters that validate_password requires passwords to have. This
variable is unavailable unless validate_password is installed.

The validate_password.length minimum value is a function of several other related system
variables. The value cannot be set less than the value of this expression:

validate_password.number_count
+ validate_password.special_char_count
+ (2 * validate_password.mixed_case_count)

If validate_password adjusts the value of validate_password.length due to the preceding
constraint, it writes a message to the error log.

• validate_password.mixed_case_count

Command-Line Format --validate-password.mixed-case-
count=#

System Variable validate_password.mixed_case_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

The minimum number of lowercase and uppercase characters that validate_password requires
passwords to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

For a given validate_password.mixed_case_count value, the password must have that many
lowercase characters, and that many uppercase characters.

• validate_password.number_count

Command-Line Format --validate-password.number-count=#

System Variable validate_password.number_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

1532

The Password Validation Component

Minimum Value 0

The minimum number of numeric (digit) characters that validate_password requires passwords
to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

• validate_password.policy

Command-Line Format --validate-password.policy=value

System Variable validate_password.policy

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value 1

Valid Values 0

1

2

The password policy enforced by validate_password. This variable is unavailable unless
validate_password is installed.

validate_password.policy affects how validate_password uses its other policy-
setting system variables, except for checking passwords against user names, which is controlled
independently by validate_password.check_user_name.

The validate_password.policy value can be specified using numeric values 0, 1, 2,
or the corresponding symbolic values LOW, MEDIUM, STRONG. The following table describes
the tests performed for each policy. For the length test, the required length is the value of the
validate_password.length system variable. Similarly, the required values for the other tests
are given by other validate_password.xxx variables.

Policy Tests Performed

0 or LOW Length

1 or MEDIUM Length; numeric, lowercase/uppercase, and
special characters

2 or STRONG Length; numeric, lowercase/uppercase, and
special characters; dictionary file

• validate_password.special_char_count

Command-Line Format --validate-password.special-char-
count=#

System Variable validate_password.special_char_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

1533

The Password Validation Component

Minimum Value 0

The minimum number of nonalphanumeric characters that validate_password requires
passwords to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

Password Validation Component Status Variables

If the validate_password component is enabled, it exposes status variables that provide
operational information:

mysql> SHOW STATUS LIKE 'validate_password.%';
+---+---------------------+
| Variable_name | Value |
+---+---------------------+
| validate_password.dictionary_file_last_parsed | 2019-10-03 08:33:49 |
| validate_password.dictionary_file_words_count | 1902 |
+---+---------------------+

The following list describes the meaning of each status variable.

• validate_password.dictionary_file_last_parsed

When the dictionary file was last parsed. This variable is unavailable unless validate_password
is installed.

• validate_password.dictionary_file_words_count

The number of words read from the dictionary file. This variable is unavailable unless
validate_password is installed.

Password Validation Plugin Options

Note

In MySQL 8.0, the validate_password plugin was reimplemented
as the validate_password component. The validate_password
plugin is deprecated; expect it to be removed in a future version of MySQL.
Consequently, its options are also deprecated, and you should expect them to
be removed as well. MySQL installations that use the plugin should make the
transition to using the component instead. See Section 8.4.3.3, “Transitioning to
the Password Validation Component”.

To control activation of the validate_password plugin, use this option:

• --validate-password[=value]

Command-Line Format --validate-password[=value]

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

FORCE_PLUS_PERMANENT

This option controls how the server loads the deprecated validate_password plugin
at startup. The value should be one of those available for plugin-loading options, as
described in Section 7.6.1, “Installing and Uninstalling Plugins”. For example, --validate-

1534

The Password Validation Component

password=FORCE_PLUS_PERMANENT tells the server to load the plugin at startup and prevents it
from being removed while the server is running.

This option is available only if the validate_password plugin has been previously registered
with INSTALL PLUGIN or is loaded with --plugin-load-add. See Section 8.4.3.1, “Password
Validation Component Installation and Uninstallation”.

Password Validation Plugin System Variables

Note

In MySQL 8.0, the validate_password plugin was reimplemented
as the validate_password component. The validate_password
plugin is deprecated; expect it to be removed in a future version of MySQL.
Consequently, its system variables are also deprecated and you should
expect them to be removed as well. Use the corresponding system variables
of the validate_password component instead; see Password Validation
Component System Variables. MySQL installations that use the plugin should
make the transition to using the component instead. See Section 8.4.3.3,
“Transitioning to the Password Validation Component”.

• validate_password_check_user_name

Command-Line Format --validate-password-check-user-
name[={OFF|ON}]

System Variable validate_password_check_user_name

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.check_user_name system
variable of the validate_password component instead.

• validate_password_dictionary_file

Command-Line Format --validate-password-dictionary-
file=file_name

System Variable validate_password_dictionary_file

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.dictionary_file system
variable of the validate_password component instead.

• validate_password_length

Command-Line Format --validate-password-length=#

System Variable validate_password_length 1535

The Password Validation Component

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8

Minimum Value 0

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.length system variable of the
validate_password component instead.

• validate_password_mixed_case_count

Command-Line Format --validate-password-mixed-case-
count=#

System Variable validate_password_mixed_case_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.mixed_case_count system
variable of the validate_password component instead.

• validate_password_number_count

Command-Line Format --validate-password-number-count=#

System Variable validate_password_number_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.number_count system variable
of the validate_password component instead.

• validate_password_policy

Command-Line Format --validate-password-policy=value

System Variable validate_password_policy

Scope Global

Dynamic Yes

SET_VAR Hint Applies No
1536

The Password Validation Component

Type Enumeration

Default Value 1

Valid Values 0

1

2

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.policy system variable of the
validate_password component instead.

• validate_password_special_char_count

Command-Line Format --validate-password-special-char-
count=#

System Variable validate_password_special_char_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.special_char_count system
variable of the validate_password component instead.

Password Validation Plugin Status Variables

Note

In MySQL 8.0, the validate_password plugin was reimplemented
as the validate_password component. The validate_password
plugin is deprecated; expect it to be removed in a future version of MySQL.
Consequently, its status variables are also deprecated; expect it to be
removed. Use the corresponding status variables of the validate_password
component; see Password Validation Component Status Variables. MySQL
installations that use the plugin should make the transition to using the
component instead. See Section 8.4.3.3, “Transitioning to the Password
Validation Component”.

• validate_password_dictionary_file_last_parsed

This validate_password plugin status variable is deprecated; expect
it to be removed in a future version of MySQL. Use the corresponding
validate_password.dictionary_file_last_parsed status variable of the
validate_password component instead.

• validate_password_dictionary_file_words_count

This validate_password plugin status variable is deprecated; expect
it to be removed in a future version of MySQL. Use the corresponding
validate_password.dictionary_file_words_count status variable of the
validate_password component instead.

8.4.3.3 Transitioning to the Password Validation Component

1537

The MySQL Keyring

Note

In MySQL 8.0, the validate_password plugin was reimplemented as the
validate_password component. The validate_password plugin is
deprecated; expect it to be removed in a future version of MySQL.

MySQL installations that currently use the validate_password plugin should make the transition
to using the validate_password component instead. To do so, use the following procedure. The
procedure installs the component before uninstalling the plugin, to avoid having a time window during
which no password validation occurs. (The component and plugin can be installed simultaneously.
In this case, the server attempts to use the component, falling back to the plugin if the component is
unavailable.)

1. Install the validate_password component:

INSTALL COMPONENT 'file://component_validate_password';

2. Test the validate_password component to ensure that it works as expected. If you need to set
any validate_password.xxx system variables, you can do so at runtime using SET GLOBAL.
(Any option file changes that must be made are performed in the next step.)

3. Adjust any references to the plugin system and status variables to refer to the corresponding
component system and status variables. Suppose that previously you had configured the plugin at
startup using an option file like this:

[mysqld]
validate-password=FORCE_PLUS_PERMANENT
validate_password_dictionary_file=/usr/share/dict/words
validate_password_length=10
validate_password_number_count=2

Those settings are appropriate for the plugin, but must be modified to apply to the component. To
adjust the option file, omit the --validate-password option (it applies only to the plugin, not
the component), and modify the system variable references from no-dot names appropriate for the
plugin to dotted names appropriate for the component:

[mysqld]
validate_password.dictionary_file=/usr/share/dict/words
validate_password.length=10
validate_password.number_count=2

Similar adjustments are needed for applications that refer at runtime to validate_password
plugin system and status variables. Change the no-dot plugin variable names to the corresponding
dotted component variable names.

4. Uninstall the validate_password plugin:

UNINSTALL PLUGIN validate_password;

If the validate_password plugin is loaded at server startup using a --plugin-load or --
plugin-load-add option, omit that option from the server startup procedure. For example, if the
option is listed in a server option file, remove it from the file.

5. Restart the server.

8.4.4 The MySQL Keyring

MySQL Server supports a keyring that enables internal server components and plugins to securely
store sensitive information for later retrieval. The implementation comprises these elements:

• Keyring components and plugins that manage a backing store or communicate with a storage back
end. Keyring use involves installing one from among the available components and plugins. Keyring
components and plugins both manage keyring data but are configured differently and may have
operational differences (see Section 8.4.4.1, “Keyring Components Versus Keyring Plugins”).

1538

The MySQL Keyring

These keyring components are available:

• component_keyring_file: Stores keyring data in a file local to the server host. Available in
MySQL Community Edition and MySQL Enterprise Edition distributions as of MySQL 8.0.24. See
Section 8.4.4.4, “Using the component_keyring_file File-Based Keyring Component”.

• component_keyring_encrypted_file: Stores keyring data in an encrypted, password-
protected file local to the server host. Available in MySQL Enterprise Edition distributions as of
MySQL 8.0.24. See Section 8.4.4.5, “Using the component_keyring_encrypted_file Encrypted File-
Based Keyring Component”.

• component_keyring_oci: Stores keyring data in the Oracle Cloud Infrastructure Vault.
Available in MySQL Enterprise Edition distributions as of MySQL 8.0.31. See Section 8.4.4.11,
“Using the Oracle Cloud Infrastructure Vault Keyring Component”.

These keyring plugins are available:

• keyring_file (deprecated as of MySQL 8.0.34): Stores keyring data in a file local to the server
host. Available in MySQL Community Edition and MySQL Enterprise Edition distributions. See
Section 8.4.4.6, “Using the keyring_file File-Based Keyring Plugin”.

• keyring_encrypted_file (deprecated as of MySQL 8.0.34): Stores keyring data in an
encrypted, password-protected file local to the server host. Available in MySQL Enterprise Edition
distributions. See Section 8.4.4.7, “Using the keyring_encrypted_file Encrypted File-Based Keyring
Plugin”.

• keyring_okv: A KMIP 1.1 plugin for use with KMIP-compatible back end keyring storage
products such as Oracle Key Vault and Gemalto SafeNet KeySecure Appliance. Available in
MySQL Enterprise Edition distributions. See Section 8.4.4.8, “Using the keyring_okv KMIP Plugin”.

• keyring_aws: Communicates with the Amazon Web Services Key Management Service for
key generation and uses a local file for key storage. Available in MySQL Enterprise Edition
distributions. See Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”.

• keyring_hashicorp: Communicates with HashiCorp Vault for back end storage. Available in
MySQL Enterprise Edition distributions as of MySQL 8.0.18. See Section 8.4.4.10, “Using the
HashiCorp Vault Keyring Plugin”.

• keyring_oci (deprecated as of MySQL 8.0.31): Communicates with Oracle Cloud Infrastructure
Vault for back end storage. Available in MySQL Enterprise Edition distributions as of MySQL
8.0.22. See Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”.

• A keyring service interface for keyring key management. This service is accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 8.4.4.15, “General-
Purpose Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in Section 7.6.9.2,
“The Keyring Service”.

• Key metadata access:

• The Performance Schema keyring_keys table exposes metadata for keys in the keyring. Key
metadata includes key IDs, key owners, and backend key IDs. The keyring_keys table does
not expose any sensitive keyring data such as key contents. Available as of MySQL 8.0.16. See
Section 29.12.18.2, “The keyring_keys table”.

• The Performance Schema keyring_component_status table provides status information
about the keyring component in use, if one is installed. Available as of MySQL 8.0.24. See
Section 29.12.18.1, “The keyring_component_status Table”.

1539

The MySQL Keyring

• A key migration capability. MySQL supports migration of keys between keystores, enabling DBAs
to switch a MySQL installation from one keystore to another. See Section 8.4.4.14, “Migrating Keys
Between Keyring Keystores”.

• The implementation of keyring plugins is revised as of MySQL 8.0.24 to use the component
infrastructure. This is facilitated using the built-in plugin named daemon_keyring_proxy_plugin
that acts as a bridge between the plugin and component service APIs. See Section 7.6.8, “The
Keyring Proxy Bridge Plugin”.

Warning

For encryption key management, the component_keyring_file
and component_keyring_encrypted_file components, and the
keyring_file and keyring_encrypted_file plugins are not intended as
a regulatory compliance solution. Security standards such as PCI, FIPS, and
others require use of key management systems to secure, manage, and protect
encryption keys in key vaults or hardware security modules (HSMs).

Within MySQL, keyring service consumers include:

• The InnoDB storage engine uses the keyring to store its key for tablespace encryption. See
Section 17.13, “InnoDB Data-at-Rest Encryption”.

• MySQL Enterprise Audit uses the keyring to store the audit log file encryption password. See
Encrypting Audit Log Files.

• Binary log and relay log management supports keyring-based encryption of log files. With log file
encryption activated, the keyring stores the keys used to encrypt passwords for the binary log files
and relay log files. See Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”.

• The master key to decrypt the file key that decrypts the persisted values of sensitive system
variables is stored in the keyring. A keyring component must be enabled on the MySQL Server
instance to support secure storage for persisted system variable values, rather than a keyring plugin,
which do not support the function. See Persisting Sensitive System Variables.

For general keyring installation instructions, see Section 8.4.4.2, “Keyring Component Installation”, and
Section 8.4.4.3, “Keyring Plugin Installation”. For installation and configuration information specific to a
given keyring component or plugin, see the section describing it.

For information about using the keyring functions, see Section 8.4.4.15, “General-Purpose Keyring
Key-Management Functions”.

Keyring components, plugins, and functions access a keyring service that provides the interface to the
keyring. For information about accessing this service and writing keyring plugins, see Section 7.6.9.2,
“The Keyring Service”, and Writing Keyring Plugins.

8.4.4.1 Keyring Components Versus Keyring Plugins

The MySQL Keyring originally implemented keystore capabilities using server plugins, but began
transitioning to use the component infrastructure in MySQL 8.0.24. This section briefly compares
keyring components and plugins to provide an overview of their differences. It may assist you in making
the transition from plugins to components, or, if you are just beginning to use the keyring, assist you in
choosing whether to use a component versus using a plugin.

• Keyring plugin loading uses the --early-plugin-load option. Keyring component loading uses a
manifest.

• Keyring plugin configuration is based on plugin-specific system variables. For keyring components,
no system variables are used. Instead, each component has its own configuration file.

• Keyring components have fewer restrictions than keyring plugins with respect to key types and
lengths. See Section 8.4.4.13, “Supported Keyring Key Types and Lengths”.

1540

https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-keyring-plugins.html

The MySQL Keyring

Note

component_keyring_oci (like the keyring_oci plugin) can only
generate keys of type AES with a size of 16, 24, or 32 bytes.

• Keyring components support secure storage for persisted system variable values, whereas keyring
plugins do not support the function.

A keyring component must be enabled on the MySQL server instance to support secure storage for
persisted system variable values. The sensitive data that can be protected in this way includes items
such as private keys and passwords that appear in the values of system variables. In the operating
system file where persisted system variables are stored, the names and values of sensitive system
variables are stored in an encrypted format, along with a generated file key to decrypt them. The
generated file key is in turn encrypted using a master key that is stored in a keyring. See Persisting
Sensitive System Variables.

8.4.4.2 Keyring Component Installation

Keyring service consumers require that a keyring component or plugin be installed:

• To use a keyring component, begin with the instructions here.

• To use a keyring plugin instead, begin with Section 8.4.4.3, “Keyring Plugin Installation”.

• If you intend to use keyring functions in conjunction with the chosen keyring component or
plugin, install the functions after installing that component or plugin, using the instructions in
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”.

Note

Only one keyring component or plugin should be enabled at a time. Enabling
multiple keyring components or plugins is unsupported and results may not be
as anticipated.

MySQL provides these keyring component choices:

• component_keyring_file: Stores keyring data in a file local to the server host. Available in
MySQL Community Edition and MySQL Enterprise Edition distributions.

• component_keyring_encrypted_file: Stores keyring data in an encrypted, password-
protected file local to the server host. Available in MySQL Enterprise Edition distributions.

• component_keyring_oci: Stores keyring data in the Oracle Cloud Infrastructure Vault. Available
in MySQL Enterprise Edition distributions.

To be usable by the server, the component library file must be located in the MySQL plugin directory
(the directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

A keyring component or plugin must be loaded early during the server startup sequence so that other
components can access it as necessary during their own initialization. For example, the InnoDB
storage engine uses the keyring for tablespace encryption, so a keyring component or plugin must be
loaded and available prior to InnoDB initialization.

Note

A keyring component must be enabled on the MySQL server instance if you
need to support secure storage for persisted system variable values. The
keyring plugin does not support the function. See Persisting Sensitive System
Variables.

1541

The MySQL Keyring

Unlike keyring plugins, keyring components are not loaded using the --early-plugin-load server
option or configured using system variables. Instead, the server determines which keyring component
to load during startup using a manifest, and the loaded component consults its own configuration file
when it initializes. Therefore, to install a keyring component, you must:

1. Write a manifest that tells the server which keyring component to load.

2. Write a configuration file for that keyring component.

The first step in installing a keyring component is writing a manifest that indicates which component to
load. During startup, the server reads either a global manifest file, or a global manifest file paired with a
local manifest file:

• The server attempts to read its global manifest file from the directory where the server is installed.

• If the global manifest file indicates use of a local manifest file, the server attempts to read its local
manifest file from the data directory.

• Although global and local manifest files are located in different directories, the file name is
mysqld.my in both locations.

• It is not an error for a manifest file not to exist. In this case, the server attempts no component
loading associated with the file.

Local manifest files permit setting up component loading for multiple instances of the server, such
that loading instructions for each server instance are specific to a given data directory instance. This
enables different MySQL instances to use different keyring components.

Server manifest files have these properties:

• A manifest file must be in valid JSON format.

• A manifest file permits these items:

• "read_local_manifest": This item is permitted only in the global manifest file. If the item is
not present, the server uses only the global manifest file. If the item is present, its value is true
or false, indicating whether the server should read component-loading information from the local
manifest file.

If the "read_local_manifest" item is present in the global manifest file along with other items,
the server checks the "read_local_manifest" item value first:

• If the value is false, the server processes the other items in the global manifest file and ignores
the local manifest file.

• If the value is true, the server ignores the other items in the global manifest file and attempts to
read the local manifest file.

• "components": This item indicates which component to load. The item value is a string
that specifies a valid component URN, such as "file://component_keyring_file". A
component URN begins with file:// and indicates the base name of the library file located in
the MySQL plugin directory that implements the component.

• Server access to a manifest file should be read only. For example, a mysqld.my server manifest file
may be owned by root and be read/write to root, but should be read only to the account used to
run the MySQL server. If the manifest file is found during startup to be read/write to that account, the
server writes a warning to the error log suggesting that the file be made read only.

• The database administrator has the responsibility for creating any manifest files to be used, and for
ensuring that their access mode and contents are correct. If an error occurs, server startup fails and
the administrator must correct any issues indicated by diagnostics in the server error log.

1542

The MySQL Keyring

Given the preceding manifest file properties, to configure the server to load
component_keyring_file, create a global manifest file named mysqld.my in the mysqld
installation directory, and optionally create a local manifest file, also named mysqld.my, in the data
directory. The following instructions describe how to load component_keyring_file. To load a
different keyring component, substitute its name for component_keyring_file.

• To use a global manifest file only, the file contents look like this:

{
 "components": "file://component_keyring_file"
}

Create this file in the directory where mysqld is installed.

• Alternatively, to use a global and local manifest file pair, the global file looks like this:

{
 "read_local_manifest": true
}

Create this file in the directory where mysqld is installed.

The local file looks like this:

{
 "components": "file://component_keyring_file"
}

Create this file in the data directory.

With the manifest in place, proceed to configuring the keyring component. To do this, check the notes
for your chosen keyring component for configuration instructions specific to that component:

• component_keyring_file: Section 8.4.4.4, “Using the component_keyring_file File-Based
Keyring Component”.

• component_keyring_encrypted_file: Section 8.4.4.5, “Using the
component_keyring_encrypted_file Encrypted File-Based Keyring Component”.

• component_keyring_oci: Section 8.4.4.11, “Using the Oracle Cloud Infrastructure Vault Keyring
Component”.

After performing any component-specific configuration, start the server. Verify component installation
by examining the Performance Schema keyring_component_status table:

mysql> SELECT * FROM performance_schema.keyring_component_status;
+---------------------+---+
| STATUS_KEY | STATUS_VALUE |
+---------------------+---+
Component_name	component_keyring_file
Author	Oracle Corporation
License	GPL
Implementation_name	component_keyring_file
Version	1.0
Component_status	Active
Data_file	/usr/local/mysql/keyring/component_keyring_file
Read_only	No
+---------------------+---+

A Component_status value of Active indicates that the component initialized successfully.

If the component cannot be loaded, server startup fails. Check the server error log for diagnostic
messages. If the component loads but fails to initialize due to configuration problems, the server starts
but the Component_status value is Disabled. Check the server error log, correct the configuration
issues, and use the ALTER INSTANCE RELOAD KEYRING statement to reload the configuration.

1543

The MySQL Keyring

Keyring components should be loaded only by using a manifest file, not by using the INSTALL
COMPONENT statement. Keyring components loaded using that statement may be available too late in
the server startup sequence for certain components that use the keyring, such as InnoDB, because
they are registered in the mysql.component system table and loaded automatically for subsequent
server restarts. But mysql.component is an InnoDB table, so any components named in it can be
loaded during startup only after InnoDB initialization.

If no keyring component or plugin is available when a component tries to access the keyring service,
the service cannot be used by that component. As a result, the component may fail to initialize or may
initialize with limited functionality. For example, if InnoDB finds that there are encrypted tablespaces
when it initializes, it attempts to access the keyring. If the keyring is unavailable, InnoDB can access
only unencrypted tablespaces.

8.4.4.3 Keyring Plugin Installation

Keyring service consumers require that a keyring component or plugin be installed:

• To use a keyring plugin, begin with the instructions here. (Also, for general information about
installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.)

• To use a keyring component instead, begin with Section 8.4.4.2, “Keyring Component Installation”.

• If you intend to use keyring functions in conjunction with the chosen keyring component or
plugin, install the functions after installing that component or plugin, using the instructions in
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”.

Note

Only one keyring component or plugin should be enabled at a time. Enabling
multiple keyring components or plugins is unsupported and results may not be
as anticipated.

A keyring component must be enabled on the MySQL Server instance if you
need to support secure storage for persisted system variable values, rather than
a keyring plugin, which do not support the function. See Persisting Sensitive
System Variables.

MySQL provides these keyring plugin choices:

• keyring_file (deprecated as of MySQL 8.0.34): Stores keyring data in a file local to the server
host. Available in MySQL Community Edition and MySQL Enterprise Edition distributions. For
instructions about installing the component that replaces this plugin, see Section 8.4.4.2, “Keyring
Component Installation”.

• keyring_encrypted_file (deprecated as of MySQL 8.0.34): Stores keyring data in an
encrypted, password-protected file local to the server host. Available in MySQL Enterprise
Edition distributions. For instructions about installing the component that replaces this plugin, see
Section 8.4.4.2, “Keyring Component Installation”.

• keyring_okv: A KMIP 1.1 plugin for use with KMIP-compatible back end keyring storage products
such as Oracle Key Vault and Gemalto SafeNet KeySecure Appliance. Available in MySQL
Enterprise Edition distributions.

• keyring_aws: Communicates with the Amazon Web Services Key Management Service as a back
end for key generation and uses a local file for key storage. Available in MySQL Enterprise Edition
distributions.

• keyring_hashicorp: Communicates with HashiCorp Vault for back end storage. Available in
MySQL Enterprise Edition distributions.

1544

The MySQL Keyring

• keyring_oci(deprecated as of MySQL 8.0.31): Communicates with Oracle Cloud Infrastructure
Vault for back end storage. See Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault
Keyring Plugin”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

A keyring component or plugin must be loaded early during the server startup sequence so that other
components can access it as necessary during their own initialization. For example, the InnoDB
storage engine uses the keyring for tablespace encryption, so a keyring component or plugin must be
loaded and available prior to InnoDB initialization.

Installation for each keyring plugin is similar. The following instructions describe how to install
keyring_file. To use a different keyring plugin, substitute its name for keyring_file.

The keyring_file plugin library file base name is keyring_file. The file name suffix differs per
platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin, use the --early-plugin-load option to name the plugin library file that contains
it. For example, on platforms where the plugin library file suffix is .so, use these lines in the server
my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
early-plugin-load=keyring_file.so

Before starting the server, check the notes for your chosen keyring plugin for configuration instructions
specific to that plugin:

• keyring_file: Section 8.4.4.6, “Using the keyring_file File-Based Keyring Plugin”.

• keyring_encrypted_file: Section 8.4.4.7, “Using the keyring_encrypted_file Encrypted File-
Based Keyring Plugin”.

• keyring_okv: Section 8.4.4.8, “Using the keyring_okv KMIP Plugin”.

• keyring_aws: Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”

• keyring_hashicorp: Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

• keyring_oci: Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

After performing any plugin-specific configuration, start the server. Verify plugin installation by
examining the Information Schema PLUGINS table or use the SHOW PLUGINS statement (see
Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'keyring%';
+--------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------+---------------+
| keyring_file | ACTIVE |
+--------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

Plugins can be loaded by methods other than --early-plugin-load, such as the --plugin-load
or --plugin-load-add option or the INSTALL PLUGIN statement. However, keyring plugins loaded
using those methods may be available too late in the server startup sequence for certain components
that use the keyring, such as InnoDB:

• Plugin loading using --plugin-load or --plugin-load-add occurs after InnoDB initialization.

1545

The MySQL Keyring

• Plugins installed using INSTALL PLUGIN are registered in the mysql.plugin system table and
loaded automatically for subsequent server restarts. However, because mysql.plugin is an
InnoDB table, any plugins named in it can be loaded during startup only after InnoDB initialization.

If no keyring component or plugin is available when a component tries to access the keyring service,
the service cannot be used by that component. As a result, the component may fail to initialize or may
initialize with limited functionality. For example, if InnoDB finds that there are encrypted tablespaces
when it initializes, it attempts to access the keyring. If the keyring is unavailable, InnoDB can access
only unencrypted tablespaces. To ensure that InnoDB can access encrypted tablespaces as well, use
--early-plugin-load to load the keyring plugin.

8.4.4.4 Using the component_keyring_file File-Based Keyring Component

The component_keyring_file keyring component stores keyring data in a file local to the server
host.

Warning

For encryption key management, the component_keyring_file
and component_keyring_encrypted_file components, and the
keyring_file and keyring_encrypted_file plugins are not intended as
a regulatory compliance solution. Security standards such as PCI, FIPS, and
others require use of key management systems to secure, manage, and protect
encryption keys in key vaults or hardware security modules (HSMs).

To use component_keyring_file for keystore management, you must:

1. Write a manifest that tells the server to load component_keyring_file, as described in
Section 8.4.4.2, “Keyring Component Installation”.

2. Write a configuration file for component_keyring_file, as described here.

When it initializes, component_keyring_file reads either a global configuration file, or a global
configuration file paired with a local configuration file:

• The component attempts to read its global configuration file from the directory where the component
library file is installed (that is, the server plugin directory).

• If the global configuration file indicates use of a local configuration file, the component attempts to
read its local configuration file from the data directory.

• Although global and local configuration files are located in different directories, the file name is
component_keyring_file.cnf in both locations.

• It is an error for no configuration file to exist. component_keyring_file cannot initialize without a
valid configuration.

Local configuration files permit setting up multiple server instances to use
component_keyring_file, such that component configuration for each server instance is specific
to a given data directory instance. This enables the same keyring component to be used with a distinct
data file for each instance.

component_keyring_file configuration files have these properties:

• A configuration file must be in valid JSON format.

• A configuration file permits these configuration items:

• "read_local_config": This item is permitted only in the global configuration file. If the item is
not present, the component uses only the global configuration file. If the item is present, its value is
true or false, indicating whether the component should read configuration information from the
local configuration file.

1546

The MySQL Keyring

If the "read_local_config" item is present in the global configuration file along with other
items, the component checks the "read_local_config" item value first:

• If the value is false, the component processes the other items in the global configuration file
and ignores the local configuration file.

• If the value is true, the component ignores the other items in the global configuration file and
attempts to read the local configuration file.

• "path": The item value is a string that names the file to use for storing keyring data. The file
should be named using an absolute path, not a relative path. This item is mandatory in the
configuration. If not specified, component_keyring_file initialization fails.

• "read_only": The item value indicates whether the keyring data file is read only. The item
value is true (read only) or false (read/write). This item is mandatory in the configuration. If not
specified, component_keyring_file initialization fails.

• The database administrator has the responsibility for creating any configuration files to be used,
and for ensuring that their contents are correct. If an error occurs, server startup fails and the
administrator must correct any issues indicated by diagnostics in the server error log.

Given the preceding configuration file properties, to configure component_keyring_file, create
a global configuration file named component_keyring_file.cnf in the directory where the
component_keyring_file library file is installed, and optionally create a local configuration file, also
named component_keyring_file.cnf, in the data directory. The following instructions assume
that a keyring data file named /usr/local/mysql/keyring/component_keyring_file is to be
used in read/write fashion.

• To use a global configuration file only, the file contents look like this:

{
 "path": "/usr/local/mysql/keyring/component_keyring_file",
 "read_only": false
}

Create this file in the directory where the component_keyring_file library file is installed.

The path must be readable and writable by the system MySQL user (Windows: NETWORK
SERVICES; Linux: mysql user; MacOS: _mysql user). It should not be accessible to other users.

Important

In MySQL 8.0.29 and later, it is not possible for this path to point to the
MySQL data directory.

• Alternatively, to use a global and local configuration file pair, the global file looks like this:

{
 "read_local_config": true
}

Create this file in the directory where the component_keyring_file library file is installed.

The local file looks like this:

{
 "path": "/usr/local/mysql/keyring/component_keyring_file",
 "read_only": false
}

The path must be readable and writable by the system MySQL user (Windows: NETWORK
SERVICES; Linux: mysql user; MacOS: _mysql user). It should not be accessible to other users.

1547

The MySQL Keyring

Important

In MySQL 8.0.29 and later, it is not possible for this path to point to the
MySQL data directory.

Keyring operations are transactional: component_keyring_file uses a backup file during write
operations to ensure that it can roll back to the original file if an operation fails. The backup file has the
same name as the data file with a suffix of .backup.

component_keyring_file supports the functions that comprise the standard MySQL Keyring
service interface. Keyring operations performed by those functions are accessible in SQL statements
as described in Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”

Example:

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by component_keyring_file, see
Section 8.4.4.13, “Supported Keyring Key Types and Lengths”.

8.4.4.5 Using the component_keyring_encrypted_file Encrypted File-Based Keyring
Component

Note

component_keyring_encrypted_file is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

The component_keyring_encrypted_file keyring component stores keyring data in an
encrypted, password-protected file local to the server host.

Warning

For encryption key management, the component_keyring_file
and component_keyring_encrypted_file components, and the
keyring_file and keyring_encrypted_file plugins are not intended as
a regulatory compliance solution. Security standards such as PCI, FIPS, and
others require use of key management systems to secure, manage, and protect
encryption keys in key vaults or hardware security modules (HSMs).

To use component_keyring_encrypted_file for keystore management, you must:

1. Write a manifest that tells the server to load component_keyring_encrypted_file, as
described in Section 8.4.4.2, “Keyring Component Installation”.

2. Write a configuration file for component_keyring_encrypted_file, as described here.

When it initializes, component_keyring_encrypted_file reads either a global configuration file,
or a global configuration file paired with a local configuration file:

• The component attempts to read its global configuration file from the directory where the component
library file is installed (that is, the server plugin directory).

• If the global configuration file indicates use of a local configuration file, the component attempts to
read its local configuration file from the data directory.

• Although global and local configuration files are located in different directories, the file name is
component_keyring_encrypted_file.cnf in both locations.

1548

https://www.mysql.com/products/

The MySQL Keyring

• If component_keyring_encrypted_file cannot find the configuration file, an error results, and
the component cannot initialize.

Local configuration files permit setting up multiple server instances to use
component_keyring_encrypted_file, such that component configuration for each server
instance is specific to a given data directory instance. This enables the same keyring component to be
used with a distinct data file for each instance.

component_keyring_encrypted_file configuration files have these properties:

• A configuration file must be in valid JSON format.

• A configuration file permits these configuration items:

• "read_local_config": This item is permitted only in the global configuration file. If the item is
not present, the component uses only the global configuration file. If the item is present, its value is
true or false, indicating whether the component should read configuration information from the
local configuration file.

If the "read_local_config" item is present in the global configuration file along with other
items, the component checks the "read_local_config" item value first:

• If the value is false, the component processes the other items in the global configuration file
and ignores the local configuration file.

• If the value is true, the component ignores the other items in the global configuration file and
attempts to read the local configuration file.

• "path": The item value is a string that names the file to use for storing keyring data. The file
should be named using an absolute path, not a relative path. This item is mandatory in the
configuration. If not specified, component_keyring_encrypted_file initialization fails.

• "password": The item value is a string that specifies the password for accessing
the data file. This item is mandatory in the configuration. If not specified,
component_keyring_encrypted_file initialization fails.

• "read_only": The item value indicates whether the keyring data file is read only. The item
value is true (read only) or false (read/write). This item is mandatory in the configuration. If not
specified, component_keyring_encrypted_file initialization fails.

• The database administrator has the responsibility for creating any configuration files to be used,
and for ensuring that their contents are correct. If an error occurs, server startup fails and the
administrator must correct any issues indicated by diagnostics in the server error log.

• Any configuration file that stores a password should have a restrictive mode and be accessible only
to the account used to run the MySQL server.

Given the preceding configuration file properties, to configure
component_keyring_encrypted_file, create a global configuration file
named component_keyring_encrypted_file.cnf in the directory where the
component_keyring_encrypted_file library file is installed, and optionally create a local
configuration file, also named component_keyring_encrypted_file.cnf, in the data directory.
The following instructions assume that a keyring data file named /usr/local/mysql/keyring/
component_keyring_encrypted_file is to be used in read/write fashion. You must also choose a
password.

• To use a global configuration file only, the file contents look like this:

{
 "path": "/usr/local/mysql/keyring/component_keyring_encrypted_file",
 "password": "password",
 "read_only": false

1549

The MySQL Keyring

}

Create this file in the directory where the component_keyring_encrypted_file library file is
installed.

The path must be readable and writable by the system MySQL user (Windows: NETWORK
SERVICES; Linux: mysql user; MacOS: _mysql user). It should not be accessible to other users.

Important

In MySQL 8.0.29 and later, it is not possible for this path to point to the
MySQL data directory.

• Alternatively, to use a global and local configuration file pair, the global file looks like this:

{
 "read_local_config": true
}

Create this file in the directory where the component_keyring_encrypted_file library file is
installed.

The local file looks like this:

{
 "path": "/usr/local/mysql/keyring/component_keyring_encrypted_file",
 "password": "password",
 "read_only": false
}

The path must be readable and writable by the system MySQL user (Windows: NETWORK
SERVICES; Linux: mysql user; MacOS: _mysql user). It should not be accessible to other users.

Important

In MySQL 8.0.29 and later, it is not possible for this path to point to the
MySQL data directory.

Keyring operations are transactional: component_keyring_encrypted_file uses a backup file
during write operations to ensure that it can roll back to the original file if an operation fails. The backup
file has the same name as the data file with a suffix of .backup.

component_keyring_encrypted_file supports the functions that comprise the standard MySQL
Keyring service interface. Keyring operations performed by those functions are accessible in SQL
statements as described in Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”.

Example:

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by
component_keyring_encrypted_file, see Section 8.4.4.13, “Supported Keyring Key Types and
Lengths”.

8.4.4.6 Using the keyring_file File-Based Keyring Plugin

The keyring_file keyring plugin stores keyring data in a file local to the server host.

As of MySQL 8.0.34, this plugin is deprecated and subject to removal in a future release of MySQL.
Instead, consider using the component_keyring_file component for storing keyring data (see
Section 8.4.4.4, “Using the component_keyring_file File-Based Keyring Component”).

1550

The MySQL Keyring

Warning

For encryption key management, the keyring_file plugin is not intended as
a regulatory compliance solution. Security standards such as PCI, FIPS, and
others require use of key management systems to secure, manage, and protect
encryption keys in key vaults or hardware security modules (HSMs).

To install keyring_file, use the general instructions found in Section 8.4.4.3, “Keyring Plugin
Installation”, together with the configuration information specific to keyring_file found here.

To be usable during the server startup process, keyring_file must be loaded using the --early-
plugin-load option. The keyring_file_data system variable optionally configures the location of
the file used by the keyring_file plugin for data storage. The default value is platform specific. To
configure the file location explicitly, set the variable value at startup. For example, use these lines in the
server my.cnf file, adjusting the .so suffix and file location for your platform as necessary:

[mysqld]
early-plugin-load=keyring_file.so
keyring_file_data=/usr/local/mysql/mysql-keyring/keyring

If keyring_file_data is set to a new location, the keyring plugin creates a new, empty file
containing no keys; this means that any existing encrypted tables can no longer be accessed.

Keyring operations are transactional: The keyring_file plugin uses a backup file during write
operations to ensure that it can roll back to the original file if an operation fails. The backup file has the
same name as the value of the keyring_file_data system variable with a suffix of .backup.

For additional information about keyring_file_data, see Section 8.4.4.19, “Keyring System
Variables”.

To ensure that keys are flushed only when the correct keyring storage file exists, keyring_file
stores a SHA-256 checksum of the keyring in the file. Before updating the file, the plugin verifies that it
contains the expected checksum.

The keyring_file plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 8.4.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in Section 7.6.9.2, “The
Keyring Service”.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_file, see
Section 8.4.4.13, “Supported Keyring Key Types and Lengths”.

8.4.4.7 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin

Note

The keyring_encrypted_file plugin is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

The keyring_encrypted_file keyring plugin stores keyring data in an encrypted, password-
protected file local to the server host.

1551

https://www.mysql.com/products/

The MySQL Keyring

As of MySQL 8.0.34, this plugin is deprecated and subject to removal in a future release of MySQL.
Instead, consider using the component_encrypted_keyring_file component for storing keyring
data (see Section 8.4.4.5, “Using the component_keyring_encrypted_file Encrypted File-Based Keyring
Component”).

Warning

For encryption key management, the keyring_encrypted_file plugin is not
intended as a regulatory compliance solution. Security standards such as PCI,
FIPS, and others require use of key management systems to secure, manage,
and protect encryption keys in key vaults or hardware security modules (HSMs).

To install keyring_encrypted_file, use the general instructions found in Section 8.4.4.3, “Keyring
Plugin Installation”, together with the configuration information specific to keyring_encrypted_file
found here.

To be usable during the server startup process, keyring_encrypted_file must be loaded
using the --early-plugin-load option. To specify the password for encrypting the keyring
data file, set the keyring_encrypted_file_password system variable. (The password is
mandatory; if not specified at server startup, keyring_encrypted_file initialization fails.) The
keyring_encrypted_file_data system variable optionally configures the location of the file used
by the keyring_encrypted_file plugin for data storage. The default value is platform specific. To
configure the file location explicitly, set the variable value at startup. For example, use these lines in
the server my.cnf file, adjusting the .so suffix and file location for your platform as necessary and
substituting your chosen password:

[mysqld]
early-plugin-load=keyring_encrypted_file.so
keyring_encrypted_file_data=/usr/local/mysql/mysql-keyring/keyring-encrypted
keyring_encrypted_file_password=password

Because the my.cnf file stores a password when written as shown, it should have a restrictive mode
and be accessible only to the account used to run the MySQL server.

Keyring operations are transactional: The keyring_encrypted_file plugin uses a backup file
during write operations to ensure that it can roll back to the original file if an operation fails. The backup
file has the same name as the value of the keyring_encrypted_file_data system variable with a
suffix of .backup.

For additional information about the system variables used to configure the
keyring_encrypted_file plugin, see Section 8.4.4.19, “Keyring System Variables”.

To ensure that keys are flushed only when the correct keyring storage file exists,
keyring_encrypted_file stores a SHA-256 checksum of the keyring in the file. Before
updating the file, the plugin verifies that it contains the expected checksum. In addition,
keyring_encrypted_file encrypts file contents using AES before writing the file, and decrypts file
contents after reading the file.

The keyring_encrypted_file plugin supports the functions that comprise the standard MySQL
Keyring service interface. Keyring operations performed by those functions are accessible at two
levels:

• SQL interface: In SQL statements, call the functions described in Section 8.4.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in Section 7.6.9.2, “The
Keyring Service”.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

1552

The MySQL Keyring

For information about the characteristics of key values permitted by keyring_encrypted_file, see
Section 8.4.4.13, “Supported Keyring Key Types and Lengths”.

8.4.4.8 Using the keyring_okv KMIP Plugin

Note

The keyring_okv plugin is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

The Key Management Interoperability Protocol (KMIP) enables communication of cryptographic keys
between a key management server and its clients. The keyring_okv keyring plugin uses the KMIP
1.1 protocol to communicate securely as a client of a KMIP back end. Keyring material is generated
exclusively by the back end, not by keyring_okv. The plugin works with these KMIP-compatible
products:

• Oracle Key Vault

• Gemalto SafeNet KeySecure Appliance

• Townsend Alliance Key Manager

• Entrust KeyControl

Each MySQL Server instance must be registered separately as a client for KMIP. If two or more
MySQL Server instances use the same set of credentials, they can interfere with each other’s
functioning.

The keyring_okv plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 8.4.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in Section 7.6.9.2, “The
Keyring Service”.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_okv, Section 8.4.4.13,
“Supported Keyring Key Types and Lengths”.

To install keyring_okv, use the general instructions found in Section 8.4.4.3, “Keyring Plugin
Installation”, together with the configuration information specific to keyring_okv found here.

• General keyring_okv Configuration

• Configuring keyring_okv for Oracle Key Vault

• Configuring keyring_okv for Gemalto SafeNet KeySecure Appliance

• Configuring keyring_okv for Townsend Alliance Key Manager

• Configuring keyring_okv for Entrust KeyControl

• Password-Protecting the keyring_okv Key File

General keyring_okv Configuration

1553

https://www.mysql.com/products/

The MySQL Keyring

Regardless of which KMIP back end the keyring_okv plugin uses for keyring storage, the
keyring_okv_conf_dir system variable configures the location of the directory used by
keyring_okv for its support files. The default value is empty, so you must set the variable to name
a properly configured directory before the plugin can communicate with the KMIP back end. Unless
you do so, keyring_okv writes a message to the error log during server startup that it cannot
communicate:

[Warning] Plugin keyring_okv reported: 'For keyring_okv to be
initialized, please point the keyring_okv_conf_dir variable to a directory
containing Oracle Key Vault configuration file and ssl materials'

The keyring_okv_conf_dir variable must name a directory that contains the following items:

• okvclient.ora: A file that contains details of the KMIP back end with which keyring_okv
communicates.

• ssl: A directory that contains the certificate and key files required to establish a secure connection
with the KMIP back end: CA.pem, cert.pem, and key.pem. If the key file is password-protected,
the ssl directory can contain a single-line text file named password.txt containing the password
needed to decrypt the key file.

Both the okvclient.ora file and ssl directory with the certificate and key files are required for
keyring_okv to work properly. The procedure used to populate the configuration directory with these
files depends on the KMIP back end used with keyring_okv, as described elsewhere.

The configuration directory used by keyring_okv as the location for its support files should have a
restrictive mode and be accessible only to the account used to run the MySQL server. For example,
on Unix and Unix-like systems, to use the /usr/local/mysql/mysql-keyring-okv directory, the
following commands (executed as root) create the directory and set its mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring-okv
chmod 750 mysql-keyring-okv
chown mysql mysql-keyring-okv
chgrp mysql mysql-keyring-okv

To be usable during the server startup process, keyring_okv must be loaded using the --early-
plugin-load option. Also, set the keyring_okv_conf_dir system variable to tell keyring_okv
where to find its configuration directory. For example, use these lines in the server my.cnf file,
adjusting the .so suffix and directory location for your platform as necessary:

[mysqld]
early-plugin-load=keyring_okv.so
keyring_okv_conf_dir=/usr/local/mysql/mysql-keyring-okv

For additional information about keyring_okv_conf_dir, see Section 8.4.4.19, “Keyring System
Variables”.

Configuring keyring_okv for Oracle Key Vault

The discussion here assumes that you are familiar with Oracle Key Vault. Some pertinent information
sources:

• Oracle Key Vault site

• Oracle Key Vault documentation

In Oracle Key Vault terminology, clients that use Oracle Key Vault to store and retrieve security objects
are called endpoints. To communicate with Oracle Key Vault, it is necessary to register as an endpoint
and enroll by downloading and installing endpoint support files. Note that you must register a separate
endpoint for each MySQL Server instance. If two or more MySQL Server instances use the same
endpoint, they can interfere with each other’s functioning.

1554

http://www.oracle.com/technetwork/database/options/key-management/overview/index.html
http://www.oracle.com/technetwork/database/options/key-management/documentation/index.html

The MySQL Keyring

The following procedure briefly summarizes the process of setting up keyring_okv for use with
Oracle Key Vault:

1. Create the configuration directory for the keyring_okv plugin to use.

2. Register an endpoint with Oracle Key Vault to obtain an enrollment token.

3. Use the enrollment token to obtain the okvclient.jar client software download.

4. Install the client software to populate the keyring_okv configuration directory that contains the
Oracle Key Vault support files.

Use the following procedure to configure keyring_okv and Oracle Key Vault to work together. This
description only summarizes how to interact with Oracle Key Vault. For details, visit the Oracle Key
Vault site and consult the Oracle Key Vault Administrator's Guide.

1. Create the configuration directory that contains the Oracle Key Vault support files, and make sure
that the keyring_okv_conf_dir system variable is set to name that directory (for details, see
General keyring_okv Configuration).

2. Log in to the Oracle Key Vault management console as a user who has the System Administrator
role.

3. Select the Endpoints tab to arrive at the Endpoints page. On the Endpoints page, click Add.

4. Provide the required endpoint information and click Register. The endpoint type should be Other.
Successful registration results in an enrollment token.

5. Log out from the Oracle Key Vault server.

6. Connect again to the Oracle Key Vault server, this time without logging in. Use the endpoint
enrollment token to enroll and request the okvclient.jar software download. Save this file to
your system.

7. Install the okvclient.jar file using the following command (you must have JDK 1.4 or higher):

java -jar okvclient.jar -d dir_name [-v]

The directory name following the -d option is the location in which to install extracted files. The -v
option, if given, causes log information to be produced that may be useful if the command fails.

When the command asks for an Oracle Key Vault endpoint password, do not provide one. Instead,
press Enter. (The result is that no password is required when the endpoint connects to Oracle Key
Vault.)

The preceding command produces an okvclient.ora file, which should be in this location under
the directory named by the -d option in the preceding java -jar command:

install_dir/conf/okvclient.ora

The expected file contents include lines that look like this:

SERVER=host_ip:port_num
STANDBY_SERVER=host_ip:port_num

The SERVER variable is mandatory, and the STANDBY_SERVER variable is optional. The
keyring_okv plugin attempts to communicate with the server running on the host named by the
SERVER variable and falls back to STANDBY_SERVER if that fails.

Note

If the existing file is not in this format, then create a new file with the
lines shown in the previous example. Also, consider backing up the

1555

http://www.oracle.com/technetwork/database/options/key-management/overview/index.html
http://www.oracle.com/technetwork/database/options/key-management/overview/index.html

The MySQL Keyring

okvclient.ora file before you run the okvutil command. Restore the
file as needed.

From MySQL 8.0.29, you can specify more than one standby server (up to a maximum of 64). If
you do, the keyring_okv plugin iterates over them until it can establish a connection, and fails if
it cannot. To add extra standby servers, edit the okvclient.ora file to specify the IP addresses
and port numbers of the servers as a comma-separated list in the value of the STANDBY_SERVER
variable. For example:

STANDBY_SERVER=host_ip:port_num,host_ip:port_num,host_ip:port_num,host_ip:port_num

Ensure that the list of standby servers is kept short, accurate, and up to date, and servers that
are no longer valid are removed. There is a 20-second wait for each connection attempt, so
the presence of a long list of invalid servers can significantly affect the keyring_okv plugin’s
connection time and therefore the server startup time.

8. Go to the Oracle Key Vault installer directory and test the setup by running this command:

okvutil/bin/okvutil list

The output should look something like this:

Unique ID Type Identifier
255AB8DE-C97F-482C-E053-0100007F28B9 Symmetric Key -
264BF6E0-A20E-7C42-E053-0100007FB29C Symmetric Key -

For a fresh Oracle Key Vault server (a server without any key in it), the output looks like this
instead, to indicate that there are no keys in the vault:

no objects found

9. Use this command to extract the ssl directory containing SSL materials from the okvclient.jar
file:

jar xf okvclient.jar ssl

10. Copy the Oracle Key Vault support files (the okvclient.ora file and the ssl directory) into the
configuration directory.

11. (Optional) If you wish to password-protect the key file, use the instructions in Password-Protecting
the keyring_okv Key File.

After completing the preceding procedure, restart the MySQL server. It loads the keyring_okv plugin
and keyring_okv uses the files in its configuration directory to communicate with Oracle Key Vault.

Configuring keyring_okv for Gemalto SafeNet KeySecure Appliance

Gemalto SafeNet KeySecure Appliance uses the KMIP protocol (version 1.1 or 1.2). The
keyring_okv keyring plugin (which supports KMIP 1.1) can use KeySecure as its KMIP back end for
keyring storage.

Use the following procedure to configure keyring_okv and KeySecure to work together. The
description only summarizes how to interact with KeySecure. For details, consult the section named
Add a KMIP Server in the KeySecure User Guide.

1. Create the configuration directory that contains the KeySecure support files, and make sure that the
keyring_okv_conf_dir system variable is set to name that directory (for details, see General
keyring_okv Configuration).

2. In the configuration directory, create a subdirectory named ssl to use for storing the required SSL
certificate and key files.

3. In the configuration directory, create a file named okvclient.ora. It should have following format:

SERVER=host_ip:port_num

1556

https://www2.gemalto.com/aws-marketplace/usage/vks/uploadedFiles/Support_and_Downloads/AWS/007-012362-001-keysecure-appliance-user-guide-v7.1.0.pdf

The MySQL Keyring

STANDBY_SERVER=host_ip:port_num

For example, if KeySecure is running on host 198.51.100.20 and listening on port 9002, and also
running on alternative host 203.0.113.125 and listening on port 8041, the okvclient.ora file
looks like this:

SERVER=198.51.100.20:9002
STANDBY_SERVER=203.0.113.125:8041

From MySQL 8.0.29, you can specify more than one standby server (up to a maximum of 64). If
you do, the keyring_okv plugin iterates over them until it can establish a connection, and fails if
it cannot. To add extra standby servers, edit the okvclient.ora file to specify the IP addresses
and port numbers of the servers as a comma-separated list in the value of the STANDBY_SERVER
variable. For example:

STANDBY_SERVER=host_ip:port_num,host_ip:port_num,host_ip:port_num,host_ip:port_num

Ensure that the list of standby servers is kept short, accurate, and up to date, and servers that
are no longer valid are removed. There is a 20-second wait for each connection attempt, so
the presence of a long list of invalid servers can significantly affect the keyring_okv plugin’s
connection time and therefore the server startup time.

4. Connect to the KeySecure Management Console as an administrator with credentials for Certificate
Authorities access.

5. Navigate to Security >> Local CAs and create a local certificate authority (CA).

6. Go to Trusted CA Lists. Select Default and click on Properties. Then select Edit for Trusted
Certificate Authority List and add the CA just created.

7. Download the CA and save it in the ssl directory as a file named CA.pem.

8. Navigate to Security >> Certificate Requests and create a certificate. Then you can download a
compressed tar file containing certificate PEM files.

9. Extract the PEM files from in the downloaded file. For example, if the file name is
csr_w_pk_pkcs8.gz, decompress and unpack it using this command:

tar zxvf csr_w_pk_pkcs8.gz

Two files result from the extraction operation: certificate_request.pem and
private_key_pkcs8.pem.

10. Use this openssl command to decrypt the private key and create a file named key.pem:

openssl pkcs8 -in private_key_pkcs8.pem -out key.pem

11. Copy the key.pem file into the ssl directory.

12. Copy the certificate request in certificate_request.pem into the clipboard.

13. Navigate to Security >> Local CAs. Select the same CA that you created earlier (the one you
downloaded to create the CA.pem file), and click Sign Request. Paste the Certificate Request from
the clipboard, choose a certificate purpose of Client (the keyring is a client of KeySecure), and click
Sign Request. The result is a certificate signed with the selected CA in a new page.

14. Copy the signed certificate to the clipboard, then save the clipboard contents as a file named
cert.pem in the ssl directory.

15. (Optional) If you wish to password-protect the key file, use the instructions in Password-Protecting
the keyring_okv Key File.

After completing the preceding procedure, restart the MySQL server. It loads the keyring_okv plugin
and keyring_okv uses the files in its configuration directory to communicate with KeySecure.

1557

The MySQL Keyring

Configuring keyring_okv for Townsend Alliance Key Manager

Townsend Alliance Key Manager uses the KMIP protocol. The keyring_okv keyring plugin can
use Alliance Key Manager as its KMIP back end for keyring storage. For additional information, see
Alliance Key Manager for MySQL.

Configuring keyring_okv for Entrust KeyControl

Entrust KeyControl uses the KMIP protocol. The keyring_okv keyring plugin can use Entrust
KeyControl as its KMIP back end for keyring storage. For additional information, see the Oracle MySQL
and Entrust KeyControl with nShield HSM Integration Guide.

Password-Protecting the keyring_okv Key File

You can optionally protect the key file with a password and supply a file containing the password to
enable the key file to be decrypted. To so do, change location to the ssl directory and perform these
steps:

1. Encrypt the key.pem key file. For example, use a command like this, and enter the encryption
password at the prompts:

$> openssl rsa -des3 -in key.pem -out key.pem.new
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

2. Save the encryption password in a single-line text file named password.txt in the ssl directory.

3. Verify that the encrypted key file can be decrypted using the following command. The decrypted file
should display on the console:

$> openssl rsa -in key.pem.new -passin file:password.txt

4. Remove the original key.pem file and rename key.pem.new to key.pem.

5. Change the ownership and access mode of new key.pem file and password.txt file as
necessary to ensure that they have the same restrictions as other files in the ssl directory.

8.4.4.9 Using the keyring_aws Amazon Web Services Keyring Plugin

Note

The keyring_aws plugin is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

The keyring_aws keyring plugin communicates with the Amazon Web Services Key Management
Service (AWS KMS) as a back end for key generation and uses a local file for key storage. All keyring
material is generated exclusively by the AWS server, not by keyring_aws.

MySQL Enterprise Edition can work with keyring_aws on Red Hat Enterprise Linux, SUSE Linux
Enterprise Server, Debian, Ubuntu, macOS, and Windows. MySQL Enterprise Edition does not support
the use of keyring_aws on these platforms:

• EL6

• Generic Linux (glibc2.12)

• SLES 12 (with versions after MySQL Server 5.7)

• Solaris

The discussion here assumes that you are familiar with AWS in general and KMS in particular. Some
pertinent information sources:

1558

https://www.townsendsecurity.com/product/encryption-key-management-mysql
https://www.entrust.com/-/media/documentation/integration-guides/oracle-mysql-enterprise-keycontrol-nshield-ig.pdf
https://www.entrust.com/-/media/documentation/integration-guides/oracle-mysql-enterprise-keycontrol-nshield-ig.pdf
https://www.mysql.com/products/

The MySQL Keyring

• AWS site

• KMS documentation

The following sections provide configuration and usage information for the keyring_aws keyring
plugin:

• keyring_aws Configuration

• keyring_aws Operation

• keyring_aws Credential Changes

keyring_aws Configuration

To install keyring_aws, use the general instructions found in Section 8.4.4.3, “Keyring Plugin
Installation”, together with the plugin-specific configuration information found here.

The plugin library file contains the keyring_aws plugin and two loadable functions,
keyring_aws_rotate_cmk() and keyring_aws_rotate_keys().

To configure keyring_aws, you must obtain a secret access key that provides credentials for
communicating with AWS KMS and write it to a configuration file:

1. Create an AWS KMS account.

2. Use AWS KMS to create a secret access key ID and secret access key. The access key serves to
verify your identity and that of your applications.

3. Use the AWS KMS account to create a KMS key ID. At MySQL startup, set the
keyring_aws_cmk_id system variable to the CMK ID value. This variable is mandatory and there
is no default. (Its value can be changed at runtime if desired using SET GLOBAL.)

4. If necessary, create the directory in which the configuration file should be located. The directory
should have a restrictive mode and be accessible only to the account used to run the MySQL
server. For example, on many Unix and Unix-like systems, such as Oracle Enterprise Linux,
to use /usr/local/mysql/mysql-keyring/keyring_aws_conf as the file name, the
following commands (executed as root) create its parent directory and set the directory mode and
ownership:

$> cd /usr/local/mysql
$> mkdir mysql-keyring
$> chmod 750 mysql-keyring
$> chown mysql mysql-keyring
$> chgrp mysql mysql-keyring

At MySQL startup, set the keyring_aws_conf_file system variable to /usr/local/mysql/
mysql-keyring/keyring_aws_conf to indicate the configuration file location to the server.

The location of the configuration file may vary according to Linux distribution; the directory for this
file may also already be provided by a system module or other application such as AppArmor. For
example, under AppArmor on recent editions of Ubuntu Linux, the keyring directory is specified as
/var/lib/mysql-keyring. See Ubuntu Server: AppArmor for more information about using
AppArmor on Ubuntu systems; see also this example MySQL configuration file. For other operating
platforms, see the system documentation for guidance.

5. Prepare the keyring_aws configuration file, which should contain two lines:

• Line 1: The secret access key ID

• Line 2: The secret access key

For example, if the key ID is wwwwwwwwwwwwwEXAMPLE and the key is xxxxxxxxxxxxx/
yyyyyyy/zzzzzzzzEXAMPLEKEY, the configuration file looks like this:

1559

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/
https://documentation.ubuntu.com/server/how-to/security/apparmor/index.html
https://exampleconfig.com/view/mysql-ubuntu20-04-etc-apparmor-d-usr-sbin-mysqld

The MySQL Keyring

wwwwwwwwwwwwwEXAMPLE
xxxxxxxxxxxxx/yyyyyyy/zzzzzzzzEXAMPLEKEY

To be usable during the server startup process, keyring_aws must be loaded using the --
early-plugin-load option. The keyring_aws_cmk_id system variable is mandatory and
configures the KMS key ID obtained from the AWS KMS server. The keyring_aws_conf_file and
keyring_aws_data_file system variables optionally configure the locations of the files used by the
keyring_aws plugin for configuration information and data storage. The file location variable default
values are platform specific. To configure the locations explicitly, set the variable values at startup. For
example, use these lines in the server my.cnf file, adjusting the .so suffix and file locations for your
platform as necessary:

[mysqld]
early-plugin-load=keyring_aws.so
keyring_aws_cmk_id='arn:aws:kms:us-west-2:111122223333:key/abcd1234-ef56-ab12-cd34-ef56abcd1234'
keyring_aws_conf_file=/usr/local/mysql/mysql-keyring/keyring_aws_conf
keyring_aws_data_file=/usr/local/mysql/mysql-keyring/keyring_aws_data

For the keyring_aws plugin to start successfully, the configuration file must exist and contain valid
secret access key information, initialized as described previously. The storage file need not exist. If it
does not, keyring_aws attempts to create it (as well as its parent directory, if necessary).

Important

The default AWS region is us-east-1. For any other region, you must also set
keyring_aws_region explicitly in my.cnf.

For additional information about the system variables used to configure the keyring_aws plugin, see
Section 8.4.4.19, “Keyring System Variables”.

Start the MySQL server and install the functions associated with the keyring_aws plugin. This is a
one-time operation, performed by executing the following statements, adjusting the .so suffix for your
platform as necessary:

CREATE FUNCTION keyring_aws_rotate_cmk RETURNS INTEGER
 SONAME 'keyring_aws.so';
CREATE FUNCTION keyring_aws_rotate_keys RETURNS INTEGER
 SONAME 'keyring_aws.so';

For additional information about the keyring_aws functions, see Section 8.4.4.16, “Plugin-Specific
Keyring Key-Management Functions”.

keyring_aws Operation

At plugin startup, the keyring_aws plugin reads the AWS secret access key ID and key from its
configuration file. It also reads any encrypted keys contained in its storage file into its in-memory cache.

During operation, keyring_aws maintains encrypted keys in the in-memory cache and uses the
storage file as local persistent storage. Each keyring operation is transactional: keyring_aws either
successfully changes both the in-memory key cache and the keyring storage file, or the operation fails
and the keyring state remains unchanged.

To ensure that keys are flushed only when the correct keyring storage file exists, keyring_aws
stores a SHA-256 checksum of the keyring in the file. Before updating the file, the plugin verifies that it
contains the expected checksum.

The keyring_aws plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by these functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 8.4.4.15, “General-Purpose
Keyring Key-Management Functions”.

1560

The MySQL Keyring

• C interface: In C-language code, call the keyring service functions described in Section 7.6.9.2, “The
Keyring Service”.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

In addition, the keyring_aws_rotate_cmk() and keyring_aws_rotate_keys() functions
“extend” the keyring plugin interface to provide AWS-related capabilities not covered by the standard
keyring service interface. These capabilities are accessible only by calling these functions using SQL.
There are no corresponding C-language key service functions.

For information about the characteristics of key values permitted by keyring_aws, see
Section 8.4.4.13, “Supported Keyring Key Types and Lengths”.

keyring_aws Credential Changes

Assuming that the keyring_aws plugin has initialized properly at server startup, it is possible to
change the credentials used for communicating with AWS KMS:

1. Use AWS KMS to create a new secret access key ID and secret access key.

2. Store the new credentials in the configuration file (the file named by the
keyring_aws_conf_file system variable). The file format is as described previously.

3. Reinitialize the keyring_aws plugin so that it re-reads the configuration file. Assuming that the
new credentials are valid, the plugin should initialize successfully.

There are two ways to reinitialize the plugin:

• Restart the server. This is simpler and has no side effects, but is not suitable for installations that
require minimal server downtime with as few restarts as possible.

• Reinitialize the plugin without restarting the server by executing the following statements,
adjusting the .so suffix for your platform as necessary:

UNINSTALL PLUGIN keyring_aws;
INSTALL PLUGIN keyring_aws SONAME 'keyring_aws.so';

Note

In addition to loading a plugin at runtime, INSTALL PLUGIN has the
side effect of registering the plugin it in the mysql.plugin system
table. Because of this, if you decide to stop using keyring_aws, it is not
sufficient to remove the --early-plugin-load option from the set of
options used to start the server. That stops the plugin from loading early,
but the server still attempts to load it when it gets to the point in the startup
sequence where it loads the plugins registered in mysql.plugin.

Consequently, if you execute the UNINSTALL PLUGIN plus INSTALL
PLUGIN sequence just described to change the AWS KMS credentials,
then to stop using keyring_aws, it is necessary to execute UNINSTALL
PLUGIN again to unregister the plugin in addition to removing the --
early-plugin-load option.

8.4.4.10 Using the HashiCorp Vault Keyring Plugin

Note

The keyring_hashicorp plugin is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

1561

https://www.mysql.com/products/

The MySQL Keyring

The keyring_hashicorp keyring plugin communicates with HashiCorp Vault for back end storage.
The plugin supports HashiCorp Vault AppRole authentication. No key information is permanently
stored in MySQL server local storage. (An optional in-memory key cache may be used as intermediate
storage.) Random key generation is performed on the MySQL server side, with the keys subsequently
stored to Hashicorp Vault.

The keyring_hashicorp plugin supports the functions that comprise the standard MySQL Keyring
service interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 8.4.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in Section 7.6.9.2, “The
Keyring Service”.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_hashicorp, see
Section 8.4.4.13, “Supported Keyring Key Types and Lengths”.

To install keyring_hashicorp, use the general instructions found in Section 8.4.4.3, “Keyring Plugin
Installation”, together with the configuration information specific to keyring_hashicorp found here.
Plugin-specific configuration includes preparation of the certificate and key files needed for connecting
to HashiCorp Vault, as well as configuring HashiCorp Vault itself. The following sections provide the
necessary instructions.

• Certificate and Key Preparation

• HashiCorp Vault Setup

• keyring_hashicorp Configuration

Certificate and Key Preparation

The keyring_hashicorp plugin requires a secure connection to the HashiCorp Vault server,
employing the HTTPS protocol. A typical setup includes a set of certificate and key files:

• company.crt: A custom CA certificate belonging to the organization. This file is used both by
HashiCorp Vault server and the keyring_hashicorp plugin.

• vault.key: The private key of the HashiCorp Vault server instance. This file is used by HashiCorp
Vault server.

• vault.crt: The certificate of the HashiCorp Vault server instance. This file must be signed by the
organization CA certificate.

The following instructions describe how to create the certificate and key files using OpenSSL. (If you
already have those files, proceed to HashiCorp Vault Setup.) The instructions as shown apply to Linux
platforms and may require adjustment for other platforms.

Important

Certificates generated by these instructions are self-signed, which may not
be very secure. After you gain experience using such files, consider obtaining
certificate/key material from a registered certificate authority.

1. Prepare the company and HashiCorp Vault server keys.

Use the following commands to generate the key files:

openssl genrsa -aes256 -out company.key 4096

1562

The MySQL Keyring

openssl genrsa -aes256 -out vault.key 2048

The commands produce files holding the company private key (company.key) and the Vault
server private key (vault.key). The keys are randomly generated RSA keys of 4,096 and 2,048
bits, respectively.

Each command prompts for a password. For testing purposes, the password is not required. To
disable it, omit the -aes256 argument.

The key files hold sensitive information and should be stored in a secure location. The password
(also sensitive) is required later, so write it down and store it in a secure location.

(Optional) To check key file content and validity, use the following commands:

openssl rsa -in company.key -check
openssl rsa -in vault.key -check

2. Create the company CA certificate.

Use the following command to create a company CA certificate file named company.crt that is
valid for 365 days (enter the command on a single line):

openssl req -x509 -new -nodes -key company.key
 -sha256 -days 365 -out company.crt

If you used the -aes256 argument to perform key encryption during key generation, you are
prompted for the company key password during CA certificate creation. You are also prompted for
information about the certificate holder (that is, you or your company), as shown here:

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:

Answer the prompts with appropriate values.

3. Create a certificate signing request.

To create a HashiCorp Vault server certificate, a Certificate Signing Request (CSR) must be
prepared for the newly created server key. Create a configuration file named request.conf
containing the following lines. If the HashiCorp Vault server does not run on the local host,
substitute appropriate CN and IP values, and make any other changes required.

[req]
distinguished_name = vault
x509_entensions = v3_req
prompt = no

[vault]
C = US
ST = CA
L = RWC
O = Company
CN = 127.0.0.1

[v3_req]
subjectAltName = @alternatives
authorityKeyIdentifier = keyid,issuer
basicConstraints = CA:TRUE

[alternatives]
IP = 127.0.0.1

Use this command to create the signing request:

1563

The MySQL Keyring

openssl req -new -key vault.key -config request.conf -out request.csr

The output file (request.csr) is an intermediate file that serves as input for creation of the server
certificate.

4. Create the HashiCorp Vault server certificate.

Sign the combined information from the HashiCorp Vault server key (vault.key) and the CSR
(request.csr) with the company certificate (company.crt) to create the HashiCorp Vault server
certificate (vault.crt). Use the following command to do this (enter the command on a single
line):

openssl x509 -req -in request.csr
 -CA company.crt -CAkey company.key -CAcreateserial
 -out vault.crt -days 365 -sha256

To make the vault.crt server certificate useful, append the contents of the company.crt
company certificate to it. This is required so that the company certificate is delivered along with the
server certificate in requests.

cat company.crt >> vault.crt

If you display the contents of the vault.crt file, it should look like this:

-----BEGIN CERTIFICATE-----
... content of HashiCorp Vault server certificate ...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... content of company certificate ...
-----END CERTIFICATE-----

HashiCorp Vault Setup

The following instructions describe how to create a HashiCorp Vault setup that facilitates testing the
keyring_hashicorp plugin.

Important

A test setup is similar to a production setup, but production use of HashiCorp
Vault entails additional security considerations such as use of non-self-signed
certificates and storing the company certificate in the system trust store. You
must implement whatever additional security steps are needed to satisfy your
operational requirements.

These instructions assume availability of the certificate and key files created in Certificate and Key
Preparation. See that section if you do not have those files.

1. Fetch the HashiCorp Vault binary.

Download the HashiCorp Vault binary appropriate for your platform from https://www.vaultproject.io/
downloads.html.

Extract the content of the archive to produce the executable vault command, which is used to
perform HashiCorp Vault operations. If necessary, add the directory where you install the command
to the system path.

(Optional) HashiCorp Vault supports autocomplete options that make it easier to use. For more
information, see https://learn.hashicorp.com/vault/getting-started/install#command-completion.

2. Create the HashiCorp Vault server configuration file.

1564

https://www.vaultproject.io/downloads.html
https://www.vaultproject.io/downloads.html
https://learn.hashicorp.com/vault/getting-started/install#command-completion

The MySQL Keyring

Prepare a configuration file named config.hcl with the following content. For the
tls_cert_file, tls_key_file, and path values, substitute path names appropriate for your
system.

listener "tcp" {
 address="127.0.0.1:8200"
 tls_cert_file="/home/username/certificates/vault.crt"
 tls_key_file="/home/username/certificates/vault.key"
}

storage "file" {
 path = "/home/username/vaultstorage/storage"
}

ui = true

3. Start the HashiCorp Vault server.

To start the Vault server, use the following command, where the -config option specifies the path
to the configuration file just created:

vault server -config=config.hcl

During this step, you may be prompted for a password for the Vault server private key stored in the
vault.key file.

The server should start, displaying some information on the console (IP, port, and so forth).

So that you can enter the remaining commands, put the vault server command in the
background or open another terminal before continuing.

4. Initialize the HashiCorp Vault server.

Note

The operations described in this step are required only when starting Vault
the first time, to obtain the unseal key and root token. Subsequent Vault
instance restarts require only unsealing using the unseal key.

Issue the following commands (assuming Bourne shell syntax):

export VAULT_SKIP_VERIFY=1
vault operator init -n 1 -t 1

The first command enables the vault command to temporarily ignore the fact that no company
certificate has been added to the system trust store. It compensates for the fact that our self-signed
CA is not added to that store. (For production use, such a certificate should be added.)

The second command creates a single unseal key with a requirement for a single unseal key to be
present for unsealing. (For production use, an instance would have multiple unseal keys with up
to that many keys required to be entered to unseal it. The unseal keys should be delivered to key
custodians within the company. Use of a single key might be considered a security issue because
that permits the vault to be unsealed by a single key custodian.)

Vault should reply with information about the unseal key and root token, plus some additional text
(the actual unseal key and root token values differ from those shown here):

...
Unseal Key 1: I2xwcFQc892O0Nt2pBiRNlnkHzTUrWS+JybL39BjcOE=
Initial Root Token: s.vTvXeo3tPEYehfcd9WH7oUKz
...

Store the unseal key and root token in a secure location.

1565

The MySQL Keyring

5. Unseal the HashiCorp Vault server.

Use this command to unseal the Vault server:

vault operator unseal

When prompted to enter the unseal key, use the key obtained previously during Vault initialization.

Vault should produce output indicating that setup is complete and the vault is unsealed.

6. Log in to the HashiCorp Vault server and verify its status.

Prepare the environment variables required for logging in as root:

vault login s.vTvXeo3tPEYehfcd9WH7oUKz

For the token value in that command, substitute the content of the root token obtained previously
during Vault initialization.

Verify the Vault server status:

vault status

The output should contain these lines (among others):

...
Initialized true
Sealed false
...

7. Set up HashiCorp Vault authentication and storage.

Note

The operations described in this step are needed only the first time the Vault
instance is run. They need not be repeated afterward.

Enable the AppRole authentication method and verify that it is in the authentication method list:

vault auth enable approle
vault auth list

Enable the Vault KeyValue storage engine:

vault secrets enable -version=1 kv

Create and set up a role for use with the keyring_hashicorp plugin (enter the command on a
single line):

vault write auth/approle/role/mysql token_num_uses=0
 token_ttl=20m token_max_ttl=30m secret_id_num_uses=0

8. Add an AppRole security policy.

Note

The operations described in this step are needed only the first time the Vault
instance is run. They need not be repeated afterward.

Prepare a policy that to permit the previously created role to access appropriate secrets. Create a
new file named mysql.hcl with the following content:

path "kv/mysql/*" {
 capabilities = ["create", "read", "update", "delete", "list"]

1566

The MySQL Keyring

}

Note

kv/mysql/ in this example may need adjustment per your local installation
policies and security requirements. If so, make the same adjustment
wherever else kv/mysql/ appears in these instructions.

Import the policy file to the Vault server to create a policy named mysql-policy, then assign the
policy to the new role:

vault policy write mysql-policy mysql.hcl
vault write auth/approle/role/mysql policies=mysql-policy

Obtain the ID of the newly created role and store it in a secure location:

vault read auth/approle/role/mysql/role-id

Generate a secret ID for the role and store it in a secure location:

vault write -f auth/approle/role/mysql/secret-id

After these AppRole role ID and secret ID credentials are generated, they are expected to remain
valid indefinitely. They need not be generated again and the keyring_hashicorp plugin can
be configured with them for use on an ongoing basis. For more information about AuthRole
authentication, visit https://www.vaultproject.io/docs/auth/approle.html.

keyring_hashicorp Configuration

The plugin library file contains the keyring_hashicorp plugin and a loadable function,
keyring_hashicorp_update_config(). When the plugin initializes and terminates, it
automatically loads and unloads the function. There is no need to load and unload the function
manually.

The keyring_hashicorp plugin supports the configuration parameters shown in the following table.
To specify these parameters, assign values to the corresponding system variables.

Configuration Parameter System Variable Mandatory

HashiCorp Server URL keyring_hashicorp_server_urlNo

AppRole role ID keyring_hashicorp_role_id Yes

AppRole secret ID keyring_hashicorp_secret_idYes

Store path keyring_hashicorp_store_pathYes

Authorization Path keyring_hashicorp_auth_pathNo

CA certificate file path keyring_hashicorp_ca_path No

Cache control keyring_hashicorp_caching No

To be usable during the server startup process, keyring_hashicorp must be loaded using the --
early-plugin-load option. As indicated by the preceding table, several plugin-related system
variables are mandatory and must also be set. For example, use these lines in the server my.cnf file,
adjusting the .so suffix and file locations for your platform as necessary:

[mysqld]
early-plugin-load=keyring_hashicorp.so
keyring_hashicorp_role_id='ee3b495c-d0c9-11e9-8881-8444c71c32aa'
keyring_hashicorp_secret_id='0512af29-d0ca-11e9-95ee-0010e00dd718'
keyring_hashicorp_store_path='/v1/kv/mysql'
keyring_hashicorp_auth_path='/v1/auth/approle/login'

1567

https://www.vaultproject.io/docs/auth/approle.html

The MySQL Keyring

Note

Per the HashiCorp documentation, all API routes are prefixed with a protocol
version (which you can see in the preceding example as /v1/ in the
keyring_hashicorp_store_path and keyring_hashicorp_auth_path
values). If HashiCorp develops new protocol versions, it may be necessary to
change /v1/ to something else in your configuration.

MySQL Server authenticates against HashiCorp Vault using AppRole authentication. Successful
authentication requires that two secrets be provided to Vault, a role ID and a secret ID, which
are similar in concept to user name and password. The role ID and secret ID values to use
are those obtained during the HashiCorp Vault setup procedure performed previously. To
specify the two IDs, assign their respective values to the keyring_hashicorp_role_id and
keyring_hashicorp_secret_id system variables. The setup procedure also results in a store path
of /v1/kv/mysql, which is the value to assign to keyring_hashicorp_commit_store_path.

At plugin initialization time, keyring_hashicorp attempts to connect to the HashiCorp Vault
server using the configuration values. If the connection is successful, the plugin stores the
values in corresponding system variables that have _commit_ in their name. For example,
upon successful connection, the plugin stores the values of keyring_hashicorp_role_id
and keyring_hashicorp_store_path in keyring_hashicorp_commit_role_id and
keyring_hashicorp_commit_store_path.

Reconfiguration at runtime can be performed with the assistance of the
keyring_hashicorp_update_config() function:

1. Use SET statements to assign the desired new values to the configuration system variables
shown in the preceding table. These assignments in themselves have no effect on ongoing plugin
operation.

2. Invoke keyring_hashicorp_update_config() to cause the plugin to reconfigure and
reconnect to the HashiCorp Vault server using the new variable values.

3. If the connection is successful, the plugin stores the updated configuration values in corresponding
system variables that have _commit_ in their name.

For example, if you have reconfigured HashiCorp Vault to listen on port 8201 rather than the default
8200, reconfigure keyring_hashicorp like this:

mysql> SET GLOBAL keyring_hashicorp_server_url = 'https://127.0.0.1:8201';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT keyring_hashicorp_update_config();
+--------------------------------------+
| keyring_hashicorp_update_config() |
+--------------------------------------+
| Configuration update was successful. |
+--------------------------------------+
1 row in set (0.03 sec)

If the plugin is not able to connect to HashiCorp Vault during initialization or reconfiguration and there
was no existing connection, the _commit_ system variables are set to 'Not committed' for string-
valued variables, and OFF for Boolean-valued variables. If the plugin is not able to connect but there
was an existing connection, that connection remains active and the _commit_ variables reflect the
values used for it.

Note

If you do not set the mandatory system variables at server startup, or if some
other plugin initialization error occurs, initialization fails. In this case, you
can use the runtime reconfiguration procedure to initialize the plugin without
restarting the server.

1568

https://www.vaultproject.io/api-docs

The MySQL Keyring

For additional information about the keyring_hashicorp plugin-specific system variables and
function, see Section 8.4.4.19, “Keyring System Variables”, and Section 8.4.4.16, “Plugin-Specific
Keyring Key-Management Functions”.

8.4.4.11 Using the Oracle Cloud Infrastructure Vault Keyring Component

Note

The Oracle Cloud Infrastructure Vault keyring component is included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

component_keyring_oci is part of the component infrastructure that communicates with Oracle
Cloud Infrastructure Vault for back end storage. No key information is permanently stored in MySQL
server local storage. All keys are stored in Oracle Cloud Infrastructure Vault, making this component
well suited for Oracle Cloud Infrastructure MySQL customers for management of their MySQL
Enterprise Edition keys.

In MySQL 8.0.24, MySQL Keyring began transitioning from plugins to use the component
infrastructure. The introduction of component_keyring_oci in MySQL 8.0.31 is a continuation of
that effort. For more information, see Keyring Components Versus Keyring Plugins.

Note

Only one keyring component or plugin should be enabled at a time. Enabling
multiple keyring components or plugins is unsupported and results may not be
as anticipated.

To use component_keyring_oci for keystore management, you must:

1. Write a manifest that tells the server to load component_keyring_oci, as described in
Section 8.4.4.2, “Keyring Component Installation”.

2. Write a configuration file for component_keyring_oci, as described here.

After writing a manifest and configuration file, you should be able to access keys that were created
using the keyring_oci plugin, provided that you specify the same set of configuration options to
initialize the keyring component. The built-in backward compatibility of component_keyring_oci
simplifies migrating from the keyring plugin to the component.

• Configuration Notes

• Verify the Component Installation

• Vault Keyring Component Usage

Configuration Notes

When it initializes, component_keyring_oci reads either a global configuration file, or a global
configuration file paired with a local configuration file:

• The component attempts to read its global configuration file from the directory where the component
library file is installed (that is, the server plugin directory).

• If the global configuration file indicates use of a local configuration file, the component attempts to
read its local configuration file from the data directory.

• Although global and local configuration files are located in different directories, the file name is
component_keyring_oci.cnf in both locations.

• It is an error for no configuration file to exist. component_keyring_oci cannot initialize without a
valid configuration.

1569

https://www.mysql.com/products/

The MySQL Keyring

Local configuration files permit setting up multiple server instances to use component_keyring_oci,
such that component configuration for each server instance is specific to a given data directory
instance. This enables the same keyring component to be used with a distinct Oracle Cloud
Infrastructure Vault for each instance.

You are assumed to be familiar with Oracle Cloud Infrastructure concepts, but the following
documentation may be helpful when setting up resources to be used by component_keyring_oci:

• Overview of Vault

• Required Keys and OCIDs

• Managing Keys

• Managing Compartments

• Managing Vaults

• Managing Secrets

component_keyring_oci configuration files have these properties:

• A configuration file must be in valid JSON format.

• A configuration file permits these configuration items:

• "read_local_config": This item is permitted only in the global configuration file. If the item is
not present, the component uses only the global configuration file. If the item is present, its value is
true or false, indicating whether the component should read configuration information from the
local configuration file.

If the "read_local_config" item is present in the global configuration file along with other
items, the component checks the "read_local_config" item value first:

• If the value is false, the component processes the other items in the global configuration file
and ignores the local configuration file.

• If the value is true, the component ignores the other items in the global configuration file and
attempts to read the local configuration file.

• “user”: The OCID of the Oracle Cloud Infrastructure user that component_keyring_oci uses
for connections. Prior to using component_keyring_oci, the user account must exist and be
granted access to use the configured Oracle Cloud Infrastructure tenancy, compartment, and vault
resources. To obtain the user OCID from the Console, use the instructions at Required Keys and
OCIDs.

This value is mandatory.

• “tenancy”: The OCID of the Oracle Cloud Infrastructure tenancy that
component_keyring_oci uses as the location of the MySQL compartment. Prior to using
component_keyring_oci, you must create a tenancy if it does not exist. To obtain the tenancy
OCID from the Console, use the instructions at Required Keys and OCIDs.

This value is mandatory.

• “compartment”: The OCID of the tenancy compartment that component_keyring_oci uses
as the location of the MySQL keys. Prior to using component_keyring_oci, you must create
a MySQL compartment or subcompartment if it does not exist. This compartment should contain
no vault keys or vault secrets. It should not be used by systems other than MySQL Keyring. For
information about managing compartments and obtaining the OCID, see Managing Compartments.

This value is mandatory.

1570

https://docs.cloud.oracle.com/iaas/Content/KeyManagement/Concepts/keyoverview.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingkeys.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcompartments.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingsecrets.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcompartments.htm

The MySQL Keyring

• “virtual_vault”: The OCID of the Oracle Cloud Infrastructure Vault that
component_keyring_oci uses for encryption operations. Prior to using
component_keyring_oci, you must create a new vault in the MySQL compartment if it does
not exist. (Alternatively, you can reuse an existing vault that is in a parent compartment of the
MySQL compartment.) Compartment users can see and use only the keys in their respective
compartments. For information about creating a vault and obtaining the vault OCID, see Managing
Vaults.

This value is mandatory.

• “encryption_endpoint”: The endpoint of the Oracle Cloud Infrastructure encryption
server that component_keyring_oci uses for generating encrypted or encoded information
(ciphertext) for new keys. The encryption endpoint is vault specific and Oracle Cloud Infrastructure
assigns it at vault-creation time. To obtain the endpoint OCID, view the configuration details for
your keyring_oci vault, using the instructions at Managing Vaults.

This value is mandatory.

• "management_endpoint": The endpoint of the Oracle Cloud Infrastructure key management
server that component_keyring_oci uses for listing existing keys. The key management
endpoint is vault specific and Oracle Cloud Infrastructure assigns it at vault-creation time. To
obtain the endpoint OCID, view the configuration details for your keyring_oci vault, using the
instructions at Managing Vaults.

This value is mandatory.

• “vaults_endpoint”: The endpoint of the Oracle Cloud Infrastructure vaults server that
component_keyring_oci uses for obtaining the value of secrets. The vaults endpoint is vault
specific and Oracle Cloud Infrastructure assigns it at vault-creation time. To obtain the endpoint
OCID, view the configuration details for your keyring_oci vault, using the instructions at Managing
Vaults.

This value is mandatory.

• “secrets_endpoint”: The endpoint of the Oracle Cloud Infrastructure secrets server that
component_keyring_oci uses for listing, creating, and retiring secrets. The secrets endpoint
is vault specific and Oracle Cloud Infrastructure assigns it at vault-creation time. To obtain the
endpoint OCID, view the configuration details for your keyring_oci vault, using the instructions at
Managing Vaults.

This value is mandatory.

• “master_key”: The OCID of the Oracle Cloud Infrastructure master encryption
key that component_keyring_oci uses for encryption of secrets. Prior to using
component_keyring_oci, you must create a cryptographic key for the Oracle Cloud
Infrastructure compartment if it does not exist. Provide a MySQL-specific name for the generated
key and do not use it for other purposes. For information about key creation, see Managing Keys.

This value is mandatory.

• “key_file”: The path name of the file containing the RSA private key that
component_keyring_oci uses for Oracle Cloud Infrastructure authentication. You must also
upload the corresponding RSA public key using the Console. The Console displays the key

1571

https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingkeys.htm

The MySQL Keyring

fingerprint value, which you can use to set the "key_fingerprint" value. For information about
generating and uploading API keys, see Required Keys and OCIDs.

This value is mandatory.

• “key_fingerprint”: The fingerprint of the RSA private key that component_keyring_oci
uses for Oracle Cloud Infrastructure authentication. To obtain the key fingerprint while creating the
API keys, execute this command:

openssl rsa -pubout -outform DER -in ~/.oci/oci_api_key.pem | openssl md5 -c

Alternatively, obtain the fingerprint from the Console, which automatically displays the fingerprint
when you upload the RSA public key. For information about obtaining key fingerprints, see
Required Keys and OCIDs.

This value is mandatory.

• “ca_certificate”: The path name of the CA certificate bundle file that
component_keyring_oci component uses for Oracle Cloud Infrastructure certificate
verification. The file contains one or more certificates for peer verification. If no file is specified, the
default CA bundle installed on the system is used. If the value is set to disabled (case-sensitive),
component_keyring_oci performs no certificate verification.

On Windows systems, this should be set to disabled, or to the path to a CA certificate bundle
file.

Given the preceding configuration file properties, to configure component_keyring_oci, create
a global configuration file named component_keyring_oci.cnf in the directory where the
component_keyring_oci library file is installed, and optionally create a local configuration file, also
named component_keyring_oci.cnf, in the data directory.

Verify the Component Installation

After performing any component-specific configuration, start the server. Verify component installation
by examining the Performance Schema keyring_component_status table:

mysql> SELECT * FROM performance_schema.keyring_component_status;
+---------------------+--+
| STATUS_KEY | STATUS_VALUE |
+---------------------+--+
Component_name	component_keyring_oci
Author	Oracle Corporation
License	PROPRIETARY
Implementation_name	component_keyring_oci
Version	1.0
Component_status	Active
user	ocid1.user.oc1..aaaaaaaasqly<...>
tenancy	ocid1.tenancy.oc1..aaaaaaaai<...>
compartment	ocid1.compartment.oc1..aaaaaaaah2swh<...>
virtual_vault	ocid1.vault.oc1.iad.bbo5xyzkaaeuk.abuwcljtmvxp4r<...>
master_key	ocid1.key.oc1.iad.bbo5xyzkaaeuk.abuwcljrbsrewgap<...>
encryption_endpoint	bbo5xyzkaaeuk-crypto.kms.us-<...>
management_endpoint	bbo5xyzkaaeuk-management.kms.us-<...>
vaults_endpoint	vaults.us-<...>
secrets_endpoint	secrets.vaults.us-<...>
key_file	~/.oci/oci_api_key.pem
key_fingerprint	ca:7c:e1:fa:86:b6:40:af:39:d6<...>
ca_certificate	disabled
+---------------------+--+

A Component_status value of Active indicates that the component initialized successfully.

If the component cannot be loaded, server startup fails. Check the server error log for diagnostic
messages. If the component loads but fails to initialize due to configuration problems, the server starts

1572

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm

The MySQL Keyring

but the Component_status value is Disabled. Check the server error log, correct the configuration
issues, and use the ALTER INSTANCE RELOAD KEYRING statement to reload the configuration.

It is possible to query MySQL server for the list of existing keys. To see which keys exist, examine the
Performance Schema keyring_keys table.

mysql> SELECT * FROM performance_schema.keyring_keys;
+-----------------------------+--------------+----------------+
| KEY_ID | KEY_OWNER | BACKEND_KEY_ID |
+-----------------------------+--------------+----------------+
audit_log-20210322T130749-1		
MyKey	me@localhost	
YourKey	me@localhost	
+-----------------------------+--------------+----------------+

Vault Keyring Component Usage

component_keyring_oci supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible in SQL statements as
described in Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”.

Example:

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by component_keyring_oci, see
Section 8.4.4.13, “Supported Keyring Key Types and Lengths”.

8.4.4.12 Using the Oracle Cloud Infrastructure Vault Keyring Plugin

Note

The keyring_oci plugin is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

The keyring_oci plugin is a keyring plugin that communicates with Oracle Cloud Infrastructure Vault
for back end storage. No key information is permanently stored in MySQL server local storage. All
keys are stored in Oracle Cloud Infrastructure Vault, making this plugin well suited for Oracle Cloud
Infrastructure MySQL customers for management of their MySQL Enterprise Edition keys.

As of MySQL 8.0.31, this plugin is deprecated and subject to removal in a future release of MySQL.
Instead, consider using the component_keyring_oci component for storing keyring data (see
Section 8.4.4.11, “Using the Oracle Cloud Infrastructure Vault Keyring Component”).

The keyring_oci plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 8.4.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in Section 7.6.9.2, “The
Keyring Service”.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_oci, see
Section 8.4.4.13, “Supported Keyring Key Types and Lengths”.

To install keyring_oci, use the general instructions found in Section 8.4.4.3, “Keyring Plugin
Installation”, together with the configuration information specific to keyring_oci found here. Plugin-

1573

https://www.mysql.com/products/

The MySQL Keyring

specific configuration involves setting a number of system variables to indicate the names or values of
Oracle Cloud Infrastructure resources.

You are assumed to be familiar with Oracle Cloud Infrastructure concepts, but the following
documentation may be helpful when setting up resources to be used by the keyring_oci plugin:

• Overview of Vault

• Resource Identifiers

• Required Keys and OCIDs

• Managing Keys

• Managing Compartments

• Managing Vaults

• Managing Secrets

The keyring_oci plugin supports the configuration parameters shown in the following table. To
specify these parameters, assign values to the corresponding system variables.

Configuration Parameter System Variable Mandatory

User OCID keyring_oci_user Yes

Tenancy OCID keyring_oci_tenancy Yes

Compartment OCID keyring_oci_compartment Yes

Vault OCID keyring_oci_virtual_vault Yes

Master key OCID keyring_oci_master_key Yes

Encryption server endpoint keyring_oci_encryption_endpointYes

Key management server
endpoint

keyring_oci_management_endpointYes

Vaults server endpoint keyring_oci_vaults_endpointYes

Secrets server endpoint keyring_oci_secrets_endpointYes

RSA private key file keyring_oci_key_file Yes

RSA private key fingerprint keyring_oci_key_fingerprintYes

CA certificate bundle file keyring_oci_ca_certificateNo

To be usable during the server startup process, keyring_oci must be loaded using the --early-
plugin-load option. As indicated by the preceding table, several plugin-related system variables are
mandatory and must also be set:

• Oracle Cloud Infrastructure uses Oracle Cloud IDs (OCIDs) extensively to designate resources, and
several keyring_oci parameters specify OCID values of the resources to use. Consequently, prior
to using the keyring_oci plugin, these prerequisites must be satisfied:

• A user for connecting to Oracle Cloud Infrastructure must exist. Create the user if necessary and
assign the user OCID to the keyring_oci_user system variable.

• The Oracle Cloud Infrastructure tenancy to be used must exist, as well as the MySQL
compartment within the tenancy, and the vault within the compartment. Create these resources
if necessary and make sure the user is enabled to use them. Assign the OCIDs for the tenancy,
compartment and vault to the keyring_oci_tenancy, keyring_oci_compartment, and
keyring_oci_virtual_vault system variables.

• A master key for encryption must exist. Create it if necessary and assign its OCID to the
keyring_oci_master_key system variable.

1574

https://docs.cloud.oracle.com/iaas/Content/KeyManagement/Concepts/keyoverview.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/identifiers.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingkeys.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcompartments.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingsecrets.htm

The MySQL Keyring

• Several server endpoints must be specified. These endpoints are vault specific and
Oracle Cloud Infrastructure assigns them at vault-creation time. Obtain their values from
the vault details page and assign them to the keyring_oci_encryption_endpoint,
keyring_oci_management_endpoint, keyring_oci_vaults_endpoint, and
keyring_oci_secrets_endpoint system variables.

• The Oracle Cloud Infrastructure API uses an RSA private/public key pair for authentication. To
create this key pair and obtain the key fingerprint, use the instructions at Required Keys and
OCIDs. Assign the private key file name and key fingerprint to the keyring_oci_key_file and
keyring_oci_key_fingerprint system variables.

In addition to the mandatory system variables, keyring_oci_ca_certificate optionally may be
set to specify a certificate authority (CA) certificate bundle file for peer authentication. On Windows
systems, this variable should be set to disabled, or to the path to a CA certificate bundle file.

Important

If you copy a parameter from the Oracle Cloud Infrastructure Console, the
copied value may include an initial https:// part. Omit that part when setting
the corresponding keyring_oci system variable.

For example, to load and configure keyring_oci, use these lines in the server my.cnf file (adjust the
.so suffix and file location for your platform as necessary):

[mysqld]
early-plugin-load=keyring_oci.so
keyring_oci_user=ocid1.user.oc1..longAlphaNumericString
keyring_oci_tenancy=ocid1.tenancy.oc1..longAlphaNumericString
keyring_oci_compartment=ocid1.compartment.oc1..longAlphaNumericString
keyring_oci_virtual_vault=ocid1.vault.oc1.iad.shortAlphaNumericString.longAlphaNumericString
keyring_oci_master_key=ocid1.key.oc1.iad.shortAlphaNumericString.longAlphaNumericString
keyring_oci_encryption_endpoint=shortAlphaNumericString-crypto.kms.us-ashburn-1.oraclecloud.com
keyring_oci_management_endpoint=shortAlphaNumericString-management.kms.us-ashburn-1.oraclecloud.com
keyring_oci_vaults_endpoint=vaults.us-ashburn-1.oci.oraclecloud.com
keyring_oci_secrets_endpoint=secrets.vaults.us-ashburn-1.oci.oraclecloud.com
keyring_oci_key_file=file_name
keyring_oci_key_fingerprint=12:34:56:78:90:ab:cd:ef:12:34:56:78:90:ab:cd:ef

For additional information about the keyring_oci plugin-specific system variables, see
Section 8.4.4.19, “Keyring System Variables”.

The keyring_oci plugin does not support runtime reconfiguration and none of its system variables
can be modified at runtime. To change configuration parameters, do this:

• Modify parameter settings in the my.cnf file, or use SET PERSIST_ONLY for parameters that are
persisted to mysqld-auto.conf.

• Restart the server.

8.4.4.13 Supported Keyring Key Types and Lengths

MySQL Keyring supports keys of different types (encryption algorithms) and lengths:

• The available key types depend on which keyring plugin is installed.

• The permitted key lengths are subject to multiple factors:

• General keyring loadable-function interface limits (for keys managed using one of the keyring
functions described in Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”),
or limits from back end implementations. These length limits can vary by key operation type.

• In addition to the general limits, individual keyring plugins may impose restrictions on key lengths
per key type.

1575

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm

The MySQL Keyring

Table 8.32, “General Keyring Key Length Limits” shows the general key-length limits. (The lower limits
for keyring_aws are imposed by the AWS KMS interface, not the keyring functions.) For keyring
plugins, Table 8.33, “Keyring Plugin Key Types and Lengths” shows the key types each keyring plugin
permits, as well as any plugin-specific key-length restrictions. For most keyring components, the
general key-length limits apply and there are no key-type restrictions.

Note

component_keyring_oci (like the keyring_oci plugin) can only generate
keys of type AES with a size of 16, 24, or 32 bytes.

Table 8.32 General Keyring Key Length Limits

Key Operation Maximum Key Length

Generate key 16,384 bytes (2,048 prior to MySQL 8.0.18); 1,024
for keyring_aws

Store key 16,384 bytes (2,048 prior to MySQL 8.0.18); 4,096
for keyring_aws

Fetch key 16,384 bytes (2,048 prior to MySQL 8.0.18); 4,096
for keyring_aws

Table 8.33 Keyring Plugin Key Types and Lengths

Plugin Name Permitted Key Type Plugin-Specific Length
Restrictions

keyring_aws AES

SECRET

16, 24, or 32 bytes

None

keyring_encrypted_file AES

DSA

RSA

SECRET

None

None

None

None

keyring_file AES

DSA

RSA

SECRET

None

None

None

None

keyring_hashicorp AES

DSA

RSA

SECRET

None

None

None

None

keyring_oci AES 16, 24, or 32 bytes

keyring_okv AES

SECRET

16, 24, or 32 bytes

None

The SECRET key type, available as of MySQL 8.0.19, is intended for general-purpose storage of
sensitive data using the MySQL keyring, and is supported by most keyring components and keyring
plugins. The keyring encrypts and decrypts SECRET data as a byte stream upon storage and retrieval.

1576

The MySQL Keyring

Example keyring operations involving the SECRET key type:

SELECT keyring_key_generate('MySecret1', 'SECRET', 20);
SELECT keyring_key_remove('MySecret1');

SELECT keyring_key_store('MySecret2', 'SECRET', 'MySecretData');
SELECT keyring_key_fetch('MySecret2');
SELECT keyring_key_length_fetch('MySecret2');
SELECT keyring_key_type_fetch('MySecret2');
SELECT keyring_key_remove('MySecret2');

8.4.4.14 Migrating Keys Between Keyring Keystores

A keyring migration copies keys from one keystore to another, enabling a DBA to switch a MySQL
installation to a different keystore. A successful migration operation has this result:

• The destination keystore contains the keys it had prior to the migration, plus the keys from the source
keystore.

• The source keystore remains the same before and after the migration (because keys are copied, not
moved).

If a key to be copied already exists in the destination keystore, an error occurs and the destination
keystore is restored to its premigration state.

The keyring manages keystores using keyring components and keyring plugins. This pertains to
migration strategy because the way in which the source and destination keystores are managed
determines whether a particular type of key migration is possible and the procedure for performing it:

• Migration from one keyring plugin to another: The MySQL server has an operational mode that
provides this capability.

• Migration from a keyring plugin to a keyring component: The MySQL server has an operational mode
that provides this capability as of MySQL 8.0.24.

• Migration from one keyring component to another: The mysql_migrate_keyring utility provides
this capability. mysql_migrate_keyring is available as of MySQL 8.0.24.

• Migration from a keyring component to a keyring plugin: There is no provision for this capability.

The following sections discuss the characteristics of offline and online migrations and describe how to
perform migrations.

• Offline and Online Key Migrations

• Key Migration Using a Migration Server

• Key Migration Using the mysql_migrate_keyring Utility

• Key Migration Involving Multiple Running Servers

Offline and Online Key Migrations

A key migration is either offline or online:

• Offline migration: For use when you are sure that no running server on the local host is using the
source or destination keystore. In this case, the migration operation can copy keys from the source
keystore to the destination without the possibility of a running server modifying keystore content
during the operation.

• Online migration: For use when a running server on the local host is using the source keystore. In
this case, care must be taken to prevent that server from updating keystores during the migration.
This involves connecting to the running server and instructing it to pause keyring operations so
that keys can be copied safely from the source keystore to the destination. When key copying is
complete, the running server is permitted to resume keyring operations.

1577

The MySQL Keyring

When you plan a key migration, use these points to decide whether it should be offline or online:

• Do not perform offline migration involving a keystore that is in use by a running server.

• Pausing keyring operations during an online migration is accomplished by connecting to the running
server and setting its global keyring_operations system variable to OFF before key copying and
ON after key copying. This has several implications:

• keyring_operations was introduced in MySQL 5.7.21, so online migration is possible only if
the running server is from MySQL 5.7.21 or higher. If the running server is older, you must stop
it, perform an offline migration, and restart it. All migration instructions elsewhere that refer to
keyring_operations are subject to this condition.

• The account used to connect to the running server must have the privileges required to modify
keyring_operations. These privileges are ENCRYPTION_KEY_ADMIN in addition to either
SYSTEM_VARIABLES_ADMIN or the deprecated SUPER privilege.

• If an online migration operation exits abnormally (for example, if it is forcibly terminated), it is
possible for keyring_operations to remain disabled on the running server, leaving it unable to
perform keyring operations. In this case, it may be necessary to connect to the running server and
enable keyring_operations manually using this statement:

SET GLOBAL keyring_operations = ON;

• Online key migration provides for pausing keyring operations on a single running server. To perform
a migration if multiple running servers are using the keystores involved, use the procedure described
at Key Migration Involving Multiple Running Servers.

Key Migration Using a Migration Server

Note

Online key migration using a migration server is only supported if the running
server allows socket connections or TCP/IP connections using TLS; it is not
supported when, for example, the server is running on a Windows platform and
only allows shared memory connections.

A MySQL server becomes a migration server if invoked in a special operational mode that supports key
migration. A migration server does not accept client connections. Instead, it runs only long enough to
migrate keys, then exits. A migration server reports errors to the console (the standard error output).

A migration server supports these migration types:

• Migration from one keyring plugin to another.

• Migration from a keyring plugin to a keyring component. This capability is available as of MySQL
8.0.24. Older servers support only migration from one keyring plugin to another, in which case the
parts of these instructions that refer to keyring components do not apply.

A migration server does not support migration from one keyring component to another. For that type of
migration, see Key Migration Using the mysql_migrate_keyring Utility.

To perform a key migration operation using a migration server, determine the key migration options
required to specify which keyring plugins or components are involved, and whether the migration is
offline or online:

• To indicate the source keyring plugin and the destination keyring plugin or component, specify these
options:

• --keyring-migration-source: The source keyring plugin that manages the keys to be
migrated.

1578

The MySQL Keyring

• --keyring-migration-destination: The destination keyring plugin or component to which
the migrated keys are to be copied.

• --keyring-migration-to-component: This option is required if the destination is a keyring
component rather than a keyring plugin.

The --keyring-migration-source and --keyring-migration-destination options
signify to the server that it should run in key migration mode. For key migration operations, both
options are mandatory. Each plugin or component is specified using the name of its library file,
including any platform-specific extension such as .so or .dll. The source and destination must
differ, and the migration server must support them both.

• For an offline migration, no additional key migration options are needed.

• For an online migration, some running server currently is using the source or destination keystore. To
invoke the migration server, specify additional key migration options that indicate how to connect to
the running server. This is necessary so that the migration server can connect to the running server
and tell it to pause keyring use during the migration operation.

Use of any of the following options signifies an online migration:

• --keyring-migration-host: The host where the running server is located. This is always the
local host because the migration server can migrate keys only between keystores managed by
local plugins and components.

• --keyring-migration-user, --keyring-migration-password: The account credentials
to use to connect to the running server.

• --keyring-migration-port: For TCP/IP connections, the port number to connect to on the
running server.

• --keyring-migration-socket: For Unix socket file or Windows named pipe connections, the
socket file or named pipe to connect to on the running server.

For additional details about the key migration options, see Section 8.4.4.18, “Keyring Command
Options”.

Start the migration server with key migration options indicating the source and destination keystores
and whether the migration is offline or online, possibly with other options. Keep the following
considerations in mind:

• Other server options might be required, such as configuration parameters for the two keyring plugins.
For example, if keyring_file is the source or destination, you must set the keyring_file_data
system variable if the keyring data file location is not the default location. Other non-keyring options
may be required as well. One way to specify these options is by using --defaults-file to name
an option file that contains the required options.

• The migration server expects path name option values to be full paths. Relative path names may not
be resolved as you expect.

• The user who invokes a server in key-migration mode must not be the root operating system user,
unless the --user option is specified with a non-root user name to run the server as that user.

• The user a server in key-migration mode runs as must have permission to read and write any local
keyring files, such as the data file for a file-based plugin.

If you invoke the migration server from a system account different from that normally used to run
MySQL, it might create keyring directories or files that are inaccessible to the server during normal
operation. Suppose that mysqld normally runs as the mysql operating system user, but you invoke
the migration server while logged in as isabel. Any new directories or files created by the migration

1579

The MySQL Keyring

server are owned by isabel. Subsequent startup fails when a server run as the mysql operating
system user attempts to access file system objects owned by isabel.

To avoid this issue, start the migration server as the root operating system user and provide a --
user=user_name option, where user_name is the system account normally used to run MySQL.
Alternatively, after the migration, examine the keyring-related file system objects and change their
ownership and permissions if necessary using chown, chmod, or similar commands, so that the
objects are accessible to the running server.

Example command line for offline migration between two keyring plugins (enter the command on a
single line):

mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
 --keyring-migration-source=keyring_file.so
 --keyring-migration-destination=keyring_encrypted_file.so
 --keyring_encrypted_file_password=password

Example command line for online migration between two keyring plugins:

mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
 --keyring-migration-source=keyring_file.so
 --keyring-migration-destination=keyring_encrypted_file.so
 --keyring_encrypted_file_password=password
 --keyring-migration-host=127.0.0.1
 --keyring-migration-user=root
 --keyring-migration-password=root_password

To perform a migration when the destination is a keyring component rather than a keyring plugin,
specify the --keyring-migration-to-component option, and name the component as the value
of the --keyring-migration-destination option.

Example command line for offline migration from a keyring plugin to a keyring component:

mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
 --keyring-migration-to-component
 --keyring-migration-source=keyring_file.so
 --keyring-migration-destination=component_keyring_encrypted_file.so

Notice that in this case, no keyring_encrypted_file_password value is specified. The password
for the component data file is listed in the component configuration file.

Example command line for online migration from a keyring plugin to a keyring component:

mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
 --keyring-migration-to-component
 --keyring-migration-source=keyring_file.so
 --keyring-migration-destination=component_keyring_encrypted_file.so
 --keyring-migration-host=127.0.0.1
 --keyring-migration-user=root
 --keyring-migration-password=root_password

The key migration server performs a migration operation as follows:

1. (Online migration only) Connect to the running server using the connection options.

2. (Online migration only) Disable keyring_operations on the running server.

3. Load the keyring plugin/component libraries for the source and destination keystores.

4. Copy keys from the source keystore to the destination.

5. Unload the keyring plugin/component libraries for the source and destination keystores.

6. (Online migration only) Enable keyring_operations on the running server.

7. (Online migration only) Disconnect from the running server.

If an error occurs during key migration, the destination keystore is restored to its premigration state.

1580

The MySQL Keyring

After a successful online key migration operation, the running server might need to be restarted:

• If the running server was using the source keystore before the migration and should continue to use
it after the migration, it need not be restarted after the migration.

• If the running server was using the destination keystore before the migration and should continue to
use it after the migration, it should be restarted after the migration to load all keys migrated into the
destination keystore.

• If the running server was using the source keystore before the migration but should use the
destination keystore after the migration, it must be reconfigured to use the destination keystore
and restarted. In this case, be aware that although the running server is paused from modifying
the source keystore during the migration itself, it is not paused during the interval between the
migration and the subsequent restart. Care should be taken that the server does not modify the
source keystore during this interval because any such changes will not be reflected in the destination
keystore.

Key Migration Using the mysql_migrate_keyring Utility

The mysql_migrate_keyring utility migrates keys from one keyring component to another. It
does not support migrations involving keyring plugins. For that type of migration, use a MySQL server
operating in key migration mode; see Key Migration Using a Migration Server.

To perform a key migration operation using mysql_migrate_keyring, determine the key migration
options required to specify which keyring components are involved, and whether the migration is offline
or online:

• To indicate the source and destination keyring components and their location, specify these options:

• --source-keyring: The source keyring component that manages the keys to be migrated.

• --destination-keyring: The destination keyring component to which the migrated keys are to
be copied.

• --component-dir: The directory containing keyring component library files. This is typically the
value of the plugin_dir system variable for the local MySQL server.

All three options are mandatory. Each keyring component name is a component library file name
specified without any platform-specific extension such as .so or .dll. For example, to use the
component for which the library file is component_keyring_file.so, specify the option as --
source-keyring=component_keyring_file. The source and destination must differ, and
mysql_migrate_keyring must support them both.

• For an offline migration, no additional options are needed.

• For an online migration, some running server currently is using the source or destination
keystore. In this case, specify the --online-migration option to signify an online migration.
In addition, specify connection options indicating how to connect to the running server, so that
mysql_migrate_keyring can connect to it and tell it to pause keyring use during the migration
operation.

The --online-migration option is commonly used in conjunction with connection options such
as these:

• --host: The host where the running server is located. This is always the local host because
mysql_migrate_keyring can migrate keys only between keystores managed by local
components.

• --user, --password: The account credentials to use to connect to the running server.

• --port: For TCP/IP connections, the port number to connect to on the running server.

1581

The MySQL Keyring

• --socket: For Unix socket file or Windows named pipe connections, the socket file or named
pipe to connect to on the running server.

For descriptions of all available options, see Section 6.6.8, “mysql_migrate_keyring — Keyring Key
Migration Utility”.

Start mysql_migrate_keyring with options indicating the source and destination keystores and
whether the migration is offline or online, possibly with other options. Keep the following considerations
in mind:

• The user who invokes mysql_migrate_keyring must not be the root operating system user.

• The user who invokes mysql_migrate_keyring must have permission to read and write any local
keyring files, such as the data file for a file-based plugin.

If you invoke mysql_migrate_keyring from a system account different from that normally used
to run MySQL, it might create keyring directories or files that are inaccessible to the server during
normal operation. Suppose that mysqld normally runs as the mysql operating system user, but you
invoke mysql_migrate_keyring while logged in as isabel. Any new directories or files created
by mysql_migrate_keyring are owned by isabel. Subsequent startup fails when a server run
as the mysql operating system user attempts to access file system objects owned by isabel.

To avoid this issue, invoke mysql_migrate_keyring as the mysql operating system user.
Alternatively, after the migration, examine the keyring-related file system objects and change their
ownership and permissions if necessary using chown, chmod, or similar commands, so that the
objects are accessible to the running server.

Suppose that you want to migrate keys from component_keyring_file to
component_keyring_encrypted_file, and that the local server stores its keyring component
library files in /usr/local/mysql/lib/plugin.

If no running server is using the keyring, an offline migration is permitted. Invoke
mysql_migrate_keyring like this (enter the command on a single line):

mysql_migrate_keyring
 --component-dir=/usr/local/mysql/lib/plugin
 --source-keyring=component_keyring_file
 --destination-keyring=component_keyring_encrypted_file

If a running server is using the keyring, you must perform an online migration instead. In this case, the
--online-migration option must be given, along with any connection options required to specify
which server to connect to and the MySQL account to use.

The following command performs an online migration. It connects to the local server using a TCP/IP
connection and the admin account. The command prompts for a password, which you should enter
when prompted:

mysql_migrate_keyring
 --component-dir=/usr/local/mysql/lib/plugin
 --source-keyring=component_keyring_file
 --destination-keyring=component_keyring_encrypted_file
 --online-migration --host=127.0.0.1 --user=admin --password

mysql_migrate_keyring performs a migration operation as follows:

1. (Online migration only) Connect to the running server using the connection options.

2. (Online migration only) Disable keyring_operations on the running server.

3. Load the keyring component libraries for the source and destination keystores.

4. Copy keys from the source keystore to the destination.

1582

The MySQL Keyring

5. Unload the keyring component libraries for the source and destination keystores.

6. (Online migration only) Enable keyring_operations on the running server.

7. (Online migration only) Disconnect from the running server.

If an error occurs during key migration, the destination keystore is restored to its premigration state.

After a successful online key migration operation, the running server might need to be restarted:

• If the running server was using the source keystore before the migration and should continue to use
it after the migration, it need not be restarted after the migration.

• If the running server was using the destination keystore before the migration and should continue to
use it after the migration, it should be restarted after the migration to load all keys migrated into the
destination keystore.

• If the running server was using the source keystore before the migration but should use the
destination keystore after the migration, it must be reconfigured to use the destination keystore
and restarted. In this case, be aware that although the running server is paused from modifying
the source keystore during the migration itself, it is not paused during the interval between the
migration and the subsequent restart. Care should be taken that the server does not modify the
source keystore during this interval because any such changes will not be reflected in the destination
keystore.

Key Migration Involving Multiple Running Servers

Online key migration provides for pausing keyring operations on a single running server. To perform a
migration if multiple running servers are using the keystores involved, use this procedure:

1. Connect to each running server manually and set keyring_operations=OFF. This ensures that
no running server is using the source or destination keystore and satisfies the required condition for
offline migration.

2. Use a migration server or mysql_migrate_keyring to perform an offline key migration for each
paused server.

3. Connect to each running server manually and set keyring_operations=ON.

All running servers must support the keyring_operations system variable. Any server that does not
must be stopped before the migration and restarted after.

8.4.4.15 General-Purpose Keyring Key-Management Functions

MySQL Server supports a keyring service that enables internal components and plugins to store
sensitive information securely for later retrieval.

MySQL Server also includes an SQL interface for keyring key management, implemented as a set of
general-purpose functions that access the capabilities provided by the internal keyring service. The
keyring functions are contained in a plugin library file, which also contains a keyring_udf plugin that
must be enabled prior to function invocation. For these functions to be used, a keyring plugin such as
keyring_file or keyring_okv, or a keyring component such as component_keyring_file or
component_keyring_encrypted_file, must be enabled.

The functions described here are general-purpose and intended for use with any keyring component
or plugin. A given keyring component or plugin may also provide functions of its own that are intended
for use only with that component or plugin; see Section 8.4.4.16, “Plugin-Specific Keyring Key-
Management Functions”.

The following sections provide installation instructions for the keyring functions and demonstrate
how to use them. For information about the keyring service functions invoked by these functions,
see Section 7.6.9.2, “The Keyring Service”. For general keyring information, see Section 8.4.4, “The
MySQL Keyring”.

1583

The MySQL Keyring

• Installing or Uninstalling General-Purpose Keyring Functions

• Using General-Purpose Keyring Functions

• General-Purpose Keyring Function Reference

Installing or Uninstalling General-Purpose Keyring Functions

This section describes how to install or uninstall the keyring functions, which are implemented in a
plugin library file that also contains a keyring_udf plugin. For general information about installing or
uninstalling plugins and loadable functions, see Section 7.6.1, “Installing and Uninstalling Plugins”, and
Section 7.7.1, “Installing and Uninstalling Loadable Functions”.

The keyring functions enable keyring key management operations, but the keyring_udf plugin must
also be installed because the functions do not work correctly without it. Attempts to use the functions
without the keyring_udf plugin result in an error.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is keyring_udf. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To install the keyring_udf plugin and the keyring functions, use the INSTALL PLUGIN and CREATE
FUNCTION statements, adjusting the .so suffix for your platform as necessary:

INSTALL PLUGIN keyring_udf SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_generate RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_fetch RETURNS STRING
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_length_fetch RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_type_fetch RETURNS STRING
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_store RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_remove RETURNS INTEGER
 SONAME 'keyring_udf.so';

If the plugin and functions are used on a source replication server, install them on all replicas as well to
avoid replication issues.

Once installed as just described, the plugin and functions remain installed until uninstalled. To remove
them, use the UNINSTALL PLUGIN and DROP FUNCTION statements:

UNINSTALL PLUGIN keyring_udf;
DROP FUNCTION keyring_key_generate;
DROP FUNCTION keyring_key_fetch;
DROP FUNCTION keyring_key_length_fetch;
DROP FUNCTION keyring_key_type_fetch;
DROP FUNCTION keyring_key_store;
DROP FUNCTION keyring_key_remove;

Using General-Purpose Keyring Functions

Before using the keyring general-purpose functions, install them according to the instructions provided
in Installing or Uninstalling General-Purpose Keyring Functions.

The keyring functions are subject to these constraints:

• To use any keyring function, the keyring_udf plugin must be enabled. Otherwise, an error occurs:

ERROR 1123 (HY000): Can't initialize function 'keyring_key_generate';
This function requires keyring_udf plugin which is not installed.
Please install

1584

The MySQL Keyring

To install the keyring_udf plugin, see Installing or Uninstalling General-Purpose Keyring
Functions.

• The keyring functions invoke keyring service functions (see Section 7.6.9.2, “The Keyring Service”).
The service functions in turn use whatever keyring plugin is installed (for example, keyring_file
or keyring_okv). Therefore, to use any keyring function, some underlying keyring plugin must be
enabled. Otherwise, an error occurs:

ERROR 3188 (HY000): Function 'keyring_key_generate' failed because
underlying keyring service returned an error. Please check if a
keyring plugin is installed and that provided arguments are valid
for the keyring you are using.

To install a keyring plugin, see Section 8.4.4.3, “Keyring Plugin Installation”.

• A user must possess the global EXECUTE privilege to use any keyring function. Otherwise, an error
occurs:

ERROR 1123 (HY000): Can't initialize function 'keyring_key_generate';
The user is not privileged to execute this function. User needs to
have EXECUTE

To grant the global EXECUTE privilege to a user, use this statement:

GRANT EXECUTE ON *.* TO user;

Alternatively, should you prefer to avoid granting the global EXECUTE privilege while still permitting
users to access specific key-management operations, “wrapper” stored programs can be defined (a
technique described later in this section).

• A key stored in the keyring by a given user can be manipulated later only by the same user. That
is, the value of the CURRENT_USER() function at the time of key manipulation must have the same
value as when the key was stored in the keyring. (This constraint rules out the use of the keyring
functions for manipulation of instance-wide keys, such as those created by InnoDB to support
tablespace encryption.)

To enable multiple users to perform operations on the same key, “wrapper” stored programs can be
defined (a technique described later in this section).

• Keyring functions support the key types and lengths supported by the underlying keyring plugin.
For information about keys specific to a particular keyring plugin, see Section 8.4.4.13, “Supported
Keyring Key Types and Lengths”.

To create a new random key and store it in the keyring, call keyring_key_generate(), passing to it
an ID for the key, along with the key type (encryption method) and its length in bytes. The following call
creates a 2,048-bit DSA-encrypted key named MyKey:

mysql> SELECT keyring_key_generate('MyKey', 'DSA', 256);
+---+
| keyring_key_generate('MyKey', 'DSA', 256) |
+---+
| 1 |
+---+

A return value of 1 indicates success. If the key cannot be created, the return value is NULL and an
error occurs. One reason this might be is that the underlying keyring plugin does not support the
specified combination of key type and key length; see Section 8.4.4.13, “Supported Keyring Key Types
and Lengths”.

To be able to check the return type regardless of whether an error occurs, use SELECT ... INTO
@var_name and test the variable value:

mysql> SELECT keyring_key_generate('', '', -1) INTO @x;
ERROR 3188 (HY000): Function 'keyring_key_generate' failed because

1585

The MySQL Keyring

underlying keyring service returned an error. Please check if a
keyring plugin is installed and that provided arguments are valid
for the keyring you are using.
mysql> SELECT @x;
+------+
| @x |
+------+
| NULL |
+------+
mysql> SELECT keyring_key_generate('x', 'AES', 16) INTO @x;
mysql> SELECT @x;
+------+
| @x |
+------+
| 1 |
+------+

This technique also applies to other keyring functions that for failure return a value and an error.

The ID passed to keyring_key_generate() provides a means by which to refer to the key in
subsequent functions calls. For example, use the key ID to retrieve its type as a string or its length in
bytes as an integer:

mysql> SELECT keyring_key_type_fetch('MyKey');
+---------------------------------+
| keyring_key_type_fetch('MyKey') |
+---------------------------------+
| DSA |
+---------------------------------+
mysql> SELECT keyring_key_length_fetch('MyKey');
+-----------------------------------+
| keyring_key_length_fetch('MyKey') |
+-----------------------------------+
| 256 |
+-----------------------------------+

To retrieve a key value, pass the key ID to keyring_key_fetch(). The following example uses
HEX() to display the key value because it may contain nonprintable characters. The example also
uses a short key for brevity, but be aware that longer keys provide better security:

mysql> SELECT keyring_key_generate('MyShortKey', 'DSA', 8);
+--+
| keyring_key_generate('MyShortKey', 'DSA', 8) |
+--+
| 1 |
+--+
mysql> SELECT HEX(keyring_key_fetch('MyShortKey'));
+--------------------------------------+
| HEX(keyring_key_fetch('MyShortKey')) |
+--------------------------------------+
| 1DB3B0FC3328A24C |
+--------------------------------------+

Keyring functions treat key IDs, types, and values as binary strings, so comparisons are case-sensitive.
For example, IDs of MyKey and mykey refer to different keys.

To remove a key, pass the key ID to keyring_key_remove():

mysql> SELECT keyring_key_remove('MyKey');
+-----------------------------+
| keyring_key_remove('MyKey') |
+-----------------------------+
| 1 |
+-----------------------------+

To obfuscate and store a key that you provide, pass the key ID, type, and value to
keyring_key_store():

mysql> SELECT keyring_key_store('AES_key', 'AES', 'Secret string');
+--+

1586

The MySQL Keyring

| keyring_key_store('AES_key', 'AES', 'Secret string') |
+--+
| 1 |
+--+

As indicated previously, a user must have the global EXECUTE privilege to call keyring functions, and
the user who stores a key in the keyring initially must be the same user who performs subsequent
operations on the key later, as determined from the CURRENT_USER() value in effect for each function
call. To permit key operations to users who do not have the global EXECUTE privilege or who may not
be the key “owner,” use this technique:

1. Define “wrapper” stored programs that encapsulate the required key operations and have a
DEFINER value equal to the key owner.

2. Grant the EXECUTE privilege for specific stored programs to the individual users who should be able
to invoke them.

3. If the operations implemented by the wrapper stored programs do not include key creation, create
any necessary keys in advance, using the account named as the DEFINER in the stored program
definitions.

This technique enables keys to be shared among users and provides to DBAs more fine-grained
control over who can do what with keys, without having to grant global privileges.

The following example shows how to set up a shared key named SharedKey that is owned by the
DBA, and a get_shared_key() stored function that provides access to the current key value. The
value can be retrieved by any user with the EXECUTE privilege for that function, which is created in the
key_schema schema.

From a MySQL administrative account ('root'@'localhost' in this example), create the
administrative schema and the stored function to access the key:

mysql> CREATE SCHEMA key_schema;

mysql> CREATE DEFINER = 'root'@'localhost'
 FUNCTION key_schema.get_shared_key()
 RETURNS BLOB READS SQL DATA
 RETURN keyring_key_fetch('SharedKey');

From the administrative account, ensure that the shared key exists:

mysql> SELECT keyring_key_generate('SharedKey', 'DSA', 8);
+---+
| keyring_key_generate('SharedKey', 'DSA', 8) |
+---+
| 1 |
+---+

From the administrative account, create an ordinary user account to which key access is to be granted:

mysql> CREATE USER 'key_user'@'localhost'
 IDENTIFIED BY 'key_user_pwd';

From the key_user account, verify that, without the proper EXECUTE privilege, the new account
cannot access the shared key:

mysql> SELECT HEX(key_schema.get_shared_key());
ERROR 1370 (42000): execute command denied to user 'key_user'@'localhost'
for routine 'key_schema.get_shared_key'

From the administrative account, grant EXECUTE to key_user for the stored function:

mysql> GRANT EXECUTE ON FUNCTION key_schema.get_shared_key
 TO 'key_user'@'localhost';

From the key_user account, verify that the key is now accessible:

1587

The MySQL Keyring

mysql> SELECT HEX(key_schema.get_shared_key());
+----------------------------------+
| HEX(key_schema.get_shared_key()) |
+----------------------------------+
| 9BAFB9E75CEEB013 |
+----------------------------------+

General-Purpose Keyring Function Reference

For each general-purpose keyring function, this section describes its purpose, calling sequence, and
return value. For information about the conditions under which these functions can be invoked, see
Using General-Purpose Keyring Functions.

• keyring_key_fetch(key_id)

Given a key ID, deobfuscates and returns the key value.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns the key value as a string for success, NULL if the key does not exist, or NULL and an error
for failure.

Note

Key values retrieved using keyring_key_fetch() are subject to the
general keyring function limits described in Section 8.4.4.13, “Supported
Keyring Key Types and Lengths”. A key value longer than that length can be
stored using a keyring service function (see Section 7.6.9.2, “The Keyring
Service”), but if retrieved using keyring_key_fetch() is truncated to the
general keyring function limit.

Example:

mysql> SELECT keyring_key_generate('RSA_key', 'RSA', 16);
+--+
| keyring_key_generate('RSA_key', 'RSA', 16) |
+--+
| 1 |
+--+
mysql> SELECT HEX(keyring_key_fetch('RSA_key'));
+-----------------------------------+
| HEX(keyring_key_fetch('RSA_key')) |
+-----------------------------------+
| 91C2253B696064D3556984B6630F891A |
+-----------------------------------+
mysql> SELECT keyring_key_type_fetch('RSA_key');
+-----------------------------------+
| keyring_key_type_fetch('RSA_key') |
+-----------------------------------+
| RSA |
+-----------------------------------+
mysql> SELECT keyring_key_length_fetch('RSA_key');
+-------------------------------------+
| keyring_key_length_fetch('RSA_key') |
+-------------------------------------+
| 16 |
+-------------------------------------+

The example uses HEX() to display the key value because it may contain nonprintable characters.
The example also uses a short key for brevity, but be aware that longer keys provide better security.

• keyring_key_generate(key_id, key_type, key_length)

1588

The MySQL Keyring

Generates a new random key with a given ID, type, and length, and stores it in the keyring. The type
and length values must be consistent with the values supported by the underlying keyring plugin.
See Section 8.4.4.13, “Supported Keyring Key Types and Lengths”.

Arguments:

• key_id: A string that specifies the key ID.

• key_type: A string that specifies the key type.

• key_length: An integer that specifies the key length in bytes.

Return value:

Returns 1 for success, or NULL and an error for failure.

Example:

mysql> SELECT keyring_key_generate('RSA_key', 'RSA', 384);
+---+
| keyring_key_generate('RSA_key', 'RSA', 384) |
+---+
| 1 |
+---+

• keyring_key_length_fetch(key_id)

Given a key ID, returns the key length.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns the key length in bytes as an integer for success, NULL if the key does not exist, or NULL
and an error for failure.

Example:

See the description of keyring_key_fetch().

• keyring_key_remove(key_id)

Removes the key with a given ID from the keyring.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns 1 for success, or NULL for failure.

Example:

mysql> SELECT keyring_key_remove('AES_key');
+-------------------------------+
| keyring_key_remove('AES_key') |
+-------------------------------+
| 1 |
+-------------------------------+

• keyring_key_store(key_id, key_type, key)

1589

The MySQL Keyring

Obfuscates and stores a key in the keyring.

Arguments:

• key_id: A string that specifies the key ID.

• key_type: A string that specifies the key type.

• key: A string that specifies the key value.

Return value:

Returns 1 for success, or NULL and an error for failure.

Example:

mysql> SELECT keyring_key_store('new key', 'DSA', 'My key value');
+---+
| keyring_key_store('new key', 'DSA', 'My key value') |
+---+
| 1 |
+---+

• keyring_key_type_fetch(key_id)

Given a key ID, returns the key type.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns the key type as a string for success, NULL if the key does not exist, or NULL and an error for
failure.

Example:

See the description of keyring_key_fetch().

8.4.4.16 Plugin-Specific Keyring Key-Management Functions

For each keyring plugin-specific function, this section describes its purpose, calling sequence, and
return value. For information about general-purpose keyring functions, see Section 8.4.4.15, “General-
Purpose Keyring Key-Management Functions”.

• keyring_aws_rotate_cmk()

Associated keyring plugin: keyring_aws

keyring_aws_rotate_cmk() rotates the AWS KMS key. Rotation changes only the key that
AWS KMS uses for subsequent data key-encryption operations. AWS KMS maintains previous CMK
versions, so keys generated using previous CMKs remain decryptable after rotation.

Rotation changes the CMK value used inside AWS KMS but does not change the ID used to
refer to it, so there is no need to change the keyring_aws_cmk_id system variable after calling
keyring_aws_rotate_cmk().

This function requires the SUPER privilege.

Arguments:

None.

1590

The MySQL Keyring

Return value:

Returns 1 for success, or NULL and an error for failure.

• keyring_aws_rotate_keys()

Associated keyring plugin: keyring_aws

keyring_aws_rotate_keys() rotates keys stored in the keyring_aws storage file named by
the keyring_aws_data_file system variable. Rotation sends each key stored in the file to AWS
KMS for re-encryption using the value of the keyring_aws_cmk_id system variable as the CMK
value, and stores the new encrypted keys in the file.

keyring_aws_rotate_keys() is useful for key re-encryption under these circumstances:

• After rotating the CMK; that is, after invoking the keyring_aws_rotate_cmk() function.

• After changing the keyring_aws_cmk_id system variable to a different key value.

This function requires the SUPER privilege.

Arguments:

None.

Return value:

Returns 1 for success, or NULL and an error for failure.

• keyring_hashicorp_update_config()

Associated keyring plugin: keyring_hashicorp

When invoked, the keyring_hashicorp_update_config() function causes
keyring_hashicorp to perform a runtime reconfiguration, as described in keyring_hashicorp
Configuration.

This function requires the SYSTEM_VARIABLES_ADMIN privilege because it modifies global system
variables.

Arguments:

None.

Return value:

Returns the string 'Configuration update was successful.' for success, or
'Configuration update failed.' for failure.

8.4.4.17 Keyring Metadata

This section describes sources of information about keyring use.

To see whether a keyring plugin is loaded, check the Information Schema PLUGINS table or use the
SHOW PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'keyring%';
+--------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------+---------------+
| keyring_file | ACTIVE |

1591

The MySQL Keyring

+--------------+---------------+

To see which keys exist, check the Performance Schema keyring_keys table:

mysql> SELECT * FROM performance_schema.keyring_keys;
+-----------------------------+--------------+----------------+
| KEY_ID | KEY_OWNER | BACKEND_KEY_ID |
+-----------------------------+--------------+----------------+
audit_log-20210322T130749-1		
MyKey	me@localhost	
YourKey	me@localhost	
+-----------------------------+--------------+----------------+

To see whether a keyring component is loaded, check the Performance Schema
keyring_component_status table. For example:

mysql> SELECT * FROM performance_schema.keyring_component_status;
+---------------------+---+
| STATUS_KEY | STATUS_VALUE |
+---------------------+---+
Component_name	component_keyring_file
Author	Oracle Corporation
License	GPL
Implementation_name	component_keyring_file
Version	1.0
Component_status	Active
Data_file	/usr/local/mysql/keyring/component_keyring_file
Read_only	No
+---------------------+---+

A Component_status value of Active indicates that the component initialized successfully. If the
component loaded but failed to initialize, the value is Disabled.

8.4.4.18 Keyring Command Options

MySQL supports the following keyring-related command-line options:

• --keyring-migration-destination=plugin

Command-Line Format --keyring-migration-
destination=plugin_name

Type String

The destination keyring plugin for key migration. See Section 8.4.4.14, “Migrating Keys Between
Keyring Keystores”. The option value interpretation depends on whether --keyring-migration-
to-component is specified:

• If no, the option value is a keyring plugin, interpreted the same way as for --keyring-
migration-source.

•
If yes, the option value is a keyring component, specified as the component library name in the
plugin directory, including any platform-specific extension such as .so or .dll.

Note

--keyring-migration-source and --keyring-migration-
destination are mandatory for all keyring migration operations. The source
and destination plugins must differ, and the migration server must support
both plugins.

• --keyring-migration-host=host_name

Command-Line Format --keyring-migration-host=host_name

Type String

1592

The MySQL Keyring

Default Value localhost

The host location of the running server that is currently using one of the key migration keystores. See
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”. Migration always occurs on the local
host, so the option always specifies a value for connecting to a local server, such as localhost,
127.0.0.1, ::1, or the local host IP address or host name.

• --keyring-migration-password[=password]

Command-Line Format --keyring-migration-
password[=password]

Type String

The password of the MySQL account used for connecting to the running server that is currently
using one of the key migration keystores. See Section 8.4.4.14, “Migrating Keys Between Keyring
Keystores”.

The password value is optional. If not given, the server prompts for one. If given, there must be no
space between --keyring-migration-password= and the password following it. If no password
option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. See Section 8.1.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line. In this case, the file should have a restrictive mode and be
accessible only to the account used to run the migration server.

• --keyring-migration-port=port_num

Command-Line Format --keyring-migration-port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number for connecting to the running server that is currently
using one of the key migration keystores. See Section 8.4.4.14, “Migrating Keys Between Keyring
Keystores”.

• --keyring-migration-socket=path

Command-Line Format --keyring-migration-
socket={file_name|pipe_name}

Type String

For Unix socket file or Windows named pipe connections, the socket file or named pipe for
connecting to the running server that is currently using one of the key migration keystores. See
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”.

• --keyring-migration-source=plugin

Command-Line Format --keyring-migration-
source=plugin_name

Type String

The source keyring plugin for key migration. See Section 8.4.4.14, “Migrating Keys Between Keyring
Keystores”.

The option value is similar to that for --plugin-load, except that only one plugin library can
be specified. The value is given as plugin_library or name=plugin_library, where

1593

The MySQL Keyring

plugin_library is the name of a library file that contains plugin code, and name is the name of
a plugin to load. If a plugin library is named without any preceding plugin name, the server loads all
plugins in the library. With a preceding plugin name, the server loads only the named plugin from the
library. The server looks for plugin library files in the directory named by the plugin_dir system
variable.

Note

--keyring-migration-source and --keyring-migration-
destination are mandatory for all keyring migration operations. The source
and destination plugins must differ, and the migration server must support
both plugins.

• --keyring-migration-to-component

Command-Line Format --keyring-migration-to-
component[={OFF|ON}]

Introduced 8.0.24

Type Boolean

Default Value OFF

Indicates that a key migration is from a keyring plugin to a keyring component. This option makes
it possible to migrate keys from any keyring plugin to any keyring component, which facilitates
transitioning a MySQL installation from keyring plugins to keyring components.

For key migration from one keyring component to another, use the mysql_migrate_keyring
utility. Migration from a keyring component to a keyring plugin is not supported. See Section 8.4.4.14,
“Migrating Keys Between Keyring Keystores”.

• --keyring-migration-user=user_name

Command-Line Format --keyring-migration-user=user_name

Type String

The user name of the MySQL account used for connecting to the running server that is currently
using one of the key migration keystores. See Section 8.4.4.14, “Migrating Keys Between Keyring
Keystores”.

8.4.4.19 Keyring System Variables

MySQL Keyring plugins support the following system variables. Use them to configure keyring plugin
operation. These variables are unavailable unless the appropriate keyring plugin is installed (see
Section 8.4.4.3, “Keyring Plugin Installation”).

• keyring_aws_cmk_id

Command-Line Format --keyring-aws-cmk-id=value

System Variable keyring_aws_cmk_id

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

The KMS key ID obtained from the AWS KMS server and used by the keyring_aws plugin. This
variable is unavailable unless that plugin is installed.1594

The MySQL Keyring

This variable is mandatory. If not specified, keyring_aws initialization fails.

• keyring_aws_conf_file

Command-Line Format --keyring-aws-conf-file=file_name

System Variable keyring_aws_conf_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value platform specific

The location of the configuration file for the keyring_aws plugin. This variable is unavailable unless
that plugin is installed.

At plugin startup, keyring_aws reads the AWS secret access key ID and key from the configuration
file. For the keyring_aws plugin to start successfully, the configuration file must exist and
contain valid secret access key information, initialized as described in Section 8.4.4.9, “Using the
keyring_aws Amazon Web Services Keyring Plugin”.

The default file name is keyring_aws_conf, located in the default keyring file directory. The
location of this default directory is the same as for the keyring_file_data system variable. See
the description of that variable for details, as well as for considerations to take into account if you
create the directory manually.

• keyring_aws_data_file

Command-Line Format --keyring-aws-data-file

System Variable keyring_aws_data_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value platform specific

The location of the storage file for the keyring_aws plugin. This variable is unavailable unless that
plugin is installed.

At plugin startup, if the value assigned to keyring_aws_data_file specifies a file that does not
exist, the keyring_aws plugin attempts to create it (as well as its parent directory, if necessary). If
the file does exist, keyring_aws reads any encrypted keys contained in the file into its in-memory
cache. keyring_aws does not cache unencrypted keys in memory.

The default file name is keyring_aws_data, located in the default keyring file directory. The
location of this default directory is the same as for the keyring_file_data system variable. See
the description of that variable for details, as well as for considerations to take into account if you
create the directory manually.

• keyring_aws_region

Command-Line Format --keyring-aws-region=value

System Variable keyring_aws_region

Scope Global

1595

The MySQL Keyring

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value us-east-1

Valid Values (≥ 8.0.30) af-south-1

ap-east-1

ap-northeast-1

ap-northeast-2

ap-northeast-3

ap-south-1

ap-southeast-1

ap-southeast-2

ca-central-1

cn-north-1

cn-northwest-1

eu-central-1

eu-north-1

eu-south-1

eu-west-1

eu-west-2

eu-west-3

me-south-1

sa-east-1

us-east-1

us-east-2

us-gov-east-1

us-iso-east-1

us-iso-west-1

us-isob-east-1

us-west-1

us-west-2

Valid Values (≥ 8.0.17, ≤ 8.0.29) ap-northeast-1

ap-northeast-2

1596

The MySQL Keyring

ap-south-1

ap-southeast-1

ap-southeast-2

ca-central-1

cn-north-1

cn-northwest-1

eu-central-1

eu-west-1

eu-west-2

eu-west-3

sa-east-1

us-east-1

us-east-2

us-west-1

us-west-2

Valid Values (≤ 8.0.16) ap-northeast-1

ap-northeast-2

ap-south-1

ap-southeast-1

ap-southeast-2

eu-central-1

eu-west-1

sa-east-1

us-east-1

us-west-1

us-west-2

The AWS region for the keyring_aws plugin. This variable is unavailable unless that plugin is
installed.

If not set, the AWS region defaults to us-east-1. Thus, for any other region, this variable must be
set explicitly.

• keyring_encrypted_file_data

Command-Line Format --keyring-encrypted-file-
data=file_name

1597

The MySQL Keyring

Deprecated 8.0.34

System Variable keyring_encrypted_file_data

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value platform specific

Note

As of MySQL 8.0.34, the keyring_encrypted_file plugin is
deprecated and subject to removal in a future version of MySQL.
Consider using component_keyring_encrypted_file instead; the
component_keyring_encrypted_file component supersedes the
keyring_encrypted_file plugin.

The path name of the data file used for secure data storage by the keyring_encrypted_file
plugin. This variable is unavailable unless that plugin is installed. The file location should be in a
directory considered for use only by keyring plugins. For example, do not locate the file under the
data directory.

Keyring operations are transactional: The keyring_encrypted_file plugin uses a backup file
during write operations to ensure that it can roll back to the original file if an operation fails. The
backup file has the same name as the value of the keyring_encrypted_file_data system
variable with a suffix of .backup.

Do not use the same keyring_encrypted_file data file for multiple MySQL instances. Each
instance should have its own unique data file.

The default file name is keyring_encrypted, located in a directory that is platform specific
and depends on the value of the INSTALL_LAYOUT CMake option, as shown in the following
table. To specify the default directory for the file explicitly if you are building from source, use the
INSTALL_MYSQLKEYRINGDIR CMake option.

INSTALL_LAYOUT Value Default keyring_encrypted_file_data
Value

DEB, RPM, SVR4 /var/lib/mysql-keyring/
keyring_encrypted

Otherwise keyring/keyring_encrypted under the
CMAKE_INSTALL_PREFIX value

At plugin startup, if the value assigned to keyring_encrypted_file_data specifies a file that
does not exist, the keyring_encrypted_file plugin attempts to create it (as well as its parent
directory, if necessary).

If you create the directory manually, it should have a restrictive mode and be accessible only to the
account used to run the MySQL server. For example, on Unix and Unix-like systems, to use the
/usr/local/mysql/mysql-keyring directory, the following commands (executed as root)
create the directory and set its mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring
chmod 750 mysql-keyring
chown mysql mysql-keyring

1598

The MySQL Keyring

chgrp mysql mysql-keyring

If the keyring_encrypted_file plugin cannot create or access its data file, it writes an error
message to the error log. If an attempted runtime assignment to keyring_encrypted_file_data
results in an error, the variable value remains unchanged.

Important

Once the keyring_encrypted_file plugin has created its data file
and started to use it, it is important not to remove the file. Loss of the
file causes data encrypted using its keys to become inaccessible. (It is
permissible to rename or move the file, as long as you change the value of
keyring_encrypted_file_data to match.)

• keyring_encrypted_file_password

Command-Line Format --keyring-encrypted-file-
password=password

Deprecated 8.0.34

System Variable keyring_encrypted_file_password

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Note

As of MySQL 8.0.34, the keyring_encrypted_file plugin is
deprecated and subject to removal in a future version of MySQL.
Consider using component_keyring_encrypted_file instead; the
component_keyring_encrypted_file component supersedes the
keyring_encrypted_file plugin.

The password used by the keyring_encrypted_file plugin. This variable is unavailable unless
that plugin is installed.

This variable is mandatory. If not specified, keyring_encrypted_file initialization fails.

If this variable is specified in an option file, the file should have a restrictive mode and be accessible
only to the account used to run the MySQL server.

Important

Once the keyring_encrypted_file_password value has been
set, changing it does not rotate the keyring password and could make
the server inaccessible. If an incorrect password is provided, the
keyring_encrypted_file plugin cannot load keys from the encrypted
keyring file.

The password value cannot be displayed at runtime with SHOW VARIABLES or the Performance
Schema global_variables table because the display value is obfuscated.

• keyring_file_data

Command-Line Format --keyring-file-data=file_name

Deprecated 8.0.34

System Variable keyring_file_data 1599

The MySQL Keyring

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value platform specific

Note

As of MySQL 8.0.34, the keyring_file plugin is deprecated and
subject to removal in a future version of MySQL. Consider using
component_keyring_file instead; the component_keyring_file
component supersedes the keyring_file plugin.

The path name of the data file used for secure data storage by the keyring_file plugin. This
variable is unavailable unless that plugin is installed. The file location should be in a directory
considered for use only by keyring plugins. For example, do not locate the file under the data
directory.

Keyring operations are transactional: The keyring_file plugin uses a backup file during write
operations to ensure that it can roll back to the original file if an operation fails. The backup file has
the same name as the value of the keyring_file_data system variable with a suffix of .backup.

Do not use the same keyring_file data file for multiple MySQL instances. Each instance should
have its own unique data file.

The default file name is keyring, located in a directory that is platform specific and depends on the
value of the INSTALL_LAYOUT CMake option, as shown in the following table. To specify the default
directory for the file explicitly if you are building from source, use the INSTALL_MYSQLKEYRINGDIR
CMake option.

INSTALL_LAYOUT Value Default keyring_file_data Value

DEB, RPM, SVR4 /var/lib/mysql-keyring/keyring

Otherwise keyring/keyring under the
CMAKE_INSTALL_PREFIX value

At plugin startup, if the value assigned to keyring_file_data specifies a file that does not exist,
the keyring_file plugin attempts to create it (as well as its parent directory, if necessary).

If you create the directory manually, it should have a restrictive mode and be accessible only to the
account used to run the MySQL server. For example, on Unix and Unix-like systems, to use the
/usr/local/mysql/mysql-keyring directory, the following commands (executed as root)
create the directory and set its mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring
chmod 750 mysql-keyring
chown mysql mysql-keyring
chgrp mysql mysql-keyring

If the keyring_file plugin cannot create or access its data file, it writes an error message to
the error log. If an attempted runtime assignment to keyring_file_data results in an error, the
variable value remains unchanged.

Important

Once the keyring_file plugin has created its data file and started to use
it, it is important not to remove the file. For example, InnoDB uses the file
to store the master key used to decrypt the data in tables that use InnoDB

1600

The MySQL Keyring

tablespace encryption; see Section 17.13, “InnoDB Data-at-Rest Encryption”.
Loss of the file causes data in such tables to become inaccessible. (It is
permissible to rename or move the file, as long as you change the value
of keyring_file_data to match.) It is recommended that you create a
separate backup of the keyring data file immediately after you create the first
encrypted table and before and after master key rotation.

• keyring_hashicorp_auth_path

Command-Line Format --keyring-hashicorp-auth-path=value

Introduced 8.0.18

System Variable keyring_hashicorp_auth_path

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value /v1/auth/approle/login

The authentication path where AppRole authentication is enabled within the HashiCorp Vault server,
for use by the keyring_hashicorp plugin. This variable is unavailable unless that plugin is
installed.

• keyring_hashicorp_ca_path

Command-Line Format --keyring-hashicorp-ca-
path=file_name

Introduced 8.0.18

System Variable keyring_hashicorp_ca_path

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value empty string

The absolute path name of a local file accessible to the MySQL server that contains a properly
formatted TLS certificate authority for use by the keyring_hashicorp plugin. This variable is
unavailable unless that plugin is installed.

If this variable is not set, the keyring_hashicorp plugin opens an HTTPS connection without
using server certificate verification, and trusts any certificate delivered by the HashiCorp Vault server.
For this to be safe, it must be assumed that the Vault server is not malicious and that no man-in-the-
middle attack is possible. If those assumptions are invalid, set keyring_hashicorp_ca_path
to the path of a trusted CA certificate. (For example, for the instructions in Certificate and Key
Preparation, this is the company.crt file.)

• keyring_hashicorp_caching

Command-Line Format --keyring-hashicorp-caching[={OFF|
ON}]

Introduced 8.0.18

System Variable keyring_hashicorp_caching

Scope Global 1601

The MySQL Keyring

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether to enable the optional in-memory key cache used by the keyring_hashicorp plugin
to cache keys from the HashiCorp Vault server. This variable is unavailable unless that plugin is
installed. If the cache is enabled, the plugin populates it during initialization. Otherwise, the plugin
populates only the key list during initialization.

Enabling the cache is a compromise: It improves performance, but maintains a copy of sensitive key
information in memory, which may be undesirable for security purposes.

• keyring_hashicorp_commit_auth_path

Introduced 8.0.18

System Variable keyring_hashicorp_commit_auth_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

This variable is associated with keyring_hashicorp_auth_path, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is
installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

• keyring_hashicorp_commit_ca_path

Introduced 8.0.18

System Variable keyring_hashicorp_commit_ca_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

This variable is associated with keyring_hashicorp_ca_path, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is
installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

• keyring_hashicorp_commit_caching

Introduced 8.0.18

System Variable keyring_hashicorp_commit_caching

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

This variable is associated with keyring_hashicorp_caching, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is

1602

The MySQL Keyring

installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

• keyring_hashicorp_commit_role_id

Introduced 8.0.18

System Variable keyring_hashicorp_commit_role_id

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

This variable is associated with keyring_hashicorp_role_id, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is
installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

• keyring_hashicorp_commit_server_url

Introduced 8.0.18

System Variable keyring_hashicorp_commit_server_url

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

This variable is associated with keyring_hashicorp_server_url, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is
installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

• keyring_hashicorp_commit_store_path

Introduced 8.0.18

System Variable keyring_hashicorp_commit_store_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

This variable is associated with keyring_hashicorp_store_path, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is
installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

• keyring_hashicorp_role_id

Command-Line Format --keyring-hashicorp-role-id=value

Introduced 8.0.18

System Variable keyring_hashicorp_role_id

Scope Global

Dynamic Yes

1603

The MySQL Keyring

SET_VAR Hint Applies No

Type String

Default Value empty string

The HashiCorp Vault AppRole authentication role ID, for use by the keyring_hashicorp plugin.
This variable is unavailable unless that plugin is installed. The value must be in UUID format.

This variable is mandatory. If not specified, keyring_hashicorp initialization fails.

• keyring_hashicorp_secret_id

Command-Line Format --keyring-hashicorp-secret-id=value

Introduced 8.0.18

System Variable keyring_hashicorp_secret_id

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value empty string

The HashiCorp Vault AppRole authentication secret ID, for use by the keyring_hashicorp plugin.
This variable is unavailable unless that plugin is installed. The value must be in UUID format.

This variable is mandatory. If not specified, keyring_hashicorp initialization fails.

The value of this variable is sensitive, so its value is masked by * characters when displayed.

• keyring_hashicorp_server_url

Command-Line Format --keyring-hashicorp-server-url=value

Introduced 8.0.18

System Variable keyring_hashicorp_server_url

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value https://127.0.0.1:8200

The HashiCorp Vault server URL, for use by the keyring_hashicorp plugin. This variable is
unavailable unless that plugin is installed. The value must begin with https://.

• keyring_hashicorp_store_path

Command-Line Format --keyring-hashicorp-store-path=value

Introduced 8.0.18

System Variable keyring_hashicorp_store_path

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String1604

The MySQL Keyring

Default Value empty string

A store path within the HashiCorp Vault server that is writeable when appropriate AppRole
credentials are provided by the keyring_hashicorp plugin. This variable is unavailable unless
that plugin is installed. To specify the credentials, set the keyring_hashicorp_role_id and
keyring_hashicorp_secret_id system variables (for example, as shown in keyring_hashicorp
Configuration).

This variable is mandatory. If not specified, keyring_hashicorp initialization fails.

• keyring_oci_ca_certificate

Command-Line Format --keyring-oci-ca-
certificate=file_name

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_ca_certificate

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value empty string

The path name of the CA certificate bundle file that the keyring_oci plugin uses for Oracle Cloud
Infrastructure certificate verification. This variable is unavailable unless that plugin is installed.

The file contains one or more certificates for peer verification. If no file is specified, the default CA
bundle installed on the system is used. If the value is disabled (case-sensitive), keyring_oci
performs no certificate verification.

• keyring_oci_compartment

Command-Line Format --keyring-oci-compartment=ocid

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_compartment

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The OCID of the tenancy compartment that the keyring_oci plugin uses as the location of the
MySQL keys. This variable is unavailable unless that plugin is installed.

Prior to using keyring_oci, you must create a MySQL compartment or subcompartment if it does
not exist. This compartment should contain no vault keys or vault secrets. It should not be used by
systems other than MySQL Keyring.

For information about managing compartments and obtaining the OCID, see Managing
Compartments.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_encryption_endpoint

1605

https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcompartments.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcompartments.htm

The MySQL Keyring

Command-Line Format --keyring-oci-encryption-
endpoint=value

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_encryption_endpoint

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The endpoint of the Oracle Cloud Infrastructure encryption server that the keyring_oci plugin uses
for generating ciphertext for new keys. This variable is unavailable unless that plugin is installed.

The encryption endpoint is vault specific and Oracle Cloud Infrastructure assigns it at vault-creation
time. To obtain the endpoint OCID, view the configuration details for your keyring_oci vault, using
the instructions at Managing Vaults.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_key_file

Command-Line Format --keyring-oci-key-file=file_name

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_key_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The path name of the file containing the RSA private key that the keyring_oci plugin uses for
Oracle Cloud Infrastructure authentication. This variable is unavailable unless that plugin is installed.

You must also upload the corresponding RSA public key using the Console. The Console displays
the key fingerprint value, which you can use to set the keyring_oci_key_fingerprint system
variable.

For information about generating and uploading API keys, see Required Keys and OCIDs.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_key_fingerprint

Command-Line Format --keyring-oci-key-fingerprint=value

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_key_fingerprint

Scope Global

Dynamic No

SET_VAR Hint Applies No

1606

https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm

The MySQL Keyring

Type String

The fingerprint of the RSA private key that the keyring_oci plugin uses for Oracle Cloud
Infrastructure authentication. This variable is unavailable unless that plugin is installed.

To obtain the key fingerprint while creating the API keys, execute this command:

openssl rsa -pubout -outform DER -in ~/.oci/oci_api_key.pem | openssl md5 -c

Alternatively, obtain the fingerprint from the Console, which automatically displays the fingerprint
when you upload the RSA public key.

For information about obtaining key fingerprints, see Required Keys and OCIDs.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_management_endpoint

Command-Line Format --keyring-oci-management-
endpoint=value

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_management_endpoint

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The endpoint of the Oracle Cloud Infrastructure key management server that the keyring_oci
plugin uses for listing existing keys. This variable is unavailable unless that plugin is installed.

The key management endpoint is vault specific and Oracle Cloud Infrastructure assigns it at vault-
creation time. To obtain the endpoint OCID, view the configuration details for your keyring_oci
vault, using the instructions at Managing Vaults.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_master_key

Command-Line Format --keyring-oci-master-key=ocid

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_master_key

Scope Global

Dynamic No

SET_VAR Hint Applies No

1607

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm

The MySQL Keyring

Type String

The OCID of the Oracle Cloud Infrastructure master encryption key that the keyring_oci plugin
uses for encryption of secrets. This variable is unavailable unless that plugin is installed.

Prior to using keyring_oci, you must create a cryptographic key for the Oracle Cloud
Infrastructure compartment if it does not exist. Provide a MySQL-specific name for the generated
key, and do not use it for other purposes.

For information about key creation, see Managing Keys.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_secrets_endpoint

Command-Line Format --keyring-oci-secrets-endpoint=value

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_secrets_endpoint

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The endpoint of the Oracle Cloud Infrastructure secrets server that the keyring_oci plugin uses
for listing, creating, and retiring secrets. This variable is unavailable unless that plugin is installed.

The secrets endpoint is vault specific and Oracle Cloud Infrastructure assigns it at vault-creation
time. To obtain the endpoint OCID, view the configuration details for your keyring_oci vault, using
the instructions at Managing Vaults.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_tenancy

Command-Line Format --keyring-oci-tenancy=ocid

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_tenancy

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The OCID of the Oracle Cloud Infrastructure tenancy that the keyring_oci plugin uses as the
location of the MySQL compartment. This variable is unavailable unless that plugin is installed.

Prior to using keyring_oci, you must create a tenancy if it does not exist. To obtain the tenancy
OCID from the Console, use the instructions at Required Keys and OCIDs.

This variable is mandatory. If not specified, keyring_oci initialization fails.

1608

https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingkeys.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm

The MySQL Keyring

• keyring_oci_user

Command-Line Format --keyring-oci-user=ocid

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_user

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The OCID of the Oracle Cloud Infrastructure user that the keyring_oci plugin uses for cloud
connections. This variable is unavailable unless that plugin is installed.

Prior to using keyring_oci, this user must exist and be granted access to use the configured
Oracle Cloud Infrastructure tenancy, compartment, and vault resources.

To obtain the user OCID from the Console, use the instructions at Required Keys and OCIDs.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_vaults_endpoint

Command-Line Format --keyring-oci-vaults-endpoint=value

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_vaults_endpoint

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The endpoint of the Oracle Cloud Infrastructure vaults server that the keyring_oci plugin uses for
obtaining the value of secrets. This variable is unavailable unless that plugin is installed.

The vaults endpoint is vault specific and Oracle Cloud Infrastructure assigns it at vault-creation time.
To obtain the endpoint OCID, view the configuration details for your keyring_oci vault, using the
instructions at Managing Vaults.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_virtual_vault

Command-Line Format --keyring-oci-virtual-vault=ocid

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_virtual_vault

Scope Global

Dynamic No

SET_VAR Hint Applies No
1609

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm

The MySQL Keyring

Type String

The OCID of the Oracle Cloud Infrastructure Vault that the keyring_oci plugin uses for encryption
operations. This variable is unavailable unless that plugin is installed.

Prior to using keyring_oci, you must create a new vault in the MySQL compartment if it does not
exist. (Alternatively, you can reuse an existing vault that is in a parent compartment of the MySQL
compartment.) Compartment users can see and use only the keys in their respective compartments.

For information about creating a vault and obtaining the vault OCID, see Managing Vaults.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_okv_conf_dir

Command-Line Format --keyring-okv-conf-dir=dir_name

System Variable keyring_okv_conf_dir

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Directory name

Default Value empty string

The path name of the directory that stores configuration information used by the keyring_okv
plugin. This variable is unavailable unless that plugin is installed. The location should be a directory
considered for use only by the keyring_okv plugin. For example, do not locate the directory under
the data directory.

The default keyring_okv_conf_dir value is empty. For the keyring_okv plugin to be able
to access Oracle Key Vault, the value must be set to a directory that contains Oracle Key Vault
configuration and SSL materials. For instructions on setting up this directory, see Section 8.4.4.8,
“Using the keyring_okv KMIP Plugin”.

The directory should have a restrictive mode and be accessible only to the account used to run
the MySQL server. For example, on Unix and Unix-like systems, to use the /usr/local/mysql/
mysql-keyring-okv directory, the following commands (executed as root) create the directory
and set its mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring-okv
chmod 750 mysql-keyring-okv
chown mysql mysql-keyring-okv
chgrp mysql mysql-keyring-okv

If the value assigned to keyring_okv_conf_dir specifies a directory that does not exist, or
that does not contain configuration information that enables a connection to Oracle Key Vault to
be established, keyring_okv writes an error message to the error log. If an attempted runtime
assignment to keyring_okv_conf_dir results in an error, the variable value and keyring
operation remain unchanged.

• keyring_operations

System Variable keyring_operations

Scope Global

Dynamic Yes

SET_VAR Hint Applies No
1610

https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm

MySQL Enterprise Audit

Type Boolean

Default Value ON

Whether keyring operations are enabled. This variable is used during key migration operations. See
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”. The privileges required to modify
this variable are ENCRYPTION_KEY_ADMIN in addition to either SYSTEM_VARIABLES_ADMIN or the
deprecated SUPER privilege.

8.4.5 MySQL Enterprise Audit

Note

MySQL Enterprise Audit is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin named
audit_log. MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-
based monitoring, logging, and blocking of connection and query activity executed on specific MySQL
servers. Designed to meet the Oracle audit specification, MySQL Enterprise Audit provides an out of
box, easy to use auditing and compliance solution for applications that are governed by both internal
and external regulatory guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access. From MySQL 8.0.30, you
can add statistics for the time and size of each query to detect outliers.

By default, MySQL Enterprise Audit uses tables in the mysql system database for persistent storage
of filter and user account data. To use a different database, set the audit_log_database system
variable at server startup (from MySQL 8.0.33).

After you install the audit plugin (see Section 8.4.5.2, “Installing or Uninstalling MySQL Enterprise
Audit”), it writes an audit log file. By default, the file is named audit.log in the server data directory.
To change the name of the file, set the audit_log_file system variable at server startup.

By default, audit log file contents are written in new-style XML format, without compression or
encryption. To select the file format, set the audit_log_format system variable at server startup.
For details on file format and contents, see Section 8.4.5.4, “Audit Log File Formats”.

For more information about controlling how logging occurs, including audit log file naming and format
selection, see Section 8.4.5.5, “Configuring Audit Logging Characteristics”. To perform filtering of
audited events, see Section 8.4.5.7, “Audit Log Filtering”. For descriptions of the parameters used to
configure the audit log plugin, see Audit Log Options and Variables.

If the audit log plugin is enabled, the Performance Schema (see Chapter 29, MySQL Performance
Schema) has instrumentation for it. To identify the relevant instruments, use this query:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE '%/alog/%';

8.4.5.1 Elements of MySQL Enterprise Audit

MySQL Enterprise Audit is based on the audit log plugin and related elements:

• A server-side plugin named audit_log examines auditable events and determines whether to write
them to the audit log.

• A set of functions enables manipulation of filtering definitions that control logging behavior, the
encryption password, and log file reading.

1611

https://www.mysql.com/products/
https://www.mysql.com/products/

MySQL Enterprise Audit

• Tables in the mysql system database provide persistent storage of filter and user account data,
unless you set the audit_log_database system variable at server startup to specify a different
database.

• System variables enable audit log configuration and status variables provide runtime operational
information.

• The AUDIT_ADMIN privilege enable users to administer the audit log, and (from MySQL 8.0.28) the
AUDIT_ABORT_EXEMPT privilege enables system users to execute queries that would otherwise be
blocked by an “abort” item in the audit log filter.

8.4.5.2 Installing or Uninstalling MySQL Enterprise Audit

This section describes how to install or uninstall MySQL Enterprise Audit, which is implemented using
the audit log plugin and related elements described in Section 8.4.5.1, “Elements of MySQL Enterprise
Audit”. For general information about installing plugins, see Section 7.6.1, “Installing and Uninstalling
Plugins”.

Plugin upgrades are not automatic when you upgrade a MySQL installation and some plugin loadable
functions must be loaded manually (see Installing Loadable Functions). Alternatively, you can reinstall
the plugin after upgrading MySQL to load new functions.

Important

Read this entire section before following its instructions. Parts of the procedure
differ depending on your environment.

Note

If installed, the audit_log plugin involves some minimal overhead even when
disabled. To avoid this overhead, do not install MySQL Enterprise Audit unless
you plan to use it.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

To install MySQL Enterprise Audit, look in the share directory of your MySQL installation and choose
the script that is appropriate for your platform. The available scripts differ in the file name used to refer
to the script:

• audit_log_filter_win_install.sql

• audit_log_filter_linux_install.sql

Run the script as follows. The example here uses the Linux installation script. Make the appropriate
substitution for your system.

Prior to MySQL 8.0.34:

$> mysql -u root -p < audit_log_filter_linux_install.sql
Enter password: (enter root password here)

MySQL 8.0.34 and higher:

$> mysql -u root -p -D mysql < audit_log_filter_linux_install.sql
Enter password: (enter root password here)

Starting in MySQL 8.0.34, it is possible to select a database for storing JSON filter tables when you
run the installation script. Create the database first; its name should not exceed 64 characters. For
example:

1612

MySQL Enterprise Audit

mysql> CREATE DATABASE IF NOT EXISTS database-name;

Next, run the script using the alternative database name.

$> mysql -u root -p -D database-name < audit_log_filter_linux_install.sql
Enter password: (enter root password here)

Note

Some MySQL versions have introduced changes to the structure of the MySQL
Enterprise Audit tables. To ensure that your tables are up to date for upgrades
from earlier versions of MySQL 8.0, perform the MySQL upgrade procedure,
making sure to use the option that forces an update (see Chapter 3, Upgrading
MySQL). If you prefer to run the update statements only for the MySQL
Enterprise Audit tables, see the following discussion.

As of MySQL 8.0.12, for new MySQL installations, the USER and HOST
columns in the audit_log_user table used by MySQL Enterprise Audit
have definitions that better correspond to the definitions of the User and Host
columns in the mysql.user system table. For upgrades to an installation for
which MySQL Enterprise Audit is already installed, it is recommended that you
alter the table definitions as follows:

ALTER TABLE mysql.audit_log_user
 DROP FOREIGN KEY audit_log_user_ibfk_1;
ALTER TABLE mysql.audit_log_filter
 CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_as_ci;
ALTER TABLE mysql.audit_log_user
 CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_as_ci;
ALTER TABLE mysql.audit_log_user
 MODIFY COLUMN USER VARCHAR(32);
ALTER TABLE mysql.audit_log_user
 ADD FOREIGN KEY (FILTERNAME) REFERENCES mysql.audit_log_filter(NAME);

Note

To use MySQL Enterprise Audit in the context of source/replica replication,
Group Replication, or InnoDB Cluster, you must prepare the replica nodes prior
to running the installation script on the source node. This is necessary because
the INSTALL PLUGIN statement in the script is not replicated.

1. On each replica node, extract the INSTALL PLUGIN statement from the
installation script and execute it manually.

2. On the source node, run the installation script as described previously.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'audit%';
+-------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------+---------------+
| audit_log | ACTIVE |
+-------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

After MySQL Enterprise Audit is installed, you can use the --audit-log option for subsequent
server startups to control audit_log plugin activation. For example, to prevent the plugin from being
removed at runtime, use this option:

[mysqld]
audit-log=FORCE_PLUS_PERMANENT

1613

MySQL Enterprise Audit

If it is desired to prevent the server from running without the audit plugin, use --audit-log with
a value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not
initialize successfully.

Important

By default, rule-based audit log filtering logs no auditable events for any users.
This differs from legacy audit log behavior, which logs all auditable events for
all users (see Section 8.4.5.10, “Legacy Mode Audit Log Filtering”). Should
you wish to produce log-everything behavior with rule-based filtering, create a
simple filter to enable logging and assign it to the default account:

SELECT audit_log_filter_set_filter('log_all', '{ "filter": { "log": true } }');
SELECT audit_log_filter_set_user('%', 'log_all');

The filter assigned to % is used for connections from any account that has no
explicitly assigned filter (which initially is true for all accounts).

When installed as just described, MySQL Enterprise Audit remains installed until uninstalled. To
remove it in MySQL 8.0.35 and later, run the uninstall script located in the share directory of your
MySQL installation. The example here specifies the default system database, mysql. Make the
appropriate substitution for your system.

$> mysql -u root -p -D mysql < audit_log_filter_uninstall.sql
Enter password: (enter root password here)

If the script is not available, execute the following statements to remove the tables, plugin, and
functions manually.

DROP TABLE IF EXISTS mysql.audit_log_user;
DROP TABLE IF EXISTS mysql.audit_log_filter;
UNINSTALL PLUGIN audit_log;
DROP FUNCTION audit_log_filter_set_filter;
DROP FUNCTION audit_log_filter_remove_filter;
DROP FUNCTION audit_log_filter_set_user;
DROP FUNCTION audit_log_filter_remove_user;
DROP FUNCTION audit_log_filter_flush;
DROP FUNCTION audit_log_encryption_password_get;
DROP FUNCTION audit_log_encryption_password_set;
DROP FUNCTION audit_log_read;
DROP FUNCTION audit_log_read_bookmark;
DROP FUNCTION audit_log_rotate;

8.4.5.3 MySQL Enterprise Audit Security Considerations

By default, contents of audit log files produced by the audit log plugin are not encrypted and may
contain sensitive information, such as the text of SQL statements. For security reasons, audit log files
should be written to a directory accessible only to the MySQL server and to users with a legitimate
reason to view the log. The default file name is audit.log in the data directory. This can be changed
by setting the audit_log_file system variable at server startup. Other audit log files may exist due
to log rotation.

For additional security, enable audit log file encryption. See Encrypting Audit Log Files.

8.4.5.4 Audit Log File Formats

The MySQL server calls the audit log plugin to write an audit record to its log file whenever an auditable
event occurs. Typically the first audit record written after plugin startup contains the server description
and startup options. Elements following that one represent events such as client connect and
disconnect events, executed SQL statements, and so forth. Only top-level statements are logged, not
statements within stored programs such as triggers or stored procedures. Contents of files referenced
by statements such as LOAD DATA are not logged.

To select the log format that the audit log plugin uses to write its log file, set the audit_log_format
system variable at server startup. These formats are available:

1614

MySQL Enterprise Audit

• New-style XML format (audit_log_format=NEW): An XML format that has better compatibility with
Oracle Audit Vault than old-style XML format. MySQL 8.0 uses new-style XML format by default.

• Old-style XML format (audit_log_format=OLD): The original audit log format used by default in
older MySQL series.

• JSON format (audit_log_format=JSON): Writes the audit log as a JSON array. Only this format
supports the optional query time and size statistics, which are available from MySQL 8.0.30.

By default, audit log file contents are written in new-style XML format, without compression or
encryption.

If you change audit_log_format, it is recommended that you also change audit_log_file. For
example, if you set audit_log_format to JSON, set audit_log_file to audit.json. Otherwise,
newer log files will have a different format than older files, but they will all have the same base name
with nothing to indicate when the format changed.

• New-Style XML Audit Log File Format

• Old-Style XML Audit Log File Format

• JSON Audit Log File Format

New-Style XML Audit Log File Format

Here is a sample log file in new-style XML format (audit_log_format=NEW), reformatted slightly for
readability:

<?xml version="1.0" encoding="utf-8"?>
<AUDIT>
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:06:33 UTC</TIMESTAMP>
 <RECORD_ID>1_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Audit</NAME>
 <SERVER_ID>1</SERVER_ID>
 <VERSION>1</VERSION>
 <STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
 --socket=/usr/local/mysql/mysql.sock
 --port=3306</STARTUP_OPTIONS>
 <OS_VERSION>i686-Linux</OS_VERSION>
 <MYSQL_VERSION>5.7.21-log</MYSQL_VERSION>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:38 UTC</TIMESTAMP>
 <RECORD_ID>2_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Connect</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>
 <CONNECTION_ATTRIBUTES>
 <ATTRIBUTE>
 <NAME>_pid</NAME>
 <VALUE>42794</VALUE>
 </ATTRIBUTE>
 ...
 <ATTRIBUTE>
 <NAME>program_name</NAME>
 <VALUE>mysqladmin</VALUE>
 </ATTRIBUTE>
 </CONNECTION_ATTRIBUTES>
 <PRIV_USER>root</PRIV_USER>
 <PROXY_USER/>

1615

MySQL Enterprise Audit

 <DB>test</DB>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:38 UTC</TIMESTAMP>
 <RECORD_ID>6_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>drop_table</COMMAND_CLASS>
 <SQLTEXT>DROP TABLE IF EXISTS t</SQLTEXT>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:39 UTC</TIMESTAMP>
 <RECORD_ID>8_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Quit</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>
 </AUDIT_RECORD>

...

 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:43 UTC</TIMESTAMP>
 <RECORD_ID>11_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Quit</NAME>
 <CONNECTION_ID>6</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:45 UTC</TIMESTAMP>
 <RECORD_ID>12_2019-10-03T14:06:33</RECORD_ID>
 <NAME>NoAudit</NAME>
 <SERVER_ID>1</SERVER_ID>
 </AUDIT_RECORD>
</AUDIT>

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element is
<AUDIT>. The root element contains <AUDIT_RECORD> elements, each of which provides information
about an audited event. When the audit log plugin begins writing a new log file, it writes the XML
declaration and opening <AUDIT> root element tag. When the plugin closes a log file, it writes the
closing </AUDIT> root element tag. The closing tag is not present while the file is open.

Elements within <AUDIT_RECORD> elements have these characteristics:

• Some elements appear in every <AUDIT_RECORD> element. Others are optional and may appear
depending on the audit record type.

1616

MySQL Enterprise Audit

• Order of elements within an <AUDIT_RECORD> element is not guaranteed.

• Element values are not fixed length. Long values may be truncated as indicated in the element
descriptions given later.

• The <, >, ", and & characters are encoded as <, >, ", and &, respectively. NUL
bytes (U+00) are encoded as the ? character.

• Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

The following elements are mandatory in every <AUDIT_RECORD> element:

• <NAME>

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example:

<NAME>Query</NAME>

Some common <NAME> values:

Audit When auditing starts, which may be server startup time
Connect When a client connects, also known as logging in
Query An SQL statement (executed directly)
Prepare Preparation of an SQL statement; usually followed by Execute
Execute Execution of an SQL statement; usually follows Prepare
Shutdown Server shutdown
Quit When a client disconnects
NoAudit Auditing has been turned off

The possible values are Audit, Binlog Dump, Change user, Close stmt, Connect Out,
Connect, Create DB, Daemon, Debug, Delayed insert, Drop DB, Execute, Fetch, Field
List, Init DB, Kill, Long Data, NoAudit, Ping, Prepare, Processlist, Query, Quit,
Refresh, Register Slave, Reset stmt, Set option, Shutdown, Sleep, Statistics,
Table Dump, TableDelete, TableInsert, TableRead, TableUpdate, Time.

Many of these values correspond to the COM_xxx command values listed in the my_command.h
header file. For example, Create DB and Change user correspond to COM_CREATE_DB and
COM_CHANGE_USER, respectively.

Events having <NAME> values of TableXXX accompany Query events. For example, the following
statement generates one Query event, two TableRead events, and a TableInsert events:

INSERT INTO t3 SELECT t1.* FROM t1 JOIN t2;

Each TableXXX event contains <TABLE> and <DB> elements to identify the table to which the event
refers and the database that contains the table.

• <RECORD_ID>

A unique identifier for the audit record. The value is composed from a sequence number and
timestamp, in the format SEQ_TIMESTAMP. When the audit log plugin opens the audit log file, it
initializes the sequence number to the size of the audit log file, then increments the sequence by 1
for each record logged. The timestamp is a UTC value in YYYY-MM-DDThh:mm:ss format indicating
the date and time when the audit log plugin opened the file.

Example:

<RECORD_ID>12_2019-10-03T14:06:33</RECORD_ID>

1617

MySQL Enterprise Audit

• <TIMESTAMP>

A string representing a UTC value in YYYY-MM-DDThh:mm:ss UTC format indicating the date and
time when the audit event was generated. For example, the event corresponding to execution of
an SQL statement received from a client has a <TIMESTAMP> value occurring after the statement
finishes, not when it was received.

Example:

<TIMESTAMP>2019-10-03T14:09:45 UTC</TIMESTAMP>

The following elements are optional in <AUDIT_RECORD> elements. Many of them occur only with
specific <NAME> element values.

• <COMMAND_CLASS>

A string that indicates the type of action performed.

Example:

<COMMAND_CLASS>drop_table</COMMAND_CLASS>

The values correspond to the statement/sql/xxx command counters. For example, xxx is
drop_table and select for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statement/sql/', '') AS name
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%'
ORDER BY name;

• <CONNECTION_ATTRIBUTES>

As of MySQL 8.0.19, events with a <COMMAND_CLASS> value of connect may include a
<CONNECTION_ATTRIBUTES> element to display the connection attributes passed by the client
at connect time. (For information about these attributes, which are also exposed in Performance
Schema tables, see Section 29.12.9, “Performance Schema Connection Attribute Tables”.)

The <CONNECTION_ATTRIBUTES> element contains one <ATTRIBUTE> element per attribute,
each of which contains <NAME> and <VALUE> elements to indicate the attribute name and value,
respectively.

Example:

<CONNECTION_ATTRIBUTES>
 <ATTRIBUTE>
 <NAME>_pid</NAME>
 <VALUE>42794</VALUE>
 </ATTRIBUTE>
 <ATTRIBUTE>
 <NAME>_os</NAME>
 <VALUE>macos0.14</VALUE>
 </ATTRIBUTE>
 <ATTRIBUTE>
 <NAME>_platform</NAME>
 <VALUE>x86_64</VALUE>
 </ATTRIBUTE>
 <ATTRIBUTE>
 <NAME>_client_version</NAME>
 <VALUE>8.0.19</VALUE>
 </ATTRIBUTE>
 <ATTRIBUTE>
 <NAME>_client_name</NAME>
 <VALUE>libmysql</VALUE>
 </ATTRIBUTE>
 <ATTRIBUTE>
 <NAME>program_name</NAME>

1618

MySQL Enterprise Audit

 <VALUE>mysqladmin</VALUE>
 </ATTRIBUTE>
</CONNECTION_ATTRIBUTES>

If no connection attributes are present in the event, none are logged and no
<CONNECTION_ATTRIBUTES> element appears. This can occur if the connection attempt is
unsuccessful, the client passes no attributes, or the connection occurs internally such as during
server startup or when initiated by a plugin.

• <CONNECTION_ID>

An unsigned integer representing the client connection identifier. This is the same as the value
returned by the CONNECTION_ID() function within the session.

Example:

<CONNECTION_ID>127</CONNECTION_ID>

• <CONNECTION_TYPE>

The security state of the connection to the server. Permitted values are TCP/IP (TCP/IP connection
established without encryption), SSL/TLS (TCP/IP connection established with encryption), Socket
(Unix socket file connection), Named Pipe (Windows named pipe connection), and Shared
Memory (Windows shared memory connection).

Example:

<CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>

• <DB>

A string representing a database name.

Example:

<DB>test</DB>

For connect events, this element indicates the default database; the element is empty if there is
no default database. For table-access events, the element indicates the database to which the
accessed table belongs.

• <HOST>

A string representing the client host name.

Example:

<HOST>localhost</HOST>

• <IP>

A string representing the client IP address.

Example:

<IP>127.0.0.1</IP>

• <MYSQL_VERSION>

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable.

Example:

<MYSQL_VERSION>5.7.21-log</MYSQL_VERSION>

1619

MySQL Enterprise Audit

• <OS_LOGIN>

A string representing the external user name used during the authentication process, as set by the
plugin used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin
does not set the value, this element is empty. The value is the same as that of the external_user
system variable (see Section 8.2.19, “Proxy Users”).

Example:

<OS_LOGIN>jeffrey</OS_LOGIN>

• <OS_VERSION>

A string representing the operating system on which the server was built or is running.

Example:

<OS_VERSION>x86_64-Linux</OS_VERSION>

• <PRIV_USER>

A string representing the user that the server authenticated the client as. This is the user name that
the server uses for privilege checking, and may differ from the <USER> value.

Example:

<PRIV_USER>jeffrey</PRIV_USER>

• <PROXY_USER>

A string representing the proxy user (see Section 8.2.19, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example:

<PROXY_USER>developer</PROXY_USER>

• <SERVER_ID>

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable.

Example:

<SERVER_ID>1</SERVER_ID>

• <SQLTEXT>

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character),
so the value may be the result of conversion. For example, the original statement might have been
received from the client as an SJIS string.

Example:

<SQLTEXT>DELETE FROM t1</SQLTEXT>

• <STARTUP_OPTIONS>

A string representing the options that were given on the command line or in option files when the
MySQL server was started. The first option is the path to the server executable.

Example:

<STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld

1620

MySQL Enterprise Audit

 --port=3306 --log_output=FILE</STARTUP_OPTIONS>

• <STATUS>

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function. See the description for
<STATUS_CODE> for information about how it differs from <STATUS>.

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example:

<STATUS>1051</STATUS>

• <STATUS_CODE>

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS_CODE value differs from the STATUS value: STATUS_CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of
the mysql_errno() C API function. This is 0 for success and nonzero for error, and thus is not
necessarily 1 for error.

Example:

<STATUS_CODE>0</STATUS_CODE>

• <TABLE>

A string representing a table name.

Example:

<TABLE>t3</TABLE>

• <USER>

A string representing the user name sent by the client. This may differ from the <PRIV_USER> value.

Example:

<USER>root[root] @ localhost [127.0.0.1]</USER>

• <VERSION>

An unsigned integer representing the version of the audit log file format.

Example:

<VERSION>1</VERSION>

Old-Style XML Audit Log File Format

Here is a sample log file in old-style XML format (audit_log_format=OLD), reformatted slightly for
readability:

<?xml version="1.0" encoding="utf-8"?>
<AUDIT>
 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:00 UTC"
 RECORD_ID="1_2019-10-03T14:25:00"
 NAME="Audit"
 SERVER_ID="1"

1621

https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html

MySQL Enterprise Audit

 VERSION="1"
 STARTUP_OPTIONS="--port=3306"
 OS_VERSION="i686-Linux"
 MYSQL_VERSION="5.7.21-log"/>
 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:24 UTC"
 RECORD_ID="2_2019-10-03T14:25:00"
 NAME="Connect"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"
 USER="root"
 OS_LOGIN=""
 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="connect"
 CONNECTION_TYPE="SSL/TLS"
 PRIV_USER="root"
 PROXY_USER=""
 DB="test"/>

...

 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:24 UTC"
 RECORD_ID="6_2019-10-03T14:25:00"
 NAME="Query"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"
 USER="root[root] @ localhost [127.0.0.1]"
 OS_LOGIN=""
 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="drop_table"
 SQLTEXT="DROP TABLE IF EXISTS t"/>

...

 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:24 UTC"
 RECORD_ID="8_2019-10-03T14:25:00"
 NAME="Quit"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"
 USER="root"
 OS_LOGIN=""
 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="connect"
 CONNECTION_TYPE="SSL/TLS"/>
 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:32 UTC"
 RECORD_ID="12_2019-10-03T14:25:00"
 NAME="NoAudit"
 SERVER_ID="1"/>
</AUDIT>

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element is
<AUDIT>. The root element contains <AUDIT_RECORD> elements, each of which provides information
about an audited event. When the audit log plugin begins writing a new log file, it writes the XML
declaration and opening <AUDIT> root element tag. When the plugin closes a log file, it writes the
closing </AUDIT> root element tag. The closing tag is not present while the file is open.

Attributes of <AUDIT_RECORD> elements have these characteristics:

• Some attributes appear in every <AUDIT_RECORD> element. Others are optional and may appear
depending on the audit record type.

• Order of attributes within an <AUDIT_RECORD> element is not guaranteed.

1622

MySQL Enterprise Audit

• Attribute values are not fixed length. Long values may be truncated as indicated in the attribute
descriptions given later.

• The <, >, ", and & characters are encoded as <, >, ", and &, respectively. NUL
bytes (U+00) are encoded as the ? character.

• Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

The following attributes are mandatory in every <AUDIT_RECORD> element:

• NAME

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example: NAME="Query"

Some common NAME values:

Audit When auditing starts, which may be server startup time
Connect When a client connects, also known as logging in
Query An SQL statement (executed directly)
Prepare Preparation of an SQL statement; usually followed by Execute
Execute Execution of an SQL statement; usually follows Prepare
Shutdown Server shutdown
Quit When a client disconnects
NoAudit Auditing has been turned off

The possible values are Audit, Binlog Dump, Change user, Close stmt, Connect Out,
Connect, Create DB, Daemon, Debug, Delayed insert, Drop DB, Execute, Fetch, Field
List, Init DB, Kill, Long Data, NoAudit, Ping, Prepare, Processlist, Query, Quit,
Refresh, Register Slave, Reset stmt, Set option, Shutdown, Sleep, Statistics,
Table Dump, TableDelete, TableInsert, TableRead, TableUpdate, Time.

Many of these values correspond to the COM_xxx command values listed in the my_command.h
header file. For example, "Create DB" and "Change user" correspond to COM_CREATE_DB and
COM_CHANGE_USER, respectively.

Events having NAME values of TableXXX accompany Query events. For example, the following
statement generates one Query event, two TableRead events, and a TableInsert events:

INSERT INTO t3 SELECT t1.* FROM t1 JOIN t2;

Each TableXXX event has TABLE and DB attributes to identify the table to which the event refers
and the database that contains the table.

Connect events for old-style XML audit log format do not include connection attributes.

• RECORD_ID

A unique identifier for the audit record. The value is composed from a sequence number and
timestamp, in the format SEQ_TIMESTAMP. When the audit log plugin opens the audit log file, it
initializes the sequence number to the size of the audit log file, then increments the sequence by 1
for each record logged. The timestamp is a UTC value in YYYY-MM-DDThh:mm:ss format indicating
the date and time when the audit log plugin opened the file.

Example: RECORD_ID="12_2019-10-03T14:25:00"

• TIMESTAMP

1623

MySQL Enterprise Audit

A string representing a UTC value in YYYY-MM-DDThh:mm:ss UTC format indicating the date and
time when the audit event was generated. For example, the event corresponding to execution of an
SQL statement received from a client has a TIMESTAMP value occurring after the statement finishes,
not when it was received.

Example: TIMESTAMP="2019-10-03T14:25:32 UTC"

The following attributes are optional in <AUDIT_RECORD> elements. Many of them occur only for
elements with specific values of the NAME attribute.

• COMMAND_CLASS

A string that indicates the type of action performed.

Example: COMMAND_CLASS="drop_table"

The values correspond to the statement/sql/xxx command counters. For example, xxx is
drop_table and select for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statement/sql/', '') AS name
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%'
ORDER BY name;

• CONNECTION_ID

An unsigned integer representing the client connection identifier. This is the same as the value
returned by the CONNECTION_ID() function within the session.

Example: CONNECTION_ID="127"

• CONNECTION_TYPE

The security state of the connection to the server. Permitted values are TCP/IP (TCP/IP connection
established without encryption), SSL/TLS (TCP/IP connection established with encryption), Socket
(Unix socket file connection), Named Pipe (Windows named pipe connection), and Shared
Memory (Windows shared memory connection).

Example: CONNECTION_TYPE="SSL/TLS"

• DB

A string representing a database name.

Example: DB="test"

For connect events, this attribute indicates the default database; the attribute is empty if there is
no default database. For table-access events, the attribute indicates the database to which the
accessed table belongs.

• HOST

A string representing the client host name.

Example: HOST="localhost"

• IP

A string representing the client IP address.

Example: IP="127.0.0.1"

1624

MySQL Enterprise Audit

• MYSQL_VERSION

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable.

Example: MYSQL_VERSION="5.7.21-log"

• OS_LOGIN

A string representing the external user name used during the authentication process, as set by the
plugin used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin
does not set the value, this attribute is empty. The value is the same as that of the external_user
system variable (see Section 8.2.19, “Proxy Users”).

Example: OS_LOGIN="jeffrey"

• OS_VERSION

A string representing the operating system on which the server was built or is running.

Example: OS_VERSION="x86_64-Linux"

• PRIV_USER

A string representing the user that the server authenticated the client as. This is the user name that
the server uses for privilege checking, and it may differ from the USER value.

Example: PRIV_USER="jeffrey"

• PROXY_USER

A string representing the proxy user (see Section 8.2.19, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example: PROXY_USER="developer"

• SERVER_ID

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable.

Example: SERVER_ID="1"

• SQLTEXT

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character),
so the value may be the result of conversion. For example, the original statement might have been
received from the client as an SJIS string.

Example: SQLTEXT="DELETE FROM t1"

• STARTUP_OPTIONS

A string representing the options that were given on the command line or in option files when the
MySQL server was started.

Example: STARTUP_OPTIONS="--port=3306 --log_output=FILE"

1625

MySQL Enterprise Audit

• STATUS

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function. See the description for
STATUS_CODE for information about how it differs from STATUS.

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example: STATUS="1051"

• STATUS_CODE

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS_CODE value differs from the STATUS value: STATUS_CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of
the mysql_errno() C API function. This is 0 for success and nonzero for error, and thus is not
necessarily 1 for error.

Example: STATUS_CODE="0"

• TABLE

A string representing a table name.

Example: TABLE="t3"

• USER

A string representing the user name sent by the client. This may differ from the PRIV_USER value.

• VERSION

An unsigned integer representing the version of the audit log file format.

Example: VERSION="1"

JSON Audit Log File Format

For JSON-format audit logging (audit_log_format=JSON), the log file contents form a JSON array
with each array element representing an audited event as a JSON hash of key-value pairs. Examples of
complete event records appear later in this section. The following is an excerpt of partial events:

[
 {
 "timestamp": "2019-10-03 13:50:01",
 "id": 0,
 "class": "audit",
 "event": "startup",
 ...
 },
 {
 "timestamp": "2019-10-03 15:02:32",
 "id": 0,
 "class": "connection",
 "event": "connect",
 ...
 },
 ...
 {
 "timestamp": "2019-10-03 17:37:26",
 "id": 0,
 "class": "table_access",

1626

https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html

MySQL Enterprise Audit

 "event": "insert",
 ...
 }
 ...
]

The audit log file is written using UTF-8 (up to 4 bytes per character). When the audit log plugin begins
writing a new log file, it writes the opening [array marker. When the plugin closes a log file, it writes
the closing] array marker. The closing marker is not present while the file is open.

Items within audit records have these characteristics:

• Some items appear in every audit record. Others are optional and may appear depending on the
audit record type.

• Order of items within an audit record is not guaranteed.

• Item values are not fixed length. Long values may be truncated as indicated in the item descriptions
given later.

• The " and \ characters are encoded as \" and \\, respectively.

JSON format is the only audit log file format that supports the optional query time and size statistics,
which are available from MySQL 8.0.30. This data is available in the slow query log for qualifying
queries, and in the context of the audit log it similarly helps to detect outliers for activity analysis.

To add the query statistics to the log file, you must set them up as a filter using the
audit_log_filter_set_filter() audit log function as the service element of the JSON
filtering syntax. For instructions to do this, see Adding Query Statistics for Outlier Detection. For the
bytes_sent and bytes_received fields to be populated, the system variable log_slow_extra
must be set to ON.

The following examples show the JSON object formats for different event types (as indicated by the
class and event items), reformatted slightly for readability:

Auditing startup event:

{ "timestamp": "2019-10-03 14:21:56",
 "id": 0,
 "class": "audit",
 "event": "startup",
 "connection_id": 0,
 "startup_data": { "server_id": 1,
 "os_version": "i686-Linux",
 "mysql_version": "5.7.21-log",
 "args": ["/usr/local/mysql/bin/mysqld",
 "--loose-audit-log-format=JSON",
 "--log-error=log.err",
 "--pid-file=mysqld.pid",
 "--port=3306"] } }

When the audit log plugin starts as a result of server startup (as opposed to being enabled at runtime),
connection_id is set to 0, and account and login are not present.

Auditing shutdown event:

{ "timestamp": "2019-10-03 14:28:20",
 "id": 3,
 "class": "audit",
 "event": "shutdown",
 "connection_id": 0,
 "shutdown_data": { "server_id": 1 } }

When the audit log plugin is uninstalled as a result of server shutdown (as opposed to being disabled at
runtime), connection_id is set to 0, and account and login are not present.

Connect or change-user event:

1627

MySQL Enterprise Audit

{ "timestamp": "2019-10-03 14:23:18",
 "id": 1,
 "class": "connection",
 "event": "connect",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
 "connection_data": { "connection_type": "ssl",
 "status": 0,
 "db": "test",
 "connection_attributes": {
 "_pid": "43236",
 ...
 "program_name": "mysqladmin"
 } }
}

Disconnect event:

{ "timestamp": "2019-10-03 14:24:45",
 "id": 3,
 "class": "connection",
 "event": "disconnect",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
 "connection_data": { "connection_type": "ssl" } }

Query event:

{ "timestamp": "2019-10-03 14:23:35",
 "id": 2,
 "class": "general",
 "event": "status",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
 "general_data": { "command": "Query",
 "sql_command": "show_variables",
 "query": "SHOW VARIABLES",
 "status": 0 } }

Query event with optional query statistics for outlier detection:

{ "timestamp": "2022-01-28 13:09:30",
 "id": 0,
 "class": "general",
 "event": "status",
 "connection_id": 46,
 "account": { "user": "user", "host": "localhost" },
 "login": { "user": "user", “os": "", “ip": "127.0.0.1", “proxy": "" },
 "general_data": { "command": "Query",
 "sql_command": "insert",
 "query": "INSERT INTO audit_table VALUES(4)",
 "status": 1146 }
 "query_statistics": { "query_time": 0.116250,
 "bytes_sent": 18384,
 "bytes_received": 78858,
 "rows_sent": 3,
 "rows_examined": 20878 } }

Table access event (read, delete, insert, update):

{ "timestamp": "2019-10-03 14:23:41",
 "id": 0,
 "class": "table_access",
 "event": "insert",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "127.0.0.1", "proxy": "" },
 "table_access_data": { "db": "test",

1628

MySQL Enterprise Audit

 "table": "t1",
 "query": "INSERT INTO t1 (i) VALUES(1),(2),(3)",
 "sql_command": "insert" } }

The items in the following list appear at the top level of JSON-format audit records: Each item value
is either a scalar or a JSON hash. For items that have a hash value, the description lists only the item
names within that hash. For more complete descriptions of second-level hash items, see later in this
section.

• account

The MySQL account associated with the event. The value is a hash containing these items
equivalent to the value of the CURRENT_USER() function within the section: user, host.

Example:

"account": { "user": "root", "host": "localhost" }

• class

A string representing the event class. The class defines the type of event, when taken together with
the event item that specifies the event subclass.

Example:

"class": "connection"

The following table shows the permitted combinations of class and event values.

Table 8.34 Audit Log Class and Event Combinations

Class Value Permitted Event Values

audit startup, shutdown

connection connect, change_user, disconnect

general status

table_access_data read, delete, insert, update

• connection_data

Information about a client connection. The value is a hash containing these items:
connection_type, status, db, and possibly connection_attributes. This item occurs only
for audit records with a class value of connection.

Example:

"connection_data": { "connection_type": "ssl",
 "status": 0,
 "db": "test" }

As of MySQL 8.0.19, events with a class value of connection and event value of connect may
include a connection_attributes item to display the connection attributes passed by the client
at connect time. (For information about these attributes, which are also exposed in Performance
Schema tables, see Section 29.12.9, “Performance Schema Connection Attribute Tables”.)

The connection_attributes value is a hash that represents each attribute by its name and
value.

Example:

"connection_attributes": {
 "_pid": "43236",
 "_os": "macos0.14", 1629

MySQL Enterprise Audit

 "_platform": "x86_64",
 "_client_version": "8.0.19",
 "_client_name": "libmysql",
 "program_name": "mysqladmin"
}

If no connection attributes are present in the event, none are logged and no
connection_attributes item appears. This can occur if the connection attempt is unsuccessful,
the client passes no attributes, or the connection occurs internally such as during server startup or
when initiated by a plugin.

• connection_id

An unsigned integer representing the client connection identifier. This is the same as the value
returned by the CONNECTION_ID() function within the session.

Example:

"connection_id": 5

• event

A string representing the subclass of the event class. The subclass defines the type of event, when
taken together with the class item that specifies the event class. For more information, see the
class item description.

Example:

"event": "connect"

• general_data

Information about an executed statement or command. The value is a hash containing these items:
command, sql_command, query, status. This item occurs only for audit records with a class
value of general.

Example:

"general_data": { "command": "Query",
 "sql_command": "show_variables",
 "query": "SHOW VARIABLES",
 "status": 0 }

• id

An unsigned integer representing an event ID.

Example:

"id": 2

For audit records that have the same timestamp value, their id values distinguish them and form
a sequence. Within the audit log, timestamp/id pairs are unique. These pairs are bookmarks that
identify event locations within the log.

• login

Information indicating how a client connected to the server. The value is a hash containing these
items: user, os, ip, proxy.

Example:

"login": { "user": "root", "os": "", "ip": "::1", "proxy": "" }

• query_statistics

1630

MySQL Enterprise Audit

Optional query statistics for outlier detection. The value is a hash containing these items:
query_time, rows_sent, rows_examined, bytes_received, bytes_sent. For instructions to
set up the query statistics, see Adding Query Statistics for Outlier Detection.

Example:

"query_statistics": { "query_time": 0.116250,
 "bytes_sent": 18384,
 "bytes_received": 78858,
 "rows_sent": 3,
 "rows_examined": 20878 }

• shutdown_data

Information pertaining to audit log plugin termination. The value is a hash containing these items:
server_id This item occurs only for audit records with class and event values of audit and
shutdown, respectively.

Example:

"shutdown_data": { "server_id": 1 }

• startup_data

Information pertaining to audit log plugin initialization. The value is a hash containing these items:
server_id, os_version, mysql_version, args. This item occurs only for audit records with
class and event values of audit and startup, respectively.

Example:

"startup_data": { "server_id": 1,
 "os_version": "i686-Linux",
 "mysql_version": "5.7.21-log",
 "args": ["/usr/local/mysql/bin/mysqld",
 "--loose-audit-log-format=JSON",
 "--log-error=log.err",
 "--pid-file=mysqld.pid",
 "--port=3306"] }

• table_access_data

Information about an access to a table. The value is a hash containing these items: db,
table, query, sql_command, This item occurs only for audit records with a class value of
table_access.

Example:

"table_access_data": { "db": "test",
 "table": "t1",
 "query": "INSERT INTO t1 (i) VALUES(1),(2),(3)",
 "sql_command": "insert" }

• time

This field is similar to that in the timestamp field, but the value is an integer and represents the
UNIX timestamp value indicating the date and time when the audit event was generated.

Example:

"time" : 1618498687

The time field occurs in JSON-format log files only if the audit_log_format_unix_timestamp
system variable is enabled.

• timestamp

1631

MySQL Enterprise Audit

A string representing a UTC value in YYYY-MM-DD hh:mm:ss format indicating the date and time
when the audit event was generated. For example, the event corresponding to execution of an SQL
statement received from a client has a timestamp value occurring after the statement finishes, not
when it was received.

Example:

"timestamp": "2019-10-03 13:50:01"

For audit records that have the same timestamp value, their id values distinguish them and form
a sequence. Within the audit log, timestamp/id pairs are unique. These pairs are bookmarks that
identify event locations within the log.

These items appear within hash values associated with top-level items of JSON-format audit records:

• args

An array of options that were given on the command line or in option files when the MySQL server
was started. The first option is the path to the server executable.

Example:

"args": ["/usr/local/mysql/bin/mysqld",
 "--loose-audit-log-format=JSON",
 "--log-error=log.err",
 "--pid-file=mysqld.pid",
 "--port=3306"]

• bytes_received

The number of bytes received from the client. This item is part of the optional query statistics. For
this field to be populated, the system variable log_slow_extra must be set to ON.

Example:

"bytes_received": 78858

• bytes_sent

The number of bytes sent to the client. This item is part of the optional query statistics. For this field
to be populated, the system variable log_slow_extra must be set to ON.

Example:

"bytes_sent": 18384

• command

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example:

"command": "Query"

• connection_type

The security state of the connection to the server. Permitted values are tcp/ip (TCP/IP connection
established without encryption), ssl (TCP/IP connection established with encryption), socket (Unix
socket file connection), named_pipe (Windows named pipe connection), and shared_memory
(Windows shared memory connection).

Example:

1632

MySQL Enterprise Audit

"connection_type": "tcp/tcp"

• db

A string representing a database name. For connection_data, it is the default database. For
table_access_data, it is the table database.

Example:

"db": "test"

• host

A string representing the client host name.

Example:

"host": "localhost"

• ip

A string representing the client IP address.

Example:

"ip": "::1"

• mysql_version

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable.

Example:

"mysql_version": "5.7.21-log"

• os

A string representing the external user name used during the authentication process, as set by the
plugin used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin
does not set the value, this attribute is empty. The value is the same as that of the external_user
system variable. See Section 8.2.19, “Proxy Users”.

Example:

"os": "jeffrey"

• os_version

A string representing the operating system on which the server was built or is running.

Example:

"os_version": "i686-Linux"

• proxy

A string representing the proxy user (see Section 8.2.19, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example:

"proxy": "developer"

• query

1633

MySQL Enterprise Audit

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character),
so the value may be the result of conversion. For example, the original statement might have been
received from the client as an SJIS string.

Example:

"query": "DELETE FROM t1"

• query_time

The query execution time in microseconds (if the longlong data type is selected) or seconds (if the
double data type is selected). This item is part of the optional query statistics.

Example:

"query_time": 0.116250

• rows_examined

The number of rows accessed during the query. This item is part of the optional query statistics.

Example:

"rows_examined": 20878

• rows_sent

The number of rows sent to the client as a result. This item is part of the optional query statistics.

Example:

"rows_sent": 3

• server_id

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable.

Example:

"server_id": 1

• sql_command

A string that indicates the SQL statement type.

Example:

"sql_command": "insert"

The values correspond to the statement/sql/xxx command counters. For example, xxx is
drop_table and select for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statement/sql/', '') AS name
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%'
ORDER BY name;

• status

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function.

1634

https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html

MySQL Enterprise Audit

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example:

"status": 1051

• table

A string representing a table name.

Example:

"table": "t1"

• user

A string representing a user name. The meaning differs depending on the item within which user
occurs:

• Within account items, user is a string representing the user that the server authenticated the
client as. This is the user name that the server uses for privilege checking.

• Within login items, user is a string representing the user name sent by the client.

Example:

"user": "root"

8.4.5.5 Configuring Audit Logging Characteristics

This section describes how to configure audit logging characteristics, such as the file to which the
audit log plugin writes events, the format of written events, whether to enable log file compression and
encryption, and space management.

• Naming Conventions for Audit Log Files

• Selecting Audit Log File Format

• Enabling the Audit Log Flush Task

• Adding Query Statistics for Outlier Detection

• Compressing Audit Log Files

• Encrypting Audit Log Files

• Manually Uncompressing and Decrypting Audit Log Files

• Audit Log File Encryption Prior to MySQL 8.0.17

• Space Management of Audit Log Files

• Write Strategies for Audit Logging

Note

Encryption capabilities described here apply as of MySQL 8.0.17, with the
exception of the section that compares current encryption capabilities to the
previous more-limited capabilities; see Audit Log File Encryption Prior to MySQL
8.0.17.

1635

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

MySQL Enterprise Audit

For additional information about the functions and system variables that affect audit logging, see Audit
Log Functions, and Audit Log Options and Variables.

The audit log plugin can also control which audited events are written to the audit log file, based on
event content or the account from which events originate. See Section 8.4.5.7, “Audit Log Filtering”.

Naming Conventions for Audit Log Files

To configure the audit log file name, set the audit_log_file system variable at server startup. The
default name is audit.log in the server data directory. For best security, write the audit log to a
directory accessible only to the MySQL server and to users with a legitimate reason to view the log.

The plugin interprets the audit_log_file value as composed of an optional leading directory name,
a base name, and an optional suffix. If compression or encryption are enabled, the effective file name
(the name actually used to create the log file) differs from the configured file name because it has
additional suffixes:

• If compression is enabled, the plugin adds a suffix of .gz.

• If encryption is enabled, the plugin adds a suffix of .pwd_id.enc, where pwd_id indicates which
encryption password to use for log file operations. The audit log plugin stores encryption passwords
in the keyring; see Encrypting Audit Log Files.

The effective audit log file name is the name resulting from the addition of applicable compression and
encryption suffixes to the configured file name. For example, if the configured audit_log_file value
is audit.log, the effective file name is one of the values shown in the following table.

Enabled Features Effective File Name

No compression or encryption audit.log

Compression audit.log.gz

Encryption audit.log.pwd_id.enc

Compression, encryption audit.log.gz.pwd_id.enc

pwd_id indicates the ID of the password used to encrypt or decrypt a file. pwd_id format is
pwd_timestamp-seq, where:

• pwd_timestamp is a UTC value in YYYYMMDDThhmmss format indicating when the password was
created.

• seq is a sequence number. Sequence numbers start at 1 and increase for passwords that have the
same pwd_timestamp value.

Here are some example pwd_id password ID values:

20190403T142359-1
20190403T142400-1
20190403T142400-2

To construct the corresponding keyring IDs for storing passwords in the keyring, the audit log plugin
adds a prefix of audit_log- to the pwd_id values. For the example password IDs just shown, the
corresponding keyring IDs are:

audit_log-20190403T142359-1
audit_log-20190403T142400-1
audit_log-20190403T142400-2

The ID of the password currently used for encryption by the audit log plugin is the one having the
largest pwd_timestamp value. If multiple passwords have that pwd_timestamp value, the current
password ID is the one with the largest sequence number. For example, in the preceding set of

1636

MySQL Enterprise Audit

password IDs, two of them have the largest timestamp, 20190403T142400, so the current password
ID is the one with the largest sequence number (2).

The audit log plugin performs certain actions during initialization and termination based on the effective
audit log file name:

• During initialization, the plugin checks whether a file with the audit log file name already exists
and renames it if so. (In this case, the plugin assumes that the previous server invocation exited
unexpectedly with the audit log plugin running.) The plugin then writes to a new empty audit log file.

• During termination, the plugin renames the audit log file.

• File renaming (whether during plugin initialization or termination) occurs according to the usual rules
for automatic size-based log file rotation; see Manual Audit Log File Rotation (Before MySQL 8.0.31).

Selecting Audit Log File Format

To configure the audit log file format, set the audit_log_format system variable at server startup.
These formats are available:

• NEW: New-style XML format. This is the default.

• OLD: Old-style XML format.

• JSON: JSON format. Writes the audit log as a JSON array. Only this format supports the optional
query time and size statistics, which are available from MySQL 8.0.30.

For details about each format, see Section 8.4.5.4, “Audit Log File Formats”.

Enabling the Audit Log Flush Task

Starting in MySQL 8.0.34, MySQL Enterprise Audit provides the capability of setting a refresh
interval to dispose of the in-memory cache automatically. A flush task configured using the
audit_log_flush_interval_seconds system variable has a value of zero by default, which
means the task is not scheduled to run.

When the task is configured to run (the value is non-zero), MySQL Enterprise Audit attempts to call the
scheduler component at its initialization and configure a regular, recurring flush of its memory cache:

• If the audit log cannot find an implementation of the scheduler registration service, it does not
schedule the flush and continue loading.

• Audit log implements the dynamic_loader_services_loaded_notification service and
listens for new registrations of mysql_scheduler so that audit log can register its scheduled task
into the newly loaded scheduler.

• Audit log only registers itself into the first scheduler implementation loaded.

Similarly, MySQL Enterprise Audit calls the scheduler component at its deinitialization and
unconfigures the recurring flush that it has scheduled. It keeps an active reference to the scheduler
registration service until the scheduled task is unregistered, ensuring that the scheduler component
cannot be unloaded while there are active scheduled jobs. All of the results from executing the
scheduler and its tasks are written to the server error log.

To schedule an audit log flush task:

1. Confirm that the scheduler component is loaded and enabled. The component is enabled (ON) by
default (see component_scheduler.enabled).

SELECT * FROM mysql.components;
+--------------+--------------------+----------------------------+

1637

MySQL Enterprise Audit

| component_id | component_group_id | component_urn |
+--------------+--------------------+----------------------------+
| 1 | 1 | file://component_scheduler |
+--------------+--------------------+----------------------------+

2. Install the audit_log plugin, if it is not installed already (see Section 8.4.5.2, “Installing or
Uninstalling MySQL Enterprise Audit”).

3. Start the server using audit_log_flush_interval_seconds and set the value to a number
greater than 59. The upper limit of the value varies by platform. For example, to configure the flush
task to recur every two minutes:

$> mysqld --audit_log_flush_interval_seconds=120

For more information, see the audit_log_flush_interval_seconds system variable.

Adding Query Statistics for Outlier Detection

In MySQL 8.0.30 and later, you can extend log files in JSON format with optional data fields to show
the query time, the number of bytes sent and received, the number of rows returned to the client, and
the number of rows examined. This data is available in the slow query log for qualifying queries, and in
the context of the audit log it similarly helps to detect outliers for activity analysis. The extended data
fields can be added only when the audit log is in JSON format (audit_log_format=JSON), which is
not the default setting.

The query statistics are delivered to the audit log through component
services that you set up as an audit log filtering function. The services are
named mysql_audit_print_service_longlong_data_source and
mysql_audit_print_service_double_data_source. You can choose either data type for each
output item. For the query time, longlong outputs the value in microseconds, and double outputs the
value in seconds.

You add the query statistics using the audit_log_filter_set_filter() audit log function, as the
service element of the JSON filtering syntax, as follows:

SELECT audit_log_filter_set_filter('QueryStatistics',
 '{ "filter": { "class": { "name": "general", "event": { "name": "status", "print" : '
 '{ "service": { "implementation": "mysql_server", "tag": "query_statistics", "element": ['
 '{ "name": "query_time", "type": "double" }, '
 '{ "name": "bytes_sent", "type": "longlong" }, '
 '{ "name": "bytes_received", "type": "longlong" }, '
 '{ "name": "rows_sent", "type": "longlong" }, '
 '{ "name": "rows_examined", "type": "longlong" }] } } } } } }');

For the bytes_sent and bytes_received fields to be populated, the system variable
log_slow_extra must be set to ON. If the system variable is value is OFF, a null value is written to
the log file for these fields.

If you want to stop collecting the query statistics, use the audit_log_filter_set_filter() audit
log function to remove the filter, for example:

SELECT audit_log_filter_remove_filter('QueryStatistics');

Compressing Audit Log Files

Audit log file compression can be enabled for any logging format.

To configure audit log file compression, set the audit_log_compression system variable at server
startup. Permitted values are NONE (no compression; the default) and GZIP (GNU Zip compression).

If both compression and encryption are enabled, compression occurs before encryption. To recover the
original file manually, first decrypt it, then uncompress it. See Manually Uncompressing and Decrypting
Audit Log Files.

1638

MySQL Enterprise Audit

Encrypting Audit Log Files

Audit log file encryption can be enabled for any logging format. Encryption is based on user-defined
passwords (with the exception of the initial password that the audit log plugin generates). To use this
feature, the MySQL keyring must be enabled because audit logging uses it for password storage. Any
keyring component or plugin can be used; for instructions, see Section 8.4.4, “The MySQL Keyring”.

To configure audit log file encryption, set the audit_log_encryption system variable at server
startup. Permitted values are NONE (no encryption; the default) and AES (AES-256-CBC cipher
encryption).

To set or get an encryption password at runtime, use these audit log functions:

• To set the current encryption password, invoke audit_log_encryption_password_set().
This function stores the new password in the keyring. If encryption is enabled, it also performs a
log file rotation operation that renames the current log file, and begins a new log file encrypted with
the password. File renaming occurs according to the usual rules for automatic size-based log file
rotation; see Manual Audit Log File Rotation (Before MySQL 8.0.31).

If the audit_log_password_history_keep_days system variable is nonzero, invoking
audit_log_encryption_password_set() also causes expiration of old archived audit log
encryption passwords. For information about audit log password history, including password
archiving and expiration, see the description of that variable.

• To get the current encryption password, invoke audit_log_encryption_password_get() with
no argument. To get a password by ID, pass an argument that specifies the keyring ID of the current
password or an archived password.

To determine which audit log keyring IDs exist, query the Performance Schema keyring_keys
table:

mysql> SELECT KEY_ID FROM performance_schema.keyring_keys
 WHERE KEY_ID LIKE 'audit_log%'
 ORDER BY KEY_ID;
+-----------------------------+
| KEY_ID |
+-----------------------------+
| audit_log-20190415T152248-1 |
| audit_log-20190415T153507-1 |
| audit_log-20190416T125122-1 |
| audit_log-20190416T141608-1 |
+-----------------------------+

For additional information about audit log encryption functions, see Audit Log Functions.

When the audit log plugin initializes, if it finds that log file encryption is enabled, it checks whether
the keyring contains an audit log encryption password. If not, the plugin automatically generates a
random initial encryption password and stores it in the keyring. To discover this password, invoke
audit_log_encryption_password_get().

If both compression and encryption are enabled, compression occurs before encryption. To recover the
original file manually, first decrypt it, then uncompress it. See Manually Uncompressing and Decrypting
Audit Log Files.

Manually Uncompressing and Decrypting Audit Log Files

Audit log files can be uncompressed and decrypted using standard tools. This should be done only for
log files that have been closed (archived) and are no longer in use, not for the log file that the audit log
plugin is currently writing. You can recognize archived log files because they have been renamed by
the audit log plugin to include a timestamp in the file name just after the base name.

For this discussion, assume that audit_log_file is set to audit.log. In that case, an archived
audit log file has one of the names shown in the following table.

1639

MySQL Enterprise Audit

Enabled Features Archived File Name

No compression or encryption audit.timestamp.log

Compression audit.timestamp.log.gz

Encryption audit.timestamp.log.pwd_id.enc

Compression, encryption audit.timestamp.log.gz.pwd_id.enc

As discussed in Naming Conventions for Audit Log Files, pwd_id format is pwd_timestamp-seq.
Thus, the names of archived encrypted log files actually contain two timestamps. The first indicates file
rotation time, and the second indicates when the encryption password was created.

Consider the following set of archived encrypted log file names:

audit.20190410T205827.log.20190403T185337-1.enc
audit.20190410T210243.log.20190403T185337-1.enc
audit.20190415T145309.log.20190414T223342-1.enc
audit.20190415T151322.log.20190414T223342-2.enc

Each file name has a unique rotation-time timestamp. By contrast, the password timestamps are not
unique:

• The first two files have the same password ID and sequence number (20190403T185337-1). They
have the same encryption password.

• The second two files have the same password ID (20190414T223342) but different sequence
numbers (1, 2). These files have different encryption passwords.

To uncompress a compressed log file manually, use gunzip, gzip -d, or equivalent command. For
example:

gunzip -c audit.timestamp.log.gz > audit.timestamp.log

To decrypt an encrypted log file manually, use the openssl command. For example:

openssl enc -d -aes-256-cbc -pass pass:password -md sha256
 -in audit.timestamp.log.pwd_id.enc
 -out audit.timestamp.log

To execute that command, you must obtain password, the encryption password. To do
this, use audit_log_encryption_password_get(). For example, if the audit log file
name is audit.20190415T151322.log.20190414T223342-2.enc, the password ID is
20190414T223342-2 and the keyring ID is audit-log-20190414T223342-2. Retrieve the keyring
password like this:

SELECT audit_log_encryption_password_get('audit-log-20190414T223342-2');

If both compression and encryption are enabled for audit logging, compression occurs before
encryption. In this case, the file name has .gz and .pwd_id.enc suffixes added, corresponding to the
order in which those operations occur. To recover the original file manually, perform the operations in
reverse. That is, first decrypt the file, then uncompress it:

openssl enc -d -aes-256-cbc -pass pass:password -md sha256
 -in audit.timestamp.log.gz.pwd_id.enc
 -out audit.timestamp.log.gz
gunzip -c audit.timestamp.log.gz > audit.timestamp.log

Audit Log File Encryption Prior to MySQL 8.0.17

This section covers the differences in audit log file encryption capabilities prior to and as of MySQL
8.0.17, which is when password history was implemented (which includes password archiving and
expiration). It also indicates how the audit log plugin handles upgrades to MySQL 8.0.17 or higher from
versions lower than 8.0.17.

1640

MySQL Enterprise Audit

Feature Prior to MySQL 8.0.17 As of MySQL 8.0.17

Number of passwords Single password only Multiple passwords permitted

Encrypted log file names .enc suffix .pwd_id.enc suffix

Password keyring ID audit_log audit_log-pwd_id

Password history No Yes

Prior to MySQL 8.0.17, there is no password history, so setting a new password makes the old
password inaccessible, rendering MySQL Enterprise Audit unable to read log files encrypted with the
old password. Should you anticipate a need to decrypt those files manually, you must maintain a record
of previous passwords.

If audit log file encryption is enabled when you upgrade to MySQL 8.0.17 or higher from a lower
version, the audit log plugin performs these upgrade actions:

• During plugin initialization, the plugin checks for an encryption password with a keyring
ID of audit_log. If it finds one, the plugin duplicates the password using a keyring ID in
audit_log-pwd_id format and uses it as the current encryption password. (For details about
pwd_id syntax, see Naming Conventions for Audit Log Files.)

• Existing encrypted log files have a suffix of .enc. The plugin does not rename these to have a suffix
of .pwd_id.enc, but can read them as long as the key with the ID of audit_log remains in the
keyring.

• When password cleanup occurs, if the plugin expires any password with a keyring ID in
audit_log-pwd_id format, it also expires the password with a keyring ID of audit_log, if
it exists. (At this point, encrypted log files that have a suffix of .enc rather than .pwd_id.enc
become unreadable by the plugin, so it is assumed that you no longer need them.)

Space Management of Audit Log Files

The audit log file has the potential to grow quite large and consume a great deal of disk space. If you
are collecting the optional query time and size statistics, which are available from MySQL 8.0.30, this
increases the space requirements. The query statistics are only supported with JSON format.

To manage the space used, employ these methods:

• Log file rotation. This involves rotating the current log file by renaming it, then opening a new
current log file using the original name. Rotation can be performed manually, or configured to occur
automatically.

• Pruning of rotated JSON-format log files, if automatic rotation is enabled. Pruning can be performed
based on log file age (as of MySQL 8.0.24), or combined log file size (as of MySQL 8.0.26).

To configure audit log file space management, use the following system variables:

• If audit_log_rotate_on_size is 0 (the default), automatic log file rotation is disabled.

• No rotation occurs unless performed manually.

• To rotate the current file, use one of the following methods:

• Before MySQL 8.0.31, manually rename the file, then enable audit_log_flush to close
it and open a new current log file using the original name. This file rotation method and the
audit_log_flush variable are deprecated in MySQL 8.0.31.

With this file rotation method, pruning of rotated JSON-format log files does not occur;
audit_log_max_size and audit_log_prune_seconds have no effect.

• From MySQL 8.0.31, run SELECT audit_log_rotate(); to rename the file and open a new
audit log file using the original name.

1641

MySQL Enterprise Audit

With this file rotation method, pruning of rotated JSON-format log files occurs if
audit_log_max_size or audit_log_prune_seconds has a value greater than 0.

See Manual Audit Log File Rotation (Before MySQL 8.0.31).

• If audit_log_rotate_on_size is greater than 0, automatic audit log file rotation is enabled:

• Automatic rotation occurs when a write to the current log file causes its size to exceed the
audit_log_rotate_on_size value, as well as under certain other conditions; see Automatic
Audit Log File Rotation. When automatic rotation occurs, the audit log plugin renames the current
log file and opens a new current log file using the original name.

• Pruning of rotated JSON-format log files occurs if audit_log_max_size or
audit_log_prune_seconds has a value greater than 0.

• audit_log_flush has no effect.

Note

For JSON-format log files, rotation also occurs when the value of the
audit_log_format_unix_timestamp system variable is changed at
runtime. However, this does not occur for space-management purposes, but
rather so that, for a given JSON-format log file, all records in the file either do or
do not include the time field.

Note

Rotated (renamed) log files are not removed automatically. For example,
with size-based log file rotation, renamed log files have unique names and
accumulate indefinitely. They do not rotate off the end of the name sequence.
To avoid excessive use of space:

• As of MySQL 8.0.24 (for JSON-format log files): Enable log file pruning as
described in Audit Log File Pruning.

• Otherwise (for non-JSON files, or prior to MySQL 8.0.24 for all log formats):
Remove old files periodically, backing them up first as necessary. If backed-
up log files are encrypted, also back up the corresponding encryption
passwords to a safe place, should you need to decrypt the files later.

The following sections describe log file rotation and pruning in greater detail.

• Manual Audit Log File Rotation (Before MySQL 8.0.31)

• Manual Audit Log File Rotation (From MySQL 8.0.31)

• Automatic Audit Log File Rotation

• Audit Log File Pruning

Manual Audit Log File Rotation (Before MySQL 8.0.31)

Note

From MySQL 8.0.31, the audit_log_flush variable and this method of
audit log file rotation are deprecated; expect support to be removed in a future
version of MySQL.

If audit_log_rotate_on_size is 0 (the default), no log rotation occurs unless performed manually.
In this case, the audit log plugin closes and reopens the log file when the audit_log_flush value
changes from disabled to enabled. Log file renaming must be done externally to the server. Suppose

1642

MySQL Enterprise Audit

that the log file name is audit.log and you want to maintain the three most recent log files, cycling
through the names audit.log.1 through audit.log.3. On Unix, perform rotation manually like this:

1. From the command line, rename the current log files:

mv audit.log.2 audit.log.3
mv audit.log.1 audit.log.2
mv audit.log audit.log.1

This strategy overwrites the current audit.log.3 contents, placing a bound on the number of
archived log files and the space they use.

2. At this point, the plugin is still writing to the current log file, which has been renamed to
audit.log.1. Connect to the server and flush the log file so the plugin closes it and reopens a
new audit.log file:

SET GLOBAL audit_log_flush = ON;

audit_log_flush is special in that its value remains OFF so that you need not disable it explicitly
before enabling it again to perform another flush.

Note

If compression or encryption are enabled, log file names include suffixes that
signify the enabled features, as well as a password ID if encryption is enabled.
If file names include a password ID, be sure to retain the ID in the name of any
files you rename manually so that the password to use for decryption operations
can be determined.

Note

For JSON-format logging, renaming audit log files manually makes them
unavailable to the log-reading functions because the audit log plugin can no
longer determine that they are part of the log file sequence (see Section 8.4.5.6,
“Reading Audit Log Files”). Consider setting audit_log_rotate_on_size
greater than 0 to use size-based rotation instead.

Manual Audit Log File Rotation (From MySQL 8.0.31)

If audit_log_rotate_on_size is 0 (the default), no log rotation occurs unless performed manually.

To rotate the audit log file manually, run SELECT audit_log_rotate(); to rename the current
audit log file and open a new audit log file. Files are renamed according to the conventions described in
Naming Conventions for Audit Log Files.

The AUDIT_ADMIN privilege is required to use the audit_log_rotate() function.

Managing the number of archived log files (the files that have been renamed) and the space they use
is a manual task that involves removing archived audit log files that are no longer needed from your file
system.

The content of audit log files that are renamed using the audit_log_rotate() function can be read
by audit_log_read() function.

Automatic Audit Log File Rotation

If audit_log_rotate_on_size is greater than 0, setting audit_log_flush has no effect. Instead,
whenever a write to the current log file causes its size to exceed the audit_log_rotate_on_size
value, the audit log plugin automatically renames the current log file and opens a new current log file
using the original name.

Automatic size-based rotation also occurs under these conditions:

1643

MySQL Enterprise Audit

• During plugin initialization, if a file with the audit log file name already exists (see Naming
Conventions for Audit Log Files).

• During plugin termination.

• When the audit_log_encryption_password_set() function is called to set the encryption
password, if encryption is enabled. (Rotation does not occur if encryption is disabled.)

The plugin renames the original file by inserting a timestamp just after its base name.
For example, if the file name is audit.log, the plugin renames it to a value such as
audit.20210115T140633.log. The timestamp is a UTC value in YYYYMMDDThhmmss format. For
XML logging, the timestamp indicates rotation time. For JSON logging, the timestamp is that of the last
event written to the file.

If log files are encrypted, the original file name already contains a timestamp indicating
the encryption password creation time (see Naming Conventions for Audit Log Files). In
this case, the file name after rotation contains two timestamps. For example, an encrypted
log file named audit.log.20210110T130749-1.enc is renamed to a value such as
audit.20210115T140633.log.20210110T130749-1.enc.

Audit Log File Pruning

The audit log plugin supports pruning of rotated JSON-format audit log files, if automatic log file rotation
is enabled. To use this capability:

• Set audit_log_format to JSON. (In addition, consider also changing audit_log_file; see
Selecting Audit Log File Format.)

• Set audit_log_rotate_on_size greater than 0 to specify the size in bytes at which automatic
log file rotation occurs.

• By default, no pruning of automatically rotated JSON-format log files occurs. To enable pruning, set
one of these system variables to a value greater than 0:

• Set audit_log_max_size greater than 0 to specify the limit in bytes on the combined size
of rotated log files above which the files become subject to pruning. audit_log_max_size is
available as of MySQL 8.0.26.

• Set audit_log_prune_seconds greater than 0 to specify the number of seconds after which
rotated log files become subject to pruning. audit_log_prune_seconds is available as of
MySQL 8.0.24.

Nonzero values of audit_log_max_size take precedence over nonzero values of
audit_log_prune_seconds. If both are set greater than 0 at plugin initialization, a warning is
written to the server error log. If a client sets both greater than 0 at runtime, a warning is returned to
the client.

Note

Warnings to the error log are written as Notes, which are information
messages. To ensure that such messages appear in the error log and are
not discarded, make sure that error-logging verbosity is sufficient to include
information messages. For example, if you are using priority-based log
filtering, as described in Section 7.4.2.5, “Priority-Based Error Log Filtering
(log_filter_internal)”, set the log_error_verbosity system variable to a
value of 3.

Pruning of JSON-format log files, if enabled, occurs as follows:

• When automatic rotation takes place; for the conditions under which this happens, see Automatic
Audit Log File Rotation.

1644

MySQL Enterprise Audit

• When the global audit_log_max_size or audit_log_prune_seconds system variable is set at
runtime.

For pruning based on combined rotated log file size, if the combined size is greater than the limit
specified by audit_log_max_size, the audit log plugin removes the oldest files until their combined
size does not exceed the limit.

For pruning based on rotated log file age, the pruning point is the current time minus the value of
audit_log_prune_seconds. In rotated JSON-format log files, the timestamp part of each file
name indicates the timestamp of the last event written to the file. The audit log plugin uses file name
timestamps to determine which files contain only events older than the pruning point, and removes
them.

Write Strategies for Audit Logging

The audit log plugin can use any of several strategies for log writes. Regardless of strategy, logging
occurs on a best-effort basis, with no guarantee of consistency.

To specify a write strategy, set the audit_log_strategy system variable at server startup. By
default, the strategy value is ASYNCHRONOUS and the plugin logs asynchronously to a buffer, waiting
if the buffer is full. You can tell the plugin not to wait (PERFORMANCE) or to log synchronously, either
using file system caching (SEMISYNCHRONOUS) or forcing output with a sync() call after each write
request (SYNCHRONOUS).

For asynchronous write strategy, the audit_log_buffer_size system variable is the buffer size
in bytes. Set this variable at server startup to change the buffer size. The plugin uses a single buffer,
which it allocates when it initializes and removes when it terminates. The plugin does not allocate this
buffer for nonasynchronous write strategies.

Asynchronous logging strategy has these characteristics:

• Minimal impact on server performance and scalability.

• Blocking of threads that generate audit events for the shortest possible time; that is, time to allocate
the buffer plus time to copy the event to the buffer.

• Output goes to the buffer. A separate thread handles writes from the buffer to the log file.

With asynchronous logging, the integrity of the log file may be compromised if a problem occurs during
a write to the file or if the plugin does not shut down cleanly (for example, in the event that the server
host exits unexpectedly). To reduce this risk, set audit_log_strategy to use synchronous logging.

A disadvantage of PERFORMANCE strategy is that it drops events when the buffer is full. For a heavily
loaded server, the audit log may have events missing.

8.4.5.6 Reading Audit Log Files

The audit log plugin supports functions that provide an SQL interface for reading JSON-format audit log
files. (This capability does not apply to log files written in other formats.)

When the audit log plugin initializes and is configured for JSON logging, it uses the directory containing
the current audit log file as the location to search for readable audit log files. The plugin determines
the file location, base name, and suffix from the value of the audit_log_file system variable, then
looks for files with names that match the following pattern, where [...] indicates optional file name
parts:

basename[.timestamp].suffix[.gz][[.pwd_id].enc]

If a file name ends with .enc, the file is encrypted and reading its unencrypted contents requires a
decryption password obtained from the keyring. The audit log plugin determines the keyring ID of the
decryption password as follows:

1645

MySQL Enterprise Audit

• If .enc is preceded by pwd_id, the keyring ID is audit_log-pwd_id.

• If .enc is not preceded by pwd_id, the file has an old name from before audit log encryption
password history was implemented. The keyring ID is audit_log.

For more information about encrypted audit log files, see Encrypting Audit Log Files.

The plugin ignores files that have been renamed manually and do not match the pattern, and files that
were encrypted with a password no longer available in the keyring. The plugin opens each remaining
candidate file, verifies that the file actually contains JSON audit events, and sorts the files using the
timestamps from the first event of each file. The result is a sequence of files that are subject to access
using the log-reading functions:

• audit_log_read() reads events from the audit log or closes the reading process.

• audit_log_read_bookmark() returns a bookmark for the most recently written audit log event.
This bookmark is suitable for passing to audit_log_read() to indicate where to begin reading.

audit_log_read() takes an optional JSON string argument, and the result returned from a
successful call to either function is a JSON string.

To use the functions to read the audit log, follow these principles:

• Call audit_log_read() to read events beginning from a given position or the current position, or
to close reading:

• To initialize an audit log read sequence, pass an argument that indicates the position at which to
begin. One way to do so is to pass the bookmark returned by audit_log_read_bookmark():

SELECT audit_log_read(audit_log_read_bookmark());

• To continue reading from the current position in the sequence, call audit_log_read() with no
position specified:

SELECT audit_log_read();

• To explicitly close the read sequence, pass a JSON null argument:

SELECT audit_log_read('null');

It is unnecessary to close reading explicitly. Reading is closed implicitly when the session ends or
a new read sequence is initialized by calling audit_log_read() with an argument that indicates
the position at which to begin.

• A successful call to audit_log_read() to read events returns a JSON string containing an array of
audit events:

• If the final value of the returned array is not a JSON null value, there are more events following
those just read and audit_log_read() can be called again to read more of them.

• If the final value of the returned array is a JSON null value, there are no more events left to be
read in the current read sequence.

Each non-null array element is an event represented as a JSON hash. For example:

[
 {
 "timestamp": "2020-05-18 13:39:33", "id": 0,
 "class": "connection", "event": "connect",
 ...
 },
 {
 "timestamp": "2020-05-18 13:39:33", "id": 1,
 "class": "general", "event": "status",
 ...

1646

MySQL Enterprise Audit

 },
 {
 "timestamp": "2020-05-18 13:39:33", "id": 2,
 "class": "connection", "event": "disconnect",
 ...
 },
 null
]

For more information about the content of JSON-format audit events, see JSON Audit Log File
Format.

• An audit_log_read() call to read events that does not specify a position produces an error under
any of these conditions:

• A read sequence has not yet been initialized by passing a position to audit_log_read().

• There are no more events left to be read in the current read sequence; that is,
audit_log_read() previously returned an array ending with a JSON null value.

• The most recent read sequence has been closed by passing a JSON null value to
audit_log_read().

To read events under those conditions, it is necessary to first initialize a read sequence by calling
audit_log_read() with an argument that specifies a position.

To specify a position to audit_log_read(), include an argument that indicates where to begin
reading. For example, pass a bookmark, which is a JSON hash containing timestamp and id
elements that uniquely identify a particular event. Here is an example bookmark, obtained by calling
the audit_log_read_bookmark() function:

mysql> SELECT audit_log_read_bookmark();
+---+
| audit_log_read_bookmark() |
+---+
| { "timestamp": "2020-05-18 21:03:44", "id": 0 } |
+---+

Passing the current bookmark to audit_log_read() initializes event reading beginning at the
bookmark position:

mysql> SELECT audit_log_read(audit_log_read_bookmark());
+---+
| audit_log_read(audit_log_read_bookmark()) |
+---+
| [{"timestamp":"2020-05-18 22:41:24","id":0,"class":"connection", ... |
+---+

The argument to audit_log_read() is optional. If present, it can be a JSON null value to close the
read sequence, or a JSON hash.

Within a hash argument to audit_log_read(), items are optional and control aspects of the read
operation such as the position at which to begin reading or how many events to read. The following
items are significant (other items are ignored):

• start: The position within the audit log of the first event to read. The position is given as a
timestamp and the read starts from the first event that occurs on or after the timestamp value. The
start item has this format, where value is a literal timestamp value:

"start": { "timestamp": "value" }

The start item is permitted as of MySQL 8.0.22.

• timestamp, id: The position within the audit log of the first event to read. The timestamp
and id items together comprise a bookmark that uniquely identify a particular event. If an

1647

MySQL Enterprise Audit

audit_log_read() argument includes either item, it must include both to completely specify a
position or an error occurs.

• max_array_length: The maximum number of events to read from the log. If this item is omitted,
the default is to read to the end of the log or until the read buffer is full, whichever comes first.

To specify a starting position to audit_log_read(), pass a hash argument that includes either a
start item or a bookmark consisting of timestamp and id items. If a hash argument includes both a
start item and a bookmark, an error occurs.

If a hash argument specifies no starting position, reading continues from the current position.

If a timestamp value includes no time part, a time part of 00:00:00 is assumed.

Example arguments accepted by audit_log_read():

• Read events starting with the first event that occurs on or after the given timestamp:

audit_log_read('{ "start": { "timestamp": "2020-05-24 12:30:00" } }')

• Like the previous example, but read at most 3 events:

audit_log_read('{ "start": { "timestamp": "2020-05-24 12:30:00" }, "max_array_length": 3 }')

• Read events starting with the first event that occurs on or after 2020-05-24 00:00:00 (the
timestamp includes no time part, so 00:00:00 is assumed):

audit_log_read('{ "start": { "timestamp": "2020-05-24" } }')

• Read events starting with the event that has the exact timestamp and event ID:

audit_log_read('{ "timestamp": "2020-05-24 12:30:00", "id": 0 }')

• Like the previous example, but read at most 3 events:

audit_log_read('{ "timestamp": "2020-05-24 12:30:00", "id": 0, "max_array_length": 3 }')

• Read events from the current position in the read sequence:

audit_log_read()

• Read at most 5 events beginning at the current position in the read sequence:

audit_log_read('{ "max_array_length": 5 }')

• Close the current read sequence:

audit_log_read('null')

A JSON string returned from either log-reading function can be manipulated as necessary. Suppose
that a call to obtain a bookmark produces this value:

mysql> SET @mark := audit_log_read_bookmark();
mysql> SELECT @mark;
+---+
| @mark |
+---+
| { "timestamp": "2020-05-18 16:10:28", "id": 2 } |
+---+

Calling audit_log_read() with that argument can return multiple events. To limit
audit_log_read() to reading at most N events, add to the string a max_array_length item with
that value. For example, to read a single event, modify the string as follows:

mysql> SET @mark := JSON_SET(@mark, '$.max_array_length', 1);
mysql> SELECT @mark;

1648

MySQL Enterprise Audit

+--+
| @mark |
+--+
| {"id": 2, "timestamp": "2020-05-18 16:10:28", "max_array_length": 1} |
+--+

The modified string, when passed to audit_log_read(), produces a result containing at most one
event, no matter how many are available.

Prior to MySQL 8.0.19, string return values from audit log functions are binary strings. To use a binary
string with functions that require a nonbinary string (such as functions that manipulate JSON values),
convert it to a nonbinary string. For example, before passing a bookmark to JSON_SET(), convert it to
utf8mb4 as follows:

SET @mark = CONVERT(@mark USING utf8mb4);

That statement can be used even for MySQL 8.0.19 and higher; for those versions, it is essentially a
no-op and is harmless.

If an audit log function is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information about
that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

To set a limit on the number of bytes that audit_log_read() reads, set the
audit_log_read_buffer_size system variable. As of MySQL 8.0.12, this variable has
a default of 32KB and can be set at runtime. Each client should set its session value of
audit_log_read_buffer_size appropriately for its use of audit_log_read().

Each call to audit_log_read() returns as many available events as fit within the buffer size. Events
that do not fit within the buffer size are skipped and generate warnings. Given this behavior, consider
these factors when assessing the proper buffer size for an application:

• There is a tradeoff between number of calls to audit_log_read() and events returned per call:

• With a smaller buffer size, calls return fewer events, so more calls are needed.

• With a larger buffer size, calls return more events, so fewer calls are needed.

• With a smaller buffer size, such as the default size of 32KB, there is a greater chance for events to
exceed the buffer size and thus to be skipped.

Prior to MySQL 8.0.12, audit_log_read_buffer_size has a default of 1MB, affects all clients, and
can be changed only at server startup.

For additional information about audit log-reading functions, see Audit Log Functions.

8.4.5.7 Audit Log Filtering

Note

For audit log filtering to work as described here, the audit log plugin and the
accompanying audit tables and functions must be installed. If the plugin is
installed without the accompanying audit tables and functions needed for
rule-based filtering, the plugin operates in legacy filtering mode, described in
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”. Legacy mode (deprecated
in MySQL 8.0.34) is filtering behavior as it was prior to MySQL 5.7.13; that is,
before the introduction of rule-based filtering.

• Properties of Audit Log Filtering

• Constraints on Audit Log Filtering Functions

• Using Audit Log Filtering Functions

1649

MySQL Enterprise Audit

Properties of Audit Log Filtering

The audit log plugin has the capability of controlling logging of audited events by filtering them:

• Audited events can be filtered using these characteristics:

• User account

• Audit event class

• Audit event subclass

• Audit event fields such as those that indicate operation status or SQL statement executed

• Audit filtering is rule based:

• A filter definition creates a set of auditing rules. Definitions can be configured to include or exclude
events for logging based on the characteristics just described.

• Filter rules have the capability of blocking (aborting) execution of qualifying events, in addition to
existing capabilities for event logging.

• Multiple filters can be defined, and any given filter can be assigned to any number of user
accounts.

• It is possible to define a default filter to use with any user account that has no explicitly assigned
filter.

Audit log filtering is used to implement component services from MySQL 8.0.30. To get the optional
query statistics available from that release, you set them up as a filter using the service component,
which implements the services that write the statistics to the audit log. For instructions to set this filter
up, see Adding Query Statistics for Outlier Detection.

For information about writing filtering rules, see Section 8.4.5.8, “Writing Audit Log Filter Definitions”.

• Audit log filters can be defined and modified using an SQL interface based on function
calls. By default, audit log filter definitions are stored in the mysql system database,
and you can display audit filters by querying the mysql.audit_log_filter table. It is
possible to use a different database for this purpose, in which case you should query the
database_name.audit_log_filter table instead. See Section 8.4.5.2, “Installing or Uninstalling
MySQL Enterprise Audit”, for more information.

• Within a given session, the value of the read-only audit_log_filter_id system variable
indicates whether a filter is assigned to the session.

Note

By default, rule-based audit log filtering logs no auditable events for any users.
To log all auditable events for all users, use the following statements, which
create a simple filter to enable logging and assign it to the default account:

SELECT audit_log_filter_set_filter('log_all', '{ "filter": { "log": true } }');
SELECT audit_log_filter_set_user('%', 'log_all');

The filter assigned to % is used for connections from any account that has no
explicitly assigned filter (which initially is true for all accounts).

As previously mentioned, the SQL interface for audit filtering control is function based. The following list
briefly summarizes these functions:

• audit_log_filter_set_filter(): Define a filter.

• audit_log_filter_remove_filter(): Remove a filter.

1650

MySQL Enterprise Audit

• audit_log_filter_set_user(): Start filtering a user account.

• audit_log_filter_remove_user(): Stop filtering a user account.

• audit_log_filter_flush(): Flush manual changes to the filter tables to affect ongoing filtering.

For usage examples and complete details about the filtering functions, see Using Audit Log Filtering
Functions, and Audit Log Functions.

Constraints on Audit Log Filtering Functions

Audit log filtering functions are subject to these constraints:

• To use any filtering function, the audit_log plugin must be enabled or an error occurs. In addition,
the audit tables must exist or an error occurs. To install the audit_log plugin and its accompanying
functions and tables, see Section 8.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”.

• To use any filtering function, a user must possess the AUDIT_ADMIN SUPER privilege or an error
occurs. To grant one of these privileges to a user account, use this statement:

GRANT privilege ON *.* TO user;

Alternatively, should you prefer to avoid granting the AUDIT_ADMIN or SUPER privilege while still
permitting users to access specific filtering functions, “wrapper” stored programs can be defined.
This technique is described in the context of keyring functions in Using General-Purpose Keyring
Functions; it can be adapted for use with filtering functions.

• The audit_log plugin operates in legacy mode if it is installed but the accompanying audit tables
and functions are not created. The plugin writes these messages to the error log at server startup:

[Warning] Plugin audit_log reported: 'Failed to open the audit log filter tables.'
[Warning] Plugin audit_log reported: 'Audit Log plugin supports a filtering,
which has not been installed yet. Audit Log plugin will run in the legacy
mode, which will be disabled in the next release.'

In legacy mode, which is deprecated as of MySQL 8.0.34, filtering can be done based only on event
account or status. For details, see Section 8.4.5.10, “Legacy Mode Audit Log Filtering”.

• It is theoretically possible for a user with sufficient permissions to mistakenly create an “abort” item
in the audit log filter that prevents themselves and other administrators from accessing the system.
From MySQL 8.0.28, the AUDIT_ABORT_EXEMPT privilege is available to permit a user account’s
queries to always be executed even if an “abort” item would block them. Accounts with this privilege
can therefore be used to regain access to a system following an audit misconfiguration. The query is
still logged in the audit log, but instead of being rejected, it is permitted due to the privilege.

Accounts created in MySQL 8.0.28 or later with the SYSTEM_USER privilege have the
AUDIT_ABORT_EXEMPT privilege assigned automatically when they are created. The
AUDIT_ABORT_EXEMPT privilege is also assigned to existing accounts with the SYSTEM_USER
privilege when you carry out an upgrade procedure with MySQL 8.0.28 or later, if no existing
accounts have that privilege assigned.

Using Audit Log Filtering Functions

Before using the audit log functions, install them according to the instructions provided in
Section 8.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”. The AUDIT_ADMIN or SUPER
privilege is required to use any of these functions.

The audit log filtering functions enable filtering control by providing an interface to create, modify, and
remove filter definitions and assign filters to user accounts.

Filter definitions are JSON values. For information about using JSON data in MySQL, see Section 13.5,
“The JSON Data Type”. This section shows some simple filter definitions. For more information about
filter definitions, see Section 8.4.5.8, “Writing Audit Log Filter Definitions”.

1651

MySQL Enterprise Audit

When a connection arrives, the audit log plugin determines which filter to use for the new session by
searching for the user account name in the current filter assignments:

• If a filter is assigned to the user, the audit log uses that filter.

• Otherwise, if no user-specific filter assignment exists, but there is a filter assigned to the default
account (%), the audit log uses the default filter.

• Otherwise, the audit log selects no audit events from the session for processing.

If a change-user operation occurs during a session (see mysql_change_user()), filter assignment for
the session is updated using the same rules but for the new user.

By default, no accounts have a filter assigned, so no processing of auditable events occurs for any
account.

Suppose that you want to change the default to be to log only connection-related activity (for example,
to see connect, change-user, and disconnect events, but not the SQL statements users execute
while connected). To achieve this, define a filter (shown here named log_conn_events) that
enables logging only of events in the connection class, and assign that filter to the default account,
represented by the % account name:

SET @f = '{ "filter": { "class": { "name": "connection" } } }';
SELECT audit_log_filter_set_filter('log_conn_events', @f);
SELECT audit_log_filter_set_user('%', 'log_conn_events');

Now the audit log uses this default account filter for connections from any account that has no explicitly
defined filter.

To assign a filter explicitly to a particular user account or accounts, define the filter, then assign it to the
relevant accounts:

SELECT audit_log_filter_set_filter('log_all', '{ "filter": { "log": true } }');
SELECT audit_log_filter_set_user('user1@localhost', 'log_all');
SELECT audit_log_filter_set_user('user2@localhost', 'log_all');

Now full logging is enabled for user1@localhost and user2@localhost. Connections from other
accounts continue to be filtered using the default account filter.

To disassociate a user account from its current filter, either unassign the filter or assign a different filter:

• To unassign the filter from the user account:

SELECT audit_log_filter_remove_user('user1@localhost');

Filtering of current sessions for the account remains unaffected. Subsequent connections from the
account are filtered using the default account filter if there is one, and are not logged otherwise.

• To assign a different filter to the user account:

SELECT audit_log_filter_set_filter('log_nothing', '{ "filter": { "log": false } }');
SELECT audit_log_filter_set_user('user1@localhost', 'log_nothing');

Filtering of current sessions for the account remains unaffected. Subsequent connections from the
account are filtered using the new filter. For the filter shown here, that means no logging for new
connections from user1@localhost.

For audit log filtering, user name and host name comparisons are case-sensitive. This differs from
comparisons for privilege checking, for which host name comparisons are not case-sensitive.

To remove a filter, do this:

SELECT audit_log_filter_remove_filter('log_nothing');

1652

https://dev.mysql.com/doc/c-api/8.0/en/mysql-change-user.html

MySQL Enterprise Audit

Removing a filter also unassigns it from any users to whom it is assigned, including any current
sessions for those users.

The filtering functions just described affect audit filtering immediately and update the audit log tables
in the mysql system database that store filters and user accounts (see Audit Log Tables). It is also
possible to modify the audit log tables directly using statements such as INSERT, UPDATE, and
DELETE, but such changes do not affect filtering immediately. To flush your changes and make them
operational, call audit_log_filter_flush():

SELECT audit_log_filter_flush();

Warning

audit_log_filter_flush() should be used only after modifying the audit
tables directly, to force reloading all filters. Otherwise, this function should
be avoided. It is, in effect, a simplified version of unloading and reloading the
audit_log plugin with UNINSTALL PLUGIN plus INSTALL PLUGIN.

audit_log_filter_flush() affects all current sessions and detaches them
from their previous filters. Current sessions are no longer logged unless they
disconnect and reconnect, or execute a change-user operation.

To determine whether a filter is assigned to the current session, check the session value of the read-
only audit_log_filter_id system variable. If the value is 0, no filter is assigned. A nonzero value
indicates the internally maintained ID of the assigned filter:

mysql> SELECT @@audit_log_filter_id;
+-----------------------+
| @@audit_log_filter_id |
+-----------------------+
| 2 |
+-----------------------+

8.4.5.8 Writing Audit Log Filter Definitions

Filter definitions are JSON values. For information about using JSON data in MySQL, see Section 13.5,
“The JSON Data Type”.

Filter definitions have this form, where actions indicates how filtering takes place:

{ "filter": actions }

The following discussion describes permitted constructs in filter definitions.

• Logging All Events

• Logging Specific Event Classes

• Logging Specific Event Subclasses

• Inclusive and Exclusive Logging

• Testing Event Field Values

• Blocking Execution of Specific Events

• Logical Operators

• Referencing Predefined Variables

• Referencing Predefined Functions

• Replacement of Event Field Values

• Replacing a User Filter

1653

MySQL Enterprise Audit

Logging All Events

To explicitly enable or disable logging of all events, use a log item in the filter:

{
 "filter": { "log": true }
}

The log value can be either true or false.

The preceding filter enables logging of all events. It is equivalent to:

{
 "filter": { }
}

Logging behavior depends on the log value and whether class or event items are specified:

• With log specified, its given value is used.

• Without log specified, logging is true if no class or event item is specified, and false otherwise
(in which case, class or event can include their own log item).

Logging Specific Event Classes

To log events of a specific class, use a class item in the filter, with its name field denoting the name of
the class to log:

{
 "filter": {
 "class": { "name": "connection" }
 }
}

The name value can be connection, general, or table_access to log connection, general, or
table-access events, respectively.

The preceding filter enables logging of events in the connection class. It is equivalent to the following
filter with log items made explicit:

{
 "filter": {
 "log": false,
 "class": { "log": true,
 "name": "connection" }
 }
}

To enable logging of multiple classes, define the class value as a JSON array element that names the
classes:

{
 "filter": {
 "class": [
 { "name": "connection" },
 { "name": "general" },
 { "name": "table_access" }
]
 }
}

Note

When multiple instances of a given item appear at the same level within a filter
definition, the item values can be combined into a single instance of that item
within an array value. The preceding definition can be written like this:

1654

MySQL Enterprise Audit

{
 "filter": {
 "class": [
 { "name": ["connection", "general", "table_access"] }
]
 }
}

Logging Specific Event Subclasses

To select specific event subclasses, use an event item containing a name item that names the
subclasses. The default action for events selected by an event item is to log them. For example, this
filter enables logging for the named event subclasses:

{
 "filter": {
 "class": [
 {
 "name": "connection",
 "event": [
 { "name": "connect" },
 { "name": "disconnect" }
]
 },
 { "name": "general" },
 {
 "name": "table_access",
 "event": [
 { "name": "insert" },
 { "name": "delete" },
 { "name": "update" }
]
 }
]
 }
}

The event item can also contain explicit log items to indicate whether to log qualifying events. This
event item selects multiple events and explicitly indicates logging behavior for them:

"event": [
 { "name": "read", "log": false },
 { "name": "insert", "log": true },
 { "name": "delete", "log": true },
 { "name": "update", "log": true }
]

The event item can also indicate whether to block qualifying events, if it contains an abort item. For
details, see Blocking Execution of Specific Events.

Table 8.35, “Event Class and Subclass Combinations” describes the permitted subclass values for
each event class.

Table 8.35 Event Class and Subclass Combinations

Event Class Event Subclass Description

connection connect Connection initiation (successful
or unsuccessful)

connection change_user User re-authentication with
different user/password during
session

connection disconnect Connection termination

general status General operation information

1655

MySQL Enterprise Audit

Event Class Event Subclass Description

message internal Internally generated message

message user Message generated by
audit_api_message_emit_udf()

table_access read Table read statements, such as
SELECT or INSERT INTO ...
SELECT

table_access delete Table delete statements, such as
DELETE or TRUNCATE TABLE

table_access insert Table insert statements, such as
INSERT or REPLACE

table_access update Table update statements, such
as UPDATE

Table 8.36, “Log and Abort Characteristics Per Event Class and Subclass Combination” describes for
each event subclass whether it can be logged or aborted.

Table 8.36 Log and Abort Characteristics Per Event Class and Subclass Combination

Event Class Event Subclass Can be Logged Can be Aborted

connection connect Yes No

connection change_user Yes No

connection disconnect Yes No

general status Yes No

message internal Yes Yes

message user Yes Yes

table_access read Yes Yes

table_access delete Yes Yes

table_access insert Yes Yes

table_access update Yes Yes

Inclusive and Exclusive Logging

A filter can be defined in inclusive or exclusive mode:

• Inclusive mode logs only explicitly specified items.

• Exclusive mode logs everything but explicitly specified items.

To perform inclusive logging, disable logging globally and enable logging for specific classes. This filter
logs connect and disconnect events in the connection class, and events in the general class:

{
 "filter": {
 "log": false,
 "class": [
 {
 "name": "connection",
 "event": [
 { "name": "connect", "log": true },
 { "name": "disconnect", "log": true }
]
 },
 { "name": "general", "log": true }
]
 }

1656

MySQL Enterprise Audit

}

To perform exclusive logging, enable logging globally and disable logging for specific classes. This filter
logs everything except events in the general class:

{
 "filter": {
 "log": true,
 "class":
 { "name": "general", "log": false }
 }
}

This filter logs change_user events in the connection class, message events, and table_access
events, by virtue of not logging everything else:

{
 "filter": {
 "log": true,
 "class": [
 {
 "name": "connection",
 "event": [
 { "name": "connect", "log": false },
 { "name": "disconnect", "log": false }
]
 },
 { "name": "general", "log": false }
]
 }
}

Testing Event Field Values

To enable logging based on specific event field values, specify a field item within the log item that
indicates the field name and its expected value:

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "field": { "name": "general_command.str", "value": "Query" }
 }
 }
 }
 }
}

Each event contains event class-specific fields that can be accessed from within a filter to perform
custom filtering.

An event in the connection class indicates when a connection-related activity occurs during a
session, such as a user connecting to or disconnecting from the server. Table 8.37, “Connection Event
Fields” indicates the permitted fields for connection events.

Table 8.37 Connection Event Fields

Field Name Field Type Description

status integer Event status:

0: OK

Otherwise: Failed

1657

MySQL Enterprise Audit

Field Name Field Type Description

connection_id unsigned integer Connection ID

user.str string User name specified during
authentication

user.length unsigned integer User name length

priv_user.str string Authenticated user name
(account user name)

priv_user.length unsigned integer Authenticated user name length

external_user.str string External user name (provided by
third-party authentication plugin)

external_user.length unsigned integer External user name length

proxy_user.str string Proxy user name

proxy_user.length unsigned integer Proxy user name length

host.str string Connected user host

host.length unsigned integer Connected user host length

ip.str string Connected user IP address

ip.length unsigned integer Connected user IP address
length

database.str string Database name specified at
connect time

database.length unsigned integer Database name length

connection_type integer Connection type:

0 or "::undefined":
Undefined

1 or "::tcp/ip": TCP/IP

2 or "::socket": Socket

3 or "::named_pipe": Named
pipe

4 or "::ssl": TCP/IP with
encryption

5 or "::shared_memory":
Shared memory

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

An event in the general class indicates the status code of an operation and its details. Table 8.38,
“General Event Fields” indicates the permitted fields for general events.

Table 8.38 General Event Fields

Field Name Field Type Description

general_error_code integer Event status:

0: OK

Otherwise: Failed

1658

MySQL Enterprise Audit

Field Name Field Type Description

general_thread_id unsigned integer Connection/thread ID

general_user.str string User name specified during
authentication

general_user.length unsigned integer User name length

general_command.str string Command name

general_command.length unsigned integer Command name length

general_query.str string SQL statement text

general_query.length unsigned integer SQL statement text length

general_host.str string Host name

general_host.length unsigned integer Host name length

general_sql_command.str string SQL command type name

general_sql_command.lengthunsigned integer SQL command type name length

general_external_user.str string External user name (provided by
third-party authentication plugin)

general_external_user.lengthunsigned integer External user name length

general_ip.str string Connected user IP address

general_ip.length unsigned integer Connection user IP address
length

general_command.str indicates a command name: Query, Execute, Quit, or Change user.

A general event with the general_command.str field set to Query or Execute contains
general_sql_command.str set to a value that specifies the type of SQL command: alter_db,
alter_db_upgrade, admin_commands, and so forth. The available general_sql_command.str
values can be seen as the last components of the Performance Schema instruments displayed by this
statement:

mysql> SELECT NAME FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'statement/sql/%' ORDER BY NAME;
+---------------------------------------+
| NAME |
+---------------------------------------+
| statement/sql/alter_db |
| statement/sql/alter_db_upgrade |
| statement/sql/alter_event |
| statement/sql/alter_function |
| statement/sql/alter_instance |
| statement/sql/alter_procedure |
| statement/sql/alter_server |
...

An event in the table_access class provides information about a specific type of access to a table.
Table 8.39, “Table-Access Event Fields” indicates the permitted fields for table_access events.

Table 8.39 Table-Access Event Fields

Field Name Field Type Description

connection_id unsigned integer Event connection ID

sql_command_id integer SQL command ID

query.str string SQL statement text

query.length unsigned integer SQL statement text length

table_database.str string Database name associated with
event

1659

MySQL Enterprise Audit

Field Name Field Type Description

table_database.length unsigned integer Database name length

table_name.str string Table name associated with
event

table_name.length unsigned integer Table name length

The following list shows which statements produce which table-access events:

• read event:

• SELECT

• INSERT ... SELECT (for tables referenced in SELECT clause)

• REPLACE ... SELECT (for tables referenced in SELECT clause)

• UPDATE ... WHERE (for tables referenced in WHERE clause)

• HANDLER ... READ

• delete event:

• DELETE

• TRUNCATE TABLE

• insert event:

• INSERT

• INSERT ... SELECT (for table referenced in INSERT clause)

• REPLACE

• REPLACE ... SELECT (for table referenced in REPLACE clause

• LOAD DATA

• LOAD XML

• update event:

• UPDATE

• UPDATE ... WHERE (for tables referenced in UPDATE clause)

Blocking Execution of Specific Events

event items can include an abort item that indicates whether to prevent qualifying events from
executing. abort enables rules to be written that block execution of specific SQL statements.

Important

It is theoretically possible for a user with sufficient permissions to mistakenly
create an abort item in the audit log filter that prevents themselves and
other administrators from accessing the system. From MySQL 8.0.28, the
AUDIT_ABORT_EXEMPT privilege is available to permit a user account’s queries
to always be executed even if an abort item would block them. Accounts with
this privilege can therefore be used to regain access to a system following an
audit misconfiguration. The query is still logged in the audit log, but instead of
being rejected, it is permitted due to the privilege.

1660

MySQL Enterprise Audit

Accounts created in MySQL 8.0.28 or later with the SYSTEM_USER privilege
have the AUDIT_ABORT_EXEMPT privilege assigned automatically when they
are created. The AUDIT_ABORT_EXEMPT privilege is also assigned to existing
accounts with the SYSTEM_USER privilege when you carry out an upgrade
procedure with MySQL 8.0.28 or later, if no existing accounts have that privilege
assigned.

The abort item must appear within an event item. For example:

"event": {
 "name": qualifying event subclass names
 "abort": condition
}

For event subclasses selected by the name item, the abort action is true or false, depending on
condition evaluation. If the condition evaluates to true, the event is blocked. Otherwise, the event
continues executing.

The condition specification can be as simple as true or false, or it can be more complex such
that evaluation depends on event characteristics.

This filter blocks INSERT, UPDATE, and DELETE statements:

{
 "filter": {
 "class": {
 "name": "table_access",
 "event": {
 "name": ["insert", "update", "delete"],
 "abort": true
 }
 }
 }
}

This more complex filter blocks the same statements, but only for a specific table
(finances.bank_account):

{
 "filter": {
 "class": {
 "name": "table_access",
 "event": {
 "name": ["insert", "update", "delete"],
 "abort": {
 "and": [
 { "field": { "name": "table_database.str", "value": "finances" } },
 { "field": { "name": "table_name.str", "value": "bank_account" } }
]
 }
 }
 }
 }
}

Statements matched and blocked by the filter return an error to the client:

ERROR 1045 (28000): Statement was aborted by an audit log filter

Not all events can be blocked (see Table 8.36, “Log and Abort Characteristics Per Event Class and
Subclass Combination”). For an event that cannot be blocked, the audit log writes a warning to the
error log rather than blocking it.

For attempts to define a filter in which the abort item appears elsewhere than in an event item, an
error occurs.

1661

MySQL Enterprise Audit

Logical Operators

Logical operators (and, or, not) permit construction of complex conditions, enabling more advanced
filtering configurations to be written. The following log item logs only general events with
general_command fields having a specific value and length:

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "or": [
 {
 "and": [
 { "field": { "name": "general_command.str", "value": "Query" } },
 { "field": { "name": "general_command.length", "value": 5 } }
]
 },
 {
 "and": [
 { "field": { "name": "general_command.str", "value": "Execute" } },
 { "field": { "name": "general_command.length", "value": 7 } }
]
 }
]
 }
 }
 }
 }
}

Referencing Predefined Variables

To refer to a predefined variable in a log condition, use a variable item, which takes name and
value items and tests equality of the named variable against a given value:

"variable": {
 "name": "variable_name",
 "value": comparison_value
}

This is true if variable_name has the value comparison_value, false otherwise.

Example:

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "variable": {
 "name": "audit_log_connection_policy_value",
 "value": "::none"
 }
 }
 }
 }
 }
}

Each predefined variable corresponds to a system variable. By writing a filter that tests a
predefined variable, you can modify filter operation by setting the corresponding system variable,
without having to redefine the filter. For example, by writing a filter that tests the value of the
audit_log_connection_policy_value predefined variable, you can modify filter operation by
changing the value of the audit_log_connection_policy system variable.

1662

MySQL Enterprise Audit

The audit_log_xxx_policy system variables are used for the deprecated legacy mode audit log
(see Section 8.4.5.10, “Legacy Mode Audit Log Filtering”). With rule-based audit log filtering, those
variables remain visible (for example, using SHOW VARIABLES), but changes to them have no effect
unless you write filters containing constructs that refer to them.

The following list describes the permitted predefined variables for variable items:

• audit_log_connection_policy_value

This variable corresponds to the value of the audit_log_connection_policy system variable.
The value is an unsigned integer. Table 8.40, “audit_log_connection_policy_value Values” shows the
permitted values and the corresponding audit_log_connection_policy values.

Table 8.40 audit_log_connection_policy_value Values

Value Corresponding audit_log_connection_policy
Value

0 or "::none" NONE

1 or "::errors" ERRORS

2 or "::all" ALL

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

• audit_log_policy_value

This variable corresponds to the value of the audit_log_policy system variable. The value is an
unsigned integer. Table 8.41, “audit_log_policy_value Values” shows the permitted values and the
corresponding audit_log_policy values.

Table 8.41 audit_log_policy_value Values

Value Corresponding audit_log_policy Value

0 or "::none" NONE

1 or "::logins" LOGINS

2 or "::all" ALL

3 or "::queries" QUERIES

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

• audit_log_statement_policy_value

This variable corresponds to the value of the audit_log_statement_policy system variable.
The value is an unsigned integer. Table 8.42, “audit_log_statement_policy_value Values” shows the
permitted values and the corresponding audit_log_statement_policy values.

Table 8.42 audit_log_statement_policy_value Values

Value Corresponding audit_log_statement_policy
Value

0 or "::none" NONE

1 or "::errors" ERRORS

2 or "::all" ALL

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

1663

MySQL Enterprise Audit

Referencing Predefined Functions

To refer to a predefined function in a log condition, use a function item, which takes name and
args items to specify the function name and its arguments, respectively:

"function": {
 "name": "function_name",
 "args": arguments
}

The name item should specify the function name only, without parentheses or the argument list.

The args item must satisfy these conditions:

• If the function takes no arguments, no args item should be given.

• If the function does take arguments, an args item is needed, and the arguments must be given in
the order listed in the function description. Arguments can refer to predefined variables, event fields,
or string or numeric constants.

If the number of arguments is incorrect or the arguments are not of the correct data types required by
the function an error occurs.

Example:

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "function": {
 "name": "find_in_include_list",
 "args": [{ "string": [{ "field": "user.str" },
 { "string": "@"},
 { "field": "host.str" }] }]
 }
 }
 }
 }
 }
}

The preceding filter determines whether to log general class status events depending on whether
the current user is found in the audit_log_include_accounts system variable. That user is
constructed using fields in the event.

The following list describes the permitted predefined functions for function items:

• audit_log_exclude_accounts_is_null()

Checks whether the audit_log_exclude_accounts system variable is NULL. This function can
be helpful when defining filters that correspond to the legacy audit log implementation.

Arguments:

None.

• audit_log_include_accounts_is_null()

Checks whether the audit_log_include_accounts system variable is NULL. This function can
be helpful when defining filters that correspond to the legacy audit log implementation.

Arguments:

1664

MySQL Enterprise Audit

None.

• debug_sleep(millisec)

Sleeps for the given number of milliseconds. This function is used during performance measurement.

debug_sleep() is available for debug builds only.

Arguments:

• millisec: An unsigned integer that specifies the number of milliseconds to sleep.

• find_in_exclude_list(account)

Checks whether an account string exists in the audit log exclude list (the value of the
audit_log_exclude_accounts system variable).

Arguments:

• account: A string that specifies the user account name.

• find_in_include_list(account)

Checks whether an account string exists in the audit log include list (the value of the
audit_log_include_accounts system variable).

Arguments:

• account: A string that specifies the user account name.

• query_digest([str])

This function has differing behavior depending on whether an argument is given:

• With no argument, query_digest returns the statement digest value corresponding to the
statement literal text in the current event.

• With an argument, query_digest returns a Boolean indicating whether the argument is equal to
the current statement digest.

Arguments:

• str: This argument is optional. If given, it specifies a statement digest to be compared against the
digest for the statement in the current event.

Examples:

This function item includes no argument, so query_digest returns the current statement digest
as a string:

"function": {
 "name": "query_digest"
}

This function item includes an argument, so query_digest returns a Boolean indicating whether
the argument equals the current statement digest:

"function": {
 "name": "query_digest",
 "args": "SELECT ?"
}

This function was added in MySQL 8.0.26.

1665

MySQL Enterprise Audit

• string_find(text, substr)

Checks whether the substr value is contained in the text value. This search is case-sensitive.

Arguments:

• text: The text string to search.

• substr: The substring to search for in text.

Replacement of Event Field Values

As of MySQL 8.0.26, audit filter definitions support replacement of certain audit event fields, so that
logged events contain the replacement value rather than the original value. This capability enables
logged audit records to include statement digests rather than literal statements, which can be useful for
MySQL deployments for which statements may expose sensitive values.

Field replacement in audit events works like this:

• Field replacements are specified in audit filter definitions, so audit log filtering must be enabled as
described in Section 8.4.5.7, “Audit Log Filtering”.

• Not all fields can be replaced. Table 8.43, “Event Fields Subject to Replacement” shows which fields
are replaceable in which event classes.

Table 8.43 Event Fields Subject to Replacement

Event Class Field Name

general general_query.str

table_access query.str

• Replacement is conditional. Each replacement specification in a filter definition includes a condition,
enabling a replaceable field to be changed, or left unchanged, depending on the condition result.

• If replacement occurs, the replacement specification indicates the replacement value using a function
that is permitted for that purpose.

As Table 8.43, “Event Fields Subject to Replacement” shows, currently the only replaceable
fields are those that contain statement text (which occurs in events of the general and
table_access classes). In addition, the only function permitted for specifying the replacement value
is query_digest. This means that the only permitted replacement operation is to replace statement
literal text by its corresponding digest.

Because field replacement occurs at an early auditing stage (during filtering), the choice of whether to
write statement literal text or digest values applies regardless of log format written later (that is, whether
the audit log plugin produces XML or JSON output).

Field replacement can take place at differing levels of event granularity:

• To perform field replacement for all events in a class, filter events at the class level.

• To perform replacement on a more fine-grained basis, include additional event-selection items. For
example, you can perform field replacement only for specific subclasses of a given event class, or
only in events for which fields have certain characteristics.

Within a filter definition, specify field replacement by including a print item, which has this syntax:

"print": {
 "field": {
 "name": "field_name",
 "print": condition,

1666

MySQL Enterprise Audit

 "replace": replacement_value
 }
}

Within the print item, its field item takes these three items to indicate how whether and how
replacement occurs:

• name: The field for which replacement (potentially) occurs. field_name must be one of those
shown in Table 8.43, “Event Fields Subject to Replacement”.

• print: The condition that determines whether to retain the original field value or replace it:

• If condition evaluates to true, the field remains unchanged.

• If condition evaluates to false, replacement occurs, using the value of the replace item.

To unconditionally replace a field, specify the condition like this:

"print": false

• replace: The replacement value to use when the print condition evaluates to false. Specify
replacement_value using a function item.

For example, this filter definition applies to all events in the general class, replacing the statement
literal text with its digest:

{
 "filter": {
 "class": {
 "name": "general",
 "print": {
 "field": {
 "name": "general_query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
 }
 }
 }
}

The preceding filter uses this print item to unconditionally replace the statement literal text contained
in general_query.str by its digest value:

"print": {
 "field": {
 "name": "general_query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
}

print items can be written different ways to implement different replacement strategies. The replace
item just shown specifies the replacement text using this function construct to return a string
representing the current statement digest:

"function": {
 "name": "query_digest"
}

1667

MySQL Enterprise Audit

The query_digest function can also be used in another way, as a comparator that returns a
Boolean, which enables its use in the print condition. To do this, provide an argument that specifies a
comparison statement digest:

"function": {
 "name": "query_digest",
 "args": "digest"
}

In this case, query_digest returns true or false depending on whether the current statement
digest is the same as the comparison digest. Using query_digest this way enables filter definitions
to detect statements that match particular digests. The condition in the following construct is true only
for statements that have a digest equal to SELECT ?, thus effecting replacement only for statements
that do not match the digest:

"print": {
 "field": {
 "name": "general_query.str",
 "print": {
 "function": {
 "name": "query_digest",
 "args": "SELECT ?"
 }
 },
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
}

To perform replacement only for statements that do match the digest, use not to invert the condition:

"print": {
 "field": {
 "name": "general_query.str",
 "print": {
 "not": {
 "function": {
 "name": "query_digest",
 "args": "SELECT ?"
 }
 }
 },
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
}

Suppose that you want the audit log to contain only statement digests and not literal statements. To
achieve this, you must perform replacement on all events that contain statement text; that is, events in
the general and table_access classes. An earlier filter definition showed how to unconditionally
replace statement text for general events. To do the same for table_access events, use a filter
that is similar but changes the class from general to table_access and the field name from
general_query.str to query.str:

{
 "filter": {
 "class": {
 "name": "table_access",
 "print": {
 "field": {
 "name": "query.str",
 "print": false,
 "replace": {

1668

MySQL Enterprise Audit

 "function": {
 "name": "query_digest"
 }
 }
 }
 }
 }
 }
}

Combining the general and table_access filters results in a single filter that performs replacement
for all statement text-containing events:

{
 "filter": {
 "class": [
 {
 "name": "general",
 "print": {
 "field": {
 "name": "general_query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
 }
 },
 {
 "name": "table_access",
 "print": {
 "field": {
 "name": "query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
 }
 }
]
 }
}

To perform replacement on only some events within a class, add items to the filter that indicate more
specifically when replacement occurs. The following filter applies to events in the table_access
class, but performs replacement only for insert and update events (leaving read and delete
events unchanged):

{
 "filter": {
 "class": {
 "name": "table_access",
 "event": {
 "name": [
 "insert",
 "update"
],
 "print": {
 "field": {
 "name": "query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }

1669

MySQL Enterprise Audit

 }
 }
 }
 }
 }
}

This filter performs replacement for general class events corresponding to the listed account-
management statements (the effect being to hide credential and data values in the statements):

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "print": {
 "field": {
 "name": "general_query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
 },
 "log": {
 "or": [
 {
 "field": {
 "name": "general_sql_command.str",
 "value": "alter_user"
 }
 },
 {
 "field": {
 "name": "general_sql_command.str",
 "value": "alter_user_default_role"
 }
 },
 {
 "field": {
 "name": "general_sql_command.str",
 "value": "create_role"
 }
 },
 {
 "field": {
 "name": "general_sql_command.str",
 "value": "create_user"
 }
 }
]
 }
 }
 }
 }
}

For information about the possible general_sql_command.str values, see Testing Event Field
Values.

Replacing a User Filter

In some cases, the filter definition can be changed dynamically. To do this, define a filter
configuration within an existing filter. For example:

{
 "filter": {
 "id": "main",

1670

MySQL Enterprise Audit

 "class": {
 "name": "table_access",
 "event": {
 "name": ["update", "delete"],
 "log": false,
 "filter": {
 "class": {
 "name": "general",
 "event" : { "name": "status",
 "filter": { "ref": "main" } }
 },
 "activate": {
 "or": [
 { "field": { "name": "table_name.str", "value": "temp_1" } },
 { "field": { "name": "table_name.str", "value": "temp_2" } }
]
 }
 }
 }
 }
 }
}

A new filter is activated when the activate item within a subfilter evaluates to true. Using
activate in a top-level filter is not permitted.

A new filter can be replaced with the original one by using a ref item inside the subfilter to refer to the
original filter id.

The filter shown operates like this:

• The main filter waits for table_access events, either update or delete.

• If the update or delete table_access event occurs on the temp_1 or temp_2 table, the filter is
replaced with the internal one (without an id, since there is no need to refer to it explicitly).

• If the end of the command is signalled (general / status event), an entry is written to the audit log
file and the filter is replaced with the main filter.

The filter is useful to log statements that update or delete anything from the temp_1 or temp_2 tables,
such as this one:

UPDATE temp_1, temp_3 SET temp_1.a=21, temp_3.a=23;

The statement generates multiple table_access events, but the audit log file contains only general
/ status entries.

Note

Any id values used in the definition are evaluated with respect
only to that definition. They have nothing to do with the value of the
audit_log_filter_id system variable.

8.4.5.9 Disabling Audit Logging

The audit_log_disable variable, introduced in MySQL 8.0.28, permits disabling audit logging for
all connecting and connected sessions. The audit_log_disable variable can be set in a MySQL
Server option file, in a command-line startup string, or at runtime using a SET statement; for example:

SET GLOBAL audit_log_disable = true;

Setting audit_log_disable to true disables the audit log plugin. The plugin is re-enabled when
audit_log_disable is set back to false, which is the default setting.

Starting the audit log plugin with audit_log_disable = true generates a warning
(ER_WARN_AUDIT_LOG_DISABLED) with the following message: Audit Log is disabled.

1671

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warn_audit_log_disabled

MySQL Enterprise Audit

Enable it with audit_log_disable = false. Setting audit_log_disable to false also
generates warning. When audit_log_disable is set to true, audit log function calls and variable
changes generate a session warning.

Setting the runtime value of audit_log_disable requires the AUDIT_ADMIN privilege, in addition to
the SYSTEM_VARIABLES_ADMIN privilege (or the deprecated SUPER privilege) normally required to set
a global system variable runtime value.

8.4.5.10 Legacy Mode Audit Log Filtering

Note

This section describes legacy audit log filtering, which applies if the audit_log
plugin is installed without the accompanying audit tables and functions needed
for rule-based filtering.

Legacy Mode Audit Log Filtering is deprecated as of MySQL 8.0.34.

The audit log plugin can filter audited events. This enables you to control whether audited events are
written to the audit log file based on the account from which events originate or event status. Status
filtering occurs separately for connection events and statement events.

• Legacy Event Filtering by Account

• Legacy Event Filtering by Status

Legacy Event Filtering by Account

To filter audited events based on the originating account, set one (not both) of the following system
variables at server startup or runtime. These deprecated variables apply only for legacy audit log
filtering.

• audit_log_include_accounts: The accounts to include in audit logging. If this variable is set,
only these accounts are audited.

• audit_log_exclude_accounts: The accounts to exclude from audit logging. If this variable is
set, all but these accounts are audited.

The value for either variable can be NULL or a string containing one or more comma-separated account
names, each in user_name@host_name format. By default, both variables are NULL, in which case,
no account filtering is done and auditing occurs for all accounts.

Modifications to audit_log_include_accounts or audit_log_exclude_accounts affect only
connections created subsequent to the modification, not existing connections.

Example: To enable audit logging only for the user1 and user2 local host accounts, set the
audit_log_include_accounts system variable like this:

SET GLOBAL audit_log_include_accounts = 'user1@localhost,user2@localhost';

Only one of audit_log_include_accounts or audit_log_exclude_accounts can be
non-NULL at a time:

• If you set audit_log_include_accounts, the server sets audit_log_exclude_accounts to
NULL.

• If you attempt to set audit_log_exclude_accounts, an error occurs unless
audit_log_include_accounts is NULL. In this case, you must first clear
audit_log_include_accounts by setting it to NULL.

-- This sets audit_log_exclude_accounts to NULL
SET GLOBAL audit_log_include_accounts = value;

-- This fails because audit_log_include_accounts is not NULL

1672

MySQL Enterprise Audit

SET GLOBAL audit_log_exclude_accounts = value;

-- To set audit_log_exclude_accounts, first set
-- audit_log_include_accounts to NULL
SET GLOBAL audit_log_include_accounts = NULL;
SET GLOBAL audit_log_exclude_accounts = value;

If you inspect the value of either variable, be aware that SHOW VARIABLES displays NULL as an empty
string. To display NULL as NULL, use SELECT instead:

mysql> SHOW VARIABLES LIKE 'audit_log_include_accounts';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
| audit_log_include_accounts | |
+----------------------------+-------+
mysql> SELECT @@audit_log_include_accounts;
+------------------------------+
| @@audit_log_include_accounts |
+------------------------------+
| NULL |
+------------------------------+

If a user name or host name requires quoting because it contains a comma, space, or other special
character, quote it using single quotes. If the variable value itself is quoted with single quotes, double
each inner single quote or escape it with a backslash. The following statements each enable audit
logging for the local root account and are equivalent, even though the quoting styles differ:

SET GLOBAL audit_log_include_accounts = 'root@localhost';
SET GLOBAL audit_log_include_accounts = '''root''@''localhost''';
SET GLOBAL audit_log_include_accounts = '\'root\'@\'localhost\'';
SET GLOBAL audit_log_include_accounts = "'root'@'localhost'";

The last statement does not work if the ANSI_QUOTES SQL mode is enabled because in that mode
double quotes signify identifier quoting, not string quoting.

Legacy Event Filtering by Status

To filter audited events based on status, set the following system variables at server startup or runtime.
These deprecated variables apply only for legacy audit log filtering. For JSON audit log filtering,
different status variables apply; see Audit Log Options and Variables.

• audit_log_connection_policy: Logging policy for connection events

• audit_log_statement_policy: Logging policy for statement events

Each variable takes a value of ALL (log all associated events; this is the default), ERRORS (log only
failed events), or NONE (do not log events). For example, to log all statement events but only failed
connection events, use these settings:

SET GLOBAL audit_log_statement_policy = ALL;
SET GLOBAL audit_log_connection_policy = ERRORS;

Another policy system variable, audit_log_policy, is available but does not afford as much control
as audit_log_connection_policy and audit_log_statement_policy. It can be set only at
server startup.

Note

The audit_log_policy legacy-mode system variable is deprecated as of
MySQL 8.0.34.

At runtime, it is a read-only variable. It takes a value of ALL (log all events; this is the default), LOGINS
(log connection events), QUERIES (log statement events), or NONE (do not log events). For any of
those values, the audit log plugin logs all selected events without distinction as to success or failure.
Use of audit_log_policy at startup works as follows:

1673

MySQL Enterprise Audit

• If you do not set audit_log_policy or set it to its default of ALL, any explicit settings for
audit_log_connection_policy or audit_log_statement_policy apply as specified. If not
specified, they default to ALL.

• If you set audit_log_policy to a non-ALL value, that value takes precedence over and is used to
set audit_log_connection_policy and audit_log_statement_policy, as indicated in the
following table. If you also set either of those variables to a value other than their default of ALL, the
server writes a message to the error log to indicate that their values are being overridden.

Startup audit_log_policy
Value

Resulting
audit_log_connection_policy
Value

Resulting
audit_log_statement_policy
Value

LOGINS ALL NONE

QUERIES NONE ALL

NONE NONE NONE

8.4.5.11 Audit Log Reference

The following sections provide a reference to MySQL Enterprise Audit elements:

• Audit Log Tables

• Audit Log Functions

• Audit Log Option and Variable Reference

• Audit Log Options and Variables

• Audit Log Status Variables

To install the audit log tables and functions, use the instructions provided in Section 8.4.5.2, “Installing
or Uninstalling MySQL Enterprise Audit”. Unless those objects are installed, the audit_log plugin
operates in legacy mode (deprecated in MySQL 8.0.34). See Section 8.4.5.10, “Legacy Mode Audit
Log Filtering”.

Audit Log Tables

MySQL Enterprise Audit uses tables in the mysql system database for persistent storage of filter and
user account data. The tables can be accessed only by users who have privileges for that database. To
use a different database, set the audit_log_database system variable at server startup. The tables
use the InnoDB storage engine.

If these tables are missing, the audit_log plugin operates in (deprecated) legacy mode. See
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”.

The audit_log_filter table stores filter definitions. The table has these columns:

• NAME

The filter name.

• FILTER

The filter definition associated with the filter name. Definitions are stored as JSON values.

The audit_log_user table stores user account information. The table has these columns:

• USER

The user name part of an account. For an account user1@localhost, the USER part is user1.

1674

MySQL Enterprise Audit

• HOST

The host name part of an account. For an account user1@localhost, the HOST part is
localhost.

• FILTERNAME

The name of the filter assigned to the account. The filter name associates the account with a filter
defined in the audit_log_filter table.

Audit Log Functions

This section describes, for each audit log function, its purpose, calling sequence, and return value.
For information about the conditions under which these functions can be invoked, see Section 8.4.5.7,
“Audit Log Filtering”.

Each audit log function returns a string that indicates whether the operation succeeded. OK indicates
success. ERROR: message indicates failure.

As of MySQL 8.0.19, audit log functions convert string arguments to utf8mb4 and string return values
are utf8mb4 strings. Prior to MySQL 8.0.19, audit log functions treat string arguments as binary
strings (which means they do not distinguish lettercase), and string return values are binary strings.

If an audit log function is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information about
that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

These audit log functions are available:

• audit_log_encryption_password_get([keyring_id])

This function fetches an audit log encryption password from the MySQL keyring, which must be
enabled or an error occurs. Any keyring component or plugin can be used; for instructions, see
Section 8.4.4, “The MySQL Keyring”.

With no argument, the function retrieves the current encryption password as a binary string. An
argument may be given to specify which audit log encryption password to retrieve. The argument
must be the keyring ID of the current password or an archived password.

For additional information about audit log encryption, see Encrypting Audit Log Files.

Arguments:

keyring_id: As of MySQL 8.0.17, this optional argument indicates the keyring ID of the password
to retrieve. The maximum permitted length is 766 bytes. If omitted, the function retrieves the current
password.

Prior to MySQL 8.0.17, no argument is permitted. The function always retrieves the current
password.

Return value:

The password string for success (up to 766 bytes), or NULL and an error for failure.

Example:

Retrieve the current password:

mysql> SELECT audit_log_encryption_password_get();
+-------------------------------------+
| audit_log_encryption_password_get() |
+-------------------------------------+

1675

MySQL Enterprise Audit

| secret |
+-------------------------------------+

To retrieve a password by ID, you can determine which audit log keyring IDs exist by querying the
Performance Schema keyring_keys table:

mysql> SELECT KEY_ID FROM performance_schema.keyring_keys
 WHERE KEY_ID LIKE 'audit_log%'
 ORDER BY KEY_ID;
+-----------------------------+
| KEY_ID |
+-----------------------------+
| audit_log-20190415T152248-1 |
| audit_log-20190415T153507-1 |
| audit_log-20190416T125122-1 |
| audit_log-20190416T141608-1 |
+-----------------------------+
mysql> SELECT audit_log_encryption_password_get('audit_log-20190416T125122-1');
+--+
| audit_log_encryption_password_get('audit_log-20190416T125122-1') |
+--+
| segreto |
+--+

• audit_log_encryption_password_set(password)

Sets the current audit log encryption password to the argument and stores the password in the
MySQL keyring. As of MySQL 8.0.19, the password is stored as a utf8mb4 string. Prior to MySQL
8.0.19, the password is stored in binary form.

If encryption is enabled, this function performs a log file rotation operation that renames the current
log file, and begins a new log file encrypted with the password. The keyring must be enabled or an
error occurs. Any keyring component or plugin can be used; for instructions, see Section 8.4.4, “The
MySQL Keyring”.

For additional information about audit log encryption, see Encrypting Audit Log Files.

Arguments:

password: The password string. The maximum permitted length is 766 bytes.

Return value:

1 for success, 0 for failure.

Example:

mysql> SELECT audit_log_encryption_password_set(password);
+---+
| audit_log_encryption_password_set(password) |
+---+
| 1 |
+---+

• audit_log_filter_flush()

Calling any of the other filtering functions affects operational audit log filtering immediately and
updates the audit log tables. If instead you modify the contents of those tables directly using
statements such as INSERT, UPDATE, and DELETE, the changes do not affect filtering immediately.
To flush your changes and make them operational, call audit_log_filter_flush().

Warning

audit_log_filter_flush() should be used only after modifying the
audit tables directly, to force reloading all filters. Otherwise, this function
should be avoided. It is, in effect, a simplified version of unloading and

1676

MySQL Enterprise Audit

reloading the audit_log plugin with UNINSTALL PLUGIN plus INSTALL
PLUGIN.

audit_log_filter_flush() affects all current sessions and detaches
them from their previous filters. Current sessions are no longer logged unless
they disconnect and reconnect, or execute a change-user operation.

If this function fails, an error message is returned and the audit log is disabled until the next
successful call to audit_log_filter_flush().

Arguments:

None.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SELECT audit_log_filter_flush();
+--------------------------+
| audit_log_filter_flush() |
+--------------------------+
| OK |
+--------------------------+

• audit_log_filter_remove_filter(filter_name)

Given a filter name, removes the filter from the current set of filters. It is not an error for the filter not
to exist.

If a removed filter is assigned to any user accounts, those users stop being filtered (they are
removed from the audit_log_user table). Termination of filtering includes any current sessions for
those users: They are detached from the filter and no longer logged.

Arguments:

• filter_name: A string that specifies the filter name.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SELECT audit_log_filter_remove_filter('SomeFilter');
+--+
| audit_log_filter_remove_filter('SomeFilter') |
+--+
| OK |
+--+

• audit_log_filter_remove_user(user_name)

Given a user account name, cause the user to be no longer assigned to a filter. It is not an error if
the user has no filter assigned. Filtering of current sessions for the user remains unaffected. New
connections for the user are filtered using the default account filter if there is one, and are not logged
otherwise.

If the name is %, the function removes the default account filter that is used for any user account that
has no explicitly assigned filter.

1677

MySQL Enterprise Audit

Arguments:

• user_name: The user account name as a string in user_name@host_name format, or % to
represent the default account.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SELECT audit_log_filter_remove_user('user1@localhost');
+---+
| audit_log_filter_remove_user('user1@localhost') |
+---+
| OK |
+---+

• audit_log_filter_set_filter(filter_name, definition)

Given a filter name and definition, adds the filter to the current set of filters. If the filter already exists
and is used by any current sessions, those sessions are detached from the filter and are no longer
logged. This occurs because the new filter definition has a new filter ID that differs from its previous
ID.

Arguments:

• filter_name: A string that specifies the filter name.

• definition: A JSON value that specifies the filter definition.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SET @f = '{ "filter": { "log": false } }';
mysql> SELECT audit_log_filter_set_filter('SomeFilter', @f);
+---+
| audit_log_filter_set_filter('SomeFilter', @f) |
+---+
| OK |
+---+

1678

MySQL Enterprise Audit

• audit_log_filter_set_user(user_name, filter_name)

Given a user account name and a filter name, assigns the filter to the user. A user can be assigned
only one filter, so if the user was already assigned a filter, the assignment is replaced. Filtering of
current sessions for the user remains unaffected. New connections are filtered using the new filter.

As a special case, the name % represents the default account. The filter is used for connections from
any user account that has no explicitly assigned filter.

Arguments:

• user_name: The user account name as a string in user_name@host_name format, or % to
represent the default account.

• filter_name: A string that specifies the filter name.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SELECT audit_log_filter_set_user('user1@localhost', 'SomeFilter');
+--+
| audit_log_filter_set_user('user1@localhost', 'SomeFilter') |
+--+
| OK |
+--+

• audit_log_read([arg])

Reads the audit log and returns a JSON string result. If the audit log format is not JSON, an error
occurs.

With no argument or a JSON hash argument, audit_log_read() reads events from the audit log
and returns a JSON string containing an array of audit events. Items in the hash argument influence
how reading occurs, as described later. Each element in the returned array is an event represented
as a JSON hash, with the exception that the last element may be a JSON null value to indicate no
following events are available to read.

With an argument consisting of a JSON null value, audit_log_read() closes the current read
sequence.

For additional details about the audit log-reading process, see Section 8.4.5.6, “Reading Audit Log
Files”.

Arguments:

To obtain a bookmark for the most recently written event, call audit_log_read_bookmark().

arg: The argument is optional. If omitted, the function reads events from the current position. If
present, the argument can be a JSON null value to close the read sequence, or a JSON hash.
Within a hash argument, items are optional and control aspects of the read operation such as the

1679

MySQL Enterprise Audit

position at which to begin reading or how many events to read. The following items are significant
(other items are ignored):

• start: The position within the audit log of the first event to read. The position is given as a
timestamp and the read starts from the first event that occurs on or after the timestamp value. The
start item has this format, where value is a literal timestamp value:

"start": { "timestamp": "value" }

The start item is permitted as of MySQL 8.0.22.

• timestamp, id: The position within the audit log of the first event to read. The timestamp
and id items together comprise a bookmark that uniquely identify a particular event. If an
audit_log_read() argument includes either item, it must include both to completely specify a
position or an error occurs.

• max_array_length: The maximum number of events to read from the log. If this item is omitted,
the default is to read to the end of the log or until the read buffer is full, whichever comes first.

To specify a starting position to audit_log_read(), pass a hash argument that includes either a
start item or a bookmark consisting of timestamp and id items. If a hash argument includes both
a start item and a bookmark, an error occurs.

If a hash argument specifies no starting position, reading continues from the current position.

If a timestamp value includes no time part, a time part of 00:00:00 is assumed.

Return value:

If the call succeeds, the return value is a JSON string containing an array of audit events, or a JSON
null value if that was passed as the argument to close the read sequence. If the call fails, the return
value is NULL and an error occurs.

Example:

mysql> SELECT audit_log_read(audit_log_read_bookmark());
+---+
| audit_log_read(audit_log_read_bookmark()) |
+---+
| [{"timestamp":"2020-05-18 22:41:24","id":0,"class":"connection", ... |
+---+
mysql> SELECT audit_log_read('null');
+------------------------+
| audit_log_read('null') |
+------------------------+
| null |
+------------------------+

Notes:

Prior to MySQL 8.0.19, string return values are binary JSON strings. For information about converting
such values to nonbinary strings, see Section 8.4.5.6, “Reading Audit Log Files”.

1680

MySQL Enterprise Audit

• audit_log_read_bookmark()

Returns a JSON string representing a bookmark for the most recently written audit log event. If the
audit log format is not JSON, an error occurs.

The bookmark is a JSON hash with timestamp and id items that uniquely identify the position of an
event within the audit log. It is suitable for passing to audit_log_read() to indicate to that function
the position at which to begin reading.

For additional details about the audit log-reading process, see Section 8.4.5.6, “Reading Audit Log
Files”.

Arguments:

None.

Return value:

A JSON string containing a bookmark for success, or NULL and an error for failure.

Example:

mysql> SELECT audit_log_read_bookmark();
+---+
| audit_log_read_bookmark() |
+---+
| { "timestamp": "2019-10-03 21:03:44", "id": 0 } |
+---+

Notes:

Prior to MySQL 8.0.19, string return values are binary JSON strings. For information about converting
such values to nonbinary strings, see Section 8.4.5.6, “Reading Audit Log Files”.

• audit_log_rotate()

Arguments:

None.

Return value:

The renamed file name.

Example:

mysql> SELECT audit_log_rotate();

Using audit_log_rotate() requires the AUDIT_ADMIN privilege.

Audit Log Option and Variable Reference

Table 8.44 Audit Log Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

audit-log Yes Yes

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_compressionYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

Audit_log_current_size Yes Global No

1681

MySQL Enterprise Audit

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

audit_log_databaseYes Yes Yes Global No

audit_log_disableYes Yes Yes Global Yes

audit_log_encryptionYes Yes Yes Global No

Audit_log_event_max_drop_size Yes Global No

Audit_log_events Yes Global No

Audit_log_events_filtered Yes Global No

Audit_log_events_lost Yes Global No

Audit_log_events_written Yes Global No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_filter_id Yes Both No

audit_log_flush Yes Global Yes

audit_log_flush_interval_secondsYes Yes Global No

audit_log_formatYes Yes Yes Global No

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_max_sizeYes Yes Yes Global Yes

audit_log_password_history_keep_daysYes Yes Yes Global Yes

audit_log_policyYes Yes Yes Global No

audit_log_prune_secondsYes Yes Yes Global Yes

audit_log_read_buffer_sizeYes Yes Yes Varies Varies

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategyYes Yes Yes Global No

Audit_log_total_size Yes Global No

Audit_log_write_waits Yes Global No

Audit Log Options and Variables

This section describes the command options and system variables that configure operation of MySQL
Enterprise Audit. If values specified at startup time are incorrect, the audit_log plugin may fail
to initialize properly and the server does not load it. In this case, the server may also produce error
messages for other audit log settings because it does not recognize them.

To configure activation of the audit log plugin, use this option:

• --audit-log[=value]

Command-Line Format --audit-log[=value]

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

FORCE_PLUS_PERMANENT

1682

MySQL Enterprise Audit

This option controls how the server loads the audit_log plugin at startup. It is available only if the
plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load or
--plugin-load-add. See Section 8.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”.

The option value should be one of those available for plugin-loading options, as
described in Section 7.6.1, “Installing and Uninstalling Plugins”. For example, --audit-
log=FORCE_PLUS_PERMANENT tells the server to load the plugin and prevent it from being removed
while the server is running.

If the audit log plugin is enabled, it exposes several system variables that permit control over logging:

mysql> SHOW VARIABLES LIKE 'audit_log%';
+--------------------------------------+--------------+
| Variable_name | Value |
+--------------------------------------+--------------+
audit_log_buffer_size	1048576
audit_log_compression	NONE
audit_log_connection_policy	ALL
audit_log_current_session	OFF
audit_log_database	mysql
audit_log_disable	OFF
audit_log_encryption	NONE
audit_log_exclude_accounts	
audit_log_file	audit.log
audit_log_filter_id	0
audit_log_flush	OFF
audit_log_flush_interval_seconds	0
audit_log_format	NEW
audit_log_format_unix_timestamp	OFF
audit_log_include_accounts	
audit_log_max_size	0
audit_log_password_history_keep_days	0
audit_log_policy	ALL
audit_log_prune_seconds	0
audit_log_read_buffer_size	32768
audit_log_rotate_on_size	0
audit_log_statement_policy	ALL
audit_log_strategy	ASYNCHRONOUS
+--------------------------------------+--------------+

You can set any of these variables at server startup, and some of them at runtime. Those that are
available only for legacy mode audit log filtering are so noted.

• audit_log_buffer_size

Command-Line Format --audit-log-buffer-size=#

System Variable audit_log_buffer_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 1048576

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Block Size 4096

When the audit log plugin writes events to the log asynchronously, it uses a buffer to store event
contents prior to writing them. This variable controls the size of that buffer, in bytes. The server

1683

MySQL Enterprise Audit

adjusts the value to a multiple of 4096. The plugin uses a single buffer, which it allocates when
it initializes and removes when it terminates. The plugin allocates this buffer only if logging is
asynchronous.

• audit_log_compression

Command-Line Format --audit-log-compression=value

System Variable audit_log_compression

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value NONE

Valid Values NONE

GZIP

The type of compression for the audit log file. Permitted values are NONE (no compression; the
default) and GZIP (GNU Zip compression). For more information, see Compressing Audit Log Files.

• audit_log_connection_policy

Command-Line Format --audit-log-connection-policy=value

Deprecated 8.0.34

System Variable audit_log_connection_policy

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value ALL

Valid Values ALL

ERRORS

NONE

Note

This deprecated variable applies only to legacy mode audit log filtering (see
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes connection events to its log file. The following
table shows the permitted values.

Value Description

ALL Log all connection events

ERRORS Log only failed connection events

1684

MySQL Enterprise Audit

Value Description

NONE Do not log connection events

Note

At server startup, any explicit value given for
audit_log_connection_policy may be overridden if
audit_log_policy is also specified, as described in Section 8.4.5.5,
“Configuring Audit Logging Characteristics”.

• audit_log_current_session

System Variable audit_log_current_session

Scope Global, Session

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value depends on filtering policy

Whether audit logging is enabled for the current session. The session value of this variable is read
only. It is set when the session begins based on the values of the audit_log_include_accounts
and audit_log_exclude_accounts system variables. The audit log plugin uses the session
value to determine whether to audit events for the session. (There is a global value, but the plugin
does not use it.)

• audit_log_database

Command-Line Format --audit-log-database=value

Introduced 8.0.33

System Variable audit_log_database

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value mysql

Specifies which database the audit_log plugin uses to find its tables. This variable is read only.
For more information, see Section 8.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”).

• audit_log_disable

Command-Line Format --audit-log-disable[={OFF|ON}]

Introduced 8.0.28

System Variable audit_log_disable

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

1685

MySQL Enterprise Audit

Default Value OFF

Permits disabling audit logging for all connecting and connected sessions. In addition to the
SYSTEM_VARIABLES_ADMIN privilege, disabling audit logging requires the AUDIT_ADMIN privilege.
See Section 8.4.5.9, “Disabling Audit Logging”.

• audit_log_encryption

Command-Line Format --audit-log-encryption=value

System Variable audit_log_encryption

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value NONE

Valid Values NONE

AES

The type of encryption for the audit log file. Permitted values are NONE (no encryption; the default)
and AES (AES-256-CBC cipher encryption). For more information, see Encrypting Audit Log Files.

• audit_log_exclude_accounts

Command-Line Format --audit-log-exclude-accounts=value

Deprecated 8.0.34

System Variable audit_log_exclude_accounts

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

Note

This deprecated variable applies only to legacy mode audit log filtering (see
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”).

The accounts for which events should not be logged. The value should be NULL or a string
containing a list of one or more comma-separated account names. For more information, see
Section 8.4.5.7, “Audit Log Filtering”.

Modifications to audit_log_exclude_accounts affect only connections created subsequent to
the modification, not existing connections.

• audit_log_file

Command-Line Format --audit-log-file=file_name

System Variable audit_log_file

Scope Global

Dynamic No

SET_VAR Hint Applies No1686

MySQL Enterprise Audit

Type File name

Default Value audit.log

The base name and suffix of the file to which the audit log plugin writes events. The default value is
audit.log, regardless of logging format. To have the name suffix correspond to the format, set the
name explicitly, choosing a different suffix (for example, audit.xml for XML format, audit.json
for JSON format).

If the value of audit_log_file is a relative path name, the plugin interprets it relative to the data
directory. If the value is a full path name, the plugin uses the value as is. A full path name may
be useful if it is desirable to locate audit files on a separate file system or directory. For security
reasons, write the audit log file to a directory accessible only to the MySQL server and to users with
a legitimate reason to view the log.

For details about how the audit log plugin interprets the audit_log_file value and the rules for
file renaming that occurs at plugin initialization and termination, see Naming Conventions for Audit
Log Files.

The audit log plugin uses the directory containing the audit log file (determined from the
audit_log_file value) as the location to search for readable audit log files. From these log files
and the current file, the plugin constructs a list of the ones that are subject to use with the audit log
bookmarking and reading functions. See Section 8.4.5.6, “Reading Audit Log Files”.

• audit_log_filter_id

System Variable audit_log_filter_id

Scope Global, Session

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 4294967295

The session value of this variable indicates the internally maintained ID of the audit filter for the
current session. A value of 0 means that the session has no filter assigned.

• audit_log_flush

System Variable audit_log_flush

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Note

The audit_log_flush variable is deprecated as of MySQL 8.0.31; expect
support for it to be removed in a future version of MySQL. It is superseded by
the audit_log_rotate() function.

If audit_log_rotate_on_size is 0, automatic audit log file rotation is disabled and rotation
occurs only when performed manually. In that case, enabling audit_log_flush by setting it to 1 or1687

MySQL Enterprise Audit

ON causes the audit log plugin to close and reopen its log file to flush it. (The variable value remains
OFF so that you need not disable it explicitly before enabling it again to perform another flush.) For
more information, see Section 8.4.5.5, “Configuring Audit Logging Characteristics”.

• audit_log_flush_interval_seconds

Command-Line Format --audit-log-flush-interval-
seconds[=value]

Introduced 8.0.34

System Variable audit_log_flush_interval_seconds

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Unsigned Long

Default Value 0

Maximum Value (Windows) 4294967295

Maximum Value (Other) 18446744073709551615

Unit seconds

This system variable depends on the scheduler component, which must be installed and enabled
(see Section 7.5.5, “Scheduler Component”). To check the status of the component:

SHOW VARIABLES LIKE 'component_scheduler%';
+-----------------------------+-------+
| Variable_name | Value |
+-----------------------------+-------|
| component_scheduler.enabled | On |
+-----------------------------+-------+

When audit_log_flush_interval_seconds has a value of zero (the default), no automatic
refresh of the privileges occurs, even if the scheduler component is enabled (ON).

Values of 1 and 59 are not permitted; instead, these values adjusts to 60 automatically and the
server emits a warning. Values greater than 60 define the number of seconds the scheduler
component waits from startup, or from the beginning of the previous execution, until it attempts to
schedule another execution.

To persist this global system variable to the mysqld-auto.cnf file without setting the global
variable runtime value, precede the variable name by the PERSIST_ONLY keyword or the
@@PERSIST_ONLY. qualifier.

• audit_log_format

Command-Line Format --audit-log-format=value

System Variable audit_log_format

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value NEW

Valid Values OLD

NEW

1688

MySQL Enterprise Audit

JSON

The audit log file format. Permitted values are OLD (old-style XML), NEW (new-style XML; the default),
and JSON. For details about each format, see Section 8.4.5.4, “Audit Log File Formats”.

• audit_log_format_unix_timestamp

Command-Line Format --audit-log-format-unix-
timestamp[={OFF|ON}]

Introduced 8.0.26

System Variable audit_log_format_unix_timestamp

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This variable applies only for JSON-format audit log output. When that is true, enabling this variable
causes each log file record to include a time field. The field value is an integer that represents the
UNIX timestamp value indicating the date and time when the audit event was generated.

Changing the value of this variable at runtime causes log file rotation so that, for a given JSON-
format log file, all records in the file either do or do not include the time field.

Setting the runtime value of audit_log_format_unix_timestamp requires the AUDIT_ADMIN
privilege, in addition to the SYSTEM_VARIABLES_ADMIN privilege (or the deprecated SUPER
privilege) normally required to set a global system variable runtime value.

• audit_log_include_accounts

Command-Line Format --audit-log-include-accounts=value

Deprecated 8.0.34

System Variable audit_log_include_accounts

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

Note

This deprecated variable applies only to legacy mode audit log filtering (see
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”).

The accounts for which events should be logged. The value should be NULL or a string containing
a list of one or more comma-separated account names. For more information, see Section 8.4.5.7,
“Audit Log Filtering”.

Modifications to audit_log_include_accounts affect only connections created subsequent to
the modification, not existing connections.

1689

MySQL Enterprise Audit

• audit_log_max_size

Command-Line Format --audit-log-max-size=#

Introduced 8.0.26

System Variable audit_log_max_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (Windows) 4294967295

Maximum Value (Other) 18446744073709551615

Unit bytes

Block Size 4096

audit_log_max_size pertains to audit log file pruning, which is supported for JSON-format log
files only. It controls pruning based on combined log file size:

• A value of 0 (the default) disables size-based pruning. No size limit is enforced.

• A value greater than 0 enables size-based pruning. The value is the combined size above which
audit log files become subject to pruning.

If you set audit_log_max_size to a value that is not a multiple of 4096, it is truncated to the
nearest multiple. In particular, setting it to a value less than 4096 sets it to 0 and no size-based
pruning occurs.

If both audit_log_max_size and audit_log_rotate_on_size are greater than 0,
audit_log_max_size should be more than 7 times the value of audit_log_rotate_on_size.
Otherwise, a warning is written to the server error log because in this case the “granularity” of size-
based pruning may be insufficient to prevent removal of all or most rotated log files each time it
occurs.

Note

Setting audit_log_max_size by itself is not sufficient to cause
log file pruning to occur because the pruning algorithm uses
audit_log_rotate_on_size, audit_log_max_size, and
audit_log_prune_seconds in conjunction. For details, see Space
Management of Audit Log Files.

• audit_log_password_history_keep_days

Command-Line Format --audit-log-password-history-keep-
days=#

Introduced 8.0.17

System Variable audit_log_password_history_keep_days

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer
1690

MySQL Enterprise Audit

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit days

The audit log plugin implements log file encryption using encryption passwords stored in the MySQL
keyring (see Encrypting Audit Log Files). The plugin also implements password history, which
includes password archiving and expiration (removal).

When the audit log plugin creates a new encryption password, it archives the previous password,
if one exists, for later use. The audit_log_password_history_keep_days variable controls
automatic removal of expired archived passwords. Its value indicates the number of days after which
archived audit log encryption passwords are removed. The default of 0 disables password expiration:
the password retention period is forever.

New audit log encryption passwords are created under these circumstances:

• During plugin initialization, if the plugin finds that log file encryption is enabled, it checks whether
the keyring contains an audit log encryption password. If not, the plugin automatically generates a
random initial encryption password.

• When the audit_log_encryption_password_set() function is called to set a specific
password.

In each case, the plugin stores the new password in the key ring and uses it to encrypt new log files.

Removal of expired audit log encryption passwords occurs under these circumstances:

• During plugin initialization.

• When the audit_log_encryption_password_set() function is called.

• When the runtime value of audit_log_password_history_keep_days is changed from its
current value to a value greater than 0. Runtime value changes occur for SET statements that use
the GLOBAL or PERSIST keyword, but not the PERSIST_ONLY keyword. PERSIST_ONLY writes
the variable setting to mysqld-auto.cnf, but has no effect on the runtime value.

When password removal occurs, the current value of
audit_log_password_history_keep_days determines which passwords to remove:

• If the value is 0, the plugin removes no passwords.

• If the value is N > 0, the plugin removes passwords more than N days old.

Note

Take care not to expire old passwords that are still needed to read archived
encrypted log files.

If you normally leave password expiration disabled (that is,
audit_log_password_history_keep_days has a value of 0), it is possible to perform an on-
demand cleanup operation by temporarily assigning the variable a value greater than zero. For
example, to expire passwords older than 365 days, do this:

SET GLOBAL audit_log_password_history_keep_days = 365;
SET GLOBAL audit_log_password_history_keep_days = 0;

Setting the runtime value of audit_log_password_history_keep_days requires the
AUDIT_ADMIN privilege, in addition to the SYSTEM_VARIABLES_ADMIN privilege (or the deprecated
SUPER privilege) normally required to set a global system variable runtime value.

1691

MySQL Enterprise Audit

• audit_log_policy

Command-Line Format --audit-log-policy=value

Deprecated 8.0.34

System Variable audit_log_policy

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value ALL

Valid Values ALL

LOGINS

QUERIES

NONE

Note

This deprecated variable applies only to legacy mode audit log filtering (see
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes events to its log file. The following table shows
the permitted values.

Value Description

ALL Log all events

LOGINS Log only login events

QUERIES Log only query events

NONE Log nothing (disable the audit stream)

audit_log_policy can be set only at server startup. At runtime, it is a read-only
variable. Two other system variables, audit_log_connection_policy and
audit_log_statement_policy, provide finer control over logging policy and can be set either at
startup or at runtime. If you use audit_log_policy at startup instead of the other two variables,
the server uses its value to set those variables. For more information about the policy variables and
their interaction, see Section 8.4.5.5, “Configuring Audit Logging Characteristics”.

• audit_log_prune_seconds

Command-Line Format --audit-log-prune-seconds=#

Introduced 8.0.24

System Variable audit_log_prune_seconds

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (Windows) 4294967295

1692

MySQL Enterprise Audit

Maximum Value (Other) 18446744073709551615

Unit bytes

audit_log_prune_seconds pertains to audit log file pruning, which is supported for JSON-format
log files only. It controls pruning based on log file age:

• A value of 0 (the default) disables age-based pruning. No age limit is enforced.

• A value greater than 0 enables age-based pruning. The value is the number of seconds after
which audit log files become subject to pruning.

Note

Setting audit_log_prune_seconds by itself is not sufficient to
cause log file pruning to occur because the pruning algorithm uses
audit_log_rotate_on_size, audit_log_max_size, and
audit_log_prune_seconds in conjunction. For details, see Space
Management of Audit Log Files.

• audit_log_read_buffer_size

Command-Line Format --audit-log-read-buffer-size=#

System Variable audit_log_read_buffer_size

Scope (≥ 8.0.12) Global, Session

Scope (8.0.11) Global

Dynamic (≥ 8.0.12) Yes

Dynamic (8.0.11) No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.12) 32768

Default Value (8.0.11) 1048576

Minimum Value (≥ 8.0.12) 32768

Minimum Value (8.0.11) 1024

Maximum Value 4194304

Unit bytes

The buffer size for reading from the audit log file, in bytes. The audit_log_read() function reads
no more than this many bytes. Log file reading is supported only for JSON log format. For more
information, see Section 8.4.5.6, “Reading Audit Log Files”.

As of MySQL 8.0.12, this variable has a default of 32KB and can be set at runtime. Each client
should set its session value of audit_log_read_buffer_size appropriately for its use of
audit_log_read(). Prior to MySQL 8.0.12, audit_log_read_buffer_size has a default of
1MB, affects all clients, and can be changed only at server startup.

• audit_log_rotate_on_size

Command-Line Format --audit-log-rotate-on-size=#

System Variable audit_log_rotate_on_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No
1693

MySQL Enterprise Audit

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

Block Size 4096

If audit_log_rotate_on_size is 0, the audit log plugin does not perform automatic size-based
log file rotation. If rotation is to occur, you must perform it manually; see Manual Audit Log File
Rotation (Before MySQL 8.0.31).

If audit_log_rotate_on_size is greater than 0, automatic size-based log file rotation occurs.
Whenever a write to the log file causes its size to exceed the audit_log_rotate_on_size value,
the audit log plugin renames the current log file and opens a new current log file using the original
name.

If you set audit_log_rotate_on_size to a value that is not a multiple of 4096, it is truncated
to the nearest multiple. In particular, setting it to a value less than 4096 sets it to 0 and no rotation
occurs, except manually.

Note

audit_log_rotate_on_size controls whether audit log file rotation
occurs. It can also be used in conjunction with audit_log_max_size and
audit_log_prune_seconds to configure pruning of rotated JSON-format
log files. For details, see Space Management of Audit Log Files.

• audit_log_statement_policy

Command-Line Format --audit-log-statement-policy=value

Deprecated 8.0.34

System Variable audit_log_statement_policy

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value ALL

Valid Values ALL

ERRORS

NONE

Note

This deprecated variable applies only to legacy mode audit log filtering (see
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes statement events to its log file. The following
table shows the permitted values.

Value Description

ALL Log all statement events
1694

MySQL Enterprise Audit

Value Description

ERRORS Log only failed statement events

NONE Do not log statement events

Note

At server startup, any explicit value given for
audit_log_statement_policy may be overridden if
audit_log_policy is also specified, as described in Section 8.4.5.5,
“Configuring Audit Logging Characteristics”.

• audit_log_strategy

Command-Line Format --audit-log-strategy=value

System Variable audit_log_strategy

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value ASYNCHRONOUS

Valid Values ASYNCHRONOUS

PERFORMANCE

SEMISYNCHRONOUS

SYNCHRONOUS

The logging method used by the audit log plugin. These strategy values are permitted:

• ASYNCHRONOUS: Log asynchronously. Wait for space in the output buffer.

• PERFORMANCE: Log asynchronously. Drop requests for which there is insufficient space in the
output buffer.

• SEMISYNCHRONOUS: Log synchronously. Permit caching by the operating system.

• SYNCHRONOUS: Log synchronously. Call sync() after each request.

Audit Log Status Variables

If the audit log plugin is enabled, it exposes several status variables that provide operational
information. These variables are available for legacy mode audit filtering (deprecated in MySQL 8.0.34)
and JSON mode audit filtering.

• Audit_log_current_size

The size of the current audit log file. The value increases when an event is written to the log and is
reset to 0 when the log is rotated.

• Audit_log_event_max_drop_size

The size of the largest dropped event in performance logging mode. For a description of logging
modes, see Section 8.4.5.5, “Configuring Audit Logging Characteristics”.

• Audit_log_events

1695

The Audit Message Component

The number of events handled by the audit log plugin, whether or not they were written to the log
based on filtering policy (see Section 8.4.5.5, “Configuring Audit Logging Characteristics”).

• Audit_log_events_filtered

The number of events handled by the audit log plugin that were filtered (not written to the log) based
on filtering policy (see Section 8.4.5.5, “Configuring Audit Logging Characteristics”).

• Audit_log_events_lost

The number of events lost in performance logging mode because an event was larger than
the available audit log buffer space. This value may be useful for assessing how to set
audit_log_buffer_size to size the buffer for performance mode. For a description of logging
modes, see Section 8.4.5.5, “Configuring Audit Logging Characteristics”.

• Audit_log_events_written

The number of events written to the audit log.

• Audit_log_total_size

The total size of events written to all audit log files. Unlike Audit_log_current_size, the value of
Audit_log_total_size increases even when the log is rotated.

• Audit_log_write_waits

The number of times an event had to wait for space in the audit log buffer in asynchronous
logging mode. For a description of logging modes, see Section 8.4.5.5, “Configuring Audit Logging
Characteristics”.

8.4.5.12 Audit Log Restrictions

MySQL Enterprise Audit is subject to these general restrictions:

• Only SQL statements are logged. Changes made by no-SQL APIs, such as memcached, Node.JS,
and the NDB API, are not logged.

• Only top-level statements are logged, not statements within stored programs such as triggers or
stored procedures.

• Contents of files referenced by statements such as LOAD DATA are not logged.

NDB Cluster. It is possible to use MySQL Enterprise Audit with MySQL NDB Cluster, subject to the
following conditions:

• All changes to be logged must be done using the SQL interface. Changes using no-SQL interfaces,
such as those provided by the NDB API, memcached, or ClusterJ, are not logged.

• The plugin must be installed on each MySQL server that is used to execute SQL on the cluster.

• Audit plugin data must be aggregated amongst all MySQL servers used with the cluster. This
aggregation is the responsibility of the application or user.

8.4.6 The Audit Message Component

As of MySQL 8.0.14, the audit_api_message_emit component enables applications to add their
own message events to the audit log, using the audit_api_message_emit_udf() function.

The audit_api_message_emit component cooperates with all plugins of audit type. For
concreteness, examples use the audit_log plugin described in Section 8.4.5, “MySQL Enterprise
Audit”.

• Installing or Uninstalling the Audit Message Component

1696

The Audit Message Component

• Audit Message Function

Installing or Uninstalling the Audit Message Component

To be usable by the server, the component library file must be located in the MySQL plugin directory
(the directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

To install the audit_api_message_emit component, use this statement:

INSTALL COMPONENT "file://component_audit_api_message_emit";

Component installation is a one-time operation that need not be done per server startup. INSTALL
COMPONENT loads the component, and also registers it in the mysql.component system table to
cause it to be loaded during subsequent server startups.

To uninstall the audit_api_message_emit component, use this statement:

UNINSTALL COMPONENT "file://component_audit_api_message_emit";

UNINSTALL COMPONENT unloads the component, and unregisters it from the mysql.component
system table to cause it not to be loaded during subsequent server startups.

Because installing and uninstalling the audit_api_message_emit component installs and uninstalls
the audit_api_message_emit_udf() function that the component implements, it is not necessary
to use CREATE FUNCTION or DROP FUNCTION to do so.

Audit Message Function

This section describes the audit_api_message_emit_udf() function implemented by the
audit_api_message_emit component.

Before using the audit message function, install the audit message component according to the
instructions provided at Installing or Uninstalling the Audit Message Component.

• audit_api_message_emit_udf(component, producer, message[, key, value] ...)

Adds a message event to the audit log. Message events include component, producer, and message
strings of the caller's choosing, and optionally a set of key-value pairs.

An event posted by this function is sent to all enabled plugins of audit type, each of which handles
the event according to its own rules. If no plugin of audit type is enabled, posting the event has no
effect.

Arguments:

• component: A string that specifies a component name.

• producer: A string that specifies a producer name.

• message: A string that specifies the event message.

• key, value: Events may include 0 or more key-value pairs that specify an arbitrary application-
provided data map. Each key argument is a string that specifies a name for its immediately
following value argument. Each value argument specifies a value for its immediately following
key argument. Each value can be a string or numeric value, or NULL.

Return value:

The string OK to indicate success. An error occurs if the function fails.

Example:

mysql> SELECT audit_api_message_emit_udf('component_text',

1697

The Audit Message Component

 'producer_text',
 'message_text',
 'key1', 'value1',
 'key2', 123,
 'key3', NULL) AS 'Message';
+---------+
| Message |
+---------+
| OK |
+---------+

Additional information:

Each audit plugin that receives an event posted by audit_api_message_emit_udf() logs the
event in plugin-specific format. For example, the audit_log plugin (see Section 8.4.5, “MySQL
Enterprise Audit”) logs message values as follows, depending on the log format configured by the
audit_log_format system variable:

• JSON format (audit_log_format=JSON):

{
 ...
 "class": "message",
 "event": "user",
 ...
 "message_data": {
 "component": "component_text",
 "producer": "producer_text",
 "message": "message_text",
 "map": {
 "key1": "value1",
 "key2": 123,
 "key3": null
 }
 }
}

• New-style XML format (audit_log_format=NEW):

<AUDIT_RECORD>
 ...
 <NAME>Message</NAME>
 ...
 <COMMAND_CLASS>user</COMMAND_CLASS>
 <COMPONENT>component_text</COMPONENT>
 <PRODUCER>producer_text</PRODUCER>
 <MESSAGE>message_text</MESSAGE>
 <MAP>
 <ELEMENT>
 <KEY>key1</KEY>
 <VALUE>value1</VALUE>
 </ELEMENT>
 <ELEMENT>
 <KEY>key2</KEY>
 <VALUE>123</VALUE>
 </ELEMENT>
 <ELEMENT>
 <KEY>key3</KEY>
 <VALUE/>
 </ELEMENT>
 </MAP>
</AUDIT_RECORD>

• Old-style XML format (audit_log_format=OLD):

<AUDIT_RECORD
 ...
 NAME="Message"
 ...
 COMMAND_CLASS="user"

1698

MySQL Enterprise Firewall

 COMPONENT="component_text"
 PRODUCER="producer_text"
 MESSAGE="message_text"/>

Note

Message events logged in old-style XML format do not include the key-
value map due to representational constraints imposed by this format.

Messages posted by audit_api_message_emit_udf() have an event class of
MYSQL_AUDIT_MESSAGE_CLASS and a subclass of MYSQL_AUDIT_MESSAGE_USER.
(Internally generated audit messages have the same class and a subclass of
MYSQL_AUDIT_MESSAGE_INTERNAL; this subclass currently is unused.) To refer to such events in
audit_log filtering rules, use a class element with a name value of message. For example:

{
 "filter": {
 "class": {
 "name": "message"
 }
 }
}

Should it be necessary to distinguish user-generated and internally generated message events, test
the subclass value against user or internal.

Filtering based on the contents of the key-value map is not supported.

For information about writing filtering rules, see Section 8.4.5.7, “Audit Log Filtering”.

8.4.7 MySQL Enterprise Firewall

Note

MySQL Enterprise Firewall is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-level firewall that
enables database administrators to permit or deny SQL statement execution based on matching
against lists of accepted statement patterns. This helps harden MySQL Server against attacks such
as SQL injection or attempts to exploit applications by using them outside of their legitimate query
workload characteristics.

Each MySQL account registered with the firewall has its own statement allowlist, enabling protection
to be tailored per account. For a given account, the firewall can operate in recording, protecting, or
detecting mode, for training in the accepted statement patterns, active protection against unacceptable
statements, or passive detection of unacceptable statements. The diagram illustrates how the firewall
processes incoming statements in each mode.

1699

https://www.mysql.com/products/

MySQL Enterprise Firewall

Figure 8.1 MySQL Enterprise Firewall Operation

The following sections describe the elements of MySQL Enterprise Firewall, discuss how to install and
use it, and provide reference information for its elements.

8.4.7.1 Elements of MySQL Enterprise Firewall

MySQL Enterprise Firewall is based on a plugin library that includes these elements:

• A server-side plugin named MYSQL_FIREWALL examines SQL statements before they execute
and, based on the registered firewall profiles, renders a decision whether to execute or reject each
statement.

• The MYSQL_FIREWALL plugin, along with server-side plugins named MYSQL_FIREWALL_USERS
and MYSQL_FIREWALL_WHITELIST implement Performance Schema and INFORMATION_SCHEMA
tables that provide views into the registered profiles.

• Profiles are cached in memory for better performance. Tables in the mysql system database provide
backing storage of firewall data for persistence of profiles across server restarts.

• Stored procedures perform tasks such as registering firewall profiles, establishing their operational
mode, and managing transfer of firewall data between the cache and persistent storage.

1700

MySQL Enterprise Firewall

• Administrative functions provide an API for lower-level tasks such as synchronizing the cache with
persistent storage.

• System variables enable firewall configuration and status variables provide runtime operational
information.

• The FIREWALL_ADMIN and FIREWALL_USER privileges enable users to administer firewall rules for
any user, and their own firewall rules, respectively.

• The FIREWALL_EXEMPT privilege (available as of MySQL 8.0.27) exempts a user from firewall
restrictions. This is useful, for example, for any database administrator who configures the firewall, to
avoid the possibility of a misconfiguration causing even the administrator to be locked out and unable
to execute statements.

8.4.7.2 Installing or Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall installation is a one-time operation that installs the elements described
in Section 8.4.7.1, “Elements of MySQL Enterprise Firewall”. Installation can be performed using a
graphical interface or manually:

• On Windows, MySQL Installer includes an option to enable MySQL Enterprise Firewall for you.

• MySQL Workbench 6.3.4 or higher can install MySQL Enterprise Firewall, enable or disable an
installed firewall, or uninstall the firewall.

• Manual MySQL Enterprise Firewall installation involves running a script located in the share
directory of your MySQL installation.

Important

Read this entire section before following its instructions. Parts of the procedure
differ depending on your environment.

Note

If installed, MySQL Enterprise Firewall involves some minimal overhead even
when disabled. To avoid this overhead, do not install the firewall unless you
plan to use it.

For usage instructions, see Section 8.4.7.3, “Using MySQL Enterprise Firewall”. For reference
information, see Section 8.4.7.4, “MySQL Enterprise Firewall Reference”.

• Installing MySQL Enterprise Firewall

• Uninstalling MySQL Enterprise Firewall

Installing MySQL Enterprise Firewall

If MySQL Enterprise Firewall is already installed from an older version of MySQL, uninstall it using the
instructions given later in this section and then restart your server before installing the current version.
In this case, it is also necessary to register your configuration again.

On Windows, you can use MySQL Installer to install MySQL Enterprise Firewall, as shown in
Figure 8.2, “MySQL Enterprise Firewall Installation on Windows”. Check the Enable MySQL
Enterprise Firewall check box. (Open Firewall port for network access has a different purpose. It
refers to Windows Firewall and controls whether Windows blocks the TCP/IP port on which the MySQL
server listens for client connections.)

Important

There is an issue for MySQL 8.0.19 installed using MySQL Installer that
prevents the server from starting if MySQL Enterprise Firewall is selected

1701

MySQL Enterprise Firewall

during the server configuration steps. If the server startup operation fails, click
Cancel to end the configuration process and return to the dashboard. You must
uninstall the server.

The workaround is to run MySQL Installer without MySQL Enterprise Firewall
selected. (That is, do not select the Enable MySQL Enterprise Firewall check
box.) Then install MySQL Enterprise Firewall afterward using the instructions
for manual installation later in this section. This problem is corrected in MySQL
8.0.20.

Figure 8.2 MySQL Enterprise Firewall Installation on Windows

To install MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL Enterprise
Firewall Interface.

To install MySQL Enterprise Firewall manually, look in the share directory of your MySQL installation
and choose the script that is appropriate for your platform. The available scripts differ in the file name
used to refer to the script:

• win_install_firewall.sql

• linux_install_firewall.sql

The installation script creates stored procedures in the default database, mysql. Run the script as
follows on the command line. The example here uses the Linux installation script. Make the appropriate
substitutions for your system.

$> mysql -u root -p < linux_install_firewall.sql
Enter password: (enter root password here)

1702

https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

MySQL Enterprise Firewall

Note

To use MySQL Enterprise Firewall in the context of source/replica replication,
Group Replication, or InnoDB Cluster, you must prepare the replica nodes prior
to running the installation script on the source node. This is necessary because
the INSTALL PLUGIN statements in the script are not replicated.

1. On each replica node, extract the INSTALL PLUGIN statements from the
installation script and execute them manually.

2. On the source node, run the installation script as described previously.

Installing MySQL Enterprise Firewall either using a graphical interface or manually should enable the
firewall. To verify that, connect to the server and execute this statement:

mysql> SHOW GLOBAL VARIABLES LIKE 'mysql_firewall_mode';
+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| mysql_firewall_mode | ON |
+---------------------+-------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall can be uninstalled using MySQL Workbench or manually.

To uninstall MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL
Enterprise Firewall Interface, in Chapter 33, MySQL Workbench.

To uninstall MySQL Enterprise Firewall manually, execute the following statements. Statements use IF
EXISTS because, depending on the previously installed firewall version, some objects might not exist
or might be dropped implicitly by uninstalling the plugin that installed them.

DROP TABLE IF EXISTS mysql.firewall_group_allowlist;
DROP TABLE IF EXISTS mysql.firewall_groups;
DROP TABLE IF EXISTS mysql.firewall_membership;
DROP TABLE IF EXISTS mysql.firewall_users;
DROP TABLE IF EXISTS mysql.firewall_whitelist;

UNINSTALL PLUGIN MYSQL_FIREWALL;
UNINSTALL PLUGIN MYSQL_FIREWALL_USERS;
UNINSTALL PLUGIN MYSQL_FIREWALL_WHITELIST;

DROP FUNCTION IF EXISTS firewall_group_delist;
DROP FUNCTION IF EXISTS firewall_group_enlist;
DROP FUNCTION IF EXISTS mysql_firewall_flush_status;
DROP FUNCTION IF EXISTS normalize_statement;
DROP FUNCTION IF EXISTS read_firewall_group_allowlist;
DROP FUNCTION IF EXISTS read_firewall_groups;
DROP FUNCTION IF EXISTS read_firewall_users;
DROP FUNCTION IF EXISTS read_firewall_whitelist;
DROP FUNCTION IF EXISTS set_firewall_group_mode;
DROP FUNCTION IF EXISTS set_firewall_mode;

DROP PROCEDURE IF EXISTS mysql.sp_firewall_group_delist;
DROP PROCEDURE IF EXISTS mysql.sp_firewall_group_enlist;
DROP PROCEDURE IF EXISTS mysql.sp_reload_firewall_group_rules;
DROP PROCEDURE IF EXISTS mysql.sp_reload_firewall_rules;
DROP PROCEDURE IF EXISTS mysql.sp_set_firewall_group_mode;
DROP PROCEDURE IF EXISTS mysql.sp_set_firewall_group_mode_and_user;
DROP PROCEDURE IF EXISTS mysql.sp_set_firewall_mode;
DROP PROCEDURE IF EXISTS mysql.sp_migrate_firewall_user_to_group;

8.4.7.3 Using MySQL Enterprise Firewall

1703

https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

MySQL Enterprise Firewall

Before using MySQL Enterprise Firewall, install it according to the instructions provided in
Section 8.4.7.2, “Installing or Uninstalling MySQL Enterprise Firewall”.

This section describes how to configure MySQL Enterprise Firewall using SQL statements.
Alternatively, MySQL Workbench 6.3.4 or higher provides a graphical interface for firewall control. See
MySQL Enterprise Firewall Interface.

• Enabling or Disabling the Firewall

• Assigning Firewall Privileges

• Firewall Concepts

• Registering Firewall Group Profiles

• Registering Firewall Account Profiles

• Monitoring the Firewall

• Migrating Account Profiles to Group Profiles

Enabling or Disabling the Firewall

To enable or disable the firewall, set the mysql_firewall_mode system variable. By default, this
variable is enabled when the firewall is installed. To control the initial firewall state explicitly, you can
set the variable at server startup. For example, to enable the firewall in an option file, use these lines:

[mysqld]
mysql_firewall_mode=ON

After modifying my.cnf, restart the server to cause the new setting to take effect.

Alternatively, to set and persist the firewall setting at runtime:

SET PERSIST mysql_firewall_mode = OFF;
SET PERSIST mysql_firewall_mode = ON;

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to
carry over to subsequent server restarts. To change a value for the running MySQL instance without
having it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See
Section 15.7.6.1, “SET Syntax for Variable Assignment”.

Assigning Firewall Privileges

With the firewall installed, grant the appropriate privileges to the MySQL account or accounts to be
used for administering it. The privileges depend on which firewall operations an account should be
permitted to perform:

• Grant the FIREWALL_EXEMPT privilege (available as of MySQL 8.0.27) to any account that should
be exempt from firewall restrictions. This is useful, for example, for a database administrator who
configures the firewall, to avoid the possibility of a misconfiguration causing even the administrator to
be locked out and unable to execute statements.

• Grant the FIREWALL_ADMIN privilege to any account that should have full administrative
firewall access. (Some administrative firewall functions can be invoked by accounts that have
FIREWALL_ADMIN or the deprecated SUPER privilege, as indicated in the individual function
descriptions.)

• Grant the FIREWALL_USER privilege to any account that should have administrative access only for
its own firewall rules.

• Grant the EXECUTE privilege for the firewall stored procedures in the mysql system database.
These may invoke administrative functions, so stored procedure access also requires the privileges
indicated earlier that are needed for those functions.

1704

https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

MySQL Enterprise Firewall

Note

The FIREWALL_EXEMPT, FIREWALL_ADMIN, and FIREWALL_USER
privileges can be granted only while the firewall is installed because the
MYSQL_FIREWALL plugin defines those privileges.

Firewall Concepts

The MySQL server permits clients to connect and receives from them SQL statements to be executed.
If the firewall is enabled, the server passes to it each incoming statement that does not immediately
fail with a syntax error. Based on whether the firewall accepts the statement, the server executes it or
returns an error to the client. This section describes how the firewall accomplishes the task of accepting
or rejecting statements.

• Firewall Profiles

• Firewall Statement Matching

• Profile Operational Modes

• Firewall Statement Handling When Multiple Profiles Apply

Firewall Profiles

The firewall uses a registry of profiles that determine whether to permit statement execution. Profiles
have these attributes:

• An allowlist. The allowlist is the set of rules that defines which statements are acceptable to the
profile.

• A current operational mode. The mode enables the profile to be used in different ways. For example:
the profile can be placed in training mode to establish the allowlist; the allowlist can be used for
restricting statement execution or intrusion detection; the profile can be disabled entirely.

• A scope of applicability. The scope indicates which client connections the profile applies to:

• The firewall supports account-based profiles such that each profile matches a particular client
account (client user name and host name combination). For example, you can register one
account profile for which the allowlist applies to connections originating from admin@localhost
and another account profile for which the allowlist applies to connections originating from
myapp@apphost.example.com.

• As of MySQL 8.0.23, the firewall supports group profiles that can have multiple accounts as
members, with the profile allowlist applying equally to all members. Group profiles enable easier
administration and greater flexibility for deployments that require applying a given set of allowlist
rules to multiple accounts.

Initially, no profiles exist, so by default, the firewall accepts all statements and has no effect on which
statements MySQL accounts can execute. To apply firewall protective capabilities, explicit action is
required:

• Register one or more profiles with the firewall.

• Train the firewall by establishing the allowlist for each profile; that is, the types of statements the
profile permits clients to execute.

• Place the trained profiles in protecting mode to harden MySQL against unauthorized statement
execution:

• MySQL associates each client session with a specific user name and host name combination. This
combination is the session account.

1705

MySQL Enterprise Firewall

• For each client connection, the firewall uses the session account to determine which profiles apply
to handling incoming statements from the client.

The firewall accepts only statements permitted by the applicable profile allowlists.

Most firewall principles apply identically to group profiles and account profiles. The two types of profiles
differ in these respects:

• An account profile allowlist applies only to a single account. A group profile allowlist applies when the
session account matches any account that is a member of the group.

• To apply an allowlist to multiple accounts using account profiles, it is necessary to register one profile
per account and duplicate the allowlist across each profile. This entails training each account profile
individually because each one must be trained using the single account to which it applies.

A group profile allowlist applies to multiple accounts, with no need to duplicate it for each account. A
group profile can be trained using any or all of the group member accounts, or training can be limited
to any single member. Either way, the allowlist applies to all members.

• Account profile names are based on specific user name and host name combinations that depend
on which clients connect to the MySQL server. Group profile names are chosen by the firewall
administrator with no constraints other than that their length must be from 1 to 288 characters.

Note

Due to the advantages of group profiles over account profiles, and because a
group profile with a single member account is logically equivalent to an account
profile for that account, it is recommended that all new firewall profiles be
created as group profiles. Account profiles are deprecated as of MySQL 8.0.26
and subject to removal in a future MySQL version. For assistance converting
existing account profiles, see Migrating Account Profiles to Group Profiles.

The profile-based protection afforded by the firewall enables implementation of strategies such as
these:

• If an application has unique protection requirements, configure it to use an account not used for any
other purpose and set up a group profile or account profile for that account.

• If related applications share protection requirements, associate each application with its own
account, then add these application accounts as members of the same group profile. Alternatively,
configure all the applications to use the same account and associate them with an account profile for
that account.

Firewall Statement Matching

Statement matching performed by the firewall does not use SQL statements as received from clients.
Instead, the server converts incoming statements to normalized digest form and firewall operation
uses these digests. The benefit of statement normalization is that it enables similar statements to be
grouped and recognized using a single pattern. For example, these statements are distinct from each
other:

SELECT first_name, last_name FROM customer WHERE customer_id = 1;
select first_name, last_name from customer where customer_id = 99;
SELECT first_name, last_name FROM customer WHERE customer_id = 143;

But all of them have the same normalized digest form:

SELECT `first_name` , `last_name` FROM `customer` WHERE `customer_id` = ?

By using normalization, firewall allowlists can store digests that each match many different statements
received from clients. For more information about normalization and digests, see Section 29.10,
“Performance Schema Statement Digests and Sampling”.

1706

MySQL Enterprise Firewall

Warning

Setting the max_digest_length system variable to zero disables digest
production, which also disables server functionality that requires digests, such
as MySQL Enterprise Firewall.

Profile Operational Modes

Each profile registered with the firewall has its own operational mode, chosen from these values:

• OFF: This mode disables the profile. The firewall considers it inactive and ignores it.

• RECORDING: This is the firewall training mode. Incoming statements received from a client that
matches the profile are considered acceptable for the profile and become part of its “fingerprint.”
The firewall records the normalized digest form of each statement to learn the acceptable statement
patterns for the profile. Each pattern is a rule, and the union of the rules is the profile allowlist.

A difference between group and account profiles is that statement recording for a group profile can
be limited to statements received from a single group member (the training member).

• PROTECTING: In this mode, the profile allows or prevents statement execution. The firewall
matches incoming statements against the profile allowlist, accepting only statements that match and
rejecting those that do not. After training a profile in RECORDING mode, switch it to PROTECTING
mode to harden MySQL against access by statements that deviate from the allowlist. If the
mysql_firewall_trace system variable is enabled, the firewall also writes rejected statements to
the error log.

• DETECTING: This mode detects but not does not block intrusions (statements that are suspicious
because they match nothing in the profile allowlist). In DETECTING mode, the firewall writes
suspicious statements to the error log but accepts them without denying access.

When a profile is assigned any of the preceding mode values, the firewall stores the mode in the
profile. Firewall mode-setting operations also permit a mode value of RESET, but this value is not
stored: setting a profile to RESET mode causes the firewall to delete all rules for the profile and set its
mode to OFF.

Note

Messages written to the error log in DETECTING mode or because
mysql_firewall_trace is enabled are written as Notes, which are
information messages. To ensure that such messages appear in the error log
and are not discarded, make sure that error-logging verbosity is sufficient to
include information messages. For example, if you are using priority-based
log filtering, as described in Section 7.4.2.5, “Priority-Based Error Log Filtering
(log_filter_internal)”, set the log_error_verbosity system variable to a
value of 3.

Firewall Statement Handling When Multiple Profiles Apply

For simplicity, later sections that describe how to set up profiles take the perspective that the firewall
matches incoming statements from a client against only a single profile, either a group profile or
account profile. But firewall operation can be more complex:

• A group profile can include multiple accounts as members.

• An account can be a member of multiple group profiles.

• Multiple profiles can match a given client.

The following description covers the general case of how the firewall operates, when potentially
multiple profiles apply to incoming statements.

1707

MySQL Enterprise Firewall

As previously mentioned, MySQL associates each client session with a specific user name and host
name combination known as the session account. The firewall matches the session account against
registered profiles to determine which profiles apply to handling incoming statements from the session:

• The firewall ignores inactive profiles (profiles with a mode of OFF).

• The session account matches every active group profile that includes a member having the same
user and host. There can be more than one such group profile.

• The session account matches an active account profile having the same user and host, if there is
one. There is at most one such account profile.

In other words, the session account can match 0 or more active group profiles, and 0 or 1 active
account profiles. This means that 0, 1, or multiple firewall profiles are applicable to a given session, for
which the firewall handles each incoming statement as follows:

• If there is no applicable profile, the firewall imposes no restrictions and accepts the statement.

• If there are applicable profiles, their modes determine statement handling:

• The firewall records the statement in the allowlist of each applicable profile that is in RECORDING
mode.

• The firewall writes the statement to the error log for each applicable profile in DETECTING mode
for which the statement is suspicious (does not match the profile allowlist).

• The firewall accepts the statement if at least one applicable profile is in RECORDING or
DETECTING mode (those modes accept all statements), or if the statement matches the allowlist of
at least one applicable profile in PROTECTING mode. Otherwise, the firewall rejects the statement
(and writes it to the error log if the mysql_firewall_trace system variable is enabled).

With that description in mind, the next sections revert to the simplicity of the situations when a single
group profile or a single account profile apply, and cover how to set up each type of profile.

Registering Firewall Group Profiles

MySQL Enterprise Firewall supports registration of group profiles as of MySQL 8.0.23. A group profile
can have multiple accounts as its members. To use a firewall group profile to protect MySQL against
incoming statements from a given account, follow these steps:

1. Register the group profile and put it in RECORDING mode.

2. Add a member account to the group profile.

3. Connect to the MySQL server using the member account and execute statements to be learned.
This trains the group profile and establishes the rules that form the profile allowlist.

4. Add to the group profile any other accounts that are to be group members.

5. Switch the group profile to PROTECTING mode. When a client connects to the server using any
account that is a member of the group profile, the profile allowlist restricts statement execution.

6. Should additional training be necessary, switch the group profile to RECORDING mode again,
update its allowlist with new statement patterns, then switch it back to PROTECTING mode.

Observe these guidelines for firewall-related account references:

• Take note of the context in which account references occur. To name an account for firewall
operations, specify it as a single quoted string ('user_name@host_name'). This differs from the
usual MySQL convention for statements such as CREATE USER and GRANT, for which you quote the
user and host parts of an account name separately ('user_name'@'host_name').

The requirement for naming accounts as a single quoted string for firewall operations means that you
cannot use accounts that have embedded @ characters in the user name.

1708

MySQL Enterprise Firewall

• The firewall assesses statements against accounts represented by actual user and host names as
authenticated by the server. When registering accounts in profiles, do not use wildcard characters or
netmasks:

• Suppose that an account named me@%.example.org exists and a client uses it to connect to the
server from the host abc.example.org.

• The account name contains a % wildcard character, but the server authenticates the client as
having a user name of me and host name of abc.example.com, and that is what the firewall
sees.

• Consequently, the account name to use for firewall operations is me@abc.example.org rather
than me@%.example.org.

The following procedure shows how to register a group profile with the firewall, train the firewall to
know the acceptable statements for that profile (its allowlist), use the profile to protect MySQL against
execution of unacceptable statements, and add and remove group members. The example uses a
group profile name of fwgrp. The example profile is presumed for use by clients of an application that
accesses tables in the sakila database (available at https://dev.mysql.com/doc/index-other.html).

Use an administrative MySQL account to perform the steps in this procedure, except those steps
designated for execution by member accounts of the firewall group profile. For statements executed
by member accounts, the default database should be sakila. (You can use a different database by
adjusting the instructions accordingly.)

1. If necessary, create the accounts that are to be members of the fwgrp group profile and grant
them appropriate access privileges. Statements for one member are shown here (choose an
appropriate password):

CREATE USER 'member1'@'localhost' IDENTIFIED BY 'password';
GRANT ALL ON sakila.* TO 'member1'@'localhost';

2. Use the sp_set_firewall_group_mode() stored procedure to register the group profile with
the firewall and place the profile in RECORDING (training) mode:

CALL mysql.sp_set_firewall_group_mode('fwgrp', 'RECORDING');

3. Use the sp_firewall_group_enlist() stored procedure to add an initial member account for
use in training the group profile allowlist:

CALL mysql.sp_firewall_group_enlist('fwgrp', 'member1@localhost');

4. To train the group profile using the initial member account, connect to the server as member1 from
the server host so that the firewall sees a session account of member1@localhost. Then execute
some statements to be considered legitimate for the profile. For example:

SELECT title, release_year FROM film WHERE film_id = 1;
UPDATE actor SET last_update = NOW() WHERE actor_id = 1;
SELECT store_id, COUNT(*) FROM inventory GROUP BY store_id;

The firewall receives the statements from the member1@localhost account. Because that
account is a member of the fwgrp profile, which is in RECORDING mode, the firewall interprets the
statements as applicable to fwgrp and records the normalized digest form of the statements as
rules in the fwgrp allowlist. Those rules then apply to all accounts that are members of fwgrp.

Note

Until the fwgrp group profile receives statements in RECORDING mode, its
allowlist is empty, which is equivalent to “deny all.” No statement can match
an empty allowlist, which has these implications:

1709

https://dev.mysql.com/doc/index-other.html

MySQL Enterprise Firewall

• The group profile cannot be switched to PROTECTING mode. It would
reject every statement, effectively prohibiting the accounts that are group
members from executing any statement.

• The group profile can be switched to DETECTING mode. In this case, the
profile accepts every statement but logs it as suspicious.

5. At this point, the group profile information is cached, including its name, membership, and allowlist.
To see this information, query the Performance Schema firewall tables:

mysql> SELECT MODE FROM performance_schema.firewall_groups
 WHERE NAME = 'fwgrp';
+-----------+
| MODE |
+-----------+
| RECORDING |
+-----------+
mysql> SELECT * FROM performance_schema.firewall_membership
 WHERE GROUP_ID = 'fwgrp' ORDER BY MEMBER_ID;
+----------+-------------------+
| GROUP_ID | MEMBER_ID |
+----------+-------------------+
| fwgrp | member1@localhost |
+----------+-------------------+
mysql> SELECT RULE FROM performance_schema.firewall_group_allowlist
 WHERE NAME = 'fwgrp';
+--+
| RULE |
+--+
| SELECT @@`version_comment` LIMIT ? |
| UPDATE `actor` SET `last_update` = NOW () WHERE `actor_id` = ? |
| SELECT `title` , `release_year` FROM `film` WHERE `film_id` = ? |
| SELECT `store_id` , COUNT (*) FROM `inventory` GROUP BY `store_id` |
+--+

Note

The @@version_comment rule comes from a statement sent automatically
by the mysql client when you connect to the server.

Important

Train the firewall under conditions matching application use. For example, to
determine server characteristics and capabilities, a given MySQL connector
might send statements to the server at the beginning of each session. If an
application normally is used through that connector, train the firewall using
the connector, too. That enables those initial statements to become part of
the allowlist for the group profile associated with the application.

6. Invoke sp_set_firewall_group_mode() again to switch the group profile to PROTECTING
mode:

CALL mysql.sp_set_firewall_group_mode('fwgrp', 'PROTECTING');

Important

Switching the group profile out of RECORDING mode synchronizes its
cached data to the mysql system database tables that provide persistent
underlying storage. If you do not switch the mode for a profile that is being
recorded, the cached data is not written to persistent storage and is lost
when the server is restarted.

7. Add to the group profile any other accounts that should be members:

CALL mysql.sp_firewall_group_enlist('fwgrp', 'member2@localhost');

1710

MySQL Enterprise Firewall

CALL mysql.sp_firewall_group_enlist('fwgrp', 'member3@localhost');
CALL mysql.sp_firewall_group_enlist('fwgrp', 'member4@localhost');

The profile allowlist trained using the member1@localhost account now also applies to the
additional accounts.

8. To verify the updated group membership, query the firewall_membership table again:

mysql> SELECT * FROM performance_schema.firewall_membership
 WHERE GROUP_ID = 'fwgrp' ORDER BY MEMBER_ID;
+----------+-------------------+
| GROUP_ID | MEMBER_ID |
+----------+-------------------+
fwgrp	member1@localhost
fwgrp	member2@localhost
fwgrp	member3@localhost
fwgrp	member4@localhost
+----------+-------------------+

9. Test the group profile against the firewall by using any account in the group to execute some
acceptable and unacceptable statements. The firewall matches each statement from the account
against the profile allowlist and accepts or rejects it:

• This statement is not identical to a training statement but produces the same normalized
statement as one of them, so the firewall accepts it:

mysql> SELECT title, release_year FROM film WHERE film_id = 98;
+-------------------+--------------+
| title | release_year |
+-------------------+--------------+
| BRIGHT ENCOUNTERS | 2006 |
+-------------------+--------------+

• These statements match nothing in the allowlist, so the firewall rejects each with an error:

mysql> SELECT title, release_year FROM film WHERE film_id = 98 OR TRUE;
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> SHOW TABLES LIKE 'customer%';
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> TRUNCATE TABLE mysql.slow_log;
ERROR 1045 (28000): Statement was blocked by Firewall

• If the mysql_firewall_trace system variable is enabled, the firewall also writes rejected
statements to the error log. For example:

[Note] Plugin MYSQL_FIREWALL reported:
'ACCESS DENIED for 'member1@localhost'. Reason: No match in allowlist.
Statement: TRUNCATE TABLE `mysql` . `slow_log`'

These log messages may be helpful in identifying the source of attacks, should that be
necessary.

10. Should members need to be removed from the group profile, use
the sp_firewall_group_delist() stored procedure rather than
sp_firewall_group_enlist():

CALL mysql.sp_firewall_group_delist('fwgrp', 'member3@localhost');

The firewall group profile now is trained for member accounts. When clients connect using any account
in the group and attempt to execute statements, the profile protects MySQL against statements not
matched by the profile allowlist.

The procedure just shown added only one member to the group profile before training its allowlist.
Doing so provides better control over the training period by limiting which accounts can add new
acceptable statements to the allowlist. Should additional training be necessary, you can switch the
profile back to RECORDING mode:

1711

MySQL Enterprise Firewall

CALL mysql.sp_set_firewall_group_mode('fwgrp', 'RECORDING');

However, that enables any member of the group to execute statements and add
them to the allowlist. To limit the additional training to a single group member, call
sp_set_firewall_group_mode_and_user(), which is like sp_set_firewall_group_mode()
but takes one more argument specifying which account is permitted to train the profile in RECORDING
mode. For example, to enable training only by member4@localhost, do this:

CALL mysql.sp_set_firewall_group_mode_and_user('fwgrp', 'RECORDING', 'member4@localhost');

That enables additional training by the specified account without having to remove the other group
members. They can execute statements, but the statements are not added to the allowlist. (Remember,
however, that in RECORDING mode the other members can execute any statement.)

Note

To avoid unexpected behavior when a particular account is specified as the
training account for a group profile, always ensure that account is a member of
the group.

After the additional training, set the group profile back to PROTECTING mode:

CALL mysql.sp_set_firewall_group_mode('fwgrp', 'PROTECTING');

The training account established by sp_set_firewall_group_mode_and_user() is saved in
the group profile, so the firewall remembers it in case more training is needed later. Thus, if you call
sp_set_firewall_group_mode() (which takes no training account argument), the current profile
training account, member4@localhost, remains unchanged.

To clear the training account if it actually is desired to enable all group members to perform training in
RECORDING mode, call sp_set_firewall_group_mode_and_user() and pass a NULL value for
the account argument:

CALL mysql.sp_set_firewall_group_mode_and_user('fwgrp', 'RECORDING', NULL);

It is possible to detect intrusions by logging nonmatching statements as suspicious without denying
access. First, put the group profile in DETECTING mode:

CALL mysql.sp_set_firewall_group_mode('fwgrp', 'DETECTING');

Then, using a member account, execute a statement that does not match the group profile allowlist. In
DETECTING mode, the firewall permits the nonmatching statement to execute:

mysql> SHOW TABLES LIKE 'customer%';
+------------------------------+
| Tables_in_sakila (customer%) |
+------------------------------+
| customer |
| customer_list |
+------------------------------+

In addition, the firewall writes a message to the error log:

[Note] Plugin MYSQL_FIREWALL reported:
'SUSPICIOUS STATEMENT from 'member1@localhost'. Reason: No match in allowlist.
Statement: SHOW TABLES LIKE ?'

To disable a group profile, change its mode to OFF:

CALL mysql.sp_set_firewall_group_mode(group, 'OFF');

To forget all training for a profile and disable it, reset it:

CALL mysql.sp_set_firewall_group_mode(group, 'RESET');

The reset operation causes the firewall to delete all rules for the profile and set its mode to OFF.

1712

MySQL Enterprise Firewall

Registering Firewall Account Profiles

MySQL Enterprise Firewall enables profiles to be registered that correspond to individual accounts.
To use a firewall account profile to protect MySQL against incoming statements from a given account,
follow these steps:

1. Register the account profile and put it in RECORDING mode.

2. Connect to the MySQL server using the account and execute statements to be learned. This trains
the account profile and establishes the rules that form the profile allowlist.

3. Switch the account profile to PROTECTING mode. When a client connects to the server using the
account, the account profile allowlist restricts statement execution.

4. Should additional training be necessary, switch the account profile to RECORDING mode again,
update its allowlist with new statement patterns, then switch it back to PROTECTING mode.

Observe these guidelines for firewall-related account references:

• Take note of the context in which account references occur. To name an account for firewall
operations, specify it as a single quoted string ('user_name@host_name'). This differs from the
usual MySQL convention for statements such as CREATE USER and GRANT, for which you quote the
user and host parts of an account name separately ('user_name'@'host_name').

The requirement for naming accounts as a single quoted string for firewall operations means that you
cannot use accounts that have embedded @ characters in the user name.

• The firewall assesses statements against accounts represented by actual user and host names as
authenticated by the server. When registering accounts in profiles, do not use wildcard characters or
netmasks:

• Suppose that an account named me@%.example.org exists and a client uses it to connect to the
server from the host abc.example.org.

• The account name contains a % wildcard character, but the server authenticates the client as
having a user name of me and host name of abc.example.com, and that is what the firewall
sees.

• Consequently, the account name to use for firewall operations is me@abc.example.org rather
than me@%.example.org.

The following procedure shows how to register an account profile with the firewall, train the firewall
to know the acceptable statements for that profile (its allowlist), and use the profile to protect
MySQL against execution of unacceptable statements by the account. The example account,
fwuser@localhost, is presumed for use by an application that accesses tables in the sakila
database (available at https://dev.mysql.com/doc/index-other.html).

Use an administrative MySQL account to perform the steps in this procedure, except those steps
designated for execution by the fwuser@localhost account that corresponds to the account profile
registered with the firewall. For statements executed using this account, the default database should be
sakila. (You can use a different database by adjusting the instructions accordingly.)

1. If necessary, create the account to use for executing statements (choose an appropriate password)
and grant it privileges for the sakila database:

CREATE USER 'fwuser'@'localhost' IDENTIFIED BY 'password';
GRANT ALL ON sakila.* TO 'fwuser'@'localhost';

2. Use the sp_set_firewall_mode() stored procedure to register the account profile with the
firewall and place the profile in RECORDING (training) mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'RECORDING');

1713

https://dev.mysql.com/doc/index-other.html

MySQL Enterprise Firewall

3. To train the registered account profile, connect to the server as fwuser from the server host so
that the firewall sees a session account of fwuser@localhost. Then use the account to execute
some statements to be considered legitimate for the profile. For example:

SELECT first_name, last_name FROM customer WHERE customer_id = 1;
UPDATE rental SET return_date = NOW() WHERE rental_id = 1;
SELECT get_customer_balance(1, NOW());

Because the profile is in RECORDING mode, the firewall records the normalized digest form of the
statements as rules in the profile allowlist.

Note

Until the fwuser@localhost account profile receives statements in
RECORDING mode, its allowlist is empty, which is equivalent to “deny all.” No
statement can match an empty allowlist, which has these implications:

• The account profile cannot be switched to PROTECTING mode. It would
reject every statement, effectively prohibiting the account from executing
any statement.

• The account profile can be switched to DETECTING mode. In this case,
the profile accepts every statement but logs it as suspicious.

4. At this point, the account profile information is cached. To see this information, query the
INFORMATION_SCHEMA firewall tables:

mysql> SELECT MODE FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_USERS
 WHERE USERHOST = 'fwuser@localhost';
+-----------+
| MODE |
+-----------+
| RECORDING |
+-----------+
mysql> SELECT RULE FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_WHITELIST
 WHERE USERHOST = 'fwuser@localhost';
+--+
| RULE |
+--+
| SELECT `first_name` , `last_name` FROM `customer` WHERE `customer_id` = ? |
| SELECT `get_customer_balance` (? , NOW ()) |
| UPDATE `rental` SET `return_date` = NOW () WHERE `rental_id` = ? |
| SELECT @@`version_comment` LIMIT ? |
+--+

Note

The @@version_comment rule comes from a statement sent automatically
by the mysql client when you connect to the server.

Important

Train the firewall under conditions matching application use. For example, to
determine server characteristics and capabilities, a given MySQL connector
might send statements to the server at the beginning of each session. If an
application normally is used through that connector, train the firewall using
the connector, too. That enables those initial statements to become part of
the allowlist for the account profile associated with the application.

1714

MySQL Enterprise Firewall

5. Invoke sp_set_firewall_mode() again, this time switching the account profile to PROTECTING
mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'PROTECTING');

Important

Switching the account profile out of RECORDING mode synchronizes its
cached data to the mysql system database tables that provide persistent
underlying storage. If you do not switch the mode for a profile that is being
recorded, the cached data is not written to persistent storage and is lost
when the server is restarted.

6. Test the account profile by using the account to execute some acceptable and unacceptable
statements. The firewall matches each statement from the account against the profile allowlist and
accepts or rejects it:

• This statement is not identical to a training statement but produces the same normalized
statement as one of them, so the firewall accepts it:

mysql> SELECT first_name, last_name FROM customer WHERE customer_id = '48';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| ANN | EVANS |
+------------+-----------+

• These statements match nothing in the allowlist, so the firewall rejects each with an error:

mysql> SELECT first_name, last_name FROM customer WHERE customer_id = 1 OR TRUE;
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> SHOW TABLES LIKE 'customer%';
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> TRUNCATE TABLE mysql.slow_log;
ERROR 1045 (28000): Statement was blocked by Firewall

• If the mysql_firewall_trace system variable is enabled, the firewall also writes rejected
statements to the error log. For example:

[Note] Plugin MYSQL_FIREWALL reported:
'ACCESS DENIED for fwuser@localhost. Reason: No match in allowlist.
Statement: TRUNCATE TABLE `mysql` . `slow_log`'

These log messages may be helpful in identifying the source of attacks, should that be
necessary.

The firewall account profile now is trained for the fwuser@localhost account. When clients connect
using that account and attempt to execute statements, the profile protects MySQL against statements
not matched by the profile allowlist.

It is possible to detect intrusions by logging nonmatching statements as suspicious without denying
access. First, put the account profile in DETECTING mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'DETECTING');

Then, using the account, execute a statement that does not match the account profile allowlist. In
DETECTING mode, the firewall permits the nonmatching statement to execute:

mysql> SHOW TABLES LIKE 'customer%';
+------------------------------+
| Tables_in_sakila (customer%) |
+------------------------------+
| customer |
| customer_list |
+------------------------------+

1715

MySQL Enterprise Firewall

In addition, the firewall writes a message to the error log:

[Note] Plugin MYSQL_FIREWALL reported:
'SUSPICIOUS STATEMENT from 'fwuser@localhost'. Reason: No match in allowlist.
Statement: SHOW TABLES LIKE ?'

To disable an account profile, change its mode to OFF:

CALL mysql.sp_set_firewall_mode(user, 'OFF');

To forget all training for a profile and disable it, reset it:

CALL mysql.sp_set_firewall_mode(user, 'RESET');

The reset operation causes the firewall to delete all rules for the profile and set its mode to OFF.

Monitoring the Firewall

To assess firewall activity, examine its status variables. For example, after performing the procedure
shown earlier to train and protect the fwgrp group profile, the variables look like this:

mysql> SHOW GLOBAL STATUS LIKE 'Firewall%';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
Firewall_access_denied	3
Firewall_access_granted	4
Firewall_access_suspicious	1
Firewall_cached_entries	4
+----------------------------+-------+

The variables indicate the number of statements rejected, accepted, logged as suspicious, and
added to the cache, respectively. The Firewall_access_granted count is 4 because of the
@@version_comment statement sent by the mysql client each of the three times you connected
using the registered account, plus the SHOW TABLES statement that was not blocked in DETECTING
mode.

Migrating Account Profiles to Group Profiles

Prior to MySQL 8.0.23, MySQL Enterprise Firewall supports only account profiles that each apply to
a single account. As of MySQL 8.0.23, the firewall also supports group profiles that each can apply
to multiple accounts. A group profile enables easier administration when the same allowlist is to be
applied to multiple accounts: instead of creating one account profile per account and duplicating the
allowlist across all those profiles, create a single group profile and make the accounts members of it.
The group allowlist then applies to all the accounts.

A group profile with a single member account is logically equivalent to an account profile for that
account, so it is possible to administer the firewall using group profiles exclusively, rather than a mix
of account and group profiles. For new firewall installations, that is accomplished by uniformly creating
new profiles as group profiles and avoiding account profiles.

Due to the greater flexibility offered by group profiles, it is recommended that all new firewall profiles be
created as group profiles. Account profiles are deprecated as of MySQL 8.0.26 and subject to removal
in a future MySQL version. For upgrades from firewall installations that already contain account
profiles, MySQL Enterprise Firewall in MySQL 8.0.26 and higher includes a stored procedure named
sp_migrate_firewall_user_to_group() to help you convert account profiles to group profiles.
To use it, perform the following procedure as a user who has the FIREWALL_ADMIN privilege:

1. Run the firewall_profile_migration.sql script to install the
sp_migrate_firewall_user_to_group() stored procedure. The script is located in the
share directory of your MySQL installation.

$> mysql -u root -p < firewall_profile_migration.sql
Enter password: (enter root password here)

1716

MySQL Enterprise Firewall

2. Identify which account profiles exist by querying the Information Schema
MYSQL_FIREWALL_USERS table. For example:

mysql> SELECT USERHOST FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_USERS;
+-------------------------------+
| USERHOST |
+-------------------------------+
| admin@localhost |
| local_client@localhost |
| remote_client@abc.example.com |
+-------------------------------+

3. For each account profile identified by the previous step, convert it to a group profile:

CALL mysql.sp_migrate_firewall_user_to_group('admin@localhost', 'admins');
CALL mysql.sp_migrate_firewall_user_to_group('local_client@localhost', 'local_clients');
CALL mysql.sp_migrate_firewall_user_to_group('remote_client@localhost', 'remote_clients');

In each case, the account profile must exist and must not currently be in RECORDING mode, and
the group profile must not already exist. The resulting group profile has the named account as
its single enlisted member, which is also set as the group training account. The group profile
operational mode is taken from the account profile operational mode.

4. (Optional) Remove sp_migrate_firewall_user_to_group():

DROP PROCEDURE IF EXISTS mysql.sp_migrate_firewall_user_to_group;

For additional details about sp_migrate_firewall_user_to_group(), see Firewall
Miscellaneous Stored Procedures.

8.4.7.4 MySQL Enterprise Firewall Reference

The following sections provide a reference to MySQL Enterprise Firewall elements:

• MySQL Enterprise Firewall Tables

• MySQL Enterprise Firewall Stored Procedures

• MySQL Enterprise Firewall Administrative Functions

• MySQL Enterprise Firewall System Variables

• MySQL Enterprise Firewall Status Variables

MySQL Enterprise Firewall Tables

MySQL Enterprise Firewall maintains profile information on a per-group and per-account basis, using
tables in the firewall database for persistent storage and Information Schema and Performance
Schema tables to provide views into in-memory cached data. When enabled, the firewall bases
operational decisions on the cached data. The firewall database can be the mysql system database or
a custom schema (see Installing MySQL Enterprise Firewall).

Tables in the firewall database are covered in this section. For information about MySQL
Enterprise Firewall Information Schema and Performance Schema tables, see Section 28.7,
“INFORMATION_SCHEMA MySQL Enterprise Firewall Tables”, and Section 29.12.17, “Performance
Schema Firewall Tables”, respectively.

• Firewall Group Profile Tables

• Firewall Account Profile Tables

Firewall Group Profile Tables

As of MySQL 8.0.23, MySQL Enterprise Firewall maintains group profile information using tables in the
mysql system database for persistent storage and Performance Schema tables to provide views into
in-memory cached data.

1717

MySQL Enterprise Firewall

Each system and Performance Schema table is accessible only by accounts that have the SELECT
privilege for it.

The mysql.firewall_groups table lists names and operational modes of registered firewall
group profiles. The table has the following columns (with the corresponding Performance Schema
firewall_groups table having similar but not necessarily identical columns):

• NAME

The group profile name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING,
PROTECTING, and RECORDING. For details about their meanings, see Firewall Concepts.

• USERHOST

The training account for the group profile, to be used when the profile is in RECORDING mode. The
value is NULL, or a non-NULL account that has the format user_name@host_name:

• If the value is NULL, the firewall records allowlist rules for statements received from any account
that is a member of the group.

• If the value is non-NULL, the firewall records allowlist rules only for statements received from the
named account (which should be a member of the group).

The mysql.firewall_group_allowlist table lists allowlist rules of registered firewall group
profiles. The table has the following columns (with the corresponding Performance Schema
firewall_group_allowlist table having similar but not necessarily identical columns):

• NAME

The group profile name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is
the union of its rules.

• ID

An integer column that is a primary key for the table.

The mysql.firewall_membership table lists the members (accounts) of registered firewall
group profiles. The table has the following columns (with the corresponding Performance Schema
firewall_membership table having similar but not necessarily identical columns):

• GROUP_ID

The group profile name.

• MEMBER_ID

The name of an account that is a member of the profile.

Firewall Account Profile Tables

MySQL Enterprise Firewall maintains account profile information using tables in the mysql system
database for persistent storage and INFORMATION_SCHEMA tables to provide views into in-memory
cached data.

Each mysql system database table is accessible only by accounts that have the SELECT privilege for
it. The INFORMATION_SCHEMA tables are accessible by anyone.

1718

MySQL Enterprise Firewall

As of MySQL 8.0.26, these tables are deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

The mysql.firewall_users table lists names and operational modes of registered firewall account
profiles. The table has the following columns (with the corresponding MYSQL_FIREWALL_USERS table
having similar but not necessarily identical columns):

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING,
PROTECTING, RECORDING, and RESET. For details about their meanings, see Firewall Concepts.

The mysql.firewall_whitelist table lists allowlist rules of registered firewall account profiles.
The table has the following columns (with the corresponding MYSQL_FIREWALL_WHITELIST table
having similar but not necessarily identical columns):

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is
the union of its rules.

• ID

An integer column that is a primary key for the table. This column was added in MySQL 8.0.12.

MySQL Enterprise Firewall Stored Procedures

MySQL Enterprise Firewall stored procedures perform tasks such as registering profiles with the
firewall, establishing their operational mode, and managing transfer of firewall data between the cache
and persistent storage. These procedures invoke administrative functions that provide an API for lower-
level tasks.

Firewall stored procedures are created in the mysql system database. To invoke a firewall stored
procedure, either do so while mysql is the default database, or qualify the procedure name with the
database name. For example:

CALL mysql.sp_set_firewall_group_mode(group, mode);

• Firewall Group Profile Stored Procedures

• Firewall Account Profile Stored Procedures

• Firewall Miscellaneous Stored Procedures

Firewall Group Profile Stored Procedures

These stored procedures perform management operations on firewall group profiles:

• sp_firewall_group_delist(group, user)

This stored procedure removes an account from a firewall group profile.

If the call succeeds, the change in group membership is made to both the in-memory cache and
persistent storage.

Arguments:

1719

MySQL Enterprise Firewall

• group: The name of the affected group profile.

• user: The account to remove, as a string in user_name@host_name format.

Example:

CALL sp_firewall_group_delist('g', 'fwuser@localhost');

This procedure was added in MySQL 8.0.23.

• sp_firewall_group_enlist(group, user)

This stored procedure adds an account to a firewall group profile. It is not necessary to register the
account itself with the firewall before adding the account to the group.

If the call succeeds, the change in group membership is made to both the in-memory cache and
persistent storage.

Arguments:

• group: The name of the affected group profile.

• user: The account to add, as a string in user_name@host_name format.

Example:

CALL sp_firewall_group_enlist('g', 'fwuser@localhost');

This procedure was added in MySQL 8.0.23.

• sp_reload_firewall_group_rules(group)

This stored procedure provides control over firewall operation for individual group profiles. The
procedure uses firewall administrative functions to reload the in-memory rules for a group profile from
the rules stored in the mysql.firewall_group_allowlist table.

Arguments:

• group: The name of the affected group profile.

Example:

CALL sp_reload_firewall_group_rules('myapp');

Warning

This procedure clears the group profile in-memory allowlist
rules before reloading them from persistent storage, and sets
the profile mode to OFF. If the profile mode was not OFF prior
to the sp_reload_firewall_group_rules() call, use
sp_set_firewall_group_mode() to restore its previous mode after
reloading the rules. For example, if the profile was in PROTECTING mode, that
is no longer true after calling sp_reload_firewall_group_rules() and
you must set it to PROTECTING again explicitly.

This procedure was added in MySQL 8.0.23.

• sp_set_firewall_group_mode(group, mode)

This stored procedure establishes the operational mode for a firewall group profile, after registering
the profile with the firewall if it was not already registered. The procedure also invokes firewall
administrative functions as necessary to transfer firewall data between the cache and persistent

1720

MySQL Enterprise Firewall

storage. This procedure may be called even if the mysql_firewall_mode system variable is OFF,
although setting the mode for a profile has no operational effect until the firewall is enabled.

If the profile previously existed, any recording limitation for it remains unchanged. To set or clear the
limitation, call sp_set_firewall_group_mode_and_user() instead.

Arguments:

• group: The name of the affected group profile.

• mode: The operational mode for the profile, as a string. Permitted mode values are OFF,
DETECTING, PROTECTING, and RECORDING. For details about their meanings, see Firewall
Concepts.

Example:

CALL sp_set_firewall_group_mode('myapp', 'PROTECTING');

This procedure was added in MySQL 8.0.23.

• sp_set_firewall_group_mode_and_user(group, mode, user)

This stored procedure registers a group with the firewall and establishes its operational mode, similar
to sp_set_firewall_group_mode(), but also specifies the training account to be used when the
group is in RECORDING mode.

Arguments:

• group: The name of the affected group profile.

• mode: The operational mode for the profile, as a string. Permitted mode values are OFF,
DETECTING, PROTECTING, and RECORDING. For details about their meanings, see Firewall
Concepts.

• user: The training account for the group profile, to be used when the profile is in RECORDING
mode. The value is NULL, or a non-NULL account that has the format user_name@host_name:

• If the value is NULL, the firewall records allowlist rules for statements received from any account
that is a member of the group.

• If the value is non-NULL, the firewall records allowlist rules only for statements received from the
named account (which should be a member of the group).

Example:

CALL sp_set_firewall_group_mode_and_user('myapp', 'RECORDING', 'myapp_user1@localhost');

This procedure was added in MySQL 8.0.23.

Firewall Account Profile Stored Procedures

These stored procedures perform management operations on firewall account profiles:

• sp_reload_firewall_rules(user)

This stored procedure provides control over firewall operation for individual account profiles. The
procedure uses firewall administrative functions to reload the in-memory rules for an account profile
from the rules stored in the mysql.firewall_whitelist table.

Arguments:

• user: The name of the affected account profile, as a string in user_name@host_name format.

1721

MySQL Enterprise Firewall

Example:

CALL mysql.sp_reload_firewall_rules('fwuser@localhost');

Warning

This procedure clears the account profile in-memory allowlist rules before
reloading them from persistent storage, and sets the profile mode to OFF. If
the profile mode was not OFF prior to the sp_reload_firewall_rules()
call, use sp_set_firewall_mode() to restore its previous mode after
reloading the rules. For example, if the profile was in PROTECTING mode,
that is no longer true after calling sp_reload_firewall_rules() and you
must set it to PROTECTING again explicitly.

As of MySQL 8.0.26, this procedure is deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

• sp_set_firewall_mode(user, mode)

This stored procedure establishes the operational mode for a firewall account profile, after registering
the profile with the firewall if it was not already registered. The procedure also invokes firewall
administrative functions as necessary to transfer firewall data between the cache and persistent
storage. This procedure may be called even if the mysql_firewall_mode system variable is OFF,
although setting the mode for a profile has no operational effect until the firewall is enabled.

Arguments:

• user: The name of the affected account profile, as a string in user_name@host_name format.

• mode: The operational mode for the profile, as a string. Permitted mode values are OFF,
DETECTING, PROTECTING, RECORDING, and RESET. For details about their meanings, see
Firewall Concepts.

Switching an account profile to any mode but RECORDING synchronizes its firewall cache data to
the mysql system database tables that provide persistent underlying storage. Switching the mode
from OFF to RECORDING reloads the allowlist from the mysql.firewall_whitelist table into the
cache.

If an account profile has an empty allowlist, its mode cannot be set to PROTECTING because the
profile would reject every statement, effectively prohibiting the account from executing statements.
In response to such a mode-setting attempt, the firewall produces a diagnostic message that is
returned as a result set rather than as an SQL error:

mysql> CALL mysql.sp_set_firewall_mode('a@b','PROTECTING');
+--+
| set_firewall_mode(arg_userhost, arg_mode) |
+--+
| ERROR: PROTECTING mode requested for a@b but the allowlist is empty. |
+--+

As of MySQL 8.0.26, this procedure is deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

Firewall Miscellaneous Stored Procedures

These stored procedures perform miscellaneous firewall management operations.

• sp_migrate_firewall_user_to_group(user, group)

As of MySQL 8.0.26, account profiles are deprecated because group profiles can do anything
account profiles can do. The sp_migrate_firewall_user_to_group() stored procedure
converts a firewall account profile to a group profile with the account as its single enlisted member.

1722

MySQL Enterprise Firewall

Run the firewall_profile_migration.sql script to install it. The conversion procedure is
discussed in Migrating Account Profiles to Group Profiles.

This routine requires the FIREWALL_ADMIN privilege.

Arguments:

• user: The name of the account profile to convert to a group profile, as a string in
user_name@host_name format. The account profile must exist, and must not currently be in
RECORDING mode.

• group: The name of the new group profile, which must not already exist. The new group profile
has the named account as its single enlisted member, and that member is set as the group training
account. The group profile operational mode is taken from the account profile operational mode.

Example:

CALL sp_migrate_firewall_user_to_group('fwuser@localhost', 'mygroup);

This procedure was added in MySQL 8.0.26.

MySQL Enterprise Firewall Administrative Functions

MySQL Enterprise Firewall administrative functions provide an API for lower-level tasks such as
synchronizing the firewall cache with the underlying system tables.

Under normal operation, these functions are invoked by the firewall stored procedures, not directly by
users. For that reason, these function descriptions do not include details such as information about
their arguments and return types.

• Firewall Group Profile Functions

• Firewall Account Profile Functions

• Firewall Miscellaneous Functions

Firewall Group Profile Functions

These functions perform management operations on firewall group profiles:

• firewall_group_delist(group, user)

This function removes an account from a group profile. It requires the FIREWALL_ADMIN privilege.

Example:

SELECT firewall_group_delist('g', 'fwuser@localhost');

This function was added in MySQL 8.0.23.

• firewall_group_enlist(group, user)

This function adds an account to a group profile. It requires the FIREWALL_ADMIN privilege.

It is not necessary to register the account itself with the firewall before adding the account to the
group.

Example:

SELECT firewall_group_enlist('g', 'fwuser@localhost');

This function was added in MySQL 8.0.23.

• read_firewall_group_allowlist(group, rule)

1723

MySQL Enterprise Firewall

This aggregate function updates the recorded-statement cache for the named group profile
through a SELECT statement on the mysql.firewall_group_allowlist table. It requires the
FIREWALL_ADMIN privilege.

Example:

SELECT read_firewall_group_allowlist('my_fw_group', fgw.rule)
FROM mysql.firewall_group_allowlist AS fgw
WHERE NAME = 'my_fw_group';

This function was added in MySQL 8.0.23.

• read_firewall_groups(group, mode, user)

This aggregate function updates the firewall group profile cache through a SELECT statement on the
mysql.firewall_groups table. It requires the FIREWALL_ADMIN privilege.

Example:

SELECT read_firewall_groups('g', 'RECORDING', 'fwuser@localhost')
FROM mysql.firewall_groups;

This function was added in MySQL 8.0.23.

• set_firewall_group_mode(group, mode[, user])

This function manages the group profile cache, establishes the profile operational mode, and
optionally specifies the profile training account. It requires the FIREWALL_ADMIN privilege.

If the optional user argument is not given, any previous user setting for the profile remains
unchanged. To change the setting, call the function with a third argument.

If the optional user argument is given, it specifies the training account for the group profile, to be
used when the profile is in RECORDING mode. The value is NULL, or a non-NULL account that has
the format user_name@host_name:

• If the value is NULL, the firewall records allowlist rules for statements received from any account
that is a member of the group.

• If the value is non-NULL, the firewall records allowlist rules only for statements received from the
named account (which should be a member of the group).

Example:

SELECT set_firewall_group_mode('g', 'DETECTING');

This function was added in MySQL 8.0.23.

Firewall Account Profile Functions

These functions perform management operations on firewall account profiles:

• read_firewall_users(user, mode)

This aggregate function updates the firewall account profile cache through a SELECT statement on
the mysql.firewall_users table. It requires the FIREWALL_ADMIN privilege or the deprecated
SUPER privilege.

Example:

SELECT read_firewall_users('fwuser@localhost', 'RECORDING')
FROM mysql.firewall_users;

1724

MySQL Enterprise Firewall

As of MySQL 8.0.26, this function is deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

• read_firewall_whitelist(user, rule)

This aggregate function updates the recorded-statement cache for the named account profile
through a SELECT statement on the mysql.firewall_whitelist table. It requires the
FIREWALL_ADMIN privilege or the deprecated SUPER privilege.

Example:

SELECT read_firewall_whitelist('fwuser@localhost', fw.rule)
FROM mysql.firewall_whitelist AS fw
WHERE USERHOST = 'fwuser@localhost';

As of MySQL 8.0.26, this function is deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

• set_firewall_mode(user, mode)

This function manages the account profile cache and establishes the profile operational mode. It
requires the FIREWALL_ADMIN privilege or the deprecated SUPER privilege.

Example:

SELECT set_firewall_mode('fwuser@localhost', 'RECORDING');

As of MySQL 8.0.26, this function is deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

Firewall Miscellaneous Functions

These functions perform miscellaneous firewall operations:

• mysql_firewall_flush_status()

This function resets several firewall status variables to 0:

• Firewall_access_denied

• Firewall_access_granted

• Firewall_access_suspicious

This function requires the FIREWALL_ADMIN privilege or the deprecated SUPER privilege.

Example:

SELECT mysql_firewall_flush_status();

• normalize_statement(stmt)

This function normalizes an SQL statement into the digest form used for allowlist rules. It requires the
FIREWALL_ADMIN privilege or the deprecated SUPER privilege.

Example:

SELECT normalize_statement('SELECT * FROM t1 WHERE c1 > 2');

Note

The same digest functionality is available outside firewall context using the
STATEMENT_DIGEST_TEXT() SQL function.

1725

MySQL Enterprise Firewall

MySQL Enterprise Firewall System Variables

MySQL Enterprise Firewall supports the following system variables. Use them to configure firewall
operation. These variables are unavailable unless the firewall is installed (see Section 8.4.7.2,
“Installing or Uninstalling MySQL Enterprise Firewall”).

• mysql_firewall_mode

Command-Line Format --mysql-firewall-mode[={OFF|ON}]

System Variable mysql_firewall_mode

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether MySQL Enterprise Firewall is enabled (the default) or disabled.

• mysql_firewall_trace

Command-Line Format --mysql-firewall-trace[={OFF|ON}]

System Variable mysql_firewall_trace

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether the MySQL Enterprise Firewall trace is enabled or disabled (the default). When
mysql_firewall_trace is enabled, for PROTECTING mode, the firewall writes rejected
statements to the error log.

MySQL Enterprise Firewall Status Variables

MySQL Enterprise Firewall supports the following status variables. Use them to obtain information
about firewall operational status. These variables are unavailable unless the firewall is installed (see
Section 8.4.7.2, “Installing or Uninstalling MySQL Enterprise Firewall”). Firewall status variables are
set to 0 whenever the MYSQL_FIREWALL plugin is installed or the server is started. Many of them are
reset to zero by the mysql_firewall_flush_status() function (see MySQL Enterprise Firewall
Administrative Functions).

• Firewall_access_denied

The number of statements rejected by MySQL Enterprise Firewall.

• Firewall_access_granted

The number of statements accepted by MySQL Enterprise Firewall.

• Firewall_access_suspicious

The number of statements logged by MySQL Enterprise Firewall as suspicious for users who are in
DETECTING mode.

• Firewall_cached_entries

1726

MySQL Enterprise Data Masking and De-Identification

The number of statements recorded by MySQL Enterprise Firewall, including duplicates.

8.5 MySQL Enterprise Data Masking and De-Identification
Note

MySQL Enterprise Data Masking and De-Identification is an extension included
in MySQL Enterprise Edition, a commercial product. To learn more about
commercial products, https://www.mysql.com/products/.

MySQL Enterprise Edition provides data masking and de-identification capabilities:

• Transformation of existing data to mask it and remove identifying characteristics, such as changing
all digits of a credit card number but the last four to 'X' characters.

• Generation of random data, such as email addresses and payment card numbers.

• Substitution of data by data from dictionaries stored in the database. The dictionaries are easily
replicated in a standard way. Administration is restricted to authorized users who are granted special
privileges so that only they can create and modify the dictionaries.

Note

MySQL Enterprise Data Masking and De-Identification was implemented
originally in MySQL 8.0.13 as a plugin library. As of MySQL 8.0.33, MySQL
Enterprise Edition also provides components to access data masking and de-
identification capabilities. For information about the similarities and differences,
see Table 8.45, “Comparison Between Data-Masking Components and Plugin
Elements”.

If you are using MySQL Enterprise Data Masking and De-Identification for
the first time, consider installing the components for access to the ongoing
enhancements only available with component infrastructure.

The way that applications use these capabilities depends on the purpose for which the data is used
and who accesses it:

• Applications that use sensitive data may protect it by performing data masking and permitting use of
partially masked data for client identification. Example: A call center may ask for clients to provide
their last four Social Security Number digits.

• Applications that require properly formatted data, but not necessarily the original data, can
synthesize sample data. Example: An application developer who is testing data validators but has no
access to original data may synthesize random data with the same format.

• Applications that must substitute a real name with a dictionary term to protect to protect sensitive
information, but still provide realistic content to application users. Example: A user in training who is
restricted from viewing addresses gets a random term from dictionary city names instead of the
real city name. A variant of this scenario may be that the real city name is replaced only if it exists in
usa_city_names.

Example 1:

Medical research facilities can hold patient data that comprises a mix of personal and medical data.
This may include genetic sequences (long strings), test results stored in JSON format, and other data
types. Although the data may be used mostly by automated analysis software, access to genome data
or test results of particular patients is still possible. In such cases, data masking should be used to
render this information not personally identifiable.

Example 2:

A credit card processor company provides a set of services using sensitive data, such as:

1727

https://www.mysql.com/products/

Data-Masking Components Versus the Data-Masking Plugin

• Processing a large number of financial transactions per second.

• Storing a large amount of transaction-related data.

• Protecting transaction-related data with strict requirements for personal data.

• Handling client complaints about transactions using reversible or partially masked data.

A typical transaction may include many types of sensitive information, including:

• Credit card number.

• Transaction type and amount.

• Merchant type.

• Transaction cryptogram (to confirm transaction legitimacy).

• Geolocation of GPS-equipped terminal (for fraud detection).

Those types of information may then be joined within a bank or other card-issuing financial institution
with client personal data, such as:

• Full client name (either person or company).

• Address.

• Date of birth.

• Social Security number.

• Email address.

• Phone number.

Various employee roles within both the card processing company and the financial institution require
access to that data. Some of these roles may require access only to masked data. Other roles may
require access to the original data on a case-to-case basis, which is recorded in audit logs.

Masking and de-identification are core to regulatory compliance, so MySQL Enterprise Data Masking
and De-Identification can help application developers satisfy privacy requirements:

• PCI – DSS: Payment Card Data.

• HIPAA: Privacy of Health Data, Health Information Technology for Economic and Clinical Health Act
(HITECH Act).

• EU General Data Protection Directive (GDPR): Protection of Personal Data.

• Data Protection Act (UK): Protection of Personal Data.

• Sarbanes Oxley, GLBA, The USA Patriot Act, Identity Theft and Assumption Deterrence Act of 1998.

• FERPA – Student Data, NASD, CA SB1386 and AB 1950, State Data Protection Laws, Basel II.

The following sections describe the elements of MySQL Enterprise Data Masking and De-Identification,
discuss how to install and use it, and provide reference information for its elements.

8.5.1 Data-Masking Components Versus the Data-Masking Plugin

Prior to 8.0.33, MySQL enabled masking and de-identification capabilities using a server-side plugin,
but transitioned to use the component infrastructure in MySQL 8.0.33. The following table briefly
compares MySQL Enterprise Data Masking and De-Identification components and the plugin library to
provide an overview of their differences. It may assist you in making the transition from the plugin to
components.

1728

MySQL Enterprise Data Masking and De-Identification Components

Note

Only the data-masking components or the plugin should be enabled at a time.
Enabling both components and the plugin is unsupported and results may not
be as anticipated.

Table 8.45 Comparison Between Data-Masking Components and Plugin Elements

Category Components Plugin

Interface Service functions,
loadable functions

Loadable functions

Support for multibyte character sets Yes, for general-
purpose masking
functions

No

General-purpose masking functions mask_inner(),
mask_outer()

mask_inner(),
mask_outer()

Masking of specific types PAN, SSN, IBAN, UUID,
Canada SIN, UK NIN

PAN, SSN

Random generation, specific types email, US phone, PAN,
SSN, IBAN, UUID,
Canada SIN, UK NIN

email, US phone, PAN,
SSN

Random generation of integer from given range Yes Yes

Persisting substitution dictionaries Database File

Privilege to manage dictionaries Dedicated privilege FILE

Automated loadable-function registration/
deregistration during installation/uninstallation

Yes No

Enhancements to existing functions More arguments
added to the
gen_rnd_email()
function

N/A

8.5.2 MySQL Enterprise Data Masking and De-Identification Components

MySQL Enterprise Data Masking and De-Identification implements these elements:

• A table in the mysql system database for persistent storage of dictionaries and terms.

• A component named component_masking that implements masking functionality and exposes it as
service interface for developers.

Developers who wish to incorporate the same service functions used by component_masking
should consult the internal\components\masking\component_masking.h file in a MySQL
source distribution or https://dev.mysql.com/doc/dev/mysql-server/latest.

• A component named component_masking_functions that provides loadable functions.

The set of loadable functions enables an SQL-level API for performing masking and de-identification
operations. Some of the functions require the MASKING_DICTIONARIES_ADMIN dynamic privilege.

8.5.2.1 MySQL Enterprise Data Masking and De-Identification Component Installation

As of MySQL 8.0.33, components provide access to MySQL Enterprise Data Masking and De-
Identification functionality. Previously, MySQL implemented masking and de-identification capabilities
as a plugin library file containing a plugin and several loadable functions. Before you begin the
component installation, remove the data_masking plugin and all of its loadable functions to avoid
conflicts. For instructions, see Section 8.5.3.1, “MySQL Enterprise Data Masking and De-Identification
Plugin Installation”.

1729

MySQL Enterprise Data Masking and De-Identification Components

MySQL Enterprise Data Masking and De-Identification database table and components are:

• masking_dictionaries table

Purpose: A table in the mysql system schema that provides persistent storage of dictionaries and
terms.

• component_masking component

Purpose: The component implements the core of the masking functionality and exposes it as
services.

URN: file://component_masking

• component_masking_functions component

Purpose: The component exposes all functionality of the component_masking component as
loadable functions. Some of the functions require the MASKING_DICTIONARIES_ADMIN dynamic
privilege.

URN: file://component_masking_functions

To set up MySQL Enterprise Data Masking and De-Identification, do the following:

1. Create the masking_dictionaries table.

CREATE TABLE IF NOT EXISTS
mysql.masking_dictionaries(
 Dictionary VARCHAR(256) NOT NULL,
 Term VARCHAR(256) NOT NULL,
 UNIQUE INDEX dictionary_term_idx (Dictionary, Term),
 INDEX dictionary_idx (Dictionary)
) ENGINE = InnoDB DEFAULT CHARSET=utf8mb4;

2. Use the INSTALL COMPONENT SQL statement to install data masking components.

INSTALL COMPONENT 'file://component_masking';
INSTALL COMPONENT 'file://component_masking_functions';

If the components and functions are used on a replication source server, install them on all replica
servers as well to avoid replication issues. While the components are loaded, information about
them is available as described in Section 7.5.2, “Obtaining Component Information”.

To remove MySQL Enterprise Data Masking and De-Identification, do the following:

1. Use the UNINSTALL COMPONENT SQL statement to uninstall the data masking components.

UNINSTALL COMPONENT 'file://component_masking_functions';
UNINSTALL COMPONENT 'file://component_masking';

2. Drop the masking_dictionaries table.

DROP TABLE mysql.masking_dictionaries;

component_masking_functions installs all of the related loadable functions automatically.
Similarly, the component when uninstalled also automatically uninstalls those functions. For general
information about installing or uninstalling components, see Section 7.5.1, “Installing and Uninstalling
Components”.

8.5.2.2 Using MySQL Enterprise Data Masking and De-Identification Components

Before using MySQL Enterprise Data Masking and De-Identification, install it according to the
instructions provided at Section 8.5.2.1, “MySQL Enterprise Data Masking and De-Identification
Component Installation”.

1730

MySQL Enterprise Data Masking and De-Identification Components

To use MySQL Enterprise Data Masking and De-Identification in applications, invoke the functions
that are appropriate for the operations you wish to perform. For detailed function descriptions,
see Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”. This section demonstrates how to use the functions to carry out some representative
tasks. It first presents an overview of the available functions, followed by some examples of how the
functions might be used in real-world context:

• Masking Data to Remove Identifying Characteristics

• Generating Random Data with Specific Characteristics

• Generating Random Data Using Dictionaries

• Using Masked Data for Customer Identification

• Creating Views that Display Masked Data

Masking Data to Remove Identifying Characteristics

MySQL provides general-purpose masking component functions that mask arbitrary strings, and
special-purpose masking functions that mask specific types of values.

General-Purpose Masking Component Functions

mask_inner() and mask_outer() are general-purpose functions that mask parts of arbitrary
strings based on position within the string. Both functions support an input string that is encoded in any
character set:

• mask_inner() masks the interior of its string argument, leaving the ends unmasked. Other
arguments specify the sizes of the unmasked ends.

mysql> SELECT mask_inner('This is a string', 5, 1);
+--------------------------------------+
| mask_inner('This is a string', 5, 1) |
+--------------------------------------+
| This XXXXXXXXXXg |
+--------------------------------------+
mysql> SELECT mask_inner('This is a string', 1, 5);
+--------------------------------------+
| mask_inner('This is a string', 1, 5) |
+--------------------------------------+
| TXXXXXXXXXXtring |
+--------------------------------------+
mysql> SELECT mask_inner("かすみがうら市", 3, 1);
+----------------------------------+
| mask_inner("かすみがうら市", 3, 1) |
+----------------------------------+
| かすみXXX市 |
+----------------------------------+
mysql> SELECT mask_inner("かすみがうら市", 1, 3);
+----------------------------------+
| mask_inner("かすみがうら市", 1, 3) |
+----------------------------------+
| かXXXうら市 |
+----------------------------------+

• mask_outer() does the reverse, masking the ends of its string argument, leaving the interior
unmasked. Other arguments specify the sizes of the masked ends.

mysql> SELECT mask_outer('This is a string', 5, 1);
+--------------------------------------+
| mask_outer('This is a string', 5, 1) |
+--------------------------------------+
| XXXXXis a strinX |
+--------------------------------------+
mysql> SELECT mask_outer('This is a string', 1, 5);
+--------------------------------------+

1731

MySQL Enterprise Data Masking and De-Identification Components

| mask_outer('This is a string', 1, 5) |
+--------------------------------------+
| Xhis is a sXXXXX |
+--------------------------------------+

By default, mask_inner() and mask_outer() use 'X' as the masking character, but permit an
optional masking-character argument:

mysql> SELECT mask_inner('This is a string', 5, 1, '*');
+---+
| mask_inner('This is a string', 5, 1, '*') |
+---+
| This **********g |
+---+
mysql> SELECT mask_inner("かすみがうら市", 2, 2, "#");
+---------------------------------------+
| mask_inner("かすみがうら市", 2, 2, "#") |
+---------------------------------------+
| かす###ら市 |
+---------------------------------------+

Special-Purpose Masking Component Functions

Other masking functions expect a string argument representing a specific type of value and mask it to
remove identifying characteristics.

Note

The examples here supply function arguments using the random value
generation functions that return the appropriate type of value. For more
information about generation functions, see Generating Random Data with
Specific Characteristics.

Payment card Primary Account Number masking. Masking functions provide strict and relaxed
masking of Primary Account numbers.

• mask_pan() masks all but the last four digits of the number:

mysql> SELECT mask_pan(gen_rnd_pan());
+-------------------------+
| mask_pan(gen_rnd_pan()) |
+-------------------------+
| XXXXXXXXXXXX2461 |
+-------------------------+

• mask_pan_relaxed() is similar but does not mask the first six digits that indicate the payment
card issuer unmasked:

mysql> SELECT mask_pan_relaxed(gen_rnd_pan());
+---------------------------------+
| mask_pan_relaxed(gen_rnd_pan()) |
+---------------------------------+
| 770630XXXXXX0807 |
+---------------------------------+

International Bank Account Number masking. mask_iban() masks all but the first two letters
(denoting the country) of the number:

mysql> SELECT mask_iban(gen_rnd_iban());
+---------------------------+
| mask_iban(gen_rnd_iban()) |
+---------------------------+
| ZZ** **** **** **** |
+---------------------------+

Universally Unique Identifier masking. mask_uuid() masks all meaningful characters:

mysql> SELECT mask_uuid(gen_rnd_uuid());
+--------------------------------------+

1732

MySQL Enterprise Data Masking and De-Identification Components

| mask_uuid(gen_rnd_uuid()) |
+--------------------------------------+
| ********-****-****-****-************ |
+--------------------------------------+

US Social Security Number masking. mask_ssn() masks all but the last four digits of the
number:

mysql> SELECT mask_ssn(gen_rnd_ssn());
+-------------------------+
| mask_ssn(gen_rnd_ssn()) |
+-------------------------+
| ***-**-1723 |
+-------------------------+

Canada Social Insurance Number masking. mask_canada_sin() masks meaningful digits of
the number:

mysql> SELECT mask_canada_sin(gen_rnd_canada_sin());
+---------------------------------------+
| mask_canada_sin(gen_rnd_canada_sin()) |
+---------------------------------------+
| XXX-XXX-XXX |
+---------------------------------------+

United Kingdom National Insurance Number masking. mask_uk_nin() masks all but the first
two digits of the number:

mysql> SELECT mask_uk_nin(gen_rnd_uk_nin());
+-------------------------------+
| mask_uk_nin(gen_rnd_uk_nin()) |
+-------------------------------+
| ZH******* |
+-------------------------------+

Generating Random Data with Specific Characteristics

Several component functions generate random values. These values can be used for testing,
simulation, and so forth.

gen_range() returns a random integer selected from a given range:

mysql> SELECT gen_range(1, 10);
+------------------+
| gen_range(1, 10) |
+------------------+
| 6 |
+------------------+

gen_rnd_uk_nin() returns a random UK National Insurance Number (NIN).

Because it cannot be guaranteed that the number generated has not been assigned, the result of
gen_rnd_uk_nin() should never be displayed (except possibly in testing). For display in user-facing
applications, always employ a masking function such as mask_uk_nin(), as shown here:

mysql> SELECT mask_uk_nin(gen_rnd_uk_nin());
+---------------------------------+
| mask_uk_nin(gen_rnd_uk_nin()) |
+---------------------------------+
| OE******* |
+---------------------------------+

gen_rnd_email() returns a random email address with a specified number of digits for the name
and surname parts in the specified domain, mynet.com in the following example:

mysql> SELECT gen_rnd_email(6, 8, 'mynet.com');
+----------------------------------+
| gen_rnd_email(6, 8, 'mynet.com') |
+----------------------------------+
| txdona.uamdqvum@mynet.com |

1733

MySQL Enterprise Data Masking and De-Identification Components

+----------------------------------+

gen_rnd_iban() returns a number chosen from a range not used for legitimate numbers:

mysql> SELECT gen_rnd_iban('XO', 24);
+-------------------------------+
| gen_rnd_iban('XO', 24) |
+-------------------------------+
| XO25 SL7A PGQR B9NN 6IVB RFE8 |
+-------------------------------+

gen_rnd_pan() returns a random payment card Primary Account Number (PAN).

Because it cannot be guaranteed that the number generated is not assigned to a legitimate
payment account, the result of gen_rnd_pan() should never be displayed, other than for testing
purposes. For display in applications, always employ a masking function such as mask_pan() or
mask_pan_relaxed(). We show such use of the latter function with gen_rnd_pan() here:

mysql> SELECT mask_pan_relaxed(gen_rnd_pan());
+-----------------------------------+
| mask_pan_relaxed(gen_rnd_pan()) |
+-----------------------------------+
| 707064XXXXXX4850 |
+-----------------------------------+

gen_rnd_ssn() returns a random US Social Security Number whose first part is chosen from a range
not used for legitimate numbers:

mysql> SELECT gen_rnd_ssn();
+---------------+
| gen_rnd_ssn() |
+---------------+
| 912-45-1615 |
+---------------+

gen_rnd_us_phone() returns a random US phone number in the 555 area code not used for
legitimate numbers:

mysql> SELECT gen_rnd_us_phone();
+--------------------+
| gen_rnd_us_phone() |
+--------------------+
| 1-555-747-5627 |
+--------------------+

gen_rnd_uuid() returns a number chosen from a range not used for legitimate identifiers:

mysql> SELECT gen_rnd_uuid();
+--------------------------------------+
| gen_rnd_uuid() |
+--------------------------------------+
| 68946384-6880-3150-6889-928076732539 |
+--------------------------------------+

Generating Random Data Using Dictionaries

MySQL Enterprise Data Masking and De-Identification enables dictionaries to be used as
sources of random values called terms. To use a dictionary, it must first be added to the
masking_dictionaries system table and given a name. The dictionaries are read from the
table and loaded to the cache during initialization of the components (on server startup). Terms
then can then be added, removed, and selected from dictionaries and used as random values or as
replacements for other values.

Note

Always edit dictionaries using dictionary administration functions rather than
modifying the table directly. If you manipulate the table manually, the dictionary
cache becomes inconsistent with the table.

1734

MySQL Enterprise Data Masking and De-Identification Components

A valid masking_dictionaries table has these characteristics:

• An administrator created the masking_dictionaries system table in the mysql schema as
follows:

CREATE TABLE IF NOT EXISTS
masking_dictionaries(
 Dictionary VARCHAR(256) NOT NULL,
 Term VARCHAR(256) NOT NULL,
 UNIQUE INDEX dictionary_term_idx (Dictionary, Term),
 INDEX dictionary_idx (Dictionary)
) ENGINE = InnoDB DEFAULT CHARSET=utf8mb4;

• MASKING_DICTIONARY_ADMIN privilege is required to add and remove terms, or to remove an
entire dictionary.

• The table may contain multiple dictionaries and their terms.

• Any user account can view the dictionaries. Given enough queries, all of the terms in dictionaries are
retrievable. Avoid adding sensitive data to the dictionary table.

Suppose that a dictionary named DE_cities includes these city names in Germany:

Berlin
Munich
Bremen

Use masking_dictionary_term_add() to assign a dictionary name and one term:

mysql> SELECT masking_dictionary_term_add('DE_Cities', 'Berlin');
+--+
| masking_dictionary_term_add('DE_Cities', 'Berlin') |
+--+
| 1 |
+--+
mysql> SELECT masking_dictionary_term_add('DE_Cities', 'Munich');
+--+
| masking_dictionary_term_add('DE_Cities', 'Munich') |
+--+
| 1 |
+--+
mysql> SELECT masking_dictionary_term_add('DE_Cities', 'Bremen');
+--+
| masking_dictionary_term_add('DE_Cities', 'Bremen') |
+--+
| 1 |
+--+

Also suppose that a dictionary named US_Cities contains these city names in the United States:

Houston
Phoenix
Detroit

mysql> SELECT masking_dictionary_term_add('US_Cities', 'Houston');
+---+
| masking_dictionary_term_add('US_Cities', 'Houston') |
+---+
| 1 |
+---+
mysql> SELECT masking_dictionary_term_add('US_Cities', 'Phoenix');
+---+
| masking_dictionary_term_add('US_Cities', 'Phoenix') |
+---+
| 1 |
+---+
mysql> SELECT masking_dictionary_term_add('US_Cities', 'Detroit');
+---+
| masking_dictionary_term_add('US_Cities', 'Detroit') |
+---+

1735

MySQL Enterprise Data Masking and De-Identification Components

| 1 |
+---+

To select a random term from a dictionary, use gen_dictionary():

mysql> SELECT gen_dictionary('DE_Cities');
+-----------------------------+
| gen_dictionary('DE_Cities') |
+-----------------------------+
| Berlin |
+-----------------------------+
mysql> SELECT gen_dictionary('US_Cities');
+-----------------------------+
| gen_dictionary('US_Cities') |
+-----------------------------+
| Phoenix |
+-----------------------------+

To select a random term from multiple dictionaries, randomly select one of the dictionaries, then select
a term from it:

mysql> SELECT gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities'));
+---+
| gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities')) |
+---+
| Detroit |
+---+
mysql> SELECT gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities'));
+---+
| gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities')) |
+---+
| Bremen |
+---+

The gen_blocklist() function enables a term from one dictionary to be replaced by a term from
another dictionary, which effects masking by substitution. Its arguments are the term to replace, the
dictionary in which the term appears, and the dictionary from which to choose a replacement. For
example, to substitute a US city for a German city, or vice versa, use gen_blocklist() like this:

mysql> SELECT gen_blocklist('Munich', 'DE_Cities', 'US_Cities');
+---+
| gen_blocklist('Munich', 'DE_Cities', 'US_Cities') |
+---+
| Houston |
+---+
mysql> SELECT gen_blocklist('El Paso', 'US_Cities', 'DE_Cities');
+--+
| gen_blocklist('El Paso', 'US_Cities', 'DE_Cities') |
+--+
| Bremen |
+--+

If the term to replace is not in the first dictionary, gen_blocklist() returns it unchanged:

mysql> SELECT gen_blocklist('Moscow', 'DE_Cities', 'US_Cities');
+---+
| gen_blocklist('Moscow', 'DE_Cities', 'US_Cities') |
+---+
| Moscow |
+---+

Using Masked Data for Customer Identification

At customer-service call centers, one common identity verification technique is to ask customers to
provide their last four Social Security Number (SSN) digits. For example, a customer might say her
name is Joanna Bond and that her last four SSN digits are 0007.

Suppose that a customer table containing customer records has these columns:

1736

MySQL Enterprise Data Masking and De-Identification Components

• id: Customer ID number.

• first_name: Customer first name.

• last_name: Customer last name.

• ssn: Customer Social Security Number.

For example, the table might be defined as follows:

CREATE TABLE customer
(
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 first_name VARCHAR(40),
 last_name VARCHAR(40),
 ssn VARCHAR(11)
);

The application used by customer-service representatives to check the customer SSN might execute a
query like this:

mysql> SELECT id, ssn
 -> FROM customer
 -> WHERE first_name = 'Joanna' AND last_name = 'Bond';
+-----+-------------+
| id | ssn |
+-----+-------------+
| 786 | 906-39-0007 |
+-----+-------------+

However, that exposes the SSN to the customer-service representative, who has no need to see
anything but the last four digits. Instead, the application can use this query to display only the masked
SSN:

mysql> SELECT id, mask_ssn(CONVERT(ssn USING binary)) AS masked_ssn
 -> FROM customer
 -> WHERE first_name = 'Joanna' AND last_name = 'Bond';
+-----+-------------+
| id | masked_ssn |
+-----+-------------+
| 786 | ***-**-0007 |
+-----+-------------+

Now the representative sees only what is necessary, and customer privacy is preserved.

Why was the CONVERT() function used for the argument to mask_ssn()? Because mask_ssn()
requires an argument of length 11. Thus, even though ssn is defined as VARCHAR(11), if the ssn
column has a multibyte character set, it may appear to be longer than 11 bytes when passed to a
loadable function, and returns NULL while logging the error. Converting the value to a binary string
ensures that the function sees an argument of length 11.

A similar technique may be needed for other data masking functions when string arguments do not
have a single-byte character set.

Creating Views that Display Masked Data

If masked data from a table is used for multiple queries, it may be convenient to define a view that
produces masked data. That way, applications can select from the view without performing masking in
individual queries.

For example, a masking view on the customer table from the previous section can be defined like this:

CREATE VIEW masked_customer AS
SELECT id, first_name, last_name,
mask_ssn(CONVERT(ssn USING binary)) AS masked_ssn
FROM customer;

1737

MySQL Enterprise Data Masking and De-Identification Components

Then the query to look up a customer becomes simpler but still returns masked data:

mysql> SELECT id, masked_ssn
mysql> FROM masked_customer
mysql> WHERE first_name = 'Joanna' AND last_name = 'Bond';
+-----+-------------+
| id | masked_ssn |
+-----+-------------+
| 786 | ***-**-0007 |
+-----+-------------+

8.5.2.3 MySQL Enterprise Data Masking and De-Identification Component Function
Reference

Table 8.46 MySQL Enterprise Data Masking and De-Identification Component Functions

Name Description Introduced

gen_blocklist() Perform dictionary term
replacement

8.0.33

gen_dictionary() Return random term from
dictionary

8.0.33

gen_range() Generate random number within
range

8.0.33

gen_rnd_canada_sin() Generate random Canada Social
Insurance Number

8.0.33

gen_rnd_email() Generate random email address 8.0.33

gen_rnd_iban() Generate random International
Bank Account Number

8.0.33

gen_rnd_pan() Generate random payment card
Primary Account Number

8.0.33

gen_rnd_ssn() Generate random US Social
Security Number

8.0.33

gen_rnd_uk_nin() Generate random United
Kingdom National Insurance
Number

8.0.33

gen_rnd_us_phone() Generate random US phone
number

8.0.33

gen_rnd_uuid() Generate random Universally
Unique Identifier

8.0.33

mask_canada_sin() Mask Canada Social Insurance
Number

8.0.33

mask_iban() Mask International Bank Account
Number

8.0.33

mask_inner() Mask interior part of string 8.0.33

mask_outer() Mask left and right parts of string 8.0.33

mask_pan() Mask payment card Primary
Account Number part of string

8.0.33

mask_pan_relaxed() Mask payment card Primary
Account Number part of string

8.0.33

mask_ssn() Mask US Social Security Number 8.0.33

mask_uk_nin() Mask United Kingdom National
Insurance Number

8.0.33

1738

MySQL Enterprise Data Masking and De-Identification Components

Name Description Introduced

mask_uuid() Mask Universally Unique
Identifier part of string

8.0.33

masking_dictionary_remove()Remove dictionary from the
database table

8.0.33

masking_dictionary_term_add()Add new term to the dictionary 8.0.33

masking_dictionary_term_remove()Remove existing term from the
dictionary

8.0.33

8.5.2.4 MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions

The MySQL Enterprise Data Masking and De-Identification components includes several functions,
which may be grouped into these categories:

• Data Masking Component Functions

• Random Data Generation Component Functions

• Dictionary Masking Administration Component Functions

• Dictionary Generating Component Functions

Data Masking Component Functions

Each component function in this section performs a masking operation on its string argument and
returns the masked result.

• mask_canada_sin(str [, mask_char])

Masks a Canada Social Insurance Number (SIN) and returns the number with all meaningful digits
replaced by 'X' characters. An optional masking character can be specified.

Arguments:

• str: The string to mask. The accepted formats are:

• Nine non-separated digits.

• Nine digits grouped in pattern: xxx-xxx-xxx ('-' is any separator character).

This argument is converted to the utf8mb4 character set.

• mask_char: (Optional) The single character to use for masking. The default is 'X' if mask_char
is not given.

Return value:

The masked Canada SIN as a string encoded in the utf8mb4 character set, an error if the argument
is not the correct length, or NULL if str is in incorrect format or contains a multibyte character.

Example:

mysql> SELECT mask_canada_sin('046-454-286'), mask_canada_sin('abcdefijk');
+--------------------------------+------------------------------+
| mask_canada_sin('046-454-286') | mask_canada_sin('abcdefijk') |
+--------------------------------+------------------------------+
| XXX-XXX-XXX | XXXXXXXXX |
+--------------------------------+------------------------------+
mysql> SELECT mask_canada_sin('909');
ERROR 1123 (HY000): Can't initialize function 'mask_canada_sin'; Argument 0 is too short.
mysql> SELECT mask_canada_sin('046-454-286-909');

1739

MySQL Enterprise Data Masking and De-Identification Components

ERROR 1123 (HY000): Can't initialize function 'mask_canada_sin'; Argument 0 is too long.

• mask_iban(str [, mask_char])

Masks an International Bank Account Number (IBAN) and returns the number with all but the first
two letters (denoting the country) replaced by '*' characters. An optional masking character can be
specified.

Arguments:

• str: The string to mask. Each country can have a different national routing or account numbering
system, with a minimum of 13 and a maximum of 34 alphanumeric ASCII characters. The
accepted formats are:

• Non-separated characters.

• Character grouped by four, except the last group, and separated by space or any other
separator character (for example: xxxx-xxxx-xxxx-xx).

This argument is converted to the utf8mb4 character set.

• mask_char: (Optional) The single character to use for masking. The default is '*' if mask_char
is not given.

Return value:

The masked International Bank Account Number as a string encoded in the utf8mb4 character set,
an error if the argument is not the correct length, or NULL if str is in incorrect format or contains a
multibyte character.

Example:

mysql> SELECT mask_iban('IE12 BOFI 9000 0112 3456 78'), mask_iban('abcdefghijk');
+--+--------------------------+
| mask_iban('IE12 BOFI 9000 0112 3456 78') | mask_iban('abcdefghijk') |
+--+--------------------------+
| IE** **** **** **** **** ** | ab********* |
+--+--------------------------+
mysql> SELECT mask_iban('909');
ERROR 1123 (HY000): Can't initialize function 'mask_iban'; Argument 0 is too short.
mysql> SELECT mask_iban('IE12 BOFI 9000 0112 3456 78 IE12 BOFI 9000 0112 3456 78');
ERROR 1123 (HY000): Can't initialize function 'mask_iban'; Argument 0 is too long.

• mask_inner(str, margin1, margin2 [, mask_char])

Masks the interior part of a string, leaving the ends untouched, and returns the result. An optional
masking character can be specified.

mask_inner supports all character sets.

Arguments:

• str: The string to mask. This argument is converted to the utf8mb4 character set.

• margin1: A nonnegative integer that specifies the number of characters on the left end of the
string to remain unmasked. If the value is 0, no left end characters remain unmasked.

• margin2: A nonnegative integer that specifies the number of characters on the right end of the
string to remain unmasked. If the value is 0, no right end characters remain unmasked.

• mask_char: (Optional) The single character to use for masking. The default is 'X' if mask_char
is not given.

Return value:

1740

MySQL Enterprise Data Masking and De-Identification Components

The masked string encoded in the same character set used for str, or an error if either margin is
negative.

If the sum of the margin values is larger than the argument length, no masking occurs and the
argument is returned unchanged.

Note

The function is optimized to work faster for single byte strings (having equal
byte length and character length). For example, the utf8mb4 character set
uses only one byte for ASCII characters, so the function processes strings
containing only ASCII characters as single-byte character strings.

Example:

mysql> SELECT mask_inner('abcdef', 1, 2), mask_inner('abcdef',0, 5);
+----------------------------+---------------------------+
| mask_inner('abcdef', 1, 2) | mask_inner('abcdef',0, 5) |
+----------------------------+---------------------------+
| aXXXef | Xbcdef |
+----------------------------+---------------------------+
mysql> SELECT mask_inner('abcdef', 1, 2, '*'), mask_inner('abcdef',0, 5, '#');
+---------------------------------+--------------------------------+
| mask_inner('abcdef', 1, 2, '*') | mask_inner('abcdef',0, 5, '#') |
+---------------------------------+--------------------------------+
| a***ef | #bcdef |
+---------------------------------+--------------------------------+

• mask_outer(str, margin1, margin2 [, mask_char])

Masks the left and right ends of a string, leaving the interior unmasked, and returns the result. An
optional masking character can be specified.

mask_outer supports all character sets.

Arguments:

• str: The string to mask. This argument is converted to the utf8mb4 character set.

• margin1: A nonnegative integer that specifies the number of characters on the left end of the
string to mask. If the value is 0, no left end characters are masked.

• margin2: A nonnegative integer that specifies the number of characters on the right end of the
string to mask. If the value is 0, no right end characters are masked.

• mask_char: (Optional) The single character to use for masking. The default is 'X' if mask_char
is not given.

Return value:

The masked string encoded in the same character set used for str, or an error if either margin is
negative.

If the sum of the margin values is larger than the argument length, the entire argument is masked.

Note

The function is optimized to work faster for single byte strings (having equal
byte length and character length). For example, the utf8mb4 character set
uses only one byte for ASCII characters, so the function processes strings
containing only ASCII characters as single-byte character strings.

Example:

1741

MySQL Enterprise Data Masking and De-Identification Components

mysql> SELECT mask_outer('abcdef', 1, 2), mask_outer('abcdef',0, 5);
+----------------------------+---------------------------+
| mask_outer('abcdef', 1, 2) | mask_outer('abcdef',0, 5) |
+----------------------------+---------------------------+
| XbcdXX | aXXXXX |
+----------------------------+---------------------------+
mysql> SELECT mask_outer('abcdef', 1, 2, '*'), mask_outer('abcdef',0, 5, '#');
+---------------------------------+--------------------------------+
| mask_outer('abcdef', 1, 2, '*') | mask_outer('abcdef',0, 5, '#') |
+---------------------------------+--------------------------------+
| *bcd** | a##### |
+---------------------------------+--------------------------------+

• mask_pan(str [, mask_char])

Masks a payment card Primary Account Number (PAN) and returns the number with all but the last
four digits replaced by 'X' characters. An optional masking character can be specified.

Arguments:

• str: The string to mask. The string must contain a minimum of 14 and a maximum of 19
alphanumeric characters. This argument is converted to the utf8mb4 character set.

• mask_char: (Optional) The single character to use for masking. The default is 'X' if mask_char
is not given.

Return value:

The masked payment number as a string encoded in the utf8mb4 character set, an error if the
argument is not the correct length, or NULL if str is in incorrect format or contains a multibyte
character.

Example:

mysql> SELECT mask_pan(gen_rnd_pan());
+-------------------------+
| mask_pan(gen_rnd_pan()) |
+-------------------------+
| XXXXXXXXXXXX9102 |
+-------------------------+
mysql> SELECT mask_pan(gen_rnd_pan(19));
+---------------------------+
| mask_pan(gen_rnd_pan(19)) |
+---------------------------+
| XXXXXXXXXXXXXXX8268 |
+---------------------------+
mysql> SELECT mask_pan('a*Z');
ERROR 1123 (HY000): Can't initialize function 'mask_pan'; Argument 0 is too short.

1742

MySQL Enterprise Data Masking and De-Identification Components

• mask_pan_relaxed(str)

Masks a payment card Primary Account Number and returns the number with all but the first six and
last four digits replaced by 'X' characters. The first six digits indicate the payment card issuer. An
optional masking character can be specified.

Arguments:

• str: The string to mask. The string must be a suitable length for the Primary Account Number, but
is not otherwise checked. This argument is converted to the utf8mb4 character set.

• mask_char: (Optional) The single character to use for masking. The default is 'X' if mask_char
is not given.

Return value:

The masked payment number as a string encoded in the utf8mb4 character set, an error if the
argument is not the correct length, or NULL if str is in incorrect format or contains a multibyte
character.

Example:

mysql> SELECT mask_pan_relaxed(gen_rnd_pan());
+---------------------------------+
| mask_pan_relaxed(gen_rnd_pan()) |
+---------------------------------+
| 551279XXXXXX3108 |
+---------------------------------+
mysql> SELECT mask_pan_relaxed(gen_rnd_pan(19));
+-----------------------------------+
| mask_pan_relaxed(gen_rnd_pan(19)) |
+-----------------------------------+
| 462634XXXXXXXXX6739 |
+-----------------------------------+
mysql> SELECT mask_pan_relaxed('a*Z');
ERROR 1123 (HY000): Can't initialize function 'mask_pan_relaxed'; Argument 0 is too short.

• mask_ssn(str [, mask_char])

Masks a US Social Security Number (SSN) and returns the number with all but the last four digits
replaced by '*' characters. An optional masking character can be specified.

Arguments:

• str: The string to mask. The accepted formats are:

• Nine non-separated digits.

• Nine digits grouped in pattern: xxx-xx-xxxx ('-' is any separator character).

This argument is converted to the utf8mb4 character set.

• mask_char: (Optional) The single character to use for masking. The default is '*' if mask_char
is not given.

Return value:

The masked Social Security Number as a string encoded in the utf8mb4 character set, an error if
the argument is not the correct length, or NULL if str is in incorrect format or contains a multibyte
character.

Example:

mysql> SELECT mask_ssn('909-63-6922'), mask_ssn('cdefghijk');

1743

MySQL Enterprise Data Masking and De-Identification Components

+-------------------------+-------------------------+
| mask_ssn('909-63-6922') | mask_ssn('cdefghijk') |
+-------------------------+-------------------------+
| ***-**-6922 | *******hijk |
+-------------------------+-------------------------+
mysql> SELECT mask_ssn('909');
ERROR 1123 (HY000): Can't initialize function 'mask_ssn'; Argument 0 is too short.
mysql> SELECT mask_ssn('123456789123456789');
ERROR 1123 (HY000): Can't initialize function 'mask_ssn'; Argument 0 is too long.

• mask_uk_nin(str [, mask_char])

Masks a United Kingdom National Insurance Number (UK NIN) and returns the number with all but
the first two digits replaced by '*' characters. An optional masking character can be specified.

Arguments:

• str: The string to mask. The accepted formats are:

• Nine non-separated digits.

• Nine digits grouped in pattern: xxx-xx-xxxx ('-' is any separator character).

• Nine digits grouped in pattern: xx-xxxxxx-x ('-' is any separator character).

This argument is converted to the utf8mb4 character set.

• mask_char: (Optional) The single character to use for masking. The default is '*' if mask_char
is not given.

Return value:

The masked UK NIN as a string encoded in the utf8mb4 character set, an error if the argument is
not the correct length, or NULL if str is in incorrect format or contains a multibyte character.

Example:

mysql> SELECT mask_uk_nin('QQ 12 34 56 C'), mask_uk_nin('abcdefghi');
+------------------------------+--------------------------+
| mask_uk_nin('QQ 12 34 56 C') | mask_uk_nin('abcdefghi') |
+------------------------------+--------------------------+
| QQ ** ** ** * | ab******* |
+------------------------------+--------------------------+
mysql> SELECT mask_uk_nin('909');
ERROR 1123 (HY000): Can't initialize function 'mask_uk_nin'; Argument 0 is too short.
mysql> SELECT mask_uk_nin('abcdefghijk');
ERROR 1123 (HY000): Can't initialize function 'mask_uk_nin'; Argument 0 is too long.

1744

MySQL Enterprise Data Masking and De-Identification Components

• mask_uuid(str [, mask_char])

Masks a Universally Unique Identifier (UUID) and returns the number with all meaningful characters
replaced by '*' characters. An optional masking character can be specified.

Arguments:

• str: The string to mask. The accepted format is xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
in which 'X' is any digit and '-' is any separator character This argument is converted to the
utf8mb4 character set.

• mask_char: (Optional) The single character to use for masking. The default is '*' if mask_char
is not given.

Return value:

The masked UUID as a string encoded in the utf8mb4 character set, an error if the argument is not
the correct length, or NULL if str is in incorrect format or contains a multibyte character.

Example:

mysql> SELECT mask_uuid(gen_rnd_uuid());
+--------------------------------------+
| mask_uuid(gen_rnd_uuid()) |
+--------------------------------------+
| ********-****-****-****-************ |
+--------------------------------------+
mysql> SELECT mask_uuid('909');
ERROR 1123 (HY000): Can't initialize function 'mask_uuid'; Argument 0 is too short.
mysql> SELECT mask_uuid('123e4567-e89b-12d3-a456-426614174000-123e4567-e89b-12d3');
ERROR 1123 (HY000): Can't initialize function 'mask_uuid'; Argument 0 is too long.

Random Data Generation Component Functions

The component functions in this section generate random values for different types of data. When
possible, generated values have characteristics reserved for demonstration or test values, to avoid
having them mistaken for legitimate data. For example, gen_rnd_us_phone() returns a US phone
number that uses the 555 area code, which is not assigned to phone numbers in actual use. Individual
function descriptions describe any exceptions to this principle.

• gen_range(lower, upper)

Generates a random number chosen from a specified range.

Arguments:

• lower: An integer that specifies the lower boundary of the range.

• upper: An integer that specifies the upper boundary of the range, which must not be less than the
lower boundary.

Return value:

A random integer (encoded in the utf8mb4 character set) in the range from lower to upper,
inclusive, or NULL if the upper argument is less than lower.

Note

For better quality of random values, use RAND() instead of this function.

Example:

mysql> SELECT gen_range(100, 200), gen_range(-1000, -800);

1745

MySQL Enterprise Data Masking and De-Identification Components

+---------------------+------------------------+
| gen_range(100, 200) | gen_range(-1000, -800) |
+---------------------+------------------------+
| 177 | -917 |
+---------------------+------------------------+
mysql> SELECT gen_range(1, 0);
+-----------------+
| gen_range(1, 0) |
+-----------------+
| NULL |
+-----------------+

• gen_rnd_canada_sin()

Generates a random Canada Social Insurance Number (SIN) in AAA-BBB-CCC format. The
generated number passes the Luhn check algorithm, which ensures the consistency of this number.

Warning

Values returned from gen_rnd_canada_sin() should be used only for test
purposes, and are not suitable for publication. There is no way to guarantee
that a given return value is not assigned to a legitimate Canada SIN. Should
it be necessary to publish a gen_rnd_canada_sin() result, consider
masking it with mask_canada_sin().

Arguments:

None.

Return value:

A random Canada SIN as a string encoded in the utf8mb4 character set.

Example:

mysql> SELECT mask_canada_sin(gen_rnd_canada_sin());
+---+
| mask_canada_sin(gen_rnd_canada_sin()) |
+---+
| xxx-xxx-xxx |
+---+

• gen_rnd_email(name_size, surname_size, domain)

Generates a random email address in the form of random_name.random_surname@domain.

Arguments:

• name_size: (Optional) An integer that specifies the number of characters in the name part of an
address. The default is five if name_size is not given.

• surname_size: (Optional) An integer that specifies the number of characters in the surname part
of an address. The default is seven if surname_size is not given.

• domain: (Optional) A string that specifies the domain part of the address. The default is
example.com if domain is not given.

Return value:

A random email address as a string encoded in the utf8mb4 character set.

Example:

mysql> SELECT gen_rnd_email(name_size = 4, surname_size = 5, domain = 'mynet.com');
+--+

1746

MySQL Enterprise Data Masking and De-Identification Components

| gen_rnd_email(name_size = 4, surname_size = 5, domain = 'mynet.com') |
+--+
| lsoy.qwupp@mynet.com |
+--+
mysql> SELECT gen_rnd_email();
+---------------------------+
| gen_rnd_email() |
+---------------------------+
| ijocv.mwvhhuf@example.com |
+---------------------------+

• gen_rnd_iban([country, size])

Generates a random International Bank Account Number (IBAN) in AAAA BBBB CCCC DDDD format.
The generated string starts with a two-character country code, two check digits computed according
to the IBAN specification and random alphanumeric characters up to the required size.

Warning

Values returned from gen_rnd_iban() should be used only for test
purposes, and are not suitable for publication if used with a valid country
code. There is no way to guarantee that a given return value is not
assigned to a legitimate bank account. Should it be necessary to publish a
gen_rnd_iban() result, consider masking it with mask_iban().

Arguments:

• country: (Optional) Two-character country code; default value is ZZ

• size: (Optional) Number of meaningful characters; default 16, minimum 15, maximum 34

Return value:

A random IBAN as a string encoded in the utf8mb4 character set.

Example:

mysql> SELECT gen_rnd_iban();
+-----------------------------+
| gen_rnd_iban() |
+-----------------------------+
| ZZ79 3K2J WNH9 1V0DI |
+-----------------------------+

• gen_rnd_pan([size])

Generates a random payment card Primary Account Number. The number passes the Luhn check
(an algorithm that performs a checksum verification against a check digit).

Warning

Values returned from gen_rnd_pan() should be used only for test
purposes, and are not suitable for publication. There is no way to guarantee
that a given return value is not assigned to a legitimate payment account.

1747

MySQL Enterprise Data Masking and De-Identification Components

Should it be necessary to publish a gen_rnd_pan() result, consider
masking it with mask_pan() or mask_pan_relaxed().

Arguments:

• size: (Optional) An integer that specifies the size of the result. The default is 16 if size is not
given. If given, size must be an integer in the range from 12 to 19.

Return value:

A random payment number as a string, or an error if a size argument outside the permitted range is
given.

Example:

mysql> SELECT mask_pan(gen_rnd_pan());
+-------------------------+
| mask_pan(gen_rnd_pan()) |
+-------------------------+
| XXXXXXXXXXXX5805 |
+-------------------------+
mysql> SELECT mask_pan(gen_rnd_pan(19));
+---------------------------+
| mask_pan(gen_rnd_pan(19)) |
+---------------------------+
| XXXXXXXXXXXXXXX5067 |
+---------------------------+
mysql> SELECT mask_pan_relaxed(gen_rnd_pan());
+---------------------------------+
| mask_pan_relaxed(gen_rnd_pan()) |
+---------------------------------+
| 398403XXXXXX9547 |
+---------------------------------+
mysql> SELECT mask_pan_relaxed(gen_rnd_pan(19));
+-----------------------------------+
| mask_pan_relaxed(gen_rnd_pan(19)) |
+-----------------------------------+
| 578416XXXXXXXXX6509 |
+-----------------------------------+
mysql> SELECT gen_rnd_pan(20);
ERROR 1123 (HY000): Can't initialize function 'gen_rnd_pan'; Maximal value of
argument 0 is 20.

• gen_rnd_ssn()

Generates a random US Social Security Number in AAA-BB-CCCC format. The AAA part is greater
than 900, which is outside the range used for legitimate social security numbers.

Arguments:

None.

Return value:

A random Social Security Number as a string encoded in the utf8mb4 character set.

Example:

mysql> SELECT gen_rnd_ssn();
+---------------+
| gen_rnd_ssn() |
+---------------+
| 951-26-0058 |
+---------------+

1748

MySQL Enterprise Data Masking and De-Identification Components

• gen_rnd_uk_nin()

Generates a random United Kingdom National Insurance Number (UK NIN) in nine-character format.
NIN starts with two character prefix randomly selected from the set of valid prefixes, six random
numbers, and one character suffix randomly selected from the set of valid suffixes.

Warning

Values returned from gen_rnd_uk_nin() should be used only for test
purposes, and are not suitable for publication. There is no way to guarantee
that a given return value is not assigned to a legitimate NIN. Should it be
necessary to publish a gen_rnd_uk_nin() result, consider masking it with
mask_uk_nin().

Arguments:

None.

Return value:

A random UK NIN as a string encoded in the utf8mb4 character set.

Example:

mysql> SELECT mask_uk_nin(gen_rnd_uk_nin());
+---------------------------------+
| mask_uk_nin(gen_rnd_uk_nin()) |
+---------------------------------+
| JE******* |
+---------------------------------+

• gen_rnd_us_phone()

Generates a random US phone number in 1-555-AAA-BBBB format. The 555 area code is not used
for legitimate phone numbers.

Arguments:

None.

Return value:

A random US phone number as a string encoded in the utf8mb4 character set.

Example:

mysql> SELECT gen_rnd_us_phone();
+--------------------+
| gen_rnd_us_phone() |
+--------------------+
| 1-555-682-5423 |
+--------------------+

1749

MySQL Enterprise Data Masking and De-Identification Components

• gen_rnd_uuid()

Generates a random Universally Unique Identifier (UUID) segmented with dashes.

Arguments:

None.

Return value:

A random UUID as a string encoded in the utf8mb4 character set.

Example:

mysql> SELECT gen_rnd_uuid();
+--------------------------------------+
| gen_rnd_uuid() |
+--------------------------------------+
| 123e4567-e89b-12d3-a456-426614174000 |
+--------------------------------------+

Dictionary Masking Administration Component Functions

The component functions in this section manipulate dictionaries of terms and perform
administrative masking operations based on them. All of these functions require the
MASKING_DICTIONARIES_ADMIN privilege.

When a dictionary of terms is created, it becomes part of the dictionary registry and is assigned a name
to be used by other dictionary functions.

• masking_dictionary_remove(dictionary_name)

Removes a dictionary and all of its terms from the dictionary registry. This function requires the
MASKING_DICTIONARIES_ADMIN privilege.

Arguments:

• dictionary_name: A string that names the dictionary to remove from the dictionary table. This
argument is converted to the utf8mb4 character set.

Return value:

A string that indicates whether the remove operation succeeded. 1 indicates success. NULL indicates
the dictionary name is not found.

Example:

mysql> SELECT masking_dictionary_remove('mydict');
+-------------------------------------+
| masking_dictionary_remove('mydict') |
+-------------------------------------+
| 1 |
+-------------------------------------+
mysql> SELECT masking_dictionary_remove('no-such-dict');
+---+
| masking_dictionary_remove('no-such-dict') |
+---+
| NULL |
+---+

• masking_dictionary_term_add(dictionary_name, term_name)

Adds one term to the named dictionary. This function requires the
MASKING_DICTIONARIES_ADMIN privilege.

1750

MySQL Enterprise Data Masking and De-Identification Components

Important

Dictionaries and their terms are persisted to a table in the mysql schema.
All of the terms in a dictionary are accessible to any user account if that
user executes gen_dictionary() repeatedly. Avoid adding sensitive
information to dictionaries.

Each term is defined by a named dictionary. masking_dictionary_term_add() permits you to
add one dictionary term at a time.

Arguments:

• dictionary_name: A string that provides a name for the dictionary. This argument is converted
to the utf8mb4 character set.

• term_name: A string that specifies the term name in the dictionary table. This argument is
converted to the utf8mb4 character set.

Return value:

A string that indicates whether the add term operation succeeded. 1 indicates success. NULL
indicates failure. Term add failure can occur for several reasons, including:

• A term with the given name is already added.

• The dictionary name is not found.

Example:

mysql> SELECT masking_dictionary_term_add('mydict','newterm');
+---+
| masking_dictionary_term_add('mydict','newterm') |
+---+
| 1 |
+---+
mysql> SELECT masking_dictionary_term_add('mydict','');
+--+
| masking_dictionary_term_add('mydict','') |
+--+
| NULL |
+--+

1751

MySQL Enterprise Data Masking and De-Identification Components

• masking_dictionary_term_remove(dictionary_name, term_name)

Removes one term from the named dictionary. This function requires the
MASKING_DICTIONARIES_ADMIN privilege.

Arguments:

• dictionary_name: A string that provides a name for the dictionary. This argument is converted
to the utf8mb4 character set.

• term_name: A string that specifies the term name in the dictionary table. This argument is
converted to the utf8mb4 character set.

Return value:

A string that indicates whether the remove term operation succeeded. 1 indicates success. NULL
indicates failure. Term remove failure can occur for several reasons, including:

• A term with the given name is not found.

• The dictionary name is not found.

Example:

mysql> SELECT masking_dictionary_term_add('mydict','newterm');
+---+
| masking_dictionary_term_add('mydict','newterm') |
+---+
| 1 |
+---+
mysql> SELECT masking_dictionary_term_remove('mydict','');
+---+
| masking_dictionary_term_remove('mydict','') |
+---+
| NULL |
+---+

Dictionary Generating Component Functions

The component functions in this section manipulate dictionaries of terms and perform generating
operations based on them.

When a dictionary of terms is created, it becomes part of the dictionary registry and is assigned a name
to be used by other dictionary functions.

• gen_blocklist(str, from_dictionary_name, to_dictionary_name)

Replaces a term present in one dictionary with a term from a second dictionary and returns the
replacement term. This masks the original term by substitution.

Arguments:

• term: A string that indicates the term to replace. This argument is converted to the utf8mb4
character set.

• from_dictionary_name: A string that names the dictionary containing the term to replace. This
argument is converted to the utf8mb4 character set.

• to_dictionary_name: A string that names the dictionary from which to choose the replacement
term. This argument is converted to the utf8mb4 character set.

Return value:

1752

MySQL Enterprise Data Masking and De-Identification Plugin

A string encoded in the utf8mb4 character set randomly chosen from to_dictionary_name as
a replacement for term, or term if it does not appear in from_dictionary_name, or an error if
either dictionary name is not in the dictionary registry.

Note

If the term to replace appears in both dictionaries, it is possible for the return
value to be the same term.

Example:

mysql> SELECT gen_blocklist('Berlin', 'DE_Cities', 'US_Cities');
+---+
| gen_blocklist('Berlin', 'DE_Cities', 'US_Cities') |
+---+
| Phoenix |
+---+

• gen_dictionary(dictionary_name)

Returns a random term from a dictionary.

Arguments:

• dictionary_name: A string that names the dictionary from which to choose the term. This
argument is converted to the utf8mb4 character set.

Return value:

A random term from the dictionary as a string encoded in the utf8mb4 character set, or NULL if the
dictionary name is not in the dictionary registry.

Example:

mysql> SELECT gen_dictionary('mydict');
+--------------------------+
| gen_dictionary('mydict') |
+--------------------------+
| My term |
+--------------------------+
mysql> SELECT gen_dictionary('no-such-dict');
ERROR 1123 (HY000): Can't initialize function 'gen_dictionary'; Cannot access
dictionary, check if dictionary name is valid.

8.5.3 MySQL Enterprise Data Masking and De-Identification Plugin

MySQL Enterprise Data Masking and De-Identification is based on a plugin library that implements
these elements:

• A server-side plugin named data_masking.

• A set of loadable functions provides an SQL-level API for performing masking and de-identification
operations. Some of these functions require the SUPER privilege.

8.5.3.1 MySQL Enterprise Data Masking and De-Identification Plugin Installation

This section describes how to install or uninstall MySQL Enterprise Data Masking and De-Identification,
which is implemented as a plugin library file containing a plugin and several loadable functions. For
general information about installing or uninstalling plugins and loadable functions, see Section 7.6.1,
“Installing and Uninstalling Plugins”, and Section 7.7.1, “Installing and Uninstalling Loadable
Functions”.

1753

MySQL Enterprise Data Masking and De-Identification Plugin

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is data_masking. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To install the MySQL Enterprise Data Masking and De-Identification plugin and functions, use the
INSTALL PLUGIN and CREATE FUNCTION statements, adjusting the .so suffix for your platform as
necessary:

INSTALL PLUGIN data_masking SONAME 'data_masking.so';
CREATE FUNCTION gen_blocklist RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_dictionary RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_dictionary_drop RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_dictionary_load RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_range RETURNS INTEGER
 SONAME 'data_masking.so';
CREATE FUNCTION gen_rnd_email RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_rnd_pan RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_rnd_ssn RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION gen_rnd_us_phone RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION mask_inner RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION mask_outer RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION mask_pan RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION mask_pan_relaxed RETURNS STRING
 SONAME 'data_masking.so';
CREATE FUNCTION mask_ssn RETURNS STRING
 SONAME 'data_masking.so';

If the plugin and functions are used on a replication source server, install them on all replica servers as
well to avoid replication issues.

Once installed as just described, the plugin and functions remain installed until uninstalled. To remove
them, use the UNINSTALL PLUGIN and DROP FUNCTION statements:

UNINSTALL PLUGIN data_masking;
DROP FUNCTION gen_blocklist;
DROP FUNCTION gen_dictionary;
DROP FUNCTION gen_dictionary_drop;
DROP FUNCTION gen_dictionary_load;
DROP FUNCTION gen_range;
DROP FUNCTION gen_rnd_email;
DROP FUNCTION gen_rnd_pan;
DROP FUNCTION gen_rnd_ssn;
DROP FUNCTION gen_rnd_us_phone;
DROP FUNCTION mask_inner;
DROP FUNCTION mask_outer;
DROP FUNCTION mask_pan;
DROP FUNCTION mask_pan_relaxed;
DROP FUNCTION mask_ssn;

8.5.3.2 Using the MySQL Enterprise Data Masking and De-Identification Plugin

Before using MySQL Enterprise Data Masking and De-Identification, install it according to the
instructions provided at Section 8.5.3.1, “MySQL Enterprise Data Masking and De-Identification Plugin
Installation”.

1754

MySQL Enterprise Data Masking and De-Identification Plugin

To use MySQL Enterprise Data Masking and De-Identification in applications, invoke the functions
that are appropriate for the operations you wish to perform. For detailed function descriptions, see
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”.
This section demonstrates how to use the functions to carry out some representative tasks. It first
presents an overview of the available functions, followed by some examples of how the functions might
be used in real-world context:

• Masking Data to Remove Identifying Characteristics

• Generating Random Data with Specific Characteristics

• Generating Random Data Using Dictionaries

• Using Masked Data for Customer Identification

• Creating Views that Display Masked Data

Masking Data to Remove Identifying Characteristics

MySQL provides general-purpose masking functions that mask arbitrary strings, and special-purpose
masking functions that mask specific types of values.

General-Purpose Masking Functions

mask_inner() and mask_outer() are general-purpose functions that mask parts of arbitrary strings
based on position within the string:

• mask_inner() masks the interior of its string argument, leaving the ends unmasked. Other
arguments specify the sizes of the unmasked ends.

mysql> SELECT mask_inner('This is a string', 5, 1);
+--------------------------------------+
| mask_inner('This is a string', 5, 1) |
+--------------------------------------+
| This XXXXXXXXXXg |
+--------------------------------------+
mysql> SELECT mask_inner('This is a string', 1, 5);
+--------------------------------------+
| mask_inner('This is a string', 1, 5) |
+--------------------------------------+
| TXXXXXXXXXXtring |
+--------------------------------------+

• mask_outer() does the reverse, masking the ends of its string argument, leaving the interior
unmasked. Other arguments specify the sizes of the masked ends.

mysql> SELECT mask_outer('This is a string', 5, 1);
+--------------------------------------+
| mask_outer('This is a string', 5, 1) |
+--------------------------------------+
| XXXXXis a strinX |
+--------------------------------------+
mysql> SELECT mask_outer('This is a string', 1, 5);
+--------------------------------------+
| mask_outer('This is a string', 1, 5) |
+--------------------------------------+
| Xhis is a sXXXXX |
+--------------------------------------+

By default, mask_inner() and mask_outer() use 'X' as the masking character, but permit an
optional masking-character argument:

mysql> SELECT mask_inner('This is a string', 5, 1, '*');
+---+
| mask_inner('This is a string', 5, 1, '*') |
+---+

1755

MySQL Enterprise Data Masking and De-Identification Plugin

| This **********g |
+---+
mysql> SELECT mask_outer('This is a string', 5, 1, '#');
+---+
| mask_outer('This is a string', 5, 1, '#') |
+---+
| #####is a strin# |
+---+

Special-Purpose Masking Functions

Other masking functions expect a string argument representing a specific type of value and mask it to
remove identifying characteristics.

Note

The examples here supply function arguments using the random value
generation functions that return the appropriate type of value. For more
information about generation functions, see Generating Random Data with
Specific Characteristics.

Payment card Primary Account Number masking. Masking functions provide strict and relaxed
masking of Primary Account Numbers.

• mask_pan() masks all but the last four digits of the number:

mysql> SELECT mask_pan(gen_rnd_pan());
+-------------------------+
| mask_pan(gen_rnd_pan()) |
+-------------------------+
| XXXXXXXXXXXX2461 |
+-------------------------+

• mask_pan_relaxed() is similar but does not mask the first six digits that indicate the payment
card issuer unmasked:

mysql> SELECT mask_pan_relaxed(gen_rnd_pan());
+---------------------------------+
| mask_pan_relaxed(gen_rnd_pan()) |
+---------------------------------+
| 770630XXXXXX0807 |
+---------------------------------+

US Social Security number masking. mask_ssn() masks all but the last four digits of the
number:

mysql> SELECT mask_ssn(gen_rnd_ssn());
+-------------------------+
| mask_ssn(gen_rnd_ssn()) |
+-------------------------+
| XXX-XX-1723 |
+-------------------------+

Generating Random Data with Specific Characteristics

Several functions generate random values. These values can be used for testing, simulation, and so
forth.

gen_range() returns a random integer selected from a given range:

mysql> SELECT gen_range(1, 10);
+------------------+
| gen_range(1, 10) |
+------------------+
| 6 |
+------------------+

1756

MySQL Enterprise Data Masking and De-Identification Plugin

gen_rnd_email() returns a random email address in the example.com domain:

mysql> SELECT gen_rnd_email();
+---------------------------+
| gen_rnd_email() |
+---------------------------+
| ayxnq.xmkpvvy@example.com |
+---------------------------+

gen_rnd_pan() returns a random payment card Primary Account Number:

mysql> SELECT gen_rnd_pan();

(The gen_rnd_pan() function result is not shown because its return values should be used only for
testing purposes, and not for publication. It cannot be guaranteed the number is not assigned to a
legitimate payment account.)

gen_rnd_ssn() returns a random US Social Security number with the first and second parts each
chosen from a range not used for legitimate numbers:

mysql> SELECT gen_rnd_ssn();
+---------------+
| gen_rnd_ssn() |
+---------------+
| 912-45-1615 |
+---------------+

gen_rnd_us_phone() returns a random US phone number in the 555 area code not used for
legitimate numbers:

mysql> SELECT gen_rnd_us_phone();
+--------------------+
| gen_rnd_us_phone() |
+--------------------+
| 1-555-747-5627 |
+--------------------+

Generating Random Data Using Dictionaries

MySQL Enterprise Data Masking and De-Identification enables dictionaries to be used as sources
of random values. To use a dictionary, it must first be loaded from a file and given a name. Each
loaded dictionary becomes part of the dictionary registry. Items then can be selected from registered
dictionaries and used as random values or as replacements for other values.

A valid dictionary file has these characteristics:

• The file contents are plain text, one term per line.

• Empty lines are ignored.

• The file must contain at least one term.

Suppose that a file named de_cities.txt contains these city names in Germany:

Berlin
Munich
Bremen

Also suppose that a file named us_cities.txt contains these city names in the United States:

Chicago
Houston
Phoenix
El Paso
Detroit

1757

MySQL Enterprise Data Masking and De-Identification Plugin

Assume that the secure_file_priv system variable is set to /usr/local/mysql/mysql-files.
In that case, copy the dictionary files to that directory so that the MySQL server can access them. Then
use gen_dictionary_load() to load the dictionaries into the dictionary registry and assign them
names:

mysql> SELECT gen_dictionary_load('/usr/local/mysql/mysql-files/de_cities.txt', 'DE_Cities');
+--+
| gen_dictionary_load('/usr/local/mysql/mysql-files/de_cities.txt', 'DE_Cities') |
+--+
| Dictionary load success |
+--+
mysql> SELECT gen_dictionary_load('/usr/local/mysql/mysql-files/us_cities.txt', 'US_Cities');
+--+
| gen_dictionary_load('/usr/local/mysql/mysql-files/us_cities.txt', 'US_Cities') |
+--+
| Dictionary load success |
+--+

To select a random term from a dictionary, use gen_dictionary():

mysql> SELECT gen_dictionary('DE_Cities');
+-----------------------------+
| gen_dictionary('DE_Cities') |
+-----------------------------+
| Berlin |
+-----------------------------+
mysql> SELECT gen_dictionary('US_Cities');
+-----------------------------+
| gen_dictionary('US_Cities') |
+-----------------------------+
| Phoenix |
+-----------------------------+

To select a random term from multiple dictionaries, randomly select one of the dictionaries, then select
a term from it:

mysql> SELECT gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities'));
+---+
| gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities')) |
+---+
| Detroit |
+---+
mysql> SELECT gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities'));
+---+
| gen_dictionary(ELT(gen_range(1,2), 'DE_Cities', 'US_Cities')) |
+---+
| Bremen |
+---+

The gen_blocklist() function enables a term from one dictionary to be replaced by a term from
another dictionary, which effects masking by substitution. Its arguments are the term to replace, the
dictionary in which the term appears, and the dictionary from which to choose a replacement. For
example, to substitute a US city for a German city, or vice versa, use gen_blocklist() like this:

mysql> SELECT gen_blocklist('Munich', 'DE_Cities', 'US_Cities');
+---+
| gen_blocklist('Munich', 'DE_Cities', 'US_Cities') |
+---+
| Houston |
+---+
mysql> SELECT gen_blocklist('El Paso', 'US_Cities', 'DE_Cities');
+--+
| gen_blocklist('El Paso', 'US_Cities', 'DE_Cities') |
+--+
| Bremen |
+--+

If the term to replace is not in the first dictionary, gen_blocklist() returns it unchanged:

1758

MySQL Enterprise Data Masking and De-Identification Plugin

mysql> SELECT gen_blocklist('Moscow', 'DE_Cities', 'US_Cities');
+---+
| gen_blocklist('Moscow', 'DE_Cities', 'US_Cities') |
+---+
| Moscow |
+---+

Using Masked Data for Customer Identification

At customer-service call centers, one common identity verification technique is to ask customers to
provide their last four Social Security number (SSN) digits. For example, a customer might say her
name is Joanna Bond and that her last four SSN digits are 0007.

Suppose that a customer table containing customer records has these columns:

• id: Customer ID number.

• first_name: Customer first name.

• last_name: Customer last name.

• ssn: Customer Social Security number.

For example, the table might be defined as follows:

CREATE TABLE customer
(
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 first_name VARCHAR(40),
 last_name VARCHAR(40),
 ssn VARCHAR(11)
);

The application used by customer-service representatives to check the customer SSN might execute a
query like this:

mysql> SELECT id, ssn
 -> FROM customer
 -> WHERE first_name = 'Joanna' AND last_name = 'Bond';
+-----+-------------+
| id | ssn |
+-----+-------------+
| 786 | 906-39-0007 |
+-----+-------------+

However, that exposes the SSN to the customer-service representative, who has no need to see
anything but the last four digits. Instead, the application can use this query to display only the masked
SSN:

mysql> SELECT id, mask_ssn(CONVERT(ssn USING binary)) AS masked_ssn
mysql> FROM customer
mysql> WHERE first_name = 'Joanna' AND last_name = 'Bond';
+-----+-------------+
| id | masked_ssn |
+-----+-------------+
| 786 | XXX-XX-0007 |
+-----+-------------+

Now the representative sees only what is necessary, and customer privacy is preserved.

Why was the CONVERT() function used for the argument to mask_ssn()? Because mask_ssn()
requires an argument of length 11. Thus, even though ssn is defined as VARCHAR(11), if the ssn
column has a multibyte character set, it may appear to be longer than 11 bytes when passed to a
loadable function, and an error occurs. Converting the value to a binary string ensures that the function
sees an argument of length 11.

1759

MySQL Enterprise Data Masking and De-Identification Plugin

A similar technique may be needed for other data masking functions when string arguments do not
have a single-byte character set.

Creating Views that Display Masked Data

If masked data from a table is used for multiple queries, it may be convenient to define a view that
produces masked data. That way, applications can select from the view without performing masking in
individual queries.

For example, a masking view on the customer table from the previous section can be defined like this:

CREATE VIEW masked_customer AS
SELECT id, first_name, last_name,
mask_ssn(CONVERT(ssn USING binary)) AS masked_ssn
FROM customer;

Then the query to look up a customer becomes simpler but still returns masked data:

mysql> SELECT id, masked_ssn
mysql> FROM masked_customer
mysql> WHERE first_name = 'Joanna' AND last_name = 'Bond';
+-----+-------------+
| id | masked_ssn |
+-----+-------------+
| 786 | XXX-XX-0007 |
+-----+-------------+

8.5.3.3 MySQL Enterprise Data Masking and De-Identification Plugin Function Reference

Table 8.47 MySQL Enterprise Data Masking and De-Identification Plugin Functions

Name Description Introduced Deprecated

gen_blacklist() Perform dictionary term
replacement

8.0.23

gen_blocklist() Perform dictionary term
replacement

8.0.23

gen_dictionary_drop()Remove dictionary from
registry

gen_dictionary_load()Load dictionary into
registry

gen_dictionary() Return random term
from dictionary

gen_range() Generate random
number within range

gen_rnd_email() Generate random email
address

gen_rnd_pan() Generate random
payment card Primary
Account Number

gen_rnd_ssn() Generate random US
Social Security Number

gen_rnd_us_phone() Generate random US
phone number

mask_inner() Mask interior part of
string

mask_outer() Mask left and right parts
of string

1760

MySQL Enterprise Data Masking and De-Identification Plugin

Name Description Introduced Deprecated

mask_pan() Mask payment card
Primary Account
Number part of string

mask_pan_relaxed() Mask payment card
Primary Account
Number part of string

mask_ssn() Mask US Social Security
Number

8.5.3.4 MySQL Enterprise Data Masking and De-Identification Plugin Function
Descriptions

The MySQL Enterprise Data Masking and De-Identification plugin library includes several functions,
which may be grouped into these categories:

• Data Masking Plugin Functions

• Random Data Generation Plugin Functions

• Random Data Dictionary-Based Plugin Functions

As of MySQL 8.0.19, these functions support the single-byte latin1 character set for string
arguments and return values. Prior to MySQL 8.0.19, the functions treat string arguments as binary
strings (which means they do not distinguish lettercase), and string return values are binary strings.
You can see the difference in return value character set as follows:

MySQL 8.0.19 and higher:

mysql> SELECT CHARSET(gen_rnd_email());
+--------------------------+
| CHARSET(gen_rnd_email()) |
+--------------------------+
| latin1 |
+--------------------------+

Prior to MySQL 8.0.19:

mysql> SELECT CHARSET(gen_rnd_email());
+--------------------------+
| CHARSET(gen_rnd_email()) |
+--------------------------+
| binary |
+--------------------------+

For any version, if a string return value should be in a different character set, convert it. The following
example shows how to convert the result of gen_rnd_email() to the utf8mb4 character set:

SET @email = CONVERT(gen_rnd_email() USING utf8mb4);

To explicitly produce a binary string (for example, to produce a result like that for MySQL versions prior
to 8.0.19), do this:

SET @email = CONVERT(gen_rnd_email() USING binary);

It may also be necessary to convert string arguments, as illustrated in Using Masked Data for
Customer Identification.

If a MySQL Enterprise Data Masking and De-Identification function is invoked from within the mysql
client, binary string results display using hexadecimal notation, depending on the value of the --

1761

https://dev.mysql.com/doc/refman/5.7/en/data-masking-usage.html#data-masking-usage-customer-identification
https://dev.mysql.com/doc/refman/5.7/en/data-masking-usage.html#data-masking-usage-customer-identification

MySQL Enterprise Data Masking and De-Identification Plugin

binary-as-hex. For more information about that option, see Section 6.5.1, “mysql — The MySQL
Command-Line Client”.

Data Masking Plugin Functions

Each plugin function in this section performs a masking operation on its string argument and returns
the masked result.

• mask_inner(str, margin1, margin2 [, mask_char])

Masks the interior part of a string, leaving the ends untouched, and returns the result. An optional
masking character can be specified.

Arguments:

• str: The string to mask.

• margin1: A nonnegative integer that specifies the number of characters on the left end of the
string to remain unmasked. If the value is 0, no left end characters remain unmasked.

• margin2: A nonnegative integer that specifies the number of characters on the right end of the
string to remain unmasked. If the value is 0, no right end characters remain unmasked.

• mask_char: (Optional) The single character to use for masking. The default is 'X' if mask_char
is not given.

The masking character must be a single-byte character. Attempts to use a multibyte character
produce an error.

Return value:

The masked string, or NULL if either margin is negative.

If the sum of the margin values is larger than the argument length, no masking occurs and the
argument is returned unchanged.

Example:

mysql> SELECT mask_inner('abcdef', 1, 2), mask_inner('abcdef',0, 5);
+----------------------------+---------------------------+
| mask_inner('abcdef', 1, 2) | mask_inner('abcdef',0, 5) |
+----------------------------+---------------------------+
| aXXXef | Xbcdef |
+----------------------------+---------------------------+
mysql> SELECT mask_inner('abcdef', 1, 2, '*'), mask_inner('abcdef',0, 5, '#');
+---------------------------------+--------------------------------+
| mask_inner('abcdef', 1, 2, '*') | mask_inner('abcdef',0, 5, '#') |
+---------------------------------+--------------------------------+
| a***ef | #bcdef |
+---------------------------------+--------------------------------+

• mask_outer(str, margin1, margin2 [, mask_char])

Masks the left and right ends of a string, leaving the interior unmasked, and returns the result. An
optional masking character can be specified.

Arguments:

• str: The string to mask.

• margin1: A nonnegative integer that specifies the number of characters on the left end of the
string to mask. If the value is 0, no left end characters are masked.

1762

MySQL Enterprise Data Masking and De-Identification Plugin

• margin2: A nonnegative integer that specifies the number of characters on the right end of the
string to mask. If the value is 0, no right end characters are masked.

• mask_char: (Optional) The single character to use for masking. The default is 'X' if mask_char
is not given.

The masking character must be a single-byte character. Attempts to use a multibyte character
produce an error.

Return value:

The masked string, or NULL if either margin is negative.

If the sum of the margin values is larger than the argument length, the entire argument is masked.

Example:

mysql> SELECT mask_outer('abcdef', 1, 2), mask_outer('abcdef',0, 5);
+----------------------------+---------------------------+
| mask_outer('abcdef', 1, 2) | mask_outer('abcdef',0, 5) |
+----------------------------+---------------------------+
| XbcdXX | aXXXXX |
+----------------------------+---------------------------+
mysql> SELECT mask_outer('abcdef', 1, 2, '*'), mask_outer('abcdef',0, 5, '#');
+---------------------------------+--------------------------------+
| mask_outer('abcdef', 1, 2, '*') | mask_outer('abcdef',0, 5, '#') |
+---------------------------------+--------------------------------+
| *bcd** | a##### |
+---------------------------------+--------------------------------+

• mask_pan(str)

Masks a payment card Primary Account Number and returns the number with all but the last four
digits replaced by 'X' characters.

Arguments:

• str: The string to mask. The string must be a suitable length for the Primary Account Number, but
is not otherwise checked.

Return value:

The masked payment number as a string. If the argument is shorter than required, it is returned
unchanged.

Example:

mysql> SELECT mask_pan(gen_rnd_pan());
+-------------------------+
| mask_pan(gen_rnd_pan()) |
+-------------------------+
| XXXXXXXXXXXX9102 |
+-------------------------+
mysql> SELECT mask_pan(gen_rnd_pan(19));
+---------------------------+
| mask_pan(gen_rnd_pan(19)) |
+---------------------------+
| XXXXXXXXXXXXXXX8268 |
+---------------------------+
mysql> SELECT mask_pan('a*Z');
+-----------------+
| mask_pan('a*Z') |
+-----------------+
| a*Z |
+-----------------+

1763

MySQL Enterprise Data Masking and De-Identification Plugin

• mask_pan_relaxed(str)

Masks a payment card Primary Account Number and returns the number with all but the first six and
last four digits replaced by 'X' characters. The first six digits indicate the payment card issuer.

Arguments:

• str: The string to mask. The string must be a suitable length for the Primary Account Number, but
is not otherwise checked.

Return value:

The masked payment number as a string. If the argument is shorter than required, it is returned
unchanged.

Example:

mysql> SELECT mask_pan_relaxed(gen_rnd_pan());
+---------------------------------+
| mask_pan_relaxed(gen_rnd_pan()) |
+---------------------------------+
| 551279XXXXXX3108 |
+---------------------------------+
mysql> SELECT mask_pan_relaxed(gen_rnd_pan(19));
+-----------------------------------+
| mask_pan_relaxed(gen_rnd_pan(19)) |
+-----------------------------------+
| 462634XXXXXXXXX6739 |
+-----------------------------------+
mysql> SELECT mask_pan_relaxed('a*Z');
+-------------------------+
| mask_pan_relaxed('a*Z') |
+-------------------------+
| a*Z |
+-------------------------+

• mask_ssn(str)

Masks a US Social Security number and returns the number with all but the last four digits replaced
by 'X' characters.

Arguments:

• str: The string to mask. The string must be 11 characters long.

Return value:

The masked Social Security number as a string, or an error if the argument is not the correct length.

Example:

mysql> SELECT mask_ssn('909-63-6922'), mask_ssn('abcdefghijk');
+-------------------------+-------------------------+
| mask_ssn('909-63-6922') | mask_ssn('abcdefghijk') |
+-------------------------+-------------------------+
| XXX-XX-6922 | XXX-XX-hijk |
+-------------------------+-------------------------+
mysql> SELECT mask_ssn('909');
ERROR 1123 (HY000): Can't initialize function 'mask_ssn'; MASK_SSN: Error:
String argument width too small
mysql> SELECT mask_ssn('123456789123456789');
ERROR 1123 (HY000): Can't initialize function 'mask_ssn'; MASK_SSN: Error:
String argument width too large

1764

MySQL Enterprise Data Masking and De-Identification Plugin

Random Data Generation Plugin Functions

The plugin functions in this section generate random values for different types of data. When possible,
generated values have characteristics reserved for demonstration or test values, to avoid having them
mistaken for legitimate data. For example, gen_rnd_us_phone() returns a US phone number that
uses the 555 area code, which is not assigned to phone numbers in actual use. Individual function
descriptions describe any exceptions to this principle.

• gen_range(lower, upper)

Generates a random number chosen from a specified range.

Arguments:

• lower: An integer that specifies the lower boundary of the range.

• upper: An integer that specifies the upper boundary of the range, which must not be less than the
lower boundary.

Return value:

A random integer in the range from lower to upper, inclusive, or NULL if the upper argument is
less than lower.

Example:

mysql> SELECT gen_range(100, 200), gen_range(-1000, -800);
+---------------------+------------------------+
| gen_range(100, 200) | gen_range(-1000, -800) |
+---------------------+------------------------+
| 177 | -917 |
+---------------------+------------------------+
mysql> SELECT gen_range(1, 0);
+-----------------+
| gen_range(1, 0) |
+-----------------+
| NULL |
+-----------------+

• gen_rnd_email()

Generates a random email address in the example.com domain.

Arguments:

None.

Return value:

A random email address as a string.

Example:

mysql> SELECT gen_rnd_email();
+---------------------------+
| gen_rnd_email() |
+---------------------------+
| ijocv.mwvhhuf@example.com |
+---------------------------+

• gen_rnd_pan([size])

Generates a random payment card Primary Account Number. The number passes the Luhn check
(an algorithm that performs a checksum verification against a check digit).

1765

MySQL Enterprise Data Masking and De-Identification Plugin

Warning

Values returned from gen_rnd_pan() should be used only for test
purposes, and are not suitable for publication. There is no way to guarantee
that a given return value is not assigned to a legitimate payment account.
Should it be necessary to publish a gen_rnd_pan() result, consider
masking it with mask_pan() or mask_pan_relaxed().

Arguments:

• size: (Optional) An integer that specifies the size of the result. The default is 16 if size is not
given. If given, size must be an integer in the range from 12 to 19.

Return value:

A random payment number as a string, or NULL if a size argument outside the permitted range is
given.

Example:

mysql> SELECT mask_pan(gen_rnd_pan());
+-------------------------+
| mask_pan(gen_rnd_pan()) |
+-------------------------+
| XXXXXXXXXXXX5805 |
+-------------------------+
mysql> SELECT mask_pan(gen_rnd_pan(19));
+---------------------------+
| mask_pan(gen_rnd_pan(19)) |
+---------------------------+
| XXXXXXXXXXXXXXX5067 |
+---------------------------+
mysql> SELECT mask_pan_relaxed(gen_rnd_pan());
+---------------------------------+
| mask_pan_relaxed(gen_rnd_pan()) |
+---------------------------------+
| 398403XXXXXX9547 |
+---------------------------------+
mysql> SELECT mask_pan_relaxed(gen_rnd_pan(19));
+-----------------------------------+
| mask_pan_relaxed(gen_rnd_pan(19)) |
+-----------------------------------+
| 578416XXXXXXXXX6509 |
+-----------------------------------+
mysql> SELECT gen_rnd_pan(11), gen_rnd_pan(20);
+-----------------+-----------------+
| gen_rnd_pan(11) | gen_rnd_pan(20) |
+-----------------+-----------------+
| NULL | NULL |
+-----------------+-----------------+

1766

MySQL Enterprise Data Masking and De-Identification Plugin

• gen_rnd_ssn()

Generates a random US Social Security number in AAA-BB-CCCC format. The AAA part is greater
than 900 and the BB part is less than 70, which are characteristics not used for legitimate Social
Security numbers.

Arguments:

None.

Return value:

A random Social Security number as a string.

Example:

mysql> SELECT gen_rnd_ssn();
+---------------+
| gen_rnd_ssn() |
+---------------+
| 951-26-0058 |
+---------------+

• gen_rnd_us_phone()

Generates a random US phone number in 1-555-AAA-BBBB format. The 555 area code is not used
for legitimate phone numbers.

Arguments:

None.

Return value:

A random US phone number as a string.

Example:

mysql> SELECT gen_rnd_us_phone();
+--------------------+
| gen_rnd_us_phone() |
+--------------------+
| 1-555-682-5423 |
+--------------------+

Random Data Dictionary-Based Plugin Functions

The plugin functions in this section manipulate dictionaries of terms and perform generation and
masking operations based on them. Some of these functions require the SUPER privilege.

When a dictionary is loaded, it becomes part of the dictionary registry and is assigned a name to be
used by other dictionary functions. Dictionaries are loaded from plain text files containing one term per
line. Empty lines are ignored. To be valid, a dictionary file must contain at least one nonempty line.

• gen_blacklist(str, dictionary_name, replacement_dictionary_name)

Replaces a term present in one dictionary with a term from a second dictionary and returns the
replacement term. This masks the original term by substitution. This function is deprecated in MySQL
8.0.23; use gen_blocklist() instead.

• gen_blocklist(str, dictionary_name, replacement_dictionary_name)

Replaces a term present in one dictionary with a term from a second dictionary and returns the
replacement term. This masks the original term by substitution. This function was added in MySQL
8.0.23; use it instead of gen_blacklist().

1767

MySQL Enterprise Data Masking and De-Identification Plugin

Arguments:

• str: A string that indicates the term to replace.

• dictionary_name: A string that names the dictionary containing the term to replace.

• replacement_dictionary_name: A string that names the dictionary from which to choose the
replacement term.

Return value:

A string randomly chosen from replacement_dictionary_name as a replacement for str,
or str if it does not appear in dictionary_name, or NULL if either dictionary name is not in the
dictionary registry.

If the term to replace appears in both dictionaries, it is possible for the return value to be the same
term.

Example:

mysql> SELECT gen_blocklist('Berlin', 'DE_Cities', 'US_Cities');
+---+
| gen_blocklist('Berlin', 'DE_Cities', 'US_Cities') |
+---+
| Phoenix |
+---+

• gen_dictionary(dictionary_name)

Returns a random term from a dictionary.

Arguments:

• dictionary_name: A string that names the dictionary from which to choose the term.

Return value:

A random term from the dictionary as a string, or NULL if the dictionary name is not in the dictionary
registry.

Example:

mysql> SELECT gen_dictionary('mydict');
+--------------------------+
| gen_dictionary('mydict') |
+--------------------------+
| My term |
+--------------------------+
mysql> SELECT gen_dictionary('no-such-dict');
+--------------------------------+
| gen_dictionary('no-such-dict') |
+--------------------------------+
| NULL |
+--------------------------------+

1768

MySQL Enterprise Data Masking and De-Identification Plugin

• gen_dictionary_drop(dictionary_name)

Removes a dictionary from the dictionary registry.

This function requires the SUPER privilege.

Arguments:

• dictionary_name: A string that names the dictionary to remove from the dictionary registry.

Return value:

A string that indicates whether the drop operation succeeded. Dictionary removed indicates
success. Dictionary removal error indicates failure.

Example:

mysql> SELECT gen_dictionary_drop('mydict');
+-------------------------------+
| gen_dictionary_drop('mydict') |
+-------------------------------+
| Dictionary removed |
+-------------------------------+
mysql> SELECT gen_dictionary_drop('no-such-dict');
+-------------------------------------+
| gen_dictionary_drop('no-such-dict') |
+-------------------------------------+
| Dictionary removal error |
+-------------------------------------+

1769

MySQL Enterprise Encryption

• gen_dictionary_load(dictionary_path, dictionary_name)

Loads a file into the dictionary registry and assigns the dictionary a name to be used with other
functions that require a dictionary name argument.

This function requires the SUPER privilege.

Important

Dictionaries are not persistent. Any dictionary used by applications must be
loaded for each server startup.

Once loaded into the registry, a dictionary is used as is, even if the underlying dictionary file
changes. To reload a dictionary, first drop it with gen_dictionary_drop(), then load it again with
gen_dictionary_load().

Arguments:

• dictionary_path: A string that specifies the path name of the dictionary file.

• dictionary_name: A string that provides a name for the dictionary.

Return value:

A string that indicates whether the load operation succeeded. Dictionary load success
indicates success. Dictionary load error indicates failure. Dictionary load failure can occur for
several reasons, including:

• A dictionary with the given name is already loaded.

• The dictionary file is not found.

• The dictionary file contains no terms.

• The secure_file_priv system variable is set and the dictionary file is not located in the
directory named by the variable.

Example:

mysql> SELECT gen_dictionary_load('/usr/local/mysql/mysql-files/mydict','mydict');
+---+
| gen_dictionary_load('/usr/local/mysql/mysql-files/mydict','mydict') |
+---+
| Dictionary load success |
+---+
mysql> SELECT gen_dictionary_load('/dev/null','null');
+---+
| gen_dictionary_load('/dev/null','null') |
+---+
| Dictionary load error |
+---+

8.6 MySQL Enterprise Encryption
Note

MySQL Enterprise Encryption is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products,
https://www.mysql.com/products/.

MySQL Enterprise Edition includes a set of encryption functions that expose OpenSSL capabilities at
the SQL level. The functions enable Enterprise applications to perform the following operations:

• Implement added data protection using public-key asymmetric cryptography

1770

https://www.mysql.com/products/

MySQL Enterprise Encryption Installation and Upgrading

• Create public and private keys and digital signatures

• Perform asymmetric encryption and decryption

• Use cryptographic hashing for digital signing and data verification and validation

In releases before MySQL 8.0.30, these functions are based on the openssl_udf
shared library. From MySQL 8.0.30, they are provided by a MySQL component
component_enterprise_encryption.

8.6.1 MySQL Enterprise Encryption Installation and Upgrading

In releases before MySQL 8.0.30, the functions provided by MySQL Enterprise Encryption are installed
by creating them individually, based on the openssl_udf shared library. From MySQL 8.0.30,
the functions are provided by a MySQL component component_enterprise_encryption, and
installing the component installs all of the functions. The functions from the openssl_udf shared
library are deprecated from that release, and you should upgrade to the component instead.

• Installation From MySQL 8.0.30

• Installation To MySQL 8.0.29

• Upgrading MySQL Enterprise Encryption

Installation From MySQL 8.0.30

From MySQL 8.0.30, MySQL Enterprise Encryption’s functions are provided by a MySQL component
component_enterprise_encryption, rather than being installed from the openssl_udf
shared library. If you are upgrading to MySQL 8.0.30 from an earlier release where you used MySQL
Enterprise Encryption, the functions you created remain available and are supported. However,
these legacy functions are deprecated from this release, and it is recommended that you install the
component instead. The component functions are backward compatible. For upgrade information, see
Upgrading MySQL Enterprise Encryption.

If you are upgrading, before installing the component, unload the legacy functions using the DROP
FUNCTION statement:

DROP FUNCTION asymmetric_decrypt;
DROP FUNCTION asymmetric_derive;
DROP FUNCTION asymmetric_encrypt;
DROP FUNCTION asymmetric_sign;
DROP FUNCTION asymmetric_verify;
DROP FUNCTION create_asymmetric_priv_key;
DROP FUNCTION create_asymmetric_pub_key;
DROP FUNCTION create_dh_parameters;
DROP FUNCTION create_digest;

The function names must be specified in lowercase. The statements require the DROP privilege for the
mysql database.

To install the component, issue an INSTALL COMPONENT statement:

INSTALL COMPONENT "file://component_enterprise_encryption";

INSTALL COMPONENT requires the INSERT privilege for the mysql.component system table
because it adds a row to that table to register the component. To verify that the component has been
installed, issue:

SELECT * FROM mysql.component;

Components listed in mysql.component are loaded by the loader service during the startup
sequence.

1771

MySQL Enterprise Encryption Installation and Upgrading

If you need to uninstall the component, issue an UNINSTALL COMPONENT statement:

UNINSTALL COMPONENT "file://component_enterprise_encryption";

For more details, see Section 7.5.1, “Installing and Uninstalling Components”.

Installing the component installs all of the functions, so you do not need to create them using CREATE
FUNCTION statements as you do before MySQL 8.0.30. Uninstalling the component uninstalls all of the
functions.

When you have installed the component, if you want the component functions to support decryption
and verification for content produced by the legacy functions before MySQL 8.0.30, set the
component’s system variable enterprise_encryption.rsa_support_legacy_padding
to ON. Also, if you want to change the maximum length allowed for the RSA keys
generated by the component functions, use the component’s system variable
enterprise_encryption.maximum_rsa_key_size to set an appropriate maximum. For
configuration information, see Section 8.6.2, “Configuring MySQL Enterprise Encryption”.

Installation To MySQL 8.0.29

Before MySQL 8.0.29, MySQL Enterprise Encryption functions are located in a loadable function library
file installed in the plugin directory (the directory named by the plugin_dir system variable). The
function library base name is openssl_udf and the suffix is platform dependent. For example, the file
name on Linux or Windows is openssl_udf.so or openssl_udf.dll, respectively.

To install functions from the openssl_udf shared library file, use the CREATE FUNCTION statement.
To load all functions from the library, use this set of statements, adjusting the file name suffix as
necessary:

CREATE FUNCTION asymmetric_decrypt RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_derive RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_encrypt RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_sign RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION asymmetric_verify RETURNS INTEGER
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_asymmetric_priv_key RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_asymmetric_pub_key RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_dh_parameters RETURNS STRING
 SONAME 'openssl_udf.so';
CREATE FUNCTION create_digest RETURNS STRING
 SONAME 'openssl_udf.so';

Once installed, the functions remain installed across server restarts. If you need to unload the
functions, use the DROP FUNCTION statement:

DROP FUNCTION asymmetric_decrypt;
DROP FUNCTION asymmetric_derive;
DROP FUNCTION asymmetric_encrypt;
DROP FUNCTION asymmetric_sign;
DROP FUNCTION asymmetric_verify;
DROP FUNCTION create_asymmetric_priv_key;
DROP FUNCTION create_asymmetric_pub_key;
DROP FUNCTION create_dh_parameters;
DROP FUNCTION create_digest;

In the CREATE FUNCTION and DROP FUNCTION statements, the function names must be specified in
lowercase. This differs from their use at function invocation time, for which you can use any lettercase.

The CREATE FUNCTION and DROP FUNCTION statements require the INSERT and DROP privilege,
respectively, for the mysql database.

1772

MySQL Enterprise Encryption Installation and Upgrading

The functions provided by the openssl_udf shared library allow a minimum key size of 1024
bits. You can set a maximum key size using the MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD,
MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD, and MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD
environment variables, as described in Section 8.6.2, “Configuring MySQL Enterprise Encryption”. If
you do not set a maximum key size, the upper limit is 16384 for the RSA algorithm and 10000 for the
DSA algorithm, as specified by OpenSSL.

Upgrading MySQL Enterprise Encryption

If you upgrade to MySQL 8.0.30 or later from an earlier release where you used the functions provided
by the openssl_udf shared library, the functions you created remain available and are supported.
However, these legacy functions are deprecated from MySQL 8.0.30, and it is recommended that you
install the MySQL Enterprise Encryption component component_enterprise_encryption instead.

When you are upgrading, before installing the component, you must unload the legacy functions using
the DROP FUNCTION statement. For instructions to do this, see Installation From MySQL 8.0.30.

The component functions are backward compatible:

• RSA public and private keys generated by the legacy functions can be used with the component
functions.

• Data encrypted with the legacy functions can be decrypted by the component functions.

• Signatures created by the legacy functions can be verified with the component functions.

For the component functions to support decryption and verification for
content produced by the legacy functions, you must set the system variable
enterprise_encryption.rsa_support_legacy_padding to ON (the default is OFF). For
configuration information, see Section 8.6.2, “Configuring MySQL Enterprise Encryption”.

The legacy functions cannot handle encrypted data, public keys, and signatures created by the
component functions, due to the differences in the padding and key format used by the component
functions to meet the current standards.

The new functions provided by the component_enterprise_encryption component have some
differences in behavior and support from the legacy functions provided by the openssl_udf shared
library. The most important of these are as follows:

• The legacy functions support the older DSA algorithm and Diffie-Hellman key exchange method. The
component functions use only the generally preferred RSA algorithm.

• For the legacy functions, the minimum RSA key size is less than current best practice. The
component functions follow current best practice on minimum RSA key size.

• The legacy functions support only SHA2 for digests, and require digests for signatures. The
component functions also support SHA3 for digests (provided that OpenSSL 1.1.1 is in use), and do
not require digests for signatures, although they support them.

• The asymmetric_encrypt() legacy function supports encryption using private keys. The
asymmetric_encrypt() component function only accepts a public key. It is recommended that
you only encrypt using public keys with the legacy function as well.

• The create_dh_parameters() and asymmetric_derive() legacy functions for the Diffie-
Hellman key exchange method are not provided by the component_enterprise_encryption
component.

Table 1 summarizes the technical differences in support and operation between the legacy
functions provided by the openssl_udf shared library, and the functions provided by the
component_enterprise_encryption component from MySQL 8.0.30.

1773

Configuring MySQL Enterprise Encryption

Table 8.48 MySQL Enterprise Encryption functions

Capability Legacy functions (to MySQL
8.0.29)

Component functions (from
MySQL 8.0.30)

Encryption method RSA, DSA, Diffie-Hellman (DH) RSA only

Key for encryption Private or public Public only

RSA key format PKCS #1 v1.5 PKCS #8

Minimum RSA key size 1024 bits 2048 bits

Maximum RSA key size limit Set with environment variable
MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD,
default limit is algorithm
maximum 16384

Set with system variable
enterprise_encryption.maximum_rsa_key_size,
default limit is 4096

Digest algorithms SHA2 SHA2, SHA3 (with OpenSSL
1.1.1)

Signatures Digest required Digests supported but not
required, any string of arbitrary
length can be used

Output padding RSAES-PKCS1-v1_5 RSAES-OAEP

Signature padding RSASSA-PKCS1-v1_5 RSASSA-PSS

8.6.2 Configuring MySQL Enterprise Encryption

MySQL Enterprise Encryption lets you limit keys to a length that provides adequate security for your
requirements while balancing this with resource usage. You can also configure the functions provided
by the component_enterprise_encryption component from MySQL 8.0.30, to support decryption
and verification for content produced by the legacy openssl_udf shared library functions.

Decryption Support By Component Functions For Legacy Functions

By default, the functions provided by the component_enterprise_encryption component
from MySQL 8.0.30 do not decrypt encrypted text, or verify signatures, that were produced by the
legacy functions provided in earlier releases by the openssl_udf shared library. The component
functions assume that encrypted text uses the RSAES-OAEP padding scheme, and signatures use
the RSASSA-PSS signature scheme. However, encrypted text produced by the legacy functions uses
the RSAES-PKCS1-v1_5 padding scheme, and signatures produced by the legacy functions use the
RSASSA-PKCS1-v1_5 signature scheme.

If you want the component functions to support content produced by the
legacy functions before MySQL 8.0.30, set the component’s system variable
enterprise_encryption.rsa_support_legacy_padding to ON. The system variable is
available when the component is installed. When you set it to ON, the component functions first attempt
to decrypt or verify content assuming it has their normal schemes. If that does not work, they also
attempt to decrypt or verify the content assuming it has the schemes used by the legacy functions.
This behavior is not the default because it increases the time taken to process content that cannot be
decrypted or verified at all. If you are not handling content produced by the legacy functions, leave the
system variable to default to OFF.

Key Length Limits

The amount of CPU resources required by MySQL Enterprise Encryption's key generation functions
increases as the key length increases. For some installations, this might result in unacceptable CPU
usage if applications frequently generate excessively long keys.

OpenSSL specifies a minimum key length of 1024 bits for all keys. OpenSSL also specifies a maximum
key length of 16384 bits for RSA keys, 10000 bits for DSA keys, and 10000 bits for DH keys.

1774

MySQL Enterprise Encryption Usage and Examples

From MySQL 8.0.30, the functions provided by the component_enterprise_encryption
component have a higher minimum key length of 2048 bits for RSA keys, which is in line
with current best practice for minimum key lengths. The component's system variable
enterprise_encryption.maximum_rsa_key_size specifies the maximum key size, and
it defaults to 4096 bits. You can change this to allow keys up to the maximum length allowed by
OpenSSL, 16384 bits.

For releases before MySQL 8.0.30, the legacy functions provided by the openssl_udf shared library
default to OpenSSL's minimum and maximum limits. If the maximum values are too high, you can
specify a lower maximum key length using the following system variables:

• MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD: Maximum DSA key length in bits for
create_asymmetric_priv_key(). The minimum and maximum values for this variable are 1024
and 10000.

• MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD: Maximum RSA key length in bits for
create_asymmetric_priv_key(). The minimum and maximum values for this variable are 1024
and 16384.

• MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD: Maximum key length in bits for
create_dh_parameters(). The minimum and maximum values for this variable are 1024 and
10000.

To use any of these environment variables, set them in the environment of the process that
starts the server. If set, their values take precedence over the maximum key lengths imposed
by OpenSSL. For example, to set a maximum key length of 4096 bits for DSA and RSA keys for
create_asymmetric_priv_key(), set these variables:

export MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD=4096
export MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD=4096

The example uses Bourne shell syntax. The syntax for other shells may differ.

8.6.3 MySQL Enterprise Encryption Usage and Examples

To use MySQL Enterprise Encryption in applications, invoke the functions that are appropriate for the
operations you wish to perform. This section demonstrates how to carry out some representative tasks.

In releases before MySQL 8.0.30, MySQL Enterprise Encryption's functions are based on the
openssl_udf shared library. From MySQL 8.0.30, the functions are provided by a MySQL component
component_enterprise_encryption. In some cases, the behavior of the component functions
differs from the behavior of the legacy functions provided by the openssl_udf. For a list of the
differences, see Upgrading MySQL Enterprise Encryption. For full details of the behavior of each
component's functions, see Section 8.6.4, “MySQL Enterprise Encryption Function Reference”.

If you install the legacy functions then upgrade to MySQL 8.0.30 or later, the functions you created
remain available, are supported, and continue to work in the same way. However, they are deprecated
from MySQL 8.0.30, and it is recommended that you install the MySQL Enterprise Encryption
component component_enterprise_encryption instead. For instructions to upgrade, see
Installation From MySQL 8.0.30.

The following general considerations apply when choosing key lengths and encryption algorithms:

• The strength of encryption for private and public keys increases with the key size, but the time for
key generation increases as well.

• For the legacy functions, generation of DH keys takes much longer than RSA or DSA keys. The
component functions from MySQL 8.0.30 only support RSA keys.

• Asymmetric encryption functions consume more resources compared to symmetric functions. They
are good for encrypting small amounts of data and creating and verifying signatures. For encrypting

1775

MySQL Enterprise Encryption Usage and Examples

large amounts of data, symmetric encryption functions are faster. MySQL Server provides the
AES_ENCRYPT() and AES_DECRYPT() functions for symmetric encryption.

Key string values can be created at runtime and stored into a variable or table using SET, SELECT, or
INSERT. This example works with both the component function and the legacy function:

SET @priv1 = create_asymmetric_priv_key('RSA', 2048);
SELECT create_asymmetric_priv_key('RSA', 2048) INTO @priv2;
INSERT INTO t (key_col) VALUES(create_asymmetric_priv_key('RSA', 1024));

Key string values stored in files can be read using the LOAD_FILE() function by users who have the
FILE privilege. Digest and signature strings can be handled similarly.

• Create a private/public key pair

• Use the public key to encrypt data and the private key to decrypt it

• Generate a digest from a string

• Use the digest with a key pair

Create a private/public key pair

This example works with both the component functions and the legacy functions:

-- Encryption algorithm
SET @algo = 'RSA';
-- Key length in bits; make larger for stronger keys
SET @key_len = 2048;

-- Create private key
SET @priv = create_asymmetric_priv_key(@algo, @key_len);
-- Derive corresponding public key from private key, using same algorithm
SET @pub = create_asymmetric_pub_key(@algo, @priv);

You can use the key pair to encrypt and decrypt data or to sign and verify data.

Use the public key to encrypt data and the private key to decrypt it

This example works with both the component functions and the legacy functions. In both cases, the
members of the key pair must be RSA keys:

SET @ciphertext = asymmetric_encrypt(@algo, 'My secret text', @pub);
SET @plaintext = asymmetric_decrypt(@algo, @ciphertext, @priv);

Generate a digest from a string

This example works with both the component functions and the legacy functions:

-- Digest type
SET @dig_type = 'SHA512';

-- Generate digest string
SET @dig = create_digest(@dig_type, 'My text to digest');

Use the digest with a key pair

The key pair can be used to sign data, then verify that the signature matches the digest. This example
works with both the component functions and the legacy functions:

-- Encryption algorithm; keys must
-- have been created using same algorithm
SET @algo = 'RSA';

1776

MySQL Enterprise Encryption Function Reference

–- Digest algorithm to sign the data
SET @dig_type = 'SHA512';

-- Generate signature for digest and verify signature against digest
SET @sig = asymmetric_sign(@algo, @dig, @priv, @dig_type);
-- Verify signature against digest
SET @verf = asymmetric_verify(@algo, @dig, @sig, @pub, @dig_type);

For the legacy functions, signatures require a digest. For the component functions, signatures do
not require a digest, and can use any data string. The digest type in these functions refers to the
algorithm that is used to sign the data, not the algorithm that was used to create the original input for
the signature. This example is for the component functions:

-- Encryption algorithm; keys must
-- have been created using same algorithm
SET @algo = 'RSA';
–- Arbitrary text string for signature
SET @text = repeat('j', 256);
–- Digest algorithm to sign the data
SET @dig_type = 'SHA512';

-- Generate signature for digest and verify signature against digest
SET @sig = asymmetric_sign(@algo, @text, @priv, @dig_type);
-- Verify signature against digest
SET @verf = asymmetric_verify(@algo, @text, @sig, @pub, @dig_type);

8.6.4 MySQL Enterprise Encryption Function Reference

In releases from MySQL 8.0.30, MySQL Enterprise Encryption's functions are provided by the MySQL
component component_enterprise_encryption. For their descriptions, see Section 8.6.5,
“MySQL Enterprise Encryption Component Function Descriptions”.

In releases before MySQL 8.0.30, MySQL Enterprise Encryption's functions are based on the
openssl_udf shared library. The functions continue to be available in later releases if they have
been installed, but they are deprecated. For their descriptions, see Section 8.6.6, “MySQL Enterprise
Encryption Legacy Function Descriptions”.

For information on upgrading to the new component functions provided by the MySQL component
component_enterprise_encryption, and a list of the behavior differences between the legacy
functions and the component functions, see Upgrading MySQL Enterprise Encryption.

8.6.5 MySQL Enterprise Encryption Component Function Descriptions

In releases from MySQL 8.0.30, MySQL Enterprise Encryption's functions are provided by the MySQL
component component_enterprise_encryption. This reference describes those functions.

For information on upgrading to the new component functions provided by the MySQL component
component_enterprise_encryption, and a list of the behavior differences between the legacy
functions and the component functions, see Upgrading MySQL Enterprise Encryption.

The reference for the legacy functions in releases before MySQL 8.0.30 based on the openssl_udf
shared library is Section 8.6.6, “MySQL Enterprise Encryption Legacy Function Descriptions”.

MySQL Enterprise Encryption functions have these general characteristics:

• For arguments of the wrong type or an incorrect number of arguments, each function returns an
error.

• If the arguments are not suitable to permit a function to perform the requested operation, it returns
NULL or 0 as appropriate. This occurs, for example, if a function does not support a specified
algorithm, a key length is too short or long, or a string expected to be a key string in PEM format is
not a valid key.

1777

MySQL Enterprise Encryption Component Function Descriptions

• The underlying SSL library takes care of randomness initialization.

The component functions only support the RSA encryption algorithm.

For additional examples and discussion, see Section 8.6.3, “MySQL Enterprise Encryption Usage and
Examples”.

• asymmetric_decrypt(algorithm, data_str, priv_key_str)

Decrypts an encrypted string using the given algorithm and key string, and returns the resulting
plaintext as a binary string. If decryption fails, the result is NULL.

For the legacy version of this function in use before MySQL 8.0.29, see Section 8.6.6, “MySQL
Enterprise Encryption Legacy Function Descriptions”.

By default, the component_enterprise_encryption function assumes that encrypted
text uses the RSAES-OAEP padding scheme. The function supports decryption for content
encrypted by the legacy openssl_udf shared library functions if the system variable
enterprise_encryption.rsa_support_legacy_padding is set to ON (the default is OFF).
When ON is set, the function also supports the RSAES-PKCS1-v1_5 padding scheme, as used by
the legacy openssl_udf shared library functions. When OFF is set, content encrypted by the legacy
functions cannot be decrypted, and the function returns null output for such content.

algorithm is the encryption algorithm used to create the key. The supported algorithm value is
'RSA'.

data_str is the encrypted string to decrypt, which was encrypted with asymmetric_encrypt().

priv_key_str is a valid PEM encoded RSA private key. For successful decryption, the key string
must correspond to the public key string used with asymmetric_encrypt() to produce the
encrypted string. The asymmetric_encrypt() component function only supports encryption using
a public key, so decryption takes place with the corresponding private key.

For a usage example, see the description of asymmetric_encrypt().

• asymmetric_encrypt(algorithm, data_str, pub_key_str)

Encrypts a string using the given algorithm and key string, and returns the resulting ciphertext as a
binary string. If encryption fails, the result is NULL.

For the legacy version of this function in use before MySQL 8.0.29, see Section 8.6.6, “MySQL
Enterprise Encryption Legacy Function Descriptions”.

algorithm is the encryption algorithm used to create the key. The supported algorithm value is
'RSA'.

data_str is the string to encrypt. The length of this string cannot be greater than the key string
length in bytes, minus 42 (to account for the padding).

pub_key_str is a valid PEM encoded RSA public key. The asymmetric_encrypt() component
function only supports encryption using a public key.

To recover the original unencrypted string, pass the encrypted string to asymmetric_decrypt(),
along with the other part of the key pair used for encryption, as in the following example:

-- Generate private/public key pair
SET @priv = create_asymmetric_priv_key('RSA', 2048);
SET @pub = create_asymmetric_pub_key('RSA', @priv);

-- Encrypt using public key, decrypt using private key
SET @ciphertext = asymmetric_encrypt('RSA', 'The quick brown fox', @pub);
SET @plaintext = asymmetric_decrypt('RSA', @ciphertext, @priv);

1778

MySQL Enterprise Encryption Component Function Descriptions

Suppose that:

SET @s = a string to be encrypted
SET @priv = a valid private RSA key string in PEM format
SET @pub = the corresponding public RSA key string in PEM format

Then these identity relationships hold:

asymmetric_decrypt('RSA', asymmetric_encrypt('RSA', @s, @pub), @priv) = @s

• asymmetric_sign(algorithm, text, priv_key_str, digest_type)

Signs a digest string or data string using a private key, and returns the signature as a binary string. If
signing fails, the result is NULL.

For the legacy version of this function in use before MySQL 8.0.29, see Section 8.6.6, “MySQL
Enterprise Encryption Legacy Function Descriptions”.

algorithm is the encryption algorithm used to create the key. The supported algorithm value is
'RSA'.

text is a data string or digest string. The function accepts digests but does not require them, as it
is also capable of handling data strings of an arbitrary length. A digest string can be generated by
calling create_digest().

priv_key_str is the private key string to use for signing the digest string. It must be a valid PEM
encoded RSA private key.

digest_type is the algorithm to be used to sign the data. The supported digest_type values
are 'SHA224', 'SHA256', 'SHA384', and 'SHA512' when OpenSSL 1.0.1 is in use. If OpenSSL
1.1.1 is in use, the additional digest_type values 'SHA3-224', 'SHA3-256', 'SHA3-384', and
'SHA3-512' are available.

For a usage example, see the description of asymmetric_verify().

• asymmetric_verify(algorithm, text, sig_str, pub_key_str, digest_type)

Verifies whether the signature string matches the digest string, and returns 1 or 0 to indicate whether
verification succeeded or failed. If verification fails, the result is NULL.

For the legacy version of this function in use before MySQL 8.0.29, see Section 8.6.6, “MySQL
Enterprise Encryption Legacy Function Descriptions”.

By default, the component_enterprise_encryption function assumes that signatures
use the RSASSA-PSS signature scheme. The function supports verification for signatures
produced by the legacy openssl_udf shared library functions if the system variable
enterprise_encryption.rsa_support_legacy_padding is set to ON (the default is OFF).
When ON is set, the function also supports the RSASSA-PKCS1-v1_5 signature scheme, as used

1779

MySQL Enterprise Encryption Component Function Descriptions

by the legacy openssl_udf shared library functions. When OFF is set, signatures produced by the
legacy functions cannot be verified, and the function returns null output for such content.

algorithm is the encryption algorithm used to create the key. The supported algorithm value is
'RSA'.

text is a data string or digest string. The component function accepts digests but does not require
them, as it is also capable of handling data strings of an arbitrary length. A digest string can be
generated by calling create_digest().

sig_str is the signature string to be verified. A signature string can be generated by calling
asymmetric_sign().

pub_key_str is the public key string of the signer. It corresponds to the private key passed to
asymmetric_sign() to generate the signature string. It must be a valid PEM encoded RSA public
key.

digest_type is the algorithm that was used to sign the data. The supported digest_type values
are 'SHA224', 'SHA256', 'SHA384', and 'SHA512' when OpenSSL 1.0.1 is in use. If OpenSSL
1.1.1 is in use, the additional digest_type values 'SHA3-224', 'SHA3-256', 'SHA3-384', and
'SHA3-512' are available.

-- Set the encryption algorithm and digest type
SET @algo = 'RSA';
SET @dig_type = 'SHA512';

-- Create private/public key pair
SET @priv = create_asymmetric_priv_key(@algo, 2048);
SET @pub = create_asymmetric_pub_key(@algo, @priv);

-- Generate digest from string
SET @dig = create_digest(@dig_type, 'The quick brown fox');

-- Generate signature for digest and verify signature against digest
SET @sig = asymmetric_sign(@algo, @dig, @priv, @dig_type);
SET @verf = asymmetric_verify(@algo, @dig, @sig, @pub, @dig_type);

• create_asymmetric_priv_key(algorithm, key_length)

Creates a private key using the given algorithm and key length, and returns the key as a binary string
in PEM format. The key is in PKCS #8 format. If key generation fails, the result is NULL.

For the legacy version of this function in use before MySQL 8.0.29, see Section 8.6.6, “MySQL
Enterprise Encryption Legacy Function Descriptions”.

algorithm is the encryption algorithm used to create the key. The supported algorithm value is
'RSA'.

key_length is the key length in bits. If you exceed the maximum allowed key length or
specify less than the minimum, key generation fails and the result is null output. The minimum
allowed key length in bits is 2048. The maximum allowed key length is the value of the
enterprise_encryption.maximum_rsa_key_size system variable, which defaults to 4096. It
has a maximum setting of 16384, which is the maximum key length allowed for the RSA algorithm.
See Section 8.6.2, “Configuring MySQL Enterprise Encryption”.

Note

Generating longer keys can consume significant CPU resources. Limiting the
key length using the enterprise_encryption.maximum_rsa_key_size

1780

MySQL Enterprise Encryption Legacy Function Descriptions

system variable lets you provide adequate security for your requirements
while balancing this with resource usage.

This example creates a 2048-bit RSA private key, then derives a public key from the private key:

SET @priv = create_asymmetric_priv_key('RSA', 2048);
SET @pub = create_asymmetric_pub_key('RSA', @priv);

• create_asymmetric_pub_key(algorithm, priv_key_str)

Derives a public key from the given private key using the given algorithm, and returns the key as a
binary string in PEM format. The key is in PKCS #8 format. If key derivation fails, the result is NULL.

For the legacy version of this function in use before MySQL 8.0.29, see Section 8.6.6, “MySQL
Enterprise Encryption Legacy Function Descriptions”.

algorithm is the encryption algorithm used to create the key. The supported algorithm value is
'RSA'.

priv_key_str is a valid PEM encoded RSA private key.

For a usage example, see the description of create_asymmetric_priv_key().

• create_digest(digest_type, str)

Creates a digest from the given string using the given digest type, and returns the digest as a binary
string. If digest generation fails, the result is NULL.

For the legacy version of this function in use before MySQL 8.0.29, see Section 8.6.6, “MySQL
Enterprise Encryption Legacy Function Descriptions”.

The resulting digest string is suitable for use with asymmetric_sign() and
asymmetric_verify(). The component versions of these functions accept digests but do not
require them, as they are capable of handling data of an arbitrary length.

digest_type is the digest algorithm to be used to generate the digest string. The supported
digest_type values are 'SHA224', 'SHA256', 'SHA384', and 'SHA512' when OpenSSL
1.0.1 is in use. If OpenSSL 1.1.1 is in use, the additional digest_type values 'SHA3-224',
'SHA3-256', 'SHA3-384', and 'SHA3-512' are available.

str is the non-null data string for which the digest is to be generated.

SET @dig = create_digest('SHA512', 'The quick brown fox');

8.6.6 MySQL Enterprise Encryption Legacy Function Descriptions

In releases before MySQL 8.0.30, MySQL Enterprise Encryption's functions are based on the
openssl_udf shared library. This reference describes those functions. The functions continue to be
available in later releases if they have been installed, but they are deprecated.

For information on upgrading to the new component functions provided by the MySQL component
component_enterprise_encryption, and a list of the behavior differences between the legacy
functions and the component functions, see Upgrading MySQL Enterprise Encryption.

The reference for the component functions is Section 8.6.5, “MySQL Enterprise Encryption Component
Function Descriptions”.

MySQL Enterprise Encryption functions have these general characteristics:

• For arguments of the wrong type or an incorrect number of arguments, each function returns an
error.

1781

MySQL Enterprise Encryption Legacy Function Descriptions

• If the arguments are not suitable to permit a function to perform the requested operation, it returns
NULL or 0 as appropriate. This occurs, for example, if a function does not support a specified
algorithm, a key length is too short or long, or a string expected to be a key string in PEM format is
not a valid key.

• The underlying SSL library takes care of randomness initialization.

Several of the legacy functions take an encryption algorithm argument. The following table summarizes
the supported algorithms by function.

Table 8.49 Supported Algorithms by Function

Function Supported Algorithms

asymmetric_decrypt() RSA

asymmetric_derive() DH

asymmetric_encrypt() RSA

asymmetric_sign() RSA, DSA

asymmetric_verify() RSA, DSA

create_asymmetric_priv_key() RSA, DSA, DH

create_asymmetric_pub_key() RSA, DSA, DH

create_dh_parameters() DH

Note

Although you can create keys using any of the RSA, DSA, or DH encryption
algorithms, other legacy functions that take key arguments might accept
only certain types of keys. For example, asymmetric_encrypt() and
asymmetric_decrypt() accept only RSA keys.

For additional examples and discussion, see Section 8.6.3, “MySQL Enterprise Encryption Usage and
Examples”.

• asymmetric_decrypt(algorithm, crypt_str, key_str)

Decrypts an encrypted string using the given algorithm and key string, and returns the resulting
plaintext as a binary string. If decryption fails, the result is NULL.

The openssl_udf shared library function cannot decrypt content produced by the
component_enterprise_encryption functions that are available from MySQL 8.0.30.

algorithm is the encryption algorithm used to create the key. The supported algorithm value is
'RSA'.

crypt_str is the encrypted string to decrypt, which was encrypted with asymmetric_encrypt().

key_str is a valid PEM encoded RSA public or private key. For successful decryption, the key
string must correspond to the public or private key string used with asymmetric_encrypt() to
produce the encrypted string.

For a usage example, see the description of asymmetric_encrypt().

• asymmetric_derive(pub_key_str, priv_key_str)

Derives a symmetric key using the private key of one party and the public key of another, and returns
the resulting key as a binary string. If key derivation fails, the result is NULL.

pub_key_str and priv_key_str are valid PEM encoded key strings that were created using the
DH algorithm.

1782

MySQL Enterprise Encryption Legacy Function Descriptions

Suppose that you have two pairs of public and private keys:

SET @dhp = create_dh_parameters(1024);
SET @priv1 = create_asymmetric_priv_key('DH', @dhp);
SET @pub1 = create_asymmetric_pub_key('DH', @priv1);
SET @priv2 = create_asymmetric_priv_key('DH', @dhp);
SET @pub2 = create_asymmetric_pub_key('DH', @priv2);

Suppose further that you use the private key from one pair and the public key from the other pair to
create a symmetric key string. Then this symmetric key identity relationship holds:

asymmetric_derive(@pub1, @priv2) = asymmetric_derive(@pub2, @priv1)

This example requires DH private/public keys as inputs, created using a shared symmetric secret.
Create the secret by passing the key length to create_dh_parameters(), then pass the secret as
the “key length” to create_asymmetric_priv_key().

-- Generate DH shared symmetric secret
SET @dhp = create_dh_parameters(1024);
-- Generate DH key pairs
SET @algo = 'DH';
SET @priv1 = create_asymmetric_priv_key(@algo, @dhp);
SET @pub1 = create_asymmetric_pub_key(@algo, @priv1);
SET @priv2 = create_asymmetric_priv_key(@algo, @dhp);
SET @pub2 = create_asymmetric_pub_key(@algo, @priv2);

-- Generate symmetric key using public key of first party,
-- private key of second party
SET @sym1 = asymmetric_derive(@pub1, @priv2);

-- Or use public key of second party, private key of first party
SET @sym2 = asymmetric_derive(@pub2, @priv1);

• asymmetric_encrypt(algorithm, str, key_str)

Encrypts a string using the given algorithm and key string, and returns the resulting ciphertext as a
binary string. If encryption fails, the result is NULL.

algorithm is the encryption algorithm used to create the key. The supported algorithm value is
'RSA'.

str is the string to encrypt. The length of this string cannot be greater than the key string length in
bytes, minus 11 (to account for the padding).

key_str is a valid PEM encoded RSA public or private key.

To recover the original unencrypted string, pass the encrypted string to asymmetric_decrypt(),
along with the other part of the key pair used for encryption, as in the following example:

-- Generate private/public key pair
SET @priv = create_asymmetric_priv_key('RSA', 1024);
SET @pub = create_asymmetric_pub_key('RSA', @priv);

-- Encrypt using private key, decrypt using public key
SET @ciphertext = asymmetric_encrypt('RSA', 'The quick brown fox', @priv);
SET @plaintext = asymmetric_decrypt('RSA', @ciphertext, @pub);

-- Encrypt using public key, decrypt using private key
SET @ciphertext = asymmetric_encrypt('RSA', 'The quick brown fox', @pub);
SET @plaintext = asymmetric_decrypt('RSA', @ciphertext, @priv);

Suppose that:

SET @s = a string to be encrypted
SET @priv = a valid private RSA key string in PEM format

1783

MySQL Enterprise Encryption Legacy Function Descriptions

SET @pub = the corresponding public RSA key string in PEM format

Then these identity relationships hold:

asymmetric_decrypt('RSA', asymmetric_encrypt('RSA', @s, @priv), @pub) = @s
asymmetric_decrypt('RSA', asymmetric_encrypt('RSA', @s, @pub), @priv) = @s

• asymmetric_sign(algorithm, digest_str, priv_key_str, digest_type)

Signs a digest string using a private key string, and returns the signature as a binary string. If signing
fails, the result is NULL.

algorithm is the encryption algorithm used to create the key. The supported algorithm values are
'RSA' and 'DSA'.

digest_str is a digest string. A digest string can be generated by calling create_digest().

priv_key_str is the private key string to use for signing the digest string. It can be a valid PEM
encoded RSA private key or DSA private key.

digest_type is the algorithm to be used to sign the data. The supported digest_type values are
'SHA224', 'SHA256', 'SHA384', and 'SHA512'.

For a usage example, see the description of asymmetric_verify().

• asymmetric_verify(algorithm, digest_str, sig_str, pub_key_str,
digest_type)

Verifies whether the signature string matches the digest string, and returns 1 or 0 to indicate whether
verification succeeded or failed. If verification fails, the result is NULL.

The openssl_udf shared library function cannot verify content produced by the
component_enterprise_encryption functions that are available from MySQL 8.0.30.

algorithm is the encryption algorithm used to create the key. The supported algorithm values are
'RSA' and 'DSA'.

digest_str is the digest string. A digest string is required, and can be generated by calling
create_digest().

sig_str is the signature string to be verified. A signature string can be generated by calling
asymmetric_sign().

pub_key_str is the public key string of the signer. It corresponds to the private key passed to
asymmetric_sign() to generate the signature string. It must be a valid PEM encoded RSA public
key or DSA public key.

digest_type is the algorithm that was used to sign the data. The supported digest_type values
are 'SHA224', 'SHA256', 'SHA384', and 'SHA512'.

-- Set the encryption algorithm and digest type
SET @algo = 'RSA';
SET @dig_type = 'SHA224';

-- Create private/public key pair
SET @priv = create_asymmetric_priv_key(@algo, 1024);
SET @pub = create_asymmetric_pub_key(@algo, @priv);

-- Generate digest from string
SET @dig = create_digest(@dig_type, 'The quick brown fox');

-- Generate signature for digest and verify signature against digest
SET @sig = asymmetric_sign(@algo, @dig, @priv, @dig_type);
SET @verf = asymmetric_verify(@algo, @dig, @sig, @pub, @dig_type);

1784

MySQL Enterprise Encryption Legacy Function Descriptions

• create_asymmetric_priv_key(algorithm, {key_len|dh_secret})

Creates a private key using the given algorithm and key length or DH secret, and returns the key
as a binary string in PEM format. The key is in PKCS #1 format. If key generation fails, the result is
NULL.

algorithm is the encryption algorithm used to create the key. The supported algorithm values are
'RSA', 'DSA', and 'DH'.

key_len is the key length in bits for RSA and DSA keys. If you exceed the maximum allowed
key length or specify less than the minimum, key generation fails and the result is null output. The
minimum allowed key length in bits is 1,024, and the maximum allowed key length is 16,384 for the
RSA algorithm or 10,000 for the DSA algorithm. These key-length limits are constraints imposed by
OpenSSL. Server administrators can impose additional limits on maximum key length by setting the
MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD, MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD,
and MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD environment variables. See Section 8.6.2,
“Configuring MySQL Enterprise Encryption”.

Note

Generating longer keys can consume significant CPU resources. Limiting the
key length using the environment variables lets you provide adequate security
for your requirements while balancing this with resource usage.

dh_secret is a shared DH secret, which must be passed instead of a key length for DH keys. To
create the secret, pass the key length to create_dh_parameters().

This example creates a 2,048-bit DSA private key, then derives a public key from the private key:

SET @priv = create_asymmetric_priv_key('DSA', 2048);
SET @pub = create_asymmetric_pub_key('DSA', @priv);

For an example showing DH key generation, see the description of asymmetric_derive().

• create_asymmetric_pub_key(algorithm, priv_key_str)

Derives a public key from the given private key using the given algorithm, and returns the key as a
binary string in PEM format. The key is in PKCS #1 format. If key derivation fails, the result is NULL.

algorithm is the encryption algorithm used to create the key. The supported algorithm values are
'RSA', 'DSA', and 'DH'.

priv_key_str is a valid PEM encoded RSA, DSA, or DH private key.

For a usage example, see the description of create_asymmetric_priv_key().

• create_dh_parameters(key_len)

Creates a shared secret for generating a DH private/public key pair and returns a binary string that
can be passed to create_asymmetric_priv_key(). If secret generation fails, the result is NULL.

key_len is the key length. The minimum and maximum key lengths in bits are 1,024
and 10,000. These key-length limits are constraints imposed by OpenSSL. Server
administrators can impose additional limits on maximum key length by setting the
MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD, MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD,
and MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD environment variables. See Section 8.6.2,
“Configuring MySQL Enterprise Encryption”.

For an example showing how to use the return value for generating symmetric keys, see the
description of asymmetric_derive().

SET @dhp = create_dh_parameters(1024);

1785

SELinux

• create_digest(digest_type, str)

Creates a digest from the given string using the given digest type, and returns the digest as a binary
string. If digest generation fails, the result is NULL.

The resulting digest string is suitable for use with asymmetric_sign() and
asymmetric_verify(). A digest is required for these functions.

digest_type is the digest algorithm to be used to generate the digest string. The supported
digest_type values are 'SHA224', 'SHA256', 'SHA384', and 'SHA512'.

str is the non-null data string for which the digest is to be generated.

SET @dig = create_digest('SHA512', 'The quick brown fox');

8.7 SELinux

Security-Enhanced Linux (SELinux) is a mandatory access control (MAC) system that implements
access rights by applying a security label referred to as an SELinux context to each system object.
SELinux policy modules use SELinux contexts to define rules for how processes, files, ports, and other
system objects interact with each other. Interaction between system objects is only permitted if a policy
rule allows it.

An SELinux context (the label applied to a system object) has the following fields: user, role,
type, and security level. Type information rather than the entire SELinux context is used most
commonly to define rules for how processes interact with other system objects. MySQL SELinux policy
modules, for example, define policy rules using type information.

You can view SELinux contexts using operating system commands such as ls and ps with the -Z
option. Assuming that SELinux is enabled and a MySQL Server is running, the following commands
show the SELinux context for the mysqld process and MySQL data directory:

mysqld process:

$> ps -eZ | grep mysqld
system_u:system_r:mysqld_t:s0 5924 ? 00:00:03 mysqld

MySQL data directory:

$> cd /var/lib
$> ls -Z | grep mysql
system_u:object_r:mysqld_db_t:s0 mysql

where:

• system_u is an SELinux user identity for system processes and objects.

• system_r is an SELinux role used for system processes.

• objects_r is an SELinux role used for system objects.

• mysqld_t is the type associated with the mysqld process.

• mysqld_db_t is the type associated with the MySQL data directory and its files.

• s0 is the security level.

For more information about interpreting SELinux contexts, refer to your distribution's SELinux
documentation.

8.7.1 Check if SELinux is Enabled

1786

Changing the SELinux Mode

SELinux is enabled by default on some Linux distributions including Oracle Linux, RHEL, CentOS, and
Fedora. Use the sestatus command to determine if SELinux is enabled on your distribution:

$> sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking: actual (secure)
Max kernel policy version: 31

If SELinux is disabled or the sestatus command is not found, refer to your distribution's SELinux
documentation for guidance before enabling SELinux.

8.7.2 Changing the SELinux Mode

SELinux supports enforcing, permissive, and disabled modes. Enforcing mode is the default.
Permissive mode allows operations that are not permitted in enforcing mode and logs those
operations to the SELinux audit log. Permissive mode is typically used when developing policies or
troubleshooting. In disabled mode, polices are not enforced, and contexts are not applied to system
objects, which makes it difficult to enable SELinux later.

To view the current SELinux mode, use the sestatus command mentioned previously or the
getenforce utility.

$> getenforce
Enforcing

To change the SELinux mode, use the setenforce utility:

$> setenforce 0
$> getenforce
Permissive

$> setenforce 1
$> getenforce
Enforcing

Changes made with setenforce are lost when you restart the system. To permanently change the
SELinux mode, edit the /etc/selinux/config file and restart the system.

8.7.3 MySQL Server SELinux Policies

MySQL Server SELinux policy modules are typically installed by default. You can view installed
modules using the semodule -l command. MySQL Server SELinux policy modules include:

• mysqld_selinux

• mysqld_safe_selinux

For information about MySQL Server SELinux policy modules, refer to the SELinux manual pages.
The manual pages provide information about types and Booleans associated with the MySQL service.
Manual pages are named in the service-name_selinux format.

man mysqld_selinux

If SELinux manual pages are not available, refer to your distribution's SELinux documentation for
information about how to generate manual pages using the sepolicy manpage utility.

8.7.4 SELinux File Context

1787

SELinux File Context

The MySQL Server reads from and writes to many files. If the SELinux context is not set correctly for
these files, access to the files could be denied.

The instructions that follow use the semanage binary to manage file context; on RHEL, it's part of the
policycoreutils-python-utils package:

yum install -y policycoreutils-python-utils

After installing the semanage binary, you can list MySQL file contexts using semanage with the
fcontext option.

semanage fcontext -l | grep -i mysql

Setting the MySQL Data Directory Context

The default data directory location is /var/lib/mysql/; and the SELinux context used is
mysqld_db_t.

If you edit the configuration file to use a different location for the data directory, or for any of the files
normally in the data directory (such as the binary logs), you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_db_t "/path/to/my/custom/datadir(/.*)?"
restorecon -Rv /path/to/my/custom/datadir

semanage fcontext -a -t mysqld_db_t "/path/to/my/custom/logdir(/.*)?"
restorecon -Rv /path/to/my/custom/logdir

Setting the MySQL Error Log File Context

The default location for RedHat RPMs is /var/log/mysqld.log; and the SELinux context type used
is mysqld_log_t.

If you edit the configuration file to use a different location, you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_log_t "/path/to/my/custom/error.log"
restorecon -Rv /path/to/my/custom/error.log

Setting the PID File Context

The default location for the PID file is /var/run/mysqld/mysqld.pid; and the SELinux context
type used is mysqld_var_run_t.

If you edit the configuration file to use a different location, you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_var_run_t "/path/to/my/custom/pidfile/directory/.*?"
restorecon -Rv /path/to/my/custom/pidfile/directory

Setting the Unix Domain Socket Context

The default location for the Unix domain socket is /var/lib/mysql/mysql.sock; and the SELinux
context type used is mysqld_var_run_t.

If you edit the configuration file to use a different location, you may need to set the context for the new
location. For example:

semanage fcontext -a -t mysqld_var_run_t "/path/to/my/custom/mysql\.sock"
restorecon -Rv /path/to/my/custom/mysql.sock

Setting the secure_file_priv Directory Context

For MySQL versions since 5.6.34, 5.7.16, and 8.0.11.

1788

SELinux TCP Port Context

Installing the MySQL Server RPM creates a /var/lib/mysql-files/ directory but does not set the
SELinux context for it. The /var/lib/mysql-files/ directory is intended to be used for operations
such as SELECT ... INTO OUTFILE.

If you enabled the use of this directory by setting secure_file_priv, you may need to set the
context like so:

semanage fcontext -a -t mysqld_db_t "/var/lib/mysql-files/(/.*)?"
restorecon -Rv /var/lib/mysql-files

Edit this path if you used a different location. For security purposes, this directory should never be
within the data directory.

For more information about this variable, see the secure_file_priv documentation.

8.7.5 SELinux TCP Port Context

The instructions that follow use the semanage binary to manage port context; on RHEL, it's part of the
policycoreutils-python-utils package:

yum install -y policycoreutils-python-utils

After installing the semanage binary, you can list ports defined with the mysqld_port_t context using
semanage with the port option.

$> semanage port -l | grep mysqld
mysqld_port_t tcp 1186, 3306, 63132-63164

8.7.5.1 Setting the TCP Port Context for mysqld

The default TCP port for mysqld is 3306; and the SELinux context type used is mysqld_port_t.

If you configure mysqld to use a different TCP port, you may need to set the context for the new port.
For example to define the SELinux context for a non-default port such as port 3307:

semanage port -a -t mysqld_port_t -p tcp 3307

To confirm that the port is added:

$> semanage port -l | grep mysqld
mysqld_port_t tcp 3307, 1186, 3306, 63132-63164

8.7.5.2 Setting the TCP Port Context for MySQL Features

If you enable certain MySQL features, you might need to set the SELinux TCP port context for
additional ports used by those features. If ports used by MySQL features do not have the correct
SELinux context, the features might not function correctly.

The following sections describe how to set port contexts for MySQL features. Generally, the same
method can be used to set the port context for any MySQL features. For information about ports used
by MySQL features, refer to the MySQL Port Reference.

From MySQL 8.0.14 to MySQL 8.0.17, the mysql_connect_any SELinux boolean must be set to ON.
As of MySQL 8.0.18, enabling mysql_connect_any is not required or recommended.

setsebool -P mysql_connect_any=ON

Setting the TCP Port Context for Group Replication

If SELinux is enabled, you must set the port context for the Group Replication communication port,
which is defined by the group_replication_local_address variable. mysqld must be able to
bind to the Group Replication communication port and listen there. InnoDB Cluster relies on Group
Replication so this applies equally to instances used in a cluster. To view ports currently used by
MySQL, issue:

1789

https://dev.mysql.com/doc/mysql-port-reference/en/

Troubleshooting SELinux

semanage port -l | grep mysqld

Assuming the Group Replication communication port is 33061, set the port context by issuing:

semanage port -a -t mysqld_port_t -p tcp 33061

Setting the TCP Port Context for Document Store

If SELinux is enabled, you must set the port context for the communication port used by X Plugin,
which is defined by the mysqlx_port variable. mysqld must be able to bind to the X Plugin
communication port and listen there.

Assuming the X Plugin communication port is 33060, set the port context by issuing:

semanage port -a -t mysqld_port_t -p tcp 33060

Setting the TCP Port Context for MySQL Router

If SELinux is enabled, you must set the port context for the communication ports used by MySQL
Router. Assuming the additional communication ports used by MySQL Router are the default 6446,
6447, 64460 and 64470, on each instance set the port context by issuing:

semanage port -a -t mysqld_port_t -p tcp 6446
semanage port -a -t mysqld_port_t -p tcp 6447
semanage port -a -t mysqld_port_t -p tcp 64460
semanage port -a -t mysqld_port_t -p tcp 64470

8.7.6 Troubleshooting SELinux

Troubleshooting SELinux typically involves placing SELinux into permissive mode, rerunning
problematic operations, checking for access denial messages in the SELinux audit log, and placing
SELinux back into enforcing mode after problems are resolved.

To avoid placing the entire system into permissive mode using setenforce, you can permit only the
MySQL service to run permissively by placing its SELinux domain (mysqld_t) into permissive mode
using the semanage command:

semanage permissive -a mysqld_t

When you are finished troubleshooting, use this command to place the mysqld_t domain back into
enforcing mode:

semanage permissive -d mysqld_t

SELinux writes logs for denied operations to /var/log/audit/audit.log. You can check for
denials by searching for “denied” messages.

grep "denied" /var/log/audit/audit.log

The following sections describes a few common areas where SELinux-related issues may be
encountered.

File Contexts

If a MySQL directory or file has an incorrect SELinux context, access may be denied. This issue can
occur if MySQL is configured to read from or write to a non-default directory or file. For example, if you
configure MySQL to use a non-default data directory, the directory may not have the expected SELinux
context.

Attempting to start the MySQL service on a non-default data directory with an invalid SELinux context
causes the following startup failure.

$> systemctl start mysql.service
Job for mysqld.service failed because the control process exited with error code.

1790

FIPS Support

See "systemctl status mysqld.service" and "journalctl -xe" for details.

In this case, a “denial” message is logged to /var/log/audit/audit.log:

$> grep "denied" /var/log/audit/audit.log
type=AVC msg=audit(1587133719.786:194): avc: denied { write } for pid=7133 comm="mysqld"
name="mysql" dev="dm-0" ino=51347078 scontext=system_u:system_r:mysqld_t:s0
tcontext=unconfined_u:object_r:default_t:s0 tclass=dir permissive=0

For information about setting the proper SELinux context for MySQL directories and files, see
Section 8.7.4, “SELinux File Context”.

Port Access

SELinux expects services such as MySQL Server to use specific ports. Changing ports without
updating the SELinux policies may cause a service failure.

The mysqld_port_t port type defines the ports that the MySQL listens on. If you configure the
MySQL Server to use a non-default port, such as port 3307, and do not update the policy to reflect the
change, the MySQL service fails to start:

$> systemctl start mysqld.service
Job for mysqld.service failed because the control process exited with error code.
See "systemctl status mysqld.service" and "journalctl -xe" for details.

In this case, a denial message is logged to /var/log/audit/audit.log:

$> grep "denied" /var/log/audit/audit.log
type=AVC msg=audit(1587134375.845:198): avc: denied { name_bind } for pid=7340
comm="mysqld" src=3307 scontext=system_u:system_r:mysqld_t:s0
tcontext=system_u:object_r:unreserved_port_t:s0 tclass=tcp_socket permissive=0

For information about setting the proper SELinux port context for MySQL, see Section 8.7.5, “SELinux
TCP Port Context”. Similar port access issues can occur when enabling MySQL features that use ports
that are not defined with the required context. For more information, see Section 8.7.5.2, “Setting the
TCP Port Context for MySQL Features”.

Application Changes

SELinux may not be aware of application changes. For example, a new release, an application
extension, or a new feature may access system resources in a way that is not permitted by SELinux,
resulting in access denials. In such cases, you can use the audit2allow utility to create custom
policies to permit access where it is required. The typical method for creating custom policies is to
change the SELinux mode to permissive, identify access denial messages in the SELinux audit log,
and use the audit2allow utility to create custom policies to permit access.

For information about using the audit2allow utility, refer to your distribution's SELinux
documentation.

If you encounter access issues for MySQL that you believe should be handled by standard MySQL
SELinux policy modules, please open a bug report in your distribution's bug tracking system.

8.8 FIPS Support
MySQL supports FIPS mode when a supported OpenSSL library and FIPS Object Module are available
on the host system.

FIPS mode on the server side applies to cryptographic operations performed by the server. This
includes replication (source/replica and Group Replication) and X Plugin, which run within the server.
FIPS mode also applies to attempts by clients to connect to the server.

The following sections describe FIPS mode and how to take advantage of it within MySQL:

• FIPS Overview

1791

FIPS Overview

• System Requirements for FIPS Mode in MySQL

• Enabling FIPS Mode in MySQL

FIPS Overview

Federal Information Processing Standards 140-2 (FIPS 140-2) describes a security standard that can
be required by Federal (US Government) agencies for cryptographic modules used to protect sensitive
or valuable information. To be considered acceptable for such Federal use, a cryptographic module
must be certified for FIPS 140-2. If a system intended to protect sensitive data lacks the proper FIPS
140-2 certificate, Federal agencies cannot purchase it.

Products such as OpenSSL can be used in FIPS mode, although the OpenSSL library itself is not
validated for FIPS. Instead, the OpenSSL library is used with the OpenSSL FIPS Object Module to
enable OpenSSL-based applications to operate in FIPS mode.

For general information about FIPS and its implementation in OpenSSL, these references may be
helpful:

• National Institute of Standards and Technology FIPS PUB 140-2

• OpenSSL FIPS 140-2 Security Policy

• fips_module manual page

Important

FIPS mode imposes conditions on cryptographic operations such as restrictions
on acceptable encryption algorithms or requirements for longer key lengths. For
OpenSSL, the exact FIPS behavior depends on the OpenSSL version.

System Requirements for FIPS Mode in MySQL

For MySQL to support FIPS mode, these system requirements must be satisfied:

1. MySQL must be compiled with an OpenSSL version that is certified for use with FIPS. OpenSSL
1.0.2 and OpenSSL 3.0 are certified, but OpenSSL 1.1.1 is not. Binary distributions for recent
versions of MySQL are compiled using OpenSSL 3.0 on some platforms, which means they are not
certified for FIPS. This means you have the following options, depending on system and MySQL
configuration:

• Use a system that has OpenSSL 3.0 and the required FIPS object module. In this case, you can
enable FIPS mode for MySQL if you use a binary distribution compiled using OpenSSL 3.0, or
compile MySQL from source using OpenSSL 3.0.

For general information about upgrading to OpenSSL 3.0, see OpenSSL 3.0 Migration Guide.

• Use a system that has OpenSSL 1.1.1 or higher. In this case, you can install MySQL using binary
packages, and you can use the TLS v1.3 protocol and ciphersuites, in addition to other already
supported TLS protocols. However, you cannot enable FIPS mode for MySQL.

• Use a system that has OpenSSL 1.0.2 and the required FIPS Object Module. In this case, you
can enable FIPS mode for MySQL if you use a binary distribution compiled using OpenSSL
1.0.2, or compile MySQL from source using OpenSSL 1.0.2. In this case, you cannot use the
TLS v1.3 protocol or ciphersuites, which require OpenSSL 1.1.1 or 3.0. In addition, you should
be aware that OpenSSL 1.0.2 reached end of life status in 2019, and that all operating platforms
embedding OpenSSL 1.1.1 reach their end of life in 2024.

2. At runtime, the OpenSSL library and OpenSSL FIPS Object Module must be available as shared
(dynamically linked) objects.

1792

https://doi.org/10.6028/NIST.FIPS.140-2
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp1747.pdf
https://www.openssl.org/docs/man3.0/man7/fips_module.html
https://www.openssl.org/docs/man3.0/man7/migration_guide.html

Enabling FIPS Mode in MySQL

Enabling FIPS Mode in MySQL

Note

In MySQL 8.0.34 and later, the server-side and client-side configuration
described at the end of this section is no longer required.

To determine whether MySQL is running on a system with FIPS mode enabled, check the value of the
ssl_fips_mode server system variable using an SQL statement such as SHOW VARIABLES LIKE
'%fips%' or SELECT @@ssl_fips_mode. If the value of this variable is 1 (ON) or 2 (STRICT), FIPS
mode is enabled for OpenSSL; if it is 0 (OFF), FIPS mode is not available.

Important

In general, STRICT imposes more restrictions than ON, but MySQL itself has
no FIPS-specific code other than to specify the FIPS mode value to OpenSSL.
The exact behavior of FIPS mode for ON or STRICT depends on the OpenSSL
version. For details, refer to the fips_module manpage (see FIPS Overview).

FIPS mode on the server side applies to cryptographic operations performed by the server, including
those performed by MySQL Replication (including Group Replication) and X Plugin, which run within
the server.

FIPS mode also applies to attempts by clients to connect to the server. When enabled, on either
the client or server side, it restricts which of the supported encryption ciphers can be chosen.
However, enabling FIPS mode does not require that an encrypted connection must be used, or that
user credentials must be encrypted. For example, if FIPS mode is enabled, stronger cryptographic
algorithms are required. In particular, MD5 is restricted, so trying to establish an encrypted connection
using an encryption cipher such as RC4-MD5 does not work. But there is nothing about FIPS mode that
prevents establishing an unencrypted connection. (To do that, you can use the REQUIRE clause for
CREATE USER or ALTER USER for specific user accounts, or set the require_secure_transport
system variable to affect all accounts.)

If FIPS mode is required, it is recommended to use an operating platform that includes it; if it does, you
can (and should) use it. If your platform does not include FIPS, you have two options:

• Migrate to a platform which has FIPS OpenSSL support.

• Build the OpenSSL library and FIPS object module from source, using the instructions from
the fips_module manpage (see FIPS Overview).

MySQL 8.0.34 and earlier: Control of FIPS mode on the server side and the client side was
accomplished using the system variables listed here:

• The ssl_fips_mode system variable controls whether the server operates in FIPS mode.

• The --ssl-fips-mode client option controls whether a given MySQL client operates in FIPS
mode.

The ssl_fips_mode system variable and --ssl-fips-mode client option permit these values:

• OFF: Disable FIPS mode.

• ON: Enable FIPS mode.

• STRICT: Enable “strict” FIPS mode.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted value
for ssl_fips_mode and --ssl-fips-mode is OFF. An error occurs for
attempts to set the FIPS mode to a different value.

1793

1794

Chapter 9 Backup and Recovery

Table of Contents
9.1 Backup and Recovery Types ... 1796
9.2 Database Backup Methods .. 1799
9.3 Example Backup and Recovery Strategy .. 1801

9.3.1 Establishing a Backup Policy .. 1801
9.3.2 Using Backups for Recovery ... 1803
9.3.3 Backup Strategy Summary .. 1804

9.4 Using mysqldump for Backups ... 1804
9.4.1 Dumping Data in SQL Format with mysqldump .. 1805
9.4.2 Reloading SQL-Format Backups ... 1806
9.4.3 Dumping Data in Delimited-Text Format with mysqldump .. 1806
9.4.4 Reloading Delimited-Text Format Backups ... 1807
9.4.5 mysqldump Tips ... 1808

9.5 Point-in-Time (Incremental) Recovery ... 1810
9.5.1 Point-in-Time Recovery Using Binary Log .. 1810
9.5.2 Point-in-Time Recovery Using Event Positions ... 1811

9.6 MyISAM Table Maintenance and Crash Recovery ... 1813
9.6.1 Using myisamchk for Crash Recovery ... 1813
9.6.2 How to Check MyISAM Tables for Errors ... 1814
9.6.3 How to Repair MyISAM Tables ... 1815
9.6.4 MyISAM Table Optimization .. 1817
9.6.5 Setting Up a MyISAM Table Maintenance Schedule ... 1817

It is important to back up your databases so that you can recover your data and be up and running
again in case problems occur, such as system crashes, hardware failures, or users deleting data by
mistake. Backups are also essential as a safeguard before upgrading a MySQL installation, and they
can be used to transfer a MySQL installation to another system or to set up replica servers.

MySQL offers a variety of backup strategies from which you can choose the methods that best suit
the requirements for your installation. This chapter discusses several backup and recovery topics with
which you should be familiar:

• Types of backups: Logical versus physical, full versus incremental, and so forth.

• Methods for creating backups.

• Recovery methods, including point-in-time recovery.

• Backup scheduling, compression, and encryption.

• Table maintenance, to enable recovery of corrupt tables.

Additional Resources

Resources related to backup or to maintaining data availability include the following:

• Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product for backups.
For an overview of the MySQL Enterprise Backup product, see Section 32.1, “MySQL Enterprise
Backup Overview”.

• A forum dedicated to backup issues is available at https://forums.mysql.com/list.php?28.

• Details for mysqldump can be found in Chapter 6, MySQL Programs.

• The syntax of the SQL statements described here is given in Chapter 15, SQL Statements.

1795

https://forums.mysql.com/list.php?28

Backup and Recovery Types

• For additional information about InnoDB backup procedures, see Section 17.18.1, “InnoDB Backup”.

• Replication enables you to maintain identical data on multiple servers. This has several benefits,
such as enabling client query load to be distributed over servers, availability of data even if a given
server is taken offline or fails, and the ability to make backups with no impact on the source by using
a replica. See Chapter 19, Replication.

• MySQL InnoDB Cluster is a collection of products that work together to provide a high availability
solution. A group of MySQL servers can be configured to create a cluster using MySQL Shell. The
cluster of servers has a single source, called the primary, which acts as the read-write source.
Multiple secondary servers are replicas of the source. A minimum of three servers are required to
create a high availability cluster. A client application is connected to the primary via MySQL Router.
If the primary fails, a secondary is automatically promoted to the role of primary, and MySQL Router
routes requests to the new primary.

• NDB Cluster provides a high-availability, high-redundancy version of MySQL adapted for the
distributed computing environment. See Chapter 25, MySQL NDB Cluster 8.0, which provides
information about MySQL NDB Cluster 8.0.

9.1 Backup and Recovery Types

This section describes the characteristics of different types of backups.

Physical (Raw) Versus Logical Backups

Physical backups consist of raw copies of the directories and files that store database contents. This
type of backup is suitable for large, important databases that need to be recovered quickly when
problems occur.

Logical backups save information represented as logical database structure (CREATE DATABASE,
CREATE TABLE statements) and content (INSERT statements or delimited-text files). This type of
backup is suitable for smaller amounts of data where you might edit the data values or table structure,
or recreate the data on a different machine architecture.

Physical backup methods have these characteristics:

• The backup consists of exact copies of database directories and files. Typically this is a copy of all or
part of the MySQL data directory.

• Physical backup methods are faster than logical because they involve only file copying without
conversion.

• Output is more compact than for logical backup.

• Because backup speed and compactness are important for busy, important databases, the MySQL
Enterprise Backup product performs physical backups. For an overview of the MySQL Enterprise
Backup product, see Section 32.1, “MySQL Enterprise Backup Overview”.

• Backup and restore granularity ranges from the level of the entire data directory down to the level of
individual files. This may or may not provide for table-level granularity, depending on storage engine.
For example, InnoDB tables can each be in a separate file, or share file storage with other InnoDB
tables; each MyISAM table corresponds uniquely to a set of files.

• In addition to databases, the backup can include any related files such as log or configuration files.

• Data from MEMORY tables is tricky to back up this way because their contents are not stored on disk.
(The MySQL Enterprise Backup product has a feature where you can retrieve data from MEMORY
tables during a backup.)

• Backups are portable only to other machines that have identical or similar hardware characteristics.

1796

Online Versus Offline Backups

• Backups can be performed while the MySQL server is not running. If the server is running, it is
necessary to perform appropriate locking so that the server does not change database contents
during the backup. MySQL Enterprise Backup does this locking automatically for tables that require
it.

• Physical backup tools include the mysqlbackup of MySQL Enterprise Backup for InnoDB or any
other tables, or file system-level commands (such as cp, scp, tar, rsync) for MyISAM tables.

• For restore:

• MySQL Enterprise Backup restores InnoDB and other tables that it backed up.

• ndb_restore restores NDB tables.

• Files copied at the file system level can be copied back to their original locations with file system
commands.

Logical backup methods have these characteristics:

• The backup is done by querying the MySQL server to obtain database structure and content
information.

• Backup is slower than physical methods because the server must access database information and
convert it to logical format. If the output is written on the client side, the server must also send it to
the backup program.

• Output is larger than for physical backup, particularly when saved in text format.

• Backup and restore granularity is available at the server level (all databases), database level (all
tables in a particular database), or table level. This is true regardless of storage engine.

• The backup does not include log or configuration files, or other database-related files that are not
part of databases.

• Backups stored in logical format are machine independent and highly portable.

• Logical backups are performed with the MySQL server running. The server is not taken offline.

• Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE
statement. These work for any storage engine, even MEMORY.

• To restore logical backups, SQL-format dump files can be processed using the mysql client. To load
delimited-text files, use the LOAD DATA statement or the mysqlimport client.

Online Versus Offline Backups

Online backups take place while the MySQL server is running so that the database information can be
obtained from the server. Offline backups take place while the server is stopped. This distinction can
also be described as “hot” versus “cold” backups; a “warm” backup is one where the server remains
running but locked against modifying data while you access database files externally.

Online backup methods have these characteristics:

• The backup is less intrusive to other clients, which can connect to the MySQL server during the
backup and may be able to access data depending on what operations they need to perform.

• Care must be taken to impose appropriate locking so that data modifications do not take place that
would compromise backup integrity. The MySQL Enterprise Backup product does such locking
automatically.

Offline backup methods have these characteristics:

• Clients can be affected adversely because the server is unavailable during backup. For that reason,
such backups are often taken from a replica that can be taken offline without harming availability.

1797

Local Versus Remote Backups

• The backup procedure is simpler because there is no possibility of interference from client activity.

A similar distinction between online and offline applies for recovery operations, and similar
characteristics apply. However, it is more likely for clients to be affected by online recovery than by
online backup because recovery requires stronger locking. During backup, clients might be able to read
data while it is being backed up. Recovery modifies data and does not just read it, so clients must be
prevented from accessing data while it is being restored.

Local Versus Remote Backups

A local backup is performed on the same host where the MySQL server runs, whereas a remote
backup is done from a different host. For some types of backups, the backup can be initiated from a
remote host even if the output is written locally on the server. host.

• mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT
statements), local or remote dumps can be done and generate output on the client. For delimited-text
output (with the --tab option), data files are created on the server host.

• SELECT ... INTO OUTFILE can be initiated from a local or remote client host, but the output file
is created on the server host.

• Physical backup methods typically are initiated locally on the MySQL server host so that the server
can be taken offline, although the destination for copied files might be remote.

Snapshot Backups

Some file system implementations enable “snapshots” to be taken. These provide logical copies of
the file system at a given point in time, without requiring a physical copy of the entire file system. (For
example, the implementation may use copy-on-write techniques so that only parts of the file system
modified after the snapshot time need be copied.) MySQL itself does not provide the capability for
taking file system snapshots. It is available through third-party solutions such as Veritas, LVM, or ZFS.

Full Versus Incremental Backups

A full backup includes all data managed by a MySQL server at a given point in time. An incremental
backup consists of the changes made to the data during a given time span (from one point in time to
another). MySQL has different ways to perform full backups, such as those described earlier in this
section. Incremental backups are made possible by enabling the server's binary log, which the server
uses to record data changes.

Full Versus Point-in-Time (Incremental) Recovery

A full recovery restores all data from a full backup. This restores the server instance to the state that it
had when the backup was made. If that state is not sufficiently current, a full recovery can be followed
by recovery of incremental backups made since the full backup, to bring the server to a more up-to-
date state.

Incremental recovery is recovery of changes made during a given time span. This is also called point-
in-time recovery because it makes a server's state current up to a given time. Point-in-time recovery
is based on the binary log and typically follows a full recovery from the backup files that restores the
server to its state when the backup was made. Then the data changes written in the binary log files are
applied as incremental recovery to redo data modifications and bring the server up to the desired point
in time.

Table Maintenance

Data integrity can be compromised if tables become corrupt. For InnoDB tables, this is not a typical
issue. For programs to check MyISAM tables and repair them if problems are found, see Section 9.6,
“MyISAM Table Maintenance and Crash Recovery”.

1798

Backup Scheduling, Compression, and Encryption

Backup Scheduling, Compression, and Encryption

Backup scheduling is valuable for automating backup procedures. Compression of backup
output reduces space requirements, and encryption of the output provides better security against
unauthorized access of backed-up data. MySQL itself does not provide these capabilities. The MySQL
Enterprise Backup product can compress InnoDB backups, and compression or encryption of backup
output can be achieved using file system utilities. Other third-party solutions may be available.

9.2 Database Backup Methods

This section summarizes some general methods for making backups.

Making a Hot Backup with MySQL Enterprise Backup

Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product to do physical
backups of entire instances or selected databases, tables, or both. This product includes features
for incremental and compressed backups. Backing up the physical database files makes restore
much faster than logical techniques such as the mysqldump command. InnoDB tables are copied
using a hot backup mechanism. (Ideally, the InnoDB tables should represent a substantial majority
of the data.) Tables from other storage engines are copied using a warm backup mechanism. For an
overview of the MySQL Enterprise Backup product, see Section 32.1, “MySQL Enterprise Backup
Overview”.

Making Backups with mysqldump

The mysqldump program can make backups. It can back up all kinds of tables. (See Section 9.4,
“Using mysqldump for Backups”.)

For InnoDB tables, it is possible to perform an online backup that takes no locks on tables using the --
single-transaction option to mysqldump. See Section 9.3.1, “Establishing a Backup Policy”.

Making Backups by Copying Table Files

MyISAM tables can be backed up by copying table files (*.MYD, *.MYI files, and associated *.sdi
files). To get a consistent backup, stop the server or lock and flush the relevant tables:

FLUSH TABLES tbl_list WITH READ LOCK;

You need only a read lock; this enables other clients to continue to query the tables while you are
making a copy of the files in the database directory. The flush is needed to ensure that the all active
index pages are written to disk before you start the backup. See Section 15.3.6, “LOCK TABLES and
UNLOCK TABLES Statements”, and Section 15.7.8.3, “FLUSH Statement”.

You can also create a binary backup simply by copying the table files, as long as the server is not
updating anything. (But note that table file copying methods do not work if your database contains
InnoDB tables. Also, even if the server is not actively updating data, InnoDB may still have modified
data cached in memory and not flushed to disk.)

For an example of this backup method, refer to the export and import example in Section 15.2.6,
“IMPORT TABLE Statement”.

Making Delimited-Text File Backups

To create a text file containing a table's data, you can use SELECT * INTO OUTFILE 'file_name'
FROM tbl_name. The file is created on the MySQL server host, not the client host. For this statement,
the output file cannot already exist because permitting files to be overwritten constitutes a security risk.
See Section 15.2.13, “SELECT Statement”. This method works for any kind of data file, but saves only
table data, not the table structure.

1799

Making Incremental Backups by Enabling the Binary Log

Another way to create text data files (along with files containing CREATE TABLE statements for the
backed up tables) is to use mysqldump with the --tab option. See Section 9.4.3, “Dumping Data in
Delimited-Text Format with mysqldump”.

To reload a delimited-text data file, use LOAD DATA or mysqlimport.

Making Incremental Backups by Enabling the Binary Log

MySQL supports incremental backups using the binary log. The binary log files provide you with the
information you need to replicate changes to the database that are made subsequent to the point at
which you performed a backup. Therefore, to allow a server to be restored to a point-in-time, binary
logging must be enabled on it, which is the default setting for MySQL 8.0 ; see Section 7.4.4, “The
Binary Log”.

At the moment you want to make an incremental backup (containing all changes that happened since
the last full or incremental backup), you should rotate the binary log by using FLUSH LOGS. This done,
you need to copy to the backup location all binary logs which range from the one of the moment of the
last full or incremental backup to the last but one. These binary logs are the incremental backup; at
restore time, you apply them as explained in Section 9.5, “Point-in-Time (Incremental) Recovery”. The
next time you do a full backup, you should also rotate the binary log using FLUSH LOGS or mysqldump
--flush-logs. See Section 6.5.4, “mysqldump — A Database Backup Program”.

Making Backups Using Replicas

If you have performance problems with a server while making backups, one strategy that can help is to
set up replication and perform backups on the replica rather than on the source. See Section 19.4.1,
“Using Replication for Backups”.

If you are backing up a replica, you should back up its connection metadata repository and applier
metadata repository (see Section 19.2.4, “Relay Log and Replication Metadata Repositories”) when
you back up the replica's databases, regardless of the backup method you choose. This information
is always needed to resume replication after you restore the replica's data. If your replica is replicating
LOAD DATA statements, you should also back up any SQL_LOAD-* files that exist in the directory
that the replica uses for this purpose. The replica needs these files to resume replication of any
interrupted LOAD DATA operations. The location of this directory is the value of the system variable
replica_load_tmpdir (from MySQL 8.0.26) or slave_load_tmpdir (before MySQL 8.0.26).
If the server was not started with that variable set, the directory location is the value of the tmpdir
system variable.

Recovering Corrupt Tables

If you have to restore MyISAM tables that have become corrupt, try to recover them using REPAIR
TABLE or myisamchk -r first. That should work in 99.9% of all cases. If myisamchk fails, see
Section 9.6, “MyISAM Table Maintenance and Crash Recovery”.

Making Backups Using a File System Snapshot

If you are using a Veritas file system, you can make a backup like this:

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

2. From another shell, execute mount vxfs snapshot.

3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

Similar snapshot capabilities may be available in other file systems, such as LVM or ZFS.

1800

Example Backup and Recovery Strategy

9.3 Example Backup and Recovery Strategy

This section discusses a procedure for performing backups that enables you to recover data after
several types of crashes:

• Operating system crash

• Power failure

• File system crash

• Hardware problem (hard drive, motherboard, and so forth)

The example commands do not include options such as --user and --password for the mysqldump
and mysql client programs. You should include such options as necessary to enable client programs
to connect to the MySQL server.

Assume that data is stored in the InnoDB storage engine, which has support for transactions and
automatic crash recovery. Assume also that the MySQL server is under load at the time of the crash. If
it were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is
available after a restart. The InnoDB data files might not contain consistent data due to the crash, but
InnoDB reads its logs and finds in them the list of pending committed and noncommitted transactions
that have not been flushed to the data files. InnoDB automatically rolls back those transactions that
were not committed, and flushes to its data files those that were committed. Information about this
recovery process is conveyed to the user through the MySQL error log. The following is an example log
excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of file system crashes or hardware problems, we can assume that the MySQL disk data
is not available after a restart. This means that MySQL fails to start successfully because some blocks
of disk data are no longer readable. In this case, it is necessary to reformat the disk, install a new one,
or otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from
backups, which means that backups must already have been made. To make sure that is the case,
design and implement a backup policy.

9.3.1 Establishing a Backup Policy

To be useful, backups must be scheduled regularly. A full backup (a snapshot of the data at a point in
time) can be done in MySQL with several tools. For example, MySQL Enterprise Backup can perform
a physical backup of an entire instance, with optimizations to minimize overhead and avoid disruption

1801

Establishing a Backup Policy

when backing up InnoDB data files; mysqldump provides online logical backup. This discussion uses
mysqldump.

Assume that we make a full backup of all our InnoDB tables in all databases using the following
command on Sunday at 1 p.m., when load is low:

$> mysqldump --all-databases --master-data --single-transaction > backup_sunday_1_PM.sql

The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can be
used to reload the dumped tables at a later time.

This backup operation acquires a global read lock on all tables at the beginning of the dump (using
FLUSH TABLES WITH READ LOCK). As soon as this lock has been acquired, the binary log
coordinates are read and the lock is released. If long updating statements are running when the FLUSH
statement is issued, the backup operation may stall until those statements finish. After that, the dump
becomes lock-free and does not disturb reads and writes on the tables.

It was assumed earlier that the tables to back up are InnoDB tables, so --single-transaction
uses a consistent read and guarantees that data seen by mysqldump does not change. (Changes
made by other clients to InnoDB tables are not seen by the mysqldump process.) If the backup
operation includes nontransactional tables, consistency requires that they do not change during the
backup. For example, for the MyISAM tables in the mysql database, there must be no administrative
changes to MySQL accounts during the backup.

Full backups are necessary, but it is not always convenient to create them. They produce large backup
files and take time to generate. They are not optimal in the sense that each successive full backup
includes all data, even that part that has not changed since the previous full backup. It is more efficient
to make an initial full backup, and then to make incremental backups. The incremental backups are
smaller and take less time to produce. The tradeoff is that, at recovery time, you cannot restore your
data just by reloading the full backup. You must also process the incremental backups to recover the
incremental changes.

To make incremental backups, we need to save the incremental changes. In MySQL, these changes
are represented in the binary log, so the MySQL server should always be started with the --log-bin
option to enable that log. With binary logging enabled, the server writes each data change into a file
while it updates data. Looking at the data directory of a MySQL server that has been running for some
days, we find these MySQL binary log files:

-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the
sequence. While the server is running, you can also tell it to close the current binary log file and begin
a new one manually by issuing a FLUSH LOGS SQL statement or with a mysqladmin flush-logs
command. mysqldump also has an option to flush the logs. The .index file in the data directory
contains the list of all MySQL binary logs in the directory.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If
you make sure to flush the logs when you make your full backup, the binary log files created afterward
contain all the data changes made since the backup. Let's modify the previous mysqldump command
a bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that the dump
file contains the name of the new current binary log:

$> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases > backup_sunday_1_PM.sql

After executing this command, the data directory contains a new binary log file, gbichot2-
bin.000007, because the --flush-logs option causes the server to flush its logs. The --master-

1802

Using Backups for Recovery

data option causes mysqldump to write binary log information to its output, so the resulting .sql
dump file includes these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, those lines mean two things:

• The dump file contains all changes made before any changes written to the gbichot2-
bin.000007 binary log file or higher.

• All data changes logged after the backup are not present in the dump file, but are present in the
gbichot2-bin.000007 binary log file or higher.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new
binary log file. For example, executing a mysqladmin flush-logs command creates gbichot2-
bin.000008. All changes between the Sunday 1 p.m. full backup and Monday 1 p.m. are written in
gbichot2-bin.000007. This incremental backup is important, so it is a good idea to copy it to a
safe place. (For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday at
1 p.m., execute another mysqladmin flush-logs command. All changes between Monday 1 p.m.
and Tuesday 1 p.m. are written in gbichot2-bin.000008 (which also should be copied somewhere
safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One
way to do this is by deleting the binary logs that are no longer needed, such as when we make a full
backup:

$> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases --delete-master-logs > backup_sunday_1_PM.sql

Note

Deleting the MySQL binary logs with mysqldump --delete-master-
logs can be dangerous if your server is a replication source server, because
replicas might not yet fully have processed the contents of the binary log. The
description for the PURGE BINARY LOGS statement explains what should be
verified before deleting the MySQL binary logs. See Section 15.4.1.1, “PURGE
BINARY LOGS Statement”.

9.3.2 Using Backups for Recovery

Now, suppose that we have a catastrophic unexpected exit on Wednesday at 8 a.m. that requires
recovery from backups. To recover, first we restore the last full backup we have (the one from Sunday
1 p.m.). The full backup file is just a set of SQL statements, so restoring it is very easy:

$> mysql < backup_sunday_1_PM.sql

At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since
then, we must use the incremental backups; that is, the gbichot2-bin.000007 and gbichot2-
bin.000008 binary log files. Fetch the files if necessary from where they were backed up, and then
process their contents like this:

$> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes
from that date to the date of the crash. To not lose them, we would have needed to have the MySQL
server store its MySQL binary logs into a safe location (RAID disks, SAN, ...) different from the place
where it stores its data files, so that these logs were not on the destroyed disk. (That is, we can start
the server with a --log-bin option that specifies a location on a different physical device from the
one on which the data directory resides. That way, the logs are safe even if the device containing
the directory is lost.) If we had done this, we would have the gbichot2-bin.000009 file (and any

1803

Backup Strategy Summary

subsequent files) at hand, and we could apply them using mysqlbinlog and mysql to restore the
most recent data changes with no loss up to the moment of the crash:

$> mysqlbinlog gbichot2-bin.000009 ... | mysql

For more information about using mysqlbinlog to process binary log files, see Section 9.5, “Point-in-
Time (Incremental) Recovery”.

9.3.3 Backup Strategy Summary

In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data.
But to make sure that you can sleep well, observe the following guidelines:

• Always tun the MySQL server with binary logging enabled (that is the default setting for MySQL 8.0).
If you have such safe media, this technique can also be good for disk load balancing (which results
in a performance improvement).

• Make periodic full backups, using the mysqldump command shown earlier in Section 9.3.1,
“Establishing a Backup Policy”, that makes an online, nonblocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin flush-
logs.

9.4 Using mysqldump for Backups

Tip

Consider using the MySQL Shell dump utilities, which provide parallel
dumping with multiple threads, file compression, and progress information
display, as well as cloud features such as Oracle Cloud Infrastructure Object
Storage streaming, and MySQL HeatWave Service compatibility checks and
modifications. Dumps can be easily imported into a MySQL Server instance
or a MySQL HeatWave Service DB System using the MySQL Shell load dump
utilities. Installation instructions for MySQL Shell can be found here.

This section describes how to use mysqldump to produce dump files, and how to reload dump files. A
dump file can be used in several ways:

• As a backup to enable data recovery in case of data loss.

• As a source of data for setting up replicas.

• As a source of data for experimentation:

• To make a copy of a database that you can use without changing the original data.

• To test potential upgrade incompatibilities.

mysqldump produces two types of output, depending on whether the --tab option is given:

• Without --tab, mysqldump writes SQL statements to the standard output. This output consists of
CREATE statements to create dumped objects (databases, tables, stored routines, and so forth), and
INSERT statements to load data into tables. The output can be saved in a file and reloaded later
using mysql to recreate the dumped objects. Options are available to modify the format of the SQL
statements, and to control which objects are dumped.

• With --tab, mysqldump produces two output files for each dumped table. The server writes one
file as tab-delimited text, one line per table row. This file is named tbl_name.txt in the output
directory. The server also sends a CREATE TABLE statement for the table to mysqldump, which
writes it as a file named tbl_name.sql in the output directory.

1804

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

Dumping Data in SQL Format with mysqldump

9.4.1 Dumping Data in SQL Format with mysqldump

This section describes how to use mysqldump to create SQL-format dump files. For information about
reloading such dump files, see Section 9.4.2, “Reloading SQL-Format Backups”.

By default, mysqldump writes information as SQL statements to the standard output. You can save the
output in a file:

$> mysqldump [arguments] > file_name

To dump all databases, invoke mysqldump with the --all-databases option:

$> mysqldump --all-databases > dump.sql

To dump only specific databases, name them on the command line and use the --databases option:

$> mysqldump --databases db1 db2 db3 > dump.sql

The --databases option causes all names on the command line to be treated as database names.
Without this option, mysqldump treats the first name as a database name and those following as table
names.

With --all-databases or --databases, mysqldump writes CREATE DATABASE and USE
statements prior to the dump output for each database. This ensures that when the dump file is
reloaded, it creates each database if it does not exist and makes it the default database so database
contents are loaded into the same database from which they came. If you want to cause the dump file
to force a drop of each database before recreating it, use the --add-drop-database option as well.
In this case, mysqldump writes a DROP DATABASE statement preceding each CREATE DATABASE
statement.

To dump a single database, name it on the command line:

$> mysqldump --databases test > dump.sql

In the single-database case, it is permissible to omit the --databases option:

$> mysqldump test > dump.sql

The difference between the two preceding commands is that without --databases, the dump output
contains no CREATE DATABASE or USE statements. This has several implications:

• When you reload the dump file, you must specify a default database name so that the server knows
which database to reload.

• For reloading, you can specify a database name different from the original name, which enables you
to reload the data into a different database.

• If the database to be reloaded does not exist, you must create it first.

• Because the output contains no CREATE DATABASE statement, the --add-drop-database option
has no effect. If you use it, it produces no DROP DATABASE statement.

To dump only specific tables from a database, name them on the command line following the database
name:

$> mysqldump test t1 t3 t7 > dump.sql

By default, if GTIDs are in use on the server where you create the dump file (gtid_mode=ON),
mysqldump includes a SET @@GLOBAL.gtid_purged statement in the output to add the GTIDs from
the gtid_executed set on the source server to the gtid_purged set on the target server. If you
are dumping only specific databases or tables, it is important to note that the value that is included by
mysqldump includes the GTIDs of all transactions in the gtid_executed set on the source server,
even those that changed suppressed parts of the database, or other databases on the server that

1805

Reloading SQL-Format Backups

were not included in the partial dump. If you only replay one partial dump file on the target server,
the extra GTIDs do not cause any problems with the future operation of that server. However, if you
replay a second dump file on the target server that contains the same GTIDs (for example, another
partial dump from the same source server), any SET @@GLOBAL.gtid_purged statement in the
second dump file fails. To avoid this issue, either set the mysqldump option --set-gtid-purged to
OFF or COMMENTED to output the second dump file without an active SET @@GLOBAL.gtid_purged
statement, or remove the statement manually before replaying the dump file.

9.4.2 Reloading SQL-Format Backups

To reload a dump file written by mysqldump that consists of SQL statements, use it as input to
the mysql client. If the dump file was created by mysqldump with the --all-databases or --
databases option, it contains CREATE DATABASE and USE statements and it is not necessary to
specify a default database into which to load the data:

$> mysql < dump.sql

Alternatively, from within mysql, use a source command:

mysql> source dump.sql

If the file is a single-database dump not containing CREATE DATABASE and USE statements, create the
database first (if necessary):

$> mysqladmin create db1

Then specify the database name when you load the dump file:

$> mysql db1 < dump.sql

Alternatively, from within mysql, create the database, select it as the default database, and load the
dump file:

mysql> CREATE DATABASE IF NOT EXISTS db1;
mysql> USE db1;
mysql> source dump.sql

Note

For Windows PowerShell users: Because the "<" character is reserved for future
use in PowerShell, an alternative approach is required, such as using quotes
cmd.exe /c "mysql < dump.sql".

9.4.3 Dumping Data in Delimited-Text Format with mysqldump

This section describes how to use mysqldump to create delimited-text dump files. For information
about reloading such dump files, see Section 9.4.4, “Reloading Delimited-Text Format Backups”.

If you invoke mysqldump with the --tab=dir_name option, it uses dir_name as the output directory
and dumps tables individually in that directory using two files for each table. The table name is the base
name for these files. For a table named t1, the files are named t1.sql and t1.txt. The .sql file
contains a CREATE TABLE statement for the table. The .txt file contains the table data, one line per
table row.

The following command dumps the contents of the db1 database to files in the /tmp database:

$> mysqldump --tab=/tmp db1

The .txt files containing table data are written by the server, so they are owned by the system
account used for running the server. The server uses SELECT ... INTO OUTFILE to write the files,
so you must have the FILE privilege to perform this operation, and an error occurs if a given .txt file
already exists.

1806

Reloading Delimited-Text Format Backups

The server sends the CREATE definitions for dumped tables to mysqldump, which writes them to .sql
files. These files therefore are owned by the user who executes mysqldump.

It is best that --tab be used only for dumping a local server. If you use it with a remote server, the
--tab directory must exist on both the local and remote hosts, and the .txt files are written by the
server in the remote directory (on the server host), whereas the .sql files are written by mysqldump in
the local directory (on the client host).

For mysqldump --tab, the server by default writes table data to .txt files one line per row with tabs
between column values, no quotation marks around column values, and newline as the line terminator.
(These are the same defaults as for SELECT ... INTO OUTFILE.)

To enable data files to be written using a different format, mysqldump supports these options:

• --fields-terminated-by=str

The string for separating column values (default: tab).

• --fields-enclosed-by=char

The character within which to enclose column values (default: no character).

• --fields-optionally-enclosed-by=char

The character within which to enclose non-numeric column values (default: no character).

• --fields-escaped-by=char

The character for escaping special characters (default: no escaping).

• --lines-terminated-by=str

The line-termination string (default: newline).

Depending on the value you specify for any of these options, it might be necessary on the command
line to quote or escape the value appropriately for your command interpreter. Alternatively, specify the
value using hex notation. Suppose that you want mysqldump to quote column values within double
quotation marks. To do so, specify double quote as the value for the --fields-enclosed-by option.
But this character is often special to command interpreters and must be treated specially. For example,
on Unix, you can quote the double quote like this:

--fields-enclosed-by='"'

On any platform, you can specify the value in hex:

--fields-enclosed-by=0x22

It is common to use several of the data-formatting options together. For example, to dump tables in
comma-separated values format with lines terminated by carriage-return/newline pairs (\r\n), use this
command (enter it on a single line):

$> mysqldump --tab=/tmp --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1

Should you use any of the data-formatting options to dump table data, you need to specify the same
format when you reload data files later, to ensure proper interpretation of the file contents.

9.4.4 Reloading Delimited-Text Format Backups

For backups produced with mysqldump --tab, each table is represented in the output directory by an
.sql file containing the CREATE TABLE statement for the table, and a .txt file containing the table
data. To reload a table, first change location into the output directory. Then process the .sql file with
mysql to create an empty table and process the .txt file to load the data into the table:

1807

mysqldump Tips

$> mysql db1 < t1.sql
$> mysqlimport db1 t1.txt

An alternative to using mysqlimport to load the data file is to use the LOAD DATA statement from
within the mysql client:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1;

If you used any data-formatting options with mysqldump when you initially dumped the table, you must
use the same options with mysqlimport or LOAD DATA to ensure proper interpretation of the data file
contents:

$> mysqlimport --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1 t1.txt

Or:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1
 FIELDS TERMINATED BY ',' FIELDS ENCLOSED BY '"'
 LINES TERMINATED BY '\r\n';

9.4.5 mysqldump Tips

This section surveys techniques that enable you to use mysqldump to solve specific problems:

• How to make a copy a database

• How to copy a database from one server to another

• How to dump stored programs (stored procedures and functions, triggers, and events)

• How to dump definitions and data separately

9.4.5.1 Making a Copy of a Database

$> mysqldump db1 > dump.sql
$> mysqladmin create db2
$> mysql db2 < dump.sql

Do not use --databases on the mysqldump command line because that causes USE db1 to be
included in the dump file, which overrides the effect of naming db2 on the mysql command line.

9.4.5.2 Copy a Database from one Server to Another

On Server 1:

$> mysqldump --databases db1 > dump.sql

Copy the dump file from Server 1 to Server 2.

On Server 2:

$> mysql < dump.sql

Use of --databases with the mysqldump command line causes the dump file to include CREATE
DATABASE and USE statements that create the database if it does exist and make it the default
database for the reloaded data.

Alternatively, you can omit --databases from the mysqldump command. Then you need to create
the database on Server 2 (if necessary) and specify it as the default database when you reload the
dump file.

On Server 1:

1808

mysqldump Tips

$> mysqldump db1 > dump.sql

On Server 2:

$> mysqladmin create db1
$> mysql db1 < dump.sql

You can specify a different database name in this case, so omitting --databases from the
mysqldump command enables you to dump data from one database and load it into another.

9.4.5.3 Dumping Stored Programs

Several options control how mysqldump handles stored programs (stored procedures and functions,
triggers, and events):

• --events: Dump Event Scheduler events

• --routines: Dump stored procedures and functions

• --triggers: Dump triggers for tables

The --triggers option is enabled by default so that when tables are dumped, they are accompanied
by any triggers they have. The other options are disabled by default and must be specified explicitly to
dump the corresponding objects. To disable any of these options explicitly, use its skip form: --skip-
events, --skip-routines, or --skip-triggers.

9.4.5.4 Dumping Table Definitions and Content Separately

The --no-data option tells mysqldump not to dump table data, resulting in the dump file containing
only statements to create the tables. Conversely, the --no-create-info option tells mysqldump to
suppress CREATE statements from the output, so that the dump file contains only table data.

For example, to dump table definitions and data separately for the test database, use these
commands:

$> mysqldump --no-data test > dump-defs.sql
$> mysqldump --no-create-info test > dump-data.sql

For a definition-only dump, add the --routines and --events options to also include stored routine
and event definitions:

$> mysqldump --no-data --routines --events test > dump-defs.sql

9.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

When contemplating a MySQL upgrade, it is prudent to install the newer version separately from your
current production version. Then you can dump the database and database object definitions from the
production server and load them into the new server to verify that they are handled properly. (This is
also useful for testing downgrades.)

On the production server:

$> mysqldump --all-databases --no-data --routines --events > dump-defs.sql

On the upgraded server:

$> mysql < dump-defs.sql

Because the dump file does not contain table data, it can be processed quickly. This enables you to
spot potential incompatibilities without waiting for lengthy data-loading operations. Look for warnings or
errors while the dump file is being processed.

After you have verified that the definitions are handled properly, dump the data and try to load it into the
upgraded server.

1809

Point-in-Time (Incremental) Recovery

On the production server:

$> mysqldump --all-databases --no-create-info > dump-data.sql

On the upgraded server:

$> mysql < dump-data.sql

Now check the table contents and run some test queries.

9.5 Point-in-Time (Incremental) Recovery

Point-in-time recovery refers to recovery of data changes up to a given point in time. Typically, this type
of recovery is performed after restoring a full backup that brings the server to its state as of the time the
backup was made. (The full backup can be made in several ways, such as those listed in Section 9.2,
“Database Backup Methods”.) Point-in-time recovery then brings the server up to date incrementally
from the time of the full backup to a more recent time.

9.5.1 Point-in-Time Recovery Using Binary Log

This section explains the general idea of using the binary log to perform a point-in-time-recovery. The
next section, Section 9.5.2, “Point-in-Time Recovery Using Event Positions”, explains the operation in
details with an example.

Note

Many of the examples in this and the next section use the mysql client to
process binary log output produced by mysqlbinlog. If your binary log
contains \0 (null) characters, that output cannot be parsed by mysql unless
you invoke it with the --binary-mode option.

The source of information for point-in-time recovery is the set of binary log files generated subsequent
to the full backup operation. Therefore, to allow a server to be restored to a point-in-time, binary logging
must be enabled on it, which is the default setting for MySQL 8.0 (see Section 7.4.4, “The Binary Log”).

To restore data from the binary log, you must know the name and location of the current binary log
files. By default, the server creates binary log files in the data directory, but a path name can be
specified with the --log-bin option to place the files in a different location. To see a listing of all
binary log files, use this statement:

mysql> SHOW BINARY LOGS;

To determine the name of the current binary log file, issue the following statement:

mysql> SHOW MASTER STATUS;

The mysqlbinlog utility converts the events in the binary log files from binary format to text so that
they can be viewed or applied. mysqlbinlog has options for selecting sections of the binary log
based on event times or position of events within the log. See Section 6.6.9, “mysqlbinlog — Utility for
Processing Binary Log Files”.

Applying events from the binary log causes the data modifications they represent to be reexecuted.
This enables recovery of data changes for a given span of time. To apply events from the binary log,
process mysqlbinlog output using the mysql client:

$> mysqlbinlog binlog_files | mysql -u root -p

If binary log files have been encrypted, which can be done from MySQL 8.0.14 onwards,
mysqlbinlog cannot read them directly as in the above example, but can read them from the server
using the --read-from-remote-server (-R) option. For example:

1810

Point-in-Time Recovery Using Event Positions

$> mysqlbinlog --read-from-remote-server --host=host_name --port=3306 --user=root --password --ssl-mode=required binlog_files | mysql -u root -p

Here, the option --ssl-mode=required has been used to ensure that the data from the binary log
files is protected in transit, because it is sent to mysqlbinlog in an unencrypted format.

Important

VERIFY_CA and VERIFY_IDENTITY are better choices than REQUIRED for the
SSL mode, because they help prevent man-in-the-middle attacks. To implement
one of these settings, you must first ensure that the CA certificate for the server
is reliably available to all the clients that use it in your environment, otherwise
availability issues will result. See Command Options for Encrypted Connections.

Viewing log contents can be useful when you need to determine event times or positions to select
partial log contents prior to executing events. To view events from the log, send mysqlbinlog output
into a paging program:

$> mysqlbinlog binlog_files | more

Alternatively, save the output in a file and view the file in a text editor:

$> mysqlbinlog binlog_files > tmpfile
$> ... edit tmpfile ...

After editing the file, apply the contents as follows:

$> mysql -u root -p < tmpfile

If you have more than one binary log to apply on the MySQL server, use a single connection to apply
the contents of all binary log files that you want to process. Here is one way to do so:

$> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write the whole log to a single file and then process the file:

$> mysqlbinlog binlog.000001 > /tmp/statements.sql
$> mysqlbinlog binlog.000002 >> /tmp/statements.sql
$> mysql -u root -p -e "source /tmp/statements.sql"

9.5.2 Point-in-Time Recovery Using Event Positions

The last section, Section 9.5.1, “Point-in-Time Recovery Using Binary Log”, explains the general idea
of using the binary log to perform a point-in-time-recovery. The section explains the operation in details
with an example.

As an example, suppose that around 20:06:00 on March 11, 2020, an SQL statement was executed
that deleted a table. You can perform a point-in-time recovery to restore the server up to its state right
before the table deletion. These are some sample steps to achieve that:

1. Restore the last full backup created before the point-in-time of interest (call it tp, which is 20:06:00
on March 11, 2020 in our example). When finished, note the binary log position up to which you
have restored the server for later use, and restart the server.

Note

While the last binary log position recovered is also displayed by InnoDB
after the restore and server restart, that is not a reliable means for obtaining
the ending log position of your restore, as there could be DDL events and
non-InnoDB changes that have taken place after the time reflected by the
displayed position. Your backup and restore tool should provide you with
the last binary log position for your recovery: for example, if you are using
mysqlbinlog for the task, check the stop position of the binary log replay;

1811

Point-in-Time Recovery Using Event Positions

if you are using MySQL Enterprise Backup, the last binary log position has
been saved in your backup. See Point-in-Time Recovery.

2. Find the precise binary log event position corresponding to the point in time up to which you want to
restore your database. In our example, given that we know the rough time where the table deletion
took place (tp), we can find the log position by checking the log contents around that time using the
mysqlbinlog utility. Use the --start-datetime and --stop-datetime options to specify a
short time period around tp, and then look for the event in the output. For example:

$> mysqlbinlog --start-datetime="2020-03-11 20:05:00" \
 --stop-datetime="2020-03-11 20:08:00" --verbose \
 /var/lib/mysql/bin.123456 | grep -C 15 "DROP TABLE"

/*!80014 SET @@session.original_server_version=80019*//*!*/;
/*!80014 SET @@session.immediate_server_version=80019*//*!*/;
SET @@SESSION.GTID_NEXT= 'ANONYMOUS'/*!*/;
at 232
#200311 20:06:20 server id 1 end_log_pos 355 CRC32 0x2fc1e5ea Query thread_id=16 exec_time=0 error_code=0
SET TIMESTAMP=1583971580/*!*/;
SET @@session.pseudo_thread_id=16/*!*/;
SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=0, @@session.unique_checks=1, @@session.autocommit=1/*!*/;
SET @@session.sql_mode=1168113696/*!*/;
SET @@session.auto_increment_increment=1, @@session.auto_increment_offset=1/*!*/;
/*!\C utf8mb4 *//*!*/;
SET @@session.character_set_client=255,@@session.collation_connection=255,@@session.collation_server=255/*!*/;
SET @@session.lc_time_names=0/*!*/;
SET @@session.collation_database=DEFAULT/*!*/;
/*!80011 SET @@session.default_collation_for_utf8mb4=255*//*!*/;
DROP TABLE `pets`.`cats` /* generated by server */
/*!*/;
at 355
#200311 20:07:48 server id 1 end_log_pos 434 CRC32 0x123d65df Anonymous_GTID last_committed=1 sequence_number=2 rbr_only=no original_committed_timestamp=1583971668462467 immediate_commit_timestamp=1583971668462467 transaction_length=473
original_commit_timestamp=1583971668462467 (2020-03-11 20:07:48.462467 EDT)
immediate_commit_timestamp=1583971668462467 (2020-03-11 20:07:48.462467 EDT)
/*!80001 SET @@session.original_commit_timestamp=1583971668462467*//*!*/;
/*!80014 SET @@session.original_server_version=80019*//*!*/;
/*!80014 SET @@session.immediate_server_version=80019*//*!*/;
SET @@SESSION.GTID_NEXT= 'ANONYMOUS'/*!*/;
at 434
#200311 20:07:48 server id 1 end_log_pos 828 CRC32 0x57fac9ac Query thread_id=16 exec_time=0 error_code=0 Xid = 217
use `pets`/*!*/;
SET TIMESTAMP=1583971668/*!*/;
/*!80013 SET @@session.sql_require_primary_key=0*//*!*/;
CREATE TABLE dogs

From the output of mysqlbinlog, the DROP TABLE `pets`.`cats` statement can be found
in the segment of the binary log between the line # at 232 and # at 355, which means the
statement takes place after the log position 232, and the log is at position 355 after the DROP
TABLE statement.

Note

Only use the --start-datetime and --stop-datetime options to
help you find the actual event positions of interest. Using the two options to
specify the range of binary log segment to apply is not recommended: there
is a higher risk of missing binary log events when using the options. Use --
start-position and --stop-position instead.

3. Apply the events in binary log file to the server, starting with the log position your found in step 1
(assume it is 155) and ending at the position you have found in step 2 that is before your point-in-
time of interest (which is 232):

$> mysqlbinlog --start-position=155 --stop-position=232 /var/lib/mysql/bin.123456 \
 | mysql -u root -p

The command recovers all the transactions from the starting position until just before the stop
position. Because the output of mysqlbinlog includes SET TIMESTAMP statements before each

1812

https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/advanced.point.html

MyISAM Table Maintenance and Crash Recovery

SQL statement recorded, the recovered data and related MySQL logs reflect the original times at
which the transactions were executed.

Your database has now been restored to the point-in-time of interest, tp, right before the table
pets.cats was dropped.

4. Beyond the point-in-time recovery that has been finished, if you also want to reexecute all the
statements after your point-in-time of interest, use mysqlbinlog again to apply all the events after
tp to the server. We noted in step 2 that after the statement we wanted to skip, the log is at position
355; we can use it for the --start-position option, so that any statements after the position are
included:

$> mysqlbinlog --start-position=355 /var/lib/mysql/bin.123456 \
 | mysql -u root -p

Your database has been restored the latest statement recorded in the binary log file, but with the
selected event skipped.

9.6 MyISAM Table Maintenance and Crash Recovery
This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have
.MYD and .MYI files for storing data and indexes). For general myisamchk background, see
Section 6.6.4, “myisamchk — MyISAM Table-Maintenance Utility”. Other table-repair information can
be found at Section 3.14, “Rebuilding or Repairing Tables or Indexes”.

You can use myisamchk to check, repair, or optimize database tables. The following sections describe
how to perform these operations and how to set up a table maintenance schedule. For information
about using myisamchk to get information about your tables, see Section 6.6.4.5, “Obtaining Table
Information with myisamchk”.

Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup
before doing a repair or any maintenance operation that could make a lot of changes to a table.

myisamchk operations that affect indexes can cause MyISAM FULLTEXT indexes to be rebuilt with
full-text parameters that are incompatible with the values used by the MySQL server. To avoid this
problem, follow the guidelines in Section 6.6.4.1, “myisamchk General Options”.

MyISAM table maintenance can also be done using the SQL statements that perform operations similar
to what myisamchk can do:

• To check MyISAM tables, use CHECK TABLE.

• To repair MyISAM tables, use REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

For additional information about these statements, see Section 15.7.3, “Table Maintenance
Statements”.

These statements can be used directly or by means of the mysqlcheck client program. One
advantage of these statements over myisamchk is that the server does all the work. With myisamchk,
you must make sure that the server does not use the tables at the same time so that there is no
unwanted interaction between myisamchk and the server.

9.6.1 Using myisamchk for Crash Recovery

This section describes how to check for and deal with data corruption in MySQL databases. If your
tables become corrupted frequently, you should try to find the reason why. See Section B.3.3.3, “What
to Do If MySQL Keeps Crashing”.

1813

How to Check MyISAM Tables for Errors

For an explanation of how MyISAM tables can become corrupted, see Section 18.2.4, “MyISAM Table
Problems”.

If you run mysqld with external locking disabled (which is the default), you cannot reliably use
myisamchk to check a table when mysqld is using the same table. If you can be certain that no
one can access the tables using mysqld while you run myisamchk, you only have to execute
mysqladmin flush-tables before you start checking the tables. If you cannot guarantee this, you
must stop mysqld while you check the tables. If you run myisamchk to check tables that mysqld is
updating at the same time, you may get a warning that a table is corrupt even when it is not.

If the server is run with external locking enabled, you can use myisamchk to check tables at any
time. In this case, if the server tries to update a table that myisamchk is using, the server waits for
myisamchk to finish before it continues.

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server
is not using the table (this also applies if external locking is disabled). If you do not stop mysqld, you
should at least do a mysqladmin flush-tables before you run myisamchk. Your tables may
become corrupted if the server and myisamchk access the tables simultaneously.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a
database corresponds to the three files in the database directory shown in the following table.

File Purpose

tbl_name.MYD Data file

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in
data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by
removing the old .MYD file and renaming the new file to the original file name. If you use --quick,
myisamchk does not create a temporary .MYD file, but instead assumes that the .MYD file is correct
and generates only a new index file without touching the .MYD file. This is safe, because myisamchk
automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify
the --quick option twice to myisamchk. In this case, myisamchk does not abort on some errors
(such as duplicate-key errors) but instead tries to resolve them by modifying the .MYD file. Normally
the use of two --quick options is useful only if you have too little free disk space to perform a normal
repair. In this case, you should at least make a backup of the table before running myisamchk.

9.6.2 How to Check MyISAM Tables for Errors

To check a MyISAM table, use the following commands:

• myisamchk tbl_name

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which
is very unusual). If you want to check a table, you should normally run myisamchk without options or
with the -s (silent) option.

• myisamchk -m tbl_name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all
rows. It calculates a checksum for all key values in the rows and verifies that the checksum matches
the checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means “extended check”). It does a check-
read of every key for each row to verify that they indeed point to the correct row. This may take a

1814

How to Repair MyISAM Tables

long time for a large table that has many indexes. Normally, myisamchk stops after the first error
it finds. If you want to obtain more information, you can add the -v (verbose) option. This causes
myisamchk to keep going, up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

This is like the previous command, but the -i option tells myisamchk to print additional statistical
information.

In most cases, a simple myisamchk command with no arguments other than the table name is
sufficient to check a table.

9.6.3 How to Repair MyISAM Tables

The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI
and .MYD).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM
tables. See Section 15.7.3.2, “CHECK TABLE Statement”, and Section 15.7.3.5, “REPAIR TABLE
Statement”.

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as
these:

• Can't find file tbl_name.MYI (Errcode: nnn)

• Unexpected end of file

• Record file is crashed

• Got error nnn from table handler

To get more information about the error, run perror nnn, where nnn is the error number. The
following example shows how to use perror to find the meanings for the most common error numbers
that indicate a problem with a table:

$> perror 126 127 132 134 135 136 141 144 145
MySQL error code 126 = Index file is crashed
MySQL error code 127 = Record-file is crashed
MySQL error code 132 = Old database file
MySQL error code 134 = Record was already deleted (or record file crashed)
MySQL error code 135 = No more room in record file
MySQL error code 136 = No more room in index file
MySQL error code 141 = Duplicate unique key or constraint on write or update
MySQL error code 144 = Table is crashed and last repair failed
MySQL error code 145 = Table was marked as crashed and should be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not
errors that can be fixed by a simple repair. In this case, you must use ALTER TABLE to increase the
MAX_ROWS and AVG_ROW_LENGTH table option values:

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems
that occur.

The repair process involves up to three stages, described here. Before you begin, you should change
location to the database directory and check the permissions of the table files. On Unix, make sure that
they are readable by the user that mysqld runs as (and to you, because you need to access the files
you are checking). If it turns out you need to modify files, they must also be writable by you.

1815

How to Repair MyISAM Tables

This section is for the cases where a table check fails (such as those described in Section 9.6.2, “How
to Check MyISAM Tables for Errors”), or you want to use the extended features that myisamchk
provides.

The myisamchk options used for table maintenance with are described in Section 6.6.4, “myisamchk
— MyISAM Table-Maintenance Utility”. myisamchk also has variables that you can set to control
memory allocation that may improve performance. See Section 6.6.4.6, “myisamchk Memory Usage”.

If you are going to repair a table from the command line, you must first stop the mysqld server. Note
that when you do mysqladmin shutdown on a remote server, the mysqld server is still available for
a while after mysqladmin returns, until all statement-processing has stopped and all index changes
have been flushed to disk.

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option
to suppress unnecessary information.

If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to
mark the table as “checked.”

You have to repair only those tables for which myisamchk announces an error. For such tables,
proceed to Stage 2.

If you get unexpected errors when checking (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 2: Easy safe repair

First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to
repair the index file without touching the data file. If the data file contains everything that it should and
the delete links point at the correct locations within the data file, this should work, and the table is fixed.
Start repairing the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows and
deleted rows from the data file and reconstructs the index file.

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode
uses an old recovery method that handles a few cases that regular recovery mode does not (but is
slower).

Note

If you want a repair operation to go much faster, you should set the values of
the sort_buffer_size and key_buffer_size variables each to about 25%
of your available memory when running myisamchk.

If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains
incorrect information, or if the index file is missing. In this case, it is necessary to create a new index
file. Do so as follows:

1. Move the data file to a safe place.

2. Use the table description file to create new (empty) data and index files:

$> mysql db_name

1816

MyISAM Table Optimization

mysql> SET autocommit=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back onto
the new file. You want to retain a copy in case something goes wrong.)

Important

If you are using replication, you should stop it prior to performing the above
procedure, since it involves file system operations, and these are not logged by
MySQL.

Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)

You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs
the whole procedure automatically. There is also no possibility of unwanted interaction between
a utility and the server, because the server does all the work when you use REPAIR TABLE. See
Section 15.7.3.5, “REPAIR TABLE Statement”.

9.6.4 MyISAM Table Optimization

To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows,
run myisamchk in recovery mode:

$> myisamchk -r tbl_name

You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIMIZE
TABLE does a table repair and a key analysis, and also sorts the index tree so that key lookups are
faster. There is also no possibility of unwanted interaction between a utility and the server, because the
server does all the work when you use OPTIMIZE TABLE. See Section 15.7.3.4, “OPTIMIZE TABLE
Statement”.

myisamchk has a number of other options that you can use to improve the performance of a table:

• --analyze or -a: Perform key distribution analysis. This improves join performance by enabling the
join optimizer to better choose the order in which to join the tables and which indexes it should use.

• --sort-index or -S: Sort the index blocks. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=index_num or -R index_num: Sort data rows according to a given index.
This makes your data much more localized and may speed up range-based SELECT and ORDER BY
operations that use this index.

For a full description of all available options, see Section 6.6.4, “myisamchk — MyISAM Table-
Maintenance Utility”.

9.6.5 Setting Up a MyISAM Table Maintenance Schedule

It is a good idea to perform table checks on a regular basis rather than waiting for problems to
occur. One way to check and repair MyISAM tables is with the CHECK TABLE and REPAIR TABLE
statements. See Section 15.7.3, “Table Maintenance Statements”.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use
myisamchk -s. The -s option (short for --silent) causes myisamchk to run in silent mode,
printing messages only when errors occur.

It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine
has done a restart in the middle of an update, you usually need to check each table that could have

1817

Setting Up a MyISAM Table Maintenance Schedule

been affected before it is used further. (These are “expected crashed tables.”) To cause the server to
check MyISAM tables automatically, start it with the myisam_recover_options system variable set.
See Section 7.1.8, “Server System Variables”.

You should also check your tables regularly during normal system operation. For example, you can run
a cron job to check important tables once a week, using a line like this in a crontab file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so that you can examine and repair them as
necessary.

To start with, execute myisamchk -s each night on all tables that have been updated during the last
24 hours. As you see that problems occur infrequently, you can back off the checking frequency to
once a week or so.

Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM tables
with dynamic-sized rows (tables with VARCHAR, BLOB, or TEXT columns) or have tables with many
deleted rows you may want to defragment/reclaim space from the tables from time to time. You can do
this by using OPTIMIZE TABLE on the tables in question. Alternatively, if you can stop the mysqld
server for a while, change location into the data directory and use this command while the server is
stopped:

$> myisamchk -r -s --sort-index --myisam_sort_buffer_size=16M */*.MYI

1818

Chapter 10 Optimization

Table of Contents
10.1 Optimization Overview ... 1821
10.2 Optimizing SQL Statements ... 1822

10.2.1 Optimizing SELECT Statements .. 1822
10.2.2 Optimizing Subqueries, Derived Tables, View References, and Common Table
Expressions .. 1874
10.2.3 Optimizing INFORMATION_SCHEMA Queries ... 1888
10.2.4 Optimizing Performance Schema Queries .. 1891
10.2.5 Optimizing Data Change Statements ... 1892
10.2.6 Optimizing Database Privileges ... 1893
10.2.7 Other Optimization Tips .. 1894

10.3 Optimization and Indexes ... 1894
10.3.1 How MySQL Uses Indexes ... 1894
10.3.2 Primary Key Optimization .. 1896
10.3.3 SPATIAL Index Optimization ... 1896
10.3.4 Foreign Key Optimization .. 1896
10.3.5 Column Indexes .. 1897
10.3.6 Multiple-Column Indexes ... 1898
10.3.7 Verifying Index Usage ... 1899
10.3.8 InnoDB and MyISAM Index Statistics Collection ... 1900
10.3.9 Comparison of B-Tree and Hash Indexes .. 1901
10.3.10 Use of Index Extensions ... 1902
10.3.11 Optimizer Use of Generated Column Indexes ... 1905
10.3.12 Invisible Indexes ... 1906
10.3.13 Descending Indexes .. 1908
10.3.14 Indexed Lookups from TIMESTAMP Columns .. 1909

10.4 Optimizing Database Structure ... 1911
10.4.1 Optimizing Data Size .. 1911
10.4.2 Optimizing MySQL Data Types .. 1913
10.4.3 Optimizing for Many Tables ... 1914
10.4.4 Internal Temporary Table Use in MySQL ... 1916
10.4.5 Limits on Number of Databases and Tables ... 1920
10.4.6 Limits on Table Size ... 1920
10.4.7 Limits on Table Column Count and Row Size .. 1921

10.5 Optimizing for InnoDB Tables .. 1923
10.5.1 Optimizing Storage Layout for InnoDB Tables .. 1924
10.5.2 Optimizing InnoDB Transaction Management ... 1924
10.5.3 Optimizing InnoDB Read-Only Transactions ... 1925
10.5.4 Optimizing InnoDB Redo Logging .. 1926
10.5.5 Bulk Data Loading for InnoDB Tables .. 1927
10.5.6 Optimizing InnoDB Queries ... 1929
10.5.7 Optimizing InnoDB DDL Operations ... 1929
10.5.8 Optimizing InnoDB Disk I/O ... 1929
10.5.9 Optimizing InnoDB Configuration Variables .. 1934
10.5.10 Optimizing InnoDB for Systems with Many Tables .. 1935

10.6 Optimizing for MyISAM Tables ... 1935
10.6.1 Optimizing MyISAM Queries .. 1935
10.6.2 Bulk Data Loading for MyISAM Tables .. 1936
10.6.3 Optimizing REPAIR TABLE Statements ... 1938

10.7 Optimizing for MEMORY Tables ... 1939
10.8 Understanding the Query Execution Plan .. 1939

10.8.1 Optimizing Queries with EXPLAIN ... 1940
10.8.2 EXPLAIN Output Format ... 1940

1819

10.8.3 Extended EXPLAIN Output Format .. 1954
10.8.4 Obtaining Execution Plan Information for a Named Connection 1956
10.8.5 Estimating Query Performance .. 1957

10.9 Controlling the Query Optimizer ... 1957
10.9.1 Controlling Query Plan Evaluation ... 1957
10.9.2 Switchable Optimizations .. 1958
10.9.3 Optimizer Hints ... 1968
10.9.4 Index Hints ... 1982
10.9.5 The Optimizer Cost Model .. 1985
10.9.6 Optimizer Statistics ... 1988

10.10 Buffering and Caching ... 1991
10.10.1 InnoDB Buffer Pool Optimization ... 1991
10.10.2 The MyISAM Key Cache ... 1992
10.10.3 Caching of Prepared Statements and Stored Programs ... 1996

10.11 Optimizing Locking Operations ... 1997
10.11.1 Internal Locking Methods .. 1997
10.11.2 Table Locking Issues .. 2000
10.11.3 Concurrent Inserts .. 2001
10.11.4 Metadata Locking ... 2002
10.11.5 External Locking ... 2005

10.12 Optimizing the MySQL Server .. 2006
10.12.1 Optimizing Disk I/O ... 2006
10.12.2 Using Symbolic Links .. 2007
10.12.3 Optimizing Memory Use .. 2010

10.13 Measuring Performance (Benchmarking) ... 2017
10.13.1 Measuring the Speed of Expressions and Functions ... 2017
10.13.2 Using Your Own Benchmarks .. 2018
10.13.3 Measuring Performance with performance_schema .. 2018

10.14 Examining Server Thread (Process) Information .. 2018
10.14.1 Accessing the Process List .. 2019
10.14.2 Thread Command Values .. 2020
10.14.3 General Thread States .. 2022
10.14.4 Replication Source Thread States .. 2029
10.14.5 Replication I/O (Receiver) Thread States ... 2029
10.14.6 Replication SQL Thread States ... 2031
10.14.7 Replication Connection Thread States ... 2032
10.14.8 NDB Cluster Thread States ... 2033
10.14.9 Event Scheduler Thread States ... 2034

10.15 Tracing the Optimizer .. 2034
10.15.1 Typical Usage ... 2034
10.15.2 System Variables Controlling Tracing ... 2034
10.15.3 Traceable Statements ... 2035
10.15.4 Tuning Trace Purging ... 2035
10.15.5 Tracing Memory Usage ... 2036
10.15.6 Privilege Checking .. 2037
10.15.7 Interaction with the --debug Option .. 2037
10.15.8 The optimizer_trace System Variable ... 2037
10.15.9 The end_markers_in_json System Variable .. 2037
10.15.10 Selecting Optimizer Features to Trace ... 2037
10.15.11 Trace General Structure .. 2037
10.15.12 Example ... 2038
10.15.13 Displaying Traces in Other Applications ... 2048
10.15.14 Preventing the Use of Optimizer Trace ... 2048
10.15.15 Testing Optimizer Trace .. 2048
10.15.16 Optimizer Trace Implementation .. 2048

This chapter explains how to optimize MySQL performance and provides examples. Optimization
involves configuring, tuning, and measuring performance, at several levels. Depending on your job

1820

Optimization Overview

role (developer, DBA, or a combination of both), you might optimize at the level of individual SQL
statements, entire applications, a single database server, or multiple networked database servers.
Sometimes you can be proactive and plan in advance for performance, while other times you might
troubleshoot a configuration or code issue after a problem occurs. Optimizing CPU and memory usage
can also improve scalability, allowing the database to handle more load without slowing down.

10.1 Optimization Overview
Database performance depends on several factors at the database level, such as tables, queries,
and configuration settings. These software constructs result in CPU and I/O operations at the
hardware level, which you must minimize and make as efficient as possible. As you work on database
performance, you start by learning the high-level rules and guidelines for the software side, and
measuring performance using wall-clock time. As you become an expert, you learn more about what
happens internally, and start measuring things such as CPU cycles and I/O operations.

Typical users aim to get the best database performance out of their existing software and hardware
configurations. Advanced users look for opportunities to improve the MySQL software itself, or develop
their own storage engines and hardware appliances to expand the MySQL ecosystem.

• Optimizing at the Database Level

• Optimizing at the Hardware Level

• Balancing Portability and Performance

Optimizing at the Database Level

The most important factor in making a database application fast is its basic design:

• Are the tables structured properly? In particular, do the columns have the right data types, and
does each table have the appropriate columns for the type of work? For example, applications that
perform frequent updates often have many tables with few columns, while applications that analyze
large amounts of data often have few tables with many columns.

• Are the right indexes in place to make queries efficient?

• Are you using the appropriate storage engine for each table, and taking advantage of the strengths
and features of each storage engine you use? In particular, the choice of a transactional storage
engine such as InnoDB or a nontransactional one such as MyISAM can be very important for
performance and scalability.

Note

InnoDB is the default storage engine for new tables. In practice, the
advanced InnoDB performance features mean that InnoDB tables often
outperform the simpler MyISAM tables, especially for a busy database.

• Does each table use an appropriate row format? This choice also depends on the storage engine
used for the table. In particular, compressed tables use less disk space and so require less disk I/O
to read and write the data. Compression is available for all kinds of workloads with InnoDB tables,
and for read-only MyISAM tables.

• Does the application use an appropriate locking strategy? For example, by allowing shared access
when possible so that database operations can run concurrently, and requesting exclusive access
when appropriate so that critical operations get top priority. Again, the choice of storage engine is
significant. The InnoDB storage engine handles most locking issues without involvement from you,
allowing for better concurrency in the database and reducing the amount of experimentation and
tuning for your code.

• Are all memory areas used for caching sized correctly? That is, large enough to hold frequently
accessed data, but not so large that they overload physical memory and cause paging. The main
memory areas to configure are the InnoDB buffer pool and the MyISAM key cache.

1821

Optimizing at the Hardware Level

Optimizing at the Hardware Level

Any database application eventually hits hardware limits as the database becomes more and more
busy. A DBA must evaluate whether it is possible to tune the application or reconfigure the server
to avoid these bottlenecks, or whether more hardware resources are required. System bottlenecks
typically arise from these sources:

• Disk seeks. It takes time for the disk to find a piece of data. With modern disks, the mean time
for this is usually lower than 10ms, so we can in theory do about 100 seeks a second. This time
improves slowly with new disks and is very hard to optimize for a single table. The way to optimize
seek time is to distribute the data onto more than one disk.

• Disk reading and writing. When the disk is at the correct position, we need to read or write the data.
With modern disks, one disk delivers at least 10–20MB/s throughput. This is easier to optimize than
seeks because you can read in parallel from multiple disks.

• CPU cycles. When the data is in main memory, we must process it to get our result. Having large
tables compared to the amount of memory is the most common limiting factor. But with small tables,
speed is usually not the problem.

• Memory bandwidth. When the CPU needs more data than can fit in the CPU cache, main memory
bandwidth becomes a bottleneck. This is an uncommon bottleneck for most systems, but one to be
aware of.

Balancing Portability and Performance

To use performance-oriented SQL extensions in a portable MySQL program, you can wrap MySQL-
specific keywords in a statement within /*! */ comment delimiters. Other SQL servers ignore the
commented keywords. For information about writing comments, see Section 11.7, “Comments”.

10.2 Optimizing SQL Statements

The core logic of a database application is performed through SQL statements, whether issued directly
through an interpreter or submitted behind the scenes through an API. The tuning guidelines in this
section help to speed up all kinds of MySQL applications. The guidelines cover SQL operations that
read and write data, the behind-the-scenes overhead for SQL operations in general, and operations
used in specific scenarios such as database monitoring.

10.2.1 Optimizing SELECT Statements

Queries, in the form of SELECT statements, perform all the lookup operations in the database. Tuning
these statements is a top priority, whether to achieve sub-second response times for dynamic web
pages, or to chop hours off the time to generate huge overnight reports.

Besides SELECT statements, the tuning techniques for queries also apply to constructs such as
CREATE TABLE...AS SELECT, INSERT INTO...SELECT, and WHERE clauses in DELETE
statements. Those statements have additional performance considerations because they combine write
operations with the read-oriented query operations.

NDB Cluster supports a join pushdown optimization whereby a qualifying join is sent in its entirety to
NDB Cluster data nodes, where it can be distributed among them and executed in parallel. For more
information about this optimization, see Conditions for NDB pushdown joins.

The main considerations for optimizing queries are:

• To make a slow SELECT ... WHERE query faster, the first thing to check is whether you can add
an index. Set up indexes on columns used in the WHERE clause, to speed up evaluation, filtering, and
the final retrieval of results. To avoid wasted disk space, construct a small set of indexes that speed
up many related queries used in your application.

1822

Optimizing SELECT Statements

Indexes are especially important for queries that reference different tables, using features such as
joins and foreign keys. You can use the EXPLAIN statement to determine which indexes are used for
a SELECT. See Section 10.3.1, “How MySQL Uses Indexes” and Section 10.8.1, “Optimizing Queries
with EXPLAIN”.

• Isolate and tune any part of the query, such as a function call, that takes excessive time. Depending
on how the query is structured, a function could be called once for every row in the result set, or even
once for every row in the table, greatly magnifying any inefficiency.

• Minimize the number of full table scans in your queries, particularly for big tables.

• Keep table statistics up to date by using the ANALYZE TABLE statement periodically, so the
optimizer has the information needed to construct an efficient execution plan.

• Learn the tuning techniques, indexing techniques, and configuration parameters that are specific to
the storage engine for each table. Both InnoDB and MyISAM have sets of guidelines for enabling
and sustaining high performance in queries. For details, see Section 10.5.6, “Optimizing InnoDB
Queries” and Section 10.6.1, “Optimizing MyISAM Queries”.

• You can optimize single-query transactions for InnoDB tables, using the technique in Section 10.5.3,
“Optimizing InnoDB Read-Only Transactions”.

• Avoid transforming the query in ways that make it hard to understand, especially if the optimizer does
some of the same transformations automatically.

• If a performance issue is not easily solved by one of the basic guidelines, investigate the internal
details of the specific query by reading the EXPLAIN plan and adjusting your indexes, WHERE
clauses, join clauses, and so on. (When you reach a certain level of expertise, reading the EXPLAIN
plan might be your first step for every query.)

• Adjust the size and properties of the memory areas that MySQL uses for caching. With efficient use
of the InnoDB buffer pool, MyISAM key cache, and the MySQL query cache, repeated queries run
faster because the results are retrieved from memory the second and subsequent times.

• Even for a query that runs fast using the cache memory areas, you might still optimize further so that
they require less cache memory, making your application more scalable. Scalability means that your
application can handle more simultaneous users, larger requests, and so on without experiencing a
big drop in performance.

• Deal with locking issues, where the speed of your query might be affected by other sessions
accessing the tables at the same time.

10.2.1.1 WHERE Clause Optimization

This section discusses optimizations that can be made for processing WHERE clauses. The examples
use SELECT statements, but the same optimizations apply for WHERE clauses in DELETE and UPDATE
statements.

Note

Because work on the MySQL optimizer is ongoing, not all of the optimizations
that MySQL performs are documented here.

You might be tempted to rewrite your queries to make arithmetic operations faster, while sacrificing
readability. Because MySQL does similar optimizations automatically, you can often avoid this work,
and leave the query in a more understandable and maintainable form. Some of the optimizations
performed by MySQL follow:

• Removal of unnecessary parentheses:

 ((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)

1823

Optimizing SELECT Statements

• Constant folding:

 (a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5

• Constant condition removal:

 (b>=5 AND b=5) OR (b=6 AND 5=5) OR (b=7 AND 5=6)
-> b=5 OR b=6

In MySQL 8.0.14 and later, this takes place during preparation rather than during the optimization
phase, which helps in simplification of joins. See Section 10.2.1.9, “Outer Join Optimization”, for
further information and examples.

• Constant expressions used by indexes are evaluated only once.

• Beginning with MySQL 8.0.16, comparisons of columns of numeric types with constant values are
checked and folded or removed for invalid or out-of-rage values:

CREATE TABLE t (c TINYINT UNSIGNED NOT NULL);
 SELECT * FROM t WHERE c < 256;
-≫ SELECT * FROM t WHERE 1;

See Section 10.2.1.14, “Constant-Folding Optimization”, for more information.

• COUNT(*) on a single table without a WHERE is retrieved directly from the table information for
MyISAM and MEMORY tables. This is also done for any NOT NULL expression when used with only
one table.

• Early detection of invalid constant expressions. MySQL quickly detects that some SELECT
statements are impossible and returns no rows.

• HAVING is merged with WHERE if you do not use GROUP BY or aggregate functions (COUNT(),
MIN(), and so on).

• For each table in a join, a simpler WHERE is constructed to get a fast WHERE evaluation for the table
and also to skip rows as soon as possible.

• All constant tables are read first before any other tables in the query. A constant table is any of the
following:

• An empty table or a table with one row.

• A table that is used with a WHERE clause on a PRIMARY KEY or a UNIQUE index, where all index
parts are compared to constant expressions and are defined as NOT NULL.

All of the following tables are used as constant tables:

SELECT * FROM t WHERE primary_key=1;
SELECT * FROM t1,t2
 WHERE t1.primary_key=1 AND t2.primary_key=t1.id;

• The best join combination for joining the tables is found by trying all possibilities. If all columns in
ORDER BY and GROUP BY clauses come from the same table, that table is preferred first when
joining.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY
contains columns from tables other than the first table in the join queue, a temporary table is created.

• If you use the SQL_SMALL_RESULT modifier, MySQL uses an in-memory temporary table.

• Each table index is queried, and the best index is used unless the optimizer believes that it is more
efficient to use a table scan. At one time, a scan was used based on whether the best index spanned
more than 30% of the table, but a fixed percentage no longer determines the choice between using

1824

Optimizing SELECT Statements

an index or a scan. The optimizer now is more complex and bases its estimate on additional factors
such as table size, number of rows, and I/O block size.

• In some cases, MySQL can read rows from the index without even consulting the data file. If all
columns used from the index are numeric, only the index tree is used to resolve the query.

• Before each row is output, those that do not match the HAVING clause are skipped.

Some examples of queries that are very fast:

SELECT COUNT(*) FROM tbl_name;

SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;

SELECT MAX(key_part2) FROM tbl_name
 WHERE key_part1=constant;

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... LIMIT 10;

SELECT ... FROM tbl_name
 ORDER BY key_part1 DESC, key_part2 DESC, ... LIMIT 10;

MySQL resolves the following queries using only the index tree, assuming that the indexed columns
are numeric:

SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;

SELECT COUNT(*) FROM tbl_name
 WHERE key_part1=val1 AND key_part2=val2;

SELECT MAX(key_part2) FROM tbl_name GROUP BY key_part1;

The following queries use indexing to retrieve the rows in sorted order without a separate sorting pass:

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... ;

SELECT ... FROM tbl_name
 ORDER BY key_part1 DESC, key_part2 DESC, ... ;

10.2.1.2 Range Optimization

The range access method uses a single index to retrieve a subset of table rows that are contained
within one or several index value intervals. It can be used for a single-part or multiple-part index. The
following sections describe conditions under which the optimizer uses range access.

• Range Access Method for Single-Part Indexes

• Range Access Method for Multiple-Part Indexes

• Equality Range Optimization of Many-Valued Comparisons

• Skip Scan Range Access Method

• Range Optimization of Row Constructor Expressions

• Limiting Memory Use for Range Optimization

Range Access Method for Single-Part Indexes

For a single-part index, index value intervals can be conveniently represented by corresponding
conditions in the WHERE clause, denoted as range conditions rather than “intervals.”

The definition of a range condition for a single-part index is as follows:

• For both BTREE and HASH indexes, comparison of a key part with a constant value is a range
condition when using the =, <=>, IN(), IS NULL, or IS NOT NULL operators.

1825

Optimizing SELECT Statements

• Additionally, for BTREE indexes, comparison of a key part with a constant value is a range condition
when using the >, <, >=, <=, BETWEEN, !=, or <> operators, or LIKE comparisons if the argument to
LIKE is a constant string that does not start with a wildcard character.

• For all index types, multiple range conditions combined with OR or AND form a range condition.

“Constant value” in the preceding descriptions means one of the following:

• A constant from the query string

• A column of a const or system table from the same join

• The result of an uncorrelated subquery

• Any expression composed entirely from subexpressions of the preceding types

Here are some examples of queries with range conditions in the WHERE clause:

SELECT * FROM t1
 WHERE key_col > 1
 AND key_col < 10;

SELECT * FROM t1
 WHERE key_col = 1
 OR key_col IN (15,18,20);

SELECT * FROM t1
 WHERE key_col LIKE 'ab%'
 OR key_col BETWEEN 'bar' AND 'foo';

Some nonconstant values may be converted to constants during the optimizer constant propagation
phase.

MySQL tries to extract range conditions from the WHERE clause for each of the possible indexes.
During the extraction process, conditions that cannot be used for constructing the range condition are
dropped, conditions that produce overlapping ranges are combined, and conditions that produce empty
ranges are removed.

Consider the following statement, where key1 is an indexed column and nonkey is not indexed:

SELECT * FROM t1 WHERE
 (key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
 (key1 < 'bar' AND nonkey = 4) OR
 (key1 < 'uux' AND key1 > 'z');

The extraction process for key key1 is as follows:

1. Start with original WHERE clause:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z')

2. Remove nonkey = 4 and key1 LIKE '%b' because they cannot be used for a range scan. The
correct way to remove them is to replace them with TRUE, so that we do not miss any matching
rows when doing the range scan. Replacing them with TRUE yields:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR TRUE)) OR
(key1 < 'bar' AND TRUE) OR
(key1 < 'uux' AND key1 > 'z')

3. Collapse conditions that are always true or false:

• (key1 LIKE 'abcde%' OR TRUE) is always true

• (key1 < 'uux' AND key1 > 'z') is always false

1826

Optimizing SELECT Statements

Replacing these conditions with constants yields:

(key1 < 'abc' AND TRUE) OR (key1 < 'bar' AND TRUE) OR (FALSE)

Removing unnecessary TRUE and FALSE constants yields:

(key1 < 'abc') OR (key1 < 'bar')

4. Combining overlapping intervals into one yields the final condition to be used for the range scan:

(key1 < 'bar')

In general (and as demonstrated by the preceding example), the condition used for a range scan is
less restrictive than the WHERE clause. MySQL performs an additional check to filter out rows that
satisfy the range condition but not the full WHERE clause.

The range condition extraction algorithm can handle nested AND/OR constructs of arbitrary depth, and
its output does not depend on the order in which conditions appear in WHERE clause.

MySQL does not support merging multiple ranges for the range access method for spatial indexes. To
work around this limitation, you can use a UNION with identical SELECT statements, except that you put
each spatial predicate in a different SELECT.

Range Access Method for Multiple-Part Indexes

Range conditions on a multiple-part index are an extension of range conditions for a single-part index.
A range condition on a multiple-part index restricts index rows to lie within one or several key tuple
intervals. Key tuple intervals are defined over a set of key tuples, using ordering from the index.

For example, consider a multiple-part index defined as key1(key_part1, key_part2,
key_part3), and the following set of key tuples listed in key order:

key_part1 key_part2 key_part3
 NULL 1 'abc'
 NULL 1 'xyz'
 NULL 2 'foo'
 1 1 'abc'
 1 1 'xyz'
 1 2 'abc'
 2 1 'aaa'

The condition key_part1 = 1 defines this interval:

(1,-inf,-inf) <= (key_part1,key_part2,key_part3) < (1,+inf,+inf)

The interval covers the 4th, 5th, and 6th tuples in the preceding data set and can be used by the range
access method.

By contrast, the condition key_part3 = 'abc' does not define a single interval and cannot be used
by the range access method.

The following descriptions indicate how range conditions work for multiple-part indexes in greater
detail.

• For HASH indexes, each interval containing identical values can be used. This means that the interval
can be produced only for conditions in the following form:

 key_part1 cmp const1
AND key_part2 cmp const2
AND ...
AND key_partN cmp constN;

Here, const1, const2, … are constants, cmp is one of the =, <=>, or IS NULL comparison
operators, and the conditions cover all index parts. (That is, there are N conditions, one for each part
of an N-part index.) For example, the following is a range condition for a three-part HASH index:

1827

Optimizing SELECT Statements

key_part1 = 1 AND key_part2 IS NULL AND key_part3 = 'foo'

For the definition of what is considered to be a constant, see Range Access Method for Single-Part
Indexes.

• For a BTREE index, an interval might be usable for conditions combined with AND, where each
condition compares a key part with a constant value using =, <=>, IS NULL, >, <, >=, <=, !=, <>,
BETWEEN, or LIKE 'pattern' (where 'pattern' does not start with a wildcard). An interval can
be used as long as it is possible to determine a single key tuple containing all rows that match the
condition (or two intervals if <> or != is used).

The optimizer attempts to use additional key parts to determine the interval as long as the
comparison operator is =, <=>, or IS NULL. If the operator is >, <, >=, <=, !=, <>, BETWEEN,
or LIKE, the optimizer uses it but considers no more key parts. For the following expression,
the optimizer uses = from the first comparison. It also uses >= from the second comparison but
considers no further key parts and does not use the third comparison for interval construction:

key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10

The single interval is:

('foo',10,-inf) < (key_part1,key_part2,key_part3) < ('foo',+inf,+inf)

It is possible that the created interval contains more rows than the initial condition. For example,
the preceding interval includes the value ('foo', 11, 0), which does not satisfy the original
condition.

• If conditions that cover sets of rows contained within intervals are combined with OR, they form a
condition that covers a set of rows contained within the union of their intervals. If the conditions are
combined with AND, they form a condition that covers a set of rows contained within the intersection
of their intervals. For example, for this condition on a two-part index:

(key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)

The intervals are:

(1,-inf) < (key_part1,key_part2) < (1,2)
(5,-inf) < (key_part1,key_part2)

In this example, the interval on the first line uses one key part for the left bound and two key parts for
the right bound. The interval on the second line uses only one key part. The key_len column in the
EXPLAIN output indicates the maximum length of the key prefix used.

In some cases, key_len may indicate that a key part was used, but that might be not what you
would expect. Suppose that key_part1 and key_part2 can be NULL. Then the key_len column
displays two key part lengths for the following condition:

key_part1 >= 1 AND key_part2 < 2

But, in fact, the condition is converted to this:

key_part1 >= 1 AND key_part2 IS NOT NULL

For a description of how optimizations are performed to combine or eliminate intervals for range
conditions on a single-part index, see Range Access Method for Single-Part Indexes. Analogous steps
are performed for range conditions on multiple-part indexes.

Equality Range Optimization of Many-Valued Comparisons

Consider these expressions, where col_name is an indexed column:

col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN

1828

Optimizing SELECT Statements

Each expression is true if col_name is equal to any of several values. These comparisons are equality
range comparisons (where the “range” is a single value). The optimizer estimates the cost of reading
qualifying rows for equality range comparisons as follows:

• If there is a unique index on col_name, the row estimate for each range is 1 because at most one
row can have the given value.

• Otherwise, any index on col_name is nonunique and the optimizer can estimate the row count for
each range using dives into the index or index statistics.

With index dives, the optimizer makes a dive at each end of a range and uses the number of rows in
the range as the estimate. For example, the expression col_name IN (10, 20, 30) has three
equality ranges and the optimizer makes two dives per range to generate a row estimate. Each pair of
dives yields an estimate of the number of rows that have the given value.

Index dives provide accurate row estimates, but as the number of comparison values in the expression
increases, the optimizer takes longer to generate a row estimate. Use of index statistics is less
accurate than index dives but permits faster row estimation for large value lists.

The eq_range_index_dive_limit system variable enables you to configure the number of
values at which the optimizer switches from one row estimation strategy to the other. To permit use
of index dives for comparisons of up to N equality ranges, set eq_range_index_dive_limit
to N + 1. To disable use of statistics and always use index dives regardless of N, set
eq_range_index_dive_limit to 0.

To update table index statistics for best estimates, use ANALYZE TABLE.

Prior to MySQL 8.0, there is no way of skipping the use of index dives to estimate index usefulness,
except by using the eq_range_index_dive_limit system variable. In MySQL 8.0, index dive
skipping is possible for queries that satisfy all these conditions:

• The query is for a single table, not a join on multiple tables.

• A single-index FORCE INDEX index hint is present. The idea is that if index use is forced, there is
nothing to be gained from the additional overhead of performing dives into the index.

• The index is nonunique and not a FULLTEXT index.

• No subquery is present.

• No DISTINCT, GROUP BY, or ORDER BY clause is present.

For EXPLAIN FOR CONNECTION, the output changes as follows if index dives are skipped:

• For traditional output, the rows and filtered values are NULL.

• For JSON output, rows_examined_per_scan and rows_produced_per_join do not appear,
skip_index_dive_due_to_force is true, and cost calculations are not accurate.

Without FOR CONNECTION, EXPLAIN output does not change when index dives are skipped.

After execution of a query for which index dives are skipped, the corresponding row in the Information
Schema OPTIMIZER_TRACE table contains an index_dives_for_range_access value of
skipped_due_to_force_index.

Skip Scan Range Access Method

Consider the following scenario:

CREATE TABLE t1 (f1 INT NOT NULL, f2 INT NOT NULL, PRIMARY KEY(f1, f2));
INSERT INTO t1 VALUES
 (1,1), (1,2), (1,3), (1,4), (1,5),
 (2,1), (2,2), (2,3), (2,4), (2,5);

1829

Optimizing SELECT Statements

INSERT INTO t1 SELECT f1, f2 + 5 FROM t1;
INSERT INTO t1 SELECT f1, f2 + 10 FROM t1;
INSERT INTO t1 SELECT f1, f2 + 20 FROM t1;
INSERT INTO t1 SELECT f1, f2 + 40 FROM t1;
ANALYZE TABLE t1;

EXPLAIN SELECT f1, f2 FROM t1 WHERE f2 > 40;

To execute this query, MySQL can choose an index scan to fetch all rows (the index includes all
columns to be selected), then apply the f2 > 40 condition from the WHERE clause to produce the final
result set.

A range scan is more efficient than a full index scan, but cannot be used in this case because there is
no condition on f1, the first index column. However, as of MySQL 8.0.13, the optimizer can perform
multiple range scans, one for each value of f1, using a method called Skip Scan that is similar to
Loose Index Scan (see Section 10.2.1.17, “GROUP BY Optimization”):

1. Skip between distinct values of the first index part, f1 (the index prefix).

2. Perform a subrange scan on each distinct prefix value for the f2 > 40 condition on the remaining
index part.

For the data set shown earlier, the algorithm operates like this:

1. Get the first distinct value of the first key part (f1 = 1).

2. Construct the range based on the first and second key parts (f1 = 1 AND f2 > 40).

3. Perform a range scan.

4. Get the next distinct value of the first key part (f1 = 2).

5. Construct the range based on the first and second key parts (f1 = 2 AND f2 > 40).

6. Perform a range scan.

Using this strategy decreases the number of accessed rows because MySQL skips the rows that do
not qualify for each constructed range. This Skip Scan access method is applicable under the following
conditions:

• Table T has at least one compound index with key parts of the form ([A_1, ..., A_k,] B_1, ..., B_m, C [,
D_1, ..., D_n]). Key parts A and D may be empty, but B and C must be nonempty.

• The query references only one table.

• The query does not use GROUP BY or DISTINCT.

• The query references only columns in the index.

• The predicates on A_1, ..., A_k must be equality predicates and they must be constants. This
includes the IN() operator.

• The query must be a conjunctive query; that is, an AND of OR conditions: (cond1(key_part1) OR
cond2(key_part1)) AND (cond1(key_part2) OR ...) AND ...

• There must be a range condition on C.

• Conditions on D columns are permitted. Conditions on D must be in conjunction with the range
condition on C.

Use of Skip Scan is indicated in EXPLAIN output as follows:

• Using index for skip scan in the Extra column indicates that the loose index Skip Scan
access method is used.

1830

Optimizing SELECT Statements

• If the index can be used for Skip Scan, the index should be visible in the possible_keys column.

Use of Skip Scan is indicated in optimizer trace output by a "skip scan" element of this form:

"skip_scan_range": {
 "type": "skip_scan",
 "index": index_used_for_skip_scan,
 "key_parts_used_for_access": [key_parts_used_for_access],
 "range": [range]
}

You may also see a "best_skip_scan_summary" element. If Skip Scan is chosen as the best
range access variant, a "chosen_range_access_summary" is written. If Skip Scan is chosen as the
overall best access method, a "best_access_path" element is present.

Use of Skip Scan is subject to the value of the skip_scan flag of the optimizer_switch system
variable. See Section 10.9.2, “Switchable Optimizations”. By default, this flag is on. To disable it, set
skip_scan to off.

In addition to using the optimizer_switch system variable to control optimizer use of Skip Scan
session-wide, MySQL supports optimizer hints to influence the optimizer on a per-statement basis. See
Section 10.9.3, “Optimizer Hints”.

Range Optimization of Row Constructor Expressions

The optimizer is able to apply the range scan access method to queries of this form:

SELECT ... FROM t1 WHERE (col_1, col_2) IN (('a', 'b'), ('c', 'd'));

Previously, for range scans to be used, it was necessary to write the query as:

SELECT ... FROM t1 WHERE (col_1 = 'a' AND col_2 = 'b')
OR (col_1 = 'c' AND col_2 = 'd');

For the optimizer to use a range scan, queries must satisfy these conditions:

• Only IN() predicates are used, not NOT IN().

• On the left side of the IN() predicate, the row constructor contains only column references.

• On the right side of the IN() predicate, row constructors contain only runtime constants, which are
either literals or local column references that are bound to constants during execution.

• On the right side of the IN() predicate, there is more than one row constructor.

For more information about the optimizer and row constructors, see Section 10.2.1.22, “Row
Constructor Expression Optimization”

Limiting Memory Use for Range Optimization

To control the memory available to the range optimizer, use the range_optimizer_max_mem_size
system variable:

• A value of 0 means “no limit.”

• With a value greater than 0, the optimizer tracks the memory consumed when considering the
range access method. If the specified limit is about to be exceeded, the range access method
is abandoned and other methods, including a full table scan, are considered instead. This
could be less optimal. If this happens, the following warning occurs (where N is the current
range_optimizer_max_mem_size value):

Warning 3170 Memory capacity of N bytes for
 'range_optimizer_max_mem_size' exceeded. Range
 optimization was not done for this query.

1831

Optimizing SELECT Statements

• For UPDATE and DELETE statements, if the optimizer falls back to a full table scan and the
sql_safe_updates system variable is enabled, an error occurs rather than a warning because,
in effect, no key is used to determine which rows to modify. For more information, see Using Safe-
Updates Mode (--safe-updates).

For individual queries that exceed the available range optimization memory and for which the optimizer
falls back to less optimal plans, increasing the range_optimizer_max_mem_size value may
improve performance.

To estimate the amount of memory needed to process a range expression, use these guidelines:

• For a simple query such as the following, where there is one candidate key for the range access
method, each predicate combined with OR uses approximately 230 bytes:

SELECT COUNT(*) FROM t
WHERE a=1 OR a=2 OR a=3 OR .. . a=N;

• Similarly for a query such as the following, each predicate combined with AND uses approximately
125 bytes:

SELECT COUNT(*) FROM t
WHERE a=1 AND b=1 AND c=1 ... N;

• For a query with IN() predicates:

SELECT COUNT(*) FROM t
WHERE a IN (1,2, ..., M) AND b IN (1,2, ..., N);

Each literal value in an IN() list counts as a predicate combined with OR. If there are two IN() lists,
the number of predicates combined with OR is the product of the number of literal values in each list.
Thus, the number of predicates combined with OR in the preceding case is M × N.

10.2.1.3 Index Merge Optimization

The Index Merge access method retrieves rows with multiple range scans and merges their results
into one. This access method merges index scans from a single table only, not scans across multiple
tables. The merge can produce unions, intersections, or unions-of-intersections of its underlying scans.

Example queries for which Index Merge may be used:

SELECT * FROM tbl_name WHERE key1 = 10 OR key2 = 20;

SELECT * FROM tbl_name
 WHERE (key1 = 10 OR key2 = 20) AND non_key = 30;

SELECT * FROM t1, t2
 WHERE (t1.key1 IN (1,2) OR t1.key2 LIKE 'value%')
 AND t2.key1 = t1.some_col;

SELECT * FROM t1, t2
 WHERE t1.key1 = 1
 AND (t2.key1 = t1.some_col OR t2.key2 = t1.some_col2);

Note

The Index Merge optimization algorithm has the following known limitations:

• If your query has a complex WHERE clause with deep AND/OR nesting and
MySQL does not choose the optimal plan, try distributing terms using the
following identity transformations:

(x AND y) OR z => (x OR z) AND (y OR z)
(x OR y) AND z => (x AND z) OR (y AND z)

• Index Merge is not applicable to full-text indexes.

1832

Optimizing SELECT Statements

In EXPLAIN output, the Index Merge method appears as index_merge in the type column. In this
case, the key column contains a list of indexes used, and key_len contains a list of the longest key
parts for those indexes.

The Index Merge access method has several algorithms, which are displayed in the Extra field of
EXPLAIN output:

• Using intersect(...)

• Using union(...)

• Using sort_union(...)

The following sections describe these algorithms in greater detail. The optimizer chooses between
different possible Index Merge algorithms and other access methods based on cost estimates of the
various available options.

• Index Merge Intersection Access Algorithm

• Index Merge Union Access Algorithm

• Index Merge Sort-Union Access Algorithm

• Influencing Index Merge Optimization

Index Merge Intersection Access Algorithm

This access algorithm is applicable when a WHERE clause is converted to several range conditions on
different keys combined with AND, and each condition is one of the following:

• An N-part expression of this form, where the index has exactly N parts (that is, all index parts are
covered):

key_part1 = const1 AND key_part2 = const2 ... AND key_partN = constN

• Any range condition over the primary key of an InnoDB table.

Examples:

SELECT * FROM innodb_table
 WHERE primary_key < 10 AND key_col1 = 20;

SELECT * FROM tbl_name
 WHERE key1_part1 = 1 AND key1_part2 = 2 AND key2 = 2;

The Index Merge intersection algorithm performs simultaneous scans on all used indexes and
produces the intersection of row sequences that it receives from the merged index scans.

If all columns used in the query are covered by the used indexes, full table rows are not retrieved
(EXPLAIN output contains Using index in Extra field in this case). Here is an example of such a
query:

SELECT COUNT(*) FROM t1 WHERE key1 = 1 AND key2 = 1;

If the used indexes do not cover all columns used in the query, full rows are retrieved only when the
range conditions for all used keys are satisfied.

If one of the merged conditions is a condition over the primary key of an InnoDB table, it is not used for
row retrieval, but is used to filter out rows retrieved using other conditions.

Index Merge Union Access Algorithm

The criteria for this algorithm are similar to those for the Index Merge intersection algorithm. The
algorithm is applicable when the table's WHERE clause is converted to several range conditions on
different keys combined with OR, and each condition is one of the following:

1833

Optimizing SELECT Statements

• An N-part expression of this form, where the index has exactly N parts (that is, all index parts are
covered):

key_part1 = const1 OR key_part2 = const2 ... OR key_partN = constN

• Any range condition over a primary key of an InnoDB table.

• A condition for which the Index Merge intersection algorithm is applicable.

Examples:

SELECT * FROM t1
 WHERE key1 = 1 OR key2 = 2 OR key3 = 3;

SELECT * FROM innodb_table
 WHERE (key1 = 1 AND key2 = 2)
 OR (key3 = 'foo' AND key4 = 'bar') AND key5 = 5;

Index Merge Sort-Union Access Algorithm

This access algorithm is applicable when the WHERE clause is converted to several range conditions
combined by OR, but the Index Merge union algorithm is not applicable.

Examples:

SELECT * FROM tbl_name
 WHERE key_col1 < 10 OR key_col2 < 20;

SELECT * FROM tbl_name
 WHERE (key_col1 > 10 OR key_col2 = 20) AND nonkey_col = 30;

The difference between the sort-union algorithm and the union algorithm is that the sort-union algorithm
must first fetch row IDs for all rows and sort them before returning any rows.

Influencing Index Merge Optimization

Use of Index Merge is subject to the value of the index_merge, index_merge_intersection,
index_merge_union, and index_merge_sort_union flags of the optimizer_switch system
variable. See Section 10.9.2, “Switchable Optimizations”. By default, all those flags are on. To enable
only certain algorithms, set index_merge to off, and enable only such of the others as should be
permitted.

In addition to using the optimizer_switch system variable to control optimizer use of the Index
Merge algorithms session-wide, MySQL supports optimizer hints to influence the optimizer on a per-
statement basis. See Section 10.9.3, “Optimizer Hints”.

10.2.1.4 Hash Join Optimization

By default, MySQL (8.0.18 and later) employs hash joins whenever possible. It is possible to
control whether hash joins are employed using one of the BNL and NO_BNL optimizer hints, or by
setting block_nested_loop=on or block_nested_loop=off as part of the setting for the
optimizer_switch server system variable.

Note

MySQL 8.0.18 supported setting a hash_join flag in optimizer_switch, as
well as the optimizer hints HASH_JOIN and NO_HASH_JOIN. In MySQL 8.0.19
and later, none of these have any effect any longer.

Beginning with MySQL 8.0.18, MySQL employs a hash join for any query for which each join has an
equi-join condition, and in which there are no indexes that can be applied to any join conditions, such
as this one:

SELECT *

1834

Optimizing SELECT Statements

 FROM t1
 JOIN t2
 ON t1.c1=t2.c1;

A hash join can also be used when there are one or more indexes that can be used for single-table
predicates.

A hash join is usually faster than and is intended to be used in such cases instead of the block nested
loop algorithm (see Block Nested-Loop Join Algorithm) employed in previous versions of MySQL.
Beginning with MySQL 8.0.20, support for block nested loop is removed, and the server employs a
hash join wherever a block nested loop would have been used previously.

In the example just shown and the remaining examples in this section, we assume that the three tables
t1, t2, and t3 have been created using the following statements:

CREATE TABLE t1 (c1 INT, c2 INT);
CREATE TABLE t2 (c1 INT, c2 INT);
CREATE TABLE t3 (c1 INT, c2 INT);

You can see that a hash join is being employed by using EXPLAIN, like this:

mysql> EXPLAIN
 -> SELECT * FROM t1
 -> JOIN t2 ON t1.c1=t2.c1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: t2
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: Using where; Using join buffer (hash join)

(Prior to MySQL 8.0.20, it was necessary to include the FORMAT=TREE option to see whether hash
joins were being used for a given join.)

EXPLAIN ANALYZE also displays information about hash joins used.

The hash join is used for queries involving multiple joins as well, as long as at least one join condition
for each pair of tables is an equi-join, like the query shown here:

SELECT * FROM t1
 JOIN t2 ON (t1.c1 = t2.c1 AND t1.c2 < t2.c2)
 JOIN t3 ON (t2.c1 = t3.c1);

In cases like the one just shown, which makes use of an inner join, any extra conditions which are not
equi-joins are applied as filters after the join is executed. (For outer joins, such as left joins, semijoins,
and antijoins, they are printed as part of the join.) This can be seen here in the output of EXPLAIN:

mysql> EXPLAIN FORMAT=TREE

1835

Optimizing SELECT Statements

 -> SELECT *
 -> FROM t1
 -> JOIN t2
 -> ON (t1.c1 = t2.c1 AND t1.c2 < t2.c2)
 -> JOIN t3
 -> ON (t2.c1 = t3.c1)\G
*************************** 1. row ***************************
EXPLAIN: -> Inner hash join (t3.c1 = t1.c1) (cost=1.05 rows=1)
 -> Table scan on t3 (cost=0.35 rows=1)
 -> Hash
 -> Filter: (t1.c2 < t2.c2) (cost=0.70 rows=1)
 -> Inner hash join (t2.c1 = t1.c1) (cost=0.70 rows=1)
 -> Table scan on t2 (cost=0.35 rows=1)
 -> Hash
 -> Table scan on t1 (cost=0.35 rows=1)

As also can be seen from the output just shown, multiple hash joins can be (and are) used for joins
having multiple equi-join conditions.

Prior to MySQL 8.0.20, a hash join could not be used if any pair of joined tables did not have at least
one equi-join condition, and the slower block nested loop algorithm was employed. In MySQL 8.0.20
and later, the hash join is used in such cases, as shown here:

mysql> EXPLAIN FORMAT=TREE
 -> SELECT * FROM t1
 -> JOIN t2 ON (t1.c1 = t2.c1)
 -> JOIN t3 ON (t2.c1 < t3.c1)\G
*************************** 1. row ***************************
EXPLAIN: -> Filter: (t1.c1 < t3.c1) (cost=1.05 rows=1)
 -> Inner hash join (no condition) (cost=1.05 rows=1)
 -> Table scan on t3 (cost=0.35 rows=1)
 -> Hash
 -> Inner hash join (t2.c1 = t1.c1) (cost=0.70 rows=1)
 -> Table scan on t2 (cost=0.35 rows=1)
 -> Hash
 -> Table scan on t1 (cost=0.35 rows=1)

(Additional examples are provided later in this section.)

A hash join is also applied for a Cartesian product—that is, when no join condition is specified, as
shown here:

mysql> EXPLAIN FORMAT=TREE
 -> SELECT *
 -> FROM t1
 -> JOIN t2
 -> WHERE t1.c2 > 50\G
*************************** 1. row ***************************
EXPLAIN: -> Inner hash join (cost=0.70 rows=1)
 -> Table scan on t2 (cost=0.35 rows=1)
 -> Hash
 -> Filter: (t1.c2 > 50) (cost=0.35 rows=1)
 -> Table scan on t1 (cost=0.35 rows=1)

In MySQL 8.0.20 and later, it is no longer necessary for the join to contain at least one equi-join
condition in order for a hash join to be used. This means that the types of queries which can be
optimized using hash joins include those in the following list (with examples):

• Inner non-equi-join:

mysql> EXPLAIN FORMAT=TREE SELECT * FROM t1 JOIN t2 ON t1.c1 < t2.c1\G
*************************** 1. row ***************************
EXPLAIN: -> Filter: (t1.c1 < t2.c1) (cost=4.70 rows=12)
 -> Inner hash join (no condition) (cost=4.70 rows=12)
 -> Table scan on t2 (cost=0.08 rows=6)
 -> Hash
 -> Table scan on t1 (cost=0.85 rows=6)

• Semijoin:

1836

Optimizing SELECT Statements

mysql> EXPLAIN FORMAT=TREE SELECT * FROM t1
 -> WHERE t1.c1 IN (SELECT t2.c2 FROM t2)\G
*************************** 1. row ***************************
EXPLAIN: -> Hash semijoin (t2.c2 = t1.c1) (cost=0.70 rows=1)
 -> Table scan on t1 (cost=0.35 rows=1)
 -> Hash
 -> Table scan on t2 (cost=0.35 rows=1)

• Antijoin:

mysql> EXPLAIN FORMAT=TREE SELECT * FROM t2
 -> WHERE NOT EXISTS (SELECT * FROM t1 WHERE t1.c1 = t2.c1)\G
*************************** 1. row ***************************
EXPLAIN: -> Hash antijoin (t1.c1 = t2.c1) (cost=0.70 rows=1)
 -> Table scan on t2 (cost=0.35 rows=1)
 -> Hash
 -> Table scan on t1 (cost=0.35 rows=1)

1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1276
Message: Field or reference 't3.t2.c1' of SELECT #2 was resolved in SELECT #1

• Left outer join:

mysql> EXPLAIN FORMAT=TREE SELECT * FROM t1 LEFT JOIN t2 ON t1.c1 = t2.c1\G
*************************** 1. row ***************************
EXPLAIN: -> Left hash join (t2.c1 = t1.c1) (cost=0.70 rows=1)
 -> Table scan on t1 (cost=0.35 rows=1)
 -> Hash
 -> Table scan on t2 (cost=0.35 rows=1)

• Right outer join (observe that MySQL rewrites all right outer joins as left outer joins):

mysql> EXPLAIN FORMAT=TREE SELECT * FROM t1 RIGHT JOIN t2 ON t1.c1 = t2.c1\G
*************************** 1. row ***************************
EXPLAIN: -> Left hash join (t1.c1 = t2.c1) (cost=0.70 rows=1)
 -> Table scan on t2 (cost=0.35 rows=1)
 -> Hash
 -> Table scan on t1 (cost=0.35 rows=1)

By default, MySQL 8.0.18 and later employs hash joins whenever possible. It is possible to control
whether hash joins are employed using one of the BNL and NO_BNL optimizer hints.

(MySQL 8.0.18 supported hash_join=on or hash_join=off as part of the setting for the
optimizer_switch server system variable as well as the optimizer hints HASH_JOIN or
NO_HASH_JOIN. In MySQL 8.0.19 and later, these no longer have any effect.)

Memory usage by hash joins can be controlled using the join_buffer_size system variable; a hash
join cannot use more memory than this amount. When the memory required for a hash join exceeds
the amount available, MySQL handles this by using files on disk. If this happens, you should be aware
that the join may not succeed if a hash join cannot fit into memory and it creates more files than set for
open_files_limit. To avoid such problems, make either of the following changes:

• Increase join_buffer_size so that the hash join does not spill over to disk.

• Increase open_files_limit.

Beginning with MySQL 8.0.18, join buffers for hash joins are allocated incrementally; thus, you can set
join_buffer_size higher without small queries allocating very large amounts of RAM, but outer
joins allocate the entire buffer. In MySQL 8.0.20 and later, hash joins are used for outer joins (including
antijoins and semijoins) as well, so this is no longer an issue.

10.2.1.5 Engine Condition Pushdown Optimization

1837

Optimizing SELECT Statements

This optimization improves the efficiency of direct comparisons between a nonindexed column and
a constant. In such cases, the condition is “pushed down” to the storage engine for evaluation. This
optimization can be used only by the NDB storage engine.

For NDB Cluster, this optimization can eliminate the need to send nonmatching rows over the network
between the cluster's data nodes and the MySQL server that issued the query, and can speed up
queries where it is used by a factor of 5 to 10 times over cases where condition pushdown could be but
is not used.

Suppose that an NDB Cluster table is defined as follows:

CREATE TABLE t1 (
 a INT,
 b INT,
 KEY(a)
) ENGINE=NDB;

Engine condition pushdown can be used with queries such as the one shown here, which includes a
comparison between a nonindexed column and a constant:

SELECT a, b FROM t1 WHERE b = 10;

The use of engine condition pushdown can be seen in the output of EXPLAIN:

mysql> EXPLAIN SELECT a, b FROM t1 WHERE b = 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using where with pushed condition

However, engine condition pushdown cannot be used with the following query:

SELECT a,b FROM t1 WHERE a = 10;

Engine condition pushdown is not applicable here because an index exists on column a. (An index
access method would be more efficient and so would be chosen in preference to condition pushdown.)

Engine condition pushdown may also be employed when an indexed column is compared with a
constant using a > or < operator:

mysql> EXPLAIN SELECT a, b FROM t1 WHERE a < 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: range
possible_keys: a
 key: a
 key_len: 5
 ref: NULL
 rows: 2
 Extra: Using where with pushed condition

Other supported comparisons for engine condition pushdown include the following:

• column [NOT] LIKE pattern

pattern must be a string literal containing the pattern to be matched; for syntax, see
Section 14.8.1, “String Comparison Functions and Operators”.

1838

Optimizing SELECT Statements

• column IS [NOT] NULL

• column IN (value_list)

Each item in the value_list must be a constant, literal value.

• column BETWEEN constant1 AND constant2

constant1 and constant2 must each be a constant, literal value.

In all of the cases in the preceding list, it is possible for the condition to be converted into the form of
one or more direct comparisons between a column and a constant.

Engine condition pushdown is enabled by default. To disable it at server startup, set the
optimizer_switch system variable's engine_condition_pushdown flag to off. For example, in
a my.cnf file, use these lines:

[mysqld]
optimizer_switch=engine_condition_pushdown=off

At runtime, disable condition pushdown like this:

SET optimizer_switch='engine_condition_pushdown=off';

Limitations. Engine condition pushdown is subject to the following limitations:

• Engine condition pushdown is supported only by the NDB storage engine.

• Prior to NDB 8.0.18, columns could be compared with constants or expressions which evaluate to
constant values only. In NDB 8.0.18 and later, columns can be compared with one another as long
as they are of exactly the same type, including the same signedness, length, character set, precision,
and scale, where these are applicable.

• Columns used in comparisons cannot be of any of the BLOB or TEXT types. This exclusion extends
to JSON, BIT, and ENUM columns as well.

• A string value to be compared with a column must use the same collation as the column.

• Joins are not directly supported; conditions involving multiple tables are pushed separately where
possible. Use extended EXPLAIN output to determine which conditions are actually pushed down.
See Section 10.8.3, “Extended EXPLAIN Output Format”.

Previously, engine condition pushdown was limited to terms referring to column values from the same
table to which the condition was being pushed. Beginning with NDB 8.0.16, column values from tables
earlier in the query plan can also be referred to from pushed conditions. This reduces the number of
rows which must be handled by the SQL node during join processing. Filtering can be also performed
in parallel in the LDM threads, rather than in a single mysqld process. This has the potential to
improve performance of queries by a significant margin.

Beginning with NDB 8.0.20, an outer join using a scan can be pushed if there are no unpushable
conditions on any table used in the same join nest, or on any table in join nests above it on
which it depends. This is also true for a semijoin, provided the optimization strategy employed is
firstMatch (see Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin
Transformations”).

Join algorithms cannot be combined with referring columns from previous tables in the following two
situations:

1. When any of the referred previous tables are in a join buffer. In this case, each row retrieved from
the scan-filtered table is matched against every row in the buffer. This means that there is no single
specific row from which column values can be fetched from when generating the scan filter.

1839

Optimizing SELECT Statements

2. When the column originates from a child operation in a pushed join. This is because rows
referenced from ancestor operations in the join have not yet been retrieved when the scan filter is
generated.

Beginning with NDB 8.0.27, columns from ancestor tables in a join can be pushed down, provided that
they meet the requirements listed previously. An example of such a query, using the table t1 created
previously, is shown here:

mysql> EXPLAIN
 -> SELECT * FROM t1 AS x
 -> LEFT JOIN t1 AS y
 -> ON x.a=0 AND y.b>=3\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: x
 partitions: p0,p1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: y
 partitions: p0,p1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4
 filtered: 100.00
 Extra: Using where; Using pushed condition (`test`.`y`.`b` >= 3); Using join buffer (hash join)
2 rows in set, 2 warnings (0.00 sec)

10.2.1.6 Index Condition Pushdown Optimization

Index Condition Pushdown (ICP) is an optimization for the case where MySQL retrieves rows from a
table using an index. Without ICP, the storage engine traverses the index to locate rows in the base
table and returns them to the MySQL server which evaluates the WHERE condition for the rows. With
ICP enabled, and if parts of the WHERE condition can be evaluated by using only columns from the
index, the MySQL server pushes this part of the WHERE condition down to the storage engine. The
storage engine then evaluates the pushed index condition by using the index entry and only if this is
satisfied is the row read from the table. ICP can reduce the number of times the storage engine must
access the base table and the number of times the MySQL server must access the storage engine.

Applicability of the Index Condition Pushdown optimization is subject to these conditions:

• ICP is used for the range, ref, eq_ref, and ref_or_null access methods when there is a need
to access full table rows.

• ICP can be used for InnoDB and MyISAM tables, including partitioned InnoDB and MyISAM tables.

• For InnoDB tables, ICP is used only for secondary indexes. The goal of ICP is to reduce the number
of full-row reads and thereby reduce I/O operations. For InnoDB clustered indexes, the complete
record is already read into the InnoDB buffer. Using ICP in this case does not reduce I/O.

• ICP is not supported with secondary indexes created on virtual generated columns. InnoDB
supports secondary indexes on virtual generated columns.

• Conditions that refer to subqueries cannot be pushed down.

1840

Optimizing SELECT Statements

• Conditions that refer to stored functions cannot be pushed down. Storage engines cannot invoke
stored functions.

• Triggered conditions cannot be pushed down. (For information about triggered conditions, see
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”.)

• (MySQL 8.0.30 and later:) Conditions cannot be pushed down to derived tables containing
references to system variables.

To understand how this optimization works, first consider how an index scan proceeds when Index
Condition Pushdown is not used:

1. Get the next row, first by reading the index tuple, and then by using the index tuple to locate and
read the full table row.

2. Test the part of the WHERE condition that applies to this table. Accept or reject the row based on the
test result.

Using Index Condition Pushdown, the scan proceeds like this instead:

1. Get the next row's index tuple (but not the full table row).

2. Test the part of the WHERE condition that applies to this table and can be checked using only index
columns. If the condition is not satisfied, proceed to the index tuple for the next row.

3. If the condition is satisfied, use the index tuple to locate and read the full table row.

4. Test the remaining part of the WHERE condition that applies to this table. Accept or reject the row
based on the test result.

EXPLAIN output shows Using index condition in the Extra column when Index Condition
Pushdown is used. It does not show Using index because that does not apply when full table rows
must be read.

Suppose that a table contains information about people and their addresses and that the table has an
index defined as INDEX (zipcode, lastname, firstname). If we know a person's zipcode
value but are not sure about the last name, we can search like this:

SELECT * FROM people
 WHERE zipcode='95054'
 AND lastname LIKE '%etrunia%'
 AND address LIKE '%Main Street%';

MySQL can use the index to scan through people with zipcode='95054'. The second part
(lastname LIKE '%etrunia%') cannot be used to limit the number of rows that must be scanned,
so without Index Condition Pushdown, this query must retrieve full table rows for all people who have
zipcode='95054'.

With Index Condition Pushdown, MySQL checks the lastname LIKE '%etrunia%' part before
reading the full table row. This avoids reading full rows corresponding to index tuples that match the
zipcode condition but not the lastname condition.

Index Condition Pushdown is enabled by default. It can be controlled with the optimizer_switch
system variable by setting the index_condition_pushdown flag:

SET optimizer_switch = 'index_condition_pushdown=off';
SET optimizer_switch = 'index_condition_pushdown=on';

See Section 10.9.2, “Switchable Optimizations”.

10.2.1.7 Nested-Loop Join Algorithms

MySQL executes joins between tables using a nested-loop algorithm or variations on it.

1841

Optimizing SELECT Statements

• Nested-Loop Join Algorithm

• Block Nested-Loop Join Algorithm

Nested-Loop Join Algorithm

A simple nested-loop join (NLJ) algorithm reads rows from the first table in a loop one at a time,
passing each row to a nested loop that processes the next table in the join. This process is repeated as
many times as there remain tables to be joined.

Assume that a join between three tables t1, t2, and t3 is to be executed using the following join
types:

Table Join Type
t1 range
t2 ref
t3 ALL

If a simple NLJ algorithm is used, the join is processed like this:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 for each row in t3 {
 if row satisfies join conditions, send to client
 }
 }
}

Because the NLJ algorithm passes rows one at a time from outer loops to inner loops, it typically reads
tables processed in the inner loops many times.

Block Nested-Loop Join Algorithm

A Block Nested-Loop (BNL) join algorithm uses buffering of rows read in outer loops to reduce the
number of times that tables in inner loops must be read. For example, if 10 rows are read into a buffer
and the buffer is passed to the next inner loop, each row read in the inner loop can be compared
against all 10 rows in the buffer. This reduces by an order of magnitude the number of times the inner
table must be read.

Prior to MySQL 8.0.18, this algorithm was applied for equi-joins when no indexes could be used; in
MySQL 8.0.18 and later, the hash join optimization is employed in such cases. Starting with MySQL
8.0.20, the block nested loop is no longer used by MySQL, and a hash join is employed for in all cases
where the block nested loop was used previously. See Section 10.2.1.4, “Hash Join Optimization”.

MySQL join buffering has these characteristics:

• Join buffering can be used when the join is of type ALL or index (in other words, when no possible
keys can be used, and a full scan is done, of either the data or index rows, respectively), or range.
Use of buffering is also applicable to outer joins, as described in Section 10.2.1.12, “Block Nested-
Loop and Batched Key Access Joins”.

• A join buffer is never allocated for the first nonconstant table, even if it would be of type ALL or
index.

• Only columns of interest to a join are stored in its join buffer, not whole rows.

• The join_buffer_size system variable determines the size of each join buffer used to process a
query.

• One buffer is allocated for each join that can be buffered, so a given query might be processed using
multiple join buffers.

• A join buffer is allocated prior to executing the join and freed after the query is done.

1842

Optimizing SELECT Statements

For the example join described previously for the NLJ algorithm (without buffering), the join is done as
follows using join buffering:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 store used columns from t1, t2 in join buffer
 if buffer is full {
 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions, send to client
 }
 }
 empty join buffer
 }
 }
}

if buffer is not empty {
 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions, send to client
 }
 }
}

If S is the size of each stored t1, t2 combination in the join buffer and C is the number of combinations
in the buffer, the number of times table t3 is scanned is:

(S * C)/join_buffer_size + 1

The number of t3 scans decreases as the value of join_buffer_size increases, up to the point
when join_buffer_size is large enough to hold all previous row combinations. At that point, no
speed is gained by making it larger.

10.2.1.8 Nested Join Optimization

The syntax for expressing joins permits nested joins. The following discussion refers to the join syntax
described in Section 15.2.13.2, “JOIN Clause”.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts
only table_reference, not a list of them inside a pair of parentheses. This is a conservative
extension if we consider each comma in a list of table_reference items as equivalent to an inner
join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

Is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, CROSS JOIN is syntactically equivalent to INNER JOIN; they can replace each other. In
standard SQL, they are not equivalent. INNER JOIN is used with an ON clause; CROSS JOIN is used
otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations.
Consider this join expression:

t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
 ON t1.a=t2.a

After removing parentheses and grouping operations to the left, that join expression transforms into this
expression:

(t1 LEFT JOIN t2 ON t1.a=t2.a) LEFT JOIN t3

1843

Optimizing SELECT Statements

 ON t2.b=t3.b OR t2.b IS NULL

Yet, the two expressions are not equivalent. To see this, suppose that the tables t1, t2, and t3 have
the following state:

• Table t1 contains rows (1), (2)

• Table t2 contains row (1,101)

• Table t3 contains row (101)

In this case, the first expression returns a result set including the rows (1,1,101,101),
(2,NULL,NULL,NULL), whereas the second expression returns the rows (1,1,101,101),
(2,NULL,NULL,101):

mysql> SELECT *
 FROM t1
 LEFT JOIN
 (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
 ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
 FROM (t1 LEFT JOIN t2 ON t1.a=t2.a)
 LEFT JOIN t3
 ON t2.b=t3.b OR t2.b IS NULL;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

In the following example, an outer join operation is used together with an inner join operation:

t1 LEFT JOIN (t2, t3) ON t1.a=t2.a

That expression cannot be transformed into the following expression:

t1 LEFT JOIN t2 ON t1.a=t2.a, t3

For the given table states, the two expressions return different sets of rows:

mysql> SELECT *
 FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
 FROM t1 LEFT JOIN t2 ON t1.a=t2.a, t3;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

Therefore, if we omit parentheses in a join expression with outer join operators, we might change the
result set for the original expression.

1844

Optimizing SELECT Statements

More exactly, we cannot ignore parentheses in the right operand of the left outer join operation and in
the left operand of a right join operation. In other words, we cannot ignore parentheses for the inner
table expressions of outer join operations. Parentheses for the other operand (operand for the outer
table) can be ignored.

The following expression:

(t1,t2) LEFT JOIN t3 ON P(t2.b,t3.b)

Is equivalent to this expression for any tables t1,t2,t3 and any condition P over attributes t2.b and
t3.b:

t1, t2 LEFT JOIN t3 ON P(t2.b,t3.b)

Whenever the order of execution of join operations in a join expression (joined_table) is not from
left to right, we talk about nested joins. Consider the following queries:

SELECT * FROM t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b) ON t1.a=t2.a
 WHERE t1.a > 1

SELECT * FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a
 WHERE (t2.b=t3.b OR t2.b IS NULL) AND t1.a > 1

Those queries are considered to contain these nested joins:

t2 LEFT JOIN t3 ON t2.b=t3.b
t2, t3

In the first query, the nested join is formed with a left join operation. In the second query, it is formed
with an inner join operation.

In the first query, the parentheses can be omitted: The grammatical structure of the join expression
dictates the same order of execution for join operations. For the second query, the parentheses
cannot be omitted, although the join expression here can be interpreted unambiguously without them.
In our extended syntax, the parentheses in (t2, t3) of the second query are required, although
theoretically the query could be parsed without them: We still would have unambiguous syntactical
structure for the query because LEFT JOIN and ON play the role of the left and right delimiters for the
expression (t2,t3).

The preceding examples demonstrate these points:

• For join expressions involving only inner joins (and not outer joins), parentheses can be removed and
joins evaluated left to right. In fact, tables can be evaluated in any order.

• The same is not true, in general, for outer joins or for outer joins mixed with inner joins. Removal of
parentheses may change the result.

Queries with nested outer joins are executed in the same pipeline manner as queries with inner joins.
More exactly, a variation of the nested-loop join algorithm is exploited. Recall the algorithm by which
the nested-loop join executes a query (see Section 10.2.1.7, “Nested-Loop Join Algorithms”). Suppose
that a join query over 3 tables T1,T2,T3 has this form:

SELECT * FROM T1 INNER JOIN T2 ON P1(T1,T2)
 INNER JOIN T3 ON P2(T2,T3)
 WHERE P(T1,T2,T3)

Here, P1(T1,T2) and P2(T3,T3) are some join conditions (on expressions), whereas P(T1,T2,T3)
is a condition over columns of tables T1,T2,T3.

The nested-loop join algorithm would execute this query in the following manner:

FOR each row t1 in T1 {

1845

Optimizing SELECT Statements

 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

The notation t1||t2||t3 indicates a row constructed by concatenating the columns of rows t1, t2,
and t3. In some of the following examples, NULL where a table name appears means a row in which
NULL is used for each column of that table. For example, t1||t2||NULL indicates a row constructed
by concatenating the columns of rows t1 and t2, and NULL for each column of t3. Such a row is said
to be NULL-complemented.

Now consider a query with nested outer joins:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON P2(T2,T3))
 ON P1(T1,T2)
 WHERE P(T1,T2,T3)

For this query, modify the nested-loop pattern to obtain:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f2=TRUE;
 f1=TRUE;
 }
 IF (!f2) {
 IF P(t1,t2,NULL) {
 t:=t1||t2||NULL; OUTPUT t;
 }
 f1=TRUE;
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

In general, for any nested loop for the first inner table in an outer join operation, a flag is introduced that
is turned off before the loop and is checked after the loop. The flag is turned on when for the current
row from the outer table a match from the table representing the inner operand is found. If at the end of
the loop cycle the flag is still off, no match has been found for the current row of the outer table. In this
case, the row is complemented by NULL values for the columns of the inner tables. The result row is
passed to the final check for the output or into the next nested loop, but only if the row satisfies the join
condition of all embedded outer joins.

In the example, the outer join table expressed by the following expression is embedded:

(T2 LEFT JOIN T3 ON P2(T2,T3))

For the query with inner joins, the optimizer could choose a different order of nested loops, such as this
one:

FOR each row t3 in T3 {
 FOR each row t2 in T2 such that P2(t2,t3) {
 FOR each row t1 in T1 such that P1(t1,t2) {
 IF P(t1,t2,t3) {

1846

Optimizing SELECT Statements

 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

For queries with outer joins, the optimizer can choose only such an order where loops for outer tables
precede loops for inner tables. Thus, for our query with outer joins, only one nesting order is possible.
For the following query, the optimizer evaluates two different nestings. In both nestings, T1 must be
processed in the outer loop because it is used in an outer join. T2 and T3 are used in an inner join, so
that join must be processed in the inner loop. However, because the join is an inner join, T2 and T3
can be processed in either order.

SELECT * T1 LEFT JOIN (T2,T3) ON P1(T1,T2) AND P2(T1,T3)
 WHERE P(T1,T2,T3)

One nesting evaluates T2, then T3:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t1,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f1:=TRUE
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

The other nesting evaluates T3, then T2:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t3 in T3 such that P2(t1,t3) {
 FOR each row t2 in T2 such that P1(t1,t2) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f1:=TRUE
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

When discussing the nested-loop algorithm for inner joins, we omitted some details whose impact
on the performance of query execution may be huge. We did not mention so-called “pushed-down”
conditions. Suppose that our WHERE condition P(T1,T2,T3) can be represented by a conjunctive
formula:

P(T1,T2,T2) = C1(T1) AND C2(T2) AND C3(T3).

In this case, MySQL actually uses the following nested-loop algorithm for the execution of the query
with inner joins:

FOR each row t1 in T1 such that C1(t1) {
 FOR each row t2 in T2 such that P1(t1,t2) AND C2(t2) {
 FOR each row t3 in T3 such that P2(t2,t3) AND C3(t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;

1847

Optimizing SELECT Statements

 }
 }
 }
}

You see that each of the conjuncts C1(T1), C2(T2), C3(T3) are pushed out of the most inner loop to
the most outer loop where it can be evaluated. If C1(T1) is a very restrictive condition, this condition
pushdown may greatly reduce the number of rows from table T1 passed to the inner loops. As a result,
the execution time for the query may improve immensely.

For a query with outer joins, the WHERE condition is to be checked only after it has been found that
the current row from the outer table has a match in the inner tables. Thus, the optimization of pushing
conditions out of the inner nested loops cannot be applied directly to queries with outer joins. Here we
must introduce conditional pushed-down predicates guarded by the flags that are turned on when a
match has been encountered.

Recall this example with outer joins:

P(T1,T2,T3)=C1(T1) AND C(T2) AND C3(T3)

For that example, the nested-loop algorithm using guarded pushed-down conditions looks like this:

FOR each row t1 in T1 such that C1(t1) {
 BOOL f1:=FALSE;
 FOR each row t2 in T2
 such that P1(t1,t2) AND (f1?C2(t2):TRUE) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3
 such that P2(t2,t3) AND (f1&&f2?C3(t3):TRUE) {
 IF (f1&&f2?TRUE:(C2(t2) AND C3(t3))) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f2=TRUE;
 f1=TRUE;
 }
 IF (!f2) {
 IF (f1?TRUE:C2(t2) && P(t1,t2,NULL)) {
 t:=t1||t2||NULL; OUTPUT t;
 }
 f1=TRUE;
 }
 }
 IF (!f1 && P(t1,NULL,NULL)) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
}

In general, pushed-down predicates can be extracted from join conditions such as P1(T1,T2) and
P(T2,T3). In this case, a pushed-down predicate is guarded also by a flag that prevents checking the
predicate for the NULL-complemented row generated by the corresponding outer join operation.

Access by key from one inner table to another in the same nested join is prohibited if it is induced by a
predicate from the WHERE condition.

10.2.1.9 Outer Join Optimization

Outer joins include LEFT JOIN and RIGHT JOIN.

MySQL implements an A LEFT JOIN B join_specification as follows:

• Table B is set to depend on table A and all tables on which A depends.

• Table A is set to depend on all tables (except B) that are used in the LEFT JOIN condition.

• The LEFT JOIN condition is used to decide how to retrieve rows from table B. (In other words, any
condition in the WHERE clause is not used.)

1848

Optimizing SELECT Statements

• All standard join optimizations are performed, with the exception that a table is always read after all
tables on which it depends. If there is a circular dependency, an error occurs.

• All standard WHERE optimizations are performed.

• If there is a row in A that matches the WHERE clause, but there is no row in B that matches the ON
condition, an extra B row is generated with all columns set to NULL.

• If you use LEFT JOIN to find rows that do not exist in some table and you have the following test:
col_name IS NULL in the WHERE part, where col_name is a column that is declared as NOT
NULL, MySQL stops searching for more rows (for a particular key combination) after it has found one
row that matches the LEFT JOIN condition.

The RIGHT JOIN implementation is analogous to that of LEFT JOIN with the table roles reversed.
Right joins are converted to equivalent left joins, as described in Section 10.2.1.10, “Outer Join
Simplification”.

For a LEFT JOIN, if the WHERE condition is always false for the generated NULL row, the LEFT JOIN
is changed to an inner join. For example, the WHERE clause would be false in the following query if
t2.column1 were NULL:

SELECT * FROM t1 LEFT JOIN t2 ON (column1) WHERE t2.column2=5;

Therefore, it is safe to convert the query to an inner join:

SELECT * FROM t1, t2 WHERE t2.column2=5 AND t1.column1=t2.column1;

In MySQL 8.0.14 and later, trivial WHERE conditions arising from constant literal expressions are
removed during preparation, rather than at a later stage in optimization, by which time joins have
already been simplified. Earlier removal of trivial conditions allows the optimizer to convert outer joins
to inner joins; this can result in improved plans for queries with outer joins containing trivial conditions
in the WHERE clause, such as this one:

SELECT * FROM t1 LEFT JOIN t2 ON condition_1 WHERE condition_2 OR 0 = 1

The optimizer now sees during preparation that 0 = 1 is always false, making OR 0 = 1 redundant,
and removes it, leaving this:

SELECT * FROM t1 LEFT JOIN t2 ON condition_1 where condition_2

Now the optimizer can rewrite the query as an inner join, like this:

SELECT * FROM t1 JOIN t2 WHERE condition_1 AND condition_2

Now the optimizer can use table t2 before table t1 if doing so would result in a better query plan.
To provide a hint about the table join order, use optimizer hints; see Section 10.9.3, “Optimizer
Hints”. Alternatively, use STRAIGHT_JOIN; see Section 15.2.13, “SELECT Statement”. However,
STRAIGHT_JOIN may prevent indexes from being used because it disables semijoin transformations;
see Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations”.

10.2.1.10 Outer Join Simplification

Table expressions in the FROM clause of a query are simplified in many cases.

At the parser stage, queries with right outer join operations are converted to equivalent queries
containing only left join operations. In the general case, the conversion is performed such that this right
join:

(T1, ...) RIGHT JOIN (T2, ...) ON P(T1, ..., T2, ...)

Becomes this equivalent left join:

1849

Optimizing SELECT Statements

(T2, ...) LEFT JOIN (T1, ...) ON P(T1, ..., T2, ...)

All inner join expressions of the form T1 INNER JOIN T2 ON P(T1,T2) are replaced by the list
T1,T2, P(T1,T2) being joined as a conjunct to the WHERE condition (or to the join condition of the
embedding join, if there is any).

When the optimizer evaluates plans for outer join operations, it takes into consideration only plans
where, for each such operation, the outer tables are accessed before the inner tables. The optimizer
choices are limited because only such plans enable outer joins to be executed using the nested-loop
algorithm.

Consider a query of this form, where R(T2) greatly narrows the number of matching rows from table
T2:

SELECT * T1 FROM T1
 LEFT JOIN T2 ON P1(T1,T2)
 WHERE P(T1,T2) AND R(T2)

If the query is executed as written, the optimizer has no choice but to access the less-restricted table
T1 before the more-restricted table T2, which may produce a very inefficient execution plan.

Instead, MySQL converts the query to a query with no outer join operation if the WHERE condition is
null-rejected. (That is, it converts the outer join to an inner join.) A condition is said to be null-rejected
for an outer join operation if it evaluates to FALSE or UNKNOWN for any NULL-complemented row
generated for the operation.

Thus, for this outer join:

T1 LEFT JOIN T2 ON T1.A=T2.A

Conditions such as these are null-rejected because they cannot be true for any NULL-complemented
row (with T2 columns set to NULL):

T2.B IS NOT NULL
T2.B > 3
T2.C <= T1.C
T2.B < 2 OR T2.C > 1

Conditions such as these are not null-rejected because they might be true for a NULL-complemented
row:

T2.B IS NULL
T1.B < 3 OR T2.B IS NOT NULL
T1.B < 3 OR T2.B > 3

The general rules for checking whether a condition is null-rejected for an outer join operation are
simple:

• It is of the form A IS NOT NULL, where A is an attribute of any of the inner tables

• It is a predicate containing a reference to an inner table that evaluates to UNKNOWN when one of its
arguments is NULL

• It is a conjunction containing a null-rejected condition as a conjunct

• It is a disjunction of null-rejected conditions

A condition can be null-rejected for one outer join operation in a query and not null-rejected for another.
In this query, the WHERE condition is null-rejected for the second outer join operation but is not null-
rejected for the first one:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T1.B

1850

Optimizing SELECT Statements

 WHERE T3.C > 0

If the WHERE condition is null-rejected for an outer join operation in a query, the outer join operation is
replaced by an inner join operation.

For example, in the preceding query, the second outer join is null-rejected and can be replaced by an
inner join:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T1.B
 WHERE T3.C > 0

For the original query, the optimizer evaluates only plans compatible with the single table-access order
T1,T2,T3. For the rewritten query, it additionally considers the access order T3,T1,T2.

A conversion of one outer join operation may trigger a conversion of another. Thus, the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

Is first converted to the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

Which is equivalent to the query:

SELECT * FROM (T1 LEFT JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

The remaining outer join operation can also be replaced by an inner join because the condition
T3.B=T2.B is null-rejected. This results in a query with no outer joins at all:

SELECT * FROM (T1 INNER JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

Sometimes the optimizer succeeds in replacing an embedded outer join operation, but cannot convert
the embedding outer join. The following query:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0

Is converted to:

SELECT * FROM T1 LEFT JOIN
 (T2 INNER JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0

That can be rewritten only to the form still containing the embedding outer join operation:

SELECT * FROM T1 LEFT JOIN
 (T2,T3)
 ON (T2.A=T1.A AND T3.B=T2.B)
 WHERE T3.C > 0

Any attempt to convert an embedded outer join operation in a query must take into account the join
condition for the embedding outer join together with the WHERE condition. In this query, the WHERE
condition is not null-rejected for the embedded outer join, but the join condition of the embedding outer
join T2.A=T1.A AND T3.C=T1.C is null-rejected:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)

1851

Optimizing SELECT Statements

 ON T2.A=T1.A AND T3.C=T1.C
 WHERE T3.D > 0 OR T1.D > 0

Consequently, the query can be converted to:

SELECT * FROM T1 LEFT JOIN
 (T2, T3)
 ON T2.A=T1.A AND T3.C=T1.C AND T3.B=T2.B
 WHERE T3.D > 0 OR T1.D > 0

10.2.1.11 Multi-Range Read Optimization

Reading rows using a range scan on a secondary index can result in many random disk accesses to
the base table when the table is large and not stored in the storage engine's cache. With the Disk-
Sweep Multi-Range Read (MRR) optimization, MySQL tries to reduce the number of random disk
access for range scans by first scanning the index only and collecting the keys for the relevant rows.
Then the keys are sorted and finally the rows are retrieved from the base table using the order of the
primary key. The motivation for Disk-sweep MRR is to reduce the number of random disk accesses
and instead achieve a more sequential scan of the base table data.

The Multi-Range Read optimization provides these benefits:

• MRR enables data rows to be accessed sequentially rather than in random order, based on
index tuples. The server obtains a set of index tuples that satisfy the query conditions, sorts them
according to data row ID order, and uses the sorted tuples to retrieve data rows in order. This makes
data access more efficient and less expensive.

• MRR enables batch processing of requests for key access for operations that require access to data
rows through index tuples, such as range index scans and equi-joins that use an index for the join
attribute. MRR iterates over a sequence of index ranges to obtain qualifying index tuples. As these
results accumulate, they are used to access the corresponding data rows. It is not necessary to
acquire all index tuples before starting to read data rows.

The MRR optimization is not supported with secondary indexes created on virtual generated columns.
InnoDB supports secondary indexes on virtual generated columns.

The following scenarios illustrate when MRR optimization can be advantageous:

Scenario A: MRR can be used for InnoDB and MyISAM tables for index range scans and equi-join
operations.

1. A portion of the index tuples are accumulated in a buffer.

2. The tuples in the buffer are sorted by their data row ID.

3. Data rows are accessed according to the sorted index tuple sequence.

Scenario B: MRR can be used for NDB tables for multiple-range index scans or when performing an
equi-join by an attribute.

1. A portion of ranges, possibly single-key ranges, is accumulated in a buffer on the central node
where the query is submitted.

2. The ranges are sent to the execution nodes that access data rows.

3. The accessed rows are packed into packages and sent back to the central node.

4. The received packages with data rows are placed in a buffer.

5. Data rows are read from the buffer.

When MRR is used, the Extra column in EXPLAIN output shows Using MRR.

1852

Optimizing SELECT Statements

InnoDB and MyISAM do not use MRR if full table rows need not be accessed to produce the query
result. This is the case if results can be produced entirely on the basis on information in the index
tuples (through a covering index); MRR provides no benefit.

Two optimizer_switch system variable flags provide an interface to the use of MRR optimization.
The mrr flag controls whether MRR is enabled. If mrr is enabled (on), the mrr_cost_based flag
controls whether the optimizer attempts to make a cost-based choice between using and not using
MRR (on) or uses MRR whenever possible (off). By default, mrr is on and mrr_cost_based is on.
See Section 10.9.2, “Switchable Optimizations”.

For MRR, a storage engine uses the value of the read_rnd_buffer_size system variable
as a guideline for how much memory it can allocate for its buffer. The engine uses up to
read_rnd_buffer_size bytes and determines the number of ranges to process in a single pass.

10.2.1.12 Block Nested-Loop and Batched Key Access Joins

In MySQL, a Batched Key Access (BKA) Join algorithm is available that uses both index access to
the joined table and a join buffer. The BKA algorithm supports inner join, outer join, and semijoin
operations, including nested outer joins. Benefits of BKA include improved join performance due to
more efficient table scanning. Also, the Block Nested-Loop (BNL) Join algorithm previously used only
for inner joins is extended and can be employed for outer join and semijoin operations, including nested
outer joins.

The following sections discuss the join buffer management that underlies the extension of the original
BNL algorithm, the extended BNL algorithm, and the BKA algorithm. For information about semijoin
strategies, see Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin
Transformations”

• Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms

• Block Nested-Loop Algorithm for Outer Joins and Semijoins

• Batched Key Access Joins

• Optimizer Hints for Block Nested-Loop and Batched Key Access Algorithms

Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms

MySQL can employ join buffers to execute not only inner joins without index access to the inner table,
but also outer joins and semijoins that appear after subquery flattening. Moreover, a join buffer can be
effectively used when there is an index access to the inner table.

The join buffer management code slightly more efficiently utilizes join buffer space when storing the
values of the interesting row columns: No additional bytes are allocated in buffers for a row column if its
value is NULL, and the minimum number of bytes is allocated for any value of the VARCHAR type.

The code supports two types of buffers, regular and incremental. Suppose that join buffer B1 is
employed to join tables t1 and t2 and the result of this operation is joined with table t3 using join
buffer B2:

• A regular join buffer contains columns from each join operand. If B2 is a regular join buffer, each
row r put into B2 is composed of the columns of a row r1 from B1 and the interesting columns of a
matching row r2 from table t3.

• An incremental join buffer contains only columns from rows of the table produced by the second join
operand. That is, it is incremental to a row from the first operand buffer. If B2 is an incremental join
buffer, it contains the interesting columns of the row r2 together with a link to the row r1 from B1.

Incremental join buffers are always incremental relative to a join buffer from an earlier join operation, so
the buffer from the first join operation is always a regular buffer. In the example just given, the buffer B1
used to join tables t1 and t2 must be a regular buffer.

1853

Optimizing SELECT Statements

Each row of the incremental buffer used for a join operation contains only the interesting columns of
a row from the table to be joined. These columns are augmented with a reference to the interesting
columns of the matched row from the table produced by the first join operand. Several rows in the
incremental buffer can refer to the same row r whose columns are stored in the previous join buffers
insofar as all these rows match row r.

Incremental buffers enable less frequent copying of columns from buffers used for previous join
operations. This provides a savings in buffer space because in the general case a row produced by
the first join operand can be matched by several rows produced by the second join operand. It is
unnecessary to make several copies of a row from the first operand. Incremental buffers also provide a
savings in processing time due to the reduction in copying time.

In MySQL 8.0, the block_nested_loop flag of the optimizer_switch system variable works as
follows:

• Prior to MySQL 8.0.20, it controls how the optimizer uses the Block Nested Loop join algorithm.

• In MySQL 8.0.18 and later, it also controls the use of hash joins (see Section 10.2.1.4, “Hash Join
Optimization”).

• Beginning with MySQL 8.0.20, the flag controls hash joins only, and the block nested loop algorithm
is no longer supported.

The batched_key_access flag controls how the optimizer uses the Batched Key Access join
algorithms.

By default, block_nested_loop is on and batched_key_access is off. See Section 10.9.2,
“Switchable Optimizations”. Optimizer hints may also be applied; see Optimizer Hints for Block Nested-
Loop and Batched Key Access Algorithms.

For information about semijoin strategies, see Section 10.2.2.1, “Optimizing IN and EXISTS Subquery
Predicates with Semijoin Transformations”

Block Nested-Loop Algorithm for Outer Joins and Semijoins

The original implementation of the MySQL BNL algorithm was extended to support outer join and
semijoin operations (and was later superseded by the hash join algorithm; see Section 10.2.1.4, “Hash
Join Optimization”).

When these operations are executed with a join buffer, each row put into the buffer is supplied with a
match flag.

If an outer join operation is executed using a join buffer, each row of the table produced by the second
operand is checked for a match against each row in the join buffer. When a match is found, a new
extended row is formed (the original row plus columns from the second operand) and sent for further
extensions by the remaining join operations. In addition, the match flag of the matched row in the buffer
is enabled. After all rows of the table to be joined have been examined, the join buffer is scanned. Each
row from the buffer that does not have its match flag enabled is extended by NULL complements (NULL
values for each column in the second operand) and sent for further extensions by the remaining join
operations.

In MySQL 8.0, the block_nested_loop flag of the optimizer_switch system variable works as
follows:

• Prior to MySQL 8.0.20, it controls how the optimizer uses the Block Nested Loop join algorithm.

• In MySQL 8.0.18 and later, it also controls the use of hash joins (see Section 10.2.1.4, “Hash Join
Optimization”).

• Beginning with MySQL 8.0.20, the flag controls hash joins only, and the block nested loop algorithm
is no longer supported.

1854

Optimizing SELECT Statements

See Section 10.9.2, “Switchable Optimizations”, for more information. Optimizer hints may also be
applied; see Optimizer Hints for Block Nested-Loop and Batched Key Access Algorithms.

In EXPLAIN output, use of BNL for a table is signified when the Extra value contains Using join
buffer (Block Nested Loop) and the type value is ALL, index, or range.

For information about semijoin strategies, see Section 10.2.2.1, “Optimizing IN and EXISTS Subquery
Predicates with Semijoin Transformations”

Batched Key Access Joins

MySQL implements a method of joining tables called the Batched Key Access (BKA) join algorithm.
BKA can be applied when there is an index access to the table produced by the second join operand.
Like the BNL join algorithm, the BKA join algorithm employs a join buffer to accumulate the interesting
columns of the rows produced by the first operand of the join operation. Then the BKA algorithm builds
keys to access the table to be joined for all rows in the buffer and submits these keys in a batch to the
database engine for index lookups. The keys are submitted to the engine through the Multi-Range
Read (MRR) interface (see Section 10.2.1.11, “Multi-Range Read Optimization”). After submission of
the keys, the MRR engine functions perform lookups in the index in an optimal way, fetching the rows
of the joined table found by these keys, and starts feeding the BKA join algorithm with matching rows.
Each matching row is coupled with a reference to a row in the join buffer.

When BKA is used, the value of join_buffer_size defines how large the batch of keys is in each
request to the storage engine. The larger the buffer, the more sequential access is made to the right
hand table of a join operation, which can significantly improve performance.

For BKA to be used, the batched_key_access flag of the optimizer_switch system variable
must be set to on. BKA uses MRR, so the mrr flag must also be on. Currently, the cost estimation for
MRR is too pessimistic. Hence, it is also necessary for mrr_cost_based to be off for BKA to be
used. The following setting enables BKA:

mysql> SET optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

There are two scenarios by which MRR functions execute:

• The first scenario is used for conventional disk-based storage engines such as InnoDB and MyISAM.
For these engines, usually the keys for all rows from the join buffer are submitted to the MRR
interface at once. Engine-specific MRR functions perform index lookups for the submitted keys, get
row IDs (or primary keys) from them, and then fetch rows for all these selected row IDs one by one
by request from BKA algorithm. Every row is returned with an association reference that enables
access to the matched row in the join buffer. The rows are fetched by the MRR functions in an
optimal way: They are fetched in the row ID (primary key) order. This improves performance because
reads are in disk order rather than random order.

• The second scenario is used for remote storage engines such as NDB. A package of keys for a
portion of rows from the join buffer, together with their associations, is sent by a MySQL Server
(SQL node) to MySQL Cluster data nodes. In return, the SQL node receives a package (or several
packages) of matching rows coupled with corresponding associations. The BKA join algorithm takes
these rows and builds new joined rows. Then a new set of keys is sent to the data nodes and the
rows from the returned packages are used to build new joined rows. The process continues until the
last keys from the join buffer are sent to the data nodes, and the SQL node has received and joined
all rows matching these keys. This improves performance because fewer key-bearing packages
sent by the SQL node to the data nodes means fewer round trips between it and the data nodes to
perform the join operation.

With the first scenario, a portion of the join buffer is reserved to store row IDs (primary keys) selected
by index lookups and passed as a parameter to the MRR functions.

There is no special buffer to store keys built for rows from the join buffer. Instead, a function that builds
the key for the next row in the buffer is passed as a parameter to the MRR functions.

1855

Optimizing SELECT Statements

In EXPLAIN output, use of BKA for a table is signified when the Extra value contains Using join
buffer (Batched Key Access) and the type value is ref or eq_ref.

Optimizer Hints for Block Nested-Loop and Batched Key Access Algorithms

In addition to using the optimizer_switch system variable to control optimizer use of the BNL and
BKA algorithms session-wide, MySQL supports optimizer hints to influence the optimizer on a per-
statement basis. See Section 10.9.3, “Optimizer Hints”.

To use a BNL or BKA hint to enable join buffering for any inner table of an outer join, join buffering
must be enabled for all inner tables of the outer join.

10.2.1.13 Condition Filtering

In join processing, prefix rows are those rows passed from one table in a join to the next. In general,
the optimizer attempts to put tables with low prefix counts early in the join order to keep the number of
row combinations from increasing rapidly. To the extent that the optimizer can use information about
conditions on rows selected from one table and passed to the next, the more accurately it can compute
row estimates and choose the best execution plan.

Without condition filtering, the prefix row count for a table is based on the estimated number of rows
selected by the WHERE clause according to whichever access method the optimizer chooses. Condition
filtering enables the optimizer to use other relevant conditions in the WHERE clause not taken into
account by the access method, and thus improve its prefix row count estimates. For example, even
though there might be an index-based access method that can be used to select rows from the current
table in a join, there might also be additional conditions for the table in the WHERE clause that can filter
(further restrict) the estimate for qualifying rows passed to the next table.

A condition contributes to the filtering estimate only if:

• It refers to the current table.

• It depends on a constant value or values from earlier tables in the join sequence.

• It was not already taken into account by the access method.

In EXPLAIN output, the rows column indicates the row estimate for the chosen access method,
and the filtered column reflects the effect of condition filtering. filtered values are expressed
as percentages. The maximum value is 100, which means no filtering of rows occurred. Values
decreasing from 100 indicate increasing amounts of filtering.

The prefix row count (the number of rows estimated to be passed from the current table in a join to the
next) is the product of the rows and filtered values. That is, the prefix row count is the estimated
row count, reduced by the estimated filtering effect. For example, if rows is 1000 and filtered is
20%, condition filtering reduces the estimated row count of 1000 to a prefix row count of 1000 × 20% =
1000 × .2 = 200.

Consider the following query:

SELECT *
 FROM employee JOIN department ON employee.dept_no = department.dept_no
 WHERE employee.first_name = 'John'
 AND employee.hire_date BETWEEN '2018-01-01' AND '2018-06-01';

Suppose that the data set has these characteristics:

• The employee table has 1024 rows.

• The department table has 12 rows.

• Both tables have an index on dept_no.

1856

Optimizing SELECT Statements

• The employee table has an index on first_name.

• 8 rows satisfy this condition on employee.first_name:

employee.first_name = 'John'

• 150 rows satisfy this condition on employee.hire_date:

employee.hire_date BETWEEN '2018-01-01' AND '2018-06-01'

• 1 row satisfies both conditions:

employee.first_name = 'John'
AND employee.hire_date BETWEEN '2018-01-01' AND '2018-06-01'

Without condition filtering, EXPLAIN produces output like this:

+----+------------+--------+------------------+---------+---------+------+----------+
| id | table | type | possible_keys | key | ref | rows | filtered |
+----+------------+--------+------------------+---------+---------+------+----------+
| 1 | employee | ref | name,h_date,dept | name | const | 8 | 100.00 |
| 1 | department | eq_ref | PRIMARY | PRIMARY | dept_no | 1 | 100.00 |
+----+------------+--------+------------------+---------+---------+------+----------+

For employee, the access method on the name index picks up the 8 rows that match a name of
'John'. No filtering is done (filtered is 100%), so all rows are prefix rows for the next table: The
prefix row count is rows × filtered = 8 × 100% = 8.

With condition filtering, the optimizer additionally takes into account conditions from the WHERE clause
not taken into account by the access method. In this case, the optimizer uses heuristics to estimate a
filtering effect of 16.31% for the BETWEEN condition on employee.hire_date. As a result, EXPLAIN
produces output like this:

+----+------------+--------+------------------+---------+---------+------+----------+
| id | table | type | possible_keys | key | ref | rows | filtered |
+----+------------+--------+------------------+---------+---------+------+----------+
| 1 | employee | ref | name,h_date,dept | name | const | 8 | 16.31 |
| 1 | department | eq_ref | PRIMARY | PRIMARY | dept_no | 1 | 100.00 |
+----+------------+--------+------------------+---------+---------+------+----------+

Now the prefix row count is rows × filtered = 8 × 16.31% = 1.3, which more closely reflects actual
data set.

Normally, the optimizer does not calculate the condition filtering effect (prefix row count reduction) for
the last joined table because there is no next table to pass rows to. An exception occurs for EXPLAIN:
To provide more information, the filtering effect is calculated for all joined tables, including the last one.

To control whether the optimizer considers additional filtering conditions, use the
condition_fanout_filter flag of the optimizer_switch system variable (see Section 10.9.2,
“Switchable Optimizations”). This flag is enabled by default but can be disabled to suppress condition
filtering (for example, if a particular query is found to yield better performance without it).

If the optimizer overestimates the effect of condition filtering, performance may be worse than if
condition filtering is not used. In such cases, these techniques may help:

• If a column is not indexed, index it so that the optimizer has some information about the distribution
of column values and can improve its row estimates.

• Similarly, if no column histogram information is available, generate a histogram (see Section 10.9.6,
“Optimizer Statistics”).

• Change the join order. Ways to accomplish this include join-order optimizer hints (see
Section 10.9.3, “Optimizer Hints”), STRAIGHT_JOIN immediately following the SELECT, and the
STRAIGHT_JOIN join operator.

1857

Optimizing SELECT Statements

• Disable condition filtering for the session:

SET optimizer_switch = 'condition_fanout_filter=off';

Or, for a given query, using an optimizer hint:

SELECT /*+ SET_VAR(optimizer_switch = 'condition_fanout_filter=off') */ ...

10.2.1.14 Constant-Folding Optimization

Comparisons between constants and column values in which the constant value is out of range or of
the wrong type with respect to the column type are now handled once during query optimization rather
row-by-row than during execution. The comparisons that can be treated in this manner are >, >=, <,
<=, <>/!=, =, and <=>.

Consider the table created by the following statement:

CREATE TABLE t (c TINYINT UNSIGNED NOT NULL);

The WHERE condition in the query SELECT * FROM t WHERE c < 256 contains the integral
constant 256 which is out of range for a TINYINT UNSIGNED column. Previously, this was handled
by treating both operands as the larger type, but now, since any allowed value for c is less than the
constant, the WHERE expression can instead be folded as WHERE 1, so that the query is rewritten as
SELECT * FROM t WHERE 1.

This makes it possible for the optimizer to remove the WHERE expression altogether. If the column c
were nullable (that is, defined only as TINYINT UNSIGNED) the query would be rewritten like this:

SELECT * FROM t WHERE ti IS NOT NULL

Folding is performed for constants compared to supported MySQL column types as follows:

• Integer column type. Integer types are compared with constants of the following types as
described here:

• Integer value. If the constant is out of range for the column type, the comparison is folded to 1
or IS NOT NULL, as already shown.

If the constant is a range boundary, the comparison is folded to =. For example (using the same
table as already defined):

mysql> EXPLAIN SELECT * FROM t WHERE c >= 255;
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 5
 filtered: 20.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select `test`.`t`.`ti` AS `ti` from `test`.`t` where (`test`.`t`.`ti` = 255)
1 row in set (0.00 sec)

• Floating- or fixed-point value. If the constant is one of the decimal types (such as DECIMAL,
REAL, DOUBLE, or FLOAT) and has a nonzero decimal portion, it cannot be equal; fold accordingly.

1858

Optimizing SELECT Statements

For other comparisons, round up or down to an integer value according to the sign, then perform a
range check and handle as already described for integer-integer comparisons.

A REAL value that is too small to be represented as DECIMAL is rounded to .01 or -.01 depending
on the sign, then handled as a DECIMAL.

• String types. Try to interpret the string value as an integer type, then handle the comparison as
between integer values. If this fails, attempt to handle the value as a REAL.

• DECIMAL or REAL column. Decimal types are compared with constants of the following types
as described here:

• Integer value. Perform a range check against the column value's integer part. If no folding
results, convert the constant to DECIMAL with the same number of decimal places as the column
value, then check it as a DECIMAL (see next).

• DECIMAL or REAL value. Check for overflow (that is, whether the constant has more digits in
its integer part than allowed for the column's decimal type). If so, fold.

If the constant has more significant fractional digits than column's type, truncate the constant. If
the comparison operator is = or <>, fold. If the operator is >= or <=, adjust the operator due to
truncation. For example, if column's type is DECIMAL(3,1), SELECT * FROM t WHERE f >=
10.13 becomes SELECT * FROM t WHERE f > 10.1.

If the constant has fewer decimal digits than the column's type, convert it to a constant with same
number of digits. For underflow of a REAL value (that is, too few fractional digits to represent it),
convert the constant to decimal 0.

• String value. If the value can be interpreted as an integer type, handle it as such. Otherwise,
try to handle it as REAL.

• FLOAT or DOUBLE column. FLOAT(m,n) or DOUBLE(m,n) values compared with constants
are handled as follows:

If the value overflows the range of the column, fold.

If the value has more than n decimals, truncate, compensating during folding. For = and <>
comparisons, fold to TRUE, FALSE, or IS [NOT] NULL as described previously; for other operators,
adjust the operator.

If the value has more than m integer digits, fold.

Limitations. This optimization cannot be used in the following cases:

1. With comparisons using BETWEEN or IN.

2. With BIT columns or columns using date or time types.

3. During the preparation phase for a prepared statement, although it can be applied during the
optimization phase when the prepared statement is actually executed. This due to the fact that,
during statement preparation, the value of the constant is not yet known.

10.2.1.15 IS NULL Optimization

MySQL can perform the same optimization on col_name IS NULL that it can use for col_name =
constant_value. For example, MySQL can use indexes and ranges to search for NULL with IS
NULL.

Examples:

SELECT * FROM tbl_name WHERE key_col IS NULL;

1859

Optimizing SELECT Statements

SELECT * FROM tbl_name WHERE key_col <=> NULL;

SELECT * FROM tbl_name
 WHERE key_col=const1 OR key_col=const2 OR key_col IS NULL;

If a WHERE clause includes a col_name IS NULL condition for a column that is declared as NOT
NULL, that expression is optimized away. This optimization does not occur in cases when the column
might produce NULL anyway (for example, if it comes from a table on the right side of a LEFT JOIN).

MySQL can also optimize the combination col_name = expr OR col_name IS NULL, a form that
is common in resolved subqueries. EXPLAIN shows ref_or_null when this optimization is used.

This optimization can handle one IS NULL for any key part.

Some examples of queries that are optimized, assuming that there is an index on columns a and b of
table t2:

SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;

SELECT * FROM t1, t2 WHERE t1.a=t2.a OR t2.a IS NULL;

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;

SELECT * FROM t1, t2
 WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL AND ...)
 OR (t1.a=t2.a AND t2.a IS NULL AND ...);

ref_or_null works by first doing a read on the reference key, and then a separate search for rows
with a NULL key value.

The optimization can handle only one IS NULL level. In the following query, MySQL uses key lookups
only on the expression (t1.a=t2.a AND t2.a IS NULL) and is not able to use the key part on b:

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL)
 OR (t1.b=t2.b AND t2.b IS NULL);

10.2.1.16 ORDER BY Optimization

This section describes when MySQL can use an index to satisfy an ORDER BY clause, the filesort
operation used when an index cannot be used, and execution plan information available from the
optimizer about ORDER BY.

An ORDER BY with and without LIMIT may return rows in different orders, as discussed in
Section 10.2.1.19, “LIMIT Query Optimization”.

• Use of Indexes to Satisfy ORDER BY

• Use of filesort to Satisfy ORDER BY

• Influencing ORDER BY Optimization

• ORDER BY Execution Plan Information Available

Use of Indexes to Satisfy ORDER BY

In some cases, MySQL may use an index to satisfy an ORDER BY clause and avoid the extra sorting
involved in performing a filesort operation.

The index may also be used even if the ORDER BY does not match the index exactly, as long as all
unused portions of the index and all extra ORDER BY columns are constants in the WHERE clause. If

1860

Optimizing SELECT Statements

the index does not contain all columns accessed by the query, the index is used only if index access is
cheaper than other access methods.

Assuming that there is an index on (key_part1, key_part2), the following queries may use the
index to resolve the ORDER BY part. Whether the optimizer actually does so depends on whether
reading the index is more efficient than a table scan if columns not in the index must also be read.

• In this query, the index on (key_part1, key_part2) enables the optimizer to avoid sorting:

SELECT * FROM t1
 ORDER BY key_part1, key_part2;

However, the query uses SELECT *, which may select more columns than key_part1 and
key_part2. In that case, scanning an entire index and looking up table rows to find columns not in
the index may be more expensive than scanning the table and sorting the results. If so, the optimizer
probably does not use the index. If SELECT * selects only the index columns, the index is used and
sorting avoided.

If t1 is an InnoDB table, the table primary key is implicitly part of the index, and the index can be
used to resolve the ORDER BY for this query:

SELECT pk, key_part1, key_part2 FROM t1
 ORDER BY key_part1, key_part2;

• In this query, key_part1 is constant, so all rows accessed through the index are in key_part2
order, and an index on (key_part1, key_part2) avoids sorting if the WHERE clause is selective
enough to make an index range scan cheaper than a table scan:

SELECT * FROM t1
 WHERE key_part1 = constant
 ORDER BY key_part2;

• In the next two queries, whether the index is used is similar to the same queries without DESC shown
previously:

SELECT * FROM t1
 ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
 WHERE key_part1 = constant
 ORDER BY key_part2 DESC;

• Two columns in an ORDER BY can sort in the same direction (both ASC, or both DESC) or in opposite
directions (one ASC, one DESC). A condition for index use is that the index must have the same
homogeneity, but need not have the same actual direction.

If a query mixes ASC and DESC, the optimizer can use an index on the columns if the index also uses
corresponding mixed ascending and descending columns:

SELECT * FROM t1
 ORDER BY key_part1 DESC, key_part2 ASC;

The optimizer can use an index on (key_part1, key_part2) if key_part1 is descending and
key_part2 is ascending. It can also use an index on those columns (with a backward scan) if
key_part1 is ascending and key_part2 is descending. See Section 10.3.13, “Descending
Indexes”.

• In the next two queries, key_part1 is compared to a constant. The index is used if the WHERE
clause is selective enough to make an index range scan cheaper than a table scan:

SELECT * FROM t1
 WHERE key_part1 > constant
 ORDER BY key_part1 ASC;

SELECT * FROM t1

1861

Optimizing SELECT Statements

 WHERE key_part1 < constant
 ORDER BY key_part1 DESC;

• In the next query, the ORDER BY does not name key_part1, but all rows selected have a constant
key_part1 value, so the index can still be used:

SELECT * FROM t1
 WHERE key_part1 = constant1 AND key_part2 > constant2
 ORDER BY key_part2;

In some cases, MySQL cannot use indexes to resolve the ORDER BY, although it may still use indexes
to find the rows that match the WHERE clause. Examples:

• The query uses ORDER BY on different indexes:

SELECT * FROM t1 ORDER BY key1, key2;

• The query uses ORDER BY on nonconsecutive parts of an index:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1_part1, key1_part3;

• The index used to fetch the rows differs from the one used in the ORDER BY:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1;

• The query uses ORDER BY with an expression that includes terms other than the index column
name:

SELECT * FROM t1 ORDER BY ABS(key);
SELECT * FROM t1 ORDER BY -key;

• The query joins many tables, and the columns in the ORDER BY are not all from the first nonconstant
table that is used to retrieve rows. (This is the first table in the EXPLAIN output that does not have a
const join type.)

• The query has different ORDER BY and GROUP BY expressions.

• There is an index on only a prefix of a column named in the ORDER BY clause. In this case, the index
cannot be used to fully resolve the sort order. For example, if only the first 10 bytes of a CHAR(20)
column are indexed, the index cannot distinguish values past the 10th byte and a filesort is
needed.

• The index does not store rows in order. For example, this is true for a HASH index in a MEMORY table.

Availability of an index for sorting may be affected by the use of column aliases. Suppose that the
column t1.a is indexed. In this statement, the name of the column in the select list is a. It refers to
t1.a, as does the reference to a in the ORDER BY, so the index on t1.a can be used:

SELECT a FROM t1 ORDER BY a;

In this statement, the name of the column in the select list is also a, but it is the alias name. It refers to
ABS(a), as does the reference to a in the ORDER BY, so the index on t1.a cannot be used:

SELECT ABS(a) AS a FROM t1 ORDER BY a;

In the following statement, the ORDER BY refers to a name that is not the name of a column in the
select list. But there is a column in t1 named a, so the ORDER BY refers to t1.a and the index on
t1.a can be used. (The resulting sort order may be completely different from the order for ABS(a), of
course.)

SELECT ABS(a) AS b FROM t1 ORDER BY a;

Previously (MySQL 5.7 and lower), GROUP BY sorted implicitly under certain conditions. In MySQL
8.0, that no longer occurs, so specifying ORDER BY NULL at the end to suppress implicit sorting (as
was done previously) is no longer necessary. However, query results may differ from previous MySQL
versions. To produce a given sort order, provide an ORDER BY clause.

1862

Optimizing SELECT Statements

Use of filesort to Satisfy ORDER BY

If an index cannot be used to satisfy an ORDER BY clause, MySQL performs a filesort operation
that reads table rows and sorts them. A filesort constitutes an extra sorting phase in query
execution.

To obtain memory for filesort operations, as of MySQL 8.0.12, the optimizer allocates memory
buffers incrementally as needed, up to the size indicated by the sort_buffer_size system variable,
rather than allocating a fixed amount of sort_buffer_size bytes up front, as was done prior to
MySQL 8.0.12. This enables users to set sort_buffer_size to larger values to speed up larger
sorts, without concern for excessive memory use for small sorts. (This benefit may not occur for
multiple concurrent sorts on Windows, which has a weak multithreaded malloc.)

A filesort operation uses temporary disk files as necessary if the result set is too large to fit in
memory. Some types of queries are particularly suited to completely in-memory filesort operations.
For example, the optimizer can use filesort to efficiently handle in memory, without temporary files,
the ORDER BY operation for queries (and subqueries) of the following form:

SELECT ... FROM single_table ... ORDER BY non_index_column [DESC] LIMIT [M,]N;

Such queries are common in web applications that display only a few rows from a larger result set.
Examples:

SELECT col1, ... FROM t1 ... ORDER BY name LIMIT 10;
SELECT col1, ... FROM t1 ... ORDER BY RAND() LIMIT 15;

Influencing ORDER BY Optimization

For slow ORDER BY queries for which filesort is not used, try lowering the
max_length_for_sort_data system variable to a value that is appropriate to trigger a
filesort. (A symptom of setting the value of this variable too high is a combination of high disk
activity and low CPU activity.) This technique applies only before MySQL 8.0.20. As of 8.0.20,
max_length_for_sort_data is deprecated due to optimizer changes that make it obsolete and of
no effect.

To increase ORDER BY speed, check whether you can get MySQL to use indexes rather than an extra
sorting phase. If this is not possible, try the following strategies:

• Increase the sort_buffer_size variable value. Ideally, the value should be large enough for the
entire result set to fit in the sort buffer (to avoid writes to disk and merge passes).

Take into account that the size of column values stored in the sort buffer is affected by the
max_sort_length system variable value. For example, if tuples store values of long string columns
and you increase the value of max_sort_length, the size of sort buffer tuples increases as well
and may require you to increase sort_buffer_size.

To monitor the number of merge passes (to merge temporary files), check the
Sort_merge_passes status variable.

• Increase the read_rnd_buffer_size variable value so that more rows are read at a time.

• Change the tmpdir system variable to point to a dedicated file system with large amounts of free
space. The variable value can list several paths that are used in round-robin fashion; you can use
this feature to spread the load across several directories. Separate the paths by colon characters
(:) on Unix and semicolon characters (;) on Windows. The paths should name directories in file
systems located on different physical disks, not different partitions on the same disk.

ORDER BY Execution Plan Information Available

With EXPLAIN (see Section 10.8.1, “Optimizing Queries with EXPLAIN”), you can check whether
MySQL can use indexes to resolve an ORDER BY clause:

1863

Optimizing SELECT Statements

• If the Extra column of EXPLAIN output does not contain Using filesort, the index is used and
a filesort is not performed.

• If the Extra column of EXPLAIN output contains Using filesort, the index is not used and a
filesort is performed.

In addition, if a filesort is performed, optimizer trace output includes a filesort_summary block.
For example:

"filesort_summary": {
 "rows": 100,
 "examined_rows": 100,
 "number_of_tmp_files": 0,
 "peak_memory_used": 25192,
 "sort_mode": "<sort_key, packed_additional_fields>"
}

peak_memory_used indicates the maximum memory used at any one time during the sort. This is
a value up to but not necessarily as large as the value of the sort_buffer_size system variable.
Prior to MySQL 8.0.12, the output shows sort_buffer_size instead, indicating the value of
sort_buffer_size. (Prior to MySQL 8.0.12, the optimizer always allocates sort_buffer_size
bytes for the sort buffer. As of 8.0.12, the optimizer allocates sort-buffer memory incrementally,
beginning with a small amount and adding more as necessary, up to sort_buffer_size bytes.)

The sort_mode value provides information about the contents of tuples in the sort buffer:

• <sort_key, rowid>: This indicates that sort buffer tuples are pairs that contain the sort key value
and row ID of the original table row. Tuples are sorted by sort key value and the row ID is used to
read the row from the table.

• <sort_key, additional_fields>: This indicates that sort buffer tuples contain the sort key
value and columns referenced by the query. Tuples are sorted by sort key value and column values
are read directly from the tuple.

• <sort_key, packed_additional_fields>: Like the previous variant, but the additional
columns are packed tightly together instead of using a fixed-length encoding.

EXPLAIN does not distinguish whether the optimizer does or does not perform a filesort
in memory. Use of an in-memory filesort can be seen in optimizer trace output. Look for
filesort_priority_queue_optimization. For information about the optimizer trace, see
Section 10.15, “Tracing the Optimizer”.

10.2.1.17 GROUP BY Optimization

The most general way to satisfy a GROUP BY clause is to scan the whole table and create a new
temporary table where all rows from each group are consecutive, and then use this temporary table
to discover groups and apply aggregate functions (if any). In some cases, MySQL is able to do much
better than that and avoid creation of temporary tables by using index access.

The most important preconditions for using indexes for GROUP BY are that all GROUP BY columns
reference attributes from the same index, and that the index stores its keys in order (as is true, for
example, for a BTREE index, but not for a HASH index). Whether use of temporary tables can be
replaced by index access also depends on which parts of an index are used in a query, the conditions
specified for these parts, and the selected aggregate functions.

There are two ways to execute a GROUP BY query through index access, as detailed in the following
sections. The first method applies the grouping operation together with all range predicates (if any).
The second method first performs a range scan, and then groups the resulting tuples.

• Loose Index Scan

• Tight Index Scan

1864

Optimizing SELECT Statements

Loose Index Scan can also be used in the absence of GROUP BY under some conditions. See Skip
Scan Range Access Method.

Loose Index Scan

The most efficient way to process GROUP BY is when an index is used to directly retrieve the grouping
columns. With this access method, MySQL uses the property of some index types that the keys are
ordered (for example, BTREE). This property enables use of lookup groups in an index without having
to consider all keys in the index that satisfy all WHERE conditions. This access method considers only a
fraction of the keys in an index, so it is called a Loose Index Scan. When there is no WHERE clause, a
Loose Index Scan reads as many keys as the number of groups, which may be a much smaller number
than that of all keys. If the WHERE clause contains range predicates (see the discussion of the range
join type in Section 10.8.1, “Optimizing Queries with EXPLAIN”), a Loose Index Scan looks up the first
key of each group that satisfies the range conditions, and again reads the smallest possible number of
keys. This is possible under the following conditions:

• The query is over a single table.

• The GROUP BY names only columns that form a leftmost prefix of the index and no other columns.
(If, instead of GROUP BY, the query has a DISTINCT clause, all distinct attributes refer to columns
that form a leftmost prefix of the index.) For example, if a table t1 has an index on (c1,c2,c3),
Loose Index Scan is applicable if the query has GROUP BY c1, c2. It is not applicable if the query
has GROUP BY c2, c3 (the columns are not a leftmost prefix) or GROUP BY c1, c2, c4 (c4 is
not in the index).

• The only aggregate functions used in the select list (if any) are MIN() and MAX(), and all of them
refer to the same column. The column must be in the index and must immediately follow the columns
in the GROUP BY.

• Any other parts of the index than those from the GROUP BY referenced in the query must be
constants (that is, they must be referenced in equalities with constants), except for the argument of
MIN() or MAX() functions.

• For columns in the index, full column values must be indexed, not just a prefix. For example, with c1
VARCHAR(20), INDEX (c1(10)), the index uses only a prefix of c1 values and cannot be used
for Loose Index Scan.

If Loose Index Scan is applicable to a query, the EXPLAIN output shows Using index for group-
by in the Extra column.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The Loose Index Scan
access method can be used for the following queries:

SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2;

The following queries cannot be executed with this quick select method, for the reasons given:

• There are aggregate functions other than MIN() or MAX():

SELECT c1, SUM(c2) FROM t1 GROUP BY c1;

• The columns in the GROUP BY clause do not form a leftmost prefix of the index:

SELECT c1, c2 FROM t1 GROUP BY c2, c3;

• The query refers to a part of a key that comes after the GROUP BY part, and for which there is no
equality with a constant:

1865

Optimizing SELECT Statements

SELECT c1, c3 FROM t1 GROUP BY c1, c2;

Were the query to include WHERE c3 = const, Loose Index Scan could be used.

The Loose Index Scan access method can be applied to other forms of aggregate function references
in the select list, in addition to the MIN() and MAX() references already supported:

• AVG(DISTINCT), SUM(DISTINCT), and COUNT(DISTINCT) are supported. AVG(DISTINCT)
and SUM(DISTINCT) take a single argument. COUNT(DISTINCT) can have more than one column
argument.

• There must be no GROUP BY or DISTINCT clause in the query.

• The Loose Index Scan limitations described previously still apply.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The Loose Index Scan
access method can be used for the following queries:

SELECT COUNT(DISTINCT c1), SUM(DISTINCT c1) FROM t1;

SELECT COUNT(DISTINCT c1, c2), COUNT(DISTINCT c2, c1) FROM t1;

Tight Index Scan

A Tight Index Scan may be either a full index scan or a range index scan, depending on the query
conditions.

When the conditions for a Loose Index Scan are not met, it still may be possible to avoid creation of
temporary tables for GROUP BY queries. If there are range conditions in the WHERE clause, this method
reads only the keys that satisfy these conditions. Otherwise, it performs an index scan. Because this
method reads all keys in each range defined by the WHERE clause, or scans the whole index if there are
no range conditions, it is called a Tight Index Scan. With a Tight Index Scan, the grouping operation is
performed only after all keys that satisfy the range conditions have been found.

For this method to work, it is sufficient that there be a constant equality condition for all columns in
a query referring to parts of the key coming before or in between parts of the GROUP BY key. The
constants from the equality conditions fill in any “gaps” in the search keys so that it is possible to form
complete prefixes of the index. These index prefixes then can be used for index lookups. If the GROUP
BY result requires sorting, and it is possible to form search keys that are prefixes of the index, MySQL
also avoids extra sorting operations because searching with prefixes in an ordered index already
retrieves all the keys in order.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The following queries
do not work with the Loose Index Scan access method described previously, but still work with the
Tight Index Scan access method.

• There is a gap in the GROUP BY, but it is covered by the condition c2 = 'a':

SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;

• The GROUP BY does not begin with the first part of the key, but there is a condition that provides a
constant for that part:

SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;

10.2.1.18 DISTINCT Optimization

DISTINCT combined with ORDER BY needs a temporary table in many cases.

Because DISTINCT may use GROUP BY, learn how MySQL works with columns in ORDER BY or
HAVING clauses that are not part of the selected columns. See Section 14.19.3, “MySQL Handling of
GROUP BY”.

1866

Optimizing SELECT Statements

In most cases, a DISTINCT clause can be considered as a special case of GROUP BY. For example,
the following two queries are equivalent:

SELECT DISTINCT c1, c2, c3 FROM t1
WHERE c1 > const;

SELECT c1, c2, c3 FROM t1
WHERE c1 > const GROUP BY c1, c2, c3;

Due to this equivalence, the optimizations applicable to GROUP BY queries can be also applied to
queries with a DISTINCT clause. Thus, for more details on the optimization possibilities for DISTINCT
queries, see Section 10.2.1.17, “GROUP BY Optimization”.

When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

If you do not use columns from all tables named in a query, MySQL stops scanning any unused tables
as soon as it finds the first match. In the following case, assuming that t1 is used before t2 (which you
can check with EXPLAIN), MySQL stops reading from t2 (for any particular row in t1) when it finds the
first row in t2:

SELECT DISTINCT t1.a FROM t1, t2 where t1.a=t2.a;

10.2.1.19 LIMIT Query Optimization

If you need only a specified number of rows from a result set, use a LIMIT clause in the query, rather
than fetching the whole result set and throwing away the extra data.

MySQL sometimes optimizes a query that has a LIMIT row_count clause and no HAVING clause:

• If you select only a few rows with LIMIT, MySQL uses indexes in some cases when normally it
would prefer to do a full table scan.

• If you combine LIMIT row_count with ORDER BY, MySQL stops sorting as soon as it has found
the first row_count rows of the sorted result, rather than sorting the entire result. If ordering is done
by using an index, this is very fast. If a filesort must be done, all rows that match the query without
the LIMIT clause are selected, and most or all of them are sorted, before the first row_count are
found. After the initial rows have been found, MySQL does not sort any remainder of the result set.

One manifestation of this behavior is that an ORDER BY query with and without LIMIT may return
rows in different order, as described later in this section.

• If you combine LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

• In some cases, a GROUP BY can be resolved by reading the index in order (or doing a sort on the
index), then calculating summaries until the index value changes. In this case, LIMIT row_count
does not calculate any unnecessary GROUP BY values.

• As soon as MySQL has sent the required number of rows to the client, it aborts the query unless you
are using SQL_CALC_FOUND_ROWS. In that case, the number of rows can be retrieved with SELECT
FOUND_ROWS(). See Section 14.15, “Information Functions”.

• LIMIT 0 quickly returns an empty set. This can be useful for checking the validity of a query. It can
also be employed to obtain the types of the result columns within applications that use a MySQL
API that makes result set metadata available. With the mysql client program, you can use the --
column-type-info option to display result column types.

• If the server uses temporary tables to resolve a query, it uses the LIMIT row_count clause to
calculate how much space is required.

• If an index is not used for ORDER BY but a LIMIT clause is also present, the optimizer may be able
to avoid using a merge file and sort the rows in memory using an in-memory filesort operation.

1867

Optimizing SELECT Statements

If multiple rows have identical values in the ORDER BY columns, the server is free to return those rows
in any order, and may do so differently depending on the overall execution plan. In other words, the
sort order of those rows is nondeterministic with respect to the nonordered columns.

One factor that affects the execution plan is LIMIT, so an ORDER BY query with and without LIMIT
may return rows in different orders. Consider this query, which is sorted by the category column but
nondeterministic with respect to the id and rating columns:

mysql> SELECT * FROM ratings ORDER BY category;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
3	2	3.7
4	2	3.5
6	2	3.5
2	3	5.0
7	3	2.7
+----+----------+--------+

Including LIMIT may affect order of rows within each category value. For example, this is a valid
query result:

mysql> SELECT * FROM ratings ORDER BY category LIMIT 5;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
4	2	3.5
3	2	3.7
6	2	3.5
+----+----------+--------+

In each case, the rows are sorted by the ORDER BY column, which is all that is required by the SQL
standard.

If it is important to ensure the same row order with and without LIMIT, include additional columns in
the ORDER BY clause to make the order deterministic. For example, if id values are unique, you can
make rows for a given category value appear in id order by sorting like this:

mysql> SELECT * FROM ratings ORDER BY category, id;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
3	2	3.7
4	2	3.5
6	2	3.5
2	3	5.0
7	3	2.7
+----+----------+--------+

mysql> SELECT * FROM ratings ORDER BY category, id LIMIT 5;
+----+----------+--------+
| id | category | rating |
+----+----------+--------+
1	1	4.5
5	1	3.2
3	2	3.7
4	2	3.5
6	2	3.5
+----+----------+--------+

For a query with an ORDER BY or GROUP BY and a LIMIT clause, the optimizer tries to choose an
ordered index by default when it appears doing so would speed up query execution. Prior to MySQL
8.0.21, there was no way to override this behavior, even in cases where using some other optimization

1868

Optimizing SELECT Statements

might be faster. Beginning with MySQL 8.0.21, it is possible to turn off this optimization by setting the
optimizer_switch system variable's prefer_ordering_index flag to off.

Example: First we create and populate a table t as shown here:

Create and populate a table t:

mysql> CREATE TABLE t (
 -> id1 BIGINT NOT NULL,
 -> id2 BIGINT NOT NULL,
 -> c1 VARCHAR(50) NOT NULL,
 -> c2 VARCHAR(50) NOT NULL,
 -> PRIMARY KEY (id1),
 -> INDEX i (id2, c1)
 ->);

[Insert some rows into table t - not shown]

Verify that the prefer_ordering_index flag is enabled:

mysql> SELECT @@optimizer_switch LIKE '%prefer_ordering_index=on%';
+--+
| @@optimizer_switch LIKE '%prefer_ordering_index=on%' |
+--+
| 1 |
+--+

Since the following query has a LIMIT clause, we expect it to use an ordered index, if possible. In this
case, as we can see from the EXPLAIN output, it uses the table's primary key.

mysql> EXPLAIN SELECT c2 FROM t
 -> WHERE id2 > 3
 -> ORDER BY id1 ASC LIMIT 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t
 partitions: NULL
 type: index
possible_keys: i
 key: PRIMARY
 key_len: 8
 ref: NULL
 rows: 2
 filtered: 70.00
 Extra: Using where

Now we disable the prefer_ordering_index flag, and re-run the same query; this time it uses the
index i (which includes the id2 column used in the WHERE clause), and a filesort:

mysql> SET optimizer_switch = "prefer_ordering_index=off";

mysql> EXPLAIN SELECT c2 FROM t
 -> WHERE id2 > 3
 -> ORDER BY id1 ASC LIMIT 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t
 partitions: NULL
 type: range
possible_keys: i
 key: i
 key_len: 8
 ref: NULL
 rows: 14
 filtered: 100.00
 Extra: Using index condition; Using filesort

See also Section 10.9.2, “Switchable Optimizations”.

1869

Optimizing SELECT Statements

10.2.1.20 Function Call Optimization

MySQL functions are tagged internally as deterministic or nondeterministic. A function is
nondeterministic if, given fixed values for its arguments, it can return different results for different
invocations. Examples of nondeterministic functions: RAND(), UUID().

If a function is tagged nondeterministic, a reference to it in a WHERE clause is evaluated for every row
(when selecting from one table) or combination of rows (when selecting from a multiple-table join).

MySQL also determines when to evaluate functions based on types of arguments, whether the
arguments are table columns or constant values. A deterministic function that takes a table column as
argument must be evaluated whenever that column changes value.

Nondeterministic functions may affect query performance. For example, some optimizations may not
be available, or more locking might be required. The following discussion uses RAND() but applies to
other nondeterministic functions as well.

Suppose that a table t has this definition:

CREATE TABLE t (id INT NOT NULL PRIMARY KEY, col_a VARCHAR(100));

Consider these two queries:

SELECT * FROM t WHERE id = POW(1,2);
SELECT * FROM t WHERE id = FLOOR(1 + RAND() * 49);

Both queries appear to use a primary key lookup because of the equality comparison against the
primary key, but that is true only for the first of them:

• The first query always produces a maximum of one row because POW() with constant arguments is
a constant value and is used for index lookup.

• The second query contains an expression that uses the nondeterministic function RAND(), which
is not constant in the query but in fact has a new value for every row of table t. Consequently,
the query reads every row of the table, evaluates the predicate for each row, and outputs all rows
for which the primary key matches the random value. This might be zero, one, or multiple rows,
depending on the id column values and the values in the RAND() sequence.

The effects of nondeterminism are not limited to SELECT statements. This UPDATE statement uses a
nondeterministic function to select rows to be modified:

UPDATE t SET col_a = some_expr WHERE id = FLOOR(1 + RAND() * 49);

Presumably the intent is to update at most a single row for which the primary key matches the
expression. However, it might update zero, one, or multiple rows, depending on the id column values
and the values in the RAND() sequence.

The behavior just described has implications for performance and replication:

• Because a nondeterministic function does not produce a constant value, the optimizer cannot use
strategies that might otherwise be applicable, such as index lookups. The result may be a table scan.

• InnoDB might escalate to a range-key lock rather than taking a single row lock for one matching row.

• Updates that do not execute deterministically are unsafe for replication.

The difficulties stem from the fact that the RAND() function is evaluated once for every row of the table.
To avoid multiple function evaluations, use one of these techniques:

• Move the expression containing the nondeterministic function to a separate statement, saving the
value in a variable. In the original statement, replace the expression with a reference to the variable,
which the optimizer can treat as a constant value:

1870

Optimizing SELECT Statements

SET @keyval = FLOOR(1 + RAND() * 49);
UPDATE t SET col_a = some_expr WHERE id = @keyval;

• Assign the random value to a variable in a derived table. This technique causes the variable to be
assigned a value, once, prior to its use in the comparison in the WHERE clause:

UPDATE /*+ NO_MERGE(dt) */ t, (SELECT FLOOR(1 + RAND() * 49) AS r) AS dt
SET col_a = some_expr WHERE id = dt.r;

As mentioned previously, a nondeterministic expression in the WHERE clause might prevent
optimizations and result in a table scan. However, it may be possible to partially optimize the WHERE
clause if other expressions are deterministic. For example:

SELECT * FROM t WHERE partial_key=5 AND some_column=RAND();

If the optimizer can use partial_key to reduce the set of rows selected, RAND() is executed fewer
times, which diminishes the effect of nondeterminism on optimization.

10.2.1.21 Window Function Optimization

Window functions affect the strategies the optimizer considers:

• Derived table merging for a subquery is disabled if the subquery has window functions. The
subquery is always materialized.

• Semijoins are not applicable to window function optimization because semijoins apply to subqueries
in WHERE and JOIN ... ON, which cannot contain window functions.

• The optimizer processes multiple windows that have the same ordering requirements in sequence,
so sorting can be skipped for windows following the first one.

• The optimizer makes no attempt to merge windows that could be evaluated in a single step (for
example, when multiple OVER clauses contain identical window definitions). The workaround is to
define the window in a WINDOW clause and refer to the window name in the OVER clauses.

An aggregate function not used as a window function is aggregated in the outermost possible query.
For example, in this query, MySQL sees that COUNT(t1.b) is something that cannot exist in the outer
query because of its placement in the WHERE clause:

SELECT * FROM t1 WHERE t1.a = (SELECT COUNT(t1.b) FROM t2);

Consequently, MySQL aggregates inside the subquery, treating t1.b as a constant and returning the
count of rows of t2.

Replacing WHERE with HAVING results in an error:

mysql> SELECT * FROM t1 HAVING t1.a = (SELECT COUNT(t1.b) FROM t2);
ERROR 1140 (42000): In aggregated query without GROUP BY, expression #1
of SELECT list contains nonaggregated column 'test.t1.a'; this is
incompatible with sql_mode=only_full_group_by

The error occurs because COUNT(t1.b) can exist in the HAVING, and so makes the outer query
aggregated.

Window functions (including aggregate functions used as window functions) do not have the preceding
complexity. They always aggregate in the subquery where they are written, never in the outer query.

Window function evaluation may be affected by the value of the windowing_use_high_precision
system variable, which determines whether to compute window operations without loss of precision. By
default, windowing_use_high_precision is enabled.

For some moving frame aggregates, the inverse aggregate function can be applied to remove values
from the aggregate. This can improve performance but possibly with a loss of precision. For example,

1871

Optimizing SELECT Statements

adding a very small floating-point value to a very large value causes the very small value to be “hidden”
by the large value. When inverting the large value later, the effect of the small value is lost.

Loss of precision due to inverse aggregation is a factor only for operations on floating-point
(approximate-value) data types. For other types, inverse aggregation is safe; this includes DECIMAL,
which permits a fractional part but is an exact-value type.

For faster execution, MySQL always uses inverse aggregation when it is safe:

• For floating-point values, inverse aggregation is not always safe and might result in loss of
precision. The default is to avoid inverse aggregation, which is slower but preserves precision. If it is
permissible to sacrifice safety for speed, windowing_use_high_precision can be disabled to
permit inverse aggregation.

• For nonfloating-point data types, inverse aggregation is always safe and is used regardless of the
windowing_use_high_precision value.

• windowing_use_high_precision has no effect on MIN() and MAX(), which do not use inverse
aggregation in any case.

For evaluation of the variance functions STDDEV_POP(), STDDEV_SAMP(), VAR_POP(),
VAR_SAMP(), and their synonyms, evaluation can occur in optimized mode or default mode. Optimized
mode may produce slightly different results in the last significant digits. If such differences are
permissible, windowing_use_high_precision can be disabled to permit optimized mode.

For EXPLAIN, windowing execution plan information is too extensive to display in traditional output
format. To see windowing information, use EXPLAIN FORMAT=JSON and look for the windowing
element.

10.2.1.22 Row Constructor Expression Optimization

Row constructors permit simultaneous comparisons of multiple values. For example, these two
statements are semantically equivalent:

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

In addition, the optimizer handles both expressions the same way.

The optimizer is less likely to use available indexes if the row constructor columns do not cover the
prefix of an index. Consider the following table, which has a primary key on (c1, c2, c3):

CREATE TABLE t1 (
 c1 INT, c2 INT, c3 INT, c4 CHAR(100),
 PRIMARY KEY(c1,c2,c3)
);

In this query, the WHERE clause uses all columns in the index. However, the row constructor itself does
not cover an index prefix, with the result that the optimizer uses only c1 (key_len=4, the size of c1):

mysql> EXPLAIN SELECT * FROM t1
 WHERE c1=1 AND (c2,c3) > (1,1)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 3
 filtered: 100.00
 Extra: Using where

1872

Optimizing SELECT Statements

In such cases, rewriting the row constructor expression using an equivalent nonconstructor expression
may result in more complete index use. For the given query, the row constructor and equivalent
nonconstructor expressions are:

(c2,c3) > (1,1)
c2 > 1 OR ((c2 = 1) AND (c3 > 1))

Rewriting the query to use the nonconstructor expression results in the optimizer using all three
columns in the index (key_len=12):

mysql> EXPLAIN SELECT * FROM t1
 WHERE c1 = 1 AND (c2 > 1 OR ((c2 = 1) AND (c3 > 1)))\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 12
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using where

Thus, for better results, avoid mixing row constructors with AND/OR expressions. Use one or the other.

Under certain conditions, the optimizer can apply the range access method to IN() expressions that
have row constructor arguments. See Range Optimization of Row Constructor Expressions.

10.2.1.23 Avoiding Full Table Scans

The output from EXPLAIN shows ALL in the type column when MySQL uses a full table scan to
resolve a query. This usually happens under the following conditions:

• The table is so small that it is faster to perform a table scan than to bother with a key lookup. This is
common for tables with fewer than 10 rows and a short row length.

• There are no usable restrictions in the ON or WHERE clause for indexed columns.

• You are comparing indexed columns with constant values and MySQL has calculated (based on
the index tree) that the constants cover too large a part of the table and that a table scan would be
faster. See Section 10.2.1.1, “WHERE Clause Optimization”.

• You are using a key with low cardinality (many rows match the key value) through another column.
In this case, MySQL assumes that by using the key probably requires many key lookups and that a
table scan would be faster.

For small tables, a table scan often is appropriate and the performance impact is negligible. For large
tables, try the following techniques to avoid having the optimizer incorrectly choose a table scan:

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 15.7.3.1, “ANALYZE TABLE Statement”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive
compared to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
 WHERE t1.col_name=t2.col_name;

See Section 10.9.4, “Index Hints”.

• Start mysqld with the --max-seeks-for-key=1000 option or use SET
max_seeks_for_key=1000 to tell the optimizer to assume that no key scan causes more than
1,000 key seeks. See Section 7.1.8, “Server System Variables”.

1873

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

10.2.2 Optimizing Subqueries, Derived Tables, View References, and
Common Table Expressions

The MySQL query optimizer has different strategies available to evaluate subqueries:

• For a subquery used with an IN, = ANY, or EXISTS predicate, the optimizer has these choices:

• Semijoin

• Materialization

• EXISTS strategy

• For a subquery used with a NOT IN, <> ALL or NOT EXISTS predicate, the optimizer has these
choices:

• Materialization

• EXISTS strategy

For a derived table, the optimizer has these choices (which also apply to view references and common
table expressions):

• Merge the derived table into the outer query block

• Materialize the derived table to an internal temporary table

The following discussion provides more information about the preceding optimization strategies.

Note

A limitation on UPDATE and DELETE statements that use a subquery to modify
a single table is that the optimizer does not use semijoin or materialization
subquery optimizations. As a workaround, try rewriting them as multiple-table
UPDATE and DELETE statements that use a join rather than a subquery.

10.2.2.1 Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations

A semijoin is a preparation-time transformation that enables multiple execution strategies such as table
pullout, duplicate weedout, first match, loose scan, and materialization. The optimizer uses semijoin
strategies to improve subquery execution, as described in this section.

For an inner join between two tables, the join returns a row from one table as many times as there are
matches in the other table. But for some questions, the only information that matters is whether there is
a match, not the number of matches. Suppose that there are tables named class and roster that list
classes in a course curriculum and class rosters (students enrolled in each class), respectively. To list
the classes that actually have students enrolled, you could use this join:

SELECT class.class_num, class.class_name
 FROM class
 INNER JOIN roster
 WHERE class.class_num = roster.class_num;

However, the result lists each class once for each enrolled student. For the question being asked, this
is unnecessary duplication of information.

Assuming that class_num is a primary key in the class table, duplicate suppression is possible
by using SELECT DISTINCT, but it is inefficient to generate all matching rows first only to eliminate
duplicates later.

The same duplicate-free result can be obtained by using a subquery:

1874

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

SELECT class_num, class_name
 FROM class
 WHERE class_num IN
 (SELECT class_num FROM roster);

Here, the optimizer can recognize that the IN clause requires the subquery to return only one instance
of each class number from the roster table. In this case, the query can use a semijoin; that is, an
operation that returns only one instance of each row in class that is matched by rows in roster.

The following statement, which contains an EXISTS subquery predicate, is equivalent to the previous
statement containing an IN subquery predicate:

SELECT class_num, class_name
 FROM class
 WHERE EXISTS
 (SELECT * FROM roster WHERE class.class_num = roster.class_num);

In MySQL 8.0.16 and later, any statement with an EXISTS subquery predicate is subject to the same
semijoin transforms as a statement with an equivalent IN subquery predicate.

Beginning with MySQL 8.0.17, the following subqueries are transformed into antijoins:

• NOT IN (SELECT ... FROM ...)

• NOT EXISTS (SELECT ... FROM ...).

• IN (SELECT ... FROM ...) IS NOT TRUE

• EXISTS (SELECT ... FROM ...) IS NOT TRUE.

• IN (SELECT ... FROM ...) IS FALSE

• EXISTS (SELECT ... FROM ...) IS FALSE.

In short, any negation of a subquery of the form IN (SELECT ... FROM ...) or EXISTS
(SELECT ... FROM ...) is transformed into an antijoin.

An antijoin is an operation that returns only rows for which there is no match. Consider the query
shown here:

SELECT class_num, class_name
 FROM class
 WHERE class_num NOT IN
 (SELECT class_num FROM roster);

This query is rewritten internally as the antijoin SELECT class_num, class_name FROM class
ANTIJOIN roster ON class_num, which returns one instance of each row in class that is not
matched by any rows in roster. This means that, for each row in class, as soon as a match is found
in roster, the row in class can be discarded.

Antijoin transformations cannot in most cases be applied if the expressions being compared are
nullable. An exception to this rule is that (... NOT IN (SELECT ...)) IS NOT FALSE and its
equivalent (... IN (SELECT ...)) IS NOT TRUE can be transformed into antijoins.

Outer join and inner join syntax is permitted in the outer query specification, and table references may
be base tables, derived tables, view references, or common table expressions.

In MySQL, a subquery must satisfy these criteria to be handled as a semijoin (or, in MySQL 8.0.17 and
later, an antijoin if NOT modifies the subquery):

• It must be part of an IN, = ANY, or EXISTS predicate that appears at the top level of the WHERE or
ON clause, possibly as a term in an AND expression. For example:

SELECT ...

1875

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

 FROM ot1, ...
 WHERE (oe1, ...) IN
 (SELECT ie1, ... FROM it1, ... WHERE ...);

Here, ot_i and it_i represent tables in the outer and inner parts of the query, and oe_i and ie_i
represent expressions that refer to columns in the outer and inner tables.

In MySQL 8.0.17 and later, the subquery can also be the argument to an expression modified by
NOT, IS [NOT] TRUE, or IS [NOT] FALSE.

• It must be a single SELECT without UNION constructs.

• It must not contain a HAVING clause.

• It must not contain any aggregate functions (whether it is explicitly or implicitly grouped).

• It must not have a LIMIT clause.

• The statement must not use the STRAIGHT_JOIN join type in the outer query.

• The STRAIGHT_JOIN modifier must not be present.

• The number of outer and inner tables together must be less than the maximum number of tables
permitted in a join.

• The subquery may be correlated or uncorrelated. In MySQL 8.0.16 and later, decorrelation looks at
trivially correlated predicates in the WHERE clause of a subquery used as the argument to EXISTS,
and makes it possible to optimize it as if it was used within IN (SELECT b FROM ...). The term
trivially correlated means that the predicate is an equality predicate, that it is the sole predicate in
the WHERE clause (or is combined with AND), and that one operand is from a table referenced in the
subquery and the other operand is from the outer query block.

• The DISTINCT keyword is permitted but ignored. Semijoin strategies automatically handle duplicate
removal.

• A GROUP BY clause is permitted but ignored, unless the subquery also contains one or more
aggregate functions.

• An ORDER BY clause is permitted but ignored, since ordering is irrelevant to the evaluation of
semijoin strategies.

If a subquery meets the preceding criteria, MySQL converts it to a semijoin (or, in MySQL 8.0.17 or
later, an antijoin if applicable) and makes a cost-based choice from these strategies:

• Convert the subquery to a join, or use table pullout and run the query as an inner join between
subquery tables and outer tables. Table pullout pulls a table out from the subquery to the outer
query.

• Duplicate Weedout: Run the semijoin as if it was a join and remove duplicate records using a
temporary table.

• FirstMatch: When scanning the inner tables for row combinations and there are multiple instances
of a given value group, choose one rather than returning them all. This "shortcuts" scanning and
eliminates production of unnecessary rows.

• LooseScan: Scan a subquery table using an index that enables a single value to be chosen from
each subquery's value group.

• Materialize the subquery into an indexed temporary table that is used to perform a join, where the
index is used to remove duplicates. The index might also be used later for lookups when joining
the temporary table with the outer tables; if not, the table is scanned. For more information about
materialization, see Section 10.2.2.2, “Optimizing Subqueries with Materialization”.

1876

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

Each of these strategies can be enabled or disabled using the following optimizer_switch system
variable flags:

• The semijoin flag controls whether semijoins are used. Starting with MySQL 8.0.17, this also
applies to antijoins.

• If semijoin is enabled, the firstmatch, loosescan, duplicateweedout, and
materialization flags enable finer control over the permitted semijoin strategies.

• If the duplicateweedout semijoin strategy is disabled, it is not used unless all other applicable
strategies are also disabled.

• If duplicateweedout is disabled, on occasion the optimizer may generate a query plan that is far
from optimal. This occurs due to heuristic pruning during greedy search, which can be avoided by
setting optimizer_prune_level=0.

These flags are enabled by default. See Section 10.9.2, “Switchable Optimizations”.

The optimizer minimizes differences in handling of views and derived tables. This affects queries
that use the STRAIGHT_JOIN modifier and a view with an IN subquery that can be converted to a
semijoin. The following query illustrates this because the change in processing causes a change in
transformation, and thus a different execution strategy:

CREATE VIEW v AS
SELECT *
FROM t1
WHERE a IN (SELECT b
 FROM t2);

SELECT STRAIGHT_JOIN *
FROM t3 JOIN v ON t3.x = v.a;

The optimizer first looks at the view and converts the IN subquery to a semijoin, then checks whether it
is possible to merge the view into the outer query. Because the STRAIGHT_JOIN modifier in the outer
query prevents semijoin, the optimizer refuses the merge, causing derived table evaluation using a
materialized table.

EXPLAIN output indicates the use of semijoin strategies as follows:

• For extended EXPLAIN output, the text displayed by a following SHOW WARNINGS shows the
rewritten query, which displays the semijoin structure. (See Section 10.8.3, “Extended EXPLAIN
Output Format”.) From this you can get an idea about which tables were pulled out of the semijoin. If
a subquery was converted to a semijoin, you should see that the subquery predicate is gone and its
tables and WHERE clause were merged into the outer query join list and WHERE clause.

• Temporary table use for Duplicate Weedout is indicated by Start temporary and End
temporary in the Extra column. Tables that were not pulled out and are in the range of EXPLAIN
output rows covered by Start temporary and End temporary have their rowid in the
temporary table.

• FirstMatch(tbl_name) in the Extra column indicates join shortcutting.

• LooseScan(m..n) in the Extra column indicates use of the LooseScan strategy. m and n are key
part numbers.

• Temporary table use for materialization is indicated by rows with a select_type value of
MATERIALIZED and rows with a table value of <subqueryN>.

In MySQL 8.0.21 and later, a semijoin transformation can also be applied to a single-table UPDATE or
DELETE statement that uses a [NOT] IN or [NOT] EXISTS subquery predicate, provided that the
statement does not use ORDER BY or LIMIT, and that semijoin transformations are allowed by an
optimizer hint or by the optimizer_switch setting.

1877

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

10.2.2.2 Optimizing Subqueries with Materialization

The optimizer uses materialization to enable more efficient subquery processing. Materialization
speeds up query execution by generating a subquery result as a temporary table, normally in memory.
The first time MySQL needs the subquery result, it materializes that result into a temporary table. Any
subsequent time the result is needed, MySQL refers again to the temporary table. The optimizer may
index the table with a hash index to make lookups fast and inexpensive. The index contains unique
values to eliminate duplicates and make the table smaller.

Subquery materialization uses an in-memory temporary table when possible, falling back to on-disk
storage if the table becomes too large. See Section 10.4.4, “Internal Temporary Table Use in MySQL”.

If materialization is not used, the optimizer sometimes rewrites a noncorrelated subquery as a
correlated subquery. For example, the following IN subquery is noncorrelated (where_condition
involves only columns from t2 and not t1):

SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);

The optimizer might rewrite this as an EXISTS correlated subquery:

SELECT * FROM t1
WHERE EXISTS (SELECT t2.b FROM t2 WHERE where_condition AND t1.a=t2.b);

Subquery materialization using a temporary table avoids such rewrites and makes it possible to
execute the subquery only once rather than once per row of the outer query.

For subquery materialization to be used in MySQL, the optimizer_switch system variable
materialization flag must be enabled. (See Section 10.9.2, “Switchable Optimizations”.) With the
materialization flag enabled, materialization applies to subquery predicates that appear anywhere
(in the select list, WHERE, ON, GROUP BY, HAVING, or ORDER BY), for predicates that fall into any of
these use cases:

• The predicate has this form, when no outer expression oe_i or inner expression ie_i is nullable. N
is 1 or larger.

(oe_1, oe_2, ..., oe_N) [NOT] IN (SELECT ie_1, i_2, ..., ie_N ...)

• The predicate has this form, when there is a single outer expression oe and inner expression ie.
The expressions can be nullable.

oe [NOT] IN (SELECT ie ...)

• The predicate is IN or NOT IN and a result of UNKNOWN (NULL) has the same meaning as a result of
FALSE.

The following examples illustrate how the requirement for equivalence of UNKNOWN and FALSE
predicate evaluation affects whether subquery materialization can be used. Assume that
where_condition involves columns only from t2 and not t1 so that the subquery is noncorrelated.

This query is subject to materialization:

SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);

Here, it does not matter whether the IN predicate returns UNKNOWN or FALSE. Either way, the row from
t1 is not included in the query result.

An example where subquery materialization is not used is the following query, where t2.b is a nullable
column:

SELECT * FROM t1

1878

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

WHERE (t1.a,t1.b) NOT IN (SELECT t2.a,t2.b FROM t2
 WHERE where_condition);

The following restrictions apply to the use of subquery materialization:

• The types of the inner and outer expressions must match. For example, the optimizer might be
able to use materialization if both expressions are integer or both are decimal, but cannot if one
expression is integer and the other is decimal.

• The inner expression cannot be a BLOB.

Use of EXPLAIN with a query provides some indication of whether the optimizer uses subquery
materialization:

• Compared to query execution that does not use materialization, select_type may change from
DEPENDENT SUBQUERY to SUBQUERY. This indicates that, for a subquery that would be executed
once per outer row, materialization enables the subquery to be executed just once.

• For extended EXPLAIN output, the text displayed by a following SHOW WARNINGS includes
materialize and materialized-subquery.

In MySQL 8.0.21 and later, MySQL can also apply subquery materialization to a single-table UPDATE
or DELETE statement that uses a [NOT] IN or [NOT] EXISTS subquery predicate, provided that
the statement does not use ORDER BY or LIMIT, and that subquery materialization is allowed by an
optimizer hint or by the optimizer_switch setting.

10.2.2.3 Optimizing Subqueries with the EXISTS Strategy

Certain optimizations are applicable to comparisons that use the IN (or =ANY) operator to test
subquery results. This section discusses these optimizations, particularly with regard to the challenges
that NULL values present. The last part of the discussion suggests how you can help the optimizer.

Consider the following subquery comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

MySQL evaluates queries “from outside to inside.” That is, it first obtains the value of the outer
expression outer_expr, and then runs the subquery and captures the rows that it produces.

A very useful optimization is to “inform” the subquery that the only rows of interest are those where the
inner expression inner_expr is equal to outer_expr. This is done by pushing down an appropriate
equality into the subquery's WHERE clause to make it more restrictive. The converted comparison looks
like this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

After the conversion, MySQL can use the pushed-down equality to limit the number of rows it must
examine to evaluate the subquery.

More generally, a comparison of N values to a subquery that returns N-value rows is subject to the
same conversion. If oe_i and ie_i represent corresponding outer and inner expression values, this
subquery comparison:

(oe_1, ..., oe_N) IN
 (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

Becomes:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND oe_1 = ie_1
 AND ...
 AND oe_N = ie_N)

1879

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

For simplicity, the following discussion assumes a single pair of outer and inner expression values.

The “pushdown” strategy just described works if either of these conditions is true:

• outer_expr and inner_expr cannot be NULL.

• You need not distinguish NULL from FALSE subquery results. If the subquery is a part of an OR
or AND expression in the WHERE clause, MySQL assumes that you do not care. Another instance
where the optimizer notices that NULL and FALSE subquery results need not be distinguished is this
construct:

... WHERE outer_expr IN (subquery)

In this case, the WHERE clause rejects the row whether IN (subquery) returns NULL or FALSE.

Suppose that outer_expr is known to be a non-NULL value but the subquery does not produce a row
such that outer_expr = inner_expr. Then outer_expr IN (SELECT ...) evaluates as follows:

• NULL, if the SELECT produces any row where inner_expr is NULL

• FALSE, if the SELECT produces only non-NULL values or produces nothing

In this situation, the approach of looking for rows with outer_expr = inner_expr is no longer valid.
It is necessary to look for such rows, but if none are found, also look for rows where inner_expr is
NULL. Roughly speaking, the subquery can be converted to something like this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND
 (outer_expr=inner_expr OR inner_expr IS NULL))

The need to evaluate the extra IS NULL condition is why MySQL has the ref_or_null access
method:

mysql> EXPLAIN
 SELECT outer_expr IN (SELECT t2.maybe_null_key
 FROM t2, t3 WHERE ...)
 FROM t1;
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: ref_or_null
possible_keys: maybe_null_key
 key: maybe_null_key
 key_len: 5
 ref: func
 rows: 2
 Extra: Using where; Using index
...

The unique_subquery and index_subquery subquery-specific access methods also have “or
NULL” variants.

The additional OR ... IS NULL condition makes query execution slightly more complicated (and
some optimizations within the subquery become inapplicable), but generally this is tolerable.

The situation is much worse when outer_expr can be NULL. According to the SQL interpretation of
NULL as “unknown value,” NULL IN (SELECT inner_expr ...) should evaluate to:

• NULL, if the SELECT produces any rows

• FALSE, if the SELECT produces no rows

1880

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

For proper evaluation, it is necessary to be able to check whether the SELECT has produced any rows
at all, so outer_expr = inner_expr cannot be pushed down into the subquery. This is a problem
because many real world subqueries become very slow unless the equality can be pushed down.

Essentially, there must be different ways to execute the subquery depending on the value of
outer_expr.

The optimizer chooses SQL compliance over speed, so it accounts for the possibility that outer_expr
might be NULL:

• If outer_expr is NULL, to evaluate the following expression, it is necessary to execute the SELECT
to determine whether it produces any rows:

NULL IN (SELECT inner_expr FROM ... WHERE subquery_where)

It is necessary to execute the original SELECT here, without any pushed-down equalities of the kind
mentioned previously.

• On the other hand, when outer_expr is not NULL, it is absolutely essential that this comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

Be converted to this expression that uses a pushed-down condition:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

Without this conversion, subqueries are slow.

To solve the dilemma of whether or not to push down conditions into the subquery, the conditions are
wrapped within “trigger” functions. Thus, an expression of the following form:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

Is converted into:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(outer_expr=inner_expr))

More generally, if the subquery comparison is based on several pairs of outer and inner expressions,
the conversion takes this comparison:

(oe_1, ..., oe_N) IN (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

And converts it to this expression:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(oe_1=ie_1)
 AND ...
 AND trigcond(oe_N=ie_N)
)

Each trigcond(X) is a special function that evaluates to the following values:

• X when the “linked” outer expression oe_i is not NULL

• TRUE when the “linked” outer expression oe_i is NULL

Note

Trigger functions are not triggers of the kind that you create with CREATE
TRIGGER.

Equalities that are wrapped within trigcond() functions are not first class predicates for the query
optimizer. Most optimizations cannot deal with predicates that may be turned on and off at query
execution time, so they assume any trigcond(X) to be an unknown function and ignore it. Triggered
equalities can be used by those optimizations:

1881

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

• Reference optimizations: trigcond(X=Y [OR Y IS NULL]) can be used to construct ref,
eq_ref, or ref_or_null table accesses.

• Index lookup-based subquery execution engines: trigcond(X=Y) can be used to construct
unique_subquery or index_subquery accesses.

• Table-condition generator: If the subquery is a join of several tables, the triggered condition is
checked as soon as possible.

When the optimizer uses a triggered condition to create some kind of index lookup-based access
(as for the first two items of the preceding list), it must have a fallback strategy for the case when the
condition is turned off. This fallback strategy is always the same: Do a full table scan. In EXPLAIN
output, the fallback shows up as Full scan on NULL key in the Extra column:

mysql> EXPLAIN SELECT t1.col1,
 t1.col1 IN (SELECT t2.key1 FROM t2 WHERE t2.col2=t1.col2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 ...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: index_subquery
possible_keys: key1
 key: key1
 key_len: 5
 ref: func
 rows: 2
 Extra: Using where; Full scan on NULL key

If you run EXPLAIN followed by SHOW WARNINGS, you can see the triggered condition:

*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: select `test`.`t1`.`col1` AS `col1`,
 <in_optimizer>(`test`.`t1`.`col1`,
 <exists>(<index_lookup>(<cache>(`test`.`t1`.`col1`) in t2
 on key1 checking NULL
 where (`test`.`t2`.`col2` = `test`.`t1`.`col2`) having
 trigcond(<is_not_null_test>(`test`.`t2`.`key1`))))) AS
 `t1.col1 IN (select t2.key1 from t2 where t2.col2=t1.col2)`
 from `test`.`t1`

The use of triggered conditions has some performance implications. A NULL IN (SELECT ...)
expression now may cause a full table scan (which is slow) when it previously did not. This is the price
paid for correct results (the goal of the trigger-condition strategy is to improve compliance, not speed).

For multiple-table subqueries, execution of NULL IN (SELECT ...) is particularly slow because
the join optimizer does not optimize for the case where the outer expression is NULL. It assumes that
subquery evaluations with NULL on the left side are very rare, even if there are statistics that indicate
otherwise. On the other hand, if the outer expression might be NULL but never actually is, there is no
performance penalty.

To help the query optimizer better execute your queries, use these suggestions:

• Declare a column as NOT NULL if it really is. This also helps other aspects of the optimizer by
simplifying condition testing for the column.

• If you need not distinguish a NULL from FALSE subquery result, you can easily avoid the slow
execution path. Replace a comparison that looks like this:

outer_expr [NOT] IN (SELECT inner_expr FROM ...)

1882

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

with this expression:

(outer_expr IS NOT NULL) AND (outer_expr [NOT] IN (SELECT inner_expr FROM ...))

Then NULL IN (SELECT ...) is never evaluated because MySQL stops evaluating AND parts as
soon as the expression result is clear.

Another possible rewrite:

[NOT] EXISTS (SELECT inner_expr FROM ...
 WHERE inner_expr=outer_expr)

The subquery_materialization_cost_based flag of the optimizer_switch system variable
enables control over the choice between subquery materialization and IN-to-EXISTS subquery
transformation. See Section 10.9.2, “Switchable Optimizations”.

10.2.2.4 Optimizing Derived Tables, View References, and Common Table Expressions
with Merging or Materialization

The optimizer can handle derived table references using two strategies (which also apply to view
references and common table expressions):

• Merge the derived table into the outer query block

• Materialize the derived table to an internal temporary table

Example 1:

SELECT * FROM (SELECT * FROM t1) AS derived_t1;

With merging of the derived table derived_t1, that query is executed similar to:

SELECT * FROM t1;

Example 2:

SELECT *
 FROM t1 JOIN (SELECT t2.f1 FROM t2) AS derived_t2 ON t1.f2=derived_t2.f1
 WHERE t1.f1 > 0;

With merging of the derived table derived_t2, that query is executed similar to:

SELECT t1.*, t2.f1
 FROM t1 JOIN t2 ON t1.f2=t2.f1
 WHERE t1.f1 > 0;

With materialization, derived_t1 and derived_t2 are each treated as a separate table within their
respective queries.

The optimizer handles derived tables, view references, and common table expressions the same way:
It avoids unnecessary materialization whenever possible, which enables pushing down conditions from
the outer query to derived tables and produces more efficient execution plans. (For an example, see
Section 10.2.2.2, “Optimizing Subqueries with Materialization”.)

If merging would result in an outer query block that references more than 61 base tables, the optimizer
chooses materialization instead.

The optimizer propagates an ORDER BY clause in a derived table or view reference to the outer query
block if these conditions are all true:

• The outer query is not grouped or aggregated.

• The outer query does not specify DISTINCT, HAVING, or ORDER BY.

1883

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

• The outer query has this derived table or view reference as the only source in the FROM clause.

Otherwise, the optimizer ignores the ORDER BY clause.

The following means are available to influence whether the optimizer attempts to merge derived tables,
view references, and common table expressions into the outer query block:

• The MERGE and NO_MERGE optimizer hints can be used. They apply assuming that no other rule
prevents merging. See Section 10.9.3, “Optimizer Hints”.

• Similarly, you can use the derived_merge flag of the optimizer_switch system variable.
See Section 10.9.2, “Switchable Optimizations”. By default, the flag is enabled to permit merging.
Disabling the flag prevents merging and avoids ER_UPDATE_TABLE_USED errors.

The derived_merge flag also applies to views that contain no ALGORITHM clause. Thus, if an
ER_UPDATE_TABLE_USED error occurs for a view reference that uses an expression equivalent to
the subquery, adding ALGORITHM=TEMPTABLE to the view definition prevents merging and takes
precedence over the derived_merge value.

• It is possible to disable merging by using in the subquery any constructs that prevent merging,
although these are not as explicit in their effect on materialization. Constructs that prevent merging
are the same for derived tables, common table expressions, and view references:

• Aggregate functions or window functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• LIMIT

• UNION or UNION ALL

• Subqueries in the select list

• Assignments to user variables

• References only to literal values (in this case, there is no underlying table)

If the optimizer chooses the materialization strategy rather than merging for a derived table, it handles
the query as follows:

• The optimizer postpones derived table materialization until its contents are needed during query
execution. This improves performance because delaying materialization may result in not having to
do it at all. Consider a query that joins the result of a derived table to another table: If the optimizer
processes that other table first and finds that it returns no rows, the join need not be carried out
further and the optimizer can completely skip materializing the derived table.

• During query execution, the optimizer may add an index to a derived table to speed up row retrieval
from it.

Consider the following EXPLAIN statement, for a SELECT query that contains a derived table:

EXPLAIN SELECT * FROM (SELECT * FROM t1) AS derived_t1;

The optimizer avoids materializing the derived table by delaying it until the result is needed during
SELECT execution. In this case, the query is not executed (because it occurs in an EXPLAIN
statement), so the result is never needed.

Even for queries that are executed, delay of derived table materialization may enable the optimizer
to avoid materialization entirely. When this happens, query execution is quicker by the time needed

1884

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_update_table_used
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_update_table_used

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

to perform materialization. Consider the following query, which joins the result of a derived table to
another table:

SELECT *
 FROM t1 JOIN (SELECT t2.f1 FROM t2) AS derived_t2
 ON t1.f2=derived_t2.f1
 WHERE t1.f1 > 0;

If the optimization processes t1 first and the WHERE clause produces an empty result, the join must
necessarily be empty and the derived table need not be materialized.

For cases when a derived table requires materialization, the optimizer may add an index to the
materialized table to speed up access to it. If such an index enables ref access to the table, it can
greatly reduce amount of data read during query execution. Consider the following query:

SELECT *
 FROM t1 JOIN (SELECT DISTINCT f1 FROM t2) AS derived_t2
 ON t1.f1=derived_t2.f1;

The optimizer constructs an index over column f1 from derived_t2 if doing so would enable use
of ref access for the lowest cost execution plan. After adding the index, the optimizer can treat the
materialized derived table the same as a regular table with an index, and it benefits similarly from the
generated index. The overhead of index creation is negligible compared to the cost of query execution
without the index. If ref access would result in higher cost than some other access method, the
optimizer creates no index and loses nothing.

For optimizer trace output, a merged derived table or view reference is not shown as a node. Only its
underlying tables appear in the top query's plan.

What is true for materialization of derived tables is also true for common table expressions (CTEs). In
addition, the following considerations pertain specifically to CTEs.

If a CTE is materialized by a query, it is materialized once for the query, even if the query references it
several times.

A recursive CTE is always materialized.

If a CTE is materialized, the optimizer automatically adds relevant indexes if it estimates that indexing
can speed up access by the top-level statement to the CTE. This is similar to automatic indexing of
derived tables, except that if the CTE is referenced multiple times, the optimizer may create multiple
indexes, to speed up access by each reference in the most appropriate way.

The MERGE and NO_MERGE optimizer hints can be applied to CTEs. Each CTE reference in the
top-level statement can have its own hint, permitting CTE references to be selectively merged or
materialized. The following statement uses hints to indicate that cte1 should be merged and cte2
should be materialized:

WITH
 cte1 AS (SELECT a, b FROM table1),
 cte2 AS (SELECT c, d FROM table2)
SELECT /*+ MERGE(cte1) NO_MERGE(cte2) */ cte1.b, cte2.d
FROM cte1 JOIN cte2
WHERE cte1.a = cte2.c;

The ALGORITHM clause for CREATE VIEW does not affect materialization for any WITH clause
preceding the SELECT statement in the view definition. Consider this statement:

CREATE ALGORITHM={TEMPTABLE|MERGE} VIEW v1 AS WITH ... SELECT ...

The ALGORITHM value affects materialization only of the SELECT, not the WITH clause.

Prior to MySQL 8.0.16, if internal_tmp_disk_storage_engine=MYISAM, an error occurred for
any attempt to materialize a CTE using an on-disk temporary table, since for CTEs, the storage engine
used for on-disk internal temporary tables could not be MyISAM. Beginning with MySQL 8.0.16, this is
no longer an issue, since TempTable now always uses InnoDB for on-disk internal temporary tables.

1885

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

As mentioned previously, a CTE, if materialized, is materialized once, even if referenced multiple
times. To indicate one-time materialization, optimizer trace output contains an occurrence of
creating_tmp_table plus one or more occurrences of reusing_tmp_table.

CTEs are similar to derived tables, for which the materialized_from_subquery node follows
the reference. This is true for a CTE that is referenced multiple times, so there is no duplication of
materialized_from_subquery nodes (which would give the impression that the subquery is
executed multiple times, and produce unnecessarily verbose output). Only one reference to the CTE
has a complete materialized_from_subquery node with the description of its subquery plan.
Other references have a reduced materialized_from_subquery node. The same idea applies to
EXPLAIN output in TRADITIONAL format: Subqueries for other references are not shown.

10.2.2.5 Derived Condition Pushdown Optimization

MySQL 8.0.22 and later supports derived condition pushdown for eligible subqueries. For a query such
as SELECT * FROM (SELECT i, j FROM t1) AS dt WHERE i > constant, it is possible
in many cases to push the outer WHERE condition down to the derived table, in this case resulting in
SELECT * FROM (SELECT i, j FROM t1 WHERE i > constant) AS dt. When a derived
table cannot be merged into the outer query (for example, if the derived table uses aggregation),
pushing the outer WHERE condition down to the derived table should decrease the number of rows that
need to be processed and thus speed up execution of the query.

Note

Prior to MySQL 8.0.22, if a derived table was materialized but not merged,
MySQL materialized the entire table, then qualified all of the resulting rows with
the WHERE condition. This is still the case if derived condition pushdown is not
enabled, or cannot be employed for some other reason.

Outer WHERE conditions can be pushed down to derived materialized tables under the following
circumstances:

• When the derived table uses no aggregate or window functions, the outer WHERE condition can be
pushed down to it directly. This includes WHERE conditions having multiple predicates joined with
AND, OR, or both.

For example, the query SELECT * FROM (SELECT f1, f2 FROM t1) AS dt WHERE f1 < 3
AND f2 > 11 is rewritten as SELECT f1, f2 FROM (SELECT f1, f2 FROM t1 WHERE f1 <
3 AND f2 > 11) AS dt.

• When the derived table has a GROUP BY and uses no window functions, an outer WHERE condition
referencing one or more columns which are not part of the GROUP BY can be pushed down to the
derived table as a HAVING condition.

For example, SELECT * FROM (SELECT i, j, SUM(k) AS sum FROM t1 GROUP BY i, j)
AS dt WHERE sum > 100 is rewritten following derived condition pushdown as SELECT * FROM
(SELECT i, j, SUM(k) AS sum FROM t1 GROUP BY i, j HAVING sum > 100) AS dt.

• When the derived table uses a GROUP BY and the columns in the outer WHERE condition are GROUP
BY columns, the WHERE conditions referencing those columns can be pushed down directly to the
derived table.

For example, the query SELECT * FROM (SELECT i,j, SUM(k) AS sum FROM t1 GROUP
BY i,j) AS dt WHERE i > 10 is rewritten as SELECT * FROM (SELECT i,j, SUM(k) AS
sum FROM t1 WHERE i > 10 GROUP BY i,j) AS dt.

In the event that the outer WHERE condition has predicates referencing columns which are part of the
GROUP BY as well as predicates referencing columns which are not, predicates of the former sort
are pushed down as WHERE conditions, while those of the latter type are pushed down as HAVING
conditions. For example, in the query SELECT * FROM (SELECT i, j, SUM(k) AS sum FROM

1886

Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions

t1 GROUP BY i,j) AS dt WHERE i > 10 AND sum > 100, the predicate i > 10 in the
outer WHERE clause references a GROUP BY column, whereas the predicate sum > 100 does not
reference any GROUP BY column. Thus the derived table pushdown optimization causes the query to
be rewritten in a manner similar to what is shown here:

SELECT * FROM (
 SELECT i, j, SUM(k) AS sum FROM t1
 WHERE i > 10
 GROUP BY i, j
 HAVING sum > 100
) AS dt;

To enable derived condition pushdown, the optimizer_switch system variable's
derived_condition_pushdown flag (added in this release) must be set to on, which is the default
setting. If this optimization is disabled by optimizer_switch, you can enable it for a specific query
using the DERIVED_CONDITION_PUSHDOWN optimizer hint. To disable the optimization for a given
query, use the NO_DERIVED_CONDITION_PUSHDOWN optimizer hint.

The following restrictions and limitations apply to the derived table condition pushdown optimization:

• The optimization cannot be used if the derived table contains UNION. This restriction is lifted in
MySQL 8.0.29. Consider two tables t1 and t2, and a view v containing their union, created as
shown here:

CREATE TABLE t1 (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c1 INT,
 KEY i1 (c1)
);

CREATE TABLE t2 (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c1 INT,
 KEY i1 (c1)
);

CREATE OR REPLACE VIEW v AS
 SELECT id, c1 FROM t1
 UNION ALL
 SELECT id, c1 FROM t2;

As be seen in the output of EXPLAIN, a condition present in the top level of a query such as SELECT
* FROM v WHERE c1 = 12 can now be pushed down to both query blocks in the derived table:

mysql> EXPLAIN FORMAT=TREE SELECT * FROM v WHERE c1 = 12\G
*************************** 1. row ***************************
EXPLAIN: -> Table scan on v (cost=1.26..2.52 rows=2)
 -> Union materialize (cost=2.16..3.42 rows=2)
 -> Covering index lookup on t1 using i1 (c1=12) (cost=0.35 rows=1)
 -> Covering index lookup on t2 using i1 (c1=12) (cost=0.35 rows=1)

1 row in set (0.00 sec)

In MySQL 8.0.29 and later, the derived table condition pushdown optimization can be employed with
UNION queries, with the following exceptions:

• Condition pushdown cannot be used with a UNION query if any materialized derived table that
is part of the UNION is a recursive common table expression (see Recursive Common Table
Expressions).

• Conditions containing nondeterministic expressions cannot be pushed down to a derived table.

• The derived table cannot use a LIMIT clause.

• Conditions containing subqueries cannot be pushed down.

• The optimization cannot be used if the derived table is an inner table of an outer join.

1887

Optimizing INFORMATION_SCHEMA Queries

• If a materialized derived table is a common table expression, conditions are not pushed down to it if it
is referenced multiple times.

• Conditions using parameters can be pushed down if the condition is of the form derived_column
> ?. If a derived column in an outer WHERE condition is an expression having a ? in the underlying
derived table, this condition cannot be pushed down.

• For a query in which the condition is on the tables of a view created using ALGORITHM=TEMPTABLE
instead of on the view itself, the multiple equality is not recognized at resolution, and thus the
condition cannot be not pushed down. This because, when optimizing a query, condition pushdown
takes place during resolution phase while multiple equality propagation occurs during optimization.

This is not an issue in such cases for a view using ALGORITHM=MERGE, where the equality can be
propagated and the condition pushed down.

• Beginning with MySQL 8.0.28, a condition cannot be pushed down if the derived table's SELECT list
contain any assignments to user variables. (Bug #104918)

10.2.3 Optimizing INFORMATION_SCHEMA Queries

Applications that monitor databases may make frequent use of INFORMATION_SCHEMA tables. To
write queries for these tables most efficiently, use the following general guidelines:

• Try to query only INFORMATION_SCHEMA tables that are views on data dictionary tables.

• Try to query only for static metadata. Selecting columns or using retrieval conditions for dynamic
metadata along with static metadata adds overhead to process the dynamic metadata.

Note

Comparison behavior for database and table names in INFORMATION_SCHEMA
queries might differ from what you expect. For details, see Section 12.8.7,
“Using Collation in INFORMATION_SCHEMA Searches”.

These INFORMATION_SCHEMA tables are implemented as views on data dictionary tables, so queries
on them retrieve information from the data dictionary:

CHARACTER_SETS
CHECK_CONSTRAINTS
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
EVENTS
FILES
INNODB_COLUMNS
INNODB_DATAFILES
INNODB_FIELDS
INNODB_FOREIGN
INNODB_FOREIGN_COLS
INNODB_INDEXES
INNODB_TABLES
INNODB_TABLESPACES
INNODB_TABLESPACES_BRIEF
INNODB_TABLESTATS
KEY_COLUMN_USAGE
PARAMETERS
PARTITIONS
REFERENTIAL_CONSTRAINTS
RESOURCE_GROUPS
ROUTINES
SCHEMATA
STATISTICS
TABLES
TABLE_CONSTRAINTS
TRIGGERS
VIEWS

1888

Optimizing INFORMATION_SCHEMA Queries

VIEW_ROUTINE_USAGE
VIEW_TABLE_USAGE

Some types of values, even for a non-view INFORMATION_SCHEMA table, are retrieved by lookups
from the data dictionary. This includes values such as database and table names, table types, and
storage engines.

Some INFORMATION_SCHEMA tables contain columns that provide table statistics:

STATISTICS.CARDINALITY
TABLES.AUTO_INCREMENT
TABLES.AVG_ROW_LENGTH
TABLES.CHECKSUM
TABLES.CHECK_TIME
TABLES.CREATE_TIME
TABLES.DATA_FREE
TABLES.DATA_LENGTH
TABLES.INDEX_LENGTH
TABLES.MAX_DATA_LENGTH
TABLES.TABLE_ROWS
TABLES.UPDATE_TIME

Those columns represent dynamic table metadata; that is, information that changes as table contents
change.

By default, MySQL retrieves cached values for those columns from the mysql.index_stats and
mysql.innodb_table_stats dictionary tables when the columns are queried, which is more
efficient than retrieving statistics directly from the storage engine. If cached statistics are not available
or have expired, MySQL retrieves the latest statistics from the storage engine and caches them in the
mysql.index_stats and mysql.innodb_table_stats dictionary tables. Subsequent queries
retrieve the cached statistics until the cached statistics expire. A server restart or the first opening of
the mysql.index_stats and mysql.innodb_table_stats tables do not update cached statistics
automatically.

The information_schema_stats_expiry session variable defines the period of time before
cached statistics expire. The default is 86400 seconds (24 hours), but the time period can be extended
to as much as one year.

To update cached values at any time for a given table, use ANALYZE TABLE.

Querying statistics columns does not store or update statistics in the mysql.index_stats and
mysql.innodb_table_stats dictionary tables under these circumstances:

• When cached statistics have not expired.

• When information_schema_stats_expiry is set to 0.

• When the server is in read_only, super_read_only, transaction_read_only, or
innodb_read_only mode.

• When the query also fetches Performance Schema data.

information_schema_stats_expiry is a session variable, and each client session can define its
own expiration value. Statistics that are retrieved from the storage engine and cached by one session
are available to other sessions.

Note

If the innodb_read_only system variable is enabled, ANALYZE TABLE
may fail because it cannot update statistics tables in the data dictionary,
which use InnoDB. For ANALYZE TABLE operations that update the key
distribution, failure may occur even if the operation updates the table itself (for
example, if it is a MyISAM table). To obtain the updated distribution statistics, set
information_schema_stats_expiry=0.

1889

Optimizing INFORMATION_SCHEMA Queries

For INFORMATION_SCHEMA tables implemented as views on data dictionary tables, indexes on the
underlying data dictionary tables permit the optimizer to construct efficient query execution plans. To
see the choices made by the optimizer, use EXPLAIN. To also see the query used by the server to
execute an INFORMATION_SCHEMA query, use SHOW WARNINGS immediately following EXPLAIN.

Consider this statement, which identifies collations for the utf8mb4 character set:

mysql> SELECT COLLATION_NAME
 FROM INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY
 WHERE CHARACTER_SET_NAME = 'utf8mb4';
+----------------------------+
| COLLATION_NAME |
+----------------------------+
| utf8mb4_general_ci |
| utf8mb4_bin |
| utf8mb4_unicode_ci |
| utf8mb4_icelandic_ci |
| utf8mb4_latvian_ci |
| utf8mb4_romanian_ci |
| utf8mb4_slovenian_ci |
...

How does the server process that statement? To find out, use EXPLAIN:

mysql> EXPLAIN SELECT COLLATION_NAME
 FROM INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY
 WHERE CHARACTER_SET_NAME = 'utf8mb4'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: cs
 partitions: NULL
 type: const
possible_keys: PRIMARY,name
 key: name
 key_len: 194
 ref: const
 rows: 1
 filtered: 100.00
 Extra: Using index
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: col
 partitions: NULL
 type: ref
possible_keys: character_set_id
 key: character_set_id
 key_len: 8
 ref: const
 rows: 68
 filtered: 100.00
 Extra: NULL
2 rows in set, 1 warning (0.01 sec)

To see the query used to satisfy that statement, use SHOW WARNINGS:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select `mysql`.`col`.`name` AS `COLLATION_NAME`
 from `mysql`.`character_sets` `cs`
 join `mysql`.`collations` `col`
 where ((`mysql`.`col`.`character_set_id` = '45')
 and ('utf8mb4' = 'utf8mb4'))

As indicated by SHOW WARNINGS, the server handles the query on
COLLATION_CHARACTER_SET_APPLICABILITY as a query on the character_sets and
collations data dictionary tables in the mysql system database.

1890

Optimizing Performance Schema Queries

10.2.4 Optimizing Performance Schema Queries

Applications that monitor databases may make frequent use of Performance Schema tables. To write
queries for these tables most efficiently, take advantage of their indexes. For example, include a WHERE
clause that restricts retrieved rows based on comparison to specific values in an indexed column.

Most Performance Schema tables have indexes. Tables that do not are those that normally contain few
rows or are unlikely to be queried frequently. Performance Schema indexes give the optimizer access
to execution plans other than full table scans. These indexes also improve performance for related
objects, such as sys schema views that use those tables.

To see whether a given Performance Schema table has indexes and what they are, use SHOW INDEX
or SHOW CREATE TABLE:

mysql> SHOW INDEX FROM performance_schema.accounts\G
*************************** 1. row ***************************
 Table: accounts
 Non_unique: 0
 Key_name: ACCOUNT
 Seq_in_index: 1
 Column_name: USER
 Collation: NULL
 Cardinality: NULL
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: HASH
 Comment:
Index_comment:
 Visible: YES
*************************** 2. row ***************************
 Table: accounts
 Non_unique: 0
 Key_name: ACCOUNT
 Seq_in_index: 2
 Column_name: HOST
 Collation: NULL
 Cardinality: NULL
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: HASH
 Comment:
Index_comment:
 Visible: YES

mysql> SHOW CREATE TABLE performance_schema.rwlock_instances\G
*************************** 1. row ***************************
 Table: rwlock_instances
Create Table: CREATE TABLE `rwlock_instances` (
 `NAME` varchar(128) NOT NULL,
 `OBJECT_INSTANCE_BEGIN` bigint(20) unsigned NOT NULL,
 `WRITE_LOCKED_BY_THREAD_ID` bigint(20) unsigned DEFAULT NULL,
 `READ_LOCKED_BY_COUNT` int(10) unsigned NOT NULL,
 PRIMARY KEY (`OBJECT_INSTANCE_BEGIN`),
 KEY `NAME` (`NAME`),
 KEY `WRITE_LOCKED_BY_THREAD_ID` (`WRITE_LOCKED_BY_THREAD_ID`)
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

To see the execution plan for a Performance Schema query and whether it uses any indexes, use
EXPLAIN:

mysql> EXPLAIN SELECT * FROM performance_schema.accounts
 WHERE (USER,HOST) = ('root','localhost')\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: accounts
 partitions: NULL

1891

Optimizing Data Change Statements

 type: const
possible_keys: ACCOUNT
 key: ACCOUNT
 key_len: 278
 ref: const,const
 rows: 1
 filtered: 100.00
 Extra: NULL

The EXPLAIN output indicates that the optimizer uses the accounts table ACCOUNT index that
comprises the USER and HOST columns.

Performance Schema indexes are virtual: They are a construct of the Performance Schema storage
engine and use no memory or disk storage. The Performance Schema reports index information to
the optimizer so that it can construct efficient execution plans. The Performance Schema in turn uses
optimizer information about what to look for (for example, a particular key value), so that it can perform
efficient lookups without building actual index structures. This implementation provides two important
benefits:

• It entirely avoids the maintenance cost normally incurred for tables that undergo frequent updates.

• It reduces at an early stage of query execution the amount of data retrieved. For conditions on the
indexed columns, the Performance Schema efficiently returns only table rows that satisfy the query
conditions. Without an index, the Performance Schema would return all rows in the table, requiring
that the optimizer later evaluate the conditions against each row to produce the final result.

Performance Schema indexes are predefined and cannot be dropped, added, or altered.

Performance Schema indexes are similar to hash indexes. For example:

• They are used only for equality comparisons that use the = or <=> operators.

• They are unordered. If a query result must have specific row ordering characteristics, include an
ORDER BY clause.

For additional information about hash indexes, see Section 10.3.9, “Comparison of B-Tree and Hash
Indexes”.

10.2.5 Optimizing Data Change Statements

This section explains how to speed up data change statements: INSERT, UPDATE, and DELETE.
Traditional OLTP applications and modern web applications typically do many small data change
operations, where concurrency is vital. Data analysis and reporting applications typically run data
change operations that affect many rows at once, where the main considerations is the I/O to write
large amounts of data and keep indexes up-to-date. For inserting and updating large volumes of data
(known in the industry as ETL, for “extract-transform-load”), sometimes you use other SQL statements
or external commands, that mimic the effects of INSERT, UPDATE, and DELETE statements.

10.2.5.1 Optimizing INSERT Statements

To optimize insert speed, combine many small operations into a single large operation. Ideally, you
make a single connection, send the data for many new rows at once, and delay all index updates and
consistency checking until the very end.

The time required for inserting a row is determined by the following factors, where the numbers indicate
approximate proportions:

• Connecting: (3)

• Sending query to server: (2)

• Parsing query: (2)

1892

Optimizing Database Privileges

• Inserting row: (1 × size of row)

• Inserting indexes: (1 × number of indexes)

• Closing: (1)

This does not take into consideration the initial overhead to open tables, which is done once for each
concurrently running query.

The size of the table slows down the insertion of indexes by log N, assuming B-tree indexes.

You can use the following methods to speed up inserts:

• If you are inserting many rows from the same client at the same time, use INSERT statements with
multiple VALUES lists to insert several rows at a time. This is considerably faster (many times faster
in some cases) than using separate single-row INSERT statements. If you are adding data to a
nonempty table, you can tune the bulk_insert_buffer_size variable to make data insertion
even faster. See Section 7.1.8, “Server System Variables”.

• When loading a table from a text file, use LOAD DATA. This is usually 20 times faster than using
INSERT statements. See Section 15.2.9, “LOAD DATA Statement”.

• Take advantage of the fact that columns have default values. Insert values explicitly only when the
value to be inserted differs from the default. This reduces the parsing that MySQL must do and
improves the insert speed.

• See Section 10.5.5, “Bulk Data Loading for InnoDB Tables” for tips specific to InnoDB tables.

• See Section 10.6.2, “Bulk Data Loading for MyISAM Tables” for tips specific to MyISAM tables.

10.2.5.2 Optimizing UPDATE Statements

An update statement is optimized like a SELECT query with the additional overhead of a write. The
speed of the write depends on the amount of data being updated and the number of indexes that are
updated. Indexes that are not changed do not get updated.

Another way to get fast updates is to delay updates and then do many updates in a row later.
Performing multiple updates together is much quicker than doing one at a time if you lock the table.

For a MyISAM table that uses dynamic row format, updating a row to a longer total length may
split the row. If you do this often, it is very important to use OPTIMIZE TABLE occasionally. See
Section 15.7.3.4, “OPTIMIZE TABLE Statement”.

10.2.5.3 Optimizing DELETE Statements

The time required to delete individual rows in a MyISAM table is exactly proportional to the number of
indexes. To delete rows more quickly, you can increase the size of the key cache by increasing the
key_buffer_size system variable. See Section 7.1.1, “Configuring the Server”.

To delete all rows from a MyISAM table, TRUNCATE TABLE tbl_name is faster than DELETE FROM
tbl_name. Truncate operations are not transaction-safe; an error occurs when attempting one in
the course of an active transaction or active table lock. See Section 15.1.37, “TRUNCATE TABLE
Statement”.

10.2.6 Optimizing Database Privileges

The more complex your privilege setup, the more overhead applies to all SQL statements. Simplifying
the privileges established by GRANT statements enables MySQL to reduce permission-checking
overhead when clients execute statements. For example, if you do not grant any table-level or column-
level privileges, the server need not ever check the contents of the tables_priv and columns_priv
tables. Similarly, if you place no resource limits on any accounts, the server does not have to perform

1893

Other Optimization Tips

resource counting. If you have a very high statement-processing load, consider using a simplified grant
structure to reduce permission-checking overhead.

10.2.7 Other Optimization Tips

This section lists a number of miscellaneous tips for improving query processing speed:

• If your application makes several database requests to perform related updates, combining the
statements into a stored routine can help performance. Similarly, if your application computes a
single result based on several column values or large volumes of data, combining the computation
into a loadable function can help performance. The resulting fast database operations are then
available to be reused by other queries, applications, and even code written in different programming
languages. See Section 27.2, “Using Stored Routines” and Adding Functions to MySQL for more
information.

• To fix any compression issues that occur with ARCHIVE tables, use OPTIMIZE TABLE. See
Section 18.5, “The ARCHIVE Storage Engine”.

• If possible, classify reports as “live” or as “statistical”, where data needed for statistical reports is
created only from summary tables that are generated periodically from the live data.

• If you have data that does not conform well to a rows-and-columns table structure, you can pack and
store data into a BLOB column. In this case, you must provide code in your application to pack and
unpack information, but this might save I/O operations to read and write the sets of related values.

• With Web servers, store images and other binary assets as files, with the path name stored in the
database rather than the file itself. Most Web servers are better at caching files than database
contents, so using files is generally faster. (Although you must handle backups and storage issues
yourself in this case.)

• If you need really high speed, look at the low-level MySQL interfaces. For example, by accessing
the MySQL InnoDB or MyISAM storage engine directly, you could get a substantial speed increase
compared to using the SQL interface.

Similarly, for databases using the NDBCLUSTER storage engine, you may wish to investigate possible
use of the NDB API (see MySQL NDB Cluster API Developer Guide).

• Replication can provide a performance benefit for some operations. You can distribute client
retrievals among replicas to split up the load. To avoid slowing down the source while making
backups, you can make backups using a replica. See Chapter 19, Replication.

10.3 Optimization and Indexes
The best way to improve the performance of SELECT operations is to create indexes on one or more of
the columns that are tested in the query. The index entries act like pointers to the table rows, allowing
the query to quickly determine which rows match a condition in the WHERE clause, and retrieve the
other column values for those rows. All MySQL data types can be indexed.

Although it can be tempting to create an indexes for every possible column used in a query,
unnecessary indexes waste space and waste time for MySQL to determine which indexes to use.
Indexes also add to the cost of inserts, updates, and deletes because each index must be updated.
You must find the right balance to achieve fast queries using the optimal set of indexes.

10.3.1 How MySQL Uses Indexes

Indexes are used to find rows with specific column values quickly. Without an index, MySQL must
begin with the first row and then read through the entire table to find the relevant rows. The larger the
table, the more this costs. If the table has an index for the columns in question, MySQL can quickly
determine the position to seek to in the middle of the data file without having to look at all the data. This
is much faster than reading every row sequentially.

1894

https://dev.mysql.com/doc/extending-mysql/8.0/en/adding-functions.html
https://dev.mysql.com/doc/ndbapi/en/

How MySQL Uses Indexes

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees.
Exceptions: Indexes on spatial data types use R-trees; MEMORY tables also support hash indexes;
InnoDB uses inverted lists for FULLTEXT indexes.

In general, indexes are used as described in the following discussion. Characteristics specific to hash
indexes (as used in MEMORY tables) are described in Section 10.3.9, “Comparison of B-Tree and Hash
Indexes”.

MySQL uses indexes for these operations:

• To find the rows matching a WHERE clause quickly.

• To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally
uses the index that finds the smallest number of rows (the most selective index).

• If the table has a multiple-column index, any leftmost prefix of the index can be used by the
optimizer to look up rows. For example, if you have a three-column index on (col1, col2,
col3), you have indexed search capabilities on (col1), (col1, col2), and (col1, col2,
col3). For more information, see Section 10.3.6, “Multiple-Column Indexes”.

• To retrieve rows from other tables when performing joins. MySQL can use indexes on columns
more efficiently if they are declared as the same type and size. In this context, VARCHAR and CHAR
are considered the same if they are declared as the same size. For example, VARCHAR(10) and
CHAR(10) are the same size, but VARCHAR(10) and CHAR(15) are not.

For comparisons between nonbinary string columns, both columns should use the same character
set. For example, comparing a utf8mb4 column with a latin1 column precludes use of an index.

Comparison of dissimilar columns (comparing a string column to a temporal or numeric column, for
example) may prevent use of indexes if values cannot be compared directly without conversion. For
a given value such as 1 in the numeric column, it might compare equal to any number of values in
the string column such as '1', ' 1', '00001', or '01.e1'. This rules out use of any indexes for
the string column.

• To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized by a
preprocessor that checks whether you are using WHERE key_part_N = constant on all key
parts that occur before key_col in the index. In this case, MySQL does a single key lookup for each
MIN() or MAX() expression and replaces it with a constant. If all expressions are replaced with
constants, the query returns at once. For example:

SELECT MIN(key_part2),MAX(key_part2)
 FROM tbl_name WHERE key_part1=10;

• To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable index (for
example, ORDER BY key_part1, key_part2). If all key parts are followed by DESC, the key is
read in reverse order. (Or, if the index is a descending index, the key is read in forward order.) See
Section 10.2.1.16, “ORDER BY Optimization”, Section 10.2.1.17, “GROUP BY Optimization”, and
Section 10.3.13, “Descending Indexes”.

• In some cases, a query can be optimized to retrieve values without consulting the data rows. (An
index that provides all the necessary results for a query is called a covering index.) If a query uses
from a table only columns that are included in some index, the selected values can be retrieved from
the index tree for greater speed:

SELECT key_part3 FROM tbl_name
 WHERE key_part1=1

Indexes are less important for queries on small tables, or big tables where report queries process most
or all of the rows. When a query needs to access most of the rows, reading sequentially is faster than
working through an index. Sequential reads minimize disk seeks, even if not all the rows are needed for
the query. See Section 10.2.1.23, “Avoiding Full Table Scans” for details.

1895

Primary Key Optimization

10.3.2 Primary Key Optimization

The primary key for a table represents the column or set of columns that you use in your most vital
queries. It has an associated index, for fast query performance. Query performance benefits from
the NOT NULL optimization, because it cannot include any NULL values. With the InnoDB storage
engine, the table data is physically organized to do ultra-fast lookups and sorts based on the primary
key column or columns.

If your table is big and important, but does not have an obvious column or set of columns to use as a
primary key, you might create a separate column with auto-increment values to use as the primary key.
These unique IDs can serve as pointers to corresponding rows in other tables when you join tables
using foreign keys.

10.3.3 SPATIAL Index Optimization

MySQL permits creation of SPATIAL indexes on NOT NULL geometry-valued columns (see
Section 13.4.10, “Creating Spatial Indexes”). The optimizer checks the SRID attribute for indexed
columns to determine which spatial reference system (SRS) to use for comparisons, and uses
calculations appropriate to the SRS. (Prior to MySQL 8.0, the optimizer performs comparisons of
SPATIAL index values using Cartesian calculations; the results of such operations are undefined if the
column contains values with non-Cartesian SRIDs.)

For comparisons to work properly, each column in a SPATIAL index must be SRID-restricted. That
is, the column definition must include an explicit SRID attribute, and all column values must have the
same SRID.

The optimizer considers SPATIAL indexes only for SRID-restricted columns:

• Indexes on columns restricted to a Cartesian SRID enable Cartesian bounding box computations.

• Indexes on columns restricted to a geographic SRID enable geographic bounding box computations.

The optimizer ignores SPATIAL indexes on columns that have no SRID attribute (and thus are not
SRID-restricted). MySQL still maintains such indexes, as follows:

• They are updated for table modifications (INSERT, UPDATE, DELETE, and so forth). Updates occur
as though the index was Cartesian, even though the column might contain a mix of Cartesian and
geographical values.

• They exist only for backward compatibility (for example, the ability to perform a dump in MySQL 5.7
and restore in MySQL 8.0). Because SPATIAL indexes on columns that are not SRID-restricted are
of no use to the optimizer, each such column should be modified:

• Verify that all values within the column have the same SRID. To determine the SRIDs contained in
a geometry column col_name, use the following query:

SELECT DISTINCT ST_SRID(col_name) FROM tbl_name;

If the query returns more than one row, the column contains a mix of SRIDs. In that case, modify
its contents so all values have the same SRID.

• Redefine the column to have an explicit SRID attribute.

• Recreate the SPATIAL index.

10.3.4 Foreign Key Optimization

If a table has many columns, and you query many different combinations of columns, it might be
efficient to split the less-frequently used data into separate tables with a few columns each, and relate
them back to the main table by duplicating the numeric ID column from the main table. That way,

1896

Column Indexes

each small table can have a primary key for fast lookups of its data, and you can query just the set of
columns that you need using a join operation. Depending on how the data is distributed, the queries
might perform less I/O and take up less cache memory because the relevant columns are packed
together on disk. (To maximize performance, queries try to read as few data blocks as possible from
disk; tables with only a few columns can fit more rows in each data block.)

10.3.5 Column Indexes

The most common type of index involves a single column, storing copies of the values from that
column in a data structure, allowing fast lookups for the rows with the corresponding column values.
The B-tree data structure lets the index quickly find a specific value, a set of values, or a range of
values, corresponding to operators such as =, >, ≤, BETWEEN, IN, and so on, in a WHERE clause.

The maximum number of indexes per table and the maximum index length is defined per storage
engine. See Chapter 17, The InnoDB Storage Engine, and Chapter 18, Alternative Storage Engines.
All storage engines support at least 16 indexes per table and a total index length of at least 256 bytes.
Most storage engines have higher limits.

For additional information about column indexes, see Section 15.1.15, “CREATE INDEX Statement”.

• Index Prefixes

• FULLTEXT Indexes

• Spatial Indexes

• Indexes in the MEMORY Storage Engine

Index Prefixes

With col_name(N) syntax in an index specification for a string column, you can create an index that
uses only the first N characters of the column. Indexing only a prefix of column values in this way can
make the index file much smaller. When you index a BLOB or TEXT column, you must specify a prefix
length for the index. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 767 bytes long for InnoDB tables that use the REDUNDANT or COMPACT row
format. The prefix length limit is 3072 bytes for InnoDB tables that use the DYNAMIC or COMPRESSED
row format. For MyISAM tables, the prefix length limit is 1000 bytes.

Note

Prefix limits are measured in bytes, whereas the prefix length in CREATE
TABLE, ALTER TABLE, and CREATE INDEX statements is interpreted as
number of characters for nonbinary string types (CHAR, VARCHAR, TEXT) and
number of bytes for binary string types (BINARY, VARBINARY, BLOB). Take this
into account when specifying a prefix length for a nonbinary string column that
uses a multibyte character set.

If a search term exceeds the index prefix length, the index is used to exclude non-matching rows, and
the remaining rows are examined for possible matches.

For additional information about index prefixes, see Section 15.1.15, “CREATE INDEX Statement”.

FULLTEXT Indexes

FULLTEXT indexes are used for full-text searches. Only the InnoDB and MyISAM storage engines
support FULLTEXT indexes and only for CHAR, VARCHAR, and TEXT columns. Indexing always takes
place over the entire column and column prefix indexing is not supported. For details, see Section 14.9,
“Full-Text Search Functions”.

1897

Multiple-Column Indexes

Optimizations are applied to certain kinds of FULLTEXT queries against single InnoDB tables. Queries
with these characteristics are particularly efficient:

• FULLTEXT queries that only return the document ID, or the document ID and the search rank.

• FULLTEXT queries that sort the matching rows in descending order of score and apply a LIMIT
clause to take the top N matching rows. For this optimization to apply, there must be no WHERE
clauses and only a single ORDER BY clause in descending order.

• FULLTEXT queries that retrieve only the COUNT(*) value of rows matching a search term, with
no additional WHERE clauses. Code the WHERE clause as WHERE MATCH(text) AGAINST
('other_text'), without any > 0 comparison operator.

For queries that contain full-text expressions, MySQL evaluates those expressions during the
optimization phase of query execution. The optimizer does not just look at full-text expressions and
make estimates, it actually evaluates them in the process of developing an execution plan.

An implication of this behavior is that EXPLAIN for full-text queries is typically slower than for non-full-
text queries for which no expression evaluation occurs during the optimization phase.

EXPLAIN for full-text queries may show Select tables optimized away in the Extra column
due to matching occurring during optimization; in this case, no table access need occur during later
execution.

Spatial Indexes

You can create indexes on spatial data types. MyISAM and InnoDB support R-tree indexes on spatial
types. Other storage engines use B-trees for indexing spatial types (except for ARCHIVE, which does
not support spatial type indexing).

Indexes in the MEMORY Storage Engine

The MEMORY storage engine uses HASH indexes by default, but also supports BTREE indexes.

10.3.6 Multiple-Column Indexes

MySQL can create composite indexes (that is, indexes on multiple columns). An index may consist of
up to 16 columns. For certain data types, you can index a prefix of the column (see Section 10.3.5,
“Column Indexes”).

MySQL can use multiple-column indexes for queries that test all the columns in the index, or queries
that test just the first column, the first two columns, the first three columns, and so on. If you specify the
columns in the right order in the index definition, a single composite index can speed up several kinds
of queries on the same table.

A multiple-column index can be considered a sorted array, the rows of which contain values that are
created by concatenating the values of the indexed columns.

Note

As an alternative to a composite index, you can introduce a column that is
“hashed” based on information from other columns. If this column is short,
reasonably unique, and indexed, it might be faster than a “wide” index on many
columns. In MySQL, it is very easy to use this extra column:

SELECT * FROM tbl_name
 WHERE hash_col=MD5(CONCAT(val1,val2))
 AND col1=val1 AND col2=val2;

Suppose that a table has the following specification:

1898

Verifying Index Usage

CREATE TABLE test (
 id INT NOT NULL,
 last_name CHAR(30) NOT NULL,
 first_name CHAR(30) NOT NULL,
 PRIMARY KEY (id),
 INDEX name (last_name,first_name)
);

The name index is an index over the last_name and first_name columns. The index can be used
for lookups in queries that specify values in a known range for combinations of last_name and
first_name values. It can also be used for queries that specify just a last_name value because that
column is a leftmost prefix of the index (as described later in this section). Therefore, the name index is
used for lookups in the following queries:

SELECT * FROM test WHERE last_name='Jones';

SELECT * FROM test
 WHERE last_name='Jones' AND first_name='John';

SELECT * FROM test
 WHERE last_name='Jones'
 AND (first_name='John' OR first_name='Jon');

SELECT * FROM test
 WHERE last_name='Jones'
 AND first_name >='M' AND first_name < 'N';

However, the name index is not used for lookups in the following queries:

SELECT * FROM test WHERE first_name='John';

SELECT * FROM test
 WHERE last_name='Jones' OR first_name='John';

Suppose that you issue the following SELECT statement:

SELECT * FROM tbl_name
 WHERE col1=val1 AND col2=val2;

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly.
If separate single-column indexes exist on col1 and col2, the optimizer attempts to use the Index
Merge optimization (see Section 10.2.1.3, “Index Merge Optimization”), or attempts to find the most
restrictive index by deciding which index excludes more rows and using that index to fetch the rows.

If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer
to look up rows. For example, if you have a three-column index on (col1, col2, col3), you have
indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3).

MySQL cannot use the index to perform lookups if the columns do not form a leftmost prefix of the
index. Suppose that you have the SELECT statements shown here:

SELECT * FROM tbl_name WHERE col1=val1;
SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1, col2, col3), only the first two queries use the index. The third and
fourth queries do involve indexed columns, but do not use an index to perform lookups because
(col2) and (col2, col3) are not leftmost prefixes of (col1, col2, col3).

10.3.7 Verifying Index Usage

Always check whether all your queries really use the indexes that you have created in the tables. Use
the EXPLAIN statement, as described in Section 10.8.1, “Optimizing Queries with EXPLAIN”.

1899

InnoDB and MyISAM Index Statistics Collection

10.3.8 InnoDB and MyISAM Index Statistics Collection

Storage engines collect statistics about tables for use by the optimizer. Table statistics are based
on value groups, where a value group is a set of rows with the same key prefix value. For optimizer
purposes, an important statistic is the average value group size.

MySQL uses the average value group size in the following ways:

• To estimate how many rows must be read for each ref access

• To estimate how many rows a partial join produces, that is, the number of rows produced by an
operation of the form

(...) JOIN tbl_name ON tbl_name.key = expr

As the average value group size for an index increases, the index is less useful for those two purposes
because the average number of rows per lookup increases: For the index to be good for optimization
purposes, it is best that each index value target a small number of rows in the table. When a given
index value yields a large number of rows, the index is less useful and MySQL is less likely to use it.

The average value group size is related to table cardinality, which is the number of value groups. The
SHOW INDEX statement displays a cardinality value based on N/S, where N is the number of rows
in the table and S is the average value group size. That ratio yields an approximate number of value
groups in the table.

For a join based on the <=> comparison operator, NULL is not treated differently from any other value:
NULL <=> NULL, just as N <=> N for any other N.

However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = expr2
is not true when expr1 or expr2 (or both) are NULL. This affects ref accesses for comparisons of the
form tbl_name.key = expr: MySQL does not access the table if the current value of expr is NULL,
because the comparison cannot be true.

For = comparisons, it does not matter how many NULL values are in the table. For optimization
purposes, the relevant value is the average size of the non-NULL value groups. However, MySQL does
not currently enable that average size to be collected or used.

For InnoDB and MyISAM tables, you have some control over collection of table statistics by means
of the innodb_stats_method and myisam_stats_method system variables, respectively. These
variables have three possible values, which differ as follows:

• When the variable is set to nulls_equal, all NULL values are treated as identical (that is, they all
form a single value group).

If the NULL value group size is much higher than the average non-NULL value group size, this
method skews the average value group size upward. This makes index appear to the optimizer to be
less useful than it really is for joins that look for non-NULL values. Consequently, the nulls_equal
method may cause the optimizer not to use the index for ref accesses when it should.

• When the variable is set to nulls_unequal, NULL values are not considered the same. Instead,
each NULL value forms a separate value group of size 1.

If you have many NULL values, this method skews the average value group size downward. If
the average non-NULL value group size is large, counting NULL values each as a group of size 1
causes the optimizer to overestimate the value of the index for joins that look for non-NULL values.
Consequently, the nulls_unequal method may cause the optimizer to use this index for ref
lookups when other methods may be better.

• When the variable is set to nulls_ignored, NULL values are ignored.

If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons
and one NULL is equal to another. In this case, nulls_equal is the appropriate statistics method.

1900

Comparison of B-Tree and Hash Indexes

The innodb_stats_method system variable has a global value; the myisam_stats_method
system variable has both global and session values. Setting the global value affects statistics
collection for tables from the corresponding storage engine. Setting the session value affects statistics
collection only for the current client connection. This means that you can force a table's statistics to
be regenerated with a given method without affecting other clients by setting the session value of
myisam_stats_method.

To regenerate MyISAM table statistics, you can use any of the following methods:

• Execute myisamchk --stats_method=method_name --analyze

• Change the table to cause its statistics to go out of date (for example, insert a row and then delete it),
and then set myisam_stats_method and issue an ANALYZE TABLE statement

Some caveats regarding the use of innodb_stats_method and myisam_stats_method:

• You can force table statistics to be collected explicitly, as just described. However, MySQL may also
collect statistics automatically. For example, if during the course of executing statements for a table,
some of those statements modify the table, MySQL may collect statistics. (This may occur for bulk
inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the statistics
are collected using whatever value innodb_stats_method or myisam_stats_method has at
the time. Thus, if you collect statistics using one method, but the system variable is set to the other
method when a table's statistics are collected automatically later, the other method is used.

• There is no way to tell which method was used to generate statistics for a given table.

• These variables apply only to InnoDB and MyISAM tables. Other storage engines have only one
method for collecting table statistics. Usually it is closer to the nulls_equal method.

10.3.9 Comparison of B-Tree and Hash Indexes

Understanding the B-tree and hash data structures can help predict how different queries perform on
different storage engines that use these data structures in their indexes, particularly for the MEMORY
storage engine that lets you choose B-tree or hash indexes.

• B-Tree Index Characteristics

• Hash Index Characteristics

B-Tree Index Characteristics

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or
BETWEEN operators. The index also can be used for LIKE comparisons if the argument to LIKE is
a constant string that does not start with a wildcard character. For example, the following SELECT
statements use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';

In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are considered. In the
second statement, only rows with 'Pat' <= key_col < 'Pau' are considered.

The following SELECT statements do not use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the
LIKE value is not a constant.

If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the
Turbo Boyer-Moore algorithm to initialize the pattern for the string and then uses this pattern to perform
the search more quickly.

1901

Use of Index Extensions

A search using col_name IS NULL employs indexes if col_name is indexed.

Any index that does not span all AND levels in the WHERE clause is not used to optimize the query. In
other words, to be able to use an index, a prefix of the index must be used in every AND group.

The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3

 /* index = 1 OR index = 2 */
... WHERE index=1 OR A=10 AND index=2

 /* optimized like "index_part1='hello'" */
... WHERE index_part1='hello' AND index_part3=5

 /* Can use index on index1 but not on index2 or index3 */
... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;

These WHERE clauses do not use indexes:

 /* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2

 /* Index is not used in both parts of the WHERE clause */
... WHERE index=1 OR A=10

 /* No index spans all rows */
... WHERE index_part1=1 OR index_part2=10

Sometimes MySQL does not use an index, even if one is available. One circumstance under which
this occurs is when the optimizer estimates that using the index would require MySQL to access a
very large percentage of the rows in the table. (In this case, a table scan is likely to be much faster
because it requires fewer seeks.) However, if such a query uses LIMIT to retrieve only some of the
rows, MySQL uses an index anyway, because it can much more quickly find the few rows to return in
the result.

Hash Index Characteristics

Hash indexes have somewhat different characteristics from those just discussed:

• They are used only for equality comparisons that use the = or <=> operators (but are very fast). They
are not used for comparison operators such as < that find a range of values. Systems that rely on
this type of single-value lookup are known as “key-value stores”; to use MySQL for such applications,
use hash indexes wherever possible.

• The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index cannot
be used to search for the next entry in order.)

• MySQL cannot determine approximately how many rows there are between two values (this is used
by the range optimizer to decide which index to use). This may affect some queries if you change a
MyISAM or InnoDB table to a hash-indexed MEMORY table.

• Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key
can be used to find rows.)

10.3.10 Use of Index Extensions

InnoDB automatically extends each secondary index by appending the primary key columns to it.
Consider this table definition:

CREATE TABLE t1 (
 i1 INT NOT NULL DEFAULT 0,
 i2 INT NOT NULL DEFAULT 0,

1902

Use of Index Extensions

 d DATE DEFAULT NULL,
 PRIMARY KEY (i1, i2),
 INDEX k_d (d)
) ENGINE = InnoDB;

This table defines the primary key on columns (i1, i2). It also defines a secondary index k_d on
column (d), but internally InnoDB extends this index and treats it as columns (d, i1, i2).

The optimizer takes into account the primary key columns of the extended secondary index when
determining how and whether to use that index. This can result in more efficient query execution plans
and better performance.

The optimizer can use extended secondary indexes for ref, range, and index_merge index access,
for Loose Index Scan access, for join and sorting optimization, and for MIN()/MAX() optimization.

The following example shows how execution plans are affected by whether the optimizer uses
extended secondary indexes. Suppose that t1 is populated with these rows:

INSERT INTO t1 VALUES
(1, 1, '1998-01-01'), (1, 2, '1999-01-01'),
(1, 3, '2000-01-01'), (1, 4, '2001-01-01'),
(1, 5, '2002-01-01'), (2, 1, '1998-01-01'),
(2, 2, '1999-01-01'), (2, 3, '2000-01-01'),
(2, 4, '2001-01-01'), (2, 5, '2002-01-01'),
(3, 1, '1998-01-01'), (3, 2, '1999-01-01'),
(3, 3, '2000-01-01'), (3, 4, '2001-01-01'),
(3, 5, '2002-01-01'), (4, 1, '1998-01-01'),
(4, 2, '1999-01-01'), (4, 3, '2000-01-01'),
(4, 4, '2001-01-01'), (4, 5, '2002-01-01'),
(5, 1, '1998-01-01'), (5, 2, '1999-01-01'),
(5, 3, '2000-01-01'), (5, 4, '2001-01-01'),
(5, 5, '2002-01-01');

Now consider this query:

EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'

The execution plan depends on whether the extended index is used.

When the optimizer does not consider index extensions, it treats the index k_d as only (d). EXPLAIN
for the query produces this result:

mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ref
possible_keys: PRIMARY,k_d
 key: k_d
 key_len: 4
 ref: const
 rows: 5
 Extra: Using where; Using index

When the optimizer takes index extensions into account, it treats k_d as (d, i1, i2). In this case, it
can use the leftmost index prefix (d, i1) to produce a better execution plan:

mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ref
possible_keys: PRIMARY,k_d
 key: k_d
 key_len: 8

1903

Use of Index Extensions

 ref: const,const
 rows: 1
 Extra: Using index

In both cases, key indicates that the optimizer uses secondary index k_d but the EXPLAIN output
shows these improvements from using the extended index:

• key_len goes from 4 bytes to 8 bytes, indicating that key lookups use columns d and i1, not just d.

• The ref value changes from const to const,const because the key lookup uses two key parts,
not one.

• The rows count decreases from 5 to 1, indicating that InnoDB should need to examine fewer rows
to produce the result.

• The Extra value changes from Using where; Using index to Using index. This means that
rows can be read using only the index, without consulting columns in the data row.

Differences in optimizer behavior for use of extended indexes can also be seen with SHOW STATUS:

FLUSH TABLE t1;
FLUSH STATUS;
SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01';
SHOW STATUS LIKE 'handler_read%'

The preceding statements include FLUSH TABLES and FLUSH STATUS to flush the table cache and
clear the status counters.

Without index extensions, SHOW STATUS produces this result:

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
Handler_read_first	0
Handler_read_key	1
Handler_read_last	0
Handler_read_next	5
Handler_read_prev	0
Handler_read_rnd	0
Handler_read_rnd_next	0
+-----------------------+-------+

With index extensions, SHOW STATUS produces this result. The Handler_read_next value
decreases from 5 to 1, indicating more efficient use of the index:

+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
Handler_read_first	0
Handler_read_key	1
Handler_read_last	0
Handler_read_next	1
Handler_read_prev	0
Handler_read_rnd	0
Handler_read_rnd_next	0
+-----------------------+-------+

The use_index_extensions flag of the optimizer_switch system variable permits control
over whether the optimizer takes the primary key columns into account when determining how to use
an InnoDB table's secondary indexes. By default, use_index_extensions is enabled. To check
whether disabling use of index extensions can improve performance, use this statement:

SET optimizer_switch = 'use_index_extensions=off';

Use of index extensions by the optimizer is subject to the usual limits on the number of key parts in an
index (16) and the maximum key length (3072 bytes).

1904

Optimizer Use of Generated Column Indexes

10.3.11 Optimizer Use of Generated Column Indexes

MySQL supports indexes on generated columns. For example:

CREATE TABLE t1 (f1 INT, gc INT AS (f1 + 1) STORED, INDEX (gc));

The generated column, gc, is defined as the expression f1 + 1. The column is also indexed and the
optimizer can take that index into account during execution plan construction. In the following query,
the WHERE clause refers to gc and the optimizer considers whether the index on that column yields a
more efficient plan:

SELECT * FROM t1 WHERE gc > 9;

The optimizer can use indexes on generated columns to generate execution plans, even in the
absence of direct references in queries to those columns by name. This occurs if the WHERE, ORDER
BY, or GROUP BY clause refers to an expression that matches the definition of some indexed generated
column. The following query does not refer directly to gc but does use an expression that matches the
definition of gc:

SELECT * FROM t1 WHERE f1 + 1 > 9;

The optimizer recognizes that the expression f1 + 1 matches the definition of gc and that gc
is indexed, so it considers that index during execution plan construction. You can see this using
EXPLAIN:

mysql> EXPLAIN SELECT * FROM t1 WHERE f1 + 1 > 9\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: range
possible_keys: gc
 key: gc
 key_len: 5
 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: Using index condition

In effect, the optimizer has replaced the expression f1 + 1 with the name of the generated column
that matches the expression. That is also apparent in the rewritten query available in the extended
EXPLAIN information displayed by SHOW WARNINGS:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select `test`.`t1`.`f1` AS `f1`,`test`.`t1`.`gc`
 AS `gc` from `test`.`t1` where (`test`.`t1`.`gc` > 9)

The following restrictions and conditions apply to the optimizer's use of generated column indexes:

• For a query expression to match a generated column definition, the expression must be identical and
it must have the same result type. For example, if the generated column expression is f1 + 1, the
optimizer does not recognize a match if the query uses 1 + f1, or if f1 + 1 (an integer expression)
is compared with a string.

• The optimization applies to these operators: =, <, <=, >, >=, BETWEEN, and IN().

For operators other than BETWEEN and IN(), either operand can be replaced by a matching
generated column. For BETWEEN and IN(), only the first argument can be replaced by a matching
generated column, and the other arguments must have the same result type. BETWEEN and IN()
are not yet supported for comparisons involving JSON values.

1905

Invisible Indexes

• The generated column must be defined as an expression that contains at least a function call or
one of the operators mentioned in the preceding item. The expression cannot consist of a simple
reference to another column. For example, gc INT AS (f1) STORED consists only of a column
reference, so indexes on gc are not considered.

• For comparisons of strings to indexed generated columns that compute a value from a JSON
function that returns a quoted string, JSON_UNQUOTE() is needed in the column definition to remove
the extra quotes from the function value. (For direct comparison of a string to the function result, the
JSON comparator handles quote removal, but this does not occur for index lookups.) For example,
instead of writing a column definition like this:

doc_name TEXT AS (JSON_EXTRACT(jdoc, '$.name')) STORED

Write it like this:

doc_name TEXT AS (JSON_UNQUOTE(JSON_EXTRACT(jdoc, '$.name'))) STORED

With the latter definition, the optimizer can detect a match for both of these comparisons:

... WHERE JSON_EXTRACT(jdoc, '$.name') = 'some_string' ...

... WHERE JSON_UNQUOTE(JSON_EXTRACT(jdoc, '$.name')) = 'some_string' ...

Without JSON_UNQUOTE() in the column definition, the optimizer detects a match only for the first of
those comparisons.

• If the optimizer picks the wrong index, an index hint can be used to disable it and force the optimizer
to make a different choice.

10.3.12 Invisible Indexes

MySQL supports invisible indexes; that is, indexes that are not used by the optimizer. The feature
applies to indexes other than primary keys (either explicit or implicit).

Indexes are visible by default. To control visibility explicitly for a new index, use a VISIBLE or
INVISIBLE keyword as part of the index definition for CREATE TABLE, CREATE INDEX, or ALTER
TABLE:

CREATE TABLE t1 (
 i INT,
 j INT,
 k INT,
 INDEX i_idx (i) INVISIBLE
) ENGINE = InnoDB;
CREATE INDEX j_idx ON t1 (j) INVISIBLE;
ALTER TABLE t1 ADD INDEX k_idx (k) INVISIBLE;

To alter the visibility of an existing index, use a VISIBLE or INVISIBLE keyword with the ALTER
TABLE ... ALTER INDEX operation:

ALTER TABLE t1 ALTER INDEX i_idx INVISIBLE;
ALTER TABLE t1 ALTER INDEX i_idx VISIBLE;

Information about whether an index is visible or invisible is available from the Information Schema
STATISTICS table or SHOW INDEX output. For example:

mysql> SELECT INDEX_NAME, IS_VISIBLE
 FROM INFORMATION_SCHEMA.STATISTICS
 WHERE TABLE_SCHEMA = 'db1' AND TABLE_NAME = 't1';
+------------+------------+
| INDEX_NAME | IS_VISIBLE |
+------------+------------+
i_idx	YES
j_idx	NO
k_idx	NO
+------------+------------+

1906

Invisible Indexes

Invisible indexes make it possible to test the effect of removing an index on query performance, without
making a destructive change that must be undone should the index turn out to be required. Dropping
and re-adding an index can be expensive for a large table, whereas making it invisible and visible are
fast, in-place operations.

If an index made invisible actually is needed or used by the optimizer, there are several ways to notice
the effect of its absence on queries for the table:

• Errors occur for queries that include index hints that refer to the invisible index.

• Performance Schema data shows an increase in workload for affected queries.

• Queries have different EXPLAIN execution plans.

• Queries appear in the slow query log that did not appear there previously.

The use_invisible_indexes flag of the optimizer_switch system variable controls whether the
optimizer uses invisible indexes for query execution plan construction. If the flag is off (the default),
the optimizer ignores invisible indexes (the same behavior as prior to the introduction of this flag). If
the flag is on, invisible indexes remain invisible but the optimizer takes them into account for execution
plan construction.

Using the SET_VAR optimizer hint to update the value of optimizer_switch temporarily, you can
enable invisible indexes for the duration of a single query only, like this:

mysql> EXPLAIN SELECT /*+ SET_VAR(optimizer_switch = 'use_invisible_indexes=on') */
 > i, j FROM t1 WHERE j >= 50\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: range
possible_keys: j_idx
 key: j_idx
 key_len: 5
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using index condition

mysql> EXPLAIN SELECT i, j FROM t1 WHERE j >= 50\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 5
 filtered: 33.33
 Extra: Using where

Index visibility does not affect index maintenance. For example, an index continues to be updated per
changes to table rows, and a unique index prevents insertion of duplicates into a column, regardless of
whether the index is visible or invisible.

A table with no explicit primary key may still have an effective implicit primary key if it has any UNIQUE
indexes on NOT NULL columns. In this case, the first such index places the same constraint on table
rows as an explicit primary key and that index cannot be made invisible. Consider the following table
definition:

CREATE TABLE t2 (

1907

Descending Indexes

 i INT NOT NULL,
 j INT NOT NULL,
 UNIQUE j_idx (j)
) ENGINE = InnoDB;

The definition includes no explicit primary key, but the index on NOT NULL column j places the same
constraint on rows as a primary key and cannot be made invisible:

mysql> ALTER TABLE t2 ALTER INDEX j_idx INVISIBLE;
ERROR 3522 (HY000): A primary key index cannot be invisible.

Now suppose that an explicit primary key is added to the table:

ALTER TABLE t2 ADD PRIMARY KEY (i);

The explicit primary key cannot be made invisible. In addition, the unique index on j no longer acts as
an implicit primary key and as a result can be made invisible:

mysql> ALTER TABLE t2 ALTER INDEX j_idx INVISIBLE;
Query OK, 0 rows affected (0.03 sec)

10.3.13 Descending Indexes

MySQL supports descending indexes: DESC in an index definition is no longer ignored but causes
storage of key values in descending order. Previously, indexes could be scanned in reverse order but
at a performance penalty. A descending index can be scanned in forward order, which is more efficient.
Descending indexes also make it possible for the optimizer to use multiple-column indexes when the
most efficient scan order mixes ascending order for some columns and descending order for others.

Consider the following table definition, which contains two columns and four two-column index
definitions for the various combinations of ascending and descending indexes on the columns:

CREATE TABLE t (
 c1 INT, c2 INT,
 INDEX idx1 (c1 ASC, c2 ASC),
 INDEX idx2 (c1 ASC, c2 DESC),
 INDEX idx3 (c1 DESC, c2 ASC),
 INDEX idx4 (c1 DESC, c2 DESC)
);

The table definition results in four distinct indexes. The optimizer can perform a forward index scan for
each of the ORDER BY clauses and need not use a filesort operation:

ORDER BY c1 ASC, c2 ASC -- optimizer can use idx1
ORDER BY c1 DESC, c2 DESC -- optimizer can use idx4
ORDER BY c1 ASC, c2 DESC -- optimizer can use idx2
ORDER BY c1 DESC, c2 ASC -- optimizer can use idx3

Use of descending indexes is subject to these conditions:

• Descending indexes are supported only for the InnoDB storage engine, with these limitations:

• Change buffering is not supported for a secondary index if the index contains a descending index
key column or if the primary key includes a descending index column.

• The InnoDB SQL parser does not use descending indexes. For InnoDB full-text search, this
means that the index required on the FTS_DOC_ID column of the indexed table cannot be defined
as a descending index. For more information, see Section 17.6.2.4, “InnoDB Full-Text Indexes”.

• Descending indexes are supported for all data types for which ascending indexes are available.

• Descending indexes are supported for ordinary (nongenerated) and generated columns (both
VIRTUAL and STORED).

• DISTINCT can use any index containing matching columns, including descending key parts.

1908

Indexed Lookups from TIMESTAMP Columns

• Indexes that have descending key parts are not used for MIN()/MAX() optimization of queries that
invoke aggregate functions but do not have a GROUP BY clause.

• Descending indexes are supported for BTREE but not HASH indexes. Descending indexes are not
supported for FULLTEXT or SPATIAL indexes.

Explicitly specified ASC and DESC designators for HASH, FULLTEXT, and SPATIAL indexes results in
an error.

You can see in the Extra column of the output of EXPLAIN that the optimizer is able to use a
descending index, as shown here:

mysql> CREATE TABLE t1 (
 -> a INT,
 -> b INT,
 -> INDEX a_desc_b_asc (a DESC, b ASC)
 ->);

mysql> EXPLAIN SELECT * FROM t1 ORDER BY a ASC\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: index
possible_keys: NULL
 key: a_desc_b_asc
 key_len: 10
 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: Backward index scan; Using index

In EXPLAIN FORMAT=TREE output, use of a descending index is indicated by the addition of
(reverse) following the name of the index, like this:

mysql> EXPLAIN FORMAT=TREE SELECT * FROM t1 ORDER BY a ASC\G
*************************** 1. row ***************************
EXPLAIN: -> Index scan on t1 using a_desc_b_asc (reverse) (cost=0.35 rows=1)

See also EXPLAIN Extra Information.

10.3.14 Indexed Lookups from TIMESTAMP Columns

Temporal values are stored in TIMESTAMP columns as UTC values, and values inserted into and
retrieved from TIMESTAMP columns are converted between the session time zone and UTC. (This is
the same type of conversion performed by the CONVERT_TZ() function. If the session time zone is
UTC, there is effectively no time zone conversion.)

Due to conventions for local time zone changes such as Daylight Saving Time (DST), conversions
between UTC and non-UTC time zones are not one-to-one in both directions. UTC values that are
distinct may not be distinct in another time zone. The following example shows distinct UTC values that
become identical in a non-UTC time zone:

mysql> CREATE TABLE tstable (ts TIMESTAMP);
mysql> SET time_zone = 'UTC'; -- insert UTC values
mysql> INSERT INTO tstable VALUES
 ('2018-10-28 00:30:00'),
 ('2018-10-28 01:30:00');
mysql> SELECT ts FROM tstable;
+---------------------+
| ts |
+---------------------+
| 2018-10-28 00:30:00 |
| 2018-10-28 01:30:00 |
+---------------------+
mysql> SET time_zone = 'MET'; -- retrieve non-UTC values

1909

Indexed Lookups from TIMESTAMP Columns

mysql> SELECT ts FROM tstable;
+---------------------+
| ts |
+---------------------+
| 2018-10-28 02:30:00 |
| 2018-10-28 02:30:00 |
+---------------------+

Note

To use named time zones such as 'MET' or 'Europe/Amsterdam', the
time zone tables must be properly set up. For instructions, see Section 7.1.15,
“MySQL Server Time Zone Support”.

You can see that the two distinct UTC values are the same when converted to the 'MET' time zone.
This phenomenon can lead to different results for a given TIMESTAMP column query, depending on
whether the optimizer uses an index to execute the query.

Suppose that a query selects values from the table shown earlier using a WHERE clause to search the
ts column for a single specific value such as a user-provided timestamp literal:

SELECT ts FROM tstable
WHERE ts = 'literal';

Suppose further that the query executes under these conditions:

• The session time zone is not UTC and has a DST shift. For example:

SET time_zone = 'MET';

• Unique UTC values stored in the TIMESTAMP column are not unique in the session time zone due to
DST shifts. (The example shown earlier illustrates how this can occur.)

• The query specifies a search value that is within the hour of entry into DST in the session time zone.

Under those conditions, the comparison in the WHERE clause occurs in different ways for nonindexed
and indexed lookups and leads to different results:

• If there is no index or the optimizer cannot use it, comparisons occur in the session time zone. The
optimizer performs a table scan in which it retrieves each ts column value, converts it from UTC
to the session time zone, and compares it to the search value (also interpreted in the session time
zone):

mysql> SELECT ts FROM tstable
 WHERE ts = '2018-10-28 02:30:00';
+---------------------+
| ts |
+---------------------+
| 2018-10-28 02:30:00 |
| 2018-10-28 02:30:00 |
+---------------------+

Because the stored ts values are converted to the session time zone, it is possible for the query to
return two timestamp values that are distinct as UTC values but equal in the session time zone: One
value that occurs before the DST shift when clocks are changed, and one value that was occurs after
the DST shift.

• If there is a usable index, comparisons occur in UTC. The optimizer performs an index scan, first
converting the search value from the session time zone to UTC, then comparing the result to the
UTC index entries:

mysql> ALTER TABLE tstable ADD INDEX (ts);
mysql> SELECT ts FROM tstable
 WHERE ts = '2018-10-28 02:30:00';
+---------------------+
| ts |

1910

Optimizing Database Structure

+---------------------+
| 2018-10-28 02:30:00 |
+---------------------+

In this case, the (converted) search value is matched only to index entries, and because the index
entries for the distinct stored UTC values are also distinct, the search value can match only one of
them.

Due to different optimizer operation for nonindexed and indexed lookups, the query produces different
results in each case. The result from the nonindexed lookup returns all values that match in the session
time zone. The indexed lookup cannot do so:

• It is performed within the storage engine, which knows only about UTC values.

• For the two distinct session time zone values that map to the same UTC value, the indexed lookup
matches only the corresponding UTC index entry and returns only a single row.

In the preceding discussion, the data set stored in tstable happens to consist of distinct UTC values.
In such cases, all index-using queries of the form shown match at most one index entry.

If the index is not UNIQUE, it is possible for the table (and the index) to store multiple instances of
a given UTC value. For example, the ts column might contain multiple instances of the UTC value
'2018-10-28 00:30:00'. In this case, the index-using query would return each of them (converted
to the MET value '2018-10-28 02:30:00' in the result set). It remains true that index-using queries
match the converted search value to a single value in the UTC index entries, rather than matching
multiple UTC values that convert to the search value in the session time zone.

If it is important to return all ts values that match in the session time zone, the workaround is to
suppress use of the index with an IGNORE INDEX hint:

mysql> SELECT ts FROM tstable
 IGNORE INDEX (ts)
 WHERE ts = '2018-10-28 02:30:00';
+---------------------+
| ts |
+---------------------+
| 2018-10-28 02:30:00 |
| 2018-10-28 02:30:00 |
+---------------------+

The same lack of one-to-one mapping for time zone conversions in both directions occurs
in other contexts as well, such as conversions performed with the FROM_UNIXTIME() and
UNIX_TIMESTAMP() functions. See Section 14.7, “Date and Time Functions”.

10.4 Optimizing Database Structure
In your role as a database designer, look for the most efficient way to organize your schemas, tables,
and columns. As when tuning application code, you minimize I/O, keep related items together, and plan
ahead so that performance stays high as the data volume increases. Starting with an efficient database
design makes it easier for team members to write high-performing application code, and makes the
database likely to endure as applications evolve and are rewritten.

10.4.1 Optimizing Data Size

Design your tables to minimize their space on the disk. This can result in huge improvements by
reducing the amount of data written to and read from disk. Smaller tables normally require less main
memory while their contents are being actively processed during query execution. Any space reduction
for table data also results in smaller indexes that can be processed faster.

MySQL supports many different storage engines (table types) and row formats. For each table, you
can decide which storage and indexing method to use. Choosing the proper table format for your
application can give you a big performance gain. See Chapter 17, The InnoDB Storage Engine, and
Chapter 18, Alternative Storage Engines.

1911

Optimizing Data Size

You can get better performance for a table and minimize storage space by using the techniques listed
here:

• Table Columns

• Row Format

• Indexes

• Joins

• Normalization

Table Columns

• Use the most efficient (smallest) data types possible. MySQL has many specialized types that save
disk space and memory. For example, use the smaller integer types if possible to get smaller tables.
MEDIUMINT is often a better choice than INT because a MEDIUMINT column uses 25% less space.

• Declare columns to be NOT NULL if possible. It makes SQL operations faster, by enabling better use
of indexes and eliminating overhead for testing whether each value is NULL. You also save some
storage space, one bit per column. If you really need NULL values in your tables, use them. Just
avoid the default setting that allows NULL values in every column.

Row Format

• InnoDB tables are created using the DYNAMIC row format by default. To use a row format other than
DYNAMIC, configure innodb_default_row_format, or specify the ROW_FORMAT option explicitly
in a CREATE TABLE or ALTER TABLE statement.

The compact family of row formats, which includes COMPACT, DYNAMIC, and COMPRESSED,
decreases row storage space at the cost of increasing CPU use for some operations. If your
workload is a typical one that is limited by cache hit rates and disk speed it is likely to be faster. If it is
a rare case that is limited by CPU speed, it might be slower.

The compact family of row formats also optimizes CHAR column storage when using a variable-length
character set such as utf8mb3 or utf8mb4. With ROW_FORMAT=REDUNDANT, CHAR(N) occupies
N × the maximum byte length of the character set. Many languages can be written primarily using
single-byte utf8mb3or utf8mb4 characters, so a fixed storage length often wastes space. With the
compact family of rows formats, InnoDB allocates a variable amount of storage in the range of N
to N × the maximum byte length of the character set for these columns by stripping trailing spaces.
The minimum storage length is N bytes to facilitate in-place updates in typical cases. For more
information, see Section 17.10, “InnoDB Row Formats”.

• To minimize space even further by storing table data in compressed form, specify
ROW_FORMAT=COMPRESSED when creating InnoDB tables, or run the myisampack command on
an existing MyISAM table. (InnoDB compressed tables are readable and writable, while MyISAM
compressed tables are read-only.)

• For MyISAM tables, if you do not have any variable-length columns (VARCHAR, TEXT, or BLOB
columns), a fixed-size row format is used. This is faster but may waste some space. See
Section 18.2.3, “MyISAM Table Storage Formats”. You can hint that you want to have fixed length
rows even if you have VARCHAR columns with the CREATE TABLE option ROW_FORMAT=FIXED.

Indexes

• The primary index of a table should be as short as possible. This makes identification of each row
easy and efficient. For InnoDB tables, the primary key columns are duplicated in each secondary
index entry, so a short primary key saves considerable space if you have many secondary indexes.

• Create only the indexes that you need to improve query performance. Indexes are good for retrieval,
but slow down insert and update operations. If you access a table mostly by searching on a

1912

Optimizing MySQL Data Types

combination of columns, create a single composite index on them rather than a separate index for
each column. The first part of the index should be the column most used. If you always use many
columns when selecting from the table, the first column in the index should be the one with the most
duplicates, to obtain better compression of the index.

• If it is very likely that a long string column has a unique prefix on the first number of characters, it is
better to index only this prefix, using MySQL's support for creating an index on the leftmost part of
the column (see Section 15.1.15, “CREATE INDEX Statement”). Shorter indexes are faster, not only
because they require less disk space, but because they also give you more hits in the index cache,
and thus fewer disk seeks. See Section 7.1.1, “Configuring the Server”.

Joins

• In some circumstances, it can be beneficial to split into two a table that is scanned very often. This is
especially true if it is a dynamic-format table and it is possible to use a smaller static format table that
can be used to find the relevant rows when scanning the table.

• Declare columns with identical information in different tables with identical data types, to speed up
joins based on the corresponding columns.

• Keep column names simple, so that you can use the same name across different tables and simplify
join queries. For example, in a table named customer, use a column name of name instead of
customer_name. To make your names portable to other SQL servers, consider keeping them
shorter than 18 characters.

Normalization

• Normally, try to keep all data nonredundant (observing what is referred to in database theory as
third normal form). Instead of repeating lengthy values such as names and addresses, assign them
unique IDs, repeat these IDs as needed across multiple smaller tables, and join the tables in queries
by referencing the IDs in the join clause.

• If speed is more important than disk space and the maintenance costs of keeping multiple copies
of data, for example in a business intelligence scenario where you analyze all the data from large
tables, you can relax the normalization rules, duplicating information or creating summary tables to
gain more speed.

10.4.2 Optimizing MySQL Data Types

10.4.2.1 Optimizing for Numeric Data

• For unique IDs or other values that can be represented as either strings or numbers, prefer numeric
columns to string columns. Since large numeric values can be stored in fewer bytes than the
corresponding strings, it is faster and takes less memory to transfer and compare them.

• If you are using numeric data, it is faster in many cases to access information from a database (using
a live connection) than to access a text file. Information in the database is likely to be stored in a
more compact format than in the text file, so accessing it involves fewer disk accesses. You also
save code in your application because you can avoid parsing the text file to find line and column
boundaries.

10.4.2.2 Optimizing for Character and String Types

For character and string columns, follow these guidelines:

• Use binary collation order for fast comparison and sort operations, when you do not need language-
specific collation features. You can use the BINARY operator to use binary collation within a
particular query.

• When comparing values from different columns, declare those columns with the same character set
and collation wherever possible, to avoid string conversions while running the query.

1913

Optimizing for Many Tables

• For column values less than 8KB in size, use binary VARCHAR instead of BLOB. The GROUP BY and
ORDER BY clauses can generate temporary tables, and these temporary tables can use the MEMORY
storage engine if the original table does not contain any BLOB columns.

• If a table contains string columns such as name and address, but many queries do not retrieve
those columns, consider splitting the string columns into a separate table and using join queries
with a foreign key when necessary. When MySQL retrieves any value from a row, it reads a data
block containing all the columns of that row (and possibly other adjacent rows). Keeping each row
small, with only the most frequently used columns, allows more rows to fit in each data block. Such
compact tables reduce disk I/O and memory usage for common queries.

• When you use a randomly generated value as a primary key in an InnoDB table, prefix it with an
ascending value such as the current date and time if possible. When consecutive primary values are
physically stored near each other, InnoDB can insert and retrieve them faster.

• See Section 10.4.2.1, “Optimizing for Numeric Data” for reasons why a numeric column is usually
preferable to an equivalent string column.

10.4.2.3 Optimizing for BLOB Types

• When storing a large blob containing textual data, consider compressing it first. Do not use this
technique when the entire table is compressed by InnoDB or MyISAM.

• For a table with several columns, to reduce memory requirements for queries that do not use the
BLOB column, consider splitting the BLOB column into a separate table and referencing it with a join
query when needed.

• Since the performance requirements to retrieve and display a BLOB value might be very different
from other data types, you could put the BLOB-specific table on a different storage device or even a
separate database instance. For example, to retrieve a BLOB might require a large sequential disk
read that is better suited to a traditional hard drive than to an SSD device.

• See Section 10.4.2.2, “Optimizing for Character and String Types” for reasons why a binary
VARCHAR column is sometimes preferable to an equivalent BLOB column.

• Rather than testing for equality against a very long text string, you can store a hash of the column
value in a separate column, index that column, and test the hashed value in queries. (Use the MD5()
or CRC32() function to produce the hash value.) Since hash functions can produce duplicate results
for different inputs, you still include a clause AND blob_column = long_string_value in
the query to guard against false matches; the performance benefit comes from the smaller, easily
scanned index for the hashed values.

10.4.3 Optimizing for Many Tables

Some techniques for keeping individual queries fast involve splitting data across many tables. When
the number of tables runs into the thousands or even millions, the overhead of dealing with all these
tables becomes a new performance consideration.

10.4.3.1 How MySQL Opens and Closes Tables

When you execute a mysqladmin status command, you should see something like this:

Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12

The Open tables value of 12 can be somewhat puzzling if you have fewer than 12 tables.

MySQL is multithreaded, so there may be many clients issuing queries for a given table
simultaneously. To minimize the problem with multiple client sessions having different states on the
same table, the table is opened independently by each concurrent session. This uses additional
memory but normally increases performance. With MyISAM tables, one extra file descriptor is required

1914

Optimizing for Many Tables

for the data file for each client that has the table open. (By contrast, the index file descriptor is shared
between all sessions.)

The table_open_cache and max_connections system variables affect the maximum number of
files the server keeps open. If you increase one or both of these values, you may run up against a limit
imposed by your operating system on the per-process number of open file descriptors. Many operating
systems permit you to increase the open-files limit, although the method varies widely from system to
system. Consult your operating system documentation to determine whether it is possible to increase
the limit and how to do so.

table_open_cache is related to max_connections. For example, for 200 concurrent running
connections, specify a table cache size of at least 200 * N, where N is the maximum number of tables
per join in any of the queries which you execute. You must also reserve some extra file descriptors for
temporary tables and files.

Make sure that your operating system can handle the number of open file descriptors implied by the
table_open_cache setting. If table_open_cache is set too high, MySQL may run out of file
descriptors and exhibit symptoms such as refusing connections or failing to perform queries.

Also take into account that the MyISAM storage engine needs two file descriptors for each unique open
table. To increase the number of file descriptors available to MySQL, set the open_files_limit
system variable. See Section B.3.2.16, “File Not Found and Similar Errors”.

The cache of open tables is kept at a level of table_open_cache entries. The server autosizes
the cache size at startup. To set the size explicitly, set the table_open_cache system variable at
startup. MySQL may temporarily open more tables than this to execute queries, as described later in
this section.

MySQL closes an unused table and removes it from the table cache under the following circumstances:

• When the cache is full and a thread tries to open a table that is not in the cache.

• When the cache contains more than table_open_cache entries and a table in the cache is no
longer being used by any threads.

• When a table-flushing operation occurs. This happens when someone issues a FLUSH TABLES
statement or executes a mysqladmin flush-tables or mysqladmin refresh command.

When the table cache fills up, the server uses the following procedure to locate a cache entry to use:

• Tables not currently in use are released, beginning with the table least recently used.

• If a new table must be opened, but the cache is full and no tables can be released, the cache is
temporarily extended as necessary. When the cache is in a temporarily extended state and a table
goes from a used to unused state, the table is closed and released from the cache.

A MyISAM table is opened for each concurrent access. This means the table needs to be opened twice
if two threads access the same table or if a thread accesses the table twice in the same query (for
example, by joining the table to itself). Each concurrent open requires an entry in the table cache. The
first open of any MyISAM table takes two file descriptors: one for the data file and one for the index file.
Each additional use of the table takes only one file descriptor for the data file. The index file descriptor
is shared among all threads.

If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table object
is allocated for the thread. This table object is not shared by other threads and is not closed until the
thread calls HANDLER tbl_name CLOSE or the thread terminates. When this happens, the table is put
back in the table cache (if the cache is not full). See Section 15.2.5, “HANDLER Statement”.

To determine whether your table cache is too small, check the Opened_tables status variable, which
indicates the number of table-opening operations since the server started:

mysql> SHOW GLOBAL STATUS LIKE 'Opened_tables';
+---------------+-------+

1915

Internal Temporary Table Use in MySQL

| Variable_name | Value |
+---------------+-------+
| Opened_tables | 2741 |
+---------------+-------+

If the value is very large or increases rapidly, even when you have not issued many FLUSH TABLES
statements, increase the table_open_cache value at server startup.

10.4.3.2 Disadvantages of Creating Many Tables in the Same Database

If you have many MyISAM tables in the same database directory, open, close, and create operations
are slow. If you execute SELECT statements on many different tables, there is a little overhead when
the table cache is full, because for every table that has to be opened, another must be closed. You can
reduce this overhead by increasing the number of entries permitted in the table cache.

10.4.4 Internal Temporary Table Use in MySQL

In some cases, the server creates internal temporary tables while processing statements. Users have
no direct control over when this occurs.

The server creates temporary tables under conditions such as these:

• Evaluation of UNION statements, with some exceptions described later.

• Evaluation of some views, such those that use the TEMPTABLE algorithm, UNION, or aggregation.

• Evaluation of derived tables (see Section 15.2.15.8, “Derived Tables”).

• Evaluation of common table expressions (see Section 15.2.20, “WITH (Common Table
Expressions)”).

• Tables created for subquery or semijoin materialization (see Section 10.2.2, “Optimizing Subqueries,
Derived Tables, View References, and Common Table Expressions”).

• Evaluation of statements that contain an ORDER BY clause and a different GROUP BY clause, or for
which the ORDER BY or GROUP BY contains columns from tables other than the first table in the join
queue.

• Evaluation of DISTINCT combined with ORDER BY may require a temporary table.

• For queries that use the SQL_SMALL_RESULT modifier, MySQL uses an in-memory temporary table,
unless the query also contains elements (described later) that require on-disk storage.

• To evaluate INSERT ... SELECT statements that select from and insert into the same table,
MySQL creates an internal temporary table to hold the rows from the SELECT, then inserts those
rows into the target table. See Section 15.2.7.1, “INSERT ... SELECT Statement”.

• Evaluation of multiple-table UPDATE statements.

• Evaluation of GROUP_CONCAT() or COUNT(DISTINCT) expressions.

• Evaluation of window functions (see Section 14.20, “Window Functions”) uses temporary tables as
necessary.

To determine whether a statement requires a temporary table, use EXPLAIN and check the Extra
column to see whether it says Using temporary (see Section 10.8.1, “Optimizing Queries with
EXPLAIN”). EXPLAIN does not necessarily say Using temporary for derived or materialized
temporary tables. For statements that use window functions, EXPLAIN with FORMAT=JSON always
provides information about the windowing steps. If the windowing functions use temporary tables, it is
indicated for each step.

Some query conditions prevent the use of an in-memory temporary table, in which case the server
uses an on-disk table instead:

1916

Internal Temporary Table Use in MySQL

• Presence of a BLOB or TEXT column in the table. However, the TempTable storage engine, which
is the default storage engine for in-memory internal temporary tables in MySQL 8.0, supports binary
large object types as of MySQL 8.0.13. See Internal Temporary Table Storage Engine.

• Presence of any string column with a maximum length larger than 512 (bytes for binary strings,
characters for nonbinary strings) in the SELECT list, if UNION or UNION ALL is used.

• The SHOW COLUMNS and DESCRIBE statements use BLOB as the type for some columns, thus the
temporary table used for the results is an on-disk table.

The server does not use a temporary table for UNION statements that meet certain qualifications.
Instead, it retains from temporary table creation only the data structures necessary to perform result
column typecasting. The table is not fully instantiated and no rows are written to or read from it; rows
are sent directly to the client. The result is reduced memory and disk requirements, and smaller delay
before the first row is sent to the client because the server need not wait until the last query block is
executed. EXPLAIN and optimizer trace output reflects this execution strategy: The UNION RESULT
query block is not present because that block corresponds to the part that reads from the temporary
table.

These conditions qualify a UNION for evaluation without a temporary table:

• The union is UNION ALL, not UNION or UNION DISTINCT.

• There is no global ORDER BY clause.

• The union is not the top-level query block of an {INSERT | REPLACE} ... SELECT ...
statement.

Internal Temporary Table Storage Engine

An internal temporary table can be held in memory and processed by the TempTable or MEMORY
storage engine, or stored on disk by the InnoDB storage engine.

Storage Engine for In-Memory Internal Temporary Tables

The internal_tmp_mem_storage_engine variable defines the storage engine used for in-memory
internal temporary tables. Permitted values are TempTable (the default) and MEMORY.

Note

As of MySQL 8.0.27, configuring a session setting for
internal_tmp_mem_storage_engine requires the
SESSION_VARIABLES_ADMIN or SYSTEM_VARIABLES_ADMIN privilege.

The TempTable storage engine provides efficient storage for VARCHAR and VARBINARY columns, and
other binary large object types as of MySQL 8.0.13.

The following variables control TempTable storage engine limits and behavior:

• tmp_table_size: From MySQL 8.0.28, tmp_table_size defines the maximum size of any
individual in-memory internal temporary table created by the TempTable storage engine. When the
tmp_table_size limit is reached, MySQL automatically converts the in-memory internal temporary
table to an InnoDB on-disk internal temporary table. The default tmp_table_size setting is
16777216 bytes (16 MiB).

The tmp_table_size limit is intended to prevent individual queries from consuming an
inordinate amount global TempTable resources, which can affect the performance of concurrent
queries that require TempTable resources. Global TempTable resources are controlled by the
temptable_max_ram and temptable_max_mmap settings.

If the tmp_table_size limit is less than the temptable_max_ram limit, it is not possible for
an in-memory temporary table to contain more data than permitted by the tmp_table_size
limit. If the tmp_table_size limit is greater than the sum of the temptable_max_ram and

1917

Internal Temporary Table Use in MySQL

temptable_max_mmap limits, it is not possible for an in-memory temporary table to contain more
than the sum of the temptable_max_ram and temptable_max_mmap limits.

• temptable_max_ram: Defines the maximum amount of RAM that can be used by the TempTable
storage engine before it starts allocating space from memory-mapped files or before MySQL starts
using InnoDB on-disk internal temporary tables, depending on your configuration. The default
temptable_max_ram setting is 1073741824 bytes (1GiB).

Note

The temptable_max_ram setting does not account for the thread-local
memory block allocated to each thread that uses the TempTable storage
engine. The size of the thread-local memory block depends on the size of
the thread's first memory allocation request. If the request is less than 1MB,
which it is in most cases, the thread-local memory block size is 1MB. If the
request is greater than 1MB, the thread-local memory block is approximately
the same size as the initial memory request. The thread-local memory block
is held in thread-local storage until thread exit.

• temptable_use_mmap: Controls whether the TempTable storage engine allocates space
from memory-mapped files or MySQL uses InnoDB on-disk internal temporary tables when the
temptable_max_ram limit is exceeded. The default setting is temptable_use_mmap=ON.

Note

The temptable_use_mmap variable was introduced in MySQL 8.0.16 and
deprecated in MySQL 8.0.26; expect support for it to be removed in a future
version of MySQL. Setting temptable_max_mmap=0 is equivalent to setting
temptable_use_mmap=OFF.

• temptable_max_mmap: Introduced in MySQL 8.0.23. Defines the maximum amount of memory
the TempTable storage engine is permitted to allocate from memory-mapped files before MySQL
starts using InnoDB on-disk internal temporary tables. The default setting is 1073741824 bytes
(1GiB). The limit is intended to address the risk of memory mapped files using too much space in
the temporary directory (tmpdir). A temptable_max_mmap=0 setting disables allocation from
memory-mapped files, effectively disabling their use, regardless of the temptable_use_mmap
setting.

Use of memory-mapped files by the TempTable storage engine is governed by these rules:

• Temporary files are created in the directory defined by the tmpdir variable.

• Temporary files are deleted immediately after they are created and opened, and therefore do
not remain visible in the tmpdir directory. The space occupied by temporary files is held by the
operating system while temporary files are open. The space is reclaimed when temporary files are
closed by the TempTable storage engine, or when the mysqld process is shut down.

• Data is never moved between RAM and temporary files, within RAM, or between temporary files.

• New data is stored in RAM if space becomes available within the limit defined by
temptable_max_ram. Otherwise, new data is stored in temporary files.

• If space becomes available in RAM after some of the data for a table is written to temporary files, it is
possible for the remaining table data to be stored in RAM.

When using the MEMORY storage engine for in-memory temporary tables
(internal_tmp_mem_storage_engine=MEMORY), MySQL automatically converts an in-memory
temporary table to an on-disk table if it becomes too large. The maximum size of an in-memory
temporary table is defined by the tmp_table_size or max_heap_table_size value, whichever
is smaller. This differs from MEMORY tables explicitly created with CREATE TABLE. For such tables,
only the max_heap_table_size variable determines how large a table can grow, and there is no
conversion to on-disk format.

1918

Internal Temporary Table Use in MySQL

Storage Engine for On-Disk Internal Temporary Tables

In MySQL 8.0.15 and earlier, the internal_tmp_disk_storage_engine variable defined the
storage engine used for on-disk internal temporary tables. Supported storage engines were InnoDB
and MyISAM.

From MySQL 8.0.16, MySQL uses only the InnoDB storage engine for on-disk internal temporary
tables. The MYISAM storage engine is no longer supported for this purpose.

InnoDB on-disk internal temporary tables are created in session temporary tablespaces that reside in
the data directory by default. For more information, see Section 17.6.3.5, “Temporary Tablespaces”.

In MySQL 8.0.15 and earlier:

• For common table expressions (CTEs), the storage engine used for on-disk internal temporary tables
cannot be MyISAM. If internal_tmp_disk_storage_engine=MYISAM, an error occurs for any
attempt to materialize a CTE using an on-disk temporary table.

• When using internal_tmp_disk_storage_engine=INNODB, queries that generate on-disk
internal temporary tables that exceed InnoDB row or column limits return Row size too large or
Too many columns errors. The workaround is to set internal_tmp_disk_storage_engine to
MYISAM.

Internal Temporary Table Storage Format

When in-memory internal temporary tables are managed by the TempTable storage engine, rows
that include VARCHAR columns, VARBINARY columns, and other binary large object type columns
(supported as of MySQL 8.0.13) are represented in memory by an array of cells, with each cell
containing a NULL flag, the data length, and a data pointer. Column values are placed in consecutive
order after the array, in a single region of memory, without padding. Each cell in the array uses 16
bytes of storage. The same storage format applies when the TempTable storage engine allocates
space from memory-mapped files.

When in-memory internal temporary tables are managed by the MEMORY storage engine, fixed-length
row format is used. VARCHAR and VARBINARY column values are padded to the maximum column
length, in effect storing them as CHAR and BINARY columns.

Prior to MySQL 8.0.16, on-disk internal temporary tables were managed by the InnoDB or MyISAM
storage engine (depending on the internal_tmp_disk_storage_engine setting). Both engines
store internal temporary tables using dynamic-width row format. Columns take only as much storage as
needed, which reduces disk I/O, space requirements, and processing time compared to on-disk tables
that use fixed-length rows. Beginning with MySQL 8.0.16, internal_tmp_disk_storage_engine
is not supported, and internal temporary tables on disk are always managed by InnoDB.

When using the MEMORY storage engine, statements can initially create an in-memory internal
temporary table and then convert it to an on-disk table if the table becomes too large. In such cases,
better performance might be achieved by skipping the conversion and creating the internal temporary
table on disk to begin with. The big_tables variable can be used to force disk storage of internal
temporary tables.

Monitoring Internal Temporary Table Creation

When an internal temporary table is created in memory or on disk, the server increments the
Created_tmp_tables value. When an internal temporary table is created on disk, the server
increments the Created_tmp_disk_tables value. If too many internal temporary tables are created
on disk, consider adjusting the engine-specific limits described in Internal Temporary Table Storage
Engine.

Note

Due to a known limitation, Created_tmp_disk_tables does not count
on-disk temporary tables created in memory-mapped files. By default, the

1919

Limits on Number of Databases and Tables

TempTable storage engine overflow mechanism creates internal temporary
tables in memory-mapped files. See Internal Temporary Table Storage Engine.

The memory/temptable/physical_ram and memory/temptable/physical_disk Performance
Schema instruments can be used to monitor TempTable space allocation from memory and disk.
memory/temptable/physical_ram reports the amount of allocated RAM. memory/temptable/
physical_disk reports the amount of space allocated from disk when memory-mapped files are
used as the TempTable overflow mechanism. If the physical_disk instrument reports a value other
than 0 and memory-mapped files are used as the TempTable overflow mechanism, a TempTable
memory limit was reached at some point. Data can be queried in Performance Schema memory
summary tables such as memory_summary_global_by_event_name. See Section 29.12.20.10,
“Memory Summary Tables”.

10.4.5 Limits on Number of Databases and Tables

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of directories.

MySQL has no limit on the number of tables. The underlying file system may have a limit on the
number of files that represent tables. Individual storage engines may impose engine-specific
constraints. InnoDB permits up to 4 billion tables.

10.4.6 Limits on Table Size

The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. For up-to-date information operating system file
size limits, refer to the documentation specific to your operating system.

Windows users, please note that FAT and VFAT (FAT32) are not considered suitable for production
use with MySQL. Use NTFS instead.

If you encounter a full-table error, there are several reasons why it might have occurred:

• The disk might be full.

• You are using InnoDB tables and have run out of room in an InnoDB tablespace file. The maximum
tablespace size is also the maximum size for a table. For tablespace size limits, see Section 17.22,
“InnoDB Limits”.

Generally, partitioning of tables into multiple tablespace files is recommended for tables larger than
1TB in size.

• You have hit an operating system file size limit. For example, you are using MyISAM tables on an
operating system that supports files only up to 2GB in size and you have hit this limit for the data file
or index file.

• You are using a MyISAM table and the space required for the table exceeds what is permitted by the
internal pointer size. MyISAM permits data and index files to grow up to 256TB by default, but this
limit can be changed up to the maximum permissible size of 65,536TB (2567 − 1 bytes).

If you need a MyISAM table that is larger than the default limit and your operating system supports
large files, the CREATE TABLE statement supports AVG_ROW_LENGTH and MAX_ROWS options. See
Section 15.1.20, “CREATE TABLE Statement”. The server uses these options to determine how
large a table to permit.

If the pointer size is too small for an existing table, you can change the options with ALTER TABLE to
increase a table's maximum permissible size. See Section 15.1.9, “ALTER TABLE Statement”.

ALTER TABLE tbl_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;

You have to specify AVG_ROW_LENGTH only for tables with BLOB or TEXT columns; in this case,
MySQL cannot optimize the space required based only on the number of rows.

1920

Limits on Table Column Count and Row Size

To change the default size limit for MyISAM tables, set the myisam_data_pointer_size, which
sets the number of bytes used for internal row pointers. The value is used to set the pointer size for
new tables if you do not specify the MAX_ROWS option. The value of myisam_data_pointer_size
can be from 2 to 7. For example, for tables that use the dynamic storage format, a value of 4 permits
tables up to 4GB; a value of 6 permits tables up to 256TB. Tables that use the fixed storage format
have a larger maximum data length. For storage format characteristics, see Section 18.2.3, “MyISAM
Table Storage Formats”.

You can check the maximum data and index sizes by using this statement:

SHOW TABLE STATUS FROM db_name LIKE 'tbl_name';

You also can use myisamchk -dv /path/to/table-index-file. See Section 15.7.7, “SHOW
Statements”, or Section 6.6.4, “myisamchk — MyISAM Table-Maintenance Utility”.

Other ways to work around file-size limits for MyISAM tables are as follows:

• If your large table is read only, you can use myisampack to compress it. myisampack usually
compresses a table by at least 50%, so you can have, in effect, much bigger tables. myisampack
also can merge multiple tables into a single table. See Section 6.6.6, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”.

• MySQL includes a MERGE library that enables you to handle a collection of MyISAM tables that
have identical structure as a single MERGE table. See Section 18.7, “The MERGE Storage Engine”.

• You are using the MEMORY (HEAP) storage engine; in this case you need to increase the value of the
max_heap_table_size system variable. See Section 7.1.8, “Server System Variables”.

10.4.7 Limits on Table Column Count and Row Size

This section describes limits on the number of columns in tables and the size of individual rows.

• Column Count Limits

• Row Size Limits

Column Count Limits

MySQL has hard limit of 4096 columns per table, but the effective maximum may be less for a given
table. The exact column limit depends on several factors:

• The maximum row size for a table constrains the number (and possibly size) of columns because the
total length of all columns cannot exceed this size. See Row Size Limits.

• The storage requirements of individual columns constrain the number of columns that fit within
a given maximum row size. Storage requirements for some data types depend on factors such
as storage engine, storage format, and character set. See Section 13.7, “Data Type Storage
Requirements”.

• Storage engines may impose additional restrictions that limit table column count. For example,
InnoDB has a limit of 1017 columns per table. See Section 17.22, “InnoDB Limits”. For information
about other storage engines, see Chapter 18, Alternative Storage Engines.

• Functional key parts (see Section 15.1.15, “CREATE INDEX Statement”) are implemented as hidden
virtual generated stored columns, so each functional key part in a table index counts against the
table total column limit.

Row Size Limits

The maximum row size for a given table is determined by several factors:

1921

Limits on Table Column Count and Row Size

• The internal representation of a MySQL table has a maximum row size limit of 65,535 bytes, even if
the storage engine is capable of supporting larger rows. BLOB and TEXT columns only contribute 9
to 12 bytes toward the row size limit because their contents are stored separately from the rest of the
row.

• The maximum row size for an InnoDB table, which applies to data stored locally within a database
page, is slightly less than half a page for 4KB, 8KB, 16KB, and 32KB innodb_page_size settings.
For example, the maximum row size is slightly less than 8KB for the default 16KB InnoDB page
size. For 64KB pages, the maximum row size is slightly less than 16KB. See Section 17.22, “InnoDB
Limits”.

If a row containing variable-length columns exceeds the InnoDB maximum row size, InnoDB selects
variable-length columns for external off-page storage until the row fits within the InnoDB row size
limit. The amount of data stored locally for variable-length columns that are stored off-page differs by
row format. For more information, see Section 17.10, “InnoDB Row Formats”.

• Different storage formats use different amounts of page header and trailer data, which affects the
amount of storage available for rows.

• For information about InnoDB row formats, see Section 17.10, “InnoDB Row Formats”.

• For information about MyISAM storage formats, see Section 18.2.3, “MyISAM Table Storage
Formats”.

Row Size Limit Examples

• The MySQL maximum row size limit of 65,535 bytes is demonstrated in the following InnoDB and
MyISAM examples. The limit is enforced regardless of storage engine, even though the storage
engine may be capable of supporting larger rows.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g VARCHAR(6000)) ENGINE=InnoDB CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g VARCHAR(6000)) ENGINE=MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

In the following MyISAM example, changing a column to TEXT avoids the 65,535-byte row size limit
and permits the operation to succeed because BLOB and TEXT columns only contribute 9 to 12 bytes
toward the row size.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g TEXT(6000)) ENGINE=MyISAM CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

The operation succeeds for an InnoDB table because changing a column to TEXT avoids the
MySQL 65,535-byte row size limit, and InnoDB off-page storage of variable-length columns avoids
the InnoDB row size limit.

mysql> CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),
 c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 f VARCHAR(10000), g TEXT(6000)) ENGINE=InnoDB CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

• Storage for variable-length columns includes length bytes, which are counted toward the row size.
For example, a VARCHAR(255) CHARACTER SET utf8mb3 column takes two bytes to store the
length of the value, so each value can take up to 767 bytes.

1922

Optimizing for InnoDB Tables

The statement to create table t1 succeeds because the columns require 32,765 + 2 bytes and
32,766 + 2 bytes, which falls within the maximum row size of 65,535 bytes:

mysql> CREATE TABLE t1
 (c1 VARCHAR(32765) NOT NULL, c2 VARCHAR(32766) NOT NULL)
 ENGINE = InnoDB CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

The statement to create table t2 fails because, although the column length is within the maximum
length of 65,535 bytes, two additional bytes are required to record the length, which causes the row
size to exceed 65,535 bytes:

mysql> CREATE TABLE t2
 (c1 VARCHAR(65535) NOT NULL)
 ENGINE = InnoDB CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

Reducing the column length to 65,533 or less permits the statement to succeed.

mysql> CREATE TABLE t2
 (c1 VARCHAR(65533) NOT NULL)
 ENGINE = InnoDB CHARACTER SET latin1;
Query OK, 0 rows affected (0.01 sec)

• For MyISAM tables, NULL columns require additional space in the row to record whether their values
are NULL. Each NULL column takes one bit extra, rounded up to the nearest byte.

The statement to create table t3 fails because MyISAM requires space for NULL columns in addition
to the space required for variable-length column length bytes, causing the row size to exceed 65,535
bytes:

mysql> CREATE TABLE t3
 (c1 VARCHAR(32765) NULL, c2 VARCHAR(32766) NULL)
 ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some columns to TEXT or BLOBs

For information about InnoDB NULL column storage, see Section 17.10, “InnoDB Row Formats”.

• InnoDB restricts row size (for data stored locally within the database page) to slightly less than half
a database page for 4KB, 8KB, 16KB, and 32KB innodb_page_size settings, and to slightly less
than 16KB for 64KB pages.

The statement to create table t4 fails because the defined columns exceed the row size limit for a
16KB InnoDB page.

mysql> CREATE TABLE t4 (
 c1 CHAR(255),c2 CHAR(255),c3 CHAR(255),
 c4 CHAR(255),c5 CHAR(255),c6 CHAR(255),
 c7 CHAR(255),c8 CHAR(255),c9 CHAR(255),
 c10 CHAR(255),c11 CHAR(255),c12 CHAR(255),
 c13 CHAR(255),c14 CHAR(255),c15 CHAR(255),
 c16 CHAR(255),c17 CHAR(255),c18 CHAR(255),
 c19 CHAR(255),c20 CHAR(255),c21 CHAR(255),
 c22 CHAR(255),c23 CHAR(255),c24 CHAR(255),
 c25 CHAR(255),c26 CHAR(255),c27 CHAR(255),
 c28 CHAR(255),c29 CHAR(255),c30 CHAR(255),
 c31 CHAR(255),c32 CHAR(255),c33 CHAR(255)
) ENGINE=InnoDB ROW_FORMAT=DYNAMIC DEFAULT CHARSET latin1;
ERROR 1118 (42000): Row size too large (> 8126). Changing some columns to TEXT or BLOB may help.
In current row format, BLOB prefix of 0 bytes is stored inline.

10.5 Optimizing for InnoDB Tables

1923

Optimizing Storage Layout for InnoDB Tables

InnoDB is the storage engine that MySQL customers typically use in production databases where
reliability and concurrency are important. InnoDB is the default storage engine in MySQL. This section
explains how to optimize database operations for InnoDB tables.

10.5.1 Optimizing Storage Layout for InnoDB Tables

• Once your data reaches a stable size, or a growing table has increased by tens or some hundreds
of megabytes, consider using the OPTIMIZE TABLE statement to reorganize the table and compact
any wasted space. The reorganized tables require less disk I/O to perform full table scans. This is a
straightforward technique that can improve performance when other techniques such as improving
index usage or tuning application code are not practical.

OPTIMIZE TABLE copies the data part of the table and rebuilds the indexes. The benefits come
from improved packing of data within indexes, and reduced fragmentation within the tablespaces
and on disk. The benefits vary depending on the data in each table. You may find that there are
significant gains for some and not for others, or that the gains decrease over time until you next
optimize the table. This operation can be slow if the table is large or if the indexes being rebuilt do
not fit into the buffer pool. The first run after adding a lot of data to a table is often much slower than
later runs.

• In InnoDB, having a long PRIMARY KEY (either a single column with a lengthy value, or several
columns that form a long composite value) wastes a lot of disk space. The primary key value
for a row is duplicated in all the secondary index records that point to the same row. (See
Section 17.6.2.1, “Clustered and Secondary Indexes”.) Create an AUTO_INCREMENT column as the
primary key if your primary key is long, or index a prefix of a long VARCHAR column instead of the
entire column.

• Use the VARCHAR data type instead of CHAR to store variable-length strings or for columns with many
NULL values. A CHAR(N) column always takes N characters to store data, even if the string is shorter
or its value is NULL. Smaller tables fit better in the buffer pool and reduce disk I/O.

When using COMPACT row format (the default InnoDB format) and variable-length character sets,
such as utf8mb4 or sjis, CHAR(N) columns occupy a variable amount of space, but still at least N
bytes.

• For tables that are big, or contain lots of repetitive text or numeric data, consider using COMPRESSED
row format. Less disk I/O is required to bring data into the buffer pool, or to perform full table scans.
Before making a permanent decision, measure the amount of compression you can achieve by using
COMPRESSED versus COMPACT row format.

10.5.2 Optimizing InnoDB Transaction Management

To optimize InnoDB transaction processing, find the ideal balance between the performance overhead
of transactional features and the workload of your server. For example, an application might encounter
performance issues if it commits thousands of times per second, and different performance issues if it
commits only every 2-3 hours.

• The default MySQL setting AUTOCOMMIT=1 can impose performance limitations on a busy database
server. Where practical, wrap several related data change operations into a single transaction,
by issuing SET AUTOCOMMIT=0 or a START TRANSACTION statement, followed by a COMMIT
statement after making all the changes.

InnoDB must flush the log to disk at each transaction commit if that transaction made modifications
to the database. When each change is followed by a commit (as with the default autocommit setting),
the I/O throughput of the storage device puts a cap on the number of potential operations per
second.

• Alternatively, for transactions that consist only of a single SELECT statement, turning on
AUTOCOMMIT helps InnoDB to recognize read-only transactions and optimize them. See
Section 10.5.3, “Optimizing InnoDB Read-Only Transactions” for requirements.

1924

Optimizing InnoDB Read-Only Transactions

• Avoid performing rollbacks after inserting, updating, or deleting huge numbers of rows. If a big
transaction is slowing down server performance, rolling it back can make the problem worse,
potentially taking several times as long to perform as the original data change operations. Killing the
database process does not help, because the rollback starts again on server startup.

To minimize the chance of this issue occurring:

• Increase the size of the buffer pool so that all the data change changes can be cached rather than
immediately written to disk.

• Set innodb_change_buffering=all so that update and delete operations are buffered in
addition to inserts.

• Consider issuing COMMIT statements periodically during the big data change operation, possibly
breaking a single delete or update into multiple statements that operate on smaller numbers of
rows.

To get rid of a runaway rollback once it occurs, increase the buffer pool so that the rollback becomes
CPU-bound and runs fast, or kill the server and restart with innodb_force_recovery=3, as
explained in Section 17.18.2, “InnoDB Recovery”.

This issue is expected to be infrequent with the default setting innodb_change_buffering=all,
which allows update and delete operations to be cached in memory, making them faster to perform
in the first place, and also faster to roll back if needed. Make sure to use this parameter setting on
servers that process long-running transactions with many inserts, updates, or deletes.

• If you can afford the loss of some of the latest committed transactions if an unexpected exit occurs,
you can set the innodb_flush_log_at_trx_commit parameter to 0. InnoDB tries to flush the
log once per second anyway, although the flush is not guaranteed.

• When rows are modified or deleted, the rows and associated undo logs are not physically removed
immediately, or even immediately after the transaction commits. The old data is preserved until
transactions that started earlier or concurrently are finished, so that those transactions can access
the previous state of modified or deleted rows. Thus, a long-running transaction can prevent InnoDB
from purging data that was changed by a different transaction.

• When rows are modified or deleted within a long-running transaction, other transactions using the
READ COMMITTED and REPEATABLE READ isolation levels have to do more work to reconstruct the
older data if they read those same rows.

• When a long-running transaction modifies a table, queries against that table from other transactions
do not make use of the covering index technique. Queries that normally could retrieve all the result
columns from a secondary index, instead look up the appropriate values from the table data.

If secondary index pages are found to have a PAGE_MAX_TRX_ID that is too new, or if records in the
secondary index are delete-marked, InnoDB may need to look up records using a clustered index.

10.5.3 Optimizing InnoDB Read-Only Transactions

InnoDB can avoid the overhead associated with setting up the transaction ID (TRX_ID field) for
transactions that are known to be read-only. A transaction ID is only needed for a transaction that
might perform write operations or locking reads such as SELECT ... FOR UPDATE. Eliminating
unnecessary transaction IDs reduces the size of internal data structures that are consulted each time a
query or data change statement constructs a read view.

InnoDB detects read-only transactions when:

• The transaction is started with the START TRANSACTION READ ONLY statement. In this case,
attempting to make changes to the database (for InnoDB, MyISAM, or other types of tables) causes
an error, and the transaction continues in read-only state:

1925

Optimizing InnoDB Redo Logging

ERROR 1792 (25006): Cannot execute statement in a READ ONLY transaction.

You can still make changes to session-specific temporary tables in a read-only transaction, or issue
locking queries for them, because those changes and locks are not visible to any other transaction.

• The autocommit setting is turned on, so that the transaction is guaranteed to be a single statement,
and the single statement making up the transaction is a “non-locking” SELECT statement. That is, a
SELECT that does not use a FOR UPDATE or LOCK IN SHARED MODE clause.

• The transaction is started without the READ ONLY option, but no updates or statements that explicitly
lock rows have been executed yet. Until updates or explicit locks are required, a transaction stays in
read-only mode.

Thus, for a read-intensive application such as a report generator, you can tune a sequence of InnoDB
queries by grouping them inside START TRANSACTION READ ONLY and COMMIT, or by turning on the
autocommit setting before running the SELECT statements, or simply by avoiding any data change
statements interspersed with the queries.

For information about START TRANSACTION and autocommit, see Section 15.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Statements”.

Note

Transactions that qualify as auto-commit, non-locking, and read-only (AC-NL-
RO) are kept out of certain internal InnoDB data structures and are therefore
not listed in SHOW ENGINE INNODB STATUS output.

10.5.4 Optimizing InnoDB Redo Logging

Consider the following guidelines for optimizing redo logging:

• Increase the size of your redo log files. When InnoDB has written redo log files full, it must write
the modified contents of the buffer pool to disk in a checkpoint. Small redo log files cause many
unnecessary disk writes.

From MySQL 8.0.30, the redo log file size is determined by the innodb_redo_log_capacity
setting. InnoDB tries to maintain 32 redo log files of the same size, with each file equal to 1/32 *
innodb_redo_log_capacity. Therefore, changing the innodb_redo_log_capacity setting
changes the size of the redo log files.

Before MySQL 8.0.30, the size and number of redo log files are configured using the
innodb_log_file_size and innodb_log_files_in_group variables.

For information about modifying your redo log file configuration, see Section 17.6.5, “Redo Log”.

• Consider increasing the size of the log buffer. A large log buffer enables large transactions to run
without a need to write the log to disk before the transactions commit. Thus, if you have transactions
that update, insert, or delete many rows, making the log buffer larger saves disk I/O. Log buffer size
is configured using the innodb_log_buffer_size configuration option, which can be configured
dynamically in MySQL 8.0.

• Configure the innodb_log_write_ahead_size configuration option to avoid “read-on-write”. This
option defines the write-ahead block size for the redo log. Set innodb_log_write_ahead_size
to match the operating system or file system cache block size. Read-on-write occurs when redo log
blocks are not entirely cached to the operating system or file system due to a mismatch between
write-ahead block size for the redo log and operating system or file system cache block size.

Valid values for innodb_log_write_ahead_size are multiples of the InnoDB log file block
size (2n). The minimum value is the InnoDB log file block size (512). Write-ahead does not occur

1926

Bulk Data Loading for InnoDB Tables

when the minimum value is specified. The maximum value is equal to the innodb_page_size
value. If you specify a value for innodb_log_write_ahead_size that is larger than the
innodb_page_size value, the innodb_log_write_ahead_size setting is truncated to the
innodb_page_size value.

Setting the innodb_log_write_ahead_size value too low in relation to the operating system or
file system cache block size results in read-on-write. Setting the value too high may have a slight
impact on fsync performance for log file writes due to several blocks being written at once.

• MySQL 8.0.11 introduced dedicated log writer threads for writing redo log records from the log buffer
to the system buffers and flushing the system buffers to the redo log files. Previously, individual
user threads were responsible those tasks. As of MySQL 8.0.22, you can enable or disable log
writer threads using the innodb_log_writer_threads variable. Dedicated log writer threads
can improve performance on high-concurrency systems, but for low-concurrency systems, disabling
dedicated log writer threads provides better performance.

• Optimize the use of spin delay by user threads waiting for flushed redo. Spin delay helps reduce
latency. During periods of low concurrency, reducing latency may be less of a priority, and avoiding
the use of spin delay during these periods may reduce energy consumption. During periods of high
concurrency, you may want to avoid expending processing power on spin delay so that it can be
used for other work. The following system variables permit setting high and low watermark values
that define boundaries for the use of spin delay.

• innodb_log_wait_for_flush_spin_hwm: Defines the maximum average log flush time
beyond which user threads no longer spin while waiting for flushed redo. The default value is 400
microseconds.

• innodb_log_spin_cpu_abs_lwm: Defines the minimum amount of CPU usage below which
user threads no longer spin while waiting for flushed redo. The value is expressed as a sum of
CPU core usage. For example, The default value of 80 is 80% of a single CPU core. On a system
with a multi-core processor, a value of 150 represents 100% usage of one CPU core plus 50%
usage of a second CPU core.

• innodb_log_spin_cpu_pct_hwm: Defines the maximum amount of CPU usage above which
user threads no longer spin while waiting for flushed redo. The value is expressed as a percentage
of the combined total processing power of all CPU cores. The default value is 50%. For example,
100% usage of two CPU cores is 50% of the combined CPU processing power on a server with
four CPU cores.

The innodb_log_spin_cpu_pct_hwm configuration option respects processor affinity. For
example, if a server has 48 cores but the mysqld process is pinned to only four CPU cores, the
other 44 CPU cores are ignored.

10.5.5 Bulk Data Loading for InnoDB Tables

These performance tips supplement the general guidelines for fast inserts in Section 10.2.5.1,
“Optimizing INSERT Statements”.

• When importing data into InnoDB, turn off autocommit mode, because it performs a log flush to
disk for every insert. To disable autocommit during your import operation, surround it with SET
autocommit and COMMIT statements:

SET autocommit=0;
... SQL import statements ...
COMMIT;

The mysqldump option --opt creates dump files that are fast to import into an InnoDB table, even
without wrapping them with the SET autocommit and COMMIT statements.

• If you have UNIQUE constraints on secondary keys, you can speed up table imports by temporarily
turning off the uniqueness checks during the import session:

1927

Bulk Data Loading for InnoDB Tables

SET unique_checks=0;
... SQL import statements ...
SET unique_checks=1;

For big tables, this saves a lot of disk I/O because InnoDB can use its change buffer to write
secondary index records in a batch. Be certain that the data contains no duplicate keys.

• If you have FOREIGN KEY constraints in your tables, you can speed up table imports by turning off
the foreign key checks for the duration of the import session:

SET foreign_key_checks=0;
... SQL import statements ...
SET foreign_key_checks=1;

For big tables, this can save a lot of disk I/O.

• Use the multiple-row INSERT syntax to reduce communication overhead between the client and the
server if you need to insert many rows:

INSERT INTO yourtable VALUES (1,2), (5,5), ...;

This tip is valid for inserts into any table, not just InnoDB tables.

• When doing bulk inserts into tables with auto-increment columns, set
innodb_autoinc_lock_mode to 2 (interleaved) instead of 1 (consecutive). See Section 17.6.1.6,
“AUTO_INCREMENT Handling in InnoDB” for details.

• When performing bulk inserts, it is faster to insert rows in PRIMARY KEY order. InnoDB tables
use a clustered index, which makes it relatively fast to use data in the order of the PRIMARY KEY.
Performing bulk inserts in PRIMARY KEY order is particularly important for tables that do not fit
entirely within the buffer pool.

• For optimal performance when loading data into an InnoDB FULLTEXT index, follow this set of
steps:

1. Define a column FTS_DOC_ID at table creation time, of type BIGINT UNSIGNED NOT NULL,
with a unique index named FTS_DOC_ID_INDEX. For example:

CREATE TABLE t1 (
FTS_DOC_ID BIGINT unsigned NOT NULL AUTO_INCREMENT,
title varchar(255) NOT NULL DEFAULT '',
text mediumtext NOT NULL,
PRIMARY KEY (`FTS_DOC_ID`)
) ENGINE=InnoDB;
CREATE UNIQUE INDEX FTS_DOC_ID_INDEX on t1(FTS_DOC_ID);

2. Load the data into the table.

3. Create the FULLTEXT index after the data is loaded.

Note

When adding FTS_DOC_ID column at table creation time, ensure that the
FTS_DOC_ID column is updated when the FULLTEXT indexed column is
updated, as the FTS_DOC_ID must increase monotonically with each INSERT
or UPDATE. If you choose not to add the FTS_DOC_ID at table creation time
and have InnoDB manage DOC IDs for you, InnoDB adds the FTS_DOC_ID
as a hidden column with the next CREATE FULLTEXT INDEX call. This
approach, however, requires a table rebuild which can impact performance.

• If loading data into a new MySQL instance, consider disabling redo logging using ALTER INSTANCE
{ENABLE|DISABLE} INNODB REDO_LOG syntax. Disabling redo logging helps speed up data
loading by avoiding redo log writes. For more information, see Disabling Redo Logging.

1928

Optimizing InnoDB Queries

Warning

This feature is intended only for loading data into a new MySQL instance. Do
not disable redo logging on a production system. It is permitted to shutdown
and restart the server while redo logging is disabled, but an unexpected
server stoppage while redo logging is disabled can cause data loss and
instance corruption.

• Use MySQL Shell to import data. MySQL Shell's parallel table import utility util.importTable()
provides rapid data import to a MySQL relational table for large data files. MySQL Shell's dump
loading utility util.loadDump() also offers parallel load capabilities. See MySQL Shell Utilities.

10.5.6 Optimizing InnoDB Queries

To tune queries for InnoDB tables, create an appropriate set of indexes on each table. See
Section 10.3.1, “How MySQL Uses Indexes” for details. Follow these guidelines for InnoDB indexes:

• Because each InnoDB table has a primary key (whether you request one or not), specify a set of
primary key columns for each table, columns that are used in the most important and time-critical
queries.

• Do not specify too many or too long columns in the primary key, because these column values are
duplicated in each secondary index. When an index contains unnecessary data, the I/O to read this
data and memory to cache it reduce the performance and scalability of the server.

• Do not create a separate secondary index for each column, because each query can only make
use of one index. Indexes on rarely tested columns or columns with only a few different values
might not be helpful for any queries. If you have many queries for the same table, testing different
combinations of columns, try to create a small number of concatenated indexes rather than a large
number of single-column indexes. If an index contains all the columns needed for the result set
(known as a covering index), the query might be able to avoid reading the table data at all.

• If an indexed column cannot contain any NULL values, declare it as NOT NULL when you create the
table. The optimizer can better determine which index is most effective to use for a query, when it
knows whether each column contains NULL values.

• You can optimize single-query transactions for InnoDB tables, using the technique in Section 10.5.3,
“Optimizing InnoDB Read-Only Transactions”.

10.5.7 Optimizing InnoDB DDL Operations

• Many DDL operations on tables and indexes (CREATE, ALTER, and DROP statements) can be
performed online. See Section 17.12, “InnoDB and Online DDL” for details.

• Online DDL support for adding secondary indexes means that you can generally speed up the
process of creating and loading a table and associated indexes by creating the table without
secondary indexes, then adding secondary indexes after the data is loaded.

• Use TRUNCATE TABLE to empty a table, not DELETE FROM tbl_name. Foreign key constraints
can make a TRUNCATE statement work like a regular DELETE statement, in which case a sequence
of commands like DROP TABLE and CREATE TABLE might be fastest.

• Because the primary key is integral to the storage layout of each InnoDB table, and changing the
definition of the primary key involves reorganizing the whole table, always set up the primary key as
part of the CREATE TABLE statement, and plan ahead so that you do not need to ALTER or DROP
the primary key afterward.

10.5.8 Optimizing InnoDB Disk I/O

If you follow best practices for database design and tuning techniques for SQL operations, but your
database is still slow due to heavy disk I/O activity, consider these disk I/O optimizations. If the Unix

1929

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities.html

Optimizing InnoDB Disk I/O

top tool or the Windows Task Manager shows that the CPU usage percentage with your workload is
less than 70%, your workload is probably disk-bound.

• Increase buffer pool size

When table data is cached in the InnoDB buffer pool, it can be accessed repeatedly
by queries without requiring any disk I/O. Specify the size of the buffer pool with the
innodb_buffer_pool_size option. This memory area is important enough that it is typically
recommended that innodb_buffer_pool_size is configured to 50 to 75 percent of system
memory. For more information see, Section 10.12.3.1, “How MySQL Uses Memory”.

• Adjust the flush method

In some versions of GNU/Linux and Unix, flushing files to disk with the Unix fsync() call (which
InnoDB uses by default) and similar methods is surprisingly slow. If database write performance is
an issue, conduct benchmarks with the innodb_flush_method parameter set to O_DSYNC.

• Configure a threshold for operating system flushes

By default, when InnoDB creates a new data file, such as a new log file or tablespace file, the
file is fully written to the operating system cache before it is flushed to disk, which can cause a
large amount of disk write activity to occur at once. To force smaller, periodic flushes of data from
the operating system cache, you can use the innodb_fsync_threshold variable to define a
threshold value, in bytes. When the byte threshold is reached, the contents of the operating system
cache are flushed to disk. The default value of 0 forces the default behavior, which is to flush data to
disk only after a file is fully written to the cache.

Specifying a threshold to force smaller, periodic flushes may be beneficial in cases where multiple
MySQL instances use the same storage devices. For example, creating a new MySQL instance and
its associated data files could cause large surges of disk write activity, impeding the performance of
other MySQL instances that use the same storage devices. Configuring a threshold helps avoid such
surges in write activity.

• Use fdatasync() instead of fsync()

On platforms that support fdatasync() system calls, the innodb_use_fdatasync variable,
introduced in MySQL 8.0.26, permits using fdatasync() instead of fsync() for operating system
flushes. An fdatasync() system call does not flush changes to file metadata unless required for
subsequent data retrieval, providing a potential performance benefit.

A subset of innodb_flush_method settings such as fsync, O_DSYNC, and O_DIRECT use
fsync() system calls. The innodb_use_fdatasync variable is applicable when using those
settings.

• Use a noop or deadline I/O scheduler with native AIO on Linux

InnoDB uses the asynchronous I/O subsystem (native AIO) on Linux to perform read-ahead and
write requests for data file pages. This behavior is controlled by the innodb_use_native_aio
configuration option, which is enabled by default. With native AIO, the type of I/O scheduler
has greater influence on I/O performance. Generally, noop and deadline I/O schedulers are
recommended. Conduct benchmarks to determine which I/O scheduler provides the best results for
your workload and environment. For more information, see Section 17.8.6, “Using Asynchronous I/O
on Linux”.

• Use direct I/O on Solaris 10 for x86_64 architecture

When using the InnoDB storage engine on Solaris 10 for x86_64 architecture (AMD Opteron),
use direct I/O for InnoDB-related files to avoid degradation of InnoDB performance. To use
direct I/O for an entire UFS file system used for storing InnoDB-related files, mount it with the
forcedirectio option; see mount_ufs(1M). (The default on Solaris 10/x86_64 is not to use
this option.) To apply direct I/O only to InnoDB file operations rather than the whole file system, set

1930

Optimizing InnoDB Disk I/O

innodb_flush_method = O_DIRECT. With this setting, InnoDB calls directio() instead of
fcntl() for I/O to data files (not for I/O to log files).

• Use raw storage for data and log files with Solaris 2.6 or later

When using the InnoDB storage engine with a large innodb_buffer_pool_size value on any
release of Solaris 2.6 and up and any platform (sparc/x86/x64/amd64), conduct benchmarks with
InnoDB data files and log files on raw devices or on a separate direct I/O UFS file system, using the
forcedirectio mount option as described previously. (It is necessary to use the mount option
rather than setting innodb_flush_method if you want direct I/O for the log files.) Users of the
Veritas file system VxFS should use the convosync=direct mount option.

Do not place other MySQL data files, such as those for MyISAM tables, on a direct I/O file system.
Executables or libraries must not be placed on a direct I/O file system.

• Use additional storage devices

Additional storage devices could be used to set up a RAID configuration. For related information, see
Section 10.12.1, “Optimizing Disk I/O”.

Alternatively, InnoDB tablespace data files and log files can be placed on different physical disks.
For more information, refer to the following sections:

• Section 17.8.1, “InnoDB Startup Configuration”

• Section 17.6.1.2, “Creating Tables Externally”

• Creating a General Tablespace

• Section 17.6.1.4, “Moving or Copying InnoDB Tables”

• Consider non-rotational storage

Non-rotational storage generally provides better performance for random I/O operations; and
rotational storage for sequential I/O operations. When distributing data and log files across rotational
and non-rotational storage devices, consider the type of I/O operations that are predominantly
performed on each file.

Random I/O-oriented files typically include file-per-table and general tablespace data files, undo
tablespace files, and temporary tablespace files. Sequential I/O-oriented files include InnoDB

1931

Optimizing InnoDB Disk I/O

system tablespace files (due to doublewrite buffering prior to MySQL 8.0.20 and change buffering),
doublewrite files introduced in MySQL 8.0.20, and log files such as binary log files and redo log files.

Review settings for the following configuration options when using non-rotational storage:

• innodb_checksum_algorithm

The crc32 option uses a faster checksum algorithm and is recommended for fast storage
systems.

• innodb_flush_neighbors

Optimizes I/O for rotational storage devices. Disable it for non-rotational storage or a mix of
rotational and non-rotational storage. It is disabled by default.

• innodb_idle_flush_pct

Permits placing a limit on page flushing during idle periods, which can help extend the life of non-
rotational storage devices. Introduced in MySQL 8.0.18.

• innodb_io_capacity

The default setting of 200 is generally sufficient for a lower-end non-rotational storage device. For
higher-end, bus-attached devices, consider a higher setting such as 1000.

• innodb_io_capacity_max

The default value of 2000 is intended for workloads that use non-rotational storage. For a high-
end, bus-attached non-rotational storage device, consider a higher setting such as 2500.

• innodb_log_compressed_pages

If redo logs are on non-rotational storage, consider disabling this option to reduce logging. See
Disable logging of compressed pages.

• innodb_log_file_size (deprecated in MySQL 8.0.30)

If redo logs are on non-rotational storage, configure this option to maximize caching and write
combining.

• innodb_redo_log_capacity

If redo logs are on non-rotational storage, configure this option to maximize caching and write
combining.

• innodb_page_size

Consider using a page size that matches the internal sector size of the disk. Early-generation
SSD devices often have a 4KB sector size. Some newer devices have a 16KB sector size. The

1932

Optimizing InnoDB Disk I/O

default InnoDB page size is 16KB. Keeping the page size close to the storage device block size
minimizes the amount of unchanged data that is rewritten to disk.

• binlog_row_image

If binary logs are on non-rotational storage and all tables have primary keys, consider setting this
option to minimal to reduce logging.

• innodb_doublewrite_pages

The default value of 4 (copied from innodb_write_io_threads) could mean too many fsync
operations for doublewrite operations. Consider increasing the value, which defaults to 128 instead
of 4 as of MySQL 8.4.0.

Note

Although this option was introduced in MySQL 8.0.20, its behavior was 120
in MySQL 5.7. This change could cause a performance degradation for
some operations, such as using ALTER to rebuild a table with the INPLACE
algorithm.

Ensure that TRIM support is enabled for your operating system. It is typically enabled by default.

• Increase I/O capacity to avoid backlogs

If throughput drops periodically because of InnoDB checkpoint operations, consider increasing
the value of the innodb_io_capacity configuration option. Higher values cause more frequent
flushing, avoiding the backlog of work that can cause dips in throughput.

• Lower I/O capacity if flushing does not fall behind

If the system is not falling behind with InnoDB flushing operations, consider lowering the value of
the innodb_io_capacity configuration option. Typically, you keep this option value as low as
practical, but not so low that it causes periodic drops in throughput as mentioned in the preceding
bullet. In a typical scenario where you could lower the option value, you might see a combination like
this in the output from SHOW ENGINE INNODB STATUS:

• History list length low, below a few thousand.

• Insert buffer merges close to rows inserted.

• Modified pages in buffer pool consistently well below innodb_max_dirty_pages_pct of the
buffer pool. (Measure at a time when the server is not doing bulk inserts; it is normal during bulk
inserts for the modified pages percentage to rise significantly.)

• Log sequence number - Last checkpoint is at less than 7/8 or ideally less than 6/8 of the
total size of the InnoDB log files.

• Store system tablespace files on Fusion-io devices

You can take advantage of a doublewrite buffer-related I/O optimization by storing the files that
contain the doublewrite storage area on Fusion-io devices that support atomic writes. (Prior to
MySQL 8.0.20, the doublewrite buffer storage are resides in the system tablespace data files. As
of MySQL 8.0.20, the storage area resides in doublewrite files. See Section 17.6.4, “Doublewrite
Buffer”.) When doublewrite storage area files are placed on Fusion-io devices that support atomic
writes, the doublewrite buffer is automatically disabled and Fusion-io atomic writes are used for
all data files. This feature is only supported on Fusion-io hardware and is only enabled for Fusion-

1933

Optimizing InnoDB Configuration Variables

io NVMFS on Linux. To take full advantage of this feature, an innodb_flush_method setting of
O_DIRECT is recommended.

Note

Because the doublewrite buffer setting is global, the doublewrite buffer is also
disabled for data files that do not reside on Fusion-io hardware.

• Disable logging of compressed pages

When using the InnoDB table compression feature, images of re-compressed pages are written
to the redo log when changes are made to compressed data. This behavior is controlled by
innodb_log_compressed_pages, which is enabled by default to prevent corruption that can
occur if a different version of the zlib compression algorithm is used during recovery. If you are
certain that the zlib version is not subject to change, disable innodb_log_compressed_pages
to reduce redo log generation for workloads that modify compressed data.

10.5.9 Optimizing InnoDB Configuration Variables

Different settings work best for servers with light, predictable loads, versus servers that are running
near full capacity all the time, or that experience spikes of high activity.

Because the InnoDB storage engine performs many of its optimizations automatically, many
performance-tuning tasks involve monitoring to ensure that the database is performing well, and
changing configuration options when performance drops. See Section 17.16, “InnoDB Integration with
MySQL Performance Schema” for information about detailed InnoDB performance monitoring.

The main configuration steps you can perform include:

• Controlling the types of data change operations for which InnoDB buffers the changed data, to
avoid frequent small disk writes. See Configuring Change Buffering. Because the default is to buffer
all types of data change operations, only change this setting if you need to reduce the amount of
buffering.

• Turning the adaptive hash indexing feature on and off using the innodb_adaptive_hash_index
option. See Section 17.5.3, “Adaptive Hash Index” for more information. You might change this
setting during periods of unusual activity, then restore it to its original setting.

• Setting a limit on the number of concurrent threads that InnoDB processes, if context switching is a
bottleneck. See Section 17.8.4, “Configuring Thread Concurrency for InnoDB”.

• Controlling the amount of prefetching that InnoDB does with its read-ahead operations. When
the system has unused I/O capacity, more read-ahead can improve the performance of queries.
Too much read-ahead can cause periodic drops in performance on a heavily loaded system. See
Section 17.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

• Increasing the number of background threads for read or write operations, if you have a high-end
I/O subsystem that is not fully utilized by the default values. See Section 17.8.5, “Configuring the
Number of Background InnoDB I/O Threads”.

• Controlling how much I/O InnoDB performs in the background. See Section 17.8.7, “Configuring
InnoDB I/O Capacity”. You might scale back this setting if you observe periodic drops in
performance.

• Controlling the algorithm that determines when InnoDB performs certain types of background
writes. See Section 17.8.3.5, “Configuring Buffer Pool Flushing”. The algorithm works for some
types of workloads but not others, so you might disable this feature if you observe periodic drops in
performance.

• Taking advantage of multicore processors and their cache memory configuration, to minimize delays
in context switching. See Section 17.8.8, “Configuring Spin Lock Polling”.

1934

Optimizing InnoDB for Systems with Many Tables

• Preventing one-time operations such as table scans from interfering with the frequently accessed
data stored in the InnoDB buffer cache. See Section 17.8.3.3, “Making the Buffer Pool Scan
Resistant”.

• Adjusting log files to a size that makes sense for reliability and crash recovery. InnoDB log files have
often been kept small to avoid long startup times after a crash. Optimizations introduced in MySQL
5.5 speed up certain steps of the crash recovery process. In particular, scanning the redo log and
applying the redo log are faster due to improved algorithms for memory management. If you have
kept your log files artificially small to avoid long startup times, you can now consider increasing log
file size to reduce the I/O that occurs due recycling of redo log records.

• Configuring the size and number of instances for the InnoDB buffer pool, especially important for
systems with multi-gigabyte buffer pools. See Section 17.8.3.2, “Configuring Multiple Buffer Pool
Instances”.

• Increasing the maximum number of concurrent transactions, which dramatically improves scalability
for the busiest databases. See Section 17.6.6, “Undo Logs”.

• Moving purge operations (a type of garbage collection) into a background thread. See
Section 17.8.9, “Purge Configuration”. To effectively measure the results of this setting, tune the
other I/O-related and thread-related configuration settings first.

• Reducing the amount of switching that InnoDB does between concurrent threads, so that
SQL operations on a busy server do not queue up and form a “traffic jam”. Set a value for the
innodb_thread_concurrency option, up to approximately 32 for a high-powered modern system.
Increase the value for the innodb_concurrency_tickets option, typically to 5000 or so. This
combination of options sets a cap on the number of threads that InnoDB processes at any one time,
and allows each thread to do substantial work before being swapped out, so that the number of
waiting threads stays low and operations can complete without excessive context switching.

10.5.10 Optimizing InnoDB for Systems with Many Tables

• If you have configured non-persistent optimizer statistics (a non-default configuration), InnoDB
computes index cardinality values for a table the first time that table is accessed after startup, instead
of storing such values in the table. This step can take significant time on systems that partition the
data into many tables. Since this overhead only applies to the initial table open operation, to “warm
up” a table for later use, access it immediately after startup by issuing a statement such as SELECT
1 FROM tbl_name LIMIT 1.

Optimizer statistics are persisted to disk by default, enabled by the innodb_stats_persistent
configuration option. For information about persistent optimizer statistics, see Section 17.8.10.1,
“Configuring Persistent Optimizer Statistics Parameters”.

10.6 Optimizing for MyISAM Tables
The MyISAM storage engine performs best with read-mostly data or with low-concurrency operations,
because table locks limit the ability to perform simultaneous updates. In MySQL, InnoDB is the default
storage engine rather than MyISAM.

10.6.1 Optimizing MyISAM Queries

Some general tips for speeding up queries on MyISAM tables:

• To help MySQL better optimize queries, use ANALYZE TABLE or run myisamchk --analyze on
a table after it has been loaded with data. This updates a value for each index part that indicates
the average number of rows that have the same value. (For unique indexes, this is always 1.)
MySQL uses this to decide which index to choose when you join two tables based on a nonconstant
expression. You can check the result from the table analysis by using SHOW INDEX FROM
tbl_name and examining the Cardinality value. myisamchk --description --verbose
shows index distribution information.

1935

Bulk Data Loading for MyISAM Tables

• To sort an index and data according to an index, use myisamchk --sort-index --sort-
records=1 (assuming that you want to sort on index 1). This is a good way to make queries faster
if you have a unique index from which you want to read all rows in order according to the index. The
first time you sort a large table this way, it may take a long time.

• Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid
problems with table locking that occur due to contention between readers and writers.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you
can INSERT new rows into it at the same time that other threads are reading from the table. If it is
important to be able to do this, consider using the table in ways that avoid deleting rows. Another
possibility is to run OPTIMIZE TABLE to defragment the table after you have deleted a lot of rows
from it. This behavior is altered by setting the concurrent_insert variable. You can force new
rows to be appended (and therefore permit concurrent inserts), even in tables that have deleted
rows. See Section 10.11.3, “Concurrent Inserts”.

• For MyISAM tables that change frequently, try to avoid all variable-length columns (VARCHAR, BLOB,
and TEXT). The table uses dynamic row format if it includes even a single variable-length column.
See Chapter 18, Alternative Storage Engines.

• It is normally not useful to split a table into different tables just because the rows become large. In
accessing a row, the biggest performance hit is the disk seek needed to find the first byte of the row.
After finding the data, most modern disks can read the entire row fast enough for most applications.
The only cases where splitting up a table makes an appreciable difference is if it is a MyISAM table
using dynamic row format that you can change to a fixed row size, or if you very often need to scan
the table but do not need most of the columns. See Chapter 18, Alternative Storage Engines.

• Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in expr1,
expr2, ... order. By using this option after extensive changes to the table, you may be able to get
higher performance.

• If you often need to calculate results such as counts based on information from a lot of rows, it may
be preferable to introduce a new table and update the counter in real time. An update of the following
form is very fast:

UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;

This is very important when you use MySQL storage engines such as MyISAM that has only table-
level locking (multiple readers with single writers). This also gives better performance with most
database systems, because the row locking manager in this case has less to do.

• Use OPTIMIZE TABLE periodically to avoid fragmentation with dynamic-format MyISAM tables. See
Section 18.2.3, “MyISAM Table Storage Formats”.

• Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates faster
because they are not flushed to disk until the table is closed. The downside is that if something
kills the server while such a table is open, you must ensure that the table is okay by running the
server with the myisam_recover_options system variable set, or by running myisamchk
before restarting the server. (However, even in this case, you should not lose anything by using
DELAY_KEY_WRITE, because the key information can always be generated from the data rows.)

• Strings are automatically prefix- and end-space compressed in MyISAM indexes. See
Section 15.1.15, “CREATE INDEX Statement”.

• You can increase performance by caching queries or answers in your application and then executing
many inserts or updates together. Locking the table during this operation ensures that the index
cache is only flushed once after all updates.

10.6.2 Bulk Data Loading for MyISAM Tables

These performance tips supplement the general guidelines for fast inserts in Section 10.2.5.1,
“Optimizing INSERT Statements”.

1936

Bulk Data Loading for MyISAM Tables

• For a MyISAM table, you can use concurrent inserts to add rows at the same time that SELECT
statements are running, if there are no deleted rows in middle of the data file. See Section 10.11.3,
“Concurrent Inserts”.

• With some extra work, it is possible to make LOAD DATA run even faster for a MyISAM table when
the table has many indexes. Use the following procedure:

1. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

2. Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name to remove all use of
indexes for the table.

3. Insert data into the table with LOAD DATA. This does not update any indexes and therefore is
very fast.

4. If you intend only to read from the table in the future, use myisampack to compress it. See
Section 18.2.3.3, “Compressed Table Characteristics”.

5. Re-create the indexes with myisamchk -rq /path/to/db/tbl_name. This creates the index
tree in memory before writing it to disk, which is much faster than updating the index during LOAD
DATA because it avoids lots of disk seeks. The resulting index tree is also perfectly balanced.

6. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

LOAD DATA performs the preceding optimization automatically if the MyISAM table into which you
insert data is empty. The main difference between automatic optimization and using the procedure
explicitly is that you can let myisamchk allocate much more temporary memory for the index
creation than you might want the server to allocate for index re-creation when it executes the LOAD
DATA statement.

You can also disable or enable the nonunique indexes for a MyISAM table by using the following
statements rather than myisamchk. If you use these statements, you can skip the FLUSH TABLES
operations:

ALTER TABLE tbl_name DISABLE KEYS;
ALTER TABLE tbl_name ENABLE KEYS;

• To speed up INSERT operations that are performed with multiple statements for nontransactional
tables, lock your tables:

LOCK TABLES a WRITE;
INSERT INTO a VALUES (1,23),(2,34),(4,33);
INSERT INTO a VALUES (8,26),(6,29);
...
UNLOCK TABLES;

This benefits performance because the index buffer is flushed to disk only once, after all INSERT
statements have completed. Normally, there would be as many index buffer flushes as there are
INSERT statements. Explicit locking statements are not needed if you can insert all rows with a
single INSERT.

Locking also lowers the total time for multiple-connection tests, although the maximum wait time for
individual connections might go up because they wait for locks. Suppose that five clients attempt to
perform inserts simultaneously as follows:

• Connection 1 does 1000 inserts

• Connections 2, 3, and 4 do 1 insert

1937

Optimizing REPAIR TABLE Statements

• Connection 5 does 1000 inserts

If you do not use locking, connections 2, 3, and 4 finish before 1 and 5. If you use locking,
connections 2, 3, and 4 probably do not finish before 1 or 5, but the total time should be about 40%
faster.

INSERT, UPDATE, and DELETE operations are very fast in MySQL, but you can obtain better overall
performance by adding locks around everything that does more than about five successive inserts
or updates. If you do very many successive inserts, you could do a LOCK TABLES followed by an
UNLOCK TABLES once in a while (each 1,000 rows or so) to permit other threads to access table.
This would still result in a nice performance gain.

INSERT is still much slower for loading data than LOAD DATA, even when using the strategies just
outlined.

• To increase performance for MyISAM tables, for both LOAD DATA and INSERT, enlarge the key
cache by increasing the key_buffer_size system variable. See Section 7.1.1, “Configuring the
Server”.

10.6.3 Optimizing REPAIR TABLE Statements

REPAIR TABLE for MyISAM tables is similar to using myisamchk for repair operations, and some of
the same performance optimizations apply:

• myisamchk has variables that control memory allocation. You may be able to its improve
performance by setting these variables, as described in Section 6.6.4.6, “myisamchk Memory
Usage”.

• For REPAIR TABLE, the same principle applies, but because the repair is done by the server, you
set server system variables instead of myisamchk variables. Also, in addition to setting memory-
allocation variables, increasing the myisam_max_sort_file_size system variable increases the
likelihood that the repair uses the faster filesort method and avoids the slower repair by key cache
method. Set the variable to the maximum file size for your system, after checking to be sure that
there is enough free space to hold a copy of the table files. The free space must be available in the
file system containing the original table files.

Suppose that a myisamchk table-repair operation is done using the following options to set its
memory-allocation variables:

--key_buffer_size=128M --myisam_sort_buffer_size=256M
--read_buffer_size=64M --write_buffer_size=64M

Some of those myisamchk variables correspond to server system variables:

myisamchk Variable System Variable

key_buffer_size key_buffer_size

myisam_sort_buffer_size myisam_sort_buffer_size

read_buffer_size read_buffer_size

write_buffer_size none

Each of the server system variables can be set at runtime, and some of them
(myisam_sort_buffer_size, read_buffer_size) have a session value in addition to a global
value. Setting a session value limits the effect of the change to your current session and does not affect
other users. Changing a global-only variable (key_buffer_size, myisam_max_sort_file_size)
affects other users as well. For key_buffer_size, you must take into account that the buffer
is shared with those users. For example, if you set the myisamchk key_buffer_size variable
to 128MB, you could set the corresponding key_buffer_size system variable larger than that
(if it is not already set larger), to permit key buffer use by activity in other sessions. However,

1938

Optimizing for MEMORY Tables

changing the global key buffer size invalidates the buffer, causing increased disk I/O and slowdown
for other sessions. An alternative that avoids this problem is to use a separate key cache, assign
to it the indexes from the table to be repaired, and deallocate it when the repair is complete. See
Section 10.10.2.2, “Multiple Key Caches”.

Based on the preceding remarks, a REPAIR TABLE operation can be done as follows to use settings
similar to the myisamchk command. Here a separate 128MB key buffer is allocated and the file
system is assumed to permit a file size of at least 100GB.

SET SESSION myisam_sort_buffer_size = 256*1024*1024;
SET SESSION read_buffer_size = 64*1024*1024;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
SET GLOBAL repair_cache.key_buffer_size = 128*1024*1024;
CACHE INDEX tbl_name IN repair_cache;
LOAD INDEX INTO CACHE tbl_name;
REPAIR TABLE tbl_name ;
SET GLOBAL repair_cache.key_buffer_size = 0;

If you intend to change a global variable but want to do so only for the duration of a REPAIR TABLE
operation to minimally affect other users, save its value in a user variable and restore it afterward. For
example:

SET @old_myisam_sort_buffer_size = @@GLOBAL.myisam_max_sort_file_size;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
REPAIR TABLE tbl_name ;
SET GLOBAL myisam_max_sort_file_size = @old_myisam_max_sort_file_size;

The system variables that affect REPAIR TABLE can be set globally at server startup if you want the
values to be in effect by default. For example, add these lines to the server my.cnf file:

[mysqld]
myisam_sort_buffer_size=256M
key_buffer_size=1G
myisam_max_sort_file_size=100G

These settings do not include read_buffer_size. Setting read_buffer_size globally to a
large value does so for all sessions and can cause performance to suffer due to excessive memory
allocation for a server with many simultaneous sessions.

10.7 Optimizing for MEMORY Tables

Consider using MEMORY tables for noncritical data that is accessed often, and is read-only or rarely
updated. Benchmark your application against equivalent InnoDB or MyISAM tables under a realistic
workload, to confirm that any additional performance is worth the risk of losing data, or the overhead of
copying data from a disk-based table at application start.

For best performance with MEMORY tables, examine the kinds of queries against each table, and
specify the type to use for each associated index, either a B-tree index or a hash index. On the CREATE
INDEX statement, use the clause USING BTREE or USING HASH. B-tree indexes are fast for queries
that do greater-than or less-than comparisons through operators such as > or BETWEEN. Hash indexes
are only fast for queries that look up single values through the = operator, or a restricted set of values
through the IN operator. For why USING BTREE is often a better choice than the default USING HASH,
see Section 10.2.1.23, “Avoiding Full Table Scans”. For implementation details of the different types of
MEMORY indexes, see Section 10.3.9, “Comparison of B-Tree and Hash Indexes”.

10.8 Understanding the Query Execution Plan

Depending on the details of your tables, columns, indexes, and the conditions in your WHERE clause,
the MySQL optimizer considers many techniques to efficiently perform the lookups involved in an SQL
query. A query on a huge table can be performed without reading all the rows; a join involving several
tables can be performed without comparing every combination of rows. The set of operations that the
optimizer chooses to perform the most efficient query is called the “query execution plan”, also known

1939

Optimizing Queries with EXPLAIN

as the EXPLAIN plan. Your goals are to recognize the aspects of the EXPLAIN plan that indicate a
query is optimized well, and to learn the SQL syntax and indexing techniques to improve the plan if you
see some inefficient operations.

10.8.1 Optimizing Queries with EXPLAIN

The EXPLAIN statement provides information about how MySQL executes statements:

• EXPLAIN works with SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.

• When EXPLAIN is used with an explainable statement, MySQL displays information from the
optimizer about the statement execution plan. That is, MySQL explains how it would process the
statement, including information about how tables are joined and in which order. For information
about using EXPLAIN to obtain execution plan information, see Section 10.8.2, “EXPLAIN Output
Format”.

• When EXPLAIN is used with FOR CONNECTION connection_id rather than an explainable
statement, it displays the execution plan for the statement executing in the named connection. See
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”.

• For SELECT statements, EXPLAIN produces additional execution plan information that can be
displayed using SHOW WARNINGS. See Section 10.8.3, “Extended EXPLAIN Output Format”.

• EXPLAIN is useful for examining queries involving partitioned tables. See Section 26.3.5, “Obtaining
Information About Partitions”.

• The FORMAT option can be used to select the output format. TRADITIONAL presents the output
in tabular format. This is the default if no FORMAT option is present. JSON format displays the
information in JSON format.

 With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the
optimizer joins the tables in an optimal order. To give a hint to the optimizer to use a join order
corresponding to the order in which the tables are named in a SELECT statement, begin the statement
with SELECT STRAIGHT_JOIN rather than just SELECT. (See Section 15.2.13, “SELECT Statement”.)
However, STRAIGHT_JOIN may prevent indexes from being used because it disables semijoin
transformations. See Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin
Transformations”.

The optimizer trace may sometimes provide information complementary to that of EXPLAIN. However,
the optimizer trace format and content are subject to change between versions. For details, see
Section 10.15, “Tracing the Optimizer”.

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 15.7.3.1, “ANALYZE TABLE Statement”.

Note

EXPLAIN can also be used to obtain information about the columns in a
table. EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name and
SHOW COLUMNS FROM tbl_name. For more information, see Section 15.8.1,
“DESCRIBE Statement”, and Section 15.7.7.5, “SHOW COLUMNS Statement”.

10.8.2 EXPLAIN Output Format

The EXPLAIN statement provides information about how MySQL executes statements. EXPLAIN
works with SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.

EXPLAIN returns a row of information for each table used in the SELECT statement. It lists the tables
in the output in the order that MySQL would read them while processing the statement. This means

1940

EXPLAIN Output Format

that MySQL reads a row from the first table, then finds a matching row in the second table, and then
in the third table, and so on. When all tables are processed, MySQL outputs the selected columns and
backtracks through the table list until a table is found for which there are more matching rows. The next
row is read from this table and the process continues with the next table.

Note

MySQL Workbench has a Visual Explain capability that provides a visual
representation of EXPLAIN output. See Tutorial: Using Explain to Improve
Query Performance.

• EXPLAIN Output Columns

• EXPLAIN Join Types

• EXPLAIN Extra Information

• EXPLAIN Output Interpretation

EXPLAIN Output Columns

This section describes the output columns produced by EXPLAIN. Later sections provide additional
information about the type and Extra columns.

Each output row from EXPLAIN provides information about one table. Each row contains the values
summarized in Table 10.1, “EXPLAIN Output Columns”, and described in more detail following the
table. Column names are shown in the table's first column; the second column provides the equivalent
property name shown in the output when FORMAT=JSON is used.

Table 10.1 EXPLAIN Output Columns

Column JSON Name Meaning

id select_id The SELECT identifier

select_type None The SELECT type

table table_name The table for the output row

partitions partitions The matching partitions

type access_type The join type

possible_keys possible_keys The possible indexes to choose

key key The index actually chosen

key_len key_length The length of the chosen key

ref ref The columns compared to the
index

rows rows Estimate of rows to be examined

filtered filtered Percentage of rows filtered by
table condition

Extra None Additional information

Note

JSON properties which are NULL are not displayed in JSON-formatted
EXPLAIN output.

• id (JSON name: select_id)

The SELECT identifier. This is the sequential number of the SELECT within the query. The value can
be NULL if the row refers to the union result of other rows. In this case, the table column shows a

1941

https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html
https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html

EXPLAIN Output Format

value like <unionM,N> to indicate that the row refers to the union of the rows with id values of M
and N.

• select_type (JSON name: none)

The type of SELECT, which can be any of those shown in the following table. A JSON-formatted
EXPLAIN exposes the SELECT type as a property of a query_block, unless it is SIMPLE or
PRIMARY. The JSON names (where applicable) are also shown in the table.

select_type Value JSON Name Meaning

SIMPLE None Simple SELECT (not using
UNION or subqueries)

PRIMARY None Outermost SELECT

UNION None Second or later SELECT
statement in a UNION

DEPENDENT UNION dependent (true) Second or later SELECT
statement in a UNION,
dependent on outer query

UNION RESULT union_result Result of a UNION.

SUBQUERY None First SELECT in subquery

DEPENDENT SUBQUERY dependent (true) First SELECT in subquery,
dependent on outer query

DERIVED None Derived table

DEPENDENT DERIVED dependent (true) Derived table dependent on
another table

MATERIALIZED materialized_from_subqueryMaterialized subquery

UNCACHEABLE SUBQUERY cacheable (false) A subquery for which the result
cannot be cached and must be
re-evaluated for each row of the
outer query

UNCACHEABLE UNION cacheable (false) The second or later select in
a UNION that belongs to an
uncacheable subquery (see
UNCACHEABLE SUBQUERY)

DEPENDENT typically signifies the use of a correlated subquery. See Section 15.2.15.7, “Correlated
Subqueries”.

DEPENDENT SUBQUERY evaluation differs from UNCACHEABLE SUBQUERY evaluation. For
DEPENDENT SUBQUERY, the subquery is re-evaluated only once for each set of different values of
the variables from its outer context. For UNCACHEABLE SUBQUERY, the subquery is re-evaluated for
each row of the outer context.

When you specify FORMAT=JSON with EXPLAIN, the output has no single property directly
equivalent to select_type; the query_block property corresponds to a given SELECT. Properties
equivalent to most of the SELECT subquery types just shown are available (an example being
materialized_from_subquery for MATERIALIZED), and are displayed when appropriate. There
are no JSON equivalents for SIMPLE or PRIMARY.

The select_type value for non-SELECT statements displays the statement type for affected tables.
For example, select_type is DELETE for DELETE statements.

• table (JSON name: table_name)

The name of the table to which the row of output refers. This can also be one of the following values:

1942

EXPLAIN Output Format

• <unionM,N>: The row refers to the union of the rows with id values of M and N.

• <derivedN>: The row refers to the derived table result for the row with an id value of N. A
derived table may result, for example, from a subquery in the FROM clause.

• <subqueryN>: The row refers to the result of a materialized subquery for the row with an id value
of N. See Section 10.2.2.2, “Optimizing Subqueries with Materialization”.

• partitions (JSON name: partitions)

The partitions from which records would be matched by the query. The value is NULL for
nonpartitioned tables. See Section 26.3.5, “Obtaining Information About Partitions”.

• type (JSON name: access_type)

The join type. For descriptions of the different types, see EXPLAIN Join Types.

• possible_keys (JSON name: possible_keys)

The possible_keys column indicates the indexes from which MySQL can choose to find the rows
in this table. Note that this column is totally independent of the order of the tables as displayed in the
output from EXPLAIN. That means that some of the keys in possible_keys might not be usable in
practice with the generated table order.

If this column is NULL (or undefined in JSON-formatted output), there are no relevant indexes. In this
case, you may be able to improve the performance of your query by examining the WHERE clause to
check whether it refers to some column or columns that would be suitable for indexing. If so, create
an appropriate index and check the query with EXPLAIN again. See Section 15.1.9, “ALTER TABLE
Statement”.

To see what indexes a table has, use SHOW INDEX FROM tbl_name.

• key (JSON name: key)

The key column indicates the key (index) that MySQL actually decided to use. If MySQL decides to
use one of the possible_keys indexes to look up rows, that index is listed as the key value.

It is possible that key may name an index that is not present in the possible_keys value. This
can happen if none of the possible_keys indexes are suitable for looking up rows, but all the
columns selected by the query are columns of some other index. That is, the named index covers
the selected columns, so although it is not used to determine which rows to retrieve, an index scan is
more efficient than a data row scan.

For InnoDB, a secondary index might cover the selected columns even if the query also selects
the primary key because InnoDB stores the primary key value with each secondary index. If key is
NULL, MySQL found no index to use for executing the query more efficiently.

To force MySQL to use or ignore an index listed in the possible_keys column, use FORCE
INDEX, USE INDEX, or IGNORE INDEX in your query. See Section 10.9.4, “Index Hints”.

For MyISAM tables, running ANALYZE TABLE helps the optimizer choose better indexes. For
MyISAM tables, myisamchk --analyze does the same. See Section 15.7.3.1, “ANALYZE TABLE
Statement”, and Section 9.6, “MyISAM Table Maintenance and Crash Recovery”.

1943

EXPLAIN Output Format

• key_len (JSON name: key_length)

The key_len column indicates the length of the key that MySQL decided to use. The value of
key_len enables you to determine how many parts of a multiple-part key MySQL actually uses. If
the key column says NULL, the key_len column also says NULL.

Due to the key storage format, the key length is one greater for a column that can be NULL than for a
NOT NULL column.

• ref (JSON name: ref)

The ref column shows which columns or constants are compared to the index named in the key
column to select rows from the table.

If the value is func, the value used is the result of some function. To see which function, use SHOW
WARNINGS following EXPLAIN to see the extended EXPLAIN output. The function might actually be
an operator such as an arithmetic operator.

• rows (JSON name: rows)

The rows column indicates the number of rows MySQL believes it must examine to execute the
query.

For InnoDB tables, this number is an estimate, and may not always be exact.

• filtered (JSON name: filtered)

The filtered column indicates an estimated percentage of table rows that are filtered by the
table condition. The maximum value is 100, which means no filtering of rows occurred. Values
decreasing from 100 indicate increasing amounts of filtering. rows shows the estimated number of
rows examined and rows × filtered shows the number of rows that are joined with the following
table. For example, if rows is 1000 and filtered is 50.00 (50%), the number of rows to be joined
with the following table is 1000 × 50% = 500.

• Extra (JSON name: none)

This column contains additional information about how MySQL resolves the query. For descriptions
of the different values, see EXPLAIN Extra Information.

There is no single JSON property corresponding to the Extra column; however, values that can
occur in this column are exposed as JSON properties, or as the text of the message property.

EXPLAIN Join Types

The type column of EXPLAIN output describes how tables are joined. In JSON-formatted output,
these are found as values of the access_type property. The following list describes the join types,
ordered from the best type to the worst:

• system

The table has only one row (= system table). This is a special case of the const join type.

• const

The table has at most one matching row, which is read at the start of the query. Because there is
only one row, values from the column in this row can be regarded as constants by the rest of the
optimizer. const tables are very fast because they are read only once.

const is used when you compare all parts of a PRIMARY KEY or UNIQUE index to constant values.
In the following queries, tbl_name can be used as a const table:

SELECT * FROM tbl_name WHERE primary_key=1;

1944

EXPLAIN Output Format

SELECT * FROM tbl_name
 WHERE primary_key_part1=1 AND primary_key_part2=2;

• eq_ref

One row is read from this table for each combination of rows from the previous tables. Other than the
system and const types, this is the best possible join type. It is used when all parts of an index are
used by the join and the index is a PRIMARY KEY or UNIQUE NOT NULL index.

eq_ref can be used for indexed columns that are compared using the = operator. The comparison
value can be a constant or an expression that uses columns from tables that are read before this
table. In the following examples, MySQL can use an eq_ref join to process ref_table:

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• ref

All rows with matching index values are read from this table for each combination of rows from the
previous tables. ref is used if the join uses only a leftmost prefix of the key or if the key is not a
PRIMARY KEY or UNIQUE index (in other words, if the join cannot select a single row based on the
key value). If the key that is used matches only a few rows, this is a good join type.

ref can be used for indexed columns that are compared using the = or <=> operator. In the
following examples, MySQL can use a ref join to process ref_table:

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• fulltext

The join is performed using a FULLTEXT index.

• ref_or_null

This join type is like ref, but with the addition that MySQL does an extra search for rows that contain
NULL values. This join type optimization is used most often in resolving subqueries. In the following
examples, MySQL can use a ref_or_null join to process ref_table:

SELECT * FROM ref_table
 WHERE key_column=expr OR key_column IS NULL;

See Section 10.2.1.15, “IS NULL Optimization”.

• index_merge

This join type indicates that the Index Merge optimization is used. In this case, the key column in the
output row contains a list of indexes used, and key_len contains a list of the longest key parts for
the indexes used. For more information, see Section 10.2.1.3, “Index Merge Optimization”.

• unique_subquery

This type replaces eq_ref for some IN subqueries of the following form:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

1945

EXPLAIN Output Format

unique_subquery is just an index lookup function that replaces the subquery completely for better
efficiency.

• index_subquery

This join type is similar to unique_subquery. It replaces IN subqueries, but it works for nonunique
indexes in subqueries of the following form:

value IN (SELECT key_column FROM single_table WHERE some_expr)

• range

Only rows that are in a given range are retrieved, using an index to select the rows. The key column
in the output row indicates which index is used. The key_len contains the longest key part that was
used. The ref column is NULL for this type.

range can be used when a key column is compared to a constant using any of the =, <>, >, >=, <,
<=, IS NULL, <=>, BETWEEN, LIKE, or IN() operators:

SELECT * FROM tbl_name
 WHERE key_column = 10;

SELECT * FROM tbl_name
 WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name
 WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name
 WHERE key_part1 = 10 AND key_part2 IN (10,20,30);

• index

The index join type is the same as ALL, except that the index tree is scanned. This occurs two
ways:

• If the index is a covering index for the queries and can be used to satisfy all data required from
the table, only the index tree is scanned. In this case, the Extra column says Using index. An
index-only scan usually is faster than ALL because the size of the index usually is smaller than the
table data.

• A full table scan is performed using reads from the index to look up data rows in index order. Uses
index does not appear in the Extra column.

MySQL can use this join type when the query uses only columns that are part of a single index.

• ALL

A full table scan is done for each combination of rows from the previous tables. This is normally
not good if the table is the first table not marked const, and usually very bad in all other cases.
Normally, you can avoid ALL by adding indexes that enable row retrieval from the table based on
constant values or column values from earlier tables.

EXPLAIN Extra Information

The Extra column of EXPLAIN output contains additional information about how MySQL resolves the
query. The following list explains the values that can appear in this column. Each item also indicates for
JSON-formatted output which property displays the Extra value. For some of these, there is a specific
property. The others display as the text of the message property.

If you want to make your queries as fast as possible, look out for Extra column values of Using
filesort and Using temporary, or, in JSON-formatted EXPLAIN output, for using_filesort
and using_temporary_table properties equal to true.

1946

EXPLAIN Output Format

• Backward index scan (JSON: backward_index_scan)

The optimizer is able to use a descending index on an InnoDB table. Shown together with Using
index. For more information, see Section 10.3.13, “Descending Indexes”.

• Child of 'table' pushed join@1 (JSON: message text)

This table is referenced as the child of table in a join that can be pushed down to the NDB kernel.
Applies only in NDB Cluster, when pushed-down joins are enabled. See the description of the
ndb_join_pushdown server system variable for more information and examples.

• const row not found (JSON property: const_row_not_found)

For a query such as SELECT ... FROM tbl_name, the table was empty.

• Deleting all rows (JSON property: message)

For DELETE, some storage engines (such as MyISAM) support a handler method that removes
all table rows in a simple and fast way. This Extra value is displayed if the engine uses this
optimization.

• Distinct (JSON property: distinct)

MySQL is looking for distinct values, so it stops searching for more rows for the current row
combination after it has found the first matching row.

• FirstMatch(tbl_name) (JSON property: first_match)

The semijoin FirstMatch join shortcutting strategy is used for tbl_name.

• Full scan on NULL key (JSON property: message)

This occurs for subquery optimization as a fallback strategy when the optimizer cannot use an index-
lookup access method.

• Impossible HAVING (JSON property: message)

The HAVING clause is always false and cannot select any rows.

• Impossible WHERE (JSON property: message)

The WHERE clause is always false and cannot select any rows.

• Impossible WHERE noticed after reading const tables (JSON property: message)

MySQL has read all const (and system) tables and notice that the WHERE clause is always false.

• LooseScan(m..n) (JSON property: message)

The semijoin LooseScan strategy is used. m and n are key part numbers.

• No matching min/max row (JSON property: message)

No row satisfies the condition for a query such as SELECT MIN(...) FROM ... WHERE
condition.

• no matching row in const table (JSON property: message)

For a query with a join, there was an empty table or a table with no rows satisfying a unique index
condition.

1947

EXPLAIN Output Format

• No matching rows after partition pruning (JSON property: message)

For DELETE or UPDATE, the optimizer found nothing to delete or update after partition pruning. It is
similar in meaning to Impossible WHERE for SELECT statements.

• No tables used (JSON property: message)

The query has no FROM clause, or has a FROM DUAL clause.

For INSERT or REPLACE statements, EXPLAIN displays this value when there is no SELECT part.
For example, it appears for EXPLAIN INSERT INTO t VALUES(10) because that is equivalent to
EXPLAIN INSERT INTO t SELECT 10 FROM DUAL.

• Not exists (JSON property: message)

MySQL was able to do a LEFT JOIN optimization on the query and does not examine more rows
in this table for the previous row combination after it finds one row that matches the LEFT JOIN
criteria. Here is an example of the type of query that can be optimized this way:

SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id
 WHERE t2.id IS NULL;

Assume that t2.id is defined as NOT NULL. In this case, MySQL scans t1 and looks up the rows
in t2 using the values of t1.id. If MySQL finds a matching row in t2, it knows that t2.id can
never be NULL, and does not scan through the rest of the rows in t2 that have the same id value.
In other words, for each row in t1, MySQL needs to do only a single lookup in t2, regardless of how
many rows actually match in t2.

In MySQL 8.0.17 and later, this can also indicate that a WHERE condition of the form NOT IN
(subquery) or NOT EXISTS (subquery) has been transformed internally into an antijoin. This
removes the subquery and brings its tables into the plan for the topmost query, providing improved
cost planning. By merging semijoins and antijoins, the optimizer can reorder tables in the execution
plan more freely, in some cases resulting in a faster plan.

You can see when an antijoin transformation is performed for a given query by checking the
Message column from SHOW WARNINGS following execution of EXPLAIN, or in the output of
EXPLAIN FORMAT=TREE.

Note

An antijoin is the complement of a semijoin table_a JOIN table_b ON
condition. The antijoin returns all rows from table_a for which there is no
row in table_b which matches condition.

• Plan isn't ready yet (JSON property: none)

This value occurs with EXPLAIN FOR CONNECTION when the optimizer has not finished creating
the execution plan for the statement executing in the named connection. If execution plan output
comprises multiple lines, any or all of them could have this Extra value, depending on the progress
of the optimizer in determining the full execution plan.

• Range checked for each record (index map: N) (JSON property: message)

MySQL found no good index to use, but found that some of indexes might be used after column
values from preceding tables are known. For each row combination in the preceding tables, MySQL
checks whether it is possible to use a range or index_merge access method to retrieve rows.
This is not very fast, but is faster than performing a join with no index at all. The applicability criteria
are as described in Section 10.2.1.2, “Range Optimization”, and Section 10.2.1.3, “Index Merge

1948

EXPLAIN Output Format

Optimization”, with the exception that all column values for the preceding table are known and
considered to be constants.

Indexes are numbered beginning with 1, in the same order as shown by SHOW INDEX for the table.
The index map value N is a bitmask value that indicates which indexes are candidates. For example,
a value of 0x19 (binary 11001) means that indexes 1, 4, and 5 are considered.

• Recursive (JSON property: recursive)

This indicates that the row applies to the recursive SELECT part of a recursive common table
expression. See Section 15.2.20, “WITH (Common Table Expressions)”.

• Rematerialize (JSON property: rematerialize)

Rematerialize (X,...) is displayed in the EXPLAIN row for table T, where X is any lateral
derived table whose rematerialization is triggered when a new row of T is read. For example:

SELECT
 ...
FROM
 t,
 LATERAL (derived table that refers to t) AS dt
...

The content of the derived table is rematerialized to bring it up to date each time a new row of t is
processed by the top query.

• Scanned N databases (JSON property: message)

This indicates how many directory scans the server performs when processing a
query for INFORMATION_SCHEMA tables, as described in Section 10.2.3, “Optimizing
INFORMATION_SCHEMA Queries”. The value of N can be 0, 1, or all.

• Select tables optimized away (JSON property: message)

The optimizer determined 1) that at most one row should be returned, and 2) that to produce this
row, a deterministic set of rows must be read. When the rows to be read can be read during the
optimization phase (for example, by reading index rows), there is no need to read any tables during
query execution.

The first condition is fulfilled when the query is implicitly grouped (contains an aggregate function but
no GROUP BY clause). The second condition is fulfilled when one row lookup is performed per index
used. The number of indexes read determines the number of rows to read.

Consider the following implicitly grouped query:

SELECT MIN(c1), MIN(c2) FROM t1;

Suppose that MIN(c1) can be retrieved by reading one index row and MIN(c2) can be retrieved
by reading one row from a different index. That is, for each column c1 and c2, there exists an index

1949

EXPLAIN Output Format

where the column is the first column of the index. In this case, one row is returned, produced by
reading two deterministic rows.

This Extra value does not occur if the rows to read are not deterministic. Consider this query:

SELECT MIN(c2) FROM t1 WHERE c1 <= 10;

Suppose that (c1, c2) is a covering index. Using this index, all rows with c1 <= 10 must be
scanned to find the minimum c2 value. By contrast, consider this query:

SELECT MIN(c2) FROM t1 WHERE c1 = 10;

In this case, the first index row with c1 = 10 contains the minimum c2 value. Only one row must be
read to produce the returned row.

For storage engines that maintain an exact row count per table (such as MyISAM, but not InnoDB),
this Extra value can occur for COUNT(*) queries for which the WHERE clause is missing or always
true and there is no GROUP BY clause. (This is an instance of an implicitly grouped query where the
storage engine influences whether a deterministic number of rows can be read.)

• Skip_open_table, Open_frm_only, Open_full_table (JSON property: message)

These values indicate file-opening optimizations that apply to queries for INFORMATION_SCHEMA
tables.

• Skip_open_table: Table files do not need to be opened. The information is already available
from the data dictionary.

• Open_frm_only: Only the data dictionary need be read for table information.

• Open_full_table: Unoptimized information lookup. Table information must be read from the
data dictionary and by reading table files.

• Start temporary, End temporary (JSON property: message)

This indicates temporary table use for the semijoin Duplicate Weedout strategy.

• unique row not found (JSON property: message)

For a query such as SELECT ... FROM tbl_name, no rows satisfy the condition for a UNIQUE
index or PRIMARY KEY on the table.

• Using filesort (JSON property: using_filesort)

MySQL must do an extra pass to find out how to retrieve the rows in sorted order. The sort is done
by going through all rows according to the join type and storing the sort key and pointer to the row for
all rows that match the WHERE clause. The keys then are sorted and the rows are retrieved in sorted
order. See Section 10.2.1.16, “ORDER BY Optimization”.

• Using index (JSON property: using_index)

The column information is retrieved from the table using only information in the index tree without
having to do an additional seek to read the actual row. This strategy can be used when the query
uses only columns that are part of a single index.

For InnoDB tables that have a user-defined clustered index, that index can be used even when
Using index is absent from the Extra column. This is the case if type is index and key is
PRIMARY.

Information about any covering indexes used is shown for EXPLAIN FORMAT=TRADITIONAL
and EXPLAIN FORMAT=JSON. Beginning with MySQL 8.0.27, it is also shown for EXPLAIN
FORMAT=TREE.

1950

EXPLAIN Output Format

• Using index condition (JSON property: using_index_condition)

Tables are read by accessing index tuples and testing them first to determine whether to read full
table rows. In this way, index information is used to defer (“push down”) reading full table rows
unless it is necessary. See Section 10.2.1.6, “Index Condition Pushdown Optimization”.

• Using index for group-by (JSON property: using_index_for_group_by)

Similar to the Using index table access method, Using index for group-by indicates that
MySQL found an index that can be used to retrieve all columns of a GROUP BY or DISTINCT query
without any extra disk access to the actual table. Additionally, the index is used in the most efficient
way so that for each group, only a few index entries are read. For details, see Section 10.2.1.17,
“GROUP BY Optimization”.

• Using index for skip scan (JSON property: using_index_for_skip_scan)

Indicates that the Skip Scan access method is used. See Skip Scan Range Access Method.

• Using join buffer (Block Nested Loop), Using join buffer (Batched Key
Access), Using join buffer (hash join) (JSON property: using_join_buffer)

Tables from earlier joins are read in portions into the join buffer, and then their rows are used from
the buffer to perform the join with the current table. (Block Nested Loop) indicates use of the
Block Nested-Loop algorithm, (Batched Key Access) indicates use of the Batched Key Access
algorithm, and (hash join) indicates use of a hash join. That is, the keys from the table on the
preceding line of the EXPLAIN output are buffered, and the matching rows are fetched in batches
from the table represented by the line in which Using join buffer appears.

In JSON-formatted output, the value of using_join_buffer is always one of Block Nested
Loop, Batched Key Access, or hash join.

Hash joins are available beginning with MySQL 8.0.18; the Block Nested-Loop algorithm is not used
in MySQL 8.0.20 or later MySQL releases. For more information about these optimizations, see
Section 10.2.1.4, “Hash Join Optimization”, and Block Nested-Loop Join Algorithm.

See Batched Key Access Joins, for information about the Batched Key Access algorithm.

• Using MRR (JSON property: message)

Tables are read using the Multi-Range Read optimization strategy. See Section 10.2.1.11, “Multi-
Range Read Optimization”.

• Using sort_union(...), Using union(...), Using intersect(...) (JSON property:
message)

These indicate the particular algorithm showing how index scans are merged for the index_merge
join type. See Section 10.2.1.3, “Index Merge Optimization”.

• Using temporary (JSON property: using_temporary_table)

To resolve the query, MySQL needs to create a temporary table to hold the result. This typically
happens if the query contains GROUP BY and ORDER BY clauses that list columns differently.

• Using where (JSON property: attached_condition)

A WHERE clause is used to restrict which rows to match against the next table or send to the client.
Unless you specifically intend to fetch or examine all rows from the table, you may have something
wrong in your query if the Extra value is not Using where and the table join type is ALL or index.

Using where has no direct counterpart in JSON-formatted output; the attached_condition
property contains any WHERE condition used.

1951

EXPLAIN Output Format

• Using where with pushed condition (JSON property: message)

This item applies to NDB tables only. It means that NDB Cluster is using the Condition Pushdown
optimization to improve the efficiency of a direct comparison between a nonindexed column and a
constant. In such cases, the condition is “pushed down” to the cluster's data nodes and is evaluated
on all data nodes simultaneously. This eliminates the need to send nonmatching rows over the
network, and can speed up such queries by a factor of 5 to 10 times over cases where Condition
Pushdown could be but is not used. For more information, see Section 10.2.1.5, “Engine Condition
Pushdown Optimization”.

• Zero limit (JSON property: message)

The query had a LIMIT 0 clause and cannot select any rows.

EXPLAIN Output Interpretation

You can get a good indication of how good a join is by taking the product of the values in the rows
column of the EXPLAIN output. This should tell you roughly how many rows MySQL must examine to
execute the query. If you restrict queries with the max_join_size system variable, this row product
also is used to determine which multiple-table SELECT statements to execute and which to abort. See
Section 7.1.1, “Configuring the Server”.

The following example shows how a multiple-table join can be optimized progressively based on the
information provided by EXPLAIN.

Suppose that you have the SELECT statement shown here and that you plan to examine it using
EXPLAIN:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
 tt.ProjectReference, tt.EstimatedShipDate,
 tt.ActualShipDate, tt.ClientID,
 tt.ServiceCodes, tt.RepetitiveID,
 tt.CurrentProcess, tt.CurrentDPPerson,
 tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
 et_1.COUNTRY, do.CUSTNAME
 FROM tt, et, et AS et_1, do
 WHERE tt.SubmitTime IS NULL
 AND tt.ActualPC = et.EMPLOYID
 AND tt.AssignedPC = et_1.EMPLOYID
 AND tt.ClientID = do.CUSTNMBR;

For this example, make the following assumptions:

• The columns being compared have been declared as follows.

Table Column Data Type

tt ActualPC CHAR(10)

tt AssignedPC CHAR(10)

tt ClientID CHAR(10)

et EMPLOYID CHAR(15)

do CUSTNMBR CHAR(15)

• The tables have the following indexes.

Table Index

tt ActualPC

tt AssignedPC

tt ClientID

et EMPLOYID (primary key)

1952

EXPLAIN Output Format

Table Index

do CUSTNMBR (primary key)

• The tt.ActualPC values are not evenly distributed.

Initially, before any optimizations have been performed, the EXPLAIN statement produces the following
information:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
do ALL PRIMARY NULL NULL NULL 2135
et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC, NULL NULL NULL 3872
 ClientID,
 ActualPC
 Range checked for each record (index map: 0x23)

Because type is ALL for each table, this output indicates that MySQL is generating a Cartesian
product of all the tables; that is, every combination of rows. This takes quite a long time, because the
product of the number of rows in each table must be examined. For the case at hand, this product is 74
× 2135 × 74 × 3872 = 45,268,558,720 rows. If the tables were bigger, you can only imagine how long it
would take.

One problem here is that MySQL can use indexes on columns more efficiently if they are declared
as the same type and size. In this context, VARCHAR and CHAR are considered the same if they are
declared as the same size. tt.ActualPC is declared as CHAR(10) and et.EMPLOYID is CHAR(15),
so there is a length mismatch.

To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from 10
characters to 15 characters:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

Now tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN statement
again produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC, NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
do ALL PRIMARY NULL NULL NULL 2135
 Range checked for each record (index map: 0x1)
et_1 ALL PRIMARY NULL NULL NULL 74
 Range checked for each record (index map: 0x1)
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

This is not perfect, but is much better: The product of the rows values is less by a factor of 74. This
version executes in a couple of seconds.

A second alteration can be made to eliminate the column length mismatches for the tt.AssignedPC
= et_1.EMPLOYID and tt.ClientID = do.CUSTNMBR comparisons:

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
 MODIFY ClientID VARCHAR(15);

After that modification, EXPLAIN produces the output shown here:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using
 ClientID, where
 ActualPC
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

1953

Extended EXPLAIN Output Format

At this point, the query is optimized almost as well as possible. The remaining problem is that, by
default, MySQL assumes that values in the tt.ActualPC column are evenly distributed, and that is
not the case for the tt table. Fortunately, it is easy to tell MySQL to analyze the key distribution:

mysql> ANALYZE TABLE tt;

With the additional index information, the join is perfect and EXPLAIN produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

 The rows column in the output from EXPLAIN is an educated guess from the MySQL join optimizer.
Check whether the numbers are even close to the truth by comparing the rows product with the
actual number of rows that the query returns. If the numbers are quite different, you might get better
performance by using STRAIGHT_JOIN in your SELECT statement and trying to list the tables in a
different order in the FROM clause. (However, STRAIGHT_JOIN may prevent indexes from being
used because it disables semijoin transformations. See Section 10.2.2.1, “Optimizing IN and EXISTS
Subquery Predicates with Semijoin Transformations”.)

It is possible in some cases to execute statements that modify data when EXPLAIN SELECT is used
with a subquery; for more information, see Section 15.2.15.8, “Derived Tables”.

10.8.3 Extended EXPLAIN Output Format

The EXPLAIN statement produces extra (“extended”) information that is not part of EXPLAIN output
but can be viewed by issuing a SHOW WARNINGS statement following EXPLAIN. As of MySQL 8.0.12,
extended information is available for SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.
Prior to 8.0.12, extended information is available only for SELECT statements.

The Message value in SHOW WARNINGS output displays how the optimizer qualifies table and column
names in the SELECT statement, what the SELECT looks like after the application of rewriting and
optimization rules, and possibly other notes about the optimization process.

The extended information displayable with a SHOW WARNINGS statement following EXPLAIN is
produced only for SELECT statements. SHOW WARNINGS displays an empty result for other explainable
statements (DELETE, INSERT, REPLACE, and UPDATE).

Here is an example of extended EXPLAIN output:

mysql> EXPLAIN
 SELECT t1.a, t1.a IN (SELECT t2.a FROM t2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 4
 filtered: 100.00
 Extra: Using index
*************************** 2. row ***************************
 id: 2
 select_type: SUBQUERY
 table: t2
 type: index
possible_keys: a
 key: a
 key_len: 5
 ref: NULL

1954

Extended EXPLAIN Output Format

 rows: 3
 filtered: 100.00
 Extra: Using index
2 rows in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select `test`.`t1`.`a` AS `a`,
 <in_optimizer>(`test`.`t1`.`a`,`test`.`t1`.`a` in
 (<materialize> (/* select#2 */ select `test`.`t2`.`a`
 from `test`.`t2` where 1 having 1),
 <primary_index_lookup>(`test`.`t1`.`a` in
 <temporary table> on <auto_key>
 where ((`test`.`t1`.`a` = `materialized-subquery`.`a`))))) AS `t1.a
 IN (SELECT t2.a FROM t2)` from `test`.`t1`
1 row in set (0.00 sec)

Because the statement displayed by SHOW WARNINGS may contain special markers to provide
information about query rewriting or optimizer actions, the statement is not necessarily valid SQL and
is not intended to be executed. The output may also include rows with Message values that provide
additional non-SQL explanatory notes about actions taken by the optimizer.

The following list describes special markers that can appear in the extended output displayed by SHOW
WARNINGS:

• <auto_key>

An automatically generated key for a temporary table.

• <cache>(expr)

The expression (such as a scalar subquery) is executed once and the resulting value is saved in
memory for later use. For results consisting of multiple values, a temporary table may be created and
<temporary table> is shown instead.

• <exists>(query fragment)

The subquery predicate is converted to an EXISTS predicate and the subquery is transformed so
that it can be used together with the EXISTS predicate.

• <in_optimizer>(query fragment)

This is an internal optimizer object with no user significance.

• <index_lookup>(query fragment)

The query fragment is processed using an index lookup to find qualifying rows.

• <if>(condition, expr1, expr2)

If the condition is true, evaluate to expr1, otherwise expr2.

• <is_not_null_test>(expr)

A test to verify that the expression does not evaluate to NULL.

• <materialize>(query fragment)

Subquery materialization is used.

• `materialized-subquery`.col_name

A reference to the column col_name in an internal temporary table materialized to hold the result
from evaluating a subquery.

1955

Obtaining Execution Plan Information for a Named Connection

• <primary_index_lookup>(query fragment)

The query fragment is processed using a primary key lookup to find qualifying rows.

• <ref_null_helper>(expr)

This is an internal optimizer object with no user significance.

• /* select#N */ select_stmt

The SELECT is associated with the row in non-extended EXPLAIN output that has an id value of N.

• outer_tables semi join (inner_tables)

A semijoin operation. inner_tables shows the tables that were not pulled out. See
Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations”.

• <temporary table>

This represents an internal temporary table created to cache an intermediate result.

When some tables are of const or system type, expressions involving columns from these tables
are evaluated early by the optimizer and are not part of the displayed statement. However, with
FORMAT=JSON, some const table accesses are displayed as a ref access that uses a const value.

10.8.4 Obtaining Execution Plan Information for a Named Connection

To obtain the execution plan for an explainable statement executing in a named connection, use this
statement:

EXPLAIN [options] FOR CONNECTION connection_id;

EXPLAIN FOR CONNECTION returns the EXPLAIN information that is currently being used to execute
a query in a given connection. Because of changes to data (and supporting statistics) it may produce a
different result from running EXPLAIN on the equivalent query text. This difference in behavior can be
useful in diagnosing more transient performance problems. For example, if you are running a statement
in one session that is taking a long time to complete, using EXPLAIN FOR CONNECTION in another
session may yield useful information about the cause of the delay.

connection_id is the connection identifier, as obtained from the INFORMATION_SCHEMA
PROCESSLIST table or the SHOW PROCESSLIST statement. If you have the PROCESS privilege, you
can specify the identifier for any connection. Otherwise, you can specify the identifier only for your
own connections. In all cases, you must have sufficient privileges to explain the query on the specified
connection.

If the named connection is not executing a statement, the result is empty. Otherwise, EXPLAIN FOR
CONNECTION applies only if the statement being executed in the named connection is explainable. This
includes SELECT, DELETE, INSERT, REPLACE, and UPDATE. (However, EXPLAIN FOR CONNECTION
does not work for prepared statements, even prepared statements of those types.)

If the named connection is executing an explainable statement, the output is what you would obtain by
using EXPLAIN on the statement itself.

If the named connection is executing a statement that is not explainable, an error occurs. For
example, you cannot name the connection identifier for your current session because EXPLAIN is not
explainable:

mysql> SELECT CONNECTION_ID();
+-----------------+
| CONNECTION_ID() |
+-----------------+
| 373 |
+-----------------+
1 row in set (0.00 sec)

1956

Estimating Query Performance

mysql> EXPLAIN FOR CONNECTION 373;
ERROR 1889 (HY000): EXPLAIN FOR CONNECTION command is supported
only for SELECT/UPDATE/INSERT/DELETE/REPLACE

The Com_explain_other status variable indicates the number of EXPLAIN FOR CONNECTION
statements executed.

10.8.5 Estimating Query Performance

In most cases, you can estimate query performance by counting disk seeks. For small tables, you can
usually find a row in one disk seek (because the index is probably cached). For bigger tables, you can
estimate that, using B-tree indexes, you need this many seeks to find a row: log(row_count) /
log(index_block_length / 3 * 2 / (index_length + data_pointer_length)) + 1.

In MySQL, an index block is usually 1,024 bytes and the data pointer is usually four bytes. For a
500,000-row table with a key value length of three bytes (the size of MEDIUMINT), the formula indicates
log(500,000)/log(1024/3*2/(3+4)) + 1 = 4 seeks.

This index would require storage of about 500,000 * 7 * 3/2 = 5.2MB (assuming a typical index buffer fill
ratio of 2/3), so you probably have much of the index in memory and so need only one or two calls to
read data to find the row.

For writes, however, you need four seek requests to find where to place a new index value and
normally two seeks to update the index and write the row.

The preceding discussion does not mean that your application performance slowly degenerates by
log N. As long as everything is cached by the OS or the MySQL server, things become only marginally
slower as the table gets bigger. After the data gets too big to be cached, things start to go much slower
until your applications are bound only by disk seeks (which increase by log N). To avoid this, increase
the key cache size as the data grows. For MyISAM tables, the key cache size is controlled by the
key_buffer_size system variable. See Section 7.1.1, “Configuring the Server”.

10.9 Controlling the Query Optimizer
MySQL provides optimizer control through system variables that affect how query plans are evaluated,
switchable optimizations, optimizer and index hints, and the optimizer cost model.

The server maintains histogram statistics about column values in the column_statistics data
dictionary table (see Section 10.9.6, “Optimizer Statistics”). Like other data dictionary tables, this
table is not directly accessible by users. Instead, you can obtain histogram information by querying
INFORMATION_SCHEMA.COLUMN_STATISTICS, which is implemented as a view on the data
dictionary table. You can also perform histogram management using the ANALYZE TABLE statement.

10.9.1 Controlling Query Plan Evaluation

The task of the query optimizer is to find an optimal plan for executing an SQL query. Because the
difference in performance between “good” and “bad” plans can be orders of magnitude (that is,
seconds versus hours or even days), most query optimizers, including that of MySQL, perform a more
or less exhaustive search for an optimal plan among all possible query evaluation plans. For join
queries, the number of possible plans investigated by the MySQL optimizer grows exponentially with
the number of tables referenced in a query. For small numbers of tables (typically less than 7 to 10)
this is not a problem. However, when larger queries are submitted, the time spent in query optimization
may easily become the major bottleneck in the server's performance.

A more flexible method for query optimization enables the user to control how exhaustive the optimizer
is in its search for an optimal query evaluation plan. The general idea is that the fewer plans that are
investigated by the optimizer, the less time it spends in compiling a query. On the other hand, because
the optimizer skips some plans, it may miss finding an optimal plan.

The behavior of the optimizer with respect to the number of plans it evaluates can be controlled using
two system variables:

1957

Switchable Optimizations

• The optimizer_prune_level variable tells the optimizer to skip certain plans based on
estimates of the number of rows accessed for each table. Our experience shows that this kind of
“educated guess” rarely misses optimal plans, and may dramatically reduce query compilation
times. That is why this option is on (optimizer_prune_level=1) by default. However,
if you believe that the optimizer missed a better query plan, this option can be switched off
(optimizer_prune_level=0) with the risk that query compilation may take much longer. Note
that, even with the use of this heuristic, the optimizer still explores a roughly exponential number of
plans.

• The optimizer_search_depth variable tells how far into the “future” of each incomplete plan
the optimizer should look to evaluate whether it should be expanded further. Smaller values of
optimizer_search_depth may result in orders of magnitude smaller query compilation times.
For example, queries with 12, 13, or more tables may easily require hours and even days to
compile if optimizer_search_depth is close to the number of tables in the query. At the same
time, if compiled with optimizer_search_depth equal to 3 or 4, the optimizer may compile
in less than a minute for the same query. If you are unsure of what a reasonable value is for
optimizer_search_depth, this variable can be set to 0 to tell the optimizer to determine the
value automatically.

10.9.2 Switchable Optimizations

The optimizer_switch system variable enables control over optimizer behavior. Its value is a set of
flags, each of which has a value of on or off to indicate whether the corresponding optimizer behavior
is enabled or disabled. This variable has global and session values and can be changed at runtime.
The global default can be set at server startup.

To see the current set of optimizer flags, select the variable value:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,index_merge_intersection=on,
 engine_condition_pushdown=on,index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,block_nested_loop=on,
 batched_key_access=off,materialization=on,semijoin=on,
 loosescan=on,firstmatch=on,duplicateweedout=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on,condition_fanout_filter=on,
 derived_merge=on,use_invisible_indexes=off,skip_scan=on,
 hash_join=on,subquery_to_derived=off,
 prefer_ordering_index=on,hypergraph_optimizer=off,
 derived_condition_pushdown=on
1 row in set (0.00 sec)

To change the value of optimizer_switch, assign a value consisting of a comma-separated list of
one or more commands:

SET [GLOBAL|SESSION] optimizer_switch='command[,command]...';

Each command value should have one of the forms shown in the following table.

Command Syntax Meaning

default Reset every optimization to its default value

opt_name=default Set the named optimization to its default value

opt_name=off Disable the named optimization

opt_name=on Enable the named optimization

The order of the commands in the value does not matter, although the default command is executed
first if present. Setting an opt_name flag to default sets it to whichever of on or off is its default
value. Specifying any given opt_name more than once in the value is not permitted and causes

1958

Switchable Optimizations

an error. Any errors in the value cause the assignment to fail with an error, leaving the value of
optimizer_switch unchanged.

The following list describes the permissible opt_name flag names, grouped by optimization strategy:

• Batched Key Access Flags

• batched_key_access (default off)

Controls use of BKA join algorithm.

For batched_key_access to have any effect when set to on, the mrr flag must also be
on. Currently, the cost estimation for MRR is too pessimistic. Hence, it is also necessary for
mrr_cost_based to be off for BKA to be used.

For more information, see Section 10.2.1.12, “Block Nested-Loop and Batched Key Access Joins”.

• Block Nested-Loop Flags

• block_nested_loop (default on)

Controls use of BNL join algorithm. In MySQL 8.0.18 and later, this also controls use of hash joins,
as do the BNL and NO_BNL optimizer hints. In MySQL 8.0.20 and later, block nested loop support
is removed from the MySQL server, and this flag controls the use of hash joins only, as do the
referenced optimizer hints.

For more information, see Section 10.2.1.12, “Block Nested-Loop and Batched Key Access Joins”.

• Condition Filtering Flags

• condition_fanout_filter (default on)

Controls use of condition filtering.

For more information, see Section 10.2.1.13, “Condition Filtering”.

• Derived Condition Pushdown Flags

• derived_condition_pushdown (default on)

Controls derived condition pushdown.

For more information, see Section 10.2.2.5, “Derived Condition Pushdown Optimization”

• Derived Table Merging Flags

• derived_merge (default on)

Controls merging of derived tables and views into outer query block.

The derived_merge flag controls whether the optimizer attempts to merge derived tables, view
references, and common table expressions into the outer query block, assuming that no other rule
prevents merging; for example, an ALGORITHM directive for a view takes precedence over the
derived_merge setting. By default, the flag is on to enable merging.

For more information, see Section 10.2.2.4, “Optimizing Derived Tables, View References, and
Common Table Expressions with Merging or Materialization”.

• Engine Condition Pushdown Flags

• engine_condition_pushdown (default on)

Controls engine condition pushdown.

1959

Switchable Optimizations

For more information, see Section 10.2.1.5, “Engine Condition Pushdown Optimization”.

• Hash Join Flags

• hash_join (default on)

Controls hash joins in MySQL 8.0.18 only, and has no effect in any subsequent version. In MySQL
8.0.19 and later, to control hash join usage, use the block_nested_loop flag, instead.

For more information, see Section 10.2.1.4, “Hash Join Optimization”.

• Index Condition Pushdown Flags

• index_condition_pushdown (default on)

Controls index condition pushdown.

For more information, see Section 10.2.1.6, “Index Condition Pushdown Optimization”.

• Index Extensions Flags

• use_index_extensions (default on)

Controls use of index extensions.

For more information, see Section 10.3.10, “Use of Index Extensions”.

• Index Merge Flags

• index_merge (default on)

Controls all Index Merge optimizations.

• index_merge_intersection (default on)

Controls the Index Merge Intersection Access optimization.

• index_merge_sort_union (default on)

Controls the Index Merge Sort-Union Access optimization.

• index_merge_union (default on)

Controls the Index Merge Union Access optimization.

For more information, see Section 10.2.1.3, “Index Merge Optimization”.

• Index Visibility Flags

• use_invisible_indexes (default off)

Controls use of invisible indexes.

For more information, see Section 10.3.12, “Invisible Indexes”.

• Limit Optimization Flags

• prefer_ordering_index (default on)

Controls whether, in the case of a query having an ORDER BY or GROUP BY with a LIMIT clause,
the optimizer tries to use an ordered index instead of an unordered index, a filesort, or some other
optimization. This optimization is performed by default whenever the optimizer determines that
using it would allow for faster execution of the query.

1960

Switchable Optimizations

Because the algorithm that makes this determination cannot handle every conceivable case (due
in part to the assumption that the distribution of data is always more or less uniform), there are
cases in which this optimization may not be desirable. Prior to MySQL 8.0.21, it was not possible
to disable this optimization, but in MySQL 8.0.21 and later, while it remains the default behavior, it
can be disabled by setting the prefer_ordering_index flag to off.

For more information and examples, see Section 10.2.1.19, “LIMIT Query Optimization”.

• Multi-Range Read Flags

• mrr (default on)

Controls the Multi-Range Read strategy.

• mrr_cost_based (default on)

Controls use of cost-based MRR if mrr=on.

For more information, see Section 10.2.1.11, “Multi-Range Read Optimization”.

• Semijoin Flags

• duplicateweedout (default on)

Controls the semijoin Duplicate Weedout strategy.

• firstmatch (default on)

Controls the semijoin FirstMatch strategy.

• loosescan (default on)

Controls the semijoin LooseScan strategy (not to be confused with Loose Index Scan for GROUP
BY).

• semijoin (default on)

Controls all semijoin strategies.

In MySQL 8.0.17 and later, this also applies to the antijoin optimization.

The semijoin, firstmatch, loosescan, and duplicateweedout flags enable control over
semijoin strategies. The semijoin flag controls whether semijoins are used. If it is set to on, the
firstmatch and loosescan flags enable finer control over the permitted semijoin strategies.

If the duplicateweedout semijoin strategy is disabled, it is not used unless all other applicable
strategies are also disabled.

If semijoin and materialization are both on, semijoins also use materialization where
applicable. These flags are on by default.

For more information, see Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with
Semijoin Transformations”.

• Skip Scan Flags

• skip_scan (default on)

Controls use of Skip Scan access method.

For more information, see Skip Scan Range Access Method.

1961

Switchable Optimizations

• Subquery Materialization Flags

• materialization (default on)

Controls materialization (including semijoin materialization).

• subquery_materialization_cost_based (default on)

Use cost-based materialization choice.

The materialization flag controls whether subquery materialization is used. If semijoin and
materialization are both on, semijoins also use materialization where applicable. These flags
are on by default.

The subquery_materialization_cost_based flag enables control over the choice between
subquery materialization and IN-to-EXISTS subquery transformation. If the flag is on (the default),
the optimizer performs a cost-based choice between subquery materialization and IN-to-EXISTS
subquery transformation if either method could be used. If the flag is off, the optimizer chooses
subquery materialization over IN-to-EXISTS subquery transformation.

For more information, see Section 10.2.2, “Optimizing Subqueries, Derived Tables, View
References, and Common Table Expressions”.

• Subquery Transformation Flags

• subquery_to_derived (default off)

Beginning with MySQL 8.0.21, the optimizer is able in many cases to transform a scalar subquery
in a SELECT, WHERE, JOIN, or HAVING clause into a left outer join on a derived table. (Depending
on the nullability of the derived table, this can sometimes be simplified further to an inner join.) This
can be done for a subquery which meets the following conditions:

• The subquery does not make use of any nondeterministic functions, such as RAND().

• The subquery is not an ANY or ALL subquery which can be rewritten to use MIN() or MAX().

• The parent query does not set a user variable, since rewriting it may affect the order of
execution, which could lead to unexpected results if the variable is accessed more than once in
the same query.

• The subquery should not be correlated, that is, it should not reference a column from a table in
the outer query, or contain an aggregate that is evaluated in the outer query.

Prior to MySQL 8.0.22, the subquery could not contain a GROUP BY clause.

This optimization can also be applied to a table subquery which is the argument to IN, NOT IN,
EXISTS, or NOT EXISTS, that does not contain a GROUP BY.

The default value for this flag is off, since, in most cases, enabling this optimization does not
produce any noticeable improvement in performance (and in many cases can even make queries
run more slowly), but you can enable the optimization by setting the subquery_to_derived flag
to on. It is primarily intended for use in testing.

Example, using a scalar subquery:

d
mysql> CREATE TABLE t1(a INT);

mysql> CREATE TABLE t2(a INT);

mysql> INSERT INTO t1 VALUES ROW(1), ROW(2), ROW(3), ROW(4);

mysql> INSERT INTO t2 VALUES ROW(1), ROW(2);

1962

Switchable Optimizations

mysql> SELECT * FROM t1
 -> WHERE t1.a > (SELECT COUNT(a) FROM t2);
+------+
| a |
+------+
| 3 |
| 4 |
+------+

mysql> SELECT @@optimizer_switch LIKE '%subquery_to_derived=off%';
+---+
| @@optimizer_switch LIKE '%subquery_to_derived=off%' |
+---+
| 1 |
+---+

mysql> EXPLAIN SELECT * FROM t1 WHERE t1.a > (SELECT COUNT(a) FROM t2)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4
 filtered: 33.33
 Extra: Using where
*************************** 2. row ***************************
 id: 2
 select_type: SUBQUERY
 table: t2
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: NULL

mysql> SET @@optimizer_switch='subquery_to_derived=on';

mysql> SELECT @@optimizer_switch LIKE '%subquery_to_derived=off%';
+---+
| @@optimizer_switch LIKE '%subquery_to_derived=off%' |
+---+
| 0 |
+---+

mysql> SELECT @@optimizer_switch LIKE '%subquery_to_derived=on%';
+--+
| @@optimizer_switch LIKE '%subquery_to_derived=on%' |
+--+
| 1 |
+--+

mysql> EXPLAIN SELECT * FROM t1 WHERE t1.a > (SELECT COUNT(a) FROM t2)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL

1963

Switchable Optimizations

 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4
 filtered: 33.33
 Extra: Using where; Using join buffer (hash join)
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: t2
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: NULL

As can be seen from executing SHOW WARNINGS immediately following the second EXPLAIN
statement, with the optimization enabled, the query SELECT * FROM t1 WHERE t1.a >
(SELECT COUNT(a) FROM t2) is rewritten in a form similar to what is shown here:

SELECT t1.a FROM t1
 JOIN (SELECT COUNT(t2.a) AS c FROM t2) AS d
 WHERE t1.a > d.c;

Example, using a query with IN (subquery):

mysql> DROP TABLE IF EXISTS t1, t2;

mysql> CREATE TABLE t1 (a INT, b INT);
mysql> CREATE TABLE t2 (a INT, b INT);

mysql> INSERT INTO t1 VALUES ROW(1,10), ROW(2,20), ROW(3,30);
mysql> INSERT INTO t2
 -> VALUES ROW(1,10), ROW(2,20), ROW(3,30), ROW(1,110), ROW(2,120), ROW(3,130);

mysql> SELECT * FROM t1
 -> WHERE t1.b < 0
 -> OR
 -> t1.a IN (SELECT t2.a + 1 FROM t2);
+------+------+
| a | b |
+------+------+
| 2 | 20 |
| 3 | 30 |
+------+------+

mysql> SET @@optimizer_switch="subquery_to_derived=off";

mysql> EXPLAIN SELECT * FROM t1
 -> WHERE t1.b < 0
 -> OR
 -> t1.a IN (SELECT t2.a + 1 FROM t2)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1

1964

Switchable Optimizations

 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using where
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 6
 filtered: 100.00
 Extra: Using where

mysql> SET @@optimizer_switch="subquery_to_derived=on";

mysql> EXPLAIN SELECT * FROM t1
 -> WHERE t1.b < 0
 -> OR
 -> t1.a IN (SELECT t2.a + 1 FROM t2)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 partitions: NULL
 type: ref
possible_keys: <auto_key0>
 key: <auto_key0>
 key_len: 9
 ref: std2.t1.a
 rows: 2
 filtered: 100.00
 Extra: Using where; Using index
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: t2
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 6
 filtered: 100.00
 Extra: Using temporary

Checking and simplifying the result of SHOW WARNINGS after executing EXPLAIN on this query
shows that, when the subquery_to_derived flag enabled, SELECT * FROM t1 WHERE t1.b

1965

Switchable Optimizations

< 0 OR t1.a IN (SELECT t2.a + 1 FROM t2) is rewritten in a form similar to what is
shown here:

SELECT a, b FROM t1
 LEFT JOIN (SELECT DISTINCT a + 1 AS e FROM t2) d
 ON t1.a = d.e
 WHERE t1.b < 0
 OR
 d.e IS NOT NULL;

Example, using a query with EXISTS (subquery) and the same tables and data as in the
previous example:

mysql> SELECT * FROM t1
 -> WHERE t1.b < 0
 -> OR
 -> EXISTS(SELECT * FROM t2 WHERE t2.a = t1.a + 1);
+------+------+
| a | b |
+------+------+
| 1 | 10 |
| 2 | 20 |
+------+------+

mysql> SET @@optimizer_switch="subquery_to_derived=off";

mysql> EXPLAIN SELECT * FROM t1
 -> WHERE t1.b < 0
 -> OR
 -> EXISTS(SELECT * FROM t2 WHERE t2.a = t1.a + 1)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using where
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 6
 filtered: 16.67
 Extra: Using where

mysql> SET @@optimizer_switch="subquery_to_derived=on";

mysql> EXPLAIN SELECT * FROM t1
 -> WHERE t1.b < 0
 -> OR
 -> EXISTS(SELECT * FROM t2 WHERE t2.a = t1.a + 1)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL

1966

Switchable Optimizations

 key_len: NULL
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 6
 filtered: 100.00
 Extra: Using where; Using join buffer (hash join)
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: t2
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 6
 filtered: 100.00
 Extra: Using temporary

If we execute SHOW WARNINGS after running EXPLAIN on the query SELECT * FROM t1
WHERE t1.b < 0 OR EXISTS(SELECT * FROM t2 WHERE t2.a = t1.a + 1) when
subquery_to_derived has been enabled, and simplify the second row of the result, we see that
it has been rewritten in a form which resembles this:

SELECT a, b FROM t1
LEFT JOIN (SELECT DISTINCT 1 AS e1, t2.a AS e2 FROM t2) d
ON t1.a + 1 = d.e2
WHERE t1.b < 0
 OR
 d.e1 IS NOT NULL;

For more information, see Section 10.2.2.4, “Optimizing Derived Tables, View References, and
Common Table Expressions with Merging or Materialization”, as well as Section 10.2.1.19, “LIMIT
Query Optimization”, and Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with
Semijoin Transformations”.

When you assign a value to optimizer_switch, flags that are not mentioned keep their current
values. This makes it possible to enable or disable specific optimizer behaviors in a single statement
without affecting other behaviors. The statement does not depend on what other optimizer flags exist
and what their values are. Suppose that all Index Merge optimizations are enabled:

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
 index_merge_sort_union=on,index_merge_intersection=on,
 engine_condition_pushdown=on,index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,block_nested_loop=on,
 batched_key_access=off,materialization=on,semijoin=on,
 loosescan=on, firstmatch=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on,condition_fanout_filter=on,
 derived_merge=on,use_invisible_indexes=off,skip_scan=on,
 hash_join=on,subquery_to_derived=off,
 prefer_ordering_index=on

1967

Optimizer Hints

If the server is using the Index Merge Union or Index Merge Sort-Union access methods for certain
queries and you want to check whether the optimizer can perform better without them, set the variable
value like this:

mysql> SET optimizer_switch='index_merge_union=off,index_merge_sort_union=off';

mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=off,
 index_merge_sort_union=off,index_merge_intersection=on,
 engine_condition_pushdown=on,index_condition_pushdown=on,
 mrr=on,mrr_cost_based=on,block_nested_loop=on,
 batched_key_access=off,materialization=on,semijoin=on,
 loosescan=on, firstmatch=on,
 subquery_materialization_cost_based=on,
 use_index_extensions=on,condition_fanout_filter=on,
 derived_merge=on,use_invisible_indexes=off,skip_scan=on,
 hash_join=on,subquery_to_derived=off,
 prefer_ordering_index=on

10.9.3 Optimizer Hints

One means of control over optimizer strategies is to set the optimizer_switch system variable (see
Section 10.9.2, “Switchable Optimizations”). Changes to this variable affect execution of all subsequent
queries; to affect one query differently from another, it is necessary to change optimizer_switch
before each one.

Another way to control the optimizer is by using optimizer hints, which can be specified within individual
statements. Because optimizer hints apply on a per-statement basis, they provide finer control over
statement execution plans than can be achieved using optimizer_switch. For example, you can
enable an optimization for one table in a statement and disable the optimization for a different table.
Hints within a statement take precedence over optimizer_switch flags.

Examples:

SELECT /*+ NO_RANGE_OPTIMIZATION(t3 PRIMARY, f2_idx) */ f1
 FROM t3 WHERE f1 > 30 AND f1 < 33;
SELECT /*+ BKA(t1) NO_BKA(t2) */ * FROM t1 INNER JOIN t2 WHERE ...;
SELECT /*+ NO_ICP(t1, t2) */ * FROM t1 INNER JOIN t2 WHERE ...;
SELECT /*+ SEMIJOIN(FIRSTMATCH, LOOSESCAN) */ * FROM t1 ...;
EXPLAIN SELECT /*+ NO_ICP(t1) */ * FROM t1 WHERE ...;
SELECT /*+ MERGE(dt) */ * FROM (SELECT * FROM t1) AS dt;
INSERT /*+ SET_VAR(foreign_key_checks=OFF) */ INTO t2 VALUES(2);

Optimizer hints, described here, differ from index hints, described in Section 10.9.4, “Index Hints”.
Optimizer and index hints may be used separately or together.

• Optimizer Hint Overview

• Optimizer Hint Syntax

• Join-Order Optimizer Hints

• Table-Level Optimizer Hints

• Index-Level Optimizer Hints

• Subquery Optimizer Hints

• Statement Execution Time Optimizer Hints

• Variable-Setting Hint Syntax

• Resource Group Hint Syntax

1968

Optimizer Hints

• Optimizer Hints for Naming Query Blocks

Optimizer Hint Overview

Optimizer hints apply at different scope levels:

• Global: The hint affects the entire statement

• Query block: The hint affects a particular query block within a statement

• Table-level: The hint affects a particular table within a query block

• Index-level: The hint affects a particular index within a table

The following table summarizes the available optimizer hints, the optimizer strategies they affect, and
the scope or scopes at which they apply. More details are given later.

Table 10.2 Optimizer Hints Available

Hint Name Description Applicable Scopes

BKA, NO_BKA Affects Batched Key Access join
processing

Query block, table

BNL, NO_BNL Prior to MySQL 8.0.20: affects
Block Nested-Loop join
processing; MySQL 8.0.18 and
later: also affects hash join
optimization; MySQL 8.0.20
and later: affects hash join
optimization only

Query block, table

DERIVED_CONDITION_PUSHDOWN,
NO_DERIVED_CONDITION_PUSHDOWN

Use or ignore the derived
condition pushdown optimization
for materialized derived tables
(Added in MySQL 8.0.22)

Query block, table

GROUP_INDEX,
NO_GROUP_INDEX

Use or ignore the specified index
or indexes for index scans in
GROUP BY operations (Added in
MySQL 8.0.20)

Index

HASH_JOIN, NO_HASH_JOIN Affects Hash Join optimization
(MySQL 8.0.18 only

Query block, table

INDEX, NO_INDEX Acts as the combination of
JOIN_INDEX, GROUP_INDEX,
and ORDER_INDEX,
or as the combination
of NO_JOIN_INDEX,
NO_GROUP_INDEX, and
NO_ORDER_INDEX (Added in
MySQL 8.0.20)

Index

INDEX_MERGE,
NO_INDEX_MERGE

Affects Index Merge optimization Table, index

JOIN_FIXED_ORDER Use table order specified in
FROM clause for join order

Query block

JOIN_INDEX, NO_JOIN_INDEX Use or ignore the specified
index or indexes for any access
method (Added in MySQL
8.0.20)

Index

1969

Optimizer Hints

Hint Name Description Applicable Scopes

JOIN_ORDER Use table order specified in hint
for join order

Query block

JOIN_PREFIX Use table order specified in hint
for first tables of join order

Query block

JOIN_SUFFIX Use table order specified in hint
for last tables of join order

Query block

MAX_EXECUTION_TIME Limits statement execution time Global

MERGE, NO_MERGE Affects derived table/view
merging into outer query block

Table

MRR, NO_MRR Affects Multi-Range Read
optimization

Table, index

NO_ICP Affects Index Condition
Pushdown optimization

Table, index

NO_RANGE_OPTIMIZATION Affects range optimization Table, index

ORDER_INDEX,
NO_ORDER_INDEX

Use or ignore the specified
index or indexes for sorting rows
(Added in MySQL 8.0.20)

Index

QB_NAME Assigns name to query block Query block

RESOURCE_GROUP Set resource group during
statement execution

Global

SEMIJOIN, NO_SEMIJOIN Affects semijoin strategies;
beginning with MySQL 8.0.17,
this also applies to antijoins

Query block

SKIP_SCAN, NO_SKIP_SCAN Affects Skip Scan optimization Table, index

SET_VAR Set variable during statement
execution

Global

SUBQUERY Affects materialization, IN-
to-EXISTS subquery strategies

Query block

Disabling an optimization prevents the optimizer from using it. Enabling an optimization means
the optimizer is free to use the strategy if it applies to statement execution, not that the optimizer
necessarily uses it.

Optimizer Hint Syntax

MySQL supports comments in SQL statements as described in Section 11.7, “Comments”. Optimizer
hints must be specified within /*+ ... */ comments. That is, optimizer hints use a variant of /
* ... */ C-style comment syntax, with a + character following the /* comment opening sequence.
Examples:

/*+ BKA(t1) */
/*+ BNL(t1, t2) */
/*+ NO_RANGE_OPTIMIZATION(t4 PRIMARY) */
/*+ QB_NAME(qb2) */

Whitespace is permitted after the + character.

The parser recognizes optimizer hint comments after the initial keyword of SELECT, UPDATE, INSERT,
REPLACE, and DELETE statements. Hints are permitted in these contexts:

• At the beginning of query and data change statements:

SELECT /*+ ... */ ...

1970

Optimizer Hints

INSERT /*+ ... */ ...
REPLACE /*+ ... */ ...
UPDATE /*+ ... */ ...
DELETE /*+ ... */ ...

• At the beginning of query blocks:

(SELECT /*+ ... */ ...)
(SELECT ...) UNION (SELECT /*+ ... */ ...)
(SELECT /*+ ... */ ...) UNION (SELECT /*+ ... */ ...)
UPDATE ... WHERE x IN (SELECT /*+ ... */ ...)
INSERT ... SELECT /*+ ... */ ...

• In hintable statements prefaced by EXPLAIN. For example:

EXPLAIN SELECT /*+ ... */ ...
EXPLAIN UPDATE ... WHERE x IN (SELECT /*+ ... */ ...)

The implication is that you can use EXPLAIN to see how optimizer hints affect execution plans. Use
SHOW WARNINGS immediately after EXPLAIN to see how hints are used. The extended EXPLAIN
output displayed by a following SHOW WARNINGS indicates which hints were used. Ignored hints are
not displayed.

A hint comment may contain multiple hints, but a query block cannot contain multiple hint comments.
This is valid:

SELECT /*+ BNL(t1) BKA(t2) */ ...

But this is invalid:

SELECT /*+ BNL(t1) */ /* BKA(t2) */ ...

When a hint comment contains multiple hints, the possibility of duplicates and conflicts exists. The
following general guidelines apply. For specific hint types, additional rules may apply, as indicated in
the hint descriptions.

• Duplicate hints: For a hint such as /*+ MRR(idx1) MRR(idx1) */, MySQL uses the first hint and
issues a warning about the duplicate hint.

• Conflicting hints: For a hint such as /*+ MRR(idx1) NO_MRR(idx1) */, MySQL uses the first
hint and issues a warning about the second conflicting hint.

Query block names are identifiers and follow the usual rules about what names are valid and how to
quote them (see Section 11.2, “Schema Object Names”).

Hint names, query block names, and strategy names are not case-sensitive. References to table and
index names follow the usual identifier case-sensitivity rules (see Section 11.2.3, “Identifier Case
Sensitivity”).

Join-Order Optimizer Hints

Join-order hints affect the order in which the optimizer joins tables.

Syntax of the JOIN_FIXED_ORDER hint:

hint_name([@query_block_name])

Syntax of other join-order hints:

hint_name([@query_block_name] tbl_name [, tbl_name] ...)
hint_name(tbl_name[@query_block_name] [, tbl_name[@query_block_name]] ...)

The syntax refers to these terms:

1971

Optimizer Hints

• hint_name: These hint names are permitted:

• JOIN_FIXED_ORDER: Force the optimizer to join tables using the order in which they appear in the
FROM clause. This is the same as specifying SELECT STRAIGHT_JOIN.

• JOIN_ORDER: Instruct the optimizer to join tables using the specified table order. The hint applies
to the named tables. The optimizer may place tables that are not named anywhere in the join
order, including between specified tables.

• JOIN_PREFIX: Instruct the optimizer to join tables using the specified table order for the first
tables of the join execution plan. The hint applies to the named tables. The optimizer places all
other tables after the named tables.

• JOIN_SUFFIX: Instruct the optimizer to join tables using the specified table order for the last
tables of the join execution plan. The hint applies to the named tables. The optimizer places all
other tables before the named tables.

• tbl_name: The name of a table used in the statement. A hint that names tables applies to all tables
that it names. The JOIN_FIXED_ORDER hint names no tables and applies to all tables in the FROM
clause of the query block in which it occurs.

If a table has an alias, hints must refer to the alias, not the table name.

Table names in hints cannot be qualified with schema names.

• query_block_name: The query block to which the hint applies. If the hint includes no
leading @query_block_name, the hint applies to the query block in which it occurs. For
tbl_name@query_block_name syntax, the hint applies to the named table in the named query
block. To assign a name to a query block, see Optimizer Hints for Naming Query Blocks.

Example:

SELECT
/*+ JOIN_PREFIX(t2, t5@subq2, t4@subq1)
 JOIN_ORDER(t4@subq1, t3)
 JOIN_SUFFIX(t1) */
COUNT(*) FROM t1 JOIN t2 JOIN t3
 WHERE t1.f1 IN (SELECT /*+ QB_NAME(subq1) */ f1 FROM t4)
 AND t2.f1 IN (SELECT /*+ QB_NAME(subq2) */ f1 FROM t5);

Hints control the behavior of semijoin tables that are merged to the outer query block. If subqueries
subq1 and subq2 are converted to semijoins, tables t4@subq1 and t5@subq2 are merged to the
outer query block. In this case, the hint specified in the outer query block controls the behavior of
t4@subq1, t5@subq2 tables.

The optimizer resolves join-order hints according to these principles:

• Multiple hint instances

Only one JOIN_PREFIX and JOIN_SUFFIX hint of each type are applied. Any later hints of the
same type are ignored with a warning. JOIN_ORDER can be specified several times.

Examples:

/*+ JOIN_PREFIX(t1) JOIN_PREFIX(t2) */

The second JOIN_PREFIX hint is ignored with a warning.

/*+ JOIN_PREFIX(t1) JOIN_SUFFIX(t2) */

Both hints are applicable. No warning occurs.

/*+ JOIN_ORDER(t1, t2) JOIN_ORDER(t2, t3) */

1972

Optimizer Hints

Both hints are applicable. No warning occurs.

• Conflicting hints

In some cases hints can conflict, such as when JOIN_ORDER and JOIN_PREFIX have table orders
that are impossible to apply at the same time:

SELECT /*+ JOIN_ORDER(t1, t2) JOIN_PREFIX(t2, t1) */ ... FROM t1, t2;

In this case, the first specified hint is applied and subsequent conflicting hints are ignored with no
warning. A valid hint that is impossible to apply is silently ignored with no warning.

• Ignored hints

A hint is ignored if a table specified in the hint has a circular dependency.

Example:

/*+ JOIN_ORDER(t1, t2) JOIN_PREFIX(t2, t1) */

The JOIN_ORDER hint sets table t2 dependent on t1. The JOIN_PREFIX hint is ignored because
table t1 cannot be dependent on t2. Ignored hints are not displayed in extended EXPLAIN output.

• Interaction with const tables

The MySQL optimizer places const tables first in the join order, and the position of a const table
cannot be affected by hints. References to const tables in join-order hints are ignored, although the
hint is still applicable. For example, these are equivalent:

JOIN_ORDER(t1, const_tbl, t2)
JOIN_ORDER(t1, t2)

Accepted hints shown in extended EXPLAIN output include const tables as they were specified.

• Interaction with types of join operations

MySQL supports several type of joins: LEFT, RIGHT, INNER, CROSS, STRAIGHT_JOIN. A hint that
conflicts with the specified type of join is ignored with no warning.

Example:

SELECT /*+ JOIN_PREFIX(t1, t2) */FROM t2 LEFT JOIN t1;

Here a conflict occurs between the requested join order in the hint and the order required by the
LEFT JOIN. The hint is ignored with no warning.

Table-Level Optimizer Hints

Table-level hints affect:

• Use of the Block Nested-Loop (BNL) and Batched Key Access (BKA) join-processing algorithms (see
Section 10.2.1.12, “Block Nested-Loop and Batched Key Access Joins”).

• Whether derived tables, view references, or common table expressions should be merged into the
outer query block, or materialized using an internal temporary table.

• Use of the derived table condition pushdown optimization (added in MySQL 8.0.22). See
Section 10.2.2.5, “Derived Condition Pushdown Optimization”.

These hint types apply to specific tables, or all tables in a query block.

Syntax of table-level hints:

1973

Optimizer Hints

hint_name([@query_block_name] [tbl_name [, tbl_name] ...])
hint_name([tbl_name@query_block_name [, tbl_name@query_block_name] ...])

The syntax refers to these terms:

• hint_name: These hint names are permitted:

• BKA, NO_BKA: Enable or disable batched key access for the specified tables.

• BNL, NO_BNL: Enable or disable block nested loop for the specified tables. In MySQL 8.0.18 and
later, these hints also enable and disable the hash join optimization.

Note

The block-nested loop optimization is removed in MySQL 8.0.20 and later
releases, but BNL and NO_BNL continue to be supported for enabling and
disabling hash joins.

• DERIVED_CONDITION_PUSHDOWN, NO_DERIVED_CONDITION_PUSHDOWN: Enable or disable
use of derived table condition pushdown for the specified tables (added in MySQL 8.0.22). For
more information, see Section 10.2.2.5, “Derived Condition Pushdown Optimization”.

• HASH_JOIN, NO_HASH_JOIN: In MySQL 8.0.18 only, enable or disable use of a hash join for the
specified tables. These hints have no effect in MySQL 8.0.19 or later, where you should use BNL
or NO_BNL instead.

• MERGE, NO_MERGE: Enable merging for the specified tables, view references or common table
expressions; or disable merging and use materialization instead.

Note

To use a block nested loop or batched key access hint to enable join buffering
for any inner table of an outer join, join buffering must be enabled for all inner
tables of the outer join.

• tbl_name: The name of a table used in the statement. The hint applies to all tables that it names. If
the hint names no tables, it applies to all tables of the query block in which it occurs.

If a table has an alias, hints must refer to the alias, not the table name.

Table names in hints cannot be qualified with schema names.

• query_block_name: The query block to which the hint applies. If the hint includes no
leading @query_block_name, the hint applies to the query block in which it occurs. For
tbl_name@query_block_name syntax, the hint applies to the named table in the named query
block. To assign a name to a query block, see Optimizer Hints for Naming Query Blocks.

Examples:

SELECT /*+ NO_BKA(t1, t2) */ t1.* FROM t1 INNER JOIN t2 INNER JOIN t3;
SELECT /*+ NO_BNL() BKA(t1) */ t1.* FROM t1 INNER JOIN t2 INNER JOIN t3;
SELECT /*+ NO_MERGE(dt) */ * FROM (SELECT * FROM t1) AS dt;

A table-level hint applies to tables that receive records from previous tables, not sender tables.
Consider this statement:

SELECT /*+ BNL(t2) */ FROM t1, t2;

If the optimizer chooses to process t1 first, it applies a Block Nested-Loop join to t2 by buffering the
rows from t1 before starting to read from t2. If the optimizer instead chooses to process t2 first, the
hint has no effect because t2 is a sender table.

For the MERGE and NO_MERGE hints, these precedence rules apply:

1974

Optimizer Hints

• A hint takes precedence over any optimizer heuristic that is not a technical constraint. (If providing a
hint as a suggestion has no effect, the optimizer has a reason for ignoring it.)

• A hint takes precedence over the derived_merge flag of the optimizer_switch system
variable.

• For view references, an ALGORITHM={MERGE|TEMPTABLE} clause in the view definition takes
precedence over a hint specified in the query referencing the view.

Index-Level Optimizer Hints

Index-level hints affect which index-processing strategies the optimizer uses for particular tables or
indexes. These hint types affect use of Index Condition Pushdown (ICP), Multi-Range Read (MRR),
Index Merge, and range optimizations (see Section 10.2.1, “Optimizing SELECT Statements”).

Syntax of index-level hints:

hint_name([@query_block_name] tbl_name [index_name [, index_name] ...])
hint_name(tbl_name@query_block_name [index_name [, index_name] ...])

The syntax refers to these terms:

• hint_name: These hint names are permitted:

• GROUP_INDEX, NO_GROUP_INDEX: Enable or disable the specified index or indexes for index
scans for GROUP BY operations. Equivalent to the index hints FORCE INDEX FOR GROUP BY,
IGNORE INDEX FOR GROUP BY. Available in MySQL 8.0.20 and later.

• INDEX, NO_INDEX: Acts as the combination of JOIN_INDEX, GROUP_INDEX, and
ORDER_INDEX, forcing the server to use the specified index or indexes for any and all scopes,
or as the combination of NO_JOIN_INDEX, NO_GROUP_INDEX, and NO_ORDER_INDEX, which
causes the server to ignore the specified index or indexes for any and all scopes. Equivalent to
FORCE INDEX, IGNORE INDEX. Available beginning with MySQL 8.0.20.

• INDEX_MERGE, NO_INDEX_MERGE: Enable or disable the Index Merge access method for the
specified table or indexes. For information about this access method, see Section 10.2.1.3, “Index
Merge Optimization”. These hints apply to all three Index Merge algorithms.

The INDEX_MERGE hint forces the optimizer to use Index Merge for the specified table using
the specified set of indexes. If no index is specified, the optimizer considers all possible
index combinations and selects the least expensive one. The hint may be ignored if the index
combination is inapplicable to the given statement.

The NO_INDEX_MERGE hint disables Index Merge combinations that involve any of the specified
indexes. If the hint specifies no indexes, Index Merge is not permitted for the table.

• JOIN_INDEX, NO_JOIN_INDEX: Forces MySQL to use or ignore the specified index or indexes
for any access method, such as ref, range, index_merge, and so on. Equivalent to FORCE
INDEX FOR JOIN, IGNORE INDEX FOR JOIN. Available in MySQL 8.0.20 and later.

• MRR, NO_MRR: Enable or disable MRR for the specified table or indexes. MRR hints apply only
to InnoDB and MyISAM tables. For information about this access method, see Section 10.2.1.11,
“Multi-Range Read Optimization”.

• NO_ICP: Disable ICP for the specified table or indexes. By default, ICP is a candidate optimization
strategy, so there is no hint for enabling it. For information about this access method, see
Section 10.2.1.6, “Index Condition Pushdown Optimization”.

• NO_RANGE_OPTIMIZATION: Disable index range access for the specified table or indexes. This
hint also disables Index Merge and Loose Index Scan for the table or indexes. By default, range
access is a candidate optimization strategy, so there is no hint for enabling it.

1975

Optimizer Hints

This hint may be useful when the number of ranges may be high and range optimization would
require many resources.

• ORDER_INDEX, NO_ORDER_INDEX: Cause MySQL to use or to ignore the specified index or
indexes for sorting rows. Equivalent to FORCE INDEX FOR ORDER BY, IGNORE INDEX FOR
ORDER BY. Available beginning with MySQL 8.0.20.

• SKIP_SCAN, NO_SKIP_SCAN: Enable or disable the Skip Scan access method for the specified
table or indexes. For information about this access method, see Skip Scan Range Access Method.
These hints are available as of MySQL 8.0.13.

The SKIP_SCAN hint forces the optimizer to use Skip Scan for the specified table using the
specified set of indexes. If no index is specified, the optimizer considers all possible indexes and
selects the least expensive one. The hint may be ignored if the index is inapplicable to the given
statement.

The NO_SKIP_SCAN hint disables Skip Scan for the specified indexes. If the hint specifies no
indexes, Skip Scan is not permitted for the table.

• tbl_name: The table to which the hint applies.

• index_name: The name of an index in the named table. The hint applies to all indexes that it
names. If the hint names no indexes, it applies to all indexes in the table.

To refer to a primary key, use the name PRIMARY. To see the index names for a table, use SHOW
INDEX.

• query_block_name: The query block to which the hint applies. If the hint includes no
leading @query_block_name, the hint applies to the query block in which it occurs. For
tbl_name@query_block_name syntax, the hint applies to the named table in the named query
block. To assign a name to a query block, see Optimizer Hints for Naming Query Blocks.

Examples:

SELECT /*+ INDEX_MERGE(t1 f3, PRIMARY) */ f2 FROM t1
 WHERE f1 = 'o' AND f2 = f3 AND f3 <= 4;
SELECT /*+ MRR(t1) */ * FROM t1 WHERE f2 <= 3 AND 3 <= f3;
SELECT /*+ NO_RANGE_OPTIMIZATION(t3 PRIMARY, f2_idx) */ f1
 FROM t3 WHERE f1 > 30 AND f1 < 33;
INSERT INTO t3(f1, f2, f3)
 (SELECT /*+ NO_ICP(t2) */ t2.f1, t2.f2, t2.f3 FROM t1,t2
 WHERE t1.f1=t2.f1 AND t2.f2 BETWEEN t1.f1
 AND t1.f2 AND t2.f2 + 1 >= t1.f1 + 1);
SELECT /*+ SKIP_SCAN(t1 PRIMARY) */ f1, f2
 FROM t1 WHERE f2 > 40;

The following examples use the Index Merge hints, but other index-level hints follow the
same principles regarding hint ignoring and precedence of optimizer hints in relation to the
optimizer_switch system variable or index hints.

Assume that table t1 has columns a, b, c, and d; and that indexes named i_a, i_b, and i_c exist on
a, b, and c, respectively:

SELECT /*+ INDEX_MERGE(t1 i_a, i_b, i_c)*/ * FROM t1
 WHERE a = 1 AND b = 2 AND c = 3 AND d = 4;

Index Merge is used for (i_a, i_b, i_c) in this case.

SELECT /*+ INDEX_MERGE(t1 i_a, i_b, i_c)*/ * FROM t1
 WHERE b = 1 AND c = 2 AND d = 3;

Index Merge is used for (i_b, i_c) in this case.

1976

Optimizer Hints

/*+ INDEX_MERGE(t1 i_a, i_b) NO_INDEX_MERGE(t1 i_b) */

NO_INDEX_MERGE is ignored because there is a preceding hint for the same table.

/*+ NO_INDEX_MERGE(t1 i_a, i_b) INDEX_MERGE(t1 i_b) */

INDEX_MERGE is ignored because there is a preceding hint for the same table.

For the INDEX_MERGE and NO_INDEX_MERGE optimizer hints, these precedence rules apply:

• If an optimizer hint is specified and is applicable, it takes precedence over the Index Merge-related
flags of the optimizer_switch system variable.

SET optimizer_switch='index_merge_intersection=off';
SELECT /*+ INDEX_MERGE(t1 i_b, i_c) */ * FROM t1
WHERE b = 1 AND c = 2 AND d = 3;

The hint takes precedence over optimizer_switch. Index Merge is used for (i_b, i_c) in this
case.

SET optimizer_switch='index_merge_intersection=on';
SELECT /*+ INDEX_MERGE(t1 i_b) */ * FROM t1
WHERE b = 1 AND c = 2 AND d = 3;

The hint specifies only one index, so it is inapplicable, and the optimizer_switch flag (on)
applies. Index Merge is used if the optimizer assesses it to be cost efficient.

SET optimizer_switch='index_merge_intersection=off';
SELECT /*+ INDEX_MERGE(t1 i_b) */ * FROM t1
WHERE b = 1 AND c = 2 AND d = 3;

The hint specifies only one index, so it is inapplicable, and the optimizer_switch flag (off)
applies. Index Merge is not used.

• The index-level optimizer hints GROUP_INDEX, INDEX, JOIN_INDEX, and ORDER_INDEX all take
precedence over the equivalent FORCE INDEX hints; that is, they cause the FORCE INDEX hints to
be ignored. Likewise, the NO_GROUP_INDEX, NO_INDEX, NO_JOIN_INDEX, and NO_ORDER_INDEX
hints all take precedence over any IGNORE INDEX equivalents, also causing them to be ignored.

The index-level optimizer hints GROUP_INDEX, NO_GROUP_INDEX, INDEX,NO_INDEX,
JOIN_INDEX,NO_JOIN_INDEX, ORDER_INDEX, and NO_ORDER_INDEX hints all take precedence
over all other optimizer hints, including other index-level optimizer hints. Any other optimizer hints are
applied only to the indexes permitted by these.

The GROUP_INDEX, INDEX, JOIN_INDEX, and ORDER_INDEX hints are all equivalent to FORCE
INDEX and not to USE INDEX. This is because using one or more of these hints means that a table
scan is used only if there is no way to use one of the named indexes to find rows in the table. To
cause MySQL to use the same index or set of indexes as with a given instance of USE INDEX, you
can use NO_INDEX, NO_JOIN_INDEX, NO_GROUP_INDEX, NO_ORDER_INDEX, or some combination
of these.

To replicate the effect that USE INDEX has in the query SELECT a,c FROM t1 USE INDEX FOR
ORDER BY (i_a) ORDER BY a, you can use the NO_ORDER_INDEX optimizer hint to cover all
indexes on the table except the one that is desired like this:

SELECT /*+ NO_ORDER_INDEX(t1 i_b,i_c) */ a,c
 FROM t1
 ORDER BY a;

Attempting to combine NO_ORDER_INDEX for the table as a whole with USE INDEX FOR ORDER
BY does not work to do this, because NO_ORDER_BY causes USE INDEX to be ignored, as shown
here:

mysql> EXPLAIN SELECT /*+ NO_ORDER_INDEX(t1) */ a,c FROM t1

1977

Optimizer Hints

 -> USE INDEX FOR ORDER BY (i_a) ORDER BY a\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 256
 filtered: 100.00
 Extra: Using filesort

• The USE INDEX, FORCE INDEX, and IGNORE INDEX index hints have higher priority than the
INDEX_MERGE and NO_INDEX_MERGE optimizer hints.

/*+ INDEX_MERGE(t1 i_a, i_b, i_c) */ ... IGNORE INDEX i_a

IGNORE INDEX takes precedence over INDEX_MERGE, so index i_a is excluded from the possible
ranges for Index Merge.

/*+ NO_INDEX_MERGE(t1 i_a, i_b) */ ... FORCE INDEX i_a, i_b

Index Merge is disallowed for i_a, i_b because of FORCE INDEX, but the optimizer is forced to
use either i_a or i_b for range or ref access. There are no conflicts; both hints are applicable.

• If an IGNORE INDEX hint names multiple indexes, those indexes are unavailable for Index Merge.

• The FORCE INDEX and USE INDEX hints make only the named indexes to be available for Index
Merge.

SELECT /*+ INDEX_MERGE(t1 i_a, i_b, i_c) */ a FROM t1
FORCE INDEX (i_a, i_b) WHERE c = 'h' AND a = 2 AND b = 'b';

The Index Merge intersection access algorithm is used for (i_a, i_b). The same is true if FORCE
INDEX is changed to USE INDEX.

Subquery Optimizer Hints

Subquery hints affect whether to use semijoin transformations and which semijoin strategies to
permit, and, when semijoins are not used, whether to use subquery materialization or IN-to-EXISTS
transformations. For more information about these optimizations, see Section 10.2.2, “Optimizing
Subqueries, Derived Tables, View References, and Common Table Expressions”.

Syntax of hints that affect semijoin strategies:

hint_name([@query_block_name] [strategy [, strategy] ...])

The syntax refers to these terms:

• hint_name: These hint names are permitted:

• SEMIJOIN, NO_SEMIJOIN: Enable or disable the named semijoin strategies.

• strategy: A semijoin strategy to be enabled or disabled. These strategy names are permitted:
DUPSWEEDOUT, FIRSTMATCH, LOOSESCAN, MATERIALIZATION.

For SEMIJOIN hints, if no strategies are named, semijoin is used if possible based on the strategies
enabled according to the optimizer_switch system variable. If strategies are named but
inapplicable for the statement, DUPSWEEDOUT is used.

For NO_SEMIJOIN hints, if no strategies are named, semijoin is not used. If strategies are named
that rule out all applicable strategies for the statement, DUPSWEEDOUT is used.

1978

Optimizer Hints

If one subquery is nested within another and both are merged into a semijoin of an outer query, any
specification of semijoin strategies for the innermost query are ignored. SEMIJOIN and NO_SEMIJOIN
hints can still be used to enable or disable semijoin transformations for such nested subqueries.

If DUPSWEEDOUT is disabled, on occasion the optimizer may generate a query plan that is far from
optimal. This occurs due to heuristic pruning during greedy search, which can be avoided by setting
optimizer_prune_level=0.

Examples:

SELECT /*+ NO_SEMIJOIN(@subq1 FIRSTMATCH, LOOSESCAN) */ * FROM t2
 WHERE t2.a IN (SELECT /*+ QB_NAME(subq1) */ a FROM t3);
SELECT /*+ SEMIJOIN(@subq1 MATERIALIZATION, DUPSWEEDOUT) */ * FROM t2
 WHERE t2.a IN (SELECT /*+ QB_NAME(subq1) */ a FROM t3);

Syntax of hints that affect whether to use subquery materialization or IN-to-EXISTS transformations:

SUBQUERY([@query_block_name] strategy)

The hint name is always SUBQUERY.

For SUBQUERY hints, these strategy values are permitted: INTOEXISTS, MATERIALIZATION.

Examples:

SELECT id, a IN (SELECT /*+ SUBQUERY(MATERIALIZATION) */ a FROM t1) FROM t2;
SELECT * FROM t2 WHERE t2.a IN (SELECT /*+ SUBQUERY(INTOEXISTS) */ a FROM t1);

For semijoin and SUBQUERY hints, a leading @query_block_name specifies the query block to which
the hint applies. If the hint includes no leading @query_block_name, the hint applies to the query
block in which it occurs. To assign a name to a query block, see Optimizer Hints for Naming Query
Blocks.

If a hint comment contains multiple subquery hints, the first is used. If there are other following hints of
that type, they produce a warning. Following hints of other types are silently ignored.

Statement Execution Time Optimizer Hints

The MAX_EXECUTION_TIME hint is permitted only for SELECT statements. It places a limit N (a timeout
value in milliseconds) on how long a statement is permitted to execute before the server terminates it:

MAX_EXECUTION_TIME(N)

Example with a timeout of 1 second (1000 milliseconds):

SELECT /*+ MAX_EXECUTION_TIME(1000) */ * FROM t1 INNER JOIN t2 WHERE ...

The MAX_EXECUTION_TIME(N) hint sets a statement execution timeout of N milliseconds. If this
option is absent or N is 0, the statement timeout established by the max_execution_time system
variable applies.

The MAX_EXECUTION_TIME hint is applicable as follows:

• For statements with multiple SELECT keywords, such as unions or statements with subqueries,
MAX_EXECUTION_TIME applies to the entire statement and must appear after the first SELECT.

• It applies to read-only SELECT statements. Statements that are not read only are those that invoke a
stored function that modifies data as a side effect.

• It does not apply to SELECT statements in stored programs and is ignored.

Variable-Setting Hint Syntax

1979

Optimizer Hints

The SET_VAR hint sets the session value of a system variable temporarily (for the duration of a single
statement). Examples:

SELECT /*+ SET_VAR(sort_buffer_size = 16M) */ name FROM people ORDER BY name;
INSERT /*+ SET_VAR(foreign_key_checks=OFF) */ INTO t2 VALUES(2);
SELECT /*+ SET_VAR(optimizer_switch = 'mrr_cost_based=off') */ 1;

Syntax of the SET_VAR hint:

SET_VAR(var_name = value)

var_name names a system variable that has a session value (although not all such variables can be
named, as explained later). value is the value to assign to the variable; the value must be a scalar.

SET_VAR makes a temporary variable change, as demonstrated by these statements:

mysql> SELECT @@unique_checks;
+-----------------+
| @@unique_checks |
+-----------------+
| 1 |
+-----------------+
mysql> SELECT /*+ SET_VAR(unique_checks=OFF) */ @@unique_checks;
+-----------------+
| @@unique_checks |
+-----------------+
| 0 |
+-----------------+
mysql> SELECT @@unique_checks;
+-----------------+
| @@unique_checks |
+-----------------+
| 1 |
+-----------------+

With SET_VAR, there is no need to save and restore the variable value. This enables you to replace
multiple statements by a single statement. Consider this sequence of statements:

SET @saved_val = @@SESSION.var_name;
SET @@SESSION.var_name = value;
SELECT ...
SET @@SESSION.var_name = @saved_val;

The sequence can be replaced by this single statement:

SELECT /*+ SET_VAR(var_name = value) ...

Standalone SET statements permit any of these syntaxes for naming session variables:

SET SESSION var_name = value;
SET @@SESSION.var_name = value;
SET @@.var_name = value;

Because the SET_VAR hint applies only to session variables, session scope is implicit, and SESSION,
@@SESSION., and @@ are neither needed nor permitted. Including explicit session-indicator syntax
results in the SET_VAR hint being ignored with a warning.

Not all session variables are permitted for use with SET_VAR. Individual system variable descriptions
indicate whether each variable is hintable; see Section 7.1.8, “Server System Variables”. You can also
check a system variable at runtime by attempting to use it with SET_VAR. If the variable is not hintable,
a warning occurs:

mysql> SELECT /*+ SET_VAR(collation_server = 'utf8mb4') */ 1;
+---+
| 1 |
+---+

1980

Optimizer Hints

| 1 |
+---+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 4537
Message: Variable 'collation_server' cannot be set using SET_VAR hint.

SET_VAR syntax permits setting only a single variable, but multiple hints can be given to set multiple
variables:

SELECT /*+ SET_VAR(optimizer_switch = 'mrr_cost_based=off')
 SET_VAR(max_heap_table_size = 1G) */ 1;

If several hints with the same variable name appear in the same statement, the first one is applied and
the others are ignored with a warning:

SELECT /*+ SET_VAR(max_heap_table_size = 1G)
 SET_VAR(max_heap_table_size = 3G) */ 1;

In this case, the second hint is ignored with a warning that it is conflicting.

A SET_VAR hint is ignored with a warning if no system variable has the specified name or the variable
value is incorrect:

SELECT /*+ SET_VAR(max_size = 1G) */ 1;
SELECT /*+ SET_VAR(optimizer_switch = 'mrr_cost_based=yes') */ 1;

For the first statement, there is no max_size variable. For the second statement, mrr_cost_based
takes values of on or off, so attempting to set it to yes is incorrect. In each case, the hint is ignored
with a warning.

The SET_VAR hint is permitted only at the statement level. If used in a subquery, the hint is ignored
with a warning.

Replicas ignore SET_VAR hints in replicated statements to avoid the potential for security issues.

Resource Group Hint Syntax

The RESOURCE_GROUP optimizer hint is used for resource group management (see Section 7.1.16,
“Resource Groups”). This hint assigns the thread that executes a statement to the named resource
group temporarily (for the duration of the statement). It requires the RESOURCE_GROUP_ADMIN or
RESOURCE_GROUP_USER privilege.

Examples:

SELECT /*+ RESOURCE_GROUP(USR_default) */ name FROM people ORDER BY name;
INSERT /*+ RESOURCE_GROUP(Batch) */ INTO t2 VALUES(2);

Syntax of the RESOURCE_GROUP hint:

RESOURCE_GROUP(group_name)

group_name indicates the resource group to which the thread should be assigned for the duration of
statement execution. If the group is nonexistent, a warning occurs and the hint is ignored.

The RESOURCE_GROUP hint must appear after the initial statement keyword (SELECT, INSERT,
REPLACE, UPDATE, or DELETE).

An alternative to RESOURCE_GROUP is the SET RESOURCE GROUP statement, which nontemporarily
assigns threads to a resource group. See Section 15.7.2.4, “SET RESOURCE GROUP Statement”.

1981

Index Hints

Optimizer Hints for Naming Query Blocks

Table-level, index-level, and subquery optimizer hints permit specific query blocks to be named as part
of their argument syntax. To create these names, use the QB_NAME hint, which assigns a name to the
query block in which it occurs:

QB_NAME(name)

QB_NAME hints can be used to make explicit in a clear way which query blocks other hints apply to.
They also permit all non-query block name hints to be specified within a single hint comment for easier
understanding of complex statements. Consider the following statement:

SELECT ...
 FROM (SELECT ...
 FROM (SELECT ... FROM ...)) ...

QB_NAME hints assign names to query blocks in the statement:

SELECT /*+ QB_NAME(qb1) */ ...
 FROM (SELECT /*+ QB_NAME(qb2) */ ...
 FROM (SELECT /*+ QB_NAME(qb3) */ ... FROM ...)) ...

Then other hints can use those names to refer to the appropriate query blocks:

SELECT /*+ QB_NAME(qb1) MRR(@qb1 t1) BKA(@qb2) NO_MRR(@qb3t1 idx1, id2) */ ...
 FROM (SELECT /*+ QB_NAME(qb2) */ ...
 FROM (SELECT /*+ QB_NAME(qb3) */ ... FROM ...)) ...

The resulting effect is as follows:

• MRR(@qb1 t1) applies to table t1 in query block qb1.

• BKA(@qb2) applies to query block qb2.

• NO_MRR(@qb3 t1 idx1, id2) applies to indexes idx1 and idx2 in table t1 in query block qb3.

Query block names are identifiers and follow the usual rules about what names are valid and how
to quote them (see Section 11.2, “Schema Object Names”). For example, a query block name that
contains spaces must be quoted, which can be done using backticks:

SELECT /*+ BKA(@`my hint name`) */ ...
 FROM (SELECT /*+ QB_NAME(`my hint name`) */ ...) ...

If the ANSI_QUOTES SQL mode is enabled, it is also possible to quote query block names within
double quotation marks:

SELECT /*+ BKA(@"my hint name") */ ...
 FROM (SELECT /*+ QB_NAME("my hint name") */ ...) ...

10.9.4 Index Hints

Index hints give the optimizer information about how to choose indexes during query processing. Index
hints, described here, differ from optimizer hints, described in Section 10.9.3, “Optimizer Hints”. Index
and optimizer hints may be used separately or together.

Index hints apply to SELECT and UPDATE statements. They also work with multi-table DELETE
statements, but not with single-table DELETE, as shown later in this section.

Index hints are specified following a table name. (For the general syntax for specifying tables in a
SELECT statement, see Section 15.2.13.2, “JOIN Clause”.) The syntax for referring to an individual
table, including index hints, looks like this:

tbl_name [[AS] alias] [index_hint_list]

1982

Index Hints

index_hint_list:
 index_hint [index_hint] ...

index_hint:
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
 | {IGNORE|FORCE} {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

index_list:
 index_name [, index_name] ...

The USE INDEX (index_list) hint tells MySQL to use only one of the named indexes to find rows
in the table. The alternative syntax IGNORE INDEX (index_list) tells MySQL to not use some
particular index or indexes. These hints are useful if EXPLAIN shows that MySQL is using the wrong
index from the list of possible indexes.

The FORCE INDEX hint acts like USE INDEX (index_list), with the addition that a table scan is
assumed to be very expensive. In other words, a table scan is used only if there is no way to use one
of the named indexes to find rows in the table.

Note

As of MySQL 8.0.20, the server supports the index-level optimizer hints
JOIN_INDEX, GROUP_INDEX, ORDER_INDEX, and INDEX, which are equivalent
to and intended to supersede FORCE INDEX index hints, as well as the
NO_JOIN_INDEX, NO_GROUP_INDEX, NO_ORDER_INDEX, and NO_INDEX
optimizer hints, which are equivalent to and intended to supersede IGNORE
INDEX index hints. Thus, you should expect USE INDEX, FORCE INDEX, and
IGNORE INDEX to be deprecated in a future release of MySQL, and at some
time thereafter to be removed altogether.

These index-level optimizer hints are supported with both single-table and multi-
table DELETE statements.

For more information, see Index-Level Optimizer Hints.

Each hint requires index names, not column names. To refer to a primary key, use the name PRIMARY.
To see the index names for a table, use the SHOW INDEX statement or the Information Schema
STATISTICS table.

An index_name value need not be a full index name. It can be an unambiguous prefix of an index
name. If a prefix is ambiguous, an error occurs.

Examples:

SELECT * FROM table1 USE INDEX (col1_index,col2_index)
 WHERE col1=1 AND col2=2 AND col3=3;

SELECT * FROM table1 IGNORE INDEX (col3_index)
 WHERE col1=1 AND col2=2 AND col3=3;

The syntax for index hints has the following characteristics:

• It is syntactically valid to omit index_list for USE INDEX, which means “use no indexes.” Omitting
index_list for FORCE INDEX or IGNORE INDEX is a syntax error.

• You can specify the scope of an index hint by adding a FOR clause to the hint. This provides more
fine-grained control over optimizer selection of an execution plan for various phases of query
processing. To affect only the indexes used when MySQL decides how to find rows in the table and
how to process joins, use FOR JOIN. To influence index usage for sorting or grouping rows, use FOR
ORDER BY or FOR GROUP BY.

1983

Index Hints

• You can specify multiple index hints:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX FOR ORDER BY (i2) ORDER BY a;

It is not an error to name the same index in several hints (even within the same hint):

SELECT * FROM t1 USE INDEX (i1) USE INDEX (i1,i1);

However, it is an error to mix USE INDEX and FORCE INDEX for the same table:

SELECT * FROM t1 USE INDEX FOR JOIN (i1) FORCE INDEX FOR JOIN (i2);

If an index hint includes no FOR clause, the scope of the hint is to apply to all parts of the statement.
For example, this hint:

IGNORE INDEX (i1)

is equivalent to this combination of hints:

IGNORE INDEX FOR JOIN (i1)
IGNORE INDEX FOR ORDER BY (i1)
IGNORE INDEX FOR GROUP BY (i1)

In MySQL 5.0, hint scope with no FOR clause was to apply only to row retrieval. To cause the server
to use this older behavior when no FOR clause is present, enable the old system variable at server
startup. Take care about enabling this variable in a replication setup. With statement-based binary
logging, having different modes for the source and replicas might lead to replication errors.

When index hints are processed, they are collected in a single list by type (USE, FORCE, IGNORE) and
by scope (FOR JOIN, FOR ORDER BY, FOR GROUP BY). For example:

SELECT * FROM t1
 USE INDEX () IGNORE INDEX (i2) USE INDEX (i1) USE INDEX (i2);

is equivalent to:

SELECT * FROM t1
 USE INDEX (i1,i2) IGNORE INDEX (i2);

The index hints then are applied for each scope in the following order:

1. {USE|FORCE} INDEX is applied if present. (If not, the optimizer-determined set of indexes is
used.)

2. IGNORE INDEX is applied over the result of the previous step. For example, the following two
queries are equivalent:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX (i2) USE INDEX (i2);

SELECT * FROM t1 USE INDEX (i1);

For FULLTEXT searches, index hints work as follows:

• For natural language mode searches, index hints are silently ignored. For example, IGNORE
INDEX(i1) is ignored with no warning and the index is still used.

• For boolean mode searches, index hints with FOR ORDER BY or FOR GROUP BY are silently
ignored. Index hints with FOR JOIN or no FOR modifier are honored. In contrast to how hints apply
for non-FULLTEXT searches, the hint is used for all phases of query execution (finding rows and
retrieval, grouping, and ordering). This is true even if the hint is given for a non-FULLTEXT index.

For example, the following two queries are equivalent:

SELECT * FROM t
 USE INDEX (index1)

1984

The Optimizer Cost Model

 IGNORE INDEX FOR ORDER BY (index1)
 IGNORE INDEX FOR GROUP BY (index1)
 WHERE ... IN BOOLEAN MODE ... ;

SELECT * FROM t
 USE INDEX (index1)
 WHERE ... IN BOOLEAN MODE ... ;

Index hints work with DELETE statements, but only if you use multi-table DELETE syntax, as shown
here:

mysql> EXPLAIN DELETE FROM t1 USE INDEX(col2)
 -> WHERE col1 BETWEEN 1 AND 100 AND COL2 BETWEEN 1 AND 100\G
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near 'use
index(col2) where col1 between 1 and 100 and col2 between 1 and 100' at line 1

mysql> EXPLAIN DELETE t1.* FROM t1 USE INDEX(col2)
 -> WHERE col1 BETWEEN 1 AND 100 AND COL2 BETWEEN 1 AND 100\G
*************************** 1. row ***************************
 id: 1
 select_type: DELETE
 table: t1
 partitions: NULL
 type: range
possible_keys: col2
 key: col2
 key_len: 5
 ref: NULL
 rows: 72
 filtered: 11.11
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

10.9.5 The Optimizer Cost Model

To generate execution plans, the optimizer uses a cost model that is based on estimates of the cost
of various operations that occur during query execution. The optimizer has a set of compiled-in default
“cost constants” available to it to make decisions regarding execution plans.

The optimizer also has a database of cost estimates to use during execution plan construction. These
estimates are stored in the server_cost and engine_cost tables in the mysql system database
and are configurable at any time. The intent of these tables is to make it possible to easily adjust the
cost estimates that the optimizer uses when it attempts to arrive at query execution plans.

• Cost Model General Operation

• The Cost Model Database

• Making Changes to the Cost Model Database

Cost Model General Operation

The configurable optimizer cost model works like this:

• The server reads the cost model tables into memory at startup and uses the in-memory values
at runtime. Any non-NULL cost estimate specified in the tables takes precedence over the
corresponding compiled-in default cost constant. Any NULL estimate indicates to the optimizer to use
the compiled-in default.

• At runtime, the server may re-read the cost tables. This occurs when a storage engine is dynamically
loaded or when a FLUSH OPTIMIZER_COSTS statement is executed.

• Cost tables enable server administrators to easily adjust cost estimates by changing entries in the
tables. It is also easy to revert to a default by setting an entry's cost to NULL. The optimizer uses the

1985

The Optimizer Cost Model

in-memory cost values, so changes to the tables should be followed by FLUSH OPTIMIZER_COSTS
to take effect.

• The in-memory cost estimates that are current when a client session begins apply throughout that
session until it ends. In particular, if the server re-reads the cost tables, any changed estimates apply
only to subsequently started sessions. Existing sessions are unaffected.

• Cost tables are specific to a given server instance. The server does not replicate cost table changes
to replicas.

The Cost Model Database

The optimizer cost model database consists of two tables in the mysql system database that contain
cost estimate information for operations that occur during query execution:

• server_cost: Optimizer cost estimates for general server operations

• engine_cost: Optimizer cost estimates for operations specific to particular storage engines

The server_cost table contains these columns:

• cost_name

The name of a cost estimate used in the cost model. The name is not case-sensitive. If the server
does not recognize the cost name when it reads this table, it writes a warning to the error log.

• cost_value

The cost estimate value. If the value is non-NULL, the server uses it as the cost. Otherwise, it uses
the default estimate (the compiled-in value). DBAs can change a cost estimate by updating this
column. If the server finds that the cost value is invalid (nonpositive) when it reads this table, it writes
a warning to the error log.

To override a default cost estimate (for an entry that specifies NULL), set the cost to a non-NULL
value. To revert to the default, set the value to NULL. Then execute FLUSH OPTIMIZER_COSTS to
tell the server to re-read the cost tables.

• last_update

The time of the last row update.

• comment

A descriptive comment associated with the cost estimate. DBAs can use this column to provide
information about why a cost estimate row stores a particular value.

• default_value

The default (compiled-in) value for the cost estimate. This column is a read-only generated column
that retains its value even if the associated cost estimate is changed. For rows added to the table at
runtime, the value of this column is NULL.

The primary key for the server_cost table is the cost_name column, so it is not possible to create
multiple entries for any cost estimate.

The server recognizes these cost_name values for the server_cost table:

• disk_temptable_create_cost, disk_temptable_row_cost

The cost estimates for internally created temporary tables stored in a disk-based storage engine
(either InnoDB or MyISAM). Increasing these values increases the cost estimate of using internal

1986

The Optimizer Cost Model

temporary tables and makes the optimizer prefer query plans with less use of them. For information
about such tables, see Section 10.4.4, “Internal Temporary Table Use in MySQL”.

The larger default values for these disk parameters compared to the default values
for the corresponding memory parameters (memory_temptable_create_cost,
memory_temptable_row_cost) reflects the greater cost of processing disk-based tables.

• key_compare_cost

The cost of comparing record keys. Increasing this value causes a query plan that compares many
keys to become more expensive. For example, a query plan that performs a filesort becomes
relatively more expensive compared to a query plan that avoids sorting by using an index.

• memory_temptable_create_cost, memory_temptable_row_cost

The cost estimates for internally created temporary tables stored in the MEMORY storage engine.
Increasing these values increases the cost estimate of using internal temporary tables and makes
the optimizer prefer query plans with less use of them. For information about such tables, see
Section 10.4.4, “Internal Temporary Table Use in MySQL”.

The smaller default values for these memory parameters compared to the default values for the
corresponding disk parameters (disk_temptable_create_cost, disk_temptable_row_cost)
reflects the lesser cost of processing memory-based tables.

• row_evaluate_cost

The cost of evaluating record conditions. Increasing this value causes a query plan that examines
many rows to become more expensive compared to a query plan that examines fewer rows. For
example, a table scan becomes relatively more expensive compared to a range scan that reads
fewer rows.

The engine_cost table contains these columns:

• engine_name

The name of the storage engine to which this cost estimate applies. The name is not case-sensitive.
If the value is default, it applies to all storage engines that have no named entry of their own. If the
server does not recognize the engine name when it reads this table, it writes a warning to the error
log.

• device_type

The device type to which this cost estimate applies. The column is intended for specifying different
cost estimates for different storage device types, such as hard disk drives versus solid state drives.
Currently, this information is not used and 0 is the only permitted value.

• cost_name

Same as in the server_cost table.

• cost_value

Same as in the server_cost table.

• last_update

Same as in the server_cost table.

• comment

Same as in the server_cost table.

• default_value

1987

Optimizer Statistics

The default (compiled-in) value for the cost estimate. This column is a read-only generated column
that retains its value even if the associated cost estimate is changed. For rows added to the
table at runtime, the value of this column is NULL, with the exception that if the row has the same
cost_name value as one of the original rows, the default_value column has the same value as
that row.

The primary key for the engine_cost table is a tuple comprising the (cost_name, engine_name,
device_type) columns, so it is not possible to create multiple entries for any combination of values in
those columns.

The server recognizes these cost_name values for the engine_cost table:

• io_block_read_cost

The cost of reading an index or data block from disk. Increasing this value causes a query plan that
reads many disk blocks to become more expensive compared to a query plan that reads fewer disk
blocks. For example, a table scan becomes relatively more expensive compared to a range scan that
reads fewer blocks.

• memory_block_read_cost

Similar to io_block_read_cost, but represents the cost of reading an index or data block from an
in-memory database buffer.

If the io_block_read_cost and memory_block_read_cost values differ, the execution plan may
change between two runs of the same query. Suppose that the cost for memory access is less than the
cost for disk access. In that case, at server startup before data has been read into the buffer pool, you
may get a different plan than after the query has been run because then the data is in memory.

Making Changes to the Cost Model Database

For DBAs who wish to change the cost model parameters from their defaults, try doubling or halving
the value and measuring the effect.

Changes to the io_block_read_cost and memory_block_read_cost parameters are most
likely to yield worthwhile results. These parameter values enable cost models for data access
methods to take into account the costs of reading information from different sources; that is, the
cost of reading information from disk versus reading information already in a memory buffer.
For example, all other things being equal, setting io_block_read_cost to a value larger than
memory_block_read_cost causes the optimizer to prefer query plans that read information already
held in memory to plans that must read from disk.

This example shows how to change the default value for io_block_read_cost:

UPDATE mysql.engine_cost
 SET cost_value = 2.0
 WHERE cost_name = 'io_block_read_cost';
FLUSH OPTIMIZER_COSTS;

This example shows how to change the value of io_block_read_cost only for the InnoDB storage
engine:

INSERT INTO mysql.engine_cost
 VALUES ('InnoDB', 0, 'io_block_read_cost', 3.0,
 CURRENT_TIMESTAMP, 'Using a slower disk for InnoDB');
FLUSH OPTIMIZER_COSTS;

10.9.6 Optimizer Statistics

The column_statistics data dictionary table stores histogram statistics about column values, for
use by the optimizer in constructing query execution plans. To perform histogram management, use
the ANALYZE TABLE statement.

1988

Optimizer Statistics

The column_statistics table has these characteristics:

• The table contains statistics for columns of all data types except geometry types (spatial data) and
JSON.

• The table is persistent so that column statistics need not be created each time the server starts.

• The server performs updates to the table; users do not.

The column_statistics table is not directly accessible by users because it is part of the data
dictionary. Histogram information is available using INFORMATION_SCHEMA.COLUMN_STATISTICS,
which is implemented as a view on the data dictionary table. COLUMN_STATISTICS has these
columns:

• SCHEMA_NAME, TABLE_NAME, COLUMN_NAME: The names of the schema, table, and column for
which the statistics apply.

• HISTOGRAM: A JSON value describing the column statistics, stored as a histogram.

Column histograms contain buckets for parts of the range of values stored in the column. Histograms
are JSON objects to permit flexibility in the representation of column statistics. Here is a sample
histogram object:

{
 "buckets": [
 [
 1,
 0.3333333333333333
],
 [
 2,
 0.6666666666666666
],
 [
 3,
 1
]
],
 "null-values": 0,
 "last-updated": "2017-03-24 13:32:40.000000",
 "sampling-rate": 1,
 "histogram-type": "singleton",
 "number-of-buckets-specified": 128,
 "data-type": "int",
 "collation-id": 8
}

Histogram objects have these keys:

• buckets: The histogram buckets. Bucket structure depends on the histogram type.

For singleton histograms, buckets contain two values:

• Value 1: The value for the bucket. The type depends on the column data type.

• Value 2: A double representing the cumulative frequency for the value. For example, .25 and .75
indicate that 25% and 75% of the values in the column are less than or equal to the bucket value.

For equi-height histograms, buckets contain four values:

• Values 1, 2: The lower and upper inclusive values for the bucket. The type depends on the column
data type.

• Value 3: A double representing the cumulative frequency for the value. For example, .25 and .75
indicate that 25% and 75% of the values in the column are less than or equal to the bucket upper
value.

1989

Optimizer Statistics

• Value 4: The number of distinct values in the range from the bucket lower value to its upper value.

• null-values: A number between 0.0 and 1.0 indicating the fraction of column values that are SQL
NULL values. If 0, the column contains no NULL values.

• last-updated: When the histogram was generated, as a UTC value in YYYY-MM-DD
hh:mm:ss.uuuuuu format.

• sampling-rate: A number between 0.0 and 1.0 indicating the fraction of data that was sampled to
create the histogram. A value of 1 means that all of the data was read (no sampling).

• histogram-type: The histogram type:

• singleton: One bucket represents one single value in the column. This histogram type is created
when the number of distinct values in the column is less than or equal to the number of buckets
specified in the ANALYZE TABLE statement that generated the histogram.

• equi-height: One bucket represents a range of values. This histogram type is created when
the number of distinct values in the column is greater than the number of buckets specified in the
ANALYZE TABLE statement that generated the histogram.

• number-of-buckets-specified: The number of buckets specified in the ANALYZE TABLE
statement that generated the histogram.

• data-type: The type of data this histogram contains. This is needed when reading and parsing
histograms from persistent storage into memory. The value is one of int, uint (unsigned integer),
double, decimal, datetime, or string (includes character and binary strings).

• collation-id: The collation ID for the histogram data. It is mostly meaningful when the data-
type value is string. Values correspond to ID column values in the Information Schema
COLLATIONS table.

To extract particular values from the histogram objects, you can use JSON operations. For example:

mysql> SELECT
 TABLE_NAME, COLUMN_NAME,
 HISTOGRAM->>'$."data-type"' AS 'data-type',
 JSON_LENGTH(HISTOGRAM->>'$."buckets"') AS 'bucket-count'
 FROM INFORMATION_SCHEMA.COLUMN_STATISTICS;
+-----------------+-------------+-----------+--------------+
| TABLE_NAME | COLUMN_NAME | data-type | bucket-count |
+-----------------+-------------+-----------+--------------+
country	Population	int	226
city	Population	int	1024
countrylanguage	Language	string	457
+-----------------+-------------+-----------+--------------+

The optimizer uses histogram statistics, if applicable, for columns of any data type for which statistics
are collected. The optimizer applies histogram statistics to determine row estimates based on the
selectivity (filtering effect) of column value comparisons against constant values. Predicates of these
forms qualify for histogram use:

col_name = constant
col_name <> constant
col_name != constant
col_name > constant
col_name < constant
col_name >= constant
col_name <= constant
col_name IS NULL
col_name IS NOT NULL
col_name BETWEEN constant AND constant
col_name NOT BETWEEN constant AND constant
col_name IN (constant[, constant] ...)
col_name NOT IN (constant[, constant] ...)

1990

Buffering and Caching

For example, these statements contain predicates that qualify for histogram use:

SELECT * FROM orders WHERE amount BETWEEN 100.0 AND 300.0;
SELECT * FROM tbl WHERE col1 = 15 AND col2 > 100;

The requirement for comparison against a constant value includes functions that are constant, such as
ABS() and FLOOR():

SELECT * FROM tbl WHERE col1 < ABS(-34);

Histogram statistics are useful primarily for nonindexed columns. Adding an index to a column for
which histogram statistics are applicable might also help the optimizer make row estimates. The
tradeoffs are:

• An index must be updated when table data is modified.

• A histogram is created or updated only on demand, so it adds no overhead when table data is
modified. On the other hand, the statistics become progressively more out of date when table
modifications occur, until the next time they are updated.

The optimizer prefers range optimizer row estimates to those obtained from histogram statistics. If the
optimizer determines that the range optimizer applies, it does not use histogram statistics.

For columns that are indexed, row estimates can be obtained for equality comparisons using
index dives (see Section 10.2.1.2, “Range Optimization”). In this case, histogram statistics are not
necessarily useful because index dives can yield better estimates.

In some cases, use of histogram statistics may not improve query execution (for example, if the
statistics are out of date). To check whether this is the case, use ANALYZE TABLE to regenerate the
histogram statistics, then run the query again.

Alternatively, to disable histogram statistics, use ANALYZE TABLE to drop them. A different
method of disabling histogram statistics is to turn off the condition_fanout_filter flag of the
optimizer_switch system variable (although this may disable other optimizations as well):

SET optimizer_switch='condition_fanout_filter=off';

If histogram statistics are used, the resulting effect is visible using EXPLAIN. Consider the following
query, where no index is available for column col1:

SELECT * FROM t1 WHERE col1 < 24;

If histogram statistics indicate that 57% of the rows in t1 satisfy the col1 < 24 predicate, filtering can
occur even in the absence of an index, and EXPLAIN shows 57.00 in the filtered column.

10.10 Buffering and Caching
MySQL uses several strategies that cache information in memory buffers to increase performance.

10.10.1 InnoDB Buffer Pool Optimization

InnoDB maintains a storage area called the buffer pool for caching data and indexes in memory.
Knowing how the InnoDB buffer pool works, and taking advantage of it to keep frequently accessed
data in memory, is an important aspect of MySQL tuning.

For an explanation of the inner workings of the InnoDB buffer pool, an overview of its LRU
replacement algorithm, and general configuration information, see Section 17.5.1, “Buffer Pool”.

For additional InnoDB buffer pool configuration and tuning information, see these sections:

• Section 17.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”

• Section 17.8.3.5, “Configuring Buffer Pool Flushing”

1991

The MyISAM Key Cache

• Section 17.8.3.3, “Making the Buffer Pool Scan Resistant”

• Section 17.8.3.2, “Configuring Multiple Buffer Pool Instances”

• Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”

• Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”

10.10.2 The MyISAM Key Cache

To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database
management systems. It employs a cache mechanism to keep the most frequently accessed table
blocks in memory:

• For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure
contains a number of block buffers where the most-used index blocks are placed.

• For data blocks, MySQL uses no special cache. Instead it relies on the native operating system file
system cache.

This section first describes the basic operation of the MyISAM key cache. Then it discusses features
that improve key cache performance and that enable you to better control cache operation:

• Multiple sessions can access the cache concurrently.

• You can set up multiple key caches and assign table indexes to specific caches.

To control the size of the key cache, use the key_buffer_size system variable. If this variable is set
equal to zero, no key cache is used. The key cache also is not used if the key_buffer_size value is
too small to allocate the minimal number of block buffers (8).

When the key cache is not operational, index files are accessed using only the native file system
buffering provided by the operating system. (In other words, table index blocks are accessed using the
same strategy as that employed for table data blocks.)

An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an index
block is equal to the size of nodes of the index B-tree. (Indexes are represented on disk using a B-tree
data structure. Nodes at the bottom of the tree are leaf nodes. Nodes above the leaf nodes are nonleaf
nodes.)

All block buffers in a key cache structure are the same size. This size can be equal to, greater than, or
less than the size of a table index block. Usually one these two values is a multiple of the other.

When data from any table index block must be accessed, the server first checks whether it is available
in some block buffer of the key cache. If it is, the server accesses data in the key cache rather than
on disk. That is, it reads from the cache or writes into it rather than reading from or writing to disk.
Otherwise, the server chooses a cache block buffer containing a different table index block (or blocks)
and replaces the data there by a copy of required table index block. As soon as the new index block is
in the cache, the index data can be accessed.

If it happens that a block selected for replacement has been modified, the block is considered “dirty.” In
this case, prior to being replaced, its contents are flushed to the table index from which it came.

Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for
replacement, it selects the least recently used index block. To make this choice easier, the key cache
module maintains all used blocks in a special list (LRU chain) ordered by time of use. When a block
is accessed, it is the most recently used and is placed at the end of the list. When blocks need to be
replaced, blocks at the beginning of the list are the least recently used and become the first candidates
for eviction.

The InnoDB storage engine also uses an LRU algorithm, to manage its buffer pool. See
Section 17.5.1, “Buffer Pool”.

1992

The MyISAM Key Cache

10.10.2.1 Shared Key Cache Access

Threads can access key cache buffers simultaneously, subject to the following conditions:

• A buffer that is not being updated can be accessed by multiple sessions.

• A buffer that is being updated causes sessions that need to use it to wait until the update is
complete.

• Multiple sessions can initiate requests that result in cache block replacements, as long as they do not
interfere with each other (that is, as long as they need different index blocks, and thus cause different
cache blocks to be replaced).

Shared access to the key cache enables the server to improve throughput significantly.

10.10.2.2 Multiple Key Caches

Note

As of MySQL 8.0, the compound-part structured-variable syntax discussed here
for referring to multiple MyISAM key caches is deprecated.

Shared access to the key cache improves performance but does not eliminate contention among
sessions entirely. They still compete for control structures that manage access to the key cache
buffers. To reduce key cache access contention further, MySQL also provides multiple key caches.
This feature enables you to assign different table indexes to different key caches.

Where there are multiple key caches, the server must know which cache to use when processing
queries for a given MyISAM table. By default, all MyISAM table indexes are cached in the default
key cache. To assign table indexes to a specific key cache, use the CACHE INDEX statement (see
Section 15.7.8.2, “CACHE INDEX Statement”). For example, the following statement assigns indexes
from the tables t1, t2, and t3 to the key cache named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET
GLOBAL parameter setting statement or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

To destroy a key cache, set its size to zero:

mysql> SET GLOBAL keycache1.key_buffer_size=0;

You cannot destroy the default key cache. Any attempt to do this is ignored:

mysql> SET GLOBAL key_buffer_size = 0;

mysql> SHOW VARIABLES LIKE 'key_buffer_size';
+-----------------+---------+
| Variable_name | Value |
+-----------------+---------+
| key_buffer_size | 8384512 |
+-----------------+---------+

Key cache variables are structured system variables that have a name and components. For
keycache1.key_buffer_size, keycache1 is the cache variable name and key_buffer_size

1993

The MyISAM Key Cache

is the cache component. See Section 7.1.9.5, “Structured System Variables”, for a description of the
syntax used for referring to structured key cache system variables.

By default, table indexes are assigned to the main (default) key cache created at the server startup.
When a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

For a busy server, you can use a strategy that involves three key caches:

• A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that
are heavily used for searches but that are not updated.

• A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for
medium-sized, intensively modified tables, such as temporary tables.

• A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache,
to be used by default for all other tables.

One reason the use of three key caches is beneficial is that access to one key cache structure does not
block access to the others. Statements that access tables assigned to one cache do not compete with
statements that access tables assigned to another cache. Performance gains occur for other reasons
as well:

• The hot cache is used only for retrieval queries, so its contents are never modified. Consequently,
whenever an index block needs to be pulled in from disk, the contents of the cache block chosen for
replacement need not be flushed first.

• For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a
high probability that the index blocks corresponding to nonleaf nodes of the index B-tree remain in
the cache.

• An update operation most frequently executed for temporary tables is performed much faster when
the updated node is in the cache and need not be read from disk first. If the size of the indexes of the
temporary tables are comparable with the size of cold key cache, the probability is very high that the
updated node is in the cache.

The CACHE INDEX statement sets up an association between a table and a key cache, but the
association is lost each time the server restarts. If you want the association to take effect each time the
server starts, one way to accomplish this is to use an option file: Include variable settings that configure
your key caches, and an init_file system variable that names a file containing CACHE INDEX
statements to be executed. For example:

key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G
init_file=/path/to/data-directory/mysqld_init.sql

The statements in mysqld_init.sql are executed each time the server starts. The file should
contain one SQL statement per line. The following example assigns several tables each to hot_cache
and cold_cache:

CACHE INDEX db1.t1, db1.t2, db2.t3 IN hot_cache
CACHE INDEX db1.t4, db2.t5, db2.t6 IN cold_cache

10.10.2.3 Midpoint Insertion Strategy

By default, the key cache management system uses a simple LRU strategy for choosing key cache
blocks to be evicted, but it also supports a more sophisticated method called the midpoint insertion
strategy.

When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot
sublist and a warm sublist. The division point between two parts is not fixed, but the key cache
management system takes care that the warm part is not “too short,” always containing at least

1994

The MyISAM Key Cache

key_cache_division_limit percent of the key cache blocks. key_cache_division_limit is a
component of structured key cache variables, so its value is a parameter that can be set per cache.

When an index block is read from a table into the key cache, it is placed at the end of the warm sublist.
After a certain number of hits (accesses of the block), it is promoted to the hot sublist. At present, the
number of hits required to promote a block (3) is the same for all index blocks.

A block promoted into the hot sublist is placed at the end of the list. The block then circulates within
this sublist. If the block stays at the beginning of the sublist for a long enough time, it is demoted to the
warm sublist. This time is determined by the value of the key_cache_age_threshold component of
the key cache.

The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning of
the hot sublist not accessed within the last N * key_cache_age_threshold / 100 hits is to be
moved to the beginning of the warm sublist. It then becomes the first candidate for eviction, because
blocks for replacement always are taken from the beginning of the warm sublist.

The midpoint insertion strategy enables you to keep more-valued blocks always in the cache. If you
prefer to use the plain LRU strategy, leave the key_cache_division_limit value set to its default
of 100.

The midpoint insertion strategy helps to improve performance when execution of a query that
requires an index scan effectively pushes out of the cache all the index blocks corresponding to
valuable high-level B-tree nodes. To avoid this, you must use a midpoint insertion strategy with the
key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes are
preserved in the hot sublist during an index scan operation as well.

10.10.2.4 Index Preloading

If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks
corresponding to its nonleaf nodes, it makes sense to preload the key cache with index blocks before
starting to use it. Preloading enables you to put the table index blocks into a key cache buffer in the
most efficient way: by reading the index blocks from disk sequentially.

Without preloading, the blocks are still placed into the key cache as needed by queries. Although the
blocks stay in the cache, because there are enough buffers for all of them, they are fetched from disk in
random order, and not sequentially.

To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example, the
following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.
Thus, the statement shown preloads all index blocks from t1, but only blocks for the nonleaf nodes
from t2.

If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places
index blocks into that cache. Otherwise, the index is loaded into the default key cache.

10.10.2.5 Key Cache Block Size

It is possible to specify the size of the block buffers for an individual key cache using the
key_cache_block_size variable. This permits tuning of the performance of I/O operations for index
files.

1995

Caching of Prepared Statements and Stored Programs

The best performance for I/O operations is achieved when the size of read buffers is equal to the size
of the native operating system I/O buffers. But setting the size of key nodes equal to the size of the I/
O buffer does not always ensure the best overall performance. When reading the big leaf nodes, the
server pulls in a lot of unnecessary data, effectively preventing reading other leaf nodes.

To control the size of blocks in the .MYI index file of MyISAM tables, use the --myisam-block-size
option at server startup.

10.10.2.6 Restructuring a Key Cache

A key cache can be restructured at any time by updating its parameter values. For example:

mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;

If you assign to either the key_buffer_size or key_cache_block_size key cache component a
value that differs from the component's current value, the server destroys the cache's old structure and
creates a new one based on the new values. If the cache contains any dirty blocks, the server saves
them to disk before destroying and re-creating the cache. Restructuring does not occur if you change
other key cache parameters.

When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk. After
that, the cache contents become unavailable. However, restructuring does not block queries that need
to use indexes assigned to the cache. Instead, the server directly accesses the table indexes using
native file system caching. File system caching is not as efficient as using a key cache, so although
queries execute, a slowdown can be anticipated. After the cache has been restructured, it becomes
available again for caching indexes assigned to it, and the use of file system caching for the indexes
ceases.

10.10.3 Caching of Prepared Statements and Stored Programs

For certain statements that a client might execute multiple times during a session, the server converts
the statement to an internal structure and caches that structure to be used during execution. Caching
enables the server to perform more efficiently because it avoids the overhead of reconverting the
statement should it be needed again during the session. Conversion and caching occurs for these
statements:

• Prepared statements, both those processed at the SQL level (using the PREPARE statement) and
those processed using the binary client/server protocol (using the mysql_stmt_prepare() C
API function). The max_prepared_stmt_count system variable controls the total number of
statements the server caches. (The sum of the number of prepared statements across all sessions.)

• Stored programs (stored procedures and functions, triggers, and events). In this case, the server
converts and caches the entire program body. The stored_program_cache system variable
indicates the approximate number of stored programs the server caches per session.

The server maintains caches for prepared statements and stored programs on a per-session basis.
Statements cached for one session are not accessible to other sessions. When a session ends, the
server discards any statements cached for it.

When the server uses a cached internal statement structure, it must take care that the structure
does not go out of date. Metadata changes can occur for an object used by the statement, causing
a mismatch between the current object definition and the definition as represented in the internal
statement structure. Metadata changes occur for DDL statements such as those that create, drop,
alter, rename, or truncate tables, or that analyze, optimize, or repair tables. Table content changes (for
example, with INSERT or UPDATE) do not change metadata, nor do SELECT statements.

Here is an illustration of the problem. Suppose that a client prepares this statement:

PREPARE s1 FROM 'SELECT * FROM t1';

1996

https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-prepare.html

Optimizing Locking Operations

The SELECT * expands in the internal structure to the list of columns in the table. If the set of columns
in the table is modified with ALTER TABLE, the prepared statement goes out of date. If the server does
not detect this change the next time the client executes s1, the prepared statement returns incorrect
results.

To avoid problems caused by metadata changes to tables or views referred to by the prepared
statement, the server detects these changes and automatically reprepares the statement when it is
next executed. That is, the server reparses the statement and rebuilds the internal structure. Reparsing
also occurs after referenced tables or views are flushed from the table definition cache, either implicitly
to make room for new entries in the cache, or explicitly due to FLUSH TABLES.

Similarly, if changes occur to objects used by a stored program, the server reparses affected
statements within the program.

The server also detects metadata changes for objects in expressions. These might be used in
statements specific to stored programs, such as DECLARE CURSOR or flow-control statements such as
IF, CASE, and RETURN.

To avoid reparsing entire stored programs, the server reparses affected statements or expressions
within a program only as needed. Examples:

• Suppose that metadata for a table or view is changed. Reparsing occurs for a SELECT * within the
program that accesses the table or view, but not for a SELECT * that does not access the table or
view.

• When a statement is affected, the server reparses it only partially if possible. Consider this CASE
statement:

CASE case_expr
 WHEN when_expr1 ...
 WHEN when_expr2 ...
 WHEN when_expr3 ...
 ...
END CASE

If a metadata change affects only WHEN when_expr3, that expression is reparsed. case_expr and
the other WHEN expressions are not reparsed.

Reparsing uses the default database and SQL mode that were in effect for the original conversion to
internal form.

The server attempts reparsing up to three times. An error occurs if all attempts fail.

Reparsing is automatic, but to the extent that it occurs, diminishes prepared statement and stored
program performance.

For prepared statements, the Com_stmt_reprepare status variable tracks the number of
repreparations.

10.11 Optimizing Locking Operations
MySQL manages contention for table contents using locking:

• Internal locking is performed within the MySQL server itself to manage contention for table contents
by multiple threads. This type of locking is internal because it is performed entirely by the server and
involves no other programs. See Section 10.11.1, “Internal Locking Methods”.

• External locking occurs when the server and other programs lock MyISAM table files to coordinate
among themselves which program can access the tables at which time. See Section 10.11.5,
“External Locking”.

10.11.1 Internal Locking Methods

1997

Internal Locking Methods

This section discusses internal locking; that is, locking performed within the MySQL server itself to
manage contention for table contents by multiple sessions. This type of locking is internal because it
is performed entirely by the server and involves no other programs. For locking performed on MySQL
files by other programs, see Section 10.11.5, “External Locking”.

• Row-Level Locking

• Table-Level Locking

• Choosing the Type of Locking

Row-Level Locking

MySQL uses row-level locking for InnoDB tables to support simultaneous write access by multiple
sessions, making them suitable for multi-user, highly concurrent, and OLTP applications.

To avoid deadlocks when performing multiple concurrent write operations on a single InnoDB table,
acquire necessary locks at the start of the transaction by issuing a SELECT ... FOR UPDATE
statement for each group of rows expected to be modified, even if the data change statements
come later in the transaction. If transactions modify or lock more than one table, issue the applicable
statements in the same order within each transaction. Deadlocks affect performance rather than
representing a serious error, because InnoDB automatically detects deadlock conditions by default
and rolls back one of the affected transactions.

On high concurrency systems, deadlock detection can cause a slowdown when numerous threads
wait for the same lock. At times, it may be more efficient to disable deadlock detection and rely on the
innodb_lock_wait_timeout setting for transaction rollback when a deadlock occurs. Deadlock
detection can be disabled using the innodb_deadlock_detect configuration option.

Advantages of row-level locking:

• Fewer lock conflicts when different sessions access different rows.

• Fewer changes for rollbacks.

• Possible to lock a single row for a long time.

Table-Level Locking

MySQL uses table-level locking for MyISAM, MEMORY, and MERGE tables, permitting only one session to
update those tables at a time. This locking level makes these storage engines more suitable for read-
only, read-mostly, or single-user applications.

These storage engines avoid deadlocks by always requesting all needed locks at once at the beginning
of a query and always locking the tables in the same order. The tradeoff is that this strategy reduces
concurrency; other sessions that want to modify the table must wait until the current data change
statement finishes.

Advantages of table-level locking:

• Relatively little memory required (row locking requires memory per row or group of rows locked)

• Fast when used on a large part of the table because only a single lock is involved.

• Fast if you often do GROUP BY operations on a large part of the data or must scan the entire table
frequently.

MySQL grants table write locks as follows:

1. If there are no locks on the table, put a write lock on it.

1998

Internal Locking Methods

2. Otherwise, put the lock request in the write lock queue.

MySQL grants table read locks as follows:

1. If there are no write locks on the table, put a read lock on it.

2. Otherwise, put the lock request in the read lock queue.

Table updates are given higher priority than table retrievals. Therefore, when a lock is released, the
lock is made available to the requests in the write lock queue and then to the requests in the read lock
queue. This ensures that updates to a table are not “starved” even when there is heavy SELECT activity
for the table. However, if there are many updates for a table, SELECT statements wait until there are no
more updates.

For information on altering the priority of reads and writes, see Section 10.11.2, “Table Locking Issues”.

You can analyze the table lock contention on your system by checking the Table_locks_immediate
and Table_locks_waited status variables, which indicate the number of times that requests for
table locks could be granted immediately and the number that had to wait, respectively:

mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

The Performance Schema lock tables also provide locking information. See Section 29.12.13,
“Performance Schema Lock Tables”.

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and
writers for a given table: If a MyISAM table has no free blocks in the middle of the data file, rows are
always inserted at the end of the data file. In this case, you can freely mix concurrent INSERT and
SELECT statements for a MyISAM table without locks. That is, you can insert rows into a MyISAM table
at the same time other clients are reading from it. Holes can result from rows having been deleted from
or updated in the middle of the table. If there are holes, concurrent inserts are disabled but are enabled
again automatically when all holes have been filled with new data. To control this behavior, use the
concurrent_insert system variable. See Section 10.11.3, “Concurrent Inserts”.

If you acquire a table lock explicitly with LOCK TABLES, you can request a READ LOCAL lock rather
than a READ lock to enable other sessions to perform concurrent inserts while you have the table
locked.

To perform many INSERT and SELECT operations on a table t1 when concurrent inserts are not
possible, you can insert rows into a temporary table temp_t1 and update the real table with the rows
from the temporary table:

mysql> LOCK TABLES t1 WRITE, temp_t1 WRITE;
mysql> INSERT INTO t1 SELECT * FROM temp_t1;
mysql> DELETE FROM temp_t1;
mysql> UNLOCK TABLES;

Choosing the Type of Locking

Generally, table locks are superior to row-level locks in the following cases:

• Most statements for the table are reads.

• Statements for the table are a mix of reads and writes, where writes are updates or deletes for a
single row that can be fetched with one key read:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;

1999

Table Locking Issues

DELETE FROM tbl_name WHERE unique_key_col=key_value;

• SELECT combined with concurrent INSERT statements, and very few UPDATE or DELETE
statements.

• Many scans or GROUP BY operations on the entire table without any writers.

With higher-level locks, you can more easily tune applications by supporting locks of different types,
because the lock overhead is less than for row-level locks.

Options other than row-level locking:

• Versioning (such as that used in MySQL for concurrent inserts) where it is possible to have one
writer at the same time as many readers. This means that the database or table supports different
views for the data depending on when access begins. Other common terms for this are “time travel,”
“copy on write,” or “copy on demand.”

• Copy on demand is in many cases superior to row-level locking. However, in the worst case, it can
use much more memory than using normal locks.

• Instead of using row-level locks, you can employ application-level locks, such as those provided by
GET_LOCK() and RELEASE_LOCK() in MySQL. These are advisory locks, so they work only with
applications that cooperate with each other. See Section 14.14, “Locking Functions”.

10.11.2 Table Locking Issues

InnoDB tables use row-level locking so that multiple sessions and applications can read from and write
to the same table simultaneously, without making each other wait or producing inconsistent results.
For this storage engine, avoid using the LOCK TABLES statement, because it does not offer any extra
protection, but instead reduces concurrency. The automatic row-level locking makes these tables
suitable for your busiest databases with your most important data, while also simplifying application
logic since you do not need to lock and unlock tables. Consequently, the InnoDB storage engine is the
default in MySQL.

MySQL uses table locking (instead of page, row, or column locking) for all storage engines except
InnoDB. The locking operations themselves do not have much overhead. But because only one
session can write to a table at any one time, for best performance with these other storage engines,
use them primarily for tables that are queried often and rarely inserted into or updated.

• Performance Considerations Favoring InnoDB

• Workarounds for Locking Performance Issues

Performance Considerations Favoring InnoDB

When choosing whether to create a table using InnoDB or a different storage engine, keep in mind the
following disadvantages of table locking:

• Table locking enables many sessions to read from a table at the same time, but if a session wants to
write to a table, it must first get exclusive access, meaning it might have to wait for other sessions to
finish with the table first. During the update, all other sessions that want to access this particular table
must wait until the update is done.

• Table locking causes problems when a session is waiting because the disk is full and free space
needs to become available before the session can proceed. In this case, all sessions that want to
access the problem table are also put in a waiting state until more disk space is made available.

• A SELECT statement that takes a long time to run prevents other sessions from updating the table in
the meantime, making the other sessions appear slow or unresponsive. While a session is waiting to
get exclusive access to the table for updates, other sessions that issue SELECT statements queue
up behind it, reducing concurrency even for read-only sessions.

2000

Concurrent Inserts

Workarounds for Locking Performance Issues

The following items describe some ways to avoid or reduce contention caused by table locking:

• Consider switching the table to the InnoDB storage engine, either using CREATE TABLE ...
ENGINE=INNODB during setup, or using ALTER TABLE ... ENGINE=INNODB for an existing table.
See Chapter 17, The InnoDB Storage Engine for more details about this storage engine.

• Optimize SELECT statements to run faster so that they lock tables for a shorter time. You might have
to create some summary tables to do this.

• Start mysqld with --low-priority-updates. For storage engines that use only table-level
locking (such as MyISAM, MEMORY, and MERGE), this gives all statements that update (modify) a table
lower priority than SELECT statements. In this case, the second SELECT statement in the preceding
scenario would execute before the UPDATE statement, and would not wait for the first SELECT to
finish.

• To specify that all updates issued in a specific connection should be done with low priority, set the
low_priority_updates server system variable equal to 1.

• To give a specific INSERT, UPDATE, or DELETE statement lower priority, use the LOW_PRIORITY
attribute.

• To give a specific SELECT statement higher priority, use the HIGH_PRIORITY attribute. See
Section 15.2.13, “SELECT Statement”.

• Start mysqld with a low value for the max_write_lock_count system variable to force MySQL to
temporarily elevate the priority of all SELECT statements that are waiting for a table after a specific
number of write locks to the table occur (for example, for insert operations). This permits read locks
after a certain number of write locks.

• If you have problems with mixed SELECT and DELETE statements, the LIMIT option to DELETE may
help. See Section 15.2.2, “DELETE Statement”.

• Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table locks
shorter. See Section 15.2.13, “SELECT Statement”.

• Splitting table contents into separate tables may help, by allowing queries to run against columns in
one table, while updates are confined to columns in a different table.

• You could change the locking code in mysys/thr_lock.c to use a single queue. In this case, write
locks and read locks would have the same priority, which might help some applications.

10.11.3 Concurrent Inserts

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and
writers for a given table: If a MyISAM table has no holes in the data file (deleted rows in the middle), an
INSERT statement can be executed to add rows to the end of the table at the same time that SELECT
statements are reading rows from the table. If there are multiple INSERT statements, they are queued
and performed in sequence, concurrently with the SELECT statements. The results of a concurrent
INSERT may not be visible immediately.

The concurrent_insert system variable can be set to modify the concurrent-insert processing.
By default, the variable is set to AUTO (or 1) and concurrent inserts are handled as just described. If
concurrent_insert is set to NEVER (or 0), concurrent inserts are disabled. If the variable is set to
ALWAYS (or 2), concurrent inserts at the end of the table are permitted even for tables that have deleted
rows. See also the description of the concurrent_insert system variable.

If you are using the binary log, concurrent inserts are converted to normal inserts for CREATE ...
SELECT or INSERT ... SELECT statements. This is done to ensure that you can re-create an exact
copy of your tables by applying the log during a backup operation. See Section 7.4.4, “The Binary Log”.

2001

Metadata Locking

In addition, for those statements a read lock is placed on the selected-from table such that inserts into
that table are blocked. The effect is that concurrent inserts for that table must wait as well.

With LOAD DATA, if you specify CONCURRENT with a MyISAM table that satisfies the condition for
concurrent inserts (that is, it contains no free blocks in the middle), other sessions can retrieve data
from the table while LOAD DATA is executing. Use of the CONCURRENT option affects the performance
of LOAD DATA a bit, even if no other session is using the table at the same time.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the
server was started with that option. It also causes concurrent inserts not to be used.

For LOCK TABLE, the difference between READ LOCAL and READ is that READ LOCAL permits
nonconflicting INSERT statements (concurrent inserts) to execute while the lock is held. However, this
cannot be used if you are going to manipulate the database using processes external to the server
while you hold the lock.

10.11.4 Metadata Locking

MySQL uses metadata locking to manage concurrent access to database objects and to ensure
data consistency. Metadata locking applies not just to tables, but also to schemas, stored programs
(procedures, functions, triggers, scheduled events), tablespaces, user locks acquired with the
GET_LOCK() function (see Section 14.14, “Locking Functions”), and locks acquired with the locking
service described in Section 7.6.9.1, “The Locking Service”.

The Performance Schema metadata_locks table exposes metadata lock information, which can be
useful for seeing which sessions hold locks, are blocked waiting for locks, and so forth. For details, see
Section 29.12.13.3, “The metadata_locks Table”.

Metadata locking does involve some overhead, which increases as query volume increases. Metadata
contention increases the more that multiple queries attempt to access the same objects.

Metadata locking is not a replacement for the table definition cache, and its mutexes and locks differ
from the LOCK_open mutex. The following discussion provides some information about how metadata
locking works.

• Metadata Lock Acquisition

• Metadata Lock Release

Metadata Lock Acquisition

If there are multiple waiters for a given lock, the highest-priority lock request is satisfied first, with an
exception related to the max_write_lock_count system variable. Write lock requests have higher
priority than read lock requests. However, if max_write_lock_count is set to some low value (say,
10), read lock requests may be preferred over pending write lock requests if the read lock requests
have already been passed over in favor of 10 write lock requests. Normally this behavior does not
occur because max_write_lock_count by default has a very large value.

Statements acquire metadata locks one by one, not simultaneously, and perform deadlock detection in
the process.

DML statements normally acquire locks in the order in which tables are mentioned in the statement.

DDL statements, LOCK TABLES, and other similar statements try to reduce the number of possible
deadlocks between concurrent DDL statements by acquiring locks on explicitly named tables in name
order. Locks might be acquired in a different order for implicitly used tables (such as tables in foreign
key relationships that also must be locked).

For example, RENAME TABLE is a DDL statement that acquires locks in name order:

• This RENAME TABLE statement renames tbla to something else, and renames tblc to tbla:

2002

Metadata Locking

RENAME TABLE tbla TO tbld, tblc TO tbla;

The statement acquires metadata locks, in order, on tbla, tblc, and tbld (because tbld follows
tblc in name order):

• This slightly different statement also renames tbla to something else, and renames tblc to tbla:

RENAME TABLE tbla TO tblb, tblc TO tbla;

In this case, the statement acquires metadata locks, in order, on tbla, tblb, and tblc (because
tblb precedes tblc in name order):

Both statements acquire locks on tbla and tblc, in that order, but differ in whether the lock on the
remaining table name is acquired before or after tblc.

Metadata lock acquisition order can make a difference in operation outcome when multiple transactions
execute concurrently, as the following example illustrates.

Begin with two tables x and x_new that have identical structure. Three clients issue statements that
involve these tables:

Client 1:

LOCK TABLE x WRITE, x_new WRITE;

The statement requests and acquires write locks in name order on x and x_new.

Client 2:

INSERT INTO x VALUES(1);

The statement requests and blocks waiting for a write lock on x.

Client 3:

RENAME TABLE x TO x_old, x_new TO x;

The statement requests exclusive locks in name order on x, x_new, and x_old, but blocks waiting for
the lock on x.

Client 1:

UNLOCK TABLES;

The statement releases the write locks on x and x_new. The exclusive lock request for x by Client 3
has higher priority than the write lock request by Client 2, so Client 3 acquires its lock on x, then also
on x_new and x_old, performs the renaming, and releases its locks. Client 2 then acquires its lock on
x, performs the insert, and releases its lock.

Lock acquisition order results in the RENAME TABLE executing before the INSERT. The x into which
the insert occurs is the table that was named x_new when Client 2 issued the insert and was renamed
to x by Client 3:

mysql> SELECT * FROM x;
+------+
| i |
+------+
| 1 |
+------+

mysql> SELECT * FROM x_old;
Empty set (0.01 sec)

Now begin instead with tables named x and new_x that have identical structure. Again, three clients
issue statements that involve these tables:

2003

Metadata Locking

Client 1:

LOCK TABLE x WRITE, new_x WRITE;

The statement requests and acquires write locks in name order on new_x and x.

Client 2:

INSERT INTO x VALUES(1);

The statement requests and blocks waiting for a write lock on x.

Client 3:

RENAME TABLE x TO old_x, new_x TO x;

The statement requests exclusive locks in name order on new_x, old_x, and x, but blocks waiting for
the lock on new_x.

Client 1:

UNLOCK TABLES;

The statement releases the write locks on x and new_x. For x, the only pending request is by Client 2,
so Client 2 acquires its lock, performs the insert, and releases the lock. For new_x, the only pending
request is by Client 3, which is permitted to acquire that lock (and also the lock on old_x). The rename
operation still blocks for the lock on x until the Client 2 insert finishes and releases its lock. Then Client
3 acquires the lock on x, performs the rename, and releases its lock.

In this case, lock acquisition order results in the INSERT executing before the RENAME TABLE. The x
into which the insert occurs is the original x, now renamed to old_x by the rename operation:

mysql> SELECT * FROM x;
Empty set (0.01 sec)

mysql> SELECT * FROM old_x;
+------+
| i |
+------+
| 1 |
+------+

If order of lock acquisition in concurrent statements makes a difference to an application in operation
outcome, as in the preceding example, you may be able to adjust the table names to affect the order of
lock acquisition.

Metadata locks are extended, as necessary, to tables related by a foreign key constraint to prevent
conflicting DML and DDL operations from executing concurrently on the related tables. When updating
a parent table, a metadata lock is taken on the child table while updating foreign key metadata. Foreign
key metadata is owned by the child table.

Metadata Lock Release

To ensure transaction serializability, the server must not permit one session to perform a data definition
language (DDL) statement on a table that is used in an uncompleted explicitly or implicitly started
transaction in another session. The server achieves this by acquiring metadata locks on tables used
within a transaction and deferring release of those locks until the transaction ends. A metadata lock
on a table prevents changes to the table's structure. This locking approach has the implication that a
table that is being used by a transaction within one session cannot be used in DDL statements by other
sessions until the transaction ends.

This principle applies not only to transactional tables, but also to nontransactional tables. Suppose that
a session begins a transaction that uses transactional table t and nontransactional table nt as follows:

2004

External Locking

START TRANSACTION;
SELECT * FROM t;
SELECT * FROM nt;

The server holds metadata locks on both t and nt until the transaction ends. If another session
attempts a DDL or write lock operation on either table, it blocks until metadata lock release at
transaction end. For example, a second session blocks if it attempts any of these operations:

DROP TABLE t;
ALTER TABLE t ...;
DROP TABLE nt;
ALTER TABLE nt ...;
LOCK TABLE t ... WRITE;

The same behavior applies for The LOCK TABLES ... READ. That is, explicitly or implicitly started
transactions that update any table (transactional or nontransactional) block and are blocked by LOCK
TABLES ... READ for that table.

If the server acquires metadata locks for a statement that is syntactically valid but fails during
execution, it does not release the locks early. Lock release is still deferred to the end of the transaction
because the failed statement is written to the binary log and the locks protect log consistency.

In autocommit mode, each statement is in effect a complete transaction, so metadata locks acquired
for the statement are held only to the end of the statement.

Metadata locks acquired during a PREPARE statement are released once the statement has been
prepared, even if preparation occurs within a multiple-statement transaction.

As of MySQL 8.0.13, for XA transactions in PREPARED state, metadata locks are maintained across
client disconnects and server restarts, until an XA COMMIT or XA ROLLBACK is executed.

10.11.5 External Locking

External locking is the use of file system locking to manage contention for MyISAM database tables by
multiple processes. External locking is used in situations where a single process such as the MySQL
server cannot be assumed to be the only process that requires access to tables. Here are some
examples:

• If you run multiple servers that use the same database directory (not recommended), each server
must have external locking enabled.

• If you use myisamchk to perform table maintenance operations on MyISAM tables, you must either
ensure that the server is not running, or that the server has external locking enabled so that it locks
table files as necessary to coordinate with myisamchk for access to the tables. The same is true for
use of myisampack to pack MyISAM tables.

If the server is run with external locking enabled, you can use myisamchk at any time for read
operations such a checking tables. In this case, if the server tries to update a table that myisamchk
is using, the server waits for myisamchk to finish before it continues.

If you use myisamchk for write operations such as repairing or optimizing tables, or if you use
myisampack to pack tables, you must always ensure that the mysqld server is not using the table.
If you do not stop mysqld, at least do a mysqladmin flush-tables before you run myisamchk.
Your tables may become corrupted if the server and myisamchk access the tables simultaneously.

With external locking in effect, each process that requires access to a table acquires a file system lock
for the table files before proceeding to access the table. If all necessary locks cannot be acquired,
the process is blocked from accessing the table until the locks can be obtained (after the process that
currently holds the locks releases them).

External locking affects server performance because the server must sometimes wait for other
processes before it can access tables.

2005

Optimizing the MySQL Server

External locking is unnecessary if you run a single server to access a given data directory (which is
the usual case) and if no other programs such as myisamchk need to modify tables while the server
is running. If you only read tables with other programs, external locking is not required, although
myisamchk might report warnings if the server changes tables while myisamchk is reading them.

With external locking disabled, to use myisamchk, you must either stop the server while myisamchk
executes or else lock and flush the tables before running myisamchk. To avoid this requirement, use
the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.

For mysqld, external locking is controlled by the value of the skip_external_locking system
variable. When this variable is enabled, external locking is disabled, and vice versa. External locking is
disabled by default.

Use of external locking can be controlled at server startup by using the --external-locking or --
skip-external-locking option.

If you do use external locking option to enable updates to MyISAM tables from many MySQL
processes, do not start the server with the delay_key_write system variable set to ALL or use the
DELAY_KEY_WRITE=1 table option for any shared tables. Otherwise, index corruption can occur.

The easiest way to satisfy this condition is to always use --external-locking together with --
delay-key-write=OFF. (This is not done by default because in many setups it is useful to have a
mixture of the preceding options.)

10.12 Optimizing the MySQL Server

This section discusses optimization techniques for the database server, primarily dealing with system
configuration rather than tuning SQL statements. The information in this section is appropriate for
DBAs who want to ensure performance and scalability across the servers they manage; for developers
constructing installation scripts that include setting up the database; and people running MySQL
themselves for development, testing, and so on who want to maximize their own productivity.

10.12.1 Optimizing Disk I/O

This section describes ways to configure storage devices when you can devote more and faster
storage hardware to the database server. For information about optimizing an InnoDB configuration to
improve I/O performance, see Section 10.5.8, “Optimizing InnoDB Disk I/O”.

• Disk seeks are a huge performance bottleneck. This problem becomes more apparent when
the amount of data starts to grow so large that effective caching becomes impossible. For large
databases where you access data more or less randomly, you can be sure that you need at least
one disk seek to read and a couple of disk seeks to write things. To minimize this problem, use disks
with low seek times.

• Increase the number of available disk spindles (and thereby reduce the seek overhead) by either
symlinking files to different disks or striping the disks:

• Using symbolic links

This means that, for MyISAM tables, you symlink the index file and data files from their usual
location in the data directory to another disk (that may also be striped). This makes both the
seek and read times better, assuming that the disk is not used for other purposes as well. See
Section 10.12.2, “Using Symbolic Links”.

Symbolic links are not supported for use with InnoDB tables. However, it is possible to place
InnoDB data and log files on different physical disks. For more information, see Section 10.5.8,
“Optimizing InnoDB Disk I/O”.

• Striping

2006

Using Symbolic Links

Striping means that you have many disks and put the first block on the first disk, the second block
on the second disk, and the N-th block on the (N MOD number_of_disks) disk, and so on. This
means if your normal data size is less than the stripe size (or perfectly aligned), you get much
better performance. Striping is very dependent on the operating system and the stripe size, so
benchmark your application with different stripe sizes. See Section 10.13.2, “Using Your Own
Benchmarks”.

The speed difference for striping is very dependent on the parameters. Depending on how you
set the striping parameters and number of disks, you may get differences measured in orders of
magnitude. You have to choose to optimize for random or sequential access.

• For reliability, you may want to use RAID 0+1 (striping plus mirroring), but in this case, you need
2 × N drives to hold N drives of data. This is probably the best option if you have the money for it.
However, you may also have to invest in some volume-management software to handle it efficiently.

• A good option is to vary the RAID level according to how critical a type of data is. For example, store
semi-important data that can be regenerated on a RAID 0 disk, but store really important data such
as host information and logs on a RAID 0+1 or RAID N disk. RAID N can be a problem if you have
many writes, due to the time required to update the parity bits.

• You can also set the parameters for the file system that the database uses:

If you do not need to know when files were last accessed (which is not really useful on a database
server), you can mount your file systems with the -o noatime option. That skips updates to the last
access time in inodes on the file system, which avoids some disk seeks.

On many operating systems, you can set a file system to be updated asynchronously by mounting
it with the -o async option. If your computer is reasonably stable, this should give you better
performance without sacrificing too much reliability. (This flag is on by default on Linux.)

Using NFS with MySQL

You should be cautious when considering whether to use NFS with MySQL. Potential issues, which
vary by operating system and NFS version, include the following:

• MySQL data and log files placed on NFS volumes becoming locked and unavailable for use. Locking
issues may occur in cases where multiple instances of MySQL access the same data directory
or where MySQL is shut down improperly, due to a power outage, for example. NFS version 4
addresses underlying locking issues with the introduction of advisory and lease-based locking.
However, sharing a data directory among MySQL instances is not recommended.

• Data inconsistencies introduced due to messages received out of order or lost network traffic. To
avoid this issue, use TCP with hard and intr mount options.

• Maximum file size limitations. NFS Version 2 clients can only access the lowest 2GB of a file
(signed 32 bit offset). NFS Version 3 clients support larger files (up to 64 bit offsets). The maximum
supported file size also depends on the local file system of the NFS server.

Using NFS within a professional SAN environment or other storage system tends to offer greater
reliability than using NFS outside of such an environment. However, NFS within a SAN environment
may be slower than directly attached or bus-attached non-rotational storage.

If you choose to use NFS, NFS Version 4 or later is recommended, as is testing your NFS setup
thoroughly before deploying into a production environment.

10.12.2 Using Symbolic Links

You can move databases or tables from the database directory to other locations and replace them
with symbolic links to the new locations. You might want to do this, for example, to move a database

2007

Using Symbolic Links

to a file system with more free space or increase the speed of your system by spreading your tables to
different disks.

For InnoDB tables, use the DATA DIRECTORY clause of the CREATE TABLE statement instead of
symbolic links, as explained in Section 17.6.1.2, “Creating Tables Externally”. This new feature is a
supported, cross-platform technique.

The recommended way to do this is to symlink entire database directories to a different disk. Symlink
MyISAM tables only as a last resort.

To determine the location of your data directory, use this statement:

SHOW VARIABLES LIKE 'datadir';

10.12.2.1 Using Symbolic Links for Databases on Unix

On Unix, symlink a database using this procedure:

1. Create the database using CREATE DATABASE:

mysql> CREATE DATABASE mydb1;

Using CREATE DATABASE creates the database in the MySQL data directory and permits the
server to update the data dictionary with information about the database directory.

2. Stop the server to ensure that no activity occurs in the new database while it is being moved.

3. Move the database directory to some disk where you have free space. For example, use tar or
mv. If you use a method that copies rather than moves the database directory, remove the original
database directory after copying it.

4. Create a soft link in the data directory to the moved database directory:

$> ln -s /path/to/mydb1 /path/to/datadir

The command creates a symlink named mydb1 in the data directory.

5. Restart the server.

10.12.2.2 Using Symbolic Links for MyISAM Tables on Unix

Note

Symbolic link support as described here, along with the --symbolic-links
option that controls it, and is deprecated; expect these to be removed in a future
version of MySQL. In addition, the option is disabled by default.

Symlinks are fully supported only for MyISAM tables. For files used by tables for other storage engines,
you may get strange problems if you try to use symbolic links. For InnoDB tables, use the alternative
technique explained in Section 17.6.1.2, “Creating Tables Externally” instead.

Do not symlink tables on systems that do not have a fully operational realpath() call. (Linux and
Solaris support realpath()). To determine whether your system supports symbolic links, check the
value of the have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

The handling of symbolic links for MyISAM tables works as follows:

• In the data directory, you always have the data (.MYD) file and the index (.MYI) file. The data file
and index file can be moved elsewhere and replaced in the data directory by symlinks.

• You can symlink the data file and the index file independently to different directories.

2008

Using Symbolic Links

• To instruct a running MySQL server to perform the symlinking, use the DATA DIRECTORY and
INDEX DIRECTORY options to CREATE TABLE. See Section 15.1.20, “CREATE TABLE Statement”.
Alternatively, if mysqld is not running, symlinking can be accomplished manually using ln -s from
the command line.

Note

The path used with either or both of the DATA DIRECTORY and INDEX
DIRECTORY options may not include the MySQL data directory. (Bug
#32167)

• myisamchk does not replace a symlink with the data file or index file. It works directly on the file to
which the symlink points. Any temporary files are created in the directory where the data file or index
file is located. The same is true for the ALTER TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements.

• Note

When you drop a table that is using symlinks, both the symlink and the file to
which the symlink points are dropped. This is an extremely good reason not
to run mysqld as the root operating system user or permit operating system
users to have write access to MySQL database directories.

• If you rename a table with ALTER TABLE ... RENAME or RENAME TABLE and you do not move
the table to another database, the symlinks in the database directory are renamed to the new names
and the data file and index file are renamed accordingly.

• If you use ALTER TABLE ... RENAME or RENAME TABLE to move a table to another database,
the table is moved to the other database directory. If the table name changed, the symlinks in the
new database directory are renamed to the new names and the data file and index file are renamed
accordingly.

• If you are not using symlinks, start mysqld with the --skip-symbolic-links option to ensure
that no one can use mysqld to drop or rename a file outside of the data directory.

These table symlink operations are not supported:

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

10.12.2.3 Using Symbolic Links for Databases on Windows

On Windows, symbolic links can be used for database directories. This enables you to put a database
directory at a different location (for example, on a different disk) by setting up a symbolic link to it. Use
of database symlinks on Windows is similar to their use on Unix, although the procedure for setting up
the link differs.

Suppose that you want to place the database directory for a database named mydb at D:\data\mydb.
To do this, create a symbolic link in the MySQL data directory that points to D:\data\mydb. However,
before creating the symbolic link, make sure that the D:\data\mydb directory exists by creating it if
necessary. If you already have a database directory named mydb in the data directory, move it to D:
\data. Otherwise, the symbolic link has no effect. To avoid problems, make sure that the server is not
running when you move the database directory.

On Windows, you can create a symlink using the mklink command. This command requires
administrative privileges.

1. Make sure that the desired path to the database exists. For this example, we use D:\data\mydb,
and a database named mydb.

2. If the database does not already exist, issue CREATE DATABASE mydb in the mysql client to
create it.

2009

Optimizing Memory Use

3. Stop the MySQL service.

4. Using Windows Explorer or the command line, move the directory mydb from the data directory to
D:\data, replacing the directory of the same name.

5. If you are not already using the command prompt, open it, and change location to the data
directory, like this:

C:\> cd \path\to\datadir

If your MySQL installation is in the default location, you can use this:

C:\> cd C:\ProgramData\MySQL\MySQL Server 8.0\Data

6. In the data directory, create a symlink named mydb that points to the location of the database
directory:

C:\> mklink /d mydb D:\data\mydb

7. Start the MySQL service.

After this, all tables created in the database mydb are created in D:\data\mydb.

Alternatively, on any version of Windows supported by MySQL, you can create a symbolic link to a
MySQL database by creating a .sym file in the data directory that contains the path to the destination
directory. The file should be named db_name.sym, where db_name is the database name.

Support for database symbolic links on Windows using .sym files is enabled by default. If you do not
need .sym file symbolic links, you can disable support for them by starting mysqld with the --skip-
symbolic-links option. To determine whether your system supports .sym file symbolic links, check
the value of the have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

To create a .sym file symlink, use this procedure:

1. Change location into the data directory:

C:\> cd \path\to\datadir

2. In the data directory, create a text file named mydb.sym that contains this path name: D:\data
\mydb\

Note

The path name to the new database and tables should be absolute. If you
specify a relative path, the location is relative to the mydb.sym file.

After this, all tables created in the database mydb are created in D:\data\mydb.

10.12.3 Optimizing Memory Use

10.12.3.1 How MySQL Uses Memory

MySQL allocates buffers and caches to improve performance of database operations. The default
configuration is designed to permit a MySQL server to start on a virtual machine that has approximately
512MB of RAM. You can improve MySQL performance by increasing the values of certain cache
and buffer-related system variables. You can also modify the default configuration to run MySQL on
systems with limited memory.

The following list describes some of the ways that MySQL uses memory. Where applicable, relevant
system variables are referenced. Some items are storage engine or feature specific.

2010

Optimizing Memory Use

• The InnoDB buffer pool is a memory area that holds cached InnoDB data for tables, indexes, and
other auxiliary buffers. For efficiency of high-volume read operations, the buffer pool is divided into
pages that can potentially hold multiple rows. For efficiency of cache management, the buffer pool
is implemented as a linked list of pages; data that is rarely used is aged out of the cache, using a
variation of the LRU algorithm. For more information, see Section 17.5.1, “Buffer Pool”.

The size of the buffer pool is important for system performance:

• InnoDB allocates memory for the entire buffer pool at server startup, using malloc() operations.
The innodb_buffer_pool_size system variable defines the buffer pool size. Typically, a
recommended innodb_buffer_pool_size value is 50 to 75 percent of system memory.
innodb_buffer_pool_size can be configured dynamically, while the server is running. For
more information, see Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”.

• On systems with a large amount of memory, you can improve concurrency by dividing the buffer
pool into multiple buffer pool instances. The innodb_buffer_pool_instances system variable
defines the number of buffer pool instances.

• A buffer pool that is too small may cause excessive churning as pages are flushed from the buffer
pool only to be required again a short time later.

• A buffer pool that is too large may cause swapping due to competition for memory.

• The storage engine interface enables the optimizer to provide information about the size of the
record buffer to be used for scans that the optimizer estimates are likely to read multiple rows. The
buffer size can vary based on the size of the estimate. InnoDB uses this variable-size buffering
capability to take advantage of row prefetching, and to reduce the overhead of latching and B-tree
navigation.

• All threads share the MyISAM key buffer. The key_buffer_size system variable determines its
size.

For each MyISAM table the server opens, the index file is opened once; the data file is opened once
for each concurrently running thread that accesses the table. For each concurrent thread, a table
structure, column structures for each column, and a buffer of size 3 * N are allocated (where N is
the maximum row length, not counting BLOB columns). A BLOB column requires five to eight bytes
plus the length of the BLOB data. The MyISAM storage engine maintains one extra row buffer for
internal use.

• The myisam_use_mmap system variable can be set to 1 to enable memory-mapping for all MyISAM
tables.

• If an internal in-memory temporary table becomes too large (as determined using the
tmp_table_size and max_heap_table_size system variables), MySQL automatically converts
the table from in-memory to on-disk format. As of MySQL 8.0.16, on-disk temporary tables always
use the InnoDB storage engine. (Previously, the storage engine employed for this purpose was
determined by the internal_tmp_disk_storage_engine system variable, which is no longer
supported.) You can increase the permissible temporary table size as described in Section 10.4.4,
“Internal Temporary Table Use in MySQL”.

For MEMORY tables explicitly created with CREATE TABLE, only the max_heap_table_size system
variable determines how large a table can grow, and there is no conversion to on-disk format.

• The MySQL Performance Schema is a feature for monitoring MySQL server execution at a low level.
The Performance Schema dynamically allocates memory incrementally, scaling its memory use to
actual server load, instead of allocating required memory during server startup. Once memory is
allocated, it is not freed until the server is restarted. For more information, see Section 29.17, “The
Performance Schema Memory-Allocation Model”.

• Each thread that the server uses to manage client connections requires some thread-specific space.
The following list indicates these and which system variables control their size:

2011

Optimizing Memory Use

• A stack (thread_stack)

• A connection buffer (net_buffer_length)

• A result buffer (net_buffer_length)

The connection buffer and result buffer each begin with a size equal to net_buffer_length bytes,
but are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer
shrinks to net_buffer_length bytes after each SQL statement. While a statement is running, a
copy of the current statement string is also allocated.

Each connection thread uses memory for computing statement digests. The server allocates
max_digest_length bytes per session. See Section 29.10, “Performance Schema Statement
Digests and Sampling”.

• All threads share the same base memory.

• When a thread is no longer needed, the memory allocated to it is released and returned to the
system unless the thread goes back into the thread cache. In that case, the memory remains
allocated.

• Each request that performs a sequential scan of a table allocates a read buffer. The
read_buffer_size system variable determines the buffer size.

• When reading rows in an arbitrary sequence (for example, following a sort), a random-read buffer
may be allocated to avoid disk seeks. The read_rnd_buffer_size system variable determines
the buffer size.

• All joins are executed in a single pass, and most joins can be done without even using a temporary
table. Most temporary tables are memory-based hash tables. Temporary tables with a large row
length (calculated as the sum of all column lengths) or that contain BLOB columns are stored on disk.

• Most requests that perform a sort allocate a sort buffer and zero to two temporary files depending on
the result set size. See Section B.3.3.5, “Where MySQL Stores Temporary Files”.

• Almost all parsing and calculating is done in thread-local and reusable memory pools. No memory
overhead is needed for small items, thus avoiding the normal slow memory allocation and freeing.
Memory is allocated only for unexpectedly large strings.

• For each table having BLOB columns, a buffer is enlarged dynamically to read in larger BLOB values.
If you scan a table, the buffer grows as large as the largest BLOB value.

• MySQL requires memory and descriptors for the table cache. Handler structures for all in-use tables
are saved in the table cache and managed as “First In, First Out” (FIFO). The table_open_cache
system variable defines the initial table cache size; see Section 10.4.3.1, “How MySQL Opens and
Closes Tables”.

MySQL also requires memory for the table definition cache. The table_definition_cache
system variable defines the number of table definitions that can be stored in the table definition
cache. If you use a large number of tables, you can create a large table definition cache to speed up
the opening of tables. The table definition cache takes less space and does not use file descriptors,
unlike the table cache.

• A FLUSH TABLES statement or mysqladmin flush-tables command closes all tables that
are not in use at once and marks all in-use tables to be closed when the currently executing thread
finishes. This effectively frees most in-use memory. FLUSH TABLES does not return until all tables
have been closed.

• The server caches information in memory as a result of GRANT, CREATE USER, CREATE SERVER,
and INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE,

2012

Optimizing Memory Use

DROP USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes
many instances of the statements that cause caching, there is an increase in cached memory use
unless it is freed with FLUSH PRIVILEGES.

• In a replication topology, the following settings affect memory usage, and can be adjusted as
required:

• The max_allowed_packet system variable on a replication source limits the maximum message
size that the source sends to its replicas for processing. This setting defaults to 64M.

• The system variable replica_pending_jobs_size_max (from MySQL 8.0.26) or
slave_pending_jobs_size_max (before MySQL 8.0.26) on a multithreaded replica sets the
maximum amount of memory that is made available for holding messages awaiting processing.
This setting defaults to 128M. The memory is only allocated when needed, but it might be used
if your replication topology handles large transactions sometimes. It is a soft limit, and larger
transactions can be processed.

• The rpl_read_size system variable on a replication source or replica controls the minimum
amount of data in bytes that is read from the binary log files and relay log files. The default is 8192
bytes. A buffer the size of this value is allocated for each thread that reads from the binary log and
relay log files, including dump threads on sources and coordinator threads on replicas.

• The binlog_transaction_dependency_history_size system variable limits the number of
row hashes held as an in-memory history.

• The max_binlog_cache_size system variable specifies the upper limit of memory usage by an
individual transaction.

• The max_binlog_stmt_cache_size system variable specifies the upper limit of memory usage
by the statement cache.

ps and other system status programs may report that mysqld uses a lot of memory. This may be
caused by thread stacks on different memory addresses. For example, the Solaris version of ps counts
the unused memory between stacks as used memory. To verify this, check available swap with swap
-s. We test mysqld with several memory-leakage detectors (both commercial and Open Source), so
there should be no memory leaks.

10.12.3.2 Monitoring MySQL Memory Usage

The following example demonstrates how to use Performance Schema and sys schema to monitor
MySQL memory usage.

Most Performance Schema memory instrumentation is disabled by default. Instruments can be enabled
by updating the ENABLED column of the Performance Schema setup_instruments table. Memory
instruments have names in the form of memory/code_area/instrument_name, where code_area
is a value such as sql or innodb, and instrument_name is the instrument detail.

1. To view available MySQL memory instruments, query the Performance Schema
setup_instruments table. The following query returns hundreds of memory instruments for all
code areas.

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%memory%';

You can narrow results by specifying a code area. For example, you can limit results to InnoDB
memory instruments by specifying innodb as the code area.

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%memory/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+

2013

Optimizing Memory Use

memory/innodb/adaptive hash index	NO	NO
memory/innodb/buf_buf_pool	NO	NO
memory/innodb/dict_stats_bg_recalc_pool_t	NO	NO
memory/innodb/dict_stats_index_map_t	NO	NO
memory/innodb/dict_stats_n_diff_on_level	NO	NO
memory/innodb/other	NO	NO
memory/innodb/row_log_buf	NO	NO
memory/innodb/row_merge_sort	NO	NO
memory/innodb/std	NO	NO
memory/innodb/trx_sys_t::rw_trx_ids	NO	NO
...

Depending on your MySQL installation, code areas may include performance_schema, sql,
client, innodb, myisam, csv, memory, blackhole, archive, partition, and others.

2. To enable memory instruments, add a performance-schema-instrument rule to your MySQL
configuration file. For example, to enable all memory instruments, add this rule to your configuration
file and restart the server:

performance-schema-instrument='memory/%=COUNTED'

Note

Enabling memory instruments at startup ensures that memory allocations
that occur at startup are counted.

After restarting the server, the ENABLED column of the Performance Schema
setup_instruments table should report YES for memory instruments that you enabled. The
TIMED column in the setup_instruments table is ignored for memory instruments because
memory operations are not timed.

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%memory/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
memory/innodb/adaptive hash index	NO	NO
memory/innodb/buf_buf_pool	NO	NO
memory/innodb/dict_stats_bg_recalc_pool_t	NO	NO
memory/innodb/dict_stats_index_map_t	NO	NO
memory/innodb/dict_stats_n_diff_on_level	NO	NO
memory/innodb/other	NO	NO
memory/innodb/row_log_buf	NO	NO
memory/innodb/row_merge_sort	NO	NO
memory/innodb/std	NO	NO
memory/innodb/trx_sys_t::rw_trx_ids	NO	NO
...

3. Query memory instrument data. In this example, memory instrument data is queried in the
Performance Schema memory_summary_global_by_event_name table, which summarizes
data by EVENT_NAME. The EVENT_NAME is the name of the instrument.

The following query returns memory data for the InnoDB buffer pool. For column descriptions, see
Section 29.12.20.10, “Memory Summary Tables”.

mysql> SELECT * FROM performance_schema.memory_summary_global_by_event_name
 WHERE EVENT_NAME LIKE 'memory/innodb/buf_buf_pool'\G
 EVENT_NAME: memory/innodb/buf_buf_pool
 COUNT_ALLOC: 1
 COUNT_FREE: 0
 SUM_NUMBER_OF_BYTES_ALLOC: 137428992
 SUM_NUMBER_OF_BYTES_FREE: 0
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 1
 HIGH_COUNT_USED: 1
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 137428992
 HIGH_NUMBER_OF_BYTES_USED: 137428992

2014

Optimizing Memory Use

The same underlying data can be queried using the sys schema
memory_global_by_current_bytes table, which shows current memory usage within the
server globally, broken down by allocation type.

mysql> SELECT * FROM sys.memory_global_by_current_bytes
 WHERE event_name LIKE 'memory/innodb/buf_buf_pool'\G
*************************** 1. row ***************************
 event_name: memory/innodb/buf_buf_pool
 current_count: 1
 current_alloc: 131.06 MiB
current_avg_alloc: 131.06 MiB
 high_count: 1
 high_alloc: 131.06 MiB
 high_avg_alloc: 131.06 MiB

This sys schema query aggregates currently allocated memory (current_alloc) by code area:

mysql> SELECT SUBSTRING_INDEX(event_name,'/',2) AS
 code_area, FORMAT_BYTES(SUM(current_alloc))
 AS current_alloc
 FROM sys.x$memory_global_by_current_bytes
 GROUP BY SUBSTRING_INDEX(event_name,'/',2)
 ORDER BY SUM(current_alloc) DESC;
+---------------------------+---------------+
| code_area | current_alloc |
+---------------------------+---------------+
memory/innodb	843.24 MiB
memory/performance_schema	81.29 MiB
memory/mysys	8.20 MiB
memory/sql	2.47 MiB
memory/memory	174.01 KiB
memory/myisam	46.53 KiB
memory/blackhole	512 bytes
memory/federated	512 bytes
memory/csv	512 bytes
memory/vio	496 bytes
+---------------------------+---------------+

Note

Prior to MySQL 8.0.16, sys.format_bytes() was used for
FORMAT_BYTES().

For more information about sys schema, see Chapter 30, MySQL sys Schema.

10.12.3.3 Enabling Large Page Support

Some hardware and operating system architectures support memory pages greater than the default
(usually 4KB). The actual implementation of this support depends on the underlying hardware and
operating system. Applications that perform a lot of memory accesses may obtain performance
improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

In MySQL, large pages can be used by InnoDB, to allocate memory for its buffer pool and additional
memory pool.

Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under
Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available for
recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or --
skip-super-large-pages option.

MySQL also supports the Linux implementation of large page support (which is called HugeTLB in
Linux).

Before large pages can be used on Linux, the kernel must be enabled to support them and it is
necessary to configure the HugeTLB memory pool. For reference, the HugeTBL API is documented in
the Documentation/vm/hugetlbpage.txt file of your Linux sources.

2015

Optimizing Memory Use

The kernels for some recent systems such as Red Hat Enterprise Linux may have the large pages
feature enabled by default. To check whether this is true for your kernel, use the following command
and look for output lines containing “huge”:

$> grep -i huge /proc/meminfo
AnonHugePages: 2658304 kB
ShmemHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 0 kB

The nonempty command output indicates that large page support is present, but the zero values
indicate that no pages are configured for use.

If your kernel needs to be reconfigured to support large pages, consult the hugetlbpage.txt file for
instructions.

Assuming that your Linux kernel has large page support enabled, configure it for use by MySQL using
the following steps:

1. Determine the number of large pages needed. This is the size of the InnoDB buffer pool divided by
the large page size, which we can calculate as innodb_buffer_pool_size / Hugepagesize.
Assuming the default value for the innodb_buffer_pool_size (128MB) and using the
Hugepagesize value obtained from /proc/meminfo (2MB), this is 128MB / 2MB, or 64 Huge
Pages. We call this value P.

2. As system root, open the file /etc/sysctl.conf in a text editor, and add the line shown here,
where P is the number of large pages obtained in the previous step:

vm.nr_hugepages=P

Using the actual value obtained previously, the additional line should look like this:

vm.nr_hugepages=66

Save the updated file.

3. As system root, run the following command:

$> sudo sysctl -p

Note

On some systems the large pages file may be named slightly differently;
for example, some distributions call it nr_hugepages. In the event
sysctl returns an error relating to the file name, check the name of the
corresponding file in /proc/sys/vm and use that instead.

To verify the large page configuration, check /proc/meminfo again as described previously. Now
you should see some additional nonzero values in the output, similar to this:

$> grep -i huge /proc/meminfo
AnonHugePages: 2686976 kB
ShmemHugePages: 0 kB
HugePages_Total: 233
HugePages_Free: 233
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 477184 kB

4. Optionally, you may wish to compact the Linux VM. You can do this using a sequence of
commands, possibly in a script file, similar to what is shown here:

2016

Measuring Performance (Benchmarking)

sync
sync
sync
echo 3 > /proc/sys/vm/drop_caches
echo 1 > /proc/sys/vm/compact_memory

See your operating platform documentation for more information about how to do this.

5. Check any configuration files such as my.cnf used by the server, and make sure that
innodb_buffer_pool_chunk_size is set larger than the huge page size. The default for this
variable is 128M.

6. Large page support in the MySQL server is disabled by default. To enable it, start the server with
--large-pages. You can also do so by adding the following line to the [mysqld] section of the
server my.cnf file:

large-pages=ON

With this option enabled, InnoDB uses large pages automatically for its buffer pool and additional
memory pool. If InnoDB cannot do this, it falls back to use of traditional memory and writes a
warning to the error log: Warning: Using conventional memory pool.

You can verify that MySQL is now using large pages by checking /proc/meminfo again after
restarting mysqld, like this:

$> grep -i huge /proc/meminfo
AnonHugePages: 2516992 kB
ShmemHugePages: 0 kB
HugePages_Total: 233
HugePages_Free: 222
HugePages_Rsvd: 55
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 477184 kB

10.13 Measuring Performance (Benchmarking)
To measure performance, consider the following factors:

• Whether you are measuring the speed of a single operation on a quiet system, or how a set of
operations (a “workload”) works over a period of time. With simple tests, you usually test how
changing one aspect (a configuration setting, the set of indexes on a table, the SQL clauses in a
query) affects performance. Benchmarks are typically long-running and elaborate performance tests,
where the results could dictate high-level choices such as hardware and storage configuration, or
how soon to upgrade to a new MySQL version.

• For benchmarking, sometimes you must simulate a heavy database workload to get an accurate
picture.

• Performance can vary depending on so many different factors that a difference of a few percentage
points might not be a decisive victory. The results might shift the opposite way when you test in a
different environment.

• Certain MySQL features help or do not help performance depending on the workload. For
completeness, always test performance with those features turned on and turned off. The most
important feature to try with each workload is the adaptive hash index for InnoDB tables.

This section progresses from simple and direct measurement techniques that a single developer can
do, to more complicated ones that require additional expertise to perform and interpret the results.

10.13.1 Measuring the Speed of Expressions and Functions

To measure the speed of a specific MySQL expression or function, invoke the BENCHMARK() function
using the mysql client program. Its syntax is BENCHMARK(loop_count,expr). The return value is

2017

Using Your Own Benchmarks

always zero, but mysql prints a line displaying approximately how long the statement took to execute.
For example:

mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+
| 0 |
+------------------------+
1 row in set (0.32 sec)

This result was obtained on a Pentium II 400MHz system. It shows that MySQL can execute 1,000,000
simple addition expressions in 0.32 seconds on that system.

The built-in MySQL functions are typically highly optimized, but there may be some exceptions.
BENCHMARK() is an excellent tool for finding out if some function is a problem for your queries.

10.13.2 Using Your Own Benchmarks

Benchmark your application and database to find out where the bottlenecks are. After fixing one
bottleneck (or by replacing it with a “dummy” module), you can proceed to identify the next bottleneck.
Even if the overall performance for your application currently is acceptable, you should at least make a
plan for each bottleneck and decide how to solve it if someday you really need the extra performance.

A free benchmark suite is the Open Source Database Benchmark, available at http://
osdb.sourceforge.net/.

It is very common for a problem to occur only when the system is very heavily loaded. We have
had many customers who contact us when they have a (tested) system in production and have
encountered load problems. In most cases, performance problems turn out to be due to issues of
basic database design (for example, table scans are not good under high load) or problems with the
operating system or libraries. Most of the time, these problems would be much easier to fix if the
systems were not already in production.

To avoid problems like this, benchmark your whole application under the worst possible load:

• The mysqlslap program can be helpful for simulating a high load produced by multiple clients
issuing queries simultaneously. See Section 6.5.8, “mysqlslap — A Load Emulation Client”.

• You can also try benchmarking packages such as SysBench and DBT2, available at https://
launchpad.net/sysbench, and http://osdldbt.sourceforge.net/#dbt2.

These programs or packages can bring a system to its knees, so be sure to use them only on your
development systems.

10.13.3 Measuring Performance with performance_schema

You can query the tables in the performance_schema database to see real-time information about
the performance characteristics of your server and the applications it is running. See Chapter 29,
MySQL Performance Schema for details.

10.14 Examining Server Thread (Process) Information
To ascertain what your MySQL server is doing, it can be helpful to examine the process list, which
indicates the operations currently being performed by the set of threads executing within the server.
For example:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 5
 User: event_scheduler
 Host: localhost
 db: NULL

2018

http://osdb.sourceforge.net/
http://osdb.sourceforge.net/
https://launchpad.net/sysbench
https://launchpad.net/sysbench
http://osdldbt.sourceforge.net/#dbt2

Accessing the Process List

Command: Daemon
 Time: 2756681
 State: Waiting on empty queue
 Info: NULL
*************************** 2. row ***************************
 Id: 20
 User: me
 Host: localhost:52943
 db: test
Command: Query
 Time: 0
 State: starting
 Info: SHOW PROCESSLIST

Threads can be killed with the KILL statement. See Section 15.7.8.4, “KILL Statement”.

10.14.1 Accessing the Process List

The following discussion enumerates the sources of process information, the privileges required to see
process information, and describes the content of process list entries.

• Sources of Process Information

• Privileges Required to Access the Process List

• Content of Process List Entries

Sources of Process Information

Process information is available from these sources:

• The SHOW PROCESSLIST statement: Section 15.7.7.29, “SHOW PROCESSLIST Statement”

• The mysqladmin processlist command: Section 6.5.2, “mysqladmin — A MySQL Server
Administration Program”

• The INFORMATION_SCHEMA PROCESSLIST table: Section 28.3.23, “The INFORMATION_SCHEMA
PROCESSLIST Table”

• The Performance Schema processlist table: Section 29.12.21.7, “The processlist Table”

• The Performance Schema threads table columns with names having a prefix of PROCESSLIST_:
Section 29.12.21.8, “The threads Table”

• The sys schema processlist and session views: Section 30.4.3.22, “The processlist and x
$processlist Views”, and Section 30.4.3.33, “The session and x$session Views”

The threads table compares to SHOW PROCESSLIST, INFORMATION_SCHEMA PROCESSLIST, and
mysqladmin processlist as follows:

• Access to the threads table does not require a mutex and has minimal impact on server
performance. The other sources have negative performance consequences because they require a
mutex.

Note

As of MySQL 8.0.22, an alternative implementation for SHOW PROCESSLIST
is available based on the Performance Schema processlist table, which,
like the threads table, does not require a mutex and has better performance
characteristics. For details, see Section 29.12.21.7, “The processlist Table”.

• The threads table displays background threads, which the other sources do not. It also provides
additional information for each thread that the other sources do not, such as whether the thread is a
foreground or background thread, and the location within the server associated with the thread. This
means that the threads table can be used to monitor thread activity the other sources cannot.

2019

Thread Command Values

• You can enable or disable Performance Schema thread monitoring, as described in
Section 29.12.21.8, “The threads Table”.

For these reasons, DBAs who perform server monitoring using one of the other thread information
sources may wish to monitor using the threads table instead.

The sys schema processlist view presents information from the Performance Schema threads
table in a more accessible format. The sys schema session view presents information about user
sessions like the sys schema processlist view, but with background processes filtered out.

Privileges Required to Access the Process List

For most sources of process information, if you have the PROCESS privilege, you can see all threads,
even those belonging to other users. Otherwise (without the PROCESS privilege), nonanonymous users
have access to information about their own threads but not threads for other users, and anonymous
users have no access to thread information.

The Performance Schema threads table also provides thread information, but table access uses a
different privilege model. See Section 29.12.21.8, “The threads Table”.

Content of Process List Entries

Each process list entry contains several pieces of information. The following list describes them using
the labels from SHOW PROCESSLIST output. Other process information sources use similar labels.

• Id is the connection identifier for the client associated with the thread.

• User and Host indicate the account associated with the thread.

• db is the default database for the thread, or NULL if none has been selected.

• Command and State indicate what the thread is doing.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

The following sections list the possible Command values, and State values grouped by category.
The meaning for some of these values is self-evident. For others, additional description is provided.

Note

Applications that examine process list information should be aware that the
commands and states are subject to change.

• Time indicates how long the thread has been in its current state. The thread's notion of the current
time may be altered in some cases: The thread can change the time with SET TIMESTAMP =
value. For a replica SQL thread, the value is the number of seconds between the timestamp of the
last replicated event and the real time of the replica host. See Section 19.2.3, “Replication Threads”.

• Info indicates the statement the thread is executing, or NULL if it is executing no statement. For
SHOW PROCESSLIST, this value contains only the first 100 characters of the statement. To see
complete statements, use SHOW FULL PROCESSLIST (or query a different process information
source).

10.14.2 Thread Command Values

A thread can have any of the following Command values:

• Binlog Dump

This is a thread on a replication source for sending binary log contents to a replica.

• Change user

2020

Thread Command Values

The thread is executing a change user operation.

• Close stmt

The thread is closing a prepared statement.

• Connect

Used by replication receiver threads connected to the source, and by replication worker threads.

• Connect Out

A replica is connecting to its source.

• Create DB

The thread is executing a create database operation.

• Daemon

This thread is internal to the server, not a thread that services a client connection.

• Debug

The thread is generating debugging information.

• Delayed insert

The thread is a delayed insert handler.

• Drop DB

The thread is executing a drop database operation.

• Error

• Execute

The thread is executing a prepared statement.

• Fetch

The thread is fetching the results from executing a prepared statement.

• Field List

The thread is retrieving information for table columns.

• Init DB

The thread is selecting a default database.

• Kill

The thread is killing another thread.

• Long Data

The thread is retrieving long data in the result of executing a prepared statement.

• Ping

The thread is handling a server ping request.

• Prepare

2021

General Thread States

The thread is preparing a prepared statement.

• Processlist

The thread is producing information about server threads.

• Query

Employed for user clients while executing queries by single-threaded replication applier threads, as
well as by the replication coordinator thread.

• Quit

The thread is terminating.

• Refresh

The thread is flushing table, logs, or caches, or resetting status variable or replication server
information.

• Register Slave

The thread is registering a replica server.

• Reset stmt

The thread is resetting a prepared statement.

• Set option

The thread is setting or resetting a client statement execution option.

• Shutdown

The thread is shutting down the server.

• Sleep

The thread is waiting for the client to send a new statement to it.

• Statistics

The thread is producing server status information.

• Time

Unused.

10.14.3 General Thread States

The following list describes thread State values that are associated with general query processing
and not more specialized activities such as replication. Many of these are useful only for finding bugs in
the server.

• After create

This occurs when the thread creates a table (including internal temporary tables), at the end of the
function that creates the table. This state is used even if the table could not be created due to some
error.

• altering table

The server is in the process of executing an in-place ALTER TABLE.

2022

General Thread States

• Analyzing

The thread is calculating a MyISAM table key distributions (for example, for ANALYZE TABLE).

• checking permissions

The thread is checking whether the server has the required privileges to execute the statement.

• Checking table

The thread is performing a table check operation.

• cleaning up

The thread has processed one command and is preparing to free memory and reset certain state
variables.

• closing tables

The thread is flushing the changed table data to disk and closing the used tables. This should be a
fast operation. If not, verify that you do not have a full disk and that the disk is not in very heavy use.

• committing alter table to storage engine

The server has finished an in-place ALTER TABLE and is committing the result.

• converting HEAP to ondisk

The thread is converting an internal temporary table from a MEMORY table to an on-disk table.

• copy to tmp table

The thread is processing an ALTER TABLE statement. This state occurs after the table with the new
structure has been created but before rows are copied into it.

For a thread in this state, the Performance Schema can be used to obtain about the progress of the
copy operation. See Section 29.12.5, “Performance Schema Stage Event Tables”.

• Copying to group table

If a statement has different ORDER BY and GROUP BY criteria, the rows are sorted by group and
copied to a temporary table.

• Copying to tmp table

The server is copying to a temporary table in memory.

• Copying to tmp table on disk

The server is copying to a temporary table on disk. The temporary result set has become too
large (see Section 10.4.4, “Internal Temporary Table Use in MySQL”). Consequently, the thread is
changing the temporary table from in-memory to disk-based format to save memory.

• Creating index

The thread is processing ALTER TABLE ... ENABLE KEYS for a MyISAM table.

• Creating sort index

The thread is processing a SELECT that is resolved using an internal temporary table.

• creating table

The thread is creating a table. This includes creation of temporary tables.

2023

General Thread States

• Creating tmp table

The thread is creating a temporary table in memory or on disk. If the table is created in memory but
later is converted to an on-disk table, the state during that operation is Copying to tmp table
on disk.

• deleting from main table

The server is executing the first part of a multiple-table delete. It is deleting only from the first table,
and saving columns and offsets to be used for deleting from the other (reference) tables.

• deleting from reference tables

The server is executing the second part of a multiple-table delete and deleting the matched rows
from the other tables.

• discard_or_import_tablespace

The thread is processing an ALTER TABLE ... DISCARD TABLESPACE or ALTER TABLE ...
IMPORT TABLESPACE statement.

• end

This occurs at the end but before the cleanup of ALTER TABLE, CREATE VIEW, DELETE, INSERT,
SELECT, or UPDATE statements.

For the end state, the following operations could be happening:

• Writing an event to the binary log

• Freeing memory buffers, including for blobs

• executing

The thread has begun executing a statement.

• Execution of init_command

The thread is executing statements in the value of the init_command system variable.

• freeing items

The thread has executed a command. This state is usually followed by cleaning up.

• FULLTEXT initialization

The server is preparing to perform a natural-language full-text search.

• init

This occurs before the initialization of ALTER TABLE, DELETE, INSERT, SELECT, or UPDATE
statements. Actions taken by the server in this state include flushing the binary log and the InnoDB
log.

• Killed

Someone has sent a KILL statement to the thread and it should abort next time it checks the kill flag.
The flag is checked in each major loop in MySQL, but in some cases it might still take a short time
for the thread to die. If the thread is locked by some other thread, the kill takes effect as soon as the
other thread releases its lock.

• Locking system tables

The thread is trying to lock a system table (for example, a time zone or log table).

2024

General Thread States

• logging slow query

The thread is writing a statement to the slow-query log.

• login

The initial state for a connection thread until the client has been authenticated successfully.

• manage keys

The server is enabling or disabling a table index.

• Opening system tables

The thread is trying to open a system table (for example, a time zone or log table).

• Opening tables

The thread is trying to open a table. This is should be very fast procedure, unless something
prevents opening. For example, an ALTER TABLE or a LOCK TABLE statement can prevent opening
a table until the statement is finished. It is also worth checking that your table_open_cache value
is large enough.

For system tables, the Opening system tables state is used instead.

• optimizing

The server is performing initial optimizations for a query.

• preparing

This state occurs during query optimization.

• preparing for alter table

The server is preparing to execute an in-place ALTER TABLE.

• Purging old relay logs

The thread is removing unneeded relay log files.

• query end

This state occurs after processing a query but before the freeing items state.

• Receiving from client

The server is reading a packet from the client.

• Removing duplicates

The query was using SELECT DISTINCT in such a way that MySQL could not optimize away the
distinct operation at an early stage. Because of this, MySQL requires an extra stage to remove all
duplicated rows before sending the result to the client.

• removing tmp table

The thread is removing an internal temporary table after processing a SELECT statement. This state
is not used if no temporary table was created.

• rename

The thread is renaming a table.

2025

General Thread States

• rename result table

The thread is processing an ALTER TABLE statement, has created the new table, and is renaming it
to replace the original table.

• Reopen tables

The thread got a lock for the table, but noticed after getting the lock that the underlying table
structure changed. It has freed the lock, closed the table, and is trying to reopen it.

• Repair by sorting

The repair code is using a sort to create indexes.

• Repair done

The thread has completed a multithreaded repair for a MyISAM table.

• Repair with keycache

The repair code is using creating keys one by one through the key cache. This is much slower than
Repair by sorting.

• Rolling back

The thread is rolling back a transaction.

• Saving state

For MyISAM table operations such as repair or analysis, the thread is saving the new table state to
the .MYI file header. State includes information such as number of rows, the AUTO_INCREMENT
counter, and key distributions.

• Searching rows for update

The thread is doing a first phase to find all matching rows before updating them. This has to be done
if the UPDATE is changing the index that is used to find the involved rows.

• Sending data

Prior to MySQL 8.0.17: The thread is reading and processing rows for a SELECT statement, and
sending data to the client. Because operations occurring during this state tend to perform large
amounts of disk access (reads), it is often the longest-running state over the lifetime of a given query.
MySQL 8.0.17 and later: This state is no longer indicated separately, but rather is included in the
Executing state.

• Sending to client

The server is writing a packet to the client.

• setup

The thread is beginning an ALTER TABLE operation.

• Sorting for group

The thread is doing a sort to satisfy a GROUP BY.

• Sorting for order

The thread is doing a sort to satisfy an ORDER BY.

• Sorting index

2026

General Thread States

The thread is sorting index pages for more efficient access during a MyISAM table optimization
operation.

• Sorting result

For a SELECT statement, this is similar to Creating sort index, but for nontemporary tables.

• starting

The first stage at the beginning of statement execution.

• statistics

The server is calculating statistics to develop a query execution plan. If a thread is in this state for a
long time, the server is probably disk-bound performing other work.

• System lock

The thread has called mysql_lock_tables() and the thread state has not been updated since.
This is a very general state that can occur for many reasons.

For example, the thread is going to request or is waiting for an internal or external system lock for the
table. This can occur when InnoDB waits for a table-level lock during execution of LOCK TABLES.
If this state is being caused by requests for external locks and you are not using multiple mysqld
servers that are accessing the same MyISAM tables, you can disable external system locks with the
--skip-external-locking option. However, external locking is disabled by default, so it is likely
that this option has no effect. For SHOW PROFILE, this state means the thread is requesting the lock
(not waiting for it).

For system tables, the Locking system tables state is used instead.

• update

The thread is getting ready to start updating the table.

• Updating

The thread is searching for rows to update and is updating them.

• updating main table

The server is executing the first part of a multiple-table update. It is updating only the first table, and
saving columns and offsets to be used for updating the other (reference) tables.

• updating reference tables

The server is executing the second part of a multiple-table update and updating the matched rows
from the other tables.

• User lock

The thread is going to request or is waiting for an advisory lock requested with a GET_LOCK() call.
For SHOW PROFILE, this state means the thread is requesting the lock (not waiting for it).

• User sleep

The thread has invoked a SLEEP() call.

• Waiting for commit lock

FLUSH TABLES WITH READ LOCK is waiting for a commit lock.

• waiting for handler commit

2027

General Thread States

The thread is waiting for a transaction to commit versus other parts of query processing.

• Waiting for tables

The thread got a notification that the underlying structure for a table has changed and it needs to
reopen the table to get the new structure. However, to reopen the table, it must wait until all other
threads have closed the table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

• Waiting for table flush

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables, or the
thread got a notification that the underlying structure for a table has changed and it needs to reopen
the table to get the new structure. However, to reopen the table, it must wait until all other threads
have closed the table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

• Waiting for lock_type lock

The server is waiting to acquire a THR_LOCK lock or a lock from the metadata locking subsystem,
where lock_type indicates the type of lock.

This state indicates a wait for a THR_LOCK:

• Waiting for table level lock

These states indicate a wait for a metadata lock:

• Waiting for event metadata lock

• Waiting for global read lock

• Waiting for schema metadata lock

• Waiting for stored function metadata lock

• Waiting for stored procedure metadata lock

• Waiting for table metadata lock

• Waiting for trigger metadata lock

For information about table lock indicators, see Section 10.11.1, “Internal Locking Methods”. For
information about metadata locking, see Section 10.11.4, “Metadata Locking”. To see which locks
are blocking lock requests, use the Performance Schema lock tables described at Section 29.12.13,
“Performance Schema Lock Tables”.

• Waiting on cond

A generic state in which the thread is waiting for a condition to become true. No specific state
information is available.

• Writing to net

The server is writing a packet to the network.

2028

Replication Source Thread States

10.14.4 Replication Source Thread States

The following list shows the most common states you may see in the State column for the Binlog
Dump thread of the replication source. If you see no Binlog Dump threads on a source, this means
that replication is not running; that is, that no replicas are currently connected.

In MySQL 8.0.26, incompatible changes were made to instrumentation names, including the names of
thread stages, containing the terms “master”, which is changed to “source”, “slave”, which is changed
to “replica”, and “mts” (for “multithreaded slave”), which is changed to “mta” (for “multithreaded
applier”). Monitoring tools that work with these instrumentation names might be impacted. If the
incompatible changes have an impact for you, set the terminology_use_previous system variable
to BEFORE_8_0_26 to make MySQL Server use the old versions of the names for the objects specified
in the previous list. This enables monitoring tools that rely on the old names to continue working until
they can be updated to use the new names.

Set the terminology_use_previous system variable with session scope to support individual
functions, or global scope to be a default for all new sessions. When global scope is used, the slow
query log contains the old versions of the names.

• Finished reading one binlog; switching to next binlog

The thread has finished reading a binary log file and is opening the next one to send to the replica.

• Master has sent all binlog to slave; waiting for more updates

 From MySQL 8.0.26: Source has sent all binlog to replica; waiting for more
updates

The thread has read all remaining updates from the binary logs and sent them to the replica. The
thread is now idle, waiting for new events to appear in the binary log resulting from new updates
occurring on the source.

• Sending binlog event to slave

 From MySQL 8.0.26: Sending binlog event to replica

Binary logs consist of events, where an event is usually an update plus some other information. The
thread has read an event from the binary log and is now sending it to the replica.

• Waiting to finalize termination

A very brief state that occurs as the thread is stopping.

10.14.5 Replication I/O (Receiver) Thread States

The following list shows the most common states you see in the State column for a replication I/
O (receiver) thread on a replica server. This state also appears in the Replica_IO_State column
displayed by SHOW REPLICA STATUS (or before MySQL 8.0.22, SHOW REPLICA STATUS), so you
can get a good view of what is happening by using that statement.

In MySQL 8.0.26, incompatible changes were made to instrumentation names, including the names of
thread stages, containing the terms “master”, which is changed to “source”, “slave”, which is changed
to “replica”, and “mts” (for “multithreaded slave”), which is changed to “mta” (for “multithreaded
applier”). Monitoring tools that work with these instrumentation names might be impacted. If the
incompatible changes have an impact for you, set the terminology_use_previous system variable
to BEFORE_8_0_26 to make MySQL Server use the old versions of the names for the objects specified
in the previous list. This enables monitoring tools that rely on the old names to continue working until
they can be updated to use the new names.

Set the terminology_use_previous system variable with session scope to support individual
functions, or global scope to be a default for all new sessions. When global scope is used, the slow
query log contains the old versions of the names.

2029

Replication I/O (Receiver) Thread States

• Checking master version

 From MySQL 8.0.26: Checking source version

A state that occurs very briefly, after the connection to the source is established.

• Connecting to master

 From MySQL 8.0.26: Connecting to source

The thread is attempting to connect to the source.

• Queueing master event to the relay log

 From MySQL 8.0.26: Queueing source event to the relay log

The thread has read an event and is copying it to the relay log so that the SQL thread can process it.

• Reconnecting after a failed binlog dump request

The thread is trying to reconnect to the source.

• Reconnecting after a failed master event read

 From MySQL 8.0.26: Reconnecting after a failed source event read

The thread is trying to reconnect to the source. When connection is established again, the state
becomes Waiting for master to send event.

• Registering slave on master

 From MySQL 8.0.26: Registering replica on source

A state that occurs very briefly after the connection to the source is established.

• Requesting binlog dump

A state that occurs very briefly, after the connection to the source is established. The thread sends
to the source a request for the contents of its binary logs, starting from the requested binary log file
name and position.

• Waiting for its turn to commit

A state that occurs when the replica thread is waiting for older worker threads to commit if
replica_preserve_commit_order or slave_preserve_commit_order is enabled.

• Waiting for master to send event

 From MySQL 8.0.26: Waiting for source to send event

The thread has connected to the source and is waiting for binary log events to arrive. This
can last for a long time if the source is idle. If the wait lasts for replica_net_timeout or
slave_net_timeout seconds, a timeout occurs. At that point, the thread considers the connection
to be broken and makes an attempt to reconnect.

• Waiting for master update

 From MySQL 8.0.26: Waiting for source update

The initial state before Connecting to master or Connecting to source.

• Waiting for slave mutex on exit

 From MySQL 8.0.26: Waiting for replica mutex on exit

2030

Replication SQL Thread States

A state that occurs briefly as the thread is stopping.

• Waiting for the slave SQL thread to free enough relay log space

 From MySQL 8.0.26: Waiting for the replica SQL thread to free enough relay
log space

You are using a nonzero relay_log_space_limit value, and the relay logs have grown large
enough that their combined size exceeds this value. The I/O (receiver) thread is waiting until the SQL
(applier) thread frees enough space by processing relay log contents so that it can delete some relay
log files.

• Waiting to reconnect after a failed binlog dump request

If the binary log dump request failed (due to disconnection), the thread goes into this state while it
sleeps, then tries to reconnect periodically. The interval between retries can be specified using the
CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO
statement (before MySQL 8.0.23).

• Waiting to reconnect after a failed master event read

 From MySQL 8.0.26: Waiting to reconnect after a failed source event read

An error occurred while reading (due to disconnection). The thread is sleeping for the number
of seconds set by the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or
CHANGE MASTER TO statement (before MySQL 8.0.23), which defaults to 60, before attempting to
reconnect.

10.14.6 Replication SQL Thread States

The following list shows the most common states you may see in the State column for a replication
SQL thread on a replica server.

In MySQL 8.0.26, incompatible changes were made to instrumentation names, including the names of
thread stages, containing the terms “master”, which is changed to “source”, “slave”, which is changed
to “replica”, and “mts” (for “multithreaded slave”), which is changed to “mta” (for “multithreaded
applier”). Monitoring tools that work with these instrumentation names might be impacted. If the
incompatible changes have an impact for you, set the terminology_use_previous system variable
to BEFORE_8_0_26 to make MySQL Server use the old versions of the names for the objects specified
in the previous list. This enables monitoring tools that rely on the old names to continue working until
they can be updated to use the new names.

Set the terminology_use_previous system variable with session scope to support individual
functions, or global scope to be a default for all new sessions. When global scope is used, the slow
query log contains the old versions of the names.

• Making temporary file (append) before replaying LOAD DATA INFILE

The thread is executing a LOAD DATA statement and is appending the data to a temporary file
containing the data from which the replica reads rows.

• Making temporary file (create) before replaying LOAD DATA INFILE

The thread is executing a LOAD DATA statement and is creating a temporary file containing the data
from which the replica reads rows. This state can only be encountered if the original LOAD DATA
statement was logged by a source running a version of MySQL lower than MySQL 5.0.3.

• Reading event from the relay log

The thread has read an event from the relay log so that the event can be processed.

2031

Replication Connection Thread States

• Slave has read all relay log; waiting for more updates

 From MySQL 8.0.26: Replica has read all relay log; waiting for more updates

The thread has processed all events in the relay log files, and is now waiting for the I/O (receiver)
thread to write new events to the relay log.

• Waiting for an event from Coordinator

Using the multithreaded replica (replica_parallel_workers or slave_parallel_workers is
greater than 1), one of the replica worker threads is waiting for an event from the coordinator thread.

• Waiting for slave mutex on exit

 From MySQL 8.0.26: Waiting for replica mutex on exit

A very brief state that occurs as the thread is stopping.

• Waiting for Slave Workers to free pending events

 From MySQL 8.0.26: Waiting for Replica Workers to free pending events

This waiting action occurs when the total size of events being processed by Workers exceeds the
size of the replica_pending_jobs_size_max or slave_pending_jobs_size_max system
variable. The Coordinator resumes scheduling when the size drops below this limit. This state occurs
only when replica_parallel_workers or slave_parallel_workers is set greater than 0.

• Waiting for the next event in relay log

The initial state before Reading event from the relay log.

• Waiting until MASTER_DELAY seconds after master executed event

 From MySQL 8.0.26: Waiting until SOURCE_DELAY seconds after master executed
event

The SQL thread has read an event but is waiting for the replica delay to lapse. This delay is set with
the SOURCE_DELAY | MASTER_DELAY option of the CHANGE REPLICATION SOURCE TO statement
(from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23).

The Info column for the SQL thread may also show the text of a statement. This indicates that the
thread has read an event from the relay log, extracted the statement from it, and may be executing it.

10.14.7 Replication Connection Thread States

These thread states occur on a replica server but are associated with connection threads, not with the
I/O or SQL threads.

In MySQL 8.0.26, incompatible changes were made to instrumentation names, including the names of
thread stages, containing the terms “master”, which is changed to “source”, “slave”, which is changed
to “replica”, and “mts” (for “multithreaded slave”), which is changed to “mta” (for “multithreaded
applier”). Monitoring tools that work with these instrumentation names might be impacted. If the
incompatible changes have an impact for you, set the terminology_use_previous system variable
to BEFORE_8_0_26 to make MySQL Server use the old versions of the names for the objects specified
in the previous list. This enables monitoring tools that rely on the old names to continue working until
they can be updated to use the new names.

Set the terminology_use_previous system variable with session scope to support individual
functions, or global scope to be a default for all new sessions. When global scope is used, the slow
query log contains the old versions of the names.

• Changing master

2032

NDB Cluster Thread States

 From MySQL 8.0.26: Changing replication source

The thread is processing a CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or
CHANGE MASTER TO statement (before MySQL 8.0.23).

• Killing slave

The thread is processing a STOP REPLICA statement.

• Opening master dump table

This state occurs after Creating table from master dump.

• Reading master dump table data

This state occurs after Opening master dump table.

• Rebuilding the index on master dump table

This state occurs after Reading master dump table data.

10.14.8 NDB Cluster Thread States

• Committing events to binlog

• Opening mysql.ndb_apply_status

• Processing events

The thread is processing events for binary logging.

• Processing events from schema table

The thread is doing the work of schema replication.

• Shutting down

• Syncing ndb table schema operation and binlog

This is used to have a correct binary log of schema operations for NDB.

• Waiting for allowed to take ndbcluster global schema lock

The thread is waiting for permission to take a global schema lock.

• Waiting for event from ndbcluster

The server is acting as an SQL node in an NDB Cluster, and is connected to a cluster management
node.

• Waiting for first event from ndbcluster

• Waiting for ndbcluster binlog update to reach current position

• Waiting for ndbcluster global schema lock

The thread is waiting for a global schema lock held by another thread to be released.

• Waiting for ndbcluster to start

• Waiting for schema epoch

The thread is waiting for a schema epoch (that is, a global checkpoint).

2033

Event Scheduler Thread States

10.14.9 Event Scheduler Thread States

These states occur for the Event Scheduler thread, threads that are created to execute scheduled
events, or threads that terminate the scheduler.

• Clearing

The scheduler thread or a thread that was executing an event is terminating and is about to end.

• Initialized

The scheduler thread or a thread that executes an event has been initialized.

• Waiting for next activation

The scheduler has a nonempty event queue but the next activation is in the future.

• Waiting for scheduler to stop

The thread issued SET GLOBAL event_scheduler=OFF and is waiting for the scheduler to stop.

• Waiting on empty queue

The scheduler's event queue is empty and it is sleeping.

10.15 Tracing the Optimizer
The MySQL optimizer includes the capability to perform tracing; the interface is provided by a set of
optimizer_trace_xxx system variables and the INFORMATION_SCHEMA.OPTIMIZER_TRACE
table.

10.15.1 Typical Usage

To perform optimizer tracing entails the following steps:

1. Enable tracing by executing SET optimizer_trace="enabled=ON".

2. Execute the statement to be traced. See Section 10.15.3, “Traceable Statements”, for a listing of
statements which can be traced.

3. Examine the contents of the INFORMATION_SCHEMA.OPTIMIZER_TRACE table.

4. To examine traces for multiple queries, repeat the previous two steps as needed.

5. To disable tracing after you have finished, execute SET optimizer_trace="enabled=OFF".

You can trace only statements which are executed within the current session; you cannot see traces
from other sessions.

10.15.2 System Variables Controlling Tracing

The following system variables affect optimizer tracing:

• optimizer_trace: Enables or disables optimizer tracing. See Section 10.15.8, “The
optimizer_trace System Variable”.

• optimizer_trace_features: Enables or disables selected features of the MySQL Optimizer,
using the syntax shown here:

SET optimizer_trace_features=option=value[,option=value][,...]

option:
 {greedy_search | range_optimizer | dynamic_range | repeated_subselect}

2034

Traceable Statements

value:
 {on | off | default}

See Section 10.15.10, “Selecting Optimizer Features to Trace”, for more information on the effects of
these.

• optimizer_trace_max_mem_size: Maximum amount of memory that can be used for storing all
traces.

• optimizer_trace_limit: The maximum number of optimizer traces to be shown. See
Section 10.15.4, “Tuning Trace Purging”, for more information.

• optimizer_trace_offset: Offset of the first trace shown. See Section 10.15.4, “Tuning Trace
Purging”.

• end_markers_in_json: If set to 1, causes the trace to repeat the key (if present) near the closing
bracket. This also affects the output of EXPLAIN FORMAT=JSON in those versions of MySQL which
support this statement. See Section 10.15.9, “The end_markers_in_json System Variable”.

10.15.3 Traceable Statements

Statements which are traceable are listed here:

• SELECT

• INSERT

• REPLACE

• UPDATE

• DELETE

• EXPLAIN with any of the preceding statements

• SET

• DO

• DECLARE, CASE, IF, and RETURN as used in stored routines

• CALL

Tracing is supported for both INSERT and REPLACE statements using VALUES, VALUES ROW, or
SELECT.

Traces of multi-table UPDATE and DELETE statements are supported.

Tracing of SET optimizer_trace is not supported.

For statements which are prepared and executed in separate steps, preparation and execution are
traced separately.

10.15.4 Tuning Trace Purging

By default, each new trace overwrites the previous trace. Thus, if a statement contains substatements
(such as invoking stored procedures, stored functions, or triggers), the topmost statement and
substatements each generate one trace, but at the end of execution, the trace for only the last
substatement is visible.

A user who wants to see the trace of a different substatement can enable or disable tracing for the
desired substatement, but this requires editing the routine code, which may not always be possible.
Another solution is to tune trace purging. This is done by setting the optimizer_trace_offset and
optimizer_trace_limit system variables, like this:

2035

Tracing Memory Usage

SET optimizer_trace_offset=offset, optimizer_trace_limit=limit;

offset is a signed integer (default -1); limit is a positive integer (default 1). Such a SET statement
has the following effects:

• All traces previously stored are cleared from memory.

• A subsequent SELECT from the OPTIMIZER_TRACE table returns the first limit traces of the
offset oldest stored traces (if offset >= 0), or the first limit traces of the -offset newest
stored traces (if offset < 0).

Examples:

• SET optimizer_trace_offset=-1, optimizer_trace_limit=1: The most recent trace is
shown (the default).

• SET optimizer_trace_offset=-2, optimizer_trace_limit=1: The next-to-last trace is
shown.

• SET optimizer_trace_offset=-5, optimizer_trace_limit=5: The last five traces are
shown.

Negative values for offset can thus prove useful when the substatements of interest are the last few
in a stored routine. For example:

SET optimizer_trace_offset=-5, optimizer_trace_limit=5;

CALL stored_routine(); # more than 5 substatements in this routine

SELECT * FROM information_schema.OPTIMIZER_TRACE; # see only the last 5 traces

A positive offset can be useful when one knows that the interesting substatements are the first few in
a stored routine.

The more accurately these two variables are set, the less memory is used. For example,
SET optimizer_trace_offset=0, optimizer_trace_limit=5 requires sufficient
memory to store five traces, so if only the three first are needed, is is better to use SET
optimizer_trace_offset=0, optimizer_trace_limit=3, since tracing stops after limit
traces. A stored routine may have a loop which executes many substatements and thus generates
many traces, which can use a lot of memory; in such cases, choosing appropriate values for offset
and limit can restrict tracing to, for example, a single iteration of the loop. This also decreases the
impact of tracing on execution speed.

If offset is greater than or equal to 0, only limit traces are kept in memory. If offset is less
than 0, that is not true: instead, -offset traces are kept in memory. Even if limit is smaller than -
offset, excluding the last statement, the last statement must still be traced because it will be within
the limit after executing one more statement. Since an offset less than 0 is counted from the end, the
“window” moves as more statements execute.

Using optimizer_trace_offset and optimizer_trace_limit, which are restrictions at the
trace producer level, provide better (greater) speed and (less) memory usage than setting offsets or
limits at the trace consumer (SQL) level with SELECT * FROM OPTIMIZER_TRACE LIMIT limit
OFFSET offset, which saves almost nothing.

10.15.5 Tracing Memory Usage

Each stored trace is a string, which is extended (using realloc()) as optimization progresses
by appending more data to it. The optimizer_trace_max_mem_size server system variable
sets a limit on the total amount of memory used by all traces currently being stored. If this limit is
reached, the current trace is not extended, which means the trace is incomplete; in this case the
MISSING_BYTES_BEYOND_MAX_MEM_SIZE column shows the number of bytes missing from the
trace.

2036

Privilege Checking

10.15.6 Privilege Checking

In complex scenarios where the query uses SQL SECURITY DEFINER views or stored routines, it may
be that a user is denied from seeing the trace of its query because it lacks some extra privileges on
those objects. In that case, the trace will be shown as empty and the INSUFFICIENT_PRIVILEGES
column will show "1".

10.15.7 Interaction with the --debug Option

Anything written to the trace is automatically written to the debug file.

10.15.8 The optimizer_trace System Variable

The optimizer_trace system variable has these on/off switches:

• enabled: Enables (ON) or disables (OFF) tracing

• one_line: If set to ON, the trace contains no whitespace, thus conserving space. This renders the
trace difficult to read for humans, still usable by JSON parsers, since they ignore whitespace.

10.15.9 The end_markers_in_json System Variable

When reading a very large JSON document, it can be difficult to pair its closing bracket and opening
brackets; setting end_markers_in_json=ON repeats the structure's key, if it has one, near the
closing bracket. This variable affects both optimizer traces and the output of EXPLAIN FORMAT=JSON.

Note

If end_markers_in_json is enabled, the repetition of the key means the
result is not a valid JSON document, and causes JSON parsers to throw an
error.

10.15.10 Selecting Optimizer Features to Trace

Some features in the optimizer can be invoked many times during statement optimization and
execution, and thus can make the trace grow beyond reason. They are:

• Greedy search: With an N-table join, this could explore factorial(N) plans.

• Range optimizer

• Dynamic range optimization: Shown as range checked for each record in EXPLAIN output;
each outer row causes a re-run of the range optimizer.

• Subqueries: A subquery in which the WHERE clause may be executed once per row.

Those features can be excluded from tracing by setting one or more switches of the
optimizer_trace_features system variable to OFF. These switches are listed here:

• greedy_search: Greedy search is not traced.

• range_optimizer: The range optimizer is not traced.

• dynamic_range: Only the first call to the range optimizer on this JOIN_TAB::SQL_SELECT is
traced.

• repeated_subselect: Only the first execution of this Item_subselect is traced.

10.15.11 Trace General Structure

A trace follows the actual execution path very closely; for each join, there is a join preparation object,
a join optimization object, and a join execution object. Query transformations (IN to EXISTS, outer join
to inner join, and so on), simplifications (elimination of clauses), and equality propagation are shown in

2037

Example

subobjects. Calls to the range optimizer, cost evaluations, reasons why an access path is chosen over
another one, or why a sorting method is chosen over another one, are shown as well.

10.15.12 Example

Here we take an example from the test suite.

#
Tracing of ORDER BY & GROUP BY simplification.
#
SET optimizer_trace="enabled=on",end_markers_in_json=on; # make readable
SET optimizer_trace_max_mem_size=1000000; # avoid small default

CREATE TABLE t1 (
 pk INT, col_int_key INT,
 col_varchar_key VARCHAR(1),
 col_varchar_nokey VARCHAR(1)
);

INSERT INTO t1 VALUES
 (10,7,'v','v'),(11,0,'s','s'),(12,9,'l','l'),(13,3,'y','y'),(14,4,'c','c'),
 (15,2,'i','i'),(16,5,'h','h'),(17,3,'q','q'),(18,1,'a','a'),(19,3,'v','v'),
 (20,6,'u','u'),(21,7,'s','s'),(22,5,'y','y'),(23,1,'z','z'),(24,204,'h','h'),
 (25,224,'p','p'),(26,9,'e','e'),(27,5,'i','i'),(28,0,'y','y'),(29,3,'w','w');

CREATE TABLE t2 (
 pk INT, col_int_key INT,
 col_varchar_key VARCHAR(1),
 col_varchar_nokey VARCHAR(1),
 PRIMARY KEY (pk)
);

INSERT INTO t2 VALUES
 (1,4,'b','b'),(2,8,'y','y'),(3,0,'p','p'),(4,0,'f','f'),(5,0,'p','p'),
 (6,7,'d','d'),(7,7,'f','f'),(8,5,'j','j'),(9,3,'e','e'),(10,188,'u','u'),
 (11,4,'v','v'),(12,9,'u','u'),(13,6,'i','i'),(14,1,'x','x'),(15,5,'l','l'),
 (16,6,'q','q'),(17,2,'n','n'),(18,4,'r','r'),(19,231,'c','c'),(20,4,'h','h'),
 (21,3,'k','k'),(22,3,'t','t'),(23,7,'t','t'),(24,6,'k','k'),(25,7,'g','g'),
 (26,9,'z','z'),(27,4,'n','n'),(28,4,'j','j'),(29,2,'l','l'),(30,1,'d','d'),
 (31,2,'t','t'),(32,194,'y','y'),(33,2,'i','i'),(34,3,'j','j'),(35,8,'r','r'),
 (36,4,'b','b'),(37,9,'o','o'),(38,4,'k','k'),(39,5,'a','a'),(40,5,'f','f'),
 (41,9,'t','t'),(42,3,'c','c'),(43,8,'c','c'),(44,0,'r','r'),(45,98,'k','k'),
 (46,3,'l','l'),(47,1,'o','o'),(48,0,'t','t'),(49,189,'v','v'),(50,8,'x','x'),
 (51,3,'j','j'),(52,3,'x','x'),(53,9,'k','k'),(54,6,'o','o'),(55,8,'z','z'),
 (56,3,'n','n'),(57,9,'c','c'),(58,5,'d','d'),(59,9,'s','s'),(60,2,'j','j'),
 (61,2,'w','w'),(62,5,'f','f'),(63,8,'p','p'),(64,6,'o','o'),(65,9,'f','f'),
 (66,0,'x','x'),(67,3,'q','q'),(68,6,'g','g'),(69,5,'x','x'),(70,8,'p','p'),
 (71,2,'q','q'),(72,120,'q','q'),(73,25,'v','v'),(74,1,'g','g'),(75,3,'l','l'),
 (76,1,'w','w'),(77,3,'h','h'),(78,153,'c','c'),(79,5,'o','o'),(80,9,'o','o'),
 (81,1,'v','v'),(82,8,'y','y'),(83,7,'d','d'),(84,6,'p','p'),(85,2,'z','z'),
 (86,4,'t','t'),(87,7,'b','b'),(88,3,'y','y'),(89,8,'k','k'),(90,4,'c','c'),
 (91,6,'z','z'),(92,1,'t','t'),(93,7,'o','o'),(94,1,'u','u'),(95,0,'t','t'),
 (96,2,'k','k'),(97,7,'u','u'),(98,2,'b','b'),(99,1,'m','m'),(100,5,'o','o');

SELECT SUM(alias2.col_varchar_nokey) AS c1, alias2.pk AS c2
 FROM t1 AS alias1
 STRAIGHT_JOIN t2 AS alias2
 ON alias2.pk = alias1.col_int_key
 WHERE alias1.pk
 GROUP BY c2
 ORDER BY alias1.col_int_key, alias2.pk;

+------+----+
| c1 | c2 |
+------+----+
0	1
0	2
0	3
0	4
0	5
0	6

2038

Example

| 0 | 7 |
| 0 | 9 |
+------+----+

Note

For reference, the complete trace is shown uninterrupted at the end of this
section.

Now we can examine the trace, whose first column (QUERY), containing the original statement to be
traced, is shown here:

SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE\G
*************************** 1. row ***************************
QUERY: SELECT SUM(alias2.col_varchar_nokey) AS c1, alias2.pk AS c2
 FROM t1 AS alias1
 STRAIGHT_JOIN t2 AS alias2
 ON alias2.pk = alias1.col_int_key
 WHERE alias1.pk
 GROUP BY c2
 ORDER BY alias1.col_int_key, alias2.pk

This can be useful mark when several traces are stored.

The TRACE column begins by showing that execution of the statement is made up of discrete steps,
like this:

"steps": [
 {

This is followed by the preparation of the join for the first (and only) SELECT in the statement being
traced, as shown here:

"steps": [
 {
 "expanded_query": "/* select#1 */ select \
 sum(`test`.`alias2`.`col_varchar_nokey`) AS \
 `SUM(alias2.col_varchar_nokey)`,`test`.`alias2`.`pk` AS `field2` \
 from (`test`.`t1` `alias1` straight_join `test`.`t2` `alias2` \
 on((`test`.`alias2`.`pk` = `test`.`alias1`.`col_int_key`))) \
 where `test`.`alias1`.`pk` \
 group by `test`.`alias2`.`pk` \
 order by `test`.`alias1`.`col_int_key`,`test`.`alias2`.`pk`"
 }
] /* steps */
 } /* join_preparation */
 },

The output just shown displays the query as it is used for preparing the join; all columns (fields) have
been resolved to their databases and tables, and each SELECT is annotated with a sequence number,
which can be useful when studying subqueries.

The next portion of the trace shows how the join is optimized, starting with condition processing:

 {
 "join_optimization": {
 "select#": 1,
 "steps": [
 {
 "condition_processing": {
 "condition": "WHERE",
 "original_condition": "(`test`.`alias1`.`pk` and \
 (`test`.`alias2`.`pk` = `test`.`alias1`.`col_int_key`))",
 "steps": [
 {
 "transformation": "equality_propagation",
 "resulting_condition": "(`test`.`alias1`.`pk` and \
 multiple equal(`test`.`alias2`.`pk`, \
 `test`.`alias1`.`col_int_key`))"
 },

2039

Example

 {
 "transformation": "constant_propagation",
 "resulting_condition": "(`test`.`alias1`.`pk` and \
 multiple equal(`test`.`alias2`.`pk`, \
 `test`.`alias1`.`col_int_key`))"
 },
 {
 "transformation": "trivial_condition_removal",
 "resulting_condition": "(`test`.`alias1`.`pk` and \
 multiple equal(`test`.`alias2`.`pk`, \
 `test`.`alias1`.`col_int_key`))"
 }
] /* steps */
 } /* condition_processing */
 },

Next, the optimizer checks for possible ref accesses, and identifies one:

 {
 "ref_optimizer_key_uses": [
 {
 "database": "test",
 "table": "alias2",
 "field": "pk",
 "equals": "`test`.`alias1`.`col_int_key`",
 "null_rejecting": true
 }
] /* ref_optimizer_key_uses */
 },

A ref access which rejects NULL has been identified: no NULL in test.alias1.col_int_key can
have a match. (Observe that it could have a match, were the operator a null-safe equals <=>).

Next, for every table in the query, we estimate the cost of, and number of records returned by, a table
scan or a range access.

We need to find an optimal order for the tables. Normally, greedy search is used, but since the
statement uses a straight join, only the requested order is explored, and one or more access methods
are selected. As shown in this portion of the trace, we can choose a table scan:

 {
"records_estimation": [
 {
 "database": "test",
 "table": "alias1",
 "const_keys_added": {
 "keys": [
] /* keys */,
 "cause": "group_by"
 } /* const_keys_added */,
 "range_analysis": {
 "table_scan": {
 "records": 20,
 "cost": 8.1977
 } /* table_scan */
 } /* range_analysis */
 },
 {
 "database": "test",
 "table": "alias2",
 "const_keys_added": {
 "keys": [
 "PRIMARY"
] /* keys */,
 "cause": "group_by"
 } /* const_keys_added */,
 "range_analysis": {
 "table_scan": {
 "records": 100,
 "cost": 24.588
 } /* table_scan */,

2040

Example

 "potential_range_indices": [
 {
 "index": "PRIMARY",
 "usable": true,
 "key_parts": [
 "pk"
] /* key_parts */
 }
] /* potential_range_indices */,
 "setup_range_conditions": [
] /* setup_range_conditions */,
 "group_index_range": {
 "chosen": false,
 "cause": "not_single_table"
 } /* group_index_range */
 } /* range_analysis */
 }
] /* records_estimation */
 },

As just shown in the second portion of the range analysis, it is not possible to use GROUP_MIN_MAX
because it accepts only one table, and we have two in the join. This means that no range access is
possible.

The optimizer estimates that reading the first table, and applying any required conditions to it, yields 20
rows:

 {
"considered_execution_plans": [
 {
 "database": "test",
 "table": "alias1",
 "best_access_path": {
 "considered_access_paths": [
 {
 "access_type": "scan",
 "records": 20,
 "cost": 2.0977,
 "chosen": true
 }
] /* considered_access_paths */
 } /* best_access_path */,
 "cost_for_plan": 6.0977,
 "records_for_plan": 20,

For alias2, we choose ref access on the primary key rather than a table scan, because the number
of records returned by the latter (75) is far greater than that returned by ref access (1), as shown here:

 "rest_of_plan": [
 {
 "database": "test",
 "table": "alias2",
 "best_access_path": {
 "considered_access_paths": [
 {
 "access_type": "ref",
 "index": "PRIMARY",
 "records": 1,
 "cost": 20.2,
 "chosen": true
 },
 {
 "access_type": "scan",
 "using_join_cache": true,
 "records": 75,
 "cost": 7.4917,
 "chosen": false
 }
] /* considered_access_paths */
 } /* best_access_path */,
 "cost_for_plan": 30.098,

2041

Example

 "records_for_plan": 20,
 "chosen": true
 }
] /* rest_of_plan */
 }
] /* considered_execution_plans */
 },

Now that the order of tables is fixed, we can split the WHERE condition into chunks which can be tested
early (pushdown of conditions down the join tree):

 {
 "attaching_conditions_to_tables": {
 "original_condition": "((`test`.`alias2`.`pk` = \
 `test`.`alias1`.`col_int_key`) and `test`.`alias1`.`pk`)",
 "attached_conditions_computation": [
] /* attached_conditions_computation */,
 "attached_conditions_summary": [
 {
 "database": "test",
 "table": "alias1",
 "attached": "(`test`.`alias1`.`pk` and \
 (`test`.`alias1`.`col_int_key` is not null))"
 },

This condition can be tested on rows of alias1 without reading rows from alias2.

 {
 "database": "test",
 "table": "alias2",
 "attached": null
 }
] /* attached_conditions_summary */
 } /* attaching_conditions_to_tables */
 },
 {

Now we try to simplify the ORDER BY:

 "clause_processing": {
 "clause": "ORDER BY",
 "original_clause": "`test`.`alias1`.`col_int_key`,`test`.`alias2`.`pk`",
 "items": [
 {
 "item": "`test`.`alias1`.`col_int_key`"
 },
 {
 "item": "`test`.`alias2`.`pk`",
 "eq_ref_to_preceding_items": true
 }
] /* items */,

Because the WHERE clause contains alias2.pk=alias1.col_int_key, ordering by both columns
is unnecessary; we can order by the first column alone, since the second column is always equal to it.

 "resulting_clause_is_simple": true,
 "resulting_clause": "`test`.`alias1`.`col_int_key`"
 } /* clause_processing */
 },

The shorter ORDER BY clause (which is not visible in in the output of EXPLAIN) can be implemented as
an index scan, since it uses only a single column of one table.

 {
 "clause_processing": {
 "clause": "GROUP BY",
 "original_clause": "`test`.`alias2`.`pk`",
 "items": [
 {
 "item": "`test`.`alias2`.`pk`"
 }
] /* items */,

2042

Example

 "resulting_clause_is_simple": false,
 "resulting_clause": "`test`.`alias2`.`pk`"
 } /* clause_processing */
 },
 {
 "refine_plan": [
 {
 "database": "test",
 "table": "alias1",
 "scan_type": "table"
 },
 {
 "database": "test",
 "table": "alias2"
 }
] /* refine_plan */
 }
] /* steps */
 } /* join_optimization */
 },
 {

Now the join is executed:

 "join_execution": {
 "select#": 1,
 "steps": [
] /* steps */
 } /* join_execution */
 }
] /* steps */
 } 0 0

All traces have the same basic structure. If a statement uses subqueries, there can be mutliple
preparations, optimizations, and executions, as well as subquery-specific transformations.

The complete trace is shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE\G
*************************** 1. row ***************************
 QUERY: SELECT SUM(alias2.col_varchar_nokey) AS c1, alias2.pk AS c2
 FROM t1 AS alias1
 STRAIGHT_JOIN t2 AS alias2
 ON alias2.pk = alias1.col_int_key
 WHERE alias1.pk
 GROUP BY c2
 ORDER BY alias1.col_int_key, alias2.pk
 TRACE: {
 "steps": [
 {
 "join_preparation": {
 "select#": 1,
 "steps": [
 {
 "expanded_query": "/* select#1 */ select sum(`alias2`.`col_varchar_nokey`) AS `c1`,`alias2`.`pk` AS `c2` from (`t1` `alias1` straight_join `t2` `alias2` on((`alias2`.`pk` = `alias1`.`col_int_key`))) where (0 <> `alias1`.`pk`) group by `c2` order by `alias1`.`col_int_key`,`alias2`.`pk`"
 },
 {
 "transformations_to_nested_joins": {
 "transformations": [
 "JOIN_condition_to_WHERE",
 "parenthesis_removal"
] /* transformations */,
 "expanded_query": "/* select#1 */ select sum(`alias2`.`col_varchar_nokey`) AS `c1`,`alias2`.`pk` AS `c2` from `t1` `alias1` straight_join `t2` `alias2` where ((0 <> `alias1`.`pk`) and (`alias2`.`pk` = `alias1`.`col_int_key`)) group by `c2` order by `alias1`.`col_int_key`,`alias2`.`pk`"
 } /* transformations_to_nested_joins */
 },
 {
 "functional_dependencies_of_GROUP_columns": {
 "all_columns_of_table_map_bits": [
 1
] /* all_columns_of_table_map_bits */,
 "columns": [
 "test.alias2.pk",

2043

Example

 "test.alias1.col_int_key"
] /* columns */
 } /* functional_dependencies_of_GROUP_columns */
 }
] /* steps */
 } /* join_preparation */
 },
 {
 "join_optimization": {
 "select#": 1,
 "steps": [
 {
 "condition_processing": {
 "condition": "WHERE",
 "original_condition": "((0 <> `alias1`.`pk`) and (`alias2`.`pk` = `alias1`.`col_int_key`))",
 "steps": [
 {
 "transformation": "equality_propagation",
 "resulting_condition": "((0 <> `alias1`.`pk`) and multiple equal(`alias2`.`pk`, `alias1`.`col_int_key`))"
 },
 {
 "transformation": "constant_propagation",
 "resulting_condition": "((0 <> `alias1`.`pk`) and multiple equal(`alias2`.`pk`, `alias1`.`col_int_key`))"
 },
 {
 "transformation": "trivial_condition_removal",
 "resulting_condition": "((0 <> `alias1`.`pk`) and multiple equal(`alias2`.`pk`, `alias1`.`col_int_key`))"
 }
] /* steps */
 } /* condition_processing */
 },
 {
 "substitute_generated_columns": {
 } /* substitute_generated_columns */
 },
 {
 "table_dependencies": [
 {
 "table": "`t1` `alias1`",
 "row_may_be_null": false,
 "map_bit": 0,
 "depends_on_map_bits": [
] /* depends_on_map_bits */
 },
 {
 "table": "`t2` `alias2`",
 "row_may_be_null": false,
 "map_bit": 1,
 "depends_on_map_bits": [
 0
] /* depends_on_map_bits */
 }
] /* table_dependencies */
 },
 {
 "ref_optimizer_key_uses": [
 {
 "table": "`t2` `alias2`",
 "field": "pk",
 "equals": "`alias1`.`col_int_key`",
 "null_rejecting": true
 }
] /* ref_optimizer_key_uses */
 },
 {
 "rows_estimation": [
 {
 "table": "`t1` `alias1`",
 "table_scan": {
 "rows": 20,
 "cost": 0.25
 } /* table_scan */

2044

Example

 },
 {
 "table": "`t2` `alias2`",
 "const_keys_added": {
 "keys": [
 "PRIMARY"
] /* keys */,
 "cause": "group_by"
 } /* const_keys_added */,
 "range_analysis": {
 "table_scan": {
 "rows": 100,
 "cost": 12.35
 } /* table_scan */,
 "potential_range_indexes": [
 {
 "index": "PRIMARY",
 "usable": true,
 "key_parts": [
 "pk"
] /* key_parts */
 }
] /* potential_range_indexes */,
 "setup_range_conditions": [
] /* setup_range_conditions */,
 "group_index_skip_scan": {
 "chosen": false,
 "cause": "not_single_table"
 } /* group_index_skip_scan */,
 "skip_scan_range": {
 "chosen": false,
 "cause": "not_single_table"
 } /* skip_scan_range */
 } /* range_analysis */
 }
] /* rows_estimation */
 },
 {
 "considered_execution_plans": [
 {
 "plan_prefix": [
] /* plan_prefix */,
 "table": "`t1` `alias1`",
 "best_access_path": {
 "considered_access_paths": [
 {
 "rows_to_scan": 20,
 "filtering_effect": [
] /* filtering_effect */,
 "final_filtering_effect": 0.9,
 "access_type": "scan",
 "resulting_rows": 18,
 "cost": 2.25,
 "chosen": true
 }
] /* considered_access_paths */
 } /* best_access_path */,
 "condition_filtering_pct": 100,
 "rows_for_plan": 18,
 "cost_for_plan": 2.25,
 "rest_of_plan": [
 {
 "plan_prefix": [
 "`t1` `alias1`"
] /* plan_prefix */,
 "table": "`t2` `alias2`",
 "best_access_path": {
 "considered_access_paths": [
 {
 "access_type": "eq_ref",
 "index": "PRIMARY",
 "rows": 1,

2045

Example

 "cost": 6.3,
 "chosen": true,
 "cause": "clustered_pk_chosen_by_heuristics"
 },
 {
 "rows_to_scan": 100,
 "filtering_effect": [
] /* filtering_effect */,
 "final_filtering_effect": 1,
 "access_type": "scan",
 "using_join_cache": true,
 "buffers_needed": 1,
 "resulting_rows": 100,
 "cost": 180.25,
 "chosen": false
 }
] /* considered_access_paths */
 } /* best_access_path */,
 "condition_filtering_pct": 100,
 "rows_for_plan": 18,
 "cost_for_plan": 8.55,
 "chosen": true
 }
] /* rest_of_plan */
 }
] /* considered_execution_plans */
 },
 {
 "attaching_conditions_to_tables": {
 "original_condition": "((`alias2`.`pk` = `alias1`.`col_int_key`) and (0 <> `alias1`.`pk`))",
 "attached_conditions_computation": [
] /* attached_conditions_computation */,
 "attached_conditions_summary": [
 {
 "table": "`t1` `alias1`",
 "attached": "((0 <> `alias1`.`pk`) and (`alias1`.`col_int_key` is not null))"
 },
 {
 "table": "`t2` `alias2`",
 "attached": "(`alias2`.`pk` = `alias1`.`col_int_key`)"
 }
] /* attached_conditions_summary */
 } /* attaching_conditions_to_tables */
 },
 {
 "optimizing_distinct_group_by_order_by": {
 "simplifying_order_by": {
 "original_clause": "`alias1`.`col_int_key`,`alias2`.`pk`",
 "items": [
 {
 "item": "`alias1`.`col_int_key`"
 },
 {
 "item": "`alias2`.`pk`",
 "eq_ref_to_preceding_items": true
 }
] /* items */,
 "resulting_clause_is_simple": true,
 "resulting_clause": "`alias1`.`col_int_key`"
 } /* simplifying_order_by */,
 "simplifying_group_by": {
 "original_clause": "`c2`",
 "items": [
 {
 "item": "`alias2`.`pk`"
 }
] /* items */,
 "resulting_clause_is_simple": false,
 "resulting_clause": "`c2`"
 } /* simplifying_group_by */
 } /* optimizing_distinct_group_by_order_by */
 },

2046

Example

 {
 "finalizing_table_conditions": [
 {
 "table": "`t1` `alias1`",
 "original_table_condition": "((0 <> `alias1`.`pk`) and (`alias1`.`col_int_key` is not null))",
 "final_table_condition ": "((0 <> `alias1`.`pk`) and (`alias1`.`col_int_key` is not null))"
 },
 {
 "table": "`t2` `alias2`",
 "original_table_condition": "(`alias2`.`pk` = `alias1`.`col_int_key`)",
 "final_table_condition ": null
 }
] /* finalizing_table_conditions */
 },
 {
 "refine_plan": [
 {
 "table": "`t1` `alias1`"
 },
 {
 "table": "`t2` `alias2`"
 }
] /* refine_plan */
 },
 {
 "considering_tmp_tables": [
 {
 "adding_tmp_table_in_plan_at_position": 2,
 "write_method": "continuously_update_group_row"
 },
 {
 "adding_sort_to_table": ""
 } /* filesort */
] /* considering_tmp_tables */
 }
] /* steps */
 } /* join_optimization */
 },
 {
 "join_execution": {
 "select#": 1,
 "steps": [
 {
 "temp_table_aggregate": {
 "select#": 1,
 "steps": [
 {
 "creating_tmp_table": {
 "tmp_table_info": {
 "table": "<temporary>",
 "in_plan_at_position": 2,
 "columns": 3,
 "row_length": 18,
 "key_length": 4,
 "unique_constraint": false,
 "makes_grouped_rows": true,
 "cannot_insert_duplicates": false,
 "location": "TempTable"
 } /* tmp_table_info */
 } /* creating_tmp_table */
 }
] /* steps */
 } /* temp_table_aggregate */
 },
 {
 "sorting_table": "<temporary>",
 "filesort_information": [
 {
 "direction": "asc",
 "expression": "`alias1`.`col_int_key`"
 }
] /* filesort_information */,

2047

Displaying Traces in Other Applications

 "filesort_priority_queue_optimization": {
 "usable": false,
 "cause": "not applicable (no LIMIT)"
 } /* filesort_priority_queue_optimization */,
 "filesort_execution": [
] /* filesort_execution */,
 "filesort_summary": {
 "memory_available": 262144,
 "key_size": 9,
 "row_size": 26,
 "max_rows_per_buffer": 7710,
 "num_rows_estimate": 18446744073709551615,
 "num_rows_found": 8,
 "num_initial_chunks_spilled_to_disk": 0,
 "peak_memory_used": 32832,
 "sort_algorithm": "std::sort",
 "unpacked_addon_fields": "skip_heuristic",
 "sort_mode": "<fixed_sort_key, additional_fields>"
 } /* filesort_summary */
 }
] /* steps */
 } /* join_execution */
 }
] /* steps */
}
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0
 INSUFFICIENT_PRIVILEGES: 0

10.15.13 Displaying Traces in Other Applications

Examining a trace in the mysql command-line client can be made less difficult using the pager less
command (or your operating platform's equivalent). An alternative can be to send the trace to a file,
similarly to what is shown here:

SELECT TRACE INTO DUMPFILE file
FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE;

You can then pass this file to a JSON-aware text editor or other viewer, such as the JsonView add-on
for Firefox and Chrome, which shows objects in color and allows objects to be expanded or collapsed.

INTO DUMPFILE is preferable to INTO OUTFILE for this purpose, since the latter escapes newlines.
As noted previously, you should ensure that end_markers_in_json is OFFwhen executing the
SELECT INTO statement, so that the output is valid JSON.

10.15.14 Preventing the Use of Optimizer Trace

If, for some reason, you wish to prevent users from seeing traces of their queries, start the server with
the options shown here:

--maximum-optimizer-trace-max-mem-size=0 --optimizer-trace-max-mem-size=0

This sets the maximum size to 0 and prevents users from changing this limit, thus truncating all traces
to 0 bytes.

10.15.15 Testing Optimizer Trace

This feature is tested in mysql-test/suite/opt_trace and unittest/gunit/opt_trace-t.

10.15.16 Optimizer Trace Implementation

See the files sql/opt_trace*, starting with sql/opt_trace.h. A trace is started by creating
an instance of Opt_trace_start; information is added to this trace by creating instances of
Opt_trace_object and Opt_trace_array, and by using the add() methods of these classes.

2048

https://jsonview.com/
https://jsonview.com/

Chapter 11 Language Structure

Table of Contents
11.1 Literal Values .. 2049

11.1.1 String Literals ... 2049
11.1.2 Numeric Literals .. 2052
11.1.3 Date and Time Literals .. 2052
11.1.4 Hexadecimal Literals ... 2057
11.1.5 Bit-Value Literals .. 2059
11.1.6 Boolean Literals .. 2061
11.1.7 NULL Values .. 2061

11.2 Schema Object Names .. 2061
11.2.1 Identifier Length Limits .. 2063
11.2.2 Identifier Qualifiers .. 2064
11.2.3 Identifier Case Sensitivity .. 2065
11.2.4 Mapping of Identifiers to File Names .. 2067
11.2.5 Function Name Parsing and Resolution ... 2069

11.3 Keywords and Reserved Words ... 2072
11.4 User-Defined Variables .. 2105
11.5 Expressions ... 2108
11.6 Query Attributes .. 2112
11.7 Comments ... 2115

This chapter discusses the rules for writing the following elements of SQL statements when using
MySQL:

• Literal values such as strings and numbers

• Identifiers such as database, table, and column names

• Keywords and reserved words

• User-defined and system variables

• Expressions

• Query attributes

• Comments

11.1 Literal Values
This section describes how to write literal values in MySQL. These include strings, numbers,
hexadecimal and bit values, boolean values, and NULL. The section also covers various nuances that
you may encounter when dealing with these basic types in MySQL.

11.1.1 String Literals

A string is a sequence of bytes or characters, enclosed within either single quote (') or double quote
(") characters. Examples:

'a string'
"another string"

Quoted strings placed next to each other are concatenated to a single string. The following lines are
equivalent:

'a string'
'a' ' ' 'string'

2049

String Literals

If the ANSI_QUOTES SQL mode is enabled, string literals can be quoted only within single quotation
marks because a string quoted within double quotation marks is interpreted as an identifier.

A binary string is a string of bytes. Every binary string has a character set and collation named
binary. A nonbinary string is a string of characters. It has a character set other than binary and a
collation that is compatible with the character set.

For both types of strings, comparisons are based on the numeric values of the string unit. For binary
strings, the unit is the byte; comparisons use numeric byte values. For nonbinary strings, the unit is the
character and some character sets support multibyte characters; comparisons use numeric character
code values. Character code ordering is a function of the string collation. (For more information, see
Section 12.8.5, “The binary Collation Compared to _bin Collations”.)

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about
that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

A character string literal may have an optional character set introducer and COLLATE clause, to
designate it as a string that uses a particular character set and collation:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT _latin1'string';
SELECT _binary'string';
SELECT _utf8mb4'string' COLLATE utf8mb4_danish_ci;

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For information about these forms of string syntax, see Section 12.3.7, “The National Character Set”,
and Section 12.3.8, “Character Set Introducers”.

Within a string, certain sequences have special meaning unless the NO_BACKSLASH_ESCAPES
SQL mode is enabled. Each of these sequences begins with a backslash (\), known as the escape
character. MySQL recognizes the escape sequences shown in Table 11.1, “Special Character Escape
Sequences”. For all other escape sequences, backslash is ignored. That is, the escaped character is
interpreted as if it was not escaped. For example, \x is just x. These sequences are case-sensitive.
For example, \b is interpreted as a backspace, but \B is interpreted as B. Escape processing is done
according to the character set indicated by the character_set_connection system variable. This
is true even for strings that are preceded by an introducer that indicates a different character set, as
discussed in Section 12.3.6, “Character String Literal Character Set and Collation”.

Table 11.1 Special Character Escape Sequences

Escape Sequence Character Represented by Sequence

\0 An ASCII NUL (X'00') character

\' A single quote (') character

\" A double quote (") character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character

\Z ASCII 26 (Control+Z); see note following the table

2050

String Literals

Escape Sequence Character Represented by Sequence

\\ A backslash (\) character

\% A % character; see note following the table

_ A _ character; see note following the table

The ASCII 26 character can be encoded as \Z to enable you to work around the problem that ASCII 26
stands for END-OF-FILE on Windows. ASCII 26 within a file causes problems if you try to use mysql
db_name < file_name.

The \% and _ sequences are used to search for literal instances of % and _ in pattern-matching
contexts where they would otherwise be interpreted as wildcard characters. See the description of the
LIKE operator in Section 14.8.1, “String Comparison Functions and Operators”. If you use \% or _
outside of pattern-matching contexts, they evaluate to the strings \% and _, not to % and _.

There are several ways to include quote characters within a string:

• A ' inside a string quoted with ' may be written as ''.

• A " inside a string quoted with " may be written as "".

• Precede the quote character by an escape character (\).

• A ' inside a string quoted with " needs no special treatment and need not be doubled or escaped. In
the same way, " inside a string quoted with ' needs no special treatment.

The following SELECT statements demonstrate how quoting and escaping work:

mysql> SELECT 'hello', '"hello"', '""hello""', 'hel''lo', '\'hello';
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel'lo | 'hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT "hello", "'hello'", "''hello''", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | 'hello' | ''hello'' | hel"lo | "hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT 'This\nIs\nFour\nLines';
+--------------------+
| This
Is
Four
Lines |
+--------------------+

mysql> SELECT 'disappearing\ backslash';
+------------------------+
| disappearing backslash |
+------------------------+

To insert binary data into a string column (such as a BLOB column), you should represent certain
characters by escape sequences. Backslash (\) and the quote character used to quote the string
must be escaped. In certain client environments, it may also be necessary to escape NUL or Control
+Z. The mysql client truncates quoted strings containing NUL characters if they are not escaped, and
Control+Z may be taken for END-OF-FILE on Windows if not escaped. For the escape sequences that
represent each of these characters, see Table 11.1, “Special Character Escape Sequences”.

When writing application programs, any string that might contain any of these special characters must
be properly escaped before the string is used as a data value in an SQL statement that is sent to the
MySQL server. You can do this in two ways:

• Process the string with a function that escapes the special characters. In a C program, you can
use the mysql_real_escape_string_quote() C API function to escape characters. See
mysql_real_escape_string_quote(). Within SQL statements that construct other SQL statements, you

2051

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html

Numeric Literals

can use the QUOTE() function. The Perl DBI interface provides a quote method to convert special
characters to the proper escape sequences. See Section 31.9, “MySQL Perl API”. Other language
interfaces may provide a similar capability.

• As an alternative to explicitly escaping special characters, many MySQL APIs provide a placeholder
capability that enables you to insert special markers into a statement string, and then bind data
values to them when you issue the statement. In this case, the API takes care of escaping special
characters in the values for you.

11.1.2 Numeric Literals

Number literals include exact-value (integer and DECIMAL) literals and approximate-value (floating-
point) literals.

Integers are represented as a sequence of digits. Numbers may include . as a decimal separator.
Numbers may be preceded by - or + to indicate a negative or positive value, respectively. Numbers
represented in scientific notation with a mantissa and exponent are approximate-value numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed.
Examples: 1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-
point) number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types. For more
information about exact-value calculations, see Section 14.24, “Precision Math”.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In
MySQL, types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

An integer may be used in floating-point context; it is interpreted as the equivalent floating-point
number.

11.1.3 Date and Time Literals

• Standard SQL and ODBC Date and Time Literals

• String and Numeric Literals in Date and Time Context

Date and time values can be represented in several formats, such as quoted strings or as numbers,
depending on the exact type of the value and other factors. For example, in contexts where MySQL
expects a date, it interprets any of '2015-07-21', '20150721', and 20150721 as a date.

This section describes the acceptable formats for date and time literals. For more information about the
temporal data types, such as the range of permitted values, see Section 13.2, “Date and Time Data
Types”.

Standard SQL and ODBC Date and Time Literals

Standard SQL requires temporal literals to be specified using a type keyword and a string. The space
between the keyword and string is optional.

DATE 'str'
TIME 'str'
TIMESTAMP 'str'

MySQL recognizes but, unlike standard SQL, does not require the type keyword. Applications that are
to be standard-compliant should include the type keyword for temporal literals.

2052

Date and Time Literals

MySQL also recognizes the ODBC syntax corresponding to the standard SQL syntax:

{ d 'str' }
{ t 'str' }
{ ts 'str' }

MySQL uses the type keywords and the ODBC constructions to produce DATE, TIME, and DATETIME
values, respectively, including a trailing fractional seconds part if specified. The TIMESTAMP syntax
produces a DATETIME value in MySQL because DATETIME has a range that more closely corresponds
to the standard SQL TIMESTAMP type, which has a year range from 0001 to 9999. (The MySQL
TIMESTAMP year range is 1970 to 2038.)

String and Numeric Literals in Date and Time Context

MySQL recognizes DATE values in these formats:

• As a string in either 'YYYY-MM-DD' or 'YY-MM-DD' format. A “relaxed” syntax is permitted, but
is deprecated: Any punctuation character may be used as the delimiter between date parts. For
example, '2012-12-31', '2012/12/31', '2012^12^31', and '2012@12@31' are equivalent.
Beginning with MySQL 8.0.29, using any character other than the dash (-) as the delimiter raises a
warning, as shown here:

mysql> SELECT DATE'2012@12@31';
+------------------+
| DATE'2012@12@31' |
+------------------+
| 2012-12-31 |
+------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 4095
Message: Delimiter '@' in position 4 in datetime value '2012@12@31' at row 1 is
deprecated. Prefer the standard '-'.
1 row in set (0.00 sec)

• As a string with no delimiters in either 'YYYYMMDD' or 'YYMMDD' format, provided that the
string makes sense as a date. For example, '20070523' and '070523' are interpreted as
'2007-05-23', but '071332' is illegal (it has nonsensical month and day parts) and becomes
'0000-00-00'.

• As a number in either YYYYMMDD or YYMMDD format, provided that the number makes sense as a
date. For example, 19830905 and 830905 are interpreted as '1983-09-05'.

MySQL recognizes DATETIME and TIMESTAMP values in these formats:

• As a string in either 'YYYY-MM-DD hh:mm:ss' or 'YY-MM-DD hh:mm:ss' format. MySQL also
permits a “relaxed” syntax here, although this is deprecated: Any punctuation character may be
used as the delimiter between date parts or time parts. For example, '2012-12-31 11:30:45',
'2012^12^31 11+30+45', '2012/12/31 11*30*45', and '2012@12@31 11^30^45' are
equivalent. Beginning with MySQL 8.0.29, use of any characters as delimiters in such values, other
than the dash (-) for the date part and the colon (:) for the time part, raises a warning, as shown
here:

mysql> SELECT TIMESTAMP'2012^12^31 11*30*45';
+--------------------------------+
| TIMESTAMP'2012^12^31 11*30*45' |
+--------------------------------+
| 2012-12-31 11:30:45 |
+--------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning

2053

Date and Time Literals

 Code: 4095
Message: Delimiter '^' in position 4 in datetime value '2012^12^31 11*30*45' at
row 1 is deprecated. Prefer the standard '-'.
1 row in set (0.00 sec)

The only delimiter recognized between a date and time part and a fractional seconds part is the
decimal point.

The date and time parts can be separated by T rather than a space. For example, '2012-12-31
11:30:45' '2012-12-31T11:30:45' are equivalent.

Previously, MySQL supported arbitrary numbers of leading and trailing whitespace characters in date
and time values, as well as between the date and time parts of DATETIME and TIMESTAMP values.
In MySQL 8.0.29 and later, this behavior is deprecated, and the presence of excess whitespace
characters triggers a warning, as shown here:

mysql> SELECT TIMESTAMP'2012-12-31 11-30-45';
+----------------------------------+
| TIMESTAMP'2012-12-31 11-30-45' |
+----------------------------------+
| 2012-12-31 11:30:45 |
+----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 4096
Message: Delimiter ' ' in position 11 in datetime value '2012-12-31 11-30-45'
at row 1 is superfluous and is deprecated. Please remove.
1 row in set (0.00 sec)

Also beginning with MySQL 8.0.29, a warning is raised when whitespace characters other than the
space character is used, like this:

mysql> SELECT TIMESTAMP'2021-06-06
 '> 11:15:25';
+--------------------------------+
| TIMESTAMP'2021-06-06
 11:15:25' |
+--------------------------------+
| 2021-06-06 11:15:25 |
+--------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 4095
Message: Delimiter '\n' in position 10 in datetime value '2021-06-06
11:15:25' at row 1 is deprecated. Prefer the standard ' '.
1 row in set (0.00 sec)

Only one such warning is raised per temporal value, even though multiple issues may exist with
delimiters, whitespace, or both, as shown in the following series of statements:

mysql> SELECT TIMESTAMP'2012!-12-31 11:30:45';
+----------------------------------+
| TIMESTAMP'2012!-12-31 11:30:45' |
+----------------------------------+
| 2012-12-31 11:30:45 |
+----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 4095
Message: Delimiter '!' in position 4 in datetime value '2012!-12-31 11:30:45'

2054

Date and Time Literals

at row 1 is deprecated. Prefer the standard '-'.
1 row in set (0.00 sec)

mysql> SELECT TIMESTAMP'2012-12-31 11:30:45';
+---------------------------------+
| TIMESTAMP'2012-12-31 11:30:45' |
+---------------------------------+
| 2012-12-31 11:30:45 |
+---------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 4096
Message: Delimiter ' ' in position 11 in datetime value '2012-12-31 11:30:45'
at row 1 is superfluous and is deprecated. Please remove.
1 row in set (0.00 sec)

mysql> SELECT TIMESTAMP'2012-12-31 11:30:45';
+--------------------------------+
| TIMESTAMP'2012-12-31 11:30:45' |
+--------------------------------+
| 2012-12-31 11:30:45 |
+--------------------------------+
1 row in set (0.00 sec)

• As a string with no delimiters in either 'YYYYMMDDhhmmss' or 'YYMMDDhhmmss' format, provided
that the string makes sense as a date. For example, '20070523091528' and '070523091528'
are interpreted as '2007-05-23 09:15:28', but '071122129015' is illegal (it has a nonsensical
minute part) and becomes '0000-00-00 00:00:00'.

• As a number in either YYYYMMDDhhmmss or YYMMDDhhmmss format, provided that the number
makes sense as a date. For example, 19830905132800 and 830905132800 are interpreted as
'1983-09-05 13:28:00'.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. The fractional part should always be separated from the rest of the time by a
decimal point; no other fractional seconds delimiter is recognized. For information about fractional
seconds support in MySQL, see Section 13.2.6, “Fractional Seconds in Time Values”.

Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 70-99 become 1970-1999.

• Year values in the range 00-69 become 2000-2069.

See also Section 13.2.9, “2-Digit Years in Dates”.

For values specified as strings that include date part delimiters, it is unnecessary to specify two digits
for month or day values that are less than 10. '2015-6-9' is the same as '2015-06-09'. Similarly,
for values specified as strings that include time part delimiters, it is unnecessary to specify two digits
for hour, minute, or second values that are less than 10. '2015-10-30 1:2:3' is the same as
'2015-10-30 01:02:03'.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 digits long, it
is assumed to be in YYYYMMDD or YYYYMMDDhhmmss format and that the year is given by the first 4
digits. If the number is 6 or 12 digits long, it is assumed to be in YYMMDD or YYMMDDhhmmss format and
that the year is given by the first 2 digits. Numbers that are not one of these lengths are interpreted as
though padded with leading zeros to the closest length.

Values specified as nondelimited strings are interpreted according their length. For a string 8 or 14
characters long, the year is assumed to be given by the first 4 characters. Otherwise, the year is
assumed to be given by the first 2 characters. The string is interpreted from left to right to find year,

2055

Date and Time Literals

month, day, hour, minute, and second values, for as many parts as are present in the string. This
means you should not use strings that have fewer than 6 characters. For example, if you specify
'9903', thinking that represents March, 1999, MySQL converts it to the “zero” date value. This occurs
because the year and month values are 99 and 03, but the day part is completely missing. However,
you can explicitly specify a value of zero to represent missing month or day parts. For example, to
insert the value '1999-03-00', use '990300'.

MySQL recognizes TIME values in these formats:

• As a string in 'D hh:mm:ss' format. You can also use one of the following “relaxed” syntaxes:
'hh:mm:ss', 'hh:mm', 'D hh:mm', 'D hh', or 'ss'. Here D represents days and can have a
value from 0 to 34.

• As a string with no delimiters in 'hhmmss' format, provided that it makes sense as a time. For
example, '101112' is understood as '10:11:12', but '109712' is illegal (it has a nonsensical
minute part) and becomes '00:00:00'.

• As a number in hhmmss format, provided that it makes sense as a time. For example, 101112 is
understood as '10:11:12'. The following alternative formats are also understood: ss, mmss, or
hhmmss.

A trailing fractional seconds part is recognized in the 'D hh:mm:ss.fraction',
'hh:mm:ss.fraction', 'hhmmss.fraction', and hhmmss.fraction time formats, where
fraction is the fractional part in up to microseconds (6 digits) precision. The fractional part should
always be separated from the rest of the time by a decimal point; no other fractional seconds delimiter
is recognized. For information about fractional seconds support in MySQL, see Section 13.2.6,
“Fractional Seconds in Time Values”.

For TIME values specified as strings that include a time part delimiter, it is unnecessary to specify
two digits for hours, minutes, or seconds values that are less than 10. '8:3:2' is the same as
'08:03:02'.

Beginning with MySQL 8.0.19, you can specify a time zone offset when inserting TIMESTAMP and
DATETIME values into a table. The offset is appended to the time part of a datetime literal, with no
intravening spaces, and uses the same format used for setting the time_zone system variable, with
the following exceptions:

• For hour values less than 10, a leading zero is required.

• The value '-00:00' is rejected.

• Time zone names such as 'EET' and 'Asia/Shanghai' cannot be used; 'SYSTEM' also cannot
be used in this context.

The value inserted must not have a zero for the month part, the day part, or both parts. This is enforced
beginning with MySQL 8.0.22, regardless of the server SQL mode setting.

This example illustrates inserting datetime values with time zone offsets into TIMESTAMP and
DATETIME columns using different time_zone settings, and then retrieving them:

mysql> CREATE TABLE ts (
 -> id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> col TIMESTAMP NOT NULL
 ->) AUTO_INCREMENT = 1;

mysql> CREATE TABLE dt (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> col DATETIME NOT NULL
 ->) AUTO_INCREMENT = 1;

mysql> SET @@time_zone = 'SYSTEM';

mysql> INSERT INTO ts (col) VALUES ('2020-01-01 10:10:10'),

2056

Hexadecimal Literals

 -> ('2020-01-01 10:10:10+05:30'), ('2020-01-01 10:10:10-08:00');

mysql> SET @@time_zone = '+00:00';

mysql> INSERT INTO ts (col) VALUES ('2020-01-01 10:10:10'),
 -> ('2020-01-01 10:10:10+05:30'), ('2020-01-01 10:10:10-08:00');

mysql> SET @@time_zone = 'SYSTEM';

mysql> INSERT INTO dt (col) VALUES ('2020-01-01 10:10:10'),
 -> ('2020-01-01 10:10:10+05:30'), ('2020-01-01 10:10:10-08:00');

mysql> SET @@time_zone = '+00:00';

mysql> INSERT INTO dt (col) VALUES ('2020-01-01 10:10:10'),
 -> ('2020-01-01 10:10:10+05:30'), ('2020-01-01 10:10:10-08:00');

mysql> SET @@time_zone = 'SYSTEM';

mysql> SELECT @@system_time_zone;
+--------------------+
| @@system_time_zone |
+--------------------+
| EST |
+--------------------+

mysql> SELECT col, UNIX_TIMESTAMP(col) FROM dt ORDER BY id;
+---------------------+---------------------+
| col | UNIX_TIMESTAMP(col) |
+---------------------+---------------------+
2020-01-01 10:10:10	1577891410
2019-12-31 23:40:10	1577853610
2020-01-01 13:10:10	1577902210
2020-01-01 10:10:10	1577891410
2020-01-01 04:40:10	1577871610
2020-01-01 18:10:10	1577920210
+---------------------+---------------------+

mysql> SELECT col, UNIX_TIMESTAMP(col) FROM ts ORDER BY id;
+---------------------+---------------------+
| col | UNIX_TIMESTAMP(col) |
+---------------------+---------------------+
2020-01-01 10:10:10	1577891410
2019-12-31 23:40:10	1577853610
2020-01-01 13:10:10	1577902210
2020-01-01 05:10:10	1577873410
2019-12-31 23:40:10	1577853610
2020-01-01 13:10:10	1577902210
+---------------------+---------------------+

The offset is not displayed when selecting a datetime value, even if one was used when inserting it.

The range of supported offset values is -13:59 to +14:00, inclusive.

Datetime literals that include time zone offsets are accepted as parameter values by prepared
statements.

11.1.4 Hexadecimal Literals

Hexadecimal literal values are written using X'val' or 0xval notation, where val contains
hexadecimal digits (0..9, A..F). Lettercase of the digits and of any leading X does not matter. A
leading 0x is case-sensitive and cannot be written as 0X.

Legal hexadecimal literals:

X'01AF'
X'01af'
x'01AF'
x'01af'
0x01AF

2057

Hexadecimal Literals

0x01af

Illegal hexadecimal literals:

X'0G' (G is not a hexadecimal digit)
0X01AF (0X must be written as 0x)

Values written using X'val' notation must contain an even number of digits or a syntax error occurs.
To correct the problem, pad the value with a leading zero:

mysql> SET @s = X'FFF';
ERROR 1064 (42000): You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server
version for the right syntax to use near 'X'FFF''

mysql> SET @s = X'0FFF';
Query OK, 0 rows affected (0.00 sec)

Values written using 0xval notation that contain an odd number of digits are treated as having an
extra leading 0. For example, 0xaaa is interpreted as 0x0aaa.

By default, a hexadecimal literal is a binary string, where each pair of hexadecimal digits represents a
character:

mysql> SELECT X'4D7953514C', CHARSET(X'4D7953514C');
+---------------+------------------------+
| X'4D7953514C' | CHARSET(X'4D7953514C') |
+---------------+------------------------+
| MySQL | binary |
+---------------+------------------------+
mysql> SELECT 0x5461626c65, CHARSET(0x5461626c65);
+--------------+-----------------------+
| 0x5461626c65 | CHARSET(0x5461626c65) |
+--------------+-----------------------+
| Table | binary |
+--------------+-----------------------+

A hexadecimal literal may have an optional character set introducer and COLLATE clause, to designate
it as a string that uses a particular character set and collation:

[_charset_name] X'val' [COLLATE collation_name]

Examples:

SELECT _latin1 X'4D7953514C';
SELECT _utf8mb4 0x4D7953514C COLLATE utf8mb4_danish_ci;

The examples use X'val' notation, but 0xval notation permits introducers as well. For information
about introducers, see Section 12.3.8, “Character Set Introducers”.

In numeric contexts, MySQL treats a hexadecimal literal like a BIGINT UNSIGNED (64-bit unsigned
integer). To ensure numeric treatment of a hexadecimal literal, use it in numeric context. Ways to
do this include adding 0 or using CAST(... AS UNSIGNED). For example, a hexadecimal literal
assigned to a user-defined variable is a binary string by default. To assign the value as a number, use
it in numeric context:

mysql> SET @v1 = X'41';
mysql> SET @v2 = X'41'+0;
mysql> SET @v3 = CAST(X'41' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

An empty hexadecimal value (X'') evaluates to a zero-length binary string. Converted to a number, it
produces 0:

2058

Bit-Value Literals

mysql> SELECT CHARSET(X''), LENGTH(X'');
+--------------+-------------+
| CHARSET(X'') | LENGTH(X'') |
+--------------+-------------+
| binary | 0 |
+--------------+-------------+
mysql> SELECT X''+0;
+-------+
| X''+0 |
+-------+
| 0 |
+-------+

The X'val' notation is based on standard SQL. The 0x notation is based on ODBC, for which
hexadecimal strings are often used to supply values for BLOB columns.

To convert a string or a number to a string in hexadecimal format, use the HEX() function:

mysql> SELECT HEX('cat');
+------------+
| HEX('cat') |
+------------+
| 636174 |
+------------+
mysql> SELECT X'636174';
+-----------+
| X'636174' |
+-----------+
| cat |
+-----------+

For hexadecimal literals, bit operations are considered numeric context, but bit operations permit
numeric or binary string arguments in MySQL 8.0 and higher. To explicitly specify binary string context
for hexadecimal literals, use a _binary introducer for at least one of the arguments:

mysql> SET @v1 = X'000D' | X'0BC0';
mysql> SET @v2 = _binary X'000D' | X'0BC0';
mysql> SELECT HEX(@v1), HEX(@v2);
+----------+----------+
| HEX(@v1) | HEX(@v2) |
+----------+----------+
| BCD | 0BCD |
+----------+----------+

The displayed result appears similar for both bit operations, but the result without _binary is a
BIGINT value, whereas the result with _binary is a binary string. Due to the difference in result types,
the displayed values differ: High-order 0 digits are not displayed for the numeric result.

11.1.5 Bit-Value Literals

Bit-value literals are written using b'val' or 0bval notation. val is a binary value written using zeros
and ones. Lettercase of any leading b does not matter. A leading 0b is case-sensitive and cannot be
written as 0B.

Legal bit-value literals:

b'01'
B'01'
0b01

Illegal bit-value literals:

b'2' (2 is not a binary digit)
0B01 (0B must be written as 0b)

By default, a bit-value literal is a binary string:

2059

Bit-Value Literals

mysql> SELECT b'1000001', CHARSET(b'1000001');
+------------+---------------------+
| b'1000001' | CHARSET(b'1000001') |
+------------+---------------------+
| A | binary |
+------------+---------------------+
mysql> SELECT 0b1100001, CHARSET(0b1100001);
+-----------+--------------------+
| 0b1100001 | CHARSET(0b1100001) |
+-----------+--------------------+
| a | binary |
+-----------+--------------------+

A bit-value literal may have an optional character set introducer and COLLATE clause, to designate it as
a string that uses a particular character set and collation:

[_charset_name] b'val' [COLLATE collation_name]

Examples:

SELECT _latin1 b'1000001';
SELECT _utf8mb4 0b1000001 COLLATE utf8mb4_danish_ci;

The examples use b'val' notation, but 0bval notation permits introducers as well. For information
about introducers, see Section 12.3.8, “Character Set Introducers”.

In numeric contexts, MySQL treats a bit literal like an integer. To ensure numeric treatment of a bit
literal, use it in numeric context. Ways to do this include adding 0 or using CAST(... AS UNSIGNED).
For example, a bit literal assigned to a user-defined variable is a binary string by default. To assign the
value as a number, use it in numeric context:

mysql> SET @v1 = b'1100001';
mysql> SET @v2 = b'1100001'+0;
mysql> SET @v3 = CAST(b'1100001' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| a | 97 | 97 |
+------+------+------+

An empty bit value (b'') evaluates to a zero-length binary string. Converted to a number, it produces
0:

mysql> SELECT CHARSET(b''), LENGTH(b'');
+--------------+-------------+
| CHARSET(b'') | LENGTH(b'') |
+--------------+-------------+
| binary | 0 |
+--------------+-------------+
mysql> SELECT b''+0;
+-------+
| b''+0 |
+-------+
| 0 |
+-------+

Bit-value notation is convenient for specifying values to be assigned to BIT columns:

mysql> CREATE TABLE t (b BIT(8));
mysql> INSERT INTO t SET b = b'11111111';
mysql> INSERT INTO t SET b = b'1010';
mysql> INSERT INTO t SET b = b'0101';

Bit values in result sets are returned as binary values, which may not display well. To convert a bit
value to printable form, use it in numeric context or use a conversion function such as BIN() or
HEX(). High-order 0 digits are not displayed in the converted value.

2060

Boolean Literals

mysql> SELECT b+0, BIN(b), OCT(b), HEX(b) FROM t;
+------+----------+--------+--------+
| b+0 | BIN(b) | OCT(b) | HEX(b) |
+------+----------+--------+--------+
255	11111111	377	FF
10	1010	12	A
5	101	5	5
+------+----------+--------+--------+

For bit literals, bit operations are considered numeric context, but bit operations permit numeric or
binary string arguments in MySQL 8.0 and higher. To explicitly specify binary string context for bit
literals, use a _binary introducer for at least one of the arguments:

mysql> SET @v1 = b'000010101' | b'000101010';
mysql> SET @v2 = _binary b'000010101' | _binary b'000101010';
mysql> SELECT HEX(@v1), HEX(@v2);
+----------+----------+
| HEX(@v1) | HEX(@v2) |
+----------+----------+
| 3F | 003F |
+----------+----------+

The displayed result appears similar for both bit operations, but the result without _binary is a
BIGINT value, whereas the result with _binary is a binary string. Due to the difference in result types,
the displayed values differ: High-order 0 digits are not displayed for the numeric result.

11.1.6 Boolean Literals

The constants TRUE and FALSE evaluate to 1 and 0, respectively. The constant names can be written
in any lettercase.

mysql> SELECT TRUE, true, FALSE, false;
 -> 1, 1, 0, 0

11.1.7 NULL Values

The NULL value means “no data.” NULL can be written in any lettercase.

Be aware that the NULL value is different from values such as 0 for numeric types or the empty string
for string types. For more information, see Section B.3.4.3, “Problems with NULL Values”.

For text file import or export operations performed with LOAD DATA or SELECT ... INTO OUTFILE,
NULL is represented by the \N sequence. See Section 15.2.9, “LOAD DATA Statement”.

For sorting with ORDER BY, NULL values sort before other values for ascending sorts, after other
values for descending sorts.

11.2 Schema Object Names
Certain objects within MySQL, including database, table, index, column, alias, view, stored procedure,
partition, tablespace, resource group and other object names are known as identifiers. This section
describes the permissible syntax for identifiers in MySQL. Section 11.2.1, “Identifier Length Limits”,
indicates the maximum length of each type of identifier. Section 11.2.3, “Identifier Case Sensitivity”,
describes which types of identifiers are case-sensitive and under what conditions.

An identifier may be quoted or unquoted. If an identifier contains special characters or is a reserved
word, you must quote it whenever you refer to it. (Exception: A reserved word that follows a period
in a qualified name must be an identifier, so it need not be quoted.) Reserved words are listed at
Section 11.3, “Keywords and Reserved Words”.

Internally, identifiers are converted to and are stored as Unicode (UTF-8). The permissible Unicode
characters in identifiers are those in the Basic Multilingual Plane (BMP). Supplementary characters are
not permitted. Identifiers thus may contain these characters:

2061

Schema Object Names

• Permitted characters in unquoted identifiers:

• ASCII: [0-9,a-z,A-Z$_] (basic Latin letters, digits 0-9, dollar, underscore)

• Extended: U+0080 .. U+FFFF

• Permitted characters in quoted identifiers include the full Unicode Basic Multilingual Plane (BMP),
except U+0000:

• ASCII: U+0001 .. U+007F

• Extended: U+0080 .. U+FFFF

• ASCII NUL (U+0000) and supplementary characters (U+10000 and higher) are not permitted in
quoted or unquoted identifiers.

• Identifiers may begin with a digit but unless quoted may not consist solely of digits.

• Database, table, and column names cannot end with space characters.

• Beginning with MySQL 8.0.32, use of the dollar sign as the first character in the unquoted name of a
database, table, view, column, stored program, or alias is deprecated and produces a warning. This
includes such names used with qualifiers (see Section 11.2.2, “Identifier Qualifiers”). The dollar sign
can still be used as the leading character of such an identifier when it is quoted according to the rules
given later in this section.

The identifier quote character is the backtick (`):

mysql> SELECT * FROM `select` WHERE `select`.id > 100;

If the ANSI_QUOTES SQL mode is enabled, it is also permissible to quote identifiers within double
quotation marks:

mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax...
mysql> SET sql_mode='ANSI_QUOTES';
mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)

The ANSI_QUOTES mode causes the server to interpret double-quoted strings as identifiers.
Consequently, when this mode is enabled, string literals must be enclosed within single quotation
marks. They cannot be enclosed within double quotation marks. The server SQL mode is controlled as
described in Section 7.1.11, “Server SQL Modes”.

Identifier quote characters can be included within an identifier if you quote the identifier. If the character
to be included within the identifier is the same as that used to quote the identifier itself, then you need
to double the character. The following statement creates a table named a`b that contains a column
named c"d:

mysql> CREATE TABLE `a``b` (`c"d` INT);

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

mysql> SELECT 1 AS `one`, 2 AS 'two';
+-----+-----+
| one | two |
+-----+-----+
| 1 | 2 |
+-----+-----+

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference
is treated as a string literal.

2062

Identifier Length Limits

It is recommended that you do not use names that begin with Me or MeN, where M and N are integers.
For example, avoid using 1e as an identifier, because an expression such as 1e+3 is ambiguous.
Depending on context, it might be interpreted as the expression 1e + 3 or as the number 1e+3.

Be careful when using MD5() to produce table names because it can produce names in illegal or
ambiguous formats such as those just described.

It is also recommended that you do not use column names that begin with !hidden! to ensure that
new names do not collide with names used by existing hidden columns for functional indexes.

A user variable cannot be used directly in an SQL statement as an identifier or as part of an identifier.
See Section 11.4, “User-Defined Variables”, for more information and examples of workarounds.

Special characters in database and table names are encoded in the corresponding file system names
as described in Section 11.2.4, “Mapping of Identifiers to File Names”.

11.2.1 Identifier Length Limits

The following table describes the maximum length for each type of identifier.

Identifier Type Maximum Length (characters)

Database 64 (includes NDB Cluster 8.0.18 and later)

Table 64 (includes NDB Cluster 8.0.18 and later)

Column 64

Index 64

Constraint 64

Stored Program 64

View 64

Tablespace 64

Server 64

Log File Group 64

Alias 256 (see exception following table)

Compound Statement Label 16

User-Defined Variable 64

Resource Group 64

Aliases for column names in CREATE VIEW statements are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters).

For constraint definitions that include no constraint name, the server internally generates a name
derived from the associated table name. For example, internally generated foreign key and CHECK
constraint names consist of the table name plus _ibfk_ or _chk_ and a number. If the table name is
close to the length limit for constraint names, the additional characters required for the constraint name
may cause that name to exceed the limit, resulting in an error.

Identifiers are stored using Unicode (UTF-8). This applies to identifiers in table definitions and to
identifiers stored in the grant tables in the mysql database. The sizes of the identifier string columns
in the grant tables are measured in characters. You can use multibyte characters without reducing the
number of characters permitted for values stored in these columns.

Prior to NDB 8.0.18, NDB Cluster imposed a maximum length of 63 characters for names of databases
and tables. As of NDB 8.0.18, this limitation is removed. See Section 25.2.7.11, “Previous NDB Cluster
Issues Resolved in NDB Cluster 8.0”.

2063

Identifier Qualifiers

Values such as user name and host names in MySQL account names are strings rather than
identifiers. For information about the maximum length of such values as stored in grant tables, see
Grant Table Scope Column Properties.

11.2.2 Identifier Qualifiers

Object names may be unqualified or qualified. An unqualified name is permitted in contexts where
interpretation of the name is unambiguous. A qualified name includes at least one qualifier to clarify the
interpretive context by overriding a default context or providing missing context.

For example, this statement creates a table using the unqualified name t1:

CREATE TABLE t1 (i INT);

Because t1 includes no qualifier to specify a database, the statement creates the table in the default
database. If there is no default database, an error occurs.

This statement creates a table using the qualified name db1.t1:

CREATE TABLE db1.t1 (i INT);

Because db1.t1 includes a database qualifier db1, the statement creates t1 in the database named
db1, regardless of the default database. The qualifier must be specified if there is no default database.
The qualifier may be specified if there is a default database, to specify a database different from the
default, or to make the database explicit if the default is the same as the one specified.

Qualifiers have these characteristics:

• An unqualified name consists of a single identifier. A qualified name consists of multiple identifiers.

• The components of a multiple-part name must be separated by period (.) characters. The initial
parts of a multiple-part name act as qualifiers that affect the context within which to interpret the final
identifier.

• The qualifier character is a separate token and need not be contiguous with the associated
identifiers. For example, tbl_name.col_name and tbl_name . col_name are equivalent.

• If any components of a multiple-part name require quoting, quote them individually rather than
quoting the name as a whole. For example, write `my-table`.`my-column`, not `my-
table.my-column`.

• A reserved word that follows a period in a qualified name must be an identifier, so in that context it
need not be quoted.

The permitted qualifiers for object names depend on the object type:

• A database name is fully qualified and takes no qualifier:

CREATE DATABASE db1;

• A table, view, or stored program name may be given a database-name qualifier. Examples of
unqualified and qualified names in CREATE statements:

CREATE TABLE mytable ...;
CREATE VIEW myview ...;
CREATE PROCEDURE myproc ...;
CREATE FUNCTION myfunc ...;
CREATE EVENT myevent ...;

CREATE TABLE mydb.mytable ...;
CREATE VIEW mydb.myview ...;
CREATE PROCEDURE mydb.myproc ...;
CREATE FUNCTION mydb.myfunc ...;
CREATE EVENT mydb.myevent ...;

2064

Identifier Case Sensitivity

• A trigger is associated with a table, so any qualifier applies to the table name:

CREATE TRIGGER mytrigger ... ON mytable ...;

CREATE TRIGGER mytrigger ... ON mydb.mytable ...;

• A column name may be given multiple qualifiers to indicate context in statements that reference it, as
shown in the following table.

Column Reference Meaning

col_name Column col_name from whichever table used in
the statement contains a column of that name

tbl_name.col_name Column col_name from table tbl_name of the
default database

db_name.tbl_name.col_name Column col_name from table tbl_name of the
database db_name

In other words, a column name may be given a table-name qualifier, which itself may be given
a database-name qualifier. Examples of unqualified and qualified column references in SELECT
statements:

SELECT c1 FROM mytable
WHERE c2 > 100;

SELECT mytable.c1 FROM mytable
WHERE mytable.c2 > 100;

SELECT mydb.mytable.c1 FROM mydb.mytable
WHERE mydb.mytable.c2 > 100;

You need not specify a qualifier for an object reference in a statement unless the unqualified reference
is ambiguous. Suppose that column c1 occurs only in table t1, c2 only in t2, and c in both t1 and
t2. Any unqualified reference to c is ambiguous in a statement that refers to both tables and must be
qualified as t1.c or t2.c to indicate which table you mean:

SELECT c1, c2, t1.c FROM t1 INNER JOIN t2
WHERE t2.c > 100;

Similarly, to retrieve from a table t in database db1 and from a table t in database db2 in the same
statement, you must qualify the table references: For references to columns in those tables, qualifiers
are required only for column names that appear in both tables. Suppose that column c1 occurs only
in table db1.t, c2 only in db2.t, and c in both db1.t and db2.t. In this case, c is ambiguous and
must be qualified but c1 and c2 need not be:

SELECT c1, c2, db1.t.c FROM db1.t INNER JOIN db2.t
WHERE db2.t.c > 100;

Table aliases enable qualified column references to be written more simply:

SELECT c1, c2, t1.c FROM db1.t AS t1 INNER JOIN db2.t AS t2
WHERE t2.c > 100;

11.2.3 Identifier Case Sensitivity

In MySQL, databases correspond to directories within the data directory. Each table within a database
corresponds to at least one file within the database directory (and possibly more, depending on the
storage engine). Triggers also correspond to files. Consequently, the case sensitivity of the underlying
operating system plays a part in the case sensitivity of database, table, and trigger names. This means
such names are not case-sensitive in Windows, but are case-sensitive in most varieties of Unix. One
notable exception is macOS, which is Unix-based but uses a default file system type (HFS+) that is
not case-sensitive. However, macOS also supports UFS volumes, which are case-sensitive just as on
any Unix. See Section 1.6.1, “MySQL Extensions to Standard SQL”. The lower_case_table_names

2065

Identifier Case Sensitivity

system variable also affects how the server handles identifier case sensitivity, as described later in this
section.

Note

Although database, table, and trigger names are not case-sensitive on some
platforms, you should not refer to one of these using different cases within the
same statement. The following statement would not work because it refers to a
table both as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Partition, subpartition, column, index, stored routine, event, and resource group names are not case-
sensitive on any platform, nor are column aliases.

However, names of logfile groups are case-sensitive. This differs from standard SQL.

By default, table aliases are case-sensitive on Unix, but not so on Windows or macOS. The following
statement would not work on Unix, because it refers to the alias both as a and as A:

mysql> SELECT col_name FROM tbl_name AS a
 WHERE a.col_name = 1 OR A.col_name = 2;

However, this same statement is permitted on Windows. To avoid problems caused by such
differences, it is best to adopt a consistent convention, such as always creating and referring to
databases and tables using lowercase names. This convention is recommended for maximum
portability and ease of use.

How table and database names are stored on disk and used in MySQL is affected by the
lower_case_table_names system variable. lower_case_table_names can take the values
shown in the following table. This variable does not affect case sensitivity of trigger identifiers. On Unix,
the default value of lower_case_table_names is 0. On Windows, the default value is 1. On macOS,
the default value is 2.

lower_case_table_names can only be configured when initializing the server. Changing the
lower_case_table_names setting after the server is initialized is prohibited.

Value Meaning

0 Table and database names are stored on disk
using the lettercase specified in the CREATE
TABLE or CREATE DATABASE statement. Name
comparisons are case-sensitive. You should not
set this variable to 0 if you are running MySQL
on a system that has case-insensitive file names
(such as Windows or macOS). If you force this
variable to 0 with --lower-case-table-
names=0 on a case-insensitive file system and
access MyISAM tablenames using different
lettercases, index corruption may result.

1 Table names are stored in lowercase on disk
and name comparisons are not case-sensitive.
MySQL converts all table names to lowercase on
storage and lookup. This behavior also applies to
database names and table aliases.

2 Table and database names are stored on disk
using the lettercase specified in the CREATE
TABLE or CREATE DATABASE statement, but
MySQL converts them to lowercase on lookup.
Name comparisons are not case-sensitive.
This works only on file systems that are not

2066

Mapping of Identifiers to File Names

Value Meaning
case-sensitive! InnoDB table names and
view names are stored in lowercase, as for
lower_case_table_names=1.

If you are using MySQL on only one platform, you do not normally have to use a
lower_case_table_names setting other than the default. However, you may encounter difficulties if
you want to transfer tables between platforms that differ in file system case sensitivity. For example, on
Unix, you can have two different tables named my_table and MY_TABLE, but on Windows these two
names are considered identical. To avoid data transfer problems arising from lettercase of database or
table names, you have two options:

• Use lower_case_table_names=1 on all systems. The main disadvantage with this is that when
you use SHOW TABLES or SHOW DATABASES, you do not see the names in their original lettercase.

• Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on Windows.
This preserves the lettercase of database and table names. The disadvantage of this is that you
must ensure that your statements always refer to your database and table names with the correct
lettercase on Windows. If you transfer your statements to Unix, where lettercase is significant, they
do not work if the lettercase is incorrect.

Exception: If you are using InnoDB tables and you are trying to avoid these data transfer problems,
you should use lower_case_table_names=1 on all platforms to force names to be converted to
lowercase.

Object names may be considered duplicates if their uppercase forms are equal according to a binary
collation. That is true for names of cursors, conditions, procedures, functions, savepoints, stored
routine parameters, stored program local variables, and plugins. It is not true for names of columns,
constraints, databases, partitions, statements prepared with PREPARE, tables, triggers, users, and
user-defined variables.

File system case sensitivity can affect searches in string columns of INFORMATION_SCHEMA tables.
For more information, see Section 12.8.7, “Using Collation in INFORMATION_SCHEMA Searches”.

11.2.4 Mapping of Identifiers to File Names

There is a correspondence between database and table identifiers and names in the file system.
For the basic structure, MySQL represents each database as a directory in the data directory, and
depending upon the storage engine, each table may be represented by one or more files in the
appropriate database directory.

For the data and index files, the exact representation on disk is storage engine specific. These files
may be stored in the database directory, or the information may be stored in a separate file. InnoDB
data is stored in the InnoDB data files. If you are using tablespaces with InnoDB, then the specific
tablespace files you create are used instead.

Any character is legal in database or table identifiers except ASCII NUL (X'00'). MySQL encodes
any characters that are problematic in the corresponding file system objects when it creates database
directories or table files:

• Basic Latin letters (a..zA..Z), digits (0..9) and underscore (_) are encoded as is. Consequently,
their case sensitivity directly depends on file system features.

• All other national letters from alphabets that have uppercase/lowercase mapping are encoded as
shown in the following table. Values in the Code Range column are UCS-2 values.

Code Range Pattern Number Used Unused Blocks

00C0..017F [@][0..4][g..z] 5*20= 100 97 3 Latin-1
Supplement +

2067

Mapping of Identifiers to File Names

Code Range Pattern Number Used Unused Blocks
Latin Extended-
A

0370..03FF [@][5..9][g..z] 5*20= 100 88 12 Greek and
Coptic

0400..052F [@][g..z][0..6] 20*7= 140 137 3 Cyrillic
+ Cyrillic
Supplement

0530..058F [@][g..z][7..8] 20*2= 40 38 2 Armenian

2160..217F [@][g..z][9] 20*1= 20 16 4 Number Forms

0180..02AF [@][g..z][a..k] 20*11=220 203 17 Latin Extended-
B + IPA
Extensions

1E00..1EFF [@][g..z][l..r] 20*7= 140 136 4 Latin Extended
Additional

1F00..1FFF [@][g..z][s..z] 20*8= 160 144 16 Greek
Extended

.... [@][a..f][g..z] 6*20= 120 0 120 RESERVED

24B6..24E9 [@][@][a..z] 26 26 0 Enclosed
Alphanumerics

FF21..FF5A [@][a..z][@] 26 26 0 Halfwidth and
Fullwidth forms

One of the bytes in the sequence encodes lettercase. For example: LATIN CAPITAL LETTER A
WITH GRAVE is encoded as @0G, whereas LATIN SMALL LETTER A WITH GRAVE is encoded as
@0g. Here the third byte (G or g) indicates lettercase. (On a case-insensitive file system, both letters
are treated as the same.)

For some blocks, such as Cyrillic, the second byte determines lettercase. For other blocks, such as
Latin1 Supplement, the third byte determines lettercase. If two bytes in the sequence are letters (as
in Greek Extended), the leftmost letter character stands for lettercase. All other letter bytes must be
in lowercase.

• All nonletter characters except underscore (_), as well as letters from alphabets that do not have
uppercase/lowercase mapping (such as Hebrew) are encoded using hexadecimal representation
using lowercase letters for hexadecimal digits a..f:

0x003F -> @003f
0xFFFF -> @ffff

The hexadecimal values correspond to character values in the ucs2 double-byte character set.

On Windows, some names such as nul, prn, and aux are encoded by appending @@@ to the name
when the server creates the corresponding file or directory. This occurs on all platforms for portability of
the corresponding database object between platforms.

The following names are reserved and appended with @@@ if used in schema or table names:

• CON

• PRN

• AUX

• NUL

• COM1 through COM9

2068

Function Name Parsing and Resolution

• LPT1 through LPT9

CLOCK$ is also a member of this group of reserved names, but is not appended with @@@, but @0024
instead. That is, if CLOCK$ is used as a schema or table name, it is written to the file system as
CLOCK@0024. The same is true for any use of $ (dollar sign) in a schema or table name; it is replaced
with @0024 on the filesystem.

Note

These names are also written to INNODB_TABLES in their appended forms, but
are written to TABLES in their unappended form, as entered by the user.

11.2.5 Function Name Parsing and Resolution

MySQL supports built-in (native) functions, loadable functions, and stored functions. This section
describes how the server recognizes whether the name of a built-in function is used as a function call
or as an identifier, and how the server determines which function to use in cases when functions of
different types exist with a given name.

• Built-In Function Name Parsing

• Function Name Resolution

Built-In Function Name Parsing

The parser uses default rules for parsing names of built-in functions. These rules can be changed by
enabling the IGNORE_SPACE SQL mode.

When the parser encounters a word that is the name of a built-in function, it must determine whether
the name signifies a function call or is instead a nonexpression reference to an identifier such as a
table or column name. For example, in the following statements, the first reference to count is a
function call, whereas the second reference is a table name:

SELECT COUNT(*) FROM mytable;
CREATE TABLE count (i INT);

The parser should recognize the name of a built-in function as indicating a function call only when
parsing what is expected to be an expression. That is, in nonexpression context, function names are
permitted as identifiers.

However, some built-in functions have special parsing or implementation considerations, so the parser
uses the following rules by default to distinguish whether their names are being used as function calls
or as identifiers in nonexpression context:

• To use the name as a function call in an expression, there must be no whitespace between the name
and the following (parenthesis character.

• Conversely, to use the function name as an identifier, it must not be followed immediately by a
parenthesis.

The requirement that function calls be written with no whitespace between the name and the
parenthesis applies only to the built-in functions that have special considerations. COUNT is one such
name. The sql/lex.h source file lists the names of these special functions for which following
whitespace determines their interpretation: names defined by the SYM_FN() macro in the symbols[]
array.

The following list names the functions in MySQL 8.0 that are affected by the IGNORE_SPACE setting
and listed as special in the sql/lex.h source file. You may find it easiest to treat the no-whitespace
requirement as applying to all function calls.

• ADDDATE

2069

Function Name Parsing and Resolution

• BIT_AND

• BIT_OR

• BIT_XOR

• CAST

• COUNT

• CURDATE

• CURTIME

• DATE_ADD

• DATE_SUB

• EXTRACT

• GROUP_CONCAT

• MAX

• MID

• MIN

• NOW

• POSITION

• SESSION_USER

• STD

• STDDEV

• STDDEV_POP

• STDDEV_SAMP

• SUBDATE

• SUBSTR

• SUBSTRING

• SUM

• SYSDATE

• SYSTEM_USER

• TRIM

• VARIANCE

• VAR_POP

• VAR_SAMP

For functions not listed as special in sql/lex.h, whitespace does not matter. They are interpreted as
function calls only when used in expression context and may be used freely as identifiers otherwise.
ASCII is one such name. However, for these nonaffected function names, interpretation may vary in

2070

Function Name Parsing and Resolution

expression context: func_name () is interpreted as a built-in function if there is one with the given
name; if not, func_name () is interpreted as a loadable function or stored function if one exists with
that name.

The IGNORE_SPACE SQL mode can be used to modify how the parser treats function names that are
whitespace-sensitive:

• With IGNORE_SPACE disabled, the parser interprets the name as a function call when there is no
whitespace between the name and the following parenthesis. This occurs even when the function
name is used in nonexpression context:

mysql> CREATE TABLE count(i INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'count(i INT)'

To eliminate the error and cause the name to be treated as an identifier, either use whitespace
following the name or write it as a quoted identifier (or both):

CREATE TABLE count (i INT);
CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

• With IGNORE_SPACE enabled, the parser loosens the requirement that there be no whitespace
between the function name and the following parenthesis. This provides more flexibility in writing
function calls. For example, either of the following function calls are legal:

SELECT COUNT(*) FROM mytable;
SELECT COUNT (*) FROM mytable;

However, enabling IGNORE_SPACE also has the side effect that the parser treats the affected
function names as reserved words (see Section 11.3, “Keywords and Reserved Words”). This means
that a space following the name no longer signifies its use as an identifier. The name can be used
in function calls with or without following whitespace, but causes a syntax error in nonexpression
context unless it is quoted. For example, with IGNORE_SPACE enabled, both of the following
statements fail with a syntax error because the parser interprets count as a reserved word:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

To use the function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

To enable the IGNORE_SPACE SQL mode, use this statement:

SET sql_mode = 'IGNORE_SPACE';

IGNORE_SPACE is also enabled by certain other composite modes such as ANSI that include it in their
value:

SET sql_mode = 'ANSI';

Check Section 7.1.11, “Server SQL Modes”, to see which composite modes enable IGNORE_SPACE.

To minimize the dependency of SQL code on the IGNORE_SPACE setting, use these guidelines:

• Avoid creating loadable functions or stored functions that have the same name as a built-in function.

• Avoid using function names in nonexpression context. For example, these statements use count
(one of the affected function names affected by IGNORE_SPACE), so they fail with or without
whitespace following the name if IGNORE_SPACE is enabled:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

2071

Keywords and Reserved Words

If you must use a function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

Function Name Resolution

The following rules describe how the server resolves references to function names for function creation
and invocation:

• Built-in functions and loadable functions

An error occurs if you try to create a loadable function with the same name as a built-in function.

IF NOT EXISTS (available beginning with MySQL 8.0.29) has no effect in such cases. See
Section 15.7.4.1, “CREATE FUNCTION Statement for Loadable Functions”, for more information.

• Built-in functions and stored functions

It is possible to create a stored function with the same name as a built-in function, but to invoke
the stored function it is necessary to qualify it with a schema name. For example, if you create a
stored function named PI in the test schema, invoke it as test.PI() because the server resolves
PI() without a qualifier as a reference to the built-in function. The server generates a warning if the
stored function name collides with a built-in function name. The warning can be displayed with SHOW
WARNINGS.

IF NOT EXISTS (MySQL 8.0.29 and later) has no effect in such cases; see Section 15.1.17,
“CREATE PROCEDURE and CREATE FUNCTION Statements”.

• Loadable functions and stored functions

It is possible to create a stored function with the same name as an existing loadable function, or the
other way around. The server generates a warning if a proposed stored function name collides with
an existing loadable function name, or if a proposed loadable function name would be the same as
that of an existing stored function. In either case, once both functions exist, it is necessary thereafter
to qualify the stored function with a schema name when invoking it; the server assumes in such
cases that the unqualified name refers to the loadable function.

Beginning with MySQL 8.0.29, IF NOT EXISTS is supported with CREATE FUNCTION statements,
but has no effect in such cases.

Prior to MySQL 8.0.28, it was possible to create a stored function with the same name as an existing
loadable function, but not the other way around (Bug #33301931).

The preceding function name resolution rules have implications for upgrading to versions of MySQL
that implement new built-in functions:

• If you have already created a loadable function with a given name and upgrade MySQL to a
version that implements a new built-in function with the same name, the loadable function becomes
inaccessible. To correct this, use DROP FUNCTION to drop the loadable function and CREATE
FUNCTION to re-create the loadable function with a different nonconflicting name. Then modify any
affected code to use the new name.

• If a new version of MySQL implements a built-in function or loadable function with the same
name as an existing stored function, you have two choices: Rename the stored function to use
a nonconflicting name, or change any calls to the function that do not do so already to use a
schema qualifier (schema_name.func_name() syntax). In either case, modify any affected code
accordingly.

11.3 Keywords and Reserved Words

2072

MySQL 8.0 Keywords and Reserved Words

Keywords are words that have significance in SQL. Certain keywords, such as SELECT, DELETE, or
BIGINT, are reserved and require special treatment for use as identifiers such as table and column
names. This may also be true for the names of built-in functions.

Most nonreserved keywords are permitted as identifiers without quoting. Some keywords which are
otherwise considered nonreserved are restricted from use as unquoted identifiers for roles, stored
program labels, or, in some cases, both. See MySQL 8.0 Restricted Keywords, for listings of these
keywords.

Reserved words are permitted as identifiers if you quote them as described in Section 11.2, “Schema
Object Names”:

mysql> CREATE TABLE interval (begin INT, end INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'interval (begin INT, end INT)'

BEGIN and END are keywords but not reserved, so their use as identifiers does not require quoting.
INTERVAL is a reserved keyword and must be quoted to be used as an identifier:

mysql> CREATE TABLE `interval` (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Exception: A word that follows a period in a qualified name must be an identifier, so it need not be
quoted even if it is reserved:

mysql> CREATE TABLE mydb.interval (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Names of built-in functions are permitted as identifiers but may require care to be used as such. For
example, COUNT is acceptable as a column name. However, by default, no whitespace is permitted
in function invocations between the function name and the following (character. This requirement
enables the parser to distinguish whether the name is used in a function call or in nonfunction context.
For further details on recognition of function names, see Section 11.2.5, “Function Name Parsing and
Resolution”.

The INFORMATION_SCHEMA.KEYWORDS table lists the words considered keywords by MySQL
and indicates whether they are reserved. See Section 28.3.17, “The INFORMATION_SCHEMA
KEYWORDS Table”.

• MySQL 8.0 Keywords and Reserved Words

• MySQL 8.0 New Keywords and Reserved Words

• MySQL 8.0 Removed Keywords and Reserved Words

• MySQL 8.0 Restricted Keywords

MySQL 8.0 Keywords and Reserved Words

The following list shows the keywords and reserved words in MySQL 8.0, along with changes to
individual words from version to version. Reserved keywords are marked with (R). In addition,
_FILENAME is reserved.

At some point, you might upgrade to a higher version, so it is a good idea to have a look at future
reserved words, too. You can find these in the manuals that cover higher versions of MySQL. Most of
the reserved words in the list are forbidden by standard SQL as column or table names (for example,
GROUP). A few are reserved because MySQL needs them and uses a yacc parser.

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

A

2073

MySQL 8.0 Keywords and Reserved Words

• ACCESSIBLE (R)

• ACCOUNT

• ACTION

• ACTIVE; added in 8.0.14 (nonreserved)

• ADD (R)

• ADMIN; became nonreserved in 8.0.12

• AFTER

• AGAINST

• AGGREGATE

• ALGORITHM

• ALL (R)

• ALTER (R)

• ALWAYS

• ANALYSE; removed in 8.0.1

• ANALYZE (R)

• AND (R)

• ANY

• ARRAY; added in 8.0.17 (reserved); became nonreserved in 8.0.19

• AS (R)

• ASC (R)

• ASCII

• ASENSITIVE (R)

• AT

• ATTRIBUTE; added in 8.0.21 (nonreserved)

• AUTHENTICATION; added in 8.0.27 (nonreserved)

• AUTOEXTEND_SIZE

• AUTO_INCREMENT

• AVG

• AVG_ROW_LENGTH

B

• BACKUP

• BEFORE (R)

• BEGIN

2074

MySQL 8.0 Keywords and Reserved Words

• BETWEEN (R)

• BIGINT (R)

• BINARY (R)

• BINLOG

• BIT

• BLOB (R)

• BLOCK

• BOOL

• BOOLEAN

• BOTH (R)

• BTREE

• BUCKETS; added in 8.0.2 (nonreserved)

• BULK; added in 8.0.32 (nonreserved)

• BY (R)

• BYTE

C

• CACHE

• CALL (R)

• CASCADE (R)

• CASCADED

• CASE (R)

• CATALOG_NAME

• CHAIN

• CHALLENGE_RESPONSE; added in 8.0.27 (nonreserved)

• CHANGE (R)

• CHANGED

• CHANNEL

• CHAR (R)

• CHARACTER (R)

• CHARSET

• CHECK (R)

• CHECKSUM

• CIPHER

2075

MySQL 8.0 Keywords and Reserved Words

• CLASS_ORIGIN

• CLIENT

• CLONE; added in 8.0.3 (nonreserved)

• CLOSE

• COALESCE

• CODE

• COLLATE (R)

• COLLATION

• COLUMN (R)

• COLUMNS

• COLUMN_FORMAT

• COLUMN_NAME

• COMMENT

• COMMIT

• COMMITTED

• COMPACT

• COMPLETION

• COMPONENT

• COMPRESSED

• COMPRESSION

• CONCURRENT

• CONDITION (R)

• CONNECTION

• CONSISTENT

• CONSTRAINT (R)

• CONSTRAINT_CATALOG

• CONSTRAINT_NAME

• CONSTRAINT_SCHEMA

• CONTAINS

• CONTEXT

• CONTINUE (R)

• CONVERT (R)

• CPU

2076

MySQL 8.0 Keywords and Reserved Words

• CREATE (R)

• CROSS (R)

• CUBE (R); became reserved in 8.0.1

• CUME_DIST (R); added in 8.0.2 (reserved)

• CURRENT

• CURRENT_DATE (R)

• CURRENT_TIME (R)

• CURRENT_TIMESTAMP (R)

• CURRENT_USER (R)

• CURSOR (R)

• CURSOR_NAME

D

• DATA

• DATABASE (R)

• DATABASES (R)

• DATAFILE

• DATE

• DATETIME

• DAY

• DAY_HOUR (R)

• DAY_MICROSECOND (R)

• DAY_MINUTE (R)

• DAY_SECOND (R)

• DEALLOCATE

• DEC (R)

• DECIMAL (R)

• DECLARE (R)

• DEFAULT (R)

• DEFAULT_AUTH

• DEFINER

• DEFINITION; added in 8.0.4 (nonreserved)

• DELAYED (R)

• DELAY_KEY_WRITE

2077

MySQL 8.0 Keywords and Reserved Words

• DELETE (R)

• DENSE_RANK (R); added in 8.0.2 (reserved)

• DESC (R)

• DESCRIBE (R)

• DESCRIPTION; added in 8.0.4 (nonreserved)

• DES_KEY_FILE; removed in 8.0.3

• DETERMINISTIC (R)

• DIAGNOSTICS

• DIRECTORY

• DISABLE

• DISCARD

• DISK

• DISTINCT (R)

• DISTINCTROW (R)

• DIV (R)

• DO

• DOUBLE (R)

• DROP (R)

• DUAL (R)

• DUMPFILE

• DUPLICATE

• DYNAMIC

E

• EACH (R)

• ELSE (R)

• ELSEIF (R)

• EMPTY (R); added in 8.0.4 (reserved)

• ENABLE

• ENCLOSED (R)

• ENCRYPTION

• END

• ENDS

• ENFORCED; added in 8.0.16 (nonreserved)

2078

MySQL 8.0 Keywords and Reserved Words

• ENGINE

• ENGINES

• ENGINE_ATTRIBUTE; added in 8.0.21 (nonreserved)

• ENUM

• ERROR

• ERRORS

• ESCAPE

• ESCAPED (R)

• EVENT

• EVENTS

• EVERY

• EXCEPT (R)

• EXCHANGE

• EXCLUDE; added in 8.0.2 (nonreserved)

• EXECUTE

• EXISTS (R)

• EXIT (R)

• EXPANSION

• EXPIRE

• EXPLAIN (R)

• EXPORT

• EXTENDED

• EXTENT_SIZE

F

• FACTOR; added in 8.0.27 (nonreserved)

• FAILED_LOGIN_ATTEMPTS; added in 8.0.19 (nonreserved)

• FALSE (R)

• FAST

• FAULTS

• FETCH (R)

• FIELDS

• FILE

• FILE_BLOCK_SIZE

2079

MySQL 8.0 Keywords and Reserved Words

• FILTER

• FINISH; added in 8.0.27 (nonreserved)

• FIRST

• FIRST_VALUE (R); added in 8.0.2 (reserved)

• FIXED

• FLOAT (R)

• FLOAT4 (R)

• FLOAT8 (R)

• FLUSH

• FOLLOWING; added in 8.0.2 (nonreserved)

• FOLLOWS

• FOR (R)

• FORCE (R)

• FOREIGN (R)

• FORMAT

• FOUND

• FROM (R)

• FULL

• FULLTEXT (R)

• FUNCTION (R); became reserved in 8.0.1

G

• GENERAL

• GENERATE; added in 8.0.32 (nonreserved)

• GENERATED (R)

• GEOMCOLLECTION; added in 8.0.11 (nonreserved)

• GEOMETRY

• GEOMETRYCOLLECTION

• GET (R)

• GET_FORMAT

• GET_MASTER_PUBLIC_KEY; added in 8.0.4 (reserved); became nonreserved in 8.0.11

• GET_SOURCE_PUBLIC_KEY; added in 8.0.23 (nonreserved)

• GLOBAL

• GRANT (R)

2080

MySQL 8.0 Keywords and Reserved Words

• GRANTS

• GROUP (R)

• GROUPING (R); added in 8.0.1 (reserved)

• GROUPS (R); added in 8.0.2 (reserved)

• GROUP_REPLICATION

• GTID_ONLY; added in 8.0.27 (nonreserved)

H

• HANDLER

• HASH

• HAVING (R)

• HELP

• HIGH_PRIORITY (R)

• HISTOGRAM; added in 8.0.2 (nonreserved)

• HISTORY; added in 8.0.3 (nonreserved)

• HOST

• HOSTS

• HOUR

• HOUR_MICROSECOND (R)

• HOUR_MINUTE (R)

• HOUR_SECOND (R)

I

• IDENTIFIED

• IF (R)

• IGNORE (R)

• IGNORE_SERVER_IDS

• IMPORT

• IN (R)

• INACTIVE; added in 8.0.14 (nonreserved)

• INDEX (R)

• INDEXES

• INFILE (R)

• INITIAL; added in 8.0.27 (nonreserved)

• INITIAL_SIZE

2081

MySQL 8.0 Keywords and Reserved Words

• INITIATE; added in 8.0.27 (nonreserved)

• INNER (R)

• INOUT (R)

• INSENSITIVE (R)

• INSERT (R)

• INSERT_METHOD

• INSTALL

• INSTANCE

• INT (R)

• INT1 (R)

• INT2 (R)

• INT3 (R)

• INT4 (R)

• INT8 (R)

• INTEGER (R)

• INTERSECT (R); added in 8.0.31 (reserved)

• INTERVAL (R)

• INTO (R)

• INVISIBLE

• INVOKER

• IO

• IO_AFTER_GTIDS (R)

• IO_BEFORE_GTIDS (R)

• IO_THREAD

• IPC

• IS (R)

• ISOLATION

• ISSUER

• ITERATE (R)

J

• JOIN (R)

• JSON

• JSON_TABLE (R); added in 8.0.4 (reserved)

2082

MySQL 8.0 Keywords and Reserved Words

• JSON_VALUE; added in 8.0.21 (nonreserved)

K

• KEY (R)

• KEYRING; added in 8.0.24 (nonreserved)

• KEYS (R)

• KEY_BLOCK_SIZE

• KILL (R)

L

• LAG (R); added in 8.0.2 (reserved)

• LANGUAGE

• LAST

• LAST_VALUE (R); added in 8.0.2 (reserved)

• LATERAL (R); added in 8.0.14 (reserved)

• LEAD (R); added in 8.0.2 (reserved)

• LEADING (R)

• LEAVE (R)

• LEAVES

• LEFT (R)

• LESS

• LEVEL

• LIKE (R)

• LIMIT (R)

• LINEAR (R)

• LINES (R)

• LINESTRING

• LIST

• LOAD (R)

• LOCAL

• LOCALTIME (R)

• LOCALTIMESTAMP (R)

• LOCK (R)

• LOCKED; added in 8.0.1 (nonreserved)

• LOCKS

2083

MySQL 8.0 Keywords and Reserved Words

• LOGFILE

• LOGS

• LONG (R)

• LONGBLOB (R)

• LONGTEXT (R)

• LOOP (R)

• LOW_PRIORITY (R)

M

• MASTER

• MASTER_AUTO_POSITION

• MASTER_BIND (R)

• MASTER_COMPRESSION_ALGORITHMS; added in 8.0.18 (nonreserved)

• MASTER_CONNECT_RETRY

• MASTER_DELAY

• MASTER_HEARTBEAT_PERIOD

• MASTER_HOST

• MASTER_LOG_FILE

• MASTER_LOG_POS

• MASTER_PASSWORD

• MASTER_PORT

• MASTER_PUBLIC_KEY_PATH; added in 8.0.4 (nonreserved)

• MASTER_RETRY_COUNT

• MASTER_SERVER_ID; removed in 8.0.23

• MASTER_SSL

• MASTER_SSL_CA

• MASTER_SSL_CAPATH

• MASTER_SSL_CERT

• MASTER_SSL_CIPHER

• MASTER_SSL_CRL

• MASTER_SSL_CRLPATH

• MASTER_SSL_KEY

• MASTER_SSL_VERIFY_SERVER_CERT (R)

• MASTER_TLS_CIPHERSUITES; added in 8.0.19 (nonreserved)

2084

MySQL 8.0 Keywords and Reserved Words

• MASTER_TLS_VERSION

• MASTER_USER

• MASTER_ZSTD_COMPRESSION_LEVEL; added in 8.0.18 (nonreserved)

• MATCH (R)

• MAXVALUE (R)

• MAX_CONNECTIONS_PER_HOUR

• MAX_QUERIES_PER_HOUR

• MAX_ROWS

• MAX_SIZE

• MAX_UPDATES_PER_HOUR

• MAX_USER_CONNECTIONS

• MEDIUM

• MEDIUMBLOB (R)

• MEDIUMINT (R)

• MEDIUMTEXT (R)

• MEMBER; added in 8.0.17 (reserved); became nonreserved in 8.0.19

• MEMORY

• MERGE

• MESSAGE_TEXT

• MICROSECOND

• MIDDLEINT (R)

• MIGRATE

• MINUTE

• MINUTE_MICROSECOND (R)

• MINUTE_SECOND (R)

• MIN_ROWS

• MOD (R)

• MODE

• MODIFIES (R)

• MODIFY

• MONTH

• MULTILINESTRING

• MULTIPOINT

2085

MySQL 8.0 Keywords and Reserved Words

• MULTIPOLYGON

• MUTEX

• MYSQL_ERRNO

N

• NAME

• NAMES

• NATIONAL

• NATURAL (R)

• NCHAR

• NDB

• NDBCLUSTER

• NESTED; added in 8.0.4 (nonreserved)

• NETWORK_NAMESPACE; added in 8.0.16 (nonreserved)

• NEVER

• NEW

• NEXT

• NO

• NODEGROUP

• NONE

• NOT (R)

• NOWAIT; added in 8.0.1 (nonreserved)

• NO_WAIT

• NO_WRITE_TO_BINLOG (R)

• NTH_VALUE (R); added in 8.0.2 (reserved)

• NTILE (R); added in 8.0.2 (reserved)

• NULL (R)

• NULLS; added in 8.0.2 (nonreserved)

• NUMBER

• NUMERIC (R)

• NVARCHAR

O

• OF (R); added in 8.0.1 (reserved)

• OFF; added in 8.0.20 (nonreserved)

2086

MySQL 8.0 Keywords and Reserved Words

• OFFSET

• OJ; added in 8.0.16 (nonreserved)

• OLD; added in 8.0.14 (nonreserved)

• ON (R)

• ONE

• ONLY

• OPEN

• OPTIMIZE (R)

• OPTIMIZER_COSTS (R)

• OPTION (R)

• OPTIONAL; added in 8.0.13 (nonreserved)

• OPTIONALLY (R)

• OPTIONS

• OR (R)

• ORDER (R)

• ORDINALITY; added in 8.0.4 (nonreserved)

• ORGANIZATION; added in 8.0.4 (nonreserved)

• OTHERS; added in 8.0.2 (nonreserved)

• OUT (R)

• OUTER (R)

• OUTFILE (R)

• OVER (R); added in 8.0.2 (reserved)

• OWNER

P

• PACK_KEYS

• PAGE

• PARSER

• PARTIAL

• PARTITION (R)

• PARTITIONING

• PARTITIONS

• PASSWORD

• PASSWORD_LOCK_TIME; added in 8.0.19 (nonreserved)

2087

MySQL 8.0 Keywords and Reserved Words

• PATH; added in 8.0.4 (nonreserved)

• PERCENT_RANK (R); added in 8.0.2 (reserved)

• PERSIST; became nonreserved in 8.0.16

• PERSIST_ONLY; added in 8.0.2 (reserved); became nonreserved in 8.0.16

• PHASE

• PLUGIN

• PLUGINS

• PLUGIN_DIR

• POINT

• POLYGON

• PORT

• PRECEDES

• PRECEDING; added in 8.0.2 (nonreserved)

• PRECISION (R)

• PREPARE

• PRESERVE

• PREV

• PRIMARY (R)

• PRIVILEGES

• PRIVILEGE_CHECKS_USER; added in 8.0.18 (nonreserved)

• PROCEDURE (R)

• PROCESS; added in 8.0.11 (nonreserved)

• PROCESSLIST

• PROFILE

• PROFILES

• PROXY

• PURGE (R)

Q

• QUARTER

• QUERY

• QUICK

R

• RANDOM; added in 8.0.18 (nonreserved)

2088

MySQL 8.0 Keywords and Reserved Words

• RANGE (R)

• RANK (R); added in 8.0.2 (reserved)

• READ (R)

• READS (R)

• READ_ONLY

• READ_WRITE (R)

• REAL (R)

• REBUILD

• RECOVER

• RECURSIVE (R); added in 8.0.1 (reserved)

• REDOFILE; removed in 8.0.3

• REDO_BUFFER_SIZE

• REDUNDANT

• REFERENCE; added in 8.0.4 (nonreserved)

• REFERENCES (R)

• REGEXP (R)

• REGISTRATION; added in 8.0.27 (nonreserved)

• RELAY

• RELAYLOG

• RELAY_LOG_FILE

• RELAY_LOG_POS

• RELAY_THREAD

• RELEASE (R)

• RELOAD

• REMOTE; added in 8.0.3 (nonreserved); removed in 8.0.14

• REMOVE

• RENAME (R)

• REORGANIZE

• REPAIR

• REPEAT (R)

• REPEATABLE

• REPLACE (R)

• REPLICA; added in 8.0.22 (nonreserved)

2089

MySQL 8.0 Keywords and Reserved Words

• REPLICAS; added in 8.0.22 (nonreserved)

• REPLICATE_DO_DB

• REPLICATE_DO_TABLE

• REPLICATE_IGNORE_DB

• REPLICATE_IGNORE_TABLE

• REPLICATE_REWRITE_DB

• REPLICATE_WILD_DO_TABLE

• REPLICATE_WILD_IGNORE_TABLE

• REPLICATION

• REQUIRE (R)

• REQUIRE_ROW_FORMAT; added in 8.0.19 (nonreserved)

• RESET

• RESIGNAL (R)

• RESOURCE; added in 8.0.3 (nonreserved)

• RESPECT; added in 8.0.2 (nonreserved)

• RESTART; added in 8.0.4 (nonreserved)

• RESTORE

• RESTRICT (R)

• RESUME

• RETAIN; added in 8.0.14 (nonreserved)

• RETURN (R)

• RETURNED_SQLSTATE

• RETURNING; added in 8.0.21 (nonreserved)

• RETURNS

• REUSE; added in 8.0.3 (nonreserved)

• REVERSE

• REVOKE (R)

• RIGHT (R)

• RLIKE (R)

• ROLE; became nonreserved in 8.0.1

• ROLLBACK

• ROLLUP

• ROTATE

2090

MySQL 8.0 Keywords and Reserved Words

• ROUTINE

• ROW (R); became reserved in 8.0.2

• ROWS (R); became reserved in 8.0.2

• ROW_COUNT

• ROW_FORMAT

• ROW_NUMBER (R); added in 8.0.2 (reserved)

• RTREE

S

• SAVEPOINT

• SCHEDULE

• SCHEMA (R)

• SCHEMAS (R)

• SCHEMA_NAME

• SECOND

• SECONDARY; added in 8.0.16 (nonreserved)

• SECONDARY_ENGINE; added in 8.0.13 (nonreserved)

• SECONDARY_ENGINE_ATTRIBUTE; added in 8.0.21 (nonreserved)

• SECONDARY_LOAD; added in 8.0.13 (nonreserved)

• SECONDARY_UNLOAD; added in 8.0.13 (nonreserved)

• SECOND_MICROSECOND (R)

• SECURITY

• SELECT (R)

• SENSITIVE (R)

• SEPARATOR (R)

• SERIAL

• SERIALIZABLE

• SERVER

• SESSION

• SET (R)

• SHARE

• SHOW (R)

• SHUTDOWN

• SIGNAL (R)

2091

MySQL 8.0 Keywords and Reserved Words

• SIGNED

• SIMPLE

• SKIP; added in 8.0.1 (nonreserved)

• SLAVE

• SLOW

• SMALLINT (R)

• SNAPSHOT

• SOCKET

• SOME

• SONAME

• SOUNDS

• SOURCE

• SOURCE_AUTO_POSITION; added in 8.0.23 (nonreserved)

• SOURCE_BIND; added in 8.0.23 (nonreserved)

• SOURCE_COMPRESSION_ALGORITHMS; added in 8.0.23 (nonreserved)

• SOURCE_CONNECT_RETRY; added in 8.0.23 (nonreserved)

• SOURCE_DELAY; added in 8.0.23 (nonreserved)

• SOURCE_HEARTBEAT_PERIOD; added in 8.0.23 (nonreserved)

• SOURCE_HOST; added in 8.0.23 (nonreserved)

• SOURCE_LOG_FILE; added in 8.0.23 (nonreserved)

• SOURCE_LOG_POS; added in 8.0.23 (nonreserved)

• SOURCE_PASSWORD; added in 8.0.23 (nonreserved)

• SOURCE_PORT; added in 8.0.23 (nonreserved)

• SOURCE_PUBLIC_KEY_PATH; added in 8.0.23 (nonreserved)

• SOURCE_RETRY_COUNT; added in 8.0.23 (nonreserved)

• SOURCE_SSL; added in 8.0.23 (nonreserved)

• SOURCE_SSL_CA; added in 8.0.23 (nonreserved)

• SOURCE_SSL_CAPATH; added in 8.0.23 (nonreserved)

• SOURCE_SSL_CERT; added in 8.0.23 (nonreserved)

• SOURCE_SSL_CIPHER; added in 8.0.23 (nonreserved)

• SOURCE_SSL_CRL; added in 8.0.23 (nonreserved)

• SOURCE_SSL_CRLPATH; added in 8.0.23 (nonreserved)

• SOURCE_SSL_KEY; added in 8.0.23 (nonreserved)

2092

MySQL 8.0 Keywords and Reserved Words

• SOURCE_SSL_VERIFY_SERVER_CERT; added in 8.0.23 (nonreserved)

• SOURCE_TLS_CIPHERSUITES; added in 8.0.23 (nonreserved)

• SOURCE_TLS_VERSION; added in 8.0.23 (nonreserved)

• SOURCE_USER; added in 8.0.23 (nonreserved)

• SOURCE_ZSTD_COMPRESSION_LEVEL; added in 8.0.23 (nonreserved)

• SPATIAL (R)

• SPECIFIC (R)

• SQL (R)

• SQLEXCEPTION (R)

• SQLSTATE (R)

• SQLWARNING (R)

• SQL_AFTER_GTIDS

• SQL_AFTER_MTS_GAPS

• SQL_BEFORE_GTIDS

• SQL_BIG_RESULT (R)

• SQL_BUFFER_RESULT

• SQL_CACHE; removed in 8.0.3

• SQL_CALC_FOUND_ROWS (R)

• SQL_NO_CACHE

• SQL_SMALL_RESULT (R)

• SQL_THREAD

• SQL_TSI_DAY

• SQL_TSI_HOUR

• SQL_TSI_MINUTE

• SQL_TSI_MONTH

• SQL_TSI_QUARTER

• SQL_TSI_SECOND

• SQL_TSI_WEEK

• SQL_TSI_YEAR

• SRID; added in 8.0.3 (nonreserved)

• SSL (R)

• STACKED

• START

2093

MySQL 8.0 Keywords and Reserved Words

• STARTING (R)

• STARTS

• STATS_AUTO_RECALC

• STATS_PERSISTENT

• STATS_SAMPLE_PAGES

• STATUS

• STOP

• STORAGE

• STORED (R)

• STRAIGHT_JOIN (R)

• STREAM; added in 8.0.20 (nonreserved)

• STRING

• SUBCLASS_ORIGIN

• SUBJECT

• SUBPARTITION

• SUBPARTITIONS

• SUPER

• SUSPEND

• SWAPS

• SWITCHES

• SYSTEM (R); added in 8.0.3 (reserved)

T

• TABLE (R)

• TABLES

• TABLESPACE

• TABLE_CHECKSUM

• TABLE_NAME

• TEMPORARY

• TEMPTABLE

• TERMINATED (R)

• TEXT

• THAN

• THEN (R)

2094

MySQL 8.0 Keywords and Reserved Words

• THREAD_PRIORITY; added in 8.0.3 (nonreserved)

• TIES; added in 8.0.2 (nonreserved)

• TIME

• TIMESTAMP

• TIMESTAMPADD

• TIMESTAMPDIFF

• TINYBLOB (R)

• TINYINT (R)

• TINYTEXT (R)

• TLS; added in 8.0.21 (nonreserved)

• TO (R)

• TRAILING (R)

• TRANSACTION

• TRIGGER (R)

• TRIGGERS

• TRUE (R)

• TRUNCATE

• TYPE

• TYPES

U

• UNBOUNDED; added in 8.0.2 (nonreserved)

• UNCOMMITTED

• UNDEFINED

• UNDO (R)

• UNDOFILE

• UNDO_BUFFER_SIZE

• UNICODE

• UNINSTALL

• UNION (R)

• UNIQUE (R)

• UNKNOWN

• UNLOCK (R)

• UNREGISTER; added in 8.0.27 (nonreserved)

2095

MySQL 8.0 Keywords and Reserved Words

• UNSIGNED (R)

• UNTIL

• UPDATE (R)

• UPGRADE

• URL; added in 8.0.32 (nonreserved)

• USAGE (R)

• USE (R)

• USER

• USER_RESOURCES

• USE_FRM

• USING (R)

• UTC_DATE (R)

• UTC_TIME (R)

• UTC_TIMESTAMP (R)

V

• VALIDATION

• VALUE

• VALUES (R)

• VARBINARY (R)

• VARCHAR (R)

• VARCHARACTER (R)

• VARIABLES

• VARYING (R)

• VCPU; added in 8.0.3 (nonreserved)

• VIEW

• VIRTUAL (R)

• VISIBLE

W

• WAIT

• WARNINGS

• WEEK

• WEIGHT_STRING

• WHEN (R)

2096

MySQL 8.0 New Keywords and Reserved Words

• WHERE (R)

• WHILE (R)

• WINDOW (R); added in 8.0.2 (reserved)

• WITH (R)

• WITHOUT

• WORK

• WRAPPER

• WRITE (R)

X

• X509

• XA

• XID

• XML

• XOR (R)

Y

• YEAR

• YEAR_MONTH (R)

Z

• ZEROFILL (R)

• ZONE; added in 8.0.22 (nonreserved)

MySQL 8.0 New Keywords and Reserved Words

The following list shows the keywords and reserved words that are added in MySQL 8.0, compared to
MySQL 5.7. Reserved keywords are marked with (R).

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | R | S | T | U | V | W | Z

A

• ACTIVE

• ADMIN

• ARRAY

• ATTRIBUTE

• AUTHENTICATION

B

• BUCKETS

• BULK

2097

MySQL 8.0 New Keywords and Reserved Words

C

• CHALLENGE_RESPONSE

• CLONE

• COMPONENT

• CUME_DIST (R)

D

• DEFINITION

• DENSE_RANK (R)

• DESCRIPTION

E

• EMPTY (R)

• ENFORCED

• ENGINE_ATTRIBUTE

• EXCEPT (R)

• EXCLUDE

F

• FACTOR

• FAILED_LOGIN_ATTEMPTS

• FINISH

• FIRST_VALUE (R)

• FOLLOWING

G

• GENERATE

• GEOMCOLLECTION

• GET_MASTER_PUBLIC_KEY

• GET_SOURCE_PUBLIC_KEY

• GROUPING (R)

• GROUPS (R)

• GTID_ONLY

H

• HISTOGRAM

• HISTORY

2098

MySQL 8.0 New Keywords and Reserved Words

I

• INACTIVE

• INITIAL

• INITIATE

• INTERSECT (R)

• INVISIBLE

J

• JSON_TABLE (R)

• JSON_VALUE

K

• KEYRING

L

• LAG (R)

• LAST_VALUE (R)

• LATERAL (R)

• LEAD (R)

• LOCKED

M

• MASTER_COMPRESSION_ALGORITHMS

• MASTER_PUBLIC_KEY_PATH

• MASTER_TLS_CIPHERSUITES

• MASTER_ZSTD_COMPRESSION_LEVEL

• MEMBER

N

• NESTED

• NETWORK_NAMESPACE

• NOWAIT

• NTH_VALUE (R)

• NTILE (R)

• NULLS

O

• OF (R)

2099

MySQL 8.0 New Keywords and Reserved Words

• OFF

• OJ

• OLD

• OPTIONAL

• ORDINALITY

• ORGANIZATION

• OTHERS

• OVER (R)

P

• PASSWORD_LOCK_TIME

• PATH

• PERCENT_RANK (R)

• PERSIST

• PERSIST_ONLY

• PRECEDING

• PRIVILEGE_CHECKS_USER

• PROCESS

R

• RANDOM

• RANK (R)

• RECURSIVE (R)

• REFERENCE

• REGISTRATION

• REPLICA

• REPLICAS

• REQUIRE_ROW_FORMAT

• RESOURCE

• RESPECT

• RESTART

• RETAIN

• RETURNING

• REUSE

• ROLE

2100

MySQL 8.0 New Keywords and Reserved Words

• ROW_NUMBER (R)

S

• SECONDARY

• SECONDARY_ENGINE

• SECONDARY_ENGINE_ATTRIBUTE

• SECONDARY_LOAD

• SECONDARY_UNLOAD

• SKIP

• SOURCE_AUTO_POSITION

• SOURCE_BIND

• SOURCE_COMPRESSION_ALGORITHMS

• SOURCE_CONNECT_RETRY

• SOURCE_DELAY

• SOURCE_HEARTBEAT_PERIOD

• SOURCE_HOST

• SOURCE_LOG_FILE

• SOURCE_LOG_POS

• SOURCE_PASSWORD

• SOURCE_PORT

• SOURCE_PUBLIC_KEY_PATH

• SOURCE_RETRY_COUNT

• SOURCE_SSL

• SOURCE_SSL_CA

• SOURCE_SSL_CAPATH

• SOURCE_SSL_CERT

• SOURCE_SSL_CIPHER

• SOURCE_SSL_CRL

• SOURCE_SSL_CRLPATH

• SOURCE_SSL_KEY

• SOURCE_SSL_VERIFY_SERVER_CERT

• SOURCE_TLS_CIPHERSUITES

• SOURCE_TLS_VERSION

• SOURCE_USER

2101

MySQL 8.0 Removed Keywords and Reserved Words

• SOURCE_ZSTD_COMPRESSION_LEVEL

• SRID

• STREAM

• SYSTEM (R)

T

• THREAD_PRIORITY

• TIES

• TLS

U

• UNBOUNDED

• UNREGISTER

• URL

V

• VCPU

• VISIBLE

W

• WINDOW (R)

Z

• ZONE

MySQL 8.0 Removed Keywords and Reserved Words

The following list shows the keywords and reserved words that are removed in MySQL 8.0, compared
to MySQL 5.7. Reserved keywords are marked with (R).

• ANALYSE

• DES_KEY_FILE

• MASTER_SERVER_ID

• PARSE_GCOL_EXPR

• REDOFILE

• SQL_CACHE

MySQL 8.0 Restricted Keywords

Some MySQL keywords are not reserved but even so must be quoted in certain circumstances. This
section provides listings of these keywords.

• Keywords which must be quoted when used as labels

• Keywords which must be quoted when used as role names

2102

MySQL 8.0 Restricted Keywords

• Keywords which must be quoted when used as labels or role names

Keywords which must be quoted when used as labels

The keywords listed here must be quoted when used as labels in MySQL stored programs:

A | B | C | D | E | F | H | I | L | N | P | R | S | T | U | X

A

• ASCII

B

• BEGIN

• BYTE

C

• CACHE

• CHARSET

• CHECKSUM

• CLONE

• COMMENT

• COMMIT

• CONTAINS

D

• DEALLOCATE

• DO

E

• END

F

• FLUSH

• FOLLOWS

H

• HANDLER

• HELP

I

• IMPORT

• INSTALL

L

2103

MySQL 8.0 Restricted Keywords

• LANGUAGE

N

• NO

P

• PRECEDES

• PREPARE

R

• REPAIR

• RESET

• ROLLBACK

S

• SAVEPOINT

• SIGNED

• SLAVE

• START

• STOP

T

• TRUNCATE

U

• UNICODE

• UNINSTALL

X

• XA

Keywords which must be quoted when used as role names

The keywords listed here must be quoted when used as names of roles:

• EVENT

• FILE

• NONE

• PROCESS

• PROXY

• RELOAD

• REPLICATION

2104

User-Defined Variables

• RESOURCE

• SUPER

Keywords which must be quoted when used as labels or role names

The keywords listed here must be quoted when used as labels in stored programs, or as names of
roles:

• EXECUTE

• RESTART

• SHUTDOWN

11.4 User-Defined Variables

You can store a value in a user-defined variable in one statement and refer to it later in another
statement. This enables you to pass values from one statement to another.

User variables are written as @var_name, where the variable name var_name consists of
alphanumeric characters, ., _, and $. A user variable name can contain other characters if you quote it
as a string or identifier (for example, @'my-var', @"my-var", or @`my-var`).

User-defined variables are session specific. A user variable defined by one client cannot be
seen or used by other clients. (Exception: A user with access to the Performance Schema
user_variables_by_thread table can see all user variables for all sessions.) All variables for a
given client session are automatically freed when that client exits.

User variable names are not case-sensitive. Names have a maximum length of 64 characters.

One way to set a user-defined variable is by issuing a SET statement:

SET @var_name = expr [, @var_name = expr] ...

For SET, either = or := can be used as the assignment operator.

User variables can be assigned a value from a limited set of data types: integer, decimal, floating-point,
binary or nonbinary string, or NULL value. Assignment of decimal and real values does not preserve the
precision or scale of the value. A value of a type other than one of the permissible types is converted to
a permissible type. For example, a value having a temporal or spatial data type is converted to a binary
string. A value having the JSON data type is converted to a string with a character set of utf8mb4 and
a collation of utf8mb4_bin.

If a user variable is assigned a nonbinary (character) string value, it has the same character set and
collation as the string. The coercibility of user variables is implicit. (This is the same coercibility as for
table column values.)

Hexadecimal or bit values assigned to user variables are treated as binary strings. To assign a
hexadecimal or bit value as a number to a user variable, use it in numeric context. For example, add 0
or use CAST(... AS UNSIGNED):

mysql> SET @v1 = X'41';
mysql> SET @v2 = X'41'+0;
mysql> SET @v3 = CAST(X'41' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+
mysql> SET @v1 = b'1000001';
mysql> SET @v2 = b'1000001'+0;

2105

User-Defined Variables

mysql> SET @v3 = CAST(b'1000001' AS UNSIGNED);
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

If the value of a user variable is selected in a result set, it is returned to the client as a string.

If you refer to a variable that has not been initialized, it has a value of NULL and a type of string.

Beginning with MySQL 8.0.22, a reference to a user variable in a prepared statement has its type
determined when the statement is first prepared, and retains this type each time the statement is
executed thereafter. Similarly, the type of a user variable employed in a statement within a stored
procedure is determined the first time the stored procedure is invoked, and retains this type with each
subsequent invocation.

User variables may be used in most contexts where expressions are permitted. This does not currently
include contexts that explicitly require a literal value, such as in the LIMIT clause of a SELECT
statement, or the IGNORE N LINES clause of a LOAD DATA statement.

Previous releases of MySQL made it possible to assign a value to a user variable in statements other
than SET. This functionality is supported in MySQL 8.0 for backward compatibility but is subject to
removal in a future release of MySQL.

When making an assignment in this way, you must use := as the assignment operator; = is treated as
the comparison operator in statements other than SET.

The order of evaluation for expressions involving user variables is undefined. For example, there is no
guarantee that SELECT @a, @a:=@a+1 evaluates @a first and then performs the assignment.

In addition, the default result type of a variable is based on its type at the beginning of the statement.
This may have unintended effects if a variable holds a value of one type at the beginning of a
statement in which it is also assigned a new value of a different type.

To avoid problems with this behavior, either do not assign a value to and read the value of the same
variable within a single statement, or else set the variable to 0, 0.0, or '' to define its type before you
use it.

HAVING, GROUP BY, and ORDER BY, when referring to a variable that is assigned a value in the select
expression list do not work as expected because the expression is evaluated on the client and thus can
use stale column values from a previous row.

User variables are intended to provide data values. They cannot be used directly in an SQL statement
as an identifier or as part of an identifier, such as in contexts where a table or database name is
expected, or as a reserved word such as SELECT. This is true even if the variable is quoted, as shown
in the following example:

mysql> SELECT c1 FROM t;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> SET @col = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+

2106

User-Defined Variables

| @col |
+------+
| c1 |
+------+
1 row in set (0.00 sec)

mysql> SELECT `@col` FROM t;
ERROR 1054 (42S22): Unknown column '@col' in 'field list'

mysql> SET @col = "`c1`";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| `c1` |
+------+
1 row in set (0.00 sec)

An exception to this principle that user variables cannot be used to provide identifiers, is when you are
constructing a string for use as a prepared statement to execute later. In this case, user variables can
be used to provide any part of the statement. The following example illustrates how this can be done:

mysql> SET @c = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SET @s = CONCAT("SELECT ", @c, " FROM t");
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE stmt FROM @s;
Query OK, 0 rows affected (0.04 sec)
Statement prepared

mysql> EXECUTE stmt;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> DEALLOCATE PREPARE stmt;
Query OK, 0 rows affected (0.00 sec)

See Section 15.5, “Prepared Statements”, for more information.

A similar technique can be used in application programs to construct SQL statements using program
variables, as shown here using PHP 5:

<?php
 $mysqli = new mysqli("localhost", "user", "pass", "test");

 if(mysqli_connect_errno())
 die("Connection failed: %s\n", mysqli_connect_error());

 $col = "c1";

 $query = "SELECT $col FROM t";

 $result = $mysqli->query($query);

 while($row = $result->fetch_assoc())
 {
 echo "<p>" . $row["$col"] . "</p>\n";
 }

 $result->close();

2107

Expressions

 $mysqli->close();
?>

Assembling an SQL statement in this fashion is sometimes known as “Dynamic SQL”.

11.5 Expressions

This section lists the grammar rules that expressions must follow in MySQL and provides additional
information about the types of terms that may appear in expressions.

• Expression Syntax

• Expression Term Notes

• Temporal Intervals

Expression Syntax

The following grammar rules define expression syntax in MySQL. The grammar shown here is based
on that given in the sql/sql_yacc.yy file of MySQL source distributions. For additional information
about some of the expression terms, see Expression Term Notes.

expr:
 expr OR expr
 | expr || expr
 | expr XOR expr
 | expr AND expr
 | expr && expr
 | NOT expr
 | ! expr
 | boolean_primary IS [NOT] {TRUE | FALSE | UNKNOWN}
 | boolean_primary

boolean_primary:
 boolean_primary IS [NOT] NULL
 | boolean_primary <=> predicate
 | boolean_primary comparison_operator predicate
 | boolean_primary comparison_operator {ALL | ANY} (subquery)
 | predicate

comparison_operator: = | >= | > | <= | < | <> | !=

predicate:
 bit_expr [NOT] IN (subquery)
 | bit_expr [NOT] IN (expr [, expr] ...)
 | bit_expr [NOT] BETWEEN bit_expr AND predicate
 | bit_expr SOUNDS LIKE bit_expr
 | bit_expr [NOT] LIKE simple_expr [ESCAPE simple_expr]
 | bit_expr [NOT] REGEXP bit_expr
 | bit_expr

bit_expr:
 bit_expr | bit_expr
 | bit_expr & bit_expr
 | bit_expr << bit_expr
 | bit_expr >> bit_expr
 | bit_expr + bit_expr
 | bit_expr - bit_expr
 | bit_expr * bit_expr
 | bit_expr / bit_expr
 | bit_expr DIV bit_expr
 | bit_expr MOD bit_expr
 | bit_expr % bit_expr
 | bit_expr ^ bit_expr
 | bit_expr + interval_expr
 | bit_expr - interval_expr
 | simple_expr

2108

Expression Term Notes

simple_expr:
 literal
 | identifier
 | function_call
 | simple_expr COLLATE collation_name
 | param_marker
 | variable
 | simple_expr || simple_expr
 | + simple_expr
 | - simple_expr
 | ~ simple_expr
 | ! simple_expr
 | BINARY simple_expr
 | (expr [, expr] ...)
 | ROW (expr, expr [, expr] ...)
 | (subquery)
 | EXISTS (subquery)
 | {identifier expr}
 | match_expr
 | case_expr
 | interval_expr

For operator precedence, see Section 14.4.1, “Operator Precedence”. The precedence and meaning of
some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

See Section 7.1.11, “Server SQL Modes”.

Expression Term Notes

For literal value syntax, see Section 11.1, “Literal Values”.

For identifier syntax, see Section 11.2, “Schema Object Names”.

Variables can be user variables, system variables, or stored program local variables or parameters:

• User variables: Section 11.4, “User-Defined Variables”

• System variables: Section 7.1.9, “Using System Variables”

• Stored program local variables: Section 15.6.4.1, “Local Variable DECLARE Statement”

• Stored program parameters: Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION
Statements”

param_marker is ? as used in prepared statements for placeholders. See Section 15.5.1, “PREPARE
Statement”.

(subquery) indicates a subquery that returns a single value; that is, a scalar subquery. See
Section 15.2.15.1, “The Subquery as Scalar Operand”.

{identifier expr} is ODBC escape syntax and is accepted for ODBC compatibility. The value is
expr. The { and } curly braces in the syntax should be written literally; they are not metasyntax as
used elsewhere in syntax descriptions.

match_expr indicates a MATCH expression. See Section 14.9, “Full-Text Search Functions”.

case_expr indicates a CASE expression. See Section 14.5, “Flow Control Functions”.

interval_expr represents a temporal interval. See Temporal Intervals.

2109

Temporal Intervals

Temporal Intervals

interval_expr in expressions represents a temporal interval. Intervals have this syntax:

INTERVAL expr unit

expr represents a quantity. unit represents the unit for interpreting the quantity; it is a specifier such
as HOUR, DAY, or WEEK. The INTERVAL keyword and the unit specifier are not case-sensitive.

The following table shows the expected form of the expr argument for each unit value.

Table 11.2 Temporal Interval Expression and Unit Arguments

unit Value Expected expr Format

MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES:SECONDS.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS:MINUTES:SECONDS.MICROSECONDS'

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS
HOURS:MINUTES:SECONDS.MICROSECONDS'

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

MySQL permits any punctuation delimiter in the expr format. Those shown in the table are the
suggested delimiters.

Temporal intervals are used for certain functions, such as DATE_ADD() and DATE_SUB():

mysql> SELECT DATE_ADD('2018-05-01',INTERVAL 1 DAY);
 -> '2018-05-02'
mysql> SELECT DATE_SUB('2018-05-01',INTERVAL 1 YEAR);
 -> '2017-05-01'
mysql> SELECT DATE_ADD('2020-12-31 23:59:59',
 -> INTERVAL 1 SECOND);
 -> '2021-01-01 00:00:00'
mysql> SELECT DATE_ADD('2018-12-31 23:59:59',
 -> INTERVAL 1 DAY);
 -> '2019-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',
 -> INTERVAL '1:1' MINUTE_SECOND);
 -> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2025-01-01 00:00:00',

2110

Temporal Intervals

 -> INTERVAL '1 1:1:1' DAY_SECOND);
 -> '2024-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
 -> INTERVAL '-1 10' DAY_HOUR);
 -> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
 -> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
 -> INTERVAL '1.999999' SECOND_MICROSECOND);
 -> '1993-01-01 00:00:01.000001'

Temporal arithmetic also can be performed in expressions using INTERVAL together with the + or -
operator:

date + INTERVAL expr unit
date - INTERVAL expr unit

INTERVAL expr unit is permitted on either side of the + operator if the expression on the other side
is a date or datetime value. For the - operator, INTERVAL expr unit is permitted only on the right
side, because it makes no sense to subtract a date or datetime value from an interval.

mysql> SELECT '2018-12-31 23:59:59' + INTERVAL 1 SECOND;
 -> '2019-01-01 00:00:00'
mysql> SELECT INTERVAL 1 DAY + '2018-12-31';
 -> '2019-01-01'
mysql> SELECT '2025-01-01' - INTERVAL 1 SECOND;
 -> '2024-12-31 23:59:59'

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(),
but extracts parts from the date rather than performing date arithmetic:

mysql> SELECT EXTRACT(YEAR FROM '2019-07-02');
 -> 2019
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2019-07-02 01:02:03');
 -> 201907

Temporal intervals can be used in CREATE EVENT statements:

CREATE EVENT myevent
 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

If you specify an interval value that is too short (does not include all the interval parts that would
be expected from the unit keyword), MySQL assumes that you have left out the leftmost parts
of the interval value. For example, if you specify a unit of DAY_SECOND, the value of expr is
expected to have days, hours, minutes, and seconds parts. If you specify a value like '1:10', MySQL
assumes that the days and hours parts are missing and the value represents minutes and seconds.
In other words, '1:10' DAY_SECOND is interpreted in such a way that it is equivalent to '1:10'
MINUTE_SECOND. This is analogous to the way that MySQL interprets TIME values as representing
elapsed time rather than as a time of day.

expr is treated as a string, so be careful if you specify a nonstring value with INTERVAL. For example,
with an interval specifier of HOUR_MINUTE, '6/4' is treated as 6 hours, four minutes, whereas 6/4
evaluates to 1.5000 and is treated as 1 hour, 5000 minutes:

mysql> SELECT '6/4', 6/4;
 -> 1.5000
mysql> SELECT DATE_ADD('2019-01-01', INTERVAL '6/4' HOUR_MINUTE);
 -> '2019-01-01 06:04:00'
mysql> SELECT DATE_ADD('2019-01-01', INTERVAL 6/4 HOUR_MINUTE);
 -> '2019-01-04 12:20:00'

To ensure interpretation of the interval value as you expect, a CAST() operation may be used. To treat
6/4 as 1 hour, 5 minutes, cast it to a DECIMAL value with a single fractional digit:

mysql> SELECT CAST(6/4 AS DECIMAL(3,1));

2111

Query Attributes

 -> 1.5
mysql> SELECT DATE_ADD('1970-01-01 12:00:00',
 -> INTERVAL CAST(6/4 AS DECIMAL(3,1)) HOUR_MINUTE);
 -> '1970-01-01 13:05:00'

If you add to or subtract from a date value something that contains a time part, the result is
automatically converted to a datetime value:

mysql> SELECT DATE_ADD('2023-01-01', INTERVAL 1 DAY);
 -> '2023-01-02'
mysql> SELECT DATE_ADD('2023-01-01', INTERVAL 1 HOUR);
 -> '2023-01-01 01:00:00'

If you add MONTH, YEAR_MONTH, or YEAR and the resulting date has a day that is larger than the
maximum day for the new month, the day is adjusted to the maximum days in the new month:

mysql> SELECT DATE_ADD('2019-01-30', INTERVAL 1 MONTH);
 -> '2019-02-28'

Date arithmetic operations require complete dates and do not work with incomplete dates such as
'2016-07-00' or badly malformed dates:

mysql> SELECT DATE_ADD('2016-07-00', INTERVAL 1 DAY);
 -> NULL
mysql> SELECT '2005-03-32' + INTERVAL 1 MONTH;
 -> NULL

11.6 Query Attributes
The most visible part of an SQL statement is the text of the statement. As of MySQL 8.0.23, clients can
also define query attributes that apply to the next statement sent to the server for execution:

• Attributes are defined prior to sending the statement.

• Attributes exist until statement execution ends, at which point the attribute set is cleared.

• While attributes exist, they can be accessed on the server side.

Examples of the ways query attributes may be used:

• A web application produces pages that generate database queries, and for each query must track
the URL of the page that generated it.

• An application passes extra processing information with each query, for use by a plugin such as an
audit plugin or query rewrite plugin.

MySQL supports these capabilities without the use of workarounds such as specially formatted
comments included in query strings. The remainder of this section describes how to use query attribute
support, including the prerequisites that must be satisfied.

• Defining and Accessing Query Attributes

• Prerequisites for Using Query Attributes

• Query Attribute Loadable Functions

Defining and Accessing Query Attributes

Applications that use the MySQL C API define query attributes by calling the mysql_bind_param()
function. See mysql_bind_param(). Other MySQL connectors may also provide query-attribute support.
See the documentation for individual connectors.

The mysql client has a query_attributes command that enables defining up to 32 pairs of
attribute names and values. See Section 6.5.1.2, “mysql Client Commands”.

2112

https://dev.mysql.com/doc/c-api/8.0/en/mysql-bind-param.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-bind-param.html

Defining and Accessing Query Attributes

Query attribute names are transmitted using the character set indicated by the
character_set_client system variable.

To access query attributes within SQL statements for which attributes have been defined, install
the query_attributes component as described in Prerequisites for Using Query Attributes. The
component implements a mysql_query_attribute_string() loadable function that takes an
attribute name argument and returns the attribute value as a string, or NULL if the attribute does not
exist. See Query Attribute Loadable Functions.

The following examples use the mysql client query_attributes command to define attribute name/
value pairs, and the mysql_query_attribute_string() function to access attribute values by
name.

This example defines two attributes named n1 and n2. The first SELECT shows how to retrieve those
attributes, and also demonstrates that retrieving a nonexistent attribute (n3) returns NULL. The second
SELECT shows that attributes do not persist across statements.

mysql> query_attributes n1 v1 n2 v2;
mysql> SELECT
 mysql_query_attribute_string('n1') AS 'attr 1',
 mysql_query_attribute_string('n2') AS 'attr 2',
 mysql_query_attribute_string('n3') AS 'attr 3';
+--------+--------+--------+
| attr 1 | attr 2 | attr 3 |
+--------+--------+--------+
| v1 | v2 | NULL |
+--------+--------+--------+

mysql> SELECT
 mysql_query_attribute_string('n1') AS 'attr 1',
 mysql_query_attribute_string('n2') AS 'attr 2';
+--------+--------+
| attr 1 | attr 2 |
+--------+--------+
| NULL | NULL |
+--------+--------+

As shown by the second SELECT statement, attributes defined prior to a given statement are available
only to that statement and are cleared after the statement executes. To use an attribute value across
multiple statements, assign it to a variable. The following example shows how to do this, and illustrates
that attribute values are available in subsequent statements by means of the variables, but not by
calling mysql_query_attribute_string():

mysql> query_attributes n1 v1 n2 v2;
mysql> SET
 @attr1 = mysql_query_attribute_string('n1'),
 @attr2 = mysql_query_attribute_string('n2');

mysql> SELECT
 @attr1, mysql_query_attribute_string('n1') AS 'attr 1',
 @attr2, mysql_query_attribute_string('n2') AS 'attr 2';
+--------+--------+--------+--------+
| @attr1 | attr 1 | @attr2 | attr 2 |
+--------+--------+--------+--------+
| v1 | NULL | v2 | NULL |
+--------+--------+--------+--------+

Attributes can also be saved for later use by storing them in a table:

mysql> CREATE TABLE t1 (c1 CHAR(20), c2 CHAR(20));

mysql> query_attributes n1 v1 n2 v2;
mysql> INSERT INTO t1 (c1, c2) VALUES(
 mysql_query_attribute_string('n1'),
 mysql_query_attribute_string('n2')
);

mysql> SELECT * FROM t1;

2113

Prerequisites for Using Query Attributes

+------+------+
| c1 | c2 |
+------+------+
| v1 | v2 |
+------+------+

Query attributes are subject to these limitations and restrictions:

• If multiple attribute-definition operations occur prior to sending a statement to the server for
execution, the most recent definition operation applies and replaces attributes defined in earlier
operations.

• If multiple attributes are defined with the same name, attempts to retrieve the attribute value have an
undefined result.

• An attribute defined with an empty name cannot be retrieved by name.

• Attributes are not available to statements prepared with PREPARE.

• The mysql_query_attribute_string() function cannot be used in DDL statements.

• Attributes are not replicated. Statements that invoke the mysql_query_attribute_string()
function will not get the same value on all servers.

Prerequisites for Using Query Attributes

To access query attributes within SQL statements for which attributes have been defined, the
query_attributes component must be installed. Do so using this statement:

INSTALL COMPONENT "file://component_query_attributes";

Component installation is a one-time operation that need not be done per server startup. INSTALL
COMPONENT loads the component, and also registers it in the mysql.component system table to
cause it to be loaded during subsequent server startups.

The query_attributes component accesses query attributes to implement a
mysql_query_attribute_string() function. See Section 7.5.4, “Query Attribute Components”.

To uninstall the query_attributes component, use this statement:

UNINSTALL COMPONENT "file://component_query_attributes";

UNINSTALL COMPONENT unloads the component, and unregisters it from the mysql.component
system table to cause it not to be loaded during subsequent server startups.

Because installing and uninstalling the query_attributes component installs and uninstalls the
mysql_query_attribute_string() function that the component implements, it is not necessary to
use CREATE FUNCTION or DROP FUNCTION to do so.

Query Attribute Loadable Functions

• mysql_query_attribute_string(name)

Applications can define attributes that apply to the next query sent to the server. The
mysql_query_attribute_string() function, available as of MySQL 8.0.23, returns an attribute
value as a string, given the attribute name. This function enables a query to access and incorporate
values of the attributes that apply to it.

mysql_query_attribute_string() is installed by installing the query_attributes
component. See Section 11.6, “Query Attributes”, which also discusses the purpose and use of
query attributes.

Arguments:

2114

Comments

• name: The attribute name.

Return value:

Returns the attribute value as a string for success, or NULL if the attribute does not exist.

Example:

The following example uses the mysql client query_attributes command to define query
attributes that can be retrieved by mysql_query_attribute_string(). The SELECT shows that
retrieving a nonexistent attribute (n3) returns NULL.

mysql> query_attributes n1 v1 n2 v2;
mysql> SELECT
 -> mysql_query_attribute_string('n1') AS 'attr 1',
 -> mysql_query_attribute_string('n2') AS 'attr 2',
 -> mysql_query_attribute_string('n3') AS 'attr 3';
+--------+--------+--------+
| attr 1 | attr 2 | attr 3 |
+--------+--------+--------+
| v1 | v2 | NULL |
+--------+--------+--------+

11.7 Comments

MySQL Server supports three comment styles:

• From a # character to the end of the line.

• From a -- sequence to the end of the line. In MySQL, the -- (double-dash) comment style
requires the second dash to be followed by at least one whitespace or control character, such as
a space or tab. This syntax differs slightly from standard SQL comment syntax, as discussed in
Section 1.6.2.4, “'--' as the Start of a Comment”.

• From a /* sequence to the following */ sequence, as in the C programming language. This syntax
enables a comment to extend over multiple lines because the beginning and closing sequences need
not be on the same line.

The following example demonstrates all three comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line
mysql> SELECT 1+1; -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+
/*
this is a
multiple-line comment
*/
1;

Nested comments are not supported, and are deprecated; expect them to be removed in a future
MySQL release. (Under some conditions, nested comments might be permitted, but usually are not,
and users should avoid them.)

MySQL Server supports certain variants of C-style comments. These enable you to write code that
includes MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other
SQL statement, but other SQL servers should ignore the extensions. For example, MySQL Server
recognizes the STRAIGHT_JOIN keyword in the following statement, but other servers should not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

2115

Comments

If you add a version number after the ! character, the syntax within the comment is executed only if
the MySQL version is greater than or equal to the specified version number. The KEY_BLOCK_SIZE
keyword in the following comment is executed only by servers from MySQL 5.1.10 or higher:

CREATE TABLE t1(a INT, KEY (a)) /*!50110 KEY_BLOCK_SIZE=1024 */;

The version number uses the format Mmmrr, where M is a major version, mm is a two-digit minor
version, and rr is a two-digit release number. For example: In a statement to be run only by a MySQL
server version 8.0.31 or later, use 80031 in the comment.

The version number should be followed by at least one whitespace character (or the end of the
comment). Beginning with MySQL 8.0.34, if this condition is not met, the statement triggers a warning ;
you should expect this requirement to become strictly enforced in a future version of MySQL.

The comment syntax just described applies to how the mysqld server parses SQL statements. The
mysql client program also performs some parsing of statements before sending them to the server.
(It does this to determine statement boundaries within a multiple-statement input line.) For information
about differences between the server and mysql client parsers, see Section 6.5.1.6, “mysql Client
Tips”.

Comments in /*!12345 ... */ format are not stored on the server. If this format is used to
comment stored programs, the comments are not retained in the program body.

Another variant of C-style comment syntax is used to specify optimizer hints. Hint comments include a
+ character following the /* comment opening sequence. Example:

SELECT /*+ BKA(t1) */ FROM ... ;

For more information, see Section 10.9.3, “Optimizer Hints”.

The use of short-form mysql commands such as \C within multiple-line /* ... */ comments is not
supported. Short-form commands do work within single-line /*! ... */ version comments, as do /
*+ ... */ optimizer-hint comments, which are stored in object definitions. If there is a concern that
optimizer-hint comments may be stored in object definitions so that dump files when reloaded with
mysql would result in execution of such commands, either invoke mysql with the --binary-mode
option or use a reload client other than mysql.

2116

Chapter 12 Character Sets, Collations, Unicode

Table of Contents
12.1 Character Sets and Collations in General ... 2118
12.2 Character Sets and Collations in MySQL .. 2119

12.2.1 Character Set Repertoire .. 2121
12.2.2 UTF-8 for Metadata .. 2123

12.3 Specifying Character Sets and Collations ... 2124
12.3.1 Collation Naming Conventions ... 2124
12.3.2 Server Character Set and Collation ... 2125
12.3.3 Database Character Set and Collation ... 2126
12.3.4 Table Character Set and Collation ... 2127
12.3.5 Column Character Set and Collation .. 2128
12.3.6 Character String Literal Character Set and Collation ... 2129
12.3.7 The National Character Set ... 2131
12.3.8 Character Set Introducers ... 2131
12.3.9 Examples of Character Set and Collation Assignment ... 2133
12.3.10 Compatibility with Other DBMSs .. 2134

12.4 Connection Character Sets and Collations .. 2134
12.5 Configuring Application Character Set and Collation .. 2140
12.6 Error Message Character Set ... 2142
12.7 Column Character Set Conversion ... 2143
12.8 Collation Issues ... 2144

12.8.1 Using COLLATE in SQL Statements .. 2144
12.8.2 COLLATE Clause Precedence .. 2145
12.8.3 Character Set and Collation Compatibility .. 2145
12.8.4 Collation Coercibility in Expressions ... 2145
12.8.5 The binary Collation Compared to _bin Collations .. 2146
12.8.6 Examples of the Effect of Collation .. 2149
12.8.7 Using Collation in INFORMATION_SCHEMA Searches .. 2150

12.9 Unicode Support .. 2152
12.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding) 2154
12.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding) 2154
12.9.3 The utf8 Character Set (Deprecated alias for utf8mb3) ... 2155
12.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding) ... 2156
12.9.5 The utf16 Character Set (UTF-16 Unicode Encoding) ... 2156
12.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding) 2157
12.9.7 The utf32 Character Set (UTF-32 Unicode Encoding) ... 2157
12.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets 2157

12.10 Supported Character Sets and Collations .. 2160
12.10.1 Unicode Character Sets .. 2160
12.10.2 West European Character Sets ... 2168
12.10.3 Central European Character Sets .. 2169
12.10.4 South European and Middle East Character Sets ... 2170
12.10.5 Baltic Character Sets .. 2171
12.10.6 Cyrillic Character Sets ... 2171
12.10.7 Asian Character Sets .. 2172
12.10.8 The Binary Character Set .. 2176

12.11 Restrictions on Character Sets ... 2177
12.12 Setting the Error Message Language .. 2177
12.13 Adding a Character Set ... 2178

12.13.1 Character Definition Arrays .. 2180
12.13.2 String Collating Support for Complex Character Sets .. 2181
12.13.3 Multi-Byte Character Support for Complex Character Sets 2181

12.14 Adding a Collation to a Character Set .. 2181

2117

Character Sets and Collations in General

12.14.1 Collation Implementation Types ... 2182
12.14.2 Choosing a Collation ID .. 2185
12.14.3 Adding a Simple Collation to an 8-Bit Character Set ... 2186
12.14.4 Adding a UCA Collation to a Unicode Character Set ... 2187

12.15 Character Set Configuration ... 2193
12.16 MySQL Server Locale Support ... 2194

MySQL includes character set support that enables you to store data using a variety of character sets
and perform comparisons according to a variety of collations. The default MySQL server character
set and collation are utf8mb4 and utf8mb4_0900_ai_ci, but you can specify character sets at
the server, database, table, column, and string literal levels. To maximize interoperability and future-
proofing of your data and applications, we recommend that you use the utf8mb4 character set
whenever possible.

Note

UTF8 is a deprecated synonym for utf8mb3, and you should expect it to be
removed in a future version of MySQL. Specify utfmb3 or (preferably) utfmb4
instead.

This chapter discusses the following topics:

• What are character sets and collations?

• The multiple-level default system for character set assignment.

• Syntax for specifying character sets and collations.

• Affected functions and operations.

• Unicode support.

• The character sets and collations that are available, with notes.

• Selecting the language for error messages.

• Selecting the locale for day and month names.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character set
different from the default, you need to indicate which one. For example, to use the latin1 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'latin1';

For more information about configuring character sets for application use and character set-related
issues in client/server communication, see Section 12.5, “Configuring Application Character Set and
Collation”, and Section 12.4, “Connection Character Sets and Collations”.

12.1 Character Sets and Collations in General

A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters
in a character set. Let's make the distinction clear with an example of an imaginary character set.

Suppose that we have an alphabet with four letters: A, B, a, b. We give each letter a number: A = 0, B =
1, a = 2, b = 3. The letter A is a symbol, the number 0 is the encoding for A, and the combination of all
four letters and their encodings is a character set.

Suppose that we want to compare two string values, A and B. The simplest way to do this is to look at
the encodings: 0 for A and 1 for B. Because 0 is less than 1, we say A is less than B. What we've just

2118

Character Sets and Collations in MySQL

done is apply a collation to our character set. The collation is a set of rules (only one rule in this case):
“compare the encodings.” We call this simplest of all possible collations a binary collation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would
have at least two rules: (1) treat the lowercase letters a and b as equivalent to A and B; (2) then
compare the encodings. We call this a case-insensitive collation. It is a little more complex than a
binary collation.

In real life, most character sets have many characters: not just A and B but whole alphabets,
sometimes multiple alphabets or eastern writing systems with thousands of characters, along with
many special symbols and punctuation marks. Also in real life, most collations have many rules, not
just for whether to distinguish lettercase, but also for whether to distinguish accents (an “accent” is a
mark attached to a character as in German Ö), and for multiple-character mappings (such as the rule
that Ö = OE in one of the two German collations).

MySQL can do these things for you:

• Store strings using a variety of character sets.

• Compare strings using a variety of collations.

• Mix strings with different character sets or collations in the same server, the same database, or even
the same table.

• Enable specification of character set and collation at any level.

To use these features effectively, you must know what character sets and collations are available, how
to change the defaults, and how they affect the behavior of string operators and functions.

12.2 Character Sets and Collations in MySQL
MySQL Server supports multiple character sets, including several Unicode character sets. To
display the available character sets, use the INFORMATION_SCHEMA CHARACTER_SETS table or
the SHOW CHARACTER SET statement. A partial listing follows. For more complete information, see
Section 12.10, “Supported Character Sets and Collations”.

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+---------------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
| binary | Binary pseudo charset | binary | 1 |
...
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
...
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
...
| utf8mb3 | UTF-8 Unicode | utf8mb3_general_ci | 3 |
| utf8mb4 | UTF-8 Unicode | utf8mb4_0900_ai_ci | 4 |
...

By default, the SHOW CHARACTER SET statement displays all available character sets. It takes an
optional LIKE or WHERE clause that indicates which character set names to match. The following
example shows some of the Unicode character sets (those based on Unicode Transformation Format):

mysql> SHOW CHARACTER SET LIKE 'utf%';
+---------+------------------+--------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+------------------+--------------------+--------+
utf16	UTF-16 Unicode	utf16_general_ci	4
utf16le	UTF-16LE Unicode	utf16le_general_ci	4
utf32	UTF-32 Unicode	utf32_general_ci	4
utf8mb3	UTF-8 Unicode	utf8mb3_general_ci	3
utf8mb4	UTF-8 Unicode	utf8mb4_0900_ai_ci	4
+---------+------------------+--------------------+--------+

2119

Character Sets and Collations in MySQL

A given character set always has at least one collation, and most character sets have several. To list
the display collations for a character set, use the INFORMATION_SCHEMA COLLATIONS table or the
SHOW COLLATION statement.

By default, the SHOW COLLATION statement displays all available collations. It takes an optional LIKE
or WHERE clause that indicates which collation names to display. For example, to see the collations for
the default character set, utf8mb4, use this statement:

mysql> SHOW COLLATION WHERE Charset = 'utf8mb4';
+----------------------------+---------+-----+---------+----------+---------+---------------+
| Collation | Charset | Id | Default | Compiled | Sortlen | Pad_attribute |
+----------------------------+---------+-----+---------+----------+---------+---------------+
utf8mb4_0900_ai_ci	utf8mb4	255	Yes	Yes	0	NO PAD
utf8mb4_0900_as_ci	utf8mb4	305		Yes	0	NO PAD
utf8mb4_0900_as_cs	utf8mb4	278		Yes	0	NO PAD
utf8mb4_0900_bin	utf8mb4	309		Yes	1	NO PAD
utf8mb4_bin	utf8mb4	46		Yes	1	PAD SPACE
utf8mb4_croatian_ci	utf8mb4	245		Yes	8	PAD SPACE
utf8mb4_cs_0900_ai_ci	utf8mb4	266		Yes	0	NO PAD
utf8mb4_cs_0900_as_cs	utf8mb4	289		Yes	0	NO PAD
utf8mb4_czech_ci	utf8mb4	234		Yes	8	PAD SPACE
utf8mb4_danish_ci	utf8mb4	235		Yes	8	PAD SPACE
utf8mb4_da_0900_ai_ci	utf8mb4	267		Yes	0	NO PAD
utf8mb4_da_0900_as_cs	utf8mb4	290		Yes	0	NO PAD
utf8mb4_de_pb_0900_ai_ci	utf8mb4	256		Yes	0	NO PAD
utf8mb4_de_pb_0900_as_cs	utf8mb4	279		Yes	0	NO PAD
utf8mb4_eo_0900_ai_ci	utf8mb4	273		Yes	0	NO PAD
utf8mb4_eo_0900_as_cs	utf8mb4	296		Yes	0	NO PAD
utf8mb4_esperanto_ci	utf8mb4	241		Yes	8	PAD SPACE
utf8mb4_estonian_ci	utf8mb4	230		Yes	8	PAD SPACE
utf8mb4_es_0900_ai_ci	utf8mb4	263		Yes	0	NO PAD
utf8mb4_es_0900_as_cs	utf8mb4	286		Yes	0	NO PAD
utf8mb4_es_trad_0900_ai_ci	utf8mb4	270		Yes	0	NO PAD
utf8mb4_es_trad_0900_as_cs	utf8mb4	293		Yes	0	NO PAD
utf8mb4_et_0900_ai_ci	utf8mb4	262		Yes	0	NO PAD
utf8mb4_et_0900_as_cs	utf8mb4	285		Yes	0	NO PAD
utf8mb4_general_ci	utf8mb4	45		Yes	1	PAD SPACE
utf8mb4_german2_ci	utf8mb4	244		Yes	8	PAD SPACE
utf8mb4_hr_0900_ai_ci	utf8mb4	275		Yes	0	NO PAD
utf8mb4_hr_0900_as_cs	utf8mb4	298		Yes	0	NO PAD
utf8mb4_hungarian_ci	utf8mb4	242		Yes	8	PAD SPACE
utf8mb4_hu_0900_ai_ci	utf8mb4	274		Yes	0	NO PAD
utf8mb4_hu_0900_as_cs	utf8mb4	297		Yes	0	NO PAD
utf8mb4_icelandic_ci	utf8mb4	225		Yes	8	PAD SPACE
utf8mb4_is_0900_ai_ci	utf8mb4	257		Yes	0	NO PAD
utf8mb4_is_0900_as_cs	utf8mb4	280		Yes	0	NO PAD
utf8mb4_ja_0900_as_cs	utf8mb4	303		Yes	0	NO PAD
utf8mb4_ja_0900_as_cs_ks	utf8mb4	304		Yes	24	NO PAD
utf8mb4_latvian_ci	utf8mb4	226		Yes	8	PAD SPACE
utf8mb4_la_0900_ai_ci	utf8mb4	271		Yes	0	NO PAD
utf8mb4_la_0900_as_cs	utf8mb4	294		Yes	0	NO PAD
utf8mb4_lithuanian_ci	utf8mb4	236		Yes	8	PAD SPACE
utf8mb4_lt_0900_ai_ci	utf8mb4	268		Yes	0	NO PAD
utf8mb4_lt_0900_as_cs	utf8mb4	291		Yes	0	NO PAD
utf8mb4_lv_0900_ai_ci	utf8mb4	258		Yes	0	NO PAD
utf8mb4_lv_0900_as_cs	utf8mb4	281		Yes	0	NO PAD
utf8mb4_persian_ci	utf8mb4	240		Yes	8	PAD SPACE
utf8mb4_pl_0900_ai_ci	utf8mb4	261		Yes	0	NO PAD
utf8mb4_pl_0900_as_cs	utf8mb4	284		Yes	0	NO PAD
utf8mb4_polish_ci	utf8mb4	229		Yes	8	PAD SPACE
utf8mb4_romanian_ci	utf8mb4	227		Yes	8	PAD SPACE
utf8mb4_roman_ci	utf8mb4	239		Yes	8	PAD SPACE
utf8mb4_ro_0900_ai_ci	utf8mb4	259		Yes	0	NO PAD
utf8mb4_ro_0900_as_cs	utf8mb4	282		Yes	0	NO PAD
utf8mb4_ru_0900_ai_ci	utf8mb4	306		Yes	0	NO PAD
utf8mb4_ru_0900_as_cs	utf8mb4	307		Yes	0	NO PAD
utf8mb4_sinhala_ci	utf8mb4	243		Yes	8	PAD SPACE
utf8mb4_sk_0900_ai_ci	utf8mb4	269		Yes	0	NO PAD
utf8mb4_sk_0900_as_cs	utf8mb4	292		Yes	0	NO PAD
utf8mb4_slovak_ci	utf8mb4	237		Yes	8	PAD SPACE
utf8mb4_slovenian_ci	utf8mb4	228		Yes	8	PAD SPACE

2120

Character Set Repertoire

utf8mb4_sl_0900_ai_ci	utf8mb4	260		Yes	0	NO PAD
utf8mb4_sl_0900_as_cs	utf8mb4	283		Yes	0	NO PAD
utf8mb4_spanish2_ci	utf8mb4	238		Yes	8	PAD SPACE
utf8mb4_spanish_ci	utf8mb4	231		Yes	8	PAD SPACE
utf8mb4_sv_0900_ai_ci	utf8mb4	264		Yes	0	NO PAD
utf8mb4_sv_0900_as_cs	utf8mb4	287		Yes	0	NO PAD
utf8mb4_swedish_ci	utf8mb4	232		Yes	8	PAD SPACE
utf8mb4_tr_0900_ai_ci	utf8mb4	265		Yes	0	NO PAD
utf8mb4_tr_0900_as_cs	utf8mb4	288		Yes	0	NO PAD
utf8mb4_turkish_ci	utf8mb4	233		Yes	8	PAD SPACE
utf8mb4_unicode_520_ci	utf8mb4	246		Yes	8	PAD SPACE
utf8mb4_unicode_ci	utf8mb4	224		Yes	8	PAD SPACE
utf8mb4_vietnamese_ci	utf8mb4	247		Yes	8	PAD SPACE
utf8mb4_vi_0900_ai_ci	utf8mb4	277		Yes	0	NO PAD
utf8mb4_vi_0900_as_cs	utf8mb4	300		Yes	0	NO PAD
utf8mb4_zh_0900_as_cs	utf8mb4	308		Yes	0	NO PAD
+----------------------------+---------+-----+---------+----------+---------+---------------+

For more information about those collations, see Section 12.10.1, “Unicode Character Sets”.

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has a default collation. For example, the default collations for utf8mb4
and latin1 are utf8mb4_0900_ai_ci and latin1_swedish_ci, respectively. The
INFORMATION_SCHEMA CHARACTER_SETS table and the SHOW CHARACTER SET statement
indicate the default collation for each character set. The INFORMATION_SCHEMA COLLATIONS table
and the SHOW COLLATION statement have a column that indicates for each collation whether it is
the default for its character set (Yes if so, empty if not).

• Collation names start with the name of the character set with which they are associated, generally
followed by one or more suffixes indicating other collation characteristics. For additional information
about naming conventions, see Section 12.3.1, “Collation Naming Conventions”.

When a character set has multiple collations, it might not be clear which collation is most suitable for
a given application. To avoid choosing an inappropriate collation, perform some comparisons with
representative data values to make sure that a given collation sorts values the way you expect.

12.2.1 Character Set Repertoire

The repertoire of a character set is the collection of characters in the set.

String expressions have a repertoire attribute, which can have two values:

• ASCII: The expression can contain only ASCII characters; that is, characters in the Unicode range U
+0000 to U+007F.

• UNICODE: The expression can contain characters in the Unicode range U+0000 to U+10FFFF.
This includes characters in the Basic Multilingual Plane (BMP) range (U+0000 to U+FFFF) and
supplementary characters outside the BMP range (U+10000 to U+10FFFF).

The ASCII range is a subset of UNICODE range, so a string with ASCII repertoire can be converted
safely without loss of information to the character set of any string with UNICODE repertoire. It can also
be converted safely to any character set that is a superset of the ascii character set. (All MySQL
character sets are supersets of ascii with the exception of swe7, which reuses some punctuation
characters for Swedish accented characters.)

The use of repertoire enables character set conversion in expressions for many cases where MySQL
would otherwise return an “illegal mix of collations” error when the rules for collation coercibility are
insufficient to resolve ambiguities. (For information about coercibility, see Section 12.8.4, “Collation
Coercibility in Expressions”.)

The following discussion provides examples of expressions and their repertoires, and describes how
the use of repertoire changes string expression evaluation:

2121

Character Set Repertoire

• The repertoire for a string constant depends on string content and may differ from the repertoire of
the string character set. Consider these statements:

SET NAMES utf8mb4; SELECT 'abc';
SELECT _utf8mb4'def';

Although the character set is utf8mb4 in each of the preceding cases, the strings do not actually
contain any characters outside the ASCII range, so their repertoire is ASCII rather than UNICODE.

• A column having the ascii character set has ASCII repertoire because of its character set. In the
following table, c1 has ASCII repertoire:

CREATE TABLE t1 (c1 CHAR(1) CHARACTER SET ascii);

The following example illustrates how repertoire enables a result to be determined in a case where
an error occurs without repertoire:

CREATE TABLE t1 (
 c1 CHAR(1) CHARACTER SET latin1,
 c2 CHAR(1) CHARACTER SET ascii
);
INSERT INTO t1 VALUES ('a','b');
SELECT CONCAT(c1,c2) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (ascii_general_ci,IMPLICIT) for operation 'concat'

Using repertoire, subset to superset (ascii to latin1) conversion can occur and a result is
returned:

+---------------+
| CONCAT(c1,c2) |
+---------------+
| ab |
+---------------+

• Functions with one string argument inherit the repertoire of their argument. The result of
UPPER(_utf8mb4'abc') has ASCII repertoire because its argument has ASCII repertoire.
(Despite the _utf8mb4 introducer, the string 'abc' contains no characters outside the ASCII
range.)

• For functions that return a string but do not have string arguments and use
character_set_connection as the result character set, the result repertoire is ASCII if
character_set_connection is ascii, and UNICODE otherwise:

FORMAT(numeric_column, 4);

Use of repertoire changes how MySQL evaluates the following example:

SET NAMES ascii;
CREATE TABLE t1 (a INT, b VARCHAR(10) CHARACTER SET latin1);
INSERT INTO t1 VALUES (1,'b');
SELECT CONCAT(FORMAT(a, 4), b) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (ascii_general_ci,COERCIBLE)
and (latin1_swedish_ci,IMPLICIT) for operation 'concat'

With repertoire, a result is returned:

+-------------------------+
| CONCAT(FORMAT(a, 4), b) |
+-------------------------+
| 1.0000b |

2122

UTF-8 for Metadata

+-------------------------+

• Functions with two or more string arguments use the “widest” argument repertoire for the result
repertoire, where UNICODE is wider than ASCII. Consider the following CONCAT() calls:

CONCAT(_ucs2 X'0041', _ucs2 X'0042')
CONCAT(_ucs2 X'0041', _ucs2 X'00C2')

For the first call, the repertoire is ASCII because both arguments are within the ASCII range. For the
second call, the repertoire is UNICODE because the second argument is outside the ASCII range.

• The repertoire for function return values is determined based on the repertoire of only those
arguments that affect the result's character set and collation.

IF(column1 < column2, 'smaller', 'greater')

The result repertoire is ASCII because the two string arguments (the second argument and the third
argument) both have ASCII repertoire. The first argument does not matter for the result repertoire,
even if the expression uses string values.

12.2.2 UTF-8 for Metadata

Metadata is “the data about the data.” Anything that describes the database—as opposed to being
the contents of the database—is metadata. Thus column names, database names, user names,
version names, and most of the string results from SHOW are metadata. This is also true of the contents
of tables in INFORMATION_SCHEMA because those tables by definition contain information about
database objects.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, neither the SHOW statements nor SELECT
statements for tables in INFORMATION_SCHEMA would work properly because different rows in the
same column of the results of these operations would be in different character sets.

• Metadata must include all characters in all languages. Otherwise, users would not be able to name
columns and tables using their own languages.

To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This
does not cause any disruption if you never use accented or non-Latin characters. But if you do, you
should be aware that metadata is in UTF-8.

The metadata requirements mean that the return values of the USER(), CURRENT_USER(),
SESSION_USER(), SYSTEM_USER(), DATABASE(), and VERSION() functions have the UTF-8
character set by default.

The server sets the character_set_system system variable to the name of the metadata character
set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+---------+
| Variable_name | Value |
+----------------------+---------+
| character_set_system | utf8mb3 |
+----------------------+---------+

Storage of metadata using Unicode does not mean that the server returns headers of columns and
the results of DESCRIBE functions in the character_set_system character set by default. When
you use SELECT column1 FROM t, the name column1 itself is returned from the server to the
client in the character set determined by the value of the character_set_results system variable,
which has a default value of utf8mb4. If you want the server to pass metadata results back in a
different character set, use the SET NAMES statement to force the server to perform character set
conversion. SET NAMES sets the character_set_results and other related system variables. (See
Section 12.4, “Connection Character Sets and Collations”.) Alternatively, a client program can perform

2123

Specifying Character Sets and Collations

the conversion after receiving the result from the server. It is more efficient for the client to perform the
conversion, but this option is not always available for all clients.

If character_set_results is set to NULL, no conversion is performed and the server returns
metadata using its original character set (the set indicated by character_set_system).

Error messages returned from the server to the client are converted to the client character set
automatically, as with metadata.

If you are using (for example) the USER() function for comparison or assignment within a single
statement, don't worry. MySQL performs some automatic conversion for you.

SELECT * FROM t1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF-8 before the
comparison.

INSERT INTO t1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the
assignment.

Although automatic conversion is not in the SQL standard, the standard does say that every character
set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle
that “what applies to a superset can apply to a subset,” we believe that a collation for Unicode can
apply for comparisons with non-Unicode strings. For more information about coercion of strings, see
Section 12.8.4, “Collation Coercibility in Expressions”.

12.3 Specifying Character Sets and Collations
There are default settings for character sets and collations at four levels: server, database, table,
and column. The description in the following sections may appear complex, but it has been found in
practice that multiple-level defaulting leads to natural and obvious results.

CHARACTER SET is used in clauses that specify a character set. CHARSET can be used as a synonym
for CHARACTER SET.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character set
different from the default, you need to indicate which one. For example, to use the latin1 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'latin1';

For more information about character set-related issues in client/server communication, see
Section 12.4, “Connection Character Sets and Collations”.

12.3.1 Collation Naming Conventions

MySQL collation names follow these conventions:

• A collation name starts with the name of the character set with which it is associated, generally
followed by one or more suffixes indicating other collation characteristics. For example,
utf8mb4_0900_ai_ci and latin1_swedish_ci are collations for the utf8mb4 and latin1
character sets, respectively. The binary character set has a single collation, also named binary,
with no suffixes.

• A language-specific collation includes a locale code or language name. For example,
utf8mb4_tr_0900_ai_ci and utf8mb4_hu_0900_ai_ci sort characters for the utf8mb4
character set using the rules of Turkish and Hungarian, respectively. utf8mb4_turkish_ci and
utf8mb4_hungarian_ci are similar but based on a less recent version of the Unicode Collation
Algorithm.

2124

Server Character Set and Collation

• Collation suffixes indicate whether a collation is case-sensitive, accent-sensitive, or kana-sensitive
(or some combination thereof), or binary. The following table shows the suffixes used to indicate
these characteristics.

Table 12.1 Collation Suffix Meanings

Suffix Meaning

_ai Accent-insensitive

_as Accent-sensitive

_ci Case-insensitive

_cs Case-sensitive

_ks Kana-sensitive

_bin Binary

For nonbinary collation names that do not specify accent sensitivity, it is determined by case
sensitivity. If a collation name does not contain _ai or _as, _ci in the name implies _ai and _cs
in the name implies _as. For example, latin1_general_ci is explicitly case-insensitive and
implicitly accent-insensitive, latin1_general_cs is explicitly case-sensitive and implicitly accent-
sensitive, and utf8mb4_0900_ai_ci is explicitly case-insensitive and accent-insensitive.

For Japanese collations, the _ks suffix indicates that a collation is kana-sensitive; that is, it
distinguishes Katakana characters from Hiragana characters. Japanese collations without the _ks
suffix are not kana-sensitive and treat Katakana and Hiragana characters equal for sorting.

For the binary collation of the binary character set, comparisons are based on numeric byte
values. For the _bin collation of a nonbinary character set, comparisons are based on numeric
character code values, which differ from byte values for multibyte characters. For information about
the differences between the binary collation of the binary character set and the _bin collations of
nonbinary character sets, see Section 12.8.5, “The binary Collation Compared to _bin Collations”.

• Collation names for Unicode character sets may include a version number to indicate the version of
the Unicode Collation Algorithm (UCA) on which the collation is based. UCA-based collations without
a version number in the name use the version-4.0.0 UCA weight keys. For example:

• utf8mb4_0900_ai_ci is based on UCA 9.0.0 weight keys (http://www.unicode.org/Public/
UCA/9.0.0/allkeys.txt).

• utf8mb4_unicode_520_ci is based on UCA 5.2.0 weight keys (http://www.unicode.org/Public/
UCA/5.2.0/allkeys.txt).

• utf8mb4_unicode_ci (with no version named) is based on UCA 4.0.0 weight keys (http://
www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt).

• For Unicode character sets, the xxx_general_mysql500_ci collations preserve the pre-5.1.24
ordering of the original xxx_general_ci collations and permit upgrades for tables created before
MySQL 5.1.24 (Bug #27877).

12.3.2 Server Character Set and Collation

MySQL Server has a server character set and a server collation. By default, these are utf8mb4 and
utf8mb4_0900_ai_ci, but they can be set explicitly at server startup on the command line or in an
option file and changed at runtime.

Initially, the server character set and collation depend on the options that you use when you start
mysqld. You can use --character-set-server for the character set. Along with it, you can
add --collation-server for the collation. If you don't specify a character set, that is the same
as saying --character-set-server=utf8mb4. If you specify only a character set (for example,
utf8mb4) but not a collation, that is the same as saying --character-set-server=utf8mb4

2125

http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt
http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

Database Character Set and Collation

--collation-server=utf8mb4_0900_ai_ci because utf8mb4_0900_ai_ci is the default
collation for utf8mb4. Therefore, the following three commands all have the same effect:

mysqld
mysqld --character-set-server=utf8mb4
mysqld --character-set-server=utf8mb4 \
 --collation-server=utf8mb4_0900_ai_ci

One way to change the settings is by recompiling. To change the default server character set and
collation when building from sources, use the DEFAULT_CHARSET and DEFAULT_COLLATION options
for CMake. For example:

cmake . -DDEFAULT_CHARSET=latin1

Or:

cmake . -DDEFAULT_CHARSET=latin1 \
 -DDEFAULT_COLLATION=latin1_german1_ci

Both mysqld and CMake verify that the character set/collation combination is valid. If not, each
program displays an error message and terminates.

The server character set and collation are used as default values if the database character set and
collation are not specified in CREATE DATABASE statements. They have no other purpose.

The current server character set and collation can be determined from the values of the
character_set_server and collation_server system variables. These variables can be
changed at runtime.

12.3.3 Database Character Set and Collation

Every database has a database character set and a database collation. The CREATE DATABASE and
ALTER DATABASE statements have optional clauses for specifying the database character set and
collation:

CREATE DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

The keyword SCHEMA can be used instead of DATABASE.

The CHARACTER SET and COLLATE clauses make it possible to create databases with different
character sets and collations on the same MySQL server.

Database options are stored in the data dictionary and can be examined by checking the Information
Schema SCHEMATA table.

Example:

CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified,
character set charset_name and collation collation_name are used.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated
with collation_name and collation collation_name are used.

2126

Table Character Set and Collation

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the server character set and server
collation are used.

The character set and collation for the default database can be determined from the values of the
character_set_database and collation_database system variables. The server sets these
variables whenever the default database changes. If there is no default database, the variables have
the same value as the corresponding server-level system variables, character_set_server and
collation_server.

To see the default character set and collation for a given database, use these statements:

USE db_name;
SELECT @@character_set_database, @@collation_database;

Alternatively, to display the values without changing the default database:

SELECT DEFAULT_CHARACTER_SET_NAME, DEFAULT_COLLATION_NAME
FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME = 'db_name';

The database character set and collation affect these aspects of server operation:

• For CREATE TABLE statements, the database character set and collation are used as default values
for table definitions if the table character set and collation are not specified. To override this, provide
explicit CHARACTER SET and COLLATE table options.

• For LOAD DATA statements that include no CHARACTER SET clause, the server uses the character
set indicated by the character_set_database system variable to interpret the information in the
file. To override this, provide an explicit CHARACTER SET clause.

• For stored routines (procedures and functions), the database character set and collation in effect at
routine creation time are used as the character set and collation of character data parameters for
which the declaration includes no CHARACTER SET or a COLLATE attribute. To override this, provide
CHARACTER SET and COLLATE explicitly.

12.3.4 Table Character Set and Collation

Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE
statements have optional clauses for specifying the table character set and collation:

CREATE TABLE tbl_name (column_list)
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]]

ALTER TABLE tbl_name
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]

Example:

CREATE TABLE t1 (...)
CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified,
character set charset_name and collation collation_name are used.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated
with collation_name and collation collation_name are used.

2127

Column Character Set and Collation

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the database character set and
collation are used.

The table character set and collation are used as default values for column definitions if the column
character set and collation are not specified in individual column definitions. The table character set
and collation are MySQL extensions; there are no such things in standard SQL.

12.3.5 Column Character Set and Collation

Every “character” column (that is, a column of type CHAR, VARCHAR, a TEXT type, or any synonym)
has a column character set and a column collation. Column definition syntax for CREATE TABLE and
ALTER TABLE has optional clauses for specifying the column character set and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)
 [CHARACTER SET charset_name]
 [COLLATE collation_name]

These clauses can also be used for ENUM and SET columns:

col_name {ENUM | SET} (val_list)
 [CHARACTER SET charset_name]
 [COLLATE collation_name]

Examples:

CREATE TABLE t1
(
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_german1_ci
);

ALTER TABLE t1 MODIFY
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_swedish_ci;

MySQL chooses the column character set and collation in the following manner:

• If both CHARACTER SET charset_name and COLLATE collation_name are specified,
character set charset_name and collation collation_name are used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set and collation are specified for the column, so they are used. The column has
character set utf8mb4 and collation utf8mb4_unicode_ci.

• If CHARACTER SET charset_name is specified without COLLATE, character set charset_name
and its default collation are used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8mb4
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set is specified for the column, but the collation is not. The column has character
set utf8mb4 and the default collation for utf8mb4, which is utf8mb4_0900_ai_ci. To see the
default collation for each character set, use the SHOW CHARACTER SET statement or query the
INFORMATION_SCHEMA CHARACTER_SETS table.

• If COLLATE collation_name is specified without CHARACTER SET, the character set associated
with collation_name and collation collation_name are used.

2128

Character String Literal Character Set and Collation

CREATE TABLE t1
(
 col1 CHAR(10) COLLATE utf8mb4_polish_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The collation is specified for the column, but the character set is not. The column has collation
utf8mb4_polish_ci and the character set is the one associated with the collation, which is
utf8mb4.

• Otherwise (neither CHARACTER SET nor COLLATE is specified), the table character set and collation
are used.

CREATE TABLE t1
(
 col1 CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_bin;

Neither the character set nor collation is specified for the column, so the table defaults are used. The
column has character set latin1 and collation latin1_bin.

The CHARACTER SET and COLLATE clauses are standard SQL.

If you use ALTER TABLE to convert a column from one character set to another, MySQL attempts to
map the data values, but if the character sets are incompatible, there may be data loss.

12.3.6 Character String Literal Character Set and Collation

Every character string literal has a character set and a collation.

For the simple statement SELECT 'string', the string has the connection default character set
and collation defined by the character_set_connection and collation_connection system
variables.

A character string literal may have an optional character set introducer and COLLATE clause, to
designate it as a string that uses a particular character set and collation:

[_charset_name]'string' [COLLATE collation_name]

The _charset_name expression is formally called an introducer. It tells the parser, “the string that
follows uses character set charset_name.” An introducer does not change the string to the introducer
character set like CONVERT() would do. It does not change the string value, although padding may
occur. The introducer is just a signal. See Section 12.3.8, “Character Set Introducers”.

Examples:

SELECT 'abc';
SELECT _latin1'abc';
SELECT _binary'abc';
SELECT _utf8mb4'abc' COLLATE utf8mb4_danish_ci;

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

MySQL determines the character set and collation of a character string literal in the following manner:

• If both _charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used. collation_name must be a permitted
collation for charset_name.

• If _charset_name is specified but COLLATE is not specified, character set charset_name and
its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

2129

Character String Literal Character Set and Collation

• If _charset_name is not specified but COLLATE collation_name is specified, the connection
default character set given by the character_set_connection system variable and collation
collation_name are used. collation_name must be a permitted collation for the connection
default character set.

• Otherwise (neither _charset_name nor COLLATE collation_name is specified), the
connection default character set and collation given by the character_set_connection and
collation_connection system variables are used.

Examples:

• A nonbinary string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

• A nonbinary string with utf8mb4 character set and its default collation (that is,
utf8mb4_0900_ai_ci):

SELECT _utf8mb4'Müller';

• A binary string with binary character set and its default collation (that is, binary):

SELECT _binary'Müller';

• A nonbinary string with the connection default character set and utf8mb4_0900_ai_ci collation
(fails if the connection character set is not utf8mb4):

SELECT 'Müller' COLLATE utf8mb4_0900_ai_ci;

• A string with the connection default character set and collation:

SELECT 'Müller';

An introducer indicates the character set for the following string, but does not change how the parser
performs escape processing within the string. Escapes are always interpreted by the parser according
to the character set given by character_set_connection.

The following examples show that escape processing occurs using character_set_connection
even in the presence of an introducer. The examples use SET NAMES (which changes
character_set_connection, as discussed in Section 12.4, “Connection Character Sets and
Collations”), and display the resulting strings using the HEX() function so that the exact string contents
can be seen.

Example 1:

mysql> SET NAMES latin1;
mysql> SELECT HEX('à\n'), HEX(_sjis'à\n');
+------------+-----------------+
| HEX('à\n') | HEX(_sjis'à\n') |
+------------+-----------------+
| E00A | E00A |
+------------+-----------------+

Here, à (hexadecimal value E0) is followed by \n, the escape sequence for newline. The escape
sequence is interpreted using the character_set_connection value of latin1 to produce a
literal newline (hexadecimal value 0A). This happens even for the second string. That is, the _sjis
introducer does not affect the parser's escape processing.

Example 2:

mysql> SET NAMES sjis;
mysql> SELECT HEX('à\n'), HEX(_latin1'à\n');
+------------+-------------------+
| HEX('à\n') | HEX(_latin1'à\n') |
+------------+-------------------+
| E05C6E | E05C6E |

2130

The National Character Set

+------------+-------------------+

Here, character_set_connection is sjis, a character set in which the sequence of à followed by
\ (hexadecimal values 05 and 5C) is a valid multibyte character. Hence, the first two bytes of the string
are interpreted as a single sjis character, and the \ is not interpreted as an escape character. The
following n (hexadecimal value 6E) is not interpreted as part of an escape sequence. This is true even
for the second string; the _latin1 introducer does not affect escape processing.

12.3.7 The National Character Set

Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should
use some predefined character set. MySQL uses utf8 as this predefined character set. For example,
these data type declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NVARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

MySQL 8.0 interprets the national character set as utf8mb3, which is now deprecated. Thus, using
NATIONAL CHARACTER or one of its synonyms to define the character set for a database, table, or
column raises a warning similar to this one:

NATIONAL/NCHAR/NVARCHAR implies the character set UTF8MB3, which will be
replaced by UTF8MB4 in a future release. Please consider using CHAR(x) CHARACTER
SET UTF8MB4 in order to be unambiguous.

12.3.8 Character Set Introducers

A character string literal, hexadecimal literal, or bit-value literal may have an optional character set
introducer and COLLATE clause, to designate it as a string that uses a particular character set and
collation:

[_charset_name] literal [COLLATE collation_name]

The _charset_name expression is formally called an introducer. It tells the parser, “the string that
follows uses character set charset_name.” An introducer does not change the string to the introducer
character set like CONVERT() would do. It does not change the string value, although padding may
occur. The introducer is just a signal.

For character string literals, space between the introducer and the string is permitted but optional.

For character set literals, an introducer indicates the character set for the following string, but does not
change how the parser performs escape processing within the string. Escapes are always interpreted
by the parser according to the character set given by character_set_connection. For additional
discussion and examples, see Section 12.3.6, “Character String Literal Character Set and Collation”.

Examples:

SELECT 'abc';

2131

Character Set Introducers

SELECT _latin1'abc';
SELECT _binary'abc';
SELECT _utf8mb4'abc' COLLATE utf8mb4_danish_ci;

SELECT _latin1 X'4D7953514C';
SELECT _utf8mb4 0x4D7953514C COLLATE utf8mb4_danish_ci;

SELECT _latin1 b'1000001';
SELECT _utf8mb4 0b1000001 COLLATE utf8mb4_danish_ci;

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

Character string literals can be designated as binary strings by using the _binary introducer.
Hexadecimal literals and bit-value literals are binary strings by default, so _binary is permitted, but
normally unnecessary. _binary may be useful to preserve a hexadecimal or bit literal as a binary
string in contexts for which the literal is otherwise treated as a number. For example, bit operations
permit numeric or binary string arguments in MySQL 8.0 and higher, but treat hexadecimal and
bit literals as numbers by default. To explicitly specify binary string context for such literals, use a
_binary introducer for at least one of the arguments:

mysql> SET @v1 = X'000D' | X'0BC0';
mysql> SET @v2 = _binary X'000D' | X'0BC0';
mysql> SELECT HEX(@v1), HEX(@v2);
+----------+----------+
| HEX(@v1) | HEX(@v2) |
+----------+----------+
| BCD | 0BCD |
+----------+----------+

The displayed result appears similar for both bit operations, but the result without _binary is a
BIGINT value, whereas the result with _binary is a binary string. Due to the difference in result types,
the displayed values differ: High-order 0 digits are not displayed for the numeric result.

MySQL determines the character set and collation of a character string literal, hexadecimal literal, or
bit-value literal in the following manner:

• If both _charset_name and COLLATE collation_name are specified, character set
charset_name and collation collation_name are used. collation_name must be a permitted
collation for charset_name.

• If _charset_name is specified but COLLATE is not specified, character set charset_name and
its default collation are used. To see the default collation for each character set, use the SHOW
CHARACTER SET statement or query the INFORMATION_SCHEMA CHARACTER_SETS table.

• If _charset_name is not specified but COLLATE collation_name is specified:

• For a character string literal, the connection default character set given by the
character_set_connection system variable and collation collation_name are used.
collation_name must be a permitted collation for the connection default character set.

• For a hexadecimal literal or bit-value literal, the only permitted collation is binary because these
types of literals are binary strings by default.

• Otherwise (neither _charset_name nor COLLATE collation_name is specified):

• For a character string literal, the connection default character set and collation given by the
character_set_connection and collation_connection system variables are used.

• For a hexadecimal literal or bit-value literal, the character set and collation are binary.

Examples:

• Nonbinary strings with latin1 character set and latin1_german1_ci collation:

2132

Examples of Character Set and Collation Assignment

SELECT _latin1'Müller' COLLATE latin1_german1_ci;
SELECT _latin1 X'0A0D' COLLATE latin1_german1_ci;
SELECT _latin1 b'0110' COLLATE latin1_german1_ci;

• Nonbinary strings with utf8mb4 character set and its default collation (that is,
utf8mb4_0900_ai_ci):

SELECT _utf8mb4'Müller';
SELECT _utf8mb4 X'0A0D';
SELECT _utf8mb4 b'0110';

• Binary strings with binary character set and its default collation (that is, binary):

SELECT _binary'Müller';
SELECT X'0A0D';
SELECT b'0110';

The hexadecimal literal and bit-value literal need no introducer because they are binary strings by
default.

• A nonbinary string with the connection default character set and utf8mb4_0900_ai_ci collation
(fails if the connection character set is not utf8mb4):

SELECT 'Müller' COLLATE utf8mb4_0900_ai_ci;

This construction (COLLATE only) does not work for hexadecimal literals or bit literals because their
character set is binary no matter the connection character set, and binary is not compatible with
the utf8mb4_0900_ai_ci collation. The only permitted COLLATE clause in the absence of an
introducer is COLLATE binary.

• A string with the connection default character set and collation:

SELECT 'Müller';

12.3.9 Examples of Character Set and Collation Assignment

The following examples show how MySQL determines default character set and collation values.

Example 1: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The
definition is explicit, so that is straightforward. Notice that there is no problem with storing a latin1
column in a latin2 table.

Example 2: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Although it
might seem natural, the default collation is not taken from the table level. Instead, because the
default collation for latin1 is always latin1_swedish_ci, column c1 has a collation of
latin1_swedish_ci (not latin1_danish_ci).

Example 3: Table and Column Definition

CREATE TABLE t1
(

2133

Compatibility with Other DBMSs

 c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL
checks the table level to determine the column character set and collation. Consequently, the character
set for column c1 is latin1 and its collation is latin1_danish_ci.

Example 4: Database, Table, and Column Definition

CREATE DATABASE d1
 DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_cs;
USE d1;
CREATE TABLE t1
(
 c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a
character set and a collation at the table level. In this circumstance, MySQL checks the database
level to determine the table settings, which thereafter become the column settings.) Consequently, the
character set for column c1 is latin2 and its collation is latin2_czech_cs.

12.3.10 Compatibility with Other DBMSs

For MaxDB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);

Both the UNICODE attribute and the ucs2 character set are deprecated in MySQL 8.0.28.

12.4 Connection Character Sets and Collations
A “connection” is what a client program makes when it connects to the server, to begin a session within
which it interacts with the server. The client sends SQL statements, such as queries, over the session
connection. The server sends responses, such as result sets or error messages, over the connection
back to the client.

• Connection Character Set and Collation System Variables

• Impermissible Client Character Sets

• Client Program Connection Character Set Configuration

• SQL Statements for Connection Character Set Configuration

• Connection Character Set Error Handling

Connection Character Set and Collation System Variables

Several character set and collation system variables relate to a client's interaction with the server.
Some of these have been mentioned in earlier sections:

• The character_set_server and collation_server system variables indicate the server
character set and collation. See Section 12.3.2, “Server Character Set and Collation”.

• The character_set_database and collation_database system variables indicate the
character set and collation of the default database. See Section 12.3.3, “Database Character Set and
Collation”.

Additional character set and collation system variables are involved in handling traffic for the
connection between a client and the server. Every client has session-specific connection-related
character set and collation system variables. These session system variable values are initialized at
connect time, but can be changed within the session.

2134

Impermissible Client Character Sets

Several questions about character set and collation handling for client connections can be answered in
terms of system variables:

• What character set are statements in when they leave the client?

The server takes the character_set_client system variable to be the character set in which
statements are sent by the client.

Note

Some character sets cannot be used as the client character set. See
Impermissible Client Character Sets.

• What character set should the server translate statements to after receiving them?

To determine this, the server uses the character_set_connection and
collation_connection system variables:

• The server converts statements sent by the client from character_set_client to
character_set_connection. Exception: For string literals that have an introducer such
as _utf8mb4 or _latin2, the introducer determines the character set. See Section 12.3.8,
“Character Set Introducers”.

• collation_connection is important for comparisons of literal strings. For comparisons of
strings with column values, collation_connection does not matter because columns have
their own collation, which has a higher collation precedence (see Section 12.8.4, “Collation
Coercibility in Expressions”).

• What character set should the server translate query results to before shipping them back to the
client?

The character_set_results system variable indicates the character set in which the server
returns query results to the client. This includes result data such as column values, result metadata
such as column names, and error messages.

To tell the server to perform no conversion of result sets or error messages, set
character_set_results to NULL or binary:

SET character_set_results = NULL;
SET character_set_results = binary;

For more information about character sets and error messages, see Section 12.6, “Error Message
Character Set”.

To see the values of the character set and collation system variables that apply to the current session,
use this statement:

SELECT * FROM performance_schema.session_variables
WHERE VARIABLE_NAME IN (
 'character_set_client', 'character_set_connection',
 'character_set_results', 'collation_connection'
) ORDER BY VARIABLE_NAME;

The following simpler statements also display the connection variables, but include other related
variables as well. They can be useful to see all character set and collation system variables:

SHOW SESSION VARIABLES LIKE 'character_set_%';
SHOW SESSION VARIABLES LIKE 'collation_%';

Clients can fine-tune the settings for these variables, or depend on the defaults (in which case, you can
skip the rest of this section). If you do not use the defaults, you must change the character settings for
each connection to the server.

Impermissible Client Character Sets

2135

Client Program Connection Character Set Configuration

The character_set_client system variable cannot be set to certain character sets:

ucs2
utf16
utf16le
utf32

Attempting to use any of those character sets as the client character set produces an error:

mysql> SET character_set_client = 'ucs2';
ERROR 1231 (42000): Variable 'character_set_client'
can't be set to the value of 'ucs2'

The same error occurs if any of those character sets are used in the following contexts, all of which
result in an attempt to set character_set_client to the named character set:

• The --default-character-set=charset_name command option used by MySQL client
programs such as mysql and mysqladmin.

• The SET NAMES 'charset_name' statement.

• The SET CHARACTER SET 'charset_name' statement.

Client Program Connection Character Set Configuration

When a client connects to the server, it indicates which character set it wants to use for communication
with the server. (Actually, the client indicates the default collation for that character set, from
which the server can determine the character set.) The server uses this information to set the
character_set_client, character_set_results, character_set_connection system
variables to the character set, and collation_connection to the character set default collation. In
effect, the server performs the equivalent of a SET NAMES operation.

If the server does not support the requested character set or collation, it falls back to using the
server character set and collation to configure the connection. For additional detail about this fallback
behavior, see Connection Character Set Error Handling.

The mysql, mysqladmin, mysqlcheck, mysqlimport, and mysqlshow client programs determine
the default character set to use as follows:

• In the absence of other information, each client uses the compiled-in default character set, usually
utf8mb4.

• Each client can autodetect which character set to use based on the operating system setting, such
as the value of the LANG or LC_ALL locale environment variable on Unix systems or the code page
setting on Windows systems. For systems on which the locale is available from the OS, the client
uses it to set the default character set rather than using the compiled-in default. For example, setting
LANG to ru_RU.KOI8-R causes the koi8r character set to be used. Thus, users can configure the
locale in their environment for use by MySQL clients.

The OS character set is mapped to the closest MySQL character set if there is no exact match. If
the client does not support the matching character set, it uses the compiled-in default. For example,
utf8 and utf-8 map to utf8mb4, and ucs2 is not supported as a connection character set, so it
maps to the compiled-in default.

C applications can use character set autodetection based on the OS setting by invoking
mysql_options() as follows before connecting to the server:

mysql_options(mysql,
 MYSQL_SET_CHARSET_NAME,
 MYSQL_AUTODETECT_CHARSET_NAME);

• Each client supports a --default-character-set option, which enables users to specify the
character set explicitly to override whatever default the client otherwise determines.

2136

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

SQL Statements for Connection Character Set Configuration

Note

Some character sets cannot be used as the client character set. Attempting
to use them with --default-character-set produces an error. See
Impermissible Client Character Sets.

With the mysql client, to use a character set different from the default, you could explicitly execute a
SET NAMES statement every time you connect to the server (see Client Program Connection Character
Set Configuration). To accomplish the same result more easily, specify the character set in your option
file. For example, the following option file setting changes the three connection-related character set
system variables set to koi8r each time you invoke mysql:

[mysql]
default-character-set=koi8r

If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is
preferable to use the charset command rather than SET NAMES. For example:

mysql> charset koi8r
Charset changed

The charset command issues a SET NAMES statement, and also changes the default character set
that mysql uses when it reconnects after the connection has dropped.

When configuration client programs, you must also consider the environment within which they
execute. See Section 12.5, “Configuring Application Character Set and Collation”.

SQL Statements for Connection Character Set Configuration

After a connection has been established, clients can change the character set and collation system
variables for the current session. These variables can be changed individually using SET statements,
but two more convenient statements affect the connection-related character set system variables as a
group:

• SET NAMES 'charset_name' [COLLATE 'collation_name']

SET NAMES indicates what character set the client uses to send SQL statements to the server. Thus,
SET NAMES 'cp1251' tells the server, “future incoming messages from this client are in character
set cp1251.” It also specifies the character set that the server should use for sending results back to
the client. (For example, it indicates what character set to use for column values if you use a SELECT
statement that produces a result set.)

A SET NAMES 'charset_name' statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET character_set_connection = charset_name;

Setting character_set_connection to charset_name also implicitly sets
collation_connection to the default collation for charset_name. It is unnecessary to set that
collation explicitly. To specify a particular collation to use for collation_connection, add a
COLLATE clause:

SET NAMES 'charset_name' COLLATE 'collation_name'

• SET CHARACTER SET 'charset_name'

SET CHARACTER SET is similar to SET NAMES but sets character_set_connection and
collation_connection to character_set_database and collation_database (which, as
mentioned previously, indicate the character set and collation of the default database).

A SET CHARACTER SET charset_name statement is equivalent to these three statements:

2137

Connection Character Set Error Handling

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET collation_connection = @@collation_database;

Setting collation_connection also implicitly sets character_set_connection
to the character set associated with the collation (equivalent to executing SET
character_set_connection = @@character_set_database). It is unnecessary to set
character_set_connection explicitly.

Note

Some character sets cannot be used as the client character set. Attempting to
use them with SET NAMES or SET CHARACTER SET produces an error. See
Impermissible Client Character Sets.

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not say
SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the server sends back
all the values for column1 using the character set that the client specified when it connected. On the
other hand, if you say SET NAMES 'latin1' or SET CHARACTER SET 'latin1' before issuing
the SELECT statement, the server converts the latin2 values to latin1 just before sending results
back. Conversion may be lossy for characters that are not in both character sets.

Connection Character Set Error Handling

Attempts to use an inappropriate connection character set or collation can produce an error, or cause
the server to fall back to its default character set and collation for a given connection. This section
describes problems that can occur when configuring the connection character set. These problems
can occur when establishing a connection or when changing the character set within an established
connection.

• Connect-Time Error Handling

• Runtime Error Handling

Connect-Time Error Handling

Some character sets cannot be used as the client character set; see Impermissible Client Character
Sets. If you specify a character set that is valid but not permitted as a client character set, the server
returns an error:

$> mysql --default-character-set=ucs2
ERROR 1231 (42000): Variable 'character_set_client' can't be set to
the value of 'ucs2'

If you specify a character set that the client does not recognize, it produces an error:

$> mysql --default-character-set=bogus
mysql: Character set 'bogus' is not a compiled character set and is
not specified in the '/usr/local/mysql/share/charsets/Index.xml' file
ERROR 2019 (HY000): Can't initialize character set bogus
(path: /usr/local/mysql/share/charsets/)

If you specify a character set that the client recognizes but the server does not, the server falls back
to its default character set and collation. Suppose that the server is configured to use latin1 and
latin1_swedish_ci as its defaults, and that it does not recognize gb18030 as a valid character set.
A client that specifies --default-character-set=gb18030 is able to connect to the server, but
the resulting character set is not what the client wants:

mysql> SHOW SESSION VARIABLES LIKE 'character_set_%';
+--------------------------+--------+
| Variable_name | Value |
+--------------------------+--------+
| character_set_client | latin1 |
| character_set_connection | latin1 |

2138

Connection Character Set Error Handling

...
| character_set_results | latin1 |
...
+--------------------------+--------+
mysql> SHOW SESSION VARIABLES LIKE 'collation_connection';
+----------------------+-------------------+
| Variable_name | Value |
+----------------------+-------------------+
| collation_connection | latin1_swedish_ci |
+----------------------+-------------------+

You can see that the connection system variables have been set to reflect a character set and collation
of latin1 and latin1_swedish_ci. This occurs because the server cannot satisfy the client
character set request and falls back to its defaults.

In this case, the client cannot use the character set that it wants because the server does not support
it. The client must either be willing to use a different character set, or connect to a different server that
supports the desired character set.

The same problem occurs in a more subtle context: When the client tells the server to use a character
set that the server recognizes, but the default collation for that character set on the client side is not
known on the server side. This occurs, for example, when a MySQL 8.0 client wants to connect to
a MySQL 5.7 server using utf8mb4 as the client character set. A client that specifies --default-
character-set=utf8mb4 is able to connect to the server. However, as in the previous example, the
server falls back to its default character set and collation, not what the client requested:

mysql> SHOW SESSION VARIABLES LIKE 'character_set_%';
+--------------------------+--------+
| Variable_name | Value |
+--------------------------+--------+
| character_set_client | latin1 |
| character_set_connection | latin1 |
...
| character_set_results | latin1 |
...
+--------------------------+--------+
mysql> SHOW SESSION VARIABLES LIKE 'collation_connection';
+----------------------+-------------------+
| Variable_name | Value |
+----------------------+-------------------+
| collation_connection | latin1_swedish_ci |
+----------------------+-------------------+

Why does this occur? After all, utf8mb4 is known to the 8.0 client and the 5.7 server, so both of them
recognize it. To understand this behavior, it is necessary to understand that when the client tells the
server which character set it wants to use, it really tells the server the default collation for that character
set. Therefore, the aforementioned behavior occurs due to a combination of factors:

• The default collation for utf8mb4 differs between MySQL 5.7 and 8.0 (utf8mb4_general_ci for
5.7, utf8mb4_0900_ai_ci for 8.0).

• When the 8.0 client requests a character set of utf8mb4, what it sends to the server is the default
8.0 utf8mb4 collation; that is, the utf8mb4_0900_ai_ci.

• utf8mb4_0900_ai_ci is implemented only as of MySQL 8.0, so the 5.7 server does not recognize
it.

• Because the 5.7 server does not recognize utf8mb4_0900_ai_ci, it cannot satisfy the client
character set request, and falls back to its default character set and collation (latin1 and
latin1_swedish_ci).

In this case, the client can still use utf8mb4 by issuing a SET NAMES 'utf8mb4' statement
after connecting. The resulting collation is the 5.7 default utf8mb4 collation; that is,
utf8mb4_general_ci. If the client additionally wants a collation of utf8mb4_0900_ai_ci, it cannot
achieve that because the server does not recognize that collation. The client must either be willing to
use a different utf8mb4 collation, or connect to a server from MySQL 8.0 or higher.

2139

Configuring Application Character Set and Collation

Runtime Error Handling

Within an established connection, the client can request a change of connection character set and
collation with SET NAMES or SET CHARACTER SET.

Some character sets cannot be used as the client character set; see Impermissible Client Character
Sets. If you specify a character set that is valid but not permitted as a client character set, the server
returns an error:

mysql> SET NAMES 'ucs2';
ERROR 1231 (42000): Variable 'character_set_client' can't be set to
the value of 'ucs2'

If the server does not recognize the character set (or the collation), it produces an error:

mysql> SET NAMES 'bogus';
ERROR 1115 (42000): Unknown character set: 'bogus'

mysql> SET NAMES 'utf8mb4' COLLATE 'bogus';
ERROR 1273 (HY000): Unknown collation: 'bogus'

Tip

A client that wants to verify whether its requested character set was honored by
the server can execute the following statement after connecting and checking
that the result is the expected character set:

SELECT @@character_set_client;

12.5 Configuring Application Character Set and Collation

For applications that store data using the default MySQL character set and collation (utf8mb4,
utf8mb4_0900_ai_ci), no special configuration should be needed. If applications require data
storage using a different character set or collation, you can configure character set information several
ways:

• Specify character settings per database. For example, applications that use one database might use
the default of utf8mb4, whereas applications that use another database might use sjis.

• Specify character settings at server startup. This causes the server to use the given settings for all
applications that do not make other arrangements.

• Specify character settings at configuration time, if you build MySQL from source. This causes the
server to use the given settings as the defaults for all applications, without having to specify them at
server startup.

When different applications require different character settings, the per-database technique provides
a good deal of flexibility. If most or all applications use the same character set, specifying character
settings at server startup or configuration time may be most convenient.

For the per-database or server-startup techniques, the settings control the character set for
data storage. Applications must also tell the server which character set to use for client/server
communications, as described in the following instructions.

The examples shown here assume use of the latin1 character set and latin1_swedish_ci
collation in particular contexts as an alternative to the defaults of utf8mb4 and
utf8mb4_0900_ai_ci.

• Specify character settings per database. To create a database such that its tables use a given
default character set and collation for data storage, use a CREATE DATABASE statement like this:

CREATE DATABASE mydb

2140

Configuring Application Character Set and Collation

 CHARACTER SET latin1
 COLLATE latin1_swedish_ci;

Tables created in the database use latin1 and latin1_swedish_ci by default for any character
columns.

Applications that use the database should also configure their connection to the server each time
they connect. This can be done by executing a SET NAMES 'latin1' statement after connecting.
The statement can be used regardless of connection method (the mysql client, PHP scripts, and so
forth).

In some cases, it may be possible to configure the connection to use the desired character set some
other way. For example, to connect using mysql, you can specify the --default-character-
set=latin1 command-line option to achieve the same effect as SET NAMES 'latin1'.

For more information about configuring client connections, see Section 12.4, “Connection Character
Sets and Collations”.

Note

If you use ALTER DATABASE to change the database default character set
or collation, existing stored routines in the database that use those defaults
must be dropped and recreated so that they use the new defaults. (In a stored
routine, variables with character data types use the database defaults if the
character set or collation are not specified explicitly. See Section 15.1.17,
“CREATE PROCEDURE and CREATE FUNCTION Statements”.)

• Specify character settings at server startup. To select a character set and collation at server
startup, use the --character-set-server and --collation-server options. For example, to
specify the options in an option file, include these lines:

[mysqld]
character-set-server=latin1
collation-server=latin1_swedish_ci

These settings apply server-wide and apply as the defaults for databases created by any application,
and for tables created in those databases.

It is still necessary for applications to configure their connection using SET NAMES or equivalent
after they connect, as described previously. You might be tempted to start the server with the
--init_connect="SET NAMES 'latin1'" option to cause SET NAMES to be executed
automatically for each client that connects. However, this may yield inconsistent results because the
init_connect value is not executed for users who have the CONNECTION_ADMIN privilege (or the
deprecated SUPER privilege).

• Specify character settings at MySQL configuration time. To select a character set and
collation if you configure and build MySQL from source, use the DEFAULT_CHARSET and
DEFAULT_COLLATION CMake options:

cmake . -DDEFAULT_CHARSET=latin1 \
 -DDEFAULT_COLLATION=latin1_swedish_ci

The resulting server uses latin1 and latin1_swedish_ci as the default for databases and
tables and for client connections. It is unnecessary to use --character-set-server and
--collation-server to specify those defaults at server startup. It is also unnecessary for
applications to configure their connection using SET NAMES or equivalent after they connect to the
server.

Regardless of how you configure the MySQL character set for application use, you must also consider
the environment within which those applications execute. For example, if you intend to send statements
using UTF-8 text taken from a file that you create in an editor, you should edit the file with the locale
of your environment set to UTF-8 so that the file encoding is correct and so that the operating system

2141

Error Message Character Set

handles it correctly. If you use the mysql client from within a terminal window, the window must be
configured to use UTF-8 or characters may not display properly. For a script that executes in a Web
environment, the script must handle character encoding properly for its interaction with the MySQL
server, and it must generate pages that correctly indicate the encoding so that browsers know how to
display the content of the pages. For example, you can include this <meta> tag within your <head>
element:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

12.6 Error Message Character Set

This section describes how the MySQL server uses character sets for constructing error messages. For
information about the language of error messages (rather than the character set), see Section 12.12,
“Setting the Error Message Language”. For general information about configuring error logging, see
Section 7.4.2, “The Error Log”.

• Character Set for Error Message Construction

• Character Set for Error Message Disposition

Character Set for Error Message Construction

The server constructs error messages as follows:

• The message template uses UTF-8 (utf8mb3).

• Parameters in the message template are replaced with values that apply to a specific error
occurrence:

• Identifiers such as table or column names use UTF-8 internally so they are copied as is.

• Character (nonbinary) string values are converted from their character set to UTF-8.

• Binary string values are copied as is for bytes in the range 0x20 to 0x7E, and using \x
hexadecimal encoding for bytes outside that range. For example, if a duplicate-key error occurs
for an attempt to insert 0x41CF9F into a VARBINARY unique column, the resulting error message
uses UTF-8 with some bytes hexadecimal encoded:

Duplicate entry 'A\xCF\x9F' for key 1

Character Set for Error Message Disposition

An error message, once constructed, can be written by the server to the error log or sent to clients:

• If the server writes the error message to the error log, it writes it in UTF-8, as constructed, without
conversion to another character set.

• If the server sends the error message to a client program, the server converts it from
UTF-8 to the character set specified by the character_set_results system variable. If
character_set_results has a value of NULL or binary, no conversion occurs. No conversion
occurs if the variable value is utf8mb3 or utf8mb4, either, because those character sets have a
repertoire that includes all UTF-8 characters used in message construction.

If characters cannot be represented in character_set_results, some encoding may occur
during the conversion. The encoding uses Unicode code point values:

• Characters in the Basic Multilingual Plane (BMP) range (0x0000 to 0xFFFF) are written using
\nnnn notation.

• Characters outside the BMP range (0x10000 to 0x10FFFF) are written using \+nnnnnn notation.

2142

Column Character Set Conversion

Clients can set character_set_results to control the character set in which they receive error
messages. The variable can be set directly, or indirectly by means such as SET NAMES. For more
information about character_set_results, see Section 12.4, “Connection Character Sets and
Collations”.

12.7 Column Character Set Conversion

To convert a binary or nonbinary string column to use a particular character set, use ALTER TABLE.
For successful conversion to occur, one of the following conditions must apply:

• If the column has a binary data type (BINARY, VARBINARY, BLOB), all the values that it contains
must be encoded using a single character set (the character set you're converting the column to). If
you use a binary column to store information in multiple character sets, MySQL has no way to know
which values use which character set and cannot convert the data properly.

• If the column has a nonbinary data type (CHAR, VARCHAR, TEXT), its contents should be encoded
in the column character set, not some other character set. If the contents are encoded in a different
character set, you can convert the column to use a binary data type first, and then to a nonbinary
column with the desired character set.

Suppose that a table t has a binary column named col1 defined as VARBINARY(50). Assuming that
the information in the column is encoded using a single character set, you can convert it to a nonbinary
column that has that character set. For example, if col1 contains binary data representing characters
in the greek character set, you can convert it as follows:

ALTER TABLE t MODIFY col1 VARCHAR(50) CHARACTER SET greek;

If your original column has a type of BINARY(50), you could convert it to CHAR(50), but the resulting
values are padded with 0x00 bytes at the end, which may be undesirable. To remove these bytes, use
the TRIM() function:

UPDATE t SET col1 = TRIM(TRAILING 0x00 FROM col1);

Suppose that table t has a nonbinary column named col1 defined as CHAR(50) CHARACTER SET
latin1 but you want to convert it to use utf8mb4 so that you can store values from many languages.
The following statement accomplishes this:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET utf8mb4;

Conversion may be lossy if the column contains characters that are not in both character sets.

A special case occurs if you have old tables from before MySQL 4.1 where a nonbinary column
contains values that actually are encoded in a character set different from the server's default character
set. For example, an application might have stored sjis values in a column, even though MySQL's
default character set was different. It is possible to convert the column to use the proper character set
but an additional step is required. Suppose that the server's default character set was latin1 and
col1 is defined as CHAR(50) but its contents are sjis values. The first step is to convert the column
to a binary data type, which removes the existing character set information without performing any
character conversion:

ALTER TABLE t MODIFY col1 BLOB;

The next step is to convert the column to a nonbinary data type with the proper character set:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET sjis;

This procedure requires that the table not have been modified already with statements such as INSERT
or UPDATE after an upgrade to MySQL 4.1 or higher. In that case, MySQL would store new values
in the column using latin1, and the column would contain a mix of sjis and latin1 values and
cannot be converted properly.

2143

Collation Issues

If you specified attributes when creating a column initially, you should also specify them when altering
the table with ALTER TABLE. For example, if you specified NOT NULL and an explicit DEFAULT
value, you should also provide them in the ALTER TABLE statement. Otherwise, the resulting column
definition does not include those attributes.

To convert all character columns in a table, the ALTER TABLE ... CONVERT TO CHARACTER SET
charset statement may be useful. See Section 15.1.9, “ALTER TABLE Statement”.

Note

ALTER TABLE statements which make changes in table or column character
sets or collations must be performed using ALGORITHM=COPY. For more
information, see Section 17.12.1, “Online DDL Operations”.

12.8 Collation Issues

The following sections discuss various aspects of character set collations.

12.8.1 Using COLLATE in SQL Statements

With the COLLATE clause, you can override whatever the default collation is for a comparison.
COLLATE may be used in various parts of SQL statements. Here are some examples:

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

• With WHERE:

SELECT *
FROM t1
WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;

SELECT *
FROM t1
WHERE k LIKE _latin1 'Müller' COLLATE latin1_german2_ci;

• With HAVING:

SELECT k
FROM t1

2144

COLLATE Clause Precedence

GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;

12.8.2 COLLATE Clause Precedence

The COLLATE clause has high precedence (higher than ||), so the following two expressions are
equivalent:

x || y COLLATE z
x || (y COLLATE z)

12.8.3 Character Set and Collation Compatibility

Each character set has one or more collations, but each collation is associated with one and only one
character set. Therefore, the following statement causes an error message because the latin2_bin
collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

12.8.4 Collation Coercibility in Expressions

In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison
operation. For example, in the following cases, it should be clear that the collation is the collation of
column x:

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, with multiple operands, there can be ambiguity. For example, this statement performs a
comparison between the column x and the string literal 'Y':

SELECT x FROM T WHERE x = 'Y';

If x and 'Y' have the same collation, there is no ambiguity about the collation to use for the
comparison. But if they have different collations, should the comparison use the collation of x, or of
'Y'? Both x and 'Y' have collations, so which collation takes precedence?

A mix of collations may also occur in contexts other than comparison. For example, a multiple-
argument concatenation operation such as CONCAT(x,'Y') combines its arguments to produce a
single string. What collation should the result have?

To resolve questions like these, MySQL checks whether the collation of one item can be coerced to the
collation of the other. MySQL assigns coercibility values as follows:

• An explicit COLLATE clause has a coercibility of 0 (not coercible at all).

• The concatenation of two strings with different collations has a coercibility of 1.

• The collation of a column or a stored routine parameter or local variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as USER() or VERSION()) has a
coercibility of 3.

• The collation of a literal has a coercibility of 4.

• The collation of a numeric or temporal value has a coercibility of 5.

• NULL or an expression that is derived from NULL has a coercibility of 6.

2145

The binary Collation Compared to _bin Collations

MySQL uses coercibility values with the following rules to resolve ambiguities:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then:

• If both sides are Unicode, or both sides are not Unicode, it is an error.

• If one of the sides has a Unicode character set, and another side has a non-Unicode character set,
the side with Unicode character set wins, and automatic character set conversion is applied to the
non-Unicode side. For example, the following statement does not return an error:

SELECT CONCAT(utf8mb4_column, latin1_column) FROM t1;

It returns a result that has a character set of utf8mb4 and the same collation as
utf8mb4_column. Values of latin1_column are automatically converted to utf8mb4 before
concatenating.

• For an operation with operands from the same character set but that mix a _bin collation and
a _ci or _cs collation, the _bin collation is used. This is similar to how operations that mix
nonbinary and binary strings evaluate the operands as binary strings, applied to collations rather
than data types.

Although automatic conversion is not in the SQL standard, the standard does say that every character
set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle
that “what applies to a superset can apply to a subset,” we believe that a collation for Unicode can
apply for comparisons with non-Unicode strings. More generally, MySQL uses the concept of character
set repertoire, which can sometimes be used to determine subset relationships among character
sets and enable conversion of operands in operations that would otherwise produce an error. See
Section 12.2.1, “Character Set Repertoire”.

The following table illustrates some applications of the preceding rules.

Comparison Collation Used

column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A' COLLATE x

column1 COLLATE x = 'A' COLLATE y Error

To determine the coercibility of a string expression, use the COERCIBILITY() function (see
Section 14.15, “Information Functions”):

mysql> SELECT COERCIBILITY(_utf8mb4'A' COLLATE utf8mb4_bin);
 -> 0
mysql> SELECT COERCIBILITY(VERSION());
 -> 3
mysql> SELECT COERCIBILITY('A');
 -> 4
mysql> SELECT COERCIBILITY(1000);
 -> 5
mysql> SELECT COERCIBILITY(NULL);
 -> 6

For implicit conversion of a numeric or temporal value to a string, such as occurs for the argument 1 in
the expression CONCAT(1, 'abc'), the result is a character (nonbinary) string that has a character
set and collation determined by the character_set_connection and collation_connection
system variables. See Section 14.3, “Type Conversion in Expression Evaluation”.

12.8.5 The binary Collation Compared to _bin Collations

This section describes how the binary collation for binary strings compares to _bin collations for
nonbinary strings.

2146

The binary Collation Compared to _bin Collations

Binary strings (as stored using the BINARY, VARBINARY, and BLOB data types) have a character set
and collation named binary. Binary strings are sequences of bytes and the numeric values of those
bytes determine comparison and sort order. See Section 12.10.8, “The Binary Character Set”.

Nonbinary strings (as stored using the CHAR, VARCHAR, and TEXT data types) have a character set
and collation other than binary. A given nonbinary character set can have several collations, each of
which defines a particular comparison and sort order for the characters in the set. For most character
sets, one of these is the binary collation, indicated by a _bin suffix in the collation name. For example,
the binary collations for latin1 and big5 are named latin1_bin and big5_bin, respectively.
utf8mb4 is an exception that has two binary collations, utf8mb4_bin and utf8mb4_0900_bin; see
Section 12.10.1, “Unicode Character Sets”.

The binary collation differs from _bin collations in several respects, discussed in the following
sections:

• The Unit for Comparison and Sorting

• Character Set Conversion

• Lettercase Conversion

• Trailing Space Handling in Comparisons

• Trailing Space Handling for Inserts and Retrievals

The Unit for Comparison and Sorting

Binary strings are sequences of bytes. For the binary collation, comparison and sorting are based
on numeric byte values. Nonbinary strings are sequences of characters, which might be multibyte.
Collations for nonbinary strings define an ordering of the character values for comparison and sorting.
For _bin collations, this ordering is based on numeric character code values, which is similar to
ordering for binary strings except that character code values might be multibyte.

Character Set Conversion

A nonbinary string has a character set and is automatically converted to another character set in many
cases, even when the string has a _bin collation:

• When assigning column values to another column that has a different character set:

UPDATE t1 SET utf8mb4_bin_column=latin1_column;
INSERT INTO t1 (latin1_column) SELECT utf8mb4_bin_column FROM t2;

• When assigning column values for INSERT or UPDATE using a string literal:

SET NAMES latin1;
INSERT INTO t1 (utf8mb4_bin_column) VALUES ('string-in-latin1');

• When sending results from the server to a client:

SET NAMES latin1;
SELECT utf8mb4_bin_column FROM t2;

For binary string columns, no conversion occurs. For cases similar to those preceding, the string value
is copied byte-wise.

Lettercase Conversion

Collations for nonbinary character sets provide information about lettercase of characters, so
characters in a nonbinary string can be converted from one lettercase to another, even for _bin
collations that ignore lettercase for ordering:

mysql> SET NAMES utf8mb4 COLLATE utf8mb4_bin;

2147

The binary Collation Compared to _bin Collations

mysql> SELECT LOWER('aA'), UPPER('zZ');
+-------------+-------------+
| LOWER('aA') | UPPER('zZ') |
+-------------+-------------+
| aa | ZZ |
+-------------+-------------+

The concept of lettercase does not apply to bytes in a binary string. To perform lettercase conversion,
the string must first be converted to a nonbinary string using a character set appropriate for the data
stored in the string:

mysql> SET NAMES binary;
mysql> SELECT LOWER('aA'), LOWER(CONVERT('aA' USING utf8mb4));
+-------------+------------------------------------+
| LOWER('aA') | LOWER(CONVERT('aA' USING utf8mb4)) |
+-------------+------------------------------------+
| aA | aa |
+-------------+------------------------------------+

Trailing Space Handling in Comparisons

MySQL collations have a pad attribute, which has a value of PAD SPACE or NO PAD:

• Most MySQL collations have a pad attribute of PAD SPACE.

• The Unicode collations based on UCA 9.0.0 and higher have a pad attribute of NO PAD; see
Section 12.10.1, “Unicode Character Sets”.

For nonbinary strings (CHAR, VARCHAR, and TEXT values), the string collation pad attribute determines
treatment in comparisons of trailing spaces at the end of strings:

• For PAD SPACE collations, trailing spaces are insignificant in comparisons; strings are compared
without regard to trailing spaces.

• NO PAD collations treat trailing spaces as significant in comparisons, like any other character.

The differing behaviors can be demonstrated using the two utf8mb4 binary collations, one of
which is PAD SPACE, the other of which is NO PAD. The example also shows how to use the
INFORMATION_SCHEMA COLLATIONS table to determine the pad attribute for collations.

mysql> SELECT COLLATION_NAME, PAD_ATTRIBUTE
 FROM INFORMATION_SCHEMA.COLLATIONS
 WHERE COLLATION_NAME LIKE 'utf8mb4%bin';
+------------------+---------------+
| COLLATION_NAME | PAD_ATTRIBUTE |
+------------------+---------------+
| utf8mb4_bin | PAD SPACE |
| utf8mb4_0900_bin | NO PAD |
+------------------+---------------+
mysql> SET NAMES utf8mb4 COLLATE utf8mb4_bin;
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 1 |
+------------+
mysql> SET NAMES utf8mb4 COLLATE utf8mb4_0900_bin;
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 0 |
+------------+

Note

“Comparison” in this context does not include the LIKE pattern-matching
operator, for which trailing spaces are significant, regardless of collation.

2148

Examples of the Effect of Collation

For binary strings (BINARY, VARBINARY, and BLOB values), all bytes are significant in comparisons,
including trailing spaces:

mysql> SET NAMES binary;
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 0 |
+------------+

Trailing Space Handling for Inserts and Retrievals

CHAR(N) columns store nonbinary strings N characters long. For inserts, values shorter than N
characters are extended with spaces. For retrievals, trailing spaces are removed.

BINARY(N) columns store binary strings N bytes long. For inserts, values shorter than N bytes are
extended with 0x00 bytes. For retrievals, nothing is removed; a value of the declared length is always
returned.

mysql> CREATE TABLE t1 (
 a CHAR(10) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin,
 b BINARY(10)
);
mysql> INSERT INTO t1 VALUES ('x','x');
mysql> INSERT INTO t1 VALUES ('x ','x ');
mysql> SELECT a, b, HEX(a), HEX(b) FROM t1;
+------+------------------------+--------+----------------------+
| a | b | HEX(a) | HEX(b) |
+------+------------------------+--------+----------------------+
| x | 0x78000000000000000000 | 78 | 78000000000000000000 |
| x | 0x78200000000000000000 | 78 | 78200000000000000000 |
+------+------------------------+--------+----------------------+

12.8.6 Examples of the Effect of Collation

Example 1: Sorting German Umlauts

Suppose that column X in table T has these latin1 column values:

Muffler
Müller
MX Systems
MySQL

Suppose also that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The following table shows the resulting order of the values if we use ORDER BY with different collations.

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The character that causes the different sort orders in this example is ü (German “U-umlaut”).

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which says
that U-umlaut sorts with Y.

• The second column shows the result of the SELECT using the German DIN-1 rule, which says that U-
umlaut sorts with U.

2149

Using Collation in INFORMATION_SCHEMA Searches

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-
umlaut sorts with UE.

Example 2: Searching for German Umlauts

Suppose that you have three tables that differ only by the character set and collation used:

mysql> SET NAMES utf8mb4;
mysql> CREATE TABLE german1 (
 c CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_german1_ci;
mysql> CREATE TABLE german2 (
 c CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_german2_ci;
mysql> CREATE TABLE germanutf8 (
 c CHAR(10)
) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

Each table contains two records:

mysql> INSERT INTO german1 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO german2 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO germanutf8 VALUES ('Bar'), ('Bär');

Two of the above collations have an A = Ä equality, and one has no such equality
(latin1_german2_ci). For that reason, comparisons yield the results shown here:

mysql> SELECT * FROM german1 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+
mysql> SELECT * FROM german2 WHERE c = 'Bär';
+------+
| c |
+------+
| Bär |
+------+
mysql> SELECT * FROM germanutf8 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+

This is not a bug but rather a consequence of the sorting properties of latin1_german1_ci and
utf8mb4_unicode_ci (the sorting shown is done according to the German DIN 5007 standard).

12.8.7 Using Collation in INFORMATION_SCHEMA Searches

String columns in INFORMATION_SCHEMA tables have a collation of utf8mb3_general_ci, which is
case-insensitive. However, for values that correspond to objects that are represented in the file system,
such as databases and tables, searches in INFORMATION_SCHEMA string columns can be case-
sensitive or case-insensitive, depending on the characteristics of the underlying file system and the
lower_case_table_names system variable setting. For example, searches may be case-sensitive if
the file system is case-sensitive. This section describes this behavior and how to modify it if necessary.

Suppose that a query searches the SCHEMATA.SCHEMA_NAME column for the test database. On
Linux, file systems are case-sensitive, so comparisons of SCHEMATA.SCHEMA_NAME with 'test'
match, but comparisons with 'TEST' do not:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'test';

2150

Using Collation in INFORMATION_SCHEMA Searches

+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'TEST';
Empty set (0.00 sec)

These results occur with the lower_case_table_names system variable set to 0. A
lower_case_table_names setting of 1 or 2 causes the second query to return the same (nonempty)
result as the first query.

Note

It is prohibited to start the server with a lower_case_table_names setting
that is different from the setting used when the server was initialized.

On Windows or macOS, file systems are not case-sensitive, so comparisons match both 'test' and
'TEST':

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| TEST |
+-------------+

The value of lower_case_table_names makes no difference in this context.

The preceding behavior occurs because the utf8mb3_general_ci collation is not used for
INFORMATION_SCHEMA queries when searching for values that correspond to objects represented in
the file system.

If the result of a string operation on an INFORMATION_SCHEMA column differs from expectations, a
workaround is to use an explicit COLLATE clause to force a suitable collation (see Section 12.8.1,
“Using COLLATE in SQL Statements”). For example, to perform a case-insensitive search, use
COLLATE with the INFORMATION_SCHEMA column name:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME COLLATE utf8mb3_general_ci = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME COLLATE utf8mb3_general_ci = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+

You can also use the UPPER() or LOWER() function:

WHERE UPPER(SCHEMA_NAME) = 'TEST'

2151

Unicode Support

WHERE LOWER(SCHEMA_NAME) = 'test'

Although a case-insensitive comparison can be performed even on platforms with case-sensitive
file systems, as just shown, it is not necessarily always the right thing to do. On such platforms, it is
possible to have multiple objects with names that differ only in lettercase. For example, tables named
city, CITY, and City can all exist simultaneously. Consider whether a search should match all
such names or just one and write queries accordingly. The first of the following comparisons (with
utf8mb3_bin) is case-sensitive; the others are not:

WHERE TABLE_NAME COLLATE utf8mb3_bin = 'City'
WHERE TABLE_NAME COLLATE utf8mb3_general_ci = 'city'
WHERE UPPER(TABLE_NAME) = 'CITY'
WHERE LOWER(TABLE_NAME) = 'city'

Searches in INFORMATION_SCHEMA string columns for values that refer to INFORMATION_SCHEMA
itself do use the utf8mb3_general_ci collation because INFORMATION_SCHEMA is
a “virtual” database not represented in the file system. For example, comparisons with
SCHEMATA.SCHEMA_NAME match 'information_schema' or 'INFORMATION_SCHEMA' regardless
of platform:

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'information_schema';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+

mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = 'INFORMATION_SCHEMA';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+

12.9 Unicode Support
The Unicode Standard includes characters from the Basic Multilingual Plane (BMP) and supplementary
characters that lie outside the BMP. This section describes support for Unicode in MySQL. For
information about the Unicode Standard itself, visit the Unicode Consortium website.

BMP characters have these characteristics:

• Their code point values are between 0 and 65535 (or U+0000 and U+FFFF).

• They can be encoded in a variable-length encoding using 8, 16, or 24 bits (1 to 3 bytes).

• They can be encoded in a fixed-length encoding using 16 bits (2 bytes).

• They are sufficient for almost all characters in major languages.

Supplementary characters lie outside the BMP:

• Their code point values are between U+10000 and U+10FFFF).

• Unicode support for supplementary characters requires character sets that have a range outside
BMP characters and therefore take more space than BMP characters (up to 4 bytes per character).

The UTF-8 (Unicode Transformation Format with 8-bit units) method for encoding Unicode data is
implemented according to RFC 3629, which describes encoding sequences that take from one to four
bytes. The idea of UTF-8 is that various Unicode characters are encoded using byte sequences of
different lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

2152

http://www.unicode.org/

Unicode Support

• Most European and Middle East script letters fit into a 2-byte sequence: extended Latin letters (with
tilde, macron, acute, grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac,
and others.

• Korean, Chinese, and Japanese ideographs use 3-byte or 4-byte sequences.

MySQL supports these Unicode character sets:

• utf8mb4: A UTF-8 encoding of the Unicode character set using one to four bytes per character.

• utf8mb3: A UTF-8 encoding of the Unicode character set using one to three bytes per character.
This character set is deprecated in MySQL 8.0, and you should use utf8mb4 instead.

• utf8: An alias for utf8mb3. In MySQL 8.0, this alias is deprecated; use utf8mb4 instead. utf8 is
expected in a future release to become an alias for utf8mb4.

• ucs2: The UCS-2 encoding of the Unicode character set using two bytes per character. Deprecated
in MySQL 8.0.28; you should expect support for this character set to be removed in a future release.

• utf16: The UTF-16 encoding for the Unicode character set using two or four bytes per character.
Like ucs2 but with an extension for supplementary characters.

• utf16le: The UTF-16LE encoding for the Unicode character set. Like utf16 but little-endian rather
than big-endian.

• utf32: The UTF-32 encoding for the Unicode character set using four bytes per character.

Note

The utf8mb3 character set is deprecated and you should expect it to be
removed in a future MySQL release. Please use utf8mb4 instead. utf8 is
currently an alias for utf8mb3, but it is now deprecated as such, and utf8
is expected subsequently to become a reference to utf8mb4. Beginning with
MySQL 8.0.28, utf8mb3 is also displayed in place of utf8 in columns of
Information Schema tables, and in the output of SQL SHOW statements.

In addition, in MySQL 8.0.30, all collations using the utf8_ prefix are renamed
using the prefix utf8mb3_.

To avoid ambiguity about the meaning of utf8, consider specifying utf8mb4
explicitly for character set references.

Table 12.2, “Unicode Character Set General Characteristics”, summarizes the general characteristics
of Unicode character sets supported by MySQL.

Table 12.2 Unicode Character Set General Characteristics

Character Set Supported Characters Required Storage Per
Character

utf8mb3, utf8 (deprecated) BMP only 1, 2, or 3 bytes

ucs2 BMP only 2 bytes

utf8mb4 BMP and supplementary 1, 2, 3, or 4 bytes

utf16 BMP and supplementary 2 or 4 bytes

utf16le BMP and supplementary 2 or 4 bytes

utf32 BMP and supplementary 4 bytes

Characters outside the BMP compare as REPLACEMENT CHARACTER and convert to '?' when
converted to a Unicode character set that supports only BMP characters (utf8mb3 or ucs2).

2153

The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

If you use character sets that support supplementary characters and thus are “wider” than the BMP-
only utf8mb3 and ucs2 character sets, there are potential incompatibility issues for your applications;
see Section 12.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”. That section
also describes how to convert tables from the (3-byte) utf8mb3 to the (4-byte) utf8mb4, and what
constraints may apply in doing so.

A similar set of collations is available for most Unicode character sets. For example, each has a
Danish collation, the names of which are utf8mb4_danish_ci, utf8mb3_danish_ci (deprecated),
utf8_danish_ci (deprecated), ucs2_danish_ci, utf16_danish_ci, and utf32_danish_ci.
The exception is utf16le, which has only two collations. For information about Unicode collations
and their differentiating properties, including collation properties for supplementary characters, see
Section 12.10.1, “Unicode Character Sets”.

The MySQL implementation of UCS-2, UTF-16, and UTF-32 stores characters in big-endian byte order
and does not use a byte order mark (BOM) at the beginning of values. Other database systems might
use little-endian byte order or a BOM. In such cases, conversion of values needs to be performed when
transferring data between those systems and MySQL. The implementation of UTF-16LE is little-endian.

MySQL uses no BOM for UTF-8 values.

Client applications that communicate with the server using Unicode should set the client character
set accordingly (for example, by issuing a SET NAMES 'utf8mb4' statement). Some character
sets cannot be used as the client character set. Attempting to use them with SET NAMES or SET
CHARACTER SET produces an error. See Impermissible Client Character Sets.

The following sections provide additional detail on the Unicode character sets in MySQL.

12.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)

The utf8mb4 character set has these characteristics:

• Supports BMP and supplementary characters.

• Requires a maximum of four bytes per multibyte character.

utf8mb4 contrasts with the utf8mb3 character set, which supports only BMP characters and uses a
maximum of three bytes per character:

• For a BMP character, utf8mb4 and utf8mb3 have identical storage characteristics: same code
values, same encoding, same length.

• For a supplementary character, utf8mb4 requires four bytes to store it, whereas utf8mb3 cannot
store the character at all. When converting utf8mb3 columns to utf8mb4, you need not worry about
converting supplementary characters because there are none.

utf8mb4 is a superset of utf8mb3, so for an operation such as the following concatenation, the result
has character set utf8mb4 and the collation of utf8mb4_col:

SELECT CONCAT(utf8mb3_col, utf8mb4_col);

Similarly, the following comparison in the WHERE clause works according to the collation of
utf8mb4_col:

SELECT * FROM utf8mb3_tbl, utf8mb4_tbl
WHERE utf8mb3_tbl.utf8mb3_col = utf8mb4_tbl.utf8mb4_col;

For information about data type storage as it relates to multibyte character sets, see String Type
Storage Requirements.

12.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding)

2154

The utf8 Character Set (Deprecated alias for utf8mb3)

The utf8mb3 character set has these characteristics:

• Supports BMP characters only (no support for supplementary characters)

• Requires a maximum of three bytes per multibyte character.

Applications that use UTF-8 data but require supplementary character support should use utf8mb4
rather than utf8mb3 (see Section 12.9.1, “The utf8mb4 Character Set (4-Byte UTF-8 Unicode
Encoding)”).

Exactly the same set of characters is available in utf8mb3 and ucs2. That is, they have the same
repertoire.

Note

The recommended character set for MySQL is utf8mb4. All new applications
should use utf8mb4.

The utf8mb3 character set is deprecated. utf8mb3 remains supported for
the lifetimes of the MySQL 8.0.x and following LTS release series, as well as in
MySQL 8.0.

Expect utf8mb3 to be removed in a future major release of MySQL.

Since changing character sets can be a complex and time-consuming task,
you should begin to prepare for this change now by using utf8mb4 for new
applications. For guidance in converting existing applications which use utfmb3,
see Section 12.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character
Sets”.

utf8mb3 can be used in CHARACTER SET clauses, and utf8mb3_collation_substring in
COLLATE clauses, where collation_substring is bin, czech_ci, danish_ci, esperanto_ci,
estonian_ci, and so forth. For example:

CREATE TABLE t (s1 CHAR(1)) CHARACTER SET utf8mb3;
SELECT * FROM t WHERE s1 COLLATE utf8mb3_general_ci = 'x';
DECLARE x VARCHAR(5) CHARACTER SET utf8mb3 COLLATE utf8mb3_danish_ci;
SELECT CAST('a' AS CHAR CHARACTER SET utf8mb4) COLLATE utf8mb4_czech_ci;

Prior to MySQL 8.0.29, instances of utf8mb3 in statements were converted to utf8. In MySQL
8.0.30 and later, the reverse is true, so that in statements such as SHOW CREATE TABLE or SELECT
CHARACTER_SET_NAME FROM INFORMATION_SCHEMA.COLUMNS or SELECT COLLATION_NAME
FROM INFORMATION_SCHEMA.COLUMNS, users see the character set or collation name prefixed with
utf8mb3 or utf8mb3_.

utf8mb3 is also valid (but deprecated) in contexts other than CHARACTER SET clauses. For example:

mysqld --character-set-server=utf8mb3

SET NAMES 'utf8mb3'; /* and other SET statements that have similar effect */
SELECT _utf8mb3 'a';

For information about data type storage as it relates to multibyte character sets, see String Type
Storage Requirements.

12.9.3 The utf8 Character Set (Deprecated alias for utf8mb3)

utf8 has been used by MySQL in the past as an alias for the utf8mb3 character set, but this usage
is now deprecated; in MySQL 8.0, SHOW statements and columns of INFORMATION_SCHEMA tables
display utf8mb3 instead. For more information, see Section 12.9.2, “The utf8mb3 Character Set (3-
Byte UTF-8 Unicode Encoding)”.

2155

The ucs2 Character Set (UCS-2 Unicode Encoding)

Note

The recommended character set for MySQL is utf8mb4. All new applications
should use utf8mb4.

The utf8mb3 character set is deprecated. utf8mb3 remains supported for
the lifetimes of the MySQL 8.0.x and following LTS release series, as well as in
MySQL 8.0.

Expect utf8mb3 to be removed in a future major release of MySQL.

Since changing character sets can be a complex and time-consuming task,
you should begin to prepare for this change now by using utf8mb4 for new
applications. For guidance in converting existing applications which use utfmb3,
see Section 12.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character
Sets”.

12.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding)

Note

The ucs2 character set is deprecated in MySQL 8.0.28; expect it to be removed
in a future MySQL release. Please use utf8mb4 instead.

In UCS-2, every character is represented by a 2-byte Unicode code with the most significant byte
first. For example: LATIN CAPITAL LETTER A has the code 0x0041 and it is stored as a 2-byte
sequence: 0x00 0x41. CYRILLIC SMALL LETTER YERU (Unicode 0x044B) is stored as a 2-
byte sequence: 0x04 0x4B. For Unicode characters and their codes, please refer to the Unicode
Consortium website.

The ucs2 character set has these characteristics:

• Supports BMP characters only (no support for supplementary characters)

• Uses a fixed-length 16-bit encoding and requires two bytes per character.

12.9.5 The utf16 Character Set (UTF-16 Unicode Encoding)

The utf16 character set is the ucs2 character set with an extension that enables encoding of
supplementary characters:

• For a BMP character, utf16 and ucs2 have identical storage characteristics: same code values,
same encoding, same length.

• For a supplementary character, utf16 has a special sequence for representing the character using
32 bits. This is called the “surrogate” mechanism: For a number greater than 0xffff, take 10 bits
and add them to 0xd800 and put them in the first 16-bit word, take 10 more bits and add them to
0xdc00 and put them in the next 16-bit word. Consequently, all supplementary characters require
32 bits, where the first 16 bits are a number between 0xd800 and 0xdbff, and the last 16 bits
are a number between 0xdc00 and 0xdfff. Examples are in Section 15.5 Surrogates Area of the
Unicode 4.0 document.

Because utf16 supports surrogates and ucs2 does not, there is a validity check that applies only in
utf16: You cannot insert a top surrogate without a bottom surrogate, or vice versa. For example:

INSERT INTO t (ucs2_column) VALUES (0xd800); /* legal */
INSERT INTO t (utf16_column)VALUES (0xd800); /* illegal */

There is no validity check for characters that are technically valid but are not true Unicode (that is,
characters that Unicode considers to be “unassigned code points” or “private use” characters or even
“illegals” like 0xffff). For example, since U+F8FF is the Apple Logo, this is legal:

2156

http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/versions/Unicode4.0.0/ch15.pdf

The utf16le Character Set (UTF-16LE Unicode Encoding)

INSERT INTO t (utf16_column)VALUES (0xf8ff); /* legal */

Such characters cannot be expected to mean the same thing to everyone.

Because MySQL must allow for the worst case (that one character requires four bytes) the maximum
length of a utf16 column or index is only half of the maximum length for a ucs2 column or index. For
example, the maximum length of a MEMORY table index key is 3072 bytes, so these statements create
tables with the longest permitted indexes for ucs2 and utf16 columns:

CREATE TABLE tf (s1 VARCHAR(1536) CHARACTER SET ucs2) ENGINE=MEMORY;
CREATE INDEX i ON tf (s1);
CREATE TABLE tg (s1 VARCHAR(768) CHARACTER SET utf16) ENGINE=MEMORY;
CREATE INDEX i ON tg (s1);

12.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding)

This is the same as utf16 but is little-endian rather than big-endian.

12.9.7 The utf32 Character Set (UTF-32 Unicode Encoding)

The utf32 character set is fixed length (like ucs2 and unlike utf16). utf32 uses 32 bits for every
character, unlike ucs2 (which uses 16 bits for every character), and unlike utf16 (which uses 16 bits
for some characters and 32 bits for others).

utf32 takes twice as much space as ucs2 and more space than utf16, but utf32 has the same
advantage as ucs2 that it is predictable for storage: The required number of bytes for utf32 equals
the number of characters times 4. Also, unlike utf16, there are no tricks for encoding in utf32, so the
stored value equals the code value.

To demonstrate how the latter advantage is useful, here is an example that shows how to determine a
utf8mb4 value given the utf32 code value:

/* Assume code value = 100cc LINEAR B WHEELED CHARIOT */
CREATE TABLE tmp (utf32_col CHAR(1) CHARACTER SET utf32,
 utf8mb4_col CHAR(1) CHARACTER SET utf8mb4);
INSERT INTO tmp VALUES (0x000100cc,NULL);
UPDATE tmp SET utf8mb4_col = utf32_col;
SELECT HEX(utf32_col),HEX(utf8mb4_col) FROM tmp;

MySQL is very forgiving about additions of unassigned Unicode characters or private-use-area
characters. There is in fact only one validity check for utf32: No code value may be greater than
0x10ffff. For example, this is illegal:

INSERT INTO t (utf32_column) VALUES (0x110000); /* illegal */

12.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets

This section describes issues that you may face when converting character data between the utf8mb3
and utf8mb4 character sets.

Note

This discussion focuses primarily on converting between utf8mb3 and
utf8mb4, but similar principles apply to converting between the ucs2 character
set and character sets such as utf16 or utf32.

The utf8mb3 and utf8mb4 character sets differ as follows:

• utf8mb3 supports only characters in the Basic Multilingual Plane (BMP). utf8mb4 additionally
supports supplementary characters that lie outside the BMP.

2157

Converting Between 3-Byte and 4-Byte Unicode Character Sets

• utf8mb3 uses a maximum of three bytes per character. utf8mb4 uses a maximum of four bytes per
character.

Note

This discussion refers to the utf8mb3 and utf8mb4 character set names to be
explicit about referring to 3-byte and 4-byte UTF-8 character set data.

One advantage of converting from utf8mb3 to utf8mb4 is that this enables applications to use
supplementary characters. One tradeoff is that this may increase data storage space requirements.

In terms of table content, conversion from utf8mb3 to utf8mb4 presents no problems:

• For a BMP character, utf8mb4 and utf8mb3 have identical storage characteristics: same code
values, same encoding, same length.

• For a supplementary character, utf8mb4 requires four bytes to store it, whereas utf8mb3 cannot
store the character at all. When converting utf8mb3 columns to utf8mb4, you need not worry about
converting supplementary characters because there are none.

In terms of table structure, these are the primary potential incompatibilities:

• For the variable-length character data types (VARCHAR and the TEXT types), the maximum permitted
length in characters is less for utf8mb4 columns than for utf8mb3 columns.

• For all character data types (CHAR, VARCHAR, and the TEXT types), the maximum number of
characters that can be indexed is less for utf8mb4 columns than for utf8mb3 columns.

Consequently, to convert tables from utf8mb3 to utf8mb4, it may be necessary to change some
column or index definitions.

Tables can be converted from utf8mb3 to utf8mb4 by using ALTER TABLE. Suppose that a table
has this definition:

CREATE TABLE t1 (
 col1 CHAR(10) CHARACTER SET utf8mb3 COLLATE utf8mb3_unicode_ci NOT NULL,
 col2 CHAR(10) CHARACTER SET utf8mb3 COLLATE utf8mb3_bin NOT NULL
) CHARACTER SET utf8mb3;

The following statement converts t1 to use utf8mb4:

ALTER TABLE t1
 DEFAULT CHARACTER SET utf8mb4,
 MODIFY col1 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
 MODIFY col2 CHAR(10)
 CHARACTER SET utf8mb4 COLLATE utf8mb4_bin NOT NULL;

The catch when converting from utf8mb3 to utf8mb4 is that the maximum length of a column or
index key is unchanged in terms of bytes. Therefore, it is smaller in terms of characters because the
maximum length of a character is four bytes instead of three. For the CHAR, VARCHAR, and TEXT data
types, watch for these issues when converting your MySQL tables:

• Check all definitions of utf8mb3 columns and make sure they do not exceed the maximum length
for the storage engine.

• Check all indexes on utf8mb3 columns and make sure they do not exceed the maximum length for
the storage engine. Sometimes the maximum can change due to storage engine enhancements.

If the preceding conditions apply, you must either reduce the defined length of columns or indexes, or
continue to use utf8mb3 rather than utf8mb4.

Here are some examples where structural changes may be needed:

2158

Converting Between 3-Byte and 4-Byte Unicode Character Sets

• A TINYTEXT column can hold up to 255 bytes, so it can hold up to 85 3-byte or 63 4-byte characters.
Suppose that you have a TINYTEXT column that uses utf8mb3 but must be able to contain more
than 63 characters. You cannot convert it to utf8mb4 unless you also change the data type to a
longer type such as TEXT.

Similarly, a very long VARCHAR column may need to be changed to one of the longer TEXT types if
you want to convert it from utf8mb3 to utf8mb4.

• InnoDB has a maximum index length of 767 bytes for tables that use COMPACT or REDUNDANT row
format, so for utf8mb3 or utf8mb4 columns, you can index a maximum of 255 or 191 characters,
respectively. If you currently have utf8mb3 columns with indexes longer than 191 characters, you
must index a smaller number of characters.

In an InnoDB table that uses COMPACT or REDUNDANT row format, these column and index
definitions are legal:

col1 VARCHAR(500) CHARACTER SET utf8mb3, INDEX (col1(255))

To use utf8mb4 instead, the index must be smaller:

col1 VARCHAR(500) CHARACTER SET utf8mb4, INDEX (col1(191))

Note

For InnoDB tables that use COMPRESSED or DYNAMIC row format, index
key prefixes longer than 767 bytes (up to 3072 bytes) are permitted. Tables
created with these row formats enable you to index a maximum of 1024 or
768 characters for utf8mb3 or utf8mb4 columns, respectively. For related
information, see Section 17.22, “InnoDB Limits”, and DYNAMIC Row Format.

The preceding types of changes are most likely to be required only if you have very long columns or
indexes. Otherwise, you should be able to convert your tables from utf8mb3 to utf8mb4 without
problems, using ALTER TABLE as described previously.

The following items summarize other potential incompatibilities:

• SET NAMES 'utf8mb4' causes use of the 4-byte character set for connection character sets. As
long as no 4-byte characters are sent from the server, there should be no problems. Otherwise,
applications that expect to receive a maximum of three bytes per character may have problems.
Conversely, applications that expect to send 4-byte characters must ensure that the server
understands them.

• For replication, if character sets that support supplementary characters are to be used on the source,
all replicas must understand them as well.

Also, keep in mind the general principle that if a table has different definitions on the source and
replica, this can lead to unexpected results. For example, the differences in maximum index key
length make it risky to use utf8mb3 on the source and utf8mb4 on the replica.

If you have converted to utf8mb4, utf16, utf16le, or utf32, and then decide to convert back to
utf8mb3 or ucs2 (for example, to downgrade to an older version of MySQL), these considerations
apply:

• utf8mb3 and ucs2 data should present no problems.

• The server must be recent enough to recognize definitions referring to the character set from which
you are converting.

• For object definitions that refer to the utf8mb4 character set, you can dump them with mysqldump
prior to downgrading, edit the dump file to change instances of utf8mb4 to utf8, and reload the file
in the older server, as long as there are no 4-byte characters in the data. The older server sees utf8
in the dump file object definitions and create new objects that use the (3-byte) utf8 character set.

2159

Supported Character Sets and Collations

12.10 Supported Character Sets and Collations
This section indicates which character sets MySQL supports. There is one subsection for each group of
related character sets. For each character set, the permissible collations are listed.

To list the available character sets and their default collations, use the SHOW CHARACTER SET
statement or query the INFORMATION_SCHEMA CHARACTER_SETS table. For example:

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+---------------------------------+---------------------+--------+
armscii8	ARMSCII-8 Armenian	armscii8_general_ci	1
ascii	US ASCII	ascii_general_ci	1
big5	Big5 Traditional Chinese	big5_chinese_ci	2
binary	Binary pseudo charset	binary	1
cp1250	Windows Central European	cp1250_general_ci	1
cp1251	Windows Cyrillic	cp1251_general_ci	1
cp1256	Windows Arabic	cp1256_general_ci	1
cp1257	Windows Baltic	cp1257_general_ci	1
cp850	DOS West European	cp850_general_ci	1
cp852	DOS Central European	cp852_general_ci	1
cp866	DOS Russian	cp866_general_ci	1
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
euckr	EUC-KR Korean	euckr_korean_ci	2
gb18030	China National Standard GB18030	gb18030_chinese_ci	4
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
geostd8	GEOSTD8 Georgian	geostd8_general_ci	1
greek	ISO 8859-7 Greek	greek_general_ci	1
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
hp8	HP West European	hp8_english_ci	1
keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
macce	Mac Central European	macce_general_ci	1
macroman	Mac West European	macroman_general_ci	1
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
swe7	7bit Swedish	swe7_swedish_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
ucs2	UCS-2 Unicode	ucs2_general_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
utf16	UTF-16 Unicode	utf16_general_ci	4
utf16le	UTF-16LE Unicode	utf16le_general_ci	4
utf32	UTF-32 Unicode	utf32_general_ci	4
utf8mb3	UTF-8 Unicode	utf8mb3_general_ci	3
utf8mb4	UTF-8 Unicode	utf8mb4_0900_ai_ci	4
+----------+---------------------------------+---------------------+--------+

In cases where a character set has multiple collations, it might not be clear which collation is most
suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform
some comparisons with representative data values to make sure that a given collation sorts values the
way you expect.

12.10.1 Unicode Character Sets

This section describes the collations available for Unicode character sets and their differentiating
properties. For general information about Unicode, see Section 12.9, “Unicode Support”.

MySQL supports multiple Unicode character sets:

• utf8mb4: A UTF-8 encoding of the Unicode character set using one to four bytes per character.

2160

Unicode Character Sets

• utf8mb3: A UTF-8 encoding of the Unicode character set using one to three bytes per character.
This character set is deprecated in MySQL 8.0, and you should use utf8mb4 instead.

• utf8: An alias for utf8mb3. In MySQL 8.0, this alias is deprecated; use utf8mb4 instead. utf8 is
expected in a future release to become an alias for utf8mb4.

• ucs2: The UCS-2 encoding of the Unicode character set using two bytes per character. Deprecated
in MySQL 8.0.28; you should expect support for this character set to be removed in a future release.

• utf16: The UTF-16 encoding for the Unicode character set using two or four bytes per character.
Like ucs2 but with an extension for supplementary characters.

• utf16le: The UTF-16LE encoding for the Unicode character set. Like utf16 but little-endian rather
than big-endian.

• utf32: The UTF-32 encoding for the Unicode character set using four bytes per character.

Note

The utf8mb3 character set is deprecated and you should expect it to be
removed in a future MySQL release. Please use utf8mb4 instead. utf8 is
currently an alias for utf8mb3, but it is now deprecated as such, and utf8
is expected subsequently to become a reference to utf8mb4. Beginning with
MySQL 8.0.28, utf8mb3 is also displayed in place of utf8 in columns of
Information Schema tables, and in the output of SQL SHOW statements.

To avoid ambiguity about the meaning of utf8, consider specifying utf8mb4
explicitly for character set references.

utf8mb4, utf16, utf16le, and utf32 support Basic Multilingual Plane (BMP) characters and
supplementary characters that lie outside the BMP. utf8mb3 and ucs2 support only BMP characters.

Most Unicode character sets have a general collation (indicated by _general in the name or
by the absence of a language specifier), a binary collation (indicated by _bin in the name),
and several language-specific collations (indicated by language specifiers). For example, for
utf8mb4, utf8mb4_general_ci and utf8mb4_bin are its general and binary collations, and
utf8mb4_danish_ci is one of its language-specific collations.

Most character sets have a single binary collation. utf8mb4 is an exception that has two:
utf8mb4_bin and (as of MySQL 8.0.17) utf8mb4_0900_bin. These two binary collations have the
same sort order but are distinguished by their pad attribute and collating weight characteristics. See
Collation Pad Attributes, and Character Collating Weights.

Collation support for utf16le is limited. The only collations available are utf16le_general_ci and
utf16le_bin. These are similar to utf16_general_ci and utf16_bin.

• Unicode Collation Algorithm (UCA) Versions

• Collation Pad Attributes

• Language-Specific Collations

• _general_ci Versus _unicode_ci Collations

• Character Collating Weights

• Miscellaneous Information

Unicode Collation Algorithm (UCA) Versions

MySQL implements the xxx_unicode_ci collations according to the Unicode Collation Algorithm
(UCA) described at http://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0 UCA

2161

http://www.unicode.org/reports/tr10/

Unicode Character Sets

weight keys: http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. The xxx_unicode_ci
collations have only partial support for the Unicode Collation Algorithm. Some characters are not
supported, and combining marks are not fully supported. This affects languages such as Vietnamese,
Yoruba, and Navajo. A combined character is considered different from the same character written
with a single unicode character in string comparisons, and the two characters are considered to have a
different length (for example, as returned by the CHAR_LENGTH() function or in result set metadata).

Unicode collations based on UCA versions higher than 4.0.0 include the version in the collation name.
Examples:

• utf8mb4_unicode_520_ci is based on UCA 5.2.0 weight keys (http://www.unicode.org/Public/
UCA/5.2.0/allkeys.txt),

• utf8mb4_0900_ai_ci is based on UCA 9.0.0 weight keys (http://www.unicode.org/Public/
UCA/9.0.0/allkeys.txt).

The LOWER() and UPPER() functions perform case folding according to the collation of their argument.
A character that has uppercase and lowercase versions only in a Unicode version higher than 4.0.0 is
converted by these functions only if the argument collation uses a high enough UCA version.

Collation Pad Attributes

Collations based on UCA 9.0.0 and higher are faster than collations based on UCA versions prior to
9.0.0. They also have a pad attribute of NO PAD, in contrast to PAD SPACE as used in collations based
on UCA versions prior to 9.0.0. For comparison of nonbinary strings, NO PAD collations treat spaces at
the end of strings like any other character (see Trailing Space Handling in Comparisons).

To determine the pad attribute for a collation, use the INFORMATION_SCHEMA COLLATIONS table,
which has a PAD_ATTRIBUTE column. For example:

mysql> SELECT COLLATION_NAME, PAD_ATTRIBUTE
 FROM INFORMATION_SCHEMA.COLLATIONS
 WHERE CHARACTER_SET_NAME = 'utf8mb4';
+----------------------------+---------------+
| COLLATION_NAME | PAD_ATTRIBUTE |
+----------------------------+---------------+
utf8mb4_general_ci	PAD SPACE
utf8mb4_bin	PAD SPACE
utf8mb4_unicode_ci	PAD SPACE
utf8mb4_icelandic_ci	PAD SPACE
...	
utf8mb4_0900_ai_ci	NO PAD
utf8mb4_de_pb_0900_ai_ci	NO PAD
utf8mb4_is_0900_ai_ci	NO PAD
...	
utf8mb4_ja_0900_as_cs	NO PAD
utf8mb4_ja_0900_as_cs_ks	NO PAD
utf8mb4_0900_as_ci	NO PAD
utf8mb4_ru_0900_ai_ci	NO PAD
utf8mb4_ru_0900_as_cs	NO PAD
utf8mb4_zh_0900_as_cs	NO PAD
utf8mb4_0900_bin	NO PAD
+----------------------------+---------------+

Comparison of nonbinary string values (CHAR, VARCHAR, and TEXT) that have a NO PAD collation
differ from other collations with respect to trailing spaces. For example, 'a' and 'a ' compare as
different strings, not the same string. This can be seen using the binary collations for utf8mb4. The
pad attribute for utf8mb4_bin is PAD SPACE, whereas for utf8mb4_0900_bin it is NO PAD.
Consequently, operations involving utf8mb4_0900_bin do not add trailing spaces, and comparisons
involving strings with trailing spaces may differ for the two collations:

mysql> CREATE TABLE t1 (c CHAR(10) COLLATE utf8mb4_bin);
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO t1 VALUES('a');

2162

http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt
http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt
http://www.unicode.org/Public/UCA/9.0.0/allkeys.txt

Unicode Character Sets

Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM t1 WHERE c = 'a ';
+------+
| c |
+------+
| a |
+------+
1 row in set (0.00 sec)

mysql> ALTER TABLE t1 MODIFY c CHAR(10) COLLATE utf8mb4_0900_bin;
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1 WHERE c = 'a ';
Empty set (0.00 sec)

Language-Specific Collations

MySQL implements language-specific Unicode collations if the ordering based only on the Unicode
Collation Algorithm (UCA) does not work well for a language. Language-specific collations are UCA-
based, with additional language tailoring rules. Examples of such rules appear later in this section.
For questions about particular language orderings, http://unicode.org provides Common Locale Data
Repository (CLDR) collation charts at http://www.unicode.org/cldr/charts/30/collation/index.html.

For example, the nonlanguage-specific utf8mb4_0900_ai_ci and language-specific
utf8mb4_LOCALE_0900_ai_ci Unicode collations each have these characteristics:

• The collation is based on UCA 9.0.0 and CLDR v30, is accent-insensitive and case-insensitive.
These characteristics are indicated by _0900, _ai, and _ci in the collation name. Exception:
utf8mb4_la_0900_ai_ci is not based on CLDR because Classical Latin is not defined in CLDR.

• The collation works for all characters in the range [U+0, U+10FFFF].

• If the collation is not language specific, it sorts all characters, including supplementary characters,
in default order (described following). If the collation is language specific, it sorts characters of the
language correctly according to language-specific rules, and characters not in the language in default
order.

• By default, the collation sorts characters having a code point listed in the DUCET table (Default
Unicode Collation Element Table) according to the weight value assigned in the table. The collation
sorts characters not having a code point listed in the DUCET table using their implicit weight value,
which is constructed according to the UCA.

• For non-language-specific collations, characters in contraction sequences are treated as separate
characters. For language-specific collations, contractions might change character sorting order.

A collation name that includes a locale code or language name shown in the following table is a
language-specific collation. Unicode character sets may include collations for one or more of these
languages.

Table 12.3 Unicode Collation Language Specifiers

Language Language Specifier

Bosnian bs

Bulgarian bg

Chinese zh

Classical Latin la or roman

Croatian hr or croatian

Czech cs or czech

2163

http://unicode.org
http://www.unicode.org/cldr/charts/30/collation/index.html

Unicode Character Sets

Language Language Specifier

Danish da or danish

Esperanto eo or esperanto

Estonian et or estonian

Galician gl

German phone book order de_pb or german2

Hungarian hu or hungarian

Icelandic is or icelandic

Japanese ja

Latvian lv or latvian

Lithuanian lt or lithuanian

Mongolian mn

Norwegian / Bokmål nb

Norwegian / Nynorsk nn

Persian persian

Polish pl or polish

Romanian ro or romanian

Russian ru

Serbian sr

Sinhala sinhala

Slovak sk or slovak

Slovenian sl or slovenian

Modern Spanish es or spanish

Traditional Spanish es_trad or spanish2

Swedish sv or swedish

Turkish tr or turkish

Vietnamese vi or vietnamese

MySQL 8.0.30 and later provides the Bulgarian collations utf8mb4_bg_0900_ai_ci and
utf8mb4_bg_0900_as_cs.

Croatian collations are tailored for these Croatian letters: Č, Ć, Dž, Đ, Lj, Nj, Š, Ž.

MySQL 8.0.30 and later provides the utf8mb4_sr_latn_0900_ai_ci and
utf8mb4_sr_latn_0900_as_cs collations for Serbian and the utf8mb4_bs_0900_ai_ci and
utf8mb4_bs_0900_as_cs collations for Bosnian, when these languages are written with the Latin
alphabet.

Beginning with MySQL 8.0.30, MySQL provides collations for both major varieties of Norwegian: for
Bokmål, you can use utf8mb4_nb_0900_ai_ci and utf8mb4_nb_0900_as_cs; for Nynorsk,
MySQL now provides utf8mb4_nn_0900_ai_ci and utf8mb4_nn_0900_as_cs.

For Japanese, the utf8mb4 character set includes utf8mb4_ja_0900_as_cs and
utf8mb4_ja_0900_as_cs_ks collations. Both collations are accent-sensitive and case-sensitive.
utf8mb4_ja_0900_as_cs_ks is also kana-sensitive and distinguishes Katakana characters from
Hiragana characters, whereas utf8mb4_ja_0900_as_cs treats Katakana and Hiragana characters
as equal for sorting. Applications that require a Japanese collation but not kana sensitivity may use
utf8mb4_ja_0900_as_cs for better sort performance. utf8mb4_ja_0900_as_cs uses three
weight levels for sorting; utf8mb4_ja_0900_as_cs_ks uses four.

2164

Unicode Character Sets

For Classical Latin collations that are accent-insensitive, I and J compare as equal, and U and V
compare as equal. I and J, and U and V compare as equal on the base letter level. In other words, J is
regarded as an accented I, and U is regarded as an accented V.

MySQL 8.0.30 and later provides collations for the Mongolian language when written with Cyrillic
characters, utf8mb4_mn_cyrl_0900_ai_ci and utf8mb4_mn_cyrl_0900_as_cs.

Spanish collations are available for modern and traditional Spanish. For both, ñ (n-tilde) is a separate
letter between n and o. In addition, for traditional Spanish, ch is a separate letter between c and d, and
ll is a separate letter between l and m.

Traditional Spanish collations may also be used for Asturian and Galician. Beginning with MySQL
8.0.30, MySQL also provides utf8mb4_gl_0900_ai_ci and utf8mb4_gl_0900_as_cs
collations for Galician. (These are the same collations as utf8mb4_es_0900_ai_ci and
utf8mb4_es_0900_as_cs, respectively.)

Swedish collations include Swedish rules. For example, in Swedish, the following relationship holds,
which is not something expected by a German or French speaker:

Ü = Y < Ö

_general_ci Versus _unicode_ci Collations

For any Unicode character set, operations performed using the xxx_general_ci collation
are faster than those for the xxx_unicode_ci collation. For example, comparisons for the
utf8mb4_general_ci collation are faster, but slightly less correct, than comparisons for
utf8mb4_unicode_ci. The reason is that utf8mb4_unicode_ci supports mappings such as
expansions; that is, when one character compares as equal to combinations of other characters.
For example, ß is equal to ss in German and some other languages. utf8mb4_unicode_ci also
supports contractions and ignorable characters. utf8mb4_general_ci is a legacy collation that
does not support expansions, contractions, or ignorable characters. It can make only one-to-one
comparisons between characters.

To further illustrate, the following equalities hold in both utf8mb4_general_ci and
utf8mb4_unicode_ci (for the effect of this in comparisons or searches, see Section 12.8.6,
“Examples of the Effect of Collation”):

Ä = A
Ö = O
Ü = U

A difference between the collations is that this is true for utf8mb4_general_ci:

ß = s

Whereas this is true for utf8mb4_unicode_ci, which supports the German DIN-1 ordering (also
known as dictionary order):

ß = ss

MySQL implements language-specific Unicode collations if the ordering with utf8mb4_unicode_ci
does not work well for a language. For example, utf8mb4_unicode_ci works fine for German
dictionary order and French, so there is no need to create special utf8mb4 collations.

utf8mb4_general_ci also is satisfactory for both German and French, except that ß is equal to
s, and not to ss. If this is acceptable for your application, you should use utf8mb4_general_ci
because it is faster. If this is not acceptable (for example, if you require German dictionary order), use
utf8mb4_unicode_ci because it is more accurate.

If you require German DIN-2 (phone book) ordering, use the utf8mb4_german2_ci collation, which
compares the following sets of characters equal:

Ä = Æ = AE
Ö = Œ = OE

2165

Unicode Character Sets

Ü = UE
ß = ss

utf8mb4_german2_ci is similar to latin1_german2_ci, but the latter does not compare Æ equal
to AE or Œ equal to OE. There is no utf8mb4_german_ci corresponding to latin1_german_ci for
German dictionary order because utf8mb4_general_ci suffices.

Character Collating Weights

A character's collating weight is determined as follows:

• For all Unicode collations except the _bin (binary) collations, MySQL performs a table lookup to find
a character's collating weight.

• For _bin collations except utf8mb4_0900_bin, the weight is based on the code point, possibly
with leading zero bytes added.

• For utf8mb4_0900_bin, the weight is the utf8mb4 encoding bytes. The sort order is the same as
for utf8mb4_bin, but much faster.

Collating weights can be displayed using the WEIGHT_STRING() function. (See Section 14.8, “String
Functions and Operators”.) If a collation uses a weight lookup table, but a character is not in the table
(for example, because it is a “new” character), collating weight determination becomes more complex:

• For BMP characters in general collations (xxx_general_ci), the weight is the code point.

• For BMP characters in UCA collations (for example, xxx_unicode_ci and language-specific
collations), the following algorithm applies:

if (code >= 0x3400 && code <= 0x4DB5)
 base= 0xFB80; /* CJK Ideograph Extension */
else if (code >= 0x4E00 && code <= 0x9FA5)
 base= 0xFB40; /* CJK Ideograph */
else
 base= 0xFBC0; /* All other characters */
aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

The result is a sequence of two collating elements, aaaa followed by bbbb. For example:

mysql> SELECT HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci));
+--+
| HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci)) |
+--+
| FBC084CF |
+--+

Thus, U+04cf CYRILLIC SMALL LETTER PALOCHKA (ӏ) is, with all UCA 4.0.0 collations, greater
than U+04c0 CYRILLIC LETTER PALOCHKA (Ӏ). With UCA 5.2.0 collations, all palochkas sort
together.

• For supplementary characters in general collations, the weight is the weight for 0xfffd
REPLACEMENT CHARACTER. For supplementary characters in UCA 4.0.0 collations, their collating
weight is 0xfffd. That is, to MySQL, all supplementary characters are equal to each other, and
greater than almost all BMP characters.

An example with Deseret characters and COUNT(DISTINCT):

CREATE TABLE t (s1 VARCHAR(5) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0xfffd); /* REPLACEMENT CHARACTER */
INSERT INTO t VALUES (0x010412); /* DESERET CAPITAL LETTER BEE */
INSERT INTO t VALUES (0x010413); /* DESERET CAPITAL LETTER TEE */
SELECT COUNT(DISTINCT s1) FROM t;

The result is 2 because in the MySQL xxx_unicode_ci collations, the replacement character has
a weight of 0x0dc6, whereas Deseret Bee and Deseret Tee both have a weight of 0xfffd. (Were

2166

Unicode Character Sets

the utf32_general_ci collation used instead, the result is 1 because all three characters have a
weight of 0xfffd in that collation.)

An example with cuneiform characters and WEIGHT_STRING():

/*
The four characters in the INSERT string are
00000041 # LATIN CAPITAL LETTER A
0001218F # CUNEIFORM SIGN KAB
000121A7 # CUNEIFORM SIGN KISH
00000042 # LATIN CAPITAL LETTER B
*/
CREATE TABLE t (s1 CHAR(4) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0x000000410001218f000121a700000042);
SELECT HEX(WEIGHT_STRING(s1)) FROM t;

The result is:

0E33 FFFD FFFD 0E4A

0E33 and 0E4A are primary weights as in UCA 4.0.0. FFFD is the weight for KAB and also for KISH.

The rule that all supplementary characters are equal to each other is nonoptimal but is not expected
to cause trouble. These characters are very rare, so it is very rare that a multi-character string
consists entirely of supplementary characters. In Japan, since the supplementary characters are
obscure Kanji ideographs, the typical user does not care what order they are in, anyway. If you really
want rows sorted by the MySQL rule and secondarily by code point value, it is easy:

ORDER BY s1 COLLATE utf32_unicode_ci, s1 COLLATE utf32_bin

• For supplementary characters based on UCA versions higher than 4.0.0 (for example,
xxx_unicode_520_ci), supplementary characters do not necessarily all have the same collating
weight. Some have explicit weights from the UCA allkeys.txt file. Others have weights calculated
from this algorithm:

aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;

There is a difference between “ordering by the character's code value” and “ordering by the character's
binary representation,” a difference that appears only with utf16_bin, because of surrogates.

Suppose that utf16_bin (the binary collation for utf16) was a binary comparison “byte by byte”
rather than “character by character.” If that were so, the order of characters in utf16_bin would differ
from the order in utf8mb4_bin. For example, the following chart shows two rare characters. The first
character is in the range E000-FFFF, so it is greater than a surrogate but less than a supplementary.
The second character is a supplementary.

Code point Character utf8mb4 utf16
---------- --------- ------- -----
0FF9D HALFWIDTH KATAKANA LETTER N EF BE 9D FF 9D
10384 UGARITIC LETTER DELTA F0 90 8E 84 D8 00 DF 84

The two characters in the chart are in order by code point value because 0xff9d < 0x10384. And
they are in order by utf8mb4 value because 0xef < 0xf0. But they are not in order by utf16 value, if
we use byte-by-byte comparison, because 0xff > 0xd8.

So MySQL's utf16_bin collation is not “byte by byte.” It is “by code point.” When MySQL sees a
supplementary-character encoding in utf16, it converts to the character's code-point value, and then
compares. Therefore, utf8mb4_bin and utf16_bin are the same ordering. This is consistent with
the SQL:2008 standard requirement for a UCS_BASIC collation: “UCS_BASIC is a collation in which
the ordering is determined entirely by the Unicode scalar values of the characters in the strings being
sorted. It is applicable to the UCS character repertoire. Since every character repertoire is a subset of
the UCS repertoire, the UCS_BASIC collation is potentially applicable to every character set. NOTE 11:
The Unicode scalar value of a character is its code point treated as an unsigned integer.”

2167

ftp://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

West European Character Sets

If the character set is ucs2, comparison is byte-by-byte, but ucs2 strings should not contain
surrogates, anyway.

Miscellaneous Information

The xxx_general_mysql500_ci collations preserve the pre-5.1.24 ordering of the original
xxx_general_ci collations and permit upgrades for tables created before MySQL 5.1.24 (Bug
#27877).

12.10.2 West European Character Sets

Western European character sets cover most West European languages, such as French, Spanish,
Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish,
Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

• cp850_bin

• cp850_general_ci (default)

• dec8 (DEC Western European) collations:

• dec8_bin

• dec8_swedish_ci (default)

The dec character set is deprecated in MySQL 8.0.28; expect support for it to be removed in a
subsequent MySQL release.

• hp8 (HP Western European) collations:

• hp8_bin

• hp8_english_ci (default)

The hp8 character set is deprecated in MySQL 8.0.28; expect support for it to be removed in a
subsequent MySQL release.

• latin1 (cp1252 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

2168

Central European Character Sets

MySQL's latin1 is the same as the Windows cp1252 character set. This means it is the same
as the official ISO 8859-1 or IANA (Internet Assigned Numbers Authority) latin1, except that
IANA latin1 treats the code points between 0x80 and 0x9f as “undefined,” whereas cp1252, and
therefore MySQL's latin1, assign characters for those positions. For example, 0x80 is the Euro
sign. For the “undefined” entries in cp1252, MySQL translates 0x81 to Unicode 0x0081, 0x8d to
0x008d, 0x8f to 0x008f, 0x90 to 0x0090, and 0x9d to 0x009d.

The latin1_swedish_ci collation is the default that probably is used by the majority of MySQL
customers. Although it is frequently said that it is based on the Swedish/Finnish collation rules, there
are Swedes and Finns who disagree with this statement.

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and
DIN-2 standards, where DIN stands for Deutsches Institut für Normung (the German equivalent
of ANSI). DIN-1 is called the “dictionary collation” and DIN-2 is called the “phone book collation.”
For an example of the effect this has in comparisons or when doing searches, see Section 12.8.6,
“Examples of the Effect of Collation”.

• latin1_german1_ci (dictionary) rules:

Ä = A
Ö = O
Ü = U
ß = s

• latin1_german2_ci (phone-book) rules:

Ä = AE
Ö = OE
Ü = UE
ß = ss

In the latin1_spanish_ci collation, ñ (n-tilde) is a separate letter between n and o.

• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

macroroman is deprecated in MySQL 8.0.28; expect support for it to be removed in a subsequent
MySQL release.

• swe7 (7bit Swedish) collations:

• swe7_bin

• swe7_swedish_ci (default)

12.10.3 Central European Character Sets

MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary,
Romania, Slovenia, Croatia, Poland, and Serbia (Latin).

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_croatian_ci

• cp1250_czech_cs

• cp1250_general_ci (default)

2169

South European and Middle East Character Sets

• cp1250_polish_ci

• cp852 (DOS Central European) collations:

• cp852_bin

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

• macce_general_ci (default)

macce is deprecated in MySQL 8.0.28; expect support for it to be removed in a subsequent MySQL
release.

12.10.4 South European and Middle East Character Sets

South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic,
Georgian, Greek, Hebrew, and Turkish.

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

• greek_general_ci (default)

2170

Baltic Character Sets

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

• latin5 (ISO 8859-9 Turkish) collations:

• latin5_bin

• latin5_turkish_ci (default)

12.10.5 Baltic Character Sets

The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

• latin7_general_cs

12.10.6 Cyrillic Character Sets

The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, Ukrainian,
and Serbian (Cyrillic) languages.

• cp1251 (Windows Cyrillic) collations:

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

• cp1251_ukrainian_ci

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

2171

Asian Character Sets

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

• koi8u_general_ci (default)

12.10.7 Asian Character Sets

The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can
be complicated. For example, the Chinese sets must allow for thousands of different characters. See
Section 12.10.7.1, “The cp932 Character Set”, for additional information about the cp932 and sjis
character sets. See Section 12.10.7.2, “The gb18030 Character Set”, for additional information about
character set support for the Chinese National Standard GB 18030.

For answers to some common questions and problems relating support for Asian character sets in
MySQL, see Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”.

• big5 (Big5 Traditional Chinese) collations:

• big5_bin

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

• gb2312_chinese_ci (default)

• gbk (GBK Simplified Chinese) collations:

• gbk_bin

• gbk_chinese_ci (default)

• gb18030 (China National Standard GB18030) collations:

• gb18030_bin

• gb18030_chinese_ci (default)

• gb18030_unicode_520_ci

• sjis (Shift-JIS Japanese) collations:

• sjis_bin

2172

Asian Character Sets

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

The big5_chinese_ci collation sorts on number of strokes.

12.10.7.1 The cp932 Character Set

Why is cp932 needed?

In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA,
which supports JIS X0201 and JIS X0208 characters. (See http://www.iana.org/assignments/character-
sets.)

However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often
includes the extensions to Shift_JIS that are defined by various vendors.

For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of
Shift_JIS and its exact name is Microsoft Windows Codepage : 932 or cp932. In addition to
the characters supported by Shift_JIS, cp932 supports extension characters such as NEC special
characters, NEC selected—IBM extended characters, and IBM selected characters.

Many Japanese users have experienced problems using these extension characters. These problems
stem from the following factors:

• MySQL automatically converts character sets.

• Character sets are converted using Unicode (ucs2).

• The sjis character set does not support the conversion of these extension characters.

• There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters
are converted to Unicode differently depending on the conversion rule. MySQL supports only one of
these rules (described later).

The MySQL cp932 character set is designed to solve these problems.

Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and
cp932 into two different character sets because they provide different conversion rules.

How does cp932 differ from sjis?

The cp932 character set differs from sjis in the following ways:

• cp932 supports NEC special characters, NEC selected—IBM extended characters, and IBM
selected characters.

• Some cp932 characters have two different code points, both of which convert to the same Unicode
code point. When converting from Unicode back to cp932, one of the code points must be
selected. For this “round trip conversion,” the rule recommended by Microsoft is used. (See http://
support.microsoft.com/kb/170559/EN-US/.)

The conversion rule works like this:

2173

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets
http://support.microsoft.com/kb/170559/EN-US/
http://support.microsoft.com/kb/170559/EN-US/

Asian Character Sets

• If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X
0208.

• If the character is in both NEC special characters and IBM selected characters, use the code point
of NEC special characters.

• If the character is in both IBM selected characters and NEC selected—IBM extended characters,
use the code point of IBM extended characters.

The table shown at https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx provides information
about the Unicode values of cp932 characters. For cp932 table entries with characters under which
a four-digit number appears, the number represents the corresponding Unicode (ucs2) encoding.
For table entries with an underlined two-digit value appears, there is a range of cp932 character
values that begin with those two digits. Clicking such a table entry takes you to a page that displays
the Unicode value for each of the cp932 characters that begin with those digits.

The following links are of special interest. They correspond to the encodings for the following sets of
characters:

• NEC special characters (lead byte 0x87):

https://msdn.microsoft.com/en-us/goglobal/gg674964

• NEC selected—IBM extended characters (lead byte 0xED and 0xEE):

https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838

• IBM selected characters (lead byte 0xFA, 0xFB, 0xFC):

https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841

• cp932 supports conversion of user-defined characters in combination with eucjpms, and solves
the problems with sjis/ujis conversion. For details, please refer to http://www.sljfaq.org/afaq/
encodings.html.

For some characters, conversion to and from ucs2 is different for sjis and cp932. The following
tables illustrate these differences.

Conversion to ucs2:

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

5C 005C 005C

7E 007E 007E

815C 2015 2015

815F 005C FF3C

8160 301C FF5E

8161 2016 2225

817C 2212 FF0D

8191 00A2 FFE0

8192 00A3 FFE1

81CA 00AC FFE2

Conversion from ucs2:

2174

https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx
https://msdn.microsoft.com/en-us/goglobal/gg674964
https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838
https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841
http://www.sljfaq.org/afaq/encodings.html
http://www.sljfaq.org/afaq/encodings.html

Asian Character Sets

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

005C 815F 5C

007E 7E 7E

00A2 8191 3F

00A3 8192 3F

00AC 81CA 3F

2015 815C 815C

2016 8161 3F

2212 817C 3F

2225 3F 8161

301C 8160 3F

FF0D 3F 817C

FF3C 3F 815F

FF5E 3F 8160

FFE0 3F 8191

FFE1 3F 8192

FFE2 3F 81CA

Users of any Japanese character sets should be aware that using --character-set-client-
handshake (or --skip-character-set-client-handshake) has an important effect. See
Section 7.1.7, “Server Command Options”.

12.10.7.2 The gb18030 Character Set

In MySQL, the gb18030 character set corresponds to the “Chinese National Standard GB 18030-2005:
Information technology—Chinese coded character set”, which is the official character set of the
People's Republic of China (PRC).

Characteristics of the MySQL gb18030 Character Set

• Supports all code points defined by the GB 18030-2005 standard. Unassigned code points in the
ranges (GB+8431A439, GB+90308130) and (GB+E3329A36, GB+EF39EF39) are treated as
'?' (0x3F). Conversion of unassigned code points return '?'.

• Supports UPPER and LOWER conversion for all GB18030 code points. Case folding defined by
Unicode is also supported (based on CaseFolding-6.3.0.txt).

• Supports Conversion of data to and from other character sets.

• Supports SQL statements such as SET NAMES.

• Supports comparison between gb18030 strings, and between gb18030 strings and strings of other
character sets. There is a conversion if strings have different character sets. Comparisons that
include or ignore trailing spaces are also supported.

• The private use area (U+E000, U+F8FF) in Unicode is mapped to gb18030.

• There is no mapping between (U+D800, U+DFFF) and GB18030. Attempted conversion of code
points in this range returns '?'.

• If an incoming sequence is illegal, an error or warning is returned. If an illegal sequence is used in
CONVERT(), an error is returned. Otherwise, a warning is returned.

• For consistency with utf8mb3 and utf8mb4, UPPER is not supported for ligatures.

2175

The Binary Character Set

• Searches for ligatures also match uppercase ligatures when using the gb18030_unicode_520_ci
collation.

• If a character has more than one uppercase character, the chosen uppercase character is the one
whose lowercase is the character itself.

• The minimum multibyte length is 1 and the maximum is 4. The character set determines the length of
a sequence using the first 1 or 2 bytes.

Supported Collations

• gb18030_bin: A binary collation.

• gb18030_chinese_ci: The default collation, which supports Pinyin. Sorting of non-Chinese
characters is based on the order of the original sort key. The original sort key is GB(UPPER(ch))
if UPPER(ch) exists. Otherwise, the original sort key is GB(ch). Chinese characters are sorted
according to the Pinyin collation defined in the Unicode Common Locale Data Repository (CLDR 24).
Non-Chinese characters are sorted before Chinese characters with the exception of GB+FE39FE39,
which is the code point maximum.

• gb18030_unicode_520_ci: A Unicode collation. Use this collation if you need to ensure that
ligatures are sorted correctly.

12.10.8 The Binary Character Set

The binary character set is the character set for binary strings, which are sequences of bytes. The
binary character set has one collation, also named binary. Comparison and sorting are based on
numeric byte values, rather than on numeric character code values (which for multibyte characters
differ from numeric byte values). For information about the differences between the binary collation
of the binary character set and the _bin collations of nonbinary character sets, see Section 12.8.5,
“The binary Collation Compared to _bin Collations”.

For the binary character set, the concepts of lettercase and accent equivalence do not apply:

• For single-byte characters stored as binary strings, character and byte boundaries are the same,
so lettercase and accent differences are significant in comparisons. That is, the binary collation is
case-sensitive and accent-sensitive.

mysql> SET NAMES 'binary';
mysql> SELECT CHARSET('abc'), COLLATION('abc');
+----------------+------------------+
| CHARSET('abc') | COLLATION('abc') |
+----------------+------------------+
| binary | binary |
+----------------+------------------+
mysql> SELECT 'abc' = 'ABC', 'a' = 'ä';
+---------------+------------+
| 'abc' = 'ABC' | 'a' = 'ä' |
+---------------+------------+
| 0 | 0 |
+---------------+------------+

• For multibyte characters stored as binary strings, character and byte boundaries differ. Character
boundaries are lost, so comparisons that depend on them are not meaningful.

To perform lettercase conversion of a binary string, first convert it to a nonbinary string using a
character set appropriate for the data stored in the string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING utf8mb4));
+-------------+------------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING utf8mb4)) |
+-------------+------------------------------------+
| New York | new york |
+-------------+------------------------------------+

2176

Restrictions on Character Sets

To convert a string expression to a binary string, these constructs are equivalent:

BINARY expr
CAST(expr AS BINARY)
CONVERT(expr USING BINARY)

If a value is a character string literal, the _binary introducer may be used to designate it as a binary
string. For example:

_binary 'a'

The _binary introducer is permitted for hexadecimal literals and bit-value literals as well, but
unnecessary; such literals are binary strings by default.

For more information about introducers, see Section 12.3.8, “Character Set Introducers”.

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about
that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

12.11 Restrictions on Character Sets
• Identifiers are stored in mysql database tables (user, db, and so forth) using utf8mb3, but

identifiers can contain only characters in the Basic Multilingual Plane (BMP). Supplementary
characters are not permitted in identifiers.

• The ucs2, utf16, utf16le, and utf32 character sets have the following restrictions:

• None of them can be used as the client character set. See Impermissible Client Character Sets.

• It is currently not possible to use LOAD DATA to load data files that use these character sets.

• FULLTEXT indexes cannot be created on a column that uses any of these character sets.
However, you can perform IN BOOLEAN MODE searches on the column without an index.

• The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multibyte safe and
may produce unexpected results with multibyte character sets. In addition, these operators compare
characters by their byte values and accented characters may not compare as equal even if a given
collation treats them as equal.

12.12 Setting the Error Message Language
By default, mysqld produces error messages in English, but they can be displayed instead in any
of several other languages: Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian,
Italian, Japanese, Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak,
Spanish, or Swedish. This applies to messages the server writes to the error log and sends to clients.

To select the language in which the server writes error messages, follow the instructions in this section.
For information about changing the character set for error messages (rather than the language), see
Section 12.6, “Error Message Character Set”. For general information about configuring error logging,
see Section 7.4.2, “The Error Log”.

The server searches for the error message file using these rules:

• It looks for the file in a directory constructed from two system variable values, lc_messages_dir
and lc_messages, with the latter converted to a language name. Suppose that you start the server
using this command:

mysqld --lc_messages_dir=/usr/share/mysql --lc_messages=fr_FR

2177

Adding a Character Set

In this case, mysqld maps the locale fr_FR to the language french and looks for the error file in
the /usr/share/mysql/french directory.

By default, the language files are located in the share/mysql/LANGUAGE directory under the
MySQL base directory.

• If the message file cannot be found in the directory constructed as just described, the server ignores
the lc_messages value and uses only the lc_messages_dir value as the location in which to
look.

• If the server cannot find the configured message file, it writes a message to the error log to indicate
the problem and defaults to built-in English messages.

The lc_messages_dir system variable can be set only at server startup and has only a global
read-only value at runtime. lc_messages can be set at server startup and has global and session
values that can be modified at runtime. Thus, the error message language can be changed while the
server is running, and each client can have its own error message language by setting its session
lc_messages value to the desired locale name. For example, if the server is using the fr_FR locale
for error messages, a client can execute this statement to receive error messages in English:

SET lc_messages = 'en_US';

12.13 Adding a Character Set

This section discusses the procedure for adding a character set to MySQL. The proper procedure
depends on whether the character set is simple or complex:

• If the character set does not need special string collating routines for sorting and does not need
multibyte character support, it is simple.

• If the character set needs either of those features, it is complex.

For example, greek and swe7 are simple character sets, whereas big5 and czech are complex
character sets.

To use the following instructions, you must have a MySQL source distribution. In the instructions,
MYSET represents the name of the character set that you want to add.

1. Add a <charset> element for MYSET to the sql/share/charsets/Index.xml file. Use the
existing contents in the file as a guide to adding new contents. A partial listing for the latin1
<charset> element follows:

<charset name="latin1">
 <family>Western</family>
 <description>cp1252 West European</description>
 ...
 <collation name="latin1_swedish_ci" id="8" order="Finnish, Swedish">
 <flag>primary</flag>
 <flag>compiled</flag>
 </collation>
 <collation name="latin1_danish_ci" id="15" order="Danish"/>
 ...
 <collation name="latin1_bin" id="47" order="Binary">
 <flag>binary</flag>
 <flag>compiled</flag>
 </collation>
 ...
</charset>

The <charset> element must list all the collations for the character set. These must include at
least a binary collation and a default (primary) collation. The default collation is often named using
a suffix of general_ci (general, case-insensitive). It is possible for the binary collation to be the

2178

Adding a Character Set

default collation, but usually they are different. The default collation should have a primary flag.
The binary collation should have a binary flag.

You must assign a unique ID number to each collation. The range of IDs from 1024 to 2047 is
reserved for user-defined collations. To find the maximum of the currently used collation IDs, use
this query:

SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;

2. This step depends on whether you are adding a simple or complex character set. A simple
character set requires only a configuration file, whereas a complex character set requires C source
file that defines collation functions, multibyte functions, or both.

For a simple character set, create a configuration file, MYSET.xml, that describes the character
set properties. Create this file in the sql/share/charsets directory. You can use a copy of
latin1.xml as the basis for this file. The syntax for the file is very simple:

• Comments are written as ordinary XML comments (<!-- text -->).

• Words within <map> array elements are separated by arbitrary amounts of whitespace.

• Each word within <map> array elements must be a number in hexadecimal format.

• The <map> array element for the <ctype> element has 257 words. The other <map> array
elements after that have 256 words. See Section 12.13.1, “Character Definition Arrays”.

• For each collation listed in the <charset> element for the character set in Index.xml,
MYSET.xml must contain a <collation> element that defines the character ordering.

For a complex character set, create a C source file that describes the character set properties and
defines the support routines necessary to properly perform operations on the character set:

• Create the file ctype-MYSET.c in the strings directory. Look at one of the existing ctype-
*.c files (such as ctype-big5.c) to see what needs to be defined. The arrays in your file must
have names like ctype_MYSET, to_lower_MYSET, and so on. These correspond to the arrays
for a simple character set. See Section 12.13.1, “Character Definition Arrays”.

• For each <collation> element listed in the <charset> element for the character set in
Index.xml, the ctype-MYSET.c file must provide an implementation of the collation.

• If the character set requires string collating functions, see Section 12.13.2, “String Collating
Support for Complex Character Sets”.

• If the character set requires multibyte character support, see Section 12.13.3, “Multi-Byte
Character Support for Complex Character Sets”.

3. Modify the configuration information. Use the existing configuration information as a guide to adding
information for MYSYS. The example here assumes that the character set has default and binary
collations, but more lines are needed if MYSET has additional collations.

a. Edit mysys/charset-def.c, and “register” the collations for the new character set.

Add these lines to the “declaration” section:

#ifdef HAVE_CHARSET_MYSET
extern CHARSET_INFO my_charset_MYSET_general_ci;
extern CHARSET_INFO my_charset_MYSET_bin;
#endif

Add these lines to the “registration” section:

#ifdef HAVE_CHARSET_MYSET
 add_compiled_collation(&my_charset_MYSET_general_ci);

2179

Character Definition Arrays

 add_compiled_collation(&my_charset_MYSET_bin);
#endif

b. If the character set uses ctype-MYSET.c, edit strings/CMakeLists.txt and add
ctype-MYSET.c to the definition of the STRINGS_SOURCES variable.

c. Edit cmake/character_sets.cmake:

i. Add MYSET to the value of with CHARSETS_AVAILABLE in alphabetic order.

ii. Add MYSET to the value of CHARSETS_COMPLEX in alphabetic order. This is needed even
for simple character sets, so that CMake can recognize -DDEFAULT_CHARSET=MYSET.

4. Reconfigure, recompile, and test.

12.13.1 Character Definition Arrays

Each simple character set has a configuration file located in the sql/share/charsets directory.
For a character set named MYSYS, the file is named MYSET.xml. It uses <map> array elements to list
character set properties. <map> elements appear within these elements:

• <ctype> defines attributes for each character.

• <lower> and <upper> list the lowercase and uppercase characters.

• <unicode> maps 8-bit character values to Unicode values.

• <collation> elements indicate character ordering for comparison and sorting, one element per
collation. Binary collations need no <map> element because the character codes themselves provide
the ordering.

For a complex character set as implemented in a ctype-MYSET.c file in the strings directory,
there are corresponding arrays: ctype_MYSET[], to_lower_MYSET[], and so forth. Not every
complex character set has all of the arrays. See also the existing ctype-*.c files for examples. See
the CHARSET_INFO.txt file in the strings directory for additional information.

Most of the arrays are indexed by character value and have 256 elements. The <ctype> array is
indexed by character value + 1 and has 257 elements. This is a legacy convention for handling EOF.

<ctype> array elements are bit values. Each element describes the attributes of a single character in
the character set. Each attribute is associated with a bitmask, as defined in include/m_ctype.h:

#define _MY_U 01 /* Upper case */
#define _MY_L 02 /* Lower case */
#define _MY_NMR 04 /* Numeral (digit) */
#define _MY_SPC 010 /* Spacing character */
#define _MY_PNT 020 /* Punctuation */
#define _MY_CTR 040 /* Control character */
#define _MY_B 0100 /* Blank */
#define _MY_X 0200 /* heXadecimal digit */

The <ctype> value for a given character should be the union of the applicable bitmask values that
describe the character. For example, 'A' is an uppercase character (_MY_U) as well as a hexadecimal
digit (_MY_X), so its ctype value should be defined like this:

ctype['A'+1] = _MY_U | _MY_X = 01 | 0200 = 0201

The bitmask values in m_ctype.h are octal values, but the elements of the <ctype> array in
MYSET.xml should be written as hexadecimal values.

The <lower> and <upper> arrays hold the lowercase and uppercase characters corresponding to
each member of the character set. For example:

lower['A'] should contain 'a'
upper['a'] should contain 'A'

2180

String Collating Support for Complex Character Sets

Each <collation> array indicates how characters should be ordered for comparison and sorting
purposes. MySQL sorts characters based on the values of this information. In some cases, this is
the same as the <upper> array, which means that sorting is case-insensitive. For more complicated
sorting rules (for complex character sets), see the discussion of string collating in Section 12.13.2,
“String Collating Support for Complex Character Sets”.

12.13.2 String Collating Support for Complex Character Sets

For a simple character set named MYSET, sorting rules are specified in the MYSET.xml configuration
file using <map> array elements within <collation> elements. If the sorting rules for your language
are too complex to be handled with simple arrays, you must define string collating functions in the
ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the
big5, czech, gbk, sjis, and tis160 character sets. Take a look at the MY_COLLATION_HANDLER
structures to see how they are used. See also the CHARSET_INFO.txt file in the strings directory
for additional information.

12.13.3 Multi-Byte Character Support for Complex Character Sets

If you want to add support for a new character set named MYSET that includes multibyte characters,
you must use multibyte character functions in the ctype-MYSET.c source file in the strings
directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the
euc_kr, gb2312, gbk, sjis, and ujis character sets. Take a look at the MY_CHARSET_HANDLER
structures to see how they are used. See also the CHARSET_INFO.txt file in the strings directory
for additional information.

12.14 Adding a Collation to a Character Set
Warning

User-defined collations are deprecated; you should expect support for them
to be removed in a future version of MySQL. As of MySQL 8.0.33, the server
issues a warning for any use of COLLATE user_defined_collation in
an SQL statement; a warning is also issued when the server is started with --
collation-server set equal to the name of a user-defined collation.

A collation is a set of rules that defines how to compare and sort character strings. Each collation in
MySQL belongs to a single character set. Every character set has at least one collation, and most have
two or more collations.

A collation orders characters based on weights. Each character in a character set maps to a weight.
Characters with equal weights compare as equal, and characters with unequal weights compare
according to the relative magnitude of their weights.

The WEIGHT_STRING() function can be used to see the weights for the characters in a
string. The value that it returns to indicate weights is a binary string, so it is convenient to use
HEX(WEIGHT_STRING(str)) to display the weights in printable form. The following example shows
that weights do not differ for lettercase for the letters in 'AaBb' if it is a nonbinary case-insensitive
string, but do differ if it is a binary string:

mysql> SELECT HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci));
+--+
| HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci)) |
+--+
| 41414242 |
+--+

2181

Additional Resources

mysql> SELECT HEX(WEIGHT_STRING(BINARY 'AaBb'));
+-----------------------------------+
| HEX(WEIGHT_STRING(BINARY 'AaBb')) |
+-----------------------------------+
| 41614262 |
+-----------------------------------+

MySQL supports several collation implementations, as discussed in Section 12.14.1, “Collation
Implementation Types”. Some of these can be added to MySQL without recompiling:

• Simple collations for 8-bit character sets.

• UCA-based collations for Unicode character sets.

• Binary (xxx_bin) collations.

The following sections describe how to add user-defined collations of the first two types to existing
character sets. All existing character sets already have a binary collation, so there is no need here to
describe how to add one.

Warning

Redefining built-in collations is not supported and may result in unexpected
server behavior.

Summary of the procedure for adding a new user-defined collation:

1. Choose a collation ID.

2. Add configuration information that names the collation and describes the character-ordering rules.

3. Restart the server.

4. Verify that the server recognizes the collation.

The instructions here cover only user-defined collations that can be added without recompiling MySQL.
To add a collation that does require recompiling (as implemented by means of functions in a C source
file), use the instructions in Section 12.13, “Adding a Character Set”. However, instead of adding all
the information required for a complete character set, just modify the appropriate files for an existing
character set. That is, based on what is already present for the character set's current collations, add
data structures, functions, and configuration information for the new collation.

Note

If you modify an existing user-defined collation, that may affect the ordering
of rows for indexes on columns that use the collation. In this case, rebuild
any such indexes to avoid problems such as incorrect query results. See
Section 3.14, “Rebuilding or Repairing Tables or Indexes”.

Additional Resources

• Example showing how to add a collation for full-text searches: Section 14.9.7, “Adding a User-
Defined Collation for Full-Text Indexing”

• The Unicode Collation Algorithm (UCA) specification: http://www.unicode.org/reports/tr10/

• The Locale Data Markup Language (LDML) specification: http://www.unicode.org/reports/tr35/

12.14.1 Collation Implementation Types

MySQL implements several types of collations:

Simple collations for 8-bit character sets

2182

http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr35/

Collation Implementation Types

This kind of collation is implemented using an array of 256 weights that defines a one-to-one mapping
from character codes to weights. latin1_swedish_ci is an example. It is a case-insensitive
collation, so the uppercase and lowercase versions of a character have the same weights and they
compare as equal.

mysql> SET NAMES 'latin1' COLLATE 'latin1_swedish_ci';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT HEX(WEIGHT_STRING('a')), HEX(WEIGHT_STRING('A'));
+-------------------------+-------------------------+
| HEX(WEIGHT_STRING('a')) | HEX(WEIGHT_STRING('A')) |
+-------------------------+-------------------------+
| 41 | 41 |
+-------------------------+-------------------------+
1 row in set (0.01 sec)

mysql> SELECT 'a' = 'A';
+-----------+
| 'a' = 'A' |
+-----------+
| 1 |
+-----------+
1 row in set (0.12 sec)

For implementation instructions, see Section 12.14.3, “Adding a Simple Collation to an 8-Bit Character
Set”.

Complex collations for 8-bit character sets

This kind of collation is implemented using functions in a C source file that define how to order
characters, as described in Section 12.13, “Adding a Character Set”.

Collations for non-Unicode multibyte character sets

For this type of collation, 8-bit (single-byte) and multibyte characters are handled differently. For 8-bit
characters, character codes map to weights in case-insensitive fashion. (For example, the single-byte
characters 'a' and 'A' both have a weight of 0x41.) For multibyte characters, there are two types of
relationship between character codes and weights:

• Weights equal character codes. sjis_japanese_ci is an example of this kind of collation. The
multibyte character 'ぢ' has a character code of 0x82C0, and the weight is also 0x82C0.

mysql> CREATE TABLE t1
 (c1 VARCHAR(2) CHARACTER SET sjis COLLATE sjis_japanese_ci);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x82C0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
ぢ	82C0	82C0
+------+---------+------------------------+
3 rows in set (0.00 sec)

• Character codes map one-to-one to weights, but a code is not necessarily equal to the weight.
gbk_chinese_ci is an example of this kind of collation. The multibyte character '膰' has a
character code of 0x81B0 but a weight of 0xC286.

mysql> CREATE TABLE t1
 (c1 VARCHAR(2) CHARACTER SET gbk COLLATE gbk_chinese_ci);
Query OK, 0 rows affected (0.33 sec)

2183

Collation Implementation Types

mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x81B0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	41
A	41	41
膰	81B0	C286
+------+---------+------------------------+
3 rows in set (0.00 sec)

For implementation instructions, see Section 12.13, “Adding a Character Set”.

Collations for Unicode multibyte character sets

Some of these collations are based on the Unicode Collation Algorithm (UCA), others are not.

Non-UCA collations have a one-to-one mapping from character code to weight. In MySQL, such
collations are case-insensitive and accent-insensitive. utf8mb4_general_ci is an example: 'a',
'A', 'À', and 'á' each have different character codes but all have a weight of 0x0041 and compare
as equal.

mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_general_ci';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1
 (c1 CHAR(1) CHARACTER SET UTF8MB4 COLLATE utf8mb4_general_ci);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES ('a'),('A'),('À'),('á');
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
a	61	0041
A	41	0041
À	C380	0041
á	C3A1	0041
+------+---------+------------------------+
4 rows in set (0.00 sec)

UCA-based collations in MySQL have these properties:

• If a character has weights, each weight uses 2 bytes (16 bits).

• A character may have zero weights (or an empty weight). In this case, the character is ignorable.
Example: "U+0000 NULL" does not have a weight and is ignorable.

• A character may have one weight. Example: 'a' has a weight of 0x0E33.

mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_unicode_ci';
Query OK, 0 rows affected (0.05 sec)

mysql> SELECT HEX('a'), HEX(WEIGHT_STRING('a'));
+----------+-------------------------+
| HEX('a') | HEX(WEIGHT_STRING('a')) |
+----------+-------------------------+
| 61 | 0E33 |
+----------+-------------------------+
1 row in set (0.02 sec)

• A character may have many weights. This is an expansion. Example: The German letter 'ß' (SZ
ligature, or SHARP S) has a weight of 0x0FEA0FEA.

2184

Choosing a Collation ID

mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_unicode_ci';
Query OK, 0 rows affected (0.11 sec)

mysql> SELECT HEX('ß'), HEX(WEIGHT_STRING('ß'));
+-----------+--------------------------+
| HEX('ß') | HEX(WEIGHT_STRING('ß')) |
+-----------+--------------------------+
| C39F | 0FEA0FEA |
+-----------+--------------------------+
1 row in set (0.00 sec)

• Many characters may have one weight. This is a contraction. Example: 'ch' is a single letter in
Czech and has a weight of 0x0EE2.

mysql> SET NAMES 'utf8mb4' COLLATE 'utf8mb4_czech_ci';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT HEX('ch'), HEX(WEIGHT_STRING('ch'));
+-----------+--------------------------+
| HEX('ch') | HEX(WEIGHT_STRING('ch')) |
+-----------+--------------------------+
| 6368 | 0EE2 |
+-----------+--------------------------+
1 row in set (0.00 sec)

A many-characters-to-many-weights mapping is also possible (this is contraction with expansion), but
is not supported by MySQL.

For implementation instructions, for a non-UCA collation, see Section 12.13, “Adding a Character Set”.
For a UCA collation, see Section 12.14.4, “Adding a UCA Collation to a Unicode Character Set”.

Miscellaneous collations

There are also a few collations that do not fall into any of the previous categories.

12.14.2 Choosing a Collation ID

Each collation must have a unique ID. To add a collation, you must choose an ID value that is not
currently used. MySQL supports two-byte collation IDs. The range of IDs from 1024 to 2047 is reserved
for user-defined collations.

The collation ID that you choose appears in these contexts:

• The ID column of the Information Schema COLLATIONS table.

• The Id column of SHOW COLLATION output.

• The charsetnr member of the MYSQL_FIELD C API data structure.

• The number member of the MY_CHARSET_INFO data structure returned by the
mysql_get_character_set_info() C API function.

To determine the largest currently used ID, issue the following statement:

mysql> SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;
+---------+
| MAX(ID) |
+---------+
| 247 |
+---------+

To display a list of all currently used IDs, issue this statement:

mysql> SELECT ID FROM INFORMATION_SCHEMA.COLLATIONS ORDER BY ID;
+-----+
| ID |

2185

https://dev.mysql.com/doc/c-api/8.0/en/mysql-get-character-set-info.html

Adding a Simple Collation to an 8-Bit Character Set

+-----+
| 1 |
| 2 |
| ... |
| 52 |
| 53 |
| 57 |
| 58 |
| ... |
| 98 |
| 99 |
| 128 |
| 129 |
| ... |
| 247 |
+-----+

Warning

Before upgrading, you should save the configuration files that you change. If
you upgrade in place, the process replaces the modified files.

12.14.3 Adding a Simple Collation to an 8-Bit Character Set

This section describes how to add a simple collation for an 8-bit character set by writing the
<collation> elements associated with a <charset> character set description in the MySQL
Index.xml file. The procedure described here does not require recompiling MySQL. The example
adds a collation named latin1_test_ci to the latin1 character set.

1. Choose a collation ID, as shown in Section 12.14.2, “Choosing a Collation ID”. The following steps
use an ID of 1024.

2. Modify the Index.xml and latin1.xml configuration files. These files are located in the directory
named by the character_sets_dir system variable. You can check the variable value as
follows, although the path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. Find the <charset> element
for the character set to which the collation is being added, and add a <collation> element that
indicates the collation name and ID, to associate the name with the ID. For example:

<charset name="latin1">
 ...
 <collation name="latin1_test_ci" id="1024"/>
 ...
</charset>

4. In the latin1.xml configuration file, add a <collation> element that names the collation and
that contains a <map> element that defines a character code-to-weight mapping table for character
codes 0 to 255. Each value within the <map> element must be a number in hexadecimal format.

<collation name="latin1_test_ci">
<map>
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F

2186

Adding a UCA Collation to a Unicode Character Set

 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C D7 5C 55 55 55 59 59 DE DF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C F7 5C 55 55 55 59 59 DE FF
</map>
</collation>

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION WHERE Collation = 'latin1_test_ci';
+----------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------+---------+------+---------+----------+---------+
| latin1_test_ci | latin1 | 1024 | | | 1 |
+----------------+---------+------+---------+----------+---------+

12.14.4 Adding a UCA Collation to a Unicode Character Set

This section describes how to add a UCA collation for a Unicode character set by writing the
<collation> element within a <charset> character set description in the MySQL Index.xml file.
The procedure described here does not require recompiling MySQL. It uses a subset of the Locale
Data Markup Language (LDML) specification, which is available at http://www.unicode.org/reports/tr35/.
With this method, you need not define the entire collation. Instead, you begin with an existing “base”
collation and describe the new collation in terms of how it differs from the base collation. The following
table lists the base collations of the Unicode character sets for which UCA collations can be defined. It
is not possible to create user-defined UCA collations for utf16le; there is no utf16le_unicode_ci
collation that would serve as the basis for such collations.

Table 12.4 MySQL Character Sets Available for User-Defined UCA Collations

Character Set Base Collation

utf8mb4 utf8mb4_unicode_ci

ucs2 ucs2_unicode_ci

utf16 utf16_unicode_ci

utf32 utf32_unicode_ci

The following sections show how to add a collation that is defined using LDML syntax, and provide a
summary of LDML rules supported in MySQL.

12.14.4.1 Defining a UCA Collation Using LDML Syntax

To add a UCA collation for a Unicode character set without recompiling MySQL, use the
following procedure. If you are unfamiliar with the LDML rules used to describe the collation's sort
characteristics, see Section 12.14.4.2, “LDML Syntax Supported in MySQL”.

The example adds a collation named utf8mb4_phone_ci to the utf8mb4 character set. The
collation is designed for a scenario involving a Web application for which users post their names and
phone numbers. Phone numbers can be given in very different formats:

+7-12345-67
+7-12-345-67
+7 12 345 67
+7 (12) 345 67
+71234567

The problem raised by dealing with these kinds of values is that the varying permissible formats make
searching for a specific phone number very difficult. The solution is to define a new collation that
reorders punctuation characters, making them ignorable.

2187

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

1. Choose a collation ID, as shown in Section 12.14.2, “Choosing a Collation ID”. The following steps
use an ID of 1029.

2. To modify the Index.xml configuration file. This file is located in the directory named by the
character_sets_dir system variable. You can check the variable value as follows, although the
path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. In addition, you must provide the
collation ordering rules. Find the <charset> element for the character set to which the collation
is being added, and add a <collation> element that indicates the collation name and ID, to
associate the name with the ID. Within the <collation> element, provide a <rules> element
containing the ordering rules:

<charset name="utf8mb4">
 ...
 <collation name="utf8mb4_phone_ci" id="1029">
 <rules>
 <reset>\u0000</reset>
 <i>\u0020</i> <!-- space -->
 <i>\u0028</i> <!-- left parenthesis -->
 <i>\u0029</i> <!-- right parenthesis -->
 <i>\u002B</i> <!-- plus -->
 <i>\u002D</i> <!-- hyphen -->
 </rules>
 </collation>
 ...
</charset>

4. If you want a similar collation for other Unicode character sets, add other <collation> elements.
For example, to define ucs2_phone_ci, add a <collation> element to the <charset
name="ucs2"> element. Remember that each collation must have its own unique ID.

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION WHERE Collation = 'utf8mb4_phone_ci';
+------------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+------------------+---------+------+---------+----------+---------+
| utf8mb4_phone_ci | utf8mb4 | 1029 | | | 8 |
+------------------+---------+------+---------+----------+---------+

Now test the collation to make sure that it has the desired properties.

Create a table containing some sample phone numbers using the new collation:

mysql> CREATE TABLE phonebook (
 name VARCHAR(64),
 phone VARCHAR(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_phone_ci
);
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO phonebook VALUES ('Svoj','+7 912 800 80 02');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Hf','+7 (912) 800 80 04');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Bar','+7-912-800-80-01');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Ramil','(7912) 800 80 03');
Query OK, 1 row affected (0.00 sec)

2188

Adding a UCA Collation to a Unicode Character Set

mysql> INSERT INTO phonebook VALUES ('Sanja','+380 (912) 8008005');
Query OK, 1 row affected (0.00 sec)

Run some queries to see whether the ignored punctuation characters are in fact ignored for
comparison and sorting:

mysql> SELECT * FROM phonebook ORDER BY phone;
+-------+--------------------+
| name | phone |
+-------+--------------------+
Sanja	+380 (912) 8008005
Bar	+7-912-800-80-01
Svoj	+7 912 800 80 02
Ramil	(7912) 800 80 03
Hf	+7 (912) 800 80 04
+-------+--------------------+
5 rows in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='+7(912)800-80-01';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='79128008001';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='7 9 1 2 8 0 0 8 0 0 1';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

12.14.4.2 LDML Syntax Supported in MySQL

This section describes the LDML syntax that MySQL recognizes. This is a subset of the syntax
described in the LDML specification available at http://www.unicode.org/reports/tr35/, which should
be consulted for further information. MySQL recognizes a large enough subset of the syntax that, in
many cases, it is possible to download a collation definition from the Unicode Common Locale Data
Repository and paste the relevant part (that is, the part between the <rules> and </rules> tags)
into the MySQL Index.xml file. The rules described here are all supported except that character
sorting occurs only at the primary level. Rules that specify differences at secondary or higher sort levels
are recognized (and thus can be included in collation definitions) but are treated as equality at the
primary level.

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file.
See Section 12.14.4.3, “Diagnostics During Index.xml Parsing”.

Character Representation

Characters named in LDML rules can be written literally or in \unnnn format, where nnnn is the
hexadecimal Unicode code point value. For example, A and á can be written literally or as \u0041
and \u00E1. Within hexadecimal values, the digits A through F are not case-sensitive; \u00E1
and \u00e1 are equivalent. For UCA 4.0.0 collations, hexadecimal notation can be used only for
characters in the Basic Multilingual Plane, not for characters outside the BMP range of 0000 to FFFF.
For UCA 5.2.0 collations, hexadecimal notation can be used for any character.

2189

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

The Index.xml file itself should be written using UTF-8 encoding.

Syntax Rules

LDML has reset rules and shift rules to specify character ordering. Orderings are given as a set of rules
that begin with a reset rule that establishes an anchor point, followed by shift rules that indicate how
characters sort relative to the anchor point.

• A <reset> rule does not specify any ordering in and of itself. Instead, it “resets” the ordering for
subsequent shift rules to cause them to be taken in relation to a given character. Either of the
following rules resets subsequent shift rules to be taken in relation to the letter 'A':

<reset>A</reset>

<reset>\u0041</reset>

• The <p>, <s>, and <t> shift rules define primary, secondary, and tertiary differences of a character
from another character:

• Use primary differences to distinguish separate letters.

• Use secondary differences to distinguish accent variations.

• Use tertiary differences to distinguish lettercase variations.

Either of these rules specifies a primary shift rule for the 'G' character:

<p>G</p>

<p>\u0047</p>

• The <i> shift rule indicates that one character sorts identically to another. The following rules cause
'b' to sort the same as 'a':

<reset>a</reset>
<i>b</i>

• Abbreviated shift syntax specifies multiple shift rules using a single pair of tags. The following table
shows the correspondence between abbreviated syntax rules and the equivalent nonabbreviated
rules.

Table 12.5 Abbreviated Shift Syntax

Abbreviated Syntax Nonabbreviated Syntax

<pc>xyz</pc> <p>x</p><p>y</p><p>z</p>

<sc>xyz</sc> <s>x</s><s>y</s><s>z</s>

<tc>xyz</tc> <t>x</t><t>y</t><t>z</t>

<ic>xyz</ic> <i>x</i><i>y</i><i>z</i>

• An expansion is a reset rule that establishes an anchor point for a multiple-character sequence.
MySQL supports expansions 2 to 6 characters long. The following rules put 'z' greater at the
primary level than the sequence of three characters 'abc':

<reset>abc</reset>
<p>z</p>

• A contraction is a shift rule that sorts a multiple-character sequence. MySQL supports contractions 2
to 6 characters long. The following rules put the sequence of three characters 'xyz' greater at the
primary level than 'a':

<reset>a</reset>
<p>xyz</p>

2190

Adding a UCA Collation to a Unicode Character Set

• Long expansions and long contractions can be used together. These rules put the sequence of three
characters 'xyz' greater at the primary level than the sequence of three characters 'abc':

<reset>abc</reset>
<p>xyz</p>

• Normal expansion syntax uses <x> plus <extend> elements to specify an expansion. The following
rules put the character 'k' greater at the secondary level than the sequence 'ch'. That is, 'k'
behaves as if it expands to a character after 'c' followed by 'h':

<reset>c</reset>
<x><s>k</s><extend>h</extend></x>

This syntax permits long sequences. These rules sort the sequence 'ccs' greater at the tertiary
level than the sequence 'cscs':

<reset>cs</reset>
<x><t>ccs</t><extend>cs</extend></x>

The LDML specification describes normal expansion syntax as “tricky.” See that specification for
details.

• Previous context syntax uses <x> plus <context> elements to specify that the context before a
character affects how it sorts. The following rules put '-' greater at the secondary level than 'a',
but only when '-' occurs after 'b':

<reset>a</reset>
<x><context>b</context><s>-</s></x>

• Previous context syntax can include the <extend> element. These rules put 'def' greater at the
primary level than 'aghi', but only when 'def' comes after 'abc':

<reset>a</reset>
<x><context>abc</context><p>def</p><extend>ghi</extend></x>

• Reset rules permit a before attribute. Normally, shift rules after a reset rule indicate characters
that sort after the reset character. Shift rules after a reset rule that has the before attribute indicate
characters that sort before the reset character. The following rules put the character 'b' immediately
before 'a' at the primary level:

<reset before="primary">a</reset>
<p>b</p>

Permissible before attribute values specify the sort level by name or the equivalent numeric value:

<reset before="primary">
<reset before="1">

<reset before="secondary">
<reset before="2">

<reset before="tertiary">
<reset before="3">

• A reset rule can name a logical reset position rather than a literal character:

<first_tertiary_ignorable/>
<last_tertiary_ignorable/>
<first_secondary_ignorable/>
<last_secondary_ignorable/>
<first_primary_ignorable/>
<last_primary_ignorable/>
<first_variable/>
<last_variable/>
<first_non_ignorable/>
<last_non_ignorable/>
<first_trailing/>
<last_trailing/>

2191

Adding a UCA Collation to a Unicode Character Set

These rules put 'z' greater at the primary level than nonignorable characters that have a Default
Unicode Collation Element Table (DUCET) entry and that are not CJK:

<reset><last_non_ignorable/></reset>
<p>z</p>

Logical positions have the code points shown in the following table.

Table 12.6 Logical Reset Position Code Points

Logical Position Unicode 4.0.0 Code Point Unicode 5.2.0 Code Point

<first_non_ignorable/> U+02D0 U+02D0

<last_non_ignorable/> U+A48C U+1342E

<first_primary_ignorable/
>

U+0332 U+0332

<last_primary_ignorable/
>

U+20EA U+101FD

<first_secondary_ignorable/
>

U+0000 U+0000

<last_secondary_ignorable/
>

U+FE73 U+FE73

<first_tertiary_ignorable/
>

U+0000 U+0000

<last_tertiary_ignorable/
>

U+FE73 U+FE73

<first_trailing/> U+0000 U+0000

<last_trailing/> U+0000 U+0000

<first_variable/> U+0009 U+0009

<last_variable/> U+2183 U+1D371

• The <collation> element permits a shift-after-method attribute that affects character weight
calculation for shift rules. The attribute has these permitted values:

• simple: Calculate character weights as for reset rules that do not have a before attribute. This is
the default if the attribute is not given.

• expand: Use expansions for shifts after reset rules.

Suppose that '0' and '1' have weights of 0E29 and 0E2A and we want to put all basic Latin letters
between '0' and '1':

<reset>0</reset>
<pc>abcdefghijklmnopqrstuvwxyz</pc>

For simple shift mode, weights are calculated as follows:

'a' has weight 0E29+1
'b' has weight 0E29+2
'c' has weight 0E29+3
...

However, there are not enough vacant positions to put 26 characters between '0' and '1'. The
result is that digits and letters are intermixed.

To solve this, use shift-after-method="expand". Then weights are calculated like this:

'a' has weight [0E29][233D+1]

2192

Character Set Configuration

'b' has weight [0E29][233D+2]
'c' has weight [0E29][233D+3]
...

233D is the UCA 4.0.0 weight for character 0xA48C, which is the last nonignorable character (a sort
of the greatest character in the collation, excluding CJK). UCA 5.2.0 is similar but uses 3ACA, for
character 0x1342E.

MySQL-Specific LDML Extensions

An extension to LDML rules permits the <collation> element to include an optional version
attribute in <collation> tags to indicate the UCA version on which the collation is based. If the
version attribute is omitted, its default value is 4.0.0. For example, this specification indicates a
collation that is based on UCA 5.2.0:

<collation id="nnn" name="utf8mb4_xxx_ci" version="5.2.0">
...
</collation>

12.14.4.3 Diagnostics During Index.xml Parsing

The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file:

• Unknown tags are written to the error log. For example, the following message results if a collation
definition contains a <aaa> tag:

[Warning] Buffered warning: Unknown LDML tag:
'charsets/charset/collation/rules/aaa'

• If collation initialization is not possible, the server reports an “Unknown collation” error, and also
generates warnings explaining the problems, such as in the previous example. In other cases, when
a collation description is generally correct but contains some unknown tags, the collation is initialized
and is available for use. The unknown parts are ignored, but a warning is generated in the error log.

• Problems with collations generate warnings that clients can display with SHOW WARNINGS. Suppose
that a reset rule contains an expansion longer than the maximum supported length of 6 characters:

<reset>abcdefghi</reset>
<i>x</i>

An attempt to use the collation produces warnings:

mysql> SELECT _utf8mb4'test' COLLATE utf8mb4_test_ci;
ERROR 1273 (HY000): Unknown collation: 'utf8mb4_test_ci'
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Error | 1273 | Unknown collation: 'utf8mb4_test_ci' |
| Warning | 1273 | Expansion is too long at 'abcdefghi=x' |
+---------+------+--+

12.15 Character Set Configuration
The MySQL server has a compiled-in default character set and collation. To change these defaults,
use the --character-set-server and --collation-server options when you start the server.
See Section 7.1.7, “Server Command Options”. The collation must be a legal collation for the default
character set. To determine which collations are available for each character set, use the SHOW
COLLATION statement or query the INFORMATION_SCHEMA COLLATIONS table.

If you try to use a character set that is not compiled into your binary, you might run into the following
problems:

• If your program uses an incorrect path to determine where the character sets are stored (which is
typically the share/mysql/charsets or share/charsets directory under the MySQL installation

2193

MySQL Server Locale Support

directory), this can be fixed by using the --character-sets-dir option when you run the
program. For example, to specify a directory to be used by MySQL client programs, list it in the
[client] group of your option file. The examples given here show what the setting might look like
for Unix or Windows, respectively:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

[client]
character-sets-dir="C:/Program Files/MySQL/MySQL Server 8.0/share/charsets"

• If the character set is a complex character set that cannot be loaded dynamically, you must
recompile the program with support for the character set.

For Unicode character sets, you can define collations without recompiling by using LDML notation.
See Section 12.14.4, “Adding a UCA Collation to a Unicode Character Set”.

• If the character set is a dynamic character set, but you do not have a configuration file for it, you
should install the configuration file for the character set from a new MySQL distribution.

• If your character set index file (Index.xml) does not contain the name for the character set, your
program displays an error message:

Character set 'charset_name' is not a compiled character set and is not
specified in the '/usr/share/mysql/charsets/Index.xml' file

To solve this problem, you should either get a new index file or manually add the name of any
missing character sets to the current file.

You can force client programs to use specific character set as follows:

[client]
default-character-set=charset_name

This is normally unnecessary. However, when character_set_system differs from
character_set_server or character_set_client, and you input characters manually (as
database object identifiers, column values, or both), these may be displayed incorrectly in output from
the client or the output itself may be formatted incorrectly. In such cases, starting the mysql client with
--default-character-set=system_character_set—that is, setting the client character set to
match the system character set—should fix the problem.

12.16 MySQL Server Locale Support
The locale indicated by the lc_time_names system variable controls the language used to display
day and month names and abbreviations. This variable affects the output from the DATE_FORMAT(),
DAYNAME(), and MONTHNAME() functions.

lc_time_names does not affect the STR_TO_DATE() or GET_FORMAT() function.

The lc_time_names value does not affect the result from FORMAT(), but this function takes an
optional third parameter that enables a locale to be specified to be used for the result number's decimal
point, thousands separator, and grouping between separators. Permissible locale values are the same
as the legal values for the lc_time_names system variable.

Locale names have language and region subtags listed by IANA (http://www.iana.org/assignments/
language-subtag-registry) such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless
of your system's locale setting, but you can set the value at server startup, or set the GLOBAL value at
runtime if you have privileges sufficient to set global system variables; see Section 7.1.9.1, “System
Variable Privileges”. Any client can examine the value of lc_time_names or set its SESSION value to
affect the locale for its own connection.

(The first SET NAMES statement in the following example may not be necessary if no settings relating
to character set and collation have been changed from their defaults; we include it for completeness.)

2194

http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry

MySQL Server Locale Support

mysql> SET NAMES 'utf8mb4';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2020-01-01'), MONTHNAME('2020-01-01');
+-----------------------+-------------------------+
| DAYNAME('2020-01-01') | MONTHNAME('2020-01-01') |
+-----------------------+-------------------------+
| Wednesday | January |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2020-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2020-01-01','%W %a %M %b') |
+---+
| Wednesday Wed January Jan |
+---+
1 row in set (0.00 sec)

mysql> SET lc_time_names = 'es_MX';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| es_MX |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2020-01-01'), MONTHNAME('2020-01-01');
+-----------------------+-------------------------+
| DAYNAME('2020-01-01') | MONTHNAME('2020-01-01') |
+-----------------------+-------------------------+
| miércoles | enero |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2020-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2020-01-01','%W %a %M %b') |
+---+
| miércoles mié enero ene |
+---+
1 row in set (0.00 sec)

The day or month name for each of the affected functions is converted from utf8mb4 to the character
set indicated by the character_set_connection system variable.

lc_time_names may be set to any of the following locale values. The set of locales supported by
MySQL may differ from those supported by your operating system.

Locale Value Meaning

ar_AE Arabic - United Arab Emirates

ar_BH Arabic - Bahrain

ar_DZ Arabic - Algeria

ar_EG Arabic - Egypt

ar_IN Arabic - India

ar_IQ Arabic - Iraq

2195

MySQL Server Locale Support

Locale Value Meaning

ar_JO Arabic - Jordan

ar_KW Arabic - Kuwait

ar_LB Arabic - Lebanon

ar_LY Arabic - Libya

ar_MA Arabic - Morocco

ar_OM Arabic - Oman

ar_QA Arabic - Qatar

ar_SA Arabic - Saudi Arabia

ar_SD Arabic - Sudan

ar_SY Arabic - Syria

ar_TN Arabic - Tunisia

ar_YE Arabic - Yemen

be_BY Belarusian - Belarus

bg_BG Bulgarian - Bulgaria

ca_ES Catalan - Spain

cs_CZ Czech - Czech Republic

da_DK Danish - Denmark

de_AT German - Austria

de_BE German - Belgium

de_CH German - Switzerland

de_DE German - Germany

de_LU German - Luxembourg

el_GR Greek - Greece

en_AU English - Australia

en_CA English - Canada

en_GB English - United Kingdom

en_IN English - India

en_NZ English - New Zealand

en_PH English - Philippines

en_US English - United States

en_ZA English - South Africa

en_ZW English - Zimbabwe

es_AR Spanish - Argentina

es_BO Spanish - Bolivia

es_CL Spanish - Chile

es_CO Spanish - Colombia

es_CR Spanish - Costa Rica

es_DO Spanish - Dominican Republic

es_EC Spanish - Ecuador

es_ES Spanish - Spain

es_GT Spanish - Guatemala

2196

MySQL Server Locale Support

Locale Value Meaning

es_HN Spanish - Honduras

es_MX Spanish - Mexico

es_NI Spanish - Nicaragua

es_PA Spanish - Panama

es_PE Spanish - Peru

es_PR Spanish - Puerto Rico

es_PY Spanish - Paraguay

es_SV Spanish - El Salvador

es_US Spanish - United States

es_UY Spanish - Uruguay

es_VE Spanish - Venezuela

et_EE Estonian - Estonia

eu_ES Basque - Spain

fi_FI Finnish - Finland

fo_FO Faroese - Faroe Islands

fr_BE French - Belgium

fr_CA French - Canada

fr_CH French - Switzerland

fr_FR French - France

fr_LU French - Luxembourg

gl_ES Galician - Spain

gu_IN Gujarati - India

he_IL Hebrew - Israel

hi_IN Hindi - India

hr_HR Croatian - Croatia

hu_HU Hungarian - Hungary

id_ID Indonesian - Indonesia

is_IS Icelandic - Iceland

it_CH Italian - Switzerland

it_IT Italian - Italy

ja_JP Japanese - Japan

ko_KR Korean - Republic of Korea

lt_LT Lithuanian - Lithuania

lv_LV Latvian - Latvia

mk_MK Macedonian - North Macedonia

mn_MN Mongolia - Mongolian

ms_MY Malay - Malaysia

nb_NO Norwegian(Bokmål) - Norway

nl_BE Dutch - Belgium

nl_NL Dutch - The Netherlands

no_NO Norwegian - Norway

2197

MySQL Server Locale Support

Locale Value Meaning

pl_PL Polish - Poland

pt_BR Portugese - Brazil

pt_PT Portugese - Portugal

rm_CH Romansh - Switzerland

ro_RO Romanian - Romania

ru_RU Russian - Russia

ru_UA Russian - Ukraine

sk_SK Slovak - Slovakia

sl_SI Slovenian - Slovenia

sq_AL Albanian - Albania

sr_RS Serbian - Serbia

sv_FI Swedish - Finland

sv_SE Swedish - Sweden

ta_IN Tamil - India

te_IN Telugu - India

th_TH Thai - Thailand

tr_TR Turkish - Turkey

uk_UA Ukrainian - Ukraine

ur_PK Urdu - Pakistan

vi_VN Vietnamese - Vietnam

zh_CN Chinese - China

zh_HK Chinese - Hong Kong

zh_TW Chinese - Taiwan

2198

Chapter 13 Data Types

Table of Contents
13.1 Numeric Data Types .. 2200

13.1.1 Numeric Data Type Syntax ... 2200
13.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT ... 2204
13.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC .. 2204
13.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE 2205
13.1.5 Bit-Value Type - BIT ... 2205
13.1.6 Numeric Type Attributes .. 2205
13.1.7 Out-of-Range and Overflow Handling ... 2207

13.2 Date and Time Data Types .. 2208
13.2.1 Date and Time Data Type Syntax .. 2209
13.2.2 The DATE, DATETIME, and TIMESTAMP Types ... 2211
13.2.3 The TIME Type .. 2213
13.2.4 The YEAR Type ... 2213
13.2.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME 2214
13.2.6 Fractional Seconds in Time Values .. 2217
13.2.7 What Calendar Is Used By MySQL? .. 2218
13.2.8 Conversion Between Date and Time Types .. 2219
13.2.9 2-Digit Years in Dates ... 2220

13.3 String Data Types ... 2220
13.3.1 String Data Type Syntax ... 2220
13.3.2 The CHAR and VARCHAR Types ... 2224
13.3.3 The BINARY and VARBINARY Types ... 2225
13.3.4 The BLOB and TEXT Types ... 2227
13.3.5 The ENUM Type .. 2228
13.3.6 The SET Type .. 2231

13.4 Spatial Data Types .. 2233
13.4.1 Spatial Data Types ... 2235
13.4.2 The OpenGIS Geometry Model ... 2236
13.4.3 Supported Spatial Data Formats .. 2241
13.4.4 Geometry Well-Formedness and Validity .. 2244
13.4.5 Spatial Reference System Support .. 2245
13.4.6 Creating Spatial Columns .. 2246
13.4.7 Populating Spatial Columns ... 2246
13.4.8 Fetching Spatial Data .. 2247
13.4.9 Optimizing Spatial Analysis ... 2248
13.4.10 Creating Spatial Indexes ... 2248
13.4.11 Using Spatial Indexes ... 2249

13.5 The JSON Data Type .. 2251
13.6 Data Type Default Values .. 2266
13.7 Data Type Storage Requirements .. 2269
13.8 Choosing the Right Type for a Column ... 2274
13.9 Using Data Types from Other Database Engines .. 2274

MySQL supports SQL data types in several categories: numeric types, date and time types, string
(character and byte) types, spatial types, and the JSON data type. This chapter provides an overview
and more detailed description of the properties of the types in each category, and a summary of the
data type storage requirements. The initial overviews are intentionally brief. Consult the more detailed
descriptions for additional information about particular data types, such as the permissible formats in
which you can specify values.

Data type descriptions use these conventions:

2199

Numeric Data Types

• For integer types, M indicates the maximum display width. For floating-point and fixed-point types,
M is the total number of digits that can be stored (the precision). For string types, M is the maximum
length. The maximum permissible value of M depends on the data type.

• D applies to floating-point and fixed-point types and indicates the number of digits following the
decimal point (the scale). The maximum possible value is 30, but should be no greater than M−2.

• fsp applies to the TIME, DATETIME, and TIMESTAMP types and represents fractional seconds
precision; that is, the number of digits following the decimal point for fractional parts of seconds. The
fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part.
If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility
with previous MySQL versions.)

• Square brackets ([and]) indicate optional parts of type definitions.

13.1 Numeric Data Types

MySQL supports all standard SQL numeric data types. These types include the exact numeric data
types (INTEGER, SMALLINT, DECIMAL, and NUMERIC), as well as the approximate numeric data
types (FLOAT, REAL, and DOUBLE PRECISION). The keyword INT is a synonym for INTEGER, and
the keywords DEC and FIXED are synonyms for DECIMAL. MySQL treats DOUBLE as a synonym for
DOUBLE PRECISION (a nonstandard extension). MySQL also treats REAL as a synonym for DOUBLE
PRECISION (a nonstandard variation), unless the REAL_AS_FLOAT SQL mode is enabled.

The BIT data type stores bit values and is supported for MyISAM, MEMORY, InnoDB, and NDB tables.

For information about how MySQL handles assignment of out-of-range values to columns and overflow
during expression evaluation, see Section 13.1.7, “Out-of-Range and Overflow Handling”.

For information about storage requirements of the numeric data types, see Section 13.7, “Data Type
Storage Requirements”.

For descriptions of functions that operate on numeric values, see Section 14.6, “Numeric Functions
and Operators”. The data type used for the result of a calculation on numeric operands depends
on the types of the operands and the operations performed on them. For more information, see
Section 14.6.1, “Arithmetic Operators”.

13.1.1 Numeric Data Type Syntax

For integer data types, M indicates the minimum display width. The maximum display width is 255.
Display width is unrelated to the range of values a type can store, as described in Section 13.1.6,
“Numeric Type Attributes”.

For floating-point and fixed-point data types, M is the total number of digits that can be stored.

As of MySQL 8.0.17, the display width attribute is deprecated for integer data types; you should expect
support for it to be removed in a future version of MySQL.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to
the column.

As of MySQL 8.0.17, the ZEROFILL attribute is deprecated for numeric data types; you should expect
support for it to be removed in a future version of MySQL. Consider using an alternative means of
producing the effect of this attribute. For example, applications could use the LPAD() function to zero-
pad numbers up to the desired width, or they could store the formatted numbers in CHAR columns.

Numeric data types that permit the UNSIGNED attribute also permit SIGNED. However, these data types
are signed by default, so the SIGNED attribute has no effect.

2200

Numeric Data Type Syntax

As of MySQL 8.0.17, the UNSIGNED attribute is deprecated for columns of type FLOAT, DOUBLE, and
DECIMAL (and any synonyms); you should expect support for it to be removed in a future version of
MySQL. Consider using a simple CHECK constraint instead for such columns.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.

Warning

When you use subtraction between integer values where one is of type
UNSIGNED, the result is unsigned unless the NO_UNSIGNED_SUBTRACTION
SQL mode is enabled. See Section 14.10, “Cast Functions and Operators”.

• BIT[(M)]

A bit-value type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omitted.

• TINYINT[(M)] [UNSIGNED] [ZEROFILL]

A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.

• BOOL, BOOLEAN

These types are synonyms for TINYINT(1). A value of zero is considered false. Nonzero values are
considered true:

mysql> SELECT IF(0, 'true', 'false');
+------------------------+
| IF(0, 'true', 'false') |
+------------------------+
| false |
+------------------------+

mysql> SELECT IF(1, 'true', 'false');
+------------------------+
| IF(1, 'true', 'false') |
+------------------------+
| true |
+------------------------+

mysql> SELECT IF(2, 'true', 'false');
+------------------------+
| IF(2, 'true', 'false') |
+------------------------+
| true |
+------------------------+

However, the values TRUE and FALSE are merely aliases for 1 and 0, respectively, as shown here:

mysql> SELECT IF(0 = FALSE, 'true', 'false');
+--------------------------------+
| IF(0 = FALSE, 'true', 'false') |
+--------------------------------+
| true |
+--------------------------------+

mysql> SELECT IF(1 = TRUE, 'true', 'false');
+-------------------------------+
| IF(1 = TRUE, 'true', 'false') |
+-------------------------------+
| true |
+-------------------------------+

mysql> SELECT IF(2 = TRUE, 'true', 'false');
+-------------------------------+
| IF(2 = TRUE, 'true', 'false') |
+-------------------------------+

2201

Numeric Data Type Syntax

| false |
+-------------------------------+

mysql> SELECT IF(2 = FALSE, 'true', 'false');
+--------------------------------+
| IF(2 = FALSE, 'true', 'false') |
+--------------------------------+
| false |
+--------------------------------+

The last two statements display the results shown because 2 is equal to neither 1 nor 0.

• SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

• MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to
16777215.

• INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned range is 0
to 4294967295.

• INTEGER[(M)] [UNSIGNED] [ZEROFILL]

This type is a synonym for INT.

• BIGINT[(M)] [UNSIGNED] [ZEROFILL]

A large integer. The signed range is -9223372036854775808 to 9223372036854775807. The
unsigned range is 0 to 18446744073709551615.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

Some things you should be aware of with respect to BIGINT columns:

• All arithmetic is done using signed BIGINT or DOUBLE values, so you should not use unsigned
big integers larger than 9223372036854775807 (63 bits) except with bit functions! If you do that,
some of the last digits in the result may be wrong because of rounding errors when converting a
BIGINT value to a DOUBLE.

MySQL can handle BIGINT in the following cases:

• When using integers to store large unsigned values in a BIGINT column.

• In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT column.

• When using operators (+, -, *, and so on) where both operands are integers.

• You can always store an exact integer value in a BIGINT column by storing it using a string. In
this case, MySQL performs a string-to-number conversion that involves no intermediate double-
precision representation.

• The -, +, and * operators use BIGINT arithmetic when both operands are integer values. This
means that if you multiply two big integers (or results from functions that return integers), you may
get unexpected results when the result is larger than 9223372036854775807.

• DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

A packed “exact” fixed-point number. M is the total number of digits (the precision) and D is the
number of digits after the decimal point (the scale). The decimal point and (for negative numbers) the

2202

Numeric Data Type Syntax

- sign are not counted in M. If D is 0, values have no decimal point or fractional part. The maximum
number of digits (M) for DECIMAL is 65. The maximum number of supported decimals (D) is 30. If D is
omitted, the default is 0. If M is omitted, the default is 10. (There is also a limit on how long the text of
DECIMAL literals can be; see Section 14.24.3, “Expression Handling”.)

UNSIGNED, if specified, disallows negative values. As of MySQL 8.0.17, the UNSIGNED attribute is
deprecated for columns of type DECIMAL (and any synonyms); you should expect support for it to be
removed in a future version of MySQL. Consider using a simple CHECK constraint instead for such
columns.

All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 digits.

• DEC[(M[,D])] [UNSIGNED] [ZEROFILL], NUMERIC[(M[,D])] [UNSIGNED]
[ZEROFILL], FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with
other database systems.

• FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

A small (single-precision) floating-point number. Permissible values are -3.402823466E+38 to
-1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. These are the theoretical
limits, based on the IEEE standard. The actual range might be slightly smaller depending on your
hardware or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A single-precision floating-point
number is accurate to approximately 7 decimal places.

FLOAT(M,D) is a nonstandard MySQL extension. As of MySQL 8.0.17, this syntax is deprecated,
and you should expect support for it to be removed in a future version of MySQL.

UNSIGNED, if specified, disallows negative values. As of MySQL 8.0.17, the UNSIGNED attribute is
deprecated for columns of type FLOAT (and any synonyms) and you should expect support for it to
be removed in a future version of MySQL. Consider using a simple CHECK constraint instead for such
columns.

Using FLOAT might give you some unexpected problems because all calculations in MySQL are
done with double precision. See Section B.3.4.7, “Solving Problems with No Matching Rows”.

• FLOAT(p) [UNSIGNED] [ZEROFILL]

A floating-point number. p represents the precision in bits, but MySQL uses this value only to
determine whether to use FLOAT or DOUBLE for the resulting data type. If p is from 0 to 24, the data
type becomes FLOAT with no M or D values. If p is from 25 to 53, the data type becomes DOUBLE
with no M or D values. The range of the resulting column is the same as for the single-precision
FLOAT or double-precision DOUBLE data types described earlier in this section.

UNSIGNED, if specified, disallows negative values. As of MySQL 8.0.17, the UNSIGNED attribute is
deprecated for columns of type FLOAT (and any synonyms) and you should expect support for it to
be removed in a future version of MySQL. Consider using a simple CHECK constraint instead for such
columns.

 FLOAT(p) syntax is provided for ODBC compatibility.

• DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

A normal-size (double-precision) floating-point number. Permissible values are
-1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308. These are the theoretical limits,

2203

Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT

based on the IEEE standard. The actual range might be slightly smaller depending on your hardware
or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A double-precision floating-point
number is accurate to approximately 15 decimal places.

DOUBLE(M,D) is a nonstandard MySQL extension. As of MySQL 8.0.17, this syntax is deprecated
and you should expect support for it to be removed in a future version of MySQL.

UNSIGNED, if specified, disallows negative values. As of MySQL 8.0.17, the UNSIGNED attribute is
deprecated for columns of type DOUBLE (and any synonyms) and you should expect support for it to
be removed in a future version of MySQL. Consider using a simple CHECK constraint instead for such
columns.

• DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)] [UNSIGNED]
[ZEROFILL]

These types are synonyms for DOUBLE. Exception: If the REAL_AS_FLOAT SQL mode is enabled,
REAL is a synonym for FLOAT rather than DOUBLE.

13.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT

MySQL supports the SQL standard integer types INTEGER (or INT) and SMALLINT. As an extension
to the standard, MySQL also supports the integer types TINYINT, MEDIUMINT, and BIGINT. The
following table shows the required storage and range for each integer type.

Table 13.1 Required Storage and Range for Integer Types Supported by MySQL

Type Storage
(Bytes)

Minimum
Value Signed

Minimum
Value
Unsigned

Maximum
Value Signed

Maximum
Value
Unsigned

TINYINT 1 -128 0 127 255

SMALLINT 2 -32768 0 32767 65535

MEDIUMINT 3 -8388608 0 8388607 16777215

INT 4 -2147483648 0 2147483647 4294967295

BIGINT 8 -263 0 263-1 264-1

13.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC

The DECIMAL and NUMERIC types store exact numeric data values. These types are used when it
is important to preserve exact precision, for example with monetary data. In MySQL, NUMERIC is
implemented as DECIMAL, so the following remarks about DECIMAL apply equally to NUMERIC.

MySQL stores DECIMAL values in binary format. See Section 14.24, “Precision Math”.

In a DECIMAL column declaration, the precision and scale can be (and usually is) specified. For
example:

salary DECIMAL(5,2)

In this example, 5 is the precision and 2 is the scale. The precision represents the number of significant
digits that are stored for values, and the scale represents the number of digits that can be stored
following the decimal point.

Standard SQL requires that DECIMAL(5,2) be able to store any value with five digits and two
decimals, so values that can be stored in the salary column range from -999.99 to 999.99.

2204

Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax
DECIMAL is equivalent to DECIMAL(M,0), where the implementation is permitted to decide the value
of M. MySQL supports both of these variant forms of DECIMAL syntax. The default value of M is 10.

If the scale is 0, DECIMAL values contain no decimal point or fractional part.

The maximum number of digits for DECIMAL is 65, but the actual range for a given DECIMAL column
can be constrained by the precision or scale for a given column. When such a column is assigned a
value with more digits following the decimal point than are permitted by the specified scale, the value is
converted to that scale. (The precise behavior is operating system-specific, but generally the effect is
truncation to the permissible number of digits.)

13.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

The FLOAT and DOUBLE types represent approximate numeric data values. MySQL uses four bytes for
single-precision values and eight bytes for double-precision values.

For FLOAT, the SQL standard permits an optional specification of the precision (but not the range of
the exponent) in bits following the keyword FLOAT in parentheses, that is, FLOAT(p). MySQL also
supports this optional precision specification, but the precision value in FLOAT(p) is used only to
determine storage size. A precision from 0 to 23 results in a 4-byte single-precision FLOAT column. A
precision from 24 to 53 results in an 8-byte double-precision DOUBLE column.

MySQL permits a nonstandard syntax: FLOAT(M,D) or REAL(M,D) or DOUBLE PRECISION(M,D).
Here, (M,D) means than values can be stored with up to M digits in total, of which D digits may be
after the decimal point. For example, a column defined as FLOAT(7,4) is displayed as -999.9999.
MySQL performs rounding when storing values, so if you insert 999.00009 into a FLOAT(7,4)
column, the approximate result is 999.0001.

As of MySQL 8.0.17, the nonstandard FLOAT(M,D) and DOUBLE(M,D) syntax is deprecated and you
should expect support for it to be removed in a future version of MySQL.

Because floating-point values are approximate and not stored as exact values, attempts to treat them
as exact in comparisons may lead to problems. They are also subject to platform or implementation
dependencies. For more information, see Section B.3.4.8, “Problems with Floating-Point Values”.

For maximum portability, code requiring storage of approximate numeric data values should use FLOAT
or DOUBLE PRECISION with no specification of precision or number of digits.

13.1.5 Bit-Value Type - BIT

The BIT data type is used to store bit values. A type of BIT(M) enables storage of M-bit values. M can
range from 1 to 64.

To specify bit values, b'value' notation can be used. value is a binary value written using zeros and
ones. For example, b'111' and b'10000000' represent 7 and 128, respectively. See Section 11.1.5,
“Bit-Value Literals”.

If you assign a value to a BIT(M) column that is less than M bits long, the value is padded on the left
with zeros. For example, assigning a value of b'101' to a BIT(6) column is, in effect, the same as
assigning b'000101'.

NDB Cluster. The maximum combined size of all BIT columns used in a given NDB table must not
exceed 4096 bits.

13.1.6 Numeric Type Attributes

MySQL supports an extension for optionally specifying the display width of integer data types in
parentheses following the base keyword for the type. For example, INT(4) specifies an INT with a
display width of four digits. This optional display width may be used by applications to display integer

2205

Numeric Type Attributes

values having a width less than the width specified for the column by left-padding them with spaces.
(That is, this width is present in the metadata returned with result sets. Whether it is used is up to the
application.)

The display width does not constrain the range of values that can be stored in the column. Nor does
it prevent values wider than the column display width from being displayed correctly. For example, a
column specified as SMALLINT(3) has the usual SMALLINT range of -32768 to 32767, and values
outside the range permitted by three digits are displayed in full using more than three digits.

When used in conjunction with the optional (nonstandard) ZEROFILL attribute, the default padding of
spaces is replaced with zeros. For example, for a column declared as INT(4) ZEROFILL, a value of 5
is retrieved as 0005.

Note

The ZEROFILL attribute is ignored for columns involved in expressions or
UNION queries.

If you store values larger than the display width in an integer column that has
the ZEROFILL attribute, you may experience problems when MySQL generates
temporary tables for some complicated joins. In these cases, MySQL assumes
that the data values fit within the column display width.

As of MySQL 8.0.17, the ZEROFILL attribute is deprecated for numeric data types, as is the display
width attribute for integer data types. You should expect support for ZEROFILL and display widths for
integer data types to be removed in a future version of MySQL. Consider using an alternative means
of producing the effect of these attributes. For example, applications can use the LPAD() function to
zero-pad numbers up to the desired width, or they can store the formatted numbers in CHAR columns.

All integer types can have an optional (nonstandard) UNSIGNED attribute. An unsigned type can be
used to permit only nonnegative numbers in a column or when you need a larger upper numeric range
for the column. For example, if an INT column is UNSIGNED, the size of the column's range is the
same but its endpoints shift up, from -2147483648 and 2147483647 to 0 and 4294967295.

Floating-point and fixed-point types also can be UNSIGNED. As with integer types, this attribute
prevents negative values from being stored in the column. Unlike the integer types, the upper range
of column values remains the same. As of MySQL 8.0.17, the UNSIGNED attribute is deprecated for
columns of type FLOAT, DOUBLE, and DECIMAL (and any synonyms) and you should expect support
for it to be removed in a future version of MySQL. Consider using a simple CHECK constraint instead for
such columns.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute.

Integer or floating-point data types can have the AUTO_INCREMENT attribute. When you insert a value
of NULL into an indexed AUTO_INCREMENT column, the column is set to the next sequence value.
Typically this is value+1, where value is the largest value for the column currently in the table.
(AUTO_INCREMENT sequences begin with 1.)

Storing 0 into an AUTO_INCREMENT column has the same effect as storing NULL, unless the
NO_AUTO_VALUE_ON_ZERO SQL mode is enabled.

Inserting NULL to generate AUTO_INCREMENT values requires that the column be declared NOT NULL.
If the column is declared NULL, inserting NULL stores a NULL. When you insert any other value into an
AUTO_INCREMENT column, the column is set to that value and the sequence is reset so that the next
automatically generated value follows sequentially from the inserted value.

Negative values for AUTO_INCREMENT columns are not supported.

CHECK constraints cannot refer to columns that have the AUTO_INCREMENT attribute, nor can the
AUTO_INCREMENT attribute be added to existing columns that are used in CHECK constraints.

2206

Out-of-Range and Overflow Handling

As of MySQL 8.0.17, AUTO_INCREMENT support is deprecated for FLOAT and DOUBLE columns;
you should expect it to be removed in a future version of MySQL. Consider removing the
AUTO_INCREMENT attribute from such columns, or convert them to an integer type.

13.1.7 Out-of-Range and Overflow Handling

When MySQL stores a value in a numeric column that is outside the permissible range of the column
data type, the result depends on the SQL mode in effect at the time:

• If strict SQL mode is enabled, MySQL rejects the out-of-range value with an error, and the insert
fails, in accordance with the SQL standard.

• If no restrictive modes are enabled, MySQL clips the value to the appropriate endpoint of the column
data type range and stores the resulting value instead.

When an out-of-range value is assigned to an integer column, MySQL stores the value representing
the corresponding endpoint of the column data type range.

When a floating-point or fixed-point column is assigned a value that exceeds the range implied by the
specified (or default) precision and scale, MySQL stores the value representing the corresponding
endpoint of that range.

Suppose that a table t1 has this definition:

CREATE TABLE t1 (i1 TINYINT, i2 TINYINT UNSIGNED);

With strict SQL mode enabled, an out of range error occurs:

mysql> SET sql_mode = 'TRADITIONAL';
mysql> INSERT INTO t1 (i1, i2) VALUES(256, 256);
ERROR 1264 (22003): Out of range value for column 'i1' at row 1
mysql> SELECT * FROM t1;
Empty set (0.00 sec)

With strict SQL mode not enabled, clipping with warnings occurs:

mysql> SET sql_mode = '';
mysql> INSERT INTO t1 (i1, i2) VALUES(256, 256);
mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1264 | Out of range value for column 'i1' at row 1 |
| Warning | 1264 | Out of range value for column 'i2' at row 1 |
+---------+------+---+
mysql> SELECT * FROM t1;
+------+------+
| i1 | i2 |
+------+------+
| 127 | 255 |
+------+------+

When strict SQL mode is not enabled, column-assignment conversions that occur due to clipping are
reported as warnings for ALTER TABLE, LOAD DATA, UPDATE, and multiple-row INSERT statements.
In strict mode, these statements fail, and some or all the values are not inserted or changed, depending
on whether the table is a transactional table and other factors. For details, see Section 7.1.11, “Server
SQL Modes”.

Overflow during numeric expression evaluation results in an error. For example, the largest signed
BIGINT value is 9223372036854775807, so the following expression produces an error:

mysql> SELECT 9223372036854775807 + 1;
ERROR 1690 (22003): BIGINT value is out of range in '(9223372036854775807 + 1)'

To enable the operation to succeed in this case, convert the value to unsigned;

mysql> SELECT CAST(9223372036854775807 AS UNSIGNED) + 1;

2207

Date and Time Data Types

+---+
| CAST(9223372036854775807 AS UNSIGNED) + 1 |
+---+
| 9223372036854775808 |
+---+

Whether overflow occurs depends on the range of the operands, so another way to handle the
preceding expression is to use exact-value arithmetic because DECIMAL values have a larger range
than integers:

mysql> SELECT 9223372036854775807.0 + 1;
+---------------------------+
| 9223372036854775807.0 + 1 |
+---------------------------+
| 9223372036854775808.0 |
+---------------------------+

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result by
default. If the result would otherwise have been negative, an error results:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'

If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped to
the maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is enabled. If
strict SQL mode is enabled, an error occurs and the column remains unchanged.

13.2 Date and Time Data Types
The date and time data types for representing temporal values are DATE, TIME, DATETIME,
TIMESTAMP, and YEAR. Each temporal type has a range of valid values, as well as a “zero” value that
may be used when you specify an invalid value that MySQL cannot represent. The TIMESTAMP and
DATETIME types have special automatic updating behavior, described in Section 13.2.5, “Automatic
Initialization and Updating for TIMESTAMP and DATETIME”.

For information about storage requirements of the temporal data types, see Section 13.7, “Data Type
Storage Requirements”.

For descriptions of functions that operate on temporal values, see Section 14.7, “Date and Time
Functions”.

Keep in mind these general considerations when working with date and time types:

• MySQL retrieves values for a given date or time type in a standard output format, but it attempts to
interpret a variety of formats for input values that you supply (for example, when you specify a value
to be assigned to or compared to a date or time type). For a description of the permitted formats for
date and time types, see Section 11.1.3, “Date and Time Literals”. It is expected that you supply valid
values. Unpredictable results may occur if you use values in other formats.

• Although MySQL tries to interpret values in several formats, date parts must always be given in year-
month-day order (for example, '98-09-04'), rather than in the month-day-year or day-month-year
orders commonly used elsewhere (for example, '09-04-98', '04-09-98'). To convert strings in
other orders to year-month-day order, the STR_TO_DATE() function may be useful.

2208

Date and Time Data Type Syntax

• Dates containing 2-digit year values are ambiguous because the century is unknown. MySQL
interprets 2-digit year values using these rules:

• Year values in the range 70-99 become 1970-1999.

• Year values in the range 00-69 become 2000-2069.

See also Section 13.2.9, “2-Digit Years in Dates”.

• Conversion of values from one temporal type to another occurs according to the rules in
Section 13.2.8, “Conversion Between Date and Time Types”.

• MySQL automatically converts a date or time value to a number if the value is used in numeric
context and vice versa.

• By default, when MySQL encounters a value for a date or time type that is out of range or otherwise
invalid for the type, it converts the value to the “zero” value for that type. The exception is that out-of-
range TIME values are clipped to the appropriate endpoint of the TIME range.

• By setting the SQL mode to the appropriate value, you can specify more exactly what kind of dates
you want MySQL to support. (See Section 7.1.11, “Server SQL Modes”.) You can get MySQL to
accept certain dates, such as '2009-11-31', by enabling the ALLOW_INVALID_DATES SQL
mode. This is useful when you want to store a “possibly wrong” value which the user has specified
(for example, in a web form) in the database for future processing. Under this mode, MySQL verifies
only that the month is in the range from 1 to 12 and that the day is in the range from 1 to 31.

• MySQL permits you to store dates where the day or month and day are zero in a DATE or DATETIME
column. This is useful for applications that need to store birthdates for which you may not know
the exact date. In this case, you simply store the date as '2009-00-00' or '2009-01-00'.
However, with dates such as these, you should not expect to get correct results for functions such as
DATE_SUB() or DATE_ADD() that require complete dates. To disallow zero month or day parts in
dates, enable the NO_ZERO_IN_DATE mode.

• MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” In some cases,
this is more convenient than using NULL values, and uses less data and index space. To disallow
'0000-00-00', enable the NO_ZERO_DATE mode.

• “Zero” date or time values used through Connector/ODBC are converted automatically to NULL
because ODBC cannot handle such values.

The following table shows the format of the “zero” value for each type. The “zero” values are special,
but you can store or refer to them explicitly using the values shown in the table. You can also do
this using the values '0' or 0, which are easier to write. For temporal types that include a date part
(DATE, DATETIME, and TIMESTAMP), use of these values may produce warning or errors. The precise
behavior depends on which, if any, of the strict and NO_ZERO_DATE SQL modes are enabled; see
Section 7.1.11, “Server SQL Modes”.

Data Type “Zero” Value

DATE '0000-00-00'

TIME '00:00:00'

DATETIME '0000-00-00 00:00:00'

TIMESTAMP '0000-00-00 00:00:00'

YEAR 0000

13.2.1 Date and Time Data Type Syntax

The date and time data types for representing temporal values are DATE, TIME, DATETIME,
TIMESTAMP, and YEAR.

2209

Date and Time Data Type Syntax

For the DATE and DATETIME range descriptions, “supported” means that although earlier values might
work, there is no guarantee.

MySQL permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision. To define a column that includes a fractional seconds part, use the
syntax type_name(fsp), where type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the
fractional seconds precision. For example:

CREATE TABLE t1 (t TIME(3), dt DATETIME(6), ts TIMESTAMP(0));

The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional
part. If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for
compatibility with previous MySQL versions.)

Any TIMESTAMP or DATETIME column in a table can have automatic initialization and updating
properties; see Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and
DATETIME”.

• DATE

A date. The supported range is '1000-01-01' to '9999-12-31'. MySQL displays DATE values
in 'YYYY-MM-DD' format, but permits assignment of values to DATE columns using either strings or
numbers.

• DATETIME[(fsp)]

A date and time combination. The supported range is '1000-01-01 00:00:00.000000' to
'9999-12-31 23:59:59.499999'. MySQL displays DATETIME values in 'YYYY-MM-DD
hh:mm:ss[.fraction]' format, but permits assignment of values to DATETIME columns using
either strings or numbers.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision.
A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

Automatic initialization and updating to the current date and time for DATETIME columns can be
specified using DEFAULT and ON UPDATE column definition clauses, as described in Section 13.2.5,
“Automatic Initialization and Updating for TIMESTAMP and DATETIME”.

• TIMESTAMP[(fsp)]

A timestamp. The range is '1970-01-01 00:00:01.000000' UTC to '2038-01-19
03:14:07.499999' UTC. TIMESTAMP values are stored as the number of seconds since the
epoch ('1970-01-01 00:00:00' UTC). A TIMESTAMP cannot represent the value '1970-01-01
00:00:00' because that is equivalent to 0 seconds from the epoch and the value 0 is reserved for
representing '0000-00-00 00:00:00', the “zero” TIMESTAMP value.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision.
A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

The way the server handles TIMESTAMP definitions depends on the value of the
explicit_defaults_for_timestamp system variable (see Section 7.1.8, “Server System
Variables”).

If explicit_defaults_for_timestamp is enabled, there is no automatic assignment of
the DEFAULT CURRENT_TIMESTAMP or ON UPDATE CURRENT_TIMESTAMP attributes to any
TIMESTAMP column. They must be included explicitly in the column definition. Also, any TIMESTAMP
not explicitly declared as NOT NULL permits NULL values.

If explicit_defaults_for_timestamp is disabled, the server handles TIMESTAMP as follows:

Unless specified otherwise, the first TIMESTAMP column in a table is defined to be automatically set
to the date and time of the most recent modification if not explicitly assigned a value. This makes

2210

The DATE, DATETIME, and TIMESTAMP Types

TIMESTAMP useful for recording the timestamp of an INSERT or UPDATE operation. You can also set
any TIMESTAMP column to the current date and time by assigning it a NULL value, unless it has been
defined with the NULL attribute to permit NULL values.

Automatic initialization and updating to the current date and time can be specified using DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP column definition clauses. By
default, the first TIMESTAMP column has these properties, as previously noted. However, any
TIMESTAMP column in a table can be defined to have these properties.

• TIME[(fsp)]

A time. The range is '-838:59:59.000000' to '838:59:59.000000'. MySQL displays TIME
values in 'hh:mm:ss[.fraction]' format, but permits assignment of values to TIME columns
using either strings or numbers.

An optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision.
A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.

• YEAR[(4)]

A year in 4-digit format. MySQL displays YEAR values in YYYY format, but permits assignment of
values to YEAR columns using either strings or numbers. Values display as 1901 to 2155, or 0000.

For additional information about YEAR display format and interpretation of input values, see
Section 13.2.4, “The YEAR Type”.

Note

As of MySQL 8.0.19, the YEAR(4) data type with an explicit display width is
deprecated; you should expect support for it to be removed in a future version
of MySQL. Instead, use YEAR without a display width, which has the same
meaning.

MySQL 8.0 does not support the 2-digit YEAR(2) data type permitted in older
versions of MySQL. For instructions on converting to 4-digit YEAR, see 2-Digit
YEAR(2) Limitations and Migrating to 4-Digit YEAR, in MySQL 5.7 Reference
Manual.

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values
to numbers, losing everything after the first nonnumeric character.) To work around this problem,
convert to numeric units, perform the aggregate operation, and convert back to a temporal value.
Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

13.2.2 The DATE, DATETIME, and TIMESTAMP Types

The DATE, DATETIME, and TIMESTAMP types are related. This section describes their characteristics,
how they are similar, and how they differ. MySQL recognizes DATE, DATETIME, and TIMESTAMP
values in several formats, described in Section 11.1.3, “Date and Time Literals”. For the DATE and
DATETIME range descriptions, “supported” means that although earlier values might work, there is no
guarantee.

The DATE type is used for values with a date part but no time part. MySQL retrieves and displays DATE
values in 'YYYY-MM-DD' format. The supported range is '1000-01-01' to '9999-12-31'.

The DATETIME type is used for values that contain both date and time parts. MySQL retrieves
and displays DATETIME values in 'YYYY-MM-DD hh:mm:ss' format. The supported range is
'1000-01-01 00:00:00' to '9999-12-31 23:59:59'.

2211

https://dev.mysql.com/doc/refman/5.7/en/migrating-from-year2.html
https://dev.mysql.com/doc/refman/5.7/en/migrating-from-year2.html
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/

The DATE, DATETIME, and TIMESTAMP Types

The TIMESTAMP data type is used for values that contain both date and time parts. TIMESTAMP has a
range of '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. In particular, any fractional part in a value inserted into a DATETIME or TIMESTAMP
column is stored rather than discarded. With the fractional part included, the format for these values
is 'YYYY-MM-DD hh:mm:ss[.fraction]', the range for DATETIME values is '1000-01-01
00:00:00.000000' to '9999-12-31 23:59:59.499999', and the range for TIMESTAMP values
is '1970-01-01 00:00:01.000000' to '2038-01-19 03:14:07.499999'. The fractional
part should always be separated from the rest of the time by a decimal point; no other fractional
seconds delimiter is recognized. For information about fractional seconds support in MySQL, see
Section 13.2.6, “Fractional Seconds in Time Values”.

The TIMESTAMP and DATETIME data types offer automatic initialization and updating to the current
date and time. For more information, see Section 13.2.5, “Automatic Initialization and Updating for
TIMESTAMP and DATETIME”.

MySQL converts TIMESTAMP values from the current time zone to UTC for storage, and back from
UTC to the current time zone for retrieval. (This does not occur for other types such as DATETIME.) By
default, the current time zone for each connection is the server's time. The time zone can be set on a
per-connection basis. As long as the time zone setting remains constant, you get back the same value
you store. If you store a TIMESTAMP value, and then change the time zone and retrieve the value,
the retrieved value is different from the value you stored. This occurs because the same time zone
was not used for conversion in both directions. The current time zone is available as the value of the
time_zone system variable. For more information, see Section 7.1.15, “MySQL Server Time Zone
Support”.

In MySQL 8.0.19 and later, you can specify a time zone offset when inserting a TIMESTAMP or
DATETIME value into a table. See Section 11.1.3, “Date and Time Literals”, for more information and
examples.

Invalid DATE, DATETIME, or TIMESTAMP values are converted to the “zero” value of the appropriate
type ('0000-00-00' or '0000-00-00 00:00:00'), if the SQL mode permits this conversion. The
precise behavior depends on which if any of strict SQL mode and the NO_ZERO_DATE SQL mode are
enabled; see Section 7.1.11, “Server SQL Modes”.

In MySQL 8.0.22 and later, you can convert TIMESTAMP values to UTC DATETIME values when
retrieving them using CAST() with the AT TIME ZONE operator, as shown here:

mysql> SELECT col,
 > CAST(col AT TIME ZONE INTERVAL '+00:00' AS DATETIME) AS ut
 > FROM ts ORDER BY id;
+---------------------+---------------------+
| col | ut |
+---------------------+---------------------+
2020-01-01 10:10:10	2020-01-01 15:10:10
2019-12-31 23:40:10	2020-01-01 04:40:10
2020-01-01 13:10:10	2020-01-01 18:10:10
2020-01-01 10:10:10	2020-01-01 15:10:10
2020-01-01 04:40:10	2020-01-01 09:40:10
2020-01-01 18:10:10	2020-01-01 23:10:10
+---------------------+---------------------+

For complete information regarding syntax and additional examples, see the description of the CAST()
function.

Be aware of certain properties of date value interpretation in MySQL:

• MySQL permits a “relaxed” format for values specified as strings, in which any punctuation character
may be used as the delimiter between date parts or time parts. In some cases, this syntax can be
deceiving. For example, a value such as '10:11:12' might look like a time value because of the
:, but is interpreted as the year '2010-11-12' if used in date context. The value '10:45:15' is
converted to '0000-00-00' because '45' is not a valid month.

2212

The TIME Type

The only delimiter recognized between a date and time part and a fractional seconds part is the
decimal point.

• The server requires that month and day values be valid, and not merely in the range 1 to 12 and 1
to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted
to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate
an error. To permit such dates, enable ALLOW_INVALID_DATES. See Section 7.1.11, “Server SQL
Modes”, for more information.

• MySQL does not accept TIMESTAMP values that include a zero in the day or month column or values
that are not a valid date. The sole exception to this rule is the special “zero” value '0000-00-00
00:00:00', if the SQL mode permits this value. The precise behavior depends on which if any of
strict SQL mode and the NO_ZERO_DATE SQL mode are enabled; see Section 7.1.11, “Server SQL
Modes”.

• Dates containing 2-digit year values are ambiguous because the century is unknown. MySQL
interprets 2-digit year values using these rules:

• Year values in the range 00-69 become 2000-2069.

• Year values in the range 70-99 become 1970-1999.

See also Section 13.2.9, “2-Digit Years in Dates”.

13.2.3 The TIME Type

MySQL retrieves and displays TIME values in 'hh:mm:ss' format (or 'hhh:mm:ss' format for large
hours values). TIME values may range from '-838:59:59' to '838:59:59'. The hours part may
be so large because the TIME type can be used not only to represent a time of day (which must be
less than 24 hours), but also elapsed time or a time interval between two events (which may be much
greater than 24 hours, or even negative).

MySQL recognizes TIME values in several formats, some of which can include a trailing fractional
seconds part in up to microseconds (6 digits) precision. See Section 11.1.3, “Date and Time
Literals”. For information about fractional seconds support in MySQL, see Section 13.2.6, “Fractional
Seconds in Time Values”. In particular, any fractional part in a value inserted into a TIME column
is stored rather than discarded. With the fractional part included, the range for TIME values is
'-838:59:59.000000' to '838:59:59.000000'.

Be careful about assigning abbreviated values to a TIME column. MySQL interprets abbreviated TIME
values with colons as time of the day. That is, '11:12' means '11:12:00', not '00:11:12'.
MySQL interprets abbreviated values without colons using the assumption that the two rightmost digits
represent seconds (that is, as elapsed time rather than as time of day). For example, you might think of
'1112' and 1112 as meaning '11:12:00' (12 minutes after 11 o'clock), but MySQL interprets them
as '00:11:12' (11 minutes, 12 seconds). Similarly, '12' and 12 are interpreted as '00:00:12'.

The only delimiter recognized between a time part and a fractional seconds part is the decimal point.

By default, values that lie outside the TIME range but are otherwise valid are clipped to the
closest endpoint of the range. For example, '-850:00:00' and '850:00:00' are converted to
'-838:59:59' and '838:59:59'. Invalid TIME values are converted to '00:00:00'. Note that
because '00:00:00' is itself a valid TIME value, there is no way to tell, from a value of '00:00:00'
stored in a table, whether the original value was specified as '00:00:00' or whether it was invalid.

For more restrictive treatment of invalid TIME values, enable strict SQL mode to cause errors to occur.
See Section 7.1.11, “Server SQL Modes”.

13.2.4 The YEAR Type

2213

Automatic Initialization and Updating for TIMESTAMP and DATETIME

The YEAR type is a 1-byte type used to represent year values. It can be declared as YEAR with an
implicit display width of 4 characters, or equivalently as YEAR(4) with an explicit display width.

Note

As of MySQL 8.0.19, the YEAR(4) data type with an explicit display width
is deprecated and you should expect support for it to be removed in a future
version of MySQL. Instead, use YEAR without a display width, which has the
same meaning.

MySQL 8.0 does not support the 2-digit YEAR(2) data type permitted in older
versions of MySQL. For instructions on converting to 4-digit YEAR, see 2-Digit
YEAR(2) Limitations and Migrating to 4-Digit YEAR, in MySQL 5.7 Reference
Manual.

MySQL displays YEAR values in YYYY format, with a range of 1901 to 2155, and 0000.

YEAR accepts input values in a variety of formats:

• As 4-digit strings in the range '1901' to '2155'.

• As 4-digit numbers in the range 1901 to 2155.

• As 1- or 2-digit strings in the range '0' to '99'. MySQL converts values in the ranges '0' to '69'
and '70' to '99' to YEAR values in the ranges 2000 to 2069 and 1970 to 1999.

• As 1- or 2-digit numbers in the range 0 to 99. MySQL converts values in the ranges 1 to 69 and 70
to 99 to YEAR values in the ranges 2001 to 2069 and 1970 to 1999.

The result of inserting a numeric 0 has a display value of 0000 and an internal value of 0000. To
insert zero and have it be interpreted as 2000, specify it as a string '0' or '00'.

• As the result of functions that return a value that is acceptable in YEAR context, such as NOW().

If strict SQL mode is not enabled, MySQL converts invalid YEAR values to 0000. In strict SQL mode,
attempting to insert an invalid YEAR value produces an error.

See also Section 13.2.9, “2-Digit Years in Dates”.

13.2.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME

TIMESTAMP and DATETIME columns can be automatically initialized and updated to the current date
and time (that is, the current timestamp).

For any TIMESTAMP or DATETIME column in a table, you can assign the current timestamp as the
default value, the auto-update value, or both:

• An auto-initialized column is set to the current timestamp for inserted rows that specify no value for
the column.

• An auto-updated column is automatically updated to the current timestamp when the value of
any other column in the row is changed from its current value. An auto-updated column remains
unchanged if all other columns are set to their current values. To prevent an auto-updated column
from updating when other columns change, explicitly set it to its current value. To update an auto-
updated column even when other columns do not change, explicitly set it to the value it should have
(for example, set it to CURRENT_TIMESTAMP).

In addition, if the explicit_defaults_for_timestamp system variable is disabled, you can
initialize or update any TIMESTAMP (but not DATETIME) column to the current date and time by
assigning it a NULL value, unless it has been defined with the NULL attribute to permit NULL values.

To specify automatic properties, use the DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP clauses in column definitions. The order of the clauses does not

2214

https://dev.mysql.com/doc/refman/5.7/en/migrating-from-year2.html
https://dev.mysql.com/doc/refman/5.7/en/migrating-from-year2.html
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/

Automatic Initialization and Updating for TIMESTAMP and DATETIME

matter. If both are present in a column definition, either can occur first. Any of the synonyms
for CURRENT_TIMESTAMP have the same meaning as CURRENT_TIMESTAMP. These are
CURRENT_TIMESTAMP(), NOW(), LOCALTIME, LOCALTIME(), LOCALTIMESTAMP, and
LOCALTIMESTAMP().

Use of DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP is specific
to TIMESTAMP and DATETIME. The DEFAULT clause also can be used to specify a constant
(nonautomatic) default value (for example, DEFAULT 0 or DEFAULT '2000-01-01 00:00:00').

Note

The following examples use DEFAULT 0, a default that can produce warnings
or errors depending on whether strict SQL mode or the NO_ZERO_DATE SQL
mode is enabled. Be aware that the TRADITIONAL SQL mode includes strict
mode and NO_ZERO_DATE. See Section 7.1.11, “Server SQL Modes”.

TIMESTAMP or DATETIME column definitions can specify the current timestamp for both the default
and auto-update values, for one but not the other, or for neither. Different columns can have different
combinations of automatic properties. The following rules describe the possibilities:

• With both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP, the column
has the current timestamp for its default value and is automatically updated to the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

• With a DEFAULT clause but no ON UPDATE CURRENT_TIMESTAMP clause, the column has the
given default value and is not automatically updated to the current timestamp.

The default depends on whether the DEFAULT clause specifies CURRENT_TIMESTAMP or a constant
value. With CURRENT_TIMESTAMP, the default is the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT CURRENT_TIMESTAMP
);

With a constant, the default is the given value. In this case, the column has no automatic properties
at all.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0,
 dt DATETIME DEFAULT 0
);

• With an ON UPDATE CURRENT_TIMESTAMP clause and a constant DEFAULT clause, the column is
automatically updated to the current timestamp and has the given constant default value.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP,
 dt DATETIME DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP
);

• With an ON UPDATE CURRENT_TIMESTAMP clause but no DEFAULT clause, the column is
automatically updated to the current timestamp but does not have the current timestamp for its
default value.

The default in this case is type dependent. TIMESTAMP has a default of 0 unless defined with the
NULL attribute, in which case the default is NULL.

CREATE TABLE t1 (
 ts1 TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, -- default 0
 ts2 TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP -- default NULL

2215

Automatic Initialization and Updating for TIMESTAMP and DATETIME

);

DATETIME has a default of NULL unless defined with the NOT NULL attribute, in which case the
default is 0.

CREATE TABLE t1 (
 dt1 DATETIME ON UPDATE CURRENT_TIMESTAMP, -- default NULL
 dt2 DATETIME NOT NULL ON UPDATE CURRENT_TIMESTAMP -- default 0
);

TIMESTAMP and DATETIME columns have no automatic properties unless they are specified
explicitly, with this exception: If the explicit_defaults_for_timestamp system variable is
disabled, the first TIMESTAMP column has both DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP if neither is specified explicitly. To suppress automatic properties for the first
TIMESTAMP column, use one of these strategies:

• Enable the explicit_defaults_for_timestamp system variable. In this case, the DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP clauses that specify automatic
initialization and updating are available, but are not assigned to any TIMESTAMP column unless
explicitly included in the column definition.

• Alternatively, if explicit_defaults_for_timestamp is disabled, do either of the following:

• Define the column with a DEFAULT clause that specifies a constant default value.

• Specify the NULL attribute. This also causes the column to permit NULL values, which means that
you cannot assign the current timestamp by setting the column to NULL. Assigning NULL sets the
column to NULL, not the current timestamp. To assign the current timestamp, set the column to
CURRENT_TIMESTAMP or a synonym such as NOW().

Consider these table definitions:

CREATE TABLE t1 (
 ts1 TIMESTAMP DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t2 (
 ts1 TIMESTAMP NULL,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t3 (
 ts1 TIMESTAMP NULL DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);

The tables have these properties:

• In each table definition, the first TIMESTAMP column has no automatic initialization or updating.

• The tables differ in how the ts1 column handles NULL values. For t1, ts1 is NOT NULL and
assigning it a value of NULL sets it to the current timestamp. For t2 and t3, ts1 permits NULL and
assigning it a value of NULL sets it to NULL.

• t2 and t3 differ in the default value for ts1. For t2, ts1 is defined to permit NULL, so the default
is also NULL in the absence of an explicit DEFAULT clause. For t3, ts1 permits NULL but has an
explicit default of 0.

If a TIMESTAMP or DATETIME column definition includes an explicit fractional seconds precision value
anywhere, the same value must be used throughout the column definition. This is permitted:

CREATE TABLE t1 (
 ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6)
);

This is not permitted:

2216

Fractional Seconds in Time Values

CREATE TABLE t1 (
 ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP(3)
);

TIMESTAMP Initialization and the NULL Attribute

If the explicit_defaults_for_timestamp system variable is disabled, TIMESTAMP columns
by default are NOT NULL, cannot contain NULL values, and assigning NULL assigns the current
timestamp. To permit a TIMESTAMP column to contain NULL, explicitly declare it with the NULL
attribute. In this case, the default value also becomes NULL unless overridden with a DEFAULT clause
that specifies a different default value. DEFAULT NULL can be used to explicitly specify NULL as
the default value. (For a TIMESTAMP column not declared with the NULL attribute, DEFAULT NULL
is invalid.) If a TIMESTAMP column permits NULL values, assigning NULL sets it to NULL, not to the
current timestamp.

The following table contains several TIMESTAMP columns that permit NULL values:

CREATE TABLE t
(
 ts1 TIMESTAMP NULL DEFAULT NULL,
 ts2 TIMESTAMP NULL DEFAULT 0,
 ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP
);

A TIMESTAMP column that permits NULL values does not take on the current timestamp at insert time
except under one of the following conditions:

• Its default value is defined as CURRENT_TIMESTAMP and no value is specified for the column

• CURRENT_TIMESTAMP or any of its synonyms such as NOW() is explicitly inserted into the column

In other words, a TIMESTAMP column defined to permit NULL values auto-initializes only if its definition
includes DEFAULT CURRENT_TIMESTAMP:

CREATE TABLE t (ts TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP);

If the TIMESTAMP column permits NULL values but its definition does not include DEFAULT
CURRENT_TIMESTAMP, you must explicitly insert a value corresponding to the current date and time.
Suppose that tables t1 and t2 have these definitions:

CREATE TABLE t1 (ts TIMESTAMP NULL DEFAULT '0000-00-00 00:00:00');
CREATE TABLE t2 (ts TIMESTAMP NULL DEFAULT NULL);

To set the TIMESTAMP column in either table to the current timestamp at insert time, explicitly assign it
that value. For example:

INSERT INTO t2 VALUES (CURRENT_TIMESTAMP);
INSERT INTO t1 VALUES (NOW());

If the explicit_defaults_for_timestamp system variable is enabled, TIMESTAMP columns
permit NULL values only if declared with the NULL attribute. Also, TIMESTAMP columns do not permit
assigning NULL to assign the current timestamp, whether declared with the NULL or NOT NULL
attribute. To assign the current timestamp, set the column to CURRENT_TIMESTAMP or a synonym
such as NOW().

13.2.6 Fractional Seconds in Time Values

MySQL has fractional seconds support for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision:

• To define a column that includes a fractional seconds part, use the syntax type_name(fsp), where
type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the fractional seconds precision. For
example:

CREATE TABLE t1 (t TIME(3), dt DATETIME(6));

2217

What Calendar Is Used By MySQL?

The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional
part. If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for
compatibility with previous MySQL versions.)

• Inserting a TIME, DATE, or TIMESTAMP value with a fractional seconds part into a column of the
same type but having fewer fractional digits results in rounding. Consider a table created and
populated as follows:

CREATE TABLE fractest(c1 TIME(2), c2 DATETIME(2), c3 TIMESTAMP(2));
INSERT INTO fractest VALUES
('17:51:04.777', '2018-09-08 17:51:04.777', '2018-09-08 17:51:04.777');

The temporal values are inserted into the table with rounding:

mysql> SELECT * FROM fractest;
+-------------+------------------------+------------------------+
| c1 | c2 | c3 |
+-------------+------------------------+------------------------+
| 17:51:04.78 | 2018-09-08 17:51:04.78 | 2018-09-08 17:51:04.78 |
+-------------+------------------------+------------------------+

No warning or error is given when such rounding occurs. This behavior follows the SQL standard.

To insert the values with truncation instead, enable the TIME_TRUNCATE_FRACTIONAL SQL mode:

SET @@sql_mode = sys.list_add(@@sql_mode, 'TIME_TRUNCATE_FRACTIONAL');

With that SQL mode enabled, the temporal values are inserted with truncation:

mysql> SELECT * FROM fractest;
+-------------+------------------------+------------------------+
| c1 | c2 | c3 |
+-------------+------------------------+------------------------+
| 17:51:04.77 | 2018-09-08 17:51:04.77 | 2018-09-08 17:51:04.77 |
+-------------+------------------------+------------------------+

• Functions that take temporal arguments accept values with fractional seconds. Return values from
temporal functions include fractional seconds as appropriate. For example, NOW() with no argument
returns the current date and time with no fractional part, but takes an optional argument from 0 to 6
to specify that the return value includes a fractional seconds part of that many digits.

• Syntax for temporal literals produces temporal values: DATE 'str', TIME 'str', and TIMESTAMP
'str', and the ODBC-syntax equivalents. The resulting value includes a trailing fractional seconds
part if specified. Previously, the temporal type keyword was ignored and these constructs produced
the string value. See Standard SQL and ODBC Date and Time Literals

13.2.7 What Calendar Is Used By MySQL?

MySQL uses what is known as a proleptic Gregorian calendar.

Every country that has switched from the Julian to the Gregorian calendar has had to discard at least
ten days during the switch. To see how this works, consider the month of October 1582, when the first
Julian-to-Gregorian switch occurred.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3 4 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

There are no dates between October 4 and October 15. This discontinuity is called the cutover. Any
dates before the cutover are Julian, and any dates following the cutover are Gregorian. Dates during a
cutover are nonexistent.

2218

Conversion Between Date and Time Types

A calendar applied to dates when it was not actually in use is called proleptic. Thus, if we assume there
was never a cutover and Gregorian rules always rule, we have a proleptic Gregorian calendar. This
is what is used by MySQL, as is required by standard SQL. For this reason, dates prior to the cutover
stored as MySQL DATE or DATETIME values must be adjusted to compensate for the difference. It
is important to realize that the cutover did not occur at the same time in all countries, and that the
later it happened, the more days were lost. For example, in Great Britain, it took place in 1752, when
Wednesday September 2 was followed by Thursday September 14. Russia remained on the Julian
calendar until 1918, losing 13 days in the process, and what is popularly referred to as its “October
Revolution” occurred in November according to the Gregorian calendar.

13.2.8 Conversion Between Date and Time Types

To some extent, you can convert a value from one temporal type to another. However, there may be
some alteration of the value or loss of information. In all cases, conversion between temporal types
is subject to the range of valid values for the resulting type. For example, although DATE, DATETIME,
and TIMESTAMP values all can be specified using the same set of formats, the types do not all
have the same range of values. TIMESTAMP values cannot be earlier than 1970 UTC or later than
'2038-01-19 03:14:07' UTC. This means that a date such as '1968-01-01', while valid as a
DATE or DATETIME value, is not valid as a TIMESTAMP value and is converted to 0.

Conversion of DATE values:

• Conversion to a DATETIME or TIMESTAMP value adds a time part of '00:00:00' because the
DATE value contains no time information.

• Conversion to a TIME value is not useful; the result is '00:00:00'.

Conversion of DATETIME and TIMESTAMP values:

• Conversion to a DATE value takes fractional seconds into account and rounds the time part. For
example, '1999-12-31 23:59:59.499' becomes '1999-12-31', whereas '1999-12-31
23:59:59.500' becomes '2000-01-01'.

• Conversion to a TIME value discards the date part because the TIME type contains no date
information.

For conversion of TIME values to other temporal types, the value of CURRENT_DATE() is used for the
date part. The TIME is interpreted as elapsed time (not time of day) and added to the date. This means
that the date part of the result differs from the current date if the time value is outside the range from
'00:00:00' to '23:59:59'.

Suppose that the current date is '2012-01-01'. TIME values of '12:00:00', '24:00:00',
and '-12:00:00', when converted to DATETIME or TIMESTAMP values, result in '2012-01-01
12:00:00', '2012-01-02 00:00:00', and '2011-12-31 12:00:00', respectively.

Conversion of TIME to DATE is similar but discards the time part from the result: '2012-01-01',
'2012-01-02', and '2011-12-31', respectively.

Explicit conversion can be used to override implicit conversion. For example, in comparison of DATE
and DATETIME values, the DATE value is coerced to the DATETIME type by adding a time part of
'00:00:00'. To perform the comparison by ignoring the time part of the DATETIME value instead,
use the CAST() function in the following way:

date_col = CAST(datetime_col AS DATE)

Conversion of TIME and DATETIME values to numeric form (for example, by adding +0) depends
on whether the value contains a fractional seconds part. TIME(N) or DATETIME(N) is converted to
integer when N is 0 (or omitted) and to a DECIMAL value with N decimal digits when N is greater than 0:

mysql> SELECT CURTIME(), CURTIME()+0, CURTIME(3)+0;
+-----------+-------------+--------------+
| CURTIME() | CURTIME()+0 | CURTIME(3)+0 |

2219

2-Digit Years in Dates

+-----------+-------------+--------------+
| 09:28:00 | 92800 | 92800.887 |
+-----------+-------------+--------------+
mysql> SELECT NOW(), NOW()+0, NOW(3)+0;
+---------------------+----------------+--------------------+
| NOW() | NOW()+0 | NOW(3)+0 |
+---------------------+----------------+--------------------+
| 2012-08-15 09:28:00 | 20120815092800 | 20120815092800.889 |
+---------------------+----------------+--------------------+

13.2.9 2-Digit Years in Dates

Date values with 2-digit years are ambiguous because the century is unknown. Such values must be
interpreted into 4-digit form because MySQL stores years internally using 4 digits.

For DATETIME, DATE, and TIMESTAMP types, MySQL interprets dates specified with ambiguous year
values using these rules:

• Year values in the range 00-69 become 2000-2069.

• Year values in the range 70-99 become 1970-1999.

For YEAR, the rules are the same, with this exception: A numeric 00 inserted into YEAR results in 0000
rather than 2000. To specify zero for YEAR and have it be interpreted as 2000, specify it as a string
'0' or '00'.

Remember that these rules are only heuristics that provide reasonable guesses as to what your data
values mean. If the rules used by MySQL do not produce the values you require, you must provide
unambiguous input containing 4-digit year values.

ORDER BY properly sorts YEAR values that have 2-digit years.

Some functions like MIN() and MAX() convert a YEAR to a number. This means that a value with a 2-
digit year does not work properly with these functions. The fix in this case is to convert the YEAR to 4-
digit year format.

13.3 String Data Types
The string data types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET.

For information about storage requirements of the string data types, see Section 13.7, “Data Type
Storage Requirements”.

For descriptions of functions that operate on string values, see Section 14.8, “String Functions and
Operators”.

13.3.1 String Data Type Syntax

The string data types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET.

In some cases, MySQL may change a string column to a type different from that given in a CREATE
TABLE or ALTER TABLE statement. See Section 15.1.20.7, “Silent Column Specification Changes”.

For definitions of character string columns (CHAR, VARCHAR, and the TEXT types), MySQL interprets
length specifications in character units. For definitions of binary string columns (BINARY, VARBINARY,
and the BLOB types), MySQL interprets length specifications in byte units.

Column definitions for character string data types CHAR, VARCHAR, the TEXT types, ENUM, SET, and
any synonyms) can specify the column character set and collation:

• CHARACTER SET specifies the character set. If desired, a collation for the character set can be
specified with the COLLATE attribute, along with any other attributes. For example:

CREATE TABLE t

2220

String Data Type Syntax

(
 c1 VARCHAR(20) CHARACTER SET utf8mb4,
 c2 TEXT CHARACTER SET latin1 COLLATE latin1_general_cs
);

This table definition creates a column named c1 that has a character set of utf8mb4 with the default
collation for that character set, and a column named c2 that has a character set of latin1 and a
case-sensitive (_cs) collation.

The rules for assigning the character set and collation when either or both of CHARACTER SET and
the COLLATE attribute are missing are described in Section 12.3.5, “Column Character Set and
Collation”.

CHARSET is a synonym for CHARACTER SET.

• Specifying the CHARACTER SET binary attribute for a character string data type causes the
column to be created as the corresponding binary string data type: CHAR becomes BINARY,
VARCHAR becomes VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this
does not occur; they are created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,
 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

• The BINARY attribute is a nonstandard MySQL extension that is shorthand for specifying the binary
(_bin) collation of the column character set (or of the table default character set if no column
character set is specified). In this case, comparison and sorting are based on numeric character
code values. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET latin1 BINARY,
 c2 TEXT BINARY
) CHARACTER SET utf8mb4;

The resulting table has this definition:

CREATE TABLE t (
 c1 VARCHAR(10) CHARACTER SET latin1 COLLATE latin1_bin,
 c2 TEXT CHARACTER SET utf8mb4 COLLATE utf8mb4_bin
) CHARACTER SET utf8mb4;

In MySQL 8.0, this nonstandard use of the BINARY attribute is ambiguous because the utf8mb4
character set has multiple _bin collations. As of MySQL 8.0.17, the BINARY attribute is deprecated
and you should expect support for it to be removed in a future version of MySQL. Applications should
be adjusted to use an explicit _bin collation instead.

The use of BINARY to specify a data type or character set remains unchanged.

• The ASCII attribute is shorthand for CHARACTER SET latin1. Supported in older MySQL
releases, ASCII is deprecated in MySQL 8.0.28 and later; use CHARACTER SET instead.

• The UNICODE attribute is shorthand for CHARACTER SET ucs2. Supported in older MySQL
releases, UNICODE is deprecated in MySQL 8.0.28 and later; use CHARACTER SET instead.

2221

String Data Type Syntax

Character column comparison and sorting are based on the collation assigned to the column. For the
CHAR, VARCHAR, TEXT, ENUM, and SET data types, you can declare a column with a binary (_bin)
collation or the BINARY attribute to cause comparison and sorting to use the underlying character code
values rather than a lexical ordering.

For additional information about use of character sets in MySQL, see Chapter 12, Character Sets,
Collations, Unicode.

• [NATIONAL] CHAR[(M)] [CHARACTER SET charset_name] [COLLATE
collation_name]

A fixed-length string that is always right-padded with spaces to the specified length when stored. M
represents the column length in characters. The range of M is 0 to 255. If M is omitted, the length is 1.

Note

Trailing spaces are removed when CHAR values are retrieved unless the
PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR) is the
standard SQL way to define that a CHAR column should use some predefined character set. MySQL
uses utf8mb3 as this predefined character set. Section 12.3.7, “The National Character Set”.

The CHAR BYTE data type is an alias for the BINARY data type. This is a compatibility feature.

MySQL permits you to create a column of type CHAR(0). This is useful primarily when you must
be compliant with old applications that depend on the existence of a column but that do not actually
use its value. CHAR(0) is also quite nice when you need a column that can take only two values: A
column that is defined as CHAR(0) NULL occupies only one bit and can take only the values NULL
and '' (the empty string).

• [NATIONAL] VARCHAR(M) [CHARACTER SET charset_name] [COLLATE
collation_name]

A variable-length string. M represents the maximum column length in characters. The range of M is 0
to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size (65,535
bytes, which is shared among all columns) and the character set used. For example, utf8mb3
characters can require up to three bytes per character, so a VARCHAR column that uses the
utf8mb3 character set can be declared to be a maximum of 21,844 characters. See Section 10.4.7,
“Limits on Table Column Count and Row Size”.

MySQL stores VARCHAR values as a 1-byte or 2-byte length prefix plus data. The length prefix
indicates the number of bytes in the value. A VARCHAR column uses one length byte if values require
no more than 255 bytes, two length bytes if values may require more than 255 bytes.

Note

MySQL follows the standard SQL specification, and does not remove trailing
spaces from VARCHAR values.

VARCHAR is shorthand for CHARACTER VARYING. NATIONAL VARCHAR is the standard SQL way to
define that a VARCHAR column should use some predefined character set. MySQL uses utf8mb3 as
this predefined character set. Section 12.3.7, “The National Character Set”. NVARCHAR is shorthand
for NATIONAL VARCHAR.

• BINARY[(M)]

The BINARY type is similar to the CHAR type, but stores binary byte strings rather than nonbinary
character strings. An optional length M represents the column length in bytes. If omitted, M defaults to
1.

2222

String Data Type Syntax

• VARBINARY(M)

The VARBINARY type is similar to the VARCHAR type, but stores binary byte strings rather than
nonbinary character strings. M represents the maximum column length in bytes.

• TINYBLOB

A BLOB column with a maximum length of 255 (28 − 1) bytes. Each TINYBLOB value is stored using
a 1-byte length prefix that indicates the number of bytes in the value.

• TINYTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 255 (28 − 1) characters. The effective maximum length is
less if the value contains multibyte characters. Each TINYTEXT value is stored using a 1-byte length
prefix that indicates the number of bytes in the value.

• BLOB[(M)]

A BLOB column with a maximum length of 65,535 (216 − 1) bytes. Each BLOB value is stored using a
2-byte length prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the
smallest BLOB type large enough to hold values M bytes long.

• TEXT[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 65,535 (216 − 1) characters. The effective maximum length
is less if the value contains multibyte characters. Each TEXT value is stored using a 2-byte length
prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the
smallest TEXT type large enough to hold values M characters long.

• MEDIUMBLOB

A BLOB column with a maximum length of 16,777,215 (224 − 1) bytes. Each MEDIUMBLOB value is
stored using a 3-byte length prefix that indicates the number of bytes in the value.

• MEDIUMTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 16,777,215 (224 − 1) characters. The effective maximum
length is less if the value contains multibyte characters. Each MEDIUMTEXT value is stored using a 3-
byte length prefix that indicates the number of bytes in the value.

• LONGBLOB

A BLOB column with a maximum length of 4,294,967,295 or 4GB (232 − 1) bytes. The effective
maximum length of LONGBLOB columns depends on the configured maximum packet size in the
client/server protocol and available memory. Each LONGBLOB value is stored using a 4-byte length
prefix that indicates the number of bytes in the value.

• LONGTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 4,294,967,295 or 4GB (232 − 1) characters. The effective
maximum length is less if the value contains multibyte characters. The effective maximum length
of LONGTEXT columns also depends on the configured maximum packet size in the client/server
protocol and available memory. Each LONGTEXT value is stored using a 4-byte length prefix that
indicates the number of bytes in the value.

2223

The CHAR and VARCHAR Types

• ENUM('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

An enumeration. A string object that can have only one value, chosen from the list of values
'value1', 'value2', ..., NULL or the special '' error value. ENUM values are represented
internally as integers.

An ENUM column can have a maximum of 65,535 distinct elements.

The maximum supported length of an individual ENUM element is M <= 255 and (M x w) <= 1020,
where M is the element literal length and w is the number of bytes required for the maximum-length
character in the character set.

• SET('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

A set. A string object that can have zero or more values, each of which must be chosen from the list
of values 'value1', 'value2', ... SET values are represented internally as integers.

A SET column can have a maximum of 64 distinct members.

The maximum supported length of an individual SET element is M <= 255 and (M x w) <= 1020,
where M is the element literal length and w is the number of bytes required for the maximum-length
character in the character set.

13.3.2 The CHAR and VARCHAR Types

The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved. They also
differ in maximum length and in whether trailing spaces are retained.

The CHAR and VARCHAR types are declared with a length that indicates the maximum number of
characters you want to store. For example, CHAR(30) can hold up to 30 characters.

The length of a CHAR column is fixed to the length that you declare when you create the table. The
length can be any value from 0 to 255. When CHAR values are stored, they are right-padded with
spaces to the specified length. When CHAR values are retrieved, trailing spaces are removed unless
the PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

Values in VARCHAR columns are variable-length strings. The length can be specified as a value from
0 to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size (65,535
bytes, which is shared among all columns) and the character set used. See Section 10.4.7, “Limits on
Table Column Count and Row Size”.

In contrast to CHAR, VARCHAR values are stored as a 1-byte or 2-byte length prefix plus data. The
length prefix indicates the number of bytes in the value. A column uses one length byte if values
require no more than 255 bytes, two length bytes if values may require more than 255 bytes.

If strict SQL mode is not enabled and you assign a value to a CHAR or VARCHAR column that exceeds
the column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion
of the value by using strict SQL mode. See Section 7.1.11, “Server SQL Modes”.

For VARCHAR columns, trailing spaces in excess of the column length are truncated prior to insertion
and a warning is generated, regardless of the SQL mode in use. For CHAR columns, truncation of
excess trailing spaces from inserted values is performed silently regardless of the SQL mode.

VARCHAR values are not padded when they are stored. Trailing spaces are retained when values are
stored and retrieved, in conformance with standard SQL.

The following table illustrates the differences between CHAR and VARCHAR by showing the result of
storing various string values into CHAR(4) and VARCHAR(4) columns (assuming that the column uses
a single-byte character set such as latin1).

2224

The BINARY and VARBINARY Types

Value CHAR(4) Storage Required VARCHAR(4) Storage Required

'' ' ' 4 bytes '' 1 byte

'ab' 'ab ' 4 bytes 'ab' 3 bytes

'abcd' 'abcd' 4 bytes 'abcd' 5 bytes

'abcdefgh' 'abcd' 4 bytes 'abcd' 5 bytes

The values shown as stored in the last row of the table apply only when not using strict SQL mode; if
strict mode is enabled, values that exceed the column length are not stored, and an error results.

InnoDB encodes fixed-length fields greater than or equal to 768 bytes in length as variable-length
fields, which can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the
maximum byte length of the character set is greater than 3, as it is with utf8mb4.

If a given value is stored into the CHAR(4) and VARCHAR(4) columns, the values retrieved from the
columns are not always the same because trailing spaces are removed from CHAR columns upon
retrieval. The following example illustrates this difference:

mysql> CREATE TABLE vc (v VARCHAR(4), c CHAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO vc VALUES ('ab ', 'ab ');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT CONCAT('(', v, ')'), CONCAT('(', c, ')') FROM vc;
+---------------------+---------------------+
| CONCAT('(', v, ')') | CONCAT('(', c, ')') |
+---------------------+---------------------+
| (ab) | (ab) |
+---------------------+---------------------+
1 row in set (0.06 sec)

Values in CHAR, VARCHAR, and TEXT columns are sorted and compared according to the character set
collation assigned to the column.

MySQL collations have a pad attribute of PAD SPACE, other than Unicode collations based on UCA
9.0.0 and higher, which have a pad attribute of NO PAD. (see Section 12.10.1, “Unicode Character
Sets”).

To determine the pad attribute for a collation, use the INFORMATION_SCHEMA COLLATIONS table,
which has a PAD_ATTRIBUTE column.

For nonbinary strings (CHAR, VARCHAR, and TEXT values), the string collation pad attribute determines
treatment in comparisons of trailing spaces at the end of strings. NO PAD collations treat trailing spaces
as significant in comparisons, like any other character. PAD SPACE collations treat trailing spaces as
insignificant in comparisons; strings are compared without regard to trailing spaces. See Trailing Space
Handling in Comparisons. The server SQL mode has no effect on comparison behavior with respect to
trailing spaces.

Note

For more information about MySQL character sets and collations, see
Chapter 12, Character Sets, Collations, Unicode. For additional information
about storage requirements, see Section 13.7, “Data Type Storage
Requirements”.

For those cases where trailing pad characters are stripped or comparisons ignore them, if a column
has an index that requires unique values, inserting into the column values that differ only in number of
trailing pad characters results in a duplicate-key error. For example, if a table contains 'a', an attempt
to store 'a ' causes a duplicate-key error.

13.3.3 The BINARY and VARBINARY Types

2225

The BINARY and VARBINARY Types

The BINARY and VARBINARY types are similar to CHAR and VARCHAR, except that they store binary
strings rather than nonbinary strings. That is, they store byte strings rather than character strings. This
means they have the binary character set and collation, and comparison and sorting are based on
the numeric values of the bytes in the values.

The permissible maximum length is the same for BINARY and VARBINARY as it is for CHAR and
VARCHAR, except that the length for BINARY and VARBINARY is measured in bytes rather than
characters.

The BINARY and VARBINARY data types are distinct from the CHAR BINARY and VARCHAR BINARY
data types. For the latter types, the BINARY attribute does not cause the column to be treated as a
binary string column. Instead, it causes the binary (_bin) collation for the column character set (or the
table default character set if no column character set is specified) to be used, and the column itself
stores nonbinary character strings rather than binary byte strings. For example, if the default character
set is utf8mb4, CHAR(5) BINARY is treated as CHAR(5) CHARACTER SET utf8mb4 COLLATE
utf8mb4_bin. This differs from BINARY(5), which stores 5-byte binary strings that have the binary
character set and collation. For information about the differences between the binary collation of the
binary character set and the _bin collations of nonbinary character sets, see Section 12.8.5, “The
binary Collation Compared to _bin Collations”.

If strict SQL mode is not enabled and you assign a value to a BINARY or VARBINARY column that
exceeds the column's maximum length, the value is truncated to fit and a warning is generated. For
cases of truncation, to cause an error to occur (rather than a warning) and suppress insertion of the
value, use strict SQL mode. See Section 7.1.11, “Server SQL Modes”.

When BINARY values are stored, they are right-padded with the pad value to the specified length.
The pad value is 0x00 (the zero byte). Values are right-padded with 0x00 for inserts, and no trailing
bytes are removed for retrievals. All bytes are significant in comparisons, including ORDER BY and
DISTINCT operations. 0x00 and space differ in comparisons, with 0x00 sorting before space.

Example: For a BINARY(3) column, 'a ' becomes 'a \0' when inserted. 'a\0' becomes 'a
\0\0' when inserted. Both inserted values remain unchanged for retrievals.

For VARBINARY, there is no padding for inserts and no bytes are stripped for retrievals. All bytes are
significant in comparisons, including ORDER BY and DISTINCT operations. 0x00 and space differ in
comparisons, with 0x00 sorting before space.

For those cases where trailing pad bytes are stripped or comparisons ignore them, if a column has an
index that requires unique values, inserting values into the column that differ only in number of trailing
pad bytes results in a duplicate-key error. For example, if a table contains 'a', an attempt to store 'a
\0' causes a duplicate-key error.

You should consider the preceding padding and stripping characteristics carefully if you plan to use the
BINARY data type for storing binary data and you require that the value retrieved be exactly the same
as the value stored. The following example illustrates how 0x00-padding of BINARY values affects
column value comparisons:

mysql> CREATE TABLE t (c BINARY(3));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET c = 'a';
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(c), c = 'a', c = 'a\0\0' from t;
+--------+---------+-------------+
| HEX(c) | c = 'a' | c = 'a\0\0' |
+--------+---------+-------------+
| 610000 | 0 | 1 |
+--------+---------+-------------+
1 row in set (0.09 sec)

If the value retrieved must be the same as the value specified for storage with no padding, it might be
preferable to use VARBINARY or one of the BLOB data types instead.

2226

The BLOB and TEXT Types

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about
that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

13.3.4 The BLOB and TEXT Types

A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types are
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. These differ only in the maximum length of the
values they can hold. The four TEXT types are TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT. These
correspond to the four BLOB types and have the same maximum lengths and storage requirements.
See Section 13.7, “Data Type Storage Requirements”.

BLOB values are treated as binary strings (byte strings). They have the binary character set and
collation, and comparison and sorting are based on the numeric values of the bytes in column values.
TEXT values are treated as nonbinary strings (character strings). They have a character set other than
binary, and values are sorted and compared based on the collation of the character set.

If strict SQL mode is not enabled and you assign a value to a BLOB or TEXT column that exceeds the
column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion
of the value by using strict SQL mode. See Section 7.1.11, “Server SQL Modes”.

Truncation of excess trailing spaces from values to be inserted into TEXT columns always generates a
warning, regardless of the SQL mode.

For TEXT and BLOB columns, there is no padding on insert and no bytes are stripped on select.

If a TEXT column is indexed, index entry comparisons are space-padded at the end. This means that, if
the index requires unique values, duplicate-key errors occur for values that differ only in the number of
trailing spaces. For example, if a table contains 'a', an attempt to store 'a ' causes a duplicate-key
error. This is not true for BLOB columns.

In most respects, you can regard a BLOB column as a VARBINARY column that can be as large as
you like. Similarly, you can regard a TEXT column as a VARCHAR column. BLOB and TEXT differ from
VARBINARY and VARCHAR in the following ways:

• For indexes on BLOB and TEXT columns, you must specify an index prefix length. For CHAR and
VARCHAR, a prefix length is optional. See Section 10.3.5, “Column Indexes”.

• BLOB and TEXT columns cannot have DEFAULT values.

If you use the BINARY attribute with a TEXT data type, the column is assigned the binary (_bin)
collation of the column character set.

LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a compatibility feature.

MySQL Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as
LONGVARCHAR.

Because BLOB and TEXT values can be extremely long, you might encounter some constraints in using
them:

• Only the first max_sort_length bytes of the column are used when sorting. The default value
of max_sort_length is 1024. You can make more bytes significant in sorting or grouping by
increasing the value of max_sort_length at server startup or runtime. Any client can change the
value of its session max_sort_length variable:

mysql> SET max_sort_length = 2000;
mysql> SELECT id, comment FROM t
 -> ORDER BY comment;

2227

The ENUM Type

• Instances of BLOB or TEXT columns in the result of a query that is processed using a temporary table
causes the server to use a table on disk rather than in memory because the MEMORY storage engine
does not support those data types (see Section 10.4.4, “Internal Temporary Table Use in MySQL”).
Use of disk incurs a performance penalty, so include BLOB or TEXT columns in the query result only
if they are really needed. For example, avoid using SELECT *, which selects all columns.

• The maximum size of a BLOB or TEXT object is determined by its type, but the largest value you
actually can transmit between the client and server is determined by the amount of available memory
and the size of the communications buffers. You can change the message buffer size by changing
the value of the max_allowed_packet variable, but you must do so for both the server and your
client program. For example, both mysql and mysqldump enable you to change the client-side
max_allowed_packet value. See Section 7.1.1, “Configuring the Server”, Section 6.5.1, “mysql
— The MySQL Command-Line Client”, and Section 6.5.4, “mysqldump — A Database Backup
Program”. You may also want to compare the packet sizes and the size of the data objects you are
storing with the storage requirements, see Section 13.7, “Data Type Storage Requirements”

Each BLOB or TEXT value is represented internally by a separately allocated object. This is in contrast
to all other data types, for which storage is allocated once per column when the table is opened.

In some cases, it may be desirable to store binary data such as media files in BLOB or TEXT columns.
You may find MySQL's string handling functions useful for working with such data. See Section 14.8,
“String Functions and Operators”. For security and other reasons, it is usually preferable to do so using
application code rather than giving application users the FILE privilege. You can discuss specifics for
various languages and platforms in the MySQL Forums (http://forums.mysql.com/).

Note

Within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about
that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

13.3.5 The ENUM Type

An ENUM is a string object with a value chosen from a list of permitted values that are enumerated
explicitly in the column specification at table creation time.

See Section 13.3.1, “String Data Type Syntax” for ENUM type syntax and length limits.

The ENUM type has these advantages:

• Compact data storage in situations where a column has a limited set of possible values. The strings
you specify as input values are automatically encoded as numbers. See Section 13.7, “Data Type
Storage Requirements” for storage requirements for the ENUM type.

• Readable queries and output. The numbers are translated back to the corresponding strings in query
results.

and these potential issues to consider:

• If you make enumeration values that look like numbers, it is easy to mix up the literal values with
their internal index numbers, as explained in Enumeration Limitations.

• Using ENUM columns in ORDER BY clauses requires extra care, as explained in Enumeration Sorting.

• Creating and Using ENUM Columns

• Index Values for Enumeration Literals

• Handling of Enumeration Literals

• Empty or NULL Enumeration Values

2228

http://forums.mysql.com/

The ENUM Type

• Enumeration Sorting

• Enumeration Limitations

Creating and Using ENUM Columns

An enumeration value must be a quoted string literal. For example, you can create a table with an
ENUM column like this:

CREATE TABLE shirts (
 name VARCHAR(40),
 size ENUM('x-small', 'small', 'medium', 'large', 'x-large')
);
INSERT INTO shirts (name, size) VALUES ('dress shirt','large'), ('t-shirt','medium'),
 ('polo shirt','small');
SELECT name, size FROM shirts WHERE size = 'medium';
+---------+--------+
| name | size |
+---------+--------+
| t-shirt | medium |
+---------+--------+
UPDATE shirts SET size = 'small' WHERE size = 'large';
COMMIT;

Inserting 1 million rows into this table with a value of 'medium' would require 1 million bytes of
storage, as opposed to 6 million bytes if you stored the actual string 'medium' in a VARCHAR column.

Index Values for Enumeration Literals

Each enumeration value has an index:

• The elements listed in the column specification are assigned index numbers, beginning with 1.

• The index value of the empty string error value is 0. This means that you can use the following
SELECT statement to find rows into which invalid ENUM values were assigned:

mysql> SELECT * FROM tbl_name WHERE enum_col=0;

• The index of the NULL value is NULL.

• The term “index” here refers to a position within the list of enumeration values. It has nothing to do
with table indexes.

For example, a column specified as ENUM('Mercury', 'Venus', 'Earth') can have any of the
values shown here. The index of each value is also shown.

Value Index

NULL NULL

'' 0

'Mercury' 1

'Venus' 2

'Earth' 3

An ENUM column can have a maximum of 65,535 distinct elements.

If you retrieve an ENUM value in a numeric context, the column value's index is returned. For example,
you can retrieve numeric values from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For ENUM values, the index number is used in the calculation.

2229

The ENUM Type

Handling of Enumeration Literals

Trailing spaces are automatically deleted from ENUM member values in the table definition when a table
is created.

When retrieved, values stored into an ENUM column are displayed using the lettercase that was used
in the column definition. Note that ENUM columns can be assigned a character set and collation. For
binary or case-sensitive collations, lettercase is taken into account when assigning values to the
column.

If you store a number into an ENUM column, the number is treated as the index into the possible values,
and the value stored is the enumeration member with that index. (However, this does not work with
LOAD DATA, which treats all input as strings.) If the numeric value is quoted, it is still interpreted as
an index if there is no matching string in the list of enumeration values. For these reasons, it is not
advisable to define an ENUM column with enumeration values that look like numbers, because this can
easily become confusing. For example, the following column has enumeration members with string
values of '0', '1', and '2', but numeric index values of 1, 2, and 3:

numbers ENUM('0','1','2')

If you store 2, it is interpreted as an index value, and becomes '1' (the value with index 2). If you store
'2', it matches an enumeration value, so it is stored as '2'. If you store '3', it does not match any
enumeration value, so it is treated as an index and becomes '2' (the value with index 3).

mysql> INSERT INTO t (numbers) VALUES(2),('2'),('3');
mysql> SELECT * FROM t;
+---------+
| numbers |
+---------+
| 1 |
| 2 |
| 2 |
+---------+

To determine all possible values for an ENUM column, use SHOW COLUMNS FROM tbl_name LIKE
'enum_col' and parse the ENUM definition in the Type column of the output.

In the C API, ENUM values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see C API Basic Data Structures.

Empty or NULL Enumeration Values

An enumeration value can also be the empty string ('') or NULL under certain circumstances:

• If you insert an invalid value into an ENUM (that is, a string not present in the list of permitted values),
the empty string is inserted instead as a special error value. This string can be distinguished from
a “normal” empty string by the fact that this string has the numeric value 0. See Index Values for
Enumeration Literals for details about the numeric indexes for the enumeration values.

If strict SQL mode is enabled, attempts to insert invalid ENUM values result in an error.

• If an ENUM column is declared to permit NULL, the NULL value is a valid value for the column, and the
default value is NULL. If an ENUM column is declared NOT NULL, its default value is the first element
of the list of permitted values.

Enumeration Sorting

ENUM values are sorted based on their index numbers, which depend on the order in which the
enumeration members were listed in the column specification. For example, 'b' sorts before 'a' for
ENUM('b', 'a'). The empty string sorts before nonempty strings, and NULL values sort before all
other enumeration values.

2230

https://dev.mysql.com/doc/c-api/8.0/en/c-api-data-structures.html

The SET Type

To prevent unexpected results when using the ORDER BY clause on an ENUM column, use one of these
techniques:

• Specify the ENUM list in alphabetic order.

• Make sure that the column is sorted lexically rather than by index number by coding ORDER BY
CAST(col AS CHAR) or ORDER BY CONCAT(col).

Enumeration Limitations

An enumeration value cannot be an expression, even one that evaluates to a string value.

For example, this CREATE TABLE statement does not work because the CONCAT function cannot be
used to construct an enumeration value:

CREATE TABLE sizes (
 size ENUM('small', CONCAT('med','ium'), 'large')
);

You also cannot employ a user variable as an enumeration value. This pair of statements do not work:

SET @mysize = 'medium';

CREATE TABLE sizes (
 size ENUM('small', @mysize, 'large')
);

We strongly recommend that you do not use numbers as enumeration values, because it does not
save on storage over the appropriate TINYINT or SMALLINT type, and it is easy to mix up the strings
and the underlying number values (which might not be the same) if you quote the ENUM values
incorrectly. If you do use a number as an enumeration value, always enclose it in quotation marks. If
the quotation marks are omitted, the number is regarded as an index. See Handling of Enumeration
Literals to see how even a quoted number could be mistakenly used as a numeric index value.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

13.3.6 The SET Type

A SET is a string object that can have zero or more values, each of which must be chosen from a list
of permitted values specified when the table is created. SET column values that consist of multiple set
members are specified with members separated by commas (,). A consequence of this is that SET
member values should not themselves contain commas.

For example, a column specified as SET('one', 'two') NOT NULL can have any of these values:

''
'one'
'two'
'one,two'

A SET column can have a maximum of 64 distinct members.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

Trailing spaces are automatically deleted from SET member values in the table definition when a table
is created.

See String Type Storage Requirements for storage requirements for the SET type.

See Section 13.3.1, “String Data Type Syntax” for SET type syntax and length limits.

When retrieved, values stored in a SET column are displayed using the lettercase that was used in the
column definition. Note that SET columns can be assigned a character set and collation. For binary or
case-sensitive collations, lettercase is taken into account when assigning values to the column.

2231

The SET Type

MySQL stores SET values numerically, with the low-order bit of the stored value corresponding to
the first set member. If you retrieve a SET value in a numeric context, the value retrieved has bits set
corresponding to the set members that make up the column value. For example, you can retrieve
numeric values from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;

If a number is stored into a SET column, the bits that are set in the binary representation of the number
determine the set members in the column value. For a column specified as SET('a','b','c','d'),
the members have the following decimal and binary values.

SET Member Decimal Value Binary Value

'a' 1 0001

'b' 2 0010

'c' 4 0100

'd' 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET value
members 'a' and 'd' are selected and the resulting value is 'a,d'.

For a value containing more than one SET element, it does not matter what order the elements are
listed in when you insert the value. It also does not matter how many times a given element is listed in
the value. When the value is retrieved later, each element in the value appears once, with elements
listed according to the order in which they were specified at table creation time. Suppose that a column
is specified as SET('a','b','c','d'):

mysql> CREATE TABLE myset (col SET('a', 'b', 'c', 'd'));

If you insert the values 'a,d', 'd,a', 'a,d,d', 'a,d,a', and 'd,a,d':

mysql> INSERT INTO myset (col) VALUES
-> ('a,d'), ('d,a'), ('a,d,a'), ('a,d,d'), ('d,a,d');
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0

Then all these values appear as 'a,d' when retrieved:

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
5 rows in set (0.04 sec)

If you set a SET column to an unsupported value, the value is ignored and a warning is issued:

mysql> INSERT INTO myset (col) VALUES ('a,d,d,s');
Query OK, 1 row affected, 1 warning (0.03 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'col' at row 1 |
+---------+------+--+
1 row in set (0.04 sec)

mysql> SELECT col FROM myset;
+------+
| col |

2232

Spatial Data Types

+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
6 rows in set (0.01 sec)

If strict SQL mode is enabled, attempts to insert invalid SET values result in an error.

SET values are sorted numerically. NULL values sort before non-NULL SET values.

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For SET values, the cast operation causes the numeric value to be used.

Normally, you search for SET values using the FIND_IN_SET() function or the LIKE operator:

mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET('value',set_col)>0;
mysql> SELECT * FROM tbl_name WHERE set_col LIKE '%value%';

The first statement finds rows where set_col contains the value set member. The second is similar,
but not the same: It finds rows where set_col contains value anywhere, even as a substring of
another set member.

The following statements also are permitted:

mysql> SELECT * FROM tbl_name WHERE set_col & 1;
mysql> SELECT * FROM tbl_name WHERE set_col = 'val1,val2';

The first of these statements looks for values containing the first set member. The second looks for an
exact match. Be careful with comparisons of the second type. Comparing set values to 'val1,val2'
returns different results than comparing values to 'val2,val1'. You should specify the values in the
same order they are listed in the column definition.

To determine all possible values for a SET column, use SHOW COLUMNS FROM tbl_name LIKE
set_col and parse the SET definition in the Type column of the output.

In the C API, SET values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see C API Basic Data Structures.

13.4 Spatial Data Types
The Open Geospatial Consortium (OGC) is an international consortium of more than 250 companies,
agencies, and universities participating in the development of publicly available conceptual solutions
that can be useful with all kinds of applications that manage spatial data.

The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information - Simple feature access - Part 2: SQL option, a document that proposes several conceptual
ways for extending an SQL RDBMS to support spatial data. This specification is available from the
OGC website at http://www.opengeospatial.org/standards/sfs.

Following the OGC specification, MySQL implements spatial extensions as a subset of the SQL with
Geometry Types environment. This term refers to an SQL environment that has been extended
with a set of geometry types. A geometry-valued SQL column is implemented as a column that has a
geometry type. The specification describes a set of SQL geometry types, as well as functions on those
types to create and analyze geometry values.

MySQL spatial extensions enable the generation, storage, and analysis of geographic features:

• Data types for representing spatial values

• Functions for manipulating spatial values

2233

https://dev.mysql.com/doc/c-api/8.0/en/c-api-data-structures.html
http://www.opengeospatial.org
http://www.opengeospatial.org/standards/sfs

Additional Resources

• Spatial indexing for improved access times to spatial columns

The spatial data types and functions are available for MyISAM, InnoDB, NDB, and ARCHIVE tables.
For indexing spatial columns, MyISAM and InnoDB support both SPATIAL and non-SPATIAL indexes.
The other storage engines support non-SPATIAL indexes, as described in Section 15.1.15, “CREATE
INDEX Statement”.

A geographic feature is anything in the world that has a location. A feature can be:

• An entity. For example, a mountain, a pond, a city.

• A space. For example, town district, the tropics.

• A definable location. For example, a crossroad, as a particular place where two streets intersect.

Some documents use the term geospatial feature to refer to geographic features.

Geometry is another word that denotes a geographic feature. Originally the word geometry meant
measurement of the earth. Another meaning comes from cartography, referring to the geometric
features that cartographers use to map the world.

The discussion here considers these terms synonymous: geographic feature, geospatial feature,
feature, or geometry. The term most commonly used is geometry, defined as a point or an aggregate
of points representing anything in the world that has a location.

The following material covers these topics:

• The spatial data types implemented in MySQL model

• The basis of the spatial extensions in the OpenGIS geometry model

• Data formats for representing spatial data

• How to use spatial data in MySQL

• Use of indexing for spatial data

• MySQL differences from the OpenGIS specification

For information about functions that operate on spatial data, see Section 14.16, “Spatial Analysis
Functions”.

Additional Resources

These standards are important for the MySQL implementation of spatial operations:

• SQL/MM Part 3: Spatial.

• The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information, a document that proposes several conceptual ways for extending an SQL RDBMS
to support spatial data. See in particular Simple Feature Access - Part 1: Common Architecture,
and Simple Feature Access - Part 2: SQL Option. The Open Geospatial Consortium (OGC)
maintains a website at http://www.opengeospatial.org/. The specification is available there at http://
www.opengeospatial.org/standards/sfs. It contains additional information relevant to the material
here.

• The grammar for spatial reference system (SRS) definitions is based on the grammar defined
in OpenGIS Implementation Specification: Coordinate Transformation Services, Revision
1.00, OGC 01-009, January 12, 2001, Section 7.2. This specification is available at http://
www.opengeospatial.org/standards/ct. For differences from that specification in SRS definitions
as implemented in MySQL, see Section 15.1.19, “CREATE SPATIAL REFERENCE SYSTEM
Statement”.

2234

http://www.opengeospatial.org
http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/ct
http://www.opengeospatial.org/standards/ct

Spatial Data Types

If you have questions or concerns about the use of the spatial extensions to MySQL, you can discuss
them in the GIS forum: https://forums.mysql.com/list.php?23.

13.4.1 Spatial Data Types

MySQL has spatial data types that correspond to OpenGIS classes. The basis for these types is
described in Section 13.4.2, “The OpenGIS Geometry Model”.

Some spatial data types hold single geometry values:

• GEOMETRY

• POINT

• LINESTRING

• POLYGON

GEOMETRY can store geometry values of any type. The other single-value types (POINT, LINESTRING,
and POLYGON) restrict their values to a particular geometry type.

The other spatial data types hold collections of values:

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types
(MULTIPOINT, MULTILINESTRING, and MULTIPOLYGON) restrict collection members to those having
a particular geometry type.

Example: To create a table named geom that has a column named g that can store values of any
geometry type, use this statement:

CREATE TABLE geom (g GEOMETRY);

Columns with a spatial data type can have an SRID attribute, to explicitly indicate the spatial reference
system (SRS) for values stored in the column. For example:

CREATE TABLE geom (
 p POINT SRID 0,
 g GEOMETRY NOT NULL SRID 4326
);

SPATIAL indexes can be created on spatial columns if they are NOT NULL and have a specific SRID,
so if you plan to index the column, declare it with the NOT NULL and SRID attributes:

CREATE TABLE geom (g GEOMETRY NOT NULL SRID 4326);

InnoDB tables permit SRID values for Cartesian and geographic SRSs. MyISAM tables permit SRID
values for Cartesian SRSs.

The SRID attribute makes a spatial column SRID-restricted, which has these implications:

• The column can contain only values with the given SRID. Attempts to insert values with a different
SRID produce an error.

• The optimizer can use SPATIAL indexes on the column. See Section 10.3.3, “SPATIAL Index
Optimization”.

2235

https://forums.mysql.com/list.php?23

The OpenGIS Geometry Model

Spatial columns with no SRID attribute are not SRID-restricted and accept values with any SRID.
However, the optimizer cannot use SPATIAL indexes on them until the column definition is modified
to include an SRID attribute, which may require that the column contents first be modified so that all
values have the same SRID.

For other examples showing how to use spatial data types in MySQL, see Section 13.4.6, “Creating
Spatial Columns”. For information about spatial reference systems, see Section 13.4.5, “Spatial
Reference System Support”.

13.4.2 The OpenGIS Geometry Model

The set of geometry types proposed by OGC's SQL with Geometry Types environment is based
on the OpenGIS Geometry Model. In this model, each geometric object has the following general
properties:

• It is associated with a spatial reference system, which describes the coordinate space in which the
object is defined.

• It belongs to some geometry class.

13.4.2.1 The Geometry Class Hierarchy

The geometry classes define a hierarchy as follows:

• Geometry (noninstantiable)

• Point (instantiable)

• Curve (noninstantiable)

• LineString (instantiable)

• Line

• LinearRing

• Surface (noninstantiable)

• Polygon (instantiable)

• GeometryCollection (instantiable)

• MultiPoint (instantiable)

• MultiCurve (noninstantiable)

• MultiLineString (instantiable)

• MultiSurface (noninstantiable)

• MultiPolygon (instantiable)

It is not possible to create objects in noninstantiable classes. It is possible to create objects in
instantiable classes. All classes have properties, and instantiable classes may also have assertions
(rules that define valid class instances).

Geometry is the base class. It is an abstract class. The instantiable subclasses of Geometry
are restricted to zero-, one-, and two-dimensional geometric objects that exist in two-dimensional
coordinate space. All instantiable geometry classes are defined so that valid instances of a geometry
class are topologically closed (that is, all defined geometries include their boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollection:

2236

The OpenGIS Geometry Model

• Point represents zero-dimensional objects.

• Curve represents one-dimensional objects, and has subclass LineString, with sub-subclasses
Line and LinearRing.

• Surface is designed for two-dimensional objects and has subclass Polygon.

• GeometryCollection has specialized zero-, one-, and two-dimensional collection classes named
MultiPoint, MultiLineString, and MultiPolygon for modeling geometries corresponding
to collections of Points, LineStrings, and Polygons, respectively. MultiCurve and
MultiSurface are introduced as abstract superclasses that generalize the collection interfaces to
handle Curves and Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as noninstantiable
classes. They define a common set of methods for their subclasses and are included for extensibility.

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and
MultiPolygon are instantiable classes.

13.4.2.2 Geometry Class

Geometry is the root class of the hierarchy. It is a noninstantiable class but has a number of
properties, described in the following list, that are common to all geometry values created from any of
the Geometry subclasses. Particular subclasses have their own specific properties, described later.

Geometry Properties

A geometry value has the following properties:

• Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.

• Its SRID, or spatial reference identifier. This value identifies the geometry's associated spatial
reference system that describes the coordinate space in which the geometry object is defined.

In MySQL, the SRID value is an integer associated with the geometry value. The maximum usable
SRID value is 232−1. If a larger value is given, only the lower 32 bits are used.

SRID 0 represents an infinite flat Cartesian plane with no units assigned to its axes. To ensure SRID
0 behavior, create geometry values using SRID 0. SRID 0 is the default for new geometry values if
no SRID is specified.

For computations on multiple geometry values, all values must have the same SRID or an error
occurs.

• Its coordinates in its spatial reference system, represented as double-precision (8-byte) numbers.
All nonempty geometries include at least one pair of (X,Y) coordinates. Empty geometries contain no
coordinates.

Coordinates are related to the SRID. For example, in different coordinate systems, the distance
between two objects may differ even when objects have the same coordinates, because the distance
on the planar coordinate system and the distance on the geodetic system (coordinates on the
Earth's surface) are different things.

• Its interior, boundary, and exterior.

Every geometry occupies some position in space. The exterior of a geometry is all space not
occupied by the geometry. The interior is the space occupied by the geometry. The boundary is the
interface between the geometry's interior and exterior.

• Its MBR (minimum bounding rectangle), or envelope. This is the bounding geometry, formed by the
minimum and maximum (X,Y) coordinates:

2237

The OpenGIS Geometry Model

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• Whether the value is simple or nonsimple. Geometry values of types (LineString, MultiPoint,
MultiLineString) are either simple or nonsimple. Each type determines its own assertions for
being simple or nonsimple.

• Whether the value is closed or not closed. Geometry values of types (LineString,
MultiString) are either closed or not closed. Each type determines its own assertions for being
closed or not closed.

• Whether the value is empty or nonempty A geometry is empty if it does not have any points.
Exterior, interior, and boundary of an empty geometry are not defined (that is, they are represented
by a NULL value). An empty geometry is defined to be always simple and has an area of 0.

• Its dimension. A geometry can have a dimension of −1, 0, 1, or 2:

• −1 for an empty geometry.

• 0 for a geometry with no length and no area.

• 1 for a geometry with nonzero length and zero area.

• 2 for a geometry with nonzero area.

Point objects have a dimension of zero. LineString objects have a dimension of 1. Polygon
objects have a dimension of 2. The dimensions of MultiPoint, MultiLineString, and
MultiPolygon objects are the same as the dimensions of the elements they consist of.

13.4.2.3 Point Class

A Point is a geometry that represents a single location in coordinate space.

Point Examples

• Imagine a large-scale map of the world with many cities. A Point object could represent each city.

• On a city map, a Point object could represent a bus stop.

Point Properties

• X-coordinate value.

• Y-coordinate value.

• Point is defined as a zero-dimensional geometry.

• The boundary of a Point is the empty set.

13.4.2.4 Curve Class

A Curve is a one-dimensional geometry, usually represented by a sequence of points. Particular
subclasses of Curve define the type of interpolation between points. Curve is a noninstantiable class.

Curve Properties

• A Curve has the coordinates of its points.

• A Curve is defined as a one-dimensional geometry.

• A Curve is simple if it does not pass through the same point twice, with the exception that a curve
can still be simple if the start and end points are the same.

• A Curve is closed if its start point is equal to its endpoint.

2238

The OpenGIS Geometry Model

• The boundary of a closed Curve is empty.

• The boundary of a nonclosed Curve consists of its two endpoints.

• A Curve that is simple and closed is a LinearRing.

13.4.2.5 LineString Class

A LineString is a Curve with linear interpolation between points.

LineString Examples

• On a world map, LineString objects could represent rivers.

• In a city map, LineString objects could represent streets.

LineString Properties

• A LineString has coordinates of segments, defined by each consecutive pair of points.

• A LineString is a Line if it consists of exactly two points.

• A LineString is a LinearRing if it is both closed and simple.

13.4.2.6 Surface Class

A Surface is a two-dimensional geometry. It is a noninstantiable class. Its only instantiable subclass is
Polygon.

Simple surfaces in three-dimensional space are isomorphic to planar surfaces.

Polyhedral surfaces are formed by “stitching” together simple surfaces along their boundaries,
polyhedral surfaces in three-dimensional space may not be planar as a whole.

Surface Properties

• A Surface is defined as a two-dimensional geometry.

• The OpenGIS specification defines a simple Surface as a geometry that consists of a single “patch”
that is associated with a single exterior boundary and zero or more interior boundaries.

• The boundary of a simple Surface is the set of closed curves corresponding to its exterior and
interior boundaries.

13.4.2.7 Polygon Class

A Polygon is a planar Surface representing a multisided geometry. It is defined by a single exterior
boundary and zero or more interior boundaries, where each interior boundary defines a hole in the
Polygon.

Polygon Examples

• On a region map, Polygon objects could represent forests, districts, and so on.

Polygon Assertions

• The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString objects
that are both simple and closed) that make up its exterior and interior boundaries.

• A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect at a
Point, but only as a tangent.

• A Polygon has no lines, spikes, or punctures.

2239

The OpenGIS Geometry Model

• A Polygon has an interior that is a connected point set.

• A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each hole
defines a connected component of the exterior.

The preceding assertions make a Polygon a simple geometry.

13.4.2.8 GeometryCollection Class

A GeomCollection is a geometry that is a collection of zero or more geometries of any class.

GeomCollection and GeometryCollection are synonymous, with GeomCollection the
preferred type name.

All the elements in a geometry collection must be in the same spatial reference system (that is, in the
same coordinate system). There are no other constraints on the elements of a geometry collection,
although the subclasses of GeomCollection described in the following sections may restrict
membership. Restrictions may be based on:

• Element type (for example, a MultiPoint may contain only Point elements)

• Dimension

• Constraints on the degree of spatial overlap between elements

13.4.2.9 MultiPoint Class

A MultiPoint is a geometry collection composed of Point elements. The points are not connected
or ordered in any way.

MultiPoint Examples

• On a world map, a MultiPoint could represent a chain of small islands.

• On a city map, a MultiPoint could represent the outlets for a ticket office.

MultiPoint Properties

• A MultiPoint is a zero-dimensional geometry.

• A MultiPoint is simple if no two of its Point values are equal (have identical coordinate values).

• The boundary of a MultiPoint is the empty set.

13.4.2.10 MultiCurve Class

A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a
noninstantiable class.

MultiCurve Properties

• A MultiCurve is a one-dimensional geometry.

• A MultiCurve is simple if and only if all of its elements are simple; the only intersections between
any two elements occur at points that are on the boundaries of both elements.

• A MultiCurve boundary is obtained by applying the “mod 2 union rule” (also known as the “odd-
even rule”): A point is in the boundary of a MultiCurve if it is in the boundaries of an odd number of
Curve elements.

• A MultiCurve is closed if all of its elements are closed.

• The boundary of a closed MultiCurve is always empty.

2240

Supported Spatial Data Formats

13.4.2.11 MultiLineString Class

A MultiLineString is a MultiCurve geometry collection composed of LineString elements.

MultiLineString Examples

• On a region map, a MultiLineString could represent a river system or a highway system.

13.4.2.12 MultiSurface Class

A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a
noninstantiable class. Its only instantiable subclass is MultiPolygon.

MultiSurface Assertions

• Surfaces within a MultiSurface have no interiors that intersect.

• Surfaces within a MultiSurface have boundaries that intersect at most at a finite number of points.

13.4.2.13 MultiPolygon Class

A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples

• On a region map, a MultiPolygon could represent a system of lakes.

MultiPolygon Assertions

• A MultiPolygon has no two Polygon elements with interiors that intersect.

• A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by the
previous assertion), or that touch at an infinite number of points.

• A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regular,
closed point set.

• A MultiPolygon that has more than one Polygon has an interior that is not connected. The
number of connected components of the interior of a MultiPolygon is equal to the number of
Polygon values in the MultiPolygon.

MultiPolygon Properties

• A MultiPolygon is a two-dimensional geometry.

• A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to the
boundaries of its Polygon elements.

• Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one Polygon
element.

• Every Curve in the boundary of an Polygon element is in the boundary of the MultiPolygon.

13.4.3 Supported Spatial Data Formats

Two standard spatial data formats are used to represent geometry objects in queries:

• Well-Known Text (WKT) format

• Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT or WKB format.
(Internal format is like WKB but with an initial 4 bytes to indicate the SRID.)

2241

Supported Spatial Data Formats

There are functions available to convert between different data formats; see Section 14.16.6,
“Geometry Format Conversion Functions”.

The following sections describe the spatial data formats MySQL uses:

• Well-Known Text (WKT) Format

• Well-Known Binary (WKB) Format

• Internal Geometry Storage Format

Well-Known Text (WKT) Format

The Well-Known Text (WKT) representation of geometry values is designed for exchanging geometry
data in ASCII form. The OpenGIS specification provides a Backus-Naur grammar that specifies the
formal production rules for writing WKT values (see Section 13.4, “Spatial Data Types”).

Examples of WKT representations of geometry objects:

• A Point:

POINT(15 20)

The point coordinates are specified with no separating comma. This differs from the syntax for the
SQL Point() function, which requires a comma between the coordinates. Take care to use the
syntax appropriate to the context of a given spatial operation. For example, the following statements
both use ST_X() to extract the X-coordinate from a Point object. The first produces the object
directly using the Point() function. The second uses a WKT representation converted to a Point
with ST_GeomFromText().

mysql> SELECT ST_X(Point(15, 20));
+---------------------+
| ST_X(POINT(15, 20)) |
+---------------------+
| 15 |
+---------------------+

mysql> SELECT ST_X(ST_GeomFromText('POINT(15 20)'));
+---------------------------------------+
| ST_X(ST_GeomFromText('POINT(15 20)')) |
+---------------------------------------+
| 15 |
+---------------------------------------+

• A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

The point coordinate pairs are separated by commas.

• A Polygon with one exterior ring and one interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

• A MultiPoint with three Point values:

MULTIPOINT(0 0, 20 20, 60 60)

Spatial functions such as ST_MPointFromText() and ST_GeomFromText() that accept
WKT-format representations of MultiPoint values permit individual points within values to be
surrounded by parentheses. For example, both of the following function calls are valid:

ST_MPointFromText('MULTIPOINT (1 1, 2 2, 3 3)')
ST_MPointFromText('MULTIPOINT ((1 1), (2 2), (3 3))')

• A MultiLineString with two LineString values:

2242

Supported Spatial Data Formats

MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

• A MultiPolygon with two Polygon values:

MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

• A GeometryCollection consisting of two Point values and one LineString:

GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

Well-Known Binary (WKB) Format

The Well-Known Binary (WKB) representation of geometric values is used for exchanging geometry
data as binary streams represented by BLOB values containing geometric WKB information. This
format is defined by the OpenGIS specification (see Section 13.4, “Spatial Data Types”). It is also
defined in the ISO SQL/MM Part 3: Spatial standard.

WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and 8-byte double-precision numbers
(IEEE 754 format). A byte is eight bits.

For example, a WKB value that corresponds to POINT(1 -1) consists of this sequence of 21 bytes,
each represented by two hexadecimal digits:

0101000000000000000000F03F000000000000F0BF

The sequence consists of the components shown in the following table.

Table 13.2 WKB Components Example

Component Size Value

Byte order 1 byte 01

WKB type 4 bytes 01000000

X coordinate 8 bytes 000000000000F03F

Y coordinate 8 bytes 000000000000F0BF

Component representation is as follows:

• The byte order indicator is either 1 or 0 to signify little-endian or big-endian storage. The little-endian
and big-endian byte orders are also known as Network Data Representation (NDR) and External
Data Representation (XDR), respectively.

• The WKB type is a code that indicates the geometry type. MySQL uses values from 1 through 7 to
indicate Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeometryCollection.

• A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values have more complex data structures, as detailed in the
OpenGIS specification.

Internal Geometry Storage Format

MySQL stores geometry values using 4 bytes to indicate the SRID followed by the WKB representation
of the value. For a description of WKB format, see Well-Known Binary (WKB) Format.

For the WKB part, these MySQL-specific considerations apply:

• The byte-order indicator byte is 1 because MySQL stores geometries as little-endian values.

• MySQL supports geometry types of Point, LineString, Polygon, MultiPoint,
MultiLineString, MultiPolygon, and GeometryCollection. Other geometry types are not
supported.

2243

Geometry Well-Formedness and Validity

• Only GeometryCollection can be empty. Such a value is stored with 0 elements.

• Polygon rings can be specified both clockwise and counterclockwise. MySQL flips the rings
automatically when reading data.

Cartesian coordinates are stored in the length unit of the spatial reference system, with X values in
the X coordinates and Y values in the Y coordinates. Axis directions are those specified by the spatial
reference system.

Geographic coordinates are stored in the angle unit of the spatial reference system, with longitudes
in the X coordinates and latitudes in the Y coordinates. Axis directions and the meridian are those
specified by the spatial reference system.

The LENGTH() function returns the space in bytes required for value storage. Example:

mysql> SET @g = ST_GeomFromText('POINT(1 -1)');
mysql> SELECT LENGTH(@g);
+------------+
| LENGTH(@g) |
+------------+
| 25 |
+------------+
mysql> SELECT HEX(@g);
+--+
| HEX(@g) |
+--+
| 000000000101000000000000000000F03F000000000000F0BF |
+--+

The value length is 25 bytes, made up of these components (as can be seen from the hexadecimal
value):

• 4 bytes for integer SRID (0)

• 1 byte for integer byte order (1 = little-endian)

• 4 bytes for integer type information (1 = Point)

• 8 bytes for double-precision X coordinate (1)

• 8 bytes for double-precision Y coordinate (−1)

13.4.4 Geometry Well-Formedness and Validity

For geometry values, MySQL distinguishes between the concepts of syntactically well-formed and
geometrically valid.

A geometry is syntactically well-formed if it satisfies conditions such as those in this (nonexhaustive)
list:

• Linestrings have at least two points

• Polygons have at least one ring

• Polygon rings are closed (first and last points the same)

• Polygon rings have at least 4 points (minimum polygon is a triangle with first and last points the
same)

• Collections are not empty (except GeometryCollection)

A geometry is geometrically valid if it is syntactically well-formed and satisfies conditions such as those
in this (nonexhaustive) list:

• Polygons are not self-intersecting

2244

Spatial Reference System Support

• Polygon interior rings are inside the exterior ring

• Multipolygons do not have overlapping polygons

Spatial functions fail if a geometry is not syntactically well-formed. Spatial import functions that parse
WKT or WKB values raise an error for attempts to create a geometry that is not syntactically well-
formed. Syntactic well-formedness is also checked for attempts to store geometries into tables.

It is permitted to insert, select, and update geometrically invalid geometries, but they must be
syntactically well-formed. Due to the computational expense, MySQL does not check explicitly for
geometric validity. Spatial computations may detect some cases of invalid geometries and raise an
error, but they may also return an undefined result without detecting the invalidity. Applications that
require geometrically-valid geometries should check them using the ST_IsValid() function.

13.4.5 Spatial Reference System Support

A spatial reference system (SRS) for spatial data is a coordinate-based system for geographic
locations.

There are different types of spatial reference systems:

• A projected SRS is a projection of a globe onto a flat surface; that is, a flat map. For example, a light
bulb inside a globe that shines on a paper cylinder surrounding the globe projects a map onto the
paper. The result is georeferenced: Each point maps to a place on the globe. The coordinate system
on that plane is Cartesian using a length unit (meters, feet, and so forth), rather than degrees of
longitude and latitude.

The globes in this case are ellipsoids; that is, flattened spheres. Earth is a bit shorter in its North-
South axis than its East-West axis, so a slightly flattened sphere is more correct, but perfect spheres
permit faster calculations.

• A geographic SRS is a nonprojected SRS representing longitude-latitude (or latitude-longitude)
coordinates on an ellipsoid, in any angular unit.

• The SRS denoted in MySQL by SRID 0 represents an infinite flat Cartesian plane with no units
assigned to its axes. Unlike projected SRSs, it is not georeferenced and it does not necessarily
represent Earth. It is an abstract plane that can be used for anything. SRID 0 is the default SRID for
spatial data in MySQL.

MySQL maintains information about available spatial reference systems for spatial data in the
data dictionary mysql.st_spatial_reference_systems table, which can store entries for
projected and geographic SRSs. This data dictionary table is invisible, but SRS entry contents
are available through the INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS table,
implemented as a view on mysql.st_spatial_reference_systems (see Section 28.3.36, “The
INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS Table”).

The following example shows what an SRS entry looks like:

mysql> SELECT *
 FROM INFORMATION_SCHEMA.ST_SPATIAL_REFERENCE_SYSTEMS
 WHERE SRS_ID = 4326\G
*************************** 1. row ***************************
 SRS_NAME: WGS 84
 SRS_ID: 4326
 ORGANIZATION: EPSG
ORGANIZATION_COORDSYS_ID: 4326
 DEFINITION: GEOGCS["WGS 84",DATUM["World Geodetic System 1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.017453292519943278,
 AUTHORITY["EPSG","9122"]],
 AXIS["Lat",NORTH],AXIS["Long",EAST],
 AUTHORITY["EPSG","4326"]]

2245

Creating Spatial Columns

 DESCRIPTION:

This entry describes the SRS used for GPS systems. It has the name (SRS_NAME) WGS 84 and the ID
(SRS_ID) 4326, which is the ID used by the European Petroleum Survey Group (EPSG).

SRS definitions in the DEFINITION column are WKT values, represented as specified in the Open
Geospatial Consortium document OGC 12-063r5.

SRS_ID values represent the same kind of values as the SRID of geometry values or passed as the
SRID argument to spatial functions. SRID 0 (the unitless Cartesian plane) is special. It is always a legal
spatial reference system ID and can be used in any computations on spatial data that depend on SRID
values.

For computations on multiple geometry values, all values must have the same SRID or an error occurs.

SRS definition parsing occurs on demand when definitions are needed by GIS functions. Parsed
definitions are stored in the data dictionary cache to enable reuse and avoid incurring parsing overhead
for every statement that needs SRS information.

To enable manipulation of SRS entries stored in the data dictionary, MySQL provides these SQL
statements:

• CREATE SPATIAL REFERENCE SYSTEM: See Section 15.1.19, “CREATE SPATIAL REFERENCE
SYSTEM Statement”. The description for this statement includes additional information about SRS
components.

• DROP SPATIAL REFERENCE SYSTEM: See Section 15.1.31, “DROP SPATIAL REFERENCE
SYSTEM Statement”.

13.4.6 Creating Spatial Columns

MySQL provides a standard way of creating spatial columns for geometry types, for example, with
CREATE TABLE or ALTER TABLE. Spatial columns are supported for MyISAM, InnoDB, NDB, and
ARCHIVE tables. See also the notes about spatial indexes under Section 13.4.10, “Creating Spatial
Indexes”.

Columns with a spatial data type can have an SRID attribute, to explicitly indicate the spatial reference
system (SRS) for values stored in the column. For implications of an SRID-restricted column, see
Section 13.4.1, “Spatial Data Types”.

• Use the CREATE TABLE statement to create a table with a spatial column:

CREATE TABLE geom (g GEOMETRY);

• Use the ALTER TABLE statement to add or drop a spatial column to or from an existing table:

ALTER TABLE geom ADD pt POINT;
ALTER TABLE geom DROP pt;

13.4.7 Populating Spatial Columns

After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that format
from either Well-Known Text (WKT) or Well-Known Binary (WKB) format. The following examples
demonstrate how to insert geometry values into a table by converting WKT values to internal geometry
format:

• Perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (ST_GeomFromText('POINT(1 1)'));

SET @g = 'POINT(1 1)';

2246

http://epsg.org
http://www.opengeospatial.org
http://www.opengeospatial.org
http://docs.opengeospatial.org/is/12-063r5/12-063r5.html

Fetching Spatial Data

INSERT INTO geom VALUES (ST_GeomFromText(@g));

• Perform the conversion prior to the INSERT:

SET @g = ST_GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (ST_GeomFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (ST_GeomFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (ST_GeomFromText(@g));

The preceding examples use ST_GeomFromText() to create geometry values. You can also use
type-specific functions:

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (ST_PointFromText(@g));

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (ST_LineStringFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (ST_PolygonFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (ST_GeomCollFromText(@g));

A client application program that wants to use WKB representations of geometry values is responsible
for sending correctly formed WKB in queries to the server. There are several ways to satisfy this
requirement. For example:

• Inserting a POINT(1 1) value with hex literal syntax:

INSERT INTO geom VALUES
(ST_GeomFromWKB(X'0101000000000000000000F03F000000000000F03F'));

• An ODBC application can send a WKB representation, binding it to a placeholder using an argument
of BLOB type:

INSERT INTO geom VALUES (ST_GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.

• In a C program, you can escape a binary value using mysql_real_escape_string_quote()
and include the result in a query string that is sent to the server. See
mysql_real_escape_string_quote().

13.4.8 Fetching Spatial Data

Geometry values stored in a table can be fetched in internal format. You can also convert them to WKT
or WKB format.

• Fetching spatial data in internal format:

Fetching geometry values using internal format can be useful in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

• Fetching spatial data in WKT format:

2247

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html

Optimizing Spatial Analysis

The ST_AsText() function converts a geometry from internal format to a WKT string.

SELECT ST_AsText(g) FROM geom;

• Fetching spatial data in WKB format:

The ST_AsBinary() function converts a geometry from internal format to a BLOB containing the
WKB value.

SELECT ST_AsBinary(g) FROM geom;

13.4.9 Optimizing Spatial Analysis

For MyISAM and InnoDB tables, search operations in columns containing spatial data can be
optimized using SPATIAL indexes. The most typical operations are:

• Point queries that search for all objects that contain a given point

• Region queries that search for all objects that overlap a given region

MySQL uses R-Trees with quadratic splitting for SPATIAL indexes on spatial columns. A SPATIAL
index is built using the minimum bounding rectangle (MBR) of a geometry. For most geometries, the
MBR is a minimum rectangle that surrounds the geometries. For a horizontal or a vertical linestring, the
MBR is a rectangle degenerated into the linestring. For a point, the MBR is a rectangle degenerated
into the point.

It is also possible to create normal indexes on spatial columns. In a non-SPATIAL index, you must
declare a prefix for any spatial column except for POINT columns.

MyISAM and InnoDB support both SPATIAL and non-SPATIAL indexes. Other storage engines
support non-SPATIAL indexes, as described in Section 15.1.15, “CREATE INDEX Statement”.

13.4.10 Creating Spatial Indexes

For InnoDB and MyISAM tables, MySQL can create spatial indexes using syntax similar to that
for creating regular indexes, but using the SPATIAL keyword. Columns in spatial indexes must be
declared NOT NULL. The following examples demonstrate how to create spatial indexes:

• With CREATE TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL SRID 4326, SPATIAL INDEX(g));

• With ALTER TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL SRID 4326);
ALTER TABLE geom ADD SPATIAL INDEX(g);

• With CREATE INDEX:

CREATE TABLE geom (g GEOMETRY NOT NULL SRID 4326);
CREATE SPATIAL INDEX g ON geom (g);

SPATIAL INDEX creates an R-tree index. For storage engines that support nonspatial indexing of
spatial columns, the engine creates a B-tree index. A B-tree index on spatial values is useful for exact-
value lookups, but not for range scans.

The optimizer can use spatial indexes defined on columns that are SRID-restricted. For more
information, see Section 13.4.1, “Spatial Data Types”, and Section 10.3.3, “SPATIAL Index
Optimization”.

For more information on indexing spatial columns, see Section 15.1.15, “CREATE INDEX Statement”.

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

2248

Using Spatial Indexes

• With ALTER TABLE:

ALTER TABLE geom DROP INDEX g;

• With DROP INDEX:

DROP INDEX g ON geom;

Example: Suppose that a table geom contains more than 32,000 geometries, which are stored in the
column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for storing object
ID values.

mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
| 32376 |
+----------+
1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0

13.4.11 Using Spatial Indexes

The optimizer investigates whether available spatial indexes can be involved in the search for queries
that use a function such as MBRContains() or MBRWithin() in the WHERE clause. The following
query finds all objects that are in the given rectangle:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> SELECT fid,ST_AsText(g) FROM geom WHERE
 -> MBRContains(ST_GeomFromText(@poly),g);
+-----+---+
| fid | ST_AsText(g) |
+-----+---+
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...

2249

Using Spatial Indexes

| 155 | LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ... |
| 157 | LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ... |
+-----+---+
20 rows in set (0.00 sec)

Use EXPLAIN to check the way this query is executed:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,ST_AsText(g) FROM geom WHERE
 -> MBRContains(ST_GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom
 type: range
possible_keys: g
 key: g
 key_len: 32
 ref: NULL
 rows: 50
 Extra: Using where
1 row in set (0.00 sec)

Check what would happen without a spatial index:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,ST_AsText(g) FROM g IGNORE INDEX (g) WHERE
 -> MBRContains(ST_GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 32376
 Extra: Using where
1 row in set (0.00 sec)

Executing the SELECT statement without the spatial index yields the same result but causes the
execution time to rise from 0.00 seconds to 0.46 seconds:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> SELECT fid,ST_AsText(g) FROM geom IGNORE INDEX (g) WHERE
 -> MBRContains(ST_GeomFromText(@poly),g);
+-----+---+
| fid | ST_AsText(g) |
+-----+---+
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...

2250

The JSON Data Type

7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
+-----+---+
20 rows in set (0.46 sec)

13.5 The JSON Data Type
• Creating JSON Values

• Normalization, Merging, and Autowrapping of JSON Values

• Searching and Modifying JSON Values

• JSON Path Syntax

• Comparison and Ordering of JSON Values

• Converting between JSON and non-JSON values

• Aggregation of JSON Values

MySQL supports a native JSON (JavaScript Object Notation) data type defined by RFC 8259 that
enables efficient access to data in JSON documents. The JSON data type provides these advantages
over storing JSON-format strings in a string column:

• Automatic validation of JSON documents stored in JSON columns. Invalid documents produce an
error.

• Optimized storage format. JSON documents stored in JSON columns are converted to an internal
format that permits quick read access to document elements. When the server later must read a
JSON value stored in this binary format, the value need not be parsed from a text representation.
The binary format is structured to enable the server to look up subobjects or nested values directly
by key or array index without reading all values before or after them in the document.

MySQL also supports the JSON Merge Patch format defined in RFC 7396, using the
JSON_MERGE_PATCH() function. See the description of this function, as well as Normalization,
Merging, and Autowrapping of JSON Values, for examples and further information.

Note

This discussion uses JSON in monotype to indicate specifically the JSON data
type and “JSON” in regular font to indicate JSON data in general.

The space required to store a JSON document is roughly the same as for LONGBLOB or LONGTEXT;
see Section 13.7, “Data Type Storage Requirements”, for more information. It is important to keep
in mind that the size of any JSON document stored in a JSON column is limited to the value of the
max_allowed_packet system variable. (When the server is manipulating a JSON value internally
in memory, it can be larger than this; the limit applies when the server stores it.) You can obtain the
amount of space required to store a JSON document using the JSON_STORAGE_SIZE() function; note
that for a JSON column, the storage size—and thus the value returned by this function—is that used by
the column prior to any partial updates that may have been performed on it (see the discussion of the
JSON partial update optimization later in this section).

2251

https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc7396

Partial Updates of JSON Values

Prior to MySQL 8.0.13, a JSON column cannot have a non-NULL default value.

Along with the JSON data type, a set of SQL functions is available to enable operations on JSON
values, such as creation, manipulation, and searching. The following discussion shows examples of
these operations. For details about individual functions, see Section 14.17, “JSON Functions”.

A set of spatial functions for operating on GeoJSON values is also available. See Section 14.16.11,
“Spatial GeoJSON Functions”.

JSON columns, like columns of other binary types, are not indexed directly; instead, you can create
an index on a generated column that extracts a scalar value from the JSON column. See Indexing a
Generated Column to Provide a JSON Column Index, for a detailed example.

The MySQL optimizer also looks for compatible indexes on virtual columns that match JSON
expressions.

In MySQL 8.0.17 and later, the InnoDB storage engine supports multi-valued indexes on JSON arrays.
See Multi-Valued Indexes.

MySQL NDB Cluster 8.0 supports JSON columns and MySQL JSON functions, including creation of an
index on a column generated from a JSON column as a workaround for being unable to index a JSON
column. A maximum of 3 JSON columns per NDB table is supported.

Partial Updates of JSON Values

In MySQL 8.0, the optimizer can perform a partial, in-place update of a JSON column instead
of removing the old document and writing the new document in its entirety to the column. This
optimization can be performed for an update that meets the following conditions:

• The column being updated was declared as JSON.

• The UPDATE statement uses any of the three functions JSON_SET(), JSON_REPLACE(), or
JSON_REMOVE() to update the column. A direct assignment of the column value (for example,
UPDATE mytable SET jcol = '{"a": 10, "b": 25}') cannot be performed as a partial
update.

Updates of multiple JSON columns in a single UPDATE statement can be optimized in this fashion;
MySQL can perform partial updates of only those columns whose values are updated using the three
functions just listed.

• The input column and the target column must be the same column; a statement such as UPDATE
mytable SET jcol1 = JSON_SET(jcol2, '$.a', 100) cannot be performed as a partial
update.

The update can use nested calls to any of the functions listed in the previous item, in any
combination, as long as the input and target columns are the same.

• All changes replace existing array or object values with new ones, and do not add any new elements
to the parent object or array.

• The value being replaced must be at least as large as the replacement value. In other words, the
new value cannot be any larger than the old one.

A possible exception to this requirement occurs when a previous partial update has left sufficient
space for the larger value. You can use the function JSON_STORAGE_FREE() see how much space
has been freed by any partial updates of a JSON column.

Such partial updates can be written to the binary log using a compact format that saves space; this can
be enabled by setting the binlog_row_value_options system variable to PARTIAL_JSON.

It is important to distinguish the partial update of a JSON column value stored in a table from writing
the partial update of a row to the binary log. It is possible for the complete update of a JSON column to

2252

Creating JSON Values

be recorded in the binary log as a partial update. This can happen when either (or both) of the last two
conditions from the previous list is not met but the other conditions are satisfied.

See also the description of binlog_row_value_options.

The next few sections provide basic information regarding the creation and manipulation of JSON
values.

Creating JSON Values

A JSON array contains a list of values separated by commas and enclosed within [and] characters:

["abc", 10, null, true, false]

A JSON object contains a set of key-value pairs separated by commas and enclosed within { and }
characters:

{"k1": "value", "k2": 10}

As the examples illustrate, JSON arrays and objects can contain scalar values that are strings or
numbers, the JSON null literal, or the JSON boolean true or false literals. Keys in JSON objects must
be strings. Temporal (date, time, or datetime) scalar values are also permitted:

["12:18:29.000000", "2015-07-29", "2015-07-29 12:18:29.000000"]

Nesting is permitted within JSON array elements and JSON object key values:

[99, {"id": "HK500", "cost": 75.99}, ["hot", "cold"]]
{"k1": "value", "k2": [10, 20]}

You can also obtain JSON values from a number of functions supplied by MySQL for this purpose (see
Section 14.17.2, “Functions That Create JSON Values”) as well as by casting values of other types to
the JSON type using CAST(value AS JSON) (see Converting between JSON and non-JSON values).
The next several paragraphs describe how MySQL handles JSON values provided as input.

In MySQL, JSON values are written as strings. MySQL parses any string used in a context that
requires a JSON value, and produces an error if it is not valid as JSON. These contexts include
inserting a value into a column that has the JSON data type and passing an argument to a function that
expects a JSON value (usually shown as json_doc or json_val in the documentation for MySQL
JSON functions), as the following examples demonstrate:

• Attempting to insert a value into a JSON column succeeds if the value is a valid JSON value, but fails
if it is not:

mysql> CREATE TABLE t1 (jdoc JSON);
Query OK, 0 rows affected (0.20 sec)

mysql> INSERT INTO t1 VALUES('{"key1": "value1", "key2": "value2"}');
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO t1 VALUES('[1, 2,');
ERROR 3140 (22032) at line 2: Invalid JSON text:
"Invalid value." at position 6 in value (or column) '[1, 2,'.

Positions for “at position N” in such error messages are 0-based, but should be considered rough
indications of where the problem in a value actually occurs.

• The JSON_TYPE() function expects a JSON argument and attempts to parse it into a JSON value. It
returns the value's JSON type if it is valid and produces an error otherwise:

mysql> SELECT JSON_TYPE('["a", "b", 1]');
+----------------------------+
| JSON_TYPE('["a", "b", 1]') |
+----------------------------+
| ARRAY |

2253

Creating JSON Values

+----------------------------+

mysql> SELECT JSON_TYPE('"hello"');
+----------------------+
| JSON_TYPE('"hello"') |
+----------------------+
| STRING |
+----------------------+

mysql> SELECT JSON_TYPE('hello');
ERROR 3146 (22032): Invalid data type for JSON data in argument 1
to function json_type; a JSON string or JSON type is required.

MySQL handles strings used in JSON context using the utf8mb4 character set and utf8mb4_bin
collation. Strings in other character sets are converted to utf8mb4 as necessary. (For strings in
the ascii or utf8mb3 character sets, no conversion is needed because ascii and utf8mb3 are
subsets of utf8mb4.)

As an alternative to writing JSON values using literal strings, functions exist for composing JSON
values from component elements. JSON_ARRAY() takes a (possibly empty) list of values and returns a
JSON array containing those values:

mysql> SELECT JSON_ARRAY('a', 1, NOW());
+--+
| JSON_ARRAY('a', 1, NOW()) |
+--+
| ["a", 1, "2015-07-27 09:43:47.000000"] |
+--+

JSON_OBJECT() takes a (possibly empty) list of key-value pairs and returns a JSON object containing
those pairs:

mysql> SELECT JSON_OBJECT('key1', 1, 'key2', 'abc');
+---------------------------------------+
| JSON_OBJECT('key1', 1, 'key2', 'abc') |
+---------------------------------------+
| {"key1": 1, "key2": "abc"} |
+---------------------------------------+

JSON_MERGE_PRESERVE() takes two or more JSON documents and returns the combined result:

mysql> SELECT JSON_MERGE_PRESERVE('["a", 1]', '{"key": "value"}');
+---+
| JSON_MERGE_PRESERVE('["a", 1]', '{"key": "value"}') |
+---+
| ["a", 1, {"key": "value"}] |
+---+
1 row in set (0.00 sec)

For information about the merging rules, see Normalization, Merging, and Autowrapping of JSON
Values.

(MySQL 8.0.3 and later also support JSON_MERGE_PATCH(), which has somewhat different behavior.
See JSON_MERGE_PATCH() compared with JSON_MERGE_PRESERVE(), for information about the
differences between these two functions.)

JSON values can be assigned to user-defined variables:

mysql> SET @j = JSON_OBJECT('key', 'value');
mysql> SELECT @j;
+------------------+
| @j |
+------------------+
| {"key": "value"} |
+------------------+

However, user-defined variables cannot be of JSON data type, so although @j in the preceding
example looks like a JSON value and has the same character set and collation as a JSON value, it

2254

Creating JSON Values

does not have the JSON data type. Instead, the result from JSON_OBJECT() is converted to a string
when assigned to the variable.

Strings produced by converting JSON values have a character set of utf8mb4 and a collation of
utf8mb4_bin:

mysql> SELECT CHARSET(@j), COLLATION(@j);
+-------------+---------------+
| CHARSET(@j) | COLLATION(@j) |
+-------------+---------------+
| utf8mb4 | utf8mb4_bin |
+-------------+---------------+

Because utf8mb4_bin is a binary collation, comparison of JSON values is case-sensitive.

mysql> SELECT JSON_ARRAY('x') = JSON_ARRAY('X');
+-----------------------------------+
| JSON_ARRAY('x') = JSON_ARRAY('X') |
+-----------------------------------+
| 0 |
+-----------------------------------+

Case sensitivity also applies to the JSON null, true, and false literals, which always must be
written in lowercase:

mysql> SELECT JSON_VALID('null'), JSON_VALID('Null'), JSON_VALID('NULL');
+--------------------+--------------------+--------------------+
| JSON_VALID('null') | JSON_VALID('Null') | JSON_VALID('NULL') |
+--------------------+--------------------+--------------------+
| 1 | 0 | 0 |
+--------------------+--------------------+--------------------+

mysql> SELECT CAST('null' AS JSON);
+----------------------+
| CAST('null' AS JSON) |
+----------------------+
| null |
+----------------------+
1 row in set (0.00 sec)

mysql> SELECT CAST('NULL' AS JSON);
ERROR 3141 (22032): Invalid JSON text in argument 1 to function cast_as_json:
"Invalid value." at position 0 in 'NULL'.

Case sensitivity of the JSON literals differs from that of the SQL NULL, TRUE, and FALSE literals, which
can be written in any lettercase:

mysql> SELECT ISNULL(null), ISNULL(Null), ISNULL(NULL);
+--------------+--------------+--------------+
| ISNULL(null) | ISNULL(Null) | ISNULL(NULL) |
+--------------+--------------+--------------+
| 1 | 1 | 1 |
+--------------+--------------+--------------+

Sometimes it may be necessary or desirable to insert quote characters (" or ') into a JSON document.
Assume for this example that you want to insert some JSON objects containing strings representing
sentences that state some facts about MySQL, each paired with an appropriate keyword, into a table
created using the SQL statement shown here:

mysql> CREATE TABLE facts (sentence JSON);

Among these keyword-sentence pairs is this one:

mascot: The MySQL mascot is a dolphin named "Sakila".

One way to insert this as a JSON object into the facts table is to use the MySQL JSON_OBJECT()
function. In this case, you must escape each quote character using a backslash, as shown here:

2255

Normalization, Merging, and Autowrapping of JSON Values

mysql> INSERT INTO facts VALUES
 > (JSON_OBJECT("mascot", "Our mascot is a dolphin named \"Sakila\"."));

This does not work in the same way if you insert the value as a JSON object literal, in which case, you
must use the double backslash escape sequence, like this:

mysql> INSERT INTO facts VALUES
 > ('{"mascot": "Our mascot is a dolphin named \\"Sakila\\"."}');

Using the double backslash keeps MySQL from performing escape sequence processing, and instead
causes it to pass the string literal to the storage engine for processing. After inserting the JSON object
in either of the ways just shown, you can see that the backslashes are present in the JSON column
value by doing a simple SELECT, like this:

mysql> SELECT sentence FROM facts;
+---+
| sentence |
+---+
| {"mascot": "Our mascot is a dolphin named \"Sakila\"."} |
+---+

To look up this particular sentence employing mascot as the key, you can use the column-path
operator ->, as shown here:

mysql> SELECT col->"$.mascot" FROM qtest;
+---+
| col->"$.mascot" |
+---+
| "Our mascot is a dolphin named \"Sakila\"." |
+---+
1 row in set (0.00 sec)

This leaves the backslashes intact, along with the surrounding quote marks. To display the desired
value using mascot as the key, but without including the surrounding quote marks or any escapes, use
the inline path operator ->>, like this:

mysql> SELECT sentence->>"$.mascot" FROM facts;
+---+
| sentence->>"$.mascot" |
+---+
| Our mascot is a dolphin named "Sakila". |
+---+

Note

The previous example does not work as shown if the
NO_BACKSLASH_ESCAPES server SQL mode is enabled. If this mode is
set, a single backslash instead of double backslashes can be used to insert
the JSON object literal, and the backslashes are preserved. If you use the
JSON_OBJECT() function when performing the insert and this mode is set, you
must alternate single and double quotes, like this:

mysql> INSERT INTO facts VALUES
 > (JSON_OBJECT('mascot', 'Our mascot is a dolphin named "Sakila".'));

See the description of the JSON_UNQUOTE() function for more information
about the effects of this mode on escaped characters in JSON values.

Normalization, Merging, and Autowrapping of JSON Values

When a string is parsed and found to be a valid JSON document, it is also normalized. This means
that members with keys that duplicate a key found later in the document, reading from left to right, are
discarded. The object value produced by the following JSON_OBJECT() call includes only the second
key1 element because that key name occurs earlier in the value, as shown here:

mysql> SELECT JSON_OBJECT('key1', 1, 'key2', 'abc', 'key1', 'def');

2256

Normalization, Merging, and Autowrapping of JSON Values

+--+
| JSON_OBJECT('key1', 1, 'key2', 'abc', 'key1', 'def') |
+--+
| {"key1": "def", "key2": "abc"} |
+--+

Normalization is also performed when values are inserted into JSON columns, as shown here:

mysql> CREATE TABLE t1 (c1 JSON);

mysql> INSERT INTO t1 VALUES
 > ('{"x": 17, "x": "red"}'),
 > ('{"x": 17, "x": "red", "x": [3, 5, 7]}');

mysql> SELECT c1 FROM t1;
+------------------+
| c1 |
+------------------+
| {"x": "red"} |
| {"x": [3, 5, 7]} |
+------------------+

This “last duplicate key wins” behavior is suggested by RFC 7159 and is implemented by most
JavaScript parsers. (Bug #86866, Bug #26369555)

In versions of MySQL prior to 8.0.3, members with keys that duplicated a key found earlier in the
document were discarded. The object value produced by the following JSON_OBJECT() call does not
include the second key1 element because that key name occurs earlier in the value:

mysql> SELECT JSON_OBJECT('key1', 1, 'key2', 'abc', 'key1', 'def');
+--+
| JSON_OBJECT('key1', 1, 'key2', 'abc', 'key1', 'def') |
+--+
| {"key1": 1, "key2": "abc"} |
+--+

Prior to MySQL 8.0.3, this “first duplicate key wins” normalization was also performed when inserting
values into JSON columns.

mysql> CREATE TABLE t1 (c1 JSON);

mysql> INSERT INTO t1 VALUES
 > ('{"x": 17, "x": "red"}'),
 > ('{"x": 17, "x": "red", "x": [3, 5, 7]}');

mysql> SELECT c1 FROM t1;
+-----------+
| c1 |
+-----------+
| {"x": 17} |
| {"x": 17} |
+-----------+

MySQL also discards extra whitespace between keys, values, or elements in the original JSON
document, and leaves (or inserts, when necessary) a single space following each comma (,) or colon
(:) when displaying it. This is done to enhance readability.

MySQL functions that produce JSON values (see Section 14.17.2, “Functions That Create JSON
Values”) always return normalized values.

To make lookups more efficient, MySQL also sorts the keys of a JSON object. You should be aware
that the result of this ordering is subject to change and not guaranteed to be consistent across
releases.

Merging JSON Values

Two merging algorithms are supported in MySQL 8.0.3 (and later), implemented by the functions
JSON_MERGE_PRESERVE() and JSON_MERGE_PATCH(). These differ in how they handle duplicate

2257

https://tools.ietf.org/html/rfc7159

Searching and Modifying JSON Values

keys: JSON_MERGE_PRESERVE() retains values for duplicate keys, while JSON_MERGE_PATCH()
discards all but the last value. The next few paragraphs explain how each of these two functions
handles the merging of different combinations of JSON documents (that is, of objects and arrays).

Note

JSON_MERGE_PRESERVE() is the same as the JSON_MERGE() function found
in previous versions of MySQL (renamed in MySQL 8.0.3). JSON_MERGE() is
still supported as an alias for JSON_MERGE_PRESERVE() in MySQL 8.0, but is
deprecated and subject to removal in a future release.

Merging arrays. In contexts that combine multiple arrays, the arrays are merged into a single array.
JSON_MERGE_PRESERVE() does this by concatenating arrays named later to the end of the first array.
JSON_MERGE_PATCH() considers each argument as an array consisting of a single element (thus
having 0 as its index) and then applies “last duplicate key wins” logic to select only the last argument.
You can compare the results shown by this query:

mysql> SELECT
 -> JSON_MERGE_PRESERVE('[1, 2]', '["a", "b", "c"]', '[true, false]') AS Preserve,
 -> JSON_MERGE_PATCH('[1, 2]', '["a", "b", "c"]', '[true, false]') AS Patch\G
*************************** 1. row ***************************
Preserve: [1, 2, "a", "b", "c", true, false]
 Patch: [true, false]

Multiple objects when merged produce a single object. JSON_MERGE_PRESERVE() handles multiple
objects having the same key by combining all unique values for that key in an array; this array is then
used as the value for that key in the result. JSON_MERGE_PATCH() discards values for which duplicate
keys are found, working from left to right, so that the result contains only the last value for that key. The
following query illustrates the difference in the results for the duplicate key a:

mysql> SELECT
 -> JSON_MERGE_PRESERVE('{"a": 1, "b": 2}', '{"c": 3, "a": 4}', '{"c": 5, "d": 3}') AS Preserve,
 -> JSON_MERGE_PATCH('{"a": 3, "b": 2}', '{"c": 3, "a": 4}', '{"c": 5, "d": 3}') AS Patch\G
*************************** 1. row ***************************
Preserve: {"a": [1, 4], "b": 2, "c": [3, 5], "d": 3}
 Patch: {"a": 4, "b": 2, "c": 5, "d": 3}

Nonarray values used in a context that requires an array value are autowrapped: The value is
surrounded by [and] characters to convert it to an array. In the following statement, each argument
is autowrapped as an array ([1], [2]). These are then merged to produce a single result array; as
in the previous two cases, JSON_MERGE_PRESERVE() combines values having the same key while
JSON_MERGE_PATCH() discards values for all duplicate keys except the last, as shown here:

mysql> SELECT
 -> JSON_MERGE_PRESERVE('1', '2') AS Preserve,
 -> JSON_MERGE_PATCH('1', '2') AS Patch\G
*************************** 1. row ***************************
Preserve: [1, 2]
 Patch: 2

Array and object values are merged by autowrapping the object as an array and merging the arrays
by combining values or by “last duplicate key wins” according to the choice of merging function
(JSON_MERGE_PRESERVE() or JSON_MERGE_PATCH(), respectively), as can be seen in this
example:

mysql> SELECT
 -> JSON_MERGE_PRESERVE('[10, 20]', '{"a": "x", "b": "y"}') AS Preserve,
 -> JSON_MERGE_PATCH('[10, 20]', '{"a": "x", "b": "y"}') AS Patch\G
*************************** 1. row ***************************
Preserve: [10, 20, {"a": "x", "b": "y"}]
 Patch: {"a": "x", "b": "y"}

Searching and Modifying JSON Values

A JSON path expression selects a value within a JSON document.

2258

Searching and Modifying JSON Values

Path expressions are useful with functions that extract parts of or modify a JSON document, to specify
where within that document to operate. For example, the following query extracts from a JSON
document the value of the member with the name key:

mysql> SELECT JSON_EXTRACT('{"id": 14, "name": "Aztalan"}', '$.name');
+---+
| JSON_EXTRACT('{"id": 14, "name": "Aztalan"}', '$.name') |
+---+
| "Aztalan" |
+---+

Path syntax uses a leading $ character to represent the JSON document under consideration,
optionally followed by selectors that indicate successively more specific parts of the document:

• A period followed by a key name names the member in an object with the given key. The key name
must be specified within double quotation marks if the name without quotes is not legal within path
expressions (for example, if it contains a space).

• [N] appended to a path that selects an array names the value at position N within the array. Array
positions are integers beginning with zero. If path does not select an array value, path[0] evaluates
to the same value as path:

mysql> SELECT JSON_SET('"x"', '$[0]', 'a');
+------------------------------+
| JSON_SET('"x"', '$[0]', 'a') |
+------------------------------+
| "a" |
+------------------------------+
1 row in set (0.00 sec)

• [M to N] specifies a subset or range of array values starting with the value at position M, and
ending with the value at position N.

last is supported as a synonym for the index of the rightmost array element. Relative addressing of
array elements is also supported. If path does not select an array value, path[last] evaluates to the
same value as path, as shown later in this section (see Rightmost array element).

• Paths can contain * or ** wildcards:

• .[*] evaluates to the values of all members in a JSON object.

• [*] evaluates to the values of all elements in a JSON array.

• prefix**suffix evaluates to all paths that begin with the named prefix and end with the named
suffix.

• A path that does not exist in the document (evaluates to nonexistent data) evaluates to NULL.

Let $ refer to this JSON array with three elements:

[3, {"a": [5, 6], "b": 10}, [99, 100]]

Then:

• $[0] evaluates to 3.

• $[1] evaluates to {"a": [5, 6], "b": 10}.

• $[2] evaluates to [99, 100].

• $[3] evaluates to NULL (it refers to the fourth array element, which does not exist).

Because $[1] and $[2] evaluate to nonscalar values, they can be used as the basis for more-specific
path expressions that select nested values. Examples:

• $[1].a evaluates to [5, 6].

2259

Searching and Modifying JSON Values

• $[1].a[1] evaluates to 6.

• $[1].b evaluates to 10.

• $[2][0] evaluates to 99.

As mentioned previously, path components that name keys must be quoted if the unquoted key name
is not legal in path expressions. Let $ refer to this value:

{"a fish": "shark", "a bird": "sparrow"}

The keys both contain a space and must be quoted:

• $."a fish" evaluates to shark.

• $."a bird" evaluates to sparrow.

Paths that use wildcards evaluate to an array that can contain multiple values:

mysql> SELECT JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.*');
+---+
| JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.*') |
+---+
| [1, 2, [3, 4, 5]] |
+---+
mysql> SELECT JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.c[*]');
+--+
| JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.c[*]') |
+--+
| [3, 4, 5] |
+--+

In the following example, the path $**.b evaluates to multiple paths ($.a.b and $.c.b) and
produces an array of the matching path values:

mysql> SELECT JSON_EXTRACT('{"a": {"b": 1}, "c": {"b": 2}}', '$**.b');
+---+
| JSON_EXTRACT('{"a": {"b": 1}, "c": {"b": 2}}', '$**.b') |
+---+
| [1, 2] |
+---+

Ranges from JSON arrays. You can use ranges with the to keyword to specify subsets of JSON
arrays. For example, $[1 to 3] includes the second, third, and fourth elements of an array, as shown
here:

mysql> SELECT JSON_EXTRACT('[1, 2, 3, 4, 5]', '$[1 to 3]');
+--+
| JSON_EXTRACT('[1, 2, 3, 4, 5]', '$[1 to 3]') |
+--+
| [2, 3, 4] |
+--+
1 row in set (0.00 sec)

The syntax is M to N, where M and N are, respectively, the first and last indexes of a range of
elements from a JSON array. N must be greater than M; M must be greater than or equal to 0. Array
elements are indexed beginning with 0.

You can use ranges in contexts where wildcards are supported.

Rightmost array element. The last keyword is supported as a synonym for the index of the last
element in an array. Expressions of the form last - N can be used for relative addressing, and within
range definitions, like this:

mysql> SELECT JSON_EXTRACT('[1, 2, 3, 4, 5]', '$[last-3 to last-1]');
+--+
| JSON_EXTRACT('[1, 2, 3, 4, 5]', '$[last-3 to last-1]') |
+--+

2260

Searching and Modifying JSON Values

| [2, 3, 4] |
+--+
1 row in set (0.01 sec)

If the path is evaluated against a value that is not an array, the result of the evaluation is the same as if
the value had been wrapped in a single-element array:

mysql> SELECT JSON_REPLACE('"Sakila"', '$[last]', 10);
+---+
| JSON_REPLACE('"Sakila"', '$[last]', 10) |
+---+
| 10 |
+---+
1 row in set (0.00 sec)

You can use column->path with a JSON column identifier and JSON path expression as a synonym
for JSON_EXTRACT(column, path). See Section 14.17.3, “Functions That Search JSON Values”,
for more information. See also Indexing a Generated Column to Provide a JSON Column Index.

Some functions take an existing JSON document, modify it in some way, and return the resulting
modified document. Path expressions indicate where in the document to make changes. For example,
the JSON_SET(), JSON_INSERT(), and JSON_REPLACE() functions each take a JSON document,
plus one or more path-value pairs that describe where to modify the document and the values to use.
The functions differ in how they handle existing and nonexisting values within the document.

Consider this document:

mysql> SET @j = '["a", {"b": [true, false]}, [10, 20]]';

JSON_SET() replaces values for paths that exist and adds values for paths that do not exist:.

mysql> SELECT JSON_SET(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+--+
| JSON_SET(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+--+
| ["a", {"b": [1, false]}, [10, 20, 2]] |
+--+

In this case, the path $[1].b[0] selects an existing value (true), which is replaced with the value
following the path argument (1). The path $[2][2] does not exist, so the corresponding value (2) is
added to the value selected by $[2].

JSON_INSERT() adds new values but does not replace existing values:

mysql> SELECT JSON_INSERT(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+---+
| JSON_INSERT(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+---+
| ["a", {"b": [true, false]}, [10, 20, 2]] |
+---+

JSON_REPLACE() replaces existing values and ignores new values:

mysql> SELECT JSON_REPLACE(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+--+
| JSON_REPLACE(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+--+
| ["a", {"b": [1, false]}, [10, 20]] |
+--+

The path-value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

JSON_REMOVE() takes a JSON document and one or more paths that specify values to be removed
from the document. The return value is the original document minus the values selected by paths that
exist within the document:

mysql> SELECT JSON_REMOVE(@j, '$[2]', '$[1].b[1]', '$[1].b[1]');

2261

JSON Path Syntax

+---+
| JSON_REMOVE(@j, '$[2]', '$[1].b[1]', '$[1].b[1]') |
+---+
| ["a", {"b": [true]}] |
+---+

The paths have these effects:

• $[2] matches [10, 20] and removes it.

• The first instance of $[1].b[1] matches false in the b element and removes it.

• The second instance of $[1].b[1] matches nothing: That element has already been removed, the
path no longer exists, and has no effect.

JSON Path Syntax

Many of the JSON functions supported by MySQL and described elsewhere in this Manual (see
Section 14.17, “JSON Functions”) require a path expression in order to identify a specific element in
a JSON document. A path consists of the path's scope followed by one or more path legs. For paths
used in MySQL JSON functions, the scope is always the document being searched or otherwise
operated on, represented by a leading $ character. Path legs are separated by period characters
(.). Cells in arrays are represented by [N], where N is a non-negative integer. Names of keys must
be double-quoted strings or valid ECMAScript identifiers (see Identifier Names and Identifiers, in the
ECMAScript Language Specification). Path expressions, like JSON text, should be encoded using
the ascii, utf8mb3, or utf8mb4 character set. Other character encodings are implicitly coerced to
utf8mb4. The complete syntax is shown here:

pathExpression:
 scope[(pathLeg)*]

pathLeg:
 member | arrayLocation | doubleAsterisk

member:
 period (keyName | asterisk)

arrayLocation:
 leftBracket (nonNegativeInteger | asterisk) rightBracket

keyName:
 ESIdentifier | doubleQuotedString

doubleAsterisk:
 '**'

period:
 '.'

asterisk:
 '*'

leftBracket:
 '['

rightBracket:
 ']'

As noted previously, in MySQL, the scope of the path is always the document being operated on,
represented as $. You can use '$' as a synonym for the document in JSON path expressions.

Note

Some implementations support column references for scopes of JSON paths;
MySQL 8.0 does not support these.

The wildcard * and ** tokens are used as follows:

2262

http://www.ecma-international.org/ecma-262/5.1/#sec-7.6
http://www.ecma-international.org/ecma-262/5.1/#sec-7.6

Comparison and Ordering of JSON Values

• .* represents the values of all members in the object.

• [*] represents the values of all cells in the array.

• [prefix]**suffix represents all paths beginning with prefix and ending with suffix. prefix
is optional, while suffix is required; in other words, a path may not end in **.

In addition, a path may not contain the sequence ***.

For path syntax examples, see the descriptions of the various JSON functions that take paths as
arguments, such as JSON_CONTAINS_PATH(), JSON_SET(), and JSON_REPLACE(). For examples
which include the use of the * and ** wildcards, see the description of the JSON_SEARCH() function.

MySQL 8.0 also supports range notation for subsets of JSON arrays using the to keyword (such as
$[2 to 10]), as well as the last keyword as a synonym for the rightmost element of an array. See
Searching and Modifying JSON Values, for more information and examples.

Comparison and Ordering of JSON Values

JSON values can be compared using the =, <, <=, >, >=, <>, !=, and <=> operators.

The following comparison operators and functions are not yet supported with JSON values:

• BETWEEN

• IN()

• GREATEST()

• LEAST()

A workaround for the comparison operators and functions just listed is to cast JSON values to a native
MySQL numeric or string data type so they have a consistent non-JSON scalar type.

Comparison of JSON values takes place at two levels. The first level of comparison is based on the
JSON types of the compared values. If the types differ, the comparison result is determined solely
by which type has higher precedence. If the two values have the same JSON type, a second level of
comparison occurs using type-specific rules.

The following list shows the precedences of JSON types, from highest precedence to the lowest. (The
type names are those returned by the JSON_TYPE() function.) Types shown together on a line have
the same precedence. Any value having a JSON type listed earlier in the list compares greater than
any value having a JSON type listed later in the list.

BLOB
BIT
OPAQUE
DATETIME
TIME
DATE
BOOLEAN
ARRAY
OBJECT
STRING
INTEGER, DOUBLE
NULL

For JSON values of the same precedence, the comparison rules are type specific:

• BLOB

The first N bytes of the two values are compared, where N is the number of bytes in the shorter value.
If the first N bytes of the two values are identical, the shorter value is ordered before the longer value.

• BIT

2263

Comparison and Ordering of JSON Values

Same rules as for BLOB.

• OPAQUE

Same rules as for BLOB. OPAQUE values are values that are not classified as one of the other types.

• DATETIME

A value that represents an earlier point in time is ordered before a value that represents a later
point in time. If two values originally come from the MySQL DATETIME and TIMESTAMP types,
respectively, they are equal if they represent the same point in time.

• TIME

The smaller of two time values is ordered before the larger one.

• DATE

The earlier date is ordered before the more recent date.

• ARRAY

Two JSON arrays are equal if they have the same length and values in corresponding positions in
the arrays are equal.

If the arrays are not equal, their order is determined by the elements in the first position where there
is a difference. The array with the smaller value in that position is ordered first. If all values of the
shorter array are equal to the corresponding values in the longer array, the shorter array is ordered
first.

Example:

[] < ["a"] < ["ab"] < ["ab", "cd", "ef"] < ["ab", "ef"]

• BOOLEAN

The JSON false literal is less than the JSON true literal.

• OBJECT

Two JSON objects are equal if they have the same set of keys, and each key has the same value in
both objects.

Example:

{"a": 1, "b": 2} = {"b": 2, "a": 1}

The order of two objects that are not equal is unspecified but deterministic.

• STRING

Strings are ordered lexically on the first N bytes of the utf8mb4 representation of the two strings
being compared, where N is the length of the shorter string. If the first N bytes of the two strings are
identical, the shorter string is considered smaller than the longer string.

Example:

"a" < "ab" < "b" < "bc"

This ordering is equivalent to the ordering of SQL strings with collation utf8mb4_bin. Because
utf8mb4_bin is a binary collation, comparison of JSON values is case-sensitive:

"A" < "a"

2264

Converting between JSON and non-JSON values

• INTEGER, DOUBLE

JSON values can contain exact-value numbers and approximate-value numbers. For a general
discussion of these types of numbers, see Section 11.1.2, “Numeric Literals”.

The rules for comparing native MySQL numeric types are discussed in Section 14.3, “Type
Conversion in Expression Evaluation”, but the rules for comparing numbers within JSON values differ
somewhat:

• In a comparison between two columns that use the native MySQL INT and DOUBLE numeric
types, respectively, it is known that all comparisons involve an integer and a double, so the integer
is converted to double for all rows. That is, exact-value numbers are converted to approximate-
value numbers.

• On the other hand, if the query compares two JSON columns containing numbers, it cannot
be known in advance whether numbers are integer or double. To provide the most consistent
behavior across all rows, MySQL converts approximate-value numbers to exact-value
numbers. The resulting ordering is consistent and does not lose precision for the exact-value
numbers. For example, given the scalars 9223372036854775805, 9223372036854775806,
9223372036854775807 and 9.223372036854776e18, the order is such as this:

9223372036854775805 < 9223372036854775806 < 9223372036854775807
< 9.223372036854776e18 = 9223372036854776000 < 9223372036854776001

Were JSON comparisons to use the non-JSON numeric comparison rules, inconsistent ordering
could occur. The usual MySQL comparison rules for numbers yield these orderings:

• Integer comparison:

9223372036854775805 < 9223372036854775806 < 9223372036854775807

(not defined for 9.223372036854776e18)

• Double comparison:

9223372036854775805 = 9223372036854775806 = 9223372036854775807 = 9.223372036854776e18

For comparison of any JSON value to SQL NULL, the result is UNKNOWN.

For comparison of JSON and non-JSON values, the non-JSON value is converted to JSON according
to the rules in the following table, then the values compared as described previously.

Converting between JSON and non-JSON values

The following table provides a summary of the rules that MySQL follows when casting between JSON
values and values of other types:

Table 13.3 JSON Conversion Rules

other type CAST(other type AS JSON) CAST(JSON AS other type)

JSON No change No change

utf8 character type (utf8mb4,
utf8mb3, ascii)

The string is parsed into a JSON
value.

The JSON value is serialized into
a utf8mb4 string.

Other character types Other character encodings are
implicitly converted to utf8mb4
and treated as described for this
character type.

The JSON value is serialized
into a utf8mb4 string, then
cast to the other character
encoding. The result may not be
meaningful.

NULL Results in a NULL value of type
JSON.

Not applicable.

2265

Aggregation of JSON Values

other type CAST(other type AS JSON) CAST(JSON AS other type)

Geometry types The geometry value is converted
into a JSON document by calling
ST_AsGeoJSON().

Illegal operation. Workaround:
Pass the result of
CAST(json_val AS CHAR) to
ST_GeomFromGeoJSON().

All other types Results in a JSON document
consisting of a single scalar
value.

Succeeds if the JSON document
consists of a single scalar value
of the target type and that scalar
value can be cast to the target
type. Otherwise, returns NULL
and produces a warning.

ORDER BY and GROUP BY for JSON values works according to these principles:

• Ordering of scalar JSON values uses the same rules as in the preceding discussion.

• For ascending sorts, SQL NULL orders before all JSON values, including the JSON null literal; for
descending sorts, SQL NULL orders after all JSON values, including the JSON null literal.

• Sort keys for JSON values are bound by the value of the max_sort_length system variable, so
keys that differ only after the first max_sort_length bytes compare as equal.

• Sorting of nonscalar values is not currently supported and a warning occurs.

For sorting, it can be beneficial to cast a JSON scalar to some other native MySQL type. For example,
if a column named jdoc contains JSON objects having a member consisting of an id key and a
nonnegative value, use this expression to sort by id values:

ORDER BY CAST(JSON_EXTRACT(jdoc, '$.id') AS UNSIGNED)

If there happens to be a generated column defined to use the same expression as in the ORDER BY,
the MySQL optimizer recognizes that and considers using the index for the query execution plan. See
Section 10.3.11, “Optimizer Use of Generated Column Indexes”.

Aggregation of JSON Values

For aggregation of JSON values, SQL NULL values are ignored as for other data types.
Non-NULL values are converted to a numeric type and aggregated, except for MIN(), MAX(), and
GROUP_CONCAT(). The conversion to number should produce a meaningful result for JSON values
that are numeric scalars, although (depending on the values) truncation and loss of precision may
occur. Conversion to number of other JSON values may not produce a meaningful result.

13.6 Data Type Default Values

Data type specifications can have explicit or implicit default values.

A DEFAULT value clause in a data type specification explicitly indicates a default value for a column.
Examples:

CREATE TABLE t1 (
 i INT DEFAULT -1,
 c VARCHAR(10) DEFAULT '',
 price DOUBLE(16,2) DEFAULT 0.00
);

SERIAL DEFAULT VALUE is a special case. In the definition of an integer column, it is an alias for NOT
NULL AUTO_INCREMENT UNIQUE.

Some aspects of explicit DEFAULT clause handling are version dependent, as described following.

2266

Explicit Default Handling as of MySQL 8.0.13

• Explicit Default Handling as of MySQL 8.0.13

• Explicit Default Handling Prior to MySQL 8.0.13

• Implicit Default Handling

Explicit Default Handling as of MySQL 8.0.13

The default value specified in a DEFAULT clause can be a literal constant or an expression. With
one exception, enclose expression default values within parentheses to distinguish them from literal
constant default values. Examples:

CREATE TABLE t1 (
 -- literal defaults
 i INT DEFAULT 0,
 c VARCHAR(10) DEFAULT '',
 -- expression defaults
 f FLOAT DEFAULT (RAND() * RAND()),
 b BINARY(16) DEFAULT (UUID_TO_BIN(UUID())),
 d DATE DEFAULT (CURRENT_DATE + INTERVAL 1 YEAR),
 p POINT DEFAULT (Point(0,0)),
 j JSON DEFAULT (JSON_ARRAY())
);

The exception is that, for TIMESTAMP and DATETIME columns, you can specify the
CURRENT_TIMESTAMP function as the default, without enclosing parentheses. See Section 13.2.5,
“Automatic Initialization and Updating for TIMESTAMP and DATETIME”.

The BLOB, TEXT, GEOMETRY, and JSON data types can be assigned a default value only if the value is
written as an expression, even if the expression value is a literal:

• This is permitted (literal default specified as expression):

CREATE TABLE t2 (b BLOB DEFAULT ('abc'));

• This produces an error (literal default not specified as expression):

CREATE TABLE t2 (b BLOB DEFAULT 'abc');

Expression default values must adhere to the following rules. An error occurs if an expression contains
disallowed constructs.

• Literals, built-in functions (both deterministic and nondeterministic), and operators are permitted.

• Subqueries, parameters, variables, stored functions, and loadable functions are not permitted.

• An expression default value cannot depend on a column that has the AUTO_INCREMENT attribute.

• An expression default value for one column can refer to other table columns, with the exception that
references to generated columns or columns with expression default values must be to columns
that occur earlier in the table definition. That is, expression default values cannot contain forward
references to generated columns or columns with expression default values.

The ordering constraint also applies to the use of ALTER TABLE to reorder table columns. If the
resulting table would have an expression default value that contains a forward reference to a
generated column or column with an expression default value, the statement fails.

Note

If any component of an expression default value depends on the SQL mode,
different results may occur for different uses of the table unless the SQL mode
is the same during all uses.

For CREATE TABLE ... LIKE and CREATE TABLE ... SELECT, the destination table preserves
expression default values from the original table.

2267

Explicit Default Handling Prior to MySQL 8.0.13

If an expression default value refers to a nondeterministic function, any statement that causes the
expression to be evaluated is unsafe for statement-based replication. This includes statements such
as INSERT and UPDATE. In this situation, if binary logging is disabled, the statement is executed as
normal. If binary logging is enabled and binlog_format is set to STATEMENT, the statement is
logged and executed but a warning message is written to the error log, because replication slaves
might diverge. When binlog_format is set to MIXED or ROW, the statement is executed as normal.

When inserting a new row, the default value for a column with an expression default can be inserted
either by omitting the column name or by specifying the column as DEFAULT (just as for columns with
literal defaults):

mysql> CREATE TABLE t4 (uid BINARY(16) DEFAULT (UUID_TO_BIN(UUID())));
mysql> INSERT INTO t4 () VALUES();
mysql> INSERT INTO t4 () VALUES(DEFAULT);
mysql> SELECT BIN_TO_UUID(uid) AS uid FROM t4;
+--------------------------------------+
| uid |
+--------------------------------------+
| f1109174-94c9-11e8-971d-3bf1095aa633 |
| f110cf9a-94c9-11e8-971d-3bf1095aa633 |
+--------------------------------------+

However, the use of DEFAULT(col_name) to specify the default value for a named column is
permitted only for columns that have a literal default value, not for columns that have an expression
default value.

Not all storage engines permit expression default values. For those that do not, an
ER_UNSUPPORTED_ACTION_ON_DEFAULT_VAL_GENERATED error occurs.

If a default value evaluates to a data type that differs from the declared column type, implicit coercion to
the declared type occurs according to the usual MySQL type-conversion rules. See Section 14.3, “Type
Conversion in Expression Evaluation”.

Explicit Default Handling Prior to MySQL 8.0.13

With one exception, the default value specified in a DEFAULT clause must be a literal constant; it
cannot be a function or an expression. This means, for example, that you cannot set the default for a
date column to be the value of a function such as NOW() or CURRENT_DATE. The exception is that,
for TIMESTAMP and DATETIME columns, you can specify CURRENT_TIMESTAMP as the default. See
Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”.

The BLOB, TEXT, GEOMETRY, and JSON data types cannot be assigned a default value.

If a default value evaluates to a data type that differs from the declared column type, implicit coercion to
the declared type occurs according to the usual MySQL type-conversion rules. See Section 14.3, “Type
Conversion in Expression Evaluation”.

Implicit Default Handling

If a data type specification includes no explicit DEFAULT value, MySQL determines the default value as
follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause.

If the column cannot take NULL as a value, MySQL defines the column with no explicit DEFAULT
clause.

For data entry into a NOT NULL column that has no explicit DEFAULT clause, if an INSERT or REPLACE
statement includes no value for the column, or an UPDATE statement sets the column to NULL, MySQL
handles the column according to the SQL mode in effect at the time:

2268

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unsupported_action_on_default_val_generated

Data Type Storage Requirements

• If strict SQL mode is enabled, an error occurs for transactional tables and the statement is rolled
back. For nontransactional tables, an error occurs, but if this happens for the second or subsequent
row of a multiple-row statement, the preceding rows are inserted.

• If strict mode is not enabled, MySQL sets the column to the implicit default value for the column data
type.

Suppose that a table t is defined as follows:

CREATE TABLE t (i INT NOT NULL);

In this case, i has no explicit default, so in strict mode each of the following statements produce an
error and no row is inserted. When not using strict mode, only the third statement produces an error;
the implicit default is inserted for the first two statements, but the third fails because DEFAULT(i)
cannot produce a value:

INSERT INTO t VALUES();
INSERT INTO t VALUES(DEFAULT);
INSERT INTO t VALUES(DEFAULT(i));

See Section 7.1.11, “Server SQL Modes”.

For a given table, the SHOW CREATE TABLE statement displays which columns have an explicit
DEFAULT clause.

Implicit defaults are defined as follows:

• For numeric types, the default is 0, with the exception that for integer or floating-point types declared
with the AUTO_INCREMENT attribute, the default is the next value in the sequence.

• For date and time types other than TIMESTAMP, the default is the appropriate “zero” value
for the type. This is also true for TIMESTAMP if the explicit_defaults_for_timestamp
system variable is enabled (see Section 7.1.8, “Server System Variables”). Otherwise, for the first
TIMESTAMP column in a table, the default value is the current date and time. See Section 13.2, “Date
and Time Data Types”.

• For string types other than ENUM, the default value is the empty string. For ENUM, the default is the
first enumeration value.

13.7 Data Type Storage Requirements

• InnoDB Table Storage Requirements

• NDB Table Storage Requirements

• Numeric Type Storage Requirements

• Date and Time Type Storage Requirements

• String Type Storage Requirements

• Spatial Type Storage Requirements

• JSON Storage Requirements

The storage requirements for table data on disk depend on several factors. Different storage engines
represent data types and store raw data differently. Table data might be compressed, either for a
column or an entire row, complicating the calculation of storage requirements for a table or column.

Despite differences in storage layout on disk, the internal MySQL APIs that communicate and
exchange information about table rows use a consistent data structure that applies across all storage
engines.

2269

InnoDB Table Storage Requirements

This section includes guidelines and information for the storage requirements for each data type
supported by MySQL, including the internal format and size for storage engines that use a fixed-size
representation for data types. Information is listed by category or storage engine.

The internal representation of a table has a maximum row size of 65,535 bytes, even if the storage
engine is capable of supporting larger rows. This figure excludes BLOB or TEXT columns, which
contribute only 9 to 12 bytes toward this size. For BLOB and TEXT data, the information is stored
internally in a different area of memory than the row buffer. Different storage engines handle the
allocation and storage of this data in different ways, according to the method they use for handling
the corresponding types. For more information, see Chapter 18, Alternative Storage Engines, and
Section 10.4.7, “Limits on Table Column Count and Row Size”.

InnoDB Table Storage Requirements

See Section 17.10, “InnoDB Row Formats” for information about storage requirements for InnoDB
tables.

NDB Table Storage Requirements

Important

NDB tables use 4-byte alignment; all NDB data storage is done in multiples of
4 bytes. Thus, a column value that would typically take 15 bytes requires 16
bytes in an NDB table. For example, in NDB tables, the TINYINT, SMALLINT,
MEDIUMINT, and INTEGER (INT) column types each require 4 bytes storage
per record due to the alignment factor.

Each BIT(M) column takes M bits of storage space. Although an individual BIT
column is not 4-byte aligned, NDB reserves 4 bytes (32 bits) per row for the first
1-32 bits needed for BIT columns, then another 4 bytes for bits 33-64, and so
on.

While a NULL itself does not require any storage space, NDB reserves 4 bytes
per row if the table definition contains any columns allowing NULL, up to 32
NULL columns. (If an NDB Cluster table is defined with more than 32 NULL
columns up to 64 NULL columns, then 8 bytes per row are reserved.)

Every table using the NDB storage engine requires a primary key; if you do not define a primary key,
a “hidden” primary key is created by NDB. This hidden primary key consumes 31-35 bytes per table
record.

You can use the ndb_size.pl Perl script to estimate NDB storage requirements. It connects to a
current MySQL (not NDB Cluster) database and creates a report on how much space that database
would require if it used the NDB storage engine. See Section 25.5.28, “ndb_size.pl — NDBCLUSTER
Size Requirement Estimator” for more information.

Numeric Type Storage Requirements

Data Type Storage Required

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

INT, INTEGER 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53

FLOAT 4 bytes

2270

Date and Time Type Storage Requirements

Data Type Storage Required

DOUBLE [PRECISION], REAL 8 bytes

DECIMAL(M,D), NUMERIC(M,D) Varies; see following discussion

BIT(M) approximately (M+7)/8 bytes

Values for DECIMAL (and NUMERIC) columns are represented using a binary format that packs nine
decimal (base 10) digits into four bytes. Storage for the integer and fractional parts of each value are
determined separately. Each multiple of nine digits requires four bytes, and the “leftover” digits require
some fraction of four bytes. The storage required for excess digits is given by the following table.

Leftover Digits Number of Bytes

0 0

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

Date and Time Type Storage Requirements

For TIME, DATETIME, and TIMESTAMP columns, the storage required for tables created before MySQL
5.6.4 differs from tables created from 5.6.4 on. This is due to a change in 5.6.4 that permits these types
to have a fractional part, which requires from 0 to 3 bytes.

Data Type Storage Required Before
MySQL 5.6.4

Storage Required as of MySQL
5.6.4

YEAR 1 byte 1 byte

DATE 3 bytes 3 bytes

TIME 3 bytes 3 bytes + fractional seconds
storage

DATETIME 8 bytes 5 bytes + fractional seconds
storage

TIMESTAMP 4 bytes 4 bytes + fractional seconds
storage

As of MySQL 5.6.4, storage for YEAR and DATE remains unchanged. However, TIME, DATETIME, and
TIMESTAMP are represented differently. DATETIME is packed more efficiently, requiring 5 rather than 8
bytes for the nonfractional part, and all three parts have a fractional part that requires from 0 to 3 bytes,
depending on the fractional seconds precision of stored values.

Fractional Seconds Precision Storage Required

0 0 bytes

1, 2 1 byte

3, 4 2 bytes

5, 6 3 bytes

2271

String Type Storage Requirements

For example, TIME(0), TIME(2), TIME(4), and TIME(6) use 3, 4, 5, and 6 bytes, respectively.
TIME and TIME(0) are equivalent and require the same storage.

For details about internal representation of temporal values, see MySQL Internals: Important
Algorithms and Structures.

String Type Storage Requirements

In the following table, M represents the declared column length in characters for nonbinary string types
and bytes for binary string types. L represents the actual length in bytes of a given string value.

Data Type Storage Required

CHAR(M) The compact family of InnoDB row formats
optimize storage for variable-length character
sets. See COMPACT Row Format Storage
Characteristics. Otherwise, M × w bytes, <= M <=
255, where w is the number of bytes required for
the maximum-length character in the character
set.

BINARY(M) M bytes, 0 <= M <= 255

VARCHAR(M), VARBINARY(M) L + 1 bytes if column values require 0 − 255 bytes,
L + 2 bytes if values may require more than 255
bytes

TINYBLOB, TINYTEXT L + 1 bytes, where L < 28

BLOB, TEXT L + 2 bytes, where L < 216

MEDIUMBLOB, MEDIUMTEXT L + 3 bytes, where L < 224

LONGBLOB, LONGTEXT L + 4 bytes, where L < 232

ENUM('value1','value2',...) 1 or 2 bytes, depending on the number of
enumeration values (65,535 values maximum)

SET('value1','value2',...) 1, 2, 3, 4, or 8 bytes, depending on the number of
set members (64 members maximum)

Variable-length string types are stored using a length prefix plus data. The length prefix requires from
one to four bytes depending on the data type, and the value of the prefix is L (the byte length of the
string). For example, storage for a MEDIUMTEXT value requires L bytes to store the value plus three
bytes to store the length of the value.

To calculate the number of bytes used to store a particular CHAR, VARCHAR, or TEXT column value, you
must take into account the character set used for that column and whether the value contains multibyte
characters. In particular, when using a UTF-8 Unicode character set, you must keep in mind that not
all characters use the same number of bytes. utf8mb3 and utf8mb4 character sets can require up
to three and four bytes per character, respectively. For a breakdown of the storage used for different
categories of utf8mb3 or utf8mb4 characters, see Section 12.9, “Unicode Support”.

VARCHAR, VARBINARY, and the BLOB and TEXT types are variable-length types. For each, the storage
requirements depend on these factors:

• The actual length of the column value

• The column's maximum possible length

• The character set used for the column, because some character sets contain multibyte characters

For example, a VARCHAR(255) column can hold a string with a maximum length of 255 characters.
Assuming that the column uses the latin1 character set (one byte per character), the actual storage

2272

https://dev.mysql.com/doc/internals/en/algorithms.html
https://dev.mysql.com/doc/internals/en/algorithms.html

Spatial Type Storage Requirements

required is the length of the string (L), plus one byte to record the length of the string. For the string
'abcd', L is 4 and the storage requirement is five bytes. If the same column is instead declared to use
the ucs2 double-byte character set, the storage requirement is 10 bytes: The length of 'abcd' is eight
bytes and the column requires two bytes to store lengths because the maximum length is greater than
255 (up to 510 bytes).

The effective maximum number of bytes that can be stored in a VARCHAR or VARBINARY column is
subject to the maximum row size of 65,535 bytes, which is shared among all columns. For a VARCHAR
column that stores multibyte characters, the effective maximum number of characters is less. For
example, utf8mb4 characters can require up to four bytes per character, so a VARCHAR column
that uses the utf8mb4 character set can be declared to be a maximum of 16,383 characters. See
Section 10.4.7, “Limits on Table Column Count and Row Size”.

InnoDB encodes fixed-length fields greater than or equal to 768 bytes in length as variable-length
fields, which can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the
maximum byte length of the character set is greater than 3, as it is with utf8mb4.

The NDB storage engine supports variable-width columns. This means that a VARCHAR column in an
NDB Cluster table requires the same amount of storage as would any other storage engine, with the
exception that such values are 4-byte aligned. Thus, the string 'abcd' stored in a VARCHAR(50)
column using the latin1 character set requires 8 bytes (rather than 5 bytes for the same column
value in a MyISAM table).

TEXT, BLOB, and JSON columns are implemented differently in the NDB storage engine, wherein each
row in the column is made up of two separate parts. One of these is of fixed size (256 bytes for TEXT
and BLOB, 4000 bytes for JSON), and is actually stored in the original table. The other consists of any
data in excess of 256 bytes, which is stored in a hidden blob parts table. The size of the rows in this
second table are determined by the exact type of the column, as shown in the following table:

Type Blob Part Size

BLOB, TEXT 2000

MEDIUMBLOB, MEDIUMTEXT 4000

LONGBLOB, LONGTEXT 13948

JSON 8100

This means that the size of a TEXT column is 256 if size <= 256 (where size represents the size of
the row); otherwise, the size is 256 + size + (2000 × (size − 256) % 2000).

No blob parts are stored separately by NDB for TINYBLOB or TINYTEXT column values.

You can increase the size of an NDB blob column's blob part to the maximum of 13948 using
NDB_COLUMN in a column comment when creating or altering the parent table. In NDB 8.0.30 and
later, it is also possible to set the inline size for a TEXT, BLOB, or JSON column, using NDB_TABLE in a
column comment. See NDB_COLUMN Options, for more information.

The size of an ENUM object is determined by the number of different enumeration values. One byte is
used for enumerations with up to 255 possible values. Two bytes are used for enumerations having
between 256 and 65,535 possible values. See Section 13.3.5, “The ENUM Type”.

The size of a SET object is determined by the number of different set members. If the set size is N, the
object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can have a maximum of 64
members. See Section 13.3.6, “The SET Type”.

Spatial Type Storage Requirements

MySQL stores geometry values using 4 bytes to indicate the SRID followed by the WKB representation
of the value. The LENGTH() function returns the space in bytes required for value storage.

2273

JSON Storage Requirements

For descriptions of WKB and internal storage formats for spatial values, see Section 13.4.3, “Supported
Spatial Data Formats”.

JSON Storage Requirements

In general, the storage requirement for a JSON column is approximately the same as for a LONGBLOB
or LONGTEXT column; that is, the space consumed by a JSON document is roughly the same as it
would be for the document's string representation stored in a column of one of these types. However,
there is an overhead imposed by the binary encoding, including metadata and dictionaries needed for
lookup, of the individual values stored in the JSON document. For example, a string stored in a JSON
document requires 4 to 10 bytes additional storage, depending on the length of the string and the size
of the object or array in which it is stored.

In addition, MySQL imposes a limit on the size of any JSON document stored in a JSON column such
that it cannot be any larger than the value of max_allowed_packet.

13.8 Choosing the Right Type for a Column

For optimum storage, you should try to use the most precise type in all cases. For example, if an
integer column is used for values in the range from 1 to 99999, MEDIUMINT UNSIGNED is the best
type. Of the types that represent all the required values, this type uses the least amount of storage.

All basic calculations (+, -, *, and /) with DECIMAL columns are done with precision of 65 decimal
(base 10) digits. See Section 13.1.1, “Numeric Data Type Syntax”.

If accuracy is not too important or if speed is the highest priority, the DOUBLE type may be good
enough. For high precision, you can always convert to a fixed-point type stored in a BIGINT. This
enables you to do all calculations with 64-bit integers and then convert results back to floating-point
values as necessary.

13.9 Using Data Types from Other Database Engines

To facilitate the use of code written for SQL implementations from other vendors, MySQL maps data
types as shown in the following table. These mappings make it easier to import table definitions from
other database systems into MySQL.

Other Vendor Type MySQL Type

BOOL TINYINT

BOOLEAN TINYINT

CHARACTER VARYING(M) VARCHAR(M)

FIXED DECIMAL

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT

MIDDLEINT MEDIUMINT

2274

Using Data Types from Other Database Engines

Other Vendor Type MySQL Type

NUMERIC DECIMAL

Data type mapping occurs at table creation time, after which the original type specifications are
discarded. If you create a table with types used by other vendors and then issue a DESCRIBE
tbl_name statement, MySQL reports the table structure using the equivalent MySQL types. For
example:

mysql> CREATE TABLE t (a BOOL, b FLOAT8, c LONG VARCHAR, d NUMERIC);
Query OK, 0 rows affected (0.00 sec)

mysql> DESCRIBE t;
+-------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------+-------+
a	tinyint(1)	YES		NULL	
b	double	YES		NULL	
c	mediumtext	YES		NULL	
d	decimal(10,0)	YES		NULL	
+-------+---------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

2275

2276

Chapter 14 Functions and Operators

Table of Contents
14.1 Built-In Function and Operator Reference ... 2279
14.2 Loadable Function Reference .. 2300
14.3 Type Conversion in Expression Evaluation ... 2305
14.4 Operators .. 2309

14.4.1 Operator Precedence .. 2311
14.4.2 Comparison Functions and Operators .. 2311
14.4.3 Logical Operators ... 2318
14.4.4 Assignment Operators ... 2320

14.5 Flow Control Functions .. 2321
14.6 Numeric Functions and Operators .. 2324

14.6.1 Arithmetic Operators ... 2325
14.6.2 Mathematical Functions ... 2327

14.7 Date and Time Functions ... 2336
14.8 String Functions and Operators .. 2359

14.8.1 String Comparison Functions and Operators .. 2374
14.8.2 Regular Expressions ... 2378
14.8.3 Character Set and Collation of Function Results ... 2387

14.9 Full-Text Search Functions .. 2388
14.9.1 Natural Language Full-Text Searches .. 2390
14.9.2 Boolean Full-Text Searches .. 2393
14.9.3 Full-Text Searches with Query Expansion .. 2398
14.9.4 Full-Text Stopwords .. 2399
14.9.5 Full-Text Restrictions .. 2403
14.9.6 Fine-Tuning MySQL Full-Text Search .. 2404
14.9.7 Adding a User-Defined Collation for Full-Text Indexing ... 2407
14.9.8 ngram Full-Text Parser ... 2409
14.9.9 MeCab Full-Text Parser Plugin .. 2411

14.10 Cast Functions and Operators .. 2415
14.11 XML Functions .. 2429
14.12 Bit Functions and Operators ... 2439
14.13 Encryption and Compression Functions .. 2451
14.14 Locking Functions .. 2459
14.15 Information Functions ... 2461
14.16 Spatial Analysis Functions ... 2472

14.16.1 Spatial Function Reference ... 2473
14.16.2 Argument Handling by Spatial Functions .. 2476
14.16.3 Functions That Create Geometry Values from WKT Values 2477
14.16.4 Functions That Create Geometry Values from WKB Values 2479
14.16.5 MySQL-Specific Functions That Create Geometry Values 2481
14.16.6 Geometry Format Conversion Functions .. 2482
14.16.7 Geometry Property Functions .. 2484
14.16.8 Spatial Operator Functions .. 2496
14.16.9 Functions That Test Spatial Relations Between Geometry Objects 2504
14.16.10 Spatial Geohash Functions .. 2514
14.16.11 Spatial GeoJSON Functions .. 2515
14.16.12 Spatial Aggregate Functions .. 2517
14.16.13 Spatial Convenience Functions .. 2519

14.17 JSON Functions .. 2524
14.17.1 JSON Function Reference ... 2524
14.17.2 Functions That Create JSON Values ... 2526
14.17.3 Functions That Search JSON Values ... 2527
14.17.4 Functions That Modify JSON Values .. 2542

2277

14.17.5 Functions That Return JSON Value Attributes .. 2551
14.17.6 JSON Table Functions .. 2553
14.17.7 JSON Schema Validation Functions ... 2558
14.17.8 JSON Utility Functions .. 2564

14.18 Replication Functions ... 2569
14.18.1 Group Replication Functions .. 2570
14.18.2 Functions Used with Global Transaction Identifiers (GTIDs) 2578
14.18.3 Asynchronous Replication Channel Failover Functions .. 2580
14.18.4 Position-Based Synchronization Functions ... 2584

14.19 Aggregate Functions .. 2586
14.19.1 Aggregate Function Descriptions ... 2586
14.19.2 GROUP BY Modifiers ... 2596
14.19.3 MySQL Handling of GROUP BY .. 2602
14.19.4 Detection of Functional Dependence .. 2606

14.20 Window Functions ... 2609
14.20.1 Window Function Descriptions ... 2609
14.20.2 Window Function Concepts and Syntax ... 2615
14.20.3 Window Function Frame Specification .. 2619
14.20.4 Named Windows ... 2622
14.20.5 Window Function Restrictions .. 2623

14.21 Performance Schema Functions ... 2624
14.22 Internal Functions .. 2627
14.23 Miscellaneous Functions .. 2628
14.24 Precision Math .. 2642

14.24.1 Types of Numeric Values .. 2643
14.24.2 DECIMAL Data Type Characteristics ... 2643
14.24.3 Expression Handling ... 2644
14.24.4 Rounding Behavior ... 2646
14.24.5 Precision Math Examples .. 2647

Expressions can be used at several points in SQL statements, such as in the ORDER BY or HAVING
clauses of SELECT statements, in the WHERE clause of a SELECT, DELETE, or UPDATE statement,
or in SET statements. Expressions can be written using values from several sources, such as literal
values, column values, NULL, variables, built-in functions and operators, loadable functions, and stored
functions (a type of stored object).

This chapter describes the built-in functions and operators that are permitted for writing expressions
in MySQL. For information about loadable functions and stored functions, see Section 7.7, “MySQL
Server Loadable Functions”, and Section 27.2, “Using Stored Routines”. For the rules describing how
the server interprets references to different kinds of functions, see Section 11.2.5, “Function Name
Parsing and Resolution”.

An expression that contains NULL always produces a NULL value unless otherwise indicated in the
documentation for a particular function or operator.

Note

By default, there must be no whitespace between a function name and the
parenthesis following it. This helps the MySQL parser distinguish between
function calls and references to tables or columns that happen to have the same
name as a function. However, spaces around function arguments are permitted.

To tell the MySQL server to accept spaces after function names by starting it
with the --sql-mode=IGNORE_SPACE option. (See Section 7.1.11, “Server
SQL Modes”.) Individual client programs can request this behavior by using the
CLIENT_IGNORE_SPACE option for mysql_real_connect(). In either case,
all function names become reserved words.

2278

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html

Built-In Function and Operator Reference

For the sake of brevity, some examples in this chapter display the output from the mysql program in
abbreviated form. Rather than showing examples in this format:

mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+
1 rows in set (0.00 sec)

This format is used instead:

mysql> SELECT MOD(29,9);
 -> 2

14.1 Built-In Function and Operator Reference
The following table lists each built-in (native) function and operator and provides a short description
of each one. For a table listing functions that are loadable at runtime, see Section 14.2, “Loadable
Function Reference”.

Table 14.1 Built-In Functions and Operators

Name Description Introduced Deprecated

& Bitwise AND

> Greater than operator

>> Right shift

>= Greater than or equal
operator

< Less than operator

<>, != Not equal operator

<< Left shift

<= Less than or equal
operator

<=> NULL-safe equal to
operator

%, MOD Modulo operator

* Multiplication operator

+ Addition operator

- Minus operator

- Change the sign of the
argument

-> Return value from JSON
column after evaluating
path; equivalent to
JSON_EXTRACT().

->> Return value from JSON
column after evaluating
path and unquoting the
result; equivalent to
JSON_UNQUOTE(JSON_EXTRACT()).

/ Division operator

:= Assign a value

2279

Built-In Function and Operator Reference

Name Description Introduced Deprecated

= Assign a value (as part
of a SET statement,
or as part of the SET
clause in an UPDATE
statement)

= Equal operator

^ Bitwise XOR

ABS() Return the absolute
value

ACOS() Return the arc cosine

ADDDATE() Add time values
(intervals) to a date
value

ADDTIME() Add time

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

AND, && Logical AND

ANY_VALUE() Suppress
ONLY_FULL_GROUP_BY
value rejection

ASCII() Return numeric value of
left-most character

ASIN() Return the arc sine

asynchronous_connection_failover_add_managed()Add group member
source server
configuration information
to a replication channel
source list

8.0.23

asynchronous_connection_failover_add_source()Add source server
configuration information
server to a replication
channel source list

8.0.22

asynchronous_connection_failover_delete_managed()Remove a managed
group from a replication
channel source list

8.0.23

asynchronous_connection_failover_delete_source()Remove a source
server from a replication
channel source list

8.0.22

asynchronous_connection_failover_reset()Remove all
settings relating to
group replication
asynchronous failover

8.0.27

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent
of the two arguments

AVG() Return the average
value of the argument

2280

Built-In Function and Operator Reference

Name Description Introduced Deprecated

BENCHMARK() Repeatedly execute an
expression

BETWEEN ...
AND ...

Whether a value is
within a range of values

BIN() Return a string
containing binary
representation of a
number

BIN_TO_UUID() Convert binary UUID to
string

BINARY Cast a string to a binary
string

8.0.27

BIT_AND() Return bitwise AND

BIT_COUNT() Return the number of
bits that are set

BIT_LENGTH() Return length of
argument in bits

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

CAN_ACCESS_COLUMN()Internal use only

CAN_ACCESS_DATABASE()Internal use only

CAN_ACCESS_TABLE() Internal use only

CAN_ACCESS_USER() Internal use only 8.0.22

CAN_ACCESS_VIEW() Internal use only

CASE Case operator

CAST() Cast a value as a
certain type

CEIL() Return the smallest
integer value not less
than the argument

CEILING() Return the smallest
integer value not less
than the argument

CHAR() Return the character for
each integer passed

CHAR_LENGTH() Return number of
characters in argument

CHARACTER_LENGTH() Synonym for
CHAR_LENGTH()

CHARSET() Return the character set
of the argument

COALESCE() Return the first non-
NULL argument

COERCIBILITY() Return the collation
coercibility value of the
string argument

2281

Built-In Function and Operator Reference

Name Description Introduced Deprecated

COLLATION() Return the collation of
the string argument

COMPRESS() Return result as a binary
string

CONCAT() Return concatenated
string

CONCAT_WS() Return concatenate with
separator

CONNECTION_ID() Return the connection
ID (thread ID) for the
connection

CONV() Convert numbers
between different
number bases

CONVERT() Cast a value as a
certain type

CONVERT_TZ() Convert from one time
zone to another

COS() Return the cosine

COT() Return the cotangent

COUNT() Return a count of the
number of rows returned

COUNT(DISTINCT) Return the count of
a number of different
values

CRC32() Compute a cyclic
redundancy check value

CUME_DIST() Cumulative distribution
value

CURDATE() Return the current date

CURRENT_DATE(),
CURRENT_DATE

Synonyms for
CURDATE()

CURRENT_ROLE() Return the current active
roles

CURRENT_TIME(),
CURRENT_TIME

Synonyms for
CURTIME()

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

CURRENT_USER(),
CURRENT_USER

The authenticated user
name and host name

CURTIME() Return the current time

DATABASE() Return the default
(current) database name

DATE() Extract the date part
of a date or datetime
expression

2282

Built-In Function and Operator Reference

Name Description Introduced Deprecated

DATE_ADD() Add time values
(intervals) to a date
value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value
(interval) from a date

DATEDIFF() Subtract two dates

DAY() Synonym for
DAYOFMONTH()

DAYNAME() Return the name of the
weekday

DAYOFMONTH() Return the day of the
month (0-31)

DAYOFWEEK() Return the weekday
index of the argument

DAYOFYEAR() Return the day of the
year (1-366)

DEFAULT() Return the default value
for a table column

DEGREES() Convert radians to
degrees

DENSE_RANK() Rank of current row
within its partition,
without gaps

DIV Integer division

ELT() Return string at index
number

EXISTS() Whether the result of a
query contains any rows

EXP() Raise to the power of

EXPORT_SET() Return a string such that
for every bit set in the
value bits, you get an
on string and for every
unset bit, you get an off
string

EXTRACT() Extract part of a date

ExtractValue() Extract a value from an
XML string using XPath
notation

FIELD() Index (position) of first
argument in subsequent
arguments

FIND_IN_SET() Index (position) of first
argument within second
argument

2283

Built-In Function and Operator Reference

Name Description Introduced Deprecated

FIRST_VALUE() Value of argument from
first row of window
frame

FLOOR() Return the largest
integer value not greater
than the argument

FORMAT() Return a number
formatted to specified
number of decimal
places

FORMAT_BYTES() Convert byte count to
value with units

8.0.16

FORMAT_PICO_TIME() Convert time in
picoseconds to value
with units

8.0.16

FOUND_ROWS() For a SELECT with
a LIMIT clause, the
number of rows that
would be returned were
there no LIMIT clause

FROM_BASE64() Decode base64
encoded string and
return result

FROM_DAYS() Convert a day number
to a date

FROM_UNIXTIME() Format Unix timestamp
as a date

GeomCollection() Construct geometry
collection from
geometries

GeometryCollection()Construct geometry
collection from
geometries

GET_DD_COLUMN_PRIVILEGES()Internal use only

GET_DD_CREATE_OPTIONS()Internal use only

GET_DD_INDEX_SUB_PART_LENGTH()Internal use only

GET_FORMAT() Return a date format
string

GET_LOCK() Get a named lock

GREATEST() Return the largest
argument

GROUP_CONCAT() Return a concatenated
string

group_replication_disable_member_action()Disable member action
for event specified

8.0.26

group_replication_enable_member_action()Enable member action
for event specified

8.0.26

group_replication_get_communication_protocol()Get version of
group replication

8.0.16

2284

Built-In Function and Operator Reference

Name Description Introduced Deprecated
communication protocol
currently in use

group_replication_get_write_concurrency()Get maximum number
of consensus instances
currently set for group

8.0.13

group_replication_reset_member_actions()Reset all member
actions to defaults and
configuration version
number to 1

8.0.26

group_replication_set_as_primary()Make a specific group
member the primary

8.0.29

group_replication_set_communication_protocol()Set version for
group replication
communication protocol
to use

8.0.16

group_replication_set_write_concurrency()Set maximum number
of consensus instances
that can be executed in
parallel

8.0.13

group_replication_switch_to_multi_primary_mode()Changes the mode of a
group running in single-
primary mode to multi-
primary mode

8.0.13

group_replication_switch_to_single_primary_mode()Changes the mode of a
group running in multi-
primary mode to single-
primary mode

8.0.13

GROUPING() Distinguish super-
aggregate ROLLUP
rows from regular rows

GTID_SUBSET() Return true if all GTIDs
in subset are also in set;
otherwise false.

GTID_SUBTRACT() Return all GTIDs in set
that are not in subset.

HEX() Hexadecimal
representation of
decimal or string value

HOUR() Extract the hour

ICU_VERSION() ICU library version

IF() If/else construct

IFNULL() Null if/else construct

IN() Whether a value is
within a set of values

INET_ATON() Return the numeric
value of an IP address

INET_NTOA() Return the IP address
from a numeric value

2285

Built-In Function and Operator Reference

Name Description Introduced Deprecated

INET6_ATON() Return the numeric
value of an IPv6
address

INET6_NTOA() Return the IPv6 address
from a numeric value

INSERT() Insert substring at
specified position up
to specified number of
characters

INSTR() Return the index of
the first occurrence of
substring

INTERNAL_AUTO_INCREMENT()Internal use only

INTERNAL_AVG_ROW_LENGTH()Internal use only

INTERNAL_CHECK_TIME()Internal use only

INTERNAL_CHECKSUM()Internal use only

INTERNAL_DATA_FREE()Internal use only

INTERNAL_DATA_LENGTH()Internal use only

INTERNAL_DD_CHAR_LENGTH()Internal use only

INTERNAL_GET_COMMENT_OR_ERROR()Internal use only

INTERNAL_GET_ENABLED_ROLE_JSON()Internal use only 8.0.19

INTERNAL_GET_HOSTNAME()Internal use only 8.0.19

INTERNAL_GET_USERNAME()Internal use only 8.0.19

INTERNAL_GET_VIEW_WARNING_OR_ERROR()Internal use only

INTERNAL_INDEX_COLUMN_CARDINALITY()Internal use only

INTERNAL_INDEX_LENGTH()Internal use only

INTERNAL_IS_ENABLED_ROLE()Internal use only 8.0.19

INTERNAL_IS_MANDATORY_ROLE()Internal use only 8.0.19

INTERNAL_KEYS_DISABLED()Internal use only

INTERNAL_MAX_DATA_LENGTH()Internal use only

INTERNAL_TABLE_ROWS()Internal use only

INTERNAL_UPDATE_TIME()Internal use only

INTERVAL() Return the index of the
argument that is less
than the first argument

IS Test a value against a
boolean

IS_FREE_LOCK() Whether the named lock
is free

IS_IPV4() Whether argument is an
IPv4 address

IS_IPV4_COMPAT() Whether argument is
an IPv4-compatible
address

2286

Built-In Function and Operator Reference

Name Description Introduced Deprecated

IS_IPV4_MAPPED() Whether argument is an
IPv4-mapped address

IS_IPV6() Whether argument is an
IPv6 address

IS NOT Test a value against a
boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

IS_USED_LOCK() Whether the named
lock is in use; return
connection identifier if
true

IS_UUID() Whether argument is a
valid UUID

ISNULL() Test whether the
argument is NULL

JSON_ARRAY() Create JSON array

JSON_ARRAY_APPEND()Append data to JSON
document

JSON_ARRAY_INSERT()Insert into JSON array

JSON_ARRAYAGG() Return result set as a
single JSON array

JSON_CONTAINS() Whether JSON
document contains
specific object at path

JSON_CONTAINS_PATH()Whether JSON
document contains any
data at path

JSON_DEPTH() Maximum depth of
JSON document

JSON_EXTRACT() Return data from JSON
document

JSON_INSERT() Insert data into JSON
document

JSON_KEYS() Array of keys from
JSON document

JSON_LENGTH() Number of elements in
JSON document

JSON_MERGE() Merge JSON
documents, preserving
duplicate keys.
Deprecated synonym for
JSON_MERGE_PRESERVE()

Yes

JSON_MERGE_PATCH() Merge JSON
documents, replacing
values of duplicate keys

2287

Built-In Function and Operator Reference

Name Description Introduced Deprecated

JSON_MERGE_PRESERVE()Merge JSON
documents, preserving
duplicate keys

JSON_OBJECT() Create JSON object

JSON_OBJECTAGG() Return result set as a
single JSON object

JSON_OVERLAPS() Compares two JSON
documents, returns
TRUE (1) if these have
any key-value pairs
or array elements in
common, otherwise
FALSE (0)

8.0.17

JSON_PRETTY() Print a JSON document
in human-readable
format

JSON_QUOTE() Quote JSON document

JSON_REMOVE() Remove data from
JSON document

JSON_REPLACE() Replace values in JSON
document

JSON_SCHEMA_VALID()Validate JSON
document against
JSON schema; returns
TRUE/1 if document
validates against
schema, or FALSE/0 if it
does not

8.0.17

JSON_SCHEMA_VALIDATION_REPORT()Validate JSON
document against JSON
schema; returns report
in JSON format on
outcome on validation
including success or
failure and reasons for
failure

8.0.17

JSON_SEARCH() Path to value within
JSON document

JSON_SET() Insert data into JSON
document

JSON_STORAGE_FREE()Freed space within
binary representation
of JSON column value
following partial update

JSON_STORAGE_SIZE()Space used for storage
of binary representation
of a JSON document

JSON_TABLE() Return data from a
JSON expression as a
relational table

2288

Built-In Function and Operator Reference

Name Description Introduced Deprecated

JSON_TYPE() Type of JSON value

JSON_UNQUOTE() Unquote JSON value

JSON_VALID() Whether JSON value is
valid

JSON_VALUE() Extract value from
JSON document at
location pointed to
by path provided;
return this value as
VARCHAR(512) or
specified type

8.0.21

LAG() Value of argument from
row lagging current row
within partition

LAST_DAY Return the last day
of the month for the
argument

LAST_INSERT_ID() Value of the
AUTOINCREMENT
column for the last
INSERT

LAST_VALUE() Value of argument
from last row of window
frame

LCASE() Synonym for LOWER()

LEAD() Value of argument from
row leading current row
within partition

LEAST() Return the smallest
argument

LEFT() Return the leftmost
number of characters as
specified

LENGTH() Return the length of a
string in bytes

LIKE Simple pattern matching

LineString() Construct LineString
from Point values

LN() Return the natural
logarithm of the
argument

LOAD_FILE() Load the named file

LOCALTIME(),
LOCALTIME

Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

LOCATE() Return the position of
the first occurrence of
substring

2289

Built-In Function and Operator Reference

Name Description Introduced Deprecated

LOG() Return the natural
logarithm of the first
argument

LOG10() Return the base-10
logarithm of the
argument

LOG2() Return the base-2
logarithm of the
argument

LOWER() Return the argument in
lowercase

LPAD() Return the string
argument, left-padded
with the specified string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-
separated strings that
have the corresponding
bit in bits set

MAKEDATE() Create a date from the
year and day of year

MAKETIME() Create time from hour,
minute, second

MASTER_POS_WAIT() Block until the replica
has read and applied
all updates up to the
specified position

8.0.26

MATCH() Perform full-text search

MAX() Return the maximum
value

MBRContains() Whether MBR of one
geometry contains MBR
of another

MBRCoveredBy() Whether one MBR is
covered by another

MBRCovers() Whether one MBR
covers another

MBRDisjoint() Whether MBRs of two
geometries are disjoint

MBREquals() Whether MBRs of two
geometries are equal

MBRIntersects() Whether MBRs of two
geometries intersect

MBROverlaps() Whether MBRs of two
geometries overlap

MBRTouches() Whether MBRs of two
geometries touch

2290

Built-In Function and Operator Reference

Name Description Introduced Deprecated

MBRWithin() Whether MBR of one
geometry is within MBR
of another

MD5() Calculate MD5
checksum

MEMBER OF() Returns true (1) if first
operand matches any
element of JSON array
passed as second
operand, otherwise
returns false (0)

8.0.17

MICROSECOND() Return the
microseconds from
argument

MID() Return a substring
starting from the
specified position

MIN() Return the minimum
value

MINUTE() Return the minute from
the argument

MOD() Return the remainder

MONTH() Return the month from
the date passed

MONTHNAME() Return the name of the
month

MultiLineString() Contruct MultiLineString
from LineString values

MultiPoint() Construct MultiPoint
from Point values

MultiPolygon() Construct MultiPolygon
from Polygon values

NAME_CONST() Cause the column to
have the given name

NOT, ! Negates value

NOT BETWEEN ...
AND ...

Whether a value is not
within a range of values

NOT EXISTS() Whether the result of a
query contains no rows

NOT IN() Whether a value is not
within a set of values

NOT LIKE Negation of simple
pattern matching

NOT REGEXP Negation of REGEXP

NOW() Return the current date
and time

2291

Built-In Function and Operator Reference

Name Description Introduced Deprecated

NTH_VALUE() Value of argument from
N-th row of window
frame

NTILE() Bucket number of
current row within its
partition.

NULLIF() Return NULL if expr1 =
expr2

OCT() Return a string
containing octal
representation of a
number

OCTET_LENGTH() Synonym for LENGTH()

OR, || Logical OR

ORD() Return character code
for leftmost character of
the argument

PERCENT_RANK() Percentage rank value

PERIOD_ADD() Add a period to a year-
month

PERIOD_DIFF() Return the number of
months between periods

PI() Return the value of pi

Point() Construct Point from
coordinates

Polygon() Construct Polygon from
LineString arguments

POSITION() Synonym for LOCATE()

POW() Return the argument
raised to the specified
power

POWER() Return the argument
raised to the specified
power

PS_CURRENT_THREAD_ID()Performance Schema
thread ID for current
thread

8.0.16

PS_THREAD_ID() Performance Schema
thread ID for given
thread

8.0.16

QUARTER() Return the quarter from
a date argument

QUOTE() Escape the argument
for use in an SQL
statement

RADIANS() Return argument
converted to radians

2292

Built-In Function and Operator Reference

Name Description Introduced Deprecated

RAND() Return a random
floating-point value

RANDOM_BYTES() Return a random byte
vector

RANK() Rank of current row
within its partition, with
gaps

REGEXP Whether string matches
regular expression

REGEXP_INSTR() Starting index of
substring matching
regular expression

REGEXP_LIKE() Whether string matches
regular expression

REGEXP_REPLACE() Replace substrings
matching regular
expression

REGEXP_SUBSTR() Return substring
matching regular
expression

RELEASE_ALL_LOCKS()Release all current
named locks

RELEASE_LOCK() Release the named lock

REPEAT() Repeat a string the
specified number of
times

REPLACE() Replace occurrences of
a specified string

REVERSE() Reverse the characters
in a string

RIGHT() Return the specified
rightmost number of
characters

RLIKE Whether string matches
regular expression

ROLES_GRAPHML() Return a GraphML
document representing
memory role subgraphs

ROUND() Round the argument

ROW_COUNT() The number of rows
updated

ROW_NUMBER() Number of current row
within its partition

RPAD() Append string the
specified number of
times

RTRIM() Remove trailing spaces

2293

Built-In Function and Operator Reference

Name Description Introduced Deprecated

SCHEMA() Synonym for
DATABASE()

SEC_TO_TIME() Converts seconds to
'hh:mm:ss' format

SECOND() Return the second
(0-59)

SESSION_USER() Synonym for USER()

SHA1(), SHA() Calculate an SHA-1
160-bit checksum

SHA2() Calculate an SHA-2
checksum

SIGN() Return the sign of the
argument

SIN() Return the sine of the
argument

SLEEP() Sleep for a number of
seconds

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SOURCE_POS_WAIT() Block until the replica
has read and applied
all updates up to the
specified position

8.0.26

SPACE() Return a string of the
specified number of
spaces

SQRT() Return the square root
of the argument

ST_Area() Return Polygon or
MultiPolygon area

ST_AsBinary(),
ST_AsWKB()

Convert from internal
geometry format to WKB

ST_AsGeoJSON() Generate GeoJSON
object from geometry

ST_AsText(),
ST_AsWKT()

Convert from internal
geometry format to WKT

ST_Buffer() Return geometry of
points within given
distance from geometry

ST_Buffer_Strategy()Produce strategy option
for ST_Buffer()

ST_Centroid() Return centroid as a
point

ST_Collect() Aggregate spatial values
into collection

8.0.24

ST_Contains() Whether one geometry
contains another

2294

Built-In Function and Operator Reference

Name Description Introduced Deprecated

ST_ConvexHull() Return convex hull of
geometry

ST_Crosses() Whether one geometry
crosses another

ST_Difference() Return point set
difference of two
geometries

ST_Dimension() Dimension of geometry

ST_Disjoint() Whether one geometry
is disjoint from another

ST_Distance() The distance of one
geometry from another

ST_Distance_Sphere()Minimum distance on
earth between two
geometries

ST_EndPoint() End Point of LineString

ST_Envelope() Return MBR of
geometry

ST_Equals() Whether one geometry
is equal to another

ST_ExteriorRing() Return exterior ring of
Polygon

ST_FrechetDistance()The discrete Fréchet
distance of one
geometry from another

8.0.23

ST_GeoHash() Produce a geohash
value

ST_GeomCollFromText(),
ST_GeometryCollectionFromText(),
ST_GeomCollFromTxt()

Return geometry
collection from WKT

ST_GeomCollFromWKB(),
ST_GeometryCollectionFromWKB()

Return geometry
collection from WKB

ST_GeometryN() Return N-th geometry
from geometry collection

ST_GeometryType() Return name of
geometry type

ST_GeomFromGeoJSON()Generate geometry from
GeoJSON object

ST_GeomFromText(),
ST_GeometryFromText()

Return geometry from
WKT

ST_GeomFromWKB(),
ST_GeometryFromWKB()

Return geometry from
WKB

ST_HausdorffDistance()The discrete Hausdorff
distance of one
geometry from another

8.0.23

ST_InteriorRingN() Return N-th interior ring
of Polygon

2295

Built-In Function and Operator Reference

Name Description Introduced Deprecated

ST_Intersection() Return point set
intersection of two
geometries

ST_Intersects() Whether one geometry
intersects another

ST_IsClosed() Whether a geometry is
closed and simple

ST_IsEmpty() Whether a geometry is
empty

ST_IsSimple() Whether a geometry is
simple

ST_IsValid() Whether a geometry is
valid

ST_LatFromGeoHash()Return latitude from
geohash value

ST_Latitude() Return latitude of Point 8.0.12

ST_Length() Return length of
LineString

ST_LineFromText(),
ST_LineStringFromText()

Construct LineString
from WKT

ST_LineFromWKB(),
ST_LineStringFromWKB()

Construct LineString
from WKB

ST_LineInterpolatePoint()The point a given
percentage along a
LineString

8.0.24

ST_LineInterpolatePoints()The points a given
percentage along a
LineString

8.0.24

ST_LongFromGeoHash()Return longitude from
geohash value

ST_Longitude() Return longitude of
Point

8.0.12

ST_MakeEnvelope() Rectangle around two
points

ST_MLineFromText(),
ST_MultiLineStringFromText()

Construct
MultiLineString from
WKT

ST_MLineFromWKB(),
ST_MultiLineStringFromWKB()

Construct
MultiLineString from
WKB

ST_MPointFromText(),
ST_MultiPointFromText()

Construct MultiPoint
from WKT

ST_MPointFromWKB(),
ST_MultiPointFromWKB()

Construct MultiPoint
from WKB

ST_MPolyFromText(),
ST_MultiPolygonFromText()

Construct MultiPolygon
from WKT

ST_MPolyFromWKB(),
ST_MultiPolygonFromWKB()

Construct MultiPolygon
from WKB

2296

Built-In Function and Operator Reference

Name Description Introduced Deprecated

ST_NumGeometries() Return number of
geometries in geometry
collection

ST_NumInteriorRing(),
ST_NumInteriorRings()

Return number of
interior rings in Polygon

ST_NumPoints() Return number of points
in LineString

ST_Overlaps() Whether one geometry
overlaps another

ST_PointAtDistance()The point a given
distance along a
LineString

8.0.24

ST_PointFromGeoHash()Convert geohash value
to POINT value

ST_PointFromText() Construct Point from
WKT

ST_PointFromWKB() Construct Point from
WKB

ST_PointN() Return N-th point from
LineString

ST_PolyFromText(),
ST_PolygonFromText()

Construct Polygon from
WKT

ST_PolyFromWKB(),
ST_PolygonFromWKB()

Construct Polygon from
WKB

ST_Simplify() Return simplified
geometry

ST_SRID() Return spatial reference
system ID for geometry

ST_StartPoint() Start Point of LineString

ST_SwapXY() Return argument with X/
Y coordinates swapped

ST_SymDifference() Return point set
symmetric difference of
two geometries

ST_Touches() Whether one geometry
touches another

ST_Transform() Transform coordinates
of geometry

8.0.13

ST_Union() Return point set union of
two geometries

ST_Validate() Return validated
geometry

ST_Within() Whether one geometry
is within another

ST_X() Return X coordinate of
Point

ST_Y() Return Y coordinate of
Point

2297

Built-In Function and Operator Reference

Name Description Introduced Deprecated

STATEMENT_DIGEST() Compute statement
digest hash value

STATEMENT_DIGEST_TEXT()Compute normalized
statement digest

STD() Return the population
standard deviation

STDDEV() Return the population
standard deviation

STDDEV_POP() Return the population
standard deviation

STDDEV_SAMP() Return the sample
standard deviation

STR_TO_DATE() Convert a string to a
date

STRCMP() Compare two strings

SUBDATE() Synonym for
DATE_SUB() when
invoked with three
arguments

SUBSTR() Return the substring as
specified

SUBSTRING() Return the substring as
specified

SUBSTRING_INDEX() Return a substring
from a string before
the specified number
of occurrences of the
delimiter

SUBTIME() Subtract times

SUM() Return the sum

SYSDATE() Return the time at which
the function executes

SYSTEM_USER() Synonym for USER()

TAN() Return the tangent of
the argument

TIME() Extract the time portion
of the expression
passed

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument
converted to seconds

TIMEDIFF() Subtract time

TIMESTAMP() With a single argument,
this function returns
the date or datetime
expression; with two
arguments, the sum of
the arguments

2298

Built-In Function and Operator Reference

Name Description Introduced Deprecated

TIMESTAMPADD() Add an interval to a
datetime expression

TIMESTAMPDIFF() Return the difference
of two datetime
expressions, using the
units specified

TO_BASE64() Return the argument
converted to a base-64
string

TO_DAYS() Return the date
argument converted to
days

TO_SECONDS() Return the date or
datetime argument
converted to seconds
since Year 0

TRIM() Remove leading and
trailing spaces

TRUNCATE() Truncate to specified
number of decimal
places

UCASE() Synonym for UPPER()

UNCOMPRESS() Uncompress a string
compressed

UNCOMPRESSED_LENGTH()Return the length
of a string before
compression

UNHEX() Return a string
containing hex
representation of a
number

UNIX_TIMESTAMP() Return a Unix
timestamp

UpdateXML() Return replaced XML
fragment

UPPER() Convert to uppercase

USER() The user name and host
name provided by the
client

UTC_DATE() Return the current UTC
date

UTC_TIME() Return the current UTC
time

UTC_TIMESTAMP() Return the current UTC
date and time

UUID() Return a Universal
Unique Identifier (UUID)

2299

Loadable Function Reference

Name Description Introduced Deprecated

UUID_SHORT() Return an integer-
valued universal
identifier

UUID_TO_BIN() Convert string UUID to
binary

VALIDATE_PASSWORD_STRENGTH()Determine strength of
password

VALUES() Define the values to be
used during an INSERT

VAR_POP() Return the population
standard variance

VAR_SAMP() Return the sample
variance

VARIANCE() Return the population
standard variance

VERSION() Return a string that
indicates the MySQL
server version

WAIT_FOR_EXECUTED_GTID_SET()Wait until the given
GTIDs have executed
on the replica.

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()Use
WAIT_FOR_EXECUTED_GTID_SET().

8.0.18

WEEK() Return the week number

WEEKDAY() Return the weekday
index

WEEKOFYEAR() Return the calendar
week of the date (1-53)

WEIGHT_STRING() Return the weight string
for a string

XOR Logical XOR

YEAR() Return the year

YEARWEEK() Return the year and
week

| Bitwise OR

~ Bitwise inversion

14.2 Loadable Function Reference

The following table lists each function that is loadable at runtime and provides a short description of
each one. For a table listing built-in functions and operators, see Section 14.1, “Built-In Function and
Operator Reference”

For general information about loadable functions, see Section 7.7, “MySQL Server Loadable
Functions”.

2300

Loadable Function Reference

Table 14.2 Loadable Functions

Name Description Introduced Deprecated

asymmetric_decrypt()Decrypt ciphertext using
private or public key

asymmetric_derive()Derive symmetric key
from asymmetric keys

asymmetric_encrypt()Encrypt cleartext using
private or public key

asymmetric_sign() Generate signature from
digest

asymmetric_verify()Verify that signature
matches digest

asynchronous_connection_failover_add_managed()Add a replication source
server in a managed
group to the source list

8.0.23

asynchronous_connection_failover_add_source()Add a replication source
server to the source list

8.0.22

asynchronous_connection_failover_delete_managed()Remove managed
group of replication
source servers from the
source list

8.0.23

asynchronous_connection_failover_delete_source()Remove a replication
source server from the
source list

8.0.22

audit_api_message_emit_udf()Add message event to
audit log

audit_log_encryption_password_get()Fetch audit log
encryption password

audit_log_encryption_password_set()Set audit log encryption
password

audit_log_filter_flush()Flush audit log filter
tables

audit_log_filter_remove_filter()Remove audit log filter

audit_log_filter_remove_user()Unassign audit log filter
from user

audit_log_filter_set_filter()Define audit log filter

audit_log_filter_set_user()Assign audit log filter to
user

audit_log_read() Return audit log records

audit_log_read_bookmark()Bookmark for most
recent audit log event

audit_log_rotate() Rotate audit log file

create_asymmetric_priv_key()Create private key

create_asymmetric_pub_key()Create public key

create_dh_parameters()Generate shared DH
secret

create_digest() Generate digest from
string

2301

Loadable Function Reference

Name Description Introduced Deprecated

firewall_group_delist()Remove account from
firewall group profile

8.0.23

firewall_group_enlist()Add account to firewall
group profile

8.0.23

flush_rewrite_rules()Load rewrite_rules table
into Rewriter cache

gen_blacklist() Perform dictionary term
replacement

8.0.23

gen_blocklist() Perform dictionary term
replacement

8.0.33

gen_blocklist() Perform dictionary term
replacement

8.0.23

gen_dictionary() Return random term
from dictionary

8.0.33

gen_dictionary_drop()Remove dictionary from
registry

gen_dictionary_load()Load dictionary into
registry

gen_dictionary() Return random term
from dictionary

gen_range() Generate random
number within range

8.0.33

gen_range() Generate random
number within range

gen_rnd_canada_sin()Generate random
Canada Social
Insurance Number

8.0.33

gen_rnd_email() Generate random email
address

8.0.33

gen_rnd_email() Generate random email
address

gen_rnd_iban() Generate random
International Bank
Account Number

8.0.33

gen_rnd_pan() Generate random
payment card Primary
Account Number

8.0.33

gen_rnd_pan() Generate random
payment card Primary
Account Number

gen_rnd_ssn() Generate random US
Social Security Number

8.0.33

gen_rnd_ssn() Generate random US
Social Security Number

gen_rnd_uk_nin() Generate random
United Kingdom
National Insurance
Number

8.0.33

2302

Loadable Function Reference

Name Description Introduced Deprecated

gen_rnd_us_phone() Generate random US
phone number

8.0.33

gen_rnd_us_phone() Generate random US
phone number

gen_rnd_uuid() Generate random
Universally Unique
Identifier

8.0.33

group_replication_disable_member_action()Enable a member action
so that the member
does not take it in the
specified situation

group_replication_enable_member_action()Enable a member action
for the member to take
in the specified situation

group_replication_get_communication_protocol()Return Group
Replication protocol
version

group_replication_get_write_concurrency()Return maximum
number of consensus
instances executable in
parallel

group_replication_reset_member_actions()Reset the member
actions configuration to
the default settings

group_replication_set_as_primary()Assign group member
as new primary

group_replication_set_communication_protocol()Set Group Replication
protocol version

group_replication_set_write_concurrency()Set maximum number
of consensus instances
executable in parallel

group_replication_switch_to_multi_primary_mode()Change group from
single-primary to multi-
primary mode

group_replication_switch_to_single_primary_mode()Change group from
multi-primary to single-
primary mode

keyring_aws_rotate_cmk()Rotate AWS customer
master key

keyring_aws_rotate_keys()Rotate keys in
keyring_aws storage file

keyring_hashicorp_update_config()Cause runtime
keyring_hashicorp
reconfiguration

keyring_key_fetch()Fetch keyring key value

keyring_key_generate()Generate random
keyring key

keyring_key_length_fetch()Return keyring key
length

2303

Loadable Function Reference

Name Description Introduced Deprecated

keyring_key_remove()Remove keyring key

keyring_key_store()Store key in keyring

keyring_key_type_fetch()Return keyring key type

load_rewrite_rules()Rewriter plugin helper
routine

mask_canada_sin() Mask Canada Social
Insurance Number

8.0.33

mask_iban() Mask International Bank
Account Number

8.0.33

mask_inner() Mask interior part of
string

8.0.33

mask_inner() Mask interior part of
string

mask_outer() Mask left and right parts
of string

8.0.33

mask_outer() Mask left and right parts
of string

mask_pan() Mask payment card
Primary Account
Number part of string

8.0.33

mask_pan() Mask payment card
Primary Account
Number part of string

mask_pan_relaxed() Mask payment card
Primary Account
Number part of string

8.0.33

mask_pan_relaxed() Mask payment card
Primary Account
Number part of string

mask_ssn() Mask US Social Security
Number

8.0.33

mask_ssn() Mask US Social Security
Number

mask_uk_nin() Mask United Kingdom
National Insurance
Number

8.0.33

mask_uuid() Mask Universally
Unique Identifier part of
string

8.0.33

masking_dictionary_remove()Remove dictionary from
the database table

8.0.33

masking_dictionary_term_add()Add new term to the
dictionary

8.0.33

masking_dictionary_term_remove()Remove existing term
from the dictionary

8.0.33

mysql_firewall_flush_status()Reset firewall status
variables

2304

Type Conversion in Expression Evaluation

Name Description Introduced Deprecated

mysql_query_attribute_string()Fetch query attribute
value

8.0.23

normalize_statement()Normalize SQL
statement to digest form

read_firewall_group_allowlist()Update firewall group
profile recorded-
statement cache

8.0.23

read_firewall_groups()Update firewall group
profile cache

8.0.23

read_firewall_users()Update firewall account
profile cache

8.0.26

read_firewall_whitelist()Update firewall account
profile recorded-
statement cache

8.0.26

service_get_read_locks()Acquire locking service
shared locks

service_get_write_locks()Acquire locking service
exclusive locks

service_release_locks()Release locking service
locks

set_firewall_group_mode()Establish firewall group
profile operational mode

8.0.23

set_firewall_mode()Establish firewall
account profile
operational mode

8.0.26

version_tokens_delete()Delete tokens from
version tokens list

version_tokens_edit()Modify version tokens
list

version_tokens_lock_exclusive()Acquire exclusive locks
on version tokens

version_tokens_lock_shared()Acquire shared locks on
version tokens

version_tokens_set()Set version tokens list

version_tokens_show()Return version tokens
list

version_tokens_unlock()Release version tokens
locks

14.3 Type Conversion in Expression Evaluation

When an operator is used with operands of different types, type conversion occurs to make the
operands compatible. Some conversions occur implicitly. For example, MySQL automatically converts
strings to numbers as necessary, and vice versa.

mysql> SELECT 1+'1';
 -> 2
mysql> SELECT CONCAT(2,' test');
 -> '2 test'

2305

Type Conversion in Expression Evaluation

It is also possible to convert a number to a string explicitly using the CAST() function. Conversion
occurs implicitly with the CONCAT() function because it expects string arguments.

mysql> SELECT 38.8, CAST(38.8 AS CHAR);
 -> 38.8, '38.8'
mysql> SELECT 38.8, CONCAT(38.8);
 -> 38.8, '38.8'

See later in this section for information about the character set of implicit number-to-string conversions,
and for modified rules that apply to CREATE TABLE ... SELECT statements.

The following rules describe how conversion occurs for comparison operations:

• If one or both arguments are NULL, the result of the comparison is NULL, except for the NULL-safe
<=> equality comparison operator. For NULL <=> NULL, the result is true. No conversion is needed.

• If both arguments in a comparison operation are strings, they are compared as strings.

• If both arguments are integers, they are compared as integers.

• Hexadecimal values are treated as binary strings if not compared to a number.

• If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a constant,
the constant is converted to a timestamp before the comparison is performed. This is done to be
more ODBC-friendly. This is not done for the arguments to IN(). To be safe, always use complete
datetime, date, or time strings when doing comparisons. For example, to achieve best results when
using BETWEEN with date or time values, use CAST() to explicitly convert the values to the desired
data type.

A single-row subquery from a table or tables is not considered a constant. For example, if a subquery
returns an integer to be compared to a DATETIME value, the comparison is done as two integers.
The integer is not converted to a temporal value. To compare the operands as DATETIME values,
use CAST() to explicitly convert the subquery value to DATETIME.

• If one of the arguments is a decimal value, comparison depends on the other argument. The
arguments are compared as decimal values if the other argument is a decimal or integer value, or as
floating-point values if the other argument is a floating-point value.

• In all other cases, the arguments are compared as floating-point (double-precision) numbers. For
example, a comparison of string and numeric operands takes place as a comparison of floating-point
numbers.

For information about conversion of values from one temporal type to another, see Section 13.2.8,
“Conversion Between Date and Time Types”.

Comparison of JSON values takes place at two levels. The first level of comparison is based on the
JSON types of the compared values. If the types differ, the comparison result is determined solely
by which type has higher precedence. If the two values have the same JSON type, a second level
of comparison occurs using type-specific rules. For comparison of JSON and non-JSON values, the
non-JSON value is converted to JSON and the values compared as JSON values. For details, see
Comparison and Ordering of JSON Values.

The following examples illustrate conversion of strings to numbers for comparison operations:

mysql> SELECT 1 > '6x';
 -> 0
mysql> SELECT 7 > '6x';
 -> 1
mysql> SELECT 0 > 'x6';
 -> 0
mysql> SELECT 0 = 'x6';
 -> 1

2306

Type Conversion in Expression Evaluation

For comparisons of a string column with a number, MySQL cannot use an index on the column to
look up the value quickly. If str_col is an indexed string column, the index cannot be used when
performing the lookup in the following statement:

SELECT * FROM tbl_name WHERE str_col=1;

The reason for this is that there are many different strings that may convert to the value 1, such as
'1', ' 1', or '1a'.

Another issue can arise when comparing a string column with integer 0. Consider table t1 created and
populated as shown here:

mysql> CREATE TABLE t1 (
 -> c1 INT NOT NULL AUTO_INCREMENT,
 -> c2 INT DEFAULT NULL,
 -> c3 VARCHAR(25) DEFAULT NULL,
 -> PRIMARY KEY (c1)
 ->);
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO t1 VALUES ROW(1, 52, 'grape'), ROW(2, 139, 'apple'),
 -> ROW(3, 37, 'peach'), ROW(4, 221, 'watermelon'),
 -> ROW(5, 83, 'pear');
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0

Observe the result when selecting from this table and comparing c3, which is a VARCHAR column, with
integer 0:

mysql> SELECT * FROM t1 WHERE c3 = 0;
+----+------+------------+
| c1 | c2 | c3 |
+----+------+------------+
1	52	grape
2	139	apple
3	37	peach
4	221	watermelon
5	83	pear
+----+------+------------+
5 rows in set, 5 warnings (0.00 sec)

This occurs even when using strict SQL mode. To prevent this from happening, quote the value, as
shown here:

mysql> SELECT * FROM t1 WHERE c3 = '0';
Empty set (0.00 sec)

This does not occur when SELECT is part of a data definition statement such as CREATE TABLE ...
SELECT; in strict mode, the statement fails due to the invalid comparison:

mysql> CREATE TABLE t2 SELECT * FROM t1 WHERE c3 = 0;
ERROR 1292 (22007): Truncated incorrect DOUBLE value: 'grape'

When the 0 is quoted, the statement succeeds, but the table created contains no rows because there
were none matching '0', as shown here:

mysql> CREATE TABLE t2 SELECT * FROM t1 WHERE c3 = '0';
Query OK, 0 rows affected (0.03 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

This is a known issue, which is due to the fact that strict mode is not applied when processing SELECT.
See also Strict SQL Mode.

Comparisons between floating-point numbers and large integer values are approximate because the
integer is converted to double-precision floating point before comparison, which is not capable of

2307

Type Conversion in Expression Evaluation

representing all 64-bit integers exactly. For example, the integer value 253 + 1 is not representable as a
float, and is rounded to 253 or 253 + 2 before a float comparison, depending on the platform.

To illustrate, only the first of the following comparisons compares equal values, but both comparisons
return true (1):

mysql> SELECT '9223372036854775807' = 9223372036854775807;
 -> 1
mysql> SELECT '9223372036854775807' = 9223372036854775806;
 -> 1

When conversions from string to floating-point and from integer to floating-point occur, they do not
necessarily occur the same way. The integer may be converted to floating-point by the CPU, whereas
the string is converted digit by digit in an operation that involves floating-point multiplications. Also,
results can be affected by factors such as computer architecture or the compiler version or optimization
level. One way to avoid such problems is to use CAST() so that a value is not converted implicitly to a
float-point number:

mysql> SELECT CAST('9223372036854775807' AS UNSIGNED) = 9223372036854775806;
 -> 0

For more information about floating-point comparisons, see Section B.3.4.8, “Problems with Floating-
Point Values”.

The server includes dtoa, a conversion library that provides the basis for improved conversion
between string or DECIMAL values and approximate-value (FLOAT/DOUBLE) numbers:

• Consistent conversion results across platforms, which eliminates, for example, Unix versus Windows
conversion differences.

• Accurate representation of values in cases where results previously did not provide sufficient
precision, such as for values close to IEEE limits.

• Conversion of numbers to string format with the best possible precision. The precision of dtoa is
always the same or better than that of the standard C library functions.

Because the conversions produced by this library differ in some cases from non-dtoa results,
the potential exists for incompatibilities in applications that rely on previous results. For example,
applications that depend on a specific exact result from previous conversions might need adjustment to
accommodate additional precision.

The dtoa library provides conversions with the following properties. D represents a value with a
DECIMAL or string representation, and F represents a floating-point number in native binary (IEEE)
format.

• F -> D conversion is done with the best possible precision, returning D as the shortest string that
yields F when read back in and rounded to the nearest value in native binary format as specified by
IEEE.

• D -> F conversion is done such that F is the nearest native binary number to the input decimal string
D.

These properties imply that F -> D -> F conversions are lossless unless F is -inf, +inf, or NaN. The
latter values are not supported because the SQL standard defines them as invalid values for FLOAT or
DOUBLE.

For D -> F -> D conversions, a sufficient condition for losslessness is that D uses 15 or fewer digits of
precision, is not a denormal value, -inf, +inf, or NaN. In some cases, the conversion is lossless even
if D has more than 15 digits of precision, but this is not always the case.

Implicit conversion of a numeric or temporal value to string produces a value that has a character
set and collation determined by the character_set_connection and collation_connection
system variables. (These variables commonly are set with SET NAMES. For information about
connection character sets, see Section 12.4, “Connection Character Sets and Collations”.)

2308

Operators

This means that such a conversion results in a character (nonbinary) string (a CHAR, VARCHAR, or
LONGTEXT value), except in the case that the connection character set is set to binary. In that case,
the conversion result is a binary string (a BINARY, VARBINARY, or LONGBLOB value).

For integer expressions, the preceding remarks about expression evaluation apply somewhat
differently for expression assignment; for example, in a statement such as this:

CREATE TABLE t SELECT integer_expr;

In this case, the table in the column resulting from the expression has type INT or BIGINT depending
on the length of the integer expression. If the maximum length of the expression does not fit in an INT,
BIGINT is used instead. The length is taken from the max_length value of the SELECT result set
metadata (see C API Basic Data Structures). This means that you can force a BIGINT rather than INT
by use of a sufficiently long expression:

CREATE TABLE t SELECT 000000000000000000000;

14.4 Operators
Table 14.3 Operators

Name Description Introduced Deprecated

& Bitwise AND

> Greater than operator

>> Right shift

>= Greater than or equal
operator

< Less than operator

<>, != Not equal operator

<< Left shift

<= Less than or equal
operator

<=> NULL-safe equal to
operator

%, MOD Modulo operator

* Multiplication operator

+ Addition operator

- Minus operator

- Change the sign of the
argument

-> Return value from JSON
column after evaluating
path; equivalent to
JSON_EXTRACT().

->> Return value from JSON
column after evaluating
path and unquoting the
result; equivalent to
JSON_UNQUOTE(JSON_EXTRACT()).

/ Division operator

:= Assign a value

= Assign a value (as part
of a SET statement,

2309

https://dev.mysql.com/doc/c-api/8.0/en/c-api-data-structures.html

Operators

Name Description Introduced Deprecated
or as part of the SET
clause in an UPDATE
statement)

= Equal operator

^ Bitwise XOR

AND, && Logical AND

BETWEEN ...
AND ...

Whether a value is
within a range of values

BINARY Cast a string to a binary
string

8.0.27

CASE Case operator

DIV Integer division

EXISTS() Whether the result of a
query contains any rows

IN() Whether a value is
within a set of values

IS Test a value against a
boolean

IS NOT Test a value against a
boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

LIKE Simple pattern matching

MEMBER OF() Returns true (1) if first
operand matches any
element of JSON array
passed as second
operand, otherwise
returns false (0)

8.0.17

NOT, ! Negates value

NOT BETWEEN ...
AND ...

Whether a value is not
within a range of values

NOT EXISTS() Whether the result of a
query contains no rows

NOT IN() Whether a value is not
within a set of values

NOT LIKE Negation of simple
pattern matching

NOT REGEXP Negation of REGEXP

OR, || Logical OR

REGEXP Whether string matches
regular expression

RLIKE Whether string matches
regular expression

SOUNDS LIKE Compare sounds

XOR Logical XOR

2310

Operator Precedence

Name Description Introduced Deprecated

| Bitwise OR

~ Bitwise inversion

14.4.1 Operator Precedence

Operator precedences are shown in the following list, from highest precedence to the lowest. Operators
that are shown together on a line have the same precedence.

INTERVAL
BINARY, COLLATE
!
- (unary minus), ~ (unary bit inversion)
^
*, /, DIV, %, MOD
-, +
<<, >>
&
|
= (comparison), <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, IN, MEMBER OF
BETWEEN, CASE, WHEN, THEN, ELSE
NOT
AND, &&
XOR
OR, ||
= (assignment), :=

The precedence of = depends on whether it is used as a comparison operator (=) or as an assignment
operator (=). When used as a comparison operator, it has the same precedence as <=>, >=, >, <=,
<, <>, !=, IS, LIKE, REGEXP, and IN(). When used as an assignment operator, it has the same
precedence as :=. Section 15.7.6.1, “SET Syntax for Variable Assignment”, and Section 11.4, “User-
Defined Variables”, explain how MySQL determines which interpretation of = should apply.

For operators that occur at the same precedence level within an expression, evaluation proceeds left to
right, with the exception that assignments evaluate right to left.

The precedence and meaning of some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT
have the same precedence.

See Section 7.1.11, “Server SQL Modes”.

The precedence of operators determines the order of evaluation of terms in an expression. To override
this order and group terms explicitly, use parentheses. For example:

mysql> SELECT 1+2*3;
 -> 7
mysql> SELECT (1+2)*3;
 -> 9

14.4.2 Comparison Functions and Operators

Table 14.4 Comparison Operators

Name Description

> Greater than operator

>= Greater than or equal operator

< Less than operator

2311

Comparison Functions and Operators

Name Description

<>, != Not equal operator

<= Less than or equal operator

<=> NULL-safe equal to operator

= Equal operator

BETWEEN ... AND ... Whether a value is within a range of values

COALESCE() Return the first non-NULL argument

EXISTS() Whether the result of a query contains any rows

GREATEST() Return the largest argument

IN() Whether a value is within a set of values

INTERVAL() Return the index of the argument that is less than
the first argument

IS Test a value against a boolean

IS NOT Test a value against a boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

ISNULL() Test whether the argument is NULL

LEAST() Return the smallest argument

LIKE Simple pattern matching

NOT BETWEEN ... AND ... Whether a value is not within a range of values

NOT EXISTS() Whether the result of a query contains no rows

NOT IN() Whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations work for
both numbers and strings. Strings are automatically converted to numbers and numbers to strings as
necessary.

The following relational comparison operators can be used to compare not only scalar operands, but
row operands:

= > < >= <= <> !=

The descriptions for those operators later in this section detail how they work with row operands. For
additional examples of row comparisons in the context of row subqueries, see Section 15.2.15.5, “Row
Subqueries”.

Some of the functions in this section return values other than 1 (TRUE), 0 (FALSE), or NULL. LEAST()
and GREATEST() are examples of such functions; Section 14.3, “Type Conversion in Expression
Evaluation”, describes the rules for comparison operations performed by these and similar functions for
determining their return values.

Note

In previous versions of MySQL, when evaluating an expression containing
LEAST() or GREATEST(), the server attempted to guess the context in which
the function was used, and to coerce the function's arguments to the data type
of the expression as a whole. For example, the arguments to LEAST("11",
"45", "2") are evaluated and sorted as strings, so that this expression

2312

Comparison Functions and Operators

returns "11". In MySQL 8.0.3 and earlier, when evaluating the expression
LEAST("11", "45", "2") + 0, the server converted the arguments to
integers (anticipating the addition of integer 0 to the result) before sorting them,
thus returning 2.

Beginning with MySQL 8.0.4, the server no longer attempts to infer context in
this fashion. Instead, the function is executed using the arguments as provided,
performing data type conversions to one or more of the arguments if and
only if they are not all of the same type. Any type coercion mandated by an
expression that makes use of the return value is now performed following
function execution. This means that, in MySQL 8.0.4 and later, LEAST("11",
"45", "2") + 0 evaluates to "11" + 0 and thus to integer 11. (Bug
#83895, Bug #25123839)

To convert a value to a specific type for comparison purposes, you can use the CAST() function.
String values can be converted to a different character set using CONVERT(). See Section 14.10, “Cast
Functions and Operators”.

By default, string comparisons are not case-sensitive and use the current character set. The default is
utf8mb4.

• =

Equal:

mysql> SELECT 1 = 0;
 -> 0
mysql> SELECT '0' = 0;
 -> 1
mysql> SELECT '0.0' = 0;
 -> 1
mysql> SELECT '0.01' = 0;
 -> 0
mysql> SELECT '.01' = 0.01;
 -> 1

For row comparisons, (a, b) = (x, y) is equivalent to:

(a = x) AND (b = y)

• <=>

NULL-safe equal. This operator performs an equality comparison like the = operator, but returns 1
rather than NULL if both operands are NULL, and 0 rather than NULL if one operand is NULL.

The <=> operator is equivalent to the standard SQL IS NOT DISTINCT FROM operator.

mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
 -> 1, 1, 0
mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;
 -> 1, NULL, NULL

For row comparisons, (a, b) <=> (x, y) is equivalent to:

(a <=> x) AND (b <=> y)

• <>, !=

Not equal:

mysql> SELECT '.01' <> '0.01';
 -> 1
mysql> SELECT .01 <> '0.01';
 -> 0
mysql> SELECT 'zapp' <> 'zappp';

2313

Comparison Functions and Operators

 -> 1

For row comparisons, (a, b) <> (x, y) and (a, b) != (x, y) are equivalent to:

(a <> x) OR (b <> y)

• <=

Less than or equal:

mysql> SELECT 0.1 <= 2;
 -> 1

For row comparisons, (a, b) <= (x, y) is equivalent to:

(a < x) OR ((a = x) AND (b <= y))

• <

Less than:

mysql> SELECT 2 < 2;
 -> 0

For row comparisons, (a, b) < (x, y) is equivalent to:

(a < x) OR ((a = x) AND (b < y))

• >=

Greater than or equal:

mysql> SELECT 2 >= 2;
 -> 1

For row comparisons, (a, b) >= (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b >= y))

• >

Greater than:

mysql> SELECT 2 > 2;
 -> 0

For row comparisons, (a, b) > (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b > y))

• expr BETWEEN min AND max

If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN returns 1,
otherwise it returns 0. This is equivalent to the expression (min <= expr AND expr <= max) if
all the arguments are of the same type. Otherwise type conversion takes place according to the rules
described in Section 14.3, “Type Conversion in Expression Evaluation”, but applied to all the three
arguments.

mysql> SELECT 2 BETWEEN 1 AND 3, 2 BETWEEN 3 and 1;
 -> 1, 0
mysql> SELECT 1 BETWEEN 2 AND 3;
 -> 0
mysql> SELECT 'b' BETWEEN 'a' AND 'c';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND '3';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND 'x-3';

2314

Comparison Functions and Operators

 -> 0

For best results when using BETWEEN with date or time values, use CAST() to explicitly convert
the values to the desired data type. Examples: If you compare a DATETIME to two DATE values,
convert the DATE values to DATETIME values. If you use a string constant such as '2001-1-1' in a
comparison to a DATE, cast the string to a DATE.

• expr NOT BETWEEN min AND max

This is the same as NOT (expr BETWEEN min AND max).

• COALESCE(value,...)

Returns the first non-NULL value in the list, or NULL if there are no non-NULL values.

The return type of COALESCE() is the aggregated type of the argument types.

mysql> SELECT COALESCE(NULL,1);
 -> 1
mysql> SELECT COALESCE(NULL,NULL,NULL);
 -> NULL

• EXISTS(query)

Whether the result of a query contains any rows.

CREATE TABLE t (col VARCHAR(3));
INSERT INTO t VALUES ('aaa', 'bbb', 'ccc', 'eee');

SELECT EXISTS (SELECT * FROM t WHERE col LIKE 'c%');
 -> 1

SELECT EXISTS (SELECT * FROM t WHERE col LIKE 'd%');
 -> 0

• NOT EXISTS(query)

Whether the result of a query contains no rows:

SELECT NOT EXISTS (SELECT * FROM t WHERE col LIKE 'c%');
 -> 0

SELECT NOT EXISTS (SELECT * FROM t WHERE col LIKE 'd%');
 -> 1

• GREATEST(value1,value2,...)

With two or more arguments, returns the largest (maximum-valued) argument. The arguments are
compared using the same rules as for LEAST().

mysql> SELECT GREATEST(2,0);
 -> 2
mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
 -> 767.0
mysql> SELECT GREATEST('B','A','C');
 -> 'C'

GREATEST() returns NULL if any argument is NULL.

• expr IN (value,...)

Returns 1 (true) if expr is equal to any of the values in the IN() list, else returns 0 (false).

Type conversion takes place according to the rules described in Section 14.3, “Type Conversion in
Expression Evaluation”, applied to all the arguments. If no type conversion is needed for the values
in the IN() list, they are all non-JSON constants of the same type, and expr can be compared to
each of them as a value of the same type (possibly after type conversion), an optimization takes

2315

Comparison Functions and Operators

place. The values the list are sorted and the search for expr is done using a binary search, which
makes the IN() operation very quick.

mysql> SELECT 2 IN (0,3,5,7);
 -> 0
mysql> SELECT 'wefwf' IN ('wee','wefwf','weg');
 -> 1

IN() can be used to compare row constructors:

mysql> SELECT (3,4) IN ((1,2), (3,4));
 -> 1
mysql> SELECT (3,4) IN ((1,2), (3,5));
 -> 0

You should never mix quoted and unquoted values in an IN() list because the comparison rules
for quoted values (such as strings) and unquoted values (such as numbers) differ. Mixing types may
therefore lead to inconsistent results. For example, do not write an IN() expression like this:

SELECT val1 FROM tbl1 WHERE val1 IN (1,2,'a');

Instead, write it like this:

SELECT val1 FROM tbl1 WHERE val1 IN ('1','2','a');

Implicit type conversion may produce nonintuitive results:

mysql> SELECT 'a' IN (0), 0 IN ('b');
 -> 1, 1

In both cases, the comparison values are converted to floating-point values, yielding 0.0 in each
case, and a comparison result of 1 (true).

The number of values in the IN() list is only limited by the max_allowed_packet value.

To comply with the SQL standard, IN() returns NULL not only if the expression on the left hand side
is NULL, but also if no match is found in the list and one of the expressions in the list is NULL.

IN() syntax can also be used to write certain types of subqueries. See Section 15.2.15.3,
“Subqueries with ANY, IN, or SOME”.

• expr NOT IN (value,...)

This is the same as NOT (expr IN (value,...)).

• INTERVAL(N,N1,N2,N3,...)

Returns 0 if N ≤ N1, 1 if N ≤ N2 and so on, or -1 if N is NULL. All arguments are treated as integers. It
is required that N1 ≤ N2 ≤ N3 ≤ ... ≤ Nn for this function to work correctly. This is because a binary
search is used (very fast).

mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);
 -> 3
mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
 -> 2
mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
 -> 0

• IS boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;
 -> 1, 1, 1

• IS NOT boolean_value

2316

Comparison Functions and Operators

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;
 -> 1, 1, 0

• IS NULL

Tests whether a value is NULL.

mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
 -> 0, 0, 1

To work well with ODBC programs, MySQL supports the following extra features when using IS
NULL:

• If sql_auto_is_null variable is set to 1, then after a statement that successfully inserts an
automatically generated AUTO_INCREMENT value, you can find that value by issuing a statement
of the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the
LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert,
see Section 14.15, “Information Functions”. If no AUTO_INCREMENT value was successfully
inserted, the SELECT statement returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison can be
disabled by setting sql_auto_is_null = 0. See Section 7.1.8, “Server System Variables”.

The default value of sql_auto_is_null is 0.

• For DATE and DATETIME columns that are declared as NOT NULL, you can find the special date
'0000-00-00' by using a statement like this:

SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work because ODBC does not support a
'0000-00-00' date value.

See Obtaining Auto-Increment Values, and the description for the FLAG_AUTO_IS_NULL option at
Connector/ODBC Connection Parameters.

• IS NOT NULL

Tests whether a value is not NULL.

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;
 -> 1, 1, 0

• ISNULL(expr)

If expr is NULL, ISNULL() returns 1, otherwise it returns 0.

mysql> SELECT ISNULL(1+1);
 -> 0
mysql> SELECT ISNULL(1/0);
 -> 1

ISNULL() can be used instead of = to test whether a value is NULL. (Comparing a value to NULL
using = always yields NULL.)

The ISNULL() function shares some special behaviors with the IS NULL comparison operator. See
the description of IS NULL.

2317

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html
https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration-connection-parameters.html

Logical Operators

• LEAST(value1,value2,...)

With two or more arguments, returns the smallest (minimum-valued) argument. The arguments are
compared using the following rules:

• If any argument is NULL, the result is NULL. No comparison is needed.

• If all arguments are integer-valued, they are compared as integers.

• If at least one argument is double precision, they are compared as double-precision values.
Otherwise, if at least one argument is a DECIMAL value, they are compared as DECIMAL values.

• If the arguments comprise a mix of numbers and strings, they are compared as strings.

• If any argument is a nonbinary (character) string, the arguments are compared as nonbinary
strings.

• In all other cases, the arguments are compared as binary strings.

The return type of LEAST() is the aggregated type of the comparison argument types.

mysql> SELECT LEAST(2,0);
 -> 0
mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
 -> 3.0
mysql> SELECT LEAST('B','A','C');
 -> 'A'

14.4.3 Logical Operators
Table 14.5 Logical Operators

Name Description

AND, && Logical AND

NOT, ! Negates value

OR, || Logical OR

XOR Logical XOR

In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In MySQL, these are
implemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is common to different SQL database
servers, although some servers may return any nonzero value for TRUE.

MySQL evaluates any nonzero, non-NULL value to TRUE. For example, the following statements all
assess to TRUE:

mysql> SELECT 10 IS TRUE;
-> 1
mysql> SELECT -10 IS TRUE;
-> 1
mysql> SELECT 'string' IS NOT NULL;
-> 1

• NOT, !

Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is nonzero, and NOT NULL
returns NULL.

mysql> SELECT NOT 10;
 -> 0
mysql> SELECT NOT 0;
 -> 1
mysql> SELECT NOT NULL;
 -> NULL
mysql> SELECT ! (1+1);

2318

Logical Operators

 -> 0
mysql> SELECT ! 1+1;
 -> 1

The last example produces 1 because the expression evaluates the same way as (!1)+1.

The !, operator is a nonstandard MySQL extension. As of MySQL 8.0.17, this operator is
deprecated; expect it to be removed in a future version of MySQL. Applications should be adjusted to
use the standard SQL NOT operator.

• AND, &&

Logical AND. Evaluates to 1 if all operands are nonzero and not NULL, to 0 if one or more operands
are 0, otherwise NULL is returned.

mysql> SELECT 1 AND 1;
 -> 1
mysql> SELECT 1 AND 0;
 -> 0
mysql> SELECT 1 AND NULL;
 -> NULL
mysql> SELECT 0 AND NULL;
 -> 0
mysql> SELECT NULL AND 0;
 -> 0

The &&, operator is a nonstandard MySQL extension. As of MySQL 8.0.17, this operator is
deprecated; expect support for it to be removed in a future version of MySQL. Applications should be
adjusted to use the standard SQL AND operator.

• OR, ||

Logical OR. When both operands are non-NULL, the result is 1 if any operand is nonzero, and 0
otherwise. With a NULL operand, the result is 1 if the other operand is nonzero, and NULL otherwise.
If both operands are NULL, the result is NULL.

mysql> SELECT 1 OR 1;
 -> 1
mysql> SELECT 1 OR 0;
 -> 1
mysql> SELECT 0 OR 0;
 -> 0
mysql> SELECT 0 OR NULL;
 -> NULL
mysql> SELECT 1 OR NULL;
 -> 1

Note

If the PIPES_AS_CONCAT SQL mode is enabled, || signifies the SQL-
standard string concatenation operator (like CONCAT()).

The ||, operator is a nonstandard MySQL extension. As of MySQL 8.0.17, this operator is
deprecated; expect support for it to be removed in a future version of MySQL. Applications should
be adjusted to use the standard SQL OR operator. Exception: Deprecation does not apply if
PIPES_AS_CONCAT is enabled because, in that case, || signifies string concatenation.

• XOR

Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1 if an
odd number of operands is nonzero, otherwise 0 is returned.

mysql> SELECT 1 XOR 1;
 -> 0
mysql> SELECT 1 XOR 0;
 -> 1

2319

Assignment Operators

mysql> SELECT 1 XOR NULL;
 -> NULL
mysql> SELECT 1 XOR 1 XOR 1;
 -> 1

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).

14.4.4 Assignment Operators

Table 14.6 Assignment Operators

Name Description

:= Assign a value

= Assign a value (as part of a SET statement, or as
part of the SET clause in an UPDATE statement)

• :=

Assignment operator. Causes the user variable on the left hand side of the operator to take on the
value to its right. The value on the right hand side may be a literal value, another variable storing a
value, or any legal expression that yields a scalar value, including the result of a query (provided that
this value is a scalar value). You can perform multiple assignments in the same SET statement. You
can perform multiple assignments in the same statement.

Unlike =, the := operator is never interpreted as a comparison operator. This means you can use :=
in any valid SQL statement (not just in SET statements) to assign a value to a variable.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

mysql> SELECT @var1:=COUNT(*) FROM t1;
 -> 4
mysql> SELECT @var1;
 -> 4

You can make value assignments using := in other statements besides SELECT, such as UPDATE,
as shown here:

mysql> SELECT @var1;
 -> 4
mysql> SELECT * FROM t1;
 -> 1, 3, 5, 7

mysql> UPDATE t1 SET c1 = 2 WHERE c1 = @var1:= 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT @var1;
 -> 1
mysql> SELECT * FROM t1;
 -> 2, 3, 5, 7

While it is also possible both to set and to read the value of the same variable in a single SQL
statement using the := operator, this is not recommended. Section 11.4, “User-Defined Variables”,
explains why you should avoid doing this.

• =

2320

Flow Control Functions

This operator is used to perform value assignments in two cases, described in the next two
paragraphs.

Within a SET statement, = is treated as an assignment operator that causes the user variable on the
left hand side of the operator to take on the value to its right. (In other words, when used in a SET
statement, = is treated identically to :=.) The value on the right hand side may be a literal value,
another variable storing a value, or any legal expression that yields a scalar value, including the
result of a query (provided that this value is a scalar value). You can perform multiple assignments in
the same SET statement.

In the SET clause of an UPDATE statement, = also acts as an assignment operator; in this case,
however, it causes the column named on the left hand side of the operator to assume the value
given to the right, provided any WHERE conditions that are part of the UPDATE are met. You can make
multiple assignments in the same SET clause of an UPDATE statement.

In any other context, = is treated as a comparison operator.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

For more information, see Section 15.7.6.1, “SET Syntax for Variable Assignment”, Section 15.2.17,
“UPDATE Statement”, and Section 15.2.15, “Subqueries”.

14.5 Flow Control Functions

Table 14.7 Flow Control Operators

Name Description

CASE Case operator

IF() If/else construct

IFNULL() Null if/else construct

NULLIF() Return NULL if expr1 = expr2

• CASE value WHEN compare_value THEN result [WHEN compare_value THEN result
...] [ELSE result] END

CASE WHEN condition THEN result [WHEN condition THEN result ...] [ELSE
result] END

The first CASE syntax returns the result for the first value=compare_value comparison that
is true. The second syntax returns the result for the first condition that is true. If no comparison or
condition is true, the result after ELSE is returned, or NULL if there is no ELSE part.

Note

The syntax of the CASE operator described here differs slightly from that of
the SQL CASE statement described in Section 15.6.5.1, “CASE Statement”,
for use inside stored programs. The CASE statement cannot have an ELSE
NULL clause, and it is terminated with END CASE instead of END.

The return type of a CASE expression result is the aggregated type of all result values:

2321

Flow Control Functions

• If all types are numeric, the aggregated type is also numeric:

• If at least one argument is double precision, the result is double precision.

• Otherwise, if at least one argument is DECIMAL, the result is DECIMAL.

• Otherwise, the result is an integer type (with one exception):

• If all integer types are all signed or all unsigned, the result is the same sign and the precision
is the highest of all specified integer types (that is, TINYINT, SMALLINT, MEDIUMINT, INT, or
BIGINT).

• If there is a combination of signed and unsigned integer types, the result is signed and the
precision may be higher. For example, if the types are signed INT and unsigned INT, the
result is signed BIGINT.

• The exception is unsigned BIGINT combined with any signed integer type. The result is
DECIMAL with sufficient precision and scale 0.

• If all types are BIT, the result is BIT. Otherwise, BIT arguments are treated similar to BIGINT.

• If all types are YEAR, the result is YEAR. Otherwise, YEAR arguments are treated similar to INT.

• If all types are character string (CHAR or VARCHAR), the result is VARCHAR with maximum length
determined by the longest character length of the operands.

• If all types are character or binary string, the result is VARBINARY.

• SET and ENUM are treated similar to VARCHAR; the result is VARCHAR.

• If all types are JSON, the result is JSON.

• If all types are temporal, the result is temporal:

• If all temporal types are DATE, TIME, or TIMESTAMP, the result is DATE, TIME, or TIMESTAMP,
respectively.

• Otherwise, for a mix of temporal types, the result is DATETIME.

• If all types are GEOMETRY, the result is GEOMETRY.

• If any type is BLOB, the result is BLOB.

• For all other type combinations, the result is VARCHAR.

• Literal NULL operands are ignored for type aggregation.

mysql> SELECT CASE 1 WHEN 1 THEN 'one'
 -> WHEN 2 THEN 'two' ELSE 'more' END;
 -> 'one'
mysql> SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;
 -> 'true'
mysql> SELECT CASE BINARY 'B'
 -> WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;
 -> NULL

2322

Flow Control Functions

• IF(expr1,expr2,expr3)

If expr1 is TRUE (expr1 <> 0 and expr1 IS NOT NULL), IF() returns expr2. Otherwise, it
returns expr3.

Note

There is also an IF statement, which differs from the IF() function described
here. See Section 15.6.5.2, “IF Statement”.

If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the type of
the non-NULL expression.

The default return type of IF() (which may matter when it is stored into a temporary table) is
calculated as follows:

• If expr2 or expr3 produce a string, the result is a string.

If expr2 and expr3 are both strings, the result is case-sensitive if either string is case-sensitive.

• If expr2 or expr3 produce a floating-point value, the result is a floating-point value.

• If expr2 or expr3 produce an integer, the result is an integer.

mysql> SELECT IF(1>2,2,3);
 -> 3
mysql> SELECT IF(1<2,'yes','no');
 -> 'yes'
mysql> SELECT IF(STRCMP('test','test1'),'no','yes');
 -> 'no'

• IFNULL(expr1,expr2)

If expr1 is not NULL, IFNULL() returns expr1; otherwise it returns expr2.

mysql> SELECT IFNULL(1,0);
 -> 1
mysql> SELECT IFNULL(NULL,10);
 -> 10
mysql> SELECT IFNULL(1/0,10);
 -> 10
mysql> SELECT IFNULL(1/0,'yes');
 -> 'yes'

The default return type of IFNULL(expr1,expr2) is the more “general” of the two expressions, in
the order STRING, REAL, or INTEGER. Consider the case of a table based on expressions or where
MySQL must internally store a value returned by IFNULL() in a temporary table:

mysql> CREATE TABLE tmp SELECT IFNULL(1,'test') AS test;
mysql> DESCRIBE tmp;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| test | varbinary(4) | NO | | | |
+-------+--------------+------+-----+---------+-------+

In this example, the type of the test column is VARBINARY(4) (a string type).

2323

Numeric Functions and Operators

• NULLIF(expr1,expr2)

Returns NULL if expr1 = expr2 is true, otherwise returns expr1. This is the same as CASE WHEN
expr1 = expr2 THEN NULL ELSE expr1 END.

The return value has the same type as the first argument.

mysql> SELECT NULLIF(1,1);
 -> NULL
mysql> SELECT NULLIF(1,2);
 -> 1

Note

MySQL evaluates expr1 twice if the arguments are not equal.

The handling of system variable values by these functions changed in MySQL 8.0.22. For each of
these functions, if the first argument contains only characters present in the character set and collation
used by the second argument (and it is constant), the latter character set and collation is used to make
the comparison. In MySQL 8.0.22 and later, system variable values are handled as column values of
the same character and collation. Some queries using these functions with system variables that were
previously successful may subsequently be rejected with Illegal mix of collations. In such
cases, you should cast the system variable to the correct character set and collation.

14.6 Numeric Functions and Operators

Table 14.8 Numeric Functions and Operators

Name Description

%, MOD Modulo operator

* Multiplication operator

+ Addition operator

- Minus operator

- Change the sign of the argument

/ Division operator

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL() Return the smallest integer value not less than the
argument

CEILING() Return the smallest integer value not less than the
argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

DIV Integer division

EXP() Raise to the power of

2324

Arithmetic Operators

Name Description

FLOOR() Return the largest integer value not greater than
the argument

LN() Return the natural logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

MOD() Return the remainder

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

14.6.1 Arithmetic Operators

Table 14.9 Arithmetic Operators

Name Description

%, MOD Modulo operator

* Multiplication operator

+ Addition operator

- Minus operator

- Change the sign of the argument

/ Division operator

DIV Integer division

The usual arithmetic operators are available. The result is determined according to the following rules:

• In the case of -, +, and *, the result is calculated with BIGINT (64-bit) precision if both operands are
integers.

• If both operands are integers and any of them are unsigned, the result is an unsigned integer. For
subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is signed even if
any operand is unsigned.

• If any of the operands of a +, -, /, *, % is a real or string value, the precision of the result is the
precision of the operand with the maximum precision.

• In division performed with /, the scale of the result when using two exact-value operands is the scale
of the first operand plus the value of the div_precision_increment system variable (which is
4 by default). For example, the result of the expression 5.05 / 0.014 has a scale of six decimal
places (360.714286).

2325

Arithmetic Operators

These rules are applied for each operation, such that nested calculations imply the precision of each
component. Hence, (14620 / 9432456) / (24250 / 9432456), resolves first to (0.0014) /
(0.0026), with the final result having 8 decimal places (0.60288653).

Because of these rules and the way they are applied, care should be taken to ensure that components
and subcomponents of a calculation use the appropriate level of precision. See Section 14.10, “Cast
Functions and Operators”.

For information about handling of overflow in numeric expression evaluation, see Section 13.1.7, “Out-
of-Range and Overflow Handling”.

Arithmetic operators apply to numbers. For other types of values, alternative operations may be
available. For example, to add date values, use DATE_ADD(); see Section 14.7, “Date and Time
Functions”.

• +

Addition:

mysql> SELECT 3+5;
 -> 8

• -

Subtraction:

mysql> SELECT 3-5;
 -> -2

• -

Unary minus. This operator changes the sign of the operand.

mysql> SELECT - 2;
 -> -2

Note

If this operator is used with a BIGINT, the return value is also a BIGINT. This
means that you should avoid using - on integers that may have the value of
−263.

• *

Multiplication:

mysql> SELECT 3*5;
 -> 15
mysql> SELECT 18014398509481984*18014398509481984.0;
 -> 324518553658426726783156020576256.0
mysql> SELECT 18014398509481984*18014398509481984;
 -> out-of-range error

The last expression produces an error because the result of the integer multiplication exceeds the
64-bit range of BIGINT calculations. (See Section 13.1, “Numeric Data Types”.)

• /

Division:

mysql> SELECT 3/5;
 -> 0.60

Division by zero produces a NULL result:

mysql> SELECT 102/(1-1);

2326

Mathematical Functions

 -> NULL

A division is calculated with BIGINT arithmetic only if performed in a context where its result is
converted to an integer.

• DIV

Integer division. Discards from the division result any fractional part to the right of the decimal point.

If either operand has a noninteger type, the operands are converted to DECIMAL and divided using
DECIMAL arithmetic before converting the result to BIGINT. If the result exceeds BIGINT range, an
error occurs.

mysql> SELECT 5 DIV 2, -5 DIV 2, 5 DIV -2, -5 DIV -2;
 -> 2, -2, -2, 2

• N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M. For more information, see the description
for the MOD() function in Section 14.6.2, “Mathematical Functions”.

14.6.2 Mathematical Functions

Table 14.10 Mathematical Functions

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL() Return the smallest integer value not less than the
argument

CEILING() Return the smallest integer value not less than the
argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than
the argument

LN() Return the natural logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

MOD() Return the remainder

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

2327

Mathematical Functions

Name Description

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

All mathematical functions return NULL in the event of an error.

• ABS(X)

Returns the absolute value of X, or NULL if X is NULL.

The result type is derived from the argument type. An implication of this is that
ABS(-9223372036854775808) produces an error because the result cannot be stored in a signed
BIGINT value.

mysql> SELECT ABS(2);
 -> 2
mysql> SELECT ABS(-32);
 -> 32

This function is safe to use with BIGINT values.

• ACOS(X)

Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not in the range
-1 to 1, or if X is NULL.

mysql> SELECT ACOS(1);
 -> 0
mysql> SELECT ACOS(1.0001);
 -> NULL
mysql> SELECT ACOS(0);
 -> 1.5707963267949

• ASIN(X)

Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range -1
to 1, or if X is NULL.

mysql> SELECT ASIN(0.2);
 -> 0.20135792079033
mysql> SELECT ASIN('foo');

+-------------+
| ASIN('foo') |
+-------------+
| 0 |
+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |
+---------+------+---+

• ATAN(X)

2328

Mathematical Functions

Returns the arc tangent of X, that is, the value whose tangent is X. Returns NULL if X is NULL

mysql> SELECT ATAN(2);
 -> 1.1071487177941
mysql> SELECT ATAN(-2);
 -> -1.1071487177941

• ATAN(Y,X), ATAN2(Y,X)

Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y /
X, except that the signs of both arguments are used to determine the quadrant of the result. Returns
NULL if X or Y is NULL.

mysql> SELECT ATAN(-2,2);
 -> -0.78539816339745
mysql> SELECT ATAN2(PI(),0);
 -> 1.5707963267949

• CEIL(X)

CEIL() is a synonym for CEILING().

• CEILING(X)

Returns the smallest integer value not less than X. Returns NULL if X is NULL.

mysql> SELECT CEILING(1.23);
 -> 2
mysql> SELECT CEILING(-1.23);
 -> -1

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

• CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of the number
N, converted from base from_base to base to_base. Returns NULL if any argument is NULL. The
argument N is interpreted as an integer, but may be specified as an integer or a string. The minimum
base is 2 and the maximum base is 36. If from_base is a negative number, N is regarded as a
signed number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.

CONV() returns NULL if any of its arguments are NULL.

mysql> SELECT CONV('a',16,2);
 -> '1010'
mysql> SELECT CONV('6E',18,8);
 -> '172'
mysql> SELECT CONV(-17,10,-18);
 -> '-H'
mysql> SELECT CONV(10+'10'+'10'+X'0a',10,10);
 -> '40'

• COS(X)

Returns the cosine of X, where X is given in radians. Returns NULL if X is NULL.

mysql> SELECT COS(PI());
 -> -1

• COT(X)

Returns the cotangent of X. Returns NULL if X is NULL.

mysql> SELECT COT(12);
 -> -1.5726734063977

2329

Mathematical Functions

mysql> SELECT COT(0);
 -> out-of-range error

• CRC32(expr)

Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The result is NULL if
the argument is NULL. The argument is expected to be a string and (if possible) is treated as one if it
is not.

mysql> SELECT CRC32('MySQL');
 -> 3259397556
mysql> SELECT CRC32('mysql');
 -> 2501908538

• DEGREES(X)

Returns the argument X, converted from radians to degrees. Returns NULL if X is NULL.

mysql> SELECT DEGREES(PI());
 -> 180
mysql> SELECT DEGREES(PI() / 2);
 -> 90

• EXP(X)

Returns the value of e (the base of natural logarithms) raised to the power of X. The inverse of this
function is LOG() (using a single argument only) or LN().

If X is NULL, this function returns NULL.

mysql> SELECT EXP(2);
 -> 7.3890560989307
mysql> SELECT EXP(-2);
 -> 0.13533528323661
mysql> SELECT EXP(0);
 -> 1

• FLOOR(X)

Returns the largest integer value not greater than X. Returns NULL if X is NULL.

mysql> SELECT FLOOR(1.23), FLOOR(-1.23);
 -> 1, -2

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. For details, see Section 14.8, “String Functions and Operators”.

• HEX(N_or_S)

This function can be used to obtain a hexadecimal representation of a decimal number or a
string; the manner in which it does so varies according to the argument's type. See this function's
description in Section 14.8, “String Functions and Operators”, for details.

• LN(X)

Returns the natural logarithm of X; that is, the base-e logarithm of X. If X is less than or equal to
0.0E0, the function returns NULL and a warning “Invalid argument for logarithm” is reported. Returns
NULL if X is NULL.

mysql> SELECT LN(2);
 -> 0.69314718055995
mysql> SELECT LN(-2);

2330

Mathematical Functions

 -> NULL

This function is synonymous with LOG(X). The inverse of this function is the EXP() function.

• LOG(X), LOG(B,X)

If called with one parameter, this function returns the natural logarithm of X. If X is less than or equal
to 0.0E0, the function returns NULL and a warning “Invalid argument for logarithm” is reported.
Returns NULL if X or B is NULL.

The inverse of this function (when called with a single argument) is the EXP() function.

mysql> SELECT LOG(2);
 -> 0.69314718055995
mysql> SELECT LOG(-2);
 -> NULL

If called with two parameters, this function returns the logarithm of X to the base B. If X is less than or
equal to 0, or if B is less than or equal to 1, then NULL is returned.

mysql> SELECT LOG(2,65536);
 -> 16
mysql> SELECT LOG(10,100);
 -> 2
mysql> SELECT LOG(1,100);
 -> NULL

LOG(B,X) is equivalent to LOG(X) / LOG(B).

• LOG2(X)

Returns the base-2 logarithm of X. If X is less than or equal to 0.0E0, the function returns NULL and a
warning “Invalid argument for logarithm” is reported. Returns NULL if X is NULL.

mysql> SELECT LOG2(65536);
 -> 16
mysql> SELECT LOG2(-100);
 -> NULL

LOG2() is useful for finding out how many bits a number requires for storage. This function is
equivalent to the expression LOG(X) / LOG(2).

• LOG10(X)

Returns the base-10 logarithm of X. If X is less than or equal to 0.0E0, the function returns NULL and
a warning “Invalid argument for logarithm” is reported. Returns NULL if X is NULL.

mysql> SELECT LOG10(2);
 -> 0.30102999566398
mysql> SELECT LOG10(100);
 -> 2
mysql> SELECT LOG10(-100);
 -> NULL

LOG10(X) is equivalent to LOG(10,X).

• MOD(N,M), N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M. Returns NULL if M or N is NULL.

mysql> SELECT MOD(234, 10);
 -> 4
mysql> SELECT 253 % 7;
 -> 1
mysql> SELECT MOD(29,9);
 -> 2
mysql> SELECT 29 MOD 9;

2331

Mathematical Functions

 -> 2

This function is safe to use with BIGINT values.

MOD() also works on values that have a fractional part and returns the exact remainder after
division:

mysql> SELECT MOD(34.5,3);
 -> 1.5

MOD(N,0) returns NULL.

• PI()

Returns the value of π (pi). The default number of decimal places displayed is seven, but MySQL
uses the full double-precision value internally.

Because the return value of this function is a double-precision value, its exact representation may
vary between platforms or implementations. This also applies to any expressions making use of
PI(). See Section 13.1.4, “Floating-Point Types (Approximate Value) - FLOAT, DOUBLE”.

mysql> SELECT PI();
 -> 3.141593
mysql> SELECT PI()+0.000000000000000000;
 -> 3.141592653589793000

• POW(X,Y)

Returns the value of X raised to the power of Y. Returns NULL if X or Y is NULL.

mysql> SELECT POW(2,2);
 -> 4
mysql> SELECT POW(2,-2);
 -> 0.25

• POWER(X,Y)

This is a synonym for POW().

• RADIANS(X)

Returns the argument X, converted from degrees to radians. (Note that π radians equals 180
degrees.) Returns NULL if X is NULL.

mysql> SELECT RADIANS(90);
 -> 1.5707963267949

2332

Mathematical Functions

• RAND([N])

Returns a random floating-point value v in the range 0 <= v < 1.0. To obtain a random integer R in
the range i <= R < j, use the expression FLOOR(i + RAND() * (j − i)). For example, to obtain
a random integer in the range the range 7 <= R < 12, use the following statement:

SELECT FLOOR(7 + (RAND() * 5));

If an integer argument N is specified, it is used as the seed value:

• With a constant initializer argument, the seed is initialized once when the statement is prepared,
prior to execution.

• With a nonconstant initializer argument (such as a column name), the seed is initialized with the
value for each invocation of RAND().

One implication of this behavior is that for equal argument values, RAND(N) returns the same value
each time, and thus produces a repeatable sequence of column values. In the following example, the
sequence of values produced by RAND(3) is the same both places it occurs.

mysql> CREATE TABLE t (i INT);
Query OK, 0 rows affected (0.42 sec)

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
1	0.61914388706828
2	0.93845168309142
3	0.83482678498591
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
1	0.35877890638893
2	0.28941420772058
3	0.37073435016976
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+

2333

Mathematical Functions

3 rows in set (0.01 sec)

RAND() in a WHERE clause is evaluated for every row (when selecting from one table) or combination
of rows (when selecting from a multiple-table join). Thus, for optimizer purposes, RAND() is
not a constant value and cannot be used for index optimizations. For more information, see
Section 10.2.1.20, “Function Call Optimization”.

Use of a column with RAND() values in an ORDER BY or GROUP BY clause may yield unexpected
results because for either clause a RAND() expression can be evaluated multiple times for the same
row, each time returning a different result. If the goal is to retrieve rows in random order, you can use
a statement like this:

SELECT * FROM tbl_name ORDER BY RAND();

To select a random sample from a set of rows, combine ORDER BY RAND() with LIMIT:

SELECT * FROM table1, table2 WHERE a=b AND c<d ORDER BY RAND() LIMIT 1000;

RAND() is not meant to be a perfect random generator. It is a fast way to generate random numbers
on demand that is portable between platforms for the same MySQL version.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

• ROUND(X), ROUND(X,D)

Rounds the argument X to D decimal places. The rounding algorithm depends on the data type of
X. D defaults to 0 if not specified. D can be negative to cause D digits left of the decimal point of the
value X to become zero. The maximum absolute value for D is 30; any digits in excess of 30 (or -30)
are truncated. If X or D is NULL, the function returns NULL.

mysql> SELECT ROUND(-1.23);
 -> -1
mysql> SELECT ROUND(-1.58);
 -> -2
mysql> SELECT ROUND(1.58);
 -> 2
mysql> SELECT ROUND(1.298, 1);
 -> 1.3
mysql> SELECT ROUND(1.298, 0);
 -> 1
mysql> SELECT ROUND(23.298, -1);
 -> 20
mysql> SELECT ROUND(.12345678901234567890123456789012345, 35);
 -> 0.123456789012345678901234567890

The return value has the same type as the first argument (assuming that it is integer, double, or
decimal). This means that for an integer argument, the result is an integer (no decimal places):

mysql> SELECT ROUND(150.000,2), ROUND(150,2);
+------------------+--------------+
| ROUND(150.000,2) | ROUND(150,2) |
+------------------+--------------+
| 150.00 | 150 |
+------------------+--------------+

ROUND() uses the following rules depending on the type of the first argument:

• For exact-value numbers, ROUND() uses the “round half away from zero” or “round toward
nearest” rule: A value with a fractional part of .5 or greater is rounded up to the next integer if
positive or down to the next integer if negative. (In other words, it is rounded away from zero.) A
value with a fractional part less than .5 is rounded down to the next integer if positive or up to the
next integer if negative.

2334

Mathematical Functions

• For approximate-value numbers, the result depends on the C library. On many systems, this
means that ROUND() uses the “round to nearest even” rule: A value with a fractional part exactly
halfway between two integers is rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For more information, see Section 14.24, “Precision Math”.

In MySQL 8.0.21 and later, the data type returned by ROUND() (and TRUNCATE()) is determined
according to the rules listed here:

• When the first argument is of any integer type, the return type is always BIGINT.

• When the first argument is of any floating-point type or of any non-numeric type, the return type is
always DOUBLE.

• When the first argument is a DECIMAL value, the return type is also DECIMAL.

• The type attributes for the return value are also copied from the first argument, except in the case
of DECIMAL, when the second argument is a constant value.

When the desired number of decimal places is less than the scale of the argument, the scale and
the precision of the result are adjusted accordingly.

In addition, for ROUND() (but not for the TRUNCATE() function), the precision is extended by
one place to accommodate rounding that increases the number of significant digits. If the second
argument is negative, the return type is adjusted such that its scale is 0, with a corresponding
precision. For example, ROUND(99.999, 2) returns 100.00—the first argument is DECIMAL(5,
3), and the return type is DECIMAL(5, 2).

If the second argument is negative, the return type has scale 0 and a corresponding precision;
ROUND(99.999, -1) returns 100, which is DECIMAL(3, 0).

• SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or
positive. Returns NULL if X is NULL.

mysql> SELECT SIGN(-32);
 -> -1
mysql> SELECT SIGN(0);
 -> 0
mysql> SELECT SIGN(234);
 -> 1

• SIN(X)

Returns the sine of X, where X is given in radians. Returns NULL if X is NULL.

mysql> SELECT SIN(PI());
 -> 1.2246063538224e-16
mysql> SELECT ROUND(SIN(PI()));
 -> 0

• SQRT(X)

Returns the square root of a nonnegative number X. If X is NULL, the function returns NULL.

2335

Date and Time Functions

mysql> SELECT SQRT(4);
 -> 2
mysql> SELECT SQRT(20);
 -> 4.4721359549996
mysql> SELECT SQRT(-16);
 -> NULL

• TAN(X)

Returns the tangent of X, where X is given in radians. Returns NULL if X is NULL.

mysql> SELECT TAN(PI());
 -> -1.2246063538224e-16
mysql> SELECT TAN(PI()+1);
 -> 1.5574077246549

• TRUNCATE(X,D)

Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or
fractional part. D can be negative to cause D digits left of the decimal point of the value X to become
zero. If X or D is NULL, the function returns NULL.

mysql> SELECT TRUNCATE(1.223,1);
 -> 1.2
mysql> SELECT TRUNCATE(1.999,1);
 -> 1.9
mysql> SELECT TRUNCATE(1.999,0);
 -> 1
mysql> SELECT TRUNCATE(-1.999,1);
 -> -1.9
mysql> SELECT TRUNCATE(122,-2);
 -> 100
mysql> SELECT TRUNCATE(10.28*100,0);
 -> 1028

All numbers are rounded toward zero.

In MySQL 8.0.21 and later, the data type returned by TRUNCATE() follows the same rules that
determine the return type of the ROUND() function; for details, see the description for ROUND().

14.7 Date and Time Functions
This section describes the functions that can be used to manipulate temporal values. See Section 13.2,
“Date and Time Data Types”, for a description of the range of values each date and time type has and
the valid formats in which values may be specified.

Table 14.11 Date and Time Functions

Name Description

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

CONVERT_TZ() Convert from one time zone to another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(), CURRENT_TIMESTAMP Synonyms for NOW()

CURTIME() Return the current time

DATE() Extract the date part of a date or datetime
expression

DATE_ADD() Add time values (intervals) to a date value

2336

Date and Time Functions

Name Description

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

EXTRACT() Extract part of a date

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format Unix timestamp as a date

GET_FORMAT() Return a date format string

HOUR() Extract the hour

LAST_DAY Return the last day of the month for the argument

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP, LOCALTIMESTAMP() Synonym for NOW()

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create time from hour, minute, second

MICROSECOND() Return the microseconds from argument

MINUTE() Return the minute from the argument

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

NOW() Return the current date and time

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

QUARTER() Return the quarter from a date argument

SEC_TO_TIME() Converts seconds to 'hh:mm:ss' format

SECOND() Return the second (0-59)

STR_TO_DATE() Convert a string to a date

SUBDATE() Synonym for DATE_SUB() when invoked with
three arguments

SUBTIME() Subtract times

SYSDATE() Return the time at which the function executes

TIME() Extract the time portion of the expression passed

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIMEDIFF() Subtract time

TIMESTAMP() With a single argument, this function returns the
date or datetime expression; with two arguments,
the sum of the arguments

TIMESTAMPADD() Add an interval to a datetime expression

2337

Date and Time Functions

Name Description

TIMESTAMPDIFF() Return the difference of two datetime expressions,
using the units specified

TO_DAYS() Return the date argument converted to days

TO_SECONDS() Return the date or datetime argument converted
to seconds since Year 0

UNIX_TIMESTAMP() Return a Unix timestamp

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (1-53)

YEAR() Return the year

YEARWEEK() Return the year and week

Here is an example that uses date functions. The following query selects all rows with a date_col
value from within the last 30 days:

mysql> SELECT something FROM tbl_name
 -> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

The query also selects rows with dates that lie in the future.

Functions that expect date values usually accept datetime values and ignore the time part. Functions
that expect time values usually accept datetime values and ignore the date part.

Functions that return the current date or time each are evaluated only once per query at the start of
query execution. This means that multiple references to a function such as NOW() within a single query
always produce the same result. (For our purposes, a single query also includes a call to a stored
program (stored routine, trigger, or event) and all subprograms called by that program.) This principle
also applies to CURDATE(), CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to
any of their synonyms.

The CURRENT_TIMESTAMP(), CURRENT_TIME(), CURRENT_DATE(), and FROM_UNIXTIME()
functions return values in the current session time zone, which is available as the session value of
the time_zone system variable. In addition, UNIX_TIMESTAMP() assumes that its argument is a
datetime value in the session time zone. See Section 7.1.15, “MySQL Server Time Zone Support”.

Some date functions can be used with “zero” dates or incomplete dates such as '2001-11-00',
whereas others cannot. Functions that extract parts of dates typically work with incomplete dates and
thus can return 0 when you might otherwise expect a nonzero value. For example:

mysql> SELECT DAYOFMONTH('2001-11-00'), MONTH('2005-00-00');
 -> 0, 0

Other functions expect complete dates and return NULL for incomplete dates. These include functions
that perform date arithmetic or that map parts of dates to names. For example:

mysql> SELECT DATE_ADD('2006-05-00',INTERVAL 1 DAY);
 -> NULL
mysql> SELECT DAYNAME('2006-05-00');
 -> NULL

Several functions are strict when passed a DATE() function value as their argument and
reject incomplete dates with a day part of zero: CONVERT_TZ(), DATE_ADD(), DATE_SUB(),

2338

Date and Time Functions

DAYOFYEAR(), TIMESTAMPDIFF(), TO_DAYS(), TO_SECONDS(), WEEK(), WEEKDAY(),
WEEKOFYEAR(), YEARWEEK().

Fractional seconds for TIME, DATETIME, and TIMESTAMP values are supported, with up to
microsecond precision. Functions that take temporal arguments accept values with fractional seconds.
Return values from temporal functions include fractional seconds as appropriate.

• ADDDATE(date,INTERVAL expr unit), ADDDATE(date,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for
DATE_ADD(). The related function SUBDATE() is a synonym for DATE_SUB(). For information on
the INTERVAL unit argument, see Temporal Intervals.

mysql> SELECT DATE_ADD('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'
mysql> SELECT ADDDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'

When invoked with the days form of the second argument, MySQL treats it as an integer number of
days to be added to expr.

mysql> SELECT ADDDATE('2008-01-02', 31);
 -> '2008-02-02'

This function returns NULL if date or days is NULL.

• ADDTIME(expr1,expr2)

ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression,
and expr2 is a time expression. Returns NULL if expr1or expr2 is NULL.

Beginning with MySQL 8.0.28, the return type of this function and of the SUBTIME() function is
determined as follows:

• If the first argument is a dynamic parameter (such as in a prepared statement), the return type is
TIME.

• Otherwise, the resolved type of the function is derived from the resolved type of the first argument.

mysql> SELECT ADDTIME('2007-12-31 23:59:59.999999', '1 1:1:1.000002');
 -> '2008-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');
 -> '03:00:01.999997'

• CONVERT_TZ(dt,from_tz,to_tz)

CONVERT_TZ() converts a datetime value dt from the time zone given by from_tz to the time
zone given by to_tz and returns the resulting value. Time zones are specified as described
in Section 7.1.15, “MySQL Server Time Zone Support”. This function returns NULL if any of the
arguments are invalid, or if any of them are NULL.

On 32-bit platforms, the supported range of values for this function is the same as for the
TIMESTAMP type (see Section 13.2.1, “Date and Time Data Type Syntax”, for range information).
On 64-bit platforms, beginning with MySQL 8.0.28, the maximum supported value is '3001-01-18
23:59:59.999999' UTC.

Regardless of platform or MySQL version, if the value falls out of the supported range when
converted from from_tz to UTC, no conversion occurs.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
 -> '2004-01-01 13:00:00'
mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00');
 -> '2004-01-01 22:00:00'

2339

Date and Time Functions

Note

To use named time zones such as 'MET' or 'Europe/Amsterdam',
the time zone tables must be properly set up. For instructions, see
Section 7.1.15, “MySQL Server Time Zone Support”.

• CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether
the function is used in string or numeric context.

mysql> SELECT CURDATE();
 -> '2008-06-13'
mysql> SELECT CURDATE() + 0;
 -> 20080613

• CURRENT_DATE, CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().

• CURRENT_TIME, CURRENT_TIME([fsp])

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

• CURRENT_TIMESTAMP, CURRENT_TIMESTAMP([fsp])

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().

• CURTIME([fsp])

Returns the current time as a value in 'hh:mm:ss' or hhmmss format, depending on whether the
function is used in string or numeric context. The value is expressed in the session time zone.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT CURTIME();
+-----------+
| CURTIME() |
+-----------+
| 19:25:37 |
+-----------+

mysql> SELECT CURTIME() + 0;
+---------------+
| CURTIME() + 0 |
+---------------+
| 192537 |
+---------------+

mysql> SELECT CURTIME(3);
+--------------+
| CURTIME(3) |
+--------------+
| 19:25:37.840 |
+--------------+

• DATE(expr)

Extracts the date part of the date or datetime expression expr. Returns NULL if expr is NULL.

mysql> SELECT DATE('2003-12-31 01:02:03');
 -> '2003-12-31'

2340

Date and Time Functions

• DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 − expr2 expressed as a value in days from one date to the other.
expr1 and expr2 are date or date-and-time expressions. Only the date parts of the values are used
in the calculation.

mysql> SELECT DATEDIFF('2007-12-31 23:59:59','2007-12-30');
 -> 1
mysql> SELECT DATEDIFF('2010-11-30 23:59:59','2010-12-31');
 -> -31

This function returns NULL if expr1 or expr2 is NULL.

• DATE_ADD(date,INTERVAL expr unit), DATE_SUB(date,INTERVAL expr unit)

These functions perform date arithmetic. The date argument specifies the starting date or datetime
value. expr is an expression specifying the interval value to be added or subtracted from the starting
date. expr is evaluated as a string; it may start with a - for negative intervals. unit is a keyword
indicating the units in which the expression should be interpreted.

For more information about temporal interval syntax, including a full list of unit specifiers, the
expected form of the expr argument for each unit value, and rules for operand interpretation in
temporal arithmetic, see Temporal Intervals.

The return value depends on the arguments:

• If date is NULL, the function returns NULL.

• DATE if the date argument is a DATE value and your calculations involve only YEAR, MONTH, and
DAY parts (that is, no time parts).

• (MySQL 8.0.28 and later:) TIME if the date argument is a TIME value and the calculations involve
only HOURS, MINUTES, and SECONDS parts (that is, no date parts).

• DATETIME if the first argument is a DATETIME (or TIMESTAMP) value, or if the first argument is a
DATE and the unit value uses HOURS, MINUTES, or SECONDS, or if the first argument is of type
TIME and the unit value uses YEAR, MONTH, or DAY.

• (MySQL 8.0.28 and later:) If the first argument is a dynamic parameter (for example, of a prepared
statement), its resolved type is DATE if the second argument is an interval that contains some
combination of YEAR, MONTH, or DAY values only; otherwise, its type is DATETIME.

• String otherwise (type VARCHAR).

Note

In MySQL 8.0.22 through 8.0.27, when used in prepared statements, these
functions returned DATETIME values regardless of argument types. (Bug
#103781)

To ensure that the result is DATETIME, you can use CAST() to convert the first argument to
DATETIME.

mysql> SELECT DATE_ADD('2018-05-01',INTERVAL 1 DAY);
 -> '2018-05-02'
mysql> SELECT DATE_SUB('2018-05-01',INTERVAL 1 YEAR);
 -> '2017-05-01'
mysql> SELECT DATE_ADD('2020-12-31 23:59:59',
 -> INTERVAL 1 SECOND);
 -> '2021-01-01 00:00:00'
mysql> SELECT DATE_ADD('2018-12-31 23:59:59',
 -> INTERVAL 1 DAY);
 -> '2019-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',

2341

Date and Time Functions

 -> INTERVAL '1:1' MINUTE_SECOND);
 -> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2025-01-01 00:00:00',
 -> INTERVAL '1 1:1:1' DAY_SECOND);
 -> '2024-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
 -> INTERVAL '-1 10' DAY_HOUR);
 -> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
 -> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
 -> INTERVAL '1.999999' SECOND_MICROSECOND);
 -> '1993-01-01 00:00:01.000001'

When adding a MONTH interval to a DATE or DATETIME value, and the resulting date includes a day
that does not exist in the given month, the day is adjusted to the last day of the month, as shown
here:

mysql> SELECT DATE_ADD('2024-03-30', INTERVAL 1 MONTH) AS d1,
 > DATE_ADD('2024-03-31', INTERVAL 1 MONTH) AS d2;
+------------+------------+
| d1 | d2 |
+------------+------------+
| 2024-04-30 | 2024-04-30 |
+------------+------------+
1 row in set (0.00 sec)

• DATE_FORMAT(date,format)

Formats the date value according to the format string. If either argument is NULL, the function
returns NULL.

The specifiers shown in the following table may be used in the format string. The % character
is required before format specifier characters. The specifiers apply to other functions as well:
STR_TO_DATE(), TIME_FORMAT(), UNIX_TIMESTAMP().

Specifier Description

%a Abbreviated weekday name (Sun..Sat)

%b Abbreviated month name (Jan..Dec)

%c Month, numeric (0..12)

%D Day of the month with English suffix (0th, 1st,
2nd, 3rd, …)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%I Hour (01..12)

%i Minutes, numeric (00..59)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

2342

Date and Time Functions

Specifier Description

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of
the week; WEEK() mode 0

%u Week (00..53), where Monday is the first day of
the week; WEEK() mode 1

%V Week (01..53), where Sunday is the first day of
the week; WEEK() mode 2; used with %X

%v Week (01..53), where Monday is the first day of
the week; WEEK() mode 3; used with %x

%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day
of the week, numeric, four digits; used with %V

%x Year for the week, where Monday is the first day
of the week, numeric, four digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric (two digits)

%% A literal % character

%x x, for any “x” not listed above

Ranges for the month and day specifiers begin with zero due to the fact that MySQL permits the
storing of incomplete dates such as '2014-00-00'.

The language used for day and month names and abbreviations is controlled by the value of the
lc_time_names system variable (Section 12.16, “MySQL Server Locale Support”).

For the %U, %u, %V, and %v specifiers, see the description of the WEEK() function for information
about the mode values. The mode affects how week numbering occurs.

DATE_FORMAT() returns a string with a character set and collation given by
character_set_connection and collation_connection so that it can return month and
weekday names containing non-ASCII characters.

mysql> SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');
 -> 'Sunday October 2009'
mysql> SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');
 -> '22:23:00'
mysql> SELECT DATE_FORMAT('1900-10-04 22:23:00',
 -> '%D %y %a %d %m %b %j');
 -> '4th 00 Thu 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
 -> '%H %k %I %r %T %S %w');
 -> '22 22 10 10:23:00 PM 22:23:00 00 6'
mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
 -> '1998 52'
mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
 -> '00'

• DATE_SUB(date,INTERVAL expr unit)

See the description for DATE_ADD().

2343

Date and Time Functions

• DAY(date)

DAY() is a synonym for DAYOFMONTH().

• DAYNAME(date)

Returns the name of the weekday for date. The language used for the name is controlled by the
value of the lc_time_names system variable (see Section 12.16, “MySQL Server Locale Support”).
Returns NULL if date is NULL.

mysql> SELECT DAYNAME('2007-02-03');
 -> 'Saturday'

• DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31, or 0 for dates such as '0000-00-00'
or '2008-00-00' that have a zero day part. Returns NULL if date is NULL.

mysql> SELECT DAYOFMONTH('2007-02-03');
 -> 3

• DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, …, 7 = Saturday). These index
values correspond to the ODBC standard. Returns NULL if date is NULL.

mysql> SELECT DAYOFWEEK('2007-02-03');
 -> 7

• DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366. Returns NULL if date is NULL.

mysql> SELECT DAYOFYEAR('2007-02-03');
 -> 34

• EXTRACT(unit FROM date)

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(),
but extracts parts from the date rather than performing date arithmetic. For information on the unit
argument, see Temporal Intervals. Returns NULL if date is NULL.

mysql> SELECT EXTRACT(YEAR FROM '2019-07-02');
 -> 2019
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2019-07-02 01:02:03');
 -> 201907
mysql> SELECT EXTRACT(DAY_MINUTE FROM '2019-07-02 01:02:03');
 -> 20102
mysql> SELECT EXTRACT(MICROSECOND
 -> FROM '2003-01-02 10:30:00.000123');
 -> 123

• FROM_DAYS(N)

Given a day number N, returns a DATE value. Returns NULL if N is NULL.

mysql> SELECT FROM_DAYS(730669);
 -> '2000-07-03'

Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the
advent of the Gregorian calendar (1582). See Section 13.2.7, “What Calendar Is Used By MySQL?”.

• FROM_UNIXTIME(unix_timestamp[,format])

Returns a representation of unix_timestamp as a datetime or character string value. The value
returned is expressed using the session time zone. (Clients can set the session time zone as

2344

Date and Time Functions

described in Section 7.1.15, “MySQL Server Time Zone Support”.) unix_timestamp is an internal
timestamp value representing seconds since '1970-01-01 00:00:00' UTC, such as produced by
the UNIX_TIMESTAMP() function.

If format is omitted, this function returns a DATETIME value.

If unix_timestamp or format is NULL, this function returns NULL.

If unix_timestamp is an integer, the fractional seconds precision of the DATETIME is zero. When
unix_timestamp is a decimal value, the fractional seconds precision of the DATETIME is the same
as the precision of the decimal value, up to a maximum of 6. When unix_timestamp is a floating
point number, the fractional seconds precision of the datetime is 6.

On 32-bit platforms, the maximum useful value for unix_timestamp is 2147483647.999999,
which returns '2038-01-19 03:14:07.999999' UTC. On 64-bit platforms running MySQL
8.0.28 or later, the effective maximum is 32536771199.999999, which returns '3001-01-18
23:59:59.999999' UTC. Regardless of platform or version, a greater value for unix_timestamp
than the effective maximum returns 0.

format is used to format the result in the same way as the format string used for the
DATE_FORMAT() function. If format is supplied, the value returned is a VARCHAR.

mysql> SELECT FROM_UNIXTIME(1447430881);
 -> '2015-11-13 10:08:01'
mysql> SELECT FROM_UNIXTIME(1447430881) + 0;
 -> 20151113100801
mysql> SELECT FROM_UNIXTIME(1447430881,
 -> '%Y %D %M %h:%i:%s %x');
 -> '2015 13th November 10:08:01 2015'

Note

If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between
values in a non-UTC time zone and Unix timestamp values, the conversion is
lossy because the mapping is not one-to-one in both directions. For details,
see the description of the UNIX_TIMESTAMP() function.

• GET_FORMAT({DATE|TIME|DATETIME}, {'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL'})

Returns a format string. This function is useful in combination with the DATE_FORMAT() and the
STR_TO_DATE() functions.

If format is NULL, this function returns NULL.

The possible values for the first and second arguments result in several possible format strings (for
the specifiers used, see the table in the DATE_FORMAT() function description). ISO format refers to
ISO 9075, not ISO 8601.

Function Call Result

GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d %H.%i.%s'

2345

Date and Time Functions

Function Call Result

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s %p'

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

GET_FORMAT(TIME,'EUR') '%H.%i.%s'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

TIMESTAMP can also be used as the first argument to GET_FORMAT(), in which case the function
returns the same values as for DATETIME.

mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));
 -> '03.10.2003'
mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
 -> '2003-10-31'

• HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However,
the range of TIME values actually is much larger, so HOUR can return values greater than 23.
Returns NULL if time is NULL.

mysql> SELECT HOUR('10:05:03');
 -> 10
mysql> SELECT HOUR('272:59:59');
 -> 272

• LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month.
Returns NULL if the argument is invalid or NULL.

mysql> SELECT LAST_DAY('2003-02-05');
 -> '2003-02-28'
mysql> SELECT LAST_DAY('2004-02-05');
 -> '2004-02-29'
mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
 -> '2004-01-31'
mysql> SELECT LAST_DAY('2003-03-32');
 -> NULL

• LOCALTIME, LOCALTIME([fsp])

LOCALTIME and LOCALTIME() are synonyms for NOW().

• LOCALTIMESTAMP, LOCALTIMESTAMP([fsp])

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

• MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result
is NULL. The result is also NULL if either argument is NULL.

mysql> SELECT MAKEDATE(2011,31), MAKEDATE(2011,32);
 -> '2011-01-31', '2011-02-01'
mysql> SELECT MAKEDATE(2011,365), MAKEDATE(2014,365);
 -> '2011-12-31', '2014-12-31'
mysql> SELECT MAKEDATE(2011,0);
 -> NULL

2346

Date and Time Functions

• MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute, and second arguments. Returns NULL if
any of its arguments are NULL.

The second argument can have a fractional part.

mysql> SELECT MAKETIME(12,15,30);
 -> '12:15:30'

• MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the range from
0 to 999999. Returns NULL if expr is NULL.

mysql> SELECT MICROSECOND('12:00:00.123456');
 -> 123456
mysql> SELECT MICROSECOND('2019-12-31 23:59:59.000010');
 -> 10

• MINUTE(time)

Returns the minute for time, in the range 0 to 59, or NULL if time is NULL.

mysql> SELECT MINUTE('2008-02-03 10:05:03');
 -> 5

• MONTH(date)

Returns the month for date, in the range 1 to 12 for January to December, or 0 for dates such as
'0000-00-00' or '2008-00-00' that have a zero month part. Returns NULL if date is NULL.

mysql> SELECT MONTH('2008-02-03');
 -> 2

• MONTHNAME(date)

Returns the full name of the month for date. The language used for the name is controlled by the
value of the lc_time_names system variable (Section 12.16, “MySQL Server Locale Support”).
Returns NULL if date is NULL.

mysql> SELECT MONTHNAME('2008-02-03');
 -> 'February'

• NOW([fsp])

Returns the current date and time as a value in 'YYYY-MM-DD hh:mm:ss' or YYYYMMDDhhmmss
format, depending on whether the function is used in string or numeric context. The value is
expressed in the session time zone.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT NOW();
 -> '2007-12-15 23:50:26'
mysql> SELECT NOW() + 0;
 -> 20071215235026.000000

NOW() returns a constant time that indicates the time at which the statement began to execute.
(Within a stored function or trigger, NOW() returns the time at which the function or triggering
statement began to execute.) This differs from the behavior for SYSDATE(), which returns the exact
time at which it executes.

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |

2347

Date and Time Functions

+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by
SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations
of SYSDATE(). Setting the timestamp to a nonzero value causes each subsequent invocation of
NOW() to return that value. Setting the timestamp to zero cancels this effect so that NOW() once
again returns the current date and time.

See the description for SYSDATE() for additional information about the differences between the two
functions.

• PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM.

Note

The period argument P is not a date value.

This function returns NULL if P or N is NULL.

mysql> SELECT PERIOD_ADD(200801,2);
 -> 200803

• PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format YYMM
or YYYYMM. Note that the period arguments P1 and P2 are not date values.

This function returns NULL if P1 or P2 is NULL.

mysql> SELECT PERIOD_DIFF(200802,200703);
 -> 11

• QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4, or NULL if date is NULL.

mysql> SELECT QUARTER('2008-04-01');
 -> 2

• SECOND(time)

Returns the second for time, in the range 0 to 59, or NULL if time is NULL.

mysql> SELECT SECOND('10:05:03');
 -> 3

2348

Date and Time Functions

• SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes, and seconds, as a TIME value. The
range of the result is constrained to that of the TIME data type. A warning occurs if the argument
corresponds to a value outside that range.

The function returns NULL if seconds is NULL.

mysql> SELECT SEC_TO_TIME(2378);
 -> '00:39:38'
mysql> SELECT SEC_TO_TIME(2378) + 0;
 -> 3938

• STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string
format. STR_TO_DATE() returns a DATETIME value if the format string contains both date and
time parts, or a DATE or TIME value if the string contains only date or time parts. If str or format
is NULL, the function returns NULL. If the date, time, or datetime value extracted from str cannot be
parsed according to the rules followed by the server, STR_TO_DATE() returns NULL and produces a
warning.

The server scans str attempting to match format to it. The format string can contain literal
characters and format specifiers beginning with %. Literal characters in format must match literally
in str. Format specifiers in format must match a date or time part in str. For the specifiers that
can be used in format, see the DATE_FORMAT() function description.

mysql> SELECT STR_TO_DATE('01,5,2013','%d,%m,%Y');
 -> '2013-05-01'
mysql> SELECT STR_TO_DATE('May 1, 2013','%M %d,%Y');
 -> '2013-05-01'

Scanning starts at the beginning of str and fails if format is found not to match. Extra characters at
the end of str are ignored.

mysql> SELECT STR_TO_DATE('a09:30:17','a%h:%i:%s');
 -> '09:30:17'
mysql> SELECT STR_TO_DATE('a09:30:17','%h:%i:%s');
 -> NULL
mysql> SELECT STR_TO_DATE('09:30:17a','%h:%i:%s');
 -> '09:30:17'

Unspecified date or time parts have a value of 0, so incompletely specified values in str produce a
result with some or all parts set to 0:

mysql> SELECT STR_TO_DATE('abc','abc');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('9','%m');
 -> '0000-09-00'
mysql> SELECT STR_TO_DATE('9','%s');
 -> '00:00:09'

Range checking on the parts of date values is as described in Section 13.2.2, “The DATE,
DATETIME, and TIMESTAMP Types”. This means, for example, that “zero” dates or dates with part
values of 0 are permitted unless the SQL mode is set to disallow such values.

mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
 -> '2004-04-31'

If the NO_ZERO_DATE SQL mode is enabled, zero dates are disallowed. In that case,
STR_TO_DATE() returns NULL and generates a warning:

mysql> SET sql_mode = '';
mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');

2349

Date and Time Functions

+---------------------------------------+
| STR_TO_DATE('00/00/0000', '%m/%d/%Y') |
+---------------------------------------+
| 0000-00-00 |
+---------------------------------------+
mysql> SET sql_mode = 'NO_ZERO_DATE';
mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
+---------------------------------------+
| STR_TO_DATE('00/00/0000', '%m/%d/%Y') |
+---------------------------------------+
| NULL |
+---------------------------------------+
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1411
Message: Incorrect datetime value: '00/00/0000' for function str_to_date

Prior to MySQL 8.0.35, it was possible to pass an invalid date string such as '2021-11-31' to this
function. In MySQL 8.0.35 and later, STR_TO_DATE() performs complete range checking and raises
an error if the date after conversion would be invalid.

Note

You cannot use format "%X%V" to convert a year-week string to a date
because the combination of a year and week does not uniquely identify a year
and month if the week crosses a month boundary. To convert a year-week to
a date, you should also specify the weekday:

mysql> SELECT STR_TO_DATE('200442 Monday', '%X%V %W');
 -> '2004-10-18'

You should also be aware that, for dates and the date portions of datetime values, STR_TO_DATE()
checks (only) the individual year, month, and day of month values for validity. More precisely, this
means that the year is checked to be sure that it is in the range 0-9999 inclusive, the month is
checked to ensure that it is in the range 1-12 inclusive, and the day of month is checked to make
sure that it is in the range 1-31 inclusive, but the server does not check the values in combination.
For example, SELECT STR_TO_DATE('23-2-31', '%Y-%m-%d') returns 2023-02-31.
Enabling or disabling the ALLOW_INVALID_DATES server SQL mode has no effect on this behavior.
See Section 13.2.2, “The DATE, DATETIME, and TIMESTAMP Types”, for more information.

• SUBDATE(date,INTERVAL expr unit), SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym
for DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for
DATE_ADD().

mysql> SELECT DATE_SUB('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'
mysql> SELECT SUBDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'

The second form enables the use of an integer value for days. In such cases, it is interpreted as the
number of days to be subtracted from the date or datetime expression expr.

mysql> SELECT SUBDATE('2008-01-02 12:00:00', 31);
 -> '2007-12-02 12:00:00'

This function returns NULL if any of its arguments are NULL.

2350

Date and Time Functions

• SUBTIME(expr1,expr2)

SUBTIME() returns expr1 − expr2 expressed as a value in the same format as expr1. expr1 is a
time or datetime expression, and expr2 is a time expression.

Resolution of this function's return type is performed as it is for the ADDTIME() function; see the
description of that function for more information.

mysql> SELECT SUBTIME('2007-12-31 23:59:59.999999','1 1:1:1.000002');
 -> '2007-12-30 22:58:58.999997'
mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');
 -> '-00:59:59.999999'

This function returns NULL if expr1 or expr2 is NULL.

• SYSDATE([fsp])

Returns the current date and time as a value in 'YYYY-MM-DD hh:mm:ss' or YYYYMMDDhhmmss
format, depending on whether the function is used in string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

SYSDATE() returns the time at which it executes. This differs from the behavior for NOW(), which
returns a constant time that indicates the time at which the statement began to execute. (Within a
stored function or trigger, NOW() returns the time at which the function or triggering statement began
to execute.)

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by
SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations of
SYSDATE().

Because SYSDATE() can return different values even within the same statement, and is not affected
by SET TIMESTAMP, it is nondeterministic and therefore unsafe for replication if statement-based
binary logging is used. If that is a problem, you can use row-based logging.

Alternatively, you can use the --sysdate-is-now option to cause SYSDATE() to be an alias for
NOW(). This works if the option is used on both the replication source server and the replica.

The nondeterministic nature of SYSDATE() also means that indexes cannot be used for evaluating
expressions that refer to it.

2351

Date and Time Functions

• TIME(expr)

Extracts the time part of the time or datetime expression expr and returns it as a string. Returns
NULL if expr is NULL.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

mysql> SELECT TIME('2003-12-31 01:02:03');
 -> '01:02:03'
mysql> SELECT TIME('2003-12-31 01:02:03.000123');
 -> '01:02:03.000123'

• TIMEDIFF(expr1,expr2)

TIMEDIFF() returns expr1 − expr2 expressed as a time value. expr1 and expr2 are strings
which are converted to TIME or DATETIME expressions; these must be of the same type following
conversion. Returns NULL if expr1 or expr2 is NULL.

The result returned by TIMEDIFF() is limited to the range allowed for TIME values. Alternatively,
you can use either of the functions TIMESTAMPDIFF() and UNIX_TIMESTAMP(), both of which
return integers.

mysql> SELECT TIMEDIFF('2000-01-01 00:00:00',
 -> '2000-01-01 00:00:00.000001');
 -> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('2008-12-31 23:59:59.000001',
 -> '2008-12-30 01:01:01.000002');
 -> '46:58:57.999999'

• TIMESTAMP(expr), TIMESTAMP(expr1,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime
value. With two arguments, it adds the time expression expr2 to the date or datetime expression
expr1 and returns the result as a datetime value. Returns NULL if expr, expr1, or expr2 is NULL.

mysql> SELECT TIMESTAMP('2003-12-31');
 -> '2003-12-31 00:00:00'
mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
 -> '2004-01-01 00:00:00'

• TIMESTAMPADD(unit,interval,datetime_expr)

Adds the integer expression interval to the date or datetime expression datetime_expr. The
unit for interval is given by the unit argument, which should be one of the following values:
MICROSECOND (microseconds), SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

The unit value may be specified using one of keywords as shown, or with a prefix of SQL_TSI_.
For example, DAY and SQL_TSI_DAY both are legal.

This function returns NULL if interval or datetime_expr is NULL.

mysql> SELECT TIMESTAMPADD(MINUTE, 1, '2003-01-02');
 -> '2003-01-02 00:01:00'
mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
 -> '2003-01-09'

When adding a MONTH interval to a DATE or DATETIME value, and the resulting date includes a day
that does not exist in the given month, the day is adjusted to the last day of the month, as shown
here:

mysql> SELECT TIMESTAMPADD(MONTH, 1, DATE '2024-03-30') AS t1,
 > TIMESTAMPADD(MONTH, 1, DATE '2024-03-31') AS t2;
+------------+------------+
| t1 | t2 |
+------------+------------+

2352

Date and Time Functions

| 2024-04-30 | 2024-04-30 |
+------------+------------+
1 row in set (0.00 sec)

• TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Returns datetime_expr2 − datetime_expr1, where datetime_expr1 and datetime_expr2
are date or datetime expressions. One expression may be a date and the other a datetime; a date
value is treated as a datetime having the time part '00:00:00' where necessary. The unit for the
result (an integer) is given by the unit argument. The legal values for unit are the same as those
listed in the description of the TIMESTAMPADD() function.

This function returns NULL if datetime_expr1 or datetime_expr2 is NULL.

mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
 -> 3
mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');
 -> -1
mysql> SELECT TIMESTAMPDIFF(MINUTE,'2003-02-01','2003-05-01 12:05:55');
 -> 128885

Note

The order of the date or datetime arguments for this function is the opposite
of that used with the TIMESTAMP() function when invoked with 2 arguments.

• TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain format specifiers
only for hours, minutes, seconds, and microseconds. Other specifiers produce a NULL or 0.
TIME_FORMAT() returns NULL if time or format is NULL.

If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers
produce a value larger than the usual range of 0..23. The other hour format specifiers produce the
hour value modulo 12.

mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
 -> '100 100 04 04 4'

• TIME_TO_SEC(time)

Returns the time argument, converted to seconds. Returns NULL if time is NULL.

mysql> SELECT TIME_TO_SEC('22:23:00');
 -> 80580
mysql> SELECT TIME_TO_SEC('00:39:38');
 -> 2378

• TO_DAYS(date)

Given a date date, returns a day number (the number of days since year 0). Returns NULL if date
is NULL.

mysql> SELECT TO_DAYS(950501);
 -> 728779
mysql> SELECT TO_DAYS('2007-10-07');
 -> 733321

TO_DAYS() is not intended for use with values that precede the advent of the Gregorian calendar
(1582), because it does not take into account the days that were lost when the calendar was

2353

Date and Time Functions

changed. For dates before 1582 (and possibly a later year in other locales), results from this function
are not reliable. See Section 13.2.7, “What Calendar Is Used By MySQL?”, for details.

Remember that MySQL converts two-digit year values in dates to four-digit form using the rules in
Section 13.2, “Date and Time Data Types”. For example, '2008-10-07' and '08-10-07' are
seen as identical dates:

mysql> SELECT TO_DAYS('2008-10-07'), TO_DAYS('08-10-07');
 -> 733687, 733687

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered
invalid. This means that, for '0000-00-00' and '0000-01-01', TO_DAYS() returns the values
shown here:

mysql> SELECT TO_DAYS('0000-00-00');
+-----------------------+
| to_days('0000-00-00') |
+-----------------------+
| NULL |
+-----------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_DAYS('0000-01-01');
+-----------------------+
| to_days('0000-01-01') |
+-----------------------+
| 1 |
+-----------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

• TO_SECONDS(expr)

Given a date or datetime expr, returns the number of seconds since the year 0. If expr is not a valid
date or datetime value (including NULL), it returns NULL.

mysql> SELECT TO_SECONDS(950501);
 -> 62966505600
mysql> SELECT TO_SECONDS('2009-11-29');
 -> 63426672000
mysql> SELECT TO_SECONDS('2009-11-29 13:43:32');
 -> 63426721412
mysql> SELECT TO_SECONDS(NOW());
 -> 63426721458

Like TO_DAYS(), TO_SECONDS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582), because it does not take into account the days that were lost when the
calendar was changed. For dates before 1582 (and possibly a later year in other locales), results

2354

Date and Time Functions

from this function are not reliable. See Section 13.2.7, “What Calendar Is Used By MySQL?”, for
details.

Like TO_DAYS(), TO_SECONDS(), converts two-digit year values in dates to four-digit form using the
rules in Section 13.2, “Date and Time Data Types”.

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered
invalid. This means that, for '0000-00-00' and '0000-01-01', TO_SECONDS() returns the
values shown here:

mysql> SELECT TO_SECONDS('0000-00-00');
+--------------------------+
| TO_SECONDS('0000-00-00') |
+--------------------------+
| NULL |
+--------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_SECONDS('0000-01-01');
+--------------------------+
| TO_SECONDS('0000-01-01') |
+--------------------------+
| 86400 |
+--------------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.

• UNIX_TIMESTAMP([date])

If UNIX_TIMESTAMP() is called with no date argument, it returns a Unix timestamp representing
seconds since '1970-01-01 00:00:00' UTC.

If UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as
seconds since '1970-01-01 00:00:00' UTC. The server interprets date as a value in the
session time zone and converts it to an internal Unix timestamp value in UTC. (Clients can set
the session time zone as described in Section 7.1.15, “MySQL Server Time Zone Support”.)
The date argument may be a DATE, DATETIME, or TIMESTAMP string, or a number in YYMMDD,
YYMMDDhhmmss, YYYYMMDD, or YYYYMMDDhhmmss format. If the argument includes a time part, it
may optionally include a fractional seconds part.

The return value is an integer if no argument is given or the argument does not include a fractional
seconds part, or DECIMAL if an argument is given that includes a fractional seconds part.

When the date argument is a TIMESTAMP column, UNIX_TIMESTAMP() returns the internal
timestamp value directly, with no implicit “string-to-Unix-timestamp” conversion.

Prior to MySQL 8.0.28, the valid range of argument values is the same as for the TIMESTAMP data
type: '1970-01-01 00:00:01.000000' UTC to '2038-01-19 03:14:07.999999' UTC. This
is also the case in MySQL 8.0.28 and later for 32-bit platforms. For MySQL 8.0.28 and later running
on 64-bit platforms, the valid range of argument values for UNIX_TIMESTAMP() is '1970-01-01

2355

Date and Time Functions

00:00:01.000000' UTC to '3001-01-19 03:14:07.999999' UTC (corresponding to
32536771199.999999 seconds).

Regardless of MySQL version or platform architecture, if you pass an out-of-range date to
UNIX_TIMESTAMP(), it returns 0. If date is NULL, it returns NULL.

mysql> SELECT UNIX_TIMESTAMP();
 -> 1447431666
mysql> SELECT UNIX_TIMESTAMP('2015-11-13 10:20:19');
 -> 1447431619
mysql> SELECT UNIX_TIMESTAMP('2015-11-13 10:20:19.012');
 -> 1447431619.012

If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between values in a non-UTC
time zone and Unix timestamp values, the conversion is lossy because the mapping is not one-to-
one in both directions. For example, due to conventions for local time zone changes such as Daylight
Saving Time (DST), it is possible for UNIX_TIMESTAMP() to map two values that are distinct in a
non-UTC time zone to the same Unix timestamp value. FROM_UNIXTIME() maps that value back
to only one of the original values. Here is an example, using values that are distinct in the MET time
zone:

mysql> SET time_zone = 'MET';
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 03:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 03:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 02:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 02:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT FROM_UNIXTIME(1111885200);
+---------------------------+
| FROM_UNIXTIME(1111885200) |
+---------------------------+
| 2005-03-27 03:00:00 |
+---------------------------+

Note

To use named time zones such as 'MET' or 'Europe/Amsterdam',
the time zone tables must be properly set up. For instructions, see
Section 7.1.15, “MySQL Server Time Zone Support”.

If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast them to signed
integers. See Section 14.10, “Cast Functions and Operators”.

• UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on
whether the function is used in string or numeric context.

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
 -> '2003-08-14', 20030814

2356

Date and Time Functions

• UTC_TIME, UTC_TIME([fsp])

Returns the current UTC time as a value in 'hh:mm:ss' or hhmmss format, depending on whether
the function is used in string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
 -> '18:07:53', 180753.000000

• UTC_TIMESTAMP, UTC_TIMESTAMP([fsp])

Returns the current UTC date and time as a value in 'YYYY-MM-DD hh:mm:ss' or
YYYYMMDDhhmmss format, depending on whether the function is used in string or numeric context.

If the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value
includes a fractional seconds part of that many digits.

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
 -> '2003-08-14 18:08:04', 20030814180804.000000

• WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() enables you
to specify whether the week starts on Sunday or Monday and whether the return value should
be in the range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the value of the
default_week_format system variable is used. See Section 7.1.8, “Server System Variables”.
For a NULL date value, the function returns NULL.

The following table describes how the mode argument works.

Mode First day of week Range Week 1 is the first
week …

0 Sunday 0-53 with a Sunday in this
year

1 Monday 0-53 with 4 or more days this
year

2 Sunday 1-53 with a Sunday in this
year

3 Monday 1-53 with 4 or more days this
year

4 Sunday 0-53 with 4 or more days this
year

5 Monday 0-53 with a Monday in this
year

6 Sunday 1-53 with 4 or more days this
year

7 Monday 1-53 with a Monday in this
year

For mode values with a meaning of “with 4 or more days this year,” weeks are numbered according
to ISO 8601:1988:

• If the week containing January 1 has 4 or more days in the new year, it is week 1.

2357

Date and Time Functions

• Otherwise, it is the last week of the previous year, and the next week is week 1.

mysql> SELECT WEEK('2008-02-20');
 -> 7
mysql> SELECT WEEK('2008-02-20',0);
 -> 7
mysql> SELECT WEEK('2008-02-20',1);
 -> 8
mysql> SELECT WEEK('2008-12-31',1);
 -> 53

If a date falls in the last week of the previous year, MySQL returns 0 if you do not use 2, 3, 6, or 7 as
the optional mode argument:

mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
 -> 2000, 0

One might argue that WEEK() should return 52 because the given date actually occurs in the 52nd
week of 1999. WEEK() returns 0 instead so that the return value is “the week number in the given
year.” This makes use of the WEEK() function reliable when combined with other functions that
extract a date part from a date.

If you prefer a result evaluated with respect to the year that contains the first day of the week for the
given date, use 0, 2, 5, or 7 as the optional mode argument.

mysql> SELECT WEEK('2000-01-01',2);
 -> 52

Alternatively, use the YEARWEEK() function:

mysql> SELECT YEARWEEK('2000-01-01');
 -> 199952
mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
 -> '52'

• WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, … 6 = Sunday). Returns NULL if
date is NULL.

mysql> SELECT WEEKDAY('2008-02-03 22:23:00');
 -> 6
mysql> SELECT WEEKDAY('2007-11-06');
 -> 1

• WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. Returns NULL if date
is NULL.

WEEKOFYEAR() is a compatibility function that is equivalent to WEEK(date,3).

mysql> SELECT WEEKOFYEAR('2008-02-20');
 -> 8

• YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 for the “zero” date. Returns NULL if date
is NULL.

mysql> SELECT YEAR('1987-01-01');
 -> 1987

2358

String Functions and Operators

• YEARWEEK(date), YEARWEEK(date,mode)

Returns year and week for a date. The year in the result may be different from the year in the date
argument for the first and the last week of the year. Returns NULL if date is NULL.

The mode argument works exactly like the mode argument to WEEK(). For the single-argument
syntax, a mode value of 0 is used. Unlike WEEK(), the value of default_week_format does not
influence YEARWEEK().

mysql> SELECT YEARWEEK('1987-01-01');
 -> 198652

The week number is different from what the WEEK() function would return (0) for optional arguments
0 or 1, as WEEK() then returns the week in the context of the given year.

14.8 String Functions and Operators

Table 14.12 String Functions and Operators

Name Description

ASCII() Return numeric value of left-most character

BIN() Return a string containing binary representation of
a number

BIT_LENGTH() Return length of argument in bits

CHAR() Return the character for each integer passed

CHAR_LENGTH() Return number of characters in argument

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CONCAT() Return concatenated string

CONCAT_WS() Return concatenate with separator

ELT() Return string at index number

EXPORT_SET() Return a string such that for every bit set in the
value bits, you get an on string and for every unset
bit, you get an off string

FIELD() Index (position) of first argument in subsequent
arguments

FIND_IN_SET() Index (position) of first argument within second
argument

FORMAT() Return a number formatted to specified number of
decimal places

FROM_BASE64() Decode base64 encoded string and return result

HEX() Hexadecimal representation of decimal or string
value

INSERT() Insert substring at specified position up to
specified number of characters

INSTR() Return the index of the first occurrence of
substring

LCASE() Synonym for LOWER()

LEFT() Return the leftmost number of characters as
specified

LENGTH() Return the length of a string in bytes

LIKE Simple pattern matching

2359

String Functions and Operators

Name Description

LOAD_FILE() Load the named file

LOCATE() Return the position of the first occurrence of
substring

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the
specified string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that
have the corresponding bit in bits set

MATCH() Perform full-text search

MID() Return a substring starting from the specified
position

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

OCT() Return a string containing octal representation of a
number

OCTET_LENGTH() Synonym for LENGTH()

ORD() Return character code for leftmost character of the
argument

POSITION() Synonym for LOCATE()

QUOTE() Escape the argument for use in an SQL statement

REGEXP Whether string matches regular expression

REGEXP_INSTR() Starting index of substring matching regular
expression

REGEXP_LIKE() Whether string matches regular expression

REGEXP_REPLACE() Replace substrings matching regular expression

REGEXP_SUBSTR() Return substring matching regular expression

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of
characters

RLIKE Whether string matches regular expression

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the specified number of spaces

STRCMP() Compare two strings

SUBSTR() Return the substring as specified

SUBSTRING() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the
specified number of occurrences of the delimiter

2360

String Functions and Operators

Name Description

TO_BASE64() Return the argument converted to a base-64 string

TRIM() Remove leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX() Return a string containing hex representation of a
number

UPPER() Convert to uppercase

WEIGHT_STRING() Return the weight string for a string

String-valued functions return NULL if the length of the result would be greater than the value of the
max_allowed_packet system variable. See Section 7.1.1, “Configuring the Server”.

For functions that operate on string positions, the first position is numbered 1.

For functions that take length arguments, noninteger arguments are rounded to the nearest integer.

• ASCII(str)

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the empty
string. Returns NULL if str is NULL. ASCII() works for 8-bit characters.

mysql> SELECT ASCII('2');
 -> 50
mysql> SELECT ASCII(2);
 -> 50
mysql> SELECT ASCII('dx');
 -> 100

See also the ORD() function.

• BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT) number.
This is equivalent to CONV(N,10,2). Returns NULL if N is NULL.

mysql> SELECT BIN(12);
 -> '1100'

• BIT_LENGTH(str)

Returns the length of the string str in bits. Returns NULL if str is NULL.

mysql> SELECT BIT_LENGTH('text');
 -> 32

• CHAR(N,... [USING charset_name])

CHAR() interprets each argument N as an integer and returns a string consisting of the characters
given by the code values of those integers. NULL values are skipped.

mysql> SELECT CHAR(77,121,83,81,'76');
+--+
| CHAR(77,121,83,81,'76') |
+--+
| 0x4D7953514C |
+--+
1 row in set (0.00 sec)

mysql> SELECT CHAR(77,77.3,'77.3');
+--+
| CHAR(77,77.3,'77.3') |
+--+
| 0x4D4D4D |
+--+

2361

String Functions and Operators

1 row in set (0.00 sec)

By default, CHAR() returns a binary string. To produce a string in a given character set, use the
optional USING clause:

mysql> SELECT CHAR(77,121,83,81,'76' USING utf8mb4);
+---------------------------------------+
| CHAR(77,121,83,81,'76' USING utf8mb4) |
+---------------------------------------+
| MySQL |
+---------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT CHAR(77,77.3,'77.3' USING utf8mb4);
+------------------------------------+
| CHAR(77,77.3,'77.3' USING utf8mb4) |
+------------------------------------+
| MMM |
+------------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect INTEGER value: '77.3' |
+---------+------+---+
1 row in set (0.00 sec)

If USING is given and the result string is illegal for the given character set, a warning is issued. Also,
if strict SQL mode is enabled, the result from CHAR() becomes NULL.

If CHAR() is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 6.5.1, “mysql — The MySQL Command-Line Client”.

CHAR() arguments larger than 255 are converted into multiple result bytes. For example,
CHAR(256) is equivalent to CHAR(1,0), and CHAR(256*256) is equivalent to CHAR(1,0,0):

mysql> SELECT HEX(CHAR(1,0)), HEX(CHAR(256));
+----------------+----------------+
| HEX(CHAR(1,0)) | HEX(CHAR(256)) |
+----------------+----------------+
| 0100 | 0100 |
+----------------+----------------+
1 row in set (0.00 sec)

mysql> SELECT HEX(CHAR(1,0,0)), HEX(CHAR(256*256));
+------------------+--------------------+
| HEX(CHAR(1,0,0)) | HEX(CHAR(256*256)) |
+------------------+--------------------+
| 010000 | 010000 |
+------------------+--------------------+
1 row in set (0.00 sec)

• CHAR_LENGTH(str)

Returns the length of the string str, measured in code points. A multibyte character counts as a
single code point. This means that, for a string containing two 3-byte characters, LENGTH() returns
6, whereas CHAR_LENGTH() returns 2, as shown here:

mysql> SET @dolphin:='海豚';
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT LENGTH(@dolphin), CHAR_LENGTH(@dolphin);
+------------------+-----------------------+
| LENGTH(@dolphin) | CHAR_LENGTH(@dolphin) |
+------------------+-----------------------+
| 6 | 2 |

2362

String Functions and Operators

+------------------+-----------------------+
1 row in set (0.00 sec)

CHAR_LENGTH() returns NULL if str is NULL.

• CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().

• CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. May have one or more arguments.
If all arguments are nonbinary strings, the result is a nonbinary string. If the arguments include
any binary strings, the result is a binary string. A numeric argument is converted to its equivalent
nonbinary string form.

CONCAT() returns NULL if any argument is NULL.

mysql> SELECT CONCAT('My', 'S', 'QL');
 -> 'MySQL'
mysql> SELECT CONCAT('My', NULL, 'QL');
 -> NULL
mysql> SELECT CONCAT(14.3);
 -> '14.3'

For quoted strings, concatenation can be performed by placing the strings next to each other:

mysql> SELECT 'My' 'S' 'QL';
 -> 'MySQL'

If CONCAT() is invoked from within the mysql client, binary string results display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• CONCAT_WS(separator,str1,str2,...)

CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT(). The first
argument is the separator for the rest of the arguments. The separator is added between the strings
to be concatenated. The separator can be a string, as can the rest of the arguments. If the separator
is NULL, the result is NULL.

mysql> SELECT CONCAT_WS(',', 'First name', 'Second name', 'Last Name');
 -> 'First name,Second name,Last Name'
mysql> SELECT CONCAT_WS(',', 'First name', NULL, 'Last Name');
 -> 'First name,Last Name'

CONCAT_WS() does not skip empty strings. However, it does skip any NULL values after the
separator argument.

• ELT(N,str1,str2,str3,...)

ELT() returns the Nth element of the list of strings: str1 if N = 1, str2 if N = 2, and so on. Returns
NULL if N is less than 1, greater than the number of arguments, or NULL. ELT() is the complement
of FIELD().

mysql> SELECT ELT(1, 'Aa', 'Bb', 'Cc', 'Dd');
 -> 'Aa'
mysql> SELECT ELT(4, 'Aa', 'Bb', 'Cc', 'Dd');
 -> 'Dd'

• EXPORT_SET(bits,on,off[,separator[,number_of_bits]])

Returns a string such that for every bit set in the value bits, you get an on string and for every
bit not set in the value, you get an off string. Bits in bits are examined from right to left (from
low-order to high-order bits). Strings are added to the result from left to right, separated by the

2363

String Functions and Operators

separator string (the default being the comma character ,). The number of bits examined is
given by number_of_bits, which has a default of 64 if not specified. number_of_bits is silently
clipped to 64 if larger than 64. It is treated as an unsigned integer, so a value of −1 is effectively the
same as 64.

mysql> SELECT EXPORT_SET(5,'Y','N',',',4);
 -> 'Y,N,Y,N'
mysql> SELECT EXPORT_SET(6,'1','0',',',10);
 -> '0,1,1,0,0,0,0,0,0,0'

• FIELD(str,str1,str2,str3,...)

Returns the index (position) of str in the str1, str2, str3, ... list. Returns 0 if str is not found.

If all arguments to FIELD() are strings, all arguments are compared as strings. If all arguments are
numbers, they are compared as numbers. Otherwise, the arguments are compared as double.

If str is NULL, the return value is 0 because NULL fails equality comparison with any value.
FIELD() is the complement of ELT().

mysql> SELECT FIELD('Bb', 'Aa', 'Bb', 'Cc', 'Dd', 'Ff');
 -> 2
mysql> SELECT FIELD('Gg', 'Aa', 'Bb', 'Cc', 'Dd', 'Ff');
 -> 0

• FIND_IN_SET(str,strlist)

Returns a value in the range of 1 to N if the string str is in the string list strlist consisting of
N substrings. A string list is a string composed of substrings separated by , characters. If the first
argument is a constant string and the second is a column of type SET, the FIND_IN_SET() function
is optimized to use bit arithmetic. Returns 0 if str is not in strlist or if strlist is the empty
string. Returns NULL if either argument is NULL. This function does not work properly if the first
argument contains a comma (,) character.

mysql> SELECT FIND_IN_SET('b','a,b,c,d');
 -> 2

• FORMAT(X,D[,locale])

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. If D is 0, the result has no decimal point or fractional part. If X or D is NULL, the
function returns NULL.

The optional third parameter enables a locale to be specified to be used for the result number's
decimal point, thousands separator, and grouping between separators. Permissible locale values are
the same as the legal values for the lc_time_names system variable (see Section 12.16, “MySQL
Server Locale Support”). If the locale is NULL or not specified, the default locale is 'en_US'.

mysql> SELECT FORMAT(12332.123456, 4);
 -> '12,332.1235'
mysql> SELECT FORMAT(12332.1,4);
 -> '12,332.1000'
mysql> SELECT FORMAT(12332.2,0);
 -> '12,332'
mysql> SELECT FORMAT(12332.2,2,'de_DE');
 -> '12.332,20'

• FROM_BASE64(str)

Takes a string encoded with the base-64 encoded rules used by TO_BASE64() and returns the
decoded result as a binary string. The result is NULL if the argument is NULL or not a valid base-64
string. See the description of TO_BASE64() for details about the encoding and decoding rules.

mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));
 -> 'JWJj', 'abc'

2364

String Functions and Operators

If FROM_BASE64() is invoked from within the mysql client, binary strings display using hexadecimal
notation. You can disable this behavior by setting the value of the --binary-as-hex to 0 when
starting the mysql client. For more information about that option, see Section 6.5.1, “mysql — The
MySQL Command-Line Client”.

• HEX(str), HEX(N)

For a string argument str, HEX() returns a hexadecimal string representation of str where each
byte of each character in str is converted to two hexadecimal digits. (Multibyte characters therefore
become more than two digits.) The inverse of this operation is performed by the UNHEX() function.

For a numeric argument N, HEX() returns a hexadecimal string representation of the value of N
treated as a longlong (BIGINT) number. This is equivalent to CONV(N,10,16). The inverse of this
operation is performed by CONV(HEX(N),16,10).

For a NULL argument, this function returns NULL.

mysql> SELECT X'616263', HEX('abc'), UNHEX(HEX('abc'));
 -> 'abc', 616263, 'abc'
mysql> SELECT HEX(255), CONV(HEX(255),16,10);
 -> 'FF', 255

• INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters long
replaced by the string newstr. Returns the original string if pos is not within the length of the string.
Replaces the rest of the string from position pos if len is not within the length of the rest of the
string. Returns NULL if any argument is NULL.

mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
 -> 'QuWhattic'
mysql> SELECT INSERT('Quadratic', -1, 4, 'What');
 -> 'Quadratic'
mysql> SELECT INSERT('Quadratic', 3, 100, 'What');
 -> 'QuWhat'

This function is multibyte safe.

• INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the same as
the two-argument form of LOCATE(), except that the order of the arguments is reversed.

mysql> SELECT INSTR('foobarbar', 'bar');
 -> 4
mysql> SELECT INSTR('xbar', 'foobar');
 -> 0

This function is multibyte safe, and is case-sensitive only if at least one argument is a binary string. If
either argument is NULL, this functions returns NULL.

• LCASE(str)

LCASE() is a synonym for LOWER().

LCASE() used in a view is rewritten as LOWER() when storing the view's definition. (Bug
#12844279)

• LEFT(str,len)

Returns the leftmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT LEFT('foobarbar', 5);
 -> 'fooba'

2365

String Functions and Operators

This function is multibyte safe.

• LENGTH(str)

Returns the length of the string str, measured in bytes. A multibyte character counts as multiple
bytes. This means that for a string containing five 2-byte characters, LENGTH() returns 10, whereas
CHAR_LENGTH() returns 5. Returns NULL if str is NULL.

mysql> SELECT LENGTH('text');
 -> 4

Note

The Length() OpenGIS spatial function is named ST_Length() in MySQL.

• LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. To use this function, the file must be located
on the server host, you must specify the full path name to the file, and you must have the FILE
privilege. The file must be readable by the server and its size less than max_allowed_packet
bytes. If the secure_file_priv system variable is set to a nonempty directory name, the file to be
loaded must be located in that directory. (Prior to MySQL 8.0.17, the file must be readable by all, not
just readable by the server.)

If the file does not exist or cannot be read because one of the preceding conditions is not satisfied,
the function returns NULL.

The character_set_filesystem system variable controls interpretation of file names that are
given as literal strings.

mysql> UPDATE t
 SET blob_col=LOAD_FILE('/tmp/picture')
 WHERE id=1;

• LOCATE(substr,str), LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string str. The
second syntax returns the position of the first occurrence of substring substr in string str, starting
at position pos. Returns 0 if substr is not in str. Returns NULL if any argument is NULL.

mysql> SELECT LOCATE('bar', 'foobarbar');
 -> 4
mysql> SELECT LOCATE('xbar', 'foobar');
 -> 0
mysql> SELECT LOCATE('bar', 'foobarbar', 5);
 -> 7

This function is multibyte safe, and is case-sensitive only if at least one argument is a binary string.

• LOWER(str)

Returns the string str with all characters changed to lowercase according to the current character
set mapping, or NULL if str is NULL. The default character set is utf8mb4.

mysql> SELECT LOWER('QUADRATICALLY');
 -> 'quadratically'

LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY,
BLOB). To perform lettercase conversion of a binary string, first convert it to a nonbinary string using
a character set appropriate for the data stored in the string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING utf8mb4));

2366

String Functions and Operators

+-------------+------------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING utf8mb4)) |
+-------------+------------------------------------+
| New York | new york |
+-------------+------------------------------------+

For collations of Unicode character sets, LOWER() and UPPER() work according to the Unicode
Collation Algorithm (UCA) version in the collation name, if there is one, and UCA 4.0.0 if no
version is specified. For example, utf8mb4_0900_ai_ci and utf8mb3_unicode_520_ci work
according to UCA 9.0.0 and 5.2.0, respectively, whereas utf8mb3_unicode_ci works according to
UCA 4.0.0. See Section 12.10.1, “Unicode Character Sets”.

This function is multibyte safe.

LCASE() used within views is rewritten as LOWER().

• LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters.

mysql> SELECT LPAD('hi',4,'??');
 -> '??hi'
mysql> SELECT LPAD('hi',1,'??');
 -> 'h'

Returns NULL if any of its arguments are NULL.

• LTRIM(str)

Returns the string str with leading space characters removed. Returns NULL if str is NULL.

mysql> SELECT LTRIM(' barbar');
 -> 'barbar'

This function is multibyte safe.

• MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by , characters) consisting of the
strings that have the corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so
on. NULL values in str1, str2, ... are not appended to the result.

mysql> SELECT MAKE_SET(1,'a','b','c');
 -> 'a'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice','world');
 -> 'hello,world'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');
 -> 'hello'
mysql> SELECT MAKE_SET(0,'a','b','c');
 -> ''

• MID(str,pos), MID(str FROM pos), MID(str,pos,len), MID(str FROM pos FOR len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

• OCT(N)

Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number. This
is equivalent to CONV(N,10,8). Returns NULL if N is NULL.

mysql> SELECT OCT(12);
 -> '14'

2367

String Functions and Operators

• OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().

• ORD(str)

If the leftmost character of the string str is a multibyte character, returns the code for that character,
calculated from the numeric values of its constituent bytes using this formula:

 (1st byte code)
+ (2nd byte code * 256)
+ (3rd byte code * 256^2) ...

If the leftmost character is not a multibyte character, ORD() returns the same value as the ASCII()
function. The function returns NULL if str is NULL.

mysql> SELECT ORD('2');
 -> 50

• POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

• QUOTE(str)

Quotes a string to produce a result that can be used as a properly escaped data value in an SQL
statement. The string is returned enclosed by single quotation marks and with each instance of
backslash (\), single quote ('), ASCII NUL, and Control+Z preceded by a backslash. If the argument
is NULL, the return value is the word “NULL” without enclosing single quotation marks.

mysql> SELECT QUOTE('Don\'t!');
 -> 'Don\'t!'
mysql> SELECT QUOTE(NULL);
 -> NULL

For comparison, see the quoting rules for literal strings and within the C API in Section 11.1.1, “String
Literals”, and mysql_real_escape_string_quote().

• REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count is less than 1, returns
an empty string. Returns NULL if str or count is NULL.

mysql> SELECT REPEAT('MySQL', 3);
 -> 'MySQLMySQLMySQL'

• REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string to_str.
REPLACE() performs a case-sensitive match when searching for from_str.

mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
 -> 'WwWwWw.mysql.com'

This function is multibyte safe. It returns NULL if any of its arguments are NULL.

• REVERSE(str)

Returns the string str with the order of the characters reversed, or NULL if str is NULL.

mysql> SELECT REVERSE('abc');
 -> 'cba'

This function is multibyte safe.
2368

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html

String Functions and Operators

• RIGHT(str,len)

Returns the rightmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT RIGHT('foobarbar', 4);
 -> 'rbar'

This function is multibyte safe.

• RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters. If str, padstr, or len is NULL,
the function returns NULL.

mysql> SELECT RPAD('hi',5,'?');
 -> 'hi???'
mysql> SELECT RPAD('hi',1,'?');
 -> 'h'

This function is multibyte safe.

• RTRIM(str)

Returns the string str with trailing space characters removed.

mysql> SELECT RTRIM('barbar ');
 -> 'barbar'

This function is multibyte safe, and returns NULL if str is NULL.

• SOUNDEX(str)

Returns a soundex string from str, or NULL if str is NULL. Two strings that sound almost the same
should have identical soundex strings. A standard soundex string is four characters long, but the
SOUNDEX() function returns an arbitrarily long string. You can use SUBSTRING() on the result to
get a standard soundex string. All nonalphabetic characters in str are ignored. All international
alphabetic characters outside the A-Z range are treated as vowels.

Important

When using SOUNDEX(), you should be aware of the following limitations:

• This function, as currently implemented, is intended to work well with strings that are in the English
language only. Strings in other languages may not produce reliable results.

• This function is not guaranteed to provide consistent results with strings that use multibyte
character sets, including utf-8. See Bug #22638 for more information.

mysql> SELECT SOUNDEX('Hello');
 -> 'H400'
mysql> SELECT SOUNDEX('Quadratically');
 -> 'Q36324'

Note

This function implements the original Soundex algorithm, not the more
popular enhanced version (also described by D. Knuth). The difference is
that original version discards vowels first and duplicates second, whereas the
enhanced version discards duplicates first and vowels second.

• expr1 SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2).

2369

String Functions and Operators

• SPACE(N)

Returns a string consisting of N space characters, or NULL if N is NULL.

mysql> SELECT SPACE(6);
 -> ' '

• SUBSTR(str,pos), SUBSTR(str FROM pos), SUBSTR(str,pos,len), SUBSTR(str FROM
pos FOR len)

SUBSTR() is a synonym for SUBSTRING().

• SUBSTRING(str,pos), SUBSTRING(str FROM pos), SUBSTRING(str,pos,len),
SUBSTRING(str FROM pos FOR len)

The forms without a len argument return a substring from string str starting at position pos.
The forms with a len argument return a substring len characters long from string str, starting at
position pos. The forms that use FROM are standard SQL syntax. It is also possible to use a negative
value for pos. In this case, the beginning of the substring is pos characters from the end of the
string, rather than the beginning. A negative value may be used for pos in any of the forms of this
function. A value of 0 for pos returns an empty string.

For all forms of SUBSTRING(), the position of the first character in the string from which the
substring is to be extracted is reckoned as 1.

mysql> SELECT SUBSTRING('Quadratically',5);
 -> 'ratically'
mysql> SELECT SUBSTRING('foobarbar' FROM 4);
 -> 'barbar'
mysql> SELECT SUBSTRING('Quadratically',5,6);
 -> 'ratica'
mysql> SELECT SUBSTRING('Sakila', -3);
 -> 'ila'
mysql> SELECT SUBSTRING('Sakila', -5, 3);
 -> 'aki'
mysql> SELECT SUBSTRING('Sakila' FROM -4 FOR 2);
 -> 'ki'

This function is multibyte safe. It returns NULL if any of its arguments are NULL.

If len is less than 1, the result is the empty string.

• SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim. If count
is positive, everything to the left of the final delimiter (counting from the left) is returned. If count
is negative, everything to the right of the final delimiter (counting from the right) is returned.
SUBSTRING_INDEX() performs a case-sensitive match when searching for delim.

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', 2);
 -> 'www.mysql'
mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', -2);
 -> 'mysql.com'

This function is multibyte safe.

SUBSTRING_INDEX() returns NULL if any of its arguments are NULL.

• TO_BASE64(str)

Converts the string argument to base-64 encoded form and returns the result as a character string
with the connection character set and collation. If the argument is not a string, it is converted to a

2370

String Functions and Operators

string before conversion takes place. The result is NULL if the argument is NULL. Base-64 encoded
strings can be decoded using the FROM_BASE64() function.

mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));
 -> 'JWJj', 'abc'

Different base-64 encoding schemes exist. These are the encoding and decoding rules used by
TO_BASE64() and FROM_BASE64():

• The encoding for alphabet value 62 is '+'.

• The encoding for alphabet value 63 is '/'.

• Encoded output consists of groups of 4 printable characters. Each 3 bytes of the input data are
encoded using 4 characters. If the last group is incomplete, it is padded with '=' characters to a
length of 4.

• A newline is added after each 76 characters of encoded output to divide long output into multiple
lines.

• Decoding recognizes and ignores newline, carriage return, tab, and space.

• TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr FROM]
str)

Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers BOTH,
LEADING, or TRAILING is given, BOTH is assumed. remstr is optional and, if not specified, spaces
are removed.

mysql> SELECT TRIM(' bar ');
 -> 'bar'
mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
 -> 'barxxx'
mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
 -> 'bar'
mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
 -> 'barx'

This function is multibyte safe. It returns NULL if any of its arguments are NULL.

• UCASE(str)

UCASE() is a synonym for UPPER().

UCASE() used within views is rewritten as UPPER().

• UNHEX(str)

For a string argument str, UNHEX(str) interprets each pair of characters in the argument as a
hexadecimal number and converts it to the byte represented by the number. The return value is a
binary string.

mysql> SELECT UNHEX('4D7953514C');
 -> 'MySQL'
mysql> SELECT X'4D7953514C';
 -> 'MySQL'
mysql> SELECT UNHEX(HEX('string'));
 -> 'string'
mysql> SELECT HEX(UNHEX('1267'));
 -> '1267'

The characters in the argument string must be legal hexadecimal digits: '0' .. '9', 'A' .. 'F', 'a'
.. 'f'. If the argument contains any nonhexadecimal digits, or is itself NULL, the result is NULL:

mysql> SELECT UNHEX('GG');

2371

String Functions and Operators

+-------------+
| UNHEX('GG') |
+-------------+
| NULL |
+-------------+

mysql> SELECT UNHEX(NULL);
+-------------+
| UNHEX(NULL) |
+-------------+
| NULL |
+-------------+

A NULL result can also occur if the argument to UNHEX() is a BINARY column, because values are
padded with 0x00 bytes when stored but those bytes are not stripped on retrieval. For example,
'41' is stored into a CHAR(3) column as '41 ' and retrieved as '41' (with the trailing pad
space stripped), so UNHEX() for the column value returns X'41'. By contrast, '41' is stored into
a BINARY(3) column as '41\0' and retrieved as '41\0' (with the trailing pad 0x00 byte not
stripped). '\0' is not a legal hexadecimal digit, so UNHEX() for the column value returns NULL.

For a numeric argument N, the inverse of HEX(N) is not performed by UNHEX(). Use
CONV(HEX(N),16,10) instead. See the description of HEX().

If UNHEX() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• UPPER(str)

Returns the string str with all characters changed to uppercase according to the current character
set mapping, or NULL if str is NULL. The default character set is utf8mb4.

mysql> SELECT UPPER('Hej');
 -> 'HEJ'

See the description of LOWER() for information that also applies to UPPER(). This included
information about how to perform lettercase conversion of binary strings (BINARY, VARBINARY,
BLOB) for which these functions are ineffective, and information about case folding for Unicode
character sets.

This function is multibyte safe.

UCASE() used within views is rewritten as UPPER().

• WEIGHT_STRING(str [AS {CHAR|BINARY}(N)] [flags])

This function returns the weight string for the input string. The return value is a binary string that
represents the comparison and sorting value of the string, or NULL if the argument is NULL. It has
these properties:

• If WEIGHT_STRING(str1) = WEIGHT_STRING(str2), then str1 = str2 (str1 and str2 are
considered equal)

• If WEIGHT_STRING(str1) < WEIGHT_STRING(str2), then str1 < str2 (str1 sorts before
str2)

WEIGHT_STRING() is a debugging function intended for internal use. Its behavior can change
without notice between MySQL versions. It can be used for testing and debugging of collations,

2372

String Functions and Operators

especially if you are adding a new collation. See Section 12.14, “Adding a Collation to a Character
Set”.

This list briefly summarizes the arguments. More details are given in the discussion following the list.

• str: The input string expression.

• AS clause: Optional; cast the input string to a given type and length.

• flags: Optional; unused.

The input string, str, is a string expression. If the input is a nonbinary (character) string such as a
CHAR, VARCHAR, or TEXT value, the return value contains the collation weights for the string. If the
input is a binary (byte) string such as a BINARY, VARBINARY, or BLOB value, the return value is the
same as the input (the weight for each byte in a binary string is the byte value). If the input is NULL,
WEIGHT_STRING() returns NULL.

Examples:

mysql> SET @s = _utf8mb4 'AB' COLLATE utf8mb4_0900_ai_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 1C471C60 |
+------+---------+------------------------+

mysql> SET @s = _utf8mb4 'ab' COLLATE utf8mb4_0900_ai_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 1C471C60 |
+------+---------+------------------------+

mysql> SET @s = CAST('AB' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 4142 |
+------+---------+------------------------+

mysql> SET @s = CAST('ab' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 6162 |
+------+---------+------------------------+

The preceding examples use HEX() to display the WEIGHT_STRING() result. Because the result
is a binary value, HEX() can be especially useful when the result contains nonprinting values, to
display it in printable form:

mysql> SET @s = CONVERT(X'C39F' USING utf8mb4) COLLATE utf8mb4_czech_ci;
mysql> SELECT HEX(WEIGHT_STRING(@s));
+------------------------+
| HEX(WEIGHT_STRING(@s)) |
+------------------------+
| 0FEA0FEA |

2373

String Comparison Functions and Operators

+------------------------+

For non-NULL return values, the data type of the value is VARBINARY if its length is within the
maximum length for VARBINARY, otherwise the data type is BLOB.

The AS clause may be given to cast the input string to a nonbinary or binary string and to force it to a
given length:

• AS CHAR(N) casts the string to a nonbinary string and pads it on the right with spaces to a length
of N characters. N must be at least 1. If N is less than the length of the input string, the string is
truncated to N characters. No warning occurs for truncation.

• AS BINARY(N) is similar but casts the string to a binary string, N is measured in bytes (not
characters), and padding uses 0x00 bytes (not spaces).

mysql> SET NAMES 'latin1';
mysql> SELECT HEX(WEIGHT_STRING('ab' AS CHAR(4)));
+-------------------------------------+
| HEX(WEIGHT_STRING('ab' AS CHAR(4))) |
+-------------------------------------+
| 41422020 |
+-------------------------------------+
mysql> SET NAMES 'utf8mb4';
mysql> SELECT HEX(WEIGHT_STRING('ab' AS CHAR(4)));
+-------------------------------------+
| HEX(WEIGHT_STRING('ab' AS CHAR(4))) |
+-------------------------------------+
| 1C471C60 |
+-------------------------------------+

mysql> SELECT HEX(WEIGHT_STRING('ab' AS BINARY(4)));
+---------------------------------------+
| HEX(WEIGHT_STRING('ab' AS BINARY(4))) |
+---------------------------------------+
| 61620000 |
+---------------------------------------+

The flags clause currently is unused.

If WEIGHT_STRING() is invoked from within the mysql client, binary strings display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information
about that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

14.8.1 String Comparison Functions and Operators

Table 14.13 String Comparison Functions and Operators

Name Description

LIKE Simple pattern matching

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

If a string function is given a binary string as an argument, the resulting string is also a binary string. A
number converted to a string is treated as a binary string. This affects only comparisons.

Normally, if any expression in a string comparison is case-sensitive, the comparison is performed in
case-sensitive fashion.

If a string function is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• expr LIKE pat [ESCAPE 'escape_char']

2374

String Comparison Functions and Operators

Pattern matching using an SQL pattern. Returns 1 (TRUE) or 0 (FALSE). If either expr or pat is
NULL, the result is NULL.

The pattern need not be a literal string. For example, it can be specified as a string expression or
table column. In the latter case, the column must be defined as one of the MySQL string types (see
Section 13.3, “String Data Types”).

Per the SQL standard, LIKE performs matching on a per-character basis, thus it can produce results
different from the = comparison operator:

mysql> SELECT 'ä' LIKE 'ae' COLLATE latin1_german2_ci;
+---+
| 'ä' LIKE 'ae' COLLATE latin1_german2_ci |
+---+
| 0 |
+---+
mysql> SELECT 'ä' = 'ae' COLLATE latin1_german2_ci;
+--------------------------------------+
| 'ä' = 'ae' COLLATE latin1_german2_ci |
+--------------------------------------+
| 1 |
+--------------------------------------+

In particular, trailing spaces are always significant. This differs from comparisons performed with
the = operator, for which the significance of trailing spaces in nonbinary strings (CHAR, VARCHAR,
and TEXT values) depends on the pad attribute of the collation used for the comparison. For more
information, see Trailing Space Handling in Comparisons.

With LIKE you can use the following two wildcard characters in the pattern:

• % matches any number of characters, even zero characters.

• _ matches exactly one character.

mysql> SELECT 'David!' LIKE 'David_';
 -> 1
mysql> SELECT 'David!' LIKE '%D%v%';
 -> 1

To test for literal instances of a wildcard character, precede it by the escape character. If you do not
specify the ESCAPE character, \ is assumed, unless the NO_BACKSLASH_ESCAPES SQL mode is
enabled. In that case, no escape character is used.

• \% matches one % character.

• _ matches one _ character.

mysql> SELECT 'David!' LIKE 'David_';
 -> 0
mysql> SELECT 'David_' LIKE 'David_';
 -> 1

To specify a different escape character, use the ESCAPE clause:

mysql> SELECT 'David_' LIKE 'David|_' ESCAPE '|';

2375

String Comparison Functions and Operators

 -> 1

The escape sequence should be one character long to specify the escape character, or empty to
specify that no escape character is used. The expression must evaluate as a constant at execution
time. If the NO_BACKSLASH_ESCAPES SQL mode is enabled, the sequence cannot be empty.

The following statements illustrate that string comparisons are not case-sensitive unless one of the
operands is case-sensitive (uses a case-sensitive collation or is a binary string):

mysql> SELECT 'abc' LIKE 'ABC';
 -> 1
mysql> SELECT 'abc' LIKE _utf8mb4 'ABC' COLLATE utf8mb4_0900_as_cs;
 -> 0
mysql> SELECT 'abc' LIKE _utf8mb4 'ABC' COLLATE utf8mb4_bin;
 -> 0
mysql> SELECT 'abc' LIKE BINARY 'ABC';
 -> 0

As an extension to standard SQL, MySQL permits LIKE on numeric expressions.

mysql> SELECT 10 LIKE '1%';
 -> 1

MySQL attempts in such cases to perform implicit conversion of the expression to a string. See
Section 14.3, “Type Conversion in Expression Evaluation”.

Note

MySQL uses C escape syntax in strings (for example, \n to represent the
newline character). If you want a LIKE string to contain a literal \, you must
double it. (Unless the NO_BACKSLASH_ESCAPES SQL mode is enabled, in
which case no escape character is used.) For example, to search for \n,
specify it as \\n. To search for \, specify it as \\\\; this is because the
backslashes are stripped once by the parser and again when the pattern
match is made, leaving a single backslash to be matched against.

Exception: At the end of the pattern string, backslash can be specified as \\.
At the end of the string, backslash stands for itself because there is nothing
following to escape. Suppose that a table contains the following values:

mysql> SELECT filename FROM t1;
+--------------+
| filename |
+--------------+
| C: |
| C:\ |
| C:\Programs |
| C:\Programs\ |
+--------------+

To test for values that end with backslash, you can match the values using
either of the following patterns:

mysql> SELECT filename, filename LIKE '%\\' FROM t1;
+--------------+---------------------+
| filename | filename LIKE '%\\' |
+--------------+---------------------+
C:	0
C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+---------------------+

mysql> SELECT filename, filename LIKE '%\\\\' FROM t1;
+--------------+-----------------------+
| filename | filename LIKE '%\\\\' |

2376

String Comparison Functions and Operators

+--------------+-----------------------+
C:	0
C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+-----------------------+

• expr NOT LIKE pat [ESCAPE 'escape_char']

This is the same as NOT (expr LIKE pat [ESCAPE 'escape_char']).

Note

Aggregate queries involving NOT LIKE comparisons with columns containing
NULL may yield unexpected results. For example, consider the following table
and data:

CREATE TABLE foo (bar VARCHAR(10));

INSERT INTO foo VALUES (NULL), (NULL);

The query SELECT COUNT(*) FROM foo WHERE bar LIKE '%baz%';
returns 0. You might assume that SELECT COUNT(*) FROM foo WHERE
bar NOT LIKE '%baz%'; would return 2. However, this is not the case:
The second query returns 0. This is because NULL NOT LIKE expr always
returns NULL, regardless of the value of expr. The same is true for aggregate
queries involving NULL and comparisons using NOT RLIKE or NOT REGEXP.
In such cases, you must test explicitly for NOT NULL using OR (and not AND),
as shown here:

SELECT COUNT(*) FROM foo WHERE bar NOT LIKE '%baz%' OR bar IS NULL;

• STRCMP(expr1,expr2)

STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the second
according to the current sort order, and NULL if either argument is NULL. It returns 1 otherwise.

mysql> SELECT STRCMP('text', 'text2');
 -> -1
mysql> SELECT STRCMP('text2', 'text');
 -> 1
mysql> SELECT STRCMP('text', 'text');
 -> 0

STRCMP() performs the comparison using the collation of the arguments.

mysql> SET @s1 = _utf8mb4 'x' COLLATE utf8mb4_0900_ai_ci;
mysql> SET @s2 = _utf8mb4 'X' COLLATE utf8mb4_0900_ai_ci;
mysql> SET @s3 = _utf8mb4 'x' COLLATE utf8mb4_0900_as_cs;
mysql> SET @s4 = _utf8mb4 'X' COLLATE utf8mb4_0900_as_cs;
mysql> SELECT STRCMP(@s1, @s2), STRCMP(@s3, @s4);
+------------------+------------------+
| STRCMP(@s1, @s2) | STRCMP(@s3, @s4) |
+------------------+------------------+
| 0 | -1 |
+------------------+------------------+

If the collations are incompatible, one of the arguments must be converted to be compatible with the
other. See Section 12.8.4, “Collation Coercibility in Expressions”.

mysql> SET @s1 = _utf8mb4 'x' COLLATE utf8mb4_0900_ai_ci;
mysql> SET @s2 = _utf8mb4 'X' COLLATE utf8mb4_0900_ai_ci;
mysql> SET @s3 = _utf8mb4 'x' COLLATE utf8mb4_0900_as_cs;
mysql> SET @s4 = _utf8mb4 'X' COLLATE utf8mb4_0900_as_cs;
-->
mysql> SELECT STRCMP(@s1, @s3);
ERROR 1267 (HY000): Illegal mix of collations (utf8mb4_0900_ai_ci,IMPLICIT)

2377

Regular Expressions

and (utf8mb4_0900_as_cs,IMPLICIT) for operation 'strcmp'
mysql> SELECT STRCMP(@s1, @s3 COLLATE utf8mb4_0900_ai_ci);
+---+
| STRCMP(@s1, @s3 COLLATE utf8mb4_0900_ai_ci) |
+---+
| 0 |
+---+

14.8.2 Regular Expressions
Table 14.14 Regular Expression Functions and Operators

Name Description

NOT REGEXP Negation of REGEXP

REGEXP Whether string matches regular expression

REGEXP_INSTR() Starting index of substring matching regular
expression

REGEXP_LIKE() Whether string matches regular expression

REGEXP_REPLACE() Replace substrings matching regular expression

REGEXP_SUBSTR() Return substring matching regular expression

RLIKE Whether string matches regular expression

A regular expression is a powerful way of specifying a pattern for a complex search. This section
discusses the functions and operators available for regular expression matching and illustrates, with
examples, some of the special characters and constructs that can be used for regular expression
operations. See also Section 5.3.4.7, “Pattern Matching”.

MySQL implements regular expression support using International Components for Unicode (ICU),
which provides full Unicode support and is multibyte safe. (Prior to MySQL 8.0.4, MySQL used Henry
Spencer's implementation of regular expressions, which operates in byte-wise fashion and is not
multibyte safe. For information about ways in which applications that use regular expressions may be
affected by the implementation change, see Regular Expression Compatibility Considerations.)

Prior to MySQL 8.0.22, it was possible to use binary string arguments with these functions, but they
yielded inconsistent results. In MySQL 8.0.22 and later, use of a binary string with any of the MySQL
regular expression functions is rejected with ER_CHARACTER_SET_MISMATCH.

• Regular Expression Function and Operator Descriptions

• Regular Expression Syntax

• Regular Expression Resource Control

• Regular Expression Compatibility Considerations

Regular Expression Function and Operator Descriptions

• expr NOT REGEXP pat, expr NOT RLIKE pat

This is the same as NOT (expr REGEXP pat).

• expr REGEXP pat, expr RLIKE pat

Returns 1 if the string expr matches the regular expression specified by the pattern pat, 0
otherwise. If expr or pat is NULL, the return value is NULL.

REGEXP and RLIKE are synonyms for REGEXP_LIKE().

For additional information about how matching occurs, see the description for REGEXP_LIKE().

mysql> SELECT 'Michael!' REGEXP '.*';
+------------------------+

2378

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_character_set_mismatch

Regular Expressions

| 'Michael!' REGEXP '.*' |
+------------------------+
| 1 |
+------------------------+
mysql> SELECT 'new*\n*line' REGEXP 'new*.*line';
+---------------------------------------+
| 'new*\n*line' REGEXP 'new*.*line' |
+---------------------------------------+
| 0 |
+---------------------------------------+
mysql> SELECT 'a' REGEXP '^[a-d]';
+---------------------+
| 'a' REGEXP '^[a-d]' |
+---------------------+
| 1 |
+---------------------+

• REGEXP_INSTR(expr, pat[, pos[, occurrence[, return_option[,
match_type]]]])

Returns the starting index of the substring of the string expr that matches the regular expression
specified by the pattern pat, 0 if there is no match. If expr or pat is NULL, the return value is NULL.
Character indexes begin at 1.

REGEXP_INSTR() takes these optional arguments:

• pos: The position in expr at which to start the search. If omitted, the default is 1.

• occurrence: Which occurrence of a match to search for. If omitted, the default is 1.

• return_option: Which type of position to return. If this value is 0, REGEXP_INSTR() returns the
position of the matched substring's first character. If this value is 1, REGEXP_INSTR() returns the
position following the matched substring. If omitted, the default is 0.

• match_type: A string that specifies how to perform matching. The meaning is as described for
REGEXP_LIKE().

For additional information about how matching occurs, see the description for REGEXP_LIKE().

mysql> SELECT REGEXP_INSTR('dog cat dog', 'dog');
+------------------------------------+
| REGEXP_INSTR('dog cat dog', 'dog') |
+------------------------------------+
| 1 |
+------------------------------------+
mysql> SELECT REGEXP_INSTR('dog cat dog', 'dog', 2);
+---------------------------------------+
| REGEXP_INSTR('dog cat dog', 'dog', 2) |
+---------------------------------------+
| 9 |
+---------------------------------------+
mysql> SELECT REGEXP_INSTR('aa aaa aaaa', 'a{2}');
+-------------------------------------+
| REGEXP_INSTR('aa aaa aaaa', 'a{2}') |
+-------------------------------------+
| 1 |
+-------------------------------------+
mysql> SELECT REGEXP_INSTR('aa aaa aaaa', 'a{4}');
+-------------------------------------+
| REGEXP_INSTR('aa aaa aaaa', 'a{4}') |
+-------------------------------------+
| 8 |
+-------------------------------------+

• REGEXP_LIKE(expr, pat[, match_type])

Returns 1 if the string expr matches the regular expression specified by the pattern pat, 0
otherwise. If expr or pat is NULL, the return value is NULL.

2379

Regular Expressions

The pattern can be an extended regular expression, the syntax for which is discussed in Regular
Expression Syntax. The pattern need not be a literal string. For example, it can be specified as a
string expression or table column.

The optional match_type argument is a string that may contain any or all the following characters
specifying how to perform matching:

• c: Case-sensitive matching.

• i: Case-insensitive matching.

• m: Multiple-line mode. Recognize line terminators within the string. The default behavior is to match
line terminators only at the start and end of the string expression.

• n: The . character matches line terminators. The default is for . matching to stop at the end of a
line.

• u: Unix-only line endings. Only the newline character is recognized as a line ending by the ., ^,
and $ match operators.

If characters specifying contradictory options are specified within match_type, the rightmost one
takes precedence.

By default, regular expression operations use the character set and collation of the expr and pat
arguments when deciding the type of a character and performing the comparison. If the arguments
have different character sets or collations, coercibility rules apply as described in Section 12.8.4,
“Collation Coercibility in Expressions”. Arguments may be specified with explicit collation indicators to
change comparison behavior.

mysql> SELECT REGEXP_LIKE('CamelCase', 'CAMELCASE');
+---------------------------------------+
| REGEXP_LIKE('CamelCase', 'CAMELCASE') |
+---------------------------------------+
| 1 |
+---------------------------------------+
mysql> SELECT REGEXP_LIKE('CamelCase', 'CAMELCASE' COLLATE utf8mb4_0900_as_cs);
+--+
| REGEXP_LIKE('CamelCase', 'CAMELCASE' COLLATE utf8mb4_0900_as_cs) |
+--+
| 0 |
+--+

match_type may be specified with the c or i characters to override the default case sensitivity.
Exception: If either argument is a binary string, the arguments are handled in case-sensitive fashion
as binary strings, even if match_type contains the i character.

Note

MySQL uses C escape syntax in strings (for example, \n to represent the
newline character). If you want your expr or pat argument to contain a literal
\, you must double it. (Unless the NO_BACKSLASH_ESCAPES SQL mode is
enabled, in which case no escape character is used.)

mysql> SELECT REGEXP_LIKE('Michael!', '.*');
+-------------------------------+
| REGEXP_LIKE('Michael!', '.*') |
+-------------------------------+
| 1 |
+-------------------------------+
mysql> SELECT REGEXP_LIKE('new*\n*line', 'new*.*line');
+--+
| REGEXP_LIKE('new*\n*line', 'new*.*line') |
+--+
| 0 |

2380

Regular Expressions

+--+
mysql> SELECT REGEXP_LIKE('a', '^[a-d]');
+----------------------------+
| REGEXP_LIKE('a', '^[a-d]') |
+----------------------------+
| 1 |
+----------------------------+

mysql> SELECT REGEXP_LIKE('abc', 'ABC');
+---------------------------+
| REGEXP_LIKE('abc', 'ABC') |
+---------------------------+
| 1 |
+---------------------------+
mysql> SELECT REGEXP_LIKE('abc', 'ABC', 'c');
+--------------------------------+
| REGEXP_LIKE('abc', 'ABC', 'c') |
+--------------------------------+
| 0 |
+--------------------------------+

• REGEXP_REPLACE(expr, pat, repl[, pos[, occurrence[, match_type]]])

Replaces occurrences in the string expr that match the regular expression specified by the pattern
pat with the replacement string repl, and returns the resulting string. If expr, pat, or repl is
NULL, the return value is NULL.

REGEXP_REPLACE() takes these optional arguments:

• pos: The position in expr at which to start the search. If omitted, the default is 1.

• occurrence: Which occurrence of a match to replace. If omitted, the default is 0 (which means
“replace all occurrences”).

• match_type: A string that specifies how to perform matching. The meaning is as described for
REGEXP_LIKE().

Prior to MySQL 8.0.17, the result returned by this function used the UTF-16 character set; in MySQL
8.0.17 and later, the character set and collation of the expression searched for matches is used.
(Bug #94203, Bug #29308212)

For additional information about how matching occurs, see the description for REGEXP_LIKE().

mysql> SELECT REGEXP_REPLACE('a b c', 'b', 'X');
+-----------------------------------+
| REGEXP_REPLACE('a b c', 'b', 'X') |
+-----------------------------------+
| a X c |
+-----------------------------------+
mysql> SELECT REGEXP_REPLACE('abc def ghi', '[a-z]+', 'X', 1, 3);
+--+
| REGEXP_REPLACE('abc def ghi', '[a-z]+', 'X', 1, 3) |
+--+
| abc def X |
+--+

2381

Regular Expressions

• REGEXP_SUBSTR(expr, pat[, pos[, occurrence[, match_type]]])

Returns the substring of the string expr that matches the regular expression specified by the pattern
pat, NULL if there is no match. If expr or pat is NULL, the return value is NULL.

REGEXP_SUBSTR() takes these optional arguments:

• pos: The position in expr at which to start the search. If omitted, the default is 1.

• occurrence: Which occurrence of a match to search for. If omitted, the default is 1.

• match_type: A string that specifies how to perform matching. The meaning is as described for
REGEXP_LIKE().

Prior to MySQL 8.0.17, the result returned by this function used the UTF-16 character set; in MySQL
8.0.17 and later, the character set and collation of the expression searched for matches is used.
(Bug #94203, Bug #29308212)

For additional information about how matching occurs, see the description for REGEXP_LIKE().

mysql> SELECT REGEXP_SUBSTR('abc def ghi', '[a-z]+');
+--+
| REGEXP_SUBSTR('abc def ghi', '[a-z]+') |
+--+
| abc |
+--+
mysql> SELECT REGEXP_SUBSTR('abc def ghi', '[a-z]+', 1, 3);
+--+
| REGEXP_SUBSTR('abc def ghi', '[a-z]+', 1, 3) |
+--+
| ghi |
+--+

Regular Expression Syntax

A regular expression describes a set of strings. The simplest regular expression is one that has no
special characters in it. For example, the regular expression hello matches hello and nothing else.

Nontrivial regular expressions use certain special constructs so that they can match more than one
string. For example, the regular expression hello|world contains the | alternation operator and
matches either the hello or world.

As a more complex example, the regular expression B[an]*s matches any of the strings Bananas,
Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing any number of a
or n characters in between.

The following list covers some of the basic special characters and constructs that can be used in
regular expressions. For information about the full regular expression syntax supported by the ICU
library used to implement regular expression support, visit the International Components for Unicode
web site.

• ^

Match the beginning of a string.

mysql> SELECT REGEXP_LIKE('fo\nfo', '^fo$'); -> 0
mysql> SELECT REGEXP_LIKE('fofo', '^fo'); -> 1

• $

Match the end of a string.

mysql> SELECT REGEXP_LIKE('fo\no', '^fo\no$'); -> 1
mysql> SELECT REGEXP_LIKE('fo\no', '^fo$'); -> 0

2382

https://unicode-org.github.io/icu/userguide/
https://unicode-org.github.io/icu/userguide/

Regular Expressions

• .

Match any character (including carriage return and newline, although to match these in the middle
of a string, the m (multiple line) match-control character or the (?m) within-pattern modifier must be
given).

mysql> SELECT REGEXP_LIKE('fofo', '^f.*$'); -> 1
mysql> SELECT REGEXP_LIKE('fo\r\nfo', '^f.*$'); -> 0
mysql> SELECT REGEXP_LIKE('fo\r\nfo', '^f.*$', 'm'); -> 1
mysql> SELECT REGEXP_LIKE('fo\r\nfo', '(?m)^f.*$'); -> 1

• a*

Match any sequence of zero or more a characters.

mysql> SELECT REGEXP_LIKE('Ban', '^Ba*n'); -> 1
mysql> SELECT REGEXP_LIKE('Baaan', '^Ba*n'); -> 1
mysql> SELECT REGEXP_LIKE('Bn', '^Ba*n'); -> 1

• a+

Match any sequence of one or more a characters.

mysql> SELECT REGEXP_LIKE('Ban', '^Ba+n'); -> 1
mysql> SELECT REGEXP_LIKE('Bn', '^Ba+n'); -> 0

• a?

Match either zero or one a character.

mysql> SELECT REGEXP_LIKE('Bn', '^Ba?n'); -> 1
mysql> SELECT REGEXP_LIKE('Ban', '^Ba?n'); -> 1
mysql> SELECT REGEXP_LIKE('Baan', '^Ba?n'); -> 0

• de|abc

Alternation; match either of the sequences de or abc.

mysql> SELECT REGEXP_LIKE('pi', 'pi|apa'); -> 1
mysql> SELECT REGEXP_LIKE('axe', 'pi|apa'); -> 0
mysql> SELECT REGEXP_LIKE('apa', 'pi|apa'); -> 1
mysql> SELECT REGEXP_LIKE('apa', '^(pi|apa)$'); -> 1
mysql> SELECT REGEXP_LIKE('pi', '^(pi|apa)$'); -> 1
mysql> SELECT REGEXP_LIKE('pix', '^(pi|apa)$'); -> 0

• (abc)*

Match zero or more instances of the sequence abc.

mysql> SELECT REGEXP_LIKE('pi', '^(pi)*$'); -> 1
mysql> SELECT REGEXP_LIKE('pip', '^(pi)*$'); -> 0
mysql> SELECT REGEXP_LIKE('pipi', '^(pi)*$'); -> 1

• {1}, {2,3}

Repetition; {n} and {m,n} notation provide a more general way of writing regular expressions that
match many occurrences of the previous atom (or “piece”) of the pattern. m and n are integers.

• a*

Can be written as a{0,}.

• a+

Can be written as a{1,}.

• a?

2383

Regular Expressions

Can be written as a{0,1}.

To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more instances of
a. a{m,n} matches m through n instances of a, inclusive. If both m and n are given, m must be less
than or equal to n.

mysql> SELECT REGEXP_LIKE('abcde', 'a[bcd]{2}e'); -> 0
mysql> SELECT REGEXP_LIKE('abcde', 'a[bcd]{3}e'); -> 1
mysql> SELECT REGEXP_LIKE('abcde', 'a[bcd]{1,10}e'); -> 1

• [a-dX], [^a-dX]

Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character between two
other characters forms a range that matches all characters from the first character to the second.
For example, [0-9] matches any decimal digit. To include a literal] character, it must immediately
follow the opening bracket [. To include a literal - character, it must be written first or last. Any
character that does not have a defined special meaning inside a [] pair matches only itself.

mysql> SELECT REGEXP_LIKE('aXbc', '[a-dXYZ]'); -> 1
mysql> SELECT REGEXP_LIKE('aXbc', '^[a-dXYZ]$'); -> 0
mysql> SELECT REGEXP_LIKE('aXbc', '^[a-dXYZ]+$'); -> 1
mysql> SELECT REGEXP_LIKE('aXbc', '^[^a-dXYZ]+$'); -> 0
mysql> SELECT REGEXP_LIKE('gheis', '^[^a-dXYZ]+$'); -> 1
mysql> SELECT REGEXP_LIKE('gheisa', '^[^a-dXYZ]+$'); -> 0

• [=character_class=]

Within a bracket expression (written using [and]), [=character_class=] represents an
equivalence class. It matches all characters with the same collation value, including itself. For
example, if o and (+) are the members of an equivalence class, [[=o=]], [[=(+)=]], and
[o(+)] are all synonymous. An equivalence class may not be used as an endpoint of a range.

• [:character_class:]

Within a bracket expression (written using [and]), [:character_class:] represents a
character class that matches all characters belonging to that class. The following table lists the
standard class names. These names stand for the character classes defined in the ctype(3)
manual page. A particular locale may provide other class names. A character class may not be used
as an endpoint of a range.

Character Class Name Meaning

alnum Alphanumeric characters

alpha Alphabetic characters

blank Whitespace characters

cntrl Control characters

digit Digit characters

graph Graphic characters

lower Lowercase alphabetic characters

print Graphic or space characters

punct Punctuation characters

space Space, tab, newline, and carriage return

upper Uppercase alphabetic characters

xdigit Hexadecimal digit characters

mysql> SELECT REGEXP_LIKE('justalnums', '[[:alnum:]]+'); -> 1

2384

Regular Expressions

mysql> SELECT REGEXP_LIKE('!!', '[[:alnum:]]+'); -> 0

Because ICU is aware of all alphabetic characters in utf16_general_ci, some character classes
may not perform as quickly as character ranges. For example, [a-zA-Z] is known to work much
more quickly than [[:alpha:]], and [0-9] is generally much faster than [[:digit:]]. If you
are migrating applications using [[:alpha:]] or [[:digit:]] from an older version of MySQL,
you should replace these with the equivalent ranges for use with MySQL 8.0.

To use a literal instance of a special character in a regular expression, precede it by two backslash (\)
characters. The MySQL parser interprets one of the backslashes, and the regular expression library
interprets the other. For example, to match the string 1+2 that contains the special + character, only
the last of the following regular expressions is the correct one:

mysql> SELECT REGEXP_LIKE('1+2', '1+2'); -> 0
mysql> SELECT REGEXP_LIKE('1+2', '1\+2'); -> 0
mysql> SELECT REGEXP_LIKE('1+2', '1\\+2'); -> 1

Regular Expression Resource Control

REGEXP_LIKE() and similar functions use resources that can be controlled by setting system
variables:

• The match engine uses memory for its internal stack. To control the maximum available memory for
the stack in bytes, set the regexp_stack_limit system variable.

• The match engine operates in steps. To control the maximum number of steps performed by the
engine (and thus indirectly the execution time), set the regexp_time_limit system variable.
Because this limit is expressed as number of steps, it affects execution time only indirectly. Typically,
it is on the order of milliseconds.

Regular Expression Compatibility Considerations

Prior to MySQL 8.0.4, MySQL used the Henry Spencer regular expression library to support regular
expression operations, rather than International Components for Unicode (ICU). The following
discussion describes differences between the Spencer and ICU libraries that may affect applications:

• With the Spencer library, the REGEXP and RLIKE operators work in byte-wise fashion, so they are
not multibyte safe and may produce unexpected results with multibyte character sets. In addition,
these operators compare characters by their byte values and accented characters may not compare
as equal even if a given collation treats them as equal.

ICU has full Unicode support and is multibyte safe. Its regular expression functions treat all strings
as UTF-16. You should keep in mind that positional indexes are based on 16-bit chunks and not on
code points. This means that, when passed to such functions, characters using more than one chunk
may produce unanticipated results, such as those shown here:

mysql> SELECT REGEXP_INSTR('ӏӏb', 'b');
+--------------------------+
| REGEXP_INSTR('??b', 'b') |
+--------------------------+
| 5 |
+--------------------------+
1 row in set (0.00 sec)

mysql> SELECT REGEXP_INSTR('ӏӏbxxx', 'b', 4);
+--------------------------------+
| REGEXP_INSTR('??bxxx', 'b', 4) |
+--------------------------------+
| 5 |
+--------------------------------+
1 row in set (0.00 sec)

Characters within the Unicode Basic Multilingual Plane, which includes characters used by most
modern languages, are safe in this regard:

2385

Regular Expressions

mysql> SELECT REGEXP_INSTR('бжb', 'b');
+----------------------------+
| REGEXP_INSTR('бжb', 'b') |
+----------------------------+
| 3 |
+----------------------------+
1 row in set (0.00 sec)

mysql> SELECT REGEXP_INSTR('בעb', 'b');
+----------------------------+
| REGEXP_INSTR('בעb', 'b') |
+----------------------------+
| 3 |
+----------------------------+
1 row in set (0.00 sec)

mysql> SELECT REGEXP_INSTR('µå周çб', '周');
+------------------------------------+
| REGEXP_INSTR('µå周çб', '周') |
+------------------------------------+
| 3 |
+------------------------------------+
1 row in set (0.00 sec)

Emoji, such as the “sushi” character ӏ (U+1F363) used in the first two examples, are not included in
the Basic Multilingual Plane, but rather in Unicode's Supplementary Multilingual Plane. Another issue
can arise with emoji and other 4-byte characters when REGEXP_SUBSTR() or a similar function
begins searching in the middle of a character. Each of the two statements in the following example
starts from the second 2-byte position in the first argument. The first statement works on a string
consisting solely of 2-byte (BMP) characters. The second statement contains 4-byte characters
which are incorrectly interpreted in the result because the first two bytes are stripped off and so the
remainder of the character data is misaligned.

mysql> SELECT REGEXP_SUBSTR('周周周周', '.*', 2);
+--+
| REGEXP_SUBSTR('周周周周', '.*', 2) |
+--+
| 周周周 |
+--+
1 row in set (0.00 sec)

mysql> SELECT REGEXP_SUBSTR('ӏӏӏӏ', '.*', 2);
+--------------------------------+
| REGEXP_SUBSTR('????', '.*', 2) |
+--------------------------------+
| ?ӏ揘ӏ揘ӏ揘 |
+--------------------------------+
1 row in set (0.00 sec)

• For the . operator, the Spencer library matches line-terminator characters (carriage return, newline)
anywhere in string expressions, including in the middle. To match line terminator characters in the
middle of strings with ICU, specify the m match-control character.

• The Spencer library supports word-beginning and word-end boundary markers ([[:<:]] and
[[:>:]] notation). ICU does not. For ICU, you can use \b to match word boundaries; double the
backslash because MySQL interprets it as the escape character within strings.

• The Spencer library supports collating element bracket expressions ([.characters.] notation).
ICU does not.

• For repetition counts ({n} and {m,n} notation), the Spencer library has a maximum of 255. ICU has
no such limit, although the maximum number of match engine steps can be limited by setting the
regexp_time_limit system variable.

2386

Character Set and Collation of Function Results

• ICU interprets parentheses as metacharacters. To specify a literal open (or close parenthesis) in a
regular expression, it must be escaped:

mysql> SELECT REGEXP_LIKE('(', '(');
ERROR 3692 (HY000): Mismatched parenthesis in regular expression.
mysql> SELECT REGEXP_LIKE('(', '\\(');
+-------------------------+
| REGEXP_LIKE('(', '\\(') |
+-------------------------+
| 1 |
+-------------------------+
mysql> SELECT REGEXP_LIKE(')', ')');
ERROR 3692 (HY000): Mismatched parenthesis in regular expression.
mysql> SELECT REGEXP_LIKE(')', '\\)');
+-------------------------+
| REGEXP_LIKE(')', '\\)') |
+-------------------------+
| 1 |
+-------------------------+

• ICU also interprets square brackets as metacharacters, but only the opening square bracket need be
escaped to be used as a literal character:

mysql> SELECT REGEXP_LIKE('[', '[');
ERROR 3696 (HY000): The regular expression contains an
unclosed bracket expression.
mysql> SELECT REGEXP_LIKE('[', '\\[');
+-------------------------+
| REGEXP_LIKE('[', '\\[') |
+-------------------------+
| 1 |
+-------------------------+
mysql> SELECT REGEXP_LIKE(']', ']');
+-----------------------+
| REGEXP_LIKE(']', ']') |
+-----------------------+
| 1 |
+-----------------------+

14.8.3 Character Set and Collation of Function Results

MySQL has many operators and functions that return a string. This section answers the question: What
is the character set and collation of such a string?

For simple functions that take string input and return a string result as output, the output's character
set and collation are the same as those of the principal input value. For example, UPPER(X) returns
a string with the same character string and collation as X. The same applies for INSTR(), LCASE(),
LOWER(), LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(), RIGHT(), RPAD(), RTRIM(),
SOUNDEX(), SUBSTRING(), TRIM(), UCASE(), and UPPER().

Note

The REPLACE() function, unlike all other functions, always ignores the collation
of the string input and performs a case-sensitive comparison.

If a string input or function result is a binary string, the string has the binary character set and
collation. This can be checked by using the CHARSET() and COLLATION() functions, both of which
return binary for a binary string argument:

mysql> SELECT CHARSET(BINARY 'a'), COLLATION(BINARY 'a');
+---------------------+-----------------------+
| CHARSET(BINARY 'a') | COLLATION(BINARY 'a') |
+---------------------+-----------------------+
| binary | binary |
+---------------------+-----------------------+

For operations that combine multiple string inputs and return a single string output, the “aggregation
rules” of standard SQL apply for determining the collation of the result:

2387

Full-Text Search Functions

• If an explicit COLLATE Y occurs, use Y.

• If explicit COLLATE Y and COLLATE Z occur, raise an error.

• Otherwise, if all collations are Y, use Y.

• Otherwise, the result has no collation.

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resulting
collation is X. The same applies for UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and
LEAST().

For operations that convert to character data, the character set and collation of the strings
that result from the operations are defined by the character_set_connection and
collation_connection system variables that determine the default connection character set
and collation (see Section 12.4, “Connection Character Sets and Collations”). This applies only to
BIN_TO_UUID(), CAST(), CONV(), FORMAT(), HEX(), and SPACE().

An exception to the preceding principle occurs for expressions for virtual generated columns. In
such expressions, the table character set is used for BIN_TO_UUID(), CONV(), or HEX() results,
regardless of connection character set.

If there is any question about the character set or collation of the result returned by a string function,
use the CHARSET() or COLLATION() function to find out:

mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+----------------+-----------------+--------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |
+----------------+-----------------+--------------------+
| test@localhost | utf8mb3 | utf8mb3_general_ci |
+----------------+-----------------+--------------------+
mysql> SELECT CHARSET(COMPRESS('abc')), COLLATION(COMPRESS('abc'));
+--------------------------+----------------------------+
| CHARSET(COMPRESS('abc')) | COLLATION(COMPRESS('abc')) |
+--------------------------+----------------------------+
| binary | binary |
+--------------------------+----------------------------+

14.9 Full-Text Search Functions

MATCH (col1,col2,...) AGAINST (expr [search_modifier])

search_modifier:
 {
 IN NATURAL LANGUAGE MODE
 | IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
 | IN BOOLEAN MODE
 | WITH QUERY EXPANSION
 }

MySQL has support for full-text indexing and searching:

• A full-text index in MySQL is an index of type FULLTEXT.

• Full-text indexes can be used only with InnoDB or MyISAM tables, and can be created only for CHAR,
VARCHAR, or TEXT columns.

• MySQL provides a built-in full-text ngram parser that supports Chinese, Japanese, and Korean
(CJK), and an installable MeCab full-text parser plugin for Japanese. Parsing differences are outlined
in Section 14.9.8, “ngram Full-Text Parser”, and Section 14.9.9, “MeCab Full-Text Parser Plugin”.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a table is created,
or added later using ALTER TABLE or CREATE INDEX.

2388

Full-Text Search Functions

• For large data sets, it is much faster to load your data into a table that has no FULLTEXT index and
then create the index after that, than to load data into a table that has an existing FULLTEXT index.

Full-text searching is performed using MATCH() AGAINST() syntax. MATCH() takes a comma-
separated list that names the columns to be searched. AGAINST takes a string to search for, and an
optional modifier that indicates what type of search to perform. The search string must be a string value
that is constant during query evaluation. This rules out, for example, a table column because that can
differ for each row.

Previously, MySQL permitted the use of a rollup column with MATCH(), but queries employing
this construct performed poorly and with unreliable results. (This is due to the fact that MATCH()
is not implemented as a function of its arguments, but rather as a function of the row ID of the
current row in the underlying scan of the base table.) As of MySQL 8.0.28, MySQL no longer allows
such queries; more specifically, any query matching all of the criteria listed here is rejected with
ER_FULLTEXT_WITH_ROLLUP:

• MATCH() appears in the SELECT list, GROUP BY clause, HAVING clause, or ORDER BY clause of a
query block.

• The query block contains a GROUP BY ... WITH ROLLUP clause.

• The argument of the call to the MATCH() function is one of the grouping columns.

Some examples of such queries are shown here:

MATCH() in SELECT list...
SELECT MATCH (a) AGAINST ('abc') FROM t GROUP BY a WITH ROLLUP;
SELECT 1 FROM t GROUP BY a, MATCH (a) AGAINST ('abc') WITH ROLLUP;

...in HAVING clause...
SELECT 1 FROM t GROUP BY a WITH ROLLUP HAVING MATCH (a) AGAINST ('abc');

...and in ORDER BY clause
SELECT 1 FROM t GROUP BY a WITH ROLLUP ORDER BY MATCH (a) AGAINST ('abc');

The use of MATCH() with a rollup column in the WHERE clause is permitted.

There are three types of full-text searches:

• A natural language search interprets the search string as a phrase in natural human language
(a phrase in free text). There are no special operators, with the exception of double quote (")
characters. The stopword list applies. For more information about stopword lists, see Section 14.9.4,
“Full-Text Stopwords”.

Full-text searches are natural language searches if the IN NATURAL LANGUAGE MODE modifier is
given or if no modifier is given. For more information, see Section 14.9.1, “Natural Language Full-
Text Searches”.

• A boolean search interprets the search string using the rules of a special query language. The string
contains the words to search for. It can also contain operators that specify requirements such that a
word must be present or absent in matching rows, or that it should be weighted higher or lower than
usual. Certain common words (stopwords) are omitted from the search index and do not match if
present in the search string. The IN BOOLEAN MODE modifier specifies a boolean search. For more
information, see Section 14.9.2, “Boolean Full-Text Searches”.

• A query expansion search is a modification of a natural language search. The search string is used
to perform a natural language search. Then words from the most relevant rows returned by the
search are added to the search string and the search is done again. The query returns the rows
from the second search. The IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION or
WITH QUERY EXPANSION modifier specifies a query expansion search. For more information, see
Section 14.9.3, “Full-Text Searches with Query Expansion”.

For information about FULLTEXT query performance, see Section 10.3.5, “Column Indexes”.

2389

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_fulltext_with_rollup

Natural Language Full-Text Searches

For more information about InnoDB FULLTEXT indexes, see Section 17.6.2.4, “InnoDB Full-Text
Indexes”.

Constraints on full-text searching are listed in Section 14.9.5, “Full-Text Restrictions”.

The myisam_ftdump utility dumps the contents of a MyISAM full-text index. This may be helpful for
debugging full-text queries. See Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”.

14.9.1 Natural Language Full-Text Searches

By default or with the IN NATURAL LANGUAGE MODE modifier, the MATCH() function performs a
natural language search for a string against a text collection. A collection is a set of one or more
columns included in a FULLTEXT index. The search string is given as the argument to AGAINST(). For
each row in the table, MATCH() returns a relevance value; that is, a similarity measure between the
search string and the text in that row in the columns named in the MATCH() list.

mysql> CREATE TABLE articles (
 -> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 -> title VARCHAR(200),
 -> body TEXT,
 -> FULLTEXT (title,body)
 ->) ENGINE=InnoDB;
Query OK, 0 rows affected (0.08 sec)

mysql> INSERT INTO articles (title,body) VALUES
 -> ('MySQL Tutorial','DBMS stands for DataBase ...'),
 -> ('How To Use MySQL Well','After you went through a ...'),
 -> ('Optimizing MySQL','In this tutorial, we show ...'),
 -> ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 -> ('MySQL vs. YourSQL','In the following database comparison ...'),
 -> ('MySQL Security','When configured properly, MySQL ...');
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

By default, the search is performed in case-insensitive fashion. To perform a case-sensitive full-text
search, use a case-sensitive or binary collation for the indexed columns. For example, a column
that uses the utf8mb4 character set of can be assigned a collation of utf8mb4_0900_as_cs or
utf8mb4_bin to make it case-sensitive for full-text searches.

When MATCH() is used in a WHERE clause, as in the example shown earlier, the rows returned are
automatically sorted with the highest relevance first as long as the following conditions are met:

• There must be no explicit ORDER BY clause.

• The search must be performed using a full-text index scan rather than a table scan.

• If the query joins tables, the full-text index scan must be the leftmost non-constant table in the join.

Given the conditions just listed, it is usually less effort to specify using ORDER BY an explicit sort order
when one is necessary or desired.

Relevance values are nonnegative floating-point numbers. Zero relevance means no similarity.
Relevance is computed based on the number of words in the row (document), the number of unique
words in the row, the total number of words in the collection, and the number of rows that contain a
particular word.

2390

Natural Language Full-Text Searches

Note

The term “document” may be used interchangeably with the term “row”, and
both terms refer to the indexed part of the row. The term “collection” refers to
the indexed columns and encompasses all rows.

To simply count matches, you could use a query like this:

mysql> SELECT COUNT(*) FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+
1 row in set (0.00 sec)

You might find it quicker to rewrite the query as follows:

mysql> SELECT
 -> COUNT(IF(MATCH (title,body) AGAINST ('database' IN NATURAL LANGUAGE MODE), 1, NULL))
 -> AS count
 -> FROM articles;
+-------+
| count |
+-------+
| 2 |
+-------+
1 row in set (0.03 sec)

The first query does some extra work (sorting the results by relevance) but also can use an index
lookup based on the WHERE clause. The index lookup might make the first query faster if the search
matches few rows. The second query performs a full table scan, which might be faster than the index
lookup if the search term was present in most rows.

For natural-language full-text searches, the columns named in the MATCH() function must be the
same columns included in some FULLTEXT index in your table. For the preceding query, note that
the columns named in the MATCH() function (title and body) are the same as those named in the
definition of the article table's FULLTEXT index. To search the title or body separately, you
would create separate FULLTEXT indexes for each column.

You can also perform a boolean search or a search with query expansion. These search types are
described in Section 14.9.2, “Boolean Full-Text Searches”, and Section 14.9.3, “Full-Text Searches
with Query Expansion”.

A full-text search that uses an index can name columns only from a single table in the MATCH() clause
because an index cannot span multiple tables. For MyISAM tables, a boolean search can be done in
the absence of an index (albeit more slowly), in which case it is possible to name columns from multiple
tables.

The preceding example is a basic illustration that shows how to use the MATCH() function where rows
are returned in order of decreasing relevance. The next example shows how to retrieve the relevance
values explicitly. Returned rows are not ordered because the SELECT statement includes neither
WHERE nor ORDER BY clauses:

mysql> SELECT id, MATCH (title,body)
 -> AGAINST ('Tutorial' IN NATURAL LANGUAGE MODE) AS score
 -> FROM articles;
+----+---------------------+
| id | score |
+----+---------------------+
1	0.22764469683170319
2	0
3	0.22764469683170319
4	0
5	0

2391

Natural Language Full-Text Searches

| 6 | 0 |
+----+---------------------+
6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance values and it also sorts the
rows in order of decreasing relevance. To achieve this result, specify MATCH() twice: once in the
SELECT list and once in the WHERE clause. This causes no additional overhead, because the MySQL
optimizer notices that the two MATCH() calls are identical and invokes the full-text search code only
once.

mysql> SELECT id, body, MATCH (title,body)
 -> AGAINST ('Security implications of running MySQL as root'
 -> IN NATURAL LANGUAGE MODE) AS score
 -> FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST('Security implications of running MySQL as root'
 -> IN NATURAL LANGUAGE MODE);
+----+-------------------------------------+-----------------+
| id | body | score |
+----+-------------------------------------+-----------------+
| 4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |
| 6 | When configured properly, MySQL ... | 1.3114095926285 |
+----+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

A phrase that is enclosed within double quote (") characters matches only rows that contain the phrase
literally, as it was typed. The full-text engine splits the phrase into words and performs a search in the
FULLTEXT index for the words. Nonword characters need not be matched exactly: Phrase searching
requires only that matches contain exactly the same words as the phrase and in the same order. For
example, "test phrase" matches "test, phrase". If the phrase contains no words that are in the
index, the result is empty. For example, if all words are either stopwords or shorter than the minimum
length of indexed words, the result is empty.

The MySQL FULLTEXT implementation regards any sequence of true word characters (letters, digits,
and underscores) as a word. That sequence may also contain apostrophes ('), but not more than one
in a row. This means that aaa'bbb is regarded as one word, but aaa''bbb is regarded as two words.
Apostrophes at the beginning or the end of a word are stripped by the FULLTEXT parser; 'aaa'bbb'
would be parsed as aaa'bbb.

The built-in FULLTEXT parser determines where words start and end by looking for certain delimiter
characters; for example, (space), , (comma), and . (period). If words are not separated by delimiters
(as in, for example, Chinese), the built-in FULLTEXT parser cannot determine where a word begins or
ends. To be able to add words or other indexed terms in such languages to a FULLTEXT index that
uses the built-in FULLTEXT parser, you must preprocess them so that they are separated by some
arbitrary delimiter. Alternatively, you can create FULLTEXT indexes using the ngram parser plugin (for
Chinese, Japanese, or Korean) or the MeCab parser plugin (for Japanese).

It is possible to write a plugin that replaces the built-in full-text parser. For details, see The MySQL
Plugin API. For example parser plugin source code, see the plugin/fulltext directory of a MySQL
source distribution.

Some words are ignored in full-text searches:

• Any word that is too short is ignored. The default minimum length of words that are found
by full-text searches is three characters for InnoDB search indexes, or four characters for
MyISAM. You can control the cutoff by setting a configuration option before creating the
index: innodb_ft_min_token_size configuration option for InnoDB search indexes, or
ft_min_word_len for MyISAM.

Note

This behavior does not apply to FULLTEXT indexes that use the
ngram parser. For the ngram parser, token length is defined by the
ngram_token_size option.

2392

https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-api.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-api.html

Boolean Full-Text Searches

• Words in the stopword list are ignored. A stopword is a word such as “the” or “some” that is so
common that it is considered to have zero semantic value. There is a built-in stopword list, but it
can be overridden by a user-defined list. The stopword lists and related configuration options are
different for InnoDB search indexes and MyISAM ones. Stopword processing is controlled by the
configuration options innodb_ft_enable_stopword, innodb_ft_server_stopword_table,
and innodb_ft_user_stopword_table for InnoDB search indexes, and ft_stopword_file
for MyISAM ones.

See Section 14.9.4, “Full-Text Stopwords” to view default stopword lists and how to change them. The
default minimum word length can be changed as described in Section 14.9.6, “Fine-Tuning MySQL
Full-Text Search”.

Every correct word in the collection and in the query is weighted according to its significance in the
collection or query. Thus, a word that is present in many documents has a lower weight, because it has
lower semantic value in this particular collection. Conversely, if the word is rare, it receives a higher
weight. The weights of the words are combined to compute the relevance of the row. This technique
works best with large collections.

MyISAM Limitation

For very small tables, word distribution does not adequately reflect their
semantic value, and this model may sometimes produce bizarre results for
search indexes on MyISAM tables. For example, although the word “MySQL” is
present in every row of the articles table shown earlier, a search for the word
in a MyISAM search index produces no results:

mysql> SELECT * FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST ('MySQL' IN NATURAL LANGUAGE MODE);
Empty set (0.00 sec)

The search result is empty because the word “MySQL” is present in at least
50% of the rows, and so is effectively treated as a stopword. This filtering
technique is more suitable for large data sets, where you might not want the
result set to return every second row from a 1GB table, than for small data sets
where it might cause poor results for popular terms.

The 50% threshold can surprise you when you first try full-text searching to see
how it works, and makes InnoDB tables more suited to experimentation with
full-text searches. If you create a MyISAM table and insert only one or two rows
of text into it, every word in the text occurs in at least 50% of the rows. As a
result, no search returns any results until the table contains more rows. Users
who need to bypass the 50% limitation can build search indexes on InnoDB
tables, or use the boolean search mode explained in Section 14.9.2, “Boolean
Full-Text Searches”.

14.9.2 Boolean Full-Text Searches

MySQL can perform boolean full-text searches using the IN BOOLEAN MODE modifier. With this
modifier, certain characters have special meaning at the beginning or end of words in the search
string. In the following query, the + and - operators indicate that a word must be present or absent,
respectively, for a match to occur. Thus, the query retrieves all the rows that contain the word “MySQL”
but that do not contain the word “YourSQL”:

mysql> SELECT * FROM articles WHERE MATCH (title,body)
 -> AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);
+----+-----------------------+-------------------------------------+
| id | title | body |
+----+-----------------------+-------------------------------------+
1	MySQL Tutorial	DBMS stands for DataBase ...
2	How To Use MySQL Well	After you went through a ...
3	Optimizing MySQL	In this tutorial, we show ...

2393

Boolean Full-Text Searches

| 4 | 1001 MySQL Tricks | 1. Never run mysqld as root. 2. ... |
| 6 | MySQL Security | When configured properly, MySQL ... |
+----+-----------------------+-------------------------------------+

Note

In implementing this feature, MySQL uses what is sometimes referred to as
implied Boolean logic, in which

• + stands for AND

• - stands for NOT

• [no operator] implies OR

Boolean full-text searches have these characteristics:

• They do not automatically sort rows in order of decreasing relevance.

• InnoDB tables require a FULLTEXT index on all columns of the MATCH() expression to perform
boolean queries. Boolean queries against a MyISAM search index can work even without a
FULLTEXT index, although a search executed in this fashion would be quite slow.

• The minimum and maximum word length full-text parameters apply to FULLTEXT indexes created
using the built-in FULLTEXT parser and MeCab parser plugin. innodb_ft_min_token_size and
innodb_ft_max_token_size are used for InnoDB search indexes. ft_min_word_len and
ft_max_word_len are used for MyISAM search indexes.

Minimum and maximum word length full-text parameters do not apply to FULLTEXT indexes created
using the ngram parser. ngram token size is defined by the ngram_token_size option.

• The stopword list applies, controlled by innodb_ft_enable_stopword,
innodb_ft_server_stopword_table, and innodb_ft_user_stopword_table for InnoDB
search indexes, and ft_stopword_file for MyISAM ones.

• InnoDB full-text search does not support the use of multiple operators on a single search word, as
in this example: '++apple'. Use of multiple operators on a single search word returns a syntax
error to standard out. MyISAM full-text search successfully processes the same search, ignoring all
operators except for the operator immediately adjacent to the search word.

• InnoDB full-text search only supports leading plus or minus signs. For example, InnoDB supports
'+apple' but does not support 'apple+'. Specifying a trailing plus or minus sign causes InnoDB
to report a syntax error.

• InnoDB full-text search does not support the use of a leading plus sign with wildcard ('+*'), a plus
and minus sign combination ('+-'), or leading a plus and minus sign combination ('+-apple').
These invalid queries return a syntax error.

• InnoDB full-text search does not support the use of the @ symbol in boolean full-text searches. The @
symbol is reserved for use by the @distance proximity search operator.

• They do not use the 50% threshold that applies to MyISAM search indexes.

The boolean full-text search capability supports the following operators:

• +

A leading or trailing plus sign indicates that this word must be present in each row that is returned.
InnoDB only supports leading plus signs.

• -

A leading or trailing minus sign indicates that this word must not be present in any of the rows that
are returned. InnoDB only supports leading minus signs.

2394

Boolean Full-Text Searches

Note: The - operator acts only to exclude rows that are otherwise matched by other search terms.
Thus, a boolean-mode search that contains only terms preceded by - returns an empty result. It
does not return “all rows except those containing any of the excluded terms.”

• (no operator)

By default (when neither + nor - is specified), the word is optional, but the rows that contain it are
rated higher. This mimics the behavior of MATCH() AGAINST() without the IN BOOLEAN MODE
modifier.

• @distance

This operator works on InnoDB tables only. It tests whether two or more words all start within
a specified distance from each other, measured in words. Specify the search words within a
double-quoted string immediately before the @distance operator, for example, MATCH(col1)
AGAINST('"word1 word2 word3" @8' IN BOOLEAN MODE)

• > <

These two operators are used to change a word's contribution to the relevance value that is assigned
to a row. The > operator increases the contribution and the < operator decreases it. See the example
following this list.

• ()

Parentheses group words into subexpressions. Parenthesized groups can be nested.

• ~

A leading tilde acts as a negation operator, causing the word's contribution to the row's relevance to
be negative. This is useful for marking “noise” words. A row containing such a word is rated lower
than others, but is not excluded altogether, as it would be with the - operator.

• *

The asterisk serves as the truncation (or wildcard) operator. Unlike the other operators, it is
appended to the word to be affected. Words match if they begin with the word preceding the *
operator.

If a word is specified with the truncation operator, it is not stripped from a boolean query,
even if it is too short or a stopword. Whether a word is too short is determined from the
innodb_ft_min_token_size setting for InnoDB tables, or ft_min_word_len for MyISAM
tables. These options are not applicable to FULLTEXT indexes that use the ngram parser.

The wildcarded word is considered as a prefix that must be present at the start of one or more words.
If the minimum word length is 4, a search for '+word +the*' could return fewer rows than a
search for '+word +the', because the second query ignores the too-short search term the.

• "

A phrase that is enclosed within double quote (") characters matches only rows that contain the
phrase literally, as it was typed. The full-text engine splits the phrase into words and performs a
search in the FULLTEXT index for the words. Nonword characters need not be matched exactly:
Phrase searching requires only that matches contain exactly the same words as the phrase and in
the same order. For example, "test phrase" matches "test, phrase".

If the phrase contains no words that are in the index, the result is empty. The words might not be in
the index because of a combination of factors: if they do not exist in the text, are stopwords, or are
shorter than the minimum length of indexed words.

The following examples demonstrate some search strings that use boolean full-text operators:

2395

Boolean Full-Text Searches

• 'apple banana'

Find rows that contain at least one of the two words.

• '+apple +juice'

Find rows that contain both words.

• '+apple macintosh'

Find rows that contain the word “apple”, but rank rows higher if they also contain “macintosh”.

• '+apple -macintosh'

Find rows that contain the word “apple” but not “macintosh”.

• '+apple ~macintosh'

Find rows that contain the word “apple”, but if the row also contains the word “macintosh”, rate it
lower than if row does not. This is “softer” than a search for '+apple -macintosh', for which the
presence of “macintosh” causes the row not to be returned at all.

• '+apple +(>turnover <strudel)'

Find rows that contain the words “apple” and “turnover”, or “apple” and “strudel” (in any order), but
rank “apple turnover” higher than “apple strudel”.

• 'apple*'

Find rows that contain words such as “apple”, “apples”, “applesauce”, or “applet”.

• '"some words"'

Find rows that contain the exact phrase “some words” (for example, rows that contain “some words
of wisdom” but not “some noise words”). Note that the " characters that enclose the phrase are
operator characters that delimit the phrase. They are not the quotation marks that enclose the search
string itself.

Relevancy Rankings for InnoDB Boolean Mode Search

InnoDB full-text search is modeled on the Sphinx full-text search engine, and the algorithms used are
based on BM25 and TF-IDF ranking algorithms. For these reasons, relevancy rankings for InnoDB
boolean full-text search may differ from MyISAM relevancy rankings.

InnoDB uses a variation of the “term frequency-inverse document frequency” (TF-IDF) weighting
system to rank a document's relevance for a given full-text search query. The TF-IDF weighting is
based on how frequently a word appears in a document, offset by how frequently the word appears in
all documents in the collection. In other words, the more frequently a word appears in a document, and
the less frequently the word appears in the document collection, the higher the document is ranked.

How Relevancy Ranking is Calculated

The term frequency (TF) value is the number of times that a word appears in a document. The
inverse document frequency (IDF) value of a word is calculated using the following formula, where
total_records is the number of records in the collection, and matching_records is the number of
records that the search term appears in.

${IDF} = log10(${total_records} / ${matching_records})

When a document contains a word multiple times, the IDF value is multiplied by the TF value:

${TF} * ${IDF}

2396

http://sphinxsearch.com/
http://en.wikipedia.org/wiki/Okapi_BM25
http://en.wikipedia.org/wiki/TF-IDF

Boolean Full-Text Searches

Using the TF and IDF values, the relevancy ranking for a document is calculated using this formula:

${rank} = ${TF} * ${IDF} * ${IDF}

The formula is demonstrated in the following examples.

Relevancy Ranking for a Single Word Search

This example demonstrates the relevancy ranking calculation for a single-word search.

mysql> CREATE TABLE articles (
 -> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 -> title VARCHAR(200),
 -> body TEXT,
 -> FULLTEXT (title,body)
 ->) ENGINE=InnoDB;
Query OK, 0 rows affected (1.04 sec)

mysql> INSERT INTO articles (title,body) VALUES
 -> ('MySQL Tutorial','This database tutorial ...'),
 -> ("How To Use MySQL",'After you went through a ...'),
 -> ('Optimizing Your Database','In this database tutorial ...'),
 -> ('MySQL vs. YourSQL','When comparing databases ...'),
 -> ('MySQL Security','When configured properly, MySQL ...'),
 -> ('Database, Database, Database','database database database'),
 -> ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 -> ('MySQL Full-Text Indexes', 'MySQL fulltext indexes use a ..');
Query OK, 8 rows affected (0.06 sec)
Records: 8 Duplicates: 0 Warnings: 0

mysql> SELECT id, title, body,
 -> MATCH (title,body) AGAINST ('database' IN BOOLEAN MODE) AS score
 -> FROM articles ORDER BY score DESC;
+----+------------------------------+-------------------------------------+---------------------+
| id | title | body | score |
+----+------------------------------+-------------------------------------+---------------------+
6	Database, Database, Database	database database database	1.0886961221694946
3	Optimizing Your Database	In this database tutorial ...	0.36289870738983154
1	MySQL Tutorial	This database tutorial ...	0.18144935369491577
2	How To Use MySQL	After you went through a ...	0
4	MySQL vs. YourSQL	When comparing databases ...	0
5	MySQL Security	When configured properly, MySQL ...	0
7	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...	0
8	MySQL Full-Text Indexes	MySQL fulltext indexes use a ..	0
+----+------------------------------+-------------------------------------+---------------------+
8 rows in set (0.00 sec)

There are 8 records in total, with 3 that match the “database” search term. The first record (id 6)
contains the search term 6 times and has a relevancy ranking of 1.0886961221694946. This ranking
value is calculated using a TF value of 6 (the “database” search term appears 6 times in record id 6)
and an IDF value of 0.42596873216370745, which is calculated as follows (where 8 is the total number
of records and 3 is the number of records that the search term appears in):

${IDF} = LOG10(8 / 3) = 0.42596873216370745

The TF and IDF values are then entered into the ranking formula:

${rank} = ${TF} * ${IDF} * ${IDF}

Performing the calculation in the MySQL command-line client returns a ranking value of
1.088696164686938.

mysql> SELECT 6*LOG10(8/3)*LOG10(8/3);
+-------------------------+
| 6*LOG10(8/3)*LOG10(8/3) |
+-------------------------+
| 1.088696164686938 |
+-------------------------+
1 row in set (0.00 sec)

2397

Full-Text Searches with Query Expansion

Note

You may notice a slight difference in the ranking values returned by the
SELECT ... MATCH ... AGAINST statement and the MySQL command-line
client (1.0886961221694946 versus 1.088696164686938). The difference
is due to how the casts between integers and floats/doubles are performed
internally by InnoDB (along with related precision and rounding decisions), and
how they are performed elsewhere, such as in the MySQL command-line client
or other types of calculators.

Relevancy Ranking for a Multiple Word Search

This example demonstrates the relevancy ranking calculation for a multiple-word full-text search based
on the articles table and data used in the previous example.

If you search on more than one word, the relevancy ranking value is a sum of the relevancy ranking
value for each word, as shown in this formula:

${rank} = ${TF} * ${IDF} * ${IDF} + ${TF} * ${IDF} * ${IDF}

Performing a search on two terms ('mysql tutorial') returns the following results:

mysql> SELECT id, title, body, MATCH (title,body)
 -> AGAINST ('mysql tutorial' IN BOOLEAN MODE) AS score
 -> FROM articles ORDER BY score DESC;
+----+------------------------------+-------------------------------------+----------------------+
| id | title | body | score |
+----+------------------------------+-------------------------------------+----------------------+
1	MySQL Tutorial	This database tutorial ...	0.7405621409416199
3	Optimizing Your Database	In this database tutorial ...	0.3624762296676636
5	MySQL Security	When configured properly, MySQL ...	0.031219376251101494
8	MySQL Full-Text Indexes	MySQL fulltext indexes use a ..	0.031219376251101494
2	How To Use MySQL	After you went through a ...	0.015609688125550747
4	MySQL vs. YourSQL	When comparing databases ...	0.015609688125550747
7	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...	0.015609688125550747
6	Database, Database, Database	database database database	0
+----+------------------------------+-------------------------------------+----------------------+
8 rows in set (0.00 sec)

In the first record (id 8), 'mysql' appears once and 'tutorial' appears twice. There are six matching
records for 'mysql' and two matching records for 'tutorial'. The MySQL command-line client returns the
expected ranking value when inserting these values into the ranking formula for a multiple word search:

mysql> SELECT (1*log10(8/6)*log10(8/6)) + (2*log10(8/2)*log10(8/2));
+---+
| (1*log10(8/6)*log10(8/6)) + (2*log10(8/2)*log10(8/2)) |
+---+
| 0.7405621541938003 |
+---+
1 row in set (0.00 sec)

Note

The slight difference in the ranking values returned by the SELECT ...
MATCH ... AGAINST statement and the MySQL command-line client is
explained in the preceding example.

14.9.3 Full-Text Searches with Query Expansion

Full-text search supports query expansion (and in particular, its variant “blind query expansion”). This
is generally useful when a search phrase is too short, which often means that the user is relying on
implied knowledge that the full-text search engine lacks. For example, a user searching for “database”
may really mean that “MySQL”, “Oracle”, “DB2”, and “RDBMS” all are phrases that should match
“databases” and should be returned, too. This is implied knowledge.

2398

Full-Text Stopwords

Blind query expansion (also known as automatic relevance feedback) is enabled by adding WITH
QUERY EXPANSION or IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION following the
search phrase. It works by performing the search twice, where the search phrase for the second search
is the original search phrase concatenated with the few most highly relevant documents from the first
search. Thus, if one of these documents contains the word “databases” and the word “MySQL”, the
second search finds the documents that contain the word “MySQL” even if they do not contain the word
“database”. The following example shows this difference:

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

mysql> SELECT * FROM articles
 WHERE MATCH (title,body)
 AGAINST ('database' WITH QUERY EXPANSION);
+----+-----------------------+--+
| id | title | body |
+----+-----------------------+--+
5	MySQL vs. YourSQL	In the following database comparison ...
1	MySQL Tutorial	DBMS stands for DataBase ...
3	Optimizing MySQL	In this tutorial we show ...
6	MySQL Security	When configured properly, MySQL ...
2	How To Use MySQL Well	After you went through a ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
+----+-----------------------+--+
6 rows in set (0.00 sec)

Another example could be searching for books by Georges Simenon about Maigret, when a user is not
sure how to spell “Maigret”. A search for “Megre and the reluctant witnesses” finds only “Maigret and
the Reluctant Witnesses” without query expansion. A search with query expansion finds all books with
the word “Maigret” on the second pass.

Note

Because blind query expansion tends to increase noise significantly by returning
nonrelevant documents, use it only when a search phrase is short.

14.9.4 Full-Text Stopwords

The stopword list is loaded and searched for full-text queries using the server character set and
collation (the values of the character_set_server and collation_server system variables).
False hits or misses might occur for stopword lookups if the stopword file or columns used for full-text
indexing or searches have a character set or collation different from character_set_server or
collation_server.

Case sensitivity of stopword lookups depends on the server collation. For example, lookups are
case-insensitive if the collation is utf8mb4_0900_ai_ci, whereas lookups are case-sensitive if the
collation is utf8mb4_0900_as_cs or utf8mb4_bin.

• Stopwords for InnoDB Search Indexes

• Stopwords for MyISAM Search Indexes

Stopwords for InnoDB Search Indexes

InnoDB has a relatively short list of default stopwords, because documents from technical, literary,
and other sources often use short words as keywords or in significant phrases. For example, you might

2399

Full-Text Stopwords

search for “to be or not to be” and expect to get a sensible result, rather than having all those words
ignored.

To see the default InnoDB stopword list, query the Information Schema
INNODB_FT_DEFAULT_STOPWORD table.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD;
+-------+
| value |
+-------+
| a |
| about |
| an |
| are |
| as |
| at |
| be |
| by |
| com |
| de |
| en |
| for |
| from |
| how |
| i |
| in |
| is |
| it |
| la |
| of |
| on |
| or |
| that |
| the |
| this |
| to |
| was |
| what |
| when |
| where |
| who |
| will |
| with |
| und |
| the |
| www |
+-------+
36 rows in set (0.00 sec)

To define your own stopword list for all InnoDB tables, define a table with the same structure as
the INNODB_FT_DEFAULT_STOPWORD table, populate it with stopwords, and set the value of the
innodb_ft_server_stopword_table option to a value in the form db_name/table_name before
creating the full-text index. The stopword table must have a single VARCHAR column named value.
The following example demonstrates creating and configuring a new global stopword table for InnoDB.

-- Create a new stopword table

mysql> CREATE TABLE my_stopwords(value VARCHAR(30)) ENGINE = INNODB;
Query OK, 0 rows affected (0.01 sec)

-- Insert stopwords (for simplicity, a single stopword is used in this example)

mysql> INSERT INTO my_stopwords(value) VALUES ('Ishmael');
Query OK, 1 row affected (0.00 sec)

-- Create the table

mysql> CREATE TABLE opening_lines (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
opening_line TEXT(500),
author VARCHAR(200),

2400

Full-Text Stopwords

title VARCHAR(200)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.01 sec)

-- Insert data into the table

mysql> INSERT INTO opening_lines(opening_line,author,title) VALUES
('Call me Ishmael.','Herman Melville','Moby-Dick'),
('A screaming comes across the sky.','Thomas Pynchon','Gravity\'s Rainbow'),
('I am an invisible man.','Ralph Ellison','Invisible Man'),
('Where now? Who now? When now?','Samuel Beckett','The Unnamable'),
('It was love at first sight.','Joseph Heller','Catch-22'),
('All this happened, more or less.','Kurt Vonnegut','Slaughterhouse-Five'),
('Mrs. Dalloway said she would buy the flowers herself.','Virginia Woolf','Mrs. Dalloway'),
('It was a pleasure to burn.','Ray Bradbury','Fahrenheit 451');
Query OK, 8 rows affected (0.00 sec)
Records: 8 Duplicates: 0 Warnings: 0

-- Set the innodb_ft_server_stopword_table option to the new stopword table

mysql> SET GLOBAL innodb_ft_server_stopword_table = 'test/my_stopwords';
Query OK, 0 rows affected (0.00 sec)

-- Create the full-text index (which rebuilds the table if no FTS_DOC_ID column is defined)

mysql> CREATE FULLTEXT INDEX idx ON opening_lines(opening_line);
Query OK, 0 rows affected, 1 warning (1.17 sec)
Records: 0 Duplicates: 0 Warnings: 1

Verify that the specified stopword ('Ishmael') does not appear by querying the Information Schema
INNODB_FT_INDEX_TABLE table.

Note

By default, words less than 3 characters in length or greater than 84
characters in length do not appear in an InnoDB full-text search index.
Maximum and minimum word length values are configurable using the
innodb_ft_max_token_size and innodb_ft_min_token_size
variables. This default behavior does not apply to the ngram parser plugin.
ngram token size is defined by the ngram_token_size option.

mysql> SET GLOBAL innodb_ft_aux_table='test/opening_lines';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT word FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 15;
+-----------+
| word |
+-----------+
| across |
| all |
| burn |
| buy |
| call |
| comes |
| dalloway |
| first |
| flowers |
| happened |
| herself |
| invisible |
| less |
| love |
| man |
+-----------+
15 rows in set (0.00 sec)

To create stopword lists on a table-by-table basis, create other stopword tables and use the
innodb_ft_user_stopword_table option to specify the stopword table that you want to use before
you create the full-text index.

2401

Full-Text Stopwords

Stopwords for MyISAM Search Indexes

The stopword file is loaded and searched using latin1 if character_set_server is ucs2, utf16,
utf16le, or utf32.

 To override the default stopword list for MyISAM tables, set the ft_stopword_file system
variable. (See Section 7.1.8, “Server System Variables”.) The variable value should be the path name
of the file containing the stopword list, or the empty string to disable stopword filtering. The server looks
for the file in the data directory unless an absolute path name is given to specify a different directory.
After changing the value of this variable or the contents of the stopword file, restart the server and
rebuild your FULLTEXT indexes.

The stopword list is free-form, separating stopwords with any nonalphanumeric character such as
newline, space, or comma. Exceptions are the underscore character (_) and a single apostrophe
(') which are treated as part of a word. The character set of the stopword list is the server's default
character set; see Section 12.3.2, “Server Character Set and Collation”.

The following list shows the default stopwords for MyISAM search indexes. In a MySQL source
distribution, you can find this list in the storage/myisam/ft_static.c file.

a's able about above according
accordingly across actually after afterwards
again against ain't all allow
allows almost alone along already
also although always am among
amongst an and another any
anybody anyhow anyone anything anyway
anyways anywhere apart appear appreciate
appropriate are aren't around as
aside ask asking associated at
available away awfully be became
because become becomes becoming been
before beforehand behind being believe
below beside besides best better
between beyond both brief but
by c'mon c's came can
can't cannot cant cause causes
certain certainly changes clearly co
com come comes concerning consequently
consider considering contain containing contains
corresponding could couldn't course currently
definitely described despite did didn't
different do does doesn't doing
don't done down downwards during
each edu eg eight either
else elsewhere enough entirely especially
et etc even ever every
everybody everyone everything everywhere ex
exactly example except far few
fifth first five followed following
follows for former formerly forth
four from further furthermore get
gets getting given gives go
goes going gone got gotten
greetings had hadn't happens hardly
has hasn't have haven't having
he he's hello help hence
her here here's hereafter hereby
herein hereupon hers herself hi
him himself his hither hopefully
how howbeit however i'd i'll
i'm i've ie if ignored
immediate in inasmuch inc indeed
indicate indicated indicates inner insofar
instead into inward is isn't
it it'd it'll it's its
itself just keep keeps kept
know known knows last lately

2402

Full-Text Restrictions

later latter latterly least less
lest let let's like liked
likely little look looking looks
ltd mainly many may maybe
me mean meanwhile merely might
more moreover most mostly much
must my myself name namely
nd near nearly necessary need
needs neither never nevertheless new
next nine no nobody non
none noone nor normally not
nothing novel now nowhere obviously
of off often oh ok
okay old on once one
ones only onto or other
others otherwise ought our ours
ourselves out outside over overall
own particular particularly per perhaps
placed please plus possible presumably
probably provides que quite qv
rather rd re really reasonably
regarding regardless regards relatively respectively
right said same saw say
saying says second secondly see
seeing seem seemed seeming seems
seen self selves sensible sent
serious seriously seven several shall
she should shouldn't since six
so some somebody somehow someone
something sometime sometimes somewhat somewhere
soon sorry specified specify specifying
still sub such sup sure
t's take taken tell tends
th than thank thanks thanx
that that's thats the their
theirs them themselves then thence
there there's thereafter thereby therefore
therein theres thereupon these they
they'd they'll they're they've think
third this thorough thoroughly those
though three through throughout thru
thus to together too took
toward towards tried tries truly
try trying twice two un
under unfortunately unless unlikely until
unto up upon us use
used useful uses using usually
value various very via viz
vs want wants was wasn't
way we we'd we'll we're
we've welcome well went were
weren't what what's whatever when
whence whenever where where's whereafter
whereas whereby wherein whereupon wherever
whether which while whither who
who's whoever whole whom whose
why will willing wish with
within without won't wonder would
wouldn't yes yet you you'd
you'll you're you've your yours
yourself yourselves zero

14.9.5 Full-Text Restrictions

• Full-text searches are supported for InnoDB and MyISAM tables only.

• Full-text searches are not supported for partitioned tables. See Section 26.6, “Restrictions and
Limitations on Partitioning”.

• Full-text searches can be used with most multibyte character sets. The exception is that for Unicode,
the utf8mb3 or utf8mb4 character set can be used, but not the ucs2 character set. Although

2403

Fine-Tuning MySQL Full-Text Search

FULLTEXT indexes on ucs2 columns cannot be used, you can perform IN BOOLEAN MODE
searches on a ucs2 column that has no such index.

The remarks for utf8mb3 also apply to utf8mb4, and the remarks for ucs2 also apply to utf16,
utf16le, and utf32.

• Ideographic languages such as Chinese and Japanese do not have word delimiters. Therefore,
the built-in full-text parser cannot determine where words begin and end in these and other such
languages.

A character-based ngram full-text parser that supports Chinese, Japanese, and Korean (CJK), and
a word-based MeCab parser plugin that supports Japanese are provided for use with InnoDB and
MyISAM tables.

• Although the use of multiple character sets within a single table is supported, all columns in a
FULLTEXT index must use the same character set and collation.

• The MATCH() column list must match exactly the column list in some FULLTEXT index definition
for the table, unless this MATCH() is IN BOOLEAN MODE on a MyISAM table. For MyISAM tables,
boolean-mode searches can be done on nonindexed columns, although they are likely to be slow.

• The argument to AGAINST() must be a string value that is constant during query evaluation. This
rules out, for example, a table column because that can differ for each row.

As of MySQL 8.0.28, the argument to MATCH() cannot use a rollup column.

• Index hints are more limited for FULLTEXT searches than for non-FULLTEXT searches. See
Section 10.9.4, “Index Hints”.

• For InnoDB, all DML operations (INSERT, UPDATE, DELETE) involving columns with full-text indexes
are processed at transaction commit time. For example, for an INSERT operation, an inserted string
is tokenized and decomposed into individual words. The individual words are then added to full-text
index tables when the transaction is committed. As a result, full-text searches only return committed
data.

• The '%' character is not a supported wildcard character for full-text searches.

14.9.6 Fine-Tuning MySQL Full-Text Search

MySQL's full-text search capability has few user-tunable parameters. You can exert more control over
full-text searching behavior if you have a MySQL source distribution because some changes require
source code modifications. See Section 2.8, “Installing MySQL from Source”.

Full-text search is carefully tuned for effectiveness. Modifying the default behavior in most cases can
actually decrease effectiveness. Do not alter the MySQL sources unless you know what you are doing.

Most full-text variables described in this section must be set at server startup time. A server restart is
required to change them; they cannot be modified while the server is running.

Some variable changes require that you rebuild the FULLTEXT indexes in your tables. Instructions for
doing so are given later in this section.

• Configuring Minimum and Maximum Word Length

• Configuring the Natural Language Search Threshold

• Modifying Boolean Full-Text Search Operators

• Character Set Modifications

• Rebuilding InnoDB Full-Text Indexes

2404

Fine-Tuning MySQL Full-Text Search

• Optimizing InnoDB Full-Text Indexes

• Rebuilding MyISAM Full-Text Indexes

Configuring Minimum and Maximum Word Length

The minimum and maximum lengths of words to be indexed are defined by the
innodb_ft_min_token_size and innodb_ft_max_token_size for InnoDB search indexes, and
ft_min_word_len and ft_max_word_len for MyISAM ones.

Note

Minimum and maximum word length full-text parameters do not apply to
FULLTEXT indexes created using the ngram parser. ngram token size is defined
by the ngram_token_size option.

After changing any of these options, rebuild your FULLTEXT indexes for the change to take effect. For
example, to make two-character words searchable, you could put the following lines in an option file:

[mysqld]
innodb_ft_min_token_size=2
ft_min_word_len=2

Then restart the server and rebuild your FULLTEXT indexes. For MyISAM tables, note the remarks
regarding myisamchk in the instructions that follow for rebuilding MyISAM full-text indexes.

Configuring the Natural Language Search Threshold

For MyISAM search indexes, the 50% threshold for natural language searches is determined by the
particular weighting scheme chosen. To disable it, look for the following line in storage/myisam/
ftdefs.h:

#define GWS_IN_USE GWS_PROB

Change that line to this:

#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case.

Note

By making this change, you severely decrease MySQL's ability to provide
adequate relevance values for the MATCH() function. If you really need to
search for such common words, it would be better to search using IN BOOLEAN
MODE instead, which does not observe the 50% threshold.

Modifying Boolean Full-Text Search Operators

To change the operators used for boolean full-text searches on MyISAM tables, set the
ft_boolean_syntax system variable. (InnoDB does not have an equivalent setting.) This variable
can be changed while the server is running, but you must have privileges sufficient to set global system
variables (see Section 7.1.9.1, “System Variable Privileges”). No rebuilding of indexes is necessary in
this case.

Character Set Modifications

For the built-in full-text parser, you can change the set of characters that are considered word
characters in several ways, as described in the following list. After making the modification, rebuild
the indexes for each table that contains any FULLTEXT indexes. Suppose that you want to treat the
hyphen character ('-') as a word character. Use one of these methods:

2405

Fine-Tuning MySQL Full-Text Search

• Modify the MySQL source: In storage/innobase/handler/ha_innodb.cc (for InnoDB),
or in storage/myisam/ftdefs.h (for MyISAM), see the true_word_char() and
misc_word_char() macros. Add '-' to one of those macros and recompile MySQL.

• Modify a character set file: This requires no recompilation. The true_word_char() macro uses
a “character type” table to distinguish letters and numbers from other characters. . You can edit the
contents of the <ctype><map> array in one of the character set XML files to specify that '-' is
a “letter.” Then use the given character set for your FULLTEXT indexes. For information about the
<ctype><map> array format, see Section 12.13.1, “Character Definition Arrays”.

• Add a new collation for the character set used by the indexed columns, and alter the columns to use
that collation. For general information about adding collations, see Section 12.14, “Adding a Collation
to a Character Set”. For an example specific to full-text indexing, see Section 14.9.7, “Adding a User-
Defined Collation for Full-Text Indexing”.

Rebuilding InnoDB Full-Text Indexes

For the changes to take effect, FULLTEXT indexes must be rebuilt after modifying any of the
following full-text index variables: innodb_ft_min_token_size; innodb_ft_max_token_size;
innodb_ft_server_stopword_table; innodb_ft_user_stopword_table;
innodb_ft_enable_stopword; ngram_token_size. Modifying innodb_ft_min_token_size,
innodb_ft_max_token_size, or ngram_token_size requires restarting the server.

To rebuild FULLTEXT indexes for an InnoDB table, use ALTER TABLE with the DROP INDEX and ADD
INDEX options to drop and re-create each index.

Optimizing InnoDB Full-Text Indexes

Running OPTIMIZE TABLE on a table with a full-text index rebuilds the full-text index, removing
deleted Document IDs and consolidating multiple entries for the same word, where possible.

To optimize a full-text index, enable innodb_optimize_fulltext_only and run OPTIMIZE
TABLE.

mysql> set GLOBAL innodb_optimize_fulltext_only=ON;
Query OK, 0 rows affected (0.01 sec)

mysql> OPTIMIZE TABLE opening_lines;
+--------------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------------+----------+----------+----------+
| test.opening_lines | optimize | status | OK |
+--------------------+----------+----------+----------+
1 row in set (0.01 sec)

To avoid lengthy rebuild times for full-text indexes on large tables, you can use the
innodb_ft_num_word_optimize option to perform the optimization in stages. The
innodb_ft_num_word_optimize option defines the number of words that are optimized each time
OPTIMIZE TABLE is run. The default setting is 2000, which means that 2000 words are optimized
each time OPTIMIZE TABLE is run. Subsequent OPTIMIZE TABLE operations continue from where
the preceding OPTIMIZE TABLE operation ended.

Rebuilding MyISAM Full-Text Indexes

If you modify full-text variables that affect indexing (ft_min_word_len, ft_max_word_len, or
ft_stopword_file), or if you change the stopword file itself, you must rebuild your FULLTEXT
indexes after making the changes and restarting the server.

To rebuild the FULLTEXT indexes for a MyISAM table, it is sufficient to do a QUICK repair operation:

mysql> REPAIR TABLE tbl_name QUICK;

Alternatively, use ALTER TABLE as just described. In some cases, this may be faster than a repair
operation.

2406

Adding a User-Defined Collation for Full-Text Indexing

Each table that contains any FULLTEXT index must be repaired as just shown. Otherwise, queries for
the table may yield incorrect results, and modifications to the table causes the server to see the table
as corrupt and in need of repair.

If you use myisamchk to perform an operation that modifies MyISAM table indexes (such as repair
or analyze), the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum
word length, maximum word length, and stopword file unless you specify otherwise. This can result in
queries failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length
or stopword file values used by the server, specify the same ft_min_word_len, ft_max_word_len,
and ft_stopword_file values for myisamchk that you use for mysqld. For example, if you have
set the minimum word length to 3, you can repair a table with myisamchk like this:

myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, place each
one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk for MyISAM table index modification is to use the REPAIR TABLE,
ANALYZE TABLE, OPTIMIZE TABLE, or ALTER TABLE statements. These statements are performed
by the server, which knows the proper full-text parameter values to use.

14.9.7 Adding a User-Defined Collation for Full-Text Indexing

Warning

User-defined collations are deprecated; you should expect support for them
to be removed in a future version of MySQL. As of MySQL 8.0.33, the server
issues a warning for any use of COLLATE user_defined_collation in
an SQL statement; a warning is also issued when the server is started with --
collation-server set equal to the name of a user-defined collation.

This section describes how to add a user-defined collation for full-text searches using the built-in full-
text parser. The sample collation is like latin1_swedish_ci but treats the '-' character as a
letter rather than as a punctuation character so that it can be indexed as a word character. General
information about adding collations is given in Section 12.14, “Adding a Collation to a Character Set”; it
is assumed that you have read it and are familiar with the files involved.

To add a collation for full-text indexing, use the following procedure. The instructions here add a
collation for a simple character set, which as discussed in Section 12.14, “Adding a Collation to a
Character Set”, can be created using a configuration file that describes the character set properties.
For a complex character set such as Unicode, create collations using C source files that describe the
character set properties.

1. Add a collation to the Index.xml file. The permitted range of IDs for user-defined collations is
given in Section 12.14.2, “Choosing a Collation ID”. The ID must be unused, so choose a value
different from 1025 if that ID is already taken on your system.

<charset name="latin1">
...
<collation name="latin1_fulltext_ci" id="1025"/>
</charset>

2. Declare the sort order for the collation in the latin1.xml file. In this case, the order can be copied
from latin1_swedish_ci:

2407

Adding a User-Defined Collation for Full-Text Indexing

<collation name="latin1_fulltext_ci">
<map>
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D D7 D8 55 55 55 59 59 DE DF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D F7 D8 55 55 55 59 59 DE FF
</map>
</collation>

3. Modify the ctype array in latin1.xml. Change the value corresponding to 0x2D (which is the
code for the '-' character) from 10 (punctuation) to 01 (uppercase letter). In the following array,
this is the element in the fourth row down, third value from the end.

<ctype>
<map>
00
20 20 20 20 20 20 20 20 20 28 28 28 28 28 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
48 10 10 10 10 10 10 10 10 10 10 10 10 01 10 10
84 84 84 84 84 84 84 84 84 84 10 10 10 10 10 10
10 81 81 81 81 81 81 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 10 10 10 10 10
10 82 82 82 82 82 82 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 02 02 02 02 10 10 10 10 20
10 00 10 02 10 10 10 10 10 10 01 10 01 00 01 00
00 10 10 10 10 10 10 10 10 10 02 10 02 00 02 01
48 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 02
02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 10 02 02 02 02 02 02 02 02
</map>
</ctype>

4. Restart the server.

5. To employ the new collation, include it in the definition of columns that are to use it:

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected (0.13 sec)

mysql> CREATE TABLE t1 (
 a TEXT CHARACTER SET latin1 COLLATE latin1_fulltext_ci,
 FULLTEXT INDEX(a)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.47 sec)

6. Test the collation to verify that hyphen is considered as a word character:

mysql> INSERT INTO t1 VALUEs ('----'),('....'),('abcd');
Query OK, 3 rows affected (0.22 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1 WHERE MATCH a AGAINST ('----' IN BOOLEAN MODE);
+------+
| a |
+------+

2408

ngram Full-Text Parser

| ---- |
+------+
1 row in set (0.00 sec)

14.9.8 ngram Full-Text Parser

The built-in MySQL full-text parser uses the white space between words as a delimiter to determine
where words begin and end, which is a limitation when working with ideographic languages that do not
use word delimiters. To address this limitation, MySQL provides an ngram full-text parser that supports
Chinese, Japanese, and Korean (CJK). The ngram full-text parser is supported for use with InnoDB
and MyISAM.

Note

MySQL also provides a MeCab full-text parser plugin for Japanese, which
tokenizes documents into meaningful words. For more information, see
Section 14.9.9, “MeCab Full-Text Parser Plugin”.

An ngram is a contiguous sequence of n characters from a given sequence of text. The ngram parser
tokenizes a sequence of text into a contiguous sequence of n characters. For example, you can
tokenize “abcd” for different values of n using the ngram full-text parser.

n=1: 'a', 'b', 'c', 'd'
n=2: 'ab', 'bc', 'cd'
n=3: 'abc', 'bcd'
n=4: 'abcd'

The ngram full-text parser is a built-in server plugin. As with other built-in server plugins, it is
automatically loaded when the server is started.

The full-text search syntax described in Section 14.9, “Full-Text Search Functions” applies to
the ngram parser plugin. Differences in parsing behavior are described in this section. Full-
text-related configuration options, except for minimum and maximum word length options
(innodb_ft_min_token_size, innodb_ft_max_token_size, ft_min_word_len,
ft_max_word_len) are also applicable.

Configuring ngram Token Size

The ngram parser has a default ngram token size of 2 (bigram). For example, with a token size of 2,
the ngram parser parses the string “abc def” into four tokens: “ab”, “bc”, “de” and “ef”.

ngram token size is configurable using the ngram_token_size configuration option, which has a
minimum value of 1 and maximum value of 10.

Typically, ngram_token_size is set to the size of the largest token that you want to search for.
If you only intend to search for single characters, set ngram_token_size to 1. A smaller token
size produces a smaller full-text search index, and faster searches. If you need to search for words
comprised of more than one character, set ngram_token_size accordingly. For example, “Happy
Birthday” is “生日快乐” in simplified Chinese, where “生日” is “birthday”, and “快乐” translates as
“happy”. To search on two-character words such as these, set ngram_token_size to a value of 2 or
higher.

As a read-only variable, ngram_token_size may only be set as part of a startup string or in a
configuration file:

• Startup string:

mysqld --ngram_token_size=2

• Configuration file:

[mysqld]
ngram_token_size=2

2409

ngram Full-Text Parser

Note

The following minimum and maximum word length configuration
options are ignored for FULLTEXT indexes that use the ngram parser:
innodb_ft_min_token_size, innodb_ft_max_token_size,
ft_min_word_len, and ft_max_word_len.

Creating a FULLTEXT Index that Uses the ngram Parser

To create a FULLTEXT index that uses the ngram parser, specify WITH PARSER ngram with CREATE
TABLE, ALTER TABLE, or CREATE INDEX.

The following example demonstrates creating a table with an ngram FULLTEXT index, inserting
sample data (Simplified Chinese text), and viewing tokenized data in the Information Schema
INNODB_FT_INDEX_CACHE table.

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body) WITH PARSER ngram
) ENGINE=InnoDB CHARACTER SET utf8mb4;

mysql> SET NAMES utf8mb4;

INSERT INTO articles (title,body) VALUES
 ('数据库管理','在本教程中我将向你展示如何管理数据库'),

 ('数据库应用开发','学习开发数据库应用程序');

mysql> SET GLOBAL innodb_ft_aux_table="test/articles";

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE ORDER BY doc_id, position;

To add a FULLTEXT index to an existing table, you can use ALTER TABLE or CREATE INDEX. For
example:

CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT
) ENGINE=InnoDB CHARACTER SET utf8mb4;

ALTER TABLE articles ADD FULLTEXT INDEX ft_index (title,body) WITH PARSER ngram;

Or:

CREATE FULLTEXT INDEX ft_index ON articles (title,body) WITH PARSER ngram;

ngram Parser Space Handling

The ngram parser eliminates spaces when parsing. For example:

• “ab cd” is parsed to “ab”, “cd”

• “a bc” is parsed to “bc”

ngram Parser Stopword Handling

The built-in MySQL full-text parser compares words to entries in the stopword list. If a word is
equal to an entry in the stopword list, the word is excluded from the index. For the ngram parser,
stopword handling is performed differently. Instead of excluding tokens that are equal to entries in
the stopword list, the ngram parser excludes tokens that contain stopwords. For example, assuming
ngram_token_size=2, a document that contains “a,b” is parsed to “a,” and “,b”. If a comma (“,”) is
defined as a stopword, both “a,” and “,b” are excluded from the index because they contain a comma.

2410

MeCab Full-Text Parser Plugin

By default, the ngram parser uses the default stopword list, which contains a list of English stopwords.
For a stopword list applicable to Chinese, Japanese, or Korean, you must create your own. For
information about creating a stopword list, see Section 14.9.4, “Full-Text Stopwords”.

Stopwords greater in length than ngram_token_size are ignored.

ngram Parser Term Search

For natural language mode search, the search term is converted to a union of ngram terms. For
example, the string “abc” (assuming ngram_token_size=2) is converted to “ab bc”. Given two
documents, one containing “ab” and the other containing “abc”, the search term “ab bc” matches both
documents.

For boolean mode search, the search term is converted to an ngram phrase search. For example, the
string 'abc' (assuming ngram_token_size=2) is converted to '“ab bc”'. Given two documents, one
containing 'ab' and the other containing 'abc', the search phrase '“ab bc”' only matches the document
containing 'abc'.

ngram Parser Wildcard Search

Because an ngram FULLTEXT index contains only ngrams, and does not contain information about the
beginning of terms, wildcard searches may return unexpected results. The following behaviors apply to
wildcard searches using ngram FULLTEXT search indexes:

• If the prefix term of a wildcard search is shorter than ngram token size, the query returns all
indexed rows that contain ngram tokens starting with the prefix term. For example, assuming
ngram_token_size=2, a search on “a*” returns all rows starting with “a”.

• If the prefix term of a wildcard search is longer than ngram token size, the prefix term is
converted to an ngram phrase and the wildcard operator is ignored. For example, assuming
ngram_token_size=2, an “abc*” wildcard search is converted to “ab bc”.

ngram Parser Phrase Search

Phrase searches are converted to ngram phrase searches. For example, The search phrase “abc” is
converted to “ab bc”, which returns documents containing “abc” and “ab bc”.

The search phrase “abc def” is converted to “ab bc de ef”, which returns documents containing “abc
def” and “ab bc de ef”. A document that contains “abcdef” is not returned.

14.9.9 MeCab Full-Text Parser Plugin

The built-in MySQL full-text parser uses the white space between words as a delimiter to determine
where words begin and end, which is a limitation when working with ideographic languages that do not
use word delimiters. To address this limitation for Japanese, MySQL provides a MeCab full-text parser
plugin. The MeCab full-text parser plugin is supported for use with InnoDB and MyISAM.

Note

MySQL also provides an ngram full-text parser plugin that supports Japanese.
For more information, see Section 14.9.8, “ngram Full-Text Parser”.

The MeCab full-text parser plugin is a full-text parser plugin for Japanese that tokenizes a sequence
of text into meaningful words. For example, MeCab tokenizes “データベース管理” (“Database
Management”) into “データベース” (“Database”) and “管理” (“Management”). By comparison, the
ngram full-text parser tokenizes text into a contiguous sequence of n characters, where n represents a
number between 1 and 10.

In addition to tokenizing text into meaningful words, MeCab indexes are typically smaller than ngram
indexes, and MeCab full-text searches are generally faster. One drawback is that it may take longer for
the MeCab full-text parser to tokenize documents, compared to the ngram full-text parser.

2411

MeCab Full-Text Parser Plugin

The full-text search syntax described in Section 14.9, “Full-Text Search Functions” applies to the
MeCab parser plugin. Differences in parsing behavior are described in this section. Full-text related
configuration options are also applicable.

For additional information about the MeCab parser, refer to the MeCab: Yet Another Part-of-Speech
and Morphological Analyzer project on Github.

Installing the MeCab Parser Plugin

The MeCab parser plugin requires mecab and mecab-ipadic.

On supported Fedora, Debian and Ubuntu platforms (except Ubuntu 12.04 where the system mecab
version is too old), MySQL dynamically links to the system mecab installation if it is installed to
the default location. On other supported Unix-like platforms, libmecab.so is statically linked in
libpluginmecab.so, which is located in the MySQL plugin directory. mecab-ipadic is included in
MySQL binaries and is located in MYSQL_HOME\lib\mecab.

You can install mecab and mecab-ipadic using a native package management utility (on Fedora,
Debian, and Ubuntu), or you can build mecab and mecab-ipadic from source. For information about
installing mecab and mecab-ipadic using a native package management utility, see Installing MeCab
From a Binary Distribution (Optional). If you want to build mecab and mecab-ipadic from source, see
Building MeCab From Source (Optional).

On Windows, libmecab.dll is found in the MySQL bin directory. mecab-ipadic is located in
MYSQL_HOME/lib/mecab.

To install and configure the MeCab parser plugin, perform the following steps:

1. In the MySQL configuration file, set the mecab_rc_file configuration option to the location of the
mecabrc configuration file, which is the configuration file for MeCab. If you are using the MeCab
package distributed with MySQL, the mecabrc file is located in MYSQL_HOME/lib/mecab/etc/.

[mysqld]
loose-mecab-rc-file=MYSQL_HOME/lib/mecab/etc/mecabrc

The loose prefix is an option modifier. The mecab_rc_file option is not recognized by MySQL
until the MeCaB parser plugin is installed but it must be set before attempting to install the MeCaB
parser plugin. The loose prefix allows you restart MySQL without encountering an error due to an
unrecognized variable.

If you use your own MeCab installation, or build MeCab from source, the location of the mecabrc
configuration file may differ.

For information about the MySQL configuration file and its location, see Section 6.2.2.2, “Using
Option Files”.

2. Also in the MySQL configuration file, set the minimum token size to 1 or 2, which are the values
recommended for use with the MeCab parser. For InnoDB tables, minimum token size is defined
by the innodb_ft_min_token_size configuration option, which has a default value of 3. For
MyISAM tables, minimum token size is defined by ft_min_word_len, which has a default value of
4.

[mysqld]
innodb_ft_min_token_size=1

3. Modify the mecabrc configuration file to specify the dictionary you want to use. The mecab-
ipadic package distributed with MySQL binaries includes three dictionaries (ipadic_euc-jp,
ipadic_sjis, and ipadic_utf-8). The mecabrc configuration file packaged with MySQL
contains and entry similar to the following:

dicdir = /path/to/mysql/lib/mecab/lib/mecab/dic/ipadic_euc-jp

To use the ipadic_utf-8 dictionary, for example, modify the entry as follows:

2412

http://taku910.github.io/mecab/
http://taku910.github.io/mecab/

MeCab Full-Text Parser Plugin

dicdir=MYSQL_HOME/lib/mecab/dic/ipadic_utf-8

If you are using your own MeCab installation or have built MeCab from source, the default dicdir
entry in the mecabrc file is likely to differ, as are the dictionaries and their location.

Note

After the MeCab parser plugin is installed, you can use the
mecab_charset status variable to view the character set used with
MeCab. The three MeCab dictionaries provided with the MySQL binary
support the following character sets.

• The ipadic_euc-jp dictionary supports the ujis and eucjpms
character sets.

• The ipadic_sjis dictionary supports the sjis and cp932 character
sets.

• The ipadic_utf-8 dictionary supports the utf8mb3 and utf8mb4
character sets.

mecab_charset only reports the first supported character set. For
example, the ipadic_utf-8 dictionary supports both utf8mb3 and
utf8mb4. mecab_charset always reports utf8 when this dictionary is in
use.

4. Restart MySQL.

5. Install the MeCab parser plugin:

The MeCab parser plugin is installed using INSTALL PLUGIN. The plugin name is mecab, and the
shared library name is libpluginmecab.so. For additional information about installing plugins,
see Section 7.6.1, “Installing and Uninstalling Plugins”.

INSTALL PLUGIN mecab SONAME 'libpluginmecab.so';

Once installed, the MeCab parser plugin loads at every normal MySQL restart.

6. Verify that the MeCab parser plugin is loaded using the SHOW PLUGINS statement.

mysql> SHOW PLUGINS;

A mecab plugin should appear in the list of plugins.

Creating a FULLTEXT Index that uses the MeCab Parser

To create a FULLTEXT index that uses the mecab parser, specify WITH PARSER ngram with CREATE
TABLE, ALTER TABLE, or CREATE INDEX.

This example demonstrates creating a table with a mecab FULLTEXT index, inserting sample data, and
viewing tokenized data in the Information Schema INNODB_FT_INDEX_CACHE table:

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body) WITH PARSER mecab
) ENGINE=InnoDB CHARACTER SET utf8mb4;

mysql> SET NAMES utf8mb4;

mysql> INSERT INTO articles (title,body) VALUES

2413

MeCab Full-Text Parser Plugin

 ('データベース管理','このチュートリアルでは、私はどのようにデータベースを管理する方法を紹介します'),

 ('データベースアプリケーション開発','データベースアプリケーションを開発することを学ぶ');

mysql> SET GLOBAL innodb_ft_aux_table="test/articles";

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE ORDER BY doc_id, position;

To add a FULLTEXT index to an existing table, you can use ALTER TABLE or CREATE INDEX. For
example:

CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT
) ENGINE=InnoDB CHARACTER SET utf8mb4;

ALTER TABLE articles ADD FULLTEXT INDEX ft_index (title,body) WITH PARSER mecab;

Or:

CREATE FULLTEXT INDEX ft_index ON articles (title,body) WITH PARSER mecab;

MeCab Parser Space Handling

The MeCab parser uses spaces as separators in query strings. For example, the MeCab parser
tokenizes データベース管理 as データベース and 管理.

MeCab Parser Stopword Handling

By default, the MeCab parser uses the default stopword list, which contains a short list of English
stopwords. For a stopword list applicable to Japanese, you must create your own. For information
about creating stopword lists, see Section 14.9.4, “Full-Text Stopwords”.

MeCab Parser Term Search

For natural language mode search, the search term is converted to a union of tokens. For example,
データベース管理 is converted to データベース 管理.

SELECT COUNT(*) FROM articles
 WHERE MATCH(title,body) AGAINST('データベース管理' IN NATURAL LANGUAGE MODE);

For boolean mode search, the search term is converted to a search phrase. For example,
データベース管理 is converted to データベース 管理.

SELECT COUNT(*) FROM articles
 WHERE MATCH(title,body) AGAINST('データベース管理' IN BOOLEAN MODE);

MeCab Parser Wildcard Search

Wildcard search terms are not tokenized. A search on データベース管理* is performed on the prefix,
データベース管理.

SELECT COUNT(*) FROM articles
 WHERE MATCH(title,body) AGAINST('データベース*' IN BOOLEAN MODE);

MeCab Parser Phrase Search

Phrases are tokenized. For example, データベース管理 is tokenized as データベース 管理.

SELECT COUNT(*) FROM articles
 WHERE MATCH(title,body) AGAINST('"データベース管理"' IN BOOLEAN MODE);

Installing MeCab From a Binary Distribution (Optional)

This section describes how to install mecab and mecab-ipadic from a binary distribution using
a native package management utility. For example, on Fedora, you can use Yum to perform the
installation:

2414

Cast Functions and Operators

$> yum mecab-devel

On Debian or Ubuntu, you can perform an APT installation:

$> apt-get install mecab
$> apt-get install mecab-ipadic

Installing MeCab From Source (Optional)

If you want to build mecab and mecab-ipadic from source, basic installation steps are provided
below. For additional information, refer to the MeCab documentation.

1. Download the tar.gz packages for mecab and mecab-ipadic from http://taku910.github.io/mecab/
#download. As of February, 2016, the latest available packages are mecab-0.996.tar.gz and
mecab-ipadic-2.7.0-20070801.tar.gz.

2. Install mecab:

$> tar zxfv mecab-0.996.tar
$> cd mecab-0.996
$> ./configure
$> make
$> make check
$> su
$> make install

3. Install mecab-ipadic:

$> tar zxfv mecab-ipadic-2.7.0-20070801.tar
$> cd mecab-ipadic-2.7.0-20070801
$> ./configure
$> make
$> su
$> make install

4. Compile MySQL using the WITH_MECAB CMake option. Set the WITH_MECAB option to system if
you have installed mecab and mecab-ipadic to the default location.

-DWITH_MECAB=system

If you defined a custom installation directory, set WITH_MECAB to the custom directory. For
example:

-DWITH_MECAB=/path/to/mecab

14.10 Cast Functions and Operators

Table 14.15 Cast Functions and Operators

Name Description Deprecated

BINARY Cast a string to a binary string 8.0.27

CAST() Cast a value as a certain type

CONVERT() Cast a value as a certain type

Cast functions and operators enable conversion of values from one data type to another.

• Cast Function and Operator Descriptions

• Character Set Conversions

• Character Set Conversions for String Comparisons

• Cast Operations on Spatial Types

2415

http://taku910.github.io/mecab/#download
http://taku910.github.io/mecab/#download

Cast Function and Operator Descriptions

• Other Uses for Cast Operations

Cast Function and Operator Descriptions

• BINARY expr

The BINARY operator converts the expression to a binary string (a string that has the binary
character set and binary collation). A common use for BINARY is to force a character string
comparison to be done byte by byte using numeric byte values rather than character by character.
The BINARY operator also causes trailing spaces in comparisons to be significant. For information
about the differences between the binary collation of the binary character set and the _bin
collations of nonbinary character sets, see Section 12.8.5, “The binary Collation Compared to _bin
Collations”.

The BINARY operator is deprecated as of MySQL 8.0.27, and you should expect its removal in a
future version of MySQL. Use CAST(... AS BINARY) instead.

mysql> SET NAMES utf8mb4 COLLATE utf8mb4_general_ci;
 -> OK
mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT BINARY 'a' = 'A';
 -> 0
mysql> SELECT 'a' = 'a ';
 -> 1
mysql> SELECT BINARY 'a' = 'a ';
 -> 0

In a comparison, BINARY affects the entire operation; it can be given before either operand with the
same result.

To convert a string expression to a binary string, these constructs are equivalent:

CONVERT(expr USING BINARY)
CAST(expr AS BINARY)
BINARY expr

If a value is a string literal, it can be designated as a binary string without converting it by using the
_binary character set introducer:

mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT _binary 'a' = 'A';
 -> 0

For information about introducers, see Section 12.3.8, “Character Set Introducers”.

The BINARY operator in expressions differs in effect from the BINARY attribute in character column
definitions. For a character column defined with the BINARY attribute, MySQL assigns the table
default character set and the binary (_bin) collation of that character set. Every nonbinary character
set has a _bin collation. For example, if the table default character set is utf8mb4, these two
column definitions are equivalent:

CHAR(10) BINARY
CHAR(10) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin

The use of CHARACTER SET binary in the definition of a CHAR, VARCHAR, or TEXT column causes
the column to be treated as the corresponding binary string data type. For example, the following
pairs of definitions are equivalent:

CHAR(10) CHARACTER SET binary
BINARY(10)

VARCHAR(10) CHARACTER SET binary
VARBINARY(10)

2416

Cast Function and Operator Descriptions

TEXT CHARACTER SET binary
BLOB

If BINARY is invoked from within the mysql client, binary strings display using hexadecimal notation,
depending on the value of the --binary-as-hex. For more information about that option, see
Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• CAST(expr AS type [ARRAY])

CAST(timestamp_value AT TIME ZONE timezone_specifier AS
DATETIME[(precision)])

timezone_specifier: [INTERVAL] '+00:00' | 'UTC'

With CAST(expr AS type syntax, the CAST() function takes an expression of any type
and produces a result value of the specified type. This operation may also be expressed as
CONVERT(expr, type), which is equivalent. If expr is NULL, CAST() returns NULL.

These type values are permitted:

• BINARY[(N)]

Produces a string with the VARBINARY data type, except that when the expression expr is
empty (zero length), the result type is BINARY(0). If the optional length N is given, BINARY(N)
causes the cast to use no more than N bytes of the argument. Values shorter than N bytes are
padded with 0x00 bytes to a length of N. If the optional length N is not given, MySQL calculates
the maximum length from the expression. If the supplied or calculated length is greater than an
internal threshold, the result type is BLOB. If the length is still too long, the result type is LONGBLOB.

For a description of how casting to BINARY affects comparisons, see Section 13.3.3, “The
BINARY and VARBINARY Types”.

• CHAR[(N)] [charset_info]

Produces a string with the VARCHAR data type, unless the expression expr is empty (zero length),
in which case the result type is CHAR(0). If the optional length N is given, CHAR(N) causes the
cast to use no more than N characters of the argument. No padding occurs for values shorter than
N characters. If the optional length N is not given, MySQL calculates the maximum length from the
expression. If the supplied or calculated length is greater than an internal threshold, the result type
is TEXT. If the length is still too long, the result type is LONGTEXT.

With no charset_info clause, CHAR produces a string with the default character set. To specify
the character set explicitly, these charset_info values are permitted:

• CHARACTER SET charset_name: Produces a string with the given character set.

• ASCII: Shorthand for CHARACTER SET latin1.

2417

Cast Function and Operator Descriptions

• UNICODE: Shorthand for CHARACTER SET ucs2.

In all cases, the string has the character set default collation.

• DATE

Produces a DATE value.

• DATETIME[(M)]

Produces a DATETIME value. If the optional M value is given, it specifies the fractional seconds
precision.

• DECIMAL[(M[,D])]

Produces a DECIMAL value. If the optional M and D values are given, they specify the maximum
number of digits (the precision) and the number of digits following the decimal point (the scale). If D
is omitted, 0 is assumed. If M is omitted, 10 is assumed.

• DOUBLE

Produces a DOUBLE result. Added in MySQL 8.0.17.

• FLOAT[(p)]

If the precision p is not specified, produces a result of type FLOAT. If p is provided and 0 <= < p <=
24, the result is of type FLOAT. If 25 <= p <= 53, the result is of type DOUBLE. If p < 0 or p > 53, an
error is returned. Added in MySQL 8.0.17.

• JSON

Produces a JSON value. For details on the rules for conversion of values between JSON and other
types, see Comparison and Ordering of JSON Values.

• NCHAR[(N)]

Like CHAR, but produces a string with the national character set. See Section 12.3.7, “The National
Character Set”.

Unlike CHAR, NCHAR does not permit trailing character set information to be specified.

• REAL

Produces a result of type REAL. This is actually FLOAT if the REAL_AS_FLOAT SQL mode is
enabled; otherwise the result is of type DOUBLE.

• SIGNED [INTEGER]

Produces a signed BIGINT value.

• spatial_type

As of MySQL 8.0.24, CAST() and CONVERT() support casting geometry values from one spatial
type to another, for certain combinations of spatial types. For details, see Cast Operations on
Spatial Types.

• TIME[(M)]

Produces a TIME value. If the optional M value is given, it specifies the fractional seconds
precision.

2418

Cast Function and Operator Descriptions

• UNSIGNED [INTEGER]

Produces an unsigned BIGINT value.

• YEAR

Produces a YEAR value. Added in MySQL 8.0.22. These rules govern conversion to YEAR:

• For a four-digit number in the range 1901-2155 inclusive, or for a string which can be interpreted
as a four-digit number in this range, return the corresponding YEAR value.

• For a number consisting of one or two digits, or for a string which can be interpreted as such a
number, return a YEAR value as follows:

• If the number is in the range 1-69 inclusive, add 2000 and return the sum.

• If the number is in the range 70-99 inclusive, add 1900 and return the sum.

• For a string which evaluates to 0, return 2000.

• For the number 0, return 0.

• For a DATE, DATETIME, or TIMESTAMP value, return the YEAR portion of the value. For a TIME
value, return the current year.

If you do not specify the type of a TIME argument, you may get a different result from what you
expect, as shown here:

mysql> SELECT CAST("11:35:00" AS YEAR), CAST(TIME "11:35:00" AS YEAR);
+--------------------------+-------------------------------+
| CAST("11:35:00" AS YEAR) | CAST(TIME "11:35:00" AS YEAR) |
+--------------------------+-------------------------------+
| 2011 | 2021 |
+--------------------------+-------------------------------+

• If the argument is of type DECIMAL, DOUBLE, DECIMAL, or REAL, round the value to the nearest
integer, then attempt to cast the value to YEAR using the rules for integer values, as shown here:

mysql> SELECT CAST(1944.35 AS YEAR), CAST(1944.50 AS YEAR);
+-----------------------+-----------------------+
| CAST(1944.35 AS YEAR) | CAST(1944.50 AS YEAR) |
+-----------------------+-----------------------+
| 1944 | 1945 |
+-----------------------+-----------------------+

mysql> SELECT CAST(66.35 AS YEAR), CAST(66.50 AS YEAR);
+---------------------+---------------------+
| CAST(66.35 AS YEAR) | CAST(66.50 AS YEAR) |
+---------------------+---------------------+
| 2066 | 2067 |
+---------------------+---------------------+

• An argument of type GEOMETRY cannot be converted to YEAR.

• For a value that cannot be successfully converted to YEAR, return NULL.

A string value containing non-numeric characters which must be truncated prior to conversion
raises a warning, as shown here:

mysql> SELECT CAST("1979aaa" AS YEAR);
+-------------------------+
| CAST("1979aaa" AS YEAR) |
+-------------------------+
| 1979 |
+-------------------------+

2419

Cast Function and Operator Descriptions

1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect YEAR value: '1979aaa' |
+---------+------+---+

In MySQL 8.0.17 and higher, InnoDB allows the use of an additional ARRAY keyword for creating a
multi-valued index on a JSON array as part of CREATE INDEX, CREATE TABLE, and ALTER TABLE
statements. ARRAY is not supported except when used to create a multi-valued index in one of these
statements, in which case it is required. The column being indexed must be a column of type JSON.
With ARRAY, the type following the AS keyword may specify any of the types supported by CAST(),
with the exceptions of BINARY, JSON, and YEAR. For syntax information and examples, as well as
other relevant information, see Multi-Valued Indexes.

Note

CONVERT(), unlike CAST(), does not support multi-valued index creation or
the ARRAY keyword.

Beginning with MySQL 8.0.22, CAST() supports retrieval of a TIMESTAMP value as being in UTC,
using the AT TIMEZONE operator. The only supported time zone is UTC; this can be specified as
either of '+00:00' or 'UTC'. The only return type supported by this syntax is DATETIME, with an
optional precision specifier in the range of 0 to 6, inclusive.

TIMESTAMP values that use timezone offsets are also supported.

mysql> SELECT @@system_time_zone;
+--------------------+
| @@system_time_zone |
+--------------------+
| EDT |
+--------------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tz (c TIMESTAMP);
Query OK, 0 rows affected (0.41 sec)

mysql> INSERT INTO tz VALUES
 -> ROW(CURRENT_TIMESTAMP),
 -> ROW('2020-07-28 14:50:15+1:00');
Query OK, 1 row affected (0.08 sec)

mysql> TABLE tz;
+---------------------+
| c |
+---------------------+
| 2020-07-28 09:22:41 |
| 2020-07-28 09:50:15 |
+---------------------+
2 rows in set (0.00 sec)

mysql> SELECT CAST(c AT TIME ZONE '+00:00' AS DATETIME) AS u FROM tz;
+---------------------+
| u |
+---------------------+
| 2020-07-28 13:22:41 |
| 2020-07-28 13:50:15 |
+---------------------+
2 rows in set (0.00 sec)

mysql> SELECT CAST(c AT TIME ZONE 'UTC' AS DATETIME(2)) AS u FROM tz;
+------------------------+
| u |
+------------------------+
| 2020-07-28 13:22:41.00 |

2420

Character Set Conversions

| 2020-07-28 13:50:15.00 |
+------------------------+
2 rows in set (0.00 sec)

If you use 'UTC' as the time zone specifier with this form of CAST(), and the server raises an error
such as Unknown or incorrect time zone: 'UTC', you may need to install the MySQL time
zone tables (see Populating the Time Zone Tables).

AT TIME ZONE does not support the ARRAY keyword, and is not supported by the CONVERT()
function.

• CONVERT(expr USING transcoding_name)

CONVERT(expr,type)

CONVERT(expr USING transcoding_name) is standard SQL syntax. The non-USING form of
CONVERT() is ODBC syntax. Regardless of the syntax used, the function returns NULL if expr is
NULL.

CONVERT(expr USING transcoding_name) converts data between different character sets. In
MySQL, transcoding names are the same as the corresponding character set names. For example,
this statement converts the string 'abc' in the default character set to the corresponding string in
the utf8mb4 character set:

SELECT CONVERT('abc' USING utf8mb4);

CONVERT(expr, type) syntax (without USING) takes an expression and a type value specifying
a result type, and produces a result value of the specified type. This operation may also be
expressed as CAST(expr AS type), which is equivalent. For more information, see the
description of CAST().

Note

Prior to MySQL 8.0.28, this function sometimes allowed invalid conversions
of BINARY values to a nonbinary character set. When CONVERT() was used
as part of the expression for an indexed generated column, this could lead to
index corruption following an upgrade from a previous version of MySQL. See
SQL Changes, for information about how to handle this situation.

Character Set Conversions

CONVERT() with a USING clause converts data between character sets:

CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT('test' USING utf8mb4);
SELECT CONVERT(_latin1'Müller' USING utf8mb4);
INSERT INTO utf8mb4_table (utf8mb4_column)
 SELECT CONVERT(latin1_column USING utf8mb4) FROM latin1_table;

To convert strings between character sets, you can also use CONVERT(expr, type) syntax (without
USING), or CAST(expr AS type), which is equivalent:

CONVERT(string, CHAR[(N)] CHARACTER SET charset_name)
CAST(string AS CHAR[(N)] CHARACTER SET charset_name)

Examples:

SELECT CONVERT('test', CHAR CHARACTER SET utf8mb4);
SELECT CAST('test' AS CHAR CHARACTER SET utf8mb4);

2421

Character Set Conversions for String Comparisons

If you specify CHARACTER SET charset_name as just shown, the character set and collation
of the result are charset_name and the default collation of charset_name. If you omit
CHARACTER SET charset_name, the character set and collation of the result are defined by the
character_set_connection and collation_connection system variables that determine
the default connection character set and collation (see Section 12.4, “Connection Character Sets and
Collations”).

A COLLATE clause is not permitted within a CONVERT() or CAST() call, but you can apply it to the
function result. For example, these are legal:

SELECT CONVERT('test' USING utf8mb4) COLLATE utf8mb4_bin;
SELECT CONVERT('test', CHAR CHARACTER SET utf8mb4) COLLATE utf8mb4_bin;
SELECT CAST('test' AS CHAR CHARACTER SET utf8mb4) COLLATE utf8mb4_bin;

But these are illegal:

SELECT CONVERT('test' USING utf8mb4 COLLATE utf8mb4_bin);
SELECT CONVERT('test', CHAR CHARACTER SET utf8mb4 COLLATE utf8mb4_bin);
SELECT CAST('test' AS CHAR CHARACTER SET utf8mb4 COLLATE utf8mb4_bin);

For string literals, another way to specify the character set is to use a character set introducer.
_latin1 and _latin2 in the preceding example are instances of introducers. Unlike conversion
functions such as CAST(), or CONVERT(), which convert a string from one character set to another, an
introducer designates a string literal as having a particular character set, with no conversion involved.
For more information, see Section 12.3.8, “Character Set Introducers”.

Character Set Conversions for String Comparisons

Normally, you cannot compare a BLOB value or other binary string in case-insensitive fashion because
binary strings use the binary character set, which has no collation with the concept of lettercase. To
perform a case-insensitive comparison, first use the CONVERT() or CAST() function to convert the
value to a nonbinary string. Comparisons of the resulting string use its collation. For example, if the
conversion result collation is not case-sensitive, a LIKE operation is not case-sensitive. That is true for
the following operation because the default utf8mb4 collation (utf8mb4_0900_ai_ci) is not case-
sensitive:

SELECT 'A' LIKE CONVERT(blob_col USING utf8mb4)
 FROM tbl_name;

To specify a particular collation for the converted string, use a COLLATE clause following the
CONVERT() call:

SELECT 'A' LIKE CONVERT(blob_col USING utf8mb4) COLLATE utf8mb4_unicode_ci
 FROM tbl_name;

To use a different character set, substitute its name for utf8mb4 in the preceding statements (and
similarly to use a different collation).

CONVERT() and CAST() can be used more generally for comparing strings represented in different
character sets. For example, a comparison of these strings results in an error because they have
different character sets:

mysql> SET @s1 = _latin1 'abc', @s2 = _latin2 'abc';
mysql> SELECT @s1 = @s2;
ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (latin2_general_ci,IMPLICIT) for operation '='

Converting one of the strings to a character set compatible with the other enables the comparison to
occur without error:

mysql> SELECT @s1 = CONVERT(@s2 USING latin1);
+---------------------------------+
| @s1 = CONVERT(@s2 USING latin1) |

2422

Cast Operations on Spatial Types

+---------------------------------+
| 1 |
+---------------------------------+

Character set conversion is also useful preceding lettercase conversion of binary strings. LOWER() and
UPPER() are ineffective when applied directly to binary strings because the concept of lettercase does
not apply. To perform lettercase conversion of a binary string, first convert it to a nonbinary string using
a character set appropriate for the data stored in the string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING utf8mb4));
+-------------+------------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING utf8mb4)) |
+-------------+------------------------------------+
| New York | new york |
+-------------+------------------------------------+

Be aware that if you apply BINARY, CAST(), or CONVERT() to an indexed column, MySQL may not be
able to use the index efficiently.

Cast Operations on Spatial Types

As of MySQL 8.0.24, CAST() and CONVERT() support casting geometry values from one spatial
type to another, for certain combinations of spatial types. The following list shows the permitted type
combinations, where “MySQL extension” designates casts implemented in MySQL beyond those
defined in the SQL/MM standard:

• From Point to:

• MultiPoint

• GeometryCollection

• From LineString to:

• Polygon (MySQL extension)

• MultiPoint (MySQL extension)

• MultiLineString

• GeometryCollection

• From Polygon to:

• LineString (MySQL extension)

• MultiLineString (MySQL extension)

• MultiPolygon

• GeometryCollection

• From MultiPoint to:

• Point

• LineString (MySQL extension)

• GeometryCollection

• From MultiLineString to:

• LineString

2423

Cast Operations on Spatial Types

• Polygon (MySQL extension)

• MultiPolygon (MySQL extension)

• GeometryCollection

• From MultiPolygon to:

• Polygon

• MultiLineString (MySQL extension)

• GeometryCollection

• From GeometryCollection to:

• Point

• LineString

• Polygon

• MultiPoint

• MultiLineString

• MultiPolygon

In spatial casts, GeometryCollection and GeomCollection are synonyms for the same result
type.

Some conditions apply to all spatial type casts, and some conditions apply only when the cast result
is to have a particular spatial type. For information about terms such as “well-formed geometry,” see
Section 13.4.4, “Geometry Well-Formedness and Validity”.

• General Conditions for Spatial Casts

• Conditions for Casts to Point

• Conditions for Casts to LineString

• Conditions for Casts to Polygon

• Conditions for Casts to MultiPoint

• Conditions for Casts to MultiLineString

• Conditions for Casts to MultiPolygon

• Conditions for Casts to GeometryCollection

General Conditions for Spatial Casts

These conditions apply to all spatial casts regardless of the result type:

• The result of a cast is in the same SRS as that of the expression to cast.

• Casting between spatial types does not change coordinate values or order.

• If the expression to cast is NULL, the function result is NULL.

• Casting to spatial types using the JSON_VALUE() function with a RETURNING clause specifying a
spatial type is not permitted.

2424

Cast Operations on Spatial Types

• Casting to an ARRAY of spatial types is not permitted.

• If the spatial type combination is permitted but the expression to cast is not a syntactically well-
formed geometry, an ER_GIS_INVALID_DATA error occurs.

• If the spatial type combination is permitted but the expression to cast is a syntactically well-formed
geometry in an undefined spatial reference system (SRS), an ER_SRS_NOT_FOUND error occurs.

• If the expression to cast has a geographic SRS but has a longitude or latitude that is out of range, an
error occurs:

• If a longitude value is not in the range (−180, 180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE error occurs.

• If a latitude value is not in the range [−90, 90], an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE error occurs.

Ranges shown are in degrees. If an SRS uses another unit, the range uses the corresponding values
in its unit. The exact range limits deviate slightly due to floating-point arithmetic.

Conditions for Casts to Point

When the cast result type is Point, these conditions apply:

• If the expression to cast is a well-formed geometry of type Point, the function result is that Point.

• If the expression to cast is a well-formed geometry of type MultiPoint containing a single
Point, the function result is that Point. If the expression contains more than one Point, an
ER_INVALID_CAST_TO_GEOMETRY error occurs.

• If the expression to cast is a well-formed geometry of type GeometryCollection containing only
a single Point, the function result is that Point. If the expression is empty, contains more than one
Point, or contains other geometry types, an ER_INVALID_CAST_TO_GEOMETRY error occurs.

• If the expression to cast is a well-formed geometry of type other than Point, MultiPoint,
GeometryCollection, an ER_INVALID_CAST_TO_GEOMETRY error occurs.

Conditions for Casts to LineString

When the cast result type is LineString, these conditions apply:

• If the expression to cast is a well-formed geometry of type LineString, the function result is that
LineString.

• If the expression to cast is a well-formed geometry of type Polygon that has no inner rings, the
function result is a LineString containing the points of the outer ring in the same order. If the
expression has inner rings, an ER_INVALID_CAST_TO_GEOMETRY error occurs.

• If the expression to cast is a well-formed geometry of type MultiPoint containing at least
two points, the function result is a LineString containing the points of the MultiPoint
in the order they appear in the expression. If the expression contains only one Point, an
ER_INVALID_CAST_TO_GEOMETRY error occurs.

• If the expression to cast is a well-formed geometry of type MultiLineString containing a single
LineString, the function result is that LineString. If the expression contains more than one
LineString, an ER_INVALID_CAST_TO_GEOMETRY error occurs.

• If the expression to cast is a well-formed geometry of type GeometryCollection, containing
only a single LineString, the function result is that LineString. If the expression
is empty, contains more than one LineString, or contains other geometry types, an
ER_INVALID_CAST_TO_GEOMETRY error occurs.

2425

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry

Cast Operations on Spatial Types

• If the expression to cast is a well-formed geometry of type other than LineString,
Polygon, MultiPoint, MultiLineString, or GeometryCollection, an
ER_INVALID_CAST_TO_GEOMETRY error occurs.

Conditions for Casts to Polygon

When the cast result type is Polygon, these conditions apply:

• If the expression to cast is a well-formed geometry of type LineString that is a ring (that
is, the start and end points are the same), the function result is a Polygon with an outer ring
consisting of the points of the LineString in the same order. If the expression is not a ring, an
ER_INVALID_CAST_TO_GEOMETRY error occurs. If the ring is not in the correct order (the exterior
ring must be counter-clockwise), an ER_INVALID_CAST_POLYGON_RING_DIRECTION error occurs.

• If the expression to cast is a well-formed geometry of type Polygon, the function result is that
Polygon.

• If the expression to cast is a well-formed geometry of type MultiLineString where all
elements are rings, the function result is a Polygon with the first LineString as outer
ring and any additional LineString values as inner rings. If any element of the expression
is not a ring, an ER_INVALID_CAST_TO_GEOMETRY error occurs. If any ring is not in the
correct order (the exterior ring must be counter-clockwise, interior rings must be clockwise), an
ER_INVALID_CAST_POLYGON_RING_DIRECTION error occurs.

• If the expression to cast is a well-formed geometry of type MultiPolygon containing a single
Polygon, the function result is that Polygon. If the expression contains more than one Polygon,
an ER_INVALID_CAST_TO_GEOMETRY error occurs.

• If the expression to cast is a well-formed geometry of type GeometryCollection containing only
a single Polygon, the function result is that Polygon. If the expression is empty, contains more
than one Polygon, or contains other geometry types, an ER_INVALID_CAST_TO_GEOMETRY error
occurs.

• If the expression to cast is a well-formed geometry of type other than LineString,
Polygon, MultiLineString, MultiPolygon, or GeometryCollection, an
ER_INVALID_CAST_TO_GEOMETRY error occurs.

Conditions for Casts to MultiPoint

When the cast result type is MultiPoint, these conditions apply:

• If the expression to cast is a well-formed geometry of type Point, the function result is a
MultiPoint containing that Point as its sole element.

• If the expression to cast is a well-formed geometry of type LineString, the function result is a
MultiPoint containing the points of the LineString in the same order.

• If the expression to cast is a well-formed geometry of type MultiPoint, the function result is that
MultiPoint.

• If the expression to cast is a well-formed geometry of type GeometryCollection containing only
points, the function result is a MultiPoint containing those points. If the GeometryCollection is
empty or contains other geometry types, an ER_INVALID_CAST_TO_GEOMETRY error occurs.

• If the expression to cast is a well-formed geometry of type other than Point, LineString,
MultiPoint, or GeometryCollection, an ER_INVALID_CAST_TO_GEOMETRY error occurs.

Conditions for Casts to MultiLineString

When the cast result type is MultiLineString, these conditions apply:

2426

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_polygon_ring_direction
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_polygon_ring_direction
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry

Cast Operations on Spatial Types

• If the expression to cast is a well-formed geometry of type LineString, the function result is a
MultiLineString containing that LineString as its sole element.

• If the expression to cast is a well-formed geometry of type Polygon, the function result is a
MultiLineString containing the outer ring of the Polygon as its first element and any inner rings
as additional elements in the order they appear in the expression.

• If the expression to cast is a well-formed geometry of type MultiLineString, the function result is
that MultiLineString.

• If the expression to cast is a well-formed geometry of type MultiPolygon containing only polygons
without inner rings, the function result is a MultiLineString containing the polygon rings in the
order they appear in the expression. If the expression contains any polygons with inner rings, an
ER_WRONG_PARAMETERS_TO_STORED_FCT error occurs.

• If the expression to cast is a well-formed geometry of type GeometryCollection containing only
linestrings, the function result is a MultiLineString containing those linestrings. If the expression
is empty or contains other geometry types, an ER_INVALID_CAST_TO_GEOMETRY error occurs.

• If the expression to cast is a well-formed geometry of type other than LineString,
Polygon, MultiLineString, MultiPolygon, or GeometryCollection, an
ER_INVALID_CAST_TO_GEOMETRY error occurs.

Conditions for Casts to MultiPolygon

When the cast result type is MultiPolygon, these conditions apply:

• If the expression to cast is a well-formed geometry of type Polygon, the function result is a
MultiPolygon containing the Polygon as its sole element.

• If the expression to cast is a well-formed geometry of type MultiLineString where all elements
are rings, the function result is a MultiPolygon containing a Polygon with only an outer ring for
each element of the expression. If any element is not a ring, an ER_INVALID_CAST_TO_GEOMETRY
error occurs. If any ring is not in the correct order (exterior ring must be counter-clockwise), an
ER_INVALID_CAST_POLYGON_RING_DIRECTION error occurs.

• If the expression to cast is a well-formed geometry of type MultiPolygon, the function result is that
MultiPolygon.

• If the expression to cast is a well-formed geometry of type GeometryCollection containing only
polygons, the function result is a MultiPolygon containing those polygons. If the expression is
empty or contains other geometry types, an ER_INVALID_CAST_TO_GEOMETRY error occurs.

• If the expression to cast is a well-formed geometry of type other than Polygon, MultiLineString,
MultiPolygon, or GeometryCollection, an ER_INVALID_CAST_TO_GEOMETRY error occurs.

Conditions for Casts to GeometryCollection

When the cast result type is GeometryCollection, these conditions apply:

• GeometryCollection and GeomCollection are synonyms for the same result type.

• If the expression to cast is a well-formed geometry of type Point, the function result is a
GeometryCollection containing that Point as its sole element.

• If the expression to cast is a well-formed geometry of type LineString, the function result is a
GeometryCollection containing that LineString as its sole element.

• If the expression to cast is a well-formed geometry of type Polygon, the function result is a
GeometryCollection containing that Polygon as its sole element.

• If the expression to cast is a well-formed geometry of type MultiPoint, the function result is a
GeometryCollection containing the points in the order they appear in the expression.

2427

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_parameters_to_stored_fct
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_polygon_ring_direction
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_cast_to_geometry

Other Uses for Cast Operations

• If the expression to cast is a well-formed geometry of type MultiLineString, the function result is
a GeometryCollection containing the linestrings in the order they appear in the expression.

• If the expression to cast is a well-formed geometry of type MultiPolygon, the function result is a
GeometryCollection containing the elements of the MultiPolygon in the order they appear in
the expression.

• If the expression to cast is a well-formed geometry of type GeometryCollection, the function
result is that GeometryCollection.

Other Uses for Cast Operations

The cast functions are useful for creating a column with a specific type in a CREATE TABLE ...
SELECT statement:

mysql> CREATE TABLE new_table SELECT CAST('2000-01-01' AS DATE) AS c1;
mysql> SHOW CREATE TABLE new_table\G
*************************** 1. row ***************************
 Table: new_table
Create Table: CREATE TABLE `new_table` (
 `c1` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

The cast functions are useful for sorting ENUM columns in lexical order. Normally, sorting of ENUM
columns occurs using the internal numeric values. Casting the values to CHAR results in a lexical sort:

SELECT enum_col FROM tbl_name
 ORDER BY CAST(enum_col AS CHAR);

CAST() also changes the result if you use it as part of a more complex expression such as
CONCAT('Date: ',CAST(NOW() AS DATE)).

For temporal values, there is little need to use CAST() to extract data in different formats. Instead, use
a function such as EXTRACT(), DATE_FORMAT(), or TIME_FORMAT(). See Section 14.7, “Date and
Time Functions”.

To cast a string to a number, it normally suffices to use the string value in numeric context:

mysql> SELECT 1+'1';
 -> 2

That is also true for hexadecimal and bit literals, which are binary strings by default:

mysql> SELECT X'41', X'41'+0;
 -> 'A', 65
mysql> SELECT b'1100001', b'1100001'+0;
 -> 'a', 97

A string used in an arithmetic operation is converted to a floating-point number during expression
evaluation.

A number used in string context is converted to a string:

mysql> SELECT CONCAT('hello you ',2);
 -> 'hello you 2'

For information about implicit conversion of numbers to strings, see Section 14.3, “Type Conversion in
Expression Evaluation”.

MySQL supports arithmetic with both signed and unsigned 64-bit values. For numeric operators (such
as + or -) where one of the operands is an unsigned integer, the result is unsigned by default (see

2428

XML Functions

Section 14.6.1, “Arithmetic Operators”). To override this, use the SIGNED or UNSIGNED cast operator
to cast a value to a signed or unsigned 64-bit integer, respectively.

mysql> SELECT 1 - 2;
 -> -1
mysql> SELECT CAST(1 - 2 AS UNSIGNED);
 -> 18446744073709551615
mysql> SELECT CAST(CAST(1 - 2 AS UNSIGNED) AS SIGNED);
 -> -1

If either operand is a floating-point value, the result is a floating-point value and is not affected by the
preceding rule. (In this context, DECIMAL column values are regarded as floating-point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
 -> -1.0

The SQL mode affects the result of conversion operations (see Section 7.1.11, “Server SQL Modes”).
Examples:

• For conversion of a “zero” date string to a date, CONVERT() and CAST() return NULL and produce a
warning when the NO_ZERO_DATE SQL mode is enabled.

• For integer subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the subtraction
result is signed even if any operand is unsigned.

14.11 XML Functions

Table 14.16 XML Functions

Name Description

ExtractValue() Extract a value from an XML string using XPath
notation

UpdateXML() Return replaced XML fragment

This section discusses XML and related functionality in MySQL.

Note

It is possible to obtain XML-formatted output from MySQL in the mysql and
mysqldump clients by invoking them with the --xml option. See Section 6.5.1,
“mysql — The MySQL Command-Line Client”, and Section 6.5.4, “mysqldump
— A Database Backup Program”.

Two functions providing basic XPath 1.0 (XML Path Language, version 1.0) capabilities are available.
Some basic information about XPath syntax and usage is provided later in this section; however, an
in-depth discussion of these topics is beyond the scope of this manual, and you should refer to the
XML Path Language (XPath) 1.0 standard for definitive information. A useful resource for those new
to XPath or who desire a refresher in the basics is the Zvon.org XPath Tutorial, which is available in
several languages.

Note

These functions remain under development. We continue to improve these and
other aspects of XML and XPath functionality in MySQL 8.0 and onwards. You
may discuss these, ask questions about them, and obtain help from other users
with them in the MySQL XML User Forum.

XPath expressions used with these functions support user variables and local stored program
variables. User variables are weakly checked; variables local to stored programs are strongly checked
(see also Bug #26518):

2429

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/
https://forums.mysql.com/list.php?44

XML Functions

• User variables (weak checking). Variables using the syntax $@variable_name (that is,
user variables) are not checked. No warnings or errors are issued by the server if a variable
has the wrong type or has previously not been assigned a value. This also means the user
is fully responsible for any typographical errors, since no warnings are given if (for example)
$@myvairable is used where $@myvariable was intended.

Example:

mysql> SET @xml = '<a>XY';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @i =1, @j = 2;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @i, ExtractValue(@xml, '//b[$@i]');
+------+--------------------------------+
| @i | ExtractValue(@xml, '//b[$@i]') |
+------+--------------------------------+
| 1 | X |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @j, ExtractValue(@xml, '//b[$@j]');
+------+--------------------------------+
| @j | ExtractValue(@xml, '//b[$@j]') |
+------+--------------------------------+
| 2 | Y |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @k, ExtractValue(@xml, '//b[$@k]');
+------+--------------------------------+
| @k | ExtractValue(@xml, '//b[$@k]') |
+------+--------------------------------+
| NULL | |
+------+--------------------------------+
1 row in set (0.00 sec)

• Variables in stored programs (strong checking). Variables using the syntax $variable_name
can be declared and used with these functions when they are called inside stored programs. Such
variables are local to the stored program in which they are defined, and are strongly checked for type
and value.

Example:

mysql> DELIMITER |

mysql> CREATE PROCEDURE myproc ()
 -> BEGIN
 -> DECLARE i INT DEFAULT 1;
 -> DECLARE xml VARCHAR(25) DEFAULT '<a>X<a>Y<a>Z';
 ->
 -> WHILE i < 4 DO
 -> SELECT xml, i, ExtractValue(xml, '//a[$i]');
 -> SET i = i+1;
 -> END WHILE;
 -> END |
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

mysql> CALL myproc();
+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 1 | X |
+--------------------------+---+------------------------------+
1 row in set (0.00 sec)

+--------------------------+---+------------------------------+

2430

XML Functions

| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 2 | Y |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 3 | Z |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

Parameters. Variables used in XPath expressions inside stored routines that are passed in as
parameters are also subject to strong checking.

Expressions containing user variables or variables local to stored programs must otherwise (except
for notation) conform to the rules for XPath expressions containing variables as given in the XPath 1.0
specification.

Note

A user variable used to store an XPath expression is treated as an empty
string. Because of this, it is not possible to store an XPath expression as a user
variable. (Bug #32911)

• ExtractValue(xml_frag, xpath_expr)

ExtractValue() takes two string arguments, a fragment of XML markup xml_frag and an XPath
expression xpath_expr (also known as a locator); it returns the text (CDATA) of the first text node
which is a child of the element or elements matched by the XPath expression.

Using this function is the equivalent of performing a match using the xpath_expr after appending
/text(). In other words, ExtractValue('<a>Sakila', '/a/b') and
ExtractValue('<a>Sakila', '/a/b/text()') produce the same result. If
xml_frag or xpath_expr is NULL, the function returns NULL.

If multiple matches are found, the content of the first child text node of each matching element is
returned (in the order matched) as a single, space-delimited string.

If no matching text node is found for the expression (including the implicit /text())—for whatever
reason, as long as xpath_expr is valid, and xml_frag consists of elements which are properly
nested and closed—an empty string is returned. No distinction is made between a match on an
empty element and no match at all. This is by design.

If you need to determine whether no matching element was found in xml_frag or such an element
was found but contained no child text nodes, you should test the result of an expression that uses
the XPath count() function. For example, both of these statements return an empty string, as
shown here:

mysql> SELECT ExtractValue('<a>', '/a/b');
+-------------------------------------+
| ExtractValue('<a>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/>', '/a/b');
+-------------------------------------+
| ExtractValue('<a><c/>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)

2431

XML Functions

However, you can determine whether there was actually a matching element using the following:

mysql> SELECT ExtractValue('<a>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a>', 'count(/a/b)') |
+-------------------------------------+
| 1 |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a><c/>', 'count(/a/b)') |
+-------------------------------------+
| 0 |
+-------------------------------------+
1 row in set (0.01 sec)

Important

ExtractValue() returns only CDATA, and does not return any tags that
might be contained within a matching tag, nor any of their content (see the
result returned as val1 in the following example).

mysql> SELECT
 -> ExtractValue('<a>cccddd', '/a') AS val1,
 -> ExtractValue('<a>cccddd', '/a/b') AS val2,
 -> ExtractValue('<a>cccddd', '//b') AS val3,
 -> ExtractValue('<a>cccddd', '/b') AS val4,
 -> ExtractValue('<a>cccdddeee', '//b') AS val5;

+------+------+------+------+---------+
| val1 | val2 | val3 | val4 | val5 |
+------+------+------+------+---------+
| ccc | ddd | ddd | | ddd eee |
+------+------+------+------+---------+

This function uses the current SQL collation for making comparisons with contains(), performing
the same collation aggregation as other string functions (such as CONCAT()), in taking into
account the collation coercibility of their arguments; see Section 12.8.4, “Collation Coercibility in
Expressions”, for an explanation of the rules governing this behavior.

(Previously, binary—that is, case-sensitive—comparison was always used.)

NULL is returned if xml_frag contains elements which are not properly nested or closed, and a
warning is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
 END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c', '//a');
+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |

2432

XML Functions

+-------------------------------------+
1 row in set (0.00 sec)

• UpdateXML(xml_target, xpath_expr, new_xml)

This function replaces a single portion of a given fragment of XML markup xml_target with a new
XML fragment new_xml, and then returns the changed XML. The portion of xml_target that is
replaced matches an XPath expression xpath_expr supplied by the user.

If no expression matching xpath_expr is found, or if multiple matches are found, the function
returns the original xml_target XML fragment. All three arguments should be strings. If any of the
arguments to UpdateXML() are NULL, the function returns NULL.

mysql> SELECT
 -> UpdateXML('<a>ccc<d></d>', '/a', '<e>fff</e>') AS val1,
 -> UpdateXML('<a>ccc<d></d>', '/b', '<e>fff</e>') AS val2,
 -> UpdateXML('<a>ccc<d></d>', '//b', '<e>fff</e>') AS val3,
 -> UpdateXML('<a>ccc<d></d>', '/a/d', '<e>fff</e>') AS val4,
 -> UpdateXML('<a><d></d>ccc<d></d>', '/a/d', '<e>fff</e>') AS val5
 -> \G

*************************** 1. row ***************************
val1: <e>fff</e>
val2: <a>ccc<d></d>
val3: <a><e>fff</e><d></d>
val4: <a>ccc<e>fff</e>
val5: <a><d></d>ccc<d></d>

Note

A discussion in depth of XPath syntax and usage are beyond the scope of
this manual. Please see the XML Path Language (XPath) 1.0 specification
for definitive information. A useful resource for those new to XPath or who
are wishing a refresher in the basics is the Zvon.org XPath Tutorial, which is
available in several languages.

Descriptions and examples of some basic XPath expressions follow:

• /tag

Matches <tag/> if and only if <tag/> is the root element.

Example: /a has a match in <a> because it matches the outermost (root) tag. It does
not match the inner a element in <a/> because in this instance it is the child of another
element.

• /tag1/tag2

Matches <tag2/> if and only if it is a child of <tag1/>, and <tag1/> is the root element.

Example: /a/b matches the b element in the XML fragment <a> because it is a child of
the root element a. It does not have a match in <a/> because in this case, b is the root
element (and hence the child of no other element). Nor does the XPath expression have a match in
<a><c></c>; here, b is a descendant of a, but not actually a child of a.

This construct is extendable to three or more elements. For example, the XPath expression /a/b/c
matches the c element in the fragment <a><c/>.

• //tag

Matches any instance of <tag>.

Example: //a matches the a element in any of the following: <a><c/>; <c><a><b/
>; <c><a/></c>.

2433

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/

XML Functions

// can be combined with /. For example, //a/b matches the b element in either of the fragments
<a> or <c><a></c>.

Note

//tag is the equivalent of /descendant-or-self::*/tag. A common
error is to confuse this with /descendant-or-self::tag, although the
latter expression can actually lead to very different results, as can be seen
here:

mysql> SET @xml = '<a><c>w</c>x<d>y</d>z';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @xml;
+---+
| @xml |
+---+
| <a><c>w</c>x<d>y</d>z |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[1]');
+------------------------------+
| ExtractValue(@xml, '//b[1]') |
+------------------------------+
| x z |
+------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[2]');
+------------------------------+
| ExtractValue(@xml, '//b[2]') |
+------------------------------+
| |
+------------------------------+
1 row in set (0.01 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[1]') |
+---+
| x z |
+---+
1 row in set (0.06 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[2]') |
+---+
| |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[1]') |
+---+
| z |
+---+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[2]') |
+---+
| x |
+---+
1 row in set (0.00 sec)

2434

XML Functions

• The * operator acts as a “wildcard” that matches any element. For example, the expression /*/b
matches the b element in either of the XML fragments <a> or <c></c>. However,
the expression does not produce a match in the fragment <a/> because b must be a child
of some other element. The wildcard may be used in any position: The expression /*/b/* matches
any child of a b element that is itself not the root element.

• You can match any of several locators using the | (UNION) operator. For example, the expression
//b|//c matches all b and c elements in the XML target.

• It is also possible to match an element based on the value of one or more of its attributes. This done
using the syntax tag[@attribute="value"]. For example, the expression //b[@id="idB"]
matches the second b element in the fragment <a><b id="idA"/><c/><b id="idB"/></
a>. To match against any element having attribute="value", use the XPath expression //
*[attribute="value"].

To filter multiple attribute values, simply use multiple attribute-comparison clauses in succession.
For example, the expression //b[@c="x"][@d="y"] matches the element <b c="x" d="y"/>
occurring anywhere in a given XML fragment.

To find elements for which the same attribute matches any of several values, you can use multiple
locators joined by the | operator. For example, to match all b elements whose c attributes have
either of the values 23 or 17, use the expression //b[@c="23"]|//b[@c="17"]. You can also
use the logical or operator for this purpose: //b[@c="23" or @c="17"].

Note

The difference between or and | is that or joins conditions, while | joins
result sets.

XPath Limitations. The XPath syntax supported by these functions is currently subject to the
following limitations:

• Nodeset-to-nodeset comparison (such as '/a/b[@c=@d]') is not supported.

• All of the standard XPath comparison operators are supported. (Bug #22823)

• Relative locator expressions are resolved in the context of the root node. For example, consider the
following query and result:

mysql> SELECT ExtractValue(
 -> '<a><b c="1">X<b c="2">Y',
 -> 'a/b'
 ->) AS result;
+--------+
| result |
+--------+
| X Y |
+--------+
1 row in set (0.03 sec)

In this case, the locator a/b resolves to /a/b.

Relative locators are also supported within predicates. In the following example, d[../@c="1"] is
resolved as /a/b[@c="1"]/d:

mysql> SELECT ExtractValue(
 -> '<a>
 -> <b c="1"><d>X</d>
 -> <b c="2"><d>X</d>
 -> ',
 -> 'a/b/d[../@c="1"]')
 -> AS result;
+--------+
| result |
+--------+

2435

XML Functions

| X |
+--------+
1 row in set (0.00 sec)

• Locators prefixed with expressions that evaluate as scalar values—including variable references,
literals, numbers, and scalar function calls—are not permitted, and their use results in an error.

• The :: operator is not supported in combination with node types such as the following:

• axis::comment()

• axis::text()

• axis::processing-instructions()

• axis::node()

However, name tests (such as axis::name and axis::*) are supported, as shown in these
examples:

mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::b');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::b') |
+---+
| x |
+---+
1 row in set (0.02 sec)

mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::*');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::*') |
+---+
| x y |
+---+
1 row in set (0.01 sec)

• “Up-and-down” navigation is not supported in cases where the path would lead “above” the root
element. That is, you cannot use expressions which match on descendants of ancestors of a given
element, where one or more of the ancestors of the current element is also an ancestor of the root
element (see Bug #16321).

• The following XPath functions are not supported, or have known issues as indicated:

• id()

• lang()

• local-name()

• name()

• namespace-uri()

• normalize-space()

• starts-with()

• string()

• substring-after()

• substring-before()

• translate()

• The following axes are not supported:

2436

XML Functions

• following-sibling

• following

• preceding-sibling

• preceding

XPath expressions passed as arguments to ExtractValue() and UpdateXML() may contain
the colon character (:) in element selectors, which enables their use with markup employing XML
namespaces notation. For example:

mysql> SET @xml = '<a>111<b:c>222<d>333</d><e:f>444</e:f></b:c>';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//e:f');
+-----------------------------+
| ExtractValue(@xml, '//e:f') |
+-----------------------------+
| 444 |
+-----------------------------+
1 row in set (0.00 sec)

mysql> SELECT UpdateXML(@xml, '//b:c', '<g:h>555</g:h>');
+--+
| UpdateXML(@xml, '//b:c', '<g:h>555</g:h>') |
+--+
| <a>111<g:h>555</g:h> |
+--+
1 row in set (0.00 sec)

This is similar in some respects to what is permitted by Apache Xalan and some other parsers, and
is much simpler than requiring namespace declarations or the use of the namespace-uri() and
local-name() functions.

Error handling. For both ExtractValue() and UpdateXML(), the XPath locator used must be
valid and the XML to be searched must consist of elements which are properly nested and closed. If
the locator is invalid, an error is generated:

mysql> SELECT ExtractValue('<a>c', '/&a');
ERROR 1105 (HY000): XPATH syntax error: '&a'

If xml_frag does not consist of elements which are properly nested and closed, NULL is returned and
a warning is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1525
Message: Incorrect XML value: 'parse error at line 1 pos 11:
 END-OF-INPUT unexpected ('>' wanted)'
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c', '//a');
+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)

2437

http://xalan.apache.org/

XML Functions

Important

The replacement XML used as the third argument to UpdateXML() is not
checked to determine whether it consists solely of elements which are properly
nested and closed.

XPath Injection. code injection occurs when malicious code is introduced into the system to gain
unauthorized access to privileges and data. It is based on exploiting assumptions made by developers
about the type and content of data input from users. XPath is no exception in this regard.

A common scenario in which this can happen is the case of application which handles authorization
by matching the combination of a login name and password with those found in an XML file, using an
XPath expression like this one:

//user[login/text()='neapolitan' and password/text()='1c3cr34m']/attribute::id

This is the XPath equivalent of an SQL statement like this one:

SELECT id FROM users WHERE login='neapolitan' AND password='1c3cr34m';

A PHP application employing XPath might handle the login process like this:

<?php

 $file = "users.xml";

 $login = $POST["login"];
 $password = $POST["password"];

 $xpath = "//user[login/text()=$login and password/text()=$password]/attribute::id";

 if(file_exists($file))
 {
 $xml = simplexml_load_file($file);

 if($result = $xml->xpath($xpath))
 echo "You are now logged in as user $result[0].";
 else
 echo "Invalid login name or password.";
 }
 else
 exit("Failed to open $file.");

?>

No checks are performed on the input. This means that a malevolent user can “short-circuit” the test
by entering ' or 1=1 for both the login name and password, resulting in $xpath being evaluated as
shown here:

//user[login/text()='' or 1=1 and password/text()='' or 1=1]/attribute::id

Since the expression inside the square brackets always evaluates as true, it is effectively the same as
this one, which matches the id attribute of every user element in the XML document:

//user/attribute::id

One way in which this particular attack can be circumvented is simply by quoting the variable names to
be interpolated in the definition of $xpath, forcing the values passed from a Web form to be converted
to strings:

$xpath = "//user[login/text()='$login' and password/text()='$password']/attribute::id";

This is the same strategy that is often recommended for preventing SQL injection attacks. In general,
the practices you should follow for preventing XPath injection attacks are the same as for preventing
SQL injection:

• Never accepted untested data from users in your application.

2438

Bit Functions and Operators

• Check all user-submitted data for type; reject or convert data that is of the wrong type

• Test numeric data for out of range values; truncate, round, or reject values that are out of range. Test
strings for illegal characters and either strip them out or reject input containing them.

• Do not output explicit error messages that might provide an unauthorized user with clues that could
be used to compromise the system; log these to a file or database table instead.

Just as SQL injection attacks can be used to obtain information about database schemas, so can
XPath injection be used to traverse XML files to uncover their structure, as discussed in Amit Klein's
paper Blind XPath Injection (PDF file, 46KB).

It is also important to check the output being sent back to the client. Consider what can happen when
we use the MySQL ExtractValue() function:

mysql> SELECT ExtractValue(
 -> LOAD_FILE('users.xml'),
 -> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
 ->) AS id;
+-------------------------------+
| id |
+-------------------------------+
| 00327 13579 02403 42354 28570 |
+-------------------------------+
1 row in set (0.01 sec)

Because ExtractValue() returns multiple matches as a single space-delimited string, this injection
attack provides every valid ID contained within users.xml to the user as a single row of output. As an
extra safeguard, you should also test output before returning it to the user. Here is a simple example:

mysql> SELECT @id = ExtractValue(
 -> LOAD_FILE('users.xml'),
 -> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
 ->);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT IF(
 -> INSTR(@id, ' ') = 0,
 -> @id,
 -> 'Unable to retrieve user ID')
 -> AS singleID;
+----------------------------+
| singleID |
+----------------------------+
| Unable to retrieve user ID |
+----------------------------+
1 row in set (0.00 sec)

In general, the guidelines for returning data to users securely are the same as for accepting user input.
These can be summed up as:

• Always test outgoing data for type and permissible values.

• Never permit unauthorized users to view error messages that might provide information about the
application that could be used to exploit it.

14.12 Bit Functions and Operators
Table 14.17 Bit Functions and Operators

Name Description

& Bitwise AND

>> Right shift

<< Left shift

^ Bitwise XOR

2439

http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf

Bit Functions and Operators

Name Description

BIT_COUNT() Return the number of bits that are set

| Bitwise OR

~ Bitwise inversion

The following list describes available bit functions and operators:

• |

Bitwise OR.

The result type depends on whether the arguments are evaluated as binary strings or numbers:

• Binary-string evaluation occurs when the arguments have a binary string type, and at least one of
them is not a hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs otherwise,
with argument conversion to unsigned 64-bit integers as necessary.

• Binary-string evaluation produces a binary string of the same length as the arguments. If the
arguments have unequal lengths, an ER_INVALID_BITWISE_OPERANDS_SIZE error occurs.
Numeric evaluation produces an unsigned 64-bit integer.

For more information, see the introductory discussion in this section.

mysql> SELECT 29 | 15;
 -> 31
mysql> SELECT _binary X'40404040' | X'01020304';
 -> 'ABCD'

If bitwise OR is invoked from within the mysql client, binary string results display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• &

Bitwise AND.

The result type depends on whether the arguments are evaluated as binary strings or numbers:

• Binary-string evaluation occurs when the arguments have a binary string type, and at least one of
them is not a hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs otherwise,
with argument conversion to unsigned 64-bit integers as necessary.

• Binary-string evaluation produces a binary string of the same length as the arguments. If the
arguments have unequal lengths, an ER_INVALID_BITWISE_OPERANDS_SIZE error occurs.
Numeric evaluation produces an unsigned 64-bit integer.

For more information, see the introductory discussion in this section.

mysql> SELECT 29 & 15;
 -> 13
mysql> SELECT HEX(_binary X'FF' & b'11110000');
 -> 'F0'

If bitwise AND is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information
about that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• ^

Bitwise XOR.

The result type depends on whether the arguments are evaluated as binary strings or numbers:

2440

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_operands_size
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_operands_size

Bit Functions and Operators

• Binary-string evaluation occurs when the arguments have a binary string type, and at least one of
them is not a hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs otherwise,
with argument conversion to unsigned 64-bit integers as necessary.

• Binary-string evaluation produces a binary string of the same length as the arguments. If the
arguments have unequal lengths, an ER_INVALID_BITWISE_OPERANDS_SIZE error occurs.
Numeric evaluation produces an unsigned 64-bit integer.

For more information, see the introductory discussion in this section.

mysql> SELECT 1 ^ 1;
 -> 0
mysql> SELECT 1 ^ 0;
 -> 1
mysql> SELECT 11 ^ 3;
 -> 8
mysql> SELECT HEX(_binary X'FEDC' ^ X'1111');
 -> 'EFCD'

If bitwise XOR is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information
about that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• <<

Shifts a longlong (BIGINT) number or binary string to the left.

The result type depends on whether the bit argument is evaluated as a binary string or number:

• Binary-string evaluation occurs when the bit argument has a binary string type, and is not a
hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs otherwise, with argument
conversion to an unsigned 64-bit integer as necessary.

• Binary-string evaluation produces a binary string of the same length as the bit argument. Numeric
evaluation produces an unsigned 64-bit integer.

Bits shifted off the end of the value are lost without warning, regardless of the argument type. In
particular, if the shift count is greater or equal to the number of bits in the bit argument, all bits in the
result are 0.

For more information, see the introductory discussion in this section.

mysql> SELECT 1 << 2;
 -> 4
mysql> SELECT HEX(_binary X'00FF00FF00FF' << 8);
 -> 'FF00FF00FF00'

If a bit shift is invoked from within the mysql client, binary string results display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• >>

Shifts a longlong (BIGINT) number or binary string to the right.

The result type depends on whether the bit argument is evaluated as a binary string or number:

• Binary-string evaluation occurs when the bit argument has a binary string type, and is not a
hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs otherwise, with argument
conversion to an unsigned 64-bit integer as necessary.

• Binary-string evaluation produces a binary string of the same length as the bit argument. Numeric
evaluation produces an unsigned 64-bit integer.

2441

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_operands_size

Bit Functions and Operators

Bits shifted off the end of the value are lost without warning, regardless of the argument type. In
particular, if the shift count is greater or equal to the number of bits in the bit argument, all bits in the
result are 0.

For more information, see the introductory discussion in this section.

mysql> SELECT 4 >> 2;
 -> 1
mysql> SELECT HEX(_binary X'00FF00FF00FF' >> 8);
 -> '0000FF00FF00'

If a bit shift is invoked from within the mysql client, binary string results display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• ~

Invert all bits.

The result type depends on whether the bit argument is evaluated as a binary string or number:

• Binary-string evaluation occurs when the bit argument has a binary string type, and is not a
hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs otherwise, with argument
conversion to an unsigned 64-bit integer as necessary.

• Binary-string evaluation produces a binary string of the same length as the bit argument. Numeric
evaluation produces an unsigned 64-bit integer.

For more information, see the introductory discussion in this section.

mysql> SELECT 5 & ~1;
 -> 4
mysql> SELECT HEX(~X'0000FFFF1111EEEE');
 -> 'FFFF0000EEEE1111'

If bitwise inversion is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information
about that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• BIT_COUNT(N)

Returns the number of bits that are set in the argument N as an unsigned 64-bit integer, or NULL if
the argument is NULL.

mysql> SELECT BIT_COUNT(64), BIT_COUNT(BINARY 64);
 -> 1, 7
mysql> SELECT BIT_COUNT('64'), BIT_COUNT(_binary '64');
 -> 1, 7
mysql> SELECT BIT_COUNT(X'40'), BIT_COUNT(_binary X'40');
 -> 1, 1

Bit functions and operators comprise BIT_COUNT(), BIT_AND(), BIT_OR(), BIT_XOR(), &, |, ^,
~, <<, and >>. (The BIT_AND(), BIT_OR(), and BIT_XOR() aggregate functions are described in
Section 14.19.1, “Aggregate Function Descriptions”.) Prior to MySQL 8.0, bit functions and operators
required BIGINT (64-bit integer) arguments and returned BIGINT values, so they had a maximum
range of 64 bits. Non-BIGINT arguments were converted to BIGINT prior to performing the operation
and truncation could occur.

In MySQL 8.0, bit functions and operators permit binary string type arguments (BINARY, VARBINARY,
and the BLOB types) and return a value of like type, which enables them to take arguments and
produce return values larger than 64 bits. Nonbinary string arguments are converted to BIGINT and
processed as such, as before.

2442

Bit Operations Prior to MySQL 8.0

An implication of this change in behavior is that bit operations on binary string arguments might
produce a different result in MySQL 8.0 than in 5.7. For information about how to prepare in MySQL 5.7
for potential incompatibilities between MySQL 5.7 and 8.0, see Bit Functions and Operators, in MySQL
5.7 Reference Manual.

• Bit Operations Prior to MySQL 8.0

• Bit Operations in MySQL 8.0

• Binary String Bit-Operation Examples

• Bitwise AND, OR, and XOR Operations

• Bitwise Complement and Shift Operations

• BIT_COUNT() Operations

• BIT_AND(), BIT_OR(), and BIT_XOR() Operations

• Special Handling of Hexadecimal Literals, Bit Literals, and NULL Literals

• Bit-Operation Incompatibilities with MySQL 5.7

Bit Operations Prior to MySQL 8.0

Bit operations prior to MySQL 8.0 handle only unsigned 64-bit integer argument and result values (that
is, unsigned BIGINT values). Conversion of arguments of other types to BIGINT occurs as necessary.
Examples:

• This statement operates on numeric literals, treated as unsigned 64-bit integers:

mysql> SELECT 127 | 128, 128 << 2, BIT_COUNT(15);
+-----------+----------+---------------+
| 127 | 128 | 128 << 2 | BIT_COUNT(15) |
+-----------+----------+---------------+
| 255 | 512 | 4 |
+-----------+----------+---------------+

• This statement performs to-number conversions on the string arguments ('127' to 127, and so
forth) before performing the same operations as the first statement and producing the same results:

mysql> SELECT '127' | '128', '128' << 2, BIT_COUNT('15');
+---------------+------------+-----------------+
| '127' | '128' | '128' << 2 | BIT_COUNT('15') |
+---------------+------------+-----------------+
| 255 | 512 | 4 |
+---------------+------------+-----------------+

• This statement uses hexadecimal literals for the bit-operation arguments. MySQL by default treats
hexadecimal literals as binary strings, but in numeric context evaluates them as numbers (see
Section 11.1.4, “Hexadecimal Literals”). Prior to MySQL 8.0, numeric context includes bit operations.
Examples:

mysql> SELECT X'7F' | X'80', X'80' << 2, BIT_COUNT(X'0F');
+---------------+------------+------------------+
| X'7F' | X'80' | X'80' << 2 | BIT_COUNT(X'0F') |
+---------------+------------+------------------+
| 255 | 512 | 4 |
+---------------+------------+------------------+

Handling of bit-value literals in bit operations is similar to hexadecimal literals (that is, as numbers).

2443

https://dev.mysql.com/doc/refman/5.7/en/bit-functions.html
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/

Bit Operations in MySQL 8.0

Bit Operations in MySQL 8.0

MySQL 8.0 extends bit operations to handle binary string arguments directly (without conversion) and
produce binary string results. (Arguments that are not integers or binary strings are still converted to
integers, as before.) This extension enhances bit operations in the following ways:

• Bit operations become possible on values longer than 64 bits.

• It is easier to perform bit operations on values that are more naturally represented as binary strings
than as integers.

For example, consider UUID values and IPv6 addresses, which have human-readable text formats like
this:

UUID: 6ccd780c-baba-1026-9564-5b8c656024db
IPv6: fe80::219:d1ff:fe91:1a72

It is cumbersome to operate on text strings in those formats. An alternative is convert them to fixed-
length binary strings without delimiters. UUID_TO_BIN() and INET6_ATON() each produce a value of
data type BINARY(16), a binary string 16 bytes (128 bits) long. The following statements illustrate this
(HEX() is used to produce displayable values):

mysql> SELECT HEX(UUID_TO_BIN('6ccd780c-baba-1026-9564-5b8c656024db'));
+--+
| HEX(UUID_TO_BIN('6ccd780c-baba-1026-9564-5b8c656024db')) |
+--+
| 6CCD780CBABA102695645B8C656024DB |
+--+
mysql> SELECT HEX(INET6_ATON('fe80::219:d1ff:fe91:1a72'));
+---+
| HEX(INET6_ATON('fe80::219:d1ff:fe91:1a72')) |
+---+
| FE800000000000000219D1FFFE911A72 |
+---+

Those binary values are easily manipulable with bit operations to perform actions such as extracting
the timestamp from UUID values, or extracting the network and host parts of IPv6 addresses. (For
examples, see later in this discussion.)

Arguments that count as binary strings include column values, routine parameters, local variables, and
user-defined variables that have a binary string type: BINARY, VARBINARY, or one of the BLOB types.

What about hexadecimal literals and bit literals? Recall that those are binary strings by default in
MySQL, but numbers in numeric context. How are they handled for bit operations in MySQL 8.0?
Does MySQL continue to evaluate them in numeric context, as is done prior to MySQL 8.0? Or do bit
operations evaluate them as binary strings, now that binary strings can be handled “natively” without
conversion?

Answer: It has been common to specify arguments to bit operations using hexadecimal literals or bit
literals with the intent that they represent numbers, so MySQL continues to evaluate bit operations in
numeric context when all bit arguments are hexadecimal or bit literals, for backward compatbility. If you
require evaluation as binary strings instead, that is easily accomplished: Use the _binary introducer
for at least one literal.

• These bit operations evaluate the hexadecimal literals and bit literals as integers:

mysql> SELECT X'40' | X'01', b'11110001' & b'01001111';
+---------------+---------------------------+
| X'40' | X'01' | b'11110001' & b'01001111' |
+---------------+---------------------------+
| 65 | 65 |
+---------------+---------------------------+

• These bit operations evaluate the hexadecimal literals and bit literals as binary strings, due to the
_binary introducer:

2444

Bit Operations in MySQL 8.0

mysql> SELECT _binary X'40' | X'01', b'11110001' & _binary b'01001111';
+-----------------------+-----------------------------------+
| _binary X'40' | X'01' | b'11110001' & _binary b'01001111' |
+-----------------------+-----------------------------------+
| A | A |
+-----------------------+-----------------------------------+

Although the bit operations in both statements produce a result with a numeric value of 65, the second
statement operates in binary-string context, for which 65 is ASCII A.

In numeric evaluation context, permitted values of hexadecimal literal and bit literal arguments have a
maximum of 64 bits, as do results. By contrast, in binary-string evaluation context, permitted arguments
(and results) can exceed 64 bits:

mysql> SELECT _binary X'4040404040404040' | X'0102030405060708';
+---+
| _binary X'4040404040404040' | X'0102030405060708' |
+---+
| ABCDEFGH |
+---+

There are several ways to refer to a hexadecimal literal or bit literal in a bit operation to cause binary-
string evaluation:

_binary literal
BINARY literal
CAST(literal AS BINARY)

Another way to produce binary-string evaluation of hexadecimal literals or bit literals is to assign them
to user-defined variables, which results in variables that have a binary string type:

mysql> SET @v1 = X'40', @v2 = X'01', @v3 = b'11110001', @v4 = b'01001111';
mysql> SELECT @v1 | @v2, @v3 & @v4;
+-----------+-----------+
| @v1 | @v2 | @v3 & @v4 |
+-----------+-----------+
| A | A |
+-----------+-----------+

In binary-string context, bitwise operation arguments must have the same length or an
ER_INVALID_BITWISE_OPERANDS_SIZE error occurs:

mysql> SELECT _binary X'40' | X'0001';
ERROR 3513 (HY000): Binary operands of bitwise
operators must be of equal length

To satisfy the equal-length requirement, pad the shorter value with leading zero digits or, if the longer
value begins with leading zero digits and a shorter result value is acceptable, strip them:

mysql> SELECT _binary X'0040' | X'0001';
+---------------------------+
| _binary X'0040' | X'0001' |
+---------------------------+
| A |
+---------------------------+
mysql> SELECT _binary X'40' | X'01';
+-----------------------+
| _binary X'40' | X'01' |
+-----------------------+
| A |
+-----------------------+

Padding or stripping can also be accomplished using functions such as LPAD(), RPAD(), SUBSTR(),
or CAST(). In such cases, the expression arguments are no longer all literals and _binary becomes
unnecessary. Examples:

mysql> SELECT LPAD(X'40', 2, X'00') | X'0001';

2445

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_operands_size

Binary String Bit-Operation Examples

+---------------------------------+
| LPAD(X'40', 2, X'00') | X'0001' |
+---------------------------------+
| A |
+---------------------------------+
mysql> SELECT X'40' | SUBSTR(X'0001', 2, 1);
+-------------------------------+
| X'40' | SUBSTR(X'0001', 2, 1) |
+-------------------------------+
| A |
+-------------------------------+

Binary String Bit-Operation Examples

The following example illustrates use of bit operations to extract parts of a UUID value, in this case, the
timestamp and IEEE 802 node number. This technique requires bitmasks for each extracted part.

Convert the text UUID to the corresponding 16-byte binary value so that it can be manipulated using bit
operations in binary-string context:

mysql> SET @uuid = UUID_TO_BIN('6ccd780c-baba-1026-9564-5b8c656024db');
mysql> SELECT HEX(@uuid);
+----------------------------------+
| HEX(@uuid) |
+----------------------------------+
| 6CCD780CBABA102695645B8C656024DB |
+----------------------------------+

Construct bitmasks for the timestamp and node number parts of the value. The timestamp comprises
the first three parts (64 bits, bits 0 to 63) and the node number is the last part (48 bits, bits 80 to 127):

mysql> SET @ts_mask = CAST(X'FFFFFFFFFFFFFFFF' AS BINARY(16));
mysql> SET @node_mask = CAST(X'FFFFFFFFFFFF' AS BINARY(16)) >> 80;
mysql> SELECT HEX(@ts_mask);
+----------------------------------+
| HEX(@ts_mask) |
+----------------------------------+
| FFFFFFFFFFFFFFFF0000000000000000 |
+----------------------------------+
mysql> SELECT HEX(@node_mask);
+----------------------------------+
| HEX(@node_mask) |
+----------------------------------+
| 00000000000000000000FFFFFFFFFFFF |
+----------------------------------+

The CAST(... AS BINARY(16)) function is used here because the masks must be the same length
as the UUID value against which they are applied. The same result can be produced using other
functions to pad the masks to the required length:

SET @ts_mask= RPAD(X'FFFFFFFFFFFFFFFF' , 16, X'00');
SET @node_mask = LPAD(X'FFFFFFFFFFFF', 16, X'00') ;

Use the masks to extract the timestamp and node number parts:

mysql> SELECT HEX(@uuid & @ts_mask) AS 'timestamp part';
+----------------------------------+
| timestamp part |
+----------------------------------+
| 6CCD780CBABA10260000000000000000 |
+----------------------------------+
mysql> SELECT HEX(@uuid & @node_mask) AS 'node part';
+----------------------------------+
| node part |
+----------------------------------+
| 000000000000000000005B8C656024DB |
+----------------------------------+

The preceding example uses these bit operations: right shift (>>) and bitwise AND (&).

2446

Binary String Bit-Operation Examples

Note

UUID_TO_BIN() takes a flag that causes some bit rearrangement in the
resulting binary UUID value. If you use that flag, modify the extraction masks
accordingly.

The next example uses bit operations to extract the network and host parts of an IPv6 address.
Suppose that the network part has a length of 80 bits. Then the host part has a length of 128 − 80 =
48 bits. To extract the network and host parts of the address, convert it to a binary string, then use bit
operations in binary-string context.

Convert the text IPv6 address to the corresponding binary string:

mysql> SET @ip = INET6_ATON('fe80::219:d1ff:fe91:1a72');

Define the network length in bits:

mysql> SET @net_len = 80;

Construct network and host masks by shifting the all-ones address left or right. To do this, begin with
the address ::, which is shorthand for all zeros, as you can see by converting it to a binary string like
this:

mysql> SELECT HEX(INET6_ATON('::')) AS 'all zeros';
+----------------------------------+
| all zeros |
+----------------------------------+
| 00000000000000000000000000000000 |
+----------------------------------+

To produce the complementary value (all ones), use the ~ operator to invert the bits:

mysql> SELECT HEX(~INET6_ATON('::')) AS 'all ones';
+----------------------------------+
| all ones |
+----------------------------------+
| FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
+----------------------------------+

Shift the all-ones value left or right to produce the network and host masks:

mysql> SET @net_mask = ~INET6_ATON('::') << (128 - @net_len);
mysql> SET @host_mask = ~INET6_ATON('::') >> @net_len;

Display the masks to verify that they cover the correct parts of the address:

mysql> SELECT INET6_NTOA(@net_mask) AS 'network mask';
+----------------------------+
| network mask |
+----------------------------+
| ffff:ffff:ffff:ffff:ffff:: |
+----------------------------+
mysql> SELECT INET6_NTOA(@host_mask) AS 'host mask';
+------------------------+
| host mask |
+------------------------+
| ::ffff:255.255.255.255 |
+------------------------+

Extract and display the network and host parts of the address:

mysql> SET @net_part = @ip & @net_mask;
mysql> SET @host_part = @ip & @host_mask;
mysql> SELECT INET6_NTOA(@net_part) AS 'network part';
+-----------------+
| network part |
+-----------------+
| fe80::219:0:0:0 |
+-----------------+

2447

Bitwise AND, OR, and XOR Operations

mysql> SELECT INET6_NTOA(@host_part) AS 'host part';
+------------------+
| host part |
+------------------+
| ::d1ff:fe91:1a72 |
+------------------+

The preceding example uses these bit operations: Complement (~), left shift (<<), and bitwise AND (&).

The remaining discussion provides details on argument handling for each group of bit operations,
more information about literal-value handling in bit operations, and potential incompatibilities between
MySQL 8.0 and older MySQL versions.

Bitwise AND, OR, and XOR Operations

For &, |, and ^ bit operations, the result type depends on whether the arguments are evaluated as
binary strings or numbers:

• Binary-string evaluation occurs when the arguments have a binary string type, and at least one of
them is not a hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs otherwise, with
argument conversion to unsigned 64-bit integers as necessary.

• Binary-string evaluation produces a binary string of the same length as the arguments. If the
arguments have unequal lengths, an ER_INVALID_BITWISE_OPERANDS_SIZE error occurs.
Numeric evaluation produces an unsigned 64-bit integer.

Examples of numeric evaluation:

mysql> SELECT 64 | 1, X'40' | X'01';
+--------+---------------+
| 64 | 1 | X'40' | X'01' |
+--------+---------------+
| 65 | 65 |
+--------+---------------+

Examples of binary-string evaluation:

mysql> SELECT _binary X'40' | X'01';
+-----------------------+
| _binary X'40' | X'01' |
+-----------------------+
| A |
+-----------------------+
mysql> SET @var1 = X'40', @var2 = X'01';
mysql> SELECT @var1 | @var2;
+---------------+
| @var1 | @var2 |
+---------------+
| A |
+---------------+

Bitwise Complement and Shift Operations

For ~, <<, and >> bit operations, the result type depends on whether the bit argument is evaluated as a
binary string or number:

• Binary-string evaluation occurs when the bit argument has a binary string type, and is not a
hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs otherwise, with argument
conversion to an unsigned 64-bit integer as necessary.

• Binary-string evaluation produces a binary string of the same length as the bit argument. Numeric
evaluation produces an unsigned 64-bit integer.

For shift operations, bits shifted off the end of the value are lost without warning, regardless of the
argument type. In particular, if the shift count is greater or equal to the number of bits in the bit
argument, all bits in the result are 0.

2448

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_operands_size

BIT_COUNT() Operations

Examples of numeric evaluation:

mysql> SELECT ~0, 64 << 2, X'40' << 2;
+----------------------+---------+------------+
| ~0 | 64 << 2 | X'40' << 2 |
+----------------------+---------+------------+
| 18446744073709551615 | 256 | 256 |
+----------------------+---------+------------+

Examples of binary-string evaluation:

mysql> SELECT HEX(_binary X'1111000022220000' >> 16);
+--+
| HEX(_binary X'1111000022220000' >> 16) |
+--+
| 0000111100002222 |
+--+
mysql> SELECT HEX(_binary X'1111000022220000' << 16);
+--+
| HEX(_binary X'1111000022220000' << 16) |
+--+
| 0000222200000000 |
+--+
mysql> SET @var1 = X'F0F0F0F0';
mysql> SELECT HEX(~@var1);
+-------------+
| HEX(~@var1) |
+-------------+
| 0F0F0F0F |
+-------------+

BIT_COUNT() Operations

The BIT_COUNT() function always returns an unsigned 64-bit integer, or NULL if the argument is
NULL.

mysql> SELECT BIT_COUNT(127);
+----------------+
| BIT_COUNT(127) |
+----------------+
| 7 |
+----------------+
mysql> SELECT BIT_COUNT(b'010101'), BIT_COUNT(_binary b'010101');
+----------------------+------------------------------+
| BIT_COUNT(b'010101') | BIT_COUNT(_binary b'010101') |
+----------------------+------------------------------+
| 3 | 3 |
+----------------------+------------------------------+

BIT_AND(), BIT_OR(), and BIT_XOR() Operations

For the BIT_AND(), BIT_OR(), and BIT_XOR() bit functions, the result type depends on whether the
function argument values are evaluated as binary strings or numbers:

• Binary-string evaluation occurs when the argument values have a binary string type, and the
argument is not a hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs otherwise,
with argument value conversion to unsigned 64-bit integers as necessary.

• Binary-string evaluation produces a binary string of the same length as the argument values. If
argument values have unequal lengths, an ER_INVALID_BITWISE_OPERANDS_SIZE error occurs.
If the argument size exceeds 511 bytes, an ER_INVALID_BITWISE_AGGREGATE_OPERANDS_SIZE
error occurs. Numeric evaluation produces an unsigned 64-bit integer.

NULL values do not affect the result unless all values are NULL. In that case, the result is a neutral
value having the same length as the length of the argument values (all bits 1 for BIT_AND(), all bits 0
for BIT_OR(), and BIT_XOR()).

Example:

2449

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_operands_size
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_aggregate_operands_size

Special Handling of Hexadecimal Literals, Bit Literals, and NULL Literals

mysql> CREATE TABLE t (group_id INT, a VARBINARY(6));
mysql> INSERT INTO t VALUES (1, NULL);
mysql> INSERT INTO t VALUES (1, NULL);
mysql> INSERT INTO t VALUES (2, NULL);
mysql> INSERT INTO t VALUES (2, X'1234');
mysql> INSERT INTO t VALUES (2, X'FF34');
mysql> SELECT HEX(BIT_AND(a)), HEX(BIT_OR(a)), HEX(BIT_XOR(a))
 FROM t GROUP BY group_id;
+-----------------+----------------+-----------------+
| HEX(BIT_AND(a)) | HEX(BIT_OR(a)) | HEX(BIT_XOR(a)) |
+-----------------+----------------+-----------------+
| FFFFFFFFFFFF | 000000000000 | 000000000000 |
| 1234 | FF34 | ED00 |
+-----------------+----------------+-----------------+

Special Handling of Hexadecimal Literals, Bit Literals, and NULL Literals

For backward compatibility, MySQL 8.0 evaluates bit operations in numeric context when all bit
arguments are hexadecimal literals, bit literals, or NULL literals. That is, bit operations on binary-string
bit arguments do not use binary-string evaluation if all bit arguments are unadorned hexadecimal
literals, bit literals, or NULL literals. (This does not apply to such literals if they are written with a
_binary introducer, BINARY operator, or other way of specifying them explicitly as binary strings.)

The literal handling just described is the same as prior to MySQL 8.0. Examples:

• These bit operations evaluate the literals in numeric context and produce a BIGINT result:

b'0001' | b'0010'
X'0008' << 8

• These bit operations evaluate NULL in numeric context and produce a BIGINT result that has a
NULL value:

NULL & NULL
NULL >> 4

In MySQL 8.0, you can cause those operations to evaluate the arguments in binary-string context by
indicating explicitly that at least one argument is a binary string:

_binary b'0001' | b'0010'
_binary X'0008' << 8
BINARY NULL & NULL
BINARY NULL >> 4

The result of the last two expressions is NULL, just as without the BINARY operator, but the data type
of the result is a binary string type rather than an integer type.

Bit-Operation Incompatibilities with MySQL 5.7

Because bit operations can handle binary string arguments natively in MySQL 8.0, some expressions
produce a different result in MySQL 8.0 than in 5.7. The five problematic expression types to watch out
for are:

nonliteral_binary { & | ^ } binary
binary { & | ^ } nonliteral_binary
nonliteral_binary { << >> } anything
~ nonliteral_binary
AGGR_BIT_FUNC(nonliteral_binary)

Those expressions return BIGINT in MySQL 5.7, binary string in 8.0.

Explanation of notation:

• { op1 op2 ... }: List of operators that apply to the given expression type.

• binary: Any kind of binary string argument, including a hexadecimal literal, bit literal, or NULL literal.

2450

Encryption and Compression Functions

• nonliteral_binary: An argument that is a binary string value other than a hexadecimal literal, bit
literal, or NULL literal.

• AGGR_BIT_FUNC: An aggregate function that takes bit-value arguments: BIT_AND(), BIT_OR(),
BIT_XOR().

For information about how to prepare in MySQL 5.7 for potential incompatibilities between MySQL 5.7
and 8.0, see Bit Functions and Operators, in MySQL 5.7 Reference Manual.

14.13 Encryption and Compression Functions

Table 14.18 Encryption Functions

Name Description

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

COMPRESS() Return result as a binary string

MD5() Calculate MD5 checksum

RANDOM_BYTES() Return a random byte vector

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

SHA2() Calculate an SHA-2 checksum

STATEMENT_DIGEST() Compute statement digest hash value

STATEMENT_DIGEST_TEXT() Compute normalized statement digest

UNCOMPRESS() Uncompress a string compressed

UNCOMPRESSED_LENGTH() Return the length of a string before compression

VALIDATE_PASSWORD_STRENGTH() Determine strength of password

Many encryption and compression functions return strings for which the result might contain arbitrary
byte values. If you want to store these results, use a column with a VARBINARY or BLOB binary string
data type. This avoids potential problems with trailing space removal or character set conversion that
would change data values, such as may occur if you use a nonbinary string data type (CHAR, VARCHAR,
TEXT).

Some encryption functions return strings of ASCII characters: MD5(), SHA(), SHA1(), SHA2(),
STATEMENT_DIGEST(), STATEMENT_DIGEST_TEXT(). Their return value is a string that
has a character set and collation determined by the character_set_connection and
collation_connection system variables. This is a nonbinary string unless the character set is
binary.

If an application stores values from a function such as MD5() or SHA1() that returns a string of hex
digits, more efficient storage and comparisons can be obtained by converting the hex representation to
binary using UNHEX() and storing the result in a BINARY(N) column. Each pair of hexadecimal digits
requires one byte in binary form, so the value of N depends on the length of the hex string. N is 16 for
an MD5() value and 20 for a SHA1() value. For SHA2(), N ranges from 28 to 32 depending on the
argument specifying the desired bit length of the result.

The size penalty for storing the hex string in a CHAR column is at least two times, up to eight times if the
value is stored in a column that uses the utf8mb4 character set (where each character uses 4 bytes).
Storing the string also results in slower comparisons because of the larger values and the need to take
character set collation rules into account.

Suppose that an application stores MD5() string values in a CHAR(32) column:

CREATE TABLE md5_tbl (md5_val CHAR(32), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(MD5('abcdef'), ...);

2451

https://dev.mysql.com/doc/refman/5.7/en/bit-functions.html
https://dev.mysql.com/doc/refman/5.7/en/

Encryption and Compression Functions

To convert hex strings to more compact form, modify the application to use UNHEX() and
BINARY(16) instead as follows:

CREATE TABLE md5_tbl (md5_val BINARY(16), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(UNHEX(MD5('abcdef')), ...);

Applications should be prepared to handle the very rare case that a hashing function produces the
same value for two different input values. One way to make collisions detectable is to make the hash
column a primary key.

Note

Exploits for the MD5 and SHA-1 algorithms have become known. You may wish
to consider using another one-way encryption function described in this section
instead, such as SHA2().

Caution

Passwords or other sensitive values supplied as arguments to encryption
functions are sent as cleartext to the MySQL server unless an SSL connection
is used. Also, such values appear in any MySQL logs to which they are written.
To avoid these types of exposure, applications can encrypt sensitive values
on the client side before sending them to the server. The same considerations
apply to encryption keys. To avoid exposing these, applications can use stored
procedures to encrypt and decrypt values on the server side.

• AES_DECRYPT(crypt_str,key_str[,init_vector][,kdf_name][,salt][,info |
iterations])

This function decrypts data using the official AES (Advanced Encryption Standard) algorithm. For
more information, see the description of AES_ENCRYPT().

Statements that use AES_DECRYPT() are unsafe for statement-based replication.

• AES_ENCRYPT(str,key_str[,init_vector][,kdf_name][,salt][,info |
iterations])

AES_ENCRYPT() and AES_DECRYPT() implement encryption and decryption of data using the
official AES (Advanced Encryption Standard) algorithm, previously known as “Rijndael.” The AES
standard permits various key lengths. By default these functions implement AES with a 128-bit key
length. Key lengths of 196 or 256 bits can be used, as described later. The key length is a trade off
between performance and security.

AES_ENCRYPT() encrypts the string str using the key string key_str, and returns a binary string
containing the encrypted output. AES_DECRYPT() decrypts the encrypted string crypt_str using
the key string key_str, and returns the original (binary) string in hexadecimal format. (To obtain
the string as plaintext, cast the result to CHAR. Alternatively, start the mysql client with --skip-
binary-as-hex to cause all binary values to be displayed as text.) If either function argument is
NULL, the function returns NULL. If AES_DECRYPT() detects invalid data or incorrect padding, it
returns NULL. However, it is possible for AES_DECRYPT() to return a non-NULL value (possibly
garbage) if the input data or the key is invalid.

As of MySQL 8.0.30, these functions support the use of a key derivation function (KDF) to create a
cryptographically strong secret key from the information passed in key_str. The derived key is used
to encrypt and decrypt the data, and it remains in the MySQL Server instance and is not accessible
to users. Using a KDF is highly recommended, as it provides better security than specifying your own
premade key or deriving it by a simpler method as you use the function. The functions support HKDF
(available from OpenSSL 1.1.0), for which you can specify an optional salt and context-specific
information to include in the keying material, and PBKDF2 (available from OpenSSL 1.0.2), for which
you can specify an optional salt and set the number of iterations used to produce the key.

2452

Encryption and Compression Functions

AES_ENCRYPT() and AES_DECRYPT() permit control of the block encryption mode. The
block_encryption_mode system variable controls the mode for block-based encryption
algorithms. Its default value is aes-128-ecb, which signifies encryption using a key length of 128
bits and ECB mode. For a description of the permitted values of this variable, see Section 7.1.8,
“Server System Variables”. The optional init_vector argument is used to provide an initialization
vector for block encryption modes that require it.

Statements that use AES_ENCRYPT() or AES_DECRYPT() are unsafe for statement-based
replication.

If AES_ENCRYPT() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

The arguments for the AES_ENCRYPT() and AES_DECRYPT() functions are as follows:

str The string for AES_ENCRYPT() to encrypt using the key string
key_str, or (from MySQL 8.0.30) the key derived from it by
the specified KDF. The string can be any length. Padding is
automatically added to str so it is a multiple of a block as
required by block-based algorithms such as AES. This padding is
automatically removed by the AES_DECRYPT() function.

crypt_str The encrypted string for AES_DECRYPT() to decrypt using the
key string key_str, or (from MySQL 8.0.30) the key derived from
it by the specified KDF. The string can be any length. The length
of crypt_str can be calculated from the length of the original
string using this formula:

16 * (trunc(string_length / 16) + 1)

key_str The encryption key, or the input keying material that is used
as the basis for deriving a key using a key derivation function
(KDF). For the same instance of data, use the same value of
key_str for encryption with AES_ENCRYPT() and decryption
with AES_DECRYPT().

If you are using a KDF, which you can from MySQL 8.0.30,
key_str can be any arbitrary information such as a password or
passphrase. In the further arguments for the function, you specify
the KDF name, then add further options to increase the security
as appropriate for the KDF.

When you use a KDF, the function creates a cryptographically
strong secret key from the information passed in key_str and
any salt or additional information that you provide in the other
arguments. The derived key is used to encrypt and decrypt the
data, and it remains in the MySQL Server instance and is not
accessible to users. Using a KDF is highly recommended, as it
provides better security than specifying your own premade key or
deriving it by a simpler method as you use the function.

If you are not using a KDF, for a key length of 128 bits, the most
secure way to pass a key to the key_str argument is to create
a truly random 128-bit value and pass it as a binary value. For
example:

INSERT INTO t

2453

Encryption and Compression Functions

VALUES (1,AES_ENCRYPT('text',UNHEX('F3229A0B371ED2D9441B830D21A390C3')));

A passphrase can be used to generate an AES key by hashing
the passphrase. For example:

INSERT INTO t
VALUES (1,AES_ENCRYPT('text', UNHEX(SHA2('My secret passphrase',512))));

If you exceed the maximum key length of 128 bits, a warning is
returned. If you are not using a KDF, do not pass a password or
passphrase directly to key_str, hash it first. Previous versions
of this documentation suggested the former approach, but it is
no longer recommended as the examples shown here are more
secure.

init_vector An initialization vector, for block encryption modes that require
it. The block_encryption_mode system variable controls
the mode. For the same instance of data, use the same value
of init_vector for encryption with AES_ENCRYPT() and
decryption with AES_DECRYPT().

Note

If you are using a KDF, you must specify
an initialization vector or a null string for
this argument, in order to access the later
arguments to define the KDF.

For modes that require an initialization vector, it must be 16 bytes
or longer (bytes in excess of 16 are ignored). An error occurs
if init_vector is missing. For modes that do not require an
initialization vector, it is ignored and a warning is generated if
init_vector is specified, unless you are using a KDF.

The default value for the block_encryption_mode system
variable is aes-128-ecb, or ECB mode, which does not require
an initialization vector. The alternative permitted block encryption
modes CBC, CFB1, CFB8, CFB128, and OFB all require an
initialization vector.

A random string of bytes to use for the initialization vector can be
produced by calling RANDOM_BYTES(16).

kdf_name The name of the key derivation function (KDF) to create a key
from the input keying material passed in key_str, and other
arguments as appropriate for the KDF. This optional argument is
available from MySQL 8.0.30.

For the same instance of data, use the same value of kdf_name
for encryption with AES_ENCRYPT() and decryption with
AES_DECRYPT(). When you specify kdf_name, you must
specify init_vector, using either a valid initialization vector,
or a null string if the encryption mode does not require an
initialization vector.

The following values are supported:

hkdf HKDF, which is available
from OpenSSL 1.1.0. HKDF
extracts a pseudorandom key

2454

Encryption and Compression Functions

from the keying material then
expands it into additional keys.
With HKDF, you can specify
an optional salt (salt) and
context-specific information
such as application details
(info) to include in the keying
material.

pbkdf2_hmac PBKDF2, which is available
from OpenSSL 1.0.2. PBKDF2
applies a pseudorandom
function to the keying material,
and repeats this process
a large number of times
to produce the key. With
PBKDF2, you can specify an
optional salt (salt) to include
in the keying material, and
set the number of iterations
used to produce the key
(iterations).

In this example, HKDF is specified as the key derivation function,
and a salt and context information are provided. The argument for
the initialization vector is included but is the empty string:

SELECT AES_ENCRYPT('mytext','mykeystring', '', 'hkdf', 'salt', 'info');

In this example, PBKDF2 is specified as the key derivation
function, a salt is provided, and the number of iterations is
doubled from the recommended minimum:

SELECT AES_ENCRYPT('mytext','mykeystring', '', 'pbkdf2_hmac','salt', '2000');

salt A salt to be passed to the key derivation function (KDF). This
optional argument is available from MySQL 8.0.30. Both HKDF
and PBKDF2 can use salts, and their use is recommended to help
prevent attacks based on dictionaries of common passwords or
rainbow tables.

A salt consists of random data, which for security must be
different for each encryption operation. A random string of bytes
to use for the salt can be produced by calling RANDOM_BYTES().
This example produces a 64-bit salt:

SET @salt = RANDOM_BYTES(8);

For the same instance of data, use the same value of salt
for encryption with AES_ENCRYPT() and decryption with
AES_DECRYPT(). The salt can safely be stored along with the
encrypted data.

info Context-specific information for HKDF to include in the keying
material, such as information about the application. This optional
argument is available from MySQL 8.0.30 when you specify hkdf
as the KDF name. HKDF adds this information to the keying

2455

Encryption and Compression Functions

material specified in key_str and the salt specified in salt to
produce the key.

For the same instance of data, use the same value of info
for encryption with AES_ENCRYPT() and decryption with
AES_DECRYPT().

iterations The iteration count for PBKDF2 to use when producing the key.
This optional argument is available from MySQL 8.0.30 when
you specify pbkdf2_hmac as the KDF name. A higher count
gives greater resistance to brute-force attacks because it has
a greater computational cost for the attacker, but the same is
necessarily true for the key derivation process. The default if
you do not specify this argument is 1000, which is the minimum
recommended by the OpenSSL standard.

For the same instance of data, use the same value of
iterations for encryption with AES_ENCRYPT() and decryption
with AES_DECRYPT().

mysql> SET block_encryption_mode = 'aes-256-cbc';
mysql> SET @key_str = SHA2('My secret passphrase',512);
mysql> SET @init_vector = RANDOM_BYTES(16);
mysql> SET @crypt_str = AES_ENCRYPT('text',@key_str,@init_vector);
mysql> SELECT CAST(AES_DECRYPT(@crypt_str,@key_str,@init_vector) AS CHAR);
+---+
| CAST(AES_DECRYPT(@crypt_str,@key_str,@init_vector) AS CHAR) |
+---+
| text |
+---+

• COMPRESS(string_to_compress)

Compresses a string and returns the result as a binary string. This function requires MySQL to have
been compiled with a compression library such as zlib. Otherwise, the return value is always NULL.
The return value is also NULL if string_to_compress is NULL. The compressed string can be
uncompressed with UNCOMPRESS().

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
 -> 21
mysql> SELECT LENGTH(COMPRESS(''));
 -> 0
mysql> SELECT LENGTH(COMPRESS('a'));
 -> 13
mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
 -> 15

The compressed string contents are stored the following way:

• Empty strings are stored as empty strings.

• Nonempty strings are stored as a 4-byte length of the uncompressed string (low byte first),
followed by the compressed string. If the string ends with space, an extra . character is added
to avoid problems with endspace trimming should the result be stored in a CHAR or VARCHAR
column. (However, use of nonbinary string data types such as CHAR or VARCHAR to store
compressed strings is not recommended anyway because character set conversion may occur.
Use a VARBINARY or BLOB binary string column instead.)

If COMPRESS() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• MD5(str)

2456

Encryption and Compression Functions

Calculates an MD5 128-bit checksum for the string. The value is returned as a string of 32
hexadecimal digits, or NULL if the argument was NULL. The return value can, for example, be used
as a hash key. See the notes at the beginning of this section about storing hash values efficiently.

The return value is a string in the connection character set.

If FIPS mode is enabled, MD5() returns NULL. See Section 8.8, “FIPS Support”.

mysql> SELECT MD5('testing');
 -> 'ae2b1fca515949e5d54fb22b8ed95575'

This is the “RSA Data Security, Inc. MD5 Message-Digest Algorithm.”

See the note regarding the MD5 algorithm at the beginning this section.

• RANDOM_BYTES(len)

This function returns a binary string of len random bytes generated using the random number
generator of the SSL library. Permitted values of len range from 1 to 1024. For values outside that
range, an error occurs. Returns NULL if len is NULL.

RANDOM_BYTES() can be used to provide the initialization vector for the AES_DECRYPT() and
AES_ENCRYPT() functions. For use in that context, len must be at least 16. Larger values are
permitted, but bytes in excess of 16 are ignored.

RANDOM_BYTES() generates a random value, which makes its result nondeterministic.
Consequently, statements that use this function are unsafe for statement-based replication.

If RANDOM_BYTES() is invoked from within the mysql client, binary strings display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information
about that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• SHA1(str), SHA(str)

Calculates an SHA-1 160-bit checksum for the string, as described in RFC 3174 (Secure Hash
Algorithm). The value is returned as a string of 40 hexadecimal digits, or NULL if the argument is
NULL. One of the possible uses for this function is as a hash key. See the notes at the beginning of
this section about storing hash values efficiently. SHA() is synonymous with SHA1().

The return value is a string in the connection character set.

mysql> SELECT SHA1('abc');
 -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SHA1() can be considered a cryptographically more secure equivalent of MD5(). However, see the
note regarding the MD5 and SHA-1 algorithms at the beginning this section.

• SHA2(str, hash_length)

Calculates the SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). The
first argument is the plaintext string to be hashed. The second argument indicates the desired bit
length of the result, which must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256).
If either argument is NULL or the hash length is not one of the permitted values, the return value is
NULL. Otherwise, the function result is a hash value containing the desired number of bits. See the
notes at the beginning of this section about storing hash values efficiently.

The return value is a string in the connection character set.

mysql> SELECT SHA2('abc', 224);

2457

Encryption and Compression Functions

 -> '23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7'

This function works only if MySQL has been configured with SSL support. See Section 8.3, “Using
Encrypted Connections”.

SHA2() can be considered cryptographically more secure than MD5() or SHA1().

• STATEMENT_DIGEST(statement)

Given an SQL statement as a string, returns the statement digest hash value as a
string in the connection character set, or NULL if the argument is NULL. The related
STATEMENT_DIGEST_TEXT() function returns the normalized statement digest. For information
about statement digesting, see Section 29.10, “Performance Schema Statement Digests and
Sampling”.

Both functions use the MySQL parser to parse the statement. If parsing fails, an error occurs. The
error message includes the parse error only if the statement is provided as a literal string.

The max_digest_length system variable determines the maximum number of bytes available to
these functions for computing normalized statement digests.

mysql> SET @stmt = 'SELECT * FROM mytable WHERE cola = 10 AND colb = 20';
mysql> SELECT STATEMENT_DIGEST(@stmt);
+--+
| STATEMENT_DIGEST(@stmt) |
+--+
| 3bb95eeade896657c4526e74ff2a2862039d0a0fe8a9e7155b5fe492cbd78387 |
+--+
mysql> SELECT STATEMENT_DIGEST_TEXT(@stmt);
+--+
| STATEMENT_DIGEST_TEXT(@stmt) |
+--+
| SELECT * FROM `mytable` WHERE `cola` = ? AND `colb` = ? |
+--+

• STATEMENT_DIGEST_TEXT(statement)

Given an SQL statement as a string, returns the normalized statement digest as a string in the
connection character set, or NULL if the argument is NULL. For additional discussion and examples,
see the description of the related STATEMENT_DIGEST() function.

• UNCOMPRESS(string_to_uncompress)

Uncompresses a string compressed by the COMPRESS() function. If the argument is not a
compressed value, the result is NULL; if string_to_uncompress is NULL, the result is also NULL.
This function requires MySQL to have been compiled with a compression library such as zlib.
Otherwise, the return value is always NULL.

mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
 -> 'any string'
mysql> SELECT UNCOMPRESS('any string');
 -> NULL

• UNCOMPRESSED_LENGTH(compressed_string)

Returns the length that the compressed string had before being compressed. Returns NULL if
compressed_string is NULL.

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
 -> 30

2458

Locking Functions

• VALIDATE_PASSWORD_STRENGTH(str)

Given an argument representing a plaintext password, this function returns an integer to indicate how
strong the password is, or NULL if the argument is NULL. The return value ranges from 0 (weak) to
100 (strong).

Password assessment by VALIDATE_PASSWORD_STRENGTH() is done by the
validate_password component. If that component is not installed, the function always returns 0.
For information about installing validate_password, see Section 8.4.3, “The Password Validation
Component”. To examine or configure the parameters that affect password testing, check or set the
system variables implemented by validate_password. See Section 8.4.3.2, “Password Validation
Options and Variables”.

The password is subjected to increasingly strict tests and the return value reflects
which tests were satisfied, as shown in the following table. In addition, if the
validate_password.check_user_name system variable is enabled and the password
matches the user name, VALIDATE_PASSWORD_STRENGTH() returns 0 regardless of how other
validate_password system variables are set.

Password Test Return Value

Length < 4 0

Length ≥ 4 and <
validate_password.length

25

Satisfies policy 1 (LOW) 50

Satisfies policy 2 (MEDIUM) 75

Satisfies policy 3 (STRONG) 100

14.14 Locking Functions

This section describes functions used to manipulate user-level locks.

Table 14.19 Locking Functions

Name Description

GET_LOCK() Get a named lock

IS_FREE_LOCK() Whether the named lock is free

IS_USED_LOCK() Whether the named lock is in use; return
connection identifier if true

RELEASE_ALL_LOCKS() Release all current named locks

RELEASE_LOCK() Release the named lock

• GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, using a timeout of timeout seconds. A
negative timeout value means infinite timeout. The lock is exclusive. While held by one session,
other sessions cannot obtain a lock of the same name.

Returns 1 if the lock was obtained successfully, 0 if the attempt timed out (for example, because
another client has previously locked the name), or NULL if an error occurred (such as running out of
memory or the thread was killed with mysqladmin kill).

A lock obtained with GET_LOCK() is released explicitly by executing RELEASE_LOCK() or implicitly
when your session terminates (either normally or abnormally). Locks obtained with GET_LOCK() are
not released when transactions commit or roll back.

2459

Locking Functions

GET_LOCK() is implemented using the metadata locking (MDL) subsystem. Multiple simultaneous
locks can be acquired and GET_LOCK() does not release any existing locks. For example, suppose
that you execute these statements:

SELECT GET_LOCK('lock1',10);
SELECT GET_LOCK('lock2',10);
SELECT RELEASE_LOCK('lock2');
SELECT RELEASE_LOCK('lock1');

The second GET_LOCK() acquires a second lock and both RELEASE_LOCK() calls return 1
(success).

It is even possible for a given session to acquire multiple locks for the same name. Other sessions
cannot acquire a lock with that name until the acquiring session releases all its locks for the name.

Uniquely named locks acquired with GET_LOCK() appear in the Performance Schema
metadata_locks table. The OBJECT_TYPE column says USER LEVEL LOCK and the
OBJECT_NAME column indicates the lock name. In the case that multiple locks are acquired for
the same name, only the first lock for the name registers a row in the metadata_locks table.
Subsequent locks for the name increment a counter in the lock but do not acquire additional
metadata locks. The metadata_locks row for the lock is deleted when the last lock instance on the
name is released.

The capability of acquiring multiple locks means there is the possibility of deadlock among clients.
When this happens, the server chooses a caller and terminates its lock-acquisition request with an
ER_USER_LOCK_DEADLOCK error. This error does not cause transactions to roll back.

MySQL enforces a maximum length on lock names of 64 characters.

GET_LOCK() can be used to implement application locks or to simulate record locks. Names are
locked on a server-wide basis. If a name has been locked within one session, GET_LOCK() blocks
any request by another session for a lock with the same name. This enables clients that agree on a
given lock name to use the name to perform cooperative advisory locking. But be aware that it also
enables a client that is not among the set of cooperating clients to lock a name, either inadvertently
or deliberately, and thus prevent any of the cooperating clients from locking that name. One way to
reduce the likelihood of this is to use lock names that are database-specific or application-specific.
For example, use lock names of the form db_name.str or app_name.str.

If multiple clients are waiting for a lock, the order in which they acquire it is undefined. Applications
should not assume that clients acquire the lock in the same order that they issued the lock requests.

GET_LOCK() is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

Since GET_LOCK() establishes a lock only on a single mysqld, it is not suitable for use with
NDB Cluster, which has no way of enforcing an SQL lock across multiple MySQL servers. See
Section 25.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”, for more information.

Caution

With the capability of acquiring multiple named locks, it is possible for a single
statement to acquire a large number of locks. For example:

INSERT INTO ... SELECT GET_LOCK(t1.col_name) FROM t1;

These types of statements may have certain adverse effects. For example,
if the statement fails part way through and rolls back, locks acquired up to
the point of failure still exist. If the intent is for there to be a correspondence
between rows inserted and locks acquired, that intent is not satisfied. Also,
if it is important that locks are granted in a certain order, be aware that

2460

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_user_lock_deadlock

Information Functions

result set order may differ depending on which execution plan the optimizer
chooses. For these reasons, it may be best to limit applications to a single
lock-acquisition call per statement.

A different locking interface is available as either a plugin service or a set of loadable functions. This
interface provides lock namespaces and distinct read and write locks, unlike the interface provided
by GET_LOCK() and related functions. For details, see Section 7.6.9.1, “The Locking Service”.

• IS_FREE_LOCK(str)

Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is free
(no one is using the lock), 0 if the lock is in use, and NULL if an error occurs (such as an incorrect
argument).

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

• IS_USED_LOCK(str)

Checks whether the lock named str is in use (that is, locked). If so, it returns the connection
identifier of the client session that holds the lock. Otherwise, it returns NULL.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

• RELEASE_ALL_LOCKS()

Releases all named locks held by the current session and returns the number of locks released (0 if
there were none)

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

• RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the
lock was released, 0 if the lock was not established by this thread (in which case the lock is not
released), and NULL if the named lock did not exist. The lock does not exist if it was never obtained
by a call to GET_LOCK() or if it has previously been released.

The DO statement is convenient to use with RELEASE_LOCK(). See Section 15.2.3, “DO Statement”.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

14.15 Information Functions
Table 14.20 Information Functions

Name Description

BENCHMARK() Repeatedly execute an expression

CHARSET() Return the character set of the argument

COERCIBILITY() Return the collation coercibility value of the string
argument

COLLATION() Return the collation of the string argument

CONNECTION_ID() Return the connection ID (thread ID) for the
connection

CURRENT_ROLE() Return the current active roles

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

2461

Information Functions

Name Description

DATABASE() Return the default (current) database name

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of
rows that would be returned were there no LIMIT
clause

ICU_VERSION() ICU library version

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the
last INSERT

ROLES_GRAPHML() Return a GraphML document representing
memory role subgraphs

ROW_COUNT() The number of rows updated

SCHEMA() Synonym for DATABASE()

SESSION_USER() Synonym for USER()

SYSTEM_USER() Synonym for USER()

USER() The user name and host name provided by the
client

VERSION() Return a string that indicates the MySQL server
version

• BENCHMARK(count,expr)

The BENCHMARK() function executes the expression expr repeatedly count times. It may be
used to time how quickly MySQL processes the expression. The result value is 0, or NULL for
inappropriate arguments such as a NULL or negative repeat count.

The intended use is from within the mysql client, which reports query execution times:

mysql> SELECT BENCHMARK(1000000,AES_ENCRYPT('hello','goodbye'));
+---+
| BENCHMARK(1000000,AES_ENCRYPT('hello','goodbye')) |
+---+
| 0 |
+---+
1 row in set (4.74 sec)

The time reported is elapsed time on the client end, not CPU time on the server end. It is advisable
to execute BENCHMARK() several times, and to interpret the result with regard to how heavily loaded
the server machine is.

BENCHMARK() is intended for measuring the runtime performance of scalar expressions, which has
some significant implications for the way that you use it and interpret the results:

• Only scalar expressions can be used. Although the expression can be a subquery, it must return a
single column and at most a single row. For example, BENCHMARK(10, (SELECT * FROM t))
fails if the table t has more than one column or more than one row.

• Executing a SELECT expr statement N times differs from executing SELECT BENCHMARK(N,
expr) in terms of the amount of overhead involved. The two have very different execution profiles
and you should not expect them to take the same amount of time. The former involves the parser,
optimizer, table locking, and runtime evaluation N times each. The latter involves only runtime
evaluation N times, and all the other components just once. Memory structures already allocated
are reused, and runtime optimizations such as local caching of results already evaluated for
aggregate functions can alter the results. Use of BENCHMARK() thus measures performance of the
runtime component by giving more weight to that component and removing the “noise” introduced
by the network, parser, optimizer, and so forth.

2462

Information Functions

• CHARSET(str)

Returns the character set of the string argument, or NULL if the argument is NULL.

mysql> SELECT CHARSET('abc');
 -> 'utf8mb3'
mysql> SELECT CHARSET(CONVERT('abc' USING latin1));
 -> 'latin1'
mysql> SELECT CHARSET(USER());
 -> 'utf8mb3'

• COERCIBILITY(str)

Returns the collation coercibility value of the string argument.

mysql> SELECT COERCIBILITY('abc' COLLATE utf8mb4_swedish_ci);
 -> 0
mysql> SELECT COERCIBILITY(USER());
 -> 3
mysql> SELECT COERCIBILITY('abc');
 -> 4
mysql> SELECT COERCIBILITY(1000);
 -> 5

The return values have the meanings shown in the following table. Lower values have higher
precedence.

Coercibility Meaning Example

0 Explicit collation Value with COLLATE clause

1 No collation Concatenation of strings with
different collations

2 Implicit collation Column value, stored routine
parameter or local variable

3 System constant USER() return value

4 Coercible Literal string

5 Numeric Numeric or temporal value

6 Ignorable NULL or an expression derived
from NULL

For more information, see Section 12.8.4, “Collation Coercibility in Expressions”.

• COLLATION(str)

Returns the collation of the string argument.

mysql> SELECT COLLATION('abc');
 -> 'utf8mb4_0900_ai_ci'
mysql> SELECT COLLATION(_utf8mb4'abc');
 -> 'utf8mb4_0900_ai_ci'
mysql> SELECT COLLATION(_latin1'abc');
 -> 'latin1_swedish_ci'

• CONNECTION_ID()

Returns the connection ID (thread ID) for the connection. Every connection has an ID that is unique
among the set of currently connected clients.

The value returned by CONNECTION_ID() is the same type of value as displayed in the ID column
of the Information Schema PROCESSLIST table, the Id column of SHOW PROCESSLIST output, and
the PROCESSLIST_ID column of the Performance Schema threads table.

mysql> SELECT CONNECTION_ID();

2463

Information Functions

 -> 23786

Warning

Changing the session value of the pseudo_thread_id system variable
changes the value returned by the CONNECTION_ID() function.

• CURRENT_ROLE()

Returns a utf8mb3 string containing the current active roles for the current session, separated by
commas, or NONE if there are none. The value reflects the setting of the sql_quote_show_create
system variable.

Suppose that an account is granted roles as follows:

GRANT 'r1', 'r2' TO 'u1'@'localhost';
SET DEFAULT ROLE ALL TO 'u1'@'localhost';

In sessions for u1, the initial CURRENT_ROLE() value names the default account roles. Using SET
ROLE changes that:

mysql> SELECT CURRENT_ROLE();
+-------------------+
| CURRENT_ROLE() |
+-------------------+
| `r1`@`%`,`r2`@`%` |
+-------------------+
mysql> SET ROLE 'r1'; SELECT CURRENT_ROLE();
+----------------+
| CURRENT_ROLE() |
+----------------+
| `r1`@`%` |
+----------------+

• CURRENT_USER, CURRENT_USER()

Returns the user name and host name combination for the MySQL account that the server used to
authenticate the current client. This account determines your access privileges. The return value is a
string in the utf8mb3 character set.

The value of CURRENT_USER() can differ from the value of USER().

mysql> SELECT USER();
 -> 'davida@localhost'
mysql> SELECT * FROM mysql.user;
ERROR 1044: Access denied for user ''@'localhost' to
database 'mysql'
mysql> SELECT CURRENT_USER();
 -> '@localhost'

The example illustrates that although the client specified a user name of davida (as indicated by the
value of the USER() function), the server authenticated the client using an anonymous user account

2464

Information Functions

(as seen by the empty user name part of the CURRENT_USER() value). One way this might occur is
that there is no account listed in the grant tables for davida.

Within a stored program or view, CURRENT_USER() returns the account for the user who defined
the object (as given by its DEFINER value) unless defined with the SQL SECURITY INVOKER
characteristic. In the latter case, CURRENT_USER() returns the object's invoker.

Triggers and events have no option to define the SQL SECURITY characteristic, so for these objects,
CURRENT_USER() returns the account for the user who defined the object. To return the invoker,
use USER() or SESSION_USER().

The following statements support use of the CURRENT_USER() function to take the place of the
name of (and, possibly, a host for) an affected user or a definer; in such cases, CURRENT_USER() is
expanded where and as needed:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

For information about the implications that this expansion of CURRENT_USER() has for replication,
see Section 19.5.1.8, “Replication of CURRENT_USER()”.

Beginning with MySQL 8.0.34, this function can be used for the default value of a VARCHAR or TEXT
column, as shown in the following CREATE TABLE statement:

CREATE TABLE t (c VARCHAR(288) DEFAULT (CURRENT_USER()));

• DATABASE()

Returns the default (current) database name as a string in the utf8mb3 character set. If there is no
default database, DATABASE() returns NULL. Within a stored routine, the default database is the
database that the routine is associated with, which is not necessarily the same as the database that
is the default in the calling context.

mysql> SELECT DATABASE();
 -> 'test'

If there is no default database, DATABASE() returns NULL.

2465

Information Functions

• FOUND_ROWS()

Note

The SQL_CALC_FOUND_ROWS query modifier and accompanying
FOUND_ROWS() function are deprecated as of MySQL 8.0.17; expect them
to be removed in a future version of MySQL. As a replacement, considering
executing your query with LIMIT, and then a second query with COUNT(*)
and without LIMIT to determine whether there are additional rows. For
example, instead of these queries:

SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name WHERE id > 100 LIMIT 10;
SELECT FOUND_ROWS();

Use these queries instead:

SELECT * FROM tbl_name WHERE id > 100 LIMIT 10;
SELECT COUNT(*) FROM tbl_name WHERE id > 100;

COUNT(*) is subject to certain optimizations. SQL_CALC_FOUND_ROWS
causes some optimizations to be disabled.

A SELECT statement may include a LIMIT clause to restrict the number of rows the server returns to
the client. In some cases, it is desirable to know how many rows the statement would have returned
without the LIMIT, but without running the statement again. To obtain this row count, include
an SQL_CALC_FOUND_ROWS option in the SELECT statement, and then invoke FOUND_ROWS()
afterward:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
 -> WHERE id > 100 LIMIT 10;
mysql> SELECT FOUND_ROWS();

The second SELECT returns a number indicating how many rows the first SELECT would have
returned had it been written without the LIMIT clause.

In the absence of the SQL_CALC_FOUND_ROWS option in the most recent successful SELECT
statement, FOUND_ROWS() returns the number of rows in the result set returned by that statement. If
the statement includes a LIMIT clause, FOUND_ROWS() returns the number of rows up to the limit.
For example, FOUND_ROWS() returns 10 or 60, respectively, if the statement includes LIMIT 10 or
LIMIT 50, 10.

The row count available through FOUND_ROWS() is transient and not intended to be available past
the statement following the SELECT SQL_CALC_FOUND_ROWS statement. If you need to refer to the
value later, save it:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM ... ;
mysql> SET @rows = FOUND_ROWS();

If you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how many rows are in
the full result set. However, this is faster than running the query again without LIMIT, because the
result set need not be sent to the client.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to restrict
the number of rows that a query returns, but also determine the number of rows in the full result
set without running the query again. An example is a Web script that presents a paged display

2466

Information Functions

containing links to the pages that show other sections of a search result. Using FOUND_ROWS()
enables you to determine how many other pages are needed for the rest of the result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION statements
than for simple SELECT statements, because LIMIT may occur at multiple places in a UNION. It may
be applied to individual SELECT statements in the UNION, or global to the UNION result as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that would
be returned without a global LIMIT. The conditions for use of SQL_CALC_FOUND_ROWS with UNION
are:

• The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.

• The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL is used,
duplicate removal occurs and the value of FOUND_ROWS() is only approximate.

• If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the number
of rows in the temporary table that is created to process the UNION.

Beyond the cases described here, the behavior of FOUND_ROWS() is undefined (for example, its
value following a SELECT statement that fails with an error).

Important

FOUND_ROWS() is not replicated reliably using statement-based replication.
This function is automatically replicated using row-based replication.

• ICU_VERSION()

The version of the International Components for Unicode (ICU) library used to support regular
expression operations (see Section 14.8.2, “Regular Expressions”). This function is primarily
intended for use in test cases.

• LAST_INSERT_ID(), LAST_INSERT_ID(expr)

With no argument, LAST_INSERT_ID() returns a BIGINT UNSIGNED (64-bit) value representing
the first automatically generated value successfully inserted for an AUTO_INCREMENT column as a
result of the most recently executed INSERT statement. The value of LAST_INSERT_ID() remains
unchanged if no rows are successfully inserted.

With an argument, LAST_INSERT_ID() returns an unsigned integer, or NULL if the argument is
NULL.

For example, after inserting a row that generates an AUTO_INCREMENT value, you can get the value
like this:

mysql> SELECT LAST_INSERT_ID();
 -> 195

The currently executing statement does not affect the value of LAST_INSERT_ID().
Suppose that you generate an AUTO_INCREMENT value with one statement, and then refer to
LAST_INSERT_ID() in a multiple-row INSERT statement that inserts rows into a table with its
own AUTO_INCREMENT column. The value of LAST_INSERT_ID() remains stable in the second
statement; its value for the second and later rows is not affected by the earlier row insertions. (You
should be aware that, if you mix references to LAST_INSERT_ID() and LAST_INSERT_ID(expr),
the effect is undefined.)

If the previous statement returned an error, the value of LAST_INSERT_ID() is undefined. For
transactional tables, if the statement is rolled back due to an error, the value of LAST_INSERT_ID()

2467

Information Functions

is left undefined. For manual ROLLBACK, the value of LAST_INSERT_ID() is not restored to that
before the transaction; it remains as it was at the point of the ROLLBACK.

Within the body of a stored routine (procedure or function) or a trigger, the value of
LAST_INSERT_ID() changes the same way as for statements executed outside the body of these
kinds of objects. The effect of a stored routine or trigger upon the value of LAST_INSERT_ID() that
is seen by following statements depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so statements coming after it do not see a changed value.

The ID that was generated is maintained in the server on a per-connection basis. This means that
the value returned by the function to a given client is the first AUTO_INCREMENT value generated for
most recent statement affecting an AUTO_INCREMENT column by that client. This value cannot be
affected by other clients, even if they generate AUTO_INCREMENT values of their own. This behavior
ensures that each client can retrieve its own ID without concern for the activity of other clients, and
without the need for locks or transactions.

The value of LAST_INSERT_ID() is not changed if you set the AUTO_INCREMENT column of a row
to a non-“magic” value (that is, a value that is not NULL and not 0).

Important

If you insert multiple rows using a single INSERT statement,
LAST_INSERT_ID() returns the value generated for the first inserted row
only. The reason for this is to make it possible to reproduce easily the same
INSERT statement against some other server.

For example:

mysql> USE test;

mysql> CREATE TABLE t (
 id INT AUTO_INCREMENT NOT NULL PRIMARY KEY,
 name VARCHAR(10) NOT NULL
);

mysql> INSERT INTO t VALUES (NULL, 'Bob');

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
| 1 | Bob |
+----+------+

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+

mysql> INSERT INTO t VALUES
 (NULL, 'Mary'), (NULL, 'Jane'), (NULL, 'Lisa');

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
1	Bob
2	Mary
3	Jane

2468

Information Functions

| 4 | Lisa |
+----+------+

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 2 |
+------------------+

Although the second INSERT statement inserted three new rows into t, the ID generated for the first
of these rows was 2, and it is this value that is returned by LAST_INSERT_ID() for the following
SELECT statement.

If you use INSERT IGNORE and the row is ignored, the LAST_INSERT_ID() remains unchanged
from the current value (or 0 is returned if the connection has not yet performed a successful INSERT)
and, for non-transactional tables, the AUTO_INCREMENT counter is not incremented. For InnoDB
tables, the AUTO_INCREMENT counter is incremented if innodb_autoinc_lock_mode is set to 1
or 2, as demonstrated in the following example:

mysql> USE test;

mysql> SELECT @@innodb_autoinc_lock_mode;
+----------------------------+
| @@innodb_autoinc_lock_mode |
+----------------------------+
| 1 |
+----------------------------+

mysql> CREATE TABLE `t` (
 `id` INT(11) NOT NULL AUTO_INCREMENT,
 `val` INT(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `i1` (`val`)
) ENGINE=InnoDB;

Insert two rows

mysql> INSERT INTO t (val) VALUES (1),(2);

With auto_increment_offset=1, the inserted rows
result in an AUTO_INCREMENT value of 3

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `val` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `i1` (`val`)
) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

LAST_INSERT_ID() returns the first automatically generated
value that is successfully inserted for the AUTO_INCREMENT column

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+

The attempted insertion of duplicate rows fail but errors are ignored

mysql> INSERT IGNORE INTO t (val) VALUES (1),(2);
Query OK, 0 rows affected (0.00 sec)
Records: 2 Duplicates: 2 Warnings: 0

With innodb_autoinc_lock_mode=1, the AUTO_INCREMENT counter

2469

Information Functions

is incremented for the ignored rows

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `val` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `i1` (`val`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

The LAST_INSERT_ID is unchanged because the previous insert was unsuccessful

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+

For more information, see Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”.

If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is returned by
the function and is remembered as the next value to be returned by LAST_INSERT_ID(). This can
be used to simulate sequences:

1. Create a table to hold the sequence counter and initialize it:

mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);

2. Use the table to generate sequence numbers like this:

mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);
mysql> SELECT LAST_INSERT_ID();

The UPDATE statement increments the sequence counter and causes the next call to
LAST_INSERT_ID() to return the updated value. The SELECT statement retrieves that
value. The mysql_insert_id() C API function can also be used to get the value. See
mysql_insert_id().

You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the
function this way is that the ID value is maintained in the server as the last automatically generated
value. It is multi-user safe because multiple clients can issue the UPDATE statement and get their
own sequence value with the SELECT statement (or mysql_insert_id()), without affecting or
being affected by other clients that generate their own sequence values.

Note that mysql_insert_id() is only updated after INSERT and UPDATE statements, so you
cannot use the C API function to retrieve the value for LAST_INSERT_ID(expr) after executing
other SQL statements like SELECT or SET.

• ROLES_GRAPHML()

Returns a utf8mb3 string containing a GraphML document representing memory role subgraphs.
The ROLE_ADMIN privilege (or the deprecated SUPER privilege) is required to see content in the
<graphml> element. Otherwise, the result shows only an empty element:

mysql> SELECT ROLES_GRAPHML();
+---+
| ROLES_GRAPHML() |
+---+
| <?xml version="1.0" encoding="UTF-8"?><graphml /> |
+---+

2470

https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html

Information Functions

• ROW_COUNT()

ROW_COUNT() returns a value as follows:

• DDL statements: 0. This applies to statements such as CREATE TABLE or DROP TABLE.

• DML statements other than SELECT: The number of affected rows. This applies to statements
such as UPDATE, INSERT, or DELETE (as before), but now also to statements such as ALTER
TABLE and LOAD DATA.

• SELECT: -1 if the statement returns a result set, or the number of rows “affected” if it does not. For
example, for SELECT * FROM t1, ROW_COUNT() returns -1. For SELECT * FROM t1 INTO
OUTFILE 'file_name', ROW_COUNT() returns the number of rows written to the file.

• SIGNAL statements: 0.

For UPDATE statements, the affected-rows value by default is the number of rows actually changed.
If you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to
mysqld, the affected-rows value is the number of rows “found”; that is, matched by the WHERE
clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value per row is 1 if
the row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to its
current values. If you specify the CLIENT_FOUND_ROWS flag, the affected-rows value is 1 (not 0) if
an existing row is set to its current values.

The ROW_COUNT() value is similar to the value from the mysql_affected_rows() C API function
and the row count that the mysql client displays following statement execution.

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 3 |
+-------------+
1 row in set (0.00 sec)

mysql> DELETE FROM t WHERE i IN(1,2);
Query OK, 2 rows affected (0.00 sec)

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 2 |
+-------------+
1 row in set (0.00 sec)

Important

ROW_COUNT() is not replicated reliably using statement-based replication.
This function is automatically replicated using row-based replication.

• SCHEMA()

This function is a synonym for DATABASE().

2471

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-affected-rows.html

Spatial Analysis Functions

• SESSION_USER()

SESSION_USER() is a synonym for USER().

Beginning with MySQL 8.0.34, like USER(), this function can be used for the default value of a
VARCHAR or TEXT column, as shown in the following CREATE TABLE statement:

CREATE TABLE t (c VARCHAR(288) DEFAULT (SESSION_USER()));

• SYSTEM_USER()

SYSTEM_USER() is a synonym for USER().

Note

The SYSTEM_USER() function is distinct from the SYSTEM_USER privilege.
The former returns the current MySQL account name. The latter distinguishes
the system user and regular user account categories (see Section 8.2.11,
“Account Categories”).

Beginning with MySQL 8.0.34, like USER(), this function can be used for the default value of a
VARCHAR or TEXT column, as shown in the following CREATE TABLE statement:

CREATE TABLE t (c VARCHAR(288) DEFAULT (SYSTEM_USER()));

• USER()

Returns the current MySQL user name and host name as a string in the utf8mb3 character set.

mysql> SELECT USER();
 -> 'davida@localhost'

The value indicates the user name you specified when connecting to the server, and the client host
from which you connected. The value can be different from that of CURRENT_USER().

Beginning with MySQL 8.0.34, this function can be used for the default value of a VARCHAR or TEXT
column, as shown in the following CREATE TABLE statement:

CREATE TABLE t (c VARCHAR(288) DEFAULT (USER()));

• VERSION()

Returns a string that indicates the MySQL server version. The string uses the utf8mb3 character
set. The value might have a suffix in addition to the version number. See the description of the
version system variable in Section 7.1.8, “Server System Variables”.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

mysql> SELECT VERSION();
 -> '8.0.42-standard'

14.16 Spatial Analysis Functions
MySQL provides functions to perform various operations on spatial data. These functions can be
grouped into several major categories according to the type of operation they perform:

• Functions that create geometries in various formats (WKT, WKB, internal)

• Functions that convert geometries between formats

• Functions that access qualitative or quantitative properties of a geometry

• Functions that describe relations between two geometries

2472

Spatial Function Reference

• Functions that create new geometries from existing ones

For general background about MySQL support for using spatial data, see Section 13.4, “Spatial Data
Types”.

14.16.1 Spatial Function Reference

The following table lists each spatial function and provides a short description of each one.

Table 14.21 Spatial Functions

Name Description Introduced

GeomCollection() Construct geometry collection
from geometries

GeometryCollection() Construct geometry collection
from geometries

LineString() Construct LineString from Point
values

MBRContains() Whether MBR of one geometry
contains MBR of another

MBRCoveredBy() Whether one MBR is covered by
another

MBRCovers() Whether one MBR covers
another

MBRDisjoint() Whether MBRs of two
geometries are disjoint

MBREquals() Whether MBRs of two
geometries are equal

MBRIntersects() Whether MBRs of two
geometries intersect

MBROverlaps() Whether MBRs of two
geometries overlap

MBRTouches() Whether MBRs of two
geometries touch

MBRWithin() Whether MBR of one geometry is
within MBR of another

MultiLineString() Contruct MultiLineString from
LineString values

MultiPoint() Construct MultiPoint from Point
values

MultiPolygon() Construct MultiPolygon from
Polygon values

Point() Construct Point from coordinates

Polygon() Construct Polygon from
LineString arguments

ST_Area() Return Polygon or MultiPolygon
area

ST_AsBinary(), ST_AsWKB() Convert from internal geometry
format to WKB

ST_AsGeoJSON() Generate GeoJSON object from
geometry

2473

Spatial Function Reference

Name Description Introduced

ST_AsText(), ST_AsWKT() Convert from internal geometry
format to WKT

ST_Buffer() Return geometry of points within
given distance from geometry

ST_Buffer_Strategy() Produce strategy option for
ST_Buffer()

ST_Centroid() Return centroid as a point

ST_Collect() Aggregate spatial values into
collection

8.0.24

ST_Contains() Whether one geometry contains
another

ST_ConvexHull() Return convex hull of geometry

ST_Crosses() Whether one geometry crosses
another

ST_Difference() Return point set difference of two
geometries

ST_Dimension() Dimension of geometry

ST_Disjoint() Whether one geometry is disjoint
from another

ST_Distance() The distance of one geometry
from another

ST_Distance_Sphere() Minimum distance on earth
between two geometries

ST_EndPoint() End Point of LineString

ST_Envelope() Return MBR of geometry

ST_Equals() Whether one geometry is equal
to another

ST_ExteriorRing() Return exterior ring of Polygon

ST_FrechetDistance() The discrete Fréchet distance of
one geometry from another

8.0.23

ST_GeoHash() Produce a geohash value

ST_GeomCollFromText(),
ST_GeometryCollectionFromText(),
ST_GeomCollFromTxt()

Return geometry collection from
WKT

ST_GeomCollFromWKB(),
ST_GeometryCollectionFromWKB()

Return geometry collection from
WKB

ST_GeometryN() Return N-th geometry from
geometry collection

ST_GeometryType() Return name of geometry type

ST_GeomFromGeoJSON() Generate geometry from
GeoJSON object

ST_GeomFromText(),
ST_GeometryFromText()

Return geometry from WKT

ST_GeomFromWKB(),
ST_GeometryFromWKB()

Return geometry from WKB

2474

Spatial Function Reference

Name Description Introduced

ST_HausdorffDistance() The discrete Hausdorff distance
of one geometry from another

8.0.23

ST_InteriorRingN() Return N-th interior ring of
Polygon

ST_Intersection() Return point set intersection of
two geometries

ST_Intersects() Whether one geometry intersects
another

ST_IsClosed() Whether a geometry is closed
and simple

ST_IsEmpty() Whether a geometry is empty

ST_IsSimple() Whether a geometry is simple

ST_IsValid() Whether a geometry is valid

ST_LatFromGeoHash() Return latitude from geohash
value

ST_Latitude() Return latitude of Point 8.0.12

ST_Length() Return length of LineString

ST_LineFromText(),
ST_LineStringFromText()

Construct LineString from WKT

ST_LineFromWKB(),
ST_LineStringFromWKB()

Construct LineString from WKB

ST_LineInterpolatePoint() The point a given percentage
along a LineString

8.0.24

ST_LineInterpolatePoints()The points a given percentage
along a LineString

8.0.24

ST_LongFromGeoHash() Return longitude from geohash
value

ST_Longitude() Return longitude of Point 8.0.12

ST_MakeEnvelope() Rectangle around two points

ST_MLineFromText(),
ST_MultiLineStringFromText()

Construct MultiLineString from
WKT

ST_MLineFromWKB(),
ST_MultiLineStringFromWKB()

Construct MultiLineString from
WKB

ST_MPointFromText(),
ST_MultiPointFromText()

Construct MultiPoint from WKT

ST_MPointFromWKB(),
ST_MultiPointFromWKB()

Construct MultiPoint from WKB

ST_MPolyFromText(),
ST_MultiPolygonFromText()

Construct MultiPolygon from
WKT

ST_MPolyFromWKB(),
ST_MultiPolygonFromWKB()

Construct MultiPolygon from
WKB

ST_NumGeometries() Return number of geometries in
geometry collection

ST_NumInteriorRing(),
ST_NumInteriorRings()

Return number of interior rings in
Polygon

2475

Argument Handling by Spatial Functions

Name Description Introduced

ST_NumPoints() Return number of points in
LineString

ST_Overlaps() Whether one geometry overlaps
another

ST_PointAtDistance() The point a given distance along
a LineString

8.0.24

ST_PointFromGeoHash() Convert geohash value to POINT
value

ST_PointFromText() Construct Point from WKT

ST_PointFromWKB() Construct Point from WKB

ST_PointN() Return N-th point from LineString

ST_PolyFromText(),
ST_PolygonFromText()

Construct Polygon from WKT

ST_PolyFromWKB(),
ST_PolygonFromWKB()

Construct Polygon from WKB

ST_Simplify() Return simplified geometry

ST_SRID() Return spatial reference system
ID for geometry

ST_StartPoint() Start Point of LineString

ST_SwapXY() Return argument with X/Y
coordinates swapped

ST_SymDifference() Return point set symmetric
difference of two geometries

ST_Touches() Whether one geometry touches
another

ST_Transform() Transform coordinates of
geometry

8.0.13

ST_Union() Return point set union of two
geometries

ST_Validate() Return validated geometry

ST_Within() Whether one geometry is within
another

ST_X() Return X coordinate of Point

ST_Y() Return Y coordinate of Point

14.16.2 Argument Handling by Spatial Functions

Spatial values, or geometries, have the properties described in Section 13.4.2.2, “Geometry Class”.
The following discussion lists general spatial function argument-handling characteristics. Specific
functions or groups of functions may have additional or different argument-handling characteristics,
as discussed in the sections where those function descriptions occur. Where that is true, those
descriptions take precedence over the general discussion here.

Spatial functions are defined only for valid geometry values. See Section 13.4.4, “Geometry Well-
Formedness and Validity”.

Each geometry value is associated with a spatial reference system (SRS), which is a coordinate-based
system for geographic locations. See Section 13.4.5, “Spatial Reference System Support”.

2476

Functions That Create Geometry Values from WKT Values

The spatial reference identifier (SRID) of a geometry identifies the SRS in which the geometry is
defined. In MySQL, the SRID value is an integer associated with the geometry value. The maximum
usable SRID value is 232−1. If a larger value is given, only the lower 32 bits are used.

SRID 0 represents an infinite flat Cartesian plane with no units assigned to its axes. To ensure SRID
0 behavior, create geometry values using SRID 0. SRID 0 is the default for new geometry values if no
SRID is specified.

For computations on multiple geometry values, all values must be in the same SRS or an error occurs.
Thus, spatial functions that take multiple geometry arguments require those arguments to be in the
same SRS. If a spatial function returns ER_GIS_DIFFERENT_SRIDS, it means that the geometry
arguments were not all in the same SRS. You must modify them to have the same SRS.

A geometry returned by a spatial function is in the SRS of the geometry arguments because geometry
values produced by any spatial function inherit the SRID of the geometry arguments.

The Open Geospatial Consortium guidelines require that input polygons already be closed, so
unclosed polygons are rejected as invalid rather than being closed.

In MySQL, the only valid empty geometry is represented in the form of an empty geometry collection.
Empty geometry collection handling is as follows: An empty WKT input geometry collection may
be specified as 'GEOMETRYCOLLECTION()'. This is also the output WKT resulting from a spatial
operation that produces an empty geometry collection.

During parsing of a nested geometry collection, the collection is flattened and its basic components are
used in various GIS operations to compute results. This provides additional flexibility to users because
it is unnecessary to be concerned about the uniqueness of geometry data. Nested geometry collections
may be produced from nested GIS function calls without having to be explicitly flattened first.

14.16.3 Functions That Create Geometry Values from WKT Values

These functions take as arguments a Well-Known Text (WKT) representation and, optionally, a spatial
reference system identifier (SRID). They return the corresponding geometry. For a description of WKT
format, see Well-Known Text (WKT) Format.

Functions in this section detect arguments in either Cartesian or geographic spatial reference systems
(SRSs), and return results appropriate to the SRS.

ST_GeomFromText() accepts a WKT value of any geometry type as its first argument. Other
functions provide type-specific construction functions for construction of geometry values of each
geometry type.

Functions such as ST_MPointFromText() and ST_GeomFromText() that accept WKT-format
representations of MultiPoint values permit individual points within values to be surrounded by
parentheses. For example, both of the following function calls are valid:

ST_MPointFromText('MULTIPOINT (1 1, 2 2, 3 3)')
ST_MPointFromText('MULTIPOINT ((1 1), (2 2), (3 3))')

Functions such as ST_GeomFromText() that accept WKT geometry collection arguments
understand both OpenGIS 'GEOMETRYCOLLECTION EMPTY' standard syntax and MySQL
'GEOMETRYCOLLECTION()' nonstandard syntax. Functions such as ST_AsWKT() that produce WKT
values produce 'GEOMETRYCOLLECTION EMPTY' standard syntax:

mysql> SET @s1 = ST_GeomFromText('GEOMETRYCOLLECTION()');
mysql> SET @s2 = ST_GeomFromText('GEOMETRYCOLLECTION EMPTY');
mysql> SELECT ST_AsWKT(@s1), ST_AsWKT(@s2);
+--------------------------+--------------------------+
| ST_AsWKT(@s1) | ST_AsWKT(@s2) |
+--------------------------+--------------------------+
| GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY |

2477

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_different_srids
http://www.opengeospatial.org

Functions That Create Geometry Values from WKT Values

+--------------------------+--------------------------+

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any geometry argument is NULL or is not a syntactically well-formed geometry, or if the SRID
argument is NULL, the return value is NULL.

• By default, geographic coordinates (latitude, longitude) are interpreted as in the order specified by
the spatial reference system of geometry arguments. An optional options argument may be given
to override the default axis order. options consists of a list of comma-separated key=value.
The only permitted key value is axis-order, with permitted values of lat-long, long-lat and
srid-defined (the default).

If the options argument is NULL, the return value is NULL. If the options argument is invalid, an
error occurs to indicate why.

• If an SRID argument refers to an undefined spatial reference system (SRS), an
ER_SRS_NOT_FOUND error occurs.

• For geographic SRS geometry arguments, if any argument has a longitude or latitude that is out of
range, an error occurs:

• If a longitude value is not in the range (−180, 180], an ER_LONGITUDE_OUT_OF_RANGE error
occurs.

• If a latitude value is not in the range [−90, 90], an ER_LATITUDE_OUT_OF_RANGE error occurs.

Ranges shown are in degrees. If an SRS uses another unit, the range uses the corresponding values
in its unit. The exact range limits deviate slightly due to floating-point arithmetic.

These functions are available for creating geometries from WKT values:

• ST_GeomCollFromText(wkt [, srid [, options]]),
ST_GeometryCollectionFromText(wkt [, srid [, options]]),
ST_GeomCollFromTxt(wkt [, srid [, options]])

Constructs a GeometryCollection value using its WKT representation and SRID.

These functions handle their arguments as described in the introduction to this section.

mysql> SET @g = "MULTILINESTRING((10 10, 11 11), (9 9, 10 10))";
mysql> SELECT ST_AsText(ST_GeomCollFromText(@g));
+--+
| ST_AsText(ST_GeomCollFromText(@g)) |
+--+
| MULTILINESTRING((10 10,11 11),(9 9,10 10)) |
+--+

• ST_GeomFromText(wkt [, srid [, options]]), ST_GeometryFromText(wkt [, srid
[, options]])

Constructs a geometry value of any type using its WKT representation and SRID.

These functions handle their arguments as described in the introduction to this section.

• ST_LineFromText(wkt [, srid [, options]]), ST_LineStringFromText(wkt [,
srid [, options]])

Constructs a LineString value using its WKT representation and SRID.

These functions handle their arguments as described in the introduction to this section.

• ST_MLineFromText(wkt [, srid [, options]]), ST_MultiLineStringFromText(wkt
[, srid [, options]])

2478

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range

Functions That Create Geometry Values from WKB Values

Constructs a MultiLineString value using its WKT representation and SRID.

These functions handle their arguments as described in the introduction to this section.

• ST_MPointFromText(wkt [, srid [, options]]), ST_MultiPointFromText(wkt [,
srid [, options]])

Constructs a MultiPoint value using its WKT representation and SRID.

These functions handle their arguments as described in the introduction to this section.

• ST_MPolyFromText(wkt [, srid [, options]]), ST_MultiPolygonFromText(wkt [,
srid [, options]])

Constructs a MultiPolygon value using its WKT representation and SRID.

These functions handle their arguments as described in the introduction to this section.

• ST_PointFromText(wkt [, srid [, options]])

Constructs a Point value using its WKT representation and SRID.

ST_PointFromText() handles its arguments as described in the introduction to this section.

• ST_PolyFromText(wkt [, srid [, options]]), ST_PolygonFromText(wkt [, srid
[, options]])

Constructs a Polygon value using its WKT representation and SRID.

These functions handle their arguments as described in the introduction to this section.

14.16.4 Functions That Create Geometry Values from WKB Values

These functions take as arguments a BLOB containing a Well-Known Binary (WKB) representation and,
optionally, a spatial reference system identifier (SRID). They return the corresponding geometry. For a
description of WKB format, see Well-Known Binary (WKB) Format.

Functions in this section detect arguments in either Cartesian or geographic spatial reference systems
(SRSs), and return results appropriate to the SRS.

ST_GeomFromWKB() accepts a WKB value of any geometry type as its first argument. Other functions
provide type-specific construction functions for construction of geometry values of each geometry type.

Prior to MySQL 8.0, these functions also accepted geometry objects as returned by the functions in
Section 14.16.5, “MySQL-Specific Functions That Create Geometry Values”. Geometry arguments are
no longer permitted and produce an error. To migrate calls from using geometry arguments to using
WKB arguments, follow these guidelines:

• Rewrite constructs such as ST_GeomFromWKB(Point(0, 0)) as Point(0, 0).

• Rewrite constructs such as ST_GeomFromWKB(Point(0, 0), 4326) as ST_SRID(Point(0,
0), 4326) or ST_GeomFromWKB(ST_AsWKB(Point(0, 0)), 4326).

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If the WKB or SRID argument is NULL, the return value is NULL.

• By default, geographic coordinates (latitude, longitude) are interpreted as in the order specified by
the spatial reference system of geometry arguments. An optional options argument may be given
to override the default axis order. options consists of a list of comma-separated key=value.

2479

Functions That Create Geometry Values from WKB Values

The only permitted key value is axis-order, with permitted values of lat-long, long-lat and
srid-defined (the default).

If the options argument is NULL, the return value is NULL. If the options argument is invalid, an
error occurs to indicate why.

• If an SRID argument refers to an undefined spatial reference system (SRS), an
ER_SRS_NOT_FOUND error occurs.

• For geographic SRS geometry arguments, if any argument has a longitude or latitude that is out of
range, an error occurs:

• If a longitude value is not in the range (−180, 180], an ER_LONGITUDE_OUT_OF_RANGE error
occurs.

• If a latitude value is not in the range [−90, 90], an ER_LATITUDE_OUT_OF_RANGE error occurs.

Ranges shown are in degrees. If an SRS uses another unit, the range uses the corresponding values
in its unit. The exact range limits deviate slightly due to floating-point arithmetic.

These functions are available for creating geometries from WKB values:

• ST_GeomCollFromWKB(wkb [, srid [, options]]),
ST_GeometryCollectionFromWKB(wkb [, srid [, options]])

Constructs a GeometryCollection value using its WKB representation and SRID.

These functions handle their arguments as described in the introduction to this section.

• ST_GeomFromWKB(wkb [, srid [, options]]), ST_GeometryFromWKB(wkb [, srid [,
options]])

Constructs a geometry value of any type using its WKB representation and SRID.

These functions handle their arguments as described in the introduction to this section.

• ST_LineFromWKB(wkb [, srid [, options]]), ST_LineStringFromWKB(wkb [, srid
[, options]])

Constructs a LineString value using its WKB representation and SRID.

These functions handle their arguments as described in the introduction to this section.

• ST_MLineFromWKB(wkb [, srid [, options]]), ST_MultiLineStringFromWKB(wkb [,
srid [, options]])

Constructs a MultiLineString value using its WKB representation and SRID.

These functions handle their arguments as described in the introduction to this section.

• ST_MPointFromWKB(wkb [, srid [, options]]), ST_MultiPointFromWKB(wkb [,
srid [, options]])

Constructs a MultiPoint value using its WKB representation and SRID.

These functions handle their arguments as described in the introduction to this section.

• ST_MPolyFromWKB(wkb [, srid [, options]]), ST_MultiPolygonFromWKB(wkb [,
srid [, options]])

Constructs a MultiPolygon value using its WKB representation and SRID.

These functions handle their arguments as described in the introduction to this section.

2480

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range

MySQL-Specific Functions That Create Geometry Values

• ST_PointFromWKB(wkb [, srid [, options]])

Constructs a Point value using its WKB representation and SRID.

ST_PointFromWKB() handles its arguments as described in the introduction to this section.

• ST_PolyFromWKB(wkb [, srid [, options]]), ST_PolygonFromWKB(wkb [, srid [,
options]])

Constructs a Polygon value using its WKB representation and SRID.

These functions handle their arguments as described in the introduction to this section.

14.16.5 MySQL-Specific Functions That Create Geometry Values

MySQL provides a set of useful nonstandard functions for creating geometry values. The functions
described in this section are MySQL extensions to the OpenGIS specification.

These functions produce geometry objects from either WKB values or geometry objects as arguments.
If any argument is not a proper WKB or geometry representation of the proper object type, the return
value is NULL.

For example, you can insert the geometry return value from Point() directly into a POINT column:

INSERT INTO t1 (pt_col) VALUES(Point(1,2));

• GeomCollection(g [, g] ...)

Constructs a GeomCollection value from the geometry arguments.

GeomCollection() returns all the proper geometries contained in the arguments even if a
nonsupported geometry is present.

GeomCollection() with no arguments is permitted as a way to create an empty geometry.
Also, functions such as ST_GeomFromText() that accept WKT geometry collection arguments
understand both OpenGIS 'GEOMETRYCOLLECTION EMPTY' standard syntax and MySQL
'GEOMETRYCOLLECTION()' nonstandard syntax.

GeomCollection() and GeometryCollection() are synonymous, with GeomCollection()
the preferred function.

• GeometryCollection(g [, g] ...)

Constructs a GeomCollection value from the geometry arguments.

GeometryCollection() returns all the proper geometries contained in the arguments even if a
nonsupported geometry is present.

GeometryCollection() with no arguments is permitted as a way to create an empty geometry.
Also, functions such as ST_GeomFromText() that accept WKT geometry collection arguments
understand both OpenGIS 'GEOMETRYCOLLECTION EMPTY' standard syntax and MySQL
'GEOMETRYCOLLECTION()' nonstandard syntax.

GeomCollection() and GeometryCollection() are synonymous, with GeomCollection()
the preferred function.

• LineString(pt [, pt] ...)

Constructs a LineString value from a number of Point or WKB Point arguments. If the number
of arguments is less than two, the return value is NULL.

• MultiLineString(ls [, ls] ...)

2481

Geometry Format Conversion Functions

Constructs a MultiLineString value using LineString or WKB LineString arguments.

• MultiPoint(pt [, pt2] ...)

Constructs a MultiPoint value using Point or WKB Point arguments.

• MultiPolygon(poly [, poly] ...)

Constructs a MultiPolygon value from a set of Polygon or WKB Polygon arguments.

• Point(x, y)

Constructs a Point using its coordinates.

• Polygon(ls [, ls] ...)

Constructs a Polygon value from a number of LineString or WKB LineString arguments. If
any argument does not represent a LinearRing (that is, not a closed and simple LineString),
the return value is NULL.

14.16.6 Geometry Format Conversion Functions

MySQL supports the functions listed in this section for converting geometry values from internal
geometry format to WKT or WKB format, or for swapping the order of X and Y coordinates.

There are also functions to convert a string from WKT or WKB format to internal geometry format. See
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”, and Section 14.16.4,
“Functions That Create Geometry Values from WKB Values”.

Functions such as ST_GeomFromText() that accept WKT geometry collection arguments
understand both OpenGIS 'GEOMETRYCOLLECTION EMPTY' standard syntax and MySQL
'GEOMETRYCOLLECTION()' nonstandard syntax. Another way to produce an empty geometry
collection is by calling GeometryCollection() with no arguments. Functions such as ST_AsWKT()
that produce WKT values produce 'GEOMETRYCOLLECTION EMPTY' standard syntax:

mysql> SET @s1 = ST_GeomFromText('GEOMETRYCOLLECTION()');
mysql> SET @s2 = ST_GeomFromText('GEOMETRYCOLLECTION EMPTY');
mysql> SELECT ST_AsWKT(@s1), ST_AsWKT(@s2);
+--------------------------+--------------------------+
| ST_AsWKT(@s1) | ST_AsWKT(@s2) |
+--------------------------+--------------------------+
| GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY |
+--------------------------+--------------------------+
mysql> SELECT ST_AsWKT(GeomCollection());
+----------------------------+
| ST_AsWKT(GeomCollection()) |
+----------------------------+
| GEOMETRYCOLLECTION EMPTY |
+----------------------------+

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any argument is NULL, the return value is NULL.

• If any geometry argument is not a syntactically well-formed geometry, an ER_GIS_INVALID_DATA
error occurs.

• If any geometry argument is in an undefined spatial reference system, the axes are output in the
order they appear in the geometry and an ER_WARN_SRS_NOT_FOUND_AXIS_ORDER warning
occurs.

• By default, geographic coordinates (latitude, longitude) are interpreted as in the order specified by
the spatial reference system of geometry arguments. An optional options argument may be given
to override the default axis order. options consists of a list of comma-separated key=value.

2482

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warn_srs_not_found_axis_order

Geometry Format Conversion Functions

The only permitted key value is axis-order, with permitted values of lat-long, long-lat and
srid-defined (the default).

If the options argument is NULL, the return value is NULL. If the options argument is invalid, an
error occurs to indicate why.

• Otherwise, the return value is non-NULL.

These functions are available for format conversions or coordinate swapping:

• ST_AsBinary(g [, options]), ST_AsWKB(g [, options])

Converts a value in internal geometry format to its WKB representation and returns the binary result.

The function return value has geographic coordinates (latitude, longitude) in the order specified by
the spatial reference system that applies to the geometry argument. An optional options argument
may be given to override the default axis order.

ST_AsBinary() and ST_AsWKB() handle their arguments as described in the introduction to this
section.

mysql> SET @g = ST_LineFromText('LINESTRING(0 5,5 10,10 15)', 4326);
mysql> SELECT ST_AsText(ST_GeomFromWKB(ST_AsWKB(@g)));
+---+
| ST_AsText(ST_GeomFromWKB(ST_AsWKB(@g))) |
+---+
| LINESTRING(5 0,10 5,15 10) |
+---+
mysql> SELECT ST_AsText(ST_GeomFromWKB(ST_AsWKB(@g, 'axis-order=long-lat')));
+--+
| ST_AsText(ST_GeomFromWKB(ST_AsWKB(@g, 'axis-order=long-lat'))) |
+--+
| LINESTRING(0 5,5 10,10 15) |
+--+
mysql> SELECT ST_AsText(ST_GeomFromWKB(ST_AsWKB(@g, 'axis-order=lat-long')));
+--+
| ST_AsText(ST_GeomFromWKB(ST_AsWKB(@g, 'axis-order=lat-long'))) |
+--+
| LINESTRING(5 0,10 5,15 10) |
+--+

• ST_AsText(g [, options]), ST_AsWKT(g [, options])

Converts a value in internal geometry format to its WKT representation and returns the string result.

The function return value has geographic coordinates (latitude, longitude) in the order specified by
the spatial reference system that applies to the geometry argument. An optional options argument
may be given to override the default axis order.

ST_AsText() and ST_AsWKT() handle their arguments as described in the introduction to this
section.

mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_GeomFromText(@g));
+--------------------------------+
| ST_AsText(ST_GeomFromText(@g)) |
+--------------------------------+
| LINESTRING(1 1,2 2,3 3) |
+--------------------------------+

Output for MultiPoint values includes parentheses around each point. For example:

mysql> SELECT ST_AsText(ST_GeomFromText(@mp));
+---------------------------------+
| ST_AsText(ST_GeomFromText(@mp)) |
+---------------------------------+

2483

Geometry Property Functions

| MULTIPOINT((1 1),(2 2),(3 3)) |
+---------------------------------+

• ST_SwapXY(g)

Accepts an argument in internal geometry format, swaps the X and Y values of each coordinate pair
within the geometry, and returns the result.

ST_SwapXY() handles its arguments as described in the introduction to this section.

mysql> SET @g = ST_LineFromText('LINESTRING(0 5,5 10,10 15)');
mysql> SELECT ST_AsText(@g);
+----------------------------+
| ST_AsText(@g) |
+----------------------------+
| LINESTRING(0 5,5 10,10 15) |
+----------------------------+
mysql> SELECT ST_AsText(ST_SwapXY(@g));
+----------------------------+
| ST_AsText(ST_SwapXY(@g)) |
+----------------------------+
| LINESTRING(5 0,10 5,15 10) |
+----------------------------+

14.16.7 Geometry Property Functions

Each function that belongs to this group takes a geometry value as its argument and returns some
quantitative or qualitative property of the geometry. Some functions restrict their argument type. Such
functions return NULL if the argument is of an incorrect geometry type. For example, the ST_Area()
polygon function returns NULL if the object type is neither Polygon nor MultiPolygon.

14.16.7.1 General Geometry Property Functions

The functions listed in this section do not restrict their argument and accept a geometry value of any
type.

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any argument is NULL, the return value is NULL.

• If any geometry argument is not a syntactically well-formed geometry, an ER_GIS_INVALID_DATA
error occurs.

• If any geometry argument is a syntactically well-formed geometry in an undefined spatial reference
system (SRS), an ER_SRS_NOT_FOUND error occurs.

• If any SRID argument is not within the range of a 32-bit unsigned integer, an
ER_DATA_OUT_OF_RANGE error occurs.

• If any SRID argument refers to an undefined SRS, an ER_SRS_NOT_FOUND error occurs.

• Otherwise, the return value is non-NULL.

These functions are available for obtaining geometry properties:

• ST_Dimension(g)

Returns the inherent dimension of the geometry value g. The dimension can be −1, 0, 1, or 2. The
meaning of these values is given in Section 13.4.2.2, “Geometry Class”.

ST_Dimension() handles its arguments as described in the introduction to this section.

mysql> SELECT ST_Dimension(ST_GeomFromText('LineString(1 1,2 2)'));
+--+
| ST_Dimension(ST_GeomFromText('LineString(1 1,2 2)')) |
+--+
| 1 |

2484

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found

Geometry Property Functions

+--+

• ST_Envelope(g)

Returns the minimum bounding rectangle (MBR) for the geometry value g. The result is returned as
a Polygon value that is defined by the corner points of the bounding box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

mysql> SELECT ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,2 2)')));
+--+
| ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,2 2)'))) |
+--+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+--+

If the argument is a point or a vertical or horizontal line segment, ST_Envelope() returns the point
or the line segment as its MBR rather than returning an invalid polygon:

mysql> SELECT ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,1 2)')));
+--+
| ST_AsText(ST_Envelope(ST_GeomFromText('LineString(1 1,1 2)'))) |
+--+
| LINESTRING(1 1,1 2) |
+--+

ST_Envelope() handles its arguments as described in the introduction to this section, with this
exception:

• If the geometry has an SRID value for a geographic spatial reference system (SRS), an
ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

• ST_GeometryType(g)

Returns a binary string indicating the name of the geometry type of which the geometry instance g is
a member. The name corresponds to one of the instantiable Geometry subclasses.

ST_GeometryType() handles its arguments as described in the introduction to this section.

mysql> SELECT ST_GeometryType(ST_GeomFromText('POINT(1 1)'));
+--+
| ST_GeometryType(ST_GeomFromText('POINT(1 1)')) |
+--+
| POINT |
+--+

• ST_IsEmpty(g)

This function is a placeholder that returns 1 for an empty geometry collection value or 0 otherwise.

The only valid empty geometry is represented in the form of an empty geometry collection value.
MySQL does not support GIS EMPTY values such as POINT EMPTY.

ST_IsEmpty() handles its arguments as described in the introduction to this section.

• ST_IsSimple(g)

Returns 1 if the geometry value g is simple according to the ISO SQL/MM Part 3: Spatial standard.
ST_IsSimple() returns 0 if the argument is not simple.

The descriptions of the instantiable geometric classes given under Section 13.4.2, “The OpenGIS
Geometry Model” include the specific conditions that cause class instances to be classified as not
simple.

ST_IsSimple() handles its arguments as described in the introduction to this section, with this
exception:

2485

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs

Geometry Property Functions

• If the geometry has a geographic SRS with a longitude or latitude that is out of range, an error
occurs:

• If a longitude value is not in the range (−180, 180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE error occurs
(ER_LONGITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

• If a latitude value is not in the range [−90, 90], an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE error occurs
(ER_LATITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

Ranges shown are in degrees. The exact range limits deviate slightly due to floating-point
arithmetic.

• ST_SRID(g [, srid])

With a single argument representing a valid geometry object g, ST_SRID() returns an integer
indicating the ID of the spatial reference system (SRS) associated with g.

With the optional second argument representing a valid SRID value, ST_SRID() returns an object
with the same type as its first argument with an SRID value equal to the second argument. This only
sets the SRID value of the object; it does not perform any transformation of coordinate values.

ST_SRID() handles its arguments as described in the introduction to this section, with this
exception:

• For the single-argument syntax, ST_SRID() returns the geometry SRID even if it refers to an
undefined SRS. An ER_SRS_NOT_FOUND error does not occur.

ST_SRID(g, target_srid) and ST_Transform(g, target_srid) differ as follows:

• ST_SRID() changes the geometry SRID value without transforming its coordinates.

• ST_Transform() transforms the geometry coordinates in addition to changing its SRID value.

mysql> SET @g = ST_GeomFromText('LineString(1 1,2 2)', 0);
mysql> SELECT ST_SRID(@g);
+-------------+
| ST_SRID(@g) |
+-------------+
| 0 |
+-------------+
mysql> SET @g = ST_SRID(@g, 4326);
mysql> SELECT ST_SRID(@g);
+-------------+
| ST_SRID(@g) |
+-------------+
| 4326 |
+-------------+

It is possible to create a geometry in a particular SRID by passing to ST_SRID() the result of one of
the MySQL-specific functions for creating spatial values, along with an SRID value. For example:

SET @g1 = ST_SRID(Point(1, 1), 4326);

However, that method creates the geometry in SRID 0, then casts it to SRID 4326 (WGS 84). A
preferable alternative is to create the geometry with the correct spatial reference system to begin
with. For example:

SET @g1 = ST_PointFromText('POINT(1 1)', 4326);

2486

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found

Geometry Property Functions

SET @g1 = ST_GeomFromText('POINT(1 1)', 4326);

The two-argument form of ST_SRID() is useful for tasks such as correcting or changing the SRS of
geometries that have an incorrect SRID.

14.16.7.2 Point Property Functions

A Point consists of X and Y coordinates, which may be obtained using the ST_X() and ST_Y()
functions, respectively. These functions also permit an optional second argument that specifies an X or
Y coordinate value, in which case the function result is the Point object from the first argument with
the appropriate coordinate modified to be equal to the second argument.

For Point objects that have a geographic spatial reference system (SRS), the longitude and latitude
may be obtained using the ST_Longitude() and ST_Latitude() functions, respectively. These
functions also permit an optional second argument that specifies a longitude or latitude value, in
which case the function result is the Point object from the first argument with the longitude or latitude
modified to be equal to the second argument.

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any argument is NULL, the return value is NULL.

• If any geometry argument is a valid geometry but not a Point object, an
ER_UNEXPECTED_GEOMETRY_TYPE error occurs.

• If any geometry argument is not a syntactically well-formed geometry, an ER_GIS_INVALID_DATA
error occurs.

• If any geometry argument is a syntactically well-formed geometry in an undefined spatial reference
system (SRS), an ER_SRS_NOT_FOUND error occurs.

• If an X or Y coordinate argument is provided and the value is -inf, +inf, or NaN, an
ER_DATA_OUT_OF_RANGE error occurs.

• If a longitude or latitude value is out of range, an error occurs:

• If a longitude value is not in the range (−180, 180], an ER_LONGITUDE_OUT_OF_RANGE error
occurs.

• If a latitude value is not in the range [−90, 90], an ER_LATITUDE_OUT_OF_RANGE error occurs.

Ranges shown are in degrees. The exact range limits deviate slightly due to floating-point arithmetic.

• Otherwise, the return value is non-NULL.

These functions are available for obtaining point properties:

• ST_Latitude(p [, new_latitude_val])

With a single argument representing a valid Point object p that has a geographic spatial reference
system (SRS), ST_Latitude() returns the latitude value of p as a double-precision number.

With the optional second argument representing a valid latitude value, ST_Latitude() returns a
Point object like the first argument with its latitude equal to the second argument.

ST_Latitude() handles its arguments as described in the introduction to this section,
with the addition that if the Point object is valid but does not have a geographic SRS, an
ER_SRS_NOT_GEOGRAPHIC error occurs.

mysql> SET @pt = ST_GeomFromText('POINT(45 90)', 4326);
mysql> SELECT ST_Latitude(@pt);
+------------------+
| ST_Latitude(@pt) |
+------------------+
| 45 |

2487

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unexpected_geometry_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_geographic

Geometry Property Functions

+------------------+
mysql> SELECT ST_AsText(ST_Latitude(@pt, 10));
+---------------------------------+
| ST_AsText(ST_Latitude(@pt, 10)) |
+---------------------------------+
| POINT(10 90) |
+---------------------------------+

This function was added in MySQL 8.0.12.

• ST_Longitude(p [, new_longitude_val])

With a single argument representing a valid Point object p that has a geographic spatial reference
system (SRS), ST_Longitude() returns the longitude value of p as a double-precision number.

With the optional second argument representing a valid longitude value, ST_Longitude() returns a
Point object like the first argument with its longitude equal to the second argument.

ST_Longitude() handles its arguments as described in the introduction to this section,
with the addition that if the Point object is valid but does not have a geographic SRS, an
ER_SRS_NOT_GEOGRAPHIC error occurs.

mysql> SET @pt = ST_GeomFromText('POINT(45 90)', 4326);
mysql> SELECT ST_Longitude(@pt);
+-------------------+
| ST_Longitude(@pt) |
+-------------------+
| 90 |
+-------------------+
mysql> SELECT ST_AsText(ST_Longitude(@pt, 10));
+----------------------------------+
| ST_AsText(ST_Longitude(@pt, 10)) |
+----------------------------------+
| POINT(45 10) |
+----------------------------------+

This function was added in MySQL 8.0.12.

• ST_X(p [, new_x_val])

With a single argument representing a valid Point object p, ST_X() returns the X-coordinate value
of p as a double-precision number. As of MySQL 8.0.12, the X coordinate is considered to refer to
the axis that appears first in the Point spatial reference system (SRS) definition.

With the optional second argument, ST_X() returns a Point object like the first argument with its X
coordinate equal to the second argument. As of MySQL 8.0.12, if the Point object has a geographic
SRS, the second argument must be in the proper range for longitude or latitude values.

ST_X() handles its arguments as described in the introduction to this section.

mysql> SELECT ST_X(Point(56.7, 53.34));
+--------------------------+
| ST_X(Point(56.7, 53.34)) |
+--------------------------+
| 56.7 |
+--------------------------+
mysql> SELECT ST_AsText(ST_X(Point(56.7, 53.34), 10.5));
+---+
| ST_AsText(ST_X(Point(56.7, 53.34), 10.5)) |
+---+
| POINT(10.5 53.34) |
+---+

2488

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_geographic

Geometry Property Functions

• ST_Y(p [, new_y_val])

With a single argument representing a valid Point object p, ST_Y() returns the Y-coordinate value
of p as a double-precision number. As of MySQL 8.0.12, the Y coordinate is considered to refer to
the axis that appears second in the Point spatial reference system (SRS) definition.

With the optional second argument, ST_Y() returns a Point object like the first argument with its Y
coordinate equal to the second argument. As of MySQL 8.0.12, if the Point object has a geographic
SRS, the second argument must be in the proper range for longitude or latitude values.

ST_Y() handles its arguments as described in the introduction to this section.

mysql> SELECT ST_Y(Point(56.7, 53.34));
+--------------------------+
| ST_Y(Point(56.7, 53.34)) |
+--------------------------+
| 53.34 |
+--------------------------+
mysql> SELECT ST_AsText(ST_Y(Point(56.7, 53.34), 10.5));
+---+
| ST_AsText(ST_Y(Point(56.7, 53.34), 10.5)) |
+---+
| POINT(56.7 10.5) |
+---+

14.16.7.3 LineString and MultiLineString Property Functions

A LineString consists of Point values. You can extract particular points of a LineString, count
the number of points that it contains, or obtain its length.

Some functions in this section also work for MultiLineString values.

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any argument is NULL or any geometry argument is an empty geometry, the return value is NULL.

• If any geometry argument is not a syntactically well-formed geometry, an ER_GIS_INVALID_DATA
error occurs.

• If any geometry argument is a syntactically well-formed geometry in an undefined spatial reference
system (SRS), an ER_SRS_NOT_FOUND error occurs.

• Otherwise, the return value is non-NULL.

These functions are available for obtaining linestring properties:

• ST_EndPoint(ls)

Returns the Point that is the endpoint of the LineString value ls.

ST_EndPoint() handles its arguments as described in the introduction to this section.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_EndPoint(ST_GeomFromText(@ls)));
+--+
| ST_AsText(ST_EndPoint(ST_GeomFromText(@ls))) |
+--+
| POINT(3 3) |
+--+

• ST_IsClosed(ls)

For a LineString value ls, ST_IsClosed() returns 1 if ls is closed (that is, its
ST_StartPoint() and ST_EndPoint() values are the same).

2489

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found

Geometry Property Functions

For a MultiLineString value ls, ST_IsClosed() returns 1 if ls is closed (that is, the
ST_StartPoint() and ST_EndPoint() values are the same for each LineString in ls).

ST_IsClosed() returns 0 if ls is not closed, and NULL if ls is NULL.

ST_IsClosed() handles its arguments as described in the introduction to this section, with this
exception:

• If the geometry has an SRID value for a geographic spatial reference system (SRS), an
ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

mysql> SET @ls1 = 'LineString(1 1,2 2,3 3,2 2)';
mysql> SET @ls2 = 'LineString(1 1,2 2,3 3,1 1)';

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls1));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls1)) |
+------------------------------------+
| 0 |
+------------------------------------+

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls2));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls2)) |
+------------------------------------+
| 1 |
+------------------------------------+

mysql> SET @ls3 = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';

mysql> SELECT ST_IsClosed(ST_GeomFromText(@ls3));
+------------------------------------+
| ST_IsClosed(ST_GeomFromText(@ls3)) |
+------------------------------------+
| 0 |
+------------------------------------+

2490

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs

Geometry Property Functions

• ST_Length(ls [, unit])

Returns a double-precision number indicating the length of the LineString or MultiLineString
value ls in its associated spatial reference system. The length of a MultiLineString value is
equal to the sum of the lengths of its elements.

ST_Length() computes a result as follows:

• If the geometry is a valid LineString in a Cartesian SRS, the return value is the Cartesian length
of the geometry.

• If the geometry is a valid MultiLineString in a Cartesian SRS, the return value is the sum of
the Cartesian lengths of its elements.

• If the geometry is a valid LineString in a geographic SRS, the return value is the geodetic
length of the geometry in that SRS, in meters.

• If the geometry is a valid MultiLineString in a geographic SRS, the return value is the sum of
the geodetic lengths of its elements in that SRS, in meters.

ST_Length() handles its arguments as described in the introduction to this section, with these
exceptions:

• If the geometry is not a LineString or MultiLineString, the return value is NULL.

• If the geometry is geometrically invalid, either the result is an undefined length (that is, it can be
any number), or an error occurs.

• If the length computation result is +inf, an ER_DATA_OUT_OF_RANGE error occurs.

• If the geometry has a geographic SRS with a longitude or latitude that is out of range, an error
occurs:

• If a longitude value is not in the range (−180, 180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE error occurs
(ER_LONGITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

• If a latitude value is not in the range [−90, 90], an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE error occurs
(ER_LATITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

Ranges shown are in degrees. The exact range limits deviate slightly due to floating-point
arithmetic.

As of MySQL 8.0.16, ST_Length() permits an optional unit argument that specifies the linear unit
for the returned length value. These rules apply:

• If a unit is specified but not supported by MySQL, an ER_UNIT_NOT_FOUND error occurs.

• If a supported linear unit is specified and the SRID is 0, an
ER_GEOMETRY_IN_UNKNOWN_LENGTH_UNIT error occurs.

• If a supported linear unit is specified and the SRID is not 0, the result is in that unit.

• If a unit is not specified, the result is in the unit of the SRS of the geometries, whether Cartesian or
geographic. Currently, all MySQL SRSs are expressed in meters.

A unit is supported if it is found in the INFORMATION_SCHEMA ST_UNITS_OF_MEASURE table. See
Section 28.3.37, “The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table”.

mysql> SET @ls = ST_GeomFromText('LineString(1 1,2 2,3 3)');
mysql> SELECT ST_Length(@ls);

2491

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unit_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_in_unknown_length_unit

Geometry Property Functions

+--------------------+
| ST_Length(@ls) |
+--------------------+
| 2.8284271247461903 |
+--------------------+

mysql> SET @mls = ST_GeomFromText('MultiLineString((1 1,2 2,3 3),(4 4,5 5))');
mysql> SELECT ST_Length(@mls);
+-------------------+
| ST_Length(@mls) |
+-------------------+
| 4.242640687119286 |
+-------------------+

mysql> SET @ls = ST_GeomFromText('LineString(1 1,2 2,3 3)', 4326);
mysql> SELECT ST_Length(@ls);
+-------------------+
| ST_Length(@ls) |
+-------------------+
| 313701.9623204328 |
+-------------------+
mysql> SELECT ST_Length(@ls, 'metre');
+-------------------------+
| ST_Length(@ls, 'metre') |
+-------------------------+
| 313701.9623204328 |
+-------------------------+
mysql> SELECT ST_Length(@ls, 'foot');
+------------------------+
| ST_Length(@ls, 'foot') |
+------------------------+
| 1029205.9131247795 |
+------------------------+

• ST_NumPoints(ls)

Returns the number of Point objects in the LineString value ls.

ST_NumPoints() handles its arguments as described in the introduction to this section.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_NumPoints(ST_GeomFromText(@ls));
+------------------------------------+
| ST_NumPoints(ST_GeomFromText(@ls)) |
+------------------------------------+
| 3 |
+------------------------------------+

• ST_PointN(ls, N)

Returns the N-th Point in the Linestring value ls. Points are numbered beginning with 1.

ST_PointN() handles its arguments as described in the introduction to this section.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_PointN(ST_GeomFromText(@ls),2));
+--+
| ST_AsText(ST_PointN(ST_GeomFromText(@ls),2)) |
+--+
| POINT(2 2) |
+--+

• ST_StartPoint(ls)

Returns the Point that is the start point of the LineString value ls.

ST_StartPoint() handles its arguments as described in the introduction to this section.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT ST_AsText(ST_StartPoint(ST_GeomFromText(@ls)));

2492

Geometry Property Functions

+--+
| ST_AsText(ST_StartPoint(ST_GeomFromText(@ls))) |
+--+
| POINT(1 1) |
+--+

14.16.7.4 Polygon and MultiPolygon Property Functions

Functions in this section return properties of Polygon or MultiPolygon values.

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any argument is NULL or any geometry argument is an empty geometry, the return value is NULL.

• If any geometry argument is not a syntactically well-formed geometry, an ER_GIS_INVALID_DATA
error occurs.

• If any geometry argument is a syntactically well-formed geometry in an undefined spatial reference
system (SRS), an ER_SRS_NOT_FOUND error occurs.

• For functions that take multiple geometry arguments, if those arguments are not in the same SRS, an
ER_GIS_DIFFERENT_SRIDS error occurs.

• Otherwise, the return value is non-NULL.

These functions are available for obtaining polygon properties:

• ST_Area({poly|mpoly})

Returns a double-precision number indicating the area of the Polygon or MultiPolygon
argument, as measured in its spatial reference system.

As of MySQL 8.0.13, ST_Area() handles its arguments as described in the introduction to this
section, with these exceptions:

• If the geometry is geometrically invalid, either the result is an undefined area (that is, it can be any
number), or an error occurs.

• If the geometry is valid but is not a Polygon or MultiPolygon object, an
ER_UNEXPECTED_GEOMETRY_TYPE error occurs.

• If the geometry is a valid Polygon in a Cartesian SRS, the result is the Cartesian area of the
polygon.

• If the geometry is a valid MultiPolygon in a Cartesian SRS, the result is the sum of the
Cartesian area of the polygons.

• If the geometry is a valid Polygon in a geographic SRS, the result is the geodetic area of the
polygon in that SRS, in square meters.

• If the geometry is a valid MultiPolygon in a geographic SRS, the result is the sum of geodetic
area of the polygons in that SRS, in square meters.

• If an area computation results in +inf, an ER_DATA_OUT_OF_RANGE error occurs.

• If the geometry has a geographic SRS with a longitude or latitude that is out of range, an error
occurs:

• If a longitude value is not in the range (−180, 180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE error occurs
(ER_LONGITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

2493

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_different_srids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unexpected_geometry_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range

Geometry Property Functions

• If a latitude value is not in the range [−90, 90], an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE error occurs
(ER_LATITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

Ranges shown are in degrees. The exact range limits deviate slightly due to floating-point
arithmetic.

Prior to MySQL 8.0.13, ST_Area() handles its arguments as described in the introduction to this
section, with these exceptions:

• For arguments of dimension 0 or 1, the result is 0.

• If a geometry is empty, the return value is 0 rather than NULL.

• For a geometry collection, the result is the sum of the area values of all components. If the
geometry collection is empty, its area is returned as 0.

• If the geometry has an SRID value for a geographic spatial reference system (SRS), an
ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT ST_Area(ST_GeomFromText(@poly));
+---------------------------------+
| ST_Area(ST_GeomFromText(@poly)) |
+---------------------------------+
| 4 |
+---------------------------------+

mysql> SET @mpoly =
 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';
mysql> SELECT ST_Area(ST_GeomFromText(@mpoly));
+----------------------------------+
| ST_Area(ST_GeomFromText(@mpoly)) |
+----------------------------------+
| 8 |
+----------------------------------+

• ST_Centroid({poly|mpoly})

Returns the mathematical centroid for the Polygon or MultiPolygon argument as a Point. The
result is not guaranteed to be on the MultiPolygon.

This function processes geometry collections by computing the centroid point for components
of highest dimension in the collection. Such components are extracted and made into a single
MultiPolygon, MultiLineString, or MultiPoint for centroid computation.

ST_Centroid() handles its arguments as described in the introduction to this section, with these
exceptions:

• The return value is NULL for the additional condition that the argument is an empty geometry
collection.

• If the geometry has an SRID value for a geographic spatial reference system (SRS), an
ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

mysql> SET @poly =
 ST_GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7,5 5))');
mysql> SELECT ST_GeometryType(@poly),ST_AsText(ST_Centroid(@poly));
+------------------------+--+
| ST_GeometryType(@poly) | ST_AsText(ST_Centroid(@poly)) |
+------------------------+--+
| POLYGON | POINT(4.958333333333333 4.958333333333333) |
+------------------------+--+

2494

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs

Geometry Property Functions

• ST_ExteriorRing(poly)

Returns the exterior ring of the Polygon value poly as a LineString.

ST_ExteriorRing() handles its arguments as described in the introduction to this section.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_AsText(ST_ExteriorRing(ST_GeomFromText(@poly)));
+--+
| ST_AsText(ST_ExteriorRing(ST_GeomFromText(@poly))) |
+--+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+--+

• ST_InteriorRingN(poly, N)

Returns the N-th interior ring for the Polygon value poly as a LineString. Rings are numbered
beginning with 1.

ST_InteriorRingN() handles its arguments as described in the introduction to this section.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_AsText(ST_InteriorRingN(ST_GeomFromText(@poly),1));
+---+
| ST_AsText(ST_InteriorRingN(ST_GeomFromText(@poly),1)) |
+---+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+---+

• ST_NumInteriorRing(poly), ST_NumInteriorRings(poly)

Returns the number of interior rings in the Polygon value poly.

ST_NumInteriorRing() and ST_NuminteriorRings() handle their arguments as described in
the introduction to this section.

mysql> SET @poly =
 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT ST_NumInteriorRings(ST_GeomFromText(@poly));
+---+
| ST_NumInteriorRings(ST_GeomFromText(@poly)) |
+---+
| 1 |
+---+

14.16.7.5 GeometryCollection Property Functions

These functions return properties of GeometryCollection values.

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any argument is NULL or any geometry argument is an empty geometry, the return value is NULL.

• If any geometry argument is not a syntactically well-formed geometry, an ER_GIS_INVALID_DATA
error occurs.

• If any geometry argument is a syntactically well-formed geometry in an undefined spatial reference
system (SRS), an ER_SRS_NOT_FOUND error occurs.

• Otherwise, the return value is non-NULL.

These functions are available for obtaining geometry collection properties:

• ST_GeometryN(gc, N)

2495

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found

Spatial Operator Functions

Returns the N-th geometry in the GeometryCollection value gc. Geometries are numbered
beginning with 1.

ST_GeometryN() handles its arguments as described in the introduction to this section.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT ST_AsText(ST_GeometryN(ST_GeomFromText(@gc),1));
+---+
| ST_AsText(ST_GeometryN(ST_GeomFromText(@gc),1)) |
+---+
| POINT(1 1) |
+---+

• ST_NumGeometries(gc)

Returns the number of geometries in the GeometryCollection value gc.

ST_NumGeometries() handles its arguments as described in the introduction to this section.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT ST_NumGeometries(ST_GeomFromText(@gc));
+--+
| ST_NumGeometries(ST_GeomFromText(@gc)) |
+--+
| 2 |
+--+

14.16.8 Spatial Operator Functions

OpenGIS proposes a number of functions that can produce geometries. They are designed to
implement spatial operators. These functions support all argument type combinations except those that
are inapplicable according to the Open Geospatial Consortium specification.

MySQL also implements certain functions that are extensions to OpenGIS, as noted in the function
descriptions. In addition, Section 14.16.7, “Geometry Property Functions”, discusses several functions
that construct new geometries from existing ones. See that section for descriptions of these functions:

• ST_Envelope(g)

• ST_StartPoint(ls)

• ST_EndPoint(ls)

• ST_PointN(ls, N)

• ST_ExteriorRing(poly)

• ST_InteriorRingN(poly, N)

• ST_GeometryN(gc, N)

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any argument is NULL, the return value is NULL.

• If any geometry argument is not a syntactically well-formed geometry, an ER_GIS_INVALID_DATA
error occurs.

• If any geometry argument is a syntactically well-formed geometry in an undefined spatial reference
system (SRS), an ER_SRS_NOT_FOUND error occurs.

• For functions that take multiple geometry arguments, if those arguments are not in the same SRS, an
ER_GIS_DIFFERENT_SRIDS error occurs.

2496

http://www.opengeospatial.org
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_different_srids

Spatial Operator Functions

• If any geometry argument has an SRID value for a geographic SRS and the function does not handle
geographic geometries, an ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

• For geographic SRS geometry arguments, if any argument has a longitude or latitude that is out of
range, an error occurs:

• If a longitude value is not in the range (−180, 180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE error occurs
(ER_LONGITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

• If a latitude value is not in the range [−90, 90], an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE error occurs
(ER_LATITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

Ranges shown are in degrees. If an SRS uses another unit, the range uses the corresponding values
in its unit. The exact range limits deviate slightly due to floating-point arithmetic.

• Otherwise, the return value is non-NULL.

These spatial operator functions are available:

• ST_Buffer(g, d [, strategy1 [, strategy2 [, strategy3]]])

Returns a geometry that represents all points whose distance from the geometry value g is less than
or equal to a distance of d. The result is in the same SRS as the geometry argument.

If the geometry argument is empty, ST_Buffer() returns an empty geometry.

If the distance is 0, ST_Buffer() returns the geometry argument unchanged:

mysql> SET @pt = ST_GeomFromText('POINT(0 0)');
mysql> SELECT ST_AsText(ST_Buffer(@pt, 0));
+------------------------------+
| ST_AsText(ST_Buffer(@pt, 0)) |
+------------------------------+
| POINT(0 0) |
+------------------------------+

If the geometry argument is in a Cartesian SRS:

• ST_Buffer() supports negative distances for Polygon and MultiPolygon values, and for
geometry collections containing Polygon or MultiPolygon values.

• If the result is reduced so much that it disappears, the result is an empty geometry.

• An ER_WRONG_ARGUMENTS error occurs for ST_Buffer() with a negative distance for Point,
MultiPoint, LineString, and MultiLineString values, and for geometry collections not
containing any Polygon or MultiPolygon values.

If the geometry argument is in a geographic SRS:

• Prior to MySQL 8.0.26, an ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

• As of MySQL 8.0.26, Point geometries in a geographic SRS are permitted. For non-Point
geometries, an ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error still occurs.

For MySQL versions that permit geographic Point geometries:

• If the distance is not negative and no strategies are specified, the function returns the geographic
buffer of the Point in its SRS. The distance argument must be in the SRS distance unit (currently
always meters).

2497

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_arguments
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs

Spatial Operator Functions

• If the distance is negative or any strategy (except NULL) is specified, an ER_WRONG_ARGUMENTS
error occurs.

ST_Buffer() permits up to three optional strategy arguments following the distance argument.
Strategies influence buffer computation. These arguments are byte string values produced by the
ST_Buffer_Strategy() function, to be used for point, join, and end strategies:

• Point strategies apply to Point and MultiPoint geometries. If no point strategy is specified, the
default is ST_Buffer_Strategy('point_circle', 32).

• Join strategies apply to LineString, MultiLineString, Polygon, and
MultiPolygon geometries. If no join strategy is specified, the default is
ST_Buffer_Strategy('join_round', 32).

• End strategies apply to LineString and MultiLineString geometries. If no end strategy is
specified, the default is ST_Buffer_Strategy('end_round', 32).

Up to one strategy of each type may be specified, and they may be given in any order.

If the buffer strategies are invalid, an ER_WRONG_ARGUMENTS error occurs. Strategies are invalid
under any of these circumstances:

• Multiple strategies of a given type (point, join, or end) are specified.

• A value that is not a strategy (such as an arbitrary binary string or a number) is passed as a
strategy.

• A Point strategy is passed and the geometry contains no Point or MultiPoint values.

• An end or join strategy is passed and the geometry contains no LineString, Polygon,
MultiLinestring or MultiPolygon values.

mysql> SET @pt = ST_GeomFromText('POINT(0 0)');
mysql> SET @pt_strategy = ST_Buffer_Strategy('point_square');
mysql> SELECT ST_AsText(ST_Buffer(@pt, 2, @pt_strategy));
+--+
| ST_AsText(ST_Buffer(@pt, 2, @pt_strategy)) |
+--+
| POLYGON((-2 -2,2 -2,2 2,-2 2,-2 -2)) |
+--+

mysql> SET @ls = ST_GeomFromText('LINESTRING(0 0,0 5,5 5)');
mysql> SET @end_strategy = ST_Buffer_Strategy('end_flat');
mysql> SET @join_strategy = ST_Buffer_Strategy('join_round', 10);
mysql> SELECT ST_AsText(ST_Buffer(@ls, 5, @end_strategy, @join_strategy))
+---+
| ST_AsText(ST_Buffer(@ls, 5, @end_strategy, @join_strategy)) |
+---+
| POLYGON((5 5,5 10,0 10,-3.5355339059327373 8.535533905932738, |
| -5 5,-5 0,0 0,5 0,5 5)) |
+---+

• ST_Buffer_Strategy(strategy [, points_per_circle])

This function returns a strategy byte string for use with ST_Buffer() to influence buffer
computation.

Information about strategies is available at Boost.org.

The first argument must be a string indicating a strategy option:

• For point strategies, permitted values are 'point_circle' and 'point_square'.

• For join strategies, permitted values are 'join_round' and 'join_miter'.

2498

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_arguments
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_arguments
http://www.boost.org

Spatial Operator Functions

• For end strategies, permitted values are 'end_round' and 'end_flat'.

If the first argument is 'point_circle', 'join_round', 'join_miter', or 'end_round',
the points_per_circle argument must be given as a positive numeric value. The maximum
points_per_circle value is the value of the max_points_in_geometry system variable.

For examples, see the description of ST_Buffer().

ST_Buffer_Strategy() handles its arguments as described in the introduction to this section,
with these exceptions:

• If any argument is invalid, an ER_WRONG_ARGUMENTS error occurs.

• If the first argument is 'point_square' or 'end_flat', the points_per_circle argument
must not be given or an ER_WRONG_ARGUMENTS error occurs.

• ST_ConvexHull(g)

Returns a geometry that represents the convex hull of the geometry value g.

This function computes a geometry's convex hull by first checking whether its vertex points are
colinear. The function returns a linear hull if so, a polygon hull otherwise. This function processes
geometry collections by extracting all vertex points of all components of the collection, creating a
MultiPoint value from them, and computing its convex hull.

ST_ConvexHull() handles its arguments as described in the introduction to this section, with this
exception:

• The return value is NULL for the additional condition that the argument is an empty geometry
collection.

mysql> SET @g = 'MULTIPOINT(5 0,25 0,15 10,15 25)';
mysql> SELECT ST_AsText(ST_ConvexHull(ST_GeomFromText(@g)));
+---+
| ST_AsText(ST_ConvexHull(ST_GeomFromText(@g))) |
+---+
| POLYGON((5 0,25 0,15 25,5 0)) |
+---+

• ST_Difference(g1, g2)

Returns a geometry that represents the point set difference of the geometry values g1 and g2. The
result is in the same SRS as the geometry arguments.

As of MySQL 8.0.26, ST_Difference() permits arguments in either a Cartesian or a geographic
SRS. Prior to MySQL 8.0.26, ST_Difference() permits arguments in a Cartesian SRS only; for
arguments in a geographic SRS, an ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

ST_Difference() handles its arguments as described in the introduction to this section.

mysql> SET @g1 = Point(1,1), @g2 = Point(2,2);
mysql> SELECT ST_AsText(ST_Difference(@g1, @g2));
+------------------------------------+
| ST_AsText(ST_Difference(@g1, @g2)) |
+------------------------------------+
| POINT(1 1) |
+------------------------------------+

2499

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_arguments
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_arguments
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs

Spatial Operator Functions

• ST_Intersection(g1, g2)

Returns a geometry that represents the point set intersection of the geometry values g1 and g2. The
result is in the same SRS as the geometry arguments.

As of MySQL 8.0.27, ST_Intersection() permits arguments in either a Cartesian or a geographic
SRS. Prior to MySQL 8.0.27, ST_Intersection() permits arguments in a Cartesian SRS only; for
arguments in a geographic SRS, an ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

ST_Intersection() handles its arguments as described in the introduction to this section.

mysql> SET @g1 = ST_GeomFromText('LineString(1 1, 3 3)');
mysql> SET @g2 = ST_GeomFromText('LineString(1 3, 3 1)');
mysql> SELECT ST_AsText(ST_Intersection(@g1, @g2));
+--------------------------------------+
| ST_AsText(ST_Intersection(@g1, @g2)) |
+--------------------------------------+
| POINT(2 2) |
+--------------------------------------+

• ST_LineInterpolatePoint(ls, fractional_distance)

This function takes a LineString geometry and a fractional distance in the range [0.0, 1.0] and
returns the Point along the LineString at the given fraction of the distance from its start point to
its endpoint. It can be used to answer questions such as which Point lies halfway along the road
described by the geometry argument.

The function is implemented for LineString geometries in all spatial reference systems, both
Cartesian and geographic.

If the fractional_distance argument is 1.0, the result may not be exactly the last point of the
LineString argument but a point close to it due to numerical inaccuracies in approximate-value
computations.

A related function, ST_LineInterpolatePoints(), takes similar arguments but returns
a MultiPoint consisting of Point values along the LineString at each fraction of
the distance from its start point to its endpoint. For examples of both functions, see the
ST_LineInterpolatePoints() description.

ST_LineInterpolatePoint() handles its arguments as described in the introduction to this
section, with these exceptions:

• If the geometry argument is not a LineString, an ER_UNEXPECTED_GEOMETRY_TYPE error
occurs.

• If the fractional distance argument is outside the range [0.0, 1.0], an ER_DATA_OUT_OF_RANGE
error occurs.

ST_LineInterpolatePoint() is a MySQL extension to OpenGIS. This function was added in
MySQL 8.0.24.

• ST_LineInterpolatePoints(ls, fractional_distance)

This function takes a LineString geometry and a fractional distance in the range (0.0, 1.0] and
returns the MultiPoint consisting of the LineString start point, plus Point values along the
LineString at each fraction of the distance from its start point to its endpoint. It can be used to

2500

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unexpected_geometry_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range

Spatial Operator Functions

answer questions such as which Point values lie every 10% of the way along the road described by
the geometry argument.

The function is implemented for LineString geometries in all spatial reference systems, both
Cartesian and geographic.

If the fractional_distance argument divides 1.0 with zero remainder the result may not contain
the last point of the LineString argument but a point close to it due to numerical inaccuracies in
approximate-value computations.

A related function, ST_LineInterpolatePoint(), takes similar arguments but returns the Point
along the LineString at the given fraction of the distance from its start point to its endpoint.

ST_LineInterpolatePoints() handles its arguments as described in the introduction to this
section, with these exceptions:

• If the geometry argument is not a LineString, an ER_UNEXPECTED_GEOMETRY_TYPE error
occurs.

• If the fractional distance argument is outside the range [0.0, 1.0], an ER_DATA_OUT_OF_RANGE
error occurs.

mysql> SET @ls1 = ST_GeomFromText('LINESTRING(0 0,0 5,5 5)');
mysql> SELECT ST_AsText(ST_LineInterpolatePoint(@ls1, .5));
+--+
| ST_AsText(ST_LineInterpolatePoint(@ls1, .5)) |
+--+
| POINT(0 5) |
+--+
mysql> SELECT ST_AsText(ST_LineInterpolatePoint(@ls1, .75));
+---+
| ST_AsText(ST_LineInterpolatePoint(@ls1, .75)) |
+---+
| POINT(2.5 5) |
+---+
mysql> SELECT ST_AsText(ST_LineInterpolatePoint(@ls1, 1));
+---+
| ST_AsText(ST_LineInterpolatePoint(@ls1, 1)) |
+---+
| POINT(5 5) |
+---+
mysql> SELECT ST_AsText(ST_LineInterpolatePoints(@ls1, .25));
+--+
| ST_AsText(ST_LineInterpolatePoints(@ls1, .25)) |
+--+
| MULTIPOINT((0 2.5),(0 5),(2.5 5),(5 5)) |
+--+

ST_LineInterpolatePoints() is a MySQL extension to OpenGIS. This function was added in
MySQL 8.0.24.

• ST_PointAtDistance(ls, distance)

This function takes a LineString geometry and a distance in the range [0.0, ST_Length(ls)]
measured in the unit of the spatial reference system (SRS) of the LineString, and returns
the Point along the LineString at that distance from its start point. It can be used to answer

2501

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unexpected_geometry_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range

Spatial Operator Functions

questions such as which Point value is 400 meters from the start of the road described by the
geometry argument.

The function is implemented for LineString geometries in all spatial reference systems, both
Cartesian and geographic.

ST_PointAtDistance() handles its arguments as described in the introduction to this section,
with these exceptions:

• If the geometry argument is not a LineString, an ER_UNEXPECTED_GEOMETRY_TYPE error
occurs.

• If the fractional distance argument is outside the range [0.0, ST_Length(ls)], an
ER_DATA_OUT_OF_RANGE error occurs.

ST_PointAtDistance() is a MySQL extension to OpenGIS. This function was added in MySQL
8.0.24.

• ST_SymDifference(g1, g2)

Returns a geometry that represents the point set symmetric difference of the geometry values g1
and g2, which is defined as:

g1 symdifference g2 := (g1 union g2) difference (g1 intersection g2)

Or, in function call notation:

ST_SymDifference(g1, g2) = ST_Difference(ST_Union(g1, g2), ST_Intersection(g1, g2))

The result is in the same SRS as the geometry arguments.

As of MySQL 8.0.27, ST_SymDifference() permits arguments in either a Cartesian or a
geographic SRS. Prior to MySQL 8.0.27, ST_SymDifference() permits arguments in a Cartesian
SRS only; for arguments in a geographic SRS, an ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS
error occurs.

ST_SymDifference() handles its arguments as described in the introduction to this section.

mysql> SET @g1 = ST_GeomFromText('MULTIPOINT(5 0,15 10,15 25)');
mysql> SET @g2 = ST_GeomFromText('MULTIPOINT(1 1,15 10,15 25)');
mysql> SELECT ST_AsText(ST_SymDifference(@g1, @g2));
+---------------------------------------+
| ST_AsText(ST_SymDifference(@g1, @g2)) |
+---------------------------------------+
| MULTIPOINT((1 1),(5 0)) |
+---------------------------------------+

• ST_Transform(g, target_srid)

Transforms a geometry from one spatial reference system (SRS) to another. The return value is
a geometry of the same type as the input geometry with all coordinates transformed to the target
SRID, target_srid. Prior to MySQL 8.0.30, transformation support was limited to geographic
SRSs (unless the SRID of the geometry argument was the same as the target SRID value, in which
case the return value was the input geometry for any valid SRS), and this function did not support
Cartesian SRSs. Beginning with MySQL 8.0.30, support is provided for the Popular Visualisation
Pseudo Mercator (EPSG 1024) projection method, used for WGS 84 Pseudo-Mercator (SRID 3857).
In MySQL 8.0.32 and later, support is extended to all SRSs defined by EPSG except for those listed
here:

• EPSG 1042 Krovak Modified

• EPSG 1043 Krovak Modified (North Orientated)

2502

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unexpected_geometry_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs

Spatial Operator Functions

• EPSG 9816 Tunisia Mining Grid

• EPSG 9826 Lambert Conic Conformal (West Orientated)

ST_Transform() handles its arguments as described in the introduction to this section, with these
exceptions:

• Geometry arguments that have an SRID value for a geographic SRS do not produce an error.

• If the geometry or target SRID argument has an SRID value that refers to an undefined spatial
reference system (SRS), an ER_SRS_NOT_FOUND error occurs.

• If the geometry is in an SRS that ST_Transform() cannot transform from, an
ER_TRANSFORM_SOURCE_SRS_NOT_SUPPORTED error occurs.

• If the target SRID is in an SRS that ST_Transform() cannot transform to, an
ER_TRANSFORM_TARGET_SRS_NOT_SUPPORTED error occurs.

• If the geometry is in an SRS that is not WGS 84 and has no TOWGS84 clause, an
ER_TRANSFORM_SOURCE_SRS_MISSING_TOWGS84 error occurs.

• If the target SRID is in an SRS that is not WGS 84 and has no TOWGS84 clause, an
ER_TRANSFORM_TARGET_SRS_MISSING_TOWGS84 error occurs.

ST_SRID(g, target_srid) and ST_Transform(g, target_srid) differ as follows:

• ST_SRID() changes the geometry SRID value without transforming its coordinates.

• ST_Transform() transforms the geometry coordinates in addition to changing its SRID value.

mysql> SET @p = ST_GeomFromText('POINT(52.381389 13.064444)', 4326);
mysql> SELECT ST_AsText(@p);
+----------------------------+
| ST_AsText(@p) |
+----------------------------+
| POINT(52.381389 13.064444) |
+----------------------------+
mysql> SET @p = ST_Transform(@p, 4230);
mysql> SELECT ST_AsText(@p);
+---+
| ST_AsText(@p) |
+---+
| POINT(52.38208611407426 13.065520672345304) |
+---+

• ST_Union(g1, g2)

Returns a geometry that represents the point set union of the geometry values g1 and g2. The result
is in the same SRS as the geometry arguments.

As of MySQL 8.0.26, ST_Union() permits arguments in either a Cartesian or a geographic SRS.
Prior to MySQL 8.0.26, ST_Union() permits arguments in a Cartesian SRS only; for arguments in a
geographic SRS, an ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

ST_Union() handles its arguments as described in the introduction to this section.

mysql> SET @g1 = ST_GeomFromText('LineString(1 1, 3 3)');
mysql> SET @g2 = ST_GeomFromText('LineString(1 3, 3 1)');
mysql> SELECT ST_AsText(ST_Union(@g1, @g2));
+--------------------------------------+
| ST_AsText(ST_Union(@g1, @g2)) |
+--------------------------------------+
| MULTILINESTRING((1 1,3 3),(1 3,3 1)) |
+--------------------------------------+

2503

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_transform_source_srs_not_supported
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_transform_target_srs_not_supported
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_transform_source_srs_missing_towgs84
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_transform_target_srs_missing_towgs84
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs

Functions That Test Spatial Relations Between Geometry Objects

14.16.9 Functions That Test Spatial Relations Between Geometry Objects

The functions described in this section take two geometries as arguments and return a qualitative or
quantitative relation between them.

MySQL implements two sets of functions using function names defined by the OpenGIS specification.
One set tests the relationship between two geometry values using precise object shapes, the other set
uses object minimum bounding rectangles (MBRs).

14.16.9.1 Spatial Relation Functions That Use Object Shapes

The OpenGIS specification defines the following functions to test the relationship between two
geometry values g1 and g2, using precise object shapes. The return values 1 and 0 indicate true and
false, respectively, except that distance functions return distance values.

Functions in this section detect arguments in either Cartesian or geographic spatial reference systems
(SRSs), and return results appropriate to the SRS.

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any argument is NULL or any geometry argument is an empty geometry, the return value is NULL.

• If any geometry argument is not a syntactically well-formed geometry, an ER_GIS_INVALID_DATA
error occurs.

• If any geometry argument is a syntactically well-formed geometry in an undefined spatial reference
system (SRS), an ER_SRS_NOT_FOUND error occurs.

• For functions that take multiple geometry arguments, if those arguments are not in the same SRS, an
ER_GIS_DIFFERENT_SRIDS error occurs.

• If any geometry argument is geometrically invalid, either the result is true or false (it is undefined
which), or an error occurs.

• For geographic SRS geometry arguments, if any argument has a longitude or latitude that is out of
range, an error occurs:

• If a longitude value is not in the range (−180, 180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE error occurs
(ER_LONGITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

• If a latitude value is not in the range [−90, 90], an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE error occurs
(ER_LATITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

Ranges shown are in degrees. If an SRS uses another unit, the range uses the corresponding values
in its unit. The exact range limits deviate slightly due to floating-point arithmetic.

• Otherwise, the return value is non-NULL.

Some functions in this section permit a unit argument that specifies the length unit for the return value.
Unless otherwise specified, functions handle their unit argument as follows:

• A unit is supported if it is found in the INFORMATION_SCHEMA ST_UNITS_OF_MEASURE table. See
Section 28.3.37, “The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table”.

• If a unit is specified but not supported by MySQL, an ER_UNIT_NOT_FOUND error occurs.

• If a supported linear unit is specified and the SRID is 0, an
ER_GEOMETRY_IN_UNKNOWN_LENGTH_UNIT error occurs.

• If a supported linear unit is specified and the SRID is not 0, the result is in that unit.

2504

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_different_srids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unit_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_in_unknown_length_unit

Functions That Test Spatial Relations Between Geometry Objects

• If a unit is not specified, the result is in the unit of the SRS of the geometries, whether Cartesian or
geographic. Currently, all MySQL SRSs are expressed in meters.

These object-shape functions are available for testing geometry relationships:

• ST_Contains(g1, g2)

Returns 1 or 0 to indicate whether g1 completely contains g2 (this means that g1 and g2 must not
intersect). This relationship is the inverse of that tested by ST_Within().

ST_Contains() handles its arguments as described in the introduction to this section.

mysql> SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
 -> @p1 = ST_GeomFromText('Point(1 1)'),
 -> @p2 = ST_GeomFromText('Point(3 3)'),
 -> @p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT
 -> ST_Contains(@g1, @p1), ST_Within(@p1, @g1),
 -> ST_Disjoint(@g1, @p1), ST_Intersects(@g1, @p1)\G
*************************** 1. row ***************************
 ST_Contains(@g1, @p1): 1
 ST_Within(@p1, @g1): 1
 ST_Disjoint(@g1, @p1): 0
ST_Intersects(@g1, @p1): 1
1 row in set (0.00 sec)

mysql> SELECT
 -> ST_Contains(@g1, @p2), ST_Within(@p2, @g1),
 -> ST_Disjoint(@g1, @p2), ST_Intersects(@g1, @p2)\G
*************************** 1. row ***************************
 ST_Contains(@g1, @p2): 0
 ST_Within(@p2, @g1): 0
 ST_Disjoint(@g1, @p2): 0
ST_Intersects(@g1, @p2): 1
1 row in set (0.00 sec)

mysql>
 -> SELECT
 -> ST_Contains(@g1, @p3), ST_Within(@p3, @g1),
 -> ST_Disjoint(@g1, @p3), ST_Intersects(@g1, @p3)\G
*************************** 1. row ***************************
 ST_Contains(@g1, @p3): 0
 ST_Within(@p3, @g1): 0
 ST_Disjoint(@g1, @p3): 1
ST_Intersects(@g1, @p3): 0
1 row in set (0.00 sec)

• ST_Crosses(g1, g2)

Two geometries spatially cross if their spatial relation has the following properties:

• Unless g1 and g2 are both of dimension 1: g1 crosses g2 if the interior of g2 has points in
common with the interior of g1, but g2 does not cover the entire interior of g1.

• If both g1 and g2 are of dimension 1: If the lines cross each other in a finite number of points (that
is, no common line segments, only single points in common).

This function returns 1 or 0 to indicate whether g1 spatially crosses g2.

ST_Crosses() handles its arguments as described in the introduction to this section except that the
return value is NULL for these additional conditions:

• g1 is of dimension 2 (Polygon or MultiPolygon).

• g2 is of dimension 1 (Point or MultiPoint).

2505

Functions That Test Spatial Relations Between Geometry Objects

• ST_Disjoint(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.

ST_Disjoint() handles its arguments as described in the introduction to this section.

• ST_Distance(g1, g2 [, unit])

Returns the distance between g1 and g2, measured in the length unit of the spatial reference system
(SRS) of the geometry arguments, or in the unit of the optional unit argument if that is specified.

This function processes geometry collections by returning the shortest distance among all
combinations of the components of the two geometry arguments.

ST_Distance() handles its geometry arguments as described in the introduction to this section,
with these exceptions:

• ST_Distance() detects arguments in a geographic (ellipsoidal) spatial reference system and
returns the geodetic distance on the ellipsoid. As of MySQL 8.0.18, ST_Distance() supports
distance calculations for geographic SRS arguments of all geometry types. Prior to MySQL 8.0.18,
the only permitted geographic argument types are Point and Point, or Point and MultiPoint
(in any argument order). If called with other geometry type argument combinations in a geographic
SRS, an ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

• If any argument is geometrically invalid, either the result is an undefined distance (that is, it can be
any number), or an error occurs.

• If an intermediate or final result produces NaN or a negative number, an ER_GIS_INVALID_DATA
error occurs.

As of MySQL 8.0.14, ST_Distance() permits an optional unit argument that specifies the linear
unit for the returned distance value. ST_Distance() handles its unit argument as described in the
introduction to this section.

mysql> SET @g1 = ST_GeomFromText('POINT(1 1)');
mysql> SET @g2 = ST_GeomFromText('POINT(2 2)');
mysql> SELECT ST_Distance(@g1, @g2);
+-----------------------+
| ST_Distance(@g1, @g2) |
+-----------------------+
| 1.4142135623730951 |
+-----------------------+

mysql> SET @g1 = ST_GeomFromText('POINT(1 1)', 4326);
mysql> SET @g2 = ST_GeomFromText('POINT(2 2)', 4326);
mysql> SELECT ST_Distance(@g1, @g2);
+-----------------------+
| ST_Distance(@g1, @g2) |
+-----------------------+
| 156874.3859490455 |
+-----------------------+
mysql> SELECT ST_Distance(@g1, @g2, 'metre');
+--------------------------------+
| ST_Distance(@g1, @g2, 'metre') |
+--------------------------------+
| 156874.3859490455 |
+--------------------------------+
mysql> SELECT ST_Distance(@g1, @g2, 'foot');
+-------------------------------+
| ST_Distance(@g1, @g2, 'foot') |
+-------------------------------+
| 514679.7439273146 |
+-------------------------------+

For the special case of distance calculations on a sphere, see the ST_Distance_Sphere()
function.

2506

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data

Functions That Test Spatial Relations Between Geometry Objects

• ST_Equals(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially equal to g2.

ST_Equals() handles its arguments as described in the introduction to this section, except that it
does not return NULL for empty geometry arguments.

mysql> SET @g1 = Point(1,1), @g2 = Point(2,2);
mysql> SELECT ST_Equals(@g1, @g1), ST_Equals(@g1, @g2);
+---------------------+---------------------+
| ST_Equals(@g1, @g1) | ST_Equals(@g1, @g2) |
+---------------------+---------------------+
| 1 | 0 |
+---------------------+---------------------+

• ST_FrechetDistance(g1, g2 [, unit])

Returns the discrete Fréchet distance between two geometries, reflecting how similar the geometries
are. The result is a double-precision number measured in the length unit of the spatial reference
system (SRS) of the geometry arguments, or in the length unit of the unit argument if that argument
is given.

This function implements the discrete Fréchet distance, which means it is restricted to distances
between the points of the geometries. For example, given two LineString arguments, only the
points explicitly mentioned in the geometries are considered. Points on the line segments between
these points are not considered.

ST_FrechetDistance() handles its geometry arguments as described in the introduction to this
section, with these exceptions:

• The geometries may have a Cartesian or geographic SRS, but only LineString values
are supported. If the arguments are in the same Cartesian or geographic SRS, but
either is not a LineString, an ER_NOT_IMPLEMENTED_FOR_CARTESIAN_SRS or
ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs, depending on the SRS type.

ST_FrechetDistance() handles its optional unit argument as described in the introduction to
this section.

mysql> SET @ls1 = ST_GeomFromText('LINESTRING(0 0,0 5,5 5)');
mysql> SET @ls2 = ST_GeomFromText('LINESTRING(0 1,0 6,3 3,5 6)');
mysql> SELECT ST_FrechetDistance(@ls1, @ls2);
+--------------------------------+
| ST_FrechetDistance(@ls1, @ls2) |
+--------------------------------+
| 2.8284271247461903 |
+--------------------------------+

mysql> SET @ls1 = ST_GeomFromText('LINESTRING(0 0,0 5,5 5)', 4326);
mysql> SET @ls2 = ST_GeomFromText('LINESTRING(0 1,0 6,3 3,5 6)', 4326);
mysql> SELECT ST_FrechetDistance(@ls1, @ls2);
+--------------------------------+
| ST_FrechetDistance(@ls1, @ls2) |
+--------------------------------+
| 313421.1999416798 |
+--------------------------------+
mysql> SELECT ST_FrechetDistance(@ls1, @ls2, 'foot');
+--+
| ST_FrechetDistance(@ls1, @ls2, 'foot') |
+--+
| 1028284.7767115477 |
+--+

This function was added in MySQL 8.0.23.

2507

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_cartesian_srs
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs

Functions That Test Spatial Relations Between Geometry Objects

• ST_HausdorffDistance(g1, g2 [, unit])

Returns the discrete Hausdorff distance between two geometries, reflecting how similar the
geometries are. The result is a double-precision number measured in the length unit of the spatial
reference system (SRS) of the geometry arguments, or in the length unit of the unit argument if that
argument is given.

This function implements the discrete Hausdorff distance, which means it is restricted to distances
between the points of the geometries. For example, given two LineString arguments, only the
points explicitly mentioned in the geometries are considered. Points on the line segments between
these points are not considered.

ST_HausdorffDistance() handles its geometry arguments as described in the introduction to
this section, with these exceptions:

• If the geometry arguments are in the same Cartesian or geographic SRS, but are not
in a supported combination, an ER_NOT_IMPLEMENTED_FOR_CARTESIAN_SRS or
ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs, depending on the SRS type.
These combinations are supported:

• LineString and LineString

• Point and MultiPoint

• LineString and MultiLineString

• MultiPoint and MultiPoint

• MultiLineString and MultiLineString

ST_HausdorffDistance() handles its optional unit argument as described in the introduction to
this section.

mysql> SET @ls1 = ST_GeomFromText('LINESTRING(0 0,0 5,5 5)');
mysql> SET @ls2 = ST_GeomFromText('LINESTRING(0 1,0 6,3 3,5 6)');
mysql> SELECT ST_HausdorffDistance(@ls1, @ls2);
+----------------------------------+
| ST_HausdorffDistance(@ls1, @ls2) |
+----------------------------------+
| 1 |
+----------------------------------+

mysql> SET @ls1 = ST_GeomFromText('LINESTRING(0 0,0 5,5 5)', 4326);
mysql> SET @ls2 = ST_GeomFromText('LINESTRING(0 1,0 6,3 3,5 6)', 4326);
mysql> SELECT ST_HausdorffDistance(@ls1, @ls2);
+----------------------------------+
| ST_HausdorffDistance(@ls1, @ls2) |
+----------------------------------+
| 111319.49079326246 |
+----------------------------------+
mysql> SELECT ST_HausdorffDistance(@ls1, @ls2, 'foot');
+--+
| ST_HausdorffDistance(@ls1, @ls2, 'foot') |
+--+
| 365221.4264870815 |
+--+

This function was added in MySQL 8.0.23.

• ST_Intersects(g1, g2)

Returns 1 or 0 to indicate whether g1 spatially intersects g2.

ST_Intersects() handles its arguments as described in the introduction to this section.

2508

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_cartesian_srs
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs

Functions That Test Spatial Relations Between Geometry Objects

• ST_Overlaps(g1, g2)

Two geometries spatially overlap if they intersect and their intersection results in a geometry of the
same dimension but not equal to either of the given geometries.

This function returns 1 or 0 to indicate whether g1 spatially overlaps g2.

ST_Overlaps() handles its arguments as described in the introduction to this section except that
the return value is NULL for the additional condition that the dimensions of the two geometries are
not equal.

• ST_Touches(g1, g2)

Two geometries spatially touch if their interiors do not intersect, but the boundary of one of the
geometries intersects either the boundary or the interior of the other.

This function returns 1 or 0 to indicate whether g1 spatially touches g2.

ST_Touches() handles its arguments as described in the introduction to this section except that the
return value is NULL for the additional condition that both geometries are of dimension 0 (Point or
MultiPoint).

• ST_Within(g1, g2)

Returns 1 or 0 to indicate whether g1 is spatially within g2. This tests the opposite relationship as
ST_Contains().

ST_Within() handles its arguments as described in the introduction to this section.

14.16.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles

MySQL provides several MySQL-specific functions that test the relationship between minimum
bounding rectangles (MBRs) of two geometries g1 and g2. The return values 1 and 0 indicate true and
false, respectively.

The bounding box of a point is interpreted as a point that is both boundary and interior.

The bounding box of a straight horizontal or vertical line is interpreted as a line where the interior of the
line is also boundary. The endpoints are boundary points.

If any of the parameters are geometry collections, the interior, boundary, and exterior of those
parameters are those of the union of all elements in the collection.

Functions in this section detect arguments in either Cartesian or geographic spatial reference systems
(SRSs), and return results appropriate to the SRS.

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any argument is NULL or an empty geometry, the return value is NULL.

• If any geometry argument is not a syntactically well-formed geometry, an ER_GIS_INVALID_DATA
error occurs.

• If any geometry argument is a syntactically well-formed geometry in an undefined spatial reference
system (SRS), an ER_SRS_NOT_FOUND error occurs.

• For functions that take multiple geometry arguments, if those arguments are not in the same SRS, an
ER_GIS_DIFFERENT_SRIDS error occurs.

• If any argument is geometrically invalid, either the result is true or false (it is undefined which), or an
error occurs.

2509

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_different_srids

Functions That Test Spatial Relations Between Geometry Objects

• For geographic SRS geometry arguments, if any argument has a longitude or latitude that is out of
range, an error occurs:

• If a longitude value is not in the range (−180, 180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE error occurs
(ER_LONGITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

• If a latitude value is not in the range [−90, 90], an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE error occurs
(ER_LATITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

Ranges shown are in degrees. If an SRS uses another unit, the range uses the corresponding values
in its unit. The exact range limits deviate slightly due to floating-point arithmetic.

• Otherwise, the return value is non-NULL.

These MBR functions are available for testing geometry relationships:

• MBRContains(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 contains the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRWithin().

MBRContains() handles its arguments as described in the introduction to this section.

mysql> SET
 -> @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
 -> @g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
 -> @g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),
 -> @g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),
 -> @p1 = ST_GeomFromText('Point(1 1)'),
 -> @p2 = ST_GeomFromText('Point(3 3)');
 -> @p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT
 -> MBRContains(@g1, @g2), MBRContains(@g1, @g4),
 -> MBRContains(@g2, @g1), MBRContains(@g2, @g4),
 -> MBRContains(@g2, @g3), MBRContains(@g3, @g4),
 -> MBRContains(@g3, @g1), MBRContains(@g1, @g3),
 -> MBRContains(@g1, @p1), MBRContains(@p1, @g1),
 -> MBRContains(@g1, @p1), MBRContains(@p1, @g1),
 -> MBRContains(@g2, @p2), MBRContains(@g2, @p3),
 -> MBRContains(@g3, @p1), MBRContains(@g3, @p2),
 -> MBRContains(@g3, @p3), MBRContains(@g4, @p1),
 -> MBRContains(@g4, @p2), MBRContains(@g4, @p3)\G
*************************** 1. row ***************************
MBRContains(@g1, @g2): 1
MBRContains(@g1, @g4): 0
MBRContains(@g2, @g1): 0
MBRContains(@g2, @g4): 0
MBRContains(@g2, @g3): 0
MBRContains(@g3, @g4): 0
MBRContains(@g3, @g1): 1
MBRContains(@g1, @g3): 0
MBRContains(@g1, @p1): 1
MBRContains(@p1, @g1): 0
MBRContains(@g1, @p1): 1
MBRContains(@p1, @g1): 0
MBRContains(@g2, @p2): 0
MBRContains(@g2, @p3): 0
MBRContains(@g3, @p1): 1
MBRContains(@g3, @p2): 1
MBRContains(@g3, @p3): 0
MBRContains(@g4, @p1): 0
MBRContains(@g4, @p2): 0
MBRContains(@g4, @p3): 0
1 row in set (0.00 sec)

2510

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range

Functions That Test Spatial Relations Between Geometry Objects

• MBRCoveredBy(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 is covered by the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRCovers().

MBRCoveredBy() handles its arguments as described in the introduction to this section.

mysql> SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = ST_GeomFromText('Point(1 1)');
mysql> SELECT MBRCovers(@g1,@g2), MBRCoveredby(@g1,@g2);
+--------------------+-----------------------+
| MBRCovers(@g1,@g2) | MBRCoveredby(@g1,@g2) |
+--------------------+-----------------------+
| 1 | 0 |
+--------------------+-----------------------+
mysql> SELECT MBRCovers(@g2,@g1), MBRCoveredby(@g2,@g1);
+--------------------+-----------------------+
| MBRCovers(@g2,@g1) | MBRCoveredby(@g2,@g1) |
+--------------------+-----------------------+
| 0 | 1 |
+--------------------+-----------------------+

See the description of the MBRCovers() function for additional examples.

• MBRCovers(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 covers the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRCoveredBy(). See the
description of MBRCoveredBy() for additional examples.

MBRCovers() handles its arguments as described in the introduction to this section.

mysql> SET
 -> @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
 -> @g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
 -> @p1 = ST_GeomFromText('Point(1 1)'),
 -> @p2 = ST_GeomFromText('Point(3 3)'),
 -> @p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.02 sec)

mysql> SELECT
 -> MBRCovers(@g1, @p1), MBRCovers(@g1, @p2),
 -> MBRCovers(@g1, @g2), MBRCovers(@g1, @p3)\G
*************************** 1. row ***************************
MBRCovers(@g1, @p1): 1
MBRCovers(@g1, @p2): 1
MBRCovers(@g1, @g2): 1
MBRCovers(@g1, @p3): 0
1 row in set (0.00 sec)

• MBRDisjoint(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 are disjoint (do not intersect).

MBRDisjoint() handles its arguments as described in the introduction to this section.

mysql> SET
 -> @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
 -> @g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
 -> @g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),
 -> @g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),
 -> @p1 = ST_GeomFromText('Point(1 1)'),
 -> @p2 = ST_GeomFromText('Point(3 3)'),
 -> @p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT
 -> MBRDisjoint(@g1, @g4), MBRDisjoint(@g2, @g4),

2511

Functions That Test Spatial Relations Between Geometry Objects

 -> MBRDisjoint(@g3, @g4), MBRDisjoint(@g4, @g4),
 -> MBRDisjoint(@g1, @p1), MBRDisjoint(@g1, @p2),
 -> MBRDisjoint(@g1, @p3)\G
*************************** 1. row ***************************
MBRDisjoint(@g1, @g4): 1
MBRDisjoint(@g2, @g4): 1
MBRDisjoint(@g3, @g4): 0
MBRDisjoint(@g4, @g4): 0
MBRDisjoint(@g1, @p1): 0
MBRDisjoint(@g1, @p2): 0
MBRDisjoint(@g1, @p3): 1
1 row in set (0.00 sec)

• MBREquals(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 are the same.

MBREquals() handles its arguments as described in the introduction to this section, except that it
does not return NULL for empty geometry arguments.

mysql> SET
 -> @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
 -> @g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
 -> @p1 = ST_GeomFromText('Point(1 1)'),
 -> @p2 = ST_GeomFromText('Point(3 3)'),
 -> @p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT
 -> MBREquals(@g1, @g1), MBREquals(@g1, @g2),
 -> MBREquals(@g1, @p1), MBREquals(@g1, @p2), MBREquals(@g2, @g2),
 -> MBREquals(@p1, @p1), MBREquals(@p1, @p2), MBREquals(@p2, @p2)\G
*************************** 1. row ***************************
MBREquals(@g1, @g1): 1
MBREquals(@g1, @g2): 0
MBREquals(@g1, @p1): 0
MBREquals(@g1, @p2): 0
MBREquals(@g2, @g2): 1
MBREquals(@p1, @p1): 1
MBREquals(@p1, @p2): 0
MBREquals(@p2, @p2): 1
1 row in set (0.00 sec)

• MBRIntersects(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and
g2 intersect.

MBRIntersects() handles its arguments as described in the introduction to this section.

mysql> SET
 -> @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
 -> @g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
 -> @g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),
 -> @g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),
 -> @g5 = ST_GeomFromText('Polygon((2 2,2 8,8 8,8 2,2 2))'),
 -> @p1 = ST_GeomFromText('Point(1 1)'),
 -> @p2 = ST_GeomFromText('Point(3 3)'),
 -> @p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT
 -> MBRIntersects(@g1, @g1), MBRIntersects(@g1, @g2),
 -> MBRIntersects(@g1, @g3), MBRIntersects(@g1, @g4), MBRIntersects(@g1, @g5),
 -> MBRIntersects(@g1, @p1), MBRIntersects(@g1, @p2), MBRIntersects(@g1, @p3),
 -> MBRIntersects(@g2, @p1), MBRIntersects(@g2, @p2), MBRIntersects(@g2, @p3)\G
*************************** 1. row ***************************
MBRIntersects(@g1, @g1): 1
MBRIntersects(@g1, @g2): 1

2512

Functions That Test Spatial Relations Between Geometry Objects

MBRIntersects(@g1, @g3): 1
MBRIntersects(@g1, @g4): 0
MBRIntersects(@g1, @g5): 1
MBRIntersects(@g1, @p1): 1
MBRIntersects(@g1, @p2): 1
MBRIntersects(@g1, @p3): 0
MBRIntersects(@g2, @p1): 1
MBRIntersects(@g2, @p2): 0
MBRIntersects(@g2, @p3): 0
1 row in set (0.00 sec)

• MBROverlaps(g1, g2)

Two geometries spatially overlap if they intersect and their intersection results in a geometry of the
same dimension but not equal to either of the given geometries.

This function returns 1 or 0 to indicate whether the minimum bounding rectangles of the two
geometries g1 and g2 overlap.

MBROverlaps() handles its arguments as described in the introduction to this section.

• MBRTouches(g1, g2)

Two geometries spatially touch if their interiors do not intersect, but the boundary of one of the
geometries intersects either the boundary or the interior of the other.

This function returns 1 or 0 to indicate whether the minimum bounding rectangles of the two
geometries g1 and g2 touch.

MBRTouches() handles its arguments as described in the introduction to this section.

• MBRWithin(g1, g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 is within the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRContains().

MBRWithin() handles its arguments as described in the introduction to this section.

mysql> SET
 -> @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
 -> @g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
 -> @g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),
 -> @g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),
 -> @p1 = ST_GeomFromText('Point(1 1)'),
 -> @p2 = ST_GeomFromText('Point(3 3)');
 -> @p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT
 -> MBRWithin(@g1, @g2), MBRWithin(@g1, @g4),
 -> MBRWithin(@g2, @g1), MBRWithin(@g2, @g4),
 -> MBRWithin(@g2, @g3), MBRWithin(@g3, @g4),
 -> MBRWithin(@g1, @p1), MBRWithin(@p1, @g1),
 -> MBRWithin(@g1, @p1), MBRWithin(@p1, @g1),
 -> MBRWithin(@g2, @p2), MBRWithin(@g2, @p3)\G
*************************** 1. row ***************************
MBRWithin(@g1, @g2): 0
MBRWithin(@g1, @g4): 0
MBRWithin(@g2, @g1): 1
MBRWithin(@g2, @g4): 0
MBRWithin(@g2, @g3): 1
MBRWithin(@g3, @g4): 0
MBRWithin(@g1, @p1): 0
MBRWithin(@p1, @g1): 1
MBRWithin(@g1, @p1): 0
MBRWithin(@p1, @g1): 1
MBRWithin(@g2, @p2): 0
MBRWithin(@g2, @p3): 0

2513

Spatial Geohash Functions

1 row in set (0.00 sec)

14.16.10 Spatial Geohash Functions

Geohash is a system for encoding latitude and longitude coordinates of arbitrary precision
into a text string. Geohash values are strings that contain only characters chosen from
"0123456789bcdefghjkmnpqrstuvwxyz".

The functions in this section enable manipulation of geohash values, which provides applications the
capabilities of importing and exporting geohash data, and of indexing and searching geohash values.

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any argument is NULL, the return value is NULL.

• If any argument is invalid, an error occurs.

• If any argument has a longitude or latitude that is out of range, an error occurs:

• If a longitude value is not in the range (−180, 180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE error occurs
(ER_LONGITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

• If a latitude value is not in the range [−90, 90], an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE error occurs
(ER_LATITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

Ranges shown are in degrees. The exact range limits deviate slightly due to floating-point arithmetic.

• If any point argument does not have SRID 0 or 4326, an ER_SRS_NOT_FOUND error occurs. point
argument SRID validity is not checked.

• If any SRID argument refers to an undefined spatial reference system (SRS), an
ER_SRS_NOT_FOUND error occurs.

• If any SRID argument is not within the range of a 32-bit unsigned integer, an
ER_DATA_OUT_OF_RANGE error occurs.

• Otherwise, the return value is non-NULL.

These geohash functions are available:

• ST_GeoHash(longitude, latitude, max_length), ST_GeoHash(point, max_length)

Returns a geohash string in the connection character set and collation.

For the first syntax, the longitude must be a number in the range [−180, 180], and the latitude
must be a number in the range [−90, 90]. For the second syntax, a POINT value is required, where
the X and Y coordinates are in the valid ranges for longitude and latitude, respectively.

The resulting string is no longer than max_length characters, which has an upper limit of 100.
The string might be shorter than max_length characters because the algorithm that creates the
geohash value continues until it has created a string that is either an exact representation of the
location or max_length characters, whichever comes first.

ST_GeoHash() handles its arguments as described in the introduction to this section.

mysql> SELECT ST_GeoHash(180,0,10), ST_GeoHash(-180,-90,15);
+----------------------+-------------------------+
| ST_GeoHash(180,0,10) | ST_GeoHash(-180,-90,15) |
+----------------------+-------------------------+
| xbpbpbpbpb | 000000000000000 |

2514

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range

Spatial GeoJSON Functions

+----------------------+-------------------------+

• ST_LatFromGeoHash(geohash_str)

Returns the latitude from a geohash string value, as a double-precision number in the range [−90,
90].

The ST_LatFromGeoHash() decoding function reads no more than 433 characters from
the geohash_str argument. That represents the upper limit on information in the internal
representation of coordinate values. Characters past the 433rd are ignored, even if they are
otherwise illegal and produce an error.

ST_LatFromGeoHash() handles its arguments as described in the introduction to this section.

mysql> SELECT ST_LatFromGeoHash(ST_GeoHash(45,-20,10));
+--+
| ST_LatFromGeoHash(ST_GeoHash(45,-20,10)) |
+--+
| -20 |
+--+

• ST_LongFromGeoHash(geohash_str)

Returns the longitude from a geohash string value, as a double-precision number in the range [−180,
180].

The remarks in the description of ST_LatFromGeoHash() regarding the maximum number of
characters processed from the geohash_str argument also apply to ST_LongFromGeoHash().

ST_LongFromGeoHash() handles its arguments as described in the introduction to this section.

mysql> SELECT ST_LongFromGeoHash(ST_GeoHash(45,-20,10));
+---+
| ST_LongFromGeoHash(ST_GeoHash(45,-20,10)) |
+---+
| 45 |
+---+

• ST_PointFromGeoHash(geohash_str, srid)

Returns a POINT value containing the decoded geohash value, given a geohash string value.

The X and Y coordinates of the point are the longitude in the range [−180, 180] and the latitude in the
range [−90, 90], respectively.

The srid argument is an 32-bit unsigned integer.

The remarks in the description of ST_LatFromGeoHash() regarding the maximum number of
characters processed from the geohash_str argument also apply to ST_PointFromGeoHash().

ST_PointFromGeoHash() handles its arguments as described in the introduction to this section.

mysql> SET @gh = ST_GeoHash(45,-20,10);
mysql> SELECT ST_AsText(ST_PointFromGeoHash(@gh,0));
+---------------------------------------+
| ST_AsText(ST_PointFromGeoHash(@gh,0)) |
+---------------------------------------+
| POINT(45 -20) |
+---------------------------------------+

14.16.11 Spatial GeoJSON Functions

This section describes functions for converting between GeoJSON documents and spatial values.
GeoJSON is an open standard for encoding geometric/geographical features. For more information,
see http://geojson.org. The functions discussed here follow GeoJSON specification revision 1.0.

2515

http://geojson.org

Spatial GeoJSON Functions

GeoJSON supports the same geometric/geographic data types that MySQL supports. Feature and
FeatureCollection objects are not supported, except that geometry objects are extracted from them.
CRS support is limited to values that identify an SRID.

MySQL also supports a native JSON data type and a set of SQL functions to enable operations on
JSON values. For more information, see Section 13.5, “The JSON Data Type”, and Section 14.17,
“JSON Functions”.

• ST_AsGeoJSON(g [, max_dec_digits [, options]])

Generates a GeoJSON object from the geometry g. The object string has the connection character
set and collation.

If any argument is NULL, the return value is NULL. If any non-NULL argument is invalid, an error
occurs.

max_dec_digits, if specified, limits the number of decimal digits for coordinates and causes
rounding of output. If not specified, this argument defaults to its maximum value of 232 − 1. The
minimum is 0.

options, if specified, is a bitmask. The following table shows the permitted flag values. If the
geometry argument has an SRID of 0, no CRS object is produced even for those flag values that
request one.

Flag Value Meaning

0 No options. This is the default if options is not
specified.

1 Add a bounding box to the output.

2 Add a short-format CRS URN to the output. The
default format is a short format (EPSG:srid).

4 Add a long-format CRS URN
(urn:ogc:def:crs:EPSG::srid). This flag
overrides flag 2. For example, option values of 5
and 7 mean the same (add a bounding box and a
long-format CRS URN).

mysql> SELECT ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2);
+---+
| ST_AsGeoJSON(ST_GeomFromText('POINT(11.11111 12.22222)'),2) |
+---+
| {"type": "Point", "coordinates": [11.11, 12.22]} |
+---+

• ST_GeomFromGeoJSON(str [, options [, srid]])

Parses a string str representing a GeoJSON object and returns a geometry.

If any argument is NULL, the return value is NULL. If any non-NULL argument is invalid, an error
occurs.

options, if given, describes how to handle GeoJSON documents that contain geometries with
coordinate dimensions higher than 2. The following table shows the permitted options values.

Option Value Meaning

1 Reject the document and produce an error. This
is the default if options is not specified.

2, 3, 4 Accept the document and strip off the
coordinates for higher coordinate dimensions.2516

Spatial Aggregate Functions

options values of 2, 3, and 4 currently produce the same effect. If geometries with coordinate
dimensions higher than 2 are supported in the future, you can expect these values to produce
different effects.

The srid argument, if given, must be a 32-bit unsigned integer. If not given, the geometry return
value has an SRID of 4326.

If srid refers to an undefined spatial reference system (SRS), an ER_SRS_NOT_FOUND error
occurs.

For geographic SRS geometry arguments, if any argument has a longitude or latitude that is out of
range, an error occurs:

• If a longitude value is not in the range (−180, 180], an ER_LONGITUDE_OUT_OF_RANGE error
occurs.

• If a latitude value is not in the range [−90, 90], an ER_LATITUDE_OUT_OF_RANGE error occurs.

Ranges shown are in degrees. If an SRS uses another unit, the range uses the corresponding values
in its unit. The exact range limits deviate slightly due to floating-point arithmetic.

GeoJSON geometry, feature, and feature collection objects may have a crs property. The parsing
function parses named CRS URNs in the urn:ogc:def:crs:EPSG::srid and EPSG:srid
namespaces, but not CRSs given as link objects. Also, urn:ogc:def:crs:OGC:1.3:CRS84 is
recognized as SRID 4326. If an object has a CRS that is not understood, an error occurs, with the
exception that if the optional srid argument is given, any CRS is ignored even if it is invalid.

If a crs member that specifies an SRID different from the top-level object SRID is found at a lower
level of the GeoJSON document, an ER_INVALID_GEOJSON_CRS_NOT_TOP_LEVEL error occurs.

As specified in the GeoJSON specification, parsing is case-sensitive for the type member of the
GeoJSON input (Point, LineString, and so forth). The specification is silent regarding case
sensitivity for other parsing, which in MySQL is not case-sensitive.

This example shows the parsing result for a simple GeoJSON object. Observe that the order of
coordinates depends on the SRID used.

mysql> SET @json = '{ "type": "Point", "coordinates": [102.0, 0.0]}';
mysql> SELECT ST_AsText(ST_GeomFromGeoJSON(@json));
+--------------------------------------+
| ST_AsText(ST_GeomFromGeoJSON(@json)) |
+--------------------------------------+
| POINT(0 102) |
+--------------------------------------+
mysql> SELECT ST_SRID(ST_GeomFromGeoJSON(@json));
+------------------------------------+
| ST_SRID(ST_GeomFromGeoJSON(@json)) |
+------------------------------------+
| 4326 |
+------------------------------------+
mysql> SELECT ST_AsText(ST_SRID(ST_GeomFromGeoJSON(@json),0));
+---+
| ST_AsText(ST_SRID(ST_GeomFromGeoJSON(@json),0)) |
+---+
| POINT(102 0) |
+---+

14.16.12 Spatial Aggregate Functions

MySQL supports aggregate functions that perform a calculation on a set of values. For general
information about these functions, see Section 14.19.1, “Aggregate Function Descriptions”. This
section describes the ST_Collect() spatial aggregate function.

2517

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_geojson_crs_not_top_level

Spatial Aggregate Functions

ST_Collect() can be used as a window function, as signified in its syntax description by
[over_clause], representing an optional OVER clause. over_clause is described in
Section 14.20.2, “Window Function Concepts and Syntax”, which also includes other information about
window function usage.

• ST_Collect([DISTINCT] g) [over_clause]

Aggregates geometry values and returns a single geometry collection value. With the DISTINCT
option, returns the aggregation of the distinct geometry arguments.

As with other aggregate functions, GROUP BY may be used to group arguments into subsets.
ST_Collect() returns an aggregate value for each subset.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”. In contrast to most
aggregate functions that support windowing, ST_Collect() permits use of over_clause together
with DISTINCT.

ST_Collect() handles its arguments as follows:

• NULL arguments are ignored.

• If all arguments are NULL or the aggregate result is empty, the return value is NULL.

• If any geometry argument is not a syntactically well-formed geometry, an
ER_GIS_INVALID_DATA error occurs.

• If any geometry argument is a syntactically well-formed geometry in an undefined spatial reference
system (SRS), an ER_SRS_NOT_FOUND error occurs.

• If there are multiple geometry arguments and those arguments are in the same SRS,
the return value is in that SRS. If those arguments are not in the same SRS, an
ER_GIS_DIFFERENT_SRIDS_AGGREGATION error occurs.

• The result is the narrowest MultiXxx or GeometryCollection value possible, with the result
type determined from the non-NULL geometry arguments as follows:

• If all arguments are Point values, the result is a MultiPoint value.

• If all arguments are LineString values, the result is a MultiLineString value.

• If all arguments are Polygon values, the result is a MultiPolygon value.

• Otherwise, the arguments are a mix of geometry types and the result is a
GeometryCollection value.

This example data set shows hypothetical products by year and location of manufacture:

CREATE TABLE product (
 year INTEGER,
 product VARCHAR(256),
 location Geometry
);

INSERT INTO product
(year, product, location) VALUES
(2000, "Calculator", ST_GeomFromText('point(60 -24)',4326)),
(2000, "Computer" , ST_GeomFromText('point(28 -77)',4326)),
(2000, "Abacus" , ST_GeomFromText('point(28 -77)',4326)),
(2000, "TV" , ST_GeomFromText('point(38 60)',4326)),
(2001, "Calculator", ST_GeomFromText('point(60 -24)',4326)),
(2001, "Computer" , ST_GeomFromText('point(28 -77)',4326));

Some sample queries using ST_Collect() on the data set:

2518

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_different_srids_aggregation

Spatial Convenience Functions

mysql> SELECT ST_AsText(ST_Collect(location)) AS result
 FROM product;
+--+
| result |
+--+
| MULTIPOINT((60 -24),(28 -77),(28 -77),(38 60),(60 -24),(28 -77)) |
+--+

mysql> SELECT ST_AsText(ST_Collect(DISTINCT location)) AS result
 FROM product;
+---------------------------------------+
| result |
+---------------------------------------+
| MULTIPOINT((60 -24),(28 -77),(38 60)) |
+---------------------------------------+

mysql> SELECT year, ST_AsText(ST_Collect(location)) AS result
 FROM product GROUP BY year;
+------+--+
| year | result |
+------+--+
| 2000 | MULTIPOINT((60 -24),(28 -77),(28 -77),(38 60)) |
| 2001 | MULTIPOINT((60 -24),(28 -77)) |
+------+--+

mysql> SELECT year, ST_AsText(ST_Collect(DISTINCT location)) AS result
 FROM product GROUP BY year;
+------+---------------------------------------+
| year | result |
+------+---------------------------------------+
| 2000 | MULTIPOINT((60 -24),(28 -77),(38 60)) |
| 2001 | MULTIPOINT((60 -24),(28 -77)) |
+------+---------------------------------------+

selects nothing
mysql> SELECT ST_Collect(location) AS result
 FROM product WHERE year = 1999;
+--------+
| result |
+--------+
| NULL |
+--------+

mysql> SELECT ST_AsText(ST_Collect(location)
 OVER (ORDER BY year, product ROWS BETWEEN 1 PRECEDING AND CURRENT ROW))
 AS result
 FROM product;
+-------------------------------+
| result |
+-------------------------------+
| MULTIPOINT((28 -77)) |
| MULTIPOINT((28 -77),(60 -24)) |
| MULTIPOINT((60 -24),(28 -77)) |
| MULTIPOINT((28 -77),(38 60)) |
| MULTIPOINT((38 60),(60 -24)) |
| MULTIPOINT((60 -24),(28 -77)) |
+-------------------------------+

This function was added in MySQL 8.0.24.

14.16.13 Spatial Convenience Functions

The functions in this section provide convenience operations on geometry values.

Unless otherwise specified, functions in this section handle their geometry arguments as follows:

• If any argument is NULL, the return value is NULL.

• If any geometry argument is not a syntactically well-formed geometry, an ER_GIS_INVALID_DATA
error occurs.

2519

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data

Spatial Convenience Functions

• If any geometry argument is a syntactically well-formed geometry in an undefined spatial reference
system (SRS), an ER_SRS_NOT_FOUND error occurs.

• For functions that take multiple geometry arguments, if those arguments are not in the same SRS, an
ER_GIS_DIFFERENT_SRIDS error occurs.

• Otherwise, the return value is non-NULL.

These convenience functions are available:

• ST_Distance_Sphere(g1, g2 [, radius])

Returns the minimum spherical distance between Point or MultiPoint arguments on a sphere, in
meters. (For general-purpose distance calculations, see the ST_Distance() function.) The optional
radius argument should be given in meters.

If both geometry parameters are valid Cartesian Point or MultiPoint values in SRID 0, the
return value is shortest distance between the two geometries on a sphere with the provided radius.
If omitted, the default radius is 6,370,986 meters, Point X and Y coordinates are interpreted as
longitude and latitude, respectively, in degrees.

If both geometry parameters are valid Point or MultiPoint values in a geographic spatial
reference system (SRS), the return value is the shortest distance between the two geometries on a
sphere with the provided radius. If omitted, the default radius is equal to the mean radius, defined as
(2a+b)/3, where a is the semi-major axis and b is the semi-minor axis of the SRS.

ST_Distance_Sphere() handles its arguments as described in the introduction to this section,
with these exceptions:

• Supported geometry argument combinations are Point and Point, or Point and MultiPoint
(in any argument order). If at least one of the geometries is neither Point nor MultiPoint, and
its SRID is 0, an ER_NOT_IMPLEMENTED_FOR_CARTESIAN_SRS error occurs. If at least one
of the geometries is neither Point nor MultiPoint, and its SRID refers to a geographic SRS,
an ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs. If any geometry refers to a
projected SRS, an ER_NOT_IMPLEMENTED_FOR_PROJECTED_SRS error occurs.

• If any argument has a longitude or latitude that is out of range, an error occurs:

• If a longitude value is not in the range (−180, 180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE error occurs
(ER_LONGITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

• If a latitude value is not in the range [−90, 90], an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE error occurs
(ER_LATITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

Ranges shown are in degrees. If an SRS uses another unit, the range uses the corresponding
values in its unit. The exact range limits deviate slightly due to floating-point arithmetic.

• If the radius argument is present but not positive, an ER_NONPOSITIVE_RADIUS error occurs.

• If the distance exceeds the range of a double-precision number, an ER_STD_OVERFLOW_ERROR
error occurs.

mysql> SET @pt1 = ST_GeomFromText('POINT(0 0)');
mysql> SET @pt2 = ST_GeomFromText('POINT(180 0)');
mysql> SELECT ST_Distance_Sphere(@pt1, @pt2);
+--------------------------------+
| ST_Distance_Sphere(@pt1, @pt2) |
+--------------------------------+
| 20015042.813723423 |
+--------------------------------+

2520

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_srs_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_different_srids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_cartesian_srs
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_projected_srs
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_nonpositive_radius
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_std_overflow_error

Spatial Convenience Functions

• ST_IsValid(g)

Returns 1 if the argument is geometrically valid, 0 if the argument is not geometrically valid.
Geometry validity is defined by the OGC specification.

The only valid empty geometry is represented in the form of an empty geometry collection value.
ST_IsValid() returns 1 in this case. MySQL does not support GIS EMPTY values such as POINT
EMPTY.

ST_IsValid() handles its arguments as described in the introduction to this section, with this
exception:

• If the geometry has a geographic SRS with a longitude or latitude that is out of range, an error
occurs:

• If a longitude value is not in the range (−180, 180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE error occurs
(ER_LONGITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

• If a latitude value is not in the range [−90, 90], an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE error occurs
(ER_LATITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

Ranges shown are in degrees. If an SRS uses another unit, the range uses the corresponding
values in its unit. The exact range limits deviate slightly due to floating-point arithmetic.

mysql> SET @ls1 = ST_GeomFromText('LINESTRING(0 0,-0.00 0,0.0 0)');
mysql> SET @ls2 = ST_GeomFromText('LINESTRING(0 0, 1 1)');
mysql> SELECT ST_IsValid(@ls1);
+------------------+
| ST_IsValid(@ls1) |
+------------------+
| 0 |
+------------------+
mysql> SELECT ST_IsValid(@ls2);
+------------------+
| ST_IsValid(@ls2) |
+------------------+
| 1 |
+------------------+

2521

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range

Spatial Convenience Functions

• ST_MakeEnvelope(pt1, pt2)

Returns the rectangle that forms the envelope around two points, as a Point, LineString, or
Polygon.

Calculations are done using the Cartesian coordinate system rather than on a sphere, spheroid, or
on earth.

Given two points pt1 and pt2, ST_MakeEnvelope() creates the result geometry on an abstract
plane like this:

• If pt1 and pt2 are equal, the result is the point pt1.

• Otherwise, if (pt1, pt2) is a vertical or horizontal line segment, the result is the line segment
(pt1, pt2).

• Otherwise, the result is a polygon using pt1 and pt2 as diagonal points.

The result geometry has an SRID of 0.

ST_MakeEnvelope() handles its arguments as described in the introduction to this section, with
these exceptions:

• If the arguments are not Point values, an ER_WRONG_ARGUMENTS error occurs.

• An ER_GIS_INVALID_DATA error occurs for the additional condition that any coordinate value of
the two points is infinite or NaN.

• If any geometry has an SRID value for a geographic spatial reference system (SRS), an
ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

mysql> SET @pt1 = ST_GeomFromText('POINT(0 0)');
mysql> SET @pt2 = ST_GeomFromText('POINT(1 1)');
mysql> SELECT ST_AsText(ST_MakeEnvelope(@pt1, @pt2));
+--+
| ST_AsText(ST_MakeEnvelope(@pt1, @pt2)) |
+--+
| POLYGON((0 0,1 0,1 1,0 1,0 0)) |
+--+

• ST_Simplify(g, max_distance)

Simplifies a geometry using the Douglas-Peucker algorithm and returns a simplified value of the
same type.

The geometry may be any geometry type, although the Douglas-Peucker algorithm may not actually
process every type. A geometry collection is processed by giving its components one by one to the
simplification algorithm, and the returned geometries are put into a geometry collection as result.

The max_distance argument is the distance (in units of the input coordinates) of a vertex to other
segments to be removed. Vertices within this distance of the simplified linestring are removed.

According to Boost.Geometry, geometries might become invalid as a result of the simplification
process, and the process might create self-intersections. To check the validity of the result, pass it to
ST_IsValid().

ST_Simplify() handles its arguments as described in the introduction to this section, with this
exception:

• If the max_distance argument is not positive, or is NaN, an ER_WRONG_ARGUMENTS error occurs.

mysql> SET @g = ST_GeomFromText('LINESTRING(0 0,0 1,1 1,1 2,2 2,2 3,3 3)');
mysql> SELECT ST_AsText(ST_Simplify(@g, 0.5));

2522

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_arguments
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_arguments

Spatial Convenience Functions

+---------------------------------+
| ST_AsText(ST_Simplify(@g, 0.5)) |
+---------------------------------+
| LINESTRING(0 0,0 1,1 1,2 3,3 3) |
+---------------------------------+
mysql> SELECT ST_AsText(ST_Simplify(@g, 1.0));
+---------------------------------+
| ST_AsText(ST_Simplify(@g, 1.0)) |
+---------------------------------+
| LINESTRING(0 0,3 3) |
+---------------------------------+

• ST_Validate(g)

Validates a geometry according to the OGC specification. A geometry can be syntactically well-
formed (WKB value plus SRID) but geometrically invalid. For example, this polygon is geometrically
invalid: POLYGON((0 0, 0 0, 0 0, 0 0, 0 0))

ST_Validate() returns the geometry if it is syntactically well-formed and is geometrically valid,
NULL if the argument is not syntactically well-formed or is not geometrically valid or is NULL.

ST_Validate() can be used to filter out invalid geometry data, although at a cost. For applications
that require more precise results not tainted by invalid data, this penalty may be worthwhile.

If the geometry argument is valid, it is returned as is, except that if an input Polygon or
MultiPolygon has clockwise rings, those rings are reversed before checking for validity. If the
geometry is valid, the value with the reversed rings is returned.

The only valid empty geometry is represented in the form of an empty geometry collection value.
ST_Validate() returns it directly without further checks in this case.

As of MySQL 8.0.13, ST_Validate() handles its arguments as described in the introduction to this
section, with these exceptions:

• If the geometry has a geographic SRS with a longitude or latitude that is out of range, an error
occurs:

• If a longitude value is not in the range (−180, 180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE error occurs
(ER_LONGITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

• If a latitude value is not in the range [−90, 90], an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE error occurs
(ER_LATITUDE_OUT_OF_RANGE prior to MySQL 8.0.12).

Ranges shown are in degrees. The exact range limits deviate slightly due to floating-point
arithmetic.

Prior to MySQL 8.0.13, ST_Validate() handles its arguments as described in the introduction to
this section, with these exceptions:

• If the geometry is not syntactically well-formed, the return value is NULL. An
ER_GIS_INVALID_DATA error does not occur.

• If the geometry has an SRID value for a geographic spatial reference system (SRS), an
ER_NOT_IMPLEMENTED_FOR_GEOGRAPHIC_SRS error occurs.

mysql> SET @ls1 = ST_GeomFromText('LINESTRING(0 0)');
mysql> SET @ls2 = ST_GeomFromText('LINESTRING(0 0, 1 1)');
mysql> SELECT ST_AsText(ST_Validate(@ls1));
+------------------------------+
| ST_AsText(ST_Validate(@ls1)) |
+------------------------------+
| NULL |

2523

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_longitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_geometry_param_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_latitude_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gis_invalid_data
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_implemented_for_geographic_srs

JSON Functions

+------------------------------+
mysql> SELECT ST_AsText(ST_Validate(@ls2));
+------------------------------+
| ST_AsText(ST_Validate(@ls2)) |
+------------------------------+
| LINESTRING(0 0,1 1) |
+------------------------------+

14.17 JSON Functions
The functions described in this section perform operations on JSON values. For discussion of the JSON
data type and additional examples showing how to use these functions, see Section 13.5, “The JSON
Data Type”.

For functions that take a JSON argument, an error occurs if the argument is not a valid JSON value.
Arguments parsed as JSON are indicated by json_doc; arguments indicated by val are not parsed.

Functions that return JSON values always perform normalization of these values (see Normalization,
Merging, and Autowrapping of JSON Values), and thus orders them. The precise outcome of the sort is
subject to change at any time; do not rely on it to be consistent between releases.

A set of spatial functions for operating on GeoJSON values is also available. See Section 14.16.11,
“Spatial GeoJSON Functions”.

14.17.1 JSON Function Reference

Table 14.22 JSON Functions

Name Description Introduced Deprecated

-> Return value from JSON
column after evaluating
path; equivalent to
JSON_EXTRACT().

->> Return value from JSON
column after evaluating
path and unquoting the
result; equivalent to
JSON_UNQUOTE(JSON_EXTRACT()).

JSON_ARRAY() Create JSON array

JSON_ARRAY_APPEND()Append data to JSON
document

JSON_ARRAY_INSERT()Insert into JSON array

JSON_CONTAINS() Whether JSON
document contains
specific object at path

JSON_CONTAINS_PATH()Whether JSON
document contains any
data at path

JSON_DEPTH() Maximum depth of
JSON document

JSON_EXTRACT() Return data from JSON
document

JSON_INSERT() Insert data into JSON
document

JSON_KEYS() Array of keys from
JSON document

2524

JSON Function Reference

Name Description Introduced Deprecated

JSON_LENGTH() Number of elements in
JSON document

JSON_MERGE() Merge JSON
documents, preserving
duplicate keys.
Deprecated synonym for
JSON_MERGE_PRESERVE()

Yes

JSON_MERGE_PATCH() Merge JSON
documents, replacing
values of duplicate keys

JSON_MERGE_PRESERVE()Merge JSON
documents, preserving
duplicate keys

JSON_OBJECT() Create JSON object

JSON_OVERLAPS() Compares two JSON
documents, returns
TRUE (1) if these have
any key-value pairs
or array elements in
common, otherwise
FALSE (0)

8.0.17

JSON_PRETTY() Print a JSON document
in human-readable
format

JSON_QUOTE() Quote JSON document

JSON_REMOVE() Remove data from
JSON document

JSON_REPLACE() Replace values in JSON
document

JSON_SCHEMA_VALID()Validate JSON
document against
JSON schema; returns
TRUE/1 if document
validates against
schema, or FALSE/0 if it
does not

8.0.17

JSON_SCHEMA_VALIDATION_REPORT()Validate JSON
document against JSON
schema; returns report
in JSON format on
outcome on validation
including success or
failure and reasons for
failure

8.0.17

JSON_SEARCH() Path to value within
JSON document

JSON_SET() Insert data into JSON
document

JSON_STORAGE_FREE()Freed space within
binary representation

2525

Functions That Create JSON Values

Name Description Introduced Deprecated
of JSON column value
following partial update

JSON_STORAGE_SIZE()Space used for storage
of binary representation
of a JSON document

JSON_TABLE() Return data from a
JSON expression as a
relational table

JSON_TYPE() Type of JSON value

JSON_UNQUOTE() Unquote JSON value

JSON_VALID() Whether JSON value is
valid

JSON_VALUE() Extract value from
JSON document at
location pointed to
by path provided;
return this value as
VARCHAR(512) or
specified type

8.0.21

MEMBER OF() Returns true (1) if first
operand matches any
element of JSON array
passed as second
operand, otherwise
returns false (0)

8.0.17

MySQL supports two aggregate JSON functions JSON_ARRAYAGG() and JSON_OBJECTAGG(). See
Section 14.19, “Aggregate Functions”, for descriptions of these.

MySQL also supports “pretty-printing” of JSON values in an easy-to-read format, using the
JSON_PRETTY() function. You can see how much storage space a given JSON value takes
up, and how much space remains for additional storage, using JSON_STORAGE_SIZE() and
JSON_STORAGE_FREE(), respectively. For complete descriptions of these functions, see
Section 14.17.8, “JSON Utility Functions”.

14.17.2 Functions That Create JSON Values

The functions listed in this section compose JSON values from component elements.

• JSON_ARRAY([val[, val] ...])

Evaluates a (possibly empty) list of values and returns a JSON array containing those values.

mysql> SELECT JSON_ARRAY(1, "abc", NULL, TRUE, CURTIME());
+---+
| JSON_ARRAY(1, "abc", NULL, TRUE, CURTIME()) |
+---+
| [1, "abc", null, true, "11:30:24.000000"] |
+---+

• JSON_OBJECT([key, val[, key, val] ...])

Evaluates a (possibly empty) list of key-value pairs and returns a JSON object containing those
pairs. An error occurs if any key name is NULL or the number of arguments is odd.

mysql> SELECT JSON_OBJECT('id', 87, 'name', 'carrot');
+---+
| JSON_OBJECT('id', 87, 'name', 'carrot') |

2526

Functions That Search JSON Values

+---+
| {"id": 87, "name": "carrot"} |
+---+

• JSON_QUOTE(string)

Quotes a string as a JSON value by wrapping it with double quote characters and escaping interior
quote and other characters, then returning the result as a utf8mb4 string. Returns NULL if the
argument is NULL.

This function is typically used to produce a valid JSON string literal for inclusion within a JSON
document.

Certain special characters are escaped with backslashes per the escape sequences shown in
Table 14.23, “JSON_UNQUOTE() Special Character Escape Sequences”.

mysql> SELECT JSON_QUOTE('null'), JSON_QUOTE('"null"');
+--------------------+----------------------+
| JSON_QUOTE('null') | JSON_QUOTE('"null"') |
+--------------------+----------------------+
| "null" | "\"null\"" |
+--------------------+----------------------+
mysql> SELECT JSON_QUOTE('[1, 2, 3]');
+-------------------------+
| JSON_QUOTE('[1, 2, 3]') |
+-------------------------+
| "[1, 2, 3]" |
+-------------------------+

You can also obtain JSON values by casting values of other types to the JSON type using
CAST(value AS JSON); see Converting between JSON and non-JSON values, for more information.

Two aggregate functions generating JSON values are available. JSON_ARRAYAGG() returns a result
set as a single JSON array, and JSON_OBJECTAGG() returns a result set as a single JSON object. For
more information, see Section 14.19, “Aggregate Functions”.

14.17.3 Functions That Search JSON Values

The functions in this section perform search or comparison operations on JSON values to extract data
from them, report whether data exists at a location within them, or report the path to data within them.
The MEMBER OF() operator is also documented herein.

• JSON_CONTAINS(target, candidate[, path])

Indicates by returning 1 or 0 whether a given candidate JSON document is contained within a
target JSON document, or—if a path argument was supplied—whether the candidate is found
at a specific path within the target. Returns NULL if any argument is NULL, or if the path argument
does not identify a section of the target document. An error occurs if target or candidate is not a
valid JSON document, or if the path argument is not a valid path expression or contains a * or **
wildcard.

To check only whether any data exists at the path, use JSON_CONTAINS_PATH() instead.

The following rules define containment:

• A candidate scalar is contained in a target scalar if and only if they are comparable and are equal.
Two scalar values are comparable if they have the same JSON_TYPE() types, with the exception
that values of types INTEGER and DECIMAL are also comparable to each other.

• A candidate array is contained in a target array if and only if every element in the candidate is
contained in some element of the target.

• A candidate nonarray is contained in a target array if and only if the candidate is contained in some
element of the target.

2527

Functions That Search JSON Values

• A candidate object is contained in a target object if and only if for each key in the candidate there
is a key with the same name in the target and the value associated with the candidate key is
contained in the value associated with the target key.

Otherwise, the candidate value is not contained in the target document.

Starting with MySQL 8.0.17, queries using JSON_CONTAINS() on InnoDB tables can be optimized
using multi-valued indexes; see Multi-Valued Indexes, for more information.

mysql> SET @j = '{"a": 1, "b": 2, "c": {"d": 4}}';
mysql> SET @j2 = '1';
mysql> SELECT JSON_CONTAINS(@j, @j2, '$.a');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.a') |
+-------------------------------+
| 1 |
+-------------------------------+
mysql> SELECT JSON_CONTAINS(@j, @j2, '$.b');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.b') |
+-------------------------------+
| 0 |
+-------------------------------+

mysql> SET @j2 = '{"d": 4}';
mysql> SELECT JSON_CONTAINS(@j, @j2, '$.a');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.a') |
+-------------------------------+
| 0 |
+-------------------------------+
mysql> SELECT JSON_CONTAINS(@j, @j2, '$.c');
+-------------------------------+
| JSON_CONTAINS(@j, @j2, '$.c') |
+-------------------------------+
| 1 |
+-------------------------------+

• JSON_CONTAINS_PATH(json_doc, one_or_all, path[, path] ...)

Returns 0 or 1 to indicate whether a JSON document contains data at a given path or paths. Returns
NULL if any argument is NULL. An error occurs if the json_doc argument is not a valid JSON
document, any path argument is not a valid path expression, or one_or_all is not 'one' or
'all'.

To check for a specific value at a path, use JSON_CONTAINS() instead.

The return value is 0 if no specified path exists within the document. Otherwise, the return value
depends on the one_or_all argument:

• 'one': 1 if at least one path exists within the document, 0 otherwise.

• 'all': 1 if all paths exist within the document, 0 otherwise.

mysql> SET @j = '{"a": 1, "b": 2, "c": {"d": 4}}';
mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.a', '$.e');
+---+
| JSON_CONTAINS_PATH(@j, 'one', '$.a', '$.e') |
+---+
| 1 |
+---+
mysql> SELECT JSON_CONTAINS_PATH(@j, 'all', '$.a', '$.e');
+---+
| JSON_CONTAINS_PATH(@j, 'all', '$.a', '$.e') |
+---+
| 0 |
+---+

2528

Functions That Search JSON Values

mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.c.d');
+--+
| JSON_CONTAINS_PATH(@j, 'one', '$.c.d') |
+--+
| 1 |
+--+
mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.a.d');
+--+
| JSON_CONTAINS_PATH(@j, 'one', '$.a.d') |
+--+
| 0 |
+--+

• JSON_EXTRACT(json_doc, path[, path] ...)

Returns data from a JSON document, selected from the parts of the document matched by the path
arguments. Returns NULL if any argument is NULL or no paths locate a value in the document. An
error occurs if the json_doc argument is not a valid JSON document or any path argument is not a
valid path expression.

The return value consists of all values matched by the path arguments. If it is possible that those
arguments could return multiple values, the matched values are autowrapped as an array, in the
order corresponding to the paths that produced them. Otherwise, the return value is the single
matched value.

mysql> SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]');
+--+
| JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]') |
+--+
| 20 |
+--+
mysql> SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]', '$[0]');
+--+
| JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]', '$[0]') |
+--+
| [20, 10] |
+--+
mysql> SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[2][*]');
+---+
| JSON_EXTRACT('[10, 20, [30, 40]]', '$[2][*]') |
+---+
| [30, 40] |
+---+

MySQL supports the -> operator as shorthand for this function as used with 2 arguments where the
left hand side is a JSON column identifier (not an expression) and the right hand side is the JSON
path to be matched within the column.

• column->path

The -> operator serves as an alias for the JSON_EXTRACT() function when used with two
arguments, a column identifier on the left and a JSON path (a string literal) on the right that is
evaluated against the JSON document (the column value). You can use such expressions in place of
column references wherever they occur in SQL statements.

The two SELECT statements shown here produce the same output:

mysql> SELECT c, JSON_EXTRACT(c, "$.id"), g
 > FROM jemp
 > WHERE JSON_EXTRACT(c, "$.id") > 1
 > ORDER BY JSON_EXTRACT(c, "$.name");
+-------------------------------+-----------+------+
| c | c->"$.id" | g |
+-------------------------------+-----------+------+
{"id": "3", "name": "Barney"}	"3"	3
{"id": "4", "name": "Betty"}	"4"	4
{"id": "2", "name": "Wilma"}	"2"	2
+-------------------------------+-----------+------+

2529

Functions That Search JSON Values

3 rows in set (0.00 sec)

mysql> SELECT c, c->"$.id", g
 > FROM jemp
 > WHERE c->"$.id" > 1
 > ORDER BY c->"$.name";
+-------------------------------+-----------+------+
| c | c->"$.id" | g |
+-------------------------------+-----------+------+
{"id": "3", "name": "Barney"}	"3"	3
{"id": "4", "name": "Betty"}	"4"	4
{"id": "2", "name": "Wilma"}	"2"	2
+-------------------------------+-----------+------+
3 rows in set (0.00 sec)

This functionality is not limited to SELECT, as shown here:

mysql> ALTER TABLE jemp ADD COLUMN n INT;
Query OK, 0 rows affected (0.68 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> UPDATE jemp SET n=1 WHERE c->"$.id" = "4";
Query OK, 1 row affected (0.04 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT c, c->"$.id", g, n
 > FROM jemp
 > WHERE JSON_EXTRACT(c, "$.id") > 1
 > ORDER BY c->"$.name";
+-------------------------------+-----------+------+------+
| c | c->"$.id" | g | n |
+-------------------------------+-----------+------+------+
{"id": "3", "name": "Barney"}	"3"	3	NULL
{"id": "4", "name": "Betty"}	"4"	4	1
{"id": "2", "name": "Wilma"}	"2"	2	NULL
+-------------------------------+-----------+------+------+
3 rows in set (0.00 sec)

mysql> DELETE FROM jemp WHERE c->"$.id" = "4";
Query OK, 1 row affected (0.04 sec)

mysql> SELECT c, c->"$.id", g, n
 > FROM jemp
 > WHERE JSON_EXTRACT(c, "$.id") > 1
 > ORDER BY c->"$.name";
+-------------------------------+-----------+------+------+
| c | c->"$.id" | g | n |
+-------------------------------+-----------+------+------+
| {"id": "3", "name": "Barney"} | "3" | 3 | NULL |
| {"id": "2", "name": "Wilma"} | "2" | 2 | NULL |
+-------------------------------+-----------+------+------+
2 rows in set (0.00 sec)

(See Indexing a Generated Column to Provide a JSON Column Index, for the statements used to
create and populate the table just shown.)

This also works with JSON array values, as shown here:

mysql> CREATE TABLE tj10 (a JSON, b INT);
Query OK, 0 rows affected (0.26 sec)

mysql> INSERT INTO tj10
 > VALUES ("[3,10,5,17,44]", 33), ("[3,10,5,17,[22,44,66]]", 0);
Query OK, 1 row affected (0.04 sec)

mysql> SELECT a->"$[4]" FROM tj10;
+--------------+
| a->"$[4]" |
+--------------+
| 44 |
| [22, 44, 66] |

2530

Functions That Search JSON Values

+--------------+
2 rows in set (0.00 sec)

mysql> SELECT * FROM tj10 WHERE a->"$[0]" = 3;
+------------------------------+------+
| a | b |
+------------------------------+------+
| [3, 10, 5, 17, 44] | 33 |
| [3, 10, 5, 17, [22, 44, 66]] | 0 |
+------------------------------+------+
2 rows in set (0.00 sec)

Nested arrays are supported. An expression using -> evaluates as NULL if no matching key is found
in the target JSON document, as shown here:

mysql> SELECT * FROM tj10 WHERE a->"$[4][1]" IS NOT NULL;
+------------------------------+------+
| a | b |
+------------------------------+------+
| [3, 10, 5, 17, [22, 44, 66]] | 0 |
+------------------------------+------+

mysql> SELECT a->"$[4][1]" FROM tj10;
+--------------+
| a->"$[4][1]" |
+--------------+
| NULL |
| 44 |
+--------------+
2 rows in set (0.00 sec)

This is the same behavior as seen in such cases when using JSON_EXTRACT():

mysql> SELECT JSON_EXTRACT(a, "$[4][1]") FROM tj10;
+----------------------------+
| JSON_EXTRACT(a, "$[4][1]") |
+----------------------------+
| NULL |
| 44 |
+----------------------------+
2 rows in set (0.00 sec)

• column->>path

This is an improved, unquoting extraction operator. Whereas the -> operator simply extracts a value,
the ->> operator in addition unquotes the extracted result. In other words, given a JSON column
value column and a path expression path (a string literal), the following three expressions return
the same value:

• JSON_UNQUOTE(JSON_EXTRACT(column, path))

• JSON_UNQUOTE(column -> path)

• column->>path

The ->> operator can be used wherever JSON_UNQUOTE(JSON_EXTRACT()) would be allowed.
This includes (but is not limited to) SELECT lists, WHERE and HAVING clauses, and ORDER BY and
GROUP BY clauses.

The next few statements demonstrate some ->> operator equivalences with other expressions in the
mysql client:

mysql> SELECT * FROM jemp WHERE g > 2;
+-------------------------------+------+
| c | g |
+-------------------------------+------+
| {"id": "3", "name": "Barney"} | 3 |
| {"id": "4", "name": "Betty"} | 4 |

2531

Functions That Search JSON Values

+-------------------------------+------+
2 rows in set (0.01 sec)

mysql> SELECT c->'$.name' AS name
 -> FROM jemp WHERE g > 2;
+----------+
| name |
+----------+
| "Barney" |
| "Betty" |
+----------+
2 rows in set (0.00 sec)

mysql> SELECT JSON_UNQUOTE(c->'$.name') AS name
 -> FROM jemp WHERE g > 2;
+--------+
| name |
+--------+
| Barney |
| Betty |
+--------+
2 rows in set (0.00 sec)

mysql> SELECT c->>'$.name' AS name
 -> FROM jemp WHERE g > 2;
+--------+
| name |
+--------+
| Barney |
| Betty |
+--------+
2 rows in set (0.00 sec)

See Indexing a Generated Column to Provide a JSON Column Index, for the SQL statements used
to create and populate the jemp table in the set of examples just shown.

This operator can also be used with JSON arrays, as shown here:

mysql> CREATE TABLE tj10 (a JSON, b INT);
Query OK, 0 rows affected (0.26 sec)

mysql> INSERT INTO tj10 VALUES
 -> ('[3,10,5,"x",44]', 33),
 -> ('[3,10,5,17,[22,"y",66]]', 0);
Query OK, 2 rows affected (0.04 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT a->"$[3]", a->"$[4][1]" FROM tj10;
+-----------+--------------+
| a->"$[3]" | a->"$[4][1]" |
+-----------+--------------+
| "x" | NULL |
| 17 | "y" |
+-----------+--------------+
2 rows in set (0.00 sec)

mysql> SELECT a->>"$[3]", a->>"$[4][1]" FROM tj10;
+------------+---------------+
| a->>"$[3]" | a->>"$[4][1]" |
+------------+---------------+
| x | NULL |
| 17 | y |
+------------+---------------+
2 rows in set (0.00 sec)

As with ->, the ->> operator is always expanded in the output of EXPLAIN, as the following example
demonstrates:

mysql> EXPLAIN SELECT c->>'$.name' AS name
 -> FROM jemp WHERE g > 2\G
*************************** 1. row ***************************

2532

Functions That Search JSON Values

 id: 1
 select_type: SIMPLE
 table: jemp
 partitions: NULL
 type: range
possible_keys: i
 key: i
 key_len: 5
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select
json_unquote(json_extract(`jtest`.`jemp`.`c`,'$.name')) AS `name` from
`jtest`.`jemp` where (`jtest`.`jemp`.`g` > 2)
1 row in set (0.00 sec)

This is similar to how MySQL expands the -> operator in the same circumstances.

• JSON_KEYS(json_doc[, path])

Returns the keys from the top-level value of a JSON object as a JSON array, or, if a path argument
is given, the top-level keys from the selected path. Returns NULL if any argument is NULL, the
json_doc argument is not an object, or path, if given, does not locate an object. An error occurs
if the json_doc argument is not a valid JSON document or the path argument is not a valid path
expression or contains a * or ** wildcard.

The result array is empty if the selected object is empty. If the top-level value has nested subobjects,
the return value does not include keys from those subobjects.

mysql> SELECT JSON_KEYS('{"a": 1, "b": {"c": 30}}');
+---------------------------------------+
| JSON_KEYS('{"a": 1, "b": {"c": 30}}') |
+---------------------------------------+
| ["a", "b"] |
+---------------------------------------+
mysql> SELECT JSON_KEYS('{"a": 1, "b": {"c": 30}}', '$.b');
+--+
| JSON_KEYS('{"a": 1, "b": {"c": 30}}', '$.b') |
+--+
| ["c"] |
+--+

• JSON_OVERLAPS(json_doc1, json_doc2)

Compares two JSON documents. Returns true (1) if the two document have any key-value pairs or
array elements in common. If both arguments are scalars, the function performs a simple equality
test. If either argument is NULL, the function returns NULL.

This function serves as counterpart to JSON_CONTAINS(), which requires all elements of the array
searched for to be present in the array searched in. Thus, JSON_CONTAINS() performs an AND
operation on search keys, while JSON_OVERLAPS() performs an OR operation.

Queries on JSON columns of InnoDB tables using JSON_OVERLAPS() in the WHERE clause can
be optimized using multi-valued indexes. Multi-Valued Indexes, provides detailed information and
examples.

When comparing two arrays, JSON_OVERLAPS() returns true if they share one or more array
elements in common, and false if they do not:

mysql> SELECT JSON_OVERLAPS("[1,3,5,7]", "[2,5,7]");

2533

Functions That Search JSON Values

+---------------------------------------+
| JSON_OVERLAPS("[1,3,5,7]", "[2,5,7]") |
+---------------------------------------+
| 1 |
+---------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT JSON_OVERLAPS("[1,3,5,7]", "[2,6,7]");
+---------------------------------------+
| JSON_OVERLAPS("[1,3,5,7]", "[2,6,7]") |
+---------------------------------------+
| 1 |
+---------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT JSON_OVERLAPS("[1,3,5,7]", "[2,6,8]");
+---------------------------------------+
| JSON_OVERLAPS("[1,3,5,7]", "[2,6,8]") |
+---------------------------------------+
| 0 |
+---------------------------------------+
1 row in set (0.00 sec)

Partial matches are treated as no match, as shown here:

mysql> SELECT JSON_OVERLAPS('[[1,2],[3,4],5]', '[1,[2,3],[4,5]]');
+---+
| JSON_OVERLAPS('[[1,2],[3,4],5]', '[1,[2,3],[4,5]]') |
+---+
| 0 |
+---+
1 row in set (0.00 sec)

When comparing objects, the result is true if they have at least one key-value pair in common.

mysql> SELECT JSON_OVERLAPS('{"a":1,"b":10,"d":10}', '{"c":1,"e":10,"f":1,"d":10}');
+---+
| JSON_OVERLAPS('{"a":1,"b":10,"d":10}', '{"c":1,"e":10,"f":1,"d":10}') |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

mysql> SELECT JSON_OVERLAPS('{"a":1,"b":10,"d":10}', '{"a":5,"e":10,"f":1,"d":20}');
+---+
| JSON_OVERLAPS('{"a":1,"b":10,"d":10}', '{"a":5,"e":10,"f":1,"d":20}') |
+---+
| 0 |
+---+
1 row in set (0.00 sec)

If two scalars are used as the arguments to the function, JSON_OVERLAPS() performs a simple test
for equality:

mysql> SELECT JSON_OVERLAPS('5', '5');
+-------------------------+
| JSON_OVERLAPS('5', '5') |
+-------------------------+
| 1 |
+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT JSON_OVERLAPS('5', '6');
+-------------------------+
| JSON_OVERLAPS('5', '6') |
+-------------------------+
| 0 |
+-------------------------+

2534

Functions That Search JSON Values

1 row in set (0.00 sec)

When comparing a scalar with an array, JSON_OVERLAPS() attempts to treat the scalar as an array
element. In this example, the second argument 6 is interpreted as [6], as shown here:

mysql> SELECT JSON_OVERLAPS('[4,5,6,7]', '6');
+---------------------------------+
| JSON_OVERLAPS('[4,5,6,7]', '6') |
+---------------------------------+
| 1 |
+---------------------------------+
1 row in set (0.00 sec)

The function does not perform type conversions:

mysql> SELECT JSON_OVERLAPS('[4,5,"6",7]', '6');
+-----------------------------------+
| JSON_OVERLAPS('[4,5,"6",7]', '6') |
+-----------------------------------+
| 0 |
+-----------------------------------+
1 row in set (0.00 sec)

mysql> SELECT JSON_OVERLAPS('[4,5,6,7]', '"6"');
+-----------------------------------+
| JSON_OVERLAPS('[4,5,6,7]', '"6"') |
+-----------------------------------+
| 0 |
+-----------------------------------+
1 row in set (0.00 sec)

JSON_OVERLAPS() was added in MySQL 8.0.17.

• JSON_SEARCH(json_doc, one_or_all, search_str[, escape_char[, path] ...])

Returns the path to the given string within a JSON document. Returns NULL if any of the json_doc,
search_str, or path arguments are NULL; no path exists within the document; or search_str
is not found. An error occurs if the json_doc argument is not a valid JSON document, any path
argument is not a valid path expression, one_or_all is not 'one' or 'all', or escape_char is
not a constant expression.

The one_or_all argument affects the search as follows:

• 'one': The search terminates after the first match and returns one path string. It is undefined
which match is considered first.

• 'all': The search returns all matching path strings such that no duplicate paths are included. If
there are multiple strings, they are autowrapped as an array. The order of the array elements is
undefined.

Within the search_str search string argument, the % and _ characters work as for the LIKE
operator: % matches any number of characters (including zero characters), and _ matches exactly
one character.

To specify a literal % or _ character in the search string, precede it by the escape character. The
default is \ if the escape_char argument is missing or NULL. Otherwise, escape_char must be a
constant that is empty or one character.

For more information about matching and escape character behavior, see the description of LIKE
in Section 14.8.1, “String Comparison Functions and Operators”. For escape character handling, a
difference from the LIKE behavior is that the escape character for JSON_SEARCH() must evaluate
to a constant at compile time, not just at execution time. For example, if JSON_SEARCH() is used

2535

Functions That Search JSON Values

in a prepared statement and the escape_char argument is supplied using a ? parameter, the
parameter value might be constant at execution time, but is not at compile time.

search_str and path are always interpreted as utf8mb4 strings, regardless of their actual
encoding. This is a known issue which is fixed in MySQL 8.0.24 (Bug #32449181).

mysql> SET @j = '["abc", [{"k": "10"}, "def"], {"x":"abc"}, {"y":"bcd"}]';

mysql> SELECT JSON_SEARCH(@j, 'one', 'abc');
+-------------------------------+
| JSON_SEARCH(@j, 'one', 'abc') |
+-------------------------------+
| "$[0]" |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', 'abc');
+-------------------------------+
| JSON_SEARCH(@j, 'all', 'abc') |
+-------------------------------+
| ["$[0]", "$[2].x"] |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', 'ghi');
+-------------------------------+
| JSON_SEARCH(@j, 'all', 'ghi') |
+-------------------------------+
| NULL |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '10');
+------------------------------+
| JSON_SEARCH(@j, 'all', '10') |
+------------------------------+
| "$[1][0].k" |
+------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$');
+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$') |
+---+
| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[*]');
+--+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[*]') |
+--+
| "$[1][0].k" |
+--+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$**.k');
+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$**.k') |
+---+
| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[*][0].k');
+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[*][0].k') |
+---+
| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[1]');
+--+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[1]') |
+--+
| "$[1][0].k" |
+--+

2536

Functions That Search JSON Values

mysql> SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[1][0]');
+---+
| JSON_SEARCH(@j, 'all', '10', NULL, '$[1][0]') |
+---+
| "$[1][0].k" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', 'abc', NULL, '$[2]');
+---+
| JSON_SEARCH(@j, 'all', 'abc', NULL, '$[2]') |
+---+
| "$[2].x" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%a%');
+-------------------------------+
| JSON_SEARCH(@j, 'all', '%a%') |
+-------------------------------+
| ["$[0]", "$[2].x"] |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%');
+-------------------------------+
| JSON_SEARCH(@j, 'all', '%b%') |
+-------------------------------+
| ["$[0]", "$[2].x", "$[3].y"] |
+-------------------------------+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[0]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', NULL, '$[0]') |
+---+
| "$[0]" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[2]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', NULL, '$[2]') |
+---+
| "$[2].x" |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[1]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', NULL, '$[1]') |
+---+
| NULL |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', '', '$[1]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', '', '$[1]') |
+---+
| NULL |
+---+

mysql> SELECT JSON_SEARCH(@j, 'all', '%b%', '', '$[3]');
+---+
| JSON_SEARCH(@j, 'all', '%b%', '', '$[3]') |
+---+
| "$[3].y" |
+---+

For more information about the JSON path syntax supported by MySQL, including rules governing
the wildcard operators * and **, see JSON Path Syntax.

2537

Functions That Search JSON Values

• JSON_VALUE(json_doc, path)

Extracts a value from a JSON document at the path given in the specified document, and returns the
extracted value, optionally converting it to a desired type. The complete syntax is shown here:

JSON_VALUE(json_doc, path [RETURNING type] [on_empty] [on_error])

on_empty:
 {NULL | ERROR | DEFAULT value} ON EMPTY

on_error:
 {NULL | ERROR | DEFAULT value} ON ERROR

json_doc is a valid JSON document. If this is NULL, the function returns NULL.

path is a JSON path pointing to a location in the document. This must be a string literal value.

type is one of the following data types:

• FLOAT

• DOUBLE

• DECIMAL

• SIGNED

• UNSIGNED

• DATE

• TIME

• DATETIME

• YEAR (MySQL 8.0.22 and later)

YEAR values of one or two digits are not supported.

• CHAR

• JSON

The types just listed are the same as the (non-array) types supported by the CAST() function.

If not specified by a RETURNING clause, the JSON_VALUE() function's return type is
VARCHAR(512). When no character set is specified for the return type, JSON_VALUE() uses
utf8mb4 with the binary collation, which is case-sensitive; if utf8mb4 is specified as the character

2538

Functions That Search JSON Values

set for the result, the server uses the default collation for this character set, which is not case-
sensitive.

When the data at the specified path consists of or resolves to a JSON null literal, the function returns
SQL NULL.

on_empty, if specified, determines how JSON_VALUE() behaves when no data is found at the path
given; this clause takes one of the following values:

• NULL ON EMPTY: The function returns NULL; this is the default ON EMPTY behavior.

• DEFAULT value ON EMPTY: the provided value is returned. The value's type must match that
of the return type.

• ERROR ON EMPTY: The function throws an error.

If used, on_error takes one of the following values with the corresponding outcome when an error
occurs, as listed here:

• NULL ON ERROR: JSON_VALUE() returns NULL; this is the default behavior if no ON ERROR
clause is used.

• DEFAULT value ON ERROR: This is the value returned; its value must match that of the return
type.

• ERROR ON ERROR: An error is thrown.

ON EMPTY, if used, must precede any ON ERROR clause. Specifying them in the wrong order results
in a syntax error.

Error handling. In general, errors are handled by JSON_VALUE() as follows:

• All JSON input (document and path) is checked for validity. If any of it is not valid, an SQL error is
thrown without triggering the ON ERROR clause.

• ON ERROR is triggered whenever any of the following events occur:

• Attempting to extract an object or an array, such as that resulting from a path that resolves to
multiple locations within the JSON document

• Conversion errors, such as attempting to convert 'asdf' to an UNSIGNED value

• Truncation of values

• A conversion error always triggers a warning even if NULL ON ERROR or DEFAULT ... ON
ERROR is specified.

• The ON EMPTY clause is triggered when the source JSON document (expr) contains no data at
the specified location (path).

JSON_VALUE() was introduced in MySQL 8.0.21.

Examples. Two simple examples are shown here:

mysql> SELECT JSON_VALUE('{"fname": "Joe", "lname": "Palmer"}', '$.fname');
+--+
| JSON_VALUE('{"fname": "Joe", "lname": "Palmer"}', '$.fname') |
+--+
| Joe |
+--+

mysql> SELECT JSON_VALUE('{"item": "shoes", "price": "49.95"}', '$.price'
 -> RETURNING DECIMAL(4,2)) AS price;

2539

Functions That Search JSON Values

+-------+
| price |
+-------+
| 49.95 |
+-------+

Except in cases where JSON_VALUE() returns NULL, the statement SELECT
JSON_VALUE(json_doc, path RETURNING type) is equivalent to the following statement:

SELECT CAST(
 JSON_UNQUOTE(JSON_EXTRACT(json_doc, path))
 AS type
);

JSON_VALUE() simplifies creating indexes on JSON columns by making it unnecessary in many
cases to create a generated column and then an index on the generated column. You can do this
when creating a table t1 that has a JSON column by creating an index on an expression that uses
JSON_VALUE() operating on that column (with a path that matches a value in that column), as
shown here:

CREATE TABLE t1(
 j JSON,
 INDEX i1 ((JSON_VALUE(j, '$.id' RETURNING UNSIGNED)))
);

The following EXPLAIN output shows that a query against t1 employing the index expression in the
WHERE clause uses the index thus created:

mysql> EXPLAIN SELECT * FROM t1
 -> WHERE JSON_VALUE(j, '$.id' RETURNING UNSIGNED) = 123\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: ref
possible_keys: i1
 key: i1
 key_len: 9
 ref: const
 rows: 1
 filtered: 100.00
 Extra: NULL

This achieves much the same effect as creating a table t2 with an index on a generated column (see
Indexing a Generated Column to Provide a JSON Column Index), like this one:

CREATE TABLE t2 (
 j JSON,
 g INT GENERATED ALWAYS AS (j->"$.id"),
 INDEX i1 (g)
);

The EXPLAIN output for a query against this table, referencing the generated column, shows that the
index is used in the same way as for the previous query against table t1:

mysql> EXPLAIN SELECT * FROM t2 WHERE g = 123\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t2
 partitions: NULL
 type: ref
possible_keys: i1
 key: i1
 key_len: 5
 ref: const
 rows: 1
 filtered: 100.00

2540

Functions That Search JSON Values

 Extra: NULL

For information about using indexes on generated columns for indirect indexing of JSON columns,
see Indexing a Generated Column to Provide a JSON Column Index.

• value MEMBER OF(json_array)

Returns true (1) if value is an element of json_array, otherwise returns false (0). value must
be a scalar or a JSON document; if it is a scalar, the operator attempts to treat it as an element of a
JSON array. If value or json_array is NULL, the function returns NULL.

Queries using MEMBER OF() on JSON columns of InnoDB tables in the WHERE clause can be
optimized using multi-valued indexes. See Multi-Valued Indexes, for detailed information and
examples.

Simple scalars are treated as array values, as shown here:

mysql> SELECT 17 MEMBER OF('[23, "abc", 17, "ab", 10]');
+---+
| 17 MEMBER OF('[23, "abc", 17, "ab", 10]') |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

mysql> SELECT 'ab' MEMBER OF('[23, "abc", 17, "ab", 10]');
+---+
| 'ab' MEMBER OF('[23, "abc", 17, "ab", 10]') |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

Partial matches of array element values do not match:

mysql> SELECT 7 MEMBER OF('[23, "abc", 17, "ab", 10]');
+--+
| 7 MEMBER OF('[23, "abc", 17, "ab", 10]') |
+--+
| 0 |
+--+
1 row in set (0.00 sec)

mysql> SELECT 'a' MEMBER OF('[23, "abc", 17, "ab", 10]');
+--+
| 'a' MEMBER OF('[23, "abc", 17, "ab", 10]') |
+--+
| 0 |
+--+
1 row in set (0.00 sec)

Conversions to and from string types are not performed:

mysql> SELECT
 -> 17 MEMBER OF('[23, "abc", "17", "ab", 10]'),
 -> "17" MEMBER OF('[23, "abc", 17, "ab", 10]')\G
*************************** 1. row ***************************
17 MEMBER OF('[23, "abc", "17", "ab", 10]'): 0
"17" MEMBER OF('[23, "abc", 17, "ab", 10]'): 0
1 row in set (0.00 sec)

To use this operator with a value which is itself an array, it is necessary to cast it explicitly as a JSON
array. You can do this with CAST(... AS JSON):

mysql> SELECT CAST('[4,5]' AS JSON) MEMBER OF('[[3,4],[4,5]]');
+--+
| CAST('[4,5]' AS JSON) MEMBER OF('[[3,4],[4,5]]') |
+--+

2541

Functions That Modify JSON Values

| 1 |
+--+
1 row in set (0.00 sec)

It is also possible to perform the necessary cast using the JSON_ARRAY() function, like this:

mysql> SELECT JSON_ARRAY(4,5) MEMBER OF('[[3,4],[4,5]]');
+--+
| JSON_ARRAY(4,5) MEMBER OF('[[3,4],[4,5]]') |
+--+
| 1 |
+--+
1 row in set (0.00 sec)

Any JSON objects used as values to be tested or which appear in the target array must be coerced
to the correct type using CAST(... AS JSON) or JSON_OBJECT(). In addition, a target array
containing JSON objects must itself be cast using JSON_ARRAY. This is demonstrated in the
following sequence of statements:

mysql> SET @a = CAST('{"a":1}' AS JSON);
Query OK, 0 rows affected (0.00 sec)

mysql> SET @b = JSON_OBJECT("b", 2);
Query OK, 0 rows affected (0.00 sec)

mysql> SET @c = JSON_ARRAY(17, @b, "abc", @a, 23);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @a MEMBER OF(@c), @b MEMBER OF(@c);
+------------------+------------------+
| @a MEMBER OF(@c) | @b MEMBER OF(@c) |
+------------------+------------------+
| 1 | 1 |
+------------------+------------------+
1 row in set (0.00 sec)

The MEMBER OF() operator was added in MySQL 8.0.17.

14.17.4 Functions That Modify JSON Values

The functions in this section modify JSON values and return the result.

• JSON_ARRAY_APPEND(json_doc, path, val[, path, val] ...)

Appends values to the end of the indicated arrays within a JSON document and returns the result.
Returns NULL if any argument is NULL. An error occurs if the json_doc argument is not a valid
JSON document or any path argument is not a valid path expression or contains a * or ** wildcard.

The path-value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

If a path selects a scalar or object value, that value is autowrapped within an array and the new value
is added to that array. Pairs for which the path does not identify any value in the JSON document are
ignored.

mysql> SET @j = '["a", ["b", "c"], "d"]';
mysql> SELECT JSON_ARRAY_APPEND(@j, '$[1]', 1);
+----------------------------------+
| JSON_ARRAY_APPEND(@j, '$[1]', 1) |
+----------------------------------+
| ["a", ["b", "c", 1], "d"] |
+----------------------------------+
mysql> SELECT JSON_ARRAY_APPEND(@j, '$[0]', 2);
+----------------------------------+
| JSON_ARRAY_APPEND(@j, '$[0]', 2) |
+----------------------------------+
| [["a", 2], ["b", "c"], "d"] |
+----------------------------------+

2542

Functions That Modify JSON Values

mysql> SELECT JSON_ARRAY_APPEND(@j, '$[1][0]', 3);
+-------------------------------------+
| JSON_ARRAY_APPEND(@j, '$[1][0]', 3) |
+-------------------------------------+
| ["a", [["b", 3], "c"], "d"] |
+-------------------------------------+

mysql> SET @j = '{"a": 1, "b": [2, 3], "c": 4}';
mysql> SELECT JSON_ARRAY_APPEND(@j, '$.b', 'x');
+------------------------------------+
| JSON_ARRAY_APPEND(@j, '$.b', 'x') |
+------------------------------------+
| {"a": 1, "b": [2, 3, "x"], "c": 4} |
+------------------------------------+
mysql> SELECT JSON_ARRAY_APPEND(@j, '$.c', 'y');
+--------------------------------------+
| JSON_ARRAY_APPEND(@j, '$.c', 'y') |
+--------------------------------------+
| {"a": 1, "b": [2, 3], "c": [4, "y"]} |
+--------------------------------------+

mysql> SET @j = '{"a": 1}';
mysql> SELECT JSON_ARRAY_APPEND(@j, '$', 'z');
+---------------------------------+
| JSON_ARRAY_APPEND(@j, '$', 'z') |
+---------------------------------+
| [{"a": 1}, "z"] |
+---------------------------------+

In MySQL 5.7, this function was named JSON_APPEND(). That name is no longer supported in
MySQL 8.0.

• JSON_ARRAY_INSERT(json_doc, path, val[, path, val] ...)

Updates a JSON document, inserting into an array within the document and returning the modified
document. Returns NULL if any argument is NULL. An error occurs if the json_doc argument is not
a valid JSON document or any path argument is not a valid path expression or contains a * or **
wildcard or does not end with an array element identifier.

The path-value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

Pairs for which the path does not identify any array in the JSON document are ignored. If a path
identifies an array element, the corresponding value is inserted at that element position, shifting any
following values to the right. If a path identifies an array position past the end of an array, the value is
inserted at the end of the array.

mysql> SET @j = '["a", {"b": [1, 2]}, [3, 4]]';
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[1]', 'x');
+------------------------------------+
| JSON_ARRAY_INSERT(@j, '$[1]', 'x') |
+------------------------------------+
| ["a", "x", {"b": [1, 2]}, [3, 4]] |
+------------------------------------+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[100]', 'x');
+--------------------------------------+
| JSON_ARRAY_INSERT(@j, '$[100]', 'x') |
+--------------------------------------+
| ["a", {"b": [1, 2]}, [3, 4], "x"] |
+--------------------------------------+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[1].b[0]', 'x');
+---+
| JSON_ARRAY_INSERT(@j, '$[1].b[0]', 'x') |
+---+
| ["a", {"b": ["x", 1, 2]}, [3, 4]] |
+---+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[2][1]', 'y');
+---------------------------------------+
| JSON_ARRAY_INSERT(@j, '$[2][1]', 'y') |

2543

Functions That Modify JSON Values

+---------------------------------------+
| ["a", {"b": [1, 2]}, [3, "y", 4]] |
+---------------------------------------+
mysql> SELECT JSON_ARRAY_INSERT(@j, '$[0]', 'x', '$[2][1]', 'y');
+--+
| JSON_ARRAY_INSERT(@j, '$[0]', 'x', '$[2][1]', 'y') |
+--+
| ["x", "a", {"b": [1, 2]}, [3, 4]] |
+--+

Earlier modifications affect the positions of the following elements in the array, so subsequent paths
in the same JSON_ARRAY_INSERT() call should take this into account. In the final example, the
second path inserts nothing because the path no longer matches anything after the first insert.

• JSON_INSERT(json_doc, path, val[, path, val] ...)

Inserts data into a JSON document and returns the result. Returns NULL if any argument is NULL. An
error occurs if the json_doc argument is not a valid JSON document or any path argument is not a
valid path expression or contains a * or ** wildcard.

The path-value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

A path-value pair for an existing path in the document is ignored and does not overwrite the existing
document value. A path-value pair for a nonexisting path in the document adds the value to the
document if the path identifies one of these types of values:

• A member not present in an existing object. The member is added to the object and associated
with the new value.

• A position past the end of an existing array. The array is extended with the new value. If the
existing value is not an array, it is autowrapped as an array, then extended with the new value.

Otherwise, a path-value pair for a nonexisting path in the document is ignored and has no effect.

For a comparison of JSON_INSERT(), JSON_REPLACE(), and JSON_SET(), see the discussion of
JSON_SET().

mysql> SET @j = '{ "a": 1, "b": [2, 3]}';
mysql> SELECT JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]');
+--+
| JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]') |
+--+
| {"a": 1, "b": [2, 3], "c": "[true, false]"} |
+--+

The third and final value listed in the result is a quoted string and not an array like the second one
(which is not quoted in the output); no casting of values to the JSON type is performed. To insert the
array as an array, you must perform such casts explicitly, as shown here:

mysql> SELECT JSON_INSERT(@j, '$.a', 10, '$.c', CAST('[true, false]' AS JSON));
+--+
| JSON_INSERT(@j, '$.a', 10, '$.c', CAST('[true, false]' AS JSON)) |
+--+
| {"a": 1, "b": [2, 3], "c": [true, false]} |
+--+
1 row in set (0.00 sec)

• JSON_MERGE(json_doc, json_doc[, json_doc] ...)

Merges two or more JSON documents. Synonym for JSON_MERGE_PRESERVE(); deprecated in
MySQL 8.0.3 and subject to removal in a future release.

mysql> SELECT JSON_MERGE('[1, 2]', '[true, false]');
+---------------------------------------+
| JSON_MERGE('[1, 2]', '[true, false]') |

2544

Functions That Modify JSON Values

+---------------------------------------+
| [1, 2, true, false] |
+---------------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1287
Message: 'JSON_MERGE' is deprecated and will be removed in a future release. \
 Please use JSON_MERGE_PRESERVE/JSON_MERGE_PATCH instead
1 row in set (0.00 sec)

For additional examples, see the entry for JSON_MERGE_PRESERVE().

• JSON_MERGE_PATCH(json_doc, json_doc[, json_doc] ...)

Performs an RFC 7396 compliant merge of two or more JSON documents and returns the merged
result, without preserving members having duplicate keys. Raises an error if at least one of the
documents passed as arguments to this function is not valid.

Note

For an explanation and example of the differences between this function and
JSON_MERGE_PRESERVE(), see JSON_MERGE_PATCH() compared with
JSON_MERGE_PRESERVE().

JSON_MERGE_PATCH() performs a merge as follows:

1. If the first argument is not an object, the result of the merge is the same as if an empty object had
been merged with the second argument.

2. If the second argument is not an object, the result of the merge is the second argument.

3. If both arguments are objects, the result of the merge is an object with the following members:

• All members of the first object which do not have a corresponding member with the same key
in the second object.

• All members of the second object which do not have a corresponding key in the first object,
and whose value is not the JSON null literal.

• All members with a key that exists in both the first and the second object, and whose value in
the second object is not the JSON null literal. The values of these members are the results of
recursively merging the value in the first object with the value in the second object.

For additional information, see Normalization, Merging, and Autowrapping of JSON Values.

mysql> SELECT JSON_MERGE_PATCH('[1, 2]', '[true, false]');
+---+
| JSON_MERGE_PATCH('[1, 2]', '[true, false]') |
+---+
| [true, false] |
+---+

mysql> SELECT JSON_MERGE_PATCH('{"name": "x"}', '{"id": 47}');
+---+
| JSON_MERGE_PATCH('{"name": "x"}', '{"id": 47}') |
+---+
| {"id": 47, "name": "x"} |
+---+

mysql> SELECT JSON_MERGE_PATCH('1', 'true');
+-------------------------------+
| JSON_MERGE_PATCH('1', 'true') |
+-------------------------------+

2545

https://tools.ietf.org/html/rfc7396

Functions That Modify JSON Values

| true |
+-------------------------------+

mysql> SELECT JSON_MERGE_PATCH('[1, 2]', '{"id": 47}');
+--+
| JSON_MERGE_PATCH('[1, 2]', '{"id": 47}') |
+--+
| {"id": 47} |
+--+

mysql> SELECT JSON_MERGE_PATCH('{ "a": 1, "b":2 }',
 > '{ "a": 3, "c":4 }');
+---+
| JSON_MERGE_PATCH('{ "a": 1, "b":2 }','{ "a": 3, "c":4 }') |
+---+
| {"a": 3, "b": 2, "c": 4} |
+---+

mysql> SELECT JSON_MERGE_PATCH('{ "a": 1, "b":2 }','{ "a": 3, "c":4 }',
 > '{ "a": 5, "d":6 }');
+---+
| JSON_MERGE_PATCH('{ "a": 1, "b":2 }','{ "a": 3, "c":4 }','{ "a": 5, "d":6 }') |
+---+
| {"a": 5, "b": 2, "c": 4, "d": 6} |
+---+

You can use this function to remove a member by specifying null as the value of the same member
in the second argument, as shown here:

mysql> SELECT JSON_MERGE_PATCH('{"a":1, "b":2}', '{"b":null}');
+--+
| JSON_MERGE_PATCH('{"a":1, "b":2}', '{"b":null}') |
+--+
| {"a": 1} |
+--+

This example shows that the function operates in a recursive fashion; that is, values of members are
not limited to scalars, but rather can themselves be JSON documents:

mysql> SELECT JSON_MERGE_PATCH('{"a":{"x":1}}', '{"a":{"y":2}}');
+--+
| JSON_MERGE_PATCH('{"a":{"x":1}}', '{"a":{"y":2}}') |
+--+
| {"a": {"x": 1, "y": 2}} |
+--+

JSON_MERGE_PATCH() is supported in MySQL 8.0.3 and later.

JSON_MERGE_PATCH() compared with JSON_MERGE_PRESERVE(). The behavior of
JSON_MERGE_PATCH() is the same as that of JSON_MERGE_PRESERVE(), with the following two
exceptions:

• JSON_MERGE_PATCH() removes any member in the first object with a matching key in the second
object, provided that the value associated with the key in the second object is not JSON null.

• If the second object has a member with a key matching a member in the first object,
JSON_MERGE_PATCH() replaces the value in the first object with the value in the second object,
whereas JSON_MERGE_PRESERVE() appends the second value to the first value.

This example compares the results of merging the same 3 JSON objects, each having a matching
key "a", with each of these two functions:

mysql> SET @x = '{ "a": 1, "b": 2 }',
 > @y = '{ "a": 3, "c": 4 }',
 > @z = '{ "a": 5, "d": 6 }';

mysql> SELECT JSON_MERGE_PATCH(@x, @y, @z) AS Patch,
 -> JSON_MERGE_PRESERVE(@x, @y, @z) AS Preserve\G

2546

Functions That Modify JSON Values

*************************** 1. row ***************************
 Patch: {"a": 5, "b": 2, "c": 4, "d": 6}
Preserve: {"a": [1, 3, 5], "b": 2, "c": 4, "d": 6}

• JSON_MERGE_PRESERVE(json_doc, json_doc[, json_doc] ...)

Merges two or more JSON documents and returns the merged result. Returns NULL if any argument
is NULL. An error occurs if any argument is not a valid JSON document.

Merging takes place according to the following rules. For additional information, see Normalization,
Merging, and Autowrapping of JSON Values.

• Adjacent arrays are merged to a single array.

• Adjacent objects are merged to a single object.

• A scalar value is autowrapped as an array and merged as an array.

• An adjacent array and object are merged by autowrapping the object as an array and merging the
two arrays.

mysql> SELECT JSON_MERGE_PRESERVE('[1, 2]', '[true, false]');
+--+
| JSON_MERGE_PRESERVE('[1, 2]', '[true, false]') |
+--+
| [1, 2, true, false] |
+--+

mysql> SELECT JSON_MERGE_PRESERVE('{"name": "x"}', '{"id": 47}');
+--+
| JSON_MERGE_PRESERVE('{"name": "x"}', '{"id": 47}') |
+--+
| {"id": 47, "name": "x"} |
+--+

mysql> SELECT JSON_MERGE_PRESERVE('1', 'true');
+----------------------------------+
| JSON_MERGE_PRESERVE('1', 'true') |
+----------------------------------+
| [1, true] |
+----------------------------------+

mysql> SELECT JSON_MERGE_PRESERVE('[1, 2]', '{"id": 47}');
+---+
| JSON_MERGE_PRESERVE('[1, 2]', '{"id": 47}') |
+---+
| [1, 2, {"id": 47}] |
+---+

mysql> SELECT JSON_MERGE_PRESERVE('{ "a": 1, "b": 2 }',
 > '{ "a": 3, "c": 4 }');
+--+
| JSON_MERGE_PRESERVE('{ "a": 1, "b": 2 }','{ "a": 3, "c":4 }') |
+--+
| {"a": [1, 3], "b": 2, "c": 4} |
+--+

mysql> SELECT JSON_MERGE_PRESERVE('{ "a": 1, "b": 2 }','{ "a": 3, "c": 4 }',
 > '{ "a": 5, "d": 6 }');
+--+
| JSON_MERGE_PRESERVE('{ "a": 1, "b": 2 }','{ "a": 3, "c": 4 }','{ "a": 5, "d": 6 }') |
+--+
| {"a": [1, 3, 5], "b": 2, "c": 4, "d": 6} |

2547

Functions That Modify JSON Values

+--+

This function was added in MySQL 8.0.3 as a synonym for JSON_MERGE(). The JSON_MERGE()
function is now deprecated, and is subject to removal in a future release of MySQL.

This function is similar to but differs from JSON_MERGE_PATCH() in significant respects; see
JSON_MERGE_PATCH() compared with JSON_MERGE_PRESERVE(), for more information.

• JSON_REMOVE(json_doc, path[, path] ...)

Removes data from a JSON document and returns the result. Returns NULL if any argument is
NULL. An error occurs if the json_doc argument is not a valid JSON document or any path
argument is not a valid path expression or is $ or contains a * or ** wildcard.

The path arguments are evaluated left to right. The document produced by evaluating one path
becomes the new value against which the next path is evaluated.

It is not an error if the element to be removed does not exist in the document; in that case, the path
does not affect the document.

mysql> SET @j = '["a", ["b", "c"], "d"]';
mysql> SELECT JSON_REMOVE(@j, '$[1]');
+-------------------------+
| JSON_REMOVE(@j, '$[1]') |
+-------------------------+
| ["a", "d"] |
+-------------------------+

• JSON_REPLACE(json_doc, path, val[, path, val] ...)

Replaces existing values in a JSON document and returns the result. Returns NULL if json_doc
or any path argument is NULL. An error occurs if the json_doc argument is not a valid JSON
document or any path argument is not a valid path expression or contains a * or ** wildcard.

The path-value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

A path-value pair for an existing path in the document overwrites the existing document value with
the new value. A path-value pair for a nonexisting path in the document is ignored and has no effect.

In MySQL 8.0.4, the optimizer can perform a partial, in-place update of a JSON column instead
of removing the old document and writing the new document in its entirety to the column. This
optimization can be performed for an update statement that uses the JSON_REPLACE() function and
meets the conditions outlined in Partial Updates of JSON Values.

For a comparison of JSON_INSERT(), JSON_REPLACE(), and JSON_SET(), see the discussion of
JSON_SET().

mysql> SET @j = '{ "a": 1, "b": [2, 3]}';
mysql> SELECT JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]');
+---+
| JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]') |
+---+
| {"a": 10, "b": [2, 3]} |
+---+

mysql> SELECT JSON_REPLACE(NULL, '$.a', 10, '$.c', '[true, false]');
+---+
| JSON_REPLACE(NULL, '$.a', 10, '$.c', '[true, false]') |
+---+
| NULL |
+---+

mysql> SELECT JSON_REPLACE(@j, NULL, 10, '$.c', '[true, false]');
+--+
| JSON_REPLACE(@j, NULL, 10, '$.c', '[true, false]') |

2548

Functions That Modify JSON Values

+--+
| NULL |
+--+

mysql> SELECT JSON_REPLACE(@j, '$.a', NULL, '$.c', '[true, false]');
+---+
| JSON_REPLACE(@j, '$.a', NULL, '$.c', '[true, false]') |
+---+
| {"a": null, "b": [2, 3]} |
+---+

• JSON_SET(json_doc, path, val[, path, val] ...)

Inserts or updates data in a JSON document and returns the result. Returns NULL if json_doc
or path is NULL, or if path, when given, does not locate an object. Otherwise, an error occurs if
the json_doc argument is not a valid JSON document or any path argument is not a valid path
expression or contains a * or ** wildcard.

The path-value pairs are evaluated left to right. The document produced by evaluating one pair
becomes the new value against which the next pair is evaluated.

A path-value pair for an existing path in the document overwrites the existing document value
with the new value. A path-value pair for a nonexisting path in the document adds the value to the
document if the path identifies one of these types of values:

• A member not present in an existing object. The member is added to the object and associated
with the new value.

• A position past the end of an existing array. The array is extended with the new value. If the
existing value is not an array, it is autowrapped as an array, then extended with the new value.

Otherwise, a path-value pair for a nonexisting path in the document is ignored and has no effect.

In MySQL 8.0.4, the optimizer can perform a partial, in-place update of a JSON column instead
of removing the old document and writing the new document in its entirety to the column. This
optimization can be performed for an update statement that uses the JSON_SET() function and
meets the conditions outlined in Partial Updates of JSON Values.

The JSON_SET(), JSON_INSERT(), and JSON_REPLACE() functions are related:

• JSON_SET() replaces existing values and adds nonexisting values.

• JSON_INSERT() inserts values without replacing existing values.

• JSON_REPLACE() replaces only existing values.

The following examples illustrate these differences, using one path that does exist in the document
($.a) and another that does not exist ($.c):

mysql> SET @j = '{ "a": 1, "b": [2, 3]}';
mysql> SELECT JSON_SET(@j, '$.a', 10, '$.c', '[true, false]');
+---+
| JSON_SET(@j, '$.a', 10, '$.c', '[true, false]') |
+---+
| {"a": 10, "b": [2, 3], "c": "[true, false]"} |
+---+
mysql> SELECT JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]');
+--+
| JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]') |
+--+
| {"a": 1, "b": [2, 3], "c": "[true, false]"} |
+--+
mysql> SELECT JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]');
+---+
| JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]') |
+---+

2549

Functions That Modify JSON Values

| {"a": 10, "b": [2, 3]} |
+---+

• JSON_UNQUOTE(json_val)

Unquotes JSON value and returns the result as a utf8mb4 string. Returns NULL if the argument is
NULL. An error occurs if the value starts and ends with double quotes but is not a valid JSON string
literal.

Within a string, certain sequences have special meaning unless the NO_BACKSLASH_ESCAPES
SQL mode is enabled. Each of these sequences begins with a backslash (\), known as the escape
character. MySQL recognizes the escape sequences shown in Table 14.23, “JSON_UNQUOTE()
Special Character Escape Sequences”. For all other escape sequences, backslash is ignored. That
is, the escaped character is interpreted as if it was not escaped. For example, \x is just x. These
sequences are case-sensitive. For example, \b is interpreted as a backspace, but \B is interpreted
as B.

Table 14.23 JSON_UNQUOTE() Special Character Escape Sequences

Escape Sequence Character Represented by Sequence

\" A double quote (") character

\b A backspace character

\f A formfeed character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character

\\ A backslash (\) character

\uXXXX UTF-8 bytes for Unicode value XXXX

Two simple examples of the use of this function are shown here:

mysql> SET @j = '"abc"';
mysql> SELECT @j, JSON_UNQUOTE(@j);
+-------+------------------+
| @j | JSON_UNQUOTE(@j) |
+-------+------------------+
| "abc" | abc |
+-------+------------------+
mysql> SET @j = '[1, 2, 3]';
mysql> SELECT @j, JSON_UNQUOTE(@j);
+-----------+------------------+
| @j | JSON_UNQUOTE(@j) |
+-----------+------------------+
| [1, 2, 3] | [1, 2, 3] |
+-----------+------------------+

The following set of examples shows how JSON_UNQUOTE handles escapes with
NO_BACKSLASH_ESCAPES disabled and enabled:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+

mysql> SELECT JSON_UNQUOTE('"\\t\\u0032"');
+------------------------------+
| JSON_UNQUOTE('"\\t\\u0032"') |
+------------------------------+
| 2 |
+------------------------------+

2550

Functions That Return JSON Value Attributes

mysql> SET @@sql_mode = 'NO_BACKSLASH_ESCAPES';
mysql> SELECT JSON_UNQUOTE('"\\t\\u0032"');
+------------------------------+
| JSON_UNQUOTE('"\\t\\u0032"') |
+------------------------------+
| \t\u0032 |
+------------------------------+

mysql> SELECT JSON_UNQUOTE('"\t\u0032"');
+----------------------------+
| JSON_UNQUOTE('"\t\u0032"') |
+----------------------------+
| 2 |
+----------------------------+

14.17.5 Functions That Return JSON Value Attributes

The functions in this section return attributes of JSON values.

• JSON_DEPTH(json_doc)

Returns the maximum depth of a JSON document. Returns NULL if the argument is NULL. An error
occurs if the argument is not a valid JSON document.

An empty array, empty object, or scalar value has depth 1. A nonempty array containing only
elements of depth 1 or nonempty object containing only member values of depth 1 has depth 2.
Otherwise, a JSON document has depth greater than 2.

mysql> SELECT JSON_DEPTH('{}'), JSON_DEPTH('[]'), JSON_DEPTH('true');
+------------------+------------------+--------------------+
| JSON_DEPTH('{}') | JSON_DEPTH('[]') | JSON_DEPTH('true') |
+------------------+------------------+--------------------+
| 1 | 1 | 1 |
+------------------+------------------+--------------------+
mysql> SELECT JSON_DEPTH('[10, 20]'), JSON_DEPTH('[[], {}]');
+------------------------+------------------------+
| JSON_DEPTH('[10, 20]') | JSON_DEPTH('[[], {}]') |
+------------------------+------------------------+
| 2 | 2 |
+------------------------+------------------------+
mysql> SELECT JSON_DEPTH('[10, {"a": 20}]');
+-------------------------------+
| JSON_DEPTH('[10, {"a": 20}]') |
+-------------------------------+
| 3 |
+-------------------------------+

• JSON_LENGTH(json_doc[, path])

Returns the length of a JSON document, or, if a path argument is given, the length of the value
within the document identified by the path. Returns NULL if any argument is NULL or the path
argument does not identify a value in the document. An error occurs if the json_doc argument is
not a valid JSON document or the path argument is not a valid path expression. Prior to MySQL
8.0.26, an error is also raised if the path expression contains a * or ** wildcard.

The length of a document is determined as follows:

• The length of a scalar is 1.

• The length of an array is the number of array elements.

• The length of an object is the number of object members.

• The length does not count the length of nested arrays or objects.

mysql> SELECT JSON_LENGTH('[1, 2, {"a": 3}]');

2551

Functions That Return JSON Value Attributes

+---------------------------------+
| JSON_LENGTH('[1, 2, {"a": 3}]') |
+---------------------------------+
| 3 |
+---------------------------------+
mysql> SELECT JSON_LENGTH('{"a": 1, "b": {"c": 30}}');
+---+
| JSON_LENGTH('{"a": 1, "b": {"c": 30}}') |
+---+
| 2 |
+---+
mysql> SELECT JSON_LENGTH('{"a": 1, "b": {"c": 30}}', '$.b');
+--+
| JSON_LENGTH('{"a": 1, "b": {"c": 30}}', '$.b') |
+--+
| 1 |
+--+

• JSON_TYPE(json_val)

Returns a utf8mb4 string indicating the type of a JSON value. This can be an object, an array, or a
scalar type, as shown here:

mysql> SET @j = '{"a": [10, true]}';
mysql> SELECT JSON_TYPE(@j);
+---------------+
| JSON_TYPE(@j) |
+---------------+
| OBJECT |
+---------------+
mysql> SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a'));
+------------------------------------+
| JSON_TYPE(JSON_EXTRACT(@j, '$.a')) |
+------------------------------------+
| ARRAY |
+------------------------------------+
mysql> SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a[0]'));
+---------------------------------------+
| JSON_TYPE(JSON_EXTRACT(@j, '$.a[0]')) |
+---------------------------------------+
| INTEGER |
+---------------------------------------+
mysql> SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a[1]'));
+---------------------------------------+
| JSON_TYPE(JSON_EXTRACT(@j, '$.a[1]')) |
+---------------------------------------+
| BOOLEAN |
+---------------------------------------+

JSON_TYPE() returns NULL if the argument is NULL:

mysql> SELECT JSON_TYPE(NULL);
+-----------------+
| JSON_TYPE(NULL) |
+-----------------+
| NULL |
+-----------------+

An error occurs if the argument is not a valid JSON value:

mysql> SELECT JSON_TYPE(1);
ERROR 3146 (22032): Invalid data type for JSON data in argument 1
to function json_type; a JSON string or JSON type is required.

For a non-NULL, non-error result, the following list describes the possible JSON_TYPE() return
values:

• Purely JSON types:

• OBJECT: JSON objects

2552

JSON Table Functions

• ARRAY: JSON arrays

• BOOLEAN: The JSON true and false literals

• NULL: The JSON null literal

• Numeric types:

• INTEGER: MySQL TINYINT, SMALLINT, MEDIUMINT and INT and BIGINT scalars

• DOUBLE: MySQL DOUBLE FLOAT scalars

• DECIMAL: MySQL DECIMAL and NUMERIC scalars

• Temporal types:

• DATETIME: MySQL DATETIME and TIMESTAMP scalars

• DATE: MySQL DATE scalars

• TIME: MySQL TIME scalars

• String types:

• STRING: MySQL utf8mb3 character type scalars: CHAR, VARCHAR, TEXT, ENUM, and SET

• Binary types:

• BLOB: MySQL binary type scalars including BINARY, VARBINARY, BLOB, and BIT

• All other types:

• OPAQUE (raw bits)

• JSON_VALID(val)

Returns 0 or 1 to indicate whether a value is valid JSON. Returns NULL if the argument is NULL.

mysql> SELECT JSON_VALID('{"a": 1}');
+------------------------+
| JSON_VALID('{"a": 1}') |
+------------------------+
| 1 |
+------------------------+
mysql> SELECT JSON_VALID('hello'), JSON_VALID('"hello"');
+---------------------+-----------------------+
| JSON_VALID('hello') | JSON_VALID('"hello"') |
+---------------------+-----------------------+
| 0 | 1 |
+---------------------+-----------------------+

14.17.6 JSON Table Functions

This section contains information about JSON functions that convert JSON data to tabular data.
MySQL 8.0 supports one such function, JSON_TABLE().

JSON_TABLE(expr, path COLUMNS (column_list) [AS] alias)

Extracts data from a JSON document and returns it as a relational table having the specified columns.
The complete syntax for this function is shown here:

JSON_TABLE(
 expr,
 path COLUMNS (column_list)
) [AS] alias

2553

JSON Table Functions

column_list:
 column[, column][, ...]

column:
 name FOR ORDINALITY
 | name type PATH string path [on_empty] [on_error]
 | name type EXISTS PATH string path
 | NESTED [PATH] path COLUMNS (column_list)

on_empty:
 {NULL | DEFAULT json_string | ERROR} ON EMPTY

on_error:
 {NULL | DEFAULT json_string | ERROR} ON ERROR

expr: This is an expression that returns JSON data. This can be a constant ('{"a":1}'), a column
(t1.json_data, given table t1 specified prior to JSON_TABLE() in the FROM clause), or a function
call (JSON_EXTRACT(t1.json_data,'$.post.comments')).

path: A JSON path expression, which is applied to the data source. We refer to the JSON value
matching the path as the row source; this is used to generate a row of relational data. The COLUMNS
clause evaluates the row source, finds specific JSON values within the row source, and returns those
JSON values as SQL values in individual columns of a row of relational data.

The alias is required. The usual rules for table aliases apply (see Section 11.2, “Schema Object
Names”).

Beginning with MySQL 8.0.27, this function compares column names in case-insensitive fashion.

JSON_TABLE() supports four types of columns, described in the following list:

1. name FOR ORDINALITY: This type enumerates rows in the COLUMNS clause; the column named
name is a counter whose type is UNSIGNED INT, and whose initial value is 1. This is equivalent
to specifying a column as AUTO_INCREMENT in a CREATE TABLE statement, and can be used to
distinguish parent rows with the same value for multiple rows generated by a NESTED [PATH]
clause.

2. name type PATH string_path [on_empty] [on_error]: Columns of this type are used
to extract values specified by string_path. type is a MySQL scalar data type (that is, it cannot
be an object or array). JSON_TABLE() extracts data as JSON then coerces it to the column type,
using the regular automatic type conversion applying to JSON data in MySQL. A missing value
triggers the on_empty clause. Saving an object or array triggers the optional on error clause;
this also occurs when an error takes place during coercion from the value saved as JSON to the
table column, such as trying to save the string 'asd' to an integer column.

3. name type EXISTS PATH path: This column returns 1 if any data is present at the location
specified by path, and 0 otherwise. type can be any valid MySQL data type, but should normally
be specified as some variety of INT.

4. NESTED [PATH] path COLUMNS (column_list): This flattens nested objects or arrays in
JSON data into a single row along with the JSON values from the parent object or array. Using
multiple PATH options allows projection of JSON values from multiple levels of nesting into a single
row.

The path is relative to the parent path row path of JSON_TABLE(), or the path of the parent
NESTED [PATH] clause in the event of nested paths.

on empty, if specified, determines what JSON_TABLE() does in the event that data is missing
(depending on type). This clause is also triggered on a column in a NESTED PATH clause when the
latter has no match and a NULL complemented row is produced for it. on empty takes one of the
following values:

• NULL ON EMPTY: The column is set to NULL; this is the default behavior.

2554

JSON Table Functions

• DEFAULT json_string ON EMPTY: the provided json_string is parsed as JSON, as long as it
is valid, and stored instead of the missing value. Column type rules also apply to the default value.

• ERROR ON EMPTY: An error is thrown.

If used, on_error takes one of the following values with the corresponding result as shown here:

• NULL ON ERROR: The column is set to NULL; this is the default behavior.

• DEFAULT json string ON ERROR: The json_string is parsed as JSON (provided that it is
valid) and stored instead of the object or array.

• ERROR ON ERROR: An error is thrown.

Prior to MySQL 8.0.20, a warning was thrown if a type conversion error occurred with NULL ON ERROR
or DEFAULT ... ON ERROR was specified or implied. In MySQL 8.0.20 and later, this is no longer the
case. (Bug #30628330)

Previously, it was possible to specify ON EMPTY and ON ERROR clauses in either order. This runs
counter to the SQL standard, which stipulates that ON EMPTY, if specified, must precede any ON
ERROR clause. For this reason, beginning with MySQL 8.0.20, specifying ON ERROR before ON EMPTY
is deprecated; trying to do so causes the server to issue a warning. Expect support for the nonstandard
syntax to be removed in a future version of MySQL.

When a value saved to a column is truncated, such as saving 3.14159 in a DECIMAL(10,1) column,
a warning is issued independently of any ON ERROR option. When multiple values are truncated in a
single statement, the warning is issued only once.

Prior to MySQL 8.0.21, when the expression and path passed to this function resolved to JSON null,
JSON_TABLE() raised an error. In MySQL 8.0.21 and later, it returns SQL NULL in such cases, in
accordance with the SQL standard, as shown here (Bug #31345503, Bug #99557):

mysql> SELECT *
 -> FROM
 -> JSON_TABLE(
 -> '[{"c1": null}]',
 -> '$[*]' COLUMNS(c1 INT PATH '$.c1' ERROR ON ERROR)
 ->) as jt;
+------+
| c1 |
+------+
| NULL |
+------+
1 row in set (0.00 sec)

The following query demonstrates the use of ON EMPTY and ON ERROR. The row corresponding to
{"b":1} is empty for the path "$.a", and attempting to save [1,2] as a scalar produces an error;
these rows are highlighted in the output shown.

mysql> SELECT *
 -> FROM
 -> JSON_TABLE(
 -> '[{"a":"3"},{"a":2},{"b":1},{"a":0},{"a":[1,2]}]',
 -> "$[*]"
 -> COLUMNS(
 -> rowid FOR ORDINALITY,
 -> ac VARCHAR(100) PATH "$.a" DEFAULT '111' ON EMPTY DEFAULT '999' ON ERROR,
 -> aj JSON PATH "$.a" DEFAULT '{"x": 333}' ON EMPTY,
 -> bx INT EXISTS PATH "$.b"
 ->)
 ->) AS tt;

+-------+------+------------+------+
| rowid | ac | aj | bx |
+-------+------+------------+------+
1	3	"3"	0
2	2	2	0
3	111	{"x": 333}	1

2555

JSON Table Functions

| 4 | 0 | 0 | 0 |
| 5 | 999 | [1, 2] | 0 |
+-------+------+------------+------+
5 rows in set (0.00 sec)

Column names are subject to the usual rules and limitations governing table column names. See
Section 11.2, “Schema Object Names”.

All JSON and JSON path expressions are checked for validity; an invalid expression of either type
causes an error.

Each match for the path preceding the COLUMNS keyword maps to an individual row in the result table.
For example, the following query gives the result shown here:

mysql> SELECT *
 -> FROM
 -> JSON_TABLE(
 -> '[{"x":2,"y":"8"},{"x":"3","y":"7"},{"x":"4","y":6}]',
 -> "$[*]" COLUMNS(
 -> xval VARCHAR(100) PATH "$.x",
 -> yval VARCHAR(100) PATH "$.y"
 ->)
 ->) AS jt1;

+------+------+
| xval | yval |
+------+------+
2	8
3	7
4	6
+------+------+

The expression "$[*]" matches each element of the array. You can filter the rows in the result by
modifying the path. For example, using "$[1]" limits extraction to the second element of the JSON
array used as the source, as shown here:

mysql> SELECT *
 -> FROM
 -> JSON_TABLE(
 -> '[{"x":2,"y":"8"},{"x":"3","y":"7"},{"x":"4","y":6}]',
 -> "$[1]" COLUMNS(
 -> xval VARCHAR(100) PATH "$.x",
 -> yval VARCHAR(100) PATH "$.y"
 ->)
 ->) AS jt1;

+------+------+
| xval | yval |
+------+------+
| 3 | 7 |
+------+------+

Within a column definition, "$" passes the entire match to the column; "$.x" and "$.y" pass only
the values corresponding to the keys x and y, respectively, within that match. For more information,
see JSON Path Syntax.

NESTED PATH (or simply NESTED; PATH is optional) produces a set of records for each match in the
COLUMNS clause to which it belongs. If there is no match, all columns of the nested path are set to
NULL. This implements an outer join between the topmost clause and NESTED [PATH]. An inner join
can be emulated by applying a suitable condition in the WHERE clause, as shown here:

mysql> SELECT *
 -> FROM
 -> JSON_TABLE(
 -> '[{"a": 1, "b": [11,111]}, {"a": 2, "b": [22,222]}, {"a":3}]',
 -> '$[*]' COLUMNS(
 -> a INT PATH '$.a',
 -> NESTED PATH '$.b[*]' COLUMNS (b INT PATH '$')
 ->)

2556

JSON Table Functions

 ->) AS jt
 -> WHERE b IS NOT NULL;

+------+------+
| a | b |
+------+------+
1	11
1	111
2	22
2	222
+------+------+

Sibling nested paths—that is, two or more instances of NESTED [PATH] in the same COLUMNS clause
—are processed one after another, one at a time. While one nested path is producing records, columns
of any sibling nested path expressions are set to NULL. This means that the total number of records for
a single match within a single containing COLUMNS clause is the sum and not the product of all records
produced by NESTED [PATH] modifiers, as shown here:

mysql> SELECT *
 -> FROM
 -> JSON_TABLE(
 -> '[{"a": 1, "b": [11,111]}, {"a": 2, "b": [22,222]}]',
 -> '$[*]' COLUMNS(
 -> a INT PATH '$.a',
 -> NESTED PATH '$.b[*]' COLUMNS (b1 INT PATH '$'),
 -> NESTED PATH '$.b[*]' COLUMNS (b2 INT PATH '$')
 ->)
 ->) AS jt;

+------+------+------+
| a | b1 | b2 |
+------+------+------+
1	11	NULL
1	111	NULL
1	NULL	11
1	NULL	111
2	22	NULL
2	222	NULL
2	NULL	22
2	NULL	222
+------+------+------+

A FOR ORDINALITY column enumerates records produced by the COLUMNS clause, and can be used
to distinguish parent records of a nested path, especially if values in parent records are the same, as
can be seen here:

mysql> SELECT *
 -> FROM
 -> JSON_TABLE(
 -> '[{"a": "a_val",
 '> "b": [{"c": "c_val", "l": [1,2]}]},
 '> {"a": "a_val",
 '> "b": [{"c": "c_val","l": [11]}, {"c": "c_val", "l": [22]}]}]',
 -> '$[*]' COLUMNS(
 -> top_ord FOR ORDINALITY,
 -> apath VARCHAR(10) PATH '$.a',
 -> NESTED PATH '$.b[*]' COLUMNS (
 -> bpath VARCHAR(10) PATH '$.c',
 -> ord FOR ORDINALITY,
 -> NESTED PATH '$.l[*]' COLUMNS (lpath varchar(10) PATH '$')
 ->)
 ->)
 ->) as jt;

+---------+---------+---------+------+-------+
| top_ord | apath | bpath | ord | lpath |
+---------+---------+---------+------+-------+
1	a_val	c_val	1	1
1	a_val	c_val	1	2
2	a_val	c_val	1	11
2	a_val	c_val	2	22

2557

JSON Schema Validation Functions

+---------+---------+---------+------+-------+

The source document contains an array of two elements; each of these elements produces two rows.
The values of apath and bpath are the same over the entire result set; this means that they cannot
be used to determine whether lpath values came from the same or different parents. The value of the
ord column remains the same as the set of records having top_ord equal to 1, so these two values
are from a single object. The remaining two values are from different objects, since they have different
values in the ord column.

Normally, you cannot join a derived table which depends on columns of preceding tables in the same
FROM clause. MySQL, per the SQL standard, makes an exception for table functions; these are
considered lateral derived tables, even in versions of MySQL that do not yet support the LATERAL
keyword (8.0.13 and earlier). In versions where LATERAL is supported (8.0.14 and later), it is implicit,
and for this reason is not allowed before JSON_TABLE(), also according to the standard.

Suppose you have a table t1 created and populated using the statements shown here:

CREATE TABLE t1 (c1 INT, c2 CHAR(1), c3 JSON);

INSERT INTO t1 () VALUES
 ROW(1, 'z', JSON_OBJECT('a', 23, 'b', 27, 'c', 1)),
 ROW(1, 'y', JSON_OBJECT('a', 44, 'b', 22, 'c', 11)),
 ROW(2, 'x', JSON_OBJECT('b', 1, 'c', 15)),
 ROW(3, 'w', JSON_OBJECT('a', 5, 'b', 6, 'c', 7)),
 ROW(5, 'v', JSON_OBJECT('a', 123, 'c', 1111))
;

You can then execute joins, such as this one, in which JSON_TABLE() acts as a derived table while at
the same time it refers to a column in a previously referenced table:

SELECT c1, c2, JSON_EXTRACT(c3, '$.*')
FROM t1 AS m
JOIN
JSON_TABLE(
 m.c3,
 '$.*'
 COLUMNS(
 at VARCHAR(10) PATH '$.a' DEFAULT '1' ON EMPTY,
 bt VARCHAR(10) PATH '$.b' DEFAULT '2' ON EMPTY,
 ct VARCHAR(10) PATH '$.c' DEFAULT '3' ON EMPTY
)
) AS tt
ON m.c1 > tt.at;

Attempting to use the LATERAL keyword with this query raises ER_PARSE_ERROR.

14.17.7 JSON Schema Validation Functions

Beginning with MySQL 8.0.17, MySQL supports validation of JSON documents against JSON schemas
conforming to Draft 4 of the JSON Schema specification. This can be done using either of the functions
detailed in this section, both of which take two arguments, a JSON schema, and a JSON document
which is validated against the schema. JSON_SCHEMA_VALID() returns true if the document validates
against the schema, and false if it does not; JSON_SCHEMA_VALIDATION_REPORT() provides a
report in JSON format on the validation.

Both functions handle null or invalid input as follows:

• If at least one of the arguments is NULL, the function returns NULL.

• If at least one of the arguments is not valid JSON, the function raises an error
(ER_INVALID_TYPE_FOR_JSON)

• In addition, if the schema is not a valid JSON object, the function returns ER_INVALID_JSON_TYPE.

MySQL supports the required attribute in JSON schemas to enforce the inclusion of required
properties (see the examples in the function descriptions).

2558

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_parse_error
https://json-schema.org/specification-links.html#draft-4
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_type_for_json
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_json_type

JSON Schema Validation Functions

MySQL supports the id, $schema, description, and type attributes in JSON schemas but does
not require any of these.

MySQL does not support external resources in JSON schemas; using the $ref keyword causes
JSON_SCHEMA_VALID() to fail with ER_NOT_SUPPORTED_YET.

Note

MySQL supports regular expression patterns in JSON schema, which
supports but silently ignores invalid patterns (see the description of
JSON_SCHEMA_VALID() for an example).

These functions are described in detail in the following list:

• JSON_SCHEMA_VALID(schema,document)

Validates a JSON document against a JSON schema. Both schema and document are required.
The schema must be a valid JSON object; the document must be a valid JSON document. Provided
that these conditions are met: If the document validates against the schema, the function returns true
(1); otherwise, it returns false (0).

In this example, we set a user variable @schema to the value of a JSON schema for geographical
coordinates, and another one @document to the value of a JSON document containing one such
coordinate. We then verify that @document validates according to @schema by using them as the
arguments to JSON_SCHEMA_VALID():

mysql> SET @schema = '{
 '> "id": "http://json-schema.org/geo",
 '> "$schema": "http://json-schema.org/draft-04/schema#",
 '> "description": "A geographical coordinate",
 '> "type": "object",
 '> "properties": {
 '> "latitude": {
 '> "type": "number",
 '> "minimum": -90,
 '> "maximum": 90
 '> },
 '> "longitude": {
 '> "type": "number",
 '> "minimum": -180,
 '> "maximum": 180
 '> }
 '> },
 '> "required": ["latitude", "longitude"]
 '>}';
Query OK, 0 rows affected (0.01 sec)

mysql> SET @document = '{
 '> "latitude": 63.444697,
 '> "longitude": 10.445118
 '>}';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT JSON_SCHEMA_VALID(@schema, @document);
+---------------------------------------+
| JSON_SCHEMA_VALID(@schema, @document) |
+---------------------------------------+
| 1 |
+---------------------------------------+
1 row in set (0.00 sec)

Since @schema contains the required attribute, we can set @document to a value that is
otherwise valid but does not contain the required properties, then test it against @schema, like this:

mysql> SET @document = '{}';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT JSON_SCHEMA_VALID(@schema, @document);

2559

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_supported_yet

JSON Schema Validation Functions

+---------------------------------------+
| JSON_SCHEMA_VALID(@schema, @document) |
+---------------------------------------+
| 0 |
+---------------------------------------+
1 row in set (0.00 sec)

If we now set the value of @schema to the same JSON schema but without the required attribute,
@document validates because it is a valid JSON object, even though it contains no properties, as
shown here:

mysql> SET @schema = '{
 '> "id": "http://json-schema.org/geo",
 '> "$schema": "http://json-schema.org/draft-04/schema#",
 '> "description": "A geographical coordinate",
 '> "type": "object",
 '> "properties": {
 '> "latitude": {
 '> "type": "number",
 '> "minimum": -90,
 '> "maximum": 90
 '> },
 '> "longitude": {
 '> "type": "number",
 '> "minimum": -180,
 '> "maximum": 180
 '> }
 '> }
 '>}';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT JSON_SCHEMA_VALID(@schema, @document);
+---------------------------------------+
| JSON_SCHEMA_VALID(@schema, @document) |
+---------------------------------------+
| 1 |
+---------------------------------------+
1 row in set (0.00 sec)

JSON_SCHEMA_VALID() and CHECK constraints. JSON_SCHEMA_VALID() can also be used
to enforce CHECK constraints.

Consider the table geo created as shown here, with a JSON column coordinate representing a
point of latitude and longitude on a map, governed by the JSON schema used as an argument in
a JSON_SCHEMA_VALID() call which is passed as the expression for a CHECK constraint on this
table:

mysql> CREATE TABLE geo (
 -> coordinate JSON,
 -> CHECK(
 -> JSON_SCHEMA_VALID(
 -> '{
 '> "type":"object",
 '> "properties":{
 '> "latitude":{"type":"number", "minimum":-90, "maximum":90},
 '> "longitude":{"type":"number", "minimum":-180, "maximum":180}
 '> },
 '> "required": ["latitude", "longitude"]
 '> }',
 -> coordinate
 ->)
 ->)
 ->);

2560

JSON Schema Validation Functions

Query OK, 0 rows affected (0.45 sec)

Note

Because a MySQL CHECK constraint cannot contain references to variables,
you must pass the JSON schema to JSON_SCHEMA_VALID() inline when
using it to specify such a constraint for a table.

We assign JSON values representing coordinates to three variables, as shown here:

mysql> SET @point1 = '{"latitude":59, "longitude":18}';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @point2 = '{"latitude":91, "longitude":0}';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @point3 = '{"longitude":120}';
Query OK, 0 rows affected (0.00 sec)

The first of these values is valid, as can be seen in the following INSERT statement:

mysql> INSERT INTO geo VALUES(@point1);
Query OK, 1 row affected (0.05 sec)

The second JSON value is invalid and so fails the constraint, as shown here:

mysql> INSERT INTO geo VALUES(@point2);
ERROR 3819 (HY000): Check constraint 'geo_chk_1' is violated.

In MySQL 8.0.19 and later, you can obtain precise information about the nature of the failure—in this
case, that the latitude value exceeds the maximum defined in the schema—by issuing a SHOW
WARNINGS statement:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Error
 Code: 3934
Message: The JSON document location '#/latitude' failed requirement 'maximum' at
JSON Schema location '#/properties/latitude'.
*************************** 2. row ***************************
 Level: Error
 Code: 3819
Message: Check constraint 'geo_chk_1' is violated.
2 rows in set (0.00 sec)

The third coordinate value defined above is also invalid, since it is missing the required latitude
property. As before, you can see this by attempting to insert the value into the geo table, then issuing
SHOW WARNINGS afterwards:

mysql> INSERT INTO geo VALUES(@point3);
ERROR 3819 (HY000): Check constraint 'geo_chk_1' is violated.
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Error
 Code: 3934
Message: The JSON document location '#' failed requirement 'required' at JSON
Schema location '#'.
*************************** 2. row ***************************
 Level: Error
 Code: 3819
Message: Check constraint 'geo_chk_1' is violated.
2 rows in set (0.00 sec)

See Section 15.1.20.6, “CHECK Constraints”, for more information.

JSON Schema has support for specifying regular expression patterns for strings, but
the implementation used by MySQL silently ignores invalid patterns. This means that

2561

JSON Schema Validation Functions

JSON_SCHEMA_VALID() can return true even when a regular expression pattern is invalid, as
shown here:

mysql> SELECT JSON_SCHEMA_VALID('{"type":"string","pattern":"("}', '"abc"');
+---+
| JSON_SCHEMA_VALID('{"type":"string","pattern":"("}', '"abc"') |
+---+
| 1 |
+---+
1 row in set (0.04 sec)

• JSON_SCHEMA_VALIDATION_REPORT(schema,document)

Validates a JSON document against a JSON schema. Both schema and document are required.
As with JSON_VALID_SCHEMA(), the schema must be a valid JSON object, and the document
must be a valid JSON document. Provided that these conditions are met, the function returns a
report, as a JSON document, on the outcome of the validation. If the JSON document is considered
valid according to the JSON Schema, the function returns a JSON object with one property valid
having the value "true". If the JSON document fails validation, the function returns a JSON object
which includes the properties listed here:

• valid: Always "false" for a failed schema validation

• reason: A human-readable string containing the reason for the failure

• schema-location: A JSON pointer URI fragment identifier indicating where in the JSON
schema the validation failed (see Note following this list)

• document-location: A JSON pointer URI fragment identifier indicating where in the JSON
document the validation failed (see Note following this list)

• schema-failed-keyword: A string containing the name of the keyword or property in the JSON
schema that was violated

Note

JSON pointer URI fragment identifiers are defined in RFC 6901 - JavaScript
Object Notation (JSON) Pointer. (These are not the same as the JSON path
notation used by JSON_EXTRACT() and other MySQL JSON functions.) In
this notation, # represents the entire document, and #/myprop represents
the portion of the document included in the top-level property named myprop.
See the specification just cited and the examples shown later in this section
for more information.

In this example, we set a user variable @schema to the value of a JSON schema for geographical
coordinates, and another one @document to the value of a JSON document containing one such
coordinate. We then verify that @document validates according to @schema by using them as the
arguments to JSON_SCHEMA_VALIDATION_REORT():

mysql> SET @schema = '{
 '> "id": "http://json-schema.org/geo",
 '> "$schema": "http://json-schema.org/draft-04/schema#",
 '> "description": "A geographical coordinate",
 '> "type": "object",
 '> "properties": {
 '> "latitude": {
 '> "type": "number",
 '> "minimum": -90,
 '> "maximum": 90
 '> },
 '> "longitude": {
 '> "type": "number",
 '> "minimum": -180,
 '> "maximum": 180
 '> }

2562

https://tools.ietf.org/html/rfc6901#page-5
https://tools.ietf.org/html/rfc6901#page-5

JSON Schema Validation Functions

 '> },
 '> "required": ["latitude", "longitude"]
 '>}';
Query OK, 0 rows affected (0.01 sec)

mysql> SET @document = '{
 '> "latitude": 63.444697,
 '> "longitude": 10.445118
 '>}';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema, @document);
+---+
| JSON_SCHEMA_VALIDATION_REPORT(@schema, @document) |
+---+
| {"valid": true} |
+---+
1 row in set (0.00 sec)

Now we set @document such that it specifies an illegal value for one of its properties, like this:

mysql> SET @document = '{
 '> "latitude": 63.444697,
 '> "longitude": 310.445118
 '> }';

Validation of @document now fails when tested with JSON_SCHEMA_VALIDATION_REPORT(). The
output from the function call contains detailed information about the failure (with the function wrapped
by JSON_PRETTY() to provide better formatting), as shown here:

mysql> SELECT JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@schema, @document))\G
*************************** 1. row ***************************
JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@schema, @document)): {
 "valid": false,
 "reason": "The JSON document location '#/longitude' failed requirement 'maximum' at JSON Schema location '#/properties/longitude'",
 "schema-location": "#/properties/longitude",
 "document-location": "#/longitude",
 "schema-failed-keyword": "maximum"
}
1 row in set (0.00 sec)

Since @schema contains the required attribute, we can set @document to a value that is
otherwise valid but does not contain the required properties, then test it against @schema. The output
of JSON_SCHEMA_VALIDATION_REPORT() shows that validation fails due to lack of a required
element, like this:

mysql> SET @document = '{}';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@schema, @document))\G
*************************** 1. row ***************************
JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@schema, @document)): {
 "valid": false,
 "reason": "The JSON document location '#' failed requirement 'required' at JSON Schema location '#'",
 "schema-location": "#",
 "document-location": "#",
 "schema-failed-keyword": "required"
}
1 row in set (0.00 sec)

If we now set the value of @schema to the same JSON schema but without the required attribute,
@document validates because it is a valid JSON object, even though it contains no properties, as
shown here:

mysql> SET @schema = '{
 '> "id": "http://json-schema.org/geo",
 '> "$schema": "http://json-schema.org/draft-04/schema#",
 '> "description": "A geographical coordinate",
 '> "type": "object",

2563

JSON Utility Functions

 '> "properties": {
 '> "latitude": {
 '> "type": "number",
 '> "minimum": -90,
 '> "maximum": 90
 '> },
 '> "longitude": {
 '> "type": "number",
 '> "minimum": -180,
 '> "maximum": 180
 '> }
 '> }
 '>}';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema, @document);
+---+
| JSON_SCHEMA_VALIDATION_REPORT(@schema, @document) |
+---+
| {"valid": true} |
+---+
1 row in set (0.00 sec)

14.17.8 JSON Utility Functions

This section documents utility functions that act on JSON values, or strings that can be parsed
as JSON values. JSON_PRETTY() prints out a JSON value in a format that is easy to read.
JSON_STORAGE_SIZE() and JSON_STORAGE_FREE() show, respectively, the amount of storage
space used by a given JSON value and the amount of space remaining in a JSON column following a
partial update.

• JSON_PRETTY(json_val)

Provides pretty-printing of JSON values similar to that implemented in PHP and by other languages
and database systems. The value supplied must be a JSON value or a valid string representation
of a JSON value. Extraneous whitespaces and newlines present in this value have no effect on the
output. For a NULL value, the function returns NULL. If the value is not a JSON document, or if it
cannot be parsed as one, the function fails with an error.

Formatting of the output from this function adheres to the following rules:

• Each array element or object member appears on a separate line, indented by one additional level
as compared to its parent.

• Each level of indentation adds two leading spaces.

• A comma separating individual array elements or object members is printed before the newline
that separates the two elements or members.

• The key and the value of an object member are separated by a colon followed by a space (': ').

• An empty object or array is printed on a single line. No space is printed between the opening and
closing brace.

• Special characters in string scalars and key names are escaped employing the same rules used
by the JSON_QUOTE() function.

mysql> SELECT JSON_PRETTY('123'); # scalar
+--------------------+
| JSON_PRETTY('123') |
+--------------------+
| 123 |
+--------------------+

mysql> SELECT JSON_PRETTY("[1,3,5]"); # array
+------------------------+

2564

JSON Utility Functions

| JSON_PRETTY("[1,3,5]") |
+------------------------+
| [
 1,
 3,
 5
] |
+------------------------+

mysql> SELECT JSON_PRETTY('{"a":"10","b":"15","x":"25"}'); # object
+---+
| JSON_PRETTY('{"a":"10","b":"15","x":"25"}') |
+---+
| {
 "a": "10",
 "b": "15",
 "x": "25"
} |
+---+

mysql> SELECT JSON_PRETTY('["a",1,{"key1":
 '> "value1"},"5", "77" ,
 '> {"key2":["value3","valueX",
 '> "valueY"]},"j", "2"]')\G # nested arrays and objects
*************************** 1. row ***************************
JSON_PRETTY('["a",1,{"key1":
 "value1"},"5", "77" ,
 {"key2":["value3","valuex",
 "valuey"]},"j", "2"]'): [
 "a",
 1,
 {
 "key1": "value1"
 },
 "5",
 "77",
 {
 "key2": [
 "value3",
 "valuex",
 "valuey"
]
 },
 "j",
 "2"
]

• JSON_STORAGE_FREE(json_val)

For a JSON column value, this function shows how much storage space was freed in its
binary representation after it was updated in place using JSON_SET(), JSON_REPLACE(), or
JSON_REMOVE(). The argument can also be a valid JSON document or a string which can be
parsed as one—either as a literal value or as the value of a user variable—in which case the function
returns 0. It returns a positive, nonzero value if the argument is a JSON column value which has been
updated as described previously, such that its binary representation takes up less space than it did
prior to the update. For a JSON column which has been updated such that its binary representation is
the same as or larger than before, or if the update was not able to take advantage of a partial update,
it returns 0; it returns NULL if the argument is NULL.

If json_val is not NULL, and neither is a valid JSON document nor can be successfully parsed as
one, an error results.

In this example, we create a table containing a JSON column, then insert a row containing a JSON
object:

mysql> CREATE TABLE jtable (jcol JSON);
Query OK, 0 rows affected (0.38 sec)

mysql> INSERT INTO jtable VALUES

2565

JSON Utility Functions

 -> ('{"a": 10, "b": "wxyz", "c": "[true, false]"}');
Query OK, 1 row affected (0.04 sec)

mysql> SELECT * FROM jtable;
+--+
| jcol |
+--+
| {"a": 10, "b": "wxyz", "c": "[true, false]"} |
+--+
1 row in set (0.00 sec)

Now we update the column value using JSON_SET() such that a partial update can be performed;
in this case, we replace the value pointed to by the c key (the array [true, false]) with one that
takes up less space (the integer 1):

mysql> UPDATE jtable
 -> SET jcol = JSON_SET(jcol, "$.a", 10, "$.b", "wxyz", "$.c", 1);
Query OK, 1 row affected (0.03 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM jtable;
+--------------------------------+
| jcol |
+--------------------------------+
| {"a": 10, "b": "wxyz", "c": 1} |
+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT JSON_STORAGE_FREE(jcol) FROM jtable;
+-------------------------+
| JSON_STORAGE_FREE(jcol) |
+-------------------------+
| 14 |
+-------------------------+
1 row in set (0.00 sec)

The effects of successive partial updates on this free space are cumulative, as shown in this
example using JSON_SET() to reduce the space taken up by the value having key b (and making no
other changes):

mysql> UPDATE jtable
 -> SET jcol = JSON_SET(jcol, "$.a", 10, "$.b", "wx", "$.c", 1);
Query OK, 1 row affected (0.03 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT JSON_STORAGE_FREE(jcol) FROM jtable;
+-------------------------+
| JSON_STORAGE_FREE(jcol) |
+-------------------------+
| 16 |
+-------------------------+
1 row in set (0.00 sec)

Updating the column without using JSON_SET(), JSON_REPLACE(), or JSON_REMOVE() means
that the optimizer cannot perform the update in place; in this case, JSON_STORAGE_FREE() returns
0, as shown here:

mysql> UPDATE jtable SET jcol = '{"a": 10, "b": 1}';
Query OK, 1 row affected (0.05 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT JSON_STORAGE_FREE(jcol) FROM jtable;
+-------------------------+
| JSON_STORAGE_FREE(jcol) |
+-------------------------+
| 0 |
+-------------------------+

2566

JSON Utility Functions

1 row in set (0.00 sec)

Partial updates of JSON documents can be performed only on column values. For a user variable
that stores a JSON value, the value is always completely replaced, even when the update is
performed using JSON_SET():

mysql> SET @j = '{"a": 10, "b": "wxyz", "c": "[true, false]"}';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @j = JSON_SET(@j, '$.a', 10, '$.b', 'wxyz', '$.c', '1');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @j, JSON_STORAGE_FREE(@j) AS Free;
+----------------------------------+------+
| @j | Free |
+----------------------------------+------+
| {"a": 10, "b": "wxyz", "c": "1"} | 0 |
+----------------------------------+------+
1 row in set (0.00 sec)

For a JSON literal, this function always returns 0:

mysql> SELECT JSON_STORAGE_FREE('{"a": 10, "b": "wxyz", "c": "1"}') AS Free;
+------+
| Free |
+------+
| 0 |
+------+
1 row in set (0.00 sec)

• JSON_STORAGE_SIZE(json_val)

This function returns the number of bytes used to store the binary representation of a JSON
document. When the argument is a JSON column, this is the space used to store the JSON
document as it was inserted into the column, prior to any partial updates that may have been
performed on it afterwards. json_val must be a valid JSON document or a string which can be
parsed as one. In the case where it is string, the function returns the amount of storage space in the
JSON binary representation that is created by parsing the string as JSON and converting it to binary.
It returns NULL if the argument is NULL.

An error results when json_val is not NULL, and is not—or cannot be successfully parsed as—a
JSON document.

To illustrate this function's behavior when used with a JSON column as its argument, we create a
table named jtable containing a JSON column jcol, insert a JSON value into the table, then
obtain the storage space used by this column with JSON_STORAGE_SIZE(), as shown here:

mysql> CREATE TABLE jtable (jcol JSON);
Query OK, 0 rows affected (0.42 sec)

mysql> INSERT INTO jtable VALUES
 -> ('{"a": 1000, "b": "wxyz", "c": "[1, 3, 5, 7]"}');
Query OK, 1 row affected (0.04 sec)

mysql> SELECT
 -> jcol,
 -> JSON_STORAGE_SIZE(jcol) AS Size,
 -> JSON_STORAGE_FREE(jcol) AS Free
 -> FROM jtable;
+---+------+------+
| jcol | Size | Free |
+---+------+------+
| {"a": 1000, "b": "wxyz", "c": "[1, 3, 5, 7]"} | 47 | 0 |
+---+------+------+

2567

JSON Utility Functions

1 row in set (0.00 sec)

According to the output of JSON_STORAGE_SIZE(), the JSON document inserted into the column
takes up 47 bytes. We also checked the amount of space freed by any previous partial updates of
the column using JSON_STORAGE_FREE(); since no updates have yet been performed, this is 0, as
expected.

Next we perform an UPDATE on the table that should result in a partial update of the document
stored in jcol, and then test the result as shown here:

mysql> UPDATE jtable SET jcol =
 -> JSON_SET(jcol, "$.b", "a");
Query OK, 1 row affected (0.04 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT
 -> jcol,
 -> JSON_STORAGE_SIZE(jcol) AS Size,
 -> JSON_STORAGE_FREE(jcol) AS Free
 -> FROM jtable;
+--+------+------+
| jcol | Size | Free |
+--+------+------+
| {"a": 1000, "b": "a", "c": "[1, 3, 5, 7]"} | 47 | 3 |
+--+------+------+
1 row in set (0.00 sec)

The value returned by JSON_STORAGE_FREE() in the previous query indicates that a partial update
of the JSON document was performed, and that this freed 3 bytes of space used to store it. The
result returned by JSON_STORAGE_SIZE() is unchanged by the partial update.

Partial updates are supported for updates using JSON_SET(), JSON_REPLACE(), or
JSON_REMOVE(). The direct assignment of a value to a JSON column cannot be partially updated;
following such an update, JSON_STORAGE_SIZE() always shows the storage used for the newly-
set value:

mysql> UPDATE jtable
mysql> SET jcol = '{"a": 4.55, "b": "wxyz", "c": "[true, false]"}';
Query OK, 1 row affected (0.04 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT
 -> jcol,
 -> JSON_STORAGE_SIZE(jcol) AS Size,
 -> JSON_STORAGE_FREE(jcol) AS Free
 -> FROM jtable;
+--+------+------+
| jcol | Size | Free |
+--+------+------+
| {"a": 4.55, "b": "wxyz", "c": "[true, false]"} | 56 | 0 |
+--+------+------+
1 row in set (0.00 sec)

A JSON user variable cannot be partially updated. This means that this function always shows the
space currently used to store a JSON document in a user variable:

mysql> SET @j = '[100, "sakila", [1, 3, 5], 425.05]';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @j, JSON_STORAGE_SIZE(@j) AS Size;
+------------------------------------+------+
| @j | Size |
+------------------------------------+------+
| [100, "sakila", [1, 3, 5], 425.05] | 45 |
+------------------------------------+------+
1 row in set (0.00 sec)

mysql> SET @j = JSON_SET(@j, '$[1]', "json");

2568

Replication Functions

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @j, JSON_STORAGE_SIZE(@j) AS Size;
+----------------------------------+------+
| @j | Size |
+----------------------------------+------+
| [100, "json", [1, 3, 5], 425.05] | 43 |
+----------------------------------+------+
1 row in set (0.00 sec)

mysql> SET @j = JSON_SET(@j, '$[2][0]', JSON_ARRAY(10, 20, 30));
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @j, JSON_STORAGE_SIZE(@j) AS Size;
+---+------+
| @j | Size |
+---+------+
| [100, "json", [[10, 20, 30], 3, 5], 425.05] | 56 |
+---+------+
1 row in set (0.00 sec)

For a JSON literal, this function always returns the current storage space used:

mysql> SELECT
 -> JSON_STORAGE_SIZE('[100, "sakila", [1, 3, 5], 425.05]') AS A,
 -> JSON_STORAGE_SIZE('{"a": 1000, "b": "a", "c": "[1, 3, 5, 7]"}') AS B,
 -> JSON_STORAGE_SIZE('{"a": 1000, "b": "wxyz", "c": "[1, 3, 5, 7]"}') AS C,
 -> JSON_STORAGE_SIZE('[100, "json", [[10, 20, 30], 3, 5], 425.05]') AS D;
+----+----+----+----+
| A | B | C | D |
+----+----+----+----+
| 45 | 44 | 47 | 56 |
+----+----+----+----+
1 row in set (0.00 sec)

14.18 Replication Functions
The functions described in the following sections are used with MySQL Replication.

Table 14.24 Replication Functions

Name Description Introduced Deprecated

asynchronous_connection_failover_add_managed()Add group member
source server
configuration information
to a replication channel
source list

8.0.23

asynchronous_connection_failover_add_source()Add source server
configuration information
server to a replication
channel source list

8.0.22

asynchronous_connection_failover_delete_managed()Remove a managed
group from a replication
channel source list

8.0.23

asynchronous_connection_failover_delete_source()Remove a source
server from a replication
channel source list

8.0.22

asynchronous_connection_failover_reset()Remove all
settings relating to
group replication
asynchronous failover

8.0.27

group_replication_disable_member_action()Disable member action
for event specified

8.0.26

2569

Group Replication Functions

Name Description Introduced Deprecated

group_replication_enable_member_action()Enable member action
for event specified

8.0.26

group_replication_get_communication_protocol()Get version of
group replication
communication protocol
currently in use

8.0.16

group_replication_get_write_concurrency()Get maximum number
of consensus instances
currently set for group

8.0.13

group_replication_reset_member_actions()Reset all member
actions to defaults and
configuration version
number to 1

8.0.26

group_replication_set_as_primary()Make a specific group
member the primary

8.0.29

group_replication_set_communication_protocol()Set version for
group replication
communication protocol
to use

8.0.16

group_replication_set_write_concurrency()Set maximum number
of consensus instances
that can be executed in
parallel

8.0.13

group_replication_switch_to_multi_primary_mode()Changes the mode of a
group running in single-
primary mode to multi-
primary mode

8.0.13

group_replication_switch_to_single_primary_mode()Changes the mode of a
group running in multi-
primary mode to single-
primary mode

8.0.13

GTID_SUBSET() Return true if all GTIDs
in subset are also in set;
otherwise false.

GTID_SUBTRACT() Return all GTIDs in set
that are not in subset.

MASTER_POS_WAIT() Block until the replica
has read and applied
all updates up to the
specified position

8.0.26

SOURCE_POS_WAIT() Block until the replica
has read and applied
all updates up to the
specified position

8.0.26

WAIT_FOR_EXECUTED_GTID_SET()Wait until the given
GTIDs have executed
on the replica.

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()Use
WAIT_FOR_EXECUTED_GTID_SET().

8.0.18

14.18.1 Group Replication Functions

2570

Group Replication Functions

The functions described in the following sections are used with Group Replication.

Table 14.25 Group Replication Functions

Name Description Introduced

group_replication_disable_member_action()Disable member action for event
specified

8.0.26

group_replication_enable_member_action()Enable member action for event
specified

8.0.26

group_replication_get_communication_protocol()Get version of group replication
communication protocol currently
in use

8.0.16

group_replication_get_write_concurrency()Get maximum number of
consensus instances currently
set for group

8.0.13

group_replication_reset_member_actions()Reset all member actions to
defaults and configuration
version number to 1

8.0.26

group_replication_set_as_primary()Make a specific group member
the primary

8.0.29

group_replication_set_communication_protocol()Set version for group replication
communication protocol to use

8.0.16

group_replication_set_write_concurrency()Set maximum number of
consensus instances that can be
executed in parallel

8.0.13

group_replication_switch_to_multi_primary_mode()Changes the mode of a group
running in single-primary mode
to multi-primary mode

8.0.13

group_replication_switch_to_single_primary_mode()Changes the mode of a group
running in multi-primary mode to
single-primary mode

8.0.13

14.18.1.1 Function which Configures Group Replication Primary

The following function enables you to set a member of a single-primary replication group to take
over as the primary. The current primary becomes a read-only secondary, and the specified group
member becomes the read-write primary. The function can be used on any member of a replication
group running in single-primary mode. This function replaces the usual primary election process; see
Section 20.5.1.1, “Changing the Primary”, for more information.

If a standard source to replica replication channel is running on the existing primary member
in addition to the Group Replication channels, you must stop that replication channel
before you can change the primary member. You can identify the current primary using the
MEMBER_ROLE column in the Performance Schema table replication_group_members, or the
group_replication_primary_member status variable.

Any uncommitted transactions that the group is waiting on must be committed, rolled back, or
terminated before the operation can complete. Before MySQL 8.0.29, the function waits for all active
transactions on the existing primary to end, including incoming transactions that are started after the
function is used. From MySQL 8.0.29, you can specify a timeout for transactions that are running when
you use the function. For the timeout to work, all members of the group must be at MySQL 8.0.29 or
higher.

When the timeout expires, for any transactions that did not yet reach their commit phase, the client
session is disconnected so that the transaction does not proceed. Transactions that reached their
commit phase are allowed to complete. When you set a timeout, it also prevents new transactions

2571

Group Replication Functions

starting on the primary from that point on. Explicitly defined transactions (with a START TRANSACTION
or BEGIN statement) are subject to the timeout, disconnection, and incoming transaction blocking
even if they do not modify any data. To allow inspection of the primary while the function is operating,
single statements that do not modify data, as listed in Permitted Queries Under Consistency Rules, are
permitted to proceed.

• group_replication_set_as_primary()

Appoints a specific member of the group as the new primary, overriding any election process.

Syntax:

STRING group_replication_set_as_primary(member_uuid[, timeout])

Arguments:

• member_uuid: A string containing the UUID of the member of the group that you want to become
the new primary.

• timeout: An integer specifying a timeout in seconds for transactions that are running on the
existing primary when you use the function. You can set a timeout from 0 seconds (immediately)
up to 3600 seconds (60 minutes). When you set a timeout, new transactions cannot start on the
primary from that point on. There is no default setting for the timeout, so if you do not set it, there
is no upper limit to the wait time, and new transactions can start during that time. This option is
available from MySQL 8.0.29.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

SELECT group_replication_set_as_primary(‘00371d66-3c45-11ea-804b-080027337932’, 300);

For more information, see Section 20.5.1.1, “Changing the Primary”.

14.18.1.2 Functions which Configure the Group Replication Mode

The following functions enable you to control the mode which a replication group is running in, either
single-primary or multi-primary mode.

• group_replication_switch_to_multi_primary_mode()

Changes a group running in single-primary mode to multi-primary mode. Must be issued on a
member of a replication group running in single-primary mode.

Syntax:

STRING group_replication_switch_to_multi_primary_mode()

This function has no parameters.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

SELECT group_replication_switch_to_multi_primary_mode()

All members which belong to the group become primaries.

For more information, see Section 20.5.1.2, “Changing the Group Mode”

2572

Group Replication Functions

• group_replication_switch_to_single_primary_mode()

Changes a group running in multi-primary mode to single-primary mode, without the need
to stop Group Replication. Must be issued on a member of a replication group running
in multi-primary mode. When you change to single-primary mode, strict consistency
checks are also disabled on all group members, as required in single-primary mode
(group_replication_enforce_update_everywhere_checks=OFF).

Syntax:

STRING group_replication_switch_to_single_primary_mode([str])

Arguments:

• str: A string containing the UUID of a member of the group which should become the new single
primary. Other members of the group become secondaries.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

SELECT group_replication_switch_to_single_primary_mode(member_uuid);

For more information, see Section 20.5.1.2, “Changing the Group Mode”

14.18.1.3 Functions to Inspect and Configure the Maximum Consensus Instances of a
Group

The following functions enable you to inspect and configure the maximum number of consensus
instances that a group can execute in parallel.

• group_replication_get_write_concurrency()

Check the maximum number of consensus instances that a group can execute in parallel.

Syntax:

INT group_replication_get_write_concurrency()

This function has no parameters.

Return value:

The maximum number of consensus instances currently set for the group.

Example:

SELECT group_replication_get_write_concurrency()

For more information, see Section 20.5.1.3, “Using Group Replication Group Write Consensus”.

• group_replication_set_write_concurrency()

Configures the maximum number of consensus instances that a group can execute in parallel. The
GROUP_REPLICATION_ADMIN privilege is required to use this function.

Syntax:

STRING group_replication_set_write_concurrency(instances)

Arguments: 2573

Group Replication Functions

• members: Sets the maximum number of consensus instances that a group can execute in parallel.
Default value is 10, valid values are integers in the range of 10 to 200.

Return value:

Any resulting error as a string.

Example:

SELECT group_replication_set_write_concurrency(instances);

For more information, see Section 20.5.1.3, “Using Group Replication Group Write Consensus”.

14.18.1.4 Functions to Inspect and Set the Group Replication Communication Protocol
Version

The following functions enable you to inspect and configure the Group Replication communication
protocol version that is used by a replication group.

• Versions from MySQL 5.7.14 allow compression of messages (see Section 20.7.4, “Message
Compression”).

• Versions from MySQL 8.0.16 also allow fragmentation of messages (see Section 20.7.5, “Message
Fragmentation”).

• Versions from MySQL 8.0.27 also allow the group communication engine to operate
with a single consensus leader when the group is in single-primary mode and
group_replication_paxos_single_leader is set to true (see Section 20.7.3, “Single
Consensus Leader”).

• group_replication_get_communication_protocol()

Inspect the Group Replication communication protocol version that is currently in use for a group.

Syntax:

STRING group_replication_get_communication_protocol()

This function has no parameters.

Return value:

The oldest MySQL Server version that can join this group and use the group's communication
protocol. Note that the group_replication_get_communication_protocol() function
returns the minimum MySQL version that the group supports, which might differ from the version
number that was passed to group_replication_set_communication_protocol(), and from
the MySQL Server version that is installed on the member where you use the function.

If the protocol cannot be inspected because this server instance does not belong to a replication
group, an error is returned as a string.

Example:

SELECT group_replication_get_communication_protocol();
+--+
| group_replication_get_communication_protocol() |
+--+
| 8.0.42 |
+--+

For more information, see Section 20.5.1.4, “Setting a Group's Communication Protocol Version”.

• group_replication_set_communication_protocol()

2574

Group Replication Functions

Downgrade the Group Replication communication protocol version of a group so that members at
earlier releases can join, or upgrade the Group Replication communication protocol version of a
group after upgrading MySQL Server on all members. The GROUP_REPLICATION_ADMIN privilege
is required to use this function, and all existing group members must be online when you issue the
statement, with no loss of majority.

Note

For MySQL InnoDB cluster, the communication protocol version is managed
automatically whenever the cluster topology is changed using AdminAPI
operations. You do not have to use these functions yourself for an InnoDB
cluster.

Syntax:

STRING group_replication_set_communication_protocol(version)

Arguments:

• version: For a downgrade, specify the MySQL Server version of the prospective group member
that has the oldest installed server version. In this case, the command makes the group fall back
to a communication protocol compatible with that server version if possible. The minimum server
version that you can specify is MySQL 5.7.14. For an upgrade, specify the new MySQL Server
version to which the existing group members have been upgraded.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

SELECT group_replication_set_communication_protocol("5.7.25");

For more information, see Section 20.5.1.4, “Setting a Group's Communication Protocol Version”.

14.18.1.5 Functions to Set and Reset Group Replication Member Actions

The following functions can be used to enable and disable actions for members of a group to take in
specified situations, and to reset the configuration to the default setting for all member actions. They
can only be used by administrators with the GROUP_REPLICATION_ADMIN privilege or the deprecated
SUPER privilege.

You configure member actions on the group’s primary using
the group_replication_enable_member_action and
group_replication_disable_member_action functions. The member actions configuration,
consisting of all the member actions and whether they are enabled or disabled, is then propagated to
other group members and joining members using Group Replication’s group messages. This means
that the group members will all act in the same way when they are in the specified situation, and you
only need to use the function on the primary.

The functions can also be used on a server that is not part of a group, as long as the Group Replication
plugin is installed. In that case, the member actions configuration is not propagated to any other
servers.

The group_replication_reset_member_actions function can only be used on a server that
is not part of a group. It resets the member actions configuration to the default settings, and resets its
version number. The server must be writeable (with the read_only system variable set to OFF) and
have the Group Replication plugin installed.

The available member actions are as follows:

2575

Group Replication Functions

mysql_disable_super_read_only_if_primaryThis member action is available from MySQL 8.0.26. It is
taken after a member is elected as the group’s primary, which
is the event AFTER_PRIMARY_ELECTION. The member
action is enabled by default. You can disable it using the
group_replication_disable_member_action()
function, and re-enable it using
group_replication_enable_member_action().

When this member action is enabled and taken, super read-only
mode is disabled on the primary, so that the primary becomes read-
write and accepts updates from a replication source server and from
clients. This is the normal situation.

When this member action is disabled and not taken, the primary
remains in super read-only mode after election. In this state, it
does not accept updates from any clients, even users who have
the CONNECTION_ADMIN or SUPER privilege. It does continue to
accept updates performed by replication threads. This setup means
that when a group’s purpose is to provide a secondary backup
to another group for disaster tolerance, you can ensure that the
secondary group remains synchronized with the first.

mysql_start_failover_channels_if_primaryThis member action is available from MySQL 8.0.27. It is
taken after a member is elected as the group’s primary, which
is the event AFTER_PRIMARY_ELECTION. The member
action is enabled by default. You can disable it using the
group_replication_disable_member_action()
function, and re-enable it using the
group_replication_enable_member_action() function.

When this member action is enabled, asynchronous
connection failover for replicas is active for a replication
channel on a Group Replication primary when you set
SOURCE_CONNECTION_AUTO_FAILOVER=1 in the CHANGE
REPLICATION SOURCE TO statement for the channel. When
the feature is active and correctly configured, if the primary that
is replicating goes offline or into an error state, the new primary
starts replication on the same channel when it is elected. This is
the normal situation. For instructions to configure the feature, see
Section 19.4.9.2, “Asynchronous Connection Failover for Replicas”.

When this member action is disabled, asynchronous
connection failover does not take place for the replicas. If
the primary goes offline or into an error state, replication
stops for the channel. Note that if there is more than one
channel with SOURCE_CONNECTION_AUTO_FAILOVER=1,
the member action covers all the channels, so they cannot
be individually enabled and disabled by this method. Set
SOURCE_CONNECTION_AUTO_FAILOVER=0 to disable an individual
channel.

For more information on member actions and how to view the member actions configuration, see
Section 20.5.1.5, “Configuring Member Actions”.

• group_replication_disable_member_action()

Disable a member action so that the member does not take it in the specified situation. If the server
where you use the function is part of a group, it must be the current primary in a group in single-
primary mode, and it must be part of the majority. The changed setting is propagated to other group

2576

Group Replication Functions

members and joining members, so they will all act in the same way when they are in the specified
situation, and you only need to use the function on the primary.

Syntax:

STRING group_replication_disable_member_action(name, event)

Arguments:

• name: The name of the member action to disable.

• event: The event that triggers the member action.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

SELECT group_replication_disable_member_action("mysql_disable_super_read_only_if_primary", "AFTER_PRIMARY_ELECTION");

For more information, see Section 20.5.1.5, “Configuring Member Actions”.

• group_replication_enable_member_action()

Enable a member action for the member to take in the specified situation. If the server where you
use the function is part of a group, it must be the current primary in a group in single-primary mode,
and it must be part of the majority. The changed setting is propagated to other group members and
joining members, so they will all act in the same way when they are in the specified situation, and
you only need to use the function on the primary.

Syntax:

STRING group_replication_enable_member_action(name, event)

Arguments:

• name: The name of the member action to enable.

• event: The event that triggers the member action.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

SELECT group_replication_enable_member_action("mysql_disable_super_read_only_if_primary", "AFTER_PRIMARY_ELECTION");

For more information, see Section 20.5.1.5, “Configuring Member Actions”.

• group_replication_reset_member_actions()

Reset the member actions configuration to the default settings, and reset its version number to 1.

The group_replication_reset_member_actions() function can only be used on a server
that is not currently part of a group. The server must be writeable (with the read_only system
variable set to OFF) and have the Group Replication plugin installed. You can use this function to

2577

Functions Used with Global Transaction Identifiers (GTIDs)

remove the member actions configuration that a server used when it was part of a group, if you
intend to use it as a standalone server with no member actions or different member actions.

Syntax:

STRING group_replication_reset_member_actions()

Arguments:

None.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

SELECT group_replication_reset_member_actions();

For more information, see Section 20.5.1.5, “Configuring Member Actions”.

14.18.2 Functions Used with Global Transaction Identifiers (GTIDs)

The functions described in this section are used with GTID-based replication. It is important to keep in
mind that all of these functions take string representations of GTID sets as arguments. As such, the
GTID sets must always be quoted when used with them. See GTID Sets for more information.

The union of two GTID sets is simply their representations as strings, joined together with an
interposed comma. In other words, you can define a very simple function for obtaining the union of two
GTID sets, similar to that created here:

CREATE FUNCTION GTID_UNION(g1 TEXT, g2 TEXT)
 RETURNS TEXT DETERMINISTIC
 RETURN CONCAT(g1,',',g2);

For more information about GTIDs and how these GTID functions are used in practice, see
Section 19.1.3, “Replication with Global Transaction Identifiers”.

Table 14.26 GTID Functions

Name Description Deprecated

GTID_SUBSET() Return true if all GTIDs in subset
are also in set; otherwise false.

GTID_SUBTRACT() Return all GTIDs in set that are
not in subset.

WAIT_FOR_EXECUTED_GTID_SET()Wait until the given GTIDs have
executed on the replica.

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()Use
WAIT_FOR_EXECUTED_GTID_SET().

8.0.18

• GTID_SUBSET(set1,set2)

Given two sets of global transaction identifiers set1 and set2, returns true if all GTIDs in set1 are
also in set2. Returns NULL if set1 or set2 is NULL. Returns false otherwise.

The GTID sets used with this function are represented as strings, as shown in the following
examples:

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23',

2578

Functions Used with Global Transaction Identifiers (GTIDs)

 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 1
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23-25',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:23-25',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 1
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBSET('3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'): 0
1 row in set (0.00 sec)

• GTID_SUBTRACT(set1,set2)

Given two sets of global transaction identifiers set1 and set2, returns only those GTIDs from set1
that are not in set2. Returns NULL if set1 or set2 is NULL.

All GTID sets used with this function are represented as strings and must be quoted, as shown in
these examples:

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:22-57
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:20-25'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:26-57
1 row in set (0.00 sec)

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:23-24')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:23-24'): 3e11fa47-71ca-11e1-9e33-c80aa9429562:21-22:25-57
1 row in set (0.01 sec)

Subtracting a GTID set from itself produces an empty set, as shown here:

mysql> SELECT GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 -> '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57')\G
*************************** 1. row ***************************
GTID_SUBTRACT('3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57',
 '3E11FA47-71CA-11E1-9E33-C80AA9429562:21-57'):
1 row in set (0.00 sec)

• WAIT_FOR_EXECUTED_GTID_SET(gtid_set[, timeout])

Wait until the server has applied all of the transactions whose global transaction identifiers
are contained in gtid_set; that is, until the condition GTID_SUBSET(gtid_subset,
@@GLOBAL.gtid_executed) holds. See Section 19.1.3.1, “GTID Format and Storage” for a
definition of GTID sets.

If a timeout is specified, and timeout seconds elapse before all of the transactions in the GTID
set have been applied, the function stops waiting. timeout is optional, and the default timeout is 0
seconds, in which case the function always waits until all of the transactions in the GTID set have
been applied. timeout must be greater than or equal to 0; when running in strict SQL mode, a
negative timeout value is immediately rejected with an error (ER_WRONG_ARGUMENTS); otherwise
the function returns NULL, and raises a warning.

2579

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_arguments

Asynchronous Replication Channel Failover Functions

WAIT_FOR_EXECUTED_GTID_SET() monitors all the GTIDs that are applied on the server,
including transactions that arrive from all replication channels and user clients. It does not take into
account whether replication channels have been started or stopped.

For more information, see Section 19.1.3, “Replication with Global Transaction Identifiers”.

GTID sets used with this function are represented as strings and so must be quoted as shown in the
following example:

mysql> SELECT WAIT_FOR_EXECUTED_GTID_SET('3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5');
 -> 0

For a syntax description for GTID sets, see Section 19.1.3.1, “GTID Format and Storage”.

For WAIT_FOR_EXECUTED_GTID_SET(), the return value is the state of the query, where 0
represents success, and 1 represents timeout. Any other failures generate an error.

gtid_mode cannot be changed to OFF while any client is using this function to wait for GTIDs to be
applied.

• WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(gtid_set[, timeout][,channel])

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() is deprecated. Use
WAIT_FOR_EXECUTED_GTID_SET() instead, which works regardless of the replication channel or
user client through which the specified transactions arrive on the server.

14.18.3 Asynchronous Replication Channel Failover Functions

The following functions, which are available from MySQL 8.0.22 for standard source to replica
replication and from MySQL 8.0.23 for Group Replication, enable you to add and remove replication
source servers from the source list for a replication channel. From MySQL 8.0.27, you can also clear
the source list for a server.

Table 14.27 Failover Channel Functions

Name Description Introduced

asynchronous_connection_failover_add_managed()Add group member source
server configuration information
to a replication channel source
list

8.0.23

asynchronous_connection_failover_add_source()Add source server configuration
information server to a replication
channel source list

8.0.22

asynchronous_connection_failover_delete_managed()Remove a managed group from
a replication channel source list

8.0.23

asynchronous_connection_failover_delete_source()Remove a source server from a
replication channel source list

8.0.22

asynchronous_connection_failover_reset()Remove all settings relating to
group replication asynchronous
failover

8.0.27

The asynchronous connection failover mechanism automatically establishes an asynchronous
(source to replica) replication connection to a new source from the appropriate list after the existing
connection from the replica to its source fails. From MySQL 8.0.23, the connection is also changed if
the currently connected source does not have the highest weighted priority in the group. For Group
Replication source servers that are defined as part of a managed group, the connection is also failed
over to another group member if the currently connected source leaves the group or is no longer in

2580

Asynchronous Replication Channel Failover Functions

the majority. For more information on the mechanism, see Section 19.4.9, “Switching Sources and
Replicas with Asynchronous Connection Failover”.

Source lists are stored in the mysql.replication_asynchronous_connection_failover and
mysql.replication_asynchronous_connection_failover_managed tables, and can be
viewed in the Performance Schema replication_asynchronous_connection_failover table.

If the replication channel is on a Group Replication primary for a group where failover
between replicas is active, the source list is broadcast to all the group members when they
join or when it is updated by any method. Failover between replicas is controlled by the
mysql_start_failover_channels_if_primary member action, which is enabled by default, and
can be disabled using the group_replication_disable_member_action function.

• asynchronous_connection_failover_add_managed()

Add configuration information for a replication source server that is part of a managed group (a
Group Replication group member) to the source list for a replication channel. You only need to add
one group member. The replica automatically adds the rest from the current group membership, then
keeps the source list updated in line with membership change.

Syntax:

asynchronous_connection_failover_add_managed(channel, managed_type, managed_name, host, port, network_namespace, primary_weight, secondary_weight)

Arguments:

• channel: The replication channel for which this replication source server is part of the source list.

• managed_type: The type of managed service that the asynchronous connection
failover mechanism must provide for this server. The only value currently accepted is
GroupReplication.

• managed_name: The identifier for the managed group that the server is a part of.
For the GroupReplication managed service, the identifier is the value of the
group_replication_group_name system variable.

• host: The host name for this replication source server.

• port: The port number for this replication source server.

• network_namespace: The network namespace for this replication source server. Specify an
empty string, as this parameter is reserved for future use.

• primary_weight: The priority of this replication source server in the replication channel's source
list when it is acting as the primary for the managed group. The weight is from 1 to 100, with 100
being the highest. For the primary, 80 is a suitable weight. The asynchronous connection failover
mechanism activates if the currently connected source is not the highest weighted in the group.
Assuming that you set up the managed group to give a higher weight to a primary and a lower
weight to a secondary, when the primary changes, its weight increases, and the replica changes
over the connection to it.

• secondary_weight: The priority of this replication source server in the replication channel's
source list when it is acting as a secondary in the managed group. The weight is from 1 to 100,
with 100 being the highest. For a secondary, 60 is a suitable weight.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

SELECT asynchronous_connection_failover_add_managed('channel2', 'GroupReplication', 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa', '127.0.0.1', 3310, '', 80, 60);

2581

Asynchronous Replication Channel Failover Functions

+--+
| asynchronous_connection_failover_add_source('channel2', 'GroupReplication', 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa', '127.0.0.1', 3310, '', 80, 60) |
+--+
| Source managed configuration details successfully inserted. |
+--+

For more information, see Section 19.4.9, “Switching Sources and Replicas with Asynchronous
Connection Failover”.

• asynchronous_connection_failover_add_source()

Add configuration information for a replication source server to the source list for a replication
channel.

Syntax:

asynchronous_connection_failover_add_source(channel, host, port, network_namespace, weight)

Arguments:

• channel: The replication channel for which this replication source server is part of the source list.

• host: The host name for this replication source server.

• port: The port number for this replication source server.

• network_namespace: The network namespace for this replication source server. Specify an
empty string, as this parameter is reserved for future use.

• weight: The priority of this replication source server in the replication channel's source list.
The priority is from 1 to 100, with 100 being the highest, and 50 being the default. When the
asynchronous connection failover mechanism activates, the source with the highest priority
setting among the alternative sources listed in the source list for the channel is chosen for the first
connection attempt. If this attempt does not work, the replica tries with all the listed sources in
descending order of priority, then starts again from the highest priority source. If multiple sources
have the same priority, the replica orders them randomly. From MySQL 8.0.23, the asynchronous
connection failover mechanism activates if the source currently connected is not the highest
weighted in the group.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

SELECT asynchronous_connection_failover_add_source('channel2', '127.0.0.1', 3310, '', 80);
+---+
| asynchronous_connection_failover_add_source('channel2', '127.0.0.1', 3310, '', 80) |
+---+
| Source configuration details successfully inserted. |
+---+

For more information, see Section 19.4.9, “Switching Sources and Replicas with Asynchronous
Connection Failover”.

2582

Asynchronous Replication Channel Failover Functions

• asynchronous_connection_failover_delete_managed()

Remove an entire managed group from the source list for a replication channel. When you use this
function, all the replication source servers defined in the managed group are removed from the
channel's source list.

Syntax:

asynchronous_connection_failover_delete_managed(channel, managed_name)

Arguments:

• channel: The replication channel for which this replication source server was part of the source
list.

• managed_name: The identifier for the managed group that the server is a part of.
For the GroupReplication managed service, the identifier is the value of the
group_replication_group_name system variable.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

SELECT asynchronous_connection_failover_delete_managed('channel2', 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa');
+---+
| asynchronous_connection_failover_delete_managed('channel2', 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa') |
+---+
| Source managed configuration details successfully deleted. |
+---+

For more information, see Section 19.4.9, “Switching Sources and Replicas with Asynchronous
Connection Failover”.

• asynchronous_connection_failover_delete_source()

Remove configuration information for a replication source server from the source list for a replication
channel.

Syntax:

asynchronous_connection_failover_delete_source(channel, host, port, network_namespace)

Arguments:

• channel: The replication channel for which this replication source server was part of the source
list.

• host: The host name for this replication source server.

• port: The port number for this replication source server.

• network_namespace: The network namespace for this replication source server. Specify an
empty string, as this parameter is reserved for future use.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

SELECT asynchronous_connection_failover_delete_source('channel2', '127.0.0.1', 3310, '');
+--+

2583

Position-Based Synchronization Functions

| asynchronous_connection_failover_delete_source('channel2', '127.0.0.1', 3310, '') |
+--+
| Source configuration details successfully deleted. |
+--+

For more information, see Section 19.4.9, “Switching Sources and Replicas with Asynchronous
Connection Failover”.

• asynchronous_connection_failover_reset()

Remove all settings relating to the asynchronous connection failover mechanism. The function clears
the Performance Schema tables replication_asynchronous_connection_failover and
replication_asynchronous_connection_failover_managed.

asynchronous_connection_failover_reset() can be used only on a server that is not
currently part of a group, and that does not have any replication channels running. You can use this
function to clean up a server that is no longer being used in a managed group.

Syntax:

STRING asynchronous_connection_failover_reset()

Arguments:

None.

Return value:

A string containing the result of the operation, for example whether it was successful or not.

Example:

mysql> SELECT asynchronous_connection_failover_reset();
+---+
| asynchronous_connection_failover_reset() |
+---+
| The UDF asynchronous_connection_failover_reset() executed successfully. |
+---+
1 row in set (0.00 sec)

For more information, see Section 19.4.9, “Switching Sources and Replicas with Asynchronous
Connection Failover”.

14.18.4 Position-Based Synchronization Functions

The functions listed in this section are used for controlling position-based synchronization of source
and replica servers in MySQL Replication.

Table 14.28 Positional Synchronization Functions

Name Description Introduced Deprecated

MASTER_POS_WAIT() Block until the replica
has read and applied
all updates up to the
specified position

8.0.26

SOURCE_POS_WAIT() Block until the replica
has read and applied
all updates up to the
specified position

8.0.26

• MASTER_POS_WAIT(log_name,log_pos[,timeout][,channel])

2584

Position-Based Synchronization Functions

This function is for control of source-replica synchronization. It blocks until the replica has read
and applied all updates up to the specified position in the source's binary log. From MySQL 8.0.26,
MASTER_POS_WAIT() is deprecated and the alias SOURCE_POS_WAIT() should be used instead.
In releases before MySQL 8.0.26, use MASTER_POS_WAIT().

The return value is the number of log events the replica had to wait for to advance to the specified
position. The function returns NULL if the replication SQL thread is not started, the replica's source
information is not initialized, the arguments are incorrect, or an error occurs. It returns -1 if the
timeout has been exceeded. If the replication SQL thread stops while MASTER_POS_WAIT() is
waiting, the function returns NULL. If the replica is past the specified position, the function returns
immediately.

If the binary log file position has been marked as invalid, the function waits until a valid file position
is known. The binary log file position can be marked as invalid when the CHANGE REPLICATION
SOURCE TO option GTID_ONLY is set for the replication channel, and the server is restarted or
replication is stopped. The file position becomes valid after a transaction is successfully applied past
the given file position. If the applier does not reach the stated position, the function waits until the
timeout. Use a SHOW REPLICA STATUS statement to check if the binary log file position has been
marked as invalid.

On a multithreaded replica, the function waits until expiry of the limit set by the
replica_checkpoint_group, slave_checkpoint_group, replica_checkpoint_period
or slave_checkpoint_period system variable, when the checkpoint operation is called to
update the status of the replica. Depending on the setting for the system variables, the function might
therefore return some time after the specified position was reached.

If binary log transaction compression is in use and the transaction payload at the specified position is
compressed (as a Transaction_payload_event), the function waits until the whole transaction
has been read and applied, and the positions have updated.

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds have
elapsed. timeout must be greater than or equal to 0. (When the server is running in strict SQL
mode, a negative timeout value is immediately rejected with ER_WRONG_ARGUMENTS; otherwise
the function returns NULL, and raises a warning.)

The optional channel value enables you to name which replication channel the function applies to.
See Section 19.2.2, “Replication Channels” for more information.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

• SOURCE_POS_WAIT(log_name,log_pos[,timeout][,channel])

This function is for control of source-replica synchronization. It blocks until the replica has read and
applied all updates up to the specified position in the source's binary log. From MySQL 8.0.26, use
SOURCE_POS_WAIT() in place of MASTER_POS_WAIT(), which is deprecated from that release. In
releases before MySQL 8.0.26, use MASTER_POS_WAIT().

The return value is the number of log events the replica had to wait for to advance to the specified
position. The function returns NULL if the replication SQL thread is not started, the replica's source
information is not initialized, the arguments are incorrect, or an error occurs. It returns -1 if the
timeout has been exceeded. If the replication SQL thread stops while SOURCE_POS_WAIT() is
waiting, the function returns NULL. If the replica is past the specified position, the function returns
immediately.

If the binary log file position has been marked as invalid, the function waits until a valid file position
is known. The binary log file position can be marked as invalid when the CHANGE REPLICATION
SOURCE TO option GTID_ONLY is set for the replication channel, and the server is restarted or
replication is stopped. The file position becomes valid after a transaction is successfully applied past

2585

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_arguments

Aggregate Functions

the given file position. If the applier does not reach the stated position, the function waits until the
timeout. Use a SHOW REPLICA STATUS statement to check if the binary log file position has been
marked as invalid.

On a multithreaded replica, the function waits until expiry of the limit set by the
replica_checkpoint_group or replica_checkpoint_period system variable, when the
checkpoint operation is called to update the status of the replica. Depending on the setting for the
system variables, the function might therefore return some time after the specified position was
reached.

If binary log transaction compression is in use and the transaction payload at the specified position is
compressed (as a Transaction_payload_event), the function waits until the whole transaction
has been read and applied, and the positions have updated.

If a timeout value is specified, SOURCE_POS_WAIT() stops waiting when timeout seconds have
elapsed. timeout must be greater than or equal to 0. (In strict SQL mode, a negative timeout
value is immediately rejected with ER_WRONG_ARGUMENTS; otherwise the function returns NULL, and
raises a warning.)

The optional channel value enables you to name which replication channel the function applies to.
See Section 19.2.2, “Replication Channels” for more information.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

14.19 Aggregate Functions
Aggregate functions operate on sets of values. They are often used with a GROUP BY clause to group
values into subsets. This section describes most aggregate functions. For information about aggregate
functions that operate on geometry values, see Section 14.16.12, “Spatial Aggregate Functions”.

14.19.1 Aggregate Function Descriptions

This section describes aggregate functions that operate on sets of values. They are often used with a
GROUP BY clause to group values into subsets.

Table 14.29 Aggregate Functions

Name Description

AVG() Return the average value of the argument

BIT_AND() Return bitwise AND

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

COUNT() Return a count of the number of rows returned

COUNT(DISTINCT) Return the count of a number of different values

GROUP_CONCAT() Return a concatenated string

JSON_ARRAYAGG() Return result set as a single JSON array

JSON_OBJECTAGG() Return result set as a single JSON object

MAX() Return the maximum value

MIN() Return the minimum value

STD() Return the population standard deviation

STDDEV() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

2586

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_arguments

Aggregate Function Descriptions

Name Description

SUM() Return the sum

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

Unless otherwise stated, aggregate functions ignore NULL values.

If you use an aggregate function in a statement containing no GROUP BY clause, it is equivalent to
grouping on all rows. For more information, see Section 14.19.3, “MySQL Handling of GROUP BY”.

Most aggregate functions can be used as window functions. Those that can be used this way are
signified in their syntax description by [over_clause], representing an optional OVER clause.
over_clause is described in Section 14.20.2, “Window Function Concepts and Syntax”, which also
includes other information about window function usage.

For numeric arguments, the variance and standard deviation functions return a DOUBLE value. The
SUM() and AVG() functions return a DECIMAL value for exact-value arguments (integer or DECIMAL),
and a DOUBLE value for approximate-value arguments (FLOAT or DOUBLE).

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values
to numbers, losing everything after the first nonnumeric character.) To work around this problem,
convert to numeric units, perform the aggregate operation, and convert back to a temporal value.
Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number
if necessary. For SET or ENUM values, the cast operation causes the underlying numeric value to be
used.

The BIT_AND(), BIT_OR(), and BIT_XOR() aggregate functions perform bit operations. Prior to
MySQL 8.0, bit functions and operators required BIGINT (64-bit integer) arguments and returned
BIGINT values, so they had a maximum range of 64 bits. Non-BIGINT arguments were converted to
BIGINT prior to performing the operation and truncation could occur.

In MySQL 8.0, bit functions and operators permit binary string type arguments (BINARY, VARBINARY,
and the BLOB types) and return a value of like type, which enables them to take arguments and
produce return values larger than 64 bits. For discussion about argument evaluation and result types
for bit operations, see the introductory discussion in Section 14.12, “Bit Functions and Operators”.

• AVG([DISTINCT] expr) [over_clause]

Returns the average value of expr. The DISTINCT option can be used to return the average of the
distinct values of expr.

If there are no matching rows, AVG() returns NULL. The function also returns NULL if expr is NULL.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”; it cannot be used with
DISTINCT.

mysql> SELECT student_name, AVG(test_score)
 FROM student
 GROUP BY student_name;

• BIT_AND(expr) [over_clause]

Returns the bitwise AND of all bits in expr.

2587

Aggregate Function Descriptions

The result type depends on whether the function argument values are evaluated as binary strings or
numbers:

• Binary-string evaluation occurs when the argument values have a binary string type, and the
argument is not a hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs
otherwise, with argument value conversion to unsigned 64-bit integers as necessary.

• Binary-string evaluation produces a binary string of the same length
as the argument values. If argument values have unequal lengths, an
ER_INVALID_BITWISE_OPERANDS_SIZE error occurs. If the argument size exceeds 511 bytes,
an ER_INVALID_BITWISE_AGGREGATE_OPERANDS_SIZE error occurs. Numeric evaluation
produces an unsigned 64-bit integer.

If there are no matching rows, BIT_AND() returns a neutral value (all bits set to 1) having the same
length as the argument values.

NULL values do not affect the result unless all values are NULL. In that case, the result is a neutral
value having the same length as the argument values.

For more information discussion about argument evaluation and result types, see the introductory
discussion in Section 14.12, “Bit Functions and Operators”.

If BIT_AND() is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information
about that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

As of MySQL 8.0.12, this function executes as a window function if over_clause is present.
over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.

• BIT_OR(expr) [over_clause]

Returns the bitwise OR of all bits in expr.

The result type depends on whether the function argument values are evaluated as binary strings or
numbers:

• Binary-string evaluation occurs when the argument values have a binary string type, and the
argument is not a hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs
otherwise, with argument value conversion to unsigned 64-bit integers as necessary.

• Binary-string evaluation produces a binary string of the same length
as the argument values. If argument values have unequal lengths, an
ER_INVALID_BITWISE_OPERANDS_SIZE error occurs. If the argument size exceeds 511 bytes,

2588

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_operands_size
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_aggregate_operands_size
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_operands_size

Aggregate Function Descriptions

an ER_INVALID_BITWISE_AGGREGATE_OPERANDS_SIZE error occurs. Numeric evaluation
produces an unsigned 64-bit integer.

If there are no matching rows, BIT_OR() returns a neutral value (all bits set to 0) having the same
length as the argument values.

NULL values do not affect the result unless all values are NULL. In that case, the result is a neutral
value having the same length as the argument values.

For more information discussion about argument evaluation and result types, see the introductory
discussion in Section 14.12, “Bit Functions and Operators”.

If BIT_OR() is invoked from within the mysql client, binary string results display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

As of MySQL 8.0.12, this function executes as a window function if over_clause is present.
over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.

• BIT_XOR(expr) [over_clause]

Returns the bitwise XOR of all bits in expr.

The result type depends on whether the function argument values are evaluated as binary strings or
numbers:

• Binary-string evaluation occurs when the argument values have a binary string type, and the
argument is not a hexadecimal literal, bit literal, or NULL literal. Numeric evaluation occurs
otherwise, with argument value conversion to unsigned 64-bit integers as necessary.

• Binary-string evaluation produces a binary string of the same length
as the argument values. If argument values have unequal lengths, an
ER_INVALID_BITWISE_OPERANDS_SIZE error occurs. If the argument size exceeds 511 bytes,
an ER_INVALID_BITWISE_AGGREGATE_OPERANDS_SIZE error occurs. Numeric evaluation
produces an unsigned 64-bit integer.

If there are no matching rows, BIT_XOR() returns a neutral value (all bits set to 0) having the same
length as the argument values.

NULL values do not affect the result unless all values are NULL. In that case, the result is a neutral
value having the same length as the argument values.

For more information discussion about argument evaluation and result types, see the introductory
discussion in Section 14.12, “Bit Functions and Operators”.

If BIT_XOR() is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information
about that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

As of MySQL 8.0.12, this function executes as a window function if over_clause is present.
over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.

2589

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_aggregate_operands_size
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_operands_size
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_bitwise_aggregate_operands_size

Aggregate Function Descriptions

• COUNT(expr) [over_clause]

Returns a count of the number of non-NULL values of expr in the rows retrieved by a SELECT
statement. The result is a BIGINT value.

If there are no matching rows, COUNT() returns 0. COUNT(NULL) returns 0.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”.

mysql> SELECT student.student_name,COUNT(*)
 FROM student,course
 WHERE student.student_id=course.student_id
 GROUP BY student_name;

COUNT(*) is somewhat different in that it returns a count of the number of rows retrieved, whether or
not they contain NULL values.

For transactional storage engines such as InnoDB, storing an exact row count is problematic.
Multiple transactions may be occurring at the same time, each of which may affect the count.

InnoDB does not keep an internal count of rows in a table because concurrent transactions might
“see” different numbers of rows at the same time. Consequently, SELECT COUNT(*) statements
only count rows visible to the current transaction.

As of MySQL 8.0.13, SELECT COUNT(*) FROM tbl_name query performance for InnoDB tables
is optimized for single-threaded workloads if there are no extra clauses such as WHERE or GROUP
BY.

InnoDB processes SELECT COUNT(*) statements by traversing the smallest available secondary
index unless an index or optimizer hint directs the optimizer to use a different index. If a secondary
index is not present, InnoDB processes SELECT COUNT(*) statements by scanning the clustered
index.

Processing of SELECT COUNT(*) statements takes some time if index records are not entirely
in the buffer pool. For a faster count, create a counter table and let your application update it
according to the inserts and deletes it does. However, this method may not scale well in situations
where thousands of concurrent transactions are initiating updates to the same counter table. If an
approximate row count is sufficient, use SHOW TABLE STATUS.

InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) operations in the same way. There is
no performance difference.

For MyISAM tables, COUNT(*) is optimized to return very quickly if the SELECT retrieves from one
table, no other columns are retrieved, and there is no WHERE clause. For example:

mysql> SELECT COUNT(*) FROM student;

This optimization only applies to MyISAM tables, because an exact row count is stored for
this storage engine and can be accessed very quickly. COUNT(1) is only subject to the same
optimization if the first column is defined as NOT NULL.

2590

Aggregate Function Descriptions

• COUNT(DISTINCT expr,[expr...])

Returns a count of the number of rows with different non-NULL expr values.

If there are no matching rows, COUNT(DISTINCT) returns 0.

mysql> SELECT COUNT(DISTINCT results) FROM student;

In MySQL, you can obtain the number of distinct expression combinations that do not contain
NULL by giving a list of expressions. In standard SQL, you would have to do a concatenation of all
expressions inside COUNT(DISTINCT ...).

• GROUP_CONCAT(expr)

This function returns a string result with the concatenated non-NULL values from a group. It returns
NULL if there are no non-NULL values. The full syntax is as follows:

GROUP_CONCAT([DISTINCT] expr [,expr ...]
 [ORDER BY {unsigned_integer | col_name | expr}
 [ASC | DESC] [,col_name ...]]
 [SEPARATOR str_val])

mysql> SELECT student_name,
 GROUP_CONCAT(test_score)
 FROM student
 GROUP BY student_name;

Or:

mysql> SELECT student_name,
 GROUP_CONCAT(DISTINCT test_score
 ORDER BY test_score DESC SEPARATOR ' ')
 FROM student
 GROUP BY student_name;

In MySQL, you can get the concatenated values of expression combinations. To eliminate duplicate
values, use the DISTINCT clause. To sort values in the result, use the ORDER BY clause. To sort
in reverse order, add the DESC (descending) keyword to the name of the column you are sorting by
in the ORDER BY clause. The default is ascending order; this may be specified explicitly using the
ASC keyword. The default separator between values in a group is comma (,). To specify a separator
explicitly, use SEPARATOR followed by the string literal value that should be inserted between group
values. To eliminate the separator altogether, specify SEPARATOR ''.

The result is truncated to the maximum length that is given by the group_concat_max_len system
variable, which has a default value of 1024. The value can be set higher, although the effective
maximum length of the return value is constrained by the value of max_allowed_packet. The
syntax to change the value of group_concat_max_len at runtime is as follows, where val is an
unsigned integer:

SET [GLOBAL | SESSION] group_concat_max_len = val;

The return value is a nonbinary or binary string, depending on whether the arguments are nonbinary
or binary strings. The result type is TEXT or BLOB unless group_concat_max_len is less than or
equal to 512, in which case the result type is VARCHAR or VARBINARY.

If GROUP_CONCAT() is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information
about that option, see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

See also CONCAT() and CONCAT_WS(): Section 14.8, “String Functions and Operators”.

2591

Aggregate Function Descriptions

• JSON_ARRAYAGG(col_or_expr) [over_clause]

Aggregates a result set as a single JSON array whose elements consist of the rows. The order of
elements in this array is undefined. The function acts on a column or an expression that evaluates
to a single value. Returns NULL if the result contains no rows, or in the event of an error. If
col_or_expr is NULL, the function returns an array of JSON [null] elements.

As of MySQL 8.0.14, this function executes as a window function if over_clause is present.
over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.

mysql> SELECT o_id, attribute, value FROM t3;
+------+-----------+-------+
| o_id | attribute | value |
+------+-----------+-------+
2	color	red
2	fabric	silk
3	color	green
3	shape	square
+------+-----------+-------+
4 rows in set (0.00 sec)

mysql> SELECT o_id, JSON_ARRAYAGG(attribute) AS attributes
 -> FROM t3 GROUP BY o_id;
+------+---------------------+
| o_id | attributes |
+------+---------------------+
| 2 | ["color", "fabric"] |
| 3 | ["color", "shape"] |
+------+---------------------+
2 rows in set (0.00 sec)

• JSON_OBJECTAGG(key, value) [over_clause]

Takes two column names or expressions as arguments, the first of these being used as a key and
the second as a value, and returns a JSON object containing key-value pairs. Returns NULL if the
result contains no rows, or in the event of an error. An error occurs if any key name is NULL or the
number of arguments is not equal to 2.

As of MySQL 8.0.14, this function executes as a window function if over_clause is present.
over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.

mysql> SELECT o_id, attribute, value FROM t3;
+------+-----------+-------+
| o_id | attribute | value |
+------+-----------+-------+
2	color	red
2	fabric	silk
3	color	green
3	shape	square
+------+-----------+-------+
4 rows in set (0.00 sec)

mysql> SELECT o_id, JSON_OBJECTAGG(attribute, value)
 -> FROM t3 GROUP BY o_id;
+------+---------------------------------------+
| o_id | JSON_OBJECTAGG(attribute, value) |
+------+---------------------------------------+
| 2 | {"color": "red", "fabric": "silk"} |
| 3 | {"color": "green", "shape": "square"} |
+------+---------------------------------------+
2 rows in set (0.00 sec)

Duplicate key handling. When the result of this function is normalized, values having duplicate
keys are discarded. In keeping with the MySQL JSON data type specification that does not permit
duplicate keys, only the last value encountered is used with that key in the returned object (“last

2592

Aggregate Function Descriptions

duplicate key wins”). This means that the result of using this function on columns from a SELECT can
depend on the order in which the rows are returned, which is not guaranteed.

When used as a window function, if there are duplicate keys within a frame, only the last value for
the key is present in the result. The value for the key from the last row in the frame is deterministic
if the ORDER BY specification guarantees that the values have a specific order. If not, the resulting
value of the key is nondeterministic.

Consider the following:

mysql> CREATE TABLE t(c VARCHAR(10), i INT);
Query OK, 0 rows affected (0.33 sec)

mysql> INSERT INTO t VALUES ('key', 3), ('key', 4), ('key', 5);
Query OK, 3 rows affected (0.10 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c, i FROM t;
+------+------+
| c | i |
+------+------+
key	3
key	4
key	5
+------+------+
3 rows in set (0.00 sec)

mysql> SELECT JSON_OBJECTAGG(c, i) FROM t;
+----------------------+
| JSON_OBJECTAGG(c, i) |
+----------------------+
| {"key": 5} |
+----------------------+
1 row in set (0.00 sec)

mysql> DELETE FROM t;
Query OK, 3 rows affected (0.08 sec)

mysql> INSERT INTO t VALUES ('key', 3), ('key', 5), ('key', 4);
Query OK, 3 rows affected (0.06 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT c, i FROM t;
+------+------+
| c | i |
+------+------+
key	3
key	5
key	4
+------+------+
3 rows in set (0.00 sec)

mysql> SELECT JSON_OBJECTAGG(c, i) FROM t;
+----------------------+
| JSON_OBJECTAGG(c, i) |
+----------------------+
| {"key": 4} |
+----------------------+
1 row in set (0.00 sec)

The key chosen from the last query is nondeterministic. If the query does not use GROUP BY (which
usually imposes its own ordering regardless) and you prefer a particular key ordering, you can
invoke JSON_OBJECTAGG() as a window function by including an OVER clause with an ORDER BY
specification to impose a particular order on frame rows. The following examples show what happens
with and without ORDER BY for a few different frame specifications.

Without ORDER BY, the frame is the entire partition:

mysql> SELECT JSON_OBJECTAGG(c, i)

2593

Aggregate Function Descriptions

 OVER () AS json_object FROM t;
+-------------+
| json_object |
+-------------+
| {"key": 4} |
| {"key": 4} |
| {"key": 4} |
+-------------+

With ORDER BY, where the frame is the default of RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW (in both ascending and descending order):

mysql> SELECT JSON_OBJECTAGG(c, i)
 OVER (ORDER BY i) AS json_object FROM t;
+-------------+
| json_object |
+-------------+
| {"key": 3} |
| {"key": 4} |
| {"key": 5} |
+-------------+
mysql> SELECT JSON_OBJECTAGG(c, i)
 OVER (ORDER BY i DESC) AS json_object FROM t;
+-------------+
| json_object |
+-------------+
| {"key": 5} |
| {"key": 4} |
| {"key": 3} |
+-------------+

With ORDER BY and an explicit frame of the entire partition:

mysql> SELECT JSON_OBJECTAGG(c, i)
 OVER (ORDER BY i
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
 AS json_object
 FROM t;
+-------------+
| json_object |
+-------------+
| {"key": 5} |
| {"key": 5} |
| {"key": 5} |
+-------------+

To return a particular key value (such as the smallest or largest), include a LIMIT clause in the
appropriate query. For example:

mysql> SELECT JSON_OBJECTAGG(c, i)
 OVER (ORDER BY i) AS json_object FROM t LIMIT 1;
+-------------+
| json_object |
+-------------+
| {"key": 3} |
+-------------+
mysql> SELECT JSON_OBJECTAGG(c, i)
 OVER (ORDER BY i DESC) AS json_object FROM t LIMIT 1;
+-------------+
| json_object |
+-------------+
| {"key": 5} |
+-------------+

See Normalization, Merging, and Autowrapping of JSON Values, for additional information and
examples.

2594

Aggregate Function Descriptions

• MAX([DISTINCT] expr) [over_clause]

Returns the maximum value of expr. MAX() may take a string argument; in such cases, it returns
the maximum string value. See Section 10.3.1, “How MySQL Uses Indexes”. The DISTINCT
keyword can be used to find the maximum of the distinct values of expr, however, this produces the
same result as omitting DISTINCT.

If there are no matching rows, or if expr is NULL, MAX() returns NULL.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”; it cannot be used with
DISTINCT.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 FROM student
 GROUP BY student_name;

For MAX(), MySQL currently compares ENUM and SET columns by their string value rather than by
the string's relative position in the set. This differs from how ORDER BY compares them.

• MIN([DISTINCT] expr) [over_clause]

Returns the minimum value of expr. MIN() may take a string argument; in such cases, it returns the
minimum string value. See Section 10.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword
can be used to find the minimum of the distinct values of expr, however, this produces the same
result as omitting DISTINCT.

If there are no matching rows, or if expr is NULL, MIN() returns NULL.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”; it cannot be used with
DISTINCT.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 FROM student
 GROUP BY student_name;

For MIN(), MySQL currently compares ENUM and SET columns by their string value rather than by
the string's relative position in the set. This differs from how ORDER BY compares them.

• STD(expr) [over_clause]

Returns the population standard deviation of expr. STD() is a synonym for the standard SQL
function STDDEV_POP(), provided as a MySQL extension.

If there are no matching rows, or if expr is NULL, STD() returns NULL.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”.

• STDDEV(expr) [over_clause]

Returns the population standard deviation of expr. STDDEV() is a synonym for the standard SQL
function STDDEV_POP(), provided for compatibility with Oracle.

If there are no matching rows, or if expr is NULL, STDDEV() returns NULL.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”.

2595

GROUP BY Modifiers

• STDDEV_POP(expr) [over_clause]

Returns the population standard deviation of expr (the square root of VAR_POP()). You can also
use STD() or STDDEV(), which are equivalent but not standard SQL.

If there are no matching rows, or if expr is NULL, STDDEV_POP() returns NULL.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”.

• STDDEV_SAMP(expr) [over_clause]

Returns the sample standard deviation of expr (the square root of VAR_SAMP().

If there are no matching rows, or if expr is NULL, STDDEV_SAMP() returns NULL.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”.

• SUM([DISTINCT] expr) [over_clause]

Returns the sum of expr. If the return set has no rows, SUM() returns NULL. The DISTINCT
keyword can be used to sum only the distinct values of expr.

If there are no matching rows, or if expr is NULL, SUM() returns NULL.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”; it cannot be used with
DISTINCT.

• VAR_POP(expr) [over_clause]

Returns the population standard variance of expr. It considers rows as the whole population, not as
a sample, so it has the number of rows as the denominator. You can also use VARIANCE(), which is
equivalent but is not standard SQL.

If there are no matching rows, or if expr is NULL, VAR_POP() returns NULL.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”.

• VAR_SAMP(expr) [over_clause]

Returns the sample variance of expr. That is, the denominator is the number of rows minus one.

If there are no matching rows, or if expr is NULL, VAR_SAMP() returns NULL.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”.

• VARIANCE(expr) [over_clause]

Returns the population standard variance of expr. VARIANCE() is a synonym for the standard SQL
function VAR_POP(), provided as a MySQL extension.

If there are no matching rows, or if expr is NULL, VARIANCE() returns NULL.

This function executes as a window function if over_clause is present. over_clause is as
described in Section 14.20.2, “Window Function Concepts and Syntax”.

14.19.2 GROUP BY Modifiers
2596

GROUP BY Modifiers

The GROUP BY clause permits a WITH ROLLUP modifier that causes summary output to include extra
rows that represent higher-level (that is, super-aggregate) summary operations. ROLLUP thus enables
you to answer questions at multiple levels of analysis with a single query. For example, ROLLUP can be
used to provide support for OLAP (Online Analytical Processing) operations.

Suppose that a sales table has year, country, product, and profit columns for recording sales
profitability:

CREATE TABLE sales
(
 year INT,
 country VARCHAR(20),
 product VARCHAR(32),
 profit INT
);

To summarize table contents per year, use a simple GROUP BY like this:

mysql> SELECT year, SUM(profit) AS profit
 FROM sales
 GROUP BY year;
+------+--------+
| year | profit |
+------+--------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+--------+

The output shows the total (aggregate) profit for each year. To also determine the total profit summed
over all years, you must add up the individual values yourself or run an additional query. Or you can
use ROLLUP, which provides both levels of analysis with a single query. Adding a WITH ROLLUP
modifier to the GROUP BY clause causes the query to produce another (super-aggregate) row that
shows the grand total over all year values:

mysql> SELECT year, SUM(profit) AS profit
 FROM sales
 GROUP BY year WITH ROLLUP;
+------+--------+
| year | profit |
+------+--------+
2000	4525
2001	3010
NULL	7535
+------+--------+

The NULL value in the year column identifies the grand total super-aggregate line.

ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case, each
time there is a change in value in any but the last grouping column, the query produces an extra super-
aggregate summary row.

For example, without ROLLUP, a summary of the sales table based on year, country, and product
might look like this, where the output indicates summary values only at the year/country/product level of
analysis:

mysql> SELECT year, country, product, SUM(profit) AS profit
 FROM sales
 GROUP BY year, country, product;
+------+---------+------------+--------+
| year | country | product | profit |
+------+---------+------------+--------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	India	Calculator	150
2000	India	Computer	1200
2000	USA	Calculator	75
2000	USA	Computer	1500
2001	Finland	Phone	10

2597

GROUP BY Modifiers

2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
+------+---------+------------+--------+

With ROLLUP added, the query produces several extra rows:

mysql> SELECT year, country, product, SUM(profit) AS profit
 FROM sales
 GROUP BY year, country, product WITH ROLLUP;
+------+---------+------------+--------+
| year | country | product | profit |
+------+---------+------------+--------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
2000	India	NULL	1350
2000	USA	Calculator	75
2000	USA	Computer	1500
2000	USA	NULL	1575
2000	NULL	NULL	4525
2001	Finland	Phone	10
2001	Finland	NULL	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
2001	USA	NULL	3000
2001	NULL	NULL	3010
NULL	NULL	NULL	7535
+------+---------+------------+--------+

Now the output includes summary information at four levels of analysis, not just one:

• Following each set of product rows for a given year and country, an extra super-aggregate summary
row appears showing the total for all products. These rows have the product column set to NULL.

• Following each set of rows for a given year, an extra super-aggregate summary row appears
showing the total for all countries and products. These rows have the country and products
columns set to NULL.

• Finally, following all other rows, an extra super-aggregate summary row appears showing the
grand total for all years, countries, and products. This row has the year, country, and products
columns set to NULL.

The NULL indicators in each super-aggregate row are produced when the row is sent to the client.
The server looks at the columns named in the GROUP BY clause following the leftmost one that has
changed value. For any column in the result set with a name that matches any of those names, its
value is set to NULL. (If you specify grouping columns by column position, the server identifies which
columns to set to NULL by position.)

Because the NULL values in the super-aggregate rows are placed into the result set at such a late
stage in query processing, you can test them as NULL values only in the select list or HAVING clause.
You cannot test them as NULL values in join conditions or the WHERE clause to determine which rows
to select. For example, you cannot add WHERE product IS NULL to the query to eliminate from the
output all but the super-aggregate rows.

The NULL values do appear as NULL on the client side and can be tested as such using any MySQL
client programming interface. However, at this point, you cannot distinguish whether a NULL represents
a regular grouped value or a super-aggregate value. To test the distinction, use the GROUPING()
function, described later.

Previously, MySQL did not allow the use of DISTINCT or ORDER BY in a query having a WITH
ROLLUP option. This restriction is lifted in MySQL 8.0.12 and later. (Bug #87450, Bug #86311, Bug
#26640100, Bug #26073513)

2598

GROUP BY Modifiers

For GROUP BY ... WITH ROLLUP queries, to test whether NULL values in the result represent
super-aggregate values, the GROUPING() function is available for use in the select list, HAVING
clause, and (as of MySQL 8.0.12) ORDER BY clause. For example, GROUPING(year) returns
1 when NULL in the year column occurs in a super-aggregate row, and 0 otherwise. Similarly,
GROUPING(country) and GROUPING(product) return 1 for super-aggregate NULL values in the
country and product columns, respectively:

mysql> SELECT
 year, country, product, SUM(profit) AS profit,
 GROUPING(year) AS grp_year,
 GROUPING(country) AS grp_country,
 GROUPING(product) AS grp_product
 FROM sales
 GROUP BY year, country, product WITH ROLLUP;
+------+---------+------------+--------+----------+-------------+-------------+
| year | country | product | profit | grp_year | grp_country | grp_product |
+------+---------+------------+--------+----------+-------------+-------------+
2000	Finland	Computer	1500	0	0	0
2000	Finland	Phone	100	0	0	0
2000	Finland	NULL	1600	0	0	1
2000	India	Calculator	150	0	0	0
2000	India	Computer	1200	0	0	0
2000	India	NULL	1350	0	0	1
2000	USA	Calculator	75	0	0	0
2000	USA	Computer	1500	0	0	0
2000	USA	NULL	1575	0	0	1
2000	NULL	NULL	4525	0	1	1
2001	Finland	Phone	10	0	0	0
2001	Finland	NULL	10	0	0	1
2001	USA	Calculator	50	0	0	0
2001	USA	Computer	2700	0	0	0
2001	USA	TV	250	0	0	0
2001	USA	NULL	3000	0	0	1
2001	NULL	NULL	3010	0	1	1
NULL	NULL	NULL	7535	1	1	1
+------+---------+------------+--------+----------+-------------+-------------+

Instead of displaying the GROUPING() results directly, you can use GROUPING() to substitute labels
for super-aggregate NULL values:

mysql> SELECT
 IF(GROUPING(year), 'All years', year) AS year,
 IF(GROUPING(country), 'All countries', country) AS country,
 IF(GROUPING(product), 'All products', product) AS product,
 SUM(profit) AS profit
 FROM sales
 GROUP BY year, country, product WITH ROLLUP;
+-----------+---------------+--------------+--------+
| year | country | product | profit |
+-----------+---------------+--------------+--------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	All products	1600
2000	India	Calculator	150
2000	India	Computer	1200
2000	India	All products	1350
2000	USA	Calculator	75
2000	USA	Computer	1500
2000	USA	All products	1575
2000	All countries	All products	4525
2001	Finland	Phone	10
2001	Finland	All products	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
2001	USA	All products	3000
2001	All countries	All products	3010
All years	All countries	All products	7535
+-----------+---------------+--------------+--------+

2599

GROUP BY Modifiers

With multiple expression arguments, GROUPING() returns a result representing a bitmask that
combines the results for each expression, with the lowest-order bit corresponding to the result for the
rightmost expression. For example, GROUPING(year, country, product) is evaluated like this:

 result for GROUPING(product)
+ result for GROUPING(country) << 1
+ result for GROUPING(year) << 2

The result of such a GROUPING() is nonzero if any of the expressions represents a super-aggregate
NULL, so you can return only the super-aggregate rows and filter out the regular grouped rows like this:

mysql> SELECT year, country, product, SUM(profit) AS profit
 FROM sales
 GROUP BY year, country, product WITH ROLLUP
 HAVING GROUPING(year, country, product) <> 0;
+------+---------+---------+--------+
| year | country | product | profit |
+------+---------+---------+--------+
2000	Finland	NULL	1600
2000	India	NULL	1350
2000	USA	NULL	1575
2000	NULL	NULL	4525
2001	Finland	NULL	10
2001	USA	NULL	3000
2001	NULL	NULL	3010
NULL	NULL	NULL	7535
+------+---------+---------+--------+

The sales table contains no NULL values, so all NULL values in a ROLLUP result represent super-
aggregate values. When the data set contains NULL values, ROLLUP summaries may contain NULL
values not only in super-aggregate rows, but also in regular grouped rows. GROUPING() enables these
to be distinguished. Suppose that table t1 contains a simple data set with two grouping factors for a
set of quantity values, where NULL indicates something like “other” or “unknown”:

mysql> SELECT * FROM t1;
+------+-------+----------+
| name | size | quantity |
+------+-------+----------+
ball	small	10
ball	large	20
ball	NULL	5
hoop	small	15
hoop	large	5
hoop	NULL	3
+------+-------+----------+

A simple ROLLUP operation produces these results, in which it is not so easy to distinguish NULL
values in super-aggregate rows from NULL values in regular grouped rows:

mysql> SELECT name, size, SUM(quantity) AS quantity
 FROM t1
 GROUP BY name, size WITH ROLLUP;
+------+-------+----------+
| name | size | quantity |
+------+-------+----------+
ball	NULL	5
ball	large	20
ball	small	10
ball	NULL	35
hoop	NULL	3
hoop	large	5
hoop	small	15
hoop	NULL	23
NULL	NULL	58
+------+-------+----------+

Using GROUPING() to substitute labels for the super-aggregate NULL values makes the result easier to
interpret:

mysql> SELECT

2600

GROUP BY Modifiers

 IF(GROUPING(name) = 1, 'All items', name) AS name,
 IF(GROUPING(size) = 1, 'All sizes', size) AS size,
 SUM(quantity) AS quantity
 FROM t1
 GROUP BY name, size WITH ROLLUP;
+-----------+-----------+----------+
| name | size | quantity |
+-----------+-----------+----------+
ball	NULL	5
ball	large	20
ball	small	10
ball	All sizes	35
hoop	NULL	3
hoop	large	5
hoop	small	15
hoop	All sizes	23
All items	All sizes	58
+-----------+-----------+----------+

Other Considerations When using ROLLUP

The following discussion lists some behaviors specific to the MySQL implementation of ROLLUP.

Prior to MySQL 8.0.12, when you use ROLLUP, you cannot also use an ORDER BY clause to sort the
results. In other words, ROLLUP and ORDER BY were mutually exclusive in MySQL. However, you still
have some control over sort order. To work around the restriction that prevents using ROLLUP with
ORDER BY and achieve a specific sort order of grouped results, generate the grouped result set as a
derived table and apply ORDER BY to it. For example:

mysql> SELECT * FROM
 (SELECT year, SUM(profit) AS profit
 FROM sales GROUP BY year WITH ROLLUP) AS dt
 ORDER BY year DESC;
+------+--------+
| year | profit |
+------+--------+
2001	3010
2000	4525
NULL	7535
+------+--------+

As of MySQL 8.0.12, ORDER BY and ROLLUP can be used together, which enables the use of ORDER
BY and GROUPING() to achieve a specific sort order of grouped results. For example:

mysql> SELECT year, SUM(profit) AS profit
 FROM sales
 GROUP BY year WITH ROLLUP
 ORDER BY GROUPING(year) DESC;
+------+--------+
| year | profit |
+------+--------+
NULL	7535
2000	4525
2001	3010
+------+--------+

In both cases, the super-aggregate summary rows sort with the rows from which they are calculated,
and their placement depends on sort order (at the end for ascending sort, at the beginning for
descending sort).

LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after
ROLLUP, so the limit applies against the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit) AS profit
 FROM sales
 GROUP BY year, country, product WITH ROLLUP
 LIMIT 5;
+------+---------+------------+--------+
| year | country | product | profit |

2601

MySQL Handling of GROUP BY

+------+---------+------------+--------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
+------+---------+------------+--------+

Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because there is less
context for understanding the super-aggregate rows.

A MySQL extension permits a column that does not appear in the GROUP BY list to be named in
the select list. (For information about nonaggregated columns and GROUP BY, see Section 14.19.3,
“MySQL Handling of GROUP BY”.) In this case, the server is free to choose any value from this
nonaggregated column in summary rows, and this includes the extra rows added by WITH ROLLUP.
For example, in the following query, country is a nonaggregated column that does not appear in the
GROUP BY list and values chosen for this column are nondeterministic:

mysql> SELECT year, country, SUM(profit) AS profit
 FROM sales
 GROUP BY year WITH ROLLUP;
+------+---------+--------+
| year | country | profit |
+------+---------+--------+
2000	India	4525
2001	USA	3010
NULL	USA	7535
+------+---------+--------+

This behavior is permitted when the ONLY_FULL_GROUP_BY SQL mode is not enabled. If that mode is
enabled, the server rejects the query as illegal because country is not listed in the GROUP BY clause.
With ONLY_FULL_GROUP_BY enabled, you can still execute the query by using the ANY_VALUE()
function for nondeterministic-value columns:

mysql> SELECT year, ANY_VALUE(country) AS country, SUM(profit) AS profit
 FROM sales
 GROUP BY year WITH ROLLUP;
+------+---------+--------+
| year | country | profit |
+------+---------+--------+
2000	India	4525
2001	USA	3010
NULL	USA	7535
+------+---------+--------+

In MySQL 8.0.28 and later, a rollup column cannot be used as an argument to MATCH() (and is
rejected with an error) except when called in a WHERE clause. See Section 14.9, “Full-Text Search
Functions”, for more information.

14.19.3 MySQL Handling of GROUP BY

SQL-92 and earlier does not permit queries for which the select list, HAVING condition, or ORDER BY
list refer to nonaggregated columns that are not named in the GROUP BY clause. For example, this
query is illegal in standard SQL-92 because the nonaggregated name column in the select list does not
appear in the GROUP BY:

SELECT o.custid, c.name, MAX(o.payment)
 FROM orders AS o, customers AS c
 WHERE o.custid = c.custid
 GROUP BY o.custid;

For the query to be legal in SQL-92, the name column must be omitted from the select list or named in
the GROUP BY clause.

SQL:1999 and later permits such nonaggregates per optional feature T301 if they are functionally
dependent on GROUP BY columns: If such a relationship exists between name and custid, the query
is legal. This would be the case, for example, were custid a primary key of customers.

2602

MySQL Handling of GROUP BY

MySQL implements detection of functional dependence. If the ONLY_FULL_GROUP_BY SQL mode is
enabled (which it is by default), MySQL rejects queries for which the select list, HAVING condition, or
ORDER BY list refer to nonaggregated columns that are neither named in the GROUP BY clause nor are
functionally dependent on them.

MySQL also permits a nonaggregate column not named in a GROUP BY clause when SQL
ONLY_FULL_GROUP_BY mode is enabled, provided that this column is limited to a single value, as
shown in the following example:

mysql> CREATE TABLE mytable (
 -> id INT UNSIGNED NOT NULL PRIMARY KEY,
 -> a VARCHAR(10),
 -> b INT
 ->);

mysql> INSERT INTO mytable
 -> VALUES (1, 'abc', 1000),
 -> (2, 'abc', 2000),
 -> (3, 'def', 4000);

mysql> SET SESSION sql_mode = sys.list_add(@@session.sql_mode, 'ONLY_FULL_GROUP_BY');

mysql> SELECT a, SUM(b) FROM mytable WHERE a = 'abc';
+------+--------+
| a | SUM(b) |
+------+--------+
| abc | 3000 |
+------+--------+

It is also possible to have more than one nonaggregate column in the SELECT list when employing
ONLY_FULL_GROUP_BY. In this case, every such column must be limited to a single value in the
WHERE clause, and all such limiting conditions must be joined by logical AND, as shown here:

mysql> DROP TABLE IF EXISTS mytable;

mysql> CREATE TABLE mytable (
 -> id INT UNSIGNED NOT NULL PRIMARY KEY,
 -> a VARCHAR(10),
 -> b VARCHAR(10),
 -> c INT
 ->);

mysql> INSERT INTO mytable
 -> VALUES (1, 'abc', 'qrs', 1000),
 -> (2, 'abc', 'tuv', 2000),
 -> (3, 'def', 'qrs', 4000),
 -> (4, 'def', 'tuv', 8000),
 -> (5, 'abc', 'qrs', 16000),
 -> (6, 'def', 'tuv', 32000);

mysql> SELECT @@session.sql_mode;
+---+
| @@session.sql_mode |
+---+
| ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION |
+---+

mysql> SELECT a, b, SUM(c) FROM mytable
 -> WHERE a = 'abc' AND b = 'qrs';
+------+------+--------+
| a | b | SUM(c) |
+------+------+--------+
| abc | qrs | 17000 |
+------+------+--------+

If ONLY_FULL_GROUP_BY is disabled, a MySQL extension to the standard SQL use of GROUP BY
permits the select list, HAVING condition, or ORDER BY list to refer to nonaggregated columns even
if the columns are not functionally dependent on GROUP BY columns. This causes MySQL to accept
the preceding query. In this case, the server is free to choose any value from each group, so unless

2603

MySQL Handling of GROUP BY

they are the same, the values chosen are nondeterministic, which is probably not what you want.
Furthermore, the selection of values from each group cannot be influenced by adding an ORDER BY
clause. Result set sorting occurs after values have been chosen, and ORDER BY does not affect which
value within each group the server chooses. Disabling ONLY_FULL_GROUP_BY is useful primarily when
you know that, due to some property of the data, all values in each nonaggregated column not named
in the GROUP BY are the same for each group.

You can achieve the same effect without disabling ONLY_FULL_GROUP_BY by using ANY_VALUE() to
refer to the nonaggregated column.

The following discussion demonstrates functional dependence, the error message MySQL produces
when functional dependence is absent, and ways of causing MySQL to accept a query in the absence
of functional dependence.

This query might be invalid with ONLY_FULL_GROUP_BY enabled because the nonaggregated
address column in the select list is not named in the GROUP BY clause:

SELECT name, address, MAX(age) FROM t GROUP BY name;

The query is valid if name is a primary key of t or is a unique NOT NULL column. In such cases,
MySQL recognizes that the selected column is functionally dependent on a grouping column. For
example, if name is a primary key, its value determines the value of address because each group has
only one value of the primary key and thus only one row. As a result, there is no randomness in the
choice of address value in a group and no need to reject the query.

The query is invalid if name is not a primary key of t or a unique NOT NULL column. In this case, no
functional dependency can be inferred and an error occurs:

mysql> SELECT name, address, MAX(age) FROM t GROUP BY name;
ERROR 1055 (42000): Expression #2 of SELECT list is not in GROUP
BY clause and contains nonaggregated column 'mydb.t.address' which
is not functionally dependent on columns in GROUP BY clause; this
is incompatible with sql_mode=only_full_group_by

If you know that, for a given data set, each name value in fact uniquely determines the address value,
address is effectively functionally dependent on name. To tell MySQL to accept the query, you can
use the ANY_VALUE() function:

SELECT name, ANY_VALUE(address), MAX(age) FROM t GROUP BY name;

Alternatively, disable ONLY_FULL_GROUP_BY.

The preceding example is quite simple, however. In particular, it is unlikely you would group on a
single primary key column because every group would contain only one row. For additional examples
demonstrating functional dependence in more complex queries, see Section 14.19.4, “Detection of
Functional Dependence”.

If a query has aggregate functions and no GROUP BY clause, it cannot have nonaggregated columns in
the select list, HAVING condition, or ORDER BY list with ONLY_FULL_GROUP_BY enabled:

mysql> SELECT name, MAX(age) FROM t;
ERROR 1140 (42000): In aggregated query without GROUP BY, expression
#1 of SELECT list contains nonaggregated column 'mydb.t.name'; this
is incompatible with sql_mode=only_full_group_by

Without GROUP BY, there is a single group and it is nondeterministic which name value to choose for
the group. Here, too, ANY_VALUE() can be used, if it is immaterial which name value MySQL chooses:

SELECT ANY_VALUE(name), MAX(age) FROM t;

ONLY_FULL_GROUP_BY also affects handling of queries that use DISTINCT and ORDER BY. Consider
the case of a table t with three columns c1, c2, and c3 that contains these rows:

2604

MySQL Handling of GROUP BY

c1 c2 c3
1 2 A
3 4 B
1 2 C

Suppose that we execute the following query, expecting the results to be ordered by c3:

SELECT DISTINCT c1, c2 FROM t ORDER BY c3;

To order the result, duplicates must be eliminated first. But to do so, should we keep the first row or
the third? This arbitrary choice influences the retained value of c3, which in turn influences ordering
and makes it arbitrary as well. To prevent this problem, a query that has DISTINCT and ORDER BY is
rejected as invalid if any ORDER BY expression does not satisfy at least one of these conditions:

• The expression is equal to one in the select list

• All columns referenced by the expression and belonging to the query's selected tables are elements
of the select list

Another MySQL extension to standard SQL permits references in the HAVING clause to aliased
expressions in the select list. For example, the following query returns name values that occur only
once in table orders:

SELECT name, COUNT(name) FROM orders
 GROUP BY name
 HAVING COUNT(name) = 1;

The MySQL extension permits the use of an alias in the HAVING clause for the aggregated column:

SELECT name, COUNT(name) AS c FROM orders
 GROUP BY name
 HAVING c = 1;

Standard SQL permits only column expressions in GROUP BY clauses, so a statement such as this is
invalid because FLOOR(value/100) is a noncolumn expression:

SELECT id, FLOOR(value/100)
 FROM tbl_name
 GROUP BY id, FLOOR(value/100);

MySQL extends standard SQL to permit noncolumn expressions in GROUP BY clauses and considers
the preceding statement valid.

Standard SQL also does not permit aliases in GROUP BY clauses. MySQL extends standard SQL to
permit aliases, so another way to write the query is as follows:

SELECT id, FLOOR(value/100) AS val
 FROM tbl_name
 GROUP BY id, val;

The alias val is considered a column expression in the GROUP BY clause.

In the presence of a noncolumn expression in the GROUP BY clause, MySQL recognizes
equality between that expression and expressions in the select list. This means that
with ONLY_FULL_GROUP_BY SQL mode enabled, the query containing GROUP BY id,
FLOOR(value/100) is valid because that same FLOOR() expression occurs in the select list.
However, MySQL does not try to recognize functional dependence on GROUP BY noncolumn
expressions, so the following query is invalid with ONLY_FULL_GROUP_BY enabled, even though the
third selected expression is a simple formula of the id column and the FLOOR() expression in the
GROUP BY clause:

SELECT id, FLOOR(value/100), id+FLOOR(value/100)
 FROM tbl_name
 GROUP BY id, FLOOR(value/100);

A workaround is to use a derived table:

2605

Detection of Functional Dependence

SELECT id, F, id+F
 FROM
 (SELECT id, FLOOR(value/100) AS F
 FROM tbl_name
 GROUP BY id, FLOOR(value/100)) AS dt;

14.19.4 Detection of Functional Dependence

The following discussion provides several examples of the ways in which MySQL detects functional
dependencies. The examples use this notation:

{X} -> {Y}

Understand this as “X uniquely determines Y,” which also means that Y is functionally dependent on X.

The examples use the world database, which can be downloaded from https://dev.mysql.com/doc/
index-other.html. You can find details on how to install the database on the same page.

• Functional Dependencies Derived from Keys

• Functional Dependencies Derived from Multiple-Column Keys and from Equalities

• Functional Dependency Special Cases

• Functional Dependencies and Views

• Combinations of Functional Dependencies

Functional Dependencies Derived from Keys

The following query selects, for each country, a count of spoken languages:

SELECT co.Name, COUNT(*)
FROM countrylanguage cl, country co
WHERE cl.CountryCode = co.Code
GROUP BY co.Code;

co.Code is a primary key of co, so all columns of co are functionally dependent on it, as expressed
using this notation:

{co.Code} -> {co.*}

Thus, co.name is functionally dependent on GROUP BY columns and the query is valid.

A UNIQUE index over a NOT NULL column could be used instead of a primary key and the same
functional dependence would apply. (This is not true for a UNIQUE index that permits NULL values
because it permits multiple NULL values and in that case uniqueness is lost.)

Functional Dependencies Derived from Multiple-Column Keys and from Equalities

This query selects, for each country, a list of all spoken languages and how many people speak them:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population / 100.0 AS SpokenBy
FROM countrylanguage cl, country co
WHERE cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

The pair (cl.CountryCode, cl.Language) is a two-column composite primary key of cl, so that
column pair uniquely determines all columns of cl:

{cl.CountryCode, cl.Language} -> {cl.*}

Moreover, because of the equality in the WHERE clause:

{cl.CountryCode} -> {co.Code}

2606

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Detection of Functional Dependence

And, because co.Code is primary key of co:

{co.Code} -> {co.*}

“Uniquely determines” relationships are transitive, therefore:

{cl.CountryCode, cl.Language} -> {cl.*,co.*}

As a result, the query is valid.

As with the previous example, a UNIQUE key over NOT NULL columns could be used instead of a
primary key.

An INNER JOIN condition can be used instead of WHERE. The same functional dependencies apply:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population/100.0 AS SpokenBy
FROM countrylanguage cl INNER JOIN country co
ON cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

Functional Dependency Special Cases

Whereas an equality test in a WHERE condition or INNER JOIN condition is symmetric, an equality test
in an outer join condition is not, because tables play different roles.

Assume that referential integrity has been accidentally broken and there exists a row of
countrylanguage without a corresponding row in country. Consider the same query as in the
previous example, but with a LEFT JOIN:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population/100.0 AS SpokenBy
FROM countrylanguage cl LEFT JOIN country co
ON cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

For a given value of cl.CountryCode, the value of co.Code in the join result is either found in a
matching row (determined by cl.CountryCode) or is NULL-complemented if there is no match (also
determined by cl.CountryCode). In each case, this relationship applies:

{cl.CountryCode} -> {co.Code}

cl.CountryCode is itself functionally dependent on {cl.CountryCode, cl.Language} which is a
primary key.

If in the join result co.Code is NULL-complemented, co.Name is as well. If co.Code is not NULL-
complemented, then because co.Code is a primary key, it determines co.Name. Therefore, in all
cases:

{co.Code} -> {co.Name}

Which yields:

{cl.CountryCode, cl.Language} -> {cl.*,co.*}

As a result, the query is valid.

However, suppose that the tables are swapped, as in this query:

SELECT co.Name, cl.Language,
cl.Percentage * co.Population/100.0 AS SpokenBy
FROM country co LEFT JOIN countrylanguage cl
ON cl.CountryCode = co.Code
GROUP BY cl.CountryCode, cl.Language;

Now this relationship does not apply:

{cl.CountryCode, cl.Language} -> {cl.*,co.*}

2607

Detection of Functional Dependence

Indeed, all NULL-complemented rows made for cl is put into a single group (they have both GROUP BY
columns equal to NULL), and inside this group the value of co.Name can vary. The query is invalid and
MySQL rejects it.

Functional dependence in outer joins is thus linked to whether determinant columns belong to the left
or right side of the LEFT JOIN. Determination of functional dependence becomes more complex if
there are nested outer joins or the join condition does not consist entirely of equality comparisons.

Functional Dependencies and Views

Suppose that a view on countries produces their code, their name in uppercase, and how many
different official languages they have:

CREATE VIEW country2 AS
SELECT co.Code, UPPER(co.Name) AS UpperName,
COUNT(cl.Language) AS OfficialLanguages
FROM country AS co JOIN countrylanguage AS cl
ON cl.CountryCode = co.Code
WHERE cl.isOfficial = 'T'
GROUP BY co.Code;

This definition is valid because:

{co.Code} -> {co.*}

In the view result, the first selected column is co.Code, which is also the group column and thus
determines all other selected expressions:

{country2.Code} -> {country2.*}

MySQL understands this and uses this information, as described following.

This query displays countries, how many different official languages they have, and how many cities
they have, by joining the view with the city table:

SELECT co2.Code, co2.UpperName, co2.OfficialLanguages,
COUNT(*) AS Cities
FROM country2 AS co2 JOIN city ci
ON ci.CountryCode = co2.Code
GROUP BY co2.Code;

This query is valid because, as seen previously:

{co2.Code} -> {co2.*}

MySQL is able to discover a functional dependency in the result of a view and use that to validate a
query which uses the view. The same would be true if country2 were a derived table (or common
table expression), as in:

SELECT co2.Code, co2.UpperName, co2.OfficialLanguages,
COUNT(*) AS Cities
FROM
(
 SELECT co.Code, UPPER(co.Name) AS UpperName,
 COUNT(cl.Language) AS OfficialLanguages
 FROM country AS co JOIN countrylanguage AS cl
 ON cl.CountryCode=co.Code
 WHERE cl.isOfficial='T'
 GROUP BY co.Code
) AS co2
JOIN city ci ON ci.CountryCode = co2.Code
GROUP BY co2.Code;

Combinations of Functional Dependencies

MySQL is able to combine all of the preceding types of functional dependencies (key based, equality
based, view based) to validate more complex queries.

2608

Window Functions

14.20 Window Functions

MySQL supports window functions that, for each row from a query, perform a calculation using rows
related to that row. The following sections discuss how to use window functions, including descriptions
of the OVER and WINDOW clauses. The first section provides descriptions of the nonaggregate window
functions. For descriptions of the aggregate window functions, see Section 14.19.1, “Aggregate
Function Descriptions”.

For information about optimization and window functions, see Section 10.2.1.21, “Window Function
Optimization”.

14.20.1 Window Function Descriptions

This section describes nonaggregate window functions that, for each row from a query, perform a
calculation using rows related to that row. Most aggregate functions also can be used as window
functions; see Section 14.19.1, “Aggregate Function Descriptions”.

For window function usage information and examples, and definitions of terms such as the OVER
clause, window, partition, frame, and peer, see Section 14.20.2, “Window Function Concepts and
Syntax”.

Table 14.30 Window Functions

Name Description

CUME_DIST() Cumulative distribution value

DENSE_RANK() Rank of current row within its partition, without
gaps

FIRST_VALUE() Value of argument from first row of window frame

LAG() Value of argument from row lagging current row
within partition

LAST_VALUE() Value of argument from last row of window frame

LEAD() Value of argument from row leading current row
within partition

NTH_VALUE() Value of argument from N-th row of window frame

NTILE() Bucket number of current row within its partition.

PERCENT_RANK() Percentage rank value

RANK() Rank of current row within its partition, with gaps

ROW_NUMBER() Number of current row within its partition

In the following function descriptions, over_clause represents the OVER clause, described
in Section 14.20.2, “Window Function Concepts and Syntax”. Some window functions permit a
null_treatment clause that specifies how to handle NULL values when calculating results. This
clause is optional. It is part of the SQL standard, but the MySQL implementation permits only RESPECT
NULLS (which is also the default). This means that NULL values are considered when calculating
results. IGNORE NULLS is parsed, but produces an error.

• CUME_DIST() over_clause

Returns the cumulative distribution of a value within a group of values; that is, the percentage of
partition values less than or equal to the value in the current row. This represents the number of rows
preceding or peer with the current row in the window ordering of the window partition divided by the
total number of rows in the window partition. Return values range from 0 to 1.

This function should be used with ORDER BY to sort partition rows into the desired order. Without
ORDER BY, all rows are peers and have value N/N = 1, where N is the partition size.

2609

Window Function Descriptions

over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.

The following query shows, for the set of values in the val column, the CUME_DIST() value for
each row, as well as the percentage rank value returned by the similar PERCENT_RANK() function.
For reference, the query also displays row numbers using ROW_NUMBER():

mysql> SELECT
 val,
 ROW_NUMBER() OVER w AS 'row_number',
 CUME_DIST() OVER w AS 'cume_dist',
 PERCENT_RANK() OVER w AS 'percent_rank'
 FROM numbers
 WINDOW w AS (ORDER BY val);
+------+------------+--------------------+--------------+
| val | row_number | cume_dist | percent_rank |
+------+------------+--------------------+--------------+
1	1	0.2222222222222222	0
1	2	0.2222222222222222	0
2	3	0.3333333333333333	0.25
3	4	0.6666666666666666	0.375
3	5	0.6666666666666666	0.375
3	6	0.6666666666666666	0.375
4	7	0.8888888888888888	0.75
4	8	0.8888888888888888	0.75
5	9	1	1
+------+------------+--------------------+--------------+

• DENSE_RANK() over_clause

Returns the rank of the current row within its partition, without gaps. Peers are considered ties and
receive the same rank. This function assigns consecutive ranks to peer groups; the result is that
groups of size greater than one do not produce noncontiguous rank numbers. For an example, see
the RANK() function description.

This function should be used with ORDER BY to sort partition rows into the desired order. Without
ORDER BY, all rows are peers.

over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.

• FIRST_VALUE(expr) [null_treatment] over_clause

Returns the value of expr from the first row of the window frame.

over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.
null_treatment is as described in the section introduction.

The following query demonstrates FIRST_VALUE(), LAST_VALUE(), and two instances of
NTH_VALUE():

mysql> SELECT
 time, subject, val,
 FIRST_VALUE(val) OVER w AS 'first',
 LAST_VALUE(val) OVER w AS 'last',
 NTH_VALUE(val, 2) OVER w AS 'second',
 NTH_VALUE(val, 4) OVER w AS 'fourth'
 FROM observations
 WINDOW w AS (PARTITION BY subject ORDER BY time
 ROWS UNBOUNDED PRECEDING);
+----------+---------+------+-------+------+--------+--------+
| time | subject | val | first | last | second | fourth |
+----------+---------+------+-------+------+--------+--------+
07:00:00	st113	10	10	10	NULL	NULL
07:15:00	st113	9	10	9	9	NULL
07:30:00	st113	25	10	25	9	NULL
07:45:00	st113	20	10	20	9	20
07:00:00	xh458	0	0	0	NULL	NULL
07:15:00	xh458	10	0	10	10	NULL

2610

Window Function Descriptions

07:30:00	xh458	5	0	5	10	NULL
07:45:00	xh458	30	0	30	10	30
08:00:00	xh458	25	0	25	10	30
+----------+---------+------+-------+------+--------+--------+

Each function uses the rows in the current frame, which, per the window definition shown, extends
from the first partition row to the current row. For the NTH_VALUE() calls, the current frame does not
always include the requested row; in such cases, the return value is NULL.

• LAG(expr [, N[, default]]) [null_treatment] over_clause

Returns the value of expr from the row that lags (precedes) the current row by N rows within its
partition. If there is no such row, the return value is default. For example, if N is 3, the return
value is default for the first three rows. If N or default are missing, the defaults are 1 and NULL,
respectively.

N must be a literal nonnegative integer. If N is 0, expr is evaluated for the current row.

Beginning with MySQL 8.0.22, N cannot be NULL. In addition, it must now be an integer in the range
0 to 263, inclusive, in any of the following forms:

• an unsigned integer constant literal

• a positional parameter marker (?)

• a user-defined variable

• a local variable in a stored routine

over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.
null_treatment is as described in the section introduction.

LAG() (and the similar LEAD() function) are often used to compute differences between rows. The
following query shows a set of time-ordered observations and, for each one, the LAG() and LEAD()
values from the adjoining rows, as well as the differences between the current and adjoining rows:

mysql> SELECT
 t, val,
 LAG(val) OVER w AS 'lag',
 LEAD(val) OVER w AS 'lead',
 val - LAG(val) OVER w AS 'lag diff',
 val - LEAD(val) OVER w AS 'lead diff'
 FROM series
 WINDOW w AS (ORDER BY t);
+----------+------+------+------+----------+-----------+
| t | val | lag | lead | lag diff | lead diff |
+----------+------+------+------+----------+-----------+
12:00:00	100	NULL	125	NULL	-25
13:00:00	125	100	132	25	-7
14:00:00	132	125	145	7	-13
15:00:00	145	132	140	13	5
16:00:00	140	145	150	-5	-10
17:00:00	150	140	200	10	-50
18:00:00	200	150	NULL	50	NULL

2611

Window Function Descriptions

+----------+------+------+------+----------+-----------+

In the example, the LAG() and LEAD() calls use the default N and default values of 1 and NULL,
respectively.

The first row shows what happens when there is no previous row for LAG(): The function returns the
default value (in this case, NULL). The last row shows the same thing when there is no next row
for LEAD().

LAG() and LEAD() also serve to compute sums rather than differences. Consider this data set,
which contains the first few numbers of the Fibonacci series:

mysql> SELECT n FROM fib ORDER BY n;
+------+
| n |
+------+
| 1 |
| 1 |
| 2 |
| 3 |
| 5 |
| 8 |
+------+

The following query shows the LAG() and LEAD() values for the rows adjacent to the current row. It
also uses those functions to add to the current row value the values from the preceding and following
rows. The effect is to generate the next number in the Fibonacci series, and the next number after
that:

mysql> SELECT
 n,
 LAG(n, 1, 0) OVER w AS 'lag',
 LEAD(n, 1, 0) OVER w AS 'lead',
 n + LAG(n, 1, 0) OVER w AS 'next_n',
 n + LEAD(n, 1, 0) OVER w AS 'next_next_n'
 FROM fib
 WINDOW w AS (ORDER BY n);
+------+------+------+--------+-------------+
| n | lag | lead | next_n | next_next_n |
+------+------+------+--------+-------------+
1	0	1	1	2
1	1	2	2	3
2	1	3	3	5
3	2	5	5	8
5	3	8	8	13
8	5	0	13	8
+------+------+------+--------+-------------+

One way to generate the initial set of Fibonacci numbers is to use a recursive common table
expression. For an example, see Fibonacci Series Generation.

Beginning with MySQL 8.0.22, you cannot use a negative value for the rows argument of this
function.

• LAST_VALUE(expr) [null_treatment] over_clause

Returns the value of expr from the last row of the window frame.

over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.
null_treatment is as described in the section introduction.

For an example, see the FIRST_VALUE() function description.

2612

Window Function Descriptions

• LEAD(expr [, N[, default]]) [null_treatment] over_clause

Returns the value of expr from the row that leads (follows) the current row by N rows within its
partition. If there is no such row, the return value is default. For example, if N is 3, the return
value is default for the last three rows. If N or default are missing, the defaults are 1 and NULL,
respectively.

N must be a literal nonnegative integer. If N is 0, expr is evaluated for the current row.

Beginning with MySQL 8.0.22, N cannot be NULL. In addition, it must now be an integer in the range
0 to 263, inclusive, in any of the following forms:

• an unsigned integer constant literal

• a positional parameter marker (?)

• a user-defined variable

• a local variable in a stored routine

over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.
null_treatment is as described in the section introduction.

For an example, see the LAG() function description.

In MySQL 8.0.22 and later, use of a negative value for the rows argument of this function is not
permitted.

• NTH_VALUE(expr, N) [from_first_last] [null_treatment] over_clause

Returns the value of expr from the N-th row of the window frame. If there is no such row, the return
value is NULL.

N must be a literal positive integer.

from_first_last is part of the SQL standard, but the MySQL implementation permits only FROM
FIRST (which is also the default). This means that calculations begin at the first row of the window.
FROM LAST is parsed, but produces an error. To obtain the same effect as FROM LAST (begin
calculations at the last row of the window), use ORDER BY to sort in reverse order.

over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.
null_treatment is as described in the section introduction.

For an example, see the FIRST_VALUE() function description.

In MySQL 8.0.22 and later, you cannot use NULL for the row argument of this function.

2613

Window Function Descriptions

• NTILE(N) over_clause

Divides a partition into N groups (buckets), assigns each row in the partition its bucket number, and
returns the bucket number of the current row within its partition. For example, if N is 4, NTILE()
divides rows into four buckets. If N is 100, NTILE() divides rows into 100 buckets.

N must be a literal positive integer. Bucket number return values range from 1 to N.

Beginning with MySQL 8.0.22, N cannot be NULL, and must be an integer in the range 0 to 263,
inclusive, in any of the following forms:

• an unsigned integer constant literal

• a positional parameter marker (?)

• a user-defined variable

• a local variable in a stored routine

This function should be used with ORDER BY to sort partition rows into the desired order.

over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.

The following query shows, for the set of values in the val column, the percentile values resulting
from dividing the rows into two or four groups. For reference, the query also displays row numbers
using ROW_NUMBER():

mysql> SELECT
 val,
 ROW_NUMBER() OVER w AS 'row_number',
 NTILE(2) OVER w AS 'ntile2',
 NTILE(4) OVER w AS 'ntile4'
 FROM numbers
 WINDOW w AS (ORDER BY val);
+------+------------+--------+--------+
| val | row_number | ntile2 | ntile4 |
+------+------------+--------+--------+
1	1	1	1
1	2	1	1
2	3	1	1
3	4	1	2
3	5	1	2
3	6	2	3
4	7	2	3
4	8	2	4
5	9	2	4
+------+------------+--------+--------+

Beginning with MySQL 8.0.22, the construct NTILE(NULL) is no longer permitted.

• PERCENT_RANK() over_clause

Returns the percentage of partition values less than the value in the current row, excluding the
highest value. Return values range from 0 to 1 and represent the row relative rank, calculated as the
result of this formula, where rank is the row rank and rows is the number of partition rows:

(rank - 1) / (rows - 1)

This function should be used with ORDER BY to sort partition rows into the desired order. Without
ORDER BY, all rows are peers.

over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.

For an example, see the CUME_DIST() function description.

2614

Window Function Concepts and Syntax

• RANK() over_clause

Returns the rank of the current row within its partition, with gaps. Peers are considered ties and
receive the same rank. This function does not assign consecutive ranks to peer groups if groups of
size greater than one exist; the result is noncontiguous rank numbers.

This function should be used with ORDER BY to sort partition rows into the desired order. Without
ORDER BY, all rows are peers.

over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.

The following query shows the difference between RANK(), which produces ranks with gaps, and
DENSE_RANK(), which produces ranks without gaps. The query shows rank values for each member
of a set of values in the val column, which contains some duplicates. RANK() assigns peers (the
duplicates) the same rank value, and the next greater value has a rank higher by the number of
peers minus one. DENSE_RANK() also assigns peers the same rank value, but the next higher value
has a rank one greater. For reference, the query also displays row numbers using ROW_NUMBER():

mysql> SELECT
 val,
 ROW_NUMBER() OVER w AS 'row_number',
 RANK() OVER w AS 'rank',
 DENSE_RANK() OVER w AS 'dense_rank'
 FROM numbers
 WINDOW w AS (ORDER BY val);
+------+------------+------+------------+
| val | row_number | rank | dense_rank |
+------+------------+------+------------+
1	1	1	1
1	2	1	1
2	3	3	2
3	4	4	3
3	5	4	3
3	6	4	3
4	7	7	4
4	8	7	4
5	9	9	5
+------+------------+------+------------+

• ROW_NUMBER() over_clause

Returns the number of the current row within its partition. Rows numbers range from 1 to the number
of partition rows.

ORDER BY affects the order in which rows are numbered. Without ORDER BY, row numbering is
nondeterministic.

ROW_NUMBER() assigns peers different row numbers. To assign peers the same value, use RANK()
or DENSE_RANK(). For an example, see the RANK() function description.

over_clause is as described in Section 14.20.2, “Window Function Concepts and Syntax”.

14.20.2 Window Function Concepts and Syntax

This section describes how to use window functions. Examples use the same sales information data
set as found in the discussion of the GROUPING() function in Section 14.19.2, “GROUP BY Modifiers”:

mysql> SELECT * FROM sales ORDER BY country, year, product;
+------+---------+------------+--------+
| year | country | product | profit |
+------+---------+------------+--------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2001	Finland	Phone	10
2000	India	Calculator	75
2000	India	Calculator	75

2615

Window Function Concepts and Syntax

2000	India	Computer	1200
2000	USA	Calculator	75
2000	USA	Computer	1500
2001	USA	Calculator	50
2001	USA	Computer	1500
2001	USA	Computer	1200
2001	USA	TV	150
2001	USA	TV	100
+------+---------+------------+--------+

A window function performs an aggregate-like operation on a set of query rows. However, whereas an
aggregate operation groups query rows into a single result row, a window function produces a result for
each query row:

• The row for which function evaluation occurs is called the current row.

• The query rows related to the current row over which function evaluation occurs comprise the
window for the current row.

For example, using the sales information table, these two queries perform aggregate operations that
produce a single global sum for all rows taken as a group, and sums grouped per country:

mysql> SELECT SUM(profit) AS total_profit
 FROM sales;
+--------------+
| total_profit |
+--------------+
| 7535 |
+--------------+
mysql> SELECT country, SUM(profit) AS country_profit
 FROM sales
 GROUP BY country
 ORDER BY country;
+---------+----------------+
| country | country_profit |
+---------+----------------+
Finland	1610
India	1350
USA	4575
+---------+----------------+

By contrast, window operations do not collapse groups of query rows to a single output row. Instead,
they produce a result for each row. Like the preceding queries, the following query uses SUM(), but
this time as a window function:

mysql> SELECT
 year, country, product, profit,
 SUM(profit) OVER() AS total_profit,
 SUM(profit) OVER(PARTITION BY country) AS country_profit
 FROM sales
 ORDER BY country, year, product, profit;
+------+---------+------------+--------+--------------+----------------+
| year | country | product | profit | total_profit | country_profit |
+------+---------+------------+--------+--------------+----------------+
2000	Finland	Computer	1500	7535	1610
2000	Finland	Phone	100	7535	1610
2001	Finland	Phone	10	7535	1610
2000	India	Calculator	75	7535	1350
2000	India	Calculator	75	7535	1350
2000	India	Computer	1200	7535	1350
2000	USA	Calculator	75	7535	4575
2000	USA	Computer	1500	7535	4575
2001	USA	Calculator	50	7535	4575
2001	USA	Computer	1200	7535	4575
2001	USA	Computer	1500	7535	4575
2001	USA	TV	100	7535	4575
2001	USA	TV	150	7535	4575
+------+---------+------------+--------+--------------+----------------+

2616

Window Function Concepts and Syntax

Each window operation in the query is signified by inclusion of an OVER clause that specifies how to
partition query rows into groups for processing by the window function:

• The first OVER clause is empty, which treats the entire set of query rows as a single partition. The
window function thus produces a global sum, but does so for each row.

• The second OVER clause partitions rows by country, producing a sum per partition (per country). The
function produces this sum for each partition row.

Window functions are permitted only in the select list and ORDER BY clause. Query result rows are
determined from the FROM clause, after WHERE, GROUP BY, and HAVING processing, and windowing
execution occurs before ORDER BY, LIMIT, and SELECT DISTINCT.

The OVER clause is permitted for many aggregate functions, which therefore can be used as window or
nonwindow functions, depending on whether the OVER clause is present or absent:

AVG()
BIT_AND()
BIT_OR()
BIT_XOR()
COUNT()
JSON_ARRAYAGG()
JSON_OBJECTAGG()
MAX()
MIN()
STDDEV_POP(), STDDEV(), STD()
STDDEV_SAMP()
SUM()
VAR_POP(), VARIANCE()
VAR_SAMP()

For details about each aggregate function, see Section 14.19.1, “Aggregate Function Descriptions”.

MySQL also supports nonaggregate functions that are used only as window functions. For these, the
OVER clause is mandatory:

CUME_DIST()
DENSE_RANK()
FIRST_VALUE()
LAG()
LAST_VALUE()
LEAD()
NTH_VALUE()
NTILE()
PERCENT_RANK()
RANK()
ROW_NUMBER()

For details about each nonaggregate function, see Section 14.20.1, “Window Function Descriptions”.

As an example of one of those nonaggregate window functions, this query uses ROW_NUMBER(), which
produces the row number of each row within its partition. In this case, rows are numbered per country.
By default, partition rows are unordered and row numbering is nondeterministic. To sort partition rows,
include an ORDER BY clause within the window definition. The query uses unordered and ordered
partitions (the row_num1 and row_num2 columns) to illustrate the difference between omitting and
including ORDER BY:

mysql> SELECT
 year, country, product, profit,
 ROW_NUMBER() OVER(PARTITION BY country) AS row_num1,
 ROW_NUMBER() OVER(PARTITION BY country ORDER BY year, product) AS row_num2
 FROM sales;
+------+---------+------------+--------+----------+----------+
| year | country | product | profit | row_num1 | row_num2 |
+------+---------+------------+--------+----------+----------+
| 2000 | Finland | Computer | 1500 | 2 | 1 |
| 2000 | Finland | Phone | 100 | 1 | 2 |

2617

Window Function Concepts and Syntax

2001	Finland	Phone	10	3	3
2000	India	Calculator	75	2	1
2000	India	Calculator	75	3	2
2000	India	Computer	1200	1	3
2000	USA	Calculator	75	5	1
2000	USA	Computer	1500	4	2
2001	USA	Calculator	50	2	3
2001	USA	Computer	1500	3	4
2001	USA	Computer	1200	7	5
2001	USA	TV	150	1	6
2001	USA	TV	100	6	7
+------+---------+------------+--------+----------+----------+

As mentioned previously, to use a window function (or treat an aggregate function as a window
function), include an OVER clause following the function call. The OVER clause has two forms:

over_clause:
 {OVER (window_spec) | OVER window_name}

Both forms define how the window function should process query rows. They differ in whether the
window is defined directly in the OVER clause, or supplied by a reference to a named window defined
elsewhere in the query:

• In the first case, the window specification appears directly in the OVER clause, between the
parentheses.

• In the second case, window_name is the name for a window specification defined by a WINDOW
clause elsewhere in the query. For details, see Section 14.20.4, “Named Windows”.

For OVER (window_spec) syntax, the window specification has several parts, all optional:

window_spec:
 [window_name] [partition_clause] [order_clause] [frame_clause]

If OVER() is empty, the window consists of all query rows and the window function computes a result
using all rows. Otherwise, the clauses present within the parentheses determine which query rows are
used to compute the function result and how they are partitioned and ordered:

• window_name: The name of a window defined by a WINDOW clause elsewhere in the query.
If window_name appears by itself within the OVER clause, it completely defines the window. If
partitioning, ordering, or framing clauses are also given, they modify interpretation of the named
window. For details, see Section 14.20.4, “Named Windows”.

• partition_clause: A PARTITION BY clause indicates how to divide the query rows into groups.
The window function result for a given row is based on the rows of the partition that contains the row.
If PARTITION BY is omitted, there is a single partition consisting of all query rows.

Note

Partitioning for window functions differs from table partitioning. For
information about table partitioning, see Chapter 26, Partitioning.

partition_clause has this syntax:

partition_clause:
 PARTITION BY expr [, expr] ...

Standard SQL requires PARTITION BY to be followed by column names only. A MySQL extension
is to permit expressions, not just column names. For example, if a table contains a TIMESTAMP
column named ts, standard SQL permits PARTITION BY ts but not PARTITION BY HOUR(ts),
whereas MySQL permits both.

• order_clause: An ORDER BY clause indicates how to sort rows in each partition. Partition rows
that are equal according to the ORDER BY clause are considered peers. If ORDER BY is omitted,
partition rows are unordered, with no processing order implied, and all partition rows are peers.

2618

Window Function Frame Specification

order_clause has this syntax:

order_clause:
 ORDER BY expr [ASC|DESC] [, expr [ASC|DESC]] ...

Each ORDER BY expression optionally can be followed by ASC or DESC to indicate sort direction.
The default is ASC if no direction is specified. NULL values sort first for ascending sorts, last for
descending sorts.

An ORDER BY in a window definition applies within individual partitions. To sort the result set as a
whole, include an ORDER BY at the query top level.

• frame_clause: A frame is a subset of the current partition and the frame clause specifies
how to define the subset. The frame clause has many subclauses of its own. For details, see
Section 14.20.3, “Window Function Frame Specification”.

14.20.3 Window Function Frame Specification

The definition of a window used with a window function can include a frame clause. A frame is a subset
of the current partition and the frame clause specifies how to define the subset.

Frames are determined with respect to the current row, which enables a frame to move within a
partition depending on the location of the current row within its partition. Examples:

• By defining a frame to be all rows from the partition start to the current row, you can compute running
totals for each row.

• By defining a frame as extending N rows on either side of the current row, you can compute rolling
averages.

The following query demonstrates the use of moving frames to compute running totals within each
group of time-ordered level values, as well as rolling averages computed from the current row and
the rows that immediately precede and follow it:

mysql> SELECT
 time, subject, val,
 SUM(val) OVER (PARTITION BY subject ORDER BY time
 ROWS UNBOUNDED PRECEDING)
 AS running_total,
 AVG(val) OVER (PARTITION BY subject ORDER BY time
 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
 AS running_average
 FROM observations;
+----------+---------+------+---------------+-----------------+
| time | subject | val | running_total | running_average |
+----------+---------+------+---------------+-----------------+
07:00:00	st113	10	10	9.5000
07:15:00	st113	9	19	14.6667
07:30:00	st113	25	44	18.0000
07:45:00	st113	20	64	22.5000
07:00:00	xh458	0	0	5.0000
07:15:00	xh458	10	10	5.0000
07:30:00	xh458	5	15	15.0000
07:45:00	xh458	30	45	20.0000
08:00:00	xh458	25	70	27.5000
+----------+---------+------+---------------+-----------------+

For the running_average column, there is no frame row preceding the first one or following the last.
In these cases, AVG() computes the average of the rows that are available.

Aggregate functions used as window functions operate on rows in the current row frame, as do these
nonaggregate window functions:

FIRST_VALUE()
LAST_VALUE()
NTH_VALUE()

2619

Window Function Frame Specification

Standard SQL specifies that window functions that operate on the entire partition should have no frame
clause. MySQL permits a frame clause for such functions but ignores it. These functions use the entire
partition even if a frame is specified:

CUME_DIST()
DENSE_RANK()
LAG()
LEAD()
NTILE()
PERCENT_RANK()
RANK()
ROW_NUMBER()

The frame clause, if given, has this syntax:

frame_clause:
 frame_units frame_extent

frame_units:
 {ROWS | RANGE}

In the absence of a frame clause, the default frame depends on whether an ORDER BY clause is
present, as described later in this section.

The frame_units value indicates the type of relationship between the current row and frame rows:

• ROWS: The frame is defined by beginning and ending row positions. Offsets are differences in row
numbers from the current row number.

• RANGE: The frame is defined by rows within a value range. Offsets are differences in row values from
the current row value.

The frame_extent value indicates the start and end points of the frame. You can specify just the
start of the frame (in which case the current row is implicitly the end) or use BETWEEN to specify both
frame endpoints:

frame_extent:
 {frame_start | frame_between}

frame_between:
 BETWEEN frame_start AND frame_end

frame_start, frame_end: {
 CURRENT ROW
 | UNBOUNDED PRECEDING
 | UNBOUNDED FOLLOWING
 | expr PRECEDING
 | expr FOLLOWING
}

With BETWEEN syntax, frame_start must not occur later than frame_end.

The permitted frame_start and frame_end values have these meanings:

• CURRENT ROW: For ROWS, the bound is the current row. For RANGE, the bound is the peers of the
current row.

• UNBOUNDED PRECEDING: The bound is the first partition row.

• UNBOUNDED FOLLOWING: The bound is the last partition row.

• expr PRECEDING: For ROWS, the bound is expr rows before the current row. For RANGE, the bound
is the rows with values equal to the current row value minus expr; if the current row value is NULL,
the bound is the peers of the row.

For expr PRECEDING (and expr FOLLOWING), expr can be a ? parameter marker (for use in a
prepared statement), a nonnegative numeric literal, or a temporal interval of the form INTERVAL

2620

Window Function Frame Specification

val unit. For INTERVAL expressions, val specifies nonnegative interval value, and unit is a
keyword indicating the units in which the value should be interpreted. (For details about the permitted
units specifiers, see the description of the DATE_ADD() function in Section 14.7, “Date and Time
Functions”.)

RANGE on a numeric or temporal expr requires ORDER BY on a numeric or temporal expression,
respectively.

Examples of valid expr PRECEDING and expr FOLLOWING indicators:

10 PRECEDING
INTERVAL 5 DAY PRECEDING
5 FOLLOWING
INTERVAL '2:30' MINUTE_SECOND FOLLOWING

• expr FOLLOWING: For ROWS, the bound is expr rows after the current row. For RANGE, the bound
is the rows with values equal to the current row value plus expr; if the current row value is NULL, the
bound is the peers of the row.

For permitted values of expr, see the description of expr PRECEDING.

The following query demonstrates FIRST_VALUE(), LAST_VALUE(), and two instances of
NTH_VALUE():

mysql> SELECT
 time, subject, val,
 FIRST_VALUE(val) OVER w AS 'first',
 LAST_VALUE(val) OVER w AS 'last',
 NTH_VALUE(val, 2) OVER w AS 'second',
 NTH_VALUE(val, 4) OVER w AS 'fourth'
 FROM observations
 WINDOW w AS (PARTITION BY subject ORDER BY time
 ROWS UNBOUNDED PRECEDING);
+----------+---------+------+-------+------+--------+--------+
| time | subject | val | first | last | second | fourth |
+----------+---------+------+-------+------+--------+--------+
07:00:00	st113	10	10	10	NULL	NULL
07:15:00	st113	9	10	9	9	NULL
07:30:00	st113	25	10	25	9	NULL
07:45:00	st113	20	10	20	9	20
07:00:00	xh458	0	0	0	NULL	NULL
07:15:00	xh458	10	0	10	10	NULL
07:30:00	xh458	5	0	5	10	NULL
07:45:00	xh458	30	0	30	10	30
08:00:00	xh458	25	0	25	10	30
+----------+---------+------+-------+------+--------+--------+

Each function uses the rows in the current frame, which, per the window definition shown, extends from
the first partition row to the current row. For the NTH_VALUE() calls, the current frame does not always
include the requested row; in such cases, the return value is NULL.

In the absence of a frame clause, the default frame depends on whether an ORDER BY clause is
present:

• With ORDER BY: The default frame includes rows from the partition start through the current row,
including all peers of the current row (rows equal to the current row according to the ORDER BY
clause). The default is equivalent to this frame specification:

RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

• Without ORDER BY: The default frame includes all partition rows (because, without ORDER BY, all
partition rows are peers). The default is equivalent to this frame specification:

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

Because the default frame differs depending on presence or absence of ORDER BY, adding ORDER BY
to a query to get deterministic results may change the results. (For example, the values produced by

2621

Named Windows

SUM() might change.) To obtain the same results but ordered per ORDER BY, provide an explicit frame
specification to be used regardless of whether ORDER BY is present.

The meaning of a frame specification can be nonobvious when the current row value is NULL.
Assuming that to be the case, these examples illustrate how various frame specifications apply:

• ORDER BY X ASC RANGE BETWEEN 10 FOLLOWING AND 15 FOLLOWING

The frame starts at NULL and stops at NULL, thus includes only rows with value NULL.

• ORDER BY X ASC RANGE BETWEEN 10 FOLLOWING AND UNBOUNDED FOLLOWING

The frame starts at NULL and stops at the end of the partition. Because an ASC sort puts NULL
values first, the frame is the entire partition.

• ORDER BY X DESC RANGE BETWEEN 10 FOLLOWING AND UNBOUNDED FOLLOWING

The frame starts at NULL and stops at the end of the partition. Because a DESC sort puts NULL
values last, the frame is only the NULL values.

• ORDER BY X ASC RANGE BETWEEN 10 PRECEDING AND UNBOUNDED FOLLOWING

The frame starts at NULL and stops at the end of the partition. Because an ASC sort puts NULL
values first, the frame is the entire partition.

• ORDER BY X ASC RANGE BETWEEN 10 PRECEDING AND 10 FOLLOWING

The frame starts at NULL and stops at NULL, thus includes only rows with value NULL.

• ORDER BY X ASC RANGE BETWEEN 10 PRECEDING AND 1 PRECEDING

The frame starts at NULL and stops at NULL, thus includes only rows with value NULL.

• ORDER BY X ASC RANGE BETWEEN UNBOUNDED PRECEDING AND 10 FOLLOWING

The frame starts at the beginning of the partition and stops at rows with value NULL. Because an ASC
sort puts NULL values first, the frame is only the NULL values.

14.20.4 Named Windows

Windows can be defined and given names by which to refer to them in OVER clauses. To do this, use
a WINDOW clause. If present in a query, the WINDOW clause falls between the positions of the HAVING
and ORDER BY clauses, and has this syntax:

WINDOW window_name AS (window_spec)
 [, window_name AS (window_spec)] ...

For each window definition, window_name is the window name, and window_spec is the same
type of window specification as given between the parentheses of an OVER clause, as described in
Section 14.20.2, “Window Function Concepts and Syntax”:

window_spec:
 [window_name] [partition_clause] [order_clause] [frame_clause]

A WINDOW clause is useful for queries in which multiple OVER clauses would otherwise define the same
window. Instead, you can define the window once, give it a name, and refer to the name in the OVER
clauses. Consider this query, which defines the same window multiple times:

SELECT
 val,
 ROW_NUMBER() OVER (ORDER BY val) AS 'row_number',
 RANK() OVER (ORDER BY val) AS 'rank',
 DENSE_RANK() OVER (ORDER BY val) AS 'dense_rank'
FROM numbers;

2622

Window Function Restrictions

The query can be written more simply by using WINDOW to define the window once and referring to the
window by name in the OVER clauses:

SELECT
 val,
 ROW_NUMBER() OVER w AS 'row_number',
 RANK() OVER w AS 'rank',
 DENSE_RANK() OVER w AS 'dense_rank'
FROM numbers
WINDOW w AS (ORDER BY val);

A named window also makes it easier to experiment with the window definition to see the effect on
query results. You need only modify the window definition in the WINDOW clause, rather than multiple
OVER clause definitions.

If an OVER clause uses OVER (window_name ...) rather than OVER window_name, the named
window can be modified by the addition of other clauses. For example, this query defines a window that
includes partitioning, and uses ORDER BY in the OVER clauses to modify the window in different ways:

SELECT
 DISTINCT year, country,
 FIRST_VALUE(year) OVER (w ORDER BY year ASC) AS first,
 FIRST_VALUE(year) OVER (w ORDER BY year DESC) AS last
FROM sales
WINDOW w AS (PARTITION BY country);

An OVER clause can only add properties to a named window, not modify them. If the named window
definition includes a partitioning, ordering, or framing property, the OVER clause that refers to the
window name cannot also include the same kind of property or an error occurs:

• This construct is permitted because the window definition and the referring OVER clause do not
contain the same kind of properties:

OVER (w ORDER BY country)
... WINDOW w AS (PARTITION BY country)

• This construct is not permitted because the OVER clause specifies PARTITION BY for a named
window that already has PARTITION BY:

OVER (w PARTITION BY year)
... WINDOW w AS (PARTITION BY country)

The definition of a named window can itself begin with a window_name. In such cases, forward and
backward references are permitted, but not cycles:

• This is permitted; it contains forward and backward references but no cycles:

WINDOW w1 AS (w2), w2 AS (), w3 AS (w1)

• This is not permitted because it contains a cycle:

WINDOW w1 AS (w2), w2 AS (w3), w3 AS (w1)

14.20.5 Window Function Restrictions

The SQL standard imposes a constraint on window functions that they cannot be used in UPDATE or
DELETE statements to update rows. Using such functions in a subquery of these statements (to select
rows) is permitted.

MySQL does not support these window function features:

• DISTINCT syntax for aggregate window functions.

• Nested window functions.

• Dynamic frame endpoints that depend on the value of the current row.

2623

Performance Schema Functions

The parser recognizes these window constructs which nevertheless are not supported:

• The GROUPS frame units specifier is parsed, but produces an error. Only ROWS and RANGE are
supported.

• The EXCLUDE clause for frame specification is parsed, but produces an error.

• IGNORE NULLS is parsed, but produces an error. Only RESPECT NULLS is supported.

• FROM LAST is parsed, but produces an error. Only FROM FIRST is supported.

As of MySQL 8.0.28, a maximum of 127 windows is supported for a given SELECT. Note that a single
query may use multiple SELECT clauses, and each of these clauses supports up to 127 windows. The
number of distinct windows is defined as the sum of the named windows and any implicit windows
specified as part of any window function's OVER clause. You should also be aware that queries using
very large numbers of windows may require increasing the default thread stack size (thread_stack
system variable).

14.21 Performance Schema Functions
As of MySQL 8.0.16, MySQL includes built-in SQL functions that format or retrieve Performance
Schema data, and that may be used as equivalents for the corresponding sys schema stored
functions. The built-in functions can be invoked in any schema and require no qualifier, unlike the sys
functions, which require either a sys. schema qualifier or that sys be the current schema.

Table 14.31 Performance Schema Functions

Name Description Introduced

FORMAT_BYTES() Convert byte count to value with
units

8.0.16

FORMAT_PICO_TIME() Convert time in picoseconds to
value with units

8.0.16

PS_CURRENT_THREAD_ID() Performance Schema thread ID
for current thread

8.0.16

PS_THREAD_ID() Performance Schema thread ID
for given thread

8.0.16

The built-in functions supersede the corresponding sys functions, which are deprecated; expect
them to be removed in a future version of MySQL. Applications that use the sys functions should be
adjusted to use the built-in functions instead, keeping in mind some minor differences between the sys
functions and the built-in functions. For details about these differences, see the function descriptions in
this section.

• FORMAT_BYTES(count)

Given a numeric byte count, converts it to human-readable format and returns a string consisting of a
value and a units indicator. The string contains the number of bytes rounded to 2 decimal places and
a minimum of 3 significant digits. Numbers less than 1024 bytes are represented as whole numbers
and are not rounded. Returns NULL if count is NULL.

The units indicator depends on the size of the byte-count argument as shown in the following table.

Argument Value Result Units Result Units Indicator

Up to 1023 bytes bytes

Up to 10242 − 1 kibibytes KiB

Up to 10243 − 1 mebibytes MiB

Up to 10244 − 1 gibibytes GiB

Up to 10245 − 1 tebibytes TiB

2624

Performance Schema Functions

Argument Value Result Units Result Units Indicator

Up to 10246 − 1 pebibytes PiB

10246 and up exbibytes EiB

mysql> SELECT FORMAT_BYTES(512), FORMAT_BYTES(18446644073709551615);
+-------------------+------------------------------------+
| FORMAT_BYTES(512) | FORMAT_BYTES(18446644073709551615) |
+-------------------+------------------------------------+
| 512 bytes | 16.00 EiB |
+-------------------+------------------------------------+

FORMAT_BYTES() was added in MySQL 8.0.16. It may be used instead of the sys schema
format_bytes() function, keeping in mind this difference:

• FORMAT_BYTES() uses the EiB units indicator. sys.format_bytes() does not.

• FORMAT_PICO_TIME(time_val)

Given a numeric Performance Schema latency or wait time in picoseconds, converts it to human-
readable format and returns a string consisting of a value and a units indicator. The string contains
the decimal time rounded to 2 decimal places and a minimum of 3 significant digits. Times under 1
nanosecond are represented as whole numbers and are not rounded.

If time_val is NULL, this function returns NULL.

The units indicator depends on the size of the time-value argument as shown in the following table.

Argument Value Result Units Result Units Indicator

Up to 103 − 1 picoseconds ps

Up to 106 − 1 nanoseconds ns

Up to 109 − 1 microseconds us

Up to 1012 − 1 milliseconds ms

Up to 60×1012 − 1 seconds s

Up to 3.6×1015 − 1 minutes min

Up to 8.64×1016 − 1 hours h

8.64×1016 and up days d

mysql> SELECT FORMAT_PICO_TIME(3501), FORMAT_PICO_TIME(188732396662000);
+------------------------+-----------------------------------+
| FORMAT_PICO_TIME(3501) | FORMAT_PICO_TIME(188732396662000) |
+------------------------+-----------------------------------+
| 3.50 ns | 3.15 min |
+------------------------+-----------------------------------+

FORMAT_PICO_TIME() was added in MySQL 8.0.16. It may be used instead of the sys schema
format_time() function, keeping in mind these differences:

• To indicate minutes, sys.format_time() uses the m units indicator, whereas
FORMAT_PICO_TIME() uses min.

• sys.format_time() uses the w (weeks) units indicator. FORMAT_PICO_TIME() does not.

2625

Performance Schema Functions

• PS_CURRENT_THREAD_ID()

Returns a BIGINT UNSIGNED value representing the Performance Schema thread ID assigned to
the current connection.

The thread ID return value is a value of the type given in the THREAD_ID column of Performance
Schema tables.

Performance Schema configuration affects PS_CURRENT_THREAD_ID() the same way as for
PS_THREAD_ID(). For details, see the description of that function.

mysql> SELECT PS_CURRENT_THREAD_ID();
+------------------------+
| PS_CURRENT_THREAD_ID() |
+------------------------+
| 52 |
+------------------------+
mysql> SELECT PS_THREAD_ID(CONNECTION_ID());
+-------------------------------+
| PS_THREAD_ID(CONNECTION_ID()) |
+-------------------------------+
| 52 |
+-------------------------------+

PS_CURRENT_THREAD_ID() was added in MySQL 8.0.16. It may be used as a shortcut for invoking
the sys schema ps_thread_id() function with an argument of NULL or CONNECTION_ID().

• PS_THREAD_ID(connection_id)

Given a connection ID, returns a BIGINT UNSIGNED value representing the Performance Schema
thread ID assigned to the connection ID, or NULL if no thread ID exists for the connection ID. The
latter can occur for threads that are not instrumented, or if connection_id is NULL.

The connection ID argument is a value of the type given in the PROCESSLIST_ID column of the
Performance Schema threads table or the Id column of SHOW PROCESSLIST output.

The thread ID return value is a value of the type given in the THREAD_ID column of Performance
Schema tables.

Performance Schema configuration affects PS_THREAD_ID() operation as follows. (These remarks
also apply to PS_CURRENT_THREAD_ID().)

• Disabling the thread_instrumentation consumer disables statistics from being collected and
aggregated at the thread level, but has no effect on PS_THREAD_ID().

• If performance_schema_max_thread_instances is not 0, the Performance
Schema allocates memory for thread statistics and assigns an internal ID to each
thread for which instance memory is available. If there are threads for which
instance memory is not available, PS_THREAD_ID() returns NULL; in this case,
Performance_schema_thread_instances_lost is nonzero.

• If performance_schema_max_thread_instances is 0, the Performance Schema allocates no
thread memory and PS_THREAD_ID() returns NULL.

• If the Performance Schema itself is disabled, PS_THREAD_ID() produces an error.

mysql> SELECT PS_THREAD_ID(6);
+-----------------+
| PS_THREAD_ID(6) |
+-----------------+
| 45 |

2626

Internal Functions

+-----------------+

PS_THREAD_ID() was added in MySQL 8.0.16. It may be used instead of the sys schema
ps_thread_id() function, keeping in mind this difference:

• With an argument of NULL, sys.ps_thread_id() returns the thread ID for the current
connection, whereas PS_THREAD_ID() returns NULL. To obtain the current connection thread ID,
use PS_CURRENT_THREAD_ID() instead.

14.22 Internal Functions
Table 14.32 Internal Functions

Name Description Introduced

CAN_ACCESS_COLUMN() Internal use only

CAN_ACCESS_DATABASE() Internal use only

CAN_ACCESS_TABLE() Internal use only

CAN_ACCESS_USER() Internal use only 8.0.22

CAN_ACCESS_VIEW() Internal use only

GET_DD_COLUMN_PRIVILEGES()Internal use only

GET_DD_CREATE_OPTIONS() Internal use only

GET_DD_INDEX_SUB_PART_LENGTH()Internal use only

INTERNAL_AUTO_INCREMENT() Internal use only

INTERNAL_AVG_ROW_LENGTH() Internal use only

INTERNAL_CHECK_TIME() Internal use only

INTERNAL_CHECKSUM() Internal use only

INTERNAL_DATA_FREE() Internal use only

INTERNAL_DATA_LENGTH() Internal use only

INTERNAL_DD_CHAR_LENGTH() Internal use only

INTERNAL_GET_COMMENT_OR_ERROR()Internal use only

INTERNAL_GET_ENABLED_ROLE_JSON()Internal use only 8.0.19

INTERNAL_GET_HOSTNAME() Internal use only 8.0.19

INTERNAL_GET_USERNAME() Internal use only 8.0.19

INTERNAL_GET_VIEW_WARNING_OR_ERROR()Internal use only

INTERNAL_INDEX_COLUMN_CARDINALITY()Internal use only

INTERNAL_INDEX_LENGTH() Internal use only

INTERNAL_IS_ENABLED_ROLE()Internal use only 8.0.19

INTERNAL_IS_MANDATORY_ROLE()Internal use only 8.0.19

INTERNAL_KEYS_DISABLED() Internal use only

INTERNAL_MAX_DATA_LENGTH()Internal use only

INTERNAL_TABLE_ROWS() Internal use only

INTERNAL_UPDATE_TIME() Internal use only

The functions listed in this section are intended only for internal use by the server. Attempts by users to
invoke them result in an error.

• CAN_ACCESS_COLUMN(ARGS)

• CAN_ACCESS_DATABASE(ARGS)

2627

Miscellaneous Functions

• CAN_ACCESS_TABLE(ARGS)

• CAN_ACCESS_USER(ARGS)

• CAN_ACCESS_VIEW(ARGS)

• GET_DD_COLUMN_PRIVILEGES(ARGS)

• GET_DD_CREATE_OPTIONS(ARGS)

• GET_DD_INDEX_SUB_PART_LENGTH(ARGS)

• INTERNAL_AUTO_INCREMENT(ARGS)

• INTERNAL_AVG_ROW_LENGTH(ARGS)

• INTERNAL_CHECK_TIME(ARGS)

• INTERNAL_CHECKSUM(ARGS)

• INTERNAL_DATA_FREE(ARGS)

• INTERNAL_DATA_LENGTH(ARGS)

• INTERNAL_DD_CHAR_LENGTH(ARGS)

• INTERNAL_GET_COMMENT_OR_ERROR(ARGS)

• INTERNAL_GET_ENABLED_ROLE_JSON(ARGS)

• INTERNAL_GET_HOSTNAME(ARGS)

• INTERNAL_GET_USERNAME(ARGS)

• INTERNAL_GET_VIEW_WARNING_OR_ERROR(ARGS)

• INTERNAL_INDEX_COLUMN_CARDINALITY(ARGS)

• INTERNAL_INDEX_LENGTH(ARGS)

• INTERNAL_IS_ENABLED_ROLE(ARGS)

• INTERNAL_IS_MANDATORY_ROLE(ARGS)

• INTERNAL_KEYS_DISABLED(ARGS)

• INTERNAL_MAX_DATA_LENGTH(ARGS)

• INTERNAL_TABLE_ROWS(ARGS)

• INTERNAL_UPDATE_TIME(ARGS)

• IS_VISIBLE_DD_OBJECT(ARGS)

14.23 Miscellaneous Functions

Table 14.33 Miscellaneous Functions

Name Description

ANY_VALUE() Suppress ONLY_FULL_GROUP_BY value
rejection

2628

Miscellaneous Functions

Name Description

BIN_TO_UUID() Convert binary UUID to string

DEFAULT() Return the default value for a table column

GROUPING() Distinguish super-aggregate ROLLUP rows from
regular rows

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

INET6_ATON() Return the numeric value of an IPv6 address

INET6_NTOA() Return the IPv6 address from a numeric value

IS_IPV4() Whether argument is an IPv4 address

IS_IPV4_COMPAT() Whether argument is an IPv4-compatible address

IS_IPV4_MAPPED() Whether argument is an IPv4-mapped address

IS_IPV6() Whether argument is an IPv6 address

IS_UUID() Whether argument is a valid UUID

NAME_CONST() Cause the column to have the given name

SLEEP() Sleep for a number of seconds

UUID() Return a Universal Unique Identifier (UUID)

UUID_SHORT() Return an integer-valued universal identifier

UUID_TO_BIN() Convert string UUID to binary

VALUES() Define the values to be used during an INSERT

• ANY_VALUE(arg)

This function is useful for GROUP BY queries when the ONLY_FULL_GROUP_BY SQL mode is
enabled, for cases when MySQL rejects a query that you know is valid for reasons that MySQL
cannot determine. The function return value and type are the same as the return value and type of its
argument, but the function result is not checked for the ONLY_FULL_GROUP_BY SQL mode.

For example, if name is a nonindexed column, the following query fails with ONLY_FULL_GROUP_BY
enabled:

mysql> SELECT name, address, MAX(age) FROM t GROUP BY name;
ERROR 1055 (42000): Expression #2 of SELECT list is not in GROUP
BY clause and contains nonaggregated column 'mydb.t.address' which
is not functionally dependent on columns in GROUP BY clause; this
is incompatible with sql_mode=only_full_group_by

The failure occurs because address is a nonaggregated column that is neither named among
GROUP BY columns nor functionally dependent on them. As a result, the address value for rows
within each name group is nondeterministic. There are multiple ways to cause MySQL to accept the
query:

• Alter the table to make name a primary key or a unique NOT NULL column. This enables MySQL
to determine that address is functionally dependent on name; that is, address is uniquely
determined by name. (This technique is inapplicable if NULL must be permitted as a valid name
value.)

• Use ANY_VALUE() to refer to address:

SELECT name, ANY_VALUE(address), MAX(age) FROM t GROUP BY name;

In this case, MySQL ignores the nondeterminism of address values within each name group and
accepts the query. This may be useful if you simply do not care which value of a nonaggregated

2629

Miscellaneous Functions

column is chosen for each group. ANY_VALUE() is not an aggregate function, unlike functions
such as SUM() or COUNT(). It simply acts to suppress the test for nondeterminism.

• Disable ONLY_FULL_GROUP_BY. This is equivalent to using ANY_VALUE() with
ONLY_FULL_GROUP_BY enabled, as described in the previous item.

ANY_VALUE() is also useful if functional dependence exists between columns but MySQL cannot
determine it. The following query is valid because age is functionally dependent on the grouping
column age-1, but MySQL cannot tell that and rejects the query with ONLY_FULL_GROUP_BY
enabled:

SELECT age FROM t GROUP BY age-1;

To cause MySQL to accept the query, use ANY_VALUE():

SELECT ANY_VALUE(age) FROM t GROUP BY age-1;

ANY_VALUE() can be used for queries that refer to aggregate functions in the absence of a GROUP
BY clause:

mysql> SELECT name, MAX(age) FROM t;
ERROR 1140 (42000): In aggregated query without GROUP BY, expression
#1 of SELECT list contains nonaggregated column 'mydb.t.name'; this
is incompatible with sql_mode=only_full_group_by

Without GROUP BY, there is a single group and it is nondeterministic which name value to choose for
the group. ANY_VALUE() tells MySQL to accept the query:

SELECT ANY_VALUE(name), MAX(age) FROM t;

It may be that, due to some property of a given data set, you know that a selected nonaggregated
column is effectively functionally dependent on a GROUP BY column. For example, an application
may enforce uniqueness of one column with respect to another. In this case, using ANY_VALUE()
for the effectively functionally dependent column may make sense.

For additional discussion, see Section 14.19.3, “MySQL Handling of GROUP BY”.

• BIN_TO_UUID(binary_uuid), BIN_TO_UUID(binary_uuid, swap_flag)

BIN_TO_UUID() is the inverse of UUID_TO_BIN(). It converts a binary UUID to a string UUID
and returns the result. The binary value should be a UUID as a VARBINARY(16) value. The return
value is a string of five hexadecimal numbers separated by dashes. (For details about this format,
see the UUID() function description.) If the UUID argument is NULL, the return value is NULL. If any
argument is invalid, an error occurs.

BIN_TO_UUID() takes one or two arguments:

• The one-argument form takes a binary UUID value. The UUID value is assumed not to have
its time-low and time-high parts swapped. The string result is in the same order as the binary
argument.

• The two-argument form takes a binary UUID value and a swap-flag value:

• If swap_flag is 0, the two-argument form is equivalent to the one-argument form. The string
result is in the same order as the binary argument.

• If swap_flag is 1, the UUID value is assumed to have its time-low and time-high parts
swapped. These parts are swapped back to their original position in the result value.

For usage examples and information about time-part swapping, see the UUID_TO_BIN() function
description.

2630

Miscellaneous Functions

• DEFAULT(col_name)

Returns the default value for a table column. An error results if the column has no default value.

The use of DEFAULT(col_name) to specify the default value for a named column is permitted only
for columns that have a literal default value, not for columns that have an expression default value.

mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. For details, see Section 14.8, “String Functions and Operators”.

• GROUPING(expr [, expr] ...)

For GROUP BY queries that include a WITH ROLLUP modifier, the ROLLUP operation produces
super-aggregate output rows where NULL represents the set of all values. The GROUPING() function
enables you to distinguish NULL values for super-aggregate rows from NULL values in regular
grouped rows.

GROUPING() is permitted in the select list, HAVING clause, and (as of MySQL 8.0.12) ORDER BY
clause.

Each argument to GROUPING() must be an expression that exactly matches an expression in
the GROUP BY clause. The expression cannot be a positional specifier. For each expression,
GROUPING() produces 1 if the expression value in the current row is a NULL representing a super-
aggregate value. Otherwise, GROUPING() produces 0, indicating that the expression value is a NULL
for a regular result row or is not NULL.

Suppose that table t1 contains these rows, where NULL indicates something like “other” or
“unknown”:

mysql> SELECT * FROM t1;
+------+-------+----------+
| name | size | quantity |
+------+-------+----------+
ball	small	10
ball	large	20
ball	NULL	5
hoop	small	15
hoop	large	5
hoop	NULL	3
+------+-------+----------+

A summary of the table without WITH ROLLUP looks like this:

mysql> SELECT name, size, SUM(quantity) AS quantity
 FROM t1
 GROUP BY name, size;
+------+-------+----------+
| name | size | quantity |
+------+-------+----------+
ball	small	10
ball	large	20
ball	NULL	5
hoop	small	15
hoop	large	5
hoop	NULL	3

2631

Miscellaneous Functions

+------+-------+----------+

The result contains NULL values, but those do not represent super-aggregate rows because the
query does not include WITH ROLLUP.

Adding WITH ROLLUP produces super-aggregate summary rows containing additional NULL values.
However, without comparing this result to the previous one, it is not easy to see which NULL values
occur in super-aggregate rows and which occur in regular grouped rows:

mysql> SELECT name, size, SUM(quantity) AS quantity
 FROM t1
 GROUP BY name, size WITH ROLLUP;
+------+-------+----------+
| name | size | quantity |
+------+-------+----------+
ball	NULL	5
ball	large	20
ball	small	10
ball	NULL	35
hoop	NULL	3
hoop	large	5
hoop	small	15
hoop	NULL	23
NULL	NULL	58
+------+-------+----------+

To distinguish NULL values in super-aggregate rows from those in regular grouped rows, use
GROUPING(), which returns 1 only for super-aggregate NULL values:

mysql> SELECT
 name, size, SUM(quantity) AS quantity,
 GROUPING(name) AS grp_name,
 GROUPING(size) AS grp_size
 FROM t1
 GROUP BY name, size WITH ROLLUP;
+------+-------+----------+----------+----------+
| name | size | quantity | grp_name | grp_size |
+------+-------+----------+----------+----------+
ball	NULL	5	0	0
ball	large	20	0	0
ball	small	10	0	0
ball	NULL	35	0	1
hoop	NULL	3	0	0
hoop	large	5	0	0
hoop	small	15	0	0
hoop	NULL	23	0	1
NULL	NULL	58	1	1
+------+-------+----------+----------+----------+

Common uses for GROUPING():

• Substitute a label for super-aggregate NULL values:

mysql> SELECT
 IF(GROUPING(name) = 1, 'All items', name) AS name,
 IF(GROUPING(size) = 1, 'All sizes', size) AS size,
 SUM(quantity) AS quantity
 FROM t1
 GROUP BY name, size WITH ROLLUP;
+-----------+-----------+----------+
| name | size | quantity |
+-----------+-----------+----------+
ball	NULL	5
ball	large	20
ball	small	10
ball	All sizes	35
hoop	NULL	3
hoop	large	5
hoop	small	15
hoop	All sizes	23

2632

Miscellaneous Functions

| All items | All sizes | 58 |
+-----------+-----------+----------+

• Return only super-aggregate lines by filtering out the regular grouped lines:

mysql> SELECT name, size, SUM(quantity) AS quantity
 FROM t1
 GROUP BY name, size WITH ROLLUP
 HAVING GROUPING(name) = 1 OR GROUPING(size) = 1;
+------+------+----------+
| name | size | quantity |
+------+------+----------+
ball	NULL	35
hoop	NULL	23
NULL	NULL	58
+------+------+----------+

GROUPING() permits multiple expression arguments. In this case, the GROUPING() return value
represents a bitmask combined from the results for each expression, where the lowest-order
bit corresponds to the result for the rightmost expression. For example, with three expression
arguments, GROUPING(expr1, expr2, expr3) is evaluated like this:

 result for GROUPING(expr3)
+ result for GROUPING(expr2) << 1
+ result for GROUPING(expr1) << 2

The following query shows how GROUPING() results for single arguments combine for a multiple-
argument call to produce a bitmask value:

mysql> SELECT
 name, size, SUM(quantity) AS quantity,
 GROUPING(name) AS grp_name,
 GROUPING(size) AS grp_size,
 GROUPING(name, size) AS grp_all
 FROM t1
 GROUP BY name, size WITH ROLLUP;
+------+-------+----------+----------+----------+---------+
| name | size | quantity | grp_name | grp_size | grp_all |
+------+-------+----------+----------+----------+---------+
ball	NULL	5	0	0	0
ball	large	20	0	0	0
ball	small	10	0	0	0
ball	NULL	35	0	1	1
hoop	NULL	3	0	0	0
hoop	large	5	0	0	0
hoop	small	15	0	0	0
hoop	NULL	23	0	1	1
NULL	NULL	58	1	1	3
+------+-------+----------+----------+----------+---------+

With multiple expression arguments, the GROUPING() return value is nonzero if any expression
represents a super-aggregate value. Multiple-argument GROUPING() syntax thus provides a simpler
way to write the earlier query that returned only super-aggregate rows, by using a single multiple-
argument GROUPING() call rather than multiple single-argument calls:

mysql> SELECT name, size, SUM(quantity) AS quantity
 FROM t1
 GROUP BY name, size WITH ROLLUP
 HAVING GROUPING(name, size) <> 0;
+------+------+----------+
| name | size | quantity |
+------+------+----------+
ball	NULL	35
hoop	NULL	23
NULL	NULL	58

2633

Miscellaneous Functions

+------+------+----------+

Use of GROUPING() is subject to these limitations:

• Do not use subquery GROUP BY expressions as GROUPING() arguments because matching might
fail. For example, matching fails for this query:

mysql> SELECT GROUPING((SELECT MAX(name) FROM t1))
 FROM t1
 GROUP BY (SELECT MAX(name) FROM t1) WITH ROLLUP;
ERROR 3580 (HY000): Argument #1 of GROUPING function is not in GROUP BY

• GROUP BY literal expressions should not be used within a HAVING clause as GROUPING()
arguments. Due to differences between when the optimizer evaluates GROUP BY and HAVING,
matching may succeed but GROUPING() evaluation does not produce the expected result.
Consider this query:

SELECT a AS f1, 'w' AS f2
FROM t
GROUP BY f1, f2 WITH ROLLUP
HAVING GROUPING(f2) = 1;

GROUPING() is evaluated earlier for the literal constant expression than for the HAVING clause as
a whole and returns 0. To check whether a query such as this is affected, use EXPLAIN and look
for Impossible having in the Extra column.

For more information about WITH ROLLUP and GROUPING(), see Section 14.19.2, “GROUP BY
Modifiers”.

• INET_ATON(expr)

Given the dotted-quad representation of an IPv4 network address as a string, returns an integer
that represents the numeric value of the address in network byte order (big endian). INET_ATON()
returns NULL if it does not understand its argument, or if expr is NULL.

mysql> SELECT INET_ATON('10.0.5.9');
 -> 167773449

For this example, the return value is calculated as 10×2563 + 0×2562 + 5×256 + 9.

INET_ATON() may or may not return a non-NULL result for short-form IP addresses (such as
'127.1' as a representation of '127.0.0.1'). Because of this, INET_ATON()a should not be
used for such addresses.

Note

To store values generated by INET_ATON(), use an INT UNSIGNED
column rather than INT, which is signed. If you use a signed column, values
corresponding to IP addresses for which the first octet is greater than 127
cannot be stored correctly. See Section 13.1.7, “Out-of-Range and Overflow
Handling”.

• INET_NTOA(expr)

Given a numeric IPv4 network address in network byte order, returns the dotted-quad string
representation of the address as a string in the connection character set. INET_NTOA() returns
NULL if it does not understand its argument.

mysql> SELECT INET_NTOA(167773449);
 -> '10.0.5.9'

2634

Miscellaneous Functions

• INET6_ATON(expr)

Given an IPv6 or IPv4 network address as a string, returns a binary string that represents the
numeric value of the address in network byte order (big endian). Because numeric-format IPv6
addresses require more bytes than the largest integer type, the representation returned by this
function has the VARBINARY data type: VARBINARY(16) for IPv6 addresses and VARBINARY(4)
for IPv4 addresses. If the argument is not a valid address, or if it is NULL, INET6_ATON() returns
NULL.

The following examples use HEX() to display the INET6_ATON() result in printable form:

mysql> SELECT HEX(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
 -> 'FDFE0000000000005A55CAFFFEFA9089'
mysql> SELECT HEX(INET6_ATON('10.0.5.9'));
 -> '0A000509'

INET6_ATON() observes several constraints on valid arguments. These are given in the following
list along with examples.

• A trailing zone ID is not permitted, as in fe80::3%1 or fe80::3%eth0.

• A trailing network mask is not permitted, as in 2001:45f:3:ba::/64 or 198.51.100.0/24.

• For values representing IPv4 addresses, only classless addresses are supported. Classful
addresses such as 198.51.1 are rejected. A trailing port number is not permitted, as in
198.51.100.2:8080. Hexadecimal numbers in address components are not permitted, as in
198.0xa0.1.2. Octal numbers are not supported: 198.51.010.1 is treated as 198.51.10.1,
not 198.51.8.1. These IPv4 constraints also apply to IPv6 addresses that have IPv4 address
parts, such as IPv4-compatible or IPv4-mapped addresses.

To convert an IPv4 address expr represented in numeric form as an INT value to an IPv6 address
represented in numeric form as a VARBINARY value, use this expression:

INET6_ATON(INET_NTOA(expr))

For example:

mysql> SELECT HEX(INET6_ATON(INET_NTOA(167773449)));
 -> '0A000509'

If INET6_ATON() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

2635

Miscellaneous Functions

• INET6_NTOA(expr)

Given an IPv6 or IPv4 network address represented in numeric form as a binary string, returns the
string representation of the address as a string in the connection character set. If the argument is not
a valid address, or if it is NULL, INET6_NTOA() returns NULL.

INET6_NTOA() has these properties:

• It does not use operating system functions to perform conversions, thus the output string is
platform independent.

• The return string has a maximum length of 39 (4 x 8 + 7). Given this statement:

CREATE TABLE t AS SELECT INET6_NTOA(expr) AS c1;

The resulting table would have this definition:

CREATE TABLE t (c1 VARCHAR(39) CHARACTER SET utf8mb3 DEFAULT NULL);

• The return string uses lowercase letters for IPv6 addresses.

mysql> SELECT INET6_NTOA(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
 -> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(INET6_ATON('10.0.5.9'));
 -> '10.0.5.9'

mysql> SELECT INET6_NTOA(UNHEX('FDFE0000000000005A55CAFFFEFA9089'));
 -> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(UNHEX('0A000509'));
 -> '10.0.5.9'

If INET6_NTOA() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• IS_IPV4(expr)

Returns 1 if the argument is a valid IPv4 address specified as a string, 0 otherwise. Returns NULL if
expr is NULL.

mysql> SELECT IS_IPV4('10.0.5.9'), IS_IPV4('10.0.5.256');
 -> 1, 0

For a given argument, if IS_IPV4() returns 1, INET_ATON() (and INET6_ATON()) returns
non-NULL. The converse statement is not true: In some cases, INET_ATON() returns non-NULL
when IS_IPV4() returns 0.

As implied by the preceding remarks, IS_IPV4() is more strict than INET_ATON() about what
constitutes a valid IPv4 address, so it may be useful for applications that need to perform strong
checks against invalid values. Alternatively, use INET6_ATON() to convert IPv4 addresses to
internal form and check for a NULL result (which indicates an invalid address). INET6_ATON() is
equally strong as IS_IPV4() about checking IPv4 addresses.

• IS_IPV4_COMPAT(expr)

This function takes an IPv6 address represented in numeric form as a binary string, as returned by
INET6_ATON(). It returns 1 if the argument is a valid IPv4-compatible IPv6 address, 0 otherwise
(unless expr is NULL, in which case the function returns NULL). IPv4-compatible addresses have the
form ::ipv4_address.

mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::10.0.5.9'));
 -> 1
mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::ffff:10.0.5.9'));

2636

Miscellaneous Functions

 -> 0

The IPv4 part of an IPv4-compatible address can also be represented using hexadecimal notation.
For example, 198.51.100.1 has this raw hexadecimal value:

mysql> SELECT HEX(INET6_ATON('198.51.100.1'));
 -> 'C6336401'

Expressed in IPv4-compatible form, ::198.51.100.1 is equivalent to ::c0a8:0001 or (without
leading zeros) ::c0a8:1

mysql> SELECT
 -> IS_IPV4_COMPAT(INET6_ATON('::198.51.100.1')),
 -> IS_IPV4_COMPAT(INET6_ATON('::c0a8:0001')),
 -> IS_IPV4_COMPAT(INET6_ATON('::c0a8:1'));
 -> 1, 1, 1

• IS_IPV4_MAPPED(expr)

This function takes an IPv6 address represented in numeric form as a binary string, as returned
by INET6_ATON(). It returns 1 if the argument is a valid IPv4-mapped IPv6 address, 0 otherwise,
unless expr is NULL, in which case the function returns NULL. IPv4-mapped addresses have the
form ::ffff:ipv4_address.

mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::10.0.5.9'));
 -> 0
mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::ffff:10.0.5.9'));
 -> 1

As with IS_IPV4_COMPAT() the IPv4 part of an IPv4-mapped address can also be represented
using hexadecimal notation:

mysql> SELECT
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:198.51.100.1')),
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:0001')),
 -> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:1'));
 -> 1, 1, 1

• IS_IPV6(expr)

Returns 1 if the argument is a valid IPv6 address specified as a string, 0 otherwise, unless expr is
NULL, in which case the function returns NULL. This function does not consider IPv4 addresses to be
valid IPv6 addresses.

mysql> SELECT IS_IPV6('10.0.5.9'), IS_IPV6('::1');
 -> 0, 1

For a given argument, if IS_IPV6() returns 1, INET6_ATON() returns non-NULL.

• IS_UUID(string_uuid)

Returns 1 if the argument is a valid string-format UUID, 0 if the argument is not a valid UUID, and
NULL if the argument is NULL.

“Valid” means that the value is in a format that can be parsed. That is, it has the correct length and
contains only the permitted characters (hexadecimal digits in any lettercase and, optionally, dashes
and curly braces). This format is most common:

aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee

These other formats are also permitted:

aaaaaaaabbbbccccddddeeeeeeeeeeee
{aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee}

For the meanings of fields within the value, see the UUID() function description.

2637

Miscellaneous Functions

mysql> SELECT IS_UUID('6ccd780c-baba-1026-9564-5b8c656024db');
+---+
| IS_UUID('6ccd780c-baba-1026-9564-5b8c656024db') |
+---+
| 1 |
+---+
mysql> SELECT IS_UUID('6CCD780C-BABA-1026-9564-5B8C656024DB');
+---+
| IS_UUID('6CCD780C-BABA-1026-9564-5B8C656024DB') |
+---+
| 1 |
+---+
mysql> SELECT IS_UUID('6ccd780cbaba102695645b8c656024db');
+---+
| IS_UUID('6ccd780cbaba102695645b8c656024db') |
+---+
| 1 |
+---+
mysql> SELECT IS_UUID('{6ccd780c-baba-1026-9564-5b8c656024db}');
+---+
| IS_UUID('{6ccd780c-baba-1026-9564-5b8c656024db}') |
+---+
| 1 |
+---+
mysql> SELECT IS_UUID('6ccd780c-baba-1026-9564-5b8c6560');
+---+
| IS_UUID('6ccd780c-baba-1026-9564-5b8c6560') |
+---+
| 0 |
+---+
mysql> SELECT IS_UUID(RAND());
+-----------------+
| IS_UUID(RAND()) |
+-----------------+
| 0 |
+-----------------+

• NAME_CONST(name,value)

Returns the given value. When used to produce a result set column, NAME_CONST() causes the
column to have the given name. The arguments should be constants.

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

This function is for internal use only. The server uses it when writing statements from stored
programs that contain references to local program variables, as described in Section 27.7, “Stored
Program Binary Logging”. You might see this function in the output from mysqlbinlog.

For your applications, you can obtain exactly the same result as in the example just shown by using
simple aliasing, like this:

mysql> SELECT 14 AS myname;
+--------+
| myname |
+--------+
| 14 |
+--------+
1 row in set (0.00 sec)

See Section 15.2.13, “SELECT Statement”, for more information about column aliases.

2638

Miscellaneous Functions

• SLEEP(duration)

Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. The
duration may have a fractional part. If the argument is NULL or negative, SLEEP() produces a
warning, or an error in strict SQL mode.

When sleep returns normally (without interruption), it returns 0:

mysql> SELECT SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
| 0 |
+-------------+

When SLEEP() is the only thing invoked by a query that is interrupted, it returns 1 and the query
itself returns no error. This is true whether the query is killed or times out:

• This statement is interrupted using KILL QUERY from another session:

mysql> SELECT SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
| 1 |
+-------------+

• This statement is interrupted by timing out:

mysql> SELECT /*+ MAX_EXECUTION_TIME(1) */ SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
| 1 |
+-------------+

When SLEEP() is only part of a query that is interrupted, the query returns an error:

• This statement is interrupted using KILL QUERY from another session:

mysql> SELECT 1 FROM t1 WHERE SLEEP(1000);
ERROR 1317 (70100): Query execution was interrupted

• This statement is interrupted by timing out:

mysql> SELECT /*+ MAX_EXECUTION_TIME(1000) */ 1 FROM t1 WHERE SLEEP(1000);
ERROR 3024 (HY000): Query execution was interrupted, maximum statement
execution time exceeded

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

• UUID()

Returns a Universal Unique Identifier (UUID) generated according to RFC 4122, “A Universally
Unique IDentifier (UUID) URN Namespace” (http://www.ietf.org/rfc/rfc4122.txt).

A UUID is designed as a number that is globally unique in space and time. Two calls to UUID() are
expected to generate two different values, even if these calls are performed on two separate devices
not connected to each other.

Warning

Although UUID() values are intended to be unique, they are not necessarily
unguessable or unpredictable. If unpredictability is required, UUID values
should be generated some other way.

2639

http://www.ietf.org/rfc/rfc4122.txt

Miscellaneous Functions

UUID() returns a value that conforms to UUID version 1 as described in RFC 4122. The value is a
128-bit number represented as a utf8mb3 string of five hexadecimal numbers in aaaaaaaa-bbbb-
cccc-dddd-eeeeeeeeeeee format:

• The first three numbers are generated from the low, middle, and high parts of a timestamp. The
high part also includes the UUID version number.

• The fourth number preserves temporal uniqueness in case the timestamp value loses monotonicity
(for example, due to daylight saving time).

• The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random number
is substituted if the latter is not available (for example, because the host device has no Ethernet
card, or it is unknown how to find the hardware address of an interface on the host operating
system). In this case, spatial uniqueness cannot be guaranteed. Nevertheless, a collision should
have very low probability.

The MAC address of an interface is taken into account only on FreeBSD, Linux, and Windows. On
other operating systems, MySQL uses a randomly generated 48-bit number.

mysql> SELECT UUID();
 -> '6ccd780c-baba-1026-9564-5b8c656024db'

To convert between string and binary UUID values, use the UUID_TO_BIN() and BIN_TO_UUID()
functions. To check whether a string is a valid UUID value, use the IS_UUID() function.

This function is unsafe for statement-based replication. A warning is logged if you use this function
when binlog_format is set to STATEMENT.

• UUID_SHORT()

Returns a “short” universal identifier as a 64-bit unsigned integer. Values returned by
UUID_SHORT() differ from the string-format 128-bit identifiers returned by the UUID() function and
have different uniqueness properties. The value of UUID_SHORT() is guaranteed to be unique if the
following conditions hold:

• The server_id value of the current server is between 0 and 255 and is unique among your set of
source and replica servers

• You do not set back the system time for your server host between mysqld restarts

• You invoke UUID_SHORT() on average fewer than 16 million times per second between mysqld
restarts

The UUID_SHORT() return value is constructed this way:

 (server_id & 255) << 56
+ (server_startup_time_in_seconds << 24)
+ incremented_variable++;

mysql> SELECT UUID_SHORT();
 -> 92395783831158784

Note

UUID_SHORT() does not work with statement-based replication.

• UUID_TO_BIN(string_uuid), UUID_TO_BIN(string_uuid, swap_flag)

Converts a string UUID to a binary UUID and returns the result. (The IS_UUID() function
description lists the permitted string UUID formats.) The return binary UUID is a VARBINARY(16)

2640

Miscellaneous Functions

value. If the UUID argument is NULL, the return value is NULL. If any argument is invalid, an error
occurs.

UUID_TO_BIN() takes one or two arguments:

• The one-argument form takes a string UUID value. The binary result is in the same order as the
string argument.

• The two-argument form takes a string UUID value and a flag value:

• If swap_flag is 0, the two-argument form is equivalent to the one-argument form. The binary
result is in the same order as the string argument.

• If swap_flag is 1, the format of the return value differs: The time-low and time-high parts (the
first and third groups of hexadecimal digits, respectively) are swapped. This moves the more
rapidly varying part to the right and can improve indexing efficiency if the result is stored in an
indexed column.

Time-part swapping assumes the use of UUID version 1 values, such as are generated by the
UUID() function. For UUID values produced by other means that do not follow version 1 format,
time-part swapping provides no benefit. For details about version 1 format, see the UUID() function
description.

Suppose that you have the following string UUID value:

mysql> SET @uuid = '6ccd780c-baba-1026-9564-5b8c656024db';

To convert the string UUID to binary with or without time-part swapping, use UUID_TO_BIN():

mysql> SELECT HEX(UUID_TO_BIN(@uuid));
+----------------------------------+
| HEX(UUID_TO_BIN(@uuid)) |
+----------------------------------+
| 6CCD780CBABA102695645B8C656024DB |
+----------------------------------+
mysql> SELECT HEX(UUID_TO_BIN(@uuid, 0));
+----------------------------------+
| HEX(UUID_TO_BIN(@uuid, 0)) |
+----------------------------------+
| 6CCD780CBABA102695645B8C656024DB |
+----------------------------------+
mysql> SELECT HEX(UUID_TO_BIN(@uuid, 1));
+----------------------------------+
| HEX(UUID_TO_BIN(@uuid, 1)) |
+----------------------------------+
| 1026BABA6CCD780C95645B8C656024DB |
+----------------------------------+

To convert a binary UUID returned by UUID_TO_BIN() to a string UUID, use BIN_TO_UUID(). If
you produce a binary UUID by calling UUID_TO_BIN() with a second argument of 1 to swap time
parts, you should also pass a second argument of 1 to BIN_TO_UUID() to unswap the time parts
when converting the binary UUID back to a string UUID:

mysql> SELECT BIN_TO_UUID(UUID_TO_BIN(@uuid));
+--------------------------------------+
| BIN_TO_UUID(UUID_TO_BIN(@uuid)) |
+--------------------------------------+
| 6ccd780c-baba-1026-9564-5b8c656024db |
+--------------------------------------+
mysql> SELECT BIN_TO_UUID(UUID_TO_BIN(@uuid,0),0);
+--------------------------------------+
| BIN_TO_UUID(UUID_TO_BIN(@uuid,0),0) |
+--------------------------------------+
| 6ccd780c-baba-1026-9564-5b8c656024db |

2641

Precision Math

+--------------------------------------+
mysql> SELECT BIN_TO_UUID(UUID_TO_BIN(@uuid,1),1);
+--------------------------------------+
| BIN_TO_UUID(UUID_TO_BIN(@uuid,1),1) |
+--------------------------------------+
| 6ccd780c-baba-1026-9564-5b8c656024db |
+--------------------------------------+

If the use of time-part swapping is not the same for the conversion in both directions, the original
UUID is not recovered properly:

mysql> SELECT BIN_TO_UUID(UUID_TO_BIN(@uuid,0),1);
+--------------------------------------+
| BIN_TO_UUID(UUID_TO_BIN(@uuid,0),1) |
+--------------------------------------+
| baba1026-780c-6ccd-9564-5b8c656024db |
+--------------------------------------+
mysql> SELECT BIN_TO_UUID(UUID_TO_BIN(@uuid,1),0);
+--------------------------------------+
| BIN_TO_UUID(UUID_TO_BIN(@uuid,1),0) |
+--------------------------------------+
| 1026baba-6ccd-780c-9564-5b8c656024db |
+--------------------------------------+

If UUID_TO_BIN() is invoked from within the mysql client, binary strings display using hexadecimal
notation, depending on the value of the --binary-as-hex. For more information about that option,
see Section 6.5.1, “mysql — The MySQL Command-Line Client”.

• VALUES(col_name)

In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the
VALUES(col_name) function in the UPDATE clause to refer to column values from the INSERT
portion of the statement. In other words, VALUES(col_name) in the UPDATE clause refers to the
value of col_name that would be inserted, had no duplicate-key conflict occurred. This function
is especially useful in multiple-row inserts. The VALUES() function is meaningful only in the
ON DUPLICATE KEY UPDATE clause of INSERT statements and returns NULL otherwise. See
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”.

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
 -> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

Important

This usage is deprecated in MySQL 8.0.20, and is subject to removal in
a future release of MySQL. Use a row alias, or row and column aliases,
instead. See Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE
Statement”, for more information and examples.

14.24 Precision Math
MySQL provides support for precision math: numeric value handling that results in extremely accurate
results and a high degree control over invalid values. Precision math is based on these two features:

• SQL modes that control how strict the server is about accepting or rejecting invalid data.

• The MySQL library for fixed-point arithmetic.

These features have several implications for numeric operations and provide a high degree of
compliance with standard SQL:

• Precise calculations: For exact-value numbers, calculations do not introduce floating-point errors.
Instead, exact precision is used. For example, MySQL treats a number such as .0001 as an exact
value rather than as an approximation, and summing it 10,000 times produces a result of exactly 1,
not a value that is merely “close” to 1.

2642

Types of Numeric Values

• Well-defined rounding behavior: For exact-value numbers, the result of ROUND() depends on its
argument, not on environmental factors such as how the underlying C library works.

• Platform independence: Operations on exact numeric values are the same across different
platforms such as Windows and Unix.

• Control over handling of invalid values: Overflow and division by zero are detectable and can be
treated as errors. For example, you can treat a value that is too large for a column as an error rather
than having the value truncated to lie within the range of the column's data type. Similarly, you can
treat division by zero as an error rather than as an operation that produces a result of NULL. The
choice of which approach to take is determined by the setting of the server SQL mode.

The following discussion covers several aspects of how precision math works, including possible
incompatibilities with older applications. At the end, some examples are given that demonstrate how
MySQL handles numeric operations precisely. For information about controlling the SQL mode, see
Section 7.1.11, “Server SQL Modes”.

14.24.1 Types of Numeric Values

The scope of precision math for exact-value operations includes the exact-value data types (integer
and DECIMAL types) and exact-value numeric literals. Approximate-value data types and numeric
literals are handled as floating-point numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed.
Examples: 1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-
point) number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In
MySQL, types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

14.24.2 DECIMAL Data Type Characteristics

This section discusses the characteristics of the DECIMAL data type (and its synonyms), with particular
regard to the following topics:

• Maximum number of digits

• Storage format

• Storage requirements

• The nonstandard MySQL extension to the upper range of DECIMAL columns

The declaration syntax for a DECIMAL column is DECIMAL(M,D). The ranges of values for the
arguments are as follows:

• M is the maximum number of digits (the precision). It has a range of 1 to 65.

• D is the number of digits to the right of the decimal point (the scale). It has a range of 0 to 30 and
must be no larger than M.

If D is omitted, the default is 0. If M is omitted, the default is 10.

2643

Expression Handling

The maximum value of 65 for M means that calculations on DECIMAL values are accurate up to 65
digits. This limit of 65 digits of precision also applies to exact-value numeric literals, so the maximum
range of such literals differs from before. (There is also a limit on how long the text of DECIMAL literals
can be; see Section 14.24.3, “Expression Handling”.)

Values for DECIMAL columns are stored using a binary format that packs nine decimal digits into 4
bytes. The storage requirements for the integer and fractional parts of each value are determined
separately. Each multiple of nine digits requires 4 bytes, and any remaining digits left over require
some fraction of 4 bytes. The storage required for remaining digits is given by the following table.

Leftover Digits Number of Bytes

0 0

1–2 1

3–4 2

5–6 3

7–9 4

For example, a DECIMAL(18,9) column has nine digits on either side of the decimal point, so the
integer part and the fractional part each require 4 bytes. A DECIMAL(20,6) column has fourteen
integer digits and six fractional digits. The integer digits require four bytes for nine of the digits and 3
bytes for the remaining five digits. The six fractional digits require 3 bytes.

DECIMAL columns do not store a leading + character or - character or leading 0 digits. If you insert
+0003.1 into a DECIMAL(5,1) column, it is stored as 3.1. For negative numbers, a literal -
character is not stored.

DECIMAL columns do not permit values larger than the range implied by the column definition. For
example, a DECIMAL(3,0) column supports a range of -999 to 999. A DECIMAL(M,D) column
permits up to M - D digits to the left of the decimal point.

The SQL standard requires that the precision of NUMERIC(M,D) be exactly M digits. For
DECIMAL(M,D), the standard requires a precision of at least M digits but permits more. In MySQL,
DECIMAL(M,D) and NUMERIC(M,D) are the same, and both have a precision of exactly M digits.

For a full explanation of the internal format of DECIMAL values, see the file strings/decimal.c in a
MySQL source distribution. The format is explained (with an example) in the decimal2bin() function.

14.24.3 Expression Handling

With precision math, exact-value numbers are used as given whenever possible. For example,
numbers in comparisons are used exactly as given without a change in value. In strict SQL mode,
for INSERT into a column with an exact data type (DECIMAL or integer), a number is inserted with its
exact value if it is within the column range. When retrieved, the value should be the same as what was
inserted. (If strict SQL mode is not enabled, truncation for INSERT is permissible.)

Handling of a numeric expression depends on what kind of values the expression contains:

• If any approximate values are present, the expression is approximate and is evaluated using floating-
point arithmetic.

• If no approximate values are present, the expression contains only exact values. If any exact value
contains a fractional part (a value following the decimal point), the expression is evaluated using
DECIMAL exact arithmetic and has a precision of 65 digits. The term “exact” is subject to the limits of
what can be represented in binary. For example, 1.0/3.0 can be approximated in decimal notation
as .333..., but not written as an exact number, so (1.0/3.0)*3.0 does not evaluate to exactly
1.0.

• Otherwise, the expression contains only integer values. The expression is exact and is evaluated
using integer arithmetic and has a precision the same as BIGINT (64 bits).

2644

Expression Handling

If a numeric expression contains any strings, they are converted to double-precision floating-point
values and the expression is approximate.

Inserts into numeric columns are affected by the SQL mode, which is controlled by the sql_mode
system variable. (See Section 7.1.11, “Server SQL Modes”.) The following discussion mentions
strict mode (selected by the STRICT_ALL_TABLES or STRICT_TRANS_TABLES mode values) and
ERROR_FOR_DIVISION_BY_ZERO. To turn on all restrictions, you can simply use TRADITIONAL
mode, which includes both strict mode values and ERROR_FOR_DIVISION_BY_ZERO:

SET sql_mode='TRADITIONAL';

If a number is inserted into an exact type column (DECIMAL or integer), it is inserted with its exact value
if it is within the column range and precision.

If the value has too many digits in the fractional part, rounding occurs and a note is generated.
Rounding is done as described in Section 14.24.4, “Rounding Behavior”. Truncation due to rounding of
the fractional part is not an error, even in strict mode.

If the value has too many digits in the integer part, it is too large (out of range) and is handled as
follows:

• If strict mode is not enabled, the value is truncated to the nearest legal value and a warning is
generated.

• If strict mode is enabled, an overflow error occurs.

Prior to MySQL 8.0.31, for DECIMAL literals, in addition to the precision limit of 65 digits, there is a limit
on how long the text of the literal can be. If the value exceeds approximately 80 characters, unexpected
results can occur. For example:

mysql> SELECT
 CAST(0020.01 AS DECIMAL(15,2)) as val;
+------------------+
| val |
+------------------+
| 9999999999999.99 |
+------------------+
1 row in set, 2 warnings (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Truncated incorrect DECIMAL value: '20' |
| Warning | 1264 | Out of range value for column 'val' at row 1 |
+---------+------+--+
2 rows in set (0.00 sec)

As of MySQL 8.0.31, this should no longer be an issue, as shown here:

mysql> SELECT
 CAST(0020.01 AS DECIMAL(15,2)) as val;
+-------+
| val |
+-------+
| 20.01 |
+-------+
1 row in set (0.00 sec)

Underflow is not detected, so underflow handling is undefined.

For inserts of strings into numeric columns, conversion from string to number is handled as follows if
the string has nonnumeric contents:

• A string that does not begin with a number cannot be used as a number and produces an error in
strict mode, or a warning otherwise. This includes the empty string.

2645

Rounding Behavior

• A string that begins with a number can be converted, but the trailing nonnumeric portion is truncated.
If the truncated portion contains anything other than spaces, this produces an error in strict mode, or
a warning otherwise.

By default, division by zero produces a result of NULL and no warning. By setting the SQL mode
appropriately, division by zero can be restricted.

With the ERROR_FOR_DIVISION_BY_ZERO SQL mode enabled, MySQL handles division by zero
differently:

• If strict mode is not enabled, a warning occurs.

• If strict mode is enabled, inserts and updates involving division by zero are prohibited, and an error
occurs.

In other words, inserts and updates involving expressions that perform division by zero can be treated
as errors, but this requires ERROR_FOR_DIVISION_BY_ZERO in addition to strict mode.

Suppose that we have this statement:

INSERT INTO t SET i = 1/0;

This is what happens for combinations of strict and ERROR_FOR_DIVISION_BY_ZERO modes.

sql_mode Value Result

'' (Default) No warning, no error; i is set to NULL.

strict No warning, no error; i is set to NULL.

ERROR_FOR_DIVISION_BY_ZERO Warning, no error; i is set to NULL.

strict,ERROR_FOR_DIVISION_BY_ZERO Error condition; no row is inserted.

14.24.4 Rounding Behavior

This section discusses precision math rounding for the ROUND() function and for inserts into columns
with exact-value types (DECIMAL and integer).

The ROUND() function rounds differently depending on whether its argument is exact or approximate:

• For exact-value numbers, ROUND() uses the “round half up” rule: A value with a fractional part of .5
or greater is rounded up to the next integer if positive or down to the next integer if negative. (In other
words, it is rounded away from zero.) A value with a fractional part less than .5 is rounded down to
the next integer if positive or up to the next integer if negative. (In other words, it is rounded toward
zero.)

• For approximate-value numbers, the result depends on the C library. On many systems, this means
that ROUND() uses the “round to nearest even” rule: A value with a fractional part exactly half way
between two integers is rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For inserts into a DECIMAL or integer column, the target is an exact data type, so rounding uses “round
half away from zero,” regardless of whether the value to be inserted is exact or approximate:

mysql> CREATE TABLE t (d DECIMAL(10,0));
Query OK, 0 rows affected (0.00 sec)

2646

Precision Math Examples

mysql> INSERT INTO t VALUES(2.5),(2.5E0);
Query OK, 2 rows affected, 2 warnings (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 2

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Note | 1265 | Data truncated for column 'd' at row 1 |
| Note | 1265 | Data truncated for column 'd' at row 2 |
+-------+------+--+
2 rows in set (0.00 sec)

mysql> SELECT d FROM t;
+------+
| d |
+------+
| 3 |
| 3 |
+------+
2 rows in set (0.00 sec)

The SHOW WARNINGS statement displays the notes that are generated by truncation due to rounding
of the fractional part. Such truncation is not an error, even in strict SQL mode (see Section 14.24.3,
“Expression Handling”).

14.24.5 Precision Math Examples

This section provides some examples that show precision math query results in MySQL. These
examples demonstrate the principles described in Section 14.24.3, “Expression Handling”, and
Section 14.24.4, “Rounding Behavior”.

Example 1. Numbers are used with their exact value as given when possible:

mysql> SELECT (.1 + .2) = .3;
+----------------+
| (.1 + .2) = .3 |
+----------------+
| 1 |
+----------------+

For floating-point values, results are inexact:

mysql> SELECT (.1E0 + .2E0) = .3E0;
+----------------------+
| (.1E0 + .2E0) = .3E0 |
+----------------------+
| 0 |
+----------------------+

Another way to see the difference in exact and approximate value handling is to add a small number
to a sum many times. Consider the following stored procedure, which adds .0001 to a variable 1,000
times.

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 0;
 DECLARE d DECIMAL(10,4) DEFAULT 0;
 DECLARE f FLOAT DEFAULT 0;
 WHILE i < 10000 DO
 SET d = d + .0001;
 SET f = f + .0001E0;
 SET i = i + 1;
 END WHILE;
 SELECT d, f;
END;

The sum for both d and f logically should be 1, but that is true only for the decimal calculation. The
floating-point calculation introduces small errors:

2647

Precision Math Examples

+--------+------------------+
| d | f |
+--------+------------------+
| 1.0000 | 0.99999999999991 |
+--------+------------------+

Example 2. Multiplication is performed with the scale required by standard SQL. That is, for two
numbers X1 and X2 that have scale S1 and S2, the scale of the result is S1 + S2:

mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+
| 0.0001 |
+-----------+

Example 3. Rounding behavior for exact-value numbers is well-defined:

Rounding behavior (for example, with the ROUND() function) is independent of the implementation of
the underlying C library, which means that results are consistent from platform to platform.

• Rounding for exact-value columns (DECIMAL and integer) and exact-valued numbers uses the
“round half away from zero” rule. A value with a fractional part of .5 or greater is rounded away from
zero to the nearest integer, as shown here:

mysql> SELECT ROUND(2.5), ROUND(-2.5);
+------------+-------------+
| ROUND(2.5) | ROUND(-2.5) |
+------------+-------------+
| 3 | -3 |
+------------+-------------+

• Rounding for floating-point values uses the C library, which on many systems uses the “round to
nearest even” rule. A value with a fractional part exactly half way between two integers is rounded to
the nearest even integer:

mysql> SELECT ROUND(2.5E0), ROUND(-2.5E0);
+--------------+---------------+
| ROUND(2.5E0) | ROUND(-2.5E0) |
+--------------+---------------+
| 2 | -2 |
+--------------+---------------+

Example 4. In strict mode, inserting a value that is out of range for a column causes an error, rather
than truncation to a legal value.

When MySQL is not running in strict mode, truncation to a legal value occurs:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET i = 128;
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| 127 |
+------+
1 row in set (0.00 sec)

However, an error occurs if strict mode is in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

2648

Precision Math Examples

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 128;
ERROR 1264 (22003): Out of range value adjusted for column 'i' at row 1

mysql> SELECT i FROM t;
Empty set (0.00 sec)

Example 5: In strict mode and with ERROR_FOR_DIVISION_BY_ZERO set, division by zero causes an
error, not a result of NULL.

In nonstrict mode, division by zero has a result of NULL:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| NULL |
+------+
1 row in set (0.03 sec)

However, division by zero is an error if the proper SQL modes are in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
ERROR 1365 (22012): Division by 0

mysql> SELECT i FROM t;
Empty set (0.01 sec)

Example 6. Exact-value literals are evaluated as exact values.

Approximate-value literals are evaluated using floating point, but exact-value literals are handled as
DECIMAL:

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-----------------------+------+-----+---------+-------+
| a | decimal(2,1) unsigned | NO | | 0.0 | |
| b | double | NO | | 0 | |
+-------+-----------------------+------+-----+---------+-------+
2 rows in set (0.01 sec)

Example 7. If the argument to an aggregate function is an exact numeric type, the result is also an
exact numeric type, with a scale at least that of the argument.

Consider these statements:

mysql> CREATE TABLE t (i INT, d DECIMAL, f FLOAT);

2649

Precision Math Examples

mysql> INSERT INTO t VALUES(1,1,1);
mysql> CREATE TABLE y SELECT AVG(i), AVG(d), AVG(f) FROM t;

The result is a double only for the floating-point argument. For exact type arguments, the result is also
an exact type:

mysql> DESCRIBE y;
+--------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------+------+-----+---------+-------+
AVG(i)	decimal(14,4)	YES		NULL	
AVG(d)	decimal(14,4)	YES		NULL	
AVG(f)	double	YES		NULL	
+--------+---------------+------+-----+---------+-------+

The result is a double only for the floating-point argument. For exact type arguments, the result is also
an exact type.

2650

Chapter 15 SQL Statements

Table of Contents
15.1 Data Definition Statements ... 2652

15.1.1 Atomic Data Definition Statement Support .. 2652
15.1.2 ALTER DATABASE Statement .. 2658
15.1.3 ALTER EVENT Statement ... 2663
15.1.4 ALTER FUNCTION Statement .. 2665
15.1.5 ALTER INSTANCE Statement ... 2665
15.1.6 ALTER LOGFILE GROUP Statement .. 2667
15.1.7 ALTER PROCEDURE Statement .. 2668
15.1.8 ALTER SERVER Statement .. 2669
15.1.9 ALTER TABLE Statement ... 2669
15.1.10 ALTER TABLESPACE Statement .. 2692
15.1.11 ALTER VIEW Statement ... 2694
15.1.12 CREATE DATABASE Statement ... 2694
15.1.13 CREATE EVENT Statement .. 2695
15.1.14 CREATE FUNCTION Statement .. 2700
15.1.15 CREATE INDEX Statement ... 2700
15.1.16 CREATE LOGFILE GROUP Statement .. 2714
15.1.17 CREATE PROCEDURE and CREATE FUNCTION Statements 2715
15.1.18 CREATE SERVER Statement ... 2721
15.1.19 CREATE SPATIAL REFERENCE SYSTEM Statement ... 2722
15.1.20 CREATE TABLE Statement ... 2726
15.1.21 CREATE TABLESPACE Statement ... 2786
15.1.22 CREATE TRIGGER Statement .. 2793
15.1.23 CREATE VIEW Statement ... 2795
15.1.24 DROP DATABASE Statement ... 2799
15.1.25 DROP EVENT Statement .. 2800
15.1.26 DROP FUNCTION Statement .. 2800
15.1.27 DROP INDEX Statement ... 2800
15.1.28 DROP LOGFILE GROUP Statement .. 2801
15.1.29 DROP PROCEDURE and DROP FUNCTION Statements 2801
15.1.30 DROP SERVER Statement ... 2802
15.1.31 DROP SPATIAL REFERENCE SYSTEM Statement ... 2802
15.1.32 DROP TABLE Statement .. 2803
15.1.33 DROP TABLESPACE Statement ... 2803
15.1.34 DROP TRIGGER Statement .. 2805
15.1.35 DROP VIEW Statement .. 2805
15.1.36 RENAME TABLE Statement .. 2805
15.1.37 TRUNCATE TABLE Statement .. 2807

15.2 Data Manipulation Statements .. 2808
15.2.1 CALL Statement ... 2808
15.2.2 DELETE Statement ... 2810
15.2.3 DO Statement .. 2814
15.2.4 EXCEPT Clause ... 2814
15.2.5 HANDLER Statement .. 2816
15.2.6 IMPORT TABLE Statement ... 2817
15.2.7 INSERT Statement ... 2820
15.2.8 INTERSECT Clause ... 2829
15.2.9 LOAD DATA Statement .. 2831
15.2.10 LOAD XML Statement ... 2842
15.2.11 Parenthesized Query Expressions ... 2849
15.2.12 REPLACE Statement .. 2851
15.2.13 SELECT Statement ... 2854

2651

Data Definition Statements

15.2.14 Set Operations with UNION, INTERSECT, and EXCEPT 2869
15.2.15 Subqueries ... 2874
15.2.16 TABLE Statement ... 2890
15.2.17 UPDATE Statement .. 2893
15.2.18 UNION Clause .. 2896
15.2.19 VALUES Statement ... 2897
15.2.20 WITH (Common Table Expressions) .. 2899

15.3 Transactional and Locking Statements ... 2911
15.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements 2911
15.3.2 Statements That Cannot Be Rolled Back ... 2914
15.3.3 Statements That Cause an Implicit Commit .. 2914
15.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements 2915
15.3.5 LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements 2916
15.3.6 LOCK TABLES and UNLOCK TABLES Statements .. 2916
15.3.7 SET TRANSACTION Statement .. 2922
15.3.8 XA Transactions ... 2925

15.4 Replication Statements .. 2930
15.4.1 SQL Statements for Controlling Source Servers ... 2930
15.4.2 SQL Statements for Controlling Replica Servers ... 2933
15.4.3 SQL Statements for Controlling Group Replication .. 2975

15.5 Prepared Statements ... 2977
15.5.1 PREPARE Statement .. 2980
15.5.2 EXECUTE Statement .. 2982
15.5.3 DEALLOCATE PREPARE Statement ... 2982

15.6 Compound Statement Syntax ... 2983
15.6.1 BEGIN ... END Compound Statement .. 2983
15.6.2 Statement Labels .. 2983
15.6.3 DECLARE Statement .. 2984
15.6.4 Variables in Stored Programs .. 2984
15.6.5 Flow Control Statements ... 2986
15.6.6 Cursors .. 2990
15.6.7 Condition Handling .. 2992
15.6.8 Restrictions on Condition Handling .. 3018

15.7 Database Administration Statements .. 3019
15.7.1 Account Management Statements ... 3019
15.7.2 Resource Group Management Statements ... 3071
15.7.3 Table Maintenance Statements ... 3074
15.7.4 Component, Plugin, and Loadable Function Statements .. 3089
15.7.5 CLONE Statement .. 3094
15.7.6 SET Statements ... 3095
15.7.7 SHOW Statements .. 3100
15.7.8 Other Administrative Statements .. 3155

15.8 Utility Statements .. 3168
15.8.1 DESCRIBE Statement ... 3168
15.8.2 EXPLAIN Statement ... 3168
15.8.3 HELP Statement ... 3174
15.8.4 USE Statement ... 3176

This chapter describes the syntax for the SQL statements supported by MySQL.

15.1 Data Definition Statements

15.1.1 Atomic Data Definition Statement Support

MySQL 8.0 supports atomic Data Definition Language (DDL) statements. This feature is referred
to as atomic DDL. An atomic DDL statement combines the data dictionary updates, storage engine
operations, and binary log writes associated with a DDL operation into a single, atomic operation. The

2652

Atomic Data Definition Statement Support

operation is either committed, with applicable changes persisted to the data dictionary, storage engine,
and binary log, or is rolled back, even if the server halts during the operation.

Note

Atomic DDL is not transactional DDL. DDL statements, atomic or otherwise,
implicitly end any transaction that is active in the current session, as if you
had done a COMMIT before executing the statement. This means that DDL
statements cannot be performed within another transaction, within transaction
control statements such as START TRANSACTION ... COMMIT, or combined
with other statements within the same transaction.

Atomic DDL is made possible by the introduction of the MySQL data dictionary in MySQL 8.0. In earlier
MySQL versions, metadata was stored in metadata files, nontransactional tables, and storage engine-
specific dictionaries, which necessitated intermediate commits. Centralized, transactional metadata
storage provided by the MySQL data dictionary removed this barrier, making it possible to restructure
DDL statement operations to be atomic.

The atomic DDL feature is described under the following topics in this section:

• Supported DDL Statements

• Atomic DDL Characteristics

• Changes in DDL Statement Behavior

• Storage Engine Support

• Viewing DDL Logs

Supported DDL Statements

The atomic DDL feature supports both table and non-table DDL statements. Table-related DDL
operations require storage engine support, whereas non-table DDL operations do not. Currently, only
the InnoDB storage engine supports atomic DDL.

• Supported table DDL statements include CREATE, ALTER, and DROP statements for databases,
tablespaces, tables, and indexes, and the TRUNCATE TABLE statement.

• Supported non-table DDL statements include:

• CREATE and DROP statements, and, if applicable, ALTER statements for stored programs, triggers,
views, and loadable functions.

• Account management statements: CREATE, ALTER, DROP, and, if applicable, RENAME statements
for users and roles, as well as GRANT and REVOKE statements.

The following statements are not supported by the atomic DDL feature:

• Table-related DDL statements that involve a storage engine other than InnoDB.

• INSTALL PLUGIN and UNINSTALL PLUGIN statements.

• INSTALL COMPONENT and UNINSTALL COMPONENT statements.

• CREATE SERVER, ALTER SERVER, and DROP SERVER statements.

Atomic DDL Characteristics

The characteristics of atomic DDL statements include the following:

• Metadata updates, binary log writes, and storage engine operations, where applicable, are combined
into a single atomic operation.

• There are no intermediate commits at the SQL layer during the DDL operation.

2653

Atomic Data Definition Statement Support

• Where applicable:

• The state of data dictionary, routine, event, and loadable function caches is consistent with the
status of the DDL operation, meaning that caches are updated to reflect whether or not the DDL
operation was completed successfully or rolled back.

• The storage engine methods involved in a DDL operation do not perform intermediate commits,
and the storage engine registers itself as part of the DDL operation.

• The storage engine supports redo and rollback of DDL operations, which is performed in the Post-
DDL phase of the DDL operation.

• The visible behaviour of DDL operations is atomic, which changes the behavior of some DDL
statements. See Changes in DDL Statement Behavior.

Changes in DDL Statement Behavior

This section describes changes in DDL statement behavior due to the introduction of atomic DDL
support.

• DROP TABLE operations are fully atomic if all named tables use a storage engine which supports
atomic DDL. The statement either drops all tables successfully or is rolled back.

DROP TABLE fails with an error if a named table does not exist, and no changes are made,
regardless of the storage engine. This change in behavior is demonstrated in the following example,
where the DROP TABLE statement fails because a named table does not exist:

mysql> CREATE TABLE t1 (c1 INT);
mysql> DROP TABLE t1, t2;
ERROR 1051 (42S02): Unknown table 'test.t2'
mysql> SHOW TABLES;
+----------------+
| Tables_in_test |
+----------------+
| t1 |
+----------------+

Prior to the introduction of atomic DDL, DROP TABLE reports an error for the named table that does
not exist but succeeds for the named table that does exist:

mysql> CREATE TABLE t1 (c1 INT);
mysql> DROP TABLE t1, t2;
ERROR 1051 (42S02): Unknown table 'test.t2'
mysql> SHOW TABLES;
Empty set (0.00 sec)

Note

Due to this change in behavior, a partially completed DROP TABLE statement
on a MySQL 5.7 replication source server fails when replicated on a MySQL
8.0 replica. To avoid this failure scenario, use IF EXISTS syntax in DROP
TABLE statements to prevent errors from occurring for tables that do not exist.

• DROP DATABASE is atomic if all tables use a storage engine which supports atomic DDL. The
statement either drops all objects successfully or is rolled back. However, removal of the database
directory from the file system occurs last and is not part of the atomic operation. If removal of the
database directory fails due to a file system error or server halt, the DROP DATABASE transaction is
not rolled back.

• For tables that do not use a storage engine which supports atomic DDL, table deletion occurs
outside of the atomic DROP TABLE or DROP DATABASE transaction. Such table deletions are
written to the binary log individually, which limits the discrepancy between the storage engine, data
dictionary, and binary log to one table at most in the case of an interrupted DROP TABLE or DROP

2654

Atomic Data Definition Statement Support

DATABASE operation. For operations that drop multiple tables, the tables that do not use a storage
engine which supports atomic DDL are dropped before tables that do.

• CREATE TABLE, ALTER TABLE, RENAME TABLE, TRUNCATE TABLE, CREATE TABLESPACE, and
DROP TABLESPACE operations for tables that use a storage engine which supports atomic DDL
are either fully committed or rolled back if the server halts during their operation. In earlier MySQL
releases, interruption of these operations could cause discrepancies between the storage engine,
data dictionary, and binary log, or leave behind orphan files. RENAME TABLE operations are only
atomic if all named tables use a storage engine which supports atomic DDL.

• As of MySQL 8.0.21, on storage engines that support atomic DDL, the CREATE TABLE ...
SELECT statement is logged as one transaction in the binary log when row-based replication is
in use. Previously, it was logged as two transactions, one to create the table, and the other to
insert data. A server failure between the two transactions or while inserting data could result in
replication of an empty table. With the introduction of atomic DDL support, CREATE TABLE ...
SELECT statements are now safe for row-based replication and permitted for use with GTID-based
replication.

On storage engines that support both atomic DDL and foreign key constraints, creation of foreign
keys is not permitted in CREATE TABLE ... SELECT statements when row-based replication is in
use. Foreign key constraints can be added later using ALTER TABLE.

When CREATE TABLE ... SELECT is applied as an atomic operation, a metadata lock is held on
the table while data is inserted, which prevents concurrent access to the table for the duration of the
operation.

• DROP VIEW fails if a named view does not exist, and no changes are made. The change in behavior
is demonstrated in this example, where the DROP VIEW statement fails because a named view does
not exist:

mysql> CREATE VIEW test.viewA AS SELECT * FROM t;
mysql> DROP VIEW test.viewA, test.viewB;
ERROR 1051 (42S02): Unknown table 'test.viewB'
mysql> SHOW FULL TABLES IN test WHERE TABLE_TYPE LIKE 'VIEW';
+----------------+------------+
| Tables_in_test | Table_type |
+----------------+------------+
| viewA | VIEW |
+----------------+------------+

Prior to the introduction of atomic DDL, DROP VIEW returns an error for the named view that does
not exist but succeeds for the named view that does exist:

mysql> CREATE VIEW test.viewA AS SELECT * FROM t;
mysql> DROP VIEW test.viewA, test.viewB;
ERROR 1051 (42S02): Unknown table 'test.viewB'
mysql> SHOW FULL TABLES IN test WHERE TABLE_TYPE LIKE 'VIEW';
Empty set (0.00 sec)

Note

Due to this change in behavior, a partially completed DROP VIEW operation
on a MySQL 5.7 replication source server fails when replicated on a MySQL
8.0 replica. To avoid this failure scenario, use IF EXISTS syntax in DROP
VIEW statements to prevent an error from occurring for views that do not
exist.

• Partial execution of account management statements is no longer permitted. Account management
statements either succeed for all named users or roll back and have no effect if an error occurs. In

2655

Atomic Data Definition Statement Support

earlier MySQL versions, account management statements that name multiple users could succeed
for some users and fail for others.

The change in behavior is demonstrated in this example, where the second CREATE USER
statement returns an error but fails because it cannot succeed for all named users.

mysql> CREATE USER userA;
mysql> CREATE USER userA, userB;
ERROR 1396 (HY000): Operation CREATE USER failed for 'userA'@'%'
mysql> SELECT User FROM mysql.user WHERE User LIKE 'user%';
+-------+
| User |
+-------+
| userA |
+-------+

Prior to the introduction of atomic DDL, the second CREATE USER statement returns an error for the
named user that does not exist but succeeds for the named user that does exist:

mysql> CREATE USER userA;
mysql> CREATE USER userA, userB;
ERROR 1396 (HY000): Operation CREATE USER failed for 'userA'@'%'
mysql> SELECT User FROM mysql.user WHERE User LIKE 'user%';
+-------+
| User |
+-------+
| userA |
| userB |
+-------+

Note

Due to this change in behavior, partially completed account management
statements on a MySQL 5.7 replication source server fail when replicated on
a MySQL 8.0 replica. To avoid this failure scenario, use IF EXISTS or IF
NOT EXISTS syntax, as appropriate, in account management statements to
prevent errors related to named users.

Storage Engine Support

Currently, only the InnoDB storage engine supports atomic DDL. Storage engines that do not support
atomic DDL are exempted from DDL atomicity. DDL operations involving exempted storage engines
remain capable of introducing inconsistencies that can occur when operations are interrupted or only
partially completed.

To support redo and rollback of DDL operations, InnoDB writes DDL logs to the
mysql.innodb_ddl_log table, which is a hidden data dictionary table that resides in the
mysql.ibd data dictionary tablespace.

To view DDL logs that are written to the mysql.innodb_ddl_log table during a DDL operation,
enable the innodb_print_ddl_logs configuration option. For more information, see Viewing DDL
Logs.

Note

The redo logs for changes to the mysql.innodb_ddl_log table are flushed
to disk immediately regardless of the innodb_flush_log_at_trx_commit
setting. Flushing the redo logs immediately avoids situations where data
files are modified by DDL operations but the redo logs for changes to the
mysql.innodb_ddl_log table resulting from those operations are not
persisted to disk. Such a situation could cause errors during rollback or
recovery.

2656

Atomic Data Definition Statement Support

The InnoDB storage engine executes DDL operations in phases. DDL operations such as ALTER
TABLE may perform the Prepare and Perform phases multiple times prior to the Commit phase.

1. Prepare: Create the required objects and write the DDL logs to the mysql.innodb_ddl_log
table. The DDL logs define how to roll forward and roll back the DDL operation.

2. Perform: Perform the DDL operation. For example, perform a create routine for a CREATE TABLE
operation.

3. Commit: Update the data dictionary and commit the data dictionary transaction.

4. Post-DDL: Replay and remove DDL logs from the mysql.innodb_ddl_log table. To ensure
that rollback can be performed safely without introducing inconsistencies, file operations such
as renaming or removing data files are performed in this final phase. This phase also removes
dynamic metadata from the mysql.innodb_dynamic_metadata data dictionary table for DROP
TABLE, TRUNCATE TABLE, and other DDL operations that rebuild the table.

DDL logs are replayed and removed from the mysql.innodb_ddl_log table during the Post-DDL
phase, regardless of whether the DDL operation is committed or rolled back. DDL logs should only
remain in the mysql.innodb_ddl_log table if the server is halted during a DDL operation. In this
case, the DDL logs are replayed and removed after recovery.

In a recovery situation, a DDL operation may be committed or rolled back when the server is restarted.
If the data dictionary transaction that was performed during the Commit phase of a DDL operation is
present in the redo log and binary log, the operation is considered successful and is rolled forward.
Otherwise, the incomplete data dictionary transaction is rolled back when InnoDB replays data
dictionary redo logs, and the DDL operation is rolled back.

Viewing DDL Logs

To view DDL logs that are written to the mysql.innodb_ddl_log data dictionary table during atomic
DDL operations that involve the InnoDB storage engine, enable innodb_print_ddl_logs to
have MySQL write the DDL logs to stderr. Depending on the host operating system and MySQL
configuration, stderr may be the error log, terminal, or console window. See Section 7.4.2.2, “Default
Error Log Destination Configuration”.

InnoDB writes DDL logs to the mysql.innodb_ddl_log table to support redo and rollback
of DDL operations. The mysql.innodb_ddl_log table is a hidden data dictionary table that
resides in the mysql.ibd data dictionary tablespace. Like other hidden data dictionary tables, the
mysql.innodb_ddl_log table cannot be accessed directly in non-debug versions of MySQL.
(See Section 16.1, “Data Dictionary Schema”.) The structure of the mysql.innodb_ddl_log table
corresponds to this definition:

CREATE TABLE mysql.innodb_ddl_log (
 id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 thread_id BIGINT UNSIGNED NOT NULL,
 type INT UNSIGNED NOT NULL,
 space_id INT UNSIGNED,
 page_no INT UNSIGNED,
 index_id BIGINT UNSIGNED,
 table_id BIGINT UNSIGNED,
 old_file_path VARCHAR(512) COLLATE utf8mb4_bin,
 new_file_path VARCHAR(512) COLLATE utf8mb4_bin,
 KEY(thread_id)
);

• id: A unique identifier for a DDL log record.

• thread_id: Each DDL log record is assigned a thread_id, which is used to replay and remove
DDL logs that belong to a particular DDL operation. DDL operations that involve multiple data file
operations generate multiple DDL log records.

2657

ALTER DATABASE Statement

• type: The DDL operation type. Types include FREE (drop an index tree), DELETE (delete a file),
RENAME (rename a file), or DROP (drop metadata from the mysql.innodb_dynamic_metadata
data dictionary table).

• space_id: The tablespace ID.

• page_no: A page that contains allocation information; an index tree root page, for example.

• index_id: The index ID.

• table_id: The table ID.

• old_file_path: The old tablespace file path. Used by DDL operations that create or drop
tablespace files; also used by DDL operations that rename a tablespace.

• new_file_path: The new tablespace file path. Used by DDL operations that rename tablespace
files.

This example demonstrates enabling innodb_print_ddl_logs to view DDL logs written to
strderr for a CREATE TABLE operation.

mysql> SET GLOBAL innodb_print_ddl_logs=1;
mysql> CREATE TABLE t1 (c1 INT) ENGINE = InnoDB;

[Note] [000000] InnoDB: DDL log insert : [DDL record: DELETE SPACE, id=18, thread_id=7,
space_id=5, old_file_path=./test/t1.ibd]
[Note] [000000] InnoDB: DDL log delete : by id 18
[Note] [000000] InnoDB: DDL log insert : [DDL record: REMOVE CACHE, id=19, thread_id=7,
table_id=1058, new_file_path=test/t1]
[Note] [000000] InnoDB: DDL log delete : by id 19
[Note] [000000] InnoDB: DDL log insert : [DDL record: FREE, id=20, thread_id=7,
space_id=5, index_id=132, page_no=4]
[Note] [000000] InnoDB: DDL log delete : by id 20
[Note] [000000] InnoDB: DDL log post ddl : begin for thread id : 7
[Note] [000000] InnoDB: DDL log post ddl : end for thread id : 7

15.1.2 ALTER DATABASE Statement

ALTER {DATABASE | SCHEMA} [db_name]
 alter_option ...

alter_option: {
 [DEFAULT] CHARACTER SET [=] charset_name
 | [DEFAULT] COLLATE [=] collation_name
 | [DEFAULT] ENCRYPTION [=] {'Y' | 'N'}
 | READ ONLY [=] {DEFAULT | 0 | 1}
}

ALTER DATABASE enables you to change the overall characteristics of a database. These
characteristics are stored in the data dictionary. This statement requires the ALTER privilege on the
database. ALTER SCHEMA is a synonym for ALTER DATABASE.

If the database name is omitted, the statement applies to the default database. In that case, an error
occurs if there is no default database.

For any alter_option omitted from the statement, the database retains its current option value, with
the exception that changing the character set may change the collation and vice versa.

• Character Set and Collation Options

• Encryption Option

• Read Only Option

2658

ALTER DATABASE Statement

Character Set and Collation Options

The CHARACTER SET option changes the default database character set. The COLLATE option
changes the default database collation. For information about character set and collation names, see
Chapter 12, Character Sets, Collations, Unicode.

To see the available character sets and collations, use the SHOW CHARACTER SET and SHOW
COLLATION statements, respectively. See Section 15.7.7.3, “SHOW CHARACTER SET Statement”,
and Section 15.7.7.4, “SHOW COLLATION Statement”.

A stored routine that uses the database defaults when the routine is created includes those defaults
as part of its definition. (In a stored routine, variables with character data types use the database
defaults if the character set or collation are not specified explicitly. See Section 15.1.17, “CREATE
PROCEDURE and CREATE FUNCTION Statements”.) If you change the default character set or
collation for a database, any stored routines that are to use the new defaults must be dropped and
recreated.

Encryption Option

The ENCRYPTION option, introduced in MySQL 8.0.16, defines the default database encryption, which
is inherited by tables created in the database. The permitted values are 'Y' (encryption enabled) and
'N' (encryption disabled).

The mysql system schema cannot be set to default encryption. The existing tables within it are part of
the general mysql tablespace, which may be encrypted. The information_schema contains only
views. It is not possible to create any tables within it. There is nothing on the disk to encrypt. All tables
in the performance_schema use the PERFORMANCE_SCHEMA engine, which is purely in-memory. It is
not possible to create any other tables in it. There is nothing on the disk to encrypt.

Only newly created tables inherit the default database encryption. For existing tables associated with
the database, their encryption remains unchanged. If the table_encryption_privilege_check
system variable is enabled, the TABLE_ENCRYPTION_ADMIN privilege is required to specify a default
encryption setting that differs from the value of the default_table_encryption system variable.
For more information, see Defining an Encryption Default for Schemas and General Tablespaces.

Read Only Option

The READ ONLY option, introduced in MySQL 8.0.22, controls whether to permit modification of the
database and objects within it. The permitted values are DEFAULT or 0 (not read only) and 1 (read
only). This option is useful for database migration because a database for which READ ONLY is
enabled can be migrated to another MySQL instance without concern that the database might be
changed during the operation.

With NDB Cluster, making a database read only on one mysqld server is synchronized to other
mysqld servers in the same cluster, so that the database becomes read only on all mysqld servers.

The READ ONLY option, if enabled, is displayed in the INFORMATION_SCHEMA
SCHEMATA_EXTENSIONS table. See Section 28.3.32, “The INFORMATION_SCHEMA
SCHEMATA_EXTENSIONS Table”.

The READ ONLY option cannot be enabled for these system schemas: mysql,
information_schema, performance_schema.

In ALTER DATABASE statements, the READ ONLY option interacts with other instances of itself and
with other options as follows:

• An error occurs if multiple instances of READ ONLY conflict (for example, READ ONLY = 1 READ
ONLY = 0).

• An ALTER DATABASE statement that contains only (nonconflicting) READ ONLY options is permitted
even for a read-only database.

2659

ALTER DATABASE Statement

• A mix of (nonconflicting) READ ONLY options with other options is permitted if the read-only state of
the database either before or after the statement permits modifications. If the read-only state both
before and after prohibits changes, an error occurs.

This statement succeeds whether or not the database is read only:

ALTER DATABASE mydb READ ONLY = 0 DEFAULT COLLATE utf8mb4_bin;

This statement succeeds if the database is not read only, but fails if it is already read only:

ALTER DATABASE mydb READ ONLY = 1 DEFAULT COLLATE utf8mb4_bin;

Enabling READ ONLY affects all users of the database, with these exceptions that are not subject to
read-only checks:

• Statements executed by the server as part of server initialization, restart, upgrade, or replication.

• Statements in a file named at server startup by the init_file system variable.

• TEMPORARY tables; it is possible to create, alter, drop, and write to TEMPORARY tables in a read-only
database.

• NDB Cluster non-SQL inserts and updates.

Other than for the excepted operations just listed, enabling READ ONLY prohibits write operations to
the database and its objects, including their definitions, data, and metadata. The following list details
affected SQL statements and operations:

• The database itself:

• CREATE DATABASE

• ALTER DATABASE (except to change the READ ONLY option)

• DROP DATABASE

• Views:

• CREATE VIEW

• ALTER VIEW

• DROP VIEW

• Selecting from views that invoke functions with side effects.

• Updating updatable views.

• Statements that create or drop objects in a writable database are rejected if they affect metadata
of a view in a read-only database (for example, by making the view valid or invalid).

• Stored routines:

• CREATE PROCEDURE

• DROP PROCEDURE

• CALL (of procedures with side effects)

• CREATE FUNCTION

• DROP FUNCTION

• SELECT (of functions with side effects)

2660

ALTER DATABASE Statement

• For procedures and functions, read-only checks follow prelocking behavior. For CALL statements,
read-only checks are done on a per-statement basis, so if some conditionally executed statement
writing to a read-only database does not actually execute, the call still succeeds. On the other
hand, for a function called within a SELECT, execution of the function body happens in prelocked
mode. As long as a some statement within the function writes to a read-only database, execution
of the function fails with an error regardless of whether the statement actually executes.

• Triggers:

• CREATE TRIGGER

• DROP TRIGGER

• Trigger invocation.

• Events:

• CREATE EVENT

• ALTER EVENT

• DROP EVENT

• Event execution:

• Executing an event in the database fails because that would change the last-execution
timestamp, which is event metadata stored in the data dictionary. Failure of event execution also
has the effect of causing the event scheduler to stop.

• If an event writes to an object in a read-only database, execution of the event fails with an error,
but the event scheduler is not stopped.

2661

ALTER DATABASE Statement

• Tables:

• CREATE TABLE

• ALTER TABLE

• CREATE INDEX

• DROP INDEX

• RENAME TABLE

• TRUNCATE TABLE

• DROP TABLE

• DELETE

• INSERT

• IMPORT TABLE

• LOAD DATA

• LOAD XML

• REPLACE

• UPDATE

• For cascading foreign keys where the child table is in a read-only database, updates and deletes
on the parent are rejected even if the child table is not directly affected.

• For a MERGE table such as CREATE TABLE s1.t(i int) ENGINE MERGE UNION (s2.t,
s3.t), INSERT_METHOD=..., the following behavior applies:

• Inserting into the MERGE table (INSERT into s1.t) fails if at least one of s1, s2, s3 is read
only, regardless of insert method. The insert is refused even if it would actually end up in a
writable table.

• Dropping the MERGE table (DROP TABLE s1.t) succeeds as long as s1 is not read only. It is
permitted to drop a MERGE table that refers to a read-only database.

An ALTER DATABASE statement blocks until all concurrent transactions that have already accessed
an object in the database being altered have committed. Conversely, a write transaction accessing
an object in a database being altered in a concurrent ALTER DATABASE blocks until the ALTER
DATABASE has committed.

If the Clone plugin is used to clone a local or remote data directory, the databases in the clone retain
the read-only state they had in the source data directory. The read-only state does not affect the
cloning process itself. If it is not desirable to have the same database read-only state in the clone, the
option must be changed explicitly for the clone after the cloning process has finished, using ALTER
DATABASE operations on the clone.

When cloning from a donor to a recipient, if the recipient has a user database that is read only, cloning
fails with an error message. Cloning may be retried after making the database writable.

READ ONLY is permitted for ALTER DATABASE, but not for CREATE DATABASE. However, for a read-
only database, the statement produced by SHOW CREATE DATABASE does include READ ONLY=1
within a comment to indicate its read-only status:

mysql> ALTER DATABASE mydb READ ONLY = 1;

2662

ALTER EVENT Statement

mysql> SHOW CREATE DATABASE mydb\G
*************************** 1. row ***************************
 Database: mydb
Create Database: CREATE DATABASE `mydb`
 /*!40100 DEFAULT CHARACTER SET utf8mb4
 COLLATE utf8mb4_0900_ai_ci */
 /*!80016 DEFAULT ENCRYPTION='N' */
 /* READ ONLY = 1 */

If the server executes a CREATE DATABASE statement containing such a comment, the server ignores
the comment and the READ ONLY option is not processed. This has implications for mysqldump and
mysqlpump, which use SHOW CREATE DATABASE to produce CREATE DATABASE statements in
dump output:

• In a dump file, the CREATE DATABASE statement for a read-only database contains the commented
READ ONLY option.

• The dump file can be restored as usual, but because the server ignores the commented READ ONLY
option, the restored database is not read only. If the database is to be read only after being restored,
you must execute ALTER DATABASE manually to make it so.

Suppose that mydb is read only and you dump it as follows:

$> mysqldump --databases mydb > mydb.sql

A restore operation later must be followed by ALTER DATABASE if mydb should still be read only:

$> mysql
mysql> SOURCE mydb.sql;
mysql> ALTER DATABASE mydb READ ONLY = 1;

MySQL Enterprise Backup is not subject to this issue. It backs up and restores a read-only database
like any other, but enables the READ ONLY option at restore time if it was enabled at backup time.

ALTER DATABASE is written to the binary log, so a change to the READ ONLY option on a replication
source server also affects replicas. To prevent this from happening, binary logging must be disabled
prior to execution of the ALTER DATABASE statement. For example, to prepare for migrating a
database without affecting replicas, perform these operations:

1. Within a single session, disable binary logging and enable READ ONLY for the database:

mysql> SET sql_log_bin = OFF;
mysql> ALTER DATABASE mydb READ ONLY = 1;

2. Dump the database, for example, with mysqldump or mysqlpump:

$> mysqldump --databases mydb > mydb.sql

3. Within a single session, disable binary logging and disable READ ONLY for the database:

mysql> SET sql_log_bin = OFF;
mysql> ALTER DATABASE mydb READ ONLY = 0;

15.1.3 ALTER EVENT Statement
ALTER
 [DEFINER = user]
 EVENT event_name
 [ON SCHEDULE schedule]
 [ON COMPLETION [NOT] PRESERVE]
 [RENAME TO new_event_name]
 [ENABLE | DISABLE | DISABLE ON SLAVE]
 [COMMENT 'string']
 [DO event_body]

The ALTER EVENT statement changes one or more of the characteristics of an existing event
without the need to drop and recreate it. The syntax for each of the DEFINER, ON SCHEDULE, ON

2663

ALTER EVENT Statement

COMPLETION, COMMENT, ENABLE / DISABLE, and DO clauses is exactly the same as when used with
CREATE EVENT. (See Section 15.1.13, “CREATE EVENT Statement”.)

Any user can alter an event defined on a database for which that user has the EVENT privilege. When
a user executes a successful ALTER EVENT statement, that user becomes the definer for the affected
event.

ALTER EVENT works only with an existing event:

mysql> ALTER EVENT no_such_event
 > ON SCHEDULE
 > EVERY '2:3' DAY_HOUR;
ERROR 1517 (HY000): Unknown event 'no_such_event'

In each of the following examples, assume that the event named myevent is defined as shown here:

CREATE EVENT myevent
 ON SCHEDULE
 EVERY 6 HOUR
 COMMENT 'A sample comment.'
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

The following statement changes the schedule for myevent from once every six hours starting
immediately to once every twelve hours, starting four hours from the time the statement is run:

ALTER EVENT myevent
 ON SCHEDULE
 EVERY 12 HOUR
 STARTS CURRENT_TIMESTAMP + INTERVAL 4 HOUR;

It is possible to change multiple characteristics of an event in a single statement. This example
changes the SQL statement executed by myevent to one that deletes all records from mytable; it
also changes the schedule for the event such that it executes once, one day after this ALTER EVENT
statement is run.

ALTER EVENT myevent
 ON SCHEDULE
 AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
 DO
 TRUNCATE TABLE myschema.mytable;

Specify the options in an ALTER EVENT statement only for those characteristics that you want to
change; omitted options keep their existing values. This includes any default values for CREATE
EVENT such as ENABLE.

To disable myevent, use this ALTER EVENT statement:

ALTER EVENT myevent
 DISABLE;

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables
to obtain any of the timestamp or interval values which it contains. You cannot use stored routines
or loadable functions in such expressions, and you cannot use any table references; however, you
can use SELECT FROM DUAL. This is true for both ALTER EVENT and CREATE EVENT statements.
References to stored routines, loadable functions, and tables in such cases are specifically not
permitted, and fail with an error (see Bug #22830).

Although an ALTER EVENT statement that contains another ALTER EVENT statement in its DO clause
appears to succeed, when the server attempts to execute the resulting scheduled event, the execution
fails with an error.

To rename an event, use the ALTER EVENT statement's RENAME TO clause. This statement renames
the event myevent to yourevent:

ALTER EVENT myevent

2664

ALTER FUNCTION Statement

 RENAME TO yourevent;

You can also move an event to a different database using ALTER EVENT ... RENAME TO ... and
db_name.event_name notation, as shown here:

ALTER EVENT olddb.myevent
 RENAME TO newdb.myevent;

To execute the previous statement, the user executing it must have the EVENT privilege on both the
olddb and newdb databases.

Note

There is no RENAME EVENT statement.

The value DISABLE ON SLAVE is used on a replica instead of ENABLE or DISABLE to indicate
an event that was created on the replication source server and replicated to the replica, but that
is not executed on the replica. Normally, DISABLE ON SLAVE is set automatically as required;
however, there are some circumstances under which you may want or need to change it manually. See
Section 19.5.1.16, “Replication of Invoked Features”, for more information.

15.1.4 ALTER FUNCTION Statement

ALTER FUNCTION func_name [characteristic ...]

characteristic: {
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }
}

This statement can be used to change the characteristics of a stored function. More than one change
may be specified in an ALTER FUNCTION statement. However, you cannot change the parameters or
body of a stored function using this statement; to make such changes, you must drop and re-create the
function using DROP FUNCTION and CREATE FUNCTION.

You must have the ALTER ROUTINE privilege for the function. (That privilege is granted automatically
to the function creator.) If binary logging is enabled, the ALTER FUNCTION statement might also
require the SUPER privilege, as described in Section 27.7, “Stored Program Binary Logging”.

15.1.5 ALTER INSTANCE Statement

ALTER INSTANCE instance_action

instance_action: {
 | {ENABLE|DISABLE} INNODB REDO_LOG
 | ROTATE INNODB MASTER KEY
 | ROTATE BINLOG MASTER KEY
 | RELOAD TLS
 [FOR CHANNEL {mysql_main | mysql_admin}]
 [NO ROLLBACK ON ERROR]
 | RELOAD KEYRING
}

ALTER INSTANCE defines actions applicable to a MySQL server instance. The statement supports
these actions:

• ALTER INSTANCE {ENABLE | DISABLE} INNODB REDO_LOG

This action enables or disables InnoDB redo logging. Redo logging is enabled by default. This
feature is intended only for loading data into a new MySQL instance. The statement is not written to
the binary log. This action was introduced in MySQL 8.0.21.

2665

ALTER INSTANCE Statement

Warning

Do not disable redo logging on a production system. While it is permitted
to shut down and restart the server while redo logging is disabled, an
unexpected server stoppage while redo logging is disabled can cause data
loss and instance corruption.

An ALTER INSTANCE [ENABLE|DISABLE] INNODB REDO_LOG operation requires an exclusive
backup lock, which prevents other ALTER INSTANCE operations from executing concurrently. Other
ALTER INSTANCE operations must wait for the lock to be released before executing.

For more information, see Disabling Redo Logging.

• ALTER INSTANCE ROTATE INNODB MASTER KEY

This action rotates the master encryption key used for InnoDB tablespace encryption. Key rotation
requires the ENCRYPTION_KEY_ADMIN or SUPER privilege. To perform this action, a keyring plugin
must be installed and configured. For instructions, see Section 8.4.4, “The MySQL Keyring”.

ALTER INSTANCE ROTATE INNODB MASTER KEY supports concurrent DML. However, it cannot
be run concurrently with CREATE TABLE ... ENCRYPTION or ALTER TABLE ... ENCRYPTION
operations, and locks are taken to prevent conflicts that could arise from concurrent execution of
these statements. If one of the conflicting statements is running, it must complete before another can
proceed.

ALTER INSTANCE ROTATE INNODB MASTER KEY statements are written to the binary log so that
they can be executed on replicated servers.

For additional ALTER INSTANCE ROTATE INNODB MASTER KEY usage information, see
Section 17.13, “InnoDB Data-at-Rest Encryption”.

• ALTER INSTANCE ROTATE BINLOG MASTER KEY

This action rotates the binary log master key used for binary log encryption. Key rotation for the
binary log master key requires the BINLOG_ENCRYPTION_ADMIN or SUPER privilege. The statement
cannot be used if the binlog_encryption system variable is set to OFF. To perform this action,
a keyring plugin must be installed and configured. For instructions, see Section 8.4.4, “The MySQL
Keyring”.

ALTER INSTANCE ROTATE BINLOG MASTER KEY actions are not written to the binary log and are
not executed on replicas. Binary log master key rotation can therefore be carried out in replication
environments including a mix of MySQL versions. To schedule regular rotation of the binary log
master key on all applicable source and replica servers, you can enable the MySQL Event Scheduler
on each server and issue the ALTER INSTANCE ROTATE BINLOG MASTER KEY statement using
a CREATE EVENT statement. If you rotate the binary log master key because you suspect that the
current or any of the previous binary log master keys might have been compromised, issue the
statement on every applicable source and replica server, which enables you to verify immediate
compliance.

For additional ALTER INSTANCE ROTATE BINLOG MASTER KEY usage information, including
what to do if the process does not complete correctly or is interrupted by an unexpected server halt,
see Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”.

• ALTER INSTANCE RELOAD TLS

This action reconfigures a TLS context from the current values of the system variables that define
the context. It also updates the status variables that reflect the active context values. This action
requires the CONNECTION_ADMIN privilege. For additional information about reconfiguring the TLS
context, including which system and status variables are context-related, see Server-Side Runtime
Configuration and Monitoring for Encrypted Connections.

2666

ALTER LOGFILE GROUP Statement

By default, the statement reloads the TLS context for the main connection interface. If the
FOR CHANNEL clause (available as of MySQL 8.0.21) is given, the statement reloads the TLS
context for the named channel: mysql_main for the main connection interface, mysql_admin
for the administrative connection interface. For information about the different interfaces, see
Section 7.1.12.1, “Connection Interfaces”. The updated TLS context properties are exposed
in the Performance Schema tls_channel_status table. See Section 29.12.21.9, “The
tls_channel_status Table”.

Updating the TLS context for the main interface may also affect the administrative interface because
unless some nondefault TLS value is configured for that interface, it uses the same TLS context as
the main interface.

Note

When you reload the TLS context, OpenSSL reloads the file containing the
CRL (certificate revocation list) as part of the process. If the CRL file is large,
the server allocates a large chunk of memory (ten times the file size), which
is doubled while the new instance is being loaded and the old one has not
yet been released. The process resident memory is not immediately reduced
after a large allocation is freed, so if you issue the ALTER INSTANCE
RELOAD TLS statement repeatedly with a large CRL file, the process resident
memory usage may grow as a result of this.

By default, the RELOAD TLS action rolls back with an error and has no effect if the configuration
values do not permit creation of the new TLS context. The previous context values continue to be
used for new connections. If the optional NO ROLLBACK ON ERROR clause is given and the new
context cannot be created, rollback does not occur. Instead, a warning is generated and encryption is
disabled for new connections on the interface to which the statement applies.

ALTER INSTANCE RELOAD TLS statements are not written to the binary log (and thus are not
replicated). TLS configuration is local and depends on local files not necessarily present on all
servers involved.

• ALTER INSTANCE RELOAD KEYRING

If a keyring component is installed, this action tells the component to re-read its configuration file and
reinitialize any keyring in-memory data. If you modify the component configuration at runtime, the
new configuration does not take effect until you perform this action. Keyring reloading requires the
ENCRYPTION_KEY_ADMIN privilege. This action was added in MySQL 8.0.24.

This action enables reconfiguring only the currently installed keyring component. It does not enable
changing which component is installed. For example, if you change the configuration for the installed
keyring component, ALTER INSTANCE RELOAD KEYRING causes the new configuration to take
effect. On the other hand, if you change the keyring component named in the server manifest file,
ALTER INSTANCE RELOAD KEYRING has no effect and the current component remains installed.

ALTER INSTANCE RELOAD KEYRING statements are not written to the binary log (and thus are not
replicated).

15.1.6 ALTER LOGFILE GROUP Statement
ALTER LOGFILE GROUP logfile_group
 ADD UNDOFILE 'file_name'
 [INITIAL_SIZE [=] size]
 [WAIT]
 ENGINE [=] engine_name

This statement adds an UNDO file named 'file_name' to an existing log file group logfile_group.
An ALTER LOGFILE GROUP statement has one and only one ADD UNDOFILE clause. No DROP
UNDOFILE clause is currently supported.

2667

ALTER PROCEDURE Statement

Note

All NDB Cluster Disk Data objects share the same namespace. This means
that each Disk Data object must be uniquely named (and not merely each Disk
Data object of a given type). For example, you cannot have a tablespace and
an undo log file with the same name, or an undo log file and a data file with the
same name.

The optional INITIAL_SIZE parameter sets the UNDO file's initial size in bytes; if not specified,
the initial size defaults to 134217728 (128 MB). You may optionally follow size with a one-letter
abbreviation for an order of magnitude, similar to those used in my.cnf. Generally, this is one of the
letters M (megabytes) or G (gigabytes). (Bug #13116514, Bug #16104705, Bug #62858)

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

The minimum allowed value for INITIAL_SIZE is 1048576 (1 MB). (Bug #29574)

Note

WAIT is parsed but otherwise ignored. This keyword currently has no effect, and
is intended for future expansion.

The ENGINE parameter (required) determines the storage engine which is used by this log file group,
with engine_name being the name of the storage engine. Currently, the only accepted values for
engine_name are “NDBCLUSTER” and “NDB”. The two values are equivalent.

Here is an example, which assumes that the log file group lg_3 has already been created using
CREATE LOGFILE GROUP (see Section 15.1.16, “CREATE LOGFILE GROUP Statement”):

ALTER LOGFILE GROUP lg_3
 ADD UNDOFILE 'undo_10.dat'
 INITIAL_SIZE=32M
 ENGINE=NDBCLUSTER;

When ALTER LOGFILE GROUP is used with ENGINE = NDBCLUSTER (alternatively, ENGINE =
NDB), an UNDO log file is created on each NDB Cluster data node. You can verify that the UNDO files
were created and obtain information about them by querying the Information Schema FILES table. For
example:

mysql> SELECT FILE_NAME, LOGFILE_GROUP_NUMBER, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE LOGFILE_GROUP_NAME = 'lg_3';
+-------------+----------------------+----------------+
| FILE_NAME | LOGFILE_GROUP_NUMBER | EXTRA |
+-------------+----------------------+----------------+
newdata.dat	0	CLUSTER_NODE=3
newdata.dat	0	CLUSTER_NODE=4
undo_10.dat	11	CLUSTER_NODE=3
undo_10.dat	11	CLUSTER_NODE=4
+-------------+----------------------+----------------+
4 rows in set (0.01 sec)

(See Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”.)

Memory used for UNDO_BUFFER_SIZE comes from the global pool whose size is determined by the
value of the SharedGlobalMemory data node configuration parameter. This includes any default
value implied for this option by the setting of the InitialLogFileGroup data node configuration
parameter.

ALTER LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. For more information,
see Section 25.6.11, “NDB Cluster Disk Data Tables”.

15.1.7 ALTER PROCEDURE Statement
ALTER PROCEDURE proc_name [characteristic ...]

2668

ALTER SERVER Statement

characteristic: {
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }
}

This statement can be used to change the characteristics of a stored procedure. More than one change
may be specified in an ALTER PROCEDURE statement. However, you cannot change the parameters or
body of a stored procedure using this statement; to make such changes, you must drop and re-create
the procedure using DROP PROCEDURE and CREATE PROCEDURE.

You must have the ALTER ROUTINE privilege for the procedure. By default, that privilege is
granted automatically to the procedure creator. This behavior can be changed by disabling the
automatic_sp_privileges system variable. See Section 27.2.2, “Stored Routines and MySQL
Privileges”.

15.1.8 ALTER SERVER Statement
ALTER SERVER server_name
 OPTIONS (option [, option] ...)

Alters the server information for server_name, adjusting any of the options permitted in the CREATE
SERVER statement. The corresponding fields in the mysql.servers table are updated accordingly.
This statement requires the SUPER privilege.

For example, to update the USER option:

ALTER SERVER s OPTIONS (USER 'sally');

ALTER SERVER causes an implicit commit. See Section 15.3.3, “Statements That Cause an Implicit
Commit”.

ALTER SERVER is not written to the binary log, regardless of the logging format that is in use.

15.1.9 ALTER TABLE Statement
ALTER TABLE tbl_name
 [alter_option [, alter_option] ...]
 [partition_options]

alter_option: {
 table_options
 | ADD [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | ADD [COLUMN] (col_name column_definition,...)
 | ADD {INDEX | KEY} [index_name]
 [index_type] (key_part,...) [index_option] ...
 | ADD {FULLTEXT | SPATIAL} [INDEX | KEY] [index_name]
 (key_part,...) [index_option] ...
 | ADD [CONSTRAINT [symbol]] PRIMARY KEY
 [index_type] (key_part,...)
 [index_option] ...
 | ADD [CONSTRAINT [symbol]] UNIQUE [INDEX | KEY]
 [index_name] [index_type] (key_part,...)
 [index_option] ...
 | ADD [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name,...)
 reference_definition
 | ADD [CONSTRAINT [symbol]] CHECK (expr) [[NOT] ENFORCED]
 | DROP {CHECK | CONSTRAINT} symbol
 | ALTER {CHECK | CONSTRAINT} symbol [NOT] ENFORCED
 | ALGORITHM [=] {DEFAULT | INSTANT | INPLACE | COPY}
 | ALTER [COLUMN] col_name {
 SET DEFAULT {literal | (expr)}
 | SET {VISIBLE | INVISIBLE}
 | DROP DEFAULT
 }

2669

ALTER TABLE Statement

 | ALTER INDEX index_name {VISIBLE | INVISIBLE}
 | CHANGE [COLUMN] old_col_name new_col_name column_definition
 [FIRST | AFTER col_name]
 | [DEFAULT] CHARACTER SET [=] charset_name [COLLATE [=] collation_name]
 | CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
 | {DISABLE | ENABLE} KEYS
 | {DISCARD | IMPORT} TABLESPACE
 | DROP [COLUMN] col_name
 | DROP {INDEX | KEY} index_name
 | DROP PRIMARY KEY
 | DROP FOREIGN KEY fk_symbol
 | FORCE
 | LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}
 | MODIFY [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | ORDER BY col_name [, col_name] ...
 | RENAME COLUMN old_col_name TO new_col_name
 | RENAME {INDEX | KEY} old_index_name TO new_index_name
 | RENAME [TO | AS] new_tbl_name
 | {WITHOUT | WITH} VALIDATION
}

partition_options:
 partition_option [partition_option] ...

partition_option: {
 ADD PARTITION (partition_definition)
 | DROP PARTITION partition_names
 | DISCARD PARTITION {partition_names | ALL} TABLESPACE
 | IMPORT PARTITION {partition_names | ALL} TABLESPACE
 | TRUNCATE PARTITION {partition_names | ALL}
 | COALESCE PARTITION number
 | REORGANIZE PARTITION partition_names INTO (partition_definitions)
 | EXCHANGE PARTITION partition_name WITH TABLE tbl_name [{WITH | WITHOUT} VALIDATION]
 | ANALYZE PARTITION {partition_names | ALL}
 | CHECK PARTITION {partition_names | ALL}
 | OPTIMIZE PARTITION {partition_names | ALL}
 | REBUILD PARTITION {partition_names | ALL}
 | REPAIR PARTITION {partition_names | ALL}
 | REMOVE PARTITIONING
}

key_part: {col_name [(length)] | (expr)} [ASC | DESC]

index_type:
 USING {BTREE | HASH}

index_option: {
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
 | {VISIBLE | INVISIBLE}
}

table_options:
 table_option [[,] table_option] ...

table_option: {
 AUTOEXTEND_SIZE [=] value
 | AUTO_INCREMENT [=] value
 | AVG_ROW_LENGTH [=] value
 | [DEFAULT] CHARACTER SET [=] charset_name
 | CHECKSUM [=] {0 | 1}
 | [DEFAULT] COLLATE [=] collation_name
 | COMMENT [=] 'string'
 | COMPRESSION [=] {'ZLIB' | 'LZ4' | 'NONE'}
 | CONNECTION [=] 'connect_string'
 | {DATA | INDEX} DIRECTORY [=] 'absolute path to directory'
 | DELAY_KEY_WRITE [=] {0 | 1}
 | ENCRYPTION [=] {'Y' | 'N'}
 | ENGINE [=] engine_name

2670

ALTER TABLE Statement

 | ENGINE_ATTRIBUTE [=] 'string'
 | INSERT_METHOD [=] { NO | FIRST | LAST }
 | KEY_BLOCK_SIZE [=] value
 | MAX_ROWS [=] value
 | MIN_ROWS [=] value
 | PACK_KEYS [=] {0 | 1 | DEFAULT}
 | PASSWORD [=] 'string'
 | ROW_FORMAT [=] {DEFAULT | DYNAMIC | FIXED | COMPRESSED | REDUNDANT | COMPACT}
 | SECONDARY_ENGINE_ATTRIBUTE [=] 'string'
 | STATS_AUTO_RECALC [=] {DEFAULT | 0 | 1}
 | STATS_PERSISTENT [=] {DEFAULT | 0 | 1}
 | STATS_SAMPLE_PAGES [=] value
 | TABLESPACE tablespace_name [STORAGE {DISK | MEMORY}]
 | UNION [=] (tbl_name[,tbl_name]...)
}

partition_options:
 (see CREATE TABLE options)

ALTER TABLE changes the structure of a table. For example, you can add or delete columns, create
or destroy indexes, change the type of existing columns, or rename columns or the table itself. You can
also change characteristics such as the storage engine used for the table or the table comment.

• To use ALTER TABLE, you need ALTER, CREATE, and INSERT privileges for the table. Renaming a
table requires ALTER and DROP on the old table, ALTER, CREATE, and INSERT on the new table.

• Following the table name, specify the alterations to be made. If none are given, ALTER TABLE does
nothing.

• The syntax for many of the permissible alterations is similar to clauses of the CREATE TABLE
statement. column_definition clauses use the same syntax for ADD and CHANGE as for CREATE
TABLE. For more information, see Section 15.1.20, “CREATE TABLE Statement”.

• The word COLUMN is optional and can be omitted, except for RENAME COLUMN (to distinguish a
column-renaming operation from the RENAME table-renaming operation).

• Multiple ADD, ALTER, DROP, and CHANGE clauses are permitted in a single ALTER TABLE statement,
separated by commas. This is a MySQL extension to standard SQL, which permits only one of each
clause per ALTER TABLE statement. For example, to drop multiple columns in a single statement,
do this:

ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;

• If a storage engine does not support an attempted ALTER TABLE operation, a warning may result.
Such warnings can be displayed with SHOW WARNINGS. See Section 15.7.7.42, “SHOW WARNINGS
Statement”. For information on troubleshooting ALTER TABLE, see Section B.3.6.1, “Problems with
ALTER TABLE”.

• For information about generated columns, see Section 15.1.9.2, “ALTER TABLE and Generated
Columns”.

• For usage examples, see Section 15.1.9.3, “ALTER TABLE Examples”.

• InnoDB in MySQL 8.0.17 and later supports addition of multi-valued indexes on JSON columns
using a key_part specification can take the form (CAST json_path AS type ARRAY). See
Multi-Valued Indexes, for detailed information regarding multi-valued index creation and usage of, as
well as restrictions and limitations on multi-valued indexes.

• With the mysql_info() C API function, you can find out how many rows were copied by ALTER
TABLE. See mysql_info().

There are several additional aspects to the ALTER TABLE statement, described under the following
topics in this section:

• Table Options

2671

https://dev.mysql.com/doc/c-api/8.0/en/mysql-info.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-info.html

ALTER TABLE Statement

• Performance and Space Requirements

• Concurrency Control

• Adding and Dropping Columns

• Renaming, Redefining, and Reordering Columns

• Primary Keys and Indexes

• Foreign Keys and Other Constraints

• Changing the Character Set

• Importing InnoDB Tables

• Row Order for MyISAM Tables

• Partitioning Options

Table Options

table_options signifies table options of the kind that can be used in the CREATE TABLE statement,
such as ENGINE, AUTO_INCREMENT, AVG_ROW_LENGTH, MAX_ROWS, ROW_FORMAT, or TABLESPACE.

For descriptions of all table options, see Section 15.1.20, “CREATE TABLE Statement”. However,
ALTER TABLE ignores DATA DIRECTORY and INDEX DIRECTORY when given as table options.
ALTER TABLE permits them only as partitioning options, and requires that you have the FILE
privilege.

Use of table options with ALTER TABLE provides a convenient way of altering single table
characteristics. For example:

• If t1 is currently not an InnoDB table, this statement changes its storage engine to InnoDB:

ALTER TABLE t1 ENGINE = InnoDB;

• See Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB” for considerations when
switching tables to the InnoDB storage engine.

• When you specify an ENGINE clause, ALTER TABLE rebuilds the table. This is true even if the
table already has the specified storage engine.

• Running ALTER TABLE tbl_name ENGINE=INNODB on an existing InnoDB table performs a
“null” ALTER TABLE operation, which can be used to defragment an InnoDB table, as described
in Section 17.11.4, “Defragmenting a Table”. Running ALTER TABLE tbl_name FORCE on an
InnoDB table performs the same function.

• ALTER TABLE tbl_name ENGINE=INNODB and ALTER TABLE tbl_name FORCE use online
DDL. For more information, see Section 17.12, “InnoDB and Online DDL”.

• The outcome of attempting to change the storage engine of a table is affected by whether the
desired storage engine is available and the setting of the NO_ENGINE_SUBSTITUTION SQL
mode, as described in Section 7.1.11, “Server SQL Modes”.

• To prevent inadvertent loss of data, ALTER TABLE cannot be used to change the storage engine
of a table to MERGE or BLACKHOLE.

• To change the InnoDB table to use compressed row-storage format:

ALTER TABLE t1 ROW_FORMAT = COMPRESSED;

• The ENCRYPTION clause enables or disables page-level data encryption for an InnoDB table. A
keyring plugin must be installed and configured to enable encryption.

2672

ALTER TABLE Statement

If the table_encryption_privilege_check variable is enabled, the
TABLE_ENCRYPTION_ADMIN privilege is required to use an ENCRYPTION clause with a setting that
differs from the default schema encryption setting.

Prior to MySQL 8.0.16, the ENCRYPTION clause was only supported when altering tables residing in
file-per-table tablespaces. As of MySQL 8.0.16, the ENCRYPTION clause is also supported for tables
residing in general tablespaces.

For tables that reside in general tablespaces, table and tablespace encryption must match.

Altering table encryption by moving a table to a different tablespace or changing the storage engine
is not permitted without explicitly specifying an ENCRYPTION clause.

The ENCRYPTION option is supported only by the InnoDB storage engine; thus it works only
if the table already uses InnoDB (and you do not change the table's storage engine), or if the
ALTER TABLE statement also specifies ENGINE=InnoDB. Otherwise the statement is rejected with
ER_CHECK_NOT_IMPLEMENTED.

As of MySQL 8.0.16, specifying an ENCRYPTION clause with a value other than 'N' or '' is not
permitted if the table uses a storage engine that does not support encryption. Previously, the clause
was accepted. Attempting to create a table without an ENCRYPTION clause in an encryption-enabled
schema using a storage engine that does not support encryption is also not permitted.

For more information, see Section 17.13, “InnoDB Data-at-Rest Encryption”.

• To reset the current auto-increment value:

ALTER TABLE t1 AUTO_INCREMENT = 13;

You cannot reset the counter to a value less than or equal to the value that is currently in use. For
both InnoDB and MyISAM, if the value is less than or equal to the maximum value currently in the
AUTO_INCREMENT column, the value is reset to the current maximum AUTO_INCREMENT column
value plus one.

• To change the default table character set:

ALTER TABLE t1 CHARACTER SET = utf8mb4;

See also Changing the Character Set.

• To add (or change) a table comment:

ALTER TABLE t1 COMMENT = 'New table comment';

• Use ALTER TABLE with the TABLESPACE option to move InnoDB tables between existing general
tablespaces, file-per-table tablespaces, and the system tablespace. See Moving Tables Between
Tablespaces Using ALTER TABLE.

• ALTER TABLE ... TABLESPACE operations always cause a full table rebuild, even if the
TABLESPACE attribute has not changed from its previous value.

• ALTER TABLE ... TABLESPACE syntax does not support moving a table from a temporary
tablespace to a persistent tablespace.

• The DATA DIRECTORY clause, which is supported with CREATE TABLE ... TABLESPACE, is
not supported with ALTER TABLE ... TABLESPACE, and is ignored if specified.

• For more information about the capabilities and limitations of the TABLESPACE option, see CREATE
TABLE.

• MySQL NDB Cluster 8.0 supports setting NDB_TABLE options for controlling a table's partition
balance (fragment count type), read-from-any-replica capability, full replication, or any combination

2673

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_check_not_implemented

ALTER TABLE Statement

of these, as part of the table comment for an ALTER TABLE statement in the same manner as for
CREATE TABLE, as shown in this example:

ALTER TABLE t1 COMMENT = "NDB_TABLE=READ_BACKUP=0,PARTITION_BALANCE=FOR_RA_BY_NODE";

It is also possible to set NDB_COMMENT options for columns of NDB tables as part of an ALTER
TABLE statement, like this one:

ALTER TABLE t1
 CHANGE COLUMN c1 c1 BLOB
 COMMENT = 'NDB_COLUMN=BLOB_INLINE_SIZE=4096,MAX_BLOB_PART_SIZE';

Setting the blob inline size in this fashion is supported by NDB 8.0.30 and later. Bear in mind that
ALTER TABLE ... COMMENT ... discards any existing comment for the table. See Setting
NDB_TABLE options, for additional information and examples.

• ENGINE_ATTRIBUTE and SECONDARY_ENGINE_ATTRIBUTE options (available as of MySQL
8.0.21) are used to specify table, column, and index attributes for primary and secondary storage
engines. The options are reserved for future use. Index attributes cannot be altered. An index must
be dropped and added back with the desired change, which can be performed in a single ALTER
TABLE statement.

To verify that the table options were changed as intended, use SHOW CREATE TABLE, or query the
Information Schema TABLES table.

Performance and Space Requirements

ALTER TABLE operations are processed using one of the following algorithms:

• COPY: Operations are performed on a copy of the original table, and table data is copied from the
original table to the new table row by row. Concurrent DML is not permitted.

• INPLACE: Operations avoid copying table data but may rebuild the table in place. An exclusive
metadata lock on the table may be taken briefly during preparation and execution phases of the
operation. Typically, concurrent DML is supported.

• INSTANT: Operations only modify metadata in the data dictionary. An exclusive metadata lock on
the table may be taken briefly during the execution phase of the operation. Table data is unaffected,
making operations instantaneous. Concurrent DML is permitted. (Introduced in MySQL 8.0.12)

For tables using the NDB storage engine, these algorithms work as follows:

• COPY: NDB creates a copy of the table and alters it; the NDB Cluster handler then copies the data
between the old and new versions of the table. Subsequently, NDB deletes the old table and renames
the new one.

This is sometimes also referred to as a “copying” or “offline” ALTER TABLE.

• INPLACE: The data nodes make the required changes; the NDB Cluster handler does not copy data
or otherwise take part.

This is sometimes also referred to as a “non-copying” or “online” ALTER TABLE.

• INSTANT: Not supported by NDB.

See Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”, for more information.

The ALGORITHM clause is optional. If the ALGORITHM clause is omitted, MySQL uses
ALGORITHM=INSTANT for storage engines and ALTER TABLE clauses that support it. Otherwise,
ALGORITHM=INPLACE is used. If ALGORITHM=INPLACE is not supported, ALGORITHM=COPY is used.

2674

ALTER TABLE Statement

Note

After adding a column to a partitioned table using ALGORITHM=INSTANT, it is
no longer possible to perform ALTER TABLE ... EXCHANGE PARTITION on
the table.

Specifying an ALGORITHM clause requires the operation to use the specified algorithm for clauses and
storage engines that support it, or fail with an error otherwise. Specifying ALGORITHM=DEFAULT is the
same as omitting the ALGORITHM clause.

ALTER TABLE operations that use the COPY algorithm wait for other operations that are modifying the
table to complete. After alterations are applied to the table copy, data is copied over, the original table
is deleted, and the table copy is renamed to the name of the original table. While the ALTER TABLE
operation executes, the original table is readable by other sessions (with the exception noted shortly).
Updates and writes to the table started after the ALTER TABLE operation begins are stalled until the
new table is ready, then are automatically redirected to the new table. The temporary copy of the table
is created in the database directory of the original table unless it is a RENAME TO operation that moves
the table to a database that resides in a different directory.

The exception referred to earlier is that ALTER TABLE blocks reads (not just writes) at the point where
it is ready to clear outdated table structures from the table and table definition caches. At this point, it
must acquire an exclusive lock. To do so, it waits for current readers to finish, and blocks new reads
and writes.

An ALTER TABLE operation that uses the COPY algorithm prevents concurrent DML operations.
Concurrent queries are still allowed. That is, a table-copying operation always includes at least
the concurrency restrictions of LOCK=SHARED (allow queries but not DML). You can further restrict
concurrency for operations that support the LOCK clause by specifying LOCK=EXCLUSIVE, which
prevents DML and queries. For more information, see Concurrency Control.

To force use of the COPY algorithm for an ALTER TABLE operation that would otherwise not use it,
specify ALGORITHM=COPY or enable the old_alter_table system variable. If there is a conflict
between the old_alter_table setting and an ALGORITHM clause with a value other than DEFAULT,
the ALGORITHM clause takes precedence.

For InnoDB tables, an ALTER TABLE operation that uses the COPY algorithm on a table that resides
in a shared tablespace can increase the amount of space used by the tablespace. Such operations
require as much additional space as the data in the table plus indexes. For a table residing in a shared
tablespace, the additional space used during the operation is not released back to the operating
system as it is for a table that resides in a file-per-table tablespace.

For information about space requirements for online DDL operations, see Section 17.12.3, “Online DDL
Space Requirements”.

ALTER TABLE operations that support the INPLACE algorithm include:

• ALTER TABLE operations supported by the InnoDB online DDL feature. See Section 17.12.1,
“Online DDL Operations”.

• Renaming a table. MySQL renames files that correspond to the table tbl_name without making
a copy. (You can also use the RENAME TABLE statement to rename tables. See Section 15.1.36,
“RENAME TABLE Statement”.) Privileges granted specifically for the renamed table are not migrated
to the new name. They must be changed manually.

• Operations that modify table metadata only. These operations are immediate because the server
does not touch table contents. Metadata-only operations include:

• Renaming a column. In NDB Cluster 8.0.18 and later, this operation can also be performed online.

• Changing the default value of a column (except for NDB tables).

2675

ALTER TABLE Statement

• Modifying the definition of an ENUM or SET column by adding new enumeration or set members
to the end of the list of valid member values, as long as the storage size of the data type does
not change. For example, adding a member to a SET column that has 8 members changes the
required storage per value from 1 byte to 2 bytes; this requires a table copy. Adding members in
the middle of the list causes renumbering of existing members, which requires a table copy.

• Changing the definition of a spatial column to remove the SRID attribute. (Adding or changing an
SRID attribute requires a rebuild, and cannot be done in place, because the server must verify that
all values have the specified SRID value.)

• As of MySQL 8.0.14, changing a column character set, when these conditions apply:

• The column data type is CHAR, VARCHAR, a TEXT type, or ENUM.

• The character set change is from utf8mb3 to utf8mb4, or any character set to binary.

• There is no index on the column.

• As of MySQL 8.0.14, changing a generated column, when these conditions apply:

• For InnoDB tables, statements that modify generated stored columns but do not change their
type, expression, or nullability.

• For non-InnoDB tables, statements that modify generated stored or virtual columns but do not
change their type, expression, or nullability.

An example of such a change is a change to the column comment.

• Renaming an index.

• Adding or dropping a secondary index, for InnoDB and NDB tables. See Section 17.12.1, “Online
DDL Operations”.

• For NDB tables, operations that add and drop indexes on variable-width columns. These operations
occur online, without table copying and without blocking concurrent DML actions for most of their
duration. See Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”.

• Modifying index visibility with an ALTER INDEX operation.

• Column modifications of tables containing generated columns that depend on columns with a
DEFAULT value if the modified columns are not involved in the generated column expressions. For
example, changing the NULL property of a separate column can be done in place without a table
rebuild.

ALTER TABLE operations that support the INSTANT algorithm include:

• Adding a column. This feature is referred to as “Instant ADD COLUMN”. Limitations apply. See
Section 17.12.1, “Online DDL Operations”.

• Dropping a column. This feature is referred to as “Instant DROP COLUMN”. Limitations apply. See
Section 17.12.1, “Online DDL Operations”.

• Adding or dropping a virtual column.

• Adding or dropping a column default value.

• Modifying the definition of an ENUM or SET column. The same restrictions apply as described above
for ALGORITHM=INSTANT.

• Changing the index type.

• Renaming a table. The same restrictions apply as described above for ALGORITHM=INSTANT.

2676

ALTER TABLE Statement

For more information about operations that support ALGORITHM=INSTANT, see Section 17.12.1,
“Online DDL Operations”.

ALTER TABLE upgrades MySQL 5.5 temporal columns to 5.6 format for ADD COLUMN, CHANGE
COLUMN, MODIFY COLUMN, ADD INDEX, and FORCE operations. This conversion cannot be done
using the INPLACE algorithm because the table must be rebuilt, so specifying ALGORITHM=INPLACE
in these cases results in an error. Specify ALGORITHM=COPY if necessary.

If an ALTER TABLE operation on a multicolumn index used to partition a table by KEY changes the
order of the columns, it can only be performed using ALGORITHM=COPY.

The WITHOUT VALIDATION and WITH VALIDATION clauses affect whether ALTER TABLE performs
an in-place operation for virtual generated column modifications. See Section 15.1.9.2, “ALTER TABLE
and Generated Columns”.

NDB Cluster 8.0 supports online operations using the same ALGORITHM=INPLACE syntax used with
the standard MySQL Server. NDB does not support changing a tablespace online; beginning with NDB
8.0.21, it is disallowed. See Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”,
for more information.

NDB 8.0.27 and later, when performing a copying ALTER TABLE, checks to ensure that no concurrent
writes have been made to the affected table. If it finds that any have been made, NDB rejects the
ALTER TABLE statement and raises ER_TABLE_DEF_CHANGED.

ALTER TABLE with DISCARD ... PARTITION ... TABLESPACE or IMPORT ...
PARTITION ... TABLESPACE does not create any temporary tables or temporary partition files.

ALTER TABLE with ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REBUILD
PARTITION, or REORGANIZE PARTITION does not create temporary tables (except when used with
NDB tables); however, these operations can and do create temporary partition files.

ADD or DROP operations for RANGE or LIST partitions are immediate operations or nearly so. ADD or
COALESCE operations for HASH or KEY partitions copy data between all partitions, unless LINEAR
HASH or LINEAR KEY was used; this is effectively the same as creating a new table, although the ADD
or COALESCE operation is performed partition by partition. REORGANIZE operations copy only changed
partitions and do not touch unchanged ones.

For MyISAM tables, you can speed up index re-creation (the slowest part of the alteration process) by
setting the myisam_sort_buffer_size system variable to a high value.

Concurrency Control

For ALTER TABLE operations that support it, you can use the LOCK clause to control the level of
concurrent reads and writes on a table while it is being altered. Specifying a non-default value for this
clause enables you to require a certain amount of concurrent access or exclusivity during the alter
operation, and halts the operation if the requested degree of locking is not available.

Only LOCK = DEFAULT is permitted for operations that use ALGORITHM=INSTANT. The other LOCK
clause parameters are not applicable.

The parameters for the LOCK clause are:

• LOCK = DEFAULT

Maximum level of concurrency for the given ALGORITHM clause (if any) and ALTER TABLE
operation: Permit concurrent reads and writes if supported. If not, permit concurrent reads if
supported. If not, enforce exclusive access.

• LOCK = NONE

If supported, permit concurrent reads and writes. Otherwise, an error occurs.

2677

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_table_def_changed

ALTER TABLE Statement

• LOCK = SHARED

If supported, permit concurrent reads but block writes. Writes are blocked even if concurrent writes
are supported by the storage engine for the given ALGORITHM clause (if any) and ALTER TABLE
operation. If concurrent reads are not supported, an error occurs.

• LOCK = EXCLUSIVE

Enforce exclusive access. This is done even if concurrent reads/writes are supported by the storage
engine for the given ALGORITHM clause (if any) and ALTER TABLE operation.

Adding and Dropping Columns

Use ADD to add new columns to a table, and DROP to remove existing columns. DROP col_name is a
MySQL extension to standard SQL.

To add a column at a specific position within a table row, use FIRST or AFTER col_name. The default
is to add the column last.

If a table contains only one column, the column cannot be dropped. If what you intend is to remove the
table, use the DROP TABLE statement instead.

If columns are dropped from a table, the columns are also removed from any index of which they are a
part. If all columns that make up an index are dropped, the index is dropped as well. If you use CHANGE
or MODIFY to shorten a column for which an index exists on the column, and the resulting column
length is less than the index length, MySQL shortens the index automatically.

For ALTER TABLE ... ADD, if the column has an expression default value that uses a
nondeterministic function, the statement may produce a warning or error. For further information, see
Section 13.6, “Data Type Default Values”, and Section 19.1.3.7, “Restrictions on Replication with
GTIDs”.

Renaming, Redefining, and Reordering Columns

The CHANGE, MODIFY, RENAME COLUMN, and ALTER clauses enable the names and definitions of
existing columns to be altered. They have these comparative characteristics:

• CHANGE:

• Can rename a column and change its definition, or both.

• Has more capability than MODIFY or RENAME COLUMN, but at the expense of convenience for
some operations. CHANGE requires naming the column twice if not renaming it, and requires
respecifying the column definition if only renaming it.

• With FIRST or AFTER, can reorder columns.

• MODIFY:

• Can change a column definition but not its name.

• More convenient than CHANGE to change a column definition without renaming it.

• With FIRST or AFTER, can reorder columns.

• RENAME COLUMN:

• Can change a column name but not its definition.

• More convenient than CHANGE to rename a column without changing its definition.

• ALTER: Used only to change a column default value.

2678

ALTER TABLE Statement

CHANGE is a MySQL extension to standard SQL. MODIFY and RENAME COLUMN are MySQL
extensions for Oracle compatibility.

To alter a column to change both its name and definition, use CHANGE, specifying the old and new
names and the new definition. For example, to rename an INT NOT NULL column from a to b and
change its definition to use the BIGINT data type while retaining the NOT NULL attribute, do this:

ALTER TABLE t1 CHANGE a b BIGINT NOT NULL;

To change a column definition but not its name, use CHANGE or MODIFY. With CHANGE, the syntax
requires two column names, so you must specify the same name twice to leave the name unchanged.
For example, to change the definition of column b, do this:

ALTER TABLE t1 CHANGE b b INT NOT NULL;

MODIFY is more convenient to change the definition without changing the name because it requires the
column name only once:

ALTER TABLE t1 MODIFY b INT NOT NULL;

To change a column name but not its definition, use CHANGE or RENAME COLUMN. With CHANGE,
the syntax requires a column definition, so to leave the definition unchanged, you must respecify the
definition the column currently has. For example, to rename an INT NOT NULL column from b to a, do
this:

ALTER TABLE t1 CHANGE b a INT NOT NULL;

RENAME COLUMN is more convenient to change the name without changing the definition because it
requires only the old and new names:

ALTER TABLE t1 RENAME COLUMN b TO a;

In general, you cannot rename a column to a name that already exists in the table. However, this is
sometimes not the case, such as when you swap names or move them through a cycle. If a table has
columns named a, b, and c, these are valid operations:

-- swap a and b
ALTER TABLE t1 RENAME COLUMN a TO b,
 RENAME COLUMN b TO a;
-- "rotate" a, b, c through a cycle
ALTER TABLE t1 RENAME COLUMN a TO b,
 RENAME COLUMN b TO c,
 RENAME COLUMN c TO a;

For column definition changes using CHANGE or MODIFY, the definition must include the data type and
all attributes that should apply to the new column, other than index attributes such as PRIMARY KEY
or UNIQUE. Attributes present in the original definition but not specified for the new definition are not
carried forward. Suppose that a column col1 is defined as INT UNSIGNED DEFAULT 1 COMMENT
'my column' and you modify the column as follows, intending to change only INT to BIGINT:

ALTER TABLE t1 MODIFY col1 BIGINT;

That statement changes the data type from INT to BIGINT, but it also drops the UNSIGNED, DEFAULT,
and COMMENT attributes. To retain them, the statement must include them explicitly:

ALTER TABLE t1 MODIFY col1 BIGINT UNSIGNED DEFAULT 1 COMMENT 'my column';

For data type changes using CHANGE or MODIFY, MySQL tries to convert existing column values to the
new type as well as possible.

Warning

This conversion may result in alteration of data. For example, if you shorten
a string column, values may be truncated. To prevent the operation from
succeeding if conversions to the new data type would result in loss of data,

2679

ALTER TABLE Statement

enable strict SQL mode before using ALTER TABLE (see Section 7.1.11,
“Server SQL Modes”).

If you use CHANGE or MODIFY to shorten a column for which an index exists on the column, and the
resulting column length is less than the index length, MySQL shortens the index automatically.

For columns renamed by CHANGE or RENAME COLUMN, MySQL automatically renames these
references to the renamed column:

• Indexes that refer to the old column, including invisible indexes and disabled MyISAM indexes.

• Foreign keys that refer to the old column.

For columns renamed by CHANGE or RENAME COLUMN, MySQL does not automatically rename these
references to the renamed column:

• Generated column and partition expressions that refer to the renamed column. You must use
CHANGE to redefine such expressions in the same ALTER TABLE statement as the one that renames
the column.

• Views and stored programs that refer to the renamed column. You must manually alter the definition
of these objects to refer to the new column name.

To reorder columns within a table, use FIRST and AFTER in CHANGE or MODIFY operations.

ALTER ... SET DEFAULT or ALTER ... DROP DEFAULT specify a new default value for a column
or remove the old default value, respectively. If the old default is removed and the column can be
NULL, the new default is NULL. If the column cannot be NULL, MySQL assigns a default value as
described in Section 13.6, “Data Type Default Values”.

As of MySQL 8.0.23, ALTER ... SET VISIBLE and ALTER ... SET INVISIBLE enable column
visibility to be changed. See Section 15.1.20.10, “Invisible Columns”.

Primary Keys and Indexes

DROP PRIMARY KEY drops the primary key. If there is no primary key, an error occurs. For
information about the performance characteristics of primary keys, especially for InnoDB tables, see
Section 10.3.2, “Primary Key Optimization”.

If the sql_require_primary_key system variable is enabled, attempting to drop a primary key
produces an error.

If you add a UNIQUE INDEX or PRIMARY KEY to a table, MySQL stores it before any nonunique index
to permit detection of duplicate keys as early as possible.

DROP INDEX removes an index. This is a MySQL extension to standard SQL. See Section 15.1.27,
“DROP INDEX Statement”. To determine index names, use SHOW INDEX FROM tbl_name.

Some storage engines permit you to specify an index type when creating an index. The syntax for
the index_type specifier is USING type_name. For details about USING, see Section 15.1.15,
“CREATE INDEX Statement”. The preferred position is after the column list. Expect support for use of
the option before the column list to be removed in a future MySQL release.

index_option values specify additional options for an index. USING is one such option. For details
about permissible index_option values, see Section 15.1.15, “CREATE INDEX Statement”.

RENAME INDEX old_index_name TO new_index_name renames an index. This is a MySQL
extension to standard SQL. The content of the table remains unchanged. old_index_name must be
the name of an existing index in the table that is not dropped by the same ALTER TABLE statement.
new_index_name is the new index name, which cannot duplicate the name of an index in the resulting
table after changes have been applied. Neither index name can be PRIMARY.

If you use ALTER TABLE on a MyISAM table, all nonunique indexes are created in a separate batch
(as for REPAIR TABLE). This should make ALTER TABLE much faster when you have many indexes.

2680

ALTER TABLE Statement

For MyISAM tables, key updating can be controlled explicitly. Use ALTER TABLE ... DISABLE
KEYS to tell MySQL to stop updating nonunique indexes. Then use ALTER TABLE ... ENABLE
KEYS to re-create missing indexes. MyISAM does this with a special algorithm that is much faster than
inserting keys one by one, so disabling keys before performing bulk insert operations should give a
considerable speedup. Using ALTER TABLE ... DISABLE KEYS requires the INDEX privilege in
addition to the privileges mentioned earlier.

While the nonunique indexes are disabled, they are ignored for statements such as SELECT and
EXPLAIN that otherwise would use them.

After an ALTER TABLE statement, it may be necessary to run ANALYZE TABLE to update index
cardinality information. See Section 15.7.7.22, “SHOW INDEX Statement”.

The ALTER INDEX operation permits an index to be made visible or invisible. An invisible index is
not used by the optimizer. Modification of index visibility applies to indexes other than primary keys
(either explicit or implicit), and cannot be performed using ALGORITHM=INSTANT. This feature is
storage engine neutral (supported for any engine). For more information, see Section 10.3.12, “Invisible
Indexes”.

Foreign Keys and Other Constraints

The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB and NDB storage
engines, which implement ADD [CONSTRAINT [symbol]] FOREIGN KEY [index_name] (...)
REFERENCES ... (...). See Section 15.1.20.5, “FOREIGN KEY Constraints”. For other storage
engines, the clauses are parsed but ignored.

For ALTER TABLE, unlike CREATE TABLE, ADD FOREIGN KEY ignores index_name if given and
uses an automatically generated foreign key name. As a workaround, include the CONSTRAINT clause
to specify the foreign key name:

ADD CONSTRAINT name FOREIGN KEY (....) ...

Important

MySQL silently ignores inline REFERENCES specifications, where the
references are defined as part of the column specification. MySQL accepts
only REFERENCES clauses defined as part of a separate FOREIGN KEY
specification.

Note

Partitioned InnoDB tables do not support foreign keys. This restriction does not
apply to NDB tables, including those explicitly partitioned by [LINEAR] KEY.
For more information, see Section 26.6.2, “Partitioning Limitations Relating to
Storage Engines”.

MySQL Server and NDB Cluster both support the use of ALTER TABLE to drop foreign keys:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

Adding and dropping a foreign key in the same ALTER TABLE statement is supported for ALTER
TABLE ... ALGORITHM=INPLACE but not for ALTER TABLE ... ALGORITHM=COPY.

The server prohibits changes to foreign key columns that have the potential to cause loss of referential
integrity. A workaround is to use ALTER TABLE ... DROP FOREIGN KEY before changing the
column definition and ALTER TABLE ... ADD FOREIGN KEY afterward. Examples of prohibited
changes include:

• Changes to the data type of foreign key columns that may be unsafe. For example, changing
VARCHAR(20) to VARCHAR(30) is permitted, but changing it to VARCHAR(1024) is not because
that alters the number of length bytes required to store individual values.

2681

ALTER TABLE Statement

• Changing a NULL column to NOT NULL in non-strict mode is prohibited to prevent converting NULL
values to default non-NULL values, for which there are no corresponding values in the referenced
table. The operation is permitted in strict mode, but an error is returned if any such conversion is
required.

ALTER TABLE tbl_name RENAME new_tbl_name changes internally generated foreign
key constraint names and user-defined foreign key constraint names that begin with the string
“tbl_name_ibfk_” to reflect the new table name. InnoDB interprets foreign key constraint names that
begin with the string “tbl_name_ibfk_” as internally generated names.

Prior to MySQL 8.0.16, ALTER TABLE permits only the following limited version of CHECK constraint-
adding syntax, which is parsed and ignored:

ADD CHECK (expr)

As of MySQL 8.0.16, ALTER TABLE permits CHECK constraints for existing tables to be added,
dropped, or altered:

• Add a new CHECK constraint:

ALTER TABLE tbl_name
 ADD [CONSTRAINT [symbol]] CHECK (expr) [[NOT] ENFORCED];

The meaning of constraint syntax elements is the same as for CREATE TABLE. See
Section 15.1.20.6, “CHECK Constraints”.

• Drop an existing CHECK constraint named symbol:

ALTER TABLE tbl_name
 DROP CHECK symbol;

• Alter whether an existing CHECK constraint named symbol is enforced:

ALTER TABLE tbl_name
 ALTER CHECK symbol [NOT] ENFORCED;

The DROP CHECK and ALTER CHECK clauses are MySQL extensions to standard SQL.

As of MySQL 8.0.19, ALTER TABLE permits more general (and SQL standard) syntax for dropping and
altering existing constraints of any type, where the constraint type is determined from the constraint
name:

• Drop an existing constraint named symbol:

ALTER TABLE tbl_name
 DROP CONSTRAINT symbol;

If the sql_require_primary_key system variable is enabled, attempting to drop a primary key
produces an error.

• Alter whether an existing constraint named symbol is enforced:

ALTER TABLE tbl_name
 ALTER CONSTRAINT symbol [NOT] ENFORCED;

Only CHECK constraints can be altered to be unenforced. All other constraint types are always
enforced.

The SQL standard specifies that all types of constraints (primary key, unique index, foreign key,
check) belong to the same namespace. In MySQL, each constraint type has its own namespace per
schema. Consequently, names for each type of constraint must be unique per schema, but constraints
of different types can have the same name. When multiple constraints have the same name, DROP
CONSTRAINT and ADD CONSTRAINT are ambiguous and an error occurs. In such cases, constraint-
specific syntax must be used to modify the constraint. For example, use DROP PRIMARY KEY or
DROP FOREIGN KEY to drop a primary key or foreign key.

2682

ALTER TABLE Statement

If a table alteration causes a violation of an enforced CHECK constraint, an error occurs and the table is
not modified. Examples of operations for which an error occurs:

• Attempts to add the AUTO_INCREMENT attribute to a column that is used in a CHECK constraint.

• Attempts to add an enforced CHECK constraint or enforce a nonenforced CHECK constraint for which
existing rows violate the constraint condition.

• Attempts to modify, rename, or drop a column that is used in a CHECK constraint, unless that
constraint is also dropped in the same statement. Exception: If a CHECK constraint refers only to a
single column, dropping the column automatically drops the constraint.

ALTER TABLE tbl_name RENAME new_tbl_name changes internally generated and user-defined
CHECK constraint names that begin with the string “tbl_name_chk_” to reflect the new table name.
MySQL interprets CHECK constraint names that begin with the string “tbl_name_chk_” as internally
generated names.

Changing the Character Set

 To change the table default character set and all character columns (CHAR, VARCHAR, TEXT) to a new
character set, use a statement like this:

ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name;

The statement also changes the collation of all character columns. If you specify no COLLATE clause to
indicate which collation to use, the statement uses default collation for the character set. If this collation
is inappropriate for the intended table use (for example, if it would change from a case-sensitive
collation to a case-insensitive collation), specify a collation explicitly.

For a column that has a data type of VARCHAR or one of the TEXT types, CONVERT TO CHARACTER
SET changes the data type as necessary to ensure that the new column is long enough to store as
many characters as the original column. For example, a TEXT column has two length bytes, which
store the byte-length of values in the column, up to a maximum of 65,535. For a latin1 TEXT column,
each character requires a single byte, so the column can store up to 65,535 characters. If the column
is converted to utf8mb4, each character might require up to 4 bytes, for a maximum possible length
of 4 × 65,535 = 262,140 bytes. That length does not fit in a TEXT column's length bytes, so MySQL
converts the data type to MEDIUMTEXT, which is the smallest string type for which the length bytes can
record a value of 262,140. Similarly, a VARCHAR column might be converted to MEDIUMTEXT.

To avoid data type changes of the type just described, do not use CONVERT TO CHARACTER SET.
Instead, use MODIFY to change individual columns. For example:

ALTER TABLE t MODIFY latin1_text_col TEXT CHARACTER SET utf8mb4;
ALTER TABLE t MODIFY latin1_varchar_col VARCHAR(M) CHARACTER SET utf8mb4;

If you specify CONVERT TO CHARACTER SET binary, the CHAR, VARCHAR, and TEXT columns are
converted to their corresponding binary string types (BINARY, VARBINARY, BLOB). This means that the
columns no longer have a character set and a subsequent CONVERT TO operation does not apply to
them.

If charset_name is DEFAULT in a CONVERT TO CHARACTER SET operation, the character set
named by the character_set_database system variable is used.

Warning

The CONVERT TO operation converts column values between the original and
named character sets. This is not what you want if you have a column in one
character set (like latin1) but the stored values actually use some other,
incompatible character set (like utf8mb4). In this case, you have to do the
following for each such column:

ALTER TABLE t1 CHANGE c1 c1 BLOB;
ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8mb4;

2683

ALTER TABLE Statement

The reason this works is that there is no conversion when you convert to or from
BLOB columns.

To change only the default character set for a table, use this statement:

ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;

The word DEFAULT is optional. The default character set is the character set that is used if you
do not specify the character set for columns that you add to a table later (for example, with ALTER
TABLE ... ADD column).

When the foreign_key_checks system variable is enabled, which is the default setting, character
set conversion is not permitted on tables that include a character string column used in a foreign key
constraint. The workaround is to disable foreign_key_checks before performing the character set
conversion. You must perform the conversion on both tables involved in the foreign key constraint
before re-enabling foreign_key_checks. If you re-enable foreign_key_checks after converting
only one of the tables, an ON DELETE CASCADE or ON UPDATE CASCADE operation could corrupt
data in the referencing table due to implicit conversion that occurs during these operations (Bug
#45290, Bug #74816).

Importing InnoDB Tables

An InnoDB table created in its own file-per-table tablespace can be imported from a backup or from
another MySQL server instance using DISCARD TABLEPACE and IMPORT TABLESPACE clauses. See
Section 17.6.1.3, “Importing InnoDB Tables”.

Row Order for MyISAM Tables

ORDER BY enables you to create the new table with the rows in a specific order. This option is useful
primarily when you know that you query the rows in a certain order most of the time. By using this
option after major changes to the table, you might be able to get higher performance. In some cases, it
might make sorting easier for MySQL if the table is in order by the column that you want to order it by
later.

Note

The table does not remain in the specified order after inserts and deletes.

ORDER BY syntax permits one or more column names to be specified for sorting, each of which
optionally can be followed by ASC or DESC to indicate ascending or descending sort order, respectively.
The default is ascending order. Only column names are permitted as sort criteria; arbitrary expressions
are not permitted. This clause should be given last after any other clauses.

ORDER BY does not make sense for InnoDB tables because InnoDB always orders table rows
according to the clustered index.

When used on a partitioned table, ALTER TABLE ... ORDER BY orders rows within each partition
only.

Partitioning Options

partition_options signifies options that can be used with partitioned tables for repartitioning, to
add, drop, discard, import, merge, and split partitions, and to perform partitioning maintenance.

It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITIONING
clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITIONING
clause must be specified last after any other specifications. The ADD PARTITION, DROP PARTITION,
DISCARD PARTITION, IMPORT PARTITION, COALESCE PARTITION, REORGANIZE PARTITION,
EXCHANGE PARTITION, ANALYZE PARTITION, CHECK PARTITION, and REPAIR PARTITION
options cannot be combined with other alter specifications in a single ALTER TABLE, since the options
just listed act on individual partitions.

2684

ALTER TABLE Statement

For more information about partition options, see Section 15.1.20, “CREATE TABLE Statement”, and
Section 15.1.9.1, “ALTER TABLE Partition Operations”. For information about and examples of ALTER
TABLE ... EXCHANGE PARTITION statements, see Section 26.3.3, “Exchanging Partitions and
Subpartitions with Tables”.

15.1.9.1 ALTER TABLE Partition Operations

Partitioning-related clauses for ALTER TABLE can be used with partitioned tables for repartitioning, to
add, drop, discard, import, merge, and split partitions, and to perform partitioning maintenance.

• Simply using a partition_options clause with ALTER TABLE on a partitioned table repartitions
the table according to the partitioning scheme defined by the partition_options. This clause
always begins with PARTITION BY, and follows the same syntax and other rules as apply
to the partition_options clause for CREATE TABLE (for more detailed information, see
Section 15.1.20, “CREATE TABLE Statement”), and can also be used to partition an existing table
that is not already partitioned. For example, consider a (nonpartitioned) table defined as shown here:

CREATE TABLE t1 (
 id INT,
 year_col INT
);

This table can be partitioned by HASH, using the id column as the partitioning key, into 8 partitions
by means of this statement:

ALTER TABLE t1
 PARTITION BY HASH(id)
 PARTITIONS 8;

MySQL supports an ALGORITHM option with [SUB]PARTITION BY [LINEAR] KEY.
ALGORITHM=1 causes the server to use the same key-hashing functions as MySQL 5.1 when
computing the placement of rows in partitions; ALGORITHM=2 means that the server employs the
key-hashing functions implemented and used by default for new KEY partitioned tables in MySQL
5.5 and later. (Partitioned tables created with the key-hashing functions employed in MySQL 5.5
and later cannot be used by a MySQL 5.1 server.) Not specifying the option has the same effect
as using ALGORITHM=2. This option is intended for use chiefly when upgrading or downgrading
[LINEAR] KEY partitioned tables between MySQL 5.1 and later MySQL versions, or for creating
tables partitioned by KEY or LINEAR KEY on a MySQL 5.5 or later server which can be used on a
MySQL 5.1 server.

The table that results from using an ALTER TABLE ... PARTITION BY statement must follow
the same rules as one created using CREATE TABLE ... PARTITION BY. This includes the rules
governing the relationship between any unique keys (including any primary key) that the table might
have, and the column or columns used in the partitioning expression, as discussed in Section 26.6.1,
“Partitioning Keys, Primary Keys, and Unique Keys”. The CREATE TABLE ... PARTITION BY
rules for specifying the number of partitions also apply to ALTER TABLE ... PARTITION BY.

The partition_definition clause for ALTER TABLE ADD PARTITION supports the same
options as the clause of the same name for the CREATE TABLE statement. (See Section 15.1.20,
“CREATE TABLE Statement”, for the syntax and description.) Suppose that you have the partitioned
table created as shown here:

CREATE TABLE t1 (
 id INT,
 year_col INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999)
);

You can add a new partition p3 to this table for storing values less than 2002 as follows:

2685

ALTER TABLE Statement

ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2002));

DROP PARTITION can be used to drop one or more RANGE or LIST partitions. This statement
cannot be used with HASH or KEY partitions; instead, use COALESCE PARTITION (see later in this
section). Any data that was stored in the dropped partitions named in the partition_names list is
discarded. For example, given the table t1 defined previously, you can drop the partitions named p0
and p1 as shown here:

ALTER TABLE t1 DROP PARTITION p0, p1;

Note

DROP PARTITION does not work with tables that use the NDB storage
engine. See Section 26.3.1, “Management of RANGE and LIST Partitions”,
and Section 25.2.7, “Known Limitations of NDB Cluster”.

ADD PARTITION and DROP PARTITION do not currently support IF [NOT] EXISTS.

The DISCARD PARTITION ... TABLESPACE and IMPORT PARTITION ... TABLESPACE
options extend the Transportable Tablespace feature to individual InnoDB table partitions. Each
InnoDB table partition has its own tablespace file (.ibd file). The Transportable Tablespace feature
makes it easy to copy the tablespaces from a running MySQL server instance to another running
instance, or to perform a restore on the same instance. Both options take a comma-separated list of
one or more partition names. For example:

ALTER TABLE t1 DISCARD PARTITION p2, p3 TABLESPACE;

ALTER TABLE t1 IMPORT PARTITION p2, p3 TABLESPACE;

When running DISCARD PARTITION ... TABLESPACE and IMPORT PARTITION ...
TABLESPACE on subpartitioned tables, both partition and subpartition names are allowed. When a
partition name is specified, subpartitions of that partition are included.

The Transportable Tablespace feature also supports copying or restoring partitioned InnoDB tables.
For more information, see Section 17.6.1.3, “Importing InnoDB Tables”.

Renames of partitioned tables are supported. You can rename individual partitions indirectly using
ALTER TABLE ... REORGANIZE PARTITION; however, this operation copies the partition's data.

To delete rows from selected partitions, use the TRUNCATE PARTITION option. This option takes
a list of one or more comma-separated partition names. Consider the table t1 created by this
statement:

CREATE TABLE t1 (
 id INT,
 year_col INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999),
 PARTITION p3 VALUES LESS THAN (2003),
 PARTITION p4 VALUES LESS THAN (2007)

2686

ALTER TABLE Statement

);

To delete all rows from partition p0, use the following statement:

ALTER TABLE t1 TRUNCATE PARTITION p0;

The statement just shown has the same effect as the following DELETE statement:

DELETE FROM t1 WHERE year_col < 1991;

When truncating multiple partitions, the partitions do not have to be contiguous: This can greatly
simplify delete operations on partitioned tables that would otherwise require very complex WHERE
conditions if done with DELETE statements. For example, this statement deletes all rows from
partitions p1 and p3:

ALTER TABLE t1 TRUNCATE PARTITION p1, p3;

An equivalent DELETE statement is shown here:

DELETE FROM t1 WHERE
 (year_col >= 1991 AND year_col < 1995)
 OR
 (year_col >= 2003 AND year_col < 2007);

If you use the ALL keyword in place of the list of partition names, the statement acts on all table
partitions.

TRUNCATE PARTITION merely deletes rows; it does not alter the definition of the table itself, or of
any of its partitions.

To verify that the rows were dropped, check the INFORMATION_SCHEMA.PARTITIONS table, using
a query such as this one:

SELECT PARTITION_NAME, TABLE_ROWS
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME = 't1';

COALESCE PARTITION can be used with a table that is partitioned by HASH or KEY to reduce the
number of partitions by number. Suppose that you have created table t2 as follows:

CREATE TABLE t2 (
 name VARCHAR (30),
 started DATE
)
PARTITION BY HASH(YEAR(started))
PARTITIONS 6;

To reduce the number of partitions used by t2 from 6 to 4, use the following statement:

ALTER TABLE t2 COALESCE PARTITION 2;

The data contained in the last number partitions is merged into the remaining partitions. In this case,
partitions 4 and 5 are merged into the first 4 partitions (the partitions numbered 0, 1, 2, and 3).

To change some but not all the partitions used by a partitioned table, you can use REORGANIZE
PARTITION. This statement can be used in several ways:

• To merge a set of partitions into a single partition. This is done by naming several partitions in the
partition_names list and supplying a single definition for partition_definition.

• To split an existing partition into several partitions. Accomplish this by naming a single partition for
partition_names and providing multiple partition_definitions.

2687

ALTER TABLE Statement

• To change the ranges for a subset of partitions defined using VALUES LESS THAN or the value
lists for a subset of partitions defined using VALUES IN.

Note

For partitions that have not been explicitly named, MySQL automatically
provides the default names p0, p1, p2, and so on. The same is true with
regard to subpartitions.

For more detailed information about and examples of ALTER TABLE ... REORGANIZE
PARTITION statements, see Section 26.3.1, “Management of RANGE and LIST Partitions”.

• To exchange a table partition or subpartition with a table, use the ALTER TABLE ... EXCHANGE
PARTITION statement—that is, to move any existing rows in the partition or subpartition to the
nonpartitioned table, and any existing rows in the nonpartitioned table to the table partition or
subpartition.

Once one or more columns have been added to a partitioned table using ALGORITHM=INSTANT, it is
no longer possible to exchange partitions with that table.

For usage information and examples, see Section 26.3.3, “Exchanging Partitions and Subpartitions
with Tables”.

• Several options provide partition maintenance and repair functionality analogous to that implemented
for nonpartitioned tables by statements such as CHECK TABLE and REPAIR TABLE (which
are also supported for partitioned tables; for more information, see Section 15.7.3, “Table
Maintenance Statements”). These include ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE
PARTITION, REBUILD PARTITION, and REPAIR PARTITION. Each of these options takes a
partition_names clause consisting of one or more names of partitions, separated by commas.
The partitions must already exist in the target table. You can also use the ALL keyword in place of
partition_names, in which case the statement acts on all table partitions. For more information
and examples, see Section 26.3.4, “Maintenance of Partitions”.

InnoDB does not currently support per-partition optimization; ALTER TABLE ... OPTIMIZE
PARTITION causes the entire table to rebuilt and analyzed, and an appropriate warning to be
issued. (Bug #11751825, Bug #42822) To work around this problem, use ALTER TABLE ...
REBUILD PARTITION and ALTER TABLE ... ANALYZE PARTITION instead.

The ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, and REPAIR
PARTITION options are not supported for tables which are not partitioned.

• REMOVE PARTITIONING enables you to remove a table's partitioning without otherwise affecting the
table or its data. This option can be combined with other ALTER TABLE options such as those used
to add, drop, or rename columns or indexes.

• Using the ENGINE option with ALTER TABLE changes the storage engine used by the table without
affecting the partitioning. The target storage engine must provide its own partitioning handler.
Only the InnoDB and NDB storage engines have native partitioning handlers; NDB is not currently
supported in MySQL 8.0.

It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITIONING
clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITIONING
clause must be specified last after any other specifications.

The ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REORGANIZE PARTITION,
ANALYZE PARTITION, CHECK PARTITION, and REPAIR PARTITION options cannot be combined
with other alter specifications in a single ALTER TABLE, since the options just listed act on individual
partitions. For more information, see Section 15.1.9.1, “ALTER TABLE Partition Operations”.

2688

ALTER TABLE Statement

Only a single instance of any one of the following options can be used in a given ALTER TABLE
statement: PARTITION BY, ADD PARTITION, DROP PARTITION, TRUNCATE PARTITION,
EXCHANGE PARTITION, REORGANIZE PARTITION, or COALESCE PARTITION, ANALYZE
PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, REBUILD PARTITION, REMOVE
PARTITIONING.

For example, the following two statements are invalid:

ALTER TABLE t1 ANALYZE PARTITION p1, ANALYZE PARTITION p2;

ALTER TABLE t1 ANALYZE PARTITION p1, CHECK PARTITION p2;

In the first case, you can analyze partitions p1 and p2 of table t1 concurrently using a single statement
with a single ANALYZE PARTITION option that lists both of the partitions to be analyzed, like this:

ALTER TABLE t1 ANALYZE PARTITION p1, p2;

In the second case, it is not possible to perform ANALYZE and CHECK operations on different partitions
of the same table concurrently. Instead, you must issue two separate statements, like this:

ALTER TABLE t1 ANALYZE PARTITION p1;
ALTER TABLE t1 CHECK PARTITION p2;

REBUILD operations are currently unsupported for subpartitions. The REBUILD keyword is expressly
disallowed with subpartitions, and causes ALTER TABLE to fail with an error if so used.

CHECK PARTITION and REPAIR PARTITION operations fail when the partition to be checked or
repaired contains any duplicate key errors.

For more information about these statements, see Section 26.3.4, “Maintenance of Partitions”.

15.1.9.2 ALTER TABLE and Generated Columns

ALTER TABLE operations permitted for generated columns are ADD, MODIFY, and CHANGE.

• Generated columns can be added.

CREATE TABLE t1 (c1 INT);
ALTER TABLE t1 ADD COLUMN c2 INT GENERATED ALWAYS AS (c1 + 1) STORED;

• The data type and expression of generated columns can be modified.

CREATE TABLE t1 (c1 INT, c2 INT GENERATED ALWAYS AS (c1 + 1) STORED);
ALTER TABLE t1 MODIFY COLUMN c2 TINYINT GENERATED ALWAYS AS (c1 + 5) STORED;

• Generated columns can be renamed or dropped, if no other column refers to them.

CREATE TABLE t1 (c1 INT, c2 INT GENERATED ALWAYS AS (c1 + 1) STORED);
ALTER TABLE t1 CHANGE c2 c3 INT GENERATED ALWAYS AS (c1 + 1) STORED;
ALTER TABLE t1 DROP COLUMN c3;

• Virtual generated columns cannot be altered to stored generated columns, or vice versa. To work
around this, drop the column, then add it with the new definition.

CREATE TABLE t1 (c1 INT, c2 INT GENERATED ALWAYS AS (c1 + 1) VIRTUAL);
ALTER TABLE t1 DROP COLUMN c2;
ALTER TABLE t1 ADD COLUMN c2 INT GENERATED ALWAYS AS (c1 + 1) STORED;

• Nongenerated columns can be altered to stored but not virtual generated columns.

CREATE TABLE t1 (c1 INT, c2 INT);
ALTER TABLE t1 MODIFY COLUMN c2 INT GENERATED ALWAYS AS (c1 + 1) STORED;

• Stored but not virtual generated columns can be altered to nongenerated columns. The stored
generated values become the values of the nongenerated column.

CREATE TABLE t1 (c1 INT, c2 INT GENERATED ALWAYS AS (c1 + 1) STORED);
ALTER TABLE t1 MODIFY COLUMN c2 INT;

2689

ALTER TABLE Statement

• ADD COLUMN is not an in-place operation for stored columns (done without using a temporary table)
because the expression must be evaluated by the server. For stored columns, indexing changes are
done in place, and expression changes are not done in place. Changes to column comments are
done in place.

• For non-partitioned tables, ADD COLUMN and DROP COLUMN are in-place operations for virtual
columns. However, adding or dropping a virtual column cannot be performed in place in combination
with other ALTER TABLE operations.

For partitioned tables, ADD COLUMN and DROP COLUMN are not in-place operations for virtual
columns.

• InnoDB supports secondary indexes on virtual generated columns. Adding or dropping a
secondary index on a virtual generated column is an in-place operation. For more information, see
Section 15.1.20.9, “Secondary Indexes and Generated Columns”.

• When a VIRTUAL generated column is added to a table or modified, it is not ensured that data being
calculated by the generated column expression is not out of range for the column. This can lead to
inconsistent data being returned and unexpectedly failed statements. To permit control over whether
validation occurs for such columns, ALTER TABLE supports WITHOUT VALIDATION and WITH
VALIDATION clauses:

• With WITHOUT VALIDATION (the default if neither clause is specified), an in-place operation is
performed (if possible), data integrity is not checked, and the statement finishes more quickly.
However, later reads from the table might report warnings or errors for the column if values are out
of range.

• With WITH VALIDATION, ALTER TABLE copies the table. If an out-of-range or any other error
occurs, the statement fails. Because a table copy is performed, the statement takes longer.

WITHOUT VALIDATION and WITH VALIDATION are permitted only with ADD COLUMN, CHANGE
COLUMN, and MODIFY COLUMN operations. Otherwise, an ER_WRONG_USAGE error occurs.

• If expression evaluation causes truncation or provides incorrect input to a function, the ALTER
TABLE statement terminates with an error and the DDL operation is rejected.

• An ALTER TABLE statement that changes the default value of a column col_name may also
change the value of a generated column expression that refers to the column using col_name,
which may change the value of a generated column expression that refers to the column using
DEFAULT(col_name). For this reason, ALTER TABLE operations that change the definition of a
column cause a table rebuild if any generated column expression uses DEFAULT().

15.1.9.3 ALTER TABLE Examples

Begin with a table t1 created as shown here:

CREATE TABLE t1 (a INTEGER, b CHAR(10));

To rename the table from t1 to t2:

ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to
change column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:

ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

ALTER TABLE t2 ADD d TIMESTAMP;

To add an index on column d and a UNIQUE index on column a:

ALTER TABLE t2 ADD INDEX (d), ADD UNIQUE (a);

2690

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_usage

ALTER TABLE Statement

To remove column c:

ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
 ADD PRIMARY KEY (c);

We indexed c (as a PRIMARY KEY) because AUTO_INCREMENT columns must be indexed, and we
declare c as NOT NULL because primary key columns cannot be NULL.

For NDB tables, it is also possible to change the storage type used for a table or column. For example,
consider an NDB table created as shown here:

mysql> CREATE TABLE t1 (c1 INT) TABLESPACE ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.27 sec)

To convert this table to disk-based storage, you can use the following ALTER TABLE statement:

mysql> ALTER TABLE t1 TABLESPACE ts_1 STORAGE DISK;
Query OK, 0 rows affected (2.99 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int(11) DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */
ENGINE=ndbcluster DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.01 sec)

It is not necessary that the tablespace was referenced when the table was originally created; however,
the tablespace must be referenced by the ALTER TABLE:

mysql> CREATE TABLE t2 (c1 INT) ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.00 sec)

mysql> ALTER TABLE t2 STORAGE DISK;
ERROR 1005 (HY000): Can't create table 'c.#sql-1750_3' (errno: 140)
mysql> ALTER TABLE t2 TABLESPACE ts_1 STORAGE DISK;
Query OK, 0 rows affected (3.42 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> SHOW CREATE TABLE t2\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t2` (
 `c1` int(11) DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */
ENGINE=ndbcluster DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.01 sec)

To change the storage type of an individual column, you can use ALTER TABLE ... MODIFY
[COLUMN]. For example, suppose you create an NDB Cluster Disk Data table with two columns, using
this CREATE TABLE statement:

mysql> CREATE TABLE t3 (c1 INT, c2 INT)
 -> TABLESPACE ts_1 STORAGE DISK ENGINE NDB;
Query OK, 0 rows affected (1.34 sec)

To change column c2 from disk-based to in-memory storage, include a STORAGE MEMORY clause in
the column definition used by the ALTER TABLE statement, as shown here:

mysql> ALTER TABLE t3 MODIFY c2 INT STORAGE MEMORY;
Query OK, 0 rows affected (3.14 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can make an in-memory column into a disk-based column by using STORAGE DISK in a similar
fashion.

2691

ALTER TABLESPACE Statement

Column c1 uses disk-based storage, since this is the default for the table (determined by the table-
level STORAGE DISK clause in the CREATE TABLE statement). However, column c2 uses in-memory
storage, as can be seen here in the output of SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE t3\G
*************************** 1. row ***************************
 Table: t3
Create Table: CREATE TABLE `t3` (
 `c1` int(11) DEFAULT NULL,
 `c2` int(11) /*!50120 STORAGE MEMORY */ DEFAULT NULL
) /*!50100 TABLESPACE ts_1 STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.02 sec)

When you add an AUTO_INCREMENT column, column values are filled in with sequence numbers
automatically. For MyISAM tables, you can set the first sequence number by executing SET
INSERT_ID=value before ALTER TABLE or by using the AUTO_INCREMENT=value table option.

With MyISAM tables, if you do not change the AUTO_INCREMENT column, the sequence number is not
affected. If you drop an AUTO_INCREMENT column and then add another AUTO_INCREMENT column,
the numbers are resequenced beginning with 1.

When replication is used, adding an AUTO_INCREMENT column to a table might not produce the
same ordering of the rows on the replica and the source. This occurs because the order in which the
rows are numbered depends on the specific storage engine used for the table and the order in which
the rows were inserted. If it is important to have the same order on the source and replica, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to the table t1, the following statements produce a new table t2 identical to
t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 (id INT AUTO_INCREMENT PRIMARY KEY)
SELECT * FROM t1 ORDER BY col1, col2;

This assumes that the table t1 has columns col1 and col2.

This set of statements also produces a new table t2 identical to t1, with the addition of an
AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both source and replica, all columns of t1
must be referenced in the ORDER BY clause.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column,
the final step is to drop the original table and then rename the copy:

DROP TABLE t1;
ALTER TABLE t2 RENAME t1;

15.1.10 ALTER TABLESPACE Statement
ALTER [UNDO] TABLESPACE tablespace_name
 NDB only:
 {ADD | DROP} DATAFILE 'file_name'
 [INITIAL_SIZE [=] size]
 [WAIT]
 InnoDB and NDB:
 [RENAME TO tablespace_name]
 InnoDB only:
 [AUTOEXTEND_SIZE [=] 'value']
 [SET {ACTIVE | INACTIVE}]
 [ENCRYPTION [=] {'Y' | 'N'}]
 InnoDB and NDB:
 [ENGINE [=] engine_name]

2692

ALTER TABLESPACE Statement

 Reserved for future use:
 [ENGINE_ATTRIBUTE [=] 'string']

This statement is used with NDB and InnoDB tablespaces. It can be used to add a new data file to, or
to drop a data file from an NDB tablespace. It can also be used to rename an NDB Cluster Disk Data
tablespace, rename an InnoDB general tablespace, encrypt an InnoDB general tablespace, or mark
an InnoDB undo tablespace as active or inactive.

The UNDO keyword, introduced in MySQL 8.0.14, is used with the SET {ACTIVE | INACTIVE}
clause to mark an InnoDB undo tablespace as active or inactive. For more information, see
Section 17.6.3.4, “Undo Tablespaces”.

The ADD DATAFILE variant enables you to specify an initial size for an NDB Disk Data tablespace
using an INITIAL_SIZE clause, where size is measured in bytes; the default value is 134217728
(128 MB). You may optionally follow size with a one-letter abbreviation for an order of magnitude,
similar to those used in my.cnf. Generally, this is one of the letters M (megabytes) or G (gigabytes).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

INITIAL_SIZE is rounded, explicitly, as for CREATE TABLESPACE.

Once a data file has been created, its size cannot be changed; however, you can add more data files to
an NDB tablespace using additional ALTER TABLESPACE ... ADD DATAFILE statements.

When ALTER TABLESPACE ... ADD DATAFILE is used with ENGINE = NDB, a data file is created
on each Cluster data node, but only one row is generated in the Information Schema FILES table. See
the description of this table, as well as Section 25.6.11.1, “NDB Cluster Disk Data Objects”, for more
information. ADD DATAFILE is not supported with InnoDB tablespaces.

Using DROP DATAFILE with ALTER TABLESPACE drops the data file 'file_name' from an NDB
tablespace. You cannot drop a data file from a tablespace which is in use by any table; in other
words, the data file must be empty (no extents used). See Section 25.6.11.1, “NDB Cluster Disk Data
Objects”. In addition, any data file to be dropped must previously have been added to the tablespace
with CREATE TABLESPACE or ALTER TABLESPACE. DROP DATAFILE is not supported with InnoDB
tablespaces.

WAIT is parsed but otherwise ignored. It is intended for future expansion.

The ENGINE clause, which specifies the storage engine used by the tablespace, is deprecated; expect
it to be removed in a future release. The tablespace storage engine is known by the data dictionary,
making the ENGINE clause obsolete. If the storage engine is specified, it must match the tablespace
storage engine defined in the data dictionary. The only values for engine_name compatible with NDB
tablespaces are NDB and NDBCLUSTER.

RENAME TO operations are implicitly performed in autocommit mode, regardless of the autocommit
setting.

A RENAME TO operation cannot be performed while LOCK TABLES or FLUSH TABLES WITH READ
LOCK is in effect for tables that reside in the tablespace.

Exclusive metadata locks are taken on tables that reside in a general tablespace while the tablespace
is renamed, which prevents concurrent DDL. Concurrent DML is supported.

The CREATE TABLESPACE privilege is required to rename an InnoDB general tablespace.

The AUTOEXTEND_SIZE option defines the amount by which InnoDB extends the size of a tablespace
when it becomes full. Introduced in MySQL 8.0.23. The setting must be a multiple of 4MB. The default
setting is 0, which causes the tablespace to be extended according to the implicit default behavior. For
more information, see Section 17.6.3.9, “Tablespace AUTOEXTEND_SIZE Configuration”.

The ENCRYPTION clause enables or disables page-level data encryption for an InnoDB general
tablespace or the mysql system tablespace. Encryption support for general tablespaces was

2693

ALTER VIEW Statement

introduced in MySQL 8.0.13. Encryption support for the mysql system tablespace was introduced in
MySQL 8.0.16.

A keyring plugin must be installed and configured before encryption can be enabled.

As of MySQL 8.0.16, if the table_encryption_privilege_check variable is enabled, the
TABLE_ENCRYPTION_ADMIN privilege is required to alter a general tablespace with an ENCRYPTION
clause setting that differs from the default_table_encryption setting.

Enabling encryption for a general tablespace fails if any table in the tablespace belongs to a schema
defined with DEFAULT ENCRYPTION='N'. Similarly, disabling encryption fails if any table in the
general tablespace belongs to a schema defined with DEFAULT ENCRYPTION='Y'. The DEFAULT
ENCRYPTION schema option was introduced in MySQL 8.0.16.

If an ALTER TABLESPACE statement executed on a general tablespace does not include an
ENCRYPTION clause, the tablespace retains its current encryption status, regardless of the
default_table_encryption setting.

When a general tablespace or the mysql system tablespace is encrypted, all tables residing in the
tablespace are encrypted. Likewise, a table created in an encrypted tablespace is encrypted.

The INPLACE algorithm is used when altering the ENCRYPTION attribute of a general tablespace or the
mysql system tablespace. The INPLACE algorithm permits concurrent DML on tables that reside in the
tablespace. Concurrent DDL is blocked.

For more information, see Section 17.13, “InnoDB Data-at-Rest Encryption”.

The ENGINE_ATTRIBUTE option (available as of MySQL 8.0.21) is used to specify tablespace
attributes for primary storage engines. The option is reserved for future use.

Permitted values are a string literal containing a valid JSON document or an empty string (''). Invalid
JSON is rejected.

ALTER TABLESPACE ts1 ENGINE_ATTRIBUTE='{"key":"value"}';

ENGINE_ATTRIBUTE values can be repeated without error. In this case, the last specified value is
used.

ENGINE_ATTRIBUTE values are not checked by the server, nor are they cleared when the table's
storage engine is changed.

It is not permitted to alter an individual element of a JSON attribute value. You can only add or replace
an attribute.

15.1.11 ALTER VIEW Statement
ALTER
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = user]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

This statement changes the definition of a view, which must exist. The syntax is similar to that for
CREATE VIEW see Section 15.1.23, “CREATE VIEW Statement”). This statement requires the CREATE
VIEW and DROP privileges for the view, and some privilege for each column referred to in the SELECT
statement. ALTER VIEW is permitted only to the definer or users with the SET_USER_ID privilege (or
the deprecated SUPER privilege).

15.1.12 CREATE DATABASE Statement
CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name
 [create_option] ...

2694

CREATE EVENT Statement

create_option: [DEFAULT] {
 CHARACTER SET [=] charset_name
 | COLLATE [=] collation_name
 | ENCRYPTION [=] {'Y' | 'N'}
}

CREATE DATABASE creates a database with the given name. To use this statement, you need the
CREATE privilege for the database. CREATE SCHEMA is a synonym for CREATE DATABASE.

An error occurs if the database exists and you did not specify IF NOT EXISTS.

CREATE DATABASE is not permitted within a session that has an active LOCK TABLES statement.

Each create_option specifies a database characteristic. Database characteristics are stored in the
data dictionary.

• The CHARACTER SET option specifies the default database character set. The COLLATE option
specifies the default database collation. For information about character set and collation names, see
Chapter 12, Character Sets, Collations, Unicode.

To see the available character sets and collations, use the the SHOW CHARACTER SET and SHOW
COLLATION statements, respectively. See Section 15.7.7.3, “SHOW CHARACTER SET Statement”,
and Section 15.7.7.4, “SHOW COLLATION Statement”.

• The ENCRYPTION option, introduced in MySQL 8.0.16, defines the default database encryption,
which is inherited by tables created in the database. The permitted values are 'Y' (encryption
enabled) and 'N' (encryption disabled). If the ENCRYPTION option is not specified, the
value of the default_table_encryption system variable defines the default database
encryption. If the table_encryption_privilege_check system variable is enabled, the
TABLE_ENCRYPTION_ADMIN privilege is required to specify a default encryption setting that differs
from the default_table_encryption setting. For more information, see Defining an Encryption
Default for Schemas and General Tablespaces.

A database in MySQL is implemented as a directory containing files that correspond to tables in
the database. Because there are no tables in a database when it is initially created, the CREATE
DATABASE statement creates only a directory under the MySQL data directory. Rules for permissible
database names are given in Section 11.2, “Schema Object Names”. If a database name contains
special characters, the name for the database directory contains encoded versions of those characters
as described in Section 11.2.4, “Mapping of Identifiers to File Names”.

Creating a database directory by manually creating a directory under the data directory (for example,
with mkdir) is unsupported in MySQL 8.0.

When you create a database, let the server manage the directory and the files in it. Manipulating
database directories and files directly can cause inconsistencies and unexpected results.

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of directories.

You can also use the mysqladmin program to create databases. See Section 6.5.2, “mysqladmin — A
MySQL Server Administration Program”.

15.1.13 CREATE EVENT Statement
CREATE
 [DEFINER = user]
 EVENT
 [IF NOT EXISTS]
 event_name
 ON SCHEDULE schedule
 [ON COMPLETION [NOT] PRESERVE]
 [ENABLE | DISABLE | DISABLE ON SLAVE]
 [COMMENT 'string']
 DO event_body;

2695

CREATE EVENT Statement

schedule: {
 AT timestamp [+ INTERVAL interval] ...
 | EVERY interval
 [STARTS timestamp [+ INTERVAL interval] ...]
 [ENDS timestamp [+ INTERVAL interval] ...]
}

interval:
 quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |
 WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |
 DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

This statement creates and schedules a new event. The event does not run unless the Event
Scheduler is enabled. For information about checking Event Scheduler status and enabling it if
necessary, see Section 27.4.2, “Event Scheduler Configuration”.

CREATE EVENT requires the EVENT privilege for the schema in which the event is to be created. If
the DEFINER clause is present, the privileges required depend on the user value, as discussed in
Section 27.6, “Stored Object Access Control”.

The minimum requirements for a valid CREATE EVENT statement are as follows:

• The keywords CREATE EVENT plus an event name, which uniquely identifies the event in a database
schema.

• An ON SCHEDULE clause, which determines when and how often the event executes.

• A DO clause, which contains the SQL statement to be executed by an event.

This is an example of a minimal CREATE EVENT statement:

CREATE EVENT myevent
 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
 DO
 UPDATE myschema.mytable SET mycol = mycol + 1;

The previous statement creates an event named myevent. This event executes once—one
hour following its creation—by running an SQL statement that increments the value of the
myschema.mytable table's mycol column by 1.

The event_name must be a valid MySQL identifier with a maximum length of 64 characters. Event
names are not case-sensitive, so you cannot have two events named myevent and MyEvent in the
same schema. In general, the rules governing event names are the same as those for names of stored
routines. See Section 11.2, “Schema Object Names”.

An event is associated with a schema. If no schema is indicated as part of event_name, the default
(current) schema is assumed. To create an event in a specific schema, qualify the event name with a
schema using schema_name.event_name syntax.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at
event execution time. If the DEFINER clause is present, the user value should be a MySQL account
specified as 'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted
user values depend on the privileges you hold, as discussed in Section 27.6, “Stored Object Access
Control”. Also see that section for additional information about event security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE EVENT
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

Within an event body, the CURRENT_USER function returns the account used to check privileges at
event execution time, which is the DEFINER user. For information about user auditing within events,
see Section 8.2.23, “SQL-Based Account Activity Auditing”.

IF NOT EXISTS has the same meaning for CREATE EVENT as for CREATE TABLE: If an event
named event_name already exists in the same schema, no action is taken, and no error results.
(However, a warning is generated in such cases.)

2696

CREATE EVENT Statement

The ON SCHEDULE clause determines when, how often, and for how long the event_body defined for
the event repeats. This clause takes one of two forms:

• AT timestamp is used for a one-time event. It specifies that the event executes one time only
at the date and time given by timestamp, which must include both the date and time, or must be
an expression that resolves to a datetime value. You may use a value of either the DATETIME or
TIMESTAMP type for this purpose. If the date is in the past, a warning occurs, as shown here:

mysql> SELECT NOW();
+---------------------+
| NOW() |
+---------------------+
| 2006-02-10 23:59:01 |
+---------------------+
1 row in set (0.04 sec)

mysql> CREATE EVENT e_totals
 -> ON SCHEDULE AT '2006-02-10 23:59:00'
 -> DO INSERT INTO test.totals VALUES (NOW());
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1588
Message: Event execution time is in the past and ON COMPLETION NOT
 PRESERVE is set. The event was dropped immediately after
 creation.

CREATE EVENT statements which are themselves invalid—for whatever reason—fail with an error.

You may use CURRENT_TIMESTAMP to specify the current date and time. In such a case, the event
acts as soon as it is created.

To create an event which occurs at some point in the future relative to the current date and time—
such as that expressed by the phrase “three weeks from now”—you can use the optional clause
+ INTERVAL interval. The interval portion consists of two parts, a quantity and a unit of
time, and follows the syntax rules described in Temporal Intervals, except that you cannot use
any units keywords that involving microseconds when defining an event. With some interval types,
complex time units may be used. For example, “two minutes and ten seconds” can be expressed as
+ INTERVAL '2:10' MINUTE_SECOND.

You can also combine intervals. For example, AT CURRENT_TIMESTAMP + INTERVAL 3 WEEK
+ INTERVAL 2 DAY is equivalent to “three weeks and two days from now”. Each portion of such a
clause must begin with + INTERVAL.

• To repeat actions at a regular interval, use an EVERY clause. The EVERY keyword is followed by an
interval as described in the previous discussion of the AT keyword. (+ INTERVAL is not used
with EVERY.) For example, EVERY 6 WEEK means “every six weeks”.

Although + INTERVAL clauses are not permitted in an EVERY clause, you can use the same
complex time units permitted in a + INTERVAL.

An EVERY clause may contain an optional STARTS clause. STARTS is followed by a timestamp
value that indicates when the action should begin repeating, and may also use + INTERVAL
interval to specify an amount of time “from now”. For example, EVERY 3 MONTH STARTS
CURRENT_TIMESTAMP + INTERVAL 1 WEEK means “every three months, beginning one
week from now”. Similarly, you can express “every two weeks, beginning six hours and fifteen
minutes from now” as EVERY 2 WEEK STARTS CURRENT_TIMESTAMP + INTERVAL '6:15'
HOUR_MINUTE. Not specifying STARTS is the same as using STARTS CURRENT_TIMESTAMP—that
is, the action specified for the event begins repeating immediately upon creation of the event.

An EVERY clause may contain an optional ENDS clause. The ENDS keyword is followed by a
timestamp value that tells MySQL when the event should stop repeating. You may also use +

2697

CREATE EVENT Statement

INTERVAL interval with ENDS; for instance, EVERY 12 HOUR STARTS CURRENT_TIMESTAMP
+ INTERVAL 30 MINUTE ENDS CURRENT_TIMESTAMP + INTERVAL 4 WEEK is equivalent to
“every twelve hours, beginning thirty minutes from now, and ending four weeks from now”. Not using
ENDS means that the event continues executing indefinitely.

ENDS supports the same syntax for complex time units as STARTS does.

You may use STARTS, ENDS, both, or neither in an EVERY clause.

If a repeating event does not terminate within its scheduling interval, the result may be multiple
instances of the event executing simultaneously. If this is undesirable, you should institute a
mechanism to prevent simultaneous instances. For example, you could use the GET_LOCK()
function, or row or table locking.

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user
variables to obtain any of the timestamp or interval values which it contains. You may not use
stored functions or loadable functions in such expressions, nor may you use any table references;
however, you may use SELECT FROM DUAL. This is true for both CREATE EVENT and ALTER
EVENT statements. References to stored functions, loadable functions, and tables in such cases are
specifically not permitted, and fail with an error (see Bug #22830).

Times in the ON SCHEDULE clause are interpreted using the current session time_zone value. This
becomes the event time zone; that is, the time zone that is used for event scheduling and is in effect
within the event as it executes. These times are converted to UTC and stored along with the event
time zone internally. This enables event execution to proceed as defined regardless of any subsequent
changes to the server time zone or daylight saving time effects. For additional information about
representation of event times, see Section 27.4.4, “Event Metadata”. See also Section 15.7.7.18,
“SHOW EVENTS Statement”, and Section 28.3.14, “The INFORMATION_SCHEMA EVENTS Table”.

Normally, once an event has expired, it is immediately dropped. You can override this behavior by
specifying ON COMPLETION PRESERVE. Using ON COMPLETION NOT PRESERVE merely makes the
default nonpersistent behavior explicit.

You can create an event but prevent it from being active using the DISABLE keyword. Alternatively,
you can use ENABLE to make explicit the default status, which is active. This is most useful in
conjunction with ALTER EVENT (see Section 15.1.3, “ALTER EVENT Statement”).

A third value may also appear in place of ENABLE or DISABLE; DISABLE ON SLAVE is set for the
status of an event on a replica to indicate that the event was created on the replication source server
and replicated to the replica, but is not executed on the replica. See Section 19.5.1.16, “Replication of
Invoked Features”.

You may supply a comment for an event using a COMMENT clause. comment may be any string of up
to 64 characters that you wish to use for describing the event. The comment text, being a string literal,
must be surrounded by quotation marks.

The DO clause specifies an action carried by the event, and consists of an SQL statement. Nearly any
valid MySQL statement that can be used in a stored routine can also be used as the action statement
for a scheduled event. (See Section 27.8, “Restrictions on Stored Programs”.) For example, the
following event e_hourly deletes all rows from the sessions table once per hour, where this table is
part of the site_activity schema:

CREATE EVENT e_hourly
 ON SCHEDULE
 EVERY 1 HOUR
 COMMENT 'Clears out sessions table each hour.'
 DO
 DELETE FROM site_activity.sessions;

MySQL stores the sql_mode system variable setting in effect when an event is created or altered, and
always executes the event with this setting in force, regardless of the current server SQL mode when
the event begins executing.

2698

CREATE EVENT Statement

A CREATE EVENT statement that contains an ALTER EVENT statement in its DO clause appears to
succeed; however, when the server attempts to execute the resulting scheduled event, the execution
fails with an error.

Note

Statements such as SELECT or SHOW that merely return a result set have no
effect when used in an event; the output from these is not sent to the MySQL
Monitor, nor is it stored anywhere. However, you can use statements such as
SELECT ... INTO and INSERT INTO ... SELECT that store a result. (See
the next example in this section for an instance of the latter.)

The schema to which an event belongs is the default schema for table references in the DO clause. Any
references to tables in other schemas must be qualified with the proper schema name.

As with stored routines, you can use compound-statement syntax in the DO clause by using the BEGIN
and END keywords, as shown here:

delimiter |

CREATE EVENT e_daily
 ON SCHEDULE
 EVERY 1 DAY
 COMMENT 'Saves total number of sessions then clears the table each day'
 DO
 BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END |

delimiter ;

This example uses the delimiter command to change the statement delimiter. See Section 27.1,
“Defining Stored Programs”.

More complex compound statements, such as those used in stored routines, are possible in an event.
This example uses local variables, an error handler, and a flow control construct:

delimiter |

CREATE EVENT e
 ON SCHEDULE
 EVERY 5 SECOND
 DO
 BEGIN
 DECLARE v INTEGER;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN END;

 SET v = 0;

 WHILE v < 5 DO
 INSERT INTO t1 VALUES (0);
 UPDATE t2 SET s1 = s1 + 1;
 SET v = v + 1;
 END WHILE;
 END |

delimiter ;

There is no way to pass parameters directly to or from events; however, it is possible to invoke a stored
routine with parameters within an event:

CREATE EVENT e_call_myproc
 ON SCHEDULE
 AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
 DO CALL myproc(5, 27);

2699

CREATE FUNCTION Statement

If an event's definer has privileges sufficient to set global system variables (see Section 7.1.9.1,
“System Variable Privileges”), the event can read and write global variables. As granting such
privileges entails a potential for abuse, extreme care must be taken in doing so.

Generally, any statements that are valid in stored routines may be used for action statements
executed by events. For more information about statements permissible within stored routines, see
Section 27.2.1, “Stored Routine Syntax”. It is not possible to create an event as part of a stored routine
or to create an event by another event.

15.1.14 CREATE FUNCTION Statement

The CREATE FUNCTION statement is used to create stored functions and loadable functions:

• For information about creating stored functions, see Section 15.1.17, “CREATE PROCEDURE and
CREATE FUNCTION Statements”.

• For information about creating loadable functions, see Section 15.7.4.1, “CREATE FUNCTION
Statement for Loadable Functions”.

15.1.15 CREATE INDEX Statement
CREATE [UNIQUE | FULLTEXT | SPATIAL] INDEX index_name
 [index_type]
 ON tbl_name (key_part,...)
 [index_option]
 [algorithm_option | lock_option] ...

key_part: {col_name [(length)] | (expr)} [ASC | DESC]

index_option: {
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
 | {VISIBLE | INVISIBLE}
 | ENGINE_ATTRIBUTE [=] 'string'
 | SECONDARY_ENGINE_ATTRIBUTE [=] 'string'
}

index_type:
 USING {BTREE | HASH}

algorithm_option:
 ALGORITHM [=] {DEFAULT | INPLACE | COPY}

lock_option:
 LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}

Normally, you create all indexes on a table at the time the table itself is created with CREATE TABLE.
See Section 15.1.20, “CREATE TABLE Statement”. This guideline is especially important for InnoDB
tables, where the primary key determines the physical layout of rows in the data file. CREATE INDEX
enables you to add indexes to existing tables.

CREATE INDEX is mapped to an ALTER TABLE statement to create indexes. See Section 15.1.9,
“ALTER TABLE Statement”. CREATE INDEX cannot be used to create a PRIMARY KEY; use ALTER
TABLE instead. For more information about indexes, see Section 10.3.1, “How MySQL Uses Indexes”.

InnoDB supports secondary indexes on virtual columns. For more information, see Section 15.1.20.9,
“Secondary Indexes and Generated Columns”.

When the innodb_stats_persistent setting is enabled, run the ANALYZE TABLE statement for an
InnoDB table after creating an index on that table.

Beginning with MySQL 8.0.17, the expr for a key_part specification can take the form (CAST
json_expression AS type ARRAY) to create a multi-valued index on a JSON column. See Multi-
Valued Indexes.

2700

CREATE INDEX Statement

An index specification of the form (key_part1, key_part2, ...) creates an index with multiple
key parts. Index key values are formed by concatenating the values of the given key parts. For
example (col1, col2, col3) specifies a multiple-column index with index keys consisting of
values from col1, col2, and col3.

A key_part specification can end with ASC or DESC to specify whether index values are stored in
ascending or descending order. The default is ascending if no order specifier is given. ASC and DESC
are not permitted for HASH indexes. ASC and DESC are also not supported for multi-valued indexes. As
of MySQL 8.0.12, ASC and DESC are not permitted for SPATIAL indexes.

The following sections describe different aspects of the CREATE INDEX statement:

• Column Prefix Key Parts

• Functional Key Parts

• Unique Indexes

• Full-Text Indexes

• Multi-Valued Indexes

• Spatial Indexes

• Index Options

• Table Copying and Locking Options

Column Prefix Key Parts

For string columns, indexes can be created that use only the leading part of column values, using
col_name(length) syntax to specify an index prefix length:

• Prefixes can be specified for CHAR, VARCHAR, BINARY, and VARBINARY key parts.

• Prefixes must be specified for BLOB and TEXT key parts. Additionally, BLOB and TEXT columns can
be indexed only for InnoDB, MyISAM, and BLACKHOLE tables.

• Prefix limits are measured in bytes. However, prefix lengths for index specifications in CREATE
TABLE, ALTER TABLE, and CREATE INDEX statements are interpreted as number of characters for
nonbinary string types (CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY,
VARBINARY, BLOB). Take this into account when specifying a prefix length for a nonbinary string
column that uses a multibyte character set.

Prefix support and lengths of prefixes (where supported) are storage engine dependent. For
example, a prefix can be up to 767 bytes long for InnoDB tables that use the REDUNDANT or
COMPACT row format. The prefix length limit is 3072 bytes for InnoDB tables that use the DYNAMIC
or COMPRESSED row format. For MyISAM tables, the prefix length limit is 1000 bytes. The NDB
storage engine does not support prefixes (see Section 25.2.7.6, “Unsupported or Missing Features in
NDB Cluster”).

If a specified index prefix exceeds the maximum column data type size, CREATE INDEX handles the
index as follows:

• For a nonunique index, either an error occurs (if strict SQL mode is enabled), or the index length is
reduced to lie within the maximum column data type size and a warning is produced (if strict SQL
mode is not enabled).

• For a unique index, an error occurs regardless of SQL mode because reducing the index length
might enable insertion of nonunique entries that do not meet the specified uniqueness requirement.

The statement shown here creates an index using the first 10 characters of the name column
(assuming that name has a nonbinary string type):

2701

CREATE INDEX Statement

CREATE INDEX part_of_name ON customer (name(10));

If names in the column usually differ in the first 10 characters, lookups performed using this index
should not be much slower than using an index created from the entire name column. Also, using
column prefixes for indexes can make the index file much smaller, which could save a lot of disk space
and might also speed up INSERT operations.

Functional Key Parts

A “normal” index indexes column values or prefixes of column values. For example, in the following
table, the index entry for a given t1 row includes the full col1 value and a prefix of the col2 value
consisting of its first 10 characters:

CREATE TABLE t1 (
 col1 VARCHAR(10),
 col2 VARCHAR(20),
 INDEX (col1, col2(10))
);

MySQL 8.0.13 and higher supports functional key parts that index expression values rather than
column or column prefix values. Use of functional key parts enables indexing of values not stored
directly in the table. Examples:

CREATE TABLE t1 (col1 INT, col2 INT, INDEX func_index ((ABS(col1))));
CREATE INDEX idx1 ON t1 ((col1 + col2));
CREATE INDEX idx2 ON t1 ((col1 + col2), (col1 - col2), col1);
ALTER TABLE t1 ADD INDEX ((col1 * 40) DESC);

An index with multiple key parts can mix nonfunctional and functional key parts.

ASC and DESC are supported for functional key parts.

Functional key parts must adhere to the following rules. An error occurs if a key part definition contains
disallowed constructs.

• In index definitions, enclose expressions within parentheses to distinguish them from columns or
column prefixes. For example, this is permitted; the expressions are enclosed within parentheses:

INDEX ((col1 + col2), (col3 - col4))

This produces an error; the expressions are not enclosed within parentheses:

INDEX (col1 + col2, col3 - col4)

• A functional key part cannot consist solely of a column name. For example, this is not permitted:

INDEX ((col1), (col2))

Instead, write the key parts as nonfunctional key parts, without parentheses:

INDEX (col1, col2)

• A functional key part expression cannot refer to column prefixes. For a workaround, see the
discussion of SUBSTRING() and CAST() later in this section.

• Functional key parts are not permitted in foreign key specifications.

For CREATE TABLE ... LIKE, the destination table preserves functional key parts from the original
table.

Functional indexes are implemented as hidden virtual generated columns, which has these
implications:

• Each functional key part counts against the limit on total number of table columns; see
Section 10.4.7, “Limits on Table Column Count and Row Size”.

2702

CREATE INDEX Statement

• Functional key parts inherit all restrictions that apply to generated columns. Examples:

• Only functions permitted for generated columns are permitted for functional key parts.

• Subqueries, parameters, variables, stored functions, and loadable functions are not permitted.

For more information about applicable restrictions, see Section 15.1.20.8, “CREATE TABLE and
Generated Columns”, and Section 15.1.9.2, “ALTER TABLE and Generated Columns”.

• The virtual generated column itself requires no storage. The index itself takes up storage space as
any other index.

UNIQUE is supported for indexes that include functional key parts. However, primary keys cannot
include functional key parts. A primary key requires the generated column to be stored, but functional
key parts are implemented as virtual generated columns, not stored generated columns.

SPATIAL and FULLTEXT indexes cannot have functional key parts.

If a table contains no primary key, InnoDB automatically promotes the first UNIQUE NOT NULL index
to the primary key. This is not supported for UNIQUE NOT NULL indexes that have functional key
parts.

Nonfunctional indexes raise a warning if there are duplicate indexes. Indexes that contain functional
key parts do not have this feature.

To remove a column that is referenced by a functional key part, the index must be removed first.
Otherwise, an error occurs.

Although nonfunctional key parts support a prefix length specification, this is not possible for functional
key parts. The solution is to use SUBSTRING() (or CAST(), as described later in this section).
For a functional key part containing the SUBSTRING() function to be used in a query, the WHERE
clause must contain SUBSTRING() with the same arguments. In the following example, only the
second SELECT is able to use the index because that is the only query in which the arguments to
SUBSTRING() match the index specification:

CREATE TABLE tbl (
 col1 LONGTEXT,
 INDEX idx1 ((SUBSTRING(col1, 1, 10)))
);
SELECT * FROM tbl WHERE SUBSTRING(col1, 1, 9) = '123456789';
SELECT * FROM tbl WHERE SUBSTRING(col1, 1, 10) = '1234567890';

Functional key parts enable indexing of values that cannot be indexed otherwise, such as JSON values.
However, this must be done correctly to achieve the desired effect. For example, this syntax does not
work:

CREATE TABLE employees (
 data JSON,
 INDEX ((data->>'$.name'))
);

The syntax fails because:

• The ->> operator translates into JSON_UNQUOTE(JSON_EXTRACT(...)).

• JSON_UNQUOTE() returns a value with a data type of LONGTEXT, and the hidden generated column
thus is assigned the same data type.

• MySQL cannot index LONGTEXT columns specified without a prefix length on the key part, and prefix
lengths are not permitted in functional key parts.

To index the JSON column, you could try using the CAST() function as follows:

CREATE TABLE employees (

2703

CREATE INDEX Statement

 data JSON,
 INDEX ((CAST(data->>'$.name' AS CHAR(30))))
);

The hidden generated column is assigned the VARCHAR(30) data type, which can be indexed. But this
approach produces a new issue when trying to use the index:

• CAST() returns a string with the collation utf8mb4_0900_ai_ci (the server default collation).

• JSON_UNQUOTE() returns a string with the collation utf8mb4_bin (hard coded).

As a result, there is a collation mismatch between the indexed expression in the preceding table
definition and the WHERE clause expression in the following query:

SELECT * FROM employees WHERE data->>'$.name' = 'James';

The index is not used because the expressions in the query and the index differ. To support this kind of
scenario for functional key parts, the optimizer automatically strips CAST() when looking for an index
to use, but only if the collation of the indexed expression matches that of the query expression. For an
index with a functional key part to be used, either of the following two solutions work (although they
differ somewhat in effect):

• Solution 1. Assign the indexed expression the same collation as JSON_UNQUOTE():

CREATE TABLE employees (
 data JSON,
 INDEX idx ((CAST(data->>"$.name" AS CHAR(30)) COLLATE utf8mb4_bin))
);
INSERT INTO employees VALUES
 ('{ "name": "james", "salary": 9000 }'),
 ('{ "name": "James", "salary": 10000 }'),
 ('{ "name": "Mary", "salary": 12000 }'),
 ('{ "name": "Peter", "salary": 8000 }');
SELECT * FROM employees WHERE data->>'$.name' = 'James';

The ->> operator is the same as JSON_UNQUOTE(JSON_EXTRACT(...)), and JSON_UNQUOTE()
returns a string with collation utf8mb4_bin. The comparison is thus case-sensitive, and only one
row matches:

+------------------------------------+
| data |
+------------------------------------+
| {"name": "James", "salary": 10000} |
+------------------------------------+

• Solution 2. Specify the full expression in the query:

CREATE TABLE employees (
 data JSON,
 INDEX idx ((CAST(data->>"$.name" AS CHAR(30))))
);
INSERT INTO employees VALUES
 ('{ "name": "james", "salary": 9000 }'),
 ('{ "name": "James", "salary": 10000 }'),
 ('{ "name": "Mary", "salary": 12000 }'),
 ('{ "name": "Peter", "salary": 8000 }');
SELECT * FROM employees WHERE CAST(data->>'$.name' AS CHAR(30)) = 'James';

CAST() returns a string with collation utf8mb4_0900_ai_ci, so the comparison case-insensitive
and two rows match:

+------------------------------------+
| data |
+------------------------------------+
| {"name": "james", "salary": 9000} |
| {"name": "James", "salary": 10000} |
+------------------------------------+

2704

CREATE INDEX Statement

Be aware that although the optimizer supports automatically stripping CAST() with indexed generated
columns, the following approach does not work because it produces a different result with and without
an index (Bug#27337092):

mysql> CREATE TABLE employees (
 data JSON,
 generated_col VARCHAR(30) AS (CAST(data->>'$.name' AS CHAR(30)))
);
Query OK, 0 rows affected, 1 warning (0.03 sec)

mysql> INSERT INTO employees (data)
 VALUES ('{"name": "james"}'), ('{"name": "James"}');
Query OK, 2 rows affected, 1 warning (0.01 sec)
Records: 2 Duplicates: 0 Warnings: 1

mysql> SELECT * FROM employees WHERE data->>'$.name' = 'James';
+-------------------+---------------+
| data | generated_col |
+-------------------+---------------+
| {"name": "James"} | James |
+-------------------+---------------+
1 row in set (0.00 sec)

mysql> ALTER TABLE employees ADD INDEX idx (generated_col);
Query OK, 0 rows affected, 1 warning (0.03 sec)
Records: 0 Duplicates: 0 Warnings: 1

mysql> SELECT * FROM employees WHERE data->>'$.name' = 'James';
+-------------------+---------------+
| data | generated_col |
+-------------------+---------------+
| {"name": "james"} | james |
| {"name": "James"} | James |
+-------------------+---------------+
2 rows in set (0.01 sec)

Unique Indexes

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs
if you try to add a new row with a key value that matches an existing row. If you specify a prefix value
for a column in a UNIQUE index, the column values must be unique within the prefix length. A UNIQUE
index permits multiple NULL values for columns that can contain NULL.

If a table has a PRIMARY KEY or UNIQUE NOT NULL index that consists of a single column that has
an integer type, you can use _rowid to refer to the indexed column in SELECT statements, as follows:

• _rowid refers to the PRIMARY KEY column if there is a PRIMARY KEY consisting of a single integer
column. If there is a PRIMARY KEY but it does not consist of a single integer column, _rowid cannot
be used.

• Otherwise, _rowid refers to the column in the first UNIQUE NOT NULL index if that index consists
of a single integer column. If the first UNIQUE NOT NULL index does not consist of a single integer
column, _rowid cannot be used.

Full-Text Indexes

FULLTEXT indexes are supported only for InnoDB and MyISAM tables and can include only CHAR,
VARCHAR, and TEXT columns. Indexing always happens over the entire column; column prefix indexing
is not supported and any prefix length is ignored if specified. See Section 14.9, “Full-Text Search
Functions”, for details of operation.

Multi-Valued Indexes

As of MySQL 8.0.17, InnoDB supports multi-valued indexes. A multi-valued index is a secondary index
defined on a column that stores an array of values. A “normal” index has one index record for each
data record (1:1). A multi-valued index can have multiple index records for a single data record (N:1).

2705

CREATE INDEX Statement

Multi-valued indexes are intended for indexing JSON arrays. For example, a multi-valued index defined
on the array of zip codes in the following JSON document creates an index record for each zip code,
with each index record referencing the same data record.

{
 "user":"Bob",
 "user_id":31,
 "zipcode":[94477,94536]
}

Creating multi-valued Indexes

You can create a multi-valued index in a CREATE TABLE, ALTER TABLE, or CREATE INDEX
statement. This requires using CAST(... AS ... ARRAY) in the index definition, which casts same-
typed scalar values in a JSON array to an SQL data type array. A virtual column is then generated
transparently with the values in the SQL data type array; finally, a functional index (also referred to as a
virtual index) is created on the virtual column. It is the functional index defined on the virtual column of
values from the SQL data type array that forms the multi-valued index.

The examples in the following list show the three different ways in which a multi-valued index zips can
be created on an array $.zipcode on a JSON column custinfo in a table named customers. In
each case, the JSON array is cast to an SQL data type array of UNSIGNED integer values.

• CREATE TABLE only:

CREATE TABLE customers (
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 modified DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 custinfo JSON,
 INDEX zips((CAST(custinfo->'$.zipcode' AS UNSIGNED ARRAY)))
);

• CREATE TABLE plus ALTER TABLE:

CREATE TABLE customers (
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 modified DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 custinfo JSON
);

ALTER TABLE customers ADD INDEX zips((CAST(custinfo->'$.zipcode' AS UNSIGNED ARRAY)));

• CREATE TABLE plus CREATE INDEX:

CREATE TABLE customers (
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 modified DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 custinfo JSON
);

CREATE INDEX zips ON customers ((CAST(custinfo->'$.zipcode' AS UNSIGNED ARRAY)));

A multi-valued index can also be defined as part of a composite index. This example shows a
composite index that includes two single-valued parts (for the id and modified columns), and one
multi-valued part (for the custinfo column):

CREATE TABLE customers (
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 modified DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 custinfo JSON
);

ALTER TABLE customers ADD INDEX comp(id, modified,
 (CAST(custinfo->'$.zipcode' AS UNSIGNED ARRAY)));

Only one multi-valued key part can be used in a composite index. The multi-valued key part may be
used in any order relative to the other parts of the key. In other words, the ALTER TABLE statement

2706

CREATE INDEX Statement

just shown could have used comp(id, (CAST(custinfo->'$.zipcode' AS UNSIGNED
ARRAY), modified)) (or any other ordering) and still have been valid.

Using multi-valued Indexes

The optimizer uses a multi-valued index to fetch records when the following functions are specified in a
WHERE clause:

• MEMBER OF()

• JSON_CONTAINS()

• JSON_OVERLAPS()

We can demonstrate this by creating and populating the customers table using the following CREATE
TABLE and INSERT statements:

mysql> CREATE TABLE customers (
 -> id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> modified DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 -> custinfo JSON
 ->);
Query OK, 0 rows affected (0.51 sec)

mysql> INSERT INTO customers VALUES
 -> (NULL, NOW(), '{"user":"Jack","user_id":37,"zipcode":[94582,94536]}'),
 -> (NULL, NOW(), '{"user":"Jill","user_id":22,"zipcode":[94568,94507,94582]}'),
 -> (NULL, NOW(), '{"user":"Bob","user_id":31,"zipcode":[94477,94507]}'),
 -> (NULL, NOW(), '{"user":"Mary","user_id":72,"zipcode":[94536]}'),
 -> (NULL, NOW(), '{"user":"Ted","user_id":56,"zipcode":[94507,94582]}');
Query OK, 5 rows affected (0.07 sec)
Records: 5 Duplicates: 0 Warnings: 0

First we execute three queries on the customers table, one each using MEMBER OF(),
JSON_CONTAINS(), and JSON_OVERLAPS(), with the result from each query shown here:

mysql> SELECT * FROM customers
 -> WHERE 94507 MEMBER OF(custinfo->'$.zipcode');
+----+---------------------+---+
| id | modified | custinfo |
+----+---------------------+---+
2	2019-06-29 22:23:12	{"user": "Jill", "user_id": 22, "zipcode": [94568, 94507, 94582]}
3	2019-06-29 22:23:12	{"user": "Bob", "user_id": 31, "zipcode": [94477, 94507]}
5	2019-06-29 22:23:12	{"user": "Ted", "user_id": 56, "zipcode": [94507, 94582]}
+----+---------------------+---+
3 rows in set (0.00 sec)

mysql> SELECT * FROM customers
 -> WHERE JSON_CONTAINS(custinfo->'$.zipcode', CAST('[94507,94582]' AS JSON));
+----+---------------------+---+
| id | modified | custinfo |
+----+---------------------+---+
| 2 | 2019-06-29 22:23:12 | {"user": "Jill", "user_id": 22, "zipcode": [94568, 94507, 94582]} |
| 5 | 2019-06-29 22:23:12 | {"user": "Ted", "user_id": 56, "zipcode": [94507, 94582]} |
+----+---------------------+---+
2 rows in set (0.00 sec)

mysql> SELECT * FROM customers
 -> WHERE JSON_OVERLAPS(custinfo->'$.zipcode', CAST('[94507,94582]' AS JSON));
+----+---------------------+---+
| id | modified | custinfo |
+----+---------------------+---+
1	2019-06-29 22:23:12	{"user": "Jack", "user_id": 37, "zipcode": [94582, 94536]}
2	2019-06-29 22:23:12	{"user": "Jill", "user_id": 22, "zipcode": [94568, 94507, 94582]}
3	2019-06-29 22:23:12	{"user": "Bob", "user_id": 31, "zipcode": [94477, 94507]}
5	2019-06-29 22:23:12	{"user": "Ted", "user_id": 56, "zipcode": [94507, 94582]}
+----+---------------------+---+
4 rows in set (0.00 sec)

Next, we run EXPLAIN on each of the previous three queries:

2707

CREATE INDEX Statement

mysql> EXPLAIN SELECT * FROM customers
 -> WHERE 94507 MEMBER OF(custinfo->'$.zipcode');
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | customers | NULL | ALL | NULL | NULL | NULL | NULL | 5 | 100.00 | Using where |
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> EXPLAIN SELECT * FROM customers
 -> WHERE JSON_CONTAINS(custinfo->'$.zipcode', CAST('[94507,94582]' AS JSON));
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | customers | NULL | ALL | NULL | NULL | NULL | NULL | 5 | 100.00 | Using where |
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> EXPLAIN SELECT * FROM customers
 -> WHERE JSON_OVERLAPS(custinfo->'$.zipcode', CAST('[94507,94582]' AS JSON));
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | customers | NULL | ALL | NULL | NULL | NULL | NULL | 5 | 100.00 | Using where |
+----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.01 sec)

None of the three queries just shown are able to use any keys. To solve this problem, we can add a
multi-valued index on the zipcode array in the JSON column (custinfo), like this:

mysql> ALTER TABLE customers
 -> ADD INDEX zips((CAST(custinfo->'$.zipcode' AS UNSIGNED ARRAY)));
Query OK, 0 rows affected (0.47 sec)
Records: 0 Duplicates: 0 Warnings: 0

When we run the previous EXPLAIN statements again, we can now observe that the queries can (and
do) use the index zips that was just created:

mysql> EXPLAIN SELECT * FROM customers
 -> WHERE 94507 MEMBER OF(custinfo->'$.zipcode');
+----+-------------+-----------+------------+------+---------------+------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+------+---------------+------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | customers | NULL | ref | zips | zips | 9 | const | 1 | 100.00 | Using where |
+----+-------------+-----------+------------+------+---------------+------+---------+-------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> EXPLAIN SELECT * FROM customers
 -> WHERE JSON_CONTAINS(custinfo->'$.zipcode', CAST('[94507,94582]' AS JSON));
+----+-------------+-----------+------------+-------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+-------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | customers | NULL | range | zips | zips | 9 | NULL | 6 | 100.00 | Using where |
+----+-------------+-----------+------------+-------+---------------+------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> EXPLAIN SELECT * FROM customers
 -> WHERE JSON_OVERLAPS(custinfo->'$.zipcode', CAST('[94507,94582]' AS JSON));
+----+-------------+-----------+------------+-------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+-------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | customers | NULL | range | zips | zips | 9 | NULL | 6 | 100.00 | Using where |
+----+-------------+-----------+------------+-------+---------------+------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.01 sec)

A multi-valued index can be defined as a unique key. If defined as a unique key, attempting to insert
a value already present in the multi-valued index returns a duplicate key error. If duplicate values are
already present, attempting to add a unique multi-valued index fails, as shown here:

mysql> ALTER TABLE customers DROP INDEX zips;
Query OK, 0 rows affected (0.55 sec)

2708

CREATE INDEX Statement

Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE customers
 -> ADD UNIQUE INDEX zips((CAST(custinfo->'$.zipcode' AS UNSIGNED ARRAY)));
ERROR 1062 (23000): Duplicate entry '[94507, ' for key 'customers.zips'
mysql> ALTER TABLE customers
 -> ADD INDEX zips((CAST(custinfo->'$.zipcode' AS UNSIGNED ARRAY)));
Query OK, 0 rows affected (0.36 sec)
Records: 0 Duplicates: 0 Warnings: 0

Characteristics of Multi-Valued Indexes

Multi-valued indexes have the additional characteristics listed here:

• DML operations that affect multi-valued indexes are handled in the same way as DML operations
that affect a normal index, with the only difference being that there may be more than one insert or
update for a single clustered index record.

• Nullability and multi-valued indexes:

• If a multi-valued key part has an empty array, no entries are added to the index, and the data
record is not accessible by an index scan.

• If multi-valued key part generation returns a NULL value, a single entry containing NULL is added
to the multi-valued index. If the key part is defined as NOT NULL, an error is reported.

• If the typed array column is set to NULL, the storage engine stores a single record containing NULL
that points to the data record.

• JSON null values are not permitted in indexed arrays. If any returned value is NULL, it is treated as
a JSON null and an Invalid JSON value error is reported.

• Because multi-valued indexes are virtual indexes on virtual columns, they must adhere to the same
rules as secondary indexes on virtual generated columns.

• Index records are not added for empty arrays.

Limitations and Restrictions on Multi-valued Indexes

Multi-valued indexes are subject to the limitations and restrictions listed here:

• Only one multi-valued key part is permitted per multi-valued index. However, the CAST(...
AS ... ARRAY) expression can refer to multiple arrays within a JSON document, as shown here:

CAST(data->'$.arr[*][*]' AS UNSIGNED ARRAY)

In this case, all values matching the JSON expression are stored in the index as a single flat array.

• An index with a multi-valued key part does not support ordering and therefore cannot be used as a
primary key. For the same reason, a multi-valued index cannot be defined using the ASC or DESC
keyword.

• A multi-valued index cannot be a covering index.

• The maximum number of values per record for a multi-valued index is determined by the amount
of data than can be stored on a single undo log page, which is 65221 bytes (64K minus 315 bytes
for overhead), which means that the maximum total length of key values is also 65221 bytes. The
maximum number of keys depends on various factors, which prevents defining a specific limit. Tests
have shown a multi-valued index to permit as many as 1604 integer keys per record, for example.
When the limit is reached, an error similar to the following is reported: ERROR 3905 (HY000):
Exceeded max number of values per record for multi-valued index 'idx' by 1
value(s).

2709

CREATE INDEX Statement

• The only type of expression that is permitted in a multi-valued key part is a JSON expression. The
expression need not reference an existing element in a JSON document inserted into the indexed
column, but must itself be syntactically valid.

• Because index records for the same clustered index record are dispersed throughout a multi-valued
index, a multi-valued index does not support range scans or index-only scans.

• Multi-valued indexes are not permitted in foreign key specifications.

• Index prefixes cannot be defined for multi-valued indexes.

• Multi-valued indexes cannot be defined on data cast as BINARY (see the description of the CAST()
function).

• Online creation of a multi-value index is not supported, which means the operation uses
ALGORITHM=COPY. See Performance and Space Requirements.

• Character sets and collations other than the following two combinations of character set and collation
are not supported for multi-valued indexes:

1. The binary character set with the default binary collation

2. The utf8mb4 character set with the default utf8mb4_0900_as_cs collation.

• As with other indexes on columns of InnoDB tables, a multi-valued index cannot be created with
USING HASH; attempting to do so results in a warning: This storage engine does not
support the HASH index algorithm, storage engine default was used instead.
(USING BTREE is supported as usual.)

Spatial Indexes

The MyISAM, InnoDB, NDB, and ARCHIVE storage engines support spatial columns such as POINT
and GEOMETRY. (Section 13.4, “Spatial Data Types”, describes the spatial data types.) However,
support for spatial column indexing varies among engines. Spatial and nonspatial indexes on spatial
columns are available according to the following rules.

Spatial indexes on spatial columns have these characteristics:

• Available only for InnoDB and MyISAM tables. Specifying SPATIAL INDEX for other storage
engines results in an error.

• As of MySQL 8.0.12, an index on a spatial column must be a SPATIAL index. The SPATIAL
keyword is thus optional but implicit for creating an index on a spatial column.

• Available for single spatial columns only. A spatial index cannot be created over multiple spatial
columns.

• Indexed columns must be NOT NULL.

• Column prefix lengths are prohibited. The full width of each column is indexed.

• Not permitted for a primary key or unique index.

Nonspatial indexes on spatial columns (created with INDEX, UNIQUE, or PRIMARY KEY) have these
characteristics:

• Permitted for any storage engine that supports spatial columns except ARCHIVE.

• Columns can be NULL unless the index is a primary key.

• The index type for a non-SPATIAL index depends on the storage engine. Currently, B-tree is used.

• Permitted for a column that can have NULL values only for InnoDB, MyISAM, and MEMORY tables.

2710

CREATE INDEX Statement

Index Options

Following the key part list, index options can be given. An index_option value can be any of the
following:

• KEY_BLOCK_SIZE [=] value

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index
key blocks. The value is treated as a hint; a different size could be used if necessary. A
KEY_BLOCK_SIZE value specified for an individual index definition overrides a table-level
KEY_BLOCK_SIZE value.

KEY_BLOCK_SIZE is not supported at the index level for InnoDB tables. See Section 15.1.20,
“CREATE TABLE Statement”.

• index_type

Some storage engines permit you to specify an index type when creating an index. For example:

CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index ON lookup (id) USING BTREE;

Table 15.1, “Index Types Per Storage Engine” shows the permissible index type values supported by
different storage engines. Where multiple index types are listed, the first one is the default when no
index type specifier is given. Storage engines not listed in the table do not support an index_type
clause in index definitions.

Table 15.1 Index Types Per Storage Engine

Storage Engine Permissible Index Types

InnoDB BTREE

MyISAM BTREE

MEMORY/HEAP HASH, BTREE

NDB HASH, BTREE (see note in text)

The index_type clause cannot be used for FULLTEXT INDEX or (prior to MySQL 8.0.12)
SPATIAL INDEX specifications. Full-text index implementation is storage engine dependent. Spatial
indexes are implemented as R-tree indexes.

If you specify an index type that is not valid for a given storage engine, but another index type is
available that the engine can use without affecting query results, the engine uses the available
type. The parser recognizes RTREE as a type name. As of MySQL 8.0.12, this is permitted only for
SPATIAL indexes. Prior to 8.0.12, RTREE cannot be specified for any storage engine.

BTREE indexes are implemented by the NDB storage engine as T-tree indexes.

Note

For indexes on NDB table columns, the USING option can be specified only
for a unique index or primary key. USING HASH prevents the creation of an
ordered index; otherwise, creating a unique index or primary key on an NDB
table automatically results in the creation of both an ordered index and a hash
index, each of which indexes the same set of columns.

For unique indexes that include one or more NULL columns of an NDB table,
the hash index can be used only to look up literal values, which means that
IS [NOT] NULL conditions require a full scan of the table. One workaround
is to make sure that a unique index using one or more NULL columns on such

2711

CREATE INDEX Statement

a table is always created in such a way that it includes the ordered index; that
is, avoid employing USING HASH when creating the index.

If you specify an index type that is not valid for a given storage engine, but another index type is
available that the engine can use without affecting query results, the engine uses the available type.
The parser recognizes RTREE as a type name, but currently this cannot be specified for any storage
engine.

Note

Use of the index_type option before the ON tbl_name clause is
deprecated; expect support for use of the option in this position to be
removed in a future MySQL release. If an index_type option is given in
both the earlier and later positions, the final option applies.

TYPE type_name is recognized as a synonym for USING type_name. However, USING is the
preferred form.

The following tables show index characteristics for the storage engines that support the
index_type option.

Table 15.2 InnoDB Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No N/A N/A

Unique BTREE Yes Yes Index Index

Key BTREE Yes Yes Index Index

FULLTEXT N/A Yes Yes Table Table

SPATIAL N/A No No N/A N/A

Table 15.3 MyISAM Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No N/A N/A

Unique BTREE Yes Yes Index Index

Key BTREE Yes Yes Index Index

FULLTEXT N/A Yes Yes Table Table

SPATIAL N/A No No N/A N/A

Table 15.4 MEMORY Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No N/A N/A

Unique BTREE Yes Yes Index Index

Key BTREE Yes Yes Index Index

Primary key HASH No No N/A N/A

Unique HASH Yes Yes Index Index
2712

CREATE INDEX Statement

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Key HASH Yes Yes Index Index

Table 15.5 NDB Storage Engine Index Characteristics

Index Class Index Type Stores NULL
VALUES

Permits
Multiple NULL
Values

IS NULL Scan
Type

IS NOT NULL
Scan Type

Primary key BTREE No No Index Index

Unique BTREE Yes Yes Index Index

Key BTREE Yes Yes Index Index

Primary key HASH No No Table (see note
1)

Table (see note
1)

Unique HASH Yes Yes Table (see note
1)

Table (see note
1)

Key HASH Yes Yes Table (see note
1)

Table (see note
1)

Table note:

1. USING HASH prevents creation of an implicit ordered index.

• WITH PARSER parser_name

This option can be used only with FULLTEXT indexes. It associates a parser plugin with the index if
full-text indexing and searching operations need special handling. InnoDB and MyISAM support full-
text parser plugins. If you have a MyISAM table with an associated full-text parser plugin, you can
convert the table to InnoDB using ALTER TABLE. See Full-Text Parser Plugins and Writing Full-Text
Parser Plugins for more information.

• COMMENT 'string'

Index definitions can include an optional comment of up to 1024 characters.

The MERGE_THRESHOLD for index pages can be configured for individual indexes using the
index_option COMMENT clause of the CREATE INDEX statement. For example:

CREATE TABLE t1 (id INT);
CREATE INDEX id_index ON t1 (id) COMMENT 'MERGE_THRESHOLD=40';

If the page-full percentage for an index page falls below the MERGE_THRESHOLD value when a
row is deleted or when a row is shortened by an update operation, InnoDB attempts to merge the
index page with a neighboring index page. The default MERGE_THRESHOLD value is 50, which is the
previously hardcoded value.

MERGE_THRESHOLD can also be defined at the index level and table level using CREATE TABLE
and ALTER TABLE statements. For more information, see Section 17.8.11, “Configuring the Merge
Threshold for Index Pages”.

• VISIBLE, INVISIBLE

Specify index visibility. Indexes are visible by default. An invisible index is not used by the optimizer.
Specification of index visibility applies to indexes other than primary keys (either explicit or implicit).
For more information, see Section 10.3.12, “Invisible Indexes”.

2713

https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-types.html#full-text-plugin-type
https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-full-text-plugins.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-full-text-plugins.html

CREATE LOGFILE GROUP Statement

• ENGINE_ATTRIBUTE and SECONDARY_ENGINE_ATTRIBUTE options (available as of MySQL
8.0.21) are used to specify index attributes for primary and secondary storage engines. The options
are reserved for future use.

Permitted values are a string literal containing a valid JSON document or an empty string (''). Invalid
JSON is rejected.

CREATE INDEX i1 ON t1 (c1) ENGINE_ATTRIBUTE='{"key":"value"}';

ENGINE_ATTRIBUTE and SECONDARY_ENGINE_ATTRIBUTE values can be repeated without error.
In this case, the last specified value is used.

ENGINE_ATTRIBUTE and SECONDARY_ENGINE_ATTRIBUTE values are not checked by the server,
nor are they cleared when the table's storage engine is changed.

Table Copying and Locking Options

ALGORITHM and LOCK clauses may be given to influence the table copying method and level of
concurrency for reading and writing the table while its indexes are being modified. They have the
same meaning as for the ALTER TABLE statement. For more information, see Section 15.1.9, “ALTER
TABLE Statement”

NDB Cluster supports online operations using the same ALGORITHM=INPLACE syntax used with
the standard MySQL Server. See Section 25.6.12, “Online Operations with ALTER TABLE in NDB
Cluster”, for more information.

15.1.16 CREATE LOGFILE GROUP Statement
CREATE LOGFILE GROUP logfile_group
 ADD UNDOFILE 'undo_file'
 [INITIAL_SIZE [=] initial_size]
 [UNDO_BUFFER_SIZE [=] undo_buffer_size]
 [REDO_BUFFER_SIZE [=] redo_buffer_size]
 [NODEGROUP [=] nodegroup_id]
 [WAIT]
 [COMMENT [=] 'string']
 ENGINE [=] engine_name

This statement creates a new log file group named logfile_group having a single UNDO file named
'undo_file'. A CREATE LOGFILE GROUP statement has one and only one ADD UNDOFILE clause.
For rules covering the naming of log file groups, see Section 11.2, “Schema Object Names”.

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and a log
file group with the same name, or a tablespace and a data file with the same
name.

There can be only one log file group per NDB Cluster instance at any given time.

The optional INITIAL_SIZE parameter sets the UNDO file's initial size; if not specified, it defaults to
128M (128 megabytes). The optional UNDO_BUFFER_SIZE parameter sets the size used by the UNDO
buffer for the log file group; The default value for UNDO_BUFFER_SIZE is 8M (eight megabytes); this
value cannot exceed the amount of system memory available. Both of these parameters are specified
in bytes. You may optionally follow either or both of these with a one-letter abbreviation for an order of
magnitude, similar to those used in my.cnf. Generally, this is one of the letters M (for megabytes) or G
(for gigabytes).

Memory used for UNDO_BUFFER_SIZE comes from the global pool whose size is determined by the
value of the SharedGlobalMemory data node configuration parameter. This includes any default

2714

CREATE PROCEDURE and CREATE FUNCTION Statements

value implied for this option by the setting of the InitialLogFileGroup data node configuration
parameter.

The maximum permitted for UNDO_BUFFER_SIZE is 629145600 (600 MB).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB). (Bug
#29186)

The minimum allowed value for INITIAL_SIZE is 1048576 (1 MB).

The ENGINE option determines the storage engine to be used by this log file group, with engine_name
being the name of the storage engine. In MySQL 8.0, this must be NDB (or NDBCLUSTER). If ENGINE
is not set, MySQL tries to use the engine specified by the default_storage_engine server
system variable (formerly storage_engine). In any case, if the engine is not specified as NDB or
NDBCLUSTER, the CREATE LOGFILE GROUP statement appears to succeed but actually fails to create
the log file group, as shown here:

mysql> CREATE LOGFILE GROUP lg1
 -> ADD UNDOFILE 'undo.dat' INITIAL_SIZE = 10M;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Error | 1478 | Table storage engine 'InnoDB' does not support the create option 'TABLESPACE or LOGFILE GROUP' |
+-------+------+--+
1 row in set (0.00 sec)

mysql> DROP LOGFILE GROUP lg1 ENGINE = NDB;
ERROR 1529 (HY000): Failed to drop LOGFILE GROUP

mysql> CREATE LOGFILE GROUP lg1
 -> ADD UNDOFILE 'undo.dat' INITIAL_SIZE = 10M
 -> ENGINE = NDB;
Query OK, 0 rows affected (2.97 sec)

The fact that the CREATE LOGFILE GROUP statement does not actually return an error when a
non-NDB storage engine is named, but rather appears to succeed, is a known issue which we hope to
address in a future release of NDB Cluster.

REDO_BUFFER_SIZE, NODEGROUP, WAIT, and COMMENT are parsed but ignored, and so have no effect
in MySQL 8.0. These options are intended for future expansion.

When used with ENGINE [=] NDB, a log file group and associated UNDO log file are created on each
Cluster data node. You can verify that the UNDO files were created and obtain information about them
by querying the Information Schema FILES table. For example:

mysql> SELECT LOGFILE_GROUP_NAME, LOGFILE_GROUP_NUMBER, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE FILE_NAME = 'undo_10.dat';
+--------------------+----------------------+----------------+
| LOGFILE_GROUP_NAME | LOGFILE_GROUP_NUMBER | EXTRA |
+--------------------+----------------------+----------------+
| lg_3 | 11 | CLUSTER_NODE=3 |
| lg_3 | 11 | CLUSTER_NODE=4 |
+--------------------+----------------------+----------------+
2 rows in set (0.06 sec)

CREATE LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. See Section 25.6.11,
“NDB Cluster Disk Data Tables”.

15.1.17 CREATE PROCEDURE and CREATE FUNCTION Statements
CREATE
 [DEFINER = user]
 PROCEDURE [IF NOT EXISTS] sp_name ([proc_parameter[,...]])

2715

CREATE PROCEDURE and CREATE FUNCTION Statements

 [characteristic ...] routine_body

CREATE
 [DEFINER = user]
 FUNCTION [IF NOT EXISTS] sp_name ([func_parameter[,...]])
 RETURNS type
 [characteristic ...] routine_body

proc_parameter:
 [IN | OUT | INOUT] param_name type

func_parameter:
 param_name type

type:
 Any valid MySQL data type

characteristic: {
 COMMENT 'string'
 | LANGUAGE SQL
 | [NOT] DETERMINISTIC
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }
}

routine_body:
 Valid SQL routine statement

These statements are used to create a stored routine (a stored procedure or function). That is, the
specified routine becomes known to the server. By default, a stored routine is associated with the
default database. To associate the routine explicitly with a given database, specify the name as
db_name.sp_name when you create it.

The CREATE FUNCTION statement is also used in MySQL to support loadable functions. See
Section 15.7.4.1, “CREATE FUNCTION Statement for Loadable Functions”. A loadable function can
be regarded as an external stored function. Stored functions share their namespace with loadable
functions. See Section 11.2.5, “Function Name Parsing and Resolution”, for the rules describing how
the server interprets references to different kinds of functions.

To invoke a stored procedure, use the CALL statement (see Section 15.2.1, “CALL Statement”). To
invoke a stored function, refer to it in an expression. The function returns a value during expression
evaluation.

CREATE PROCEDURE and CREATE FUNCTION require the CREATE ROUTINE privilege. If the
DEFINER clause is present, the privileges required depend on the user value, as discussed in
Section 27.6, “Stored Object Access Control”. If binary logging is enabled, CREATE FUNCTION might
require the SUPER privilege, as discussed in Section 27.7, “Stored Program Binary Logging”.

By default, MySQL automatically grants the ALTER ROUTINE and EXECUTE privileges to the routine
creator. This behavior can be changed by disabling the automatic_sp_privileges system
variable. See Section 27.2.2, “Stored Routines and MySQL Privileges”.

The DEFINER and SQL SECURITY clauses specify the security context to be used when checking
access privileges at routine execution time, as described later in this section.

If the routine name is the same as the name of a built-in SQL function, a syntax error occurs unless you
use a space between the name and the following parenthesis when defining the routine or invoking it
later. For this reason, avoid using the names of existing SQL functions for your own stored routines.

The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. It is always
permissible to have spaces after a stored routine name, regardless of whether IGNORE_SPACE is
enabled.

IF NOT EXISTS prevents an error from occurring if there already exists a routine with the same
name. This option is supported with both CREATE FUNCTION and CREATE PROCEDURE beginning with
MySQL 8.0.29.

2716

CREATE PROCEDURE and CREATE FUNCTION Statements

If a built-in function with the same name already exists, attempting to create a stored function with
CREATE FUNCTION ... IF NOT EXISTS succeeds with a warning indicating that it has the same
name as a native function; this is no different than when performing the same CREATE FUNCTION
statement without specifying IF NOT EXISTS.

If a loadable function with the same name already exists, attempting to create a stored function using
IF NOT EXISTS succeeds with a warning. This is the same as without specifying IF NOT EXISTS.

See Function Name Resolution, for more information.

The parameter list enclosed within parentheses must always be present. If there are no parameters, an
empty parameter list of () should be used. Parameter names are not case-sensitive.

Each parameter is an IN parameter by default. To specify otherwise for a parameter, use the keyword
OUT or INOUT before the parameter name.

Note

Specifying a parameter as IN, OUT, or INOUT is valid only for a PROCEDURE.
For a FUNCTION, parameters are always regarded as IN parameters.

An IN parameter passes a value into a procedure. The procedure might modify the value, but the
modification is not visible to the caller when the procedure returns. An OUT parameter passes a value
from the procedure back to the caller. Its initial value is NULL within the procedure, and its value is
visible to the caller when the procedure returns. An INOUT parameter is initialized by the caller, can
be modified by the procedure, and any change made by the procedure is visible to the caller when the
procedure returns.

For each OUT or INOUT parameter, pass a user-defined variable in the CALL statement that invokes
the procedure so that you can obtain its value when the procedure returns. If you are calling the
procedure from within another stored procedure or function, you can also pass a routine parameter
or local routine variable as an OUT or INOUT parameter. If you are calling the procedure from within a
trigger, you can also pass NEW.col_name as an OUT or INOUT parameter.

For information about the effect of unhandled conditions on procedure parameters, see
Section 15.6.7.8, “Condition Handling and OUT or INOUT Parameters”.

Routine parameters cannot be referenced in statements prepared within the routine; see Section 27.8,
“Restrictions on Stored Programs”.

The following example shows a simple stored procedure that, given a country code, counts the number
of cities for that country that appear in the city table of the world database. The country code is
passed using an IN parameter, and the city count is returned using an OUT parameter:

mysql> delimiter //

mysql> CREATE PROCEDURE citycount (IN country CHAR(3), OUT cities INT)
 BEGIN
 SELECT COUNT(*) INTO cities FROM world.city
 WHERE CountryCode = country;
 END//
Query OK, 0 rows affected (0.01 sec)

mysql> delimiter ;

mysql> CALL citycount('JPN', @cities); -- cities in Japan
Query OK, 1 row affected (0.00 sec)

mysql> SELECT @cities;
+---------+
| @cities |
+---------+
| 248 |
+---------+

2717

CREATE PROCEDURE and CREATE FUNCTION Statements

1 row in set (0.00 sec)

mysql> CALL citycount('FRA', @cities); -- cities in France
Query OK, 1 row affected (0.00 sec)

mysql> SELECT @cities;
+---------+
| @cities |
+---------+
| 40 |
+---------+
1 row in set (0.00 sec)

The example uses the mysql client delimiter command to change the statement delimiter from ; to
// while the procedure is being defined. This enables the ; delimiter used in the procedure body to be
passed through to the server rather than being interpreted by mysql itself. See Section 27.1, “Defining
Stored Programs”.

The RETURNS clause may be specified only for a FUNCTION, for which it is mandatory. It indicates
the return type of the function, and the function body must contain a RETURN value statement. If
the RETURN statement returns a value of a different type, the value is coerced to the proper type.
For example, if a function specifies an ENUM or SET value in the RETURNS clause, but the RETURN
statement returns an integer, the value returned from the function is the string for the corresponding
ENUM member of set of SET members.

The following example function takes a parameter, performs an operation using an SQL function, and
returns the result. In this case, it is unnecessary to use delimiter because the function definition
contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
 -> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

Parameter types and function return types can be declared to use any valid data type. The COLLATE
attribute can be used if preceded by a CHARACTER SET specification.

The routine_body consists of a valid SQL routine statement. This can be a simple statement
such as SELECT or INSERT, or a compound statement written using BEGIN and END. Compound
statements can contain declarations, loops, and other control structure statements. The syntax for
these statements is described in Section 15.6, “Compound Statement Syntax”. In practice, stored
functions tend to use compound statements, unless the body consists of a single RETURN statement.

MySQL permits routines to contain DDL statements, such as CREATE and DROP. MySQL also permits
stored procedures (but not stored functions) to contain SQL transaction statements such as COMMIT.
Stored functions may not contain statements that perform explicit or implicit commit or rollback. Support
for these statements is not required by the SQL standard, which states that each DBMS vendor may
decide whether to permit them.

Statements that return a result set can be used within a stored procedure but not within a stored
function. This prohibition includes SELECT statements that do not have an INTO var_list clause
and other statements such as SHOW, EXPLAIN, and CHECK TABLE. For statements that can be
determined at function definition time to return a result set, a Not allowed to return a result
set from a function error occurs (ER_SP_NO_RETSET). For statements that can be determined
only at runtime to return a result set, a PROCEDURE %s can't return a result set in the
given context error occurs (ER_SP_BADSELECT).

2718

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_sp_no_retset
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_sp_badselect

CREATE PROCEDURE and CREATE FUNCTION Statements

USE statements within stored routines are not permitted. When a routine is invoked, an implicit USE
db_name is performed (and undone when the routine terminates). The causes the routine to have the
given default database while it executes. References to objects in databases other than the routine
default database should be qualified with the appropriate database name.

For additional information about statements that are not permitted in stored routines, see Section 27.8,
“Restrictions on Stored Programs”.

For information about invoking stored procedures from within programs written in a language that has a
MySQL interface, see Section 15.2.1, “CALL Statement”.

MySQL stores the sql_mode system variable setting in effect when a routine is created or altered, and
always executes the routine with this setting in force, regardless of the current server SQL mode when
the routine begins executing.

The switch from the SQL mode of the invoker to that of the routine occurs after evaluation of arguments
and assignment of the resulting values to routine parameters. If you define a routine in strict SQL mode
but invoke it in nonstrict mode, assignment of arguments to routine parameters does not take place in
strict mode. If you require that expressions passed to a routine be assigned in strict SQL mode, you
should invoke the routine with strict mode in effect.

The COMMENT characteristic is a MySQL extension, and may be used to describe the stored routine.
This information is displayed by the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION
statements.

The LANGUAGE characteristic indicates the language in which the routine is written. The server ignores
this characteristic; only SQL routines are supported.

A routine is considered “deterministic” if it always produces the same result for the same input
parameters, and “not deterministic” otherwise. If neither DETERMINISTIC nor NOT DETERMINISTIC
is given in the routine definition, the default is NOT DETERMINISTIC. To declare that a function is
deterministic, you must specify DETERMINISTIC explicitly.

Assessment of the nature of a routine is based on the “honesty” of the creator: MySQL does not
check that a routine declared DETERMINISTIC is free of statements that produce nondeterministic
results. However, misdeclaring a routine might affect results or affect performance. Declaring
a nondeterministic routine as DETERMINISTIC might lead to unexpected results by causing
the optimizer to make incorrect execution plan choices. Declaring a deterministic routine as
NONDETERMINISTIC might diminish performance by causing available optimizations not to be used.

If binary logging is enabled, the DETERMINISTIC characteristic affects which routine definitions
MySQL accepts. See Section 27.7, “Stored Program Binary Logging”.

A routine that contains the NOW() function (or its synonyms) or RAND() is nondeterministic, but it might
still be replication-safe. For NOW(), the binary log includes the timestamp and replicates correctly.
RAND() also replicates correctly as long as it is called only a single time during the execution of a
routine. (You can consider the routine execution timestamp and random number seed as implicit inputs
that are identical on the source and replica.)

Several characteristics provide information about the nature of data use by the routine. In MySQL,
these characteristics are advisory only. The server does not use them to constrain what kinds of
statements a routine is permitted to execute.

• CONTAINS SQL indicates that the routine does not contain statements that read or write data. This
is the default if none of these characteristics is given explicitly. Examples of such statements are SET
@x = 1 or DO RELEASE_LOCK('abc'), which execute but neither read nor write data.

• NO SQL indicates that the routine contains no SQL statements.

• READS SQL DATA indicates that the routine contains statements that read data (for example,
SELECT), but not statements that write data.

2719

CREATE PROCEDURE and CREATE FUNCTION Statements

• MODIFIES SQL DATA indicates that the routine contains statements that may write data (for
example, INSERT or DELETE).

The SQL SECURITY characteristic can be DEFINER or INVOKER to specify the security context; that is,
whether the routine executes using the privileges of the account named in the routine DEFINER clause
or the user who invokes it. This account must have permission to access the database with which
the routine is associated. The default value is DEFINER. The user who invokes the routine must have
the EXECUTE privilege for it, as must the DEFINER account if the routine executes in definer security
context.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at
routine execution time for routines that have the SQL SECURITY DEFINER characteristic.

If the DEFINER clause is present, the user value should be a MySQL account specified as
'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted user values
depend on the privileges you hold, as discussed in Section 27.6, “Stored Object Access Control”. Also
see that section for additional information about stored routine security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE
PROCEDURE or CREATE FUNCTION statement. This is the same as specifying DEFINER =
CURRENT_USER explicitly.

Within the body of a stored routine that is defined with the SQL SECURITY DEFINER characteristic,
the CURRENT_USER function returns the routine's DEFINER value. For information about user auditing
within stored routines, see Section 8.2.23, “SQL-Based Account Activity Auditing”.

Consider the following procedure, which displays a count of the number of MySQL accounts listed in
the mysql.user system table:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
BEGIN
 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure is assigned a DEFINER account of 'admin'@'localhost' no matter which user
defines it. It executes with the privileges of that account no matter which user invokes it (because the
default security characteristic is DEFINER). The procedure succeeds or fails depending on whether
invoker has the EXECUTE privilege for it and 'admin'@'localhost' has the SELECT privilege for the
mysql.user table.

Now suppose that the procedure is defined with the SQL SECURITY INVOKER characteristic:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
SQL SECURITY INVOKER
BEGIN
 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure still has a DEFINER of 'admin'@'localhost', but in this case, it executes with
the privileges of the invoking user. Thus, the procedure succeeds or fails depending on whether the
invoker has the EXECUTE privilege for it and the SELECT privilege for the mysql.user table.

By default, when a routine with the SQL SECURITY DEFINER characteristic is executed, MySQL
Server does not set any active roles for the MySQL account named in the DEFINER clause, only the
default roles. The exception is if the activate_all_roles_on_login system variable is enabled, in
which case MySQL Server sets all roles granted to the DEFINER user, including mandatory roles. Any
privileges granted through roles are therefore not checked by default when the CREATE PROCEDURE
or CREATE FUNCTION statement is issued. For stored programs, if execution should occur with roles
different from the default, the program body can execute SET ROLE to activate the required roles. This
must be done with caution since the privileges assigned to roles can be changed.

The server handles the data type of a routine parameter, local routine variable created with DECLARE,
or function return value as follows:

2720

CREATE SERVER Statement

• Assignments are checked for data type mismatches and overflow. Conversion and overflow
problems result in warnings, or errors in strict SQL mode.

• Only scalar values can be assigned. For example, a statement such as SET x = (SELECT 1, 2)
is invalid.

• For character data types, if CHARACTER SET is included in the declaration, the specified character
set and its default collation is used. If the COLLATE attribute is also present, that collation is used
rather than the default collation.

If CHARACTER SET and COLLATE are not present, the database character set and collation in
effect at routine creation time are used. To avoid having the server use the database character
set and collation, provide an explicit CHARACTER SET and a COLLATE attribute for character data
parameters.

If you alter the database default character set or collation, stored routines that are to use the new
database defaults must be dropped and recreated.

The database character set and collation are given by the value of the character_set_database
and collation_database system variables. For more information, see Section 12.3.3, “Database
Character Set and Collation”.

15.1.18 CREATE SERVER Statement
CREATE SERVER server_name
 FOREIGN DATA WRAPPER wrapper_name
 OPTIONS (option [, option] ...)

option: {
 HOST character-literal
 | DATABASE character-literal
 | USER character-literal
 | PASSWORD character-literal
 | SOCKET character-literal
 | OWNER character-literal
 | PORT numeric-literal
}

This statement creates the definition of a server for use with the FEDERATED storage engine. The
CREATE SERVER statement creates a new row in the servers table in the mysql database. This
statement requires the SUPER privilege.

The server_name should be a unique reference to the server. Server definitions are global within
the scope of the server, it is not possible to qualify the server definition to a specific database.
server_name has a maximum length of 64 characters (names longer than 64 characters are silently
truncated), and is case-insensitive. You may specify the name as a quoted string.

The wrapper_name is an identifier and may be quoted with single quotation marks.

For each option you must specify either a character literal or numeric literal. Character literals are
UTF-8, support a maximum length of 64 characters and default to a blank (empty) string. String literals
are silently truncated to 64 characters. Numeric literals must be a number between 0 and 9999, default
value is 0.

Note

The OWNER option is currently not applied, and has no effect on the ownership
or operation of the server connection that is created.

The CREATE SERVER statement creates an entry in the mysql.servers table that can later be used
with the CREATE TABLE statement when creating a FEDERATED table. The options that you specify
are used to populate the columns in the mysql.servers table. The table columns are Server_name,
Host, Db, Username, Password, Port and Socket.

2721

CREATE SPATIAL REFERENCE SYSTEM Statement

For example:

CREATE SERVER s
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'Remote', HOST '198.51.100.106', DATABASE 'test');

Be sure to specify all options necessary to establish a connection to the server. The user name, host
name, and database name are mandatory. Other options might be required as well, such as password.

The data stored in the table can be used when creating a connection to a FEDERATED table:

CREATE TABLE t (s1 INT) ENGINE=FEDERATED CONNECTION='s';

For more information, see Section 18.8, “The FEDERATED Storage Engine”.

CREATE SERVER causes an implicit commit. See Section 15.3.3, “Statements That Cause an Implicit
Commit”.

CREATE SERVER is not written to the binary log, regardless of the logging format that is in use.

15.1.19 CREATE SPATIAL REFERENCE SYSTEM Statement
CREATE OR REPLACE SPATIAL REFERENCE SYSTEM
 srid srs_attribute ...

CREATE SPATIAL REFERENCE SYSTEM
 [IF NOT EXISTS]
 srid srs_attribute ...

srs_attribute: {
 NAME 'srs_name'
 | DEFINITION 'definition'
 | ORGANIZATION 'org_name' IDENTIFIED BY org_id
 | DESCRIPTION 'description'
}

srid, org_id: 32-bit unsigned integer

This statement creates a spatial reference system (SRS) definition and stores it in the data dictionary.
It requires the SUPER privilege. The resulting data dictionary entry can be inspected using the
INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS table.

SRID values must be unique, so if neither OR REPLACE nor IF NOT EXISTS is specified, an error
occurs if an SRS definition with the given srid value already exists.

With CREATE OR REPLACE syntax, any existing SRS definition with the same SRID value is replaced,
unless the SRID value is used by some column in an existing table. In that case, an error occurs. For
example:

mysql> CREATE OR REPLACE SPATIAL REFERENCE SYSTEM 4326 ...;
ERROR 3716 (SR005): Can't modify SRID 4326. There is at
least one column depending on it.

To identify which column or columns use the SRID, use this query, replacing 4326 with the SRID of the
definition you are trying to create:

SELECT * FROM INFORMATION_SCHEMA.ST_GEOMETRY_COLUMNS WHERE SRS_ID=4326;

With CREATE ... IF NOT EXISTS syntax, any existing SRS definition with the same SRID value
causes the new definition to be ignored and a warning occurs.

SRID values must be in the range of 32-bit unsigned integers, with these restrictions:

• SRID 0 is a valid SRID but cannot be used with CREATE SPATIAL REFERENCE SYSTEM.

• If the value is in a reserved SRID range, a warning occurs. Reserved ranges are [0, 32767] (reserved
by EPSG), [60,000,000, 69,999,999] (reserved by EPSG), and [2,000,000,000, 2,147,483,647]
(reserved by MySQL). EPSG stands for the European Petroleum Survey Group.

2722

http://epsg.org

CREATE SPATIAL REFERENCE SYSTEM Statement

• Users should not create SRSs with SRIDs in the reserved ranges. Doing so runs the risk of the
SRIDs conflicting with future SRS definitions distributed with MySQL, with the result that the new
system-provided SRSs are not installed for MySQL upgrades or that the user-defined SRSs are
overwritten.

Attributes for the statement must satisfy these conditions:

• Attributes can be given in any order, but no attribute can be given more than once.

• The NAME and DEFINITION attributes are mandatory.

• The NAME srs_name attribute value must be unique. The combination of the ORGANIZATION
org_name and org_id attribute values must be unique.

• The NAME srs_name attribute value and ORGANIZATION org_name attribute value cannot be
empty or begin or end with whitespace.

• String values in attribute specifications cannot contain control characters, including newline.

• The following table shows the maximum lengths for string attribute values.

Table 15.6 CREATE SPATIAL REFERENCE SYSTEM Attribute Lengths

Attribute Maximum Length (characters)

NAME 80

DEFINITION 4096

ORGANIZATION 256

DESCRIPTION 2048

Here is an example CREATE SPATIAL REFERENCE SYSTEM statement. The DEFINITION value is
reformatted across multiple lines for readability. (For the statement to be legal, the value actually must
be given on a single line.)

CREATE SPATIAL REFERENCE SYSTEM 4120
NAME 'Greek'
ORGANIZATION 'EPSG' IDENTIFIED BY 4120
DEFINITION
 'GEOGCS["Greek",DATUM["Greek",SPHEROID["Bessel 1841",
 6377397.155,299.1528128,AUTHORITY["EPSG","7004"]],
 AUTHORITY["EPSG","6120"]],PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],UNIT["degree",0.017453292519943278,
 AUTHORITY["EPSG","9122"]],AXIS["Lat",NORTH],AXIS["Lon",EAST],
 AUTHORITY["EPSG","4120"]]';

The grammar for SRS definitions is based on the grammar defined in OpenGIS Implementation
Specification: Coordinate Transformation Services, Revision 1.00, OGC 01-009, January 12, 2001,
Section 7.2. This specification is available at http://www.opengeospatial.org/standards/ct.

MySQL incorporates these changes to the specification:

• Only the <horz cs> production rule is implemented (that is, geographic and projected SRSs).

• There is an optional, nonstandard <authority> clause for <parameter>. This makes it possible
to recognize projection parameters by authority instead of name.

• The specification does not make AXIS clauses mandatory in GEOGCS spatial reference system
definitions. However, if there are no AXIS clauses, MySQL cannot determine whether a definition
has axes in latitude-longitude order or longitude-latitude order. MySQL enforces the nonstandard
requirement that each GEOGCS definition must include two AXIS clauses. One must be NORTH or
SOUTH, and the other EAST or WEST. The AXIS clause order determines whether the definition has
axes in latitude-longitude order or longitude-latitude order.

• SRS definitions may not contain newlines.

2723

http://www.opengeospatial.org/standards/ct

CREATE SPATIAL REFERENCE SYSTEM Statement

If an SRS definition specifies an authority code for the projection (which is recommended), an error
occurs if the definition is missing mandatory parameters. In this case, the error message indicates what
the problem is. The projection methods and mandatory parameters that MySQL supports are shown
in Table 15.7, “Supported Spatial Reference System Projection Methods” and Table 15.8, “Spatial
Reference System Projection Parameters”.

For additional information about writing SRS definitions for MySQL, see Geographic Spatial Reference
Systems in MySQL 8.0 and Projected Spatial Reference Systems in MySQL 8.0

The following table shows the projection methods that MySQL supports. MySQL permits unknown
projection methods but cannot check the definition for mandatory parameters and cannot convert
spatial data to or from an unknown projection. For detailed explanations of how each projection works,
including formulas, see EPSG Guidance Note 7-2.

Table 15.7 Supported Spatial Reference System Projection Methods

EPSG Code Projection Name Mandatory Parameters (EPSG
Codes)

1024 Popular Visualisation Pseudo
Mercator

8801, 8802, 8806, 8807

1027 Lambert Azimuthal Equal Area
(Spherical)

8801, 8802, 8806, 8807

1028 Equidistant Cylindrical 8823, 8802, 8806, 8807

1029 Equidistant Cylindrical
(Spherical)

8823, 8802, 8806, 8807

1041 Krovak (North Orientated) 8811, 8833, 1036, 8818, 8819,
8806, 8807

1042 Krovak Modified 8811, 8833, 1036, 8818, 8819,
8806, 8807, 8617, 8618, 1026,
1027, 1028, 1029, 1030, 1031,
1032, 1033, 1034, 1035

1043 Krovak Modified (North
Orientated)

8811, 8833, 1036, 8818, 8819,
8806, 8807, 8617, 8618, 1026,
1027, 1028, 1029, 1030, 1031,
1032, 1033, 1034, 1035

1051 Lambert Conic Conformal (2SP
Michigan)

8821, 8822, 8823, 8824, 8826,
8827, 1038

1052 Colombia Urban 8801, 8802, 8806, 8807, 1039

9801 Lambert Conic Conformal (1SP) 8801, 8802, 8805, 8806, 8807

9802 Lambert Conic Conformal (2SP) 8821, 8822, 8823, 8824, 8826,
8827

9803 Lambert Conic Conformal (2SP
Belgium)

8821, 8822, 8823, 8824, 8826,
8827

9804 Mercator (variant A) 8801, 8802, 8805, 8806, 8807

9805 Mercator (variant B) 8823, 8802, 8806, 8807

9806 Cassini-Soldner 8801, 8802, 8806, 8807

9807 Transverse Mercator 8801, 8802, 8805, 8806, 8807

9808 Transverse Mercator (South
Orientated)

8801, 8802, 8805, 8806, 8807

9809 Oblique Stereographic 8801, 8802, 8805, 8806, 8807

9810 Polar Stereographic (variant A) 8801, 8802, 8805, 8806, 8807

9811 New Zealand Map Grid 8801, 8802, 8806, 8807

2724

https://mysqlserverteam.com/geographic-spatial-reference-systems-in-mysql-8-0/
https://mysqlserverteam.com/geographic-spatial-reference-systems-in-mysql-8-0/
https://mysqlserverteam.com/projected-spatial-reference-systems-in-mysql-8-0/
http://www.epsg.org/Portals/0/373-07-2.pdf

CREATE SPATIAL REFERENCE SYSTEM Statement

EPSG Code Projection Name Mandatory Parameters (EPSG
Codes)

9812 Hotine Oblique Mercator (variant
A)

8811, 8812, 8813, 8814, 8815,
8806, 8807

9813 Laborde Oblique Mercator 8811, 8812, 8813, 8815, 8806,
8807

9815 Hotine Oblique Mercator (variant
B)

8811, 8812, 8813, 8814, 8815,
8816, 8817

9816 Tunisia Mining Grid 8821, 8822, 8826, 8827

9817 Lambert Conic Near-Conformal 8801, 8802, 8805, 8806, 8807

9818 American Polyconic 8801, 8802, 8806, 8807

9819 Krovak 8811, 8833, 1036, 8818, 8819,
8806, 8807

9820 Lambert Azimuthal Equal Area 8801, 8802, 8806, 8807

9822 Albers Equal Area 8821, 8822, 8823, 8824, 8826,
8827

9824 Transverse Mercator Zoned Grid
System

8801, 8830, 8831, 8805, 8806,
8807

9826 Lambert Conic Conformal (West
Orientated)

8801, 8802, 8805, 8806, 8807

9828 Bonne (South Orientated) 8801, 8802, 8806, 8807

9829 Polar Stereographic (variant B) 8832, 8833, 8806, 8807

9830 Polar Stereographic (variant C) 8832, 8833, 8826, 8827

9831 Guam Projection 8801, 8802, 8806, 8807

9832 Modified Azimuthal Equidistant 8801, 8802, 8806, 8807

9833 Hyperbolic Cassini-Soldner 8801, 8802, 8806, 8807

9834 Lambert Cylindrical Equal Area
(Spherical)

8823, 8802, 8806, 8807

9835 Lambert Cylindrical Equal Area 8823, 8802, 8806, 8807

The following table shows the projection parameters that MySQL recognizes. Recognition occurs
primarily by authority code. If there is no authority code, MySQL falls back to case-insensitive string
matching on the parameter name. For details about each parameter, look it up by code in the EPSG
Online Registry.

Table 15.8 Spatial Reference System Projection Parameters

EPSG Code Fallback Name (Recognized by
MySQL)

EPSG Name

1026 c1 C1

1027 c2 C2

1028 c3 C3

1029 c4 C4

1030 c5 C5

1031 c6 C6

1032 c7 C7

1033 c8 C8

1034 c9 C9

2725

https://www.epsg-registry.org
https://www.epsg-registry.org

CREATE TABLE Statement

EPSG Code Fallback Name (Recognized by
MySQL)

EPSG Name

1035 c10 C10

1036 azimuth Co-latitude of cone axis

1038 ellipsoid_scale_factor Ellipsoid scaling factor

1039 projection_plane_height_at_origin Projection plane origin height

8617 evaluation_point_ordinate_1 Ordinate 1 of evaluation point

8618 evaluation_point_ordinate_2 Ordinate 2 of evaluation point

8801 latitude_of_origin Latitude of natural origin

8802 central_meridian Longitude of natural origin

8805 scale_factor Scale factor at natural origin

8806 false_easting False easting

8807 false_northing False northing

8811 latitude_of_center Latitude of projection centre

8812 longitude_of_center Longitude of projection centre

8813 azimuth Azimuth of initial line

8814 rectified_grid_angle Angle from Rectified to Skew
Grid

8815 scale_factor Scale factor on initial line

8816 false_easting Easting at projection centre

8817 false_northing Northing at projection centre

8818 pseudo_standard_parallel_1 Latitude of pseudo standard
parallel

8819 scale_factor Scale factor on pseudo standard
parallel

8821 latitude_of_origin Latitude of false origin

8822 central_meridian Longitude of false origin

8823 standard_parallel_1,
standard_parallel1

Latitude of 1st standard parallel

8824 standard_parallel_2,
standard_parallel2

Latitude of 2nd standard parallel

8826 false_easting Easting at false origin

8827 false_northing Northing at false origin

8830 initial_longitude Initial longitude

8831 zone_width Zone width

8832 standard_parallel Latitude of standard parallel

8833 longitude_of_center Longitude of origin

15.1.20 CREATE TABLE Statement

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 (create_definition,...)
 [table_options]
 [partition_options]

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 [(create_definition,...)]
 [table_options]

2726

CREATE TABLE Statement

 [partition_options]
 [IGNORE | REPLACE]
 [AS] query_expression

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 { LIKE old_tbl_name | (LIKE old_tbl_name) }

create_definition: {
 col_name column_definition
 | {INDEX | KEY} [index_name] [index_type] (key_part,...)
 [index_option] ...
 | {FULLTEXT | SPATIAL} [INDEX | KEY] [index_name] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] PRIMARY KEY
 [index_type] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] UNIQUE [INDEX | KEY]
 [index_name] [index_type] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name,...)
 reference_definition
 | check_constraint_definition
}

column_definition: {
 data_type [NOT NULL | NULL] [DEFAULT {literal | (expr)}]
 [VISIBLE | INVISIBLE]
 [AUTO_INCREMENT] [UNIQUE [KEY]] [[PRIMARY] KEY]
 [COMMENT 'string']
 [COLLATE collation_name]
 [COLUMN_FORMAT {FIXED | DYNAMIC | DEFAULT}]
 [ENGINE_ATTRIBUTE [=] 'string']
 [SECONDARY_ENGINE_ATTRIBUTE [=] 'string']
 [STORAGE {DISK | MEMORY}]
 [reference_definition]
 [check_constraint_definition]
 | data_type
 [COLLATE collation_name]
 [GENERATED ALWAYS] AS (expr)
 [VIRTUAL | STORED] [NOT NULL | NULL]
 [VISIBLE | INVISIBLE]
 [UNIQUE [KEY]] [[PRIMARY] KEY]
 [COMMENT 'string']
 [reference_definition]
 [check_constraint_definition]
}

data_type:
 (see Chapter 13, Data Types)

key_part: {col_name [(length)] | (expr)} [ASC | DESC]

index_type:
 USING {BTREE | HASH}

index_option: {
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
 | {VISIBLE | INVISIBLE}
 |ENGINE_ATTRIBUTE [=] 'string'
 |SECONDARY_ENGINE_ATTRIBUTE [=] 'string'
}

check_constraint_definition:
 [CONSTRAINT [symbol]] CHECK (expr) [[NOT] ENFORCED]

reference_definition:
 REFERENCES tbl_name (key_part,...)
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

2727

CREATE TABLE Statement

 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

table_options:
 table_option [[,] table_option] ...

table_option: {
 AUTOEXTEND_SIZE [=] value
 | AUTO_INCREMENT [=] value
 | AVG_ROW_LENGTH [=] value
 | [DEFAULT] CHARACTER SET [=] charset_name
 | CHECKSUM [=] {0 | 1}
 | [DEFAULT] COLLATE [=] collation_name
 | COMMENT [=] 'string'
 | COMPRESSION [=] {'ZLIB' | 'LZ4' | 'NONE'}
 | CONNECTION [=] 'connect_string'
 | {DATA | INDEX} DIRECTORY [=] 'absolute path to directory'
 | DELAY_KEY_WRITE [=] {0 | 1}
 | ENCRYPTION [=] {'Y' | 'N'}
 | ENGINE [=] engine_name
 | ENGINE_ATTRIBUTE [=] 'string'
 | INSERT_METHOD [=] { NO | FIRST | LAST }
 | KEY_BLOCK_SIZE [=] value
 | MAX_ROWS [=] value
 | MIN_ROWS [=] value
 | PACK_KEYS [=] {0 | 1 | DEFAULT}
 | PASSWORD [=] 'string'
 | ROW_FORMAT [=] {DEFAULT | DYNAMIC | FIXED | COMPRESSED | REDUNDANT | COMPACT}
 | START TRANSACTION
 | SECONDARY_ENGINE_ATTRIBUTE [=] 'string'
 | STATS_AUTO_RECALC [=] {DEFAULT | 0 | 1}
 | STATS_PERSISTENT [=] {DEFAULT | 0 | 1}
 | STATS_SAMPLE_PAGES [=] value
 | tablespace_option
 | UNION [=] (tbl_name[,tbl_name]...)
}

partition_options:
 PARTITION BY
 { [LINEAR] HASH(expr)
 | [LINEAR] KEY [ALGORITHM={1 | 2}] (column_list)
 | RANGE{(expr) | COLUMNS(column_list)}
 | LIST{(expr) | COLUMNS(column_list)} }
 [PARTITIONS num]
 [SUBPARTITION BY
 { [LINEAR] HASH(expr)
 | [LINEAR] KEY [ALGORITHM={1 | 2}] (column_list) }
 [SUBPARTITIONS num]
]
 [(partition_definition [, partition_definition] ...)]

partition_definition:
 PARTITION partition_name
 [VALUES
 {LESS THAN {(expr | value_list) | MAXVALUE}
 |
 IN (value_list)}]
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'string']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']
 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]
 [TABLESPACE [=] tablespace_name]
 [(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition:
 SUBPARTITION logical_name
 [[STORAGE] ENGINE [=] engine_name]

2728

CREATE TABLE Statement

 [COMMENT [=] 'string']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']
 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]
 [TABLESPACE [=] tablespace_name]

tablespace_option:
 TABLESPACE tablespace_name [STORAGE DISK]
 | [TABLESPACE tablespace_name] STORAGE MEMORY

query_expression:
 SELECT ... (Some valid select or union statement)

CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the
table.

By default, tables are created in the default database, using the InnoDB storage engine. An error
occurs if the table exists, if there is no default database, or if the database does not exist.

MySQL has no limit on the number of tables. The underlying file system may have a limit on the
number of files that represent tables. Individual storage engines may impose engine-specific
constraints. InnoDB permits up to 4 billion tables.

For information about the physical representation of a table, see Section 15.1.20.1, “Files Created by
CREATE TABLE”.

There are several aspects to the CREATE TABLE statement, described under the following topics in
this section:

• Table Name

• Temporary Tables

• Table Cloning and Copying

• Column Data Types and Attributes

• Indexes, Foreign Keys, and CHECK Constraints

• Table Options

• Table Partitioning

Table Name

• tbl_name

The table name can be specified as db_name.tbl_name to create the table in a specific database.
This works regardless of whether there is a default database, assuming that the database exists.
If you use quoted identifiers, quote the database and table names separately. For example, write
`mydb`.`mytbl`, not `mydb.mytbl`.

Rules for permissible table names are given in Section 11.2, “Schema Object Names”.

• IF NOT EXISTS

Prevents an error from occurring if the table exists. However, there is no verification that the existing
table has a structure identical to that indicated by the CREATE TABLE statement.

Temporary Tables

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only within
the current session, and is dropped automatically when the session is closed. For more information,
see Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”.

2729

CREATE TABLE Statement

Table Cloning and Copying

• LIKE

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

For more information, see Section 15.1.20.3, “CREATE TABLE ... LIKE Statement”.

• [AS] query_expression

To create one table from another, add a SELECT statement at the end of the CREATE TABLE
statement:

CREATE TABLE new_tbl AS SELECT * FROM orig_tbl;

For more information, see Section 15.1.20.4, “CREATE TABLE ... SELECT Statement”.

• IGNORE | REPLACE

The IGNORE and REPLACE options indicate how to handle rows that duplicate unique key values
when copying a table using a SELECT statement.

For more information, see Section 15.1.20.4, “CREATE TABLE ... SELECT Statement”.

Column Data Types and Attributes

There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given
table and depends on the factors discussed in Section 10.4.7, “Limits on Table Column Count and Row
Size”.

• data_type

data_type represents the data type in a column definition. For a full description of the syntax
available for specifying column data types, as well as information about the properties of each type,
see Chapter 13, Data Types.

• Some attributes do not apply to all data types. AUTO_INCREMENT applies only to integer and
floating-point types. Using AUTO_INCREMENT with FLOAT or DOUBLE columns is deprecated as of
MySQL 8.0.17; expect support for it to be removed in a future version of MySQL.

Prior to MySQL 8.0.13, DEFAULT does not apply to the BLOB, TEXT, GEOMETRY, and JSON types.

• Character data types (CHAR, VARCHAR, the TEXT types, ENUM, SET, and any synonyms) can
include CHARACTER SET to specify the character set for the column. CHARSET is a synonym for
CHARACTER SET. A collation for the character set can be specified with the COLLATE attribute,
along with any other attributes. For details, see Chapter 12, Character Sets, Collations, Unicode.
Example:

CREATE TABLE t (c CHAR(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin);

MySQL 8.0 interprets length specifications in character column definitions in characters. Lengths
for BINARY and VARBINARY are in bytes.

• For CHAR, VARCHAR, BINARY, and VARBINARY columns, indexes can be created that use only the
leading part of column values, using col_name(length) syntax to specify an index prefix length.
BLOB and TEXT columns also can be indexed, but a prefix length must be given. Prefix lengths are
given in characters for nonbinary string types and in bytes for binary string types. That is, index
entries consist of the first length characters of each column value for CHAR, VARCHAR, and TEXT
columns, and the first length bytes of each column value for BINARY, VARBINARY, and BLOB

2730

CREATE TABLE Statement

columns. Indexing only a prefix of column values like this can make the index file much smaller.
For additional information about index prefixes, see Section 15.1.15, “CREATE INDEX Statement”.

Only the InnoDB and MyISAM storage engines support indexing on BLOB and TEXT columns. For
example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

If a specified index prefix exceeds the maximum column data type size, CREATE TABLE handles
the index as follows:

• For a nonunique index, either an error occurs (if strict SQL mode is enabled), or the index length
is reduced to lie within the maximum column data type size and a warning is produced (if strict
SQL mode is not enabled).

• For a unique index, an error occurs regardless of SQL mode because reducing the index
length might enable insertion of nonunique entries that do not meet the specified uniqueness
requirement.

• JSON columns cannot be indexed. You can work around this restriction by creating an index on a
generated column that extracts a scalar value from the JSON column. See Indexing a Generated
Column to Provide a JSON Column Index, for a detailed example.

• NOT NULL | NULL

If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been
specified.

In MySQL 8.0, only the InnoDB, MyISAM, and MEMORY storage engines support indexes on columns
that can have NULL values. In other cases, you must declare indexed columns as NOT NULL or an
error results.

• DEFAULT

Specifies a default value for a column. For more information about default value handling, including
the case that a column definition includes no explicit DEFAULT value, see Section 13.6, “Data Type
Default Values”.

If the NO_ZERO_DATE or NO_ZERO_IN_DATE SQL mode is enabled and a date-valued default is
not correct according to that mode, CREATE TABLE produces a warning if strict SQL mode is not
enabled and an error if strict mode is enabled. For example, with NO_ZERO_IN_DATE enabled, c1
DATE DEFAULT '2010-00-00' produces a warning.

• VISIBLE, INVISIBLE

Specify column visibility. The default is VISIBLE if neither keyword is present. A table must have
at least one visible column. Attempting to make all columns invisible produces an error. For more
information, see Section 15.1.20.10, “Invisible Columns”.

The VISIBLE and INVISIBLE keywords are available as of MySQL 8.0.23. Prior to MySQL 8.0.23,
all columns are visible.

• AUTO_INCREMENT

An integer or floating-point column can have the additional attribute AUTO_INCREMENT. When you
insert a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column
is set to the next sequence value. Typically this is value+1, where value is the largest value for the
column currently in the table. AUTO_INCREMENT sequences begin with 1.

To retrieve an AUTO_INCREMENT value after inserting a row, use the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function. See Section 14.15, “Information Functions”,
and mysql_insert_id().

2731

https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html

CREATE TABLE Statement

If the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled, you can store 0 in AUTO_INCREMENT
columns as 0 without generating a new sequence value. See Section 7.1.11, “Server SQL Modes”.

There can be only one AUTO_INCREMENT column per table, it must be indexed, and it cannot have a
DEFAULT value. An AUTO_INCREMENT column works properly only if it contains only positive values.
Inserting a negative number is regarded as inserting a very large positive number. This is done to
avoid precision problems when numbers “wrap” over from positive to negative and also to ensure
that you do not accidentally get an AUTO_INCREMENT column that contains 0.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column
key. See Section 5.6.9, “Using AUTO_INCREMENT”.

To make MySQL compatible with some ODBC applications, you can find the AUTO_INCREMENT
value for the last inserted row with the following query:

SELECT * FROM tbl_name WHERE auto_col IS NULL

This method requires that sql_auto_is_null variable is not set to 0. See Section 7.1.8, “Server
System Variables”.

For information about InnoDB and AUTO_INCREMENT, see Section 17.6.1.6, “AUTO_INCREMENT
Handling in InnoDB”. For information about AUTO_INCREMENT and MySQL Replication, see
Section 19.5.1.1, “Replication and AUTO_INCREMENT”.

• COMMENT

A comment for a column can be specified with the COMMENT option, up to 1024 characters long. The
comment is displayed by the SHOW CREATE TABLE and SHOW FULL COLUMNS statements. It is
also shown in the COLUMN_COMMENT column of the Information Schema COLUMNS table.

• COLUMN_FORMAT

In NDB Cluster, it is also possible to specify a data storage format for individual columns of NDB
tables using COLUMN_FORMAT. Permissible column formats are FIXED, DYNAMIC, and DEFAULT.
FIXED is used to specify fixed-width storage, DYNAMIC permits the column to be variable-width,
and DEFAULT causes the column to use fixed-width or variable-width storage as determined by the
column's data type (possibly overridden by a ROW_FORMAT specifier).

For NDB tables, the default value for COLUMN_FORMAT is FIXED.

In NDB Cluster, the maximum possible offset for a column defined with COLUMN_FORMAT=FIXED
is 8188 bytes. For more information and possible workarounds, see Section 25.2.7.5, “Limits
Associated with Database Objects in NDB Cluster”.

COLUMN_FORMAT currently has no effect on columns of tables using storage engines other than NDB.
MySQL 8.0 silently ignores COLUMN_FORMAT.

• ENGINE_ATTRIBUTE and SECONDARY_ENGINE_ATTRIBUTE options (available as of MySQL
8.0.21) are used to specify column attributes for primary and secondary storage engines. The
options are reserved for future use.

Permitted values are a string literal containing a valid JSON document or an empty string (''). Invalid
JSON is rejected.

CREATE TABLE t1 (c1 INT ENGINE_ATTRIBUTE='{"key":"value"}');

ENGINE_ATTRIBUTE and SECONDARY_ENGINE_ATTRIBUTE values can be repeated without error.
In this case, the last specified value is used.

ENGINE_ATTRIBUTE and SECONDARY_ENGINE_ATTRIBUTE values are not checked by the server,
nor are they cleared when the table's storage engine is changed.

2732

CREATE TABLE Statement

• STORAGE

For NDB tables, it is possible to specify whether the column is stored on disk or in memory by using
a STORAGE clause. STORAGE DISK causes the column to be stored on disk, and STORAGE MEMORY
causes in-memory storage to be used. The CREATE TABLE statement used must still include a
TABLESPACE clause:

mysql> CREATE TABLE t1 (
 -> c1 INT STORAGE DISK,
 -> c2 INT STORAGE MEMORY
 ->) ENGINE NDB;
ERROR 1005 (HY000): Can't create table 'c.t1' (errno: 140)

mysql> CREATE TABLE t1 (
 -> c1 INT STORAGE DISK,
 -> c2 INT STORAGE MEMORY
 ->) TABLESPACE ts_1 ENGINE NDB;
Query OK, 0 rows affected (1.06 sec)

For NDB tables, STORAGE DEFAULT is equivalent to STORAGE MEMORY.

The STORAGE clause has no effect on tables using storage engines other than NDB. The STORAGE
keyword is supported only in the build of mysqld that is supplied with NDB Cluster; it is not
recognized in any other version of MySQL, where any attempt to use the STORAGE keyword causes
a syntax error.

• GENERATED ALWAYS

Used to specify a generated column expression. For information about generated columns, see
Section 15.1.20.8, “CREATE TABLE and Generated Columns”.

Stored generated columns can be indexed. InnoDB supports secondary indexes on virtual
generated columns. See Section 15.1.20.9, “Secondary Indexes and Generated Columns”.

Indexes, Foreign Keys, and CHECK Constraints

Several keywords apply to creation of indexes, foreign keys, and CHECK constraints. For general
background in addition to the following descriptions, see Section 15.1.15, “CREATE INDEX
Statement”, Section 15.1.20.5, “FOREIGN KEY Constraints”, and Section 15.1.20.6, “CHECK
Constraints”.

• CONSTRAINT symbol

The CONSTRAINT symbol clause may be given to name a constraint. If the clause is not given,
or a symbol is not included following the CONSTRAINT keyword, MySQL automatically generates
a constraint name, with the exception noted below. The symbol value, if used, must be unique
per schema (database), per constraint type. A duplicate symbol results in an error. See also the
discussion about length limits of generated constraint identifiers at Section 11.2.1, “Identifier Length
Limits”.

Note

If the CONSTRAINT symbol clause is not given in a foreign key definition, or
a symbol is not included following the CONSTRAINT keyword, MySQL uses
the foreign key index name up to MySQL 8.0.15, and automatically generates
a constraint name thereafter.

The SQL standard specifies that all types of constraints (primary key, unique index, foreign key,
check) belong to the same namespace. In MySQL, each constraint type has its own namespace
per schema. Consequently, names for each type of constraint must be unique per schema, but
constraints of different types can have the same name.

• PRIMARY KEY

2733

CREATE TABLE Statement

A unique index where all key columns must be defined as NOT NULL. If they are not explicitly
declared as NOT NULL, MySQL declares them so implicitly (and silently). A table can have only one
PRIMARY KEY. The name of a PRIMARY KEY is always PRIMARY, which thus cannot be used as the
name for any other kind of index.

If you do not have a PRIMARY KEY and an application asks for the PRIMARY KEY in your tables,
MySQL returns the first UNIQUE index that has no NULL columns as the PRIMARY KEY.

In InnoDB tables, keep the PRIMARY KEY short to minimize storage overhead for secondary
indexes. Each secondary index entry contains a copy of the primary key columns for the
corresponding row. (See Section 17.6.2.1, “Clustered and Secondary Indexes”.)

In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and then the
nonunique indexes. This helps the MySQL optimizer to prioritize which index to use and also more
quickly to detect duplicated UNIQUE keys.

A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-column
index using the PRIMARY KEY key attribute in a column specification. Doing so only marks that
single column as primary. You must use a separate PRIMARY KEY(key_part, ...) clause.

If a table has a PRIMARY KEY or UNIQUE NOT NULL index that consists of a single column that
has an integer type, you can use _rowid to refer to the indexed column in SELECT statements, as
described in Unique Indexes.

In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you do not assign a
name, the index is assigned the same name as the first indexed column, with an optional suffix
(_2, _3, ...) to make it unique. You can see index names for a table using SHOW INDEX FROM
tbl_name. See Section 15.7.7.22, “SHOW INDEX Statement”.

• KEY | INDEX

KEY is normally a synonym for INDEX. The key attribute PRIMARY KEY can also be specified as just
KEY when given in a column definition. This was implemented for compatibility with other database
systems.

• UNIQUE

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error
occurs if you try to add a new row with a key value that matches an existing row. For all engines,
a UNIQUE index permits multiple NULL values for columns that can contain NULL. If you specify a
prefix value for a column in a UNIQUE index, the column values must be unique within the prefix
length.

If a table has a PRIMARY KEY or UNIQUE NOT NULL index that consists of a single column that
has an integer type, you can use _rowid to refer to the indexed column in SELECT statements, as
described in Unique Indexes.

• FULLTEXT

A FULLTEXT index is a special type of index used for full-text searches. Only the InnoDB and
MyISAM storage engines support FULLTEXT indexes. They can be created only from CHAR,
VARCHAR, and TEXT columns. Indexing always happens over the entire column; column prefix
indexing is not supported and any prefix length is ignored if specified. See Section 14.9, “Full-
Text Search Functions”, for details of operation. A WITH PARSER clause can be specified as an
index_option value to associate a parser plugin with the index if full-text indexing and searching
operations need special handling. This clause is valid only for FULLTEXT indexes. InnoDB and
MyISAM support full-text parser plugins. See Full-Text Parser Plugins and Writing Full-Text Parser
Plugins for more information.

• SPATIAL

2734

https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-types.html#full-text-plugin-type
https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-full-text-plugins.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-full-text-plugins.html

CREATE TABLE Statement

You can create SPATIAL indexes on spatial data types. Spatial types are supported only for InnoDB
and MyISAM tables, and indexed columns must be declared as NOT NULL. See Section 13.4,
“Spatial Data Types”.

• FOREIGN KEY

MySQL supports foreign keys, which let you cross-reference related data across tables, and
foreign key constraints, which help keep this spread-out data consistent. For definition and option
information, see reference_definition, and reference_option.

Partitioned tables employing the InnoDB storage engine do not support foreign keys. See
Section 26.6, “Restrictions and Limitations on Partitioning”, for more information.

• CHECK

The CHECK clause enables the creation of constraints to be checked for data values in table rows.
See Section 15.1.20.6, “CHECK Constraints”.

• key_part

• A key_part specification can end with ASC or DESC to specify whether index values are stored in
ascending or descending order. The default is ascending if no order specifier is given.

• Prefixes, defined by the length attribute, can be up to 767 bytes long for InnoDB tables that use
the REDUNDANT or COMPACT row format. The prefix length limit is 3072 bytes for InnoDB tables
that use the DYNAMIC or COMPRESSED row format. For MyISAM tables, the prefix length limit is
1000 bytes.

Prefix limits are measured in bytes. However, prefix lengths for index specifications in CREATE
TABLE, ALTER TABLE, and CREATE INDEX statements are interpreted as number of characters
for nonbinary string types (CHAR, VARCHAR, TEXT) and number of bytes for binary string types
(BINARY, VARBINARY, BLOB). Take this into account when specifying a prefix length for a
nonbinary string column that uses a multibyte character set.

• Beginning with MySQL 8.0.17, the expr for a key_part specification can take the form (CAST
json_path AS type ARRAY) to create a multi-valued index on a JSON column. Multi-Valued
Indexes, provides detailed information regarding creation of, usage of, and restrictions and
limitations on multi-valued indexes.

• index_type

Some storage engines permit you to specify an index type when creating an index. The syntax for
the index_type specifier is USING type_name.

Example:

CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

The preferred position for USING is after the index column list. It can be given before the column
list, but support for use of the option in that position is deprecated and you should expect it to be
removed in a future MySQL release.

2735

CREATE TABLE Statement

• index_option

index_option values specify additional options for an index.

• KEY_BLOCK_SIZE

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index
key blocks. The value is treated as a hint; a different size could be used if necessary. A
KEY_BLOCK_SIZE value specified for an individual index definition overrides the table-level
KEY_BLOCK_SIZE value.

For information about the table-level KEY_BLOCK_SIZE attribute, see Table Options.

• WITH PARSER

The WITH PARSER option can be used only with FULLTEXT indexes. It associates a parser plugin
with the index if full-text indexing and searching operations need special handling. InnoDB and
MyISAM support full-text parser plugins. If you have a MyISAM table with an associated full-text
parser plugin, you can convert the table to InnoDB using ALTER TABLE.

• COMMENT

Index definitions can include an optional comment of up to 1024 characters.

You can set the InnoDB MERGE_THRESHOLD value for an individual index using the
index_option COMMENT clause. See Section 17.8.11, “Configuring the Merge Threshold for
Index Pages”.

• VISIBLE, INVISIBLE

Specify index visibility. Indexes are visible by default. An invisible index is not used by the
optimizer. Specification of index visibility applies to indexes other than primary keys (either explicit
or implicit). For more information, see Section 10.3.12, “Invisible Indexes”.

• ENGINE_ATTRIBUTE and SECONDARY_ENGINE_ATTRIBUTE options (available as of MySQL
8.0.21) are used to specify index attributes for primary and secondary storage engines. The
options are reserved for future use.

For more information about permissible index_option values, see Section 15.1.15, “CREATE
INDEX Statement”. For more information about indexes, see Section 10.3.1, “How MySQL Uses
Indexes”.

• reference_definition

For reference_definition syntax details and examples, see Section 15.1.20.5, “FOREIGN KEY
Constraints”.

InnoDB and NDB tables support checking of foreign key constraints. The columns of the referenced
table must always be explicitly named. Both ON DELETE and ON UPDATE actions on foreign keys
are supported. For more detailed information and examples, see Section 15.1.20.5, “FOREIGN KEY
Constraints”.

For other storage engines, MySQL Server parses and ignores the FOREIGN KEY syntax in CREATE
TABLE statements.

Important

For users familiar with the ANSI/ISO SQL Standard, please note that no
storage engine, including InnoDB, recognizes or enforces the MATCH clause
used in referential integrity constraint definitions. Use of an explicit MATCH
clause does not have the specified effect, and also causes ON DELETE and

2736

CREATE TABLE Statement

ON UPDATE clauses to be ignored. For these reasons, specifying MATCH
should be avoided.

The MATCH clause in the SQL standard controls how NULL values in a
composite (multiple-column) foreign key are handled when comparing to a
primary key. InnoDB essentially implements the semantics defined by MATCH
SIMPLE, which permit a foreign key to be all or partially NULL. In that case,
the (child table) row containing such a foreign key is permitted to be inserted,
and does not match any row in the referenced (parent) table. It is possible to
implement other semantics using triggers.

Additionally, MySQL requires that the referenced columns be indexed for
performance. However, InnoDB does not enforce any requirement that the
referenced columns be declared UNIQUE or NOT NULL. The handling of
foreign key references to nonunique keys or keys that contain NULL values is
not well defined for operations such as UPDATE or DELETE CASCADE. You
are advised to use foreign keys that reference only keys that are both UNIQUE
(or PRIMARY) and NOT NULL.

MySQL parses but ignores “inline REFERENCES specifications” (as defined
in the SQL standard) where the references are defined as part of the column
specification. MySQL accepts REFERENCES clauses only when specified as
part of a separate FOREIGN KEY specification. For more information, see
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”.

• reference_option

For information about the RESTRICT, CASCADE, SET NULL, NO ACTION, and SET DEFAULT
options, see Section 15.1.20.5, “FOREIGN KEY Constraints”.

Table Options

Table options are used to optimize the behavior of the table. In most cases, you do not have to specify
any of them. These options apply to all storage engines unless otherwise indicated. Options that do not
apply to a given storage engine may be accepted and remembered as part of the table definition. Such
options then apply if you later use ALTER TABLE to convert the table to use a different storage engine.

• ENGINE

Specifies the storage engine for the table, using one of the names shown in the following table. The
engine name can be unquoted or quoted. The quoted name 'DEFAULT' is recognized but ignored.

Storage Engine Description

InnoDB Transaction-safe tables with row locking and
foreign keys. The default storage engine for
new tables. See Chapter 17, The InnoDB
Storage Engine, and in particular Section 17.1,
“Introduction to InnoDB” if you have MySQL
experience but are new to InnoDB.

MyISAM The binary portable storage engine that is
primarily used for read-only or read-mostly
workloads. See Section 18.2, “The MyISAM
Storage Engine”.

MEMORY The data for this storage engine is stored only
in memory. See Section 18.3, “The MEMORY
Storage Engine”.

2737

CREATE TABLE Statement

Storage Engine Description

CSV Tables that store rows in comma-separated
values format. See Section 18.4, “The CSV
Storage Engine”.

ARCHIVE The archiving storage engine. See Section 18.5,
“The ARCHIVE Storage Engine”.

EXAMPLE An example engine. See Section 18.9, “The
EXAMPLE Storage Engine”.

FEDERATED Storage engine that accesses remote tables.
See Section 18.8, “The FEDERATED Storage
Engine”.

HEAP This is a synonym for MEMORY.

MERGE A collection of MyISAM tables used as one table.
Also known as MRG_MyISAM. See Section 18.7,
“The MERGE Storage Engine”.

NDB Clustered, fault-tolerant, memory-based tables,
supporting transactions and foreign keys. Also
known as NDBCLUSTER. See Chapter 25,
MySQL NDB Cluster 8.0.

By default, if a storage engine is specified that is not available, the statement fails with an error. You
can override this behavior by removing NO_ENGINE_SUBSTITUTION from the server SQL mode
(see Section 7.1.11, “Server SQL Modes”) so that MySQL allows substitution of the specified engine
with the default storage engine instead. Normally in such cases, this is InnoDB, which is the default
value for the default_storage_engine system variable. When NO_ENGINE_SUBSTITUTION is
disabled, a warning occurs if the storage engine specification is not honored.

• AUTOEXTEND_SIZE

Defines the amount by which InnoDB extends the size of the tablespace when it becomes full.
Introduced in MySQL 8.0.23. The setting must be a multiple of 4MB. The default setting is 0,
which causes the tablespace to be extended according to the implicit default behavior. For more
information, see Section 17.6.3.9, “Tablespace AUTOEXTEND_SIZE Configuration”.

• AUTO_INCREMENT

The initial AUTO_INCREMENT value for the table. In MySQL 8.0, this works for MyISAM, MEMORY,
InnoDB, and ARCHIVE tables. To set the first auto-increment value for engines that do not support
the AUTO_INCREMENT table option, insert a “dummy” row with a value one less than the desired
value after creating the table, and then delete the dummy row.

For engines that support the AUTO_INCREMENT table option in CREATE TABLE statements, you can
also use ALTER TABLE tbl_name AUTO_INCREMENT = N to reset the AUTO_INCREMENT value.
The value cannot be set lower than the maximum value currently in the column.

• AVG_ROW_LENGTH

An approximation of the average row length for your table. You need to set this only for large tables
with variable-size rows.

When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and
AVG_ROW_LENGTH options to decide how big the resulting table is. If you don't specify either option,
the maximum size for MyISAM data and index files is 256TB by default. (If your operating system
does not support files that large, table sizes are constrained by the file size limit.) If you want to
keep down the pointer sizes to make the index smaller and faster and you don't really need big files,
you can decrease the default pointer size by setting the myisam_data_pointer_size system
variable. (See Section 7.1.8, “Server System Variables”.) If you want all your tables to be able

2738

CREATE TABLE Statement

to grow above the default limit and are willing to have your tables slightly slower and larger than
necessary, you can increase the default pointer size by setting this variable. Setting the value to 7
permits table sizes up to 65,536TB.

• [DEFAULT] CHARACTER SET

Specifies a default character set for the table. CHARSET is a synonym for CHARACTER SET. If the
character set name is DEFAULT, the database character set is used.

• CHECKSUM

Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum that
MySQL updates automatically as the table changes). This makes the table a little slower to update,
but also makes it easier to find corrupted tables. The CHECKSUM TABLE statement reports the
checksum. (MyISAM only.)

• [DEFAULT] COLLATE

Specifies a default collation for the table.

• COMMENT

A comment for the table, up to 2048 characters long.

You can set the InnoDB MERGE_THRESHOLD value for a table using the table_option COMMENT
clause. See Section 17.8.11, “Configuring the Merge Threshold for Index Pages”.

Setting NDB_TABLE options. The table comment in a CREATE TABLE that creates an NDB
table or an ALTER TABLE statement which alters one can also be used to specify one to four of the
NDB_TABLE options NOLOGGING, READ_BACKUP, PARTITION_BALANCE, or FULLY_REPLICATED
as a set of name-value pairs, separated by commas if need be, immediately following the string
NDB_TABLE= that begins the quoted comment text. An example statement using this syntax is
shown here (emphasized text):

CREATE TABLE t1 (
 c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c2 VARCHAR(100),
 c3 VARCHAR(100))
ENGINE=NDB
COMMENT="NDB_TABLE=READ_BACKUP=0,PARTITION_BALANCE=FOR_RP_BY_NODE";

Spaces are not permitted within the quoted string. The string is case-insensitive.

The comment is displayed as part of the output of SHOW CREATE TABLE. The text of the comment is
also available as the TABLE_COMMENT column of the MySQL Information Schema TABLES table.

This comment syntax is also supported with ALTER TABLE statements for NDB tables. Keep in mind
that a table comment used with ALTER TABLE replaces any existing comment which the table might
have had previously.

Setting the MERGE_THRESHOLD option in table comments is not supported for NDB tables (it is
ignored).

For complete syntax information and examples, see Section 15.1.20.12, “Setting NDB Comment
Options”.

• COMPRESSION

The compression algorithm used for page level compression for InnoDB tables. Supported values
include Zlib, LZ4, and None. The COMPRESSION attribute was introduced with the transparent page
compression feature. Page compression is only supported with InnoDB tables that reside in file-per-
table tablespaces, and is only available on Linux and Windows platforms that support sparse files
and hole punching. For more information, see Section 17.9.2, “InnoDB Page Compression”.

2739

CREATE TABLE Statement

• CONNECTION

The connection string for a FEDERATED table.

Note

Older versions of MySQL used a COMMENT option for the connection string.

• DATA DIRECTORY, INDEX DIRECTORY

For InnoDB, the DATA DIRECTORY='directory' clause permits creating tables outside of
the data directory. The innodb_file_per_table variable must be enabled to use the DATA
DIRECTORY clause. The full directory path must be specified. As of MySQL 8.0.21, the directory
specified must be known to InnoDB. For more information, see Section 17.6.1.2, “Creating Tables
Externally”.

When creating MyISAM tables, you can use the DATA DIRECTORY='directory' clause, the
INDEX DIRECTORY='directory' clause, or both. They specify where to put a MyISAM table's
data file and index file, respectively. Unlike InnoDB tables, MySQL does not create subdirectories
that correspond to the database name when creating a MyISAM table with a DATA DIRECTORY or
INDEX DIRECTORY option. Files are created in the directory that is specified.

You must have the FILE privilege to use the DATA DIRECTORY or INDEX DIRECTORY table option.

Important

Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored
for partitioned tables. (Bug #32091)

These options work only when you are not using the --skip-symbolic-links option. Your
operating system must also have a working, thread-safe realpath() call. See Section 10.12.2.2,
“Using Symbolic Links for MyISAM Tables on Unix”, for more complete information.

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the
database directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The
same applies to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this
behavior, start the server with the --keep_files_on_create option, in which case MyISAM does
not overwrite existing files and returns an error instead.

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error, and does not overwrite a file in the
specified directory.

Important

You cannot use path names that contain the MySQL data directory with DATA
DIRECTORY or INDEX DIRECTORY. This includes partitioned tables and
individual table partitions. (See Bug #32167.)

• DELAY_KEY_WRITE

Set this to 1 if you want to delay key updates for the table until the table is closed. See the
description of the delay_key_write system variable in Section 7.1.8, “Server System Variables”.
(MyISAM only.)

• ENCRYPTION

The ENCRYPTION clause enables or disables page-level data encryption for an InnoDB table. A
keyring plugin must be installed and configured before encryption can be enabled. Prior to MySQL
8.0.16, the ENCRYPTION clause can only be specified when creating a table in an a file-per-table

2740

CREATE TABLE Statement

tablespace. As of MySQL 8.0.16, the ENCRYPTION clause can also be specified when creating a
table in a general tablespace.

The ENCRYPTION option is supported only by the InnoDB storage engine; thus it works only
if the default storage engine is InnoDB, or if the CREATE TABLE statement also specifies
ENGINE=InnoDB. Otherwise the statement is rejected with ER_CHECK_NOT_IMPLEMENTED.

As of MySQL 8.0.16, a table inherits the default schema encryption if an ENCRYPTION clause
is not specified. If the table_encryption_privilege_check variable is enabled, the
TABLE_ENCRYPTION_ADMIN privilege is required to create a table with an ENCRYPTION clause
setting that differs from the default schema encryption. When creating a table in a general
tablespace, table and tablespace encryption must match.

As of MySQL 8.0.16, specifying an ENCRYPTION clause with a value other than 'N' or '' is not
permitted when using a storage engine that does not support encryption. Previously, the clause was
accepted.

For more information, see Section 17.13, “InnoDB Data-at-Rest Encryption”.

• ENGINE_ATTRIBUTE and SECONDARY_ENGINE_ATTRIBUTE options (available as of MySQL
8.0.21) are used to specify table attributes for primary and secondary storage engines. The options
are reserved for future use.

Permitted values are a string literal containing a valid JSON document or an empty string (''). Invalid
JSON is rejected.

CREATE TABLE t1 (c1 INT) ENGINE_ATTRIBUTE='{"key":"value"}';

ENGINE_ATTRIBUTE and SECONDARY_ENGINE_ATTRIBUTE values can be repeated without error.
In this case, the last specified value is used.

ENGINE_ATTRIBUTE and SECONDARY_ENGINE_ATTRIBUTE values are not checked by the server,
nor are they cleared when the table's storage engine is changed.

• INSERT_METHOD

If you want to insert data into a MERGE table, you must specify with INSERT_METHOD the table into
which the row should be inserted. INSERT_METHOD is an option useful for MERGE tables only. Use a
value of FIRST or LAST to have inserts go to the first or last table, or a value of NO to prevent inserts.
See Section 18.7, “The MERGE Storage Engine”.

• KEY_BLOCK_SIZE

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index
key blocks. The value is treated as a hint; a different size could be used if necessary. A
KEY_BLOCK_SIZE value specified for an individual index definition overrides the table-level
KEY_BLOCK_SIZE value.

For InnoDB tables, KEY_BLOCK_SIZE specifies the page size in kilobytes to use for compressed
InnoDB tables. The KEY_BLOCK_SIZE value is treated as a hint; a different size could
be used by InnoDB if necessary. KEY_BLOCK_SIZE can only be less than or equal to the
innodb_page_size value. A value of 0 represents the default compressed page size, which is half
of the innodb_page_size value. Depending on innodb_page_size, possible KEY_BLOCK_SIZE
values include 0, 1, 2, 4, 8, and 16. See Section 17.9.1, “InnoDB Table Compression” for more
information.

Oracle recommends enabling innodb_strict_mode when specifying KEY_BLOCK_SIZE for
InnoDB tables. When innodb_strict_mode is enabled, specifying an invalid KEY_BLOCK_SIZE

2741

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_check_not_implemented

CREATE TABLE Statement

value returns an error. If innodb_strict_mode is disabled, an invalid KEY_BLOCK_SIZE value
results in a warning, and the KEY_BLOCK_SIZE option is ignored.

The Create_options column in response to SHOW TABLE STATUS reports the actual
KEY_BLOCK_SIZE used by the table, as does SHOW CREATE TABLE.

InnoDB only supports KEY_BLOCK_SIZE at the table level.

KEY_BLOCK_SIZE is not supported with 32KB and 64KB innodb_page_size values. InnoDB
table compression does not support these pages sizes.

InnoDB does not support the KEY_BLOCK_SIZE option when creating temporary tables.

• MAX_ROWS

The maximum number of rows you plan to store in the table. This is not a hard limit, but rather a hint
to the storage engine that the table must be able to store at least this many rows.

Important

The use of MAX_ROWS with NDB tables to control the number of table
partitions is deprecated. It remains supported in later versions for
backward compatibility, but is subject to removal in a future release. Use
PARTITION_BALANCE instead; see Setting NDB_TABLE options.

The NDB storage engine treats this value as a maximum. If you plan to create very large NDB Cluster
tables (containing millions of rows), you should use this option to insure that NDB allocates sufficient
number of index slots in the hash table used for storing hashes of the table's primary keys by setting
MAX_ROWS = 2 * rows, where rows is the number of rows that you expect to insert into the table.

The maximum MAX_ROWS value is 4294967295; larger values are truncated to this limit.

• MIN_ROWS

The minimum number of rows you plan to store in the table. The MEMORY storage engine uses this
option as a hint about memory use.

• PACK_KEYS

Takes effect only with MyISAM tables. Set this option to 1 if you want to have smaller indexes.
This usually makes updates slower and reads faster. Setting the option to 0 disables all packing of
keys. Setting it to DEFAULT tells the storage engine to pack only long CHAR, VARCHAR, BINARY, or
VARBINARY columns.

If you do not use PACK_KEYS, the default is to pack strings, but not numbers. If you use
PACK_KEYS=1, numbers are packed as well.

When packing binary number keys, MySQL uses prefix compression:

• Every key needs one extra byte to indicate how many bytes of the previous key are the same for
the next key.

• The pointer to the row is stored in high-byte-first order directly after the key, to improve
compression.

This means that if you have many equal keys on two consecutive rows, all following “same” keys
usually only take two bytes (including the pointer to the row). Compare this to the ordinary case
where the following keys takes storage_size_for_key + pointer_size (where the pointer
size is usually 4). Conversely, you get a significant benefit from prefix compression only if you have
many numbers that are the same. If all keys are totally different, you use one byte more per key, if

2742

CREATE TABLE Statement

the key is not a key that can have NULL values. (In this case, the packed key length is stored in the
same byte that is used to mark if a key is NULL.)

• PASSWORD

This option is unused.

• ROW_FORMAT

Defines the physical format in which the rows are stored.

When creating a table with strict mode disabled, the storage engine's default row format is used
if the specified row format is not supported. The actual row format of the table is reported in the
Row_format column in response to SHOW TABLE STATUS. The Create_options column shows
the row format that was specified in the CREATE TABLE statement, as does SHOW CREATE TABLE.

Row format choices differ depending on the storage engine used for the table.

For InnoDB tables:

• The default row format is defined by innodb_default_row_format, which has a default setting
of DYNAMIC. The default row format is used when the ROW_FORMAT option is not defined or when
ROW_FORMAT=DEFAULT is used.

If the ROW_FORMAT option is not defined, or if ROW_FORMAT=DEFAULT is used, operations
that rebuild a table also silently change the row format of the table to the default defined by
innodb_default_row_format. For more information, see Defining the Row Format of a Table.

• For more efficient InnoDB storage of data types, especially BLOB types, use the DYNAMIC. See
DYNAMIC Row Format for requirements associated with the DYNAMIC row format.

• To enable compression for InnoDB tables, specify ROW_FORMAT=COMPRESSED. The
ROW_FORMAT=COMPRESSED option is not supported when creating temporary tables. See
Section 17.9, “InnoDB Table and Page Compression” for requirements associated with the
COMPRESSED row format.

• The row format used in older versions of MySQL can still be requested by specifying the
REDUNDANT row format.

• When you specify a non-default ROW_FORMAT clause, consider also enabling the
innodb_strict_mode configuration option.

• ROW_FORMAT=FIXED is not supported. If ROW_FORMAT=FIXED is specified while
innodb_strict_mode is disabled, InnoDB issues a warning and assumes
ROW_FORMAT=DYNAMIC. If ROW_FORMAT=FIXED is specified while innodb_strict_mode is
enabled, which is the default, InnoDB returns an error.

• For additional information about InnoDB row formats, see Section 17.10, “InnoDB Row Formats”.

For MyISAM tables, the option value can be FIXED or DYNAMIC for static or variable-length row
format. myisampack sets the type to COMPRESSED. See Section 18.2.3, “MyISAM Table Storage
Formats”.

For NDB tables, the default ROW_FORMAT is DYNAMIC.

• START TRANSACTION

This is an internal-use table option. It was introduced in MySQL 8.0.21 to permit CREATE
TABLE ... SELECT to be logged as a single, atomic transaction in the binary log when using
row-based replication with a storage engine that supports atomic DDL. Only BINLOG, COMMIT, and

2743

CREATE TABLE Statement

ROLLBACK statements are permitted after CREATE TABLE ... START TRANSACTION. For related
information, see Section 15.1.1, “Atomic Data Definition Statement Support”.

• STATS_AUTO_RECALC

Specifies whether to automatically recalculate persistent statistics for an InnoDB table. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_auto_recalc configuration option. The value 1 causes statistics to be
recalculated when 10% of the data in the table has changed. The value 0 prevents automatic
recalculation for this table; with this setting, issue an ANALYZE TABLE statement to recalculate the
statistics after making substantial changes to the table. For more information about the persistent
statistics feature, see Section 17.8.10.1, “Configuring Persistent Optimizer Statistics Parameters”.

• STATS_PERSISTENT

Specifies whether to enable persistent statistics for an InnoDB table. The value DEFAULT causes
the persistent statistics setting for the table to be determined by the innodb_stats_persistent
configuration option. The value 1 enables persistent statistics for the table, while the value 0
turns off this feature. After enabling persistent statistics through a CREATE TABLE or ALTER
TABLE statement, issue an ANALYZE TABLE statement to calculate the statistics, after loading
representative data into the table. For more information about the persistent statistics feature, see
Section 17.8.10.1, “Configuring Persistent Optimizer Statistics Parameters”.

• STATS_SAMPLE_PAGES

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. For more information, see Section 17.8.10.1,
“Configuring Persistent Optimizer Statistics Parameters”.

• TABLESPACE

The TABLESPACE clause can be used to create an InnoDB table in an existing general tablespace,
a file-per-table tablespace, or the system tablespace.

CREATE TABLE tbl_name ... TABLESPACE [=] tablespace_name

The general tablespace that you specify must exist prior to using the TABLESPACE clause. For
information about general tablespaces, see Section 17.6.3.3, “General Tablespaces”.

The tablespace_name is a case-sensitive identifier. It may be quoted or unquoted. The forward
slash character (“/”) is not permitted. Names beginning with “innodb_” are reserved for special use.

To create a table in the system tablespace, specify innodb_system as the tablespace name.

CREATE TABLE tbl_name ... TABLESPACE [=] innodb_system

Using TABLESPACE [=] innodb_system, you can place a table of any uncompressed row format
in the system tablespace regardless of the innodb_file_per_table setting. For example, you
can add a table with ROW_FORMAT=DYNAMIC to the system tablespace using TABLESPACE [=]
innodb_system.

To create a table in a file-per-table tablespace, specify innodb_file_per_table as the
tablespace name.

CREATE TABLE tbl_name ... TABLESPACE [=] innodb_file_per_table

Note

If innodb_file_per_table is enabled, you need not specify
TABLESPACE=innodb_file_per_table to create an InnoDB file-per-table
tablespace. InnoDB tables are created in file-per-table tablespaces by default
when innodb_file_per_table is enabled.

2744

CREATE TABLE Statement

The DATA DIRECTORY clause is permitted with CREATE TABLE ...
TABLESPACE=innodb_file_per_table but is otherwise not supported for use in combination
with the TABLESPACE clause. As of MySQL 8.0.21, the directory specified in a DATA DIRECTORY
clause must be known to InnoDB. For more information, see Using the DATA DIRECTORY Clause.

Note

Support for TABLESPACE = innodb_file_per_table and TABLESPACE
= innodb_temporary clauses with CREATE TEMPORARY TABLE is
deprecated as of MySQL 8.0.13; expect it to be removed in a future version of
MySQL.

The STORAGE table option is employed only with NDB tables. STORAGE determines the type of
storage used, and can be either of DISK or MEMORY.

TABLESPACE ... STORAGE DISK assigns a table to an NDB Cluster Disk Data tablespace.
STORAGE DISK cannot be used in CREATE TABLE unless preceded by TABLESPACE
tablespace_name.

For STORAGE MEMORY, the tablespace name is optional, thus, you can use TABLESPACE
tablespace_name STORAGE MEMORY or simply STORAGE MEMORY to specify explicitly that the
table is in-memory.

See Section 25.6.11, “NDB Cluster Disk Data Tables”, for more information.

• UNION

Used to access a collection of identical MyISAM tables as one. This works only with MERGE tables.
See Section 18.7, “The MERGE Storage Engine”.

You must have SELECT, UPDATE, and DELETE privileges for the tables you map to a MERGE table.

Note

Formerly, all tables used had to be in the same database as the MERGE table
itself. This restriction no longer applies.

Table Partitioning

partition_options can be used to control partitioning of the table created with CREATE TABLE.

Not all options shown in the syntax for partition_options at the beginning of this section
are available for all partitioning types. Please see the listings for the following individual types for
information specific to each type, and see Chapter 26, Partitioning, for more complete information
about the workings of and uses for partitioning in MySQL, as well as additional examples of table
creation and other statements relating to MySQL partitioning.

Partitions can be modified, merged, added to tables, and dropped from tables. For basic information
about the MySQL statements to accomplish these tasks, see Section 15.1.9, “ALTER TABLE
Statement”. For more detailed descriptions and examples, see Section 26.3, “Partition Management”.

• PARTITION BY

If used, a partition_options clause begins with PARTITION BY. This clause contains the
function that is used to determine the partition; the function returns an integer value ranging from 1 to
num, where num is the number of partitions. (The maximum number of user-defined partitions which
a table may contain is 1024; the number of subpartitions—discussed later in this section—is included
in this maximum.)

2745

CREATE TABLE Statement

Note

The expression (expr) used in a PARTITION BY clause cannot refer to any
columns not in the table being created; such references are specifically not
permitted and cause the statement to fail with an error. (Bug #29444)

• HASH(expr)

Hashes one or more columns to create a key for placing and locating rows. expr is an expression
using one or more table columns. This can be any valid MySQL expression (including MySQL
functions) that yields a single integer value. For example, these are both valid CREATE TABLE
statements using PARTITION BY HASH:

CREATE TABLE t1 (col1 INT, col2 CHAR(5))
 PARTITION BY HASH(col1);

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATETIME)
 PARTITION BY HASH (YEAR(col3));

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY HASH.

PARTITION BY HASH uses the remainder of expr divided by the number of partitions (that is, the
modulus). For examples and additional information, see Section 26.2.4, “HASH Partitioning”.

The LINEAR keyword entails a somewhat different algorithm. In this case, the number of the partition
in which a row is stored is calculated as the result of one or more logical AND operations. For
discussion and examples of linear hashing, see Section 26.2.4.1, “LINEAR HASH Partitioning”.

• KEY(column_list)

This is similar to HASH, except that MySQL supplies the hashing function so as to guarantee an even
data distribution. The column_list argument is simply a list of 1 or more table columns (maximum:
16). This example shows a simple table partitioned by key, with 4 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY KEY(col3)
 PARTITIONS 4;

For tables that are partitioned by key, you can employ linear partitioning by using the LINEAR
keyword. This has the same effect as with tables that are partitioned by HASH. That is, the partition
number is found using the & operator rather than the modulus (see Section 26.2.4.1, “LINEAR
HASH Partitioning”, and Section 26.2.5, “KEY Partitioning”, for details). This example uses linear
partitioning by key to distribute data between 5 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY LINEAR KEY(col3)
 PARTITIONS 5;

The ALGORITHM={1 | 2} option is supported with [SUB]PARTITION BY [LINEAR] KEY.
ALGORITHM=1 causes the server to use the same key-hashing functions as MySQL 5.1;
ALGORITHM=2 means that the server employs the key-hashing functions implemented and used by
default for new KEY partitioned tables in MySQL 5.5 and later. (Partitioned tables created with the
key-hashing functions employed in MySQL 5.5 and later cannot be used by a MySQL 5.1 server.)
Not specifying the option has the same effect as using ALGORITHM=2. This option is intended for
use chiefly when upgrading or downgrading [LINEAR] KEY partitioned tables between MySQL
5.1 and later MySQL versions, or for creating tables partitioned by KEY or LINEAR KEY on a

2746

CREATE TABLE Statement

MySQL 5.5 or later server which can be used on a MySQL 5.1 server. For more information, see
Section 15.1.9.1, “ALTER TABLE Partition Operations”.

mysqldump writes this option encased in versioned comments.

ALGORITHM=1 is shown when necessary in the output of SHOW CREATE TABLE using versioned
comments in the same manner as mysqldump. ALGORITHM=2 is always omitted from SHOW
CREATE TABLE output, even if this option was specified when creating the original table.

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY KEY.

• RANGE(expr)

In this case, expr shows a range of values using a set of VALUES LESS THAN operators. When
using range partitioning, you must define at least one partition using VALUES LESS THAN. You
cannot use VALUES IN with range partitioning.

Note

For tables partitioned by RANGE, VALUES LESS THAN must be used with
either an integer literal value or an expression that evaluates to a single
integer value. In MySQL 8.0, you can overcome this limitation in a table that
is defined using PARTITION BY RANGE COLUMNS, as described later in this
section.

Suppose that you have a table that you wish to partition on a column containing year values,
according to the following scheme.

Partition Number: Years Range:

0 1990 and earlier

1 1991 to 1994

2 1995 to 1998

3 1999 to 2002

4 2003 to 2005

5 2006 and later

A table implementing such a partitioning scheme can be realized by the CREATE TABLE statement
shown here:

CREATE TABLE t1 (
 year_col INT,
 some_data INT
)
PARTITION BY RANGE (year_col) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (1999),
 PARTITION p3 VALUES LESS THAN (2002),
 PARTITION p4 VALUES LESS THAN (2006),
 PARTITION p5 VALUES LESS THAN MAXVALUE
);

PARTITION ... VALUES LESS THAN ... statements work in a consecutive fashion. VALUES
LESS THAN MAXVALUE works to specify “leftover” values that are greater than the maximum value
otherwise specified.

VALUES LESS THAN clauses work sequentially in a manner similar to that of the case portions of a
switch ... case block (as found in many programming languages such as C, Java, and PHP).
That is, the clauses must be arranged in such a way that the upper limit specified in each successive

2747

CREATE TABLE Statement

VALUES LESS THAN is greater than that of the previous one, with the one referencing MAXVALUE
coming last of all in the list.

• RANGE COLUMNS(column_list)

This variant on RANGE facilitates partition pruning for queries using range conditions on multiple
columns (that is, having conditions such as WHERE a = 1 AND b < 10 or WHERE a = 1 AND
b = 10 AND c < 10). It enables you to specify value ranges in multiple columns by using a list
of columns in the COLUMNS clause and a set of column values in each PARTITION ... VALUES
LESS THAN (value_list) partition definition clause. (In the simplest case, this set consists of a
single column.) The maximum number of columns that can be referenced in the column_list and
value_list is 16.

The column_list used in the COLUMNS clause may contain only names of columns; each column
in the list must be one of the following MySQL data types: the integer types; the string types; and
time or date column types. Columns using BLOB, TEXT, SET, ENUM, BIT, or spatial data types are
not permitted; columns that use floating-point number types are also not permitted. You also may not
use functions or arithmetic expressions in the COLUMNS clause.

The VALUES LESS THAN clause used in a partition definition must specify a literal value for each
column that appears in the COLUMNS() clause; that is, the list of values used for each VALUES
LESS THAN clause must contain the same number of values as there are columns listed in the
COLUMNS clause. An attempt to use more or fewer values in a VALUES LESS THAN clause than
there are in the COLUMNS clause causes the statement to fail with the error Inconsistency
in usage of column lists for partitioning.... You cannot use NULL for any value
appearing in VALUES LESS THAN. It is possible to use MAXVALUE more than once for a given
column other than the first, as shown in this example:

CREATE TABLE rc (
 a INT NOT NULL,
 b INT NOT NULL
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (10,5),
 PARTITION p1 VALUES LESS THAN (20,10),
 PARTITION p2 VALUES LESS THAN (50,MAXVALUE),
 PARTITION p3 VALUES LESS THAN (65,MAXVALUE),
 PARTITION p4 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

Each value used in a VALUES LESS THAN value list must match the type of the corresponding
column exactly; no conversion is made. For example, you cannot use the string '1' for a value that
matches a column that uses an integer type (you must use the numeral 1 instead), nor can you use
the numeral 1 for a value that matches a column that uses a string type (in such a case, you must
use a quoted string: '1').

For more information, see Section 26.2.1, “RANGE Partitioning”, and Section 26.4, “Partition
Pruning”.

• LIST(expr)

This is useful when assigning partitions based on a table column with a restricted set of possible
values, such as a state or country code. In such a case, all rows pertaining to a certain state or
country can be assigned to a single partition, or a partition can be reserved for a certain set of states
or countries. It is similar to RANGE, except that only VALUES IN may be used to specify permissible
values for each partition.

VALUES IN is used with a list of values to be matched. For instance, you could create a partitioning
scheme such as the following:

CREATE TABLE client_firms (
 id INT,
 name VARCHAR(35)

2748

CREATE TABLE Statement

)
PARTITION BY LIST (id) (
 PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
 PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
 PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
 PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)
);

When using list partitioning, you must define at least one partition using VALUES IN. You cannot use
VALUES LESS THAN with PARTITION BY LIST.

Note

For tables partitioned by LIST, the value list used with VALUES IN must
consist of integer values only. In MySQL 8.0, you can overcome this limitation
using partitioning by LIST COLUMNS, which is described later in this section.

• LIST COLUMNS(column_list)

This variant on LIST facilitates partition pruning for queries using comparison conditions on multiple
columns (that is, having conditions such as WHERE a = 5 AND b = 5 or WHERE a = 1 AND
b = 10 AND c = 5). It enables you to specify values in multiple columns by using a list of
columns in the COLUMNS clause and a set of column values in each PARTITION ... VALUES IN
(value_list) partition definition clause.

The rules governing regarding data types for the column list used in LIST
COLUMNS(column_list) and the value list used in VALUES IN(value_list) are the same
as those for the column list used in RANGE COLUMNS(column_list) and the value list used
in VALUES LESS THAN(value_list), respectively, except that in the VALUES IN clause,
MAXVALUE is not permitted, and you may use NULL.

There is one important difference between the list of values used for VALUES IN with PARTITION
BY LIST COLUMNS as opposed to when it is used with PARTITION BY LIST. When used with
PARTITION BY LIST COLUMNS, each element in the VALUES IN clause must be a set of column
values; the number of values in each set must be the same as the number of columns used in the
COLUMNS clause, and the data types of these values must match those of the columns (and occur in
the same order). In the simplest case, the set consists of a single column. The maximum number of
columns that can be used in the column_list and in the elements making up the value_list is
16.

The table defined by the following CREATE TABLE statement provides an example of a table using
LIST COLUMNS partitioning:

CREATE TABLE lc (
 a INT NULL,
 b INT NULL
)
PARTITION BY LIST COLUMNS(a,b) (
 PARTITION p0 VALUES IN((0,0), (NULL,NULL)),
 PARTITION p1 VALUES IN((0,1), (0,2), (0,3), (1,1), (1,2)),
 PARTITION p2 VALUES IN((1,0), (2,0), (2,1), (3,0), (3,1)),
 PARTITION p3 VALUES IN((1,3), (2,2), (2,3), (3,2), (3,3))
);

2749

CREATE TABLE Statement

• PARTITIONS num

The number of partitions may optionally be specified with a PARTITIONS num clause, where num
is the number of partitions. If both this clause and any PARTITION clauses are used, num must be
equal to the total number of any partitions that are declared using PARTITION clauses.

Note

Whether or not you use a PARTITIONS clause in creating a table that is
partitioned by RANGE or LIST, you must still include at least one PARTITION
VALUES clause in the table definition (see below).

• SUBPARTITION BY

A partition may optionally be divided into a number of subpartitions. This can be indicated by using
the optional SUBPARTITION BY clause. Subpartitioning may be done by HASH or KEY. Either of
these may be LINEAR. These work in the same way as previously described for the equivalent
partitioning types. (It is not possible to subpartition by LIST or RANGE.)

The number of subpartitions can be indicated using the SUBPARTITIONS keyword followed by an
integer value.

• Rigorous checking of the value used in PARTITIONS or SUBPARTITIONS clauses is applied and this
value must adhere to the following rules:

• The value must be a positive, nonzero integer.

• No leading zeros are permitted.

• The value must be an integer literal, and cannot not be an expression. For example, PARTITIONS
0.2E+01 is not permitted, even though 0.2E+01 evaluates to 2. (Bug #15890)

• partition_definition

Each partition may be individually defined using a partition_definition clause. The individual
parts making up this clause are as follows:

• PARTITION partition_name

Specifies a logical name for the partition.

• VALUES

For range partitioning, each partition must include a VALUES LESS THAN clause; for list
partitioning, you must specify a VALUES IN clause for each partition. This is used to determine
which rows are to be stored in this partition. See the discussions of partitioning types in
Chapter 26, Partitioning, for syntax examples.

• [STORAGE] ENGINE

MySQL accepts a [STORAGE] ENGINE option for both PARTITION and SUBPARTITION.
Currently, the only way in which this option can be used is to set all partitions or all subpartitions
to the same storage engine, and an attempt to set different storage engines for partitions

2750

CREATE TABLE Statement

or subpartitions in the same table raises the error ERROR 1469 (HY000): The mix of
handlers in the partitions is not permitted in this version of MySQL.

• COMMENT

An optional COMMENT clause may be used to specify a string that describes the partition. Example:

COMMENT = 'Data for the years previous to 1999'

The maximum length for a partition comment is 1024 characters.

• DATA DIRECTORY and INDEX DIRECTORY

DATA DIRECTORY and INDEX DIRECTORY may be used to indicate the directory where,
respectively, the data and indexes for this partition are to be stored. Both the data_dir and the
index_dir must be absolute system path names.

As of MySQL 8.0.21, the directory specified in a DATA DIRECTORY clause must be known to
InnoDB. For more information, see Using the DATA DIRECTORY Clause.

You must have the FILE privilege to use the DATA DIRECTORY or INDEX DIRECTORY partition
option.

Example:

CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(
 PARTITION p1999 VALUES IN (1995, 1999, 2003)
 DATA DIRECTORY = '/var/appdata/95/data'
 INDEX DIRECTORY = '/var/appdata/95/idx',
 PARTITION p2000 VALUES IN (1996, 2000, 2004)
 DATA DIRECTORY = '/var/appdata/96/data'
 INDEX DIRECTORY = '/var/appdata/96/idx',
 PARTITION p2001 VALUES IN (1997, 2001, 2005)
 DATA DIRECTORY = '/var/appdata/97/data'
 INDEX DIRECTORY = '/var/appdata/97/idx',
 PARTITION p2002 VALUES IN (1998, 2002, 2006)
 DATA DIRECTORY = '/var/appdata/98/data'
 INDEX DIRECTORY = '/var/appdata/98/idx'
);

DATA DIRECTORY and INDEX DIRECTORY behave in the same way as in the CREATE TABLE
statement's table_option clause as used for MyISAM tables.

One data directory and one index directory may be specified per partition. If left unspecified, the
data and indexes are stored by default in the table's database directory.

The DATA DIRECTORY and INDEX DIRECTORY options are ignored for creating partitioned tables
if NO_DIR_IN_CREATE is in effect.

• MAX_ROWS and MIN_ROWS

May be used to specify, respectively, the maximum and minimum number of rows to be stored in
the partition. The values for max_number_of_rows and min_number_of_rows must be positive

2751

CREATE TABLE Statement

integers. As with the table-level options with the same names, these act only as “suggestions” to
the server and are not hard limits.

• TABLESPACE

May be used to designate an InnoDB file-per-table tablespace for the partition by specifying
TABLESPACE `innodb_file_per_table`. All partitions must belong to the same storage
engine.

Placing InnoDB table partitions in shared InnoDB tablespaces is not supported. Shared
tablespaces include the InnoDB system tablespace and general tablespaces.

• subpartition_definition

The partition definition may optionally contain one or more subpartition_definition clauses.
Each of these consists at a minimum of the SUBPARTITION name, where name is an identifier for
the subpartition. Except for the replacement of the PARTITION keyword with SUBPARTITION, the
syntax for a subpartition definition is identical to that for a partition definition.

Subpartitioning must be done by HASH or KEY, and can be done only on RANGE or LIST partitions.
See Section 26.2.6, “Subpartitioning”.

Partitioning by Generated Columns

Partitioning by generated columns is permitted. For example:

CREATE TABLE t1 (
 s1 INT,
 s2 INT AS (EXP(s1)) STORED
)
PARTITION BY LIST (s2) (
 PARTITION p1 VALUES IN (1)
);

Partitioning sees a generated column as a regular column, which enables workarounds for limitations
on functions that are not permitted for partitioning (see Section 26.6.3, “Partitioning Limitations Relating
to Functions”). The preceding example demonstrates this technique: EXP() cannot be used directly in
the PARTITION BY clause, but a generated column defined using EXP() is permitted.

15.1.20.1 Files Created by CREATE TABLE

For an InnoDB table created in a file-per-table tablespace or general tablespace, table data and
associated indexes are stored in a .ibd file in the database directory. When an InnoDB table is created
in the system tablespace, table data and indexes are stored in the ibdata* files that represent the
system tablespace. The innodb_file_per_table option controls whether tables are created in file-
per-table tablespaces or the system tablespace, by default. The TABLESPACE option can be used to
place a table in a file-per-table tablespace, general tablespace, or the system tablespace, regardless of
the innodb_file_per_table setting.

For MyISAM tables, the storage engine creates data and index files. Thus, for each MyISAM table
tbl_name, there are two disk files.

File Purpose

tbl_name.MYD Data file

tbl_name.MYI Index file

Chapter 18, Alternative Storage Engines, describes what files each storage engine creates to represent
tables. If a table name contains special characters, the names for the table files contain encoded
versions of those characters as described in Section 11.2.4, “Mapping of Identifiers to File Names”.

15.1.20.2 CREATE TEMPORARY TABLE Statement

2752

CREATE TABLE Statement

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only within
the current session, and is dropped automatically when the session is closed. This means that two
different sessions can use the same temporary table name without conflicting with each other or with
an existing non-TEMPORARY table of the same name. (The existing table is hidden until the temporary
table is dropped.)

InnoDB does not support compressed temporary tables. When innodb_strict_mode is enabled
(the default), CREATE TEMPORARY TABLE returns an error if ROW_FORMAT=COMPRESSED or
KEY_BLOCK_SIZE is specified. If innodb_strict_mode is disabled, warnings are issued and the
temporary table is created using a non-compressed row format. The innodb_file_per-table
option does not affect the creation of InnoDB temporary tables.

CREATE TABLE causes an implicit commit, except when used with the TEMPORARY keyword. See
Section 15.3.3, “Statements That Cause an Implicit Commit”.

TEMPORARY tables have a very loose relationship with databases (schemas). Dropping a database
does not automatically drop any TEMPORARY tables created within that database.

To create a temporary table, you must have the CREATE TEMPORARY TABLES privilege. After a
session has created a temporary table, the server performs no further privilege checks on the table.
The creating session can perform any operation on the table, such as DROP TABLE, INSERT, UPDATE,
or SELECT.

One implication of this behavior is that a session can manipulate its temporary tables even if the
current user has no privilege to create them. Suppose that the current user does not have the CREATE
TEMPORARY TABLES privilege but is able to execute a definer-context stored procedure that executes
with the privileges of a user who does have CREATE TEMPORARY TABLES and that creates a
temporary table. While the procedure executes, the session uses the privileges of the defining user.
After the procedure returns, the effective privileges revert to those of the current user, which can still
see the temporary table and perform any operation on it.

You cannot use CREATE TEMPORARY TABLE ... LIKE to create an empty table based
on the definition of a table that resides in the mysql tablespace, InnoDB system tablespace
(innodb_system), or a general tablespace. The tablespace definition for such a table includes a
TABLESPACE attribute that defines the tablespace where the table resides, and the aforementioned
tablespaces do not support temporary tables. To create a temporary table based on the definition of
such a table, use this syntax instead:

CREATE TEMPORARY TABLE new_tbl SELECT * FROM orig_tbl LIMIT 0;

Note

Support for TABLESPACE = innodb_file_per_table and TABLESPACE =
innodb_temporary clauses with CREATE TEMPORARY TABLE is deprecated
as of MySQL 8.0.13; expect it to be removed in a future version of MySQL.

15.1.20.3 CREATE TABLE ... LIKE Statement

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

The copy is created using the same version of the table storage format as the original table. The
SELECT privilege is required on the original table.

LIKE works only for base tables, not for views.

Important

You cannot execute CREATE TABLE or CREATE TABLE ... LIKE while a
LOCK TABLES statement is in effect.

2753

CREATE TABLE Statement

CREATE TABLE ... LIKE makes the same checks as CREATE TABLE. This
means that if the current SQL mode is different from the mode in effect when
the original table was created, the table definition might be considered invalid
for the new mode and cause the statement to fail.

For CREATE TABLE ... LIKE, the destination table preserves generated column information from
the original table.

For CREATE TABLE ... LIKE, the destination table preserves expression default values from the
original table.

For CREATE TABLE ... LIKE, the destination table preserves CHECK constraints from the original
table, except that all the constraint names are generated.

CREATE TABLE ... LIKE does not preserve any DATA DIRECTORY or INDEX DIRECTORY table
options that were specified for the original table, or any foreign key definitions.

If the original table is a TEMPORARY table, CREATE TABLE ... LIKE does not preserve TEMPORARY.
To create a TEMPORARY destination table, use CREATE TEMPORARY TABLE ... LIKE.

Tables created in the mysql tablespace, the InnoDB system tablespace (innodb_system),
or general tablespaces include a TABLESPACE attribute in the table definition, which defines the
tablespace where the table resides. Due to a temporary regression, CREATE TABLE ... LIKE
preserves the TABLESPACE attribute and creates the table in the defined tablespace regardless of the
innodb_file_per_table setting. To avoid the TABLESPACE attribute when creating an empty table
based on the definition of such a table, use this syntax instead:

CREATE TABLE new_tbl SELECT * FROM orig_tbl LIMIT 0;

CREATE TABLE ... LIKE operations apply all ENGINE_ATTRIBUTE and
SECONDARY_ENGINE_ATTRIBUTE values to the new table.

15.1.20.4 CREATE TABLE ... SELECT Statement

You can create one table from another by adding a SELECT statement at the end of the CREATE
TABLE statement:

CREATE TABLE new_tbl [AS] SELECT * FROM orig_tbl;

MySQL creates new columns for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
 -> PRIMARY KEY (a), KEY(b))
 -> ENGINE=InnoDB SELECT b,c FROM test2;

This creates an InnoDB table with three columns, a, b, and c. The ENGINE option is part of the
CREATE TABLE statement, and should not be used following the SELECT; this would result in a syntax
error. The same is true for other CREATE TABLE options such as CHARSET.

Notice that the columns from the SELECT statement are appended to the right side of the table, not
overlapped onto it. Take the following example:

mysql> SELECT * FROM foo;
+---+
| n |
+---+
| 1 |
+---+

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)

2754

CREATE TABLE Statement

Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM bar;
+------+---+
| m | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)

For each row in table foo, a row is inserted in bar with the values from foo and default values for the
new columns.

In a table resulting from CREATE TABLE ... SELECT, columns named only in the CREATE TABLE
part come first. Columns named in both parts or only in the SELECT part come after that. The data type
of SELECT columns can be overridden by also specifying the column in the CREATE TABLE part.

If errors occur while copying data to the table, the table is automatically dropped and not created.
However, prior to MySQL 8.0.21, when row-based replication is in use, a CREATE TABLE ...
SELECT statement is recorded in the binary log as two transactions, one to create the table, and
the other to insert data. When the statement applied from the binary log, a failure between the two
transactions or while copying data can result in replication of an empty table. That limitation is removed
in MySQL 8.0.21. On storage engines that support atomic DDL, CREATE TABLE ... SELECT is now
recorded and applied as one transaction when row-based replication is in use. For more information,
see Section 15.1.1, “Atomic Data Definition Statement Support”.

As of MySQL 8.0.21, on storage engines that support both atomic DDL and foreign key constraints,
creation of foreign keys is not permitted in CREATE TABLE ... SELECT statements when row-based
replication is in use. Foreign key constraints can be added later using ALTER TABLE.

You can precede the SELECT by IGNORE or REPLACE to indicate how to handle rows that duplicate
unique key values. With IGNORE, rows that duplicate an existing row on a unique key value are
discarded. With REPLACE, new rows replace rows that have the same unique key value. If neither
IGNORE nor REPLACE is specified, duplicate unique key values result in an error. For more information,
see The Effect of IGNORE on Statement Execution.

In MySQL 8.0.19 and later, you can also use a VALUES statement in the SELECT part of CREATE
TABLE ... SELECT; the VALUES portion of the statement must include a table alias using an AS
clause. To name the columns coming from VALUES, supply column aliases with the table alias;
otherwise, the default column names column_0, column_1, column_2, ..., are used.

Otherwise, naming of columns in the table thus created follows the same rules as described previously
in this section. Examples:

mysql> CREATE TABLE tv1
 > SELECT * FROM (VALUES ROW(1,3,5), ROW(2,4,6)) AS v;
mysql> TABLE tv1;
+----------+----------+----------+
| column_0 | column_1 | column_2 |
+----------+----------+----------+
| 1 | 3 | 5 |
| 2 | 4 | 6 |
+----------+----------+----------+

mysql> CREATE TABLE tv2
 > SELECT * FROM (VALUES ROW(1,3,5), ROW(2,4,6)) AS v(x,y,z);
mysql> TABLE tv2;
+---+---+---+
| x | y | z |
+---+---+---+
| 1 | 3 | 5 |
| 2 | 4 | 6 |
+---+---+---+

mysql> CREATE TABLE tv3 (a INT, b INT, c INT)

2755

CREATE TABLE Statement

 > SELECT * FROM (VALUES ROW(1,3,5), ROW(2,4,6)) AS v(x,y,z);
mysql> TABLE tv3;
+------+------+------+----------+----------+----------+
| a | b | c | x | y | z |
+------+------+------+----------+----------+----------+
| NULL | NULL | NULL | 1 | 3 | 5 |
| NULL | NULL | NULL | 2 | 4 | 6 |
+------+------+------+----------+----------+----------+

mysql> CREATE TABLE tv4 (a INT, b INT, c INT)
 > SELECT * FROM (VALUES ROW(1,3,5), ROW(2,4,6)) AS v(x,y,z);
mysql> TABLE tv4;
+------+------+------+---+---+---+
| a | b | c | x | y | z |
+------+------+------+---+---+---+
| NULL | NULL | NULL | 1 | 3 | 5 |
| NULL | NULL | NULL | 2 | 4 | 6 |
+------+------+------+---+---+---+

mysql> CREATE TABLE tv5 (a INT, b INT, c INT)
 > SELECT * FROM (VALUES ROW(1,3,5), ROW(2,4,6)) AS v(a,b,c);
mysql> TABLE tv5;
+------+------+------+
| a | b | c |
+------+------+------+
| 1 | 3 | 5 |
| 2 | 4 | 6 |
+------+------+------+

When selecting all columns and using the default column names, you can omit SELECT *, so the
statement just used to create table tv1 can also be written as shown here:

mysql> CREATE TABLE tv1 VALUES ROW(1,3,5), ROW(2,4,6);
mysql> TABLE tv1;
+----------+----------+----------+
| column_0 | column_1 | column_2 |
+----------+----------+----------+
| 1 | 3 | 5 |
| 2 | 4 | 6 |
+----------+----------+----------+

When using VALUES as the source of the SELECT, all columns are always selected into the new table,
and individual columns cannot be selected as they can be when selecting from a named table; each of
the following statements produces an error (ER_OPERAND_COLUMNS):

CREATE TABLE tvx
 SELECT (x,z) FROM (VALUES ROW(1,3,5), ROW(2,4,6)) AS v(x,y,z);

CREATE TABLE tvx (a INT, c INT)
 SELECT (x,z) FROM (VALUES ROW(1,3,5), ROW(2,4,6)) AS v(x,y,z);

Similarly, you can use a TABLE statement in place of the SELECT. This follows the same rules as with
VALUES; all columns of the source table and their names in the source table are always inserted into
the new table. Examples:

mysql> TABLE t1;
+----+----+
| a | b |
+----+----+
1	2
6	7
10	-4
14	6
+----+----+

mysql> CREATE TABLE tt1 TABLE t1;
mysql> TABLE tt1;
+----+----+
| a | b |
+----+----+

2756

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_operand_columns

CREATE TABLE Statement

1	2
6	7
10	-4
14	6
+----+----+

mysql> CREATE TABLE tt2 (x INT) TABLE t1;
mysql> TABLE tt2;
+------+----+----+
| x | a | b |
+------+----+----+
NULL	1	2
NULL	6	7
NULL	10	-4
NULL	14	6
+------+----+----+

Because the ordering of the rows in the underlying SELECT statements cannot always be determined,
CREATE TABLE ... IGNORE SELECT and CREATE TABLE ... REPLACE SELECT statements are
flagged as unsafe for statement-based replication. Such statements produce a warning in the error log
when using statement-based mode and are written to the binary log using the row-based format when
using MIXED mode. See also Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based
and Row-Based Replication”.

CREATE TABLE ... SELECT does not automatically create any indexes for you. This is done
intentionally to make the statement as flexible as possible. If you want to have indexes in the created
table, you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

For CREATE TABLE ... SELECT, the destination table does not preserve information about whether
columns in the selected-from table are generated columns. The SELECT part of the statement cannot
assign values to generated columns in the destination table.

For CREATE TABLE ... SELECT, the destination table does preserve expression default values from
the original table.

Some conversion of data types might occur. For example, the AUTO_INCREMENT attribute is not
preserved, and VARCHAR columns can become CHAR columns. Retrained attributes are NULL (or NOT
NULL) and, for those columns that have them, CHARACTER SET, COLLATION, COMMENT, and the
DEFAULT clause.

When creating a table with CREATE TABLE ... SELECT, make sure to alias any function calls or
expressions in the query. If you do not, the CREATE statement might fail or result in undesirable column
names.

CREATE TABLE artists_and_works
 SELECT artist.name, COUNT(work.artist_id) AS number_of_works
 FROM artist LEFT JOIN work ON artist.id = work.artist_id
 GROUP BY artist.id;

You can also explicitly specify the data type for a column in the created table:

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

For CREATE TABLE ... SELECT, if IF NOT EXISTS is given and the target table exists, nothing is
inserted into the destination table, and the statement is not logged.

To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts during CREATE TABLE ... SELECT. However, prior to MySQL 8.0.21, when a
CREATE TABLE ... SELECT operation is applied from the binary log when row-based replication
is in use, concurrent inserts are permitted on the replicated table while copying data. That limitation
is removed in MySQL 8.0.21 on storage engines that support atomic DDL. For more information, see
Section 15.1.1, “Atomic Data Definition Statement Support”.

2757

CREATE TABLE Statement

You cannot use FOR UPDATE as part of the SELECT in a statement such as CREATE TABLE
new_table SELECT ... FROM old_table If you attempt to do so, the statement fails.

CREATE TABLE ... SELECT operations apply ENGINE_ATTRIBUTE and
SECONDARY_ENGINE_ATTRIBUTE values to columns only. Table and index ENGINE_ATTRIBUTE and
SECONDARY_ENGINE_ATTRIBUTE values are not applied to the new table unless specified explicitly.

15.1.20.5 FOREIGN KEY Constraints

MySQL supports foreign keys, which permit cross-referencing related data across tables, and foreign
key constraints, which help keep the related data consistent.

A foreign key relationship involves a parent table that holds the initial column values, and a child table
with column values that reference the parent column values. A foreign key constraint is defined on the
child table.

The essential syntax for a defining a foreign key constraint in a CREATE TABLE or ALTER TABLE
statement includes the following:

[CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name, ...)
 REFERENCES tbl_name (col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

Foreign key constraint usage is described under the following topics in this section:

• Identifiers

• Conditions and Restrictions

• Referential Actions

• Foreign Key Constraint Examples

• Adding Foreign Key Constraints

• Dropping Foreign Key Constraints

• Foreign Key Checks

• Locking

• Foreign Key Definitions and Metadata

• Foreign Key Errors

Identifiers

Foreign key constraint naming is governed by the following rules:

• The CONSTRAINT symbol value is used, if defined.

• If the CONSTRAINT symbol clause is not defined, or a symbol is not included following the
CONSTRAINT keyword, a constraint name name is generated automatically.

Prior to MySQL 8.0.16, if the CONSTRAINT symbol clause was not defined, or a symbol was not
included following the CONSTRAINT keyword, both InnoDB and NDB storage engines would use
the FOREIGN_KEY index_name if defined. In MySQL 8.0.16 and higher, the FOREIGN_KEY
index_name is ignored.

2758

CREATE TABLE Statement

• The CONSTRAINT symbol value, if defined, must be unique in the database. A duplicate
symbol results in an error similar to: ERROR 1005 (HY000): Can't create table
'test.fk1' (errno: 121).

• NDB Cluster stores foreign names using the same lettercase with which they are created. Prior to
version 8.0.20, when processing SELECT and other SQL statements, NDB compared the names
of foreign keys in such statements with the names as stored in a case-sensitive fashion when
lower_case_table_names was equal to 0. In NDB 8.0.20 and later, this value no longer has any
effect on how such comparisons are made, and they are always done without regard to lettercase.
(Bug #30512043)

Table and column identifiers in a FOREIGN KEY ... REFERENCES clause can be quoted within
backticks (`). Alternatively, double quotation marks (") can be used if the ANSI_QUOTES SQL mode is
enabled. The lower_case_table_names system variable setting is also taken into account.

Conditions and Restrictions

Foreign key constraints are subject to the following conditions and restrictions:

• Parent and child tables must use the same storage engine, and they cannot be defined as temporary
tables.

• Creating a foreign key constraint requires the REFERENCES privilege on the parent table.

• Corresponding columns in the foreign key and the referenced key must have similar data types. The
size and sign of fixed precision types such as INTEGER and DECIMAL must be the same. The length
of string types need not be the same. For nonbinary (character) string columns, the character set and
collation must be the same.

• MySQL supports foreign key references between one column and another within a table. (A column
cannot have a foreign key reference to itself.) In these cases, a “child table record” refers to a
dependent record within the same table.

• MySQL requires indexes on foreign keys and referenced keys so that foreign key checks can be
fast and not require a table scan. In the referencing table, there must be an index where the foreign
key columns are listed as the first columns in the same order. Such an index is created on the
referencing table automatically if it does not exist. This index might be silently dropped later if you
create another index that can be used to enforce the foreign key constraint. index_name, if given, is
used as described previously.

• InnoDB permits a foreign key to reference any index column or group of columns. However, in
the referenced table, there must be an index where the referenced columns are the first columns
in the same order. Hidden columns that InnoDB adds to an index are also considered (see
Section 17.6.2.1, “Clustered and Secondary Indexes”).

NDB requires an explicit unique key (or primary key) on any column referenced as a foreign key.
InnoDB does not, which is an extension of standard SQL.

• Index prefixes on foreign key columns are not supported. Consequently, BLOB and TEXT columns
cannot be included in a foreign key because indexes on those columns must always include a prefix
length.

• InnoDB does not currently support foreign keys for tables with user-defined partitioning. This
includes both parent and child tables.

This restriction does not apply for NDB tables that are partitioned by KEY or LINEAR KEY (the only
user partitioning types supported by the NDB storage engine); these may have foreign key references
or be the targets of such references.

• A table in a foreign key relationship cannot be altered to use another storage engine. To change the
storage engine, you must drop any foreign key constraints first.

2759

CREATE TABLE Statement

• A foreign key constraint cannot reference a virtual generated column.

For information about how the MySQL implementation of foreign key constraints differs from the SQL
standard, see Section 1.6.2.3, “FOREIGN KEY Constraint Differences”.

Referential Actions

When an UPDATE or DELETE operation affects a key value in the parent table that has matching rows
in the child table, the result depends on the referential action specified by ON UPDATE and ON DELETE
subclauses of the FOREIGN KEY clause. Referential actions include:

• CASCADE: Delete or update the row from the parent table and automatically delete or update the
matching rows in the child table. Both ON DELETE CASCADE and ON UPDATE CASCADE are
supported. Between two tables, do not define several ON UPDATE CASCADE clauses that act on the
same column in the parent table or in the child table.

If a FOREIGN KEY clause is defined on both tables in a foreign key relationship, making both tables
a parent and child, an ON UPDATE CASCADE or ON DELETE CASCADE subclause defined for one
FOREIGN KEY clause must be defined for the other in order for cascading operations to succeed.
If an ON UPDATE CASCADE or ON DELETE CASCADE subclause is only defined for one FOREIGN
KEY clause, cascading operations fail with an error.

Note

Cascaded foreign key actions do not activate triggers.

• SET NULL: Delete or update the row from the parent table and set the foreign key column or
columns in the child table to NULL. Both ON DELETE SET NULL and ON UPDATE SET NULL
clauses are supported.

If you specify a SET NULL action, make sure that you have not declared the columns in the child
table as NOT NULL.

• RESTRICT: Rejects the delete or update operation for the parent table. Specifying RESTRICT (or NO
ACTION) is the same as omitting the ON DELETE or ON UPDATE clause.

• NO ACTION: A keyword from standard SQL. For InnoDB, this is equivalent to RESTRICT; the delete
or update operation for the parent table is immediately rejected if there is a related foreign key value
in the referenced table. NDB supports deferred checks, and NO ACTION specifies a deferred check;
when this is used, constraint checks are not performed until commit time. Note that for NDB tables,
this causes all foreign key checks made for both parent and child tables to be deferred.

• SET DEFAULT: This action is recognized by the MySQL parser, but both InnoDB and NDB reject
table definitions containing ON DELETE SET DEFAULT or ON UPDATE SET DEFAULT clauses.

For storage engines that support foreign keys, MySQL rejects any INSERT or UPDATE operation that
attempts to create a foreign key value in a child table if there is no matching candidate key value in the
parent table.

For an ON DELETE or ON UPDATE that is not specified, the default action is always NO ACTION.

As the default, an ON DELETE NO ACTION or ON UPDATE NO ACTION clause that is specified
explicitly does not appear in SHOW CREATE TABLE output or in tables dumped with mysqldump.
RESTRICT, which is an equivalent non-default keyword, appears in SHOW CREATE TABLE output and
in tables dumped with mysqldump.

For NDB tables, ON UPDATE CASCADE is not supported where the reference is to the parent table's
primary key.

As of NDB 8.0.16: For NDB tables, ON DELETE CASCADE is not supported where the child table
contains one or more columns of any of the TEXT or BLOB types. (Bug #89511, Bug #27484882)

2760

CREATE TABLE Statement

InnoDB performs cascading operations using a depth-first search algorithm on the records of the index
that corresponds to the foreign key constraint.

A foreign key constraint on a stored generated column cannot use CASCADE, SET NULL, or SET
DEFAULT as ON UPDATE referential actions, nor can it use SET NULL or SET DEFAULT as ON
DELETE referential actions.

A foreign key constraint on the base column of a stored generated column cannot use CASCADE, SET
NULL, or SET DEFAULT as ON UPDATE or ON DELETE referential actions.

Foreign Key Constraint Examples

This simple example relates parent and child tables through a single-column foreign key:

CREATE TABLE parent (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
 ON DELETE CASCADE
) ENGINE=INNODB;

This is a more complex example in which a product_order table has foreign keys for two other
tables. One foreign key references a two-column index in the product table. The other references a
single-column index in the customer table:

CREATE TABLE product (
 category INT NOT NULL, id INT NOT NULL,
 price DECIMAL,
 PRIMARY KEY(category, id)
) ENGINE=INNODB;

CREATE TABLE customer (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE product_order (
 no INT NOT NULL AUTO_INCREMENT,
 product_category INT NOT NULL,
 product_id INT NOT NULL,
 customer_id INT NOT NULL,

 PRIMARY KEY(no),
 INDEX (product_category, product_id),
 INDEX (customer_id),

 FOREIGN KEY (product_category, product_id)
 REFERENCES product(category, id)
 ON UPDATE CASCADE ON DELETE RESTRICT,

 FOREIGN KEY (customer_id)
 REFERENCES customer(id)
) ENGINE=INNODB;

Adding Foreign Key Constraints

You can add a foreign key constraint to an existing table using the following ALTER TABLE syntax:

ALTER TABLE tbl_name
 ADD [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name, ...)
 REFERENCES tbl_name (col_name,...)

2761

CREATE TABLE Statement

 [ON DELETE reference_option]
 [ON UPDATE reference_option]

The foreign key can be self referential (referring to the same table). When you add a foreign key
constraint to a table using ALTER TABLE, remember to first create an index on the column(s)
referenced by the foreign key.

Dropping Foreign Key Constraints

You can drop a foreign key constraint using the following ALTER TABLE syntax:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

If the FOREIGN KEY clause defined a CONSTRAINT name when you created the constraint, you can
refer to that name to drop the foreign key constraint. Otherwise, a constraint name was generated
internally, and you must use that value. To determine the foreign key constraint name, use SHOW
CREATE TABLE:

mysql> SHOW CREATE TABLE child\G
*************************** 1. row ***************************
 Table: child
Create Table: CREATE TABLE `child` (
 `id` int DEFAULT NULL,
 `parent_id` int DEFAULT NULL,
 KEY `par_ind` (`parent_id`),
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
 REFERENCES `parent` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

mysql> ALTER TABLE child DROP FOREIGN KEY `child_ibfk_1`;

Adding and dropping a foreign key in the same ALTER TABLE statement is supported for ALTER
TABLE ... ALGORITHM=INPLACE. It is not supported for ALTER TABLE ... ALGORITHM=COPY.

Foreign Key Checks

In MySQL, InnoDB and NDB tables support checking of foreign key constraints. Foreign key
checking is controlled by the foreign_key_checks variable, which is enabled by default.
Typically, you leave this variable enabled during normal operation to enforce referential integrity. The
foreign_key_checks variable has the same effect on NDB tables as it does for InnoDB tables.

The foreign_key_checks variable is dynamic and supports both global and session scopes. For
information about using system variables, see Section 7.1.9, “Using System Variables”.

Disabling foreign key checking is useful when:

• Dropping a table that is referenced by a foreign key constraint. A referenced table can only be
dropped after foreign_key_checks is disabled. When you drop a table, constraints defined on the
table are also dropped.

• Reloading tables in different order than required by their foreign key relationships. For example,
mysqldump produces correct definitions of tables in the dump file, including foreign key
constraints for child tables. To make it easier to reload dump files for tables with foreign key
relationships, mysqldump automatically includes a statement in the dump output that disables
foreign_key_checks. This enables you to import the tables in any order in case the dump file
contains tables that are not correctly ordered for foreign keys. Disabling foreign_key_checks
also speeds up the import operation by avoiding foreign key checks.

• Executing LOAD DATA operations, to avoid foreign key checking.

• Performing an ALTER TABLE operation on a table that has a foreign key relationship.

When foreign_key_checks is disabled, foreign key constraints are ignored, with the following
exceptions:

2762

CREATE TABLE Statement

• Recreating a table that was previously dropped returns an error if the table definition does not
conform to the foreign key constraints that reference the table. The table must have the correct
column names and types. It must also have indexes on the referenced keys. If these requirements
are not satisfied, MySQL returns Error 1005 that refers to errno: 150 in the error message, which
means that a foreign key constraint was not correctly formed.

• Altering a table returns an error (errno: 150) if a foreign key definition is incorrectly formed for the
altered table.

• Dropping an index required by a foreign key constraint. The foreign key constraint must be removed
before dropping the index.

• Creating a foreign key constraint where a column references a nonmatching column type.

Disabling foreign_key_checks has these additional implications:

• It is permitted to drop a database that contains tables with foreign keys that are referenced by tables
outside the database.

• It is permitted to drop a table with foreign keys referenced by other tables.

• Enabling foreign_key_checks does not trigger a scan of table data, which means that rows
added to a table while foreign_key_checks is disabled are not checked for consistency when
foreign_key_checks is re-enabled.

Locking

MySQL extends metadata locks, as necessary, to tables that are related by a foreign key constraint.
Extending metadata locks prevents conflicting DML and DDL operations from executing concurrently
on related tables. This feature also enables updates to foreign key metadata when a parent table is
modified. In earlier MySQL releases, foreign key metadata, which is owned by the child table, could not
be updated safely.

If a table is locked explicitly with LOCK TABLES, any tables related by a foreign key constraint are
opened and locked implicitly. For foreign key checks, a shared read-only lock (LOCK TABLES READ) is
taken on related tables. For cascading updates, a shared-nothing write lock (LOCK TABLES WRITE) is
taken on related tables that are involved in the operation.

Foreign Key Definitions and Metadata

To view a foreign key definition, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE child\G
*************************** 1. row ***************************
 Table: child
Create Table: CREATE TABLE `child` (
 `id` int DEFAULT NULL,
 `parent_id` int DEFAULT NULL,
 KEY `par_ind` (`parent_id`),
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
 REFERENCES `parent` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

You can obtain information about foreign keys from the Information Schema KEY_COLUMN_USAGE
table. An example of a query against this table is shown here:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, CONSTRAINT_NAME
 FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 WHERE REFERENCED_TABLE_SCHEMA IS NOT NULL;
+--------------+------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | CONSTRAINT_NAME |
+--------------+------------+-------------+-----------------+
| test | child | parent_id | child_ibfk_1 |
+--------------+------------+-------------+-----------------+

2763

CREATE TABLE Statement

You can obtain information specific to InnoDB foreign keys from the INNODB_FOREIGN and
INNODB_FOREIGN_COLS tables. Example queries are show here:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FOREIGN \G
*************************** 1. row ***************************
 ID: test/child_ibfk_1
FOR_NAME: test/child
REF_NAME: test/parent
 N_COLS: 1
 TYPE: 1

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FOREIGN_COLS \G
*************************** 1. row ***************************
 ID: test/child_ibfk_1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0

Foreign Key Errors

In the event of a foreign key error involving InnoDB tables (usually Error 150 in the MySQL Server),
information about the latest foreign key error can be obtained by checking SHOW ENGINE INNODB
STATUS output.

mysql> SHOW ENGINE INNODB STATUS\G
...

LATEST FOREIGN KEY ERROR

2018-04-12 14:57:24 0x7f97a9c91700 Transaction:
TRANSACTION 7717, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1136, 3 row lock(s), undo log entries 3
MySQL thread id 8, OS thread handle 140289365317376, query id 14 localhost root update
INSERT INTO child VALUES (NULL, 1), (NULL, 2), (NULL, 3), (NULL, 4), (NULL, 5), (NULL, 6)
Foreign key constraint fails for table `test`.`child`:
,
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent` (`id`) ON DELETE
 CASCADE ON UPDATE CASCADE
Trying to add in child table, in index par_ind tuple:
DATA TUPLE: 2 fields;
 0: len 4; hex 80000003; asc ;;
 1: len 4; hex 80000003; asc ;;

But in parent table `test`.`parent`, in index PRIMARY,
the closest match we can find is record:
PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000004; asc ;;
 1: len 6; hex 000000001e19; asc ;;
 2: len 7; hex 81000001110137; asc 7;;
...

Warning

If a user has table-level privileges for all parent tables,
ER_NO_REFERENCED_ROW_2 and ER_ROW_IS_REFERENCED_2 error
messages for foreign key operations expose information about parent tables.
If a user does not have table-level privileges for all parent tables, more generic
error messages are displayed instead (ER_NO_REFERENCED_ROW and
ER_ROW_IS_REFERENCED).

An exception is that, for stored programs defined to execute with DEFINER
privileges, the user against which privileges are assessed is the user in the
program DEFINER clause, not the invoking user. If that user has table-level
parent table privileges, parent table information is still displayed. In this case,
it is the responsibility of the stored program creator to hide the information by
including appropriate condition handlers.

2764

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_no_referenced_row_2
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_row_is_referenced_2
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_no_referenced_row
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_row_is_referenced

CREATE TABLE Statement

15.1.20.6 CHECK Constraints

Prior to MySQL 8.0.16, CREATE TABLE permits only the following limited version of table CHECK
constraint syntax, which is parsed and ignored:

CHECK (expr)

As of MySQL 8.0.16, CREATE TABLE permits the core features of table and column CHECK constraints,
for all storage engines. CREATE TABLE permits the following CHECK constraint syntax, for both table
constraints and column constraints:

[CONSTRAINT [symbol]] CHECK (expr) [[NOT] ENFORCED]

The optional symbol specifies a name for the constraint. If omitted, MySQL generates a name from
the table name, a literal _chk_, and an ordinal number (1, 2, 3, ...). Constraint names have a maximum
length of 64 characters. They are case-sensitive, but not accent-sensitive.

expr specifies the constraint condition as a boolean expression that must evaluate to TRUE or
UNKNOWN (for NULL values) for each row of the table. If the condition evaluates to FALSE, it fails and
a constraint violation occurs. The effect of a violation depends on the statement being executed, as
described later in this section.

The optional enforcement clause indicates whether the constraint is enforced:

• If omitted or specified as ENFORCED, the constraint is created and enforced.

• If specified as NOT ENFORCED, the constraint is created but not enforced.

A CHECK constraint is specified as either a table constraint or column constraint:

• A table constraint does not appear within a column definition and can refer to any table column or
columns. Forward references are permitted to columns appearing later in the table definition.

• A column constraint appears within a column definition and can refer only to that column.

Consider this table definition:

CREATE TABLE t1
(
 CHECK (c1 <> c2),
 c1 INT CHECK (c1 > 10),
 c2 INT CONSTRAINT c2_positive CHECK (c2 > 0),
 c3 INT CHECK (c3 < 100),
 CONSTRAINT c1_nonzero CHECK (c1 <> 0),
 CHECK (c1 > c3)
);

The definition includes table constraints and column constraints, in named and unnamed formats:

• The first constraint is a table constraint: It occurs outside any column definition, so it can (and does)
refer to multiple table columns. This constraint contains forward references to columns not defined
yet. No constraint name is specified, so MySQL generates a name.

• The next three constraints are column constraints: Each occurs within a column definition, and
thus can refer only to the column being defined. One of the constraints is named explicitly. MySQL
generates a name for each of the other two.

• The last two constraints are table constraints. One of them is named explicitly. MySQL generates a
name for the other one.

As mentioned, MySQL generates a name for any CHECK constraint specified without one. To see the
names generated for the preceding table definition, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************

2765

CREATE TABLE Statement

 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int(11) DEFAULT NULL,
 `c2` int(11) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 CONSTRAINT `c1_nonzero` CHECK ((`c1` <> 0)),
 CONSTRAINT `c2_positive` CHECK ((`c2` > 0)),
 CONSTRAINT `t1_chk_1` CHECK ((`c1` <> `c2`)),
 CONSTRAINT `t1_chk_2` CHECK ((`c1` > 10)),
 CONSTRAINT `t1_chk_3` CHECK ((`c3` < 100)),
 CONSTRAINT `t1_chk_4` CHECK ((`c1` > `c3`))
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

The SQL standard specifies that all types of constraints (primary key, unique index, foreign key, check)
belong to the same namespace. In MySQL, each constraint type has its own namespace per schema
(database). Consequently, CHECK constraint names must be unique per schema; no two tables in
the same schema can share a CHECK constraint name. (Exception: A TEMPORARY table hides a
non-TEMPORARY table of the same name, so it can have the same CHECK constraint names as well.)

Beginning generated constraint names with the table name helps ensure schema uniqueness because
table names also must be unique within the schema.

CHECK condition expressions must adhere to the following rules. An error occurs if an expression
contains disallowed constructs.

• Nongenerated and generated columns are permitted, except columns with the AUTO_INCREMENT
attribute and columns in other tables.

• Literals, deterministic built-in functions, and operators are permitted. A function is deterministic
if, given the same data in tables, multiple invocations produce the same result, independently
of the connected user. Examples of functions that are nondeterministic and fail this definition:
CONNECTION_ID(), CURRENT_USER(), NOW().

• Stored functions and loadable functions are not permitted.

• Stored procedure and function parameters are not permitted.

• Variables (system variables, user-defined variables, and stored program local variables) are not
permitted.

• Subqueries are not permitted.

Foreign key referential actions (ON UPDATE, ON DELETE) are prohibited on columns used in CHECK
constraints. Likewise, CHECK constraints are prohibited on columns used in foreign key referential
actions.

CHECK constraints are evaluated for INSERT, UPDATE, REPLACE, LOAD DATA, and LOAD XML
statements and an error occurs if a constraint evaluates to FALSE. If an error occurs, handling of
changes already applied differs for transactional and nontransactional storage engines, and also
depends on whether strict SQL mode is in effect, as described in Strict SQL Mode.

CHECK constraints are evaluated for INSERT IGNORE, UPDATE IGNORE, LOAD DATA ... IGNORE,
and LOAD XML ... IGNORE statements and a warning occurs if a constraint evaluates to FALSE.
The insert or update for any offending row is skipped.

If the constraint expression evaluates to a data type that differs from the declared column type, implicit
coercion to the declared type occurs according to the usual MySQL type-conversion rules. See
Section 14.3, “Type Conversion in Expression Evaluation”. If type conversion fails or results in a loss of
precision, an error occurs.

Note

Constraint expression evaluation uses the SQL mode in effect at evaluation
time. If any component of the expression depends on the SQL mode, different

2766

CREATE TABLE Statement

results may occur for different uses of the table unless the SQL mode is the
same during all uses.

The Information Schema CHECK_CONSTRAINTS table provides information about CHECK constraints
defined on tables. See Section 28.3.5, “The INFORMATION_SCHEMA CHECK_CONSTRAINTS
Table”.

15.1.20.7 Silent Column Specification Changes

In some cases, MySQL silently changes column specifications from those given in a CREATE TABLE or
ALTER TABLE statement. These might be changes to a data type, to attributes associated with a data
type, or to an index specification.

All changes are subject to the internal row-size limit of 65,535 bytes, which may cause some attempts
at data type changes to fail. See Section 10.4.7, “Limits on Table Column Count and Row Size”.

• Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that way.

• Trailing spaces are automatically deleted from ENUM and SET member values when the table is
created.

• MySQL maps certain data types used by other SQL database vendors to MySQL types. See
Section 13.9, “Using Data Types from Other Database Engines”.

• If you include a USING clause to specify an index type that is not permitted for a given storage
engine, but there is another index type available that the engine can use without affecting query
results, the engine uses the available type.

• If strict SQL mode is not enabled, a VARCHAR column with a length specification greater than 65535
is converted to TEXT, and a VARBINARY column with a length specification greater than 65535 is
converted to BLOB. Otherwise, an error occurs in either of these cases.

• Specifying the CHARACTER SET binary attribute for a character data type causes the column
to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they
are created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,
 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

To see whether MySQL used a data type other than the one you specified, issue a DESCRIBE or SHOW
CREATE TABLE statement after creating or altering the table.

Certain other data type changes can occur if you compress a table using myisampack. See
Section 18.2.3.3, “Compressed Table Characteristics”.

15.1.20.8 CREATE TABLE and Generated Columns

CREATE TABLE supports the specification of generated columns. Values of a generated column are
computed from an expression included in the column definition.

2767

CREATE TABLE Statement

Generated columns are also supported by the NDB storage engine.

The following simple example shows a table that stores the lengths of the sides of right triangles in the
sidea and sideb columns, and computes the length of the hypotenuse in sidec (the square root of
the sums of the squares of the other sides):

CREATE TABLE triangle (
 sidea DOUBLE,
 sideb DOUBLE,
 sidec DOUBLE AS (SQRT(sidea * sidea + sideb * sideb))
);
INSERT INTO triangle (sidea, sideb) VALUES(1,1),(3,4),(6,8);

Selecting from the table yields this result:

mysql> SELECT * FROM triangle;
+-------+-------+--------------------+
| sidea | sideb | sidec |
+-------+-------+--------------------+
1	1	1.4142135623730951
3	4	5
6	8	10
+-------+-------+--------------------+

Any application that uses the triangle table has access to the hypotenuse values without having to
specify the expression that calculates them.

Generated column definitions have this syntax:

col_name data_type [GENERATED ALWAYS] AS (expr)
 [VIRTUAL | STORED] [NOT NULL | NULL]
 [UNIQUE [KEY]] [[PRIMARY] KEY]
 [COMMENT 'string']

AS (expr) indicates that the column is generated and defines the expression used to compute
column values. AS may be preceded by GENERATED ALWAYS to make the generated nature of the
column more explicit. Constructs that are permitted or prohibited in the expression are discussed later.

The VIRTUAL or STORED keyword indicates how column values are stored, which has implications for
column use:

• VIRTUAL: Column values are not stored, but are evaluated when rows are read, immediately after
any BEFORE triggers. A virtual column takes no storage.

InnoDB supports secondary indexes on virtual columns. See Section 15.1.20.9, “Secondary Indexes
and Generated Columns”.

• STORED: Column values are evaluated and stored when rows are inserted or updated. A stored
column does require storage space and can be indexed.

The default is VIRTUAL if neither keyword is specified.

It is permitted to mix VIRTUAL and STORED columns within a table.

Other attributes may be given to indicate whether the column is indexed or can be NULL, or provide a
comment.

Generated column expressions must adhere to the following rules. An error occurs if an expression
contains disallowed constructs.

• Literals, deterministic built-in functions, and operators are permitted. A function is deterministic
if, given the same data in tables, multiple invocations produce the same result, independently
of the connected user. Examples of functions that are nondeterministic and fail this definition:
CONNECTION_ID(), CURRENT_USER(), NOW().

2768

CREATE TABLE Statement

• Stored functions and loadable functions are not permitted.

• Stored procedure and function parameters are not permitted.

• Variables (system variables, user-defined variables, and stored program local variables) are not
permitted.

• Subqueries are not permitted.

• A generated column definition can refer to other generated columns, but only those occurring earlier
in the table definition. A generated column definition can refer to any base (nongenerated) column in
the table whether its definition occurs earlier or later.

• The AUTO_INCREMENT attribute cannot be used in a generated column definition.

• An AUTO_INCREMENT column cannot be used as a base column in a generated column definition.

• If expression evaluation causes truncation or provides incorrect input to a function, the CREATE
TABLE statement terminates with an error and the DDL operation is rejected.

If the expression evaluates to a data type that differs from the declared column type, implicit coercion to
the declared type occurs according to the usual MySQL type-conversion rules. See Section 14.3, “Type
Conversion in Expression Evaluation”.

If a generated column uses the TIMESTAMP data type, the setting for
explicit_defaults_for_timestamp is ignored. In such cases, if this variable is disabled then
NULL is not converted to CURRENT_TIMESTAMP. In MySQL 8.0.22 and later, if the column is also
declared as NOT NULL, attempting to insert NULL is explicitly rejected with ER_BAD_NULL_ERROR.

Note

Expression evaluation uses the SQL mode in effect at evaluation time. If any
component of the expression depends on the SQL mode, different results may
occur for different uses of the table unless the SQL mode is the same during all
uses.

For CREATE TABLE ... LIKE, the destination table preserves generated column information from
the original table.

For CREATE TABLE ... SELECT, the destination table does not preserve information about whether
columns in the selected-from table are generated columns. The SELECT part of the statement cannot
assign values to generated columns in the destination table.

Partitioning by generated columns is permitted. See Table Partitioning.

A foreign key constraint on a stored generated column cannot use CASCADE, SET NULL, or SET
DEFAULT as ON UPDATE referential actions, nor can it use SET NULL or SET DEFAULT as ON
DELETE referential actions.

A foreign key constraint on the base column of a stored generated column cannot use CASCADE, SET
NULL, or SET DEFAULT as ON UPDATE or ON DELETE referential actions.

A foreign key constraint cannot reference a virtual generated column.

Triggers cannot use NEW.col_name or use OLD.col_name to refer to generated columns.

For INSERT, REPLACE, and UPDATE, if a generated column is inserted into, replaced, or updated
explicitly, the only permitted value is DEFAULT.

A generated column in a view is considered updatable because it is possible to assign to it. However, if
such a column is updated explicitly, the only permitted value is DEFAULT.

Generated columns have several use cases, such as these:

2769

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_bad_null_error

CREATE TABLE Statement

• Virtual generated columns can be used as a way to simplify and unify queries. A complicated
condition can be defined as a generated column and referred to from multiple queries on the table to
ensure that all of them use exactly the same condition.

• Stored generated columns can be used as a materialized cache for complicated conditions that are
costly to calculate on the fly.

• Generated columns can simulate functional indexes: Use a generated column to define a functional
expression and index it. This can be useful for working with columns of types that cannot be indexed
directly, such as JSON columns; see Indexing a Generated Column to Provide a JSON Column
Index, for a detailed example.

For stored generated columns, the disadvantage of this approach is that values are stored twice;
once as the value of the generated column and once in the index.

• If a generated column is indexed, the optimizer recognizes query expressions that match the column
definition and uses indexes from the column as appropriate during query execution, even if a query
does not refer to the column directly by name. For details, see Section 10.3.11, “Optimizer Use of
Generated Column Indexes”.

Example:

Suppose that a table t1 contains first_name and last_name columns and that applications
frequently construct the full name using an expression like this:

SELECT CONCAT(first_name,' ',last_name) AS full_name FROM t1;

One way to avoid writing out the expression is to create a view v1 on t1, which simplifies applications
by enabling them to select full_name directly without using an expression:

CREATE VIEW v1 AS
SELECT *, CONCAT(first_name,' ',last_name) AS full_name FROM t1;

SELECT full_name FROM v1;

A generated column also enables applications to select full_name directly without the need to define
a view:

CREATE TABLE t1 (
 first_name VARCHAR(10),
 last_name VARCHAR(10),
 full_name VARCHAR(255) AS (CONCAT(first_name,' ',last_name))
);

SELECT full_name FROM t1;

15.1.20.9 Secondary Indexes and Generated Columns

InnoDB supports secondary indexes on virtual generated columns. Other index types are not
supported. A secondary index defined on a virtual column is sometimes referred to as a “virtual index”.

A secondary index may be created on one or more virtual columns or on a combination of virtual
columns and regular columns or stored generated columns. Secondary indexes that include virtual
columns may be defined as UNIQUE.

When a secondary index is created on a virtual generated column, generated column values are
materialized in the records of the index. If the index is a covering index (one that includes all the
columns retrieved by a query), generated column values are retrieved from materialized values in the
index structure instead of computed “on the fly”.

There are additional write costs to consider when using a secondary index on a virtual column due to
computation performed when materializing virtual column values in secondary index records during
INSERT and UPDATE operations. Even with additional write costs, secondary indexes on virtual
columns may be preferable to generated stored columns, which are materialized in the clustered index,

2770

CREATE TABLE Statement

resulting in larger tables that require more disk space and memory. If a secondary index is not defined
on a virtual column, there are additional costs for reads, as virtual column values must be computed
each time the column's row is examined.

Values of an indexed virtual column are MVCC-logged to avoid unnecessary recomputation of
generated column values during rollback or during a purge operation. The data length of logged values
is limited by the index key limit of 767 bytes for COMPACT and REDUNDANT row formats, and 3072 bytes
for DYNAMIC and COMPRESSED row formats.

Adding or dropping a secondary index on a virtual column is an in-place operation.

Indexing a Generated Column to Provide a JSON Column Index

As noted elsewhere, JSON columns cannot be indexed directly. To create an index that references
such a column indirectly, you can define a generated column that extracts the information that should
be indexed, then create an index on the generated column, as shown in this example:

mysql> CREATE TABLE jemp (
 -> c JSON,
 -> g INT GENERATED ALWAYS AS (c->"$.id"),
 -> INDEX i (g)
 ->);
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO jemp (c) VALUES
 > ('{"id": "1", "name": "Fred"}'), ('{"id": "2", "name": "Wilma"}'),
 > ('{"id": "3", "name": "Barney"}'), ('{"id": "4", "name": "Betty"}');
Query OK, 4 rows affected (0.04 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT c->>"$.name" AS name
 > FROM jemp WHERE g > 2;
+--------+
| name |
+--------+
| Barney |
| Betty |
+--------+
2 rows in set (0.00 sec)

mysql> EXPLAIN SELECT c->>"$.name" AS name
 > FROM jemp WHERE g > 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: jemp
 partitions: NULL
 type: range
possible_keys: i
 key: i
 key_len: 5
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using where
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select json_unquote(json_extract(`test`.`jemp`.`c`,'$.name'))
AS `name` from `test`.`jemp` where (`test`.`jemp`.`g` > 2)
1 row in set (0.00 sec)

(We have wrapped the output from the last statement in this example to fit the viewing area.)

When you use EXPLAIN on a SELECT or other SQL statement containing one or more expressions
that use the -> or ->> operator, these expressions are translated into their equivalents using

2771

CREATE TABLE Statement

JSON_EXTRACT() and (if needed) JSON_UNQUOTE() instead, as shown here in the output from SHOW
WARNINGS immediately following this EXPLAIN statement:

mysql> EXPLAIN SELECT c->>"$.name"
 > FROM jemp WHERE g > 2 ORDER BY c->"$.name"\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: jemp
 partitions: NULL
 type: range
possible_keys: i
 key: i
 key_len: 5
 ref: NULL
 rows: 2
 filtered: 100.00
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select json_unquote(json_extract(`test`.`jemp`.`c`,'$.name')) AS
`c->>"$.name"` from `test`.`jemp` where (`test`.`jemp`.`g` > 2) order by
json_extract(`test`.`jemp`.`c`,'$.name')
1 row in set (0.00 sec)

See the descriptions of the -> and ->> operators, as well as those of the JSON_EXTRACT() and
JSON_UNQUOTE() functions, for additional information and examples.

This technique also can be used to provide indexes that indirectly reference columns of other types that
cannot be indexed directly, such as GEOMETRY columns.

In MySQL 8.0.21 and later, it is also possible to create an index on a JSON column using the
JSON_VALUE() function with an expression that can be used to optimize queries employing the
expression. See the description of that function for more information and examples.

JSON columns and indirect indexing in NDB Cluster

 It is also possible to use indirect indexing of JSON columns in MySQL NDB Cluster, subject to the
following conditions:

1. NDB handles a JSON column value internally as a BLOB. This means that any NDB table having one
or more JSON columns must have a primary key, else it cannot be recorded in the binary log.

2. The NDB storage engine does not support indexing of virtual columns. Since the default for
generated columns is VIRTUAL, you must specify explicitly the generated column to which to apply
the indirect index as STORED.

The CREATE TABLE statement used to create the table jempn shown here is a version of the jemp
table shown previously, with modifications making it compatible with NDB:

CREATE TABLE jempn (
 a BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c JSON DEFAULT NULL,
 g INT GENERATED ALWAYS AS (c->"$.id") STORED,
 INDEX i (g)
) ENGINE=NDB;

We can populate this table using the following INSERT statement:

INSERT INTO jempn (c) VALUES
 ('{"id": "1", "name": "Fred"}'),
 ('{"id": "2", "name": "Wilma"}'),
 ('{"id": "3", "name": "Barney"}'),
 ('{"id": "4", "name": "Betty"}');

2772

CREATE TABLE Statement

Now NDB can use index i, as shown here:

mysql> EXPLAIN SELECT c->>"$.name" AS name
 -> FROM jempn WHERE g > 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: jempn
 partitions: p0,p1,p2,p3
 type: range
possible_keys: i
 key: i
 key_len: 5
 ref: NULL
 rows: 3
 filtered: 100.00
 Extra: Using pushed condition (`test`.`jempn`.`g` > 2)
1 row in set, 1 warning (0.01 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: /* select#1 */ select
json_unquote(json_extract(`test`.`jempn`.`c`,'$.name')) AS `name` from
`test`.`jempn` where (`test`.`jempn`.`g` > 2)
1 row in set (0.00 sec)

You should keep in mind that a stored generated column, as well as any index on such a column, uses
DataMemory.

15.1.20.10 Invisible Columns

MySQL supports invisible columns as of MySQL 8.0.23. An invisible column is normally hidden to
queries, but can be accessed if explicitly referenced. Prior to MySQL 8.0.23, all columns are visible.

As an illustration of when invisible columns may be useful, suppose that an application uses SELECT
* queries to access a table, and must continue to work without modification even if the table is altered
to add a new column that the application does not expect to be there. In a SELECT * query, the *
evaluates to all table columns, except those that are invisible, so the solution is to add the new column
as an invisible column. The column remains “hidden” from SELECT * queries, and the application
continues to work as previously. A newer version of the application can refer to the invisible column if
necessary by explicitly referencing it.

The following sections detail how MySQL treats invisible columns.

• DDL Statements and Invisible Columns

• DML Statements and Invisible Columns

• Invisible Column Metadata

• The Binary Log and Invisible Columns

DDL Statements and Invisible Columns

Columns are visible by default. To explicitly specify visibility for a new column, use a VISIBLE or
INVISIBLE keyword as part of the column definition for CREATE TABLE or ALTER TABLE:

CREATE TABLE t1 (
 i INT,
 j DATE INVISIBLE
) ENGINE = InnoDB;
ALTER TABLE t1 ADD COLUMN k INT INVISIBLE;

To alter the visibility of an existing column, use a VISIBLE or INVISIBLE keyword with one of the
ALTER TABLE column-modification clauses:

2773

CREATE TABLE Statement

ALTER TABLE t1 CHANGE COLUMN j j DATE VISIBLE;
ALTER TABLE t1 MODIFY COLUMN j DATE INVISIBLE;
ALTER TABLE t1 ALTER COLUMN j SET VISIBLE;

A table must have at least one visible column. Attempting to make all columns invisible produces an
error.

Invisible columns support the usual column attributes: NULL, NOT NULL, AUTO_INCREMENT, and so
forth.

Generated columns can be invisible.

Index definitions can name invisible columns, including definitions for PRIMARY KEY and UNIQUE
indexes. Although a table must have at least one visible column, an index definition need not have any
visible columns.

An invisible column dropped from a table is dropped in the usual way from any index definition that
names the column.

Foreign key constraints can be defined on invisible columns, and foreign key constraints can reference
invisible columns.

CHECK constraints can be defined on invisible columns. For new or modified rows, violation of a CHECK
constraint on an invisible column produces an error.

CREATE TABLE ... LIKE includes invisible columns, and they are invisible in the new table.

CREATE TABLE ... SELECT does not include invisible columns, unless they are explicitly referenced
in the SELECT part. However, even if explicitly referenced, a column that is invisible in the existing table
is visible in the new table:

mysql> CREATE TABLE t1 (col1 INT, col2 INT INVISIBLE);
mysql> CREATE TABLE t2 AS SELECT col1, col2 FROM t1;
mysql> SHOW CREATE TABLE t2\G
*************************** 1. row ***************************
 Table: t2
Create Table: CREATE TABLE `t2` (
 `col1` int DEFAULT NULL,
 `col2` int DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

If invisibility should be preserved, provide a definition for the invisible column in the CREATE TABLE
part of the CREATE TABLE ... SELECT statement:

mysql> CREATE TABLE t1 (col1 INT, col2 INT INVISIBLE);
mysql> CREATE TABLE t2 (col2 INT INVISIBLE) AS SELECT col1, col2 FROM t1;
mysql> SHOW CREATE TABLE t2\G
*************************** 1. row ***************************
 Table: t2
Create Table: CREATE TABLE `t2` (
 `col1` int DEFAULT NULL,
 `col2` int DEFAULT NULL /*!80023 INVISIBLE */
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

Views can refer to invisible columns by explicitly referencing them in the SELECT statement that
defines the view. Changing a column's visibility subsequent to defining a view that references the
column does not change view behavior.

DML Statements and Invisible Columns

For SELECT statements, an invisible column is not part of the result set unless explicitly referenced
in the select list. In a select list, the * and tbl_name.* shorthands do not include invisible columns.
Natural joins do not include invisible columns.

Consider the following statement sequence:

2774

CREATE TABLE Statement

mysql> CREATE TABLE t1 (col1 INT, col2 INT INVISIBLE);
mysql> INSERT INTO t1 (col1, col2) VALUES(1, 2), (3, 4);

mysql> SELECT * FROM t1;
+------+
| col1 |
+------+
| 1 |
| 3 |
+------+

mysql> SELECT col1, col2 FROM t1;
+------+------+
| col1 | col2 |
+------+------+
| 1 | 2 |
| 3 | 4 |
+------+------+

The first SELECT does not reference the invisible column col2 in the select list (because * does not
include invisible columns), so col2 does not appear in the statement result. The second SELECT
explicitly references col2, so the column appears in the result.

The statement TABLE t1 produces the same output as the first SELECT statement. Since there is no
way to specify columns in a TABLE statement, TABLE never displays invisible columns.

For statements that create new rows, an invisible column is assigned its implicit default value unless
explicitly referenced and assigned a value. For information about implicit defaults, see Implicit Default
Handling.

For INSERT (and REPLACE, for non-replaced rows), implicit default assignment occurs with a missing
column list, an empty column list, or a nonempty column list that does not include the invisible column:

CREATE TABLE t1 (col1 INT, col2 INT INVISIBLE);
INSERT INTO t1 VALUES(...);
INSERT INTO t1 () VALUES(...);
INSERT INTO t1 (col1) VALUES(...);

For the first two INSERT statements, the VALUES() list must provide a value for each visible column
and no invisible column. For the third INSERT statement, the VALUES() list must provide the same
number of values as the number of named columns; the same is true when you use VALUES ROW()
rather than VALUES().

For LOAD DATA and LOAD XML, implicit default assignment occurs with a missing column list or a
nonempty column list that does not include the invisible column. Input rows should not include a value
for the invisible column.

To assign a value other than the implicit default for the preceding statements, explicitly name the
invisible column in the column list and provide a value for it.

INSERT INTO ... SELECT * and REPLACE INTO ... SELECT * do not include invisible
columns because * does not include invisible columns. Implicit default assignment occurs as described
previously.

For statements that insert or ignore new rows, or that replace or modify existing rows, based on values
in a PRIMARY KEY or UNIQUE index, MySQL treats invisible columns the same as visible columns:
Invisible columns participate in key value comparisons. Specifically, if a new row has the same value
as an existing row for a unique key value, these behaviors occur whether the index columns are visible
or invisible:

• With the IGNORE modifier, INSERT, LOAD DATA, and LOAD XML ignore the new row.

• REPLACE replaces the existing row with the new row. With the REPLACE modifier, LOAD DATA and
LOAD XML do the same.

2775

CREATE TABLE Statement

• INSERT ... ON DUPLICATE KEY UPDATE updates the existing row.

To update invisible columns for UPDATE statements, name them and assign a value, just as for visible
columns.

Invisible Column Metadata

Information about whether a column is visible or invisible is available from the EXTRA column of the
Information Schema COLUMNS table or SHOW COLUMNS output. For example:

mysql> SELECT TABLE_NAME, COLUMN_NAME, EXTRA
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 't1';
+------------+-------------+-----------+
| TABLE_NAME | COLUMN_NAME | EXTRA |
+------------+-------------+-----------+
t1	i	
t1	j	
t1	k	INVISIBLE
+------------+-------------+-----------+

Columns are visible by default, so in that case, EXTRA displays no visibility information. For invisible
columns, EXTRA displays INVISIBLE.

SHOW CREATE TABLE displays invisible columns in the table definition, with the INVISIBLE keyword
in a version-specific comment:

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `i` int DEFAULT NULL,
 `j` int DEFAULT NULL,
 `k` int DEFAULT NULL /*!80023 INVISIBLE */
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

mysqldump and mysqlpump use SHOW CREATE TABLE, so they include invisible columns in dumped
table definitions. They also include invisible column values in dumped data.

Reloading a dump file into an older version of MySQL that does not support invisible columns causes
the version-specific comment to be ignored, which creates any invisible columns as visible.

The Binary Log and Invisible Columns

MySQL treats invisible columns as follows with respect to events in the binary log:

• Table-creation events include the INVISIBLE attribute for invisible columns.

• Invisible columns are treated like visible columns in row events. They are included if needed
according to the binlog_row_image system variable setting.

• When row events are applied, invisible columns are treated like visible columns in
row events. In particular, the algorithm and index to use are chosen according to the
slave_rows_search_algorithms system variable setting.

• Invisible columns are treated like visible columns when computing writesets. In particular, writesets
include indexes defined on invisible columns.

• The mysqlbinlog command includes visibility in column metadata.

15.1.20.11 Generated Invisible Primary Keys

Beginning with MySQL 8.0.30, MySQL supports generated invisible primary keys for any InnoDB table
that is created without an explicit primary key. When the sql_generate_invisible_primary_key

2776

CREATE TABLE Statement

server system variable is set to ON, the MySQL server automatically adds a generated invisible primary
key (GIPK) to any such table. This setting has no effect on tables created using any other storage
engine than InnoDB.

By default, the value of sql_generate_invisible_primary_key is OFF, meaning that the
automatic addition of GIPKs is disabled. To illustrate how this affects table creation, we begin by
creating two identical tables, neither having a primary key, the only difference being that the first (table
auto_0) is created with sql_generate_invisible_primary_key set to OFF, and the second
(auto_1) after setting it to ON, as shown here:

mysql> SELECT @@sql_generate_invisible_primary_key;
+--------------------------------------+
| @@sql_generate_invisible_primary_key |
+--------------------------------------+
| 0 |
+--------------------------------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE auto_0 (c1 VARCHAR(50), c2 INT);
Query OK, 0 rows affected (0.02 sec)

mysql> SET sql_generate_invisible_primary_key=ON;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@sql_generate_invisible_primary_key;
+--------------------------------------+
| @@sql_generate_invisible_primary_key |
+--------------------------------------+
| 1 |
+--------------------------------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE auto_1 (c1 VARCHAR(50), c2 INT);
Query OK, 0 rows affected (0.04 sec)

Compare the output of these SHOW CREATE TABLE statements to see the difference in how the tables
were actually created:

mysql> SHOW CREATE TABLE auto_0\G
*************************** 1. row ***************************
 Table: auto_0
Create Table: CREATE TABLE `auto_0` (
 `c1` varchar(50) DEFAULT NULL,
 `c2` int DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

mysql> SHOW CREATE TABLE auto_1\G
*************************** 1. row ***************************
 Table: auto_1
Create Table: CREATE TABLE `auto_1` (
 `my_row_id` bigint unsigned NOT NULL AUTO_INCREMENT /*!80023 INVISIBLE */,
 `c1` varchar(50) DEFAULT NULL,
 `c2` int DEFAULT NULL,
 PRIMARY KEY (`my_row_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

Since auto_1 had no primary key specified by the CREATE TABLE statement used to
create it, setting sql_generate_invisible_primary_key = ON causes MySQL to add
both the invisible column my_row_id to this table and a primary key on that column. Since
sql_generate_invisible_primary_key was OFF at the time that auto_0 was created, no such
additions were performed on that table.

When a primary key is added to a table by the server, the column and key name is always my_row_id.
For this reason, when enabling generated invisible primary keys in this way, you cannot create a table
having a column named my_row_id unless the table creation statement also specifies an explicit
primary key. (You are not required to name the column or key my_row_id in such cases.)

2777

CREATE TABLE Statement

my_row_id is an invisible column, which means it is not shown in the output of SELECT * or TABLE;
the column must be selected explicitly by name. See Section 15.1.20.10, “Invisible Columns”.

When GIPKs are enabled, a generated primary key cannot be altered other than to switch it between
VISIBLE and INVISIBLE. To make the generated invisible primary key on auto_1 visible, execute
this ALTER TABLE statement:

mysql> ALTER TABLE auto_1 ALTER COLUMN my_row_id SET VISIBLE;
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE auto_1\G
*************************** 1. row ***************************
 Table: auto_1
Create Table: CREATE TABLE `auto_1` (
 `my_row_id` bigint unsigned NOT NULL AUTO_INCREMENT,
 `c1` varchar(50) DEFAULT NULL,
 `c2` int DEFAULT NULL,
 PRIMARY KEY (`my_row_id`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.01 sec)

To make this generated primary key invisible again, issue ALTER TABLE auto_1 ALTER COLUMN
my_row_id SET INVISIBLE.

A generated invisible primary key is always invisible by default.

Whenever GIPKs are enabled, you cannot drop a generated primary key if either of the following 2
conditions would result:

• The table is left with no primary key.

• The primary key is dropped, but not the primary key column.

The effects of sql_generate_invisible_primary_key apply to tables using the InnoDB storage
engine only. You can use an ALTER TABLE statement to change the storage engine used by a table
that has a generated invisible primary key; in this case, the primary key and column remain in place,
but the table and key no longer receive any special treatment.

By default, GIPKs are shown in the output of SHOW CREATE TABLE, SHOW COLUMNS, and
SHOW INDEX, and are visible in the Information Schema COLUMNS and STATISTICS tables. You
can cause generated invisible primary keys to be hidden instead in such cases by setting the
show_gipk_in_create_table_and_information_schema system variable to OFF. By default,
this variable is ON, as shown here:

mysql> SELECT @@show_gipk_in_create_table_and_information_schema;
+--+
| @@show_gipk_in_create_table_and_information_schema |
+--+
| 1 |
+--+
1 row in set (0.00 sec)

As can be seen from the following query against the COLUMNS table, my_row_id is visible among the
columns of auto_1:

mysql> SELECT COLUMN_NAME, ORDINAL_POSITION, DATA_TYPE, COLUMN_KEY
 -> FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_NAME = "auto_1";
+-------------+------------------+-----------+------------+
| COLUMN_NAME | ORDINAL_POSITION | DATA_TYPE | COLUMN_KEY |
+-------------+------------------+-----------+------------+
my_row_id	1	bigint	PRI
c1	2	varchar	
c2	3	int	
+-------------+------------------+-----------+------------+
3 rows in set (0.01 sec)

2778

CREATE TABLE Statement

After show_gipk_in_create_table_and_information_schema is set to OFF, my_row_id can
no longer be seen in the COLUMNS table, as shown here:

mysql> SET show_gipk_in_create_table_and_information_schema = OFF;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@show_gipk_in_create_table_and_information_schema;
+--+
| @@show_gipk_in_create_table_and_information_schema |
+--+
| 0 |
+--+
1 row in set (0.00 sec)

mysql> SELECT COLUMN_NAME, ORDINAL_POSITION, DATA_TYPE, COLUMN_KEY
 -> FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_NAME = "auto_1";
+-------------+------------------+-----------+------------+
| COLUMN_NAME | ORDINAL_POSITION | DATA_TYPE | COLUMN_KEY |
+-------------+------------------+-----------+------------+
| c1 | 2 | varchar | |
| c2 | 3 | int | |
+-------------+------------------+-----------+------------+
2 rows in set (0.00 sec)

The setting for sql_generate_invisible_primary_key is not replicated, and is ignored by
replication applier threads. This means that the setting of this variable on the source has no effect on
the replica. In MySQL 8.0.32 and later, you can cause the replica to add a GIPK for tables replicated
without primary keys on a given replication channel using REQUIRE_TABLE_PRIMARY_KEY_CHECK =
GENERATE as part of a CHANGE REPLICATION SOURCE TO statement.

GIPKs work with row-based replication of CREATE TABLE ... SELECT; the information written to
the binary log for this statement in such cases includes the GIPK definition, and thus is replicated
correctly. Statement-based replication of CREATE TABLE ... SELECT is not supported with
sql_generate_invisible_primary_key = ON.

When creating or importing backups of installations where GIPKs are in use, it is possible to exclude
generated invisible primary key columns and values. The --skip-generated-invisible-
primary-key option for mysqldump causes GIPK information to be excluded in the program's output.
If you are importing a dump file that contains generated invisible primary keys and values, you can
also use --skip-generated-invisible-primary-key with mysqlpump to cause these to be
suppressed (and thus not imported).

15.1.20.12 Setting NDB Comment Options

• NDB_COLUMN Options

• NDB_TABLE Options

 It is possible to set a number of options specific to NDB Cluster in the table comment or column
comments of an NDB table. Table-level options for controlling read from any replica and partition
balance can be embedded in a table comment using NDB_TABLE.

NDB_COLUMN can be used in a column comment to set the size of the blob parts table column used for
storing parts of blob values by NDB to its maximum. This works for BLOB, MEDIUMBLOB, LONGBLOB,
TEXT, MEDIUMTEXT, LONGTEXT, and JSON columns. Beginning with NDB 8.0.30, a column comment
can also be used to control the inline size of a blob column. NDB_COLUMN comments do not support
TINYBLOB or TINYTEXT columns, since these have an inline part (only) of fixed size, and no separate
parts to store elsewhere.

NDB_TABLE can be used in a table comment to set options relating to partition balance and whether
the table is fully replicated, among others.

The remainder of this section describes these options and their use.

2779

CREATE TABLE Statement

NDB_COLUMN Options

 In NDB Cluster, a column comment in a CREATE TABLE or ALTER TABLE statement can also
be used to specify an NDB_COLUMN option. Beginning with version 8.0.30, NDB supports two column
comment options BLOB_INLINE_SIZE and MAX_BLOB_PART_SIZE. (Prior to NDB 8.0.30, only
MAX_BLOB_PART_SIZE is supported.) Syntax for this option is shown here:

COMMENT 'NDB_COLUMN=speclist'

speclist := spec[,spec]

spec :=
 BLOB_INLINE_SIZE=value
 | MAX_BLOB_PART_SIZE[={0|1}]

BLOB_INLINE_SIZE specifies the number of bytes to be stored inline by the column; its expected
value is an integer in the range 1 - 29980, inclusive. Setting a value greater than 29980 raises an error;
setting a value less than 1 is allowed, but causes the default inline size for the column type to be used.

You should be aware that the maximum value for this option is actually the maximum number of bytes
that can be stored in one row of an NDB table; every column in the row contributes to this total.

You should also keep in mind, especially when working with TEXT columns, that the value set by
MAX_BLOB_PART_SIZE or BLOB_INLINE_SIZE represents column size in bytes. It does not indicate
the number of characters, which varies according to the character set and collation used by the
column.

To see the effects of this option, first create a table with two BLOB columns, one (b1) with no extra
options, and another (b2) with a setting for BLOB_INLINE_SIZE, as shown here:

mysql> CREATE TABLE t1 (
 -> a INT NOT NULL PRIMARY KEY,
 -> b1 BLOB,
 -> b2 BLOB COMMENT 'NDB_COLUMN=BLOB_INLINE_SIZE=8000'
 ->) ENGINE NDB;
Query OK, 0 rows affected (0.32 sec)

You can see the BLOB_INLINE_SIZE settings for the BLOB columns by querying the
ndbinfo.blobs table, like this:

mysql> SELECT
 -> column_name AS 'Column Name',
 -> inline_size AS 'Inline Size',
 -> part_size AS 'Blob Part Size'
 -> FROM ndbinfo.blobs
 -> WHERE table_name = 't1';
+-------------+-------------+----------------+
| Column Name | Inline Size | Blob Part Size |
+-------------+-------------+----------------+
| b1 | 256 | 2000 |
| b2 | 8000 | 2000 |
+-------------+-------------+----------------+
2 rows in set (0.01 sec)

You can also check the output from the ndb_desc utility, as shown here, with the relevant lines
displayed using emphasized text:

$> ndb_desc -d test t1
-- t --
Version: 1
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 3
Number of primary keys: 1

2780

CREATE TABLE Statement

Length of frm data: 945
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 2
FragmentCount: 2
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options: readbackup
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --
a Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
b1 Blob(256,2000,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_64_1
b2 Blob(8000,2000,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_64_2
-- Indexes --
PRIMARY KEY(a) - UniqueHashIndex
PRIMARY(a) - OrderedIndex

BLOB_INLINE_SIZE has no effect on TINYBLOB columns. In NDB 8.0.41 and later, it is disallowed
with TINYBLOB, and causes a warning if used.

For MAX_BLOB_PART_SIZE, the = sign and the value following it are optional. Using any value other
than 0 or 1 results in a syntax error.

The effect of using MAX_BLOB_PART_SIZE in a column comment is to set the blob part size of a
TEXT or BLOB column to the maximum number of bytes supported for this by NDB (13948). This
option can be applied to any blob column type supported by MySQL except TINYBLOB or TINYTEXT
(BLOB, MEDIUMBLOB, LONGBLOB, TEXT, MEDIUMTEXT, LONGTEXT). Unlike BLOB_INLINE_SIZE,
MAX_BLOB_PART_SIZE has no effect on JSON columns.

To see the effects of this option, we first run the following SQL statement in the mysql client
to create a table with two BLOB columns, one (c1) with no extra options, and another (c2) with
MAX_BLOB_PART_SIZE:

mysql> CREATE TABLE test.t2 (
 -> p INT PRIMARY KEY,
 -> c1 BLOB,
 -> c2 BLOB COMMENT 'NDB_COLUMN=MAX_BLOB_PART_SIZE'
 ->) ENGINE NDB;
Query OK, 0 rows affected (0.32 sec)

From the system shell, run the ndb_desc utility to obtain information about the table just created, as
shown in this example:

$> ndb_desc -d test t2
-- t --
Version: 1
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 3
Number of primary keys: 1
Length of frm data: 324
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --

2781

CREATE TABLE Statement

p Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
c1 Blob(256,2000,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_22_1
c2 Blob(256,13948,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_22_2
-- Indexes --
PRIMARY KEY(p) - UniqueHashIndex
PRIMARY(p) - OrderedIndex

Column information in the output is listed under Attributes; for columns c1 and c2 it is displayed
here in emphasized text. For c1, the blob part size is 2000, the default value; for c2, it is 13948, as set
by MAX_BLOB_PART_SIZE.

You can also query the ndbinfo.blobs table to see this, as shown here:

mysql> SELECT
 -> column_name AS 'Column Name',
 -> inline_size AS 'Inline Size',
 -> part_size AS 'Blob Part Size'
 -> FROM ndbinfo.blobs
 -> WHERE table_name = 't2';
+-------------+-------------+----------------+
| Column Name | Inline Size | Blob Part Size |
+-------------+-------------+----------------+
| c1 | 256 | 2000 |
| c2 | 256 | 13948 |
+-------------+-------------+----------------+
2 rows in set (0.00 sec)

You can change the blob part size for a given blob column of an NDB table using an ALTER TABLE
statement such as this one, and verifying the changes afterwards using SHOW CREATE TABLE:

mysql> ALTER TABLE test.t2
 -> DROP COLUMN c1,
 -> ADD COLUMN c1 BLOB COMMENT 'NDB_COLUMN=MAX_BLOB_PART_SIZE',
 -> CHANGE COLUMN c2 c2 BLOB AFTER c1;
Query OK, 0 rows affected (0.47 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE test.t2\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t2` (
 `p` int(11) NOT NULL,
 `c1` blob COMMENT 'NDB_COLUMN=MAX_BLOB_PART_SIZE',
 `c2` blob,
 PRIMARY KEY (`p`)
) ENGINE=ndbcluster DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

mysql> EXIT
Bye

The output of ndb_desc shows that the blob part sizes of the columns have been changed as
expected:

$> ndb_desc -d test t2
-- t --
Version: 16777220
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 3
Number of primary keys: 1
Length of frm data: 324
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2

2782

CREATE TABLE Statement

ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --
p Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
c1 Blob(256,13948,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_26_1
c2 Blob(256,2000,0) NULL AT=MEDIUM_VAR ST=MEMORY BV=2 BT=NDB$BLOB_26_2
-- Indexes --
PRIMARY KEY(p) - UniqueHashIndex
PRIMARY(p) - OrderedIndex

You can also see the change by running the query against ndbinfo.blobs again:

mysql> SELECT
 -> column_name AS 'Column Name',
 -> inline_size AS 'Inline Size',
 -> part_size AS 'Blob Part Size'
 -> FROM ndbinfo.blobs
 -> WHERE table_name = 't2';
+-------------+-------------+----------------+
| Column Name | Inline Size | Blob Part Size |
+-------------+-------------+----------------+
| c1 | 256 | 13948 |
| c2 | 256 | 2000 |
+-------------+-------------+----------------+
2 rows in set (0.00 sec)

It is possible to set both BLOB_INLINE_SIZE and MAX_BLOB_PART_SIZE for a blob column, as
shown in this CREATE TABLE statement:

mysql> CREATE TABLE test.t3 (
 -> p INT NOT NULL PRIMARY KEY,
 -> c1 JSON,
 -> c2 JSON COMMENT 'NDB_COLUMN=BLOB_INLINE_SIZE=5000,MAX_BLOB_PART_SIZE'
 ->) ENGINE NDB;
Query OK, 0 rows affected (0.28 sec)

Querying the blobs table shows us that the statement worked as expected:

mysql> SELECT
 -> column_name AS 'Column Name',
 -> inline_size AS 'Inline Size',
 -> part_size AS 'Blob Part Size'
 -> FROM ndbinfo.blobs
 -> WHERE table_name = 't3';
+-------------+-------------+----------------+
| Column Name | Inline Size | Blob Part Size |
+-------------+-------------+----------------+
| c1 | 4000 | 8100 |
| c2 | 5000 | 8100 |
+-------------+-------------+----------------+
2 rows in set (0.00 sec)

You can also verify that the statement worked by checking the output of ndb_desc.

Changing a column's blob part size must be done using a copying ALTER TABLE; this operation
cannot be performed online (see Section 25.6.12, “Online Operations with ALTER TABLE in NDB
Cluster”).

For more information about how NDB stores columns of blob types, see String Type Storage
Requirements.

NDB_TABLE Options

 For an NDB Cluster table, the table comment in a CREATE TABLE or ALTER TABLE statement
can also be used to specify an NDB_TABLE option, which consists of one or more name-value pairs,
separated by commas if need be, following the string NDB_TABLE=. Complete syntax for names and
values syntax is shown here:

2783

CREATE TABLE Statement

COMMENT="NDB_TABLE=ndb_table_option[,ndb_table_option[,...]]"

ndb_table_option: {
 NOLOGGING={1 | 0}
 | READ_BACKUP={1 | 0}
 | PARTITION_BALANCE={FOR_RP_BY_NODE | FOR_RA_BY_NODE | FOR_RP_BY_LDM
 | FOR_RA_BY_LDM | FOR_RA_BY_LDM_X_2
 | FOR_RA_BY_LDM_X_3 | FOR_RA_BY_LDM_X_4}
 | FULLY_REPLICATED={1 | 0}
}

Spaces are not permitted within the quoted string. The string is case-insensitive.

The four NDB table options that can be set as part of a comment in this way are described in more
detail in the next few paragraphs.

 NOLOGGING: By default, NDB tables are logged, and checkpointed. This makes them durable to
whole cluster failures. Using NOLOGGING when creating or altering a table means that this table is not
redo logged or included in local checkpoints. In this case, the table is still replicated across the data
nodes for high availability, and updated using transactions, but changes made to it are not recorded in
the data node's redo logs, and its content is not checkpointed to disk; when recovering from a cluster
failure, the cluster retains the table definition, but none of its rows—that is, the table is empty.

Using such nonlogging tables reduces the data node's demands on disk I/O and storage, as well as
CPU for checkpointing CPU. This may be suitable for short-lived data which is frequently updated, and
where the loss of all data in the unlikely event of a total cluster failure is acceptable.

It is also possible to use the ndb_table_no_logging system variable to cause any NDB tables
created or altered while this variable is in effect to behave as though it had been created with the
NOLOGGING comment. Unlike when using the comment directly, there is nothing in this case in the
output of SHOW CREATE TABLE to indicate that it is a nonlogging table. Using the table comment
approach is recommended since it offers per-table control of the feature, and this aspect of the table
schema is embedded in the table creation statement where it can be found easily by SQL-based tools.

 READ_BACKUP: Setting this option to 1 has the same effect as though ndb_read_backup were
enabled; enables reading from any replica. Doing so greatly improves the performance of reads from
the table at a relatively small cost to write performance. Beginning with NDB 8.0.19, 1 is the default for
READ_BACKUP, and the default for ndb_read_backup is ON (previously, read from any replica was
disabled by default).

You can set READ_BACKUP for an existing table online, using an ALTER TABLE statement similar to
one of those shown here:

ALTER TABLE ... ALGORITHM=INPLACE, COMMENT="NDB_TABLE=READ_BACKUP=1";

ALTER TABLE ... ALGORITHM=INPLACE, COMMENT="NDB_TABLE=READ_BACKUP=0";

For more information about the ALGORITHM option for ALTER TABLE, see Section 25.6.12, “Online
Operations with ALTER TABLE in NDB Cluster”.

 PARTITION_BALANCE: Provides additional control over assignment and placement of partitions. The
following four schemes are supported:

1. FOR_RP_BY_NODE: One partition per node.

Only one LDM on each node stores a primary partition. Each partition is stored in the same LDM
(same ID) on all nodes.

2. FOR_RA_BY_NODE: One partition per node group.

Each node stores a single partition, which can be either a primary replica or a backup replica. Each
partition is stored in the same LDM on all nodes.

3. FOR_RP_BY_LDM: One partition for each LDM on each node; the default.

2784

CREATE TABLE Statement

This is the setting used if READ_BACKUP is set to 1.

4. FOR_RA_BY_LDM: One partition per LDM in each node group.

These partitions can be primary or backup partitions.

5. FOR_RA_BY_LDM_X_2: Two partitions per LDM in each node group.

These partitions can be primary or backup partitions.

6. FOR_RA_BY_LDM_X_3: Three partitions per LDM in each node group.

These partitions can be primary or backup partitions.

7. FOR_RA_BY_LDM_X_4: Four partitions per LDM in each node group.

These partitions can be primary or backup partitions.

PARTITION_BALANCE is the preferred interface for setting the number of partitions per table. Using
MAX_ROWS to force the number of partitions is deprecated but continues to be supported for backward
compatibility; it is subject to removal in a future release of MySQL NDB Cluster. (Bug #81759, Bug
#23544301)

 FULLY_REPLICATED controls whether the table is fully replicated, that is, whether each data node
has a complete copy of the table. To enable full replication of the table, use FULLY_REPLICATED=1.

This setting can also be controlled using the ndb_fully_replicated system variable.
Setting it to ON enables the option by default for all new NDB tables; the default is OFF. The
ndb_data_node_neighbour system variable is also used for fully replicated tables, to ensure that
when a fully replicated table is accessed, we access the data node which is local to this MySQL Server.

An example of a CREATE TABLE statement using such a comment when creating an NDB table is
shown here:

mysql> CREATE TABLE t1 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 > c2 VARCHAR(100),
 > c3 VARCHAR(100))
 > ENGINE=NDB
 >
COMMENT="NDB_TABLE=READ_BACKUP=0,PARTITION_BALANCE=FOR_RP_BY_NODE";

The comment is displayed as part of the output of SHOW CREATE TABLE. The text of the comment is
also available from querying the MySQL Information Schema TABLES table, as in this example:

mysql> SELECT TABLE_NAME, TABLE_SCHEMA, TABLE_COMMENT
 > FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME="t1"\G
*************************** 1. row ***************************
 TABLE_NAME: t1
 TABLE_SCHEMA: test
TABLE_COMMENT: NDB_TABLE=READ_BACKUP=0,PARTITION_BALANCE=FOR_RP_BY_NODE
1 row in set (0.01 sec)

This comment syntax is also supported with ALTER TABLE statements for NDB tables, as shown here:

mysql> ALTER TABLE t1 COMMENT="NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_NODE";
Query OK, 0 rows affected (0.40 sec)
Records: 0 Duplicates: 0 Warnings: 0

Beginning with NDB 8.0.21, the TABLE_COMMENT column displays the comment that is required to re-
create the table as it is following the ALTER TABLE statement, like this:

mysql> SELECT TABLE_NAME, TABLE_SCHEMA, TABLE_COMMENT
 -> FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME="t1"\G

2785

CREATE TABLESPACE Statement

*************************** 1. row ***************************
 TABLE_NAME: t1
 TABLE_SCHEMA: test
TABLE_COMMENT: NDB_TABLE=READ_BACKUP=0,PARTITION_BALANCE=FOR_RP_BY_NODE
1 row in set (0.01 sec)

mysql> SELECT TABLE_NAME, TABLE_SCHEMA, TABLE_COMMENT
 > FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME="t1";
+------------+--------------+--+
| TABLE_NAME | TABLE_SCHEMA | TABLE_COMMENT |
+------------+--------------+--+
| t1 | c | NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_NODE |
| t1 | d | |
+------------+--------------+--+
2 rows in set (0.01 sec)

Keep in mind that a table comment used with ALTER TABLE replaces any existing comment which the
table might have.

mysql> ALTER TABLE t1 COMMENT="NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_NODE";
Query OK, 0 rows affected (0.40 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SELECT TABLE_NAME, TABLE_SCHEMA, TABLE_COMMENT
 > FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME="t1";
+------------+--------------+--+
| TABLE_NAME | TABLE_SCHEMA | TABLE_COMMENT |
+------------+--------------+--+
| t1 | c | NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_NODE |
| t1 | d | |
+------------+--------------+--+
2 rows in set (0.01 sec)

Prior to NDB 8.0.21, the table comment used with ALTER TABLE replaced any existing comment
which the table might have had. This meant that (for example) the READ_BACKUP value was not
carried over to the new comment set by the ALTER TABLE statement, and that any unspecified values
reverted to their defaults. (BUG#30428829) There was thus no longer any way using SQL to retrieve
the value previously set for the comment. To keep comment values from reverting to their defaults, it
was necessary to preserve any such values from the existing comment string and include them in the
comment passed to ALTER TABLE.

You can also see the value of the PARTITION_BALANCE option in the output of ndb_desc. ndb_desc
also shows whether the READ_BACKUP and FULLY_REPLICATED options are set for the table. See the
description of this program for more information.

15.1.21 CREATE TABLESPACE Statement
CREATE [UNDO] TABLESPACE tablespace_name

 InnoDB and NDB:
 [ADD DATAFILE 'file_name']
 [AUTOEXTEND_SIZE [=] value]

 InnoDB only:
 [FILE_BLOCK_SIZE = value]
 [ENCRYPTION [=] {'Y' | 'N'}]

 NDB only:
 USE LOGFILE GROUP logfile_group
 [EXTENT_SIZE [=] extent_size]
 [INITIAL_SIZE [=] initial_size]
 [MAX_SIZE [=] max_size]
 [NODEGROUP [=] nodegroup_id]
 [WAIT]
 [COMMENT [=] 'string']

 InnoDB and NDB:
 [ENGINE [=] engine_name]

2786

CREATE TABLESPACE Statement

 Reserved for future use:
 [ENGINE_ATTRIBUTE [=] 'string']

This statement is used to create a tablespace. The precise syntax and semantics depend on the
storage engine used. In standard MySQL releases, this is always an InnoDB tablespace. MySQL NDB
Cluster also supports tablespaces using the NDB storage engine.

• Considerations for InnoDB

• Considerations for NDB Cluster

• Options

• Notes

• InnoDB Examples

• NDB Example

Considerations for InnoDB

CREATE TABLESPACE syntax is used to create general tablespaces or undo tablespaces. The UNDO
keyword, introduced in MySQL 8.0.14, must be specified to create an undo tablespace.

A general tablespace is a shared tablespace. It can hold multiple tables, and supports all table row
formats. General tablespaces can be created in a location relative to or independent of the data
directory.

After creating an InnoDB general tablespace, use CREATE TABLE tbl_name ... TABLESPACE
[=] tablespace_name or ALTER TABLE tbl_name TABLESPACE [=] tablespace_name to
add tables to the tablespace. For more information, see Section 17.6.3.3, “General Tablespaces”.

Undo tablespaces contain undo logs. Undo tablespaces can be created in a chosen location
by specifying a fully qualified data file path. For more information, see Section 17.6.3.4, “Undo
Tablespaces”.

Considerations for NDB Cluster

This statement is used to create a tablespace, which can contain one or more data files, providing
storage space for NDB Cluster Disk Data tables (see Section 25.6.11, “NDB Cluster Disk Data
Tables”). One data file is created and added to the tablespace using this statement. Additional
data files may be added to the tablespace by using the ALTER TABLESPACE statement (see
Section 15.1.10, “ALTER TABLESPACE Statement”).

Note

All NDB Cluster Disk Data objects share the same namespace. This means that
each Disk Data object must be uniquely named (and not merely each Disk Data
object of a given type). For example, you cannot have a tablespace and a log
file group with the same name, or a tablespace and a data file with the same
name.

A log file group of one or more UNDO log files must be assigned to the tablespace to be created with
the USE LOGFILE GROUP clause. logfile_group must be an existing log file group created with
CREATE LOGFILE GROUP (see Section 15.1.16, “CREATE LOGFILE GROUP Statement”). Multiple
tablespaces may use the same log file group for UNDO logging.

When setting EXTENT_SIZE or INITIAL_SIZE, you may optionally follow the number with a one-
letter abbreviation for an order of magnitude, similar to those used in my.cnf. Generally, this is one of
the letters M (for megabytes) or G (for gigabytes).

2787

CREATE TABLESPACE Statement

INITIAL_SIZE and EXTENT_SIZE are subject to rounding as follows:

• EXTENT_SIZE is rounded up to the nearest whole multiple of 32K.

• INITIAL_SIZE is rounded down to the nearest whole multiple of 32K; this result is rounded up to
the nearest whole multiple of EXTENT_SIZE (after any rounding).

Note

NDB reserves 4% of a tablespace for data node restart operations. This
reserved space cannot be used for data storage.

The rounding just described is done explicitly, and a warning is issued by the MySQL Server when
any such rounding is performed. The rounded values are also used by the NDB kernel for calculating
INFORMATION_SCHEMA.FILES column values and other purposes. However, to avoid an unexpected
result, we suggest that you always use whole multiples of 32K in specifying these options.

When CREATE TABLESPACE is used with ENGINE [=] NDB, a tablespace and associated data file
are created on each Cluster data node. You can verify that the data files were created and obtain
information about them by querying the Information Schema FILES table. (See the example later in
this section.)

(See Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”.)

Options

• ADD DATAFILE: Defines the name of a tablespace data file. This option is always required when
creating an NDB tablespace; for InnoDB in MySQL 8.0.14 and later, it is required only when creating
an undo tablespace. The file_name, including any specified path, must be quoted with single or
double quotation marks. File names (not counting the file extension) and directory names must be at
least one byte in length. Zero length file names and directory names are not supported.

Because there are considerable differences in how InnoDB and NDB treat data files, the two storage
engines are covered separately in the discussion that follows.

InnoDB data files. An InnoDB tablespace supports only a single data file, whose name must
include a .ibd extension.

To place an InnoDB general tablespace data file in a location outside of the data directory, include
a fully qualified path or a path relative to the data directory. Only a fully qualified path is permitted for
undo tablespaces. If you do not specify a path, a general tablespace is created in the data directory.
An undo tablespace created without specifying a path is created in the directory defined by the
innodb_undo_directory variable. If the innodb_undo_directory variable is undefined, undo
tablespaces are created in the data directory.

To avoid conflicts with implicitly created file-per-table tablespaces, creating an InnoDB general
tablespace in a subdirectory under the data directory is not supported. When creating a general
tablespace or undo tablespace outside of the data directory, the directory must exist and must be
known to InnoDB prior to creating the tablespace. To make a directory known to InnoDB, add
it to the innodb_directories value or to one of the variables whose values are appended to
the innodb_directories value. innodb_directories is a read-only variable. Configuring it
requires restarting the server.

If the ADD DATAFILE clause is not specified when creating an InnoDB tablespace, a tablespace
data file with a unique file name is created implicitly. The unique file name is a 128 bit UUID
formatted into five groups of hexadecimal numbers separated by dashes (aaaaaaaa-bbbb-cccc-
dddd-eeeeeeeeeeee). A file extension is added if required by the storage engine. An .ibd file
extension is added for InnoDB general tablespace data files. In a replication environment, the data
file name created on the replication source server is not the same as the data file name created on
the replica.

2788

CREATE TABLESPACE Statement

As of MySQL 8.0.17, the ADD DATAFILE clause does not permit circular directory references when
creating an InnoDB tablespace. For example, the circular directory reference (/../) in the following
statement is not permitted:

CREATE TABLESPACE ts1 ADD DATAFILE ts1.ibd 'any_directory/../ts1.ibd';

An exception to this restriction exists on Linux, where a circular directory reference is permitted if
the preceding directory is a symbolic link. For example, the data file path in the example above is
permitted if any_directory is a symbolic link. (It is still permitted for data file paths to begin with
'../'.)

NDB data files. An NDB tablespace supports multiple data files which can have any legal file
names; more data files can be added to an NDB Cluster tablespace following its creation by using an
ALTER TABLESPACE statement.

An NDB tablespace data file is created by default in the data node file system directory—that is,
the directory named ndb_nodeid_fs/TS under the data node's data directory (DataDir), where
nodeid is the data node's NodeId. To place the data file in a location other than the default, include
an absolute directory path or a path relative to the default location. If the directory specified does
not exist, NDB attempts to create it; the system user account under which the data node process is
running must have the appropriate permissions to do so.

Note

When determining the path used for a data file, NDB does not expand the ~
(tilde) character.

When multiple data nodes are run on the same physical host, the following considerations apply:

• You cannot specify an absolute path when creating a data file.

• It is not possible to create tablespace data files outside the data node file system directory, unless
each data node has a separate data directory.

• If each data node has its own data directory, data files can be created anywhere within this
directory.

• If each data node has its own data directory, it may also be possible to create a data file outside
the node's data directory using a relative path, as long as this path resolves to a unique location on
the host file system for each data node running on that host.

• FILE_BLOCK_SIZE: This option—which is specific to InnoDB general tablespaces, and is
ignored by NDB—defines the block size for the tablespace data file. Values can be specified in
bytes or kilobytes. For example, an 8 kilobyte file block size can be specified as 8192 or 8K. If
you do not specify this option, FILE_BLOCK_SIZE defaults to the innodb_page_size value.
FILE_BLOCK_SIZE is required when you intend to use the tablespace for storing compressed
InnoDB tables (ROW_FORMAT=COMPRESSED). In this case, you must define the tablespace
FILE_BLOCK_SIZE when creating the tablespace.

If FILE_BLOCK_SIZE is equal the innodb_page_size value, the tablespace can contain only
tables having an uncompressed row format (COMPACT, REDUNDANT, and DYNAMIC). Tables with a
COMPRESSED row format have a different physical page size than uncompressed tables. Therefore,
compressed tables cannot coexist in the same tablespace as uncompressed tables.

For a general tablespace to contain compressed tables, FILE_BLOCK_SIZE must be
specified, and the FILE_BLOCK_SIZE value must be a valid compressed page size in
relation to the innodb_page_size value. Also, the physical page size of the compressed
table (KEY_BLOCK_SIZE) must be equal to FILE_BLOCK_SIZE/1024. For example, if
innodb_page_size=16K, and FILE_BLOCK_SIZE=8K, the KEY_BLOCK_SIZE of the table must
be 8. For more information, see Section 17.6.3.3, “General Tablespaces”.

2789

CREATE TABLESPACE Statement

• USE LOGFILE GROUP: Required for NDB, this is the name of a log file group previously created
using CREATE LOGFILE GROUP. Not supported for InnoDB, where it fails with an error.

• EXTENT_SIZE: This option is specific to NDB, and is not supported by InnoDB, where it fails with
an error. EXTENT_SIZE sets the size, in bytes, of the extents used by any files belonging to the
tablespace. The default value is 1M. The minimum size is 32K, and theoretical maximum is 2G,
although the practical maximum size depends on a number of factors. In most cases, changing
the extent size does not have any measurable effect on performance, and the default value is
recommended for all but the most unusual situations.

An extent is a unit of disk space allocation. One extent is filled with as much data as that extent
can contain before another extent is used. In theory, up to 65,535 (64K) extents may used per data
file; however, the recommended maximum is 32,768 (32K). The recommended maximum size
for a single data file is 32G—that is, 32K extents × 1 MB per extent. In addition, once an extent is
allocated to a given partition, it cannot be used to store data from a different partition; an extent
cannot store data from more than one partition. This means, for example that a tablespace having
a single datafile whose INITIAL_SIZE (described in the following item) is 256 MB and whose
EXTENT_SIZE is 128M has just two extents, and so can be used to store data from at most two
different disk data table partitions.

You can see how many extents remain free in a given data file by querying the Information Schema
FILES table, and so derive an estimate for how much space remains free in the file. For further
discussion and examples, see Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”.

• INITIAL_SIZE: This option is specific to NDB, and is not supported by InnoDB, where it fails with
an error.

The INITIAL_SIZE parameter sets the total size in bytes of the data file that was specific using
ADD DATATFILE. Once this file has been created, its size cannot be changed; however, you can
add more data files to the tablespace using ALTER TABLESPACE ... ADD DATAFILE.

INITIAL_SIZE is optional; its default value is 134217728 (128 MB).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4294967296 (4 GB).

• AUTOEXTEND_SIZE: Ignored by MySQL prior to MySQL 8.0.23; From MySQL 8.0.23, defines the
amount by which InnoDB extends the size of the tablespace when it becomes full. The setting
must be a multiple of 4MB. The default setting is 0, which causes the tablespace to be extended
according to the implicit default behavior. For more information, see Section 17.6.3.9, “Tablespace
AUTOEXTEND_SIZE Configuration”.

Has no effect in any release of MySQL NDB Cluster 8.0, regardless of the storage engine used.

• MAX_SIZE: Currently ignored by MySQL; reserved for possible future use. Has no effect in any
release of MySQL 8.0 or MySQL NDB Cluster 8.0, regardless of the storage engine used.

• NODEGROUP: Currently ignored by MySQL; reserved for possible future use. Has no effect in any
release of MySQL 8.0 or MySQL NDB Cluster 8.0, regardless of the storage engine used.

• WAIT: Currently ignored by MySQL; reserved for possible future use. Has no effect in any release of
MySQL 8.0 or MySQL NDB Cluster 8.0, regardless of the storage engine used.

• COMMENT: Currently ignored by MySQL; reserved for possible future use. Has no effect in any
release of MySQL 8.0 or MySQL NDB Cluster 8.0, regardless of the storage engine used.

• The ENCRYPTION clause enables or disables page-level data encryption for an InnoDB general
tablespace. Encryption support for general tablespaces was introduced in MySQL 8.0.13.

As of MySQL 8.0.16, if the ENCRYPTION clause is not specified, the default_table_encryption
setting controls whether encryption is enabled. The ENCRYPTION clause overrides the
default_table_encryption setting. However, if the table_encryption_privilege_check

2790

CREATE TABLESPACE Statement

variable is enabled, the TABLE_ENCRYPTION_ADMIN privilege is required to use an ENCRYPTION
clause setting that differs from the default_table_encryption setting.

A keyring plugin must be installed and configured before an encryption-enabled tablespace can be
created.

When a general tablespace is encrypted, all tables residing in the tablespace are encrypted.
Likewise, a table created in an encrypted tablespace is encrypted.

For more information, see Section 17.13, “InnoDB Data-at-Rest Encryption”

• ENGINE: Defines the storage engine which uses the tablespace, where engine_name is the name
of the storage engine. Currently, only the InnoDB storage engine is supported by standard MySQL
8.0 releases. MySQL NDB Cluster supports both NDB and InnoDB tablespaces. The value of the
default_storage_engine system variable is used for ENGINE if the option is not specified.

• The ENGINE_ATTRIBUTE option (available as of MySQL 8.0.21) is used to specify tablespace
attributes for primary storage engines. The option is reserved for future use.

Permitted values are a string literal containing a valid JSON document or an empty string (''). Invalid
JSON is rejected.

CREATE TABLESPACE ts1 ENGINE_ATTRIBUTE='{"key":"value"}';

ENGINE_ATTRIBUTE values can be repeated without error. In this case, the last specified value is
used.

ENGINE_ATTRIBUTE values are not checked by the server, nor are they cleared when the table's
storage engine is changed.

Notes

• For the rules covering the naming of MySQL tablespaces, see Section 11.2, “Schema Object
Names”. In addition to these rules, the slash character (“/”) is not permitted, nor can you use names
beginning with innodb_, as this prefix is reserved for system use.

• Creation of temporary general tablespaces is not supported.

• General tablespaces do not support temporary tables.

• The TABLESPACE option may be used with CREATE TABLE or ALTER TABLE to assign an InnoDB
table partition or subpartition to a file-per-table tablespace. All partitions must belong to the same
storage engine. Assigning table partitions to shared InnoDB tablespaces is not supported. Shared
tablespaces include the InnoDB system tablespace and general tablespaces.

• General tablespaces support the addition of tables of any row format using CREATE TABLE ...
TABLESPACE. innodb_file_per_table does not need to be enabled.

• innodb_strict_mode is not applicable to general tablespaces. Tablespace management rules
are strictly enforced independently of innodb_strict_mode. If CREATE TABLESPACE parameters
are incorrect or incompatible, the operation fails regardless of the innodb_strict_mode setting.
When a table is added to a general tablespace using CREATE TABLE ... TABLESPACE or ALTER
TABLE ... TABLESPACE, innodb_strict_mode is ignored but the statement is evaluated as if
innodb_strict_mode is enabled.

• Use DROP TABLESPACE to remove a tablespace. All tables must be dropped from a tablespace
using DROP TABLE prior to dropping the tablespace. Before dropping an NDB Cluster tablespace
you must also remove all its data files using one or more ALTER TABLESPACE ... DROP
DATATFILE statements. See Section 25.6.11.1, “NDB Cluster Disk Data Objects”.

• All parts of an InnoDB table added to an InnoDB general tablespace reside in the general
tablespace, including indexes and BLOB pages.

2791

CREATE TABLESPACE Statement

For an NDB table assigned to a tablespace, only those columns which are not indexed are stored on
disk, and actually use the tablespace data files. Indexes and indexed columns for all NDB tables are
always kept in memory.

• Similar to the system tablespace, truncating or dropping tables stored in a general tablespace
creates free space internally in the general tablespace .ibd data file which can only be used for
new InnoDB data. Space is not released back to the operating system as it is for file-per-table
tablespaces.

• A general tablespace is not associated with any database or schema.

• ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ...IMPORT TABLESPACE are
not supported for tables that belong to a general tablespace.

• The server uses tablespace-level metadata locking for DDL that references general tablespaces.
By comparison, the server uses table-level metadata locking for DDL that references file-per-table
tablespaces.

• A generated or existing tablespace cannot be changed to a general tablespace.

• There is no conflict between general tablespace names and file-per-table tablespace names. The “/”
character, which is present in file-per-table tablespace names, is not permitted in general tablespace
names.

• mysqldump and mysqlpump do not dump InnoDB CREATE TABLESPACE statements.

InnoDB Examples

This example demonstrates creating a general tablespace and adding three uncompressed tables of
different row formats.

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' ENGINE=INNODB;

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1 ROW_FORMAT=REDUNDANT;

mysql> CREATE TABLE t2 (c1 INT PRIMARY KEY) TABLESPACE ts1 ROW_FORMAT=COMPACT;

mysql> CREATE TABLE t3 (c1 INT PRIMARY KEY) TABLESPACE ts1 ROW_FORMAT=DYNAMIC;

This example demonstrates creating a general tablespace and adding a compressed table. The
example assumes a default innodb_page_size value of 16K. The FILE_BLOCK_SIZE of 8192
requires that the compressed table have a KEY_BLOCK_SIZE of 8.

mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;

mysql> CREATE TABLE t4 (c1 INT PRIMARY KEY) TABLESPACE ts2 ROW_FORMAT=COMPRESSED KEY_BLOCK_SIZE=8;

This example demonstrates creating a general tablespace without specifying the ADD DATAFILE
clause, which is optional as of MySQL 8.0.14.

mysql> CREATE TABLESPACE `ts3` ENGINE=INNODB;

This example demonstrates creating an undo tablespace.

mysql> CREATE UNDO TABLESPACE undo_003 ADD DATAFILE 'undo_003.ibu';

NDB Example

Suppose that you wish to create an NDB Cluster Disk Data tablespace named myts using a datafile
named mydata-1.dat. An NDB tablespace always requires the use of a log file group consisting of
one or more undo log files. For this example, we first create a log file group named mylg that contains
one undo long file named myundo-1.dat, using the CREATE LOGFILE GROUP statement shown
here:

2792

CREATE TRIGGER Statement

mysql> CREATE LOGFILE GROUP myg1
 -> ADD UNDOFILE 'myundo-1.dat'
 -> ENGINE=NDB;
Query OK, 0 rows affected (3.29 sec)

Now you can create the tablespace previously described using the following statement:

mysql> CREATE TABLESPACE myts
 -> ADD DATAFILE 'mydata-1.dat'
 -> USE LOGFILE GROUP mylg
 -> ENGINE=NDB;
Query OK, 0 rows affected (2.98 sec)

You can now create a Disk Data table using a CREATE TABLE statement with the TABLESPACE and
STORAGE DISK options, similar to what is shown here:

mysql> CREATE TABLE mytable (
 -> id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> lname VARCHAR(50) NOT NULL,
 -> fname VARCHAR(50) NOT NULL,
 -> dob DATE NOT NULL,
 -> joined DATE NOT NULL,
 -> INDEX(last_name, first_name)
 ->)
 -> TABLESPACE myts STORAGE DISK
 -> ENGINE=NDB;
Query OK, 0 rows affected (1.41 sec)

It is important to note that only the dob and joined columns from mytable are actually stored on
disk, due to the fact that the id, lname, and fname columns are all indexed.

As mentioned previously, when CREATE TABLESPACE is used with ENGINE [=] NDB, a tablespace
and associated data file are created on each NDB Cluster data node. You can verify that the data files
were created and obtain information about them by querying the Information Schema FILES table, as
shown here:

mysql> SELECT FILE_NAME, FILE_TYPE, LOGFILE_GROUP_NAME, STATUS, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE TABLESPACE_NAME = 'myts';

+--------------+------------+--------------------+--------+----------------+
| file_name | file_type | logfile_group_name | status | extra |
+--------------+------------+--------------------+--------+----------------+
mydata-1.dat	DATAFILE	mylg	NORMAL	CLUSTER_NODE=5
mydata-1.dat	DATAFILE	mylg	NORMAL	CLUSTER_NODE=6
NULL	TABLESPACE	mylg	NORMAL	NULL
+--------------+------------+--------------------+--------+----------------+
3 rows in set (0.01 sec)

For additional information and examples, see Section 25.6.11.1, “NDB Cluster Disk Data Objects”.

15.1.22 CREATE TRIGGER Statement
CREATE
 [DEFINER = user]
 TRIGGER [IF NOT EXISTS] trigger_name
 trigger_time trigger_event
 ON tbl_name FOR EACH ROW
 [trigger_order]
 trigger_body

trigger_time: { BEFORE | AFTER }

trigger_event: { INSERT | UPDATE | DELETE }

trigger_order: { FOLLOWS | PRECEDES } other_trigger_name

This statement creates a new trigger. A trigger is a named database object that is associated with a
table, and that activates when a particular event occurs for the table. The trigger becomes associated

2793

CREATE TRIGGER Statement

with the table named tbl_name, which must refer to a permanent table. You cannot associate a trigger
with a TEMPORARY table or a view.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names
within a schema. Triggers in different schemas can have the same name.

IF NOT EXISTS prevents an error from occurring if a trigger having the same name, on the same
table, exists in the same schema. This option is supported with CREATE TRIGGER beginning with
MySQL 8.0.29.

This section describes CREATE TRIGGER syntax. For additional discussion, see Section 27.3.1,
“Trigger Syntax and Examples”.

CREATE TRIGGER requires the TRIGGER privilege for the table associated with the trigger. If the
DEFINER clause is present, the privileges required depend on the user value, as discussed in
Section 27.6, “Stored Object Access Control”. If binary logging is enabled, CREATE TRIGGER might
require the SUPER privilege, as discussed in Section 27.7, “Stored Program Binary Logging”.

The DEFINER clause determines the security context to be used when checking access privileges at
trigger activation time, as described later in this section.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger
activates before or after each row to be modified.

Basic column value checks occur prior to trigger activation, so you cannot use BEFORE triggers to
convert values inappropriate for the column type to valid values.

trigger_event indicates the kind of operation that activates the trigger. These trigger_event
values are permitted:

• INSERT: The trigger activates whenever a new row is inserted into the table (for example, through
INSERT, LOAD DATA, and REPLACE statements).

• UPDATE: The trigger activates whenever a row is modified (for example, through UPDATE
statements).

• DELETE: The trigger activates whenever a row is deleted from the table (for example, through
DELETE and REPLACE statements). DROP TABLE and TRUNCATE TABLE statements on the table
do not activate this trigger, because they do not use DELETE. Dropping a partition does not activate
DELETE triggers, either.

The trigger_event does not represent a literal type of SQL statement that activates the trigger so
much as it represents a type of table operation. For example, an INSERT trigger activates not only for
INSERT statements but also LOAD DATA statements because both statements insert rows into a table.

A potentially confusing example of this is the INSERT INTO ... ON DUPLICATE KEY
UPDATE ... syntax: a BEFORE INSERT trigger activates for every row, followed by either an AFTER
INSERT trigger or both the BEFORE UPDATE and AFTER UPDATE triggers, depending on whether
there was a duplicate key for the row.

Note

Cascaded foreign key actions do not activate triggers.

It is possible to define multiple triggers for a given table that have the same trigger event and action
time. For example, you can have two BEFORE UPDATE triggers for a table. By default, triggers that
have the same trigger event and action time activate in the order they were created. To affect trigger
order, specify a trigger_order clause that indicates FOLLOWS or PRECEDES and the name of an
existing trigger that also has the same trigger event and action time. With FOLLOWS, the new trigger
activates after the existing trigger. With PRECEDES, the new trigger activates before the existing trigger.

2794

CREATE VIEW Statement

trigger_body is the statement to execute when the trigger activates. To execute multiple
statements, use the BEGIN ... END compound statement construct. This also enables you to use
the same statements that are permitted within stored routines. See Section 15.6.1, “BEGIN ... END
Compound Statement”. Some statements are not permitted in triggers; see Section 27.8, “Restrictions
on Stored Programs”.

Within the trigger body, you can refer to columns in the subject table (the table associated with the
trigger) by using the aliases OLD and NEW. OLD.col_name refers to a column of an existing row before
it is updated or deleted. NEW.col_name refers to the column of a new row to be inserted or an existing
row after it is updated.

Triggers cannot use NEW.col_name or use OLD.col_name to refer to generated columns. For
information about generated columns, see Section 15.1.20.8, “CREATE TABLE and Generated
Columns”.

MySQL stores the sql_mode system variable setting in effect when a trigger is created, and always
executes the trigger body with this setting in force, regardless of the current server SQL mode when
the trigger begins executing.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at
trigger activation time. If the DEFINER clause is present, the user value should be a MySQL account
specified as 'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted
user values depend on the privileges you hold, as discussed in Section 27.6, “Stored Object Access
Control”. Also see that section for additional information about trigger security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE TRIGGER
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

MySQL takes the DEFINER user into account when checking trigger privileges as follows:

• At CREATE TRIGGER time, the user who issues the statement must have the TRIGGER privilege.

• At trigger activation time, privileges are checked against the DEFINER user. This user must have
these privileges:

• The TRIGGER privilege for the subject table.

• The SELECT privilege for the subject table if references to table columns occur using
OLD.col_name or NEW.col_name in the trigger body.

• The UPDATE privilege for the subject table if table columns are targets of SET NEW.col_name =
value assignments in the trigger body.

• Whatever other privileges normally are required for the statements executed by the trigger.

Within a trigger body, the CURRENT_USER function returns the account used to check privileges at
trigger activation time. This is the DEFINER user, not the user whose actions caused the trigger to be
activated. For information about user auditing within triggers, see Section 8.2.23, “SQL-Based Account
Activity Auditing”.

If you use LOCK TABLES to lock a table that has triggers, the tables used within the trigger are also
locked, as described in LOCK TABLES and Triggers.

For additional discussion of trigger use, see Section 27.3.1, “Trigger Syntax and Examples”.

15.1.23 CREATE VIEW Statement

CREATE
 [OR REPLACE]
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = user]

2795

CREATE VIEW Statement

 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

The CREATE VIEW statement creates a new view, or replaces an existing view if the OR REPLACE
clause is given. If the view does not exist, CREATE OR REPLACE VIEW is the same as CREATE VIEW.
If the view does exist, CREATE OR REPLACE VIEW replaces it.

For information about restrictions on view use, see Section 27.9, “Restrictions on Views”.

The select_statement is a SELECT statement that provides the definition of the view. (Selecting
from the view selects, in effect, using the SELECT statement.) The select_statement can select
from base tables or from other views. Beginning with MySQL 8.0.19, the SELECT statement can
use a VALUES statement as its source, or can be replaced with a TABLE statement, as with CREATE
TABLE ... SELECT.

The view definition is “frozen” at creation time and is not affected by subsequent changes to the
definitions of the underlying tables. For example, if a view is defined as SELECT * on a table, new
columns added to the table later do not become part of the view, and columns dropped from the table
result in an error when selecting from the view.

The ALGORITHM clause affects how MySQL processes the view. The DEFINER and SQL SECURITY
clauses specify the security context to be used when checking access privileges at view invocation
time. The WITH CHECK OPTION clause can be given to constrain inserts or updates to rows in tables
referenced by the view. These clauses are described later in this section.

The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some privilege
for each column selected by the SELECT statement. For columns used elsewhere in the SELECT
statement, you must have the SELECT privilege. If the OR REPLACE clause is present, you must also
have the DROP privilege for the view. If the DEFINER clause is present, the privileges required depend
on the user value, as discussed in Section 27.6, “Stored Object Access Control”.

When a view is referenced, privilege checking occurs as described later in this section.

A view belongs to a database. By default, a new view is created in the default database. To create the
view explicitly in a given database, use db_name.view_name syntax to qualify the view name with the
database name:

CREATE VIEW test.v AS SELECT * FROM t;

Unqualified table or view names in the SELECT statement are also interpreted with respect to the
default database. A view can refer to tables or views in other databases by qualifying the table or view
name with the appropriate database name.

Within a database, base tables and views share the same namespace, so a base table and a view
cannot have the same name.

Columns retrieved by the SELECT statement can be simple references to table columns, or
expressions that use functions, constant values, operators, and so forth.

A view must have unique column names with no duplicates, just like a base table. By default, the
names of the columns retrieved by the SELECT statement are used for the view column names.
To define explicit names for the view columns, specify the optional column_list clause as a list
of comma-separated identifiers. The number of names in column_list must be the same as the
number of columns retrieved by the SELECT statement.

A view can be created from many kinds of SELECT statements. It can refer to base tables or other
views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables:

CREATE VIEW v_today (today) AS SELECT CURRENT_DATE;

2796

CREATE VIEW Statement

The following example defines a view that selects two columns from another table as well as an
expression calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
+------+-------+-------+

A view definition is subject to the following restrictions:

• The SELECT statement cannot refer to system variables or user-defined variables.

• Within a stored program, the SELECT statement cannot refer to program parameters or local
variables.

• The SELECT statement cannot refer to prepared statement parameters.

• Any table or view referred to in the definition must exist. If, after the view has been created, a table
or view that the definition refers to is dropped, use of the view results in an error. To check a view
definition for problems of this kind, use the CHECK TABLE statement.

• The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.

• You cannot associate a trigger with a view.

• Aliases for column names in the SELECT statement are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters).

ORDER BY is permitted in a view definition, but it is ignored if you select from a view using a statement
that has its own ORDER BY.

For other options or clauses in the definition, they are added to the options or clauses of the statement
that references the view, but the effect is undefined. For example, if a view definition includes a
LIMIT clause, and you select from the view using a statement that has its own LIMIT clause, it is
undefined which limit applies. This same principle applies to options such as ALL, DISTINCT, or
SQL_SMALL_RESULT that follow the SELECT keyword, and to clauses such as INTO, FOR UPDATE,
FOR SHARE, LOCK IN SHARE MODE, and PROCEDURE.

The results obtained from a view may be affected if you change the query processing environment by
changing system variables:

mysql> CREATE VIEW v (mycol) AS SELECT 'abc';
Query OK, 0 rows affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| mycol |
+-------+
1 row in set (0.01 sec)

mysql> SET sql_mode = 'ANSI_QUOTES';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |

2797

CREATE VIEW Statement

+-------+
| abc |
+-------+
1 row in set (0.00 sec)

The DEFINER and SQL SECURITY clauses determine which MySQL account to use when checking
access privileges for the view when a statement is executed that references the view. The valid SQL
SECURITY characteristic values are DEFINER (the default) and INVOKER. These indicate that the
required privileges must be held by the user who defined or invoked the view, respectively.

If the DEFINER clause is present, the user value should be a MySQL account specified as
'user_name'@'host_name', CURRENT_USER, or CURRENT_USER(). The permitted user values
depend on the privileges you hold, as discussed in Section 27.6, “Stored Object Access Control”. Also
see that section for additional information about view security.

If the DEFINER clause is omitted, the default definer is the user who executes the CREATE VIEW
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

Within a view definition, the CURRENT_USER function returns the view's DEFINER value by default. For
views defined with the SQL SECURITY INVOKER characteristic, CURRENT_USER returns the account
for the view's invoker. For information about user auditing within views, see Section 8.2.23, “SQL-
Based Account Activity Auditing”.

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic,
CURRENT_USER returns the routine's DEFINER value. This also affects a view defined within such a
routine, if the view definition contains a DEFINER value of CURRENT_USER.

MySQL checks view privileges like this:

• At view definition time, the view creator must have the privileges needed to use the top-level objects
accessed by the view. For example, if the view definition refers to table columns, the creator must
have some privilege for each column in the select list of the definition, and the SELECT privilege
for each column used elsewhere in the definition. If the definition refers to a stored function, only
the privileges needed to invoke the function can be checked. The privileges required at function
invocation time can be checked only as it executes: For different invocations, different execution
paths within the function might be taken.

• The user who references a view must have appropriate privileges to access it (SELECT to select from
it, INSERT to insert into it, and so forth.)

• When a view has been referenced, privileges for objects accessed by the view are checked against
the privileges held by the view DEFINER account or invoker, depending on whether the SQL
SECURITY characteristic is DEFINER or INVOKER, respectively.

• If reference to a view causes execution of a stored function, privilege checking for statements
executed within the function depend on whether the function SQL SECURITY characteristic is
DEFINER or INVOKER. If the security characteristic is DEFINER, the function runs with the privileges
of the DEFINER account. If the characteristic is INVOKER, the function runs with the privileges
determined by the view's SQL SECURITY characteristic.

Example: A view might depend on a stored function, and that function might invoke other stored
routines. For example, the following view invokes a stored function f():

CREATE VIEW v AS SELECT * FROM t WHERE t.id = f(t.name);

Suppose that f() contains a statement such as this:

IF name IS NULL then
 CALL p1();
ELSE
 CALL p2();
END IF;

2798

DROP DATABASE Statement

The privileges required for executing statements within f() need to be checked when f() executes.
This might mean that privileges are needed for p1() or p2(), depending on the execution path within
f(). Those privileges must be checked at runtime, and the user who must possess the privileges is
determined by the SQL SECURITY values of the view v and the function f().

The DEFINER and SQL SECURITY clauses for views are extensions to standard SQL. In standard
SQL, views are handled using the rules for SQL SECURITY DEFINER. The standard says that the
definer of the view, which is the same as the owner of the view's schema, gets applicable privileges
on the view (for example, SELECT) and may grant them. MySQL has no concept of a schema “owner”,
so MySQL adds a clause to identify the definer. The DEFINER clause is an extension where the intent
is to have what the standard has; that is, a permanent record of who defined the view. This is why the
default DEFINER value is the account of the view creator.

The optional ALGORITHM clause is a MySQL extension to standard SQL. It affects how MySQL
processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or UNDEFINED. For more
information, see Section 27.5.2, “View Processing Algorithms”, as well as Section 10.2.2.4, “Optimizing
Derived Tables, View References, and Common Table Expressions with Merging or Materialization”.

Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or
INSERT to update the contents of the underlying table. For a view to be updatable, there must be a
one-to-one relationship between the rows in the view and the rows in the underlying table. There are
also certain other constructs that make a view nonupdatable.

A generated column in a view is considered updatable because it is possible to assign to it. However,
if such a column is updated explicitly, the only permitted value is DEFAULT. For information about
generated columns, see Section 15.1.20.8, “CREATE TABLE and Generated Columns”.

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to
rows except those for which the WHERE clause in the select_statement is true.

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords
determine the scope of check testing when the view is defined in terms of another view. The LOCAL
keyword restricts the CHECK OPTION only to the view being defined. CASCADED causes the checks for
underlying views to be evaluated as well. When neither keyword is given, the default is CASCADED.

For more information about updatable views and the WITH CHECK OPTION clause, see
Section 27.5.3, “Updatable and Insertable Views”, and Section 27.5.4, “The View WITH CHECK
OPTION Clause”.

15.1.24 DROP DATABASE Statement

DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. Be very careful with this
statement! To use DROP DATABASE, you need the DROP privilege on the database. DROP SCHEMA is a
synonym for DROP DATABASE.

Important

When a database is dropped, privileges granted specifically for the database
are not automatically dropped. They must be dropped manually. See
Section 15.7.1.6, “GRANT Statement”.

IF EXISTS is used to prevent an error from occurring if the database does not exist.

If the default database is dropped, the default database is unset (the DATABASE() function returns
NULL).

If you use DROP DATABASE on a symbolically linked database, both the link and the original database
are deleted.

2799

DROP EVENT Statement

DROP DATABASE returns the number of tables that were removed.

The DROP DATABASE statement removes from the given database directory those files and directories
that MySQL itself may create during normal operation. This includes all files with the extensions shown
in the following list:

• .BAK

• .DAT

• .HSH

• .MRG

• .MYD

• .MYI

• .cfg

• .db

• .ibd

• .ndb

If other files or directories remain in the database directory after MySQL removes those just listed, the
database directory cannot be removed. In this case, you must remove any remaining files or directories
manually and issue the DROP DATABASE statement again.

Dropping a database does not remove any TEMPORARY tables that were created in that database.
TEMPORARY tables are automatically removed when the session that created them ends. See
Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”.

You can also drop databases with mysqladmin. See Section 6.5.2, “mysqladmin — A MySQL Server
Administration Program”.

15.1.25 DROP EVENT Statement
DROP EVENT [IF EXISTS] event_name

This statement drops the event named event_name. The event immediately ceases being active, and
is deleted completely from the server.

If the event does not exist, the error ERROR 1517 (HY000): Unknown event 'event_name'
results. You can override this and cause the statement to generate a warning for nonexistent events
instead using IF EXISTS.

This statement requires the EVENT privilege for the schema to which the event to be dropped belongs.

15.1.26 DROP FUNCTION Statement

The DROP FUNCTION statement is used to drop stored functions and loadable functions:

• For information about dropping stored functions, see Section 15.1.29, “DROP PROCEDURE and
DROP FUNCTION Statements”.

• For information about dropping loadable functions, see Section 15.7.4.2, “DROP FUNCTION
Statement for Loadable Functions”.

15.1.27 DROP INDEX Statement

2800

DROP LOGFILE GROUP Statement

DROP INDEX index_name ON tbl_name
 [algorithm_option | lock_option] ...

algorithm_option:
 ALGORITHM [=] {DEFAULT | INPLACE | COPY}

lock_option:
 LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}

DROP INDEX drops the index named index_name from the table tbl_name. This statement is
mapped to an ALTER TABLE statement to drop the index. See Section 15.1.9, “ALTER TABLE
Statement”.

To drop a primary key, the index name is always PRIMARY, which must be specified as a quoted
identifier because PRIMARY is a reserved word:

DROP INDEX `PRIMARY` ON t;

Indexes on variable-width columns of NDB tables are dropped online; that is, without any table copying.
The table is not locked against access from other NDB Cluster API nodes, although it is locked against
other operations on the same API node for the duration of the operation. This is done automatically by
the server whenever it determines that it is possible to do so; you do not have to use any special SQL
syntax or server options to cause it to happen.

ALGORITHM and LOCK clauses may be given to influence the table copying method and level of
concurrency for reading and writing the table while its indexes are being modified. They have the
same meaning as for the ALTER TABLE statement. For more information, see Section 15.1.9, “ALTER
TABLE Statement”

MySQL NDB Cluster supports online operations using the same ALGORITHM=INPLACE syntax
supported in the standard MySQL Server. See Section 25.6.12, “Online Operations with ALTER TABLE
in NDB Cluster”, for more information.

15.1.28 DROP LOGFILE GROUP Statement
DROP LOGFILE GROUP logfile_group
 ENGINE [=] engine_name

This statement drops the log file group named logfile_group. The log file group must already
exist or an error results. (For information on creating log file groups, see Section 15.1.16, “CREATE
LOGFILE GROUP Statement”.)

Important

Before dropping a log file group, you must drop all tablespaces that use that log
file group for UNDO logging.

The required ENGINE clause provides the name of the storage engine used by the log file group to be
dropped. Currently, the only permitted values for engine_name are NDB and NDBCLUSTER.

DROP LOGFILE GROUP is useful only with Disk Data storage for NDB Cluster. See Section 25.6.11,
“NDB Cluster Disk Data Tables”.

15.1.29 DROP PROCEDURE and DROP FUNCTION Statements
DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name

These statements are used to drop a stored routine (a stored procedure or function). That is, the
specified routine is removed from the server. (DROP FUNCTION is also used to drop loadable functions;
see Section 15.7.4.2, “DROP FUNCTION Statement for Loadable Functions”.)

To drop a stored routine, you must have the ALTER ROUTINE privilege for it. (If the
automatic_sp_privileges system variable is enabled, that privilege and EXECUTE are granted

2801

DROP SERVER Statement

automatically to the routine creator when the routine is created and dropped from the creator when the
routine is dropped. See Section 27.2.2, “Stored Routines and MySQL Privileges”.)

In addition, if the definer of the routine has the SYSTEM_USER privilege, the user dropping it must also
have this privilege. This is enforced in MySQL 8.0.16 and later.

The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the procedure or
function does not exist. A warning is produced that can be viewed with SHOW WARNINGS.

DROP FUNCTION is also used to drop loadable functions (see Section 15.7.4.2, “DROP FUNCTION
Statement for Loadable Functions”).

15.1.30 DROP SERVER Statement

DROP SERVER [IF EXISTS] server_name

Drops the server definition for the server named server_name. The corresponding row in the
mysql.servers table is deleted. This statement requires the SUPER privilege.

Dropping a server for a table does not affect any FEDERATED tables that used this connection
information when they were created. See Section 15.1.18, “CREATE SERVER Statement”.

DROP SERVER causes an implicit commit. See Section 15.3.3, “Statements That Cause an Implicit
Commit”.

DROP SERVER is not written to the binary log, regardless of the logging format that is in use.

15.1.31 DROP SPATIAL REFERENCE SYSTEM Statement

DROP SPATIAL REFERENCE SYSTEM
 [IF EXISTS]
 srid

srid: 32-bit unsigned integer

This statement removes a spatial reference system (SRS) definition from the data dictionary. It requires
the SUPER privilege.

Example:

DROP SPATIAL REFERENCE SYSTEM 4120;

If no SRS definition with the SRID value exists, an error occurs unless IF EXISTS is specified. In that
case, a warning occurs rather than an error.

If the SRID value is used by some column in an existing table, an error occurs. For example:

mysql> DROP SPATIAL REFERENCE SYSTEM 4326;
ERROR 3716 (SR005): Can't modify SRID 4326. There is at
least one column depending on it.

To identify which column or columns use the SRID, use this query:

SELECT * FROM INFORMATION_SCHEMA.ST_GEOMETRY_COLUMNS WHERE SRS_ID=4326;

SRID values must be in the range of 32-bit unsigned integers, with these restrictions:

• SRID 0 is a valid SRID but cannot be used with DROP SPATIAL REFERENCE SYSTEM.

• If the value is in a reserved SRID range, a warning occurs. Reserved ranges are [0, 32767] (reserved
by EPSG), [60,000,000, 69,999,999] (reserved by EPSG), and [2,000,000,000, 2,147,483,647]
(reserved by MySQL). EPSG stands for the European Petroleum Survey Group.

2802

http://epsg.org

DROP TABLE Statement

• Users should not drop SRSs with SRIDs in the reserved ranges. If system-installed SRSs are
dropped, the SRS definitions may be recreated for MySQL upgrades.

15.1.32 DROP TABLE Statement
DROP [TEMPORARY] TABLE [IF EXISTS]
 tbl_name [, tbl_name] ...
 [RESTRICT | CASCADE]

DROP TABLE removes one or more tables. You must have the DROP privilege for each table.

Be careful with this statement! For each table, it removes the table definition and all table data. If the
table is partitioned, the statement removes the table definition, all its partitions, all data stored in those
partitions, and all partition definitions associated with the dropped table.

Dropping a table also drops any triggers for the table.

DROP TABLE causes an implicit commit, except when used with the TEMPORARY keyword. See
Section 15.3.3, “Statements That Cause an Implicit Commit”.

Important

When a table is dropped, privileges granted specifically for the table are not
automatically dropped. They must be dropped manually. See Section 15.7.1.6,
“GRANT Statement”.

If any tables named in the argument list do not exist, DROP TABLE behavior depends on whether the
IF EXISTS clause is given:

• Without IF EXISTS, the statement fails with an error indicating which nonexisting tables it was
unable to drop, and no changes are made.

• With IF EXISTS, no error occurs for nonexisting tables. The statement drops all named tables that
do exist, and generates a NOTE diagnostic for each nonexistent table. These notes can be displayed
with SHOW WARNINGS. See Section 15.7.7.42, “SHOW WARNINGS Statement”.

IF EXISTS can also be useful for dropping tables in unusual circumstances under which there is an
entry in the data dictionary but no table managed by the storage engine. (For example, if an abnormal
server exit occurs after removal of the table from the storage engine but before removal of the data
dictionary entry.)

The TEMPORARY keyword has the following effects:

• The statement drops only TEMPORARY tables.

• The statement does not cause an implicit commit.

• No access rights are checked. A TEMPORARY table is visible only with the session that created it, so
no check is necessary.

Including the TEMPORARY keyword is a good way to prevent accidentally dropping non-TEMPORARY
tables.

The RESTRICT and CASCADE keywords do nothing. They are permitted to make porting easier from
other database systems.

DROP TABLE is not supported with all innodb_force_recovery settings. See Section 17.21.3,
“Forcing InnoDB Recovery”.

15.1.33 DROP TABLESPACE Statement
DROP [UNDO] TABLESPACE tablespace_name

2803

DROP TABLESPACE Statement

 [ENGINE [=] engine_name]

This statement drops a tablespace that was previously created using CREATE TABLESPACE. It is
supported by the NDB and InnoDB storage engines.

The UNDO keyword, introduced in MySQL 8.0.14, must be specified to drop an undo tablespace.
Only undo tablespaces created using CREATE UNDO TABLESPACE syntax can be dropped. An
undo tablespace must be in an empty state before it can be dropped. For more information, see
Section 17.6.3.4, “Undo Tablespaces”.

ENGINE sets the storage engine that uses the tablespace, where engine_name is the name of
the storage engine. Currently, the values InnoDB and NDB are supported. If not set, the value of
default_storage_engine is used. If it is not the same as the storage engine used to create the
tablespace, the DROP TABLESPACE statement fails.

tablespace_name is a case-sensitive identifier in MySQL.

For an InnoDB general tablespace, all tables must be dropped from the tablespace prior to a DROP
TABLESPACE operation. If the tablespace is not empty, DROP TABLESPACE returns an error.

An NDB tablespace to be dropped must not contain any data files; in other words, before you can drop
an NDB tablespace, you must first drop each of its data files using ALTER TABLESPACE ... DROP
DATAFILE.

Notes

• A general InnoDB tablespace is not deleted automatically when the last table in the tablespace is
dropped. The tablespace must be dropped explicitly using DROP TABLESPACE tablespace_name.

• A DROP DATABASE operation can drop tables that belong to a general tablespace but it cannot drop
the tablespace, even if the operation drops all tables that belong to the tablespace. The tablespace
must be dropped explicitly using DROP TABLESPACE tablespace_name.

• Similar to the system tablespace, truncating or dropping tables stored in a general tablespace
creates free space internally in the general tablespace .ibd data file which can only be used for
new InnoDB data. Space is not released back to the operating system as it is for file-per-table
tablespaces.

InnoDB Examples

This example demonstrates how to drop an InnoDB general tablespace. The general tablespace ts1
is created with a single table. Before dropping the tablespace, the table must be dropped.

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1 Engine=InnoDB;

mysql> DROP TABLE t1;

mysql> DROP TABLESPACE ts1;

This example demonstrates dropping an undo tablespace. An undo tablespace must be in an empty
state before it can be dropped. For more information, see Section 17.6.3.4, “Undo Tablespaces”.

mysql> DROP UNDO TABLESPACE undo_003;

NDB Example

This example shows how to drop an NDB tablespace myts having a data file named mydata-1.dat
after first creating the tablespace, and assumes the existence of a log file group named mylg (see
Section 15.1.16, “CREATE LOGFILE GROUP Statement”).

mysql> CREATE TABLESPACE myts

2804

DROP TRIGGER Statement

 -> ADD DATAFILE 'mydata-1.dat'
 -> USE LOGFILE GROUP mylg
 -> ENGINE=NDB;

You must remove all data files from the tablespace using ALTER TABLESPACE, as shown here, before
it can be dropped:

mysql> ALTER TABLESPACE myts
 -> DROP DATAFILE 'mydata-1.dat'
 -> ENGINE=NDB;

mysql> DROP TABLESPACE myts;

15.1.34 DROP TRIGGER Statement
DROP TRIGGER [IF EXISTS] [schema_name.]trigger_name

This statement drops a trigger. The schema (database) name is optional. If the schema is omitted, the
trigger is dropped from the default schema. DROP TRIGGER requires the TRIGGER privilege for the
table associated with the trigger.

Use IF EXISTS to prevent an error from occurring for a trigger that does not exist. A NOTE is
generated for a nonexistent trigger when using IF EXISTS. See Section 15.7.7.42, “SHOW
WARNINGS Statement”.

Triggers for a table are also dropped if you drop the table.

15.1.35 DROP VIEW Statement
DROP VIEW [IF EXISTS]
 view_name [, view_name] ...
 [RESTRICT | CASCADE]

DROP VIEW removes one or more views. You must have the DROP privilege for each view.

If any views named in the argument list do not exist, the statement fails with an error indicating by
name which nonexisting views it was unable to drop, and no changes are made.

Note

In MySQL 5.7 and earlier, DROP VIEW returns an error if any views named in
the argument list do not exist, but also drops all views in the list that do exist.
Due to the change in behavior in MySQL 8.0, a partially completed DROP VIEW
operation on a MySQL 5.7 replication source server fails when replicated on
a MySQL 8.0 replica. To avoid this failure scenario, use IF EXISTS syntax
in DROP VIEW statements to prevent an error from occurring for views that do
not exist. For more information, see Section 15.1.1, “Atomic Data Definition
Statement Support”.

The IF EXISTS clause prevents an error from occurring for views that don't exist. When this clause
is given, a NOTE is generated for each nonexistent view. See Section 15.7.7.42, “SHOW WARNINGS
Statement”.

RESTRICT and CASCADE, if given, are parsed and ignored.

15.1.36 RENAME TABLE Statement
RENAME TABLE
 tbl_name TO new_tbl_name
 [, tbl_name2 TO new_tbl_name2] ...

RENAME TABLE renames one or more tables. You must have ALTER and DROP privileges for the
original table, and CREATE and INSERT privileges for the new table.

2805

RENAME TABLE Statement

For example, to rename a table named old_table to new_table, use this statement:

RENAME TABLE old_table TO new_table;

That statement is equivalent to the following ALTER TABLE statement:

ALTER TABLE old_table RENAME new_table;

RENAME TABLE, unlike ALTER TABLE, can rename multiple tables within a single statement:

RENAME TABLE old_table1 TO new_table1,
 old_table2 TO new_table2,
 old_table3 TO new_table3;

Renaming operations are performed left to right. Thus, to swap two table names, do this (assuming that
a table with the intermediary name tmp_table does not already exist):

RENAME TABLE old_table TO tmp_table,
 new_table TO old_table,
 tmp_table TO new_table;

Metadata locks on tables are acquired in name order, which in some cases can make a difference in
operation outcome when multiple transactions execute concurrently. See Section 10.11.4, “Metadata
Locking”.

As of MySQL 8.0.13, you can rename tables locked with a LOCK TABLES statement, provided that
they are locked with a WRITE lock or are the product of renaming WRITE-locked tables from earlier
steps in a multiple-table rename operation. For example, this is permitted:

LOCK TABLE old_table1 WRITE;
RENAME TABLE old_table1 TO new_table1,
 new_table1 TO new_table2;

This is not permitted:

LOCK TABLE old_table1 READ;
RENAME TABLE old_table1 TO new_table1,
 new_table1 TO new_table2;

Prior to MySQL 8.0.13, to execute RENAME TABLE, there must be no tables locked with LOCK
TABLES.

With the transaction table locking conditions satisfied, the rename operation is done atomically; no
other session can access any of the tables while the rename is in progress.

If any errors occur during a RENAME TABLE, the statement fails and no changes are made.

You can use RENAME TABLE to move a table from one database to another:

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

Using this method to move all tables from one database to a different one in effect renames the
database (an operation for which MySQL has no single statement), except that the original database
continues to exist, albeit with no tables.

Like RENAME TABLE, ALTER TABLE ... RENAME can also be used to move a table to a different
database. Regardless of the statement used, if the rename operation would move the table to a
database located on a different file system, the success of the outcome is platform specific and
depends on the underlying operating system calls used to move table files.

If a table has triggers, attempts to rename the table into a different database fail with a Trigger in
wrong schema (ER_TRG_IN_WRONG_SCHEMA) error.

2806

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_trg_in_wrong_schema

TRUNCATE TABLE Statement

An unencrypted table can be moved to an encryption-enabled database and vice versa. However, if
the table_encryption_privilege_check variable is enabled, the TABLE_ENCRYPTION_ADMIN
privilege is required if the table encryption setting differs from the default database encryption.

To rename TEMPORARY tables, RENAME TABLE does not work. Use ALTER TABLE instead.

RENAME TABLE works for views, except that views cannot be renamed into a different database.

Any privileges granted specifically for a renamed table or view are not migrated to the new name. They
must be changed manually.

RENAME TABLE tbl_name TO new_tbl_name changes internally generated foreign key constraint
names and user-defined foreign key constraint names that begin with the string “tbl_name_ibfk_” to
reflect the new table name. InnoDB interprets foreign key constraint names that begin with the string
“tbl_name_ibfk_” as internally generated names.

Foreign key constraint names that point to the renamed table are automatically updated unless there
is a conflict, in which case the statement fails with an error. A conflict occurs if the renamed constraint
name already exists. In such cases, you must drop and re-create the foreign keys for them to function
properly.

RENAME TABLE tbl_name TO new_tbl_name changes internally generated and user-defined
CHECK constraint names that begin with the string “tbl_name_chk_” to reflect the new table name.
MySQL interprets CHECK constraint names that begin with the string “tbl_name_chk_” as internally
generated names. Example:

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `i1` int(11) DEFAULT NULL,
 `i2` int(11) DEFAULT NULL,
 CONSTRAINT `t1_chk_1` CHECK ((`i1` > 0)),
 CONSTRAINT `t1_chk_2` CHECK ((`i2` < 0))
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.02 sec)

mysql> RENAME TABLE t1 TO t3;
Query OK, 0 rows affected (0.03 sec)

mysql> SHOW CREATE TABLE t3\G
*************************** 1. row ***************************
 Table: t3
Create Table: CREATE TABLE `t3` (
 `i1` int(11) DEFAULT NULL,
 `i2` int(11) DEFAULT NULL,
 CONSTRAINT `t3_chk_1` CHECK ((`i1` > 0)),
 CONSTRAINT `t3_chk_2` CHECK ((`i2` < 0))
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.01 sec)

15.1.37 TRUNCATE TABLE Statement
TRUNCATE [TABLE] tbl_name

TRUNCATE TABLE empties a table completely. It requires the DROP privilege. Logically, TRUNCATE
TABLE is similar to a DELETE statement that deletes all rows, or a sequence of DROP TABLE and
CREATE TABLE statements.

To achieve high performance, TRUNCATE TABLE bypasses the DML method of deleting data.
Thus, it does not cause ON DELETE triggers to fire, it cannot be performed for InnoDB tables with
parent-child foreign key relationships, and it cannot be rolled back like a DML operation. However,
TRUNCATE TABLE operations on tables that use a storage engine which supports atomic DDL are
either fully committed or rolled back if the server halts during their operation. For more information, see
Section 15.1.1, “Atomic Data Definition Statement Support”.

2807

Data Manipulation Statements

Although TRUNCATE TABLE is similar to DELETE, it is classified as a DDL statement rather than a DML
statement. It differs from DELETE in the following ways:

• Truncate operations drop and re-create the table, which is much faster than deleting rows one by
one, particularly for large tables.

• Truncate operations cause an implicit commit, and so cannot be rolled back. See Section 15.3.3,
“Statements That Cause an Implicit Commit”.

• Truncation operations cannot be performed if the session holds an active table lock.

• TRUNCATE TABLE fails for an InnoDB table or NDB table if there are any FOREIGN KEY constraints
from other tables that reference the table. Foreign key constraints between columns of the same
table are permitted.

• Truncation operations do not return a meaningful value for the number of deleted rows. The usual
result is “0 rows affected,” which should be interpreted as “no information.”

• As long as the table definition is valid, the table can be re-created as an empty table with TRUNCATE
TABLE, even if the data or index files have become corrupted.

• Any AUTO_INCREMENT value is reset to its start value. This is true even for MyISAM and InnoDB,
which normally do not reuse sequence values.

• When used with partitioned tables, TRUNCATE TABLE preserves the partitioning; that is, the data
and index files are dropped and re-created, while the partition definitions are unaffected.

• The TRUNCATE TABLE statement does not invoke ON DELETE triggers.

• Truncating a corrupted InnoDB table is supported.

TRUNCATE TABLE is treated for purposes of binary logging and replication as DDL rather than DML,
and is always logged as a statement.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

In MySQL 5.7 and earlier, on a system with a large buffer pool and innodb_adaptive_hash_index
enabled, a TRUNCATE TABLE operation could cause a temporary drop in system performance due
to an LRU scan that occurred when removing the table's adaptive hash index entries (Bug #68184).
The remapping of TRUNCATE TABLE to DROP TABLE and CREATE TABLE in MySQL 8.0 avoids the
problematic LRU scan.

TRUNCATE TABLE can be used with Performance Schema summary tables, but the effect is to reset
the summary columns to 0 or NULL, not to remove rows. See Section 29.12.20, “Performance Schema
Summary Tables”.

Truncating an InnoDB table that resides in a file-per-table tablespace drops the existing tablespace
and creates a new one. As of MySQL 8.0.21, if the tablespace was created with an earlier version
and resides in an unknown directory, InnoDB creates the new tablespace in the default location and
writes the following warning to the error log: The DATA DIRECTORY location must be in a
known directory. The DATA DIRECTORY location will be ignored and the file
will be put into the default datadir location. Known directories are those defined by
the datadir, innodb_data_home_dir, and innodb_directories variables. To have TRUNCATE
TABLE create the tablespace in its current location, add the directory to the innodb_directories
setting before running TRUNCATE TABLE.

15.2 Data Manipulation Statements

15.2.1 CALL Statement
CALL sp_name([parameter[,...]])

2808

CALL Statement

CALL sp_name[()]

The CALL statement invokes a stored procedure that was defined previously with CREATE
PROCEDURE.

Stored procedures that take no arguments can be invoked without parentheses. That is, CALL p()
and CALL p are equivalent.

CALL can pass back values to its caller using parameters that are declared as OUT or INOUT
parameters. When the procedure returns, a client program can also obtain the number of rows affected
for the final statement executed within the routine: At the SQL level, call the ROW_COUNT() function;
from the C API, call the mysql_affected_rows() function.

For information about the effect of unhandled conditions on procedure parameters, see
Section 15.6.7.8, “Condition Handling and OUT or INOUT Parameters”.

To get back a value from a procedure using an OUT or INOUT parameter, pass the parameter by
means of a user variable, and then check the value of the variable after the procedure returns. (If you
are calling the procedure from within another stored procedure or function, you can also pass a routine
parameter or local routine variable as an IN or INOUT parameter.) For an INOUT parameter, initialize
its value before passing it to the procedure. The following procedure has an OUT parameter that the
procedure sets to the current server version, and an INOUT value that the procedure increments by
one from its current value:

DELIMITER //

CREATE PROCEDURE p (OUT ver_param VARCHAR(25), INOUT incr_param INT)
BEGIN
 # Set value of OUT parameter
 SELECT VERSION() INTO ver_param;
 # Increment value of INOUT parameter
 SET incr_param = incr_param + 1;
END //

DELIMITER ;

Before calling the procedure, initialize the variable to be passed as the INOUT parameter. After calling
the procedure, you can see that the values of the two variables are set or modified:

mysql> SET @increment = 10;
mysql> CALL p(@version, @increment);
mysql> SELECT @version, @increment;
+----------+------------+
| @version | @increment |
+----------+------------+
| 8.0.42 | 11 |
+----------+------------+

In prepared CALL statements used with PREPARE and EXECUTE, placeholders can be used for IN
parameters, OUT, and INOUT parameters. These types of parameters can be used as follows:

mysql> SET @increment = 10;
mysql> PREPARE s FROM 'CALL p(?, ?)';
mysql> EXECUTE s USING @version, @increment;
mysql> SELECT @version, @increment;
+----------+------------+
| @version | @increment |
+----------+------------+
| 8.0.42 | 11 |
+----------+------------+

To write C programs that use the CALL SQL statement to execute stored procedures that produce
result sets, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns
a result to indicate the call status, in addition to any result sets that might be returned by statements
executed within the procedure. CLIENT_MULTI_RESULTS must also be enabled if CALL is used to

2809

https://dev.mysql.com/doc/c-api/8.0/en/mysql-affected-rows.html

DELETE Statement

execute any stored procedure that contains prepared statements. It cannot be determined when such
a procedure is loaded whether those statements produce result sets, so it is necessary to assume that
they do so.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by
passing CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS).
CLIENT_MULTI_RESULTS is enabled by default.

To process the result of a CALL statement executed using mysql_query() or
mysql_real_query(), use a loop that calls mysql_next_result() to determine whether there
are more results. For an example, see Multiple Statement Execution Support.

C programs can use the prepared-statement interface to execute CALL statements and access OUT
and INOUT parameters. This is done by processing the result of a CALL statement using a loop that
calls mysql_stmt_next_result() to determine whether there are more results. For an example,
see Prepared CALL Statement Support. Languages that provide a MySQL interface can use prepared
CALL statements to directly retrieve OUT and INOUT procedure parameters.

Metadata changes to objects referred to by stored programs are detected and cause automatic
reparsing of the affected statements when the program is next executed. For more information, see
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”.

15.2.2 DELETE Statement

DELETE is a DML statement that removes rows from a table.

A DELETE statement can start with a WITH clause to define common table expressions accessible
within the DELETE. See Section 15.2.20, “WITH (Common Table Expressions)”.

Single-Table Syntax

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name [[AS] tbl_alias]
 [PARTITION (partition_name [, partition_name] ...)]
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

The DELETE statement deletes rows from tbl_name and returns the number of deleted rows. To
check the number of deleted rows, call the ROW_COUNT() function described in Section 14.15,
“Information Functions”.

Main Clauses

The conditions in the optional WHERE clause identify which rows to delete. With no WHERE clause, all
rows are deleted.

where_condition is an expression that evaluates to true for each row to be deleted. It is specified as
described in Section 15.2.13, “SELECT Statement”.

If the ORDER BY clause is specified, the rows are deleted in the order that is specified. The LIMIT
clause places a limit on the number of rows that can be deleted. These clauses apply to single-table
deletes, but not multi-table deletes.

Multiple-Table Syntax

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 tbl_name[.*] [, tbl_name[.*]] ...
 FROM table_references
 [WHERE where_condition]

2810

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-query.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-query.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-next-result.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-multiple-queries.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-next-result.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-prepared-call-statements.html

DELETE Statement

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 FROM tbl_name[.*] [, tbl_name[.*]] ...
 USING table_references
 [WHERE where_condition]

Privileges

You need the DELETE privilege on a table to delete rows from it. You need only the SELECT privilege
for any columns that are only read, such as those named in the WHERE clause.

Performance

When you do not need to know the number of deleted rows, the TRUNCATE TABLE statement is
a faster way to empty a table than a DELETE statement with no WHERE clause. Unlike DELETE,
TRUNCATE TABLE cannot be used within a transaction or if you have a lock on the table. See
Section 15.1.37, “TRUNCATE TABLE Statement” and Section 15.3.6, “LOCK TABLES and UNLOCK
TABLES Statements”.

The speed of delete operations may also be affected by factors discussed in Section 10.2.5.3,
“Optimizing DELETE Statements”.

To ensure that a given DELETE statement does not take too much time, the MySQL-specific LIMIT
row_count clause for DELETE specifies the maximum number of rows to be deleted. If the number of
rows to delete is larger than the limit, repeat the DELETE statement until the number of affected rows is
less than the LIMIT value.

Subqueries

You cannot delete from a table and select from the same table in a subquery.

Partitioned Table Support

DELETE supports explicit partition selection using the PARTITION clause, which takes a list of the
comma-separated names of one or more partitions or subpartitions (or both) from which to select rows
to be dropped. Partitions not included in the list are ignored. Given a partitioned table t with a partition
named p0, executing the statement DELETE FROM t PARTITION (p0) has the same effect on
the table as executing ALTER TABLE t TRUNCATE PARTITION (p0); in both cases, all rows in
partition p0 are dropped.

PARTITION can be used along with a WHERE condition, in which case the condition is tested only
on rows in the listed partitions. For example, DELETE FROM t PARTITION (p0) WHERE c < 5
deletes rows only from partition p0 for which the condition c < 5 is true; rows in any other partitions
are not checked and thus not affected by the DELETE.

The PARTITION clause can also be used in multiple-table DELETE statements. You can use up to one
such option per table named in the FROM option.

For more information and examples, see Section 26.5, “Partition Selection”.

Auto-Increment Columns

If you delete the row containing the maximum value for an AUTO_INCREMENT column, the value
is not reused for a MyISAM or InnoDB table. If you delete all rows in the table with DELETE FROM
tbl_name (without a WHERE clause) in autocommit mode, the sequence starts over for all storage
engines except InnoDB and MyISAM. There are some exceptions to this behavior for InnoDB tables,
as discussed in Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key.
In this case, reuse of values deleted from the top of the sequence occurs even for MyISAM tables. See
Section 5.6.9, “Using AUTO_INCREMENT”.

2811

DELETE Statement

Modifiers

The DELETE statement supports the following modifiers:

• If you specify the LOW_PRIORITY modifier, the server delays execution of the DELETE until no other
clients are reading from the table. This affects only storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE).

• For MyISAM tables, if you use the QUICK modifier, the storage engine does not merge index leaves
during delete, which may speed up some kinds of delete operations.

• The IGNORE modifier causes MySQL to ignore ignorable errors during the process of deleting rows.
(Errors encountered during the parsing stage are processed in the usual manner.) Errors that are
ignored due to the use of IGNORE are returned as warnings. For more information, see The Effect of
IGNORE on Statement Execution.

Order of Deletion

If the DELETE statement includes an ORDER BY clause, rows are deleted in the order specified by the
clause. This is useful primarily in conjunction with LIMIT. For example, the following statement finds
rows matching the WHERE clause, sorts them by timestamp_column, and deletes the first (oldest)
one:

DELETE FROM somelog WHERE user = 'jcole'
ORDER BY timestamp_column LIMIT 1;

ORDER BY also helps to delete rows in an order required to avoid referential integrity violations.

InnoDB Tables

If you are deleting many rows from a large table, you may exceed the lock table size for an InnoDB
table. To avoid this problem, or simply to minimize the time that the table remains locked, the following
strategy (which does not use DELETE at all) might be helpful:

1. Select the rows not to be deleted into an empty table that has the same structure as the original
table:

INSERT INTO t_copy SELECT * FROM t WHERE ... ;

2. Use RENAME TABLE to atomically move the original table out of the way and rename the copy to
the original name:

RENAME TABLE t TO t_old, t_copy TO t;

3. Drop the original table:

DROP TABLE t_old;

No other sessions can access the tables involved while RENAME TABLE executes, so the rename
operation is not subject to concurrency problems. See Section 15.1.36, “RENAME TABLE Statement”.

MyISAM Tables

In MyISAM tables, deleted rows are maintained in a linked list and subsequent INSERT operations
reuse old row positions. To reclaim unused space and reduce file sizes, use the OPTIMIZE TABLE
statement or the myisamchk utility to reorganize tables. OPTIMIZE TABLE is easier to use, but
myisamchk is faster. See Section 15.7.3.4, “OPTIMIZE TABLE Statement”, and Section 6.6.4,
“myisamchk — MyISAM Table-Maintenance Utility”.

The QUICK modifier affects whether index leaves are merged for delete operations. DELETE QUICK is
most useful for applications where index values for deleted rows are replaced by similar index values
from rows inserted later. In this case, the holes left by deleted values are reused.

2812

DELETE Statement

DELETE QUICK is not useful when deleted values lead to underfilled index blocks spanning a range of
index values for which new inserts occur again. In this case, use of QUICK can lead to wasted space in
the index that remains unreclaimed. Here is an example of such a scenario:

1. Create a table that contains an indexed AUTO_INCREMENT column.

2. Insert many rows into the table. Each insert results in an index value that is added to the high end
of the index.

3. Delete a block of rows at the low end of the column range using DELETE QUICK.

In this scenario, the index blocks associated with the deleted index values become underfilled but
are not merged with other index blocks due to the use of QUICK. They remain underfilled when new
inserts occur, because new rows do not have index values in the deleted range. Furthermore, they
remain underfilled even if you later use DELETE without QUICK, unless some of the deleted index
values happen to lie in index blocks within or adjacent to the underfilled blocks. To reclaim unused
index space under these circumstances, use OPTIMIZE TABLE.

If you are going to delete many rows from a table, it might be faster to use DELETE QUICK followed by
OPTIMIZE TABLE. This rebuilds the index rather than performing many index block merge operations.

Multi-Table Deletes

You can specify multiple tables in a DELETE statement to delete rows from one or more tables
depending on the condition in the WHERE clause. You cannot use ORDER BY or LIMIT in a multiple-
table DELETE. The table_references clause lists the tables involved in the join, as described in
Section 15.2.13.2, “JOIN Clause”.

For the first multiple-table syntax, only matching rows from the tables listed before the FROM clause are
deleted. For the second multiple-table syntax, only matching rows from the tables listed in the FROM
clause (before the USING clause) are deleted. The effect is that you can delete rows from many tables
at the same time and have additional tables that are used only for searching:

DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

Or:

DELETE FROM t1, t2 USING t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

These statements use all three tables when searching for rows to delete, but delete matching rows only
from tables t1 and t2.

The preceding examples use INNER JOIN, but multiple-table DELETE statements can use other types
of join permitted in SELECT statements, such as LEFT JOIN. For example, to delete rows that exist in
t1 that have no match in t2, use a LEFT JOIN:

DELETE t1 FROM t1 LEFT JOIN t2 ON t1.id=t2.id WHERE t2.id IS NULL;

The syntax permits .* after each tbl_name for compatibility with Access.

If you use a multiple-table DELETE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/
child relationship. In this case, the statement fails and rolls back. Instead, you should delete from a
single table and rely on the ON DELETE capabilities that InnoDB provides to cause the other tables to
be modified accordingly.

Note

If you declare an alias for a table, you must use the alias when referring to the
table:

2813

DO Statement

DELETE t1 FROM test AS t1, test2 WHERE ...

Table aliases in a multiple-table DELETE should be declared only in the table_references part of
the statement. Elsewhere, alias references are permitted but not alias declarations.

Correct:

DELETE a1, a2 FROM t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

DELETE FROM a1, a2 USING t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;

Incorrect:

DELETE t1 AS a1, t2 AS a2 FROM t1 INNER JOIN t2
WHERE a1.id=a2.id;

DELETE FROM t1 AS a1, t2 AS a2 USING t1 INNER JOIN t2
WHERE a1.id=a2.id;

Table aliases are also supported for single-table DELETE statements beginning with MySQL 8.0.16.
(Bug #89410,Bug #27455809)

15.2.3 DO Statement
DO expr [, expr] ...

DO executes the expressions but does not return any results. In most respects, DO is shorthand for
SELECT expr, ..., but has the advantage that it is slightly faster when you do not care about the
result.

DO is useful primarily with functions that have side effects, such as RELEASE_LOCK().

Example: This SELECT statement pauses, but also produces a result set:

mysql> SELECT SLEEP(5);
+----------+
| SLEEP(5) |
+----------+
| 0 |
+----------+
1 row in set (5.02 sec)

DO, on the other hand, pauses without producing a result set.:

mysql> DO SLEEP(5);
Query OK, 0 rows affected (4.99 sec)

This could be useful, for example in a stored function or trigger, which prohibit statements that produce
result sets.

DO only executes expressions. It cannot be used in all cases where SELECT can be used. For example,
DO id FROM t1 is invalid because it references a table.

15.2.4 EXCEPT Clause
query_expression_body EXCEPT [ALL | DISTINCT] query_expression_body
 [EXCEPT [ALL | DISTINCT] query_expression_body]
 [...]

query_expression_body:
 See Section 15.2.14, “Set Operations with UNION, INTERSECT, and EXCEPT”

EXCEPT limits the result from the first query block to those rows which are (also) not found in the
second. As with UNION and INTERSECT, either query block can make use of any of SELECT, TABLE,

2814

EXCEPT Clause

or VALUES. An example using the tables a, b, and c defined in Section 15.2.8, “INTERSECT Clause”,
is shown here:

mysql> TABLE a EXCEPT TABLE b;
+------+------+
| m | n |
+------+------+
| 2 | 3 |
+------+------+
1 row in set (0.00 sec)

mysql> TABLE a EXCEPT TABLE c;
+------+------+
| m | n |
+------+------+
| 1 | 2 |
| 2 | 3 |
+------+------+
2 rows in set (0.00 sec)

mysql> TABLE b EXCEPT TABLE c;
+------+------+
| m | n |
+------+------+
| 1 | 2 |
+------+------+
1 row in set (0.00 sec)

As with UNION and INTERSECT, if neither DISTINCT nor ALL is specified, the default is DISTINCT.

DISTINCT removes duplicates found on either side of the relation, as shown here:

mysql> TABLE c EXCEPT DISTINCT TABLE a;
+------+------+
| m | n |
+------+------+
| 1 | 3 |
+------+------+
1 row in set (0.00 sec)

mysql> TABLE c EXCEPT ALL TABLE a;
+------+------+
| m | n |
+------+------+
| 1 | 3 |
| 1 | 3 |
+------+------+
2 rows in set (0.00 sec)

(The first statement has the same effect as TABLE c EXCEPT TABLE a.)

Unlike UNION or INTERSECT, EXCEPT is not commutative—that is, the result depends on the order of
the operands, as shown here:

mysql> TABLE a EXCEPT TABLE c;
+------+------+
| m | n |
+------+------+
| 1 | 2 |
| 2 | 3 |
+------+------+
2 rows in set (0.00 sec)

mysql> TABLE c EXCEPT TABLE a;
+------+------+
| m | n |
+------+------+
| 1 | 3 |
+------+------+
1 row in set (0.00 sec)

2815

HANDLER Statement

As with UNION, the result sets to be compared must have the same number of columns. Result set
column types are also determined as for UNION.

EXCEPT was added in MySQL 8.0.31.

15.2.5 HANDLER Statement
HANDLER tbl_name OPEN [[AS] alias]

HANDLER tbl_name READ index_name { = | <= | >= | < | > } (value1,value2,...)
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ { FIRST | NEXT }
 [WHERE where_condition] [LIMIT ...]

HANDLER tbl_name CLOSE

The HANDLER statement provides direct access to table storage engine interfaces. It is available for
InnoDB and MyISAM tables.

The HANDLER ... OPEN statement opens a table, making it accessible using subsequent
HANDLER ... READ statements. This table object is not shared by other sessions and is not closed
until the session calls HANDLER ... CLOSE or the session terminates.

If you open the table using an alias, further references to the open table with other HANDLER
statements must use the alias rather than the table name. If you do not use an alias, but open the table
using a table name qualified by the database name, further references must use the unqualified table
name. For example, for a table opened using mydb.mytable, further references must use mytable.

The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given
values and the WHERE condition is met. If you have a multiple-column index, specify the index column
values as a comma-separated list. Either specify values for all the columns in the index, or specify
values for a leftmost prefix of the index columns. Suppose that an index my_idx includes three
columns named col_a, col_b, and col_c, in that order. The HANDLER statement can specify values
for all three columns in the index, or for the columns in a leftmost prefix. For example:

HANDLER ... READ my_idx = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... READ my_idx = (col_a_val,col_b_val) ...
HANDLER ... READ my_idx = (col_a_val) ...

To employ the HANDLER interface to refer to a table's PRIMARY KEY, use the quoted identifier
`PRIMARY`:

HANDLER tbl_name READ `PRIMARY` ...

The second HANDLER ... READ syntax fetches a row from the table in index order that matches the
WHERE condition.

The third HANDLER ... READ syntax fetches a row from the table in natural row order that matches
the WHERE condition. It is faster than HANDLER tbl_name READ index_name when a full table scan
is desired. Natural row order is the order in which rows are stored in a MyISAM table data file. This
statement works for InnoDB tables as well, but there is no such concept because there is no separate
data file.

Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available. To
return a specific number of rows, include a LIMIT clause. It has the same syntax as for the SELECT
statement. See Section 15.2.13, “SELECT Statement”.

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

There are several reasons to use the HANDLER interface instead of normal SELECT statements:

• HANDLER is faster than SELECT:

2816

IMPORT TABLE Statement

• A designated storage engine handler object is allocated for the HANDLER ... OPEN. The object
is reused for subsequent HANDLER statements for that table; it need not be reinitialized for each
one.

• There is less parsing involved.

• There is no optimizer or query-checking overhead.

• The handler interface does not have to provide a consistent look of the data (for example, dirty
reads are permitted), so the storage engine can use optimizations that SELECT does not normally
permit.

• HANDLER makes it easier to port to MySQL applications that use a low-level ISAM-like interface. (See
Section 17.20, “InnoDB memcached Plugin” for an alternative way to adapt applications that use the
key-value store paradigm.)

• HANDLER enables you to traverse a database in a manner that is difficult (or even impossible) to
accomplish with SELECT. The HANDLER interface is a more natural way to look at data when working
with applications that provide an interactive user interface to the database.

HANDLER is a somewhat low-level statement. For example, it does not provide consistency. That is,
HANDLER ... OPEN does not take a snapshot of the table, and does not lock the table. This means
that after a HANDLER ... OPEN statement is issued, table data can be modified (by the current
session or other sessions) and these modifications might be only partially visible to HANDLER ...
NEXT or HANDLER ... PREV scans.

An open handler can be closed and marked for reopen, in which case the handler loses its position in
the table. This occurs when both of the following circumstances are true:

• Any session executes FLUSH TABLES or DDL statements on the handler's table.

• The session in which the handler is open executes non-HANDLER statements that use tables.

TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.

If a table is flushed with FLUSH TABLES tbl_name WITH READ LOCK was opened with HANDLER,
the handler is implicitly flushed and loses its position.

15.2.6 IMPORT TABLE Statement
IMPORT TABLE FROM sdi_file [, sdi_file] ...

The IMPORT TABLE statement imports MyISAM tables based on information contained in .sdi
(serialized dictionary information) metadata files. IMPORT TABLE requires the FILE privilege to read
the .sdi and table content files, and the CREATE privilege for the table to be created.

Tables can be exported from one server using mysqldump to write a file of SQL statements and
imported into another server using mysql to process the dump file. IMPORT TABLE provides a faster
alternative using the “raw” table files.

Prior to import, the files that provide the table content must be placed in the appropriate schema
directory for the import server, and the .sdi file must be located in a directory accessible to the server.
For example, the .sdi file can be placed in the directory named by the secure_file_priv system
variable, or (if secure_file_priv is empty) in a directory under the server data directory.

The following example describes how to export MyISAM tables named employees and managers
from the hr schema of one server and import them into the hr schema of another server. The example
uses these assumptions (to perform a similar operation on your own system, modify the path names as
appropriate):

• For the export server, export_basedir represents its base directory, and its data directory is
export_basedir/data.

2817

IMPORT TABLE Statement

• For the import server, import_basedir represents its base directory, and its data directory is
import_basedir/data.

• Table files are exported from the export server into the /tmp/export directory and this directory is
secure (not accessible to other users).

• The import server uses /tmp/mysql-files as the directory named by its secure_file_priv
system variable.

To export tables from the export server, use this procedure:

1. Ensure a consistent snapshot by executing this statement to lock the tables so that they cannot be
modified during export:

mysql> FLUSH TABLES hr.employees, hr.managers WITH READ LOCK;

While the lock is in effect, the tables can still be used, but only for read access.

2. At the file system level, copy the .sdi and table content files from the hr schema directory to the
secure export directory:

• The .sdi file is located in the hr schema directory, but might not have exactly the same
basename as the table name. For example, the .sdi files for the employees and managers
tables might be named employees_125.sdi and managers_238.sdi.

• For a MyISAM table, the content files are its .MYD data file and .MYI index file.

Given those file names, the copy commands look like this:

$> cd export_basedir/data/hr
$> cp employees_125.sdi /tmp/export
$> cp managers_238.sdi /tmp/export
$> cp employees.{MYD,MYI} /tmp/export
$> cp managers.{MYD,MYI} /tmp/export

3. Unlock the tables:

mysql> UNLOCK TABLES;

To import tables into the import server, use this procedure:

1. The import schema must exist. If necessary, execute this statement to create it:

mysql> CREATE SCHEMA hr;

2. At the file system level, copy the .sdi files to the import server secure_file_priv directory, /
tmp/mysql-files. Also, copy the table content files to the hr schema directory:

$> cd /tmp/export
$> cp employees_125.sdi /tmp/mysql-files
$> cp managers_238.sdi /tmp/mysql-files
$> cp employees.{MYD,MYI} import_basedir/data/hr
$> cp managers.{MYD,MYI} import_basedir/data/hr

3. Import the tables by executing an IMPORT TABLE statement that names the .sdi files:

mysql> IMPORT TABLE FROM
 '/tmp/mysql-files/employees.sdi',
 '/tmp/mysql-files/managers.sdi';

The .sdi file need not be placed in the import server directory named by the secure_file_priv
system variable if that variable is empty; it can be in any directory accessible to the server, including
the schema directory for the imported table. If the .sdi file is placed in that directory, however, it may
be rewritten; the import operation creates a new .sdi file for the table, which overwrites the old .sdi
file if the operation uses the same file name for the new file.

2818

IMPORT TABLE Statement

Each sdi_file value must be a string literal that names the .sdi file for a table or is a pattern that
matches .sdi files. If the string is a pattern, any leading directory path and the .sdi file name suffix
must be given literally. Pattern characters are permitted only in the base name part of the file name:

• ? matches any single character

• * matches any sequence of characters, including no characters

Using a pattern, the previous IMPORT TABLE statement could have been written like this (assuming
that the /tmp/mysql-files directory contains no other .sdi files matching the pattern):

IMPORT TABLE FROM '/tmp/mysql-files/*.sdi';

To interpret the location of .sdi file path names, the server uses the same rules for IMPORT TABLE
as the server-side rules for LOAD DATA (that is, the non-LOCAL rules). See Section 15.2.9, “LOAD
DATA Statement”, paying particular attention to the rules used to interpret relative path names.

IMPORT TABLE fails if the .sdi or table files cannot be located. After importing a table, the server
attempts to open it and reports as warnings any problems detected. To attempt a repair to correct any
reported issues, use REPAIR TABLE.

IMPORT TABLE is not written to the binary log.

Restrictions and Limitations

IMPORT TABLE applies only to non-TEMPORARY MyISAM tables. It does not apply to tables created
with a transactional storage engine, tables created with CREATE TEMPORARY TABLE, or views.

An .sdi file used in an import operation must be generated on a server with the same data dictionary
version and sdi version as the import server. The version information of the generating server is found
in the .sdi file:

{
 "mysqld_version_id":80019,
 "dd_version":80017,
 "sdi_version":80016,
 ...
}

To determine the data dictionary and sdi version of the import server, you can check the .sdi file of a
recently created table on the import server.

The table data and index files must be placed in the schema directory for the import server prior to
the import operation, unless the table as defined on the export server uses the DATA DIRECTORY
or INDEX DIRECTORY table options. In that case, modify the import procedure using one of these
alternatives before executing the IMPORT TABLE statement:

• Put the data and index files into the same directory on the import server host as on the export server
host, and create symlinks in the import server schema directory to those files.

• Put the data and index files into an import server host directory different from that on the export
server host, and create symlinks in the import server schema directory to those files. In addition,
modify the .sdi file to reflect the different file locations.

• Put the data and index files into the schema directory on the import server host, and modify the .sdi
file to remove the data and index directory table options.

Any collation IDs stored in the .sdi file must refer to the same collations on the export and import
servers.

Trigger information for a table is not serialized into the table .sdi file, so triggers are not restored by
the import operation.

2819

INSERT Statement

Some edits to an .sdi file are permissible prior to executing the IMPORT TABLE statement, whereas
others are problematic or may even cause the import operation to fail:

• Changing the data directory and index directory table options is required if the locations of the data
and index files differ between the export and import servers.

• Changing the schema name is required to import the table into a different schema on the import
server than on the export server.

• Changing schema and table names may be required to accommodate differences between
file system case-sensitivity semantics on the export and import servers or differences in
lower_case_table_names settings. Changing the table names in the .sdi file may require
renaming the table files as well.

• In some cases, changes to column definitions are permitted. Changing data types is likely to cause
problems.

15.2.7 INSERT Statement
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 { {VALUES | VALUE} (value_list) [, (value_list)] ... }
 [AS row_alias[(col_alias [, col_alias] ...)]]
 [ON DUPLICATE KEY UPDATE assignment_list]

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 SET assignment_list
 [AS row_alias[(col_alias [, col_alias] ...)]]
 [ON DUPLICATE KEY UPDATE assignment_list]

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 { SELECT ...
 | TABLE table_name
 | VALUES row_constructor_list
 }
 [ON DUPLICATE KEY UPDATE assignment_list]

value:
 {expr | DEFAULT}

value_list:
 value [, value] ...

row_constructor_list:
 ROW(value_list)[, ROW(value_list)][, ...]

assignment:
 col_name =
 value
 | [row_alias.]col_name
 | [tbl_name.]col_name
 | [row_alias.]col_alias

assignment_list:
 assignment [, assignment] ...

INSERT inserts new rows into an existing table. The INSERT ... VALUES, INSERT ... VALUES
ROW(), and INSERT ... SET forms of the statement insert rows based on explicitly specified values.
The INSERT ... SELECT form inserts rows selected from another table or tables. You can also use
INSERT ... TABLE in MySQL 8.0.19 and later to insert rows from a single table. INSERT with an ON
DUPLICATE KEY UPDATE clause enables existing rows to be updated if a row to be inserted would

2820

INSERT Statement

cause a duplicate value in a UNIQUE index or PRIMARY KEY. In MySQL 8.0.19 and later, a row alias
with one or more optional column aliases can be used with ON DUPLICATE KEY UPDATE to refer to
the row to be inserted.

For additional information about INSERT ... SELECT and INSERT ... ON DUPLICATE KEY
UPDATE, see Section 15.2.7.1, “INSERT ... SELECT Statement”, and Section 15.2.7.2, “INSERT ... ON
DUPLICATE KEY UPDATE Statement”.

In MySQL 8.0, the DELAYED keyword is accepted but ignored by the server. For the reasons for this,
see Section 15.2.7.3, “INSERT DELAYED Statement”,

Inserting into a table requires the INSERT privilege for the table. If the ON DUPLICATE KEY UPDATE
clause is used and a duplicate key causes an UPDATE to be performed instead, the statement requires
the UPDATE privilege for the columns to be updated. For columns that are read but not modified you
need only the SELECT privilege (such as for a column referenced only on the right hand side of an
col_name=expr assignment in an ON DUPLICATE KEY UPDATE clause).

When inserting into a partitioned table, you can control which partitions and subpartitions accept new
rows. The PARTITION clause takes a list of the comma-separated names of one or more partitions or
subpartitions (or both) of the table. If any of the rows to be inserted by a given INSERT statement do
not match one of the partitions listed, the INSERT statement fails with the error Found a row not
matching the given partition set. For more information and examples, see Section 26.5,
“Partition Selection”.

tbl_name is the table into which rows should be inserted. Specify the columns for which the statement
provides values as follows:

• Provide a parenthesized list of comma-separated column names following the table name. In this
case, a value for each named column must be provided by the VALUES list, VALUES ROW() list, or
SELECT statement. For the INSERT TABLE form, the number of columns in the source table must
match the number of columns to be inserted.

• If you do not specify a list of column names for INSERT ... VALUES or INSERT ... SELECT,
values for every column in the table must be provided by the VALUES list, SELECT statement,
or TABLE statement. If you do not know the order of the columns in the table, use DESCRIBE
tbl_name to find out.

• A SET clause indicates columns explicitly by name, together with the value to assign each one.

Column values can be given in several ways:

• If strict SQL mode is not enabled, any column not explicitly given a value is set to its default (explicit
or implicit) value. For example, if you specify a column list that does not name all the columns in the
table, unnamed columns are set to their default values. Default value assignment is described in
Section 13.6, “Data Type Default Values”. See also Section 1.6.3.3, “Enforced Constraints on Invalid
Data”.

If strict SQL mode is enabled, an INSERT statement generates an error if it does not specify an
explicit value for every column that has no default value. See Section 7.1.11, “Server SQL Modes”.

• If both the column list and the VALUES list are empty, INSERT creates a row with each column set to
its default value:

INSERT INTO tbl_name () VALUES();

If strict mode is not enabled, MySQL uses the implicit default value for any column that has no
explicitly defined default. If strict mode is enabled, an error occurs if any column has no default value.

• Use the keyword DEFAULT to set a column explicitly to its default value. This makes it easier to
write INSERT statements that assign values to all but a few columns, because it enables you to
avoid writing an incomplete VALUES list that does not include a value for each column in the table.

2821

INSERT Statement

Otherwise, you must provide the list of column names corresponding to each value in the VALUES
list.

• If a generated column is inserted into explicitly, the only permitted value is DEFAULT. For information
about generated columns, see Section 15.1.20.8, “CREATE TABLE and Generated Columns”.

• In expressions, you can use DEFAULT(col_name) to produce the default value for column
col_name.

• Type conversion of an expression expr that provides a column value might occur if the expression
data type does not match the column data type. Conversion of a given value can result in different
inserted values depending on the column type. For example, inserting the string '1999.0e-2' into
an INT, FLOAT, DECIMAL(10,6), or YEAR column inserts the value 1999, 19.9921, 19.992100,
or 1999, respectively. The value stored in the INT and YEAR columns is 1999 because the string-to-
number conversion looks only at as much of the initial part of the string as may be considered a valid
integer or year. For the FLOAT and DECIMAL columns, the string-to-number conversion considers
the entire string a valid numeric value.

• An expression expr can refer to any column that was set earlier in a value list. For example, you can
do this because the value for col2 refers to col1, which has previously been assigned:

INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But the following is not legal, because the value for col1 refers to col2, which is assigned after
col1:

INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

An exception occurs for columns that contain AUTO_INCREMENT values. Because
AUTO_INCREMENT values are generated after other value assignments, any reference to an
AUTO_INCREMENT column in the assignment returns a 0.

INSERT statements that use VALUES syntax can insert multiple rows. To do this, include multiple lists
of comma-separated column values, with lists enclosed within parentheses and separated by commas.
Example:

INSERT INTO tbl_name (a,b,c)
 VALUES(1,2,3), (4,5,6), (7,8,9);

Each values list must contain exactly as many values as are to be inserted per row. The following
statement is invalid because it contains one list of nine values, rather than three lists of three values
each:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3,4,5,6,7,8,9);

VALUE is a synonym for VALUES in this context. Neither implies anything about the number of values
lists, nor about the number of values per list. Either may be used whether there is a single values list or
multiple lists, and regardless of the number of values per list.

INSERT statements using VALUES ROW() syntax can also insert multiple rows. In this case, each
value list must be contained within a ROW() (row constructor), like this:

INSERT INTO tbl_name (a,b,c)
 VALUES ROW(1,2,3), ROW(4,5,6), ROW(7,8,9);

The affected-rows value for an INSERT can be obtained using the ROW_COUNT() SQL function or
the mysql_affected_rows() C API function. See Section 14.15, “Information Functions”, and
mysql_affected_rows().

If you use INSERT ... VALUES or INSERT ... VALUES ROW() with multiple value lists, or
INSERT ... SELECT or INSERT ... TABLE, the statement returns an information string in this
format:

2822

https://dev.mysql.com/doc/c-api/8.0/en/mysql-affected-rows.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-affected-rows.html

INSERT Statement

Records: N1 Duplicates: N2 Warnings: N3

If you are using the C API, the information string can be obtained by invoking the mysql_info()
function. See mysql_info().

Records indicates the number of rows processed by the statement. (This is not necessarily the
number of rows actually inserted because Duplicates can be nonzero.) Duplicates indicates the
number of rows that could not be inserted because they would duplicate some existing unique index
value. Warnings indicates the number of attempts to insert column values that were problematic in
some way. Warnings can occur under any of the following conditions:

• Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT
statements or INSERT INTO ... SELECT statements, the column is set to the implicit default
value for the column data type. This is 0 for numeric types, the empty string ('') for string types,
and the “zero” value for date and time types. INSERT INTO ... SELECT statements are handled
the same way as multiple-row inserts because the server does not examine the result set from the
SELECT to see whether it returns a single row. (For a single-row INSERT, no warning occurs when
NULL is inserted into a NOT NULL column. Instead, the statement fails with an error.)

• Setting a numeric column to a value that lies outside the column range. The value is clipped to the
closest endpoint of the range.

• Assigning a value such as '10.34 a' to a numeric column. The trailing nonnumeric text is stripped
off and the remaining numeric part is inserted. If the string value has no leading numeric part, the
column is set to 0.

• Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the column
maximum length. The value is truncated to the column maximum length.

• Inserting a value into a date or time column that is illegal for the data type. The column is set to the
appropriate zero value for the type.

• For INSERT examples involving AUTO_INCREMENT column values, see Section 5.6.9, “Using
AUTO_INCREMENT”.

If INSERT inserts a row into a table that has an AUTO_INCREMENT column, you can find the value
used for that column by using the LAST_INSERT_ID() SQL function or the mysql_insert_id()
C API function.

Note

These two functions do not always behave identically. The behavior of
INSERT statements with respect to AUTO_INCREMENT columns is discussed
further in Section 14.15, “Information Functions”, and mysql_insert_id().

The INSERT statement supports the following modifiers:

• If you use the LOW_PRIORITY modifier, execution of the INSERT is delayed until no other clients
are reading from the table. This includes other clients that began reading while existing clients are
reading, and while the INSERT LOW_PRIORITY statement is waiting. It is possible, therefore, for a
client that issues an INSERT LOW_PRIORITY statement to wait for a very long time.

LOW_PRIORITY affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE).

Note

LOW_PRIORITY should normally not be used with MyISAM tables because
doing so disables concurrent inserts. See Section 10.11.3, “Concurrent
Inserts”.

2823

https://dev.mysql.com/doc/c-api/8.0/en/mysql-info.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-info.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html

INSERT Statement

• If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option
if the server was started with that option. It also causes concurrent inserts not to be used. See
Section 10.11.3, “Concurrent Inserts”.

HIGH_PRIORITY affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE).

• If you use the IGNORE modifier, ignorable errors that occur while executing the INSERT statement
are ignored. For example, without IGNORE, a row that duplicates an existing UNIQUE index or
PRIMARY KEY value in the table causes a duplicate-key error and the statement is aborted. With
IGNORE, the row is discarded and no error occurs. Ignored errors generate warnings instead.

 IGNORE has a similar effect on inserts into partitioned tables where no partition matching a given
value is found. Without IGNORE, such INSERT statements are aborted with an error. When INSERT
IGNORE is used, the insert operation fails silently for rows containing the unmatched value, but
inserts rows that are matched. For an example, see Section 26.2.2, “LIST Partitioning”.

Data conversions that would trigger errors abort the statement if IGNORE is not specified. With
IGNORE, invalid values are adjusted to the closest values and inserted; warnings are produced but
the statement does not abort. You can determine with the mysql_info() C API function how many
rows were actually inserted into the table.

For more information, see The Effect of IGNORE on Statement Execution.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart
to INSERT IGNORE in the treatment of new rows that contain unique key values that duplicate
old rows: The new rows replace the old rows rather than being discarded. See Section 15.2.12,
“REPLACE Statement”.

• If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate
value in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row occurs. The affected-rows
value per row is 1 if the row is inserted as a new row, 2 if an existing row is updated, and 0 if
an existing row is set to its current values. If you specify the CLIENT_FOUND_ROWS flag to the
mysql_real_connect() C API function when connecting to mysqld, the affected-rows value
is 1 (not 0) if an existing row is set to its current values. See Section 15.2.7.2, “INSERT ... ON
DUPLICATE KEY UPDATE Statement”.

• INSERT DELAYED was deprecated in MySQL 5.6, and is scheduled for eventual removal. In MySQL
8.0, the DELAYED modifier is accepted but ignored. Use INSERT (without DELAYED) instead. See
Section 15.2.7.3, “INSERT DELAYED Statement”.

15.2.7.1 INSERT ... SELECT Statement

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 { SELECT ...
 | TABLE table_name
 | VALUES row_constructor_list
 }
 [ON DUPLICATE KEY UPDATE assignment_list]

value:
 {expr | DEFAULT}

value_list:
 value [, value] ...

row_constructor_list:
 ROW(value_list)[, ROW(value_list)][, ...]

assignment:

2824

https://dev.mysql.com/doc/c-api/8.0/en/mysql-info.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html

INSERT Statement

 col_name =
 value
 | [row_alias.]col_name
 | [tbl_name.]col_name
 | [row_alias.]col_alias

assignment_list:
 assignment [, assignment] ...

With INSERT ... SELECT, you can quickly insert many rows into a table from the result of a SELECT
statement, which can select from one or many tables. For example:

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id
 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

Beginning with MySQL 8.0.19, you can use a TABLE statement in place of SELECT, as shown here:

INSERT INTO ta TABLE tb;

TABLE tb is equivalent to SELECT * FROM tb. It can be useful when inserting all columns from the
source table into the target table, and no filtering with WHERE is required. In addition, the rows from
TABLE can be ordered by one or more columns using ORDER BY, and the number of rows inserted can
be limited using a LIMIT clause. For more information, see Section 15.2.16, “TABLE Statement”.

The following conditions hold for INSERT ... SELECT statements, and, except where noted, for
INSERT ... TABLE as well:

• Specify IGNORE to ignore rows that would cause duplicate-key violations.

• The target table of the INSERT statement may appear in the FROM clause of the SELECT part of the
query, or as the table named by TABLE. However, you cannot insert into a table and select from the
same table in a subquery.

When selecting from and inserting into the same table, MySQL creates an internal temporary table
to hold the rows from the SELECT and then inserts those rows into the target table. However, you
cannot use INSERT INTO t ... SELECT ... FROM t when t is a TEMPORARY table, because
TEMPORARY tables cannot be referred to twice in the same statement. For the same reason, you
cannot use INSERT INTO t ... TABLE t when t is a temporary table. See Section 10.4.4,
“Internal Temporary Table Use in MySQL”, and Section B.3.6.2, “TEMPORARY Table Problems”.

• AUTO_INCREMENT columns work as usual.

• To ensure that the binary log can be used to re-create the original tables, MySQL does not
permit concurrent inserts for INSERT ... SELECT or INSERT ... TABLE statements (see
Section 10.11.3, “Concurrent Inserts”).

• To avoid ambiguous column reference problems when the SELECT and the INSERT refer to the
same table, provide a unique alias for each table used in the SELECT part, and qualify column
names in that part with the appropriate alias.

The TABLE statement does not support aliases.

You can explicitly select which partitions or subpartitions (or both) of the source or target table (or
both) are to be used with a PARTITION clause following the name of the table. When PARTITION
is used with the name of the source table in the SELECT portion of the statement, rows are selected
only from the partitions or subpartitions named in its partition list. When PARTITION is used with the
name of the target table for the INSERT portion of the statement, it must be possible to insert all rows
selected into the partitions or subpartitions named in the partition list following the option. Otherwise,
the INSERT ... SELECT statement fails. For more information and examples, see Section 26.5,
“Partition Selection”.

TABLE does not support a PARTITION clause.

2825

INSERT Statement

For INSERT ... SELECT statements, see Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY
UPDATE Statement” for conditions under which the SELECT columns can be referred to in an ON
DUPLICATE KEY UPDATE clause. This also works for INSERT ... TABLE.

The order in which a SELECT or TABLE statement with no ORDER BY clause returns rows is
nondeterministic. This means that, when using replication, there is no guarantee that such a SELECT
returns rows in the same order on the source and the replica, which can lead to inconsistencies
between them. To prevent this from occurring, always write INSERT ... SELECT or INSERT ...
TABLE statements that are to be replicated using an ORDER BY clause that produces the same row
order on the source and the replica. See also Section 19.5.1.18, “Replication and LIMIT”.

Due to this issue, INSERT ... SELECT ON DUPLICATE KEY UPDATE and INSERT IGNORE ...
SELECT statements are flagged as unsafe for statement-based replication. Such statements produce a
warning in the error log when using statement-based mode and are written to the binary log using the
row-based format when using MIXED mode. (Bug #11758262, Bug #50439)

See also Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”.

15.2.7.2 INSERT ... ON DUPLICATE KEY UPDATE Statement

If you specify an ON DUPLICATE KEY UPDATE clause and a row to be inserted would cause a
duplicate value in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row occurs. For example,
if column a is declared as UNIQUE and contains the value 1, the following two statements have similar
effect:

INSERT INTO t1 (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=c+1;

UPDATE t1 SET c=c+1 WHERE a=1;

The effects are not quite identical: For an InnoDB table where a is an auto-increment column, the
INSERT statement increases the auto-increment value but the UPDATE does not.

If column b is also unique, the INSERT is equivalent to this UPDATE statement instead:

UPDATE t1 SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

If a=1 OR b=2 matches several rows, only one row is updated. In general, you should try to avoid
using an ON DUPLICATE KEY UPDATE clause on tables with multiple unique indexes.

With ON DUPLICATE KEY UPDATE, the affected-rows value per row is 1 if the row is inserted as
a new row, 2 if an existing row is updated, and 0 if an existing row is set to its current values. If
you specify the CLIENT_FOUND_ROWS flag to the mysql_real_connect() C API function when
connecting to mysqld, the affected-rows value is 1 (not 0) if an existing row is set to its current values.

If a table contains an AUTO_INCREMENT column and INSERT ... ON DUPLICATE KEY UPDATE
inserts or updates a row, the LAST_INSERT_ID() function returns the AUTO_INCREMENT value.

The ON DUPLICATE KEY UPDATE clause can contain multiple column assignments, separated by
commas.

It is possible to use IGNORE with ON DUPLICATE KEY UPDATE in an INSERT statement, but this may
not behave as you expect when inserting multiple rows into a table that has multiple unique keys. This
becomes apparent when an updated value is itself a duplicate key value. Consider the table t, created
and populated by the statements shown here:

mysql> CREATE TABLE t (a SERIAL, b BIGINT NOT NULL, UNIQUE KEY (b));;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO t VALUES ROW(1,1), ROW(2,2);

2826

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html

INSERT Statement

Query OK, 2 rows affected (0.01 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> TABLE t;
+---+---+
| a | b |
+---+---+
| 1 | 1 |
| 2 | 2 |
+---+---+
2 rows in set (0.00 sec)

Now we attempt to insert two rows, one of which contains a duplicate key value, using ON DUPLICATE
KEY UPDATE, where the UPDATE clause itself results in a duplicate key value:

mysql> INSERT INTO t VALUES ROW(2,3), ROW(3,3) ON DUPLICATE KEY UPDATE a=a+1, b=b-1;
ERROR 1062 (23000): Duplicate entry '1' for key 't.b'
mysql> TABLE t;
+---+---+
| a | b |
+---+---+
| 1 | 1 |
| 2 | 2 |
+---+---+
2 rows in set (0.00 sec)

The first row contains a duplicate value for one of the table's unique keys (column a), but b=b+1 in the
UPDATE clause results in a unique key violation for column b; the statement is immediately rejected
with an error, and no rows are updated. Let us repeat the statement, this time adding the IGNORE
keyword, like this:

mysql> INSERT IGNORE INTO t VALUES ROW(2,3), ROW(3,3)
 -> ON DUPLICATE KEY UPDATE a=a+1, b=b-1;
Query OK, 1 row affected, 1 warning (0.00 sec)
Records: 2 Duplicates: 1 Warnings: 1

This time, the previous error is demoted to a warning, as shown here:

mysql> SHOW WARNINGS;
+---------+------+-----------------------------------+
| Level | Code | Message |
+---------+------+-----------------------------------+
| Warning | 1062 | Duplicate entry '1' for key 't.b' |
+---------+------+-----------------------------------+
1 row in set (0.00 sec)

Because the statement was not rejected, execution continues. This means that the second row is
inserted into t, as we can see here:

mysql> TABLE t;
+---+---+
| a | b |
+---+---+
1	1
2	2
3	3
+---+---+
3 rows in set (0.00 sec)

In assignment value expressions in the ON DUPLICATE KEY UPDATE clause, you can use the
VALUES(col_name) function to refer to column values from the INSERT portion of the INSERT ...
ON DUPLICATE KEY UPDATE statement. In other words, VALUES(col_name) in the ON DUPLICATE
KEY UPDATE clause refers to the value of col_name that would be inserted, had no duplicate-key
conflict occurred. This function is especially useful in multiple-row inserts. The VALUES() function
is meaningful only as an introducer for INSERT statement value lists, or in the ON DUPLICATE KEY
UPDATE clause of an INSERT statement, and returns NULL otherwise. For example:

INSERT INTO t1 (a,b,c) VALUES (1,2,3),(4,5,6)

2827

INSERT Statement

 ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

That statement is identical to the following two statements:

INSERT INTO t1 (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=3;
INSERT INTO t1 (a,b,c) VALUES (4,5,6)
 ON DUPLICATE KEY UPDATE c=9;

Note

The use of VALUES() to refer to the new row and columns is deprecated
beginning with MySQL 8.0.20, and is subject to removal in a future version of
MySQL. Instead, use row and column aliases, as described in the next few
paragraphs of this section.

Beginning with MySQL 8.0.19, it is possible to use an alias for the row, with, optionally, one or more
of its columns to be inserted, following the VALUES or SET clause, and preceded by the AS keyword.
Using the row alias new, the statement shown previously using VALUES() to access the new column
values can be written in the form shown here:

INSERT INTO t1 (a,b,c) VALUES (1,2,3),(4,5,6) AS new
 ON DUPLICATE KEY UPDATE c = new.a+new.b;

If, in addition, you use the column aliases m, n, and p, you can omit the row alias in the assignment
clause and write the same statement like this:

INSERT INTO t1 (a,b,c) VALUES (1,2,3),(4,5,6) AS new(m,n,p)
 ON DUPLICATE KEY UPDATE c = m+n;

When using column aliases in this fashion, you must still use a row alias following the VALUES clause,
even if you do not make direct use of it in the assignment clause.

Beginning with MySQL 8.0.20, an INSERT ... SELECT ... ON DUPLICATE KEY UPDATE
statement that uses VALUES() in the UPDATE clause, like this one, throws a warning:

INSERT INTO t1
 SELECT c, c+d FROM t2
 ON DUPLICATE KEY UPDATE b = VALUES(b);

You can eliminate such warnings by using a subquery instead, like this:

INSERT INTO t1
 SELECT * FROM (SELECT c, c+d AS e FROM t2) AS dt
 ON DUPLICATE KEY UPDATE b = e;

You can also use row and column aliases with a SET clause, as mentioned previously. Employing SET
instead of VALUES in the two INSERT ... ON DUPLICATE KEY UPDATE statements just shown can
be done as shown here:

INSERT INTO t1 SET a=1,b=2,c=3 AS new
 ON DUPLICATE KEY UPDATE c = new.a+new.b;

INSERT INTO t1 SET a=1,b=2,c=3 AS new(m,n,p)
 ON DUPLICATE KEY UPDATE c = m+n;

The row alias must not be the same as the name of the table. If column aliases are not used, or if
they are the same as the column names, they must be distinguished using the row alias in the ON
DUPLICATE KEY UPDATE clause. Column aliases must be unique with regard to the row alias to
which they apply (that is, no column aliases referring to columns of the same row may be the same).

For INSERT ... SELECT statements, these rules apply regarding acceptable forms of SELECT query
expressions that you can refer to in an ON DUPLICATE KEY UPDATE clause:

2828

INTERSECT Clause

• References to columns from queries on a single table, which may be a derived table.

• References to columns from queries on a join over multiple tables.

• References to columns from DISTINCT queries.

• References to columns in other tables, as long as the SELECT does not use GROUP BY. One side
effect is that you must qualify references to nonunique column names.

References to columns from a UNION are not supported. To work around this restriction, rewrite the
UNION as a derived table so that its rows can be treated as a single-table result set. For example, this
statement produces an error:

INSERT INTO t1 (a, b)
 SELECT c, d FROM t2
 UNION
 SELECT e, f FROM t3
ON DUPLICATE KEY UPDATE b = b + c;

Instead, use an equivalent statement that rewrites the UNION as a derived table:

INSERT INTO t1 (a, b)
SELECT * FROM
 (SELECT c, d FROM t2
 UNION
 SELECT e, f FROM t3) AS dt
ON DUPLICATE KEY UPDATE b = b + c;

The technique of rewriting a query as a derived table also enables references to columns from GROUP
BY queries.

Because the results of INSERT ... SELECT statements depend on the ordering of rows from
the SELECT and this order cannot always be guaranteed, it is possible when logging INSERT ...
SELECT ON DUPLICATE KEY UPDATE statements for the source and the replica to diverge.
Thus, INSERT ... SELECT ON DUPLICATE KEY UPDATE statements are flagged as unsafe
for statement-based replication. Such statements produce a warning in the error log when using
statement-based mode and are written to the binary log using the row-based format when using MIXED
mode. An INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more than
one unique or primary key is also marked as unsafe. (Bug #11765650, Bug #58637)

See also Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based
Replication”.

15.2.7.3 INSERT DELAYED Statement

INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL extension to standard SQL. In previous
versions of MySQL, it can be used for certain kinds of tables (such as MyISAM), such that when a client
uses INSERT DELAYED, it gets an okay from the server at once, and the row is queued to be inserted
when the table is not in use by any other thread.

DELAYED inserts and replaces were deprecated in MySQL 5.6. In MySQL 8.0, DELAYED is not
supported. The server recognizes but ignores the DELAYED keyword, handles the insert as a
nondelayed insert, and generates an ER_WARN_LEGACY_SYNTAX_CONVERTED warning: INSERT
DELAYED is no longer supported. The statement was converted to INSERT. The
DELAYED keyword is scheduled for removal in a future release.

15.2.8 INTERSECT Clause
query_expression_body INTERSECT [ALL | DISTINCT] query_expression_body
 [INTERSECT [ALL | DISTINCT] query_expression_body]
 [...]

2829

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warn_legacy_syntax_converted

INTERSECT Clause

query_expression_body:
 See Section 15.2.14, “Set Operations with UNION, INTERSECT, and EXCEPT”

INTERSECT limits the result from multiple query blocks to those rows which are common to all.
Example:

mysql> TABLE a;
+------+------+
| m | n |
+------+------+
1	2
2	3
3	4
+------+------+
3 rows in set (0.00 sec)

mysql> TABLE b;
+------+------+
| m | n |
+------+------+
1	2
1	3
3	4
+------+------+
3 rows in set (0.00 sec)

mysql> TABLE c;
+------+------+
| m | n |
+------+------+
1	3
1	3
3	4
+------+------+
3 rows in set (0.00 sec)

mysql> TABLE a INTERSECT TABLE b;
+------+------+
| m | n |
+------+------+
| 1 | 2 |
| 3 | 4 |
+------+------+
2 rows in set (0.00 sec)

mysql> TABLE a INTERSECT TABLE c;
+------+------+
| m | n |
+------+------+
| 3 | 4 |
+------+------+
1 row in set (0.00 sec)

As with UNION and EXCEPT, if neither DISTINCT nor ALL is specified, the default is DISTINCT.

DISTINCT can remove duplicates from either side of the intersection, as shown here:

mysql> TABLE c INTERSECT DISTINCT TABLE c;
+------+------+
| m | n |
+------+------+
| 1 | 3 |
| 3 | 4 |
+------+------+
2 rows in set (0.00 sec)

mysql> TABLE c INTERSECT ALL TABLE c;
+------+------+
| m | n |
+------+------+

2830

LOAD DATA Statement

1	3
1	3
3	4
+------+------+
3 rows in set (0.00 sec)

(TABLE c INTERSECT TABLE c is the equivalent of the first of the two statements just shown.)

As with UNION, the operands must have the same number of columns. Result set column types are
also determined as for UNION.

INTERSECT has greater precedence than and is evaluated before UNION and EXCEPT, so that the two
statements shown here are equivalent:

TABLE r EXCEPT TABLE s INTERSECT TABLE t;

TABLE r EXCEPT (TABLE s INTERSECT TABLE t);

For INTERSECT ALL, the maximum supported number of duplicates of any unique row in the left hand
table is 4294967295.

INTERSECT was added in MySQL 8.0.31.

15.2.9 LOAD DATA Statement

LOAD DATA
 [LOW_PRIORITY | CONCURRENT] [LOCAL]
 INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]
 [IGNORE number {LINES | ROWS}]
 [(col_name_or_user_var
 [, col_name_or_user_var] ...)]
 [SET col_name={expr | DEFAULT}
 [, col_name={expr | DEFAULT}] ...]

The LOAD DATA statement reads rows from a text file into a table at a very high speed. The file can be
read from the server host or the client host, depending on whether the LOCAL modifier is given. LOCAL
also affects data interpretation and error handling.

LOAD DATA is the complement of SELECT ... INTO OUTFILE. (See Section 15.2.13.1, “SELECT ...
INTO Statement”.) To write data from a table to a file, use SELECT ... INTO OUTFILE. To read the
file back into a table, use LOAD DATA. The syntax of the FIELDS and LINES clauses is the same for
both statements.

The mysqlimport utility provides another way to load data files; it operates by sending a LOAD DATA
statement to the server. See Section 6.5.5, “mysqlimport — A Data Import Program”.

For information about the efficiency of INSERT versus LOAD DATA and speeding up LOAD DATA, see
Section 10.2.5.1, “Optimizing INSERT Statements”.

• Non-LOCAL Versus LOCAL Operation

• Input File Character Set

2831

LOAD DATA Statement

• Input File Location

• Security Requirements

• Duplicate-Key and Error Handling

• Index Handling

• Field and Line Handling

• Column List Specification

• Input Preprocessing

• Column Value Assignment

• Partitioned Table Support

• Concurrency Considerations

• Statement Result Information

• Replication Considerations

• Miscellaneous Topics

Non-LOCAL Versus LOCAL Operation

The LOCAL modifier affects these aspects of LOAD DATA, compared to non-LOCAL operation:

• It changes the expected location of the input file; see Input File Location.

• It changes the statement security requirements; see Security Requirements.

• Unless REPLACE is also specified, LOCAL has the same effect as the IGNORE modifier on the
interpretation of input file contents and error handling; see Duplicate-Key and Error Handling, and
Column Value Assignment.

LOCAL works only if the server and your client both have been configured to permit it. For example, if
mysqld was started with the local_infile system variable disabled, LOCAL produces an error. See
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”.

Input File Character Set

The file name must be given as a literal string. On Windows, specify backslashes in path names as
forward slashes or doubled backslashes. The server interprets the file name using the character set
indicated by the character_set_filesystem system variable.

By default, the server interprets the file contents using the character set indicated by the
character_set_database system variable. If the file contents use a character set different from this
default, it is a good idea to specify that character set by using the CHARACTER SET clause. A character
set of binary specifies “no conversion.”

SET NAMES and the setting of character_set_client do not affect interpretation of file contents.

LOAD DATA interprets all fields in the file as having the same character set, regardless of the data
types of the columns into which field values are loaded. For proper interpretation of the file, you must
ensure that it was written with the correct character set. For example, if you write a data file with
mysqldump -T or by issuing a SELECT ... INTO OUTFILE statement in mysql, be sure to use a
--default-character-set option to write output in the character set to be used when the file is
loaded with LOAD DATA.

2832

LOAD DATA Statement

Note

It is not possible to load data files that use the ucs2, utf16, utf16le, or
utf32 character set.

Input File Location

These rules determine the LOAD DATA input file location:

• If LOCAL is not specified, the file must be located on the server host. The server reads the file
directly, locating it as follows:

• If the file name is an absolute path name, the server uses it as given.

• If the file name is a relative path name with leading components, the server looks for the file
relative to its data directory.

• If the file name has no leading components, the server looks for the file in the database directory of
the default database.

• If LOCAL is specified, the file must be located on the client host. The client program reads the file,
locating it as follows:

• If the file name is an absolute path name, the client program uses it as given.

• If the file name is a relative path name, the client program looks for the file relative to its invocation
directory.

When LOCAL is used, the client program reads the file and sends its contents to the server. The
server creates a copy of the file in the directory where it stores temporary files. See Section B.3.3.5,
“Where MySQL Stores Temporary Files”. Lack of sufficient space for the copy in this directory can
cause the LOAD DATA LOCAL statement to fail.

The non-LOCAL rules mean that the server reads a file named as ./myfile.txt relative to its data
directory, whereas it reads a file named as myfile.txt from the database directory of the default
database. For example, if the following LOAD DATA statement is executed while db1 is the default
database, the server reads the file data.txt from the database directory for db1, even though the
statement explicitly loads the file into a table in the db2 database:

LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;

Note

The server also uses the non-LOCAL rules to locate .sdi files for the IMPORT
TABLE statement.

Security Requirements

For a non-LOCAL load operation, the server reads a text file located on the server host, so these
security requirements must be satisfied:

• You must have the FILE privilege. See Section 8.2.2, “Privileges Provided by MySQL”.

• The operation is subject to the secure_file_priv system variable setting:

• If the variable value is a nonempty directory name, the file must be located in that directory.

• If the variable value is empty (which is insecure), the file need only be readable by the server.

For a LOCAL load operation, the client program reads a text file located on the client host. Because the
file contents are sent over the connection by the client to the server, using LOCAL is a bit slower than

2833

LOAD DATA Statement

when the server accesses the file directly. On the other hand, you do not need the FILE privilege, and
the file can be located in any directory the client program can access.

Duplicate-Key and Error Handling

The REPLACE and IGNORE modifiers control handling of new (input) rows that duplicate existing table
rows on unique key values (PRIMARY KEY or UNIQUE index values):

• With REPLACE, new rows that have the same value as a unique key value in an existing row replace
the existing row. See Section 15.2.12, “REPLACE Statement”.

• With IGNORE, new rows that duplicate an existing row on a unique key value are discarded. For
more information, see The Effect of IGNORE on Statement Execution.

The LOCAL modifier has the same effect as IGNORE. This occurs because the server has no way to
stop transmission of the file in the middle of the operation.

If none of REPLACE, IGNORE, or LOCAL is specified, an error occurs when a duplicate key value is
found, and the rest of the text file is ignored.

In addition to affecting duplicate-key handling as just described, IGNORE and LOCAL also affect error
handling:

• When neither IGNORE nor LOCAL is specified, data-interpretation errors terminate the operation.

• When IGNORE—or LOCAL without REPLACE—is specified, data interpretation errors become
warnings and the load operation continues, even if the SQL mode is restrictive. For examples, see
Column Value Assignment.

Index Handling

To ignore foreign key constraints during the load operation, execute a SET foreign_key_checks =
0 statement before executing LOAD DATA.

If you use LOAD DATA on an empty MyISAM table, all nonunique indexes are created in a separate
batch (as for REPAIR TABLE). Normally, this makes LOAD DATA much faster when you have many
indexes. In some extreme cases, you can create the indexes even faster by turning them off with
ALTER TABLE ... DISABLE KEYS before loading the file into the table and re-creating the indexes
with ALTER TABLE ... ENABLE KEYS after loading the file. See Section 10.2.5.1, “Optimizing
INSERT Statements”.

Field and Line Handling

For both the LOAD DATA and SELECT ... INTO OUTFILE statements, the syntax of the FIELDS
and LINES clauses is the same. Both clauses are optional, but FIELDS must precede LINES if both
are specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY] ENCLOSED
BY, and ESCAPED BY) is also optional, except that you must specify at least one of them. Arguments to
these clauses are permitted to contain only ASCII characters.

If you specify no FIELDS or LINES clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'
LINES TERMINATED BY '\n' STARTING BY ''

Backslash is the MySQL escape character within strings in SQL statements. Thus, to specify a literal
backslash, you must specify two backslashes for the value to be interpreted as a single backslash. The
escape sequences '\t' and '\n' specify tab and newline characters, respectively.

In other words, the defaults cause LOAD DATA to act as follows when reading input:

2834

LOAD DATA Statement

• Look for line boundaries at newlines.

• Do not skip any line prefix.

• Break lines into fields at tabs.

• Do not expect fields to be enclosed within any quoting characters.

• Interpret characters preceded by the escape character \ as escape sequences. For example,
\t, \n, and \\ signify tab, newline, and backslash, respectively. See the discussion of FIELDS
ESCAPED BY later for the full list of escape sequences.

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing output:

• Write tabs between fields.

• Do not enclose fields within any quoting characters.

• Use \ to escape instances of tab, newline, or \ that occur within field values.

• Write newlines at the ends of lines.

Note

For a text file generated on a Windows system, proper file reading might require
LINES TERMINATED BY '\r\n' because Windows programs typically use
two characters as a line terminator. Some programs, such as WordPad, might
use \r as a line terminator when writing files. To read such files, use LINES
TERMINATED BY '\r'.

If all the input lines have a common prefix that you want to ignore, you can use LINES STARTING BY
'prefix_string' to skip the prefix and anything before it. If a line does not include the prefix, the
entire line is skipped. Suppose that you issue the following statement:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test
 FIELDS TERMINATED BY ',' LINES STARTING BY 'xxx';

If the data file looks like this:

xxx"abc",1
something xxx"def",2
"ghi",3

The resulting rows are ("abc",1) and ("def",2). The third row in the file is skipped because it
does not contain the prefix.

The IGNORE number LINES clause can be used to ignore lines at the start of the file. For example,
you can use IGNORE 1 LINES to skip an initial header line containing column names:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA to write data from a
database into a file and then read the file back into the database later, the field- and line-handling
options for both statements must match. Otherwise, LOAD DATA does not interpret the contents of the
file properly. Suppose that you use SELECT ... INTO OUTFILE to write a file with fields delimited by
commas:

SELECT * INTO OUTFILE 'data.txt'
 FIELDS TERMINATED BY ','
 FROM table2;

To read the comma-delimited file, the correct statement is:

LOAD DATA INFILE 'data.txt' INTO TABLE table2

2835

LOAD DATA Statement

 FIELDS TERMINATED BY ',';

If instead you tried to read the file with the statement shown following, it would not work because it
instructs LOAD DATA to look for tabs between fields:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
 FIELDS TERMINATED BY '\t';

The likely result is that each input line would be interpreted as a single field.

LOAD DATA can be used to read files obtained from external sources. For example, many programs
can export data in comma-separated values (CSV) format, such that lines have fields separated by
commas and enclosed within double quotation marks, with an initial line of column names. If the lines
in such a file are terminated by carriage return/newline pairs, the statement shown here illustrates the
field- and line-handling options you would use to load the file:

LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
 FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES;

If the input values are not necessarily enclosed within quotation marks, use OPTIONALLY before the
ENCLOSED BY option.

Any of the field- or line-handling options can specify an empty string (''). If not empty, the FIELDS
[OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single character. The
FIELDS TERMINATED BY, LINES STARTING BY, and LINES TERMINATED BY values can be more
than one character. For example, to write lines that are terminated by carriage return/linefeed pairs, or
to read a file containing such lines, specify a LINES TERMINATED BY '\r\n' clause.

To read a file containing jokes that are separated by lines consisting of %%, you can do this

CREATE TABLE jokes
 (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joke TEXT NOT NULL);
LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes
 FIELDS TERMINATED BY ''
 LINES TERMINATED BY '\n%%\n' (joke);

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ... INTO
OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED BY character.
An example of such output (using a comma as the field delimiter) is shown here:

"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"
"4","a string containing a \", quote and comma","102.20"

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose values from columns
that have a string data type (such as CHAR, BINARY, TEXT, or ENUM):

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20

Occurrences of the ENCLOSED BY character within a field value are escaped by prefixing them with the
ESCAPED BY character. Also, if you specify an empty ESCAPED BY value, it is possible to inadvertently
generate output that cannot be read properly by LOAD DATA. For example, the preceding output just
shown would appear as follows if the escape character is empty. Observe that the second field in the
fourth line contains a comma following the quote, which (erroneously) appears to terminate the field:

1,"a string",100.20
2,"a string containing a , comma",102.20

2836

LOAD DATA Statement

3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values. (This is true
regardless of whether OPTIONALLY is specified; OPTIONALLY has no effect on input interpretation.)
Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character are interpreted
as part of the current field value.

If the field begins with the ENCLOSED BY character, instances of that character are recognized as
terminating a field value only if followed by the field or line TERMINATED BY sequence. To avoid
ambiguity, occurrences of the ENCLOSED BY character within a field value can be doubled and are
interpreted as a single instance of the character. For example, if ENCLOSED BY '"' is specified,
quotation marks are handled as shown here:

"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss
The ""BIG"" boss -> The ""BIG"" boss

FIELDS ESCAPED BY controls how to read or write special characters:

• For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are
stripped and the following character is taken literally as part of a field value. Some two-character
sequences that are exceptions, where the first character is the escape character. These sequences
are shown in the following table (using \ for the escape character). The rules for NULL handling are
described later in this section.

Character Escape Sequence

\0 An ASCII NUL (X'00') character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character.

\Z ASCII 26 (Control+Z)

\N NULL

For more information about \-escape syntax, see Section 11.1.1, “String Literals”.

If the FIELDS ESCAPED BY character is empty, escape-sequence interpretation does not occur.

• For output, if the FIELDS ESCAPED BY character is not empty, it is used to prefix the following
characters on output:

• The FIELDS ESCAPED BY character.

• The FIELDS [OPTIONALLY] ENCLOSED BY character.

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values, if the
ENCLOSED BY character is empty or unspecified.

• ASCII 0 (what is actually written following the escape character is ASCII 0, not a zero-valued byte).

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field
values in your data contain any of the characters in the list just given.

In certain cases, field- and line-handling options interact:

• If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is nonempty, lines are
also terminated with FIELDS TERMINATED BY.

2837

LOAD DATA Statement

• If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (''), a fixed-
row (nondelimited) format is used. With fixed-row format, no delimiters are used between fields
(but you can still have a line terminator). Instead, column values are read and written using a field
width wide enough to hold all values in the field. For TINYINT, SMALLINT, MEDIUMINT, INT, and
BIGINT, the field widths are 4, 6, 8, 11, and 20, respectively, no matter what the declared display
width is.

LINES TERMINATED BY is still used to separate lines. If a line does not contain all fields, the rest of
the columns are set to their default values. If you do not have a line terminator, you should set this to
''. In this case, the text file must contain all fields for each row.

Fixed-row format also affects handling of NULL values, as described later.

Note

Fixed-size format does not work if you are using a multibyte character set.

Handling of NULL values varies according to the FIELDS and LINES options in use:

• For the default FIELDS and LINES values, NULL is written as a field value of \N for output, and a
field value of \N is read as NULL for input (assuming that the ESCAPED BY character is \).

• If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value is read as
a NULL value. This differs from the word NULL enclosed within FIELDS ENCLOSED BY characters,
which is read as the string 'NULL'.

• If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.

• With fixed-row format (which is used when FIELDS TERMINATED BY and FIELDS ENCLOSED
BY are both empty), NULL is written as an empty string. This causes both NULL values and empty
strings in the table to be indistinguishable when written to the file because both are written as empty
strings. If you need to be able to tell the two apart when reading the file back in, you should not use
fixed-row format.

An attempt to load NULL into a NOT NULL column produces either a warning or an error according to
the rules described in Column Value Assignment.

Some cases are not supported by LOAD DATA:

• Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and BLOB or
TEXT columns.

• If you specify one separator that is the same as or a prefix of another, LOAD DATA cannot interpret
the input properly. For example, the following FIELDS clause would cause problems:

FIELDS TERMINATED BY '"' ENCLOSED BY '"'

• If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS ENCLOSED
BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY value causes LOAD
DATA to stop reading a field or line too early. This happens because LOAD DATA cannot properly
determine where the field or line value ends.

Column List Specification

The following example loads all columns of the persondata table:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;

By default, when no column list is provided at the end of the LOAD DATA statement, input lines are
expected to contain a field for each table column. If you want to load only some of a table's columns,
specify a column list:

2838

LOAD DATA Statement

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata
(col_name_or_user_var [, col_name_or_user_var] ...);

You must also specify a column list if the order of the fields in the input file differs from the order of the
columns in the table. Otherwise, MySQL cannot tell how to match input fields with table columns.

Input Preprocessing

Each instance of col_name_or_user_var in LOAD DATA syntax is either a column name or a user
variable. With user variables, the SET clause enables you to perform preprocessing transformations on
their values before assigning the result to columns.

User variables in the SET clause can be used in several ways. The following example uses the first
input column directly for the value of t1.column1, and assigns the second input column to a user
variable that is subjected to a division operation before being used for the value of t1.column2:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @var1)
 SET column2 = @var1/100;

The SET clause can be used to supply values not derived from the input file. The following statement
sets column3 to the current date and time:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, column2)
 SET column3 = CURRENT_TIMESTAMP;

You can also discard an input value by assigning it to a user variable and not assigning the variable to
any table column:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @dummy, column2, @dummy, column3);

Use of the column/variable list and SET clause is subject to the following restrictions:

• Assignments in the SET clause should have only column names on the left hand side of assignment
operators.

• You can use subqueries in the right hand side of SET assignments. A subquery that returns a value
to be assigned to a column may be a scalar subquery only. Also, you cannot use a subquery to
select from the table that is being loaded.

• Lines ignored by an IGNORE number LINES clause are not processed for the column/variable list
or SET clause.

• User variables cannot be used when loading data with fixed-row format because user variables do
not have a display width.

Column Value Assignment

To process an input line, LOAD DATA splits it into fields and uses the values according to the column/
variable list and the SET clause, if they are present. Then the resulting row is inserted into the table. If
there are BEFORE INSERT or AFTER INSERT triggers for the table, they are activated before or after
inserting the row, respectively.

Interpretation of field values and assignment to table columns depends on these factors:

• The SQL mode (the value of the sql_mode system variable). The mode can be nonrestrictive, or
restrictive in various ways. For example, strict SQL mode can be enabled, or the mode can include
values such as NO_ZERO_DATE or NO_ZERO_IN_DATE.

2839

LOAD DATA Statement

• Presence or absence of the IGNORE and LOCAL modifiers.

Those factors combine to produce restrictive or nonrestrictive data interpretation by LOAD DATA:

• Data interpretation is restrictive if the SQL mode is restrictive and neither the IGNORE nor the LOCAL
modifier is specified. Errors terminate the load operation.

• Data interpretation is nonrestrictive if the SQL mode is nonrestrictive or the IGNORE or LOCAL
modifier is specified. (In particular, either modifier if specified overrides a restrictive SQL mode when
the REPLACE modifier is omitted.) Errors become warnings and the load operation continues.

Restrictive data interpretation uses these rules:

• Too many or too few fields results an error.

• Assigning NULL (that is, \N) to a non-NULL column results in an error.

• A value that is out of range for the column data type results in an error.

• Invalid values produce errors. For example, a value such as 'x' for a numeric column results in an
error, not conversion to 0.

By contrast, nonrestrictive data interpretation uses these rules:

• If an input line has too many fields, the extra fields are ignored and the number of warnings is
incremented.

• If an input line has too few fields, the columns for which input fields are missing are assigned their
default values. Default value assignment is described in Section 13.6, “Data Type Default Values”.

• Assigning NULL (that is, \N) to a non-NULL column results in assignment of the implicit default value
for the column data type. Implicit default values are described in Section 13.6, “Data Type Default
Values”.

• Invalid values produce warnings rather than errors, and are converted to the “closest” valid value for
the column data type. Examples:

• A value such as 'x' for a numeric column results in conversion to 0.

• An out-of-range numeric or temporal value is clipped to the closest endpoint of the range for the
column data type.

• An invalid value for a DATETIME, DATE, or TIME column is inserted as the implicit default value,
regardless of the SQL mode NO_ZERO_DATE setting. The implicit default is the appropriate
“zero” value for the type ('0000-00-00 00:00:00', '0000-00-00', or '00:00:00'). See
Section 13.2, “Date and Time Data Types”.

• LOAD DATA interprets an empty field value differently from a missing field:

• For string types, the column is set to the empty string.

• For numeric types, the column is set to 0.

• For date and time types, the column is set to the appropriate “zero” value for the type. See
Section 13.2, “Date and Time Data Types”.

These are the same values that result if you assign an empty string explicitly to a string, numeric, or
date or time type explicitly in an INSERT or UPDATE statement.

TIMESTAMP columns are set to the current date and time only if there is a NULL value for the column
(that is, \N) and the column is not declared to permit NULL values, or if the TIMESTAMP column default
value is the current timestamp and it is omitted from the field list when a field list is specified.

2840

LOAD DATA Statement

LOAD DATA regards all input as strings, so you cannot use numeric values for ENUM or SET columns
the way you can with INSERT statements. All ENUM and SET values must be specified as strings.

BIT values cannot be loaded directly using binary notation (for example, b'011010'). To work around
this, use the SET clause to strip off the leading b' and trailing ' and perform a base-2 to base-10
conversion so that MySQL loads the values into the BIT column properly:

$> cat /tmp/bit_test.txt
b'10'
b'1111111'
$> mysql test
mysql> LOAD DATA INFILE '/tmp/bit_test.txt'
 INTO TABLE bit_test (@var1)
 SET b = CAST(CONV(MID(@var1, 3, LENGTH(@var1)-3), 2, 10) AS UNSIGNED);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT BIN(b+0) FROM bit_test;
+----------+
| BIN(b+0) |
+----------+
| 10 |
| 1111111 |
+----------+
2 rows in set (0.00 sec)

For BIT values in 0b binary notation (for example, 0b011010), use this SET clause instead to strip off
the leading 0b:

SET b = CAST(CONV(MID(@var1, 3, LENGTH(@var1)-2), 2, 10) AS UNSIGNED)

Partitioned Table Support

LOAD DATA supports explicit partition selection using the PARTITION clause with a list of one or
more comma-separated names of partitions, subpartitions, or both. When this clause is used, if any
rows from the file cannot be inserted into any of the partitions or subpartitions named in the list, the
statement fails with the error Found a row not matching the given partition set. For
more information and examples, see Section 26.5, “Partition Selection”.

Concurrency Considerations

With the LOW_PRIORITY modifier, execution of the LOAD DATA statement is delayed until no other
clients are reading from the table. This affects only storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE).

With the CONCURRENT modifier and a MyISAM table that satisfies the condition for concurrent inserts
(that is, it contains no free blocks in the middle), other threads can retrieve data from the table while
LOAD DATA is executing. This modifier affects the performance of LOAD DATA a bit, even if no other
thread is using the table at the same time.

Statement Result Information

When the LOAD DATA statement finishes, it returns an information string in the following format:

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

Warnings occur under the same circumstances as when values are inserted using the INSERT
statement (see Section 15.2.7, “INSERT Statement”), except that LOAD DATA also generates warnings
when there are too few or too many fields in the input row.

You can use SHOW WARNINGS to get a list of the first max_error_count warnings as information
about what went wrong. See Section 15.7.7.42, “SHOW WARNINGS Statement”.

If you are using the C API, you can get information about the statement by calling the mysql_info()
function. See mysql_info().

2841

https://dev.mysql.com/doc/c-api/8.0/en/mysql-info.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-info.html

LOAD XML Statement

Replication Considerations

LOAD DATA is considered unsafe for statement-based replication. If you use LOAD DATA with
binlog_format=STATEMENT, each replica on which the changes are to be applied creates a
temporary file containing the data. This temporary file is not encrypted, even if binary log encryption is
active on the source, If encryption is required, use row-based or mixed binary logging format instead,
for which replicas do not create the temporary file. For more information on the interaction between
LOAD DATA and replication, see Section 19.5.1.19, “Replication and LOAD DATA”.

Miscellaneous Topics

On Unix, if you need LOAD DATA to read from a pipe, you can use the following technique (the
example loads a listing of the / directory into the table db1.t1):

mkfifo /mysql/data/db1/ls.dat
chmod 666 /mysql/data/db1/ls.dat
find / -ls > /mysql/data/db1/ls.dat &
mysql -e "LOAD DATA INFILE 'ls.dat' INTO TABLE t1" db1

Here you must run the command that generates the data to be loaded and the mysql commands
either on separate terminals, or run the data generation process in the background (as shown in the
preceding example). If you do not do this, the pipe blocks until data is read by the mysql process.

15.2.10 LOAD XML Statement
LOAD XML
 [LOW_PRIORITY | CONCURRENT] [LOCAL]
 INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE [db_name.]tbl_name
 [CHARACTER SET charset_name]
 [ROWS IDENTIFIED BY '<tagname>']
 [IGNORE number {LINES | ROWS}]
 [(field_name_or_user_var
 [, field_name_or_user_var] ...)]
 [SET col_name={expr | DEFAULT}
 [, col_name={expr | DEFAULT}] ...]

The LOAD XML statement reads data from an XML file into a table. The file_name must be given as
a literal string. The tagname in the optional ROWS IDENTIFIED BY clause must also be given as a
literal string, and must be surrounded by angle brackets (< and >).

LOAD XML acts as the complement of running the mysql client in XML output mode (that is, starting
the client with the --xml option). To write data from a table to an XML file, you can invoke the mysql
client with the --xml and -e options from the system shell, as shown here:

$> mysql --xml -e 'SELECT * FROM mydb.mytable' > file.xml

To read the file back into a table, use LOAD XML. By default, the <row> element is considered to be
the equivalent of a database table row; this can be changed using the ROWS IDENTIFIED BY clause.

This statement supports three different XML formats:

• Column names as attributes and column values as attribute values:

<row column1="value1" column2="value2" .../>

• Column names as tags and column values as the content of these tags:

<row>
 <column1>value1</column1>
 <column2>value2</column2>
</row>

• Column names are the name attributes of <field> tags, and values are the contents of these tags:

2842

LOAD XML Statement

<row>
 <field name='column1'>value1</field>
 <field name='column2'>value2</field>
</row>

This is the format used by other MySQL tools, such as mysqldump.

All three formats can be used in the same XML file; the import routine automatically detects the format
for each row and interprets it correctly. Tags are matched based on the tag or attribute name and the
column name.

Prior to MySQL 8.0.21, LOAD XML did not support CDATA sections in the source XML. (Bug
#30753708, Bug #98199)

The following clauses work essentially the same way for LOAD XML as they do for LOAD DATA:

• LOW_PRIORITY or CONCURRENT

• LOCAL

• REPLACE or IGNORE

• CHARACTER SET

• SET

See Section 15.2.9, “LOAD DATA Statement”, for more information about these clauses.

(field_name_or_user_var, ...) is a list of one or more comma-separated XML fields or user
variables. The name of a user variable used for this purpose must match the name of a field from the
XML file, prefixed with @. You can use field names to select only desired fields. User variables can be
employed to store the corresponding field values for subsequent re-use.

The IGNORE number LINES or IGNORE number ROWS clause causes the first number rows in the
XML file to be skipped. It is analogous to the LOAD DATA statement's IGNORE ... LINES clause.

Suppose that we have a table named person, created as shown here:

USE test;

CREATE TABLE person (
 person_id INT NOT NULL PRIMARY KEY,
 fname VARCHAR(40) NULL,
 lname VARCHAR(40) NULL,
 created TIMESTAMP
);

Suppose further that this table is initially empty.

Now suppose that we have a simple XML file person.xml, whose contents are as shown here:

<list>
 <person person_id="1" fname="Kapek" lname="Sainnouine"/>
 <person person_id="2" fname="Sajon" lname="Rondela"/>
 <person person_id="3"><fname>Likame</fname><lname>Örrtmons</lname></person>
 <person person_id="4"><fname>Slar</fname><lname>Manlanth</lname></person>
 <person><field name="person_id">5</field><field name="fname">Stoma</field>
 <field name="lname">Milu</field></person>
 <person><field name="person_id">6</field><field name="fname">Nirtam</field>
 <field name="lname">Sklöd</field></person>
 <person person_id="7"><fname>Sungam</fname><lname>Dulbåd</lname></person>
 <person person_id="8" fname="Sraref" lname="Encmelt"/>
</list>

Each of the permissible XML formats discussed previously is represented in this example file.

2843

LOAD XML Statement

To import the data in person.xml into the person table, you can use this statement:

mysql> LOAD XML LOCAL INFILE 'person.xml'
 -> INTO TABLE person
 -> ROWS IDENTIFIED BY '<person>';

Query OK, 8 rows affected (0.00 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

Here, we assume that person.xml is located in the MySQL data directory. If the file cannot be found,
the following error results:

ERROR 2 (HY000): File '/person.xml' not found (Errcode: 2)

The ROWS IDENTIFIED BY '<person>' clause means that each <person> element in the XML
file is considered equivalent to a row in the table into which the data is to be imported. In this case, this
is the person table in the test database.

As can be seen by the response from the server, 8 rows were imported into the test.person table.
This can be verified by a simple SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likame	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Sreraf	Encmelt	2007-07-13 16:18:47
+-----------+--------+------------+---------------------+
8 rows in set (0.00 sec)

This shows, as stated earlier in this section, that any or all of the 3 permitted XML formats may appear
in a single file and be read using LOAD XML.

The inverse of the import operation just shown—that is, dumping MySQL table data into an XML file—
can be accomplished using the mysql client from the system shell, as shown here:

$> mysql --xml -e "SELECT * FROM test.person" > person-dump.xml
$> cat person-dump.xml
<?xml version="1.0"?>

<resultset statement="SELECT * FROM test.person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <row>
 <field name="person_id">1</field>
 <field name="fname">Kapek</field>
 <field name="lname">Sainnouine</field>
 </row>

 <row>
 <field name="person_id">2</field>
 <field name="fname">Sajon</field>
 <field name="lname">Rondela</field>
 </row>

 <row>
 <field name="person_id">3</field>
 <field name="fname">Likema</field>
 <field name="lname">Örrtmons</field>
 </row>

 <row>
 <field name="person_id">4</field>
 <field name="fname">Slar</field>
 <field name="lname">Manlanth</field>
 </row>

2844

LOAD XML Statement

 <row>
 <field name="person_id">5</field>
 <field name="fname">Stoma</field>
 <field name="lname">Nilu</field>
 </row>

 <row>
 <field name="person_id">6</field>
 <field name="fname">Nirtam</field>
 <field name="lname">Sklöd</field>
 </row>

 <row>
 <field name="person_id">7</field>
 <field name="fname">Sungam</field>
 <field name="lname">Dulbåd</field>
 </row>

 <row>
 <field name="person_id">8</field>
 <field name="fname">Sreraf</field>
 <field name="lname">Encmelt</field>
 </row>
</resultset>

Note

The --xml option causes the mysql client to use XML formatting for its output;
the -e option causes the client to execute the SQL statement immediately
following the option. See Section 6.5.1, “mysql — The MySQL Command-Line
Client”.

You can verify that the dump is valid by creating a copy of the person table and importing the dump
file into the new table, like this:

mysql> USE test;
mysql> CREATE TABLE person2 LIKE person;
Query OK, 0 rows affected (0.00 sec)

mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
 -> INTO TABLE person2;
Query OK, 8 rows affected (0.01 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM person2;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likema	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Sreraf	Encmelt	2007-07-13 16:18:47
+-----------+--------+------------+---------------------+
8 rows in set (0.00 sec)

There is no requirement that every field in the XML file be matched with a column in the corresponding
table. Fields which have no corresponding columns are skipped. You can see this by first emptying the
person2 table and dropping the created column, then using the same LOAD XML statement we just
employed previously, like this:

mysql> TRUNCATE person2;
Query OK, 8 rows affected (0.26 sec)

mysql> ALTER TABLE person2 DROP COLUMN created;
Query OK, 0 rows affected (0.52 sec)

2845

LOAD XML Statement

Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE person2\G
*************************** 1. row ***************************
 Table: person2
Create Table: CREATE TABLE `person2` (
 `person_id` int NOT NULL,
 `fname` varchar(40) DEFAULT NULL,
 `lname` varchar(40) DEFAULT NULL,
 PRIMARY KEY (`person_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
 -> INTO TABLE person2;
Query OK, 8 rows affected (0.01 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT * FROM person2;
+-----------+--------+------------+
| person_id | fname | lname |
+-----------+--------+------------+
1	Kapek	Sainnouine
2	Sajon	Rondela
3	Likema	Örrtmons
4	Slar	Manlanth
5	Stoma	Nilu
6	Nirtam	Sklöd
7	Sungam	Dulbåd
8	Sreraf	Encmelt
+-----------+--------+------------+
8 rows in set (0.00 sec)

The order in which the fields are given within each row of the XML file does not affect the operation of
LOAD XML; the field order can vary from row to row, and is not required to be in the same order as the
corresponding columns in the table.

As mentioned previously, you can use a (field_name_or_user_var, ...) list of one or more
XML fields (to select desired fields only) or user variables (to store the corresponding field values for
later use). User variables can be especially useful when you want to insert data from an XML file into
table columns whose names do not match those of the XML fields. To see how this works, we first
create a table named individual whose structure matches that of the person table, but whose
columns are named differently:

mysql> CREATE TABLE individual (
 -> individual_id INT NOT NULL PRIMARY KEY,
 -> name1 VARCHAR(40) NULL,
 -> name2 VARCHAR(40) NULL,
 -> made TIMESTAMP
 ->);
Query OK, 0 rows affected (0.42 sec)

In this case, you cannot simply load the XML file directly into the table, because the field and column
names do not match:

mysql> LOAD XML INFILE '../bin/person-dump.xml' INTO TABLE test.individual;
ERROR 1263 (22004): Column set to default value; NULL supplied to NOT NULL column 'individual_id' at row 1

This happens because the MySQL server looks for field names matching the column names of the
target table. You can work around this problem by selecting the field values into user variables, then
setting the target table's columns equal to the values of those variables using SET. You can perform
both of these operations in a single statement, as shown here:

mysql> LOAD XML INFILE '../bin/person-dump.xml'
 -> INTO TABLE test.individual (@person_id, @fname, @lname, @created)
 -> SET individual_id=@person_id, name1=@fname, name2=@lname, made=@created;
Query OK, 8 rows affected (0.05 sec)
Records: 8 Deleted: 0 Skipped: 0 Warnings: 0

2846

LOAD XML Statement

mysql> SELECT * FROM individual;
+---------------+--------+------------+---------------------+
| individual_id | name1 | name2 | made |
+---------------+--------+------------+---------------------+
1	Kapek	Sainnouine	2007-07-13 16:18:47
2	Sajon	Rondela	2007-07-13 16:18:47
3	Likema	Örrtmons	2007-07-13 16:18:47
4	Slar	Manlanth	2007-07-13 16:18:47
5	Stoma	Nilu	2007-07-13 16:18:47
6	Nirtam	Sklöd	2007-07-13 16:18:47
7	Sungam	Dulbåd	2007-07-13 16:18:47
8	Srraf	Encmelt	2007-07-13 16:18:47
+---------------+--------+------------+---------------------+
8 rows in set (0.00 sec)

The names of the user variables must match those of the corresponding fields from the XML file, with
the addition of the required @ prefix to indicate that they are variables. The user variables need not be
listed or assigned in the same order as the corresponding fields.

Using a ROWS IDENTIFIED BY '<tagname>' clause, it is possible to import data from the same
XML file into database tables with different definitions. For this example, suppose that you have a file
named address.xml which contains the following XML:

<?xml version="1.0"?>

<list>
 <person person_id="1">
 <fname>Robert</fname>
 <lname>Jones</lname>
 <address address_id="1" street="Mill Creek Road" zip="45365" city="Sidney"/>
 <address address_id="2" street="Main Street" zip="28681" city="Taylorsville"/>
 </person>

 <person person_id="2">
 <fname>Mary</fname>
 <lname>Smith</lname>
 <address address_id="3" street="River Road" zip="80239" city="Denver"/>
 <!-- <address address_id="4" street="North Street" zip="37920" city="Knoxville"/> -->
 </person>

</list>

You can again use the test.person table as defined previously in this section, after clearing all the
existing records from the table and then showing its structure as shown here:

mysql< TRUNCATE person;
Query OK, 0 rows affected (0.04 sec)

mysql< SHOW CREATE TABLE person\G
*************************** 1. row ***************************
 Table: person
Create Table: CREATE TABLE `person` (
 `person_id` int(11) NOT NULL,
 `fname` varchar(40) DEFAULT NULL,
 `lname` varchar(40) DEFAULT NULL,
 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (`person_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

Now create an address table in the test database using the following CREATE TABLE statement:

CREATE TABLE address (
 address_id INT NOT NULL PRIMARY KEY,
 person_id INT NULL,
 street VARCHAR(40) NULL,
 zip INT NULL,
 city VARCHAR(40) NULL,
 created TIMESTAMP
);

2847

LOAD XML Statement

To import the data from the XML file into the person table, execute the following LOAD XML
statement, which specifies that rows are to be specified by the <person> element, as shown here;

mysql> LOAD XML LOCAL INFILE 'address.xml'
 -> INTO TABLE person
 -> ROWS IDENTIFIED BY '<person>';
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

You can verify that the records were imported using a SELECT statement:

mysql> SELECT * FROM person;
+-----------+--------+-------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+-------+---------------------+
| 1 | Robert | Jones | 2007-07-24 17:37:06 |
| 2 | Mary | Smith | 2007-07-24 17:37:06 |
+-----------+--------+-------+---------------------+
2 rows in set (0.00 sec)

Since the <address> elements in the XML file have no corresponding columns in the person table,
they are skipped.

To import the data from the <address> elements into the address table, use the LOAD XML
statement shown here:

mysql> LOAD XML LOCAL INFILE 'address.xml'
 -> INTO TABLE address
 -> ROWS IDENTIFIED BY '<address>';
Query OK, 3 rows affected (0.00 sec)
Records: 3 Deleted: 0 Skipped: 0 Warnings: 0

You can see that the data was imported using a SELECT statement such as this one:

mysql> SELECT * FROM address;
+------------+-----------+-----------------+-------+--------------+---------------------+
| address_id | person_id | street | zip | city | created |
+------------+-----------+-----------------+-------+--------------+---------------------+
1	1	Mill Creek Road	45365	Sidney	2007-07-24 17:37:37
2	1	Main Street	28681	Taylorsville	2007-07-24 17:37:37
3	2	River Road	80239	Denver	2007-07-24 17:37:37
+------------+-----------+-----------------+-------+--------------+---------------------+
3 rows in set (0.00 sec)

The data from the <address> element that is enclosed in XML comments is not imported. However,
since there is a person_id column in the address table, the value of the person_id attribute from
the parent <person> element for each <address> is imported into the address table.

Security Considerations. As with the LOAD DATA statement, the transfer of the XML file from the
client host to the server host is initiated by the MySQL server. In theory, a patched server could be built
that would tell the client program to transfer a file of the server's choosing rather than the file named by
the client in the LOAD XML statement. Such a server could access any file on the client host to which
the client user has read access.

In a Web environment, clients usually connect to MySQL from a Web server. A user that can run any
command against the MySQL server can use LOAD XML LOCAL to read any files to which the Web
server process has read access. In this environment, the client with respect to the MySQL server
is actually the Web server, not the remote program being run by the user who connects to the Web
server.

You can disable loading of XML files from clients by starting the server with --local-infile=0 or
--local-infile=OFF. This option can also be used when starting the mysql client to disable LOAD
XML for the duration of the client session.

To prevent a client from loading XML files from the server, do not grant the FILE privilege to the
corresponding MySQL user account, or revoke this privilege if the client user account already has it.

2848

Parenthesized Query Expressions

Important

Revoking the FILE privilege (or not granting it in the first place) keeps the user
only from executing the LOAD XML statement (as well as the LOAD_FILE()
function; it does not prevent the user from executing LOAD XML LOCAL. To
disallow this statement, you must start the server or the client with --local-
infile=OFF.

In other words, the FILE privilege affects only whether the client can read files
on the server; it has no bearing on whether the client can read files on the local
file system.

15.2.11 Parenthesized Query Expressions
parenthesized_query_expression:
 (query_expression [order_by_clause] [limit_clause])
 [order_by_clause]
 [limit_clause]
 [into_clause]

query_expression:
 query_block [set_op query_block [set_op query_block ...]]
 [order_by_clause]
 [limit_clause]
 [into_clause]

query_block:
 SELECT ... | TABLE | VALUES

order_by_clause:
 ORDER BY as for SELECT

limit_clause:
 LIMIT as for SELECT

into_clause:
 INTO as for SELECT

set_op:
 UNION | INTERSECT | EXCEPT

MySQL 8.0.22 and higher supports parenthesized query expressions according to the preceding
syntax. At its simplest, a parenthesized query expression contains a single SELECT or other statement
returning a result set and no following optional clauses:

(SELECT 1);
(SELECT * FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME = 'mysql');

TABLE t;

VALUES ROW(2, 3, 4), ROW(1, -2, 3);

(Support for the TABLE and VALUES statements is available beginning with MySQL 8.0.19.)

A parenthesized query expression can also contain queries linked by one or more set operations such
as UNION, and end with any or all of the optional clauses:

mysql> (SELECT 1 AS result UNION SELECT 2);
+--------+
| result |
+--------+
| 1 |
| 2 |
+--------+
mysql> (SELECT 1 AS result UNION SELECT 2) LIMIT 1;
+--------+
| result |
+--------+

2849

Parenthesized Query Expressions

| 1 |
+--------+
mysql> (SELECT 1 AS result UNION SELECT 2) LIMIT 1 OFFSET 1;
+--------+
| result |
+--------+
| 2 |
+--------+
mysql> (SELECT 1 AS result UNION SELECT 2)
 ORDER BY result DESC LIMIT 1;
+--------+
| result |
+--------+
| 2 |
+--------+
mysql> (SELECT 1 AS result UNION SELECT 2)
 ORDER BY result DESC LIMIT 1 OFFSET 1;
+--------+
| result |
+--------+
| 1 |
+--------+
mysql> (SELECT 1 AS result UNION SELECT 3 UNION SELECT 2)
 ORDER BY result LIMIT 1 OFFSET 1 INTO @var;
mysql> SELECT @var;
+------+
| @var |
+------+
| 2 |
+------+

In addition to UNION, the INTERSECT and EXCEPT set operators are available beginning with MySQL
8.0.31. INTERSECT acts before UNION and EXCEPT, so that the following two statements are
equivalent:

SELECT a FROM t1 EXCEPT SELECT b FROM t2 INTERSECT SELECT c FROM t3;

SELECT a FROM t1 EXCEPT (SELECT b FROM t2 INTERSECT SELECT c FROM t3);

Parenthesized query expressions are also used as query expressions, so a query expression, usually
composed of query blocks, may also consist of parenthesized query expressions:

(TABLE t1 ORDER BY a) UNION (TABLE t2 ORDER BY b) ORDER BY z;

Query blocks may have trailing ORDER BY and LIMIT clauses, which are applied before the outer set
operation, ORDER BY, and LIMIT.

You cannot have a query block with a trailing ORDER BY or LIMIT without wrapping it in parentheses
but parentheses may be used for enforcement in various ways:

• To enforce LIMIT on each query block:

(SELECT 1 LIMIT 1) UNION (VALUES ROW(2) LIMIT 1);

(VALUES ROW(1), ROW(2) LIMIT 2) EXCEPT (SELECT 2 LIMIT 1);

• To enforce LIMIT on both query blocks and the entire query expression:

(SELECT 1 LIMIT 1) UNION (SELECT 2 LIMIT 1) LIMIT 1;

• To enforce LIMIT on the entire query expression (with no parentheses):

VALUES ROW(1), ROW(2) INTERSECT VALUES ROW(2), ROW(1) LIMIT 1;

• Hybrid enforcement: LIMIT on the first query block and on the entire query expression:

(SELECT 1 LIMIT 1) UNION SELECT 2 LIMIT 1;

The syntax described in this section is subject to certain restrictions:

2850

REPLACE Statement

• A trailing INTO clause for a query expression is not permitted if there is another INTO clause inside
parentheses.

• Prior to MySQL 8.0.31, when ORDER BY or LIMIT occurred within a parenthesized query expression
and was also applied in the outer query, the result was undefined. This is not an issue in MySQL
8.0.31 and later, where this is handled in accordance with the SQL standard.

Prior to MySQL 8.0.31, parenthesized query expressions did not permit multiple levels
of ORDER BY or LIMIT operations, and statements containing these were rejected with
ER_NOT_SUPPORTED_YET. In MySQL 8.0.31 and later, this restriction is lifted, and nested
parenthesized query expressions are permitted. The maximum level of nesting supported is 63; this
is after any simplifications or merges have been performed by the parser.

An example of such a statement is shown here:

mysql> (SELECT 'a' UNION SELECT 'b' LIMIT 2) LIMIT 3;
+---+
| a |
+---+
| a |
| b |
+---+
2 rows in set (0.00 sec)

You should be aware that, in MySQL 8.0.31 and later, when collapsing parenthesized expression
bodies, MySQL follows SQL standard semantics, so that a higher outer limit cannot override an inner
lower one. For example, (SELECT ... LIMIT 5) LIMIT 10 can return no more than five rows.

15.2.12 REPLACE Statement
REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 { {VALUES | VALUE} (value_list) [, (value_list)] ...
 |
 VALUES row_constructor_list
 }

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 SET assignment_list

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 [PARTITION (partition_name [, partition_name] ...)]
 [(col_name [, col_name] ...)]
 {SELECT ... | TABLE table_name}

value:
 {expr | DEFAULT}

value_list:
 value [, value] ...

row_constructor_list:
 ROW(value_list)[, ROW(value_list)][, ...]

assignment:
 col_name = value

assignment_list:
 assignment [, assignment] ...

REPLACE works exactly like INSERT, except that if an old row in the table has the same value as a new
row for a PRIMARY KEY or a UNIQUE index, the old row is deleted before the new row is inserted. See
Section 15.2.7, “INSERT Statement”.

2851

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_supported_yet

REPLACE Statement

REPLACE is a MySQL extension to the SQL standard. It either inserts, or deletes and inserts. For
another MySQL extension to standard SQL—that either inserts or updates—see Section 15.2.7.2,
“INSERT ... ON DUPLICATE KEY UPDATE Statement”.

DELAYED inserts and replaces were deprecated in MySQL 5.6. In MySQL 8.0, DELAYED is not
supported. The server recognizes but ignores the DELAYED keyword, handles the replace as a
nondelayed replace, and generates an ER_WARN_LEGACY_SYNTAX_CONVERTED warning: REPLACE
DELAYED is no longer supported. The statement was converted to REPLACE. The
DELAYED keyword is scheduled for removal in a future release. release.

Note

REPLACE makes sense only if a table has a PRIMARY KEY or UNIQUE index.
Otherwise, it becomes equivalent to INSERT, because there is no index to be
used to determine whether a new row duplicates another.

Values for all columns are taken from the values specified in the REPLACE statement. Any
missing columns are set to their default values, just as happens for INSERT. You cannot refer to
values from the current row and use them in the new row. If you use an assignment such as SET
col_name = col_name + 1, the reference to the column name on the right hand side is treated as
DEFAULT(col_name), so the assignment is equivalent to SET col_name = DEFAULT(col_name)
+ 1.

In MySQL 8.0.19 and later, you can specify the column values that REPLACE attempts to insert using
VALUES ROW().

To use REPLACE, you must have both the INSERT and DELETE privileges for the table.

If a generated column is replaced explicitly, the only permitted value is DEFAULT. For information about
generated columns, see Section 15.1.20.8, “CREATE TABLE and Generated Columns”.

REPLACE supports explicit partition selection using the PARTITION clause with a list of comma-
separated names of partitions, subpartitions, or both. As with INSERT, if it is not possible to insert the
new row into any of these partitions or subpartitions, the REPLACE statement fails with the error Found
a row not matching the given partition set. For more information and examples, see
Section 26.5, “Partition Selection”.

The REPLACE statement returns a count to indicate the number of rows affected. This is the sum of the
rows deleted and inserted. If the count is 1 for a single-row REPLACE, a row was inserted and no rows
were deleted. If the count is greater than 1, one or more old rows were deleted before the new row was
inserted. It is possible for a single row to replace more than one old row if the table contains multiple
unique indexes and the new row duplicates values for different old rows in different unique indexes.

The affected-rows count makes it easy to determine whether REPLACE only added a row or whether it
also replaced any rows: Check whether the count is 1 (added) or greater (replaced).

If you are using the C API, the affected-rows count can be obtained using the
mysql_affected_rows() function.

You cannot replace into a table and select from the same table in a subquery.

MySQL uses the following algorithm for REPLACE (and LOAD DATA ... REPLACE):

1. Try to insert the new row into the table

2. While the insertion fails because a duplicate-key error occurs for a primary key or unique index:

a. Delete from the table the conflicting row that has the duplicate key value

b. Try again to insert the new row into the table

It is possible that in the case of a duplicate-key error, a storage engine may perform the REPLACE as
an update rather than a delete plus insert, but the semantics are the same. There are no user-visible

2852

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warn_legacy_syntax_converted
https://dev.mysql.com/doc/c-api/8.0/en/mysql-affected-rows.html

REPLACE Statement

effects other than a possible difference in how the storage engine increments Handler_xxx status
variables.

Because the results of REPLACE ... SELECT statements depend on the ordering of rows from the
SELECT and this order cannot always be guaranteed, it is possible when logging these statements for
the source and the replica to diverge. For this reason, REPLACE ... SELECT statements are flagged
as unsafe for statement-based replication. such statements produce a warning in the error log when
using statement-based mode and are written to the binary log using the row-based format when using
MIXED mode. See also Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and
Row-Based Replication”.

MySQL 8.0.19 and later supports TABLE as well as SELECT with REPLACE, just as it does with
INSERT. See Section 15.2.7.1, “INSERT ... SELECT Statement”, for more information and examples.

When modifying an existing table that is not partitioned to accommodate partitioning, or, when
modifying the partitioning of an already partitioned table, you may consider altering the table's primary
key (see Section 26.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”). You should be aware
that, if you do this, the results of REPLACE statements may be affected, just as they would be if you
modified the primary key of a nonpartitioned table. Consider the table created by the following CREATE
TABLE statement:

CREATE TABLE test (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 data VARCHAR(64) DEFAULT NULL,
 ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (id)
);

When we create this table and run the statements shown in the mysql client, the result is as follows:

mysql> REPLACE INTO test VALUES (1, 'Old', '2014-08-20 18:47:00');
Query OK, 1 row affected (0.04 sec)

mysql> REPLACE INTO test VALUES (1, 'New', '2014-08-20 18:47:42');
Query OK, 2 rows affected (0.04 sec)

mysql> SELECT * FROM test;
+----+------+---------------------+
| id | data | ts |
+----+------+---------------------+
| 1 | New | 2014-08-20 18:47:42 |
+----+------+---------------------+
1 row in set (0.00 sec)

Now we create a second table almost identical to the first, except that the primary key now covers 2
columns, as shown here (emphasized text):

CREATE TABLE test2 (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 data VARCHAR(64) DEFAULT NULL,
 ts TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (id, ts)
);

When we run on test2 the same two REPLACE statements as we did on the original test table, we
obtain a different result:

mysql> REPLACE INTO test2 VALUES (1, 'Old', '2014-08-20 18:47:00');
Query OK, 1 row affected (0.05 sec)

mysql> REPLACE INTO test2 VALUES (1, 'New', '2014-08-20 18:47:42');
Query OK, 1 row affected (0.06 sec)

mysql> SELECT * FROM test2;
+----+------+---------------------+
| id | data | ts |
+----+------+---------------------+

2853

SELECT Statement

| 1 | Old | 2014-08-20 18:47:00 |
| 1 | New | 2014-08-20 18:47:42 |
+----+------+---------------------+
2 rows in set (0.00 sec)

This is due to the fact that, when run on test2, both the id and ts column values must match those
of an existing row for the row to be replaced; otherwise, a row is inserted.

15.2.13 SELECT Statement
SELECT
 [ALL | DISTINCT | DISTINCTROW]
 [HIGH_PRIORITY]
 [STRAIGHT_JOIN]
 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
 [SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
 select_expr [, select_expr] ...
 [into_option]
 [FROM table_references
 [PARTITION partition_list]]
 [WHERE where_condition]
 [GROUP BY {col_name | expr | position}, ... [WITH ROLLUP]]
 [HAVING where_condition]
 [WINDOW window_name AS (window_spec)
 [, window_name AS (window_spec)] ...]
 [ORDER BY {col_name | expr | position}
 [ASC | DESC], ... [WITH ROLLUP]]
 [LIMIT {[offset,] row_count | row_count OFFSET offset}]
 [into_option]
 [FOR {UPDATE | SHARE}
 [OF tbl_name [, tbl_name] ...]
 [NOWAIT | SKIP LOCKED]
 | LOCK IN SHARE MODE]
 [into_option]

into_option: {
 INTO OUTFILE 'file_name'
 [CHARACTER SET charset_name]
 export_options
 | INTO DUMPFILE 'file_name'
 | INTO var_name [, var_name] ...
}

export_options:
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]

SELECT is used to retrieve rows selected from one or more tables, and can include UNION operations
and subqueries. Beginning with MySQL 8.0.31, INTERSECT and EXCEPT operations are also
supported. The UNION, INTERSECT, and EXCEPT operators are described in more detail later in this
section. See also Section 15.2.15, “Subqueries”.

A SELECT statement can start with a WITH clause to define common table expressions accessible
within the SELECT. See Section 15.2.20, “WITH (Common Table Expressions)”.

The most commonly used clauses of SELECT statements are these:

• Each select_expr indicates a column that you want to retrieve. There must be at least one
select_expr.

• table_references indicates the table or tables from which to retrieve rows. Its syntax is described
in Section 15.2.13.2, “JOIN Clause”.

2854

SELECT Statement

• SELECT supports explicit partition selection using the PARTITION clause with a list of partitions
or subpartitions (or both) following the name of the table in a table_reference (see
Section 15.2.13.2, “JOIN Clause”). In this case, rows are selected only from the partitions listed, and
any other partitions of the table are ignored. For more information and examples, see Section 26.5,
“Partition Selection”.

• The WHERE clause, if given, indicates the condition or conditions that rows must satisfy to be
selected. where_condition is an expression that evaluates to true for each row to be selected.
The statement selects all rows if there is no WHERE clause.

In the WHERE expression, you can use any of the functions and operators that MySQL supports,
except for aggregate (group) functions. See Section 11.5, “Expressions”, and Chapter 14, Functions
and Operators.

SELECT can also be used to retrieve rows computed without reference to any table.

For example:

mysql> SELECT 1 + 1;
 -> 2

 You are permitted to specify DUAL as a dummy table name in situations where no tables are
referenced:

mysql> SELECT 1 + 1 FROM DUAL;
 -> 2

DUAL is purely for the convenience of people who require that all SELECT statements should have
FROM and possibly other clauses. MySQL may ignore the clauses. MySQL does not require FROM
DUAL if no tables are referenced.

In general, clauses used must be given in exactly the order shown in the syntax description. For
example, a HAVING clause must come after any GROUP BY clause and before any ORDER BY clause.
The INTO clause, if present, can appear in any position indicated by the syntax description, but within a
given statement can appear only once, not in multiple positions. For more information about INTO, see
Section 15.2.13.1, “SELECT ... INTO Statement”.

The list of select_expr terms comprises the select list that indicates which columns to retrieve.
Terms specify a column or expression or can use *-shorthand:

• A select list consisting only of a single unqualified * can be used as shorthand to select all columns
from all tables:

SELECT * FROM t1 INNER JOIN t2 ...

• tbl_name.* can be used as a qualified shorthand to select all columns from the named table:

SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ...

• If a table has invisible columns, * and tbl_name.* do not include them. To be included, invisible
columns must be referenced explicitly.

• Use of an unqualified * with other items in the select list may produce a parse error. For example:

SELECT id, * FROM t1

To avoid this problem, use a qualified tbl_name.* reference:

SELECT id, t1.* FROM t1

Use qualified tbl_name.* references for each table in the select list:

SELECT AVG(score), t1.* FROM t1 ...

The following list provides additional information about other SELECT clauses:

2855

SELECT Statement

• A select_expr can be given an alias using AS alias_name. The alias is used as the
expression's column name and can be used in GROUP BY, ORDER BY, or HAVING clauses. For
example:

SELECT CONCAT(last_name,', ',first_name) AS full_name
 FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a select_expr with an identifier. The preceding example
could have been written like this:

SELECT CONCAT(last_name,', ',first_name) full_name
 FROM mytable ORDER BY full_name;

However, because the AS is optional, a subtle problem can occur if you forget the comma between
two select_expr expressions: MySQL interprets the second as an alias name. For example, in the
following statement, columnb is treated as an alias name:

SELECT columna columnb FROM mytable;

For this reason, it is good practice to be in the habit of using AS explicitly when specifying column
aliases.

It is not permissible to refer to a column alias in a WHERE clause, because the column value might not
yet be determined when the WHERE clause is executed. See Section B.3.4.4, “Problems with Column
Aliases”.

• The FROM table_references clause indicates the table or tables from which to retrieve rows.
If you name more than one table, you are performing a join. For information on join syntax, see
Section 15.2.13.2, “JOIN Clause”. For each table specified, you can optionally specify an alias.

tbl_name [[AS] alias] [index_hint]

The use of index hints provides the optimizer with information about how to choose indexes during
query processing. For a description of the syntax for specifying these hints, see Section 10.9.4,
“Index Hints”.

You can use SET max_seeks_for_key=value as an alternative way to force MySQL to prefer
key scans instead of table scans. See Section 7.1.8, “Server System Variables”.

• You can refer to a table within the default database as tbl_name, or as db_name.tbl_name to
specify a database explicitly. You can refer to a column as col_name, tbl_name.col_name, or
db_name.tbl_name.col_name. You need not specify a tbl_name or db_name.tbl_name prefix
for a column reference unless the reference would be ambiguous. See Section 11.2.2, “Identifier
Qualifiers”, for examples of ambiguity that require the more explicit column reference forms.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name.
These statements are equivalent:

SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
 WHERE t1.name = t2.name;

SELECT t1.name, t2.salary FROM employee t1, info t2
 WHERE t1.name = t2.name;

• Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using column
names, column aliases, or column positions. Column positions are integers and begin with 1:

SELECT college, region, seed FROM tournament
 ORDER BY region, seed;

SELECT college, region AS r, seed AS s FROM tournament
 ORDER BY r, s;

SELECT college, region, seed FROM tournament

2856

SELECT Statement

 ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column in the
ORDER BY clause that you are sorting by. The default is ascending order; this can be specified
explicitly using the ASC keyword.

If ORDER BY occurs within a parenthesized query expression and also is applied in the outer query,
the results are undefined and may change in a future version of MySQL.

Use of column positions is deprecated because the syntax has been removed from the SQL
standard.

• Prior to MySQL 8.0.13, MySQL supported a nonstandard syntax extension that permitted explicit
ASC or DESC designators for GROUP BY columns. MySQL 8.0.12 and later supports ORDER BY
with grouping functions so that use of this extension is no longer necessary. (Bug #86312, Bug
#26073525) This also means you can sort on an arbitrary column or columns when using GROUP BY,
like this:

SELECT a, b, COUNT(c) AS t FROM test_table GROUP BY a,b ORDER BY a,t DESC;

As of MySQL 8.0.13, the GROUP BY extension is no longer supported: ASC or DESC designators for
GROUP BY columns are not permitted.

• When you use ORDER BY or GROUP BY to sort a column in a SELECT, the server sorts values using
only the initial number of bytes indicated by the max_sort_length system variable.

• MySQL extends the use of GROUP BY to permit selecting fields that are not mentioned in the
GROUP BY clause. If you are not getting the results that you expect from your query, please read the
description of GROUP BY found in Section 14.19, “Aggregate Functions”.

• GROUP BY permits a WITH ROLLUP modifier. See Section 14.19.2, “GROUP BY Modifiers”.

 Previously, it was not permitted to use ORDER BY in a query having a WITH ROLLUP modifier. This
restriction is lifted as of MySQL 8.0.12. See Section 14.19.2, “GROUP BY Modifiers”.

• The HAVING clause, like the WHERE clause, specifies selection conditions. The WHERE clause
specifies conditions on columns in the select list, but cannot refer to aggregate functions. The
HAVING clause specifies conditions on groups, typically formed by the GROUP BY clause. The query
result includes only groups satisfying the HAVING conditions. (If no GROUP BY is present, all rows
implicitly form a single aggregate group.)

The HAVING clause is applied nearly last, just before items are sent to the client, with no
optimization. (LIMIT is applied after HAVING.)

The SQL standard requires that HAVING must reference only columns in the GROUP BY clause or
columns used in aggregate functions. However, MySQL supports an extension to this behavior, and
permits HAVING to refer to columns in the SELECT list and columns in outer subqueries as well.

If the HAVING clause refers to a column that is ambiguous, a warning occurs. In the following
statement, col2 is ambiguous because it is used as both an alias and a column name:

SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;

Preference is given to standard SQL behavior, so if a HAVING column name is used both in GROUP
BY and as an aliased column in the select column list, preference is given to the column in the GROUP
BY column.

• Do not use HAVING for items that should be in the WHERE clause. For example, do not write the
following:

SELECT col_name FROM tbl_name HAVING col_name > 0;

Write this instead:

2857

SELECT Statement

SELECT col_name FROM tbl_name WHERE col_name > 0;

• The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:

SELECT user, MAX(salary) FROM users
 GROUP BY user HAVING MAX(salary) > 10;

(This did not work in some older versions of MySQL.)

• MySQL permits duplicate column names. That is, there can be more than one select_expr with
the same name. This is an extension to standard SQL. Because MySQL also permits GROUP BY and
HAVING to refer to select_expr values, this can result in an ambiguity:

SELECT 12 AS a, a FROM t GROUP BY a;

In that statement, both columns have the name a. To ensure that the correct column is used for
grouping, use different names for each select_expr.

• The WINDOW clause, if present, defines named windows that can be referred to by window functions.
For details, see Section 14.20.4, “Named Windows”.

• MySQL resolves unqualified column or alias references in ORDER BY clauses by searching in the
select_expr values, then in the columns of the tables in the FROM clause. For GROUP BY or
HAVING clauses, it searches the FROM clause before searching in the select_expr values. (For
GROUP BY and HAVING, this differs from the pre-MySQL 5.0 behavior that used the same rules as
for ORDER BY.)

• The LIMIT clause can be used to constrain the number of rows returned by the SELECT statement.
LIMIT takes one or two numeric arguments, which must both be nonnegative integer constants, with
these exceptions:

• Within prepared statements, LIMIT parameters can be specified using ? placeholder markers.

• Within stored programs, LIMIT parameters can be specified using integer-valued routine
parameters or local variables.

With two arguments, the first argument specifies the offset of the first row to return, and the second
specifies the maximum number of rows to return. The offset of the initial row is 0 (not 1):

SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15

To retrieve all rows from a certain offset up to the end of the result set, you can use some large
number for the second parameter. This statement retrieves all rows from the 96th row to the last:

SELECT * FROM tbl LIMIT 95,18446744073709551615;

With one argument, the value specifies the number of rows to return from the beginning of the result
set:

SELECT * FROM tbl LIMIT 5; # Retrieve first 5 rows

In other words, LIMIT row_count is equivalent to LIMIT 0, row_count.

For prepared statements, you can use placeholders. The following statements return one row from
the tbl table:

SET @a=1;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?';
EXECUTE STMT USING @a;

The following statements return the second to sixth rows from the tbl table:

SET @skip=1; SET @numrows=5;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?, ?';

2858

SELECT Statement

EXECUTE STMT USING @skip, @numrows;

For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET offset
syntax.

If LIMIT occurs within a parenthesized query expression and also is applied in the outer query, the
results are undefined and may change in a future version of MySQL.

• The SELECT ... INTO form of SELECT enables the query result to be written to a file or stored in
variables. For more information, see Section 15.2.13.1, “SELECT ... INTO Statement”.

• If you use FOR UPDATE with a storage engine that uses page or row locks, rows examined by the
query are write-locked until the end of the current transaction.

You cannot use FOR UPDATE as part of the SELECT in a statement such as CREATE TABLE
new_table SELECT ... FROM old_table (If you attempt to do so, the statement is
rejected with the error Can't update table 'old_table' while 'new_table' is being
created.)

FOR SHARE and LOCK IN SHARE MODE set shared locks that permit other transactions to read
the examined rows but not to update or delete them. FOR SHARE and LOCK IN SHARE MODE are
equivalent. However, FOR SHARE, like FOR UPDATE, supports NOWAIT, SKIP LOCKED, and OF
tbl_name options. FOR SHARE is a replacement for LOCK IN SHARE MODE, but LOCK IN SHARE
MODE remains available for backward compatibility.

NOWAIT causes a FOR UPDATE or FOR SHARE query to execute immediately, returning an error if a
row lock cannot be obtained due to a lock held by another transaction.

SKIP LOCKED causes a FOR UPDATE or FOR SHARE query to execute immediately, excluding rows
from the result set that are locked by another transaction.

NOWAIT and SKIP LOCKED options are unsafe for statement-based replication.

Note

Queries that skip locked rows return an inconsistent view of the data. SKIP
LOCKED is therefore not suitable for general transactional work. However,
it may be used to avoid lock contention when multiple sessions access the
same queue-like table.

OF tbl_name applies FOR UPDATE and FOR SHARE queries to named tables. For example:

SELECT * FROM t1, t2 FOR SHARE OF t1 FOR UPDATE OF t2;

All tables referenced by the query block are locked when OF tbl_name is omitted. Consequently,
using a locking clause without OF tbl_name in combination with another locking clause returns an
error. Specifying the same table in multiple locking clauses returns an error. If an alias is specified
as the table name in the SELECT statement, a locking clause may only use the alias. If the SELECT
statement does not specify an alias explicitly, the locking clause may only specify the actual table
name.

For more information about FOR UPDATE and FOR SHARE, see Section 17.7.2.4, “Locking
Reads”. For additional information about NOWAIT and SKIP LOCKED options, see Locking Read
Concurrency with NOWAIT and SKIP LOCKED.

Following the SELECT keyword, you can use a number of modifiers that affect the operation of the
statement. HIGH_PRIORITY, STRAIGHT_JOIN, and modifiers beginning with SQL_ are MySQL
extensions to standard SQL.

• The ALL and DISTINCT modifiers specify whether duplicate rows should be returned. ALL (the
default) specifies that all matching rows should be returned, including duplicates. DISTINCT

2859

SELECT Statement

specifies removal of duplicate rows from the result set. It is an error to specify both modifiers.
DISTINCTROW is a synonym for DISTINCT.

In MySQL 8.0.12 and later, DISTINCT can be used with a query that also uses WITH ROLLUP. (Bug
#87450, Bug #26640100)

• HIGH_PRIORITY gives the SELECT higher priority than a statement that updates a table. You should
use this only for queries that are very fast and must be done at once. A SELECT HIGH_PRIORITY
query that is issued while the table is locked for reading runs even if there is an update statement
waiting for the table to be free. This affects only storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE).

HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.

• STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are listed in the
FROM clause. You can use this to speed up a query if the optimizer joins the tables in nonoptimal
order. STRAIGHT_JOIN also can be used in the table_references list. See Section 15.2.13.2,
“JOIN Clause”.

STRAIGHT_JOIN does not apply to any table that the optimizer treats as a const or system table.
Such a table produces a single row, is read during the optimization phase of query execution, and
references to its columns are replaced with the appropriate column values before query execution
proceeds. These tables appear first in the query plan displayed by EXPLAIN. See Section 10.8.1,
“Optimizing Queries with EXPLAIN”. This exception may not apply to const or system tables that
are used on the NULL-complemented side of an outer join (that is, the right-side table of a LEFT
JOIN or the left-side table of a RIGHT JOIN.

• SQL_BIG_RESULT or SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell
the optimizer that the result set has many rows or is small, respectively. For SQL_BIG_RESULT,
MySQL directly uses disk-based temporary tables if they are created, and prefers sorting to using
a temporary table with a key on the GROUP BY elements. For SQL_SMALL_RESULT, MySQL uses
in-memory temporary tables to store the resulting table instead of using sorting. This should not
normally be needed.

• SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps MySQL free the
table locks early and helps in cases where it takes a long time to send the result set to the client.
This modifier can be used only for top-level SELECT statements, not for subqueries or following
UNION.

• SQL_CALC_FOUND_ROWS tells MySQL to calculate how many rows there would be in the result
set, disregarding any LIMIT clause. The number of rows can then be retrieved with SELECT
FOUND_ROWS(). See Section 14.15, “Information Functions”.

Note

The SQL_CALC_FOUND_ROWS query modifier and accompanying
FOUND_ROWS() function are deprecated as of MySQL 8.0.17; expect them
to be removed in a future version of MySQL. See the FOUND_ROWS()
description for information about an alternative strategy.

• The SQL_CACHE and SQL_NO_CACHE modifiers were used with the query cache prior to MySQL
8.0. The query cache was removed in MySQL 8.0. The SQL_CACHE modifier was removed as
well. SQL_NO_CACHE is deprecated, and has no effect; expect it to be removed in a future MySQL
release.

15.2.13.1 SELECT ... INTO Statement

The SELECT ... INTO form of SELECT enables a query result to be stored in variables or written to a
file:

2860

SELECT Statement

• SELECT ... INTO var_list selects column values and stores them into variables.

• SELECT ... INTO OUTFILE writes the selected rows to a file. Column and line terminators can be
specified to produce a specific output format.

• SELECT ... INTO DUMPFILE writes a single row to a file without any formatting.

A given SELECT statement can contain at most one INTO clause, although as shown by the SELECT
syntax description (see Section 15.2.13, “SELECT Statement”), the INTO can appear in different
positions:

• Before FROM. Example:

SELECT * INTO @myvar FROM t1;

• Before a trailing locking clause. Example:

SELECT * FROM t1 INTO @myvar FOR UPDATE;

• At the end of the SELECT. Example:

SELECT * FROM t1 FOR UPDATE INTO @myvar;

The INTO position at the end of the statement is supported as of MySQL 8.0.20, and is the preferred
position. The position before a locking clause is deprecated as of MySQL 8.0.20; expect support for it
to be removed in a future version of MySQL. In other words, INTO after FROM but not at the end of the
SELECT produces a warning.

An INTO clause should not be used in a nested SELECT because such a SELECT must return its result
to the outer context. There are also constraints on the use of INTO within UNION statements; see
Section 15.2.18, “UNION Clause”.

For the INTO var_list variant:

• var_list names a list of one or more variables, each of which can be a user-defined variable,
stored procedure or function parameter, or stored program local variable. (Within a prepared
SELECT ... INTO var_list statement, only user-defined variables are permitted; see
Section 15.6.4.2, “Local Variable Scope and Resolution”.)

• The selected values are assigned to the variables. The number of variables must match the number
of columns. The query should return a single row. If the query returns no rows, a warning with error
code 1329 occurs (No data), and the variable values remain unchanged. If the query returns
multiple rows, error 1172 occurs (Result consisted of more than one row). If it is possible
that the statement may retrieve multiple rows, you can use LIMIT 1 to limit the result set to a single
row.

SELECT id, data INTO @x, @y FROM test.t1 LIMIT 1;

INTO var_list can also be used with a TABLE statement, subject to these restrictions:

• The number of variables must match the number of columns in the table.

• If the table contains more than one row, you must use LIMIT 1 to limit the result set to a single row.
LIMIT 1 must precede the INTO keyword.

An example of such a statement is shown here:

TABLE employees ORDER BY lname DESC LIMIT 1
 INTO @id, @fname, @lname, @hired, @separated, @job_code, @store_id;

You can also select values from a VALUES statement that generates a single row into a set of user
variables. In this case, you must employ a table alias, and you must assign each value from the value
list to a variable. Each of the two statements shown here is equivalent to SET @x=2, @y=4, @z=8:

2861

SELECT Statement

SELECT * FROM (VALUES ROW(2,4,8)) AS t INTO @x,@y,@z;

SELECT * FROM (VALUES ROW(2,4,8)) AS t(a,b,c) INTO @x,@y,@z;

User variable names are not case-sensitive. See Section 11.4, “User-Defined Variables”.

The SELECT ... INTO OUTFILE 'file_name' form of SELECT writes the selected rows to a
file. The file is created on the server host, so you must have the FILE privilege to use this syntax.
file_name cannot be an existing file, which among other things prevents files such as /etc/passwd
and database tables from being modified. The character_set_filesystem system variable
controls the interpretation of the file name.

The SELECT ... INTO OUTFILE statement is intended to enable dumping a table to a text file
on the server host. To create the resulting file on some other host, SELECT ... INTO OUTFILE
normally is unsuitable because there is no way to write a path to the file relative to the server host file
system, unless the location of the file on the remote host can be accessed using a network-mapped
path on the server host file system.

Alternatively, if the MySQL client software is installed on the remote host, you can use a client
command such as mysql -e "SELECT ..." > file_name to generate the file on that host.

SELECT ... INTO OUTFILE is the complement of LOAD DATA. Column values are written
converted to the character set specified in the CHARACTER SET clause. If no such clause is present,
values are dumped using the binary character set. In effect, there is no character set conversion.
If a result set contains columns in several character sets, so is the output data file, and it may not be
possible to reload the file correctly.

The syntax for the export_options part of the statement consists of the same FIELDS and LINES
clauses that are used with the LOAD DATA statement. For more detailed information about the FIELDS
and LINES clauses, including their default values and permissible values, see Section 15.2.9, “LOAD
DATA Statement”.

FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED BY
character is not empty, it is used when necessary to avoid ambiguity as a prefix that precedes following
characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII NUL (the zero-valued byte; what is actually written following the escape character is ASCII 0,
not a zero-valued byte)

The FIELDS TERMINATED BY, ENCLOSED BY, ESCAPED BY, or LINES TERMINATED BY
characters must be escaped so that you can read the file back in reliably. ASCII NUL is escaped to
make it easier to view with some pagers.

The resulting file need not conform to SQL syntax, so nothing else need be escaped.

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field
values in your data contain any of the characters in the list just given.

INTO OUTFILE can also be used with a TABLE statement when you want to dump all columns of a
table into a text file. In this case, the ordering and number of rows can be controlled using ORDER BY
and LIMIT; these clauses must precede INTO OUTFILE. TABLE ... INTO OUTFILE supports
the same export_options as does SELECT ... INTO OUTFILE, and it is subject to the same
restrictions on writing to the file system. An example of such a statement is shown here:

TABLE employees ORDER BY lname LIMIT 1000
 INTO OUTFILE '/tmp/employee_data_1.txt'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"', ESCAPED BY '\'

2862

SELECT Statement

 LINES TERMINATED BY '\n';

You can also use SELECT ... INTO OUTFILE with a VALUES statement to write values directly into
a file. An example is shown here:

SELECT * FROM (VALUES ROW(1,2,3),ROW(4,5,6),ROW(7,8,9)) AS t
 INTO OUTFILE '/tmp/select-values.txt';

You must use a table alias; column aliases are also supported, and can optionally be used to write
values only from desired columns. You can also use any or all of the export options supported by
SELECT ... INTO OUTFILE to format the output to the file.

Here is an example that produces a file in the comma-separated values (CSV) format used by many
programs:

SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 LINES TERMINATED BY '\n'
 FROM test_table;

If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into the file,
without any column or line termination and without performing any escape processing. This is useful for
selecting a BLOB value and storing it in a file.

TABLE also supports INTO DUMPFILE. If the table contains more than one row, you must also use
LIMIT 1 to limit the output to a single row. INTO DUMPFILE can also be used with SELECT *
FROM (VALUES ROW()[, ...]) AS table_alias [LIMIT 1]. See Section 15.2.19, “VALUES
Statement”.

Note

Any file created by INTO OUTFILE or INTO DUMPFILE is owned by the
operating system user under whose account mysqld runs. (You should never
run mysqld as root for this and other reasons.) As of MySQL 8.0.17, the
umask for file creation is 0640; you must have sufficient access privileges to
manipulate the file contents. Prior to MySQL 8.0.17, the umask is 0666 and the
file is writable by all users on the server host.

If the secure_file_priv system variable is set to a nonempty directory
name, the file to be written must be located in that directory.

In the context of SELECT ... INTO statements that occur as part of events executed by the Event
Scheduler, diagnostics messages (not only errors, but also warnings) are written to the error log,
and, on Windows, to the application event log. For additional information, see Section 27.4.5, “Event
Scheduler Status”.

As of MySQL 8.0.22, support is provided for periodic synchronization of output files written
to by SELECT INTO OUTFILE and SELECT INTO DUMPFILE, enabled by setting the
select_into_disk_sync server system variable introduced in that version. Output buffer
size and optional delay can be set using, respectively, select_into_buffer_size and
select_into_disk_sync_delay. For more information, see the descriptions of these system
variables.

15.2.13.2 JOIN Clause

MySQL supports the following JOIN syntax for the table_references part of SELECT statements
and multiple-table DELETE and UPDATE statements:

table_references:
 escaped_table_reference [, escaped_table_reference] ...

escaped_table_reference: {
 table_reference
 | { OJ table_reference }

2863

SELECT Statement

}

table_reference: {
 table_factor
 | joined_table
}

table_factor: {
 tbl_name [PARTITION (partition_names)]
 [[AS] alias] [index_hint_list]
 | [LATERAL] table_subquery [AS] alias [(col_list)]
 | (table_references)
}

joined_table: {
 table_reference {[INNER | CROSS] JOIN | STRAIGHT_JOIN} table_factor [join_specification]
 | table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_specification
 | table_reference NATURAL [INNER | {LEFT|RIGHT} [OUTER]] JOIN table_factor
}

join_specification: {
 ON search_condition
 | USING (join_column_list)
}

join_column_list:
 column_name[, column_name] ...

index_hint_list:
 index_hint[index_hint] ...

index_hint: {
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
 | {IGNORE|FORCE} {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
}

index_list:
 index_name [, index_name] ...

A table reference is also known as a join expression.

A table reference (when it refers to a partitioned table) may contain a PARTITION clause, including a
list of comma-separated partitions, subpartitions, or both. This option follows the name of the table and
precedes any alias declaration. The effect of this option is that rows are selected only from the listed
partitions or subpartitions. Any partitions or subpartitions not named in the list are ignored. For more
information and examples, see Section 26.5, “Partition Selection”.

The syntax of table_factor is extended in MySQL in comparison with standard SQL. The standard
accepts only table_reference, not a list of them inside a pair of parentheses.

This is a conservative extension if each comma in a list of table_reference items is considered as
equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a = t1.a AND t3.b = t1.b AND t4.c = t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
 ON (t2.a = t1.a AND t3.b = t1.b AND t4.c = t1.c)

In MySQL, JOIN, CROSS JOIN, and INNER JOIN are syntactic equivalents (they can replace each
other). In standard SQL, they are not equivalent. INNER JOIN is used with an ON clause, CROSS
JOIN is used otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations.
MySQL also supports nested joins. See Section 10.2.1.8, “Nested Join Optimization”.

2864

SELECT Statement

Index hints can be specified to affect how the MySQL optimizer makes use of indexes. For more
information, see Section 10.9.4, “Index Hints”. Optimizer hints and the optimizer_switch system
variable are other ways to influence optimizer use of indexes. See Section 10.9.3, “Optimizer Hints”,
and Section 10.9.2, “Switchable Optimizations”.

The following list describes general factors to take into account when writing joins:

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary
 FROM employee AS t1 INNER JOIN info AS t2 ON t1.name = t2.name;

SELECT t1.name, t2.salary
 FROM employee t1 INNER JOIN info t2 ON t1.name = t2.name;

• A table_subquery is also known as a derived table or subquery in the FROM clause. See
Section 15.2.15.8, “Derived Tables”. Such subqueries must include an alias to give the subquery
result a table name, and may optionally include a list of table column names in parentheses. A trivial
example follows:

SELECT * FROM (SELECT 1, 2, 3) AS t1;

• The maximum number of tables that can be referenced in a single join is 61. This includes a join
handled by merging derived tables and views in the FROM clause into the outer query block (see
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions
with Merging or Materialization”).

• INNER JOIN and , (comma) are semantically equivalent in the absence of a join condition: both
produce a Cartesian product between the specified tables (that is, each and every row in the first
table is joined to each and every row in the second table).

However, the precedence of the comma operator is less than that of INNER JOIN, CROSS JOIN,
LEFT JOIN, and so on. If you mix comma joins with the other join types when there is a join
condition, an error of the form Unknown column 'col_name' in 'on clause' may occur.
Information about dealing with this problem is given later in this section.

• The search_condition used with ON is any conditional expression of the form that can be used in
a WHERE clause. Generally, the ON clause serves for conditions that specify how to join tables, and
the WHERE clause restricts which rows to include in the result set.

• If there is no matching row for the right table in the ON or USING part in a LEFT JOIN, a row with all
columns set to NULL is used for the right table. You can use this fact to find rows in a table that have
no counterpart in another table:

SELECT left_tbl.*
 FROM left_tbl LEFT JOIN right_tbl ON left_tbl.id = right_tbl.id
 WHERE right_tbl.id IS NULL;

This example finds all rows in left_tbl with an id value that is not present in right_tbl (that is,
all rows in left_tbl with no corresponding row in right_tbl). See Section 10.2.1.9, “Outer Join
Optimization”.

• The USING(join_column_list) clause names a list of columns that must exist in both tables.
If tables a and b both contain columns c1, c2, and c3, the following join compares corresponding
columns from the two tables:

a LEFT JOIN b USING (c1, c2, c3)

• The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an INNER
JOIN or a LEFT JOIN with a USING clause that names all columns that exist in both tables.

• RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it is
recommended that you use LEFT JOIN instead of RIGHT JOIN.

2865

SELECT Statement

• The { OJ ... } syntax shown in the join syntax description exists only for compatibility with
ODBC. The curly braces in the syntax should be written literally; they are not metasyntax as used
elsewhere in syntax descriptions.

SELECT left_tbl.*
 FROM { OJ left_tbl LEFT OUTER JOIN right_tbl
 ON left_tbl.id = right_tbl.id }
 WHERE right_tbl.id IS NULL;

You can use other types of joins within { OJ ... }, such as INNER JOIN or RIGHT OUTER
JOIN. This helps with compatibility with some third-party applications, but is not official ODBC
syntax.

• STRAIGHT_JOIN is similar to JOIN, except that the left table is always read before the right table.
This can be used for those (few) cases for which the join optimizer processes the tables in a
suboptimal order.

Some join examples:

SELECT * FROM table1, table2;

SELECT * FROM table1 INNER JOIN table2 ON table1.id = table2.id;

SELECT * FROM table1 LEFT JOIN table2 ON table1.id = table2.id;

SELECT * FROM table1 LEFT JOIN table2 USING (id);

SELECT * FROM table1 LEFT JOIN table2 ON table1.id = table2.id
 LEFT JOIN table3 ON table2.id = table3.id;

Natural joins and joins with USING, including outer join variants, are processed according to the
SQL:2003 standard:

• Redundant columns of a NATURAL join do not appear. Consider this set of statements:

CREATE TABLE t1 (i INT, j INT);
CREATE TABLE t2 (k INT, j INT);
INSERT INTO t1 VALUES(1, 1);
INSERT INTO t2 VALUES(1, 1);
SELECT * FROM t1 NATURAL JOIN t2;
SELECT * FROM t1 JOIN t2 USING (j);

In the first SELECT statement, column j appears in both tables and thus becomes a join column,
so, according to standard SQL, it should appear only once in the output, not twice. Similarly, in the
second SELECT statement, column j is named in the USING clause and should appear only once in
the output, not twice.

Thus, the statements produce this output:

+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+
+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+

Redundant column elimination and column ordering occurs according to standard SQL, producing
this display order:

• First, coalesced common columns of the two joined tables, in the order in which they occur in the
first table

• Second, columns unique to the first table, in order in which they occur in that table

2866

SELECT Statement

• Third, columns unique to the second table, in order in which they occur in that table

The single result column that replaces two common columns is defined using the coalesce
operation. That is, for two t1.a and t2.a the resulting single join column a is defined as a =
COALESCE(t1.a, t2.a), where:

COALESCE(x, y) = (CASE WHEN x IS NOT NULL THEN x ELSE y END)

If the join operation is any other join, the result columns of the join consist of the concatenation of all
columns of the joined tables.

A consequence of the definition of coalesced columns is that, for outer joins, the coalesced column
contains the value of the non-NULL column if one of the two columns is always NULL. If neither or
both columns are NULL, both common columns have the same value, so it doesn't matter which one
is chosen as the value of the coalesced column. A simple way to interpret this is to consider that
a coalesced column of an outer join is represented by the common column of the inner table of a
JOIN. Suppose that the tables t1(a, b) and t2(a, c) have the following contents:

t1 t2
---- ----
1 x 2 z
2 y 3 w

Then, for this join, column a contains the values of t1.a:

mysql> SELECT * FROM t1 NATURAL LEFT JOIN t2;
+------+------+------+
| a | b | c |
+------+------+------+
| 1 | x | NULL |
| 2 | y | z |
+------+------+------+

By contrast, for this join, column a contains the values of t2.a.

mysql> SELECT * FROM t1 NATURAL RIGHT JOIN t2;
+------+------+------+
| a | c | b |
+------+------+------+
| 2 | z | y |
| 3 | w | NULL |
+------+------+------+

Compare those results to the otherwise equivalent queries with JOIN ... ON:

mysql> SELECT * FROM t1 LEFT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 1 | x | NULL | NULL |
| 2 | y | 2 | z |
+------+------+------+------+

mysql> SELECT * FROM t1 RIGHT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 2 | y | 2 | z |
| NULL | NULL | 3 | w |
+------+------+------+------+

• A USING clause can be rewritten as an ON clause that compares corresponding columns. However,
although USING and ON are similar, they are not quite the same. Consider the following two queries:

a LEFT JOIN b USING (c1, c2, c3)

2867

SELECT Statement

a LEFT JOIN b ON a.c1 = b.c1 AND a.c2 = b.c2 AND a.c3 = b.c3

With respect to determining which rows satisfy the join condition, both joins are semantically
identical.

With respect to determining which columns to display for SELECT * expansion, the two joins are
not semantically identical. The USING join selects the coalesced value of corresponding columns,
whereas the ON join selects all columns from all tables. For the USING join, SELECT * selects these
values:

COALESCE(a.c1, b.c1), COALESCE(a.c2, b.c2), COALESCE(a.c3, b.c3)

For the ON join, SELECT * selects these values:

a.c1, a.c2, a.c3, b.c1, b.c2, b.c3

With an inner join, COALESCE(a.c1, b.c1) is the same as either a.c1 or b.c1 because both
columns have the same value. With an outer join (such as LEFT JOIN), one of the two columns can
be NULL. That column is omitted from the result.

• An ON clause can refer only to its operands.

Example:

CREATE TABLE t1 (i1 INT);
CREATE TABLE t2 (i2 INT);
CREATE TABLE t3 (i3 INT);
SELECT * FROM t1 JOIN t2 ON (i1 = i3) JOIN t3;

The statement fails with an Unknown column 'i3' in 'on clause' error because i3 is a
column in t3, which is not an operand of the ON clause. To enable the join to be processed, rewrite
the statement as follows:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (i1 = i3);

• JOIN has higher precedence than the comma operator (,), so the join expression t1, t2
JOIN t3 is interpreted as (t1, (t2 JOIN t3)), not as ((t1, t2) JOIN t3). This affects
statements that use an ON clause because that clause can refer only to columns in the operands of
the join, and the precedence affects interpretation of what those operands are.

Example:

CREATE TABLE t1 (i1 INT, j1 INT);
CREATE TABLE t2 (i2 INT, j2 INT);
CREATE TABLE t3 (i3 INT, j3 INT);
INSERT INTO t1 VALUES(1, 1);
INSERT INTO t2 VALUES(1, 1);
INSERT INTO t3 VALUES(1, 1);
SELECT * FROM t1, t2 JOIN t3 ON (t1.i1 = t3.i3);

The JOIN takes precedence over the comma operator, so the operands for the ON clause are t2 and
t3. Because t1.i1 is not a column in either of the operands, the result is an Unknown column
't1.i1' in 'on clause' error.

To enable the join to be processed, use either of these strategies:

• Group the first two tables explicitly with parentheses so that the operands for the ON clause are
(t1, t2) and t3:

SELECT * FROM (t1, t2) JOIN t3 ON (t1.i1 = t3.i3);

2868

Set Operations with UNION, INTERSECT, and EXCEPT

• Avoid the use of the comma operator and use JOIN instead:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (t1.i1 = t3.i3);

The same precedence interpretation also applies to statements that mix the comma operator with
INNER JOIN, CROSS JOIN, LEFT JOIN, and RIGHT JOIN, all of which have higher precedence
than the comma operator.

• A MySQL extension compared to the SQL:2003 standard is that MySQL permits you to qualify the
common (coalesced) columns of NATURAL or USING joins, whereas the standard disallows that.

15.2.14 Set Operations with UNION, INTERSECT, and EXCEPT

• Result Set Column Names and Data Types

• Set Operations with TABLE and VALUES Statements

• Set Operations using DISTINCT and ALL

• Set Operations with ORDER BY and LIMIT

• Limitations of Set Operations

SQL set operations combine the results of multiple query blocks into a single result. A query block,
sometimes also known as a simple table, is any SQL statement that returns a result set, such as
SELECT. MySQL 8.0 (8.0.19 and later) also supports TABLE and VALUES statements. See the
individual descriptions of these statements elsewhere in this chapter for additional information.

The SQL standard defines the following three set operations:

• UNION: Combine all results from two query blocks into a single result, omitting any duplicates.

• INTERSECT: Combine only those rows which the results of two query blocks have in common,
omitting any duplicates.

• EXCEPT: For two query blocks A and B, return all results from A which are not also present in B,
omitting any duplicates.

(Some database systems, such as Oracle, use MINUS for the name of this operator. This is not
supported in MySQL.)

MySQL has long supported UNION; MySQL 8.0 adds support for INTERSECT and EXCEPT (MySQL
8.0.31 and later).

Each of these set operators supports an ALL modifier. When the ALL keyword follows a set operator,
this causes duplicates to be included in the result. See the following sections covering the individual
operators for more information and examples.

All three set operators also support a DISTINCT keyword, which suppresses duplicates in the result.
Since this is the default behavior for set operators, it is usually not necessary to specify DISTINCT
explicitly.

In general, query blocks and set operations can be combined in any number and order. A greatly
simplified representation is shown here:

query_block [set_op query_block] [set_op query_block] ...

query_block:
 SELECT | TABLE | VALUES

set_op:
 UNION | INTERSECT | EXCEPT

2869

Set Operations with UNION, INTERSECT, and EXCEPT

This can be represented more accurately, and in greater detail, like this:

query_expression:
 [with_clause] /* WITH clause */
 query_expression_body
 [order_by_clause] [limit_clause] [into_clause]

query_expression_body:
 query_term
 | query_expression_body UNION [ALL | DISTINCT] query_term
 | query_expression_body EXCEPT [ALL | DISTINCT] query_term

query_term:
 query_primary
 | query_term INTERSECT [ALL | DISTINCT] query_primary

query_primary:
 query_block
 | '(' query_expression_body [order_by_clause] [limit_clause] [into_clause] ')'

query_block: /* also known as a simple table */
 query_specification /* SELECT statement */
 | table_value_constructor /* VALUES statement */
 | explicit_table /* TABLE statement */

You should be aware that INTERSECT is evaluated before UNION or EXCEPT. This means that, for
example, TABLE x UNION TABLE y INTERSECT TABLE z is always evaluated as TABLE x
UNION (TABLE y INTERSECT TABLE z). See Section 15.2.8, “INTERSECT Clause”, for more
information.

In addition, you should keep in mind that, while the UNION and INTERSECT set operators are
commutative (ordering is not significant), EXCEPT is not (order of operands affects the outcome). In
other words, all of the following statements are true:

• TABLE x UNION TABLE y and TABLE y UNION TABLE x produce the same result, although the
ordering of the rows may differ. You can force them to be the same using ORDER BY; see ORDER
BY and LIMIT in Unions.

• TABLE x INTERSECT TABLE y and TABLE y INTERSECT TABLE x return the same result.

• TABLE x EXCEPT TABLE y and TABLE y EXCEPT TABLE x do not yield the same result. See
Section 15.2.4, “EXCEPT Clause”, for an example.

More information and examples can be found in the sections that follow.

Result Set Column Names and Data Types

The column names for the result of a set operation are taken from the column names of the first query
block. Example:

mysql> CREATE TABLE t1 (x INT, y INT);
Query OK, 0 rows affected (0.04 sec)

mysql> INSERT INTO t1 VALUES ROW(4,-2), ROW(5,9);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> CREATE TABLE t2 (a INT, b INT);
Query OK, 0 rows affected (0.04 sec)

mysql> INSERT INTO t2 VALUES ROW(1,2), ROW(3,4);
Query OK, 2 rows affected (0.01 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> TABLE t1 UNION TABLE t2;
+------+------+
| x | y |
+------+------+

2870

https://dev.mysql.com/doc/refman/5.7/en/union.html#union-order-by-limit
https://dev.mysql.com/doc/refman/5.7/en/union.html#union-order-by-limit

Set Operations with UNION, INTERSECT, and EXCEPT

4	-2
5	9
1	2
3	4
+------+------+
4 rows in set (0.00 sec)

mysql> TABLE t2 UNION TABLE t1;
+------+------+
| a | b |
+------+------+
1	2
3	4
4	-2
5	9
+------+------+
4 rows in set (0.00 sec)

This is true for UNION, EXCEPT, and INTERSECT queries.

Selected columns listed in corresponding positions of each query block should have the same data
type. For example, the first column selected by the first statement should have the same type as the
first column selected by the other statements. If the data types of corresponding result columns do not
match, the types and lengths of the columns in the result take into account the values retrieved by all of
the query blocks. For example, the column length in the result set is not constrained to the length of the
value from the first statement, as shown here:

mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',20);
+----------------------+
| REPEAT('a',1) |
+----------------------+
| a |
| bbbbbbbbbbbbbbbbbbbb |
+----------------------+

Set Operations with TABLE and VALUES Statements

Beginning with MySQL 8.0.19, you can also use a TABLE statement or VALUES statement wherever
you can employ the equivalent SELECT statement. Assume that tables t1 and t2 are created and
populated as shown here:

CREATE TABLE t1 (x INT, y INT);
INSERT INTO t1 VALUES ROW(4,-2),ROW(5,9);

CREATE TABLE t2 (a INT, b INT);
INSERT INTO t2 VALUES ROW(1,2),ROW(3,4);

The preceding being the case, and disregarding the column names in the output of the queries
beginning with VALUES, all of the following UNION queries yield the same result:

SELECT * FROM t1 UNION SELECT * FROM t2;
TABLE t1 UNION SELECT * FROM t2;
VALUES ROW(4,-2), ROW(5,9) UNION SELECT * FROM t2;
SELECT * FROM t1 UNION TABLE t2;
TABLE t1 UNION TABLE t2;
VALUES ROW(4,-2), ROW(5,9) UNION TABLE t2;
SELECT * FROM t1 UNION VALUES ROW(4,-2),ROW(5,9);
TABLE t1 UNION VALUES ROW(4,-2),ROW(5,9);
VALUES ROW(4,-2), ROW(5,9) UNION VALUES ROW(4,-2),ROW(5,9);

To force the column names to be the same, wrap the query block on the left-hand side in a SELECT
statement, and use aliases, like this:

mysql> SELECT * FROM (TABLE t2) AS t(x,y) UNION TABLE t1;
+------+------+
| x | y |
+------+------+
| 1 | 2 |

2871

Set Operations with UNION, INTERSECT, and EXCEPT

3	4
4	-2
5	9
+------+------+
4 rows in set (0.00 sec)

Set Operations using DISTINCT and ALL

By default, duplicate rows are removed from results of set operations. The optional DISTINCT keyword
has the same effect but makes it explicit. With the optional ALL keyword, duplicate-row removal does
not occur and the result includes all matching rows from all queries in the union.

You can mix ALL and DISTINCT in the same query. Mixed types are treated such that a set operation
using DISTINCT overrides any such operation using ALL to its left. A DISTINCT set can be produced
explicitly by using DISTINCT with UNION, INTERSECT, or EXCEPT, or implicitly by using the set
operations with no following DISTINCT or ALL keyword.

In MySQL 8.0.19 and later, set operations work the same way when one or more TABLE statements,
VALUES statements, or both, are used to generate the set.

Set Operations with ORDER BY and LIMIT

To apply an ORDER BY or LIMIT clause to an individual query block used as part of a union,
intersection, or other set operation, parenthesize the query block, placing the clause inside the
parentheses, like this:

(SELECT a FROM t1 WHERE a=10 AND b=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM t2 WHERE a=11 AND b=2 ORDER BY a LIMIT 10);

(TABLE t1 ORDER BY x LIMIT 10)
INTERSECT
(TABLE t2 ORDER BY a LIMIT 10);

Use of ORDER BY for individual query blocks or statements implies nothing about the order in which the
rows appear in the final result because the rows produced by a set operation are by default unordered.
Therefore, ORDER BY in this context typically is used in conjunction with LIMIT, to determine the
subset of the selected rows to retrieve, even though it does not necessarily affect the order of those
rows in the final result. If ORDER BY appears without LIMIT within a query block, it is optimized away
because it has no effect in any case.

To use an ORDER BY or LIMIT clause to sort or limit the entire result of a set operation, place the
ORDER BY or LIMIT after the last statement:

SELECT a FROM t1
EXCEPT
SELECT a FROM t2 WHERE a=11 AND b=2
ORDER BY a LIMIT 10;

TABLE t1
UNION
TABLE t2
ORDER BY a LIMIT 10;

If one or more individual statements make use of ORDER BY, LIMIT, or both, and, in addition, you wish
to apply an ORDER BY, LIMIT, or both to the entire result, then each such individual statement must
be enclosed in parentheses.

(SELECT a FROM t1 WHERE a=10 AND b=1)
EXCEPT
(SELECT a FROM t2 WHERE a=11 AND b=2)
ORDER BY a LIMIT 10;

(TABLE t1 ORDER BY a LIMIT 10)
UNION

2872

Set Operations with UNION, INTERSECT, and EXCEPT

TABLE t2
ORDER BY a LIMIT 10;

A statement with no ORDER BY or LIMIT clause does need to be parenthesized; replacing TABLE t2
with (TABLE t2) in the second statement of the two just shown does not alter the result of the UNION.

You can also use ORDER BY and LIMIT with VALUES statements in set operations, as shown in this
example using the mysql client:

mysql> VALUES ROW(4,-2), ROW(5,9), ROW(-1,3)
 -> UNION
 -> VALUES ROW(1,2), ROW(3,4), ROW(-1,3)
 -> ORDER BY column_0 DESC LIMIT 3;
+----------+----------+
| column_0 | column_1 |
+----------+----------+
5	9
4	-2
3	4
+----------+----------+
3 rows in set (0.00 sec)

(You should keep in mind that neither TABLE statements nor VALUES statements accept a WHERE
clause.)

This kind of ORDER BY cannot use column references that include a table name (that is, names in
tbl_name.col_name format). Instead, provide a column alias in the first query block, and refer to
the alias in the ORDER BY clause. (You can also refer to the column in the ORDER BY clause using its
column position, but such use of column positions is deprecated, and thus subject to eventual removal
in a future MySQL release.)

If a column to be sorted is aliased, the ORDER BY clause must refer to the alias, not the column name.
The first of the following statements is permitted, but the second fails with an Unknown column 'a'
in 'order clause' error:

(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY b;
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY a;

To cause rows in a UNION result to consist of the sets of rows retrieved by each query block one after
the other, select an additional column in each query block to use as a sort column and add an ORDER
BY clause that sorts on that column following the last query block:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col;

To maintain sort order within individual results, add a secondary column to the ORDER BY clause:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col, col1a;

Use of an additional column also enables you to determine which query block each row comes from.
Extra columns can provide other identifying information as well, such as a string that indicates a table
name.

Limitations of Set Operations

Set operations in MySQL are subject to some limitations, which are described in the next few
paragraphs.

Set operations including SELECT statements have the following limitations:

• HIGH_PRIORITY in the first SELECT has no effect. HIGH_PRIORITY in any subsequent SELECT
produces a syntax error.

2873

Subqueries

• Only the last SELECT statement can use an INTO clause. However, the entire UNION result is written
to the INTO output destination.

As of MySQL 8.0.20, these two UNION variants containing INTO are deprecated; you should expect
support for them to be removed in a future version of MySQL:

• In the trailing query block of a query expression, use of INTO before FROM produces a warning.
Example:

... UNION SELECT * INTO OUTFILE 'file_name' FROM table_name;

• In a parenthesized trailing block of a query expression, use of INTO (regardless of its position
relative to FROM) produces a warning. Example:

... UNION (SELECT * INTO OUTFILE 'file_name' FROM table_name);

Those variants are deprecated because they are confusing, as if they collect information from the
named table rather than the entire query expression (the UNION).

Set operations with an aggregate function in an ORDER BY clause are rejected with
ER_AGGREGATE_ORDER_FOR_UNION. Although the error name might suggest that this is exclusive to
UNION queries, the preceding is also true for EXCEPT and INTERSECT queries, as shown here:

mysql> TABLE t1 INTERSECT TABLE t2 ORDER BY MAX(x);
ERROR 3028 (HY000): Expression #1 of ORDER BY contains aggregate function and applies to a UNION, EXCEPT or INTERSECT

A locking clause (such as FOR UPDATE or LOCK IN SHARE MODE) applies to the query block it
follows. This means that, in a SELECT statement used with set operations, a locking clause can be
used only if the query block and locking clause are enclosed in parentheses.

15.2.15 Subqueries

A subquery is a SELECT statement within another statement.

All subquery forms and operations that the SQL standard requires are supported, as well as a few
features that are MySQL-specific.

Here is an example of a subquery:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and (SELECT
column1 FROM t2) is the subquery. We say that the subquery is nested within the outer query, and
in fact it is possible to nest subqueries within other subqueries, to a considerable depth. A subquery
must always appear within parentheses.

The main advantages of subqueries are:

• They allow queries that are structured so that it is possible to isolate each part of a statement.

• They provide alternative ways to perform operations that would otherwise require complex joins and
unions.

• Many people find subqueries more readable than complex joins or unions. Indeed, it was the
innovation of subqueries that gave people the original idea of calling the early SQL “Structured Query
Language.”

Here is an example statement that shows the major points about subquery syntax as specified by the
SQL standard and supported in MySQL:

DELETE FROM t1
WHERE s11 > ANY
 (SELECT COUNT(*) /* no hint */ FROM t2

2874

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_aggregate_order_for_union

Subqueries

 WHERE NOT EXISTS
 (SELECT * FROM t3
 WHERE ROW(5*t2.s1,77)=
 (SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM
 (SELECT * FROM t5) AS t5)));

A subquery can return a scalar (a single value), a single row, a single column, or a table (one or more
rows of one or more columns). These are called scalar, column, row, and table subqueries. Subqueries
that return a particular kind of result often can be used only in certain contexts, as described in the
following sections.

There are few restrictions on the type of statements in which subqueries can be used. A subquery can
contain many of the keywords or clauses that an ordinary SELECT can contain: DISTINCT, GROUP BY,
ORDER BY, LIMIT, joins, index hints, UNION constructs, comments, functions, and so on.

Beginning with MySQL 8.0.19, TABLE and VALUES statements can be used in subqueries. Subqueries
using VALUES are generally more verbose versions of subqueries that can be rewritten more compactly
using set notation, or with SELECT or TABLE syntax; assuming that table ts is created using the
statement CREATE TABLE ts VALUES ROW(2), ROW(4), ROW(6), the statements shown here
are all equivalent:

SELECT * FROM tt
 WHERE b > ANY (VALUES ROW(2), ROW(4), ROW(6));

SELECT * FROM tt
 WHERE b > ANY (SELECT * FROM ts);

SELECT * FROM tt
 WHERE b > ANY (TABLE ts);

Examples of TABLE subqueries are shown in the sections that follow.

A subquery's outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET, or DO.

For information about how the optimizer handles subqueries, see Section 10.2.2, “Optimizing
Subqueries, Derived Tables, View References, and Common Table Expressions”. For a discussion of
restrictions on subquery use, including performance issues for certain forms of subquery syntax, see
Section 15.2.15.12, “Restrictions on Subqueries”.

15.2.15.1 The Subquery as Scalar Operand

In its simplest form, a subquery is a scalar subquery that returns a single value. A scalar subquery is a
simple operand, and you can use it almost anywhere a single column value or literal is legal, and you
can expect it to have those characteristics that all operands have: a data type, a length, an indication
that it can be NULL, and so on. For example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
INSERT INTO t1 VALUES(100, 'abcde');
SELECT (SELECT s2 FROM t1);

The subquery in this SELECT returns a single value ('abcde') that has a data type of CHAR, a
length of 5, a character set and collation equal to the defaults in effect at CREATE TABLE time, and
an indication that the value in the column can be NULL. Nullability of the value selected by a scalar
subquery is not copied because if the subquery result is empty, the result is NULL. For the subquery
just shown, if t1 were empty, the result would be NULL even though s2 is NOT NULL.

There are a few contexts in which a scalar subquery cannot be used. If a statement permits only a
literal value, you cannot use a subquery. For example, LIMIT requires literal integer arguments, and
LOAD DATA requires a literal string file name. You cannot use subqueries to supply these values.

When you see examples in the following sections that contain the rather spartan construct (SELECT
column1 FROM t1), imagine that your own code contains much more diverse and complex
constructions.

2875

Subqueries

Suppose that we make two tables:

CREATE TABLE t1 (s1 INT);
INSERT INTO t1 VALUES (1);
CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);

Then perform a SELECT:

SELECT (SELECT s1 FROM t2) FROM t1;

The result is 2 because there is a row in t2 containing a column s1 that has a value of 2.

In MySQL 8.0.19 and later, the preceding query can also be written like this, using TABLE:

SELECT (TABLE t2) FROM t1;

A scalar subquery can be part of an expression, but remember the parentheses, even if the subquery is
an operand that provides an argument for a function. For example:

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

The same result can be obtained in MySQL 8.0.19 and later using SELECT UPPER((TABLE t1))
FROM t2.

15.2.15.2 Comparisons Using Subqueries

The most common use of a subquery is in the form:

non_subquery_operand comparison_operator (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> != <=>

For example:

... WHERE 'a' = (SELECT column1 FROM t1)

MySQL also permits this construct:

non_subquery_operand LIKE (subquery)

At one time the only legal place for a subquery was on the right side of a comparison, and you might
still find some old DBMSs that insist on this.

Here is an example of a common-form subquery comparison that you cannot do with a join. It finds all
the rows in table t1 for which the column1 value is equal to a maximum value in table t2:

SELECT * FROM t1
 WHERE column1 = (SELECT MAX(column2) FROM t2);

Here is another example, which again is impossible with a join because it involves aggregating for one
of the tables. It finds all rows in table t1 containing a value that occurs twice in a given column:

SELECT * FROM t1 AS t
 WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);

For a comparison of the subquery to a scalar, the subquery must return a scalar. For a comparison of
the subquery to a row constructor, the subquery must be a row subquery that returns a row with the
same number of values as the row constructor. See Section 15.2.15.5, “Row Subqueries”.

15.2.15.3 Subqueries with ANY, IN, or SOME

2876

Subqueries

Syntax:

operand comparison_operator ANY (subquery)
operand IN (subquery)
operand comparison_operator SOME (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> !=

The ANY keyword, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ANY of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(21,14,7) because there is a value 7 in t2 that is less than 10. The expression is FALSE if table
t2 contains (20,10), or if table t2 is empty. The expression is unknown (that is, NULL) if table t2
contains (NULL,NULL,NULL).

When used with a subquery, the word IN is an alias for = ANY. Thus, these two statements are the
same:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

IN and = ANY are not synonyms when used with an expression list. IN can take an expression list, but
= ANY cannot. See Section 14.4.2, “Comparison Functions and Operators”.

NOT IN is not an alias for <> ANY, but for <> ALL. See Section 15.2.15.4, “Subqueries with ALL”.

The word SOME is an alias for ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

Use of the word SOME is rare, but this example shows why it might be useful. To most people, the
English phrase “a is not equal to any b” means “there is no b which is equal to a,” but that is not what is
meant by the SQL syntax. The syntax means “there is some b to which a is not equal.” Using <> SOME
instead helps ensure that everyone understands the true meaning of the query.

Beginning with MySQL 8.0.19, you can use TABLE in a scalar IN, ANY, or SOME subquery provided the
table contains only a single column. If t2 has only one column, the statements shown previously in this
section can be written as shown here, in each case substituting TABLE t2 for SELECT s1 FROM t2:

SELECT s1 FROM t1 WHERE s1 > ANY (TABLE t2);

SELECT s1 FROM t1 WHERE s1 = ANY (TABLE t2);

SELECT s1 FROM t1 WHERE s1 IN (TABLE t2);

SELECT s1 FROM t1 WHERE s1 <> ANY (TABLE t2);

SELECT s1 FROM t1 WHERE s1 <> SOME (TABLE t2);

15.2.15.4 Subqueries with ALL

Syntax:

operand comparison_operator ALL (subquery)

The word ALL, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ALL of the values in the column that the subquery returns.” For example:

2877

Subqueries

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(-5,0,+5) because 10 is greater than all three values in t2. The expression is FALSE if table t2
contains (12,6,NULL,-100) because there is a single value 12 in table t2 that is greater than 10.
The expression is unknown (that is, NULL) if table t2 contains (0,NULL,1).

Finally, the expression is TRUE if table t2 is empty. So, the following expression is TRUE when table t2
is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);

But this expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

In addition, the following expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

In general, tables containing NULL values and empty tables are “edge cases.” When writing
subqueries, always consider whether you have taken those two possibilities into account.

NOT IN is an alias for <> ALL. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);

MySQL 8.0.19 supports the TABLE statement. As with IN, ANY, and SOME, you can use TABLE with
ALL and NOT IN provided that the following two conditions are met:

• The table in the subquery contains only one column

• The subquery does not depend on a column expression

For example, assuming that table t2 consists of a single column, the last two statements shown
previously can be written using TABLE t2 like this:

SELECT s1 FROM t1 WHERE s1 <> ALL (TABLE t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (TABLE t2);

A query such as SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2); cannot be
written using TABLE t2 because the subquery depends on a column expression.

15.2.15.5 Row Subqueries

Scalar or column subqueries return a single value or a column of values. A row subquery is a subquery
variant that returns a single row and can thus return more than one column value. Legal operators for
row subquery comparisons are:

= > < >= <= <> != <=>

Here are two examples:

SELECT * FROM t1
 WHERE (col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);
SELECT * FROM t1
 WHERE ROW(col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);

For both queries, if the table t2 contains a single row with id = 10, the subquery returns a single
row. If this row has col3 and col4 values equal to the col1 and col2 values of any rows in t1, the
WHERE expression is TRUE and each query returns those t1 rows. If the t2 row col3 and col4 values
are not equal the col1 and col2 values of any t1 row, the expression is FALSE and the query returns

2878

Subqueries

an empty result set. The expression is unknown (that is, NULL) if the subquery produces no rows. An
error occurs if the subquery produces multiple rows because a row subquery can return at most one
row.

For information about how each operator works for row comparisons, see Section 14.4.2, “Comparison
Functions and Operators”.

The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are
equivalent. The row constructor and the row returned by the subquery must contain the same number
of values.

A row constructor is used for comparisons with subqueries that return two or more columns. When
a subquery returns a single column, this is regarded as a scalar value and not as a row, so a row
constructor cannot be used with a subquery that does not return at least two columns. Thus, the
following query fails with a syntax error:

SELECT * FROM t1 WHERE ROW(1) = (SELECT column1 FROM t2)

Row constructors are legal in other contexts. For example, the following two statements are
semantically equivalent (and are handled in the same way by the optimizer):

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

The following query answers the request, “find all rows in table t1 that also exist in table t2”:

SELECT column1,column2,column3
 FROM t1
 WHERE (column1,column2,column3) IN
 (SELECT column1,column2,column3 FROM t2);

For more information about the optimizer and row constructors, see Section 10.2.1.22, “Row
Constructor Expression Optimization”

15.2.15.6 Subqueries with EXISTS or NOT EXISTS

If a subquery returns any rows at all, EXISTS subquery is TRUE, and NOT EXISTS subquery is
FALSE. For example:

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or SELECT
column1 or anything at all. MySQL ignores the SELECT list in such a subquery, so it makes no
difference.

For the preceding example, if t2 contains any rows, even rows with nothing but NULL values, the
EXISTS condition is TRUE. This is actually an unlikely example because a [NOT] EXISTS subquery
almost always contains correlations. Here are some more realistic examples:

• What kind of store is present in one or more cities?

SELECT DISTINCT store_type FROM stores
 WHERE EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in no cities?

SELECT DISTINCT store_type FROM stores
 WHERE NOT EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in all cities?

SELECT DISTINCT store_type FROM stores

2879

Subqueries

 WHERE NOT EXISTS (
 SELECT * FROM cities WHERE NOT EXISTS (
 SELECT * FROM cities_stores
 WHERE cities_stores.city = cities.city
 AND cities_stores.store_type = stores.store_type));

The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause within
a NOT EXISTS clause. Formally, it answers the question “does a city exist with a store that is not in
Stores”? But it is easier to say that a nested NOT EXISTS answers the question “is x TRUE for all y?”

In MySQL 8.0.19 and later, you can also use NOT EXISTS or NOT EXISTS with TABLE in the
subquery, like this:

SELECT column1 FROM t1 WHERE EXISTS (TABLE t2);

The results are the same as when using SELECT * with no WHERE clause in the subquery.

15.2.15.7 Correlated Subqueries

A correlated subquery is a subquery that contains a reference to a table that also appears in the outer
query. For example:

SELECT * FROM t1
 WHERE column1 = ANY (SELECT column1 FROM t2
 WHERE t2.column2 = t1.column2);

Notice that the subquery contains a reference to a column of t1, even though the subquery's FROM
clause does not mention a table t1. So, MySQL looks outside the subquery, and finds t1 in the outer
query.

Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table
t2 contains a row where column1 = 5 and column2 = 7. The simple expression ... WHERE
column1 = ANY (SELECT column1 FROM t2) would be TRUE, but in this example, the WHERE
clause within the subquery is FALSE (because (5,6) is not equal to (5,7)), so the expression as a
whole is FALSE.

Scoping rule: MySQL evaluates from inside to outside. For example:

SELECT column1 FROM t1 AS x
 WHERE x.column1 = (SELECT column1 FROM t2 AS x
 WHERE x.column1 = (SELECT column1 FROM t3
 WHERE x.column2 = t3.column1));

In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM t2
AS x ... renames t2. It is not a column in table t1 because SELECT column1 FROM t1 ... is
an outer query that is farther out.

Beginning with MySQL 8.0.24, the optimizer can transform a correlated scalar subquery to a derived
table when the subquery_to_derived flag of the optimizer_switch variable is enabled.
Consider the query shown here:

SELECT * FROM t1
 WHERE (SELECT a FROM t2
 WHERE t2.a=t1.a) > 0;

To avoid materializing several times for a given derived table, we can instead materialize—once
—a derived table which adds a grouping on the join column from the table referenced in the inner
query (t2.a) and then an outer join on the lifted predicate (t1.a = derived.a) in order to select
the correct group to match up with the outer row. (If the subquery already has an explicit grouping,
the extra grouping is added to the end of the grouping list.) The query previously shown can thus be
rewritten like this:

SELECT t1.* FROM t1

2880

Subqueries

 LEFT OUTER JOIN
 (SELECT a, COUNT(*) AS ct FROM t2 GROUP BY a) AS derived
 ON t1.a = derived.a
 AND
 REJECT_IF(
 (ct > 1),
 "ERROR 1242 (21000): Subquery returns more than 1 row"
)
 WHERE derived.a > 0;

In the rewritten query, REJECT_IF() represents an internal function which tests a given condition
(here, the comparison ct > 1) and raises a given error (in this case, ER_SUBQUERY_NO_1_ROW) if the
condition is true. This reflects the cardinality check that the optimizer performs as part of evaluating the
JOIN or WHERE clause, prior to evaluating any lifted predicate, which is done only if the subquery does
not return more than one row.

This type of transformation can be performed, provided the following conditions are met:

• The subquery can be part of a SELECT list, WHERE condition, or HAVING condition, but cannot be
part of a JOIN condition, and cannot contain a LIMIT or OFFSET clause. In addition, the subquery
cannot contain any set operations such as UNION.

• The WHERE clause may contain one or more predicates, combined with AND. If the WHERE clause
contains an OR clause, it cannot be transformed. At least one of the WHERE clause predicates must
be eligible for transformation, and none of them may reject transformation.

• To be eligible for transformation, a WHERE clause predicate must be an equality predicate in
which each operand should be a simple column reference. No other predicates—including other
comparison predicates—are eligible for transformation. The predicate must employ the equality
operator = for making the comparison; the null-safe <=> operator is not supported in this context.

• A WHERE clause predicate that contains only inner references is not eligible for transformation,
since it can be evaluated before the grouping. A WHERE clause predicate that contains only outer
references is eligible for transformation, even though it can be lifted up to the outer query block. This
is made possible by adding a cardinality check without grouping in the derived table.

• To be eligible, a WHERE clause predicate must have one operand that contains only inner references
and one operand that contains only outer references. If the predicate is not eligible due to this rule,
transformation of the query is rejected.

• A correlated column can be present only in the subquery's WHERE clause (and not in the SELECT list,
a JOIN or ORDER BY clause, a GROUP BY list, or a HAVING clause). Nor can there be any correlated
column inside a derived table in the subquery's FROM list.

• A correlated column can not be contained in an aggregate function's list of arguments.

• A correlated column must be resolved in the query block directly containing the subquery being
considered for transformation.

• A correlated column cannot be present in a nested scalar subquery in the WHERE clause.

• The subquery cannot contain any window functions, and must not contain any aggregate function
which aggregates in a query block outer to the subquery. A COUNT() aggregate function, if
contained in the SELECT list element of the subquery, must be at the topmost level, and cannot be
part of an expression.

See also Section 15.2.15.8, “Derived Tables”.

15.2.15.8 Derived Tables

This section discusses general characteristics of derived tables. For information about lateral derived
tables preceded by the LATERAL keyword, see Section 15.2.15.9, “Lateral Derived Tables”.

2881

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_subquery_no_1_row

Subqueries

A derived table is an expression that generates a table within the scope of a query FROM clause. For
example, a subquery in a SELECT statement FROM clause is a derived table:

SELECT ... FROM (subquery) [AS] tbl_name ...

The JSON_TABLE() function generates a table and provides another way to create a derived table:

SELECT * FROM JSON_TABLE(arg_list) [AS] tbl_name ...

The [AS] tbl_name clause is mandatory because every table in a FROM clause must have a name.
Any columns in the derived table must have unique names. Alternatively, tbl_name may be followed
by a parenthesized list of names for the derived table columns:

SELECT ... FROM (subquery) [AS] tbl_name (col_list) ...

The number of column names must be the same as the number of table columns.

For the sake of illustration, assume that you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

Here is how to use a subquery in the FROM clause, using the example table:

INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);
SELECT sb1,sb2,sb3
 FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
 WHERE sb1 > 1;

Result:

+------+------+------+
| sb1 | sb2 | sb3 |
+------+------+------+
| 2 | 2 | 4 |
+------+------+------+

Here is another example: Suppose that you want to know the average of a set of sums for a grouped
table. This does not work:

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

However, this query provides the desired information:

SELECT AVG(sum_column1)
 FROM (SELECT SUM(column1) AS sum_column1
 FROM t1 GROUP BY column1) AS t1;

Notice that the column name used within the subquery (sum_column1) is recognized in the outer
query.

The column names for a derived table come from its select list:

mysql> SELECT * FROM (SELECT 1, 2, 3, 4) AS dt;
+---+---+---+---+
| 1 | 2 | 3 | 4 |
+---+---+---+---+
| 1 | 2 | 3 | 4 |
+---+---+---+---+

To provide column names explicitly, follow the derived table name with a parenthesized list of column
names:

mysql> SELECT * FROM (SELECT 1, 2, 3, 4) AS dt (a, b, c, d);
+---+---+---+---+
| a | b | c | d |
+---+---+---+---+
| 1 | 2 | 3 | 4 |

2882

Subqueries

+---+---+---+---+

A derived table can return a scalar, column, row, or table.

Derived tables are subject to these restrictions:

• A derived table cannot contain references to other tables of the same SELECT (use a LATERAL
derived table for that; see Section 15.2.15.9, “Lateral Derived Tables”).

• Prior to MySQL 8.0.14, a derived table cannot contain outer references. This is a MySQL restriction
that is lifted in MySQL 8.0.14, not a restriction of the SQL standard. For example, the derived table
dt in the following query contains a reference t1.b to the table t1 in the outer query:

SELECT * FROM t1
WHERE t1.d > (SELECT AVG(dt.a)
 FROM (SELECT SUM(t2.a) AS a
 FROM t2
 WHERE t2.b = t1.b GROUP BY t2.c) dt
 WHERE dt.a > 10);

The query is valid in MySQL 8.0.14 and higher. Before 8.0.14, it produces an error: Unknown
column 't1.b' in 'where clause'

The optimizer determines information about derived tables in such a way that EXPLAIN does not need
to materialize them. See Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common
Table Expressions with Merging or Materialization”.

It is possible under certain circumstances that using EXPLAIN SELECT modifies table data. This can
occur if the outer query accesses any tables and an inner query invokes a stored function that changes
one or more rows of a table. Suppose that there are two tables t1 and t2 in database d1, and a stored
function f1 that modifies t2, created as shown here:

CREATE DATABASE d1;
USE d1;
CREATE TABLE t1 (c1 INT);
CREATE TABLE t2 (c1 INT);
CREATE FUNCTION f1(p1 INT) RETURNS INT
 BEGIN
 INSERT INTO t2 VALUES (p1);
 RETURN p1;
 END;

Referencing the function directly in an EXPLAIN SELECT has no effect on t2, as shown here:

mysql> SELECT * FROM t2;
Empty set (0.02 sec)

mysql> EXPLAIN SELECT f1(5)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: NULL
 partitions: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 filtered: NULL
 Extra: No tables used
1 row in set (0.01 sec)

mysql> SELECT * FROM t2;
Empty set (0.01 sec)

This is because the SELECT statement did not reference any tables, as can be seen in the table and
Extra columns of the output. This is also true of the following nested SELECT:

2883

Subqueries

mysql> EXPLAIN SELECT NOW() AS a1, (SELECT f1(5)) AS a2\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 filtered: NULL
 Extra: No tables used
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Note | 1249 | Select 2 was reduced during optimization |
+-------+------+--+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

However, if the outer SELECT references any tables, the optimizer executes the statement in the
subquery as well, with the result that t2 is modified:

mysql> EXPLAIN SELECT * FROM t1 AS a1, (SELECT f1(5)) AS a2\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 partitions: NULL
 type: system
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: a1
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: NULL
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: NULL
 partitions: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 filtered: NULL
 Extra: No tables used
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;

2884

Subqueries

+------+
| c1 |
+------+
| 5 |
+------+
1 row in set (0.00 sec)

The derived table optimization can also be employed with many correlated (scalar) subqueries (MySQL
8.0.24 and later). For more information and examples, see Section 15.2.15.7, “Correlated Subqueries”.

15.2.15.9 Lateral Derived Tables

A derived table cannot normally refer to (depend on) columns of preceding tables in the same FROM
clause. As of MySQL 8.0.14, a derived table may be defined as a lateral derived table to specify that
such references are permitted.

Nonlateral derived tables are specified using the syntax discussed in Section 15.2.15.8, “Derived
Tables”. The syntax for a lateral derived table is the same as for a nonlateral derived table except that
the keyword LATERAL is specified before the derived table specification. The LATERAL keyword must
precede each table to be used as a lateral derived table.

Lateral derived tables are subject to these restrictions:

• A lateral derived table can occur only in a FROM clause, either in a list of tables separated with
commas or in a join specification (JOIN, INNER JOIN, CROSS JOIN, LEFT [OUTER] JOIN, or
RIGHT [OUTER] JOIN).

• If a lateral derived table is in the right operand of a join clause and contains a reference to the left
operand, the join operation must be an INNER JOIN, CROSS JOIN, or LEFT [OUTER] JOIN.

If the table is in the left operand and contains a reference to the right operand, the join operation
must be an INNER JOIN, CROSS JOIN, or RIGHT [OUTER] JOIN.

• If a lateral derived table references an aggregate function, the function's aggregation query cannot
be the one that owns the FROM clause in which the lateral derived table occurs.

• In accordance with the SQL standard, MySQL always treats a join with a table function such as
JSON_TABLE() as though LATERAL had been used. This is true regardless of MySQL release
version, which is why it is possible to join against this function even in MySQL versions prior to
8.0.14. In MySQL 8.0.14 and later, the LATERAL keyword is implicit, and is not allowed before
JSON_TABLE(). This is also according to the SQL standard.

The following discussion shows how lateral derived tables make possible certain SQL operations that
cannot be done with nonlateral derived tables or that require less-efficient workarounds.

Suppose that we want to solve this problem: Given a table of people in a sales force (where each row
describes a member of the sales force), and a table of all sales (where each row describes a sale:
salesperson, customer, amount, date), determine the size and customer of the largest sale for each
salesperson. This problem can be approached two ways.

First approach to solving the problem: For each salesperson, calculate the maximum sale size, and
also find the customer who provided this maximum. In MySQL, that can be done like this:

SELECT
 salesperson.name,
 -- find maximum sale size for this salesperson
 (SELECT MAX(amount) AS amount
 FROM all_sales
 WHERE all_sales.salesperson_id = salesperson.id)
 AS amount,
 -- find customer for this maximum size
 (SELECT customer_name
 FROM all_sales

2885

Subqueries

 WHERE all_sales.salesperson_id = salesperson.id
 AND all_sales.amount =
 -- find maximum size, again
 (SELECT MAX(amount) AS amount
 FROM all_sales
 WHERE all_sales.salesperson_id = salesperson.id))
 AS customer_name
FROM
 salesperson;

That query is inefficient because it calculates the maximum size twice per salesperson (once in the first
subquery and once in the second).

We can try to achieve an efficiency gain by calculating the maximum once per salesperson and
“caching” it in a derived table, as shown by this modified query:

SELECT
 salesperson.name,
 max_sale.amount,
 max_sale_customer.customer_name
FROM
 salesperson,
 -- calculate maximum size, cache it in transient derived table max_sale
 (SELECT MAX(amount) AS amount
 FROM all_sales
 WHERE all_sales.salesperson_id = salesperson.id)
 AS max_sale,
 -- find customer, reusing cached maximum size
 (SELECT customer_name
 FROM all_sales
 WHERE all_sales.salesperson_id = salesperson.id
 AND all_sales.amount =
 -- the cached maximum size
 max_sale.amount)
 AS max_sale_customer;

However, the query is illegal in SQL-92 because derived tables cannot depend on other tables in the
same FROM clause. Derived tables must be constant over the query's duration, not contain references
to columns of other FROM clause tables. As written, the query produces this error:

ERROR 1054 (42S22): Unknown column 'salesperson.id' in 'where clause'

In SQL:1999, the query becomes legal if the derived tables are preceded by the LATERAL keyword
(which means “this derived table depends on previous tables on its left side”):

SELECT
 salesperson.name,
 max_sale.amount,
 max_sale_customer.customer_name
FROM
 salesperson,
 -- calculate maximum size, cache it in transient derived table max_sale
 LATERAL
 (SELECT MAX(amount) AS amount
 FROM all_sales
 WHERE all_sales.salesperson_id = salesperson.id)
 AS max_sale,
 -- find customer, reusing cached maximum size
 LATERAL
 (SELECT customer_name
 FROM all_sales
 WHERE all_sales.salesperson_id = salesperson.id
 AND all_sales.amount =
 -- the cached maximum size
 max_sale.amount)
 AS max_sale_customer;

A lateral derived table need not be constant and is brought up to date each time a new row from a
preceding table on which it depends is processed by the top query.

2886

Subqueries

Second approach to solving the problem: A different solution could be used if a subquery in the
SELECT list could return multiple columns:

SELECT
 salesperson.name,
 -- find maximum size and customer at same time
 (SELECT amount, customer_name
 FROM all_sales
 WHERE all_sales.salesperson_id = salesperson.id
 ORDER BY amount DESC LIMIT 1)
FROM
 salesperson;

That is efficient but illegal. It does not work because such subqueries can return only a single column:

ERROR 1241 (21000): Operand should contain 1 column(s)

One attempt at rewriting the query is to select multiple columns from a derived table:

SELECT
 salesperson.name,
 max_sale.amount,
 max_sale.customer_name
FROM
 salesperson,
 -- find maximum size and customer at same time
 (SELECT amount, customer_name
 FROM all_sales
 WHERE all_sales.salesperson_id = salesperson.id
 ORDER BY amount DESC LIMIT 1)
 AS max_sale;

However, that also does not work. The derived table is dependent on the salesperson table and thus
fails without LATERAL:

ERROR 1054 (42S22): Unknown column 'salesperson.id' in 'where clause'

Adding the LATERAL keyword makes the query legal:

SELECT
 salesperson.name,
 max_sale.amount,
 max_sale.customer_name
FROM
 salesperson,
 -- find maximum size and customer at same time
 LATERAL
 (SELECT amount, customer_name
 FROM all_sales
 WHERE all_sales.salesperson_id = salesperson.id
 ORDER BY amount DESC LIMIT 1)
 AS max_sale;

In short, LATERAL is the efficient solution to all drawbacks in the two approaches just discussed.

15.2.15.10 Subquery Errors

There are some errors that apply only to subqueries. This section describes them.

• Unsupported subquery syntax:

ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000
Message = "This version of MySQL doesn't yet support
'LIMIT & IN/ALL/ANY/SOME subquery'"

This means that MySQL does not support statements like the following:

2887

Subqueries

SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

• Incorrect number of columns from subquery:

ERROR 1241 (ER_OPERAND_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"

This error occurs in cases like this:

SELECT (SELECT column1, column2 FROM t2) FROM t1;

You may use a subquery that returns multiple columns, if the purpose is row comparison. In other
contexts, the subquery must be a scalar operand. See Section 15.2.15.5, “Row Subqueries”.

• Incorrect number of rows from subquery:

ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

This error occurs for statements where the subquery must return at most one row but returns multiple
rows. Consider the following example:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

If SELECT column1 FROM t2 returns just one row, the previous query works. If the subquery
returns more than one row, error 1242 occurs. In that case, the query should be rewritten as:

SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

• Incorrectly used table in subquery:

Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can't specify target table 'x'
for update in FROM clause"

This error occurs in cases such as the following, which attempts to modify a table and select from the
same table in the subquery:

UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

You can use a common table expression or derived table to work around this. See
Section 15.2.15.12, “Restrictions on Subqueries”.

In MySQL 8.0.19 and later, all of the errors described in this section also apply when using TABLE in
subqueries.

For transactional storage engines, the failure of a subquery causes the entire statement to fail. For
nontransactional storage engines, data modifications made before the error was encountered are
preserved.

15.2.15.11 Optimizing Subqueries

Development is ongoing, so no optimization tip is reliable for the long term. The following list provides
some interesting tricks that you might want to play with. See also Section 10.2.2, “Optimizing
Subqueries, Derived Tables, View References, and Common Table Expressions”.

• Move clauses from outside to inside the subquery. For example, use this query:

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

Instead of this query:

2888

Subqueries

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example, use this query:

SELECT (SELECT column1 + 5 FROM t1) FROM t2;

Instead of this query:

SELECT (SELECT column1 FROM t1) + 5 FROM t2;

15.2.15.12 Restrictions on Subqueries

• In general, you cannot modify a table and select from the same table in a subquery. For example,
this limitation applies to statements of the following forms:

DELETE FROM t WHERE ... (SELECT ... FROM t ...);
UPDATE t ... WHERE col = (SELECT ... FROM t ...);
{INSERT|REPLACE} INTO t (SELECT ... FROM t ...);

Exception: The preceding prohibition does not apply if for the modified table you are using a
derived table and that derived table is materialized rather than merged into the outer query. (See
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions
with Merging or Materialization”.) Example:

UPDATE t ... WHERE col = (SELECT * FROM (SELECT ... FROM t...) AS dt ...);

Here the result from the derived table is materialized as a temporary table, so the relevant rows in t
have already been selected by the time the update to t takes place.

In general, you may be able to influence the optimizer to materialize a derived table by adding a
NO_MERGE optimizer hint. See Section 10.9.3, “Optimizer Hints”.

• Row comparison operations are only partially supported:

• For expr [NOT] IN subquery, expr can be an n-tuple (specified using row constructor
syntax) and the subquery can return rows of n-tuples. The permitted syntax is therefore more
specifically expressed as row_constructor [NOT] IN table_subquery

• For expr op {ALL|ANY|SOME} subquery, expr must be a scalar value and the subquery
must be a column subquery; it cannot return multiple-column rows.

In other words, for a subquery that returns rows of n-tuples, this is supported:

(expr_1, ..., expr_n) [NOT] IN table_subquery

But this is not supported:

(expr_1, ..., expr_n) op {ALL|ANY|SOME} subquery

The reason for supporting row comparisons for IN but not for the others is that IN is implemented by
rewriting it as a sequence of = comparisons and AND operations. This approach cannot be used for
ALL, ANY, or SOME.

• Prior to MySQL 8.0.14, subqueries in the FROM clause cannot be correlated subqueries. They are
materialized in whole (evaluated to produce a result set) during query execution, so they cannot be
evaluated per row of the outer query. The optimizer delays materialization until the result is needed,
which may permit materialization to be avoided. See Section 10.2.2.4, “Optimizing Derived Tables,
View References, and Common Table Expressions with Merging or Materialization”.

• MySQL does not support LIMIT in subqueries for certain subquery operators:

mysql> SELECT * FROM t1

2889

TABLE Statement

 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1);
ERROR 1235 (42000): This version of MySQL doesn't yet support
 'LIMIT & IN/ALL/ANY/SOME subquery'

See Section 15.2.15.10, “Subquery Errors”.

• MySQL permits a subquery to refer to a stored function that has data-modifying side effects such as
inserting rows into a table. For example, if f() inserts rows, the following query can modify data:

SELECT ... WHERE x IN (SELECT f() ...);

This behavior is an extension to the SQL standard. In MySQL, it can produce nondeterministic
results because f() might be executed a different number of times for different executions of a given
query depending on how the optimizer chooses to handle it.

For statement-based or mixed-format replication, one implication of this indeterminism is that such a
query can produce different results on the source and its replicas.

15.2.16 TABLE Statement

TABLE is a DML statement introduced in MySQL 8.0.19 which returns rows and columns of the named
table.

TABLE table_name
 [ORDER BY column_name]
 [LIMIT number [OFFSET number]]
 [INTO OUTFILE 'file_name'
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]
 | INTO DUMPFILE 'file_name'
 | INTO var_name [, var_name] ...]

The TABLE statement in some ways acts like SELECT. Given the existence of a table named t, the
following two statements produce identical output:

TABLE t;

SELECT * FROM t;

You can order and limit the number of rows produced by TABLE using ORDER BY and LIMIT clauses,
respectively. These function identically to the same clauses when used with SELECT (including an
optional OFFSET clause with LIMIT), as you can see here:

mysql> TABLE t;
+----+----+
| a | b |
+----+----+
1	2
6	7
9	5
10	-4
11	-1
13	3
14	6
+----+----+
7 rows in set (0.00 sec)

mysql> TABLE t ORDER BY b;
+----+----+
| a | b |
+----+----+

2890

TABLE Statement

10	-4
11	-1
1	2
13	3
9	5
14	6
6	7
+----+----+
7 rows in set (0.00 sec)

mysql> TABLE t LIMIT 3;
+---+---+
| a | b |
+---+---+
1	2
6	7
9	5
+---+---+
3 rows in set (0.00 sec)

mysql> TABLE t ORDER BY b LIMIT 3;
+----+----+
| a | b |
+----+----+
10	-4
11	-1
1	2
+----+----+
3 rows in set (0.00 sec)

mysql> TABLE t ORDER BY b LIMIT 3 OFFSET 2;
+----+----+
| a | b |
+----+----+
1	2
13	3
9	5
+----+----+
3 rows in set (0.00 sec)

TABLE differs from SELECT in two key respects:

• TABLE always displays all columns of the table.

Exception: The output of TABLE does not include invisible columns. See Section 15.1.20.10,
“Invisible Columns”.

• TABLE does not allow for any arbitrary filtering of rows; that is, TABLE does not support any WHERE
clause.

For limiting which table columns are returned, filtering rows beyond what can be accomplished using
ORDER BY and LIMIT, or both, use SELECT.

TABLE can be used with temporary tables.

TABLE can also be used in place of SELECT in a number of other constructs, including those listed
here:

• With set operators such as UNION, as shown here:

mysql> TABLE t1;
+---+----+
| a | b |
+---+----+
2	10
5	3
7	8
+---+----+
3 rows in set (0.00 sec)

2891

TABLE Statement

mysql> TABLE t2;
+---+---+
| a | b |
+---+---+
1	2
3	4
6	7
+---+---+
3 rows in set (0.00 sec)

mysql> TABLE t1 UNION TABLE t2;
+---+----+
| a | b |
+---+----+
2	10
5	3
7	8
1	2
3	4
6	7
+---+----+
6 rows in set (0.00 sec)

The UNION just shown is equivalent to the following statement:

mysql> SELECT * FROM t1 UNION SELECT * FROM t2;
+---+----+
| a | b |
+---+----+
2	10
5	3
7	8
1	2
3	4
6	7
+---+----+
6 rows in set (0.00 sec)

TABLE can also be used together in set operations with SELECT statements, VALUES statements, or
both. See Section 15.2.18, “UNION Clause”, Section 15.2.4, “EXCEPT Clause”, and Section 15.2.8,
“INTERSECT Clause”, for more information and examples. See also Section 15.2.14, “Set
Operations with UNION, INTERSECT, and EXCEPT”.

• With INTO to populate user variables, and with INTO OUTFILE or INTO DUMPFILE to write table
data to a file. See Section 15.2.13.1, “SELECT ... INTO Statement”, for more specific information and
examples.

• In many cases where you can employ subqueries. Given any table t1 with a column named a, and a
second table t2 having a single column, statements such as the following are possible:

SELECT * FROM t1 WHERE a IN (TABLE t2);

Assuming that the single column of table t1 is named x, the preceding is equivalent to each of the
statements shown here (and produces exactly the same result in either case):

SELECT * FROM t1 WHERE a IN (SELECT x FROM t2);

SELECT * FROM t1 WHERE a IN (SELECT * FROM t2);

See Section 15.2.15, “Subqueries”, for more information.

• With INSERT and REPLACE statements, where you would otherwise use SELECT *. See
Section 15.2.7.1, “INSERT ... SELECT Statement”, for more information and examples.

• TABLE can also be used in many cases in place of the SELECT in CREATE TABLE ... SELECT
or CREATE VIEW ... SELECT. See the descriptions of these statements for more information and
examples.

2892

UPDATE Statement

15.2.17 UPDATE Statement

UPDATE is a DML statement that modifies rows in a table.

An UPDATE statement can start with a WITH clause to define common table expressions accessible
within the UPDATE. See Section 15.2.20, “WITH (Common Table Expressions)”.

Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_reference
 SET assignment_list
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

value:
 {expr | DEFAULT}

assignment:
 col_name = value

assignment_list:
 assignment [, assignment] ...

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_references
 SET assignment_list
 [WHERE where_condition]

For the single-table syntax, the UPDATE statement updates columns of existing rows in the named
table with new values. The SET clause indicates which columns to modify and the values they should
be given. Each value can be given as an expression, or the keyword DEFAULT to set a column
explicitly to its default value. The WHERE clause, if given, specifies the conditions that identify which
rows to update. With no WHERE clause, all rows are updated. If the ORDER BY clause is specified, the
rows are updated in the order that is specified. The LIMIT clause places a limit on the number of rows
that can be updated.

For the multiple-table syntax, UPDATE updates rows in each table named in table_references that
satisfy the conditions. Each matching row is updated once, even if it matches the conditions multiple
times. For multiple-table syntax, ORDER BY and LIMIT cannot be used.

For partitioned tables, both the single-single and multiple-table forms of this statement support the use
of a PARTITION clause as part of a table reference. This option takes a list of one or more partitions
or subpartitions (or both). Only the partitions (or subpartitions) listed are checked for matches, and
a row that is not in any of these partitions or subpartitions is not updated, whether it satisfies the
where_condition or not.

Note

Unlike the case when using PARTITION with an INSERT or REPLACE
statement, an otherwise valid UPDATE ... PARTITION statement is
considered successful even if no rows in the listed partitions (or subpartitions)
match the where_condition.

For more information and examples, see Section 26.5, “Partition Selection”.

where_condition is an expression that evaluates to true for each row to be updated. For expression
syntax, see Section 11.5, “Expressions”.

table_references and where_condition are specified as described in Section 15.2.13,
“SELECT Statement”.

2893

UPDATE Statement

You need the UPDATE privilege only for columns referenced in an UPDATE that are actually updated.
You need only the SELECT privilege for any columns that are read but not modified.

The UPDATE statement supports the following modifiers:

• With the LOW_PRIORITY modifier, execution of the UPDATE is delayed until no other clients are
reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

• With the IGNORE modifier, the update statement does not abort even if errors occur during the
update. Rows for which duplicate-key conflicts occur on a unique key value are not updated. Rows
updated to values that would cause data conversion errors are updated to the closest valid values
instead. For more information, see The Effect of IGNORE on Statement Execution.

UPDATE IGNORE statements, including those having an ORDER BY clause, are flagged as unsafe
for statement-based replication. (This is because the order in which the rows are updated determines
which rows are ignored.) Such statements produce a warning in the error log when using statement-
based mode and are written to the binary log using the row-based format when using MIXED mode.
(Bug #11758262, Bug #50439) See Section 19.2.1.3, “Determination of Safe and Unsafe Statements in
Binary Logging”, for more information.

If you access a column from the table to be updated in an expression, UPDATE uses the current value
of the column. For example, the following statement sets col1 to one more than its current value:

UPDATE t1 SET col1 = col1 + 1;

The second assignment in the following statement sets col2 to the current (updated) col1 value, not
the original col1 value. The result is that col1 and col2 have the same value. This behavior differs
from standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

Single-table UPDATE assignments are generally evaluated from left to right. For multiple-table updates,
there is no guarantee that assignments are carried out in any particular order.

If you set a column to the value it currently has, MySQL notices this and does not update it.

If you update a column that has been declared NOT NULL by setting to NULL, an error occurs if strict
SQL mode is enabled; otherwise, the column is set to the implicit default value for the column data type
and the warning count is incremented. The implicit default value is 0 for numeric types, the empty string
('') for string types, and the “zero” value for date and time types. See Section 13.6, “Data Type Default
Values”.

If a generated column is updated explicitly, the only permitted value is DEFAULT. For information about
generated columns, see Section 15.1.20.8, “CREATE TABLE and Generated Columns”.

UPDATE returns the number of rows that were actually changed. The mysql_info() C API function
returns the number of rows that were matched and updated and the number of warnings that occurred
during the UPDATE.

You can use LIMIT row_count to restrict the scope of the UPDATE. A LIMIT clause is a rows-
matched restriction. The statement stops as soon as it has found row_count rows that satisfy the
WHERE clause, whether or not they actually were changed.

If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order specified
by the clause. This can be useful in certain situations that might otherwise result in an error. Suppose
that a table t contains a column id that has a unique index. The following statement could fail with a
duplicate-key error, depending on the order in which rows are updated:

UPDATE t SET id = id + 1;

2894

https://dev.mysql.com/doc/c-api/8.0/en/mysql-info.html

UPDATE Statement

For example, if the table contains 1 and 2 in the id column and 1 is updated to 2 before 2 is updated
to 3, an error occurs. To avoid this problem, add an ORDER BY clause to cause the rows with larger id
values to be updated before those with smaller values:

UPDATE t SET id = id + 1 ORDER BY id DESC;

You can also perform UPDATE operations covering multiple tables. However, you cannot use ORDER
BY or LIMIT with a multiple-table UPDATE. The table_references clause lists the tables involved in
the join. Its syntax is described in Section 15.2.13.2, “JOIN Clause”. Here is an example:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

The preceding example shows an inner join that uses the comma operator, but multiple-table UPDATE
statements can use any type of join permitted in SELECT statements, such as LEFT JOIN.

If you use a multiple-table UPDATE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/
child relationship. In this case, the statement fails and rolls back. Instead, update a single table and
rely on the ON UPDATE capabilities that InnoDB provides to cause the other tables to be modified
accordingly. See Section 15.1.20.5, “FOREIGN KEY Constraints”.

You cannot update a table and select directly from the same table in a subquery. You can work around
this by using a multi-table update in which one of the tables is derived from the table that you actually
wish to update, and referring to the derived table using an alias. Suppose you wish to update a table
named items which is defined using the statement shown here:

CREATE TABLE items (
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 wholesale DECIMAL(6,2) NOT NULL DEFAULT 0.00,
 retail DECIMAL(6,2) NOT NULL DEFAULT 0.00,
 quantity BIGINT NOT NULL DEFAULT 0
);

To reduce the retail price of any items for which the markup is 30% or greater and of which you have
fewer than one hundred in stock, you might try to use an UPDATE statement such as the one following,
which uses a subquery in the WHERE clause. As shown here, this statement does not work:

mysql> UPDATE items
 > SET retail = retail * 0.9
 > WHERE id IN
 > (SELECT id FROM items
 > WHERE retail / wholesale >= 1.3 AND quantity > 100);
ERROR 1093 (HY000): You can't specify target table 'items' for update in FROM clause

Instead, you can employ a multi-table update in which the subquery is moved into the list of tables to
be updated, using an alias to reference it in the outermost WHERE clause, like this:

UPDATE items,
 (SELECT id FROM items
 WHERE id IN
 (SELECT id FROM items
 WHERE retail / wholesale >= 1.3 AND quantity < 100))
 AS discounted
SET items.retail = items.retail * 0.9
WHERE items.id = discounted.id;

Because the optimizer tries by default to merge the derived table discounted into the outermost
query block, this works only if you force materialization of the derived table. You can do this by setting
the derived_merge flag of the optimizer_switch system variable to off before running the
update, or by using the NO_MERGE optimizer hint, as shown here:

UPDATE /*+ NO_MERGE(discounted) */ items,
 (SELECT id FROM items
 WHERE retail / wholesale >= 1.3 AND quantity < 100)
 AS discounted

2895

UNION Clause

 SET items.retail = items.retail * 0.9
 WHERE items.id = discounted.id;

The advantage of using the optimizer hint in such a case is that it applies only within the query block
where it is used, so that it is not necessary to change the value of optimizer_switch again after
executing the UPDATE.

Another possibility is to rewrite the subquery so that it does not use IN or EXISTS, like this:

UPDATE items,
 (SELECT id, retail / wholesale AS markup, quantity FROM items)
 AS discounted
 SET items.retail = items.retail * 0.9
 WHERE discounted.markup >= 1.3
 AND discounted.quantity < 100
 AND items.id = discounted.id;

In this case, the subquery is materialized by default rather than merged, so it is not necessary to
disable merging of the derived table.

15.2.18 UNION Clause

query_expression_body UNION [ALL | DISTINCT] query_block
 [UNION [ALL | DISTINCT] query_expression_body]
 [...]

query_expression_body:
 See Section 15.2.14, “Set Operations with UNION, INTERSECT, and EXCEPT”

UNION combines the result from multiple query blocks into a single result set. This example uses
SELECT statements:

mysql> SELECT 1, 2;
+---+---+
| 1 | 2 |
+---+---+
| 1 | 2 |
+---+---+
mysql> SELECT 'a', 'b';
+---+---+
| a | b |
+---+---+
| a | b |
+---+---+
mysql> SELECT 1, 2 UNION SELECT 'a', 'b';
+---+---+
| 1 | 2 |
+---+---+
| 1 | 2 |
| a | b |
+---+---+

UNION Handing in MySQL 8.0 Compared to MySQL 5.7

In MySQL 8.0, the parser rules for SELECT and UNION were refactored to be more consistent (the
same SELECT syntax applies uniformly in each such context) and reduce duplication. Compared to
MySQL 5.7, several user-visible effects resulted from this work, which may require rewriting of certain
statements:

• NATURAL JOIN permits an optional INNER keyword (NATURAL INNER JOIN), in compliance with
standard SQL.

• Right-deep joins without parentheses are permitted (for example, ... JOIN ... JOIN ...
ON ... ON), in compliance with standard SQL.

• STRAIGHT_JOIN now permits a USING clause, similar to other inner joins.

2896

VALUES Statement

• The parser accepts parentheses around query expressions. For example, (SELECT ... UNION
SELECT ...) is permitted. See also Section 15.2.11, “Parenthesized Query Expressions”.

• The parser better conforms to the documented permitted placement of the SQL_CACHE and
SQL_NO_CACHE query modifiers.

• Left-hand nesting of unions, previously permitted only in subqueries, is now permitted in top-level
statements. For example, this statement is now accepted as valid:

(SELECT 1 UNION SELECT 1) UNION SELECT 1;

• Locking clauses (FOR UPDATE, LOCK IN SHARE MODE) are allowed only in non-UNION queries.
This means that parentheses must be used for SELECT statements containing locking clauses. This
statement is no longer accepted as valid:

SELECT 1 FOR UPDATE UNION SELECT 1 FOR UPDATE;

Instead, write the statement like this:

(SELECT 1 FOR UPDATE) UNION (SELECT 1 FOR UPDATE);

15.2.19 VALUES Statement

VALUES is a DML statement introduced in MySQL 8.0.19 which returns a set of one or more rows
as a table. In other words, it is a table value constructor which also functions as a standalone SQL
statement.

VALUES row_constructor_list [ORDER BY column_designator] [LIMIT number]

row_constructor_list:
 ROW(value_list)[, ROW(value_list)][, ...]

value_list:
 value[, value][, ...]

column_designator:
 column_index

The VALUES statement consists of the VALUES keyword followed by a list of one or more row
constructors, separated by commas. A row constructor consists of the ROW() row constructor clause
with a value list of one or more scalar values enclosed in the parentheses. A value can be a literal of
any MySQL data type or an expression that resolves to a scalar value.

ROW() cannot be empty (but each of the supplied scalar values can be NULL). Each ROW() in the
same VALUES statement must have the same number of values in its value list.

The DEFAULT keyword is not supported by VALUES and causes a syntax error, except when it is used
to supply values in an INSERT statement.

The output of VALUES is a table:

mysql> VALUES ROW(1,-2,3), ROW(5,7,9), ROW(4,6,8);
+----------+----------+----------+
| column_0 | column_1 | column_2 |
+----------+----------+----------+
1	-2	3
5	7	9
4	6	8
+----------+----------+----------+
3 rows in set (0.00 sec)

The columns of the table output from VALUES have the implicitly named columns column_0,
column_1, column_2, and so on, always beginning with 0. This fact can be used to order the rows
by column using an optional ORDER BY clause in the same way that this clause works with a SELECT
statement, as shown here:

2897

VALUES Statement

mysql> VALUES ROW(1,-2,3), ROW(5,7,9), ROW(4,6,8) ORDER BY column_1;
+----------+----------+----------+
| column_0 | column_1 | column_2 |
+----------+----------+----------+
1	-2	3
4	6	8
5	7	9
+----------+----------+----------+
3 rows in set (0.00 sec)

In MySQL 8.0.21 and later, the VALUES statement also supports a LIMIT clause for limiting the
number of rows in the output. (Previously, LIMIT was allowed but did nothing.)

The VALUES statement is permissive regarding data types of column values; you can mix types within
the same column, as shown here:

mysql> VALUES ROW("q", 42, '2019-12-18'),
 -> ROW(23, "abc", 98.6),
 -> ROW(27.0002, "Mary Smith", '{"a": 10, "b": 25}');
+----------+------------+--------------------+
| column_0 | column_1 | column_2 |
+----------+------------+--------------------+
q	42	2019-12-18
23	abc	98.6
27.0002	Mary Smith	{"a": 10, "b": 25}
+----------+------------+--------------------+
3 rows in set (0.00 sec)

Important

VALUES with one or more instances of ROW() acts as a table value constructor;
although it can be used to supply values in an INSERT or REPLACE statement,
do not confuse it with the VALUES keyword that is also used for this purpose.
You should also not confuse it with the VALUES() function that refers to column
values in INSERT ... ON DUPLICATE KEY UPDATE.

You should also bear in mind that ROW() is a row value constructor (see
Section 15.2.15.5, “Row Subqueries”), whereas VALUES ROW() is a table value
constructor; the two cannot be used interchangeably.

VALUES can be used in many cases where you could employ SELECT, including those listed here:

• With UNION, as shown here:

mysql> SELECT 1,2 UNION SELECT 10,15;
+----+----+
| 1 | 2 |
+----+----+
| 1 | 2 |
| 10 | 15 |
+----+----+
2 rows in set (0.00 sec)

mysql> VALUES ROW(1,2) UNION VALUES ROW(10,15);
+----------+----------+
| column_0 | column_1 |
+----------+----------+
| 1 | 2 |
| 10 | 15 |
+----------+----------+
2 rows in set (0.00 sec)

You can union together constructed tables having more than one row, like this:

mysql> VALUES ROW(1,2), ROW(3,4), ROW(5,6)
 > UNION VALUES ROW(10,15),ROW(20,25);
+----------+----------+
| column_0 | column_1 |
+----------+----------+

2898

WITH (Common Table Expressions)

1	2
3	4
5	6
10	15
20	25
+----------+----------+
5 rows in set (0.00 sec)

You can also (and it is usually preferable to) omit UNION altogether in such cases and use a single
VALUES statement, like this:

mysql> VALUES ROW(1,2), ROW(3,4), ROW(5,6), ROW(10,15), ROW(20,25);
+----------+----------+
| column_0 | column_1 |
+----------+----------+
1	2
3	4
5	6
10	15
20	25
+----------+----------+

VALUES can also be used in unions with SELECT statements, TABLE statements, or both.

The constructed tables in the UNION must contain the same number of columns, just as if you were
using SELECT. See Section 15.2.18, “UNION Clause”, for further examples.

In MySQL 8.0.31 and later, you can use EXCEPT and INTERSECT with VALUES in much the same
way as UNION, as shown here:

mysql> VALUES ROW(1,2), ROW(3,4), ROW(5,6)
 -> INTERSECT
 -> VALUES ROW(10,15), ROW(20,25), ROW(3,4);
+----------+----------+
| column_0 | column_1 |
+----------+----------+
| 3 | 4 |
+----------+----------+
1 row in set (0.00 sec)

mysql> VALUES ROW(1,2), ROW(3,4), ROW(5,6)
 -> EXCEPT
 -> VALUES ROW(10,15), ROW(20,25), ROW(3,4);
+----------+----------+
| column_0 | column_1 |
+----------+----------+
| 1 | 2 |
| 5 | 6 |
+----------+----------+
2 rows in set (0.00 sec)

See Section 15.2.4, “EXCEPT Clause”, and Section 15.2.8, “INTERSECT Clause”, for more
information.

• In joins. See Section 15.2.13.2, “JOIN Clause”, for more information and examples.

• In place of VALUES() in an INSERT or REPLACE statement, in which case its semantics differ
slightly from what is described here. See Section 15.2.7, “INSERT Statement”, for details.

• In place of the source table in CREATE TABLE ... SELECT and CREATE VIEW ... SELECT.
See the descriptions of these statements for more information and examples.

15.2.20 WITH (Common Table Expressions)

A common table expression (CTE) is a named temporary result set that exists within the scope of a
single statement and that can be referred to later within that statement, possibly multiple times. The
following discussion describes how to write statements that use CTEs.

2899

WITH (Common Table Expressions)

• Common Table Expressions

• Recursive Common Table Expressions

• Limiting Common Table Expression Recursion

• Recursive Common Table Expression Examples

• Common Table Expressions Compared to Similar Constructs

For information about CTE optimization, see Section 10.2.2.4, “Optimizing Derived Tables, View
References, and Common Table Expressions with Merging or Materialization”.

Additional Resources

These articles contain additional information about using CTEs in MySQL, including many examples:

• MySQL 8.0 Labs: [Recursive] Common Table Expressions in MySQL (CTEs)

• MySQL 8.0 Labs: [Recursive] Common Table Expressions in MySQL (CTEs), Part Two – how to
generate series

• MySQL 8.0 Labs: [Recursive] Common Table Expressions in MySQL (CTEs), Part Three –
hierarchies

• MySQL 8.0.1: [Recursive] Common Table Expressions in MySQL (CTEs), Part Four – depth-first or
breadth-first traversal, transitive closure, cycle avoidance

Common Table Expressions

To specify common table expressions, use a WITH clause that has one or more comma-separated
subclauses. Each subclause provides a subquery that produces a result set, and associates a name
with the subquery. The following example defines CTEs named cte1 and cte2 in the WITH clause,
and refers to them in the top-level SELECT that follows the WITH clause:

WITH
 cte1 AS (SELECT a, b FROM table1),
 cte2 AS (SELECT c, d FROM table2)
SELECT b, d FROM cte1 JOIN cte2
WHERE cte1.a = cte2.c;

In the statement containing the WITH clause, each CTE name can be referenced to access the
corresponding CTE result set.

A CTE name can be referenced in other CTEs, enabling CTEs to be defined based on other CTEs.

A CTE can refer to itself to define a recursive CTE. Common applications of recursive CTEs include
series generation and traversal of hierarchical or tree-structured data.

Common table expressions are an optional part of the syntax for DML statements. They are defined
using a WITH clause:

with_clause:
 WITH [RECURSIVE]
 cte_name [(col_name [, col_name] ...)] AS (subquery)
 [, cte_name [(col_name [, col_name] ...)] AS (subquery)] ...

cte_name names a single common table expression and can be used as a table reference in the
statement containing the WITH clause.

The subquery part of AS (subquery) is called the “subquery of the CTE” and is what produces the
CTE result set. The parentheses following AS are required.

2900

https://dev.mysql.com/blog-archive/mysql-8-0-labs-recursive-common-table-expressions-in-mysql-ctes/
https://dev.mysql.com/blog-archive/mysql-8-0-labs-recursive-common-table-expressions-in-mysql-ctes-part-two-how-to-generate-series/
https://dev.mysql.com/blog-archive/mysql-8-0-labs-recursive-common-table-expressions-in-mysql-ctes-part-two-how-to-generate-series/
https://dev.mysql.com/blog-archive/mysql-8-0-labs-recursive-common-table-expressions-in-mysql-ctes-part-three-hierarchies/
https://dev.mysql.com/blog-archive/mysql-8-0-labs-recursive-common-table-expressions-in-mysql-ctes-part-three-hierarchies/
https://dev.mysql.com/blog-archive/mysql-8-0-1-recursive-common-table-expressions-in-mysql-ctes-part-four-depth-first-or-breadth-first-traversal-transitive-closure-cycle-avoidance/
https://dev.mysql.com/blog-archive/mysql-8-0-1-recursive-common-table-expressions-in-mysql-ctes-part-four-depth-first-or-breadth-first-traversal-transitive-closure-cycle-avoidance/

WITH (Common Table Expressions)

A common table expression is recursive if its subquery refers to its own name. The RECURSIVE
keyword must be included if any CTE in the WITH clause is recursive. For more information, see
Recursive Common Table Expressions.

Determination of column names for a given CTE occurs as follows:

• If a parenthesized list of names follows the CTE name, those names are the column names:

WITH cte (col1, col2) AS
(
 SELECT 1, 2
 UNION ALL
 SELECT 3, 4
)
SELECT col1, col2 FROM cte;

The number of names in the list must be the same as the number of columns in the result set.

• Otherwise, the column names come from the select list of the first SELECT within the AS
(subquery) part:

WITH cte AS
(
 SELECT 1 AS col1, 2 AS col2
 UNION ALL
 SELECT 3, 4
)
SELECT col1, col2 FROM cte;

A WITH clause is permitted in these contexts:

• At the beginning of SELECT, UPDATE, and DELETE statements.

WITH ... SELECT ...
WITH ... UPDATE ...
WITH ... DELETE ...

• At the beginning of subqueries (including derived table subqueries):

SELECT ... WHERE id IN (WITH ... SELECT ...) ...
SELECT * FROM (WITH ... SELECT ...) AS dt ...

• Immediately preceding SELECT for statements that include a SELECT statement:

INSERT ... WITH ... SELECT ...
REPLACE ... WITH ... SELECT ...
CREATE TABLE ... WITH ... SELECT ...
CREATE VIEW ... WITH ... SELECT ...
DECLARE CURSOR ... WITH ... SELECT ...
EXPLAIN ... WITH ... SELECT ...

Only one WITH clause is permitted at the same level. WITH followed by WITH at the same level is not
permitted, so this is illegal:

WITH cte1 AS (...) WITH cte2 AS (...) SELECT ...

To make the statement legal, use a single WITH clause that separates the subclauses by a comma:

WITH cte1 AS (...), cte2 AS (...) SELECT ...

However, a statement can contain multiple WITH clauses if they occur at different levels:

WITH cte1 AS (SELECT 1)
SELECT * FROM (WITH cte2 AS (SELECT 2) SELECT * FROM cte2 JOIN cte1) AS dt;

A WITH clause can define one or more common table expressions, but each CTE name must be
unique to the clause. This is illegal:

2901

WITH (Common Table Expressions)

WITH cte1 AS (...), cte1 AS (...) SELECT ...

To make the statement legal, define the CTEs with unique names:

WITH cte1 AS (...), cte2 AS (...) SELECT ...

A CTE can refer to itself or to other CTEs:

• A self-referencing CTE is recursive.

• A CTE can refer to CTEs defined earlier in the same WITH clause, but not those defined later.

This constraint rules out mutually-recursive CTEs, where cte1 references cte2 and cte2
references cte1. One of those references must be to a CTE defined later, which is not permitted.

• A CTE in a given query block can refer to CTEs defined in query blocks at a more outer level, but not
CTEs defined in query blocks at a more inner level.

For resolving references to objects with the same names, derived tables hide CTEs; and CTEs hide
base tables, TEMPORARY tables, and views. Name resolution occurs by searching for objects in the
same query block, then proceeding to outer blocks in turn while no object with the name is found.

Like derived tables, a CTE cannot contain outer references prior to MySQL 8.0.14. This is a MySQL
restriction that is lifted in MySQL 8.0.14, not a restriction of the SQL standard. For additional syntax
considerations specific to recursive CTEs, see Recursive Common Table Expressions.

Recursive Common Table Expressions

A recursive common table expression is one having a subquery that refers to its own name. For
example:

WITH RECURSIVE cte (n) AS
(
 SELECT 1
 UNION ALL
 SELECT n + 1 FROM cte WHERE n < 5
)
SELECT * FROM cte;

When executed, the statement produces this result, a single column containing a simple linear
sequence:

+------+
| n |
+------+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
+------+

A recursive CTE has this structure:

• The WITH clause must begin with WITH RECURSIVE if any CTE in the WITH clause refers to itself. (If
no CTE refers to itself, RECURSIVE is permitted but not required.)

If you forget RECURSIVE for a recursive CTE, this error is a likely result:

ERROR 1146 (42S02): Table 'cte_name' doesn't exist

• The recursive CTE subquery has two parts, separated by UNION ALL or UNION [DISTINCT]:

SELECT ... -- return initial row set

2902

WITH (Common Table Expressions)

UNION ALL
SELECT ... -- return additional row sets

The first SELECT produces the initial row or rows for the CTE and does not refer to the CTE name.
The second SELECT produces additional rows and recurses by referring to the CTE name in its FROM
clause. Recursion ends when this part produces no new rows. Thus, a recursive CTE consists of a
nonrecursive SELECT part followed by a recursive SELECT part.

Each SELECT part can itself be a union of multiple SELECT statements.

• The types of the CTE result columns are inferred from the column types of the nonrecursive SELECT
part only, and the columns are all nullable. For type determination, the recursive SELECT part is
ignored.

• If the nonrecursive and recursive parts are separated by UNION DISTINCT, duplicate rows are
eliminated. This is useful for queries that perform transitive closures, to avoid infinite loops.

• Each iteration of the recursive part operates only on the rows produced by the previous iteration.
If the recursive part has multiple query blocks, iterations of each query block are scheduled in
unspecified order, and each query block operates on rows that have been produced either by its
previous iteration or by other query blocks since that previous iteration's end.

The recursive CTE subquery shown earlier has this nonrecursive part that retrieves a single row to
produce the initial row set:

SELECT 1

The CTE subquery also has this recursive part:

SELECT n + 1 FROM cte WHERE n < 5

At each iteration, that SELECT produces a row with a new value one greater than the value of n from
the previous row set. The first iteration operates on the initial row set (1) and produces 1+1=2; the
second iteration operates on the first iteration's row set (2) and produces 2+1=3; and so forth. This
continues until recursion ends, which occurs when n is no longer less than 5.

If the recursive part of a CTE produces wider values for a column than the nonrecursive part, it may
be necessary to widen the column in the nonrecursive part to avoid data truncation. Consider this
statement:

WITH RECURSIVE cte AS
(
 SELECT 1 AS n, 'abc' AS str
 UNION ALL
 SELECT n + 1, CONCAT(str, str) FROM cte WHERE n < 3
)
SELECT * FROM cte;

In nonstrict SQL mode, the statement produces this output:

+------+------+
| n | str |
+------+------+
1	abc
2	abc
3	abc
+------+------+

The str column values are all 'abc' because the nonrecursive SELECT determines the column
widths. Consequently, the wider str values produced by the recursive SELECT are truncated.

In strict SQL mode, the statement produces an error:

ERROR 1406 (22001): Data too long for column 'str' at row 1

2903

WITH (Common Table Expressions)

To address this issue, so that the statement does not produce truncation or errors, use CAST() in the
nonrecursive SELECT to make the str column wider:

WITH RECURSIVE cte AS
(
 SELECT 1 AS n, CAST('abc' AS CHAR(20)) AS str
 UNION ALL
 SELECT n + 1, CONCAT(str, str) FROM cte WHERE n < 3
)
SELECT * FROM cte;

Now the statement produces this result, without truncation:

+------+--------------+
| n | str |
+------+--------------+
1	abc
2	abcabc
3	abcabcabcabc
+------+--------------+

Columns are accessed by name, not position, which means that columns in the recursive part can
access columns in the nonrecursive part that have a different position, as this CTE illustrates:

WITH RECURSIVE cte AS
(
 SELECT 1 AS n, 1 AS p, -1 AS q
 UNION ALL
 SELECT n + 1, q * 2, p * 2 FROM cte WHERE n < 5
)
SELECT * FROM cte;

Because p in one row is derived from q in the previous row, and vice versa, the positive and negative
values swap positions in each successive row of the output:

+------+------+------+
| n | p | q |
+------+------+------+
1	1	-1
2	-2	2
3	4	-4
4	-8	8
5	16	-16
+------+------+------+

Some syntax constraints apply within recursive CTE subqueries:

• The recursive SELECT part must not contain these constructs:

• Aggregate functions such as SUM()

• Window functions

• GROUP BY

• ORDER BY

• DISTINCT

Prior to MySQL 8.0.19, the recursive SELECT part of a recursive CTE also could not use a LIMIT
clause. This restriction is lifted in MySQL 8.0.19, and LIMIT is now supported in such cases, along
with an optional OFFSET clause. The effect on the result set is the same as when using LIMIT in
the outermost SELECT, but is also more efficient, since using it with the recursive SELECT stops the
generation of rows as soon as the requested number of them has been produced.

These constraints do not apply to the nonrecursive SELECT part of a recursive CTE. The prohibition
on DISTINCT applies only to UNION members; UNION DISTINCT is permitted.

2904

WITH (Common Table Expressions)

• The recursive SELECT part must reference the CTE only once and only in its FROM clause, not in any
subquery. It can reference tables other than the CTE and join them with the CTE. If used in a join like
this, the CTE must not be on the right side of a LEFT JOIN.

These constraints come from the SQL standard, other than the MySQL-specific exclusions of ORDER
BY, LIMIT (MySQL 8.0.18 and earlier), and DISTINCT.

For recursive CTEs, EXPLAIN output rows for recursive SELECT parts display Recursive in the
Extra column.

Cost estimates displayed by EXPLAIN represent cost per iteration, which might differ considerably from
total cost. The optimizer cannot predict the number of iterations because it cannot predict at what point
the WHERE clause becomes false.

CTE actual cost may also be affected by result set size. A CTE that produces many rows may require
an internal temporary table large enough to be converted from in-memory to on-disk format and may
suffer a performance penalty. If so, increasing the permitted in-memory temporary table size may
improve performance; see Section 10.4.4, “Internal Temporary Table Use in MySQL”.

Limiting Common Table Expression Recursion

It is important for recursive CTEs that the recursive SELECT part include a condition to terminate
recursion. As a development technique to guard against a runaway recursive CTE, you can force
termination by placing a limit on execution time:

• The cte_max_recursion_depth system variable enforces a limit on the number of recursion
levels for CTEs. The server terminates execution of any CTE that recurses more levels than the
value of this variable.

• The max_execution_time system variable enforces an execution timeout for SELECT statements
executed within the current session.

• The MAX_EXECUTION_TIME optimizer hint enforces a per-query execution timeout for the SELECT
statement in which it appears.

Suppose that a recursive CTE is mistakenly written with no recursion execution termination condition:

WITH RECURSIVE cte (n) AS
(
 SELECT 1
 UNION ALL
 SELECT n + 1 FROM cte
)
SELECT * FROM cte;

By default, cte_max_recursion_depth has a value of 1000, causing the CTE to terminate when it
recurses past 1000 levels. Applications can change the session value to adjust for their requirements:

SET SESSION cte_max_recursion_depth = 10; -- permit only shallow recursion
SET SESSION cte_max_recursion_depth = 1000000; -- permit deeper recursion

You can also set the global cte_max_recursion_depth value to affect all sessions that begin
subsequently.

For queries that execute and thus recurse slowly or in contexts for which there is reason to set the
cte_max_recursion_depth value very high, another way to guard against deep recursion is to set a
per-session timeout. To do so, execute a statement like this prior to executing the CTE statement:

SET max_execution_time = 1000; -- impose one second timeout

Alternatively, include an optimizer hint within the CTE statement itself:

WITH RECURSIVE cte (n) AS

2905

WITH (Common Table Expressions)

(
 SELECT 1
 UNION ALL
 SELECT n + 1 FROM cte
)
SELECT /*+ SET_VAR(cte_max_recursion_depth = 1M) */ * FROM cte;

WITH RECURSIVE cte (n) AS
(
 SELECT 1
 UNION ALL
 SELECT n + 1 FROM cte
)
SELECT /*+ MAX_EXECUTION_TIME(1000) */ * FROM cte;

Beginning with MySQL 8.0.19, you can also use LIMIT within the recursive query to impose a
maximum number of rows to be returned to the outermost SELECT, for example:

WITH RECURSIVE cte (n) AS
(
 SELECT 1
 UNION ALL
 SELECT n + 1 FROM cte LIMIT 10000
)
SELECT * FROM cte;

You can do this in addition to or instead of setting a time limit. Thus, the following CTE terminates after
returning ten thousand rows or running for one second (1000 milliseconds), whichever occurs first:

WITH RECURSIVE cte (n) AS
(
 SELECT 1
 UNION ALL
 SELECT n + 1 FROM cte LIMIT 10000
)
SELECT /*+ MAX_EXECUTION_TIME(1000) */ * FROM cte;

If a recursive query without an execution time limit enters an infinite loop, you can terminate it from
another session using KILL QUERY. Within the session itself, the client program used to run the query
might provide a way to kill the query. For example, in mysql, typing Control+C interrupts the current
statement.

Recursive Common Table Expression Examples

As mentioned previously, recursive common table expressions (CTEs) are frequently used for series
generation and traversing hierarchical or tree-structured data. This section shows some simple
examples of these techniques.

• Fibonacci Series Generation

• Date Series Generation

• Hierarchical Data Traversal

Fibonacci Series Generation

A Fibonacci series begins with the two numbers 0 and 1 (or 1 and 1) and each number after that is
the sum of the previous two numbers. A recursive common table expression can generate a Fibonacci
series if each row produced by the recursive SELECT has access to the two previous numbers from the
series. The following CTE generates a 10-number series using 0 and 1 as the first two numbers:

WITH RECURSIVE fibonacci (n, fib_n, next_fib_n) AS
(
 SELECT 1, 0, 1
 UNION ALL

2906

WITH (Common Table Expressions)

 SELECT n + 1, next_fib_n, fib_n + next_fib_n
 FROM fibonacci WHERE n < 10
)
SELECT * FROM fibonacci;

The CTE produces this result:

+------+-------+------------+
| n | fib_n | next_fib_n |
+------+-------+------------+
1	0	1
2	1	1
3	1	2
4	2	3
5	3	5
6	5	8
7	8	13
8	13	21
9	21	34
10	34	55
+------+-------+------------+

How the CTE works:

• n is a display column to indicate that the row contains the n-th Fibonacci number. For example, the
8th Fibonacci number is 13.

• The fib_n column displays Fibonacci number n.

• The next_fib_n column displays the next Fibonacci number after number n. This column provides
the next series value to the next row, so that row can produce the sum of the two previous series
values in its fib_n column.

• Recursion ends when n reaches 10. This is an arbitrary choice, to limit the output to a small set of
rows.

The preceding output shows the entire CTE result. To select just part of it, add an appropriate WHERE
clause to the top-level SELECT. For example, to select the 8th Fibonacci number, do this:

mysql> WITH RECURSIVE fibonacci ...
 ...
 SELECT fib_n FROM fibonacci WHERE n = 8;
+-------+
| fib_n |
+-------+
| 13 |
+-------+

Date Series Generation

A common table expression can generate a series of successive dates, which is useful for generating
summaries that include a row for all dates in the series, including dates not represented in the
summarized data.

Suppose that a table of sales numbers contains these rows:

mysql> SELECT * FROM sales ORDER BY date, price;
+------------+--------+
| date | price |
+------------+--------+
2017-01-03	100.00
2017-01-03	200.00
2017-01-06	50.00
2017-01-08	10.00
2017-01-08	20.00
2017-01-08	150.00
2017-01-10	5.00

2907

WITH (Common Table Expressions)

+------------+--------+

This query summarizes the sales per day:

mysql> SELECT date, SUM(price) AS sum_price
 FROM sales
 GROUP BY date
 ORDER BY date;
+------------+-----------+
| date | sum_price |
+------------+-----------+
2017-01-03	300.00
2017-01-06	50.00
2017-01-08	180.00
2017-01-10	5.00
+------------+-----------+

However, that result contains “holes” for dates not represented in the range of dates spanned by
the table. A result that represents all dates in the range can be produced using a recursive CTE to
generate that set of dates, joined with a LEFT JOIN to the sales data.

Here is the CTE to generate the date range series:

WITH RECURSIVE dates (date) AS
(
 SELECT MIN(date) FROM sales
 UNION ALL
 SELECT date + INTERVAL 1 DAY FROM dates
 WHERE date + INTERVAL 1 DAY <= (SELECT MAX(date) FROM sales)
)
SELECT * FROM dates;

The CTE produces this result:

+------------+
| date |
+------------+
| 2017-01-03 |
| 2017-01-04 |
| 2017-01-05 |
| 2017-01-06 |
| 2017-01-07 |
| 2017-01-08 |
| 2017-01-09 |
| 2017-01-10 |
+------------+

How the CTE works:

• The nonrecursive SELECT produces the lowest date in the date range spanned by the sales table.

• Each row produced by the recursive SELECT adds one day to the date produced by the previous
row.

• Recursion ends after the dates reach the highest date in the date range spanned by the sales table.

Joining the CTE with a LEFT JOIN against the sales table produces the sales summary with a row
for each date in the range:

WITH RECURSIVE dates (date) AS
(
 SELECT MIN(date) FROM sales
 UNION ALL
 SELECT date + INTERVAL 1 DAY FROM dates
 WHERE date + INTERVAL 1 DAY <= (SELECT MAX(date) FROM sales)
)
SELECT dates.date, COALESCE(SUM(price), 0) AS sum_price
FROM dates LEFT JOIN sales ON dates.date = sales.date

2908

WITH (Common Table Expressions)

GROUP BY dates.date
ORDER BY dates.date;

The output looks like this:

+------------+-----------+
| date | sum_price |
+------------+-----------+
2017-01-03	300.00
2017-01-04	0.00
2017-01-05	0.00
2017-01-06	50.00
2017-01-07	0.00
2017-01-08	180.00
2017-01-09	0.00
2017-01-10	5.00
+------------+-----------+

Some points to note:

• Are the queries inefficient, particularly the one with the MAX() subquery executed for each row in the
recursive SELECT? EXPLAIN shows that the subquery containing MAX() is evaluated only once and
the result is cached.

• The use of COALESCE() avoids displaying NULL in the sum_price column on days for which no
sales data occur in the sales table.

Hierarchical Data Traversal

Recursive common table expressions are useful for traversing data that forms a hierarchy. Consider
these statements that create a small data set that shows, for each employee in a company, the
employee name and ID number, and the ID of the employee's manager. The top-level employee (the
CEO), has a manager ID of NULL (no manager).

CREATE TABLE employees (
 id INT PRIMARY KEY NOT NULL,
 name VARCHAR(100) NOT NULL,
 manager_id INT NULL,
 INDEX (manager_id),
FOREIGN KEY (manager_id) REFERENCES employees (id)
);
INSERT INTO employees VALUES
(333, "Yasmina", NULL), # Yasmina is the CEO (manager_id is NULL)
(198, "John", 333), # John has ID 198 and reports to 333 (Yasmina)
(692, "Tarek", 333),
(29, "Pedro", 198),
(4610, "Sarah", 29),
(72, "Pierre", 29),
(123, "Adil", 692);

The resulting data set looks like this:

mysql> SELECT * FROM employees ORDER BY id;
+------+---------+------------+
| id | name | manager_id |
+------+---------+------------+
29	Pedro	198
72	Pierre	29
123	Adil	692
198	John	333
333	Yasmina	NULL
692	Tarek	333
4610	Sarah	29
+------+---------+------------+

To produce the organizational chart with the management chain for each employee (that is, the path
from CEO to employee), use a recursive CTE:

2909

WITH (Common Table Expressions)

WITH RECURSIVE employee_paths (id, name, path) AS
(
 SELECT id, name, CAST(id AS CHAR(200))
 FROM employees
 WHERE manager_id IS NULL
 UNION ALL
 SELECT e.id, e.name, CONCAT(ep.path, ',', e.id)
 FROM employee_paths AS ep JOIN employees AS e
 ON ep.id = e.manager_id
)
SELECT * FROM employee_paths ORDER BY path;

The CTE produces this output:

+------+---------+-----------------+
| id | name | path |
+------+---------+-----------------+
333	Yasmina	333
198	John	333,198
29	Pedro	333,198,29
4610	Sarah	333,198,29,4610
72	Pierre	333,198,29,72
692	Tarek	333,692
123	Adil	333,692,123
+------+---------+-----------------+

How the CTE works:

• The nonrecursive SELECT produces the row for the CEO (the row with a NULL manager ID).

The path column is widened to CHAR(200) to ensure that there is room for the longer path values
produced by the recursive SELECT.

• Each row produced by the recursive SELECT finds all employees who report directly to an employee
produced by a previous row. For each such employee, the row includes the employee ID and name,
and the employee management chain. The chain is the manager's chain, with the employee ID
added to the end.

• Recursion ends when employees have no others who report to them.

To find the path for a specific employee or employees, add a WHERE clause to the top-level SELECT.
For example, to display the results for Tarek and Sarah, modify that SELECT like this:

mysql> WITH RECURSIVE ...
 ...
 SELECT * FROM employees_extended
 WHERE id IN (692, 4610)
 ORDER BY path;
+------+-------+-----------------+
| id | name | path |
+------+-------+-----------------+
| 4610 | Sarah | 333,198,29,4610 |
| 692 | Tarek | 333,692 |
+------+-------+-----------------+

Common Table Expressions Compared to Similar Constructs

Common table expressions (CTEs) are similar to derived tables in some ways:

• Both constructs are named.

• Both constructs exist for the scope of a single statement.

Because of these similarities, CTEs and derived tables often can be used interchangeably. As a trivial
example, these statements are equivalent:

WITH cte AS (SELECT 1) SELECT * FROM cte;

2910

Transactional and Locking Statements

SELECT * FROM (SELECT 1) AS dt;

However, CTEs have some advantages over derived tables:

• A derived table can be referenced only a single time within a query. A CTE can be referenced
multiple times. To use multiple instances of a derived table result, you must derive the result multiple
times.

• A CTE can be self-referencing (recursive).

• One CTE can refer to another.

• A CTE may be easier to read when its definition appears at the beginning of the statement rather
than embedded within it.

CTEs are similar to tables created with CREATE [TEMPORARY] TABLE but need not be defined or
dropped explicitly. For a CTE, you need no privileges to create tables.

15.3 Transactional and Locking Statements

MySQL supports local transactions (within a given client session) through statements such as SET
autocommit, START TRANSACTION, COMMIT, and ROLLBACK. See Section 15.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Statements”. XA transaction support enables MySQL to
participate in distributed transactions as well. See Section 15.3.8, “XA Transactions”.

15.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements

START TRANSACTION
 [transaction_characteristic [, transaction_characteristic] ...]

transaction_characteristic: {
 WITH CONSISTENT SNAPSHOT
 | READ WRITE
 | READ ONLY
}

BEGIN [WORK]
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
SET autocommit = {0 | 1}

These statements provide control over use of transactions:

• START TRANSACTION or BEGIN start a new transaction.

• COMMIT commits the current transaction, making its changes permanent.

• ROLLBACK rolls back the current transaction, canceling its changes.

• SET autocommit disables or enables the default autocommit mode for the current session.

By default, MySQL runs with autocommit mode enabled. This means that, when not otherwise inside a
transaction, each statement is atomic, as if it were surrounded by START TRANSACTION and COMMIT.
You cannot use ROLLBACK to undo the effect; however, if an error occurs during statement execution,
the statement is rolled back.

To disable autocommit mode implicitly for a single series of statements, use the START TRANSACTION
statement:

START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;

2911

START TRANSACTION, COMMIT, and ROLLBACK Statements

COMMIT;

With START TRANSACTION, autocommit remains disabled until you end the transaction with COMMIT
or ROLLBACK. The autocommit mode then reverts to its previous state.

START TRANSACTION permits several modifiers that control transaction characteristics. To specify
multiple modifiers, separate them by commas.

• The WITH CONSISTENT SNAPSHOT modifier starts a consistent read for storage engines
that are capable of it. This applies only to InnoDB. The effect is the same as issuing a START
TRANSACTION followed by a SELECT from any InnoDB table. See Section 17.7.2.3, “Consistent
Nonlocking Reads”. The WITH CONSISTENT SNAPSHOT modifier does not change the current
transaction isolation level, so it provides a consistent snapshot only if the current isolation level
is one that permits a consistent read. The only isolation level that permits a consistent read is
REPEATABLE READ. For all other isolation levels, the WITH CONSISTENT SNAPSHOT clause is
ignored. A warning is generated when the WITH CONSISTENT SNAPSHOT clause is ignored.

• The READ WRITE and READ ONLY modifiers set the transaction access mode. They permit
or prohibit changes to tables used in the transaction. The READ ONLY restriction prevents the
transaction from modifying or locking both transactional and nontransactional tables that are visible
to other transactions; the transaction can still modify or lock temporary tables.

MySQL enables extra optimizations for queries on InnoDB tables when the transaction is known to
be read-only. Specifying READ ONLY ensures these optimizations are applied in cases where the
read-only status cannot be determined automatically. See Section 10.5.3, “Optimizing InnoDB Read-
Only Transactions” for more information.

If no access mode is specified, the default mode applies. Unless the default has been changed, it is
read/write. It is not permitted to specify both READ WRITE and READ ONLY in the same statement.

In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using
DML statements. Changes made with DDL statements are not permitted, just as with permanent
tables.

For additional information about transaction access mode, including ways to change the default
mode, see Section 15.3.7, “SET TRANSACTION Statement”.

If the read_only system variable is enabled, explicitly starting a transaction with START
TRANSACTION READ WRITE requires the CONNECTION_ADMIN privilege (or the deprecated SUPER
privilege).

Important

Many APIs used for writing MySQL client applications (such as JDBC) provide
their own methods for starting transactions that can (and sometimes should) be
used instead of sending a START TRANSACTION statement from the client. See
Chapter 31, Connectors and APIs, or the documentation for your API, for more
information.

To disable autocommit mode explicitly, use the following statement:

SET autocommit=0;

After disabling autocommit mode by setting the autocommit variable to zero, changes to transaction-
safe tables (such as those for InnoDB or NDB) are not made permanent immediately. You must use
COMMIT to store your changes to disk or ROLLBACK to ignore the changes.

autocommit is a session variable and must be set for each session. To disable autocommit mode for
each new connection, see the description of the autocommit system variable at Section 7.1.8, “Server
System Variables”.

2912

START TRANSACTION, COMMIT, and ROLLBACK Statements

BEGIN and BEGIN WORK are supported as aliases of START TRANSACTION for initiating a transaction.
START TRANSACTION is standard SQL syntax, is the recommended way to start an ad-hoc
transaction, and permits modifiers that BEGIN does not.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END
compound statement. The latter does not begin a transaction. See Section 15.6.1, “BEGIN ... END
Compound Statement”.

Note

Within all stored programs (stored procedures and functions, triggers, and
events), the parser treats BEGIN [WORK] as the beginning of a BEGIN ...
END block. Begin a transaction in this context with START TRANSACTION
instead.

The optional WORK keyword is supported for COMMIT and ROLLBACK, as are the CHAIN and RELEASE
clauses. CHAIN and RELEASE can be used for additional control over transaction completion. The
value of the completion_type system variable determines the default completion behavior. See
Section 7.1.8, “Server System Variables”.

The AND CHAIN clause causes a new transaction to begin as soon as the current one ends, and the
new transaction has the same isolation level as the just-terminated transaction. The new transaction
also uses the same access mode (READ WRITE or READ ONLY) as the just-terminated transaction.
The RELEASE clause causes the server to disconnect the current client session after terminating the
current transaction. Including the NO keyword suppresses CHAIN or RELEASE completion, which can
be useful if the completion_type system variable is set to cause chaining or release completion by
default.

Beginning a transaction causes any pending transaction to be committed. See Section 15.3.3,
“Statements That Cause an Implicit Commit”, for more information.

Beginning a transaction also causes table locks acquired with LOCK TABLES to be released, as though
you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock
acquired with FLUSH TABLES WITH READ LOCK.

For best results, transactions should be performed using only tables managed by a single transaction-
safe storage engine. Otherwise, the following problems can occur:

• If you use tables from more than one transaction-safe storage engine (such as InnoDB), and the
transaction isolation level is not SERIALIZABLE, it is possible that when one transaction commits,
another ongoing transaction that uses the same tables sees only some of the changes made by
the first transaction. That is, the atomicity of transactions is not guaranteed with mixed engines
and inconsistencies can result. (If mixed-engine transactions are infrequent, you can use SET
TRANSACTION ISOLATION LEVEL to set the isolation level to SERIALIZABLE on a per-transaction
basis as necessary.)

• If you use tables that are not transaction-safe within a transaction, changes to those tables are
stored at once, regardless of the status of autocommit mode.

• If you issue a ROLLBACK statement after updating a nontransactional table within a transaction, an
ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe tables are
rolled back, but not changes to nontransaction-safe tables.

Each transaction is stored in the binary log in one chunk, upon COMMIT. Transactions that are rolled
back are not logged. (Exception: Modifications to nontransactional tables cannot be rolled back. If a
transaction that is rolled back includes modifications to nontransactional tables, the entire transaction
is logged with a ROLLBACK statement at the end to ensure that modifications to the nontransactional
tables are replicated.) See Section 7.4.4, “The Binary Log”.

You can change the isolation level or access mode for transactions with the SET TRANSACTION
statement. See Section 15.3.7, “SET TRANSACTION Statement”.

2913

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warning_not_complete_rollback

Statements That Cannot Be Rolled Back

Rolling back can be a slow operation that may occur implicitly without the user having explicitly asked
for it (for example, when an error occurs). Because of this, SHOW PROCESSLIST displays Rolling
back in the State column for the session, not only for explicit rollbacks performed with the ROLLBACK
statement but also for implicit rollbacks.

Note

In MySQL 8.0, BEGIN, COMMIT, and ROLLBACK are not affected by --
replicate-do-db or --replicate-ignore-db rules.

When InnoDB performs a complete rollback of a transaction, all locks set by the transaction are
released. If a single SQL statement within a transaction rolls back as a result of an error, such as a
duplicate key error, locks set by the statement are preserved while the transaction remains active. This
happens because InnoDB stores row locks in a format such that it cannot know afterward which lock
was set by which statement.

If a SELECT statement within a transaction calls a stored function, and a statement within the stored
function fails, that statement rolls back. If ROLLBACK is executed for the transaction subsequently, the
entire transaction rolls back.

15.3.2 Statements That Cannot Be Rolled Back

Some statements cannot be rolled back. In general, these include data definition language (DDL)
statements, such as those that create or drop databases, those that create, drop, or alter tables or
stored routines.

You should design your transactions not to include such statements. If you issue a statement early in
a transaction that cannot be rolled back, and then another statement later fails, the full effect of the
transaction cannot be rolled back in such cases by issuing a ROLLBACK statement.

15.3.3 Statements That Cause an Implicit Commit

The statements listed in this section (and any synonyms for them) implicitly end any transaction active
in the current session, as if you had done a COMMIT before executing the statement.

Most of these statements also cause an implicit commit after executing. The intent is to handle
each such statement in its own special transaction. Transaction-control and locking statements are
exceptions: If an implicit commit occurs before execution, another does not occur after.

• Data definition language (DDL) statements that define or modify database objects. ALTER
EVENT, ALTER FUNCTION, ALTER PROCEDURE, ALTER SERVER, ALTER TABLE, ALTER
TABLESPACE, ALTER VIEW, CREATE DATABASE, CREATE EVENT, CREATE FUNCTION, CREATE
INDEX, CREATE PROCEDURE, CREATE ROLE, CREATE SERVER, CREATE SPATIAL REFERENCE
SYSTEM, CREATE TABLE, CREATE TABLESPACE, CREATE TRIGGER, CREATE VIEW, DROP
DATABASE, DROP EVENT, DROP FUNCTION, DROP INDEX, DROP PROCEDURE, DROP ROLE,
DROP SERVER, DROP SPATIAL REFERENCE SYSTEM, DROP TABLE, DROP TABLESPACE, DROP
TRIGGER, DROP VIEW, INSTALL PLUGIN, RENAME TABLE, TRUNCATE TABLE, UNINSTALL
PLUGIN.

CREATE TABLE and DROP TABLE statements do not commit a transaction if the TEMPORARY
keyword is used. (This does not apply to other operations on temporary tables such as ALTER
TABLE and CREATE INDEX, which do cause a commit.) However, although no implicit commit
occurs, neither can the statement be rolled back, which means that the use of such statements
causes transactional atomicity to be violated. For example, if you use CREATE TEMPORARY TABLE
and then roll back the transaction, the table remains in existence.

The CREATE TABLE statement in InnoDB is processed as a single transaction. This means that
a ROLLBACK from the user does not undo CREATE TABLE statements the user made during that
transaction.

2914

SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements

CREATE TABLE ... SELECT causes an implicit commit before and after the statement is
executed when you are creating nontemporary tables. (No commit occurs for CREATE TEMPORARY
TABLE ... SELECT.)

• Statements that implicitly use or modify tables in the mysql database. ALTER USER, CREATE
USER, DROP USER, GRANT, RENAME USER, REVOKE, SET PASSWORD.

• Transaction-control and locking statements. BEGIN, LOCK TABLES, SET autocommit = 1 (if
the value is not already 1), START TRANSACTION, UNLOCK TABLES.

UNLOCK TABLES commits a transaction only if any tables currently have been locked with LOCK
TABLES to acquire nontransactional table locks. A commit does not occur for UNLOCK TABLES
following FLUSH TABLES WITH READ LOCK because the latter statement does not acquire table-
level locks.

Transactions cannot be nested. This is a consequence of the implicit commit performed for any
current transaction when you issue a START TRANSACTION statement or one of its synonyms.

Statements that cause an implicit commit cannot be used in an XA transaction while the transaction
is in an ACTIVE state.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END
compound statement. The latter does not cause an implicit commit. See Section 15.6.1, “BEGIN ...
END Compound Statement”.

• Data loading statements. LOAD DATA. LOAD DATA causes an implicit commit only for tables using
the NDB storage engine.

• Administrative statements. ANALYZE TABLE, CACHE INDEX, CHECK TABLE, FLUSH, LOAD
INDEX INTO CACHE, OPTIMIZE TABLE, REPAIR TABLE, RESET (but not RESET PERSIST).

• Replication control statements. START REPLICA, STOP REPLICA, RESET REPLICA, CHANGE
REPLICATION SOURCE TO, CHANGE MASTER TO. The SLAVE keyword was replaced with
REPLICA in MySQL 8.0.22.

15.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE
SAVEPOINT Statements

SAVEPOINT identifier
ROLLBACK [WORK] TO [SAVEPOINT] identifier
RELEASE SAVEPOINT identifier

InnoDB supports the SQL statements SAVEPOINT, ROLLBACK TO SAVEPOINT, RELEASE
SAVEPOINT and the optional WORK keyword for ROLLBACK.

The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If the
current transaction has a savepoint with the same name, the old savepoint is deleted and a new one is
set.

The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint without
terminating the transaction. Modifications that the current transaction made to rows after the savepoint
was set are undone in the rollback, but InnoDB does not release the row locks that were stored in
memory after the savepoint. (For a new inserted row, the lock information is carried by the transaction
ID stored in the row; the lock is not separately stored in memory. In this case, the row lock is released
in the undo.) Savepoints that were set at a later time than the named savepoint are deleted.

If the ROLLBACK TO SAVEPOINT statement returns the following error, it means that no savepoint with
the specified name exists:

ERROR 1305 (42000): SAVEPOINT identifier does not exist

2915

LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements

The RELEASE SAVEPOINT statement removes the named savepoint from the set of savepoints of the
current transaction. No commit or rollback occurs. It is an error if the savepoint does not exist.

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK that does
not name a savepoint.

A new savepoint level is created when a stored function is invoked or a trigger is activated. The
savepoints on previous levels become unavailable and thus do not conflict with savepoints on the new
level. When the function or trigger terminates, any savepoints it created are released and the previous
savepoint level is restored.

15.3.5 LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements
LOCK INSTANCE FOR BACKUP

UNLOCK INSTANCE

LOCK INSTANCE FOR BACKUP acquires an instance-level backup lock that permits DML during an
online backup while preventing operations that could result in an inconsistent snapshot.

Executing the LOCK INSTANCE FOR BACKUP statement requires the BACKUP_ADMIN privilege. The
BACKUP_ADMIN privilege is automatically granted to users with the RELOAD privilege when performing
an in-place upgrade to MySQL 8.0 from an earlier version.

Multiple sessions can hold a backup lock simultaneously.

UNLOCK INSTANCE releases a backup lock held by the current session. A backup lock held by a
session is also released if the session is terminated.

LOCK INSTANCE FOR BACKUP prevents files from being created, renamed, or removed. REPAIR
TABLE TRUNCATE TABLE, OPTIMIZE TABLE, and account management statements are blocked. See
Section 15.7.1, “Account Management Statements”. Operations that modify InnoDB files that are not
recorded in the InnoDB redo log are also blocked.

LOCK INSTANCE FOR BACKUP permits DDL operations that only affect user-created temporary
tables. In effect, files that belong to user-created temporary tables can be created, renamed, or
removed while a backup lock is held. Creation of binary log files is also permitted.

PURGE BINARY LOGS should not be issued while a LOCK INSTANCE FOR BACKUP statement is in
effect for the instance, because it contravenes the rules of the backup lock by removing files from the
server. From MySQL 8.0.28, this is disallowed.

A backup lock acquired by LOCK INSTANCE FOR BACKUP is independent of transactional locks
and locks taken by FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK, and the
following sequences of statements are permitted:

LOCK INSTANCE FOR BACKUP;
FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK;
UNLOCK TABLES;
UNLOCK INSTANCE;

FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK;
LOCK INSTANCE FOR BACKUP;
UNLOCK INSTANCE;
UNLOCK TABLES;

The lock_wait_timeout setting defines the amount of time that a LOCK INSTANCE FOR BACKUP
statement waits to acquire a lock before giving up.

15.3.6 LOCK TABLES and UNLOCK TABLES Statements
LOCK {TABLE | TABLES}
 tbl_name [[AS] alias] lock_type

2916

LOCK TABLES and UNLOCK TABLES Statements

 [, tbl_name [[AS] alias] lock_type] ...

lock_type: {
 READ [LOCAL]
 | [LOW_PRIORITY] WRITE
}

UNLOCK {TABLE | TABLES}

MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with
other sessions for access to tables, or to prevent other sessions from modifying tables during periods
when a session requires exclusive access to them. A session can acquire or release locks only for
itself. One session cannot acquire locks for another session or release locks held by another session.

Locks may be used to emulate transactions or to get more speed when updating tables. This is
explained in more detail in Table-Locking Restrictions and Conditions.

LOCK TABLES explicitly acquires table locks for the current client session. Table locks can be acquired
for base tables or views. You must have the LOCK TABLES privilege, and the SELECT privilege for
each object to be locked.

For view locking, LOCK TABLES adds all base tables used in the view to the set of tables to be locked
and locks them automatically. For tables underlying any view being locked, LOCK TABLES checks
that the view definer (for SQL SECURITY DEFINER views) or invoker (for all views) has the proper
privileges on the tables.

If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly, as
described in LOCK TABLES and Triggers.

If you lock a table explicitly with LOCK TABLES, any tables related by a foreign key constraint are
opened and locked implicitly. For foreign key checks, a shared read-only lock (LOCK TABLES READ) is
taken on related tables. For cascading updates, a shared-nothing write lock (LOCK TABLES WRITE) is
taken on related tables that are involved in the operation.

UNLOCK TABLES explicitly releases any table locks held by the current session. LOCK TABLES
implicitly releases any table locks held by the current session before acquiring new locks.

Another use for UNLOCK TABLES is to release the global read lock acquired with the FLUSH
TABLES WITH READ LOCK statement, which enables you to lock all tables in all databases. See
Section 15.7.8.3, “FLUSH Statement”. (This is a very convenient way to get backups if you have a file
system such as Veritas that can take snapshots in time.)

LOCK TABLE is a synonym for LOCK TABLES; UNLOCK TABLE is a synonym for UNLOCK TABLES.

A table lock protects only against inappropriate reads or writes by other sessions. A session holding
a WRITE lock can perform table-level operations such as DROP TABLE or TRUNCATE TABLE. For
sessions holding a READ lock, DROP TABLE and TRUNCATE TABLE operations are not permitted.

The following discussion applies only to non-TEMPORARY tables. LOCK TABLES is permitted (but
ignored) for a TEMPORARY table. The table can be accessed freely by the session within which it was
created, regardless of what other locking may be in effect. No lock is necessary because no other
session can see the table.

• Table Lock Acquisition

• Table Lock Release

• Interaction of Table Locking and Transactions

• LOCK TABLES and Triggers

• Table-Locking Restrictions and Conditions

2917

LOCK TABLES and UNLOCK TABLES Statements

Table Lock Acquisition

To acquire table locks within the current session, use the LOCK TABLES statement, which acquires
metadata locks (see Section 10.11.4, “Metadata Locking”).

The following lock types are available:

READ [LOCAL] lock:

• The session that holds the lock can read the table (but not write it).

• Multiple sessions can acquire a READ lock for the table at the same time.

• Other sessions can read the table without explicitly acquiring a READ lock.

• The LOCAL modifier enables nonconflicting INSERT statements (concurrent inserts) by other
sessions to execute while the lock is held. (See Section 10.11.3, “Concurrent Inserts”.) However,
READ LOCAL cannot be used if you are going to manipulate the database using processes external
to the server while you hold the lock. For InnoDB tables, READ LOCAL is the same as READ.

[LOW_PRIORITY] WRITE lock:

• The session that holds the lock can read and write the table.

• Only the session that holds the lock can access the table. No other session can access it until the
lock is released.

• Lock requests for the table by other sessions block while the WRITE lock is held.

• The LOW_PRIORITY modifier has no effect. In previous versions of MySQL, it affected locking
behavior, but this is no longer true. It is now deprecated and its use produces a warning. Use WRITE
without LOW_PRIORITY instead.

WRITE locks normally have higher priority than READ locks to ensure that updates are processed
as soon as possible. This means that if one session obtains a READ lock and then another session
requests a WRITE lock, subsequent READ lock requests wait until the session that requested the WRITE
lock has obtained the lock and released it. (An exception to this policy can occur for small values of the
max_write_lock_count system variable; see Section 10.11.4, “Metadata Locking”.)

If the LOCK TABLES statement must wait due to locks held by other sessions on any of the tables, it
blocks until all locks can be acquired.

A session that requires locks must acquire all the locks that it needs in a single LOCK TABLES
statement. While the locks thus obtained are held, the session can access only the locked tables.
For example, in the following sequence of statements, an error occurs for the attempt to access t2
because it was not locked in the LOCK TABLES statement:

mysql> LOCK TABLES t1 READ;
mysql> SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+
mysql> SELECT COUNT(*) FROM t2;
ERROR 1100 (HY000): Table 't2' was not locked with LOCK TABLES

Tables in the INFORMATION_SCHEMA database are an exception. They can be accessed without being
locked explicitly even while a session holds table locks obtained with LOCK TABLES.

You cannot refer to a locked table multiple times in a single query using the same name. Use aliases
instead, and obtain a separate lock for the table and each alias:

2918

LOCK TABLES and UNLOCK TABLES Statements

mysql> LOCK TABLE t WRITE, t AS t1 READ;
mysql> INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> INSERT INTO t SELECT * FROM t AS t1;

The error occurs for the first INSERT because there are two references to the same name for a locked
table. The second INSERT succeeds because the references to the table use different names.

If your statements refer to a table by means of an alias, you must lock the table using that same alias. It
does not work to lock the table without specifying the alias:

mysql> LOCK TABLE t READ;
mysql> SELECT * FROM t AS myalias;
ERROR 1100: Table 'myalias' was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your statements using that alias:

mysql> LOCK TABLE t AS myalias READ;
mysql> SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> SELECT * FROM t AS myalias;

Table Lock Release

When the table locks held by a session are released, they are all released at the same time. A session
can release its locks explicitly, or locks may be released implicitly under certain conditions.

• A session can release its locks explicitly with UNLOCK TABLES.

• If a session issues a LOCK TABLES statement to acquire a lock while already holding locks, its
existing locks are released implicitly before the new locks are granted.

• If a session begins a transaction (for example, with START TRANSACTION), an implicit UNLOCK
TABLES is performed, which causes existing locks to be released. (For additional information
about the interaction between table locking and transactions, see Interaction of Table Locking and
Transactions.)

If the connection for a client session terminates, whether normally or abnormally, the server implicitly
releases all table locks held by the session (transactional and nontransactional). If the client
reconnects, the locks are no longer in effect. In addition, if the client had an active transaction, the
server rolls back the transaction upon disconnect, and if reconnect occurs, the new session begins with
autocommit enabled. For this reason, clients may wish to disable auto-reconnect. With auto-reconnect
in effect, the client is not notified if reconnect occurs but any table locks or current transaction are lost.
With auto-reconnect disabled, if the connection drops, an error occurs for the next statement issued.
The client can detect the error and take appropriate action such as reacquiring the locks or redoing the
transaction. See Automatic Reconnection Control.

Note

If you use ALTER TABLE on a locked table, it may become unlocked. For
example, if you attempt a second ALTER TABLE operation, the result may be
an error Table 'tbl_name' was not locked with LOCK TABLES.
To handle this, lock the table again prior to the second alteration. See also
Section B.3.6.1, “Problems with ALTER TABLE”.

Interaction of Table Locking and Transactions

LOCK TABLES and UNLOCK TABLES interact with the use of transactions as follows:

• LOCK TABLES is not transaction-safe and implicitly commits any active transaction before attempting
to lock the tables.

2919

https://dev.mysql.com/doc/c-api/8.0/en/c-api-auto-reconnect.html

LOCK TABLES and UNLOCK TABLES Statements

• UNLOCK TABLES implicitly commits any active transaction, but only if LOCK TABLES has been used
to acquire table locks. For example, in the following set of statements, UNLOCK TABLES releases the
global read lock but does not commit the transaction because no table locks are in effect:

FLUSH TABLES WITH READ LOCK;
START TRANSACTION;
SELECT ... ;
UNLOCK TABLES;

• Beginning a transaction (for example, with START TRANSACTION) implicitly commits any current
transaction and releases existing table locks.

• FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking
and implicit commits. For example, START TRANSACTION does not release the global read lock.
See Section 15.7.8.3, “FLUSH Statement”.

• Other statements that implicitly cause transactions to be committed do not release existing table
locks. For a list of such statements, see Section 15.3.3, “Statements That Cause an Implicit Commit”.

• The correct way to use LOCK TABLES and UNLOCK TABLES with transactional tables, such as
InnoDB tables, is to begin a transaction with SET autocommit = 0 (not START TRANSACTION)
followed by LOCK TABLES, and to not call UNLOCK TABLES until you commit the transaction
explicitly. For example, if you need to write to table t1 and read from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

When you call LOCK TABLES, InnoDB internally takes its own table lock, and MySQL takes its own
table lock. InnoDB releases its internal table lock at the next commit, but for MySQL to release its
table lock, you have to call UNLOCK TABLES. You should not have autocommit = 1, because then
InnoDB releases its internal table lock immediately after the call of LOCK TABLES, and deadlocks
can very easily happen. InnoDB does not acquire the internal table lock at all if autocommit = 1,
to help old applications avoid unnecessary deadlocks.

• ROLLBACK does not release table locks.

LOCK TABLES and Triggers

If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly:

• The locks are taken as the same time as those acquired explicitly with the LOCK TABLES statement.

• The lock on a table used in a trigger depends on whether the table is used only for reading. If so, a
read lock suffices. Otherwise, a write lock is used.

• If a table is locked explicitly for reading with LOCK TABLES, but needs to be locked for writing
because it might be modified within a trigger, a write lock is taken rather than a read lock. (That is, an
implicit write lock needed due to the table's appearance within a trigger causes an explicit read lock
request for the table to be converted to a write lock request.)

Suppose that you lock two tables, t1 and t2, using this statement:

LOCK TABLES t1 WRITE, t2 READ;

If t1 or t2 have any triggers, tables used within the triggers are also locked. Suppose that t1 has a
trigger defined like this:

CREATE TRIGGER t1_a_ins AFTER INSERT ON t1 FOR EACH ROW
BEGIN

2920

LOCK TABLES and UNLOCK TABLES Statements

 UPDATE t4 SET count = count+1
 WHERE id = NEW.id AND EXISTS (SELECT a FROM t3);
 INSERT INTO t2 VALUES(1, 2);
END;

The result of the LOCK TABLES statement is that t1 and t2 are locked because they appear in the
statement, and t3 and t4 are locked because they are used within the trigger:

• t1 is locked for writing per the WRITE lock request.

• t2 is locked for writing, even though the request is for a READ lock. This occurs because t2 is
inserted into within the trigger, so the READ request is converted to a WRITE request.

• t3 is locked for reading because it is only read from within the trigger.

• t4 is locked for writing because it might be updated within the trigger.

Table-Locking Restrictions and Conditions

You can safely use KILL to terminate a session that is waiting for a table lock. See Section 15.7.8.4,
“KILL Statement”.

LOCK TABLES and UNLOCK TABLES cannot be used within stored programs.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

The scope of a lock generated by LOCK TABLES is a single MySQL server. It is not compatible with
NDB Cluster, which has no way of enforcing an SQL-level lock across multiple instances of mysqld.
You can enforce locking in an API application instead. See Section 25.2.7.10, “Limitations Relating to
Multiple NDB Cluster Nodes”, for more information.

The following statements are prohibited while a LOCK TABLES statement is in effect: CREATE TABLE,
CREATE TABLE ... LIKE, CREATE VIEW, DROP VIEW, and DDL statements on stored functions
and procedures and events.

For some operations, system tables in the mysql database must be accessed. For example, the HELP
statement requires the contents of the server-side help tables, and CONVERT_TZ() might need to read
the time zone tables. The server implicitly locks the system tables for reading as necessary so that you
need not lock them explicitly. These tables are treated as just described:

mysql.help_category
mysql.help_keyword
mysql.help_relation
mysql.help_topic
mysql.time_zone
mysql.time_zone_leap_second
mysql.time_zone_name
mysql.time_zone_transition
mysql.time_zone_transition_type

If you want to explicitly place a WRITE lock on any of those tables with a LOCK TABLES statement, the
table must be the only one locked; no other table can be locked with the same statement.

Normally, you do not need to lock tables, because all single UPDATE statements are atomic; no other
session can interfere with any other currently executing SQL statement. However, there are a few
cases when locking tables may provide an advantage:

• If you are going to run many operations on a set of MyISAM tables, it is much faster to lock the tables
you are going to use. Locking MyISAM tables speeds up inserting, updating, or deleting on them
because MySQL does not flush the key cache for the locked tables until UNLOCK TABLES is called.
Normally, the key cache is flushed after each SQL statement.

2921

SET TRANSACTION Statement

The downside to locking the tables is that no session can update a READ-locked table (including the
one holding the lock) and no session can access a WRITE-locked table other than the one holding
the lock.

• If you are using tables for a nontransactional storage engine, you must use LOCK TABLES if you
want to ensure that no other session modifies the tables between a SELECT and an UPDATE. The
example shown here requires LOCK TABLES to execute safely:

LOCK TABLES trans READ, customer WRITE;
SELECT SUM(value) FROM trans WHERE customer_id=some_id;
UPDATE customer
 SET total_value=sum_from_previous_statement
 WHERE customer_id=some_id;
UNLOCK TABLES;

Without LOCK TABLES, it is possible that another session might insert a new row in the trans table
between execution of the SELECT and UPDATE statements.

You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE customer
SET value=value+new_value) or the LAST_INSERT_ID() function.

You can also avoid locking tables in some cases by using the user-level advisory lock functions
GET_LOCK() and RELEASE_LOCK(). These locks are saved in a hash table in the server and
implemented with pthread_mutex_lock() and pthread_mutex_unlock() for high speed. See
Section 14.14, “Locking Functions”.

See Section 10.11.1, “Internal Locking Methods”, for more information on locking policy.

15.3.7 SET TRANSACTION Statement

SET [GLOBAL | SESSION] TRANSACTION
 transaction_characteristic [, transaction_characteristic] ...

transaction_characteristic: {
 ISOLATION LEVEL level
 | access_mode
}

level: {
 REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED
 | SERIALIZABLE
}

access_mode: {
 READ WRITE
 | READ ONLY
}

This statement specifies transaction characteristics. It takes a list of one or more characteristic values
separated by commas. Each characteristic value sets the transaction isolation level or access mode.
The isolation level is used for operations on InnoDB tables. The access mode specifies whether
transactions operate in read/write or read-only mode.

In addition, SET TRANSACTION can include an optional GLOBAL or SESSION keyword to indicate the
scope of the statement.

• Transaction Isolation Levels

• Transaction Access Mode

• Transaction Characteristic Scope

2922

SET TRANSACTION Statement

Transaction Isolation Levels

To set the transaction isolation level, use an ISOLATION LEVEL level clause. It is not permitted to
specify multiple ISOLATION LEVEL clauses in the same SET TRANSACTION statement.

The default isolation level is REPEATABLE READ. Other permitted values are READ COMMITTED,
READ UNCOMMITTED, and SERIALIZABLE. For information about these isolation levels, see
Section 17.7.2.1, “Transaction Isolation Levels”.

Transaction Access Mode

To set the transaction access mode, use a READ WRITE or READ ONLY clause. It is not permitted to
specify multiple access-mode clauses in the same SET TRANSACTION statement.

By default, a transaction takes place in read/write mode, with both reads and writes permitted to tables
used in the transaction. This mode may be specified explicitly using SET TRANSACTION with an
access mode of READ WRITE.

If the transaction access mode is set to READ ONLY, changes to tables are prohibited. This may enable
storage engines to make performance improvements that are possible when writes are not permitted.

In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using
DML statements. Changes made with DDL statements are not permitted, just as with permanent
tables.

The READ WRITE and READ ONLY access modes also may be specified for an individual transaction
using the START TRANSACTION statement.

Transaction Characteristic Scope

You can set transaction characteristics globally, for the current session, or for the next transaction only:

• With the GLOBAL keyword:

• The statement applies globally for all subsequent sessions.

• Existing sessions are unaffected.

• With the SESSION keyword:

• The statement applies to all subsequent transactions performed within the current session.

• The statement is permitted within transactions, but does not affect the current ongoing transaction.

• If executed between transactions, the statement overrides any preceding statement that sets the
next-transaction value of the named characteristics.

• Without any SESSION or GLOBAL keyword:

• The statement applies only to the next single transaction performed within the session.

• Subsequent transactions revert to using the session value of the named characteristics.

• The statement is not permitted within transactions:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.02 sec)

mysql> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
ERROR 1568 (25001): Transaction characteristics can't be changed
while a transaction is in progress

2923

SET TRANSACTION Statement

A change to global transaction characteristics requires the CONNECTION_ADMIN privilege (or the
deprecated SUPER privilege). Any session is free to change its session characteristics (even in
the middle of a transaction), or the characteristics for its next transaction (prior to the start of that
transaction).

To set the global isolation level at server startup, use the --transaction-isolation=level
option on the command line or in an option file. Values of level for this option use dashes rather than
spaces, so the permissible values are READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ,
or SERIALIZABLE.

Similarly, to set the global transaction access mode at server startup, use the --transaction-
read-only option. The default is OFF (read/write mode) but the value can be set to ON for a mode of
read only.

For example, to set the isolation level to REPEATABLE READ and the access mode to READ WRITE,
use these lines in the [mysqld] section of an option file:

[mysqld]
transaction-isolation = REPEATABLE-READ
transaction-read-only = OFF

At runtime, characteristics at the global, session, and next-transaction scope levels can be set
indirectly using the SET TRANSACTION statement, as described previously. They can also be
set directly using the SET statement to assign values to the transaction_isolation and
transaction_read_only system variables:

• SET TRANSACTION permits optional GLOBAL and SESSION keywords for setting transaction
characteristics at different scope levels.

• The SET statement for assigning values to the transaction_isolation and
transaction_read_only system variables has syntaxes for setting these variables at different
scope levels.

The following tables show the characteristic scope level set by each SET TRANSACTION and variable-
assignment syntax.

Table 15.9 SET TRANSACTION Syntax for Transaction Characteristics

Syntax Affected Characteristic Scope

SET GLOBAL TRANSACTION
transaction_characteristic

Global

SET SESSION TRANSACTION
transaction_characteristic

Session

SET TRANSACTION
transaction_characteristic

Next transaction only

Table 15.10 SET Syntax for Transaction Characteristics

Syntax Affected Characteristic Scope

SET GLOBAL var_name = value Global

SET @@GLOBAL.var_name = value Global

SET PERSIST var_name = value Global

SET @@PERSIST.var_name = value Global

SET PERSIST_ONLY var_name = value No runtime effect

SET @@PERSIST_ONLY.var_name = value No runtime effect

SET SESSION var_name = value Session

2924

XA Transactions

Syntax Affected Characteristic Scope

SET @@SESSION.var_name = value Session

SET var_name = value Session

SET @@var_name = value Next transaction only

It is possible to check the global and session values of transaction characteristics at runtime:

SELECT @@GLOBAL.transaction_isolation, @@GLOBAL.transaction_read_only;
SELECT @@SESSION.transaction_isolation, @@SESSION.transaction_read_only;

15.3.8 XA Transactions

Support for XA transactions is available for the InnoDB storage engine. The MySQL XA
implementation is based on the X/Open CAE document Distributed Transaction Processing:
The XA Specification. This document is published by The Open Group and available at http://
www.opengroup.org/public/pubs/catalog/c193.htm. Limitations of the current XA implementation are
described in Section 15.3.8.3, “Restrictions on XA Transactions”.

On the client side, there are no special requirements. The XA interface to a MySQL server consists of
SQL statements that begin with the XA keyword. MySQL client programs must be able to send SQL
statements and to understand the semantics of the XA statement interface. They do not need be linked
against a recent client library. Older client libraries also work.

Among the MySQL Connectors, MySQL Connector/J 5.0.0 and higher supports XA directly, by means
of a class interface that handles the XA SQL statement interface for you.

XA supports distributed transactions, that is, the ability to permit multiple separate transactional
resources to participate in a global transaction. Transactional resources often are RDBMSs but may be
other kinds of resources.

A global transaction involves several actions that are transactional in themselves, but that all must
either complete successfully as a group, or all be rolled back as a group. In essence, this extends ACID
properties “up a level” so that multiple ACID transactions can be executed in concert as components of
a global operation that also has ACID properties. (As with nondistributed transactions, SERIALIZABLE
may be preferred if your applications are sensitive to read phenomena. REPEATABLE READ may not
be sufficient for distributed transactions.)

Some examples of distributed transactions:

• An application may act as an integration tool that combines a messaging service with an RDBMS.
The application makes sure that transactions dealing with message sending, retrieval, and
processing that also involve a transactional database all happen in a global transaction. You can
think of this as “transactional email.”

• An application performs actions that involve different database servers, such as a MySQL server
and an Oracle server (or multiple MySQL servers), where actions that involve multiple servers must
happen as part of a global transaction, rather than as separate transactions local to each server.

• A bank keeps account information in an RDBMS and distributes and receives money through
automated teller machines (ATMs). It is necessary to ensure that ATM actions are correctly reflected
in the accounts, but this cannot be done with the RDBMS alone. A global transaction manager
integrates the ATM and database resources to ensure overall consistency of financial transactions.

Applications that use global transactions involve one or more Resource Managers and a Transaction
Manager:

• A Resource Manager (RM) provides access to transactional resources. A database server is one
kind of resource manager. It must be possible to either commit or roll back transactions managed by
the RM.

2925

http://www.opengroup.org/public/pubs/catalog/c193.htm
http://www.opengroup.org/public/pubs/catalog/c193.htm

XA Transactions

• A Transaction Manager (TM) coordinates the transactions that are part of a global transaction. It
communicates with the RMs that handle each of these transactions. The individual transactions
within a global transaction are “branches” of the global transaction. Global transactions and their
branches are identified by a naming scheme described later.

The MySQL implementation of XA enables a MySQL server to act as a Resource Manager that
handles XA transactions within a global transaction. A client program that connects to the MySQL
server acts as the Transaction Manager.

To carry out a global transaction, it is necessary to know which components are involved, and
bring each component to a point when it can be committed or rolled back. Depending on what each
component reports about its ability to succeed, they must all commit or roll back as an atomic group.
That is, either all components must commit, or all components must roll back. To manage a global
transaction, it is necessary to take into account that any component or the connecting network might
fail.

The process for executing a global transaction uses two-phase commit (2PC). This takes place after
the actions performed by the branches of the global transaction have been executed.

1. In the first phase, all branches are prepared. That is, they are told by the TM to get ready to
commit. Typically, this means each RM that manages a branch records the actions for the branch in
stable storage. The branches indicate whether they are able to do this, and these results are used
for the second phase.

2. In the second phase, the TM tells the RMs whether to commit or roll back. If all branches indicated
when they were prepared that they were able to commit, all branches are told to commit. If any
branch indicated when it was prepared that it was not able to commit, all branches are told to roll
back.

In some cases, a global transaction might use one-phase commit (1PC). For example, when a
Transaction Manager finds that a global transaction consists of only one transactional resource (that is,
a single branch), that resource can be told to prepare and commit at the same time.

15.3.8.1 XA Transaction SQL Statements

To perform XA transactions in MySQL, use the following statements:

XA {START|BEGIN} xid [JOIN|RESUME]

XA END xid [SUSPEND [FOR MIGRATE]]

XA PREPARE xid

XA COMMIT xid [ONE PHASE]

XA ROLLBACK xid

XA RECOVER [CONVERT XID]

For XA START, the JOIN and RESUME clauses are recognized but have no effect.

For XA END the SUSPEND [FOR MIGRATE] clause is recognized but has no effect.

Each XA statement begins with the XA keyword, and most of them require an xid value. An xid is
an XA transaction identifier. It indicates which transaction the statement applies to. xid values are
supplied by the client, or generated by the MySQL server. An xid value has from one to three parts:

xid: gtrid [, bqual [, formatID]]

gtrid is a global transaction identifier, bqual is a branch qualifier, and formatID is a number that
identifies the format used by the gtrid and bqual values. As indicated by the syntax, bqual and
formatID are optional. The default bqual value is '' if not given. The default formatID value is 1 if
not given.

2926

XA Transactions

gtrid and bqual must be string literals, each up to 64 bytes (not characters) long. gtrid and bqual
can be specified in several ways. You can use a quoted string ('ab'), hex string (X'6162', 0x6162),
or bit value (b'nnnn').

formatID is an unsigned integer.

The gtrid and bqual values are interpreted in bytes by the MySQL server's underlying XA support
routines. However, while an SQL statement containing an XA statement is being parsed, the server
works with some specific character set. To be safe, write gtrid and bqual as hex strings.

xid values typically are generated by the Transaction Manager. Values generated by one TM must
be different from values generated by other TMs. A given TM must be able to recognize its own xid
values in a list of values returned by the XA RECOVER statement.

XA START xid starts an XA transaction with the given xid value. Each XA transaction must have a
unique xid value, so the value must not currently be used by another XA transaction. Uniqueness is
assessed using the gtrid and bqual values. All following XA statements for the XA transaction must
be specified using the same xid value as that given in the XA START statement. If you use any of
those statements but specify an xid value that does not correspond to some existing XA transaction,
an error occurs.

Beginning with MySQL 8.0.31, XA START, XA BEGIN, XA END, XA COMMIT, and XA ROLLBACK
statements are not filtered by the default database when the server is running with --replicate-do-
db or --replicate-ignore-db.

One or more XA transactions can be part of the same global transaction. All XA transactions within
a given global transaction must use the same gtrid value in the xid value. For this reason, gtrid
values must be globally unique so that there is no ambiguity about which global transaction a given
XA transaction is part of. The bqual part of the xid value must be different for each XA transaction
within a global transaction. (The requirement that bqual values be different is a limitation of the current
MySQL XA implementation. It is not part of the XA specification.)

The XA RECOVER statement returns information for those XA transactions on the MySQL server that
are in the PREPARED state. (See Section 15.3.8.2, “XA Transaction States”.) The output includes a row
for each such XA transaction on the server, regardless of which client started it.

XA RECOVER requires the XA_RECOVER_ADMIN privilege. This privilege requirement prevents users
from discovering the XID values for outstanding prepared XA transactions other than their own. It does
not affect normal commit or rollback of an XA transaction because the user who started it knows its
XID.

XA RECOVER output rows look like this (for an example xid value consisting of the parts 'abc',
'def', and 7):

mysql> XA RECOVER;
+----------+--------------+--------------+--------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+--------+
| 7 | 3 | 3 | abcdef |
+----------+--------------+--------------+--------+

The output columns have the following meanings:

• formatID is the formatID part of the transaction xid

• gtrid_length is the length in bytes of the gtrid part of the xid

• bqual_length is the length in bytes of the bqual part of the xid

• data is the concatenation of the gtrid and bqual parts of the xid

XID values may contain nonprintable characters. XA RECOVER permits an optional CONVERT XID
clause so that clients can request XID values in hexadecimal.

2927

XA Transactions

15.3.8.2 XA Transaction States

An XA transaction progresses through the following states:

1. Use XA START to start an XA transaction and put it in the ACTIVE state.

2. For an ACTIVE XA transaction, issue the SQL statements that make up the transaction, and then
issue an XA END statement. XA END puts the transaction in the IDLE state.

3. For an IDLE XA transaction, you can issue either an XA PREPARE statement or an XA
COMMIT ... ONE PHASE statement:

• XA PREPARE puts the transaction in the PREPARED state. An XA RECOVER statement at this
point includes the transaction's xid value in its output, because XA RECOVER lists all XA
transactions that are in the PREPARED state.

• XA COMMIT ... ONE PHASE prepares and commits the transaction. The xid value is not listed
by XA RECOVER because the transaction terminates.

4. For a PREPARED XA transaction, you can issue an XA COMMIT statement to commit and terminate
the transaction, or XA ROLLBACK to roll back and terminate the transaction.

Here is a simple XA transaction that inserts a row into a table as part of a global transaction:

mysql> XA START 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO mytable (i) VALUES(10);
Query OK, 1 row affected (0.04 sec)

mysql> XA END 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA PREPARE 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA COMMIT 'xatest';
Query OK, 0 rows affected (0.00 sec)

In MySQL 8.0.28 and earlier, within the context of a given client connection, XA transactions and local
(non-XA) transactions are mutually exclusive. For example, if XA START has been issued to begin
an XA transaction, a local transaction cannot be started until the XA transaction has been committed
or rolled back. Conversely, if a local transaction has been started with START TRANSACTION, no XA
statements can be used until the transaction has been committed or rolled back.

MySQL 8.0.29 and later supports detached XA transactions, enabled by the
xa_detach_on_prepare system variable (ON by default). Detached transactions are disconnected
from the current session following execution of XA PREPARE (and can be committed or rolled back by
another connection). This means that the current session is free to start a new local transaction or XA
transaction without having to wait for the prepared XA transaction to be committed or rolled back.

When XA transactions are detached, a connection has no special knowledge of any XA transaction
that it has prepared. If the current session tries to commit or roll back a given XA transaction (even one
which it prepared) after another connection has already done so, the attempt is rejected with an invalid
XID error (ER_XAER_NOTA) since the requested xid no longer exists.

Note

Detached XA transactions cannot use temporary tables.

When detached XA transactions are disabled (xa_detach_on_prepare set to OFF), an XA
transaction remains connected until it is committed or rolled back by the originating connection,

2928

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_xaer_nota

XA Transactions

as described previously for MySQL 8.0.28 and earlier. Disabling detached XA transactions is
not recommended for a MySQL server instance used in group replication; see Server Instance
Configuration, for more information.

If an XA transaction is in the ACTIVE state, you cannot issue any statements that cause an implicit
commit. That would violate the XA contract because you could not roll back the XA transaction. Trying
to execute such a statement raises the following error:

ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed
when global transaction is in the ACTIVE state

Statements to which the preceding remark applies are listed at Section 15.3.3, “Statements That Cause
an Implicit Commit”.

15.3.8.3 Restrictions on XA Transactions

XA transaction support is limited to the InnoDB storage engine.

For “external XA,” a MySQL server acts as a Resource Manager and client programs act as
Transaction Managers. For “Internal XA”, storage engines within a MySQL server act as RMs, and
the server itself acts as a TM. Internal XA support is limited by the capabilities of individual storage
engines. Internal XA is required for handling XA transactions that involve more than one storage
engine. The implementation of internal XA requires that a storage engine support two-phase commit at
the table handler level, and currently this is true only for InnoDB.

For XA START, the JOIN and RESUME clauses are recognized but have no effect.

For XA END the SUSPEND [FOR MIGRATE] clause is recognized but has no effect.

The requirement that the bqual part of the xid value be different for each XA transaction within
a global transaction is a limitation of the current MySQL XA implementation. It is not part of the XA
specification.

An XA transaction is written to the binary log in two parts. When XA PREPARE is issued, the first part
of the transaction up to XA PREPARE is written using an initial GTID. A XA_prepare_log_event
is used to identify such transactions in the binary log. When XA COMMIT or XA ROLLBACK
is issued, a second part of the transaction containing only the XA COMMIT or XA ROLLBACK
statement is written using a second GTID. Note that the initial part of the transaction, identified by
XA_prepare_log_event, is not necessarily followed by its XA COMMIT or XA ROLLBACK, which
can cause interleaved binary logging of any two XA transactions. The two parts of the XA transaction
can even appear in different binary log files. This means that an XA transaction in PREPARED state is
now persistent until an explicit XA COMMIT or XA ROLLBACK statement is issued, ensuring that XA
transactions are compatible with replication.

On a replica, immediately after the XA transaction is prepared, it is detached from the replication
applier thread, and can be committed or rolled back by any thread on the replica. This means that
the same XA transaction can appear in the events_transactions_current table with different
states on different threads. The events_transactions_current table displays the current status
of the most recent monitored transaction event on the thread, and does not update this status when the
thread is idle. So the XA transaction can still be displayed in the PREPARED state for the original applier
thread, after it has been processed by another thread. To positively identify XA transactions that are
still in the PREPARED state and need to be recovered, use the XA RECOVER statement rather than the
Performance Schema transaction tables.

The following restrictions exist for using XA transactions:

• Prior to MySQL 8.0.30, XA transactions are not fully resilient to an unexpected halt with respect
to the binary log. If there is an unexpected halt while the server is in the middle of executing an
XA PREPARE, XA COMMIT, XA ROLLBACK, or XA COMMIT ... ONE PHASE statement, the
server might not be able to recover to a correct state, leaving the server and the binary log in an

2929

Replication Statements

inconsistent state. In this situation, the binary log might either contain extra XA transactions that
are not applied, or miss XA transactions that are applied. Also, if GTIDs are enabled, after recovery
@@GLOBAL.GTID_EXECUTED might not correctly describe the transactions that have been applied.
Note that if an unexpected halt occurs before XA PREPARE, between XA PREPARE and XA COMMIT
(or XA ROLLBACK), or after XA COMMIT (or XA ROLLBACK), the server and binary log are correctly
recovered and taken to a consistent state.

Beginning with MySQL 8.0.30, this is no longer an issue; the server implements XA PREPARE as a
two-phase operation, which maintains the state of the prepare operation between the storage engine
and the server, and imposes order of execution between the storage engine and the binary log, so
that state is not broadcast before it is consistent and persistent on the server node.

You should be aware that, when the same transaction XID is used to execute XA transactions
sequentially and a break occurs during the processing of XA COMMIT ... ONE PHASE, it may no
longer be possible to synchronize the state between the binary log and the storage engine. This can
occur if the series of events just described takes place after this transaction has been prepared in the
storage engine, while the XA COMMIT statement is still executing. This is a known issue.

• The use of replication filters or binary log filters in combination with XA transactions is not
supported. Filtering of tables could cause an XA transaction to be empty on a replica, and empty XA
transactions are not supported. Also, with the replica's connection metadata repository and applier
metadata repository stored in InnoDB tables, which became the default in MySQL 8.0, the internal
state of the data engine transaction is changed following a filtered XA transaction, and can become
inconsistent with the replication transaction context state.

The error ER_XA_REPLICATION_FILTERS is logged whenever an XA transaction is impacted by a
replication filter, whether or not the transaction was empty as a result. If the transaction is not empty,
the replica is able to continue running, but you should take steps to discontinue the use of replication
filters with XA transactions in order to avoid potential issues. If the transaction is empty, the replica
stops. In that event, the replica might be in an undetermined state in which the consistency of the
replication process might be compromised. In particular, the gtid_executed set on a replica of
the replica might be inconsistent with that on the source. To resolve this situation, isolate the source
and stop all replication, then check GTID consistency across the replication topology. Undo the XA
transaction that generated the error message, then restart replication.

• XA transactions are considered unsafe for statement-based replication. If two XA transactions
committed in parallel on the source are being prepared on the replica in the inverse order, locking
dependencies can occur that cannot be safely resolved, and it is possible for replication to fail with
deadlock on the replica. This situation can occur for a single-threaded or multithreaded replica.
When binlog_format=STATEMENT is set, a warning is issued for DML statements inside XA
transactions. When binlog_format=MIXED or binlog_format=ROW is set, DML statements
inside XA transactions are logged using row-based replication, and the potential issue is not present.

15.4 Replication Statements

Replication can be controlled through the SQL interface using the statements described in this section.
Statements are split into a group which controls source servers, a group which controls replica servers,
and a group which can be applied to any replication servers.

15.4.1 SQL Statements for Controlling Source Servers

This section discusses statements for managing replication source servers. Section 15.4.2, “SQL
Statements for Controlling Replica Servers”, discusses statements for managing replica servers.

In addition to the statements described here, the following SHOW statements are used with source
servers in replication. For information about these statements, see Section 15.7.7, “SHOW
Statements”.

• SHOW BINARY LOGS

2930

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_xa_replication_filters

SQL Statements for Controlling Source Servers

• SHOW BINLOG EVENTS

• SHOW MASTER STATUS

• SHOW REPLICAS (or before MySQL 8.0.22, SHOW SLAVE HOSTS)

15.4.1.1 PURGE BINARY LOGS Statement

PURGE { BINARY | MASTER } LOGS {
 TO 'log_name'
 | BEFORE datetime_expr
}

The binary log is a set of files that contain information about data modifications made by the MySQL
server. The log consists of a set of binary log files, plus an index file (see Section 7.4.4, “The Binary
Log”).

The PURGE BINARY LOGS statement deletes all the binary log files listed in the log index file prior
to the specified log file name or date. BINARY and MASTER are synonyms. Deleted log files also are
removed from the list recorded in the index file, so that the given log file becomes the first in the list.

PURGE BINARY LOGS requires the BINLOG_ADMIN privilege. This statement has no effect if the
server was not started with the --log-bin option to enable binary logging.

Examples:

PURGE BINARY LOGS TO 'mysql-bin.010';
PURGE BINARY LOGS BEFORE '2019-04-02 22:46:26';

The BEFORE variant's datetime_expr argument should evaluate to a DATETIME value (a value in
'YYYY-MM-DD hh:mm:ss' format).

PURGE BINARY LOGS is safe to run while replicas are replicating. You need not stop them. If you have
an active replica that currently is reading one of the log files you are trying to delete, this statement
does not delete the log file that is in use or any log files later than that one, but it deletes any earlier
log files. A warning message is issued in this situation. However, if a replica is not connected and you
happen to purge one of the log files it has yet to read, the replica cannot replicate after it reconnects.

PURGE BINARY LOGS should not be issued while a LOCK INSTANCE FOR BACKUP statement is in
effect for the instance, because it contravenes the rules of the backup lock by removing files from the
server. From MySQL 8.0.28, this is disallowed.

To safely purge binary log files, follow this procedure:

1. On each replica, use SHOW REPLICA STATUS to check which log file it is reading.

2. Obtain a listing of the binary log files on the source with SHOW BINARY LOGS.

3. Determine the earliest log file among all the replicas. This is the target file. If all the replicas are up
to date, this is the last log file on the list.

4. Make a backup of all the log files you are about to delete. (This step is optional, but always
advisable.)

5. Purge all log files up to but not including the target file.

PURGE BINARY LOGS TO and PURGE BINARY LOGS BEFORE both fail with an error when binary log
files listed in the .index file had been removed from the system by some other means (such as using
rm on Linux). (Bug #18199, Bug #18453) To handle such errors, edit the .index file (which is a simple
text file) manually to ensure that it lists only the binary log files that are actually present, then run again
the PURGE BINARY LOGS statement that failed.

2931

SQL Statements for Controlling Source Servers

Binary log files are automatically removed after the server's binary log expiration period. Removal
of the files can take place at startup and when the binary log is flushed. The default binary
log expiration period is 30 days. You can specify an alternative expiration period using the
binlog_expire_logs_seconds system variable. If you are using replication, you should specify an
expiration period that is no lower than the maximum amount of time your replicas might lag behind the
source.

15.4.1.2 RESET MASTER Statement

Note

This statement is replaced in later versions of MySQL by RESET BINARY LOGS
AND GTIDS, and should be considered deprecated. See RESET BINARY
LOGS AND GTIDS Statement, in the MySQL 8.4 Manual, for more information.

RESET MASTER [TO binary_log_file_index_number]

Warning

Use this statement with caution to ensure you do not lose any wanted binary log
file data and GTID execution history.

RESET MASTER requires the RELOAD privilege.

For a server where binary logging is enabled (log_bin is ON), RESET MASTER deletes all existing
binary log files and resets the binary log index file, resetting the server to its state before binary logging
was started. A new empty binary log file is created so that binary logging can be restarted.

For a server where GTIDs are in use (gtid_mode is ON), issuing RESET MASTER resets the GTID
execution history. The value of the gtid_purged system variable is set to an empty string (''), the
global value (but not the session value) of the gtid_executed system variable is set to an empty
string, and the mysql.gtid_executed table is cleared (see mysql.gtid_executed Table). If the GTID-
enabled server has binary logging enabled, RESET MASTER also resets the binary log as described
above. Note that RESET MASTER is the method to reset the GTID execution history even if the GTID-
enabled server is a replica where binary logging is disabled; RESET REPLICA has no effect on the
GTID execution history. For more information on resetting the GTID execution history, see Resetting
the GTID Execution History.

Issuing RESET MASTER without the optional TO clause deletes all binary log files listed in the index
file, resets the binary log index file to be empty, and creates a new binary log file starting at 1. Use the
optional TO clause to start the binary log file index from a number other than 1 after the reset.

Check that you are using a reasonable value for the index number. If you enter an incorrect value, you
can correct this by issuing another RESET MASTER statement with or without the TO clause. If you do
not correct a value that is out of range, the server cannot be restarted.

The following example demonstrates TO clause usage:

RESET MASTER TO 1234;

SHOW BINARY LOGS;
+-------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+-------------------+-----------+-----------+
| source-bin.001234 | 154 | No |
+-------------------+-----------+-----------+

Important

The effects of RESET MASTER without the TO clause differ from those of PURGE
BINARY LOGS in 2 key ways:

2932

https://dev.mysql.com/doc/refman/8.4/en/reset-binary-logs-and-gtids.html
https://dev.mysql.com/doc/refman/8.4/en/reset-binary-logs-and-gtids.html

SQL Statements for Controlling Replica Servers

1. RESET MASTER removes all binary log files that are listed in the index file,
leaving only a single, empty binary log file with a numeric suffix of .000001,
whereas the numbering is not reset by PURGE BINARY LOGS.

2. RESET MASTER is not intended to be used while any replicas are running.
The behavior of RESET MASTER when used while replicas are running is
undefined (and thus unsupported), whereas PURGE BINARY LOGS may be
safely used while replicas are running.

See also Section 15.4.1.1, “PURGE BINARY LOGS Statement”.

RESET MASTER without the TO clause can prove useful when you first set up a source and replica, so
that you can verify the setup as follows:

1. Start the source and replica, and start replication (see Section 19.1.2, “Setting Up Binary Log File
Position Based Replication”).

2. Execute a few test queries on the source.

3. Check that the queries were replicated to the replica.

4. When replication is running correctly, issue STOP REPLICA followed by RESET REPLICA on the
replica, then verify that no unwanted data from the test queries exists on the replica.

5. Remove the unwanted data from the source, then issue RESET MASTER to purge any binary log
entries and identifiers associated with it.

After verifying the setup, resetting the source and replica and ensuring that no unwanted data or binary
log files generated by testing remain on the source or replica, you can start the replica and begin
replicating.

15.4.1.3 SET sql_log_bin Statement

SET sql_log_bin = {OFF|ON}

The sql_log_bin variable controls whether logging to the binary log is enabled for the current
session (assuming that the binary log itself is enabled). The default value is ON. To disable or enable
binary logging for the current session, set the session sql_log_bin variable to OFF or ON.

Set this variable to OFF for a session to temporarily disable binary logging while making changes to the
source that you do not want replicated to the replica.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

It is not possible to set the session value of sql_log_bin within a transaction or subquery.

Setting this variable to OFF prevents new GTIDs from being assigned to transactions in the binary log.
If you are using GTIDs for replication, this means that even when binary logging is later enabled again,
the GTIDs written into the log from this point do not account for any transactions that occurred in the
meantime, so in effect those transactions are lost.

mysqldump adds a SET @@SESSION.sql_log_bin=0 statement to a dump file from a server where
GTIDs are in use, which disables binary logging while the dump file is being reloaded. The statement
prevents new GTIDs from being generated and assigned to the transactions in the dump file as they
are executed, so that the original GTIDs for the transactions are used.

15.4.2 SQL Statements for Controlling Replica Servers

2933

SQL Statements for Controlling Replica Servers

This section discusses statements for managing replica servers. Section 15.4.1, “SQL Statements for
Controlling Source Servers”, discusses statements for managing source servers.

In addition to the statements described here, SHOW REPLICA STATUS and SHOW RELAYLOG EVENTS
are also used with replicas. For information about these statements, see Section 15.7.7.35, “SHOW
REPLICA STATUS Statement”, and Section 15.7.7.32, “SHOW RELAYLOG EVENTS Statement”.

15.4.2.1 CHANGE MASTER TO Statement

CHANGE MASTER TO option [, option] ... [channel_option]

option: {
 MASTER_BIND = 'interface_name'
 | MASTER_HOST = 'host_name'
 | MASTER_USER = 'user_name'
 | MASTER_PASSWORD = 'password'
 | MASTER_PORT = port_num
 | PRIVILEGE_CHECKS_USER = {'account' | NULL}
 | REQUIRE_ROW_FORMAT = {0|1}
 | REQUIRE_TABLE_PRIMARY_KEY_CHECK = {STREAM | ON | OFF}
 | ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS = {OFF | LOCAL | uuid}
 | MASTER_LOG_FILE = 'source_log_name'
 | MASTER_LOG_POS = source_log_pos
 | MASTER_AUTO_POSITION = {0|1}
 | RELAY_LOG_FILE = 'relay_log_name'
 | RELAY_LOG_POS = relay_log_pos
 | MASTER_HEARTBEAT_PERIOD = interval
 | MASTER_CONNECT_RETRY = interval
 | MASTER_RETRY_COUNT = count
 | SOURCE_CONNECTION_AUTO_FAILOVER = {0|1}
 | MASTER_DELAY = interval
 | MASTER_COMPRESSION_ALGORITHMS = 'algorithm[,algorithm][,algorithm]'
 | MASTER_ZSTD_COMPRESSION_LEVEL = level
 | MASTER_SSL = {0|1}
 | MASTER_SSL_CA = 'ca_file_name'
 | MASTER_SSL_CAPATH = 'ca_directory_name'
 | MASTER_SSL_CERT = 'cert_file_name'
 | MASTER_SSL_CRL = 'crl_file_name'
 | MASTER_SSL_CRLPATH = 'crl_directory_name'
 | MASTER_SSL_KEY = 'key_file_name'
 | MASTER_SSL_CIPHER = 'cipher_list'
 | MASTER_SSL_VERIFY_SERVER_CERT = {0|1}
 | MASTER_TLS_VERSION = 'protocol_list'
 | MASTER_TLS_CIPHERSUITES = 'ciphersuite_list'
 | MASTER_PUBLIC_KEY_PATH = 'key_file_name'
 | GET_MASTER_PUBLIC_KEY = {0|1}
 | NETWORK_NAMESPACE = 'namespace'
 | IGNORE_SERVER_IDS = (server_id_list),
 | GTID_ONLY = {0|1}
}

channel_option:
 FOR CHANNEL channel

server_id_list:
 [server_id [, server_id] ...]

CHANGE MASTER TO changes the parameters that the replica server uses for connecting to the
source and for reading data from the source. It also updates the contents of the replication metadata
repositories (see Section 19.2.4, “Relay Log and Replication Metadata Repositories”). From MySQL
8.0.23, use CHANGE REPLICATION SOURCE TO in place of CHANGE MASTER TO, which is
deprecated from that release. In releases before MySQL 8.0.23, use CHANGE MASTER TO.

CHANGE MASTER TO requires the REPLICATION_SLAVE_ADMIN privilege (or the deprecated SUPER
privilege).

Options that you do not specify on a CHANGE MASTER TO statement retain their value, except as
indicated in the following discussion. In most cases, there is therefore no need to specify options that
do not change.

2934

SQL Statements for Controlling Replica Servers

Values used for SOURCE_HOST and other CHANGE REPLICATION SOURCE TO options are checked
for linefeed (\n or 0x0A) characters. The presence of such characters in these values causes the
statement to fail with an error.

The optional FOR CHANNEL channel clause enables you to name which replication channel the
statement applies to. Providing a FOR CHANNEL channel clause applies the CHANGE MASTER TO
statement to a specific replication channel, and is used to add a new channel or modify an existing
channel. For example, to add a new channel called channel2:

CHANGE MASTER TO MASTER_HOST=host1, MASTER_PORT=3002 FOR CHANNEL 'channel2'

If no clause is named and no extra channels exist, a CHANGE MASTER TO statement applies to
the default channel, whose name is the empty string (""). When you have set up multiple replication
channels, every CHANGE MASTER TO statement must name a channel using the FOR CHANNEL
channel clause. See Section 19.2.2, “Replication Channels” for more information.

For some of the options of the CHANGE MASTER TO statement, you must issue a STOP SLAVE
statement prior to issuing a CHANGE MASTER TO statement (and a START SLAVE statement
afterwards). Sometimes, you only need to stop the replication SQL (applier) thread or the replication I/
O (receiver) thread, not both:

• When the applier thread is stopped, you can execute CHANGE MASTER TO using any combination
that is otherwise allowed of RELAY_LOG_FILE, RELAY_LOG_POS, and MASTER_DELAY options,
even if the replication receiver thread is running. No other options may be used with this statement
when the receiver thread is running.

• When the receiver thread is stopped, you can execute CHANGE MASTER TO using any of the options
for this statement (in any allowed combination) except RELAY_LOG_FILE, RELAY_LOG_POS,
MASTER_DELAY, or MASTER_AUTO_POSITION = 1 even when the applier thread is running.

• Both the receiver thread and the applier thread must be stopped before issuing a CHANGE
MASTER TO statement that employs MASTER_AUTO_POSITION = 1, GTID_ONLY = 1, or
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS.

You can check the current state of the replication applier thread and replication receiver
thread using SHOW SLAVE STATUS. Note that the Group Replication applier channel
(group_replication_applier) has no receiver thread, only an applier thread.

CHANGE MASTER TO statements have a number of side-effects and interactions that you should be
aware of beforehand:

• CHANGE MASTER TO causes an implicit commit of an ongoing transaction. See Section 15.3.3,
“Statements That Cause an Implicit Commit”.

• CHANGE MASTER TO causes the previous values for MASTER_HOST, MASTER_PORT,
MASTER_LOG_FILE, and MASTER_LOG_POS to be written to the error log, along with other
information about the replica's state prior to execution.

• If you are using statement-based replication and temporary tables, it is possible for a CHANGE
MASTER TO statement following a STOP SLAVE statement to leave behind temporary tables
on the replica. A warning (ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO) is issued
whenever this occurs. You can avoid this in such cases by making sure that the value of the
Replica_open_temp_tables or Slave_open_temp_tables system status variable is equal to
0 prior to executing such a CHANGE MASTER TO statement.

• When using a multithreaded replica (replica_parallel_workers > 0 or
slave_parallel_workers > 0), stopping the replica can cause gaps in the sequence of
transactions that have been executed from the relay log, regardless of whether the replica was
stopped intentionally or otherwise. When such gaps exist, issuing CHANGE MASTER TO fails. The
solution in this situation is to issue START SLAVE UNTIL SQL_AFTER_MTS_GAPS which ensures
that the gaps are closed. From MySQL 8.0.26, the process of checking for gaps in the sequence of
transactions is skipped entirely when GTID-based replication and GTID auto-positioning are in use,

2935

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warn_open_temp_tables_must_be_zero

SQL Statements for Controlling Replica Servers

because gaps in transactions can be resolved using GTID auto-positioning. In that situation, CHANGE
MASTER TO can still be used.

The following options are available for CHANGE MASTER TO statements:

ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS
= {OFF | LOCAL | uuid}

Makes the replication channel assign a GTID to replicated
transactions that do not have one, enabling replication from a
source that does not use GTID-based replication, to a replica that
does. For a multi-source replica, you can have a mix of channels
that use ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, and
channels that do not. The default is OFF, meaning that the feature is
not used.

LOCAL assigns a GTID including the replica's own UUID (the
server_uuid setting). uuid assigns a GTID including the
specified UUID, such as the server_uuid setting for the
replication source server. Using a nonlocal UUID lets you
differentiate between transactions that originated on the replica and
transactions that originated on the source, and for a multi-source
replica, between transactions that originated on different sources.
The UUID you choose only has significance for the replica's own
use. If any of the transactions sent by the source do have a GTID
already, that GTID is retained.

Channels specific to Group Replication cannot use
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, but an
asynchronous replication channel for another source on a server
instance that is a Group Replication group member can do so. In
that case, do not specify the Group Replication group name as the
UUID for creating the GTIDs.

To set ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS to
LOCAL or uuid, the replica must have gtid_mode=ON set, and
this cannot be changed afterwards. This option is for use with
a source that has binary log file position based replication, so
MASTER_AUTO_POSITION=1 cannot be set for the channel. Both
the replication SQL thread and the replication I/O (receiver) thread
must be stopped before setting this option.

Important

A replica set up with
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS
on any channel cannot be promoted to
replace the replication source server in
the event that a failover is required, and
a backup taken from the replica cannot
be used to restore the replication source
server. The same restriction applies to
replacing or restoring other replicas that use
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS
on any channel.

For further restrictions and information, see Section 19.1.3.6,
“Replication From a Source Without GTIDs to a Replica With
GTIDs”.

GET_MASTER_PUBLIC_KEY =
{0|1}

Enables RSA key pair-based password exchange by requesting the
public key from the source. The option is disabled by default.

2936

SQL Statements for Controlling Replica Servers

This option applies to replicas that authenticate with the
caching_sha2_password authentication plugin. For connections
by accounts that authenticate using this plugin, the source does
not send the public key unless requested, so it must be requested
or specified in the client. If MASTER_PUBLIC_KEY_PATH is given
and specifies a valid public key file, it takes precedence over
GET_MASTER_PUBLIC_KEY. If you are using a replication user
account that authenticates with the caching_sha2_password
plugin (which is the default from MySQL 8.0), and you are not using
a secure connection, you must specify either this option or the
MASTER_PUBLIC_KEY_PATH option to provide the RSA public key
to the replica.

GTID_ONLY = {0|1} Stops the replication channel persisting file names and file positions
in the replication metadata repositories. GTID_ONLY is available as
of MySQL 8.0.27. The GTID_ONLY option is disabled by default for
asynchronous replication channels, but it is enabled by default for
Group Replication channels, and it cannot be disabled for them.

For replication channels with this setting, in-memory file positions
are still tracked, and file positions can still be observed for
debugging purposes in error messages and through interfaces such
as SHOW REPLICA STATUS statements (where they are shown
as being invalid if they are out of date). However, the writes and
reads required to persist and check the file positions are avoided in
situations where GTID-based replication does not actually require
them, including the transaction queuing and application process.

This option can be used only if both the replication SQL (applier)
thread and replication I/O (receiver) thread are stopped. To set
GTID_ONLY = 1 for a replication channel, GTIDs must be in
use on the server (gtid_mode = ON), and row-based binary
logging must be in use on the source (statement-based replication
is not supported). The options REQUIRE_ROW_FORMAT = 1 and
SOURCE_AUTO_POSITION = 1 must be set for the replication
channel.

When GTID_ONLY = 1 is set, the replica uses
replica_parallel_workers=1 if that system variable is set
to zero for the server, so it is always technically a multi-threaded
applier. This is because a multi-threaded applier uses saved
positions rather than the replication metadata repositories to locate
the start of a transaction that it needs to reapply.

If you disable GTID_ONLY after setting it, the existing relay logs
are deleted and the existing known binary log file positions are
persisted, even if they are stale. The file positions for the binary
log and relay log in the replication metadata repositories might be
invalid, and a warning is returned if this is the case. Provided that
SOURCE_AUTO_POSITION is still enabled, GTID auto-positioning is
used to provide the correct positioning.

If you also disable SOURCE_AUTO_POSITION, the file positions for
the binary log and relay log in the replication metadata repositories
are used for positioning if they are valid. If they are marked
as invalid, you must provide a valid binary log file name and
position (SOURCE_LOG_FILE and SOURCE_LOG_POS). If you also
provide a relay log file name and position (RELAY_LOG_FILE and

2937

SQL Statements for Controlling Replica Servers

RELAY_LOG_POS), the relay logs are preserved and the applier
position is set to the stated position. GTID auto-skip ensures that
any transactions already applied are skipped even if the eventual
applier position is not correct.

IGNORE_SERVER_IDS =
(server_id_list)

Makes the replica ignore events originating from the specified
servers. The option takes a comma-separated list of 0 or more
server IDs. Log rotation and deletion events from the servers are not
ignored, and are recorded in the relay log.

In circular replication, the originating server normally acts as the
terminator of its own events, so that they are not applied more
than once. Thus, this option is useful in circular replication when
one of the servers in the circle is removed. Suppose that you
have a circular replication setup with 4 servers, having server
IDs 1, 2, 3, and 4, and server 3 fails. When bridging the gap by
starting replication from server 2 to server 4, you can include
IGNORE_SERVER_IDS = (3) in the CHANGE MASTER TO
statement that you issue on server 4 to tell it to use server 2 as its
source instead of server 3. Doing so causes it to ignore and not to
propagate any statements that originated with the server that is no
longer in use.

If IGNORE_SERVER_IDS contains the server's own ID and the
server was started with the --replicate-same-server-id
option enabled, an error results.

Note

When global transaction identifiers (GTIDs)
are used for replication, transactions that
have already been applied are automatically
ignored, so the IGNORE_SERVER_IDS
function is not required and is deprecated.
If gtid_mode=ON is set for the server, a
deprecation warning is issued if you include
the IGNORE_SERVER_IDS option in a
CHANGE MASTER TO statement.

The source metadata repository and the output of SHOW REPLICA
STATUS provide the list of servers that are currently ignored. For
more information, see Section 19.2.4.2, “Replication Metadata
Repositories”, and Section 15.7.7.35, “SHOW REPLICA STATUS
Statement”.

If a CHANGE MASTER TO statement is issued without any
IGNORE_SERVER_IDS option, any existing list is preserved. To
clear the list of ignored servers, it is necessary to use the option with
an empty list:

CHANGE MASTER TO IGNORE_SERVER_IDS = ();

RESET REPLICA ALL clears IGNORE_SERVER_IDS.

Note

A deprecation warning is issued if SET
GTID_MODE=ON is issued when any
channel has existing server IDs set with
IGNORE_SERVER_IDS. Before starting

2938

SQL Statements for Controlling Replica Servers

GTID-based replication, check for and clear
all ignored server ID lists on the servers
involved. The SHOW REPLICA STATUS
statement displays the list of ignored
IDs, if there is one. If you do receive the
deprecation warning, you can still clear a
list after gtid_mode=ON is set by issuing a
CHANGE MASTER TO statement containing
the IGNORE_SERVER_IDS option with an
empty list.

MASTER_AUTO_POSITION =
{0|1}

Makes the replica attempt to connect to the source using the auto-
positioning feature of GTID-based replication, rather than a binary
log file based position. This option is used to start a replica using
GTID-based replication. The default is 0, meaning that GTID auto-
positioning and GTID-based replication are not used. This option
can be used with CHANGE MASTER TO only if both the replication
SQL (applier) thread and replication I/O (receiver) thread are
stopped.

Both the replica and the source must have GTIDs enabled
(GTID_MODE=ON, ON_PERMISSIVE, or OFF_PERMISSIVE on the
replica, and GTID_MODE=ON on the source). MASTER_LOG_FILE,
MASTER_LOG_POS, RELAY_LOG_FILE, and RELAY_LOG_POS
cannot be specified together with MASTER_AUTO_POSITION =
1. If multi-source replication is enabled on the replica, you need to
set the MASTER_AUTO_POSITION = 1 option for each applicable
replication channel.

With MASTER_AUTO_POSITION = 1 set, in the initial connection
handshake, the replica sends a GTID set containing the transactions
that it has already received, committed, or both. The source
responds by sending all transactions recorded in its binary log
whose GTID is not included in the GTID set sent by the replica. This
exchange ensures that the source only sends the transactions with
a GTID that the replica has not already recorded or committed. If the
replica receives transactions from more than one source, as in the
case of a diamond topology, the auto-skip function ensures that the
transactions are not applied twice. For details of how the GTID set
sent by the replica is computed, see Section 19.1.3.3, “GTID Auto-
Positioning”.

If any of the transactions that should be sent by the
source have been purged from the source's binary log, or
added to the set of GTIDs in the gtid_purged system
variable by another method, the source sends the error
ER_SOURCE_HAS_PURGED_REQUIRED_GTIDS to the replica,
and replication does not start. The GTIDs of the missing purged
transactions are identified and listed in the source's error log in the
warning message ER_FOUND_MISSING_GTIDS. Also, if during the
exchange of transactions it is found that the replica has recorded
or committed transactions with the source's UUID in the GTID, but
the source itself has not committed them, the source sends the error
ER_REPLICA_HAS_MORE_GTIDS_THAN_SOURCE to the replica and
replication does not start. For information on how to handle these
situations, see Section 19.1.3.3, “GTID Auto-Positioning”.

You can see whether replication is running with GTID auto-
positioning enabled by checking the Performance Schema

2939

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_source_has_purged_required_gtids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_found_missing_gtids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_replica_has_more_gtids_than_source

SQL Statements for Controlling Replica Servers

replication_connection_status table or the output of SHOW
REPLICA STATUS. Disabling the MASTER_AUTO_POSITION option
again makes the replica revert to file-based replication.

MASTER_BIND =
'interface_name'

Determines which of the replica's network interfaces is chosen for
connecting to the source, for use on replicas that have multiple
network interfaces. Specify the IP address of the network interface.
The maximum length of the string value is 255 characters.

The IP address configured with this option, if any, can be
seen in the Master_Bind column of the output from SHOW
REPLICA STATUS. In the source metadata repository table
mysql.slave_master_info, the value can be seen as the
Master_bind column. The ability to bind a replica to a specific
network interface is also supported by NDB Cluster.

MASTER_COMPRESSION_ALGORITHMS
= 'algorithm[,algorithm]
[,algorithm]'

Specifies one, two, or three of the permitted compression algorithms
for connections to the replication source server, separated by
commas. The maximum length of the string value is 99 characters.
The default value is uncompressed.

The available algorithms are zlib, zstd, and uncompressed, the
same as for the protocol_compression_algorithms system
variable. The algorithms can be specified in any order, but it is not
an order of preference - the algorithm negotiation process attempts
to use zlib, then zstd, then uncompressed, if they are specified.
MASTER_COMPRESSION_ALGORITHMS is available as of MySQL
8.0.18.

The value of MASTER_COMPRESSION_ALGORITHMS
applies only if the replica_compressed_protocol
or slave_compressed_protocol system variable
is disabled. If replica_compressed_protocol or
slave_compressed_protocol is enabled, it takes precedence
over MASTER_COMPRESSION_ALGORITHMS and connections to the
source use zlib compression if both source and replica support
that algorithm. For more information, see Section 6.2.8, “Connection
Compression Control”.

Binary log transaction compression (available as of MySQL 8.0.20),
which is activated by the binlog_transaction_compression
system variable, can also be used to save bandwidth. If you do
this in combination with connection compression, connection
compression has less opportunity to act on the data, but can still
compress headers and those events and transaction payloads that
are uncompressed. For more information on binary log transaction
compression, see Section 7.4.4.5, “Binary Log Transaction
Compression”.

MASTER_CONNECT_RETRY =
interval

Specifies the interval in seconds between the reconnection attempts
that the replica makes after the connection to the source times out.
The default interval is 60.

The attempts are limited by the MASTER_RETRY_COUNT option.
If both the default settings are used, the replica waits 60 seconds
between reconnection attempts (MASTER_CONNECT_RETRY=60),
and keeps attempting to reconnect at this rate for 60 days
(MASTER_RETRY_COUNT=86400). These values are
recorded in the source metadata repository and shown in the

2940

SQL Statements for Controlling Replica Servers

replication_connection_configuration Performance
Schema table.

MASTER_DELAY = interval Specifies how many seconds behind the source the replica must
lag. An event received from the source is not executed until at
least interval seconds later than its execution on the source.
interval must be a nonnegative integer in the range from 0 to
231−1. The default is 0. For more information, see Section 19.4.11,
“Delayed Replication”.

A CHANGE MASTER TO statement employing the MASTER_DELAY
option can be executed on a running replica when the replication
SQL thread is stopped.

MASTER_HEARTBEAT_PERIOD
= interval

Controls the heartbeat interval, which stops the connection timeout
occurring in the absence of data if the connection is still good. A
heartbeat signal is sent to the replica after that number of seconds,
and the waiting period is reset whenever the source's binary log is
updated with an event. Heartbeats are therefore sent by the source
only if there are no unsent events in the binary log file for a period
longer than this.

The heartbeat interval interval is a decimal value having the
range 0 to 4294967 seconds and a resolution in milliseconds; the
smallest nonzero value is 0.001. Setting interval to 0 disables
heartbeats altogether. The heartbeat interval defaults to half the
value of the replica_net_timeout or slave_net_timeout
system variable. It is recorded in the source metadata repository
and shown in the replication_connection_configuration
Performance Schema table.

The system variable replica_net_timeout (from MySQL
8.0.26) or slave_net_timeout (before MySQL 8.0.26) specifies
the number of seconds that the replica waits for either more
data or a heartbeat signal from the source, before the replica
considers the connection broken, aborts the read, and tries to
reconnect. The default value is 60 seconds (one minute). Note that
a change to the value or default setting of replica_net_timeout
or slave_net_timeout does not automatically change the
heartbeat interval, whether that has been set explicitly or is using
a previously calculated default. A warning is issued if you set the
global value of replica_net_timeout or slave_net_timeout
to a value less than that of the current heartbeat interval. If
replica_net_timeout or slave_net_timeout is changed,
you must also issue CHANGE MASTER TO to adjust the heartbeat
interval to an appropriate value so that the heartbeat signal occurs
before the connection timeout. If you do not do this, the heartbeat
signal has no effect, and if no data is received from the source, the
replica can make repeated reconnection attempts, creating zombie
dump threads.

MASTER_HOST =
'host_name'

The host name or IP address of the replication source server. The
replica uses this to connect to the source. The maximum length of
the string value is 255 characters. Before MySQL 8.0.17 it was 60
characters.

If you specify MASTER_HOST or MASTER_PORT, the replica assumes
that the source server is different from before (even if the option
value is the same as its current value.) In this case, the old values

2941

SQL Statements for Controlling Replica Servers

for the source's binary log file name and position are considered no
longer applicable, so if you do not specify MASTER_LOG_FILE and
MASTER_LOG_POS in the statement, MASTER_LOG_FILE='' and
MASTER_LOG_POS=4 are silently appended to it.

Setting MASTER_HOST='' (that is, setting its value explicitly to an
empty string) is not the same as not setting MASTER_HOST at all.
Trying to set MASTER_HOST to an empty string fails with an error.

MASTER_LOG_FILE =
'source_log_name',
MASTER_LOG_POS =
source_log_pos

The binary log file name, and the location in that file, at which the
replication I/O (receiver) thread begins reading from the source's
binary log the next time the thread starts. Specify these options if
you are using binary log file position based replication.

MASTER_LOG_FILE must include the numeric suffix of a specific
binary log file that is available on the source server, for example,
MASTER_LOG_FILE='binlog.000145'. The maximum length of
the string value is 511 characters.

MASTER_LOG_POS is the numeric position for the replica to start
reading in that file. MASTER_LOG_POS=4 represents the start of the
events in a binary log file.

If you specify either of MASTER_LOG_FILE or MASTER_LOG_POS,
you cannot specify MASTER_AUTO_POSITION = 1, which is for
GTID-based replication.

If neither of MASTER_LOG_FILE or MASTER_LOG_POS is specified,
the replica uses the last coordinates of the replication SQL (applier)
thread before CHANGE MASTER TO was issued. This ensures that
there is no discontinuity in replication, even if the replication SQL
(applier) thread was late compared to the replication I/O (receiver)
thread.

MASTER_PASSWORD =
'password'

The password for the replication user account to use for connecting
to the replication source server. The maximum length of the
string value is 32 characters. If you specify MASTER_PASSWORD,
MASTER_USER is also required.

The password used for a replication user account in a CHANGE
MASTER TO statement is limited to 32 characters in length. Trying
to use a password of more than 32 characters causes CHANGE
MASTER TO to fail.

The password is masked in MySQL Server’s logs, Performance
Schema tables, and SHOW PROCESSLIST statements.

MASTER_PORT = port_num The TCP/IP port number that the replica uses to connect to the
replication source server.

Note

Replication cannot use Unix socket files. You
must be able to connect to the replication
source server using TCP/IP.

If you specify MASTER_HOST or MASTER_PORT, the replica assumes
that the source server is different from before (even if the option
value is the same as its current value). In this case, the old values
for the source's binary log file name and position are considered no

2942

SQL Statements for Controlling Replica Servers

longer applicable, so if you do not specify MASTER_LOG_FILE and
MASTER_LOG_POS in the statement, MASTER_LOG_FILE='' and
MASTER_LOG_POS=4 are silently appended to it.

MASTER_PUBLIC_KEY_PATH =
'key_file_name'

Enables RSA key pair-based password exchange by providing
the path name to a file containing a replica-side copy of the public
key required by the source. The file must be in PEM format. The
maximum length of the string value is 511 characters.

This option applies to replicas that authenticate with the
sha256_password or caching_sha2_password authentication
plugin. (For sha256_password, MASTER_PUBLIC_KEY_PATH
can be used only if MySQL was built using OpenSSL.) If you
are using a replication user account that authenticates with the
caching_sha2_password plugin (which is the default from
MySQL 8.0), and you are not using a secure connection, you must
specify either this option or the GET_MASTER_PUBLIC_KEY=1
option to provide the RSA public key to the replica.

MASTER_RETRY_COUNT =
count

Sets the maximum number of reconnection attempts that the replica
makes after the connection to the source times out, as determined
by the replica_net_timeout or slave_net_timeout system
variable. If the replica does need to reconnect, the first retry occurs
immediately after the timeout. The default is 86400 attempts.

The interval between the attempts is specified by the
MASTER_CONNECT_RETRY option. If both the default settings
are used, the replica waits 60 seconds between reconnection
attempts (MASTER_CONNECT_RETRY=60), and keeps attempting to
reconnect at this rate for 60 days (MASTER_RETRY_COUNT=86400).
A setting of 0 for MASTER_RETRY_COUNT means that there is no
limit on the number of reconnection attempts, so the replica keeps
trying to reconnect indefinitely.

The values for MASTER_CONNECT_RETRY and
MASTER_RETRY_COUNT are recorded in the
source metadata repository and shown in the
replication_connection_configuration Performance
Schema table. MASTER_RETRY_COUNT supersedes the --master-
retry-count server startup option.

MASTER_SSL = {0|1} Specify whether the replica encrypts the replication connection.
The default is 0, meaning that the replica does not encrypt the
replication connection. If you set MASTER_SSL=1, you can configure
the encryption using the MASTER_SSL_xxx and MASTER_TLS_xxx
options.

Setting MASTER_SSL=1 for a replication connection and then setting
no further MASTER_SSL_xxx options corresponds to setting --
ssl-mode=REQUIRED for the client, as described in Command
Options for Encrypted Connections. With MASTER_SSL=1, the
connection attempt only succeeds if an encrypted connection can
be established. A replication connection does not fall back to an
unencrypted connection, so there is no setting corresponding to the

2943

SQL Statements for Controlling Replica Servers

--ssl-mode=PREFERRED setting for replication. If MASTER_SSL=0
is set, this corresponds to --ssl-mode=DISABLED.

Important

To help prevent sophisticated man-in-
the-middle attacks, it is important for the
replica to verify the server’s identity. You
can specify additional MASTER_SSL_xxx
options to correspond to the settings --
ssl-mode=VERIFY_CA and --ssl-
mode=VERIFY_IDENTITY, which are a
better choice than the default setting to
help prevent this type of attack. With these
settings, the replica checks that the server’s
certificate is valid, and checks that the
host name the replica is using matches
the identity in the server’s certificate. To
implement one of these levels of verification,
you must first ensure that the CA certificate
for the server is reliably available to the
replica, otherwise availability issues will
result. For this reason, they are not the
default setting.

MASTER_SSL_xxx,
MASTER_TLS_xxx

Specify how the replica uses encryption and ciphers to secure
the replication connection. These options can be changed even
on replicas that are compiled without SSL support. They are
saved to the source metadata repository, but are ignored if the
replica does not have SSL support enabled. The maximum
length of the value for the string-valued MASTER_SSL_xxx and
MASTER_TLS_xxx options is 511 characters, with the exception of
MASTER_TLS_CIPHERSUITES, for which it is 4000 characters.

The MASTER_SSL_xxx and MASTER_TLS_xxx options perform the
same functions as the --ssl-xxx and --tls-xxx client options
described in Command Options for Encrypted Connections. The
correspondence between the two sets of options, and the use of
the MASTER_SSL_xxx and MASTER_TLS_xxx options to set up
a secure connection, is explained in Section 19.3.1, “Setting Up
Replication to Use Encrypted Connections”.

MASTER_USER =
'user_name'

The user name for the replication user account to use for connecting
to the replication source server. The maximum length of the string
value is 96 characters.

For Group Replication, this account must exist on every member of
the replication group. It is used for distributed recovery if the XCom
communication stack is in use for the group, and also used for group
communication connections if the MySQL communication stack is
in use for the group. With the MySQL communication stack, the
account must have the GROUP_REPLICATION_STREAM permission.

It is possible to set an empty user name by specifying
MASTER_USER='', but the replication channel cannot be started
with an empty user name. In releases before MySQL 8.0.21,
only set an empty MASTER_USER user name if you need to
clear previously used credentials from the replication metadata
repositories for security purposes. Do not use the channel

2944

SQL Statements for Controlling Replica Servers

afterwards, due to a bug in these releases that can substitute
a default user name if an empty user name is read from the
repositories (for example, during an automatic restart of a Group
Replication channel). From MySQL 8.0.21, it is valid to set an
empty MASTER_USER user name and use the channel afterwards
if you always provide user credentials using the START REPLICA
statement or START GROUP_REPLICATION statement that starts
the replication channel. This approach means that the replication
channel always needs operator intervention to restart, but the user
credentials are not recorded in the replication metadata repositories.

Important

To connect to the source using a replication
user account that authenticates with the
caching_sha2_password plugin, you
must either set up a secure connection as
described in Section 19.3.1, “Setting Up
Replication to Use Encrypted Connections”,
or enable the unencrypted connection to
support password exchange using an RSA
key pair. The caching_sha2_password
authentication plugin is the default for
new users created from MySQL 8.0 (for
details, see Section 8.4.1.2, “Caching
SHA-2 Pluggable Authentication”). If the
user account that you create or use for
replication uses this authentication plugin,
and you are not using a secure connection,
you must enable RSA key pair-based
password exchange for a successful
connection. You can do this using either the
MASTER_PUBLIC_KEY_PATH option or the
GET_MASTER_PUBLIC_KEY=1 option for this
statement.

MASTER_ZSTD_COMPRESSION_LEVEL
= level

The compression level to use for connections to the replication
source server that use the zstd compression algorithm. The
permitted levels are from 1 to 22, with larger values indicating
increasing levels of compression. The default level is 3.
MASTER_ZSTD_COMPRESSION_LEVEL is available as of MySQL
8.0.18.

The compression level setting has no effect on connections that do
not use zstd compression. For more information, see Section 6.2.8,
“Connection Compression Control”.

NETWORK_NAMESPACE =
'namespace'

The network namespace to use for TCP/IP connections to the
replication source server or, if the MySQL communication stack is
in use, for Group Replication’s group communication connections.
The maximum length of the string value is 64 characters. If
this option is omitted, connections from the replica use the
default (global) namespace. On platforms that do not implement
network namespace support, failure occurs when the replica
attempts to connect to the source. For information about network
namespaces, see Section 7.1.14, “Network Namespace Support”.
NETWORK_NAMESPACE is available as of MySQL 8.0.22.

2945

SQL Statements for Controlling Replica Servers

PRIVILEGE_CHECKS_USER =
{NULL | 'account'}

Names a user account that supplies a security context for the
specified channel. NULL, which is the default, means no security
context is used. PRIVILEGE_CHECKS_USER is available as of
MySQL 8.0.18.

The user name and host name for the user account must follow the
syntax described in Section 8.2.4, “Specifying Account Names”,
and the user must not be an anonymous user (with a blank
user name) or the CURRENT_USER. The account must have the
REPLICATION_APPLIER privilege, plus the required privileges to
execute the transactions replicated on the channel. For details of the
privileges required by the account, see Section 19.3.3, “Replication
Privilege Checks”. When you restart the replication channel, the
privilege checks are applied from that point on. If you do not specify
a channel and no other channels exist, the statement is applied to
the default channel.

The use of row-based binary logging is strongly recommended
when PRIVILEGE_CHECKS_USER is set, and you can set
REQUIRE_ROW_FORMAT to enforce this. For example, to start
privilege checks on the channel channel_1 on a running replica,
issue the following statements:

mysql> STOP REPLICA FOR CHANNEL 'channel_1';
mysql> CHANGE MASTER TO
 PRIVILEGE_CHECKS_USER = 'priv_repl'@'%.example.com',
 REQUIRE_ROW_FORMAT = 1,
 FOR CHANNEL 'channel_1';
mysql> START REPLICA FOR CHANNEL 'channel_1';

For releases from MySQL 8.0.22, use START REPLICA and STOP
REPLICA, and for releases before MySQL 8.0.22, use START
SLAVE and STOP SLAVE. The statements work in the same way,
only the terminology has changed.

RELAY_LOG_FILE =
'relay_log_file'
, RELAY_LOG_POS =
'relay_log_pos'

The relay log file name, and the location in that file, at which the
replication SQL thread begins reading from the replica's relay log
the next time the thread starts. RELAY_LOG_FILE can use either
an absolute or relative path, and uses the same base name as
MASTER_LOG_FILE. The maximum length of the string value is 511
characters.

A CHANGE MASTER TO statement using RELAY_LOG_FILE,
RELAY_LOG_POS, or both options can be executed on a running
replica when the replication SQL thread is stopped. Relay logs are
preserved if at least one of the replication SQL (applier) thread
and the replication I/O (receiver) thread is running. If both threads
are stopped, all relay log files are deleted unless at least one of
RELAY_LOG_FILE or RELAY_LOG_POS is specified. For the Group
Replication applier channel (group_replication_applier),
which only has an applier thread and no receiver thread, this is
the case if the applier thread is stopped, but with that channel you
cannot use the RELAY_LOG_FILE and RELAY_LOG_POS options.

REQUIRE_ROW_FORMAT = {0|
1}

Permits only row-based replication events to be processed by the
replication channel. This option prevents the replication applier from
taking actions such as creating temporary tables and executing
LOAD DATA INFILE requests, which increases the security of the
channel. The REQUIRE_ROW_FORMAT option is disabled by default
for asynchronous replication channels, but it is enabled by default

2946

SQL Statements for Controlling Replica Servers

for Group Replication channels, and it cannot be disabled for them.
For more information, see Section 19.3.3, “Replication Privilege
Checks”. REQUIRE_ROW_FORMAT is available as of MySQL 8.0.19.

REQUIRE_TABLE_PRIMARY_KEY_CHECK
= {STREAM | ON | OFF}

Enables a replica to select its own policy for primary key checks.
The default is STREAM. REQUIRE_TABLE_PRIMARY_KEY_CHECK is
available as of MySQL 8.0.20.

When the option is set to ON for a replication channel, the replica
always uses the value ON for the sql_require_primary_key
system variable in replication operations, requiring a primary
key. When the option is set to OFF, the replica always uses
the value OFF for the sql_require_primary_key system
variable in replication operations, so that a primary key is
never required, even if the source required one. When the
REQUIRE_TABLE_PRIMARY_KEY_CHECK option is set to STREAM,
which is the default, the replica uses whatever value is replicated
from the source for each transaction.

For multisource replication, setting
REQUIRE_TABLE_PRIMARY_KEY_CHECK to ON or OFF enables
a replica to normalize behavior across the replication channels
for different sources, and keep a consistent setting for the
sql_require_primary_key system variable. Using ON
safeguards against the accidental loss of primary keys when
multiple sources update the same set of tables. Using OFF allows
sources that can manipulate primary keys to work alongside sources
that cannot.

When PRIVILEGE_CHECKS_USER is set, setting
REQUIRE_TABLE_PRIMARY_KEY_CHECK to ON or OFF means
that the user account does not need session administration level
privileges to set restricted session variables, which are required to
change the value of sql_require_primary_key to match the
source's setting for each transaction. For more information, see
Section 19.3.3, “Replication Privilege Checks”.

SOURCE_CONNECTION_AUTO_FAILOVER
= {0|1}

Activates the asynchronous connection failover mechanism
for a replication channel if one or more alternative replication
source servers are available (so when there are multiple MySQL
servers or groups of servers that share the replicated data).
SOURCE_CONNECTION_AUTO_FAILOVER is available as of
MySQL 8.0.22. The default is 0, meaning that the mechanism is
not activated. For full information and instructions to set up this
feature, see Section 19.4.9.2, “Asynchronous Connection Failover
for Replicas”.

The asynchronous connection failover mechanism
takes over after the reconnection attempts controlled by
MASTER_CONNECT_RETRY and MASTER_RETRY_COUNT are
exhausted. It reconnects the replica to an alternative source
chosen from a specified source list, which you manage using the
asynchronous_connection_failover_add_source and
asynchronous_connection_failover_delete_source
functions. To add and remove managed groups of servers, use the
asynchronous_connection_failover_add_managed and
asynchronous_connection_failover_delete_managed
functions instead. For more information, see Section 19.4.9,

2947

SQL Statements for Controlling Replica Servers

“Switching Sources and Replicas with Asynchronous Connection
Failover”.

Important

1. You can only set
SOURCE_CONNECTION_AUTO_FAILOVER
= 1 when GTID auto-positioning is in use
(MASTER_AUTO_POSITION = 1).

2. When you set
SOURCE_CONNECTION_AUTO_FAILOVER
= 1, set MASTER_RETRY_COUNT and
MASTER_CONNECT_RETRY to minimal
numbers that just allow a few retry
attempts with the same source in a
short time, in case the connection
failure is caused by a transient network
outage. Otherwise the asynchronous
connection failover mechanism cannot
be activated promptly. Suitable values
are MASTER_RETRY_COUNT=3 and
MASTER_CONNECT_RETRY=10, which
make the replica retry the connection 3
times with 10-second intervals between.

3. When you set
SOURCE_CONNECTION_AUTO_FAILOVER
= 1, the replication metadata repositories
must contain the credentials for a
replication user account that can be
used to connect to all the servers on the
source list for the replication channel.
These credentials can be set using
the CHANGE REPLICATION SOURCE
TO statement with the MASTER_USER
and MASTER_PASSWORD options. For
more information, see Section 19.4.9,
“Switching Sources and Replicas with
Asynchronous Connection Failover”.

4. From MySQL 8.0.27, when you set
SOURCE_CONNECTION_AUTO_FAILOVER
= 1, asynchronous connection failover
for replicas is automatically activated if
this replication channel is on a Group
Replication primary in a group in single-
primary mode. With this function active,
if the primary that is replicating goes
offline or into an error state, the new
primary starts replication on the same
channel when it is elected. If you want to
use the function, this replication channel
must also be set up on all the secondary
servers in the replication group, and
on any new joining members. (If the
servers are provisioned using MySQL’s
clone functionality, this all happens

2948

SQL Statements for Controlling Replica Servers

automatically.) If you do not want to
use the function, disable it by using the
group_replication_disable_member_action
function to disable the Group
Replication member action
mysql_start_failover_channels_if_primary,
which is enabled by default. For more
information, see Section 19.4.9.2,
“Asynchronous Connection Failover for
Replicas”.

Examples

CHANGE MASTER TO is useful for setting up a replica when you have the snapshot of the source and
have recorded the source's binary log coordinates corresponding to the time of the snapshot. After
loading the snapshot into the replica to synchronize it with the source, you can run CHANGE MASTER
TO MASTER_LOG_FILE='log_name', MASTER_LOG_POS=log_pos on the replica to specify the
coordinates at which the replica should begin reading the source's binary log. The following example
changes the source server the replica uses and establishes the source's binary log coordinates from
which the replica begins reading:

CHANGE MASTER TO
 MASTER_HOST='source2.example.com',
 MASTER_USER='replication',
 MASTER_PASSWORD='password',
 MASTER_PORT=3306,
 MASTER_LOG_FILE='source2-bin.001',
 MASTER_LOG_POS=4,
 MASTER_CONNECT_RETRY=10;

For the procedure to switch an existing replica to a new source during failover, see Section 19.4.8,
“Switching Sources During Failover”.

When GTIDs are in use on the source and the replica, specify GTID auto-positioning instead of giving
the binary log file position, as in the following example. For full instructions to configure and start GTID-
based replication on new or stopped servers, online servers, or additional replicas, see Section 19.1.3,
“Replication with Global Transaction Identifiers”.

CHANGE MASTER TO
 MASTER_HOST='source3.example.com',
 MASTER_USER='replication',
 MASTER_PASSWORD='password',
 MASTER_PORT=3306,
 MASTER_AUTO_POSITION = 1,
 FOR CHANNEL "source_3";

In this example, multi-source replication is in use, and the CHANGE MASTER TO statement is applied
to the replication channel "source_3" that connects the replica to the specified host. For guidance on
setting up multi-source replication, see Section 19.1.5, “MySQL Multi-Source Replication”.

The next example shows how to make the replica apply transactions from relay log files that you want
to repeat. To do this, the source need not be reachable. You can use CHANGE MASTER TO to locate
the relay log position where you want the replica to start reapplying transactions, and then start the
SQL thread:

CHANGE MASTER TO
 RELAY_LOG_FILE='replica-relay-bin.006',
 RELAY_LOG_POS=4025;
START SLAVE SQL_THREAD;

CHANGE MASTER TO can also be used to skip over transactions in the binary log that are causing
replication to stop. The appropriate method to do this depends on whether GTIDs are in use or not. For

2949

SQL Statements for Controlling Replica Servers

instructions to skip transactions using CHANGE MASTER TO or another method, see Section 19.1.7.3,
“Skipping Transactions”.

15.4.2.2 CHANGE REPLICATION FILTER Statement

CHANGE REPLICATION FILTER filter[, filter]
 [, ...] [FOR CHANNEL channel]

filter: {
 REPLICATE_DO_DB = (db_list)
 | REPLICATE_IGNORE_DB = (db_list)
 | REPLICATE_DO_TABLE = (tbl_list)
 | REPLICATE_IGNORE_TABLE = (tbl_list)
 | REPLICATE_WILD_DO_TABLE = (wild_tbl_list)
 | REPLICATE_WILD_IGNORE_TABLE = (wild_tbl_list)
 | REPLICATE_REWRITE_DB = (db_pair_list)
}

db_list:
 db_name[, db_name][, ...]

tbl_list:
 db_name.table_name[, db_name.table_name][, ...]
wild_tbl_list:
 'db_pattern.table_pattern'[, 'db_pattern.table_pattern'][, ...]

db_pair_list:
 (db_pair)[, (db_pair)][, ...]

db_pair:
 from_db, to_db

CHANGE REPLICATION FILTER sets one or more replication filtering rules on the replica in the same
way as starting the replica mysqld with replication filtering options such as --replicate-do-db or
--replicate-wild-ignore-table. Filters set using this statement differ from those set using the
server options in two key respects:

1. The statement does not require restarting the server to take effect, only that the replication SQL
thread be stopped using STOP REPLICA SQL_THREAD first (and restarted with START REPLICA
SQL_THREAD afterwards).

2. The effects of the statement are not persistent; any filters set using CHANGE REPLICATION
FILTER are lost following a restart of the replica mysqld.

CHANGE REPLICATION FILTER requires the REPLICATION_SLAVE_ADMIN privilege (or the
deprecated SUPER privilege).

Use the FOR CHANNEL channel clause to make a replication filter specific to a replication channel,
for example on a multi-source replica. Filters applied without a specific FOR CHANNEL clause are
considered global filters, meaning that they are applied to all replication channels.

Note

Global replication filters cannot be set on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some
servers would make the group unable to reach agreement on a consistent state.
Channel specific replication filters can be set on replication channels that are
not directly involved with Group Replication, such as where a group member
also acts as a replica to a source that is outside the group. They cannot be set
on the group_replication_applier or group_replication_recovery
channels.

The following list shows the CHANGE REPLICATION FILTER options and how they relate to --
replicate-* server options:

2950

SQL Statements for Controlling Replica Servers

• REPLICATE_DO_DB: Include updates based on database name. Equivalent to --replicate-do-
db.

• REPLICATE_IGNORE_DB: Exclude updates based on database name. Equivalent to --replicate-
ignore-db.

• REPLICATE_DO_TABLE: Include updates based on table name. Equivalent to --replicate-do-
table.

• REPLICATE_IGNORE_TABLE: Exclude updates based on table name. Equivalent to --replicate-
ignore-table.

• REPLICATE_WILD_DO_TABLE: Include updates based on wildcard pattern matching table name.
Equivalent to --replicate-wild-do-table.

• REPLICATE_WILD_IGNORE_TABLE: Exclude updates based on wildcard pattern matching table
name. Equivalent to --replicate-wild-ignore-table.

• REPLICATE_REWRITE_DB: Perform updates on replica after substituting new name on replica for
specified database on source. Equivalent to --replicate-rewrite-db.

The precise effects of REPLICATE_DO_DB and REPLICATE_IGNORE_DB filters are dependent on
whether statement-based or row-based replication is in effect. See Section 19.2.5, “How Servers
Evaluate Replication Filtering Rules”, for more information.

Multiple replication filtering rules can be created in a single CHANGE REPLICATION FILTER
statement by separating the rules with commas, as shown here:

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (d1), REPLICATE_IGNORE_DB = (d2);

Issuing the statement just shown is equivalent to starting the replica mysqld with the options --
replicate-do-db=d1 --replicate-ignore-db=d2.

On a multi-source replica, which uses multiple replication channels to process transaction from different
sources, use the FOR CHANNEL channel clause to set a replication filter on a replication channel:

CHANGE REPLICATION FILTER REPLICATE_DO_DB = (d1) FOR CHANNEL channel_1;

This enables you to create a channel specific replication filter to filter out selected data from a source.
When a FOR CHANNEL clause is provided, the replication filter statement acts on that replication
channel, removing any existing replication filter which has the same filter type as the specified
replication filters, and replacing them with the specified filter. Filter types not explicitly listed in the
statement are not modified. If issued against a replication channel which is not configured, the
statement fails with an ER_SLAVE_CONFIGURATION error. If issued against Group Replication
channels, the statement fails with an ER_SLAVE_CHANNEL_OPERATION_NOT_ALLOWED error.

On a replica with multiple replication channels configured, issuing CHANGE REPLICATION FILTER
with no FOR CHANNEL clause configures the replication filter for every configured replication channel,
and for the global replication filters. For every filter type, if the filter type is listed in the statement,
then any existing filter rules of that type are replaced by the filter rules specified in the most recently
issued statement, otherwise the old value of the filter type is retained. For more information see
Section 19.2.5.4, “Replication Channel Based Filters”.

If the same filtering rule is specified multiple times, only the last such rule is actually used.
For example, the two statements shown here have exactly the same effect, because the first
REPLICATE_DO_DB rule in the first statement is ignored:

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (db1, db2), REPLICATE_DO_DB = (db3, db4);

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (db3, db4);

2951

SQL Statements for Controlling Replica Servers

Caution

This behavior differs from that of the --replicate-* filter options where
specifying the same option multiple times causes the creation of multiple filter
rules.

Names of tables and database not containing any special characters need not be quoted. Values used
with REPLICATION_WILD_TABLE and REPLICATION_WILD_IGNORE_TABLE are string expressions,
possibly containing (special) wildcard characters, and so must be quoted. This is shown in the following
example statements:

CHANGE REPLICATION FILTER
 REPLICATE_WILD_DO_TABLE = ('db1.old%');

CHANGE REPLICATION FILTER
 REPLICATE_WILD_IGNORE_TABLE = ('db1.new%', 'db2.new%');

Values used with REPLICATE_REWRITE_DB represent pairs of database names; each such value
must be enclosed in parentheses. The following statement rewrites statements occurring on database
db1 on the source to database db2 on the replica:

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB = ((db1, db2));

The statement just shown contains two sets of parentheses, one enclosing the pair of database names,
and the other enclosing the entire list. This is perhaps more easily seen in the following example, which
creates two rewrite-db rules, one rewriting database dbA to dbB, and one rewriting database dbC to
dbD:

CHANGE REPLICATION FILTER
 REPLICATE_REWRITE_DB = ((dbA, dbB), (dbC, dbD));

The CHANGE REPLICATION FILTER statement replaces replication filtering rules only for
the filter types and replication channels affected by the statement, and leaves other rules and
channels unchanged. If you want to unset all filters of a given type, set the filter's value to an
explicitly empty list, as shown in this example, which removes all existing REPLICATE_DO_DB and
REPLICATE_IGNORE_DB rules:

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (), REPLICATE_IGNORE_DB = ();

Setting a filter to empty in this way removes all existing rules, does not create any new ones, and does
not restore any rules set at mysqld startup using --replicate-* options on the command line or in
the configuration file.

The RESET REPLICA ALL statement removes channel specific replication filters that were set on
channels deleted by the statement. When the deleted channel or channels are recreated, any global
replication filters specified for the replica are copied to them, and no channel specific replication filters
are applied.

For more information, see Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”.

15.4.2.3 CHANGE REPLICATION SOURCE TO Statement

CHANGE REPLICATION SOURCE TO option [, option] ... [channel_option]

option: {
 SOURCE_BIND = 'interface_name'
 | SOURCE_HOST = 'host_name'
 | SOURCE_USER = 'user_name'
 | SOURCE_PASSWORD = 'password'
 | SOURCE_PORT = port_num
 | PRIVILEGE_CHECKS_USER = {NULL | 'account'}
 | REQUIRE_ROW_FORMAT = {0|1}
 | REQUIRE_TABLE_PRIMARY_KEY_CHECK = {STREAM | ON | OFF | GENERATE}
 | ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS = {OFF | LOCAL | uuid}
 | SOURCE_LOG_FILE = 'source_log_name'

2952

SQL Statements for Controlling Replica Servers

 | SOURCE_LOG_POS = source_log_pos
 | SOURCE_AUTO_POSITION = {0|1}
 | RELAY_LOG_FILE = 'relay_log_name'
 | RELAY_LOG_POS = relay_log_pos
 | SOURCE_HEARTBEAT_PERIOD = interval
 | SOURCE_CONNECT_RETRY = interval
 | SOURCE_RETRY_COUNT = count
 | SOURCE_CONNECTION_AUTO_FAILOVER = {0|1}
 | SOURCE_DELAY = interval
 | SOURCE_COMPRESSION_ALGORITHMS = 'algorithm[,algorithm][,algorithm]'
 | SOURCE_ZSTD_COMPRESSION_LEVEL = level
 | SOURCE_SSL = {0|1}
 | SOURCE_SSL_CA = 'ca_file_name'
 | SOURCE_SSL_CAPATH = 'ca_directory_name'
 | SOURCE_SSL_CERT = 'cert_file_name'
 | SOURCE_SSL_CRL = 'crl_file_name'
 | SOURCE_SSL_CRLPATH = 'crl_directory_name'
 | SOURCE_SSL_KEY = 'key_file_name'
 | SOURCE_SSL_CIPHER = 'cipher_list'
 | SOURCE_SSL_VERIFY_SERVER_CERT = {0|1}
 | SOURCE_TLS_VERSION = 'protocol_list'
 | SOURCE_TLS_CIPHERSUITES = 'ciphersuite_list'
 | SOURCE_PUBLIC_KEY_PATH = 'key_file_name'
 | GET_SOURCE_PUBLIC_KEY = {0|1}
 | NETWORK_NAMESPACE = 'namespace'
 | IGNORE_SERVER_IDS = (server_id_list),
 | GTID_ONLY = {0|1}
}

channel_option:
 FOR CHANNEL channel

server_id_list:
 [server_id [, server_id] ...]

CHANGE REPLICATION SOURCE TO changes the parameters that the replica server uses for
connecting to the source and reading data from the source. It also updates the contents of the
replication metadata repositories (see Section 19.2.4, “Relay Log and Replication Metadata
Repositories”). In MySQL 8.0.23 and later, use CHANGE REPLICATION SOURCE TO in place of the
deprecated CHANGE MASTER TO statement.

CHANGE REPLICATION SOURCE TO requires the REPLICATION_SLAVE_ADMIN privilege (or the
deprecated SUPER privilege).

Options that you do not specify on a CHANGE REPLICATION SOURCE TO statement retain their value,
except as indicated in the following discussion. In most cases, there is therefore no need to specify
options that do not change.

Values used for SOURCE_HOST and other CHANGE REPLICATION SOURCE TO options are checked
for linefeed (\n or 0x0A) characters. The presence of such characters in these values causes the
statement to fail with an error.

The optional FOR CHANNEL channel clause lets you name which replication channel the statement
applies to. Providing a FOR CHANNEL channel clause applies the CHANGE REPLICATION SOURCE
TO statement to a specific replication channel, and is used to add a new channel or modify an existing
channel. For example, to add a new channel called channel2:

CHANGE REPLICATION SOURCE TO SOURCE_HOST=host1, SOURCE_PORT=3002 FOR CHANNEL 'channel2';

If no clause is named and no extra channels exist, a CHANGE REPLICATION SOURCE TO statement
applies to the default channel, whose name is the empty string (""). When you have set up multiple
replication channels, every CHANGE REPLICATION SOURCE TO statement must name a channel
using the FOR CHANNEL channel clause. See Section 19.2.2, “Replication Channels” for more
information.

For some of the options of the CHANGE REPLICATION SOURCE TO statement, you must issue a
STOP REPLICA statement prior to issuing a CHANGE REPLICATION SOURCE TO statement (and

2953

SQL Statements for Controlling Replica Servers

a START REPLICA statement afterwards). Sometimes, you only need to stop the replication SQL
(applier) thread or the replication I/O (receiver) thread, not both:

• When the applier thread is stopped, you can execute CHANGE REPLICATION SOURCE TO
using any combination that is otherwise allowed of RELAY_LOG_FILE, RELAY_LOG_POS, and
SOURCE_DELAY options, even if the replication receiver thread is running. No other options may be
used with this statement when the receiver thread is running.

• When the receiver thread is stopped, you can execute CHANGE REPLICATION SOURCE TO
using any of the options for this statement (in any allowed combination) except RELAY_LOG_FILE,
RELAY_LOG_POS, SOURCE_DELAY, or SOURCE_AUTO_POSITION = 1 even when the applier
thread is running.

• Both the receiver thread and the applier thread must be stopped before issuing a CHANGE
REPLICATION SOURCE TO statement that employs SOURCE_AUTO_POSITION = 1, GTID_ONLY
= 1, or ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS.

You can check the current state of the replication applier thread and replication receiver
thread using SHOW REPLICA STATUS. Note that the Group Replication applier channel
(group_replication_applier) has no receiver thread, only an applier thread.

CHANGE REPLICATION SOURCE TO statements have a number of side-effects and interactions that
you should be aware of beforehand:

• CHANGE REPLICATION SOURCE TO causes an implicit commit of an ongoing transaction. See
Section 15.3.3, “Statements That Cause an Implicit Commit”.

• CHANGE REPLICATION SOURCE TO causes the previous values for SOURCE_HOST,
SOURCE_PORT, SOURCE_LOG_FILE, and SOURCE_LOG_POS to be written to the error log, along with
other information about the replica's state prior to execution.

• If you are using statement-based replication and temporary tables, it is possible for a CHANGE
REPLICATION SOURCE TO statement following a STOP REPLICA statement to leave behind
temporary tables on the replica. A warning (ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO) is
issued whenever this occurs. You can avoid this in such cases by making sure that the value of the
Replica_open_temp_tables or Slave_open_temp_tables system status variable is equal to
0 prior to executing such a CHANGE REPLICATION SOURCE TO statement.

• When using a multithreaded replica (replica_parallel_workers > 0), stopping the replica can
cause gaps in the sequence of transactions that have been executed from the relay log, regardless
of whether the replica was stopped intentionally or otherwise. When such gaps exist, issuing CHANGE
REPLICATION SOURCE TO fails. The solution in this situation is to issue START REPLICA UNTIL
SQL_AFTER_MTS_GAPS which ensures that the gaps are closed. From MySQL 8.0.26, the process
of checking for gaps in the sequence of transactions is skipped entirely when GTID-based replication
and GTID auto-positioning are in use, because gaps in transactions can be resolved using GTID
auto-positioning. In that situation, CHANGE REPLICATION SOURCE TO can still be used.

The following options are available for CHANGE REPLICATION SOURCE TO statements:

• ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS = {OFF | LOCAL | uuid}

Makes the replication channel assign a GTID to replicated transactions that do not have
one, enabling replication from a source that does not use GTID-based replication, to a
replica that does. For a multi-source replica, you can have a mix of channels that use
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, and channels that do not. The default is OFF,
meaning that the feature is not used.

LOCAL assigns a GTID including the replica's own UUID (the server_uuid setting). uuid assigns
a GTID including the specified UUID, such as the server_uuid setting for the replication source
server. Using a nonlocal UUID lets you differentiate between transactions that originated on the
replica and transactions that originated on the source, and for a multi-source replica, between
transactions that originated on different sources. The UUID you choose only has significance for the

2954

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warn_open_temp_tables_must_be_zero

SQL Statements for Controlling Replica Servers

replica's own use. If any of the transactions sent by the source do have a GTID already, that GTID is
retained.

Channels specific to Group Replication cannot use
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, but an asynchronous replication channel for
another source on a server instance that is a Group Replication group member can do so. In that
case, do not specify the Group Replication group name as the UUID for creating the GTIDs.

To set ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS to LOCAL or uuid, the replica must have
gtid_mode=ON set, and this cannot be changed afterwards. This option is for use with a source that
has binary log file position based replication, so SOURCE_AUTO_POSITION=1 cannot be set for the
channel. Both the replication SQL thread and the replication I/O (receiver) thread must be stopped
before setting this option.

Important

A replica set up with ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS
on any channel cannot be promoted to replace the replication source
server in the event that a failover is required, and a backup taken from
the replica cannot be used to restore the replication source server. The
same restriction applies to replacing or restoring other replicas that use
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS on any channel.

For further restrictions and information, see Section 19.1.3.6, “Replication From a Source Without
GTIDs to a Replica With GTIDs”.

• GET_SOURCE_PUBLIC_KEY = {0|1}

Enables RSA key pair-based password exchange by requesting the public key from the source. The
option is disabled by default.

This option applies to replicas that authenticate with the caching_sha2_password authentication
plugin. For connections by accounts that authenticate using this plugin, the source does not
send the public key unless requested, so it must be requested or specified in the client. If
SOURCE_PUBLIC_KEY_PATH is given and specifies a valid public key file, it takes precedence over
GET_SOURCE_PUBLIC_KEY. If you are using a replication user account that authenticates with the
caching_sha2_password plugin (which is the default from MySQL 8.0), and you are not using a
secure connection, you must specify either this option or the SOURCE_PUBLIC_KEY_PATH option to
provide the RSA public key to the replica.

• GTID_ONLY = {0|1}

Stops the replication channel persisting file names and file positions in the replication metadata
repositories. GTID_ONLY is available as of MySQL 8.0.27. The GTID_ONLY option is disabled by
default for asynchronous replication channels, but it is enabled by default for Group Replication
channels, and it cannot be disabled for them.

For replication channels with this setting, in-memory file positions are still tracked, and file positions
can still be observed for debugging purposes in error messages and through interfaces such as
SHOW REPLICA STATUS statements (where they are shown as being invalid if they are out of
date). However, the writes and reads required to persist and check the file positions are avoided in
situations where GTID-based replication does not actually require them, including the transaction
queuing and application process.

This option can be used only if both the replication SQL (applier) thread and replication I/O (receiver)
thread are stopped. To set GTID_ONLY = 1 for a replication channel, GTIDs must be in use
on the server (gtid_mode = ON), and row-based binary logging must be in use on the source

2955

SQL Statements for Controlling Replica Servers

(statement-based replication is not supported). The options REQUIRE_ROW_FORMAT = 1 and
SOURCE_AUTO_POSITION = 1 must be set for the replication channel.

When GTID_ONLY = 1 is set, the replica uses replica_parallel_workers=1 if that system
variable is set to zero for the server, so it is always technically a multi-threaded applier. This
is because a multi-threaded applier uses saved positions rather than the replication metadata
repositories to locate the start of a transaction that it needs to reapply.

If you disable GTID_ONLY after setting it, the existing relay logs are deleted and the existing known
binary log file positions are persisted, even if they are stale. The file positions for the binary log and
relay log in the replication metadata repositories might be invalid, and a warning is returned if this is
the case. Provided that SOURCE_AUTO_POSITION is still enabled, GTID auto-positioning is used to
provide the correct positioning.

If you also disable SOURCE_AUTO_POSITION, the file positions for the binary log and relay log in
the replication metadata repositories are used for positioning if they are valid. If they are marked
as invalid, you must provide a valid binary log file name and position (SOURCE_LOG_FILE and
SOURCE_LOG_POS). If you also provide a relay log file name and position (RELAY_LOG_FILE and
RELAY_LOG_POS), the relay logs are preserved and the applier position is set to the stated position.
GTID auto-skip ensures that any transactions already applied are skipped even if the eventual
applier position is not correct.

• IGNORE_SERVER_IDS = (server_id_list)

Makes the replica ignore events originating from the specified servers. The option takes a comma-
separated list of 0 or more server IDs. Log rotation and deletion events from the servers are not
ignored, and are recorded in the relay log.

In circular replication, the originating server normally acts as the terminator of its own events, so that
they are not applied more than once. Thus, this option is useful in circular replication when one of the
servers in the circle is removed. Suppose that you have a circular replication setup with 4 servers,
having server IDs 1, 2, 3, and 4, and server 3 fails. When bridging the gap by starting replication from
server 2 to server 4, you can include IGNORE_SERVER_IDS = (3) in the CHANGE REPLICATION
SOURCE TO statement that you issue on server 4 to tell it to use server 2 as its source instead of
server 3. Doing so causes it to ignore and not to propagate any statements that originated with the
server that is no longer in use.

If IGNORE_SERVER_IDS contains the server's own ID and the server was started with the --
replicate-same-server-id option enabled, an error results.

Note

When global transaction identifiers (GTIDs) are used for replication,
transactions that have already been applied are automatically ignored, so
the IGNORE_SERVER_IDS function is not required and is deprecated. If
gtid_mode=ON is set for the server, a deprecation warning is issued if

2956

SQL Statements for Controlling Replica Servers

you include the IGNORE_SERVER_IDS option in a CHANGE REPLICATION
SOURCE TO statement.

The source metadata repository and the output of SHOW REPLICA STATUS provide the list of
servers that are currently ignored. For more information, see Section 19.2.4.2, “Replication Metadata
Repositories”, and Section 15.7.7.35, “SHOW REPLICA STATUS Statement”.

If a CHANGE REPLICATION SOURCE TO statement is issued without any IGNORE_SERVER_IDS
option, any existing list is preserved. To clear the list of ignored servers, it is necessary to use the
option with an empty list:

CHANGE REPLICATION SOURCE TO IGNORE_SERVER_IDS = ();

RESET REPLICA ALL clears IGNORE_SERVER_IDS.

Note

A deprecation warning is issued if SET GTID_MODE=ON is issued when
any channel has existing server IDs set with IGNORE_SERVER_IDS. Before
starting GTID-based replication, check for and clear all ignored server ID lists
on the servers involved. The SHOW REPLICA STATUS statement displays the
list of ignored IDs, if there is one. If you do receive the deprecation warning,
you can still clear a list after gtid_mode=ON is set by issuing a CHANGE
REPLICATION SOURCE TO statement containing the IGNORE_SERVER_IDS
option with an empty list.

• NETWORK_NAMESPACE = 'namespace'

The network namespace to use for TCP/IP connections to the replication source server or, if the
MySQL communication stack is in use, for Group Replication’s group communication connections.
The maximum length of the string value is 64 characters. If this option is omitted, connections
from the replica use the default (global) namespace. On platforms that do not implement network
namespace support, failure occurs when the replica attempts to connect to the source. For
information about network namespaces, see Section 7.1.14, “Network Namespace Support”.
NETWORK_NAMESPACE is available as of MySQL 8.0.22.

• PRIVILEGE_CHECKS_USER = {NULL | 'account'}

Names a user account that supplies a security context for the specified channel. NULL, which is the
default, means no security context is used. PRIVILEGE_CHECKS_USER is available as of MySQL
8.0.18.

The user name and host name for the user account must follow the syntax described in
Section 8.2.4, “Specifying Account Names”, and the user must not be an anonymous user (with a
blank user name) or the CURRENT_USER. The account must have the REPLICATION_APPLIER
privilege, plus the required privileges to execute the transactions replicated on the channel. For
details of the privileges required by the account, see Section 19.3.3, “Replication Privilege Checks”.
When you restart the replication channel, the privilege checks are applied from that point on. If you
do not specify a channel and no other channels exist, the statement is applied to the default channel.

The use of row-based binary logging is strongly recommended when PRIVILEGE_CHECKS_USER is
set, and you can set REQUIRE_ROW_FORMAT to enforce this. For example, to start privilege checks
on the channel channel_1 on a running replica, issue the following statements:

STOP REPLICA FOR CHANNEL 'channel_1';

CHANGE REPLICATION SOURCE TO
 PRIVILEGE_CHECKS_USER = 'user'@'host',
 REQUIRE_ROW_FORMAT = 1,
 FOR CHANNEL 'channel_1';

START REPLICA FOR CHANNEL 'channel_1';

2957

SQL Statements for Controlling Replica Servers

• RELAY_LOG_FILE = 'relay_log_file' , RELAY_LOG_POS = 'relay_log_pos'

The relay log file name, and the location in that file, at which the replication SQL thread begins
reading from the replica's relay log the next time the thread starts. RELAY_LOG_FILE can use either
an absolute or relative path, and uses the same base name as SOURCE_LOG_FILE. The maximum
length of the string value is 511 characters.

A CHANGE REPLICATION SOURCE TO statement using RELAY_LOG_FILE, RELAY_LOG_POS,
or both options can be executed on a running replica when the replication SQL (applier) thread is
stopped. Relay logs are preserved if at least one of the replication applier thread and the replication
I/O (receiver) thread is running. If both threads are stopped, all relay log files are deleted unless at
least one of RELAY_LOG_FILE or RELAY_LOG_POS is specified. For the Group Replication applier
channel (group_replication_applier), which only has an applier thread and no receiver
thread, this is the case if the applier thread is stopped, but with that channel you cannot use the
RELAY_LOG_FILE and RELAY_LOG_POS options.

• REQUIRE_ROW_FORMAT = {0|1}

Permits only row-based replication events to be processed by the replication channel. This
option prevents the replication applier from taking actions such as creating temporary tables
and executing LOAD DATA INFILE requests, which increases the security of the channel. The
REQUIRE_ROW_FORMAT option is disabled by default for asynchronous replication channels, but it
is enabled by default for Group Replication channels, and it cannot be disabled for them. For more
information, see Section 19.3.3, “Replication Privilege Checks”. REQUIRE_ROW_FORMAT is available
as of MySQL 8.0.19.

• REQUIRE_TABLE_PRIMARY_KEY_CHECK = {STREAM | ON | OFF | GENERATE}

Available as of MySQL 8.0.20, this option lets a replica set its own policy for primary key checks, as
follows:

• ON: The replica sets sql_require_primary_key = ON; any replicated CREATE TABLE or
ALTER TABLE statement must result in a table that contains a primary key.

• OFF: The replica sets sql_require_primary_key = OFF; no replicated CREATE TABLE or
ALTER TABLE statement is checked for the presence of a primary key.

• STREAM: The replica uses whatever value of sql_require_primary_key is replicated from the
source for each transaction. This is the default value, and the default behavior.

• GENERATE: Added in MySQL 8.0.32, this causes the replica to generate an invisible primary key
for any InnoDB table that, as replicated, lacks a primary key. See Section 15.1.20.11, “Generated
Invisible Primary Keys”, for more information.

GENERATE is not compatible with Group Replication; you can use ON, OFF, or STREAM.

A divergence based on the presence of a generated invisible primary key solely on a source or
replica table is supported by MySQL Replication as long as the source supports GIPKs (MySQL
8.0.30 and later) and the replica uses MySQL version 8.0.32 or later. If you use GIPKs on a replica
and replicate from a source using MySQL 8.0.29 or earlier, you should be aware that in this case
such divergences in schema, other than the extra GIPK on the replica, are not supported and may
result in replication errors.

For multisource replication, setting REQUIRE_TABLE_PRIMARY_KEY_CHECK to ON or OFF lets the
replica normalize behavior across replication channels for different sources, and to keep a consistent
setting for sql_require_primary_key. Using ON safeguards against the accidental loss of

2958

SQL Statements for Controlling Replica Servers

primary keys when multiple sources update the same set of tables. Using OFF lets sources that can
manipulate primary keys to work alongside sources that cannot.

In the case of multiple replicas, when REQUIRE_TABLE_PRIMARY_KEY_CHECK is set to GENERATE,
the generated invisible primary key added by a given replica is independent of any such key added
on any other replica. This means that, if generated invisible primary keys are in use, the values in the
generated primary key columns on different replicas are not guaranteed to be the same. This may be
an issue when failing over to such a replica.

When PRIVILEGE_CHECKS_USER is NULL (the default), the user account does not need
administration level privileges to set restricted session variables. Setting this option to a value other
than NULL means that, when REQUIRE_TABLE_PRIMARY_KEY_CHECK is ON, OFF, or GENERATE,
the user account does not require session administration level privileges to set restricted session
variables such as sql_require_primary_key, avoiding the need to grant the account such
privileges. For more information, see Section 19.3.3, “Replication Privilege Checks”.

• SOURCE_AUTO_POSITION = {0|1}

Makes the replica attempt to connect to the source using the auto-positioning feature of GTID-based
replication, rather than a binary log file based position. This option is used to start a replica using
GTID-based replication. The default is 0, meaning that GTID auto-positioning and GTID-based
replication are not used. This option can be used with CHANGE REPLICATION SOURCE TO only if
both the replication SQL (applier) thread and replication I/O (receiver) thread are stopped.

Both the replica and the source must have GTIDs enabled (GTID_MODE=ON, ON_PERMISSIVE,
or OFF_PERMISSIVE on the replica, and GTID_MODE=ON on the source). SOURCE_LOG_FILE,
SOURCE_LOG_POS, RELAY_LOG_FILE, and RELAY_LOG_POS cannot be specified together with
SOURCE_AUTO_POSITION = 1. If multi-source replication is enabled on the replica, you need to set
the SOURCE_AUTO_POSITION = 1 option for each applicable replication channel.

With SOURCE_AUTO_POSITION = 1 set, in the initial connection handshake, the replica sends a
GTID set containing the transactions that it has already received, committed, or both. The source
responds by sending all transactions recorded in its binary log whose GTID is not included in the
GTID set sent by the replica. This exchange ensures that the source only sends the transactions with
a GTID that the replica has not already recorded or committed. If the replica receives transactions
from more than one source, as in the case of a diamond topology, the auto-skip function ensures
that the transactions are not applied twice. For details of how the GTID set sent by the replica is
computed, see Section 19.1.3.3, “GTID Auto-Positioning”.

If any of the transactions that should be sent by the source have been purged from the source's
binary log, or added to the set of GTIDs in the gtid_purged system variable by another method,
the source sends the error ER_SOURCE_HAS_PURGED_REQUIRED_GTIDS to the replica, and
replication does not start. The GTIDs of the missing purged transactions are identified and listed
in the source's error log in the warning message ER_FOUND_MISSING_GTIDS. Also, if during the
exchange of transactions it is found that the replica has recorded or committed transactions with the
source's UUID in the GTID, but the source itself has not committed them, the source sends the error
ER_REPLICA_HAS_MORE_GTIDS_THAN_SOURCE to the replica and replication does not start. For
information on how to handle these situations, see Section 19.1.3.3, “GTID Auto-Positioning”.

You can see whether replication is running with GTID auto-positioning enabled by checking the
Performance Schema replication_connection_status table or the output of SHOW REPLICA
STATUS. Disabling the SOURCE_AUTO_POSITION option again makes the replica revert to file-based
replication.

2959

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_source_has_purged_required_gtids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_found_missing_gtids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_replica_has_more_gtids_than_source

SQL Statements for Controlling Replica Servers

• SOURCE_BIND = 'interface_name'

Determines which of the replica's network interfaces is chosen for connecting to the source, for use
on replicas that have multiple network interfaces. Specify the IP address of the network interface.
The maximum length of the string value is 255 characters.

The IP address configured with this option, if any, can be seen in the Source_Bind column
of the output from SHOW REPLICA STATUS. In the source metadata repository table
mysql.slave_master_info, the value can be seen as the Source_bind column. The ability to
bind a replica to a specific network interface is also supported by NDB Cluster.

• SOURCE_COMPRESSION_ALGORITHMS = 'algorithm[,algorithm][,algorithm]'

Specifies one, two, or three of the permitted compression algorithms for connections to the
replication source server, separated by commas. The maximum length of the string value is 99
characters. The default value is uncompressed.

The available algorithms are zlib, zstd, and uncompressed, the same as for the
protocol_compression_algorithms system variable. The algorithms can be specified in any
order, but it is not an order of preference - the algorithm negotiation process attempts to use zlib,
then zstd, then uncompressed, if they are specified. SOURCE_COMPRESSION_ALGORITHMS is
available as of MySQL 8.0.18.

The value of SOURCE_COMPRESSION_ALGORITHMS applies only if the
replica_compressed_protocol or slave_compressed_protocol system variable is
disabled. If replica_compressed_protocol or slave_compressed_protocol is enabled,
it takes precedence over SOURCE_COMPRESSION_ALGORITHMS and connections to the source
use zlib compression if both source and replica support that algorithm. For more information, see
Section 6.2.8, “Connection Compression Control”.

Binary log transaction compression (available as of MySQL 8.0.20), which is activated by the
binlog_transaction_compression system variable, can also be used to save bandwidth. If you
do this in combination with connection compression, connection compression has less opportunity
to act on the data, but can still compress headers and those events and transaction payloads that
are uncompressed. For more information on binary log transaction compression, see Section 7.4.4.5,
“Binary Log Transaction Compression”.

• SOURCE_CONNECT_RETRY = interval

Specifies the interval in seconds between the reconnection attempts that the replica makes after the
connection to the source times out. The default interval is 60.

The number of attempts is limited by the SOURCE_RETRY_COUNT option. If both the
default settings are used, the replica waits 60 seconds between reconnection attempts
(SOURCE_CONNECT_RETRY=60), and keeps attempting to reconnect at this rate for 60 days
(SOURCE_RETRY_COUNT=86400). These values are recorded in the source metadata repository and
shown in the replication_connection_configuration Performance Schema table.

• SOURCE_CONNECTION_AUTO_FAILOVER = {0|1}

Activates the asynchronous connection failover mechanism for a replication channel if one or more
alternative replication source servers are available (so when there are multiple MySQL servers
or groups of servers that share the replicated data). SOURCE_CONNECTION_AUTO_FAILOVER is
available as of MySQL 8.0.22. The default is 0, meaning that the mechanism is not activated. For full
information and instructions to set up this feature, see Section 19.4.9.2, “Asynchronous Connection
Failover for Replicas”.

The asynchronous connection failover mechanism takes over after the reconnection attempts
controlled by SOURCE_CONNECT_RETRY and SOURCE_RETRY_COUNT are exhausted. It
reconnects the replica to an alternative source chosen from a specified source list, which

2960

SQL Statements for Controlling Replica Servers

you manage using the asynchronous_connection_failover_add_source and
asynchronous_connection_failover_delete_source functions. To add and remove
managed groups of servers, use the asynchronous_connection_failover_add_managed
and asynchronous_connection_failover_delete_managed functions instead. For more
information, see Section 19.4.9, “Switching Sources and Replicas with Asynchronous Connection
Failover”.

Important

1. You can only set SOURCE_CONNECTION_AUTO_FAILOVER = 1 when
GTID auto-positioning is in use (SOURCE_AUTO_POSITION = 1).

2. When you set SOURCE_CONNECTION_AUTO_FAILOVER = 1, set
SOURCE_RETRY_COUNT and SOURCE_CONNECT_RETRY to minimal
numbers that just allow a few retry attempts with the same source, in
case the connection failure is caused by a transient network outage.
Otherwise the asynchronous connection failover mechanism cannot
be activated promptly. Suitable values are SOURCE_RETRY_COUNT=3
and SOURCE_CONNECT_RETRY=10, which make the replica retry the
connection 3 times with 10-second intervals between.

3. When you set SOURCE_CONNECTION_AUTO_FAILOVER = 1, the
replication metadata repositories must contain the credentials for a
replication user account that can be used to connect to all the servers
on the source list for the replication channel. The account must also
have SELECT permissions on the Performance Schema tables. These
credentials can be set using the CHANGE REPLICATION SOURCE TO
statement with the SOURCE_USER and SOURCE_PASSWORD options. For
more information, see Section 19.4.9, “Switching Sources and Replicas
with Asynchronous Connection Failover”.

4. From MySQL 8.0.27, when you set
SOURCE_CONNECTION_AUTO_FAILOVER = 1, asynchronous connection
failover for replicas is automatically activated if this replication channel
is on a Group Replication primary in a group in single-primary mode.
With this function active, if the primary that is replicating goes offline
or into an error state, the new primary starts replication on the same
channel when it is elected. If you want to use the function, this replication
channel must also be set up on all the secondary servers in the
replication group, and on any new joining members. (If the servers
are provisioned using MySQL’s clone functionality, this all happens
automatically.) If you do not want to use the function, disable it by
using the group_replication_disable_member_action()
function to disable the Group Replication member action
mysql_start_failover_channels_if_primary, which is enabled
by default. For more information, see Section 19.4.9.2, “Asynchronous
Connection Failover for Replicas”.

• SOURCE_DELAY = interval

Specifies how many seconds behind the source the replica must lag. An event received from the
source is not executed until at least interval seconds later than its execution on the source.
interval must be a nonnegative integer in the range from 0 to 231−1. The default is 0. For more
information, see Section 19.4.11, “Delayed Replication”.

A CHANGE REPLICATION SOURCE TO statement using the SOURCE_DELAY option can be
executed on a running replica when the replication SQL thread is stopped.

2961

SQL Statements for Controlling Replica Servers

• SOURCE_HEARTBEAT_PERIOD = interval

Controls the heartbeat interval, which stops the connection timeout occurring in the absence of data
if the connection is still good. A heartbeat signal is sent to the replica after that number of seconds,
and the waiting period is reset whenever the source's binary log is updated with an event. Heartbeats
are therefore sent by the source only if there are no unsent events in the binary log file for a period
longer than this.

The heartbeat interval interval is a decimal value having the range 0 to 4294967 seconds
and a resolution in milliseconds; the smallest nonzero value is 0.001. Setting interval
to 0 disables heartbeats altogether. The heartbeat interval defaults to half the value of the
replica_net_timeout or slave_net_timeout system variable. It is recorded in the source
metadata repository and shown in the replication_connection_configuration Performance
Schema table.

The system variable replica_net_timeout (from MySQL 8.0.26) or slave_net_timeout
(before MySQL 8.0.26) specifies the number of seconds that the replica waits for either more
data or a heartbeat signal from the source, before the replica considers the connection broken,
aborts the read, and tries to reconnect. The default value is 60 seconds (one minute). Note that
a change to the value or default setting of replica_net_timeout or slave_net_timeout
does not automatically change the heartbeat interval, whether that has been set explicitly
or is using a previously calculated default. A warning is issued if you set the global value of
replica_net_timeout or slave_net_timeout to a value less than that of the current heartbeat
interval. If replica_net_timeout or slave_net_timeout is changed, you must also issue
CHANGE REPLICATION SOURCE TO to adjust the heartbeat interval to an appropriate value so that
the heartbeat signal occurs before the connection timeout. If you do not do this, the heartbeat signal
has no effect, and if no data is received from the source, the replica can make repeated reconnection
attempts, creating zombie dump threads.

• SOURCE_HOST = 'host_name'

The host name or IP address of the replication source server. The replica uses this to connect to the
source. The maximum length of the string value is 255 characters.

If you specify SOURCE_HOST or SOURCE_PORT, the replica assumes that the source server is
different from before (even if the option value is the same as its current value.) In this case,
the old values for the source's binary log file name and position are considered no longer
applicable, so if you do not specify SOURCE_LOG_FILE and SOURCE_LOG_POS in the statement,
SOURCE_LOG_FILE='' and SOURCE_LOG_POS=4 are silently appended to it.

Setting SOURCE_HOST='' (that is, setting its value explicitly to an empty string) is not the same as
not setting SOURCE_HOST at all. Trying to set SOURCE_HOST to an empty string fails with an error.

2962

SQL Statements for Controlling Replica Servers

• SOURCE_LOG_FILE = 'source_log_name', SOURCE_LOG_POS = source_log_pos

The binary log file name, and the location in that file, at which the replication I/O (receiver) thread
begins reading from the source's binary log the next time the thread starts. Specify these options if
you are using binary log file position based replication.

SOURCE_LOG_FILE must include the numeric suffix of a specific binary log file that is available on
the source server, for example, SOURCE_LOG_FILE='binlog.000145'. The maximum length of
the string value is 511 characters.

SOURCE_LOG_POS is the numeric position for the replica to start reading in that file.
SOURCE_LOG_POS=4 represents the start of the events in a binary log file.

If you specify either of SOURCE_LOG_FILE or SOURCE_LOG_POS, you cannot specify
SOURCE_AUTO_POSITION = 1, which is for GTID-based replication.

If neither of SOURCE_LOG_FILE or SOURCE_LOG_POS is specified, the replica uses the last
coordinates of the replication SQL thread before CHANGE REPLICATION SOURCE TO was issued.
This ensures that there is no discontinuity in replication, even if the replication SQL (applier) thread
was late compared to the replication I/O (receiver) thread.

• SOURCE_PASSWORD = 'password'

The password for the replication user account to use for connecting to the replication source server.
The maximum length of the string value is 32 characters. If you specify SOURCE_PASSWORD,
SOURCE_USER is also required.

The password used for a replication user account in a CHANGE REPLICATION SOURCE TO
statement is limited to 32 characters in length. Trying to use a password of more than 32 characters
causes CHANGE REPLICATION SOURCE TO to fail.

The password is masked in MySQL Server’s logs, Performance Schema tables, and SHOW
PROCESSLIST statements.

• SOURCE_PORT = port_num

The TCP/IP port number that the replica uses to connect to the replication source server.

Note

Replication cannot use Unix socket files. You must be able to connect to the
replication source server using TCP/IP.

If you specify SOURCE_HOST or SOURCE_PORT, the replica assumes that the source server is
different from before (even if the option value is the same as its current value.) In this case,
the old values for the source's binary log file name and position are considered no longer
applicable, so if you do not specify SOURCE_LOG_FILE and SOURCE_LOG_POS in the statement,
SOURCE_LOG_FILE='' and SOURCE_LOG_POS=4 are silently appended to it.

• SOURCE_PUBLIC_KEY_PATH = 'key_file_name'

Enables RSA key pair-based password exchange by providing the path name to a file containing
a replica-side copy of the public key required by the source. The file must be in PEM format. The
maximum length of the string value is 511 characters.

This option applies to replicas that authenticate with the sha256_password or
caching_sha2_password authentication plugin. (For sha256_password,
SOURCE_PUBLIC_KEY_PATH can be used only if MySQL was built using OpenSSL.) If you are using
a replication user account that authenticates with the caching_sha2_password plugin (which is
the default from MySQL 8.0), and you are not using a secure connection, you must specify either this
option or the GET_SOURCE_PUBLIC_KEY=1 option to provide the RSA public key to the replica.

2963

SQL Statements for Controlling Replica Servers

• SOURCE_RETRY_COUNT = count

Sets the maximum number of reconnection attempts that the replica makes after the connection
to the source times out, as determined by the replica_net_timeout or slave_net_timeout
system variable. If the replica does need to reconnect, the first retry occurs immediately after the
timeout. The default is 86400 attempts.

The interval between the attempts is specified by the SOURCE_CONNECT_RETRY option. If both
the default settings are used, the replica waits 60 seconds between reconnection attempts
(SOURCE_CONNECT_RETRY=60), and keeps attempting to reconnect at this rate for 60 days
(SOURCE_RETRY_COUNT=86400). A setting of 0 for SOURCE_RETRY_COUNT means that there is no
limit on the number of reconnection attempts, so the replica keeps trying to reconnect indefinitely.

The values for SOURCE_CONNECT_RETRY and SOURCE_RETRY_COUNT are recorded in the source
metadata repository and shown in the replication_connection_configuration Performance
Schema table. SOURCE_RETRY_COUNT supersedes the --master-retry-count server startup
option.

• SOURCE_SSL = {0|1}

Specify whether the replica encrypts the replication connection. The default is 0, meaning that the
replica does not encrypt the replication connection. If you set SOURCE_SSL=1, you can configure the
encryption using the SOURCE_SSL_xxx and SOURCE_TLS_xxx options.

Setting SOURCE_SSL=1 for a replication connection and then setting no further SOURCE_SSL_xxx
options corresponds to setting --ssl-mode=REQUIRED for the client, as described in Command
Options for Encrypted Connections. With SOURCE_SSL=1, the connection attempt only succeeds
if an encrypted connection can be established. A replication connection does not fall back to an
unencrypted connection, so there is no setting corresponding to the --ssl-mode=PREFERRED
setting for replication. If SOURCE_SSL=0 is set, this corresponds to --ssl-mode=DISABLED.

Important

To help prevent sophisticated man-in-the-middle attacks, it is important
for the replica to verify the server’s identity. You can specify additional
SOURCE_SSL_xxx options to correspond to the settings --ssl-
mode=VERIFY_CA and --ssl-mode=VERIFY_IDENTITY, which are a
better choice than the default setting to help prevent this type of attack. With
these settings, the replica checks that the server’s certificate is valid, and
checks that the host name the replica is using matches the identity in the
server’s certificate. To implement one of these levels of verification, you must
first ensure that the CA certificate for the server is reliably available to the
replica, otherwise availability issues will result. For this reason, they are not
the default setting.

• SOURCE_SSL_xxx, SOURCE_TLS_xxx

Specify how the replica uses encryption and ciphers to secure the replication connection. These
options can be changed even on replicas that are compiled without SSL support. They are saved to
the source metadata repository, but are ignored if the replica does not have SSL support enabled.
The maximum length of the value for the string-valued SOURCE_SSL_xxx and SOURCE_TLS_xxx
options is 511 characters, with the exception of SOURCE_TLS_CIPHERSUITES, for which it is 4000
characters.

The SOURCE_SSL_xxx and SOURCE_TLS_xxx options perform the same functions as the --
ssl-xxx and --tls-xxx client options described in Command Options for Encrypted Connections.
The correspondence between the two sets of options, and the use of the SOURCE_SSL_xxx and
SOURCE_TLS_xxx options to set up a secure connection, is explained in Section 19.3.1, “Setting Up
Replication to Use Encrypted Connections”.

2964

SQL Statements for Controlling Replica Servers

• SOURCE_USER = 'user_name'

The user name for the replication user account to use for connecting to the replication source server.
The maximum length of the string value is 96 characters.

For Group Replication, this account must exist on every member of the replication group. It is used
for distributed recovery if the XCom communication stack is in use for the group, and also used
for group communication connections if the MySQL communication stack is in use for the group.
With the MySQL communication stack, the account must have the GROUP_REPLICATION_STREAM
permission.

It is possible to set an empty user name by specifying SOURCE_USER='', but the replication
channel cannot be started with an empty user name. In releases before MySQL 8.0.21, only set
an empty SOURCE_USER user name if you need to clear previously used credentials from the
replication metadata repositories for security purposes. Do not use the channel afterwards, due
to a bug in these releases that can substitute a default user name if an empty user name is read
from the repositories (for example, during an automatic restart of a Group Replication channel).
From MySQL 8.0.21, it is valid to set an empty SOURCE_USER user name and use the channel
afterwards if you always provide user credentials using the START REPLICA statement or START
GROUP_REPLICATION statement that starts the replication channel. This approach means that the
replication channel always needs operator intervention to restart, but the user credentials are not
recorded in the replication metadata repositories.

Important

To connect to the source using a replication user account that authenticates
with the caching_sha2_password plugin, you must either set up a secure
connection as described in Section 19.3.1, “Setting Up Replication to Use
Encrypted Connections”, or enable the unencrypted connection to support
password exchange using an RSA key pair. The caching_sha2_password
authentication plugin is the default for new users created from MySQL 8.0
(see Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”). If the
user account that you create or use for replication uses this authentication
plugin, and you are not using a secure connection, you must enable RSA
key pair-based password exchange for a successful connection. You
can do this using either the SOURCE_PUBLIC_KEY_PATH option or the
GET_SOURCE_PUBLIC_KEY=1 option for this statement.

• SOURCE_ZSTD_COMPRESSION_LEVEL = level

The compression level to use for connections to the replication source server that use the zstd
compression algorithm. SOURCE_ZSTD_COMPRESSION_LEVEL is available as of MySQL 8.0.18. The
permitted levels are from 1 to 22, with larger values indicating increasing levels of compression. The
default level is 3.

The compression level setting has no effect on connections that do not use zstd compression. For
more information, see Section 6.2.8, “Connection Compression Control”.

Examples

CHANGE REPLICATION SOURCE TO is useful for setting up a replica when you have the
snapshot of the source and have recorded the source's binary log coordinates corresponding
to the time of the snapshot. After loading the snapshot into the replica to synchronize it with the
source, you can run CHANGE REPLICATION SOURCE TO SOURCE_LOG_FILE='log_name',
SOURCE_LOG_POS=log_pos on the replica to specify the coordinates at which the replica should
begin reading the source's binary log. The following example changes the source server the replica
uses and establishes the source's binary log coordinates from which the replica begins reading:

CHANGE REPLICATION SOURCE TO
 SOURCE_HOST='source2.example.com',
 SOURCE_USER='replication',

2965

SQL Statements for Controlling Replica Servers

 SOURCE_PASSWORD='password',
 SOURCE_PORT=3306,
 SOURCE_LOG_FILE='source2-bin.001',
 SOURCE_LOG_POS=4,
 SOURCE_CONNECT_RETRY=10;

For the procedure to switch an existing replica to a new source during failover, see Section 19.4.8,
“Switching Sources During Failover”.

When GTIDs are in use on the source and the replica, specify GTID auto-positioning instead of giving
the binary log file position, as in the following example. For full instructions to configure and start GTID-
based replication on new or stopped servers, online servers, or additional replicas, see Section 19.1.3,
“Replication with Global Transaction Identifiers”.

CHANGE REPLICATION SOURCE TO
 SOURCE_HOST='source3.example.com',
 SOURCE_USER='replication',
 SOURCE_PASSWORD='password',
 SOURCE_PORT=3306,
 SOURCE_AUTO_POSITION = 1,
 FOR CHANNEL "source_3";

In this example, multi-source replication is in use, and the CHANGE REPLICATION SOURCE TO
statement is applied to the replication channel "source_3" that connects the replica to the specified
host. For guidance on setting up multi-source replication, see Section 19.1.5, “MySQL Multi-Source
Replication”.

The next example shows how to make the replica apply transactions from relay log files that you
want to repeat. To do this, the source need not be reachable. You can use CHANGE REPLICATION
SOURCE TO to locate the relay log position where you want the replica to start reapplying transactions,
and then start the SQL thread:

CHANGE REPLICATION SOURCE TO
 RELAY_LOG_FILE='replica-relay-bin.006',
 RELAY_LOG_POS=4025;
START REPLICA SQL_THREAD;

CHANGE REPLICATION SOURCE TO can also be used to skip over transactions in the binary log that
are causing replication to stop. The appropriate method to do this depends on whether GTIDs are in
use or not. For instructions to skip transactions using CHANGE REPLICATION SOURCE TO or another
method, see Section 19.1.7.3, “Skipping Transactions”.

15.4.2.4 RESET REPLICA Statement

RESET REPLICA [ALL] [channel_option]

channel_option:
 FOR CHANNEL channel

RESET REPLICA makes the replica forget its position in the source's binary log. From MySQL 8.0.22,
use RESET REPLICA in place of RESET SLAVE, which is deprecated from that release. In releases
before MySQL 8.0.22, use RESET SLAVE.

This statement is meant to be used for a clean start; it clears the replication metadata repositories,
deletes all the relay log files, and starts a new relay log file. It also resets to 0 the replication delay
specified with the SOURCE_DELAY | MASTER_DELAY option of the CHANGE REPLICATION SOURCE
TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23).

Note

All relay log files are deleted, even if they have not been completely executed
by the replication SQL thread. (This is a condition likely to exist on a replica if
you have issued a STOP REPLICA statement or if the replica is highly loaded.)

For a server where GTIDs are in use (gtid_mode is ON), issuing RESET REPLICA has no effect
on the GTID execution history. The statement does not change the values of gtid_executed or

2966

SQL Statements for Controlling Replica Servers

gtid_purged, or the mysql.gtid_executed table. If you need to reset the GTID execution history,
use RESET MASTER, even if the GTID-enabled server is a replica where binary logging is disabled.

RESET REPLICA requires the RELOAD privilege.

To use RESET REPLICA, the replication SQL thread and replication I/O (receiver) thread must be
stopped, so on a running replica use STOP REPLICA before issuing RESET REPLICA. To use RESET
REPLICA on a Group Replication group member, the member status must be OFFLINE, meaning that
the plugin is loaded but the member does not currently belong to any group. A group member can be
taken offline by using a STOP GROUP REPLICATION statement.

The optional FOR CHANNEL channel clause enables you to name which replication channel the
statement applies to. Providing a FOR CHANNEL channel clause applies the RESET REPLICA
statement to a specific replication channel. Combining a FOR CHANNEL channel clause with the ALL
option deletes the specified channel. If no channel is named and no extra channels exist, the statement
applies to the default channel. Issuing a RESET REPLICA ALL statement without a FOR CHANNEL
channel clause when multiple replication channels exist deletes all replication channels and recreates
only the default channel. See Section 19.2.2, “Replication Channels” for more information.

RESET REPLICA does not change any replication connection parameters, which include the source's
host name and port, the replication user account and its password, the PRIVILEGE_CHECKS_USER
account, the REQUIRE_ROW_FORMAT option, the REQUIRE_TABLE_PRIMARY_KEY_CHECK option,and
the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option. If you want to change any of the
replication connection parameters, you can do this using a CHANGE REPLICATION SOURCE TO
statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) after the
server start. If you want to remove all of the replication connection parameters, use RESET REPLICA
ALL. RESET REPLICA ALL also clears the IGNORE_SERVER_IDS list set by CHANGE REPLICATION
SOURCE TO | CHANGE MASTER TO. When you have used RESET REPLICA ALL, if you want to use
the instance as a replica again, you need to issue a CHANGE REPLICATION SOURCE TO | CHANGE
MASTER TO statement after the server start to specify new connection parameters.

From MySQL 8.0.27, you can set the GTID_ONLY option on the CHANGE REPLICATION SOURCE TO
statement to stop a replication channel from persisting file names and file positions in the replication
metadata repositories. When you issue a RESET REPLICA statement, the replication metadata
repositories are synchronized. RESET REPLICA ALL deletes rather than updates the repositories, so
they are synchronized implicitly.

In the event of an unexpected server exit or deliberate restart after issuing RESET REPLICA but before
issuing START REPLICA, retention of the replication connection parameters depends on the repository
used for the replication metadata:

• When master_info_repository=TABLE and relay_log_info_repository=TABLE
are set on the server (which are the default settings from MySQL 8.0), replication connection
parameters are preserved in the crash-safe InnoDB tables mysql.slave_master_info and
mysql.slave_relay_log_info as part of the RESET REPLICA operation. They are also
retained in memory. In the event of an unexpected server exit or deliberate restart after issuing
RESET REPLICA but before issuing START REPLICA, the replication connection parameters are
retrieved from the tables and reapplied to the channel. This situation applies from MySQL 8.0.13 for
the connection metadata repository, and from MySQL 8.0.19 for the applier metadata repository.

• If master_info_repository=FILE and relay_log_info_repository=FILE are set on the
server, which is deprecated from MySQL 8.0, or the MySQL Server release is earlier than those
specified above, replication connection parameters are only retained in memory. If the replica
mysqld is restarted immediately after issuing RESET REPLICA due to an unexpected server exit
or deliberate restart, the connection parameters are lost. In that case, you must issue a CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement
(before MySQL 8.0.23) after the server start to respecify the connection parameters before issuing
START REPLICA.

RESET REPLICA does not change any replication filter settings (such as --replicate-ignore-
table) for channels affected by the statement. However, RESET REPLICA ALL removes the

2967

SQL Statements for Controlling Replica Servers

replication filters that were set on the channels deleted by the statement. When the deleted channel or
channels are recreated, any global replication filters specified for the replica are copied to them, and no
channel specific replication filters are applied. For more information see Section 19.2.5.4, “Replication
Channel Based Filters”.

RESET REPLICA causes an implicit commit of an ongoing transaction. See Section 15.3.3,
“Statements That Cause an Implicit Commit”.

If the replication SQL thread was in the middle of replicating temporary tables when it was stopped, and
RESET REPLICA is issued, these replicated temporary tables are deleted on the replica.

Note

When used on an NDB Cluster replica SQL node, RESET REPLICA clears the
mysql.ndb_apply_status table. You should keep in mind when using this
statement that ndb_apply_status uses the NDB storage engine and so is
shared by all SQL nodes attached to the cluster.

You can override this behavior by issuing SET GLOBAL
@@ndb_clear_apply_status=OFF prior to executing RESET REPLICA,
which keeps the replica from purging the ndb_apply_status table in such
cases.

15.4.2.5 RESET SLAVE Statement

RESET {SLAVE | REPLICA} [ALL] [channel_option]

channel_option:
 FOR CHANNEL channel

Makes the replica forget its position in the source's binary log. From MySQL 8.0.22, RESET SLAVE is
deprecated and the alias RESET REPLICA should be used instead. In releases before MySQL 8.0.22,
use RESET SLAVE. The statement works in the same way as before, only the terminology used for the
statement and its output has changed. Both versions of the statement update the same status variables
when used. Please see the documentation for RESET REPLICA for a description of the statement.

15.4.2.6 START REPLICA Statement

START REPLICA [thread_types] [until_option] [connection_options] [channel_option]

thread_types:
 [thread_type [, thread_type] ...]

thread_type:
 IO_THREAD | SQL_THREAD

until_option:
 UNTIL { {SQL_BEFORE_GTIDS | SQL_AFTER_GTIDS} = gtid_set
 | MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
 | SOURCE_LOG_FILE = 'log_name', SOURCE_LOG_POS = log_pos
 | RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos
 | SQL_AFTER_MTS_GAPS }

connection_options:
 [USER='user_name'] [PASSWORD='user_pass'] [DEFAULT_AUTH='plugin_name'] [PLUGIN_DIR='plugin_dir']

channel_option:
 FOR CHANNEL channel

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

2968

SQL Statements for Controlling Replica Servers

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9,A-F]

interval:
 n[-n]

 (n >= 1)

START REPLICA starts the replication threads, either together or separately. From MySQL 8.0.22, use
START REPLICA in place of START SLAVE, which is deprecated from that release. In releases before
MySQL 8.0.22, use START SLAVE.

START REPLICA requires the REPLICATION_SLAVE_ADMIN privilege (or the deprecated SUPER
privilege). START REPLICA causes an implicit commit of an ongoing transaction. See Section 15.3.3,
“Statements That Cause an Implicit Commit”.

For the thread type options, you can specify IO_THREAD, SQL_THREAD, both of these, or neither of
them. Only the threads that are started are affected by the statement.

• START REPLICA with no thread type options starts all of the replication threads, and so does START
REPLICA with both of the thread type options.

• IO_THREAD starts the replication receiver thread, which reads events from the source server and
stores them in the relay log.

• SQL_THREAD starts the replication applier thread, which reads events from the relay log
and executes them. A multithreaded replica (with replica_parallel_workers or
slave_parallel_workers > 0) applies transactions using a coordinator thread and multiple
applier threads, and SQL_THREAD starts all of these.

Important

START REPLICA sends an acknowledgment to the user after all the replication
threads have started. However, the replication receiver thread might not
yet have connected to the source successfully, or an applier thread might
stop when applying an event right after starting. START REPLICA does
not continue to monitor the threads after they are started, so it does not
warn you if they subsequently stop or cannot connect. You must check the
replica's error log for error messages generated by the replication threads,
or check that they are running satisfactorily with SHOW REPLICA STATUS.
A successful START REPLICA statement causes SHOW REPLICA STATUS
to show Replica_SQL_Running=Yes, but it might or might not show
Replica_IO_Running=Yes, because Replica_IO_Running=Yes is
only shown if the receiver thread is both running and connected. For more
information, see Section 19.1.7.1, “Checking Replication Status”.

The optional FOR CHANNEL channel clause enables you to name which replication channel the
statement applies to. Providing a FOR CHANNEL channel clause applies the START REPLICA
statement to a specific replication channel. If no clause is named and no extra channels exist, the
statement applies to the default channel. If a START REPLICA statement does not have a channel
defined when using multiple channels, this statement starts the specified threads for all channels. See
Section 19.2.2, “Replication Channels” for more information.

The replication channels for Group Replication (group_replication_applier and
group_replication_recovery) are managed automatically by the server instance. START
REPLICA cannot be used at all with the group_replication_recovery channel, and should only
be used with the group_replication_applier channel when Group Replication is not running.
The group_replication_applier channel only has an applier thread and has no receiver thread,
so it can be started if required by using the SQL_THREAD option without the IO_THREAD option.

2969

SQL Statements for Controlling Replica Servers

START REPLICA supports pluggable user-password authentication (see Section 8.2.17, “Pluggable
Authentication”) with the USER, PASSWORD, DEFAULT_AUTH and PLUGIN_DIR options, as described in
the following list. When you use these options, you must start the receiver thread (IO_THREAD option)
or all the replication threads; you cannot start the replication applier thread (SQL_THREAD option)
alone.

USER The user name for the account. You must set this if PASSWORD is
used. The option cannot be set to an empty or null string.

PASSWORD The password for the named user account.

DEFAULT_AUTH The name of the authentication plugin. The default is MySQL native
authentication.

PLUGIN_DIR The location of the authentication plugin.

Important

The password that you set using START REPLICA is masked when it is
written to MySQL Server’s logs, Performance Schema tables, and SHOW
PROCESSLIST statements. However, it is sent in plain text over the connection
to the replica server instance. To protect the password in transit, use SSL/TLS
encryption, an SSH tunnel, or another method of protecting the connection from
unauthorized viewing, for the connection between the replica server instance
and the client that you use to issue START REPLICA.

The UNTIL clause makes the replica start replication, then process transactions up to the point that
you specify in the UNTIL clause, then stop again. The UNTIL clause can be used to make a replica
proceed until just before the point where you want to skip a transaction that is unwanted, and then skip
the transaction as described in Section 19.1.7.3, “Skipping Transactions”. To identify a transaction, you
can use mysqlbinlog with the source's binary log or the replica's relay log, or use a SHOW BINLOG
EVENTS statement.

You can also use the UNTIL clause for debugging replication by processing transactions one at a time
or in sections. If you are using the UNTIL clause to do this, start the replica with the --skip-slave-
start option, or from MySQL 8.0.24, the skip_slave_start system variable, to prevent the SQL
thread from running when the replica server starts. Remove the option or system variable setting after
the procedure is complete, so that it is not forgotten in the event of an unexpected server restart.

The SHOW REPLICA STATUS statement includes output fields that display the current values of the
UNTIL condition. The UNTIL condition lasts for as long as the affected threads are still running, and is
removed when they stop.

The UNTIL clause operates on the replication applier thread (SQL_THREAD option). You can use the
SQL_THREAD option or let the replica default to starting both threads. If you use the IO_THREAD option
alone, the UNTIL clause is ignored because the applier thread is not started.

The point that you specify in the UNTIL clause can be any one (and only one) of the following options:

SOURCE_LOG_FILE
and SOURCE_LOG_POS
(from MySQL 8.0.23), or
MASTER_LOG_FILE and
MASTER_LOG_POS (to MySQL
8.0.22)

These options make the replication applier process transactions
up to a position in its relay log, identified by the file name and file
position of the corresponding point in the binary log on the source
server. The applier thread finds the nearest transaction boundary at
or after the specified position, finishes applying the transaction, and
stops there. For compressed transaction payloads, specify the end
position of the compressed Transaction_payload_event.

These options can still be used when the GTID_ONLY option was
set on the CHANGE REPLICATION SOURCE TO statement to stop
the replication channel from persisting file names and file positions
in the replication metadata repositories. The file names and file
positions are tracked in memory.

2970

SQL Statements for Controlling Replica Servers

RELAY_LOG_FILE and
RELAY_LOG_POS

These options make the replication applier process transactions
up to a position in the replica’s relay log, identified by the relay
log file name and a position in that file. The applier thread finds
the nearest transaction boundary at or after the specified position,
finishes applying the transaction, and stops there. For compressed
transaction payloads, specify the end position of the compressed
Transaction_payload_event.

These options can still be used when the GTID_ONLY option was
set on the CHANGE REPLICATION SOURCE TO statement to stop
the replication channel from persisting file names and file positions
in the replication metadata repositories. The file names and file
positions are tracked in memory.

SQL_BEFORE_GTIDS This option makes the replication applier start processing
transactions and stop when it encounters any transaction that is
in the specified GTID set. The encountered transaction from the
GTID set is not applied, and nor are any of the other transactions
in the GTID set. The option takes a GTID set containing one or
more global transaction identifiers as an argument (see GTID
Sets). Transactions in a GTID set do not necessarily appear in the
replication stream in the order of their GTIDs, so the transaction
before which the applier stops is not necessarily the earliest.

SQL_AFTER_GTIDS This option makes the replication applier start processing
transactions and stop when it has processed all of the transactions
in a specified GTID set. The option takes a GTID set containing one
or more global transaction identifiers as an argument (see GTID
Sets).

With SQL_AFTER_GTIDS, the replication threads stop after they
have processed all transactions in the GTID set. Transactions
are processed in the order received, so it is possible that these
include transactions which are not part of the GTID set, but which
are received (and processed) before all transactions in the set
have been committed. For example, executing START REPLICA
UNTIL SQL_AFTER_GTIDS = 3E11FA47-71CA-11E1-9E33-
C80AA9429562:11-56 causes the replica to obtain (and process)
all transactions from the source until all of the transactions having
the sequence numbers 11 through 56 have been processed, and
then to stop without processing any additional transactions after that
point has been reached.

SQL_AFTER_GTIDS is not compatible with the multi-threaded
applier. If this option is used with the multi-threaded applier, a
warning is raised, and the replica switches to single-threaded
mode. Depending on the use case, it may be possible to to
use START REPLICA UNTIL MASTER_LOG_POS or START
REPLICA UNTIL SQL_BEFORE_GTIDS. You can also use
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), which waits until
the correct position is reached, but does not stop the applier thread.

SQL_AFTER_MTS_GAPS For a multithreaded replica only (with
replica_parallel_workers or slave_parallel_workers
> 0), this option makes the replica process transactions up to the
point where there are no more gaps in the sequence of transactions

2971

SQL Statements for Controlling Replica Servers

executed from the relay log. When using a multithreaded replica,
there is a chance of gaps occurring in the following situations:

• The coordinator thread is stopped.

• An error occurs in the applier threads.

• mysqld shuts down unexpectedly.

When a replication channel has gaps, the replica’s database is in
a state that might never have existed on the source. The replica
tracks the gaps internally and disallows CHANGE REPLICATION
SOURCE TO statements that would remove the gap information if
they executed.

Before MySQL 8.0.26, issuing START REPLICA on a multithreaded
replica with gaps in the sequence of transactions executed from the
relay log generates a warning. To correct this situation, the solution
is to use START REPLICA UNTIL SQL_AFTER_MTS_GAPS. See
Section 19.5.1.34, “Replication and Transaction Inconsistencies” for
more information.

From MySQL 8.0.26, the process of checking for gaps
in the sequence of transactions is skipped entirely when
GTID-based replication and GTID auto-positioning
(SOURCE_AUTO_POSITION=1) are in use for the channel, because
gaps in transactions can be resolved using GTID auto-positioning.
In that situation, START REPLICA UNTIL SQL_AFTER_MTS_GAPS
just stops the applier thread when it finds the first transaction to
execute, and does not attempt to check for gaps in the sequence of
transactions. You can also continue to use CHANGE REPLICATION
SOURCE TO statements as normal, and relay log recovery is
possible for the channel.

From MySQL 8.0.27, all replicas are multithreaded by
default. When replica_preserve_commit_order=ON
or slave_preserve_commit_order=ON is set for the
replica, which is also the default setting from MySQL 8.0.27,
gaps should not occur except in the specific situations listed
in the description for replica_preserve_commit_order
and slave_preserve_commit_order. If
replica_preserve_commit_order=OFF or
slave_preserve_commit_order=OFF is set for the replica,
which is the default before MySQL 8.0.27, the commit order of
transactions is not preserved, so the chance of gaps occurring is
much larger.

If GTIDs are not in use and you need to change a failed
multithreaded replica to single-threaded mode, you can issue the
following series of statements, in the order shown:

START SLAVE UNTIL SQL_AFTER_MTS_GAPS;
SET @@GLOBAL.slave_parallel_workers = 0;
START SLAVE SQL_THREAD;

Or from MySQL 8.0.26:
START REPLICA UNTIL SQL_AFTER_MTS_GAPS;
SET @@GLOBAL.replica_parallel_workers = 0;
START REPLICA SQL_THREAD;

15.4.2.7 START SLAVE Statement

2972

SQL Statements for Controlling Replica Servers

START {SLAVE | REPLICA} [thread_types] [until_option] [connection_options] [channel_option]

thread_types:
 [thread_type [, thread_type] ...]

thread_type:
 IO_THREAD | SQL_THREAD

until_option:
 UNTIL { {SQL_BEFORE_GTIDS | SQL_AFTER_GTIDS} = gtid_set
 | MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
 | SOURCE_LOG_FILE = 'log_name', SOURCE_LOG_POS = log_pos
 | RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos
 | SQL_AFTER_MTS_GAPS }

connection_options:
 [USER='user_name'] [PASSWORD='user_pass'] [DEFAULT_AUTH='plugin_name'] [PLUGIN_DIR='plugin_dir']

channel_option:
 FOR CHANNEL channel

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9,A-F]

interval:
 n[-n]

 (n >= 1)

Starts the replication threads. From MySQL 8.0.22, START SLAVE is deprecated and the alias
START REPLICA should be used instead. The statement works in the same way as before, only
the terminology used for the statement and its output has changed. Both versions of the statement
update the same status variables when used. Please see the documentation for START REPLICA for a
description of the statement.

15.4.2.8 STOP REPLICA Statement

STOP REPLICA [thread_types] [channel_option]

thread_types:
 [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

channel_option:
 FOR CHANNEL channel

Stops the replication threads. From MySQL 8.0.22, use STOP REPLICA in place of STOP SLAVE,
which is now deprecated. In releases before MySQL 8.0.22, use STOP SLAVE.

STOP REPLICA requires the REPLICATION_SLAVE_ADMIN privilege (or the deprecated SUPER
privilege). Recommended best practice is to execute STOP REPLICA on the replica before stopping
the replica server (see Section 7.1.19, “The Server Shutdown Process”, for more information).

Like START REPLICA, this statement may be used with the IO_THREAD and SQL_THREAD options to
name the replication thread or threads to be stopped. Note that the Group Replication applier channel

2973

SQL Statements for Controlling Replica Servers

(group_replication_applier) has no replication I/O (receiver) thread, only a replication SQL
(applier) thread. Using the SQL_THREAD option therefore stops this channel completely.

STOP REPLICA causes an implicit commit of an ongoing transaction. See Section 15.3.3, “Statements
That Cause an Implicit Commit”.

gtid_next must be set to AUTOMATIC before issuing this statement.

You can control how long STOP REPLICA waits before timing out by setting the system variable
rpl_stop_replica_timeout (from MySQL 8.0.26) or rpl_stop_slave_timeout (before MySQL
8.0.26). This can be used to avoid deadlocks between STOP REPLICA and other SQL statements
using different client connections to the replica. When the timeout value is reached, the issuing client
returns an error message and stops waiting, but the STOP REPLICA instruction remains in effect. Once
the replication threads are no longer busy, the STOP REPLICA statement is executed and the replica
stops.

Some CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statements are allowed while the
replica is running, depending on the states of the replication threads. However, using STOP REPLICA
prior to executing a CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement in such
cases is still supported. See Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”,
Section 15.4.2.1, “CHANGE MASTER TO Statement”, and Section 19.4.8, “Switching Sources During
Failover”, for more information.

The optional FOR CHANNEL channel clause enables you to name which replication channel the
statement applies to. Providing a FOR CHANNEL channel clause applies the STOP REPLICA
statement to a specific replication channel. If no channel is named and no extra channels exist, the
statement applies to the default channel. If a STOP REPLICA statement does not name a channel
when using multiple channels, this statement stops the specified threads for all channels. See
Section 19.2.2, “Replication Channels” for more information.

The replication channels for Group Replication (group_replication_applier and
group_replication_recovery) are managed automatically by the server instance. STOP
REPLICA cannot be used at all with the group_replication_recovery channel, and should only
be used with the group_replication_applier channel when Group Replication is not running.
The group_replication_applier channel only has an applier thread and has no receiver thread,
so it can be stopped if required by using the SQL_THREAD option without the IO_THREAD option.

When the replica is multithreaded (replica_parallel_workers or slave_parallel_workers is
a nonzero value), any gaps in the sequence of transactions executed from the relay log are closed as
part of stopping the worker threads. If the replica is stopped unexpectedly (for example due to an error
in a worker thread, or another thread issuing KILL) while a STOP REPLICA statement is executing, the
sequence of executed transactions from the relay log may become inconsistent. See Section 19.5.1.34,
“Replication and Transaction Inconsistencies”, for more information.

When the source is using the row-based binary logging format, you should execute STOP REPLICA
or STOP REPLICA SQL_THREAD on the replica prior to shutting down the replica server if you are
replicating any tables that use a nontransactional storage engine. If the current replication event group
has modified one or more nontransactional tables, STOP REPLICA waits for up to 60 seconds for the
event group to complete, unless you issue a KILL QUERY or KILL CONNECTION statement for the
replication SQL thread. If the event group remains incomplete after the timeout, an error message is
logged.

When the source is using the statement-based binary logging format, changing the source while
it has open temporary tables is potentially unsafe. This is one of the reasons why statement-
based replication of temporary tables is not recommended. You can find out whether there are
any temporary tables on the replica by checking the value of Replica_open_temp_tables or
Slave_open_temp_tables. When using statement-based replication, this value should be 0 before
executing CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO. If there are any temporary
tables open on the replica, issuing a CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO

2974

SQL Statements for Controlling Group Replication

statement after issuing a STOP REPLICA causes an ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO
warning.

15.4.2.9 STOP SLAVE Statement

STOP {SLAVE | REPLICA} [thread_types] [channel_option]

thread_types:
 [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

channel_option:
 FOR CHANNEL channel

Stops the replication threads. From MySQL 8.0.22, STOP SLAVE is deprecated and the alias
STOP REPLICA should be used instead. The statement works in the same way as before, only
the terminology used for the statement and its output has changed. Both versions of the statement
update the same status variables when used. Please see the documentation for STOP REPLICA for a
description of the statement.

15.4.3 SQL Statements for Controlling Group Replication

This section provides information about the statements used for controlling group replication.

15.4.3.1 START GROUP_REPLICATION Statement

 START GROUP_REPLICATION
 [USER='user_name']
 [, PASSWORD='user_pass']
 [, DEFAULT_AUTH='plugin_name']

Starts group replication. This statement requires the GROUP_REPLICATION_ADMIN privilege (or
the deprecated SUPER privilege). If super_read_only=ON is set and the member should join as a
primary, super_read_only is set to OFF once Group Replication successfully starts.

A server that participates in a group in single-primary mode should use skip_replica_start=ON.
Otherwise, the server is not allowed to join a group as a secondary.

In MySQL 8.0.21 and later, you can specify user credentials for distributed recovery on the START
GROUP_REPLICATION statement using the USER, PASSWORD, and DEFAULT_AUTH options, as follows:

• USER: The replication user for distributed recovery. For instructions to set up this account, see
Section 20.2.1.3, “User Credentials For Distributed Recovery”. You cannot specify an empty or null
string, or omit the USER option if PASSWORD is specified.

• PASSWORD: The password for the replication user account. The password cannot be encrypted, but it
is masked in the query log.

• DEFAULT_AUTH: The name of the authentication plugin used for the replication user account. If you
do not specify this option, MySQL native authentication (the mysql_native_password plugin) is
assumed. This option acts as a hint to the server, and the donor for distributed recovery overrides it
if a different plugin is associated with the user account on that server. The authentication plugin used
by default when you create user accounts in MySQL 8 is the caching SHA-2 authentication plugin
(caching_sha2_password). See Section 8.2.17, “Pluggable Authentication” for more information
on authentication plugins.

These credentials are used for distributed recovery on the group_replication_recovery channel.
When you specify user credentials on START GROUP_REPLICATION, the credentials are saved in
memory only, and are removed by a STOP GROUP_REPLICATION statement or server shutdown. You
must issue a START GROUP_REPLICATION statement to provide the credentials again. This method is

2975

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_warn_open_temp_tables_must_be_zero

SQL Statements for Controlling Group Replication

therefore not compatible with starting Group Replication automatically on server start, as specified by
the group_replication_start_on_boot system variable.

User credentials specified on START GROUP_REPLICATION take precedence over any user
credentials set for the group_replication_recovery channel using a CHANGE REPLICATION
SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL
8.0.23). Note that user credentials set using these statements are stored in the replication metadata
repositories, and are used when START GROUP_REPLICATION is specified without user credentials,
including automatic starts if the group_replication_start_on_boot system variable is set to ON.
To gain the security benefits of specifying user credentials on START GROUP_REPLICATION, ensure
that group_replication_start_on_boot is set to OFF (the default is ON), and clear any user
credentials previously set for the group_replication_recovery channel, following the instructions
in Section 20.6.3, “Securing Distributed Recovery Connections”.

While a member is rejoining a replication group, its status can be displayed as OFFLINE or ERROR
before the group completes the compatibility checks and accepts it as a member. When the member is
catching up with the group's transactions, its status is RECOVERING.

15.4.3.2 STOP GROUP_REPLICATION Statement

STOP GROUP_REPLICATION

Stops Group Replication. This statement requires the GROUP_REPLICATION_ADMIN privilege (or
the deprecated SUPER privilege). As soon as you issue STOP GROUP_REPLICATION the member
is set to super_read_only=ON, which ensures that no writes can be made to the member while
Group Replication stops. Any other asynchronous replication channels running on the member are also
stopped. Any user credentials that you specified in the START GROUP_REPLICATION statement when
starting Group Replication on this member are removed from memory, and must be supplied when you
start Group Replication again.

Warning

Use this statement with extreme caution because it removes the server instance
from the group, meaning it is no longer protected by Group Replication's
consistency guarantee mechanisms. To be completely safe, ensure that your
applications can no longer connect to the instance before issuing this statement
to avoid any chance of stale reads.

The STOP GROUP_REPLICATION statement stops asynchronous replication channels on the
group member, but it does not implicitly commit transactions that are in progress on them like STOP
REPLICA does. This is because on a Group Replication group member, an additional transaction
committed during the shutdown operation would leave the member inconsistent with the group and
cause an issue with rejoining. To avoid failed commits for transactions that are in progress while
stopping Group Replication, from MySQL 8.0.28, the STOP GROUP_REPLICATION statement cannot
be issued while a GTID is assigned as the value of the gtid_next system variable.

The group_replication_components_stop_timeout system variable specifies the time for
which Group Replication waits for each of its modules to complete ongoing processes after this
statement is issued. The timeout is used to resolve situations in which Group Replication components
cannot be stopped normally, which can happen if the member is expelled from the group while it is
in an error state, or while a process such as MySQL Enterprise Backup is holding a global lock on
tables on the member. In such situations, the member cannot stop the applier thread or complete the
distributed recovery process to rejoin. STOP GROUP_REPLICATION does not complete until either the
situation is resolved (for example, by the lock being released), or the component timeout expires and
the modules are shut down regardless of their status. Prior to MySQL 8.0.27, the default component
timeout is 31536000 seconds, or 365 days. With this setting, the component timeout does not help in
situations such as those just described, so a lower setting is recommended in those versions of MySQL
8.0. Beginning with MySQL 8.0.27, the default value is 300 seconds; this means that Group Replication
components are stopped after 5 minutes if the situation is not resolved before that time, allowing the
member to be restarted and rejoin.

2976

Prepared Statements

15.5 Prepared Statements
MySQL 8.0 provides support for server-side prepared statements. This support takes advantage of
the efficient client/server binary protocol. Using prepared statements with placeholders for parameter
values has the following benefits:

• Less overhead for parsing the statement each time it is executed. Typically, database applications
process large volumes of almost-identical statements, with only changes to literal or variable values
in clauses such as WHERE for queries and deletes, SET for updates, and VALUES for inserts.

• Protection against SQL injection attacks. The parameter values can contain unescaped SQL quote
and delimiter characters.

The following sections provide an overview of the characteristics of prepared statements:

• Prepared Statements in Application Programs

• Prepared Statements in SQL Scripts

• PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

• SQL Syntax Permitted in Prepared Statements

Prepared Statements in Application Programs

You can use server-side prepared statements through client programming interfaces, including the
MySQL C API client library for C programs, MySQL Connector/J for Java programs, and MySQL
Connector/NET for programs using .NET technologies. For example, the C API provides a set of
function calls that make up its prepared statement API. See C API Prepared Statement Interface. Other
language interfaces can provide support for prepared statements that use the binary protocol by linking
in the C client library, one example being the mysqli extension, available in PHP 5.0 and higher.

Prepared Statements in SQL Scripts

An alternative SQL interface to prepared statements is available. This interface is not as efficient as
using the binary protocol through a prepared statement API, but requires no programming because it is
available directly at the SQL level:

• You can use it when no programming interface is available to you.

• You can use it from any program that can send SQL statements to the server to be executed, such
as the mysql client program.

• You can use it even if the client is using an old version of the client library.

SQL syntax for prepared statements is intended to be used for situations such as these:

• To test how prepared statements work in your application before coding it.

• To use prepared statements when you do not have access to a programming API that supports
them.

• To interactively troubleshoot application issues with prepared statements.

• To create a test case that reproduces a problem with prepared statements, so that you can file a bug
report.

PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

SQL syntax for prepared statements is based on three SQL statements:

• PREPARE prepares a statement for execution (see Section 15.5.1, “PREPARE Statement”).

2977

https://dev.mysql.com/doc/c-api/8.0/en/
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/c-api/8.0/en/c-api-prepared-statement-interface.html
http://php.net/mysqli

PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements

• EXECUTE executes a prepared statement (see Section 15.5.2, “EXECUTE Statement”).

• DEALLOCATE PREPARE releases a prepared statement (see Section 15.5.3, “DEALLOCATE
PREPARE Statement”).

The following examples show two equivalent ways of preparing a statement that computes the
hypotenuse of a triangle given the lengths of the two sides.

The first example shows how to create a prepared statement by using a string literal to supply the text
of the statement:

mysql> PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 5 |
+------------+
mysql> DEALLOCATE PREPARE stmt1;

The second example is similar, but supplies the text of the statement as a user variable:

mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 10 |
+------------+
mysql> DEALLOCATE PREPARE stmt2;

Here is an additional example that demonstrates how to choose the table on which to perform a query
at runtime, by storing the name of the table as a user variable:

mysql> USE test;
mysql> CREATE TABLE t1 (a INT NOT NULL);
mysql> INSERT INTO t1 VALUES (4), (8), (11), (32), (80);

mysql> SET @table = 't1';
mysql> SET @s = CONCAT('SELECT * FROM ', @table);

mysql> PREPARE stmt3 FROM @s;
mysql> EXECUTE stmt3;
+----+
| a |
+----+
| 4 |
| 8 |
| 11 |
| 32 |
| 80 |
+----+

mysql> DEALLOCATE PREPARE stmt3;

A prepared statement is specific to the session in which it was created. If you terminate a session
without deallocating a previously prepared statement, the server deallocates it automatically.

A prepared statement is also global to the session. If you create a prepared statement within a stored
routine, it is not deallocated when the stored routine ends.

To guard against too many prepared statements being created simultaneously, set the
max_prepared_stmt_count system variable. To prevent the use of prepared statements, set the
value to 0.

2978

SQL Syntax Permitted in Prepared Statements

SQL Syntax Permitted in Prepared Statements

The following SQL statements can be used as prepared statements:

ALTER TABLE
ALTER USER {DEFAULT ROLE}
ANALYZE TABLE
CACHE INDEX
CALL
CHANGE {MASTER | REPLICATION FILTER}
CHECKSUM
COMMIT
{CREATE | DROP} INDEX
{CREATE | RENAME | DROP} DATABASE
{CREATE | DROP} TABLE
{CREATE | RENAME | DROP} USER
{CREATE | DROP} VIEW
DELETE
DO
FLUSH
GRANT {ROLE}
INSERT
INSERT ... SELECT
INSTALL PLUGIN
KILL
LOAD INDEX INTO CACHE
OPTIMIZE TABLE
RENAME TABLE
REPAIR TABLE
REPLACE
RESET {MASTER | REPLICA}
REVOKE {ALL | ROLE}
SELECT
SET {PASSWORD | RESOURCE GROUP | ROLE | VARIABLE}
SHOW {BINLOG EVENTS | BINARY LOGS | CHARACTER SETS | COLLATIONS | DATABASES | ENGINE |
 ERRORS | EVENTS | FIELDS | FUNCTION CODE | FUNCTION STATUS | GRANTS | KEYS | OPEN TABLES |
 PLUGINS | PRIVILEGES | PROCEDURE CODE | PROCEDURE STATUS | PROCESSLIST | PROFILE | PROFILES |
 RELAYLOG EVENTS | REPLICAS | REPLICA STATUS | STATUS | PROCEDURE STATUS | TABLE STATUS | TABLES |
 TRIGGERS | VARIABLES | WARNINGS}
SHOW CREATE { DATABASE | EVENT | FUNCTION | PROCEDURE | TABLE | TRIGGER | USER | VIEW}
REPLICA {START | STOP}
TRUNCATE
UNINSTALL PLUGIN
UPDATE

Other statements are not supported.

For compliance with the SQL standard, which states that diagnostics statements are not preparable,
MySQL does not support the following as prepared statements:

• SHOW WARNINGS, SHOW COUNT(*) WARNINGS

• SHOW ERRORS, SHOW COUNT(*) ERRORS

• Statements containing any reference to the warning_count or error_count system variable.

Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. Exceptions are noted in Section 27.8, “Restrictions on Stored Programs”.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”.

Placeholders can be used for the arguments of the LIMIT clause when using prepared statements.
See Section 15.2.13, “SELECT Statement”.

In prepared CALL statements used with PREPARE and EXECUTE, placeholder support for OUT and
INOUT parameters is available beginning with MySQL 8.0. See Section 15.2.1, “CALL Statement”,

2979

PREPARE Statement

for an example and a workaround for earlier versions. Placeholders can be used for IN parameters
regardless of version.

SQL syntax for prepared statements cannot be used in nested fashion. That is, a statement passed to
PREPARE cannot itself be a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.

SQL syntax for prepared statements is distinct from using prepared statement API calls. For example,
you cannot use the mysql_stmt_prepare() C API function to prepare a PREPARE, EXECUTE, or
DEALLOCATE PREPARE statement.

SQL syntax for prepared statements can be used within stored procedures, but not in stored functions
or triggers. However, a cursor cannot be used for a dynamic statement that is prepared and executed
with PREPARE and EXECUTE. The statement for a cursor is checked at cursor creation time, so the
statement cannot be dynamic.

SQL syntax for prepared statements does not support multi-statements (that is, multiple statements
within a single string separated by ; characters).

To write C programs that use the CALL SQL statement to execute stored procedures that contain
prepared statements, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each
CALL returns a result to indicate the call status, in addition to any result sets that might be returned by
statements executed within the procedure.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(),
either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing
CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). For additional
information, see Section 15.2.1, “CALL Statement”.

15.5.1 PREPARE Statement
PREPARE stmt_name FROM preparable_stmt

The PREPARE statement prepares a SQL statement and assigns it a name, stmt_name, by which
to refer to the statement later. The prepared statement is executed with EXECUTE and released with
DEALLOCATE PREPARE. For examples, see Section 15.5, “Prepared Statements”.

Statement names are not case-sensitive. preparable_stmt is either a string literal or a user variable
that contains the text of the SQL statement. The text must represent a single statement, not multiple
statements. Within the statement, ? characters can be used as parameter markers to indicate where
data values are to be bound to the query later when you execute it. The ? characters should not be
enclosed within quotation marks, even if you intend to bind them to string values. Parameter markers
can be used only where data values should appear, not for SQL keywords, identifiers, and so forth.

If a prepared statement with the given name already exists, it is deallocated implicitly before the new
statement is prepared. This means that if the new statement contains an error and cannot be prepared,
an error is returned and no statement with the given name exists.

The scope of a prepared statement is the session within which it is created, which as several
implications:

• A prepared statement created in one session is not available to other sessions.

• When a session ends, whether normally or abnormally, its prepared statements no longer exist. If
auto-reconnect is enabled, the client is not notified that the connection was lost. For this reason,
clients may wish to disable auto-reconnect. See Automatic Reconnection Control.

• A prepared statement created within a stored program continues to exist after the program finishes
executing and can be executed outside the program later.

• A statement prepared in stored program context cannot refer to stored procedure or function
parameters or local variables because they go out of scope when the program ends and would be

2980

https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-prepare.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-auto-reconnect.html

PREPARE Statement

unavailable were the statement to be executed later outside the program. As a workaround, refer
instead to user-defined variables, which also have session scope; see Section 11.4, “User-Defined
Variables”.

Beginning with MySQL 8.0.22, a parameter used in a prepared statement has its type determined when
the statement is first prepared, and retains this type whenever EXECUTE is invoked for this prepared
statement (unless the statement is reprepared, as explained later in this section). Rules for determining
a parameter's type are listed here:

• A parameter which is an operand of a binary arithmetic operator has the same data type as the other
operand.

• If both operands of a binary arithmetic operator are parameters, the type of the parameters is
decided by the context of the operator.

• If a parameter is the operand of a unary arithmetic operator, the parameter's type is decided by the
context of the operator.

• If an arithmetic operator has no type-determining context, the derived type for any parameters
involved is DOUBLE PRECISION. This can happen, for example, when the parameter is a top-level
node in a SELECT list, or when it is part of a comparison operator.

• A parameter which is an operand of a character string operator has the same derived type as the
aggregated type of the other operands. If all operands of the operator are parameters, the derived
type is VARCHAR; its collation is determined by the value of collation_connection.

• A parameter which is an operand of a temporal operator has type DATETIME if the operator returns a
DATETIME, TIME if the operator returns a TIME, and DATE if the operator returns a DATE.

• A parameter which is an operand of a binary comparison operator has the same derived type as the
other operand of the comparison.

• A parameter that is an operand of a ternary comparison operator such as BETWEEN has the same
derived type as the aggregated type of the other operands.

• If all operands of a comparison operator are parameters, the derived type for each of them is
VARCHAR, with collation determined by the value of collation_connection.

• A parameter that is an output operand of any of CASE, COALESCE, IF, IFNULL, or NULLIF has the
same derived type as the aggregated type of the operator's other output operands.

• If all output operands of any of CASE, COALESCE, IF, IFNULL, or NULLIF are parameters, or they
are all NULL, the type of the parameter is decided by the context of the operator.

• If the parameter is an operand of any of CASE, COALESCE(), IF, or IFNULL, and has no type-
determining context, the derived type for each of the parameters involved is VARCHAR, and its
collation is determined by the value of collation_connection.

• A parameter which is the operand of a CAST() has the same type as specified by the CAST().

• If a parameter is an immediate member of a SELECT list that is not part of an INSERT statement,
the derived type of the parameter is VARCHAR, and its collation is determined by the value of
collation_connection.

• If a parameter is an immediate member of a SELECT list that is part of an INSERT statement, the
derived type of the parameter is the type of the corresponding column into which the parameter is
inserted.

• If a parameter is used as source for an assignment in a SET clause of an UPDATE statement or in the
ON DUPLICATE KEY UPDATE clause of an INSERT statement, the derived type of the parameter is
the type of the corresponding column which is updated by the SET or ON DUPLICATE KEY UPDATE
clause.

2981

EXECUTE Statement

• If a parameter is an argument of a function, the derived type depends on the function's return type.

For some combinations of actual type and derived type, an automatic repreparation of the statement
is triggered, to ensure closer compatibility with previous versions of MySQL. Repreparation does not
occur if any of the following conditions are true:

• NULL is used as the actual parameter value.

• A parameter is an operand of a CAST(). (Instead, a cast to the derived type is attempted, and an
exception raised if the cast fails.)

• A parameter is a string. (In this case, an implicit CAST(? AS derived_type) is performed.)

• The derived type and actual type of the parameter are both INTEGER and have the same sign.

• The parameter's derived type is DECIMAL and its actual type is either DECIMAL or INTEGER.

• The derived type is DOUBLE and the actual type is any numeric type.

• Both the derived type and the actual type are string types.

• If the derived type is temporal and the actual type is temporal. Exceptions: The derived type is TIME
and the actual type is not TIME; the derived type is DATE and the actual type is not DATE.

• The derived type is temporal and the actual type is numeric.

For cases other than those just listed, the statement is reprepared and the actual parameter types are
used instead of the derived parameter types.

These rules also apply to a user variable referenced in a prepared statement.

Using a different data type for a given parameter or user variable within a prepared statement for
executions of the statement subsequent to the first execution causes the statement to be reprepared.
This is less efficient; it may also lead to the parameter's (or variable's) actual type to vary, and thus for
results to be inconsistent, with subsequent executions of the prepared statement. For these reasons, it
is advisable to use the same data type for a given parameter when re-executing a prepared statement.

15.5.2 EXECUTE Statement

EXECUTE stmt_name
 [USING @var_name [, @var_name] ...]

After preparing a statement with PREPARE, you execute it with an EXECUTE statement that refers to
the prepared statement name. If the prepared statement contains any parameter markers, you must
supply a USING clause that lists user variables containing the values to be bound to the parameters.
Parameter values can be supplied only by user variables, and the USING clause must name exactly as
many variables as the number of parameter markers in the statement.

You can execute a given prepared statement multiple times, passing different variables to it or setting
the variables to different values before each execution.

For examples, see Section 15.5, “Prepared Statements”.

15.5.3 DEALLOCATE PREPARE Statement

{DEALLOCATE | DROP} PREPARE stmt_name

To deallocate a prepared statement produced with PREPARE, use a DEALLOCATE PREPARE statement
that refers to the prepared statement name. Attempting to execute a prepared statement after
deallocating it results in an error. If too many prepared statements are created and not deallocated by

2982

Compound Statement Syntax

either the DEALLOCATE PREPARE statement or the end of the session, you might encounter the upper
limit enforced by the max_prepared_stmt_count system variable.

For examples, see Section 15.5, “Prepared Statements”.

15.6 Compound Statement Syntax

This section describes the syntax for the BEGIN ... END compound statement and other statements
that can be used in the body of stored programs: Stored procedures and functions, triggers, and
events. These objects are defined in terms of SQL code that is stored on the server for later invocation
(see Chapter 27, Stored Objects).

A compound statement is a block that can contain other blocks; declarations for variables, condition
handlers, and cursors; and flow control constructs such as loops and conditional tests.

15.6.1 BEGIN ... END Compound Statement
[begin_label:] BEGIN
 [statement_list]
END [end_label]

BEGIN ... END syntax is used for writing compound statements, which can appear within stored
programs (stored procedures and functions, triggers, and events). A compound statement can contain
multiple statements, enclosed by the BEGIN and END keywords. statement_list represents
a list of one or more statements, each terminated by a semicolon (;) statement delimiter. The
statement_list itself is optional, so the empty compound statement (BEGIN END) is legal.

BEGIN ... END blocks can be nested.

Use of multiple statements requires that a client is able to send statement strings containing the ;
statement delimiter. In the mysql command-line client, this is handled with the delimiter command.
Changing the ; end-of-statement delimiter (for example, to //) permit ; to be used in a program body.
For an example, see Section 27.1, “Defining Stored Programs”.

A BEGIN ... END block can be labeled. See Section 15.6.2, “Statement Labels”.

The optional [NOT] ATOMIC clause is not supported. This means that no transactional savepoint is
set at the start of the instruction block and the BEGIN clause used in this context has no effect on the
current transaction.

Note

Within all stored programs, the parser treats BEGIN [WORK] as the beginning
of a BEGIN ... END block. To begin a transaction in this context, use START
TRANSACTION instead.

15.6.2 Statement Labels
[begin_label:] BEGIN
 [statement_list]
END [end_label]

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

[begin_label:] WHILE search_condition DO
 statement_list

2983

DECLARE Statement

END WHILE [end_label]

Labels are permitted for BEGIN ... END blocks and for the LOOP, REPEAT, and WHILE statements.
Label use for those statements follows these rules:

• begin_label must be followed by a colon.

• begin_label can be given without end_label. If end_label is present, it must be the same as
begin_label.

• end_label cannot be given without begin_label.

• Labels at the same nesting level must be distinct.

• Labels can be up to 16 characters long.

To refer to a label within the labeled construct, use an ITERATE or LEAVE statement. The following
example uses those statements to continue iterating or terminate the loop:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN ITERATE label1; END IF;
 LEAVE label1;
 END LOOP label1;
END;

The scope of a block label does not include the code for handlers declared within the block. For details,
see Section 15.6.7.2, “DECLARE ... HANDLER Statement”.

15.6.3 DECLARE Statement

The DECLARE statement is used to define various items local to a program:

• Local variables. See Section 15.6.4, “Variables in Stored Programs”.

• Conditions and handlers. See Section 15.6.7, “Condition Handling”.

• Cursors. See Section 15.6.6, “Cursors”.

DECLARE is permitted only inside a BEGIN ... END compound statement and must be at its start,
before any other statements.

Declarations must follow a certain order. Cursor declarations must appear before handler declarations.
Variable and condition declarations must appear before cursor or handler declarations.

15.6.4 Variables in Stored Programs

System variables and user-defined variables can be used in stored programs, just as they can be
used outside stored-program context. In addition, stored programs can use DECLARE to define local
variables, and stored routines (procedures and functions) can be declared to take parameters that
communicate values between the routine and its caller.

• To declare local variables, use the DECLARE statement, as described in Section 15.6.4.1, “Local
Variable DECLARE Statement”.

• Variables can be set directly with the SET statement. See Section 15.7.6.1, “SET Syntax for Variable
Assignment”.

• Results from queries can be retrieved into local variables using SELECT ... INTO var_list or
by opening a cursor and using FETCH ... INTO var_list. See Section 15.2.13.1, “SELECT ...
INTO Statement”, and Section 15.6.6, “Cursors”.

2984

Variables in Stored Programs

For information about the scope of local variables and how MySQL resolves ambiguous names, see
Section 15.6.4.2, “Local Variable Scope and Resolution”.

It is not permitted to assign the value DEFAULT to stored procedure or function parameters or stored
program local variables (for example with a SET var_name = DEFAULT statement). In MySQL 8.0,
this results in a syntax error.

15.6.4.1 Local Variable DECLARE Statement

DECLARE var_name [, var_name] ... type [DEFAULT value]

This statement declares local variables within stored programs. To provide a default value for a
variable, include a DEFAULT clause. The value can be specified as an expression; it need not be a
constant. If the DEFAULT clause is missing, the initial value is NULL.

Local variables are treated like stored routine parameters with respect to data type and overflow
checking. See Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”.

Variable declarations must appear before cursor or handler declarations.

Local variable names are not case-sensitive. Permissible characters and quoting rules are the same as
for other identifiers, as described in Section 11.2, “Schema Object Names”.

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can
be referred to in blocks nested within the declaring block, except those blocks that declare a variable
with the same name.

For examples of variable declarations, see Section 15.6.4.2, “Local Variable Scope and Resolution”.

15.6.4.2 Local Variable Scope and Resolution

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can
be referred to in blocks nested within the declaring block, except those blocks that declare a variable
with the same name.

Because local variables are in scope only during stored program execution, references to them are not
permitted in prepared statements created within a stored program. Prepared statement scope is the
current session, not the stored program, so the statement could be executed after the program ends, at
which point the variables would no longer be in scope. For example, SELECT ... INTO local_var
cannot be used as a prepared statement. This restriction also applies to stored procedure and function
parameters. See Section 15.5.1, “PREPARE Statement”.

A local variable should not have the same name as a table column. If an SQL statement, such as a
SELECT ... INTO statement, contains a reference to a column and a declared local variable with
the same name, MySQL currently interprets the reference as the name of a variable. Consider the
following procedure definition:

CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;

 SELECT xname, id INTO newname, xid
 FROM table1 WHERE xname = xname;
 SELECT newname;
END;

MySQL interprets xname in the SELECT statement as a reference to the xname variable rather than the
xname column. Consequently, when the procedure sp1()is called, the newname variable returns the
value 'bob' regardless of the value of the table1.xname column.

2985

Flow Control Statements

Similarly, the cursor definition in the following procedure contains a SELECT statement that refers
to xname. MySQL interprets this as a reference to the variable of that name rather than a column
reference.

CREATE PROCEDURE sp2 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;
 DECLARE done TINYINT DEFAULT 0;
 DECLARE cur1 CURSOR FOR SELECT xname, id FROM table1;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

 OPEN cur1;
 read_loop: LOOP
 FETCH FROM cur1 INTO newname, xid;
 IF done THEN LEAVE read_loop; END IF;
 SELECT newname;
 END LOOP;
 CLOSE cur1;
END;

See also Section 27.8, “Restrictions on Stored Programs”.

15.6.5 Flow Control Statements

MySQL supports the IF, CASE, ITERATE, LEAVE LOOP, WHILE, and REPEAT constructs for flow
control within stored programs. It also supports RETURN within stored functions.

Many of these constructs contain other statements, as indicated by the grammar specifications in the
following sections. Such constructs may be nested. For example, an IF statement might contain a
WHILE loop, which itself contains a CASE statement.

MySQL does not support FOR loops.

15.6.5.1 CASE Statement

CASE case_value
 WHEN when_value THEN statement_list
 [WHEN when_value THEN statement_list] ...
 [ELSE statement_list]
END CASE

Or:

CASE
 WHEN search_condition THEN statement_list
 [WHEN search_condition THEN statement_list] ...
 [ELSE statement_list]
END CASE

The CASE statement for stored programs implements a complex conditional construct.

Note

There is also a CASE operator, which differs from the CASE statement described
here. See Section 14.5, “Flow Control Functions”. The CASE statement cannot
have an ELSE NULL clause, and it is terminated with END CASE instead of
END.

For the first syntax, case_value is an expression. This value is compared to the when_value
expression in each WHEN clause until one of them is equal. When an equal when_value is found, the
corresponding THEN clause statement_list executes. If no when_value is equal, the ELSE clause
statement_list executes, if there is one.

2986

Flow Control Statements

This syntax cannot be used to test for equality with NULL because NULL = NULL is false. See
Section 5.3.4.6, “Working with NULL Values”.

For the second syntax, each WHEN clause search_condition expression is evaluated until
one is true, at which point its corresponding THEN clause statement_list executes. If no
search_condition is equal, the ELSE clause statement_list executes, if there is one.

If no when_value or search_condition matches the value tested and the CASE statement contains
no ELSE clause, a Case not found for CASE statement error results.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

To handle situations where no value is matched by any WHEN clause, use an ELSE containing an empty
BEGIN ... END block, as shown in this example. (The indentation used here in the ELSE clause is for
purposes of clarity only, and is not otherwise significant.)

DELIMITER |

CREATE PROCEDURE p()
 BEGIN
 DECLARE v INT DEFAULT 1;

 CASE v
 WHEN 2 THEN SELECT v;
 WHEN 3 THEN SELECT 0;
 ELSE
 BEGIN
 END;
 END CASE;
 END;
 |

15.6.5.2 IF Statement

IF search_condition THEN statement_list
 [ELSEIF search_condition THEN statement_list] ...
 [ELSE statement_list]
END IF

The IF statement for stored programs implements a basic conditional construct.

Note

There is also an IF() function, which differs from the IF statement described
here. See Section 14.5, “Flow Control Functions”. The IF statement can have
THEN, ELSE, and ELSEIF clauses, and it is terminated with END IF.

If a given search_condition evaluates to true, the corresponding THEN or ELSEIF clause
statement_list executes. If no search_condition matches, the ELSE clause statement_list
executes.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

An IF ... END IF block, like all other flow-control blocks used within stored programs, must be
terminated with a semicolon, as shown in this example:

DELIMITER //

CREATE FUNCTION SimpleCompare(n INT, m INT)
 RETURNS VARCHAR(20)

 BEGIN
 DECLARE s VARCHAR(20);

2987

Flow Control Statements

 IF n > m THEN SET s = '>';
 ELSEIF n = m THEN SET s = '=';
 ELSE SET s = '<';
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m);

 RETURN s;
 END //

DELIMITER ;

As with other flow-control constructs, IF ... END IF blocks may be nested within other flow-control
constructs, including other IF statements. Each IF must be terminated by its own END IF followed
by a semicolon. You can use indentation to make nested flow-control blocks more easily readable by
humans (although this is not required by MySQL), as shown here:

DELIMITER //

CREATE FUNCTION VerboseCompare (n INT, m INT)
 RETURNS VARCHAR(50)

 BEGIN
 DECLARE s VARCHAR(50);

 IF n = m THEN SET s = 'equals';
 ELSE
 IF n > m THEN SET s = 'greater';
 ELSE SET s = 'less';
 END IF;

 SET s = CONCAT('is ', s, ' than');
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m, '.');

 RETURN s;
 END //

DELIMITER ;

In this example, the inner IF is evaluated only if n is not equal to m.

15.6.5.3 ITERATE Statement

ITERATE label

ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means “start the
loop again.”

For an example, see Section 15.6.5.5, “LOOP Statement”.

15.6.5.4 LEAVE Statement

LEAVE label

This statement is used to exit the flow control construct that has the given label. If the label is for the
outermost stored program block, LEAVE exits the program.

LEAVE can be used within BEGIN ... END or loop constructs (LOOP, REPEAT, WHILE).

For an example, see Section 15.6.5.5, “LOOP Statement”.

15.6.5.5 LOOP Statement

[begin_label:] LOOP

2988

Flow Control Statements

 statement_list
END LOOP [end_label]

LOOP implements a simple loop construct, enabling repeated execution of the statement list, which
consists of one or more statements, each terminated by a semicolon (;) statement delimiter. The
statements within the loop are repeated until the loop is terminated. Usually, this is accomplished with a
LEAVE statement. Within a stored function, RETURN can also be used, which exits the function entirely.

Neglecting to include a loop-termination statement results in an infinite loop.

A LOOP statement can be labeled. For the rules regarding label use, see Section 15.6.2, “Statement
Labels”.

Example:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN
 ITERATE label1;
 END IF;
 LEAVE label1;
 END LOOP label1;
 SET @x = p1;
END;

15.6.5.6 REPEAT Statement

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

The statement list within a REPEAT statement is repeated until the search_condition expression is
true. Thus, a REPEAT always enters the loop at least once. statement_list consists of one or more
statements, each terminated by a semicolon (;) statement delimiter.

A REPEAT statement can be labeled. For the rules regarding label use, see Section 15.6.2, “Statement
Labels”.

Example:

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 BEGIN
 SET @x = 0;
 REPEAT
 SET @x = @x + 1;
 UNTIL @x > p1 END REPEAT;
 END
 //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

15.6.5.7 RETURN Statement

2989

Cursors

RETURN expr

The RETURN statement terminates execution of a stored function and returns the value expr to the
function caller. There must be at least one RETURN statement in a stored function. There may be more
than one if the function has multiple exit points.

This statement is not used in stored procedures, triggers, or events. The LEAVE statement can be used
to exit a stored program of those types.

15.6.5.8 WHILE Statement

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

The statement list within a WHILE statement is repeated as long as the search_condition
expression is true. statement_list consists of one or more SQL statements, each terminated by a
semicolon (;) statement delimiter.

A WHILE statement can be labeled. For the rules regarding label use, see Section 15.6.2, “Statement
Labels”.

Example:

CREATE PROCEDURE dowhile()
BEGIN
 DECLARE v1 INT DEFAULT 5;

 WHILE v1 > 0 DO
 ...
 SET v1 = v1 - 1;
 END WHILE;
END;

15.6.6 Cursors

MySQL supports cursors inside stored programs. The syntax is as in embedded SQL. Cursors have
these properties:

• Asensitive: The server may or may not make a copy of its result table

• Read only: Not updatable

• Nonscrollable: Can be traversed only in one direction and cannot skip rows

Cursor declarations must appear before handler declarations and after variable and condition
declarations.

Example:

CREATE PROCEDURE curdemo()
BEGIN
 DECLARE done INT DEFAULT FALSE;
 DECLARE a CHAR(16);
 DECLARE b, c INT;
 DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
 DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur1;
 OPEN cur2;

 read_loop: LOOP
 FETCH cur1 INTO a, b;
 FETCH cur2 INTO c;
 IF done THEN

2990

Cursors

 LEAVE read_loop;
 END IF;
 IF b < c THEN
 INSERT INTO test.t3 VALUES (a,b);
 ELSE
 INSERT INTO test.t3 VALUES (a,c);
 END IF;
 END LOOP;

 CLOSE cur1;
 CLOSE cur2;
END;

15.6.6.1 Cursor CLOSE Statement

CLOSE cursor_name

This statement closes a previously opened cursor. For an example, see Section 15.6.6, “Cursors”.

An error occurs if the cursor is not open.

If not closed explicitly, a cursor is closed at the end of the BEGIN ... END block in which it was
declared.

15.6.6.2 Cursor DECLARE Statement

DECLARE cursor_name CURSOR FOR select_statement

This statement declares a cursor and associates it with a SELECT statement that retrieves the rows to
be traversed by the cursor. To fetch the rows later, use a FETCH statement. The number of columns
retrieved by the SELECT statement must match the number of output variables specified in the FETCH
statement.

The SELECT statement cannot have an INTO clause.

Cursor declarations must appear before handler declarations and after variable and condition
declarations.

A stored program may contain multiple cursor declarations, but each cursor declared in a given block
must have a unique name. For an example, see Section 15.6.6, “Cursors”.

For information available through SHOW statements, it is possible in many cases to obtain equivalent
information by using a cursor with an INFORMATION_SCHEMA table.

15.6.6.3 Cursor FETCH Statement

FETCH [[NEXT] FROM] cursor_name INTO var_name [, var_name] ...

This statement fetches the next row for the SELECT statement associated with the specified cursor
(which must be open), and advances the cursor pointer. If a row exists, the fetched columns are stored
in the named variables. The number of columns retrieved by the SELECT statement must match the
number of output variables specified in the FETCH statement.

If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect
this condition, you can set up a handler for it (or for a NOT FOUND condition). For an example, see
Section 15.6.6, “Cursors”.

Be aware that another operation, such as a SELECT or another FETCH, may also cause the handler
to execute by raising the same condition. If it is necessary to distinguish which operation raised the
condition, place the operation within its own BEGIN ... END block so that it can be associated with its
own handler.

15.6.6.4 Cursor OPEN Statement

2991

Condition Handling

OPEN cursor_name

This statement opens a previously declared cursor. For an example, see Section 15.6.6, “Cursors”.

15.6.6.5 Restrictions on Server-Side Cursors

Server-side cursors are implemented in the C API using the mysql_stmt_attr_set() function. The
same implementation is used for cursors in stored routines. A server-side cursor enables a result set
to be generated on the server side, but not transferred to the client except for those rows that the client
requests. For example, if a client executes a query but is only interested in the first row, the remaining
rows are not transferred.

In MySQL, a server-side cursor is materialized into an internal temporary table. Initially, this is a
MEMORY table, but is converted to a MyISAM table when its size exceeds the minimum value of the
max_heap_table_size and tmp_table_size system variables. The same restrictions apply
to internal temporary tables created to hold the result set for a cursor as for other uses of internal
temporary tables. See Section 10.4.4, “Internal Temporary Table Use in MySQL”. One limitation of the
implementation is that for a large result set, retrieving its rows through a cursor might be slow.

Cursors are read only; you cannot use a cursor to update rows.

UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF are not implemented, because
updatable cursors are not supported.

Cursors are nonholdable (not held open after a commit).

Cursors are asensitive.

Cursors are nonscrollable.

Cursors are not named. The statement handler acts as the cursor ID.

You can have open only a single cursor per prepared statement. If you need several cursors, you must
prepare several statements.

You cannot use a cursor for a statement that generates a result set if the statement is not supported
in prepared mode. This includes statements such as CHECK TABLE, HANDLER READ, and SHOW
BINLOG EVENTS.

15.6.7 Condition Handling

Conditions may arise during stored program execution that require special handling, such as exiting the
current program block or continuing execution. Handlers can be defined for general conditions such as
warnings or exceptions, or for specific conditions such as a particular error code. Specific conditions
can be assigned names and referred to that way in handlers.

To name a condition, use the DECLARE ... CONDITION statement. To declare a handler, use the
DECLARE ... HANDLER statement. See Section 15.6.7.1, “DECLARE ... CONDITION Statement”,
and Section 15.6.7.2, “DECLARE ... HANDLER Statement”. For information about how the server
chooses handlers when a condition occurs, see Section 15.6.7.6, “Scope Rules for Handlers”.

To raise a condition, use the SIGNAL statement. To modify condition information within a condition
handler, use RESIGNAL. See Section 15.6.7.1, “DECLARE ... CONDITION Statement”, and
Section 15.6.7.2, “DECLARE ... HANDLER Statement”.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 15.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 15.6.7.7, “The MySQL Diagnostics Area”.

15.6.7.1 DECLARE ... CONDITION Statement

2992

https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-attr-set.html

Condition Handling

DECLARE condition_name CONDITION FOR condition_value

condition_value: {
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
}

The DECLARE ... CONDITION statement declares a named error condition, associating a name with
a condition that needs specific handling. The name can be referred to in a subsequent DECLARE ...
HANDLER statement (see Section 15.6.7.2, “DECLARE ... HANDLER Statement”).

Condition declarations must appear before cursor or handler declarations.

The condition_value for DECLARE ... CONDITION indicates the specific condition or class of
conditions to associate with the condition name. It can take the following forms:

• mysql_error_code: An integer literal indicating a MySQL error code.

Do not use MySQL error code 0 because that indicates success rather than an error condition. For a
list of MySQL error codes, see Server Error Message Reference.

• SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value.

Do not use SQLSTATE values that begin with '00' because those indicate success rather than an
error condition. For a list of SQLSTATE values, see Server Error Message Reference.

Condition names referred to in SIGNAL or use RESIGNAL statements must be associated with
SQLSTATE values, not MySQL error codes.

Using names for conditions can help make stored program code clearer. For example, this handler
applies to attempts to drop a nonexistent table, but that is apparent only if you know that 1051 is the
MySQL error code for “unknown table”:

DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler
 END;

By declaring a name for the condition, the purpose of the handler is more readily seen:

DECLARE no_such_table CONDITION FOR 1051;
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

Here is a named condition for the same condition, but based on the corresponding SQLSTATE value
rather than the MySQL error code:

DECLARE no_such_table CONDITION FOR SQLSTATE '42S02';
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

15.6.7.2 DECLARE ... HANDLER Statement

DECLARE handler_action HANDLER
 FOR condition_value [, condition_value] ...
 statement

handler_action: {
 CONTINUE
 | EXIT
 | UNDO
}

2993

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

Condition Handling

condition_value: {
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
 | condition_name
 | SQLWARNING
 | NOT FOUND
 | SQLEXCEPTION
}

The DECLARE ... HANDLER statement specifies a handler that deals with one or more conditions.
If one of these conditions occurs, the specified statement executes. statement can be a simple
statement such as SET var_name = value, or a compound statement written using BEGIN and END
(see Section 15.6.1, “BEGIN ... END Compound Statement”).

Handler declarations must appear after variable or condition declarations.

The handler_action value indicates what action the handler takes after execution of the handler
statement:

• CONTINUE: Execution of the current program continues.

• EXIT: Execution terminates for the BEGIN ... END compound statement in which the handler is
declared. This is true even if the condition occurs in an inner block.

• UNDO: Not supported.

The condition_value for DECLARE ... HANDLER indicates the specific condition or class of
conditions that activates the handler. It can take the following forms:

• mysql_error_code: An integer literal indicating a MySQL error code, such as 1051 to specify
“unknown table”:

DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler
 END;

Do not use MySQL error code 0 because that indicates success rather than an error condition. For a
list of MySQL error codes, see Server Error Message Reference.

• SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value,
such as '42S01' to specify “unknown table”:

DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 BEGIN
 -- body of handler
 END;

Do not use SQLSTATE values that begin with '00' because those indicate success rather than an
error condition. For a list of SQLSTATE values, see Server Error Message Reference.

• condition_name: A condition name previously specified with DECLARE ... CONDITION.
A condition name can be associated with a MySQL error code or SQLSTATE value. See
Section 15.6.7.1, “DECLARE ... CONDITION Statement”.

• SQLWARNING: Shorthand for the class of SQLSTATE values that begin with '01'.

DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 -- body of handler
 END;

• NOT FOUND: Shorthand for the class of SQLSTATE values that begin with '02'. This is relevant
within the context of cursors and is used to control what happens when a cursor reaches the end of a

2994

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

Condition Handling

data set. If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'.
To detect this condition, you can set up a handler for it or for a NOT FOUND condition.

DECLARE CONTINUE HANDLER FOR NOT FOUND
 BEGIN
 -- body of handler
 END;

For another example, see Section 15.6.6, “Cursors”. The NOT FOUND condition also occurs for
SELECT ... INTO var_list statements that retrieve no rows.

• SQLEXCEPTION: Shorthand for the class of SQLSTATE values that do not begin with '00', '01', or
'02'.

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 -- body of handler
 END;

For information about how the server chooses handlers when a condition occurs, see Section 15.6.7.6,
“Scope Rules for Handlers”.

If a condition occurs for which no handler has been declared, the action taken depends on the
condition class:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the
condition, as if there were an EXIT handler. If the program was called by another stored program,
the calling program handles the condition using the handler selection rules applied to its own
handlers.

• For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE
handler.

• For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was
raised by SIGNAL or RESIGNAL, the action is EXIT.

The following example uses a handler for SQLSTATE '23000', which occurs for a duplicate-key error:

mysql> CREATE TABLE test.t (s1 INT, PRIMARY KEY (s1));
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
 SET @x = 1;
 INSERT INTO test.t VALUES (1);
 SET @x = 2;
 INSERT INTO test.t VALUES (1);
 SET @x = 3;
 END;
 //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
 +------+
 | @x |
 +------+
 | 3 |
 +------+
 1 row in set (0.00 sec)

Notice that @x is 3 after the procedure executes, which shows that execution continued to the end
of the procedure after the error occurred. If the DECLARE ... HANDLER statement had not been

2995

Condition Handling

present, MySQL would have taken the default action (EXIT) after the second INSERT failed due to the
PRIMARY KEY constraint, and SELECT @x would have returned 2.

To ignore a condition, declare a CONTINUE handler for it and associate it with an empty block. For
example:

DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;

The scope of a block label does not include the code for handlers declared within the block. Therefore,
the statement associated with a handler cannot use ITERATE or LEAVE to refer to labels for blocks that
enclose the handler declaration. Consider the following example, where the REPEAT block has a label
of retry:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 ITERATE retry; # illegal
 END;
 IF i < 0 THEN
 LEAVE retry; # legal
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

The retry label is in scope for the IF statement within the block. It is not in scope for the CONTINUE
handler, so the reference there is invalid and results in an error:

ERROR 1308 (42000): LEAVE with no matching label: retry

To avoid references to outer labels in handlers, use one of these strategies:

• To leave the block, use an EXIT handler. If no block cleanup is required, the BEGIN ... END
handler body can be empty:

DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;

Otherwise, put the cleanup statements in the handler body:

DECLARE EXIT HANDLER FOR SQLWARNING
 BEGIN
 block cleanup statements
 END;

• To continue execution, set a status variable in a CONTINUE handler that can be checked in the
enclosing block to determine whether the handler was invoked. The following example uses the
variable done for this purpose:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 DECLARE done INT DEFAULT FALSE;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 SET done = TRUE;
 END;
 IF done OR i < 0 THEN
 LEAVE retry;
 END IF;
 SET i = i - 1;

2996

Condition Handling

 END;
 UNTIL FALSE END REPEAT;
END;

15.6.7.3 GET DIAGNOSTICS Statement

GET [CURRENT | STACKED] DIAGNOSTICS {
 statement_information_item
 [, statement_information_item] ...
 | CONDITION condition_number
 condition_information_item
 [, condition_information_item] ...
}

statement_information_item:
 target = statement_information_item_name

condition_information_item:
 target = condition_information_item_name

statement_information_item_name: {
 NUMBER
 | ROW_COUNT
}

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | RETURNED_SQLSTATE
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}

condition_number, target:
 (see following discussion)

SQL statements produce diagnostic information that populates the diagnostics area. The GET
DIAGNOSTICS statement enables applications to inspect this information. (You can also use SHOW
WARNINGS or SHOW ERRORS to see conditions or errors.)

No special privileges are required to execute GET DIAGNOSTICS.

The keyword CURRENT means to retrieve information from the current diagnostics area. The keyword
STACKED means to retrieve information from the second diagnostics area, which is available only if
the current context is a condition handler. If neither keyword is given, the default is to use the current
diagnostics area.

The GET DIAGNOSTICS statement is typically used in a handler within a stored program. It is a
MySQL extension that GET [CURRENT] DIAGNOSTICS is permitted outside handler context to check
the execution of any SQL statement. For example, if you invoke the mysql client program, you can
enter these statements at the prompt:

mysql> DROP TABLE test.no_such_table;
ERROR 1051 (42S02): Unknown table 'test.no_such_table'
mysql> GET DIAGNOSTICS CONDITION 1
 @p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT;
mysql> SELECT @p1, @p2;
+-------+------------------------------------+
| @p1 | @p2 |
+-------+------------------------------------+
| 42S02 | Unknown table 'test.no_such_table' |

2997

Condition Handling

+-------+------------------------------------+

This extension applies only to the current diagnostics area. It does not apply to the second diagnostics
area because GET STACKED DIAGNOSTICS is permitted only if the current context is a condition
handler. If that is not the case, a GET STACKED DIAGNOSTICS when handler not active error
occurs.

For a description of the diagnostics area, see Section 15.6.7.7, “The MySQL Diagnostics Area”. Briefly,
it contains two kinds of information:

• Statement information, such as the number of conditions that occurred or the affected-rows count.

• Condition information, such as the error code and message. If a statement raises multiple conditions,
this part of the diagnostics area has a condition area for each one. If a statement raises no
conditions, this part of the diagnostics area is empty.

For a statement that produces three conditions, the diagnostics area contains statement and condition
information like this:

Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:
 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...

GET DIAGNOSTICS can obtain either statement or condition information, but not both in the same
statement:

• To obtain statement information, retrieve the desired statement items into target variables. This
instance of GET DIAGNOSTICS assigns the number of available conditions and the rows-affected
count to the user variables @p1 and @p2:

GET DIAGNOSTICS @p1 = NUMBER, @p2 = ROW_COUNT;

• To obtain condition information, specify the condition number and retrieve the desired condition items
into target variables. This instance of GET DIAGNOSTICS assigns the SQLSTATE value and error
message to the user variables @p3 and @p4:

GET DIAGNOSTICS CONDITION 1
 @p3 = RETURNED_SQLSTATE, @p4 = MESSAGE_TEXT;

The retrieval list specifies one or more target = item_name assignments, separated by commas.
Each assignment names a target variable and either a statement_information_item_name or
condition_information_item_name designator, depending on whether the statement retrieves
statement or condition information.

Valid target designators for storing item information can be stored procedure or function parameters,
stored program local variables declared with DECLARE, or user-defined variables.

Valid condition_number designators can be stored procedure or function parameters, stored
program local variables declared with DECLARE, user-defined variables, system variables, or literals. A
character literal may include a _charset introducer. A warning occurs if the condition number is not
in the range from 1 to the number of condition areas that have information. In this case, the warning is
added to the diagnostics area without clearing it.

2998

Condition Handling

When a condition occurs, MySQL does not populate all condition items recognized by GET
DIAGNOSTICS. For example:

mysql> GET DIAGNOSTICS CONDITION 1
 @p5 = SCHEMA_NAME, @p6 = TABLE_NAME;
mysql> SELECT @p5, @p6;
+------+------+
| @p5 | @p6 |
+------+------+
| | |
+------+------+

In standard SQL, if there are multiple conditions, the first condition relates to the SQLSTATE value
returned for the previous SQL statement. In MySQL, this is not guaranteed. To get the main error, you
cannot do this:

GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;

Instead, retrieve the condition count first, then use it to specify which condition number to inspect:

GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;

For information about permissible statement and condition information items, and which ones are
populated when a condition occurs, see Diagnostics Area Information Items.

Here is an example that uses GET DIAGNOSTICS and an exception handler in stored procedure
context to assess the outcome of an insert operation. If the insert was successful, the procedure uses
GET DIAGNOSTICS to get the rows-affected count. This shows that you can use GET DIAGNOSTICS
multiple times to retrieve information about a statement as long as the current diagnostics area has not
been cleared.

CREATE PROCEDURE do_insert(value INT)
BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE code CHAR(5) DEFAULT '00000';
 DECLARE msg TEXT;
 DECLARE nrows INT;
 DECLARE result TEXT;
 -- Declare exception handler for failed insert
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 GET DIAGNOSTICS CONDITION 1
 code = RETURNED_SQLSTATE, msg = MESSAGE_TEXT;
 END;

 -- Perform the insert
 INSERT INTO t1 (int_col) VALUES(value);
 -- Check whether the insert was successful
 IF code = '00000' THEN
 GET DIAGNOSTICS nrows = ROW_COUNT;
 SET result = CONCAT('insert succeeded, row count = ',nrows);
 ELSE
 SET result = CONCAT('insert failed, error = ',code,', message = ',msg);
 END IF;
 -- Say what happened
 SELECT result;
END;

Suppose that t1.int_col is an integer column that is declared as NOT NULL. The procedure
produces these results when invoked to insert non-NULL and NULL values, respectively:

mysql> CALL do_insert(1);
+---------------------------------+
| result |
+---------------------------------+
| insert succeeded, row count = 1 |
+---------------------------------+

2999

Condition Handling

mysql> CALL do_insert(NULL);
+---+
| result |
+---+
| insert failed, error = 23000, message = Column 'int_col' cannot be null |
+---+

When a condition handler activates, a push to the diagnostics area stack occurs:

• The first (current) diagnostics area becomes the second (stacked) diagnostics area and a new
current diagnostics area is created as a copy of it.

• GET [CURRENT] DIAGNOSTICS and GET STACKED DIAGNOSTICS can be used within the
handler to access the contents of the current and stacked diagnostics areas.

• Initially, both diagnostics areas return the same result, so it is possible to get information from the
current diagnostics area about the condition that activated the handler, as long as you execute no
statements within the handler that change its current diagnostics area.

• However, statements executing within the handler can modify the current diagnostics area, clearing
and setting its contents according to the normal rules (see How the Diagnostics Area is Cleared and
Populated).

A more reliable way to obtain information about the handler-activating condition is to use the
stacked diagnostics area, which cannot be modified by statements executing within the handler
except RESIGNAL. For information about when the current diagnostics area is set and cleared, see
Section 15.6.7.7, “The MySQL Diagnostics Area”.

The next example shows how GET STACKED DIAGNOSTICS can be used within a handler to obtain
information about the handled exception, even after the current diagnostics area has been modified by
handler statements.

Within a stored procedure p(), we attempt to insert two values into a table that contains a TEXT NOT
NULL column. The first value is a non-NULL string and the second is NULL. The column prohibits NULL
values, so the first insert succeeds but the second causes an exception. The procedure includes an
exception handler that maps attempts to insert NULL into inserts of the empty string:

DROP TABLE IF EXISTS t1;
CREATE TABLE t1 (c1 TEXT NOT NULL);
DROP PROCEDURE IF EXISTS p;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE errcount INT;
 DECLARE errno INT;
 DECLARE msg TEXT;
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 -- Here the current DA is nonempty because no prior statements
 -- executing within the handler have cleared it
 GET CURRENT DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'current DA before mapped insert' AS op, errno, msg;
 GET STACKED DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'stacked DA before mapped insert' AS op, errno, msg;

 -- Map attempted NULL insert to empty string insert
 INSERT INTO t1 (c1) VALUES('');

 -- Here the current DA should be empty (if the INSERT succeeded),
 -- so check whether there are conditions before attempting to
 -- obtain condition information
 GET CURRENT DIAGNOSTICS errcount = NUMBER;
 IF errcount = 0
 THEN

3000

Condition Handling

 SELECT 'mapped insert succeeded, current DA is empty' AS op;
 ELSE
 GET CURRENT DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'current DA after mapped insert' AS op, errno, msg;
 END IF ;
 GET STACKED DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'stacked DA after mapped insert' AS op, errno, msg;
 END;
 INSERT INTO t1 (c1) VALUES('string 1');
 INSERT INTO t1 (c1) VALUES(NULL);
END;
//
delimiter ;
CALL p();
SELECT * FROM t1;

When the handler activates, a copy of the current diagnostics area is pushed to the diagnostics area
stack. The handler first displays the contents of the current and stacked diagnostics areas, which are
both the same initially:

+---------------------------------+-------+----------------------------+
| op | errno | msg |
+---------------------------------+-------+----------------------------+
| current DA before mapped insert | 1048 | Column 'c1' cannot be null |
+---------------------------------+-------+----------------------------+

+---------------------------------+-------+----------------------------+
| op | errno | msg |
+---------------------------------+-------+----------------------------+
| stacked DA before mapped insert | 1048 | Column 'c1' cannot be null |
+---------------------------------+-------+----------------------------+

Statements executing after the GET DIAGNOSTICS statements may reset the current diagnostics
area. statements may reset the current diagnostics area. For example, the handler maps the NULL
insert to an empty-string insert and displays the result. The new insert succeeds and clears the current
diagnostics area, but the stacked diagnostics area remains unchanged and still contains information
about the condition that activated the handler:

+--+
| op |
+--+
| mapped insert succeeded, current DA is empty |
+--+

+--------------------------------+-------+----------------------------+
| op | errno | msg |
+--------------------------------+-------+----------------------------+
| stacked DA after mapped insert | 1048 | Column 'c1' cannot be null |
+--------------------------------+-------+----------------------------+

When the condition handler ends, its current diagnostics area is popped from the stack and the stacked
diagnostics area becomes the current diagnostics area in the stored procedure.

After the procedure returns, the table contains two rows. The empty row results from the attempt to
insert NULL that was mapped to an empty-string insert:

+----------+
| c1 |
+----------+
| string 1 |
| |
+----------+

In the preceding example, the first two GET DIAGNOSTICS statements within the condition handler
that retrieve information from the current and stacked diagnostics areas return the same values. This
is not the case if statements that reset the current diagnostics area execute earlier within the handler.

3001

Condition Handling

Suppose that p() is rewritten to place the DECLARE statements within the handler definition rather than
preceding it:

CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE errcount INT;
 DECLARE errno INT;
 DECLARE msg TEXT;
 GET CURRENT DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'current DA before mapped insert' AS op, errno, msg;
 GET STACKED DIAGNOSTICS CONDITION 1
 errno = MYSQL_ERRNO, msg = MESSAGE_TEXT;
 SELECT 'stacked DA before mapped insert' AS op, errno, msg;
...

In this case, the result is version dependent:

• Before MySQL 5.7.2, DECLARE does not change the current diagnostics area, so the first two GET
DIAGNOSTICS statements return the same result, just as in the original version of p().

In MySQL 5.7.2, work was done to ensure that all nondiagnostic statements populate the
diagnostics area, per the SQL standard. DECLARE is one of them, so in 5.7.2 and higher, DECLARE
statements executing at the beginning of the handler clear the current diagnostics area and the GET
DIAGNOSTICS statements produce different results:

+---------------------------------+-------+------+
| op | errno | msg |
+---------------------------------+-------+------+
| current DA before mapped insert | NULL | NULL |
+---------------------------------+-------+------+

+---------------------------------+-------+----------------------------+
| op | errno | msg |
+---------------------------------+-------+----------------------------+
| stacked DA before mapped insert | 1048 | Column 'c1' cannot be null |
+---------------------------------+-------+----------------------------+

To avoid this issue within a condition handler when seeking to obtain information about the condition
that activated the handler, be sure to access the stacked diagnostics area, not the current diagnostics
area.

15.6.7.4 RESIGNAL Statement

RESIGNAL [condition_value]
 [SET signal_information_item
 [, signal_information_item] ...]

condition_value: {
 SQLSTATE [VALUE] sqlstate_value
 | condition_name
}

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME

3002

Condition Handling

 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}

condition_name, simple_value_specification:
 (see following discussion)

RESIGNAL passes on the error condition information that is available during execution of a condition
handler within a compound statement inside a stored procedure or function, trigger, or event.
RESIGNAL may change some or all information before passing it on. RESIGNAL is related to SIGNAL,
but instead of originating a condition as SIGNAL does, RESIGNAL relays existing condition information,
possibly after modifying it.

RESIGNAL makes it possible to both handle an error and return the error information. Otherwise, by
executing an SQL statement within the handler, information that caused the handler's activation is
destroyed. RESIGNAL also can make some procedures shorter if a given handler can handle part of a
situation, then pass the condition “up the line” to another handler.

No privileges are required to execute the RESIGNAL statement.

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 15.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 15.6.7.7, “The MySQL Diagnostics Area”.

• RESIGNAL Overview

• RESIGNAL Alone

• RESIGNAL with New Signal Information

• RESIGNAL with a Condition Value and Optional New Signal Information

• RESIGNAL Requires Condition Handler Context

RESIGNAL Overview

For condition_value and signal_information_item, the definitions and rules are the same
for RESIGNAL as for SIGNAL. For example, the condition_value can be an SQLSTATE value, and
the value can indicate errors, warnings, or “not found.” For additional information, see Section 15.6.7.5,
“SIGNAL Statement”.

The RESIGNAL statement takes condition_value and SET clauses, both of which are optional. This
leads to several possible uses:

• RESIGNAL alone:

RESIGNAL;

• RESIGNAL with new signal information:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

• RESIGNAL with a condition value and possibly new signal information:

RESIGNAL condition_value
 [SET signal_information_item [, signal_information_item] ...];

These use cases all cause changes to the diagnostics and condition areas:

• A diagnostics area contains one or more condition areas.

3003

Condition Handling

• A condition area contains condition information items, such as the SQLSTATE value, MYSQL_ERRNO,
or MESSAGE_TEXT.

There is a stack of diagnostics areas. When a handler takes control, it pushes a diagnostics area to the
top of the stack, so there are two diagnostics areas during handler execution:

• The first (current) diagnostics area, which starts as a copy of the last diagnostics area, but is
overwritten by the first statement in the handler that changes the current diagnostics area.

• The last (stacked) diagnostics area, which has the condition areas that were set up before the
handler took control.

The maximum number of condition areas in a diagnostics area is determined by the value of the
max_error_count system variable. See Diagnostics Area-Related System Variables.

RESIGNAL Alone

A simple RESIGNAL alone means “pass on the error with no change.” It restores the last diagnostics
area and makes it the current diagnostics area. That is, it “pops” the diagnostics area stack.

Within a condition handler that catches a condition, one use for RESIGNAL alone is to perform some
other actions, and then pass on without change the original condition information (the information that
existed before entry into the handler).

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Suppose that the DROP TABLE xx statement fails. The diagnostics area stack looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

Then execution enters the EXIT handler. It starts by pushing a diagnostics area to the top of the stack,
which now looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

At this point, the contents of the first (current) and second (stacked) diagnostics areas are the same.
The first diagnostics area may be modified by statements executing subsequently within the handler.

Usually a procedure statement clears the first diagnostics area. BEGIN is an exception, it does not
clear, it does nothing. SET is not an exception, it clears, performs the operation, and produces a result
of “success.” The diagnostics area stack now looks like this:

DA 1. ERROR 0000 (00000): Successful operation
DA 2. ERROR 1051 (42S02): Unknown table 'xx'

At this point, if @a = 0, RESIGNAL pops the diagnostics area stack, which now looks like this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

3004

Condition Handling

And that is what the caller sees.

If @a is not 0, the handler simply ends, which means that there is no more use for the current
diagnostics area (it has been “handled”), so it can be thrown away, causing the stacked diagnostics
area to become the current diagnostics area again. The diagnostics area stack looks like this:

DA 1. ERROR 0000 (00000): Successful operation

The details make it look complex, but the end result is quite useful: Handlers can execute without
destroying information about the condition that caused activation of the handler.

RESIGNAL with New Signal Information

RESIGNAL with a SET clause provides new signal information, so the statement means “pass on the
error with changes”:

RESIGNAL SET signal_information_item [, signal_information_item] ...;

As with RESIGNAL alone, the idea is to pop the diagnostics area stack so that the original information
goes out. Unlike RESIGNAL alone, anything specified in the SET clause changes.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SET MYSQL_ERRNO = 5; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Remember from the previous discussion that RESIGNAL alone results in a diagnostics area stack like
this:

DA 1. ERROR 1051 (42S02): Unknown table 'xx'

The RESIGNAL SET MYSQL_ERRNO = 5 statement results in this stack instead, which is what the
caller sees:

DA 1. ERROR 5 (42S02): Unknown table 'xx'

In other words, it changes the error number, and nothing else.

The RESIGNAL statement can change any or all of the signal information items, making the first
condition area of the diagnostics area look quite different.

RESIGNAL with a Condition Value and Optional New Signal Information

RESIGNAL with a condition value means “push a condition into the current diagnostics area.” If the SET
clause is present, it also changes the error information.

RESIGNAL condition_value
 [SET signal_information_item [, signal_information_item] ...];

This form of RESIGNAL restores the last diagnostics area and makes it the current diagnostics area.
That is, it “pops” the diagnostics area stack, which is the same as what a simple RESIGNAL alone

3005

Condition Handling

would do. However, it also changes the diagnostics area depending on the condition value or signal
information.

Example:

DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SQLSTATE '45000' SET MYSQL_ERRNO=5; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
SET @@max_error_count = 2;
CALL p();
SHOW ERRORS;

This is similar to the previous example, and the effects are the same, except that if RESIGNAL
happens, the current condition area looks different at the end. (The reason the condition adds to rather
than replaces the existing condition is the use of a condition value.)

The RESIGNAL statement includes a condition value (SQLSTATE '45000'), so it adds a new
condition area, resulting in a diagnostics area stack that looks like this:

DA 1. (condition 2) ERROR 1051 (42S02): Unknown table 'xx'
 (condition 1) ERROR 5 (45000) Unknown table 'xx'

The result of CALL p() and SHOW ERRORS for this example is:

mysql> CALL p();
ERROR 5 (45000): Unknown table 'xx'
mysql> SHOW ERRORS;
+-------+------+----------------------------------+
| Level | Code | Message |
+-------+------+----------------------------------+
| Error | 1051 | Unknown table 'xx' |
| Error | 5 | Unknown table 'xx' |
+-------+------+----------------------------------+

RESIGNAL Requires Condition Handler Context

All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is
illegal and a RESIGNAL when handler not active error occurs. For example:

mysql> CREATE PROCEDURE p () RESIGNAL;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p();
ERROR 1645 (0K000): RESIGNAL when handler not active

Here is a more difficult example:

delimiter //
CREATE FUNCTION f () RETURNS INT
BEGIN
 RESIGNAL;
 RETURN 5;
END//
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION SET @a=f();
 SIGNAL SQLSTATE '55555';
END//

3006

Condition Handling

delimiter ;
CALL p();

RESIGNAL occurs within the stored function f(). Although f() itself is invoked within the context
of the EXIT handler, execution within f() has its own context, which is not handler context. Thus,
RESIGNAL within f() results in a “handler not active” error.

15.6.7.5 SIGNAL Statement

SIGNAL condition_value
 [SET signal_information_item
 [, signal_information_item] ...]

condition_value: {
 SQLSTATE [VALUE] sqlstate_value
 | condition_name
}

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}

condition_name, simple_value_specification:
 (see following discussion)

SIGNAL is the way to “return” an error. SIGNAL provides error information to a handler, to an outer
portion of the application, or to the client. Also, it provides control over the error's characteristics (error
number, SQLSTATE value, message). Without SIGNAL, it is necessary to resort to workarounds such
as deliberately referring to a nonexistent table to cause a routine to return an error.

No privileges are required to execute the SIGNAL statement.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 15.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 15.6.7.7, “The MySQL Diagnostics Area”.

• SIGNAL Overview

• Signal Condition Information Items

• Effect of Signals on Handlers, Cursors, and Statements

SIGNAL Overview

The condition_value in a SIGNAL statement indicates the error value to be returned. It can be an
SQLSTATE value (a 5-character string literal) or a condition_name that refers to a named condition
previously defined with DECLARE ... CONDITION (see Section 15.6.7.1, “DECLARE ... CONDITION
Statement”).

An SQLSTATE value can indicate errors, warnings, or “not found.” The first two characters of the value
indicate its error class, as discussed in Signal Condition Information Items. Some signal values cause
statement termination; see Effect of Signals on Handlers, Cursors, and Statements.

3007

Condition Handling

The SQLSTATE value for a SIGNAL statement should not start with '00' because such values indicate
success and are not valid for signaling an error. This is true whether the SQLSTATE value is specified
directly in the SIGNAL statement or in a named condition referred to in the statement. If the value is
invalid, a Bad SQLSTATE error occurs.

To signal a generic SQLSTATE value, use '45000', which means “unhandled user-defined exception.”

The SIGNAL statement optionally includes a SET clause that contains multiple signal items, in a list
of condition_information_item_name = simple_value_specification assignments,
separated by commas.

Each condition_information_item_name may be specified only once in the SET clause.
Otherwise, a Duplicate condition information item error occurs.

Valid simple_value_specification designators can be specified using stored procedure or
function parameters, stored program local variables declared with DECLARE, user-defined variables,
system variables, or literals. A character literal may include a _charset introducer.

For information about permissible condition_information_item_name values, see Signal
Condition Information Items.

The following procedure signals an error or warning depending on the value of pval, its input
parameter:

CREATE PROCEDURE p (pval INT)
BEGIN
 DECLARE specialty CONDITION FOR SQLSTATE '45000';
 IF pval = 0 THEN
 SIGNAL SQLSTATE '01000';
 ELSEIF pval = 1 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred';
 ELSEIF pval = 2 THEN
 SIGNAL specialty
 SET MESSAGE_TEXT = 'An error occurred';
 ELSE
 SIGNAL SQLSTATE '01000'
 SET MESSAGE_TEXT = 'A warning occurred', MYSQL_ERRNO = 1000;
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred', MYSQL_ERRNO = 1001;
 END IF;
END;

If pval is 0, p() signals a warning because SQLSTATE values that begin with '01' are signals in the
warning class. The warning does not terminate the procedure, and can be seen with SHOW WARNINGS
after the procedure returns.

If pval is 1, p() signals an error and sets the MESSAGE_TEXT condition information item. The error
terminates the procedure, and the text is returned with the error information.

If pval is 2, the same error is signaled, although the SQLSTATE value is specified using a named
condition in this case.

If pval is anything else, p() first signals a warning and sets the message text and error number
condition information items. This warning does not terminate the procedure, so execution continues
and p() then signals an error. The error does terminate the procedure. The message text and error
number set by the warning are replaced by the values set by the error, which are returned with the
error information.

SIGNAL is typically used within stored programs, but it is a MySQL extension that it is permitted outside
handler context. For example, if you invoke the mysql client program, you can enter any of these
statements at the prompt:

SIGNAL SQLSTATE '77777';

3008

Condition Handling

CREATE TRIGGER t_bi BEFORE INSERT ON t
 FOR EACH ROW SIGNAL SQLSTATE '77777';

CREATE EVENT e ON SCHEDULE EVERY 1 SECOND
 DO SIGNAL SQLSTATE '77777';

SIGNAL executes according to the following rules:

If the SIGNAL statement indicates a particular SQLSTATE value, that value is used to signal the
condition specified. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
 IF divisor = 0 THEN
 SIGNAL SQLSTATE '22012';
 END IF;
END;

If the SIGNAL statement uses a named condition, the condition must be declared in some scope that
applies to the SIGNAL statement, and must be defined using an SQLSTATE value, not a MySQL error
number. Example:

CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE divide_by_zero CONDITION FOR SQLSTATE '22012';
 IF divisor = 0 THEN
 SIGNAL divide_by_zero;
 END IF;
END;

If the named condition does not exist in the scope of the SIGNAL statement, an Undefined
CONDITION error occurs.

If SIGNAL refers to a named condition that is defined with a MySQL error number rather than
an SQLSTATE value, a SIGNAL/RESIGNAL can only use a CONDITION defined with
SQLSTATE error occurs. The following statements cause that error because the named condition is
associated with a MySQL error number:

DECLARE no_such_table CONDITION FOR 1051;
SIGNAL no_such_table;

If a condition with a given name is declared multiple times in different scopes, the declaration with the
most local scope applies. Consider the following procedure:

CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '45000';
 IF divisor = 0 THEN
 BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '22012';
 SIGNAL my_error;
 END;
 END IF;
 SIGNAL my_error;
END;

If divisor is 0, the first SIGNAL statement executes. The innermost my_error condition declaration
applies, raising SQLSTATE '22012'.

If divisor is not 0, the second SIGNAL statement executes. The outermost my_error condition
declaration applies, raising SQLSTATE '45000'.

For information about how the server chooses handlers when a condition occurs, see Section 15.6.7.6,
“Scope Rules for Handlers”.

Signals can be raised within exception handlers:

CREATE PROCEDURE p ()

3009

Condition Handling

BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SIGNAL SQLSTATE VALUE '99999'
 SET MESSAGE_TEXT = 'An error occurred';
 END;
 DROP TABLE no_such_table;
END;

CALL p() reaches the DROP TABLE statement. There is no table named no_such_table, so the
error handler is activated. The error handler destroys the original error (“no such table”) and makes a
new error with SQLSTATE '99999' and message An error occurred.

Signal Condition Information Items

The following table lists the names of diagnostics area condition information items that can be set
in a SIGNAL (or RESIGNAL) statement. All items are standard SQL except MYSQL_ERRNO, which
is a MySQL extension. For more information about these items see Section 15.6.7.7, “The MySQL
Diagnostics Area”.

Item Name Definition
--------- ----------
CLASS_ORIGIN VARCHAR(64)
SUBCLASS_ORIGIN VARCHAR(64)
CONSTRAINT_CATALOG VARCHAR(64)
CONSTRAINT_SCHEMA VARCHAR(64)
CONSTRAINT_NAME VARCHAR(64)
CATALOG_NAME VARCHAR(64)
SCHEMA_NAME VARCHAR(64)
TABLE_NAME VARCHAR(64)
COLUMN_NAME VARCHAR(64)
CURSOR_NAME VARCHAR(64)
MESSAGE_TEXT VARCHAR(128)
MYSQL_ERRNO SMALLINT UNSIGNED

The character set for character items is UTF-8.

It is illegal to assign NULL to a condition information item in a SIGNAL statement.

A SIGNAL statement always specifies an SQLSTATE value, either directly, or indirectly by referring to a
named condition defined with an SQLSTATE value. The first two characters of an SQLSTATE value are
its class, and the class determines the default value for the condition information items:

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.

• Class = '01' (warning)

MESSAGE_TEXT = 'Unhandled user-defined warning condition';
MYSQL_ERRNO = ER_SIGNAL_WARN

• Class = '02' (not found)

MESSAGE_TEXT = 'Unhandled user-defined not found condition';
MYSQL_ERRNO = ER_SIGNAL_NOT_FOUND

• Class > '02' (exception)

MESSAGE_TEXT = 'Unhandled user-defined exception condition';
MYSQL_ERRNO = ER_SIGNAL_EXCEPTION

For legal classes, the other condition information items are set as follows:

CLASS_ORIGIN = SUBCLASS_ORIGIN = '';
CONSTRAINT_CATALOG = CONSTRAINT_SCHEMA = CONSTRAINT_NAME = '';
CATALOG_NAME = SCHEMA_NAME = TABLE_NAME = COLUMN_NAME = '';
CURSOR_NAME = '';

3010

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_signal_warn
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_signal_not_found
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_signal_exception

Condition Handling

The error values that are accessible after SIGNAL executes are the SQLSTATE value raised by the
SIGNAL statement and the MESSAGE_TEXT and MYSQL_ERRNO items. These values are available from
the C API:

• mysql_sqlstate() returns the SQLSTATE value.

• mysql_errno() returns the MYSQL_ERRNO value.

• mysql_error() returns the MESSAGE_TEXT value.

At the SQL level, the output from SHOW WARNINGS and SHOW ERRORS indicates the MYSQL_ERRNO
and MESSAGE_TEXT values in the Code and Message columns.

To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see
Section 15.6.7.3, “GET DIAGNOSTICS Statement”). For information about the diagnostics area, see
Section 15.6.7.7, “The MySQL Diagnostics Area”.

Effect of Signals on Handlers, Cursors, and Statements

Signals have different effects on statement execution depending on the signal class. The class
determines how severe an error is. MySQL ignores the value of the sql_mode system variable; in
particular, strict SQL mode does not matter. MySQL also ignores IGNORE: The intent of SIGNAL is to
raise a user-generated error explicitly, so a signal is never ignored.

In the following descriptions, “unhandled” means that no handler for the signaled SQLSTATE value has
been defined with DECLARE ... HANDLER.

• Class = '00' (success)

Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.

• Class = '01' (warning)

The value of the warning_count system variable goes up. SHOW WARNINGS shows the signal.
SQLWARNING handlers catch the signal.

Warnings cannot be returned from stored functions because the RETURN statement that causes the
function to return clears the diagnostic area. The statement thus clears any warnings that may have
been present there (and resets warning_count to 0).

• Class = '02' (not found)

NOT FOUND handlers catch the signal. There is no effect on cursors. If the signal is unhandled in a
stored function, statements end.

• Class > '02' (exception)

SQLEXCEPTION handlers catch the signal. If the signal is unhandled in a stored function, statements
end.

• Class = '40'

Treated as an ordinary exception.

15.6.7.6 Scope Rules for Handlers

A stored program may include handlers to be invoked when certain conditions occur within the
program. The applicability of each handler depends on its location within the program definition and on
the condition or conditions that it handles:

• A handler declared in a BEGIN ... END block is in scope only for the SQL statements following
the handler declarations in the block. If the handler itself raises a condition, it cannot handle that

3011

https://dev.mysql.com/doc/c-api/8.0/en/mysql-sqlstate.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-error.html

Condition Handling

condition, nor can any other handlers declared in the block. In the following example, handlers H1
and H2 are in scope for conditions raised by statements stmt1 and stmt2. But neither H1 nor H2
are in scope for conditions raised in the body of H1 or H2.

BEGIN -- outer block
 DECLARE EXIT HANDLER FOR ...; -- handler H1
 DECLARE EXIT HANDLER FOR ...; -- handler H2
 stmt1;
 stmt2;
END;

• A handler is in scope only for the block in which it is declared, and cannot be activated for conditions
occurring outside that block. In the following example, handler H1 is in scope for stmt1 in the inner
block, but not for stmt2 in the outer block:

BEGIN -- outer block
 BEGIN -- inner block
 DECLARE EXIT HANDLER FOR ...; -- handler H1
 stmt1;
 END;
 stmt2;
END;

• A handler can be specific or general. A specific handler is for a MySQL error code, SQLSTATE value,
or condition name. A general handler is for a condition in the SQLWARNING, SQLEXCEPTION, or NOT
FOUND class. Condition specificity is related to condition precedence, as described later.

Multiple handlers can be declared in different scopes and with different specificities. For example,
there might be a specific MySQL error code handler in an outer block, and a general SQLWARNING
handler in an inner block. Or there might be handlers for a specific MySQL error code and the general
SQLWARNING class in the same block.

Whether a handler is activated depends not only on its own scope and condition value, but on what
other handlers are present. When a condition occurs in a stored program, the server searches for
applicable handlers in the current scope (current BEGIN ... END block). If there are no applicable
handlers, the search continues outward with the handlers in each successive containing scope (block).
When the server finds one or more applicable handlers at a given scope, it chooses among them
based on condition precedence:

• A MySQL error code handler takes precedence over an SQLSTATE value handler.

• An SQLSTATE value handler takes precedence over general SQLWARNING, SQLEXCEPTION, or NOT
FOUND handlers.

• An SQLEXCEPTION handler takes precedence over an SQLWARNING handler.

• It is possible to have several applicable handlers with the same precedence. For example, a
statement could generate multiple warnings with different error codes, for each of which an
error-specific handler exists. In this case, the choice of which handler the server activates is
nondeterministic, and may change depending on the circumstances under which the condition
occurs.

One implication of the handler selection rules is that if multiple applicable handlers occur in different
scopes, handlers with the most local scope take precedence over handlers in outer scopes, even over
those for more specific conditions.

If there is no appropriate handler when a condition occurs, the action taken depends on the class of the
condition:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the
condition, as if there were an EXIT handler. If the program was called by another stored program,
the calling program handles the condition using the handler selection rules applied to its own
handlers.

3012

Condition Handling

• For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE
handler.

• For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was
raised by SIGNAL or RESIGNAL, the action is EXIT.

The following examples demonstrate how MySQL applies the handler selection rules.

This procedure contains two handlers, one for the specific SQLSTATE value ('42S02') that occurs for
attempts to drop a nonexistent table, and one for the general SQLEXCEPTION class:

CREATE PROCEDURE p1()
BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t;
END;

Both handlers are declared in the same block and have the same scope. However, SQLSTATE
handlers take precedence over SQLEXCEPTION handlers, so if the table t is nonexistent, the DROP
TABLE statement raises a condition that activates the SQLSTATE handler:

mysql> CALL p1();
+--------------------------------+
| msg |
+--------------------------------+
| SQLSTATE handler was activated |
+--------------------------------+

This procedure contains the same two handlers. But this time, the DROP TABLE statement and
SQLEXCEPTION handler are in an inner block relative to the SQLSTATE handler:

CREATE PROCEDURE p2()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t; -- occurs within inner block
 END;
END;

In this case, the handler that is more local to where the condition occurs takes precedence. The
SQLEXCEPTION handler activates, even though it is more general than the SQLSTATE handler:

mysql> CALL p2();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+

In this procedure, one of the handlers is declared in a block inner to the scope of the DROP TABLE
statement:

CREATE PROCEDURE p3()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

3013

Condition Handling

 DROP TABLE test.t; -- occurs within outer block
END;

Only the SQLEXCEPTION handler applies because the other one is not in scope for the condition raised
by the DROP TABLE:

mysql> CALL p3();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+

In this procedure, both handlers are declared in a block inner to the scope of the DROP TABLE
statement:

CREATE PROCEDURE p4()
BEGIN -- outer block
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

 DROP TABLE test.t; -- occurs within outer block
END;

Neither handler applies because they are not in scope for the DROP TABLE. The condition raised by
the statement goes unhandled and terminates the procedure with an error:

mysql> CALL p4();
ERROR 1051 (42S02): Unknown table 'test.t'

15.6.7.7 The MySQL Diagnostics Area

SQL statements produce diagnostic information that populates the diagnostics area. Standard SQL has
a diagnostics area stack, containing a diagnostics area for each nested execution context. Standard
SQL also supports GET STACKED DIAGNOSTICS syntax for referring to the second diagnostics area
during condition handler execution.

The following discussion describes the structure of the diagnostics area in MySQL, the information
items recognized by MySQL, how statements clear and set the diagnostics area, and how diagnostics
areas are pushed to and popped from the stack.

• Diagnostics Area Structure

• Diagnostics Area Information Items

• How the Diagnostics Area is Cleared and Populated

• How the Diagnostics Area Stack Works

• Diagnostics Area-Related System Variables

Diagnostics Area Structure

The diagnostics area contains two kinds of information:

• Statement information, such as the number of conditions that occurred or the affected-rows count.

• Condition information, such as the error code and message. If a statement raises multiple conditions,
this part of the diagnostics area has a condition area for each one. If a statement raises no
conditions, this part of the diagnostics area is empty.

3014

Condition Handling

For a statement that produces three conditions, the diagnostics area contains statement and condition
information like this:

Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:
 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...

Diagnostics Area Information Items

The diagnostics area contains statement and condition information items. Numeric items are integers.
The character set for character items is UTF-8. No item can be NULL. If a statement or condition item is
not set by a statement that populates the diagnostics area, its value is 0 or the empty string, depending
on the item data type.

The statement information part of the diagnostics area contains these items:

• NUMBER: An integer indicating the number of condition areas that have information.

• ROW_COUNT: An integer indicating the number of rows affected by the statement. ROW_COUNT has
the same value as the ROW_COUNT() function (see Section 14.15, “Information Functions”).

The condition information part of the diagnostics area contains a condition area for each condition.
Condition areas are numbered from 1 to the value of the NUMBER statement condition item. If NUMBER
is 0, there are no condition areas.

Each condition area contains the items in the following list. All items are standard SQL except
MYSQL_ERRNO, which is a MySQL extension. The definitions apply for conditions generated other than
by a signal (that is, by a SIGNAL or RESIGNAL statement). For nonsignal conditions, MySQL populates
only those condition items not described as always empty. The effects of signals on the condition area
are described later.

• CLASS_ORIGIN: A string containing the class of the RETURNED_SQLSTATE value. If the
RETURNED_SQLSTATE value begins with a class value defined in SQL standards document ISO
9075-2 (section 24.1, SQLSTATE), CLASS_ORIGIN is 'ISO 9075'. Otherwise, CLASS_ORIGIN is
'MySQL'.

• SUBCLASS_ORIGIN: A string containing the subclass of the RETURNED_SQLSTATE value. If
CLASS_ORIGIN is 'ISO 9075' or RETURNED_SQLSTATE ends with '000', SUBCLASS_ORIGIN is
'ISO 9075'. Otherwise, SUBCLASS_ORIGIN is 'MySQL'.

• RETURNED_SQLSTATE: A string that indicates the SQLSTATE value for the condition.

• MESSAGE_TEXT: A string that indicates the error message for the condition.

• MYSQL_ERRNO: An integer that indicates the MySQL error code for the condition.

• CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME: Strings that indicate the
catalog, schema, and name for a violated constraint. They are always empty.

• CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, COLUMN_NAME: Strings that indicate the catalog,
schema, table, and column related to the condition. They are always empty.

3015

Condition Handling

• CURSOR_NAME: A string that indicates the cursor name. This is always empty.

For the RETURNED_SQLSTATE, MESSAGE_TEXT, and MYSQL_ERRNO values for particular errors, see
Server Error Message Reference.

If a SIGNAL (or RESIGNAL) statement populates the diagnostics area, its SET clause can assign to any
condition information item except RETURNED_SQLSTATE any value that is legal for the item data type.
SIGNAL also sets the RETURNED_SQLSTATE value, but not directly in its SET clause. That value comes
from the SIGNAL statement SQLSTATE argument.

SIGNAL also sets statement information items. It sets NUMBER to 1. It sets ROW_COUNT to −1 for errors
and 0 otherwise.

How the Diagnostics Area is Cleared and Populated

Nondiagnostic SQL statements populate the diagnostics area automatically, and its contents can be set
explicitly with the SIGNAL and RESIGNAL statements. The diagnostics area can be examined with GET
DIAGNOSTICS to extract specific items, or with SHOW WARNINGS or SHOW ERRORS to see conditions
or errors.

SQL statements clear and set the diagnostics area as follows:

• When the server starts executing a statement after parsing it, it clears the diagnostics area
for nondiagnostic statements. Diagnostic statements do not clear the diagnostics area. These
statements are diagnostic:

• GET DIAGNOSTICS

• SHOW ERRORS

• SHOW WARNINGS

• If a statement raises a condition, the diagnostics area is cleared of conditions that belong to earlier
statements. The exception is that conditions raised by GET DIAGNOSTICS and RESIGNAL are
added to the diagnostics area without clearing it.

Thus, even a statement that does not normally clear the diagnostics area when it begins executing
clears it if the statement raises a condition.

The following example shows the effect of various statements on the diagnostics area, using SHOW
WARNINGS to display information about conditions stored there.

This DROP TABLE statement clears the diagnostics area and populates it when the condition occurs:

mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)

This SET statement generates an error, so it clears and populates the diagnostics area:

mysql> SET @x = @@x;
ERROR 1193 (HY000): Unknown system variable 'x'

mysql> SHOW WARNINGS;
+-------+------+-----------------------------+
| Level | Code | Message |

3016

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

Condition Handling

+-------+------+-----------------------------+
| Error | 1193 | Unknown system variable 'x' |
+-------+------+-----------------------------+
1 row in set (0.00 sec)

The previous SET statement produced a single condition, so 1 is the only valid condition number
for GET DIAGNOSTICS at this point. The following statement uses a condition number of 2, which
produces a warning that is added to the diagnostics area without clearing it:

mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------+
| Level | Code | Message |
+-------+------+------------------------------+
| Error | 1193 | Unknown system variable 'xx' |
| Error | 1753 | Invalid condition number |
+-------+------+------------------------------+
2 rows in set (0.00 sec)

Now there are two conditions in the diagnostics area, so the same GET DIAGNOSTICS statement
succeeds:

mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @p;
+--------------------------+
| @p |
+--------------------------+
| Invalid condition number |
+--------------------------+
1 row in set (0.01 sec)

How the Diagnostics Area Stack Works

When a push to the diagnostics area stack occurs, the first (current) diagnostics area becomes the
second (stacked) diagnostics area and a new current diagnostics area is created as a copy of it.
Diagnostics areas are pushed to and popped from the stack under the following circumstances:

• Execution of a stored program

A push occurs before the program executes and a pop occurs afterward. If the stored program ends
while handlers are executing, there can be more than one diagnostics area to pop; this occurs due to
an exception for which there are no appropriate handlers or due to RETURN in the handler.

Any warning or error conditions in the popped diagnostics areas then are added to the current
diagnostics area, except that, for triggers, only errors are added. When the stored program ends, the
caller sees these conditions in its current diagnostics area.

• Execution of a condition handler within a stored program

When a push occurs as a result of condition handler activation, the stacked diagnostics area is the
area that was current within the stored program prior to the push. The new now-current diagnostics
area is the handler's current diagnostics area. GET [CURRENT] DIAGNOSTICS and GET STACKED
DIAGNOSTICS can be used within the handler to access the contents of the current (handler) and
stacked (stored program) diagnostics areas. Initially, they return the same result, but statements
executing within the handler modify the current diagnostics area, clearing and setting its contents
according to the normal rules (see How the Diagnostics Area is Cleared and Populated). The
stacked diagnostics area cannot be modified by statements executing within the handler except
RESIGNAL.

If the handler executes successfully, the current (handler) diagnostics area is popped and the
stacked (stored program) diagnostics area again becomes the current diagnostics area. Conditions

3017

Restrictions on Condition Handling

added to the handler diagnostics area during handler execution are added to the current diagnostics
area.

• Execution of RESIGNAL

The RESIGNAL statement passes on the error condition information that is available during execution
of a condition handler within a compound statement inside a stored program. RESIGNAL may
change some or all information before passing it on, modifying the diagnostics stack as described in
Section 15.6.7.4, “RESIGNAL Statement”.

Diagnostics Area-Related System Variables

Certain system variables control or are related to some aspects of the diagnostics area:

• max_error_count controls the number of condition areas in the diagnostics area. If more
conditions than this occur, MySQL silently discards information for the excess conditions. (Conditions
added by RESIGNAL are always added, with older conditions being discarded as necessary to make
room.)

• warning_count indicates the number of conditions that occurred. This includes errors, warnings,
and notes. Normally, NUMBER and warning_count are the same. However, as the number of
conditions generated exceeds max_error_count, the value of warning_count continues to
rise whereas NUMBER remains capped at max_error_count because no additional conditions are
stored in the diagnostics area.

• error_count indicates the number of errors that occurred. This value includes “not found” and
exception conditions, but excludes warnings and notes. Like warning_count, its value can exceed
max_error_count.

• If the sql_notes system variable is set to 0, notes are not stored and do not increment
warning_count.

Example: If max_error_count is 10, the diagnostics area can contain a maximum of 10 condition
areas. Suppose that a statement raises 20 conditions, 12 of which are errors. In that case, the
diagnostics area contains the first 10 conditions, NUMBER is 10, warning_count is 20, and
error_count is 12.

Changes to the value of max_error_count have no effect until the next attempt to modify the
diagnostics area. If the diagnostics area contains 10 condition areas and max_error_count is set to
5, that has no immediate effect on the size or content of the diagnostics area.

15.6.7.8 Condition Handling and OUT or INOUT Parameters

If a stored procedure exits with an unhandled exception, modified values of OUT and INOUT
parameters are not propagated back to the caller.

If an exception is handled by a CONTINUE or EXIT handler that contains a RESIGNAL statement,
execution of RESIGNAL pops the Diagnostics Area stack, thus signalling the exception (that is, the
information that existed before entry into the handler). If the exception is an error, the values of OUT
and INOUT parameters are not propagated back to the caller.

15.6.8 Restrictions on Condition Handling

SIGNAL, RESIGNAL, and GET DIAGNOSTICS are not permissible as prepared statements. For
example, this statement is invalid:

PREPARE stmt1 FROM 'SIGNAL SQLSTATE "02000"';

SQLSTATE values in class '04' are not treated specially. They are handled the same as other
exceptions.

3018

Database Administration Statements

In standard SQL, the first condition relates to the SQLSTATE value returned for the previous SQL
statement. In MySQL, this is not guaranteed, so to get the main error, you cannot do this:

GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;

Instead, do this:

GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;

15.7 Database Administration Statements

15.7.1 Account Management Statements

MySQL account information is stored in the tables of the mysql system schema. This database and
the access control system are discussed extensively in Chapter 7, MySQL Server Administration,
which you should consult for additional details.

Important

Some MySQL releases introduce changes to the grant tables to add new
privileges or features. To make sure that you can take advantage of any new
capabilities, update your grant tables to the current structure whenever you
upgrade MySQL. See Chapter 3, Upgrading MySQL.

When the read_only system variable is enabled, account-management statements require the
CONNECTION_ADMIN privilege (or the deprecated SUPER privilege), in addition to any other required
privileges. This is because they modify tables in the mysql system schema.

Account management statements are atomic and crash safe. For more information, see Section 15.1.1,
“Atomic Data Definition Statement Support”.

15.7.1.1 ALTER USER Statement

ALTER USER [IF EXISTS]
 user [auth_option] [, user [auth_option]] ...
 [REQUIRE {NONE | tls_option [[AND] tls_option] ...}]
 [WITH resource_option [resource_option] ...]
 [password_option | lock_option] ...
 [COMMENT 'comment_string' | ATTRIBUTE 'json_object']

ALTER USER [IF EXISTS]
 USER() user_func_auth_option

ALTER USER [IF EXISTS]
 user [registration_option]

ALTER USER [IF EXISTS]
 USER() [registration_option]

ALTER USER [IF EXISTS]
 user DEFAULT ROLE
 {NONE | ALL | role [, role] ...}

user:
 (see Section 8.2.4, “Specifying Account Names”)

auth_option: {
 IDENTIFIED BY 'auth_string'
 [REPLACE 'current_auth_string']
 [RETAIN CURRENT PASSWORD]
 | IDENTIFIED BY RANDOM PASSWORD
 [REPLACE 'current_auth_string']
 [RETAIN CURRENT PASSWORD]
 | IDENTIFIED WITH auth_plugin

3019

Account Management Statements

 | IDENTIFIED WITH auth_plugin BY 'auth_string'
 [REPLACE 'current_auth_string']
 [RETAIN CURRENT PASSWORD]
 | IDENTIFIED WITH auth_plugin BY RANDOM PASSWORD
 [REPLACE 'current_auth_string']
 [RETAIN CURRENT PASSWORD]
 | IDENTIFIED WITH auth_plugin AS 'auth_string'
 | DISCARD OLD PASSWORD
 | ADD factor factor_auth_option [ADD factor factor_auth_option]
 | MODIFY factor factor_auth_option [MODIFY factor factor_auth_option]
 | DROP factor [DROP factor]
}

user_func_auth_option: {
 IDENTIFIED BY 'auth_string'
 [REPLACE 'current_auth_string']
 [RETAIN CURRENT PASSWORD]
 | DISCARD OLD PASSWORD
}

factor_auth_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED BY RANDOM PASSWORD
 | IDENTIFIED WITH auth_plugin BY 'auth_string'
 | IDENTIFIED WITH auth_plugin BY RANDOM PASSWORD
 | IDENTIFIED WITH auth_plugin AS 'auth_string'
}

registration_option: {
 factor INITIATE REGISTRATION
 | factor FINISH REGISTRATION SET CHALLENGE_RESPONSE AS 'auth_string'
 | factor UNREGISTER
}

factor: {2 | 3} FACTOR

tls_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count
 | MAX_USER_CONNECTIONS count
}

password_option: {
 PASSWORD EXPIRE [DEFAULT | NEVER | INTERVAL N DAY]
 | PASSWORD HISTORY {DEFAULT | N}
 | PASSWORD REUSE INTERVAL {DEFAULT | N DAY}
 | PASSWORD REQUIRE CURRENT [DEFAULT | OPTIONAL]
 | FAILED_LOGIN_ATTEMPTS N
 | PASSWORD_LOCK_TIME {N | UNBOUNDED}
}

lock_option: {
 ACCOUNT LOCK
 | ACCOUNT UNLOCK
}

The ALTER USER statement modifies MySQL accounts. It enables authentication, role, SSL/TLS,
resource-limit, password-management, comment, and attribute properties to be modified for existing
accounts. It can also be used to lock and unlock accounts.

In most cases, ALTER USER requires the global CREATE USER privilege, or the UPDATE privilege for
the mysql system schema. The exceptions are:

3020

Account Management Statements

• Any client who connects to the server using a nonanonymous account can change the password for
that account. (In particular, you can change your own password.) To see which account the server
authenticated you as, invoke the CURRENT_USER() function:

SELECT CURRENT_USER();

• For DEFAULT ROLE syntax, ALTER USER requires these privileges:

• Setting the default roles for another user requires the global CREATE USER privilege, or the
UPDATE privilege for the mysql.default_roles system table.

• Setting the default roles for yourself requires no special privileges, as long as the roles you want
as the default have been granted to you.

• Statements that modify secondary passwords require these privileges:

• The APPLICATION_PASSWORD_ADMIN privilege is required to use the RETAIN CURRENT
PASSWORD or DISCARD OLD PASSWORD clause for ALTER USER statements that apply to your
own account. The privilege is required to manipulate your own secondary password because most
users require only one password.

• If an account is to be permitted to manipulate secondary passwords for all accounts, it requires the
CREATE USER privilege rather than APPLICATION_PASSWORD_ADMIN.

When the read_only system variable is enabled, ALTER USER additionally requires the
CONNECTION_ADMIN privilege (or the deprecated SUPER privilege).

As of MySQL 8.0.27, these additional privilege considerations apply:

• The authentication_policy system variable places certain constraints on how the
authentication-related clauses of ALTER USER statements may be used; for details,
see the description of that variable. These constraints do not apply if you have the
AUTHENTICATION_POLICY_ADMIN privilege.

• To modify an account that uses passwordless authentication, you must have the
PASSWORDLESS_USER_ADMIN privilege.

By default, an error occurs if you try to modify a user that does not exist. If the IF EXISTS clause is
given, the statement produces a warning for each named user that does not exist, rather than an error.

Important

Under some circumstances, ALTER USER may be recorded in server logs or
on the client side in a history file such as ~/.mysql_history, which means
that cleartext passwords may be read by anyone having read access to that
information. For information about the conditions under which this occurs for the
server logs and how to control it, see Section 8.1.2.3, “Passwords and Logging”.
For similar information about client-side logging, see Section 6.5.1.3, “mysql
Client Logging”.

There are several aspects to the ALTER USER statement, described under the following topics:

• ALTER USER Overview

• ALTER USER Authentication Options

• ALTER USER Multifactor Authentication Options

• ALTER USER Registration Options

• ALTER USER Role Options

• ALTER USER SSL/TLS Options

3021

Account Management Statements

• ALTER USER Resource-Limit Options

• ALTER USER Password-Management Options

• ALTER USER Comment and Attribute Options

• ALTER USER Account-Locking Options

• ALTER USER Binary Logging

ALTER USER Overview

For each affected account, ALTER USER modifies the corresponding row in the mysql.user system
table to reflect the properties specified in the statement. Unspecified properties retain their current
values.

Each account name uses the format described in Section 8.2.4, “Specifying Account Names”.
The host name part of the account name, if omitted, defaults to '%'. It is also possible to specify
CURRENT_USER or CURRENT_USER() to refer to the account associated with the current session.

In one case only, the account may be specified with the USER() function:

ALTER USER USER() IDENTIFIED BY 'auth_string';

This syntax enables changing your own password without naming your account literally. (The syntax
also supports the REPLACE, RETAIN CURRENT PASSWORD, and DISCARD OLD PASSWORD clauses
described at ALTER USER Authentication Options.)

For ALTER USER syntax that permits an auth_option value to follow a user value, auth_option
indicates how the account authenticates by specifying an account authentication plugin, credentials
(for example, a password), or both. Each auth_option value applies only to the account named
immediately preceding it.

Following the user specifications, the statement may include options for SSL/TLS, resource-limit,
password-management, and locking properties. All such options are global to the statement and apply
to all accounts named in the statement.

Example: Change an account's password and expire it. As a result, the user must connect with the
named password and choose a new one at the next connection:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'new_password' PASSWORD EXPIRE;

Example: Modify an account to use the caching_sha2_password authentication plugin and the
given password. Require that a new password be chosen every 180 days, and enable failed-login
tracking, such that three consecutive incorrect passwords cause temporary account locking for two
days:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH caching_sha2_password BY 'new_password'
 PASSWORD EXPIRE INTERVAL 180 DAY
 FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 2;

Example: Lock or unlock an account:

ALTER USER 'jeffrey'@'localhost' ACCOUNT LOCK;
ALTER USER 'jeffrey'@'localhost' ACCOUNT UNLOCK;

Example: Require an account to connect using SSL and establish a limit of 20 connections per hour:

ALTER USER 'jeffrey'@'localhost'
 REQUIRE SSL WITH MAX_CONNECTIONS_PER_HOUR 20;

Example: Alter multiple accounts, specifying some per-account properties and some global properties:

3022

Account Management Statements

ALTER USER
 'jeffrey'@'localhost'
 IDENTIFIED BY 'jeffrey_new_password',
 'jeanne'@'localhost',
 'josh'@'localhost'
 IDENTIFIED BY 'josh_new_password'
 REPLACE 'josh_current_password'
 RETAIN CURRENT PASSWORD
 REQUIRE SSL WITH MAX_USER_CONNECTIONS 2
 PASSWORD HISTORY 5;

The IDENTIFIED BY value following jeffrey applies only to its immediately preceding account, so
it changes the password to 'jeffrey_new_password' only for jeffrey. For jeanne, there is no
per-account value (thus leaving the password unchanged). For josh, IDENTIFIED BY establishes
a new password ('josh_new_password'), REPLACE is specified to verify that the user issuing the
ALTER USER statement knows the current password ('josh_current_password'), and that current
password is also retained as the account secondary password. (As a result, josh can connect with
either the primary or secondary password.)

The remaining properties apply globally to all accounts named in the statement, so for both accounts:

• Connections are required to use SSL.

• The account can be used for a maximum of two simultaneous connections.

• Password changes cannot reuse any of the five most recent passwords.

Example: Discard the secondary password for josh, leaving the account with only its primary
password:

ALTER USER 'josh'@'localhost' DISCARD OLD PASSWORD;

In the absence of a particular type of option, the account remains unchanged in that respect. For
example, with no locking option, the locking state of the account is not changed.

ALTER USER Authentication Options

An account name may be followed by an auth_option authentication option that specifies the
account authentication plugin, credentials, or both. It may also include a password-verification clause
that specifies the account current password to be replaced, and clauses that manage whether an
account has a secondary password.

Note

Clauses for random password generation, password verification, and secondary
passwords apply only to accounts that use an authentication plugin that stores
credentials internally to MySQL. For accounts that use a plugin that performs
authentication against a credentials system that is external to MySQL, password
management must be handled externally against that system as well. For more
information about internal credentials storage, see Section 8.2.15, “Password
Management”.

• auth_plugin names an authentication plugin. The plugin name can be a quoted string literal or an
unquoted name. Plugin names are stored in the plugin column of the mysql.user system table.

For auth_option syntax that does not specify an authentication plugin, the server assigns the
default plugin, determined as described in The Default Authentication Plugin. For descriptions of
each plugin, see Section 8.4.1, “Authentication Plugins”.

• Credentials that are stored internally are stored in the mysql.user system table. An
'auth_string' value or RANDOM PASSWORD specifies account credentials, either as a cleartext
(unencrypted) string or hashed in the format expected by the authentication plugin associated with
the account, respectively:

3023

Account Management Statements

• For syntax that uses BY 'auth_string', the string is cleartext and is passed to the
authentication plugin for possible hashing. The result returned by the plugin is stored in the
mysql.user table. A plugin may use the value as specified, in which case no hashing occurs.

• For syntax that uses BY RANDOM PASSWORD, MySQL generates a random password and as
cleartext and passes it to the authentication plugin for possible hashing. The result returned by the
plugin is stored in the mysql.user table. A plugin may use the value as specified, in which case
no hashing occurs.

Randomly generated passwords are available as of MySQL 8.0.18 and have the characteristics
described in Random Password Generation.

• For syntax that uses AS 'auth_string', the string is assumed to be already in the format the
authentication plugin requires, and is stored as is in the mysql.user table. If a plugin requires a
hashed value, the value must be already hashed in a format appropriate for the plugin; otherwise,
the value cannot be used by the plugin and correct authentication of client connections does not
occur.

As of MySQL 8.0.17, a hashed string can be either a string literal or a hexadecimal value. The
latter corresponds to the type of value displayed by SHOW CREATE USER for password hashes
containing unprintable characters when the print_identified_with_as_hex system variable
is enabled.

• If an authentication plugin performs no hashing of the authentication string, the BY
'auth_string' and AS 'auth_string' clauses have the same effect: The authentication
string is stored as is in the mysql.user system table.

• The REPLACE 'current_auth_string' clause performs password verification and is available
as of MySQL 8.0.13. If given:

• REPLACE specifies the account current password to be replaced, as a cleartext (unencrypted)
string.

• The clause must be given if password changes for the account are required to specify the current
password, as verification that the user attempting to make the change actually knows the current
password.

• The clause is optional if password changes for the account may but need not specify the current
password.

• The statement fails if the clause is given but does not match the current password, even if the
clause is optional.

• REPLACE can be specified only when changing the account password for the current user.

For more information about password verification by specifying the current password, see
Section 8.2.15, “Password Management”.

• The RETAIN CURRENT PASSWORD and DISCARD OLD PASSWORD clauses implement dual-
password capability and are available as of MySQL 8.0.14. Both are optional, but if given, have the
following effects:

• RETAIN CURRENT PASSWORD retains an account current password as its secondary password,
replacing any existing secondary password. The new password becomes the primary password,
but clients can use the account to connect to the server using either the primary or secondary
password. (Exception: If the new password specified by the ALTER USER statement is empty, the
secondary password becomes empty as well, even if RETAIN CURRENT PASSWORD is given.)

• If you specify RETAIN CURRENT PASSWORD for an account that has an empty primary password,
the statement fails.

3024

Account Management Statements

• If an account has a secondary password and you change its primary password without specifying
RETAIN CURRENT PASSWORD, the secondary password remains unchanged.

• If you change the authentication plugin assigned to the account, the secondary password
is discarded. If you change the authentication plugin and also specify RETAIN CURRENT
PASSWORD, the statement fails.

• DISCARD OLD PASSWORD discards the secondary password, if one exists. The account retains
only its primary password, and clients can use the account to connect to the server only with the
primary password.

For more information about use of dual passwords, see Section 8.2.15, “Password Management”.

ALTER USER permits these auth_option syntaxes:

• IDENTIFIED BY 'auth_string' [REPLACE 'current_auth_string'] [RETAIN
CURRENT PASSWORD]

Sets the account authentication plugin to the default plugin, passes the cleartext 'auth_string'
value to the plugin for possible hashing, and stores the result in the account row in the mysql.user
system table.

The REPLACE clause, if given, specifies the account current password, as described previously in
this section.

The RETAIN CURRENT PASSWORD clause, if given, causes the account current password to be
retained as its secondary password, as described previously in this section.

• IDENTIFIED BY RANDOM PASSWORD [REPLACE 'current_auth_string'] [RETAIN
CURRENT PASSWORD]

Sets the account authentication plugin to the default plugin, generates a random password, passes
the cleartext password value to the plugin for possible hashing, and stores the result in the account
row in the mysql.user system table. The statement also returns the cleartext password in a result
set to make it available to the user or application executing the statement. For details about the result
set and characteristics of randomly generated passwords, see Random Password Generation.

The REPLACE clause, if given, specifies the account current password, as described previously in
this section.

The RETAIN CURRENT PASSWORD clause, if given, causes the account current password to be
retained as its secondary password, as described previously in this section.

• IDENTIFIED WITH auth_plugin

Sets the account authentication plugin to auth_plugin, clears the credentials to the empty string
(the credentials are associated with the old authentication plugin, not the new one), and stores the
result in the account row in the mysql.user system table.

In addition, the password is marked expired. The user must choose a new one when next
connecting.

• IDENTIFIED WITH auth_plugin BY 'auth_string' [REPLACE
'current_auth_string'] [RETAIN CURRENT PASSWORD]

Sets the account authentication plugin to auth_plugin, passes the cleartext 'auth_string'
value to the plugin for possible hashing, and stores the result in the account row in the mysql.user
system table.

The REPLACE clause, if given, specifies the account current password, as described previously in
this section.

3025

Account Management Statements

The RETAIN CURRENT PASSWORD clause, if given, causes the account current password to be
retained as its secondary password, as described previously in this section.

• IDENTIFIED WITH auth_plugin BY RANDOM PASSWORD [REPLACE
'current_auth_string'] [RETAIN CURRENT PASSWORD]

Sets the account authentication plugin to auth_plugin, generates a random password, passes the
cleartext password value to the plugin for possible hashing, and stores the result in the account row
in the mysql.user system table. The statement also returns the cleartext password in a result set to
make it available to the user or application executing the statement. For details about the result set
and characteristics of randomly generated passwords, see Random Password Generation.

The REPLACE clause, if given, specifies the account current password, as described previously in
this section.

The RETAIN CURRENT PASSWORD clause, if given, causes the account current password to be
retained as its secondary password, as described previously in this section.

• IDENTIFIED WITH auth_plugin AS 'auth_string'

Sets the account authentication plugin to auth_plugin and stores the 'auth_string' value as is
in the mysql.user account row. If the plugin requires a hashed string, the string is assumed to be
already hashed in the format the plugin requires.

• DISCARD OLD PASSWORD

Discards the account secondary password, if there is one, as described previously in this section.

Example: Specify the password as cleartext; the default plugin is used:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'password';

Example: Specify the authentication plugin, along with a cleartext password value:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH mysql_native_password
 BY 'password';

Example: Like the preceding example, but in addition, specify the current password as a cleartext value
to satisfy any account requirement that the user making the change knows that password:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH mysql_native_password
 BY 'password'
 REPLACE 'current_password';

The preceding statement fails unless the current user is jeffrey because REPLACE is permitted only
for changes to the current user's password.

Example: Establish a new primary password and retain the existing password as the secondary
password:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'new_password'
 RETAIN CURRENT PASSWORD;

Example: Discard the secondary password, leaving the account with only its primary password:

ALTER USER 'jeffery'@'localhost' DISCARD OLD PASSWORD;

Example: Specify the authentication plugin, along with a hashed password value:

ALTER USER 'jeffrey'@'localhost'

3026

Account Management Statements

 IDENTIFIED WITH mysql_native_password
 AS '*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4';

For additional information about setting passwords and authentication plugins, see Section 8.2.14,
“Assigning Account Passwords”, and Section 8.2.17, “Pluggable Authentication”.

ALTER USER Multifactor Authentication Options

As of MySQL 8.0.27, ALTER USER has ADD, MODIFY, and DROP clauses that enable authentication
factors to be added, modified, or dropped. In each case, the clause specifies an operation to perform
on one authentication factor, and optionally an operation on another authentication factor. For each
operation, the factor item specifies the FACTOR keyword preceded by the number 2 or 3 to indicate
whether the operation applies to the second or third authentication factor. (1 is not permitted in
this context. To act on the first authentication factor, use the syntax described in ALTER USER
Authentication Options.)

ALTER USER multifactor authentication clause constraints are defined by the
authentication_policy system variable. For example, the authentication_policy setting
controls the number of authentication factors that accounts may have, and for each factor, which
authentication methods are permitted. See Configuring the Multifactor Authentication Policy.

When ALTER USER adds, modifies, or drops second and third factors in a single statement, operations
are executed sequentially, but if any operation in the sequence fails the entire ALTER USER statement
fails.

For ADD, each named factor must not already exist or it cannot be added. For MODIFY and DROP, each
named factor must exist to be modified or dropped. If a second and third factor are defined, dropping
the second factor causes the third factor to take its place as the second factor.

This statement drops authentication factors 2 and 3, which has the effect of converting the account
from 3FA to 1FA:

ALTER USER 'user' DROP 2 FACTOR 3 FACTOR;

For additional ADD, MODIFY, and DROP examples, see Getting Started with Multifactor Authentication.

For information about factor-specific rules that determine the default authentication plugin for
authentication clauses that do not name a plugin, see The Default Authentication Plugin.

ALTER USER Registration Options

As of MySQL 8.0.27, ALTER USER has clauses that enable FIDO devices to be registered and
unregistered. For more information, see Using FIDO Authentication, FIDO Device Unregistration, and
the mysql client --fido-register-factor option description.

The mysql client --fido-register-factor option, used for FIDO device registration, causes the
mysql client to generate and execute INITIATE REGISTRATION and FINISH REGISTRATION
statements. These statements are not intended for manual execution.

ALTER USER Role Options

ALTER USER ... DEFAULT ROLE defines which roles become active when the user connects to
the server and authenticates, or when the user executes the SET ROLE DEFAULT statement during a
session.

ALTER USER ... DEFAULT ROLE is alternative syntax for SET DEFAULT ROLE (see
Section 15.7.1.9, “SET DEFAULT ROLE Statement”). However, ALTER USER can set the default for
only a single user, whereas SET DEFAULT ROLE can set the default for multiple users. On the other
hand, you can specify CURRENT_USER as the user name for the ALTER USER statement, whereas you
cannot for SET DEFAULT ROLE.

3027

Account Management Statements

Each user account name uses the format described previously.

Each role name uses the format described in Section 8.2.5, “Specifying Role Names”. For example:

ALTER USER 'joe'@'10.0.0.1' DEFAULT ROLE administrator, developer;

The host name part of the role name, if omitted, defaults to '%'.

The clause following the DEFAULT ROLE keywords permits these values:

• NONE: Set the default to NONE (no roles).

• ALL: Set the default to all roles granted to the account.

• role [, role] ...: Set the default to the named roles, which must exist and be granted to the
account at the time ALTER USER ... DEFAULT ROLE is executed.

ALTER USER SSL/TLS Options

MySQL can check X.509 certificate attributes in addition to the usual authentication that is based on
the user name and credentials. For background information on the use of SSL/TLS with MySQL, see
Section 8.3, “Using Encrypted Connections”.

To specify SSL/TLS-related options for a MySQL account, use a REQUIRE clause that specifies one or
more tls_option values.

Order of REQUIRE options does not matter, but no option can be specified twice. The AND keyword is
optional between REQUIRE options.

ALTER USER permits these tls_option values:

• NONE

Indicates that all accounts named by the statement have no SSL or X.509 requirements.
Unencrypted connections are permitted if the user name and password are valid. Encrypted
connections can be used, at the client's option, if the client has the proper certificate and key files.

ALTER USER 'jeffrey'@'localhost' REQUIRE NONE;

Clients attempt to establish a secure connection by default. For clients that have REQUIRE NONE,
the connection attempt falls back to an unencrypted connection if a secure connection cannot
be established. To require an encrypted connection, a client need specify only the --ssl-
mode=REQUIRED option; the connection attempt fails if a secure connection cannot be established.

• SSL

Tells the server to permit only encrypted connections for all accounts named by the statement.

ALTER USER 'jeffrey'@'localhost' REQUIRE SSL;

Clients attempt to establish a secure connection by default. For accounts that have REQUIRE SSL,
the connection attempt fails if a secure connection cannot be established.

• X509

For all accounts named by the statement, requires that clients present a valid certificate, but the
exact certificate, issuer, and subject do not matter. The only requirement is that it should be possible
to verify its signature with one of the CA certificates. Use of X.509 certificates always implies
encryption, so the SSL option is unnecessary in this case.

ALTER USER 'jeffrey'@'localhost' REQUIRE X509;

For accounts with REQUIRE X509, clients must specify the --ssl-key and --ssl-cert options
to connect. (It is recommended but not required that --ssl-ca also be specified so that the public

3028

Account Management Statements

certificate provided by the server can be verified.) This is true for ISSUER and SUBJECT as well
because those REQUIRE options imply the requirements of X509.

• ISSUER 'issuer'

For all accounts named by the statement, requires that clients present a valid X.509 certificate issued
by CA 'issuer'. If a client presents a certificate that is valid but has a different issuer, the server
rejects the connection. Use of X.509 certificates always implies encryption, so the SSL option is
unnecessary in this case.

ALTER USER 'jeffrey'@'localhost'
 REQUIRE ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com';

Because ISSUER implies the requirements of X509, clients must specify the --ssl-key and --
ssl-cert options to connect. (It is recommended but not required that --ssl-ca also be specified
so that the public certificate provided by the server can be verified.)

• SUBJECT 'subject'

For all accounts named by the statement, requires that clients present a valid X.509 certificate
containing the subject subject. If a client presents a certificate that is valid but has a different
subject, the server rejects the connection. Use of X.509 certificates always implies encryption, so the
SSL option is unnecessary in this case.

ALTER USER 'jeffrey'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com';

MySQL does a simple string comparison of the 'subject' value to the value in the certificate, so
lettercase and component ordering must be given exactly as present in the certificate.

Because SUBJECT implies the requirements of X509, clients must specify the --ssl-key and --
ssl-cert options to connect. (It is recommended but not required that --ssl-ca also be specified
so that the public certificate provided by the server can be verified.)

• CIPHER 'cipher'

For all accounts named by the statement, requires a specific cipher method for encrypting
connections. This option is needed to ensure that ciphers and key lengths of sufficient strength are
used. Encryption can be weak if old algorithms using short encryption keys are used.

ALTER USER 'jeffrey'@'localhost'
 REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause:

ALTER USER 'jeffrey'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com'
 AND ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com'
 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

ALTER USER Resource-Limit Options

It is possible to place limits on use of server resources by an account, as discussed in Section 8.2.21,
“Setting Account Resource Limits”. To do so, use a WITH clause that specifies one or more
resource_option values.

Order of WITH options does not matter, except that if a given resource limit is specified multiple times,
the last instance takes precedence.

3029

Account Management Statements

ALTER USER permits these resource_option values:

• MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count,
MAX_CONNECTIONS_PER_HOUR count

For all accounts named by the statement, these options restrict how many queries, updates, and
connections to the server are permitted to each account during any given one-hour period. If count
is 0 (the default), this means that there is no limitation for the account.

• MAX_USER_CONNECTIONS count

For all accounts named by the statement, restricts the maximum number of simultaneous
connections to the server by each account. A nonzero count specifies the limit for the account
explicitly. If count is 0 (the default), the server determines the number of simultaneous connections
for the account from the global value of the max_user_connections system variable. If
max_user_connections is also zero, there is no limit for the account.

Example:

ALTER USER 'jeffrey'@'localhost'
 WITH MAX_QUERIES_PER_HOUR 500 MAX_UPDATES_PER_HOUR 100;

ALTER USER Password-Management Options

ALTER USER supports several password_option values for password management:

• Password expiration options: You can expire an account password manually and establish its
password expiration policy. Policy options do not expire the password. Instead, they determine how
the server applies automatic expiration to the account based on password age, which is assessed
from the date and time of the most recent account password change.

• Password reuse options: You can restrict password reuse based on number of password changes,
time elapsed, or both.

• Password verification-required options: You can indicate whether attempts to change an account
password must specify the current password, as verification that the user attempting to make the
change actually knows the current password.

• Incorrect-password failed-login tracking options: You can cause the server to track failed login
attempts and temporarily lock accounts for which too many consecutive incorrect passwords are
given. The required number of failures and the lock time are configurable.

This section describes the syntax for password-management options. For information about
establishing policy for password management, see Section 8.2.15, “Password Management”.

If multiple password-management options of a given type are specified, the last one takes precedence.
For example, PASSWORD EXPIRE DEFAULT PASSWORD EXPIRE NEVER is the same as PASSWORD
EXPIRE NEVER.

Note

Except for the options that pertain to failed-login tracking, password-
management options apply only to accounts that use an authentication plugin
that stores credentials internally to MySQL. For accounts that use a plugin that
performs authentication against a credentials system that is external to MySQL,
password management must be handled externally against that system as well.
For more information about internal credentials storage, see Section 8.2.15,
“Password Management”.

A client has an expired password if the account password was expired manually or the password
age is considered greater than its permitted lifetime per the automatic expiration policy. In this case,
the server either disconnects the client or restricts the operations permitted to it (see Section 8.2.16,

3030

Account Management Statements

“Server Handling of Expired Passwords”). Operations performed by a restricted client result in an error
until the user establishes a new account password.

Note

Although it is possible to “reset” an expired password by setting it to its
current value, it is preferable, as a matter of good policy, to choose a different
password. DBAs can enforce non-reuse by establishing an appropriate
password-reuse policy. See Password Reuse Policy.

ALTER USER permits these password_option values for controlling password expiration:

• PASSWORD EXPIRE

Immediately marks the password expired for all accounts named by the statement.

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

• PASSWORD EXPIRE DEFAULT

Sets all accounts named by the statement so that the global expiration policy applies, as specified by
the default_password_lifetime system variable.

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

• PASSWORD EXPIRE NEVER

This expiration option overrides the global policy for all accounts named by the statement. For each,
it disables password expiration so that the password never expires.

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

• PASSWORD EXPIRE INTERVAL N DAY

This expiration option overrides the global policy for all accounts named by the statement. For each,
it sets the password lifetime to N days. The following statement requires the password to be changed
every 180 days:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 180 DAY;

ALTER USER permits these password_option values for controlling reuse of previous passwords
based on required minimum number of password changes:

• PASSWORD HISTORY DEFAULT

Sets all accounts named by the statement so that the global policy about password history
length applies, to prohibit reuse of passwords before the number of changes specified by the
password_history system variable.

ALTER USER 'jeffrey'@'localhost' PASSWORD HISTORY DEFAULT;

• PASSWORD HISTORY N

This history-length option overrides the global policy for all accounts named by the statement. For
each, it sets the password history length to N passwords, to prohibit reusing any of the N most
recently chosen passwords. The following statement prohibits reuse of any of the previous 6
passwords:

ALTER USER 'jeffrey'@'localhost' PASSWORD HISTORY 6;

ALTER USER permits these password_option values for controlling reuse of previous passwords
based on time elapsed:

• PASSWORD REUSE INTERVAL DEFAULT

3031

Account Management Statements

Sets all statements named by the account so that the global policy about time elapsed
applies, to prohibit reuse of passwords newer than the number of days specified by the
password_reuse_interval system variable.

ALTER USER 'jeffrey'@'localhost' PASSWORD REUSE INTERVAL DEFAULT;

• PASSWORD REUSE INTERVAL N DAY

This time-elapsed option overrides the global policy for all accounts named by the statement. For
each, it sets the password reuse interval to N days, to prohibit reuse of passwords newer than that
many days. The following statement prohibits password reuse for 360 days:

ALTER USER 'jeffrey'@'localhost' PASSWORD REUSE INTERVAL 360 DAY;

ALTER USER permits these password_option values for controlling whether attempts to change an
account password must specify the current password, as verification that the user attempting to make
the change actually knows the current password:

• PASSWORD REQUIRE CURRENT

This verification option overrides the global policy for all accounts named by the statement. For each,
it requires that password changes specify the current password.

ALTER USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT;

• PASSWORD REQUIRE CURRENT OPTIONAL

This verification option overrides the global policy for all accounts named by the statement. For each,
it does not require that password changes specify the current password. (The current password may
but need not be given.)

ALTER USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT OPTIONAL;

• PASSWORD REQUIRE CURRENT DEFAULT

Sets all statements named by the account so that the global policy about password verification
applies, as specified by the password_require_current system variable.

ALTER USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT DEFAULT;

As of MySQL 8.0.19, ALTER USER permits these password_option values for controlling failed-login
tracking:

• FAILED_LOGIN_ATTEMPTS N

Whether to track account login attempts that specify an incorrect password. N must be a number
from 0 to 32767. A value of 0 disables failed-login tracking. Values greater than 0 indicate how many
consecutive password failures cause temporary account locking (if PASSWORD_LOCK_TIME is also
nonzero).

• PASSWORD_LOCK_TIME {N | UNBOUNDED}

How long to lock the account after too many consecutive login attempts provide an incorrect
password. N must be a number from 0 to 32767, or UNBOUNDED. A value of 0 disables temporary
account locking. Values greater than 0 indicate how long to lock the account in days. A value of
UNBOUNDED causes the account locking duration to be unbounded; once locked, the account
remains in a locked state until unlocked. For information about the conditions under which unlocking
occurs, see Failed-Login Tracking and Temporary Account Locking.

For failed-login tracking and temporary locking to occur, an account's FAILED_LOGIN_ATTEMPTS and
PASSWORD_LOCK_TIME options both must be nonzero. The following statement modifies an account
such that it remains locked for two days after four consecutive password failures:

3032

Account Management Statements

ALTER USER 'jeffrey'@'localhost'
 FAILED_LOGIN_ATTEMPTS 4 PASSWORD_LOCK_TIME 2;

ALTER USER Comment and Attribute Options

MySQL 8.0.21 and higher supports user comments and user attributes, as described in
Section 15.7.1.3, “CREATE USER Statement”. These can be modified employing ALTER USER by
means of the COMMENT and ATTRIBUTE options, respectively. You cannot specify both options in the
same ALTER USER statement; attempting to do so results in a syntax error.

The user comment and user attribute are stored in the Information Schema USER_ATTRIBUTES table
as a JSON object; the user comment is stored as the value for a comment key in the ATTRIBUTE
column of this table, as shown later in this discussion. The COMMENT text can be any arbitrary
quoted text, and replaces any existing user comment. The ATTRIBUTE value must be the valid
string representation of a JSON object. This is merged with any existing user attribute as if the
JSON_MERGE_PATCH() function had been used on the existing user attribute and the new one; for any
keys that are re-used, the new value overwrites the old one, as shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER='bill' AND HOST='localhost';
+------+-----------+----------------+
| USER | HOST | ATTRIBUTE |
+------+-----------+----------------+
| bill | localhost | {"foo": "bar"} |
+------+-----------+----------------+
1 row in set (0.11 sec)

mysql> ALTER USER 'bill'@'localhost' ATTRIBUTE '{"baz": "faz", "foo": "moo"}';
Query OK, 0 rows affected (0.22 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER='bill' AND HOST='localhost';
+------+-----------+------------------------------+
| USER | HOST | ATTRIBUTE |
+------+-----------+------------------------------+
| bill | localhost | {"baz": "faz", "foo": "moo"} |
+------+-----------+------------------------------+
1 row in set (0.00 sec)

To remove a key and its value from the user attribute, set the key to JSON null (must be lowercase
and unquoted), like this:

mysql> ALTER USER 'bill'@'localhost' ATTRIBUTE '{"foo": null}';
Query OK, 0 rows affected (0.08 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER='bill' AND HOST='localhost';
+------+-----------+----------------+
| USER | HOST | ATTRIBUTE |
+------+-----------+----------------+
| bill | localhost | {"baz": "faz"} |
+------+-----------+----------------+
1 row in set (0.00 sec)

To set an existing user comment to an empty string, use ALTER USER ... COMMENT ''. This
leaves an empty comment value in the USER_ATTRIBUTES table; to remove the user comment
completely, use ALTER USER ... ATTRIBUTE ... with the value for the column key set to JSON
null (unquoted, in lower case). This is illustrated by the following sequence of SQL statements:

mysql> ALTER USER 'bill'@'localhost' COMMENT 'Something about Bill';
Query OK, 0 rows affected (0.06 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER='bill' AND HOST='localhost';
+------+-----------+---+
| USER | HOST | ATTRIBUTE |
+------+-----------+---+
| bill | localhost | {"baz": "faz", "comment": "Something about Bill"} |

3033

Account Management Statements

+------+-----------+---+
1 row in set (0.00 sec)

mysql> ALTER USER 'bill'@'localhost' COMMENT '';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER='bill' AND HOST='localhost';
+------+-----------+-------------------------------+
| USER | HOST | ATTRIBUTE |
+------+-----------+-------------------------------+
| bill | localhost | {"baz": "faz", "comment": ""} |
+------+-----------+-------------------------------+
1 row in set (0.00 sec)

mysql> ALTER USER 'bill'@'localhost' ATTRIBUTE '{"comment": null}';
Query OK, 0 rows affected (0.07 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER='bill' AND HOST='localhost';
+------+-----------+----------------+
| USER | HOST | ATTRIBUTE |
+------+-----------+----------------+
| bill | localhost | {"baz": "faz"} |
+------+-----------+----------------+
1 row in set (0.00 sec)

ALTER USER Account-Locking Options

MySQL supports account locking and unlocking using the ACCOUNT LOCK and ACCOUNT UNLOCK
options, which specify the locking state for an account. For additional discussion, see Section 8.2.20,
“Account Locking”.

If multiple account-locking options are specified, the last one takes precedence.

ALTER USER ... ACCOUNT UNLOCK unlocks any account named by the statement that is
temporarily locked due to too many failed logins. See Section 8.2.15, “Password Management”.

ALTER USER Binary Logging

ALTER USER is written to the binary log if it succeeds, but not if it fails; in that case, rollback occurs
and no changes are made. A statement written to the binary log includes all named users. If the IF
EXISTS clause is given, this includes even users that do not exist and were not altered.

If the original statement changes the credentials for a user, the statement written to the binary log
specifies the applicable authentication plugin for that user, determined as follows:

• The plugin named in the original statement, if one was specified.

• Otherwise, the plugin associated with the user account if the user exists, or the default authentication
plugin if the user does not exist. (If the statement written to the binary log must specify a particular
authentication plugin for a user, include it in the original statement.)

If the server adds the default authentication plugin for any users in the statement written to the binary
log, it writes a warning to the error log naming those users.

If the original statement specifies the FAILED_LOGIN_ATTEMPTS or PASSWORD_LOCK_TIME option,
the statement written to the binary log includes the option.

ALTER USER statements with clauses that support multifactor authentication (MFA) are written to
the binary log with the exception of ALTER USER user factor INITIATE REGISTRATION
statements.

• ALTER USER user factor FINISH REGISTRATION SET CHALLENGE_RESPONSE AS
'auth_string' statements are written to the binary log as ALTER USER user MODIFY factor
IDENTIFIED WITH authentication_fido AS fido_hash_string;

3034

Account Management Statements

• In a replication context, the replication user requires PASSWORDLESS_USER_ADMIN privilege
to execute ALTER USER ... MODIFY operations on accounts configured for passwordless
authentication using the authentication_fido plugin.

15.7.1.2 CREATE ROLE Statement

CREATE ROLE [IF NOT EXISTS] role [, role] ...

CREATE ROLE creates one or more roles, which are named collections of privileges. To use this
statement, you must have the global CREATE ROLE or CREATE USER privilege. When the read_only
system variable is enabled, CREATE ROLE additionally requires the CONNECTION_ADMIN privilege (or
the deprecated SUPER privilege).

A role when created is locked, has no password, and is assigned the default authentication plugin.
(These role attributes can be changed later with the ALTER USER statement, by users who have the
global CREATE USER privilege.)

CREATE ROLE either succeeds for all named roles or rolls back and has no effect if any error occurs.
By default, an error occurs if you try to create a role that already exists. If the IF NOT EXISTS clause
is given, the statement produces a warning for each named role that already exists, rather than an
error.

The statement is written to the binary log if it succeeds, but not if it fails; in that case, rollback occurs
and no changes are made. A statement written to the binary log includes all named roles. If the IF
NOT EXISTS clause is given, this includes even roles that already exist and were not created.

Each role name uses the format described in Section 8.2.5, “Specifying Role Names”. For example:

CREATE ROLE 'admin', 'developer';
CREATE ROLE 'webapp'@'localhost';

The host name part of the role name, if omitted, defaults to '%'.

For role usage examples, see Section 8.2.10, “Using Roles”.

15.7.1.3 CREATE USER Statement

CREATE USER [IF NOT EXISTS]
 user [auth_option] [, user [auth_option]] ...
 DEFAULT ROLE role [, role] ...
 [REQUIRE {NONE | tls_option [[AND] tls_option] ...}]
 [WITH resource_option [resource_option] ...]
 [password_option | lock_option] ...
 [COMMENT 'comment_string' | ATTRIBUTE 'json_object']

user:
 (see Section 8.2.4, “Specifying Account Names”)

auth_option: {
 IDENTIFIED BY 'auth_string' [AND 2fa_auth_option]
 | IDENTIFIED BY RANDOM PASSWORD [AND 2fa_auth_option]
 | IDENTIFIED WITH auth_plugin [AND 2fa_auth_option]
 | IDENTIFIED WITH auth_plugin BY 'auth_string' [AND 2fa_auth_option]
 | IDENTIFIED WITH auth_plugin BY RANDOM PASSWORD [AND 2fa_auth_option]
 | IDENTIFIED WITH auth_plugin AS 'auth_string' [AND 2fa_auth_option]
 | IDENTIFIED WITH auth_plugin [initial_auth_option]
}

2fa_auth_option: {
 IDENTIFIED BY 'auth_string' [AND 3fa_auth_option]
 | IDENTIFIED BY RANDOM PASSWORD [AND 3fa_auth_option]
 | IDENTIFIED WITH auth_plugin [AND 3fa_auth_option]
 | IDENTIFIED WITH auth_plugin BY 'auth_string' [AND 3fa_auth_option]
 | IDENTIFIED WITH auth_plugin BY RANDOM PASSWORD [AND 3fa_auth_option]
 | IDENTIFIED WITH auth_plugin AS 'auth_string' [AND 3fa_auth_option]

3035

Account Management Statements

}

3fa_auth_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED BY RANDOM PASSWORD
 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin BY 'auth_string'
 | IDENTIFIED WITH auth_plugin BY RANDOM PASSWORD
 | IDENTIFIED WITH auth_plugin AS 'auth_string'
}

initial_auth_option: {
 INITIAL AUTHENTICATION IDENTIFIED BY {RANDOM PASSWORD | 'auth_string'}
 | INITIAL AUTHENTICATION IDENTIFIED WITH auth_plugin AS 'auth_string'
}

tls_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count
 | MAX_USER_CONNECTIONS count
}

password_option: {
 PASSWORD EXPIRE [DEFAULT | NEVER | INTERVAL N DAY]
 | PASSWORD HISTORY {DEFAULT | N}
 | PASSWORD REUSE INTERVAL {DEFAULT | N DAY}
 | PASSWORD REQUIRE CURRENT [DEFAULT | OPTIONAL]
 | FAILED_LOGIN_ATTEMPTS N
 | PASSWORD_LOCK_TIME {N | UNBOUNDED}
}

lock_option: {
 ACCOUNT LOCK
 | ACCOUNT UNLOCK
}

The CREATE USER statement creates new MySQL accounts. It enables authentication, role, SSL/TLS,
resource-limit, password-management, comment, and attribute properties to be established for new
accounts. It also controls whether accounts are initially locked or unlocked.

To use CREATE USER, you must have the global CREATE USER privilege, or the INSERT privilege
for the mysql system schema. When the read_only system variable is enabled, CREATE USER
additionally requires the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege).

As of MySQL 8.0.27, these additional privilege considerations apply:

• The authentication_policy system variable places certain constraints on how the
authentication-related clauses of CREATE USER statements may be used; for details,
see the description of that variable. These constraints do not apply if you have the
AUTHENTICATION_POLICY_ADMIN privilege.

• To create an account that uses passwordless authentication, you must have the
PASSWORDLESS_USER_ADMIN privilege.

As of MySQL 8.0.22, CREATE USER fails with an error if any account to be created is named as the
DEFINER attribute for any stored object. (That is, the statement fails if creating an account would
cause the account to adopt a currently orphaned stored object.) To perform the operation anyway, you
must have the SET_USER_ID privilege; in this case, the statement succeeds with a warning rather
than failing with an error. Without SET_USER_ID, to perform the user-creation operation, drop the

3036

Account Management Statements

orphan objects, create the account and grant its privileges, and then re-create the dropped objects. For
additional information, including how to identify which objects name a given account as the DEFINER
attribute, see Orphan Stored Objects.

CREATE USER either succeeds for all named users or rolls back and has no effect if any error occurs.
By default, an error occurs if you try to create a user that already exists. If the IF NOT EXISTS clause
is given, the statement produces a warning for each named user that already exists, rather than an
error.

Important

Under some circumstances, CREATE USER may be recorded in server logs or
on the client side in a history file such as ~/.mysql_history, which means
that cleartext passwords may be read by anyone having read access to that
information. For information about the conditions under which this occurs for the
server logs and how to control it, see Section 8.1.2.3, “Passwords and Logging”.
For similar information about client-side logging, see Section 6.5.1.3, “mysql
Client Logging”.

There are several aspects to the CREATE USER statement, described under the following topics:

• CREATE USER Overview

• CREATE USER Authentication Options

• CREATE USER Multifactor Authentication Options

• CREATE USER Role Options

• CREATE USER SSL/TLS Options

• CREATE USER Resource-Limit Options

• CREATE USER Password-Management Options

• CREATE USER Comment and Attribute Options

• CREATE USER Account-Locking Options

• CREATE USER Binary Logging

CREATE USER Overview

For each account, CREATE USER creates a new row in the mysql.user system table. The account
row reflects the properties specified in the statement. Unspecified properties are set to their default
values:

• Authentication: The default authentication plugin (determined as described in The Default
Authentication Plugin), and empty credentials

• Default role: NONE

• SSL/TLS: NONE

• Resource limits: Unlimited

• Password management: PASSWORD EXPIRE DEFAULT PASSWORD HISTORY DEFAULT
PASSWORD REUSE INTERVAL DEFAULT PASSWORD REQUIRE CURRENT DEFAULT; failed-login
tracking and temporary account locking are disabled

• Account locking: ACCOUNT UNLOCK

3037

Account Management Statements

An account when first created has no privileges and the default role NONE. To assign privileges or roles
to this account, use one or more GRANT statements.

Each account name uses the format described in Section 8.2.4, “Specifying Account Names”. For
example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

The host name part of the account name, if omitted, defaults to '%'. You should be aware
that, while MySQL 8.0 treats grants made to such a user as though they had been granted to
'user'@'localhost', this behavior is deprecated as of MySQL 8.0.35, and thus subject to removal
in a future version of MySQL.

Each user value naming an account may be followed by an optional auth_option value that
indicates how the account authenticates. These values enable account authentication plugins and
credentials (for example, a password) to be specified. Each auth_option value applies only to the
account named immediately preceding it.

Following the user specifications, the statement may include options for SSL/TLS, resource-limit,
password-management, and locking properties. All such options are global to the statement and apply
to all accounts named in the statement.

Example: Create an account that uses the default authentication plugin and the given password. Mark
the password expired so that the user must choose a new one at the first connection to the server:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'new_password' PASSWORD EXPIRE;

Example: Create an account that uses the caching_sha2_password authentication plugin and the
given password. Require that a new password be chosen every 180 days, and enable failed-login
tracking, such that three consecutive incorrect passwords cause temporary account locking for two
days:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED WITH caching_sha2_password BY 'new_password'
 PASSWORD EXPIRE INTERVAL 180 DAY
 FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 2;

Example: Create multiple accounts, specifying some per-account properties and some global
properties:

CREATE USER
 'jeffrey'@'localhost' IDENTIFIED WITH mysql_native_password
 BY 'new_password1',
 'jeanne'@'localhost' IDENTIFIED WITH caching_sha2_password
 BY 'new_password2'
 REQUIRE X509 WITH MAX_QUERIES_PER_HOUR 60
 PASSWORD HISTORY 5
 ACCOUNT LOCK;

Each auth_option value (IDENTIFIED WITH ... BY in this case) applies only to the account
named immediately preceding it, so each account uses the immediately following authentication plugin
and password.

The remaining properties apply globally to all accounts named in the statement, so for both accounts:

• Connections must be made using a valid X.509 certificate.

• Up to 60 queries per hour are permitted.

• Password changes cannot reuse any of the five most recent passwords.

• The account is locked initially, so effectively it is a placeholder and cannot be used until an
administrator unlocks it.

3038

Account Management Statements

CREATE USER Authentication Options

An account name may be followed by an auth_option authentication option that specifies the
account authentication plugin, credentials, or both.

Note

Prior to MySQL 8.0.27, auth_option defines the sole method by which
an account authenticates. That is, all accounts use one-factor/single-factor
authentication (1FA/SFA). MySQL 8.0.27 and higher supports multifactor
authentication (MFA), such that accounts can have up to three authentication
methods. That is, accounts can use two-factor authentication (2FA) or three-
factor authentication (3FA). The syntax and semantics of auth_option
remain unchanged, but auth_option may be followed by specifications for
additional authentication methods. This section describes auth_option. For
details about the optional MFA-related following clauses, see CREATE USER
Multifactor Authentication Options.

Note

Clauses for random password generation apply only to accounts that use an
authentication plugin that stores credentials internally to MySQL. For accounts
that use a plugin that performs authentication against a credentials system
that is external to MySQL, password management must be handled externally
against that system as well. For more information about internal credentials
storage, see Section 8.2.15, “Password Management”.

• auth_plugin names an authentication plugin. The plugin name can be a quoted string literal or an
unquoted name. Plugin names are stored in the plugin column of the mysql.user system table.

For auth_option syntax that does not specify an authentication plugin, the server assigns the
default plugin, determined as described in The Default Authentication Plugin. For descriptions of
each plugin, see Section 8.4.1, “Authentication Plugins”.

• Credentials that are stored internally are stored in the mysql.user system table. An
'auth_string' value or RANDOM PASSWORD specifies account credentials, either as a cleartext
(unencrypted) string or hashed in the format expected by the authentication plugin associated with
the account, respectively:

• For syntax that uses BY 'auth_string', the string is cleartext and is passed to the
authentication plugin for possible hashing. The result returned by the plugin is stored in the
mysql.user table. A plugin may use the value as specified, in which case no hashing occurs.

• For syntax that uses BY RANDOM PASSWORD, MySQL generates a random password and as
cleartext and passes it to the authentication plugin for possible hashing. The result returned by the
plugin is stored in the mysql.user table. A plugin may use the value as specified, in which case
no hashing occurs.

Randomly generated passwords are available as of MySQL 8.0.18 and have the characteristics
described in Random Password Generation.

• For syntax that uses AS 'auth_string', the string is assumed to be already in the format the
authentication plugin requires, and is stored as is in the mysql.user table. If a plugin requires a
hashed value, the value must be already hashed in a format appropriate for the plugin; otherwise,
the value cannot be used by the plugin and correct authentication of client connections does not
occur.

As of MySQL 8.0.17, a hashed string can be either a string literal or a hexadecimal value. The
latter corresponds to the type of value displayed by SHOW CREATE USER for password hashes
containing unprintable characters when the print_identified_with_as_hex system variable
is enabled.

3039

Account Management Statements

Important

Although we show 'auth_string' with quotation marks, a hexadecimal
value used for this purpose must not be quoted.

• If an authentication plugin performs no hashing of the authentication string, the BY
'auth_string' and AS 'auth_string' clauses have the same effect: The authentication
string is stored as is in the mysql.user system table.

CREATE USER permits these auth_option syntaxes:

• IDENTIFIED BY 'auth_string'

Sets the account authentication plugin to the default plugin, passes the cleartext 'auth_string'
value to the plugin for possible hashing, and stores the result in the account row in the mysql.user
system table.

• IDENTIFIED BY RANDOM PASSWORD

Sets the account authentication plugin to the default plugin, generates a random password, passes
the cleartext password value to the plugin for possible hashing, and stores the result in the account
row in the mysql.user system table. The statement also returns the cleartext password in a result
set to make it available to the user or application executing the statement. For details about the result
set and characteristics of randomly generated passwords, see Random Password Generation.

• IDENTIFIED WITH auth_plugin

Sets the account authentication plugin to auth_plugin, clears the credentials to the empty string,
and stores the result in the account row in the mysql.user system table.

• IDENTIFIED WITH auth_plugin BY 'auth_string'

Sets the account authentication plugin to auth_plugin, passes the cleartext 'auth_string'
value to the plugin for possible hashing, and stores the result in the account row in the mysql.user
system table.

• IDENTIFIED WITH auth_plugin BY RANDOM PASSWORD

Sets the account authentication plugin to auth_plugin, generates a random password, passes the
cleartext password value to the plugin for possible hashing, and stores the result in the account row
in the mysql.user system table. The statement also returns the cleartext password in a result set to
make it available to the user or application executing the statement. For details about the result set
and characteristics of randomly generated passwords, see Random Password Generation.

• IDENTIFIED WITH auth_plugin AS 'auth_string'

Sets the account authentication plugin to auth_plugin and stores the 'auth_string' value as is
in the mysql.user account row. If the plugin requires a hashed string, the string is assumed to be
already hashed in the format the plugin requires.

Example: Specify the password as cleartext; the default plugin is used:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'password';

Example: Specify the authentication plugin, along with a cleartext password value:

CREATE USER 'jeffrey'@'localhost'
 IDENTIFIED WITH mysql_native_password BY 'password';

In each case, the password value stored in the account row is the cleartext value 'password' after it
has been hashed by the authentication plugin associated with the account.

3040

Account Management Statements

For additional information about setting passwords and authentication plugins, see Section 8.2.14,
“Assigning Account Passwords”, and Section 8.2.17, “Pluggable Authentication”.

CREATE USER Multifactor Authentication Options

The auth_option part of CREATE USER defines an authentication method for one-factor/single-factor
authentication (1FA/SFA). As of MySQL 8.0.27, CREATE USER has clauses that support multifactor
authentication (MFA), such that accounts can have up to three authentication methods. That is,
accounts can use two-factor authentication (2FA) or three-factor authentication (3FA).

The authentication_policy system variable defines constraints for CREATE USER statements
with multifactor authentication (MFA) clauses. For example, the authentication_policy setting
controls the number of authentication factors that accounts may have, and for each factor, which
authentication methods are permitted. See Configuring the Multifactor Authentication Policy.

For information about factor-specific rules that determine the default authentication plugin for
authentication clauses that name no plugin, see The Default Authentication Plugin.

Following auth_option, there may appear different optional MFA clauses:

• 2fa_auth_option: Specifies a factor 2 authentication method. The following example
defines caching_sha2_password as the factor 1 authentication method, and
authentication_ldap_sasl as the factor 2 authentication method.

CREATE USER 'u1'@'localhost'
 IDENTIFIED WITH caching_sha2_password
 BY 'sha2_password'
 AND IDENTIFIED WITH authentication_ldap_sasl
 AS 'uid=u1_ldap,ou=People,dc=example,dc=com';

• 3fa_auth_option: Following 2fa_auth_option, there may appear a 3fa_auth_option
clause to specify a factor 3 authentication method. The following example defines
caching_sha2_password as the factor 1 authentication method, authentication_ldap_sasl
as the factor 2 authentication method, and authentication_fido as the factor 3 authentication
method

CREATE USER 'u1'@'localhost'
 IDENTIFIED WITH caching_sha2_password
 BY 'sha2_password'
 AND IDENTIFIED WITH authentication_ldap_sasl
 AS 'uid=u1_ldap,ou=People,dc=example,dc=com'
 AND IDENTIFIED WITH authentication_fido;

• initial_auth_option: Specifies an initial authentication method for configuring FIDO
passwordless authentication. As shown in the following, temporary authentication using either
a generated random password or a user-specified auth-string is required to enable FIDO
passwordless authentication.

CREATE USER user
 IDENTIFIED WITH authentication_fido
 INITIAL AUTHENTICATION IDENTIFIED BY {RANDOM PASSWORD | 'auth_string'};

For information about configuring passwordless authentication using FIDO pluggable authentication,
See FIDO Passwordless Authentication.

CREATE USER Role Options

The DEFAULT ROLE clause defines which roles become active when the user connects to the server
and authenticates, or when the user executes the SET ROLE DEFAULT statement during a session.

Each role name uses the format described in Section 8.2.5, “Specifying Role Names”. For example:

CREATE USER 'joe'@'10.0.0.1' DEFAULT ROLE administrator, developer;

The host name part of the role name, if omitted, defaults to '%'.

3041

Account Management Statements

The DEFAULT ROLE clause permits a list of one or more comma-separated role names. These
roles must exist at the time CREATE USER is executed; otherwise the statement raises an error
(ER_USER_DOES_NOT_EXIST), and the user is not created.

CREATE USER SSL/TLS Options

MySQL can check X.509 certificate attributes in addition to the usual authentication that is based on
the user name and credentials. For background information on the use of SSL/TLS with MySQL, see
Section 8.3, “Using Encrypted Connections”.

To specify SSL/TLS-related options for a MySQL account, use a REQUIRE clause that specifies one or
more tls_option values.

Order of REQUIRE options does not matter, but no option can be specified twice. The AND keyword is
optional between REQUIRE options.

CREATE USER permits these tls_option values:

• NONE

Indicates that all accounts named by the statement have no SSL or X.509 requirements.
Unencrypted connections are permitted if the user name and password are valid. Encrypted
connections can be used, at the client's option, if the client has the proper certificate and key files.

CREATE USER 'jeffrey'@'localhost' REQUIRE NONE;

Clients attempt to establish a secure connection by default. For clients that have REQUIRE NONE,
the connection attempt falls back to an unencrypted connection if a secure connection cannot
be established. To require an encrypted connection, a client need specify only the --ssl-
mode=REQUIRED option; the connection attempt fails if a secure connection cannot be established.

NONE is the default if no SSL-related REQUIRE options are specified.

• SSL

Tells the server to permit only encrypted connections for all accounts named by the statement.

CREATE USER 'jeffrey'@'localhost' REQUIRE SSL;

Clients attempt to establish a secure connection by default. For accounts that have REQUIRE SSL,
the connection attempt fails if a secure connection cannot be established.

• X509

For all accounts named by the statement, requires that clients present a valid certificate, but the
exact certificate, issuer, and subject do not matter. The only requirement is that it should be possible
to verify its signature with one of the CA certificates. Use of X.509 certificates always implies
encryption, so the SSL option is unnecessary in this case.

CREATE USER 'jeffrey'@'localhost' REQUIRE X509;

For accounts with REQUIRE X509, clients must specify the --ssl-key and --ssl-cert options
to connect. (It is recommended but not required that --ssl-ca also be specified so that the public
certificate provided by the server can be verified.) This is true for ISSUER and SUBJECT as well
because those REQUIRE options imply the requirements of X509.

• ISSUER 'issuer'

For all accounts named by the statement, requires that clients present a valid X.509 certificate issued
by CA 'issuer'. If a client presents a certificate that is valid but has a different issuer, the server
rejects the connection. Use of X.509 certificates always implies encryption, so the SSL option is
unnecessary in this case.

3042

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_user_does_not_exist

Account Management Statements

CREATE USER 'jeffrey'@'localhost'
 REQUIRE ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com';

Because ISSUER implies the requirements of X509, clients must specify the --ssl-key and --
ssl-cert options to connect. (It is recommended but not required that --ssl-ca also be specified
so that the public certificate provided by the server can be verified.)

• SUBJECT 'subject'

For all accounts named by the statement, requires that clients present a valid X.509 certificate
containing the subject subject. If a client presents a certificate that is valid but has a different
subject, the server rejects the connection. Use of X.509 certificates always implies encryption, so the
SSL option is unnecessary in this case.

CREATE USER 'jeffrey'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com';

MySQL does a simple string comparison of the 'subject' value to the value in the certificate, so
lettercase and component ordering must be given exactly as present in the certificate.

Because SUBJECT implies the requirements of X509, clients must specify the --ssl-key and --
ssl-cert options to connect. (It is recommended but not required that --ssl-ca also be specified
so that the public certificate provided by the server can be verified.)

• CIPHER 'cipher'

For all accounts named by the statement, requires a specific cipher method for encrypting
connections. This option is needed to ensure that ciphers and key lengths of sufficient strength are
used. Encryption can be weak if old algorithms using short encryption keys are used.

CREATE USER 'jeffrey'@'localhost'
 REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause:

CREATE USER 'jeffrey'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com'
 AND ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com'
 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

CREATE USER Resource-Limit Options

It is possible to place limits on use of server resources by an account, as discussed in Section 8.2.21,
“Setting Account Resource Limits”. To do so, use a WITH clause that specifies one or more
resource_option values.

Order of WITH options does not matter, except that if a given resource limit is specified multiple times,
the last instance takes precedence.

CREATE USER permits these resource_option values:

• MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count,
MAX_CONNECTIONS_PER_HOUR count

For all accounts named by the statement, these options restrict how many queries, updates, and
connections to the server are permitted to each account during any given one-hour period. If count
is 0 (the default), this means that there is no limitation for the account.

3043

Account Management Statements

• MAX_USER_CONNECTIONS count

For all accounts named by the statement, restricts the maximum number of simultaneous
connections to the server by each account. A nonzero count specifies the limit for the account
explicitly. If count is 0 (the default), the server determines the number of simultaneous connections
for the account from the global value of the max_user_connections system variable. If
max_user_connections is also zero, there is no limit for the account.

Example:

CREATE USER 'jeffrey'@'localhost'
 WITH MAX_QUERIES_PER_HOUR 500 MAX_UPDATES_PER_HOUR 100;

CREATE USER Password-Management Options

CREATE USER supports several password_option values for password management:

• Password expiration options: You can expire an account password manually and establish its
password expiration policy. Policy options do not expire the password. Instead, they determine how
the server applies automatic expiration to the account based on password age, which is assessed
from the date and time of the most recent account password change.

• Password reuse options: You can restrict password reuse based on number of password changes,
time elapsed, or both.

• Password verification-required options: You can indicate whether attempts to change an account
password must specify the current password, as verification that the user attempting to make the
change actually knows the current password.

• Incorrect-password failed-login tracking options: You can cause the server to track failed login
attempts and temporarily lock accounts for which too many consecutive incorrect passwords are
given. The required number of failures and the lock time are configurable.

This section describes the syntax for password-management options. For information about
establishing policy for password management, see Section 8.2.15, “Password Management”.

If multiple password-management options of a given type are specified, the last one takes precedence.
For example, PASSWORD EXPIRE DEFAULT PASSWORD EXPIRE NEVER is the same as PASSWORD
EXPIRE NEVER.

Note

Except for the options that pertain to failed-login tracking, password-
management options apply only to accounts that use an authentication plugin
that stores credentials internally to MySQL. For accounts that use a plugin that
performs authentication against a credentials system that is external to MySQL,
password management must be handled externally against that system as well.
For more information about internal credentials storage, see Section 8.2.15,
“Password Management”.

A client has an expired password if the account password was expired manually or the password
age is considered greater than its permitted lifetime per the automatic expiration policy. In this case,
the server either disconnects the client or restricts the operations permitted to it (see Section 8.2.16,
“Server Handling of Expired Passwords”). Operations performed by a restricted client result in an error
until the user establishes a new account password.

CREATE USER permits these password_option values for controlling password expiration:

• PASSWORD EXPIRE

Immediately marks the password expired for all accounts named by the statement.

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

3044

Account Management Statements

• PASSWORD EXPIRE DEFAULT

Sets all accounts named by the statement so that the global expiration policy applies, as specified by
the default_password_lifetime system variable.

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

• PASSWORD EXPIRE NEVER

This expiration option overrides the global policy for all accounts named by the statement. For each,
it disables password expiration so that the password never expires.

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

• PASSWORD EXPIRE INTERVAL N DAY

This expiration option overrides the global policy for all accounts named by the statement. For each,
it sets the password lifetime to N days. The following statement requires the password to be changed
every 180 days:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 180 DAY;

CREATE USER permits these password_option values for controlling reuse of previous passwords
based on required minimum number of password changes:

• PASSWORD HISTORY DEFAULT

Sets all accounts named by the statement so that the global policy about password history
length applies, to prohibit reuse of passwords before the number of changes specified by the
password_history system variable.

CREATE USER 'jeffrey'@'localhost' PASSWORD HISTORY DEFAULT;

• PASSWORD HISTORY N

This history-length option overrides the global policy for all accounts named by the statement. For
each, it sets the password history length to N passwords, to prohibit reusing any of the N most
recently chosen passwords. The following statement prohibits reuse of any of the previous 6
passwords:

CREATE USER 'jeffrey'@'localhost' PASSWORD HISTORY 6;

CREATE USER permits these password_option values for controlling reuse of previous passwords
based on time elapsed:

• PASSWORD REUSE INTERVAL DEFAULT

Sets all statements named by the account so that the global policy about time elapsed
applies, to prohibit reuse of passwords newer than the number of days specified by the
password_reuse_interval system variable.

CREATE USER 'jeffrey'@'localhost' PASSWORD REUSE INTERVAL DEFAULT;

• PASSWORD REUSE INTERVAL N DAY

This time-elapsed option overrides the global policy for all accounts named by the statement. For
each, it sets the password reuse interval to N days, to prohibit reuse of passwords newer than that
many days. The following statement prohibits password reuse for 360 days:

CREATE USER 'jeffrey'@'localhost' PASSWORD REUSE INTERVAL 360 DAY;

CREATE USER permits these password_option values for controlling whether attempts to change an
account password must specify the current password, as verification that the user attempting to make
the change actually knows the current password:

3045

Account Management Statements

• PASSWORD REQUIRE CURRENT

This verification option overrides the global policy for all accounts named by the statement. For each,
it requires that password changes specify the current password.

CREATE USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT;

• PASSWORD REQUIRE CURRENT OPTIONAL

This verification option overrides the global policy for all accounts named by the statement. For each,
it does not require that password changes specify the current password. (The current password may
but need not be given.)

CREATE USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT OPTIONAL;

• PASSWORD REQUIRE CURRENT DEFAULT

Sets all statements named by the account so that the global policy about password verification
applies, as specified by the password_require_current system variable.

CREATE USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT DEFAULT;

As of MySQL 8.0.19, CREATE USER permits these password_option values for controlling failed-
login tracking:

• FAILED_LOGIN_ATTEMPTS N

Whether to track account login attempts that specify an incorrect password. N must be a number
from 0 to 32767. A value of 0 disables failed-login tracking. Values greater than 0 indicate how many
consecutive password failures cause temporary account locking (if PASSWORD_LOCK_TIME is also
nonzero).

• PASSWORD_LOCK_TIME {N | UNBOUNDED}

How long to lock the account after too many consecutive login attempts provide an incorrect
password. N must be a number from 0 to 32767, or UNBOUNDED. A value of 0 disables temporary
account locking. Values greater than 0 indicate how long to lock the account in days. A value of
UNBOUNDED causes the account locking duration to be unbounded; once locked, the account
remains in a locked state until unlocked. For information about the conditions under which unlocking
occurs, see Failed-Login Tracking and Temporary Account Locking.

For failed-login tracking and temporary locking to occur, an account's FAILED_LOGIN_ATTEMPTS and
PASSWORD_LOCK_TIME options both must be nonzero. The following statement creates an account
that remains locked for two days after four consecutive password failures:

CREATE USER 'jeffrey'@'localhost'
 FAILED_LOGIN_ATTEMPTS 4 PASSWORD_LOCK_TIME 2;

CREATE USER Comment and Attribute Options

As of MySQL 8.0.21, you can create an account with an optional comment or attribute, as described
here:

• User comment

To set a user comment, add COMMENT 'user_comment' to the CREATE USER statement, where
user_comment is the text of the user comment.

Example (omitting any other options):

CREATE USER 'jon'@'localhost' COMMENT 'Some information about Jon';

• User attribute

3046

Account Management Statements

A user attribute is a JSON object made up of one or more key-value pairs, and is set by including
ATTRIBUTE 'json_object' as part of CREATE USER. json_object must be a valid JSON
object.

Example (omitting any other options):

CREATE USER 'jim'@'localhost'
 ATTRIBUTE '{"fname": "James", "lname": "Scott", "phone": "123-456-7890"}';

User comments and user attributes are stored together in the ATTRIBUTE column of the Information
Schema USER_ATTRIBUTES table. This query displays the row in this table inserted by the statement
just shown for creating the user jim@localhost:

mysql> SELECT * FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER = 'jim' AND HOST = 'localhost'\G
*************************** 1. row ***************************
 USER: jim
 HOST: localhost
ATTRIBUTE: {"fname": "James", "lname": "Scott", "phone": "123-456-7890"}
1 row in set (0.00 sec)

The COMMENT option in actuality provides a shortcut for setting a user attribute whose only element
has comment as its key and whose value is the argument supplied for the option. You can see this by
executing the statement CREATE USER 'jon'@'localhost' COMMENT 'Some information
about Jon', and observing the row which it inserts into the USER_ATTRIBUTES table:

mysql> CREATE USER 'jon'@'localhost' COMMENT 'Some information about Jon';
Query OK, 0 rows affected (0.06 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER = 'jon' AND HOST = 'localhost';
+------+-----------+---+
| USER | HOST | ATTRIBUTE |
+------+-----------+---+
| jon | localhost | {"comment": "Some information about Jon"} |
+------+-----------+---+
1 row in set (0.00 sec)

You cannot use COMMENT and ATTRIBUTE together in the same CREATE USER statement; attempting
to do so causes a syntax error. To set a user comment concurrently with setting a user attribute, use
ATTRIBUTE and include in its argument a value with a comment key, like this:

mysql> CREATE USER 'bill'@'localhost'
 -> ATTRIBUTE '{"fname":"William", "lname":"Schmidt",
 -> "comment":"Website developer"}';
Query OK, 0 rows affected (0.16 sec)

Since the content of the ATTRIBUTE row is a JSON object, you can employ any appropriate MySQL
JSON functions or operators to manipulate it, as shown here:

mysql> SELECT
 -> USER AS User,
 -> HOST AS Host,
 -> CONCAT(ATTRIBUTE->>"$.fname"," ",ATTRIBUTE->>"$.lname") AS 'Full Name',
 -> ATTRIBUTE->>"$.comment" AS Comment
 -> FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER='bill' AND HOST='localhost';
+------+-----------+-----------------+-------------------+
| User | Host | Full Name | Comment |
+------+-----------+-----------------+-------------------+
| bill | localhost | William Schmidt | Website developer |
+------+-----------+-----------------+-------------------+
1 row in set (0.00 sec)

To set or to make changes in the user comment or user attribute for an existing user, you can use a
COMMENT or ATTRIBUTE option with an ALTER USER statement.

3047

Account Management Statements

Because the user comment and user attribute are stored together internally in a single JSON column,
this sets an upper limit on their maximum combined size; see JSON Storage Requirements, for more
information.

See also the description of the Information Schema USER_ATTRIBUTES table for more information and
examples.

CREATE USER Account-Locking Options

MySQL supports account locking and unlocking using the ACCOUNT LOCK and ACCOUNT UNLOCK
options, which specify the locking state for an account. For additional discussion, see Section 8.2.20,
“Account Locking”.

If multiple account-locking options are specified, the last one takes precedence.

CREATE USER Binary Logging

CREATE USER is written to the binary log if it succeeds, but not if it fails; in that case, rollback occurs
and no changes are made. A statement written to the binary log includes all named users. If the IF
NOT EXISTS clause is given, this includes even users that already exist and were not created.

The statement written to the binary log specifies an authentication plugin for each user, determined as
follows:

• The plugin named in the original statement, if one was specified.

• Otherwise, the default authentication plugin. In particular, if a user u1 already exists and uses a
nondefault authentication plugin, the statement written to the binary log for CREATE USER IF NOT
EXISTS u1 names the default authentication plugin. (If the statement written to the binary log must
specify a nondefault authentication plugin for a user, include it in the original statement.)

If the server adds the default authentication plugin for any nonexisting users in the statement written to
the binary log, it writes a warning to the error log naming those users.

If the original statement specifies the FAILED_LOGIN_ATTEMPTS or PASSWORD_LOCK_TIME option,
the statement written to the binary log includes the option.

CREATE USER statements with clauses that support multifactor authentication (MFA) are written to the
binary log.

• CREATE USER ... IDENTIFIED WITH .. INITIAL AUTHENTICATION IDENTIFIED
WITH ... statements are written to the binary log as CREATE USER .. IDENTIFIED WITH ..
INITIAL AUTHENTICATION IDENTIFIED WITH .. AS 'password-hash', where the
password-hash is the user-specified auth-string or the random password generated by server
when the RANDOM PASSWORD clause is specified.

15.7.1.4 DROP ROLE Statement

DROP ROLE [IF EXISTS] role [, role] ...

DROP ROLE removes one or more roles (named collections of privileges). To use this statement, you
must have the global DROP ROLE or CREATE USER privilege. When the read_only system variable
is enabled, DROP ROLE additionally requires the CONNECTION_ADMIN privilege (or the deprecated
SUPER privilege).

As of MySQL 8.0.16, users who have the CREATE USER privilege can use this statement to drop
accounts that are locked or unlocked. Users who have the DROP ROLE privilege can use this statement
only to drop accounts that are locked (unlocked accounts are presumably user accounts used to log in
to the server and not just as roles).

Roles named in the mandatory_roles system variable value cannot be dropped.

3048

Account Management Statements

DROP ROLE either succeeds for all named roles or rolls back and has no effect if any error occurs. By
default, an error occurs if you try to drop a role that does not exist. If the IF EXISTS clause is given,
the statement produces a warning for each named role that does not exist, rather than an error.

The statement is written to the binary log if it succeeds, but not if it fails; in that case, rollback occurs
and no changes are made. A statement written to the binary log includes all named roles. If the IF
EXISTS clause is given, this includes even roles that do not exist and were not dropped.

Each role name uses the format described in Section 8.2.5, “Specifying Role Names”. For example:

DROP ROLE 'admin', 'developer';
DROP ROLE 'webapp'@'localhost';

The host name part of the role name, if omitted, defaults to '%'.

A dropped role is automatically revoked from any user account (or role) to which the role was granted.
Within any current session for such an account, its adjusted privileges apply beginning with the next
statement executed.

For role usage examples, see Section 8.2.10, “Using Roles”.

15.7.1.5 DROP USER Statement

DROP USER [IF EXISTS] user [, user] ...

The DROP USER statement removes one or more MySQL accounts and their privileges. It removes
privilege rows for the account from all grant tables.

Roles named in the mandatory_roles system variable value cannot be dropped.

To use DROP USER, you must have the global CREATE USER privilege, or the DELETE privilege for the
mysql system schema. When the read_only system variable is enabled, DROP USER additionally
requires the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege).

As of MySQL 8.0.22, DROP USER fails with an error if any account to be dropped is named as the
DEFINER attribute for any stored object. (That is, the statement fails if dropping an account would
cause a stored object to become orphaned.) To perform the operation anyway, you must have the
SET_USER_ID privilege; in this case, the statement succeeds with a warning rather than failing with an
error. For additional information, including how to identify which objects name a given account as the
DEFINER attribute, see Orphan Stored Objects.

DROP USER either succeeds for all named users or rolls back and has no effect if any error occurs. By
default, an error occurs if you try to drop a user that does not exist. If the IF EXISTS clause is given,
the statement produces a warning for each named user that does not exist, rather than an error.

The statement is written to the binary log if it succeeds, but not if it fails; in that case, rollback occurs
and no changes are made. A statement written to the binary log includes all named users. If the IF
EXISTS clause is given, this includes even users that do not exist and were not dropped.

Each account name uses the format described in Section 8.2.4, “Specifying Account Names”. For
example:

DROP USER 'jeffrey'@'localhost';

The host name part of the account name, if omitted, defaults to '%'.

Important

DROP USER does not automatically close any open user sessions. Rather, in
the event that a user with an open session is dropped, the statement does not

3049

Account Management Statements

take effect until that user's session is closed. Once the session is closed, the
user is dropped, and that user's next attempt to log in fails. This is by design.

DROP USER does not automatically drop or invalidate databases or objects within them that the old
user created. This includes stored programs or views for which the DEFINER attribute names the
dropped user. Attempts to access such objects may produce an error if they execute in definer security
context. (For information about security context, see Section 27.6, “Stored Object Access Control”.)

15.7.1.6 GRANT Statement

GRANT
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 TO user_or_role [, user_or_role] ...
 [WITH GRANT OPTION]
 [AS user
 [WITH ROLE
 DEFAULT
 | NONE
 | ALL
 | ALL EXCEPT role [, role] ...
 | role [, role] ...
]
]
}

GRANT PROXY ON user_or_role
 TO user_or_role [, user_or_role] ...
 [WITH GRANT OPTION]

GRANT role [, role] ...
 TO user_or_role [, user_or_role] ...
 [WITH ADMIN OPTION]

object_type: {
 TABLE
 | FUNCTION
 | PROCEDURE
}

priv_level: {
 *
 | *.*
 | db_name.*
 | db_name.tbl_name
 | tbl_name
 | db_name.routine_name
}

user_or_role: {
 user (see Section 8.2.4, “Specifying Account Names”)
 | role (see Section 8.2.5, “Specifying Role Names”)
}

The GRANT statement assigns privileges and roles to MySQL user accounts and roles. There are
several aspects to the GRANT statement, described under the following topics:

• GRANT General Overview

• Object Quoting Guidelines

• Account Names

• Privileges Supported by MySQL

• Global Privileges

• Database Privileges

3050

Account Management Statements

• Table Privileges

• Column Privileges

• Stored Routine Privileges

• Proxy User Privileges

• Granting Roles

• The AS Clause and Privilege Restrictions

• Other Account Characteristics

• MySQL and Standard SQL Versions of GRANT

GRANT General Overview

The GRANT statement enables system administrators to grant privileges and roles, which can be
granted to user accounts and roles. These syntax restrictions apply:

• GRANT cannot mix granting both privileges and roles in the same statement. A given GRANT
statement must grant either privileges or roles.

• The ON clause distinguishes whether the statement grants privileges or roles:

• With ON, the statement grants privileges.

• Without ON, the statement grants roles.

• It is permitted to assign both privileges and roles to an account, but you must use separate GRANT
statements, each with syntax appropriate to what is to be granted.

For more information about roles, see Section 8.2.10, “Using Roles”.

To grant a privilege with GRANT, you must have the GRANT OPTION privilege, and you must have the
privileges that you are granting. (Alternatively, if you have the UPDATE privilege for the grant tables in
the mysql system schema, you can grant any account any privilege.) When the read_only system
variable is enabled, GRANT additionally requires the CONNECTION_ADMIN privilege (or the deprecated
SUPER privilege).

GRANT either succeeds for all named users and roles or rolls back and has no effect if any error occurs.
The statement is written to the binary log only if it succeeds for all named users and roles.

The REVOKE statement is related to GRANT and enables administrators to remove account privileges.
See Section 15.7.1.8, “REVOKE Statement”.

Each account name uses the format described in Section 8.2.4, “Specifying Account Names”. Each
role name uses the format described in Section 8.2.5, “Specifying Role Names”. For example:

GRANT ALL ON db1.* TO 'jeffrey'@'localhost';
GRANT 'role1', 'role2' TO 'user1'@'localhost', 'user2'@'localhost';
GRANT SELECT ON world.* TO 'role3';

The host name part of the account or role name, if omitted, defaults to '%'.

Normally, a database administrator first uses CREATE USER to create an account and define its
nonprivilege characteristics such as its password, whether it uses secure connections, and limits on
access to server resources, then uses GRANT to define its privileges. ALTER USER may be used to
change the nonprivilege characteristics of existing accounts. For example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';
GRANT ALL ON db1.* TO 'jeffrey'@'localhost';
GRANT SELECT ON db2.invoice TO 'jeffrey'@'localhost';

3051

Account Management Statements

ALTER USER 'jeffrey'@'localhost' WITH MAX_QUERIES_PER_HOUR 90;

From the mysql program, GRANT responds with Query OK, 0 rows affected when executed
successfully. To determine what privileges result from the operation, use SHOW GRANTS. See
Section 15.7.7.21, “SHOW GRANTS Statement”.

Important

Under some circumstances, GRANT may be recorded in server logs or on
the client side in a history file such as ~/.mysql_history, which means
that cleartext passwords may be read by anyone having read access to that
information. For information about the conditions under which this occurs for the
server logs and how to control it, see Section 8.1.2.3, “Passwords and Logging”.
For similar information about client-side logging, see Section 6.5.1.3, “mysql
Client Logging”.

GRANT supports host names up to 255 characters long (60 characters prior to MySQL 8.0.17). User
names can be up to 32 characters. Database, table, column, and routine names can be up to 64
characters.

Warning

Do not attempt to change the permissible length for user names by altering the
mysql.user system table. Doing so results in unpredictable behavior which
may even make it impossible for users to log in to the MySQL server. Never
alter the structure of tables in the mysql system schema in any manner except
by means of the procedure described in Chapter 3, Upgrading MySQL.

Object Quoting Guidelines

Several objects within GRANT statements are subject to quoting, although quoting is optional in many
cases: Account, role, database, table, column, and routine names. For example, if a user_name
or host_name value in an account name is legal as an unquoted identifier, you need not quote it.
However, quotation marks are necessary to specify a user_name string containing special characters
(such as -), or a host_name string containing special characters or wildcard characters such as % (for
example, 'test-user'@'%.com'). Quote the user name and host name separately.

To specify quoted values:

• Quote database, table, column, and routine names as identifiers.

• Quote user names and host names as identifiers or as strings.

• Quote passwords as strings.

For string-quoting and identifier-quoting guidelines, see Section 11.1.1, “String Literals”, and
Section 11.2, “Schema Object Names”.

Important

The use of the wildcard characters % and _ as described in the next few
paragraphs is deprecated as of MySQL 8.0.35 and thus subject to removal in a
future version of MySQL.

The _ and % wildcards are permitted when specifying database names in GRANT statements that grant
privileges at the database level (GRANT ... ON db_name.*). This means, for example, that to use
a _ character as part of a database name, specify it using the \ escape character as _ in the GRANT
statement, to prevent the user from being able to access additional databases matching the wildcard
pattern (for example, GRANT ... ON `foo_bar`.* TO ...).

Issuing multiple GRANT statements containing wildcards may not have the expected effect on DML
statements; when resolving grants involving wildcards, MySQL takes only the first matching grant into

3052

Account Management Statements

consideration. In other words, if a user has two database-level grants using wildcards that match the
same database, the grant which was created first is applied. Consider the database db and table t
created using the statements shown here:

mysql> CREATE DATABASE db;
Query OK, 1 row affected (0.01 sec)

mysql> CREATE TABLE db.t (c INT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO db.t VALUES ROW(1);
Query OK, 1 row affected (0.00 sec)

Next (assuming that the current account is the MySQL root account or another account having the
necessary privileges), we create a user u then issue two GRANT statements containing wildcards, like
this:

mysql> CREATE USER u;
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT SELECT ON `d_`.* TO u;
Query OK, 0 rows affected (0.01 sec)

mysql> GRANT INSERT ON `d%`.* TO u;
Query OK, 0 rows affected (0.00 sec)

mysql> EXIT

Bye

If we end the session and then log in again with the mysql client, this time as u, we see that this
account has only the privilege provided by the first matching grant, but not the second:

$> mysql -uu -hlocalhost

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 10
Server version: 8.0.43-tr Source distribution

Copyright (c) 2000, 2023, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> TABLE db.t;
+------+
| c |
+------+
| 1 |
+------+
1 row in set (0.00 sec)

mysql> INSERT INTO db.t VALUES ROW(2);
ERROR 1142 (42000): INSERT command denied to user 'u'@'localhost' for table 't'

In privilege assignments, MySQL interprets occurrences of unescaped _ and % SQL wildcard
characters in database names as literal characters under these circumstances:

• When a database name is not used to grant privileges at the database level, but as a qualifier for
granting privileges to some other object such as a table or routine (for example, GRANT ... ON
db_name.tbl_name).

• Enabling partial_revokes causes MySQL to interpret unescaped _ and % wildcard characters
in database names as literal characters, just as if they had been escaped as _ and \%. Because

3053

Account Management Statements

this changes how MySQL interprets privileges, it may be advisable to avoid unescaped wildcard
characters in privilege assignments for installations where partial_revokes may be enabled. For
more information, see Section 8.2.12, “Privilege Restriction Using Partial Revokes”.

Account Names

A user value in a GRANT statement indicates a MySQL account to which the statement applies. To
accommodate granting rights to users from arbitrary hosts, MySQL supports specifying the user value
in the form 'user_name'@'host_name'.

You can specify wildcards in the host name. For example, 'user_name'@'%.example.com' applies
to user_name for any host in the example.com domain, and 'user_name'@'198.51.100.%'
applies to user_name for any host in the 198.51.100 class C subnet.

The simple form 'user_name' is a synonym for 'user_name'@'%'.

Note

MySQL automatically assigns all privileges granted to 'username'@'%' to
the 'username'@'localhost' account as well. This behavior is deprecated
in MySQL 8.0.35 and later MySQL 8.0 releases, and is subject to removal in a
future version of MySQL.

MySQL does not support wildcards in user names. To refer to an anonymous user, specify an account
with an empty user name with the GRANT statement:

GRANT ALL ON test.* TO ''@'localhost' ...;

In this case, any user who connects from the local host with the correct password for the anonymous
user is permitted access, with the privileges associated with the anonymous-user account.

For additional information about user name and host name values in account names, see
Section 8.2.4, “Specifying Account Names”.

Warning

If you permit local anonymous users to connect to the MySQL server, you
should also grant privileges to all local users as 'user_name'@'localhost'.
Otherwise, the anonymous user account for localhost in the mysql.user
system table is used when named users try to log in to the MySQL server from
the local machine. For details, see Section 8.2.6, “Access Control, Stage 1:
Connection Verification”.

To determine whether this issue applies to you, execute the following query,
which lists any anonymous users:

SELECT Host, User FROM mysql.user WHERE User='';

To avoid the problem just described, delete the local anonymous user account
using this statement:

DROP USER ''@'localhost';

Privileges Supported by MySQL

The following tables summarize the permissible static and dynamic priv_type privilege types that
can be specified for the GRANT and REVOKE statements, and the levels at which each privilege can
be granted. For additional information about each privilege, see Section 8.2.2, “Privileges Provided
by MySQL”. For information about the differences between static and dynamic privileges, see Static
Versus Dynamic Privileges.

3054

Account Management Statements

Table 15.11 Permissible Static Privileges for GRANT and REVOKE

Privilege Meaning and Grantable Levels

ALL [PRIVILEGES] Grant all privileges at specified access level
except GRANT OPTION and PROXY.

ALTER Enable use of ALTER TABLE. Levels: Global,
database, table.

ALTER ROUTINE Enable stored routines to be altered or dropped.
Levels: Global, database, routine.

CREATE Enable database and table creation. Levels:
Global, database, table.

CREATE ROLE Enable role creation. Level: Global.

CREATE ROUTINE Enable stored routine creation. Levels: Global,
database.

CREATE TABLESPACE Enable tablespaces and log file groups to be
created, altered, or dropped. Level: Global.

CREATE TEMPORARY TABLES Enable use of CREATE TEMPORARY TABLE.
Levels: Global, database.

CREATE USER Enable use of CREATE USER, DROP USER,
RENAME USER, and REVOKE ALL PRIVILEGES.
Level: Global.

CREATE VIEW Enable views to be created or altered. Levels:
Global, database, table.

DELETE Enable use of DELETE. Level: Global, database,
table.

DROP Enable databases, tables, and views to be
dropped. Levels: Global, database, table.

DROP ROLE Enable roles to be dropped. Level: Global.

EVENT Enable use of events for the Event Scheduler.
Levels: Global, database.

EXECUTE Enable the user to execute stored routines.
Levels: Global, database, routine.

FILE Enable the user to cause the server to read or
write files. Level: Global.

GRANT OPTION Enable privileges to be granted to or removed
from other accounts. Levels: Global, database,
table, routine, proxy.

INDEX Enable indexes to be created or dropped. Levels:
Global, database, table.

INSERT Enable use of INSERT. Levels: Global, database,
table, column.

LOCK TABLES Enable use of LOCK TABLES on tables for which
you have the SELECT privilege. Levels: Global,
database.

PROCESS Enable the user to see all processes with SHOW
PROCESSLIST. Level: Global.

PROXY Enable user proxying. Level: From user to user.

REFERENCES Enable foreign key creation. Levels: Global,
database, table, column.

3055

Account Management Statements

Privilege Meaning and Grantable Levels

RELOAD Enable use of FLUSH operations. Level: Global.

REPLICATION CLIENT Enable the user to ask where source or replica
servers are. Level: Global.

REPLICATION SLAVE Enable replicas to read binary log events from the
source. Level: Global.

SELECT Enable use of SELECT. Levels: Global, database,
table, column.

SHOW DATABASES Enable SHOW DATABASES to show all databases.
Level: Global.

SHOW VIEW Enable use of SHOW CREATE VIEW. Levels:
Global, database, table.

SHUTDOWN Enable use of mysqladmin shutdown. Level:
Global.

SUPER Enable use of other administrative operations
such as CHANGE REPLICATION SOURCE TO,
CHANGE MASTER TO, KILL, PURGE BINARY
LOGS, SET GLOBAL, and mysqladmin debug
command. Level: Global.

TRIGGER Enable trigger operations. Levels: Global,
database, table.

UPDATE Enable use of UPDATE. Levels: Global, database,
table, column.

USAGE Synonym for “no privileges”

Table 15.12 Permissible Dynamic Privileges for GRANT and REVOKE

Privilege Meaning and Grantable Levels

APPLICATION_PASSWORD_ADMIN Enable dual password administration. Level:
Global.

AUDIT_ABORT_EXEMPT Allow queries blocked by audit log filter. Level:
Global.

AUDIT_ADMIN Enable audit log configuration. Level: Global.

AUTHENTICATION_POLICY_ADMIN Enable authentication policy administration. Level:
Global.

BACKUP_ADMIN Enable backup administration. Level: Global.

BINLOG_ADMIN Enable binary log control. Level: Global.

BINLOG_ENCRYPTION_ADMIN Enable activation and deactivation of binary log
encryption. Level: Global.

CLONE_ADMIN Enable clone administration. Level: Global.

CONNECTION_ADMIN Enable connection limit/restriction control. Level:
Global.

ENCRYPTION_KEY_ADMIN Enable InnoDB key rotation. Level: Global.

FIREWALL_ADMIN Enable firewall rule administration, any user.
Level: Global.

FIREWALL_EXEMPT Exempt user from firewall restrictions. Level:
Global.

FIREWALL_USER Enable firewall rule administration, self. Level:
Global.

3056

Account Management Statements

Privilege Meaning and Grantable Levels

FLUSH_OPTIMIZER_COSTS Enable optimizer cost reloading. Level: Global.

FLUSH_STATUS Enable status indicator flushing. Level: Global.

FLUSH_TABLES Enable table flushing. Level: Global.

FLUSH_USER_RESOURCES Enable user-resource flushing. Level: Global.

GROUP_REPLICATION_ADMIN Enable Group Replication control. Level: Global.

INNODB_REDO_LOG_ARCHIVE Enable redo log archiving administration. Level:
Global.

INNODB_REDO_LOG_ENABLE Enable or disable redo logging. Level: Global.

NDB_STORED_USER Enable sharing of user or role between SQL
nodes (NDB Cluster). Level: Global.

PASSWORDLESS_USER_ADMIN Enable passwordless user account administration.
Level: Global.

PERSIST_RO_VARIABLES_ADMIN Enable persisting read-only system variables.
Level: Global.

REPLICATION_APPLIER Act as the PRIVILEGE_CHECKS_USER for a
replication channel. Level: Global.

REPLICATION_SLAVE_ADMIN Enable regular replication control. Level: Global.

RESOURCE_GROUP_ADMIN Enable resource group administration. Level:
Global.

RESOURCE_GROUP_USER Enable resource group administration. Level:
Global.

ROLE_ADMIN Enable roles to be granted or revoked, use of
WITH ADMIN OPTION. Level: Global.

SESSION_VARIABLES_ADMIN Enable setting restricted session system variables.
Level: Global.

SET_USER_ID Enable setting non-self DEFINER values. Level:
Global.

SHOW_ROUTINE Enable access to stored routine definitions. Level:
Global.

SKIP_QUERY_REWRITE Do not rewrite queries executed by this user.
Level: Global.

SYSTEM_USER Designate account as system account. Level:
Global.

SYSTEM_VARIABLES_ADMIN Enable modifying or persisting global system
variables. Level: Global.

TABLE_ENCRYPTION_ADMIN Enable overriding default encryption settings.
Level: Global.

TELEMETRY_LOG_ADMIN Enable telemetry log configuration for HeatWave
on AWS. Level: Global.

TP_CONNECTION_ADMIN Enable thread pool connection administration.
Level: Global.

VERSION_TOKEN_ADMIN Enable use of Version Tokens functions. Level:
Global.

XA_RECOVER_ADMIN Enable XA RECOVER execution. Level: Global.

A trigger is associated with a table. To create or drop a trigger, you must have the TRIGGER privilege
for the table, not the trigger.

3057

Account Management Statements

In GRANT statements, the ALL [PRIVILEGES] or PROXY privilege must be named by itself and cannot
be specified along with other privileges. ALL [PRIVILEGES] stands for all privileges available for the
level at which privileges are to be granted except for the GRANT OPTION and PROXY privileges.

MySQL account information is stored in the tables of the mysql system schema. For additional details,
consult Section 8.2, “Access Control and Account Management”, which discusses the mysql system
schema and the access control system extensively.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to
revoke these privileges. It is necessary in such cases to manipulate the grant tables directly. (GRANT
does not create such rows when lower_case_table_names is set, but such rows might have been
created prior to setting that variable. The lower_case_table_names setting can only be configured
at server startup.)

Privileges can be granted at several levels, depending on the syntax used for the ON clause. For
REVOKE, the same ON syntax specifies which privileges to remove.

For the global, database, table, and routine levels, GRANT ALL assigns only the privileges that exist at
the level you are granting. For example, GRANT ALL ON db_name.* is a database-level statement,
so it does not grant any global-only privileges such as FILE. Granting ALL does not assign the GRANT
OPTION or PROXY privilege.

The object_type clause, if present, should be specified as TABLE, FUNCTION, or PROCEDURE when
the following object is a table, a stored function, or a stored procedure.

The privileges that a user holds for a database, table, column, or routine are formed additively as the
logical OR of the account privileges at each of the privilege levels, including the global level. It is not
possible to deny a privilege granted at a higher level by absence of that privilege at a lower level. For
example, this statement grants the SELECT and INSERT privileges globally:

GRANT SELECT, INSERT ON *.* TO u1;

The globally granted privileges apply to all databases, tables, and columns, even though not granted at
any of those lower levels.

As of MySQL 8.0.16, it is possible to explicitly deny a privilege granted at the global level by revoking it
for particular databases, if the partial_revokes system variable is enabled:

GRANT SELECT, INSERT, UPDATE ON *.* TO u1;
REVOKE INSERT, UPDATE ON db1.* FROM u1;

The result of the preceding statements is that SELECT applies globally to all tables, whereas INSERT
and UPDATE apply globally except to tables in db1. Account access to db1 is read only.

Details of the privilege-checking procedure are presented in Section 8.2.7, “Access Control, Stage 2:
Request Verification”.

If you are using table, column, or routine privileges for even one user, the server examines table,
column, and routine privileges for all users and this slows down MySQL a bit. Similarly, if you limit the
number of queries, updates, or connections for any users, the server must monitor these values.

MySQL enables you to grant privileges on databases or tables that do not exist. For tables, the
privileges to be granted must include the CREATE privilege. This behavior is by design, and is intended
to enable the database administrator to prepare user accounts and privileges for databases or tables
that are to be created at a later time.

Important

MySQL does not automatically revoke any privileges when you drop a database
or table. However, if you drop a routine, any routine-level privileges granted for
that routine are revoked.

3058

Account Management Statements

Global Privileges

Global privileges are administrative or apply to all databases on a given server. To assign global
privileges, use ON *.* syntax:

GRANT ALL ON *.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON *.* TO 'someuser'@'somehost';

The CREATE TABLESPACE, CREATE USER, FILE, PROCESS, RELOAD, REPLICATION CLIENT,
REPLICATION SLAVE, SHOW DATABASES, SHUTDOWN, and SUPER, CREATE ROLE and DROP ROLE
static privileges are administrative and can only be granted globally.

Dynamic privileges are all global and can only be granted globally.

Other privileges can be granted globally or at more specific levels.

The effect of GRANT OPTION granted at the global level differs for static and dynamic privileges:

• GRANT OPTION granted for any static global privilege applies to all static global privileges.

• GRANT OPTION granted for any dynamic privilege applies only to that dynamic privilege.

GRANT ALL at the global level grants all static global privileges and all currently registered dynamic
privileges. A dynamic privilege registered subsequent to execution of the GRANT statement is not
granted retroactively to any account.

MySQL stores global privileges in the mysql.user system table.

Database Privileges

Database privileges apply to all objects in a given database. To assign database-level privileges, use
ON db_name.* syntax:

GRANT ALL ON mydb.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.* TO 'someuser'@'somehost';

If you use ON * syntax (rather than ON *.*), privileges are assigned at the database level for the
default database. An error occurs if there is no default database.

The CREATE, DROP, EVENT, GRANT OPTION, LOCK TABLES, and REFERENCES privileges can be
specified at the database level. Table or routine privileges also can be specified at the database level,
in which case they apply to all tables or routines in the database.

MySQL stores database privileges in the mysql.db system table.

Table Privileges

Table privileges apply to all columns in a given table. To assign table-level privileges, use ON
db_name.tbl_name syntax:

GRANT ALL ON mydb.mytbl TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.mytbl TO 'someuser'@'somehost';

If you specify tbl_name rather than db_name.tbl_name, the statement applies to tbl_name in the
default database. An error occurs if there is no default database.

The permissible priv_type values at the table level are ALTER, CREATE VIEW, CREATE, DELETE,
DROP, GRANT OPTION, INDEX, INSERT, REFERENCES, SELECT, SHOW VIEW, TRIGGER, and UPDATE.

Table-level privileges apply to base tables and views. They do not apply to tables created with
CREATE TEMPORARY TABLE, even if the table names match. For information about TEMPORARY table
privileges, see Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”.

MySQL stores table privileges in the mysql.tables_priv system table.

3059

Account Management Statements

Column Privileges

Column privileges apply to single columns in a given table. Each privilege to be granted at the column
level must be followed by the column or columns, enclosed within parentheses.

GRANT SELECT (col1), INSERT (col1, col2) ON mydb.mytbl TO 'someuser'@'somehost';

The permissible priv_type values for a column (that is, when you use a column_list clause) are
INSERT, REFERENCES, SELECT, and UPDATE.

MySQL stores column privileges in the mysql.columns_priv system table.

Stored Routine Privileges

The ALTER ROUTINE, CREATE ROUTINE, EXECUTE, and GRANT OPTION privileges apply to stored
routines (procedures and functions). They can be granted at the global and database levels. Except for
CREATE ROUTINE, these privileges can be granted at the routine level for individual routines.

GRANT CREATE ROUTINE ON mydb.* TO 'someuser'@'somehost';
GRANT EXECUTE ON PROCEDURE mydb.myproc TO 'someuser'@'somehost';

The permissible priv_type values at the routine level are ALTER ROUTINE, EXECUTE, and GRANT
OPTION. CREATE ROUTINE is not a routine-level privilege because you must have the privilege at the
global or database level to create a routine in the first place.

MySQL stores routine-level privileges in the mysql.procs_priv system table.

Proxy User Privileges

The PROXY privilege enables one user to be a proxy for another. The proxy user impersonates or takes
the identity of the proxied user; that is, it assumes the privileges of the proxied user.

GRANT PROXY ON 'localuser'@'localhost' TO 'externaluser'@'somehost';

When PROXY is granted, it must be the only privilege named in the GRANT statement, and the only
permitted WITH option is WITH GRANT OPTION.

Proxying requires that the proxy user authenticate through a plugin that returns the name of the proxied
user to the server when the proxy user connects, and that the proxy user have the PROXY privilege for
the proxied user. For details and examples, see Section 8.2.19, “Proxy Users”.

MySQL stores proxy privileges in the mysql.proxies_priv system table.

Granting Roles

GRANT syntax without an ON clause grants roles rather than individual privileges. A role is a named
collection of privileges; see Section 8.2.10, “Using Roles”. For example:

GRANT 'role1', 'role2' TO 'user1'@'localhost', 'user2'@'localhost';

Each role to be granted must exist, as well as each user account or role to which it is to be granted. As
of MySQL 8.0.16, roles cannot be granted to anonymous users.

Granting a role does not automatically cause the role to be active. For information about role activation
and inactivation, see Activating Roles.

These privileges are required to grant roles:

• If you have the ROLE_ADMIN privilege (or the deprecated SUPER privilege), you can grant or revoke
any role to users or roles.

• If you were granted a role with a GRANT statement that includes the WITH ADMIN OPTION clause,
you become able to grant that role to other users or roles, or revoke it from other users or roles, as
long as the role is active at such time as you subsequently grant or revoke it. This includes the ability
to use WITH ADMIN OPTION itself.

3060

Account Management Statements

• To grant a role that has the SYSTEM_USER privilege, you must have the SYSTEM_USER privilege.

It is possible to create circular references with GRANT. For example:

CREATE USER 'u1', 'u2';
CREATE ROLE 'r1', 'r2';

GRANT 'u1' TO 'u1'; -- simple loop: u1 => u1
GRANT 'r1' TO 'r1'; -- simple loop: r1 => r1

GRANT 'r2' TO 'u2';
GRANT 'u2' TO 'r2'; -- mixed user/role loop: u2 => r2 => u2

Circular grant references are permitted but add no new privileges or roles to the grantee because a
user or role already has its privileges and roles.

The AS Clause and Privilege Restrictions

As of MySQL 8.0.16, GRANT has an AS user [WITH ROLE] clause that specifies additional
information about the privilege context to use for statement execution. This syntax is visible at the SQL
level, although its primary purpose is to enable uniform replication across all nodes of grantor privilege
restrictions imposed by partial revokes, by causing those restrictions to appear in the binary log. For
information about partial revokes, see Section 8.2.12, “Privilege Restriction Using Partial Revokes”.

When the AS user clause is specified, statement execution takes into account any privilege
restrictions associated with the named user, including all roles specified by WITH ROLE, if present.
The result is that the privileges actually granted by the statement may be reduced relative to those
specified.

These conditions apply to the AS user clause:

• AS has an effect only when the named user has privilege restrictions (which implies that the
partial_revokes system variable is enabled).

• If WITH ROLE is given, all roles named must be granted to the named user.

• The named user should be a MySQL account specified as 'user_name'@'host_name',
CURRENT_USER, or CURRENT_USER(). The current user may be named together with WITH ROLE
for the case that the executing user wants GRANT to execute with a set of roles applied that may
differ from the roles active within the current session.

• AS cannot be used to gain privileges not possessed by the user who executes the GRANT statement.
The executing user must have at least the privileges to be granted, but the AS clause can only
restrict the privileges granted, not escalate them.

• With respect to the privileges to be granted, AS cannot specify a user/role combination that has more
privileges (fewer restrictions) than the user who executes the GRANT statement. The AS user/role
combination is permitted to have more privileges than the executing user, but only if the statement
does not grant those additional privileges.

• AS is supported only for granting global privileges (ON *.*).

• AS is not supported for PROXY grants.

The following example illustrates the effect of the AS clause. Create a user u1 that has some global
privileges, as well as restrictions on those privileges:

CREATE USER u1;
GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO u1;
REVOKE INSERT, UPDATE ON schema1.* FROM u1;
REVOKE SELECT ON schema2.* FROM u1;

Also create a role r1 that lifts some of the privilege restrictions and grant the role to u1:

3061

Account Management Statements

CREATE ROLE r1;
GRANT INSERT ON schema1.* TO r1;
GRANT SELECT ON schema2.* TO r1;
GRANT r1 TO u1;

Now, using an account that has no privilege restrictions of its own, grant to multiple users the same
set of global privileges, but each with different restrictions imposed by the AS clause, and check which
privileges are actually granted.

• The GRANT statement here has no AS clause, so the privileges granted are exactly those specified:

mysql> CREATE USER u2;
mysql> GRANT SELECT, INSERT, UPDATE ON *.* TO u2;
mysql> SHOW GRANTS FOR u2;
+---+
| Grants for u2@% |
+---+
| GRANT SELECT, INSERT, UPDATE ON *.* TO `u2`@`%` |
+---+

• The GRANT statement here has an AS clause, so the privileges granted are those specified but with
the restrictions from u1 applied:

mysql> CREATE USER u3;
mysql> GRANT SELECT, INSERT, UPDATE ON *.* TO u3 AS u1;
mysql> SHOW GRANTS FOR u3;
+--+
| Grants for u3@% |
+--+
| GRANT SELECT, INSERT, UPDATE ON *.* TO `u3`@`%` |
| REVOKE INSERT, UPDATE ON `schema1`.* FROM `u3`@`%` |
| REVOKE SELECT ON `schema2`.* FROM `u3`@`%` |
+--+

As mentioned previously, the AS clause can only add privilege restrictions; it cannot escalate
privileges. Thus, although u1 has the DELETE privilege, that is not included in the privileges granted
because the statement does not specify granting DELETE.

• The AS clause for the GRANT statement here makes the role r1 active for u1. That role lifts some of
the restrictions on u1. Consequently, the privileges granted have some restrictions, but not so many
as for the previous GRANT statement:

mysql> CREATE USER u4;
mysql> GRANT SELECT, INSERT, UPDATE ON *.* TO u4 AS u1 WITH ROLE r1;
mysql> SHOW GRANTS FOR u4;
+---+
| Grants for u4@% |
+---+
| GRANT SELECT, INSERT, UPDATE ON *.* TO `u4`@`%` |
| REVOKE UPDATE ON `schema1`.* FROM `u4`@`%` |
+---+

If a GRANT statement includes an AS user clause, privilege restrictions on the user who executes the
statement are ignored (rather than applied as they would be in the absence of an AS clause).

Other Account Characteristics

The optional WITH clause is used to enable a user to grant privileges to other users. The WITH GRANT
OPTION clause gives the user the ability to give to other users any privileges the user has at the
specified privilege level.

To grant the GRANT OPTION privilege to an account without otherwise changing its privileges, do this:

GRANT USAGE ON *.* TO 'someuser'@'somehost' WITH GRANT OPTION;

Be careful to whom you give the GRANT OPTION privilege because two users with different privileges
may be able to combine privileges!

3062

Account Management Statements

You cannot grant another user a privilege which you yourself do not have; the GRANT OPTION
privilege enables you to assign only those privileges which you yourself possess.

Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege level, any
privileges the user possesses (or may be given in the future) at that level can also be granted by that
user to other users. Suppose that you grant a user the INSERT privilege on a database. If you then
grant the SELECT privilege on the database and specify WITH GRANT OPTION, that user can give to
other users not only the SELECT privilege, but also INSERT. If you then grant the UPDATE privilege to
the user on the database, the user can grant INSERT, SELECT, and UPDATE.

For a nonadministrative user, you should not grant the ALTER privilege globally or for the mysql
system schema. If you do that, the user can try to subvert the privilege system by renaming tables!

For additional information about security risks associated with particular privileges, see Section 8.2.2,
“Privileges Provided by MySQL”.

MySQL and Standard SQL Versions of GRANT

The biggest differences between the MySQL and standard SQL versions of GRANT are:

• MySQL associates privileges with the combination of a host name and user name and not with only a
user name.

• Standard SQL does not have global or database-level privileges, nor does it support all the privilege
types that MySQL supports.

• MySQL does not support the standard SQL UNDER privilege.

• Standard SQL privileges are structured in a hierarchical manner. If you remove a user, all privileges
the user has been granted are revoked. This is also true in MySQL if you use DROP USER. See
Section 15.7.1.5, “DROP USER Statement”.

• In standard SQL, when you drop a table, all privileges for the table are revoked. In standard SQL,
when you revoke a privilege, all privileges that were granted based on that privilege are also
revoked. In MySQL, privileges can be dropped with DROP USER or REVOKE statements.

• In MySQL, it is possible to have the INSERT privilege for only some of the columns in a table. In this
case, you can still execute INSERT statements on the table, provided that you insert values only for
those columns for which you have the INSERT privilege. The omitted columns are set to their implicit
default values if strict SQL mode is not enabled. In strict mode, the statement is rejected if any of the
omitted columns have no default value. (Standard SQL requires you to have the INSERT privilege on
all columns.) For information about strict SQL mode and implicit default values, see Section 7.1.11,
“Server SQL Modes”, and Section 13.6, “Data Type Default Values”.

15.7.1.7 RENAME USER Statement

RENAME USER old_user TO new_user
 [, old_user TO new_user] ...

The RENAME USER statement renames existing MySQL accounts. An error occurs for old accounts that
do not exist or new accounts that already exist.

To use RENAME USER, you must have the global CREATE USER privilege, or the UPDATE privilege
for the mysql system schema. When the read_only system variable is enabled, RENAME USER
additionally requires the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege).

As of MySQL 8.0.22, RENAME USER fails with an error if any account to be renamed is named as the
DEFINER attribute for any stored object. (That is, the statement fails if renaming an account would
cause a stored object to become orphaned.) To perform the operation anyway, you must have the
SET_USER_ID privilege; in this case, the statement succeeds with a warning rather than failing with an
error. For additional information, including how to identify which objects name a given account as the
DEFINER attribute, see Orphan Stored Objects.

3063

Account Management Statements

Each account name uses the format described in Section 8.2.4, “Specifying Account Names”. For
example:

RENAME USER 'jeffrey'@'localhost' TO 'jeff'@'127.0.0.1';

The host name part of the account name, if omitted, defaults to '%'.

RENAME USER causes the privileges held by the old user to be those held by the new user. However,
RENAME USER does not automatically drop or invalidate databases or objects within them that the old
user created. This includes stored programs or views for which the DEFINER attribute names the old
user. Attempts to access such objects may produce an error if they execute in definer security context.
(For information about security context, see Section 27.6, “Stored Object Access Control”.)

The privilege changes take effect as indicated in Section 8.2.13, “When Privilege Changes Take
Effect”.

15.7.1.8 REVOKE Statement

REVOKE [IF EXISTS]
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 FROM user_or_role [, user_or_role] ...
 [IGNORE UNKNOWN USER]

REVOKE [IF EXISTS] ALL [PRIVILEGES], GRANT OPTION
 FROM user_or_role [, user_or_role] ...
 [IGNORE UNKNOWN USER]

REVOKE [IF EXISTS] PROXY ON user_or_role
 FROM user_or_role [, user_or_role] ...
 [IGNORE UNKNOWN USER]

REVOKE [IF EXISTS] role [, role] ...
 FROM user_or_role [, user_or_role] ...
 [IGNORE UNKNOWN USER]

user_or_role: {
 user (see Section 8.2.4, “Specifying Account Names”)
 | role (see Section 8.2.5, “Specifying Role Names”
}

The REVOKE statement enables system administrators to revoke privileges and roles, which can be
revoked from user accounts and roles.

For details on the levels at which privileges exist, the permissible priv_type, priv_level, and
object_type values, and the syntax for specifying users and passwords, see Section 15.7.1.6,
“GRANT Statement”.

For information about roles, see Section 8.2.10, “Using Roles”.

When the read_only system variable is enabled, REVOKE requires the CONNECTION_ADMIN or
privilege (or the deprecated SUPER privilege), in addition to any other required privileges described in
the following discussion.

Beginning with MySQL 8.0.30, all the forms shown for REVOKE support an IF EXISTS option as well
as an IGNORE UNKNOWN USER option. With neither of these modifications, REVOKE either succeeds
for all named users and roles, or rolls back and has no effect if any error occurs; the statement is
written to the binary log only if it succeeds for all named users and roles. The precise effects of IF
EXISTS and IGNORE UNKNOWN USER are discussed later in this section.

Each account name uses the format described in Section 8.2.4, “Specifying Account Names”. Each
role name uses the format described in Section 8.2.5, “Specifying Role Names”. For example:

REVOKE INSERT ON *.* FROM 'jeffrey'@'localhost';
REVOKE 'role1', 'role2' FROM 'user1'@'localhost', 'user2'@'localhost';

3064

Account Management Statements

REVOKE SELECT ON world.* FROM 'role3';

The host name part of the account or role name, if omitted, defaults to '%'.

To use the first REVOKE syntax, you must have the GRANT OPTION privilege, and you must have the
privileges that you are revoking.

To revoke all privileges from a user, use one of the following statements; either of these statements
drops all global, database, table, column, and routine privileges for the named users or roles:

REVOKE ALL PRIVILEGES, GRANT OPTION
 FROM user_or_role [, user_or_role] ...

REVOKE ALL ON *.*
 FROM user_or_role [, user_or_role] ...

Neither of the two statements just shown revokes any roles.

To use these REVOKE statements, you must have the global CREATE USER privilege, or the UPDATE
privilege for the mysql system schema.

The syntax for which the REVOKE keyword is followed by one or more role names takes a FROM clause
indicating one or more users or roles from which to revoke the roles.

The IF EXISTS and IGNORE UNKNOWN USER options (MySQL 8.0.30 and later) have the effects
listed here:

• IF EXISTS means that, if the target user or role exists but no such privilege or role is found
assigned to the target for any reason, a warning is raised, instead of an error; if no privilege or role
named by the statement is assigned to the target, the statement has no (other) effect. Otherwise,
REVOKE executes normally; if the user does not exist, the statement raises an error.

Example: Given table t1 in database test, we execute the following statements, with the results
shown.

mysql> CREATE USER jerry@localhost;
Query OK, 0 rows affected (0.01 sec)

mysql> REVOKE SELECT ON test.t1 FROM jerry@localhost;
ERROR 1147 (42000): There is no such grant defined for user 'jerry' on host
'localhost' on table 't1'
mysql> REVOKE IF EXISTS SELECT ON test.t1 FROM jerry@localhost;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1147
Message: There is no such grant defined for user 'jerry' on host 'localhost' on
table 't1'
1 row in set (0.00 sec)

IF EXISTS causes an error to be demoted to a warning even if the privilege or role named does not
exist, or the statement attempts to assign it at the wrong level.

• If the REVOKE statement includes IGNORE UNKNOWN USER, the statement raises a warning for
any target user or role named in the statement but not found; if no target named by the statement
exists, REVOKE succeeds but has no actual effect. Otherwise, the statement executes as usual, and
attempting to revoke a privilege not assigned to the target for whatever reason raises an error, as
expected.

Example (continuing from the previous example):

mysql> DROP USER IF EXISTS jerry@localhost;
Query OK, 0 rows affected (0.01 sec)

3065

Account Management Statements

mysql> REVOKE SELECT ON test.t1 FROM jerry@localhost;
ERROR 1147 (42000): There is no such grant defined for user 'jerry' on host
'localhost' on table 't1'
mysql> REVOKE SELECT ON test.t1 FROM jerry@localhost IGNORE UNKNOWN USER;
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 3162
Message: Authorization ID jerry does not exist.
1 row in set (0.00 sec)

• The combination of IF EXISTS and IGNORE UNKNOWN USER means that REVOKE never raises
an error for an unknown target user or role or for an unassigned or unavailable privilege, and the
statement as whole in such cases succeeds; roles or privileges are removed from existing target
users or roles whenever possible, and any revocation which is not possible raises a warning and
executes as a NOOP.

Example (again continuing from example in the previous item):

No such user, no such role
mysql> DROP ROLE IF EXISTS Bogus;
Query OK, 0 rows affected, 1 warning (0.02 sec)

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Note | 3162 | Authorization ID 'Bogus'@'%' does not exist. |
+-------+------+--+
1 row in set (0.00 sec)

This statement attempts to revoke a nonexistent role from a nonexistent user
mysql> REVOKE Bogus ON test FROM jerry@localhost;
ERROR 3619 (HY000): Illegal privilege level specified for test

The same, with IF EXISTS
mysql> REVOKE IF EXISTS Bogus ON test FROM jerry@localhost;
ERROR 1147 (42000): There is no such grant defined for user 'jerry' on host
'localhost' on table 'test'

The same, with IGNORE UNKNOWN USER
mysql> REVOKE Bogus ON test FROM jerry@localhost IGNORE UNKNOWN USER;
ERROR 3619 (HY000): Illegal privilege level specified for test

The same, with both options
mysql> REVOKE IF EXISTS Bogus ON test FROM jerry@localhost IGNORE UNKNOWN USER;
Query OK, 0 rows affected, 2 warnings (0.01 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 3619 | Illegal privilege level specified for test |
| Warning | 3162 | Authorization ID jerry does not exist. |
+---------+------+--+
2 rows in set (0.00 sec)

Roles named in the mandatory_roles system variable value cannot be revoked. When IF EXISTS
and IGNORE UNKNOWN USER are used together in a statement that tries to remove a mandatory
privilege, the error normally raised by attempting to do this is demoted to a warning; the statement
executes successfully, but does not make any changes.

A revoked role immediately affects any user account from which it was revoked, such that within any
current session for the account, its privileges are adjusted for the next statement executed.

Revoking a role revokes the role itself, not the privileges that it represents. Suppose that an account
is granted a role that includes a given privilege, and is also granted the privilege explicitly or another

3066

Account Management Statements

role that includes the privilege. In this case, the account still possesses that privilege if the first role is
revoked. For example, if an account is granted two roles that each include SELECT, the account still
can select after either role is revoked.

REVOKE ALL ON *.* (at the global level) revokes all granted static global privileges and all granted
dynamic privileges.

A revoked privilege that is granted but not known to the server is revoked with a warning. This
situation can occur for dynamic privileges. For example, a dynamic privilege can be granted while the
component that registers it is installed, but if that component is subsequently uninstalled, the privilege
becomes unregistered, although accounts that possess the privilege still possess it and it can be
revoked from them.

REVOKE removes privileges, but does not remove rows from the mysql.user system table. To remove
a user account entirely, use DROP USER. See Section 15.7.1.5, “DROP USER Statement”.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to
revoke these privileges. It is necessary in such cases to manipulate the grant tables directly. (GRANT
does not create such rows when lower_case_table_names is set, but such rows might have been
created prior to setting the variable. The lower_case_table_names setting can only be configured
when initializing the server.)

When successfully executed from the mysql program, REVOKE responds with Query OK, 0
rows affected. To determine what privileges remain after the operation, use SHOW GRANTS. See
Section 15.7.7.21, “SHOW GRANTS Statement”.

15.7.1.9 SET DEFAULT ROLE Statement

SET DEFAULT ROLE
 {NONE | ALL | role [, role] ...}
 TO user [, user] ...

For each user named immediately after the TO keyword, this statement defines which roles become
active when the user connects to the server and authenticates, or when the user executes the SET
ROLE DEFAULT statement during a session.

SET DEFAULT ROLE is alternative syntax for ALTER USER ... DEFAULT ROLE (see
Section 15.7.1.1, “ALTER USER Statement”). However, ALTER USER can set the default for only a
single user, whereas SET DEFAULT ROLE can set the default for multiple users. On the other hand,
you can specify CURRENT_USER as the user name for the ALTER USER statement, whereas you
cannot for SET DEFAULT ROLE.

SET DEFAULT ROLE requires these privileges:

• Setting the default roles for another user requires the global CREATE USER privilege, or the UPDATE
privilege for the mysql.default_roles system table.

• Setting the default roles for yourself requires no special privileges, as long as the roles you want as
the default have been granted to you.

Each role name uses the format described in Section 8.2.5, “Specifying Role Names”. For example:

SET DEFAULT ROLE 'admin', 'developer' TO 'joe'@'10.0.0.1';

The host name part of the role name, if omitted, defaults to '%'.

The clause following the DEFAULT ROLE keywords permits these values:

• NONE: Set the default to NONE (no roles).

• ALL: Set the default to all roles granted to the account.

3067

Account Management Statements

• role [, role] ...: Set the default to the named roles, which must exist and be granted to the
account at the time SET DEFAULT ROLE is executed.

Note

SET DEFAULT ROLE and SET ROLE DEFAULT are different statements:

• SET DEFAULT ROLE defines which account roles to activate by default within
account sessions.

• SET ROLE DEFAULT sets the active roles within the current session to the
current account default roles.

For role usage examples, see Section 8.2.10, “Using Roles”.

15.7.1.10 SET PASSWORD Statement

SET PASSWORD [FOR user] auth_option
 [REPLACE 'current_auth_string']
 [RETAIN CURRENT PASSWORD]

auth_option: {
 = 'auth_string'
 | TO RANDOM
}

The SET PASSWORD statement assigns a password to a MySQL user account. The password may
be either explicitly specified in the statement or randomly generated by MySQL. The statement may
also include a password-verification clause that specifies the account current password to be replaced,
and a clause that manages whether an account has a secondary password. 'auth_string' and
'current_auth_string' each represent a cleartext (unencrypted) password.

Note

Rather than using SET PASSWORD to assign passwords, ALTER USER is the
preferred statement for account alterations, including assigning passwords. For
example:

ALTER USER user IDENTIFIED BY 'auth_string';

Note

Clauses for random password generation, password verification, and secondary
passwords apply only to accounts that use an authentication plugin that stores
credentials internally to MySQL. For accounts that use a plugin that performs
authentication against a credentials system that is external to MySQL, password
management must be handled externally against that system as well. For more
information about internal credentials storage, see Section 8.2.15, “Password
Management”.

The REPLACE 'current_auth_string' clause performs password verification and is available as
of MySQL 8.0.13. If given:

• REPLACE specifies the account current password to be replaced, as a cleartext (unencrypted) string.

• The clause must be given if password changes for the account are required to specify the current
password, as verification that the user attempting to make the change actually knows the current
password.

• The clause is optional if password changes for the account may but need not specify the current
password.

• The statement fails if the clause is given but does not match the current password, even if the clause
is optional.

3068

Account Management Statements

• REPLACE can be specified only when changing the account password for the current user.

For more information about password verification by specifying the current password, see
Section 8.2.15, “Password Management”.

The RETAIN CURRENT PASSWORD clause implements dual-password capability and is available as of
MySQL 8.0.14. If given:

• RETAIN CURRENT PASSWORD retains an account current password as its secondary password,
replacing any existing secondary password. The new password becomes the primary password, but
clients can use the account to connect to the server using either the primary or secondary password.
(Exception: If the new password specified by the SET PASSWORD statement is empty, the secondary
password becomes empty as well, even if RETAIN CURRENT PASSWORD is given.)

• If you specify RETAIN CURRENT PASSWORD for an account that has an empty primary password,
the statement fails.

• If an account has a secondary password and you change its primary password without specifying
RETAIN CURRENT PASSWORD, the secondary password remains unchanged.

For more information about use of dual passwords, see Section 8.2.15, “Password Management”.

SET PASSWORD permits these auth_option syntaxes:

• = 'auth_string'

Assigns the account the given literal password.

• TO RANDOM

Assigns the account a password randomly generated by MySQL. The statement also returns
the cleartext password in a result set to make it available to the user or application executing the
statement.

For details about the result set and characteristics of randomly generated passwords, see Random
Password Generation.

Random password generation is available as of MySQL 8.0.18.

Important

Under some circumstances, SET PASSWORD may be recorded in server logs or
on the client side in a history file such as ~/.mysql_history, which means
that cleartext passwords may be read by anyone having read access to that
information. For information about the conditions under which this occurs for the
server logs and how to control it, see Section 8.1.2.3, “Passwords and Logging”.
For similar information about client-side logging, see Section 6.5.1.3, “mysql
Client Logging”.

SET PASSWORD can be used with or without a FOR clause that explicitly names a user account:

• With a FOR user clause, the statement sets the password for the named account, which must exist:

SET PASSWORD FOR 'jeffrey'@'localhost' = 'auth_string';

• With no FOR user clause, the statement sets the password for the current user:

SET PASSWORD = 'auth_string';

Any client who connects to the server using a nonanonymous account can change the password for
that account. (In particular, you can change your own password.) To see which account the server
authenticated you as, invoke the CURRENT_USER() function:

3069

Account Management Statements

SELECT CURRENT_USER();

If a FOR user clause is given, the account name uses the format described in Section 8.2.4,
“Specifying Account Names”. For example:

SET PASSWORD FOR 'bob'@'%.example.org' = 'auth_string';

The host name part of the account name, if omitted, defaults to '%'.

SET PASSWORD interprets the string as a cleartext string, passes it to the authentication plugin
associated with the account, and stores the result returned by the plugin in the account row in the
mysql.user system table. (The plugin is given the opportunity to hash the value into the encryption
format it expects. The plugin may use the value as specified, in which case no hashing occurs.)

Setting the password for a named account (with a FOR clause) requires the UPDATE privilege for the
mysql system schema. Setting the password for yourself (for a nonanonymous account with no FOR
clause) requires no special privileges.

Statements that modify secondary passwords require these privileges:

• The APPLICATION_PASSWORD_ADMIN privilege is required to use the RETAIN CURRENT
PASSWORD clause for SET PASSWORD statements that apply to your own account. The privilege
is required to manipulate your own secondary password because most users require only one
password.

• If an account is to be permitted to manipulate secondary passwords for all accounts, it should be
granted the CREATE USER privilege rather than APPLICATION_PASSWORD_ADMIN.

When the read_only system variable is enabled, SET PASSWORD requires the CONNECTION_ADMIN
privilege (or the deprecated SUPER privilege), in addition to any other required privileges.

For additional information about setting passwords and authentication plugins, see Section 8.2.14,
“Assigning Account Passwords”, and Section 8.2.17, “Pluggable Authentication”.

15.7.1.11 SET ROLE Statement

SET ROLE {
 DEFAULT
 | NONE
 | ALL
 | ALL EXCEPT role [, role] ...
 | role [, role] ...
}

SET ROLE modifies the current user's effective privileges within the current session by specifying
which of its granted roles are active. Granted roles include those granted explicitly to the user and
those named in the mandatory_roles system variable value.

Examples:

SET ROLE DEFAULT;
SET ROLE 'role1', 'role2';
SET ROLE ALL;
SET ROLE ALL EXCEPT 'role1', 'role2';

Each role name uses the format described in Section 8.2.5, “Specifying Role Names”. The host name
part of the role name, if omitted, defaults to '%'.

Privileges that the user has been granted directly (rather than through roles) remain unaffected by
changes to the active roles.

The statement permits these role specifiers:

3070

Resource Group Management Statements

• DEFAULT: Activate the account default roles. Default roles are those specified with SET DEFAULT
ROLE.

When a user connects to the server and authenticates successfully, the server determines which
roles to activate as the default roles. If the activate_all_roles_on_login system variable is
enabled, the server activates all granted roles. Otherwise, the server executes SET ROLE DEFAULT
implicitly. The server activates only default roles that can be activated. The server writes warnings to
its error log for default roles that cannot be activated, but the client receives no warnings.

If a user executes SET ROLE DEFAULT during a session, an error occurs if any default role cannot
be activated (for example, if it does not exist or is not granted to the user). In this case, the current
active roles are not changed.

• NONE: Set the active roles to NONE (no active roles).

• ALL: Activate all roles granted to the account.

• ALL EXCEPT role [, role] ...: Activate all roles granted to the account except those
named. The named roles need not exist or be granted to the account.

• role [, role] ...: Activate the named roles, which must be granted to the account.

Note

SET DEFAULT ROLE and SET ROLE DEFAULT are different statements:

• SET DEFAULT ROLE defines which account roles to activate by default within
account sessions.

• SET ROLE DEFAULT sets the active roles within the current session to the
current account default roles.

For role usage examples, see Section 8.2.10, “Using Roles”.

15.7.2 Resource Group Management Statements

MySQL supports creation and management of resource groups, and permits assigning threads running
within the server to particular groups so that threads execute according to the resources available to
the group. This section describes the SQL statements available for resource group management. For
general discussion of the resource group capability, see Section 7.1.16, “Resource Groups”.

15.7.2.1 ALTER RESOURCE GROUP Statement

ALTER RESOURCE GROUP group_name
 [VCPU [=] vcpu_spec [, vcpu_spec] ...]
 [THREAD_PRIORITY [=] N]
 [ENABLE|DISABLE [FORCE]]

vcpu_spec: {N | M - N}

ALTER RESOURCE GROUP is used for resource group management (see Section 7.1.16, “Resource
Groups”). This statement alters modifiable attributes of an existing resource group. It requires the
RESOURCE_GROUP_ADMIN privilege.

group_name identifies which resource group to alter. If the group does not exist, an error occurs.

The attributes for CPU affinity, priority, and whether the group is enabled can be modified with ALTER
RESOURCE GROUP. These attributes are specified the same way as described for CREATE RESOURCE
GROUP (see Section 15.7.2.2, “CREATE RESOURCE GROUP Statement”). Only the attributes
specified are altered. Unspecified attributes retain their current values.

The FORCE modifier is used with DISABLE. It determines statement behavior if the resource group has
any threads assigned to it:

3071

Resource Group Management Statements

• If FORCE is not given, existing threads in the group continue to run until they terminate, but new
threads cannot be assigned to the group.

• If FORCE is given, existing threads in the group are moved to their respective default group (system
threads to SYS_default, user threads to USR_default).

The name and type attributes are set at group creation time and cannot be modified thereafter with
ALTER RESOURCE GROUP.

Examples:

• Alter a group CPU affinity:

ALTER RESOURCE GROUP rg1 VCPU = 0-63;

• Alter a group thread priority:

ALTER RESOURCE GROUP rg2 THREAD_PRIORITY = 5;

• Disable a group, moving any threads assigned to it to the default groups:

ALTER RESOURCE GROUP rg3 DISABLE FORCE;

Resource group management is local to the server on which it occurs. ALTER RESOURCE GROUP
statements are not written to the binary log and are not replicated.

15.7.2.2 CREATE RESOURCE GROUP Statement

CREATE RESOURCE GROUP group_name
 TYPE = {SYSTEM|USER}
 [VCPU [=] vcpu_spec [, vcpu_spec] ...]
 [THREAD_PRIORITY [=] N]
 [ENABLE|DISABLE]

vcpu_spec: {N | M - N}

CREATE RESOURCE GROUP is used for resource group management (see Section 7.1.16, “Resource
Groups”). This statement creates a new resource group and assigns its initial attribute values. It
requires the RESOURCE_GROUP_ADMIN privilege.

group_name identifies which resource group to create. If the group already exists, an error occurs.

The TYPE attribute is required. It should be SYSTEM for a system resource group, USER for a user
resource group. The group type affects permitted THREAD_PRIORITY values, as described later.

The VCPU attribute indicates the CPU affinity; that is, the set of virtual CPUs the group can use:

• If VCPU is not given, the resource group has no CPU affinity and can use all available CPUs.

• If VCPU is given, the attribute value is a list of comma-separated CPU numbers or ranges:

• Each number must be an integer in the range from 0 to the number of CPUs − 1. For example, on
a system with 64 CPUs, the number can range from 0 to 63.

• A range is given in the form M − N, where M is less than or equal to N and both numbers are in the
CPU range.

• If a CPU number is an integer outside the permitted range or is not an integer, an error occurs.

Example VCPU specifiers (these are all equivalent):

VCPU = 0,1,2,3,9,10
VCPU = 0-3,9-10
VCPU = 9,10,0-3

3072

Resource Group Management Statements

VCPU = 0,10,1,9,3,2

The THREAD_PRIORITY attribute indicates the priority for threads assigned to the group:

• If THREAD_PRIORITY is not given, the default priority is 0.

• If THREAD_PRIORITY is given, the attribute value must be in the range from -20 (highest priority)
to 19 (lowest priority). The priority for system resource groups must be in the range from -20 to 0.
The priority for user resource groups must be in the range from 0 to 19. Use of different ranges for
system and user groups ensures that user threads never have a higher priority than system threads.

ENABLE and DISABLE specify that the resource group is initially enabled or disabled. If neither is
specified, the group is enabled by default. A disabled group cannot have threads assigned to it.

Examples:

• Create an enabled user group that has a single CPU and the lowest priority:

CREATE RESOURCE GROUP rg1
 TYPE = USER
 VCPU = 0
 THREAD_PRIORITY = 19;

• Create a disabled system group that has no CPU affinity (can use all CPUs) and the highest priority:

CREATE RESOURCE GROUP rg2
 TYPE = SYSTEM
 THREAD_PRIORITY = -20
 DISABLE;

Resource group management is local to the server on which it occurs. CREATE RESOURCE GROUP
statements are not written to the binary log and are not replicated.

15.7.2.3 DROP RESOURCE GROUP Statement

DROP RESOURCE GROUP group_name [FORCE]

DROP RESOURCE GROUP is used for resource group management (see Section 7.1.16, “Resource
Groups”). This statement drops a resource group. It requires the RESOURCE_GROUP_ADMIN privilege.

group_name identifies which resource group to drop. If the group does not exist, an error occurs.

The FORCE modifier determines statement behavior if the resource group has any threads assigned to
it:

• If FORCE is not given and any threads are assigned to the group, an error occurs.

• If FORCE is given, existing threads in the group are moved to their respective default group (system
threads to SYS_default, user threads to USR_default).

Examples:

• Drop a group, failing if the group contains any threads:

DROP RESOURCE GROUP rg1;

• Drop a group and move existing threads to the default groups:

DROP RESOURCE GROUP rg2 FORCE;

Resource group management is local to the server on which it occurs. DROP RESOURCE GROUP
statements are not written to the binary log and are not replicated.

15.7.2.4 SET RESOURCE GROUP Statement

3073

Table Maintenance Statements

SET RESOURCE GROUP group_name
 [FOR thread_id [, thread_id] ...]

SET RESOURCE GROUP is used for resource group management (see Section 7.1.16,
“Resource Groups”). This statement assigns threads to a resource group. It requires the
RESOURCE_GROUP_ADMIN or RESOURCE_GROUP_USER privilege.

group_name identifies which resource group to be assigned. Any thread_id values indicate threads
to assign to the group. Thread IDs can be determined from the Performance Schema threads table. If
the resource group or any named thread ID does not exist, an error occurs.

With no FOR clause, the statement assigns the current thread for the session to the resource group.

With a FOR clause that names thread IDs, the statement assigns those threads to the resource group.

For attempts to assign a system thread to a user resource group or a user thread to a system resource
group, a warning occurs.

Examples:

• Assign the current session thread to a group:

SET RESOURCE GROUP rg1;

• Assign the named threads to a group:

SET RESOURCE GROUP rg2 FOR 14, 78, 4;

Resource group management is local to the server on which it occurs. SET RESOURCE GROUP
statements are not written to the binary log and are not replicated.

An alternative to SET RESOURCE GROUP is the RESOURCE_GROUP optimizer hint, which assigns
individual statements to a resource group. See Section 10.9.3, “Optimizer Hints”.

15.7.3 Table Maintenance Statements

15.7.3.1 ANALYZE TABLE Statement

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name [, tbl_name] ...

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name
 UPDATE HISTOGRAM ON col_name [, col_name] ...
 [WITH N BUCKETS]

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name
 UPDATE HISTOGRAM ON col_name [USING DATA 'json_data']

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name
 DROP HISTOGRAM ON col_name [, col_name] ...

ANALYZE TABLE generates table statistics:

• ANALYZE TABLE without any HISTOGRAM clause performs a key distribution analysis and stores the
distribution for the named table or tables. For MyISAM tables, ANALYZE TABLE for key distribution
analysis is equivalent to using myisamchk --analyze.

• ANALYZE TABLE with the UPDATE HISTOGRAM clause generates histogram statistics for the named
table columns and stores them in the data dictionary. Only one table name is permitted for this
syntax. MySQL 8.0.31 and later also supports setting the histogram of a single column to a user-
defined JSON value.

3074

Table Maintenance Statements

• ANALYZE TABLE with the DROP HISTOGRAM clause removes histogram statistics for the named
table columns from the data dictionary. Only one table name is permitted for this syntax.

This statement requires SELECT and INSERT privileges for the table.

ANALYZE TABLE works with InnoDB, NDB, and MyISAM tables. It does not work with views.

If the innodb_read_only system variable is enabled, ANALYZE TABLE may fail because it
cannot update statistics tables in the data dictionary, which use InnoDB. For ANALYZE TABLE
operations that update the key distribution, failure may occur even if the operation updates the
table itself (for example, if it is a MyISAM table). To obtain the updated distribution statistics, set
information_schema_stats_expiry=0.

ANALYZE TABLE is supported for partitioned tables, and you can use ALTER TABLE ... ANALYZE
PARTITION to analyze one or more partitions; for more information, see Section 15.1.9, “ALTER
TABLE Statement”, and Section 26.3.4, “Maintenance of Partitions”.

During the analysis, the table is locked with a read lock for InnoDB and MyISAM.

By default, the server writes ANALYZE TABLE statements to the binary log so that they replicate to
replicas. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

Previously, ANALYZE TABLE required a flush lock. This meant that, when there were long running
statements or transactions still using the table when ANALYZE TABLE was invoked, any following
statements and transactions had to wait for those operations to finish before the flush lock could
be released. This issue is resolved in MySQL 8.0.24 (and later), where ANALYZE TABLE no longer
causes subsequent operations to wait.

• ANALYZE TABLE Output

• Key Distribution Analysis

• Histogram Statistics Analysis

• Other Considerations

ANALYZE TABLE Output

ANALYZE TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

Op analyze or histogram

Msg_type status, error, info, note, or warning

Msg_text An informational message

Key Distribution Analysis

ANALYZE TABLE without either HISTOGRAM clause performs a key distribution analysis and stores the
distribution for the table or tables. Any existing histogram statistics remain unaffected.

If the table has not changed since the last key distribution analysis, the table is not analyzed again.

MySQL uses the stored key distribution to decide the order in which tables should be joined for joins
on something other than a constant. In addition, key distributions can be used when deciding which
indexes to use for a specific table within a query.

To check the stored key distribution cardinality, use the SHOW INDEX statement or the
INFORMATION_SCHEMA STATISTICS table. See Section 15.7.7.22, “SHOW INDEX Statement”, and
Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”.

3075

Table Maintenance Statements

For InnoDB tables, ANALYZE TABLE determines index cardinality by performing random dives on
each of the index trees and updating index cardinality estimates accordingly. Because these are only
estimates, repeated runs of ANALYZE TABLE could produce different numbers. This makes ANALYZE
TABLE fast on InnoDB tables but not 100% accurate because it does not take all rows into account.

You can make the statistics collected by ANALYZE TABLE more precise and more stable by enabling
innodb_stats_persistent, as explained in Section 17.8.10.1, “Configuring Persistent Optimizer
Statistics Parameters”. When innodb_stats_persistent is enabled, it is important to run ANALYZE
TABLE after major changes to index column data, as statistics are not recalculated periodically (such
as after a server restart).

If innodb_stats_persistent is enabled, you can change the number of random dives by modifying
the innodb_stats_persistent_sample_pages system variable. If innodb_stats_persistent
is disabled, modify innodb_stats_transient_sample_pages instead.

For more information about key distribution analysis in InnoDB, see Section 17.8.10.1, “Configuring
Persistent Optimizer Statistics Parameters”, and Section 17.8.10.3, “Estimating ANALYZE TABLE
Complexity for InnoDB Tables”.

MySQL uses index cardinality estimates in join optimization. If a join is not optimized in the right way,
try running ANALYZE TABLE. In the few cases that ANALYZE TABLE does not produce values good
enough for your particular tables, you can use FORCE INDEX with your queries to force the use of a
particular index, or set the max_seeks_for_key system variable to ensure that MySQL prefers index
lookups over table scans. See Section B.3.5, “Optimizer-Related Issues”.

Histogram Statistics Analysis

ANALYZE TABLE with the HISTOGRAM clause enables management of histogram statistics for table
column values. For information about histogram statistics, see Section 10.9.6, “Optimizer Statistics”.

These histogram operations are available:

• ANALYZE TABLE with an UPDATE HISTOGRAM clause generates histogram statistics for the named
table columns and stores them in the data dictionary. Only one table name is permitted for this
syntax.

The optional WITH N BUCKETS clause specifies the number of buckets for the histogram. The value
of N must be an integer in the range from 1 to 1024. If this clause is omitted, the number of buckets is
100.

• ANALYZE TABLE with a DROP HISTOGRAM clause removes histogram statistics for the named table
columns from the data dictionary. Only one table name is permitted for this syntax.

Stored histogram management statements affect only the named columns. Consider these statements:

ANALYZE TABLE t UPDATE HISTOGRAM ON c1, c2, c3 WITH 10 BUCKETS;
ANALYZE TABLE t UPDATE HISTOGRAM ON c1, c3 WITH 10 BUCKETS;
ANALYZE TABLE t DROP HISTOGRAM ON c2;

The first statement updates the histograms for columns c1, c2, and c3, replacing any existing
histograms for those columns. The second statement updates the histograms for c1 and c3, leaving
the c2 histogram unaffected. The third statement removes the histogram for c2, leaving those for c1
and c3 unaffected.

When sampling user data as part of building a histogram, not all values are read; this may lead to
missing some values considered important. In such cases, it might be useful to modify the histogram,
or to set your own histogram explicitly based on your own criteria, such as the complete data set.
MySQL 8.0.31 adds support for ANALYZE TABLE tbl_name UPDATE HISTOGRAM ON col_name
USING DATA 'json_data' for updating a column of the histogram table with data supplied in
the same JSON format used to display HISTOGRAM column values from the Information Schema

3076

Table Maintenance Statements

COLUMN_STATISTICS table. Only one column can be modified when updating the histogram with
JSON data.

We can illustrate the use of USING DATA by first generating a histogram on column c1 of table t, like
this:

mysql> ANALYZE TABLE t UPDATE HISTOGRAM ON c1;
+--------+-----------+----------+---+
| Table | Op | Msg_type | Msg_text |
+--------+-----------+----------+---+
| mydb.t | histogram | status | Histogram statistics created for column 'c1'. |
+--------+-----------+----------+---+

We can see the histogram generated in the COLUMN_STATISTICS table:

mysql> TABLE information_schema.column_statistics\G
*************************** 1. row ***************************
SCHEMA_NAME: mydb
 TABLE_NAME: t
COLUMN_NAME: c1
 HISTOGRAM: {"buckets": [[206, 0.0625], [456, 0.125], [608, 0.1875]],
"data-type": "int", "null-values": 0.0, "collation-id": 8, "last-updated":
"2022-10-11 16:13:14.563319", "sampling-rate": 1.0, "histogram-type":
"singleton", "number-of-buckets-specified": 100}

Now we drop the histogram, and when we check COLUMN_STATISTICS, it is now empty:

mysql> ANALYZE TABLE t DROP HISTOGRAM ON c1;
+--------+-----------+----------+---+
| Table | Op | Msg_type | Msg_text |
+--------+-----------+----------+---+
| mydb.t | histogram | status | Histogram statistics removed for column 'c1'. |
+--------+-----------+----------+---+

mysql> TABLE information_schema.column_statistics\G
Empty set (0.00 sec)

We can restore the dropped histogram by inserting its JSON representation obtained previously from
the HISTOGRAM column of the COLUMN_STATISTICS table, and when we query that table again, we
can see that the histogram has been restored to its previous state:

mysql> ANALYZE TABLE t UPDATE HISTOGRAM ON c1
 -> USING DATA '{"buckets": [[206, 0.0625], [456, 0.125], [608, 0.1875]],
 -> "data-type": "int", "null-values": 0.0, "collation-id":
 -> 8, "last-updated": "2022-10-11 16:13:14.563319",
 -> "sampling-rate": 1.0, "histogram-type": "singleton",
 -> "number-of-buckets-specified": 100}';
+--------+-----------+----------+---+
| Table | Op | Msg_type | Msg_text |
+--------+-----------+----------+---+
| mydb.t | histogram | status | Histogram statistics created for column 'c1'. |
+--------+-----------+----------+---+

mysql> TABLE information_schema.column_statistics\G
*************************** 1. row ***************************
SCHEMA_NAME: mydb
 TABLE_NAME: t
COLUMN_NAME: c1
 HISTOGRAM: {"buckets": [[206, 0.0625], [456, 0.125], [608, 0.1875]],
"data-type": "int", "null-values": 0.0, "collation-id": 8, "last-updated":
"2022-10-11 16:13:14.563319", "sampling-rate": 1.0, "histogram-type":
"singleton", "number-of-buckets-specified": 100}

Histogram generation is not supported for encrypted tables (to avoid exposing data in the statistics) or
TEMPORARY tables.

Histogram generation applies to columns of all data types except geometry types (spatial data) and
JSON.

3077

Table Maintenance Statements

Histograms can be generated for stored and virtual generated columns.

Histograms cannot be generated for columns that are covered by single-column unique indexes.

Histogram management statements attempt to perform as much of the requested operation as
possible, and report diagnostic messages for the remainder. For example, if an UPDATE HISTOGRAM
statement names multiple columns, but some of them do not exist or have an unsupported data type,
histograms are generated for the other columns, and messages are produced for the invalid columns.

Histograms are affected by these DDL statements:

• DROP TABLE removes histograms for columns in the dropped table.

• DROP DATABASE removes histograms for any table in the dropped database because the statement
drops all tables in the database.

• RENAME TABLE does not remove histograms. Instead, it renames histograms for the renamed table
to be associated with the new table name.

• ALTER TABLE statements that remove or modify a column remove histograms for that column.

• ALTER TABLE ... CONVERT TO CHARACTER SET removes histograms for character columns
because they are affected by the change of character set. Histograms for noncharacter columns
remain unaffected.

The histogram_generation_max_mem_size system variable controls the maximum amount of
memory available for histogram generation. The global and session values may be set at runtime.

Changing the global histogram_generation_max_mem_size value requires privileges sufficient to
set global system variables. Changing the session histogram_generation_max_mem_size value
requires privileges sufficient to set restricted session system variables. See Section 7.1.9.1, “System
Variable Privileges”.

If the estimated amount of data to be read into memory for histogram generation exceeds the limit
defined by histogram_generation_max_mem_size, MySQL samples the data rather than reading
all of it into memory. Sampling is evenly distributed over the entire table. MySQL uses SYSTEM
sampling, which is a page-level sampling method.

The sampling-rate value in the HISTOGRAM column of the Information Schema
COLUMN_STATISTICS table can be queried to determine the fraction of data that was sampled to
create the histogram. The sampling-rate is a number between 0.0 and 1.0. A value of 1 means that
all of the data was read (no sampling).

The following example demonstrates sampling. To ensure that the amount of data exceeds the
histogram_generation_max_mem_size limit for the purpose of the example, the limit is set to a
low value (2000000 bytes) prior to generating histogram statistics for the birth_date column of the
employees table.

mysql> SET histogram_generation_max_mem_size = 2000000;

mysql> USE employees;

mysql> ANALYZE TABLE employees UPDATE HISTOGRAM ON birth_date WITH 16 BUCKETS\G
*************************** 1. row ***************************
 Table: employees.employees
 Op: histogram
Msg_type: status
Msg_text: Histogram statistics created for column 'birth_date'.

mysql> SELECT HISTOGRAM->>'$."sampling-rate"'
 FROM INFORMATION_SCHEMA.COLUMN_STATISTICS
 WHERE TABLE_NAME = "employees"
 AND COLUMN_NAME = "birth_date";
+---------------------------------+

3078

Table Maintenance Statements

| HISTOGRAM->>'$."sampling-rate"' |
+---------------------------------+
| 0.0491431208869665 |
+---------------------------------+

A sampling-rate value of 0.0491431208869665 means that approximately 4.9% of the data from
the birth_date column was read into memory for generating histogram statistics.

As of MySQL 8.0.19, the InnoDB storage engine provides its own sampling implementation for
data stored in InnoDB tables. The default sampling implementation used by MySQL when storage
engines do not provide their own requires a full table scan, which is costly for large tables. The InnoDB
sampling implementation improves sampling performance by avoiding full table scans.

The sampled_pages_read and sampled_pages_skipped INNODB_METRICS counters can be
used to monitor sampling of InnoDB data pages. (For general INNODB_METRICS counter usage
information, see Section 28.4.21, “The INFORMATION_SCHEMA INNODB_METRICS Table”.)

The following example demonstrates sampling counter usage, which requires enabling the counters
prior to generating histogram statistics.

mysql> SET GLOBAL innodb_monitor_enable = 'sampled%';

mysql> USE employees;

mysql> ANALYZE TABLE employees UPDATE HISTOGRAM ON birth_date WITH 16 BUCKETS\G
*************************** 1. row ***************************
 Table: employees.employees
 Op: histogram
Msg_type: status
Msg_text: Histogram statistics created for column 'birth_date'.

mysql> USE INFORMATION_SCHEMA;

mysql> SELECT NAME, COUNT FROM INNODB_METRICS WHERE NAME LIKE 'sampled%'\G
*************************** 1. row ***************************
 NAME: sampled_pages_read
COUNT: 43
*************************** 2. row ***************************
 NAME: sampled_pages_skipped
COUNT: 843

This formula approximates a sampling rate based on the sampling counter data:

sampling rate = sampled_page_read/(sampled_pages_read + sampled_pages_skipped)

A sampling rate based on sampling counter data is roughly the same as the sampling-rate value in
the HISTOGRAM column of the Information Schema COLUMN_STATISTICS table.

For information about memory allocations performed for histogram generation, monitor the
Performance Schema memory/sql/histograms instrument. See Section 29.12.20.10, “Memory
Summary Tables”.

Other Considerations

ANALYZE TABLE clears table statistics from the Information Schema INNODB_TABLESTATS table and
sets the STATS_INITIALIZED column to Uninitialized. Statistics are collected again the next
time the table is accessed.

15.7.3.2 CHECK TABLE Statement

CHECK TABLE tbl_name [, tbl_name] ... [option] ...

option: {
 FOR UPGRADE
 | QUICK
 | FAST

3079

Table Maintenance Statements

 | MEDIUM
 | EXTENDED
 | CHANGED
}

CHECK TABLE checks a table or tables for errors. CHECK TABLE can also check views for problems,
such as tables that are referenced in the view definition that no longer exist.

To check a table, you must have some privilege for it.

CHECK TABLE works for InnoDB, MyISAM, ARCHIVE, and CSV tables.

Before running CHECK TABLE on InnoDB tables, see CHECK TABLE Usage Notes for InnoDB Tables.

CHECK TABLE is supported for partitioned tables, and you can use ALTER TABLE ... CHECK
PARTITION to check one or more partitions; for more information, see Section 15.1.9, “ALTER TABLE
Statement”, and Section 26.3.4, “Maintenance of Partitions”.

CHECK TABLE ignores virtual generated columns that are not indexed.

• CHECK TABLE Output

• Checking Version Compatibility

• Checking Data Consistency

• CHECK TABLE Usage Notes for InnoDB Tables

• CHECK TABLE Usage Notes for MyISAM Tables

CHECK TABLE Output

CHECK TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

Op Always check

Msg_type status, error, info, note, or warning

Msg_text An informational message

The statement might produce many rows of information for each checked table. The last row has a
Msg_type value of status and the Msg_text normally should be OK. Table is already up to
date means that the storage engine for the table indicated that there was no need to check the table.

Checking Version Compatibility

The FOR UPGRADE option checks whether the named tables are compatible with the current version
of MySQL. With FOR UPGRADE, the server checks each table to determine whether there have been
any incompatible changes in any of the table's data types or indexes since the table was created. If not,
the check succeeds. Otherwise, if there is a possible incompatibility, the server runs a full check on the
table (which might take some time).

Incompatibilities might occur because the storage format for a data type has changed or because its
sort order has changed. Our aim is to avoid these changes, but occasionally they are necessary to
correct problems that would be worse than an incompatibility between releases.

FOR UPGRADE discovers these incompatibilities:

• The indexing order for end-space in TEXT columns for InnoDB and MyISAM tables changed
between MySQL 4.1 and 5.0.

3080

Table Maintenance Statements

• The storage method of the new DECIMAL data type changed between MySQL 5.0.3 and 5.0.5.

• Changes are sometimes made to character sets or collations that require table indexes to be rebuilt.
For details about such changes, see Section 3.5, “Changes in MySQL 8.0”. For information about
rebuilding tables, see Section 3.14, “Rebuilding or Repairing Tables or Indexes”.

• MySQL 8.0 does not support the 2-digit YEAR(2) data type permitted in older versions of MySQL.
For tables containing YEAR(2) columns, CHECK TABLE recommends REPAIR TABLE, which
converts 2-digit YEAR(2) columns to 4-digit YEAR columns.

• Trigger creation time is maintained.

• A table is reported as needing a rebuild if it contains old temporal columns in pre-5.6.4 format (TIME,
DATETIME, and TIMESTAMP columns without support for fractional seconds precision) and the
avoid_temporal_upgrade system variable is disabled. This helps the MySQL upgrade procedure
detect and upgrade tables containing old temporal columns. If avoid_temporal_upgrade is
enabled, FOR UPGRADE ignores the old temporal columns present in the table; consequently, the
upgrade procedure does not upgrade them.

To check for tables that contain such temporal columns and need a rebuild, disable
avoid_temporal_upgrade before executing CHECK TABLE ... FOR UPGRADE.

• Warnings are issued for tables that use nonnative partitioning because nonnative partitioning is
removed in MySQL 8.0. See Chapter 26, Partitioning.

Checking Data Consistency

The following table shows the other check options that can be given. These options are passed to the
storage engine, which may use or ignore them.

Type Meaning

QUICK Do not scan the rows to check for incorrect links.
Applies to InnoDB and MyISAM tables and views.

FAST Check only tables that have not been closed
properly. Ignored for InnoDB; applies only to
MyISAM tables and views.

CHANGED Check only tables that have been changed since
the last check or that have not been closed
properly. Ignored for InnoDB; applies only to
MyISAM tables and views.

MEDIUM Scan rows to verify that deleted links are valid.
This also calculates a key checksum for the rows
and verifies this with a calculated checksum for
the keys. Ignored for InnoDB; applies only to
MyISAM tables and views.

EXTENDED Do a full key lookup for all keys for each row. This
ensures that the table is 100% consistent, but
takes a long time. Ignored for InnoDB; applies
only to MyISAM tables and views.

You can combine check options, as in the following example that does a quick check on the table to
determine whether it was closed properly:

CHECK TABLE test_table FAST QUICK;

Note

If CHECK TABLE finds no problems with a table that is marked as “corrupted” or
“not closed properly”, CHECK TABLE may remove the mark.

3081

Table Maintenance Statements

If a table is corrupted, the problem is most likely in the indexes and not in the data part. All of the
preceding check types check the indexes thoroughly and should thus find most errors.

To check a table that you assume is okay, use no check options or the QUICK option. The latter should
be used when you are in a hurry and can take the very small risk that QUICK does not find an error in
the data file. (In most cases, under normal usage, MySQL should find any error in the data file. If this
happens, the table is marked as “corrupted” and cannot be used until it is repaired.)

FAST and CHANGED are mostly intended to be used from a script (for example, to be executed from
cron) to check tables periodically. In most cases, FAST is to be preferred over CHANGED. (The only
case when it is not preferred is when you suspect that you have found a bug in the MyISAM code.)

EXTENDED is to be used only after you have run a normal check but still get errors from a table
when MySQL tries to update a row or find a row by key. This is very unlikely if a normal check has
succeeded.

Use of CHECK TABLE ... EXTENDED might influence execution plans generated by the query
optimizer.

Some problems reported by CHECK TABLE cannot be corrected automatically:

• Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column contains the
value 0. (It is possible to create a row where the AUTO_INCREMENT column is 0 by explicitly setting
the column to 0 with an UPDATE statement.)

This is not an error in itself, but could cause trouble if you decide to dump the table and restore it
or do an ALTER TABLE on the table. In this case, the AUTO_INCREMENT column changes value
according to the rules of AUTO_INCREMENT columns, which could cause problems such as a
duplicate-key error.

To get rid of the warning, execute an UPDATE statement to set the column to some value other than
0.

CHECK TABLE Usage Notes for InnoDB Tables

The following notes apply to InnoDB tables:

• If CHECK TABLE encounters a corrupt page, the server exits to prevent error propagation (Bug
#10132). If the corruption occurs in a secondary index but table data is readable, running CHECK
TABLE can still cause a server exit.

• If CHECK TABLE encounters a corrupted DB_TRX_ID or DB_ROLL_PTR field in a clustered index,
CHECK TABLE can cause InnoDB to access an invalid undo log record, resulting in an MVCC-
related server exit.

• If CHECK TABLE encounters errors in InnoDB tables or indexes, it reports an error, and usually
marks the index and sometimes marks the table as corrupted, preventing further use of the index or
table. Such errors include an incorrect number of entries in a secondary index or incorrect links.

• If CHECK TABLE finds an incorrect number of entries in a secondary index, it reports an error but
does not cause a server exit or prevent access to the file.

• CHECK TABLE surveys the index page structure, then surveys each key entry. It does not validate
the key pointer to a clustered record or follow the path for BLOB pointers.

• When an InnoDB table is stored in its own .ibd file, the first 3 pages of the .ibd file contain
header information rather than table or index data. The CHECK TABLE statement does not detect
inconsistencies that affect only the header data. To verify the entire contents of an InnoDB .ibd file,
use the innochecksum command.

3082

Table Maintenance Statements

• When running CHECK TABLE on large InnoDB tables, other threads may be blocked during CHECK
TABLE execution. To avoid timeouts, the semaphore wait threshold (600 seconds) is extended by
2 hours (7200 seconds) for CHECK TABLE operations. If InnoDB detects semaphore waits of 240
seconds or more, it starts printing InnoDB monitor output to the error log. If a lock request extends
beyond the semaphore wait threshold, InnoDB aborts the process. To avoid the possibility of a
semaphore wait timeout entirely, run CHECK TABLE QUICK instead of CHECK TABLE.

• CHECK TABLE functionality for InnoDB SPATIAL indexes includes an R-tree validity check and a
check to ensure that the R-tree row count matches the clustered index.

• CHECK TABLE supports secondary indexes on virtual generated columns, which are supported by
InnoDB.

• As of MySQL 8.0.14, InnoDB supports parallel clustered index reads, which can improve CHECK
TABLE performance. InnoDB reads the clustered index twice during a CHECK TABLE operation.
The second read can be performed in parallel. The innodb_parallel_read_threads session
variable must be set to a value greater than 1 for parallel clustered index reads to occur. The
default value is 4. The actual number of threads used to perform a parallel clustered index read is
determined by the innodb_parallel_read_threads setting or the number of index subtrees to
scan, whichever is smaller.

CHECK TABLE Usage Notes for MyISAM Tables

The following notes apply to MyISAM tables:

• CHECK TABLE updates key statistics for MyISAM tables.

• If CHECK TABLE output does not return OK or Table is already up to date, you should
normally run a repair of the table. See Section 9.6, “MyISAM Table Maintenance and Crash
Recovery”.

• If none of the CHECK TABLE options QUICK, MEDIUM, or EXTENDED are specified, the default check
type for dynamic-format MyISAM tables is MEDIUM. This has the same result as running myisamchk
--medium-check tbl_name on the table. The default check type also is MEDIUM for static-format
MyISAM tables, unless CHANGED or FAST is specified. In that case, the default is QUICK. The row
scan is skipped for CHANGED and FAST because the rows are very seldom corrupted.

15.7.3.3 CHECKSUM TABLE Statement

CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]

CHECKSUM TABLE reports a checksum for the contents of a table. You can use this statement to verify
that the contents are the same before and after a backup, rollback, or other operation that is intended
to put the data back to a known state.

This statement requires the SELECT privilege for the table.

This statement is not supported for views. If you run CHECKSUM TABLE against a view, the Checksum
value is always NULL, and a warning is returned.

For a nonexistent table, CHECKSUM TABLE returns NULL and generates a warning.

During the checksum operation, the table is locked with a read lock for InnoDB and MyISAM.

Performance Considerations

By default, the entire table is read row by row and the checksum is calculated. For large tables, this
could take a long time, thus you would only perform this operation occasionally. This row-by-row
calculation is what you get with the EXTENDED clause, with InnoDB and all other storage engines other
than MyISAM, and with MyISAM tables not created with the CHECKSUM=1 clause.

3083

Table Maintenance Statements

For MyISAM tables created with the CHECKSUM=1 clause, CHECKSUM TABLE or CHECKSUM
TABLE ... QUICK returns the “live” table checksum that can be returned very fast. If the table
does not meet all these conditions, the QUICK method returns NULL. The QUICK method is not
supported with InnoDB tables. See Section 15.1.20, “CREATE TABLE Statement” for the syntax of the
CHECKSUM clause.

The checksum value depends on the table row format. If the row format changes, the checksum
also changes. For example, the storage format for temporal types such as TIME, DATETIME, and
TIMESTAMP changed in MySQL 5.6 prior to MySQL 5.6.5, so if a 5.5 table is upgraded to MySQL 5.6,
the checksum value may change.

Important

If the checksums for two tables are different, then it is almost certain that the
tables are different in some way. However, because the hashing function used
by CHECKSUM TABLE is not guaranteed to be collision-free, there is a slight
chance that two tables which are not identical can produce the same checksum.

15.7.3.4 OPTIMIZE TABLE Statement

OPTIMIZE [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name [, tbl_name] ...

OPTIMIZE TABLE reorganizes the physical storage of table data and associated index data, to reduce
storage space and improve I/O efficiency when accessing the table. The exact changes made to each
table depend on the storage engine used by that table.

Use OPTIMIZE TABLE in these cases, depending on the type of table:

• After doing substantial insert, update, or delete operations on an InnoDB table that has its own
.ibd file because it was created with the innodb_file_per_table option enabled. The table and
indexes are reorganized, and disk space can be reclaimed for use by the operating system.

• After doing substantial insert, update, or delete operations on columns that
are part of a FULLTEXT index in an InnoDB table. Set the configuration option
innodb_optimize_fulltext_only=1 first. To keep the index maintenance period to a
reasonable time, set the innodb_ft_num_word_optimize option to specify how many words to
update in the search index, and run a sequence of OPTIMIZE TABLE statements until the search
index is fully updated.

• After deleting a large part of a MyISAM or ARCHIVE table, or making many changes to a MyISAM or
ARCHIVE table with variable-length rows (tables that have VARCHAR, VARBINARY, BLOB, or TEXT
columns). Deleted rows are maintained in a linked list and subsequent INSERT operations reuse
old row positions. You can use OPTIMIZE TABLE to reclaim the unused space and to defragment
the data file. After extensive changes to a table, this statement may also improve performance of
statements that use the table, sometimes significantly.

This statement requires SELECT and INSERT privileges for the table.

OPTIMIZE TABLE works for InnoDB, MyISAM, and ARCHIVE tables. OPTIMIZE TABLE is also
supported for dynamic columns of in-memory NDB tables. It does not work for fixed-width columns
of in-memory tables, nor does it work for Disk Data tables. The performance of OPTIMIZE on NDB
Cluster tables can be tuned using --ndb-optimization-delay, which controls the length of
time to wait between processing batches of rows by OPTIMIZE TABLE. For more information, see
Section 25.2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 8.0”.

For NDB Cluster tables, OPTIMIZE TABLE can be interrupted by (for example) killing the SQL thread
performing the OPTIMIZE operation.

By default, OPTIMIZE TABLE does not work for tables created using any other storage engine and
returns a result indicating this lack of support. You can make OPTIMIZE TABLE work for other storage

3084

Table Maintenance Statements

engines by starting mysqld with the --skip-new option. In this case, OPTIMIZE TABLE is just
mapped to ALTER TABLE.

This statement does not work with views.

OPTIMIZE TABLE is supported for partitioned tables. For information about using this statement with
partitioned tables and table partitions, see Section 26.3.4, “Maintenance of Partitions”.

By default, the server writes OPTIMIZE TABLE statements to the binary log so that they replicate to
replicas. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

• OPTIMIZE TABLE Output

• InnoDB Details

• MyISAM Details

• Other Considerations

OPTIMIZE TABLE Output

OPTIMIZE TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

Op Always optimize

Msg_type status, error, info, note, or warning

Msg_text An informational message

OPTIMIZE TABLE table catches and throws any errors that occur while copying table statistics from
the old file to the newly created file. For example. if the user ID of the owner of the .MYD or .MYI file
is different from the user ID of the mysqld process, OPTIMIZE TABLE generates a "cannot change
ownership of the file" error unless mysqld is started by the root user.

InnoDB Details

For InnoDB tables, OPTIMIZE TABLE is mapped to ALTER TABLE ... FORCE, which rebuilds the
table to update index statistics and free unused space in the clustered index. This is displayed in the
output of OPTIMIZE TABLE when you run it on an InnoDB table, as shown here:

mysql> OPTIMIZE TABLE foo;
+----------+----------+----------+---+
| Table | Op | Msg_type | Msg_text |
+----------+----------+----------+---+
| test.foo | optimize | note | Table does not support optimize, doing recreate + analyze instead |
| test.foo | optimize | status | OK |
+----------+----------+----------+---+

OPTIMIZE TABLE uses online DDL for regular and partitioned InnoDB tables, which reduces
downtime for concurrent DML operations. The table rebuild triggered by OPTIMIZE TABLE is
completed in place. An exclusive table lock is only taken briefly during the prepare phase and the
commit phase of the operation. During the prepare phase, metadata is updated and an intermediate
table is created. During the commit phase, table metadata changes are committed.

OPTIMIZE TABLE rebuilds the table using the table copy method under the following conditions:

• When the old_alter_table system variable is enabled.

• When the server is started with the --skip-new option.

OPTIMIZE TABLE using online DDL is not supported for InnoDB tables that contain FULLTEXT
indexes. The table copy method is used instead.

3085

Table Maintenance Statements

InnoDB stores data using a page-allocation method and does not suffer from fragmentation in the
same way that legacy storage engines (such as MyISAM) do. When considering whether or not to run
optimize, consider the workload of transactions that your server is expected to process:

• Some level of fragmentation is expected. InnoDB only fills pages 93% full, to leave room for updates
without having to split pages.

• Delete operations might leave gaps that leave pages less filled than desired, which could make it
worthwhile to optimize the table.

• Updates to rows usually rewrite the data within the same page, depending on the data type and
row format, when sufficient space is available. See Section 17.9.1.5, “How Compression Works for
InnoDB Tables” and Section 17.10, “InnoDB Row Formats”.

• High-concurrency workloads might leave gaps in indexes over time, as InnoDB retains multiple
versions of the same data due through its MVCC mechanism. See Section 17.3, “InnoDB Multi-
Versioning”.

MyISAM Details

For MyISAM tables, OPTIMIZE TABLE works as follows:

1. If the table has deleted or split rows, repair the table.

2. If the index pages are not sorted, sort them.

3. If the table's statistics are not up to date (and the repair could not be accomplished by sorting the
index), update them.

Other Considerations

OPTIMIZE TABLE is performed online for regular and partitioned InnoDB tables. Otherwise, MySQL
locks the table during the time OPTIMIZE TABLE is running.

OPTIMIZE TABLE does not sort R-tree indexes, such as spatial indexes on POINT columns. (Bug
#23578)

15.7.3.5 REPAIR TABLE Statement

REPAIR [NO_WRITE_TO_BINLOG | LOCAL]
 TABLE tbl_name [, tbl_name] ...
 [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE repairs a possibly corrupted table, for certain storage engines only.

This statement requires SELECT and INSERT privileges for the table.

Although normally you should never have to run REPAIR TABLE, if disaster strikes, this statement is
very likely to get back all your data from a MyISAM table. If your tables become corrupted often, try to
find the reason for it, to eliminate the need to use REPAIR TABLE. See Section B.3.3.3, “What to Do If
MySQL Keeps Crashing”, and Section 18.2.4, “MyISAM Table Problems”.

REPAIR TABLE checks the table to see whether an upgrade is required. If so, it performs the upgrade,
following the same rules as CHECK TABLE ... FOR UPGRADE. See Section 15.7.3.2, “CHECK
TABLE Statement”, for more information.

Important

• Make a backup of a table before performing a table repair operation; under
some circumstances the operation might cause data loss. Possible causes
include but are not limited to file system errors. See Chapter 9, Backup and
Recovery.

3086

Table Maintenance Statements

• If the server exits during a REPAIR TABLE operation, it is essential after
restarting it that you immediately execute another REPAIR TABLE statement
for the table before performing any other operations on it. In the worst case,
you might have a new clean index file without information about the data file,
and then the next operation you perform could overwrite the data file. This
is an unlikely but possible scenario that underscores the value of making a
backup first.

• In the event that a table on the source becomes corrupted and you run
REPAIR TABLE on it, any resulting changes to the original table are not
propagated to replicas.

• REPAIR TABLE Storage Engine and Partitioning Support

• REPAIR TABLE Options

• REPAIR TABLE Output

• Table Repair Considerations

REPAIR TABLE Storage Engine and Partitioning Support

REPAIR TABLE works for MyISAM, ARCHIVE, and CSV tables. For MyISAM tables, it has the same
effect as myisamchk --recover tbl_name by default. This statement does not work with views.

REPAIR TABLE is supported for partitioned tables. However, the USE_FRM option cannot be used with
this statement on a partitioned table.

You can use ALTER TABLE ... REPAIR PARTITION to repair one or more partitions; for more
information, see Section 15.1.9, “ALTER TABLE Statement”, and Section 26.3.4, “Maintenance of
Partitions”.

REPAIR TABLE Options

• NO_WRITE_TO_BINLOG or LOCAL

By default, the server writes REPAIR TABLE statements to the binary log so that they replicate to
replicas. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias
LOCAL.

• QUICK

If you use the QUICK option, REPAIR TABLE tries to repair only the index file, and not the data file.
This type of repair is like that done by myisamchk --recover --quick.

• EXTENDED

If you use the EXTENDED option, MySQL creates the index row by row instead of creating one index
at a time with sorting. This type of repair is like that done by myisamchk --safe-recover.

• USE_FRM

The USE_FRM option is available for use if the .MYI index file is missing or if its header is corrupted.
This option tells MySQL not to trust the information in the .MYI file header and to re-create it using
information from the data dictionary. This kind of repair cannot be done with myisamchk.

Caution

Use the USE_FRM option only if you cannot use regular REPAIR modes.
Telling the server to ignore the .MYI file makes important table metadata

3087

Table Maintenance Statements

stored in the .MYI unavailable to the repair process, which can have
deleterious consequences:

• The current AUTO_INCREMENT value is lost.

• The link to deleted records in the table is lost, which means that free space
for deleted records remains unoccupied thereafter.

• The .MYI header indicates whether the table is compressed. If the server
ignores this information, it cannot tell that a table is compressed and repair
can cause change or loss of table contents. This means that USE_FRM
should not be used with compressed tables. That should not be necessary,
anyway: Compressed tables are read only, so they should not become
corrupt.

If you use USE_FRM for a table that was created by a different version of the
MySQL server than the one you are currently running, REPAIR TABLE does
not attempt to repair the table. In this case, the result set returned by REPAIR
TABLE contains a line with a Msg_type value of error and a Msg_text
value of Failed repairing incompatible .FRM file.

If USE_FRM is used, REPAIR TABLE does not check the table to see whether
an upgrade is required.

REPAIR TABLE Output

REPAIR TABLE returns a result set with the columns shown in the following table.

Column Value

Table The table name

Op Always repair

Msg_type status, error, info, note, or warning

Msg_text An informational message

The REPAIR TABLE statement might produce many rows of information for each repaired table. The
last row has a Msg_type value of status and Msg_test normally should be OK. For a MyISAM table,
if you do not get OK, you should try repairing it with myisamchk --safe-recover. (REPAIR TABLE
does not implement all the options of myisamchk. With myisamchk --safe-recover, you can also
use options that REPAIR TABLE does not support, such as --max-record-length.)

REPAIR TABLE table catches and throws any errors that occur while copying table statistics from the
old corrupted file to the newly created file. For example. if the user ID of the owner of the .MYD or .MYI
file is different from the user ID of the mysqld process, REPAIR TABLE generates a "cannot change
ownership of the file" error unless mysqld is started by the root user.

Table Repair Considerations

REPAIR TABLE upgrades a table if it contains old temporal columns in pre-5.6.4 format (TIME,
DATETIME, and TIMESTAMP columns without support for fractional seconds precision) and the
avoid_temporal_upgrade system variable is disabled. If avoid_temporal_upgrade is enabled,
REPAIR TABLE ignores the old temporal columns present in the table and does not upgrade them.

To upgrade tables that contain such temporal columns, disable avoid_temporal_upgrade before
executing REPAIR TABLE.

You may be able to increase REPAIR TABLE performance by setting certain system variables. See
Section 10.6.3, “Optimizing REPAIR TABLE Statements”.

3088

Component, Plugin, and Loadable Function Statements

15.7.4 Component, Plugin, and Loadable Function Statements

15.7.4.1 CREATE FUNCTION Statement for Loadable Functions

CREATE [AGGREGATE] FUNCTION [IF NOT EXISTS] function_name
 RETURNS {STRING|INTEGER|REAL|DECIMAL}
 SONAME shared_library_name

This statement loads the loadable function named function_name. (CREATE FUNCTION is also used
to created stored functions; see Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION
Statements”.)

A loadable function is a way to extend MySQL with a new function that works like a native (built-in)
MySQL function such as ABS() or CONCAT(). See Adding a Loadable Function.

function_name is the name that should be used in SQL statements to invoke the function. The
RETURNS clause indicates the type of the function's return value. DECIMAL is a legal value after
RETURNS, but currently DECIMAL functions return string values and should be written like STRING
functions.

IF NOT EXISTS prevents an error from occurring if there already exists a loadable function with the
same name. It does not prevent an error from occurring if there already exists a built-in function having
the same name. IF NOT EXISTS is supported for CREATE FUNCTION statements beginning with
MySQL 8.0.29. See also Function Name Resolution.

The AGGREGATE keyword, if given, signifies that the function is an aggregate (group) function. An
aggregate function works exactly like a native MySQL aggregate function such as SUM() or COUNT().

shared_library_name is the base name of the shared library file containing the code that
implements the function. The file must be located in the plugin directory. This directory is given by the
value of the plugin_dir system variable. For more information, see Section 7.7.1, “Installing and
Uninstalling Loadable Functions”.

CREATE FUNCTION requires the INSERT privilege for the mysql system schema because it adds a
row to the mysql.func system table to register the function.

CREATE FUNCTION also adds the function to the Performance Schema user_defined_functions
table that provides runtime information about installed loadable functions. See Section 29.12.21.10,
“The user_defined_functions Table”.

Note

Like the mysql.func system table, the Performance Schema
user_defined_functions table lists loadable functions installed
using CREATE FUNCTION. Unlike the mysql.func table, the
user_defined_functions table also lists loadable functions installed
automatically by server components or plugins. This difference makes
user_defined_functions preferable to mysql.func for checking which
loadable functions are installed.

During the normal startup sequence, the server loads functions registered in the mysql.func table. If
the server is started with the --skip-grant-tables option, functions registered in the table are not
loaded and are unavailable.

Note

To upgrade the shared library associated with a loadable function, issue a DROP
FUNCTION statement, upgrade the shared library, and then issue a CREATE
FUNCTION statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may unexpectedly shut down.

3089

https://dev.mysql.com/doc/extending-mysql/8.0/en/adding-loadable-function.html

Component, Plugin, and Loadable Function Statements

15.7.4.2 DROP FUNCTION Statement for Loadable Functions

DROP FUNCTION [IF EXISTS] function_name

This statement drops the loadable function named function_name. (DROP FUNCTION is also
used to drop stored functions; see Section 15.1.29, “DROP PROCEDURE and DROP FUNCTION
Statements”.)

DROP FUNCTION is the complement of CREATE FUNCTION. It requires the DELETE privilege for the
mysql system schema because it removes the row from the mysql.func system table that registers
the function.

DROP FUNCTION also removes the function from the Performance Schema
user_defined_functions table that provides runtime information about installed loadable
functions. See Section 29.12.21.10, “The user_defined_functions Table”.

During the normal startup sequence, the server loads functions registered in the mysql.func table.
Because DROP FUNCTION removes the mysql.func row for the dropped function, the server does
not load the function during subsequent restarts.

DROP FUNCTION cannot be used to drop a loadable function that is installed automatically by
components or plugins rather than by using CREATE FUNCTION. Such a function is also dropped
automatically, when the component or plugin that installed it is uninstalled.

Note

To upgrade the shared library associated with a loadable function, issue a DROP
FUNCTION statement, upgrade the shared library, and then issue a CREATE
FUNCTION statement. If you upgrade the shared library first and then use DROP
FUNCTION, the server may unexpectedly shut down.

15.7.4.3 INSTALL COMPONENT Statement

INSTALL COMPONENT component_name [, component_name ...
 [SET variable = expr [, variable = expr] ...]

 variable: {
 {GLOBAL | @@GLOBAL.} [component_prefix.]system_var_name
 | {PERSIST | @@PERSIST.} [component_prefix.]system_var_name
}

This statement installs one or more components, which become active immediately. A component
provides services that are available to the server and other components; see Section 7.5, “MySQL
Components”. INSTALL COMPONENT requires the INSERT privilege for the mysql.component
system table because it adds a row to that table to register the component.

Example:

INSTALL COMPONENT 'file://component1', 'file://component2';

A component is named using a URN that begins with file:// and indicates the base name of the
library file that implements the component, located in the directory named by the plugin_dir system
variable. Component names do not include any platform-dependent file name suffix such as .so or
.dll. (These naming details are subject to change because component name interpretation is itself
performed by a service and the component infrastructure makes it possible to replace the default
service implementation with alternative implementations.)

INSTALL COMPONENT (from 8.0.33) permits setting the values of component system variables
when you install one or more components. The SET clause enables you to specify variable values
precisely when they are needed, without the inconvenience or limitations associated with other forms of
assignment. Specifically, you can also set component variables with these alternatives:

3090

Component, Plugin, and Loadable Function Statements

• At server startup using options on the command line or in an option file, but doing so involves a
server restart. The values do not take effect until you install the component. You can specify an
invalid variable name for a component on the command line without triggering an error.

• Dynamically while the server is running by means of the SET statement, which enables you to
modify operation of the server without having to stop and restart it. Setting a read-only variable is not
permitted.

The optional SET clause applies a value, or values, only to the component specified in the INSTALL
COMPONENT statement, rather than to all subsequent installations of that component. SET GLOBAL|
PERSIST works for all types of variables, including read-only variables, without having to restart the
server. A component system variable that you set using INSTALL COMPONENT takes precedence over
any conflicting value coming from the command line or an option file.

Example:

INSTALL COMPONENT 'file://component1', 'file://component2'
 SET GLOBAL component1.var1 = 12 + 3, PERSIST component2.var2 = 'strings';

Omitting PERSIST or GLOBAL is equivalent to specifying GLOBAL.

Specifying PERSIST for any variable in SET silently executes SET PERSIST_ONLY immediately after
INSTALL COMPONENT loads the components, but before updating the mysql.component table.
If SET PERSIST_ONLY fails, then the server unloads all of the previously loaded new components
without persisting anything to mysql.component.

The SET clause accepts only valid variable names of the component being installed and emits an
error message for all invalid names. Subqueries, stored functions, and aggregate functions are not
permitted as part of the value expression. If you install a single component, it is not necessary to prefix
the variable name with the component name.

Note

While specifying a variable value using the SET clause is similar to that of
the command line—it is available immediately at variable registration—
there is a distinct difference in how the SET clause handles invalid numerical
values for boolean variables. For example, if you set a boolean variable to 11
(component1.boolvar = 11), you see the following behavior:

• SET clause yields true

• Command line yields false (11 is neither ON nor 1)

If any error occurs, the statement fails and has no effect. For example, this happens if a component
name is erroneous, a named component does not exist or is already installed, or component
initialization fails.

A loader service handles component loading, which includes adding installed components to the
mysql.component system table that serves as a registry. For subsequent server restarts, any
components listed in mysql.component are loaded by the loader service during the startup
sequence. This occurs even if the server is started with the --skip-grant-tables option.

If a component depends on services not present in the registry and you attempt to install the
component without also installing the component or components that provide the services on which it
depends, an error occurs:

ERROR 3527 (HY000): Cannot satisfy dependency for service 'component_a'
required by component 'component_b'.

To avoid this problem, either install all components in the same statement, or install the dependent
component after installing any components on which it depends.

3091

Component, Plugin, and Loadable Function Statements

Note

For keyring components, do not use INSTALL COMPONENT. Instead, configure
keyring component loading using a manifest file. See Section 8.4.4.2, “Keyring
Component Installation”.

15.7.4.4 INSTALL PLUGIN Statement

INSTALL PLUGIN plugin_name SONAME 'shared_library_name'

This statement installs a server plugin. It requires the INSERT privilege for the mysql.plugin system
table because it adds a row to that table to register the plugin.

plugin_name is the name of the plugin as defined in the plugin descriptor structure contained
in the library file (see Plugin Data Structures). Plugin names are not case-sensitive. For maximal
compatibility, plugin names should be limited to ASCII letters, digits, and underscore because they are
used in C source files, shell command lines, M4 and Bourne shell scripts, and SQL environments.

shared_library_name is the name of the shared library that contains the plugin code. The
name includes the file name extension (for example, libmyplugin.so, libmyplugin.dll, or
libmyplugin.dylib).

The shared library must be located in the plugin directory (the directory named by the plugin_dir
system variable). The library must be in the plugin directory itself, not in a subdirectory. By default,
plugin_dir is the plugin directory under the directory named by the pkglibdir configuration
variable, but it can be changed by setting the value of plugin_dir at server startup. For example, set
its value in a my.cnf file:

[mysqld]
plugin_dir=/path/to/plugin/directory

If the value of plugin_dir is a relative path name, it is taken to be relative to the MySQL base
directory (the value of the basedir system variable).

INSTALL PLUGIN loads and initializes the plugin code to make the plugin available for use. A plugin is
initialized by executing its initialization function, which handles any setup that the plugin must perform
before it can be used. When the server shuts down, it executes the deinitialization function for each
plugin that is loaded so that the plugin has a chance to perform any final cleanup.

INSTALL PLUGIN also registers the plugin by adding a line that indicates the plugin name and library
file name to the mysql.plugin system table. During the normal startup sequence, the server loads
and initializes plugins registered in mysql.plugin. This means that a plugin is installed with INSTALL
PLUGIN only once, not every time the server starts. If the server is started with the --skip-grant-
tables option, plugins registered in the mysql.plugin table are not loaded and are unavailable.

A plugin library can contain multiple plugins. For each of them to be installed, use a separate INSTALL
PLUGIN statement. Each statement names a different plugin, but all of them specify the same library
name.

INSTALL PLUGIN causes the server to read option (my.cnf) files just as during server startup. This
enables the plugin to pick up any relevant options from those files. It is possible to add plugin options
to an option file even before loading a plugin (if the loose prefix is used). It is also possible to uninstall
a plugin, edit my.cnf, and install the plugin again. Restarting the plugin this way enables it to the new
option values without a server restart.

For options that control individual plugin loading at server startup, see Section 7.6.1, “Installing and
Uninstalling Plugins”. If you need to load plugins for a single server startup when the --skip-grant-
tables option is given (which tells the server not to read system tables), use the --plugin-load
option. See Section 7.1.7, “Server Command Options”.

To remove a plugin, use the UNINSTALL PLUGIN statement.

3092

https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-data-structures.html

Component, Plugin, and Loadable Function Statements

For additional information about plugin loading, see Section 7.6.1, “Installing and Uninstalling Plugins”.

To see what plugins are installed, use the SHOW PLUGINS statement or query the
INFORMATION_SCHEMA the PLUGINS table.

If you recompile a plugin library and need to reinstall it, you can use either of the following methods:

• Use UNINSTALL PLUGIN to uninstall all plugins in the library, install the new plugin library file
in the plugin directory, and then use INSTALL PLUGIN to install all plugins in the library. This
procedure has the advantage that it can be used without stopping the server. However, if the plugin
library contains many plugins, you must issue many INSTALL PLUGIN and UNINSTALL PLUGIN
statements.

• Stop the server, install the new plugin library file in the plugin directory, and restart the server.

15.7.4.5 UNINSTALL COMPONENT Statement

UNINSTALL COMPONENT component_name [, component_name] ...

This statement deactivates and uninstalls one or more components. A component provides services
that are available to the server and other components; see Section 7.5, “MySQL Components”.
UNINSTALL COMPONENT is the complement of INSTALL COMPONENT. It requires the DELETE
privilege for the mysql.component system table because it removes the row from that table that
registers the component. UNINSTALL COMPONENT does not undo persisted variables, including the
variables persisted using INSTALL COMPONENT ... SET PERSIST.

Example:

UNINSTALL COMPONENT 'file://component1', 'file://component2';

For information about component naming, see Section 15.7.4.3, “INSTALL COMPONENT Statement”.

If any error occurs, the statement fails and has no effect. For example, this happens if a component
name is erroneous, a named component is not installed, or cannot be uninstalled because other
installed components depend on it.

A loader service handles component unloading, which includes removing uninstalled components from
the mysql.component system table that serves as a registry. As a result, unloaded components are
not loaded during the startup sequence for subsequent server restarts.

Note

This statement has no effect for keyring components, which are loaded using
a manifest file and cannot be uninstalled. See Section 8.4.4.2, “Keyring
Component Installation”.

15.7.4.6 UNINSTALL PLUGIN Statement

UNINSTALL PLUGIN plugin_name

This statement removes an installed server plugin. UNINSTALL PLUGIN is the complement of
INSTALL PLUGIN. It requires the DELETE privilege for the mysql.plugin system table because it
removes the row from that table that registers the plugin.

plugin_name must be the name of some plugin that is listed in the mysql.plugin table. The
server executes the plugin's deinitialization function and removes the row for the plugin from the
mysql.plugin system table, so that subsequent server restarts do not load and initialize the plugin.
UNINSTALL PLUGIN does not remove the plugin's shared library file.

You cannot uninstall a plugin if any table that uses it is open.

Plugin removal has implications for the use of associated tables. For example, if a full-text parser plugin
is associated with a FULLTEXT index on the table, uninstalling the plugin makes the table unusable.

3093

CLONE Statement

Any attempt to access the table results in an error. The table cannot even be opened, so you cannot
drop an index for which the plugin is used. This means that uninstalling a plugin is something to do with
care unless you do not care about the table contents. If you are uninstalling a plugin with no intention of
reinstalling it later and you care about the table contents, you should dump the table with mysqldump
and remove the WITH PARSER clause from the dumped CREATE TABLE statement so that you can
reload the table later. If you do not care about the table, DROP TABLE can be used even if any plugins
associated with the table are missing.

For additional information about plugin loading, see Section 7.6.1, “Installing and Uninstalling Plugins”.

15.7.5 CLONE Statement
CLONE clone_action

clone_action: {
 LOCAL DATA DIRECTORY [=] 'clone_dir';
 | INSTANCE FROM 'user'@'host':port
 IDENTIFIED BY 'password'
 [DATA DIRECTORY [=] 'clone_dir']
 [REQUIRE [NO] SSL]
}

The CLONE statement is used to clone data locally or from a remote MySQL server instance. To use
CLONE syntax, the clone plugin must be installed. See Section 7.6.7, “The Clone Plugin”.

CLONE LOCAL DATA DIRECTORY syntax clones data from the local MySQL data directory to a
directory on the same server or node where the MySQL server instance runs. The 'clone_dir'
directory is the full path of the local directory that data is cloned to. An absolute path is required.
The specified directory must not exist, but the specified path must be an existent path. The MySQL
server requires the necessary write access to create the specified directory. For more information, see
Section 7.6.7.2, “Cloning Data Locally”.

CLONE INSTANCE syntax clones data from a remote MySQL server instance (the donor) and transfers
it to the MySQL instance where the cloning operation was initiated (the recipient).

• user is the clone user on the donor MySQL server instance.

• host is the hostname address of the donor MySQL server instance. Internet Protocol version 6
(IPv6) address format is not supported. An alias to the IPv6 address can be used instead. An IPv4
address can be used as is.

• port is the port number of the donor MySQL server instance. (The X Protocol port specified by
mysqlx_port is not supported. Connecting to the donor MySQL server instance through MySQL
Router is also not supported.)

• IDENTIFIED BY 'password' specifies the password of the clone user on the donor MySQL
server instance.

• DATA DIRECTORY [=] 'clone_dir' is an optional clause used to specify a directory on the
recipient for the data you are cloning. Use this option if you do not want to remove existing data
in the recipient data directory. An absolute path is required, and the directory must not exist. The
MySQL server must have the necessary write access to create the directory.

When the optional DATA DIRECTORY [=] 'clone_dir' clause is not used, a cloning operation
removes existing data in the recipient data directory, replaces it with the cloned data, and
automatically restarts the server afterward.

• [REQUIRE [NO] SSL] explicitly specifies whether an encrypted connection is to be used or not
when transferring cloned data over the network. An error is returned if the explicit specification
cannot be satisfied. If an SSL clause is not specified, clone attempts to establish an encrypted
connection by default, falling back to an insecure connection if the secure connection attempt fails.
A secure connection is required when cloning encrypted data regardless of whether this clause is
specified. For more information, see Configuring an Encrypted Connection for Cloning.

3094

SET Statements

For additional information about cloning data from a remote MySQL server instance, see
Section 7.6.7.3, “Cloning Remote Data”.

15.7.6 SET Statements

The SET statement has several forms. Descriptions for those forms that are not associated with a
specific server capability appear in subsections of this section:

• SET var_name = value enables you to assign values to variables that affect the operation of the
server or clients. See Section 15.7.6.1, “SET Syntax for Variable Assignment”.

• SET CHARACTER SET and SET NAMES assign values to character set and collation variables
associated with the current connection to the server. See Section 15.7.6.2, “SET CHARACTER SET
Statement”, and Section 15.7.6.3, “SET NAMES Statement”.

Descriptions for the other forms appear elsewhere, grouped with other statements related to the
capability they help implement:

• SET DEFAULT ROLE and SET ROLE set the default role and current role for user accounts. See
Section 15.7.1.9, “SET DEFAULT ROLE Statement”, and Section 15.7.1.11, “SET ROLE Statement”.

• SET PASSWORD assigns account passwords. See Section 15.7.1.10, “SET PASSWORD Statement”.

• SET RESOURCE GROUP assigns threads to a resource group. See Section 15.7.2.4, “SET
RESOURCE GROUP Statement”.

• SET TRANSACTION ISOLATION LEVEL sets the isolation level for transaction processing. See
Section 15.3.7, “SET TRANSACTION Statement”.

15.7.6.1 SET Syntax for Variable Assignment

SET variable = expr [, variable = expr] ...

variable: {
 user_var_name
 | param_name
 | local_var_name
 | {GLOBAL | @@GLOBAL.} system_var_name
 | {PERSIST | @@PERSIST.} system_var_name
 | {PERSIST_ONLY | @@PERSIST_ONLY.} system_var_name
 | [SESSION | @@SESSION. | @@] system_var_name
}

SET syntax for variable assignment enables you to assign values to different types of variables that
affect the operation of the server or clients:

• User-defined variables. See Section 11.4, “User-Defined Variables”.

• Stored procedure and function parameters, and stored program local variables. See Section 15.6.4,
“Variables in Stored Programs”.

• System variables. See Section 7.1.8, “Server System Variables”. System variables also can be set at
server startup, as described in Section 7.1.9, “Using System Variables”.

A SET statement that assigns variable values is not written to the binary log, so in replication scenarios
it affects only the host on which you execute it. To affect all replication hosts, execute the statement on
each host.

The following sections describe SET syntax for setting variables. They use the = assignment operator,
but the := assignment operator is also permitted for this purpose.

• User-Defined Variable Assignment

• Parameter and Local Variable Assignment

3095

SET Statements

• System Variable Assignment

• SET Error Handling

• Multiple Variable Assignment

• System Variable References in Expressions

User-Defined Variable Assignment

User-defined variables are created locally within a session and exist only within the context of that
session; see Section 11.4, “User-Defined Variables”.

A user-defined variable is written as @var_name and is assigned an expression value as follows:

SET @var_name = expr;

Examples:

SET @name = 43;
SET @total_tax = (SELECT SUM(tax) FROM taxable_transactions);

As demonstrated by those statements, expr can range from simple (a literal value) to more complex
(the value returned by a scalar subquery).

The Performance Schema user_variables_by_thread table contains information about user-
defined variables. See Section 29.12.10, “Performance Schema User-Defined Variable Tables”.

Parameter and Local Variable Assignment

SET applies to parameters and local variables in the context of the stored object within which they
are defined. The following procedure uses the increment procedure parameter and counter local
variable:

CREATE PROCEDURE p(increment INT)
BEGIN
 DECLARE counter INT DEFAULT 0;
 WHILE counter < 10 DO
 -- ... do work ...
 SET counter = counter + increment;
 END WHILE;
END;

System Variable Assignment

The MySQL server maintains system variables that configure its operation. A system variable can
have a global value that affects server operation as a whole, a session value that affects the current
session, or both. Many system variables are dynamic and can be changed at runtime using the SET
statement to affect operation of the current server instance. SET can also be used to persist certain
system variables to the mysqld-auto.cnf file in the data directory, to affect server operation for
subsequent startups.

If a SET statement is issued for a sensitive system variable, the query is rewritten to replace the value
with “<redacted>” before it is logged to the general log and audit log. This takes place even if secure
storage through a keyring component is not available on the server instance.

If you change a session system variable, the value remains in effect within your session until you
change the variable to a different value or the session ends. The change has no effect on other
sessions.

If you change a global system variable, the value is remembered and used to initialize the session
value for new sessions until you change the variable to a different value or the server exits. The change
is visible to any client that accesses the global value. However, the change affects the corresponding

3096

SET Statements

session value only for clients that connect after the change. The global variable change does not affect
the session value for any current client sessions (not even the session within which the global value
change occurs).

To make a global system variable setting permanent so that it applies across server restarts, you can
persist it to the mysqld-auto.cnf file in the data directory. It is also possible to make persistent
configuration changes by manually modifying a my.cnf option file, but that is more cumbersome,
and an error in a manually entered setting might not be discovered until much later. SET statements
that persist system variables are more convenient and avoid the possibility of malformed settings
because settings with syntax errors do not succeed and do not change server configuration. For more
information about persisting system variables and the mysqld-auto.cnf file, see Section 7.1.9.3,
“Persisted System Variables”.

Note

Setting or persisting a global system variable value always requires special
privileges. Setting a session system variable value normally requires no special
privileges and can be done by any user, although there are exceptions. For
more information, see Section 7.1.9.1, “System Variable Privileges”.

The following discussion describes the syntax options for setting and persisting system variables:

• To assign a value to a global system variable, precede the variable name by the GLOBAL keyword or
the @@GLOBAL. qualifier:

SET GLOBAL max_connections = 1000;
SET @@GLOBAL.max_connections = 1000;

• To assign a value to a session system variable, precede the variable name by the SESSION or
LOCAL keyword, by the @@SESSION., @@LOCAL., or @@ qualifier, or by no keyword or no modifier at
all:

SET SESSION sql_mode = 'TRADITIONAL';
SET LOCAL sql_mode = 'TRADITIONAL';
SET @@SESSION.sql_mode = 'TRADITIONAL';
SET @@LOCAL.sql_mode = 'TRADITIONAL';
SET @@sql_mode = 'TRADITIONAL';
SET sql_mode = 'TRADITIONAL';

A client can change its own session variables, but not those of any other client.

• To persist a global system variable to the mysqld-auto.cnf option file in the data directory,
precede the variable name by the PERSIST keyword or the @@PERSIST. qualifier:

SET PERSIST max_connections = 1000;
SET @@PERSIST.max_connections = 1000;

This SET syntax enables you to make configuration changes at runtime that also persist across
server restarts. Like SET GLOBAL, SET PERSIST sets the global variable runtime value, but also
writes the variable setting to the mysqld-auto.cnf file (replacing any existing variable setting if
there is one).

• To persist a global system variable to the mysqld-auto.cnf file without setting the global
variable runtime value, precede the variable name by the PERSIST_ONLY keyword or the
@@PERSIST_ONLY. qualifier:

SET PERSIST_ONLY back_log = 100;
SET @@PERSIST_ONLY.back_log = 100;

Like PERSIST, PERSIST_ONLY writes the variable setting to mysqld-auto.cnf. However,
unlike PERSIST, PERSIST_ONLY does not modify the global variable runtime value. This makes
PERSIST_ONLY suitable for configuring read-only system variables that can be set only at server
startup.

3097

SET Statements

To set a global system variable value to the compiled-in MySQL default value or a session system
variable to the current corresponding global value, set the variable to the value DEFAULT. For example,
the following two statements are identical in setting the session value of max_join_size to the
current global value:

SET @@SESSION.max_join_size = DEFAULT;
SET @@SESSION.max_join_size = @@GLOBAL.max_join_size;

Using SET to persist a global system variable to a value of DEFAULT or to its literal default value
assigns the variable its default value and adds a setting for the variable to mysqld-auto.cnf. To
remove the variable from the file, use RESET PERSIST.

Some system variables cannot be persisted or are persist-restricted. See Section 7.1.9.4,
“Nonpersistible and Persist-Restricted System Variables”.

A system variable implemented by a plugin can be persisted if the plugin is installed when the SET
statement is executed. Assignment of the persisted plugin variable takes effect for subsequent server
restarts if the plugin is still installed. If the plugin is no longer installed, the plugin variable no longer
exists when the server reads the mysqld-auto.cnf file. In this case, the server writes a warning to
the error log and continues:

currently unknown variable 'var_name'
was read from the persisted config file

To display system variable names and values:

• Use the SHOW VARIABLES statement; see Section 15.7.7.41, “SHOW VARIABLES Statement”.

• Several Performance Schema tables provide system variable information. See Section 29.12.14,
“Performance Schema System Variable Tables”.

• The Performance Schema variables_info table contains information showing when and by
which user each system variable was most recently set. See Section 29.12.14.2, “Performance
Schema variables_info Table”.

• The Performance Schema persisted_variables table provides an SQL interface to the
mysqld-auto.cnf file, enabling its contents to be inspected at runtime using SELECT statements.
See Section 29.12.14.1, “Performance Schema persisted_variables Table”.

SET Error Handling

If any variable assignment in a SET statement fails, the entire statement fails and no variables are
changed, nor is the mysqld-auto.cnf file changed.

SET produces an error under the circumstances described here. Most of the examples show SET
statements that use keyword syntax (for example, GLOBAL or SESSION), but the principles are also
true for statements that use the corresponding modifiers (for example, @@GLOBAL. or @@SESSION.).

• Use of SET (any variant) to set a read-only variable:

mysql> SET GLOBAL version = 'abc';
ERROR 1238 (HY000): Variable 'version' is a read only variable

• Use of GLOBAL, PERSIST, or PERSIST_ONLY to set a variable that has only a session value:

mysql> SET GLOBAL sql_log_bin = ON;
ERROR 1228 (HY000): Variable 'sql_log_bin' is a SESSION
variable and can't be used with SET GLOBAL

• Use of SESSION to set a variable that has only a global value:

mysql> SET SESSION max_connections = 1000;
ERROR 1229 (HY000): Variable 'max_connections' is a

3098

SET Statements

GLOBAL variable and should be set with SET GLOBAL

• Omission of GLOBAL, PERSIST, or PERSIST_ONLY to set a variable that has only a global value:

mysql> SET max_connections = 1000;
ERROR 1229 (HY000): Variable 'max_connections' is a
GLOBAL variable and should be set with SET GLOBAL

• Use of PERSIST or PERSIST_ONLY to set a variable that cannot be persisted:

mysql> SET PERSIST port = 3307;
ERROR 1238 (HY000): Variable 'port' is a read only variable
mysql> SET PERSIST_ONLY port = 3307;
ERROR 1238 (HY000): Variable 'port' is a non persistent read only variable

• The @@GLOBAL., @@PERSIST., @@PERSIST_ONLY., @@SESSION., and @@ modifiers apply only
to system variables. An error occurs for attempts to apply them to user-defined variables, stored
procedure or function parameters, or stored program local variables.

• Not all system variables can be set to DEFAULT. In such cases, assigning DEFAULT results in an
error.

• An error occurs for attempts to assign DEFAULT to user-defined variables, stored procedure or
function parameters, or stored program local variables.

Multiple Variable Assignment

A SET statement can contain multiple variable assignments, separated by commas. This statement
assigns values to a user-defined variable and a system variable:

SET @x = 1, SESSION sql_mode = '';

If you set multiple system variables in a single statement, the most recent GLOBAL, PERSIST,
PERSIST_ONLY, or SESSION keyword in the statement is used for following assignments that have no
keyword specified.

Examples of multiple-variable assignment:

SET GLOBAL sort_buffer_size = 1000000, SESSION sort_buffer_size = 1000000;
SET @@GLOBAL.sort_buffer_size = 1000000, @@LOCAL.sort_buffer_size = 1000000;
SET GLOBAL max_connections = 1000, sort_buffer_size = 1000000;

The @@GLOBAL., @@PERSIST., @@PERSIST_ONLY., @@SESSION., and @@ modifiers apply only to
the immediately following system variable, not any remaining system variables. This statement sets the
sort_buffer_size global value to 50000 and the session value to 1000000:

SET @@GLOBAL.sort_buffer_size = 50000, sort_buffer_size = 1000000;

System Variable References in Expressions

To refer to the value of a system variable in expressions, use one of the @@-modifiers (except
@@PERSIST. and @@PERSIST_ONLY., which are not permitted in expressions). For example, you can
retrieve system variable values in a SELECT statement like this:

SELECT @@GLOBAL.sql_mode, @@SESSION.sql_mode, @@sql_mode;

Note

A reference to a system variable in an expression as @@var_name (with @@
rather than @@GLOBAL. or @@SESSION.) returns the session value if it exists
and the global value otherwise. This differs from SET @@var_name = expr,
which always refers to the session value.

15.7.6.2 SET CHARACTER SET Statement

3099

SHOW Statements

SET {CHARACTER SET | CHARSET}
 {'charset_name' | DEFAULT}

This statement maps all strings sent between the server and the current client with the given mapping.
SET CHARACTER SET sets three session system variables: character_set_client and
character_set_results are set to the given character set, and character_set_connection
to the value of character_set_database. See Section 12.4, “Connection Character Sets and
Collations”.

charset_name may be quoted or unquoted.

The default character set mapping can be restored by using the value DEFAULT. The default depends
on the server configuration.

Some character sets cannot be used as the client character set. Attempting to use them with SET
CHARACTER SET produces an error. See Impermissible Client Character Sets.

15.7.6.3 SET NAMES Statement

SET NAMES {'charset_name'
 [COLLATE 'collation_name'] | DEFAULT}

This statement sets the three session system variables character_set_client,
character_set_connection, and character_set_results to the given character set. Setting
character_set_connection to charset_name also sets collation_connection to the default
collation for charset_name. See Section 12.4, “Connection Character Sets and Collations”.

The optional COLLATE clause may be used to specify a collation explicitly. If given, the collation must
one of the permitted collations for charset_name.

charset_name and collation_name may be quoted or unquoted.

The default mapping can be restored by using a value of DEFAULT. The default depends on the server
configuration.

Some character sets cannot be used as the client character set. Attempting to use them with SET
NAMES produces an error. See Impermissible Client Character Sets.

15.7.7 SHOW Statements

SHOW has many forms that provide information about databases, tables, columns, or status information
about the server. This section describes those following:

SHOW {BINARY | MASTER} LOGS
SHOW BINLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW {CHARACTER SET | CHARSET} [like_or_where]
SHOW COLLATION [like_or_where]
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [like_or_where]
SHOW CREATE DATABASE db_name
SHOW CREATE EVENT event_name
SHOW CREATE FUNCTION func_name
SHOW CREATE PROCEDURE proc_name
SHOW CREATE TABLE tbl_name
SHOW CREATE TRIGGER trigger_name
SHOW CREATE VIEW view_name
SHOW DATABASES [like_or_where]
SHOW ENGINE engine_name {STATUS | MUTEX}
SHOW [STORAGE] ENGINES
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW EVENTS
SHOW FUNCTION CODE func_name
SHOW FUNCTION STATUS [like_or_where]
SHOW GRANTS FOR user

3100

SHOW Statements

SHOW INDEX FROM tbl_name [FROM db_name]
SHOW MASTER STATUS
SHOW OPEN TABLES [FROM db_name] [like_or_where]
SHOW PLUGINS
SHOW PROCEDURE CODE proc_name
SHOW PROCEDURE STATUS [like_or_where]
SHOW PRIVILEGES
SHOW [FULL] PROCESSLIST
SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]
SHOW PROFILES
SHOW RELAYLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW {REPLICAS | SLAVE HOSTS}
SHOW {REPLICA | SLAVE} STATUS [FOR CHANNEL channel]
SHOW [GLOBAL | SESSION] STATUS [like_or_where]
SHOW TABLE STATUS [FROM db_name] [like_or_where]
SHOW [FULL] TABLES [FROM db_name] [like_or_where]
SHOW TRIGGERS [FROM db_name] [like_or_where]
SHOW [GLOBAL | SESSION] VARIABLES [like_or_where]
SHOW WARNINGS [LIMIT [offset,] row_count]

like_or_where: {
 LIKE 'pattern'
 | WHERE expr
}

If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a string that
can contain the SQL % and _ wildcard characters. The pattern is useful for restricting statement output
to matching values.

Several SHOW statements also accept a WHERE clause that provides more flexibility in specifying which
rows to display. See Section 28.8, “Extensions to SHOW Statements”.

In SHOW statement results, user names and host names are quoted using backticks (`).

Many MySQL APIs (such as PHP) enable you to treat the result returned from a SHOW statement
as you would a result set from a SELECT; see Chapter 31, Connectors and APIs, or your API
documentation for more information. In addition, you can work in SQL with results from queries on
tables in the INFORMATION_SCHEMA database, which you cannot easily do with results from SHOW
statements. See Chapter 28, INFORMATION_SCHEMA Tables.

15.7.7.1 SHOW BINARY LOGS Statement

SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as part of the procedure described in
Section 15.4.1.1, “PURGE BINARY LOGS Statement”, that shows how to determine which logs can be
purged. SHOW BINARY LOGS requires the REPLICATION CLIENT privilege (or the deprecated SUPER
privilege).

Encrypted binary log files have a 512-byte file header that stores information required for encryption
and decryption of the file. This is included in the file size displayed by SHOW BINARY LOGS. The
Encrypted column shows whether or not the binary log file is encrypted. Binary log encryption is
active if binlog_encryption=ON is set for the server. Existing binary log files are not encrypted or
decrypted if binary log encryption is activated or deactivated while the server is running.

mysql> SHOW BINARY LOGS;
+---------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+---------------+-----------+-----------+
| binlog.000015 | 724935 | Yes |
| binlog.000016 | 733481 | Yes |
+---------------+-----------+-----------+

SHOW MASTER LOGS is equivalent to SHOW BINARY LOGS.

3101

SHOW Statements

15.7.7.2 SHOW BINLOG EVENTS Statement

SHOW BINLOG EVENTS
 [IN 'log_name']
 [FROM pos]
 [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify 'log_name', the first binary log is displayed.
SHOW BINLOG EVENTS requires the REPLICATION SLAVE privilege.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 15.2.13, “SELECT
Statement”.

Note

Issuing a SHOW BINLOG EVENTS with no LIMIT clause could start a very time-
and resource-consuming process because the server returns to the client the
complete contents of the binary log (which includes all statements executed by
the server that modify data). As an alternative to SHOW BINLOG EVENTS, use
the mysqlbinlog utility to save the binary log to a text file for later examination
and analysis. See Section 6.6.9, “mysqlbinlog — Utility for Processing Binary
Log Files”.

SHOW BINLOG EVENTS displays the following fields for each event in the binary log:

• Log_name

The name of the file that is being listed.

• Pos

The position at which the event occurs.

• Event_type

An identifier that describes the event type.

• Server_id

The server ID of the server on which the event originated.

• End_log_pos

The position at which the next event begins, which is equal to Pos plus the size of the event.

• Info

More detailed information about the event type. The format of this information depends on the event
type.

For compressed transaction payloads, the Transaction_payload_event is first printed as a single
unit, then it is unpacked and each event inside it is printed.

Some events relating to the setting of user and system variables are not included in the output from
SHOW BINLOG EVENTS. To get complete coverage of events within a binary log, use mysqlbinlog.

SHOW BINLOG EVENTS does not work with relay log files. You can use SHOW RELAYLOG EVENTS for
this purpose.

15.7.7.3 SHOW CHARACTER SET Statement

SHOW {CHARACTER SET | CHARSET}

3102

SHOW Statements

 [LIKE 'pattern' | WHERE expr]

The SHOW CHARACTER SET statement shows all available character sets. The LIKE clause, if present,
indicates which character set names to match. The WHERE clause can be given to select rows using
more general conditions, as discussed in Section 28.8, “Extensions to SHOW Statements”. For
example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

SHOW CHARACTER SET output has these columns:

• Charset

The character set name.

• Description

A description of the character set.

• Default collation

The default collation for the character set.

• Maxlen

The maximum number of bytes required to store one character.

The filename character set is for internal use only; consequently, SHOW CHARACTER SET does not
display it.

Character set information is also available from the INFORMATION_SCHEMA CHARACTER_SETS table.

15.7.7.4 SHOW COLLATION Statement

SHOW COLLATION
 [LIKE 'pattern' | WHERE expr]

This statement lists collations supported by the server. By default, the output from SHOW COLLATION
includes all available collations. The LIKE clause, if present, indicates which collation names to
match. The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 28.8, “Extensions to SHOW Statements”. For example:

mysql> SHOW COLLATION WHERE Charset = 'latin1';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5		Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15		Yes	1
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48		Yes	1
latin1_general_cs	latin1	49		Yes	1
latin1_spanish_ci	latin1	94		Yes	1
+-------------------+---------+----+---------+----------+---------+

SHOW COLLATION output has these columns:

• Collation

3103

SHOW Statements

The collation name.

• Charset

The name of the character set with which the collation is associated.

• Id

The collation ID.

• Default

Whether the collation is the default for its character set.

• Compiled

Whether the character set is compiled into the server.

• Sortlen

This is related to the amount of memory required to sort strings expressed in the character set.

• Pad_attribute

The collation pad attribute, one of NO PAD or PAD SPACE. This attribute affects whether trailing
spaces are significant in string comparisons; for more information, see Trailing Space Handling in
Comparisons.

To see the default collation for each character set, use the following statement. Default is a reserved
word, so to use it as an identifier, it must be quoted as such:

mysql> SHOW COLLATION WHERE `Default` = 'Yes';
+---------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+----------+----+---------+----------+---------+
big5_chinese_ci	big5	1	Yes	Yes	1
dec8_swedish_ci	dec8	3	Yes	Yes	1
cp850_general_ci	cp850	4	Yes	Yes	1
hp8_english_ci	hp8	6	Yes	Yes	1
koi8r_general_ci	koi8r	7	Yes	Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
...

Collation information is also available from the INFORMATION_SCHEMA COLLATIONS table. See
Section 28.3.6, “The INFORMATION_SCHEMA COLLATIONS Table”.

15.7.7.5 SHOW COLUMNS Statement

SHOW [EXTENDED] [FULL] {COLUMNS | FIELDS}
 {FROM | IN} tbl_name
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW COLUMNS displays information about the columns in a given table. It also works for views. SHOW
COLUMNS displays information only for those columns for which you have some privilege.

mysql> SHOW COLUMNS FROM City;
+-------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+----------+------+-----+---------+----------------+
ID	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
CountryCode	char(3)	NO	MUL		
District	char(20)	NO			
Population	int(11)	NO		0	
+-------------+----------+------+-----+---------+----------------+

3104

SHOW Statements

An alternative to tbl_name FROM db_name syntax is db_name.tbl_name. These two statements
are equivalent:

SHOW COLUMNS FROM mytable FROM mydb;
SHOW COLUMNS FROM mydb.mytable;

The optional EXTENDED keyword causes the output to include information about hidden columns that
MySQL uses internally and are not accessible by users.

The optional FULL keyword causes the output to include the column collation and comments, as well
as the privileges you have for each column.

The LIKE clause, if present, indicates which column names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 28.8, “Extensions to SHOW
Statements”.

The data types may differ from what you expect them to be based on a CREATE TABLE statement
because MySQL sometimes changes data types when you create or alter a table. The conditions under
which this occurs are described in Section 15.1.20.7, “Silent Column Specification Changes”.

SHOW COLUMNS displays the following values for each table column:

• Field

The name of the column.

• Type

The column data type.

• Collation

The collation for nonbinary string columns, or NULL for other columns. This value is displayed only if
you use the FULL keyword.

• Null

The column nullability. The value is YES if NULL values can be stored in the column, NO if not.

• Key

Whether the column is indexed:

• If Key is empty, the column either is not indexed or is indexed only as a secondary column in a
multiple-column, nonunique index.

• If Key is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column
PRIMARY KEY.

• If Key is UNI, the column is the first column of a UNIQUE index. (A UNIQUE index permits multiple
NULL values, but you can tell whether the column permits NULL by checking the Null field.)

• If Key is MUL, the column is the first column of a nonunique index in which multiple occurrences of
a given value are permitted within the column.

If more than one of the Key values applies to a given column of a table, Key displays the one with
the highest priority, in the order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY
KEY in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE
index; although the combination of the columns is unique, each column can still hold multiple
occurrences of a given value.

3105

SHOW Statements

• Default

The default value for the column. This is NULL if the column has an explicit default of NULL, or if the
column definition includes no DEFAULT clause.

• Extra

Any additional information that is available about a given column. The value is nonempty in these
cases:

• auto_increment for columns that have the AUTO_INCREMENT attribute.

• on update CURRENT_TIMESTAMP for TIMESTAMP or DATETIME columns that have the ON
UPDATE CURRENT_TIMESTAMP attribute.

• VIRTUAL GENERATED or STORED GENERATED for generated columns.

• DEFAULT_GENERATED for columns that have an expression default value.

• Privileges

The privileges you have for the column. This value is displayed only if you use the FULL keyword.

• Comment

Any comment included in the column definition. This value is displayed only if you use the FULL
keyword.

Table column information is also available from the INFORMATION_SCHEMA COLUMNS table. See
Section 28.3.8, “The INFORMATION_SCHEMA COLUMNS Table”. The extended information about
hidden columns is available only using SHOW EXTENDED COLUMNS; it cannot be obtained from the
COLUMNS table.

You can list a table's columns with the mysqlshow db_name tbl_name command.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 15.8.1,
“DESCRIBE Statement”.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 15.7.7, “SHOW Statements”.

In MySQL 8.0.30 and later, SHOW COLUMNS includes the table's generated invisible primary key, if
it has one, by default. You can cause this information to be suppressed in the statement's output
by setting show_gipk_in_create_table_and_information_schema = OFF. For more
information, see Section 15.1.20.11, “Generated Invisible Primary Keys”.

15.7.7.6 SHOW CREATE DATABASE Statement

SHOW CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

Shows the CREATE DATABASE statement that creates the named database. If the SHOW statement
includes an IF NOT EXISTS clause, the output too includes such a clause. SHOW CREATE SCHEMA is
a synonym for SHOW CREATE DATABASE.

mysql> SHOW CREATE DATABASE test\G
*************************** 1. row ***************************
 Database: test
Create Database: CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET utf8mb4
 COLLATE utf8mb4_0900_ai_ci */ /*!80014 DEFAULT ENCRYPTION='N' */

mysql> SHOW CREATE SCHEMA test\G
*************************** 1. row ***************************
 Database: test

3106

SHOW Statements

Create Database: CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET utf8mb4
 COLLATE utf8mb4_0900_ai_ci */ /*!80014 DEFAULT ENCRYPTION='N' */

SHOW CREATE DATABASE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 7.1.8, “Server System Variables”.

15.7.7.7 SHOW CREATE EVENT Statement

SHOW CREATE EVENT event_name

This statement displays the CREATE EVENT statement needed to re-create a given event. It requires
the EVENT privilege for the database from which the event is to be shown. For example (using the
same event e_daily defined and then altered in Section 15.7.7.18, “SHOW EVENTS Statement”):

mysql> SHOW CREATE EVENT myschema.e_daily\G
*************************** 1. row ***************************
 Event: e_daily
 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_ENGINE_SUBSTITUTION
 time_zone: SYSTEM
 Create Event: CREATE DEFINER=`jon`@`ghidora` EVENT `e_daily`
 ON SCHEDULE EVERY 1 DAY
 STARTS CURRENT_TIMESTAMP + INTERVAL 6 HOUR
 ON COMPLETION NOT PRESERVE
 ENABLE
 COMMENT 'Saves total number of sessions then
 clears the table each day'
 DO BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END
character_set_client: utf8mb4
collation_connection: utf8mb4_0900_ai_ci
 Database Collation: utf8mb4_0900_ai_ci

character_set_client is the session value of the character_set_client system
variable when the event was created. collation_connection is the session value of the
collation_connection system variable when the event was created. Database Collation is
the collation of the database with which the event is associated.

The output reflects the current status of the event (ENABLE) rather than the status with which it was
created.

15.7.7.8 SHOW CREATE FUNCTION Statement

SHOW CREATE FUNCTION func_name

This statement is similar to SHOW CREATE PROCEDURE but for stored functions. See Section 15.7.7.9,
“SHOW CREATE PROCEDURE Statement”.

15.7.7.9 SHOW CREATE PROCEDURE Statement

SHOW CREATE PROCEDURE proc_name

This statement is a MySQL extension. It returns the exact string that can be used to re-create the
named stored procedure. A similar statement, SHOW CREATE FUNCTION, displays information about
stored functions (see Section 15.7.7.8, “SHOW CREATE FUNCTION Statement”).

To use either statement, you must be the user named as the routine DEFINER, have the
SHOW_ROUTINE privilege, have the SELECT privilege at the global level, or have the CREATE
ROUTINE, ALTER ROUTINE, or EXECUTE privilege granted at a scope that includes the routine. The

3107

SHOW Statements

value displayed for the Create Procedure or Create Function field is NULL if you have only
CREATE ROUTINE, ALTER ROUTINE, or EXECUTE.

mysql> SHOW CREATE PROCEDURE test.citycount\G
*************************** 1. row ***************************
 Procedure: citycount
 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_ENGINE_SUBSTITUTION
 Create Procedure: CREATE DEFINER=`me`@`localhost`
 PROCEDURE `citycount`(IN country CHAR(3), OUT cities INT)
 BEGIN
 SELECT COUNT(*) INTO cities FROM world.city
 WHERE CountryCode = country;
 END
character_set_client: utf8mb4
collation_connection: utf8mb4_0900_ai_ci
 Database Collation: utf8mb4_0900_ai_ci

mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************
 Function: hello
 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_ENGINE_SUBSTITUTION
 Create Function: CREATE DEFINER=`me`@`localhost`
 FUNCTION `hello`(s CHAR(20))
 RETURNS char(50) CHARSET utf8mb4
 DETERMINISTIC
 RETURN CONCAT('Hello, ',s,'!')
character_set_client: utf8mb4
collation_connection: utf8mb4_0900_ai_ci
 Database Collation: utf8mb4_0900_ai_ci

character_set_client is the session value of the character_set_client system
variable when the routine was created. collation_connection is the session value of the
collation_connection system variable when the routine was created. Database Collation is
the collation of the database with which the routine is associated.

15.7.7.10 SHOW CREATE TABLE Statement

SHOW CREATE TABLE tbl_name

Shows the CREATE TABLE statement that creates the named table. To use this statement, you must
have some privilege for the table. This statement also works with views.

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE `t` (
 `id` int NOT NULL AUTO_INCREMENT,
 `s` char(60) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

As of MySQL 8.0.16, MySQL implements CHECK constraints and SHOW CREATE TABLE displays them.
All CHECK constraints are displayed as table constraints. That is, a CHECK constraint originally specified
as part of a column definition displays as a separate clause not part of the column definition. Example:

mysql> CREATE TABLE t1 (
 i1 INT CHECK (i1 <> 0), -- column constraint
 i2 INT,
 CHECK (i2 > i1), -- table constraint
 CHECK (i2 <> 0) NOT ENFORCED -- table constraint, not enforced
);

3108

SHOW Statements

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `i1` int DEFAULT NULL,
 `i2` int DEFAULT NULL,
 CONSTRAINT `t1_chk_1` CHECK ((`i1` <> 0)),
 CONSTRAINT `t1_chk_2` CHECK ((`i2` > `i1`)),
 CONSTRAINT `t1_chk_3` CHECK ((`i2` <> 0)) /*!80016 NOT ENFORCED */
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

SHOW CREATE TABLE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 7.1.8, “Server System Variables”.

When altering the storage engine of a table, table options that are not applicable to the new storage
engine are retained in the table definition to enable reverting the table with its previously defined
options to the original storage engine, if necessary. For example, when changing the storage engine
from InnoDB to MyISAM, options specific to InnoDB, such as ROW_FORMAT=COMPACT, are retained,
as shown here:

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) ROW_FORMAT=COMPACT ENGINE=InnoDB;
mysql> ALTER TABLE t1 ENGINE=MyISAM;
mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int NOT NULL,
 PRIMARY KEY (`c1`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci ROW_FORMAT=COMPACT

When creating a table with strict mode disabled, the storage engine's default row format is used
if the specified row format is not supported. The actual row format of the table is reported in the
Row_format column in response to SHOW TABLE STATUS. SHOW CREATE TABLE shows the row
format that was specified in the CREATE TABLE statement.

In MySQL 8.0.30 and later, SHOW CREATE TABLE includes the definition of the table's generated
invisible primary key, if it has such a key, by default. You can cause this information to be suppressed
in the statement's output by setting show_gipk_in_create_table_and_information_schema =
OFF. For more information, see Section 15.1.20.11, “Generated Invisible Primary Keys”.

15.7.7.11 SHOW CREATE TRIGGER Statement

SHOW CREATE TRIGGER trigger_name

This statement shows the CREATE TRIGGER statement that creates the named trigger. This statement
requires the TRIGGER privilege for the table associated with the trigger.

mysql> SHOW CREATE TRIGGER ins_sum\G
*************************** 1. row ***************************
 Trigger: ins_sum
 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_ENGINE_SUBSTITUTION
SQL Original Statement: CREATE DEFINER=`me`@`localhost` TRIGGER `ins_sum`
 BEFORE INSERT ON `account`
 FOR EACH ROW SET @sum = @sum + NEW.amount
 character_set_client: utf8mb4
 collation_connection: utf8mb4_0900_ai_ci
 Database Collation: utf8mb4_0900_ai_ci
 Created: 2018-08-08 10:10:12.61

SHOW CREATE TRIGGER output has these columns:

• Trigger: The trigger name.

• sql_mode: The SQL mode in effect when the trigger executes.

3109

SHOW Statements

• SQL Original Statement: The CREATE TRIGGER statement that defines the trigger.

• character_set_client: The session value of the character_set_client system variable
when the trigger was created.

• collation_connection: The session value of the collation_connection system variable
when the trigger was created.

• Database Collation: The collation of the database with which the trigger is associated.

• Created: The date and time when the trigger was created. This is a TIMESTAMP(2) value (with a
fractional part in hundredths of seconds) for triggers.

Trigger information is also available from the INFORMATION_SCHEMA TRIGGERS table. See
Section 28.3.45, “The INFORMATION_SCHEMA TRIGGERS Table”.

15.7.7.12 SHOW CREATE USER Statement

SHOW CREATE USER user

This statement shows the CREATE USER statement that creates the named user. An error occurs if
the user does not exist. The statement requires the SELECT privilege for the mysql system schema,
except to see information for the current user. For the current user, the SELECT privilege for the
mysql.user system table is required for display of the password hash in the IDENTIFIED AS clause;
otherwise, the hash displays as <secret>.

To name the account, use the format described in Section 8.2.4, “Specifying Account Names”.
The host name part of the account name, if omitted, defaults to '%'. It is also possible to specify
CURRENT_USER or CURRENT_USER() to refer to the account associated with the current session.

Password hash values displayed in the IDENTIFIED WITH clause of output from SHOW CREATE
USER may contain unprintable characters that have adverse effects on terminal displays and in other
environments. Enabling the print_identified_with_as_hex system variable (available as of
MySQL 8.0.17) causes SHOW CREATE USER to display such hash values as hexadecimal strings
rather than as regular string literals. Hash values that do not contain unprintable characters still display
as regular string literals, even with this variable enabled.

mysql> CREATE USER 'u1'@'localhost' IDENTIFIED BY 'secret';
mysql> SET print_identified_with_as_hex = ON;
mysql> SHOW CREATE USER 'u1'@'localhost'\G
*************************** 1. row ***************************
CREATE USER for u1@localhost: CREATE USER `u1`@`localhost`
IDENTIFIED WITH 'caching_sha2_password'
AS 0x244124303035240C7745603626313D613C4C10633E0A104B1E14135A544A7871567245614F4872344643546336546F624F6C7861326932752F45622F4F473273597557627139
REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT UNLOCK
PASSWORD HISTORY DEFAULT PASSWORD REUSE INTERVAL DEFAULT
PASSWORD REQUIRE CURRENT DEFAULT

To display the privileges granted to an account, use the SHOW GRANTS statement. See
Section 15.7.7.21, “SHOW GRANTS Statement”.

15.7.7.13 SHOW CREATE VIEW Statement

SHOW CREATE VIEW view_name

This statement shows the CREATE VIEW statement that creates the named view.

mysql> SHOW CREATE VIEW v\G
*************************** 1. row ***************************
 View: v
 Create View: CREATE ALGORITHM=UNDEFINED
 DEFINER=`bob`@`localhost`
 SQL SECURITY DEFINER VIEW
 `v` AS select 1 AS `a`,2 AS `b`
character_set_client: utf8mb4

3110

SHOW Statements

collation_connection: utf8mb4_0900_ai_ci

character_set_client is the session value of the character_set_client system
variable when the view was created. collation_connection is the session value of the
collation_connection system variable when the view was created.

Use of SHOW CREATE VIEW requires the SHOW VIEW privilege, and the SELECT privilege for the view
in question.

View information is also available from the INFORMATION_SCHEMA VIEWS table. See Section 28.3.48,
“The INFORMATION_SCHEMA VIEWS Table”.

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support.
For example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard
SQL concatenation operator, the double bar (||), in your queries. If you then create a view that
concatenates items, you might worry that changing the sql_mode setting to a value different from
ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a
view definition, MySQL always stores it the same way, in a canonical form. Here is an example that
shows how the server changes a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW CREATE VIEW test.v\G
*************************** 1. row ***************************
 View: v
 Create View: CREATE VIEW "v" AS select concat('a','b') AS "col1"
...
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value
of sql_mode do not affect the results from the view. However an additional consequence is that
comments prior to SELECT are stripped from the definition by the server.

15.7.7.14 SHOW DATABASES Statement

SHOW {DATABASES | SCHEMAS}
 [LIKE 'pattern' | WHERE expr]

SHOW DATABASES lists the databases on the MySQL server host. SHOW SCHEMAS is a synonym
for SHOW DATABASES. The LIKE clause, if present, indicates which database names to match. The
WHERE clause can be given to select rows using more general conditions, as discussed in Section 28.8,
“Extensions to SHOW Statements”.

You see only those databases for which you have some kind of privilege, unless you have the global
SHOW DATABASES privilege. You can also get this list using the mysqlshow command.

If the server was started with the --skip-show-database option, you cannot use this statement at
all unless you have the SHOW DATABASES privilege.

MySQL implements databases as directories in the data directory, so this statement simply lists
directories in that location. However, the output may include names of directories that do not
correspond to actual databases.

Database information is also available from the INFORMATION_SCHEMA SCHEMATA table. See
Section 28.3.31, “The INFORMATION_SCHEMA SCHEMATA Table”.

Caution

Because any static global privilege is considered a privilege for all databases,
any static global privilege enables a user to see all database names with SHOW

3111

SHOW Statements

DATABASES or by examining the SCHEMATA table of INFORMATION_SCHEMA,
except databases that have been restricted at the database level by partial
revokes.

15.7.7.15 SHOW ENGINE Statement

SHOW ENGINE engine_name {STATUS | MUTEX}

SHOW ENGINE displays operational information about a storage engine. It requires the PROCESS
privilege. The statement has these variants:

SHOW ENGINE INNODB STATUS
SHOW ENGINE INNODB MUTEX
SHOW ENGINE PERFORMANCE_SCHEMA STATUS

SHOW ENGINE INNODB STATUS displays extensive information from the standard InnoDB Monitor
about the state of the InnoDB storage engine. For information about the standard monitor and other
InnoDB Monitors that provide information about InnoDB processing, see Section 17.17, “InnoDB
Monitors”.

SHOW ENGINE INNODB MUTEX displays InnoDB mutex and rw-lock statistics.

Note

InnoDB mutexes and rwlocks can also be monitored using Performance
Schema tables. See Section 17.16.2, “Monitoring InnoDB Mutex Waits Using
Performance Schema”.

Mutex statistics collection is configured dynamically using the following options:

• To enable the collection of mutex statistics, run:

SET GLOBAL innodb_monitor_enable='latch';

• To reset mutex statistics, run:

SET GLOBAL innodb_monitor_reset='latch';

• To disable the collection of mutex statistics, run:

SET GLOBAL innodb_monitor_disable='latch';

Collection of mutex statistics for SHOW ENGINE INNODB MUTEX can also be enabled by setting
innodb_monitor_enable='all', or disabled by setting innodb_monitor_disable='all'.

SHOW ENGINE INNODB MUTEX output has these columns:

• Type

Always InnoDB.

• Name

For mutexes, the Name field reports only the mutex name. For rwlocks, the Name field reports the
source file where the rwlock is implemented, and the line number in the file where the rwlock is
created. The line number is specific to your version of MySQL.

• Status

The mutex status. This field reports the number of spins, waits, and calls. Statistics for low-level
operating system mutexes, which are implemented outside of InnoDB, are not reported.

• spins indicates the number of spins.

3112

SHOW Statements

• waits indicates the number of mutex waits.

• calls indicates how many times the mutex was requested.

SHOW ENGINE INNODB MUTEX does not list mutexes and rw-locks for each buffer pool block, as the
amount of output would be overwhelming on systems with a large buffer pool. SHOW ENGINE INNODB
MUTEX does, however, print aggregate BUF_BLOCK_MUTEX spin, wait, and call values for buffer pool
block mutexes and rw-locks. SHOW ENGINE INNODB MUTEX also does not list any mutexes or rw-
locks that have never been waited on (os_waits=0). Thus, SHOW ENGINE INNODB MUTEX only
displays information about mutexes and rw-locks outside of the buffer pool that have caused at least
one OS-level wait.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the
Performance Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.size
Status: 76
*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.count
Status: 10000
*************************** 5. row ***************************
 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600
...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements.

Name values consist of two parts, which name an internal buffer and a buffer attribute, respectively.
Interpret buffer names as follows:

• An internal buffer that is not exposed as a table is named within parentheses. Examples:
(pfs_cond_class).size, (pfs_mutex_class).memory.

• An internal buffer that is exposed as a table in the performance_schema database is
named after the table, without parentheses. Examples: events_waits_history.size,
mutex_instances.count.

• A value that applies to the Performance Schema as a whole begins with performance_schema.
Example: performance_schema.memory.

Buffer attributes have these meanings:

• size is the size of the internal record used by the implementation, such as the size of a row in a
table. size values cannot be changed.

• count is the number of internal records, such as the number of rows in a table. count values can
be changed using Performance Schema configuration options.

• For a table, tbl_name.memory is the product of size and count. For the Performance Schema as
a whole, performance_schema.memory is the sum of all the memory used (the sum of all other
memory values).

3113

SHOW Statements

In some cases, there is a direct relationship between a Performance Schema configuration
parameter and a SHOW ENGINE value. For example, events_waits_history_long.count
corresponds to performance_schema_events_waits_history_long_size. In other cases,
the relationship is more complex. For example, events_waits_history.count corresponds to
performance_schema_events_waits_history_size (the number of rows per thread) multiplied
by performance_schema_max_thread_instances (the number of threads).

SHOW ENGINE NDB STATUS. If the server has the NDB storage engine enabled, SHOW ENGINE
NDB STATUS displays cluster status information such as the number of connected data nodes, the
cluster connectstring, and cluster binary log epochs, as well as counts of various Cluster API objects
created by the MySQL Server when connected to the cluster. Sample output from this statement is
shown here:

mysql> SHOW ENGINE NDB STATUS;
+------------+-----------------------+--+
| Type | Name | Status |
+------------+-----------------------+--+
| ndbcluster | connection | cluster_node_id=7,
 connected_host=198.51.100.103, connected_port=1186, number_of_data_nodes=4,
 number_of_ready_data_nodes=3, connect_count=0 |
ndbcluster	NdbTransaction	created=6, free=0, sizeof=212
ndbcluster	NdbOperation	created=8, free=8, sizeof=660
ndbcluster	NdbIndexScanOperation	created=1, free=1, sizeof=744
ndbcluster	NdbIndexOperation	created=0, free=0, sizeof=664
ndbcluster	NdbRecAttr	created=1285, free=1285, sizeof=60
ndbcluster	NdbApiSignal	created=16, free=16, sizeof=136
ndbcluster	NdbLabel	created=0, free=0, sizeof=196
ndbcluster	NdbBranch	created=0, free=0, sizeof=24
ndbcluster	NdbSubroutine	created=0, free=0, sizeof=68
ndbcluster	NdbCall	created=0, free=0, sizeof=16
ndbcluster	NdbBlob	created=1, free=1, sizeof=264
ndbcluster	NdbReceiver	created=4, free=0, sizeof=68
ndbcluster	binlog	latest_epoch=155467, latest_trans_epoch=148126,
 latest_received_binlog_epoch=0, latest_handled_binlog_epoch=0,
 latest_applied_binlog_epoch=0 |
+------------+-----------------------+--+

The Status column in each of these rows provides information about the MySQL server's connection
to the cluster and about the cluster binary log's status, respectively. The Status information is in the
form of comma-delimited set of name/value pairs.

The connection row's Status column contains the name/value pairs described in the following
table.

Name Value

cluster_node_id The node ID of the MySQL server in the cluster

connected_host The host name or IP address of the cluster
management server to which the MySQL server is
connected

connected_port The port used by the MySQL server to connect to
the management server (connected_host)

number_of_data_nodes The number of data nodes configured for the
cluster (that is, the number of [ndbd] sections in
the cluster config.ini file)

number_of_ready_data_nodes The number of data nodes in the cluster that are
actually running

connect_count The number of times this mysqld has connected
or reconnected to cluster data nodes

The binlog row's Status column contains information relating to NDB Cluster Replication. The
name/value pairs it contains are described in the following table.

3114

SHOW Statements

Name Value

latest_epoch The most recent epoch most recently run on this
MySQL server (that is, the sequence number of
the most recent transaction run on the server)

latest_trans_epoch The most recent epoch processed by the cluster's
data nodes

latest_received_binlog_epoch The most recent epoch received by the binary log
thread

latest_handled_binlog_epoch The most recent epoch processed by the binary
log thread (for writing to the binary log)

latest_applied_binlog_epoch The most recent epoch actually written to the
binary log

See Section 25.7, “NDB Cluster Replication”, for more information.

The remaining rows from the output of SHOW ENGINE NDB STATUS which are most likely to prove
useful in monitoring the cluster are listed here by Name:

• NdbTransaction: The number and size of NdbTransaction objects that have been created.
An NdbTransaction is created each time a table schema operation (such as CREATE TABLE or
ALTER TABLE) is performed on an NDB table.

• NdbOperation: The number and size of NdbOperation objects that have been created.

• NdbIndexScanOperation: The number and size of NdbIndexScanOperation objects that have
been created.

• NdbIndexOperation: The number and size of NdbIndexOperation objects that have been
created.

• NdbRecAttr: The number and size of NdbRecAttr objects that have been created. In general, one
of these is created each time a data manipulation statement is performed by an SQL node.

• NdbBlob: The number and size of NdbBlob objects that have been created. An NdbBlob is created
for each new operation involving a BLOB column in an NDB table.

• NdbReceiver: The number and size of any NdbReceiver object that have been created. The
number in the created column is the same as the number of data nodes in the cluster to which the
MySQL server has connected.

Note

SHOW ENGINE NDB STATUS returns an empty result if no operations involving
NDB tables have been performed during the current session by the MySQL
client accessing the SQL node on which this statement is run.

15.7.7.16 SHOW ENGINES Statement

SHOW [STORAGE] ENGINES

SHOW ENGINES displays status information about the server's storage engines. This is particularly
useful for checking whether a storage engine is supported, or to see what the default engine is.

For information about MySQL storage engines, see Chapter 17, The InnoDB Storage Engine, and
Chapter 18, Alternative Storage Engines.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: ARCHIVE

3115

SHOW Statements

 Support: YES
 Comment: Archive storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 2. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: FEDERATED
 Support: NO
 Comment: Federated MySQL storage engine
Transactions: NULL
 XA: NULL
 Savepoints: NULL
*************************** 5. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 7. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 8. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 9. row ***************************
 Engine: CSV
 Support: YES
 Comment: CSV storage engine
Transactions: NO
 XA: NO
 Savepoints: NO

The output from SHOW ENGINES may vary according to the MySQL version used and other factors.

SHOW ENGINES output has these columns:

• Engine

The name of the storage engine.

• Support

3116

SHOW Statements

The server's level of support for the storage engine, as shown in the following table.

Value Meaning

YES The engine is supported and is active

DEFAULT Like YES, plus this is the default engine

NO The engine is not supported

DISABLED The engine is supported but has been disabled

A value of NO means that the server was compiled without support for the engine, so it cannot be
enabled at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the
engine, or because not all options required to enable it were given. In the latter case, the error log
should contain a reason indicating why the option is disabled. See Section 7.4.2, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine_name option. For the NDB storage engine, DISABLED means the
server was compiled with support for NDB Cluster, but was not started with the --ndbcluster
option.

All MySQL servers support MyISAM tables. It is not possible to disable MyISAM.

• Comment

A brief description of the storage engine.

• Transactions

Whether the storage engine supports transactions.

• XA

Whether the storage engine supports XA transactions.

• Savepoints

Whether the storage engine supports savepoints.

Storage engine information is also available from the INFORMATION_SCHEMA ENGINES table. See
Section 28.3.13, “The INFORMATION_SCHEMA ENGINES Table”.

15.7.7.17 SHOW ERRORS Statement

SHOW ERRORS [LIMIT [offset,] row_count]
SHOW COUNT(*) ERRORS

SHOW ERRORS is a diagnostic statement that is similar to SHOW WARNINGS, except that it displays
information only for errors, rather than for errors, warnings, and notes.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 15.2.13, “SELECT
Statement”.

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve this
number from the error_count variable:

SHOW COUNT(*) ERRORS;
SELECT @@error_count;

SHOW ERRORS and error_count apply only to errors, not warnings or notes. In other respects, they
are similar to SHOW WARNINGS and warning_count. In particular, SHOW ERRORS cannot display

3117

SHOW Statements

information for more than max_error_count messages, and error_count can exceed the value of
max_error_count if the number of errors exceeds max_error_count.

For more information, see Section 15.7.7.42, “SHOW WARNINGS Statement”.

15.7.7.18 SHOW EVENTS Statement

SHOW EVENTS
 [{FROM | IN} schema_name]
 [LIKE 'pattern' | WHERE expr]

This statement displays information about Event Manager events, which are discussed in Section 27.4,
“Using the Event Scheduler”. It requires the EVENT privilege for the database from which the events are
to be shown.

In its simplest form, SHOW EVENTS lists all of the events in the current schema:

mysql> SELECT CURRENT_USER(), SCHEMA();
+----------------+----------+
| CURRENT_USER() | SCHEMA() |
+----------------+----------+
| jon@ghidora | myschema |
+----------------+----------+
1 row in set (0.00 sec)

mysql> SHOW EVENTS\G
*************************** 1. row ***************************
 Db: myschema
 Name: e_daily
 Definer: jon@ghidora
 Time zone: SYSTEM
 Type: RECURRING
 Execute at: NULL
 Interval value: 1
 Interval field: DAY
 Starts: 2018-08-08 11:06:34
 Ends: NULL
 Status: ENABLED
 Originator: 1
character_set_client: utf8mb4
collation_connection: utf8mb4_0900_ai_ci
 Database Collation: utf8mb4_0900_ai_ci

To see events for a specific schema, use the FROM clause. For example, to see events for the test
schema, use the following statement:

SHOW EVENTS FROM test;

The LIKE clause, if present, indicates which event names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 28.8, “Extensions to SHOW
Statements”.

SHOW EVENTS output has these columns:

• Db

The name of the schema (database) to which the event belongs.

• Name

The name of the event.

• Definer

The account of the user who created the event, in 'user_name'@'host_name' format.

• Time zone

3118

SHOW Statements

The event time zone, which is the time zone used for scheduling the event and that is in effect within
the event as it executes. The default value is SYSTEM.

• Type

The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• Execute At

For a one-time event, this is the DATETIME value specified in the AT clause of the CREATE EVENT
statement used to create the event, or of the last ALTER EVENT statement that modified the
event. The value shown in this column reflects the addition or subtraction of any INTERVAL value
included in the event's AT clause. For example, if an event is created using ON SCHEDULE AT
CURRENT_TIMESTAMP + '1:6' DAY_HOUR, and the event was created at 2018-02-09 14:05:30,
the value shown in this column would be '2018-02-10 20:05:30'. If the event's timing is
determined by an EVERY clause instead of an AT clause (that is, if the event is recurring), the value
of this column is NULL.

• Interval Value

For a recurring event, the number of intervals to wait between event executions. For a transient
event, the value of this column is always NULL.

• Interval Field

The time units used for the interval which a recurring event waits before repeating. For a transient
event, the value of this column is always NULL.

• Starts

The start date and time for a recurring event. This is displayed as a DATETIME value, and is NULL
if no start date and time are defined for the event. For a transient event, this column is always
NULL. For a recurring event whose definition includes a STARTS clause, this column contains
the corresponding DATETIME value. As with the Execute At column, this value resolves any
expressions used. If there is no STARTS clause affecting the timing of the event, this column is NULL

• Ends

For a recurring event whose definition includes a ENDS clause, this column contains the
corresponding DATETIME value. As with the Execute At column, this value resolves any
expressions used. If there is no ENDS clause affecting the timing of the event, this column is NULL.

• Status

The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED. SLAVESIDE_DISABLED
indicates that the creation of the event occurred on another MySQL server acting as a replication
source and replicated to the current MySQL server which is acting as a replica, but the event is not
presently being executed on the replica. For more information, see Section 19.5.1.16, “Replication of
Invoked Features”. information.

• Originator

The server ID of the MySQL server on which the event was created; used in replication. This value
may be updated by ALTER EVENT to the server ID of the server on which that statement occurs, if
executed on a source server. The default value is 0.

• character_set_client

The session value of the character_set_client system variable when the event was created.

• collation_connection

3119

SHOW Statements

The session value of the collation_connection system variable when the event was created.

• Database Collation

The collation of the database with which the event is associated.

For more information about SLAVESIDE_DISABLED and the Originator column, see
Section 19.5.1.16, “Replication of Invoked Features”.

Times displayed by SHOW EVENTS are given in the event time zone, as discussed in Section 27.4.4,
“Event Metadata”.

Event information is also available from the INFORMATION_SCHEMA EVENTS table. See
Section 28.3.14, “The INFORMATION_SCHEMA EVENTS Table”.

The event action statement is not shown in the output of SHOW EVENTS. Use SHOW CREATE EVENT or
the INFORMATION_SCHEMA EVENTS table.

15.7.7.19 SHOW FUNCTION CODE Statement

SHOW FUNCTION CODE func_name

This statement is similar to SHOW PROCEDURE CODE but for stored functions. See Section 15.7.7.27,
“SHOW PROCEDURE CODE Statement”.

15.7.7.20 SHOW FUNCTION STATUS Statement

SHOW FUNCTION STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is similar to SHOW PROCEDURE STATUS but for stored functions. See
Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”.

15.7.7.21 SHOW GRANTS Statement

SHOW GRANTS
 [FOR user_or_role
 [USING role [, role] ...]]

user_or_role: {
 user (see Section 8.2.4, “Specifying Account Names”)
 | role (see Section 8.2.5, “Specifying Role Names”.
}

This statement displays the privileges and roles that are assigned to a MySQL user account or role, in
the form of GRANT statements that must be executed to duplicate the privilege and role assignments.

Note

To display nonprivilege information for MySQL accounts, use the SHOW CREATE
USER statement. See Section 15.7.7.12, “SHOW CREATE USER Statement”.

SHOW GRANTS requires the SELECT privilege for the mysql system schema, except to display
privileges and roles for the current user.

To name the account or role for SHOW GRANTS, use the same format as for the GRANT statement (for
example, 'jeffrey'@'localhost'):

mysql> SHOW GRANTS FOR 'jeffrey'@'localhost';
+--+
| Grants for jeffrey@localhost |
+--+
| GRANT USAGE ON *.* TO `jeffrey`@`localhost` |
| GRANT SELECT, INSERT, UPDATE ON `db1`.* TO `jeffrey`@`localhost` |
+--+

3120

SHOW Statements

The host part, if omitted, defaults to '%'. For additional information about specifying account and role
names, see Section 8.2.4, “Specifying Account Names”, and Section 8.2.5, “Specifying Role Names”.

To display the privileges granted to the current user (the account you are using to connect to the
server), you can use any of the following statements:

SHOW GRANTS;
SHOW GRANTS FOR CURRENT_USER;
SHOW GRANTS FOR CURRENT_USER();

If SHOW GRANTS FOR CURRENT_USER (or any equivalent syntax) is used in definer context, such as
within a stored procedure that executes with definer rather than invoker privileges, the grants displayed
are those of the definer and not the invoker.

In MySQL 8.0 compared to previous series, SHOW GRANTS no longer displays ALL PRIVILEGES
in its global-privileges output because the meaning of ALL PRIVILEGES at the global level varies
depending on which dynamic privileges are defined. Instead, SHOW GRANTS explicitly lists each
granted global privilege:

mysql> SHOW GRANTS FOR 'root'@'localhost';
+---+
| Grants for root@localhost |
+---+
| GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, RELOAD, |
| SHUTDOWN, PROCESS, FILE, REFERENCES, INDEX, ALTER, SHOW DATABASES, |
| SUPER, CREATE TEMPORARY TABLES, LOCK TABLES, EXECUTE, REPLICATION |
| SLAVE, REPLICATION CLIENT, CREATE VIEW, SHOW VIEW, CREATE ROUTINE, |
| ALTER ROUTINE, CREATE USER, EVENT, TRIGGER, CREATE TABLESPACE, |
| CREATE ROLE, DROP ROLE ON *.* TO `root`@`localhost` WITH GRANT |
| OPTION |
| GRANT PROXY ON ''@'' TO `root`@`localhost` WITH GRANT OPTION |
+---+

Applications that process SHOW GRANTS output should be adjusted accordingly.

At the global level, GRANT OPTION applies to all granted static global privileges if granted for any of
them, but applies individually to granted dynamic privileges. SHOW GRANTS displays global privileges
this way:

• One line listing all granted static privileges, if there are any, including WITH GRANT OPTION if
appropriate.

• One line listing all granted dynamic privileges for which GRANT OPTION is granted, if there are any,
including WITH GRANT OPTION.

• One line listing all granted dynamic privileges for which GRANT OPTION is not granted, if there are
any, without WITH GRANT OPTION.

With the optional USING clause, SHOW GRANTS enables you to examine the privileges associated with
roles for the user. Each role named in the USING clause must be granted to the user.

Suppose that user u1 is assigned roles r1 and r2, as follows:

CREATE ROLE 'r1', 'r2';
GRANT SELECT ON db1.* TO 'r1';
GRANT INSERT, UPDATE, DELETE ON db1.* TO 'r2';
CREATE USER 'u1'@'localhost' IDENTIFIED BY 'u1pass';
GRANT 'r1', 'r2' TO 'u1'@'localhost';

SHOW GRANTS without USING shows the granted roles:

mysql> SHOW GRANTS FOR 'u1'@'localhost';
+---+
| Grants for u1@localhost |
+---+
| GRANT USAGE ON *.* TO `u1`@`localhost` |
| GRANT `r1`@`%`,`r2`@`%` TO `u1`@`localhost` |

3121

SHOW Statements

+---+

Adding a USING clause causes the statement to also display the privileges associated with each role
named in the clause:

mysql> SHOW GRANTS FOR 'u1'@'localhost' USING 'r1';
+---+
| Grants for u1@localhost |
+---+
| GRANT USAGE ON *.* TO `u1`@`localhost` |
| GRANT SELECT ON `db1`.* TO `u1`@`localhost` |
| GRANT `r1`@`%`,`r2`@`%` TO `u1`@`localhost` |
+---+
mysql> SHOW GRANTS FOR 'u1'@'localhost' USING 'r2';
+---+
| Grants for u1@localhost |
+---+
| GRANT USAGE ON *.* TO `u1`@`localhost` |
| GRANT INSERT, UPDATE, DELETE ON `db1`.* TO `u1`@`localhost` |
| GRANT `r1`@`%`,`r2`@`%` TO `u1`@`localhost` |
+---+
mysql> SHOW GRANTS FOR 'u1'@'localhost' USING 'r1', 'r2';
+---+
| Grants for u1@localhost |
+---+
| GRANT USAGE ON *.* TO `u1`@`localhost` |
| GRANT SELECT, INSERT, UPDATE, DELETE ON `db1`.* TO `u1`@`localhost` |
| GRANT `r1`@`%`,`r2`@`%` TO `u1`@`localhost` |
+---+

Note

A privilege granted to an account is always in effect, but a role is not. The active
roles for an account can differ across and within sessions, depending on the
value of the activate_all_roles_on_login system variable, the account
default roles, and whether SET ROLE has been executed within a session.

MySQL 8.0.16 and higher supports partial revokes of global privileges, such that a global privilege
can be restricted from applying to particular schemas (see Section 8.2.12, “Privilege Restriction
Using Partial Revokes”). To indicate which global schema privileges have been revoked for particular
schemas, SHOW GRANTS output includes REVOKE statements:

mysql> SET PERSIST partial_revokes = ON;
mysql> CREATE USER u1;
mysql> GRANT SELECT, INSERT, DELETE ON *.* TO u1;
mysql> REVOKE SELECT, INSERT ON mysql.* FROM u1;
mysql> REVOKE DELETE ON world.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+--+
| Grants for u1@% |
+--+
| GRANT SELECT, INSERT, DELETE ON *.* TO `u1`@`%` |
| REVOKE SELECT, INSERT ON `mysql`.* FROM `u1`@`%` |
| REVOKE DELETE ON `world`.* FROM `u1`@`%` |
+--+

SHOW GRANTS does not display privileges that are available to the named account but are granted to
a different account. For example, if an anonymous account exists, the named account might be able to
use its privileges, but SHOW GRANTS does not display them.

SHOW GRANTS displays mandatory roles named in the mandatory_roles system variable value as
follows:

• SHOW GRANTS without a FOR clause displays privileges for the current user, and includes mandatory
roles.

• SHOW GRANTS FOR user displays privileges for the named user, and does not include mandatory
roles.

3122

SHOW Statements

This behavior is for the benefit of applications that use the output of SHOW GRANTS FOR user to
determine which privileges are granted explicitly to the named user. Were that output to include
mandatory roles, it would be difficult to distinguish roles granted explicitly to the user from mandatory
roles.

For the current user, applications can determine privileges with or without mandatory roles by using
SHOW GRANTS or SHOW GRANTS FOR CURRENT_USER, respectively.

15.7.7.22 SHOW INDEX Statement

SHOW [EXTENDED] {INDEX | INDEXES | KEYS}
 {FROM | IN} tbl_name
 [{FROM | IN} db_name]
 [WHERE expr]

SHOW INDEX returns table index information. The format resembles that of the SQLStatistics call in
ODBC. This statement requires some privilege for any column in the table.

mysql> SHOW INDEX FROM City\G
*************************** 1. row ***************************
 Table: city
 Non_unique: 0
 Key_name: PRIMARY
 Seq_in_index: 1
 Column_name: ID
 Collation: A
 Cardinality: 4188
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
Index_comment:
 Visible: YES
 Expression: NULL
*************************** 2. row ***************************
 Table: city
 Non_unique: 1
 Key_name: CountryCode
 Seq_in_index: 1
 Column_name: CountryCode
 Collation: A
 Cardinality: 232
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
Index_comment:
 Visible: YES
 Expression: NULL

An alternative to tbl_name FROM db_name syntax is db_name.tbl_name. These two statements
are equivalent:

SHOW INDEX FROM mytable FROM mydb;
SHOW INDEX FROM mydb.mytable;

The optional EXTENDED keyword causes the output to include information about hidden indexes that
MySQL uses internally and are not accessible by users.

The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 28.8, “Extensions to SHOW Statements”.

SHOW INDEX returns the following fields:

• Table

The name of the table.

3123

SHOW Statements

• Non_unique

0 if the index cannot contain duplicates, 1 if it can.

• Key_name

The name of the index. If the index is the primary key, the name is always PRIMARY.

• Seq_in_index

The column sequence number in the index, starting with 1.

• Column_name

The column name. See also the description for the Expression column.

• Collation

How the column is sorted in the index. This can have values A (ascending), D (descending), or NULL
(not sorted).

• Cardinality

An estimate of the number of unique values in the index. To update this number, run ANALYZE
TABLE or (for MyISAM tables) myisamchk -a.

Cardinality is counted based on statistics stored as integers, so the value is not necessarily
exact even for small tables. The higher the cardinality, the greater the chance that MySQL uses the
index when doing joins.

• Sub_part

The index prefix. That is, the number of indexed characters if the column is only partly indexed, NULL
if the entire column is indexed.

Note

Prefix limits are measured in bytes. However, prefix lengths for index
specifications in CREATE TABLE, ALTER TABLE, and CREATE INDEX
statements are interpreted as number of characters for nonbinary string types
(CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY,
VARBINARY, BLOB). Take this into account when specifying a prefix length for
a nonbinary string column that uses a multibyte character set.

For additional information about index prefixes, see Section 10.3.5, “Column Indexes”, and
Section 15.1.15, “CREATE INDEX Statement”.

• Packed

Indicates how the key is packed. NULL if it is not.

• Null

Contains YES if the column may contain NULL values and '' if not.

• Index_type

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• Comment

Information about the index not described in its own column, such as disabled if the index is
disabled.

3124

SHOW Statements

• Index_comment

Any comment provided for the index with a COMMENT attribute when the index was created.

• Visible

Whether the index is visible to the optimizer. See Section 10.3.12, “Invisible Indexes”.

• Expression

MySQL 8.0.13 and higher supports functional key parts (see Functional Key Parts), which affects
both the Column_name and Expression columns:

• For a nonfunctional key part, Column_name indicates the column indexed by the key part and
Expression is NULL.

• For a functional key part, Column_name column is NULL and Expression indicates the
expression for the key part.

Information about table indexes is also available from the INFORMATION_SCHEMA STATISTICS table.
See Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”. The extended information
about hidden indexes is available only using SHOW EXTENDED INDEX; it cannot be obtained from the
STATISTICS table.

You can list a table's indexes with the mysqlshow -k db_name tbl_name command.

In MySQL 8.0.30 and later, SHOW INDEX includes the table's generated invisible key, if it has one,
by default. You can cause this information to be suppressed in the statement's output by setting
show_gipk_in_create_table_and_information_schema = OFF. For more information, see
Section 15.1.20.11, “Generated Invisible Primary Keys”.

15.7.7.23 SHOW MASTER STATUS Statement

SHOW MASTER STATUS

This statement provides status information about the binary log files of the source server. It requires the
REPLICATION CLIENT privilege (or the deprecated SUPER privilege).

Example:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: source-bin.000002
 Position: 1307
 Binlog_Do_DB: test
 Binlog_Ignore_DB: manual, mysql
Executed_Gtid_Set: 3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5
1 row in set (0.00 sec)

When global transaction IDs are in use, Executed_Gtid_Set shows the set of GTIDs for transactions
that have been executed on the source. This is the same as the value for the gtid_executed system
variable on this server, as well as the value for Executed_Gtid_Set in the output of SHOW REPLICA
STATUS (or before MySQL 8.0.22, SHOW SLAVE STATUS) on this server.

15.7.7.24 SHOW OPEN TABLES Statement

SHOW OPEN TABLES
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW OPEN TABLES lists the non-TEMPORARY tables that are currently open in the table cache. See
Section 10.4.3.1, “How MySQL Opens and Closes Tables”. The FROM clause, if present, restricts the
tables shown to those present in the db_name database. The LIKE clause, if present, indicates which
table names to match. The WHERE clause can be given to select rows using more general conditions,
as discussed in Section 28.8, “Extensions to SHOW Statements”.

3125

SHOW Statements

SHOW OPEN TABLES output has these columns:

• Database

The database containing the table.

• Table

The table name.

• In_use

The number of table locks or lock requests there are for the table. For example, if one client acquires
a lock for a table using LOCK TABLE t1 WRITE, In_use is 1. If another client issues LOCK TABLE
t1 WRITE while the table remains locked, the client blocks, waiting for the lock, but the lock request
causes In_use to be 2. If the count is zero, the table is open but not currently being used. In_use
is also increased by the HANDLER ... OPEN statement and decreased by HANDLER ... CLOSE.

• Name_locked

Whether the table name is locked. Name locking is used for operations such as dropping or
renaming tables.

If you have no privileges for a table, it does not show up in the output from SHOW OPEN TABLES.

15.7.7.25 SHOW PLUGINS Statement

SHOW PLUGINS

SHOW PLUGINS displays information about server plugins.

Example of SHOW PLUGINS output:

mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
 Name: binlog
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 2. row ***************************
 Name: CSV
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 3. row ***************************
 Name: MEMORY
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 4. row ***************************
 Name: MyISAM
 Status: ACTIVE
 Type: STORAGE ENGINE
Library: NULL
License: GPL
...

SHOW PLUGINS output has these columns:

• Name

The name used to refer to the plugin in statements such as INSTALL PLUGIN and UNINSTALL
PLUGIN.

3126

SHOW Statements

• Status

The plugin status, one of ACTIVE, INACTIVE, DISABLED, DELETING, or DELETED.

• Type

The type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or AUTHENTICATION.

• Library

The name of the plugin shared library file. This is the name used to refer to the plugin file in
statements such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the directory
named by the plugin_dir system variable. If the library name is NULL, the plugin is compiled in
and cannot be uninstalled with UNINSTALL PLUGIN.

• License

How the plugin is licensed (for example, GPL).

For plugins installed with INSTALL PLUGIN, the Name and Library values are also registered in the
mysql.plugin system table.

For information about plugin data structures that form the basis of the information displayed by SHOW
PLUGINS, see The MySQL Plugin API.

Plugin information is also available from the INFORMATION_SCHEMA .PLUGINS table. See
Section 28.3.22, “The INFORMATION_SCHEMA PLUGINS Table”.

15.7.7.26 SHOW PRIVILEGES Statement

SHOW PRIVILEGES

SHOW PRIVILEGES shows the list of system privileges that the MySQL server supports. The privileges
displayed include all static privileges, and all currently registered dynamic privileges.

mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Alter
 Context: Tables
 Comment: To alter the table
*************************** 2. row ***************************
Privilege: Alter routine
 Context: Functions,Procedures
 Comment: To alter or drop stored functions/procedures
*************************** 3. row ***************************
Privilege: Create
 Context: Databases,Tables,Indexes
 Comment: To create new databases and tables
*************************** 4. row ***************************
Privilege: Create routine
 Context: Databases
 Comment: To use CREATE FUNCTION/PROCEDURE
*************************** 5. row ***************************
Privilege: Create temporary tables
 Context: Databases
 Comment: To use CREATE TEMPORARY TABLE
...

Privileges belonging to a specific user are displayed by the SHOW GRANTS statement. See
Section 15.7.7.21, “SHOW GRANTS Statement”, for more information.

15.7.7.27 SHOW PROCEDURE CODE Statement

SHOW PROCEDURE CODE proc_name

3127

https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-api.html

SHOW Statements

This statement is a MySQL extension that is available only for servers that have been built with
debugging support. It displays a representation of the internal implementation of the named stored
procedure. A similar statement, SHOW FUNCTION CODE, displays information about stored functions
(see Section 15.7.7.19, “SHOW FUNCTION CODE Statement”).

To use either statement, you must be the user named as the routine DEFINER, have the
SHOW_ROUTINE privilege, or have the SELECT privilege at the global level.

If the named routine is available, each statement produces a result set. Each row in the result set
corresponds to one “instruction” in the routine. The first column is Pos, which is an ordinal number
beginning with 0. The second column is Instruction, which contains an SQL statement (usually
changed from the original source), or a directive which has meaning only to the stored-routine handler.

mysql> DELIMITER //
mysql> CREATE PROCEDURE p1 ()
 BEGIN
 DECLARE fanta INT DEFAULT 55;
 DROP TABLE t2;
 LOOP
 INSERT INTO t3 VALUES (fanta);
 END LOOP;
 END//
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW PROCEDURE CODE p1//
+-----+--+
| Pos | Instruction |
+-----+--+
0	set fanta@0 55
1	stmt 9 "DROP TABLE t2"
2	stmt 5 "INSERT INTO t3 VALUES (fanta)"
3	jump 2
+-----+--+
4 rows in set (0.00 sec)

mysql> CREATE FUNCTION test.hello (s CHAR(20))
 RETURNS CHAR(50) DETERMINISTIC
 RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW FUNCTION CODE test.hello;
+-----+---------------------------------------+
| Pos | Instruction |
+-----+---------------------------------------+
| 0 | freturn 254 concat('Hello, ',s@0,'!') |
+-----+---------------------------------------+
1 row in set (0.00 sec)

In this example, the nonexecutable BEGIN and END statements have disappeared, and for the
DECLARE variable_name statement, only the executable part appears (the part where the default is
assigned). For each statement that is taken from source, there is a code word stmt followed by a type
(9 means DROP, 5 means INSERT, and so on). The final row contains an instruction jump 2, meaning
GOTO instruction #2.

15.7.7.28 SHOW PROCEDURE STATUS Statement

SHOW PROCEDURE STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is a MySQL extension. It returns characteristics of a stored procedure, such as the
database, name, type, creator, creation and modification dates, and character set information. A
similar statement, SHOW FUNCTION STATUS, displays information about stored functions (see
Section 15.7.7.20, “SHOW FUNCTION STATUS Statement”).

To use either statement, you must be the user named as the routine DEFINER, have the
SHOW_ROUTINE privilege, have the SELECT privilege at the global level, or have the CREATE
ROUTINE, ALTER ROUTINE, or EXECUTE privilege granted at a scope that includes the routine.

3128

SHOW Statements

The LIKE clause, if present, indicates which procedure or function names to match. The WHERE clause
can be given to select rows using more general conditions, as discussed in Section 28.8, “Extensions
to SHOW Statements”.

mysql> SHOW PROCEDURE STATUS LIKE 'sp1'\G
*************************** 1. row ***************************
 Db: test
 Name: sp1
 Type: PROCEDURE
 Definer: testuser@localhost
 Modified: 2018-08-08 13:54:11
 Created: 2018-08-08 13:54:11
 Security_type: DEFINER
 Comment:
character_set_client: utf8mb4
collation_connection: utf8mb4_0900_ai_ci
 Database Collation: utf8mb4_0900_ai_ci

mysql> SHOW FUNCTION STATUS LIKE 'hello'\G
*************************** 1. row ***************************
 Db: test
 Name: hello
 Type: FUNCTION
 Definer: testuser@localhost
 Modified: 2020-03-10 11:10:03
 Created: 2020-03-10 11:10:03
 Security_type: DEFINER
 Comment:
character_set_client: utf8mb4
collation_connection: utf8mb4_0900_ai_ci
 Database Collation: utf8mb4_0900_ai_ci

character_set_client is the session value of the character_set_client system
variable when the routine was created. collation_connection is the session value of the
collation_connection system variable when the routine was created. Database Collation is
the collation of the database with which the routine is associated.

Stored routine information is also available from the INFORMATION_SCHEMA PARAMETERS and
ROUTINES tables. See Section 28.3.20, “The INFORMATION_SCHEMA PARAMETERS Table”, and
Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”.

15.7.7.29 SHOW PROCESSLIST Statement

SHOW [FULL] PROCESSLIST

Important

The INFORMATION SCHEMA implementation of SHOW PROCESSLIST
is deprecated and subject to removal in a future MySQL release. It is
recommended to use the Performance Schema implementation of SHOW
PROCESSLIST instead.

The MySQL process list indicates the operations currently being performed by the set of threads
executing within the server. The SHOW PROCESSLIST statement is one source of process information.
For a comparison of this statement with other sources, see Sources of Process Information.

Note

As of MySQL 8.0.22, an alternative implementation for SHOW PROCESSLIST
is available based on the Performance Schema processlist table,
which, unlike the default SHOW PROCESSLIST implementation, does not
require a mutex and has better performance characteristics. For details, see
Section 29.12.21.7, “The processlist Table”.

If you have the PROCESS privilege, you can see all threads, even those belonging to other users.
Otherwise (without the PROCESS privilege), nonanonymous users have access to information about

3129

SHOW Statements

their own threads but not threads for other users, and anonymous users have no access to thread
information.

Without the FULL keyword, SHOW PROCESSLIST displays only the first 100 characters of each
statement in the Info field.

The SHOW PROCESSLIST statement is very useful if you get the “too many connections” error
message and want to find out what is going on. MySQL reserves one extra connection to be used by
accounts that have the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege), to ensure
that administrators should always be able to connect and check the system (assuming that you are not
giving this privilege to all your users).

Threads can be killed with the KILL statement. See Section 15.7.8.4, “KILL Statement”.

Example of SHOW PROCESSLIST output:

mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 1030455
 State: Waiting for source to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 2
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 1004
 State: Has read all relay log; waiting for the replica
 I/O thread to update it
 Info: NULL
*************************** 3. row ***************************
 Id: 3112
 User: replikator
 Host: artemis:2204
 db: NULL
Command: Binlog Dump
 Time: 2144
 State: Has sent all binlog to replica; waiting for binlog to be updated
 Info: NULL
*************************** 4. row ***************************
 Id: 3113
 User: replikator
 Host: iconnect2:45781
 db: NULL
Command: Binlog Dump
 Time: 2086
 State: Has sent all binlog to replica; waiting for binlog to be updated
 Info: NULL
*************************** 5. row ***************************
 Id: 3123
 User: stefan
 Host: localhost
 db: apollon
Command: Query
 Time: 0
 State: NULL
 Info: SHOW FULL PROCESSLIST

SHOW PROCESSLIST output has these columns:

• Id

The connection identifier. This is the same value displayed in the ID column of the
INFORMATION_SCHEMA PROCESSLIST table, displayed in the PROCESSLIST_ID column of the

3130

SHOW Statements

Performance Schema threads table, and returned by the CONNECTION_ID() function within the
thread.

• User

The MySQL user who issued the statement. A value of system user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or
an I/O (receiver) or SQL (applier) thread used on replica hosts. For system user, there is no
host specified in the Host column. unauthenticated user refers to a thread that has become
associated with a client connection but for which authentication of the client user has not yet
occurred. event_scheduler refers to the thread that monitors scheduled events (see Section 27.4,
“Using the Event Scheduler”).

Note

A User value of system user is distinct from the SYSTEM_USER privilege.
The former designates internal threads. The latter distinguishes the system
user and regular user account categories (see Section 8.2.11, “Account
Categories”).

• Host

The host name of the client issuing the statement (except for system user, for which there is no
host). The host name for TCP/IP connections is reported in host_name:client_port format to
make it easier to determine which client is doing what.

• db

The default database for the thread, or NULL if none has been selected.

• Command

The type of command the thread is executing on behalf of the client, or Sleep if the session is idle.
For descriptions of thread commands, see Section 10.14, “Examining Server Thread (Process)
Information”. The value of this column corresponds to the COM_xxx commands of the client/server
protocol and Com_xxx status variables. See Section 7.1.10, “Server Status Variables”.

• Time

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Section 19.2.3, “Replication Threads”.

• State

An action, event, or state that indicates what the thread is doing. For descriptions of State values,
see Section 10.14, “Examining Server Thread (Process) Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• Info

The statement the thread is executing, or NULL if it is executing no statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the Info value shows the SELECT statement.

15.7.7.30 SHOW PROFILE Statement

SHOW PROFILE [type [, type] ...]
 [FOR QUERY n]

3131

SHOW Statements

 [LIMIT row_count [OFFSET offset]]

type: {
 ALL
 | BLOCK IO
 | CONTEXT SWITCHES
 | CPU
 | IPC
 | MEMORY
 | PAGE FAULTS
 | SOURCE
 | SWAPS
}

The SHOW PROFILE and SHOW PROFILES statements display profiling information that indicates
resource usage for statements executed during the course of the current session.

Note

The SHOW PROFILE and SHOW PROFILES statements are deprecated; expect
them to be removed in a future MySQL release. Use the Performance Schema
instead; see Section 29.19.1, “Query Profiling Using Performance Schema”.

To control profiling, use the profiling session variable, which has a default value of 0 (OFF). Enable
profiling by setting profiling to 1 or ON:

mysql> SET profiling = 1;

SHOW PROFILES displays a list of the most recent statements sent to the server. The size of the list is
controlled by the profiling_history_size session variable, which has a default value of 15. The
maximum value is 100. Setting the value to 0 has the practical effect of disabling profiling.

All statements are profiled except SHOW PROFILE and SHOW PROFILES, so neither of those
statements appears in the profile list. Malformed statements are profiled. For example, SHOW
PROFILING is an illegal statement, and a syntax error occurs if you try to execute it, but it shows up in
the profiling list.

SHOW PROFILE displays detailed information about a single statement. Without the FOR QUERY n
clause, the output pertains to the most recently executed statement. If FOR QUERY n is included, SHOW
PROFILE displays information for statement n. The values of n correspond to the Query_ID values
displayed by SHOW PROFILES.

The LIMIT row_count clause may be given to limit the output to row_count rows. If LIMIT is
given, OFFSET offset may be added to begin the output offset rows into the full set of rows.

By default, SHOW PROFILE displays Status and Duration columns. The Status values are like
the State values displayed by SHOW PROCESSLIST, although there might be some minor differences
in interpretation for the two statements for some status values (see Section 10.14, “Examining Server
Thread (Process) Information”).

Optional type values may be specified to display specific additional types of information:

• ALL displays all information

• BLOCK IO displays counts for block input and output operations

• CONTEXT SWITCHES displays counts for voluntary and involuntary context switches

• CPU displays user and system CPU usage times

• IPC displays counts for messages sent and received

• MEMORY is not currently implemented

3132

SHOW Statements

• PAGE FAULTS displays counts for major and minor page faults

• SOURCE displays the names of functions from the source code, together with the name and line
number of the file in which the function occurs

• SWAPS displays swap counts

Profiling is enabled per session. When a session ends, its profiling information is lost.

mysql> SELECT @@profiling;
+-------------+
| @@profiling |
+-------------+
| 0 |
+-------------+
1 row in set (0.00 sec)

mysql> SET profiling = 1;
Query OK, 0 rows affected (0.00 sec)

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> CREATE TABLE T1 (id INT);
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW PROFILES;
+----------+----------+--------------------------+
| Query_ID | Duration | Query |
+----------+----------+--------------------------+
0	0.000088	SET PROFILING = 1
1	0.000136	DROP TABLE IF EXISTS t1
2	0.011947	CREATE TABLE t1 (id INT)
+----------+----------+--------------------------+
3 rows in set (0.00 sec)

mysql> SHOW PROFILE;
+----------------------+----------+
| Status | Duration |
+----------------------+----------+
checking permissions	0.000040
creating table	0.000056
After create	0.011363
query end	0.000375
freeing items	0.000089
logging slow query	0.000019
cleaning up	0.000005
+----------------------+----------+
7 rows in set (0.00 sec)

mysql> SHOW PROFILE FOR QUERY 1;
+--------------------+----------+
| Status | Duration |
+--------------------+----------+
query end	0.000107
freeing items	0.000008
logging slow query	0.000015
cleaning up	0.000006
+--------------------+----------+
4 rows in set (0.00 sec)

mysql> SHOW PROFILE CPU FOR QUERY 2;
+----------------------+----------+----------+------------+
| Status | Duration | CPU_user | CPU_system |
+----------------------+----------+----------+------------+
checking permissions	0.000040	0.000038	0.000002
creating table	0.000056	0.000028	0.000028
After create	0.011363	0.000217	0.001571
query end	0.000375	0.000013	0.000028
freeing items	0.000089	0.000010	0.000014
logging slow query	0.000019	0.000009	0.000010
cleaning up	0.000005	0.000003	0.000002

3133

SHOW Statements

+----------------------+----------+----------+------------+
7 rows in set (0.00 sec)

Note

Profiling is only partially functional on some architectures. For values that
depend on the getrusage() system call, NULL is returned on systems such
as Windows that do not support the call. In addition, profiling is per process and
not per thread. This means that activity on threads within the server other than
your own may affect the timing information that you see.

Profiling information is also available from the INFORMATION_SCHEMA PROFILING table. See
Section 28.3.24, “The INFORMATION_SCHEMA PROFILING Table”. For example, the following
queries are equivalent:

SHOW PROFILE FOR QUERY 2;

SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;

15.7.7.31 SHOW PROFILES Statement

SHOW PROFILES

The SHOW PROFILES statement, together with SHOW PROFILE, displays profiling information that
indicates resource usage for statements executed during the course of the current session. For more
information, see Section 15.7.7.30, “SHOW PROFILE Statement”.

Note

The SHOW PROFILE and SHOW PROFILES statements are deprecated; expect
it to be removed in a future MySQL release. Use the Performance Schema
instead; see Section 29.19.1, “Query Profiling Using Performance Schema”.

15.7.7.32 SHOW RELAYLOG EVENTS Statement

SHOW RELAYLOG EVENTS
 [IN 'log_name']
 [FROM pos]
 [LIMIT [offset,] row_count]
 [channel_option]

channel_option:
 FOR CHANNEL channel

Shows the events in the relay log of a replica. If you do not specify 'log_name', the first relay log
is displayed. This statement has no effect on the source. SHOW RELAYLOG EVENTS requires the
REPLICATION SLAVE privilege.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 15.2.13, “SELECT
Statement”.

Note

Issuing a SHOW RELAYLOG EVENTS with no LIMIT clause could start a very
time- and resource-consuming process because the server returns to the client
the complete contents of the relay log (including all statements modifying data
that have been received by the replica).

The optional FOR CHANNEL channel clause enables you to name which replication channel the
statement applies to. Providing a FOR CHANNEL channel clause applies the statement to a specific
replication channel. If no channel is named and no extra channels exist, the statement applies to the
default channel.

3134

SHOW Statements

When using multiple replication channels, if a SHOW RELAYLOG EVENTS statement does not have a
channel defined using a FOR CHANNEL channel clause an error is generated. See Section 19.2.2,
“Replication Channels” for more information.

SHOW RELAYLOG EVENTS displays the following fields for each event in the relay log:

• Log_name

The name of the file that is being listed.

• Pos

The position at which the event occurs.

• Event_type

An identifier that describes the event type.

• Server_id

The server ID of the server on which the event originated.

• End_log_pos

The value of End_log_pos for this event in the source's binary log.

• Info

More detailed information about the event type. The format of this information depends on the event
type.

For compressed transaction payloads, the Transaction_payload_event is first printed as a single
unit, then it is unpacked and each event inside it is printed.

Some events relating to the setting of user and system variables are not included in the output from
SHOW RELAYLOG EVENTS. To get complete coverage of events within a relay log, use mysqlbinlog.

15.7.7.33 SHOW REPLICAS Statement

{SHOW REPLICAS}

Displays a list of replicas currently registered with the source. From MySQL 8.0.22, use SHOW
REPLICAS in place of SHOW SLAVE HOSTS, which is deprecated from that release. In releases before
MySQL 8.0.22, use SHOW SLAVE HOSTS. SHOW REPLICAS requires the REPLICATION SLAVE
privilege.

SHOW REPLICAS should be executed on a server that acts as a replication source. The statement
displays information about servers that are or have been connected as replicas, with each row of the
result corresponding to one replica server, as shown here:

mysql> SHOW REPLICAS;
+------------+-----------+------+-----------+--------------------------------------+
| Server_id | Host | Port | Source_id | Replica_UUID |
+------------+-----------+------+-----------+--------------------------------------+
| 10 | iconnect2 | 3306 | 3 | 14cb6624-7f93-11e0-b2c0-c80aa9429562 |
| 21 | athena | 3306 | 3 | 07af4990-f41f-11df-a566-7ac56fdaf645 |
+------------+-----------+------+-----------+--------------------------------------+

• Server_id: The unique server ID of the replica server, as configured in the replica server's option
file, or on the command line with --server-id=value.

• Host: The host name of the replica server, as specified on the replica with the --report-host
option. This can differ from the machine name as configured in the operating system.

3135

SHOW Statements

• User: The replica server user name, as specified on the replica with the --report-user option.
Statement output includes this column only if the source server is started with the --show-
replica-auth-info or --show-slave-auth-info option.

• Password: The replica server password, as specified on the replica with the --report-password
option. Statement output includes this column only if the source server is started with the --show-
replica-auth-info or --show-slave-auth-info option.

• Port: The port on the source to which the replica server is listening, as specified on the replica with
the --report-port option.

A zero in this column means that the replica port (--report-port) was not set.

• Source_id: The unique server ID of the source server that the replica server is replicating from.
This is the server ID of the server on which SHOW REPLICAS is executed, so this same value is
listed for each row in the result.

• Replica_UUID: The globally unique ID of this replica, as generated on the replica and found in the
replica's auto.cnf file.

15.7.7.34 SHOW SLAVE HOSTS | SHOW REPLICAS Statement

{SHOW SLAVE HOSTS | SHOW REPLICAS}

Displays a list of replicas currently registered with the source. From MySQL 8.0.22, SHOW SLAVE
HOSTS is deprecated and the alias SHOW REPLICAS should be used instead. The statement works in
the same way as before, only the terminology used for the statement and its output has changed. Both
versions of the statement update the same status variables when used. Please see the documentation
for SHOW REPLICAS for a description of the statement.

15.7.7.35 SHOW REPLICA STATUS Statement

SHOW {REPLICA | SLAVE} STATUS [FOR CHANNEL channel]

This statement provides status information on essential parameters of the replica threads. From
MySQL 8.0.22, use SHOW REPLICA STATUS in place of SHOW SLAVE STATUS, which is deprecated
from that release. In releases before MySQL 8.0.22, use SHOW SLAVE STATUS. The statement
requires the REPLICATION CLIENT privilege (or the deprecated SUPER privilege).

SHOW REPLICA STATUS is nonblocking. When run concurrently with STOP REPLICA, SHOW
REPLICA STATUS returns without waiting for STOP REPLICA to finish shutting down the replication
SQL (applier) thread or replication I/O (receiver) thread (or both). This permits use in monitoring and
other applications where getting an immediate response from SHOW REPLICA STATUS is more
important than ensuring that it returned the latest data. The SLAVE keyword was replaced with
REPLICA in MySQL 8.0.22.

If you issue this statement using the mysql client, you can use a \G statement terminator rather than a
semicolon to obtain a more readable vertical layout:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
 Replica_IO_State: Waiting for source to send event
 Source_Host: 127.0.0.1
 Source_User: root
 Source_Port: 13000
 Connect_Retry: 1
 Source_Log_File: master-bin.000001
 Read_Source_Log_Pos: 927
 Relay_Log_File: slave-relay-bin.000002
 Relay_Log_Pos: 1145
 Relay_Source_Log_File: master-bin.000001
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes

3136

SHOW Statements

 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Source_Log_Pos: 927
 Relay_Log_Space: 1355
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Source_SSL_Allowed: No
 Source_SSL_CA_File:
 Source_SSL_CA_Path:
 Source_SSL_Cert:
 Source_SSL_Cipher:
 Source_SSL_Key:
 Seconds_Behind_Source: 0
Source_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Source_Server_Id: 1
 Source_UUID: 73f86016-978b-11ee-ade5-8d2a2a562feb
 Source_Info_File: mysql.slave_master_info
 SQL_Delay: 0
 SQL_Remaining_Delay: NULL
 Replica_SQL_Running_State: Replica has read all relay log; waiting for more updates
 Source_Retry_Count: 10
 Source_Bind:
 Last_IO_Error_Timestamp:
 Last_SQL_Error_Timestamp:
 Source_SSL_Crl:
 Source_SSL_Crlpath:
 Retrieved_Gtid_Set: 73f86016-978b-11ee-ade5-8d2a2a562feb:1-3
 Executed_Gtid_Set: 73f86016-978b-11ee-ade5-8d2a2a562feb:1-3
 Auto_Position: 1
 Replicate_Rewrite_DB:
 Channel_Name:
 Source_TLS_Version:
 Source_public_key_path:
 Get_Source_public_key: 0
 Network_Namespace:

The Performance Schema provides tables that expose replication information. This is similar to the
information available from the SHOW REPLICA STATUS statement, but represented in table form. For
details, see Section 29.12.11, “Performance Schema Replication Tables”.

From MySQL 8.0.27, you can set the GTID_ONLY option on the CHANGE REPLICATION SOURCE TO
statement to stop a replication channel from persisting file names and file positions in the replication
metadata repositories. With this setting, file positions for the source binary log file and the relay log file
are tracked in memory. The SHOW REPLICA STATUS statement still displays file positions in normal
use. However, because the file positions are not being regularly updated in the connection metadata
repository and the applier metadata repository except in a few situations, they are likely to be out of
date if the server is restarted.

For a replication channel with the GTID_ONLY setting after a server start, the read and applied file
positions for the source binary log file (Read_Source_Log_Pos and Exec_Source_Log_Pos) are
set to zero, and the file names (Source_Log_File and Relay_Source_Log_File) are set to
INVALID. The relay log file name (Relay_Log_File) is set according to the relay_log_recovery
setting, either a new file that was created at server start or the first relay log file present. The file
position (Relay_Log_Pos) is set to position 4, and GTID auto-skip is used to skip any transactions in
the file that were already applied.

3137

SHOW Statements

When the receiver thread contacts the source and gets valid position information, the read position
(Read_Source_Log_Pos) and file name (Source_Log_File) are updated with the correct
data and become valid. When the applier thread applies a transaction from the source, or skips
an already executed transaction, the executed position (Exec_Source_Log_Pos) and file name
(Relay_Source_Log_File) are updated with the correct data and become valid. The relay log file
position (Relay_Log_Pos) is also updated at that time.

The following list describes the fields returned by SHOW REPLICA STATUS. For additional information
about interpreting their meanings, see Section 19.1.7.1, “Checking Replication Status”.

• Replica_IO_State

A copy of the State field of the SHOW PROCESSLIST output for the replica I/O (receiver) thread.
This tells you what the thread is doing: trying to connect to the source, waiting for events from the
source, reconnecting to the source, and so on. For a listing of possible states, see Section 10.14.5,
“Replication I/O (Receiver) Thread States”.

• Source_Host

The source host that the replica is connected to.

• Source_User

The user name of the account used to connect to the source.

• Source_Port

The port used to connect to the source.

• Connect_Retry

The number of seconds between connect retries (default 60). This can be set with a CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement
(before MySQL 8.0.23).

• Source_Log_File

The name of the source binary log file from which the I/O (receiver) thread is currently reading. This
is set to INVALID for a replication channel with the GTID_ONLY setting after a server start. It will be
updated when the replica contacts the source.

• Read_Source_Log_Pos

The position in the current source binary log file up to which the I/O (receiver) thread has read. This
is set to zero for a replication channel with the GTID_ONLY setting after a server start. It will be
updated when the replica contacts the source.

• Relay_Log_File

The name of the relay log file from which the SQL (applier) thread is currently reading and executing.

• Relay_Log_Pos

The position in the current relay log file up to which the SQL (applier) thread has read and executed.

• Relay_Source_Log_File

The name of the source binary log file containing the most recent event executed by the SQL
(applier) thread. This is set to INVALID for a replication channel with the GTID_ONLY setting after a
server start. It will be updated when a transaction is executed or skipped.

• Replica_IO_Running

3138

SHOW Statements

Whether the replication I/O (receiver) thread is started and has connected successfully to the source.
Internally, the state of this thread is represented by one of the following three values:

• MYSQL_REPLICA_NOT_RUN. The replication I/O (receiver) thread is not running. For this
state, Replica_IO_Running is No.

• MYSQL_REPLICA_RUN_NOT_CONNECT. The replication I/O (receiver) thread is running, but
is not connected to a replication source. For this state, Replica_IO_Running is Connecting.

• MYSQL_REPLICA_RUN_CONNECT. The replication I/O (receiver) thread is running, and is
connected to a replication source. For this state, Replica_IO_Running is Yes.

• Replica_SQL_Running

Whether the replication SQL (applier) thread is started.

• Replicate_Do_DB, Replicate_Ignore_DB

The names of any databases that were specified with the --replicate-do-db and --
replicate-ignore-db options, or the CHANGE REPLICATION FILTER statement. If the
FOR CHANNEL clause was used, the channel specific replication filters are shown. Otherwise, the
replication filters for every replication channel are shown.

• Replicate_Do_Table, Replicate_Ignore_Table, Replicate_Wild_Do_Table,
Replicate_Wild_Ignore_Table

The names of any tables that were specified with the --replicate-do-table, --replicate-
ignore-table, --replicate-wild-do-table, and --replicate-wild-ignore-table
options, or the CHANGE REPLICATION FILTER statement. If the FOR CHANNEL clause was used,
the channel specific replication filters are shown. Otherwise, the replication filters for every replication
channel are shown.

• Last_Errno, Last_Error

These columns are aliases for Last_SQL_Errno and Last_SQL_Error.

Issuing RESET MASTER or RESET REPLICA resets the values shown in these columns.

Note

When the replication SQL thread receives an error, it reports the error first,
then stops the SQL thread. This means that there is a small window of
time during which SHOW REPLICA STATUS shows a nonzero value for
Last_SQL_Errno even though Replica_SQL_Running still displays Yes.

• Skip_Counter

The current value of the sql_slave_skip_counter system variable. See SET GLOBAL
sql_slave_skip_counter Syntax.

• Exec_Source_Log_Pos

The position in the current source binary log file to which the replication SQL thread has read and
executed, marking the start of the next transaction or event to be processed. This is set to zero
for a replication channel with the GTID_ONLY setting after a server start. It will be updated when a
transaction is executed or skipped.

You can use this value with the CHANGE REPLICATION SOURCE TO statement's
SOURCE_LOG_POS option (from MySQL 8.0.23) or the CHANGE MASTER TO statement's
MASTER_LOG_POS option (before MySQL 8.0.23) when starting a new replica from an
existing replica, so that the new replica reads from this point. The coordinates given by

3139

https://dev.mysql.com/doc/refman/5.7/en/set-global-sql-slave-skip-counter.html
https://dev.mysql.com/doc/refman/5.7/en/set-global-sql-slave-skip-counter.html

SHOW Statements

(Relay_Source_Log_File, Exec_Source_Log_Pos) in the source's binary log correspond to the
coordinates given by (Relay_Log_File, Relay_Log_Pos) in the relay log.

Inconsistencies in the sequence of transactions from the relay log which have been executed can
cause this value to be a “low-water mark”. In other words, transactions appearing before the position
are guaranteed to have committed, but transactions after the position may have committed or not.
If these gaps need to be corrected, use START REPLICA UNTIL SQL_AFTER_MTS_GAPS. See
Section 19.5.1.34, “Replication and Transaction Inconsistencies” for more information.

• Relay_Log_Space

The total combined size of all existing relay log files.

• Until_Condition, Until_Log_File, Until_Log_Pos

The values specified in the UNTIL clause of the START REPLICA statement.

Until_Condition has these values:

• None if no UNTIL clause was specified.

• Source if the replica is reading until a given position in the source's binary log.

• Relay if the replica is reading until a given position in its relay log.

• SQL_BEFORE_GTIDS if the replication SQL thread is processing transactions until it has reached
the first transaction whose GTID is listed in the gtid_set.

• SQL_AFTER_GTIDS if the replication threads are processing all transactions until the last
transaction in the gtid_set has been processed by both threads.

• SQL_AFTER_MTS_GAPS if a multithreaded replica's SQL threads are running until no more gaps
are found in the relay log.

Until_Log_File and Until_Log_Pos indicate the log file name and position that define the
coordinates at which the replication SQL thread stops executing.

For more information on UNTIL clauses, see Section 15.4.2.7, “START SLAVE Statement”.

• Source_SSL_Allowed, Source_SSL_CA_File, Source_SSL_CA_Path, Source_SSL_Cert,
Source_SSL_Cipher, Source_SSL_CRL_File, Source_SSL_CRL_Path, Source_SSL_Key,
Source_SSL_Verify_Server_Cert

These fields show the SSL parameters used by the replica to connect to the source, if any.

Source_SSL_Allowed has these values:

• Yes if an SSL connection to the source is permitted.

• No if an SSL connection to the source is not permitted.

• Ignored if an SSL connection is permitted but the replica server does not have SSL support
enabled.

The values of the other SSL-related fields correspond to the values of the SOURCE_SSL_* options
of the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23), or the MASTER_SSL_*
options of the CHANGE MASTER TO statement (before MySQL 8.0.23). See Section 15.4.2.1,
“CHANGE MASTER TO Statement”.

• Seconds_Behind_Source

This field is an indication of how “late” the replica is:

3140

SHOW Statements

• When the replica is actively processing updates, this field shows the difference between the
current timestamp on the replica and the original timestamp logged on the source for the event
currently being processed on the replica.

• When no event is currently being processed on the replica, this value is 0.

In essence, this field measures the time difference in seconds between the replication SQL (applier)
thread and the replication I/O (receiver) thread. If the network connection between source and replica
is fast, the replication receiver thread is very close to the source, so this field is a good approximation
of how late the replication applier thread is compared to the source. If the network is slow, this is
not a good approximation; the replication applier thread may quite often be caught up with the slow-
reading replication receiver thread, so Seconds_Behind_Source often shows a value of 0, even
if the replication receiver thread is late compared to the source. In other words, this column is useful
only for fast networks.

This time difference computation works even if the source and replica do not have identical clock
times, provided that the difference, computed when the replica receiver thread starts, remains
constant from then on. Any changes, including NTP updates, can lead to clock skews that can make
calculation of Seconds_Behind_Source less reliable.

In MySQL 8.0, this field is NULL (undefined or unknown) if the replication applier thread is not
running, or if the applier thread has consumed all of the relay log and the replication receiver thread
is not running. (In older versions of MySQL, this field was NULL if the replication applier thread or
the replication receiver thread was not running or was not connected to the source.) If the replication
receiver thread is running but the relay log is exhausted, Seconds_Behind_Source is set to 0.

The value of Seconds_Behind_Source is based on the timestamps stored in events, which are
preserved through replication. This means that if a source M1 is itself a replica of M0, any event from
M1's binary log that originates from M0's binary log has M0's timestamp for that event. This enables
MySQL to replicate TIMESTAMP successfully. However, the problem for Seconds_Behind_Source
is that if M1 also receives direct updates from clients, the Seconds_Behind_Source value
randomly fluctuates because sometimes the last event from M1 originates from M0 and sometimes is
the result of a direct update on M1.

When using a multithreaded replica, you should keep in mind that this value is based on
Exec_Source_Log_Pos, and so may not reflect the position of the most recently committed
transaction.

• Last_IO_Errno, Last_IO_Error

The error number and error message of the most recent error that caused the replication I/O
(receiver) thread to stop. An error number of 0 and message of the empty string mean “no error.” If
the Last_IO_Error value is not empty, the error values also appear in the replica's error log.

I/O error information includes a timestamp showing when the most recent I/O (receiver)thread
error occurred. This timestamp uses the format YYMMDD hh:mm:ss, and appears in the
Last_IO_Error_Timestamp column.

Issuing RESET MASTER or RESET REPLICA resets the values shown in these columns.

• Last_SQL_Errno, Last_SQL_Error

The error number and error message of the most recent error that caused the replication SQL
(applier) thread to stop. An error number of 0 and message of the empty string mean “no error.” If the
Last_SQL_Error value is not empty, the error values also appear in the replica's error log.

If the replica is multithreaded, the replication SQL thread is the coordinator for worker threads. In
this case, the Last_SQL_Error field shows exactly what the Last_Error_Message column in
the Performance Schema replication_applier_status_by_coordinator table shows.

3141

SHOW Statements

The field value is modified to suggest that there may be more failures in the other worker threads
which can be seen in the replication_applier_status_by_worker table that shows each
worker thread's status. If that table is not available, the replica error log can be used. The log or the
replication_applier_status_by_worker table should also be used to learn more about the
failure shown by SHOW REPLICA STATUS or the coordinator table.

SQL error information includes a timestamp showing when the most recent SQL (applier)
thread error occurred. This timestamp uses the format YYMMDD hh:mm:ss, and appears in the
Last_SQL_Error_Timestamp column.

Issuing RESET MASTER or RESET REPLICA resets the values shown in these columns.

In MySQL 8.0, all error codes and messages displayed in the Last_SQL_Errno and
Last_SQL_Error columns correspond to error values listed in Server Error Message Reference.
This was not always true in previous versions. (Bug #11760365, Bug #52768)

• Replicate_Ignore_Server_Ids

Any server IDs that have been specified using the IGNORE_SERVER_IDS option of the CHANGE
REPLICATION SOURCE TO | CHANGE MASTER TO statement, so that the replica ignores events
from these servers. This option is used in a circular or other multi-source replication setup when one
of the servers is removed. If any server IDs have been set in this way, a comma-delimited list of one
or more numbers is shown. If no server IDs have been set, the field is blank.

Note

The Ignored_server_ids value in the slave_master_info table also
shows the server IDs to be ignored, but as a space-delimited list, preceded
by the total number of server IDs to be ignored. For example, if a CHANGE
REPLICATION SOURCE TO | CHANGE MASTER TO statement containing the
IGNORE_SERVER_IDS = (2,6,9) option has been issued to tell a replica
to ignore sources having the server ID 2, 6, or 9, that information appears as
shown here:

 Replicate_Ignore_Server_Ids: 2, 6, 9

 Ignored_server_ids: 3, 2, 6, 9

Replicate_Ignore_Server_Ids filtering is performed by the I/O (receiver) thread, rather than by
the SQL (applier) thread, which means that events which are filtered out are not written to the relay
log. This differs from the filtering actions taken by server options such --replicate-do-table,
which apply to the applier thread.

Note

From MySQL 8.0, a deprecation warning is issued if SET GTID_MODE=ON
is issued when any channel has existing server IDs set with
IGNORE_SERVER_IDS. Before starting GTID-based replication, use
SHOW REPLICA STATUS to check for and clear all ignored server ID
lists on the servers involved. You can clear a list by issuing a CHANGE
REPLICATION SOURCE TO | CHANGE MASTER TO statement containing the
IGNORE_SERVER_IDS option with an empty list.

• Source_Server_Id

The server_id value from the source.

• Source_UUID

The server_uuid value from the source.

• Source_Info_File

3142

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

SHOW Statements

The location of the master.info file, the use of which is now deprecated. By default from MySQL
8.0, a table is used instead for the replica's connection metadata repository.

• SQL_Delay

The number of seconds that the replica must lag the source.

• SQL_Remaining_Delay

When Replica_SQL_Running_State is Waiting until MASTER_DELAY seconds after
source executed event, this field contains the number of delay seconds remaining. At other
times, this field is NULL.

• Replica_SQL_Running_State

The state of the SQL thread (analogous to Replica_IO_State). The value is identical to the
State value of the SQL thread as displayed by SHOW PROCESSLIST. Section 10.14.6, “Replication
SQL Thread States”, provides a listing of possible states.

• Source_Retry_Count

The number of times the replica can attempt to reconnect to the source in the event of a lost
connection. This value can be set using the SOURCE_RETRY_COUNT | MASTER_RETRY_COUNT
option of the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE
MASTER TO statement (before MySQL 8.0.23), or the older --master-retry-count server option
(still supported for backward compatibility).

• Source_Bind

The network interface that the replica is bound to, if any. This is set using the SOURCE_BIND |
MASTER_BIND option for the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23)
or CHANGE MASTER TO statement (before MySQL 8.0.23).

• Last_IO_Error_Timestamp

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent I/O error took place.

• Last_SQL_Error_Timestamp

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent SQL error occurred.

• Retrieved_Gtid_Set

The set of global transaction IDs corresponding to all transactions received by this replica. Empty if
GTIDs are not in use. See GTID Sets for more information.

This is the set of all GTIDs that exist or have existed in the relay logs. Each GTID is added as soon
as the Gtid_log_event is received. This can cause partially transmitted transactions to have their
GTIDs included in the set.

When all relay logs are lost due to executing RESET REPLICA or CHANGE REPLICATION SOURCE
TO | CHANGE MASTER TO, or due to the effects of the --relay-log-recovery option, the set
is cleared. When relay_log_purge = 1, the newest relay log is always kept, and the set is not
cleared.

• Executed_Gtid_Set

The set of global transaction IDs written in the binary log. This is the same as the value for the global
gtid_executed system variable on this server, as well as the value for Executed_Gtid_Set in
the output of SHOW MASTER STATUS on this server. Empty if GTIDs are not in use. See GTID Sets
for more information.

3143

SHOW Statements

• Auto_Position

1 if GTID auto-positioning is in use for the channel, otherwise 0.

• Replicate_Rewrite_DB

The Replicate_Rewrite_DB value displays any replication filtering rules that were specified. For
example, if the following replication filter rule was set:

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB=((db1,db2), (db3,db4));

the Replicate_Rewrite_DB value displays:

Replicate_Rewrite_DB: (db1,db2),(db3,db4)

For more information, see Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”.

• Channel_name

The replication channel which is being displayed. There is always a default replication channel,
and more replication channels can be added. See Section 19.2.2, “Replication Channels” for more
information.

• Master_TLS_Version

The TLS version used on the source. For TLS version information, see Section 8.3.2, “Encrypted
Connection TLS Protocols and Ciphers”.

• Source_public_key_path

The path name to a file containing a replica-side copy of the public key required by the source for
RSA key pair-based password exchange. The file must be in PEM format. This column applies to
replicas that authenticate with the sha256_password or caching_sha2_password authentication
plugin.

If Source_public_key_path is given and specifies a valid public key file, it takes precedence over
Get_source_public_key.

• Get_source_public_key

Whether to request from the source the public key required for RSA key pair-based password
exchange. This column applies to replicas that authenticate with the caching_sha2_password
authentication plugin. For that plugin, the source does not send the public key unless requested.

If Source_public_key_path is given and specifies a valid public key file, it takes precedence over
Get_source_public_key.

• Network_Namespace

The network namespace name; empty if the connection uses the default (global) namespace. For
information about network namespaces, see Section 7.1.14, “Network Namespace Support”. This
column was added in MySQL 8.0.22.

15.7.7.36 SHOW SLAVE | REPLICA STATUS Statement

SHOW {SLAVE | REPLICA} STATUS [FOR CHANNEL channel]

This statement provides status information on essential parameters of the replica threads. From
MySQL 8.0.22, SHOW SLAVE STATUS is deprecated and the alias SHOW REPLICA STATUS should
be used instead. The statement works in the same way as before, only the terminology used for
the statement and its output has changed. Both versions of the statement update the same status
variables when used. Please see the documentation for SHOW REPLICA STATUS for a description of
the statement.

3144

SHOW Statements

15.7.7.37 SHOW STATUS Statement

SHOW [GLOBAL | SESSION] STATUS
 [LIKE 'pattern' | WHERE expr]

SHOW STATUS provides server status information (see Section 7.1.10, “Server Status Variables”). This
statement does not require any privilege. It requires only the ability to connect to the server.

Status variable information is also available from these sources:

• Performance Schema tables. See Section 29.12.15, “Performance Schema Status Variable Tables”.

• The mysqladmin extended-status command. See Section 6.5.2, “mysqladmin — A MySQL
Server Administration Program”.

For SHOW STATUS, a LIKE clause, if present, indicates which variable names to match. A WHERE
clause can be given to select rows using more general conditions, as discussed in Section 28.8,
“Extensions to SHOW Statements”.

SHOW STATUS accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays the global status values. A global status variable
may represent status for some aspect of the server itself (for example, Aborted_connects),
or the aggregated status over all connections to MySQL (for example, Bytes_received and
Bytes_sent). If a variable has no global value, the session value is displayed.

• With a SESSION modifier, the statement displays the status variable values for the current
connection. If a variable has no session value, the global value is displayed. LOCAL is a synonym for
SESSION.

• If no modifier is present, the default is SESSION.

The scope for each status variable is listed at Section 7.1.10, “Server Status Variables”.

Each invocation of the SHOW STATUS statement uses an internal temporary table and increments the
global Created_tmp_tables value.

Partial output is shown here. The list of names and values may differ for your server. The meaning of
each variable is given in Section 7.1.10, “Server Status Variables”.

mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_tables	8340
Created_tmp_files	60
...	
Open_tables	1
Open_files	2
Open_streams	0
Opened_tables	44600
Questions	2026873
...	
Table_locks_immediate	1920382
Table_locks_waited	0
Threads_cached	0
Threads_created	30022
Threads_connected	1
Threads_running	1
Uptime	80380
+--------------------------+------------+

3145

SHOW Statements

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern:

mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
Key_blocks_used	14955
Key_read_requests	96854827
Key_reads	162040
Key_write_requests	7589728
Key_writes	3813196
+--------------------+----------+

15.7.7.38 SHOW TABLE STATUS Statement

SHOW TABLE STATUS
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TABLE STATUS works likes SHOW TABLES, but provides a lot of information about each
non-TEMPORARY table. You can also get this list using the mysqlshow --status db_name
command. The LIKE clause, if present, indicates which table names to match. The WHERE clause can
be given to select rows using more general conditions, as discussed in Section 28.8, “Extensions to
SHOW Statements”.

This statement also displays information about views.

SHOW TABLE STATUS output has these columns:

• Name

The name of the table.

• Engine

The storage engine for the table. See Chapter 17, The InnoDB Storage Engine, and Chapter 18,
Alternative Storage Engines.

For partitioned tables, Engine shows the name of the storage engine used by all partitions.

• Version

This column is unused. With the removal of .frm files in MySQL 8.0, this column now reports a
hardcoded value of 10, which is the last .frm file version used in MySQL 5.7.

• Row_format

The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM
tables, Dynamic corresponds to what myisamchk -dvv reports as Packed.

• Rows

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other
storage engines, such as InnoDB, this value is an approximation, and may vary from the actual
value by as much as 40% to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate
count.

The Rows value is NULL for INFORMATION_SCHEMA tables.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also
true if the InnoDB table is partitioned.)

• Avg_row_length

3146

SHOW Statements

The average row length.

• Data_length

For MyISAM, Data_length is the length of the data file, in bytes.

For InnoDB, Data_length is the approximate amount of space allocated for the clustered index, in
bytes. Specifically, it is the clustered index size, in pages, multiplied by the InnoDB page size.

Refer to the notes at the end of this section for information regarding other storage engines.

• Max_data_length

For MyISAM, Max_data_length is maximum length of the data file. This is the total number of
bytes of data that can be stored in the table, given the data pointer size used.

Unused for InnoDB.

Refer to the notes at the end of this section for information regarding other storage engines.

• Index_length

For MyISAM, Index_length is the length of the index file, in bytes.

For InnoDB, Index_length is the approximate amount of space allocated for non-clustered
indexes, in bytes. Specifically, it is the sum of non-clustered index sizes, in pages, multiplied by the
InnoDB page size.

Refer to the notes at the end of this section for information regarding other storage engines.

• Data_free

The number of allocated but unused bytes.

InnoDB tables report the free space of the tablespace to which the table belongs. For a table located
in the shared tablespace, this is the free space of the shared tablespace. If you are using multiple
tablespaces and the table has its own tablespace, the free space is for only that table. Free space
means the number of bytes in completely free extents minus a safety margin. Even if free space
displays as 0, it may be possible to insert rows as long as new extents need not be allocated.

For NDB Cluster, Data_free shows the space allocated on disk for, but not used by, a Disk Data
table or fragment on disk. (In-memory data resource usage is reported by the Data_length
column.)

For partitioned tables, this value is only an estimate and may not be absolutely correct. A more
accurate method of obtaining this information in such cases is to query the INFORMATION_SCHEMA
PARTITIONS table, as shown in this example:

SELECT SUM(DATA_FREE)
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_SCHEMA = 'mydb'
 AND TABLE_NAME = 'mytable';

For more information, see Section 28.3.21, “The INFORMATION_SCHEMA PARTITIONS Table”.

• Auto_increment

The next AUTO_INCREMENT value.

• Create_time

When the table was created.

3147

SHOW Statements

• Update_time

When the data file was last updated. For some storage engines, this value is NULL. For example,
InnoDB stores multiple tables in its system tablespace and the data file timestamp does not apply.
Even with file-per-table mode with each InnoDB table in a separate .ibd file, change buffering can
delay the write to the data file, so the file modification time is different from the time of the last insert,
update, or delete. For MyISAM, the data file timestamp is used; however, on Windows the timestamp
is not updated by updates, so the value is inaccurate.

Update_time displays a timestamp value for the last UPDATE, INSERT, or DELETE performed on
InnoDB tables that are not partitioned. For MVCC, the timestamp value reflects the COMMIT time,
which is considered the last update time. Timestamps are not persisted when the server is restarted
or when the table is evicted from the InnoDB data dictionary cache.

• Check_time

When the table was last checked. Not all storage engines update this time, in which case, the value
is always NULL.

For partitioned InnoDB tables, Check_time is always NULL.

• Collation

The table default collation. The output does not explicitly list the table default character set, but the
collation name begins with the character set name.

• Checksum

The live checksum value, if any.

• Create_options

Extra options used with CREATE TABLE.

Create_options shows partitioned for a partitioned table.

Prior to MySQL 8.0.16, Create_options shows the ENCRYPTION clause specified for tables
created in file-per-table tablespaces. As of MySQL 8.0.16, it shows the encryption clause for file-
per-table tablespaces if the table is encrypted or if the specified encryption differs from the schema
encryption. The encryption clause is not shown for tables created in general tablespaces. To identify
encrypted file-per-table and general tablespaces, query the INNODB_TABLESPACES ENCRYPTION
column.

When creating a table with strict mode disabled, the storage engine's default row format is used
if the specified row format is not supported. The actual row format of the table is reported in the
Row_format column. Create_options shows the row format that was specified in the CREATE
TABLE statement.

When altering the storage engine of a table, table options that are not applicable to the new storage
engine are retained in the table definition to enable reverting the table with its previously defined
options to the original storage engine, if necessary. Create_options may show retained options.

• Comment

The comment used when creating the table (or information as to why MySQL could not access the
table information).

Notes

• For InnoDB tables, SHOW TABLE STATUS does not give accurate statistics except for the physical
size reserved by the table. The row count is only a rough estimate used in SQL optimization.

3148

SHOW Statements

• For NDB tables, the output of this statement shows appropriate values for the Avg_row_length and
Data_length columns, with the exception that BLOB columns are not taken into account.

• For NDB tables, Data_length includes data stored in main memory only; the Max_data_length
and Data_free columns apply to Disk Data.

• For NDB Cluster Disk Data tables, Max_data_length shows the space allocated for the disk part
of a Disk Data table or fragment. (In-memory data resource usage is reported by the Data_length
column.)

• For MEMORY tables, the Data_length, Max_data_length, and Index_length values
approximate the actual amount of allocated memory. The allocation algorithm reserves memory in
large amounts to reduce the number of allocation operations.

• For views, most columns displayed by SHOW TABLE STATUS are 0 or NULL except that Name
indicates the view name, Create_time indicates the creation time, and Comment says VIEW.

Table information is also available from the INFORMATION_SCHEMA TABLES table. See
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”.

15.7.7.39 SHOW TABLES Statement

SHOW [EXTENDED] [FULL] TABLES
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list using
the mysqlshow db_name command. The LIKE clause, if present, indicates which table names to
match. The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 28.8, “Extensions to SHOW Statements”.

Matching performed by the LIKE clause is dependent on the setting of the
lower_case_table_names system variable.

The optional EXTENDED modifier causes SHOW TABLES to list hidden tables created by failed ALTER
TABLE statements. These temporary tables have names beginning with #sql and can be dropped
using DROP TABLE.

This statement also lists any views in the database. The optional FULL modifier causes SHOW TABLES
to display a second output column with values of BASE TABLE for a table, VIEW for a view, or SYSTEM
VIEW for an INFORMATION_SCHEMA table.

If you have no privileges for a base table or view, it does not show up in the output from SHOW TABLES
or mysqlshow db_name.

Table information is also available from the INFORMATION_SCHEMA TABLES table. See
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”.

15.7.7.40 SHOW TRIGGERS Statement

SHOW TRIGGERS
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TRIGGERS lists the triggers currently defined for tables in a database (the default database
unless a FROM clause is given). This statement returns results only for databases and tables for which
you have the TRIGGER privilege. The LIKE clause, if present, indicates which table names (not trigger
names) to match and causes the statement to display triggers for those tables. The WHERE clause can
be given to select rows using more general conditions, as discussed in Section 28.8, “Extensions to
SHOW Statements”.

For the ins_sum trigger defined in Section 27.3, “Using Triggers”, the output of SHOW TRIGGERS is as
shown here:

3149

SHOW Statements

mysql> SHOW TRIGGERS LIKE 'acc%'\G
*************************** 1. row ***************************
 Trigger: ins_sum
 Event: INSERT
 Table: account
 Statement: SET @sum = @sum + NEW.amount
 Timing: BEFORE
 Created: 2018-08-08 10:10:12.61
 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_ENGINE_SUBSTITUTION
 Definer: me@localhost
character_set_client: utf8mb4
collation_connection: utf8mb4_0900_ai_ci
 Database Collation: utf8mb4_0900_ai_ci

SHOW TRIGGERS output has these columns:

• Trigger

The name of the trigger.

• Event

The trigger event. This is the type of operation on the associated table for which the trigger activates.
The value is INSERT (a row was inserted), DELETE (a row was deleted), or UPDATE (a row was
modified).

• Table

The table for which the trigger is defined.

• Statement

The trigger body; that is, the statement executed when the trigger activates.

• Timing

Whether the trigger activates before or after the triggering event. The value is BEFORE or AFTER.

• Created

The date and time when the trigger was created. This is a TIMESTAMP(2) value (with a fractional
part in hundredths of seconds) for triggers.

• sql_mode

The SQL mode in effect when the trigger was created, and under which the trigger executes. For the
permitted values, see Section 7.1.11, “Server SQL Modes”.

• Definer

The account of the user who created the trigger, in 'user_name'@'host_name' format.

• character_set_client

The session value of the character_set_client system variable when the trigger was created.

• collation_connection

The session value of the collation_connection system variable when the trigger was created.

• Database Collation

The collation of the database with which the trigger is associated.

3150

SHOW Statements

Trigger information is also available from the INFORMATION_SCHEMA TRIGGERS table. See
Section 28.3.45, “The INFORMATION_SCHEMA TRIGGERS Table”.

15.7.7.41 SHOW VARIABLES Statement

SHOW [GLOBAL | SESSION] VARIABLES
 [LIKE 'pattern' | WHERE expr]

SHOW VARIABLES shows the values of MySQL system variables (see Section 7.1.8, “Server System
Variables”). This statement does not require any privilege. It requires only the ability to connect to the
server.

System variable information is also available from these sources:

• Performance Schema tables. See Section 29.12.14, “Performance Schema System Variable
Tables”.

• The mysqladmin variables command. See Section 6.5.2, “mysqladmin — A MySQL Server
Administration Program”.

For SHOW VARIABLES, a LIKE clause, if present, indicates which variable names to match. A WHERE
clause can be given to select rows using more general conditions, as discussed in Section 28.8,
“Extensions to SHOW Statements”.

SHOW VARIABLES accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays global system variable values. These are the values
used to initialize the corresponding session variables for new connections to MySQL. If a variable
has no global value, no value is displayed.

• With a SESSION modifier, the statement displays the system variable values that are in effect for
the current connection. If a variable has no session value, the global value is displayed. LOCAL is a
synonym for SESSION.

• If no modifier is present, the default is SESSION.

The scope for each system variable is listed at Section 7.1.8, “Server System Variables”.

SHOW VARIABLES is subject to a version-dependent display-width limit. For variables with very long
values that are not completely displayed, use SELECT as a workaround. For example:

SELECT @@GLOBAL.innodb_data_file_path;

Most system variables can be set at server startup (read-only variables such as version_comment
are exceptions). Many can be changed at runtime with the SET statement. See Section 7.1.9, “Using
System Variables”, and Section 15.7.6.1, “SET Syntax for Variable Assignment”.

Partial output is shown here. The list of names and values may differ for your server. Section 7.1.8,
“Server System Variables”, describes the meaning of each variable, and Section 7.1.1, “Configuring the
Server”, provides information about tuning them.

mysql> SHOW VARIABLES;
+--+------------------------------+
| Variable_name | Value |
+--+------------------------------+
activate_all_roles_on_login	OFF
auto_generate_certs	ON
auto_increment_increment	1
auto_increment_offset	1
autocommit	ON
automatic_sp_privileges	ON
avoid_temporal_upgrade	OFF
back_log	151

3151

SHOW Statements

basedir	/usr/
big_tables	OFF
bind_address	*
binlog_cache_size	32768
binlog_checksum	CRC32
binlog_direct_non_transactional_updates	OFF
binlog_error_action	ABORT_SERVER
binlog_expire_logs_seconds	2592000
binlog_format	ROW
binlog_group_commit_sync_delay	0
binlog_group_commit_sync_no_delay_count	0
binlog_gtid_simple_recovery	ON
binlog_max_flush_queue_time	0
binlog_order_commits	ON
binlog_row_image	FULL
binlog_row_metadata	MINIMAL
binlog_row_value_options	
binlog_rows_query_log_events	OFF
binlog_stmt_cache_size	32768
binlog_transaction_dependency_history_size	25000
binlog_transaction_dependency_tracking	COMMIT_ORDER
block_encryption_mode	aes-128-ecb
bulk_insert_buffer_size	8388608

...

max_allowed_packet	67108864
max_binlog_cache_size	18446744073709547520
max_binlog_size	1073741824
max_binlog_stmt_cache_size	18446744073709547520
max_connect_errors	100
max_connections	151
max_delayed_threads	20
max_digest_length	1024
max_error_count	1024
max_execution_time	0
max_heap_table_size	16777216
max_insert_delayed_threads	20
max_join_size	18446744073709551615

...

thread_handling	one-thread-per-connection
thread_stack	286720
time_zone	SYSTEM
timestamp	1530906638.765316
tls_version	TLSv1.2,TLSv1.3
tmp_table_size	16777216
tmpdir	/tmp
transaction_alloc_block_size	8192
transaction_allow_batching	OFF
transaction_isolation	REPEATABLE-READ
transaction_prealloc_size	4096
transaction_read_only	OFF
transaction_write_set_extraction	XXHASH64
unique_checks	ON
updatable_views_with_limit	YES
version	8.0.42
version_comment	MySQL Community Server - GPL
version_compile_machine	x86_64
version_compile_os	Linux
version_compile_zlib	1.2.11
wait_timeout	28800
warning_count	0
windowing_use_high_precision	ON
+--+------------------------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern. To obtain the row for a specific variable, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

3152

SHOW Statements

To get a list of variables whose name match a pattern, use the % wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because _ is a wildcard that matches any single character, you should escape it as _ to match it
literally. In practice, this is rarely necessary.

15.7.7.42 SHOW WARNINGS Statement

SHOW WARNINGS [LIMIT [offset,] row_count]
SHOW COUNT(*) WARNINGS

SHOW WARNINGS is a diagnostic statement that displays information about the conditions (errors,
warnings, and notes) resulting from executing a statement in the current session. Warnings are
generated for DML statements such as INSERT, UPDATE, and LOAD DATA as well as DDL statements
such as CREATE TABLE and ALTER TABLE.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 15.2.13, “SELECT
Statement”.

SHOW WARNINGS is also used following EXPLAIN, to display the extended information generated by
EXPLAIN. See Section 10.8.3, “Extended EXPLAIN Output Format”.

SHOW WARNINGS displays information about the conditions resulting from execution of the most recent
nondiagnostic statement in the current session. If the most recent statement resulted in an error during
parsing, SHOW WARNINGS shows the resulting conditions, regardless of statement type (diagnostic or
nondiagnostic).

The SHOW COUNT(*) WARNINGS diagnostic statement displays the total number of errors, warnings,
and notes. You can also retrieve this number from the warning_count system variable:

SHOW COUNT(*) WARNINGS;
SELECT @@warning_count;

A difference in these statements is that the first is a diagnostic statement that does not clear the
message list. The second, because it is a SELECT statement is considered nondiagnostic and does
clear the message list.

A related diagnostic statement, SHOW ERRORS, shows only error conditions (it excludes warnings
and notes), and SHOW COUNT(*) ERRORS statement displays the total number of errors. See
Section 15.7.7.17, “SHOW ERRORS Statement”. GET DIAGNOSTICS can be used to examine
information for individual conditions. See Section 15.6.7.3, “GET DIAGNOSTICS Statement”.

Here is a simple example that shows data-conversion warnings for INSERT. The example assumes
that strict SQL mode is disabled. With strict mode enabled, the warnings would become errors and
terminate the INSERT.

mysql> CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4));
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t1 VALUES(10,'mysql'), (NULL,'test'), (300,'xyz');
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1265
Message: Data truncated for column 'b' at row 1
*************************** 2. row ***************************
 Level: Warning
 Code: 1048

3153

SHOW Statements

Message: Column 'a' cannot be null
*************************** 3. row ***************************
 Level: Warning
 Code: 1264
Message: Out of range value for column 'a' at row 3
3 rows in set (0.00 sec)

The max_error_count system variable controls the maximum number of error, warning, and note
messages for which the server stores information, and thus the number of messages that SHOW
WARNINGS displays. To change the number of messages the server can store, change the value of
max_error_count.

max_error_count controls only how many messages are stored, not how many are counted. The
value of warning_count is not limited by max_error_count, even if the number of messages
generated exceeds max_error_count. The following example demonstrates this. The ALTER TABLE
statement produces three warning messages (strict SQL mode is disabled for the example to prevent
an error from occurring after a single conversion issue). Only one message is stored and displayed
because max_error_count has been set to 1, but all three are counted (as shown by the value of
warning_count):

mysql> SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_error_count | 1024 |
+-----------------+-------+
1 row in set (0.00 sec)

mysql> SET max_error_count=1, sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1263 | Data truncated for column 'b' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT @@warning_count;
+-----------------+
| @@warning_count |
+-----------------+
| 3 |
+-----------------+
1 row in set (0.01 sec)

To disable message storage, set max_error_count to 0. In this case, warning_count still indicates
how many warnings occurred, but messages are not stored and cannot be displayed.

The sql_notes system variable controls whether note messages increment warning_count and
whether the server stores them. By default, sql_notes is 1, but if set to 0, notes do not increment
warning_count and the server does not store them:

mysql> SET sql_notes = 1;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)

3154

Other Administrative Statements

mysql> SET sql_notes = 0;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW WARNINGS;
Empty set (0.00 sec)

The MySQL server sends to each client a count indicating the total number of errors, warnings, and
notes resulting from the most recent statement executed by that client. From the C API, this value can
be obtained by calling mysql_warning_count(). See mysql_warning_count().

In the mysql client, you can enable and disable automatic warnings display using the warnings and
nowarning commands, respectively, or their shortcuts, \W and \w (see Section 6.5.1.2, “mysql Client
Commands”). For example:

mysql> \W
Show warnings enabled.
mysql> SELECT 1/0;
+------+
| 1/0 |
+------+
| NULL |
+------+
1 row in set, 1 warning (0.03 sec)

Warning (Code 1365): Division by 0
mysql> \w
Show warnings disabled.

15.7.8 Other Administrative Statements

15.7.8.1 BINLOG Statement

BINLOG 'str'

BINLOG is an internal-use statement. It is generated by the mysqlbinlog program as the printable
representation of certain events in binary log files. (See Section 6.6.9, “mysqlbinlog — Utility for
Processing Binary Log Files”.) The 'str' value is a base 64-encoded string the that server decodes to
determine the data change indicated by the corresponding event.

To execute BINLOG statements when applying mysqlbinlog output, a user account requires the
BINLOG_ADMIN privilege (or the deprecated SUPER privilege), or the REPLICATION_APPLIER
privilege plus the appropriate privileges to execute each log event.

This statement can execute only format description events and row events.

15.7.8.2 CACHE INDEX Statement

CACHE INDEX {
 tbl_index_list [, tbl_index_list] ...
 | tbl_name PARTITION (partition_list)
 }
 IN key_cache_name

tbl_index_list:
 tbl_name [{INDEX|KEY} (index_name[, index_name] ...)]

partition_list: {
 partition_name[, partition_name] ...
 | ALL
}

The CACHE INDEX statement assigns table indexes to a specific key cache. It applies only to MyISAM
tables, including partitioned MyISAM tables. After the indexes have been assigned, they can be
preloaded into the cache if desired with LOAD INDEX INTO CACHE.

3155

https://dev.mysql.com/doc/c-api/8.0/en/mysql-warning-count.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-warning-count.html

Other Administrative Statements

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named
hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The syntax of CACHE INDEX enables you to specify that only particular indexes from a table should be
assigned to the cache. However, the implementation assigns all the table's indexes to the cache, so
there is no reason to specify anything other than the table name.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a
parameter setting statement or in the server parameter settings. For example:

SET GLOBAL keycache1.key_buffer_size=128*1024;

Key cache parameters are accessed as members of a structured system variable. See Section 7.1.9.5,
“Structured System Variables”.

A key cache must exist before you assign indexes to it, or an error occurs:

mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'

By default, table indexes are assigned to the main (default) key cache created at the server startup.
When a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

Index assignment affects the server globally: If one client assigns an index to a given cache, this cache
is used for all queries involving the index, no matter which client issues the queries.

CACHE INDEX is supported for partitioned MyISAM tables. You can assign one or more indexes for
one, several, or all partitions to a given key cache. For example, you can do the following:

CREATE TABLE pt (c1 INT, c2 VARCHAR(50), INDEX i(c1))
 ENGINE=MyISAM
 PARTITION BY HASH(c1)
 PARTITIONS 4;

SET GLOBAL kc_fast.key_buffer_size = 128 * 1024;
SET GLOBAL kc_slow.key_buffer_size = 128 * 1024;

CACHE INDEX pt PARTITION (p0) IN kc_fast;
CACHE INDEX pt PARTITION (p1, p3) IN kc_slow;

The previous set of statements performs the following actions:

• Creates a partitioned table with 4 partitions; these partitions are automatically named p0, ..., p3; this
table has an index named i on column c1.

• Creates 2 key caches named kc_fast and kc_slow

• Assigns the index for partition p0 to the kc_fast key cache and the index for partitions p1 and p3
to the kc_slow key cache; the index for the remaining partition (p2) uses the server's default key
cache.

If you wish instead to assign the indexes for all partitions in table pt to a single key cache named
kc_all, you can use either of the following two statements:

CACHE INDEX pt PARTITION (ALL) IN kc_all;

3156

Other Administrative Statements

CACHE INDEX pt IN kc_all;

The two statements just shown are equivalent, and issuing either one has exactly the same effect. In
other words, if you wish to assign indexes for all partitions of a partitioned table to the same key cache,
the PARTITION (ALL) clause is optional.

When assigning indexes for multiple partitions to a key cache, the partitions need not be contiguous,
and you need not list their names in any particular order. Indexes for any partitions not explicitly
assigned to a key cache automatically use the server default key cache.

Index preloading is also supported for partitioned MyISAM tables. For more information, see
Section 15.7.8.5, “LOAD INDEX INTO CACHE Statement”.

15.7.8.3 FLUSH Statement

FLUSH [NO_WRITE_TO_BINLOG | LOCAL] {
 flush_option [, flush_option] ...
 | tables_option
}

flush_option: {
 BINARY LOGS
 | ENGINE LOGS
 | ERROR LOGS
 | GENERAL LOGS
 | HOSTS
 | LOGS
 | PRIVILEGES
 | OPTIMIZER_COSTS
 | RELAY LOGS [FOR CHANNEL channel]
 | SLOW LOGS
 | STATUS
 | USER_RESOURCES
}

tables_option: {
 table_synonym
 | table_synonym tbl_name [, tbl_name] ...
 | table_synonym WITH READ LOCK
 | table_synonym tbl_name [, tbl_name] ... WITH READ LOCK
 | table_synonym tbl_name [, tbl_name] ... FOR EXPORT
}

table_synonym: {
 TABLE
 | TABLES
}

The FLUSH statement has several variant forms that clear or reload various internal caches, flush
tables, or acquire locks. Each FLUSH operation requires the privileges indicated in its description.

Note

It is not possible to issue FLUSH statements within stored functions or triggers.
However, you may use FLUSH in stored procedures, so long as these are not
called from stored functions or triggers. See Section 27.8, “Restrictions on
Stored Programs”.

By default, the server writes FLUSH statements to the binary log so that they replicate to replicas. To
suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

Note

FLUSH LOGS, FLUSH BINARY LOGS, FLUSH TABLES WITH READ LOCK
(with or without a table list), and FLUSH TABLES tbl_name ... FOR
EXPORT are not written to the binary log in any case because they would cause
problems if replicated to a replica.

3157

Other Administrative Statements

The FLUSH statement causes an implicit commit. See Section 15.3.3, “Statements That Cause an
Implicit Commit”.

The mysqladmin utility provides a command-line interface to some flush operations, using commands
such as flush-hosts, flush-logs, flush-privileges, flush-status, and flush-tables.
See Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”.

Sending a SIGHUP or SIGUSR1 signal to the server causes several flush operations to occur that are
similar to various forms of the FLUSH statement. Signals can be sent by the root system account or
the system account that owns the server process. This enables the flush operations to be performed
without having to connect to the server, which requires a MySQL account that has privileges sufficient
for those operations. See Section 6.10, “Unix Signal Handling in MySQL”.

The RESET statement is similar to FLUSH. See Section 15.7.8.6, “RESET Statement”, for information
about using RESET with replication.

The following list describes the permitted FLUSH statement flush_option values. For descriptions of
the permitted tables_option values, see FLUSH TABLES Syntax.

• FLUSH BINARY LOGS

Closes and reopens any binary log file to which the server is writing. If binary logging is enabled, the
sequence number of the binary log file is incremented by one relative to the previous file.

This operation requires the RELOAD privilege.

• FLUSH ENGINE LOGS

Closes and reopens any flushable logs for installed storage engines. This causes InnoDB to flush its
logs to disk.

This operation requires the RELOAD privilege.

• FLUSH ERROR LOGS

Closes and reopens any error log file to which the server is writing.

This operation requires the RELOAD privilege.

• FLUSH GENERAL LOGS

Closes and reopens any general query log file to which the server is writing.

This operation requires the RELOAD privilege.

This operation has no effect on tables used for the general query log (see Section 7.4.1, “Selecting
General Query Log and Slow Query Log Output Destinations”).

• FLUSH HOSTS

Empties the host cache and the Performance Schema host_cache table that exposes the cache
contents, and unblocks any blocked hosts.

This operation requires the RELOAD privilege.

For information about why host cache flushing might be advisable or desirable, see Section 7.1.12.3,
“DNS Lookups and the Host Cache”.

Note

FLUSH HOSTS is deprecated as of MySQL 8.0.23; expect it to be removed
in a future MySQL release. Instead, truncate the Performance Schema
host_cache table:

3158

Other Administrative Statements

TRUNCATE TABLE performance_schema.host_cache;

The TRUNCATE TABLE operation requires the DROP privilege for the table
rather than the RELOAD privilege. You should be aware that the TRUNCATE
TABLE statement is not written to the binary log. To obtain the same behavior
from FLUSH HOSTS, specify NO_WRITE_TO_BINLOG or LOCAL as part of the
statement.

• FLUSH LOGS

Closes and reopens any log file to which the server is writing.

This operation requires the RELOAD privilege.

The effect of this operation is equivalent to the combined effects of these operations:

FLUSH BINARY LOGS
FLUSH ENGINE LOGS
FLUSH ERROR LOGS
FLUSH GENERAL LOGS
FLUSH RELAY LOGS
FLUSH SLOW LOGS

• FLUSH OPTIMIZER_COSTS

Re-reads the cost model tables so that the optimizer starts using the current cost estimates stored in
them.

This operation requires the FLUSH_OPTIMIZER_COSTS or RELOAD privilege.

The server writes a warning to the error log for any unrecognized cost model table entries. For
information about these tables, see Section 10.9.5, “The Optimizer Cost Model”. This operation
affects only sessions that begin subsequent to the flush. Existing sessions continue to use the cost
estimates that were current when they began.

• FLUSH PRIVILEGES

Re-reads the privileges from the grant tables in the mysql system schema. As part of this operation,
the server reads the global_grants table containing dynamic privilege assignments and registers
any unregistered privileges found there.

Reloading the grant tables is necessary to enable updates to MySQL privileges and users only if you
make such changes directly to the grant tables; it is not needed for account management statements
such as GRANT or REVOKE, which take effect immediately. See Section 8.2.13, “When Privilege
Changes Take Effect”, for more information.

This operation requires the RELOAD privilege.

If the --skip-grant-tables option was specified at server startup to disable the MySQL privilege
system, FLUSH PRIVILEGES provides a way to enable the privilege system at runtime.

Resets failed-login tracking (or enables it if the server was started with --skip-grant-tables)
and unlocks any temporarily locked accounts. See Section 8.2.15, “Password Management”.

Frees memory cached by the server as a result of GRANT, CREATE USER, CREATE SERVER, and
INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE, DROP
USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes many
instances of the statements that cause caching, there is an increase in cached memory use unless it
is freed with FLUSH PRIVILEGES.

Clears the in-memory cache used by the caching_sha2_password authentication plugin. See
Cache Operation for SHA-2 Pluggable Authentication.

3159

Other Administrative Statements

• FLUSH RELAY LOGS [FOR CHANNEL channel]

Closes and reopens any relay log file to which the server is writing. If relay logging is enabled, the
sequence number of the relay log file is incremented by one relative to the previous file.

This operation requires the RELOAD privilege.

The FOR CHANNEL channel clause enables you to name which replication channel the operation
applies to. Execute FLUSH RELAY LOGS FOR CHANNEL channel to flush the relay log for a
specific replication channel. If no channel is named and no extra replication channels exist, the
operation applies to the default channel. If no channel is named and multiple replication channels
exist, the operation applies to all replication channels. For more information, see Section 19.2.2,
“Replication Channels”.

• FLUSH SLOW LOGS

Closes and reopens any slow query log file to which the server is writing.

This operation requires the RELOAD privilege.

This operation has no effect on tables used for the slow query log (see Section 7.4.1, “Selecting
General Query Log and Slow Query Log Output Destinations”).

• FLUSH STATUS

Flushes status indicators.

This operation adds the current thread's session status variable values to the global values and
resets the session values to zero. Some global variables may be reset to zero as well. It also resets
the counters for key caches (default and named) to zero and sets Max_used_connections to the
current number of open connections. This information may be of use when debugging a query. See
Section 1.5, “How to Report Bugs or Problems”.

FLUSH STATUS is unaffected by read_only or super_read_only, and is always written to the
binary log.

This operation requires the FLUSH_STATUS or RELOAD privilege.

• FLUSH USER_RESOURCES

Resets all per-hour user resource indicators to zero.

This operation requires the FLUSH_USER_RESOURCES or RELOAD privilege.

Resetting resource indicators enables clients that have reached their hourly connection, query, or
update limits to resume activity immediately. FLUSH USER_RESOURCES does not apply to the limit
on maximum simultaneous connections that is controlled by the max_user_connections system
variable. See Section 8.2.21, “Setting Account Resource Limits”.

FLUSH TABLES Syntax

FLUSH TABLES flushes tables, and, depending on the variant used, acquires locks. Any TABLES
variant used in a FLUSH statement must be the only option used. FLUSH TABLE is a synonym for
FLUSH TABLES.

Note

The descriptions here that indicate tables are flushed by closing them apply
differently for InnoDB, which flushes table contents to disk but leaves them
open. This still permits table files to be copied while the tables are open, as long
as other activity does not modify them.

3160

Other Administrative Statements

• FLUSH TABLES

Closes all open tables, forces all tables in use to be closed, and flushes the prepared statement
cache.

This operation requires the FLUSH_TABLES or RELOAD privilege.

For information about prepared statement caching, see Section 10.10.3, “Caching of Prepared
Statements and Stored Programs”.

FLUSH TABLES is not permitted when there is an active LOCK TABLES ... READ. To flush and
lock tables, use FLUSH TABLES tbl_name ... WITH READ LOCK instead.

• FLUSH TABLES tbl_name [, tbl_name] ...

With a list of one or more comma-separated table names, this operation is like FLUSH TABLES with
no names except that the server flushes only the named tables. If a named table does not exist, no
error occurs.

This operation requires the FLUSH_TABLES or RELOAD privilege.

• FLUSH TABLES WITH READ LOCK

Closes all open tables and locks all tables for all databases with a global read lock.

This operation requires the FLUSH_TABLES or RELOAD privilege.

This operation is a very convenient way to get backups if you have a file system such as Veritas or
ZFS that can take snapshots in time. Use UNLOCK TABLES to release the lock.

FLUSH TABLES WITH READ LOCK acquires a global read lock rather than table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking
and implicit commits:

• UNLOCK TABLES implicitly commits any active transaction only if any tables currently have been
locked with LOCK TABLES. The commit does not occur for UNLOCK TABLES following FLUSH
TABLES WITH READ LOCK because the latter statement does not acquire table locks.

• Beginning a transaction causes table locks acquired with LOCK TABLES to be released, as though
you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock
acquired with FLUSH TABLES WITH READ LOCK.

FLUSH TABLES WITH READ LOCK does not prevent the server from inserting rows into the log
tables (see Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”).

• FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK

Flushes and acquires read locks for the named tables.

This operation requires the FLUSH_TABLES or RELOAD privilege. Because it acquires table locks, it
also requires the LOCK TABLES privilege for each table.

The operation first acquires exclusive metadata locks for the tables, so it waits for transactions that
have those tables open to complete. Then the operation flushes the tables from the table cache,
reopens the tables, acquires table locks (like LOCK TABLES ... READ), and downgrades the

3161

Other Administrative Statements

metadata locks from exclusive to shared. After the operation acquires locks and downgrades the
metadata locks, other sessions can read but not modify the tables.

This operation applies only to existing base (non-TEMPORARY) tables. If a name refers to a base
table, that table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view,
an ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.

Use UNLOCK TABLES to release the locks, LOCK TABLES to release the locks and acquire other
locks, or START TRANSACTION to release the locks and begin a new transaction.

This FLUSH TABLES variant enables tables to be flushed and locked in a single operation. It
provides a workaround for the restriction that FLUSH TABLES is not permitted when there is an
active LOCK TABLES ... READ.

This operation does not perform an implicit UNLOCK TABLES, so an error results if you perform the
operation while there is any active LOCK TABLES or use it a second time without first releasing the
locks acquired.

If a flushed table was opened with HANDLER, the handler is implicitly flushed and loses its position.

• FLUSH TABLES tbl_name [, tbl_name] ... FOR EXPORT

This FLUSH TABLES variant applies to InnoDB tables. It ensures that changes to the named tables
have been flushed to disk so that binary table copies can be made while the server is running.

This operation requires the FLUSH_TABLES or RELOAD privilege. Because it acquires locks on tables
in preparation for exporting them, it also requires the LOCK TABLES and SELECT privileges for each
table.

The operation works like this:

1. It acquires shared metadata locks for the named tables. The operation blocks as long as other
sessions have active transactions that have modified those tables or hold table locks for them.
When the locks have been acquired, the operation blocks transactions that attempt to update the
tables, while permitting read-only operations to continue.

2. It checks whether all storage engines for the tables support FOR EXPORT. If any do not, an
ER_ILLEGAL_HA error occurs and the operation fails.

3. The operation notifies the storage engine for each table to make the table ready for export. The
storage engine must ensure that any pending changes are written to disk.

4. The operation puts the session in lock-tables mode so that the metadata locks acquired earlier
are not released when the FOR EXPORT operation completes.

This operation applies only to existing base (non-TEMPORARY) tables. If a name refers to a base
table, that table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view,
an ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.

InnoDB supports FOR EXPORT for tables that have their own .ibd file file (that is, tables created
with the innodb_file_per_table setting enabled). InnoDB ensures when notified by the FOR
EXPORT operation that any changes have been flushed to disk. This permits a binary copy of
table contents to be made while the FOR EXPORT operation is in effect because the .ibd file is
transaction consistent and can be copied while the server is running. FOR EXPORT does not apply to
InnoDB system tablespace files, or to InnoDB tables that have FULLTEXT indexes.

FLUSH TABLES ...FOR EXPORT is supported for partitioned InnoDB tables.

When notified by FOR EXPORT, InnoDB writes to disk certain kinds of data that is normally held
in memory or in separate disk buffers outside the tablespace files. For each table, InnoDB also

3162

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_object
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_no_such_table
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_illegal_ha
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_object
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_no_such_table

Other Administrative Statements

produces a file named table_name.cfg in the same database directory as the table. The .cfg file
contains metadata needed to reimport the tablespace files later, into the same or different server.

When the FOR EXPORT operation completes, InnoDB has flushed all dirty pages to the table data
files. Any change buffer entries are merged prior to flushing. At this point, the tables are locked and
quiescent: The tables are in a transactionally consistent state on disk and you can copy the .ibd
tablespace files along with the corresponding .cfg files to get a consistent snapshot of those tables.

For the procedure to reimport the copied table data into a MySQL instance, see Section 17.6.1.3,
“Importing InnoDB Tables”.

After you are done with the tables, use UNLOCK TABLES to release the locks, LOCK TABLES to
release the locks and acquire other locks, or START TRANSACTION to release the locks and begin a
new transaction.

While any of these statements is in effect within the session, attempts to use FLUSH TABLES ...
FOR EXPORT produce an error:

FLUSH TABLES ... WITH READ LOCK
FLUSH TABLES ... FOR EXPORT
LOCK TABLES ... READ
LOCK TABLES ... WRITE

While FLUSH TABLES ... FOR EXPORT is in effect within the session, attempts to use any of
these statements produce an error:

FLUSH TABLES WITH READ LOCK
FLUSH TABLES ... WITH READ LOCK
FLUSH TABLES ... FOR EXPORT

15.7.8.4 KILL Statement

KILL [CONNECTION | QUERY] processlist_id

Each connection to mysqld runs in a separate thread. You can kill a thread with the KILL
processlist_id statement.

Thread processlist identifiers can be determined from the ID column of the INFORMATION_SCHEMA
PROCESSLIST table, the Id column of SHOW PROCESSLIST output, and the PROCESSLIST_ID
column of the Performance Schema threads table. The value for the current thread is returned by the
CONNECTION_ID() function.

KILL permits an optional CONNECTION or QUERY modifier:

• KILL CONNECTION is the same as KILL with no modifier: It terminates the connection associated
with the given processlist_id, after terminating any statement the connection is executing.

• KILL QUERY terminates the statement the connection is currently executing, but leaves the
connection itself intact.

The ability to see which threads are available to be killed depends on the PROCESS privilege:

• Without PROCESS, you can see only your own threads.

• With PROCESS, you can see all threads.

The ability to kill threads and statements depends on the CONNECTION_ADMIN privilege and the
deprecated SUPER privilege:

• Without CONNECTION_ADMIN or SUPER, you can kill only your own threads and statements.

• With CONNECTION_ADMIN or SUPER, you can kill all threads and statements, except that to affect
a thread or statement that is executing with the SYSTEM_USER privilege, your own session must
additionally have the SYSTEM_USER privilege.

3163

Other Administrative Statements

You can also use the mysqladmin processlist and mysqladmin kill commands to examine
and kill threads.

When you use KILL, a thread-specific kill flag is set for the thread. In most cases, it might take some
time for the thread to die because the kill flag is checked only at specific intervals:

• During SELECT operations, for ORDER BY and GROUP BY loops, the flag is checked after reading a
block of rows. If the kill flag is set, the statement is aborted.

• ALTER TABLE operations that make a table copy check the kill flag periodically for each few copied
rows read from the original table. If the kill flag was set, the statement is aborted and the temporary
table is deleted.

The KILL statement returns without waiting for confirmation, but the kill flag check aborts the
operation within a reasonably small amount of time. Aborting the operation to perform any necessary
cleanup also takes some time.

• During UPDATE or DELETE operations, the kill flag is checked after each block read and after
each updated or deleted row. If the kill flag is set, the statement is aborted. If you are not using
transactions, the changes are not rolled back.

• GET_LOCK() aborts and returns NULL.

• If the thread is in the table lock handler (state: Locked), the table lock is quickly aborted.

• If the thread is waiting for free disk space in a write call, the write is aborted with a “disk full” error
message.

• EXPLAIN ANALYZE aborts and prints the first row of output. This works in MySQL 8.0.20 and later.

Warning

Killing a REPAIR TABLE or OPTIMIZE TABLE operation on a MyISAM table
results in a table that is corrupted and unusable. Any reads or writes to such a
table fail until you optimize or repair it again (without interruption).

15.7.8.5 LOAD INDEX INTO CACHE Statement

LOAD INDEX INTO CACHE
 tbl_index_list [, tbl_index_list] ...

tbl_index_list:
 tbl_name
 [PARTITION (partition_list)]
 [{INDEX|KEY} (index_name[, index_name] ...)]
 [IGNORE LEAVES]

partition_list: {
 partition_name[, partition_name] ...
 | ALL
}

The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it has
been assigned by an explicit CACHE INDEX statement, or into the default key cache otherwise.

LOAD INDEX INTO CACHE applies only to MyISAM tables, including partitioned MyISAM tables. In
addition, indexes on partitioned tables can be preloaded for one, several, or all partitions.

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.

IGNORE LEAVES is also supported for partitioned MyISAM tables.

The following statement preloads nodes (index blocks) of indexes for the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;

3164

Other Administrative Statements

+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

This statement preloads all index blocks from t1. It preloads only blocks for the nonleaf nodes from t2.

The syntax of LOAD INDEX INTO CACHE enables you to specify that only particular indexes from a
table should be preloaded. However, the implementation preloads all the table's indexes into the cache,
so there is no reason to specify anything other than the table name.

It is possible to preload indexes on specific partitions of partitioned MyISAM tables. For example, of
the following 2 statements, the first preloads indexes for partition p0 of a partitioned table pt, while the
second preloads the indexes for partitions p1 and p3 of the same table:

LOAD INDEX INTO CACHE pt PARTITION (p0);
LOAD INDEX INTO CACHE pt PARTITION (p1, p3);

To preload the indexes for all partitions in table pt, you can use either of the following two statements:

LOAD INDEX INTO CACHE pt PARTITION (ALL);

LOAD INDEX INTO CACHE pt;

The two statements just shown are equivalent, and issuing either one has exactly the same effect.
In other words, if you wish to preload indexes for all partitions of a partitioned table, the PARTITION
(ALL) clause is optional.

When preloading indexes for multiple partitions, the partitions need not be contiguous, and you need
not list their names in any particular order.

LOAD INDEX INTO CACHE ... IGNORE LEAVES fails unless all indexes in a table have the
same block size. To determine index block sizes for a table, use myisamchk -dv and check the
Blocksize column.

15.7.8.6 RESET Statement

RESET reset_option [, reset_option] ...

reset_option: {
 MASTER
 | REPLICA
 | SLAVE
}

The RESET statement is used to clear the state of various server operations. You must have the
RELOAD privilege to execute RESET.

For information about the RESET PERSIST statement that removes persisted global system variables,
see Section 15.7.8.7, “RESET PERSIST Statement”.

RESET acts as a stronger version of the FLUSH statement. See Section 15.7.8.3, “FLUSH Statement”.

The RESET statement causes an implicit commit. See Section 15.3.3, “Statements That Cause an
Implicit Commit”.

The following list describes the permitted RESET statement reset_option values:

• RESET MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates
a new binary log file.

• RESET REPLICA

3165

Other Administrative Statements

Makes the replica forget its replication position in the source binary logs. Also resets the relay log
by deleting any existing relay log files and beginning a new one. Use RESET REPLICA in place of
RESET SLAVE from MySQL 8.0.22.

15.7.8.7 RESET PERSIST Statement

RESET PERSIST [[IF EXISTS] system_var_name]

RESET PERSIST removes persisted global system variable settings from the mysqld-auto.cnf
option file in the data directory. Removing a persisted system variable causes the variable no longer to
be initialized from mysqld-auto.cnf at server startup. For more information about persisting system
variables and the mysqld-auto.cnf file, see Section 7.1.9.3, “Persisted System Variables”.

Prior to MySQL 8.0.32, this statement did not work with variables whose name contained a dot
character (.), such as MyISAM multiple key cache variables and variables registered by components.
(Bug #33417357)

The privileges required for RESET PERSIST depend on the type of system variable to be removed:

• For dynamic system variables, this statement requires the SYSTEM_VARIABLES_ADMIN privilege (or
the deprecated SUPER privilege).

• For read-only system variables, this statement requires the SYSTEM_VARIABLES_ADMIN and
PERSIST_RO_VARIABLES_ADMIN privileges.

See Section 7.1.9.1, “System Variable Privileges”.

Depending on whether the variable name and IF EXISTS clauses are present, the RESET PERSIST
statement has these forms:

• To remove all persisted variables from mysqld-auto.cnf, use RESET PERSIST without naming
any system variable:

RESET PERSIST;

You must have privileges for removing both dynamic and read-only system variables if mysqld-
auto.cnf contains both kinds of variables.

• To remove a specific persisted variable from mysqld-auto.cnf, name it in the statement:

RESET PERSIST system_var_name;

This includes plugin system variables, even if the plugin is not currently installed. If the variable is not
present in the file, an error occurs.

• To remove a specific persisted variable from mysqld-auto.cnf, but produce a warning rather than
an error if the variable is not present in the file, add an IF EXISTS clause to the previous syntax:

RESET PERSIST IF EXISTS system_var_name;

RESET PERSIST is not affected by the value of the persisted_globals_load system variable.

RESET PERSIST affects the contents of the Performance Schema persisted_variables table
because the table contents correspond to the contents of the mysqld-auto.cnf file. On the other
hand, because RESET PERSIST does not change variable values, it has no effect on the contents of
the Performance Schema variables_info table until the server is restarted.

For information about RESET statement variants that clear the state of other server operations, see
Section 15.7.8.6, “RESET Statement”.

15.7.8.8 RESTART Statement

RESTART

3166

Other Administrative Statements

This statement stops and restarts the MySQL server. It requires the SHUTDOWN privilege.

One use for RESTART is when it is not possible or convenient to gain command-line access to the
MySQL server on the server host to restart it. For example, SET PERSIST_ONLY can be used at
runtime to make configuration changes to system variables that can be set only at server startup, but
the server must still be restarted for those changes to take effect. The RESTART statement provides a
way to do so from within client sessions, without requiring command-line access on the server host.

Note

After executing a RESTART statement, the client can expect the current
connection to be lost. If auto-reconnect is enabled, the connection is
reestablished after the server restarts. Otherwise, the connection must be
reestablished manually.

A successful RESTART operation requires mysqld to be running in an environment that has a
monitoring process available to detect a server shutdown performed for restart purposes:

• In the presence of a monitoring process, RESTART causes mysqld to terminate such that the
monitoring process can determine that it should start a new mysqld instance.

• If no monitoring process is present, RESTART fails with an error.

These platforms provide the necessary monitoring support for the RESTART statement:

• Windows, when mysqld is started as a Windows service or standalone. (mysqld forks, and one
process acts as a monitor to the other, which acts as the server.)

• Unix and Unix-like systems that use systemd or mysqld_safe to manage mysqld.

To configure a monitoring environment such that mysqld enables the RESTART statement:

1. Set the MYSQLD_PARENT_PID environment variable to the value of the process ID of the process
that starts mysqld, before starting mysqld.

2. When mysqld performs a shutdown due to use of the RESTART statement, it returns exit code 16.

3. When the monitoring process detects an exit code of 16, it starts mysqld again. Otherwise, it exits.

Here is a minimal example as implemented in the bash shell:

#!/bin/bash

export MYSQLD_PARENT_PID=$$

export MYSQLD_RESTART_EXIT=16

while true ; do
 bin/mysqld mysqld options here
 if [$? -ne $MYSQLD_RESTART_EXIT]; then
 break
 fi
done

On Windows, the forking used to implement RESTART makes determining the server process to attach
to for debugging more difficult. To alleviate this, starting the server with --gdb suppresses forking, in
addition to its other actions done to set up a debugging environment. In non-debug settings, --no-
monitor may be used for the sole purpose of suppressing forking the monitor process. For a server
started with either --gdb or --no-monitor, executing RESTART causes the server to simply exit
without restarting.

The Com_restart status variable tracks the number of RESTART statements. Because status
variables are initialized for each server startup and do not persist across restarts, Com_restart
normally has a value of zero, but can be nonzero if RESTART statements were executed but failed.

3167

Utility Statements

15.7.8.9 SHUTDOWN Statement

SHUTDOWN

This statement stops the MySQL server. It requires the SHUTDOWN privilege.

SHUTDOWN provides an SQL-level interface to the same functionality available using the mysqladmin
shutdown command or the mysql_shutdown() C API function. A successful SHUTDOWN sequence
consists of checking the privileges, validating the arguments, and sending an OK packet to the client.
Then the server is shut down.

The Com_shutdown status variable tracks the number of SHUTDOWN statements. Because status
variables are initialized for each server startup and do not persist across restarts, Com_shutdown
normally has a value of zero, but can be nonzero if SHUTDOWN statements were executed but failed.

Another way to stop the server is to send it a SIGTERM signal, which can be done by root or the
account that owns the server process. SIGTERM enables server shutdown to be performed without
having to connect to the server. See Section 6.10, “Unix Signal Handling in MySQL”.

15.8 Utility Statements

15.8.1 DESCRIBE Statement

The DESCRIBE and EXPLAIN statements are synonyms, used either to obtain information about table
structure or query execution plans. For more information, see Section 15.7.7.5, “SHOW COLUMNS
Statement”, and Section 15.8.2, “EXPLAIN Statement”.

15.8.2 EXPLAIN Statement
{EXPLAIN | DESCRIBE | DESC}
 tbl_name [col_name | wild]

{EXPLAIN | DESCRIBE | DESC}
 [explain_type]
 {explainable_stmt | FOR CONNECTION connection_id}

{EXPLAIN | DESCRIBE | DESC} ANALYZE [explain_type] select_stmt

explain_type: {
 FORMAT = format_name
}

format_name: {
 TRADITIONAL
 | JSON
 | TREE
}

explainable_stmt: {
 select_stmt
 | TABLE ...
 | DELETE ...
 | INSERT ...
 | REPLACE ...
 | UPDATE ...
}

select_stmt:
 SELECT ...

The DESCRIBE and EXPLAIN statements are synonyms. In practice, the DESCRIBE keyword is more
often used to obtain information about table structure, whereas EXPLAIN is used to obtain a query
execution plan (that is, an explanation of how MySQL would execute a query).

The following discussion uses the DESCRIBE and EXPLAIN keywords in accordance with those uses,
but the MySQL parser treats them as completely synonymous.

3168

https://dev.mysql.com/doc/c-api/8.0/en/mysql-shutdown.html

EXPLAIN Statement

• Obtaining Table Structure Information

• Obtaining Execution Plan Information

• Obtaining Information with EXPLAIN ANALYZE

Obtaining Table Structure Information

DESCRIBE provides information about the columns in a table:

mysql> DESCRIBE City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
Id	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
Country	char(3)	NO	UNI		
District	char(20)	YES	MUL		
Population	int(11)	NO		0	
+------------+----------+------+-----+---------+----------------+

DESCRIBE is a shortcut for SHOW COLUMNS. These statements also display information for views.
The description for SHOW COLUMNS provides more information about the output columns. See
Section 15.7.7.5, “SHOW COLUMNS Statement”.

By default, DESCRIBE displays information about all columns in the table. col_name, if given, is the
name of a column in the table. In this case, the statement displays information only for the named
column. wild, if given, is a pattern string. It can contain the SQL % and _ wildcard characters. In this
case, the statement displays output only for the columns with names matching the string. There is no
need to enclose the string within quotation marks unless it contains spaces or other special characters.

The DESCRIBE statement is provided for compatibility with Oracle.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 15.7.7, “SHOW Statements”.

The explain_format system variable, added in MySQL 8.0.32, has no effect on the output of
EXPLAIN when used to obtain information about table columns.

Obtaining Execution Plan Information

The EXPLAIN statement provides information about how MySQL executes statements:

• EXPLAIN works with SELECT, DELETE, INSERT, REPLACE, and UPDATE statements. In MySQL
8.0.19 and later, it also works with TABLE statements.

• When EXPLAIN is used with an explainable statement, MySQL displays information from the
optimizer about the statement execution plan. That is, MySQL explains how it would process the
statement, including information about how tables are joined and in which order. For information
about using EXPLAIN to obtain execution plan information, see Section 10.8.2, “EXPLAIN Output
Format”.

• When EXPLAIN is used with FOR CONNECTION connection_id rather than an explainable
statement, it displays the execution plan for the statement executing in the named connection. See
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”.

• For explainable statements, EXPLAIN produces additional execution plan information that can be
displayed using SHOW WARNINGS. See Section 10.8.3, “Extended EXPLAIN Output Format”.

• EXPLAIN is useful for examining queries involving partitioned tables. See Section 26.3.5, “Obtaining
Information About Partitions”.

• The FORMAT option can be used to select the output format. TRADITIONAL presents the output
in tabular format. This is the default if no FORMAT option is present. JSON format displays the

3169

EXPLAIN Statement

information in JSON format. In MySQL 8.0.16 and later, TREE provides tree-like output with more
precise descriptions of query handling than the TRADITIONAL format; it is the only format which
shows hash join usage (see Section 10.2.1.4, “Hash Join Optimization”) and is always used for
EXPLAIN ANALYZE.

As of MySQL 8.0.32, the default output format used by EXPLAIN (that is, when it has no FORMAT
option) is determined by the value of the explain_format system variable. The precise effects of
this variable are described later in this section.

For complex statements, the JSON output can be quite large; in particular, it can be difficult when
reading it to pair the closing bracket and opening brackets; to cause the JSON structure's key, if it
has one, to be repeated near the closing bracket, set end_markers_in_json=ON. You should
be aware that while this makes the output easier to read, it also renders the JSON invalid, causing
JSON functions to raise an error.

EXPLAIN requires the same privileges required to execute the explained statement. Additionally,
EXPLAIN also requires the SHOW VIEW privilege for any explained view. EXPLAIN ... FOR
CONNECTION also requires the PROCESS privilege if the specified connection belongs to a different
user.

The explain_format system variable introduced in MySQL 8.0.32 determines the format of the
output from EXPLAIN when used to display a query execution plan. This variable can take any of the
values used with the FORMAT option, with the addition of DEFAULT as a synonym for TRADITIONAL.
The following example uses the country table from the world database which can be obtained from
MySQL: Other Downloads:

mysql> USE world; # Make world the current database
Database changed

Checking the value of explain_format, we see that it has the default value, and that EXPLAIN (with
no FORMAT option) therefore uses the traditional tabular output:

mysql> SELECT @@explain_format;
+------------------+
| @@explain_format |
+------------------+
| TRADITIONAL |
+------------------+
1 row in set (0.00 sec)

mysql> EXPLAIN SELECT Name FROM country WHERE Code Like 'A%';
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| 1 | SIMPLE | country | NULL | range | PRIMARY | PRIMARY | 12 | NULL | 17 | 100.00 | Using where |
+----+-------------+---------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

If we set the value of explain_format to TREE, then rerun the same EXPLAIN statement, the output
uses the tree-like format:

mysql> SET @@explain_format=TREE;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@explain_format;
+------------------+
| @@explain_format |
+------------------+
| TREE |
+------------------+
1 row in set (0.00 sec)

mysql> EXPLAIN SELECT Name FROM country WHERE Code LIKE 'A%';
+--+
| EXPLAIN |

3170

https://dev.mysql.com/doc/index-other.html

EXPLAIN Statement

+--+
| -> Filter: (country.`Code` like 'A%') (cost=3.67 rows=17)
 -> Index range scan on country using PRIMARY over ('A' <= Code <= 'A????????') (cost=3.67 rows=17) |
+--+
1 row in set, 1 warning (0.00 sec)

As stated previously, the FORMAT option overrides this setting. Executing the same EXPLAIN statement
using FORMAT=JSON instead of FORMAT=TREE shows that this is the case:

mysql> EXPLAIN FORMAT=JSON SELECT Name FROM country WHERE Code LIKE 'A%';
+--+
| EXPLAIN |
+--+
| {
 "query_block": {
 "select_id": 1,
 "cost_info": {
 "query_cost": "3.67"
 },
 "table": {
 "table_name": "country",
 "access_type": "range",
 "possible_keys": [
 "PRIMARY"
],
 "key": "PRIMARY",
 "used_key_parts": [
 "Code"
],
 "key_length": "12",
 "rows_examined_per_scan": 17,
 "rows_produced_per_join": 17,
 "filtered": "100.00",
 "cost_info": {
 "read_cost": "1.97",
 "eval_cost": "1.70",
 "prefix_cost": "3.67",
 "data_read_per_join": "16K"
 },
 "used_columns": [
 "Code",
 "Name"
],
 "attached_condition": "(`world`.`country`.`Code` like 'A%')"
 }
 }
} |
+--+
1 row in set, 1 warning (0.00 sec)

To return the default output of EXPLAIN to the tabular format, set explain_format to TRADITIONAL.
Alternatively, you can set it to DEFAULT, which has the same effect, as shown here:

mysql> SET @@explain_format=DEFAULT;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@explain_format;
+------------------+
| @@explain_format |
+------------------+
| TRADITIONAL |
+------------------+
1 row in set (0.00 sec)

With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the
optimizer joins the tables in an optimal order. To give a hint to the optimizer to use a join order
corresponding to the order in which the tables are named in a SELECT statement, begin the statement
with SELECT STRAIGHT_JOIN rather than just SELECT. (See Section 15.2.13, “SELECT Statement”.)

3171

EXPLAIN Statement

The optimizer trace may sometimes provide information complementary to that of EXPLAIN. However,
the optimizer trace format and content are subject to change between versions. For details, see
Section 10.15, “Tracing the Optimizer”.

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 15.7.3.1, “ANALYZE TABLE Statement”.

Note

MySQL Workbench has a Visual Explain capability that provides a visual
representation of EXPLAIN output. See Tutorial: Using Explain to Improve
Query Performance.

Obtaining Information with EXPLAIN ANALYZE

MySQL 8.0.18 introduces EXPLAIN ANALYZE, which runs a statement and produces EXPLAIN output
along with timing and additional, iterator-based, information about how the optimizer's expectations
matched the actual execution. For each iterator, the following information is provided:

• Estimated execution cost

(Some iterators are not accounted for by the cost model, and so are not included in the estimate.)

• Estimated number of returned rows

• Time to return first row

• Time spent executing this iterator (including child iterators, but not parent iterators), in milliseconds.

(When there are multiple loops, this figure shows the average time per loop.)

• Number of rows returned by the iterator

• Number of loops

The query execution information is displayed using the TREE output format, in which nodes represent
iterators. EXPLAIN ANALYZE always uses the TREE output format. In MySQL 8.0.21 and later, this can
optionally be specified explicitly using FORMAT=TREE; formats other than TREE remain unsupported.

EXPLAIN ANALYZE can be used with SELECT statements, as well as with multi-table UPDATE and
DELETE statements. Beginning with MySQL 8.0.19, it can also be used with TABLE statements.

Beginning with MySQL 8.0.20, you can terminate this statement using KILL QUERY or CTRL-C.

EXPLAIN ANALYZE cannot be used with FOR CONNECTION.

Example output:

mysql> EXPLAIN ANALYZE SELECT * FROM t1 JOIN t2 ON (t1.c1 = t2.c2)\G
*************************** 1. row ***************************
EXPLAIN: -> Inner hash join (t2.c2 = t1.c1) (cost=4.70 rows=6)
(actual time=0.032..0.035 rows=6 loops=1)
 -> Table scan on t2 (cost=0.06 rows=6)
(actual time=0.003..0.005 rows=6 loops=1)
 -> Hash
 -> Table scan on t1 (cost=0.85 rows=6)
(actual time=0.018..0.022 rows=6 loops=1)

mysql> EXPLAIN ANALYZE SELECT * FROM t3 WHERE i > 8\G
*************************** 1. row ***************************
EXPLAIN: -> Filter: (t3.i > 8) (cost=1.75 rows=5)
(actual time=0.019..0.021 rows=6 loops=1)
 -> Table scan on t3 (cost=1.75 rows=15)
(actual time=0.017..0.019 rows=15 loops=1)

3172

https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html
https://dev.mysql.com/doc/workbench/en/wb-tutorial-visual-explain-dbt3.html

EXPLAIN Statement

mysql> EXPLAIN ANALYZE SELECT * FROM t3 WHERE pk > 17\G
*************************** 1. row ***************************
EXPLAIN: -> Filter: (t3.pk > 17) (cost=1.26 rows=5)
(actual time=0.013..0.016 rows=5 loops=1)
 -> Index range scan on t3 using PRIMARY (cost=1.26 rows=5)
(actual time=0.012..0.014 rows=5 loops=1)

The tables used in the example output were created by the statements shown here:

CREATE TABLE t1 (
 c1 INTEGER DEFAULT NULL,
 c2 INTEGER DEFAULT NULL
);

CREATE TABLE t2 (
 c1 INTEGER DEFAULT NULL,
 c2 INTEGER DEFAULT NULL
);

CREATE TABLE t3 (
 pk INTEGER NOT NULL PRIMARY KEY,
 i INTEGER DEFAULT NULL
);

Values shown for actual time in the output of this statement are expressed in milliseconds.

As of MySQL 8.0.32, the explain_format system variable has the following effects on EXPLAIN
ANALYZE:

• If the value of this variable is TRADITIONAL or TREE (or the synonym DEFAULT), EXPLAIN
ANALYZE uses the TREE format. This ensures that this statement continues to use the TREE format
by default, as it did prior to the introduction of explain_format.

• If the value of explain_format is JSON, EXPLAIN ANALYZE returns an error unless
FORMAT=TREE is specified as part of the statement. This is due to the fact that EXPLAIN ANALYZE
supports only the TREE output format.

We illustrate the behavior described in the second point here, re-using the last EXPLAIN ANALYZE
statement from the previous example:

mysql> SET @@explain_format=JSON;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@explain_format;
+------------------+
| @@explain_format |
+------------------+
| JSON |
+------------------+
1 row in set (0.00 sec)

mysql> EXPLAIN ANALYZE SELECT * FROM t3 WHERE pk > 17\G
ERROR 1235 (42000): This version of MySQL doesn't yet support 'EXPLAIN ANALYZE with JSON format'

mysql> EXPLAIN ANALYZE FORMAT=TRADITIONAL SELECT * FROM t3 WHERE pk > 17\G
ERROR 1235 (42000): This version of MySQL doesn't yet support 'EXPLAIN ANALYZE with TRADITIONAL format'

mysql> EXPLAIN ANALYZE FORMAT=TREE SELECT * FROM t3 WHERE pk > 17\G
*************************** 1. row ***************************
EXPLAIN: -> Filter: (t3.pk > 17) (cost=1.26 rows=5)
(actual time=0.013..0.016 rows=5 loops=1)
 -> Index range scan on t3 using PRIMARY (cost=1.26 rows=5)
(actual time=0.012..0.014 rows=5 loops=1)

Using FORMAT=TRADITIONAL or FORMAT=JSON with EXPLAIN ANALYZE always raises an error,
regardless of the value of explain_format.

Beginning with MySQL 8.0.33, numbers in the output of EXPLAIN ANALYZE and EXPLAIN
FORMAT=TREE are formatted according to the following rules:

3173

HELP Statement

• Numbers in the range 0.001-999999.5 are printed as decimal numbers.

Decimal numbers less than 1000 have three significant digits; the remainder have four, five, or six.

• Numbers outside the range 0.001-999999.5 are printed in engineering format. Examples of such
values are 1.23e+9 and 934e-6.

• No trailing zeros are printed. For example, we print 2.3 rather than 2.30, and 1.2e+6 rather than
1.20e+6.

• Numbers less than 1e-12 are printed as 0.

15.8.3 HELP Statement

HELP 'search_string'

The HELP statement returns online information from the MySQL Reference Manual. Its proper
operation requires that the help tables in the mysql database be initialized with help topic information
(see Section 7.1.17, “Server-Side Help Support”).

The HELP statement searches the help tables for the given search string and displays the result of the
search. The search string is not case-sensitive.

The search string can contain the wildcard characters % and _. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. For example, HELP 'rep%' returns a
list of topics that begin with rep.

The HELP statement does not require a terminator such as ; or \G.

The HELP statement understands several types of search strings:

• At the most general level, use contents to retrieve a list of the top-level help categories:

HELP 'contents'

• For a list of topics in a given help category, such as Data Types, use the category name:

HELP 'data types'

• For help on a specific help topic, such as the ASCII() function or the CREATE TABLE statement,
use the associated keyword or keywords:

HELP 'ascii'
HELP 'create table'

In other words, the search string matches a category, many topics, or a single topic. The following
descriptions indicate the forms that the result set can take.

• Empty result

No match could be found for the search string.

Example: HELP 'fake'

Yields:

Nothing found
Please try to run 'help contents' for a list of all accessible topics

• Result set containing a single row

This means that the search string yielded a hit for the help topic. The result includes the following
items:

3174

HELP Statement

• name: The topic name.

• description: Descriptive help text for the topic.

• example: One or more usage examples. (May be empty.)

Example: HELP 'log'

Yields:

Name: 'LOG'
Description:
Syntax:
LOG(X), LOG(B,X)

If called with one parameter, this function returns the natural
logarithm of X. If X is less than or equal to 0.0E0, the function
returns NULL and a warning "Invalid argument for logarithm" is
reported. Returns NULL if X or B is NULL.

The inverse of this function (when called with a single argument) is
the EXP() function.

URL: https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html

Examples:
mysql> SELECT LOG(2);
 -> 0.69314718055995
mysql> SELECT LOG(-2);
 -> NULL

• List of topics.

This means that the search string matched multiple help topics.

Example: HELP 'status'

Yields:

Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:
 FLUSH
 SHOW
 SHOW ENGINE
 SHOW FUNCTION STATUS
 SHOW MASTER STATUS
 SHOW PROCEDURE STATUS
 SHOW REPLICA STATUS
 SHOW SLAVE STATUS
 SHOW STATUS
 SHOW TABLE STATUS

• List of topics.

A list is also displayed if the search string matches a category.

Example: HELP 'functions'

Yields:

You asked for help about help category: "Functions"
For more information, type 'help <item>', where <item> is one of the following
categories:
 Aggregate Functions and Modifiers
 Bit Functions
 Cast Functions and Operators
 Comparison Operators

3175

USE Statement

 Date and Time Functions
 Encryption Functions
 Enterprise Encryption Functions
 Flow Control Functions
 GROUP BY Functions and Modifiers
 GTID
 Information Functions
 Internal Functions
 Locking Functions
 Logical Operators
 Miscellaneous Functions
 Numeric Functions
 Performance Schema Functions
 Spatial Functions
 String Functions
 Window Functions
 XML

15.8.4 USE Statement
USE db_name

The USE statement tells MySQL to use the named database as the default (current) database for
subsequent statements. This statement requires some privilege for the database or some object within
it.

The named database remains the default until the end of the session or another USE statement is
issued:

USE db1;
SELECT COUNT(*) FROM mytable; # selects from db1.mytable
USE db2;
SELECT COUNT(*) FROM mytable; # selects from db2.mytable

The database name must be specified on a single line. Newlines in database names are not supported.

Making a particular database the default by means of the USE statement does not preclude accessing
tables in other databases. The following example accesses the author table from the db1 database
and the editor table from the db2 database:

USE db1;
SELECT author_name,editor_name FROM author,db2.editor
 WHERE author.editor_id = db2.editor.editor_id;

3176

Chapter 16 MySQL Data Dictionary

Table of Contents
16.1 Data Dictionary Schema .. 3177
16.2 Removal of File-based Metadata Storage ... 3178
16.3 Transactional Storage of Dictionary Data .. 3179
16.4 Dictionary Object Cache .. 3179
16.5 INFORMATION_SCHEMA and Data Dictionary Integration .. 3180
16.6 Serialized Dictionary Information (SDI) ... 3182
16.7 Data Dictionary Usage Differences ... 3182
16.8 Data Dictionary Limitations ... 3184

MySQL Server incorporates a transactional data dictionary that stores information about database
objects. In previous MySQL releases, dictionary data was stored in metadata files, nontransactional
tables, and storage engine-specific data dictionaries.

This chapter describes the main features, benefits, usage differences, and limitations of the data
dictionary. For other implications of the data dictionary feature, refer to the “Data Dictionary Notes”
section in the MySQL 8.0 Release Notes.

Benefits of the MySQL data dictionary include:

• Simplicity of a centralized data dictionary schema that uniformly stores dictionary data. See
Section 16.1, “Data Dictionary Schema”.

• Removal of file-based metadata storage. See Section 16.2, “Removal of File-based Metadata
Storage”.

• Transactional, crash-safe storage of dictionary data. See Section 16.3, “Transactional Storage of
Dictionary Data”.

• Uniform and centralized caching for dictionary objects. See Section 16.4, “Dictionary Object Cache”.

• A simpler and improved implementation for some INFORMATION_SCHEMA tables. See Section 16.5,
“INFORMATION_SCHEMA and Data Dictionary Integration”.

• Atomic DDL. See Section 15.1.1, “Atomic Data Definition Statement Support”.

Important

A data dictionary-enabled server entails some general operational differences
compared to a server that does not have a data dictionary; see Section 16.7,
“Data Dictionary Usage Differences”. Also, for upgrades to MySQL 8.0, the
upgrade procedure differs somewhat from previous MySQL releases and
requires that you verify the upgrade readiness of your installation by checking
specific prerequisites. For more information, see Chapter 3, Upgrading MySQL,
particularly Section 3.6, “Preparing Your Installation for Upgrade”.

16.1 Data Dictionary Schema
Data dictionary tables are protected and may only be accessed in debug builds of MySQL. However,
MySQL supports access to data stored in data dictionary tables through INFORMATION_SCHEMA
tables and SHOW statements. For an overview of the tables that comprise the data dictionary, see Data
Dictionary Tables.

MySQL system tables still exist in MySQL 8.0 and can be viewed by issuing a SHOW TABLES
statement on the mysql system database. Generally, the difference between MySQL data dictionary

3177

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/

How the Data Dictionary is Upgraded

tables and system tables is that data dictionary tables contain metadata required to execute SQL
queries, whereas system tables contain auxiliary data such as time zone and help information. MySQL
system tables and data dictionary tables also differ in how they are upgraded. The MySQL server
manages data dictionary upgrades. See How the Data Dictionary is Upgraded. Upgrading MySQL
system tables requires running the full MySQL upgrade procedure. See Section 3.4, “What the MySQL
Upgrade Process Upgrades”.

How the Data Dictionary is Upgraded

New versions of MySQL may include changes to data dictionary table definitions. Such changes are
present in newly installed versions of MySQL, but when performing an in-place upgrade of MySQL
binaries, changes are applied when the MySQL server is restarted using the new binaries. At startup,
the data dictionary version of the server is compared to the version information stored in the data
dictionary to determine if data dictionary tables should be upgraded. If an upgrade is necessary and
supported, the server creates data dictionary tables with updated definitions, copies persisted metadata
to the new tables, atomically replaces the old tables with the new ones, and reinitializes the data
dictionary. If an upgrade is not necessary, startup continues without updating the data dictionary tables.

Upgrade of data dictionary tables is an atomic operation, which means that all of the data dictionary
tables are upgraded as necessary or the operation fails. If the upgrade operation fails, server startup
fails with an error. In this case, the old server binaries can be used with the old data directory to
start the server. When the new server binaries are used again to start the server, the data dictionary
upgrade is reattempted.

Generally, after data dictionary tables are successfully upgraded, it is not possible to restart the server
using the old server binaries. As a result, downgrading MySQL server binaries to a previous MySQL
version is not supported after data dictionary tables are upgraded.

The mysqld --no-dd-upgrade option can be used to prevent automatic upgrade of data dictionary
tables at startup. When --no-dd-upgrade is specified, and the server finds that the data dictionary
version of the server is different from the version stored in the data dictionary, startup fails with an error
stating that the data dictionary upgrade is prohibited.

Viewing Data Dictionary Tables Using a Debug Build of MySQL

Data dictionary tables are protected by default but can be accessed by compiling MySQL
with debugging support (using the -DWITH_DEBUG=1 CMake option) and specifying the
+d,skip_dd_table_access_check debug option and modifier. For information about compiling
debug builds, see Section 7.9.1.1, “Compiling MySQL for Debugging”.

Warning

Modifying or writing to data dictionary tables directly is not recommended and
may render your MySQL instance inoperable.

After compiling MySQL with debugging support, use this SET statement to make data dictionary tables
visible to the mysql client session:

mysql> SET SESSION debug='+d,skip_dd_table_access_check';

Use this query to retrieve a list of data dictionary tables:

mysql> SELECT name, schema_id, hidden, type FROM mysql.tables where schema_id=1 AND hidden='System';

Use SHOW CREATE TABLE to view data dictionary table definitions. For example:

mysql> SHOW CREATE TABLE mysql.catalogs\G

16.2 Removal of File-based Metadata Storage
In previous MySQL releases, dictionary data was partially stored in metadata files. Issues with file-
based metadata storage included expensive file scans, susceptibility to file system-related bugs,

3178

Transactional Storage of Dictionary Data

complex code for handling of replication and crash recovery failure states, and a lack of extensibility
that made it difficult to add metadata for new features and relational objects.

The metadata files listed below are removed from MySQL. Unless otherwise noted, data previously
stored in metadata files is now stored in data dictionary tables.

• .frm files: Table metadata files. With the removal of .frm files:

• The 64KB table definition size limit imposed by the .frm file structure is removed.

• The Information Schema TABLES table's VERSION column reports a hardcoded value of 10, which
is the last .frm file version used in MySQL 5.7.

• .par files: Partition definition files. InnoDB stopped using partition definition files in MySQL 5.7 with
the introduction of native partitioning support for InnoDB tables.

• .TRN files: Trigger namespace files.

• .TRG files: Trigger parameter files.

• .isl files: InnoDB Symbolic Link files containing the location of file-per-table tablespace files
created outside of the data directory.

• db.opt files: Database configuration files. These files, one per database directory, contained
database default character set attributes.

• ddl_log.log file: The file contained records of metadata operations generated by data definition
statements such as DROP TABLE and ALTER TABLE.

16.3 Transactional Storage of Dictionary Data
The data dictionary schema stores dictionary data in transactional (InnoDB) tables. Data dictionary
tables are located in the mysql database together with non-data dictionary system tables.

Data dictionary tables are created in a single InnoDB tablespace named mysql.ibd, which resides
in the MySQL data directory. The mysql.ibd tablespace file must reside in the MySQL data directory
and its name cannot be modified or used by another tablespace.

Dictionary data is protected by the same commit, rollback, and crash-recovery capabilities that protect
user data that is stored in InnoDB tables.

16.4 Dictionary Object Cache
The dictionary object cache is a shared global cache that stores previously accessed data dictionary
objects in memory to enable object reuse and minimize disk I/O. Similar to other cache mechanisms
used by MySQL, the dictionary object cache uses an LRU-based eviction strategy to evict least
recently used objects from memory.

The dictionary object cache comprises cache partitions that store different object types. Some cache
partition size limits are configurable, whereas others are hardcoded.

• tablespace definition cache partition: Stores tablespace definition objects. The
tablespace_definition_cache option sets a limit for the number of tablespace definition
objects that can be stored in the dictionary object cache. The default value is 256.

• schema definition cache partition: Stores schema definition objects. The
schema_definition_cache option sets a limit for the number of schema definition objects that
can be stored in the dictionary object cache. The default value is 256.

• table definition cache partition: Stores table definition objects. The object limit is set to the value of
max_connections, which has a default value of 151.

3179

INFORMATION_SCHEMA and Data Dictionary Integration

The table definition cache partition exists in parallel with the table definition cache that is configured
using the table_definition_cache configuration option. Both caches store table definitions
but serve different parts of the MySQL server. Objects in one cache have no dependence on the
existence of objects in the other.

• stored program definition cache partition: Stores stored program definition objects. The
stored_program_definition_cache option sets a limit for the number of stored program
definition objects that can be stored in the dictionary object cache. The default value is 256.

The stored program definition cache partition exists in parallel with the stored procedure and stored
function caches that are configured using the stored_program_cache option.

The stored_program_cache option sets a soft upper limit for the number of cached stored
procedures or functions per connection, and the limit is checked each time a connection executes
a stored procedure or function. The stored program definition cache partition, on the other hand,
is a shared cache that stores stored program definition objects for other purposes. The existence
of objects in the stored program definition cache partition has no dependence on the existence of
objects in the stored procedure cache or stored function cache, and vice versa.

• character set definition cache partition: Stores character set definition objects and has a
hardcoded object limit of 256.

• collation definition cache partition: Stores collation definition objects and has a hardcoded object
limit of 256.

For information about valid values for dictionary object cache configuration options, refer to
Section 7.1.8, “Server System Variables”.

16.5 INFORMATION_SCHEMA and Data Dictionary Integration
With the introduction of the data dictionary, the following INFORMATION_SCHEMA tables are
implemented as views on data dictionary tables:

• CHARACTER_SETS

• CHECK_CONSTRAINTS

• COLLATIONS

• COLLATION_CHARACTER_SET_APPLICABILITY

• COLUMNS

• COLUMN_STATISTICS

• EVENTS

• FILES

• INNODB_COLUMNS

• INNODB_DATAFILES

• INNODB_FIELDS

• INNODB_FOREIGN

• INNODB_FOREIGN_COLS

• INNODB_INDEXES

• INNODB_TABLES

• INNODB_TABLESPACES

3180

INFORMATION_SCHEMA and Data Dictionary Integration

• INNODB_TABLESPACES_BRIEF

• INNODB_TABLESTATS

• KEY_COLUMN_USAGE

• KEYWORDS

• PARAMETERS

• PARTITIONS

• REFERENTIAL_CONSTRAINTS

• RESOURCE_GROUPS

• ROUTINES

• SCHEMATA

• STATISTICS

• ST_GEOMETRY_COLUMNS

• ST_SPATIAL_REFERENCE_SYSTEMS

• TABLES

• TABLE_CONSTRAINTS

• TRIGGERS

• VIEWS

• VIEW_ROUTINE_USAGE

• VIEW_TABLE_USAGE

Queries on those tables are now more efficient because they obtain information from data dictionary
tables rather than by other, slower means. In particular, for each INFORMATION_SCHEMA table that is a
view on data dictionary tables:

• The server no longer must create a temporary table for each query of the INFORMATION_SCHEMA
table.

• When the underlying data dictionary tables store values previously obtained by directory scans (for
example, to enumerate database names or table names within databases) or file-opening operations
(for example, to read information from .frm files), INFORMATION_SCHEMA queries for those values
now use table lookups instead. (Additionally, even for a non-view INFORMATION_SCHEMA table,
values such as database and table names are retrieved by lookups from the data dictionary and do
not require directory or file scans.)

• Indexes on the underlying data dictionary tables permit the optimizer to construct efficient
query execution plans, something not true for the previous implementation that processed the
INFORMATION_SCHEMA table using a temporary table per query.

The preceding improvements also apply to SHOW statements that display information corresponding
to the INFORMATION_SCHEMA tables that are views on data dictionary tables. For example, SHOW
DATABASES displays the same information as the SCHEMATA table.

In addition to the introduction of views on data dictionary tables, table statistics contained in
the STATISTICS and TABLES tables is now cached to improve INFORMATION_SCHEMA query
performance. The information_schema_stats_expiry system variable defines the period of time
before cached table statistics expire. The default is 86400 seconds (24 hours). If there are no cached
statistics or statistics have expired, statistics are retrieved from storage engine when querying table
statistics columns. To update cached values at any time for a given table, use ANALYZE TABLE

3181

Serialized Dictionary Information (SDI)

information_schema_stats_expiry can be set to 0 to have INFORMATION_SCHEMA queries
retrieve the latest statistics directly from the storage engine, which is not as fast as retrieving cached
statistics.

For more information, see Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”.

INFORMATION_SCHEMA tables in MySQL 8.0 are closely tied to the data dictionary, resulting in several
usage differences. See Section 16.7, “Data Dictionary Usage Differences”.

16.6 Serialized Dictionary Information (SDI)
In addition to storing metadata about database objects in the data dictionary, MySQL stores it in
serialized form. This data is referred to as serialized dictionary information (SDI). InnoDB stores SDI
data within its tablespace files. NDBCLUSTER stores SDI data in the NDB dictionary. Other storage
engines store SDI data in .sdi files that are created for a given table in the table's database directory.
SDI data is generated in a compact JSON format.

Serialized dictionary information (SDI) is present in all InnoDB tablespace files except for temporary
tablespace and undo tablespace files. SDI records in an InnoDB tablespace file only describe table
and tablespace objects contained within the tablespace.

SDI data is updated by DDL operations on a table or CHECK TABLE FOR UPGRADE. SDI data is not
updated when the MySQL server is upgraded to a new release or version.

The presence of SDI data provides metadata redundancy. For example, if the data dictionary becomes
unavailable, object metadata can be extracted directly from InnoDB tablespace files using the
ibd2sdi tool.

For InnoDB, an SDI record requires a single index page, which is 16KB in size by default. However,
SDI data is compressed to reduce the storage footprint.

For partitioned InnoDB tables comprised of multiple tablespaces, SDI data is stored in the tablespace
file of the first partition.

The MySQL server uses an internal API that is accessed during DDL operations to create and maintain
SDI records.

The IMPORT TABLE statement imports MyISAM tables based on information contained in .sdi files.
For more information, see Section 15.2.6, “IMPORT TABLE Statement”.

16.7 Data Dictionary Usage Differences
Use of a data dictionary-enabled MySQL server entails some operational differences compared to a
server that does not have a data dictionary:

• Previously, enabling the innodb_read_only system variable prevented creating and dropping
tables only for the InnoDB storage engine. As of MySQL 8.0, enabling innodb_read_only
prevents these operations for all storage engines. Table creation and drop operations for any
storage engine modify data dictionary tables in the mysql system database, but those tables use the
InnoDB storage engine and cannot be modified when innodb_read_only is enabled. The same
principle applies to other table operations that require modifying data dictionary tables. Examples:

• ANALYZE TABLE fails because it updates table statistics, which are stored in the data dictionary.

• ALTER TABLE tbl_name ENGINE=engine_name fails because it updates the storage engine
designation, which is stored in the data dictionary.

Note

Enabling innodb_read_only also has important implications for non-
data dictionary tables in the mysql system database. For details, see the

3182

Data Dictionary Usage Differences

description of innodb_read_only in Section 17.14, “InnoDB Startup
Options and System Variables”

• Previously, tables in the mysql system database were visible to DML and DDL statements. As of
MySQL 8.0, data dictionary tables are invisible and cannot be modified or queried directly. However,
in most cases there are corresponding INFORMATION_SCHEMA tables that can be queried instead.
This enables the underlying data dictionary tables to be changed as server development proceeds,
while maintaining a stable INFORMATION_SCHEMA interface for application use.

• INFORMATION_SCHEMA tables in MySQL 8.0 are closely tied to the data dictionary, resulting in
several usage differences:

• Previously, INFORMATION_SCHEMA queries for table statistics in the STATISTICS and TABLES
tables retrieved statistics directly from storage engines. As of MySQL 8.0, cached table statistics
are used by default. The information_schema_stats_expiry system variable defines the
period of time before cached table statistics expire. The default is 86400 seconds (24 hours).
(To update the cached values at any time for a given table, use ANALYZE TABLE.) If there
are no cached statistics or statistics have expired, statistics are retrieved from storage engines
when querying table statistics columns. To always retrieve the latest statistics directly from
storage engines, set information_schema_stats_expiry to 0. For more information, see
Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”.

• Several INFORMATION_SCHEMA tables are views on data dictionary tables, which enables the
optimizer to use indexes on those underlying tables. Consequently, depending on optimizer
choices, the row order of results for INFORMATION_SCHEMA queries might differ from previous
results. If a query result must have specific row ordering characteristics, include an ORDER BY
clause.

• Queries on INFORMATION_SCHEMA tables may return column names in a different lettercase
than in earlier MySQL series. Applications should test result set column names in case-insensitive
fashion. If that is not feasible, a workaround is to use column aliases in the select list that return
column names in the required lettercase. For example:

SELECT TABLE_SCHEMA AS table_schema, TABLE_NAME AS table_name
FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME = 'users';

• mysqldump and mysqlpump no longer dump the INFORMATION_SCHEMA database, even if
explicitly named on the command line.

• CREATE TABLE dst_tbl LIKE src_tbl requires that src_tbl be a base table and fails if it
is an INFORMATION_SCHEMA table that is a view on data dictionary tables.

• Previously, result set headers of columns selected from INFORMATION_SCHEMA tables used
the capitalization specified in the query. This query produces a result set with a header of
table_name:

SELECT table_name FROM INFORMATION_SCHEMA.TABLES;

As of MySQL 8.0, these headers are capitalized; the preceding query produces a result set with a
header of TABLE_NAME. If necessary, a column alias can be used to achieve a different lettercase.
For example:

SELECT table_name AS 'table_name' FROM INFORMATION_SCHEMA.TABLES;

3183

Data Dictionary Limitations

• The data directory affects how mysqldump and mysqlpump dump information from the mysql
system database:

• Previously, it was possible to dump all tables in the mysql system database. As of MySQL 8.0,
mysqldump and mysqlpump dump only non-data dictionary tables in that database.

• Previously, the --routines and --events options were not required to include stored routines
and events when using the --all-databases option: The dump included the mysql system
database, and therefore also the proc and event tables containing stored routine and event
definitions. As of MySQL 8.0, the event and proc tables are not used. Definitions for the
corresponding objects are stored in data dictionary tables, but those tables are not dumped.
To include stored routines and events in a dump made using --all-databases, use the --
routines and --events options explicitly.

• Previously, the --routines option required the SELECT privilege for the proc table. As of
MySQL 8.0, that table is not used; --routines requires the global SELECT privilege instead.

• Previously, it was possible to dump stored routine and event definitions together with their creation
and modification timestamps, by dumping the proc and event tables. As of MySQL 8.0, those
tables are not used, so it is not possible to dump timestamps.

• Previously, creating a stored routine that contains illegal characters produced a warning. As of
MySQL 8.0, this is an error.

16.8 Data Dictionary Limitations

This section describes temporary limitations introduced with the MySQL data dictionary.

• Manual creation of database directories under the data directory (for example, with mkdir) is
unsupported. Manually created database directories are not recognized by the MySQL Server.

• DDL operations take longer due to writing to storage, undo logs, and redo logs instead of .frm files.

3184

Chapter 17 The InnoDB Storage Engine

Table of Contents
17.1 Introduction to InnoDB ... 3186

17.1.1 Benefits of Using InnoDB Tables ... 3188
17.1.2 Best Practices for InnoDB Tables .. 3189
17.1.3 Verifying that InnoDB is the Default Storage Engine ... 3189
17.1.4 Testing and Benchmarking with InnoDB ... 3190

17.2 InnoDB and the ACID Model .. 3190
17.3 InnoDB Multi-Versioning ... 3191
17.4 InnoDB Architecture ... 3193
17.5 InnoDB In-Memory Structures .. 3193

17.5.1 Buffer Pool ... 3193
17.5.2 Change Buffer .. 3198
17.5.3 Adaptive Hash Index ... 3201
17.5.4 Log Buffer .. 3202

17.6 InnoDB On-Disk Structures .. 3202
17.6.1 Tables .. 3202
17.6.2 Indexes .. 3226
17.6.3 Tablespaces ... 3233
17.6.4 Doublewrite Buffer .. 3256
17.6.5 Redo Log ... 3257
17.6.6 Undo Logs ... 3264

17.7 InnoDB Locking and Transaction Model .. 3265
17.7.1 InnoDB Locking .. 3266
17.7.2 InnoDB Transaction Model .. 3270
17.7.3 Locks Set by Different SQL Statements in InnoDB ... 3279
17.7.4 Phantom Rows ... 3282
17.7.5 Deadlocks in InnoDB .. 3283
17.7.6 Transaction Scheduling ... 3288

17.8 InnoDB Configuration ... 3289
17.8.1 InnoDB Startup Configuration .. 3289
17.8.2 Configuring InnoDB for Read-Only Operation ... 3295
17.8.3 InnoDB Buffer Pool Configuration .. 3297
17.8.4 Configuring Thread Concurrency for InnoDB .. 3311
17.8.5 Configuring the Number of Background InnoDB I/O Threads 3312
17.8.6 Using Asynchronous I/O on Linux .. 3313
17.8.7 Configuring InnoDB I/O Capacity ... 3313
17.8.8 Configuring Spin Lock Polling .. 3315
17.8.9 Purge Configuration .. 3316
17.8.10 Configuring Optimizer Statistics for InnoDB .. 3317
17.8.11 Configuring the Merge Threshold for Index Pages .. 3328
17.8.12 Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server 3330

17.9 InnoDB Table and Page Compression .. 3333
17.9.1 InnoDB Table Compression ... 3333
17.9.2 InnoDB Page Compression ... 3347

17.10 InnoDB Row Formats .. 3350
17.11 InnoDB Disk I/O and File Space Management .. 3356

17.11.1 InnoDB Disk I/O .. 3357
17.11.2 File Space Management ... 3357
17.11.3 InnoDB Checkpoints ... 3359
17.11.4 Defragmenting a Table .. 3359
17.11.5 Reclaiming Disk Space with TRUNCATE TABLE .. 3360

17.12 InnoDB and Online DDL .. 3360
17.12.1 Online DDL Operations ... 3361

3185

Introduction to InnoDB

17.12.2 Online DDL Performance and Concurrency .. 3377
17.12.3 Online DDL Space Requirements .. 3380
17.12.4 Online DDL Memory Management ... 3381
17.12.5 Configuring Parallel Threads for Online DDL Operations 3381
17.12.6 Simplifying DDL Statements with Online DDL ... 3382
17.12.7 Online DDL Failure Conditions .. 3382
17.12.8 Online DDL Limitations ... 3383

17.13 InnoDB Data-at-Rest Encryption ... 3383
17.14 InnoDB Startup Options and System Variables ... 3392
17.15 InnoDB INFORMATION_SCHEMA Tables .. 3482

17.15.1 InnoDB INFORMATION_SCHEMA Tables about Compression 3483
17.15.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information 3484
17.15.3 InnoDB INFORMATION_SCHEMA Schema Object Tables 3492
17.15.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables 3497
17.15.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables .. 3500
17.15.6 InnoDB INFORMATION_SCHEMA Metrics Table ... 3504
17.15.7 InnoDB INFORMATION_SCHEMA Temporary Table Info Table 3513
17.15.8 Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES 3514

17.16 InnoDB Integration with MySQL Performance Schema .. 3515
17.16.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema 3517
17.16.2 Monitoring InnoDB Mutex Waits Using Performance Schema 3519

17.17 InnoDB Monitors .. 3522
17.17.1 InnoDB Monitor Types .. 3522
17.17.2 Enabling InnoDB Monitors ... 3523
17.17.3 InnoDB Standard Monitor and Lock Monitor Output .. 3524

17.18 InnoDB Backup and Recovery ... 3529
17.18.1 InnoDB Backup ... 3529
17.18.2 InnoDB Recovery .. 3530

17.19 InnoDB and MySQL Replication ... 3532
17.20 InnoDB memcached Plugin .. 3534

17.20.1 Benefits of the InnoDB memcached Plugin ... 3534
17.20.2 InnoDB memcached Architecture ... 3535
17.20.3 Setting Up the InnoDB memcached Plugin ... 3537
17.20.4 InnoDB memcached Multiple get and Range Query Support 3542
17.20.5 Security Considerations for the InnoDB memcached Plugin 3544
17.20.6 Writing Applications for the InnoDB memcached Plugin ... 3546
17.20.7 The InnoDB memcached Plugin and Replication .. 3558
17.20.8 InnoDB memcached Plugin Internals ... 3561
17.20.9 Troubleshooting the InnoDB memcached Plugin ... 3566

17.21 InnoDB Troubleshooting ... 3568
17.21.1 Troubleshooting InnoDB I/O Problems ... 3569
17.21.2 Troubleshooting Recovery Failures .. 3569
17.21.3 Forcing InnoDB Recovery ... 3569
17.21.4 Troubleshooting InnoDB Data Dictionary Operations ... 3571
17.21.5 InnoDB Error Handling .. 3572

17.22 InnoDB Limits .. 3572
17.23 InnoDB Restrictions and Limitations ... 3574

17.1 Introduction to InnoDB

InnoDB is a general-purpose storage engine that balances high reliability and high performance. In
MySQL 8.0, InnoDB is the default MySQL storage engine. Unless you have configured a different
default storage engine, issuing a CREATE TABLE statement without an ENGINE clause creates an
InnoDB table.

3186

Key Advantages of InnoDB

Key Advantages of InnoDB

• Its DML operations follow the ACID model, with transactions featuring commit, rollback, and crash-
recovery capabilities to protect user data. See Section 17.2, “InnoDB and the ACID Model”.

• Row-level locking and Oracle-style consistent reads increase multi-user concurrency and
performance. See Section 17.7, “InnoDB Locking and Transaction Model”.

• InnoDB tables arrange your data on disk to optimize queries based on primary keys. Each InnoDB
table has a primary key index called the clustered index that organizes the data to minimize I/O for
primary key lookups. See Section 17.6.2.1, “Clustered and Secondary Indexes”.

• To maintain data integrity, InnoDB supports FOREIGN KEY constraints. With foreign keys, inserts,
updates, and deletes are checked to ensure they do not result in inconsistencies across related
tables. See Section 15.1.20.5, “FOREIGN KEY Constraints”.

Table 17.1 InnoDB Storage Engine Features

Feature Support

B-tree indexes Yes

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes Yes

Compressed data Yes

Data caches Yes

Encrypted data Yes (Implemented in the server via encryption
functions; In MySQL 5.7 and later, data-at-rest
encryption is supported.)

Foreign key support Yes

Full-text search indexes Yes (Support for FULLTEXT indexes is available
in MySQL 5.6 and later.)

Geospatial data type support Yes

Geospatial indexing support Yes (Support for geospatial indexing is available in
MySQL 5.7 and later.)

Hash indexes No (InnoDB utilizes hash indexes internally for its
Adaptive Hash Index feature.)

Index caches Yes

Locking granularity Row

MVCC Yes

Replication support (Implemented in the server,
rather than in the storage engine.)

Yes

Storage limits 64TB

T-tree indexes No

Transactions Yes

Update statistics for data dictionary Yes

To compare the features of InnoDB with other storage engines provided with MySQL, see the Storage
Engine Features table in Chapter 18, Alternative Storage Engines.

3187

InnoDB Enhancements and New Features

InnoDB Enhancements and New Features

For information about InnoDB enhancements and new features, refer to:

• The InnoDB enhancements list in Section 1.3, “What Is New in MySQL 8.0”.

• The Release Notes.

Additional InnoDB Information and Resources

• For InnoDB-related terms and definitions, see the MySQL Glossary.

• For a forum dedicated to the InnoDB storage engine, see MySQL Forums::InnoDB.

• InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as MySQL. For
more information on MySQL licensing, see http://www.mysql.com/company/legal/licensing/.

17.1.1 Benefits of Using InnoDB Tables

InnoDB tables have the following benefits:

• If the server unexpectedly exits because of a hardware or software issue, regardless of what was
happening in the database at the time, you don't need to do anything special after restarting the
database. InnoDB crash recovery automatically finalizes changes that were committed before the
time of the crash, and undoes changes that were in process but not committed, permitting you to
restart and continue from where you left off. See Section 17.18.2, “InnoDB Recovery”.

• The InnoDB storage engine maintains its own buffer pool that caches table and index data in main
memory as data is accessed. Frequently used data is processed directly from memory. This cache
applies to many types of information and speeds up processing. On dedicated database servers, up
to 80% of physical memory is often assigned to the buffer pool. See Section 17.5.1, “Buffer Pool”.

• If you split up related data into different tables, you can set up foreign keys that enforce referential
integrity. See Section 15.1.20.5, “FOREIGN KEY Constraints”.

• If data becomes corrupted on disk or in memory, a checksum mechanism alerts you to the bogus
data before you use it. The innodb_checksum_algorithm variable defines the checksum
algorithm used by InnoDB.

• When you design a database with appropriate primary key columns for each table, operations
involving those columns are automatically optimized. It is very fast to reference the primary key
columns in WHERE clauses, ORDER BY clauses, GROUP BY clauses, and join operations. See
Section 17.6.2.1, “Clustered and Secondary Indexes”.

• Inserts, updates, and deletes are optimized by an automatic mechanism called change buffering.
InnoDB not only allows concurrent read and write access to the same table, it caches changed data
to streamline disk I/O. See Section 17.5.2, “Change Buffer”.

• Performance benefits are not limited to large tables with long-running queries. When the same rows
are accessed over and over from a table, the Adaptive Hash Index takes over to make these lookups
even faster, as if they came out of a hash table. See Section 17.5.3, “Adaptive Hash Index”.

• You can compress tables and associated indexes. See Section 17.9, “InnoDB Table and Page
Compression”.

• You can encrypt your data. See Section 17.13, “InnoDB Data-at-Rest Encryption”.

• You can create and drop indexes and perform other DDL operations with much less impact on
performance and availability. See Section 17.12.1, “Online DDL Operations”.

• Truncating a file-per-table tablespace is very fast and can free up disk space for the operating
system to reuse rather than only InnoDB. See Section 17.6.3.2, “File-Per-Table Tablespaces”.

3188

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/
http://forums.mysql.com/list.php?22
http://www.mysql.com/company/legal/licensing/

Best Practices for InnoDB Tables

• The storage layout for table data is more efficient for BLOB and long text fields, with the DYNAMIC
row format. See Section 17.10, “InnoDB Row Formats”.

• You can monitor the internal workings of the storage engine by querying INFORMATION_SCHEMA
tables. See Section 17.15, “InnoDB INFORMATION_SCHEMA Tables”.

• You can monitor the performance details of the storage engine by querying Performance Schema
tables. See Section 17.16, “InnoDB Integration with MySQL Performance Schema”.

• You can mix InnoDB tables with tables from other MySQL storage engines, even within the same
statement. For example, you can use a join operation to combine data from InnoDB and MEMORY
tables in a single query.

• InnoDB has been designed for CPU efficiency and maximum performance when processing large
data volumes.

• InnoDB tables can handle large quantities of data, even on operating systems where file size is
limited to 2GB.

For InnoDB-specific tuning techniques you can apply to your MySQL server and application code, see
Section 10.5, “Optimizing for InnoDB Tables”.

17.1.2 Best Practices for InnoDB Tables

This section describes best practices when using InnoDB tables.

• Specify a primary key for every table using the most frequently queried column or columns, or an
auto-increment value if there is no obvious primary key.

• Use joins wherever data is pulled from multiple tables based on identical ID values from those tables.
For fast join performance, define foreign keys on the join columns, and declare those columns with
the same data type in each table. Adding foreign keys ensures that referenced columns are indexed,
which can improve performance. Foreign keys also propagate deletes and updates to all affected
tables, and prevent insertion of data in a child table if the corresponding IDs are not present in the
parent table.

• Turn off autocommit. Committing hundreds of times a second puts a cap on performance (limited by
the write speed of your storage device).

• Group sets of related DML operations into transactions by bracketing them with START
TRANSACTION and COMMIT statements. While you don't want to commit too often, you also don't
want to issue huge batches of INSERT, UPDATE, or DELETE statements that run for hours without
committing.

• Do not use LOCK TABLES statements. InnoDB can handle multiple sessions all reading and writing
to the same table at once without sacrificing reliability or high performance. To get exclusive write
access to a set of rows, use the SELECT ... FOR UPDATE syntax to lock just the rows you intend
to update.

• Enable the innodb_file_per_table variable or use general tablespaces to put the
data and indexes for tables into separate files instead of the system tablespace. The
innodb_file_per_table variable is enabled by default.

• Evaluate whether your data and access patterns benefit from the InnoDB table or page compression
features. You can compress InnoDB tables without sacrificing read/write capability.

• Run the server with the --sql_mode=NO_ENGINE_SUBSTITUTION option to prevent tables from
being created with storage engines that you do not want to use.

17.1.3 Verifying that InnoDB is the Default Storage Engine

Issue the SHOW ENGINES statement to view the available MySQL storage engines. Look for DEFAULT
in the SUPPORT column.

3189

Testing and Benchmarking with InnoDB

mysql> SHOW ENGINES;

Alternatively, query the Information Schema ENGINES table.

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES;

17.1.4 Testing and Benchmarking with InnoDB

If InnoDB is not the default storage engine, you can determine if your database server and applications
work correctly with InnoDB by restarting the server with --default-storage-engine=InnoDB
defined on the command line or with default-storage-engine=innodb defined in the [mysqld]
section of the MySQL server option file.

Since changing the default storage engine only affects newly created tables, run your application
installation and setup steps to confirm that everything installs properly, then exercise the application
features to make sure the data loading, editing, and querying features work. If a table relies on
a feature that is specific to another storage engine, you receive an error. In this case, add the
ENGINE=other_engine_name clause to the CREATE TABLE statement to avoid the error.

If you did not make a deliberate decision about the storage engine, and you want to preview how
certain tables work when created using InnoDB, issue the command ALTER TABLE table_name
ENGINE=InnoDB; for each table. Alternatively, to run test queries and other statements without
disturbing the original table, make a copy:

CREATE TABLE ... ENGINE=InnoDB AS SELECT * FROM other_engine_table;

To assess performance with a full application under a realistic workload, install the latest MySQL server
and run benchmarks.

Test the full application lifecycle, from installation, through heavy usage, and server restart. Kill the
server process while the database is busy to simulate a power failure, and verify that the data is
recovered successfully when you restart the server.

Test any replication configurations, especially if you use different MySQL versions and options on the
source server and replicas.

17.2 InnoDB and the ACID Model
The ACID model is a set of database design principles that emphasize aspects of reliability that are
important for business data and mission-critical applications. MySQL includes components such as the
InnoDB storage engine that adhere closely to the ACID model so that data is not corrupted and results
are not distorted by exceptional conditions such as software crashes and hardware malfunctions. When
you rely on ACID-compliant features, you do not need to reinvent the wheel of consistency checking
and crash recovery mechanisms. In cases where you have additional software safeguards, ultra-
reliable hardware, or an application that can tolerate a small amount of data loss or inconsistency, you
can adjust MySQL settings to trade some of the ACID reliability for greater performance or throughput.

The following sections discuss how MySQL features, in particular the InnoDB storage engine, interact
with the categories of the ACID model:

• A: atomicity.

• C: consistency.

• I:: isolation.

• D: durability.

Atomicity

The atomicity aspect of the ACID model mainly involves InnoDB transactions. Related MySQL
features include:

3190

Consistency

• The autocommit setting.

• The COMMIT statement.

• The ROLLBACK statement.

Consistency

The consistency aspect of the ACID model mainly involves internal InnoDB processing to protect
data from crashes. Related MySQL features include:

• The InnoDB doublewrite buffer. See Section 17.6.4, “Doublewrite Buffer”.

• InnoDB crash recovery. See InnoDB Crash Recovery.

Isolation

The isolation aspect of the ACID model mainly involves InnoDB transactions, in particular the isolation
level that applies to each transaction. Related MySQL features include:

• The autocommit setting.

• Transaction isolation levels and the SET TRANSACTION statement. See Section 17.7.2.1,
“Transaction Isolation Levels”.

• The low-level details of InnoDB locking. Details can be viewed in the INFORMATION_SCHEMA tables
(see Section 17.15.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”) and
Performance Schema data_locks and data_lock_waits tables.

Durability

The durability aspect of the ACID model involves MySQL software features interacting with your
particular hardware configuration. Because of the many possibilities depending on the capabilities
of your CPU, network, and storage devices, this aspect is the most complicated to provide concrete
guidelines for. (And those guidelines might take the form of “buy new hardware”.) Related MySQL
features include:

• The InnoDB doublewrite buffer. See Section 17.6.4, “Doublewrite Buffer”.

• The innodb_flush_log_at_trx_commit variable.

• The sync_binlog variable.

• The innodb_file_per_table variable.

• The write buffer in a storage device, such as a disk drive, SSD, or RAID array.

• A battery-backed cache in a storage device.

• The operating system used to run MySQL, in particular its support for the fsync() system call.

• An uninterruptible power supply (UPS) protecting the electrical power to all computer servers and
storage devices that run MySQL servers and store MySQL data.

• Your backup strategy, such as frequency and types of backups, and backup retention periods.

• For distributed or hosted data applications, the particular characteristics of the data centers where
the hardware for the MySQL servers is located, and network connections between the data centers.

17.3 InnoDB Multi-Versioning
InnoDB is a multi-version storage engine. It keeps information about old versions of changed rows to
support transactional features such as concurrency and rollback. This information is stored in undo

3191

Multi-Versioning and Secondary Indexes

tablespaces in a data structure called a rollback segment. See Section 17.6.3.4, “Undo Tablespaces”.
InnoDB uses the information in the rollback segment to perform the undo operations needed in a
transaction rollback. It also uses the information to build earlier versions of a row for a consistent read.
See Section 17.7.2.3, “Consistent Nonlocking Reads”.

Internally, InnoDB adds three fields to each row stored in the database:

• A 6-byte DB_TRX_ID field indicates the transaction identifier for the last transaction that inserted or
updated the row. Also, a deletion is treated internally as an update where a special bit in the row is
set to mark it as deleted.

• A 7-byte DB_ROLL_PTR field called the roll pointer. The roll pointer points to an undo log record
written to the rollback segment. If the row was updated, the undo log record contains the information
necessary to rebuild the content of the row before it was updated.

• A 6-byte DB_ROW_ID field contains a row ID that increases monotonically as new rows are inserted.
If InnoDB generates a clustered index automatically, the index contains row ID values. Otherwise,
the DB_ROW_ID column does not appear in any index.

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs
are needed only in transaction rollback and can be discarded as soon as the transaction commits.
Update undo logs are used also in consistent reads, but they can be discarded only after there is no
transaction present for which InnoDB has assigned a snapshot that in a consistent read could require
the information in the update undo log to build an earlier version of a database row. For additional
information about undo logs, see Section 17.6.6, “Undo Logs”.

It is recommend that you commit transactions regularly, including transactions that issue only
consistent reads. Otherwise, InnoDB cannot discard data from the update undo logs, and the rollback
segment may grow too big, filling up the undo tablespace in which it resides. For information about
managing undo tablespaces, see Section 17.6.3.4, “Undo Tablespaces”.

The physical size of an undo log record in the rollback segment is typically smaller than the
corresponding inserted or updated row. You can use this information to calculate the space needed for
your rollback segment.

In the InnoDB multi-versioning scheme, a row is not physically removed from the database
immediately when you delete it with an SQL statement. InnoDB only physically removes the
corresponding row and its index records when it discards the update undo log record written for the
deletion. This removal operation is called a purge, and it is quite fast, usually taking the same order of
time as the SQL statement that did the deletion.

If you insert and delete rows in smallish batches at about the same rate in the table, the purge thread
can start to lag behind and the table can grow bigger and bigger because of all the “dead” rows,
making everything disk-bound and very slow. In such cases, throttle new row operations, and allocate
more resources to the purge thread by tuning the innodb_max_purge_lag system variable. For
more information, see Section 17.8.9, “Purge Configuration”.

Multi-Versioning and Secondary Indexes

InnoDB multiversion concurrency control (MVCC) treats secondary indexes differently than clustered
indexes. Records in a clustered index are updated in-place, and their hidden system columns point
undo log entries from which earlier versions of records can be reconstructed. Unlike clustered index
records, secondary index records do not contain hidden system columns nor are they updated in-place.

When a secondary index column is updated, old secondary index records are delete-marked, new
records are inserted, and delete-marked records are eventually purged. When a secondary index
record is delete-marked or the secondary index page is updated by a newer transaction, InnoDB
looks up the database record in the clustered index. In the clustered index, the record's DB_TRX_ID is
checked, and the correct version of the record is retrieved from the undo log if the record was modified
after the reading transaction was initiated.

3192

InnoDB Architecture

If a secondary index record is marked for deletion or the secondary index page is updated by a newer
transaction, the covering index technique is not used. Instead of returning values from the index
structure, InnoDB looks up the record in the clustered index.

However, if the index condition pushdown (ICP) optimization is enabled, and parts of the WHERE
condition can be evaluated using only fields from the index, the MySQL server still pushes this part of
the WHERE condition down to the storage engine where it is evaluated using the index. If no matching
records are found, the clustered index lookup is avoided. If matching records are found, even among
delete-marked records, InnoDB looks up the record in the clustered index.

17.4 InnoDB Architecture
The following diagram shows in-memory and on-disk structures that comprise the InnoDB storage
engine architecture. For information about each structure, see Section 17.5, “InnoDB In-Memory
Structures”, and Section 17.6, “InnoDB On-Disk Structures”.

Figure 17.1 InnoDB Architecture

17.5 InnoDB In-Memory Structures
This section describes InnoDB in-memory structures and related topics.

17.5.1 Buffer Pool

The buffer pool is an area in main memory where InnoDB caches table and index data as it is
accessed. The buffer pool permits frequently used data to be accessed directly from memory, which
speeds up processing. On dedicated servers, up to 80% of physical memory is often assigned to the
buffer pool.

3193

Buffer Pool

For efficiency of high-volume read operations, the buffer pool is divided into pages that can potentially
hold multiple rows. For efficiency of cache management, the buffer pool is implemented as a linked list
of pages; data that is rarely used is aged out of the cache using a variation of the least recently used
(LRU) algorithm.

Knowing how to take advantage of the buffer pool to keep frequently accessed data in memory is an
important aspect of MySQL tuning.

Buffer Pool LRU Algorithm

The buffer pool is managed as a list using a variation of the LRU algorithm. When room is needed to
add a new page to the buffer pool, the least recently used page is evicted and a new page is added to
the middle of the list. This midpoint insertion strategy treats the list as two sublists:

• At the head, a sublist of new (“young”) pages that were accessed recently

• At the tail, a sublist of old pages that were accessed less recently

Figure 17.2 Buffer Pool List

The algorithm keeps frequently used pages in the new sublist. The old sublist contains less frequently
used pages; these pages are candidates for eviction.

By default, the algorithm operates as follows:

• 3/8 of the buffer pool is devoted to the old sublist.

• The midpoint of the list is the boundary where the tail of the new sublist meets the head of the old
sublist.

3194

Buffer Pool

• When InnoDB reads a page into the buffer pool, it initially inserts it at the midpoint (the head of the
old sublist). A page can be read because it is required for a user-initiated operation such as an SQL
query, or as part of a read-ahead operation performed automatically by InnoDB.

• Accessing a page in the old sublist makes it “young”, moving it to the head of the new sublist. If
the page was read because it was required by a user-initiated operation, the first access occurs
immediately and the page is made young. If the page was read due to a read-ahead operation, the
first access does not occur immediately and might not occur at all before the page is evicted.

• As the database operates, pages in the buffer pool that are not accessed “age” by moving toward
the tail of the list. Pages in both the new and old sublists age as other pages are made new. Pages
in the old sublist also age as pages are inserted at the midpoint. Eventually, a page that remains
unused reaches the tail of the old sublist and is evicted.

By default, pages read by queries are immediately moved into the new sublist, meaning they stay in
the buffer pool longer. A table scan, performed for a mysqldump operation or a SELECT statement
with no WHERE clause, for example, can bring a large amount of data into the buffer pool and evict
an equivalent amount of older data, even if the new data is never used again. Similarly, pages that
are loaded by the read-ahead background thread and accessed only once are moved to the head of
the new list. These situations can push frequently used pages to the old sublist where they become
subject to eviction. For information about optimizing this behavior, see Section 17.8.3.3, “Making the
Buffer Pool Scan Resistant”, and Section 17.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-
Ahead)”.

InnoDB Standard Monitor output contains several fields in the BUFFER POOL AND MEMORY section
regarding operation of the buffer pool LRU algorithm. For details, see Monitoring the Buffer Pool Using
the InnoDB Standard Monitor.

Buffer Pool Configuration

You can configure the various aspects of the buffer pool to improve performance.

• Ideally, you set the size of the buffer pool to as large a value as practical, leaving enough memory for
other processes on the server to run without excessive paging. The larger the buffer pool, the more
InnoDB acts like an in-memory database, reading data from disk once and then accessing the data
from memory during subsequent reads. See Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”.

• On 64-bit systems with sufficient memory, you can split the buffer pool into multiple parts to minimize
contention for memory structures among concurrent operations. For details, see Section 17.8.3.2,
“Configuring Multiple Buffer Pool Instances”.

• You can keep frequently accessed data in memory regardless of sudden spikes of activity from
operations that would bring large amounts of infrequently accessed data into the buffer pool. For
details, see Section 17.8.3.3, “Making the Buffer Pool Scan Resistant”.

• You can control how and when to perform read-ahead requests to prefetch pages into the buffer
pool asynchronously in anticipation of impending need for them. For details, see Section 17.8.3.4,
“Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”.

• You can control when background flushing occurs and whether or not the rate of flushing is
dynamically adjusted based on workload. For details, see Section 17.8.3.5, “Configuring Buffer Pool
Flushing”.

• You can configure how InnoDB preserves the current buffer pool state to avoid a lengthy warmup
period after a server restart. For details, see Section 17.8.3.6, “Saving and Restoring the Buffer Pool
State”.

Monitoring the Buffer Pool Using the InnoDB Standard Monitor

InnoDB Standard Monitor output, which can be accessed using SHOW ENGINE INNODB STATUS,
provides metrics regarding operation of the buffer pool. Buffer pool metrics are located in the BUFFER
POOL AND MEMORY section of InnoDB Standard Monitor output:

3195

Buffer Pool

BUFFER POOL AND MEMORY

Total large memory allocated 2198863872
Dictionary memory allocated 776332
Buffer pool size 131072
Free buffers 124908
Database pages 5720
Old database pages 2071
Modified db pages 910
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 4, not young 0
0.10 youngs/s, 0.00 non-youngs/s
Pages read 197, created 5523, written 5060
0.00 reads/s, 190.89 creates/s, 244.94 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not
0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read
ahead 0.00/s
LRU len: 5720, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

The following table describes buffer pool metrics reported by the InnoDB Standard Monitor.

Per second averages provided in InnoDB Standard Monitor output are based on the elapsed time
since InnoDB Standard Monitor output was last printed.

Table 17.2 InnoDB Buffer Pool Metrics

Name Description

Total memory allocated The total memory allocated for the buffer pool in
bytes.

Dictionary memory allocated The total memory allocated for the InnoDB data
dictionary in bytes.

Buffer pool size The total size in pages allocated to the buffer pool.

Free buffers The total size in pages of the buffer pool free list.

Database pages The total size in pages of the buffer pool LRU list.

Old database pages The total size in pages of the buffer pool old LRU
sublist.

Modified db pages The current number of pages modified in the
buffer pool.

Pending reads The number of buffer pool pages waiting to be
read into the buffer pool.

Pending writes LRU The number of old dirty pages within the buffer
pool to be written from the bottom of the LRU list.

Pending writes flush list The number of buffer pool pages to be flushed
during checkpointing.

Pending writes single page The number of pending independent page writes
within the buffer pool.

Pages made young The total number of pages made young in the
buffer pool LRU list (moved to the head of sublist
of “new” pages).

Pages made not young The total number of pages not made young in the
buffer pool LRU list (pages that have remained in
the “old” sublist without being made young).

youngs/s The per second average of accesses to old pages
in the buffer pool LRU list that have resulted in

3196

Buffer Pool

Name Description
making pages young. See the notes that follow
this table for more information.

non-youngs/s The per second average of accesses to old pages
in the buffer pool LRU list that have resulted in not
making pages young. See the notes that follow
this table for more information.

Pages read The total number of pages read from the buffer
pool.

Pages created The total number of pages created within the
buffer pool.

Pages written The total number of pages written from the buffer
pool.

reads/s The per second average number of buffer pool
page reads per second.

creates/s The average number of buffer pool pages created
per second.

writes/s The average number of buffer pool page writes
per second.

Buffer pool hit rate The buffer pool page hit rate for pages read from
the buffer pool vs from disk storage.

young-making rate The average hit rate at which page accesses have
resulted in making pages young. See the notes
that follow this table for more information.

not (young-making rate) The average hit rate at which page accesses
have not resulted in making pages young. See the
notes that follow this table for more information.

Pages read ahead The per second average of read ahead
operations.

Pages evicted without access The per second average of the pages evicted
without being accessed from the buffer pool.

Random read ahead The per second average of random read ahead
operations.

LRU len The total size in pages of the buffer pool LRU list.

unzip_LRU len The length (in pages) of the buffer pool
unzip_LRU list.

I/O sum The total number of buffer pool LRU list pages
accessed.

I/O cur The total number of buffer pool LRU list pages
accessed in the current interval.

I/O unzip sum The total number of buffer pool unzip_LRU list
pages decompressed.

I/O unzip cur The total number of buffer pool unzip_LRU list
pages decompressed in the current interval.

Notes:

• The youngs/s metric is applicable only to old pages. It is based on the number of page accesses.
There can be multiple accesses for a given page, all of which are counted. If you see very low
youngs/s values when there are no large scans occurring, consider reducing the delay time or
increasing the percentage of the buffer pool used for the old sublist. Increasing the percentage

3197

Change Buffer

makes the old sublist larger so that it takes longer for pages in that sublist to move to the tail,
which increases the likelihood that those pages are accessed again and made young. See
Section 17.8.3.3, “Making the Buffer Pool Scan Resistant”.

• The non-youngs/s metric is applicable only to old pages. It is based on the number of page
accesses. There can be multiple accesses for a given page, all of which are counted. If you do not
see a higher non-youngs/s value when performing large table scans (and a higher youngs/s
value), increase the delay value. See Section 17.8.3.3, “Making the Buffer Pool Scan Resistant”.

• The young-making rate accounts for all buffer pool page accesses, not just accesses for pages in
the old sublist. The young-making rate and not rate do not normally add up to the overall buffer
pool hit rate. Page hits in the old sublist cause pages to move to the new sublist, but page hits in the
new sublist cause pages to move to the head of the list only if they are a certain distance from the
head.

• not (young-making rate) is the average hit rate at which page accesses have not resulted in
making pages young due to the delay defined by innodb_old_blocks_time not being met, or
due to page hits in the new sublist that did not result in pages being moved to the head. This rate
accounts for all buffer pool page accesses, not just accesses for pages in the old sublist.

Buffer pool server status variables and the INNODB_BUFFER_POOL_STATS table provide many of
the same buffer pool metrics found in InnoDB Standard Monitor output. For more information, see
Example 17.10, “Querying the INNODB_BUFFER_POOL_STATS Table”.

17.5.2 Change Buffer

The change buffer is a special data structure that caches changes to secondary index pages when
those pages are not in the buffer pool. The buffered changes, which may result from INSERT, UPDATE,
or DELETE operations (DML), are merged later when the pages are loaded into the buffer pool by other
read operations.

Figure 17.3 Change Buffer

Unlike clustered indexes, secondary indexes are usually nonunique, and inserts into secondary
indexes happen in a relatively random order. Similarly, deletes and updates may affect secondary
index pages that are not adjacently located in an index tree. Merging cached changes at a later time,
when affected pages are read into the buffer pool by other operations, avoids substantial random
access I/O that would be required to read secondary index pages into the buffer pool from disk.

3198

Change Buffer

Periodically, the purge operation that runs when the system is mostly idle, or during a slow shutdown,
writes the updated index pages to disk. The purge operation can write disk blocks for a series of index
values more efficiently than if each value were written to disk immediately.

Change buffer merging may take several hours when there are many affected rows and numerous
secondary indexes to update. During this time, disk I/O is increased, which can cause a significant
slowdown for disk-bound queries. Change buffer merging may also continue to occur after a
transaction is committed, and even after a server shutdown and restart (see Section 17.21.3, “Forcing
InnoDB Recovery” for more information).

In memory, the change buffer occupies part of the buffer pool. On disk, the change buffer is part of the
system tablespace, where index changes are buffered when the database server is shut down.

The type of data cached in the change buffer is governed by the innodb_change_buffering
variable. For more information, see Configuring Change Buffering. You can also configure the
maximum change buffer size. For more information, see Configuring the Change Buffer Maximum Size.

Change buffering is not supported for a secondary index if the index contains a descending index
column or if the primary key includes a descending index column.

For answers to frequently asked questions about the change buffer, see Section A.16, “MySQL 8.0
FAQ: InnoDB Change Buffer”.

Configuring Change Buffering

When INSERT, UPDATE, and DELETE operations are performed on a table, the values of indexed
columns (particularly the values of secondary keys) are often in an unsorted order, requiring substantial
I/O to bring secondary indexes up to date. The change buffer caches changes to secondary index
entries when the relevant page is not in the buffer pool, thus avoiding expensive I/O operations by not
immediately reading in the page from disk. The buffered changes are merged when the page is loaded
into the buffer pool, and the updated page is later flushed to disk. The InnoDB main thread merges
buffered changes when the server is nearly idle, and during a slow shutdown.

Because it can result in fewer disk reads and writes, change buffering is most valuable for workloads
that are I/O-bound; for example, applications with a high volume of DML operations such as bulk
inserts benefit from change buffering.

However, the change buffer occupies a part of the buffer pool, reducing the memory available to
cache data pages. If the working set almost fits in the buffer pool, or if your tables have relatively few
secondary indexes, it may be useful to disable change buffering. If the working data set fits entirely
within the buffer pool, change buffering does not impose extra overhead, because it only applies to
pages that are not in the buffer pool.

The innodb_change_buffering variable controls the extent to which InnoDB performs change
buffering. You can enable or disable buffering for inserts, delete operations (when index records are
initially marked for deletion) and purge operations (when index records are physically deleted). An
update operation is a combination of an insert and a delete. The default innodb_change_buffering
value is all.

Permitted innodb_change_buffering values include:

• all

The default value: buffer inserts, delete-marking operations, and purges.

• none

Do not buffer any operations.

• inserts

Buffer insert operations.

3199

Change Buffer

• deletes

Buffer delete-marking operations.

• changes

Buffer both inserts and delete-marking operations.

• purges

Buffer the physical deletion operations that happen in the background.

You can set the innodb_change_buffering variable in the MySQL option file (my.cnf or my.ini)
or change it dynamically with the SET GLOBAL statement, which requires privileges sufficient to set
global system variables. See Section 7.1.9.1, “System Variable Privileges”. Changing the setting
affects the buffering of new operations; the merging of existing buffered entries is not affected.

Configuring the Change Buffer Maximum Size

The innodb_change_buffer_max_size variable permits configuring the maximum
size of the change buffer as a percentage of the total size of the buffer pool. By default,
innodb_change_buffer_max_size is set to 25. The maximum setting is 50.

Consider increasing innodb_change_buffer_max_size on a MySQL server with heavy insert,
update, and delete activity, where change buffer merging does not keep pace with new change buffer
entries, causing the change buffer to reach its maximum size limit.

Consider decreasing innodb_change_buffer_max_size on a MySQL server with static data used
for reporting, or if the change buffer consumes too much of the memory space shared with the buffer
pool, causing pages to age out of the buffer pool sooner than desired.

Test different settings with a representative workload to determine an optimal configuration. The
innodb_change_buffer_max_size variable is dynamic, which permits modifying the setting
without restarting the server.

Monitoring the Change Buffer

The following options are available for change buffer monitoring:

• InnoDB Standard Monitor output includes change buffer status information. To view monitor data,
issue the SHOW ENGINE INNODB STATUS statement.

mysql> SHOW ENGINE INNODB STATUS\G

Change buffer status information is located under the INSERT BUFFER AND ADAPTIVE HASH
INDEX heading and appears similar to the following:

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges
merged operations:
 insert 0, delete mark 0, delete 0
discarded operations:
 insert 0, delete mark 0, delete 0
Hash table size 4425293, used cells 32, node heap has 1 buffer(s)
13577.57 hash searches/s, 202.47 non-hash searches/s

For more information, see Section 17.17.3, “InnoDB Standard Monitor and Lock Monitor Output”.

• The Information Schema INNODB_METRICS table provides most of the data points found in InnoDB
Standard Monitor output plus other data points. To view change buffer metrics and a description of
each, issue the following query:

3200

Adaptive Hash Index

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME LIKE '%ibuf%'\G

See Section 17.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”.

• The Information Schema INNODB_BUFFER_PAGE table provides metadata about each page in the
buffer pool, including change buffer index and change buffer bitmap pages. Change buffer pages
are identified by PAGE_TYPE. IBUF_INDEX is the page type for change buffer index pages, and
IBUF_BITMAP is the page type for change buffer bitmap pages.

Warning

Querying the INNODB_BUFFER_PAGE table can introduce significant
performance overhead. To avoid impacting performance, reproduce the issue
you want to investigate on a test instance and run your queries on the test
instance.

For example, you can query the INNODB_BUFFER_PAGE table to determine the approximate number
of IBUF_INDEX and IBUF_BITMAP pages as a percentage of total buffer pool pages.

mysql> SELECT (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE PAGE_TYPE LIKE 'IBUF%') AS change_buffer_pages,
 (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE) AS total_pages,
 (SELECT ((change_buffer_pages/total_pages)*100))
 AS change_buffer_page_percentage;
+---------------------+-------------+-------------------------------+
| change_buffer_pages | total_pages | change_buffer_page_percentage |
+---------------------+-------------+-------------------------------+
| 25 | 8192 | 0.3052 |
+---------------------+-------------+-------------------------------+

For information about other data provided by the INNODB_BUFFER_PAGE table, see Section 28.4.2,
“The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”. For related usage information,
see Section 17.15.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”.

• Performance Schema provides change buffer mutex wait instrumentation for advanced performance
monitoring. To view change buffer instrumentation, issue the following query:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%wait/synch/mutex/innodb/ibuf%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/ibuf_bitmap_mutex	YES	YES
wait/synch/mutex/innodb/ibuf_mutex	YES	YES
wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex	YES	YES
+---+---------+-------+

For information about monitoring InnoDB mutex waits, see Section 17.16.2, “Monitoring InnoDB
Mutex Waits Using Performance Schema”.

17.5.3 Adaptive Hash Index

The adaptive hash index enables InnoDB to perform more like an in-memory database on
systems with appropriate combinations of workload and sufficient memory for the buffer pool
without sacrificing transactional features or reliability. The adaptive hash index is enabled by the
innodb_adaptive_hash_index variable, or turned off at server startup by --skip-innodb-
adaptive-hash-index.

Based on the observed pattern of searches, a hash index is built using a prefix of the index key. The
prefix can be any length, and it may be that only some values in the B-tree appear in the hash index.
Hash indexes are built on demand for the pages of the index that are accessed often.

If a table fits almost entirely in main memory, a hash index speeds up queries by enabling direct lookup
of any element, turning the index value into a sort of pointer. InnoDB has a mechanism that monitors

3201

Log Buffer

index searches. If InnoDB notices that queries could benefit from building a hash index, it does so
automatically.

With some workloads, the speedup from hash index lookups greatly outweighs the extra work to
monitor index lookups and maintain the hash index structure. Access to the adaptive hash index can
sometimes become a source of contention under heavy workloads, such as multiple concurrent joins.
Queries with LIKE operators and % wildcards also tend not to benefit. For workloads that do not benefit
from the adaptive hash index, turning it off reduces unnecessary performance overhead. Because it is
difficult to predict in advance whether the adaptive hash index is appropriate for a particular system and
workload, consider running benchmarks with it enabled and disabled.

The adaptive hash index feature is partitioned. Each index is bound to a specific partition,
and each partition is protected by a separate latch. Partitioning is controlled by the
innodb_adaptive_hash_index_parts variable. The innodb_adaptive_hash_index_parts
variable is set to 8 by default. The maximum setting is 512.

You can monitor adaptive hash index use and contention in the SEMAPHORES section of SHOW ENGINE
INNODB STATUS output. If there are numerous threads waiting on rw-latches created in btr0sea.c,
consider increasing the number of adaptive hash index partitions or disabling the adaptive hash index.

For information about the performance characteristics of hash indexes, see Section 10.3.9,
“Comparison of B-Tree and Hash Indexes”.

17.5.4 Log Buffer

The log buffer is the memory area that holds data to be written to the log files on disk. Log buffer size
is defined by the innodb_log_buffer_size variable. The default size is 16MB. The contents of the
log buffer are periodically flushed to disk. A large log buffer enables large transactions to run without
the need to write redo log data to disk before the transactions commit. Thus, if you have transactions
that update, insert, or delete many rows, increasing the size of the log buffer saves disk I/O.

The innodb_flush_log_at_trx_commit variable controls how the contents of the log buffer are
written and flushed to disk. The innodb_flush_log_at_timeout variable controls log flushing
frequency.

For related information, see Memory Configuration, and Section 10.5.4, “Optimizing InnoDB Redo
Logging”.

17.6 InnoDB On-Disk Structures
This section describes InnoDB on-disk structures and related topics.

17.6.1 Tables

This section covers topics related to InnoDB tables.

17.6.1.1 Creating InnoDB Tables

InnoDB tables are created using the CREATE TABLE statement; for example:

CREATE TABLE t1 (a INT, b CHAR (20), PRIMARY KEY (a)) ENGINE=InnoDB;

The ENGINE=InnoDB clause is not required when InnoDB is defined as the default storage engine,
which it is by default. However, the ENGINE clause is useful if the CREATE TABLE statement is to be
replayed on a different MySQL Server instance where the default storage engine is not InnoDB or is
unknown. You can determine the default storage engine on a MySQL Server instance by issuing the
following statement:

mysql> SELECT @@default_storage_engine;
+--------------------------+
| @@default_storage_engine |
+--------------------------+
| InnoDB |

3202

Tables

+--------------------------+

InnoDB tables are created in file-per-table tablespaces by default. To create an InnoDB table in the
InnoDB system tablespace, disable the innodb_file_per_table variable before creating the table.
To create an InnoDB table in a general tablespace, use CREATE TABLE ... TABLESPACE syntax.
For more information, see Section 17.6.3, “Tablespaces”.

Row Formats

The row format of an InnoDB table determines how its rows are physically stored on disk. InnoDB
supports four row formats, each with different storage characteristics. Supported row formats include
REDUNDANT, COMPACT, DYNAMIC, and COMPRESSED. The DYNAMIC row format is the default. For
information about row format characteristics, see Section 17.10, “InnoDB Row Formats”.

The innodb_default_row_format variable defines the default row format. The row format of a
table can also be defined explicitly using the ROW_FORMAT table option in a CREATE TABLE or ALTER
TABLE statement. See Defining the Row Format of a Table.

Primary Keys

It is recommended that you define a primary key for each table that you create. When selecting primary
key columns, choose columns with the following characteristics:

• Columns that are referenced by the most important queries.

• Columns that are never left blank.

• Columns that never have duplicate values.

• Columns that rarely if ever change value once inserted.

For example, in a table containing information about people, you would not create a primary key on
(firstname, lastname) because more than one person can have the same name, a name column
may be left blank, and sometimes people change their names. With so many constraints, often there is
not an obvious set of columns to use as a primary key, so you create a new column with a numeric ID
to serve as all or part of the primary key. You can declare an auto-increment column so that ascending
values are filled in automatically as rows are inserted:

The value of ID can act like a pointer between related items in different tables.
CREATE TABLE t5 (id INT AUTO_INCREMENT, b CHAR (20), PRIMARY KEY (id));

The primary key can consist of more than one column. Any autoinc column must come first.
CREATE TABLE t6 (id INT AUTO_INCREMENT, a INT, b CHAR (20), PRIMARY KEY (id,a));

For more information about auto-increment columns, see Section 17.6.1.6, “AUTO_INCREMENT
Handling in InnoDB”.

Although a table works correctly without defining a primary key, the primary key is involved with many
aspects of performance and is a crucial design aspect for any large or frequently used table. It is
recommended that you always specify a primary key in the CREATE TABLE statement. If you create
the table, load data, and then run ALTER TABLE to add a primary key later, that operation is much
slower than defining the primary key when creating the table. For more information about primary keys,
see Section 17.6.2.1, “Clustered and Secondary Indexes”.

Viewing InnoDB Table Properties

To view the properties of an InnoDB table, issue a SHOW TABLE STATUS statement:

mysql> SHOW TABLE STATUS FROM test LIKE 't%' \G;
*************************** 1. row ***************************
 Name: t1
 Engine: InnoDB
 Version: 10
 Row_format: Dynamic
 Rows: 0
 Avg_row_length: 0

3203

Tables

 Data_length: 16384
Max_data_length: 0
 Index_length: 0
 Data_free: 0
 Auto_increment: NULL
 Create_time: 2021-02-18 12:18:28
 Update_time: NULL
 Check_time: NULL
 Collation: utf8mb4_0900_ai_ci
 Checksum: NULL
 Create_options:
 Comment:

For information about SHOW TABLE STATUS output, see Section 15.7.7.38, “SHOW TABLE STATUS
Statement”.

You can also access InnoDB table properties by querying the InnoDB Information Schema system
tables:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLES WHERE NAME='test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 1144
 NAME: test/t1
 FLAG: 33
 N_COLS: 5
 SPACE: 30
 ROW_FORMAT: Dynamic
ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single
 INSTANT_COLS: 0

For more information, see Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object
Tables”.

17.6.1.2 Creating Tables Externally

There are different reasons for creating InnoDB tables externally; that is, creating tables outside of the
data directory. Those reasons might include space management, I/O optimization, or placing tables on
a storage device with particular performance or capacity characteristics, for example.

InnoDB supports the following methods for creating tables externally:

• Using the DATA DIRECTORY Clause

• Using CREATE TABLE ... TABLESPACE Syntax

• Creating a Table in an External General Tablespace

Using the DATA DIRECTORY Clause

You can create an InnoDB table in an external directory by specifying a DATA DIRECTORY clause in
the CREATE TABLE statement.

CREATE TABLE t1 (c1 INT PRIMARY KEY) DATA DIRECTORY = '/external/directory';

The DATA DIRECTORY clause is supported for tables created in file-per-table tablespaces. Tables
are implicitly created in file-per-table tablespaces when the innodb_file_per_table variable is
enabled, which it is by default.

mysql> SELECT @@innodb_file_per_table;
+-------------------------+
| @@innodb_file_per_table |
+-------------------------+
| 1 |
+-------------------------+

For more information about file-per-table tablespaces, see Section 17.6.3.2, “File-Per-Table
Tablespaces”.

3204

Tables

When you specify a DATA DIRECTORY clause in a CREATE TABLE statement, the table's data file
(table_name.ibd) is created in a schema directory under the specified directory.

As of MySQL 8.0.21, tables and table partitions created outside of the data directory using the DATA
DIRECTORY clause are restricted to directories known to InnoDB. This requirement permits database
administrators to control where tablespace data files are created and ensures that data files can be
found during recovery (see Tablespace Discovery During Crash Recovery). Known directories are
those defined by the datadir, innodb_data_home_dir, and innodb_directories variables.
You can use the following statement to check those settings:

mysql> SELECT @@datadir,@@innodb_data_home_dir,@@innodb_directories;

If the directory you want to use is unknown, add it to the innodb_directories setting before you
create the table. The innodb_directories variable is read-only. Configuring it requires restarting
the server. For general information about setting system variables, see Section 7.1.9, “Using System
Variables”.

The following example demonstrates creating a table in an external directory using the DATA
DIRECTORY clause. It is assumed that the innodb_file_per_table variable is enabled and that the
directory is known to InnoDB.

mysql> USE test;
Database changed

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) DATA DIRECTORY = '/external/directory';

MySQL creates the table's data file in a schema directory
under the external directory

$> cd /external/directory/test
$> ls
t1.ibd

Usage Notes:

• MySQL initially holds the tablespace data file open, preventing you from dismounting the device,
but might eventually close the file if the server is busy. Be careful not to accidentally dismount an
external device while MySQL is running, or start MySQL while the device is disconnected. Attempting
to access a table when the associated data file is missing causes a serious error that requires a
server restart.

A server restart might fail if the data file is not found at the expected path. In this case, you can
restore the tablespace data file from a backup or drop the table to remove the information about it
from the data dictionary.

• Before placing a table on an NFS-mounted volume, review potential issues outlined in Using NFS
with MySQL.

• If using an LVM snapshot, file copy, or other file-based mechanism to back up the table's data
file, always use the FLUSH TABLES ... FOR EXPORT statement first to ensure that all changes
buffered in memory are flushed to disk before the backup occurs.

• Using the DATA DIRECTORY clause to create a table in an external directory is an alternative to
using symbolic links, which InnoDB does not support.

• The DATA DIRECTORY clause is not supported in a replication environment where the source
and replica reside on the same host. The DATA DIRECTORY clause requires a full directory path.
Replicating the path in this case would cause the source and replica to create the table in same
location.

• As of MySQL 8.0.21, tables created in file-per-table tablespaces can no longer be created in
the undo tablespace directory (innodb_undo_directory) unless that directly is known to
InnoDB. Known directories are those defined by the datadir, innodb_data_home_dir, and
innodb_directories variables.

3205

Tables

Using CREATE TABLE ... TABLESPACE Syntax

CREATE TABLE ... TABLESPACE syntax can be used in combination with the DATA DIRECTORY
clause to create a table in an external directory. To do so, specify innodb_file_per_table as the
tablespace name.

mysql> CREATE TABLE t2 (c1 INT PRIMARY KEY) TABLESPACE = innodb_file_per_table
 DATA DIRECTORY = '/external/directory';

This method is supported only for tables created in file-per-table tablespaces, but does not require the
innodb_file_per_table variable to be enabled. In all other respects, this method is equivalent to
the CREATE TABLE ... DATA DIRECTORY method described above. The same usage notes apply.

Creating a Table in an External General Tablespace

You can create a table in a general tablespace that resides in an external directory.

• For information about creating a general tablespace in an external directory, see Creating a General
Tablespace.

• For information about creating a table in a general tablespace, see Adding Tables to a General
Tablespace.

17.6.1.3 Importing InnoDB Tables

This section describes how to import tables using the Transportable Tablespaces feature, which
permits importing tables, partitioned tables, or individual table partitions that reside in file-per-table
tablespaces. There are many reasons why you might want to import tables:

• To run reports on a non-production MySQL server instance to avoid placing extra load on a
production server.

• To copy data to a new replica server.

• To restore a table from a backed-up tablespace file.

• As a faster way of moving data than importing a dump file, which requires reinserting data and
rebuilding indexes.

• To move a data to a server with storage media that is better suited to your storage requirements.
For example, you might move busy tables to an SSD device, or move large tables to a high-capacity
HDD device.

The Transportable Tablespaces feature is described under the following topics in this section:

• Prerequisites

• Importing Tables

• Importing Partitioned Tables

• Importing Table Partitions

• Limitations

• Usage Notes

• Internals

Prerequisites

• The innodb_file_per_table variable must be enabled, which it is by default.

3206

Tables

• The page size of the tablespace must match the page size of the destination MySQL server instance.
InnoDB page size is defined by the innodb_page_size variable, which is configured when
initializing a MySQL server instance.

• If the table has a foreign key relationship, foreign_key_checks must be disabled before
executing DISCARD TABLESPACE. Also, you should export all foreign key related tables at the same
logical point in time, as ALTER TABLE ... IMPORT TABLESPACE does not enforce foreign key
constraints on imported data. To do so, stop updating the related tables, commit all transactions,
acquire shared locks on the tables, and perform the export operations.

• When importing a table from another MySQL server instance, both MySQL server instances must
have General Availability (GA) status and must be the same version. Otherwise, the table must be
created on the same MySQL server instance into which it is being imported.

• If the table was created in an external directory by specifying the DATA DIRECTORY clause in the
CREATE TABLE statement, the table that you replace on the destination instance must be defined
with the same DATA DIRECTORY clause. A schema mismatch error is reported if the clauses do not
match. To determine if the source table was defined with a DATA DIRECTORY clause, use SHOW
CREATE TABLE to view the table definition. For information about using the DATA DIRECTORY
clause, see Section 17.6.1.2, “Creating Tables Externally”.

• If a ROW_FORMAT option is not defined explicitly in the table definition or ROW_FORMAT=DEFAULT is
used, the innodb_default_row_format setting must be the same on the source and destination
instances. Otherwise, a schema mismatch error is reported when you attempt the import operation.
Use SHOW CREATE TABLE to check the table definition. Use SHOW VARIABLES to check the
innodb_default_row_format setting. For related information, see Defining the Row Format of a
Table.

Importing Tables

This example demonstrates how to import a regular non-partitioned table that resides in a file-per-table
tablespace.

1. On the destination instance, create a table with the same definition as the table you intend to
import. (You can obtain the table definition using SHOW CREATE TABLE syntax.) If the table
definition does not match, a schema mismatch error is reported when you attempt the import
operation.

mysql> USE test;
mysql> CREATE TABLE t1 (c1 INT) ENGINE=INNODB;

2. On the destination instance, discard the tablespace of the table that you just created. (Before
importing, you must discard the tablespace of the receiving table.)

mysql> ALTER TABLE t1 DISCARD TABLESPACE;

3. On the source instance, run FLUSH TABLES ... FOR EXPORT to quiesce the table you intend to
import. When a table is quiesced, only read-only transactions are permitted on the table.

mysql> USE test;
mysql> FLUSH TABLES t1 FOR EXPORT;

FLUSH TABLES ... FOR EXPORT ensures that changes to the named table are flushed to disk
so that a binary table copy can be made while the server is running. When FLUSH TABLES ...
FOR EXPORT is run, InnoDB generates a .cfg metadata file in the schema directory of the table.
The .cfg file contains metadata that is used for schema verification during the import operation.

Note

The connection executing FLUSH TABLES ... FOR EXPORT must remain
open while the operation is running; otherwise, the .cfg file is removed as
locks are released upon connection closure.

3207

Tables

4. Copy the .ibd file and .cfg metadata file from the source instance to the destination instance. For
example:

$> scp /path/to/datadir/test/t1.{ibd,cfg} destination-server:/path/to/datadir/test

The .ibd file and .cfg file must be copied before releasing the shared locks, as described in the
next step.

Note

If you are importing a table from an encrypted tablespace, InnoDB
generates a .cfp file in addition to a .cfg metadata file. The .cfp file
must be copied to the destination instance together with the .cfg file. The
.cfp file contains a transfer key and an encrypted tablespace key. On
import, InnoDB uses the transfer key to decrypt the tablespace key. For
related information, see Section 17.13, “InnoDB Data-at-Rest Encryption”.

5. On the source instance, use UNLOCK TABLES to release the locks acquired by the FLUSH
TABLES ... FOR EXPORT statement:

mysql> USE test;
mysql> UNLOCK TABLES;

The UNLOCK TABLES operation also removes the .cfg file.

6. On the destination instance, import the tablespace:

mysql> USE test;
mysql> ALTER TABLE t1 IMPORT TABLESPACE;

Importing Partitioned Tables

This example demonstrates how to import a partitioned table, where each table partition resides in a
file-per-table tablespace.

1. On the destination instance, create a partitioned table with the same definition as the partitioned
table that you want to import. (You can obtain the table definition using SHOW CREATE TABLE
syntax.) If the table definition does not match, a schema mismatch error is reported when you
attempt the import operation.

mysql> USE test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 3;

In the /datadir/test directory, there is a tablespace .ibd file for each of the three partitions.

mysql> \! ls /path/to/datadir/test/
t1#p#p0.ibd t1#p#p1.ibd t1#p#p2.ibd

2. On the destination instance, discard the tablespace for the partitioned table. (Before the import
operation, you must discard the tablespace of the receiving table.)

mysql> ALTER TABLE t1 DISCARD TABLESPACE;

The three tablespace .ibd files of the partitioned table are discarded from the /datadir/test
directory.

3. On the source instance, run FLUSH TABLES ... FOR EXPORT to quiesce the partitioned table
that you intend to import. When a table is quiesced, only read-only transactions are permitted on
the table.

mysql> USE test;
mysql> FLUSH TABLES t1 FOR EXPORT;

FLUSH TABLES ... FOR EXPORT ensures that changes to the named table are flushed to disk
so that binary table copy can be made while the server is running. When FLUSH TABLES ...

3208

Tables

FOR EXPORT is run, InnoDB generates .cfg metadata files in the schema directory of the table for
each of the table's tablespace files.

mysql> \! ls /path/to/datadir/test/
t1#p#p0.ibd t1#p#p1.ibd t1#p#p2.ibd
t1#p#p0.cfg t1#p#p1.cfg t1#p#p2.cfg

The .cfg files contain metadata that is used for schema verification when importing the
tablespace. FLUSH TABLES ... FOR EXPORT can only be run on the table, not on individual
table partitions.

4. Copy the .ibd and .cfg files from the source instance schema directory to the destination
instance schema directory. For example:

$>scp /path/to/datadir/test/t1*.{ibd,cfg} destination-server:/path/to/datadir/test

The .ibd and .cfg files must be copied before releasing the shared locks, as described in the
next step.

Note

If you are importing a table from an encrypted tablespace, InnoDB
generates a .cfp files in addition to a .cfg metadata files. The .cfp files
must be copied to the destination instance together with the .cfg files.
The .cfp files contain a transfer key and an encrypted tablespace key. On
import, InnoDB uses the transfer key to decrypt the tablespace key. For
related information, see Section 17.13, “InnoDB Data-at-Rest Encryption”.

5. On the source instance, use UNLOCK TABLES to release the locks acquired by FLUSH
TABLES ... FOR EXPORT:

mysql> USE test;
mysql> UNLOCK TABLES;

6. On the destination instance, import the tablespace of the partitioned table:

mysql> USE test;
mysql> ALTER TABLE t1 IMPORT TABLESPACE;

Importing Table Partitions

This example demonstrates how to import individual table partitions, where each partition resides in a
file-per-table tablespace file.

In the following example, two partitions (p2 and p3) of a four-partition table are imported.

1. On the destination instance, create a partitioned table with the same definition as the partitioned
table that you want to import partitions from. (You can obtain the table definition using SHOW
CREATE TABLE syntax.) If the table definition does not match, a schema mismatch error is
reported when you attempt the import operation.

mysql> USE test;
mysql> CREATE TABLE t1 (i int) ENGINE = InnoDB PARTITION BY KEY (i) PARTITIONS 4;

In the /datadir/test directory, there is a tablespace .ibd file for each of the four partitions.

mysql> \! ls /path/to/datadir/test/
t1#p#p0.ibd t1#p#p1.ibd t1#p#p2.ibd t1#p#p3.ibd

2. On the destination instance, discard the partitions that you intend to import from the source
instance. (Before importing partitions, you must discard the corresponding partitions from the
receiving partitioned table.)

mysql> ALTER TABLE t1 DISCARD PARTITION p2, p3 TABLESPACE;

3209

Tables

The tablespace .ibd files for the two discarded partitions are removed from the /datadir/test
directory on the destination instance, leaving the following files:

mysql> \! ls /path/to/datadir/test/
t1#p#p0.ibd t1#p#p1.ibd

Note

When ALTER TABLE ... DISCARD PARTITION ... TABLESPACE is
run on subpartitioned tables, both partition and subpartition table names are
permitted. When a partition name is specified, subpartitions of that partition
are included in the operation.

3. On the source instance, run FLUSH TABLES ... FOR EXPORT to quiesce the partitioned table.
When a table is quiesced, only read-only transactions are permitted on the table.

mysql> USE test;
mysql> FLUSH TABLES t1 FOR EXPORT;

FLUSH TABLES ... FOR EXPORT ensures that changes to the named table are flushed to disk
so that binary table copy can be made while the instance is running. When FLUSH TABLES ...
FOR EXPORT is run, InnoDB generates a .cfg metadata file for each of the table's tablespace files
in the schema directory of the table.

mysql> \! ls /path/to/datadir/test/
t1#p#p0.ibd t1#p#p1.ibd t1#p#p2.ibd t1#p#p3.ibd
t1#p#p0.cfg t1#p#p1.cfg t1#p#p2.cfg t1#p#p3.cfg

The .cfg files contain metadata that used for schema verification during the import operation.
FLUSH TABLES ... FOR EXPORT can only be run on the table, not on individual table partitions.

4. Copy the .ibd and .cfg files for partition p2 and partition p3 from the source instance schema
directory to the destination instance schema directory.

$> scp t1#p#p2.ibd t1#p#p2.cfg t1#p#p3.ibd t1#p#p3.cfg destination-server:/path/to/datadir/test

The .ibd and .cfg files must be copied before releasing the shared locks, as described in the
next step.

Note

If you are importing partitions from an encrypted tablespace, InnoDB
generates a .cfp files in addition to a .cfg metadata files. The .cfp files
must be copied to the destination instance together with the .cfg files.
The .cfp files contain a transfer key and an encrypted tablespace key. On
import, InnoDB uses the transfer key to decrypt the tablespace key. For
related information, see Section 17.13, “InnoDB Data-at-Rest Encryption”.

5. On the source instance, use UNLOCK TABLES to release the locks acquired by FLUSH
TABLES ... FOR EXPORT:

mysql> USE test;
mysql> UNLOCK TABLES;

6. On the destination instance, import table partitions p2 and p3:

mysql> USE test;
mysql> ALTER TABLE t1 IMPORT PARTITION p2, p3 TABLESPACE;

Note

When ALTER TABLE ... IMPORT PARTITION ... TABLESPACE is
run on subpartitioned tables, both partition and subpartition table names are

3210

Tables

permitted. When a partition name is specified, subpartitions of that partition
are included in the operation.

Limitations

• The Transportable Tablespaces feature is only supported for tables that reside in file-per-table
tablespaces. It is not supported for the tables that reside in the system tablespace or general
tablespaces. Tables in shared tablespaces cannot be quiesced.

• FLUSH TABLES ... FOR EXPORT is not supported on tables with a FULLTEXT index, as full-
text search auxiliary tables cannot be flushed. After importing a table with a FULLTEXT index, run
OPTIMIZE TABLE to rebuild the FULLTEXT indexes. Alternatively, drop FULLTEXT indexes before
the export operation and recreate the indexes after importing the table on the destination instance.

• Due to a .cfg metadata file limitation, schema mismatches are not reported for partition type or
partition definition differences when importing a partitioned table. Column differences are reported.

• Prior to MySQL 8.0.19, index key part sort order information is not stored to the .cfg metadata file
used during a tablespace import operation. The index key part sort order is therefore assumed to be
ascending, which is the default. As a result, records could be sorted in an unintended order if one
table involved in the import operation is defined with a DESC index key part sort order and the other
table is not. The workaround is to drop and recreate affected indexes. For information about index
key part sort order, see Section 15.1.15, “CREATE INDEX Statement”.

The .cfg file format was updated in MySQL 8.0.19 to include index key part sort order information.
The issue described above does not affect import operations between MySQL 8.0.19 server
instances or higher.

Usage Notes

• With the exception of tables that contain instantly added or dropped columns, ALTER TABLE ...
IMPORT TABLESPACE does not require a .cfg metadata file to import a table. However, metadata
checks are not performed when importing without a .cfg file, and a warning similar to the following
is issued:

Message: InnoDB: IO Read error: (2, No such file or directory) Error opening '.\
test\t.cfg', will attempt to import without schema verification
1 row in set (0.00 sec)

Importing a table without a .cfg metadata file should only be considered if no schema mismatches
are expected and the table does not contain any instantly added or dropped columns. The ability
to import without a .cfg file could be useful in crash recovery scenarios where metadata is not
accessible.

Attempting to import a table with columns that were added or dropped using ALGORITHM=INSTANT
without using a .cfg file can result in undefined behavior.

• On Windows, InnoDB stores database, tablespace, and table names internally in lowercase. To
avoid import problems on case-sensitive operating systems such as Linux and Unix, create all
databases, tablespaces, and tables using lowercase names. A convenient way to ensure that names
are created in lowercase is to set lower_case_table_names to 1 before initializing the server. (It
is prohibited to start the server with a lower_case_table_names setting that is different from the
setting used when the server was initialized.)

[mysqld]
lower_case_table_names=1

• When running ALTER TABLE ... DISCARD PARTITION ... TABLESPACE and ALTER
TABLE ... IMPORT PARTITION ... TABLESPACE on subpartitioned tables, both partition and
subpartition table names are permitted. When a partition name is specified, subpartitions of that
partition are included in the operation.

3211

Tables

Internals

The following information describes internals and messages written to the error log during a table
import procedure.

When ALTER TABLE ... DISCARD TABLESPACE is run on the destination instance:

• The table is locked in X mode.

• The tablespace is detached from the table.

When FLUSH TABLES ... FOR EXPORT is run on the source instance:

• The table being flushed for export is locked in shared mode.

• The purge coordinator thread is stopped.

• Dirty pages are synchronized to disk.

• Table metadata is written to the binary .cfg file.

Expected error log messages for this operation:

[Note] InnoDB: Sync to disk of '"test"."t1"' started.
[Note] InnoDB: Stopping purge
[Note] InnoDB: Writing table metadata to './test/t1.cfg'
[Note] InnoDB: Table '"test"."t1"' flushed to disk

When UNLOCK TABLES is run on the source instance:

• The binary .cfg file is deleted.

• The shared lock on the table or tables being imported is released and the purge coordinator thread is
restarted.

Expected error log messages for this operation:

[Note] InnoDB: Deleting the meta-data file './test/t1.cfg'
[Note] InnoDB: Resuming purge

When ALTER TABLE ... IMPORT TABLESPACE is run on the destination instance, the import
algorithm performs the following operations for each tablespace being imported:

• Each tablespace page is checked for corruption.

• The space ID and log sequence numbers (LSNs) on each page are updated.

• Flags are validated and LSN updated for the header page.

• Btree pages are updated.

• The page state is set to dirty so that it is written to disk.

Expected error log messages for this operation:

[Note] InnoDB: Importing tablespace for table 'test/t1' that was exported
from host 'host_name'
[Note] InnoDB: Phase I - Update all pages
[Note] InnoDB: Sync to disk
[Note] InnoDB: Sync to disk - done!
[Note] InnoDB: Phase III - Flush changes to disk
[Note] InnoDB: Phase IV - Flush complete

Note

You may also receive a warning that a tablespace is discarded (if you discarded
the tablespace for the destination table) and a message stating that statistics
could not be calculated due to a missing .ibd file:

3212

Tables

[Warning] InnoDB: Table "test"."t1" tablespace is set as discarded.
7f34d9a37700 InnoDB: cannot calculate statistics for table
"test"."t1" because the .ibd file is missing. For help, please refer to
http://dev.mysql.com/doc/refman/8.0/en/innodb-troubleshooting.html

17.6.1.4 Moving or Copying InnoDB Tables

This section describes techniques for moving or copying some or all InnoDB tables to a different
server or instance. For example, you might move an entire MySQL instance to a larger, faster server;
you might clone an entire MySQL instance to a new replica server; you might copy individual tables to
another instance to develop and test an application, or to a data warehouse server to produce reports.

On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, create all databases and
tables using lowercase names. A convenient way to accomplish this is to add the following line to the
[mysqld] section of your my.cnf or my.ini file before creating any databases or tables:

[mysqld]
lower_case_table_names=1

Note

It is prohibited to start the server with a lower_case_table_names setting
that is different from the setting used when the server was initialized.

Techniques for moving or copying InnoDB tables include:

• Importing Tables

• MySQL Enterprise Backup

• Copying Data Files (Cold Backup Method)

• Restoring from a Logical Backup

Importing Tables

A table that resides in a file-per-table tablespace can be imported from another MySQL server instance
or from a backup using the Transportable Tablespace feature. See Section 17.6.1.3, “Importing InnoDB
Tables”.

MySQL Enterprise Backup

The MySQL Enterprise Backup product lets you back up a running MySQL database with minimal
disruption to operations while producing a consistent snapshot of the database. When MySQL
Enterprise Backup is copying tables, reads and writes can continue. In addition, MySQL Enterprise
Backup can create compressed backup files, and back up subsets of tables. In conjunction with the
MySQL binary log, you can perform point-in-time recovery. MySQL Enterprise Backup is included as
part of the MySQL Enterprise subscription.

For more details about MySQL Enterprise Backup, see Section 32.1, “MySQL Enterprise Backup
Overview”.

Copying Data Files (Cold Backup Method)

You can move an InnoDB database simply by copying all the relevant files listed under "Cold Backups"
in Section 17.18.1, “InnoDB Backup”.

InnoDB data and log files are binary-compatible on all platforms having the same floating-point number
format. If the floating-point formats differ but you have not used FLOAT or DOUBLE data types in your
tables, then the procedure is the same: simply copy the relevant files.

3213

Tables

When you move or copy file-per-table .ibd files, the database directory name must be the same
on the source and destination systems. The table definition stored in the InnoDB shared tablespace
includes the database name. The transaction IDs and log sequence numbers stored in the tablespace
files also differ between databases.

To move an .ibd file and the associated table from one database to another, use a RENAME TABLE
statement:

RENAME TABLE db1.tbl_name TO db2.tbl_name;

If you have a “clean” backup of an .ibd file, you can restore it to the MySQL installation from which it
originated as follows:

1. The table must not have been dropped or truncated since you copied the .ibd file, because doing
so changes the table ID stored inside the tablespace.

2. Issue this ALTER TABLE statement to delete the current .ibd file:

ALTER TABLE tbl_name DISCARD TABLESPACE;

3. Copy the backup .ibd file to the proper database directory.

4. Issue this ALTER TABLE statement to tell InnoDB to use the new .ibd file for the table:

ALTER TABLE tbl_name IMPORT TABLESPACE;

Note

The ALTER TABLE ... IMPORT TABLESPACE feature does not enforce
foreign key constraints on imported data.

In this context, a “clean” .ibd file backup is one for which the following requirements are satisfied:

• There are no uncommitted modifications by transactions in the .ibd file.

• There are no unmerged insert buffer entries in the .ibd file.

• Purge has removed all delete-marked index records from the .ibd file.

• mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.

You can make a clean backup .ibd file using the following method:

1. Stop all activity from the mysqld server and commit all transactions.

2. Wait until SHOW ENGINE INNODB STATUS shows that there are no active transactions in the
database, and the main thread status of InnoDB is Waiting for server activity. Then you
can make a copy of the .ibd file.

Another method for making a clean copy of an .ibd file is to use the MySQL Enterprise Backup
product:

1. Use MySQL Enterprise Backup to back up the InnoDB installation.

2. Start a second mysqld server on the backup and let it clean up the .ibd files in the backup.

Restoring from a Logical Backup

You can use a utility such as mysqldump to perform a logical backup, which produces a set of SQL
statements that can be executed to reproduce the original database object definitions and table data
for transfer to another SQL server. Using this method, it does not matter whether the formats differ or if
your tables contain floating-point data.

To improve the performance of this method, disable autocommit when importing data. Perform a
commit only after importing an entire table or segment of a table.

3214

Tables

17.6.1.5 Converting Tables from MyISAM to InnoDB

If you have MyISAM tables that you want to convert to InnoDB for better reliability and scalability,
review the following guidelines and tips before converting.

Note

Partitioned MyISAM tables created in previous versions of MySQL are not
compatible with MySQL 8.0. Such tables must be prepared prior to upgrade,
either by removing the partitioning, or by converting them to InnoDB. See
Section 26.6.2, “Partitioning Limitations Relating to Storage Engines”, for more
information.

• Adjusting Memory Usage for MyISAM and InnoDB

• Handling Too-Long Or Too-Short Transactions

• Handling Deadlocks

• Storage Layout

• Converting an Existing Table

• Cloning the Structure of a Table

• Transferring Data

• Storage Requirements

• Defining Primary Keys

• Application Performance Considerations

• Understanding Files Associated with InnoDB Tables

Adjusting Memory Usage for MyISAM and InnoDB

As you transition away from MyISAM tables, lower the value of the key_buffer_size
configuration option to free memory no longer needed for caching results. Increase the value of the
innodb_buffer_pool_size configuration option, which performs a similar role of allocating cache
memory for InnoDB tables. The InnoDB buffer pool caches both table data and index data, speeding
up lookups for queries and keeping query results in memory for reuse. For guidance regarding buffer
pool size configuration, see Section 10.12.3.1, “How MySQL Uses Memory”.

Handling Too-Long Or Too-Short Transactions

Because MyISAM tables do not support transactions, you might not have paid much attention to the
autocommit configuration option and the COMMIT and ROLLBACK statements. These keywords are
important to allow multiple sessions to read and write InnoDB tables concurrently, providing substantial
scalability benefits in write-heavy workloads.

While a transaction is open, the system keeps a snapshot of the data as seen at the beginning of the
transaction, which can cause substantial overhead if the system inserts, updates, and deletes millions
of rows while a stray transaction keeps running. Thus, take care to avoid transactions that run for too
long:

• If you are using a mysql session for interactive experiments, always COMMIT (to finalize the
changes) or ROLLBACK (to undo the changes) when finished. Close down interactive sessions
rather than leave them open for long periods, to avoid keeping transactions open for long periods by
accident.

• Make sure that any error handlers in your application also ROLLBACK incomplete changes or
COMMIT completed changes.

3215

Tables

• ROLLBACK is a relatively expensive operation, because INSERT, UPDATE, and DELETE operations
are written to InnoDB tables prior to the COMMIT, with the expectation that most changes are
committed successfully and rollbacks are rare. When experimenting with large volumes of data,
avoid making changes to large numbers of rows and then rolling back those changes.

• When loading large volumes of data with a sequence of INSERT statements, periodically COMMIT
the results to avoid having transactions that last for hours. In typical load operations for data
warehousing, if something goes wrong, you truncate the table (using TRUNCATE TABLE) and start
over from the beginning rather than doing a ROLLBACK.

The preceding tips save memory and disk space that can be wasted during too-long transactions.
When transactions are shorter than they should be, the problem is excessive I/O. With each COMMIT,
MySQL makes sure each change is safely recorded to disk, which involves some I/O.

• For most operations on InnoDB tables, you should use the setting autocommit=0. From an
efficiency perspective, this avoids unnecessary I/O when you issue large numbers of consecutive
INSERT, UPDATE, or DELETE statements. From a safety perspective, this allows you to issue a
ROLLBACK statement to recover lost or garbled data if you make a mistake on the mysql command
line, or in an exception handler in your application.

• autocommit=1 is suitable for InnoDB tables when running a sequence of queries for generating
reports or analyzing statistics. In this situation, there is no I/O penalty related to COMMIT or
ROLLBACK, and InnoDB can automatically optimize the read-only workload.

• If you make a series of related changes, finalize all the changes at once with a single COMMIT at
the end. For example, if you insert related pieces of information into several tables, do a single
COMMIT after making all the changes. Or if you run many consecutive INSERT statements, do a
single COMMIT after all the data is loaded; if you are doing millions of INSERT statements, perhaps
split up the huge transaction by issuing a COMMIT every ten thousand or hundred thousand records,
so the transaction does not grow too large.

• Remember that even a SELECT statement opens a transaction, so after running some report or
debugging queries in an interactive mysql session, either issue a COMMIT or close the mysql
session.

For related information, see Section 17.7.2.2, “autocommit, Commit, and Rollback”.

Handling Deadlocks

You might see warning messages referring to “deadlocks” in the MySQL error log, or the output of
SHOW ENGINE INNODB STATUS. A deadlock is not a serious issue for InnoDB tables, and often does
not require any corrective action. When two transactions start modifying multiple tables, accessing
the tables in a different order, they can reach a state where each transaction is waiting for the other
and neither can proceed. When deadlock detection is enabled (the default), MySQL immediately
detects this condition and cancels (rolls back) the “smaller” transaction, allowing the other to proceed.
If deadlock detection is disabled using the innodb_deadlock_detect configuration option, InnoDB
relies on the innodb_lock_wait_timeout setting to roll back transactions in case of a deadlock.

Either way, your applications need error-handling logic to restart a transaction that is forcibly cancelled
due to a deadlock. When you re-issue the same SQL statements as before, the original timing issue no
longer applies. Either the other transaction has already finished and yours can proceed, or the other
transaction is still in progress and your transaction waits until it finishes.

If deadlock warnings occur constantly, you might review the application code to reorder the
SQL operations in a consistent way, or to shorten the transactions. You can test with the
innodb_print_all_deadlocks option enabled to see all deadlock warnings in the MySQL error
log, rather than only the last warning in the SHOW ENGINE INNODB STATUS output.

For more information, see Section 17.7.5, “Deadlocks in InnoDB”.

Storage Layout

3216

Tables

To get the best performance from InnoDB tables, you can adjust a number of parameters related to
storage layout.

When you convert MyISAM tables that are large, frequently accessed, and hold vital data, investigate
and consider the innodb_file_per_table and innodb_page_size variables, and the
ROW_FORMAT and KEY_BLOCK_SIZE clauses of the CREATE TABLE statement.

During your initial experiments, the most important setting is innodb_file_per_table. When
this setting is enabled, which is the default, new InnoDB tables are implicitly created in file-per-table
tablespaces. In contrast with the InnoDB system tablespace, file-per-table tablespaces allow disk
space to be reclaimed by the operating system when a table is truncated or dropped. File-per-table
tablespaces also support DYNAMIC and COMPRESSED row formats and associated features such as
table compression, efficient off-page storage for long variable-length columns, and large index prefixes.
For more information, see Section 17.6.3.2, “File-Per-Table Tablespaces”.

You can also store InnoDB tables in a shared general tablespace, which support multiple tables and all
row formats. For more information, see Section 17.6.3.3, “General Tablespaces”.

Converting an Existing Table

To convert a non-InnoDB table to use InnoDB use ALTER TABLE:

ALTER TABLE table_name ENGINE=InnoDB;

Cloning the Structure of a Table

You might make an InnoDB table that is a clone of a MyISAM table, rather than using ALTER TABLE
to perform conversion, to test the old and new table side-by-side before switching.

Create an empty InnoDB table with identical column and index definitions. Use SHOW CREATE TABLE
table_name\G to see the full CREATE TABLE statement to use. Change the ENGINE clause to
ENGINE=INNODB.

Transferring Data

To transfer a large volume of data into an empty InnoDB table created as shown in the previous
section, insert the rows with INSERT INTO innodb_table SELECT * FROM myisam_table
ORDER BY primary_key_columns.

You can also create the indexes for the InnoDB table after inserting the data. Historically, creating new
secondary indexes was a slow operation for InnoDB, but now you can create the indexes after the
data is loaded with relatively little overhead from the index creation step.

If you have UNIQUE constraints on secondary keys, you can speed up a table import by turning off the
uniqueness checks temporarily during the import operation:

SET unique_checks=0;
... import operation ...
SET unique_checks=1;

For big tables, this saves disk I/O because InnoDB can use its change buffer to write secondary index
records as a batch. Be certain that the data contains no duplicate keys. unique_checks permits but
does not require storage engines to ignore duplicate keys.

For better control over the insertion process, you can insert big tables in pieces:

INSERT INTO newtable SELECT * FROM oldtable
 WHERE yourkey > something AND yourkey <= somethingelse;

After all records are inserted, you can rename the tables.

During the conversion of big tables, increase the size of the InnoDB buffer pool to reduce disk I/O.
Typically, the recommended buffer pool size is 50 to 75 percent of system memory. You can also
increase the size of InnoDB log files.

3217

Tables

Storage Requirements

If you intend to make several temporary copies of your data in InnoDB tables during the conversion
process, it is recommended that you create the tables in file-per-table tablespaces so that you can
reclaim the disk space when you drop the tables. When the innodb_file_per_table configuration
option is enabled (the default), newly created InnoDB tables are implicitly created in file-per-table
tablespaces.

Whether you convert the MyISAM table directly or create a cloned InnoDB table, make sure that you
have sufficient disk space to hold both the old and new tables during the process. InnoDB tables
require more disk space than MyISAM tables. If an ALTER TABLE operation runs out of space, it
starts a rollback, and that can take hours if it is disk-bound. For inserts, InnoDB uses the insert buffer
to merge secondary index records to indexes in batches. That saves a lot of disk I/O. For rollback, no
such mechanism is used, and the rollback can take 30 times longer than the insertion.

In the case of a runaway rollback, if you do not have valuable data in your database, it may be
advisable to kill the database process rather than wait for millions of disk I/O operations to complete.
For the complete procedure, see Section 17.21.3, “Forcing InnoDB Recovery”.

Defining Primary Keys

The PRIMARY KEY clause is a critical factor affecting the performance of MySQL queries and the
space usage for tables and indexes. The primary key uniquely identifies a row in a table. Every row in
the table should have a primary key value, and no two rows can have the same primary key value.

These are guidelines for the primary key, followed by more detailed explanations.

• Declare a PRIMARY KEY for each table. Typically, it is the most important column that you refer to in
WHERE clauses when looking up a single row.

• Declare the PRIMARY KEY clause in the original CREATE TABLE statement, rather than adding it
later through an ALTER TABLE statement.

• Choose the column and its data type carefully. Prefer numeric columns over character or string ones.

• Consider using an auto-increment column if there is not another stable, unique, non-null, numeric
column to use.

• An auto-increment column is also a good choice if there is any doubt whether the value of the
primary key column could ever change. Changing the value of a primary key column is an expensive
operation, possibly involving rearranging data within the table and within each secondary index.

Consider adding a primary key to any table that does not already have one. Use the smallest practical
numeric type based on the maximum projected size of the table. This can make each row slightly more
compact, which can yield substantial space savings for large tables. The space savings are multiplied
if the table has any secondary indexes, because the primary key value is repeated in each secondary
index entry. In addition to reducing data size on disk, a small primary key also lets more data fit into the
buffer pool, speeding up all kinds of operations and improving concurrency.

If the table already has a primary key on some longer column, such as a VARCHAR, consider adding a
new unsigned AUTO_INCREMENT column and switching the primary key to that, even if that column is
not referenced in queries. This design change can produce substantial space savings in the secondary
indexes. You can designate the former primary key columns as UNIQUE NOT NULL to enforce the
same constraints as the PRIMARY KEY clause, that is, to prevent duplicate or null values across all
those columns.

If you spread related information across multiple tables, typically each table uses the same column for
its primary key. For example, a personnel database might have several tables, each with a primary
key of employee number. A sales database might have some tables with a primary key of customer
number, and other tables with a primary key of order number. Because lookups using the primary key
are very fast, you can construct efficient join queries for such tables.

3218

Tables

If you leave the PRIMARY KEY clause out entirely, MySQL creates an invisible one for you. It is a 6-
byte value that might be longer than you need, thus wasting space. Because it is hidden, you cannot
refer to it in queries.

Application Performance Considerations

The reliability and scalability features of InnoDB require more disk storage than equivalent MyISAM
tables. You might change the column and index definitions slightly, for better space utilization, reduced
I/O and memory consumption when processing result sets, and better query optimization plans making
efficient use of index lookups.

If you set up a numeric ID column for the primary key, use that value to cross-reference with related
values in any other tables, particularly for join queries. For example, rather than accepting a country
name as input and doing queries searching for the same name, do one lookup to determine the country
ID, then do other queries (or a single join query) to look up relevant information across several tables.
Rather than storing a customer or catalog item number as a string of digits, potentially using up several
bytes, convert it to a numeric ID for storing and querying. A 4-byte unsigned INT column can index
over 4 billion items (with the US meaning of billion: 1000 million). For the ranges of the different integer
types, see Section 13.1.2, “Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT”.

Understanding Files Associated with InnoDB Tables

InnoDB files require more care and planning than MyISAM files do.

• You must not delete the ibdata files that represent the InnoDB system tablespace.

• Methods of moving or copying InnoDB tables to a different server are described in Section 17.6.1.4,
“Moving or Copying InnoDB Tables”.

17.6.1.6 AUTO_INCREMENT Handling in InnoDB

InnoDB provides a configurable locking mechanism that can significantly improve scalability and
performance of SQL statements that add rows to tables with AUTO_INCREMENT columns. To use the
AUTO_INCREMENT mechanism with an InnoDB table, an AUTO_INCREMENT column must be defined
as the first or only column of some index such that it is possible to perform the equivalent of an indexed
SELECT MAX(ai_col) lookup on the table to obtain the maximum column value. The index is not
required to be a PRIMARY KEY or UNIQUE, but to avoid duplicate values in the AUTO_INCREMENT
column, those index types are recommended.

This section describes the AUTO_INCREMENT lock modes, usage implications of different
AUTO_INCREMENT lock mode settings, and how InnoDB initializes the AUTO_INCREMENT counter.

• InnoDB AUTO_INCREMENT Lock Modes

• InnoDB AUTO_INCREMENT Lock Mode Usage Implications

• InnoDB AUTO_INCREMENT Counter Initialization

• Notes

InnoDB AUTO_INCREMENT Lock Modes

This section describes the AUTO_INCREMENT lock modes used to generate auto-increment values, and
how each lock mode affects replication. The auto-increment lock mode is configured at startup using
the innodb_autoinc_lock_mode variable.

The following terms are used in describing innodb_autoinc_lock_mode settings:

• “INSERT-like” statements

3219

Tables

All statements that generate new rows in a table, including INSERT, INSERT ... SELECT,
REPLACE, REPLACE ... SELECT, and LOAD DATA. Includes “simple-inserts”, “bulk-inserts”, and
“mixed-mode” inserts.

• “Simple inserts”

Statements for which the number of rows to be inserted can be determined in advance (when the
statement is initially processed). This includes single-row and multiple-row INSERT and REPLACE
statements that do not have a nested subquery, but not INSERT ... ON DUPLICATE KEY
UPDATE.

• “Bulk inserts”

Statements for which the number of rows to be inserted (and the number of required auto-
increment values) is not known in advance. This includes INSERT ... SELECT, REPLACE ...
SELECT, and LOAD DATA statements, but not plain INSERT. InnoDB assigns new values for the
AUTO_INCREMENT column one at a time as each row is processed.

• “Mixed-mode inserts”

These are “simple insert” statements that specify the auto-increment value for some (but not all) of
the new rows. An example follows, where c1 is an AUTO_INCREMENT column of table t1:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

Another type of “mixed-mode insert” is INSERT ... ON DUPLICATE KEY UPDATE, which in
the worst case is in effect an INSERT followed by a UPDATE, where the allocated value for the
AUTO_INCREMENT column may or may not be used during the update phase.

There are three possible settings for the innodb_autoinc_lock_mode variable. The settings are
0, 1, or 2, for “traditional”, “consecutive”, or “interleaved” lock mode, respectively. As of MySQL 8.0,
interleaved lock mode (innodb_autoinc_lock_mode=2) is the default setting. Prior to MySQL 8.0,
consecutive lock mode is the default (innodb_autoinc_lock_mode=1).

The default setting of interleaved lock mode in MySQL 8.0 reflects the change from statement-based
replication to row based replication as the default replication type. Statement-based replication requires
the consecutive auto-increment lock mode to ensure that auto-increment values are assigned in
a predictable and repeatable order for a given sequence of SQL statements, whereas row-based
replication is not sensitive to the execution order of SQL statements.

• innodb_autoinc_lock_mode = 0 (“traditional” lock mode)

The traditional lock mode provides the same behavior that existed before the
innodb_autoinc_lock_mode variable was introduced. The traditional lock mode option is
provided for backward compatibility, performance testing, and working around issues with “mixed-
mode inserts”, due to possible differences in semantics.

In this lock mode, all “INSERT-like” statements obtain a special table-level AUTO-INC lock for inserts
into tables with AUTO_INCREMENT columns. This lock is normally held to the end of the statement
(not to the end of the transaction) to ensure that auto-increment values are assigned in a predictable
and repeatable order for a given sequence of INSERT statements, and to ensure that auto-increment
values assigned by any given statement are consecutive.

In the case of statement-based replication, this means that when an SQL statement is replicated on
a replica server, the same values are used for the auto-increment column as on the source server.
The result of execution of multiple INSERT statements is deterministic, and the replica reproduces
the same data as on the source. If auto-increment values generated by multiple INSERT statements
were interleaved, the result of two concurrent INSERT statements would be nondeterministic, and
could not reliably be propagated to a replica server using statement-based replication.

To make this clear, consider an example that uses this table:

3220

Tables

CREATE TABLE t1 (
 c1 INT(11) NOT NULL AUTO_INCREMENT,
 c2 VARCHAR(10) DEFAULT NULL,
 PRIMARY KEY (c1)
) ENGINE=InnoDB;

Suppose that there are two transactions running, each inserting rows into a table with an
AUTO_INCREMENT column. One transaction is using an INSERT ... SELECT statement that
inserts 1000 rows, and another is using a simple INSERT statement that inserts one row:

Tx1: INSERT INTO t1 (c2) SELECT 1000 rows from another table ...
Tx2: INSERT INTO t1 (c2) VALUES ('xxx');

InnoDB cannot tell in advance how many rows are retrieved from the SELECT in the INSERT
statement in Tx1, and it assigns the auto-increment values one at a time as the statement proceeds.
With a table-level lock, held to the end of the statement, only one INSERT statement referring
to table t1 can execute at a time, and the generation of auto-increment numbers by different
statements is not interleaved. The auto-increment values generated by the Tx1 INSERT ...
SELECT statement are consecutive, and the (single) auto-increment value used by the INSERT
statement in Tx2 is either smaller or larger than all those used for Tx1, depending on which
statement executes first.

As long as the SQL statements execute in the same order when replayed from the binary log (when
using statement-based replication, or in recovery scenarios), the results are the same as they were
when Tx1 and Tx2 first ran. Thus, table-level locks held until the end of a statement make INSERT
statements using auto-increment safe for use with statement-based replication. However, those
table-level locks limit concurrency and scalability when multiple transactions are executing insert
statements at the same time.

In the preceding example, if there were no table-level lock, the value of the auto-increment column
used for the INSERT in Tx2 depends on precisely when the statement executes. If the INSERT of
Tx2 executes while the INSERT of Tx1 is running (rather than before it starts or after it completes),
the specific auto-increment values assigned by the two INSERT statements are nondeterministic,
and may vary from run to run.

Under the consecutive lock mode, InnoDB can avoid using table-level AUTO-INC locks for “simple
insert” statements where the number of rows is known in advance, and still preserve deterministic
execution and safety for statement-based replication.

If you are not using the binary log to replay SQL statements as part of recovery or replication, the
interleaved lock mode can be used to eliminate all use of table-level AUTO-INC locks for even
greater concurrency and performance, at the cost of permitting gaps in auto-increment numbers
assigned by a statement and potentially having the numbers assigned by concurrently executing
statements interleaved.

• innodb_autoinc_lock_mode = 1 (“consecutive” lock mode)

In this mode, “bulk inserts” use the special AUTO-INC table-level lock and hold it until the end of the
statement. This applies to all INSERT ... SELECT, REPLACE ... SELECT, and LOAD DATA
statements. Only one statement holding the AUTO-INC lock can execute at a time. If the source table
of the bulk insert operation is different from the target table, the AUTO-INC lock on the target table
is taken after a shared lock is taken on the first row selected from the source table. If the source and
target of the bulk insert operation are the same table, the AUTO-INC lock is taken after shared locks
are taken on all selected rows.

“Simple inserts” (for which the number of rows to be inserted is known in advance) avoid table-level
AUTO-INC locks by obtaining the required number of auto-increment values under the control of a
mutex (a light-weight lock) that is only held for the duration of the allocation process, not until the
statement completes. No table-level AUTO-INC lock is used unless an AUTO-INC lock is held by

3221

Tables

another transaction. If another transaction holds an AUTO-INC lock, a “simple insert” waits for the
AUTO-INC lock, as if it were a “bulk insert”.

This lock mode ensures that, in the presence of INSERT statements where the number of rows is not
known in advance (and where auto-increment numbers are assigned as the statement progresses),
all auto-increment values assigned by any “INSERT-like” statement are consecutive, and operations
are safe for statement-based replication.

Simply put, this lock mode significantly improves scalability while being safe for use with statement-
based replication. Further, as with “traditional” lock mode, auto-increment numbers assigned by any
given statement are consecutive. There is no change in semantics compared to “traditional” mode for
any statement that uses auto-increment, with one important exception.

The exception is for “mixed-mode inserts”, where the user provides explicit values for an
AUTO_INCREMENT column for some, but not all, rows in a multiple-row “simple insert”. For such
inserts, InnoDB allocates more auto-increment values than the number of rows to be inserted.
However, all values automatically assigned are consecutively generated (and thus higher than)
the auto-increment value generated by the most recently executed previous statement. “Excess”
numbers are lost.

• innodb_autoinc_lock_mode = 2 (“interleaved” lock mode)

In this lock mode, no “INSERT-like” statements use the table-level AUTO-INC lock, and multiple
statements can execute at the same time. This is the fastest and most scalable lock mode, but it is
not safe when using statement-based replication or recovery scenarios when SQL statements are
replayed from the binary log.

In this lock mode, auto-increment values are guaranteed to be unique and monotonically increasing
across all concurrently executing “INSERT-like” statements. However, because multiple statements
can be generating numbers at the same time (that is, allocation of numbers is interleaved across
statements), the values generated for the rows inserted by any given statement may not be
consecutive.

If the only statements executing are “simple inserts” where the number of rows to be inserted is
known ahead of time, there are no gaps in the numbers generated for a single statement, except for
“mixed-mode inserts”. However, when “bulk inserts” are executed, there may be gaps in the auto-
increment values assigned by any given statement.

InnoDB AUTO_INCREMENT Lock Mode Usage Implications

• Using auto-increment with replication

If you are using statement-based replication, set innodb_autoinc_lock_mode to 0 or 1 and use
the same value on the source and its replicas. Auto-increment values are not ensured to be the
same on the replicas as on the source if you use innodb_autoinc_lock_mode = 2 (“interleaved”)
or configurations where the source and replicas do not use the same lock mode.

If you are using row-based or mixed-format replication, all of the auto-increment lock modes are safe,
since row-based replication is not sensitive to the order of execution of the SQL statements (and the
mixed format uses row-based replication for any statements that are unsafe for statement-based
replication).

• “Lost” auto-increment values and sequence gaps

In all lock modes (0, 1, and 2), if a transaction that generated auto-increment values rolls back, those
auto-increment values are “lost”. Once a value is generated for an auto-increment column, it cannot
be rolled back, whether or not the “INSERT-like” statement is completed, and whether or not the
containing transaction is rolled back. Such lost values are not reused. Thus, there may be gaps in
the values stored in an AUTO_INCREMENT column of a table.

• Specifying NULL or 0 for the AUTO_INCREMENT column

3222

Tables

In all lock modes (0, 1, and 2), if a user specifies NULL or 0 for the AUTO_INCREMENT column in an
INSERT, InnoDB treats the row as if the value was not specified and generates a new value for it.

• Assigning a negative value to the AUTO_INCREMENT column

In all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is undefined if you
assign a negative value to the AUTO_INCREMENT column.

• If the AUTO_INCREMENT value becomes larger than the maximum integer for the specified integer
type

In all lock modes (0, 1, and 2), the behavior of the auto-increment mechanism is undefined if the
value becomes larger than the maximum integer that can be stored in the specified integer type.

• Gaps in auto-increment values for “bulk inserts”

With innodb_autoinc_lock_mode set to 0 (“traditional”) or 1 (“consecutive”), the auto-increment
values generated by any given statement are consecutive, without gaps, because the table-level
AUTO-INC lock is held until the end of the statement, and only one such statement can execute at a
time.

With innodb_autoinc_lock_mode set to 2 (“interleaved”), there may be gaps in the auto-
increment values generated by “bulk inserts,” but only if there are concurrently executing “INSERT-
like” statements.

For lock modes 1 or 2, gaps may occur between successive statements because for bulk inserts
the exact number of auto-increment values required by each statement may not be known and
overestimation is possible.

• Auto-increment values assigned by “mixed-mode inserts”

Consider a “mixed-mode insert,” where a “simple insert” specifies the auto-increment value for
some (but not all) resulting rows. Such a statement behaves differently in lock modes 0, 1, and 2.
For example, assume c1 is an AUTO_INCREMENT column of table t1, and that the most recent
automatically generated sequence number is 100.

mysql> CREATE TABLE t1 (
 -> c1 INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> c2 CHAR(1)
 ->) ENGINE = INNODB;

Now, consider the following “mixed-mode insert” statement:

mysql> INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

With innodb_autoinc_lock_mode set to 0 (“traditional”), the four new rows are:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;
+-----+------+
| c1 | c2 |
+-----+------+
1	a
101	b
5	c
102	d
+-----+------+

The next available auto-increment value is 103 because the auto-increment values are allocated one
at a time, not all at once at the beginning of statement execution. This result is true whether or not
there are concurrently executing “INSERT-like” statements (of any type).

With innodb_autoinc_lock_mode set to 1 (“consecutive”), the four new rows are also:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;

3223

Tables

+-----+------+
| c1 | c2 |
+-----+------+
1	a
101	b
5	c
102	d
+-----+------+

However, in this case, the next available auto-increment value is 105, not 103 because four auto-
increment values are allocated at the time the statement is processed, but only two are used. This
result is true whether or not there are concurrently executing “INSERT-like” statements (of any type).

With innodb_autoinc_lock_mode set to 2 (“interleaved”), the four new rows are:

mysql> SELECT c1, c2 FROM t1 ORDER BY c2;
+-----+------+
| c1 | c2 |
+-----+------+
1	a
x	b
5	c
y	d
+-----+------+

The values of x and y are unique and larger than any previously generated rows. However, the
specific values of x and y depend on the number of auto-increment values generated by concurrently
executing statements.

Finally, consider the following statement, issued when the most-recently generated sequence
number is 100:

mysql> INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (101,'c'), (NULL,'d');

With any innodb_autoinc_lock_mode setting, this statement generates a duplicate-key error
23000 (Can't write; duplicate key in table) because 101 is allocated for the row
(NULL, 'b') and insertion of the row (101, 'c') fails.

• Modifying AUTO_INCREMENT column values in the middle of a sequence of INSERT statements

In MySQL 5.7 and earlier, modifying an AUTO_INCREMENT column value in the middle of a sequence
of INSERT statements could lead to “Duplicate entry” errors. For example, if you performed an
UPDATE operation that changed an AUTO_INCREMENT column value to a value larger than the
current maximum auto-increment value, subsequent INSERT operations that did not specify an
unused auto-increment value could encounter “Duplicate entry” errors. In MySQL 8.0 and later, if
you modify an AUTO_INCREMENT column value to a value larger than the current maximum auto-
increment value, the new value is persisted, and subsequent INSERT operations allocate auto-
increment values starting from the new, larger value. This behavior is demonstrated in the following
example.

mysql> CREATE TABLE t1 (
 -> c1 INT NOT NULL AUTO_INCREMENT,
 -> PRIMARY KEY (c1)
 ->) ENGINE = InnoDB;

mysql> INSERT INTO t1 VALUES(0), (0), (3);

mysql> SELECT c1 FROM t1;
+----+
| c1 |
+----+
| 1 |
| 2 |
| 3 |
+----+

3224

Tables

mysql> UPDATE t1 SET c1 = 4 WHERE c1 = 1;

mysql> SELECT c1 FROM t1;
+----+
| c1 |
+----+
| 2 |
| 3 |
| 4 |
+----+

mysql> INSERT INTO t1 VALUES(0);

mysql> SELECT c1 FROM t1;
+----+
| c1 |
+----+
| 2 |
| 3 |
| 4 |
| 5 |
+----+

InnoDB AUTO_INCREMENT Counter Initialization

This section describes how InnoDB initializes AUTO_INCREMENT counters.

If you specify an AUTO_INCREMENT column for an InnoDB table, the in-memory table object contains
a special counter called the auto-increment counter that is used when assigning new values for the
column.

In MySQL 5.7 and earlier, the auto-increment counter is stored in main memory, not on disk. To
initialize an auto-increment counter after a server restart, InnoDB would execute the equivalent of the
following statement on the first insert into a table containing an AUTO_INCREMENT column.

SELECT MAX(ai_col) FROM table_name FOR UPDATE;

In MySQL 8.0, this behavior is changed. The current maximum auto-increment counter value is written
to the redo log each time it changes and saved to the data dictionary on each checkpoint. These
changes make the current maximum auto-increment counter value persistent across server restarts.

On a server restart following a normal shutdown, InnoDB initializes the in-memory auto-increment
counter using the current maximum auto-increment value stored in the data dictionary.

On a server restart during crash recovery, InnoDB initializes the in-memory auto-increment counter
using the current maximum auto-increment value stored in the data dictionary and scans the redo
log for auto-increment counter values written since the last checkpoint. If a redo-logged value is
greater than the in-memory counter value, the redo-logged value is applied. However, in the case of
an unexpected server exit, reuse of a previously allocated auto-increment value cannot be guaranteed.
Each time the current maximum auto-increment value is changed due to an INSERT or UPDATE
operation, the new value is written to the redo log, but if the unexpected exit occurs before the redo log
is flushed to disk, the previously allocated value could be reused when the auto-increment counter is
initialized after the server is restarted.

The only circumstance in which InnoDB uses the equivalent of a SELECT MAX(ai_col) FROM
table_name FOR UPDATE statement to initialize an auto-increment counter is when importing a
table without a .cfg metadata file. Otherwise, the current maximum auto-increment counter value is
read from the .cfg metadata file if present. Aside from counter value initialization, the equivalent of a
SELECT MAX(ai_col) FROM table_name statement is used to determine the current maximum
auto-increment counter value of the table when attempting to set the counter value to one that is
smaller than or equal to the persisted counter value using an ALTER TABLE ... AUTO_INCREMENT
= N statement. For example, you might try to set the counter value to a lesser value after deleting
some records. In this case, the table must be searched to ensure that the new counter value is not less
than or equal to the actual current maximum counter value.

3225

Indexes

In MySQL 5.7 and earlier, a server restart cancels the effect of the AUTO_INCREMENT = N table
option, which may be used in a CREATE TABLE or ALTER TABLE statement to set an initial counter
value or alter the existing counter value, respectively. In MySQL 8.0, a server restart does not cancel
the effect of the AUTO_INCREMENT = N table option. If you initialize the auto-increment counter to
a specific value, or if you alter the auto-increment counter value to a larger value, the new value is
persisted across server restarts.

Note

ALTER TABLE ... AUTO_INCREMENT = N can only change the auto-
increment counter value to a value larger than the current maximum.

In MySQL 5.7 and earlier, a server restart immediately following a ROLLBACK operation could result
in the reuse of auto-increment values that were previously allocated to the rolled-back transaction,
effectively rolling back the current maximum auto-increment value. In MySQL 8.0, the current maximum
auto-increment value is persisted, preventing the reuse of previously allocated values.

If a SHOW TABLE STATUS statement examines a table before the auto-increment counter is initialized,
InnoDB opens the table and initializes the counter value using the current maximum auto-increment
value that is stored in the data dictionary. The value is then stored in memory for use by later inserts
or updates. Initialization of the counter value uses a normal exclusive-locking read on the table which
lasts to the end of the transaction. InnoDB follows the same procedure when initializing the auto-
increment counter for a newly created table that has a user-specified auto-increment value greater than
0.

After the auto-increment counter is initialized, if you do not explicitly specify an auto-increment value
when inserting a row, InnoDB implicitly increments the counter and assigns the new value to the
column. If you insert a row that explicitly specifies an auto-increment column value, and the value is
greater than the current maximum counter value, the counter is set to the specified value.

InnoDB uses the in-memory auto-increment counter as long as the server runs. When the server is
stopped and restarted, InnoDB reinitializes the auto-increment counter, as described earlier.

The auto_increment_offset variable determines the starting point for the AUTO_INCREMENT
column value. The default setting is 1.

The auto_increment_increment variable controls the interval between successive column values.
The default setting is 1.

Notes

When an AUTO_INCREMENT integer column runs out of values, a subsequent INSERT operation
returns a duplicate-key error. This is general MySQL behavior.

17.6.2 Indexes

This section covers topics related to InnoDB indexes.

17.6.2.1 Clustered and Secondary Indexes

Each InnoDB table has a special index called the clustered index that stores row data. Typically, the
clustered index is synonymous with the primary key. To get the best performance from queries, inserts,
and other database operations, it is important to understand how InnoDB uses the clustered index to
optimize the common lookup and DML operations.

• When you define a PRIMARY KEY on a table, InnoDB uses it as the clustered index. A primary key
should be defined for each table. If there is no logical unique and non-null column or set of columns
to use a the primary key, add an auto-increment column. Auto-increment column values are unique
and are added automatically as new rows are inserted.

3226

Indexes

• If you do not define a PRIMARY KEY for a table, InnoDB uses the first UNIQUE index with all key
columns defined as NOT NULL as the clustered index.

• If a table has no PRIMARY KEY or suitable UNIQUE index, InnoDB generates a hidden clustered
index named GEN_CLUST_INDEX on a synthetic column that contains row ID values. The rows are
ordered by the row ID that InnoDB assigns. The row ID is a 6-byte field that increases monotonically
as new rows are inserted. Thus, the rows ordered by the row ID are physically in order of insertion.

How the Clustered Index Speeds Up Queries

Accessing a row through the clustered index is fast because the index search leads directly to the page
that contains the row data. If a table is large, the clustered index architecture often saves a disk I/O
operation when compared to storage organizations that store row data using a different page from the
index record.

How Secondary Indexes Relate to the Clustered Index

Indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in a
secondary index contains the primary key columns for the row, as well as the columns specified for the
secondary index. InnoDB uses this primary key value to search for the row in the clustered index.

If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short
primary key.

For guidelines to take advantage of InnoDB clustered and secondary indexes, see Section 10.3,
“Optimization and Indexes”.

17.6.2.2 The Physical Structure of an InnoDB Index

With the exception of spatial indexes, InnoDB indexes are B-tree data structures. Spatial indexes use
R-trees, which are specialized data structures for indexing multi-dimensional data. Index records are
stored in the leaf pages of their B-tree or R-tree data structure. The default size of an index page is
16KB. The page size is determined by the innodb_page_size setting when the MySQL instance is
initialized. See Section 17.8.1, “InnoDB Startup Configuration”.

When new records are inserted into an InnoDB clustered index, InnoDB tries to leave 1/16 of the page
free for future insertions and updates of the index records. If index records are inserted in a sequential
order (ascending or descending), the resulting index pages are about 15/16 full. If records are inserted
in a random order, the pages are from 1/2 to 15/16 full.

InnoDB performs a bulk load when creating or rebuilding B-tree indexes. This method of index creation
is known as a sorted index build. The innodb_fill_factor variable defines the percentage of
space on each B-tree page that is filled during a sorted index build, with the remaining space reserved
for future index growth. Sorted index builds are not supported for spatial indexes. For more information,
see Section 17.6.2.3, “Sorted Index Builds”. An innodb_fill_factor setting of 100 leaves 1/16 of
the space in clustered index pages free for future index growth.

If the fill factor of an InnoDB index page drops below the MERGE_THRESHOLD, which is 50% by default
if not specified, InnoDB tries to contract the index tree to free the page. The MERGE_THRESHOLD
setting applies to both B-tree and R-tree indexes. For more information, see Section 17.8.11,
“Configuring the Merge Threshold for Index Pages”.

17.6.2.3 Sorted Index Builds

InnoDB performs a bulk load instead of inserting one index record at a time when creating or
rebuilding indexes. This method of index creation is also known as a sorted index build. Sorted index
builds are not supported for spatial indexes.

There are three phases to an index build. In the first phase, the clustered index is scanned, and
index entries are generated and added to the sort buffer. When the sort buffer becomes full, entries
are sorted and written out to a temporary intermediate file. This process is also known as a “run”. In

3227

Indexes

the second phase, with one or more runs written to the temporary intermediate file, a merge sort is
performed on all entries in the file. In the third and final phase, the sorted entries are inserted into the
B-tree.

Prior to the introduction of sorted index builds, index entries were inserted into the B-tree one record
at a time using insert APIs. This method involved opening a B-tree cursor to find the insert position
and then inserting entries into a B-tree page using an optimistic insert. If an insert failed due to a page
being full, a pessimistic insert would be performed, which involves opening a B-tree cursor and splitting
and merging B-tree nodes as necessary to find space for the entry. The drawbacks of this “top-down”
method of building an index are the cost of searching for an insert position and the constant splitting
and merging of B-tree nodes.

Sorted index builds use a “bottom-up” approach to building an index. With this approach, a reference to
the right-most leaf page is held at all levels of the B-tree. The right-most leaf page at the necessary B-
tree depth is allocated and entries are inserted according to their sorted order. Once a leaf page is full,
a node pointer is appended to the parent page and a sibling leaf page is allocated for the next insert.
This process continues until all entries are inserted, which may result in inserts up to the root level.
When a sibling page is allocated, the reference to the previously pinned leaf page is released, and the
newly allocated leaf page becomes the right-most leaf page and new default insert location.

Reserving B-tree Page Space for Future Index Growth

To set aside space for future index growth, you can use the innodb_fill_factor variable
to reserve a percentage of B-tree page space. For example, setting innodb_fill_factor
to 80 reserves 20 percent of the space in B-tree pages during a sorted index build. This setting
applies to both B-tree leaf and non-leaf pages. It does not apply to external pages used for TEXT
or BLOB entries. The amount of space that is reserved may not be exactly as configured, as the
innodb_fill_factor value is interpreted as a hint rather than a hard limit.

Sorted Index Builds and Full-Text Index Support

Sorted index builds are supported for fulltext indexes. Previously, SQL was used to insert entries into a
fulltext index.

Sorted Index Builds and Compressed Tables

For compressed tables, the previous index creation method appended entries to both compressed and
uncompressed pages. When the modification log (representing free space on the compressed page)
became full, the compressed page would be recompressed. If compression failed due to a lack of
space, the page would be split. With sorted index builds, entries are only appended to uncompressed
pages. When an uncompressed page becomes full, it is compressed. Adaptive padding is used
to ensure that compression succeeds in most cases, but if compression fails, the page is split and
compression is attempted again. This process continues until compression is successful. For more
information about compression of B-Tree pages, see Section 17.9.1.5, “How Compression Works for
InnoDB Tables”.

Sorted Index Builds and Redo Logging

Redo logging is disabled during a sorted index build. Instead, there is a checkpoint to ensure that the
index build can withstand an unexpected exit or failure. The checkpoint forces a write of all dirty pages
to disk. During a sorted index build, the page cleaner thread is signaled periodically to flush dirty pages
to ensure that the checkpoint operation can be processed quickly. Normally, the page cleaner thread
flushes dirty pages when the number of clean pages falls below a set threshold. For sorted index
builds, dirty pages are flushed promptly to reduce checkpoint overhead and to parallelize I/O and CPU
activity.

Sorted Index Builds and Optimizer Statistics

Sorted index builds may result in optimizer statistics that differ from those generated by the previous
method of index creation. The difference in statistics, which is not expected to affect workload
performance, is due to the different algorithm used to populate the index.

3228

Indexes

17.6.2.4 InnoDB Full-Text Indexes

Full-text indexes are created on text-based columns (CHAR, VARCHAR, or TEXT columns) to speed up
queries and DML operations on data contained within those columns.

A full-text index is defined as part of a CREATE TABLE statement or added to an existing table using
ALTER TABLE or CREATE INDEX.

Full-text search is performed using MATCH() ... AGAINST syntax. For usage information, see
Section 14.9, “Full-Text Search Functions”.

InnoDB full-text indexes are described under the following topics in this section:

• InnoDB Full-Text Index Design

• InnoDB Full-Text Index Tables

• InnoDB Full-Text Index Cache

• InnoDB Full-Text Index DOC_ID and FTS_DOC_ID Column

• InnoDB Full-Text Index Deletion Handling

• InnoDB Full-Text Index Transaction Handling

• Monitoring InnoDB Full-Text Indexes

InnoDB Full-Text Index Design

InnoDB full-text indexes have an inverted index design. Inverted indexes store a list of words, and
for each word, a list of documents that the word appears in. To support proximity search, position
information for each word is also stored, as a byte offset.

InnoDB Full-Text Index Tables

When an InnoDB full-text index is created, a set of index tables is created, as shown in the following
example:

mysql> CREATE TABLE opening_lines (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200),
 FULLTEXT idx (opening_line)
) ENGINE=InnoDB;

mysql> SELECT table_id, name, space from INFORMATION_SCHEMA.INNODB_TABLES
 WHERE name LIKE 'test/%';
+----------+--+-------+
| table_id | name | space |
+----------+--+-------+
333	test/fts_0000000000000147_00000000000001c9_index_1	289
334	test/fts_0000000000000147_00000000000001c9_index_2	290
335	test/fts_0000000000000147_00000000000001c9_index_3	291
336	test/fts_0000000000000147_00000000000001c9_index_4	292
337	test/fts_0000000000000147_00000000000001c9_index_5	293
338	test/fts_0000000000000147_00000000000001c9_index_6	294
330	test/fts_0000000000000147_being_deleted	286
331	test/fts_0000000000000147_being_deleted_cache	287
332	test/fts_0000000000000147_config	288
328	test/fts_0000000000000147_deleted	284
329	test/fts_0000000000000147_deleted_cache	285
327	test/opening_lines	283
+----------+--+-------+

The first six index tables comprise the inverted index and are referred to as auxiliary index tables.
When incoming documents are tokenized, the individual words (also referred to as “tokens”) are

3229

Indexes

inserted into the index tables along with position information and an associated DOC_ID. The words
are fully sorted and partitioned among the six index tables based on the character set sort weight of the
word's first character.

The inverted index is partitioned into six auxiliary index tables to support parallel index creation. By
default, two threads tokenize, sort, and insert words and associated data into the index tables. The
number of threads that perform this work is configurable using the innodb_ft_sort_pll_degree
variable. Consider increasing the number of threads when creating full-text indexes on large tables.

Auxiliary index table names are prefixed with fts_ and postfixed with index_#. Each auxiliary index
table is associated with the indexed table by a hex value in the auxiliary index table name that matches
the table_id of the indexed table. For example, the table_id of the test/opening_lines table
is 327, for which the hex value is 0x147. As shown in the preceding example, the “147” hex value
appears in the names of auxiliary index tables that are associated with the test/opening_lines
table.

A hex value representing the index_id of the full-text index also appears in
auxiliary index table names. For example, in the auxiliary table name test/
fts_0000000000000147_00000000000001c9_index_1, the hex value 1c9 has a decimal value
of 457. The index defined on the opening_lines table (idx) can be identified by querying the
Information Schema INNODB_INDEXES table for this value (457).

mysql> SELECT index_id, name, table_id, space from INFORMATION_SCHEMA.INNODB_INDEXES
 WHERE index_id=457;
+----------+------+----------+-------+
| index_id | name | table_id | space |
+----------+------+----------+-------+
| 457 | idx | 327 | 283 |
+----------+------+----------+-------+

Index tables are stored in their own tablespace if the primary table is created in a file-per-table
tablespace. Otherwise, index tables are stored in the tablespace where the indexed table resides.

The other index tables shown in the preceding example are referred to as common index tables and
are used for deletion handling and storing the internal state of full-text indexes. Unlike the inverted
index tables, which are created for each full-text index, this set of tables is common to all full-text
indexes created on a particular table.

Common index tables are retained even if full-text indexes are dropped. When a full-text index
is dropped, the FTS_DOC_ID column that was created for the index is retained, as removing the
FTS_DOC_ID column would require rebuilding the previously indexed table. Common index tables are
required to manage the FTS_DOC_ID column.

• fts_*_deleted and fts_*_deleted_cache

Contain the document IDs (DOC_ID) for documents that are deleted but whose data is not yet
removed from the full-text index. The fts_*_deleted_cache is the in-memory version of the
fts_*_deleted table.

• fts_*_being_deleted and fts_*_being_deleted_cache

Contain the document IDs (DOC_ID) for documents that are deleted and whose data is currently in
the process of being removed from the full-text index. The fts_*_being_deleted_cache table is
the in-memory version of the fts_*_being_deleted table.

• fts_*_config

Stores information about the internal state of the full-text index. Most importantly, it stores the
FTS_SYNCED_DOC_ID, which identifies documents that have been parsed and flushed to disk. In
case of crash recovery, FTS_SYNCED_DOC_ID values are used to identify documents that have not
been flushed to disk so that the documents can be re-parsed and added back to the full-text index
cache. To view the data in this table, query the Information Schema INNODB_FT_CONFIG table.

3230

Indexes

InnoDB Full-Text Index Cache

When a document is inserted, it is tokenized, and the individual words and associated data are inserted
into the full-text index. This process, even for small documents, can result in numerous small insertions
into the auxiliary index tables, making concurrent access to these tables a point of contention. To
avoid this problem, InnoDB uses a full-text index cache to temporarily cache index table insertions
for recently inserted rows. This in-memory cache structure holds insertions until the cache is full and
then batch flushes them to disk (to the auxiliary index tables). You can query the Information Schema
INNODB_FT_INDEX_CACHE table to view tokenized data for recently inserted rows.

The caching and batch flushing behavior avoids frequent updates to auxiliary index tables, which
could result in concurrent access issues during busy insert and update times. The batching technique
also avoids multiple insertions for the same word, and minimizes duplicate entries. Instead of flushing
each word individually, insertions for the same word are merged and flushed to disk as a single entry,
improving insertion efficiency while keeping auxiliary index tables as small as possible.

The innodb_ft_cache_size variable is used to configure the full-text index cache size
(on a per-table basis), which affects how often the full-text index cache is flushed. You can
also define a global full-text index cache size limit for all tables in a given instance using the
innodb_ft_total_cache_size variable.

The full-text index cache stores the same information as auxiliary index tables. However, the full-text
index cache only caches tokenized data for recently inserted rows. The data that is already flushed to
disk (to the auxiliary index tables) is not brought back into the full-text index cache when queried. The
data in auxiliary index tables is queried directly, and results from the auxiliary index tables are merged
with results from the full-text index cache before being returned.

InnoDB Full-Text Index DOC_ID and FTS_DOC_ID Column

InnoDB uses a unique document identifier referred to as the DOC_ID to map words in the full-text
index to document records where the word appears. The mapping requires an FTS_DOC_ID column
on the indexed table. If an FTS_DOC_ID column is not defined, InnoDB automatically adds a hidden
FTS_DOC_ID column when the full-text index is created. The following example demonstrates this
behavior.

The following table definition does not include an FTS_DOC_ID column:

mysql> CREATE TABLE opening_lines (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200)
) ENGINE=InnoDB;

When you create a full-text index on the table using CREATE FULLTEXT INDEX syntax, a warning is
returned which reports that InnoDB is rebuilding the table to add the FTS_DOC_ID column.

mysql> CREATE FULLTEXT INDEX idx ON opening_lines(opening_line);
Query OK, 0 rows affected, 1 warning (0.19 sec)
Records: 0 Duplicates: 0 Warnings: 1

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 124 | InnoDB rebuilding table to add column FTS_DOC_ID |
+---------+------+--+

The same warning is returned when using ALTER TABLE to add a full-text index to a table that does
not have an FTS_DOC_ID column. If you create a full-text index at CREATE TABLE time and do not
specify an FTS_DOC_ID column, InnoDB adds a hidden FTS_DOC_ID column, without warning.

Defining an FTS_DOC_ID column at CREATE TABLE time is less expensive than creating a full-text
index on a table that is already loaded with data. If an FTS_DOC_ID column is defined on a table prior

3231

Indexes

to loading data, the table and its indexes do not have to be rebuilt to add the new column. If you are not
concerned with CREATE FULLTEXT INDEX performance, leave out the FTS_DOC_ID column to have
InnoDB create it for you. InnoDB creates a hidden FTS_DOC_ID column along with a unique index
(FTS_DOC_ID_INDEX) on the FTS_DOC_ID column. If you want to create your own FTS_DOC_ID
column, the column must be defined as BIGINT UNSIGNED NOT NULL and named FTS_DOC_ID (all
uppercase), as in the following example:

Note

The FTS_DOC_ID column does not need to be defined as an
AUTO_INCREMENT column, but doing so could make loading data easier.

mysql> CREATE TABLE opening_lines (
 FTS_DOC_ID BIGINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200)
) ENGINE=InnoDB;

If you choose to define the FTS_DOC_ID column yourself, you are responsible for managing the
column to avoid empty or duplicate values. FTS_DOC_ID values cannot be reused, which means
FTS_DOC_ID values must be ever increasing.

Optionally, you can create the required unique FTS_DOC_ID_INDEX (all uppercase) on the
FTS_DOC_ID column.

mysql> CREATE UNIQUE INDEX FTS_DOC_ID_INDEX on opening_lines(FTS_DOC_ID);

If you do not create the FTS_DOC_ID_INDEX, InnoDB creates it automatically.

Note

FTS_DOC_ID_INDEX cannot be defined as a descending index because the
InnoDB SQL parser does not use descending indexes.

The permitted gap between the largest used FTS_DOC_ID value and new FTS_DOC_ID value is
65535.

To avoid rebuilding the table, the FTS_DOC_ID column is retained when dropping a full-text index.

InnoDB Full-Text Index Deletion Handling

Deleting a record that has a full-text index column could result in numerous small deletions in the
auxiliary index tables, making concurrent access to these tables a point of contention. To avoid this
problem, the DOC_ID of a deleted document is logged in a special FTS_*_DELETED table whenever
a record is deleted from an indexed table, and the indexed record remains in the full-text index. Before
returning query results, information in the FTS_*_DELETED table is used to filter out deleted DOC_IDs.
The benefit of this design is that deletions are fast and inexpensive. The drawback is that the size of
the index is not immediately reduced after deleting records. To remove full-text index entries for deleted
records, run OPTIMIZE TABLE on the indexed table with innodb_optimize_fulltext_only=ON
to rebuild the full-text index. For more information, see Optimizing InnoDB Full-Text Indexes.

InnoDB Full-Text Index Transaction Handling

InnoDB full-text indexes have special transaction handling characteristics due its caching and
batch processing behavior. Specifically, updates and insertions on a full-text index are processed
at transaction commit time, which means that a full-text search can only see committed data. The
following example demonstrates this behavior. The full-text search only returns a result after the
inserted lines are committed.

mysql> CREATE TABLE opening_lines (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,

3232

Tablespaces

 opening_line TEXT(500),
 author VARCHAR(200),
 title VARCHAR(200),
 FULLTEXT idx (opening_line)
) ENGINE=InnoDB;

mysql> BEGIN;

mysql> INSERT INTO opening_lines(opening_line,author,title) VALUES
 ('Call me Ishmael.','Herman Melville','Moby-Dick'),
 ('A screaming comes across the sky.','Thomas Pynchon','Gravity\'s Rainbow'),
 ('I am an invisible man.','Ralph Ellison','Invisible Man'),
 ('Where now? Who now? When now?','Samuel Beckett','The Unnamable'),
 ('It was love at first sight.','Joseph Heller','Catch-22'),
 ('All this happened, more or less.','Kurt Vonnegut','Slaughterhouse-Five'),
 ('Mrs. Dalloway said she would buy the flowers herself.','Virginia Woolf','Mrs. Dalloway'),
 ('It was a pleasure to burn.','Ray Bradbury','Fahrenheit 451');

mysql> SELECT COUNT(*) FROM opening_lines WHERE MATCH(opening_line) AGAINST('Ishmael');
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

mysql> COMMIT;

mysql> SELECT COUNT(*) FROM opening_lines WHERE MATCH(opening_line) AGAINST('Ishmael');
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+

Monitoring InnoDB Full-Text Indexes

You can monitor and examine the special text-processing aspects of InnoDB full-text indexes by
querying the following INFORMATION_SCHEMA tables:

• INNODB_FT_CONFIG

• INNODB_FT_INDEX_TABLE

• INNODB_FT_INDEX_CACHE

• INNODB_FT_DEFAULT_STOPWORD

• INNODB_FT_DELETED

• INNODB_FT_BEING_DELETED

You can also view basic information for full-text indexes and tables by querying INNODB_INDEXES and
INNODB_TABLES.

For more information, see Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index
Tables”.

17.6.3 Tablespaces

This section covers topics related to InnoDB tablespaces.

17.6.3.1 The System Tablespace

The system tablespace is the storage area for the change buffer. It may also contain table and index
data if tables are created in the system tablespace rather than file-per-table or general tablespaces.
In previous MySQL versions, the system tablespace contained the InnoDB data dictionary. In MySQL

3233

Tablespaces

8.0, InnoDB stores metadata in the MySQL data dictionary. See Chapter 16, MySQL Data Dictionary.
In previous MySQL releases, the system tablespace also contained the doublewrite buffer storage
area. This storage area resides in separate doublewrite files as of MySQL 8.0.20. See Section 17.6.4,
“Doublewrite Buffer”.

The system tablespace can have one or more data files. By default, a single system tablespace data
file, named ibdata1, is created in the data directory. The size and number of system tablespace data
files is defined by the innodb_data_file_path startup option. For configuration information, see
System Tablespace Data File Configuration.

Additional information about the system tablespace is provided under the following topics in the
section:

• Resizing the System Tablespace

• Using Raw Disk Partitions for the System Tablespace

Resizing the System Tablespace

This section describes how to increase or decrease the size of the system tablespace.

Increasing the Size of the System Tablespace

The easiest way to increase the size of the system tablespace is to configure it to be auto-extending.
To do so, specify the autoextend attribute for the last data file in the innodb_data_file_path
setting, and restart the server. For example:

innodb_data_file_path=ibdata1:10M:autoextend

When the autoextend attribute is specified, the data file automatically increases in size by 8MB
increments as space is required. The innodb_autoextend_increment variable controls the
increment size.

You can also increase system tablespace size by adding another data file. To do so:

1. Stop the MySQL server.

2. If the last data file in the innodb_data_file_path setting is defined with the autoextend
attribute, remove it, and modify the size attribute to reflect the current data file size. To determine
the appropriate data file size to specify, check your file system for the file size, and round that value
down to the closest MB value, where a MB is equal to 1024 x 1024 bytes.

3. Append a new data file to the innodb_data_file_path setting, optionally specifying the
autoextend attribute. The autoextend attribute can be specified only for the last data file in the
innodb_data_file_path setting.

4. Start the MySQL server.

For example, this tablespace has one auto-extending data file:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:10M:autoextend

Suppose that the data file has grown to 988MB over time. This is the innodb_data_file_path
setting after modifying the size attribute to reflect the current data file size, and after specifying a new
50MB auto-extending data file:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

When adding a new data file, do not specify an existing file name. InnoDB creates and initializes the
new data file when you start the server.

3234

Tablespaces

Note

You cannot increase the size of an existing system tablespace
data file by changing its size attribute. For example, changing the
innodb_data_file_path setting from ibdata1:10M:autoextend to
ibdata1:12M:autoextend produces the following error when starting the
server:

[ERROR] [MY-012263] [InnoDB] The Auto-extending innodb_system
data file './ibdata1' is of a different size 640 pages (rounded down to MB) than
specified in the .cnf file: initial 768 pages, max 0 (relevant if non-zero) pages!

The error indicates that the existing data file size (expressed in InnoDB pages)
is different from the data file size specified in the configuration file. If you
encounter this error, restore the previous innodb_data_file_path setting,
and refer to the system tablespace resizing instructions.

Decreasing the Size of the InnoDB System Tablespace

Decreasing the size of an existing system tablespace is not supported. The only option to achieve a
smaller system tablespace is to restore your data from a backup to a new MySQL instance created with
the desired system tablespace size configuration.

For information about creating backups, see Section 17.18.1, “InnoDB Backup”.

For information about configuring data files for a new system tablespace. See System Tablespace Data
File Configuration.

To avoid a large system tablespace, consider using file-per-table tablespaces or general tablespaces
for your data. File-per-table tablespaces are the default tablespace type and are used implicitly when
creating an InnoDB table. Unlike the system tablespace, file-per-table tablespaces return disk space to
the operating system when they are truncated or dropped. For more information, see Section 17.6.3.2,
“File-Per-Table Tablespaces”. General tablespaces are multi-table tablespaces that can also be used
as an alternative to the system tablespace. See Section 17.6.3.3, “General Tablespaces”.

Using Raw Disk Partitions for the System Tablespace

Raw disk partitions can be used as system tablespace data files. This technique enables nonbuffered I/
O on Windows and some Linux and Unix systems without file system overhead. Perform tests with and
without raw partitions to verify whether they improve performance on your system.

When using a raw disk partition, ensure that the user ID that runs the MySQL server has read and write
privileges for that partition. For example, if running the server as the mysql user, the partition must be
readable and writeable by mysql. If running the server with the --memlock option, the server must be
run as root, so the partition must be readable and writeable by root.

The procedures described below involve option file modification. For additional information, see
Section 6.2.2.2, “Using Option Files”.

Allocating a Raw Disk Partition on Linux and Unix Systems

1. To use a raw device for a new server instance, first prepare the configuration file by setting
innodb_data_file_path with the raw keyword. For example:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Graw;/dev/hdd2:2Graw

The partition must be at least as large as the size that you specify. Note that 1MB in InnoDB is
1024 × 1024 bytes, whereas 1MB in disk specifications usually means 1,000,000 bytes.

2. Then initialize the server for the first time by using --initialize or --initialize-insecure.
InnoDB notices the raw keyword and initializes the new partition, and then it stops the server.

3235

Tablespaces

3. Now restart the server. InnoDB now permits changes to be made.

Allocating a Raw Disk Partition on Windows

On Windows systems, the same steps and accompanying guidelines described for Linux and Unix
systems apply except that the innodb_data_file_path setting differs slightly on Windows. For
example:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Graw

The //./ corresponds to the Windows syntax of \\.\ for accessing physical drives. In the example
above, D: is the drive letter of the partition.

17.6.3.2 File-Per-Table Tablespaces

A file-per-table tablespace contains data and indexes for a single InnoDB table, and is stored on the
file system in a single data file.

File-per-table tablespace characteristics are described under the following topics in this section:

• File-Per-Table Tablespace Configuration

• File-Per-Table Tablespace Data Files

• File-Per-Table Tablespace Advantages

• File-Per-Table Tablespace Disadvantages

File-Per-Table Tablespace Configuration

InnoDB creates tables in file-per-table tablespaces by default. This behavior is controlled by the
innodb_file_per_table variable. Disabling innodb_file_per_table causes InnoDB to create
tables in the system tablespace.

An innodb_file_per_table setting can be specified in an option file or configured at runtime using
a SET GLOBAL statement. Changing the setting at runtime requires privileges sufficient to set global
system variables. See Section 7.1.9.1, “System Variable Privileges”.

Option file:

[mysqld]
innodb_file_per_table=ON

Using SET GLOBAL at runtime:

mysql> SET GLOBAL innodb_file_per_table=ON;

File-Per-Table Tablespace Data Files

A file-per-table tablespace is created in an .ibd data file in a schema directory under the MySQL data
directory. The .ibd file is named for the table (table_name.ibd). For example, the data file for table
test.t1 is created in the test directory under the MySQL data directory:

mysql> USE test;

mysql> CREATE TABLE t1 (
 id INT PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(100)
) ENGINE = InnoDB;

$> cd /path/to/mysql/data/test
$> ls

3236

Tablespaces

t1.ibd

You can use the DATA DIRECTORY clause of the CREATE TABLE statement to implicitly create a file-
per-table tablespace data file outside of the data directory. For more information, see Section 17.6.1.2,
“Creating Tables Externally”.

File-Per-Table Tablespace Advantages

File-per-table tablespaces have the following advantages over shared tablespaces such as the system
tablespace or general tablespaces.

• Disk space is returned to the operating system after truncating or dropping a table created in a file-
per-table tablespace. Truncating or dropping a table stored in a shared tablespace creates free
space within the shared tablespace data file, which can only be used for InnoDB data. In other
words, a shared tablespace data file does not shrink in size after a table is truncated or dropped.

• A table-copying ALTER TABLE operation on a table that resides in a shared tablespace can
increase the amount of disk space occupied by the tablespace. Such operations may require as
much additional space as the data in the table plus indexes. This space is not released back to the
operating system as it is for file-per-table tablespaces.

• TRUNCATE TABLE performance is better when executed on tables that reside in file-per-table
tablespaces.

• File-per-table tablespace data files can be created on separate storage devices for I/O optimization,
space management, or backup purposes. See Section 17.6.1.2, “Creating Tables Externally”.

• You can import a table that resides in file-per-table tablespace from another MySQL instance. See
Section 17.6.1.3, “Importing InnoDB Tables”.

• Tables created in file-per-table tablespaces support features associated with DYNAMIC and
COMPRESSED row formats, which are not supported by the system tablespace. See Section 17.10,
“InnoDB Row Formats”.

• Tables stored in individual tablespace data files can save time and improve chances for a successful
recovery when data corruption occurs, when backups or binary logs are unavailable, or when the
MySQL server instance cannot be restarted.

• Tables created in file-per-table tablespaces can be backed up or restored quickly using MySQL
Enterprise Backup, without interrupting the use of other InnoDB tables. This is beneficial for tables
on varying backup schedules or that require backup less frequently. See Making a Partial Backup for
details.

• File-per-table tablespaces permit monitoring table size on the file system by monitoring the size of
the tablespace data file.

• Common Linux file systems do not permit concurrent writes to a single file such as a shared
tablespace data file when innodb_flush_method is set to O_DIRECT. As a result, there are
possible performance improvements when using file-per-table tablespaces in conjunction with this
setting.

• Tables in a shared tablespace are limited in size by the 64TB tablespace size limit. By comparison,
each file-per-table tablespace has a 64TB size limit, which provides plenty of room for individual
tables to grow in size.

File-Per-Table Tablespace Disadvantages

File-per-table tablespaces have the following disadvantages compared to shared tablespaces such as
the system tablespace or general tablespaces.

• With file-per-table tablespaces, each table may have unused space that can only be utilized by rows
of the same table, which can lead to wasted space if not properly managed.

3237

https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/partial.html

Tablespaces

• fsync operations are performed on multiple file-per-table data files instead of a single shared
tablespace data file. Because fsync operations are per file, write operations for multiple tables
cannot be combined, which can result in a higher total number of fsync operations.

• mysqld must keep an open file handle for each file-per-table tablespace, which may impact
performance if you have numerous tables in file-per-table tablespaces.

• More file descriptors are required when each table has its own data file.

• There is potential for more fragmentation, which can impede DROP TABLE and table scan
performance. However, if fragmentation is managed, file-per-table tablespaces can improve
performance for these operations.

• The buffer pool is scanned when dropping a table that resides in a file-per-table tablespace, which
can take several seconds for large buffer pools. The scan is performed with a broad internal lock,
which may delay other operations.

• The innodb_autoextend_increment variable, which defines the increment size for extending the
size of an auto-extending shared tablespace file when it becomes full, does not apply to file-per-table
tablespace files, which are auto-extending regardless of the innodb_autoextend_increment
setting. Initial file-per-table tablespace extensions are by small amounts, after which extensions
occur in increments of 4MB.

17.6.3.3 General Tablespaces

A general tablespace is a shared InnoDB tablespace that is created using CREATE TABLESPACE
syntax. General tablespace capabilities and features are described under the following topics in this
section:

• General Tablespace Capabilities

• Creating a General Tablespace

• Adding Tables to a General Tablespace

• General Tablespace Row Format Support

• Moving Tables Between Tablespaces Using ALTER TABLE

• Renaming a General Tablespace

• Dropping a General Tablespace

• General Tablespace Limitations

General Tablespace Capabilities

General tablespaces provide the following capabilities:

• Similar to the system tablespace, general tablespaces are shared tablespaces capable of storing
data for multiple tables.

• General tablespaces have a potential memory advantage over file-per-table tablespaces. The server
keeps tablespace metadata in memory for the lifetime of a tablespace. Multiple tables in fewer
general tablespaces consume less memory for tablespace metadata than the same number of tables
in separate file-per-table tablespaces.

• General tablespace data files can be placed in a directory relative to or independent of the MySQL
data directory, which provides you with many of the data file and storage management capabilities
of file-per-table tablespaces. As with file-per-table tablespaces, the ability to place data files outside
of the MySQL data directory allows you to manage performance of critical tables separately, setup
RAID or DRBD for specific tables, or bind tables to particular disks, for example.

3238

Tablespaces

• General tablespaces support all table row formats and associated features.

• The TABLESPACE option can be used with CREATE TABLE to create tables in a general
tablespaces, file-per-table tablespace, or in the system tablespace.

• The TABLESPACE option can be used with ALTER TABLE to move tables between general
tablespaces, file-per-table tablespaces, and the system tablespace.

Creating a General Tablespace

General tablespaces are created using CREATE TABLESPACE syntax.

CREATE TABLESPACE tablespace_name
 [ADD DATAFILE 'file_name']
 [FILE_BLOCK_SIZE = value]
 [ENGINE [=] engine_name]

A general tablespace can be created in the data directory or outside of it. To avoid conflicts with
implicitly created file-per-table tablespaces, creating a general tablespace in a subdirectory under
the data directory is not supported. When creating a general tablespace outside of the data directory,
the directory must exist and must be known to InnoDB prior to creating the tablespace. To make an
unknown directory known to InnoDB, add the directory to the innodb_directories argument value.
innodb_directories is a read-only startup option. Configuring it requires restarting the server.

Examples:

Creating a general tablespace in the data directory:

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;

or

mysql> CREATE TABLESPACE `ts1` Engine=InnoDB;

The ADD DATAFILE clause is optional as of MySQL 8.0.14 and required before that. If the ADD
DATAFILE clause is not specified when creating a tablespace, a tablespace data file with a unique
file name is created implicitly. The unique file name is a 128 bit UUID formatted into five groups of
hexadecimal numbers separated by dashes (aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee).
General tablespace data files include an .ibd file extension. In a replication environment, the data file
name created on the source is not the same as the data file name created on the replica.

Creating a general tablespace in a directory outside of the data directory:

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE '/my/tablespace/directory/ts1.ibd' Engine=InnoDB;

You can specify a path that is relative to the data directory as long as the tablespace directory is not
under the data directory. In this example, the my_tablespace directory is at the same level as the
data directory:

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE '../my_tablespace/ts1.ibd' Engine=InnoDB;

Note

The ENGINE = InnoDB clause must be defined as part of the CREATE
TABLESPACE statement, or InnoDB must be defined as the default storage
engine (default_storage_engine=InnoDB).

Adding Tables to a General Tablespace

After creating a general tablespace, CREATE TABLE tbl_name ... TABLESPACE [=]
tablespace_name or ALTER TABLE tbl_name TABLESPACE [=] tablespace_name
statements can be used to add tables to the tablespace, as shown in the following examples:

3239

Tablespaces

CREATE TABLE:

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1;

ALTER TABLE:

mysql> ALTER TABLE t2 TABLESPACE ts1;

Note

Support for adding table partitions to shared tablespaces was deprecated in
MySQL 5.7.24 and removed in MySQL 8.0.13. Shared tablespaces include the
InnoDB system tablespace and general tablespaces.

For detailed syntax information, see CREATE TABLE and ALTER TABLE.

General Tablespace Row Format Support

General tablespaces support all table row formats (REDUNDANT, COMPACT, DYNAMIC, COMPRESSED)
with the caveat that compressed and uncompressed tables cannot coexist in the same general
tablespace due to different physical page sizes.

For a general tablespace to contain compressed tables (ROW_FORMAT=COMPRESSED), the
FILE_BLOCK_SIZE option must be specified, and the FILE_BLOCK_SIZE value must be a valid
compressed page size in relation to the innodb_page_size value. Also, the physical page size of the
compressed table (KEY_BLOCK_SIZE) must be equal to FILE_BLOCK_SIZE/1024. For example, if
innodb_page_size=16KB and FILE_BLOCK_SIZE=8K, the KEY_BLOCK_SIZE of the table must be
8.

The following table shows permitted innodb_page_size, FILE_BLOCK_SIZE, and
KEY_BLOCK_SIZE combinations. FILE_BLOCK_SIZE values may also be specified in bytes.
To determine a valid KEY_BLOCK_SIZE value for a given FILE_BLOCK_SIZE, divide the
FILE_BLOCK_SIZE value by 1024. Table compression is not support for 32K and 64K InnoDB page
sizes. For more information about KEY_BLOCK_SIZE, see CREATE TABLE, and Section 17.9.1.2,
“Creating Compressed Tables”.

Table 17.3 Permitted Page Size, FILE_BLOCK_SIZE, and KEY_BLOCK_SIZE Combinations for
Compressed Tables

InnoDB Page Size
(innodb_page_size)

Permitted FILE_BLOCK_SIZE
Value

Permitted KEY_BLOCK_SIZE
Value

64KB 64K (65536) Compression is not supported

32KB 32K (32768) Compression is not supported

16KB 16K (16384) None. If innodb_page_size
is equal to FILE_BLOCK_SIZE,
the tablespace cannot contain a
compressed table.

16KB 8K (8192) 8

16KB 4K (4096) 4

16KB 2K (2048) 2

16KB 1K (1024) 1

8KB 8K (8192) None. If innodb_page_size
is equal to FILE_BLOCK_SIZE,
the tablespace cannot contain a
compressed table.

8KB 4K (4096) 4

3240

Tablespaces

InnoDB Page Size
(innodb_page_size)

Permitted FILE_BLOCK_SIZE
Value

Permitted KEY_BLOCK_SIZE
Value

8KB 2K (2048) 2

8KB 1K (1024) 1

4KB 4K (4096) None. If innodb_page_size
is equal to FILE_BLOCK_SIZE,
the tablespace cannot contain a
compressed table.

4KB 2K (2048) 2

4KB 1K (1024) 1

This example demonstrates creating a general tablespace and adding a compressed table. The
example assumes a default innodb_page_size of 16KB. The FILE_BLOCK_SIZE of 8192 requires
that the compressed table have a KEY_BLOCK_SIZE of 8.

mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;

mysql> CREATE TABLE t4 (c1 INT PRIMARY KEY) TABLESPACE ts2 ROW_FORMAT=COMPRESSED KEY_BLOCK_SIZE=8;

If you do not specify FILE_BLOCK_SIZE when creating a general tablespace, FILE_BLOCK_SIZE
defaults to innodb_page_size. When FILE_BLOCK_SIZE is equal to innodb_page_size, the
tablespace may only contain tables with an uncompressed row format (COMPACT, REDUNDANT, and
DYNAMIC row formats).

Moving Tables Between Tablespaces Using ALTER TABLE

ALTER TABLE with the TABLESPACE option can be used to move a table to an existing general
tablespace, to a new file-per-table tablespace, or to the system tablespace.

Note

Support for placing table partitions in shared tablespaces was deprecated in
MySQL 5.7.24 and removed MySQL 8.0.13. Shared tablespaces include the
InnoDB system tablespace and general tablespaces.

To move a table from a file-per-table tablespace or from the system tablespace to a general
tablespace, specify the name of the general tablespace. The general tablespace must exist. See
ALTER TABLESPACE for more information.

ALTER TABLE tbl_name TABLESPACE [=] tablespace_name;

To move a table from a general tablespace or file-per-table tablespace to the system tablespace,
specify innodb_system as the tablespace name.

ALTER TABLE tbl_name TABLESPACE [=] innodb_system;

To move a table from the system tablespace or a general tablespace to a file-per-table tablespace,
specify innodb_file_per_table as the tablespace name.

ALTER TABLE tbl_name TABLESPACE [=] innodb_file_per_table;

ALTER TABLE ... TABLESPACE operations cause a full table rebuild, even if the TABLESPACE
attribute has not changed from its previous value.

ALTER TABLE ... TABLESPACE syntax does not support moving a table from a temporary
tablespace to a persistent tablespace.

The DATA DIRECTORY clause is permitted with CREATE TABLE ...
TABLESPACE=innodb_file_per_table but is otherwise not supported for use in combination with

3241

Tablespaces

the TABLESPACE option. As of MySQL 8.0.21, the directory specified in a DATA DIRECTORY clause
must be known to InnoDB. For more information, see Using the DATA DIRECTORY Clause.

Restrictions apply when moving tables from encrypted tablespaces. See Encryption Limitations.

Renaming a General Tablespace

Renaming a general tablespace is supported using ALTER TABLESPACE ... RENAME TO syntax.

ALTER TABLESPACE s1 RENAME TO s2;

The CREATE TABLESPACE privilege is required to rename a general tablespace.

RENAME TO operations are implicitly performed in autocommit mode regardless of the autocommit
setting.

A RENAME TO operation cannot be performed while LOCK TABLES or FLUSH TABLES WITH READ
LOCK is in effect for tables that reside in the tablespace.

Exclusive metadata locks are taken on tables within a general tablespace while the tablespace is
renamed, which prevents concurrent DDL. Concurrent DML is supported.

Dropping a General Tablespace

The DROP TABLESPACE statement is used to drop an InnoDB general tablespace.

All tables must be dropped from the tablespace prior to a DROP TABLESPACE operation. If the
tablespace is not empty, DROP TABLESPACE returns an error.

Use a query similar to the following to identify tables in a general tablespace.

mysql> SELECT a.NAME AS space_name, b.NAME AS table_name FROM INFORMATION_SCHEMA.INNODB_TABLESPACES a,
 INFORMATION_SCHEMA.INNODB_TABLES b WHERE a.SPACE=b.SPACE AND a.NAME LIKE 'ts1';
+------------+------------+
| space_name | table_name |
+------------+------------+
ts1	test/t1
ts1	test/t2
ts1	test/t3
+------------+------------+

A general InnoDB tablespace is not deleted automatically when the last table in the tablespace is
dropped. The tablespace must be dropped explicitly using DROP TABLESPACE tablespace_name.

A general tablespace does not belong to any particular database. A DROP DATABASE operation can
drop tables that belong to a general tablespace but it cannot drop the tablespace, even if the DROP
DATABASE operation drops all tables that belong to the tablespace.

Similar to the system tablespace, truncating or dropping tables stored in a general tablespace creates
free space internally in the general tablespace .ibd data file which can only be used for new InnoDB
data. Space is not released back to the operating system as it is when a file-per-table tablespace is
deleted during a DROP TABLE operation.

This example demonstrates how to drop an InnoDB general tablespace. The general tablespace ts1
is created with a single table. The table must be dropped before dropping the tablespace.

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1 Engine=InnoDB;

mysql> DROP TABLE t1;

3242

Tablespaces

mysql> DROP TABLESPACE ts1;

Note

tablespace_name is a case-sensitive identifier in MySQL.

General Tablespace Limitations

• A generated or existing tablespace cannot be changed to a general tablespace.

• Creation of temporary general tablespaces is not supported.

• General tablespaces do not support temporary tables.

• Similar to the system tablespace, truncating or dropping tables stored in a general tablespace
creates free space internally in the general tablespace .ibd data file which can only be used for
new InnoDB data. Space is not released back to the operating system as it is for file-per-table
tablespaces.

Additionally, a table-copying ALTER TABLE operation on table that resides in a shared tablespace
(a general tablespace or the system tablespace) can increase the amount of space used by the
tablespace. Such operations require as much additional space as the data in the table plus indexes.
The additional space required for the table-copying ALTER TABLE operation is not released back to
the operating system as it is for file-per-table tablespaces.

• ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ...IMPORT TABLESPACE are
not supported for tables that belong to a general tablespace.

• Support for placing table partitions in general tablespaces was deprecated in MySQL 5.7.24 and
removed in MySQL 8.0.13.

• The ADD DATAFILE clause is not supported in a replication environment where the source and
replica reside on the same host, as it would cause the source and replica to create a tablespace of
the same name in the same location, which is not supported. However, if the ADD DATAFILE clause
is omitted, the tablespace is created in the data directory with a generated file name that is unique,
which is permitted.

• As of MySQL 8.0.21, general tablespaces cannot be created in the undo tablespace directory
(innodb_undo_directory) unless that directly is known to InnoDB. Known directories are those
defined by the datadir, innodb_data_home_dir, and innodb_directories variables.

17.6.3.4 Undo Tablespaces

Undo tablespaces contain undo logs, which are collections of records containing information about how
to undo the latest change by a transaction to a clustered index record.

Undo tablespaces are described under the following topics in this section:

• Default Undo Tablespaces

• Undo Tablespace Size

• Adding Undo Tablespaces

• Dropping Undo Tablespaces

• Moving Undo Tablespaces

• Configuring the Number of Rollback Segments

• Truncating Undo Tablespaces

3243

Tablespaces

• Undo Tablespace Status Variables

Default Undo Tablespaces

Two default undo tablespaces are created when the MySQL instance is initialized. Default undo
tablespaces are created at initialization time to provide a location for rollback segments that must exist
before SQL statements can be accepted. A minimum of two undo tablespaces is required to support
automated truncation of undo tablespaces. See Truncating Undo Tablespaces.

Default undo tablespaces are created in the location defined by the innodb_undo_directory
variable. If the innodb_undo_directory variable is undefined, default undo tablespaces are created
in the data directory. Default undo tablespace data files are named undo_001 and undo_002. The
corresponding undo tablespace names defined in the data dictionary are innodb_undo_001 and
innodb_undo_002.

As of MySQL 8.0.14, additional undo tablespaces can be created at runtime using SQL. See Adding
Undo Tablespaces.

Undo Tablespace Size

Prior to MySQL 8.0.23, the initial size of an undo tablespace depends on the innodb_page_size
value. For the default 16KB page size, the initial undo tablespace file size is 10MiB. For 4KB, 8KB,
32KB, and 64KB page sizes, the initial undo tablespace files sizes are 7MiB, 8MiB, 20MiB, and 40MiB,
respectively. As of MySQL 8.0.23, the initial undo tablespace size is normally 16MiB. The initial size
may differ when a new undo tablespace is created by a truncate operation. In this case, if the file
extension size is larger than 16MB, and the previous file extension occurred within the last second, the
new undo tablespace is created at a quarter of the size defined by the innodb_max_undo_log_size
variable.

Prior to MySQL 8.0.23, an undo tablespace is extended four extents at a time. From MySQL 8.0.23, an
undo tablespace is extended by a minimum of 16MB. To handle aggressive growth, the file extension
size is doubled if the previous file extension happened less than 0.1 seconds earlier. Doubling of the
extension size can occur multiple times to a maximum of 256MB. If the previous file extension occurred
more than 0.1 seconds earlier, the extension size is reduced by half, which can also occur multiple
times, to a minimum of 16MB. If the AUTOEXTEND_SIZE option is defined for an undo tablespace, it is
extended by the greater of the AUTOEXTEND_SIZE setting and the extension size determined by the
logic described above. For information about the AUTOEXTEND_SIZE option, see Section 17.6.3.9,
“Tablespace AUTOEXTEND_SIZE Configuration”.

Adding Undo Tablespaces

Because undo logs can become large during long-running transactions, creating additional undo
tablespaces can help prevent individual undo tablespaces from becoming too large. As of MySQL
8.0.14, additional undo tablespaces can be created at runtime using CREATE UNDO TABLESPACE
syntax.

CREATE UNDO TABLESPACE tablespace_name ADD DATAFILE 'file_name.ibu';

The undo tablespace file name must have an .ibu extension. It is not permitted to specify a relative
path when defining the undo tablespace file name. A fully qualified path is permitted, but the path must
be known to InnoDB. Known paths are those defined by the innodb_directories variable. Unique
undo tablespace file names are recommended to avoid potential file name conflicts when moving or
cloning data.

Note

In a replication environment, the source and each replica must have its own
undo tablespace file directory. Replicating the creation of an undo tablespace
file to a common directory would cause a file name conflict.

3244

Tablespaces

At startup, directories defined by the innodb_directories variable are scanned for undo tablespace
files. (The scan also traverses subdirectories.) Directories defined by the innodb_data_home_dir,
innodb_undo_directory, and datadir variables are automatically appended to the
innodb_directories value regardless of whether the innodb_directories variable is defined
explicitly. An undo tablespace can therefore reside in paths defined by any of those variables.

If the undo tablespace file name does not include a path, the undo tablespace is created in the
directory defined by the innodb_undo_directory variable. If that variable is undefined, the undo
tablespace is created in the data directory.

Note

The InnoDB recovery process requires that undo tablespace files reside in
known directories. Undo tablespace files must be discovered and opened
before redo recovery and before other data files are opened to permit
uncommitted transactions and data dictionary changes to be rolled back. An
undo tablespace not found before recovery cannot be used, which can lead to
database inconsistencies. An error message is reported at startup if an undo
tablespace known to the data dictionary is not found. The known directory
requirement also supports undo tablespace portability. See Moving Undo
Tablespaces.

To create undo tablespaces in a path relative to the data directory, set the innodb_undo_directory
variable to the relative path, and specify the file name only when creating an undo tablespace.

To view undo tablespace names and paths, query INFORMATION_SCHEMA.FILES:

SELECT TABLESPACE_NAME, FILE_NAME FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_TYPE LIKE 'UNDO LOG';

A MySQL instance supports up to 127 undo tablespaces including the two default undo tablespaces
created when the MySQL instance is initialized.

Note

Prior to MySQL 8.0.14, additional undo tablespaces are created by configuring
the innodb_undo_tablespaces startup variable. This variable is deprecated
and no longer configurable as of MySQL 8.0.14.

Prior to MySQL 8.0.14, increasing the innodb_undo_tablespaces setting
creates the specified number of undo tablespaces and adds them to the list
of active undo tablespaces. Decreasing the innodb_undo_tablespaces
setting removes undo tablespaces from the list of active undo tablespaces.
Undo tablespaces that are removed from the active list remain active until they
are no longer used by existing transactions. The innodb_undo_tablespaces
variable can be configured at runtime using a SET statement or defined in a
configuration file.

Prior to MySQL 8.0.14, deactivated undo tablespaces cannot be removed.
Manual removal of undo tablespace files is possible after a slow shutdown but
is not recommended, as deactivated undo tablespaces may contain active undo
logs for some time after the server is restarted if open transactions were present
when shutting down the server. As of MySQL 8.0.14, undo tablespaces can
be dropped using DROP UNDO TABALESPACE syntax. See Dropping Undo
Tablespaces.

Dropping Undo Tablespaces

As of MySQL 8.0.14, undo tablespaces created using CREATE UNDO TABLESPACE syntax can be
dropped at runtime using DROP UNDO TABALESPACE syntax.

3245

Tablespaces

An undo tablespace must be empty before it can be dropped. To empty an undo tablespace, the undo
tablespace must first be marked as inactive using ALTER UNDO TABLESPACE syntax so that the
tablespace is no longer used for assigning rollback segments to new transactions.

ALTER UNDO TABLESPACE tablespace_name SET INACTIVE;

After an undo tablespace is marked as inactive, transactions currently using rollback segments in the
undo tablespace are permitted to finish, as are any transactions started before those transactions are
completed. After transactions are completed, the purge system frees the rollback segments in the undo
tablespace, and the undo tablespace is truncated to its initial size. (The same process is used when
truncating undo tablespaces. See Truncating Undo Tablespaces.) Once the undo tablespace is empty,
it can be dropped.

DROP UNDO TABLESPACE tablespace_name;

Note

Alternatively, the undo tablespace can be left in an empty state and reactivated
later, if needed, by issuing an ALTER UNDO TABLESPACE tablespace_name
SET ACTIVE statement.

The state of an undo tablespace can be monitored by querying the Information Schema
INNODB_TABLESPACES table.

SELECT NAME, STATE FROM INFORMATION_SCHEMA.INNODB_TABLESPACES
 WHERE NAME LIKE 'tablespace_name';

An inactive state indicates that rollback segments in an undo tablespace are no longer used by new
transactions. An empty state indicates that an undo tablespace is empty and ready to be dropped,
or ready to be made active again using an ALTER UNDO TABLESPACE tablespace_name SET
ACTIVE statement. Attempting to drop an undo tablespace that is not empty returns an error.

The default undo tablespaces (innodb_undo_001 and innodb_undo_002) created when the
MySQL instance is initialized cannot be dropped. They can, however, be made inactive using an
ALTER UNDO TABLESPACE tablespace_name SET INACTIVE statement. Before a default undo
tablespace can be made inactive, there must be an undo tablespace to take its place. A minimum
of two active undo tablespaces are required at all times to support automated truncation of undo
tablespaces.

Moving Undo Tablespaces

Undo tablespaces created with CREATE UNDO TABLESPACE syntax can be moved while the server
is offline to any known directory. Known directories are those defined by the innodb_directories
variable. Directories defined by innodb_data_home_dir, innodb_undo_directory, and
datadir are automatically appended to the innodb_directories value regardless of whether
the innodb_directories variable is defined explicitly. Those directories and their subdirectories
are scanned at startup for undo tablespaces files. An undo tablespace file moved to any of those
directories is discovered at startup and assumed to be the undo tablespace that was moved.

The default undo tablespaces (innodb_undo_001 and innodb_undo_002) created when the
MySQL instance is initialized must reside in the directory defined by the innodb_undo_directory
variable. If the innodb_undo_directory variable is undefined, default undo tablespaces reside in
the data directory. If default undo tablespaces are moved while the server is offline, the server must be
started with the innodb_undo_directory variable configured to the new directory.

The I/O patterns for undo logs make undo tablespaces good candidates for SSD storage.

Configuring the Number of Rollback Segments

The innodb_rollback_segments variable defines the number of rollback segments allocated to
each undo tablespace and to the global temporary tablespace. The innodb_rollback_segments
variable can be configured at startup or while the server is running.

3246

Tablespaces

The default setting for innodb_rollback_segments is 128, which is also the maximum value. For
information about the number of transactions that a rollback segment supports, see Section 17.6.6,
“Undo Logs”.

Truncating Undo Tablespaces

There are two methods of truncating undo tablespaces, which can be used individually or in
combination to manage undo tablespace size. One method is automated, enabled using configuration
variables. The other method is manual, performed using SQL statements.

The automated method does not require monitoring undo tablespace size and, once enabled, it
performs deactivation, truncation, and reactivation of undo tablespaces without manual intervention.
The manual truncation method may be preferable if you want to control when undo tablespaces are
taken offline for truncation. For example, you may want to avoid truncating undo tablespaces during
peak workload times.

Automated Truncation

Automated truncation of undo tablespaces requires a minimum of two active undo tablespaces, which
ensures that one undo tablespace remains active while the other is taken offline to be truncated. By
default, two undo tablespaces are created when the MySQL instance is initialized.

To have undo tablespaces automatically truncated, enable the innodb_undo_log_truncate
variable. For example:

mysql> SET GLOBAL innodb_undo_log_truncate=ON;

When the innodb_undo_log_truncate variable is enabled, undo tablespaces that exceed the
size limit defined by the innodb_max_undo_log_size variable are subject to truncation. The
innodb_max_undo_log_size variable is dynamic and has a default value of 1073741824 bytes
(1024 MiB).

mysql> SELECT @@innodb_max_undo_log_size;
+----------------------------+
| @@innodb_max_undo_log_size |
+----------------------------+
| 1073741824 |
+----------------------------+

When the innodb_undo_log_truncate variable is enabled:

1. Default and user-defined undo tablespaces that exceed the innodb_max_undo_log_size setting
are marked for truncation. Selection of an undo tablespace for truncation is performed in a circular
fashion to avoid truncating the same undo tablespace each time.

2. Rollback segments residing in the selected undo tablespace are made inactive so that they are not
assigned to new transactions. Existing transactions that are currently using rollback segments are
permitted to finish.

3. The purge system empties rollback segments by freeing undo logs that are no longer in use.

4. After all rollback segments in the undo tablespace are freed, the truncate operation runs and
truncates the undo tablespace to its initial size.

The size of an undo tablespace after a truncate operation may be larger than the initial size due to
immediate use following the completion of the operation.

The innodb_undo_directory variable defines the location of default undo tablespace files. If
the innodb_undo_directory variable is undefined, default undo tablespaces reside in the data
directory. The location of all undo tablespace files including user-defined undo tablespaces created
using CREATE UNDO TABLESPACE syntax can be determined by querying the Information Schema
FILES table:

3247

Tablespaces

SELECT TABLESPACE_NAME, FILE_NAME FROM INFORMATION_SCHEMA.FILES WHERE FILE_TYPE LIKE 'UNDO LOG';

5. Rollback segments are reactivated so that they can be assigned to new transactions.

Manual Truncation

Manual truncation of undo tablespaces requires a minimum of three active undo tablespaces. Two
active undo tablespaces are required at all times to support the possibility that automated truncation
is enabled. A minimum of three undo tablespaces satisfies this requirement while permitting an undo
tablespace to be taken offline manually.

To manually initiate truncation of an undo tablespace, deactivate the undo tablespace by issuing the
following statement:

ALTER UNDO TABLESPACE tablespace_name SET INACTIVE;

After the undo tablespace is marked as inactive, transactions currently using rollback segments in the
undo tablespace are permitted to finish, as are any transactions started before those transactions are
completed. After transactions are completed, the purge system frees the rollback segments in the undo
tablespace, the undo tablespace is truncated to its initial size, and the undo tablespace state changes
from inactive to empty.

Note

When an ALTER UNDO TABLESPACE tablespace_name SET INACTIVE
statement deactivates an undo tablespace, the purge thread looks for that undo
tablespace at the next opportunity. Once the undo tablespace is found and
marked for truncation, the purge thread returns with increased frequency to
quickly empty and truncate the undo tablespace.

To check the state of an undo tablespace, query the Information Schema INNODB_TABLESPACES
table.

SELECT NAME, STATE FROM INFORMATION_SCHEMA.INNODB_TABLESPACES
 WHERE NAME LIKE 'tablespace_name';

Once the undo tablespace is in an empty state, it can be reactivated by issuing the following
statement:

ALTER UNDO TABLESPACE tablespace_name SET ACTIVE;

An undo tablespace in an empty state can also be dropped. See Dropping Undo Tablespaces.

Expediting Automated Truncation of Undo Tablespaces

The purge thread is responsible for emptying and truncating undo tablespaces. By default, the purge
thread looks for undo tablespaces to truncate once every 128 times that purge is invoked. The
frequency with which the purge thread looks for undo tablespaces to truncate is controlled by the
innodb_purge_rseg_truncate_frequency variable, which has a default setting of 128.

mysql> SELECT @@innodb_purge_rseg_truncate_frequency;
+--+
| @@innodb_purge_rseg_truncate_frequency |
+--+
| 128 |
+--+

To increase the frequency, decrease the innodb_purge_rseg_truncate_frequency setting.
For example, to have the purge thread look for undo tablespaces once every 32 times that purge is
invoked, set innodb_purge_rseg_truncate_frequency to 32.

3248

Tablespaces

mysql> SET GLOBAL innodb_purge_rseg_truncate_frequency=32;

Performance Impact of Truncating Undo Tablespace Files

When an undo tablespace is truncated, the rollback segments in the undo tablespace are deactivated.
The active rollback segments in other undo tablespaces assume responsibility for the entire system
load, which may result in a slight performance degradation. The extent to which performance is
affected depends on a number of factors:

• Number of undo tablespaces

• Number of undo logs

• Undo tablespace size

• Speed of the I/O subsystem

• Existing long running transactions

• System load

The easiest way to avoid the potential performance impact is to increase the number of undo
tablespaces.

Monitoring Undo Tablespace Truncation

As of MySQL 8.0.16, undo and purge subsystem counters are provided for monitoring background
activities associated with undo log truncation. For counter names and descriptions, query the
Information Schema INNODB_METRICS table.

SELECT NAME, SUBSYSTEM, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME LIKE '%truncate%';

For information about enabling counters and querying counter data, see Section 17.15.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

Undo Tablespace Truncation Limit

As of MySQL 8.0.21, the number of truncate operations on the same undo tablespace between
checkpoints is limited to 64. The limit prevents potential issues caused by an excessive number of
undo tablespace truncate operations, which can occur if innodb_max_undo_log_size is set too low
on a busy system, for example. If the limit is exceeded, an undo tablespace can still be made inactive,
but it is not truncated until after the next checkpoint. the limit was raised from 64 to 50,000 in MySQL
8.0.22.

Undo Tablespace Truncation Recovery

An undo tablespace truncate operation creates a temporary undo_space_number_trunc.log
file in the server log directory. That log directory is defined by innodb_log_group_home_dir. If a
system failure occurs during the truncate operation, the temporary log file permits the startup process
to identify undo tablespaces that were being truncated and to continue the operation.

Undo Tablespace Status Variables

The following status variables permit tracking the total number of undo tablespaces, implicit (InnoDB-
created) undo tablespaces, explicit (user-created) undo tablespaces, and the number of active undo
tablespaces:

mysql> SHOW STATUS LIKE 'Innodb_undo_tablespaces%';
+----------------------------------+-------+
| Variable_name | Value |
+----------------------------------+-------+

3249

Tablespaces

Innodb_undo_tablespaces_total	2
Innodb_undo_tablespaces_implicit	2
Innodb_undo_tablespaces_explicit	0
Innodb_undo_tablespaces_active	2
+----------------------------------+-------+

For status variable descriptions, see Section 7.1.10, “Server Status Variables”.

17.6.3.5 Temporary Tablespaces

InnoDB uses session temporary tablespaces and a global temporary tablespace.

Session Temporary Tablespaces

Session temporary tablespaces store user-created temporary tables and internal temporary tables
created by the optimizer when InnoDB is configured as the storage engine for on-disk internal
temporary tables. Beginning with MySQL 8.0.16, the storage engine used for on-disk internal
temporary tables is InnoDB. (Previously, the storage engine was determined by the value of
internal_tmp_disk_storage_engine.)

Session temporary tablespaces are allocated to a session from a pool of temporary tablespaces on
the first request to create an on-disk temporary table. A maximum of two tablespaces is allocated to
a session, one for user-created temporary tables and the other for internal temporary tables created
by the optimizer. The temporary tablespaces allocated to a session are used for all on-disk temporary
tables created by the session. When a session disconnects, its temporary tablespaces are truncated
and released back to the pool. A pool of 10 temporary tablespaces is created when the server is
started. The size of the pool never shrinks and tablespaces are added to the pool automatically as
necessary. The pool of temporary tablespaces is removed on normal shutdown or on an aborted
initialization. Session temporary tablespace files are five pages in size when created and have an .ibt
file name extension.

A range of 400 thousand space IDs is reserved for session temporary tablespaces. Because the pool
of session temporary tablespaces is recreated each time the server is started, space IDs for session
temporary tablespaces are not persisted when the server is shut down, and may be reused.

The innodb_temp_tablespaces_dir variable defines the location where session temporary
tablespaces are created. The default location is the #innodb_temp directory in the data directory.
Startup is refused if the pool of temporary tablespaces cannot be created.

$> cd BASEDIR/data/#innodb_temp
$> ls
temp_10.ibt temp_2.ibt temp_4.ibt temp_6.ibt temp_8.ibt
temp_1.ibt temp_3.ibt temp_5.ibt temp_7.ibt temp_9.ibt

In statement based replication (SBR) mode, temporary tables created on a replica reside in a single
session temporary tablespace that is truncated only when the MySQL server is shut down.

The INNODB_SESSION_TEMP_TABLESPACES table provides metadata about session temporary
tablespaces.

The Information Schema INNODB_TEMP_TABLE_INFO table provides metadata about user-created
temporary tables that are active in an InnoDB instance.

Global Temporary Tablespace

The global temporary tablespace (ibtmp1) stores rollback segments for changes made to user-
created temporary tables.

The innodb_temp_data_file_path variable defines the relative path, name, size, and attributes for
global temporary tablespace data files. If no value is specified for innodb_temp_data_file_path,

3250

Tablespaces

the default behavior is to create a single auto-extending data file named ibtmp1 in the
innodb_data_home_dir directory. The initial file size is slightly larger than 12MB.

The global temporary tablespace is removed on normal shutdown or on an aborted initialization, and
recreated each time the server is started. The global temporary tablespace receives a dynamically
generated space ID when it is created. Startup is refused if the global temporary tablespace cannot
be created. The global temporary tablespace is not removed if the server halts unexpectedly. In this
case, a database administrator can remove the global temporary tablespace manually or restart the
MySQL server. Restarting the MySQL server removes and recreates the global temporary tablespace
automatically.

The global temporary tablespace cannot reside on a raw device.

The Information Schema FILES table provides metadata about the global temporary tablespace. Issue
a query similar to this one to view global temporary tablespace metadata:

mysql> SELECT * FROM INFORMATION_SCHEMA.FILES WHERE TABLESPACE_NAME='innodb_temporary'\G

By default, the global temporary tablespace data file is autoextending and increases in size as
necessary.

To determine if a global temporary tablespace data file is autoextending, check the
innodb_temp_data_file_path setting:

mysql> SELECT @@innodb_temp_data_file_path;
+------------------------------+
| @@innodb_temp_data_file_path |
+------------------------------+
| ibtmp1:12M:autoextend |
+------------------------------+

To check the size of global temporary tablespace data files, examine the Information Schema FILES
table using a query similar to this one:

mysql> SELECT FILE_NAME, TABLESPACE_NAME, ENGINE, INITIAL_SIZE, TOTAL_EXTENTS*EXTENT_SIZE
 AS TotalSizeBytes, DATA_FREE, MAXIMUM_SIZE FROM INFORMATION_SCHEMA.FILES
 WHERE TABLESPACE_NAME = 'innodb_temporary'\G
*************************** 1. row ***************************
 FILE_NAME: ./ibtmp1
TABLESPACE_NAME: innodb_temporary
 ENGINE: InnoDB
 INITIAL_SIZE: 12582912
 TotalSizeBytes: 12582912
 DATA_FREE: 6291456
 MAXIMUM_SIZE: NULL

TotalSizeBytes shows the current size of the global temporary tablespace data file. For information
about other field values, see Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”.

Alternatively, check the global temporary tablespace data file size on your operating
system. The global temporary tablespace data file is located in the directory defined by the
innodb_temp_data_file_path variable.

To reclaim disk space occupied by a global temporary tablespace data file, restart the MySQL server.
Restarting the server removes and recreates the global temporary tablespace data file according to the
attributes defined by innodb_temp_data_file_path.

To limit the size of the global temporary tablespace data file, configure
innodb_temp_data_file_path to specify a maximum file size. For example:

[mysqld]
innodb_temp_data_file_path=ibtmp1:12M:autoextend:max:500M

Configuring innodb_temp_data_file_path requires restarting the server.

3251

Tablespaces

17.6.3.6 Moving Tablespace Files While the Server is Offline

The innodb_directories variable, which defines directories to scan at startup for tablespace
files, supports moving or restoring tablespace files to a new location while the server is offline. During
startup, discovered tablespace files are used instead those referenced in the data dictionary, and the
data dictionary is updated to reference the relocated files. If duplicate tablespace files are discovered
by the scan, startup fails with an error indicating that multiple files were found for the same tablespace
ID.

The directories defined by the innodb_data_home_dir, innodb_undo_directory, and datadir
variables are automatically appended to the innodb_directories argument value. These
directories are scanned at startup regardless of whether an innodb_directories setting is specified
explicitly. The implicit addition of these directories permits moving system tablespace files, the data
directory, or undo tablespace files without configuring the innodb_directories setting. However,
settings must be updated when directories change. For example, after relocating the data directory,
you must update the --datadir setting before restarting the server.

The innodb_directories variable can be specified in a startup command or MySQL option file.
Quotes are used around the argument value because a semicolon (;) is interpreted as a special
character by some command interpreters. (Unix shells treat it as a command terminator, for example.)

Startup command:

mysqld --innodb-directories="directory_path_1;directory_path_2"

MySQL option file:

[mysqld]
innodb_directories="directory_path_1;directory_path_2"

The following procedure is applicable to moving individual file-per-table and general tablespace files,
system tablespace files, undo tablespace files, or the data directory. Before moving files or directories,
review the usage notes that follow.

1. Stop the server.

2. Move the tablespace files or directories to the desired location.

3. Make the new directory known to InnoDB.

• If moving individual file-per-table or general tablespace files, add unknown directories to the
innodb_directories value.

• The directories defined by the innodb_data_home_dir, innodb_undo_directory, and
datadir variables are automatically appended to the innodb_directories argument
value, so you need not specify these.

• A file-per-table tablespace file can only be moved to a directory with same name as the
schema. For example, if the actor table belongs to the sakila schema, then the actor.ibd
data file can only be moved to a directory named sakila.

• General tablespace files cannot be moved to the data directory or a subdirectory of the data
directory.

• If moving system tablespace files, undo tablespaces, or the data directory, update the
innodb_data_home_dir, innodb_undo_directory, and datadir settings, as necessary.

4. Restart the server.

Usage Notes

• Wildcard expressions cannot be used in the innodb_directories argument value.

3252

Tablespaces

• The innodb_directories scan also traverses subdirectories of specified directories. Duplicate
directories and subdirectories are discarded from the list of directories to be scanned.

• innodb_directories supports moving InnoDB tablespace files. Moving files that belong to a
storage engine other than InnoDB is not supported. This restriction also applies when moving the
entire data directory.

• innodb_directories supports renaming of tablespace files when moving files to a scanned
directory. It also supports moving tablespaces files to other supported operating systems.

• When moving tablespace files to a different operating system, ensure that tablespace file names do
not include prohibited characters or characters with a special meaning on the destination system.

• When moving a data directory from a Windows operating system to a Linux operating system,
modify the binary log file paths in the binary log index file to use backward slashes instead of forward
slashes. By default, the binary log index file has the same base name as the binary log file, with the
extension '.index'. The location of the binary log index file is defined by --log-bin. The default
location is the data directory.

• If moving tablespace files to a different operating system introduces cross-platform replication, it
is the database administrator's responsibility to ensure proper replication of DDL statements that
contain platform-specific directories. Statements that permit specifying directories include CREATE
TABLE ... DATA DIRECTORY and CREATE TABLESPACE ... ADD DATAFILE.

• Add the directories of file-per-table and general tablespaces created with an absolute path or in a
location outside of the data directory to the innodb_directories setting. Otherwise, InnoDB is
not able to locate the files during recovery. For related information, see Tablespace Discovery During
Crash Recovery.

To view tablespace file locations, query the Information Schema FILES table:

mysql> SELECT TABLESPACE_NAME, FILE_NAME FROM INFORMATION_SCHEMA.FILES \G

17.6.3.7 Disabling Tablespace Path Validation

At startup, InnoDB scans directories defined by the innodb_directories variable for tablespace
files. The paths of discovered tablespace files are validated against the paths recorded in the data
dictionary. If the paths do not match, the paths in the data dictionary are updated.

The innodb_validate_tablespace_paths variable, introduced in MySQL 8.0.21, permits
disabling tablespace path validation. This feature is intended for environments where tablespace files
are not moved. Disabling path validation improves startup time on systems with a large number of
tablespace files. If log_error_verbosity is set to 3, the following message is printed at startup
when tablespace path validation is disabled:

[InnoDB] Skipping InnoDB tablespace path validation.
Manually moved tablespace files will not be detected!

Warning

Starting the server with tablespace path validation disabled after moving
tablespace files can lead to undefined behavior.

17.6.3.8 Optimizing Tablespace Space Allocation on Linux

As of MySQL 8.0.22, you can optimize how InnoDB allocates space to file-per-table and
general tablespaces on Linux. By default, when additional space is required, InnoDB allocates
pages to the tablespace and physically writes NULLs to those pages. This behavior can affect
performance if new pages are allocated frequently. As of MySQL 8.0.22, you can disable
innodb_extend_and_initialize on Linux systems to avoid physically writing NULLs to newly
allocated tablespace pages. When innodb_extend_and_initialize is disabled, space is

3253

Tablespaces

allocated to tablespace files using posix_fallocate() calls, which reserve space without physically
writing NULLs.

When pages are allocated using posix_fallocate() calls, the extension size is small by
default and pages are often allocated only a few at a time, which can cause fragmentation
and increase random I/O. To avoid this issue, increase the tablespace extension size when
enabling posix_fallocate() calls. Tablespace extension size can be increased up to 4GB
using the AUTOEXTEND_SIZE option. For more information, see Section 17.6.3.9, “Tablespace
AUTOEXTEND_SIZE Configuration”.

InnoDB writes a redo log record before allocating a new tablespace page. If a page allocation
operation is interrupted, the operation is replayed from the redo log record during recovery.
(A page allocation operation replayed from a redo log record physically writes NULLs to the
newly allocated page.) A redo log record is written before allocating a page regardless of the
innodb_extend_and_initialize setting.

On non-Linux systems and Windows, InnoDB allocates new pages to the tablespace and
physically writes NULLs to those pages, which is the default behavior. Attempting to disable
innodb_extend_and_initialize on those systems returns the following error:

Changing innodb_extend_and_initialize not supported on this platform.
Falling back to the default.

17.6.3.9 Tablespace AUTOEXTEND_SIZE Configuration

By default, when a file-per-table or general tablespace requires additional space, the tablespace is
extended incrementally according to the following rules:

• If the tablespace is less than an extent in size, it is extended one page at a time.

• If the tablespace is greater than 1 extent but smaller than 32 extents in size, it is extended one extent
at a time.

• If the tablespace is more than 32 extents in size, it is extended four extents at a time.

For information about extent size, see Section 17.11.2, “File Space Management”.

From MySQL 8.0.23, the amount by which a file-per-table or general tablespace is extended is
configurable by specifying the AUTOEXTEND_SIZE option. Configuring a larger extension size can help
avoid fragmentation and facilitate ingestion of large amounts of data.

To configure the extension size for a file-per-table tablespace, specify the AUTOEXTEND_SIZE size in a
CREATE TABLE or ALTER TABLE statement:

CREATE TABLE t1 (c1 INT) AUTOEXTEND_SIZE = 4M;

ALTER TABLE t1 AUTOEXTEND_SIZE = 8M;

To configure the extension size for a general tablespace, specify the AUTOEXTEND_SIZE size in a
CREATE TABLESPACE or ALTER TABLESPACE statement:

CREATE TABLESPACE ts1 AUTOEXTEND_SIZE = 4M;

ALTER TABLESPACE ts1 AUTOEXTEND_SIZE = 8M;

Note

The AUTOEXTEND_SIZE option can also be used when creating an undo
tablespace, but the extension behavior for undo tablespaces differs. For more
information, see Section 17.6.3.4, “Undo Tablespaces”.

3254

Tablespaces

The AUTOEXTEND_SIZE setting must be a multiple of 4M. Specifying an AUTOEXTEND_SIZE setting
that is not a multiple of 4M returns an error.

The AUTOEXTEND_SIZE default setting is 0, which causes the tablespace to be extended according to
the default behavior described above.

The maximum allowed AUTOEXTEND_SIZE is 4GB. The maximum tablespace size is described at
Section 17.22, “InnoDB Limits”.

The minimum AUTOEXTEND_SIZE setting depends on the InnoDB page size, as shown in the
following table:

InnoDB Page Size Minimum AUTOEXTEND_SIZE

4K 4M

8K 4M

16K 4M

32K 8M

64K 16M

The default InnoDB page size is 16K (16384 bytes). To determine the InnoDB page size for your
MySQL instance, query the innodb_page_size setting:

mysql> SELECT @@GLOBAL.innodb_page_size;
+---------------------------+
| @@GLOBAL.innodb_page_size |
+---------------------------+
| 16384 |
+---------------------------+

When the AUTOEXTEND_SIZE setting for a tablespace is altered, the first extension that occurs
afterward increases the tablespace size to a multiple of the AUTOEXTEND_SIZE setting. Subsequent
extensions are of the configured size.

When a file-per-table or general tablespace is created with a non-zero AUTOEXTEND_SIZE setting, the
tablespace is initialized at the specified AUTOEXTEND_SIZE size.

ALTER TABLESPACE cannot be used to configure the AUTOEXTEND_SIZE of a file-per-table
tablespace. ALTER TABLE must be used.

For tables created in file-per-table tablespaces, SHOW CREATE TABLE shows the AUTOEXTEND_SIZE
option only when it is configured to a non-zero value.

To determine the AUTOEXTEND_SIZE for any InnoDB tablespace, query the Information Schema
INNODB_TABLESPACES table. For example:

mysql> SELECT NAME, AUTOEXTEND_SIZE FROM INFORMATION_SCHEMA.INNODB_TABLESPACES
 WHERE NAME LIKE 'test/t1';
+---------+-----------------+
| NAME | AUTOEXTEND_SIZE |
+---------+-----------------+
| test/t1 | 4194304 |
+---------+-----------------+

mysql> SELECT NAME, AUTOEXTEND_SIZE FROM INFORMATION_SCHEMA.INNODB_TABLESPACES
 WHERE NAME LIKE 'ts1';
+------+-----------------+
| NAME | AUTOEXTEND_SIZE |
+------+-----------------+
| ts1 | 4194304 |
+------+-----------------+

3255

Doublewrite Buffer

Note

An AUTOEXTEND_SIZE of 0, which is the default setting, means that the
tablespace is extended according to the default tablespace extension behavior
described above.

17.6.4 Doublewrite Buffer

The doublewrite buffer is a storage area where InnoDB writes pages flushed from the buffer pool
before writing the pages to their proper positions in the InnoDB data files. If there is an operating
system, storage subsystem, or unexpected mysqld process exit in the middle of a page write, InnoDB
can find a good copy of the page from the doublewrite buffer during crash recovery.

Although data is written twice, the doublewrite buffer does not require twice as much I/O overhead or
twice as many I/O operations. Data is written to the doublewrite buffer in a large sequential chunk, with
a single fsync() call to the operating system (except in the case that innodb_flush_method is set
to O_DIRECT_NO_FSYNC).

Prior to MySQL 8.0.20, the doublewrite buffer storage area is located in the InnoDB system
tablespace. As of MySQL 8.0.20, the doublewrite buffer storage area is located in doublewrite files.

The following variables are provided for doublewrite buffer configuration:

• innodb_doublewrite

The innodb_doublewrite variable controls whether the doublewrite buffer is enabled. It is
enabled by default in most cases. To disable the doublewrite buffer, set innodb_doublewrite
to OFF. Consider disabling the doublewrite buffer if you are more concerned with performance than
data integrity, as may be the case when performing benchmarks, for example.

From MySQL 8.0.30, innodb_doublewrite supports DETECT_AND_RECOVER and DETECT_ONLY
settings.

The DETECT_AND_RECOVER setting is the same as the ON setting. With this setting, the doublewrite
buffer is fully enabled, with database page content written to the doublewrite buffer where it is
accessed during recovery to fix incomplete page writes.

With the DETECT_ONLY setting, only metadata is written to the doublewrite buffer. Database page
content is not written to the doublewrite buffer, and recovery does not use the doublewrite buffer to
fix incomplete page writes. This lightweight setting is intended for detecting incomplete page writes
only.

MySQL 8.0.30 onwards supports dynamic changes to the innodb_doublewrite setting that
enables the doublewrite buffer, between ON, DETECT_AND_RECOVER, and DETECT_ONLY. MySQL
does not support dynamic changes between a setting that enables the doublewrite buffer and OFF or
vice versa.

If the doublewrite buffer is located on a Fusion-io device that supports atomic writes, the doublewrite
buffer is automatically disabled and data file writes are performed using Fusion-io atomic writes
instead. However, be aware that the innodb_doublewrite setting is global. When the doublewrite
buffer is disabled, it is disabled for all data files including those that do not reside on Fusion-io
hardware. This feature is only supported on Fusion-io hardware and is only enabled for Fusion-
io NVMFS on Linux. To take full advantage of this feature, an innodb_flush_method setting of
O_DIRECT is recommended.

• innodb_doublewrite_dir

The innodb_doublewrite_dir variable (introduced in MySQL 8.0.20) defines the directory where
InnoDB creates doublewrite files. If no directory is specified, doublewrite files are created in the
innodb_data_home_dir directory, which defaults to the data directory if unspecified.

3256

Redo Log

A hash symbol '#' is automatically prefixed to the specified directory name to avoid conflicts with
schema names. However, if a '.', '#'. or '/' prefix is specified explicitly in the directory name, the hash
symbol '#' is not prefixed to the directory name.

Ideally, the doublewrite directory should be placed on the fastest storage media available.

• innodb_doublewrite_files

The innodb_doublewrite_files variable defines the number of doublewrite files. By default, two
doublewrite files are created for each buffer pool instance: A flush list doublewrite file and an LRU list
doublewrite file.

The flush list doublewrite file is for pages flushed from the buffer pool flush list. The default size of a
flush list doublewrite file is the InnoDB page size * doublewrite page bytes.

The LRU list doublewrite file is for pages flushed from the buffer pool LRU list. It also contains slots
for single page flushes. The default size of an LRU list doublewrite file is the InnoDB page size *
(doublewrite pages + (512 / the number of buffer pool instances)) where 512 is the total number of
slots reserved for single page flushes.

At a minimum, there are two doublewrite files. The maximum number of doublewrite files is two
times the number of buffer pool instances. (The number of buffer pool instances is controlled by the
innodb_buffer_pool_instances variable.)

Doublewrite file names have the following format: #ib_page_size_file_number.dblwr (or
.bdblwr with the DETECT_ONLY setting). For example, the following doublewrite files are created
for a MySQL instance with an InnoDB pages size of 16KB and a single buffer pool:

#ib_16384_0.dblwr
#ib_16384_1.dblwr

The innodb_doublewrite_files variable is intended for advanced performance tuning. The
default setting should be suitable for most users.

• innodb_doublewrite_pages

The innodb_doublewrite_pages variable (introduced in MySQL 8.0.20) controls the maximum
number of doublewrite pages per thread. If no value is specified, innodb_doublewrite_pages is
set to the innodb_write_io_threads value. This variable is intended for advanced performance
tuning. The default value should be suitable for most users.

As of MySQL 8.0.23, InnoDB automatically encrypts doublewrite file pages that belong to encrypted
tablespaces (see Section 17.13, “InnoDB Data-at-Rest Encryption”). Likewise, doublewrite file pages
belonging to page-compressed tablespaces are compressed. As a result, doublewrite files can contain
different page types including unencrypted and uncompressed pages, encrypted pages, compressed
pages, and pages that are both encrypted and compressed.

17.6.5 Redo Log

The redo log is a disk-based data structure used during crash recovery to correct data written by
incomplete transactions. During normal operations, the redo log encodes requests to change table
data that result from SQL statements or low-level API calls. Modifications that did not finish updating
data files before an unexpected shutdown are replayed automatically during initialization and before
connections are accepted. For information about the role of the redo log in crash recovery, see
Section 17.18.2, “InnoDB Recovery”.

The redo log is physically represented on disk by redo log files. Data that is written to redo log files is
encoded in terms of records affected, and this data is collectively referred to as redo. The passage of
data through redo log files is represented by an ever-increasing LSN value. Redo log data is appended
as data modifications occur, and the oldest data is truncated as the checkpoint progresses.

3257

Redo Log

Information and procedures related to redo logs are described under the following topics in the section:

• Configuring Redo Log Capacity (MySQL 8.0.30 or Higher)

• Configuring Redo Log Capacity (Before MySQL 8.0.30)

• Automatic Redo Log Capacity Configuration

• Redo Log Archiving

• Disabling Redo Logging

• Related Topics

Configuring Redo Log Capacity (MySQL 8.0.30 or Higher)

From MySQL 8.0.30, the innodb_redo_log_capacity system variable controls the amount of disk
space occupied by redo log files. You can set this variable in an option file at startup or at runtime using
a SET GLOBAL statement; for example, the following statement sets the redo log capacity to 8GB:

SET GLOBAL innodb_redo_log_capacity = 8589934592;

When set at runtime, the configuration change occurs immediately but it may take some time for the
new limit to be fully implemented. If the redo log files occupy less space than the specified value, dirty
pages are flushed from the buffer pool to tablespace data files less aggressively, eventually increasing
the disk space occupied by the redo log files. If the redo log files occupy more space than the specified
value, dirty pages are flushed more aggressively, eventually decreasing the disk space occupied by
redo log files.

If innodb_redo_log_capacity is not defined, and if neither innodb_log_file_size or
innodb_log_files_in_group are defined, then the default innodb_redo_log_capacity value
is used.

If innodb_redo_log_capacity is not defined, and if innodb_log_file_size and/or
innodb_log_files_in_group is defined, then the InnoDB redo log capacity is calculated as
(innodb_log_files_in_group * innodb_log_file_size). This calculation does not modify the unused
innodb_redo_log_capacity setting's value.

The Innodb_redo_log_capacity_resized server status variable indicates the total redo log
capacity for all redo log files.

Redo log files reside in the #innodb_redo directory in the data directory unless a different directory
was specified by the innodb_log_group_home_dir variable. If innodb_log_group_home_dir
was defined, the redo log files reside in the #innodb_redo directory in that directory. There are two
types of redo log files, ordinary and spare. Ordinary redo log files are those being used. Spare redo
log files are those waiting to be used. InnoDB tries to maintain 32 redo log files in total, with each file
equal in size to 1/32 * innodb_redo_log_capacity; however, file sizes may differ for a time after
modifying the innodb_redo_log_capacity setting.

Redo log files use an #ib_redoN naming convention, where N is the redo log file number. Spare
redo log files are denoted by a _tmp suffix. The following example shows the redo log files in an
#innodb_redo directory, where there are 21 active redo log files and 11 spare redo log files,
numbered sequentially.

'#ib_redo582' '#ib_redo590' '#ib_redo598' '#ib_redo606_tmp'
'#ib_redo583' '#ib_redo591' '#ib_redo599' '#ib_redo607_tmp'
'#ib_redo584' '#ib_redo592' '#ib_redo600' '#ib_redo608_tmp'
'#ib_redo585' '#ib_redo593' '#ib_redo601' '#ib_redo609_tmp'
'#ib_redo586' '#ib_redo594' '#ib_redo602' '#ib_redo610_tmp'
'#ib_redo587' '#ib_redo595' '#ib_redo603_tmp' '#ib_redo611_tmp'
'#ib_redo588' '#ib_redo596' '#ib_redo604_tmp' '#ib_redo612_tmp'
'#ib_redo589' '#ib_redo597' '#ib_redo605_tmp' '#ib_redo613_tmp'

3258

Redo Log

Each ordinary redo log file is associated with a particular range of LSN values; for example, the
following query shows the START_LSN and END_LSN values for the active redo log files listed in the
previous example:

mysql> SELECT FILE_NAME, START_LSN, END_LSN FROM performance_schema.innodb_redo_log_files;
+----------------------------+--------------+--------------+
| FILE_NAME | START_LSN | END_LSN |
+----------------------------+--------------+--------------+
./#innodb_redo/#ib_redo582	117654982144	117658256896
./#innodb_redo/#ib_redo583	117658256896	117661531648
./#innodb_redo/#ib_redo584	117661531648	117664806400
./#innodb_redo/#ib_redo585	117664806400	117668081152
./#innodb_redo/#ib_redo586	117668081152	117671355904
./#innodb_redo/#ib_redo587	117671355904	117674630656
./#innodb_redo/#ib_redo588	117674630656	117677905408
./#innodb_redo/#ib_redo589	117677905408	117681180160
./#innodb_redo/#ib_redo590	117681180160	117684454912
./#innodb_redo/#ib_redo591	117684454912	117687729664
./#innodb_redo/#ib_redo592	117687729664	117691004416
./#innodb_redo/#ib_redo593	117691004416	117694279168
./#innodb_redo/#ib_redo594	117694279168	117697553920
./#innodb_redo/#ib_redo595	117697553920	117700828672
./#innodb_redo/#ib_redo596	117700828672	117704103424
./#innodb_redo/#ib_redo597	117704103424	117707378176
./#innodb_redo/#ib_redo598	117707378176	117710652928
./#innodb_redo/#ib_redo599	117710652928	117713927680
./#innodb_redo/#ib_redo600	117713927680	117717202432
./#innodb_redo/#ib_redo601	117717202432	117720477184
./#innodb_redo/#ib_redo602	117720477184	117723751936
+----------------------------+--------------+--------------+

When doing a checkpoint, InnoDB stores the checkpoint LSN in the header of the file which contains
this LSN. During recovery, all redo log files are checked and recovery starts at the latest checkpoint
LSN.

Several status variables are provided for monitoring the redo log and redo log capacity resize
operations; for example, you can query Innodb_redo_log_resize_status to view the status of a
resize operation:

mysql> SHOW STATUS LIKE 'Innodb_redo_log_resize_status';
+-------------------------------+-------+
| Variable_name | Value |
+-------------------------------+-------+
| Innodb_redo_log_resize_status | OK |
+-------------------------------+-------+

The Innodb_redo_log_capacity_resized status variable shows the current redo log capacity
limit:

mysql> SHOW STATUS LIKE 'Innodb_redo_log_capacity_resized';
 +----------------------------------+-----------+
| Variable_name | Value |
+----------------------------------+-----------+
| Innodb_redo_log_capacity_resized | 104857600 |
+----------------------------------+-----------+

Other applicable status variables include:

• Innodb_redo_log_checkpoint_lsn

• Innodb_redo_log_current_lsn

• Innodb_redo_log_flushed_to_disk_lsn

• Innodb_redo_log_logical_size

• Innodb_redo_log_physical_size

• Innodb_redo_log_read_only

3259

Redo Log

• Innodb_redo_log_uuid

Refer to the status variable descriptions for more information.

You can view information about active redo log files by querying the innodb_redo_log_files
Performance Schema table. The following query retrieves data from all of the table's columns:

SELECT FILE_ID, START_LSN, END_LSN, SIZE_IN_BYTES, IS_FULL, CONSUMER_LEVEL
FROM performance_schema.innodb_redo_log_files;

Configuring Redo Log Capacity (Before MySQL 8.0.30)

Prior to MySQL 8.0.30, InnoDB creates two redo log files in the data directory by default, named
ib_logfile0 and ib_logfile1, and writes to these files in a circular fashion.

Modifying redo log capacity requires changing the number or the size of redo log files, or both.

1. Stop the MySQL server and make sure that it shuts down without errors.

2. Edit my.cnf to change the redo log file configuration. To change the redo log file size,
configure innodb_log_file_size. To increase the number of redo log files, configure
innodb_log_files_in_group.

3. Start the MySQL server again.

If InnoDB detects that the innodb_log_file_size differs from the redo log file size, it writes a log
checkpoint, closes and removes the old log files, creates new log files at the requested size, and opens
the new log files.

Automatic Redo Log Capacity Configuration

When the server is started with --innodb-dedicated-server, InnoDB automatically calculates
and sets values for certain InnoDB parameters, including redo log capacity. Automated configuration
is intended for MySQL instances that reside on a server dedicated to MySQL, where the MySQL
server can use all available system resources. For more information, see Section 17.8.12, “Enabling
Automatic InnoDB Configuration for a Dedicated MySQL Server”.

Redo Log Archiving

Backup utilities that copy redo log records may sometimes fail to keep pace with redo log generation
while a backup operation is in progress, resulting in lost redo log records due to those records being
overwritten. This issue most often occurs when there is significant MySQL server activity during the
backup operation, and the redo log file storage media operates at a faster speed than the backup
storage media. The redo log archiving feature, introduced in MySQL 8.0.17, addresses this issue by
sequentially writing redo log records to an archive file in addition to the redo log files. Backup utilities
can copy redo log records from the archive file as necessary, thereby avoiding the potential loss of
data.

If redo log archiving is configured on the server, MySQL Enterprise Backup, available with the MySQL
Enterprise Edition, uses the redo log archiving feature when backing up a MySQL server.

Enabling redo log archiving on the server requires setting a value for the
innodb_redo_log_archive_dirs system variable. The value is specified as a semicolon-
separated list of labeled redo log archive directories. The label:directory pair is separated by a
colon (:). For example:

mysql> SET GLOBAL innodb_redo_log_archive_dirs='label1:directory_path1[;label2:directory_path2;…]';

The label is an arbitrary identifier for the archive directory. It can be any string of characters, with the
exception of colons (:), which are not permitted. An empty label is also permitted, but the colon (:) is

3260

https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/
https://www.mysql.com/products/enterprise/
https://www.mysql.com/products/enterprise/

Redo Log

still required in this case. A directory_path must be specified. The directory selected for the redo
log archive file must exist when redo log archiving is activated, or an error is returned. The path can
contain colons (':'), but semicolons (;) are not permitted.

The innodb_redo_log_archive_dirs variable must be configured before redo log archiving can
be activated. The default value is NULL, which does not permit activating redo log archiving.

Notes

The archive directories that you specify must satisfy the following requirements.
(The requirements are enforced when redo log archiving is activated.):

• Directories must exist. Directories are not created by the redo log archive
process. Otherwise, the following error is returned:

ERROR 3844 (HY000): Redo log archive directory
'directory_path1' does not exist or is not a directory

• Directories must not be world-accessible. This is to prevent the redo log data
from being exposed to unauthorized users on the system. Otherwise, the
following error is returned:

ERROR 3846 (HY000): Redo log archive directory
'directory_path1' is accessible to all OS users

• Directories cannot be those defined by datadir, innodb_data_home_dir,
innodb_directories, innodb_log_group_home_dir,
innodb_temp_tablespaces_dir, innodb_tmpdir
innodb_undo_directory, or secure_file_priv, nor can they be parent
directories or subdirectories of those directories. Otherwise, an error similar to
the following is returned:

ERROR 3845 (HY000): Redo log archive directory
'directory_path1' is in, under, or over server directory
'datadir' - '/path/to/data_directory'

When a backup utility that supports redo log archiving initiates a backup, the backup utility activates
redo log archiving by invoking the innodb_redo_log_archive_start() function.

If you are not using a backup utility that supports redo log archiving, redo log archiving can also be
activated manually, as shown:

mysql> SELECT innodb_redo_log_archive_start('label', 'subdir');
+--+
| innodb_redo_log_archive_start('label') |
+--+
| 0 |
+--+

Or:

mysql> DO innodb_redo_log_archive_start('label', 'subdir');
Query OK, 0 rows affected (0.09 sec)

Note

The MySQL session that activates redo log archiving (using
innodb_redo_log_archive_start()) must remain open for the duration
of the archiving. The same session must deactivate redo log archiving (using
innodb_redo_log_archive_stop()). If the session is terminated before
the redo log archiving is explicitly deactivated, the server deactivates redo log
archiving implicitly and removes the redo log archive file.

3261

Redo Log

where label is a label defined by innodb_redo_log_archive_dirs; subdir is an optional
argument for specifying a subdirectory of the directory identified by label for saving the archive file; it
must be a simple directory name (no slash (/), backslash (\), or colon (:) is permitted). subdir can be
empty, null, or it can be left out.

Only users with the INNODB_REDO_LOG_ARCHIVE privilege can activate redo log
archiving by invoking innodb_redo_log_archive_start(), or deactivate it using
innodb_redo_log_archive_stop(). The MySQL user running the backup utility or the MySQL
user activating and deactivating redo log archiving manually must have this privilege.

The redo log archive file path is directory_identified_by_label/
[subdir/]archive.serverUUID.000001.log, where directory_identified_by_label is
the archive directory identified by the label argument for innodb_redo_log_archive_start().
subdir is the optional argument used for innodb_redo_log_archive_start().

For example, the full path and name for a redo log archive file appears similar to the following:

/directory_path/subdirectory/archive.e71a47dc-61f8-11e9-a3cb-080027154b4d.000001.log

After the backup utility finishes copying InnoDB data files, it deactivates redo log archiving by calling
the innodb_redo_log_archive_stop() function.

If you are not using a backup utility that supports redo log archiving, redo log archiving can also be
deactivated manually, as shown:

mysql> SELECT innodb_redo_log_archive_stop();
+--------------------------------+
| innodb_redo_log_archive_stop() |
+--------------------------------+
| 0 |
+--------------------------------+

Or:

mysql> DO innodb_redo_log_archive_stop();
Query OK, 0 rows affected (0.01 sec)

After the stop function completes successfully, the backup utility looks for the relevant section of redo
log data from the archive file and copies it into the backup.

After the backup utility finishes copying the redo log data and no longer needs the redo log archive file,
it deletes the archive file.

Removal of the archive file is the responsibility of the backup utility in normal situations. However, if
the redo log archiving operation quits unexpectedly before innodb_redo_log_archive_stop() is
called, the MySQL server removes the file.

Performance Considerations

Activating redo log archiving typically has a minor performance cost due to the additional write activity.

On Unix and Unix-like operating systems, the performance impact is typically minor, assuming there
is not a sustained high rate of updates. On Windows, the performance impact is typically a bit higher,
assuming the same.

If there is a sustained high rate of updates and the redo log archive file is on the same storage media
as the redo log files, the performance impact may be more significant due to compounded write activity.

If there is a sustained high rate of updates and the redo log archive file is on slower storage media than
the redo log files, performance is impacted arbitrarily.

Writing to the redo log archive file does not impede normal transactional logging except in the case that
the redo log archive file storage media operates at a much slower rate than the redo log file storage

3262

Redo Log

media, and there is a large backlog of persisted redo log blocks waiting to be written to the redo log
archive file. In this case, the transactional logging rate is reduced to a level that can be managed by the
slower storage media where the redo log archive file resides.

Disabling Redo Logging

As of MySQL 8.0.21, you can disable redo logging using the ALTER INSTANCE DISABLE INNODB
REDO_LOG statement. This functionality is intended for loading data into a new MySQL instance.
Disabling redo logging speeds up data loading by avoiding redo log writes and doublewrite buffering.

Warning

This feature is intended only for loading data into a new MySQL instance. Do
not disable redo logging on a production system. It is permitted to shutdown
and restart the server while redo logging is disabled, but an unexpected server
stoppage while redo logging is disabled can cause data loss and instance
corruption.

Attempting to restart the server after an unexpected server stoppage while redo
logging is disabled is refused with the following error:

[ERROR] [MY-013598] [InnoDB] Server was killed when Innodb Redo
logging was disabled. Data files could be corrupt. You can try
to restart the database with innodb_force_recovery=6

In this case, initialize a new MySQL instance and start the data loading
procedure again.

The INNODB_REDO_LOG_ENABLE privilege is required to enable and disable redo logging.

The Innodb_redo_log_enabled status variable permits monitoring redo logging status.

Cloning operations and redo log archiving are not permitted while redo logging is disabled and vice
versa.

An ALTER INSTANCE [ENABLE|DISABLE] INNODB REDO_LOG operation requires an exclusive
backup metadata lock, which prevents other ALTER INSTANCE operations from executing
concurrently. Other ALTER INSTANCE operations must wait for the lock to be released before
executing.

The following procedure demonstrates how to disable redo logging when loading data into a new
MySQL instance.

1. On the new MySQL instance, grant the INNODB_REDO_LOG_ENABLE privilege to the user account
responsible for disabling redo logging.

mysql> GRANT INNODB_REDO_LOG_ENABLE ON *.* to 'data_load_admin';

2. As the data_load_admin user, disable redo logging:

mysql> ALTER INSTANCE DISABLE INNODB REDO_LOG;

3. Check the Innodb_redo_log_enabled status variable to ensure that redo logging is disabled.

mysql> SHOW GLOBAL STATUS LIKE 'Innodb_redo_log_enabled';
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Innodb_redo_log_enabled | OFF |
+-------------------------+-------+

4. Run the data load operation.

5. As the data_load_admin user, enable redo logging after the data load operation finishes:

3263

Undo Logs

mysql> ALTER INSTANCE ENABLE INNODB REDO_LOG;

6. Check the Innodb_redo_log_enabled status variable to ensure that redo logging is enabled.

mysql> SHOW GLOBAL STATUS LIKE 'Innodb_redo_log_enabled';
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
| Innodb_redo_log_enabled | ON |
+-------------------------+-------+

Related Topics

• Redo Log Configuration

• Section 10.5.4, “Optimizing InnoDB Redo Logging”

• Redo Log Encryption

17.6.6 Undo Logs

An undo log is a collection of undo log records associated with a single read-write transaction. An
undo log record contains information about how to undo the latest change by a transaction to a
clustered index record. If another transaction needs to see the original data as part of a consistent
read operation, the unmodified data is retrieved from undo log records. Undo logs exist within undo
log segments, which are contained within rollback segments. Rollback segments reside in undo
tablespaces and in the global temporary tablespace.

Undo logs that reside in the global temporary tablespace are used for transactions that modify data in
user-defined temporary tables. These undo logs are not redo-logged, as they are not required for crash
recovery. They are used only for rollback while the server is running. This type of undo log benefits
performance by avoiding redo logging I/O.

For information about data-at-rest encryption for undo logs, see Undo Log Encryption.

Each undo tablespace and the global temporary tablespace individually support a maximum of 128
rollback segments. The innodb_rollback_segments variable defines the number of rollback
segments.

The number of transactions that a rollback segment supports depends on the number of undo slots in
the rollback segment and the number of undo logs required by each transaction. The number of undo
slots in a rollback segment differs according to InnoDB page size.

InnoDB Page Size Number of Undo Slots in a Rollback Segment
(InnoDB Page Size / 16)

4096 (4KB) 256

8192 (8KB) 512

16384 (16KB) 1024

32768 (32KB) 2048

65536 (64KB) 4096

A transaction is assigned up to four undo logs, one for each of the following operation types:

1. INSERT operations on user-defined tables

2. UPDATE and DELETE operations on user-defined tables

3. INSERT operations on user-defined temporary tables

4. UPDATE and DELETE operations on user-defined temporary tables

3264

InnoDB Locking and Transaction Model

Undo logs are assigned as needed. For example, a transaction that performs INSERT, UPDATE, and
DELETE operations on regular and temporary tables requires a full assignment of four undo logs. A
transaction that performs only INSERT operations on regular tables requires a single undo log.

A transaction that performs operations on regular tables is assigned undo logs from an assigned undo
tablespace rollback segment. A transaction that performs operations on temporary tables is assigned
undo logs from an assigned global temporary tablespace rollback segment.

An undo log assigned to a transaction remains attached to the transaction for its duration. For example,
an undo log assigned to a transaction for an INSERT operation on a regular table is used for all
INSERT operations on regular tables performed by that transaction.

Given the factors described above, the following formulas can be used to estimate the number of
concurrent read-write transactions that InnoDB is capable of supporting.

Note

It is possible to encounter a concurrent transaction limit error before reaching
the number of concurrent read-write transactions that InnoDB is capable of
supporting. This occurs when a rollback segment assigned to a transaction runs
out of undo slots. In such cases, try rerunning the transaction.

When transactions perform operations on temporary tables, the number of
concurrent read-write transactions that InnoDB is capable of supporting
is constrained by the number of rollback segments allocated to the global
temporary tablespace, which is 128 by default.

• If each transaction performs either an INSERT or an UPDATE or DELETE operation, the number of
concurrent read-write transactions that InnoDB is capable of supporting is:

(innodb_page_size / 16) * innodb_rollback_segments * number of undo tablespaces

• If each transaction performs an INSERT and an UPDATE or DELETE operation, the number of
concurrent read-write transactions that InnoDB is capable of supporting is:

(innodb_page_size / 16 / 2) * innodb_rollback_segments * number of undo tablespaces

• If each transaction performs an INSERT operation on a temporary table, the number of concurrent
read-write transactions that InnoDB is capable of supporting is:

(innodb_page_size / 16) * innodb_rollback_segments

• If each transaction performs an INSERT and an UPDATE or DELETE operation on a temporary table,
the number of concurrent read-write transactions that InnoDB is capable of supporting is:

(innodb_page_size / 16 / 2) * innodb_rollback_segments

17.7 InnoDB Locking and Transaction Model

To implement a large-scale, busy, or highly reliable database application, to port substantial code from
a different database system, or to tune MySQL performance, it is important to understand InnoDB
locking and the InnoDB transaction model.

This section discusses several topics related to InnoDB locking and the InnoDB transaction model
with which you should be familiar.

• Section 17.7.1, “InnoDB Locking” describes lock types used by InnoDB.

• Section 17.7.2, “InnoDB Transaction Model” describes transaction isolation levels and the locking
strategies used by each. It also discusses the use of autocommit, consistent non-locking reads,
and locking reads.

3265

InnoDB Locking

• Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB” discusses specific types of locks
set in InnoDB for various statements.

• Section 17.7.4, “Phantom Rows” describes how InnoDB uses next-key locking to avoid phantom
rows.

• Section 17.7.5, “Deadlocks in InnoDB” provides a deadlock example, discusses deadlock detection,
and provides tips for minimizing and handling deadlocks in InnoDB.

17.7.1 InnoDB Locking

This section describes lock types used by InnoDB.

• Shared and Exclusive Locks

• Intention Locks

• Record Locks

• Gap Locks

• Next-Key Locks

• Insert Intention Locks

• AUTO-INC Locks

• Predicate Locks for Spatial Indexes

Shared and Exclusive Locks

InnoDB implements standard row-level locking where there are two types of locks, shared (S) locks
and exclusive (X) locks.

• A shared (S) lock permits the transaction that holds the lock to read a row.

• An exclusive (X) lock permits the transaction that holds the lock to update or delete a row.

If transaction T1 holds a shared (S) lock on row r, then requests from some distinct transaction T2 for
a lock on row r are handled as follows:

• A request by T2 for an S lock can be granted immediately. As a result, both T1 and T2 hold an S lock
on r.

• A request by T2 for an X lock cannot be granted immediately.

If a transaction T1 holds an exclusive (X) lock on row r, a request from some distinct transaction T2
for a lock of either type on r cannot be granted immediately. Instead, transaction T2 has to wait for
transaction T1 to release its lock on row r.

Intention Locks

InnoDB supports multiple granularity locking which permits coexistence of row locks and table locks.
For example, a statement such as LOCK TABLES ... WRITE takes an exclusive lock (an X lock)
on the specified table. To make locking at multiple granularity levels practical, InnoDB uses intention
locks. Intention locks are table-level locks that indicate which type of lock (shared or exclusive) a
transaction requires later for a row in a table. There are two types of intention locks:

• An intention shared lock (IS) indicates that a transaction intends to set a shared lock on individual
rows in a table.

• An intention exclusive lock (IX) indicates that a transaction intends to set an exclusive lock on
individual rows in a table.

3266

InnoDB Locking

For example, SELECT ... FOR SHARE sets an IS lock, and SELECT ... FOR UPDATE sets an IX
lock.

The intention locking protocol is as follows:

• Before a transaction can acquire a shared lock on a row in a table, it must first acquire an IS lock or
stronger on the table.

• Before a transaction can acquire an exclusive lock on a row in a table, it must first acquire an IX lock
on the table.

Table-level lock type compatibility is summarized in the following matrix.

X IX S IS

X Conflict Conflict Conflict Conflict

IX Conflict Compatible Conflict Compatible

S Conflict Conflict Compatible Compatible

IS Conflict Compatible Compatible Compatible

A lock is granted to a requesting transaction if it is compatible with existing locks, but not if it conflicts
with existing locks. A transaction waits until the conflicting existing lock is released. If a lock request
conflicts with an existing lock and cannot be granted because it would cause deadlock, an error occurs.

Intention locks do not block anything except full table requests (for example, LOCK TABLES ...
WRITE). The main purpose of intention locks is to show that someone is locking a row, or going to lock
a row in the table.

Transaction data for an intention lock appears similar to the following in SHOW ENGINE INNODB
STATUS and InnoDB monitor output:

TABLE LOCK table `test`.`t` trx id 10080 lock mode IX

Record Locks

A record lock is a lock on an index record. For example, SELECT c1 FROM t WHERE c1 = 10 FOR
UPDATE; prevents any other transaction from inserting, updating, or deleting rows where the value of
t.c1 is 10.

Record locks always lock index records, even if a table is defined with no indexes. For such cases,
InnoDB creates a hidden clustered index and uses this index for record locking. See Section 17.6.2.1,
“Clustered and Secondary Indexes”.

Transaction data for a record lock appears similar to the following in SHOW ENGINE INNODB STATUS
and InnoDB monitor output:

RECORD LOCKS space id 58 page no 3 n bits 72 index `PRIMARY` of table `test`.`t`
trx id 10078 lock_mode X locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 8000000a; asc ;;
 1: len 6; hex 00000000274f; asc 'O;;
 2: len 7; hex b60000019d0110; asc ;;

Gap Locks

A gap lock is a lock on a gap between index records, or a lock on the gap before the first or after
the last index record. For example, SELECT c1 FROM t WHERE c1 BETWEEN 10 and 20 FOR
UPDATE; prevents other transactions from inserting a value of 15 into column t.c1, whether or not
there was already any such value in the column, because the gaps between all existing values in the
range are locked.

3267

InnoDB Locking

A gap might span a single index value, multiple index values, or even be empty.

Gap locks are part of the tradeoff between performance and concurrency, and are used in some
transaction isolation levels and not others.

Gap locking is not needed for statements that lock rows using a unique index to search for a unique
row. (This does not include the case that the search condition includes only some columns of a
multiple-column unique index; in that case, gap locking does occur.) For example, if the id column has
a unique index, the following statement uses only an index-record lock for the row having id value 100
and it does not matter whether other sessions insert rows in the preceding gap:

SELECT * FROM child WHERE id = 100;

If id is not indexed or has a nonunique index, the statement does lock the preceding gap.

It is also worth noting here that conflicting locks can be held on a gap by different transactions. For
example, transaction A can hold a shared gap lock (gap S-lock) on a gap while transaction B holds an
exclusive gap lock (gap X-lock) on the same gap. The reason conflicting gap locks are allowed is that
if a record is purged from an index, the gap locks held on the record by different transactions must be
merged.

Gap locks in InnoDB are “purely inhibitive”, which means that their only purpose is to prevent other
transactions from inserting to the gap. Gap locks can co-exist. A gap lock taken by one transaction
does not prevent another transaction from taking a gap lock on the same gap. There is no difference
between shared and exclusive gap locks. They do not conflict with each other, and they perform the
same function.

Gap locking can be disabled explicitly. This occurs if you change the transaction isolation level to READ
COMMITTED. In this case, gap locking is disabled for searches and index scans and is used only for
foreign-key constraint checking and duplicate-key checking.

There are also other effects of using the READ COMMITTED isolation level. Record locks for
nonmatching rows are released after MySQL has evaluated the WHERE condition. For UPDATE
statements, InnoDB does a “semi-consistent” read, such that it returns the latest committed version to
MySQL so that MySQL can determine whether the row matches the WHERE condition of the UPDATE.

Next-Key Locks

A next-key lock is a combination of a record lock on the index record and a gap lock on the gap before
the index record.

InnoDB performs row-level locking in such a way that when it searches or scans a table index, it sets
shared or exclusive locks on the index records it encounters. Thus, the row-level locks are actually
index-record locks. A next-key lock on an index record also affects the “gap” before that index record.
That is, a next-key lock is an index-record lock plus a gap lock on the gap preceding the index record.
If one session has a shared or exclusive lock on record R in an index, another session cannot insert a
new index record in the gap immediately before R in the index order.

Suppose that an index contains the values 10, 11, 13, and 20. The possible next-key locks for this
index cover the following intervals, where a round bracket denotes exclusion of the interval endpoint
and a square bracket denotes inclusion of the endpoint:

(negative infinity, 10]
(10, 11]
(11, 13]
(13, 20]
(20, positive infinity)

For the last interval, the next-key lock locks the gap above the largest value in the index and the
“supremum” pseudo-record having a value higher than any value actually in the index. The supremum
is not a real index record, so, in effect, this next-key lock locks only the gap following the largest index
value.

3268

InnoDB Locking

By default, InnoDB operates in REPEATABLE READ transaction isolation level. In this case, InnoDB
uses next-key locks for searches and index scans, which prevents phantom rows (see Section 17.7.4,
“Phantom Rows”).

Transaction data for a next-key lock appears similar to the following in SHOW ENGINE INNODB
STATUS and InnoDB monitor output:

RECORD LOCKS space id 58 page no 3 n bits 72 index `PRIMARY` of table `test`.`t`
trx id 10080 lock_mode X
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
 0: len 8; hex 73757072656d756d; asc supremum;;

Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 8000000a; asc ;;
 1: len 6; hex 00000000274f; asc 'O;;
 2: len 7; hex b60000019d0110; asc ;;

Insert Intention Locks

An insert intention lock is a type of gap lock set by INSERT operations prior to row insertion. This lock
signals the intent to insert in such a way that multiple transactions inserting into the same index gap
need not wait for each other if they are not inserting at the same position within the gap. Suppose that
there are index records with values of 4 and 7. Separate transactions that attempt to insert values of 5
and 6, respectively, each lock the gap between 4 and 7 with insert intention locks prior to obtaining the
exclusive lock on the inserted row, but do not block each other because the rows are nonconflicting.

The following example demonstrates a transaction taking an insert intention lock prior to obtaining an
exclusive lock on the inserted record. The example involves two clients, A and B.

Client A creates a table containing two index records (90 and 102) and then starts a transaction that
places an exclusive lock on index records with an ID greater than 100. The exclusive lock includes a
gap lock before record 102:

mysql> CREATE TABLE child (id int(11) NOT NULL, PRIMARY KEY(id)) ENGINE=InnoDB;
mysql> INSERT INTO child (id) values (90),(102);

mysql> START TRANSACTION;
mysql> SELECT * FROM child WHERE id > 100 FOR UPDATE;
+-----+
| id |
+-----+
| 102 |
+-----+

Client B begins a transaction to insert a record into the gap. The transaction takes an insert intention
lock while it waits to obtain an exclusive lock.

mysql> START TRANSACTION;
mysql> INSERT INTO child (id) VALUES (101);

Transaction data for an insert intention lock appears similar to the following in SHOW ENGINE INNODB
STATUS and InnoDB monitor output:

RECORD LOCKS space id 31 page no 3 n bits 72 index `PRIMARY` of table `test`.`child`
trx id 8731 lock_mode X locks gap before rec insert intention waiting
Record lock, heap no 3 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000066; asc f;;
 1: len 6; hex 000000002215; asc " ;;
 2: len 7; hex 9000000172011c; asc r ;;...

AUTO-INC Locks

An AUTO-INC lock is a special table-level lock taken by transactions inserting into tables with
AUTO_INCREMENT columns. In the simplest case, if one transaction is inserting values into the table,
any other transactions must wait to do their own inserts into that table, so that rows inserted by the first
transaction receive consecutive primary key values.

3269

InnoDB Transaction Model

The innodb_autoinc_lock_mode variable controls the algorithm used for auto-increment locking.
It allows you to choose how to trade off between predictable sequences of auto-increment values and
maximum concurrency for insert operations.

For more information, see Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”.

Predicate Locks for Spatial Indexes

InnoDB supports SPATIAL indexing of columns containing spatial data (see Section 13.4.9,
“Optimizing Spatial Analysis”).

To handle locking for operations involving SPATIAL indexes, next-key locking does not work well
to support REPEATABLE READ or SERIALIZABLE transaction isolation levels. There is no absolute
ordering concept in multidimensional data, so it is not clear which is the “next” key.

To enable support of isolation levels for tables with SPATIAL indexes, InnoDB uses predicate locks. A
SPATIAL index contains minimum bounding rectangle (MBR) values, so InnoDB enforces consistent
read on the index by setting a predicate lock on the MBR value used for a query. Other transactions
cannot insert or modify a row that would match the query condition.

17.7.2 InnoDB Transaction Model

The InnoDB transaction model aims to combine the best properties of a multi-versioning database with
traditional two-phase locking. InnoDB performs locking at the row level and runs queries as nonlocking
consistent reads by default, in the style of Oracle. The lock information in InnoDB is stored space-
efficiently so that lock escalation is not needed. Typically, several users are permitted to lock every row
in InnoDB tables, or any random subset of the rows, without causing InnoDB memory exhaustion.

17.7.2.1 Transaction Isolation Levels

Transaction isolation is one of the foundations of database processing. Isolation is the I in the acronym
ACID; the isolation level is the setting that fine-tunes the balance between performance and reliability,
consistency, and reproducibility of results when multiple transactions are making changes and
performing queries at the same time.

InnoDB offers all four transaction isolation levels described by the SQL:1992 standard: READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE. The default isolation
level for InnoDB is REPEATABLE READ.

A user can change the isolation level for a single session or for all subsequent connections with the
SET TRANSACTION statement. To set the server's default isolation level for all connections, use the --
transaction-isolation option on the command line or in an option file. For detailed information
about isolation levels and level-setting syntax, see Section 15.3.7, “SET TRANSACTION Statement”.

InnoDB supports each of the transaction isolation levels described here using different locking
strategies. You can enforce a high degree of consistency with the default REPEATABLE READ level,
for operations on crucial data where ACID compliance is important. Or you can relax the consistency
rules with READ COMMITTED or even READ UNCOMMITTED, in situations such as bulk reporting where
precise consistency and repeatable results are less important than minimizing the amount of overhead
for locking. SERIALIZABLE enforces even stricter rules than REPEATABLE READ, and is used mainly
in specialized situations, such as with XA transactions and for troubleshooting issues with concurrency
and deadlocks.

The following list describes how MySQL supports the different transaction levels. The list goes from the
most commonly used level to the least used.

• REPEATABLE READ

This is the default isolation level for InnoDB. Consistent reads within the same transaction read
the snapshot established by the first read. This means that if you issue several plain (nonlocking)

3270

InnoDB Transaction Model

SELECT statements within the same transaction, these SELECT statements are consistent also with
respect to each other. See Section 17.7.2.3, “Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or FOR SHARE), UPDATE, and DELETE statements,
locking depends on whether the statement uses a unique index with a unique search condition, or a
range-type search condition.

• For a unique index with a unique search condition, InnoDB locks only the index record found, not
the gap before it.

• For other search conditions, InnoDB locks the index range scanned, using gap locks or next-key
locks to block insertions by other sessions into the gaps covered by the range. For information
about gap locks and next-key locks, see Section 17.7.1, “InnoDB Locking”.

It is not recommended to mix locking statements (UPDATE, INSERT, DELETE, or SELECT ...
FOR ...) with non-locking SELECT statements in a single REPEATABLE READ transaction, because
typically in such cases you want SERIALIZABLE. This is because a non-locking SELECT statement
presents the state of the database from a read view which consists of transactions committed
before the read view was created, and before the current transaction's own writes, while the locking
statements use the most recent state of the database to use locking. In general, these two different
table states are inconsistent with each other and difficult to parse.

• READ COMMITTED

Each consistent read, even within the same transaction, sets and reads its own fresh snapshot. For
information about consistent reads, see Section 17.7.2.3, “Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or FOR SHARE), UPDATE statements, and DELETE
statements, InnoDB locks only index records, not the gaps before them, and thus permits the free
insertion of new records next to locked records. Gap locking is only used for foreign-key constraint
checking and duplicate-key checking.

Because gap locking is disabled, phantom row problems may occur, as other sessions can insert
new rows into the gaps. For information about phantom rows, see Section 17.7.4, “Phantom Rows”.

Only row-based binary logging is supported with the READ COMMITTED isolation level. If you use
READ COMMITTED with binlog_format=MIXED, the server automatically uses row-based logging.

Using READ COMMITTED has additional effects:

• For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes.
Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition.
This greatly reduces the probability of deadlocks, but they can still happen.

• For UPDATE statements, if a row is already locked, InnoDB performs a “semi-consistent” read,
returning the latest committed version to MySQL so that MySQL can determine whether the row
matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads
the row again and this time InnoDB either locks it or waits for a lock on it.

Consider the following example, beginning with this table:

CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;

In this case, the table has no indexes, so searches and index scans use the hidden clustered index
for record locking (see Section 17.6.2.1, “Clustered and Secondary Indexes”) rather than indexed
columns.

Suppose that one session performs an UPDATE using these statements:

Session A

3271

InnoDB Transaction Model

START TRANSACTION;
UPDATE t SET b = 5 WHERE b = 3;

Suppose also that a second session performs an UPDATE by executing these statements following
those of the first session:

Session B
UPDATE t SET b = 4 WHERE b = 2;

As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row, and then
determines whether to modify it. If InnoDB does not modify the row, it releases the lock. Otherwise,
InnoDB retains the lock until the end of the transaction. This affects transaction processing as
follows.

When using the default REPEATABLE READ isolation level, the first UPDATE acquires an x-lock on
each row that it reads and does not release any of them:

x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock

The second UPDATE blocks as soon as it tries to acquire any locks (because first update has
retained locks on all rows), and does not proceed until the first UPDATE commits or rolls back:

x-lock(1,2); block and wait for first UPDATE to commit or roll back

If READ COMMITTED is used instead, the first UPDATE acquires an x-lock on each row that it reads
and releases those for rows that it does not modify:

x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)

For the second UPDATE, InnoDB does a “semi-consistent” read, returning the latest committed
version of each row that it reads to MySQL so that MySQL can determine whether the row matches
the WHERE condition of the UPDATE:

x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock

However, if the WHERE condition includes an indexed column, and InnoDB uses the index, only the
indexed column is considered when taking and retaining record locks. In the following example, the
first UPDATE takes and retains an x-lock on each row where b = 2. The second UPDATE blocks when
it tries to acquire x-locks on the same records, as it also uses the index defined on column b.

CREATE TABLE t (a INT NOT NULL, b INT, c INT, INDEX (b)) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2,3),(2,2,4);
COMMIT;

Session A
START TRANSACTION;
UPDATE t SET b = 3 WHERE b = 2 AND c = 3;

Session B
UPDATE t SET b = 4 WHERE b = 2 AND c = 4;

The READ COMMITTED isolation level can be set at startup or changed at runtime. At runtime, it can
be set globally for all sessions, or individually per session.

3272

InnoDB Transaction Model

• READ UNCOMMITTED

SELECT statements are performed in a nonlocking fashion, but a possible earlier version of a row
might be used. Thus, using this isolation level, such reads are not consistent. This is also called a
dirty read. Otherwise, this isolation level works like READ COMMITTED.

• SERIALIZABLE

This level is like REPEATABLE READ, but InnoDB implicitly converts all plain SELECT statements
to SELECT ... FOR SHARE if autocommit is disabled. If autocommit is enabled, the SELECT
is its own transaction. It therefore is known to be read only and can be serialized if performed as a
consistent (nonlocking) read and need not block for other transactions. (To force a plain SELECT to
block if other transactions have modified the selected rows, disable autocommit.)

Note

As of MySQL 8.0.22, DML operations that read data from MySQL grant tables
(through a join list or subquery) but do not modify them do not acquire read
locks on the MySQL grant tables, regardless of the isolation level. For more
information, see Grant Table Concurrency.

17.7.2.2 autocommit, Commit, and Rollback

In InnoDB, all user activity occurs inside a transaction. If autocommit mode is enabled, each SQL
statement forms a single transaction on its own. By default, MySQL starts the session for each new
connection with autocommit enabled, so MySQL does a commit after each SQL statement if that
statement did not return an error. If a statement returns an error, the commit or rollback behavior
depends on the error. See Section 17.21.5, “InnoDB Error Handling”.

A session that has autocommit enabled can perform a multiple-statement transaction by starting it
with an explicit START TRANSACTION or BEGIN statement and ending it with a COMMIT or ROLLBACK
statement. See Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”.

If autocommit mode is disabled within a session with SET autocommit = 0, the session always
has a transaction open. A COMMIT or ROLLBACK statement ends the current transaction and a new one
starts.

If a session that has autocommit disabled ends without explicitly committing the final transaction,
MySQL rolls back that transaction.

Some statements implicitly end a transaction, as if you had done a COMMIT before executing the
statement. For details, see Section 15.3.3, “Statements That Cause an Implicit Commit”.

A COMMIT means that the changes made in the current transaction are made permanent and become
visible to other sessions. A ROLLBACK statement, on the other hand, cancels all modifications made by
the current transaction. Both COMMIT and ROLLBACK release all InnoDB locks that were set during the
current transaction.

Grouping DML Operations with Transactions

By default, connection to the MySQL server begins with autocommit mode enabled, which
automatically commits every SQL statement as you execute it. This mode of operation might be
unfamiliar if you have experience with other database systems, where it is standard practice to issue a
sequence of DML statements and commit them or roll them back all together.

To use multiple-statement transactions, switch autocommit off with the SQL statement SET
autocommit = 0 and end each transaction with COMMIT or ROLLBACK as appropriate. To leave
autocommit on, begin each transaction with START TRANSACTION and end it with COMMIT or
ROLLBACK. The following example shows two transactions. The first is committed; the second is rolled
back.

$> mysql test

3273

InnoDB Transaction Model

mysql> CREATE TABLE customer (a INT, b CHAR (20), INDEX (a));
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do a transaction with autocommit turned on.
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (10, 'Heikki');
Query OK, 1 row affected (0.00 sec)
mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do another transaction with autocommit turned off.
mysql> SET autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (15, 'John');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO customer VALUES (20, 'Paul');
Query OK, 1 row affected (0.00 sec)
mysql> DELETE FROM customer WHERE b = 'Heikki';
Query OK, 1 row affected (0.00 sec)
mysql> -- Now we undo those last 2 inserts and the delete.
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM customer;
+------+--------+
| a | b |
+------+--------+
| 10 | Heikki |
+------+--------+
1 row in set (0.00 sec)
mysql>

Transactions in Client-Side Languages

In APIs such as PHP, Perl DBI, JDBC, ODBC, or the standard C call interface of MySQL, you can send
transaction control statements such as COMMIT to the MySQL server as strings just like any other SQL
statements such as SELECT or INSERT. Some APIs also offer separate special transaction commit and
rollback functions or methods.

17.7.2.3 Consistent Nonlocking Reads

A consistent read means that InnoDB uses multi-versioning to present to a query a snapshot of the
database at a point in time. The query sees the changes made by transactions that committed before
that point in time, and no changes made by later or uncommitted transactions. The exception to this
rule is that the query sees the changes made by earlier statements within the same transaction. This
exception causes the following anomaly: If you update some rows in a table, a SELECT sees the
latest version of the updated rows, but it might also see older versions of any rows. If other sessions
simultaneously update the same table, the anomaly means that you might see the table in a state that
never existed in the database.

If the transaction isolation level is REPEATABLE READ (the default level), all consistent reads within the
same transaction read the snapshot established by the first such read in that transaction. You can get
a fresher snapshot for your queries by committing the current transaction and after that issuing new
queries.

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its
own fresh snapshot.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ
COMMITTED and REPEATABLE READ isolation levels. A consistent read does not set any locks on the
tables it accesses, and therefore other sessions are free to modify those tables at the same time a
consistent read is being performed on the table.

Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a
consistent read (that is, an ordinary SELECT statement), InnoDB gives your transaction a timepoint
according to which your query sees the database. If another transaction deletes a row and commits
after your timepoint was assigned, you do not see the row as having been deleted. Inserts and updates
are treated similarly.

3274

InnoDB Transaction Model

Note

The snapshot of the database state applies to SELECT statements within a
transaction, not necessarily to DML statements. If you insert or modify some
rows and then commit that transaction, a DELETE or UPDATE statement issued
from another concurrent REPEATABLE READ transaction could affect those just-
committed rows, even though the session could not query them. If a transaction
does update or delete rows committed by a different transaction, those changes
do become visible to the current transaction. For example, you might encounter
a situation like the following:

SELECT COUNT(c1) FROM t1 WHERE c1 = 'xyz';
-- Returns 0: no rows match.
DELETE FROM t1 WHERE c1 = 'xyz';
-- Deletes several rows recently committed by other transaction.

SELECT COUNT(c2) FROM t1 WHERE c2 = 'abc';
-- Returns 0: no rows match.
UPDATE t1 SET c2 = 'cba' WHERE c2 = 'abc';
-- Affects 10 rows: another txn just committed 10 rows with 'abc' values.
SELECT COUNT(c2) FROM t1 WHERE c2 = 'cba';
-- Returns 10: this txn can now see the rows it just updated.

You can advance your timepoint by committing your transaction and then doing another SELECT or
START TRANSACTION WITH CONSISTENT SNAPSHOT.

This is called multi-versioned concurrency control.

In the following example, session A sees the row inserted by B only when B has committed the insert
and A has committed as well, so that the timepoint is advanced past the commit of B.

 Session A Session B

 SET autocommit=0; SET autocommit=0;
time
| SELECT * FROM t;
| empty set
| INSERT INTO t VALUES (1, 2);
|
v SELECT * FROM t;
 empty set
 COMMIT;

 SELECT * FROM t;
 empty set

 COMMIT;

 SELECT * FROM t;

 | 1 | 2 |

If you want to see the “freshest” state of the database, use either the READ COMMITTED isolation level
or a locking read:

SELECT * FROM t FOR SHARE;

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads
its own fresh snapshot. With FOR SHARE, a locking read occurs instead: A SELECT blocks until the
transaction containing the freshest rows ends (see Section 17.7.2.4, “Locking Reads”).

Consistent read does not work over certain DDL statements:

• Consistent read does not work over DROP TABLE, because MySQL cannot use a table that has
been dropped and InnoDB destroys the table.

3275

InnoDB Transaction Model

• Consistent read does not work over ALTER TABLE operations that make a temporary copy of the
original table and delete the original table when the temporary copy is built. When you reissue a
consistent read within a transaction, rows in the new table are not visible because those rows did
not exist when the transaction's snapshot was taken. In this case, the transaction returns an error:
ER_TABLE_DEF_CHANGED, “Table definition has changed, please retry transaction”.

The type of read varies for selects in clauses like INSERT INTO ... SELECT, UPDATE ...
(SELECT), and CREATE TABLE ... SELECT that do not specify FOR UPDATE or FOR SHARE:

• By default, InnoDB uses stronger locks for those statements and the SELECT part acts like READ
COMMITTED, where each consistent read, even within the same transaction, sets and reads its own
fresh snapshot.

• To perform a nonlocking read in such cases, set the isolation level of the transaction to READ
UNCOMMITTED or READ COMMITTED to avoid setting locks on rows read from the selected table.

17.7.2.4 Locking Reads

If you query data and then insert or update related data within the same transaction, the regular
SELECT statement does not give enough protection. Other transactions can update or delete the same
rows you just queried. InnoDB supports two types of locking reads that offer extra safety:

• SELECT ... FOR SHARE

Sets a shared mode lock on any rows that are read. Other sessions can read the rows, but
cannot modify them until your transaction commits. If any of these rows were changed by another
transaction that has not yet committed, your query waits until that transaction ends and then uses the
latest values.

Note

SELECT ... FOR SHARE is a replacement for SELECT ... LOCK IN
SHARE MODE, but LOCK IN SHARE MODE remains available for backward
compatibility. The statements are equivalent. However, FOR SHARE supports
OF table_name, NOWAIT, and SKIP LOCKED options. See Locking Read
Concurrency with NOWAIT and SKIP LOCKED.

Prior to MySQL 8.0.22, SELECT ... FOR SHARE requires the SELECT privilege and at least one of
the DELETE, LOCK TABLES, or UPDATE privileges. From MySQL 8.0.22, only the SELECT privilege
is required.

From MySQL 8.0.22, SELECT ... FOR SHARE statements do not acquire read locks on MySQL
grant tables. For more information, see Grant Table Concurrency.

• SELECT ... FOR UPDATE

For index records the search encounters, locks the rows and any associated index entries, the same
as if you issued an UPDATE statement for those rows. Other transactions are blocked from updating
those rows, from doing SELECT ... FOR SHARE, or from reading the data in certain transaction
isolation levels. Consistent reads ignore any locks set on the records that exist in the read view.
(Old versions of a record cannot be locked; they are reconstructed by applying undo logs on an in-
memory copy of the record.)

SELECT ... FOR UPDATE requires the SELECT privilege and at least one of the DELETE, LOCK
TABLES, or UPDATE privileges.

These clauses are primarily useful when dealing with tree-structured or graph-structured data, either
in a single table or split across multiple tables. You traverse edges or tree branches from one place to
another, while reserving the right to come back and change any of these “pointer” values.

All locks set by FOR SHARE and FOR UPDATE queries are released when the transaction is committed
or rolled back.

3276

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_table_def_changed

InnoDB Transaction Model

Note

Locking reads are only possible when autocommit is disabled (either by
beginning transaction with START TRANSACTION or by setting autocommit to
0.

A locking read clause in an outer statement does not lock the rows of a table in a nested subquery
unless a locking read clause is also specified in the subquery. For example, the following statement
does not lock rows in table t2.

SELECT * FROM t1 WHERE c1 = (SELECT c1 FROM t2) FOR UPDATE;

To lock rows in table t2, add a locking read clause to the subquery:

SELECT * FROM t1 WHERE c1 = (SELECT c1 FROM t2 FOR UPDATE) FOR UPDATE;

Locking Read Examples

Suppose that you want to insert a new row into a table child, and make sure that the child row has
a parent row in table parent. Your application code can ensure referential integrity throughout this
sequence of operations.

First, use a consistent read to query the table PARENT and verify that the parent row exists. Can you
safely insert the child row to table CHILD? No, because some other session could delete the parent
row in the moment between your SELECT and your INSERT, without you being aware of it.

To avoid this potential issue, perform the SELECT using FOR SHARE:

SELECT * FROM parent WHERE NAME = 'Jones' FOR SHARE;

After the FOR SHARE query returns the parent 'Jones', you can safely add the child record to the
CHILD table and commit the transaction. Any transaction that tries to acquire an exclusive lock in the
applicable row in the PARENT table waits until you are finished, that is, until the data in all tables is in a
consistent state.

For another example, consider an integer counter field in a table CHILD_CODES, used to assign a
unique identifier to each child added to table CHILD. Do not use either consistent read or a shared
mode read to read the present value of the counter, because two users of the database could see the
same value for the counter, and a duplicate-key error occurs if two transactions attempt to add rows
with the same identifier to the CHILD table.

Here, FOR SHARE is not a good solution because if two users read the counter at the same time, at
least one of them ends up in deadlock when it attempts to update the counter.

To implement reading and incrementing the counter, first perform a locking read of the counter using
FOR UPDATE, and then increment the counter. For example:

SELECT counter_field FROM child_codes FOR UPDATE;
UPDATE child_codes SET counter_field = counter_field + 1;

A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row it
reads. Thus, it sets the same locks a searched SQL UPDATE would set on the rows.

The preceding description is merely an example of how SELECT ... FOR UPDATE works. In MySQL,
the specific task of generating a unique identifier actually can be accomplished using only a single
access to the table:

UPDATE child_codes SET counter_field = LAST_INSERT_ID(counter_field + 1);
SELECT LAST_INSERT_ID();

The SELECT statement merely retrieves the identifier information (specific to the current connection). It
does not access any table.

Locking Read Concurrency with NOWAIT and SKIP LOCKED

3277

InnoDB Transaction Model

If a row is locked by a transaction, a SELECT ... FOR UPDATE or SELECT ... FOR SHARE
transaction that requests the same locked row must wait until the blocking transaction releases the row
lock. This behavior prevents transactions from updating or deleting rows that are queried for updates
by other transactions. However, waiting for a row lock to be released is not necessary if you want the
query to return immediately when a requested row is locked, or if excluding locked rows from the result
set is acceptable.

To avoid waiting for other transactions to release row locks, NOWAIT and SKIP LOCKED options may
be used with SELECT ... FOR UPDATE or SELECT ... FOR SHARE locking read statements.

• NOWAIT

A locking read that uses NOWAIT never waits to acquire a row lock. The query executes immediately,
failing with an error if a requested row is locked.

• SKIP LOCKED

A locking read that uses SKIP LOCKED never waits to acquire a row lock. The query executes
immediately, removing locked rows from the result set.

Note

Queries that skip locked rows return an inconsistent view of the data. SKIP
LOCKED is therefore not suitable for general transactional work. However,
it may be used to avoid lock contention when multiple sessions access the
same queue-like table.

NOWAIT and SKIP LOCKED only apply to row-level locks.

Statements that use NOWAIT or SKIP LOCKED are unsafe for statement based replication.

The following example demonstrates NOWAIT and SKIP LOCKED. Session 1 starts a transaction
that takes a row lock on a single record. Session 2 attempts a locking read on the same record using
the NOWAIT option. Because the requested row is locked by Session 1, the locking read returns
immediately with an error. In Session 3, the locking read with SKIP LOCKED returns the requested
rows except for the row that is locked by Session 1.

Session 1:

mysql> CREATE TABLE t (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;

mysql> INSERT INTO t (i) VALUES(1),(2),(3);

mysql> START TRANSACTION;

mysql> SELECT * FROM t WHERE i = 2 FOR UPDATE;
+---+
| i |
+---+
| 2 |
+---+

Session 2:

mysql> START TRANSACTION;

mysql> SELECT * FROM t WHERE i = 2 FOR UPDATE NOWAIT;
ERROR 3572 (HY000): Do not wait for lock.

Session 3:

mysql> START TRANSACTION;

mysql> SELECT * FROM t FOR UPDATE SKIP LOCKED;
+---+
| i |

3278

Locks Set by Different SQL Statements in InnoDB

+---+
| 1 |
| 3 |
+---+

17.7.3 Locks Set by Different SQL Statements in InnoDB

A locking read, an UPDATE, or a DELETE generally set record locks on every index record that
is scanned in the processing of an SQL statement. It does not matter whether there are WHERE
conditions in the statement that would exclude the row. InnoDB does not remember the exact
WHERE condition, but only knows which index ranges were scanned. The locks are normally next-
key locks that also block inserts into the “gap” immediately before the record. However, gap locking
can be disabled explicitly, which causes next-key locking not to be used. For more information, see
Section 17.7.1, “InnoDB Locking”. The transaction isolation level can also affect which locks are set;
see Section 17.7.2.1, “Transaction Isolation Levels”.

If a secondary index is used in a search and the index record locks to be set are exclusive, InnoDB
also retrieves the corresponding clustered index records and sets locks on them.

If you have no indexes suitable for your statement and MySQL must scan the entire table to process
the statement, every row of the table becomes locked, which in turn blocks all inserts by other users
to the table. It is important to create good indexes so that your queries do not scan more rows than
necessary.

InnoDB sets specific types of locks as follows.

• SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no locks
unless the transaction isolation level is set to SERIALIZABLE. For SERIALIZABLE level, the search
sets shared next-key locks on the index records it encounters. However, only an index record lock is
required for statements that lock rows using a unique index to search for a unique row.

• SELECT ... FOR UPDATE and SELECT ... FOR SHARE statements that use a unique index
acquire locks for scanned rows, and release the locks for rows that do not qualify for inclusion in the
result set (for example, if they do not meet the criteria given in the WHERE clause). However, in some
cases, rows might not be unlocked immediately because the relationship between a result row and
its original source is lost during query execution. For example, in a UNION, scanned (and locked)
rows from a table might be inserted into a temporary table before evaluating whether they qualify for
the result set. In this circumstance, the relationship of the rows in the temporary table to the rows in
the original table is lost and the latter rows are not unlocked until the end of query execution.

• For locking reads (SELECT with FOR UPDATE or FOR SHARE), UPDATE, and DELETE statements,
the locks that are taken depend on whether the statement uses a unique index with a unique search
condition or a range-type search condition.

• For a unique index with a unique search condition, InnoDB locks only the index record found, not
the gap before it.

• For other search conditions, and for non-unique indexes, InnoDB locks the index range scanned,
using gap locks or next-key locks to block insertions by other sessions into the gaps covered
by the range. For information about gap locks and next-key locks, see Section 17.7.1, “InnoDB
Locking”.

• For index records the search encounters, SELECT ... FOR UPDATE blocks other sessions from
doing SELECT ... FOR SHARE or from reading in certain transaction isolation levels. Consistent
reads ignore any locks set on the records that exist in the read view.

• UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search encounters.
However, only an index record lock is required for statements that lock rows using a unique index to
search for a unique row.

• When UPDATE modifies a clustered index record, implicit locks are taken on affected secondary
index records. The UPDATE operation also takes shared locks on affected secondary index records

3279

Locks Set by Different SQL Statements in InnoDB

when performing duplicate check scans prior to inserting new secondary index records, and when
inserting new secondary index records.

• DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search
encounters. However, only an index record lock is required for statements that lock rows using a
unique index to search for a unique row.

• INSERT sets an exclusive lock on the inserted row. This lock is an index-record lock, not a next-key
lock (that is, there is no gap lock) and does not prevent other sessions from inserting into the gap
before the inserted row.

Prior to inserting the row, a type of gap lock called an insert intention gap lock is set. This lock
signals the intent to insert in such a way that multiple transactions inserting into the same index gap
need not wait for each other if they are not inserting at the same position within the gap. Suppose
that there are index records with values of 4 and 7. Separate transactions that attempt to insert
values of 5 and 6 each lock the gap between 4 and 7 with insert intention locks prior to obtaining the
exclusive lock on the inserted row, but do not block each other because the rows are nonconflicting.

If a duplicate-key error occurs, a shared lock on the duplicate index record is set. This use of a
shared lock can result in deadlock should there be multiple sessions trying to insert the same row
if another session already has an exclusive lock. This can occur if another session deletes the row.
Suppose that an InnoDB table t1 has the following structure:

CREATE TABLE t1 (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;

Now suppose that three sessions perform the following operations in order:

Session 1:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

ROLLBACK;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions
2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When
session 1 rolls back, it releases its exclusive lock on the row and the queued shared lock requests
for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an
exclusive lock for the row because of the shared lock held by the other.

A similar situation occurs if the table already contains a row with key value 1 and three sessions
perform the following operations in order:

Session 1:

START TRANSACTION;
DELETE FROM t1 WHERE i = 1;

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

3280

Locks Set by Different SQL Statements in InnoDB

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

COMMIT;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions
2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When
session 1 commits, it releases its exclusive lock on the row and the queued shared lock requests
for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an
exclusive lock for the row because of the shared lock held by the other.

• INSERT ... ON DUPLICATE KEY UPDATE differs from a simple INSERT in that an exclusive lock
rather than a shared lock is placed on the row to be updated when a duplicate-key error occurs. An
exclusive index-record lock is taken for a duplicate primary key value. An exclusive next-key lock is
taken for a duplicate unique key value.

• REPLACE is done like an INSERT if there is no collision on a unique key. Otherwise, an exclusive
next-key lock is placed on the row to be replaced.

• INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive index record lock (without
a gap lock) on each row inserted into T. If the transaction isolation level is READ COMMITTED,
InnoDB does the search on S as a consistent read (no locks). Otherwise, InnoDB sets shared next-
key locks on rows from S. InnoDB has to set locks in the latter case: During roll-forward recovery
using a statement-based binary log, every SQL statement must be executed in exactly the same way
it was done originally.

CREATE TABLE ... SELECT ... performs the SELECT with shared next-key locks or as a
consistent read, as for INSERT ... SELECT.

When a SELECT is used in the constructs REPLACE INTO t SELECT ... FROM s WHERE ...
or UPDATE t ... WHERE col IN (SELECT ... FROM s ...), InnoDB sets shared next-key
locks on rows from table s.

• InnoDB sets an exclusive lock on the end of the index associated with the AUTO_INCREMENT
column while initializing a previously specified AUTO_INCREMENT column on a table.

With innodb_autoinc_lock_mode=0, InnoDB uses a special AUTO-INC table lock mode
where the lock is obtained and held to the end of the current SQL statement (not to the end
of the entire transaction) while accessing the auto-increment counter. Other clients cannot
insert into the table while the AUTO-INC table lock is held. The same behavior occurs for
“bulk inserts” with innodb_autoinc_lock_mode=1. Table-level AUTO-INC locks are not
used with innodb_autoinc_lock_mode=2. For more information, See Section 17.6.1.6,
“AUTO_INCREMENT Handling in InnoDB”.

InnoDB fetches the value of a previously initialized AUTO_INCREMENT column without setting any
locks.

• If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires the
constraint condition to be checked sets shared record-level locks on the records that it looks at to
check the constraint. InnoDB also sets these locks in the case where the constraint fails.

• LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that
sets these locks. InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and
autocommit = 0, and the MySQL layer above InnoDB knows about row-level locks.

Otherwise, InnoDB's automatic deadlock detection cannot detect deadlocks where such table locks
are involved. Also, because in this case the higher MySQL layer does not know about row-level

3281

Phantom Rows

locks, it is possible to get a table lock on a table where another session currently has row-level locks.
However, this does not endanger transaction integrity, as discussed in Section 17.7.5.2, “Deadlock
Detection”.

• LOCK TABLES acquires two locks on each table if innodb_table_locks=1 (the default). In
addition to a table lock on the MySQL layer, it also acquires an InnoDB table lock. To avoid
acquiring InnoDB table locks, set innodb_table_locks=0. If no InnoDB table lock is acquired,
LOCK TABLES completes even if some records of the tables are being locked by other transactions.

In MySQL 8.0, innodb_table_locks=0 has no effect for tables locked explicitly with LOCK
TABLES ... WRITE. It does have an effect for tables locked for read or write by LOCK
TABLES ... WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.

• All InnoDB locks held by a transaction are released when the transaction is committed or aborted.
Thus, it does not make much sense to invoke LOCK TABLES on InnoDB tables in autocommit=1
mode because the acquired InnoDB table locks would be released immediately.

• You cannot lock additional tables in the middle of a transaction because LOCK TABLES performs an
implicit COMMIT and UNLOCK TABLES.

17.7.4 Phantom Rows

The so-called phantom problem occurs within a transaction when the same query produces different
sets of rows at different times. For example, if a SELECT is executed twice, but returns a row the
second time that was not returned the first time, the row is a “phantom” row.

Suppose that there is an index on the id column of the child table and that you want to read and lock
all rows from the table having an identifier value larger than 100, with the intention of updating some
column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where id is bigger than 100. Let the table
contain rows having id values of 90 and 102. If the locks set on the index records in the scanned
range do not lock out inserts made in the gaps (in this case, the gap between 90 and 102), another
session can insert a new row into the table with an id of 101. If you were to execute the same SELECT
within the same transaction, you would see a new row with an id of 101 (a “phantom”) in the result set
returned by the query. If we regard a set of rows as a data item, the new phantom child would violate
the isolation principle of transactions that a transaction should be able to run so that the data it has
read does not change during the transaction.

To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row
locking with gap locking. InnoDB performs row-level locking in such a way that when it searches or
scans a table index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-
level locks are actually index-record locks. In addition, a next-key lock on an index record also affects
the “gap” before the index record. That is, a next-key lock is an index-record lock plus a gap lock on the
gap preceding the index record. If one session has a shared or exclusive lock on record R in an index,
another session cannot insert a new index record in the gap immediately before R in the index order.

When InnoDB scans an index, it can also lock the gap after the last record in the index. Just that
happens in the preceding example: To prevent any insert into the table where id would be bigger than
100, the locks set by InnoDB include a lock on the gap following id value 102.

You can use next-key locking to implement a uniqueness check in your application: If you read your
data in share mode and do not see a duplicate for a row you are going to insert, then you can safely
insert your row and know that the next-key lock set on the successor of your row during the read
prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you
to “lock” the nonexistence of something in your table.

Gap locking can be disabled as discussed in Section 17.7.1, “InnoDB Locking”. This may cause
phantom problems because other sessions can insert new rows into the gaps when gap locking is
disabled.

3282

Deadlocks in InnoDB

17.7.5 Deadlocks in InnoDB

A deadlock is a situation in which multiple transactions are unable to proceed because each
transaction holds a lock that is needed by another one. Because all transactions involved are waiting
for the same resource to become available, none of them ever releases the lock it holds.

A deadlock can occur when transactions lock rows in multiple tables (through statements such as
UPDATE or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when
such statements lock ranges of index records and gaps, with each transaction acquiring some locks but
not others due to a timing issue. For a deadlock example, see Section 17.7.5.1, “An InnoDB Deadlock
Example”.

To reduce the possibility of deadlocks, use transactions rather than LOCK TABLES statements; keep
transactions that insert or update data small enough that they do not stay open for long periods
of time; when different transactions update multiple tables or large ranges of rows, use the same
order of operations (such as SELECT ... FOR UPDATE) in each transaction; create indexes on the
columns used in SELECT ... FOR UPDATE and UPDATE ... WHERE statements. The possibility
of deadlocks is not affected by the isolation level, because the isolation level changes the behavior
of read operations, while deadlocks occur because of write operations. For more information about
avoiding and recovering from deadlock conditions, see Section 17.7.5.3, “How to Minimize and Handle
Deadlocks”.

When deadlock detection is enabled (the default) and a deadlock does occur, InnoDB detects the
condition and rolls back one of the transactions (the victim). If deadlock detection is disabled using the
innodb_deadlock_detect variable, InnoDB relies on the innodb_lock_wait_timeout setting
to roll back transactions in case of a deadlock. Thus, even if your application logic is correct, you must
still handle the case where a transaction must be retried. To view the last deadlock in an InnoDB user
transaction, use SHOW ENGINE INNODB STATUS. If frequent deadlocks highlight a problem with
transaction structure or application error handling, enable innodb_print_all_deadlocks to print
information about all deadlocks to the mysqld error log. For more information about how deadlocks are
automatically detected and handled, see Section 17.7.5.2, “Deadlock Detection”.

17.7.5.1 An InnoDB Deadlock Example

The following example illustrates how an error can occur when a lock request causes a deadlock. The
example involves two clients, A and B.

InnoDB status contains details of the last deadlock. For frequent deadlocks, enable global variable
innodb_print_all_deadlocks. This adds deadlock information to the error log.

Client A enables innodb_print_all_deadlocks, creates two tables, 'Animals' and 'Birds', and
inserts data into each. Client A begins a transaction, and selects a row in Animals in share mode:

mysql> SET GLOBAL innodb_print_all_deadlocks = ON;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE Animals (name VARCHAR(10) PRIMARY KEY, value INT) ENGINE = InnoDB;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE Birds (name VARCHAR(10) PRIMARY KEY, value INT) ENGINE = InnoDB;
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO Animals (name,value) VALUES ("Aardvark",10);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Birds (name,value) VALUES ("Buzzard",20);
Query OK, 1 row affected (0.00 sec)

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT value FROM Animals WHERE name='Aardvark' FOR SHARE;
+-------+
| value |

3283

Deadlocks in InnoDB

+-------+
| 10 |
+-------+
1 row in set (0.00 sec)

Next, client B begins a transaction, and selects a row in Birds in share mode:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT value FROM Birds WHERE name='Buzzard' FOR SHARE;
+-------+
| value |
+-------+
| 20 |
+-------+
1 row in set (0.00 sec)

The Performance Schema shows the locks after the two select statements:

mysql> SELECT ENGINE_TRANSACTION_ID as Trx_Id,
 OBJECT_NAME as `Table`,
 INDEX_NAME as `Index`,
 LOCK_DATA as Data,
 LOCK_MODE as Mode,
 LOCK_STATUS as Status,
 LOCK_TYPE as Type
 FROM performance_schema.data_locks;
+-----------------+---------+---------+------------+---------------+---------+--------+
| Trx_Id | Table | Index | Data | Mode | Status | Type |
+-----------------+---------+---------+------------+---------------+---------+--------+
421291106147544	Animals	NULL	NULL	IS	GRANTED	TABLE
421291106147544	Animals	PRIMARY	'Aardvark'	S,REC_NOT_GAP	GRANTED	RECORD
421291106148352	Birds	NULL	NULL	IS	GRANTED	TABLE
421291106148352	Birds	PRIMARY	'Buzzard'	S,REC_NOT_GAP	GRANTED	RECORD
+-----------------+---------+---------+------------+---------------+---------+--------+
4 rows in set (0.00 sec)

Client B then updates a row in Animals:

mysql> UPDATE Animals SET value=30 WHERE name='Aardvark';

Client B has to wait. The Performance Schema shows the wait for a lock:

mysql> SELECT REQUESTING_ENGINE_LOCK_ID as Req_Lock_Id,
 REQUESTING_ENGINE_TRANSACTION_ID as Req_Trx_Id,
 BLOCKING_ENGINE_LOCK_ID as Blk_Lock_Id,
 BLOCKING_ENGINE_TRANSACTION_ID as Blk_Trx_Id
 FROM performance_schema.data_lock_waits;
+--+------------+--+-----------------+
| Req_Lock_Id | Req_Trx_Id | Blk_Lock_Id | Blk_Trx_Id |
+--+------------+--+-----------------+
| 139816129437696:27:4:2:139816016601240 | 43260 | 139816129436888:27:4:2:139816016594720 | 421291106147544 |
+--+------------+--+-----------------+
1 row in set (0.00 sec)

mysql> SELECT ENGINE_LOCK_ID as Lock_Id,
 ENGINE_TRANSACTION_ID as Trx_id,
 OBJECT_NAME as `Table`,
 INDEX_NAME as `Index`,
 LOCK_DATA as Data,
 LOCK_MODE as Mode,
 LOCK_STATUS as Status,
 LOCK_TYPE as Type
 FROM performance_schema.data_locks;
+--+-----------------+---------+---------+------------+---------------+---------+--------+
| Lock_Id | Trx_Id | Table | Index | Data | Mode | Status | Type |
+--+-----------------+---------+---------+------------+---------------+---------+--------+
139816129437696:1187:139816016603896	43260	Animals	NULL	NULL	IX	GRANTED	TABLE
139816129437696:1188:139816016603808	43260	Birds	NULL	NULL	IS	GRANTED	TABLE
139816129437696:28:4:2:139816016600896	43260	Birds	PRIMARY	'Buzzard'	S,REC_NOT_GAP	GRANTED	RECORD
139816129437696:27:4:2:139816016601240	43260	Animals	PRIMARY	'Aardvark'	X,REC_NOT_GAP	WAITING	RECORD

3284

Deadlocks in InnoDB

| 139816129436888:1187:139816016597712 | 421291106147544 | Animals | NULL | NULL | IS | GRANTED | TABLE |
| 139816129436888:27:4:2:139816016594720 | 421291106147544 | Animals | PRIMARY | 'Aardvark' | S,REC_NOT_GAP | GRANTED | RECORD |
+--+-----------------+---------+---------+------------+---------------+---------+--------+
6 rows in set (0.00 sec)

InnoDB only uses sequential transaction ids when a transaction attempts to modify the database.
Thererfore, the previous read-only transaction id changes from 421291106148352 to 43260.

If client A attempts to update a row in Birds at the same time, this will lead to a deadlock:

mysql> UPDATE Birds SET value=40 WHERE name='Buzzard';
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

InnoDB rolls back the transaction that caused the deadlock. The first update, from Client B, can now
proceed.

The Information Schema contains the number of deadlocks:

mysql> SELECT `count` FROM INFORMATION_SCHEMA.INNODB_METRICS
 WHERE NAME="lock_deadlocks";
+-------+
| count |
+-------+
| 1 |
+-------+
1 row in set (0.00 sec)

The InnoDB status contains the following information about the deadlock and transactions. It also
shows that the read-only transaction id 421291106147544 changes to sequential transaction id 43261.

mysql> SHOW ENGINE INNODB STATUS;

LATEST DETECTED DEADLOCK

2022-11-25 15:58:22 139815661168384
*** (1) TRANSACTION:
TRANSACTION 43260, ACTIVE 186 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 4 lock struct(s), heap size 1128, 2 row lock(s)
MySQL thread id 19, OS thread handle 139815619204864, query id 143 localhost u2 updating
UPDATE Animals SET value=30 WHERE name='Aardvark'

*** (1) HOLDS THE LOCK(S):
RECORD LOCKS space id 28 page no 4 n bits 72 index PRIMARY of table `test`.`Birds` trx id 43260 lock mode S locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 7; hex 42757a7a617264; asc Buzzard;;
 1: len 6; hex 00000000a8fb; asc ;;
 2: len 7; hex 82000000e40110; asc ;;
 3: len 4; hex 80000014; asc ;;

*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 27 page no 4 n bits 72 index PRIMARY of table `test`.`Animals` trx id 43260 lock_mode X locks rec but not gap waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 8; hex 416172647661726b; asc Aardvark;;
 1: len 6; hex 00000000a8f9; asc ;;
 2: len 7; hex 82000000e20110; asc ;;
 3: len 4; hex 8000000a; asc ;;

*** (2) TRANSACTION:
TRANSACTION 43261, ACTIVE 209 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 4 lock struct(s), heap size 1128, 2 row lock(s)
MySQL thread id 18, OS thread handle 139815618148096, query id 146 localhost u1 updating
UPDATE Birds SET value=40 WHERE name='Buzzard'

*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 27 page no 4 n bits 72 index PRIMARY of table `test`.`Animals` trx id 43261 lock mode S locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 8; hex 416172647661726b; asc Aardvark;;

3285

Deadlocks in InnoDB

 1: len 6; hex 00000000a8f9; asc ;;
 2: len 7; hex 82000000e20110; asc ;;
 3: len 4; hex 8000000a; asc ;;

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 28 page no 4 n bits 72 index PRIMARY of table `test`.`Birds` trx id 43261 lock_mode X locks rec but not gap waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 7; hex 42757a7a617264; asc Buzzard;;
 1: len 6; hex 00000000a8fb; asc ;;
 2: len 7; hex 82000000e40110; asc ;;
 3: len 4; hex 80000014; asc ;;

*** WE ROLL BACK TRANSACTION (2)

TRANSACTIONS

Trx id counter 43262
Purge done for trx's n:o < 43256 undo n:o < 0 state: running but idle
History list length 0
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 421291106147544, not started
0 lock struct(s), heap size 1128, 0 row lock(s)
---TRANSACTION 421291106146736, not started
0 lock struct(s), heap size 1128, 0 row lock(s)
---TRANSACTION 421291106145928, not started
0 lock struct(s), heap size 1128, 0 row lock(s)
---TRANSACTION 43260, ACTIVE 219 sec
4 lock struct(s), heap size 1128, 2 row lock(s), undo log entries 1
MySQL thread id 19, OS thread handle 139815619204864, query id 143 localhost u2

The error log contains this information about transactions and locks:

mysql> SELECT @@log_error;
+---------------------+
| @@log_error |
+---------------------+
| /var/log/mysqld.log |
+---------------------+
1 row in set (0.00 sec)

TRANSACTION 43260, ACTIVE 186 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 4 lock struct(s), heap size 1128, 2 row lock(s)
MySQL thread id 19, OS thread handle 139815619204864, query id 143 localhost u2 updating
UPDATE Animals SET value=30 WHERE name='Aardvark'
RECORD LOCKS space id 28 page no 4 n bits 72 index PRIMARY of table `test`.`Birds` trx id 43260 lock mode S locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 7; hex 42757a7a617264; asc Buzzard;;
 1: len 6; hex 00000000a8fb; asc ;;
 2: len 7; hex 82000000e40110; asc ;;
 3: len 4; hex 80000014; asc ;;

RECORD LOCKS space id 27 page no 4 n bits 72 index PRIMARY of table `test`.`Animals` trx id 43260 lock_mode X locks rec but not gap waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 8; hex 416172647661726b; asc Aardvark;;
 1: len 6; hex 00000000a8f9; asc ;;
 2: len 7; hex 82000000e20110; asc ;;
 3: len 4; hex 8000000a; asc ;;

TRANSACTION 43261, ACTIVE 209 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 4 lock struct(s), heap size 1128, 2 row lock(s)
MySQL thread id 18, OS thread handle 139815618148096, query id 146 localhost u1 updating
UPDATE Birds SET value=40 WHERE name='Buzzard'
RECORD LOCKS space id 27 page no 4 n bits 72 index PRIMARY of table `test`.`Animals` trx id 43261 lock mode S locks rec but not gap
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 8; hex 416172647661726b; asc Aardvark;;
 1: len 6; hex 00000000a8f9; asc ;;
 2: len 7; hex 82000000e20110; asc ;;
 3: len 4; hex 8000000a; asc ;;

3286

Deadlocks in InnoDB

RECORD LOCKS space id 28 page no 4 n bits 72 index PRIMARY of table `test`.`Birds` trx id 43261 lock_mode X locks rec but not gap waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 7; hex 42757a7a617264; asc Buzzard;;
 1: len 6; hex 00000000a8fb; asc ;;
 2: len 7; hex 82000000e40110; asc ;;
 3: len 4; hex 80000014; asc ;;

17.7.5.2 Deadlock Detection

When deadlock detection is enabled (the default), InnoDB automatically detects transaction deadlocks
and rolls back a transaction or transactions to break the deadlock. InnoDB tries to pick small
transactions to roll back, where the size of a transaction is determined by the number of rows inserted,
updated, or deleted.

InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit
= 0, and the MySQL layer above it knows about row-level locks. Otherwise, InnoDB cannot
detect deadlocks where a table lock set by a MySQL LOCK TABLES statement or a lock set by a
storage engine other than InnoDB is involved. Resolve these situations by setting the value of the
innodb_lock_wait_timeout system variable.

If the LATEST DETECTED DEADLOCK section of InnoDB Monitor output includes a message stating
TOO DEEP OR LONG SEARCH IN THE LOCK TABLE WAITS-FOR GRAPH, WE WILL ROLL BACK
FOLLOWING TRANSACTION, this indicates that the number of transactions on the wait-for list has
reached a limit of 200. A wait-for list that exceeds 200 transactions is treated as a deadlock and the
transaction attempting to check the wait-for list is rolled back. The same error may also occur if the
locking thread must look at more than 1,000,000 locks owned by transactions on the wait-for list.

For techniques to organize database operations to avoid deadlocks, see Section 17.7.5, “Deadlocks in
InnoDB”.

Disabling Deadlock Detection

On high concurrency systems, deadlock detection can cause a slowdown when numerous threads
wait for the same lock. At times, it may be more efficient to disable deadlock detection and rely on the
innodb_lock_wait_timeout setting for transaction rollback when a deadlock occurs. Deadlock
detection can be disabled using the innodb_deadlock_detect variable.

17.7.5.3 How to Minimize and Handle Deadlocks

This section builds on the conceptual information about deadlocks in Section 17.7.5.2, “Deadlock
Detection”. It explains how to organize database operations to minimize deadlocks and the subsequent
error handling required in applications.

Deadlocks are a classic problem in transactional databases, but they are not dangerous unless
they are so frequent that you cannot run certain transactions at all. Normally, you must write your
applications so that they are always prepared to re-issue a transaction if it gets rolled back because of
a deadlock.

InnoDB uses automatic row-level locking. You can get deadlocks even in the case of transactions
that just insert or delete a single row. That is because these operations are not really “atomic”; they
automatically set locks on the (possibly several) index records of the row inserted or deleted.

You can cope with deadlocks and reduce the likelihood of their occurrence with the following
techniques:

• At any time, issue SHOW ENGINE INNODB STATUS to determine the cause of the most recent
deadlock. That can help you to tune your application to avoid deadlocks.

• If frequent deadlock warnings cause concern, collect more extensive debugging information by
enabling the innodb_print_all_deadlocks variable. Information about each deadlock, not
just the latest one, is recorded in the MySQL error log. Disable this option when you are finished
debugging.

3287

Transaction Scheduling

• Always be prepared to re-issue a transaction if it fails due to deadlock. Deadlocks are not dangerous.
Just try again.

• Keep transactions small and short in duration to make them less prone to collision.

• Commit transactions immediately after making a set of related changes to make them less prone
to collision. In particular, do not leave an interactive mysql session open for a long time with an
uncommitted transaction.

• If you use locking reads (SELECT ... FOR UPDATE or SELECT ... FOR SHARE), try using a
lower isolation level such as READ COMMITTED.

• When modifying multiple tables within a transaction, or different sets of rows in the same table, do
those operations in a consistent order each time. Then transactions form well-defined queues and do
not deadlock. For example, organize database operations into functions within your application, or
call stored routines, rather than coding multiple similar sequences of INSERT, UPDATE, and DELETE
statements in different places.

• Add well-chosen indexes to your tables so that your queries scan fewer index records and set fewer
locks. Use EXPLAIN SELECT to determine which indexes the MySQL server regards as the most
appropriate for your queries.

• Use less locking. If you can afford to permit a SELECT to return data from an old snapshot, do not
add a FOR UPDATE or FOR SHARE clause to it. Using the READ COMMITTED isolation level is good
here, because each consistent read within the same transaction reads from its own fresh snapshot.

• If nothing else helps, serialize your transactions with table-level locks. The correct way to use
LOCK TABLES with transactional tables, such as InnoDB tables, is to begin a transaction with SET
autocommit = 0 (not START TRANSACTION) followed by LOCK TABLES, and to not call UNLOCK
TABLES until you commit the transaction explicitly. For example, if you need to write to table t1 and
read from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

Table-level locks prevent concurrent updates to the table, avoiding deadlocks at the expense of less
responsiveness for a busy system.

• Another way to serialize transactions is to create an auxiliary “semaphore” table that contains just
a single row. Have each transaction update that row before accessing other tables. In that way, all
transactions happen in a serial fashion. Note that the InnoDB instant deadlock detection algorithm
also works in this case, because the serializing lock is a row-level lock. With MySQL table-level
locks, the timeout method must be used to resolve deadlocks.

17.7.6 Transaction Scheduling

InnoDB uses the Contention-Aware Transaction Scheduling (CATS) algorithm to prioritize transactions
that are waiting for locks. When multiple transactions are waiting for a lock on the same object, the
CATS algorithm determines which transaction receives the lock first.

The CATS algorithm prioritizes waiting transactions by assigning a scheduling weight, which is
computed based on the number of transactions that a transaction blocks. For example, if two
transactions are waiting for a lock on the same object, the transaction that blocks the most transactions
is assigned a greater scheduling weight. If weights are equal, priority is given to the longest waiting
transaction.

Note

Prior to MySQL 8.0.20, InnoDB also uses a First In First Out (FIFO) algorithm
to schedule transactions, and the CATS algorithm is used under heavy lock

3288

InnoDB Configuration

contention only. CATS algorithm enhancements in MySQL 8.0.20 rendered
the FIFO algorithm redundant, permitting its removal. Transaction scheduling
previously performed by the FIFO algorithm is performed by the CATS algorithm
as of MySQL 8.0.20. In some cases, this change may affect the order in which
transactions are granted locks.

You can view transaction scheduling weights by querying the TRX_SCHEDULE_WEIGHT column in the
Information Schema INNODB_TRX table. Weights are computed for waiting transactions only. Waiting
transactions are those in a LOCK WAIT transaction execution state, as reported by the TRX_STATE
column. A transaction that is not waiting for a lock reports a NULL TRX_SCHEDULE_WEIGHT value.

INNODB_METRICS counters are provided for monitoring of code-level transaction scheduling
events. For information about using INNODB_METRICS counters, see Section 17.15.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

• lock_rec_release_attempts

The number of attempts to release record locks. A single attempt may lead to zero or more record
locks being released, as there may be zero or more record locks in a single structure.

• lock_rec_grant_attempts

The number of attempts to grant record locks. A single attempt may result in zero or more record
locks being granted.

• lock_schedule_refreshes

The number of times the wait-for graph was analyzed to update the scheduled transaction weights.

17.8 InnoDB Configuration
This section provides configuration information and procedures for InnoDB initialization, startup, and
various components and features of the InnoDB storage engine. For information about optimizing
database operations for InnoDB tables, see Section 10.5, “Optimizing for InnoDB Tables”.

17.8.1 InnoDB Startup Configuration

The first decisions to make about InnoDB configuration involve the configuration of data files, log files,
page size, and memory buffers, which should be configured before initializing InnoDB. Modifying the
configuration after InnoDB is initialized may involve non-trivial procedures.

This section provides information about specifying InnoDB settings in a configuration file, viewing
InnoDB initialization information, and important storage considerations.

• Specifying Options in a MySQL Option File

• Viewing InnoDB Initialization Information

• Important Storage Considerations

• System Tablespace Data File Configuration

• InnoDB Doublewrite Buffer File Configuration

• Redo Log Configuration

• Undo Tablespace Configuration

• Global Temporary Tablespace Configuration

• Session Temporary Tablespace Configuration

• Page Size Configuration

3289

InnoDB Startup Configuration

• Memory Configuration

Specifying Options in a MySQL Option File

Because MySQL uses data file, log file, and page size settings to initialize InnoDB, it is recommended
that you define these settings in an option file that MySQL reads at startup, prior to initializing InnoDB.
Normally, InnoDB is initialized when the MySQL server is started for the first time.

You can place InnoDB options in the [mysqld] group of any option file that your server reads when it
starts. The locations of MySQL option files are described in Section 6.2.2.2, “Using Option Files”.

To make sure that mysqld reads options only from a specific file (and mysqld-auto.cnf), use the
--defaults-file option as the first option on the command line when starting the server:

mysqld --defaults-file=path_to_option_file

Viewing InnoDB Initialization Information

To view InnoDB initialization information during startup, start mysqld from a command prompt, which
prints initialization information to the console.

For example, on Windows, if mysqld is located in C:\Program Files\MySQL\MySQL Server
8.0\bin, start the MySQL server like this:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqld" --console

On Unix-like systems, mysqld is located in the bin directory of your MySQL installation:

$> bin/mysqld --user=mysql &

If you do not send server output to the console, check the error log after startup to see the initialization
information InnoDB printed during the startup process.

For information about starting MySQL using other methods, see Section 2.9.5, “Starting and Stopping
MySQL Automatically”.

Note

InnoDB does not open all user tables and associated data files at startup.
However, InnoDB does check for the existence of tablespace files referenced
in the data dictionary. If a tablespace file is not found, InnoDB logs an error and
continues the startup sequence. Tablespace files referenced in the redo log
may be opened during crash recovery for redo application.

Important Storage Considerations

Review the following storage-related considerations before proceeding with your startup configuration.

• In some cases, you can improve database performance by placing data and log files on separate
physical disks. You can also use raw disk partitions (raw devices) for InnoDB data files, which may
speed up I/O. See Using Raw Disk Partitions for the System Tablespace.

• InnoDB is a transaction-safe (ACID compliant) storage engine with commit, rollback, and crash-
recovery capabilities to protect user data. However, it cannot do so if the underlying operating
system or hardware does not work as advertised. Many operating systems or disk subsystems may
delay or reorder write operations to improve performance. On some operating systems, the very
fsync() system call that should wait until all unwritten data for a file has been flushed might actually
return before the data has been flushed to stable storage. Because of this, an operating system
crash or a power outage may destroy recently committed data, or in the worst case, even corrupt
the database because write operations have been reordered. If data integrity is important to you,
perform “pull-the-plug” tests before using anything in production. On macOS, InnoDB uses a special
fcntl() file flush method. Under Linux, it is advisable to disable the write-back cache.

3290

InnoDB Startup Configuration

On ATA/SATA disk drives, a command such hdparm -W0 /dev/hda may work to disable the
write-back cache. Beware that some drives or disk controllers may be unable to disable the
write-back cache.

• With regard to InnoDB recovery capabilities that protect user data, InnoDB uses a file flush
technique involving a structure called the doublewrite buffer, which is enabled by default
(innodb_doublewrite=ON). The doublewrite buffer adds safety to recovery following an
unexpected exit or power outage, and improves performance on most varieties of Unix by reducing
the need for fsync() operations. It is recommended that the innodb_doublewrite option
remains enabled if you are concerned with data integrity or possible failures. For information about
the doublewrite buffer, see Section 17.11.1, “InnoDB Disk I/O”.

• Before using NFS with InnoDB, review potential issues outlined in Using NFS with MySQL.

System Tablespace Data File Configuration

The innodb_data_file_path option defines the name, size, and attributes of InnoDB system
tablespace data files. If you do not configure this option prior to initializing the MySQL server, the
default behavior is to create a single auto-extending data file, slightly larger than 12MB, named
ibdata1:

mysql> SHOW VARIABLES LIKE 'innodb_data_file_path';
+-----------------------+------------------------+
| Variable_name | Value |
+-----------------------+------------------------+
| innodb_data_file_path | ibdata1:12M:autoextend |
+-----------------------+------------------------+

The full data file specification syntax includes the file name, file size, autoextend attribute, and max
attribute:

file_name:file_size[:autoextend[:max:max_file_size]]

File sizes are specified in kilobytes, megabytes, or gigabytes by appending K, M or G to the size value.
If specifying the data file size in kilobytes, do so in multiples of 1024. Otherwise, kilobyte values are
rounded to nearest megabyte (MB) boundary. The sum of file sizes must be, at a minimum, slightly
larger than 12MB.

You can specify more than one data file using a semicolon-separated list. For example:

[mysqld]
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The autoextend and max attributes can be used only for the data file that is specified last.

When the autoextend attribute is specified, the data file automatically increases in size by 64MB
increments as space is required. The innodb_autoextend_increment variable controls the
increment size.

To specify a maximum size for an auto-extending data file, use the max attribute following the
autoextend attribute. Use the max attribute only in cases where constraining disk usage is of critical
importance. The following configuration permits ibdata1 to grow to a limit of 500MB:

[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend:max:500M

A minimum file size is enforced for the first system tablespace data file to ensure that there is enough
space for doublewrite buffer pages. The following table shows minimum file sizes for each InnoDB
page size. The default InnoDB page size is 16384 (16KB).

Page Size (innodb_page_size) Minimum File Size

16384 (16KB) or less 5MB

32768 (32KB) 6MB

3291

InnoDB Startup Configuration

Page Size (innodb_page_size) Minimum File Size

65536 (64KB) 12MB

If your disk becomes full, you can add a data file on another disk. For instructions, see Resizing the
System Tablespace.

The size limit for individual files is determined by your operating system. You can set the file size to
more than 4GB on operating systems that support large files. You can also use raw disk partitions as
data files. See Using Raw Disk Partitions for the System Tablespace.

InnoDB is not aware of the file system maximum file size, so be cautious on file systems where the
maximum file size is a small value such as 2GB.

System tablespace files are created in the data directory by default (datadir). To specify an alternate
location, use the innodb_data_home_dir option. For example, to create a system tablespace data
file in a directory named myibdata, use this configuration:

[mysqld]
innodb_data_home_dir = /myibdata/
innodb_data_file_path=ibdata1:50M:autoextend

A trailing slash is required when specifying a value for innodb_data_home_dir. InnoDB does not
create directories, so ensure that the specified directory exists before you start the server. Also, ensure
sure that the MySQL server has the proper access rights to create files in the directory.

InnoDB forms the directory path for each data file by textually concatenating the value of
innodb_data_home_dir to the data file name. If innodb_data_home_dir is not defined, the
default value is “./”, which is the data directory. (The MySQL server changes its current working
directory to the data directory when it begins executing.)

Alternatively, you can specify an absolute path for system tablespace data files. The following
configuration is equivalent to the preceding one:

[mysqld]
innodb_data_file_path=/myibdata/ibdata1:50M:autoextend

When you specify an absolute path for innodb_data_file_path, the setting is not concatenated
with the innodb_data_home_dir setting. System tablespace files are created in the specified
absolute path. The specified directory must exist before you start the server.

InnoDB Doublewrite Buffer File Configuration

As of MySQL 8.0.20, the doublewrite buffer storage area resides in doublewrite files, which provides
flexibility with respect to the storage location of doublewrite pages. In previous releases, the
doublewrite buffer storage area resided in the system tablespace. The innodb_doublewrite_dir
variable defines the directory where InnoDB creates doublewrite files at startup. If no directory is
specified, doublewrite files are created in the innodb_data_home_dir directory, which defaults to
the data directory if unspecified.

To have doublewrite files created in a location other than the innodb_data_home_dir directory,
configure innodb_doublewrite_dir variable. For example:

innodb_doublewrite_dir=/path/to/doublewrite_directory

Other doublewrite buffer variables permit defining the number of doublewrite files, the number of
pages per thread, and the doublewrite batch size. For more information about doublewrite buffer
configuration, see Section 17.6.4, “Doublewrite Buffer”.

Redo Log Configuration

From MySQL 8.0.30, the amount of disk space occupied by redo log files is controlled by the
innodb_redo_log_capacity variable, which can be set at startup or runtime; for example, to set
the variable to 8GiB in an option file, add the following entry:

3292

InnoDB Startup Configuration

[mysqld]
innodb_redo_log_capacity = 8589934592

For information about configuring redo log capacity at runtime, see Configuring Redo Log Capacity
(MySQL 8.0.30 or Higher).

The innodb_redo_log_capacity variable supersedes the innodb_log_file_size
and innodb_log_files_in_group variables, which are deprecated. When the
innodb_redo_log_capacity setting is defined, the innodb_log_file_size and
innodb_log_files_in_group settings are ignored; otherwise, if one or both of these deprecated
settings are defined then they are used to compute Innodb_redo_log_capacity_resized as
(innodb_log_files_in_group * innodb_log_file_size). If none of those variables are set,
then the default innodb_redo_log_capacity value is used.

From MySQL 8.0.30, InnoDB attempts to maintain 32 redo log files, with each file equal to 1/32 *
innodb_redo_log_capacity. The redo log files reside in the #innodb_redo directory in the data
directory unless a different directory was specified by the innodb_log_group_home_dir variable.
If innodb_log_group_home_dir was defined, the redo log files reside in the #innodb_redo
directory in that directory. For more information, see Section 17.6.5, “Redo Log”.

Before MySQL 8.0.30, InnoDB creates two 5MB redo log files named ib_logfile0 and
ib_logfile1 in the data directory by default. You can define a different number of redo log files
and different redo log file size when initializing the MySQL Server instance by configuring the
innodb_log_files_in_group and innodb_log_file_size variables.

• innodb_log_files_in_group defines the number of log files in the log group. The default and
recommended value is 2.

• innodb_log_file_size defines the size in bytes of each log file in the log group. The combined
log file size (innodb_log_file_size * innodb_log_files_in_group) cannot exceed
the maximum value, which is slightly less than 512GB. A pair of 255 GB log files, for example,
approaches the limit but does not exceed it. The default log file size is 48MB. Generally, the
combined size of the log files should be large enough that the server can smooth out peaks and
troughs in workload activity, which often means that there is enough redo log space to handle more
than an hour of write activity. A larger log file size means less checkpoint flush activity in the buffer
pool, which reduces disk I/O. For additional information, see Section 10.5.4, “Optimizing InnoDB
Redo Logging”.

The innodb_log_group_home_dir defines directory path to the InnoDB log files. You might use
this option to place InnoDB redo log files in a different physical storage location than InnoDB data files
to avoid potential I/O resource conflicts; for example:

[mysqld]
innodb_log_group_home_dir = /dr3/iblogs

Note

InnoDB does not create directories, so make sure that the log directory exists
before you start the server. Use the Unix or DOS mkdir command to create
any necessary directories.

Make sure that the MySQL server has the proper access rights to create files
in the log directory. More generally, the server must have access rights in any
directory where it needs to create files.

Undo Tablespace Configuration

Undo logs, by default, reside in two undo tablespaces created when the MySQL instance is initialized.

The innodb_undo_directory variable defines the path where InnoDB creates default undo
tablespaces. If that variable is undefined, default undo tablespaces are created in the data directory.
The innodb_undo_directory variable is not dynamic. Configuring it requires restarting the server.

3293

InnoDB Startup Configuration

The I/O patterns for undo logs make undo tablespaces good candidates for SSD storage.

For information about configuring additional undo tablespaces, see Section 17.6.3.4, “Undo
Tablespaces”.

Global Temporary Tablespace Configuration

The global temporary tablespace stores rollback segments for changes made to user-created
temporary tables.

A single auto-extending global temporary tablespace data file named ibtmp1 in the
innodb_data_home_dir directory by default. The initial file size is slightly larger than 12MB.

The innodb_temp_data_file_path option specifies the path, file name, and file size for global
temporary tablespace data files. File size is specified in KB, MB, or GB by appending K, M, or G to the
size value. The file size or combined file size must be slightly larger than 12MB.

To specify an alternate location for global temporary tablespace data files, configure the
innodb_temp_data_file_path option at startup.

Session Temporary Tablespace Configuration

In MySQL 8.0.15 and earlier, session temporary tablespaces store user-created temporary tables and
internal temporary tables created by the optimizer when InnoDB is configured as the on-disk storage
engine for internal temporary tables (internal_tmp_disk_storage_engine=InnoDB). From
MySQL 8.0.16, InnoDB is always used as the on-disk storage engine for internal temporary tables.

The innodb_temp_tablespaces_dir variable defines the location where InnoDB creates session
temporary tablespaces. The default location is the #innodb_temp directory in the data directory.

To specify an alternate location for session temporary tablespaces, configure the
innodb_temp_tablespaces_dir variable at startup. A fully qualified path or path relative to the
data directory is permitted.

Page Size Configuration

The innodb_page_size option specifies the page size for all InnoDB tablespaces in a MySQL
instance. This value is set when the instance is created and remains constant afterward. Valid values
are 64KB, 32KB, 16KB (the default), 8KB, and 4KB. Alternatively, you can specify page size in bytes
(65536, 32768, 16384, 8192, 4096).

The default 16KB page size is appropriate for a wide range of workloads, particularly for queries
involving table scans and DML operations involving bulk updates. Smaller page sizes might be more
efficient for OLTP workloads involving many small writes, where contention can be an issue when a
single page contains many rows. Smaller pages can also be more efficient for SSD storage devices,
which typically use small block sizes. Keeping the InnoDB page size close to the storage device block
size minimizes the amount of unchanged data that is rewritten to disk.

Important

innodb_page_size can be set only when initializing the data directory. See
the description of this variable for more information.

Memory Configuration

MySQL allocates memory to various caches and buffers to improve performance of database
operations. When allocating memory for InnoDB, always consider memory required by the operating
system, memory allocated to other applications, and memory allocated for other MySQL buffers and
caches. For example, if you use MyISAM tables, consider the amount of memory allocated for the key
buffer (key_buffer_size). For an overview of MySQL buffers and caches, see Section 10.12.3.1,
“How MySQL Uses Memory”.

Buffers specific to InnoDB are configured using the following parameters:

3294

Configuring InnoDB for Read-Only Operation

• innodb_buffer_pool_size defines size of the buffer pool, which is the memory area
that holds cached data for InnoDB tables, indexes, and other auxiliary buffers. The size of
the buffer pool is important for system performance, and it is typically recommended that
innodb_buffer_pool_size is configured to 50 to 75 percent of system memory. The default
buffer pool size is 128MB. For additional guidance, see Section 10.12.3.1, “How MySQL Uses
Memory”. For information about how to configure InnoDB buffer pool size, see Section 17.8.3.1,
“Configuring InnoDB Buffer Pool Size”. Buffer pool size can be configured at startup or dynamically.

On systems with a large amount of memory, you can improve concurrency by dividing the buffer
pool into multiple buffer pool instances. The number of buffer pool instances is controlled by the
by innodb_buffer_pool_instances option. By default, InnoDB creates one buffer pool
instance. The number of buffer pool instances can be configured at startup. For more information,
see Section 17.8.3.2, “Configuring Multiple Buffer Pool Instances”.

• innodb_log_buffer_size defines the size of the buffer that InnoDB uses to write to the
log files on disk. The default size is 16MB. A large log buffer enables large transactions to run
without writing the log to disk before the transactions commit. If you have transactions that update,
insert, or delete many rows, you might consider increasing the size of the log buffer to save disk
I/O. innodb_log_buffer_size can be configured at startup. For related information, see
Section 10.5.4, “Optimizing InnoDB Redo Logging”.

Warning

On 32-bit GNU/Linux x86, if memory usage is set too high, glibc may permit
the process heap to grow over the thread stacks, causing a server failure. It is
a risk if the memory allocated to the mysqld process for global and per-thread
buffers and caches is close to or exceeds 2GB.

A formula similar to the following that calculates global and per-thread memory
allocation for MySQL can be used to estimate MySQL memory usage. You may
need to modify the formula to account for buffers and caches in your MySQL
version and configuration. For an overview of MySQL buffers and caches, see
Section 10.12.3.1, “How MySQL Uses Memory”.

innodb_buffer_pool_size
+ key_buffer_size
+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)
+ max_connections*2MB

Each thread uses a stack (often 2MB, but only 256KB in MySQL binaries
provided by Oracle Corporation.) and in the worst case also uses
sort_buffer_size + read_buffer_size additional memory.

On Linux, if the kernel is enabled for large page support, InnoDB can use large pages to allocate
memory for its buffer pool. See Section 10.12.3.3, “Enabling Large Page Support”.

17.8.2 Configuring InnoDB for Read-Only Operation

You can query InnoDB tables where the MySQL data directory is on read-only media by enabling the
--innodb-read-only configuration option at server startup.

How to Enable

To prepare an instance for read-only operation, make sure all the necessary information is flushed to
the data files before storing it on the read-only medium. Run the server with change buffering disabled
(innodb_change_buffering=0) and do a slow shutdown.

To enable read-only mode for an entire MySQL instance, specify the following configuration options at
server startup:

• --innodb-read-only=1

3295

Configuring InnoDB for Read-Only Operation

• If the instance is on read-only media such as a DVD or CD, or the /var directory is not writeable by
all: --pid-file=path_on_writeable_media and --event-scheduler=disabled

• --innodb-temp-data-file-path. This option specifies the path, file name, and file size for
InnoDB temporary tablespace data files. The default setting is ibtmp1:12M:autoextend, which
creates the ibtmp1 temporary tablespace data file in the data directory. To prepare an instance
for read-only operation, set innodb_temp_data_file_path to a location outside of the data
directory. The path must be relative to the data directory. For example:

--innodb-temp-data-file-path=../../../tmp/ibtmp1:12M:autoextend

As of MySQL 8.0, enabling innodb_read_only prevents table creation and drop operations for all
storage engines. These operations modify data dictionary tables in the mysql system database, but
those tables use the InnoDB storage engine and cannot be modified when innodb_read_only is
enabled. The same restriction applies to any operation that modifies data dictionary tables, such as
ANALYZE TABLE and ALTER TABLE tbl_name ENGINE=engine_name.

In addition, other tables in the mysql system database use the InnoDB storage engine in MySQL
8.0. Making those tables read only results in restrictions on operations that modify them. For example,
CREATE USER, GRANT, REVOKE, and INSTALL PLUGIN operations are not permitted in read-only
mode.

Usage Scenarios

This mode of operation is appropriate in situations such as:

• Distributing a MySQL application, or a set of MySQL data, on a read-only storage medium such as a
DVD or CD.

• Multiple MySQL instances querying the same data directory simultaneously, typically in a data
warehousing configuration. You might use this technique to avoid bottlenecks that can occur with
a heavily loaded MySQL instance, or you might use different configuration options for the various
instances to tune each one for particular kinds of queries.

• Querying data that has been put into a read-only state for security or data integrity reasons, such as
archived backup data.

Note

This feature is mainly intended for flexibility in distribution and deployment,
rather than raw performance based on the read-only aspect. See
Section 10.5.3, “Optimizing InnoDB Read-Only Transactions” for ways to tune
the performance of read-only queries, which do not require making the entire
server read-only.

How It Works

When the server is run in read-only mode through the --innodb-read-only option, certain InnoDB
features and components are reduced or turned off entirely:

• No change buffering is done, in particular no merges from the change buffer. To make sure the
change buffer is empty when you prepare the instance for read-only operation, disable change
buffering (innodb_change_buffering=0) and do a slow shutdown first.

• There is no crash recovery phase at startup. The instance must have performed a slow shutdown
before being put into the read-only state.

• Because the redo log is not used in read-only operation, you can set innodb_log_file_size to
the smallest size possible (1 MB) before making the instance read-only.

• Most background threads are turned off. I/O read threads remain, as well as I/O write threads and a
page flush coordinator thread for writes to temporary files, which are permitted in read-only mode. A
buffer pool resize thread also remains active to enable online resizing of the buffer pool.

3296

InnoDB Buffer Pool Configuration

• Information about deadlocks, monitor output, and so on is not written to temporary files. As a
consequence, SHOW ENGINE INNODB STATUS does not produce any output.

• Changes to configuration option settings that would normally change the behavior of write
operations, have no effect when the server is in read-only mode.

• The MVCC processing to enforce isolation levels is turned off. All queries read the latest version of a
record, because update and deletes are not possible.

• The undo log is not used. Disable any settings for the innodb_undo_tablespaces and
innodb_undo_directory configuration options.

17.8.3 InnoDB Buffer Pool Configuration

This section provides configuration and tuning information for the InnoDB buffer pool.

17.8.3.1 Configuring InnoDB Buffer Pool Size

You can configure InnoDB buffer pool size offline or while the server is running. Behavior described
in this section applies to both methods. For additional information about configuring buffer pool size
online, see Configuring InnoDB Buffer Pool Size Online.

When increasing or decreasing innodb_buffer_pool_size, the operation is performed in chunks.
Chunk size is defined by the innodb_buffer_pool_chunk_size configuration option, which has a
default of 128M. For more information, see Configuring InnoDB Buffer Pool Chunk Size.

Buffer pool size must always be equal to or a multiple of innodb_buffer_pool_chunk_size
* innodb_buffer_pool_instances. If you configure innodb_buffer_pool_size
to a value that is not equal to or a multiple of innodb_buffer_pool_chunk_size *
innodb_buffer_pool_instances, buffer pool size is automatically adjusted to a value that is equal
to or a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances.

In the following example, innodb_buffer_pool_size is set to 8G, and
innodb_buffer_pool_instances is set to 16. innodb_buffer_pool_chunk_size is 128M,
which is the default value.

8G is a valid innodb_buffer_pool_size value because 8G is a multiple of
innodb_buffer_pool_instances=16 * innodb_buffer_pool_chunk_size=128M, which is
2G.

$> mysqld --innodb-buffer-pool-size=8G --innodb-buffer-pool-instances=16

mysql> SELECT @@innodb_buffer_pool_size/1024/1024/1024;
+--+
| @@innodb_buffer_pool_size/1024/1024/1024 |
+--+
| 8.000000000000 |
+--+

In this example, innodb_buffer_pool_size is set to 9G, and innodb_buffer_pool_instances
is set to 16. innodb_buffer_pool_chunk_size is 128M, which is the default
value. In this case, 9G is not a multiple of innodb_buffer_pool_instances=16 *
innodb_buffer_pool_chunk_size=128M, so innodb_buffer_pool_size is adjusted to 10G,
which is a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances.

$> mysqld --innodb-buffer-pool-size=9G --innodb-buffer-pool-instances=16

mysql> SELECT @@innodb_buffer_pool_size/1024/1024/1024;
+--+
| @@innodb_buffer_pool_size/1024/1024/1024 |
+--+
| 10.000000000000 |
+--+

3297

InnoDB Buffer Pool Configuration

Configuring InnoDB Buffer Pool Chunk Size

innodb_buffer_pool_chunk_size can be increased or decreased in 1MB (1048576 byte) units
but can only be modified at startup, in a command line string or in a MySQL configuration file.

Command line:

$> mysqld --innodb-buffer-pool-chunk-size=134217728

Configuration file:

[mysqld]
innodb_buffer_pool_chunk_size=134217728

The following conditions apply when altering innodb_buffer_pool_chunk_size:

• If the new innodb_buffer_pool_chunk_size value * innodb_buffer_pool_instances
is larger than the current buffer pool size when the buffer pool is initialized,
innodb_buffer_pool_chunk_size is truncated to innodb_buffer_pool_size /
innodb_buffer_pool_instances.

For example, if the buffer pool is initialized with a size of 2GB (2147483648 bytes), 4 buffer pool
instances, and a chunk size of 1GB (1073741824 bytes), chunk size is truncated to a value equal to
innodb_buffer_pool_size / innodb_buffer_pool_instances, as shown below:

$> mysqld --innodb-buffer-pool-size=2147483648 --innodb-buffer-pool-instances=4
--innodb-buffer-pool-chunk-size=1073741824;

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 2147483648 |
+---------------------------+

mysql> SELECT @@innodb_buffer_pool_instances;
+--------------------------------+
| @@innodb_buffer_pool_instances |
+--------------------------------+
| 4 |
+--------------------------------+

Chunk size was set to 1GB (1073741824 bytes) on startup but was
truncated to innodb_buffer_pool_size / innodb_buffer_pool_instances

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 536870912 |
+---------------------------------+

• Buffer pool size must always be equal to or a multiple of innodb_buffer_pool_chunk_size
* innodb_buffer_pool_instances. If you alter innodb_buffer_pool_chunk_size,
innodb_buffer_pool_size is automatically adjusted to a value that is equal to or a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances. The adjustment
occurs when the buffer pool is initialized. This behavior is demonstrated in the following example:

The buffer pool has a default size of 128MB (134217728 bytes)

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 134217728 |
+---------------------------+

The chunk size is also 128MB (134217728 bytes)

3298

InnoDB Buffer Pool Configuration

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 134217728 |
+---------------------------------+

There is a single buffer pool instance

mysql> SELECT @@innodb_buffer_pool_instances;
+--------------------------------+
| @@innodb_buffer_pool_instances |
+--------------------------------+
| 1 |
+--------------------------------+

Chunk size is decreased by 1MB (1048576 bytes) at startup
(134217728 - 1048576 = 133169152):

$> mysqld --innodb-buffer-pool-chunk-size=133169152

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 133169152 |
+---------------------------------+

Buffer pool size increases from 134217728 to 266338304
Buffer pool size is automatically adjusted to a value that is equal to
or a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 266338304 |
+---------------------------+

This example demonstrates the same behavior but with multiple buffer pool instances:

The buffer pool has a default size of 2GB (2147483648 bytes)

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 2147483648 |
+---------------------------+

The chunk size is .5 GB (536870912 bytes)

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 536870912 |
+---------------------------------+

There are 4 buffer pool instances

mysql> SELECT @@innodb_buffer_pool_instances;
+--------------------------------+
| @@innodb_buffer_pool_instances |
+--------------------------------+
| 4 |
+--------------------------------+

Chunk size is decreased by 1MB (1048576 bytes) at startup
(536870912 - 1048576 = 535822336):

$> mysqld --innodb-buffer-pool-chunk-size=535822336

3299

InnoDB Buffer Pool Configuration

mysql> SELECT @@innodb_buffer_pool_chunk_size;
+---------------------------------+
| @@innodb_buffer_pool_chunk_size |
+---------------------------------+
| 535822336 |
+---------------------------------+

Buffer pool size increases from 2147483648 to 4286578688
Buffer pool size is automatically adjusted to a value that is equal to
or a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances

mysql> SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 4286578688 |
+---------------------------+

Care should be taken when changing innodb_buffer_pool_chunk_size, as changing this
value can increase the size of the buffer pool, as shown in the examples above. Before you change
innodb_buffer_pool_chunk_size, calculate the effect on innodb_buffer_pool_size to
ensure that the resulting buffer pool size is acceptable.

Note

To avoid potential performance issues, the number of chunks
(innodb_buffer_pool_size / innodb_buffer_pool_chunk_size)
should not exceed 1000.

Configuring InnoDB Buffer Pool Size Online

The innodb_buffer_pool_size configuration option can be set dynamically using a SET statement,
allowing you to resize the buffer pool without restarting the server. For example:

mysql> SET GLOBAL innodb_buffer_pool_size=402653184;

Note

The buffer pool size must be equal to or a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances.
Changing those variable settings requires restarting the server.

Active transactions and operations performed through InnoDB APIs should be completed before
resizing the buffer pool. When initiating a resizing operation, the operation does not start until all
active transactions are completed. Once the resizing operation is in progress, new transactions and
operations that require access to the buffer pool must wait until the resizing operation finishes. The
exception to the rule is that concurrent access to the buffer pool is permitted while the buffer pool is
defragmented and pages are withdrawn when buffer pool size is decreased. A drawback of allowing
concurrent access is that it could result in a temporary shortage of available pages while pages are
being withdrawn.

Note

Nested transactions could fail if initiated after the buffer pool resizing operation
begins.

Monitoring Online Buffer Pool Resizing Progress

The Innodb_buffer_pool_resize_status variable reports a string value indicating buffer pool
resizing progress; for example:

mysql> SHOW STATUS WHERE Variable_name='InnoDB_buffer_pool_resize_status';
+----------------------------------+----------------------------------+
| Variable_name | Value |
+----------------------------------+----------------------------------+

3300

InnoDB Buffer Pool Configuration

| Innodb_buffer_pool_resize_status | Resizing also other hash tables. |
+----------------------------------+----------------------------------+

From MyQL 8.0.31, you can also monitor an online buffer pool resizing
operation using the Innodb_buffer_pool_resize_status_code and
Innodb_buffer_pool_resize_status_progress status variables, which report numeric values,
preferable for programmatic monitoring.

The Innodb_buffer_pool_resize_status_code status variable reports a status code indicating
the stage of an online buffer pool resizing operation. Status codes include:

• 0: No Resize operation in progress

• 1: Starting Resize

• 2: Disabling AHI (Adaptive Hash Index)

• 3: Withdrawing Blocks

• 4: Acquiring Global Lock

• 5: Resizing Pool

• 6: Resizing Hash

• 7: Resizing Failed

The Innodb_buffer_pool_resize_status_progress status variable reports a percentage value
indicating the progress of each stage. The percentage value is updated after each buffer pool instance
is processed. As the status (reported by Innodb_buffer_pool_resize_status_code) changes
from one status to another, the percentage value is reset to 0.

The following query returns a string value indicating the buffer pool resizing progress, a code indicating
the current stage of the operation, and the current progress of that stage, expressed as a percentage
value:

SELECT variable_name, variable_value
 FROM performance_schema.global_status
 WHERE LOWER(variable_name) LIKE "innodb_buffer_pool_resize%";

Buffer pool resizing progress is also visible in the server error log. This example shows notes that are
logged when increasing the size of the buffer pool:

[Note] InnoDB: Resizing buffer pool from 134217728 to 4294967296. (unit=134217728)
[Note] InnoDB: disabled adaptive hash index.
[Note] InnoDB: buffer pool 0 : 31 chunks (253952 blocks) was added.
[Note] InnoDB: buffer pool 0 : hash tables were resized.
[Note] InnoDB: Resized hash tables at lock_sys, adaptive hash index, dictionary.
[Note] InnoDB: completed to resize buffer pool from 134217728 to 4294967296.
[Note] InnoDB: re-enabled adaptive hash index.

This example shows notes that are logged when decreasing the size of the buffer pool:

[Note] InnoDB: Resizing buffer pool from 4294967296 to 134217728. (unit=134217728)
[Note] InnoDB: disabled adaptive hash index.
[Note] InnoDB: buffer pool 0 : start to withdraw the last 253952 blocks.
[Note] InnoDB: buffer pool 0 : withdrew 253952 blocks from free list. tried to relocate
0 pages. (253952/253952)
[Note] InnoDB: buffer pool 0 : withdrawn target 253952 blocks.
[Note] InnoDB: buffer pool 0 : 31 chunks (253952 blocks) was freed.
[Note] InnoDB: buffer pool 0 : hash tables were resized.
[Note] InnoDB: Resized hash tables at lock_sys, adaptive hash index, dictionary.
[Note] InnoDB: completed to resize buffer pool from 4294967296 to 134217728.
[Note] InnoDB: re-enabled adaptive hash index.

From MySQL 8.0.31, starting the server with --log-error-verbosity=3 logs additional information
to the error log during an online buffer pool resizing operation. Additional information includes the

3301

InnoDB Buffer Pool Configuration

status codes reported by Innodb_buffer_pool_resize_status_code and the percentage
progress value reported by Innodb_buffer_pool_resize_status_progress.

[Note] [MY-012398] [InnoDB] Requested to resize buffer pool. (new size: 1073741824 bytes)
[Note] [MY-013954] [InnoDB] Status code 1: Resizing buffer pool from 134217728 to 1073741824
(unit=134217728).
[Note] [MY-013953] [InnoDB] Status code 1: 100% complete
[Note] [MY-013952] [InnoDB] Status code 1: Completed
[Note] [MY-013954] [InnoDB] Status code 2: Disabling adaptive hash index.
[Note] [MY-011885] [InnoDB] disabled adaptive hash index.
[Note] [MY-013953] [InnoDB] Status code 2: 100% complete
[Note] [MY-013952] [InnoDB] Status code 2: Completed
[Note] [MY-013954] [InnoDB] Status code 3: Withdrawing blocks to be shrunken.
[Note] [MY-013953] [InnoDB] Status code 3: 100% complete
[Note] [MY-013952] [InnoDB] Status code 3: Completed
[Note] [MY-013954] [InnoDB] Status code 4: Latching whole of buffer pool.
[Note] [MY-013953] [InnoDB] Status code 4: 14% complete
[Note] [MY-013953] [InnoDB] Status code 4: 28% complete
[Note] [MY-013953] [InnoDB] Status code 4: 42% complete
[Note] [MY-013953] [InnoDB] Status code 4: 57% complete
[Note] [MY-013953] [InnoDB] Status code 4: 71% complete
[Note] [MY-013953] [InnoDB] Status code 4: 85% complete
[Note] [MY-013953] [InnoDB] Status code 4: 100% complete
[Note] [MY-013952] [InnoDB] Status code 4: Completed
[Note] [MY-013954] [InnoDB] Status code 5: Starting pool resize
[Note] [MY-013954] [InnoDB] Status code 5: buffer pool 0 : resizing with chunks 1 to 8.
[Note] [MY-011891] [InnoDB] buffer pool 0 : 7 chunks (57339 blocks) were added.
[Note] [MY-013953] [InnoDB] Status code 5: 100% complete
[Note] [MY-013952] [InnoDB] Status code 5: Completed
[Note] [MY-013954] [InnoDB] Status code 6: Resizing hash tables.
[Note] [MY-011892] [InnoDB] buffer pool 0 : hash tables were resized.
[Note] [MY-013953] [InnoDB] Status code 6: 100% complete
[Note] [MY-013954] [InnoDB] Status code 6: Resizing also other hash tables.
[Note] [MY-011893] [InnoDB] Resized hash tables at lock_sys, adaptive hash index, dictionary.
[Note] [MY-011894] [InnoDB] Completed to resize buffer pool from 134217728 to 1073741824.
[Note] [MY-011895] [InnoDB] Re-enabled adaptive hash index.
[Note] [MY-013952] [InnoDB] Status code 6: Completed
[Note] [MY-013954] [InnoDB] Status code 0: Completed resizing buffer pool at 220826 6:25:46.
[Note] [MY-013953] [InnoDB] Status code 0: 100% complete

Online Buffer Pool Resizing Internals

The resizing operation is performed by a background thread. When increasing the size of the buffer
pool, the resizing operation:

• Adds pages in chunks (chunk size is defined by innodb_buffer_pool_chunk_size)

• Converts hash tables, lists, and pointers to use new addresses in memory

• Adds new pages to the free list

While these operations are in progress, other threads are blocked from accessing the buffer pool.

When decreasing the size of the buffer pool, the resizing operation:

• Defragments the buffer pool and withdraws (frees) pages

• Removes pages in chunks (chunk size is defined by innodb_buffer_pool_chunk_size)

• Converts hash tables, lists, and pointers to use new addresses in memory

Of these operations, only defragmenting the buffer pool and withdrawing pages allow other threads to
access to the buffer pool concurrently.

17.8.3.2 Configuring Multiple Buffer Pool Instances

For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate
instances can improve concurrency, by reducing contention as different threads read and write to

3302

InnoDB Buffer Pool Configuration

cached pages. This feature is typically intended for systems with a buffer pool size in the multi-gigabyte
range. Multiple buffer pool instances are configured using the innodb_buffer_pool_instances
configuration option, and you might also adjust the innodb_buffer_pool_size value.

When the InnoDB buffer pool is large, many data requests can be satisfied by retrieving from memory.
You might encounter bottlenecks from multiple threads trying to access the buffer pool at once. You
can enable multiple buffer pools to minimize this contention. Each page that is stored in or read from
the buffer pool is assigned to one of the buffer pools randomly, using a hashing function. Each buffer
pool manages its own free lists, flush lists, LRUs, and all other data structures connected to a buffer
pool. Prior to MySQL 8.0, each buffer pool was protected by its own buffer pool mutex. In MySQL 8.0
and later, the buffer pool mutex was replaced by several list and hash protecting mutexes, to reduce
contention.

To enable multiple buffer pool instances, set the innodb_buffer_pool_instances configuration
option to a value greater than 1 (the default) up to 64 (the maximum). This option takes effect
only when you set innodb_buffer_pool_size to a size of 1GB or more. The total size
you specify is divided among all the buffer pools. For best efficiency, specify a combination of
innodb_buffer_pool_instances and innodb_buffer_pool_size so that each buffer pool
instance is at least 1GB.

For information about modifying InnoDB buffer pool size, see Section 17.8.3.1, “Configuring InnoDB
Buffer Pool Size”.

17.8.3.3 Making the Buffer Pool Scan Resistant

Rather than using a strict LRU algorithm, InnoDB uses a technique to minimize the amount of data
that is brought into the buffer pool and never accessed again. The goal is to make sure that frequently
accessed (“hot”) pages remain in the buffer pool, even as read-ahead and full table scans bring in new
blocks that might or might not be accessed afterward.

Newly read blocks are inserted into the middle of the LRU list. All newly read pages are inserted at a
location that by default is 3/8 from the tail of the LRU list. The pages are moved to the front of the list
(the most-recently used end) when they are accessed in the buffer pool for the first time. Thus, pages
that are never accessed never make it to the front portion of the LRU list, and “age out” sooner than
with a strict LRU approach. This arrangement divides the LRU list into two segments, where the pages
downstream of the insertion point are considered “old” and are desirable victims for LRU eviction.

For an explanation of the inner workings of the InnoDB buffer pool and specifics about the LRU
algorithm, see Section 17.5.1, “Buffer Pool”.

You can control the insertion point in the LRU list and choose whether InnoDB applies the same
optimization to blocks brought into the buffer pool by table or index scans. The configuration parameter
innodb_old_blocks_pct controls the percentage of “old” blocks in the LRU list. The default value of
innodb_old_blocks_pct is 37, corresponding to the original fixed ratio of 3/8. The value range is 5
(new pages in the buffer pool age out very quickly) to 95 (only 5% of the buffer pool is reserved for hot
pages, making the algorithm close to the familiar LRU strategy).

The optimization that keeps the buffer pool from being churned by read-ahead can avoid
similar problems due to table or index scans. In these scans, a data page is typically accessed
a few times in quick succession and is never touched again. The configuration parameter
innodb_old_blocks_time specifies the time window (in milliseconds) after the first access to a
page during which it can be accessed without being moved to the front (most-recently used end) of the
LRU list. The default value of innodb_old_blocks_time is 1000. Increasing this value makes more
and more blocks likely to age out faster from the buffer pool.

Both innodb_old_blocks_pct and innodb_old_blocks_time can be specified in the MySQL
option file (my.cnf or my.ini) or changed at runtime with the SET GLOBAL statement. Changing
the value at runtime requires privileges sufficient to set global system variables. See Section 7.1.9.1,
“System Variable Privileges”.

3303

InnoDB Buffer Pool Configuration

To help you gauge the effect of setting these parameters, the SHOW ENGINE INNODB STATUS
command reports buffer pool statistics. For details, see Monitoring the Buffer Pool Using the InnoDB
Standard Monitor.

Because the effects of these parameters can vary widely based on your hardware configuration, your
data, and the details of your workload, always benchmark to verify the effectiveness before changing
these settings in any performance-critical or production environment.

In mixed workloads where most of the activity is OLTP type with periodic batch reporting queries which
result in large scans, setting the value of innodb_old_blocks_time during the batch runs can help
keep the working set of the normal workload in the buffer pool.

When scanning large tables that cannot fit entirely in the buffer pool, setting
innodb_old_blocks_pct to a small value keeps the data that is only read once from consuming a
significant portion of the buffer pool. For example, setting innodb_old_blocks_pct=5 restricts this
data that is only read once to 5% of the buffer pool.

When scanning small tables that do fit into memory, there is less overhead for moving pages around
within the buffer pool, so you can leave innodb_old_blocks_pct at its default value, or even
higher, such as innodb_old_blocks_pct=50.

The effect of the innodb_old_blocks_time parameter is harder to predict than the
innodb_old_blocks_pct parameter, is relatively small, and varies more with the workload. To
arrive at an optimal value, conduct your own benchmarks if the performance improvement from
adjusting innodb_old_blocks_pct is not sufficient.

17.8.3.4 Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)

A read-ahead request is an I/O request to prefetch multiple pages in the buffer pool asynchronously,
in anticipation of impending need for these pages. The requests bring in all the pages in one extent.
InnoDB uses two read-ahead algorithms to improve I/O performance:

Linear read-ahead is a technique that predicts what pages might be needed soon based on pages
in the buffer pool being accessed sequentially. You control when InnoDB performs a read-ahead
operation by adjusting the number of sequential page accesses required to trigger an asynchronous
read request, using the configuration parameter innodb_read_ahead_threshold. Before this
parameter was added, InnoDB would only calculate whether to issue an asynchronous prefetch
request for the entire next extent when it read the last page of the current extent.

The configuration parameter innodb_read_ahead_threshold controls how sensitive InnoDB is in
detecting patterns of sequential page access. If the number of pages read sequentially from an extent
is greater than or equal to innodb_read_ahead_threshold, InnoDB initiates an asynchronous
read-ahead operation of the entire following extent. innodb_read_ahead_threshold can be set to
any value from 0-64. The default value is 56. The higher the value, the more strict the access pattern
check. For example, if you set the value to 48, InnoDB triggers a linear read-ahead request only when
48 pages in the current extent have been accessed sequentially. If the value is 8, InnoDB triggers
an asynchronous read-ahead even if as few as 8 pages in the extent are accessed sequentially. You
can set the value of this parameter in the MySQL configuration file, or change it dynamically with
the SET GLOBAL statement, which requires privileges sufficient to set global system variables. See
Section 7.1.9.1, “System Variable Privileges”.

Random read-ahead is a technique that predicts when pages might be needed soon based on pages
already in the buffer pool, regardless of the order in which those pages were read. If 13 consecutive
pages from the same extent are found in the buffer pool, InnoDB asynchronously issues a request
to prefetch the remaining pages of the extent. To enable this feature, set the configuration variable
innodb_random_read_ahead to ON.

The SHOW ENGINE INNODB STATUS command displays statistics to help you evaluate the
effectiveness of the read-ahead algorithm. Statistics include counter information for the following global
status variables:

3304

InnoDB Buffer Pool Configuration

• Innodb_buffer_pool_read_ahead

• Innodb_buffer_pool_read_ahead_evicted

• Innodb_buffer_pool_read_ahead_rnd

This information can be useful when fine-tuning the innodb_random_read_ahead setting.

For more information about I/O performance, see Section 10.5.8, “Optimizing InnoDB Disk I/O” and
Section 10.12.1, “Optimizing Disk I/O”.

17.8.3.5 Configuring Buffer Pool Flushing

InnoDB performs certain tasks in the background, including flushing of dirty pages from the buffer pool.
Dirty pages are those that have been modified but are not yet written to the data files on disk.

In MySQL 8.0, buffer pool flushing is performed by page cleaner threads. The number of
page cleaner threads is controlled by the innodb_page_cleaners variable, which has a
default value of 4. However, if the number of page cleaner threads exceeds the number of
buffer pool instances, innodb_page_cleaners is automatically set to the same value as
innodb_buffer_pool_instances.

Buffer pool flushing is initiated when the percentage of dirty pages reaches the low water mark value
defined by the innodb_max_dirty_pages_pct_lwm variable. The default low water mark is 10%
of buffer pool pages. A innodb_max_dirty_pages_pct_lwm value of 0 disables this early flushing
behaviour.

The purpose of the innodb_max_dirty_pages_pct_lwm threshold is to control the percentage
dirty pages in the buffer pool and to prevent the amount of dirty pages from reaching the threshold
defined by the innodb_max_dirty_pages_pct variable, which has a default value of 90. InnoDB
aggressively flushes buffer pool pages if the percentage of dirty pages in the buffer pool reaches the
innodb_max_dirty_pages_pct threshold.

When configuring innodb_max_dirty_pages_pct_lwm, the value should always be lower than the
innodb_max_dirty_pages_pct value.

Additional variables permit fine-tuning of buffer pool flushing behavior:

• The innodb_flush_neighbors variable defines whether flushing a page from the buffer pool also
flushes other dirty pages in the same extent.

• The default setting of 0 disables innodb_flush_neighbors. Dirty pages in the same extent are
not flushed. This setting is recommended for non-rotational storage (SSD) devices where seek
time is not a significant factor.

• A setting of 1 flushes contiguous dirty pages in the same extent.

• A setting of 2 flushes dirty pages in the same extent.

When table data is stored on a traditional HDD storage device, flushing neighbor pages in one
operation reduces I/O overhead (primarily for disk seek operations) compared to flushing individual
pages at different times. For table data stored on SSD, seek time is not a significant factor and you
can disable this setting to spread out write operations.

• The innodb_lru_scan_depth variable specifies, per buffer pool instance, how far down the buffer
pool LRU list the page cleaner thread scans looking for dirty pages to flush. This is a background
operation performed by a page cleaner thread once per second.

A setting smaller than the default is generally suitable for most workloads. A value that is significantly
higher than necessary may impact performance. Only consider increasing the value if you have
spare I/O capacity under a typical workload. Conversely, if a write-intensive workload saturates your
I/O capacity, decrease the value, especially in the case of a large buffer pool.

3305

InnoDB Buffer Pool Configuration

When tuning innodb_lru_scan_depth, start with a low value and configure the setting upward
with the goal of rarely seeing zero free pages. Also, consider adjusting innodb_lru_scan_depth
when changing the number of buffer pool instances, since innodb_lru_scan_depth *
innodb_buffer_pool_instances defines the amount of work performed by the page cleaner
thread each second.

The innodb_flush_neighbors and innodb_lru_scan_depth variables are primarily intended
for write-intensive workloads. With heavy DML activity, flushing can fall behind if it is not aggressive
enough, or disk writes can saturate I/O capacity if flushing is too aggressive. The ideal settings depend
on your workload, data access patterns, and storage configuration (for example, whether data is stored
on HDD or SSD devices).

Adaptive Flushing

InnoDB uses an adaptive flushing algorithm to dynamically adjust the rate of flushing based on
the speed of redo log generation and the current rate of flushing. The intent is to smooth overall
performance by ensuring that flushing activity keeps pace with the current workload. Automatically
adjusting the flushing rate helps avoid sudden dips in throughput that can occur when bursts of I/O
activity due to buffer pool flushing affects the I/O capacity available for ordinary read and write activity.

Sharp checkpoints, which are typically associated with write-intensive workloads that generate a lot of
redo entries, can cause a sudden change in throughput, for example. A sharp checkpoint occurs when
InnoDB wants to reuse a portion of a log file. Before doing so, all dirty pages with redo entries in that
portion of the log file must be flushed. If log files become full, a sharp checkpoint occurs, causing a
temporary reduction in throughput. This scenario can occur even if innodb_max_dirty_pages_pct
threshold is not reached.

The adaptive flushing algorithm helps avoid such scenarios by tracking the number of dirty pages in
the buffer pool and the rate at which redo log records are being generated. Based on this information,
it decides how many dirty pages to flush from the buffer pool each second, which permits it to manage
sudden changes in workload.

The innodb_adaptive_flushing_lwm variable defines a low water mark for redo
log capacity. When that threshold is crossed, adaptive flushing is enabled, even if the
innodb_adaptive_flushing variable is disabled.

Internal benchmarking has shown that the algorithm not only maintains throughput over time, but can
also improve overall throughput significantly. However, adaptive flushing can affect the I/O pattern of
a workload significantly and may not be appropriate in all cases. It gives the most benefit when the
redo log is in danger of filling up. If adaptive flushing is not appropriate to the characteristics of your
workload, you can disable it. Adaptive flushing controlled by the innodb_adaptive_flushing
variable, which is enabled by default.

innodb_flushing_avg_loops defines the number of iterations that InnoDB keeps the previously
calculated snapshot of the flushing state, controlling how quickly adaptive flushing responds to
foreground workload changes. A high innodb_flushing_avg_loops value means that InnoDB
keeps the previously calculated snapshot longer, so adaptive flushing responds more slowly.
When setting a high value it is important to ensure that redo log utilization does not reach 75% (the
hardcoded limit at which asynchronous flushing starts), and that the innodb_max_dirty_pages_pct
threshold keeps the number of dirty pages to a level that is appropriate for the workload.

Systems with consistent workloads, a large log file size (innodb_log_file_size), and small spikes
that do not reach 75% log space utilization should use a high innodb_flushing_avg_loops value
to keep flushing as smooth as possible. For systems with extreme load spikes or log files that do not
provide a lot of space, a smaller value allows flushing to closely track workload changes, and helps to
avoid reaching 75% log space utilization.

Be aware that if flushing falls behind, the rate of buffer pool flushing can exceed the I/O capacity
available to InnoDB, as defined by innodb_io_capacity setting. The innodb_io_capacity_max

3306

InnoDB Buffer Pool Configuration

value defines an upper limit on I/O capacity in such situations, so that a spike in I/O activity does not
consume the entire I/O capacity of the server.

The innodb_io_capacity setting is applicable to all buffer pool instances. When dirty pages are
flushed, I/O capacity is divided equally among buffer pool instances.

Limiting Buffer Flushing During Idle Periods

As of MySQL 8.0.18, you can use the innodb_idle_flush_pct variable to limit the rate of
buffer pool flushing during idle periods, which are periods of time that database pages are not
modified. The innodb_idle_flush_pct value is a percentage of the innodb_io_capacity
setting, which defines the number of I/O operations per second available to InnoDB. The default
innodb_idle_flush_pct value is 100, which is 100 percent of the innodb_io_capacity setting.
To limit flushing during idle periods, define an innodb_idle_flush_pct value less than 100.

Limiting page flushing during idle periods can help extend the life of solid state storage devices. Side
effects of limiting page flushing during idle periods may include a longer shutdown time following a
lengthy idle period, and a longer recovery period should a server failure occur.

17.8.3.6 Saving and Restoring the Buffer Pool State

To reduce the warmup period after restarting the server, InnoDB saves a percentage of the
most recently used pages for each buffer pool at server shutdown and restores these pages
at server startup. The percentage of recently used pages that is stored is defined by the
innodb_buffer_pool_dump_pct configuration option.

After restarting a busy server, there is typically a warmup period with steadily increasing throughput,
as disk pages that were in the buffer pool are brought back into memory (as the same data is queried,
updated, and so on). The ability to restore the buffer pool at startup shortens the warmup period
by reloading disk pages that were in the buffer pool before the restart rather than waiting for DML
operations to access corresponding rows. Also, I/O requests can be performed in large batches,
making the overall I/O faster. Page loading happens in the background, and does not delay database
startup.

In addition to saving the buffer pool state at shutdown and restoring it at startup, you can save and
restore the buffer pool state at any time, while the server is running. For example, you can save the
state of the buffer pool after reaching a stable throughput under a steady workload. You could also
restore the previous buffer pool state after running reports or maintenance jobs that bring data pages
into the buffer pool that are only requited for those operations, or after running some other non-typical
workload.

Even though a buffer pool can be many gigabytes in size, the buffer pool data that InnoDB saves to
disk is tiny by comparison. Only tablespace IDs and page IDs necessary to locate the appropriate
pages are saved to disk. This information is derived from the INNODB_BUFFER_PAGE_LRU
INFORMATION_SCHEMA table. By default, tablespace ID and page ID data is saved in a file named
ib_buffer_pool, which is saved to the InnoDB data directory. The file name and location can be
modified using the innodb_buffer_pool_filename configuration parameter.

Because data is cached in and aged out of the buffer pool as it is with regular database operations,
there is no problem if the disk pages are recently updated, or if a DML operation involves data that has
not yet been loaded. The loading mechanism skips requested pages that no longer exist.

The underlying mechanism involves a background thread that is dispatched to perform the dump and
load operations.

Disk pages from compressed tables are loaded into the buffer pool in their compressed form. Pages
are uncompressed as usual when page contents are accessed during DML operations. Because
uncompressing pages is a CPU-intensive process, it is more efficient for concurrency to perform the
operation in a connection thread rather than in the single thread that performs the buffer pool restore
operation.

3307

InnoDB Buffer Pool Configuration

Operations related to saving and restoring the buffer pool state are described in the following topics:

• Configuring the Dump Percentage for Buffer Pool Pages

• Saving the Buffer Pool State at Shutdown and Restoring it at Startup

• Saving and Restoring the Buffer Pool State Online

• Displaying Buffer Pool Dump Progress

• Displaying Buffer Pool Load Progress

• Aborting a Buffer Pool Load Operation

• Monitoring Buffer Pool Load Progress Using Performance Schema

Configuring the Dump Percentage for Buffer Pool Pages

Before dumping pages from the buffer pool, you can configure the percentage of most-recently-
used buffer pool pages that you want to dump by setting the innodb_buffer_pool_dump_pct
option. If you plan to dump buffer pool pages while the server is running, you can configure the option
dynamically:

SET GLOBAL innodb_buffer_pool_dump_pct=40;

If you plan to dump buffer pool pages at server shutdown, set innodb_buffer_pool_dump_pct in
your configuration file.

[mysqld]
innodb_buffer_pool_dump_pct=40

The innodb_buffer_pool_dump_pct default value is 25 (dump 25% of most-recently-used pages).

Saving the Buffer Pool State at Shutdown and Restoring it at Startup

To save the state of the buffer pool at server shutdown, issue the following statement prior to shutting
down the server:

SET GLOBAL innodb_buffer_pool_dump_at_shutdown=ON;

innodb_buffer_pool_dump_at_shutdown is enabled by default.

To restore the buffer pool state at server startup, specify the --innodb-buffer-pool-load-at-
startup option when starting the server:

mysqld --innodb-buffer-pool-load-at-startup=ON;

innodb_buffer_pool_load_at_startup is enabled by default.

Saving and Restoring the Buffer Pool State Online

To save the state of the buffer pool while MySQL server is running, issue the following statement:

SET GLOBAL innodb_buffer_pool_dump_now=ON;

To restore the buffer pool state while MySQL is running, issue the following statement:

SET GLOBAL innodb_buffer_pool_load_now=ON;

Displaying Buffer Pool Dump Progress

To display progress when saving the buffer pool state to disk, issue the following statement:

SHOW STATUS LIKE 'Innodb_buffer_pool_dump_status';

3308

InnoDB Buffer Pool Configuration

If the operation has not yet started, “not started” is returned. If the operation is complete, the
completion time is printed (e.g. Finished at 110505 12:18:02). If the operation is in progress, status
information is provided (e.g. Dumping buffer pool 5/7, page 237/2873).

Displaying Buffer Pool Load Progress

To display progress when loading the buffer pool, issue the following statement:

SHOW STATUS LIKE 'Innodb_buffer_pool_load_status';

If the operation has not yet started, “not started” is returned. If the operation is complete, the
completion time is printed (e.g. Finished at 110505 12:23:24). If the operation is in progress, status
information is provided (e.g. Loaded 123/22301 pages).

Aborting a Buffer Pool Load Operation

To abort a buffer pool load operation, issue the following statement:

SET GLOBAL innodb_buffer_pool_load_abort=ON;

Monitoring Buffer Pool Load Progress Using Performance Schema

You can monitor buffer pool load progress using Performance Schema.

The following example demonstrates how to enable the stage/innodb/buffer pool load stage
event instrument and related consumer tables to monitor buffer pool load progress.

For information about buffer pool dump and load procedures used in this example, see
Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”. For information about Performance
Schema stage event instruments and related consumers, see Section 29.12.5, “Performance Schema
Stage Event Tables”.

1. Enable the stage/innodb/buffer pool load instrument:

mysql> UPDATE performance_schema.setup_instruments SET ENABLED = 'YES'
 WHERE NAME LIKE 'stage/innodb/buffer%';

2. Enable the stage event consumer tables, which include events_stages_current,
events_stages_history, and events_stages_history_long.

mysql> UPDATE performance_schema.setup_consumers SET ENABLED = 'YES'
 WHERE NAME LIKE '%stages%';

3. Dump the current buffer pool state by enabling innodb_buffer_pool_dump_now.

mysql> SET GLOBAL innodb_buffer_pool_dump_now=ON;

4. Check the buffer pool dump status to ensure that the operation has completed.

mysql> SHOW STATUS LIKE 'Innodb_buffer_pool_dump_status'\G
*************************** 1. row ***************************
Variable_name: Innodb_buffer_pool_dump_status
 Value: Buffer pool(s) dump completed at 150202 16:38:58

5. Load the buffer pool by enabling innodb_buffer_pool_load_now:

mysql> SET GLOBAL innodb_buffer_pool_load_now=ON;

6. Check the current status of the buffer pool load operation by querying the Performance Schema
events_stages_current table. The WORK_COMPLETED column shows the number of buffer
pool pages loaded. The WORK_ESTIMATED column provides an estimate of the remaining work, in
pages.

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED
 FROM performance_schema.events_stages_current;
+-------------------------------+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |

3309

InnoDB Buffer Pool Configuration

+-------------------------------+----------------+----------------+
| stage/innodb/buffer pool load | 5353 | 7167 |
+-------------------------------+----------------+----------------+

The events_stages_current table returns an empty set if the buffer pool load operation has
completed. In this case, you can check the events_stages_history table to view data for the
completed event. For example:

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED
 FROM performance_schema.events_stages_history;
+-------------------------------+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+-------------------------------+----------------+----------------+
| stage/innodb/buffer pool load | 7167 | 7167 |
+-------------------------------+----------------+----------------+

Note

You can also monitor buffer pool load progress using Performance
Schema when loading the buffer pool at startup using
innodb_buffer_pool_load_at_startup. In this case, the stage/
innodb/buffer pool load instrument and related consumers must be
enabled at startup. For more information, see Section 29.3, “Performance
Schema Startup Configuration”.

17.8.3.7 Excluding Buffer Pool Pages from Core Files

A core file records the status and memory image of a running process. Because the buffer pool resides
in main memory, and the memory image of a running process is dumped to the core file, systems with
large buffer pools can produce large core files when the mysqld process dies.

Large core files can be problematic for a number of reasons including the time it takes to write them,
the amount of disk space they consume, and the challenges associated with transferring large files.

To reduce core file size, you can disable the innodb_buffer_pool_in_core_file variable to
omit buffer pool pages from core dumps. The innodb_buffer_pool_in_core_file variable was
introduced in MySQL 8.0.14 and is enabled by default.

Excluding buffer pool pages may also be desirable from a security perspective if you have concerns
about dumping database pages to core files that may be shared inside or outside of your organization
for debugging purposes.

Note

Access to the data present in buffer pool pages at the time the mysqld process
died may be beneficial in some debugging scenarios. If in doubt whether to
include or exclude buffer pool pages, consult MySQL Support.

Disabling innodb_buffer_pool_in_core_file takes effect only if the core_file variable
is enabled and the operating system supports the MADV_DONTDUMP non-POSIX extension to the
madvise() system call, which is supported in Linux 3.4 and later. The MADV_DONTDUMP extension
causes pages in a specified range to be excluded from core dumps.

Assuming the operating system supports the MADV_DONTDUMP extension, start the server with the
--core-file and --innodb-buffer-pool-in-core-file=OFF options to generate core files
without buffer pool pages.

$> mysqld --core-file --innodb-buffer-pool-in-core-file=OFF

The core_file variable is read only and disabled by default. It is enabled by specifying the --core-
file option at startup. The innodb_buffer_pool_in_core_file variable is dynamic. It can be
specified at startup or configured at runtime using a SET statement.

mysql> SET GLOBAL innodb_buffer_pool_in_core_file=OFF;

3310

http://man7.org/linux/man-pages/man2/madvise.2.html

Configuring Thread Concurrency for InnoDB

If the innodb_buffer_pool_in_core_file variable is disabled but MADV_DONTDUMP is not
supported by the operating system, or an madvise() failure occurs, a warning is written to the MySQL
server error log and the core_file variable is disabled to prevent writing core files that unintentionally
include buffer pool pages. If the read-only core_file variable becomes disabled, the server must be
restarted to enable it again.

The following table shows configuration and MADV_DONTDUMP support scenarios that determine
whether core files are generated and whether they include buffer pool pages.

Table 17.4 Core File Configuration Scenarios

core_file variable innodb_buffer_pool_in_core_file
variable

madvise()
MADV_DONTDUMP
Support

Outcome

OFF (default) Not relevant to outcome Not relevant to outcome Core file is not
generated

ON ON (default) Not relevant to outcome Core file is generated
with buffer pool pages

ON OFF Yes Core file is generated
without buffer pool
pages

ON OFF No Core file is not
generated, core_file
is disabled, and a
warning is written to the
server error log

The reduction in core file size achieved by disabling the innodb_buffer_pool_in_core_file
variable depends on the size of the buffer pool, but it is also affected by the InnoDB page size. A
smaller page size means more pages are required for the same amount of data, and more pages
means more page metadata. The following table provides size reduction examples that you might see
for a 1GB buffer pool with different pages sizes.

Table 17.5 Core File Size with Buffer Pool Pages Included and Excluded

innodb_page_size Setting Buffer Pool Pages Included
(innodb_buffer_pool_in_core_file=ON)

Buffer Pool Pages Excluded
(innodb_buffer_pool_in_core_file=OFF)

4KB 2.1GB 0.9GB

64KB 1.7GB 0.7GB

17.8.4 Configuring Thread Concurrency for InnoDB

InnoDB uses operating system threads to process requests from user transactions. (Transactions
may issue many requests to InnoDB before they commit or roll back.) On modern operating systems
and servers with multi-core processors, where context switching is efficient, most workloads run well
without any limit on the number of concurrent threads.

In situations where it is helpful to minimize context switching between threads, InnoDB can use a
number of techniques to limit the number of concurrently executing operating system threads (and thus
the number of requests that are processed at any one time). When InnoDB receives a new request
from a user session, if the number of threads concurrently executing is at a pre-defined limit, the new
request sleeps for a short time before it tries again. Threads waiting for locks are not counted in the
number of concurrently executing threads.

You can limit the number of concurrent threads by setting the configuration parameter
innodb_thread_concurrency. Once the number of executing threads reaches this limit,
additional threads sleep for a number of microseconds, set by the configuration parameter
innodb_thread_sleep_delay, before being placed into the queue.

3311

Configuring the Number of Background InnoDB I/O Threads

You can set the configuration option innodb_adaptive_max_sleep_delay to the highest
value you would allow for innodb_thread_sleep_delay, and InnoDB automatically adjusts
innodb_thread_sleep_delay up or down depending on the current thread-scheduling activity. This
dynamic adjustment helps the thread scheduling mechanism to work smoothly during times when the
system is lightly loaded and when it is operating near full capacity.

The default value for innodb_thread_concurrency and the implied default limit on the number of
concurrent threads has been changed in various releases of MySQL and InnoDB. The default value of
innodb_thread_concurrency is 0, so that by default there is no limit on the number of concurrently
executing threads.

InnoDB causes threads to sleep only when the number of concurrent threads is limited. When
there is no limit on the number of threads, all contend equally to be scheduled. That is, if
innodb_thread_concurrency is 0, the value of innodb_thread_sleep_delay is ignored.

When there is a limit on the number of threads (when innodb_thread_concurrency is >
0), InnoDB reduces context switching overhead by permitting multiple requests made during
the execution of a single SQL statement to enter InnoDB without observing the limit set by
innodb_thread_concurrency. Since an SQL statement (such as a join) may comprise multiple row
operations within InnoDB, InnoDB assigns a specified number of “tickets” that allow a thread to be
scheduled repeatedly with minimal overhead.

When a new SQL statement starts, a thread has no tickets, and it must observe
innodb_thread_concurrency. Once the thread is entitled to enter InnoDB, it is assigned a number
of tickets that it can use for subsequently entering InnoDB to perform row operations. If the tickets
run out, the thread is evicted, and innodb_thread_concurrency is observed again which may
place the thread back into the first-in/first-out queue of waiting threads. When the thread is once again
entitled to enter InnoDB, tickets are assigned again. The number of tickets assigned is specified by the
global option innodb_concurrency_tickets, which is 5000 by default. A thread that is waiting for a
lock is given one ticket once the lock becomes available.

The correct values of these variables depend on your environment and workload. Try a range of
different values to determine what value works for your applications. Before limiting the number of
concurrently executing threads, review configuration options that may improve the performance of
InnoDB on multi-core and multi-processor computers, such as innodb_adaptive_hash_index.

For general performance information about MySQL thread handling, see Section 7.1.12.1, “Connection
Interfaces”.

17.8.5 Configuring the Number of Background InnoDB I/O Threads

InnoDB uses background threads to service various types of I/O requests. You can configure
the number of background threads that service read and write I/O on data pages using the
innodb_read_io_threads and innodb_write_io_threads configuration parameters. These
parameters signify the number of background threads used for read and write requests, respectively.
They are effective on all supported platforms. You can set values for these parameters in the MySQL
option file (my.cnf or my.ini); you cannot change values dynamically. The default value for these
parameters is 4 and permissible values range from 1-64.

The purpose of these configuration options to make InnoDB more scalable on high end systems. Each
background thread can handle up to 256 pending I/O requests. A major source of background I/O is
read-ahead requests. InnoDB tries to balance the load of incoming requests in such way that most
background threads share work equally. InnoDB also attempts to allocate read requests from the
same extent to the same thread, to increase the chances of coalescing the requests. If you have a high
end I/O subsystem and you see more than 64 × innodb_read_io_threads pending read requests
in SHOW ENGINE INNODB STATUS output, you might improve performance by increasing the value of
innodb_read_io_threads.

On Linux systems, InnoDB uses the asynchronous I/O subsystem by default to perform read-ahead
and write requests for data file pages, which changes the way that InnoDB background threads service

3312

Using Asynchronous I/O on Linux

these types of I/O requests. For more information, see Section 17.8.6, “Using Asynchronous I/O on
Linux”.

For more information about InnoDB I/O performance, see Section 10.5.8, “Optimizing InnoDB Disk I/
O”.

17.8.6 Using Asynchronous I/O on Linux

InnoDB uses the asynchronous I/O subsystem (native AIO) on Linux to perform read-ahead and
write requests for data file pages. This behavior is controlled by the innodb_use_native_aio
configuration option, which applies to Linux systems only and is enabled by default. On other Unix-
like systems, InnoDB uses synchronous I/O only. Historically, InnoDB only used asynchronous I/O on
Windows systems. Using the asynchronous I/O subsystem on Linux requires the libaio library.

With synchronous I/O, query threads queue I/O requests, and InnoDB background threads retrieve
the queued requests one at a time, issuing a synchronous I/O call for each. When an I/O request
is completed and the I/O call returns, the InnoDB background thread that is handling the request
calls an I/O completion routine and returns to process the next request. The number of requests
that can be processed in parallel is n, where n is the number of InnoDB background threads.
The number of InnoDB background threads is controlled by innodb_read_io_threads and
innodb_write_io_threads. See Section 17.8.5, “Configuring the Number of Background InnoDB I/
O Threads”.

With native AIO, query threads dispatch I/O requests directly to the operating system, thereby
removing the limit imposed by the number of background threads. InnoDB background threads wait for
I/O events to signal completed requests. When a request is completed, a background thread calls an I/
O completion routine and resumes waiting for I/O events.

The advantage of native AIO is scalability for heavily I/O-bound systems that typically show many
pending reads/writes in SHOW ENGINE INNODB STATUS\G output. The increase in parallel
processing when using native AIO means that the type of I/O scheduler or properties of the disk array
controller have a greater influence on I/O performance.

A potential disadvantage of native AIO for heavily I/O-bound systems is lack of control over the
number of I/O write requests dispatched to the operating system at once. Too many I/O write requests
dispatched to the operating system for parallel processing could, in some cases, result in I/O read
starvation, depending on the amount of I/O activity and system capabilities.

If a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from starting, you can
start the server with innodb_use_native_aio=0. This option may also be disabled automatically
during startup if InnoDB detects a potential problem such as a combination of tmpdir location, tmpfs
file system, and Linux kernel that does not support asynchronous I/O on tmpfs.

17.8.7 Configuring InnoDB I/O Capacity

The InnoDB master thread and other threads perform various tasks in the background, most of
which are I/O related, such as flushing dirty pages from the buffer pool and writing changes from the
change buffer to the appropriate secondary indexes. InnoDB attempts to perform these tasks in a way
that does not adversely affect the normal working of the server. It tries to estimate the available I/O
bandwidth and tune its activities to take advantage of available capacity.

The innodb_io_capacity variable defines the overall I/O capacity available to InnoDB. It should
be set to approximately the number of I/O operations that the system can perform per second (IOPS).
When innodb_io_capacity is set, InnoDB estimates the I/O bandwidth available for background
tasks based on the set value.

You can set innodb_io_capacity to a value of 100 or greater. The default value is 200. Typically,
values around 100 are appropriate for consumer-level storage devices, such as hard drives up to 7200
RPMs. Faster hard drives, RAID configurations, and solid state drives (SSDs) benefit from higher
values.

3313

Configuring InnoDB I/O Capacity

Ideally, keep the setting as low as practical, but not so low that background activities fall behind. If
the value is too high, data is removed from the buffer pool and change buffer too quickly for caching
to provide a significant benefit. For busy systems capable of higher I/O rates, you can set a higher
value to help the server handle the background maintenance work associated with a high rate of row
changes. Generally, you can increase the value as a function of the number of drives used for InnoDB
I/O. For example, you can increase the value on systems that use multiple disks or SSDs.

The default setting of 200 is generally sufficient for a lower-end SSD. For a higher-end, bus-attached
SSD, consider a higher setting such as 1000, for example. For systems with individual 5400 RPM or
7200 RPM drives, you might lower the value to 100, which represents an estimated proportion of the I/
O operations per second (IOPS) available to older-generation disk drives that can perform about 100
IOPS.

Although you can specify a high value such as a million, in practice such large values have little benefit.
Generally, a value higher than 20000 is not recommended unless you are certain that lower values are
insufficient for your workload.

Consider write workload when tuning innodb_io_capacity. Systems with large write workloads are
likely to benefit from a higher setting. A lower setting may be sufficient for systems with a small write
workload.

The innodb_io_capacity setting is not a per buffer pool instance setting. Available I/O capacity is
distributed equally among buffer pool instances for flushing activities.

You can set the innodb_io_capacity value in the MySQL option file (my.cnf or my.ini) or modify
it at runtime using a SET GLOBAL statement, which requires privileges sufficient to set global system
variables. See Section 7.1.9.1, “System Variable Privileges”.

Ignoring I/O Capacity at Checkpoints

The innodb_flush_sync variable, which is enabled by default, causes the innodb_io_capacity
setting to be ignored during bursts of I/O activity that occur at checkpoints. To adhere to the I/O
rate defined by the innodb_io_capacity and innodb_io_capacity_max settings, disable
innodb_flush_sync.

You can set the innodb_flush_sync value in the MySQL option file (my.cnf or my.ini) or modify
it at runtime using a SET GLOBAL statement, which requires privileges sufficient to set global system
variables. See Section 7.1.9.1, “System Variable Privileges”.

Configuring an I/O Capacity Maximum

If flushing activity falls behind, InnoDB can flush more aggressively, at a higher rate of I/
O operations per second (IOPS) than defined by the innodb_io_capacity variable. The
innodb_io_capacity_max variable defines a maximum number of IOPS performed by InnoDB
background tasks in such situations.

If you specify an innodb_io_capacity setting at startup but do not specify a value for
innodb_io_capacity_max, innodb_io_capacity_max defaults to twice the value of
innodb_io_capacity or 2000, whichever value is greater.

When configuring innodb_io_capacity_max, twice the innodb_io_capacity is often a good
starting point. The default value of 2000 is intended for workloads that use an SSD or more than one
regular disk drive. A setting of 2000 is likely too high for workloads that do not use SSDs or multiple
disk drives, and could allow too much flushing. For a single regular disk drive, a setting between 200
and 400 is recommended. For a high-end, bus-attached SSD, consider a higher setting such as 2500.
As with the innodb_io_capacity setting, keep the setting as low as practical, but not so low that
InnoDB cannot sufficiently extend rate of IOPS beyond the innodb_io_capacity setting.

Consider write workload when tuning innodb_io_capacity_max. Systems with large write
workloads may benefit from a higher setting. A lower setting may be sufficient for systems with a small
write workload.

3314

Configuring Spin Lock Polling

innodb_io_capacity_max cannot be set to a value lower than the innodb_io_capacity value.

Setting innodb_io_capacity_max to DEFAULT using a SET statement (SET GLOBAL
innodb_io_capacity_max=DEFAULT) sets innodb_io_capacity_max to the maximum value.

The innodb_io_capacity_max limit applies to all buffer pool instances. It is not a per buffer pool
instance setting.

17.8.8 Configuring Spin Lock Polling

InnoDB mutexes and rw-locks are typically reserved for short intervals. On a multi-core system, it can
be more efficient for a thread to continuously check if it can acquire a mutex or rw-lock for a period
of time before it sleeps. If the mutex or rw-lock becomes available during this period, the thread can
continue immediately, in the same time slice. However, too-frequent polling of a shared object such
as a mutex or rw-lock by multiple threads can cause “cache ping pong”, which results in processors
invalidating portions of each other's cache. InnoDB minimizes this issue by forcing a random delay
between polls to desynchronize polling activity. The random delay is implemented as a spin-wait loop.

The duration of a spin-wait loop is determined by the number of PAUSE instructions that occur in the
loop. That number is generated by randomly selecting an integer ranging from 0 up to but not including
the innodb_spin_wait_delay value, and multiplying that value by 50. (The multiplier value, 50, is
hardcoded before MySQL 8.0.16, and configurable thereafter.) For example, an integer is randomly
selected from the following range for an innodb_spin_wait_delay setting of 6:

{0,1,2,3,4,5}

The selected integer is multiplied by 50, resulting in one of six possible PAUSE instruction values:

{0,50,100,150,200,250}

For that set of values, 250 is the maximum number of PAUSE instructions that can occur in a spin-
wait loop. An innodb_spin_wait_delay setting of 5 results in a set of five possible values
{0,50,100,150,200}, where 200 is the maximum number of PAUSE instructions, and so on. In this
way, the innodb_spin_wait_delay setting controls the maximum delay between spin lock polls.

On a system where all processor cores share a fast cache memory, you might reduce the maximum
delay or disable the busy loop altogether by setting innodb_spin_wait_delay=0. On a system
with multiple processor chips, the effect of cache invalidation can be more significant and you might
increase the maximum delay.

In the 100MHz Pentium era, an innodb_spin_wait_delay unit was calibrated to be equivalent
to one microsecond. That time equivalence did not hold, but PAUSE instruction duration remained
fairly constant in terms of processor cycles relative to other CPU instructions until the introduction of
the Skylake generation of processors, which have a comparatively longer PAUSE instruction. The
innodb_spin_wait_pause_multiplier variable was introduced in MySQL 8.0.16 to provide a
way to account for differences in PAUSE instruction duration.

The innodb_spin_wait_pause_multiplier variable controls the size of PAUSE instruction
values. For example, assuming an innodb_spin_wait_delay setting of 6, decreasing the
innodb_spin_wait_pause_multiplier value from 50 (the default and previously hardcoded
value) to 5 generates a set of smaller PAUSE instruction values:

{0,5,10,15,20,25}

The ability to increase or decrease PAUSE instruction values permits fine tuning InnoDB for different
processor architectures. Smaller PAUSE instruction values would be appropriate for processor
architectures with a comparatively longer PAUSE instruction, for example.

The innodb_spin_wait_delay and innodb_spin_wait_pause_multiplier variables are
dynamic. They can be specified in a MySQL option file or modified at runtime using a SET GLOBAL

3315

Purge Configuration

statement. Modifying the variables at runtime requires privileges sufficient to set global system
variables. See Section 7.1.9.1, “System Variable Privileges”.

17.8.9 Purge Configuration

InnoDB does not physically remove a row from the database immediately when you delete it with an
SQL statement. A row and its index records are only physically removed when InnoDB discards the
undo log record written for the deletion. This removal operation, which only occurs after the row is no
longer required for multi-version concurrency control (MVCC) or rollback, is called a purge.

Purge runs on a periodic schedule. It parses and processes undo log pages from the history list, which
is a list of undo log pages for committed transactions that is maintained by the InnoDB transaction
system. Purge frees the undo log pages from the history list after processing them.

Configuring Purge Threads

Purge operations are performed in the background by one or more purge threads. The number of
purge threads is controlled by the innodb_purge_threads variable. The default value is 4.

If DML action is concentrated on a single table, purge operations for the table are performed by
a single purge thread, which can result in slowed purge operations, increased purge lag, and
increased tablespace file size if the DML operations involve large object values. From MySQL 8.0.26,
if the innodb_max_purge_lag setting is exceeded, purge work is automatically redistributed
among available purge threads. Too many active purge threads in this scenario can cause
contention with user threads, so manage the innodb_purge_threads setting accordingly. The
innodb_max_purge_lag variable is set to 0 by default, which means that there is no maximum purge
lag by default.

If DML action is concentrated on few tables, keep the innodb_purge_threads setting low so that
the threads do not contend with each other for access to the busy tables. If DML operations are spread
across many tables, consider a higher innodb_purge_threads setting. The maximum number of
purge threads is 32.

The innodb_purge_threads setting is the maximum number of purge threads permitted. The purge
system automatically adjusts the number of purge threads that are used.

Configuring Purge Batch Size

The innodb_purge_batch_size variable defines the number of undo log pages that purge
parses and processes in one batch from the history list. The default value is 300. In a multithreaded
purge configuration, the coordinator purge thread divides innodb_purge_batch_size by
innodb_purge_threads and assigns that number of pages to each purge thread.

The purge system also frees the undo log pages that are no longer required. It does so every 128
iterations through the undo logs. In addition to defining the number of undo log pages parsed and
processed in a batch, the innodb_purge_batch_size variable defines the number of undo log
pages that purge frees every 128 iterations through the undo logs.

The innodb_purge_batch_size variable is intended for advanced performance tuning and
experimentation. Most users need not change innodb_purge_batch_size from its default value.

Configuring the Maximum Purge Lag

The innodb_max_purge_lag variable defines the desired maximum purge lag. When the purge
lag exceeds the innodb_max_purge_lag threshold, a delay is imposed on INSERT, UPDATE, and
DELETE operations to allow time for purge operations to catch up. The default value is 0, which means
there is no maximum purge lag and no delay.

The InnoDB transaction system maintains a list of transactions that have index records delete-marked
by UPDATE or DELETE operations. The length of the list is the purge lag. Prior to MySQL 8.0.14,

3316

Configuring Optimizer Statistics for InnoDB

the purge lag delay is calculated by the following formula, which results in a minimum delay of 5000
microseconds:

(purge lag/innodb_max_purge_lag - 0.5) * 10000

As of MySQL 8.0.14, the purge lag delay is calculated by the following revised formula, which reduces
the minimum delay to 5 microseconds. A delay of 5 microseconds is more appropriate for modern
systems.

(purge_lag/innodb_max_purge_lag - 0.9995) * 10000

The delay is calculated at the beginning of a purge batch.

A typical innodb_max_purge_lag setting for a problematic workload might be 1000000 (1 million),
assuming that transactions are small, only 100 bytes in size, and it is permissible to have 100MB of
unpurged table rows.

The purge lag is presented as the History list length value in the TRANSACTIONS section of
SHOW ENGINE INNODB STATUS output.

mysql> SHOW ENGINE INNODB STATUS;
...

TRANSACTIONS

Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
History list length 20

The History list length is typically a low value, usually less than a few thousand, but a write-
heavy workload or long running transactions can cause it to increase, even for transactions that
are read only. The reason that a long running transaction can cause the History list length
to increase is that under a consistent read transaction isolation level such as REPEATABLE READ,
a transaction must return the same result as when the read view for that transaction was created.
Consequently, the InnoDB multi-version concurrency control (MVCC) system must keep a copy of the
data in the undo log until all transactions that depend on that data have completed. The following are
examples of long running transactions that could cause the History list length to increase:

• A mysqldump operation that uses the --single-transaction option while there is a significant
amount of concurrent DML.

• Running a SELECT query after disabling autocommit, and forgetting to issue an explicit COMMIT or
ROLLBACK.

To prevent excessive delays in extreme situations where the purge lag becomes huge,
you can limit the delay by setting the innodb_max_purge_lag_delay variable. The
innodb_max_purge_lag_delay variable specifies the maximum delay in microseconds for
the delay imposed when the innodb_max_purge_lag threshold is exceeded. The specified
innodb_max_purge_lag_delay value is an upper limit on the delay period calculated by the
innodb_max_purge_lag formula.

Purge and Undo Tablespace Truncation

The purge system is also responsible for truncating undo tablespaces. You can configure the
innodb_purge_rseg_truncate_frequency variable to control the frequency with which the
purge system looks for undo tablespaces to truncate. For more information, see Truncating Undo
Tablespaces.

17.8.10 Configuring Optimizer Statistics for InnoDB

This section describes how to configure persistent and non-persistent optimizer statistics for InnoDB
tables.

3317

Configuring Optimizer Statistics for InnoDB

Persistent optimizer statistics are persisted across server restarts, allowing for greater plan stability and
more consistent query performance. Persistent optimizer statistics also provide control and flexibility
with these additional benefits:

• You can use the innodb_stats_auto_recalc configuration option to control whether statistics
are updated automatically after substantial changes to a table.

• You can use the STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES
clauses with CREATE TABLE and ALTER TABLE statements to configure optimizer statistics for
individual tables.

• You can query optimizer statistics data in the mysql.innodb_table_stats and
mysql.innodb_index_stats tables.

• You can view the last_update column of the mysql.innodb_table_stats and
mysql.innodb_index_stats tables to see when statistics were last updated.

• You can manually modify the mysql.innodb_table_stats and mysql.innodb_index_stats
tables to force a specific query optimization plan or to test alternative plans without modifying the
database.

The persistent optimizer statistics feature is enabled by default (innodb_stats_persistent=ON).

Non-persistent optimizer statistics are cleared on each server restart and after some other operations,
and recomputed on the next table access. As a result, different estimates could be produced
when recomputing statistics, leading to different choices in execution plans and variations in query
performance.

This section also provides information about estimating ANALYZE TABLE complexity, which may
be useful when attempting to achieve a balance between accurate statistics and ANALYZE TABLE
execution time.

17.8.10.1 Configuring Persistent Optimizer Statistics Parameters

The persistent optimizer statistics feature improves plan stability by storing statistics to disk and making
them persistent across server restarts so that the optimizer is more likely to make consistent choices
each time for a given query.

Optimizer statistics are persisted to disk when innodb_stats_persistent=ON or when individual
tables are defined with STATS_PERSISTENT=1. innodb_stats_persistent is enabled by default.

Formerly, optimizer statistics were cleared when restarting the server and after some other types
of operations, and recomputed on the next table access. Consequently, different estimates could
be produced when recalculating statistics leading to different choices in query execution plans and
variation in query performance.

Persistent statistics are stored in the mysql.innodb_table_stats and
mysql.innodb_index_stats tables. See InnoDB Persistent Statistics Tables.

If you prefer not to persist optimizer statistics to disk, see Section 17.8.10.2, “Configuring Non-
Persistent Optimizer Statistics Parameters”

Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics

The innodb_stats_auto_recalc variable, which is enabled by default, controls whether
statistics are calculated automatically when a table undergoes changes to more than 10% of its
rows. You can also configure automatic statistics recalculation for individual tables by specifying the
STATS_AUTO_RECALC clause when creating or altering a table.

Because of the asynchronous nature of automatic statistics recalculation, which occurs in the
background, statistics may not be recalculated instantly after running a DML operation that affects

3318

Configuring Optimizer Statistics for InnoDB

more than 10% of a table, even when innodb_stats_auto_recalc is enabled. Statistics
recalculation can be delayed by few seconds in some cases. If up-to-date statistics are required
immediately, run ANALYZE TABLE to initiate a synchronous (foreground) recalculation of statistics.

If innodb_stats_auto_recalc is disabled, you can ensure the accuracy of optimizer statistics
by executing the ANALYZE TABLE statement after making substantial changes to indexed columns.
You might also consider adding ANALYZE TABLE to setup scripts that you run after loading data, and
running ANALYZE TABLE on a schedule at times of low activity.

When an index is added to an existing table, or when a column is added or dropped, index
statistics are calculated and added to the innodb_index_stats table regardless of the value of
innodb_stats_auto_recalc.

Configuring Optimizer Statistics Parameters for Individual Tables

innodb_stats_persistent, innodb_stats_auto_recalc, and
innodb_stats_persistent_sample_pages are global variables. To override these system-
wide settings and configure optimizer statistics parameters for individual tables, you can define
STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES clauses in CREATE
TABLE or ALTER TABLE statements.

• STATS_PERSISTENT specifies whether to enable persistent statistics for an InnoDB table. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_persistent setting. A value of 1 enables persistent statistics for the table, while
a value of 0 disables the feature. After enabling persistent statistics for an individual table, use
ANALYZE TABLE to calculate statistics after table data is loaded.

• STATS_AUTO_RECALC specifies whether to automatically recalculate persistent statistics. The
value DEFAULT causes the persistent statistics setting for the table to be determined by the
innodb_stats_auto_recalc setting. A value of 1 causes statistics to be recalculated when 10%
of table data has changed. A value 0 prevents automatic recalculation for the table. When using a
value of 0, use ANALYZE TABLE to recalculate statistics after making substantial changes to the
table.

• STATS_SAMPLE_PAGES specifies the number of index pages to sample when cardinality and other
statistics are calculated for an indexed column, by an ANALYZE TABLE operation, for example.

All three clauses are specified in the following CREATE TABLE example:

CREATE TABLE `t1` (
`id` int(8) NOT NULL auto_increment,
`data` varchar(255),
`date` datetime,
PRIMARY KEY (`id`),
INDEX `DATE_IX` (`date`)
) ENGINE=InnoDB,
 STATS_PERSISTENT=1,
 STATS_AUTO_RECALC=1,
 STATS_SAMPLE_PAGES=25;

Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics

The optimizer uses estimated statistics about key distributions to choose the indexes for an execution
plan, based on the relative selectivity of the index. Operations such as ANALYZE TABLE cause
InnoDB to sample random pages from each index on a table to estimate the cardinality of the index.
This sampling technique is known as a random dive.

The innodb_stats_persistent_sample_pages controls the number of sampled pages. You can
adjust the setting at runtime to manage the quality of statistics estimates used by the optimizer. The
default value is 20. Consider modifying the setting when encountering the following issues:

1. Statistics are not accurate enough and the optimizer chooses suboptimal plans, as shown in
EXPLAIN output. You can check the accuracy of statistics by comparing the actual cardinality of an

3319

Configuring Optimizer Statistics for InnoDB

index (determined by running SELECT DISTINCT on the index columns) with the estimates in the
mysql.innodb_index_stats table.

If it is determined that statistics are not accurate enough, the value of
innodb_stats_persistent_sample_pages should be increased until the statistics estimates
are sufficiently accurate. Increasing innodb_stats_persistent_sample_pages too much,
however, could cause ANALYZE TABLE to run slowly.

2. ANALYZE TABLE is too slow. In this case innodb_stats_persistent_sample_pages should
be decreased until ANALYZE TABLE execution time is acceptable. Decreasing the value too much,
however, could lead to the first problem of inaccurate statistics and suboptimal query execution
plans.

If a balance cannot be achieved between accurate statistics and ANALYZE TABLE execution time,
consider decreasing the number of indexed columns in the table or limiting the number of partitions
to reduce ANALYZE TABLE complexity. The number of columns in the table's primary key is also
important to consider, as primary key columns are appended to each nonunique index.

For related information, see Section 17.8.10.3, “Estimating ANALYZE TABLE Complexity for
InnoDB Tables”.

Including Delete-marked Records in Persistent Statistics Calculations

By default, InnoDB reads uncommitted data when calculating statistics. In the case of an uncommitted
transaction that deletes rows from a table, delete-marked records are excluded when calculating row
estimates and index statistics, which can lead to non-optimal execution plans for other transactions
that are operating on the table concurrently using a transaction isolation level other than READ
UNCOMMITTED. To avoid this scenario, innodb_stats_include_delete_marked can be enabled
to ensure that delete-marked records are included when calculating persistent optimizer statistics.

When innodb_stats_include_delete_marked is enabled, ANALYZE TABLE considers delete-
marked records when recalculating statistics.

innodb_stats_include_delete_marked is a global setting that affects all InnoDB tables, and it is
only applicable to persistent optimizer statistics.

InnoDB Persistent Statistics Tables

The persistent statistics feature relies on the internally managed tables in the mysql database, named
innodb_table_stats and innodb_index_stats. These tables are set up automatically in all
install, upgrade, and build-from-source procedures.

Table 17.6 Columns of innodb_table_stats

Column name Description

database_name Database name

table_name Table name, partition name, or subpartition name

last_update A timestamp indicating the last time that InnoDB
updated this row

n_rows The number of rows in the table

clustered_index_size The size of the primary index, in pages

sum_of_other_index_sizes The total size of other (non-primary) indexes, in
pages

Table 17.7 Columns of innodb_index_stats

Column name Description

database_name Database name

3320

Configuring Optimizer Statistics for InnoDB

Column name Description

table_name Table name, partition name, or subpartition name

index_name Index name

last_update A timestamp indicating the last time the row was
updated

stat_name The name of the statistic, whose value is reported
in the stat_value column

stat_value The value of the statistic that is named in
stat_name column

sample_size The number of pages sampled for the estimate
provided in the stat_value column

stat_description Description of the statistic that is named in the
stat_name column

The innodb_table_stats and innodb_index_stats tables include a last_update column that
shows when index statistics were last updated:

mysql> SELECT * FROM innodb_table_stats \G
*************************** 1. row ***************************
 database_name: sakila
 table_name: actor
 last_update: 2014-05-28 16:16:44
 n_rows: 200
 clustered_index_size: 1
sum_of_other_index_sizes: 1
...

mysql> SELECT * FROM innodb_index_stats \G
*************************** 1. row ***************************
 database_name: sakila
 table_name: actor
 index_name: PRIMARY
 last_update: 2014-05-28 16:16:44
 stat_name: n_diff_pfx01
 stat_value: 200
 sample_size: 1
 ...

The innodb_table_stats and innodb_index_stats tables can be updated manually, which
makes it possible to force a specific query optimization plan or test alternative plans without modifying
the database. If you manually update statistics, use the FLUSH TABLE tbl_name statement to load
the updated statistics.

Persistent statistics are considered local information, because they relate to the server instance.
The innodb_table_stats and innodb_index_stats tables are therefore not replicated when
automatic statistics recalculation takes place. If you run ANALYZE TABLE to initiate a synchronous
recalculation of statistics, the statement is replicated (unless you suppressed logging for it), and
recalculation takes place on replicas.

InnoDB Persistent Statistics Tables Example

The innodb_table_stats table contains one row for each table. The following example
demonstrates the type of data collected.

Table t1 contains a primary index (columns a, b) secondary index (columns c, d), and unique index
(columns e, f):

CREATE TABLE t1 (
a INT, b INT, c INT, d INT, e INT, f INT,
PRIMARY KEY (a, b), KEY i1 (c, d), UNIQUE KEY i2uniq (e, f)
) ENGINE=INNODB;

3321

Configuring Optimizer Statistics for InnoDB

After inserting five rows of sample data, table t1 appears as follows:

mysql> SELECT * FROM t1;
+---+---+------+------+------+------+
| a | b | c | d | e | f |
+---+---+------+------+------+------+
1	1	10	11	100	101
1	2	10	11	200	102
1	3	10	11	100	103
1	4	10	12	200	104
1	5	10	12	100	105
+---+---+------+------+------+------+

To immediately update statistics, run ANALYZE TABLE (if innodb_stats_auto_recalc is enabled,
statistics are updated automatically within a few seconds assuming that the 10% threshold for changed
table rows is reached):

mysql> ANALYZE TABLE t1;
+---------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+---------+----------+----------+
| test.t1 | analyze | status | OK |
+---------+---------+----------+----------+

Table statistics for table t1 show the last time InnoDB updated the table statistics (2014-03-14
14:36:34), the number of rows in the table (5), the clustered index size (1 page), and the combined
size of the other indexes (2 pages).

mysql> SELECT * FROM mysql.innodb_table_stats WHERE table_name like 't1'\G
*************************** 1. row ***************************
 database_name: test
 table_name: t1
 last_update: 2014-03-14 14:36:34
 n_rows: 5
 clustered_index_size: 1
sum_of_other_index_sizes: 2

The innodb_index_stats table contains multiple rows for each index. Each row in the
innodb_index_stats table provides data related to a particular index statistic which is named in the
stat_name column and described in the stat_description column. For example:

mysql> SELECT index_name, stat_name, stat_value, stat_description
 FROM mysql.innodb_index_stats WHERE table_name like 't1';
+------------+--------------+------------+-----------------------------------+
| index_name | stat_name | stat_value | stat_description |
+------------+--------------+------------+-----------------------------------+
PRIMARY	n_diff_pfx01	1	a
PRIMARY	n_diff_pfx02	5	a,b
PRIMARY	n_leaf_pages	1	Number of leaf pages in the index
PRIMARY	size	1	Number of pages in the index
i1	n_diff_pfx01	1	c
i1	n_diff_pfx02	2	c,d
i1	n_diff_pfx03	2	c,d,a
i1	n_diff_pfx04	5	c,d,a,b
i1	n_leaf_pages	1	Number of leaf pages in the index
i1	size	1	Number of pages in the index
i2uniq	n_diff_pfx01	2	e
i2uniq	n_diff_pfx02	5	e,f
i2uniq	n_leaf_pages	1	Number of leaf pages in the index
i2uniq	size	1	Number of pages in the index
+------------+--------------+------------+-----------------------------------+

The stat_name column shows the following types of statistics:

• size: Where stat_name=size, the stat_value column displays the total number of pages in the
index.

• n_leaf_pages: Where stat_name=n_leaf_pages, the stat_value column displays the
number of leaf pages in the index.

3322

Configuring Optimizer Statistics for InnoDB

• n_diff_pfxNN: Where stat_name=n_diff_pfx01, the stat_value column displays the
number of distinct values in the first column of the index. Where stat_name=n_diff_pfx02, the
stat_value column displays the number of distinct values in the first two columns of the index,
and so on. Where stat_name=n_diff_pfxNN, the stat_description column shows a comma
separated list of the index columns that are counted.

To further illustrate the n_diff_pfxNN statistic, which provides cardinality data, consider once again
the t1 table example that was introduced previously. As shown below, the t1 table is created with a
primary index (columns a, b), a secondary index (columns c, d), and a unique index (columns e, f):

CREATE TABLE t1 (
 a INT, b INT, c INT, d INT, e INT, f INT,
 PRIMARY KEY (a, b), KEY i1 (c, d), UNIQUE KEY i2uniq (e, f)
) ENGINE=INNODB;

After inserting five rows of sample data, table t1 appears as follows:

mysql> SELECT * FROM t1;
+---+---+------+------+------+------+
| a | b | c | d | e | f |
+---+---+------+------+------+------+
1	1	10	11	100	101
1	2	10	11	200	102
1	3	10	11	100	103
1	4	10	12	200	104
1	5	10	12	100	105
+---+---+------+------+------+------+

When you query the index_name, stat_name, stat_value, and stat_description, where
stat_name LIKE 'n_diff%', the following result set is returned:

mysql> SELECT index_name, stat_name, stat_value, stat_description
 FROM mysql.innodb_index_stats
 WHERE table_name like 't1' AND stat_name LIKE 'n_diff%';
+------------+--------------+------------+------------------+
| index_name | stat_name | stat_value | stat_description |
+------------+--------------+------------+------------------+
PRIMARY	n_diff_pfx01	1	a
PRIMARY	n_diff_pfx02	5	a,b
i1	n_diff_pfx01	1	c
i1	n_diff_pfx02	2	c,d
i1	n_diff_pfx03	2	c,d,a
i1	n_diff_pfx04	5	c,d,a,b
i2uniq	n_diff_pfx01	2	e
i2uniq	n_diff_pfx02	5	e,f
+------------+--------------+------------+------------------+

For the PRIMARY index, there are two n_diff% rows. The number of rows is equal to the number of
columns in the index.

Note

For nonunique indexes, InnoDB appends the columns of the primary key.

• Where index_name=PRIMARY and stat_name=n_diff_pfx01, the stat_value is 1, which
indicates that there is a single distinct value in the first column of the index (column a). The number
of distinct values in column a is confirmed by viewing the data in column a in table t1, in which there
is a single distinct value (1). The counted column (a) is shown in the stat_description column of
the result set.

• Where index_name=PRIMARY and stat_name=n_diff_pfx02, the stat_value is 5, which
indicates that there are five distinct values in the two columns of the index (a,b). The number of
distinct values in columns a and b is confirmed by viewing the data in columns a and b in table t1,
in which there are five distinct values: (1,1), (1,2), (1,3), (1,4) and (1,5). The counted columns
(a,b) are shown in the stat_description column of the result set.

3323

Configuring Optimizer Statistics for InnoDB

For the secondary index (i1), there are four n_diff% rows. Only two columns are defined for the
secondary index (c,d) but there are four n_diff% rows for the secondary index because InnoDB
suffixes all nonunique indexes with the primary key. As a result, there are four n_diff% rows instead
of two to account for the both the secondary index columns (c,d) and the primary key columns (a,b).

• Where index_name=i1 and stat_name=n_diff_pfx01, the stat_value is 1, which indicates
that there is a single distinct value in the first column of the index (column c). The number of distinct
values in column c is confirmed by viewing the data in column c in table t1, in which there is a single
distinct value: (10). The counted column (c) is shown in the stat_description column of the
result set.

• Where index_name=i1 and stat_name=n_diff_pfx02, the stat_value is 2, which indicates
that there are two distinct values in the first two columns of the index (c,d). The number of distinct
values in columns c an d is confirmed by viewing the data in columns c and d in table t1, in which
there are two distinct values: (10,11) and (10,12). The counted columns (c,d) are shown in the
stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx03, the stat_value is 2, which indicates
that there are two distinct values in the first three columns of the index (c,d,a). The number of
distinct values in columns c, d, and a is confirmed by viewing the data in column c, d, and a in table
t1, in which there are two distinct values: (10,11,1) and (10,12,1). The counted columns (c,d,a)
are shown in the stat_description column of the result set.

• Where index_name=i1 and stat_name=n_diff_pfx04, the stat_value is 5, which
indicates that there are five distinct values in the four columns of the index (c,d,a,b). The
number of distinct values in columns c, d, a and b is confirmed by viewing the data in columns
c, d, a, and b in table t1, in which there are five distinct values: (10,11,1,1), (10,11,1,2),
(10,11,1,3), (10,12,1,4), and (10,12,1,5). The counted columns (c,d,a,b) are shown in the
stat_description column of the result set.

For the unique index (i2uniq), there are two n_diff% rows.

• Where index_name=i2uniq and stat_name=n_diff_pfx01, the stat_value is 2, which
indicates that there are two distinct values in the first column of the index (column e). The
number of distinct values in column e is confirmed by viewing the data in column e in table t1,
in which there are two distinct values: (100) and (200). The counted column (e) is shown in the
stat_description column of the result set.

• Where index_name=i2uniq and stat_name=n_diff_pfx02, the stat_value is 5, which
indicates that there are five distinct values in the two columns of the index (e,f). The number of
distinct values in columns e and f is confirmed by viewing the data in columns e and f in table t1, in
which there are five distinct values: (100,101), (200,102), (100,103), (200,104), and (100,105).
The counted columns (e,f) are shown in the stat_description column of the result set.

Retrieving Index Size Using the innodb_index_stats Table

You can retrieve the index size for tables, partitions, or subpartitions can using the
innodb_index_stats table. In the following example, index sizes are retrieved for table t1. For
a definition of table t1 and corresponding index statistics, see InnoDB Persistent Statistics Tables
Example.

mysql> SELECT SUM(stat_value) pages, index_name,
 SUM(stat_value)*@@innodb_page_size size
 FROM mysql.innodb_index_stats WHERE table_name='t1'
 AND stat_name = 'size' GROUP BY index_name;
+-------+------------+-------+
| pages | index_name | size |
+-------+------------+-------+
1	PRIMARY	16384
1	i1	16384
1	i2uniq	16384
+-------+------------+-------+

3324

Configuring Optimizer Statistics for InnoDB

For partitions or subpartitions, you can use the same query with a modified WHERE clause to retrieve
index sizes. For example, the following query retrieves index sizes for partitions of table t1:

mysql> SELECT SUM(stat_value) pages, index_name,
 SUM(stat_value)*@@innodb_page_size size
 FROM mysql.innodb_index_stats WHERE table_name like 't1#P%'
 AND stat_name = 'size' GROUP BY index_name;

17.8.10.2 Configuring Non-Persistent Optimizer Statistics Parameters

This section describes how to configure non-persistent optimizer statistics. Optimizer statistics are not
persisted to disk when innodb_stats_persistent=OFF or when individual tables are created or
altered with STATS_PERSISTENT=0. Instead, statistics are stored in memory, and are lost when the
server is shut down. Statistics are also updated periodically by certain operations and under certain
conditions.

Optimizer statistics are persisted to disk by default, enabled by the innodb_stats_persistent
configuration option. For information about persistent optimizer statistics, see Section 17.8.10.1,
“Configuring Persistent Optimizer Statistics Parameters”.

Optimizer Statistics Updates

Non-persistent optimizer statistics are updated when:

• Running ANALYZE TABLE.

• Running SHOW TABLE STATUS, SHOW INDEX, or querying the Information Schema TABLES or
STATISTICS tables with the innodb_stats_on_metadata option enabled.

The default setting for innodb_stats_on_metadata is OFF. Enabling
innodb_stats_on_metadata may reduce access speed for schemas that have a large number
of tables or indexes, and reduce stability of execution plans for queries that involve InnoDB tables.
innodb_stats_on_metadata is configured globally using a SET statement.

SET GLOBAL innodb_stats_on_metadata=ON

Note

innodb_stats_on_metadata only applies when optimizer statistics are
configured to be non-persistent (when innodb_stats_persistent is
disabled).

• Starting a mysql client with the --auto-rehash option enabled, which is the default. The auto-
rehash option causes all InnoDB tables to be opened, and the open table operations cause
statistics to be recalculated.

To improve the start up time of the mysql client and to updating statistics, you can turn off auto-
rehash using the --disable-auto-rehash option. The auto-rehash feature enables
automatic name completion of database, table, and column names for interactive users.

• A table is first opened.

• InnoDB detects that 1 / 16 of table has been modified since the last time statistics were updated.

Configuring the Number of Sampled Pages

The MySQL query optimizer uses estimated statistics about key distributions to choose the indexes
for an execution plan, based on the relative selectivity of the index. When InnoDB updates optimizer
statistics, it samples random pages from each index on a table to estimate the cardinality of the index.
(This technique is known as random dives.)

To give you control over the quality of the statistics estimate (and thus better information for
the query optimizer), you can change the number of sampled pages using the parameter

3325

Configuring Optimizer Statistics for InnoDB

innodb_stats_transient_sample_pages. The default number of sampled pages is 8,
which could be insufficient to produce an accurate estimate, leading to poor index choices
by the query optimizer. This technique is especially important for large tables and tables
used in joins. Unnecessary full table scans for such tables can be a substantial performance
issue. See Section 10.2.1.23, “Avoiding Full Table Scans” for tips on tuning such queries.
innodb_stats_transient_sample_pages is a global parameter that can be set at runtime.

The value of innodb_stats_transient_sample_pages affects the index sampling for all InnoDB
tables and indexes when innodb_stats_persistent=0. Be aware of the following potentially
significant impacts when you change the index sample size:

• Small values like 1 or 2 can result in inaccurate estimates of cardinality.

• Increasing the innodb_stats_transient_sample_pages value might require more disk reads.
Values much larger than 8 (say, 100), can cause a significant slowdown in the time it takes to open a
table or execute SHOW TABLE STATUS.

• The optimizer might choose very different query plans based on different estimates of index
selectivity.

Whatever value of innodb_stats_transient_sample_pages works best for a system, set the
option and leave it at that value. Choose a value that results in reasonably accurate estimates for
all tables in your database without requiring excessive I/O. Because the statistics are automatically
recalculated at various times other than on execution of ANALYZE TABLE, it does not make sense to
increase the index sample size, run ANALYZE TABLE, then decrease sample size again.

Smaller tables generally require fewer index samples than larger tables. If your database has many
large tables, consider using a higher value for innodb_stats_transient_sample_pages than if
you have mostly smaller tables.

17.8.10.3 Estimating ANALYZE TABLE Complexity for InnoDB Tables

ANALYZE TABLE complexity for InnoDB tables is dependent on:

• The number of pages sampled, as defined by innodb_stats_persistent_sample_pages.

• The number of indexed columns in a table

• The number of partitions. If a table has no partitions, the number of partitions is considered to be 1.

Using these parameters, an approximate formula for estimating ANALYZE TABLE complexity would be:

The value of innodb_stats_persistent_sample_pages * number of indexed columns in a table *
the number of partitions

Typically, the greater the resulting value, the greater the execution time for ANALYZE TABLE.

Note

innodb_stats_persistent_sample_pages defines the number of pages
sampled at a global level. To set the number of pages sampled for an individual
table, use the STATS_SAMPLE_PAGES option with CREATE TABLE or ALTER
TABLE. For more information, see Section 17.8.10.1, “Configuring Persistent
Optimizer Statistics Parameters”.

If innodb_stats_persistent=OFF, the number of pages sampled is defined
by innodb_stats_transient_sample_pages. See Section 17.8.10.2,
“Configuring Non-Persistent Optimizer Statistics Parameters” for additional
information.

For a more in-depth approach to estimating ANALYZE TABLE complexity, consider the following
example.

3326

Configuring Optimizer Statistics for InnoDB

In Big O notation, ANALYZE TABLE complexity is described as:

 O(n_sample
 * (n_cols_in_uniq_i
 + n_cols_in_non_uniq_i
 + n_cols_in_pk * (1 + n_non_uniq_i))
 * n_part)

where:

• n_sample is the number of pages sampled (defined by
innodb_stats_persistent_sample_pages)

• n_cols_in_uniq_i is total number of all columns in all unique indexes (not counting the primary
key columns)

• n_cols_in_non_uniq_i is the total number of all columns in all nonunique indexes

• n_cols_in_pk is the number of columns in the primary key (if a primary key is not defined, InnoDB
creates a single column primary key internally)

• n_non_uniq_i is the number of nonunique indexes in the table

• n_part is the number of partitions. If no partitions are defined, the table is considered to be a single
partition.

Now, consider the following table (table t), which has a primary key (2 columns), a unique index (2
columns), and two nonunique indexes (two columns each):

CREATE TABLE t (
 a INT,
 b INT,
 c INT,
 d INT,
 e INT,
 f INT,
 g INT,
 h INT,
 PRIMARY KEY (a, b),
 UNIQUE KEY i1uniq (c, d),
 KEY i2nonuniq (e, f),
 KEY i3nonuniq (g, h)
);

For the column and index data required by the algorithm described above, query the
mysql.innodb_index_stats persistent index statistics table for table t. The n_diff_pfx%
statistics show the columns that are counted for each index. For example, columns a and b are
counted for the primary key index. For the nonunique indexes, the primary key columns (a,b) are
counted in addition to the user defined columns.

Note

For additional information about the InnoDB persistent statistics tables, see
Section 17.8.10.1, “Configuring Persistent Optimizer Statistics Parameters”

mysql> SELECT index_name, stat_name, stat_description
 FROM mysql.innodb_index_stats WHERE
 database_name='test' AND
 table_name='t' AND
 stat_name like 'n_diff_pfx%';
 +------------+--------------+------------------+
 | index_name | stat_name | stat_description |
 +------------+--------------+------------------+
PRIMARY	n_diff_pfx01	a
PRIMARY	n_diff_pfx02	a,b
i1uniq	n_diff_pfx01	c
i1uniq	n_diff_pfx02	c,d

3327

http://en.wikipedia.org/wiki/Big_O_notation

Configuring the Merge Threshold for Index Pages

i2nonuniq	n_diff_pfx01	e
i2nonuniq	n_diff_pfx02	e,f
i2nonuniq	n_diff_pfx03	e,f,a
i2nonuniq	n_diff_pfx04	e,f,a,b
i3nonuniq	n_diff_pfx01	g
i3nonuniq	n_diff_pfx02	g,h
i3nonuniq	n_diff_pfx03	g,h,a
i3nonuniq	n_diff_pfx04	g,h,a,b
 +------------+--------------+------------------+

Based on the index statistics data shown above and the table definition, the following values can be
determined:

• n_cols_in_uniq_i, the total number of all columns in all unique indexes not counting the primary
key columns, is 2 (c and d)

• n_cols_in_non_uniq_i, the total number of all columns in all nonunique indexes, is 4 (e, f, g
and h)

• n_cols_in_pk, the number of columns in the primary key, is 2 (a and b)

• n_non_uniq_i, the number of nonunique indexes in the table, is 2 (i2nonuniq and i3nonuniq))

• n_part, the number of partitions, is 1.

You can now calculate innodb_stats_persistent_sample_pages * (2 +
4 + 2 * (1 + 2)) * 1 to determine the number of leaf pages that are scanned. With
innodb_stats_persistent_sample_pages set to the default value of 20, and with a default page
size of 16 KiB (innodb_page_size=16384), you can then estimate that 20 * 12 * 16384 bytes are
read for table t, or about 4 MiB.

Note

All 4 MiB may not be read from disk, as some leaf pages may already be
cached in the buffer pool.

17.8.11 Configuring the Merge Threshold for Index Pages

You can configure the MERGE_THRESHOLD value for index pages. If the “page-full” percentage for an
index page falls below the MERGE_THRESHOLD value when a row is deleted or when a row is shortened
by an UPDATE operation, InnoDB attempts to merge the index page with a neighboring index page.
The default MERGE_THRESHOLD value is 50, which is the previously hardcoded value. The minimum
MERGE_THRESHOLD value is 1 and the maximum value is 50.

When the “page-full” percentage for an index page falls below 50%, which is the default
MERGE_THRESHOLD setting, InnoDB attempts to merge the index page with a neighboring page. If
both pages are close to 50% full, a page split can occur soon after the pages are merged. If this merge-
split behavior occurs frequently, it can have an adverse affect on performance. To avoid frequent
merge-splits, you can lower the MERGE_THRESHOLD value so that InnoDB attempts page merges at a
lower “page-full” percentage. Merging pages at a lower page-full percentage leaves more room in index
pages and helps reduce merge-split behavior.

The MERGE_THRESHOLD for index pages can be defined for a table or for individual indexes. A
MERGE_THRESHOLD value defined for an individual index takes priority over a MERGE_THRESHOLD
value defined for the table. If undefined, the MERGE_THRESHOLD value defaults to 50.

Setting MERGE_THRESHOLD for a Table

You can set the MERGE_THRESHOLD value for a table using the table_option COMMENT clause of
the CREATE TABLE statement. For example:

CREATE TABLE t1 (
 id INT,

3328

Configuring the Merge Threshold for Index Pages

 KEY id_index (id)
) COMMENT='MERGE_THRESHOLD=45';

You can also set the MERGE_THRESHOLD value for an existing table using the table_option
COMMENT clause with ALTER TABLE:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
);

ALTER TABLE t1 COMMENT='MERGE_THRESHOLD=40';

Setting MERGE_THRESHOLD for Individual Indexes

To set the MERGE_THRESHOLD value for an individual index, you can use the index_option
COMMENT clause with CREATE TABLE, ALTER TABLE, or CREATE INDEX, as shown in the following
examples:

• Setting MERGE_THRESHOLD for an individual index using CREATE TABLE:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id) COMMENT 'MERGE_THRESHOLD=40'
);

• Setting MERGE_THRESHOLD for an individual index using ALTER TABLE:

CREATE TABLE t1 (
 id INT,
 KEY id_index (id)
);

ALTER TABLE t1 DROP KEY id_index;
ALTER TABLE t1 ADD KEY id_index (id) COMMENT 'MERGE_THRESHOLD=40';

• Setting MERGE_THRESHOLD for an individual index using CREATE INDEX:

CREATE TABLE t1 (id INT);
CREATE INDEX id_index ON t1 (id) COMMENT 'MERGE_THRESHOLD=40';

Note

You cannot modify the MERGE_THRESHOLD value at the index level for
GEN_CLUST_INDEX, which is the clustered index created by InnoDB when an
InnoDB table is created without a primary key or unique key index. You can
only modify the MERGE_THRESHOLD value for GEN_CLUST_INDEX by setting
MERGE_THRESHOLD for the table.

Querying the MERGE_THRESHOLD Value for an Index

The current MERGE_THRESHOLD value for an index can be obtained by querying the
INNODB_INDEXES table. For example:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_INDEXES WHERE NAME='id_index' \G
*************************** 1. row ***************************
 INDEX_ID: 91
 NAME: id_index
 TABLE_ID: 68
 TYPE: 0
 N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 57
MERGE_THRESHOLD: 40

You can use SHOW CREATE TABLE to view the MERGE_THRESHOLD value for a table, if explicitly
defined using the table_option COMMENT clause:

3329

Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server

mysql> SHOW CREATE TABLE t2 \G
*************************** 1. row ***************************
 Table: t2
Create Table: CREATE TABLE `t2` (
 `id` int(11) DEFAULT NULL,
 KEY `id_index` (`id`) COMMENT 'MERGE_THRESHOLD=40'
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

Note

A MERGE_THRESHOLD value defined at the index level takes priority
over a MERGE_THRESHOLD value defined for the table. If undefined,
MERGE_THRESHOLD defaults to 50% (MERGE_THRESHOLD=50, which is the
previously hardcoded value.

Likewise, you can use SHOW INDEX to view the MERGE_THRESHOLD value for an index, if explicitly
defined using the index_option COMMENT clause:

mysql> SHOW INDEX FROM t2 \G
*************************** 1. row ***************************
 Table: t2
 Non_unique: 1
 Key_name: id_index
 Seq_in_index: 1
 Column_name: id
 Collation: A
 Cardinality: 0
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: BTREE
 Comment:
Index_comment: MERGE_THRESHOLD=40

Measuring the Effect of MERGE_THRESHOLD Settings

The INNODB_METRICS table provides two counters that can be used to measure the effect of a
MERGE_THRESHOLD setting on index page merges.

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS
 WHERE NAME like '%index_page_merge%';
+-----------------------------+--+
| NAME | COMMENT |
+-----------------------------+--+
| index_page_merge_attempts | Number of index page merge attempts |
| index_page_merge_successful | Number of successful index page merges |
+-----------------------------+--+

When lowering the MERGE_THRESHOLD value, the objectives are:

• A smaller number of page merge attempts and successful page merges

• A similar number of page merge attempts and successful page merges

A MERGE_THRESHOLD setting that is too small could result in large data files due to an excessive
amount of empty page space.

For information about using INNODB_METRICS counters, see Section 17.15.6, “InnoDB
INFORMATION_SCHEMA Metrics Table”.

17.8.12 Enabling Automatic InnoDB Configuration for a Dedicated MySQL
Server

When the server is started with --innodb-dedicated-server, InnoDB automatically calculates
values for and sets the following system variables:

3330

Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server

• innodb_buffer_pool_size

• innodb_redo_log_capacity (MySQL 8.0.30 and later)

• innodb_log_file_size (prior to MySQL 8.0.30)

• innodb_log_files_in_group (prior to MySQL 8.0.30)

• innodb_flush_method

Note

innodb_log_file_size and innodb_log_files_in_group
are deprecated as of MySQL 8.0.30, and are superseded by
innodb_redo_log_capacity. You should expect innodb_log_file_size
and innodb_log_files_in_group to be removed in a future version of
MySQL.

You should consider using --innodb-dedicated-server only if the MySQL instance resides on
a dedicated server where it can use all available system resources—for example, if you run MySQL
Server in a Docker container or dedicated VM that runs MySQL only. using --innodb-dedicated-
server is not recommended if the MySQL instance shares system resources with other applications.

The value for each affected variable is determined and applied by --innodb-dedicated-server as
described in the following list:

• innodb_buffer_pool_size

Buffer pool size is calculated according to the amount of memory detected on the server, as shown
in the following table:

Table 17.8 Automatically Configured Buffer Pool Size

Detected Server Memory Buffer Pool Size

Less than 1GB 128MB (the default value)

1GB to 4GB detected server memory * 0.5

Greater than 4GB detected server memory * 0.75

• innodb_redo_log_capacity

Redo log capacity is configured according to the amount of memory detected on the server
and, in some cases, whether innodb_buffer_pool_size is configured explicitly. If
innodb_buffer_pool_size is not configured explicitly, the default value is assumed.

Warning

Automatic redo log capacity configuration behavior is undefined if
innodb_buffer_pool_size is set to a value larger than the detected
amount of server memory.

Table 17.9 Automatically Configured Log File Size

Detected Server Memory Buffer Pool Size Redo Log Capacity

Less than 1GB Not configured 100MB

Less than 1GB Less than 1GB 100MB

1GB to 2GB Not applicable 100MB

2GB to 4GB Not configured 1GB

2GB to 4GB Any configured value round(0.5 * detected server
memory in GB) * 0.5 GB

3331

Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server

Detected Server Memory Buffer Pool Size Redo Log Capacity

4GB to 10.66GB Not applicable round(0.75 * detected
server memory in GB) * 0.5
GB

10.66GB to 170.66GB Not applicable round(0.5625 * detected
server memory in GB) * 1 GB

Greater than 170.66GB Not applicable 128GB

• innodb_log_file_size (deprecated)

Log file size is set according to the automatically configured buffer pool size, as shown in the
following table:

Table 17.10 Automatically Configured Log File Size

Buffer Pool Size Log File Size

Less than 8GB 512MB

8GB to 128GB 1024MB

Greater than 128GB 2048MB

• innodb_log_files_in_group (deprecated)

The number of log files is determined according to the automatically configured buffer pool size, as
shown in the following table:

Table 17.11 Automatically Configured Number of Log Files

Buffer Pool Size Number of Log Files

Less than 8GB round(buffer pool size)

8GB to 128GB round(buffer pool size * 0.75)

Greater than 128GB 64

Note

The minimum value for innodb_log_files_in_group value is 2; this
lower limit is enforced if the rounded buffer pool size value is less than this
number.

• innodb_flush_method

The flush method is set to O_DIRECT_NO_FSYNC when the server is started with --innodb-
dedicated-server. If O_DIRECT_NO_FSYNC is not available, the default value for
innodb_flush_method.

InnoDB uses O_DIRECT during flushing I/O, but skips the fsync() system call after each write
operation.

Warning

Prior to MySQL 8.0.14, O_DIRECT_NO_FSYNC was not suitable for file
systems such as XFS and EXT4, which require an fsync() system call to
synchronize file system metadata changes.

As of MySQL 8.0.14, fsync() is called after creating a new file, after
increasing file size, and after closing a file, to ensure that file system
metadata changes are synchronized. The fsync() system call is still
skipped after each write operation.

3332

InnoDB Table and Page Compression

Data loss is possible if redo log files and data files reside on different storage
devices, and an unexpected exit occurs before data file writes are flushed
from a device cache that is not battery-backed. If you use or intend to use
different storage devices for redo log files and data files, and your data files
reside on a device with a cache that is not battery-backed, use O_DIRECT
instead.

If one of the variables listed previously is set explicitly in an option file or elsewhere, this explicit value
is used, and a startup warning similar to this one is printed to stderr:

[Warning] [000000] InnoDB: Option innodb_dedicated_server is ignored
for innodb_buffer_pool_size because innodb_buffer_pool_size=134217728 is
specified explicitly.

Setting one variable explicitly does not prevent the automatic configuration of other options.

If the server is started with --innodb-dedicated-server and innodb_buffer_pool_size
is set explicitly, variable settings based on buffer pool size use the buffer pool size value calculated
according to the amount of memory detected on the server rather than the explicitly defined buffer pool
size value.

Note

Automatic configuration settings are applied by --innodb-dedicated-
server only when the MySQL server is started. If you later set any of the
affected variables explicitly, this overrides its predetermined value, and
the value that was explicitly set is applied. Setting one of these variables
to DEFAULT causes it to be set to the actual default value as shown in the
variable's description in the Manual, and does not cause it to revert to the value
set by --innodb-dedicated-server. The corresponding system variable
innodb_dedicated_server is changed only by starting the server with --
innodb-dedicated-server (or with --innodb-dedicated-server=ON
or --innodb-dedicated-server=OFF); it is otherwise read-only.

17.9 InnoDB Table and Page Compression

This section provides information about the InnoDB table compression and InnoDB page compression
features. The page compression feature is also referred to as transparent page compression.

Using the compression features of InnoDB, you can create tables where the data is stored in
compressed form. Compression can help to improve both raw performance and scalability. The
compression means less data is transferred between disk and memory, and takes up less space on
disk and in memory. The benefits are amplified for tables with secondary indexes, because index data
is compressed also. Compression can be especially important for SSD storage devices, because they
tend to have lower capacity than HDD devices.

17.9.1 InnoDB Table Compression

This section describes InnoDB table compression, which is supported with InnoDB tables that
reside in file_per_table tablespaces or general tablespaces. Table compression is enabled using the
ROW_FORMAT=COMPRESSED attribute with CREATE TABLE or ALTER TABLE.

17.9.1.1 Overview of Table Compression

Because processors and cache memories have increased in speed more than disk storage devices,
many workloads are disk-bound. Data compression enables smaller database size, reduced I/O, and
improved throughput, at the small cost of increased CPU utilization. Compression is especially valuable
for read-intensive applications, on systems with enough RAM to keep frequently used data in memory.

3333

InnoDB Table Compression

An InnoDB table created with ROW_FORMAT=COMPRESSED can use a smaller page size on disk than
the configured innodb_page_size value. Smaller pages require less I/O to read from and write to
disk, which is especially valuable for SSD devices.

The compressed page size is specified through the CREATE TABLE or ALTER TABLE
KEY_BLOCK_SIZE parameter. The different page size requires that the table be placed in a file-
per-table tablespace or general tablespace rather than in the system tablespace, as the system
tablespace cannot store compressed tables. For more information, see Section 17.6.3.2, “File-Per-
Table Tablespaces”, and Section 17.6.3.3, “General Tablespaces”.

The level of compression is the same regardless of the KEY_BLOCK_SIZE value. As you specify
smaller values for KEY_BLOCK_SIZE, you get the I/O benefits of increasingly smaller pages. But if you
specify a value that is too small, there is additional overhead to reorganize the pages when data values
cannot be compressed enough to fit multiple rows in each page. There is a hard limit on how small
KEY_BLOCK_SIZE can be for a table, based on the lengths of the key columns for each of its indexes.
Specify a value that is too small, and the CREATE TABLE or ALTER TABLE statement fails.

In the buffer pool, the compressed data is held in small pages, with a page size based on the
KEY_BLOCK_SIZE value. For extracting or updating the column values, MySQL also creates an
uncompressed page in the buffer pool with the uncompressed data. Within the buffer pool, any
updates to the uncompressed page are also re-written back to the equivalent compressed page. You
might need to size your buffer pool to accommodate the additional data of both compressed and
uncompressed pages, although the uncompressed pages are evicted from the buffer pool when space
is needed, and then uncompressed again on the next access.

17.9.1.2 Creating Compressed Tables

Compressed tables can be created in file-per-table tablespaces or in general tablespaces. Table
compression is not available for the InnoDB system tablespace. The system tablespace (space 0, the
.ibdata files) can contain user-created tables, but it also contains internal system data, which is never
compressed. Thus, compression applies only to tables (and indexes) stored in file-per-table or general
tablespaces.

Creating a Compressed Table in File-Per-Table Tablespace

To create a compressed table in a file-per-table tablespace, innodb_file_per_table must be
enabled (the default). You can set this parameter in the MySQL configuration file (my.cnf or my.ini)
or dynamically, using a SET statement.

After the innodb_file_per_table option is configured, specify the ROW_FORMAT=COMPRESSED
clause or KEY_BLOCK_SIZE clause, or both, in a CREATE TABLE or ALTER TABLE statement to
create a compressed table in a file-per-table tablespace.

For example, you might use the following statements:

SET GLOBAL innodb_file_per_table=1;
CREATE TABLE t1
 (c1 INT PRIMARY KEY)
 ROW_FORMAT=COMPRESSED
 KEY_BLOCK_SIZE=8;

Creating a Compressed Table in a General Tablespace

To create a compressed table in a general tablespace, FILE_BLOCK_SIZE must be defined for the
general tablespace, which is specified when the tablespace is created. The FILE_BLOCK_SIZE value
must be a valid compressed page size in relation to the innodb_page_size value, and the page
size of the compressed table, defined by the CREATE TABLE or ALTER TABLE KEY_BLOCK_SIZE
clause, must be equal to FILE_BLOCK_SIZE/1024. For example, if innodb_page_size=16384 and
FILE_BLOCK_SIZE=8192, the KEY_BLOCK_SIZE of the table must be 8. For more information, see
Section 17.6.3.3, “General Tablespaces”.

3334

InnoDB Table Compression

The following example demonstrates creating a general tablespace and adding a compressed table.
The example assumes a default innodb_page_size of 16K. The FILE_BLOCK_SIZE of 8192
requires that the compressed table have a KEY_BLOCK_SIZE of 8.

mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;

mysql> CREATE TABLE t4 (c1 INT PRIMARY KEY) TABLESPACE ts2 ROW_FORMAT=COMPRESSED KEY_BLOCK_SIZE=8;

Notes

• As of MySQL 8.0, the tablespace file for a compressed table is created using the physical page
size instead of the InnoDB page size, which makes the initial size of a tablespace file for an empty
compressed table smaller than in previous MySQL releases.

• If you specify ROW_FORMAT=COMPRESSED, you can omit KEY_BLOCK_SIZE; the KEY_BLOCK_SIZE
setting defaults to half the innodb_page_size value.

• If you specify a valid KEY_BLOCK_SIZE value, you can omit ROW_FORMAT=COMPRESSED;
compression is enabled automatically.

• To determine the best value for KEY_BLOCK_SIZE, typically you create several copies of the same
table with different values for this clause, then measure the size of the resulting .ibd files and
see how well each performs with a realistic workload. For general tablespaces, keep in mind that
dropping a table does not reduce the size of the general tablespace .ibd file, nor does it return disk
space to the operating system. For more information, see Section 17.6.3.3, “General Tablespaces”.

• The KEY_BLOCK_SIZE value is treated as a hint; a different size could be used by InnoDB if
necessary. For file-per-table tablespaces, the KEY_BLOCK_SIZE can only be less than or equal
to the innodb_page_size value. If you specify a value greater than the innodb_page_size
value, the specified value is ignored, a warning is issued, and KEY_BLOCK_SIZE is set to half of the
innodb_page_size value. If innodb_strict_mode=ON, specifying an invalid KEY_BLOCK_SIZE
value returns an error. For general tablespaces, valid KEY_BLOCK_SIZE values depend on the
FILE_BLOCK_SIZE setting of the tablespace. For more information, see Section 17.6.3.3, “General
Tablespaces”.

• InnoDB supports 32KB and 64KB page sizes but these page sizes do not support compression. For
more information, refer to the innodb_page_size documentation.

• The default uncompressed size of InnoDB data pages is 16KB. Depending on the combination of
option values, MySQL uses a page size of 1KB, 2KB, 4KB, 8KB, or 16KB for the tablespace data file
(.ibd file). The actual compression algorithm is not affected by the KEY_BLOCK_SIZE value; the
value determines how large each compressed chunk is, which in turn affects how many rows can be
packed into each compressed page.

• When creating a compressed table in a file-per-table tablespace, setting KEY_BLOCK_SIZE equal
to the InnoDB page size does not typically result in much compression. For example, setting
KEY_BLOCK_SIZE=16 typically would not result in much compression, since the normal InnoDB
page size is 16KB. This setting may still be useful for tables with many long BLOB, VARCHAR or TEXT
columns, because such values often do compress well, and might therefore require fewer overflow
pages as described in Section 17.9.1.5, “How Compression Works for InnoDB Tables”. For general
tablespaces, a KEY_BLOCK_SIZE value equal to the InnoDB page size is not permitted. For more
information, see Section 17.6.3.3, “General Tablespaces”.

• All indexes of a table (including the clustered index) are compressed using the same page size, as
specified in the CREATE TABLE or ALTER TABLE statement. Table attributes such as ROW_FORMAT
and KEY_BLOCK_SIZE are not part of the CREATE INDEX syntax for InnoDB tables, and are
ignored if they are specified (although, if specified, they appear in the output of the SHOW CREATE
TABLE statement).

• For performance-related configuration options, see Section 17.9.1.3, “Tuning Compression for
InnoDB Tables”.

3335

InnoDB Table Compression

Restrictions on Compressed Tables

• Compressed tables cannot be stored in the InnoDB system tablespace.

• General tablespaces can contain multiple tables, but compressed and uncompressed tables cannot
coexist within the same general tablespace.

• Compression applies to an entire table and all its associated indexes, not to individual rows, despite
the clause name ROW_FORMAT.

• InnoDB does not support compressed temporary tables. When innodb_strict_mode is enabled
(the default), CREATE TEMPORARY TABLE returns errors if ROW_FORMAT=COMPRESSED or
KEY_BLOCK_SIZE is specified. If innodb_strict_mode is disabled, warnings are issued and
the temporary table is created using a non-compressed row format. The same restrictions apply to
ALTER TABLE operations on temporary tables.

17.9.1.3 Tuning Compression for InnoDB Tables

Most often, the internal optimizations described in InnoDB Data Storage and Compression ensure that
the system runs well with compressed data. However, because the efficiency of compression depends
on the nature of your data, you can make decisions that affect the performance of compressed tables:

• Which tables to compress.

• What compressed page size to use.

• Whether to adjust the size of the buffer pool based on run-time performance characteristics, such as
the amount of time the system spends compressing and uncompressing data. Whether the workload
is more like a data warehouse (primarily queries) or an OLTP system (mix of queries and DML).

• If the system performs DML operations on compressed tables, and the way the data is distributed
leads to expensive compression failures at runtime, you might adjust additional advanced
configuration options.

Use the guidelines in this section to help make those architectural and configuration choices.
When you are ready to conduct long-term testing and put compressed tables into production,
see Section 17.9.1.4, “Monitoring InnoDB Table Compression at Runtime” for ways to verify the
effectiveness of those choices under real-world conditions.

When to Use Compression

In general, compression works best on tables that include a reasonable number of character string
columns and where the data is read far more often than it is written. Because there are no guaranteed
ways to predict whether or not compression benefits a particular situation, always test with a specific
workload and data set running on a representative configuration. Consider the following factors when
deciding which tables to compress.

Data Characteristics and Compression

A key determinant of the efficiency of compression in reducing the size of data files is the nature of
the data itself. Recall that compression works by identifying repeated strings of bytes in a block of
data. Completely randomized data is the worst case. Typical data often has repeated values, and so
compresses effectively. Character strings often compress well, whether defined in CHAR, VARCHAR,
TEXT or BLOB columns. On the other hand, tables containing mostly binary data (integers or floating
point numbers) or data that is previously compressed (for example JPEG or PNG images) may not
generally compress well, significantly or at all.

You choose whether to turn on compression for each InnoDB table. A table and all of its indexes use
the same (compressed) page size. It might be that the primary key (clustered) index, which contains
the data for all columns of a table, compresses more effectively than the secondary indexes. For those
cases where there are long rows, the use of compression might result in long column values being

3336

InnoDB Table Compression

stored “off-page”, as discussed in DYNAMIC Row Format. Those overflow pages may compress well.
Given these considerations, for many applications, some tables compress more effectively than others,
and you might find that your workload performs best only with a subset of tables compressed.

To determine whether or not to compress a particular table, conduct experiments. You can get a
rough estimate of how efficiently your data can be compressed by using a utility that implements LZ77
compression (such as gzip or WinZip) on a copy of the .ibd file for an uncompressed table. You can
expect less compression from a MySQL compressed table than from file-based compression tools,
because MySQL compresses data in chunks based on the page size, 16KB by default. In addition
to user data, the page format includes some internal system data that is not compressed. File-based
compression utilities can examine much larger chunks of data, and so might find more repeated strings
in a huge file than MySQL can find in an individual page.

Another way to test compression on a specific table is to copy some data from your uncompressed
table to a similar, compressed table (having all the same indexes) in a file-per-table tablespace and
look at the size of the resulting .ibd file. For example:

USE test;
SET GLOBAL innodb_file_per_table=1;
SET GLOBAL autocommit=0;

-- Create an uncompressed table with a million or two rows.
CREATE TABLE big_table AS SELECT * FROM information_schema.columns;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
INSERT INTO big_table SELECT * FROM big_table;
COMMIT;
ALTER TABLE big_table ADD id int unsigned NOT NULL PRIMARY KEY auto_increment;

SHOW CREATE TABLE big_table\G

select count(id) from big_table;

-- Check how much space is needed for the uncompressed table.
\! ls -l data/test/big_table.ibd

CREATE TABLE key_block_size_4 LIKE big_table;
ALTER TABLE key_block_size_4 key_block_size=4 row_format=compressed;

INSERT INTO key_block_size_4 SELECT * FROM big_table;
commit;

-- Check how much space is needed for a compressed table
-- with particular compression settings.
\! ls -l data/test/key_block_size_4.ibd

This experiment produced the following numbers, which of course could vary considerably depending
on your table structure and data:

-rw-rw---- 1 cirrus staff 310378496 Jan 9 13:44 data/test/big_table.ibd
-rw-rw---- 1 cirrus staff 83886080 Jan 9 15:10 data/test/key_block_size_4.ibd

To see whether compression is efficient for your particular workload:

• For simple tests, use a MySQL instance with no other compressed tables and run queries against
the Information Schema INNODB_CMP table.

• For more elaborate tests involving workloads with multiple compressed tables, run queries
against the Information Schema INNODB_CMP_PER_INDEX table. Because the statistics in the
INNODB_CMP_PER_INDEX table are expensive to collect, you must enable the configuration option

3337

InnoDB Table Compression

innodb_cmp_per_index_enabled before querying that table, and you might restrict such testing
to a development server or a non-critical replica server.

• Run some typical SQL statements against the compressed table you are testing.

• Examine the ratio of successful compression operations to overall
compression operations by querying INFORMATION_SCHEMA.INNODB_CMP or
INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX, and comparing COMPRESS_OPS to
COMPRESS_OPS_OK.

• If a high percentage of compression operations complete successfully, the table might be a good
candidate for compression.

• If you get a high proportion of compression failures, you can adjust innodb_compression_level,
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
options as described in Section 17.9.1.6, “Compression for OLTP Workloads”, and try further tests.

Database Compression versus Application Compression

Decide whether to compress data in your application or in the table; do not use both types of
compression for the same data. When you compress the data in the application and store the results
in a compressed table, extra space savings are extremely unlikely, and the double compression just
wastes CPU cycles.

Compressing in the Database

When enabled, MySQL table compression is automatic and applies to all columns and index values.
The columns can still be tested with operators such as LIKE, and sort operations can still use indexes
even when the index values are compressed. Because indexes are often a significant fraction of the
total size of a database, compression could result in significant savings in storage, I/O or processor
time. The compression and decompression operations happen on the database server, which likely is a
powerful system that is sized to handle the expected load.

Compressing in the Application

If you compress data such as text in your application, before it is inserted into the database, You might
save overhead for data that does not compress well by compressing some columns and not others.
This approach uses CPU cycles for compression and uncompression on the client machine rather
than the database server, which might be appropriate for a distributed application with many clients, or
where the client machine has spare CPU cycles.

Hybrid Approach

Of course, it is possible to combine these approaches. For some applications, it may be appropriate to
use some compressed tables and some uncompressed tables. It may be best to externally compress
some data (and store it in uncompressed tables) and allow MySQL to compress (some of) the other
tables in the application. As always, up-front design and real-life testing are valuable in reaching the
right decision.

Workload Characteristics and Compression

In addition to choosing which tables to compress (and the page size), the workload is another key
determinant of performance. If the application is dominated by reads, rather than updates, fewer
pages need to be reorganized and recompressed after the index page runs out of room for the per-
page “modification log” that MySQL maintains for compressed data. If the updates predominantly
change non-indexed columns or those containing BLOBs or large strings that happen to be stored “off-
page”, the overhead of compression may be acceptable. If the only changes to a table are INSERTs
that use a monotonically increasing primary key, and there are few secondary indexes, there is little
need to reorganize and recompress index pages. Since MySQL can “delete-mark” and delete rows
on compressed pages “in place” by modifying uncompressed data, DELETE operations on a table are
relatively efficient.

3338

InnoDB Table Compression

For some environments, the time it takes to load data can be as important as run-time retrieval.
Especially in data warehouse environments, many tables may be read-only or read-mostly. In those
cases, it might or might not be acceptable to pay the price of compression in terms of increased load
time, unless the resulting savings in fewer disk reads or in storage cost is significant.

Fundamentally, compression works best when the CPU time is available for compressing and
uncompressing data. Thus, if your workload is I/O bound, rather than CPU-bound, you might find
that compression can improve overall performance. When you test your application performance with
different compression configurations, test on a platform similar to the planned configuration of the
production system.

Configuration Characteristics and Compression

Reading and writing database pages from and to disk is the slowest aspect of system performance.
Compression attempts to reduce I/O by using CPU time to compress and uncompress data, and is
most effective when I/O is a relatively scarce resource compared to processor cycles.

This is often especially the case when running in a multi-user environment with fast, multi-core CPUs.
When a page of a compressed table is in memory, MySQL often uses additional memory, typically
16KB, in the buffer pool for an uncompressed copy of the page. The adaptive LRU algorithm attempts
to balance the use of memory between compressed and uncompressed pages to take into account
whether the workload is running in an I/O-bound or CPU-bound manner. Still, a configuration with
more memory dedicated to the buffer pool tends to run better when using compressed tables than a
configuration where memory is highly constrained.

Choosing the Compressed Page Size

The optimal setting of the compressed page size depends on the type and distribution of data that the
table and its indexes contain. The compressed page size should always be bigger than the maximum
record size, or operations may fail as noted in Compression of B-Tree Pages.

Setting the compressed page size too large wastes some space, but the pages do not have to be
compressed as often. If the compressed page size is set too small, inserts or updates may require
time-consuming recompression, and the B-tree nodes may have to be split more frequently, leading to
bigger data files and less efficient indexing.

Typically, you set the compressed page size to 8K or 4K bytes. Given that the maximum row size for
an InnoDB table is around 8K, KEY_BLOCK_SIZE=8 is usually a safe choice.

17.9.1.4 Monitoring InnoDB Table Compression at Runtime

Overall application performance, CPU and I/O utilization and the size of disk files are good indicators of
how effective compression is for your application. This section builds on the performance tuning advice
from Section 17.9.1.3, “Tuning Compression for InnoDB Tables”, and shows how to find problems that
might not turn up during initial testing.

To dig deeper into performance considerations for compressed tables, you can monitor compression
performance at runtime using the Information Schema tables described in Example 17.1, “Using the
Compression Information Schema Tables”. These tables reflect the internal use of memory and the
rates of compression used overall.

The INNODB_CMP table reports information about compression activity for each compressed page
size (KEY_BLOCK_SIZE) in use. The information in these tables is system-wide: it summarizes the
compression statistics across all compressed tables in your database. You can use this data to help
decide whether or not to compress a table by examining these tables when no other compressed
tables are being accessed. It involves relatively low overhead on the server, so you might query it
periodically on a production server to check the overall efficiency of the compression feature.

The INNODB_CMP_PER_INDEX table reports information about compression activity for individual
tables and indexes. This information is more targeted and more useful for evaluating compression

3339

InnoDB Table Compression

efficiency and diagnosing performance issues one table or index at a time. (Because that each InnoDB
table is represented as a clustered index, MySQL does not make a big distinction between tables and
indexes in this context.) The INNODB_CMP_PER_INDEX table does involve substantial overhead, so it
is more suitable for development servers, where you can compare the effects of different workloads,
data, and compression settings in isolation. To guard against imposing this monitoring overhead by
accident, you must enable the innodb_cmp_per_index_enabled configuration option before you
can query the INNODB_CMP_PER_INDEX table.

The key statistics to consider are the number of, and amount of time spent performing, compression
and uncompression operations. Since MySQL splits B-tree nodes when they are too full to contain
the compressed data following a modification, compare the number of “successful” compression
operations with the number of such operations overall. Based on the information in the INNODB_CMP
and INNODB_CMP_PER_INDEX tables and overall application performance and hardware resource
utilization, you might make changes in your hardware configuration, adjust the size of the buffer pool,
choose a different page size, or select a different set of tables to compress.

If the amount of CPU time required for compressing and uncompressing is high, changing to faster
or multi-core CPUs can help improve performance with the same data, application workload and set
of compressed tables. Increasing the size of the buffer pool might also help performance, so that
more uncompressed pages can stay in memory, reducing the need to uncompress pages that exist in
memory only in compressed form.

A large number of compression operations overall (compared to the number of INSERT, UPDATE and
DELETE operations in your application and the size of the database) could indicate that some of your
compressed tables are being updated too heavily for effective compression. If so, choose a larger page
size, or be more selective about which tables you compress.

If the number of “successful” compression operations (COMPRESS_OPS_OK) is a high percentage of
the total number of compression operations (COMPRESS_OPS), then the system is likely performing
well. If the ratio is low, then MySQL is reorganizing, recompressing, and splitting B-tree nodes more
often than is desirable. In this case, avoid compressing some tables, or increase KEY_BLOCK_SIZE
for some of the compressed tables. You might turn off compression for tables that cause the number
of “compression failures” in your application to be more than 1% or 2% of the total. (Such a failure ratio
might be acceptable during a temporary operation such as a data load).

17.9.1.5 How Compression Works for InnoDB Tables

This section describes some internal implementation details about compression for InnoDB tables. The
information presented here may be helpful in tuning for performance, but is not necessary to know for
basic use of compression.

Compression Algorithms

Some operating systems implement compression at the file system level. Files are typically divided into
fixed-size blocks that are compressed into variable-size blocks, which easily leads into fragmentation.
Every time something inside a block is modified, the whole block is recompressed before it is written
to disk. These properties make this compression technique unsuitable for use in an update-intensive
database system.

MySQL implements compression with the help of the well-known zlib library, which implements the
LZ77 compression algorithm. This compression algorithm is mature, robust, and efficient in both CPU
utilization and in reduction of data size. The algorithm is “lossless”, so that the original uncompressed
data can always be reconstructed from the compressed form. LZ77 compression works by finding
sequences of data that are repeated within the data to be compressed. The patterns of values in your
data determine how well it compresses, but typical user data often compresses by 50% or more.

Unlike compression performed by an application, or compression features of some other database
management systems, InnoDB compression applies both to user data and to indexes. In many
cases, indexes can constitute 40-50% or more of the total database size, so this difference is
significant. When compression is working well for a data set, the size of the InnoDB data files (the

3340

http://www.zlib.net/

InnoDB Table Compression

file-per-table tablespace or general tablespace .ibd files) is 25% to 50% of the uncompressed
size or possibly smaller. Depending on the workload, this smaller database can in turn lead to
a reduction in I/O, and an increase in throughput, at a modest cost in terms of increased CPU
utilization. You can adjust the balance between compression level and CPU overhead by modifying the
innodb_compression_level configuration option.

InnoDB Data Storage and Compression

All user data in InnoDB tables is stored in pages comprising a B-tree index (the clustered index). In
some other database systems, this type of index is called an “index-organized table”. Each row in the
index node contains the values of the (user-specified or system-generated) primary key and all the
other columns of the table.

Secondary indexes in InnoDB tables are also B-trees, containing pairs of values: the index key and a
pointer to a row in the clustered index. The pointer is in fact the value of the primary key of the table,
which is used to access the clustered index if columns other than the index key and primary key are
required. Secondary index records must always fit on a single B-tree page.

The compression of B-tree nodes (of both clustered and secondary indexes) is handled differently from
compression of overflow pages used to store long VARCHAR, BLOB, or TEXT columns, as explained in
the following sections.

Compression of B-Tree Pages

Because they are frequently updated, B-tree pages require special treatment. It is important to
minimize the number of times B-tree nodes are split, as well as to minimize the need to uncompress
and recompress their content.

One technique MySQL uses is to maintain some system information in the B-tree node in
uncompressed form, thus facilitating certain in-place updates. For example, this allows rows to be
delete-marked and deleted without any compression operation.

In addition, MySQL attempts to avoid unnecessary uncompression and recompression of index pages
when they are changed. Within each B-tree page, the system keeps an uncompressed “modification
log” to record changes made to the page. Updates and inserts of small records may be written to this
modification log without requiring the entire page to be completely reconstructed.

When the space for the modification log runs out, InnoDB uncompresses the page, applies the
changes and recompresses the page. If recompression fails (a situation known as a compression
failure), the B-tree nodes are split and the process is repeated until the update or insert succeeds.

To avoid frequent compression failures in write-intensive workloads, such as for OLTP applications,
MySQL sometimes reserves some empty space (padding) in the page, so that the modification log
fills up sooner and the page is recompressed while there is still enough room to avoid splitting it.
The amount of padding space left in each page varies as the system keeps track of the frequency
of page splits. On a busy server doing frequent writes to compressed tables, you can adjust the
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
configuration options to fine-tune this mechanism.

Generally, MySQL requires that each B-tree page in an InnoDB table can accommodate at least
two records. For compressed tables, this requirement has been relaxed. Leaf pages of B-tree nodes
(whether of the primary key or secondary indexes) only need to accommodate one record, but that
record must fit, in uncompressed form, in the per-page modification log. If innodb_strict_mode is
ON, MySQL checks the maximum row size during CREATE TABLE or CREATE INDEX. If the row does
not fit, the following error message is issued: ERROR HY000: Too big row.

If you create a table when innodb_strict_mode is OFF, and a subsequent INSERT or UPDATE
statement attempts to create an index entry that does not fit in the size of the compressed page, the
operation fails with ERROR 42000: Row size too large. (This error message does not name
the index for which the record is too large, or mention the length of the index record or the maximum

3341

InnoDB Table Compression

record size on that particular index page.) To solve this problem, rebuild the table with ALTER TABLE
and select a larger compressed page size (KEY_BLOCK_SIZE), shorten any column prefix indexes, or
disable compression entirely with ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPACT.

innodb_strict_mode is not applicable to general tablespaces, which also support compressed
tables. Tablespace management rules for general tablespaces are strictly enforced independently
of innodb_strict_mode. For more information, see Section 15.1.21, “CREATE TABLESPACE
Statement”.

Compressing BLOB, VARCHAR, and TEXT Columns

In an InnoDB table, BLOB, VARCHAR, and TEXT columns that are not part of the primary key may be
stored on separately allocated overflow pages. We refer to these columns as off-page columns. Their
values are stored on singly-linked lists of overflow pages.

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, the values of BLOB,
TEXT, or VARCHAR columns may be stored fully off-page, depending on their length and the length of
the entire row. For columns that are stored off-page, the clustered index record only contains 20-byte
pointers to the overflow pages, one per column. Whether any columns are stored off-page depends
on the page size and the total size of the row. When the row is too long to fit entirely within the page
of the clustered index, MySQL chooses the longest columns for off-page storage until the row fits on
the clustered index page. As noted above, if a row does not fit by itself on a compressed page, an error
occurs.

Note

For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED,
TEXT and BLOB columns that are less than or equal to 40 bytes are always
stored in-line.

Tables that use ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT store the first 768 bytes of
BLOB, VARCHAR, and TEXT columns in the clustered index record along with the primary key. The 768-
byte prefix is followed by a 20-byte pointer to the overflow pages that contain the rest of the column
value.

When a table is in COMPRESSED format, all data written to overflow pages is compressed “as is”; that is,
MySQL applies the zlib compression algorithm to the entire data item. Other than the data, compressed
overflow pages contain an uncompressed header and trailer comprising a page checksum and a link
to the next overflow page, among other things. Therefore, very significant storage savings can be
obtained for longer BLOB, TEXT, or VARCHAR columns if the data is highly compressible, as is often the
case with text data. Image data, such as JPEG, is typically already compressed and so does not benefit
much from being stored in a compressed table; the double compression can waste CPU cycles for little
or no space savings.

The overflow pages are of the same size as other pages. A row containing ten columns stored off-
page occupies ten overflow pages, even if the total length of the columns is only 8K bytes. In an
uncompressed table, ten uncompressed overflow pages occupy 160K bytes. In a compressed table
with an 8K page size, they occupy only 80K bytes. Thus, it is often more efficient to use compressed
table format for tables with long column values.

For file-per-table tablespaces, using a 16K compressed page size can reduce storage and I/O
costs for BLOB, VARCHAR, or TEXT columns, because such data often compress well, and might
therefore require fewer overflow pages, even though the B-tree nodes themselves take as many pages
as in the uncompressed form. General tablespaces do not support a 16K compressed page size
(KEY_BLOCK_SIZE). For more information, see Section 17.6.3.3, “General Tablespaces”.

Compression and the InnoDB Buffer Pool

In a compressed InnoDB table, every compressed page (whether 1K, 2K, 4K or 8K) corresponds to
an uncompressed page of 16K bytes (or a smaller size if innodb_page_size is set). To access the

3342

InnoDB Table Compression

data in a page, MySQL reads the compressed page from disk if it is not already in the buffer pool, then
uncompresses the page to its original form. This section describes how InnoDB manages the buffer
pool with respect to pages of compressed tables.

To minimize I/O and to reduce the need to uncompress a page, at times the buffer pool contains
both the compressed and uncompressed form of a database page. To make room for other required
database pages, MySQL can evict from the buffer pool an uncompressed page, while leaving the
compressed page in memory. Or, if a page has not been accessed in a while, the compressed form of
the page might be written to disk, to free space for other data. Thus, at any given time, the buffer pool
might contain both the compressed and uncompressed forms of the page, or only the compressed form
of the page, or neither.

MySQL keeps track of which pages to keep in memory and which to evict using a least-recently-
used (LRU) list, so that hot (frequently accessed) data tends to stay in memory. When compressed
tables are accessed, MySQL uses an adaptive LRU algorithm to achieve an appropriate balance of
compressed and uncompressed pages in memory. This adaptive algorithm is sensitive to whether the
system is running in an I/O-bound or CPU-bound manner. The goal is to avoid spending too much
processing time uncompressing pages when the CPU is busy, and to avoid doing excess I/O when the
CPU has spare cycles that can be used for uncompressing compressed pages (that may already be
in memory). When the system is I/O-bound, the algorithm prefers to evict the uncompressed copy of
a page rather than both copies, to make more room for other disk pages to become memory resident.
When the system is CPU-bound, MySQL prefers to evict both the compressed and uncompressed
page, so that more memory can be used for “hot” pages and reducing the need to uncompress data in
memory only in compressed form.

Compression and the InnoDB Redo Log Files

Before a compressed page is written to a data file, MySQL writes a copy of the page to the redo
log (if it has been recompressed since the last time it was written to the database). This is done to
ensure that redo logs are usable for crash recovery, even in the unlikely case that the zlib library is
upgraded and that change introduces a compatibility problem with the compressed data. Therefore,
some increase in the size of log files, or a need for more frequent checkpoints, can be expected when
using compression. The amount of increase in the log file size or checkpoint frequency depends
on the number of times compressed pages are modified in a way that requires reorganization and
recompression.

To create a compressed table in a file-per-table tablespace, innodb_file_per_table must
be enabled. There is no dependence on the innodb_file_per_table setting when creating a
compressed table in a general tablespace. For more information, see Section 17.6.3.3, “General
Tablespaces”.

17.9.1.6 Compression for OLTP Workloads

Traditionally, the InnoDB compression feature was recommended primarily for read-only or read-
mostly workloads, such as in a data warehouse configuration. The rise of SSD storage devices, which
are fast but relatively small and expensive, makes compression attractive also for OLTP workloads:
high-traffic, interactive websites can reduce their storage requirements and their I/O operations per
second (IOPS) by using compressed tables with applications that do frequent INSERT, UPDATE, and
DELETE operations.

These configuration options let you adjust the way compression works for a particular MySQL instance,
with an emphasis on performance and scalability for write-intensive operations:

• innodb_compression_level lets you turn the degree of compression up or down. A higher
value lets you fit more data onto a storage device, at the expense of more CPU overhead during
compression. A lower value lets you reduce CPU overhead when storage space is not critical, or you
expect the data is not especially compressible.

• innodb_compression_failure_threshold_pct specifies a cutoff point for compression
failures during updates to a compressed table. When this threshold is passed, MySQL begins to

3343

InnoDB Table Compression

leave additional free space within each new compressed page, dynamically adjusting the amount of
free space up to the percentage of page size specified by innodb_compression_pad_pct_max

• innodb_compression_pad_pct_max lets you adjust the maximum amount of space reserved
within each page to record changes to compressed rows, without needing to compress the entire
page again. The higher the value, the more changes can be recorded without recompressing
the page. MySQL uses a variable amount of free space for the pages within each compressed
table, only when a designated percentage of compression operations “fail” at runtime, requiring an
expensive operation to split the compressed page.

• innodb_log_compressed_pages lets you disable writing of images of re-compressed pages
to the redo log. Re-compression may occur when changes are made to compressed data. This
option is enabled by default to prevent corruption that could occur if a different version of the zlib
compression algorithm is used during recovery. If you are certain that the zlib version is not subject
to change, disable innodb_log_compressed_pages to reduce redo log generation for workloads
that modify compressed data.

Because working with compressed data sometimes involves keeping both compressed and
uncompressed versions of a page in memory at the same time, when using compression with an
OLTP-style workload, be prepared to increase the value of the innodb_buffer_pool_size
configuration option.

17.9.1.7 SQL Compression Syntax Warnings and Errors

This section describes syntax warnings and errors that you may encounter when using the table
compression feature with file-per-table tablespaces and general tablespaces.

SQL Compression Syntax Warnings and Errors for File-Per-Table Tablespaces

When innodb_strict_mode is enabled (the default), specifying ROW_FORMAT=COMPRESSED or
KEY_BLOCK_SIZE in CREATE TABLE or ALTER TABLE statements produces the following error if
innodb_file_per_table is disabled.

ERROR 1031 (HY000): Table storage engine for 't1' doesn't have this option

Note

The table is not created if the current configuration does not permit using
compressed tables.

When innodb_strict_mode is disabled, specifying ROW_FORMAT=COMPRESSED or
KEY_BLOCK_SIZE in CREATE TABLE or ALTER TABLE statements produces the following warnings if
innodb_file_per_table is disabled.

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
Warning	1478	InnoDB: KEY_BLOCK_SIZE requires innodb_file_per_table.
Warning	1478	InnoDB: ignoring KEY_BLOCK_SIZE=4.
Warning	1478	InnoDB: ROW_FORMAT=COMPRESSED requires innodb_file_per_table.
Warning	1478	InnoDB: assuming ROW_FORMAT=DYNAMIC.
+---------+------+---+

Note

These messages are only warnings, not errors, and the table is created without
compression, as if the options were not specified.

The “non-strict” behavior lets you import a mysqldump file into a database that does not support
compressed tables, even if the source database contained compressed tables. In that case, MySQL
creates the table in ROW_FORMAT=DYNAMIC instead of preventing the operation.

3344

InnoDB Table Compression

To import the dump file into a new database, and have the tables re-created as they exist in the original
database, ensure the server has the proper setting for the innodb_file_per_table configuration
parameter.

The attribute KEY_BLOCK_SIZE is permitted only when ROW_FORMAT is specified as COMPRESSED
or is omitted. Specifying a KEY_BLOCK_SIZE with any other ROW_FORMAT generates a warning
that you can view with SHOW WARNINGS. However, the table is non-compressed; the specified
KEY_BLOCK_SIZE is ignored).

Level Code Message

Warning 1478 InnoDB: ignoring
KEY_BLOCK_SIZE=n unless
ROW_FORMAT=COMPRESSED.

If you are running with innodb_strict_mode enabled, the combination of a KEY_BLOCK_SIZE with
any ROW_FORMAT other than COMPRESSED generates an error, not a warning, and the table is not
created.

Table 17.12, “ROW_FORMAT and KEY_BLOCK_SIZE Options” provides an overview the
ROW_FORMAT and KEY_BLOCK_SIZE options that are used with CREATE TABLE or ALTER TABLE.

Table 17.12 ROW_FORMAT and KEY_BLOCK_SIZE Options

Option Usage Notes Description

ROW_FORMAT=REDUNDANT Storage format used prior to
MySQL 5.0.3

Less efficient than
ROW_FORMAT=COMPACT; for
backward compatibility

ROW_FORMAT=COMPACT Default storage format since
MySQL 5.0.3

Stores a prefix of 768 bytes
of long column values in the
clustered index page, with the
remaining bytes stored in an
overflow page

ROW_FORMAT=DYNAMIC Store values within the clustered
index page if they fit; if not,
stores only a 20-byte pointer to
an overflow page (no prefix)

ROW_FORMAT=COMPRESSED Compresses the table and
indexes using zlib

KEY_BLOCK_SIZE=n Specifies compressed
page size of 1, 2, 4, 8
or 16 kilobytes; implies
ROW_FORMAT=COMPRESSED.
For general tablespaces, a
KEY_BLOCK_SIZE value equal
to the InnoDB page size is not
permitted.

Table 17.13, “CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF”
summarizes error conditions that occur with certain combinations of configuration parameters and
options on the CREATE TABLE or ALTER TABLE statements, and how the options appear in the output
of SHOW TABLE STATUS.

When innodb_strict_mode is OFF, MySQL creates or alters the table, but ignores certain
settings as shown below. You can see the warning messages in the MySQL error log. When
innodb_strict_mode is ON, these specified combinations of options generate errors, and the table

3345

InnoDB Table Compression

is not created or altered. To see the full description of the error condition, issue the SHOW ERRORS
statement: example:

mysql> CREATE TABLE x (id INT PRIMARY KEY, c INT)

-> ENGINE=INNODB KEY_BLOCK_SIZE=33333;

ERROR 1005 (HY000): Can't create table 'test.x' (errno: 1478)

mysql> SHOW ERRORS;
+-------+------+---+
| Level | Code | Message |
+-------+------+---+
| Error | 1478 | InnoDB: invalid KEY_BLOCK_SIZE=33333. |
| Error | 1005 | Can't create table 'test.x' (errno: 1478) |
+-------+------+---+

Table 17.13 CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF

Syntax Warning or Error Condition Resulting ROW_FORMAT,
as shown in SHOW TABLE
STATUS

ROW_FORMAT=REDUNDANT None REDUNDANT

ROW_FORMAT=COMPACT None COMPACT

ROW_FORMAT=COMPRESSED
or ROW_FORMAT=DYNAMIC or
KEY_BLOCK_SIZE is specified

Ignored for file-per-
table tablespaces unless
innodb_file_per_table is
enabled. General tablespaces
support all row formats. See
Section 17.6.3.3, “General
Tablespaces”.

the default row format
for file-per-table
tablespaces; the
specified row format for
general tablespaces

Invalid KEY_BLOCK_SIZE is
specified (not 1, 2, 4, 8 or 16)

KEY_BLOCK_SIZE is ignored the specified row format, or the
default row format

ROW_FORMAT=COMPRESSED
and valid KEY_BLOCK_SIZE are
specified

None; KEY_BLOCK_SIZE
specified is used

COMPRESSED

KEY_BLOCK_SIZE is specified
with REDUNDANT, COMPACT or
DYNAMIC row format

KEY_BLOCK_SIZE is ignored REDUNDANT, COMPACT or
DYNAMIC

ROW_FORMAT is not one
of REDUNDANT, COMPACT,
DYNAMIC or COMPRESSED

Ignored if recognized by the
MySQL parser. Otherwise, an
error is issued.

the default row format or N/A

When innodb_strict_mode is ON, MySQL rejects invalid ROW_FORMAT or KEY_BLOCK_SIZE
parameters and issues errors. Strict mode is ON by default. When innodb_strict_mode is OFF,
MySQL issues warnings instead of errors for ignored invalid parameters.

It is not possible to see the chosen KEY_BLOCK_SIZE using SHOW TABLE STATUS. The statement
SHOW CREATE TABLE displays the KEY_BLOCK_SIZE (even if it was ignored when creating the table).
The real compressed page size of the table cannot be displayed by MySQL.

SQL Compression Syntax Warnings and Errors for General Tablespaces

• If FILE_BLOCK_SIZE was not defined for the general tablespace when the tablespace was created,
the tablespace cannot contain compressed tables. If you attempt to add a compressed table, an error
is returned, as shown in the following example:

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' Engine=InnoDB;

mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY) TABLESPACE ts1 ROW_FORMAT=COMPRESSED

3346

InnoDB Page Compression

 KEY_BLOCK_SIZE=8;
ERROR 1478 (HY000): InnoDB: Tablespace `ts1` cannot contain a COMPRESSED table

• Attempting to add a table with an invalid KEY_BLOCK_SIZE to a general tablespace returns an error,
as shown in the following example:

mysql> CREATE TABLESPACE `ts2` ADD DATAFILE 'ts2.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;

mysql> CREATE TABLE t2 (c1 INT PRIMARY KEY) TABLESPACE ts2 ROW_FORMAT=COMPRESSED
 KEY_BLOCK_SIZE=4;
ERROR 1478 (HY000): InnoDB: Tablespace `ts2` uses block size 8192 and cannot
contain a table with physical page size 4096

For general tablespaces, the KEY_BLOCK_SIZE of the table must be equal to the
FILE_BLOCK_SIZE of the tablespace divided by 1024. For example, if the FILE_BLOCK_SIZE of
the tablespace is 8192, the KEY_BLOCK_SIZE of the table must be 8.

• Attempting to add a table with an uncompressed row format to a general tablespace configured to
store compressed tables returns an error, as shown in the following example:

mysql> CREATE TABLESPACE `ts3` ADD DATAFILE 'ts3.ibd' FILE_BLOCK_SIZE = 8192 Engine=InnoDB;

mysql> CREATE TABLE t3 (c1 INT PRIMARY KEY) TABLESPACE ts3 ROW_FORMAT=COMPACT;
ERROR 1478 (HY000): InnoDB: Tablespace `ts3` uses block size 8192 and cannot
contain a table with physical page size 16384

innodb_strict_mode is not applicable to general tablespaces. Tablespace management rules
for general tablespaces are strictly enforced independently of innodb_strict_mode. For more
information, see Section 15.1.21, “CREATE TABLESPACE Statement”.

For more information about using compressed tables with general tablespaces, see Section 17.6.3.3,
“General Tablespaces”.

17.9.2 InnoDB Page Compression

InnoDB supports page-level compression for tables that reside in file-per-table tablespaces. This
feature is referred to as Transparent Page Compression. Page compression is enabled by specifying
the COMPRESSION attribute with CREATE TABLE or ALTER TABLE. Supported compression
algorithms include Zlib and LZ4.

Supported Platforms

Page compression requires sparse file and hole punching support. Page compression is supported
on Windows with NTFS, and on the following subset of MySQL-supported Linux platforms where the
kernel level provides hole punching support:

• RHEL 7 and derived distributions that use kernel version 3.10.0-123 or higher

• OEL 5.10 (UEK2) kernel version 2.6.39 or higher

• OEL 6.5 (UEK3) kernel version 3.8.13 or higher

• OEL 7.0 kernel version 3.8.13 or higher

• SLE11 kernel version 3.0-x

• SLE12 kernel version 3.12-x

• OES11 kernel version 3.0-x

• Ubuntu 14.0.4 LTS kernel version 3.13 or higher

• Ubuntu 12.0.4 LTS kernel version 3.2 or higher

• Debian 7 kernel version 3.2 or higher

3347

InnoDB Page Compression

Note

All of the available file systems for a given Linux distribution may not support
hole punching.

How Page Compression Works

When a page is written, it is compressed using the specified compression algorithm. The compressed
data is written to disk, where the hole punching mechanism releases empty blocks from the end of the
page. If compression fails, data is written out as-is.

Hole Punch Size on Linux

On Linux systems, the file system block size is the unit size used for hole punching. Therefore, page
compression only works if page data can be compressed to a size that is less than or equal to the
InnoDB page size minus the file system block size. For example, if innodb_page_size=16K and
the file system block size is 4K, page data must compress to less than or equal to 12K to make hole
punching possible.

Hole Punch Size on Windows

On Windows systems, the underlying infrastructure for sparse files is based on NTFS compression.
Hole punching size is the NTFS compression unit, which is 16 times the NTFS cluster size. Cluster
sizes and their compression units are shown in the following table:

Table 17.14 Windows NTFS Cluster Size and Compression Units

Cluster Size Compression Unit

512 Bytes 8 KB

1 KB 16 KB

2 KB 32 KB

4 KB 64 KB

Page compression on Windows systems only works if page data can be compressed to a size that is
less than or equal to the InnoDB page size minus the compression unit size.

The default NTFS cluster size is 4KB, for which the compression unit size is 64KB. This means that
page compression has no benefit for an out-of-the box Windows NTFS configuration, as the maximum
innodb_page_size is also 64KB.

For page compression to work on Windows, the file system must be created with a cluster size
smaller than 4K, and the innodb_page_size must be at least twice the size of the compression
unit. For example, for page compression to work on Windows, you could build the file system with
a cluster size of 512 Bytes (which has a compression unit of 8KB) and initialize InnoDB with an
innodb_page_size value of 16K or greater.

Enabling Page Compression

To enable page compression, specify the COMPRESSION attribute in the CREATE TABLE statement.
For example:

CREATE TABLE t1 (c1 INT) COMPRESSION="zlib";

You can also enable page compression in an ALTER TABLE statement. However, ALTER TABLE ...
COMPRESSION only updates the tablespace compression attribute. Writes to the tablespace that occur
after setting the new compression algorithm use the new setting, but to apply the new compression
algorithm to existing pages, you must rebuild the table using OPTIMIZE TABLE.

ALTER TABLE t1 COMPRESSION="zlib";

3348

InnoDB Page Compression

OPTIMIZE TABLE t1;

Disabling Page Compression

To disable page compression, set COMPRESSION=None using ALTER TABLE. Writes to the tablespace
that occur after setting COMPRESSION=None no longer use page compression. To uncompress existing
pages, you must rebuild the table using OPTIMIZE TABLE after setting COMPRESSION=None.

ALTER TABLE t1 COMPRESSION="None";
OPTIMIZE TABLE t1;

Page Compression Metadata

Page compression metadata is found in the Information Schema INNODB_TABLESPACES table, in the
following columns:

• FS_BLOCK_SIZE: The file system block size, which is the unit size used for hole punching.

• FILE_SIZE: The apparent size of the file, which represents the maximum size of the file,
uncompressed.

• ALLOCATED_SIZE: The actual size of the file, which is the amount of space allocated on disk.

Note

On Unix-like systems, ls -l tablespace_name.ibd shows the apparent file
size (equivalent to FILE_SIZE) in bytes. To view the actual amount of space
allocated on disk (equivalent to ALLOCATED_SIZE), use du --block-size=1
tablespace_name.ibd. The --block-size=1 option prints the allocated
space in bytes instead of blocks, so that it can be compared to ls -l output.

Use SHOW CREATE TABLE to view the current page compression setting
(Zlib, Lz4, or None). A table may contain a mix of pages with different
compression settings.

In the following example, page compression metadata for the employees table is retrieved from the
Information Schema INNODB_TABLESPACES table.

Create the employees table with Zlib page compression

CREATE TABLE employees (
 emp_no INT NOT NULL,
 birth_date DATE NOT NULL,
 first_name VARCHAR(14) NOT NULL,
 last_name VARCHAR(16) NOT NULL,
 gender ENUM ('M','F') NOT NULL,
 hire_date DATE NOT NULL,
 PRIMARY KEY (emp_no)
) COMPRESSION="zlib";

Insert data (not shown)

Query page compression metadata in INFORMATION_SCHEMA.INNODB_TABLESPACES

mysql> SELECT SPACE, NAME, FS_BLOCK_SIZE, FILE_SIZE, ALLOCATED_SIZE FROM
 INFORMATION_SCHEMA.INNODB_TABLESPACES WHERE NAME='employees/employees'\G
*************************** 1. row ***************************
SPACE: 45
NAME: employees/employees
FS_BLOCK_SIZE: 4096
FILE_SIZE: 23068672
ALLOCATED_SIZE: 19415040

Page compression metadata for the employees table shows that the apparent file size is 23068672
bytes while the actual file size (with page compression) is 19415040 bytes. The file system block size is
4096 bytes, which is the block size used for hole punching.

3349

InnoDB Row Formats

Identifying Tables Using Page Compression

To identify tables for which page compression is enabled, you can check the Information Schema
TABLES table's CREATE_OPTIONS column for tables defined with the COMPRESSION attribute:

mysql> SELECT TABLE_NAME, TABLE_SCHEMA, CREATE_OPTIONS FROM INFORMATION_SCHEMA.TABLES
 WHERE CREATE_OPTIONS LIKE '%COMPRESSION=%';
+------------+--------------+--------------------+
| TABLE_NAME | TABLE_SCHEMA | CREATE_OPTIONS |
+------------+--------------+--------------------+
| employees | test | COMPRESSION="zlib" |
+------------+--------------+--------------------+

SHOW CREATE TABLE also shows the COMPRESSION attribute, if used.

Page Compression Limitations and Usage Notes

• Page compression is disabled if the file system block size (or compression unit size on Windows) * 2
> innodb_page_size.

• Page compression is not supported for tables that reside in shared tablespaces, which include the
system tablespace, temporary tablespaces, and general tablespaces.

• Page compression is not supported for undo log tablespaces.

• Page compression is not supported for redo log pages.

• R-tree pages, which are used for spatial indexes, are not compressed.

• Pages that belong to compressed tables (ROW_FORMAT=COMPRESSED) are left as-is.

• During recovery, updated pages are written out in an uncompressed form.

• Loading a page-compressed tablespace on a server that does not support the compression
algorithm that was used causes an I/O error.

• Before downgrading to an earlier version of MySQL that does not support page compression,
uncompress the tables that use the page compression feature. To uncompress a table, run ALTER
TABLE ... COMPRESSION=None and OPTIMIZE TABLE.

• Page-compressed tablespaces can be copied between Linux and Windows servers if the
compression algorithm that was used is available on both servers.

• Preserving page compression when moving a page-compressed tablespace file from one host to
another requires a utility that preserves sparse files.

• Better page compression may be achieved on Fusion-io hardware with NVMFS than on other
platforms, as NVMFS is designed to take advantage of punch hole functionality.

• Using the page compression feature with a large InnoDB page size and relatively small file system
block size could result in write amplification. For example, a maximum InnoDB page size of 64KB
with a 4KB file system block size may improve compression but may also increase demand on the
buffer pool, leading to increased I/O and potential write amplification.

17.10 InnoDB Row Formats
The row format of a table determines how its rows are physically stored, which in turn can affect
the performance of queries and DML operations. As more rows fit into a single disk page, queries
and index lookups can work faster, less cache memory is required in the buffer pool, and less I/O is
required to write out updated values.

The data in each table is divided into pages. The pages that make up each table are arranged in a
tree data structure called a B-tree index. Table data and secondary indexes both use this type of
structure. The B-tree index that represents an entire table is known as the clustered index, which is

3350

REDUNDANT Row Format

organized according to the primary key columns. The nodes of a clustered index data structure contain
the values of all columns in the row. The nodes of a secondary index structure contain the values of
index columns and primary key columns.

Variable-length columns are an exception to the rule that column values are stored in B-tree index
nodes. Variable-length columns that are too long to fit on a B-tree page are stored on separately
allocated disk pages called overflow pages. Such columns are referred to as off-page columns. The
values of off-page columns are stored in singly-linked lists of overflow pages, with each such column
having its own list of one or more overflow pages. Depending on column length, all or a prefix of
variable-length column values are stored in the B-tree to avoid wasting storage and having to read a
separate page.

The InnoDB storage engine supports four row formats: REDUNDANT, COMPACT, DYNAMIC, and
COMPRESSED.

Table 17.15 InnoDB Row Format Overview

Row Format Compact
Storage
Characteristics

Enhanced
Variable-
Length
Column
Storage

Large Index
Key Prefix
Support

Compression
Support

Supported
Tablespace
Types

REDUNDANT No No No No system, file-per-
table, general

COMPACT Yes No No No system, file-per-
table, general

DYNAMIC Yes Yes Yes No system, file-per-
table, general

COMPRESSED Yes Yes Yes Yes file-per-table,
general

The topics that follow describe row format storage characteristics and how to define and determine the
row format of a table.

• REDUNDANT Row Format

• COMPACT Row Format

• DYNAMIC Row Format

• COMPRESSED Row Format

• Defining the Row Format of a Table

• Determining the Row Format of a Table

REDUNDANT Row Format

The REDUNDANT format provides compatibility with older versions of MySQL.

Tables that use the REDUNDANT row format store the first 768 bytes of variable-length column values
(VARCHAR, VARBINARY, and BLOB and TEXT types) in the index record within the B-tree node, with
the remainder stored on overflow pages. Fixed-length columns greater than or equal to 768 bytes
are encoded as variable-length columns, which can be stored off-page. For example, a CHAR(255)
column can exceed 768 bytes if the maximum byte length of the character set is greater than 3, as it is
with utf8mb4.

If the value of a column is 768 bytes or less, an overflow page is not used, and some savings in I/O
may result, since the value is stored entirely in the B-tree node. This works well for relatively short
BLOB column values, but may cause B-tree nodes to fill with data rather than key values, reducing their

3351

COMPACT Row Format

efficiency. Tables with many BLOB columns could cause B-tree nodes to become too full, and contain
too few rows, making the entire index less efficient than if rows were shorter or column values were
stored off-page.

REDUNDANT Row Format Storage Characteristics

The REDUNDANT row format has the following storage characteristics:

• Each index record contains a 6-byte header. The header is used to link together consecutive
records, and for row-level locking.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-
byte transaction ID field and a 7-byte roll pointer field.

• If no primary key is defined for a table, each clustered index record also contains a 6-byte row ID
field.

• Each secondary index record contains all the primary key columns defined for the clustered index
key that are not in the secondary index.

• A record contains a pointer to each field of the record. If the total length of the fields in a record is
less than 128 bytes, the pointer is one byte; otherwise, two bytes. The array of pointers is called the
record directory. The area where the pointers point is the data part of the record.

• Internally, fixed-length character columns such as CHAR(10) in stored in fixed-length format. Trailing
spaces are not truncated from VARCHAR columns.

• Fixed-length columns greater than or equal to 768 bytes are encoded as variable-length columns,
which can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the
maximum byte length of the character set is greater than 3, as it is with utf8mb4.

• An SQL NULL value reserves one or two bytes in the record directory. An SQL NULL value reserves
zero bytes in the data part of the record if stored in a variable-length column. For a fixed-length
column, the fixed length of the column is reserved in the data part of the record. Reserving fixed
space for NULL values permits columns to be updated in place from NULL to non-NULL values
without causing index page fragmentation.

COMPACT Row Format

The COMPACT row format reduces row storage space by about 20% compared to the REDUNDANT row
format, at the cost of increasing CPU use for some operations. If your workload is a typical one that
is limited by cache hit rates and disk speed, COMPACT format is likely to be faster. If the workload is
limited by CPU speed, compact format might be slower.

Tables that use the COMPACT row format store the first 768 bytes of variable-length column values
(VARCHAR, VARBINARY, and BLOB and TEXT types) in the index record within the B-tree node, with
the remainder stored on overflow pages. Fixed-length columns greater than or equal to 768 bytes
are encoded as variable-length columns, which can be stored off-page. For example, a CHAR(255)
column can exceed 768 bytes if the maximum byte length of the character set is greater than 3, as it is
with utf8mb4.

If the value of a column is 768 bytes or less, an overflow page is not used, and some savings in I/O
may result, since the value is stored entirely in the B-tree node. This works well for relatively short
BLOB column values, but may cause B-tree nodes to fill with data rather than key values, reducing their
efficiency. Tables with many BLOB columns could cause B-tree nodes to become too full, and contain
too few rows, making the entire index less efficient than if rows were shorter or column values were
stored off-page.

COMPACT Row Format Storage Characteristics

The COMPACT row format has the following storage characteristics:

3352

DYNAMIC Row Format

• Each index record contains a 5-byte header that may be preceded by a variable-length header. The
header is used to link together consecutive records, and for row-level locking.

• The variable-length part of the record header contains a bit vector for indicating NULL columns. If the
number of columns in the index that can be NULL is N, the bit vector occupies CEILING(N/8) bytes.
(For example, if there are anywhere from 9 to 16 columns that can be NULL, the bit vector uses two
bytes.) Columns that are NULL do not occupy space other than the bit in this vector. The variable-
length part of the header also contains the lengths of variable-length columns. Each length takes one
or two bytes, depending on the maximum length of the column. If all columns in the index are NOT
NULL and have a fixed length, the record header has no variable-length part.

• For each non-NULL variable-length field, the record header contains the length of the column in
one or two bytes. Two bytes are only needed if part of the column is stored externally in overflow
pages or the maximum length exceeds 255 bytes and the actual length exceeds 127 bytes. For an
externally stored column, the 2-byte length indicates the length of the internally stored part plus the
20-byte pointer to the externally stored part. The internal part is 768 bytes, so the length is 768+20.
The 20-byte pointer stores the true length of the column.

• The record header is followed by the data contents of non-NULL columns.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-
byte transaction ID field and a 7-byte roll pointer field.

• If no primary key is defined for a table, each clustered index record also contains a 6-byte row ID
field.

• Each secondary index record contains all the primary key columns defined for the clustered index
key that are not in the secondary index. If any of the primary key columns are variable length, the
record header for each secondary index has a variable-length part to record their lengths, even if the
secondary index is defined on fixed-length columns.

• Internally, for nonvariable-length character sets, fixed-length character columns such as CHAR(10)
are stored in a fixed-length format.

Trailing spaces are not truncated from VARCHAR columns.

• Internally, for variable-length character sets such as utf8mb3 and utf8mb4, InnoDB attempts to
store CHAR(N) in N bytes by trimming trailing spaces. If the byte length of a CHAR(N) column value
exceeds N bytes, trailing spaces are trimmed to a maximum of the column value byte length. The
maximum length of a CHAR(N) column is the maximum character byte length × N.

A minimum of N bytes is reserved for CHAR(N). Reserving the minimum space N in many cases
enables column updates to be done in place without causing index page fragmentation. By
comparison, CHAR(N) columns occupy the maximum character byte length × N when using the
REDUNDANT row format.

Fixed-length columns greater than or equal to 768 bytes are encoded as variable-length fields, which
can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum
byte length of the character set is greater than 3, as it is with utf8mb4.

DYNAMIC Row Format

The DYNAMIC row format offers the same storage characteristics as the COMPACT row format but adds
enhanced storage capabilities for long variable-length columns and supports large index key prefixes.

When a table is created with ROW_FORMAT=DYNAMIC, InnoDB can store long variable-length column
values (for VARCHAR, VARBINARY, and BLOB and TEXT types) fully off-page, with the clustered index
record containing only a 20-byte pointer to the overflow page. Fixed-length fields greater than or equal
to 768 bytes are encoded as variable-length fields. For example, a CHAR(255) column can exceed
768 bytes if the maximum byte length of the character set is greater than 3, as it is with utf8mb4.

3353

COMPRESSED Row Format

Whether columns are stored off-page depends on the page size and the total size of the row. When a
row is too long, the longest columns are chosen for off-page storage until the clustered index record fits
on the B-tree page. TEXT and BLOB columns that are less than or equal to 40 bytes are stored in line.

The DYNAMIC row format maintains the efficiency of storing the entire row in the index node if it fits (as
do the COMPACT and REDUNDANT formats), but the DYNAMIC row format avoids the problem of filling
B-tree nodes with a large number of data bytes of long columns. The DYNAMIC row format is based on
the idea that if a portion of a long data value is stored off-page, it is usually most efficient to store the
entire value off-page. With DYNAMIC format, shorter columns are likely to remain in the B-tree node,
minimizing the number of overflow pages required for a given row.

The DYNAMIC row format supports index key prefixes up to 3072 bytes.

Tables that use the DYNAMIC row format can be stored in the system tablespace, file-per-table
tablespaces, and general tablespaces. To store DYNAMIC tables in the system tablespace, either
disable innodb_file_per_table and use a regular CREATE TABLE or ALTER TABLE statement,
or use the TABLESPACE [=] innodb_system table option with CREATE TABLE or ALTER TABLE.
The innodb_file_per_table variable is not applicable to general tablespaces, nor is it applicable
when using the TABLESPACE [=] innodb_system table option to store DYNAMIC tables in the
system tablespace.

DYNAMIC Row Format Storage Characteristics

The DYNAMIC row format is a variation of the COMPACT row format. For storage characteristics, see
COMPACT Row Format Storage Characteristics.

COMPRESSED Row Format

The COMPRESSED row format offers the same storage characteristics and capabilities as the DYNAMIC
row format but adds support for table and index data compression.

The COMPRESSED row format uses similar internal details for off-page storage as the DYNAMIC row
format, with additional storage and performance considerations from the table and index data being
compressed and using smaller page sizes. With the COMPRESSED row format, the KEY_BLOCK_SIZE
option controls how much column data is stored in the clustered index, and how much is placed on
overflow pages. For more information about the COMPRESSED row format, see Section 17.9, “InnoDB
Table and Page Compression”.

The COMPRESSED row format supports index key prefixes up to 3072 bytes.

Tables that use the COMPRESSED row format can be created in file-per-table tablespaces or general
tablespaces. The system tablespace does not support the COMPRESSED row format. To store a
COMPRESSED table in a file-per-table tablespace, the innodb_file_per_table variable must be
enabled. The innodb_file_per_table variable is not applicable to general tablespaces. General
tablespaces support all row formats with the caveat that compressed and uncompressed tables cannot
coexist in the same general tablespace due to different physical page sizes. For more information, see
Section 17.6.3.3, “General Tablespaces”.

Compressed Row Format Storage Characteristics

The COMPRESSED row format is a variation of the COMPACT row format. For storage characteristics, see
COMPACT Row Format Storage Characteristics.

Defining the Row Format of a Table

The default row format for InnoDB tables is defined by innodb_default_row_format variable,
which has a default value of DYNAMIC. The default row format is used when the ROW_FORMAT table
option is not defined explicitly or when ROW_FORMAT=DEFAULT is specified.

The row format of a table can be defined explicitly using the ROW_FORMAT table option in a CREATE
TABLE or ALTER TABLE statement. For example:

3354

Defining the Row Format of a Table

CREATE TABLE t1 (c1 INT) ROW_FORMAT=DYNAMIC;

An explicitly defined ROW_FORMAT setting overrides the default row format. Specifying
ROW_FORMAT=DEFAULT is equivalent to using the implicit default.

The innodb_default_row_format variable can be set dynamically:

mysql> SET GLOBAL innodb_default_row_format=DYNAMIC;

Valid innodb_default_row_format options include DYNAMIC, COMPACT, and REDUNDANT. The
COMPRESSED row format, which is not supported for use in the system tablespace, cannot be defined
as the default. It can only be specified explicitly in a CREATE TABLE or ALTER TABLE statement.
Attempting to set the innodb_default_row_format variable to COMPRESSED returns an error:

mysql> SET GLOBAL innodb_default_row_format=COMPRESSED;
ERROR 1231 (42000): Variable 'innodb_default_row_format'
can't be set to the value of 'COMPRESSED'

Newly created tables use the row format defined by the innodb_default_row_format
variable when a ROW_FORMAT option is not specified explicitly, or when ROW_FORMAT=DEFAULT
is used. For example, the following CREATE TABLE statements use the row format defined by the
innodb_default_row_format variable.

CREATE TABLE t1 (c1 INT);

CREATE TABLE t2 (c1 INT) ROW_FORMAT=DEFAULT;

When a ROW_FORMAT option is not specified explicitly, or when ROW_FORMAT=DEFAULT is used, an
operation that rebuilds a table silently changes the row format of the table to the format defined by the
innodb_default_row_format variable.

Table-rebuilding operations include ALTER TABLE operations that use ALGORITHM=COPY or
ALGORITHM=INPLACE where table rebuilding is required. See Section 17.12.1, “Online DDL
Operations” for more information. OPTIMIZE TABLE is also a table-rebuilding operation.

The following example demonstrates a table-rebuilding operation that silently changes the row format
of a table created without an explicitly defined row format.

mysql> SELECT @@innodb_default_row_format;
+-----------------------------+
| @@innodb_default_row_format |
+-----------------------------+
| dynamic |
+-----------------------------+

mysql> CREATE TABLE t1 (c1 INT);

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLES WHERE NAME LIKE 'test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 54
 NAME: test/t1
 FLAG: 33
 N_COLS: 4
 SPACE: 35
 ROW_FORMAT: Dynamic
ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single

mysql> SET GLOBAL innodb_default_row_format=COMPACT;

mysql> ALTER TABLE t1 ADD COLUMN (c2 INT);

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLES WHERE NAME LIKE 'test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 55
 NAME: test/t1
 FLAG: 1
 N_COLS: 5
 SPACE: 36

3355

Determining the Row Format of a Table

 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single

Consider the following potential issues before changing the row format of existing tables from
REDUNDANT or COMPACT to DYNAMIC.

• The REDUNDANT and COMPACT row formats support a maximum index key prefix length of 767 bytes
whereas DYNAMIC and COMPRESSED row formats support an index key prefix length of 3072 bytes.
In a replication environment, if the innodb_default_row_format variable is set to DYNAMIC on
the source, and set to COMPACT on the replica, the following DDL statement, which does not explicitly
define a row format, succeeds on the source but fails on the replica:

CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 VARCHAR(5000), KEY i1(c2(3070)));

For related information, see Section 17.22, “InnoDB Limits”.

• Importing a table that does not explicitly define a row format results in a schema mismatch error if
the innodb_default_row_format setting on the source server differs from the setting on the
destination server. For more information, see Section 17.6.1.3, “Importing InnoDB Tables”.

Determining the Row Format of a Table

To determine the row format of a table, use SHOW TABLE STATUS:

mysql> SHOW TABLE STATUS IN test1\G
*************************** 1. row ***************************
 Name: t1
 Engine: InnoDB
 Version: 10
 Row_format: Dynamic
 Rows: 0
 Avg_row_length: 0
 Data_length: 16384
Max_data_length: 0
 Index_length: 16384
 Data_free: 0
 Auto_increment: 1
 Create_time: 2016-09-14 16:29:38
 Update_time: NULL
 Check_time: NULL
 Collation: utf8mb4_0900_ai_ci
 Checksum: NULL
 Create_options:
 Comment:

Alternatively, query the Information Schema INNODB_TABLES table:

mysql> SELECT NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.INNODB_TABLES WHERE NAME='test1/t1';
+----------+------------+
| NAME | ROW_FORMAT |
+----------+------------+
| test1/t1 | Dynamic |
+----------+------------+

17.11 InnoDB Disk I/O and File Space Management
As a DBA, you must manage disk I/O to keep the I/O subsystem from becoming saturated, and
manage disk space to avoid filling up storage devices. The ACID design model requires a certain
amount of I/O that might seem redundant, but helps to ensure data reliability. Within these constraints,
InnoDB tries to optimize the database work and the organization of disk files to minimize the amount
of disk I/O. Sometimes, I/O is postponed until the database is not busy, or until everything needs to be
brought to a consistent state, such as during a database restart after a fast shutdown.

This section discusses the main considerations for I/O and disk space with the default kind of MySQL
tables (also known as InnoDB tables):

3356

InnoDB Disk I/O

• Controlling the amount of background I/O used to improve query performance.

• Enabling or disabling features that provide extra durability at the expense of additional I/O.

• Organizing tables into many small files, a few larger files, or a combination of both.

• Balancing the size of redo log files against the I/O activity that occurs when the log files become full.

• How to reorganize a table for optimal query performance.

17.11.1 InnoDB Disk I/O

InnoDB uses asynchronous disk I/O where possible, by creating a number of threads to handle I/O
operations, while permitting other database operations to proceed while the I/O is still in progress. On
Linux and Windows platforms, InnoDB uses the available OS and library functions to perform “native”
asynchronous I/O. On other platforms, InnoDB still uses I/O threads, but the threads may actually wait
for I/O requests to complete; this technique is known as “simulated” asynchronous I/O.

Read-Ahead

If InnoDB can determine there is a high probability that data might be needed soon, it performs read-
ahead operations to bring that data into the buffer pool so that it is available in memory. Making a few
large read requests for contiguous data can be more efficient than making several small, spread-out
requests. There are two read-ahead heuristics in InnoDB:

• In sequential read-ahead, if InnoDB notices that the access pattern to a segment in the tablespace
is sequential, it posts in advance a batch of reads of database pages to the I/O system.

• In random read-ahead, if InnoDB notices that some area in a tablespace seems to be in the process
of being fully read into the buffer pool, it posts the remaining reads to the I/O system.

For information about configuring read-ahead heuristics, see Section 17.8.3.4, “Configuring InnoDB
Buffer Pool Prefetching (Read-Ahead)”.

Doublewrite Buffer

InnoDB uses a novel file flush technique involving a structure called the doublewrite buffer, which is
enabled by default in most cases (innodb_doublewrite=ON). It adds safety to recovery following an
unexpected exit or power outage, and improves performance on most varieties of Unix by reducing the
need for fsync() operations.

Before writing pages to a data file, InnoDB first writes them to a storage area called the doublewrite
buffer. Only after the write and the flush to the doublewrite buffer has completed does InnoDB write the
pages to their proper positions in the data file. If there is an operating system, storage subsystem, or
unexpected mysqld process exit in the middle of a page write (causing a torn page condition), InnoDB
can later find a good copy of the page from the doublewrite buffer during recovery.

For more information about the doublewrite buffer, see Section 17.6.4, “Doublewrite Buffer”.

17.11.2 File Space Management

The data files that you define in the configuration file using the innodb_data_file_path
configuration option form the InnoDB system tablespace. The files are logically concatenated to
form the system tablespace. There is no striping in use. You cannot define where within the system
tablespace your tables are allocated. In a newly created system tablespace, InnoDB allocates space
starting from the first data file.

To avoid the issues that come with storing all tables and indexes inside the system tablespace, you
can enable the innodb_file_per_table configuration option (the default), which stores each newly
created table in a separate tablespace file (with extension .ibd). For tables stored this way, there is
less fragmentation within the disk file, and when the table is truncated, the space is returned to the

3357

File Space Management

operating system rather than still being reserved by InnoDB within the system tablespace. For more
information, see Section 17.6.3.2, “File-Per-Table Tablespaces”.

You can also store tables in general tablespaces. General tablespaces are shared tablespaces created
using CREATE TABLESPACE syntax. They can be created outside of the MySQL data directory, are
capable of holding multiple tables, and support tables of all row formats. For more information, see
Section 17.6.3.3, “General Tablespaces”.

Pages, Extents, Segments, and Tablespaces

Each tablespace consists of database pages. Every tablespace in a MySQL instance has the same
page size. By default, all tablespaces have a page size of 16KB; you can reduce the page size to 8KB
or 4KB by specifying the innodb_page_size option when you create the MySQL instance. You can
also increase the page size to 32KB or 64KB. For more information, refer to the innodb_page_size
documentation.

The pages are grouped into extents of size 1MB for pages up to 16KB in size (64 consecutive 16KB
pages, or 128 8KB pages, or 256 4KB pages). For a page size of 32KB, extent size is 2MB. For page
size of 64KB, extent size is 4MB. The “files” inside a tablespace are called segments in InnoDB.
(These segments are different from the rollback segment, which actually contains many tablespace
segments.)

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it one at a time.
After that, InnoDB starts to allocate whole extents to the segment. InnoDB can add up to 4 extents at
a time to a large segment to ensure good sequentiality of data.

Two segments are allocated for each index in InnoDB. One is for nonleaf nodes of the B-tree, the
other is for the leaf nodes. Keeping the leaf nodes contiguous on disk enables better sequential I/O
operations, because these leaf nodes contain the actual table data.

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an
InnoDB tablespace cannot be allocated to segments as a whole, but only as individual pages.

When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS
statement, InnoDB reports the extents that are definitely free in the tablespace. InnoDB always
reserves some extents for cleanup and other internal purposes; these reserved extents are not
included in the free space.

When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. Whether
the freed space becomes available for other users depends on whether the pattern of deletes frees
individual pages or extents to the tablespace. Dropping a table or deleting all rows from it is guaranteed
to release the space to other users, but remember that deleted rows are physically removed only
by the purge operation, which happens automatically some time after they are no longer needed for
transaction rollbacks or consistent reads. (See Section 17.3, “InnoDB Multi-Versioning”.)

Configuring the Percentage of Reserved File Segment Pages

The innodb_segment_reserve_factor variable, introduced in MySQL 8.0.26, is an advanced
feature that permits defining the percentage of tablespace file segment pages reserved as empty
pages. A percentage of pages are reserved for future growth so that pages in the B-tree can be
allocated contiguously. The ability to modify the percentage of reserved pages permits fine-tuning
InnoDB to address issues of data fragmentation or inefficient use of storage space.

The setting is applicable to file-per-table and general tablespaces. The
innodb_segment_reserve_factor default setting is 12.5 percent, which is the same percentage of
pages reserved in previous MySQL releases.

The innodb_segment_reserve_factor variable is dynamic and can be configured using a SET
statement. For example:

mysql> SET GLOBAL innodb_segment_reserve_factor=10;

3358

InnoDB Checkpoints

How Pages Relate to Table Rows

For for 4KB, 8KB, 16KB, and 32KB innodb_page_size settings, the maximum row length is slightly
less than half a database page size. For example, the maximum row length is slightly less than 8KB
for the default 16KB InnoDB page size. For a 64KB innodb_page_size setting, the maximum row
length is slightly less than 16KB.

If a row does not exceed the maximum row length, all of it is stored locally within the page. If a row
exceeds the maximum row length, variable-length columns are chosen for external off-page storage
until the row fits within the maximum row length limit. External off-page storage for variable-length
columns differs by row format:

• COMPACT and REDUNDANT Row Formats

When a variable-length column is chosen for external off-page storage, InnoDB stores the first
768 bytes locally in the row, and the rest externally into overflow pages. Each such column has its
own list of overflow pages. The 768-byte prefix is accompanied by a 20-byte value that stores the
true length of the column and points into the overflow list where the rest of the value is stored. See
Section 17.10, “InnoDB Row Formats”.

• DYNAMIC and COMPRESSED Row Formats

When a variable-length column is chosen for external off-page storage, InnoDB stores a 20-byte
pointer locally in the row, and the rest externally into overflow pages. See Section 17.10, “InnoDB
Row Formats”.

LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row length, including BLOB
and TEXT columns, must be less than 4GB.

17.11.3 InnoDB Checkpoints

Making your log files very large may reduce disk I/O during checkpointing. It often makes sense to set
the total size of the log files as large as the buffer pool or even larger.

How Checkpoint Processing Works

InnoDB implements a checkpoint mechanism known as fuzzy checkpointing. InnoDB flushes modified
database pages from the buffer pool in small batches. There is no need to flush the buffer pool in one
single batch, which would disrupt processing of user SQL statements during the checkpointing process.

During crash recovery, InnoDB looks for a checkpoint label written to the log files. It knows that all
modifications to the database before the label are present in the disk image of the database. Then
InnoDB scans the log files forward from the checkpoint, applying the logged modifications to the
database.

17.11.4 Defragmenting a Table

Random insertions into or deletions from a secondary index can cause the index to become
fragmented. Fragmentation means that the physical ordering of the index pages on the disk is not close
to the index ordering of the records on the pages, or that there are many unused pages in the 64-page
blocks that were allocated to the index.

One symptom of fragmentation is that a table takes more space than it “should” take. How much that is
exactly, is difficult to determine. All InnoDB data and indexes are stored in B-trees, and their fill factor
may vary from 50% to 100%. Another symptom of fragmentation is that a table scan such as this takes
more time than it “should” take:

SELECT COUNT(*) FROM t WHERE non_indexed_column <> 12345;

The preceding query requires MySQL to perform a full table scan, the slowest type of query for a large
table.

3359

Reclaiming Disk Space with TRUNCATE TABLE

To speed up index scans, you can periodically perform a “null” ALTER TABLE operation, which causes
MySQL to rebuild the table:

ALTER TABLE tbl_name ENGINE=INNODB

You can also use ALTER TABLE tbl_name FORCE to perform a “null” alter operation that rebuilds
the table.

Both ALTER TABLE tbl_name ENGINE=INNODB and ALTER TABLE tbl_name FORCE use online
DDL. For more information, see Section 17.12, “InnoDB and Online DDL”.

Another way to perform a defragmentation operation is to use mysqldump to dump the table to a text
file, drop the table, and reload it from the dump file.

If the insertions into an index are always ascending and records are deleted only from the end, the
InnoDB filespace management algorithm guarantees that fragmentation in the index does not occur.

17.11.5 Reclaiming Disk Space with TRUNCATE TABLE

To reclaim operating system disk space when truncating an InnoDB table, the table must be stored in
its own .ibd file. For a table to be stored in its own .ibd file, innodb_file_per_table must enabled
when the table is created. Additionally, there cannot be a foreign key constraint between the table
being truncated and other tables, otherwise the TRUNCATE TABLE operation fails. A foreign key
constraint between two columns in the same table, however, is permitted.

When a table is truncated, it is dropped and re-created in a new .ibd file, and the freed space is
returned to the operating system. This is in contrast to truncating InnoDB tables that are stored within
the InnoDB system tablespace (tables created when innodb_file_per_table=OFF) and tables
stored in shared general tablespaces, where only InnoDB can use the freed space after the table is
truncated.

The ability to truncate tables and return disk space to the operating system also means that physical
backups can be smaller. Truncating tables that are stored in the system tablespace (tables created
when innodb_file_per_table=OFF) or in a general tablespace leaves blocks of unused space in
the tablespace.

17.12 InnoDB and Online DDL

The online DDL feature provides support for instant and in-place table alterations and concurrent DML.
Benefits of this feature include:

• Improved responsiveness and availability in busy production environments, where making a table
unavailable for minutes or hours is not practical.

• For in-place operations, the ability to adjust the balance between performance and concurrency
during DDL operations using the LOCK clause. See The LOCK clause.

• Less disk space usage and I/O overhead than the table-copy method.

Note

ALGORITHM=INSTANT support is available for ADD COLUMN and other
operations in MySQL 8.0.12.

Typically, you do not need to do anything special to enable online DDL. By default, MySQL performs
the operation instantly or in place, as permitted, with as little locking as possible.

You can control aspects of a DDL operation using the ALGORITHM and LOCK clauses of the ALTER
TABLE statement. These clauses are placed at the end of the statement, separated from the table and
column specifications by commas. For example:

3360

Online DDL Operations

ALTER TABLE tbl_name ADD PRIMARY KEY (column), ALGORITHM=INPLACE;

The LOCK clause may be used for operations that are performed in place and is useful for fine-tuning
the degree of concurrent access to the table during operations. Only LOCK=DEFAULT is supported for
operations that are performed instantly. The ALGORITHM clause is primarily intended for performance
comparisons and as a fallback to the older table-copying behavior in case you encounter any issues.
For example:

• To avoid accidentally making the table unavailable for reads, writes, or both, during an in-place
ALTER TABLE operation, specify a clause on the ALTER TABLE statement such as LOCK=NONE
(permit reads and writes) or LOCK=SHARED (permit reads). The operation halts immediately if the
requested level of concurrency is not available.

• To compare performance between algorithms, run a statement with ALGORITHM=INSTANT,
ALGORITHM=INPLACE and ALGORITHM=COPY. You can also run a statement with the
old_alter_table configuration option enabled to force the use of ALGORITHM=COPY.

• To avoid tying up the server with an ALTER TABLE operation that copies the table, include
ALGORITHM=INSTANT or ALGORITHM=INPLACE. The statement halts immediately if it cannot use
the specified algorithm.

17.12.1 Online DDL Operations

Online support details, syntax examples, and usage notes for DDL operations are provided under the
following topics in this section.

• Index Operations

• Primary Key Operations

• Column Operations

• Generated Column Operations

• Foreign Key Operations

• Table Operations

• Tablespace Operations

• Partitioning Operations

Index Operations

The following table provides an overview of online DDL support for index operations. An asterisk
indicates additional information, an exception, or a dependency. For details, see Syntax and Usage
Notes.

Table 17.16 Online DDL Support for Index Operations

Operation Instant In Place Rebuilds Table Permits
Concurrent
DML

Only Modifies
Metadata

Creating or
adding a
secondary
index

No Yes No Yes No

Dropping an
index

No Yes No Yes Yes

3361

Online DDL Operations

Operation Instant In Place Rebuilds Table Permits
Concurrent
DML

Only Modifies
Metadata

Renaming an
index

No Yes No Yes Yes

Adding a
FULLTEXT
index

No Yes* No* No No

Adding a
SPATIAL index

No Yes No No No

Changing the
index type

Yes Yes No Yes Yes

Syntax and Usage Notes

• Creating or adding a secondary index

CREATE INDEX name ON table (col_list);

ALTER TABLE tbl_name ADD INDEX name (col_list);

The table remains available for read and write operations while the index is being created. The
CREATE INDEX statement only finishes after all transactions that are accessing the table are
completed, so that the initial state of the index reflects the most recent contents of the table.

Online DDL support for adding secondary indexes means that you can generally speed the overall
process of creating and loading a table and associated indexes by creating the table without
secondary indexes, then adding secondary indexes after the data is loaded.

A newly created secondary index contains only the committed data in the table at the time
the CREATE INDEX or ALTER TABLE statement finishes executing. It does not contain any
uncommitted values, old versions of values, or values marked for deletion but not yet removed from
the old index.

Some factors affect the performance, space usage, and semantics of this operation. For details, see
Section 17.12.8, “Online DDL Limitations”.

• Dropping an index

DROP INDEX name ON table;

ALTER TABLE tbl_name DROP INDEX name;

The table remains available for read and write operations while the index is being dropped.
The DROP INDEX statement only finishes after all transactions that are accessing the table are
completed, so that the initial state of the index reflects the most recent contents of the table.

• Renaming an index

ALTER TABLE tbl_name RENAME INDEX old_index_name TO new_index_name, ALGORITHM=INPLACE, LOCK=NONE;

• Adding a FULLTEXT index

CREATE FULLTEXT INDEX name ON table(column);

Adding the first FULLTEXT index rebuilds the table if there is no user-defined FTS_DOC_ID column.
Additional FULLTEXT indexes may be added without rebuilding the table.

• Adding a SPATIAL index

CREATE TABLE geom (g GEOMETRY NOT NULL);

3362

Online DDL Operations

ALTER TABLE geom ADD SPATIAL INDEX(g), ALGORITHM=INPLACE, LOCK=SHARED;

• Changing the index type (USING {BTREE | HASH})

ALTER TABLE tbl_name DROP INDEX i1, ADD INDEX i1(key_part,...) USING BTREE, ALGORITHM=INSTANT;

Primary Key Operations

The following table provides an overview of online DDL support for primary key operations. An asterisk
indicates additional information, an exception, or a dependency. See Syntax and Usage Notes.

Table 17.17 Online DDL Support for Primary Key Operations

Operation Instant In Place Rebuilds Table Permits
Concurrent
DML

Only Modifies
Metadata

Adding a
primary key

No Yes* Yes* Yes No

Dropping a
primary key

No No Yes No No

Dropping a
primary key and
adding another

No Yes Yes Yes No

Syntax and Usage Notes

• Adding a primary key

ALTER TABLE tbl_name ADD PRIMARY KEY (column), ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table in place. Data is reorganized substantially, making it an expensive operation.
ALGORITHM=INPLACE is not permitted under certain conditions if columns have to be converted to
NOT NULL.

Restructuring the clustered index always requires copying of table data. Thus, it is best to define the
primary key when you create a table, rather than issuing ALTER TABLE ... ADD PRIMARY KEY
later.

When you create a UNIQUE or PRIMARY KEY index, MySQL must do some extra work. For UNIQUE
indexes, MySQL checks that the table contains no duplicate values for the key. For a PRIMARY KEY
index, MySQL also checks that none of the PRIMARY KEY columns contains a NULL.

When you add a primary key using the ALGORITHM=COPY clause, MySQL converts NULL values
in the associated columns to default values: 0 for numbers, an empty string for character-based
columns and BLOBs, and 0000-00-00 00:00:00 for DATETIME. This is a non-standard behavior
that Oracle recommends you not rely on. Adding a primary key using ALGORITHM=INPLACE
is only permitted when the SQL_MODE setting includes the strict_trans_tables or
strict_all_tables flags; when the SQL_MODE setting is strict, ALGORITHM=INPLACE is
permitted, but the statement can still fail if the requested primary key columns contain NULL values.
The ALGORITHM=INPLACE behavior is more standard-compliant.

If you create a table without a primary key, InnoDB chooses one for you, which can be the first
UNIQUE key defined on NOT NULL columns, or a system-generated key. To avoid uncertainty and
the potential space requirement for an extra hidden column, specify the PRIMARY KEY clause as
part of the CREATE TABLE statement.

MySQL creates a new clustered index by copying the existing data from the original table to a
temporary table that has the desired index structure. Once the data is completely copied to the
temporary table, the original table is renamed with a different temporary table name. The temporary
table comprising the new clustered index is renamed with the name of the original table, and the
original table is dropped from the database.

3363

Online DDL Operations

The online performance enhancements that apply to operations on secondary indexes do not apply
to the primary key index. The rows of an InnoDB table are stored in a clustered index organized
based on the primary key, forming what some database systems call an “index-organized table”.
Because the table structure is closely tied to the primary key, redefining the primary key still requires
copying the data.

When an operation on the primary key uses ALGORITHM=INPLACE, even though the data is still
copied, it is more efficient than using ALGORITHM=COPY because:

• No undo logging or associated redo logging is required for ALGORITHM=INPLACE. These
operations add overhead to DDL statements that use ALGORITHM=COPY.

• The secondary index entries are pre-sorted, and so can be loaded in order.

• The change buffer is not used, because there are no random-access inserts into the secondary
indexes.

• Dropping a primary key

ALTER TABLE tbl_name DROP PRIMARY KEY, ALGORITHM=COPY;

Only ALGORITHM=COPY supports dropping a primary key without adding a new one in the same
ALTER TABLE statement.

• Dropping a primary key and adding another

ALTER TABLE tbl_name DROP PRIMARY KEY, ADD PRIMARY KEY (column), ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

Column Operations

The following table provides an overview of online DDL support for column operations. An asterisk
indicates additional information, an exception, or a dependency. For details, see Syntax and Usage
Notes.

Table 17.18 Online DDL Support for Column Operations

Operation Instant In Place Rebuilds Table Permits
Concurrent
DML

Only Modifies
Metadata

Adding a
column

Yes* Yes No* Yes* Yes

Dropping a
column

Yes* Yes Yes Yes Yes

Renaming a
column

Yes* Yes No Yes* Yes

Reordering
columns

No Yes Yes Yes No

Setting a
column default
value

Yes Yes No Yes Yes

Changing the
column data
type

No No Yes No No

Extending
VARCHAR
column size

No Yes No Yes Yes

3364

Online DDL Operations

Operation Instant In Place Rebuilds Table Permits
Concurrent
DML

Only Modifies
Metadata

Dropping the
column default
value

Yes Yes No Yes Yes

Changing the
auto-increment
value

No Yes No Yes No*

Making a
column NULL

No Yes Yes* Yes No

Making a
column NOT
NULL

No Yes* Yes* Yes No

Modifying the
definition of an
ENUM or SET
column

Yes Yes No Yes Yes

Syntax and Usage Notes

• Adding a column

ALTER TABLE tbl_name ADD COLUMN column_name column_definition, ALGORITHM=INSTANT;

INSTANT is the default algorithm as of MySQL 8.0.12, and INPLACE before that.

The following limitations apply when the INSTANT algorithm adds a column:

• A statement cannot combine the addition of a column with other ALTER TABLE actions that do not
support the INSTANT algorithm.

• The INSTANT algorithm can add a column at any position in the table. Before MySQL 8.0.29, the
INSTANT algorithm could only add a column as the last column of the table.

• Columns cannot be added to tables that use ROW_FORMAT=COMPRESSED, tables with a FULLTEXT
index, tables that reside in the data dictionary tablespace, or temporary tables. Temporary tables
only support ALGORITHM=COPY.

• MySQL checks the row size when the INSTANT algorithm adds a column, and throws the following
error if the addition exceeds the limit.

ERROR 4092 (HY000): Column can't be added with ALGORITHM=INSTANT as
after this max possible row size crosses max permissible row size. Try
ALGORITHM=INPLACE/COPY.

Before MySQL 8.0.29, MySQL does not check the row size when the INSTANT algorithm adds a
column. However, MySQL does check the row size during DML operations that insert and update
rows in the table.

• The maximum number of columns in the internal representation of the table cannot exceed 1022
after column addition with the INSTANT algorithm. The error message is:

ERROR 4158 (HY000): Column can't be added to tbl_name with
ALGORITHM=INSTANT anymore. Please try ALGORITHM=INPLACE/COPY

• The INSTANT algorithm can not add or drop columns to system schema tables, such as the
internal mysql table. This limitation was added in MySQL 8.0.29.

3365

Online DDL Operations

• A column with a functional index cannot be dropped using the INSTANT algorithm.

Multiple columns may be added in the same ALTER TABLE statement. For example:

ALTER TABLE t1 ADD COLUMN c2 INT, ADD COLUMN c3 INT, ALGORITHM=INSTANT;

A new row version is created after each ALTER TABLE ... ALGORITHM=INSTANT operation that
adds one or more columns, drops one or more columns, or adds and drops one or more columns
in the same operation. The INFORMATION_SCHEMA.INNODB_TABLES.TOTAL_ROW_VERSIONS
column tracks the number of row versions for a table. The value is incremented each time a column
is instantly added or dropped. The initial value is 0.

mysql> SELECT NAME, TOTAL_ROW_VERSIONS FROM INFORMATION_SCHEMA.INNODB_TABLES
 WHERE NAME LIKE 'test/t1';
+---------+--------------------+
| NAME | TOTAL_ROW_VERSIONS |
+---------+--------------------+
| test/t1 | 0 |
+---------+--------------------+

When a table with instantly added or dropped columns is rebuilt by table-rebuilding ALTER TABLE
or OPTIMIZE TABLE operation, the TOTAL_ROW_VERSIONS value is reset to 0. The maximum
number of row versions permitted is 64, as each row version requires additional space for table
metadata. When the row version limit is reached, ADD COLUMN and DROP COLUMN operations using
ALGORITHM=INSTANT are rejected with an error message that recommends rebuilding the table
using the COPY or INPLACE algorithm.

ERROR 4092 (HY000): Maximum row versions reached for table test/t1. No
more columns can be added or dropped instantly. Please use COPY/INPLACE.

The following INFORMATION_SCHEMA columns provide additional metadata for instantly added
columns. Refer to the descriptions of those columns for more information. See Section 28.4.9,
“The INFORMATION_SCHEMA INNODB_COLUMNS Table”, and Section 28.4.23, “The
INFORMATION_SCHEMA INNODB_TABLES Table”.

• INNODB_COLUMNS.DEFAULT_VALUE

• INNODB_COLUMNS.HAS_DEFAULT

• INNODB_TABLES.INSTANT_COLS

Concurrent DML is not permitted when adding an auto-increment column. Data is reorganized
substantially, making it an expensive operation. At a minimum, ALGORITHM=INPLACE,
LOCK=SHARED is required.

The table is rebuilt if ALGORITHM=INPLACE is used to add a column.

3366

Online DDL Operations

• Dropping a column

ALTER TABLE tbl_name DROP COLUMN column_name, ALGORITHM=INSTANT;

INSTANT is the default algorithm as of MySQL 8.0.29, and INPLACE before that.

The following limitations apply when the INSTANT algorithm is used to drop a column:

• Dropping a column cannot be combined in the same statement with other ALTER TABLE actions
that do not support ALGORITHM=INSTANT.

• Columns cannot be dropped from tables that use ROW_FORMAT=COMPRESSED, tables with
a FULLTEXT index, tables that reside in the data dictionary tablespace, or temporary tables.
Temporary tables only support ALGORITHM=COPY.

Multiple columns may be dropped in the same ALTER TABLE statement; for example:

ALTER TABLE t1 DROP COLUMN c4, DROP COLUMN c5, ALGORITHM=INSTANT;

Each time a column is added or dropped using ALGORITHM=INSTANT, a new row version is created.
The INFORMATION_SCHEMA.INNODB_TABLES.TOTAL_ROW_VERSIONS column tracks the number
of row versions for a table. The value is incremented each time a column is instantly added or
dropped. The initial value is 0.

mysql> SELECT NAME, TOTAL_ROW_VERSIONS FROM INFORMATION_SCHEMA.INNODB_TABLES
 WHERE NAME LIKE 'test/t1';
+---------+--------------------+
| NAME | TOTAL_ROW_VERSIONS |
+---------+--------------------+
| test/t1 | 0 |
+---------+--------------------+

When a table with instantly added or dropped columns is rebuilt by table-rebuilding ALTER TABLE
or OPTIMIZE TABLE operation, the TOTAL_ROW_VERSIONS value is reset to 0. The maximum
number of row versions permitted is 64, as each row version requires additional space for table
metadata. When the row version limit is reached, ADD COLUMN and DROP COLUMN operations using
ALGORITHM=INSTANT are rejected with an error message that recommends rebuilding the table
using the COPY or INPLACE algorithm.

ERROR 4092 (HY000): Maximum row versions reached for table test/t1. No
more columns can be added or dropped instantly. Please use COPY/INPLACE.

If an algorithm other than ALGORITHM=INSTANT is used, data is reorganized substantially, making it
an expensive operation.

3367

Online DDL Operations

• Renaming a column

ALTER TABLE tbl CHANGE old_col_name new_col_name data_type, ALGORITHM=INSTANT;

ALGORITHM=INSTANT support for renaming a column was added in MySQL 8.0.28. Earlier MySQL
Server releases support only ALGORITHM=INPLACE and ALGORITHM=COPY when renaming a
column.

To permit concurrent DML, keep the same data type and only change the column name.

When you keep the same data type and [NOT] NULL attribute, only changing the column name, the
operation can always be performed online.

Renaming a column referenced from another table is only permitted with ALGORITHM=INPLACE.
If you use ALGORITHM=INSTANT, ALGORITHM=COPY, or some other condition that causes the
operation to use those algorithms, the ALTER TABLE statement fails.

ALGORITHM=INSTANT supports renaming a virtual column; ALGORITHM=INPLACE does not.

ALGORITHM=INSTANT and ALGORITHM=INPLACE do not support renaming a column when
adding or dropping a virtual column in the same statement. In this case, only ALGORITHM=COPY is
supported.

• Reordering columns

To reorder columns, use FIRST or AFTER in CHANGE or MODIFY operations.

ALTER TABLE tbl_name MODIFY COLUMN col_name column_definition FIRST, ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

• Changing the column data type

ALTER TABLE tbl_name CHANGE c1 c1 BIGINT, ALGORITHM=COPY;

Changing the column data type is only supported with ALGORITHM=COPY.

• Extending VARCHAR column size

ALTER TABLE tbl_name CHANGE COLUMN c1 c1 VARCHAR(255), ALGORITHM=INPLACE, LOCK=NONE;

The number of length bytes required by a VARCHAR column must remain the same. For VARCHAR
columns of 0 to 255 bytes in size, one length byte is required to encode the value. For VARCHAR
columns of 256 bytes in size or more, two length bytes are required. As a result, in-place ALTER
TABLE only supports increasing VARCHAR column size from 0 to 255 bytes, or from 256 bytes to a
greater size. In-place ALTER TABLE does not support increasing the size of a VARCHAR column from
less than 256 bytes to a size equal to or greater than 256 bytes. In this case, the number of required
length bytes changes from 1 to 2, which is only supported by a table copy (ALGORITHM=COPY).
For example, attempting to change VARCHAR column size for a single byte character set from
VARCHAR(255) to VARCHAR(256) using in-place ALTER TABLE returns this error:

ALTER TABLE tbl_name ALGORITHM=INPLACE, CHANGE COLUMN c1 c1 VARCHAR(256);
ERROR 0A000: ALGORITHM=INPLACE is not supported. Reason: Cannot change
column type INPLACE. Try ALGORITHM=COPY.

Note

The byte length of a VARCHAR column is dependant on the byte length of the
character set.

Decreasing VARCHAR size using in-place ALTER TABLE is not supported. Decreasing VARCHAR size
requires a table copy (ALGORITHM=COPY).

3368

Online DDL Operations

• Setting a column default value

ALTER TABLE tbl_name ALTER COLUMN col SET DEFAULT literal, ALGORITHM=INSTANT;

Only modifies table metadata. Default column values are stored in the data dictionary.

• Dropping a column default value

ALTER TABLE tbl ALTER COLUMN col DROP DEFAULT, ALGORITHM=INSTANT;

• Changing the auto-increment value

ALTER TABLE table AUTO_INCREMENT=next_value, ALGORITHM=INPLACE, LOCK=NONE;

Modifies a value stored in memory, not the data file.

In a distributed system using replication or sharding, you sometimes reset the auto-increment
counter for a table to a specific value. The next row inserted into the table uses the specified
value for its auto-increment column. You might also use this technique in a data warehousing
environment where you periodically empty all the tables and reload them, and restart the auto-
increment sequence from 1.

• Making a column NULL

ALTER TABLE tbl_name MODIFY COLUMN column_name data_type NULL, ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table in place. Data is reorganized substantially, making it an expensive operation.

• Making a column NOT NULL

ALTER TABLE tbl_name MODIFY COLUMN column_name data_type NOT NULL, ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table in place. STRICT_ALL_TABLES or STRICT_TRANS_TABLES SQL_MODE is
required for the operation to succeed. The operation fails if the column contains NULL values. The
server prohibits changes to foreign key columns that have the potential to cause loss of referential
integrity. See Section 15.1.9, “ALTER TABLE Statement”. Data is reorganized substantially, making
it an expensive operation.

• Modifying the definition of an ENUM or SET column

CREATE TABLE t1 (c1 ENUM('a', 'b', 'c'));
ALTER TABLE t1 MODIFY COLUMN c1 ENUM('a', 'b', 'c', 'd'), ALGORITHM=INSTANT;

Modifying the definition of an ENUM or SET column by adding new enumeration or set members to the
end of the list of valid member values may be performed instantly or in place, as long as the storage
size of the data type does not change. For example, adding a member to a SET column that has 8
members changes the required storage per value from 1 byte to 2 bytes; this requires a table copy.
Adding members in the middle of the list causes renumbering of existing members, which requires a
table copy.

Generated Column Operations

The following table provides an overview of online DDL support for generated column operations. For
details, see Syntax and Usage Notes.

Table 17.19 Online DDL Support for Generated Column Operations

Operation Instant In Place Rebuilds Table Permits
Concurrent
DML

Only Modifies
Metadata

Adding a
STORED column

No No Yes No No

3369

Online DDL Operations

Operation Instant In Place Rebuilds Table Permits
Concurrent
DML

Only Modifies
Metadata

Modifying
STORED column
order

No No Yes No No

Dropping a
STORED column

No Yes Yes Yes No

Adding a
VIRTUAL
column

Yes Yes No Yes Yes

Modifying
VIRTUAL
column order

No No Yes No No

Dropping a
VIRTUAL
column

Yes Yes No Yes Yes

Syntax and Usage Notes

• Adding a STORED column

ALTER TABLE t1 ADD COLUMN (c2 INT GENERATED ALWAYS AS (c1 + 1) STORED), ALGORITHM=COPY;

ADD COLUMN is not an in-place operation for stored columns (done without using a temporary table)
because the expression must be evaluated by the server.

• Modifying STORED column order

ALTER TABLE t1 MODIFY COLUMN c2 INT GENERATED ALWAYS AS (c1 + 1) STORED FIRST, ALGORITHM=COPY;

Rebuilds the table in place.

• Dropping a STORED column

ALTER TABLE t1 DROP COLUMN c2, ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table in place.

• Adding a VIRTUAL column

ALTER TABLE t1 ADD COLUMN (c2 INT GENERATED ALWAYS AS (c1 + 1) VIRTUAL), ALGORITHM=INSTANT;

Adding a virtual column can be performed instantly or in place for non-partitioned tables.

Adding a VIRTUAL is not an in-place operation for partitioned tables.

• Modifying VIRTUAL column order

ALTER TABLE t1 MODIFY COLUMN c2 INT GENERATED ALWAYS AS (c1 + 1) VIRTUAL FIRST, ALGORITHM=COPY;

• Dropping a VIRTUAL column

ALTER TABLE t1 DROP COLUMN c2, ALGORITHM=INSTANT;

Dropping a VIRTUAL column can be performed instantly or in place for non-partitioned tables.

3370

Online DDL Operations

Foreign Key Operations

The following table provides an overview of online DDL support for foreign key operations. An asterisk
indicates additional information, an exception, or a dependency. For details, see Syntax and Usage
Notes.

Table 17.20 Online DDL Support for Foreign Key Operations

Operation Instant In Place Rebuilds Table Permits
Concurrent
DML

Only Modifies
Metadata

Adding a
foreign key
constraint

No Yes* No Yes Yes

Dropping a
foreign key
constraint

No Yes No Yes Yes

Syntax and Usage Notes

• Adding a foreign key constraint

The INPLACE algorithm is supported when foreign_key_checks is disabled. Otherwise, only the
COPY algorithm is supported.

ALTER TABLE tbl1 ADD CONSTRAINT fk_name FOREIGN KEY index (col1)
 REFERENCES tbl2(col2) referential_actions;

• Dropping a foreign key constraint

ALTER TABLE tbl DROP FOREIGN KEY fk_name;

Dropping a foreign key can be performed online with the foreign_key_checks option enabled or
disabled.

If you do not know the names of the foreign key constraints on a particular table, issue the following
statement and find the constraint name in the CONSTRAINT clause for each foreign key:

SHOW CREATE TABLE table\G

Or, query the Information Schema TABLE_CONSTRAINTS table and use the CONSTRAINT_NAME and
CONSTRAINT_TYPE columns to identify the foreign key names.

You can also drop a foreign key and its associated index in a single statement:

ALTER TABLE table DROP FOREIGN KEY constraint, DROP INDEX index;

Note

If foreign keys are already present in the table being altered (that is, it is a
child table containing a FOREIGN KEY ... REFERENCE clause), additional
restrictions apply to online DDL operations, even those not directly involving the
foreign key columns:

• An ALTER TABLE on the child table could wait for another transaction to
commit, if a change to the parent table causes associated changes in the
child table through an ON UPDATE or ON DELETE clause using the CASCADE
or SET NULL parameters.

• In the same way, if a table is the parent table in a foreign key relationship,
even though it does not contain any FOREIGN KEY clauses, it could wait for

3371

Online DDL Operations

the ALTER TABLE to complete if an INSERT, UPDATE, or DELETE statement
causes an ON UPDATE or ON DELETE action in the child table.

Table Operations

The following table provides an overview of online DDL support for table operations. An asterisk
indicates additional information, an exception, or a dependency. For details, see Syntax and Usage
Notes.

Table 17.21 Online DDL Support for Table Operations

Operation Instant In Place Rebuilds Table Permits
Concurrent
DML

Only Modifies
Metadata

Changing the
ROW_FORMAT

No Yes Yes Yes No

Changing the
KEY_BLOCK_SIZE

No Yes Yes Yes No

Setting
persistent table
statistics

No Yes No Yes Yes

Specifying a
character set

No Yes Yes* Yes No

Converting a
character set

No No Yes* No No

Optimizing a
table

No Yes* Yes Yes No

Rebuilding
with the FORCE
option

No Yes* Yes Yes No

Performing a
null rebuild

No Yes* Yes Yes No

Renaming a
table

Yes Yes No Yes Yes

Syntax and Usage Notes

• Changing the ROW_FORMAT

ALTER TABLE tbl_name ROW_FORMAT = row_format, ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

For additional information about the ROW_FORMAT option, see Table Options.

• Changing the KEY_BLOCK_SIZE

ALTER TABLE tbl_name KEY_BLOCK_SIZE = value, ALGORITHM=INPLACE, LOCK=NONE;

Data is reorganized substantially, making it an expensive operation.

For additional information about the KEY_BLOCK_SIZE option, see Table Options.

• Setting persistent table statistics options

ALTER TABLE tbl_name STATS_PERSISTENT=0, STATS_SAMPLE_PAGES=20, STATS_AUTO_RECALC=1, ALGORITHM=INPLACE, LOCK=NONE;

Only modifies table metadata.

3372

Online DDL Operations

Persistent statistics include STATS_PERSISTENT, STATS_AUTO_RECALC, and
STATS_SAMPLE_PAGES. For more information, see Section 17.8.10.1, “Configuring Persistent
Optimizer Statistics Parameters”.

• Specifying a character set

ALTER TABLE tbl_name CHARACTER SET = charset_name, ALGORITHM=INPLACE, LOCK=NONE;

Rebuilds the table if the new character encoding is different.

• Converting a character set

ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name, ALGORITHM=COPY;

Rebuilds the table if the new character encoding is different.

• Optimizing a table

OPTIMIZE TABLE tbl_name;

In-place operation is not supported for tables with FULLTEXT indexes. The operation uses the
INPLACE algorithm, but ALGORITHM and LOCK syntax is not permitted.

• Rebuilding a table with the FORCE option

ALTER TABLE tbl_name FORCE, ALGORITHM=INPLACE, LOCK=NONE;

Uses ALGORITHM=INPLACE as of MySQL 5.6.17. ALGORITHM=INPLACE is not supported for tables
with FULLTEXT indexes.

• Performing a "null" rebuild

ALTER TABLE tbl_name ENGINE=InnoDB, ALGORITHM=INPLACE, LOCK=NONE;

Uses ALGORITHM=INPLACE as of MySQL 5.6.17. ALGORITHM=INPLACE is not supported for tables
with FULLTEXT indexes.

• Renaming a table

ALTER TABLE old_tbl_name RENAME TO new_tbl_name, ALGORITHM=INSTANT;

Renaming a table can be performed instantly or in place. MySQL renames files that correspond to
the table tbl_name without making a copy. (You can also use the RENAME TABLE statement to
rename tables. See Section 15.1.36, “RENAME TABLE Statement”.) Privileges granted specifically
for the renamed table are not migrated to the new name. They must be changed manually.

Tablespace Operations

The following table provides an overview of online DDL support for tablespace operations. For details,
see Syntax and Usage Notes.

Table 17.22 Online DDL Support for Tablespace Operations

Operation Instant In Place Rebuilds Table Permits
Concurrent
DML

Only Modifies
Metadata

Renaming
a general
tablespace

No Yes No Yes Yes

Enabling or
disabling
general

No Yes No Yes No

3373

Online DDL Operations

Operation Instant In Place Rebuilds Table Permits
Concurrent
DML

Only Modifies
Metadata

tablespace
encryption

Enabling or
disabling file-
per-table
tablespace
encryption

No No Yes No No

Syntax and Usage Notes

• Renaming a general tablespace

ALTER TABLESPACE tablespace_name RENAME TO new_tablespace_name;

ALTER TABLESPACE ... RENAME TO uses the INPLACE algorithm but does not support the
ALGORITHM clause.

• Enabling or disabling general tablespace encryption

ALTER TABLESPACE tablespace_name ENCRYPTION='Y';

ALTER TABLESPACE ... ENCRYPTION uses the INPLACE algorithm but does not support the
ALGORITHM clause.

For related information, see Section 17.13, “InnoDB Data-at-Rest Encryption”.

• Enabling or disabling file-per-table tablespace encryption

ALTER TABLE tbl_name ENCRYPTION='Y', ALGORITHM=COPY;

For related information, see Section 17.13, “InnoDB Data-at-Rest Encryption”.

Partitioning Operations

With the exception of some ALTER TABLE partitioning clauses, online DDL operations for partitioned
InnoDB tables follow the same rules that apply to regular InnoDB tables.

Some ALTER TABLE partitioning clauses do not go through the same internal online DDL API as
regular non-partitioned InnoDB tables. As a result, online support for ALTER TABLE partitioning
clauses varies.

The following table shows the online status for each ALTER TABLE partitioning statement. Regardless
of the online DDL API that is used, MySQL attempts to minimize data copying and locking where
possible.

ALTER TABLE partitioning options that use ALGORITHM=COPY or that only permit
“ALGORITHM=DEFAULT, LOCK=DEFAULT”, repartition the table using the COPY algorithm. In other
words, a new partitioned table is created with the new partitioning scheme. The newly created table
includes any changes applied by the ALTER TABLE statement, and table data is copied into the new
table structure.

Table 17.23 Online DDL Support for Partitioning Operations

Partitioning
Clause

Instant In Place Permits DML Notes

PARTITION BY No No No Permits
ALGORITHM=COPY,
LOCK={DEFAULT|

3374

Online DDL Operations

Partitioning
Clause

Instant In Place Permits DML Notes

SHARED|
EXCLUSIVE}

ADD PARTITION No Yes* Yes* ALGORITHM=INPLACE,
LOCK={DEFAULT|
NONE|SHARED|
EXCLUSISVE}
is supported
for RANGE and
LIST partitions,
ALGORITHM=INPLACE,
LOCK={DEFAULT|
SHARED|
EXCLUSISVE}
for HASH and KEY
partitions, and
ALGORITHM=COPY,
LOCK={SHARED|
EXCLUSIVE} for
all partition types.
Does not copy
existing data for
tables partitioned
by RANGE or LIST.
Concurrent queries
are permitted with
ALGORITHM=COPY
for tables
partitioned by
HASH or LIST, as
MySQL copies the
data while holding
a shared lock.

DROP PARTITION No Yes* Yes* ALGORITHM=INPLACE,
LOCK={DEFAULT|
NONE|SHARED|
EXCLUSIVE} is
supported. Does
not copy data for
tables partitioned
by RANGE or LIST.

DROP
PARTITION with
ALGORITHM=INPLACE
deletes data stored
in the partition and
drops the partition.
However, DROP
PARTITION with
ALGORITHM=COPY
or
old_alter_table=ON
rebuilds the
partitioned table
and attempts to

3375

Online DDL Operations

Partitioning
Clause

Instant In Place Permits DML Notes

move data from the
dropped partition
to another partition
with a compatible
PARTITION ...
VALUES definition.
Data that cannot
be moved to
another partition is
deleted.

DISCARD
PARTITION

No No No Only permits
ALGORITHM=DEFAULT,
LOCK=DEFAULT

IMPORT
PARTITION

No No No Only permits
ALGORITHM=DEFAULT,
LOCK=DEFAULT

TRUNCATE
PARTITION

No Yes Yes Does not copy
existing data. It
merely deletes
rows; it does not
alter the definition
of the table itself,
or of any of its
partitions.

COALESCE
PARTITION

No Yes* No ALGORITHM=INPLACE,
LOCK={DEFAULT|
SHARED|
EXCLUSIVE} is
supported.

REORGANIZE
PARTITION

No Yes* No ALGORITHM=INPLACE,
LOCK={DEFAULT|
SHARED|
EXCLUSIVE} is
supported.

EXCHANGE
PARTITION

No Yes Yes

ANALYZE
PARTITION

No Yes Yes

CHECK
PARTITION

No Yes Yes

OPTIMIZE
PARTITION

No No No ALGORITHM and
LOCK clauses
are ignored.
Rebuilds the
entire table. See
Section 26.3.4,
“Maintenance of
Partitions”.

REBUILD
PARTITION

No Yes* No ALGORITHM=INPLACE,
LOCK={DEFAULT|
SHARED|

3376

Online DDL Performance and Concurrency

Partitioning
Clause

Instant In Place Permits DML Notes

EXCLUSIVE} is
supported.

REPAIR
PARTITION

No Yes Yes

REMOVE
PARTITIONING

No No No Permits
ALGORITHM=COPY,
LOCK={DEFAULT|
SHARED|
EXCLUSIVE}

Non-partitioning online ALTER TABLE operations on partitioned tables follow the same rules that
apply to regular tables. However, ALTER TABLE performs online operations on each table partition,
which causes increased demand on system resources due to operations being performed on multiple
partitions.

For additional information about ALTER TABLE partitioning clauses, see Partitioning Options, and
Section 15.1.9.1, “ALTER TABLE Partition Operations”. For information about partitioning in general,
see Chapter 26, Partitioning.

17.12.2 Online DDL Performance and Concurrency

Online DDL improves several aspects of MySQL operation:

• Applications that access the table are more responsive because queries and DML operations on the
table can proceed while the DDL operation is in progress. Reduced locking and waiting for MySQL
server resources leads to greater scalability, even for operations that are not involved in the DDL
operation.

• Instant operations only modify metadata in the data dictionary. An exclusive metadata lock on the
table may be taken briefly during the execution phase of the operation. Table data is unaffected,
making operations instantaneous. Concurrent DML is permitted.

• Online operations avoid the disk I/O and CPU cycles associated with the table-copy method, which
minimizes overall load on the database. Minimizing load helps maintain good performance and high
throughput during the DDL operation.

• Online operations read less data into the buffer pool than table-copy operations, which reduces
purging of frequently accessed data from memory. Purging of frequently accessed data can cause a
temporary performance dip after a DDL operation.

The LOCK clause

By default, MySQL uses as little locking as possible during a DDL operation. The LOCK clause can
be specified for in-place operations and some copy operations to enforce more restrictive locking, if
required. If the LOCK clause specifies a less restrictive level of locking than is permitted for a particular
DDL operation, the statement fails with an error. LOCK clauses are described below, in order of least to
most restrictive:

• LOCK=NONE:

Permits concurrent queries and DML.

For example, use this clause for tables involving customer signups or purchases, to avoid making the
tables unavailable during lengthy DDL operations.

• LOCK=SHARED:

Permits concurrent queries but blocks DML.

3377

Online DDL Performance and Concurrency

For example, use this clause on data warehouse tables, where you can delay data load operations
until the DDL operation is finished, but queries cannot be delayed for long periods.

• LOCK=DEFAULT:

Permits as much concurrency as possible (concurrent queries, DML, or both). Omitting the LOCK
clause is the same as specifying LOCK=DEFAULT.

Use this clause when you do not expect the default locking level of the DDL statement to cause any
availability problems for the table.

• LOCK=EXCLUSIVE:

Blocks concurrent queries and DML.

Use this clause if the primary concern is finishing the DDL operation in the shortest amount of time
possible, and concurrent query and DML access is not necessary. You might also use this clause if
the server is supposed to be idle, to avoid unexpected table accesses.

Online DDL and Metadata Locks

Online DDL operations can be viewed as having three phases:

• Phase 1: Initialization

In the initialization phase, the server determines how much concurrency is permitted during the
operation, taking into account storage engine capabilities, operations specified in the statement, and
user-specified ALGORITHM and LOCK options. During this phase, a shared upgradeable metadata
lock is taken to protect the current table definition.

• Phase 2: Execution

In this phase, the statement is prepared and executed. Whether the metadata lock is upgraded to
exclusive depends on the factors assessed in the initialization phase. If an exclusive metadata lock is
required, it is only taken briefly during statement preparation.

• Phase 3: Commit Table Definition

In the commit table definition phase, the metadata lock is upgraded to exclusive to evict the old table
definition and commit the new one. Once granted, the duration of the exclusive metadata lock is
brief.

Due to the exclusive metadata lock requirements outlined above, an online DDL operation may
have to wait for concurrent transactions that hold metadata locks on the table to commit or rollback.
Transactions started before or during the DDL operation can hold metadata locks on the table being
altered. In the case of a long running or inactive transaction, an online DDL operation can time out
waiting for an exclusive metadata lock. Additionally, a pending exclusive metadata lock requested by
an online DDL operation blocks subsequent transactions on the table.

The following example demonstrates an online DDL operation waiting for an exclusive metadata lock,
and how a pending metadata lock blocks subsequent transactions on the table.

Session 1:

mysql> CREATE TABLE t1 (c1 INT) ENGINE=InnoDB;
mysql> START TRANSACTION;
mysql> SELECT * FROM t1;

The session 1 SELECT statement takes a shared metadata lock on table t1.

Session 2:

3378

Online DDL Performance and Concurrency

mysql> ALTER TABLE t1 ADD COLUMN x INT, ALGORITHM=INPLACE, LOCK=NONE;

The online DDL operation in session 2, which requires an exclusive metadata lock on table t1 to
commit table definition changes, must wait for the session 1 transaction to commit or roll back.

Session 3:

mysql> SELECT * FROM t1;

The SELECT statement issued in session 3 is blocked waiting for the exclusive metadata lock
requested by the ALTER TABLE operation in session 2 to be granted.

You can use SHOW FULL PROCESSLIST to determine if transactions are waiting for a metadata lock.

mysql> SHOW FULL PROCESSLIST\G
...
*************************** 2. row ***************************
 Id: 5
 User: root
 Host: localhost
 db: test
Command: Query
 Time: 44
 State: Waiting for table metadata lock
 Info: ALTER TABLE t1 ADD COLUMN x INT, ALGORITHM=INPLACE, LOCK=NONE
...
*************************** 4. row ***************************
 Id: 7
 User: root
 Host: localhost
 db: test
Command: Query
 Time: 5
 State: Waiting for table metadata lock
 Info: SELECT * FROM t1
4 rows in set (0.00 sec)

Metadata lock information is also exposed through the Performance Schema metadata_locks table,
which provides information about metadata lock dependencies between sessions, the metadata lock a
session is waiting for, and the session that currently holds the metadata lock. For more information, see
Section 29.12.13.3, “The metadata_locks Table”.

Online DDL Performance

The performance of a DDL operation is largely determined by whether the operation is performed
instantly, in place, and whether it rebuilds the table.

To assess the relative performance of a DDL operation, you can compare results using
ALGORITHM=INSTANT, ALGORITHM=INPLACE, and ALGORITHM=COPY. A statement can also be run
with old_alter_table enabled to force the use of ALGORITHM=COPY.

For DDL operations that modify table data, you can determine whether a DDL operation performs
changes in place or performs a table copy by looking at the “rows affected” value displayed after the
command finishes. For example:

• Changing the default value of a column (fast, does not affect the table data):

Query OK, 0 rows affected (0.07 sec)

• Adding an index (takes time, but 0 rows affected shows that the table is not copied):

Query OK, 0 rows affected (21.42 sec)

• Changing the data type of a column (takes substantial time and requires rebuilding all the rows of the
table):

Query OK, 1671168 rows affected (1 min 35.54 sec)

3379

Online DDL Space Requirements

Before running a DDL operation on a large table, check whether the operation is fast or slow as follows:

1. Clone the table structure.

2. Populate the cloned table with a small amount of data.

3. Run the DDL operation on the cloned table.

4. Check whether the “rows affected” value is zero or not. A nonzero value means the operation
copies table data, which might require special planning. For example, you might do the DDL
operation during a period of scheduled downtime, or on each replica server one at a time.

Note

For a greater understanding of the MySQL processing associated with a DDL
operation, examine Performance Schema and INFORMATION_SCHEMA tables
related to InnoDB before and after DDL operations to see the number of
physical reads, writes, memory allocations, and so on.

Performance Schema stage events can be used to monitor ALTER TABLE
progress. See Section 17.16.1, “Monitoring ALTER TABLE Progress for InnoDB
Tables Using Performance Schema”.

Because there is some processing work involved with recording the changes made by concurrent
DML operations, then applying those changes at the end, an online DDL operation could take longer
overall than the table-copy mechanism that blocks table access from other sessions. The reduction in
raw performance is balanced against better responsiveness for applications that use the table. When
evaluating the techniques for changing table structure, consider end-user perception of performance,
based on factors such as load times for web pages.

17.12.3 Online DDL Space Requirements

Disk space requirements for online DDL operations are outlined below. The requirements do not apply
to operations that are performed instantly.

• Temporary log files:

A temporary log file records concurrent DML when an online DDL operation
creates an index or alters a table. The temporary log file is extended as required
by the value of innodb_sort_buffer_size up to a maximum specified by
innodb_online_alter_log_max_size. If the operation takes a long time and concurrent
DML modifies the table so much that the size of the temporary log file exceeds the value
of innodb_online_alter_log_max_size, the online DDL operation fails with a
DB_ONLINE_LOG_TOO_BIG error, and uncommitted concurrent DML operations are rolled back. A
large innodb_online_alter_log_max_size setting permits more DML during an online DDL
operation, but it also extends the period of time at the end of the DDL operation when the table is
locked to apply logged DML.

The innodb_sort_buffer_size variable also defines the size of the temporary log file read
buffer and write buffer.

• Temporary sort files:

Online DDL operations that rebuild the table write temporary sort files to the MySQL temporary
directory ($TMPDIR on Unix, %TEMP% on Windows, or the directory specified by --tmpdir) during
index creation. Temporary sort files are not created in the directory that contains the original table.
Each temporary sort file is large enough to hold one column of data, and each sort file is removed
when its data is merged into the final table or index. Operations involving temporary sort files may
require temporary space equal to the amount of data in the table plus indexes. An error is reported if
online DDL operation uses all of the available disk space on the file system where the data directory
resides.

3380

Online DDL Memory Management

If the MySQL temporary directory is not large enough to hold the sort files, set tmpdir to a different
directory. Alternatively, define a separate temporary directory for online DDL operations using
innodb_tmpdir. This option was introduced to help avoid temporary directory overflows that could
occur as a result of large temporary sort files.

• Intermediate table files:

Some online DDL operations that rebuild the table create a temporary intermediate table file in the
same directory as the original table. An intermediate table file may require space equal to the size
of the original table. Intermediate table file names begin with #sql-ib prefix and only appear briefly
during the online DDL operation.

The innodb_tmpdir option is not applicable to intermediate table files.

17.12.4 Online DDL Memory Management

Online DDL operations that create or rebuild secondary indexes allocate temporary buffers
during different phases of index creation. The innodb_ddl_buffer_size variable, introduced
in MySQL 8.0.27, defines the maximum buffer size for online DDL operations. The default
setting is 1048576 bytes (1 MB). The setting applies to buffers created by threads executing
online DDL operations. Defining an appropriate buffer size limit avoids potential out of memory
errors for online DDL operations that create or rebuild secondary indexes. The maximum
buffer size per DDL thread is the maximum buffer size divided by the number of DDL threads
(innodb_ddl_buffer_size/innodb_ddl_threads).

Prior to MySQL 8.0.27, innodb_sort_buffer_size variable defines the buffer size for online DDL
operations that create or rebuild secondary indexes.

17.12.5 Configuring Parallel Threads for Online DDL Operations

The workflow of an online DDL operation that creates or rebuilds a secondary index involves:

• Scanning the clustered index and writing data to temporary sort files

• Sorting the data

• Loading sorted data from the temporary sort files into the secondary index

The number of parallel threads that can be used to scan clustered index is defined by the
innodb_parallel_read_threads variable. The default setting is 4. The maximum setting is 256,
which is the maximum number for all sessions. The actual number of threads that scan the clustered
index is the number defined by the innodb_parallel_read_threads setting or the number of
index subtrees to scan, whichever is smaller. If the thread limit is reached, sessions fall back to using a
single thread.

The number of parallel threads that sort and load data is controlled by the innodb_ddl_threads
variable, introduced in MySQL 8.0.27. The default setting is 4. Prior to MySQL 8.0.27, sort and load
operations are single-threaded.

The following limitations apply:

• Parallel threads are not supported for building indexes that include virtual columns.

• Parallel threads are not supported for full-text index creation.

• Parallel threads are not supported for spatial index creation.

• Parallel scan is not supported on tables defined with virtual columns.

• Parallel scan is not supported on tables defined with a full-text index.

3381

Simplifying DDL Statements with Online DDL

• Parallel scan is not supported on tables defined with a spatial index.

17.12.6 Simplifying DDL Statements with Online DDL

Before the introduction of online DDL, it was common practice to combine many DDL operations into
a single ALTER TABLE statement. Because each ALTER TABLE statement involved copying and
rebuilding the table, it was more efficient to make several changes to the same table at once, since
those changes could all be done with a single rebuild operation for the table. The downside was that
SQL code involving DDL operations was harder to maintain and to reuse in different scripts. If the
specific changes were different each time, you might have to construct a new complex ALTER TABLE
for each slightly different scenario.

For DDL operations that can be done online, you can separate them into individual ALTER TABLE
statements for easier scripting and maintenance, without sacrificing efficiency. For example, you might
take a complicated statement such as:

ALTER TABLE t1 ADD INDEX i1(c1), ADD UNIQUE INDEX i2(c2),
 CHANGE c4_old_name c4_new_name INTEGER UNSIGNED;

and break it down into simpler parts that can be tested and performed independently, such as:

ALTER TABLE t1 ADD INDEX i1(c1);
ALTER TABLE t1 ADD UNIQUE INDEX i2(c2);
ALTER TABLE t1 CHANGE c4_old_name c4_new_name INTEGER UNSIGNED NOT NULL;

You might still use multi-part ALTER TABLE statements for:

• Operations that must be performed in a specific sequence, such as creating an index followed by a
foreign key constraint that uses that index.

• Operations all using the same specific LOCK clause, that you want to either succeed or fail as a
group.

• Operations that cannot be performed online, that is, that still use the table-copy method.

• Operations for which you specify ALGORITHM=COPY or old_alter_table=1, to force the table-
copying behavior if needed for precise backward-compatibility in specialized scenarios.

17.12.7 Online DDL Failure Conditions

The failure of an online DDL operation is typically due to one of the following conditions:

• An ALGORITHM clause specifies an algorithm that is not compatible with the particular type of DDL
operation or storage engine.

• A LOCK clause specifies a low degree of locking (SHARED or NONE) that is not compatible with the
particular type of DDL operation.

• A timeout occurs while waiting for an exclusive lock on the table, which may be needed briefly during
the initial and final phases of the DDL operation.

• The tmpdir or innodb_tmpdir file system runs out of disk space, while MySQL writes temporary
sort files on disk during index creation. For more information, see Section 17.12.3, “Online DDL
Space Requirements”.

• The operation takes a long time and concurrent DML modifies the table so much that the size of
the temporary online log exceeds the value of the innodb_online_alter_log_max_size
configuration option. This condition causes a DB_ONLINE_LOG_TOO_BIG error.

• Concurrent DML makes changes to the table that are allowed with the original table definition, but
not with the new one. The operation only fails at the very end, when MySQL tries to apply all the
changes from concurrent DML statements. For example, you might insert duplicate values into
a column while a unique index is being created, or you might insert NULL values into a column

3382

Online DDL Limitations

while creating a primary key index on that column. The changes made by the concurrent DML take
precedence, and the ALTER TABLE operation is effectively rolled back.

17.12.8 Online DDL Limitations

The following limitations apply to online DDL operations:

• The table is copied when creating an index on a TEMPORARY TABLE.

• The ALTER TABLE clause LOCK=NONE is not permitted if there are ON...CASCADE or ON...SET
NULL constraints on the table.

• Before an in-place online DDL operation can finish, it must wait for transactions that hold metadata
locks on the table to commit or roll back. An online DDL operation may briefly require an exclusive
metadata lock on the table during its execution phase, and always requires one in the final phase
of the operation when updating the table definition. Consequently, transactions holding metadata
locks on the table can cause an online DDL operation to block. The transactions that hold metadata
locks on the table may have been started before or during the online DDL operation. A long running
or inactive transaction that holds a metadata lock on the table can cause an online DDL operation to
timeout.

• When running an in-place online DDL operation, the thread that runs the ALTER TABLE statement
applies an online log of DML operations that were run concurrently on the same table from other
connection threads. When the DML operations are applied, it is possible to encounter a duplicate
key entry error (ERROR 1062 (23000): Duplicate entry), even if the duplicate entry is only
temporary and would be reverted by a later entry in the online log. This is similar to the idea of a
foreign key constraint check in InnoDB in which constraints must hold during a transaction.

• OPTIMIZE TABLE for an InnoDB table is mapped to an ALTER TABLE operation to rebuild the
table and update index statistics and free unused space in the clustered index. Secondary indexes
are not created as efficiently because keys are inserted in the order they appeared in the primary
key. OPTIMIZE TABLE is supported with the addition of online DDL support for rebuilding regular
and partitioned InnoDB tables.

• Tables created before MySQL 5.6 that include temporal columns (DATE, DATETIME or TIMESTAMP)
and have not been rebuilt using ALGORITHM=COPY do not support ALGORITHM=INPLACE. In this
case, an ALTER TABLE ... ALGORITHM=INPLACE operation returns the following error:

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported.
Reason: Cannot change column type INPLACE. Try ALGORITHM=COPY.

• The following limitations are generally applicable to online DDL operations on large tables that
involve rebuilding the table:

• There is no mechanism to pause an online DDL operation or to throttle I/O or CPU usage for an
online DDL operation.

• Rollback of an online DDL operation can be expensive should the operation fail.

• Long running online DDL operations can cause replication lag. An online DDL operation must
finish running on the source before it is run on the replica. Also, DML that was processed
concurrently on the source is only processed on the replica after the DDL operation on the replica
is completed.

For additional information related to running online DDL operations on large tables, see
Section 17.12.2, “Online DDL Performance and Concurrency”.

17.13 InnoDB Data-at-Rest Encryption
InnoDB supports data-at-rest encryption for file-per-table tablespaces, general tablespaces, the mysql
system tablespace, redo logs, and undo logs.

3383

About Data-at-Rest Encryption

As of MySQL 8.0.16, setting an encryption default for schemas and general tablespaces is also
supported, which permits DBAs to control whether tables created in those schemas and tablespaces
are encrypted.

InnoDB data-at-rest encryption features and capabilities are described under the following topics in
this section.

• About Data-at-Rest Encryption

• Encryption Prerequisites

• Defining an Encryption Default for Schemas and General Tablespaces

• File-Per-Table Tablespace Encryption

• General Tablespace Encryption

• Doublewrite File Encryption

• mysql System Tablespace Encryption

• Redo Log Encryption

• Undo Log Encryption

• Master Key Rotation

• Encryption and Recovery

• Exporting Encrypted Tablespaces

• Encryption and Replication

• Identifying Encrypted Tablespaces and Schemas

• Monitoring Encryption Progress

• Encryption Usage Notes

• Encryption Limitations

About Data-at-Rest Encryption

InnoDB uses a two tier encryption key architecture, consisting of a master encryption key and
tablespace keys. When a tablespace is encrypted, a tablespace key is encrypted and stored in the
tablespace header. When an application or authenticated user wants to access encrypted tablespace
data, InnoDB uses a master encryption key to decrypt the tablespace key. The decrypted version of a
tablespace key never changes, but the master encryption key can be changed as required. This action
is referred to as master key rotation.

The data-at-rest encryption feature relies on a keyring component or plugin for master encryption key
management.

All MySQL editions provide a component_keyring_file component and keyring_file plugin,
each of which stores keyring data in a file local to the server host.

MySQL Enterprise Edition offers additional keyring components and plugins:

• component_keyring_encrypted_file: Stores keyring data in an encrypted, password-
protected file local to the server host.

• keyring_encrypted_file: Stores keyring data in an encrypted, password-protected file local to
the server host.

• keyring_okv: A KMIP 1.1 plugin for use with KMIP-compatible back end keyring storage products.
Supported KMIP-compatible products include centralized key management solutions such as

3384

Encryption Prerequisites

Oracle Key Vault, Gemalto KeySecure, Thales Vormetric key management server, and Fornetix Key
Orchestration.

• keyring_aws: Communicates with the Amazon Web Services Key Management Service (AWS
KMS) as a back end for key generation and uses a local file for key storage.

• keyring_hashicorp: Communicates with HashiCorp Vault for back end storage.

Warning

For encryption key management, the component_keyring_file
and component_keyring_encrypted_file components, and the
keyring_file and keyring_encrypted_file plugins are not intended as
a regulatory compliance solution. Security standards such as PCI, FIPS, and
others require use of key management systems to secure, manage, and protect
encryption keys in key vaults or hardware security modules (HSMs).

A secure and robust encryption key management solution is critical for security and for compliance
with various security standards. When the data-at-rest encryption feature uses a centralized key
management solution, the feature is referred to as “MySQL Enterprise Transparent Data Encryption
(TDE)”.

The data-at-rest encryption feature supports the Advanced Encryption Standard (AES) block-based
encryption algorithm. It uses Electronic Codebook (ECB) block encryption mode for tablespace key
encryption and Cipher Block Chaining (CBC) block encryption mode for data encryption.

For frequently asked questions about the data-at-rest encryption feature, see Section A.17, “MySQL
8.0 FAQ: InnoDB Data-at-Rest Encryption”.

Encryption Prerequisites

• A keyring component or plugin must be installed and configured at startup. Early loading ensures
that the component or plugin is available prior to initialization of the InnoDB storage engine. For
keyring installation and configuration instructions, see Section 8.4.4, “The MySQL Keyring”. The
instructions show how to ensure that the chosen component or plugin is active.

Only one keyring component or plugin should be enabled at a time. Enabling multiple keyring
components or plugins is unsupported and results may not be as anticipated.

Important

Once encrypted tablespaces are created in a MySQL instance, the keyring
component or plugin that was loaded when creating the encrypted tablespace
must continue to be loaded at startup. Failing to do so results in errors when
starting the server and during InnoDB recovery.

• When encrypting production data, ensure that you take steps to prevent loss of the
master encryption key. If the master encryption key is lost, data stored in encrypted
tablespace files is unrecoverable. If you use the component_keyring_file or
component_keyring_encrypted_file component, or the keyring_file or
keyring_encrypted_file plugin, create a backup of the keyring data file immediately after
creating the first encrypted tablespace, before master key rotation, and after master key rotation. For
each component, its configuration file indicates the data file location. The keyring_file_data
configuration option defines the keyring data file location for the keyring_file plugin. The
keyring_encrypted_file_data configuration option defines the keyring data file location for
the keyring_encrypted_file plugin. If you use the keyring_okv or keyring_aws plugin,
ensure that you have performed the necessary configuration. For instructions, see Section 8.4.4,
“The MySQL Keyring”.

Defining an Encryption Default for Schemas and General Tablespaces

3385

File-Per-Table Tablespace Encryption

As of MySQL 8.0.16, the default_table_encryption system variable defines the default
encryption setting for schemas and general tablespaces. CREATE TABLESPACE and CREATE SCHEMA
operations apply the default_table_encryption setting when an ENCRYPTION clause is not
specified explicitly.

ALTER SCHEMA and ALTER TABLESPACE operations do not apply the
default_table_encryption setting. An ENCRYPTION clause must be specified explicitly to alter
the encryption of an existing schema or general tablespace.

The default_table_encryption variable can be set for an individual client connection or globally
using SET syntax. For example, the following statement enables default schema and tablespace
encryption globally:

mysql> SET GLOBAL default_table_encryption=ON;

The default encryption setting for a schema can also be defined using the DEFAULT ENCRYPTION
clause when creating or altering a schema, as in this example:

mysql> CREATE SCHEMA test DEFAULT ENCRYPTION = 'Y';

If the DEFAULT ENCRYPTION clause is not specified when creating a schema, the
default_table_encryption setting is applied. The DEFAULT ENCRYPTION clause must be
specified to alter the default encryption of an existing schema. Otherwise, the schema retains its
current encryption setting.

By default, a table inherits the encryption setting of the schema or general tablespace it is created in.
For example, a table created in an encryption-enabled schema is encrypted by default. This behavior
enables a DBA to control table encryption usage by defining and enforcing schema and general
tablespace encryption defaults.

Encryption defaults are enforced by enabling the table_encryption_privilege_check system
variable. When table_encryption_privilege_check is enabled, a privilege check occurs when
creating or altering a schema or general tablespace with an encryption setting that differs from the
default_table_encryption setting, or when creating or altering a table with an encryption setting
that differs from the default schema encryption. When table_encryption_privilege_check is
disabled (the default), the privilege check does not occur and the previously mentioned operations are
permitted to proceed with a warning.

The TABLE_ENCRYPTION_ADMIN privilege is required to override default encryption settings when
table_encryption_privilege_check is enabled. A DBA can grant this privilege to enable a user
to deviate from the default_table_encryption setting when creating or altering a schema or
general tablespace, or to deviate from the default schema encryption when creating or altering a table.
This privilege does not permit deviating from the encryption of a general tablespace when creating or
altering a table. A table must have the same encryption setting as the general tablespace it resides in.

File-Per-Table Tablespace Encryption

As of MySQL 8.0.16, a file-per-table tablespace inherits the default encryption of the schema in
which the table is created unless an ENCRYPTION clause is specified explicitly in the CREATE TABLE
statement. Prior to MySQL 8.0.16, the ENCRYPTION clause must be specified to enable encryption.

mysql> CREATE TABLE t1 (c1 INT) ENCRYPTION = 'Y';

To alter the encryption of an existing file-per-table tablespace, an ENCRYPTION clause must be
specified.

mysql> ALTER TABLE t1 ENCRYPTION = 'Y';

As of MySQL 8.0.16, if the table_encryption_privilege_check variable is enabled, specifying
an ENCRYPTION clause with a setting that differs from the default schema encryption requires the
TABLE_ENCRYPTION_ADMIN privilege. See Defining an Encryption Default for Schemas and General
Tablespaces.

3386

General Tablespace Encryption

General Tablespace Encryption

As of MySQL 8.0.16, the default_table_encryption variable determines the encryption of a
newly created general tablespace unless an ENCRYPTION clause is specified explicitly in the CREATE
TABLESPACE statement. Prior to MySQL 8.0.16, an ENCRYPTION clause must be specified to enable
encryption.

mysql> CREATE TABLESPACE `ts1` ADD DATAFILE 'ts1.ibd' ENCRYPTION = 'Y' Engine=InnoDB;

To alter the encryption of an existing general tablespace, an ENCRYPTION clause must be specified.

mysql> ALTER TABLESPACE ts1 ENCRYPTION = 'Y';

As of MySQL 8.0.16, if the table_encryption_privilege_check variable is enabled, specifying
an ENCRYPTION clause with a setting that differs from the default_table_encryption setting
requires the TABLE_ENCRYPTION_ADMIN privilege. See Defining an Encryption Default for Schemas
and General Tablespaces.

Doublewrite File Encryption

Encryption support for doublewrite files is available as of MySQL 8.0.23. InnoDB automatically
encrypts doublewrite file pages that belong to encrypted tablespaces. No action is required.
Doublewrite file pages are encrypted using the encryption key of the associated tablespace. The same
encrypted page written to a tablespace data file is also written to a doublewrite file. Doublewrite file
pages that belong to an unencrypted tablespace remain unencrypted.

During recovery, encrypted doublewrite file pages are unencrypted and checked for corruption.

mysql System Tablespace Encryption

Encryption support for the mysql system tablespace is available as of MySQL 8.0.16.

The mysql system tablespace contains the mysql system database and MySQL data dictionary
tables. It is unencrypted by default. To enable encryption for the mysql system tablespace, specify the
tablespace name and the ENCRYPTION option in an ALTER TABLESPACE statement.

mysql> ALTER TABLESPACE mysql ENCRYPTION = 'Y';

To disable encryption for the mysql system tablespace, set ENCRYPTION = 'N' using an ALTER
TABLESPACE statement.

mysql> ALTER TABLESPACE mysql ENCRYPTION = 'N';

Enabling or disabling encryption for the mysql system tablespace requires the CREATE TABLESPACE
privilege on all tables in the instance (CREATE TABLESPACE on *.*).

Redo Log Encryption

Redo log data encryption is enabled using the innodb_redo_log_encrypt configuration option.
Redo log encryption is disabled by default.

As with tablespace data, redo log data encryption occurs when redo log data is written to disk, and
decryption occurs when redo log data is read from disk. Once redo log data is read into memory, it is in
unencrypted form. Redo log data is encrypted and decrypted using the tablespace encryption key.

When innodb_redo_log_encrypt is enabled, unencrypted redo log pages that are present on disk
remain unencrypted, and new redo log pages are written to disk in encrypted form. Likewise, when
innodb_redo_log_encrypt is disabled, encrypted redo log pages that are present on disk remain
encrypted, and new redo log pages are written to disk in unencrypted form.

From MySQL 8.0.30, redo log encryption metadata, including the tablespace encryption key, is stored
in the header of the redo log file with the most recent checkpoint LSN. Before MySQL 8.0.30, redo
log encryption metadata, including the tablespace encryption key, is stored in the header of the first

3387

Undo Log Encryption

redo log file (ib_logfile0). If the redo log file with the encryption metadata is removed, redo log
encryption is disabled.

Once redo log encryption is enabled, a normal restart without the keyring component or plugin or
without the encryption key is not possible, as InnoDB must be able to scan redo pages during startup,
which is not possible if redo log pages are encrypted. Without the keyring component or plugin or the
encryption key, only a forced startup without the redo logs (SRV_FORCE_NO_LOG_REDO) is possible.
See Section 17.21.3, “Forcing InnoDB Recovery”.

Undo Log Encryption

Undo log data encryption is enabled using the innodb_undo_log_encrypt configuration option.
Undo log encryption applies to undo logs that reside in undo tablespaces. See Section 17.6.3.4, “Undo
Tablespaces”. Undo log data encryption is disabled by default.

As with tablespace data, undo log data encryption occurs when undo log data is written to disk, and
decryption occurs when undo log data is read from disk. Once undo log data is read into memory, it is
in unencrypted form. Undo log data is encrypted and decrypted using the tablespace encryption key.

When innodb_undo_log_encrypt is enabled, unencrypted undo log pages that are present on disk
remain unencrypted, and new undo log pages are written to disk in encrypted form. Likewise, when
innodb_undo_log_encrypt is disabled, encrypted undo log pages that are present on disk remain
encrypted, and new undo log pages are written to disk in unencrypted form.

Undo log encryption metadata, including the tablespace encryption key, is stored in the header of the
undo log file.

Note

When undo log encryption is disabled, the server continues to require the
keyring component or plugin that was used to encrypt undo log data until the
undo tablespaces that contained the encrypted undo log data are truncated.
(An encryption header is only removed from an undo tablespace when the undo
tablespace is truncated.) For information about truncating undo tablespaces,
see Truncating Undo Tablespaces.

Master Key Rotation

The master encryption key should be rotated periodically and whenever you suspect that the key has
been compromised.

Master key rotation is an atomic, instance-level operation. Each time the master encryption key is
rotated, all tablespace keys in the MySQL instance are re-encrypted and saved back to their respective
tablespace headers. As an atomic operation, re-encryption must succeed for all tablespace keys once
a rotation operation is initiated. If master key rotation is interrupted by a server failure, InnoDB rolls the
operation forward on server restart. For more information, see Encryption and Recovery.

Rotating the master encryption key only changes the master encryption key and re-encrypts tablespace
keys. It does not decrypt or re-encrypt associated tablespace data.

Rotating the master encryption key requires the ENCRYPTION_KEY_ADMIN privilege (or the
deprecated SUPER privilege).

To rotate the master encryption key, run:

mysql> ALTER INSTANCE ROTATE INNODB MASTER KEY;

ALTER INSTANCE ROTATE INNODB MASTER KEY supports concurrent DML. However, it cannot
be run concurrently with tablespace encryption operations, and locks are taken to prevent conflicts
that could arise from concurrent execution. If an ALTER INSTANCE ROTATE INNODB MASTER KEY
operation is running, it must finish before a tablespace encryption operation can proceed, and vice
versa.

3388

Encryption and Recovery

Encryption and Recovery

If a server failure occurs during an encryption operation, the operation is rolled forward when the server
is restarted. For general tablespaces, the encryption operation is resumed in a background thread from
the last processed page.

If a server failure occurs during master key rotation, InnoDB continues the operation on server restart.

The keyring component or plugin must be loaded prior to storage engine initialization so that the
information necessary to decrypt tablespace data pages can be retrieved from tablespace headers
before InnoDB initialization and recovery activities access tablespace data. (See Encryption
Prerequisites.)

When InnoDB initialization and recovery begin, the master key rotation operation resumes. Due to
the server failure, some tablespace keys may already be encrypted using the new master encryption
key. InnoDB reads the encryption data from each tablespace header, and if the data indicates that the
tablespace key is encrypted using the old master encryption key, InnoDB retrieves the old key from the
keyring and uses it to decrypt the tablespace key. InnoDB then re-encrypts the tablespace key using
the new master encryption key and saves the re-encrypted tablespace key back to the tablespace
header.

Exporting Encrypted Tablespaces

Tablespace export is only supported for file-per-table tablespaces.

When an encrypted tablespace is exported, InnoDB generates a transfer key that is used to
encrypt the tablespace key. The encrypted tablespace key and transfer key are stored in a
tablespace_name.cfp file. This file together with the encrypted tablespace file is required to
perform an import operation. On import, InnoDB uses the transfer key to decrypt the tablespace key
in the tablespace_name.cfp file. For related information, see Section 17.6.1.3, “Importing InnoDB
Tables”.

Encryption and Replication

• The ALTER INSTANCE ROTATE INNODB MASTER KEY statement is only supported in replication
environments where the source and replica run a version of MySQL that supports tablespace
encryption.

• Successful ALTER INSTANCE ROTATE INNODB MASTER KEY statements are written to the binary
log for replication on replicas.

• If an ALTER INSTANCE ROTATE INNODB MASTER KEY statement fails, it is not logged to the
binary log and is not replicated on replicas.

• Replication of an ALTER INSTANCE ROTATE INNODB MASTER KEY operation fails if the keyring
component or plugin is installed on the source but not on the replica.

• If the keyring_file or keyring_encrypted_file plugin is installed on both the source and a
replica but the replica does not have a keyring data file, the replicated ALTER INSTANCE ROTATE
INNODB MASTER KEY statement creates the keyring data file on the replica, assuming the keyring
file data is not cached in memory. ALTER INSTANCE ROTATE INNODB MASTER KEY uses keyring
file data that is cached in memory, if available.

Identifying Encrypted Tablespaces and Schemas

The Information Schema INNODB_TABLESPACES table, introduced in MySQL 8.0.13, includes an
ENCRYPTION column that can be used to identify encrypted tablespaces.

mysql> SELECT SPACE, NAME, SPACE_TYPE, ENCRYPTION FROM INFORMATION_SCHEMA.INNODB_TABLESPACES
 WHERE ENCRYPTION='Y'\G
*************************** 1. row ***************************

3389

Monitoring Encryption Progress

 SPACE: 4294967294
 NAME: mysql
SPACE_TYPE: General
ENCRYPTION: Y
*************************** 2. row ***************************
 SPACE: 2
 NAME: test/t1
SPACE_TYPE: Single
ENCRYPTION: Y
*************************** 3. row ***************************
 SPACE: 3
 NAME: ts1
SPACE_TYPE: General
ENCRYPTION: Y

When the ENCRYPTION option is specified in a CREATE TABLE or ALTER TABLE statement, it is
recorded in the CREATE_OPTIONS column of INFORMATION_SCHEMA.TABLES. This column can be
queried to identify tables that reside in encrypted file-per-table tablespaces.

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, CREATE_OPTIONS FROM INFORMATION_SCHEMA.TABLES
 WHERE CREATE_OPTIONS LIKE '%ENCRYPTION%';
+--------------+------------+----------------+
| TABLE_SCHEMA | TABLE_NAME | CREATE_OPTIONS |
+--------------+------------+----------------+
| test | t1 | ENCRYPTION="Y" |
+--------------+------------+----------------+

Query the Information Schema INNODB_TABLESPACES table to retrieve information about the
tablespace associated with a particular schema and table.

mysql> SELECT SPACE, NAME, SPACE_TYPE FROM INFORMATION_SCHEMA.INNODB_TABLESPACES WHERE NAME='test/t1';
+-------+---------+------------+
| SPACE | NAME | SPACE_TYPE |
+-------+---------+------------+
| 3 | test/t1 | Single |
+-------+---------+------------+

You can identify encryption-enabled schemas by querying the Information Schema SCHEMATA table.

mysql> SELECT SCHEMA_NAME, DEFAULT_ENCRYPTION FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE DEFAULT_ENCRYPTION='YES';
+-------------+--------------------+
| SCHEMA_NAME | DEFAULT_ENCRYPTION |
+-------------+--------------------+
| test | YES |
+-------------+--------------------+

SHOW CREATE SCHEMA also shows the DEFAULT ENCRYPTION clause.

Monitoring Encryption Progress

You can monitor general tablespace and mysql system tablespace encryption progress using
Performance Schema.

The stage/innodb/alter tablespace (encryption) stage event instrument reports
WORK_ESTIMATED and WORK_COMPLETED information for general tablespace encryption operations.

The following example demonstrates how to enable the stage/innodb/alter tablespace
(encryption) stage event instrument and related consumer tables to monitor general tablespace
or mysql system tablespace encryption progress. For information about Performance Schema stage
event instruments and related consumers, see Section 29.12.5, “Performance Schema Stage Event
Tables”.

1. Enable the stage/innodb/alter tablespace (encryption) instrument:

mysql> USE performance_schema;
mysql> UPDATE setup_instruments SET ENABLED = 'YES'
 WHERE NAME LIKE 'stage/innodb/alter tablespace (encryption)';

3390

Encryption Usage Notes

2. Enable the stage event consumer tables, which include events_stages_current,
events_stages_history, and events_stages_history_long.

mysql> UPDATE setup_consumers SET ENABLED = 'YES' WHERE NAME LIKE '%stages%';

3. Run a tablespace encryption operation. In this example, a general tablespace named ts1 is
encrypted.

mysql> ALTER TABLESPACE ts1 ENCRYPTION = 'Y';

4. Check the progress of the encryption operation by querying the Performance Schema
events_stages_current table. WORK_ESTIMATED reports the total number of pages in the
tablespace. WORK_COMPLETED reports the number of pages processed.

mysql> SELECT EVENT_NAME, WORK_ESTIMATED, WORK_COMPLETED FROM events_stages_current;
+--+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+--+----------------+----------------+
| stage/innodb/alter tablespace (encryption) | 1056 | 1407 |
+--+----------------+----------------+

The events_stages_current table returns an empty set if the encryption operation has
completed. In this case, you can check the events_stages_history table to view event data for
the completed operation. For example:

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED FROM events_stages_history;
+--+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+--+----------------+----------------+
| stage/innodb/alter tablespace (encryption) | 1407 | 1407 |
+--+----------------+----------------+

Encryption Usage Notes

• Plan appropriately when altering an existing file-per-table tablespace with the ENCRYPTION option.
Tables residing in file-per-table tablespaces are rebuilt using the COPY algorithm. The INPLACE
algorithm is used when altering the ENCRYPTION attribute of a general tablespace or the mysql
system tablespace. The INPLACE algorithm permits concurrent DML on tables that reside in the
general tablespace. Concurrent DDL is blocked.

• When a general tablespace or the mysql system tablespace is encrypted, all tables residing in the
tablespace are encrypted. Likewise, a table created in an encrypted tablespace is encrypted.

• If the server exits or is stopped during normal operation, it is recommended to restart the server
using the same encryption settings that were configured previously.

• The first master encryption key is generated when the first new or existing tablespace is encrypted.

• Master key rotation re-encrypts tablespaces keys but does not change the tablespace key itself. To
change a tablespace key, you must disable and re-enable encryption. For file-per-table tablespaces,
re-encrypting the tablespace is an ALGORITHM=COPY operation that rebuilds the table. For general
tablespaces and the mysql system tablespace, it is an ALGORITHM=INPLACE operation, which does
not require rebuilding tables that reside in the tablespace.

• If a table is created with both the COMPRESSION and ENCRYPTION options, compression is
performed before tablespace data is encrypted.

• If a keyring data file (the file named by keyring_file_data or
keyring_encrypted_file_data) is empty or missing, the first execution of ALTER INSTANCE
ROTATE INNODB MASTER KEY creates a master encryption key.

• Uninstalling the component_keyring_file or component_keyring_encrypted_file
component does not remove an existing keyring data file. Uninstalling the keyring_file or
keyring_encrypted_file plugin does not remove an existing keyring data file.

3391

Encryption Limitations

• It is recommended that you not place a keyring data file under the same directory as tablespace data
files.

• Modifying the keyring_file_data or keyring_encrypted_file_data setting at runtime or
when restarting the server can cause previously encrypted tablespaces to become inaccessible,
resulting in lost data.

• Encryption is supported for the InnoDB FULLTEXT index tables that are created implicitly when
adding a FULLTEXT index. For related information, see InnoDB Full-Text Index Tables.

Encryption Limitations

• Advanced Encryption Standard (AES) is the only supported encryption algorithm. InnoDB
tablespace encryption uses Electronic Codebook (ECB) block encryption mode for tablespace key
encryption and Cipher Block Chaining (CBC) block encryption mode for data encryption. Padding is
not used with CBC block encryption mode. Instead, InnoDB ensures that the text to be encrypted is
a multiple of the block size.

• Encryption is only supported for file-per-table tablespaces, general tablespaces, and the mysql
system tablespace. Encryption support for general tablespaces was introduced in MySQL 8.0.13.
Encryption support for the mysql system tablespace is available as of MySQL 8.0.16. Encryption is
not supported for other tablespace types including the InnoDB system tablespace.

• You cannot move or copy a table from an encrypted file-per-table tablespace, general tablespace, or
the mysql system tablespace to a tablespace type that does not support encryption.

• You cannot move or copy a table from an encrypted tablespace to an unencrypted tablespace.
However, moving a table from an unencrypted tablespace to an encrypted one is permitted. For
example, you can move or copy a table from a unencrypted file-per-table or general tablespace to an
encrypted general tablespace.

• By default, tablespace encryption only applies to data in the tablespace. Redo log and undo log data
can be encrypted by enabling innodb_redo_log_encrypt and innodb_undo_log_encrypt.
See Redo Log Encryption, and Undo Log Encryption. For information about binary log file and relay
log file encryption, see Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”.

• It is not permitted to change the storage engine of a table that resides in, or previously resided in, an
encrypted tablespace.

17.14 InnoDB Startup Options and System Variables
• InnoDB Startup Options

• InnoDB System Variables

• System variables that are true or false can be enabled at server startup by naming them, or
disabled by using a --skip- prefix. For example, to enable or disable the InnoDB adaptive
hash index, you can use --innodb-adaptive-hash-index or --skip-innodb-
adaptive-hash-index on the command line, or innodb_adaptive_hash_index or
skip_innodb_adaptive_hash_index in an option file.

• Some variable descriptions refer to “enabling” or “disabling” a variable. These variables can be
enabled with the SET statement by setting them to ON or 1, or disabled by setting them to OFF
or 0. Boolean variables can be set at startup to the values ON, TRUE, OFF, and FALSE (not case-
sensitive), as well as 1 and 0. See Section 6.2.2.4, “Program Option Modifiers”.

• System variables that take a numeric value can be specified as --var_name=value on the
command line or as var_name=value in option files.

• Many system variables can be changed at runtime (see Section 7.1.9.2, “Dynamic System
Variables”).

3392

InnoDB Startup Options and System Variables

• For information about GLOBAL and SESSION variable scope modifiers, refer to the SET statement
documentation.

• Certain options control the locations and layout of the InnoDB data files. Section 17.8.1, “InnoDB
Startup Configuration” explains how to use these options.

• Some options, which you might not use initially, help tune InnoDB performance characteristics
based on machine capacity and your database workload.

• For more information on specifying options and system variables, see Section 6.2.2, “Specifying
Program Options”.

Table 17.24 InnoDB Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

daemon_memcached_enable_binlogYes Yes Yes Global No

daemon_memcached_engine_lib_nameYes Yes Yes Global No

daemon_memcached_engine_lib_pathYes Yes Yes Global No

daemon_memcached_optionYes Yes Yes Global No

daemon_memcached_r_batch_sizeYes Yes Yes Global No

daemon_memcached_w_batch_sizeYes Yes Yes Global No

foreign_key_checks Yes Both Yes

innodb Yes Yes

innodb_adaptive_flushingYes Yes Yes Global Yes

innodb_adaptive_flushing_lwmYes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global Yes

innodb_adaptive_hash_index_partsYes Yes Yes Global No

innodb_adaptive_max_sleep_delayYes Yes Yes Global Yes

innodb_api_bk_commit_intervalYes Yes Yes Global Yes

innodb_api_disable_rowlockYes Yes Yes Global No

innodb_api_enable_binlogYes Yes Yes Global No

innodb_api_enable_mdlYes Yes Yes Global No

innodb_api_trx_levelYes Yes Yes Global Yes

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_autoinc_lock_modeYes Yes Yes Global No

innodb_background_drop_list_emptyYes Yes Yes Global Yes

Innodb_buffer_pool_bytes_data Yes Global No

Innodb_buffer_pool_bytes_dirty Yes Global No

innodb_buffer_pool_chunk_sizeYes Yes Yes Global No

innodb_buffer_pool_debugYes Yes Yes Global No

innodb_buffer_pool_dump_at_shutdownYes Yes Yes Global Yes

innodb_buffer_pool_dump_nowYes Yes Yes Global Yes

innodb_buffer_pool_dump_pctYes Yes Yes Global Yes

Innodb_buffer_pool_dump_status Yes Global No

innodb_buffer_pool_filenameYes Yes Yes Global Yes

innodb_buffer_pool_in_core_fileYes Yes Yes Global Yes

innodb_buffer_pool_instancesYes Yes Yes Global No

3393

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_buffer_pool_load_abortYes Yes Yes Global Yes

innodb_buffer_pool_load_at_startupYes Yes Yes Global No

innodb_buffer_pool_load_nowYes Yes Yes Global Yes

Innodb_buffer_pool_load_status Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead Yes Global No

Innodb_buffer_pool_read_ahead_evicted Yes Global No

Innodb_buffer_pool_read_ahead_rnd Yes Global No

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

Innodb_buffer_pool_resize_status Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global Yes

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_change_buffer_max_sizeYes Yes Yes Global Yes

innodb_change_bufferingYes Yes Yes Global Yes

innodb_change_buffering_debugYes Yes Yes Global Yes

innodb_checkpoint_disabledYes Yes Yes Global Yes

innodb_checksum_algorithmYes Yes Yes Global Yes

innodb_cmp_per_index_enabledYes Yes Yes Global Yes

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_compress_debugYes Yes Yes Global Yes

innodb_compression_failure_threshold_pctYes Yes Yes Global Yes

innodb_compression_levelYes Yes Yes Global Yes

innodb_compression_pad_pct_maxYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

3394

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_data_written Yes Global No

Innodb_dblwr_pages_written Yes Global No

Innodb_dblwr_writes Yes Global No

innodb_ddl_buffer_sizeYes Yes Yes Session Yes

innodb_ddl_log_crash_reset_debugYes Yes Yes Global Yes

innodb_ddl_threadsYes Yes Yes Session Yes

innodb_deadlock_detectYes Yes Yes Global Yes

innodb_dedicated_serverYes Yes Yes Global No

innodb_default_row_formatYes Yes Yes Global Yes

innodb_directoriesYes Yes Yes Global No

innodb_disable_sort_file_cacheYes Yes Yes Global Yes

innodb_doublewriteYes Yes Yes Global Varies

innodb_doublewrite_batch_sizeYes Yes Yes Global No

innodb_doublewrite_dirYes Yes Yes Global No

innodb_doublewrite_filesYes Yes Yes Global No

innodb_doublewrite_pagesYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_fil_make_page_dirty_debugYes Yes Yes Global Yes

innodb_file_per_tableYes Yes Yes Global Yes

innodb_fill_factorYes Yes Yes Global Yes

innodb_flush_log_at_timeoutYes Yes Yes Global Yes

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_flush_neighborsYes Yes Yes Global Yes

innodb_flush_syncYes Yes Yes Global Yes

innodb_flushing_avg_loopsYes Yes Yes Global Yes

innodb_force_load_corruptedYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_fsync_thresholdYes Yes Yes Global Yes

innodb_ft_aux_table Yes Global Yes

innodb_ft_cache_sizeYes Yes Yes Global No

innodb_ft_enable_diag_printYes Yes Yes Global Yes

innodb_ft_enable_stopwordYes Yes Yes Both Yes

innodb_ft_max_token_sizeYes Yes Yes Global No

innodb_ft_min_token_sizeYes Yes Yes Global No

innodb_ft_num_word_optimizeYes Yes Yes Global Yes

innodb_ft_result_cache_limitYes Yes Yes Global Yes

innodb_ft_server_stopword_tableYes Yes Yes Global Yes

innodb_ft_sort_pll_degreeYes Yes Yes Global No

innodb_ft_total_cache_sizeYes Yes Yes Global No

innodb_ft_user_stopword_tableYes Yes Yes Both Yes

3395

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_have_atomic_builtins Yes Global No

innodb_idle_flush_pctYes Yes Yes Global Yes

innodb_io_capacityYes Yes Yes Global Yes

innodb_io_capacity_maxYes Yes Yes Global Yes

innodb_limit_optimistic_insert_debugYes Yes Yes Global Yes

innodb_lock_wait_timeoutYes Yes Yes Both Yes

innodb_log_buffer_sizeYes Yes Yes Global Varies

innodb_log_checkpoint_fuzzy_nowYes Yes Yes Global Yes

innodb_log_checkpoint_nowYes Yes Yes Global Yes

innodb_log_checksumsYes Yes Yes Global Yes

innodb_log_compressed_pagesYes Yes Yes Global Yes

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

innodb_log_spin_cpu_abs_lwmYes Yes Yes Global Yes

innodb_log_spin_cpu_pct_hwmYes Yes Yes Global Yes

innodb_log_wait_for_flush_spin_hwmYes Yes Yes Global Yes

Innodb_log_waits Yes Global No

innodb_log_write_ahead_sizeYes Yes Yes Global Yes

Innodb_log_write_requests Yes Global No

innodb_log_writer_threadsYes Yes Yes Global Yes

Innodb_log_writes Yes Global No

innodb_lru_scan_depthYes Yes Yes Global Yes

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_dirty_pages_pct_lwmYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_max_purge_lag_delayYes Yes Yes Global Yes

innodb_max_undo_log_sizeYes Yes Yes Global Yes

innodb_merge_threshold_set_all_debugYes Yes Yes Global Yes

innodb_monitor_disableYes Yes Yes Global Yes

innodb_monitor_enableYes Yes Yes Global Yes

innodb_monitor_resetYes Yes Yes Global Yes

innodb_monitor_reset_allYes Yes Yes Global Yes

Innodb_num_open_files Yes Global No

innodb_numa_interleaveYes Yes Yes Global No

innodb_old_blocks_pctYes Yes Yes Global Yes

innodb_old_blocks_timeYes Yes Yes Global Yes

innodb_online_alter_log_max_sizeYes Yes Yes Global Yes

innodb_open_filesYes Yes Yes Global Varies

innodb_optimize_fulltext_onlyYes Yes Yes Global Yes

Innodb_os_log_fsyncs Yes Global No

3396

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_os_log_pending_fsyncs Yes Global No

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

innodb_page_cleanersYes Yes Yes Global No

Innodb_page_size Yes Global No

innodb_page_sizeYes Yes Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_parallel_read_threadsYes Yes Yes Session Yes

innodb_print_all_deadlocksYes Yes Yes Global Yes

innodb_print_ddl_logsYes Yes Yes Global Yes

innodb_purge_batch_sizeYes Yes Yes Global Yes

innodb_purge_rseg_truncate_frequencyYes Yes Yes Global Yes

innodb_purge_threadsYes Yes Yes Global No

innodb_random_read_aheadYes Yes Yes Global Yes

innodb_read_ahead_thresholdYes Yes Yes Global Yes

innodb_read_io_threadsYes Yes Yes Global No

innodb_read_onlyYes Yes Yes Global No

innodb_redo_log_archive_dirsYes Yes Yes Global Yes

innodb_redo_log_capacityYes Yes Yes Global Yes

Innodb_redo_log_capacity_resized Yes Global No

Innodb_redo_log_checkpoint_lsn Yes Global No

Innodb_redo_log_current_lsn Yes Global No

Innodb_redo_log_enabled Yes Global No

innodb_redo_log_encryptYes Yes Yes Global Yes

Innodb_redo_log_flushed_to_disk_lsn Yes Global No

Innodb_redo_log_logical_size Yes Global No

Innodb_redo_log_physical_size Yes Global No

Innodb_redo_log_read_only Yes Global No

Innodb_redo_log_resize_status Yes Global No

Innodb_redo_log_uuid Yes Global No

innodb_replication_delayYes Yes Yes Global Yes

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_rollback_segmentsYes Yes Yes Global Yes

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

Innodb_rows_deleted Yes Global No

3397

InnoDB Startup Options and System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

innodb_saved_page_number_debugYes Yes Yes Global Yes

innodb_segment_reserve_factorYes Yes Yes Global Yes

innodb_sort_buffer_sizeYes Yes Yes Global No

innodb_spin_wait_delayYes Yes Yes Global Yes

innodb_spin_wait_pause_multiplierYes Yes Yes Global Yes

innodb_stats_auto_recalcYes Yes Yes Global Yes

innodb_stats_include_delete_markedYes Yes Yes Global Yes

innodb_stats_methodYes Yes Yes Global Yes

innodb_stats_on_metadataYes Yes Yes Global Yes

innodb_stats_persistentYes Yes Yes Global Yes

innodb_stats_persistent_sample_pagesYes Yes Yes Global Yes

innodb_stats_transient_sample_pagesYes Yes Yes Global Yes

innodb-
status-file

Yes Yes

innodb_status_outputYes Yes Yes Global Yes

innodb_status_output_locksYes Yes Yes Global Yes

innodb_strict_modeYes Yes Yes Both Yes

innodb_sync_array_sizeYes Yes Yes Global No

innodb_sync_debugYes Yes Yes Global No

innodb_sync_spin_loopsYes Yes Yes Global Yes

Innodb_system_rows_deleted Yes Global No

Innodb_system_rows_inserted Yes Global No

Innodb_system_rows_read Yes Global No

Innodb_system_rows_updated Yes Global No

innodb_table_locksYes Yes Yes Both Yes

innodb_temp_data_file_pathYes Yes Yes Global No

innodb_temp_tablespaces_dirYes Yes Yes Global No

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_tmpdir Yes Yes Yes Both Yes

Innodb_truncated_status_writes Yes Global No

innodb_trx_purge_view_update_only_debugYes Yes Yes Global Yes

innodb_trx_rseg_n_slots_debugYes Yes Yes Global Yes

innodb_undo_directoryYes Yes Yes Global No

innodb_undo_log_encryptYes Yes Yes Global Yes

innodb_undo_log_truncateYes Yes Yes Global Yes

innodb_undo_tablespacesYes Yes Yes Global Varies

Innodb_undo_tablespaces_active Yes Global No

3398

InnoDB Startup Options

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_undo_tablespaces_explicit Yes Global No

Innodb_undo_tablespaces_implicit Yes Global No

Innodb_undo_tablespaces_total Yes Global No

innodb_use_fdatasyncYes Yes Yes Global Yes

innodb_use_native_aioYes Yes Yes Global No

innodb_validate_tablespace_pathsYes Yes Yes Global No

innodb_version Yes Global No

innodb_write_io_threadsYes Yes Yes Global No

unique_checks Yes Both Yes

InnoDB Startup Options

• --innodb[=value]

Command-Line Format --innodb[=value]

Deprecated Yes

Type Enumeration

Default Value ON

Valid Values OFF

ON

FORCE

Controls loading of the InnoDB storage engine, if the server was compiled with InnoDB support.
This option has a tristate format, with possible values of OFF, ON, or FORCE. See Section 7.6.1,
“Installing and Uninstalling Plugins”.

To disable InnoDB, use --innodb=OFF or --skip-innodb. In this case, because the default
storage engine is InnoDB, the server does not start unless you also use --default-storage-
engine and --default-tmp-storage-engine to set the default to some other engine for both
permanent and TEMPORARY tables.

The InnoDB storage engine can no longer be disabled, and the --innodb=OFF and --skip-
innodb options are deprecated and have no effect. Their use results in a warning. Expect these
options to be removed in a future MySQL release.

• --innodb-dedicated-server

Command-Line Format --innodb-dedicated-server[={OFF|ON}]

System Variable innodb_dedicated_server

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When this option is set by starting the server with --innodb-dedicated-server or --innodb-
dedicated-server=ON, either on the command line or in a my.cnf file, InnoDB automatically
calculates and sets the values of the following variables:

3399

InnoDB System Variables

• innodb_buffer_pool_size

• innodb_redo_log_capacity or, prior to MySQL 8.0.30, innodb_log_file_size and
innodb_log_files_in_group.

• innodb_flush_method

Note

innodb_log_file_size and innodb_log_files_in_group
are deprecated in MySQL 8.0.30. These variables are superseded by
innodb_redo_log_capacity. See Section 17.6.5, “Redo Log”.

You should consider using --innodb-dedicated-server only if the MySQL instance resides
on a dedicated server where it can use all available system resources. Using this option is not
recommended if the MySQL instance shares system resources with other applications.

It is strongly recommended that you read Section 17.8.12, “Enabling Automatic InnoDB Configuration
for a Dedicated MySQL Server”, before using this option in production.

• --innodb-status-file

Command-Line Format --innodb-status-file[={OFF|ON}]

Type Boolean

Default Value OFF

The --innodb-status-file startup option controls whether InnoDB creates a file named
innodb_status.pid in the data directory and writes SHOW ENGINE INNODB STATUS output to it
every 15 seconds, approximately.

The innodb_status.pid file is not created by default. To create it, start mysqld with the --
innodb-status-file option. InnoDB removes the file when the server is shut down normally. If
an abnormal shutdown occurs, the status file may have to be removed manually.

The --innodb-status-file option is intended for temporary use, as SHOW ENGINE INNODB
STATUS output generation can affect performance, and the innodb_status.pid file can become
quite large over time.

For related information, see Section 17.17.2, “Enabling InnoDB Monitors”.

• --skip-innodb

Disable the InnoDB storage engine. See the description of --innodb.

InnoDB System Variables

• daemon_memcached_enable_binlog

Command-Line Format --daemon-memcached-enable-
binlog[={OFF|ON}]

Deprecated 8.0.22

System Variable daemon_memcached_enable_binlog

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

3400

InnoDB System Variables

Default Value OFF

Enable this option on the source server to use the InnoDB memcached plugin
(daemon_memcached) with the MySQL binary log. This option can only be set at server startup. You
must also enable the MySQL binary log on the source server using the --log-bin option.

For more information, see Section 17.20.7, “The InnoDB memcached Plugin and Replication”.

• daemon_memcached_engine_lib_name

Command-Line Format --daemon-memcached-engine-lib-
name=file_name

Deprecated 8.0.22

System Variable daemon_memcached_engine_lib_name

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value innodb_engine.so

Specifies the shared library that implements the InnoDB memcached plugin.

For more information, see Section 17.20.3, “Setting Up the InnoDB memcached Plugin”.

• daemon_memcached_engine_lib_path

Command-Line Format --daemon-memcached-engine-lib-
path=dir_name

Deprecated 8.0.22

System Variable daemon_memcached_engine_lib_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value NULL

The path of the directory containing the shared library that implements the InnoDB memcached
plugin. The default value is NULL, representing the MySQL plugin directory. You should not need to
modify this parameter unless specifying a memcached plugin for a different storage engine that is
located outside of the MySQL plugin directory.

For more information, see Section 17.20.3, “Setting Up the InnoDB memcached Plugin”.

• daemon_memcached_option

Command-Line Format --daemon-memcached-option=options

Deprecated 8.0.22

System Variable daemon_memcached_option

Scope Global

Dynamic No

SET_VAR Hint Applies No 3401

InnoDB System Variables

Type String

Default Value

Used to pass space-separated memcached options to the underlying memcached memory object
caching daemon on startup. For example, you might change the port that memcached listens on,
reduce the maximum number of simultaneous connections, change the maximum memory size for a
key-value pair, or enable debugging messages for the error log.

See Section 17.20.3, “Setting Up the InnoDB memcached Plugin” for usage details. For information
about memcached options, refer to the memcached man page.

• daemon_memcached_r_batch_size

Command-Line Format --daemon-memcached-r-batch-size=#

Deprecated 8.0.22

System Variable daemon_memcached_r_batch_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 1073741824

Specifies how many memcached read operations (get operations) to perform before doing a
COMMIT to start a new transaction. Counterpart of daemon_memcached_w_batch_size.

This value is set to 1 by default, so that any changes made to the table through SQL statements
are immediately visible to memcached operations. You might increase it to reduce the overhead
from frequent commits on a system where the underlying table is only being accessed through the
memcached interface. If you set the value too large, the amount of undo or redo data could impose
some storage overhead, as with any long-running transaction.

For more information, see Section 17.20.3, “Setting Up the InnoDB memcached Plugin”.

• daemon_memcached_w_batch_size

Command-Line Format --daemon-memcached-w-batch-size=#

Deprecated 8.0.22

System Variable daemon_memcached_w_batch_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

3402

InnoDB System Variables

Maximum Value 1048576

Specifies how many memcached write operations, such as add, set, and incr, to perform before
doing a COMMIT to start a new transaction. Counterpart of daemon_memcached_r_batch_size.

This value is set to 1 by default, on the assumption that data being stored is important to preserve in
case of an outage and should immediately be committed. When storing non-critical data, you might
increase this value to reduce the overhead from frequent commits; but then the last N-1 uncommitted
write operations could be lost if an unexpected exit occurs.

For more information, see Section 17.20.3, “Setting Up the InnoDB memcached Plugin”.

• innodb_adaptive_flushing

Command-Line Format --innodb-adaptive-flushing[={OFF|
ON}]

System Variable innodb_adaptive_flushing

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Specifies whether to dynamically adjust the rate of flushing dirty pages in the InnoDB buffer pool
based on the workload. Adjusting the flush rate dynamically is intended to avoid bursts of I/O activity.
This setting is enabled by default. See Section 17.8.3.5, “Configuring Buffer Pool Flushing” for more
information. For general I/O tuning advice, see Section 10.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_adaptive_flushing_lwm

Command-Line Format --innodb-adaptive-flushing-lwm=#

System Variable innodb_adaptive_flushing_lwm

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 70

Defines the low water mark representing percentage of redo log capacity at which adaptive flushing
is enabled. For more information, see Section 17.8.3.5, “Configuring Buffer Pool Flushing”.

• innodb_adaptive_hash_index

Command-Line Format --innodb-adaptive-hash-index[={OFF|
ON}]

System Variable innodb_adaptive_hash_index

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

3403

InnoDB System Variables

Type Boolean

Default Value ON

Whether the InnoDB adaptive hash index is enabled or disabled. It may be desirable, depending
on your workload, to dynamically enable or disable adaptive hash indexing to improve query
performance. Because the adaptive hash index may not be useful for all workloads, conduct
benchmarks with it both enabled and disabled, using realistic workloads. See Section 17.5.3,
“Adaptive Hash Index” for details.

This variable is enabled by default. You can modify this parameter using the SET GLOBAL
statement, without restarting the server. Changing the setting at runtime requires privileges sufficient
to set global system variables. See Section 7.1.9.1, “System Variable Privileges”. You can also use
--skip-innodb-adaptive-hash-index at server startup to disable it.

Disabling the adaptive hash index empties the hash table immediately. Normal operations can
continue while the hash table is emptied, and executing queries that were using the hash table
access the index B-trees directly instead. When the adaptive hash index is re-enabled, the hash
table is populated again during normal operation.

• innodb_adaptive_hash_index_parts

Command-Line Format --innodb-adaptive-hash-index-parts=#

System Variable innodb_adaptive_hash_index_parts

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Numeric

Default Value 8

Minimum Value 1

Maximum Value 512

Partitions the adaptive hash index search system. Each index is bound to a specific partition, with
each partition protected by a separate latch.

The adaptive hash index search system is partitioned into 8 parts by default. The maximum setting is
512.

For related information, see Section 17.5.3, “Adaptive Hash Index”.

• innodb_adaptive_max_sleep_delay

Command-Line Format --innodb-adaptive-max-sleep-delay=#

System Variable innodb_adaptive_max_sleep_delay

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 150000

Minimum Value 0

Maximum Value 1000000

3404

InnoDB System Variables

Unit microseconds

Permits InnoDB to automatically adjust the value of innodb_thread_sleep_delay up
or down according to the current workload. Any nonzero value enables automated, dynamic
adjustment of the innodb_thread_sleep_delay value, up to the maximum value specified in the
innodb_adaptive_max_sleep_delay option. The value represents the number of microseconds.
This option can be useful in busy systems, with greater than 16 InnoDB threads. (In practice, it is
most valuable for MySQL systems with hundreds or thousands of simultaneous connections.)

For more information, see Section 17.8.4, “Configuring Thread Concurrency for InnoDB”.

• innodb_api_bk_commit_interval

Command-Line Format --innodb-api-bk-commit-interval=#

Deprecated 8.0.22

System Variable innodb_api_bk_commit_interval

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 5

Minimum Value 1

Maximum Value 1073741824

Unit seconds

How often to auto-commit idle connections that use the InnoDB memcached interface, in seconds.
For more information, see Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB
memcached Plugin”.

• innodb_api_disable_rowlock

Command-Line Format --innodb-api-disable-rowlock[={OFF|
ON}]

Deprecated 8.0.22

System Variable innodb_api_disable_rowlock

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Use this option to disable row locks when InnoDB memcached performs DML operations. By default,
innodb_api_disable_rowlock is disabled, which means that memcached requests row locks for
get and set operations. When innodb_api_disable_rowlock is enabled, memcached requests
a table lock instead of row locks.

innodb_api_disable_rowlock is not dynamic. It must be specified on the mysqld command
line or entered in the MySQL configuration file. Configuration takes effect when the plugin is installed,
which occurs when the MySQL server is started.

For more information, see Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB
memcached Plugin”.

3405

InnoDB System Variables

• innodb_api_enable_binlog

Command-Line Format --innodb-api-enable-binlog[={OFF|
ON}]

Deprecated 8.0.22

System Variable innodb_api_enable_binlog

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Lets you use the InnoDB memcached plugin with the MySQL binary log. For more information, see
Enabling the InnoDB memcached Binary Log.

• innodb_api_enable_mdl

Command-Line Format --innodb-api-enable-mdl[={OFF|ON}]

Deprecated 8.0.22

System Variable innodb_api_enable_mdl

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Locks the table used by the InnoDB memcached plugin, so that it cannot be dropped or altered
by DDL through the SQL interface. For more information, see Section 17.20.6.4, “Controlling
Transactional Behavior of the InnoDB memcached Plugin”.

• innodb_api_trx_level

Command-Line Format --innodb-api-trx-level=#

Deprecated 8.0.22

System Variable innodb_api_trx_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 3

Controls the transaction isolation level on queries processed by the memcached interface. The
constants corresponding to the familiar names are:

• 0 = READ UNCOMMITTED

• 1 = READ COMMITTED
3406

InnoDB System Variables

• 2 = REPEATABLE READ

• 3 = SERIALIZABLE

For more information, see Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB
memcached Plugin”.

• innodb_autoextend_increment

Command-Line Format --innodb-autoextend-increment=#

System Variable innodb_autoextend_increment

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 64

Minimum Value 1

Maximum Value 1000

Unit megabytes

The increment size (in megabytes) for extending the size of an auto-extending InnoDB system
tablespace file when it becomes full. The default value is 64. For related information, see System
Tablespace Data File Configuration, and Resizing the System Tablespace.

The innodb_autoextend_increment setting does not affect file-per-table tablespace
files or general tablespace files. These files are auto-extending regardless of the
innodb_autoextend_increment setting. The initial extensions are by small amounts, after which
extensions occur in increments of 4MB.

• innodb_autoinc_lock_mode

Command-Line Format --innodb-autoinc-lock-mode=#

System Variable innodb_autoinc_lock_mode

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 2

Valid Values 0

1

2

The lock mode to use for generating auto-increment values. Permissible values are 0, 1, or 2, for
traditional, consecutive, or interleaved, respectively.

The default setting is 2 (interleaved) as of MySQL 8.0, and 1 (consecutive) before that. The change
to interleaved lock mode as the default setting reflects the change from statement-based to row-
based replication as the default replication type, which occurred in MySQL 5.7. Statement-based
replication requires the consecutive auto-increment lock mode to ensure that auto-increment

3407

InnoDB System Variables

values are assigned in a predictable and repeatable order for a given sequence of SQL statements,
whereas row-based replication is not sensitive to the execution order of SQL statements.

For the characteristics of each lock mode, see InnoDB AUTO_INCREMENT Lock Modes.

• innodb_background_drop_list_empty

Command-Line Format --innodb-background-drop-list-
empty[={OFF|ON}]

System Variable innodb_background_drop_list_empty

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enabling the innodb_background_drop_list_empty debug option helps avoid test case
failures by delaying table creation until the background drop list is empty. For example, if test case A
places table t1 on the background drop list, test case B waits until the background drop list is empty
before creating table t1.

• innodb_buffer_pool_chunk_size

Command-Line Format --innodb-buffer-pool-chunk-size=#

System Variable innodb_buffer_pool_chunk_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 134217728

Minimum Value 1048576

Maximum Value innodb_buffer_pool_size /
innodb_buffer_pool_instances

Unit bytes

innodb_buffer_pool_chunk_size defines the chunk size for InnoDB buffer pool resizing
operations.

To avoid copying all buffer pool pages during resizing operations, the operation is performed
in “chunks”. By default, innodb_buffer_pool_chunk_size is 128MB (134217728 bytes).
The number of pages contained in a chunk depends on the value of innodb_page_size.
innodb_buffer_pool_chunk_size can be increased or decreased in units of 1MB (1048576
bytes).

The following conditions apply when altering the innodb_buffer_pool_chunk_size value:

• If innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances
is larger than the current buffer pool size when the buffer pool is initialized,
innodb_buffer_pool_chunk_size is truncated to innodb_buffer_pool_size /
innodb_buffer_pool_instances.

• Buffer pool size must always be equal to or a multiple of innodb_buffer_pool_chunk_size
* innodb_buffer_pool_instances. If you alter innodb_buffer_pool_chunk_size,

3408

InnoDB System Variables

innodb_buffer_pool_size is automatically rounded to a value that is equal to or a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances. The adjustment
occurs when the buffer pool is initialized.

Important

Care should be taken when changing innodb_buffer_pool_chunk_size,
as changing this value can automatically increase the size of the buffer pool.
Before changing innodb_buffer_pool_chunk_size, calculate its effect
on innodb_buffer_pool_size to ensure that the resulting buffer pool size
is acceptable.

To avoid potential performance issues, the number of chunks (innodb_buffer_pool_size /
innodb_buffer_pool_chunk_size) should not exceed 1000.

The innodb_buffer_pool_size variable is dynamic, which permits resizing the buffer
pool while the server is online. However, the buffer pool size must be equal to or a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances, and changing either
of those variable settings requires restarting the server.

See Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size” for more information.

• innodb_buffer_pool_debug

Command-Line Format --innodb-buffer-pool-debug[={OFF|
ON}]

System Variable innodb_buffer_pool_debug

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enabling this option permits multiple buffer pool instances when the buffer pool is less
than 1GB in size, ignoring the 1GB minimum buffer pool size constraint imposed on
innodb_buffer_pool_instances. The innodb_buffer_pool_debug option is only available
if debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_buffer_pool_dump_at_shutdown

Command-Line Format --innodb-buffer-pool-dump-at-
shutdown[={OFF|ON}]

System Variable innodb_buffer_pool_dump_at_shutdown

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Specifies whether to record the pages cached in the InnoDB buffer pool when the MySQL server
is shut down, to shorten the warmup process at the next restart. Typically used in combination with

3409

InnoDB System Variables

innodb_buffer_pool_load_at_startup. The innodb_buffer_pool_dump_pct option
defines the percentage of most recently used buffer pool pages to dump.

Both innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup are enabled by default.

For more information, see Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_dump_now

Command-Line Format --innodb-buffer-pool-dump-now[={OFF|
ON}]

System Variable innodb_buffer_pool_dump_now

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Immediately makes a record of pages cached in the InnoDB buffer pool. Typically used in
combination with innodb_buffer_pool_load_now.

Enabling innodb_buffer_pool_dump_now triggers the recording action but does not alter the
variable setting, which always remains OFF or 0. To view buffer pool dump status after triggering a
dump, query the Innodb_buffer_pool_dump_status variable.

Enabling innodb_buffer_pool_dump_now triggers the dump action but does not alter the
variable setting, which always remains OFF or 0. To view buffer pool dump status after triggering a
dump, query the Innodb_buffer_pool_dump_status variable.

For more information, see Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_dump_pct

Command-Line Format --innodb-buffer-pool-dump-pct=#

System Variable innodb_buffer_pool_dump_pct

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 25

Minimum Value 1

Maximum Value 100

Specifies the percentage of the most recently used pages for each buffer pool to read out and dump.
The range is 1 to 100. The default value is 25. For example, if there are 4 buffer pools with 100
pages each, and innodb_buffer_pool_dump_pct is set to 25, the 25 most recently used pages
from each buffer pool are dumped.

• innodb_buffer_pool_filename

Command-Line Format --innodb-buffer-pool-
filename=file_name

System Variable innodb_buffer_pool_filename

3410

InnoDB System Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value ib_buffer_pool

Specifies the name of the file that holds the list of tablespace IDs and page IDs produced by
innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now. Tablespace
IDs and page IDs are saved in the following format: space, page_id. By default, the file is named
ib_buffer_pool and is located in the InnoDB data directory. A non-default location must be
specified relative to the data directory.

A file name can be specified at runtime, using a SET statement:

SET GLOBAL innodb_buffer_pool_filename='file_name';

You can also specify a file name at startup, in a startup string or MySQL configuration file. When
specifying a file name at startup, the file must exist or InnoDB returns a startup error indicating that
there is no such file or directory.

For more information, see Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_in_core_file

Command-Line Format --innodb-buffer-pool-in-core-
file[={OFF|ON}]

Introduced 8.0.14

System Variable innodb_buffer_pool_in_core_file

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Disabling the innodb_buffer_pool_in_core_file variable reduces the size of core files by
excluding InnoDB buffer pool pages. To use this variable, the core_file variable must be enabled
and the operating system must support the MADV_DONTDUMP non-POSIX extension to madvise(),
which is supported in Linux 3.4 and later. For more information, see Section 17.8.3.7, “Excluding
Buffer Pool Pages from Core Files”.

• innodb_buffer_pool_instances

Command-Line Format --innodb-buffer-pool-instances=#

System Variable innodb_buffer_pool_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (Windows, 32-bit platforms) see description

Default Value (Other) 8 (or 1 if innodb_buffer_pool_size <
1GB)

Minimum Value 1

3411

InnoDB System Variables

Maximum Value 64

The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in
the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency,
by reducing contention as different threads read and write to cached pages. Each page that is stored
in or read from the buffer pool is assigned to one of the buffer pool instances randomly, using a
hashing function. Each buffer pool manages its own free lists, flush lists, LRUs, and all other data
structures connected to a buffer pool, and is protected by its own buffer pool mutex.

This option only takes effect when setting innodb_buffer_pool_size to 1GB or more. The total
buffer pool size is divided among all the buffer pools. For best efficiency, specify a combination of
innodb_buffer_pool_instances and innodb_buffer_pool_size so that each buffer pool
instance is at least 1GB.

The default value on 32-bit Windows systems depends on the value of
innodb_buffer_pool_size, as described below:

• If innodb_buffer_pool_size is greater than 1.3GB, the default for
innodb_buffer_pool_instances is innodb_buffer_pool_size/128MB, with individual
memory allocation requests for each chunk. 1.3GB was chosen as the boundary at which there is
significant risk for 32-bit Windows to be unable to allocate the contiguous address space needed
for a single buffer pool.

• Otherwise, the default is 1.

On all other platforms, the default value is 8 when innodb_buffer_pool_size is greater than or
equal to 1GB. Otherwise, the default is 1.

For related information, see Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”.

• innodb_buffer_pool_load_abort

Command-Line Format --innodb-buffer-pool-load-
abort[={OFF|ON}]

System Variable innodb_buffer_pool_load_abort

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Interrupts the process of restoring InnoDB buffer pool contents triggered by
innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now.

Enabling innodb_buffer_pool_load_abort triggers the abort action but does not alter the
variable setting, which always remains OFF or 0. To view buffer pool load status after triggering an
abort action, query the Innodb_buffer_pool_load_status variable.

For more information, see Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_load_at_startup

Command-Line Format --innodb-buffer-pool-load-at-
startup[={OFF|ON}]

System Variable innodb_buffer_pool_load_at_startup

Scope Global
3412

InnoDB System Variables

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Specifies that, on MySQL server startup, the InnoDB buffer pool is automatically warmed
up by loading the same pages it held at an earlier time. Typically used in combination with
innodb_buffer_pool_dump_at_shutdown.

Both innodb_buffer_pool_dump_at_shutdown and
innodb_buffer_pool_load_at_startup are enabled by default.

For more information, see Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_load_now

Command-Line Format --innodb-buffer-pool-load-now[={OFF|
ON}]

System Variable innodb_buffer_pool_load_now

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Immediately warms up the InnoDB buffer pool by loading data pages without waiting for a server
restart. Can be useful to bring cache memory back to a known state during benchmarking or to ready
the MySQL server to resume its normal workload after running queries for reports or maintenance.

Enabling innodb_buffer_pool_load_now triggers the load action but does not alter the variable
setting, which always remains OFF or 0. To view buffer pool load progress after triggering a load,
query the Innodb_buffer_pool_load_status variable.

For more information, see Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”.

• innodb_buffer_pool_size

Command-Line Format --innodb-buffer-pool-size=#

System Variable innodb_buffer_pool_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 134217728

Minimum Value 5242880

Maximum Value (64-bit platforms) 2**64-1

Maximum Value (32-bit platforms) 2**32-1

Unit bytes

The size in bytes of the buffer pool, the memory area where InnoDB caches table and index
data. The default value is 134217728 bytes (128MB). The maximum value depends on the CPU
architecture; the maximum is 4294967295 (232-1) on 32-bit systems and 18446744073709551615

3413

InnoDB System Variables

(264-1) on 64-bit systems. On 32-bit systems, the CPU architecture and operating system may
impose a lower practical maximum size than the stated maximum. When the size of the buffer pool
is greater than 1GB, setting innodb_buffer_pool_instances to a value greater than 1 can
improve the scalability on a busy server.

A larger buffer pool requires less disk I/O to access the same table data more than once. On a
dedicated database server, you might set the buffer pool size to 80% of the machine's physical
memory size. Be aware of the following potential issues when configuring buffer pool size, and be
prepared to scale back the size of the buffer pool if necessary.

• Competition for physical memory can cause paging in the operating system.

• InnoDB reserves additional memory for buffers and control structures, so that the total allocated
space is approximately 10% greater than the specified buffer pool size.

• Address space for the buffer pool must be contiguous, which can be an issue on Windows
systems with DLLs that load at specific addresses.

• The time to initialize the buffer pool is roughly proportional to its size. On instances with large
buffer pools, initialization time might be significant. To reduce the initialization period, you can save
the buffer pool state at server shutdown and restore it at server startup. See Section 17.8.3.6,
“Saving and Restoring the Buffer Pool State”.

When you increase or decrease buffer pool size, the operation is performed in chunks. Chunk size is
defined by the innodb_buffer_pool_chunk_size variable, which has a default of 128 MB.

Buffer pool size must always be equal to or a multiple of innodb_buffer_pool_chunk_size *
innodb_buffer_pool_instances. If you alter the buffer pool size to a value that is not equal
to or a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances,
buffer pool size is automatically adjusted to a value that is equal to or a multiple of
innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances.

innodb_buffer_pool_size can be set dynamically, which allows you to resize the buffer pool
without restarting the server. The Innodb_buffer_pool_resize_status status variable reports
the status of online buffer pool resizing operations. See Section 17.8.3.1, “Configuring InnoDB Buffer
Pool Size” for more information.

If the server is started with --innodb-dedicated-server, the innodb_buffer_pool_size
value is determined automatically if it is not explicitly defined. For more information, see
Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server”.

• innodb_change_buffer_max_size

Command-Line Format --innodb-change-buffer-max-size=#

System Variable innodb_change_buffer_max_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 25

Minimum Value 0

Maximum Value 50

Maximum size for the InnoDB change buffer, as a percentage of the total size of the buffer pool.
You might increase this value for a MySQL server with heavy insert, update, and delete activity,
or decrease it for a MySQL server with unchanging data used for reporting. For more information,

3414

InnoDB System Variables

see Section 17.5.2, “Change Buffer”. For general I/O tuning advice, see Section 10.5.8, “Optimizing
InnoDB Disk I/O”.

• innodb_change_buffering

Command-Line Format --innodb-change-buffering=value

System Variable innodb_change_buffering

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value all

Valid Values none

inserts

deletes

changes

purges

all

Whether InnoDB performs change buffering, an optimization that delays write operations to
secondary indexes so that the I/O operations can be performed sequentially. Permitted values are
described in the following table. Values may also be specified numerically.

Table 17.25 Permitted Values for innodb_change_buffering

Value Numeric Value Description

none 0 Do not buffer any operations.

inserts 1 Buffer insert operations.

deletes 2 Buffer delete marking
operations; strictly speaking, the
writes that mark index records
for later deletion during a purge
operation.

changes 3 Buffer inserts and delete-
marking operations.

purges 4 Buffer the physical deletion
operations that happen in the
background.

all 5 The default. Buffer inserts,
delete-marking operations, and
purges.

For more information, see Section 17.5.2, “Change Buffer”. For general I/O tuning advice, see
Section 10.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_change_buffering_debug

Command-Line Format --innodb-change-buffering-debug=#

System Variable innodb_change_buffering_debug 3415

InnoDB System Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2

Sets a debug flag for InnoDB change buffering. A value of 1 forces all changes to the change buffer.
A value of 2 causes an unexpected exit at merge. A default value of 0 indicates that the change
buffering debug flag is not set. This option is only available when debugging support is compiled in
using the WITH_DEBUG CMake option.

• innodb_checkpoint_disabled

Command-Line Format --innodb-checkpoint-disabled[={OFF|
ON}]

System Variable innodb_checkpoint_disabled

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This is a debug option that is only intended for expert debugging use. It disables checkpoints so
that a deliberate server exit always initiates InnoDB recovery. It should only be enabled for a short
interval, typically before running DML operations that write redo log entries that would require
recovery following a server exit. This option is only available if debugging support is compiled in
using the WITH_DEBUG CMake option.

• innodb_checksum_algorithm

Command-Line Format --innodb-checksum-algorithm=value

System Variable innodb_checksum_algorithm

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value crc32

Valid Values crc32

strict_crc32

innodb

strict_innodb

none

3416

InnoDB System Variables

strict_none

Specifies how to generate and verify the checksum stored in the disk blocks of InnoDB tablespaces.
The default value for innodb_checksum_algorithm is crc32.

Versions of MySQL Enterprise Backup up to 3.8.0 do not support backing up tablespaces that use
CRC32 checksums. MySQL Enterprise Backup adds CRC32 checksum support in 3.8.1, with some
limitations. Refer to the MySQL Enterprise Backup 3.8.1 Change History for more information.

The value innodb is backward-compatible with earlier versions of MySQL. The value crc32 uses
an algorithm that is faster to compute the checksum for every modified block, and to check the
checksums for each disk read. It scans blocks 64 bits at a time, which is faster than the innodb
checksum algorithm, which scans blocks 8 bits at a time. The value none writes a constant value
in the checksum field rather than computing a value based on the block data. The blocks in a
tablespace can use a mix of old, new, and no checksum values, being updated gradually as the data
is modified; once blocks in a tablespace are modified to use the crc32 algorithm, the associated
tables cannot be read by earlier versions of MySQL.

The strict form of a checksum algorithm reports an error if it encounters a valid but non-matching
checksum value in a tablespace. It is recommended that you only use strict settings in a new
instance, to set up tablespaces for the first time. Strict settings are somewhat faster, because they do
not need to compute all checksum values during disk reads.

The following table shows the difference between the none, innodb, and crc32 option values,
and their strict counterparts. none, innodb, and crc32 write the specified type of checksum
value into each data block, but for compatibility accept other checksum values when verifying
a block during a read operation. Strict settings also accept valid checksum values but print an
error message when a valid non-matching checksum value is encountered. Using the strict form
can make verification faster if all InnoDB data files in an instance are created under an identical
innodb_checksum_algorithm value.

Table 17.26 Permitted innodb_checksum_algorithm Values

Value Generated checksum (when
writing)

Permitted checksums (when
reading)

none A constant number. Any of the checksums
generated by none, innodb, or
crc32.

innodb A checksum calculated in
software, using the original
algorithm from InnoDB.

Any of the checksums
generated by none, innodb, or
crc32.

crc32 A checksum calculated using
the crc32 algorithm, possibly
done with a hardware assist.

Any of the checksums
generated by none, innodb, or
crc32.

strict_none A constant number Any of the checksums
generated by none, innodb,
or crc32. InnoDB prints an
error message if a valid but
non-matching checksum is
encountered.

strict_innodb A checksum calculated in
software, using the original
algorithm from InnoDB.

Any of the checksums
generated by none, innodb,
or crc32. InnoDB prints an
error message if a valid but
non-matching checksum is
encountered.

3417

InnoDB System Variables

Value Generated checksum (when
writing)

Permitted checksums (when
reading)

strict_crc32 A checksum calculated using
the crc32 algorithm, possibly
done with a hardware assist.

Any of the checksums
generated by none, innodb,
or crc32. InnoDB prints an
error message if a valid but
non-matching checksum is
encountered.

• innodb_cmp_per_index_enabled

Command-Line Format --innodb-cmp-per-index-
enabled[={OFF|ON}]

System Variable innodb_cmp_per_index_enabled

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enables per-index compression-related statistics in the Information Schema
INNODB_CMP_PER_INDEX table. Because these statistics can be expensive to gather, only enable
this option on development, test, or replica instances during performance tuning related to InnoDB
compressed tables.

For more information, see Section 28.4.8, “The INFORMATION_SCHEMA
INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables”, and
Section 17.9.1.4, “Monitoring InnoDB Table Compression at Runtime”.

• innodb_commit_concurrency

Command-Line Format --innodb-commit-concurrency=#

System Variable innodb_commit_concurrency

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1000

The number of threads that can commit at the same time. A value of 0 (the default) permits any
number of transactions to commit simultaneously.

The value of innodb_commit_concurrency cannot be changed at runtime from zero to nonzero
or vice versa. The value can be changed from one nonzero value to another.

• innodb_compress_debug

Command-Line Format --innodb-compress-debug=value

System Variable innodb_compress_debug

Scope Global

3418

InnoDB System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value none

Valid Values none

zlib

lz4

lz4hc

Compresses all tables using a specified compression algorithm without having to define a
COMPRESSION attribute for each table. This option is only available if debugging support is compiled
in using the WITH_DEBUG CMake option.

For related information, see Section 17.9.2, “InnoDB Page Compression”.

• innodb_compression_failure_threshold_pct

Command-Line Format --innodb-compression-failure-
threshold-pct=#

System Variable innodb_compression_failure_threshold_pct

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 100

Defines the compression failure rate threshold for a table, as a percentage, at which point MySQL
begins adding padding within compressed pages to avoid expensive compression failures. When
this threshold is passed, MySQL begins to leave additional free space within each new compressed
page, dynamically adjusting the amount of free space up to the percentage of page size specified
by innodb_compression_pad_pct_max. A value of zero disables the mechanism that monitors
compression efficiency and dynamically adjusts the padding amount.

For more information, see Section 17.9.1.6, “Compression for OLTP Workloads”.

• innodb_compression_level

Command-Line Format --innodb-compression-level=#

System Variable innodb_compression_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 6

Minimum Value 0

3419

InnoDB System Variables

Maximum Value 9

Specifies the level of zlib compression to use for InnoDB compressed tables and indexes. A higher
value lets you fit more data onto a storage device, at the expense of more CPU overhead during
compression. A lower value lets you reduce CPU overhead when storage space is not critical, or you
expect the data is not especially compressible.

For more information, see Section 17.9.1.6, “Compression for OLTP Workloads”.

• innodb_compression_pad_pct_max

Command-Line Format --innodb-compression-pad-pct-max=#

System Variable innodb_compression_pad_pct_max

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 50

Minimum Value 0

Maximum Value 75

Specifies the maximum percentage that can be reserved as free space within each compressed
page, allowing room to reorganize the data and modification log within the page when a
compressed table or index is updated and the data might be recompressed. Only applies when
innodb_compression_failure_threshold_pct is set to a nonzero value, and the rate of
compression failures passes the cutoff point.

For more information, see Section 17.9.1.6, “Compression for OLTP Workloads”.

• innodb_concurrency_tickets

Command-Line Format --innodb-concurrency-tickets=#

System Variable innodb_concurrency_tickets

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 5000

Minimum Value 1

Maximum Value 4294967295

Determines the number of threads that can enter InnoDB concurrently. A thread is placed in a queue
when it tries to enter InnoDB if the number of threads has already reached the concurrency limit.
When a thread is permitted to enter InnoDB, it is given a number of “ tickets” equal to the value of
innodb_concurrency_tickets, and the thread can enter and leave InnoDB freely until it has
used up its tickets. After that point, the thread again becomes subject to the concurrency check (and
possible queuing) the next time it tries to enter InnoDB. The default value is 5000.

With a small innodb_concurrency_tickets value, small transactions that only need to process
a few rows compete fairly with larger transactions that process many rows. The disadvantage of
a small innodb_concurrency_tickets value is that large transactions must loop through the
queue many times before they can complete, which extends the amount of time required to complete
their task.

3420

InnoDB System Variables

With a large innodb_concurrency_tickets value, large transactions spend less time waiting
for a position at the end of the queue (controlled by innodb_thread_concurrency) and more
time retrieving rows. Large transactions also require fewer trips through the queue to complete their
task. The disadvantage of a large innodb_concurrency_tickets value is that too many large
transactions running at the same time can starve smaller transactions by making them wait a longer
time before executing.

With a nonzero innodb_thread_concurrency value, you may need to adjust the
innodb_concurrency_tickets value up or down to find the optimal balance between larger
and smaller transactions. The SHOW ENGINE INNODB STATUS report shows the number of tickets
remaining for an executing transaction in its current pass through the queue. This data may also be
obtained from the TRX_CONCURRENCY_TICKETS column of the Information Schema INNODB_TRX
table.

For more information, see Section 17.8.4, “Configuring Thread Concurrency for InnoDB”.

• innodb_data_file_path

Command-Line Format --innodb-data-file-path=file_name

System Variable innodb_data_file_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value ibdata1:12M:autoextend

Defines the name, size, and attributes of InnoDB system tablespace data files. If you do not specify
a value for innodb_data_file_path, the default behavior is to create a single auto-extending
data file, slightly larger than 12MB, named ibdata1.

The full syntax for a data file specification includes the file name, file size, autoextend attribute,
and max attribute:

file_name:file_size[:autoextend[:max:max_file_size]]

File sizes are specified in kilobytes, megabytes, or gigabytes by appending K, M or G to the size
value. If specifying the data file size in kilobytes, do so in multiples of 1024. Otherwise, KB values are
rounded to nearest megabyte (MB) boundary. The sum of file sizes must be, at a minimum, slightly
larger than 12MB.

For additional configuration information, see System Tablespace Data File Configuration. For
resizing instructions, see Resizing the System Tablespace.

• innodb_data_home_dir

Command-Line Format --innodb-data-home-dir=dir_name

System Variable innodb_data_home_dir

Scope Global

Dynamic No

SET_VAR Hint Applies No

3421

InnoDB System Variables

Type Directory name

The common part of the directory path for InnoDB system tablespace data files. The default value is
the MySQL data directory. The setting is concatenated with the innodb_data_file_path setting,
unless that setting is defined with an absolute path.

A trailing slash is required when specifying a value for innodb_data_home_dir. For example:

[mysqld]
innodb_data_home_dir = /path/to/myibdata/

This setting does not affect the location of file-per-table tablespaces.

For related information, see Section 17.8.1, “InnoDB Startup Configuration”.

• innodb_ddl_buffer_size

Command-Line Format --innodb-ddl-buffer-size=#

Introduced 8.0.27

System Variable innodb_ddl_buffer_size

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1048576

Minimum Value 65536

Maximum Value 4294967295

Unit bytes

Defines the maximum buffer size for DDL operations. The default setting is 1048576 bytes
(approximately 1 MB). Applies to online DDL operations that create or rebuild secondary
indexes. See Section 17.12.4, “Online DDL Memory Management”. The maximum buffer
size per DDL thread is the maximum buffer size divided by the number of DDL threads
(innodb_ddl_buffer_size/innodb_ddl_threads).

• innodb_ddl_log_crash_reset_debug

Command-Line Format --innodb-ddl-log-crash-reset-
debug[={OFF|ON}]

System Variable innodb_ddl_log_crash_reset_debug

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enable this debug option to reset DDL log crash injection counters to 1. This option is only available
when debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_ddl_threads

Command-Line Format --innodb-ddl-threads=#

Introduced 8.0.27

3422

InnoDB System Variables

System Variable innodb_ddl_threads

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 64

Defines the maximum number of parallel threads for the sort and build phases of index creation.
Applies to online DDL operations that create or rebuild secondary indexes. For related information,
see Section 17.12.5, “Configuring Parallel Threads for Online DDL Operations”, and Section 17.12.4,
“Online DDL Memory Management”.

• innodb_deadlock_detect

Command-Line Format --innodb-deadlock-detect[={OFF|ON}]

System Variable innodb_deadlock_detect

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This option is used to disable deadlock detection. On high concurrency systems, deadlock detection
can cause a slowdown when numerous threads wait for the same lock. At times, it may be more
efficient to disable deadlock detection and rely on the innodb_lock_wait_timeout setting for
transaction rollback when a deadlock occurs.

For related information, see Section 17.7.5.2, “Deadlock Detection”.

• innodb_default_row_format

Command-Line Format --innodb-default-row-format=value

System Variable innodb_default_row_format

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value DYNAMIC

Valid Values REDUNDANT

COMPACT

DYNAMIC

The innodb_default_row_format option defines the default row format for InnoDB tables
and user-created temporary tables. The default setting is DYNAMIC. Other permitted values are

3423

InnoDB System Variables

COMPACT and REDUNDANT. The COMPRESSED row format, which is not supported for use in the
system tablespace, cannot be defined as the default.

Newly created tables use the row format defined by innodb_default_row_format when a
ROW_FORMAT option is not specified explicitly or when ROW_FORMAT=DEFAULT is used.

When a ROW_FORMAT option is not specified explicitly or when ROW_FORMAT=DEFAULT is used, any
operation that rebuilds a table also silently changes the row format of the table to the format defined
by innodb_default_row_format. For more information, see Defining the Row Format of a Table.

Internal InnoDB temporary tables created by the server to process queries use the DYNAMIC row
format, regardless of the innodb_default_row_format setting.

• innodb_directories

Command-Line Format --innodb-directories=dir_name

System Variable innodb_directories

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value NULL

Defines directories to scan at startup for tablespace files. This option is used when moving or
restoring tablespace files to a new location while the server is offline. It is also used to specify
directories of tablespace files created using an absolute path or that reside outside of the data
directory.

Tablespace discovery during crash recovery relies on the innodb_directories setting to identify
tablespaces referenced in the redo logs. For more information, see Tablespace Discovery During
Crash Recovery.

The default value is NULL, but directories defined by innodb_data_home_dir,
innodb_undo_directory, and datadir are always appended to the innodb_directories
argument value when InnoDB builds a list of directories to scan at startup. These directories are
appended regardless of whether an innodb_directories setting is specified explicitly.

innodb_directories may be specified as an option in a startup command or in a MySQL option
file. Quotes surround the argument value because otherwise some command interpreters interpret
semicolon (;) as a special character. (For example, Unix shells treat it as a command terminator.)

Startup command:

mysqld --innodb-directories="directory_path_1;directory_path_2"

MySQL option file:

[mysqld]
innodb_directories="directory_path_1;directory_path_2"

Wildcard expressions cannot be used to specify directories.

The innodb_directories scan also traverses the subdirectories of specified directories.
Duplicate directories and subdirectories are discarded from the list of directories to be scanned.

For more information, see Section 17.6.3.6, “Moving Tablespace Files While the Server is Offline”.

3424

InnoDB System Variables

• innodb_disable_sort_file_cache

Command-Line Format --innodb-disable-sort-file-
cache[={OFF|ON}]

System Variable innodb_disable_sort_file_cache

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Disables the operating system file system cache for merge-sort temporary files. The effect is to open
such files with the equivalent of O_DIRECT.

• innodb_doublewrite

Command-Line Format --innodb-doublewrite=value (≥ 8.0.30)

--innodb-doublewrite[={OFF|ON}] (≤
8.0.29)

System Variable innodb_doublewrite

Scope Global

Dynamic (≥ 8.0.30) Yes

Dynamic (≤ 8.0.29) No

SET_VAR Hint Applies No

Type (≥ 8.0.30) Enumeration

Type (≤ 8.0.29) Boolean

Default Value ON

Valid Values ON

OFF

DETECT_AND_RECOVER

DETECT_ONLY

The innodb_doublewrite variable controls doublewrite buffering. Doublewrite buffering is
enabled by default in most cases.

Prior to MySQL 8.0.30, you can set innodb_doublewrite to ON or OFF when starting the server to
enable or disable doublewrite buffering, respectively. From MySQL 8.0.30, innodb_doublewrite
also supports DETECT_AND_RECOVER and DETECT_ONLY settings.

The DETECT_AND_RECOVER setting is the same as the ON setting. With this setting, the doublewrite
buffer is fully enabled, with database page content written to the doublewrite buffer where it is
accessed during recovery to fix incomplete page writes.

With the DETECT_ONLY setting, only metadata is written to the doublewrite buffer. Database page
content is not written to the doublewrite buffer, and recovery does not use the doublewrite buffer to
fix incomplete page writes. This lightweight setting is intended for detecting incomplete page writes
only.

MySQL 8.0.30 onwards supports dynamic changes to the innodb_doublewrite setting that
enables the doublewrite buffer, between ON, DETECT_AND_RECOVER, and DETECT_ONLY. MySQL

3425

InnoDB System Variables

does not support dynamic changes between a setting that enables the doublewrite buffer and OFF or
vice versa.

If the doublewrite buffer is located on a Fusion-io device that supports atomic writes, the doublewrite
buffer is automatically disabled and data file writes are performed using Fusion-io atomic writes
instead. However, be aware that the innodb_doublewrite setting is global. When the doublewrite
buffer is disabled, it is disabled for all data files including those that do not reside on Fusion-io
hardware. This feature is only supported on Fusion-io hardware and is only enabled for Fusion-
io NVMFS on Linux. To take full advantage of this feature, an innodb_flush_method setting of
O_DIRECT is recommended.

For related information, see Section 17.6.4, “Doublewrite Buffer”.

• innodb_doublewrite_batch_size

Command-Line Format --innodb-doublewrite-batch-size=#

Introduced 8.0.20

System Variable innodb_doublewrite_batch_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 256

This variable was intended to represent the number of doublewrite pages to write in a batch. This
functionality was replaced by innodb_doublewrite_pages.

For more information, see Section 17.6.4, “Doublewrite Buffer”.

• innodb_doublewrite_dir

Command-Line Format --innodb-doublewrite-dir=dir_name

Introduced 8.0.20

System Variable innodb_doublewrite_dir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Defines the directory for doublewrite files. If no directory is specified, doublewrite files are created in
the innodb_data_home_dir directory, which defaults to the data directory if unspecified.

For more information, see Section 17.6.4, “Doublewrite Buffer”.

• innodb_doublewrite_files

Command-Line Format --innodb-doublewrite-files=#

Introduced 8.0.20

System Variable innodb_doublewrite_files

Scope Global3426

InnoDB System Variables

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value innodb_buffer_pool_instances * 2

Minimum Value 1

Maximum Value 256

Defines the number of doublewrite files. By default, two doublewrite files are created for each buffer
pool instance.

At a minimum, there are two doublewrite files. The maximum number of doublewrite files is two
times the number of buffer pool instances. (The number of buffer pool instances is controlled by the
innodb_buffer_pool_instances variable.)

For more information, see Section 17.6.4, “Doublewrite Buffer”.

• innodb_doublewrite_pages

Command-Line Format --innodb-doublewrite-pages=#

Introduced 8.0.20

System Variable innodb_doublewrite_pages

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value innodb_write_io_threads value

Minimum Value innodb_write_io_threads value

Maximum Value 512

Defines the maximum number of doublewrite pages per thread for a batch write. If no value is
specified, innodb_doublewrite_pages is set to the innodb_write_io_threads value.

The default value changed from 4 (copied from innodb_write_io_threads in 8.0) to 128 in
MySQL 8.4.0. This small value could cause too many fsync operations for doublewrite operations.
For related information, see Section 10.5.8, “Optimizing InnoDB Disk I/O”.

For more information, see Section 17.6.4, “Doublewrite Buffer”.

• innodb_extend_and_initialize

Command-Line Format --innodb=extend-and-
initialize[={OFF|ON}]

Introduced 8.0.22

System Variable innodb_extend_and_initialize

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Controls how space is allocated to file-per-table and general tablespaces on Linux systems.

3427

InnoDB System Variables

When enabled, InnoDB writes NULLs to newly allocated pages. When disabled, space is allocated
using posix_fallocate() calls, which reserve space without physically writing NULLs.

For more information, see Section 17.6.3.8, “Optimizing Tablespace Space Allocation on Linux”.

• innodb_fast_shutdown

Command-Line Format --innodb-fast-shutdown=#

System Variable innodb_fast_shutdown

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Valid Values 0

1

2

The InnoDB shutdown mode. If the value is 0, InnoDB does a slow shutdown, a full purge and
a change buffer merge before shutting down. If the value is 1 (the default), InnoDB skips these
operations at shutdown, a process known as a fast shutdown. If the value is 2, InnoDB flushes its
logs and shuts down cold, as if MySQL had crashed; no committed transactions are lost, but the
crash recovery operation makes the next startup take longer.

The slow shutdown can take minutes, or even hours in extreme cases where substantial amounts of
data are still buffered. Use the slow shutdown technique before upgrading or downgrading between
MySQL major releases, so that all data files are fully prepared in case the upgrade process updates
the file format.

Use innodb_fast_shutdown=2 in emergency or troubleshooting situations, to get the absolute
fastest shutdown if data is at risk of corruption.

• innodb_fil_make_page_dirty_debug

Command-Line Format --innodb-fil-make-page-dirty-debug=#

System Variable innodb_fil_make_page_dirty_debug

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2**32-1

By default, setting innodb_fil_make_page_dirty_debug to the ID of a tablespace immediately
dirties the first page of the tablespace. If innodb_saved_page_number_debug is set to a non-
default value, setting innodb_fil_make_page_dirty_debug dirties the specified page. The
innodb_fil_make_page_dirty_debug option is only available if debugging support is compiled
in using the WITH_DEBUG CMake option.

• innodb_file_per_table

3428

InnoDB System Variables

Command-Line Format --innodb-file-per-table[={OFF|ON}]

System Variable innodb_file_per_table

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

When innodb_file_per_table is enabled, tables are created in file-per-table tablespaces by
default. When disabled, tables are created in the system tablespace by default. For information about
file-per-table tablespaces, see Section 17.6.3.2, “File-Per-Table Tablespaces”. For information about
the InnoDB system tablespace, see Section 17.6.3.1, “The System Tablespace”.

The innodb_file_per_table variable can be configured at runtime using a SET GLOBAL
statement, specified on the command line at startup, or specified in an option file. Configuration at
runtime requires privileges sufficient to set global system variables (see Section 7.1.9.1, “System
Variable Privileges”) and immediately affects the operation of all connections.

When a table that resides in a file-per-table tablespace is truncated or dropped, the freed space
is returned to the operating system. Truncating or dropping a table that resides in the system
tablespace only frees space in the system tablespace. Freed space in the system tablespace can be
used again for InnoDB data but is not returned to the operating system, as system tablespace data
files never shrink.

The innodb_file_per-table setting does not affect the creation of temporary tables. As of
MySQL 8.0.14, temporary tables are created in session temporary tablespaces, and in the global
temporary tablespace before that. See Section 17.6.3.5, “Temporary Tablespaces”.

• innodb_fill_factor

Command-Line Format --innodb-fill-factor=#

System Variable innodb_fill_factor

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 100

Minimum Value 10

Maximum Value 100

InnoDB performs a bulk load when creating or rebuilding indexes. This method of index creation is
known as a “sorted index build”.

innodb_fill_factor defines the percentage of space on each B-tree page that is filled during a
sorted index build, with the remaining space reserved for future index growth. For example, setting
innodb_fill_factor to 80 reserves 20 percent of the space on each B-tree page for future index

3429

InnoDB System Variables

growth. Actual percentages may vary. The innodb_fill_factor setting is interpreted as a hint
rather than a hard limit.

An innodb_fill_factor setting of 100 leaves 1/16 of the space in clustered index pages free for
future index growth.

innodb_fill_factor applies to both B-tree leaf and non-leaf pages. It does not apply to external
pages used for TEXT or BLOB entries.

For more information, see Section 17.6.2.3, “Sorted Index Builds”.

• innodb_flush_log_at_timeout

Command-Line Format --innodb-flush-log-at-timeout=#

System Variable innodb_flush_log_at_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 2700

Unit seconds

Write and flush the logs every N seconds. innodb_flush_log_at_timeout allows the timeout
period between flushes to be increased in order to reduce flushing and avoid impacting performance
of binary log group commit. The default setting for innodb_flush_log_at_timeout is once per
second.

• innodb_flush_log_at_trx_commit

Command-Line Format --innodb-flush-log-at-trx-commit=#

System Variable innodb_flush_log_at_trx_commit

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value 1

Valid Values 0

1

2

Controls the balance between strict ACID compliance for commit operations and higher performance
that is possible when commit-related I/O operations are rearranged and done in batches. You can
achieve better performance by changing the default value but then you can lose transactions in a
crash.

• The default setting of 1 is required for full ACID compliance. Logs are written and flushed to disk at
each transaction commit.

3430

InnoDB System Variables

• With a setting of 0, logs are written and flushed to disk once per second. Transactions for which
logs have not been flushed can be lost in a crash.

• With a setting of 2, logs are written after each transaction commit and flushed to disk once per
second. Transactions for which logs have not been flushed can be lost in a crash.

• For settings 0 and 2, once-per-second flushing is not 100% guaranteed. Flushing may occur
more frequently due to DDL changes and other internal InnoDB activities that cause logs to be
flushed independently of the innodb_flush_log_at_trx_commit setting, and sometimes
less frequently due to scheduling issues. If logs are flushed once per second, up to one second
of transactions can be lost in a crash. If logs are flushed more or less frequently than once per
second, the amount of transactions that can be lost varies accordingly.

• Log flushing frequency is controlled by innodb_flush_log_at_timeout, which allows you
to set log flushing frequency to N seconds (where N is 1 ... 2700, with a default value of 1).
However, any unexpected mysqld process exit can erase up to N seconds of transactions.

• DDL changes and other internal InnoDB activities flush the log independently of the
innodb_flush_log_at_trx_commit setting.

• InnoDB crash recovery works regardless of the innodb_flush_log_at_trx_commit setting.
Transactions are either applied entirely or erased entirely.

For durability and consistency in a replication setup that uses InnoDB with transactions:

• If binary logging is enabled, set sync_binlog=1.

• Always set innodb_flush_log_at_trx_commit=1.

For information on the combination of settings on a replica that is most resilient to unexpected halts,
see Section 19.4.2, “Handling an Unexpected Halt of a Replica”.

Caution

Many operating systems and some disk hardware fool the flush-to-disk
operation. They may tell mysqld that the flush has taken place, even though
it has not. In this case, the durability of transactions is not guaranteed even
with the recommended settings, and in the worst case, a power outage can
corrupt InnoDB data. Using a battery-backed disk cache in the SCSI disk
controller or in the disk itself speeds up file flushes, and makes the operation
safer. You can also try to disable the caching of disk writes in hardware
caches.

• innodb_flush_method

Command-Line Format --innodb-flush-method=value

System Variable innodb_flush_method

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value (Unix) fsync

Default Value (Windows) unbuffered

Valid Values (Unix) fsync

O_DSYNC

3431

InnoDB System Variables

littlesync

nosync

O_DIRECT

O_DIRECT_NO_FSYNC

Valid Values (Windows) unbuffered

normal

Defines the method used to flush data to InnoDB data files and log files, which can affect I/O
throughput.

On Unix-like systems, the default value is fsync. On Windows, the default value is unbuffered.

Note

In MySQL 8.0, innodb_flush_method options can be specified
numerically.

The innodb_flush_method options for Unix-like systems include:

• fsync or 0: InnoDB uses the fsync() system call to flush both the data and log files. fsync is
the default setting.

• O_DSYNC or 1: InnoDB uses O_SYNC to open and flush the log files, and fsync() to flush the
data files. InnoDB does not use O_DSYNC directly because there have been problems with it on
many varieties of Unix.

• littlesync or 2: This option is used for internal performance testing and is currently
unsupported. Use at your own risk.

• nosync or 3: This option is used for internal performance testing and is currently unsupported.
Use at your own risk.

• O_DIRECT or 4: InnoDB uses O_DIRECT (or directio() on Solaris) to open the data files, and
uses fsync() to flush both the data and log files. This option is available on some GNU/Linux
versions, FreeBSD, and Solaris.

• O_DIRECT_NO_FSYNC: InnoDB uses O_DIRECT during flushing I/O, but skips the fsync()
system call after each write operation.

Prior to MySQL 8.0.14, this setting is not suitable for file systems such as XFS and EXT4, which
require an fsync() system call to synchronize file system metadata changes. If you are not sure
whether your file system requires an fsync() system call to synchronize file system metadata
changes, use O_DIRECT instead.

As of MySQL 8.0.14, fsync() is called after creating a new file, after increasing file size, and
after closing a file, to ensure that file system metadata changes are synchronized. The fsync()
system call is still skipped after each write operation.

Data loss is possible if redo log files and data files reside on different storage devices, and an
unexpected exit occurs before data file writes are flushed from a device cache that is not battery-
backed. If you use or intend to use different storage devices for redo log files and data files, and
your data files reside on a device with a cache that is not battery-backed, use O_DIRECT instead.

On platforms that support fdatasync() system calls, the innodb_use_fdatasync variable,
introduced in MySQL 8.0.26, permits innodb_flush_method options that use fsync() to use

3432

InnoDB System Variables

fdatasync() instead. An fdatasync() system call does not flush changes to file metadata
unless required for subsequent data retrieval, providing a potential performance benefit.

The innodb_flush_method options for Windows systems include:

• unbuffered or 0: InnoDB uses non-buffered I/O.

Note

Running MySQL server on a 4K sector hard drive on Windows
is not supported with unbuffered. The workaround is to use
innodb_flush_method=normal.

• normal or 1: InnoDB uses buffered I/O.

How each setting affects performance depends on hardware configuration and workload. Benchmark
your particular configuration to decide which setting to use, or whether to keep the default setting.
Examine the Innodb_data_fsyncs status variable to see the overall number of fsync() calls (or
fdatasync() calls if innodb_use_fdatasync is enabled) for each setting. The mix of read and
write operations in your workload can affect how a setting performs. For example, on a system with
a hardware RAID controller and battery-backed write cache, O_DIRECT can help to avoid double
buffering between the InnoDB buffer pool and the operating system file system cache. On some
systems where InnoDB data and log files are located on a SAN, the default value or O_DSYNC might
be faster for a read-heavy workload with mostly SELECT statements. Always test this parameter with
hardware and workload that reflect your production environment. For general I/O tuning advice, see
Section 10.5.8, “Optimizing InnoDB Disk I/O”.

If the server is started with --innodb-dedicated-server, the value of innodb_flush_method
is set automatically if it is not explicitly defined. For more information, see Section 17.8.12, “Enabling
Automatic InnoDB Configuration for a Dedicated MySQL Server”.

• innodb_flush_neighbors

Command-Line Format --innodb-flush-neighbors=#

System Variable innodb_flush_neighbors

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value 0

Valid Values 0

1

2

Specifies whether flushing a page from the InnoDB buffer pool also flushes other dirty pages in the
same extent.

• A setting of 0 disables innodb_flush_neighbors. Dirty pages in the same extent are not
flushed.

• A setting of 1 flushes contiguous dirty pages in the same extent.

3433

InnoDB System Variables

• A setting of 2 flushes dirty pages in the same extent.

When the table data is stored on a traditional HDD storage device, flushing such neighbor pages
in one operation reduces I/O overhead (primarily for disk seek operations) compared to flushing
individual pages at different times. For table data stored on SSD, seek time is not a significant
factor and you can set this option to 0 to spread out write operations. For related information, see
Section 17.8.3.5, “Configuring Buffer Pool Flushing”.

• innodb_flush_sync

Command-Line Format --innodb-flush-sync[={OFF|ON}]

System Variable innodb_flush_sync

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

The innodb_flush_sync variable, which is enabled by default, causes the
innodb_io_capacity and innodb_io_capacity_max settings to be ignored during bursts of
I/O activity that occur at checkpoints. To adhere to the I/O rate defined by innodb_io_capacity
and innodb_io_capacity_max, disable innodb_flush_sync.

For information about configuring the innodb_flush_sync variable, see Section 17.8.7,
“Configuring InnoDB I/O Capacity”.

• innodb_flushing_avg_loops

Command-Line Format --innodb-flushing-avg-loops=#

System Variable innodb_flushing_avg_loops

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 30

Minimum Value 1

Maximum Value 1000

Number of iterations for which InnoDB keeps the previously calculated snapshot of the flushing
state, controlling how quickly adaptive flushing responds to changing workloads. Increasing the
value makes the rate of flush operations change smoothly and gradually as the workload changes.
Decreasing the value makes adaptive flushing adjust quickly to workload changes, which can cause
spikes in flushing activity if the workload increases and decreases suddenly.

For related information, see Section 17.8.3.5, “Configuring Buffer Pool Flushing”.

• innodb_force_load_corrupted

Command-Line Format --innodb-force-load-corrupted[={OFF|
ON}]

System Variable innodb_force_load_corrupted

Scope Global
3434

InnoDB System Variables

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Permits InnoDB to load tables at startup that are marked as corrupted. Use only during
troubleshooting, to recover data that is otherwise inaccessible. When troubleshooting is complete,
disable this setting and restart the server.

• innodb_force_recovery

Command-Line Format --innodb-force-recovery=#

System Variable innodb_force_recovery

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 6

The crash recovery mode, typically only changed in serious troubleshooting situations. Possible
values are from 0 to 6. For the meanings of these values and important information about
innodb_force_recovery, see Section 17.21.3, “Forcing InnoDB Recovery”.

Warning

Only set this variable to a value greater than 0 in an emergency
situation so that you can start InnoDB and dump your tables. As
a safety measure, InnoDB prevents INSERT, UPDATE, or DELETE
operations when innodb_force_recovery is greater than 0. An
innodb_force_recovery setting of 4 or greater places InnoDB into read-
only mode.

These restrictions may cause replication administration commands to fail with
an error, as replication stores the replica status logs in InnoDB tables.

• innodb_fsync_threshold

Command-Line Format --innodb-fsync-threshold=#

Introduced 8.0.13

System Variable innodb_fsync_threshold

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

3435

InnoDB System Variables

Maximum Value 2**64-1

By default, when InnoDB creates a new data file, such as a new log file or tablespace file, the
file is fully written to the operating system cache before it is flushed to disk, which can cause a
large amount of disk write activity to occur at once. To force smaller, periodic flushes of data from
the operating system cache, you can use the innodb_fsync_threshold variable to define a
threshold value, in bytes. When the byte threshold is reached, the contents of the operating system
cache are flushed to disk. The default value of 0 forces the default behavior, which is to flush data to
disk only after a file is fully written to the cache.

Specifying a threshold to force smaller, periodic flushes may be beneficial in cases where multiple
MySQL instances use the same storage devices. For example, creating a new MySQL instance and
its associated data files could cause large surges of disk write activity, impeding the performance of
other MySQL instances that use the same storage devices. Configuring a threshold helps avoid such
surges in write activity.

• innodb_ft_aux_table

System Variable innodb_ft_aux_table

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Specifies the qualified name of an InnoDB table containing a FULLTEXT index. This variable is
intended for diagnostic purposes and can only be set at runtime. For example:

SET GLOBAL innodb_ft_aux_table = 'test/t1';

After you set this variable to a name in the format db_name/table_name, the
INFORMATION_SCHEMA tables INNODB_FT_INDEX_TABLE, INNODB_FT_INDEX_CACHE,
INNODB_FT_CONFIG, INNODB_FT_DELETED, and INNODB_FT_BEING_DELETED show information
about the search index for the specified table.

For more information, see Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index
Tables”.

• innodb_ft_cache_size

Command-Line Format --innodb-ft-cache-size=#

System Variable innodb_ft_cache_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 8000000

Minimum Value 1600000

Maximum Value 80000000

Unit bytes

The memory allocated, in bytes, for the InnoDB FULLTEXT search index cache, which holds
a parsed document in memory while creating an InnoDB FULLTEXT index. Index inserts and
updates are only committed to disk when the innodb_ft_cache_size size limit is reached.

3436

InnoDB System Variables

innodb_ft_cache_size defines the cache size on a per table basis. To set a global limit for all
tables, see innodb_ft_total_cache_size.

For more information, see InnoDB Full-Text Index Cache.

• innodb_ft_enable_diag_print

Command-Line Format --innodb-ft-enable-diag-print[={OFF|
ON}]

System Variable innodb_ft_enable_diag_print

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether to enable additional full-text search (FTS) diagnostic output. This option is primarily
intended for advanced FTS debugging and is not of interest to most users. Output is printed to the
error log and includes information such as:

• FTS index sync progress (when the FTS cache limit is reached). For example:

FTS SYNC for table test, deleted count: 100 size: 10000 bytes
SYNC words: 100

• FTS optimize progress. For example:

FTS start optimize test
FTS_OPTIMIZE: optimize "mysql"
FTS_OPTIMIZE: processed "mysql"

• FTS index build progress. For example:

Number of doc processed: 1000

• For FTS queries, the query parsing tree, word weight, query processing time, and memory usage
are printed. For example:

FTS Search Processing time: 1 secs: 100 millisec: row(s) 10000
Full Search Memory: 245666 (bytes), Row: 10000

• innodb_ft_enable_stopword

Command-Line Format --innodb-ft-enable-stopword[={OFF|
ON}]

System Variable innodb_ft_enable_stopword

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Specifies that a set of stopwords is associated with an InnoDB FULLTEXT index at the time the
index is created. If the innodb_ft_user_stopword_table option is set, the stopwords are taken

3437

InnoDB System Variables

from that table. Else, if the innodb_ft_server_stopword_table option is set, the stopwords are
taken from that table. Otherwise, a built-in set of default stopwords is used.

For more information, see Section 14.9.4, “Full-Text Stopwords”.

• innodb_ft_max_token_size

Command-Line Format --innodb-ft-max-token-size=#

System Variable innodb_ft_max_token_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 84

Minimum Value 10

Maximum Value 84

Maximum character length of words that are stored in an InnoDB FULLTEXT index. Setting a limit
on this value reduces the size of the index, thus speeding up queries, by omitting long keywords or
arbitrary collections of letters that are not real words and are not likely to be search terms.

For more information, see Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”.

• innodb_ft_min_token_size

Command-Line Format --innodb-ft-min-token-size=#

System Variable innodb_ft_min_token_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 16

Minimum length of words that are stored in an InnoDB FULLTEXT index. Increasing this value
reduces the size of the index, thus speeding up queries, by omitting common words that are unlikely
to be significant in a search context, such as the English words “a” and “to”. For content using a CJK
(Chinese, Japanese, Korean) character set, specify a value of 1.

For more information, see Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”.

• innodb_ft_num_word_optimize

Command-Line Format --innodb-ft-num-word-optimize=#

System Variable innodb_ft_num_word_optimize

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2000

3438

InnoDB System Variables

Minimum Value 1000

Maximum Value 10000

Number of words to process during each OPTIMIZE TABLE operation on an InnoDB FULLTEXT
index. Because a bulk insert or update operation to a table containing a full-text search index
could require substantial index maintenance to incorporate all changes, you might do a series of
OPTIMIZE TABLE statements, each picking up where the last left off.

For more information, see Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”.

• innodb_ft_result_cache_limit

Command-Line Format --innodb-ft-result-cache-limit=#

System Variable innodb_ft_result_cache_limit

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2000000000

Minimum Value 1000000

Maximum Value 2**32-1

Unit bytes

The InnoDB full-text search query result cache limit (defined in bytes) per full-text search query or
per thread. Intermediate and final InnoDB full-text search query results are handled in memory. Use
innodb_ft_result_cache_limit to place a size limit on the full-text search query result cache
to avoid excessive memory consumption in case of very large InnoDB full-text search query results
(millions or hundreds of millions of rows, for example). Memory is allocated as required when a full-
text search query is processed. If the result cache size limit is reached, an error is returned indicating
that the query exceeds the maximum allowed memory.

The maximum value of innodb_ft_result_cache_limit for all platform types and bit sizes is
2**32-1.

• innodb_ft_server_stopword_table

Command-Line Format --innodb-ft-server-stopword-
table=db_name/table_name

System Variable innodb_ft_server_stopword_table

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

3439

InnoDB System Variables

Default Value NULL

This option is used to specify your own InnoDB FULLTEXT index stopword list for all
InnoDB tables. To configure your own stopword list for a specific InnoDB table, use
innodb_ft_user_stopword_table.

Set innodb_ft_server_stopword_table to the name of the table containing a list of stopwords,
in the format db_name/table_name.

The stopword table must exist before you configure innodb_ft_server_stopword_table.
innodb_ft_enable_stopword must be enabled and innodb_ft_server_stopword_table
option must be configured before you create the FULLTEXT index.

The stopword table must be an InnoDB table, containing a single VARCHAR column named value.

For more information, see Section 14.9.4, “Full-Text Stopwords”.

• innodb_ft_sort_pll_degree

Command-Line Format --innodb-ft-sort-pll-degree=#

System Variable innodb_ft_sort_pll_degree

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 2

Minimum Value 1

Maximum Value 16

Number of threads used in parallel to index and tokenize text in an InnoDB FULLTEXT index when
building a search index.

For related information, see Section 17.6.2.4, “InnoDB Full-Text Indexes”, and
innodb_sort_buffer_size.

• innodb_ft_total_cache_size

Command-Line Format --innodb-ft-total-cache-size=#

System Variable innodb_ft_total_cache_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 640000000

Minimum Value 32000000

Maximum Value 1600000000

Unit bytes

The total memory allocated, in bytes, for the InnoDB full-text search index cache for all tables.
Creating numerous tables, each with a FULLTEXT search index, could consume a significant portion
of available memory. innodb_ft_total_cache_size defines a global memory limit for all full-

3440

InnoDB System Variables

text search indexes to help avoid excessive memory consumption. If the global limit is reached by an
index operation, a forced sync is triggered.

For more information, see InnoDB Full-Text Index Cache.

• innodb_ft_user_stopword_table

Command-Line Format --innodb-ft-user-stopword-
table=db_name/table_name

System Variable innodb_ft_user_stopword_table

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

This option is used to specify your own InnoDB FULLTEXT index stopword list
on a specific table. To configure your own stopword list for all InnoDB tables, use
innodb_ft_server_stopword_table.

Set innodb_ft_user_stopword_table to the name of the table containing a list of stopwords, in
the format db_name/table_name.

The stopword table must exist before you configure innodb_ft_user_stopword_table.
innodb_ft_enable_stopword must be enabled and innodb_ft_user_stopword_table
must be configured before you create the FULLTEXT index.

The stopword table must be an InnoDB table, containing a single VARCHAR column named value.

For more information, see Section 14.9.4, “Full-Text Stopwords”.

• innodb_idle_flush_pct

Command-Line Format --innodb-idle-flush-pct=#

Introduced 8.0.18

System Variable innodb_idle_flush_pct

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 100

Minimum Value 0

Maximum Value 100

Limits page flushing when InnoDB is idle. The innodb_idle_flush_pct value is a percentage
of the innodb_io_capacity setting, which defines the number of I/O operations per second
available to InnoDB. For more information, see Limiting Buffer Flushing During Idle Periods.

• innodb_io_capacity

Command-Line Format --innodb-io-capacity=#

System Variable innodb_io_capacity

Scope Global

3441

InnoDB System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 200

Minimum Value 100

Maximum Value (64-bit platforms, ≤ 8.0.37) 2**64-1

Maximum Value 2**32-1

The innodb_io_capacity variable defines the number of I/O operations per second (IOPS)
available to InnoDB background tasks, such as flushing pages from the buffer pool and merging
data from the change buffer.

For information about configuring the innodb_io_capacity variable, see Section 17.8.7,
“Configuring InnoDB I/O Capacity”.

• innodb_io_capacity_max

Command-Line Format --innodb-io-capacity-max=#

System Variable innodb_io_capacity_max

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2 * innodb_io_capacity, min of 2000

Minimum Value 100

Maximum Value (Unix, 64-bit platforms, ≤ 8.0.28) 2**64-1

Maximum Value (Other) 2**32-1

If flushing activity falls behind, InnoDB can flush more aggressively, at a higher rate of I/
O operations per second (IOPS) than defined by the innodb_io_capacity variable. The
innodb_io_capacity_max variable defines a maximum number of IOPS performed by InnoDB
background tasks in such situations. This option does not control innodb_flush_sync behavior.

For information about configuring the innodb_io_capacity_max variable, see Section 17.8.7,
“Configuring InnoDB I/O Capacity”.

• innodb_limit_optimistic_insert_debug

Command-Line Format --innodb-limit-optimistic-insert-
debug=#

System Variable innodb_limit_optimistic_insert_debug

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

3442

InnoDB System Variables

Maximum Value 2**32-1

Limits the number of records per B-tree page. A default value of 0 means that no limit is imposed.
This option is only available if debugging support is compiled in using the WITH_DEBUG CMake
option.

• innodb_lock_wait_timeout

Command-Line Format --innodb-lock-wait-timeout=#

System Variable innodb_lock_wait_timeout

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 50

Minimum Value 1

Maximum Value 1073741824

Unit seconds

The length of time in seconds an InnoDB transaction waits for a row lock before giving up. The
default value is 50 seconds. A transaction that tries to access a row that is locked by another
InnoDB transaction waits at most this many seconds for write access to the row before issuing the
following error:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

When a lock wait timeout occurs, the current statement is rolled back (not the entire transaction). To
have the entire transaction roll back, start the server with the --innodb-rollback-on-timeout
option. See also Section 17.21.5, “InnoDB Error Handling”.

You might decrease this value for highly interactive applications or OLTP systems, to display user
feedback quickly or put the update into a queue for processing later. You might increase this value
for long-running back-end operations, such as a transform step in a data warehouse that waits for
other large insert or update operations to finish.

innodb_lock_wait_timeout applies to InnoDB row locks. A MySQL table lock does not happen
inside InnoDB and this timeout does not apply to waits for table locks.

The lock wait timeout value does not apply to deadlocks when innodb_deadlock_detect
is enabled (the default) because InnoDB detects deadlocks immediately and rolls back one of
the deadlocked transactions. When innodb_deadlock_detect is disabled, InnoDB relies
on innodb_lock_wait_timeout for transaction rollback when a deadlock occurs. See
Section 17.7.5.2, “Deadlock Detection”.

innodb_lock_wait_timeout can be set at runtime with the SET GLOBAL or SET SESSION
statement. Changing the GLOBAL setting requires privileges sufficient to set global system
variables (see Section 7.1.9.1, “System Variable Privileges”) and affects the operation
of all clients that subsequently connect. Any client can change the SESSION setting for
innodb_lock_wait_timeout, which affects only that client.

• innodb_log_buffer_size

Command-Line Format --innodb-log-buffer-size=#

System Variable innodb_log_buffer_size

Scope Global 3443

InnoDB System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 16777216

Minimum Value 1048576

Maximum Value 4294967295

The size in bytes of the buffer that InnoDB uses to write to the log files on disk. The default is
16MB. A large log buffer enables large transactions to run without the need to write the log to
disk before the transactions commit. Thus, if you have transactions that update, insert, or delete
many rows, making the log buffer larger saves disk I/O. For related information, see Memory
Configuration, and Section 10.5.4, “Optimizing InnoDB Redo Logging”. For general I/O tuning advice,
see Section 10.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_log_checkpoint_fuzzy_now

Command-Line Format --innodb-log-checkpoint-fuzzy-
now[={OFF|ON}]

Introduced 8.0.13

System Variable innodb_log_checkpoint_fuzzy_now

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enable this debug option to force InnoDB to write a fuzzy checkpoint. This option is only available if
debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_log_checkpoint_now

Command-Line Format --innodb-log-checkpoint-now[={OFF|
ON}]

System Variable innodb_log_checkpoint_now

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enable this debug option to force InnoDB to write a checkpoint. This option is only available if
debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_log_checksums

Command-Line Format --innodb-log-checksums[={OFF|ON}]

System Variable innodb_log_checksums

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

3444

InnoDB System Variables

Type Boolean

Default Value ON

Enables or disables checksums for redo log pages.

innodb_log_checksums=ON enables the CRC-32C checksum algorithm for redo log pages. When
innodb_log_checksums is disabled, the contents of the redo log page checksum field are ignored.

Checksums on the redo log header page and redo log checkpoint pages are never disabled.

• innodb_log_compressed_pages

Command-Line Format --innodb-log-compressed-pages[={OFF|
ON}]

System Variable innodb_log_compressed_pages

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Specifies whether images of re-compressed pages are written to the redo log. Re-compression may
occur when changes are made to compressed data.

innodb_log_compressed_pages is enabled by default to prevent corruption that could occur if a
different version of the zlib compression algorithm is used during recovery. If you are certain that
the zlib version is not subject to change, you can disable innodb_log_compressed_pages to
reduce redo log generation for workloads that modify compressed data.

To measure the effect of enabling or disabling innodb_log_compressed_pages, compare redo
log generation for both settings under the same workload. Options for measuring redo log generation
include observing the Log sequence number (LSN) in the LOG section of SHOW ENGINE INNODB
STATUS output, or monitoring Innodb_os_log_written status for the number of bytes written to
the redo log files.

For related information, see Section 17.9.1.6, “Compression for OLTP Workloads”.

• innodb_log_file_size

Command-Line Format --innodb-log-file-size=#

Deprecated 8.0.30

System Variable innodb_log_file_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 50331648

Minimum Value 4194304

Maximum Value 512GB / innodb_log_files_in_group

3445

InnoDB System Variables

Unit bytes

Note

innodb_log_file_size and innodb_log_files_in_group
are deprecated in MySQL 8.0.30. These variables are superseded by
innodb_redo_log_capacity. For more information, see Section 17.6.5,
“Redo Log”.

The size in bytes of each log file in a log group. The combined size of log files
(innodb_log_file_size * innodb_log_files_in_group) cannot exceed a maximum value
that is slightly less than 512GB. A pair of 255 GB log files, for example, approaches the limit but does
not exceed it. The default value is 48MB.

Generally, the combined size of the log files should be large enough that the server can smooth out
peaks and troughs in workload activity, which often means that there is enough redo log space to
handle more than an hour of write activity. The larger the value, the less checkpoint flush activity is
required in the buffer pool, saving disk I/O. Larger log files also make crash recovery slower.

The minimum innodb_log_file_size is 4MB.

For related information, see Redo Log Configuration. For general I/O tuning advice, see
Section 10.5.8, “Optimizing InnoDB Disk I/O”.

If the server is started with --innodb-dedicated-server, the value of
innodb_log_file_size is set automatically if it is not explicitly defined. For more information, see
Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server”.

• innodb_log_files_in_group

Command-Line Format --innodb-log-files-in-group=#

Deprecated 8.0.30

System Variable innodb_log_files_in_group

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 2

Minimum Value 2

Maximum Value 100

Note

innodb_log_file_size and innodb_log_files_in_group
are deprecated in MySQL 8.0.30. These variables are superseded by
innodb_redo_log_capacity. For more information, see Section 17.6.5,
“Redo Log”.

The number of log files in the log group. InnoDB writes to the files in a circular fashion.
The default (and recommended) value is 2. The location of the files is specified by

3446

InnoDB System Variables

innodb_log_group_home_dir. The combined size of log files (innodb_log_file_size *
innodb_log_files_in_group) can be up to 512GB.

For related information, see Redo Log Configuration.

If the server is started with --innodb-dedicated-server, the value of
innodb_log_files_in_group is set automatically if it is not explicitly defined. For more
information, see Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated MySQL
Server”.

• innodb_log_group_home_dir

Command-Line Format --innodb-log-group-home-dir=dir_name

System Variable innodb_log_group_home_dir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

The directory path to the InnoDB redo log files.

For related information, see Redo Log Configuration.

• innodb_log_spin_cpu_abs_lwm

Command-Line Format --innodb-log-spin-cpu-abs-lwm=#

System Variable innodb_log_spin_cpu_abs_lwm

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 80

Minimum Value 0

Maximum Value 4294967295

Defines the minimum amount of CPU usage below which user threads no longer spin while waiting
for flushed redo. The value is expressed as a sum of CPU core usage. For example, The default
value of 80 is 80% of a single CPU core. On a system with a multi-core processor, a value of 150
represents 100% usage of one CPU core plus 50% usage of a second CPU core.

For related information, see Section 10.5.4, “Optimizing InnoDB Redo Logging”.

• innodb_log_spin_cpu_pct_hwm

Command-Line Format --innodb-log-spin-cpu-pct-hwm=#

System Variable innodb_log_spin_cpu_pct_hwm

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 50

Minimum Value 0

3447

InnoDB System Variables

Maximum Value 100

Defines the maximum amount of CPU usage above which user threads no longer spin while waiting
for flushed redo. The value is expressed as a percentage of the combined total processing power of
all CPU cores. The default value is 50%. For example, 100% usage of two CPU cores is 50% of the
combined CPU processing power on a server with four CPU cores.

The innodb_log_spin_cpu_pct_hwm variable respects processor affinity. For example, if a
server has 48 cores but the mysqld process is pinned to only four CPU cores, the other 44 CPU
cores are ignored.

For related information, see Section 10.5.4, “Optimizing InnoDB Redo Logging”.

• innodb_log_wait_for_flush_spin_hwm

Command-Line Format --innodb-log-wait-for-flush-spin-
hwm=#

System Variable innodb_log_wait_for_flush_spin_hwm

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 400

Minimum Value 0

Maximum Value (64-bit platforms, ≤ 8.0.37) 2**64-1

Maximum Value 2**32-1

Unit microseconds

Defines the maximum average log flush time beyond which user threads no longer spin while waiting
for flushed redo. The default value is 400 microseconds.

For related information, see Section 10.5.4, “Optimizing InnoDB Redo Logging”.

• innodb_log_write_ahead_size

Command-Line Format --innodb-log-write-ahead-size=#

System Variable innodb_log_write_ahead_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8192

Minimum Value 512 (log file block size)

Maximum Value Equal to innodb_page_size

Unit bytes

Defines the write-ahead block size for the redo log, in bytes. To avoid “read-on-write”, set
innodb_log_write_ahead_size to match the operating system or file system cache block size.
The default setting is 8192 bytes. Read-on-write occurs when redo log blocks are not entirely cached

3448

InnoDB System Variables

to the operating system or file system due to a mismatch between write-ahead block size for the redo
log and operating system or file system cache block size.

Valid values for innodb_log_write_ahead_size are multiples of the InnoDB log file block
size (2n). The minimum value is the InnoDB log file block size (512). Write-ahead does not occur
when the minimum value is specified. The maximum value is equal to the innodb_page_size
value. If you specify a value for innodb_log_write_ahead_size that is larger than the
innodb_page_size value, the innodb_log_write_ahead_size setting is truncated to the
innodb_page_size value.

Setting the innodb_log_write_ahead_size value too low in relation to the operating system or
file system cache block size results in “read-on-write”. Setting the value too high may have a slight
impact on fsync performance for log file writes due to several blocks being written at once.

For related information, see Section 10.5.4, “Optimizing InnoDB Redo Logging”.

• innodb_log_writer_threads

Command-Line Format --innodb-log-writer-threads[={OFF|
ON}]

Introduced 8.0.22

System Variable innodb_log_writer_threads

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Enables dedicated log writer threads for writing redo log records from the log buffer to the system
buffers and flushing the system buffers to the redo log files. Dedicated log writer threads can improve
performance on high-concurrency systems, but for low-concurrency systems, disabling dedicated log
writer threads provides better performance.

For more information, see Section 10.5.4, “Optimizing InnoDB Redo Logging”.

• innodb_lru_scan_depth

Command-Line Format --innodb-lru-scan-depth=#

System Variable innodb_lru_scan_depth

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1024

Minimum Value 100

Maximum Value (64-bit platforms, ≤ 8.0.37) 2**64-1

Maximum Value 2**32-1

A parameter that influences the algorithms and heuristics for the flush operation for the InnoDB
buffer pool. Primarily of interest to performance experts tuning I/O-intensive workloads. It specifies,

3449

InnoDB System Variables

per buffer pool instance, how far down the buffer pool LRU page list the page cleaner thread scans
looking for dirty pages to flush. This is a background operation performed once per second.

A setting smaller than the default is generally suitable for most workloads. A value that is much
higher than necessary may impact performance. Only consider increasing the value if you have
spare I/O capacity under a typical workload. Conversely, if a write-intensive workload saturates your
I/O capacity, decrease the value, especially in the case of a large buffer pool.

When tuning innodb_lru_scan_depth, start with a low value and configure the setting upward
with the goal of rarely seeing zero free pages. Also, consider adjusting innodb_lru_scan_depth
when changing the number of buffer pool instances, since innodb_lru_scan_depth *
innodb_buffer_pool_instances defines the amount of work performed by the page cleaner
thread each second.

For related information, see Section 17.8.3.5, “Configuring Buffer Pool Flushing”. For general I/O
tuning advice, see Section 10.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_max_dirty_pages_pct

Command-Line Format --innodb-max-dirty-pages-pct=#

System Variable innodb_max_dirty_pages_pct

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Numeric

Default Value 90

Minimum Value 0

Maximum Value 99.999

InnoDB tries to flush data from the buffer pool so that the percentage of dirty pages does not exceed
this value.

The innodb_max_dirty_pages_pct setting establishes a target for flushing activity. It does not
affect the rate of flushing. For information about managing the rate of flushing, see Section 17.8.3.5,
“Configuring Buffer Pool Flushing”.

For related information, see Section 17.8.3.5, “Configuring Buffer Pool Flushing”. For general I/O
tuning advice, see Section 10.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_max_dirty_pages_pct_lwm

Command-Line Format --innodb-max-dirty-pages-pct-lwm=#

System Variable innodb_max_dirty_pages_pct_lwm

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Numeric

Default Value 10

Minimum Value 0

Maximum Value 99.999

Defines a low water mark representing the percentage of dirty pages at which preflushing is
enabled to control the dirty page ratio. A value of 0 disables the pre-flushing behavior entirely. The3450

InnoDB System Variables

configured value should always be lower than the innodb_max_dirty_pages_pct value. For
more information, see Section 17.8.3.5, “Configuring Buffer Pool Flushing”.

• innodb_max_purge_lag

Command-Line Format --innodb-max-purge-lag=#

System Variable innodb_max_purge_lag

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Defines the desired maximum purge lag. If this value is exceeded, a delay is imposed on INSERT,
UPDATE, and DELETE operations to allow time for purge to catch up. The default value is 0, which
means there is no maximum purge lag and no delay.

For more information, see Section 17.8.9, “Purge Configuration”.

• innodb_max_purge_lag_delay

Command-Line Format --innodb-max-purge-lag-delay=#

System Variable innodb_max_purge_lag_delay

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 10000000

Unit microseconds

Specifies the maximum delay in microseconds for the delay imposed when the
innodb_max_purge_lag threshold is exceeded. The specified innodb_max_purge_lag_delay
value is an upper limit on the delay period calculated by the innodb_max_purge_lag formula.

For more information, see Section 17.8.9, “Purge Configuration”.

• innodb_max_undo_log_size

Command-Line Format --innodb-max-undo-log-size=#

System Variable innodb_max_undo_log_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1073741824

Minimum Value 10485760

3451

InnoDB System Variables

Maximum Value 2**64-1

Unit bytes

Defines a threshold size for undo tablespaces. If an undo tablespace exceeds the threshold, it can
be marked for truncation when innodb_undo_log_truncate is enabled. The default value is
1073741824 bytes (1024 MiB).

For more information, see Truncating Undo Tablespaces.

• innodb_merge_threshold_set_all_debug

Command-Line Format --innodb-merge-threshold-set-all-
debug=#

System Variable innodb_merge_threshold_set_all_debug

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 50

Minimum Value 1

Maximum Value 50

Defines a page-full percentage value for index pages that overrides the current MERGE_THRESHOLD
setting for all indexes that are currently in the dictionary cache. This option is only available if
debugging support is compiled in using the WITH_DEBUG CMake option. For related information, see
Section 17.8.11, “Configuring the Merge Threshold for Index Pages”.

• innodb_monitor_disable

Command-Line Format --innodb-monitor-disable={counter|
module|pattern|all}

System Variable innodb_monitor_disable

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

This variable acts as a switch, disabling InnoDB metrics counters. Counter data may be queried
using the Information Schema INNODB_METRICS table. For usage information, see Section 17.15.6,
“InnoDB INFORMATION_SCHEMA Metrics Table”.

innodb_monitor_disable='latch' disables statistics collection for SHOW ENGINE INNODB
MUTEX. For more information, see Section 15.7.7.15, “SHOW ENGINE Statement”.

• innodb_monitor_enable

Command-Line Format --innodb-monitor-enable={counter|
module|pattern|all}

System Variable innodb_monitor_enable

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

3452

InnoDB System Variables

Type String

This variable acts as a switch, enabling InnoDB metrics counters. Counter data may be queried
using the Information Schema INNODB_METRICS table. For usage information, see Section 17.15.6,
“InnoDB INFORMATION_SCHEMA Metrics Table”.

innodb_monitor_enable='latch' enables statistics collection for SHOW ENGINE INNODB
MUTEX. For more information, see Section 15.7.7.15, “SHOW ENGINE Statement”.

• innodb_monitor_reset

Command-Line Format --innodb-monitor-reset={counter|
module|pattern|all}

System Variable innodb_monitor_reset

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value NULL

Valid Values counter

module

pattern

all

This variable acts as a switch, resetting the count value for InnoDB metrics counters to zero.
Counter data may be queried using the Information Schema INNODB_METRICS table. For usage
information, see Section 17.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”.

innodb_monitor_reset='latch' resets statistics reported by SHOW ENGINE INNODB MUTEX.
For more information, see Section 15.7.7.15, “SHOW ENGINE Statement”.

• innodb_monitor_reset_all

Command-Line Format --innodb-monitor-reset-all={counter|
module|pattern|all}

System Variable innodb_monitor_reset_all

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value NULL

Valid Values counter

module

pattern

3453

InnoDB System Variables

all

This variable acts as a switch, resetting all values (minimum, maximum, and so on) for InnoDB
metrics counters. Counter data may be queried using the Information Schema INNODB_METRICS
table. For usage information, see Section 17.15.6, “InnoDB INFORMATION_SCHEMA Metrics
Table”.

• innodb_numa_interleave

Command-Line Format --innodb-numa-interleave[={OFF|ON}]

System Variable innodb_numa_interleave

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enables the NUMA interleave memory policy for allocation of the InnoDB buffer pool. When
innodb_numa_interleave is enabled, the NUMA memory policy is set to MPOL_INTERLEAVE for
the mysqld process. After the InnoDB buffer pool is allocated, the NUMA memory policy is set back
to MPOL_DEFAULT. For the innodb_numa_interleave option to be available, MySQL must be
compiled on a NUMA-enabled Linux system.

CMake sets the default WITH_NUMA value based on whether the current platform has NUMA support.
For more information, see Section 2.8.7, “MySQL Source-Configuration Options”.

• innodb_old_blocks_pct

Command-Line Format --innodb-old-blocks-pct=#

System Variable innodb_old_blocks_pct

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 37

Minimum Value 5

Maximum Value 95

Specifies the approximate percentage of the InnoDB buffer pool used for the old block sublist. The
range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool). Often used in combination
with innodb_old_blocks_time.

For more information, see Section 17.8.3.3, “Making the Buffer Pool Scan Resistant”. For information
about buffer pool management, the LRU algorithm, and eviction policies, see Section 17.5.1, “Buffer
Pool”.

• innodb_old_blocks_time

Command-Line Format --innodb-old-blocks-time=#

System Variable innodb_old_blocks_time

Scope Global

3454

InnoDB System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 2**32-1

Unit milliseconds

Non-zero values protect against the buffer pool being filled by data that is referenced only for a brief
period, such as during a full table scan. Increasing this value offers more protection against full table
scans interfering with data cached in the buffer pool.

Specifies how long in milliseconds a block inserted into the old sublist must stay there after its first
access before it can be moved to the new sublist. If the value is 0, a block inserted into the old sublist
moves immediately to the new sublist the first time it is accessed, no matter how soon after insertion
the access occurs. If the value is greater than 0, blocks remain in the old sublist until an access
occurs at least that many milliseconds after the first access. For example, a value of 1000 causes
blocks to stay in the old sublist for 1 second after the first access before they become eligible to
move to the new sublist.

The default value is 1000.

This variable is often used in combination with innodb_old_blocks_pct. For more information,
see Section 17.8.3.3, “Making the Buffer Pool Scan Resistant”. For information about buffer pool
management, the LRU algorithm, and eviction policies, see Section 17.5.1, “Buffer Pool”.

• innodb_online_alter_log_max_size

Command-Line Format --innodb-online-alter-log-max-size=#

System Variable innodb_online_alter_log_max_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 134217728

Minimum Value 65536

Maximum Value 2**64-1

Unit bytes

Specifies an upper limit in bytes on the size of the temporary log files used during online DDL
operations for InnoDB tables. There is one such log file for each index being created or table being
altered. This log file stores data inserted, updated, or deleted in the table during the DDL operation.
The temporary log file is extended when needed by the value of innodb_sort_buffer_size,
up to the maximum specified by innodb_online_alter_log_max_size. If a temporary log file
exceeds the upper size limit, the ALTER TABLE operation fails and all uncommitted concurrent DML
operations are rolled back. Thus, a large value for this option allows more DML to happen during an
online DDL operation, but also extends the period of time at the end of the DDL operation when the
table is locked to apply the data from the log.

• innodb_open_files

Command-Line Format --innodb-open-files=#

3455

InnoDB System Variables

System Variable innodb_open_files

Scope Global

Dynamic (≥ 8.0.28) Yes

Dynamic (≤ 8.0.27) No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value 10

Maximum Value 2147483647

Specifies the maximum number of files that InnoDB can have open at one time. The minimum value
is 10. If innodb_file_per_table is disabled, the default value is 300; otherwise, the default value
is 300 or the table_open_cache setting, whichever is higher.

As of MySQL 8.0.28, the innodb_open_files limit can be set at runtime using a SELECT
innodb_set_open_files_limit(N) statement, where N is the desired innodb_open_files
limit; for example:

mysql> SELECT innodb_set_open_files_limit(1000);

The statement executes a stored procedure that sets the new limit. If the procedure is successful, it
returns the value of the newly set limit; otherwise, a failure message is returned.

It is not permitted to set innodb_open_files using a SET statement. To set
innodb_open_files at runtime, use the SELECT innodb_set_open_files_limit(N)
statement described above.

Setting innodb_open_files=default is not supported. Only integer values are permitted.

As of MySQL 8.0.28, to prevent non-LRU manged files from consuming the entire
innodb_open_files limit, non-LRU managed files are limited to 90 percent of the
innodb_open_files limit, which reserves 10 percent of the innodb_open_files limit for LRU
managed files.

Temporary tablespace files were not counted toward the innodb_open_files limit from MySQL
8.0.24 to MySQL 8.0.27.

• innodb_optimize_fulltext_only

Command-Line Format --innodb-optimize-fulltext-
only[={OFF|ON}]

System Variable innodb_optimize_fulltext_only

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Changes the way OPTIMIZE TABLE operates on InnoDB tables. Intended to be enabled
temporarily, during maintenance operations for InnoDB tables with FULLTEXT indexes.

By default, OPTIMIZE TABLE reorganizes data in the clustered index of the table. When this option
is enabled, OPTIMIZE TABLE skips the reorganization of table data, and instead processes newly

3456

InnoDB System Variables

added, deleted, and updated token data for InnoDB FULLTEXT indexes. For more information, see
Optimizing InnoDB Full-Text Indexes.

• innodb_page_cleaners

Command-Line Format --innodb-page-cleaners=#

System Variable innodb_page_cleaners

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 64

The number of page cleaner threads that flush dirty pages from buffer pool instances. Page cleaner
threads perform flush list and LRU flushing. When there are multiple page cleaner threads, buffer
pool flushing tasks for each buffer pool instance are dispatched to idle page cleaner threads. The
innodb_page_cleaners default value is 4. If the number of page cleaner threads exceeds the
number of buffer pool instances, innodb_page_cleaners is automatically set to the same value
as innodb_buffer_pool_instances.

If your workload is write-IO bound when flushing dirty pages from buffer pool instances to data files,
and if your system hardware has available capacity, increasing the number of page cleaner threads
may help improve write-IO throughput.

Multithreaded page cleaner support extends to shutdown and recovery phases.

The setpriority() system call is used on Linux platforms where it is supported, and where the
mysqld execution user is authorized to give page_cleaner threads priority over other MySQL
and InnoDB threads to help page flushing keep pace with the current workload. setpriority()
support is indicated by this InnoDB startup message:

[Note] InnoDB: If the mysqld execution user is authorized, page cleaner
thread priority can be changed. See the man page of setpriority().

For systems where server startup and shutdown is not managed by systemd, mysqld execution
user authorization can be configured in /etc/security/limits.conf. For example, if mysqld
is run under the mysql user, you can authorize the mysql user by adding these lines to /etc/
security/limits.conf:

mysql hard nice -20
mysql soft nice -20

For systemd managed systems, the same can be achieved by specifying LimitNICE=-20 in a
localized systemd configuration file. For example, create a file named override.conf in /etc/
systemd/system/mysqld.service.d/override.conf and add this entry:

[Service]
LimitNICE=-20

After creating or changing override.conf, reload the systemd configuration, then tell systemd to
restart the MySQL service:

systemctl daemon-reload
systemctl restart mysqld # RPM platforms

3457

InnoDB System Variables

systemctl restart mysql # Debian platforms

For more information about using a localized systemd configuration file, see Configuring systemd for
MySQL.

After authorizing the mysqld execution user, use the cat command to verify the configured Nice
limits for the mysqld process:

$> cat /proc/mysqld_pid/limits | grep nice
Max nice priority 18446744073709551596 18446744073709551596

• innodb_page_size

Command-Line Format --innodb-page-size=#

System Variable innodb_page_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value 16384

Valid Values 4096

8192

16384

32768

65536

Specifies the page size for InnoDB tablespaces. Values can be specified in bytes or kilobytes. For
example, a 16 kilobyte page size value can be specified as 16384, 16KB, or 16k.

innodb_page_size can only be configured prior to initializing the MySQL instance and cannot be
changed afterward. If no value is specified, the instance is initialized using the default page size. See
Section 17.8.1, “InnoDB Startup Configuration”.

For both 32KB and 64KB page sizes, the maximum row length is approximately 16000 bytes.
ROW_FORMAT=COMPRESSED is not supported when innodb_page_size is set to 32KB or 64KB.
For innodb_page_size=32KB, extent size is 2MB. For innodb_page_size=64KB, extent size is
4MB. innodb_log_buffer_size should be set to at least 16M (the default) when using 32KB or
64KB page sizes.

The default 16KB page size or larger is appropriate for a wide range of workloads, particularly for
queries involving table scans and DML operations involving bulk updates. Smaller page sizes might
be more efficient for OLTP workloads involving many small writes, where contention can be an issue
when single pages contain many rows. Smaller pages might also be efficient with SSD storage
devices, which typically use small block sizes. Keeping the InnoDB page size close to the storage
device block size minimizes the amount of unchanged data that is rewritten to disk.

The minimum file size for the first system tablespace data file (ibdata1) differs depending on
the innodb_page_size value. See the innodb_data_file_path option description for more
information.

A MySQL instance using a particular InnoDB page size cannot use data files or log files from an
instance that uses a different page size.

For general I/O tuning advice, see Section 10.5.8, “Optimizing InnoDB Disk I/O”.
3458

InnoDB System Variables

• innodb_parallel_read_threads

Command-Line Format --innodb-parallel-read-threads=#

Introduced 8.0.14

System Variable innodb_parallel_read_threads

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 256

Defines the number of threads that can be used for parallel clustered index reads. Parallel scanning
of partitions is supported as of MySQL 8.0.17. Parallel read threads can improve CHECK TABLE
performance. InnoDB reads the clustered index twice during a CHECK TABLE operation. The
second read can be performed in parallel. This feature does not apply to secondary index scans.
The innodb_parallel_read_threads session variable must be set to a value greater than 1
for parallel clustered index reads to occur. The actual number of threads used to perform a parallel
clustered index read is determined by the innodb_parallel_read_threads setting or the
number of index subtrees to scan, whichever is smaller. The pages read into the buffer pool during
the scan are kept at the tail of the buffer pool LRU list so that they can be discarded quickly when
free buffer pool pages are required.

As of MySQL 8.0.17, the maximum number of parallel read threads (256) is the total number of
threads for all client connections. If the thread limit is reached, connections fall back to using a single
thread.

• innodb_print_all_deadlocks

Command-Line Format --innodb-print-all-deadlocks[={OFF|
ON}]

System Variable innodb_print_all_deadlocks

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When this option is enabled, information about all deadlocks in InnoDB user transactions is recorded
in the mysqld error log. Otherwise, you see information about only the last deadlock, using the
SHOW ENGINE INNODB STATUS command. An occasional InnoDB deadlock is not necessarily
an issue, because InnoDB detects the condition immediately and rolls back one of the transactions
automatically. You might use this option to troubleshoot why deadlocks are occurring if an application
does not have appropriate error-handling logic to detect the rollback and retry its operation. A
large number of deadlocks might indicate the need to restructure transactions that issue DML or
SELECT ... FOR UPDATE statements for multiple tables, so that each transaction accesses the
tables in the same order, thus avoiding the deadlock condition.

For related information, see Section 17.7.5, “Deadlocks in InnoDB”.

3459

InnoDB System Variables

• innodb_print_ddl_logs

Command-Line Format --innodb-print-ddl-logs[={OFF|ON}]

System Variable innodb_print_ddl_logs

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enabling this option causes MySQL to write DDL logs to stderr. For more information, see Viewing
DDL Logs.

• innodb_purge_batch_size

Command-Line Format --innodb-purge-batch-size=#

System Variable innodb_purge_batch_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 300

Minimum Value 1

Maximum Value 5000

Defines the number of undo log pages that purge parses and processes in one batch from
the history list. In a multithreaded purge configuration, the coordinator purge thread divides
innodb_purge_batch_size by innodb_purge_threads and assigns that number of pages to
each purge thread. The innodb_purge_batch_size variable also defines the number of undo log
pages that purge frees after every 128 iterations through the undo logs.

The innodb_purge_batch_size option is intended for advanced performance tuning
in combination with the innodb_purge_threads setting. Most users need not change
innodb_purge_batch_size from its default value.

For related information, see Section 17.8.9, “Purge Configuration”.

• innodb_purge_threads

Command-Line Format --innodb-purge-threads=#

System Variable innodb_purge_threads

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 4

Minimum Value 1

3460

InnoDB System Variables

Maximum Value 32

The number of background threads devoted to the InnoDB purge operation. Increasing the value
creates additional purge threads, which can improve efficiency on systems where DML operations
are performed on multiple tables.

For related information, see Section 17.8.9, “Purge Configuration”.

• innodb_purge_rseg_truncate_frequency

Command-Line Format --innodb-purge-rseg-truncate-
frequency=#

System Variable innodb_purge_rseg_truncate_frequency

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 128

Minimum Value 1

Maximum Value 128

Defines the frequency with which the purge system frees rollback segments in terms of the number
of times that purge is invoked. An undo tablespace cannot be truncated until its rollback segments
are freed. Normally, the purge system frees rollback segments once every 128 times that purge is
invoked. The default value is 128. Reducing this value increases the frequency with which the purge
thread frees rollback segments.

innodb_purge_rseg_truncate_frequency is intended for use with
innodb_undo_log_truncate. For more information, see Truncating Undo Tablespaces.

• innodb_random_read_ahead

Command-Line Format --innodb-random-read-ahead[={OFF|
ON}]

System Variable innodb_random_read_ahead

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enables the random read-ahead technique for optimizing InnoDB I/O.

For details about performance considerations for different types of read-ahead requests, see
Section 17.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”. For general I/O tuning
advice, see Section 10.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_read_ahead_threshold

Command-Line Format --innodb-read-ahead-threshold=#

System Variable innodb_read_ahead_threshold

Scope Global 3461

InnoDB System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 56

Minimum Value 0

Maximum Value 64

Controls the sensitivity of linear read-ahead that InnoDB uses to prefetch pages into the buffer pool.
If InnoDB reads at least innodb_read_ahead_threshold pages sequentially from an extent (64
pages), it initiates an asynchronous read for the entire following extent. The permissible range of
values is 0 to 64. A value of 0 disables read-ahead. For the default of 56, InnoDB must read at least
56 pages sequentially from an extent to initiate an asynchronous read for the following extent.

Knowing how many pages are read through the read-ahead mechanism, and how many of
these pages are evicted from the buffer pool without ever being accessed, can be useful when
fine-tuning the innodb_read_ahead_threshold setting. SHOW ENGINE INNODB STATUS
output displays counter information from the Innodb_buffer_pool_read_ahead and
Innodb_buffer_pool_read_ahead_evicted global status variables, which report the number
of pages brought into the buffer pool by read-ahead requests, and the number of such pages evicted
from the buffer pool without ever being accessed, respectively. The status variables report global
values since the last server restart.

SHOW ENGINE INNODB STATUS also shows the rate at which the read-ahead pages are read and
the rate at which such pages are evicted without being accessed. The per-second averages are
based on the statistics collected since the last invocation of SHOW ENGINE INNODB STATUS and
are displayed in the BUFFER POOL AND MEMORY section of the SHOW ENGINE INNODB STATUS
output.

For more information, see Section 17.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-
Ahead)”. For general I/O tuning advice, see Section 10.5.8, “Optimizing InnoDB Disk I/O”.

• innodb_read_io_threads

Command-Line Format --innodb-read-io-threads=#

System Variable innodb_read_io_threads

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 64

The number of I/O threads for read operations in InnoDB. Its counterpart for write threads is
innodb_write_io_threads. For more information, see Section 17.8.5, “Configuring the Number
of Background InnoDB I/O Threads”. For general I/O tuning advice, see Section 10.5.8, “Optimizing
InnoDB Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can
exceed system limits. Ideally, increase the aio-max-nr setting; as a

3462

InnoDB System Variables

workaround, you might reduce the settings for one or both of the MySQL
variables.

• innodb_read_only

Command-Line Format --innodb-read-only[={OFF|ON}]

System Variable innodb_read_only

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Starts InnoDB in read-only mode. For distributing database applications or data sets on read-only
media. Can also be used in data warehouses to share the same data directory between multiple
instances. For more information, see Section 17.8.2, “Configuring InnoDB for Read-Only Operation”.

Previously, enabling the innodb_read_only system variable prevented creating and dropping
tables only for the InnoDB storage engine. As of MySQL 8.0, enabling innodb_read_only
prevents these operations for all storage engines. Table creation and drop operations for any
storage engine modify data dictionary tables in the mysql system database, but those tables use the
InnoDB storage engine and cannot be modified when innodb_read_only is enabled. The same
principle applies to other table operations that require modifying data dictionary tables. Examples:

• If the innodb_read_only system variable is enabled, ANALYZE TABLE may fail because it
cannot update statistics tables in the data dictionary, which use InnoDB. For ANALYZE TABLE
operations that update the key distribution, failure may occur even if the operation updates the
table itself (for example, if it is a MyISAM table). To obtain the updated distribution statistics, set
information_schema_stats_expiry=0.

• ALTER TABLE tbl_name ENGINE=engine_name fails because it updates the storage engine
designation, which is stored in the data dictionary.

In addition, other tables in the mysql system database use the InnoDB storage engine in MySQL
8.0. Making those tables read only results in restrictions on operations that modify them. Examples:

• Account-management statements such as CREATE USER and GRANT fail because the grant tables
use InnoDB.

• The INSTALL PLUGIN and UNINSTALL PLUGIN plugin-management statements fail because
the mysql.plugin system table uses InnoDB.

• The CREATE FUNCTION and DROP FUNCTION loadable function-management statements fail
because the mysql.func system table uses InnoDB.

• innodb_redo_log_archive_dirs

Command-Line Format --innodb-redo-log-archive-dirs

Introduced 8.0.17

System Variable innodb_redo_log_archive_dirs

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

3463

InnoDB System Variables

Default Value NULL

Defines labeled directories where redo log archive files can be created. You can define multiple
labeled directories in a semicolon-separated list. For example:

innodb_redo_log_archive_dirs='label1:/backups1;label2:/backups2'

A label can be any string of characters, with the exception of colons (:), which are not permitted. An
empty label is also permitted, but the colon (:) is still required in this case.

A path must be specified, and the directory must exist. The path can contain colons (':'), but
semicolons (;) are not permitted.

• innodb_redo_log_capacity

Command-Line Format --innodb-redo-log-capacity=#

Introduced 8.0.30

System Variable innodb_redo_log_capacity

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 104857600

Minimum Value 8388608

Maximum Value (≥ 8.0.34) 549755813888

Maximum Value (≥ 8.0.30, ≤ 8.0.33) 137438953472

Unit bytes

Defines the amount of disk space occupied by redo log files.

innodb_redo_log_capacity supercedes the innodb_log_files_in_group and
innodb_log_file_size variables, which are both ignored if innodb_redo_log_capacity is
defined.

If innodb_redo_log_capacity is not defined, and if neither innodb_log_file_size or
innodb_log_files_in_group are defined, then the default innodb_redo_log_capacity
value is used.

If innodb_redo_log_capacity is not defined, and if innodb_log_file_size and/or
innodb_log_files_in_group is defined, then the InnoDB redo log capacity is calculated as
(innodb_log_files_in_group * innodb_log_file_size). This calculation does not modify the unused
innodb_redo_log_capacity setting's value.

The Innodb_redo_log_capacity_resized server status variable indicates the total redo log
capacity for all redo log files.

If the server is started with --innodb-dedicated-server, the value of
innodb_redo_log_capacity is set automatically if it is not explicitly defined. For more
information, see Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated MySQL
Server”.

For more information, see Section 17.6.5, “Redo Log”.

3464

InnoDB System Variables

• innodb_redo_log_encrypt

Command-Line Format --innodb-redo-log-encrypt[={OFF|ON}]

System Variable innodb_redo_log_encrypt

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Controls encryption of redo log data for tables encrypted using the InnoDB data-at-rest encryption
feature. Encryption of redo log data is disabled by default. For more information, see Redo Log
Encryption.

• innodb_replication_delay

Command-Line Format --innodb-replication-delay=#

System Variable innodb_replication_delay

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit milliseconds

The replication thread delay in milliseconds on a replica server if innodb_thread_concurrency is
reached.

• innodb_rollback_on_timeout

Command-Line Format --innodb-rollback-on-timeout[={OFF|
ON}]

System Variable innodb_rollback_on_timeout

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

InnoDB rolls back only the last statement on a transaction timeout by default. If --innodb-
rollback-on-timeout is specified, a transaction timeout causes InnoDB to abort and roll back
the entire transaction.

For more information, see Section 17.21.5, “InnoDB Error Handling”.

• innodb_rollback_segments

Command-Line Format --innodb-rollback-segments=# 3465

InnoDB System Variables

System Variable innodb_rollback_segments

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 128

Minimum Value 1

Maximum Value 128

innodb_rollback_segments defines the number of rollback segments allocated to each undo
tablespace and the global temporary tablespace for transactions that generate undo records. The
number of transactions that each rollback segment supports depends on the InnoDB page size and
the number of undo logs assigned to each transaction. For more information, see Section 17.6.6,
“Undo Logs”.

For related information, see Section 17.3, “InnoDB Multi-Versioning”. For information about undo
tablespaces, see Section 17.6.3.4, “Undo Tablespaces”.

• innodb_saved_page_number_debug

Command-Line Format --innodb-saved-page-number-debug=#

System Variable innodb_saved_page_number_debug

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2**32-1

Saves a page number. Setting the innodb_fil_make_page_dirty_debug option dirties the page
defined by innodb_saved_page_number_debug. The innodb_saved_page_number_debug
option is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_segment_reserve_factor

Command-Line Format --innodb-segment-reserve-factor=#

Introduced 8.0.26

System Variable innodb_segment_reserve_factor

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Numeric

Default Value 12.5

Minimum Value 0.03

Maximum Value 40

Defines the percentage of tablespace file segment pages reserved as empty pages. The setting is
applicable to file-per-table and general tablespaces. The innodb_segment_reserve_factor

3466

InnoDB System Variables

default setting is 12.5 percent, which is the same percentage of pages reserved in previous MySQL
releases.

For more information, see Configuring the Percentage of Reserved File Segment Pages.

• innodb_sort_buffer_size

Command-Line Format --innodb-sort-buffer-size=#

System Variable innodb_sort_buffer_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 1048576

Minimum Value 65536

Maximum Value 67108864

Unit bytes

This variable defines:

• The sort buffer size for online DDL operations that create or rebuild secondary indexes. However,
as of MySQL 8.0.27, this responsibility is subsumed by the innodb_ddl_buffer_size variable.

• The amount by which the temporary log file is extended when recording concurrent DML during an
online DDL operation, and the size of the temporary log file read buffer and write buffer.

For related information, see Section 17.12.3, “Online DDL Space Requirements”.

• innodb_spin_wait_delay

Command-Line Format --innodb-spin-wait-delay=#

System Variable innodb_spin_wait_delay

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 6

Minimum Value 0

Maximum Value (64-bit platforms, ≤ 8.0.13) 2**64-1

Maximum Value (32-bit platforms, ≤ 8.0.13) 2**32-1

Maximum Value (≥ 8.0.14) 1000

The maximum delay between polls for a spin lock. The low-level implementation of this mechanism
varies depending on the combination of hardware and operating system, so the delay does not
correspond to a fixed time interval.

Can be used in combination with the innodb_spin_wait_pause_multiplier variable for
greater control over the duration of spin-lock polling delays.

For more information, see Section 17.8.8, “Configuring Spin Lock Polling”.

3467

InnoDB System Variables

• innodb_spin_wait_pause_multiplier

Command-Line Format --innodb-spin-wait-pause-
multiplier=#

Introduced 8.0.16

System Variable innodb_spin_wait_pause_multiplier

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 50

Minimum Value 0

Maximum Value 100

Defines a multiplier value used to determine the number of PAUSE instructions in spin-wait loops
that occur when a thread waits to acquire a mutex or rw-lock.

For more information, see Section 17.8.8, “Configuring Spin Lock Polling”.

• innodb_stats_auto_recalc

Command-Line Format --innodb-stats-auto-recalc[={OFF|
ON}]

System Variable innodb_stats_auto_recalc

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Causes InnoDB to automatically recalculate persistent statistics after the data in a table is changed
substantially. The threshold value is 10% of the rows in the table. This setting applies to tables
created when the innodb_stats_persistent option is enabled. Automatic statistics recalculation
may also be configured by specifying STATS_AUTO_RECALC=1 in a CREATE TABLE or ALTER
TABLE statement. The amount of data sampled to produce the statistics is controlled by the
innodb_stats_persistent_sample_pages variable.

For more information, see Section 17.8.10.1, “Configuring Persistent Optimizer Statistics
Parameters”.

• innodb_stats_include_delete_marked

Command-Line Format --innodb-stats-include-delete-
marked[={OFF|ON}]

System Variable innodb_stats_include_delete_marked

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

3468

InnoDB System Variables

Default Value OFF

By default, InnoDB reads uncommitted data when calculating statistics. In the case of an
uncommitted transaction that deletes rows from a table, InnoDB excludes records that are
delete-marked when calculating row estimates and index statistics, which can lead to non-
optimal execution plans for other transactions that are operating on the table concurrently
using a transaction isolation level other than READ UNCOMMITTED. To avoid this scenario,
innodb_stats_include_delete_marked can be enabled to ensure that InnoDB includes
delete-marked records when calculating persistent optimizer statistics.

When innodb_stats_include_delete_marked is enabled, ANALYZE TABLE considers delete-
marked records when recalculating statistics.

innodb_stats_include_delete_marked is a global setting that affects all InnoDB tables. It is
only applicable to persistent optimizer statistics.

For related information, see Section 17.8.10.1, “Configuring Persistent Optimizer Statistics
Parameters”.

• innodb_stats_method

Command-Line Format --innodb-stats-method=value

System Variable innodb_stats_method

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value nulls_equal

Valid Values nulls_equal

nulls_unequal

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values
for InnoDB tables. Permitted values are nulls_equal, nulls_unequal, and nulls_ignored.
For nulls_equal, all NULL index values are considered equal and form a single value group with
a size equal to the number of NULL values. For nulls_unequal, NULL values are considered
unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored, NULL values
are ignored.

The method used to generate table statistics influences how the optimizer chooses indexes for query
execution, as described in Section 10.3.8, “InnoDB and MyISAM Index Statistics Collection”.

• innodb_stats_on_metadata

Command-Line Format --innodb-stats-on-metadata[={OFF|
ON}]

System Variable innodb_stats_on_metadata

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

3469

InnoDB System Variables

Default Value OFF

This option only applies when optimizer statistics are configured to be non-persistent. Optimizer
statistics are not persisted to disk when innodb_stats_persistent is disabled or when
individual tables are created or altered with STATS_PERSISTENT=0. For more information, see
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”.

When innodb_stats_on_metadata is enabled, InnoDB updates non-persistent statistics when
metadata statements such as SHOW TABLE STATUS or when accessing the Information Schema
TABLES or STATISTICS tables. (These updates are similar to what happens for ANALYZE TABLE.)
When disabled, InnoDB does not update statistics during these operations. Leaving the setting
disabled can improve access speed for schemas that have a large number of tables or indexes. It
can also improve the stability of execution plans for queries that involve InnoDB tables.

To change the setting, issue the statement SET GLOBAL innodb_stats_on_metadata=mode,
where mode is either ON or OFF (or 1 or 0). Changing the setting requires privileges sufficient to set
global system variables (see Section 7.1.9.1, “System Variable Privileges”) and immediately affects
the operation of all connections.

• innodb_stats_persistent

Command-Line Format --innodb-stats-persistent[={OFF|ON}]

System Variable innodb_stats_persistent

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Specifies whether InnoDB index statistics are persisted to disk. Otherwise, statistics may be
recalculated frequently which can lead to variations in query execution plans. This setting is stored
with each table when the table is created. You can set innodb_stats_persistent at the global
level before creating a table, or use the STATS_PERSISTENT clause of the CREATE TABLE and
ALTER TABLE statements to override the system-wide setting and configure persistent statistics for
individual tables.

For more information, see Section 17.8.10.1, “Configuring Persistent Optimizer Statistics
Parameters”.

• innodb_stats_persistent_sample_pages

Command-Line Format --innodb-stats-persistent-sample-
pages=#

System Variable innodb_stats_persistent_sample_pages

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 20

Minimum Value 1

3470

InnoDB System Variables

Maximum Value 18446744073709551615

The number of index pages to sample when estimating cardinality and other statistics for an
indexed column, such as those calculated by ANALYZE TABLE. Increasing the value improves
the accuracy of index statistics, which can improve the query execution plan, at the expense of
increased I/O during the execution of ANALYZE TABLE for an InnoDB table. For more information,
see Section 17.8.10.1, “Configuring Persistent Optimizer Statistics Parameters”.

Note

Setting a high value for innodb_stats_persistent_sample_pages
could result in lengthy ANALYZE TABLE execution time. To estimate
the number of database pages accessed by ANALYZE TABLE, see
Section 17.8.10.3, “Estimating ANALYZE TABLE Complexity for InnoDB
Tables”.

innodb_stats_persistent_sample_pages only applies when innodb_stats_persistent
is enabled for a table; when innodb_stats_persistent is disabled,
innodb_stats_transient_sample_pages applies instead.

• innodb_stats_transient_sample_pages

Command-Line Format --innodb-stats-transient-sample-
pages=#

System Variable innodb_stats_transient_sample_pages

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8

Minimum Value 1

Maximum Value 18446744073709551615

The number of index pages to sample when estimating cardinality and other statistics for an indexed
column, such as those calculated by ANALYZE TABLE. The default value is 8. Increasing the
value improves the accuracy of index statistics, which can improve the query execution plan, at
the expense of increased I/O when opening an InnoDB table or recalculating statistics. For more
information, see Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”.

Note

Setting a high value for innodb_stats_transient_sample_pages could
result in lengthy ANALYZE TABLE execution time. To estimate the number
of database pages accessed by ANALYZE TABLE, see Section 17.8.10.3,
“Estimating ANALYZE TABLE Complexity for InnoDB Tables”.

innodb_stats_transient_sample_pages only applies when innodb_stats_persistent
is disabled for a table; when innodb_stats_persistent is enabled,
innodb_stats_persistent_sample_pages applies instead. Takes the place of
innodb_stats_sample_pages. For more information, see Section 17.8.10.2, “Configuring Non-
Persistent Optimizer Statistics Parameters”.

• innodb_status_output

Command-Line Format --innodb-status-output[={OFF|ON}]

3471

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_stats_sample_pages

InnoDB System Variables

System Variable innodb_status_output

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enables or disables periodic output for the standard InnoDB Monitor. Also used in combination with
innodb_status_output_locks to enable or disable periodic output for the InnoDB Lock Monitor.
For more information, see Section 17.17.2, “Enabling InnoDB Monitors”.

• innodb_status_output_locks

Command-Line Format --innodb-status-output-locks[={OFF|
ON}]

System Variable innodb_status_output_locks

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enables or disables the InnoDB Lock Monitor. When enabled, the InnoDB Lock Monitor prints
additional information about locks in SHOW ENGINE INNODB STATUS output and in periodic output
printed to the MySQL error log. Periodic output for the InnoDB Lock Monitor is printed as part of the
standard InnoDB Monitor output. The standard InnoDB Monitor must therefore be enabled for the
InnoDB Lock Monitor to print data to the MySQL error log periodically. For more information, see
Section 17.17.2, “Enabling InnoDB Monitors”.

• innodb_strict_mode

Command-Line Format --innodb-strict-mode[={OFF|ON}]

System Variable innodb_strict_mode

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

When innodb_strict_mode is enabled, InnoDB returns errors rather than warnings when
checking for invalid or incompatible table options.

It checks that KEY_BLOCK_SIZE, ROW_FORMAT, DATA DIRECTORY, TEMPORARY, and TABLESPACE
options are compatible with each other and other settings.

innodb_strict_mode=ON also enables a row size check when creating or altering a table, to
prevent INSERT or UPDATE from failing due to the record being too large for the selected page size.

You can enable or disable innodb_strict_mode on the command line when starting mysqld, or
in a MySQL configuration file. You can also enable or disable innodb_strict_mode at runtime
with the statement SET [GLOBAL|SESSION] innodb_strict_mode=mode, where mode is
either ON or OFF. Changing the GLOBAL setting requires privileges sufficient to set global system

3472

InnoDB System Variables

variables (see Section 7.1.9.1, “System Variable Privileges”) and affects the operation of all clients
that subsequently connect. Any client can change the SESSION setting for innodb_strict_mode,
and the setting affects only that client.

As of MySQL 8.0.26, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

• innodb_sync_array_size

Command-Line Format --innodb-sync-array-size=#

System Variable innodb_sync_array_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 1024

Defines the size of the mutex/lock wait array. Increasing the value splits the internal data structure
used to coordinate threads, for higher concurrency in workloads with large numbers of waiting
threads. This setting must be configured when the MySQL instance is starting up, and cannot be
changed afterward. Increasing the value is recommended for workloads that frequently produce a
large number of waiting threads, typically greater than 768.

• innodb_sync_spin_loops

Command-Line Format --innodb-sync-spin-loops=#

System Variable innodb_sync_spin_loops

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 30

Minimum Value 0

Maximum Value 4294967295

The number of times a thread waits for an InnoDB mutex to be freed before the thread is
suspended.

• innodb_sync_debug

Command-Line Format --innodb-sync-debug[={OFF|ON}]

System Variable innodb_sync_debug

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

3473

InnoDB System Variables

Default Value OFF

Enables sync debug checking for the InnoDB storage engine. This option is only available if
debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_table_locks

Command-Line Format --innodb-table-locks[={OFF|ON}]

System Variable innodb_table_locks

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

If autocommit = 0, InnoDB honors LOCK TABLES; MySQL does not return from LOCK
TABLES ... WRITE until all other threads have released all their locks to the table. The default
value of innodb_table_locks is 1, which means that LOCK TABLES causes InnoDB to lock a
table internally if autocommit = 0.

innodb_table_locks = 0 has no effect for tables locked explicitly with LOCK TABLES ...
WRITE. It does have an effect for tables locked for read or write by LOCK TABLES ... WRITE
implicitly (for example, through triggers) or by LOCK TABLES ... READ.

For related information, see Section 17.7, “InnoDB Locking and Transaction Model”.

• innodb_temp_data_file_path

Command-Line Format --innodb-temp-data-file-
path=file_name

System Variable innodb_temp_data_file_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

3474

InnoDB System Variables

Default Value ibtmp1:12M:autoextend

Defines the relative path, name, size, and attributes of global temporary tablespace data files. The
global temporary tablespace stores rollback segments for changes made to user-created temporary
tables.

If no value is specified for innodb_temp_data_file_path, the default behavior is to create a
single auto-extending data file named ibtmp1 in the innodb_data_home_dir directory. The initial
file size is slightly larger than 12MB.

The syntax for a global temporary tablespace data file specification includes the file name, file size,
and autoextend and max attributes:

file_name:file_size[:autoextend[:max:max_file_size]]

The global temporary tablespace data file cannot have the same name as another InnoDB data file.
Any inability or error creating the global temporary tablespace data file is treated as fatal and server
startup is refused.

File sizes are specified in KB, MB, or GB by appending K, M or G to the size value. The sum of file
sizes must be slightly larger than 12MB.

The size limit of individual files is determined by the operating system. File size can be more than
4GB on operating systems that support large files. Use of raw disk partitions for global temporary
tablespace data files is not supported.

The autoextend and max attributes can be used only for the data file specified last in the
innodb_temp_data_file_path setting. For example:

[mysqld]
innodb_temp_data_file_path=ibtmp1:50M;ibtmp2:12M:autoextend:max:500M

The autoextend option causes the data file to automatically increase in size when it runs out of
free space. The autoextend increment is 64MB by default. To modify the increment, change the
innodb_autoextend_increment variable setting.

The directory path for global temporary tablespace data files is formed by concatenating the paths
defined by innodb_data_home_dir and innodb_temp_data_file_path.

Before running InnoDB in read-only mode, set innodb_temp_data_file_path to a location
outside of the data directory. The path must be relative to the data directory. For example:

--innodb-temp-data-file-path=../../../tmp/ibtmp1:12M:autoextend

For more information, see Global Temporary Tablespace.

• innodb_temp_tablespaces_dir

Command-Line Format --innodb-temp-tablespaces-
dir=dir_name

Introduced 8.0.13

System Variable innodb_temp_tablespaces_dir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

3475

InnoDB System Variables

Default Value #innodb_temp

Defines the location where InnoDB creates a pool of session temporary tablespaces at startup. The
default location is the #innodb_temp directory in the data directory. A fully qualified path or path
relative to the data directory is permitted.

As of MySQL 8.0.16, session temporary tablespaces always store user-created
temporary tables and internal temporary tables created by the optimizer using InnoDB.
(Previously, the on-disk storage engine for internal temporary tables was determined by the
internal_tmp_disk_storage_engine system variable, which is no longer supported. See
Storage Engine for On-Disk Internal Temporary Tables.)

For more information, see Session Temporary Tablespaces.

• innodb_thread_concurrency

Command-Line Format --innodb-thread-concurrency=#

System Variable innodb_thread_concurrency

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1000

Defines the maximum number of threads permitted inside of InnoDB. A value of 0 (the default) is
interpreted as infinite concurrency (no limit). This variable is intended for performance tuning on high
concurrency systems.

InnoDB tries to keep the number of threads inside InnoDB less than or equal to the
innodb_thread_concurrency limit. Threads waiting for locks are not counted in the number of
concurrently executing threads.

The correct setting depends on workload and computing environment. Consider setting this variable
if your MySQL instance shares CPU resources with other applications or if your workload or number
of concurrent users is growing. Test a range of values to determine the setting that provides the best
performance. innodb_thread_concurrency is a dynamic variable, which permits experimenting
with different settings on a live test system. If a particular setting performs poorly, you can quickly set
innodb_thread_concurrency back to 0.

Use the following guidelines to help find and maintain an appropriate setting:

• If the number of concurrent user threads for a workload is consistently small and does not affect
performance, set innodb_thread_concurrency=0 (no limit).

• If your workload is consistently heavy or occasionally spikes, set an
innodb_thread_concurrency value and adjust it until you find the number of threads that
provides the best performance. For example, suppose that your system typically has 40 to
50 users, but periodically the number increases to 60, 70, or more. Through testing, you find
that performance remains largely stable with a limit of 80 concurrent users. In this case, set
innodb_thread_concurrency to 80.

• If you do not want InnoDB to use more than a certain number of virtual CPUs for user threads
(20 virtual CPUs, for example), set innodb_thread_concurrency to this number (or possibly
lower, depending on performance testing). If your goal is to isolate MySQL from other applications,

3476

InnoDB System Variables

consider binding the mysqld process exclusively to the virtual CPUs. Be aware, however,
that exclusive binding can result in non-optimal hardware usage if the mysqld process is not
consistently busy. In this case, you can bind the mysqld process to the virtual CPUs but allow
other applications to use some or all of the virtual CPUs.

Note

From an operating system perspective, using a resource management
solution to manage how CPU time is shared among applications may be
preferable to binding the mysqld process. For example, you could assign
90% of virtual CPU time to a given application while other critical processes
are not running, and scale that value back to 40% when other critical
processes are running.

• In some cases, the optimal innodb_thread_concurrency setting can be smaller than the
number of virtual CPUs.

• An innodb_thread_concurrency value that is too high can cause performance regression due
to increased contention on system internals and resources.

• Monitor and analyze your system regularly. Changes to workload, number of users, or computing
environment may require that you adjust the innodb_thread_concurrency setting.

A value of 0 disables the queries inside InnoDB and queries in queue counters in the
ROW OPERATIONS section of SHOW ENGINE INNODB STATUS output.

For related information, see Section 17.8.4, “Configuring Thread Concurrency for InnoDB”.

• innodb_thread_sleep_delay

Command-Line Format --innodb-thread-sleep-delay=#

System Variable innodb_thread_sleep_delay

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 1000000

Unit microseconds

How long InnoDB threads sleep before joining the InnoDB queue, in microseconds. The default
value is 10000. A value of 0 disables sleep. You can set innodb_adaptive_max_sleep_delay to
the highest value you would allow for innodb_thread_sleep_delay, and InnoDB automatically
adjusts innodb_thread_sleep_delay up or down depending on current thread-scheduling
activity. This dynamic adjustment helps the thread scheduling mechanism to work smoothly during
times when the system is lightly loaded or when it is operating near full capacity.

For more information, see Section 17.8.4, “Configuring Thread Concurrency for InnoDB”.

• innodb_tmpdir

Command-Line Format --innodb-tmpdir=dir_name

System Variable innodb_tmpdir

Scope Global, Session
3477

InnoDB System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Directory name

Default Value NULL

Used to define an alternate directory for temporary sort files created during online ALTER TABLE
operations that rebuild the table.

Online ALTER TABLE operations that rebuild the table also create an intermediate table file in the
same directory as the original table. The innodb_tmpdir option is not applicable to intermediate
table files.

A valid value is any directory path other than the MySQL data directory path. If the value is NULL
(the default), temporary files are created MySQL temporary directory ($TMPDIR on Unix, %TEMP
% on Windows, or the directory specified by the --tmpdir configuration option). If a directory is
specified, existence of the directory and permissions are only checked when innodb_tmpdir
is configured using a SET statement. If a symlink is provided in a directory string, the symlink is
resolved and stored as an absolute path. The path should not exceed 512 bytes. An online ALTER
TABLE operation reports an error if innodb_tmpdir is set to an invalid directory. innodb_tmpdir
overrides the MySQL tmpdir setting but only for online ALTER TABLE operations.

The FILE privilege is required to configure innodb_tmpdir.

The innodb_tmpdir option was introduced to help avoid overflowing a temporary file directory
located on a tmpfs file system. Such overflows could occur as a result of large temporary sort files
created during online ALTER TABLE operations that rebuild the table.

In replication environments, only consider replicating the innodb_tmpdir setting if all servers have
the same operating system environment. Otherwise, replicating the innodb_tmpdir setting could
result in a replication failure when running online ALTER TABLE operations that rebuild the table.
If server operating environments differ, it is recommended that you configure innodb_tmpdir on
each server individually.

For more information, see Section 17.12.3, “Online DDL Space Requirements”. For information
about online ALTER TABLE operations, see Section 17.12, “InnoDB and Online DDL”.

• innodb_trx_purge_view_update_only_debug

Command-Line Format --innodb-trx-purge-view-update-only-
debug[={OFF|ON}]

System Variable innodb_trx_purge_view_update_only_debug

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Pauses purging of delete-marked records while allowing the purge view to be updated. This option
artificially creates a situation in which the purge view is updated but purges have not yet been
performed. This option is only available if debugging support is compiled in using the WITH_DEBUG
CMake option.

• innodb_trx_rseg_n_slots_debug

Command-Line Format --innodb-trx-rseg-n-slots-debug=#
3478

InnoDB System Variables

System Variable innodb_trx_rseg_n_slots_debug

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1024

Sets a debug flag that limits TRX_RSEG_N_SLOTS to a given value for the
trx_rsegf_undo_find_free function that looks for free slots for undo log segments. This option
is only available if debugging support is compiled in using the WITH_DEBUG CMake option.

• innodb_undo_directory

Command-Line Format --innodb-undo-directory=dir_name

System Variable innodb_undo_directory

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

The path where InnoDB creates undo tablespaces. Typically used to place undo tablespaces on a
different storage device.

There is no default value (it is NULL). If the innodb_undo_directory variable is undefined, undo
tablespaces are created in the data directory.

The default undo tablespaces (innodb_undo_001 and innodb_undo_002) created
when the MySQL instance is initialized always reside in the directory defined by the
innodb_undo_directory variable.

Undo tablespaces created using CREATE UNDO TABLESPACE syntax are created in the directory
defined by the innodb_undo_directory variable if a different path is not specified.

For more information, see Section 17.6.3.4, “Undo Tablespaces”.

• innodb_undo_log_encrypt

Command-Line Format --innodb-undo-log-encrypt[={OFF|ON}]

System Variable innodb_undo_log_encrypt

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Controls encryption of undo log data for tables encrypted using the InnoDB data-at-rest encryption
feature. Only applies to undo logs that reside in separate undo tablespaces. See Section 17.6.3.4,
“Undo Tablespaces”. Encryption is not supported for undo log data that resides in the system
tablespace. For more information, see Undo Log Encryption.

3479

InnoDB System Variables

• innodb_undo_log_truncate

Command-Line Format --innodb-undo-log-truncate[={OFF|
ON}]

System Variable innodb_undo_log_truncate

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

When enabled, undo tablespaces that exceed the threshold value defined by
innodb_max_undo_log_size are marked for truncation. Only undo tablespaces can be truncated.
Truncating undo logs that reside in the system tablespace is not supported. For truncation to occur,
there must be at least two undo tablespaces.

The innodb_purge_rseg_truncate_frequency variable can be used to expedite truncation of
undo tablespaces.

For more information, see Truncating Undo Tablespaces.

• innodb_undo_tablespaces

Command-Line Format --innodb-undo-tablespaces=#

Deprecated Yes

System Variable innodb_undo_tablespaces

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2

Minimum Value 2

Maximum Value 127

Defines the number of undo tablespaces used by InnoDB. The default and minimum value is 2.

Note

The innodb_undo_tablespaces variable is deprecated and is no longer
configurable as of MySQL 8.0.14. Expect it to be removed in a future release.

For more information, see Section 17.6.3.4, “Undo Tablespaces”.

• innodb_use_fdatasync

Command-Line Format --innodb-use-fdatasync[={OFF|ON}]

Introduced 8.0.26

System Variable innodb_use_fdatasync

Scope Global

Dynamic Yes

SET_VAR Hint Applies No3480

InnoDB System Variables

Type Boolean

Default Value OFF

On platforms that support fdatasync() system calls, enabling the innodb_use_fdatasync
variable permits using fdatasync() instead of fsync() system calls for operating system flushes.
An fdatasync() call does not flush changes to file metadata unless required for subsequent data
retrieval, providing a potential performance benefit.

A subset of innodb_flush_method settings such as fsync, O_DSYNC, and O_DIRECT use
fsync() system calls. The innodb_use_fdatasync variable is applicable when using those
settings.

• innodb_use_native_aio

Command-Line Format --innodb-use-native-aio[={OFF|ON}]

System Variable innodb_use_native_aio

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Specifies whether to use the asynchronous I/O subsystem. This variable cannot be changed while
the server is running. Normally, you do not need to configure this option, because it is enabled by
default.

This feature improves the scalability of heavily I/O-bound systems, which typically show many
pending reads/writes in SHOW ENGINE INNODB STATUS output.

Running with a large number of InnoDB I/O threads, and especially running multiple such instances
on the same server machine, can exceed capacity limits on Linux systems. In this case, you may
receive the following error:

EAGAIN: The specified maxevents exceeds the user's limit of available events.

You can typically address this error by writing a higher limit to /proc/sys/fs/aio-max-nr.

However, if a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from
starting, you can start the server with innodb_use_native_aio=0. This option may also be
disabled automatically during startup if InnoDB detects a potential problem such as a combination of
tmpdir location, tmpfs file system, and Linux kernel that does not support AIO on tmpfs.

For more information, see Section 17.8.6, “Using Asynchronous I/O on Linux”.

• innodb_validate_tablespace_paths

Command-Line Format --innodb-validate-tablespace-
paths[={OFF|ON}]

Introduced 8.0.21

System Variable innodb_validate_tablespace_paths

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean
3481

InnoDB INFORMATION_SCHEMA Tables

Default Value ON

Controls tablespace file path validation. At startup, InnoDB validates the paths of known tablespace
files against tablespace file paths stored in the data dictionary in case tablespace files have been
moved to a different location. The innodb_validate_tablespace_paths variable permits
disabling tablespace path validation. This feature is intended for environments where tablespaces
files are not moved. Disabling path validation improves startup time on systems with a large number
of tablespace files.

Warning

Starting the server with tablespace path validation disabled after moving
tablespace files can lead to undefined behavior.

For more information, see Section 17.6.3.7, “Disabling Tablespace Path Validation”.

• innodb_version

The InnoDB version number. In MySQL 8.0, separate version numbering for InnoDB does not apply
and this value is the same the version number of the server.

• innodb_write_io_threads

Command-Line Format --innodb-write-io-threads=#

System Variable innodb_write_io_threads

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 64

The number of I/O threads for write operations in InnoDB. The default value is 4. Its counterpart
for read threads is innodb_read_io_threads. For more information, see Section 17.8.5,
“Configuring the Number of Background InnoDB I/O Threads”. For general I/O tuning advice, see
Section 10.5.8, “Optimizing InnoDB Disk I/O”.

Note

On Linux systems, running multiple MySQL servers (typically more
than 12) with default settings for innodb_read_io_threads,
innodb_write_io_threads, and the Linux aio-max-nr setting can
exceed system limits. Ideally, increase the aio-max-nr setting; as a
workaround, you might reduce the settings for one or both of the MySQL
variables.

Also take into consideration the value of sync_binlog, which controls synchronization of the binary
log to disk.

For general I/O tuning advice, see Section 10.5.8, “Optimizing InnoDB Disk I/O”.

17.15 InnoDB INFORMATION_SCHEMA Tables

This section provides information and usage examples for InnoDB INFORMATION_SCHEMA tables.

3482

InnoDB INFORMATION_SCHEMA Tables about Compression

InnoDB INFORMATION_SCHEMA tables provide metadata, status information, and statistics about
various aspects of the InnoDB storage engine. You can view a list of InnoDB INFORMATION_SCHEMA
tables by issuing a SHOW TABLES statement on the INFORMATION_SCHEMA database:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB%';

For table definitions, see Section 28.4, “INFORMATION_SCHEMA InnoDB Tables”. For
general information regarding the MySQL INFORMATION_SCHEMA database, see Chapter 28,
INFORMATION_SCHEMA Tables.

17.15.1 InnoDB INFORMATION_SCHEMA Tables about Compression

There are two pairs of InnoDB INFORMATION_SCHEMA tables about compression that can provide
insight into how well compression is working overall:

• INNODB_CMP and INNODB_CMP_RESET provide information about the number of compression
operations and the amount of time spent performing compression.

• INNODB_CMPMEM and INNODB_CMPMEM_RESET provide information about the way memory is
allocated for compression.

17.15.1.1 INNODB_CMP and INNODB_CMP_RESET

The INNODB_CMP and INNODB_CMP_RESET tables provide status information about operations related
to compressed tables, which are described in Section 17.9, “InnoDB Table and Page Compression”.
The PAGE_SIZE column reports the compressed page size.

These two tables have identical contents, but reading from INNODB_CMP_RESET resets the
statistics on compression and uncompression operations. For example, if you archive the output of
INNODB_CMP_RESET every 60 minutes, you see the statistics for each hourly period. If you monitor
the output of INNODB_CMP (making sure never to read INNODB_CMP_RESET), you see the cumulative
statistics since InnoDB was started.

For the table definition, see Section 28.4.6, “The INFORMATION_SCHEMA INNODB_CMP and
INNODB_CMP_RESET Tables”.

17.15.1.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables provide status information about
compressed pages that reside in the buffer pool. Please consult Section 17.9, “InnoDB Table and
Page Compression” for further information on compressed tables and the use of the buffer pool. The
INNODB_CMP and INNODB_CMP_RESET tables should provide more useful statistics on compression.

Internal Details

InnoDB uses a buddy allocator system to manage memory allocated to pages of various sizes, from
1KB to 16KB. Each row of the two tables described here corresponds to a single page size.

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables have identical contents, but reading from
INNODB_CMPMEM_RESET resets the statistics on relocation operations. For example, if every 60
minutes you archived the output of INNODB_CMPMEM_RESET, it would show the hourly statistics. If you
never read INNODB_CMPMEM_RESET and monitored the output of INNODB_CMPMEM instead, it would
show the cumulative statistics since InnoDB was started.

For the table definition, see Section 28.4.7, “The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables”.

3483

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

17.15.1.3 Using the Compression Information Schema Tables

Example 17.1 Using the Compression Information Schema Tables

The following is sample output from a database that contains compressed tables (see Section 17.9,
“InnoDB Table and Page Compression”, INNODB_CMP, INNODB_CMP_PER_INDEX, and
INNODB_CMPMEM).

The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMP under a light
workload. The only compressed page size that the buffer pool contains is 8K. Compressing or
uncompressing pages has consumed less than a second since the time the statistics were reset,
because the columns COMPRESS_TIME and UNCOMPRESS_TIME are zero.

page size compress ops compress ops
ok

compress time uncompress
ops

uncompress
time

1024 0 0 0 0 0

2048 0 0 0 0 0

4096 0 0 0 0 0

8192 1048 921 0 61 0

16384 0 0 0 0 0

According to INNODB_CMPMEM, there are 6169 compressed 8KB pages in the buffer pool. The only
other allocated block size is 64 bytes. The smallest PAGE_SIZE in INNODB_CMPMEM is used for block
descriptors of those compressed pages for which no uncompressed page exists in the buffer pool. We
see that there are 5910 such pages. Indirectly, we see that 259 (6169-5910) compressed pages also
exist in the buffer pool in uncompressed form.

The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMPMEM under
a light workload. Some memory is unusable due to fragmentation of the memory allocator for
compressed pages: SUM(PAGE_SIZE*PAGES_FREE)=6784. This is because small memory
allocation requests are fulfilled by splitting bigger blocks, starting from the 16K blocks that are
allocated from the main buffer pool, using the buddy allocation system. The fragmentation is this low
because some allocated blocks have been relocated (copied) to form bigger adjacent free blocks.
This copying of SUM(PAGE_SIZE*RELOCATION_OPS) bytes has consumed less than a second
(SUM(RELOCATION_TIME)=0).

page size pages used pages free relocation ops relocation time

64 5910 0 2436 0

128 0 1 0 0

256 0 0 0 0

512 0 1 0 0

1024 0 0 0 0

2048 0 1 0 0

4096 0 1 0 0

8192 6169 0 5 0

16384 0 0 0 0

17.15.2 InnoDB INFORMATION_SCHEMA Transaction and Locking
Information

Note

This section describes locking information as exposed by the Performance
Schema data_locks and data_lock_waits tables, which supersede

3484

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

the INFORMATION_SCHEMA INNODB_LOCKS and INNODB_LOCK_WAITS
tables in MySQL 8.0. For similar discussion written in terms of the older
INFORMATION_SCHEMA tables, see InnoDB INFORMATION_SCHEMA
Transaction and Locking Information, in MySQL 5.7 Reference Manual.

One INFORMATION_SCHEMA table and two Performance Schema tables enable you to monitor
InnoDB transactions and diagnose potential locking problems:

• INNODB_TRX: This INFORMATION_SCHEMA table provides information about every transaction
currently executing inside InnoDB, including the transaction state (for example, whether it is running
or waiting for a lock), when the transaction started, and the particular SQL statement the transaction
is executing.

• data_locks: This Performance Schema table contains a row for each hold lock and each lock
request that is blocked waiting for a held lock to be released:

• There is one row for each held lock, whatever the state of the transaction that holds the lock
(INNODB_TRX.TRX_STATE is RUNNING, LOCK WAIT, ROLLING BACK or COMMITTING).

• Each transaction in InnoDB that is waiting for another transaction to release a lock
(INNODB_TRX.TRX_STATE is LOCK WAIT) is blocked by exactly one blocking lock request. That
blocking lock request is for a row or table lock held by another transaction in an incompatible
mode. A lock request always has a mode that is incompatible with the mode of the held lock that
blocks the request (read vs. write, shared vs. exclusive).

The blocked transaction cannot proceed until the other transaction commits or rolls back, thereby
releasing the requested lock. For every blocked transaction, data_locks contains one row that
describes each lock the transaction has requested, and for which it is waiting.

• data_lock_waits: This Performance Schema table indicates which transactions are waiting for a
given lock, or for which lock a given transaction is waiting. This table contains one or more rows for
each blocked transaction, indicating the lock it has requested and any locks that are blocking that
request. The REQUESTING_ENGINE_LOCK_ID value refers to the lock requested by a transaction,
and the BLOCKING_ENGINE_LOCK_ID value refers to the lock (held by another transaction)
that prevents the first transaction from proceeding. For any given blocked transaction, all rows in
data_lock_waits have the same value for REQUESTING_ENGINE_LOCK_ID and different values
for BLOCKING_ENGINE_LOCK_ID.

For more information about the preceding tables, see Section 28.4.28, “The INFORMATION_SCHEMA
INNODB_TRX Table”, Section 29.12.13.1, “The data_locks Table”, and Section 29.12.13.2, “The
data_lock_waits Table”.

17.15.2.1 Using InnoDB Transaction and Locking Information

Note

This section describes locking information as exposed by the Performance
Schema data_locks and data_lock_waits tables, which supersede
the INFORMATION_SCHEMA INNODB_LOCKS and INNODB_LOCK_WAITS
tables in MySQL 8.0. For similar discussion written in terms of the older
INFORMATION_SCHEMA tables, see Using InnoDB Transaction and Locking
Information, in MySQL 5.7 Reference Manual.

Identifying Blocking Transactions

It is sometimes helpful to identify which transaction blocks another. The tables that contain information
about InnoDB transactions and data locks enable you to determine which transaction is waiting for
another, and which resource is being requested. (For descriptions of these tables, see Section 17.15.2,
“InnoDB INFORMATION_SCHEMA Transaction and Locking Information”.)

3485

https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-transactions.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-transactions.html
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/5.7/en/

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

Suppose that three sessions are running concurrently. Each session corresponds to a MySQL thread,
and executes one transaction after another. Consider the state of the system when these sessions
have issued the following statements, but none has yet committed its transaction:

• Session A:

BEGIN;
SELECT a FROM t FOR UPDATE;
SELECT SLEEP(100);

• Session B:

SELECT b FROM t FOR UPDATE;

• Session C:

SELECT c FROM t FOR UPDATE;

In this scenario, use the following query to see which transactions are waiting and which transactions
are blocking them:

SELECT
 r.trx_id waiting_trx_id,
 r.trx_mysql_thread_id waiting_thread,
 r.trx_query waiting_query,
 b.trx_id blocking_trx_id,
 b.trx_mysql_thread_id blocking_thread,
 b.trx_query blocking_query
FROM performance_schema.data_lock_waits w
INNER JOIN information_schema.innodb_trx b
 ON b.trx_id = w.blocking_engine_transaction_id
INNER JOIN information_schema.innodb_trx r
 ON r.trx_id = w.requesting_engine_transaction_id;

Or, more simply, use the sys schema innodb_lock_waits view:

SELECT
 waiting_trx_id,
 waiting_pid,
 waiting_query,
 blocking_trx_id,
 blocking_pid,
 blocking_query
FROM sys.innodb_lock_waits;

If a NULL value is reported for the blocking query, see Identifying a Blocking Query After the Issuing
Session Becomes Idle.

waiting trx id waiting thread waiting query blocking trx id blocking
thread

blocking query

A4 6 SELECT b
FROM t FOR
UPDATE

A3 5 SELECT
SLEEP(100)

A5 7 SELECT c
FROM t FOR
UPDATE

A3 5 SELECT
SLEEP(100)

A5 7 SELECT c
FROM t FOR
UPDATE

A4 6 SELECT b
FROM t FOR
UPDATE

In the preceding table, you can identify sessions by the “waiting query” or “blocking query” columns. As
you can see:

• Session B (trx id A4, thread 6) and Session C (trx id A5, thread 7) are both waiting for Session A (trx
id A3, thread 5).

3486

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

• Session C is waiting for Session B as well as Session A.

You can see the underlying data in the INFORMATION_SCHEMA INNODB_TRX table and Performance
Schema data_locks and data_lock_waits tables.

The following table shows some sample contents of the INNODB_TRX table.

trx id trx state trx started trx
requested
lock id

trx wait
started

trx weight trx mysql
thread id

trx query

A3 RUNNING 2008-01-15
16:44:54

NULL NULL 2 5 SELECT
SLEEP(100)

A4 LOCK
WAIT

2008-01-15
16:45:09

A4:1:3:2 2008-01-15
16:45:09

2 6 SELECT
b FROM
t FOR
UPDATE

A5 LOCK
WAIT

2008-01-15
16:45:14

A5:1:3:2 2008-01-15
16:45:14

2 7 SELECT
c FROM
t FOR
UPDATE

The following table shows some sample contents of the data_locks table.

lock id lock trx id lock mode lock type lock
schema

lock table lock index lock data

A3:1:3:2 A3 X RECORD test t PRIMARY 0x0200

A4:1:3:2 A4 X RECORD test t PRIMARY 0x0200

A5:1:3:2 A5 X RECORD test t PRIMARY 0x0200

The following table shows some sample contents of the data_lock_waits table.

requesting trx id requested lock id blocking trx id blocking lock id

A4 A4:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A3 A3:1:3:2

A5 A5:1:3:2 A4 A4:1:3:2

Identifying a Blocking Query After the Issuing Session Becomes Idle

When identifying blocking transactions, a NULL value is reported for the blocking query if the session
that issued the query has become idle. In this case, use the following steps to determine the blocking
query:

1. Identify the processlist ID of the blocking transaction. In the sys.innodb_lock_waits table, the
processlist ID of the blocking transaction is the blocking_pid value.

2. Using the blocking_pid, query the MySQL Performance Schema threads table to determine
the THREAD_ID of the blocking transaction. For example, if the blocking_pid is 6, issue this
query:

SELECT THREAD_ID FROM performance_schema.threads WHERE PROCESSLIST_ID = 6;

3. Using the THREAD_ID, query the Performance Schema events_statements_current table to
determine the last query executed by the thread. For example, if the THREAD_ID is 28, issue this
query:

SELECT THREAD_ID, SQL_TEXT FROM performance_schema.events_statements_current
WHERE THREAD_ID = 28\G

3487

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

4. If the last query executed by the thread is not enough information to determine why a lock is held,
you can query the Performance Schema events_statements_history table to view the last 10
statements executed by the thread.

SELECT THREAD_ID, SQL_TEXT FROM performance_schema.events_statements_history
WHERE THREAD_ID = 28 ORDER BY EVENT_ID;

Correlating InnoDB Transactions with MySQL Sessions

Sometimes it is useful to correlate internal InnoDB locking information with the session-level
information maintained by MySQL. For example, you might like to know, for a given InnoDB
transaction ID, the corresponding MySQL session ID and name of the session that may be holding a
lock, and thus blocking other transactions.

The following output from the INFORMATION_SCHEMA INNODB_TRX table and Performance Schema
data_locks and data_lock_waits tables is taken from a somewhat loaded system. As can be
seen, there are several transactions running.

The following data_locks and data_lock_waits tables show that:

• Transaction 77F (executing an INSERT) is waiting for transactions 77E, 77D, and 77B to commit.

• Transaction 77E (executing an INSERT) is waiting for transactions 77D and 77B to commit.

• Transaction 77D (executing an INSERT) is waiting for transaction 77B to commit.

• Transaction 77B (executing an INSERT) is waiting for transaction 77A to commit.

• Transaction 77A is running, currently executing SELECT.

• Transaction E56 (executing an INSERT) is waiting for transaction E55 to commit.

• Transaction E55 (executing an INSERT) is waiting for transaction 19C to commit.

• Transaction 19C is running, currently executing an INSERT.

Note

There may be inconsistencies between queries shown in the
INFORMATION_SCHEMA PROCESSLIST and INNODB_TRX tables. For an
explanation, see Section 17.15.2.3, “Persistence and Consistency of InnoDB
Transaction and Locking Information”.

The following table shows the contents of the PROCESSLIST table for a system running a heavy
workload.

ID USER HOST DB COMMAND TIME STATE INFO

384 root localhost test Query 10 update INSERT
INTO t2
VALUES …

257 root localhost test Query 3 update INSERT
INTO t2
VALUES …

130 root localhost test Query 0 update INSERT
INTO t2
VALUES …

61 root localhost test Query 1 update INSERT
INTO t2
VALUES …

3488

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

ID USER HOST DB COMMAND TIME STATE INFO

8 root localhost test Query 1 update INSERT
INTO t2
VALUES …

4 root localhost test Query 0 preparing SELECT
* FROM
PROCESSLIST

2 root localhost test Sleep 566 NULL

The following table shows the contents of the INNODB_TRX table for a system running a heavy
workload.

trx id trx state trx started trx
requested
lock id

trx wait
started

trx weight trx mysql
thread id

trx query

77F LOCK
WAIT

2008-01-15
13:10:16

77F 2008-01-15
13:10:16

1 876 INSERT
INTO
t09 (D,
B, C)
VALUES …

77E LOCK
WAIT

2008-01-15
13:10:16

77E 2008-01-15
13:10:16

1 875 INSERT
INTO
t09 (D,
B, C)
VALUES …

77D LOCK
WAIT

2008-01-15
13:10:16

77D 2008-01-15
13:10:16

1 874 INSERT
INTO
t09 (D,
B, C)
VALUES …

77B LOCK
WAIT

2008-01-15
13:10:16

77B:733:12:12008-01-15
13:10:16

4 873 INSERT
INTO
t09 (D,
B, C)
VALUES …

77A RUNNING 2008-01-15
13:10:16

NULL NULL 4 872 SELECT
b, c
FROM t09
WHERE …

E56 LOCK
WAIT

2008-01-15
13:10:06

E56:743:6:22008-01-15
13:10:06

5 384 INSERT
INTO t2
VALUES …

E55 LOCK
WAIT

2008-01-15
13:10:06

E55:743:38:22008-01-15
13:10:13

965 257 INSERT
INTO t2
VALUES …

19C RUNNING 2008-01-15
13:09:10

NULL NULL 2900 130 INSERT
INTO t2
VALUES …

E15 RUNNING 2008-01-15
13:08:59

NULL NULL 5395 61 INSERT
INTO t2
VALUES …

3489

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

trx id trx state trx started trx
requested
lock id

trx wait
started

trx weight trx mysql
thread id

trx query

51D RUNNING 2008-01-15
13:08:47

NULL NULL 9807 8 INSERT
INTO t2
VALUES …

The following table shows the contents of the data_lock_waits table for a system running a heavy
workload.

requesting trx id requested lock id blocking trx id blocking lock id

77F 77F:806 77E 77E:806

77F 77F:806 77D 77D:806

77F 77F:806 77B 77B:806

77E 77E:806 77D 77D:806

77E 77E:806 77B 77B:806

77D 77D:806 77B 77B:806

77B 77B:733:12:1 77A 77A:733:12:1

E56 E56:743:6:2 E55 E55:743:6:2

E55 E55:743:38:2 19C 19C:743:38:2

The following table shows the contents of the data_locks table for a system running a heavy
workload.

lock id lock trx id lock mode lock type lock
schema

lock table lock index lock data

77F:806 77F AUTO_INC TABLE test t09 NULL NULL

77E:806 77E AUTO_INC TABLE test t09 NULL NULL

77D:806 77D AUTO_INC TABLE test t09 NULL NULL

77B:806 77B AUTO_INC TABLE test t09 NULL NULL

77B:733:12:177B X RECORD test t09 PRIMARY supremum
pseudo-
record

77A:733:12:177A X RECORD test t09 PRIMARY supremum
pseudo-
record

E56:743:6:2E56 S RECORD test t2 PRIMARY 0, 0

E55:743:6:2E55 X RECORD test t2 PRIMARY 0, 0

E55:743:38:2E55 S RECORD test t2 PRIMARY 1922,
1922

19C:743:38:219C X RECORD test t2 PRIMARY 1922,
1922

17.15.2.2 InnoDB Lock and Lock-Wait Information

Note

This section describes locking information as exposed by the Performance
Schema data_locks and data_lock_waits tables, which supersede
the INFORMATION_SCHEMA INNODB_LOCKS and INNODB_LOCK_WAITS
tables in MySQL 8.0. For similar discussion written in terms of the older

3490

InnoDB INFORMATION_SCHEMA Transaction and Locking Information

INFORMATION_SCHEMA tables, see InnoDB Lock and Lock-Wait Information, in
MySQL 5.7 Reference Manual.

When a transaction updates a row in a table, or locks it with SELECT FOR UPDATE, InnoDB
establishes a list or queue of locks on that row. Similarly, InnoDB maintains a list of locks on a table for
table-level locks. If a second transaction wants to update a row or lock a table already locked by a prior
transaction in an incompatible mode, InnoDB adds a lock request for the row to the corresponding
queue. For a lock to be acquired by a transaction, all incompatible lock requests previously entered into
the lock queue for that row or table must be removed (which occurs when the transactions holding or
requesting those locks either commit or roll back).

A transaction may have any number of lock requests for different rows or tables. At any given time, a
transaction may request a lock that is held by another transaction, in which case it is blocked by that
other transaction. The requesting transaction must wait for the transaction that holds the blocking lock
to commit or roll back. If a transaction is not waiting for a lock, it is in a RUNNING state. If a transaction
is waiting for a lock, it is in a LOCK WAIT state. (The INFORMATION_SCHEMA INNODB_TRX table
indicates transaction state values.)

The Performance Schema data_locks table holds one or more rows for each LOCK WAIT
transaction, indicating any lock requests that prevent its progress. This table also contains one
row describing each lock in a queue of locks pending for a given row or table. The Performance
Schema data_lock_waits table shows which locks already held by a transaction are blocking locks
requested by other transactions.

17.15.2.3 Persistence and Consistency of InnoDB Transaction and Locking Information

Note

This section describes locking information as exposed by the Performance
Schema data_locks and data_lock_waits tables, which supersede
the INFORMATION_SCHEMA INNODB_LOCKS and INNODB_LOCK_WAITS
tables in MySQL 8.0. For similar discussion written in terms of the older
INFORMATION_SCHEMA tables, see Persistence and Consistency of InnoDB
Transaction and Locking Information, in MySQL 5.7 Reference Manual.

The data exposed by the transaction and locking tables (INFORMATION_SCHEMA INNODB_TRX table,
Performance Schema data_locks and data_lock_waits tables) represents a glimpse into fast-
changing data. This is not like user tables, where the data changes only when application-initiated
updates occur. The underlying data is internal system-managed data, and can change very quickly:

• Data might not be consistent between the INNODB_TRX, data_locks, and data_lock_waits
tables.

The data_locks and data_lock_waits tables expose live data from the InnoDB storage engine,
to provide lock information about the transactions in the INNODB_TRX table. Data retrieved from the
lock tables exists when the SELECT is executed, but might be gone or changed by the time the query
result is consumed by the client.

Joining data_locks with data_lock_waits can show rows in data_lock_waits that identify a
parent row in data_locks that no longer exists or does not exist yet.

• Data in the transaction and locking tables might not be consistent with data in the
INFORMATION_SCHEMA PROCESSLIST table or Performance Schema threads table.

For example, you should be careful when comparing data in the InnoDB transaction and locking
tables with data in the PROCESSLIST table. Even if you issue a single SELECT (joining INNODB_TRX
and PROCESSLIST, for example), the content of those tables is generally not consistent. It is
possible for INNODB_TRX to reference rows that are not present in PROCESSLIST or for the currently
executing SQL query of a transaction shown in INNODB_TRX.TRX_QUERY to differ from the one in
PROCESSLIST.INFO.

3491

https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-understanding-innodb-locking.html
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-internal-data.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-internal-data.html
https://dev.mysql.com/doc/refman/5.7/en/

InnoDB INFORMATION_SCHEMA Schema Object Tables

17.15.3 InnoDB INFORMATION_SCHEMA Schema Object Tables

You can extract metadata about schema objects managed by InnoDB using InnoDB
INFORMATION_SCHEMA tables. This information comes from the data dictionary. Traditionally, you
would get this type of information using the techniques from Section 17.17, “InnoDB Monitors”, setting
up InnoDB monitors and parsing the output from the SHOW ENGINE INNODB STATUS statement. The
InnoDB INFORMATION_SCHEMA table interface allows you to query this data using SQL.

InnoDB INFORMATION_SCHEMA schema object tables include the tables listed below.

INNODB_DATAFILES
INNODB_TABLESTATS
INNODB_FOREIGN
INNODB_COLUMNS
INNODB_INDEXES
INNODB_FIELDS
INNODB_TABLESPACES
INNODB_TABLESPACES_BRIEF
INNODB_FOREIGN_COLS
INNODB_TABLES

The table names are indicative of the type of data provided:

• INNODB_TABLES provides metadata about InnoDB tables.

• INNODB_COLUMNS provides metadata about InnoDB table columns.

• INNODB_INDEXES provides metadata about InnoDB indexes.

• INNODB_FIELDS provides metadata about the key columns (fields) of InnoDB indexes.

• INNODB_TABLESTATS provides a view of low-level status information about InnoDB tables that is
derived from in-memory data structures.

• INNODB_DATAFILES provides data file path information for InnoDB file-per-table and general
tablespaces.

• INNODB_TABLESPACES provides metadata about InnoDB file-per-table, general, and undo
tablespaces.

• INNODB_TABLESPACES_BRIEF provides a subset of metadata about InnoDB tablespaces.

• INNODB_FOREIGN provides metadata about foreign keys defined on InnoDB tables.

• INNODB_FOREIGN_COLS provides metadata about the columns of foreign keys that are defined on
InnoDB tables.

InnoDB INFORMATION_SCHEMA schema object tables can be joined together through fields such as
TABLE_ID, INDEX_ID, and SPACE, allowing you to easily retrieve all available data for an object you
want to study or monitor.

Refer to the InnoDB INFORMATION_SCHEMA documentation for information about the columns of
each table.

Example 17.2 InnoDB INFORMATION_SCHEMA Schema Object Tables

This example uses a simple table (t1) with a single index (i1) to demonstrate the type of metadata
found in the InnoDB INFORMATION_SCHEMA schema object tables.

1. Create a test database and table t1:

mysql> CREATE DATABASE test;

mysql> USE test;

mysql> CREATE TABLE t1 (
 col1 INT,

3492

InnoDB INFORMATION_SCHEMA Schema Object Tables

 col2 CHAR(10),
 col3 VARCHAR(10))
 ENGINE = InnoDB;

mysql> CREATE INDEX i1 ON t1(col1);

2. After creating the table t1, query INNODB_TABLES to locate the metadata for test/t1:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLES WHERE NAME='test/t1' \G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
 FLAG: 1
 N_COLS: 6
 SPACE: 57
 ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
 INSTANT_COLS: 0

Table t1 has a TABLE_ID of 71. The FLAG field provides bit level information about table format
and storage characteristics. There are six columns, three of which are hidden columns created by
InnoDB (DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR). The ID of the table's SPACE is 57 (a value
of 0 would indicate that the table resides in the system tablespace). The ROW_FORMAT is Compact.
ZIP_PAGE_SIZE only applies to tables with a Compressed row format. INSTANT_COLS shows
number of columns in the table prior to adding the first instant column using ALTER TABLE ...
ADD COLUMN with ALGORITHM=INSTANT.

3. Using the TABLE_ID information from INNODB_TABLES, query the INNODB_COLUMNS table for
information about the table's columns.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_COLUMNS where TABLE_ID = 71\G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: col1
 POS: 0
 MTYPE: 6
 PRTYPE: 1027
 LEN: 4
 HAS_DEFAULT: 0
DEFAULT_VALUE: NULL
*************************** 2. row ***************************
 TABLE_ID: 71
 NAME: col2
 POS: 1
 MTYPE: 2
 PRTYPE: 524542
 LEN: 10
 HAS_DEFAULT: 0
DEFAULT_VALUE: NULL
*************************** 3. row ***************************
 TABLE_ID: 71
 NAME: col3
 POS: 2
 MTYPE: 1
 PRTYPE: 524303
 LEN: 10
 HAS_DEFAULT: 0
DEFAULT_VALUE: NULL

In addition to the TABLE_ID and column NAME, INNODB_COLUMNS provides the ordinal position
(POS) of each column (starting from 0 and incrementing sequentially), the column MTYPE or “main
type” (6 = INT, 2 = CHAR, 1 = VARCHAR), the PRTYPE or “precise type” (a binary value with bits
that represent the MySQL data type, character set code, and nullability), and the column length
(LEN). The HAS_DEFAULT and DEFAULT_VALUE columns only apply to columns added instantly
using ALTER TABLE ... ADD COLUMN with ALGORITHM=INSTANT.

4. Using the TABLE_ID information from INNODB_TABLES once again, query INNODB_INDEXES for
information about the indexes associated with table t1.

3493

InnoDB INFORMATION_SCHEMA Schema Object Tables

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_INDEXES WHERE TABLE_ID = 71 \G
*************************** 1. row ***************************
 INDEX_ID: 111
 NAME: GEN_CLUST_INDEX
 TABLE_ID: 71
 TYPE: 1
 N_FIELDS: 0
 PAGE_NO: 3
 SPACE: 57
MERGE_THRESHOLD: 50
*************************** 2. row ***************************
 INDEX_ID: 112
 NAME: i1
 TABLE_ID: 71
 TYPE: 0
 N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 57
MERGE_THRESHOLD: 50

INNODB_INDEXES returns data for two indexes. The first index is GEN_CLUST_INDEX, which is a
clustered index created by InnoDB if the table does not have a user-defined clustered index. The
second index (i1) is the user-defined secondary index.

The INDEX_ID is an identifier for the index that is unique across all databases in an instance. The
TABLE_ID identifies the table that the index is associated with. The index TYPE value indicates the
type of index (1 = Clustered Index, 0 = Secondary index). The N_FILEDS value is the number of
fields that comprise the index. PAGE_NO is the root page number of the index B-tree, and SPACE is
the ID of the tablespace where the index resides. A nonzero value indicates that the index does not
reside in the system tablespace. MERGE_THRESHOLD defines a percentage threshold value for the
amount of data in an index page. If the amount of data in an index page falls below the this value
(the default is 50%) when a row is deleted or when a row is shortened by an update operation,
InnoDB attempts to merge the index page with a neighboring index page.

5. Using the INDEX_ID information from INNODB_INDEXES, query INNODB_FIELDS for information
about the fields of index i1.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FIELDS where INDEX_ID = 112 \G
*************************** 1. row ***************************
INDEX_ID: 112
 NAME: col1
 POS: 0

INNODB_FIELDS provides the NAME of the indexed field and its ordinal position within the index.
If the index (i1) had been defined on multiple fields, INNODB_FIELDS would provide metadata for
each of the indexed fields.

6. Using the SPACE information from INNODB_TABLES, query INNODB_TABLESPACES table for
information about the table's tablespace.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLESPACES WHERE SPACE = 57 \G
*************************** 1. row ***************************
 SPACE: 57
 NAME: test/t1
 FLAG: 16417
 ROW_FORMAT: Dynamic
 PAGE_SIZE: 16384
 ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single
 FS_BLOCK_SIZE: 4096
 FILE_SIZE: 114688
ALLOCATED_SIZE: 98304
AUTOEXTEND_SIZE: 0
SERVER_VERSION: 8.0.23
 SPACE_VERSION: 1
 ENCRYPTION: N
 STATE: normal

3494

InnoDB INFORMATION_SCHEMA Schema Object Tables

In addition to the SPACE ID of the tablespace and the NAME of the associated table,
INNODB_TABLESPACES provides tablespace FLAG data, which is bit level information about
tablespace format and storage characteristics. Also provided are tablespace ROW_FORMAT,
PAGE_SIZE, and several other tablespace metadata items.

7. Using the SPACE information from INNODB_TABLES once again, query INNODB_DATAFILES for
the location of the tablespace data file.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_DATAFILES WHERE SPACE = 57 \G
*************************** 1. row ***************************
SPACE: 57
 PATH: ./test/t1.ibd

The datafile is located in the test directory under MySQL's data directory. If a file-per-
table tablespace were created in a location outside the MySQL data directory using the DATA
DIRECTORY clause of the CREATE TABLE statement, the tablespace PATH would be a fully
qualified directory path.

8. As a final step, insert a row into table t1 (TABLE_ID = 71) and view the data in the
INNODB_TABLESTATS table. The data in this table is used by the MySQL optimizer to calculate
which index to use when querying an InnoDB table. This information is derived from in-memory
data structures.

mysql> INSERT INTO t1 VALUES(5, 'abc', 'def');
Query OK, 1 row affected (0.06 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLESTATS where TABLE_ID = 71 \G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
STATS_INITIALIZED: Initialized
 NUM_ROWS: 1
 CLUST_INDEX_SIZE: 1
 OTHER_INDEX_SIZE: 0
 MODIFIED_COUNTER: 1
 AUTOINC: 0
 REF_COUNT: 1

The STATS_INITIALIZED field indicates whether or not statistics have been collected for the
table. NUM_ROWS is the current estimated number of rows in the table. The CLUST_INDEX_SIZE
and OTHER_INDEX_SIZE fields report the number of pages on disk that store clustered and
secondary indexes for the table, respectively. The MODIFIED_COUNTER value shows the number of
rows modified by DML operations and cascade operations from foreign keys. The AUTOINC value is
the next number to be issued for any autoincrement-based operation. There are no autoincrement
columns defined on table t1, so the value is 0. The REF_COUNT value is a counter. When the
counter reaches 0, it signifies that the table metadata can be evicted from the table cache.

Example 17.3 Foreign Key INFORMATION_SCHEMA Schema Object Tables

The INNODB_FOREIGN and INNODB_FOREIGN_COLS tables provide data about foreign key
relationships. This example uses a parent table and child table with a foreign key relationship to
demonstrate the data found in the INNODB_FOREIGN and INNODB_FOREIGN_COLS tables.

1. Create the test database with parent and child tables:

mysql> CREATE DATABASE test;

mysql> USE test;

mysql> CREATE TABLE parent (id INT NOT NULL,
 PRIMARY KEY (id)) ENGINE=INNODB;

mysql> CREATE TABLE child (id INT, parent_id INT,
 INDEX par_ind (parent_id),
 CONSTRAINT fk1

3495

InnoDB INFORMATION_SCHEMA Schema Object Tables

 FOREIGN KEY (parent_id) REFERENCES parent(id)
 ON DELETE CASCADE) ENGINE=INNODB;

2. After the parent and child tables are created, query INNODB_FOREIGN and locate the foreign key
data for the test/child and test/parent foreign key relationship:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FOREIGN \G
*************************** 1. row ***************************
 ID: test/fk1
FOR_NAME: test/child
REF_NAME: test/parent
 N_COLS: 1
 TYPE: 1

Metadata includes the foreign key ID (fk1), which is named for the CONSTRAINT that was
defined on the child table. The FOR_NAME is the name of the child table where the foreign key
is defined. REF_NAME is the name of the parent table (the “referenced” table). N_COLS is the
number of columns in the foreign key index. TYPE is a numerical value representing bit flags that
provide additional information about the foreign key column. In this case, the TYPE value is 1,
which indicates that the ON DELETE CASCADE option was specified for the foreign key. See the
INNODB_FOREIGN table definition for more information about TYPE values.

3. Using the foreign key ID, query INNODB_FOREIGN_COLS to view data about the columns of the
foreign key.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FOREIGN_COLS WHERE ID = 'test/fk1' \G
*************************** 1. row ***************************
 ID: test/fk1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0

FOR_COL_NAME is the name of the foreign key column in the child table, and REF_COL_NAME is the
name of the referenced column in the parent table. The POS value is the ordinal position of the key
field within the foreign key index, starting at zero.

Example 17.4 Joining InnoDB INFORMATION_SCHEMA Schema Object Tables

This example demonstrates joining three InnoDB INFORMATION_SCHEMA schema object tables
(INNODB_TABLES, INNODB_TABLESPACES, and INNODB_TABLESTATS) to gather file format, row
format, page size, and index size information about tables in the employees sample database.

The following table aliases are used to shorten the query string:

• INFORMATION_SCHEMA.INNODB_TABLES: a

• INFORMATION_SCHEMA.INNODB_TABLESPACES: b

• INFORMATION_SCHEMA.INNODB_TABLESTATS: c

An IF() control flow function is used to account for compressed tables. If a table is compressed, the
index size is calculated using ZIP_PAGE_SIZE rather than PAGE_SIZE. CLUST_INDEX_SIZE and
OTHER_INDEX_SIZE, which are reported in bytes, are divided by 1024*1024 to provide index sizes in
megabytes (MBs). MB values are rounded to zero decimal spaces using the ROUND() function.

mysql> SELECT a.NAME, a.ROW_FORMAT,
 @page_size :=
 IF(a.ROW_FORMAT='Compressed',
 b.ZIP_PAGE_SIZE, b.PAGE_SIZE)
 AS page_size,
 ROUND((@page_size * c.CLUST_INDEX_SIZE)
 /(1024*1024)) AS pk_mb,
 ROUND((@page_size * c.OTHER_INDEX_SIZE)
 /(1024*1024)) AS secidx_mb
 FROM INFORMATION_SCHEMA.INNODB_TABLES a

3496

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

 INNER JOIN INFORMATION_SCHEMA.INNODB_TABLESPACES b on a.NAME = b.NAME
 INNER JOIN INFORMATION_SCHEMA.INNODB_TABLESTATS c on b.NAME = c.NAME
 WHERE a.NAME LIKE 'employees/%'
 ORDER BY a.NAME DESC;
+------------------------+------------+-----------+-------+-----------+
| NAME | ROW_FORMAT | page_size | pk_mb | secidx_mb |
+------------------------+------------+-----------+-------+-----------+
employees/titles	Dynamic	16384	20	11
employees/salaries	Dynamic	16384	93	34
employees/employees	Dynamic	16384	15	0
employees/dept_manager	Dynamic	16384	0	0
employees/dept_emp	Dynamic	16384	12	10
employees/departments	Dynamic	16384	0	0
+------------------------+------------+-----------+-------+-----------+

17.15.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

The following tables provide metadata for FULLTEXT indexes:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_FT%';
+---+
| Tables_in_INFORMATION_SCHEMA (INNODB_FT%) |
+---+
| INNODB_FT_CONFIG |
| INNODB_FT_BEING_DELETED |
| INNODB_FT_DELETED |
| INNODB_FT_DEFAULT_STOPWORD |
| INNODB_FT_INDEX_TABLE |
| INNODB_FT_INDEX_CACHE |
+---+

Table Overview

• INNODB_FT_CONFIG: Provides metadata about the FULLTEXT index and associated processing for
an InnoDB table.

• INNODB_FT_BEING_DELETED: Provides a snapshot of the INNODB_FT_DELETED table; it is
used only during an OPTIMIZE TABLE maintenance operation. When OPTIMIZE TABLE is run,
the INNODB_FT_BEING_DELETED table is emptied, and DOC_ID values are removed from the
INNODB_FT_DELETED table. Because the contents of INNODB_FT_BEING_DELETED typically
have a short lifetime, this table has limited utility for monitoring or debugging. For information about
running OPTIMIZE TABLE on tables with FULLTEXT indexes, see Section 14.9.6, “Fine-Tuning
MySQL Full-Text Search”.

• INNODB_FT_DELETED: Stores rows that are deleted from the FULLTEXT index for an InnoDB table.
To avoid expensive index reorganization during DML operations for an InnoDB FULLTEXT index,
the information about newly deleted words is stored separately, filtered out of search results when
you do a text search, and removed from the main search index only when you issue an OPTIMIZE
TABLE statement for the InnoDB table.

• INNODB_FT_DEFAULT_STOPWORD: Holds a list of stopwords that are used by default when creating
a FULLTEXT index on InnoDB tables.

For information about the INNODB_FT_DEFAULT_STOPWORD table, see Section 14.9.4, “Full-Text
Stopwords”.

• INNODB_FT_INDEX_TABLE: Provides information about the inverted index used to process text
searches against the FULLTEXT index of an InnoDB table.

• INNODB_FT_INDEX_CACHE: Provides token information about newly inserted rows in a FULLTEXT
index. To avoid expensive index reorganization during DML operations, the information about newly
indexed words is stored separately, and combined with the main search index only when OPTIMIZE
TABLE is run, when the server is shut down, or when the cache size exceeds a limit defined by the
innodb_ft_cache_size or innodb_ft_total_cache_size system variable.

3497

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

Note

With the exception of the INNODB_FT_DEFAULT_STOPWORD table, these
tables are empty initially. Before querying any of them, set the value of the
innodb_ft_aux_table system variable to the name (including the database
name) of the table that contains the FULLTEXT index (for example, test/
articles).

Example 17.5 InnoDB FULLTEXT Index INFORMATION_SCHEMA Tables

This example uses a table with a FULLTEXT index to demonstrate the data contained in the FULLTEXT
index INFORMATION_SCHEMA tables.

1. Create a table with a FULLTEXT index and insert some data:

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

2. Set the innodb_ft_aux_table variable to the name of the table with the FULLTEXT index. If
this variable is not set, the InnoDB FULLTEXT INFORMATION_SCHEMA tables are empty, with the
exception of INNODB_FT_DEFAULT_STOPWORD.

mysql> SET GLOBAL innodb_ft_aux_table = 'test/articles';

3. Query the INNODB_FT_INDEX_CACHE table, which shows information about newly inserted rows
in a FULLTEXT index. To avoid expensive index reorganization during DML operations, data for
newly inserted rows remains in the FULLTEXT index cache until OPTIMIZE TABLE is run (or until
the server is shut down or cache limits are exceeded).

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
+------------+--------------+-------------+-----------+--------+----------+
| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |
+------------+--------------+-------------+-----------+--------+----------+
1001	5	5	1	5	0
after	3	3	1	3	22
comparison	6	6	1	6	44
configured	7	7	1	7	20
database	2	6	2	2	31
+------------+--------------+-------------+-----------+--------+----------+

4. Enable the innodb_optimize_fulltext_only system variable and run OPTIMIZE TABLE on
the table that contains the FULLTEXT index. This operation flushes the contents of the FULLTEXT
index cache to the main FULLTEXT index. innodb_optimize_fulltext_only changes the
way the OPTIMIZE TABLE statement operates on InnoDB tables, and is intended to be enabled
temporarily, during maintenance operations on InnoDB tables with FULLTEXT indexes.

mysql> SET GLOBAL innodb_optimize_fulltext_only=ON;

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+

3498

InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables

5. Query the INNODB_FT_INDEX_TABLE table to view information about data in the main FULLTEXT
index, including information about the data that was just flushed from the FULLTEXT index cache.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 5;
+------------+--------------+-------------+-----------+--------+----------+
| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |
+------------+--------------+-------------+-----------+--------+----------+
1001	5	5	1	5	0
after	3	3	1	3	22
comparison	6	6	1	6	44
configured	7	7	1	7	20
database	2	6	2	2	31
+------------+--------------+-------------+-----------+--------+----------+

The INNODB_FT_INDEX_CACHE table is now empty since the OPTIMIZE TABLE operation flushed
the FULLTEXT index cache.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
Empty set (0.00 sec)

6. Delete some records from the test/articles table.

mysql> DELETE FROM test.articles WHERE id < 4;

7. Query the INNODB_FT_DELETED table. This table records rows that are deleted from the
FULLTEXT index. To avoid expensive index reorganization during DML operations, information
about newly deleted records is stored separately, filtered out of search results when you do a text
search, and removed from the main search index when you run OPTIMIZE TABLE.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
+--------+
| DOC_ID |
+--------+
| 2 |
| 3 |
| 4 |
+--------+

8. Run OPTIMIZE TABLE to remove the deleted records.

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+

The INNODB_FT_DELETED table should now be empty.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
Empty set (0.00 sec)

9. Query the INNODB_FT_CONFIG table. This table contains metadata about the FULLTEXT index
and related processing:

• optimize_checkpoint_limit: The number of seconds after which an OPTIMIZE TABLE run
stops.

• synced_doc_id: The next DOC_ID to be issued.

• stopword_table_name: The database/table name for a user-defined stopword table. The
VALUE column is empty if there is no user-defined stopword table.

• use_stopword: Indicates whether a stopword table is used, which is defined when the
FULLTEXT index is created.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_CONFIG;

3499

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

+---------------------------+-------+
| KEY | VALUE |
+---------------------------+-------+
optimize_checkpoint_limit	180
synced_doc_id	8
stopword_table_name	
use_stopword	1
+---------------------------+-------+

10. Disable innodb_optimize_fulltext_only, since it is intended to be enabled only temporarily:

mysql> SET GLOBAL innodb_optimize_fulltext_only=OFF;

17.15.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables

The InnoDB INFORMATION_SCHEMA buffer pool tables provide buffer pool status information and
metadata about the pages within the InnoDB buffer pool.

The InnoDB INFORMATION_SCHEMA buffer pool tables include those listed below:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_BUFFER%';
+---+
| Tables_in_INFORMATION_SCHEMA (INNODB_BUFFER%) |
+---+
| INNODB_BUFFER_PAGE_LRU |
| INNODB_BUFFER_PAGE |
| INNODB_BUFFER_POOL_STATS |
+---+

Table Overview

• INNODB_BUFFER_PAGE: Holds information about each page in the InnoDB buffer pool.

• INNODB_BUFFER_PAGE_LRU: Holds information about the pages in the InnoDB buffer pool,
in particular how they are ordered in the LRU list that determines which pages to evict from the
buffer pool when it becomes full. The INNODB_BUFFER_PAGE_LRU table has the same columns
as the INNODB_BUFFER_PAGE table, except that the INNODB_BUFFER_PAGE_LRU table has an
LRU_POSITION column instead of a BLOCK_ID column.

• INNODB_BUFFER_POOL_STATS: Provides buffer pool status information. Much of the same
information is provided by SHOW ENGINE INNODB STATUS output, or may be obtained using
InnoDB buffer pool server status variables.

Warning

Querying the INNODB_BUFFER_PAGE or INNODB_BUFFER_PAGE_LRU table
can affect performance. Do not query these tables on a production system
unless you are aware of the performance impact and have determined it to be
acceptable. To avoid impacting performance on a production system, reproduce
the issue you want to investigate and query buffer pool statistics on a test
instance.

Example 17.6 Querying System Data in the INNODB_BUFFER_PAGE Table

This query provides an approximate count of pages that contain system data by excluding pages
where the TABLE_NAME value is either NULL or includes a slash / or period . in the table name, which
indicates a user-defined table.

mysql> SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0);
+----------+
| COUNT(*) |
+----------+
| 1516 |
+----------+

3500

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

This query returns the approximate number of pages that contain system data, the total number of
buffer pool pages, and an approximate percentage of pages that contain system data.

mysql> SELECT
 (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0)
) AS system_pages,
 (
 SELECT COUNT(*)
 FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
) AS total_pages,
 (
 SELECT ROUND((system_pages/total_pages) * 100)
) AS system_page_percentage;
+--------------+-------------+------------------------+
| system_pages | total_pages | system_page_percentage |
+--------------+-------------+------------------------+
| 295 | 8192 | 4 |
+--------------+-------------+------------------------+

The type of system data in the buffer pool can be determined by querying the PAGE_TYPE value. For
example, the following query returns eight distinct PAGE_TYPE values among the pages that contain
system data:

mysql> SELECT DISTINCT PAGE_TYPE FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NULL OR (INSTR(TABLE_NAME, '/') = 0 AND INSTR(TABLE_NAME, '.') = 0);
+-------------------+
| PAGE_TYPE |
+-------------------+
| SYSTEM |
| IBUF_BITMAP |
| UNKNOWN |
| FILE_SPACE_HEADER |
| INODE |
| UNDO_LOG |
| ALLOCATED |
+-------------------+

Example 17.7 Querying User Data in the INNODB_BUFFER_PAGE Table

This query provides an approximate count of pages containing user data by counting pages where the
TABLE_NAME value is NOT NULL and NOT LIKE '%INNODB_TABLES%'.

mysql> SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NOT NULL AND TABLE_NAME NOT LIKE '%INNODB_TABLES%';
+----------+
| COUNT(*) |
+----------+
| 7897 |
+----------+

This query returns the approximate number of pages that contain user data, the total number of buffer
pool pages, and an approximate percentage of pages that contain user data.

mysql> SELECT
 (SELECT COUNT(*) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NOT NULL AND (INSTR(TABLE_NAME, '/') > 0 OR INSTR(TABLE_NAME, '.') > 0)
) AS user_pages,
 (
 SELECT COUNT(*)
 FROM information_schema.INNODB_BUFFER_PAGE
) AS total_pages,
 (
 SELECT ROUND((user_pages/total_pages) * 100)
) AS user_page_percentage;
+------------+-------------+----------------------+
| user_pages | total_pages | user_page_percentage |
+------------+-------------+----------------------+
| 7897 | 8192 | 96 |
+------------+-------------+----------------------+

3501

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

This query identifies user-defined tables with pages in the buffer pool:

mysql> SELECT DISTINCT TABLE_NAME FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME IS NOT NULL AND (INSTR(TABLE_NAME, '/') > 0 OR INSTR(TABLE_NAME, '.') > 0)
 AND TABLE_NAME NOT LIKE '`mysql`.`innodb_%';
+-------------------------+
| TABLE_NAME |
+-------------------------+
| `employees`.`salaries` |
| `employees`.`employees` |
+-------------------------+

Example 17.8 Querying Index Data in the INNODB_BUFFER_PAGE Table

For information about index pages, query the INDEX_NAME column using the name of the index. For
example, the following query returns the number of pages and total data size of pages for the emp_no
index that is defined on the employees.salaries table:

mysql> SELECT INDEX_NAME, COUNT(*) AS Pages,
ROUND(SUM(IF(COMPRESSED_SIZE = 0, @@GLOBAL.innodb_page_size, COMPRESSED_SIZE))/1024/1024)
AS 'Total Data (MB)'
FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
WHERE INDEX_NAME='emp_no' AND TABLE_NAME = '`employees`.`salaries`';
+------------+-------+-----------------+
| INDEX_NAME | Pages | Total Data (MB) |
+------------+-------+-----------------+
| emp_no | 1609 | 25 |
+------------+-------+-----------------+

This query returns the number of pages and total data size of pages for all indexes defined on the
employees.salaries table:

mysql> SELECT INDEX_NAME, COUNT(*) AS Pages,
 ROUND(SUM(IF(COMPRESSED_SIZE = 0, @@GLOBAL.innodb_page_size, COMPRESSED_SIZE))/1024/1024)
 AS 'Total Data (MB)'
 FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE
 WHERE TABLE_NAME = '`employees`.`salaries`'
 GROUP BY INDEX_NAME;
+------------+-------+-----------------+
| INDEX_NAME | Pages | Total Data (MB) |
+------------+-------+-----------------+
| emp_no | 1608 | 25 |
| PRIMARY | 6086 | 95 |
+------------+-------+-----------------+

Example 17.9 Querying LRU_POSITION Data in the INNODB_BUFFER_PAGE_LRU Table

The INNODB_BUFFER_PAGE_LRU table holds information about the pages in the InnoDB buffer pool,
in particular how they are ordered that determines which pages to evict from the buffer pool when it
becomes full. The definition for this page is the same as for INNODB_BUFFER_PAGE, except this table
has an LRU_POSITION column instead of a BLOCK_ID column.

This query counts the number of positions at a specific location in the LRU list occupied by pages of
the employees.employees table.

mysql> SELECT COUNT(LRU_POSITION) FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU
 WHERE TABLE_NAME='`employees`.`employees`' AND LRU_POSITION < 3072;
+---------------------+
| COUNT(LRU_POSITION) |
+---------------------+
| 548 |
+---------------------+

Example 17.10 Querying the INNODB_BUFFER_POOL_STATS Table

The INNODB_BUFFER_POOL_STATS table provides information similar to SHOW ENGINE INNODB
STATUS and InnoDB buffer pool status variables.

mysql> SELECT * FROM information_schema.INNODB_BUFFER_POOL_STATS \G
*************************** 1. row ***************************
 POOL_ID: 0

3502

InnoDB INFORMATION_SCHEMA Buffer Pool Tables

 POOL_SIZE: 8192
 FREE_BUFFERS: 1
 DATABASE_PAGES: 8173
 OLD_DATABASE_PAGES: 3014
 MODIFIED_DATABASE_PAGES: 0
 PENDING_DECOMPRESS: 0
 PENDING_READS: 0
 PENDING_FLUSH_LRU: 0
 PENDING_FLUSH_LIST: 0
 PAGES_MADE_YOUNG: 15907
 PAGES_NOT_MADE_YOUNG: 3803101
 PAGES_MADE_YOUNG_RATE: 0
 PAGES_MADE_NOT_YOUNG_RATE: 0
 NUMBER_PAGES_READ: 3270
 NUMBER_PAGES_CREATED: 13176
 NUMBER_PAGES_WRITTEN: 15109
 PAGES_READ_RATE: 0
 PAGES_CREATE_RATE: 0
 PAGES_WRITTEN_RATE: 0
 NUMBER_PAGES_GET: 33069332
 HIT_RATE: 0
 YOUNG_MAKE_PER_THOUSAND_GETS: 0
NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 0
 NUMBER_PAGES_READ_AHEAD: 2713
 NUMBER_READ_AHEAD_EVICTED: 0
 READ_AHEAD_RATE: 0
 READ_AHEAD_EVICTED_RATE: 0
 LRU_IO_TOTAL: 0
 LRU_IO_CURRENT: 0
 UNCOMPRESS_TOTAL: 0
 UNCOMPRESS_CURRENT: 0

For comparison, SHOW ENGINE INNODB STATUS output and InnoDB buffer pool status variable
output is shown below, based on the same data set.

For more information about SHOW ENGINE INNODB STATUS output, see Section 17.17.3, “InnoDB
Standard Monitor and Lock Monitor Output”.

mysql> SHOW ENGINE INNODB STATUS \G
...

BUFFER POOL AND MEMORY

Total large memory allocated 137428992
Dictionary memory allocated 579084
Buffer pool size 8192
Free buffers 1
Database pages 8173
Old database pages 3014
Modified db pages 0
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 15907, not young 3803101
0.00 youngs/s, 0.00 non-youngs/s
Pages read 3270, created 13176, written 15109
0.00 reads/s, 0.00 creates/s, 0.00 writes/s
No buffer pool page gets since the last printout
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s
LRU len: 8173, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
...

For status variable descriptions, see Section 7.1.10, “Server Status Variables”.

mysql> SHOW STATUS LIKE 'Innodb_buffer%';
+---------------------------------------+-------------+
| Variable_name | Value |
+---------------------------------------+-------------+
Innodb_buffer_pool_dump_status	not started
Innodb_buffer_pool_load_status	not started
Innodb_buffer_pool_resize_status	not started
Innodb_buffer_pool_pages_data	8173

3503

InnoDB INFORMATION_SCHEMA Metrics Table

Innodb_buffer_pool_bytes_data	133906432
Innodb_buffer_pool_pages_dirty	0
Innodb_buffer_pool_bytes_dirty	0
Innodb_buffer_pool_pages_flushed	15109
Innodb_buffer_pool_pages_free	1
Innodb_buffer_pool_pages_misc	18
Innodb_buffer_pool_pages_total	8192
Innodb_buffer_pool_read_ahead_rnd	0
Innodb_buffer_pool_read_ahead	2713
Innodb_buffer_pool_read_ahead_evicted	0
Innodb_buffer_pool_read_requests	33069332
Innodb_buffer_pool_reads	558
Innodb_buffer_pool_wait_free	0
Innodb_buffer_pool_write_requests	11985961
+---------------------------------------+-------------+

17.15.6 InnoDB INFORMATION_SCHEMA Metrics Table

The INNODB_METRICS table provides information about InnoDB performance and resource-related
counters.

INNODB_METRICS table columns are shown below. For column descriptions, see Section 28.4.21,
“The INFORMATION_SCHEMA INNODB_METRICS Table”.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts" \G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 46273
 MAX_COUNT: 46273
 MIN_COUNT: NULL
 AVG_COUNT: 492.2659574468085
 COUNT_RESET: 46273
MAX_COUNT_RESET: 46273
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-11-28 16:07:53
 TIME_DISABLED: NULL
 TIME_ELAPSED: 94
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Enabling, Disabling, and Resetting Counters

You can enable, disable, and reset counters using the following variables:

• innodb_monitor_enable: Enables counters.

SET GLOBAL innodb_monitor_enable = [counter-name|module_name|pattern|all];

• innodb_monitor_disable: Disables counters.

SET GLOBAL innodb_monitor_disable = [counter-name|module_name|pattern|all];

• innodb_monitor_reset: Resets counter values to zero.

SET GLOBAL innodb_monitor_reset = [counter-name|module_name|pattern|all];

• innodb_monitor_reset_all: Resets all counter values. A counter must be disabled before using
innodb_monitor_reset_all.

SET GLOBAL innodb_monitor_reset_all = [counter-name|module_name|pattern|all];

Counters and counter modules can also be enabled at startup using the MySQL server configuration
file. For example, to enable the log module, metadata_table_handles_opened and
metadata_table_handles_closed counters, enter the following line in the [mysqld] section of
the MySQL server configuration file.

3504

InnoDB INFORMATION_SCHEMA Metrics Table

[mysqld]
innodb_monitor_enable = log,metadata_table_handles_opened,metadata_table_handles_closed

When enabling multiple counters or modules in a configuration file, specify the
innodb_monitor_enable variable followed by counter and module names separated by a comma,
as shown above. Only the innodb_monitor_enable variable can be used in a configuration file.
The innodb_monitor_disable and innodb_monitor_reset variables are supported on the
command line only.

Note

Because each counter adds a degree of runtime overhead, use counters
conservatively on production servers to diagnose specific issues or monitor
specific functionality. A test or development server is recommended for more
extensive use of counters.

Counters

The list of available counters is subject to change. Query the Information Schema INNODB_METRICS
table for counters available in your MySQL server version.

The counters enabled by default correspond to those shown in SHOW ENGINE INNODB STATUS
output. Counters shown in SHOW ENGINE INNODB STATUS output are always enabled at a system
level but can be disable for the INNODB_METRICS table. Counter status is not persistent. Unless
configured otherwise, counters revert to their default enabled or disabled status when the server is
restarted.

If you run programs that would be affected by the addition or removal of counters, it is recommended
that you review the releases notes and query the INNODB_METRICS table to identify those changes as
part of your upgrade process.

mysql> SELECT name, subsystem, status FROM INFORMATION_SCHEMA.INNODB_METRICS ORDER BY NAME;
+---+---------------------+----------+
| name | subsystem | status |
+---+---------------------+----------+
adaptive_hash_pages_added	adaptive_hash_index	disabled
adaptive_hash_pages_removed	adaptive_hash_index	disabled
adaptive_hash_rows_added	adaptive_hash_index	disabled
adaptive_hash_rows_deleted_no_hash_entry	adaptive_hash_index	disabled
adaptive_hash_rows_removed	adaptive_hash_index	disabled
adaptive_hash_rows_updated	adaptive_hash_index	disabled
adaptive_hash_searches	adaptive_hash_index	enabled
adaptive_hash_searches_btree	adaptive_hash_index	enabled
buffer_data_reads	buffer	enabled
buffer_data_written	buffer	enabled
buffer_flush_adaptive	buffer	disabled
buffer_flush_adaptive_avg_pass	buffer	disabled
buffer_flush_adaptive_avg_time_est	buffer	disabled
buffer_flush_adaptive_avg_time_slot	buffer	disabled
buffer_flush_adaptive_avg_time_thread	buffer	disabled
buffer_flush_adaptive_pages	buffer	disabled
buffer_flush_adaptive_total_pages	buffer	disabled
buffer_flush_avg_page_rate	buffer	disabled
buffer_flush_avg_pass	buffer	disabled
buffer_flush_avg_time	buffer	disabled
buffer_flush_background	buffer	disabled
buffer_flush_background_pages	buffer	disabled
buffer_flush_background_total_pages	buffer	disabled
buffer_flush_batches	buffer	disabled
buffer_flush_batch_num_scan	buffer	disabled
buffer_flush_batch_pages	buffer	disabled
buffer_flush_batch_scanned	buffer	disabled
buffer_flush_batch_scanned_per_call	buffer	disabled
buffer_flush_batch_total_pages	buffer	disabled
buffer_flush_lsn_avg_rate	buffer	disabled
buffer_flush_neighbor	buffer	disabled
buffer_flush_neighbor_pages	buffer	disabled
buffer_flush_neighbor_total_pages	buffer	disabled

3505

InnoDB INFORMATION_SCHEMA Metrics Table

buffer_flush_n_to_flush_by_age	buffer	disabled
buffer_flush_n_to_flush_by_dirty_page	buffer	disabled
buffer_flush_n_to_flush_requested	buffer	disabled
buffer_flush_pct_for_dirty	buffer	disabled
buffer_flush_pct_for_lsn	buffer	disabled
buffer_flush_sync	buffer	disabled
buffer_flush_sync_pages	buffer	disabled
buffer_flush_sync_total_pages	buffer	disabled
buffer_flush_sync_waits	buffer	disabled
buffer_LRU_batches_evict	buffer	disabled
buffer_LRU_batches_flush	buffer	disabled
buffer_LRU_batch_evict_pages	buffer	disabled
buffer_LRU_batch_evict_total_pages	buffer	disabled
buffer_LRU_batch_flush_avg_pass	buffer	disabled
buffer_LRU_batch_flush_avg_time_est	buffer	disabled
buffer_LRU_batch_flush_avg_time_slot	buffer	disabled
buffer_LRU_batch_flush_avg_time_thread	buffer	disabled
buffer_LRU_batch_flush_pages	buffer	disabled
buffer_LRU_batch_flush_total_pages	buffer	disabled
buffer_LRU_batch_num_scan	buffer	disabled
buffer_LRU_batch_scanned	buffer	disabled
buffer_LRU_batch_scanned_per_call	buffer	disabled
buffer_LRU_get_free_loops	buffer	disabled
buffer_LRU_get_free_search	Buffer	disabled
buffer_LRU_get_free_waits	buffer	disabled
buffer_LRU_search_num_scan	buffer	disabled
buffer_LRU_search_scanned	buffer	disabled
buffer_LRU_search_scanned_per_call	buffer	disabled
buffer_LRU_single_flush_failure_count	Buffer	disabled
buffer_LRU_single_flush_num_scan	buffer	disabled
buffer_LRU_single_flush_scanned	buffer	disabled
buffer_LRU_single_flush_scanned_per_call	buffer	disabled
buffer_LRU_unzip_search_num_scan	buffer	disabled
buffer_LRU_unzip_search_scanned	buffer	disabled
buffer_LRU_unzip_search_scanned_per_call	buffer	disabled
buffer_pages_created	buffer	enabled
buffer_pages_read	buffer	enabled
buffer_pages_written	buffer	enabled
buffer_page_read_blob	buffer_page_io	disabled
buffer_page_read_fsp_hdr	buffer_page_io	disabled
buffer_page_read_ibuf_bitmap	buffer_page_io	disabled
buffer_page_read_ibuf_free_list	buffer_page_io	disabled
buffer_page_read_index_ibuf_leaf	buffer_page_io	disabled
buffer_page_read_index_ibuf_non_leaf	buffer_page_io	disabled
buffer_page_read_index_inode	buffer_page_io	disabled
buffer_page_read_index_leaf	buffer_page_io	disabled
buffer_page_read_index_non_leaf	buffer_page_io	disabled
buffer_page_read_other	buffer_page_io	disabled
buffer_page_read_rseg_array	buffer_page_io	disabled
buffer_page_read_system_page	buffer_page_io	disabled
buffer_page_read_trx_system	buffer_page_io	disabled
buffer_page_read_undo_log	buffer_page_io	disabled
buffer_page_read_xdes	buffer_page_io	disabled
buffer_page_read_zblob	buffer_page_io	disabled
buffer_page_read_zblob2	buffer_page_io	disabled
buffer_page_written_blob	buffer_page_io	disabled
buffer_page_written_fsp_hdr	buffer_page_io	disabled
buffer_page_written_ibuf_bitmap	buffer_page_io	disabled
buffer_page_written_ibuf_free_list	buffer_page_io	disabled
buffer_page_written_index_ibuf_leaf	buffer_page_io	disabled
buffer_page_written_index_ibuf_non_leaf	buffer_page_io	disabled
buffer_page_written_index_inode	buffer_page_io	disabled
buffer_page_written_index_leaf	buffer_page_io	disabled
buffer_page_written_index_non_leaf	buffer_page_io	disabled
buffer_page_written_on_log_no_waits	buffer_page_io	disabled
buffer_page_written_on_log_waits	buffer_page_io	disabled
buffer_page_written_on_log_wait_loops	buffer_page_io	disabled
buffer_page_written_other	buffer_page_io	disabled
buffer_page_written_rseg_array	buffer_page_io	disabled
buffer_page_written_system_page	buffer_page_io	disabled
buffer_page_written_trx_system	buffer_page_io	disabled
buffer_page_written_undo_log	buffer_page_io	disabled

3506

InnoDB INFORMATION_SCHEMA Metrics Table

buffer_page_written_xdes	buffer_page_io	disabled
buffer_page_written_zblob	buffer_page_io	disabled
buffer_page_written_zblob2	buffer_page_io	disabled
buffer_pool_bytes_data	buffer	enabled
buffer_pool_bytes_dirty	buffer	enabled
buffer_pool_pages_data	buffer	enabled
buffer_pool_pages_dirty	buffer	enabled
buffer_pool_pages_free	buffer	enabled
buffer_pool_pages_misc	buffer	enabled
buffer_pool_pages_total	buffer	enabled
buffer_pool_reads	buffer	enabled
buffer_pool_read_ahead	buffer	enabled
buffer_pool_read_ahead_evicted	buffer	enabled
buffer_pool_read_requests	buffer	enabled
buffer_pool_size	server	enabled
buffer_pool_wait_free	buffer	enabled
buffer_pool_write_requests	buffer	enabled
compression_pad_decrements	compression	disabled
compression_pad_increments	compression	disabled
compress_pages_compressed	compression	disabled
compress_pages_decompressed	compression	disabled
cpu_n	cpu	disabled
cpu_stime_abs	cpu	disabled
cpu_stime_pct	cpu	disabled
cpu_utime_abs	cpu	disabled
cpu_utime_pct	cpu	disabled
dblwr_async_requests	dblwr	disabled
dblwr_flush_requests	dblwr	disabled
dblwr_flush_wait_events	dblwr	disabled
dblwr_sync_requests	dblwr	disabled
ddl_background_drop_tables	ddl	disabled
ddl_log_file_alter_table	ddl	disabled
ddl_online_create_index	ddl	disabled
ddl_pending_alter_table	ddl	disabled
ddl_sort_file_alter_table	ddl	disabled
dml_deletes	dml	enabled
dml_inserts	dml	enabled
dml_reads	dml	disabled
dml_system_deletes	dml	enabled
dml_system_inserts	dml	enabled
dml_system_reads	dml	enabled
dml_system_updates	dml	enabled
dml_updates	dml	enabled
file_num_open_files	file_system	enabled
ibuf_merges	change_buffer	enabled
ibuf_merges_delete	change_buffer	enabled
ibuf_merges_delete_mark	change_buffer	enabled
ibuf_merges_discard_delete	change_buffer	enabled
ibuf_merges_discard_delete_mark	change_buffer	enabled
ibuf_merges_discard_insert	change_buffer	enabled
ibuf_merges_insert	change_buffer	enabled
ibuf_size	change_buffer	enabled
icp_attempts	icp	disabled
icp_match	icp	disabled
icp_no_match	icp	disabled
icp_out_of_range	icp	disabled
index_page_discards	index	disabled
index_page_merge_attempts	index	disabled
index_page_merge_successful	index	disabled
index_page_reorg_attempts	index	disabled
index_page_reorg_successful	index	disabled
index_page_splits	index	disabled
innodb_activity_count	server	enabled
innodb_background_drop_table_usec	server	disabled
innodb_dblwr_pages_written	server	enabled
innodb_dblwr_writes	server	enabled
innodb_dict_lru_count	server	disabled
innodb_dict_lru_usec	server	disabled
innodb_ibuf_merge_usec	server	disabled
innodb_master_active_loops	server	disabled
innodb_master_idle_loops	server	disabled
innodb_master_purge_usec	server	disabled

3507

InnoDB INFORMATION_SCHEMA Metrics Table

innodb_master_thread_sleeps	server	disabled
innodb_mem_validate_usec	server	disabled
innodb_page_size	server	enabled
innodb_rwlock_sx_os_waits	server	enabled
innodb_rwlock_sx_spin_rounds	server	enabled
innodb_rwlock_sx_spin_waits	server	enabled
innodb_rwlock_s_os_waits	server	enabled
innodb_rwlock_s_spin_rounds	server	enabled
innodb_rwlock_s_spin_waits	server	enabled
innodb_rwlock_x_os_waits	server	enabled
innodb_rwlock_x_spin_rounds	server	enabled
innodb_rwlock_x_spin_waits	server	enabled
lock_deadlocks	lock	enabled
lock_deadlock_false_positives	lock	enabled
lock_deadlock_rounds	lock	enabled
lock_rec_grant_attempts	lock	enabled
lock_rec_locks	lock	disabled
lock_rec_lock_created	lock	disabled
lock_rec_lock_removed	lock	disabled
lock_rec_lock_requests	lock	disabled
lock_rec_lock_waits	lock	disabled
lock_rec_release_attempts	lock	enabled
lock_row_lock_current_waits	lock	enabled
lock_row_lock_time	lock	enabled
lock_row_lock_time_avg	lock	enabled
lock_row_lock_time_max	lock	enabled
lock_row_lock_waits	lock	enabled
lock_schedule_refreshes	lock	enabled
lock_table_locks	lock	disabled
lock_table_lock_created	lock	disabled
lock_table_lock_removed	lock	disabled
lock_table_lock_waits	lock	disabled
lock_threads_waiting	lock	enabled
lock_timeouts	lock	enabled
log_checkpoints	log	disabled
log_concurrency_margin	log	disabled
log_flusher_no_waits	log	disabled
log_flusher_waits	log	disabled
log_flusher_wait_loops	log	disabled
log_flush_avg_time	log	disabled
log_flush_lsn_avg_rate	log	disabled
log_flush_max_time	log	disabled
log_flush_notifier_no_waits	log	disabled
log_flush_notifier_waits	log	disabled
log_flush_notifier_wait_loops	log	disabled
log_flush_total_time	log	disabled
log_free_space	log	disabled
log_full_block_writes	log	disabled
log_lsn_archived	log	disabled
log_lsn_buf_dirty_pages_added	log	disabled
log_lsn_buf_pool_oldest_approx	log	disabled
log_lsn_buf_pool_oldest_lwm	log	disabled
log_lsn_checkpoint_age	log	disabled
log_lsn_current	log	disabled
log_lsn_last_checkpoint	log	disabled
log_lsn_last_flush	log	disabled
log_max_modified_age_async	log	disabled
log_max_modified_age_sync	log	disabled
log_next_file	log	disabled
log_on_buffer_space_no_waits	log	disabled
log_on_buffer_space_waits	log	disabled
log_on_buffer_space_wait_loops	log	disabled
log_on_file_space_no_waits	log	disabled
log_on_file_space_waits	log	disabled
log_on_file_space_wait_loops	log	disabled
log_on_flush_no_waits	log	disabled
log_on_flush_waits	log	disabled
log_on_flush_wait_loops	log	disabled
log_on_recent_closed_wait_loops	log	disabled
log_on_recent_written_wait_loops	log	disabled
log_on_write_no_waits	log	disabled
log_on_write_waits	log	disabled

3508

InnoDB INFORMATION_SCHEMA Metrics Table

log_on_write_wait_loops	log	disabled
log_padded	log	disabled
log_partial_block_writes	log	disabled
log_waits	log	enabled
log_writer_no_waits	log	disabled
log_writer_on_archiver_waits	log	disabled
log_writer_on_file_space_waits	log	disabled
log_writer_waits	log	disabled
log_writer_wait_loops	log	disabled
log_writes	log	enabled
log_write_notifier_no_waits	log	disabled
log_write_notifier_waits	log	disabled
log_write_notifier_wait_loops	log	disabled
log_write_requests	log	enabled
log_write_to_file_requests_interval	log	disabled
metadata_table_handles_closed	metadata	disabled
metadata_table_handles_opened	metadata	disabled
metadata_table_reference_count	metadata	disabled
module_cpu	cpu	disabled
module_dblwr	dblwr	disabled
module_page_track	page_track	disabled
os_data_fsyncs	os	enabled
os_data_reads	os	enabled
os_data_writes	os	enabled
os_log_bytes_written	os	enabled
os_log_fsyncs	os	enabled
os_log_pending_fsyncs	os	enabled
os_log_pending_writes	os	enabled
os_pending_reads	os	disabled
os_pending_writes	os	disabled
page_track_checkpoint_partial_flush_request	page_track	disabled
page_track_full_block_writes	page_track	disabled
page_track_partial_block_writes	page_track	disabled
page_track_resets	page_track	disabled
purge_del_mark_records	purge	disabled
purge_dml_delay_usec	purge	disabled
purge_invoked	purge	disabled
purge_resume_count	purge	disabled
purge_stop_count	purge	disabled
purge_truncate_history_count	purge	disabled
purge_truncate_history_usec	purge	disabled
purge_undo_log_pages	purge	disabled
purge_upd_exist_or_extern_records	purge	disabled
sampled_pages_read	sampling	disabled
sampled_pages_skipped	sampling	disabled
trx_active_transactions	transaction	disabled
trx_allocations	transaction	disabled
trx_commits_insert_update	transaction	disabled
trx_nl_ro_commits	transaction	disabled
trx_on_log_no_waits	transaction	disabled
trx_on_log_waits	transaction	disabled
trx_on_log_wait_loops	transaction	disabled
trx_rollbacks	transaction	disabled
trx_rollbacks_savepoint	transaction	disabled
trx_rollback_active	transaction	disabled
trx_ro_commits	transaction	disabled
trx_rseg_current_size	transaction	disabled
trx_rseg_history_len	transaction	enabled
trx_rw_commits	transaction	disabled
trx_undo_slots_cached	transaction	disabled
trx_undo_slots_used	transaction	disabled
undo_truncate_count	undo	disabled
undo_truncate_done_logging_count	undo	disabled
undo_truncate_start_logging_count	undo	disabled
undo_truncate_usec	undo	disabled
+---+---------------------+----------+
314 rows in set (0.00 sec)

3509

InnoDB INFORMATION_SCHEMA Metrics Table

Counter Modules

Each counter is associated with a particular module. Module names can be used to enable, disable,
or reset all counters for a particular subsystem. For example, use module_dml to enable all counters
associated with the dml subsystem.

mysql> SET GLOBAL innodb_monitor_enable = module_dml;

mysql> SELECT name, subsystem, status FROM INFORMATION_SCHEMA.INNODB_METRICS
 WHERE subsystem ='dml';
+-------------+-----------+---------+
| name | subsystem | status |
+-------------+-----------+---------+
dml_reads	dml	enabled
dml_inserts	dml	enabled
dml_deletes	dml	enabled
dml_updates	dml	enabled
+-------------+-----------+---------+

Module names can be used with innodb_monitor_enable and related variables.

Module names and corresponding SUBSYSTEM names are listed below.

• module_adaptive_hash (subsystem = adaptive_hash_index)

• module_buffer (subsystem = buffer)

• module_buffer_page (subsystem = buffer_page_io)

• module_compress (subsystem = compression)

• module_ddl (subsystem = ddl)

• module_dml (subsystem = dml)

• module_file (subsystem = file_system)

• module_ibuf_system (subsystem = change_buffer)

• module_icp (subsystem = icp)

• module_index (subsystem = index)

• module_innodb (subsystem = innodb)

• module_lock (subsystem = lock)

• module_log (subsystem = log)

• module_metadata (subsystem = metadata)

• module_os (subsystem = os)

• module_purge (subsystem = purge)

• module_trx (subsystem = transaction)

• module_undo (subsystem = undo)

Example 17.11 Working with INNODB_METRICS Table Counters

This example demonstrates enabling, disabling, and resetting a counter, and querying counter data in
the INNODB_METRICS table.

1. Create a simple InnoDB table:

mysql> USE test;

3510

InnoDB INFORMATION_SCHEMA Metrics Table

Database changed

mysql> CREATE TABLE t1 (c1 INT) ENGINE=INNODB;
Query OK, 0 rows affected (0.02 sec)

2. Enable the dml_inserts counter.

mysql> SET GLOBAL innodb_monitor_enable = dml_inserts;
Query OK, 0 rows affected (0.01 sec)

A description of the dml_inserts counter can be found in the COMMENT column of the
INNODB_METRICS table:

mysql> SELECT NAME, COMMENT FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts";
+-------------+-------------------------+
| NAME | COMMENT |
+-------------+-------------------------+
| dml_inserts | Number of rows inserted |
+-------------+-------------------------+

3. Query the INNODB_METRICS table for the dml_inserts counter data. Because no DML
operations have been performed, the counter values are zero or NULL. The TIME_ENABLED and
TIME_ELAPSED values indicate when the counter was last enabled and how many seconds have
elapsed since that time.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts" \G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 0
 MAX_COUNT: 0
 MIN_COUNT: NULL
 AVG_COUNT: 0
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 28
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

4. Insert three rows of data into the table.

mysql> INSERT INTO t1 values(1);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 values(2);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 values(3);
Query OK, 1 row affected (0.00 sec)

5. Query the INNODB_METRICS table again for the dml_inserts counter data. A number of counter
values have now incremented including COUNT, MAX_COUNT, AVG_COUNT, and COUNT_RESET.
Refer to the INNODB_METRICS table definition for descriptions of these values.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.046153846153846156
 COUNT_RESET: 3
MAX_COUNT_RESET: 3

3511

InnoDB INFORMATION_SCHEMA Metrics Table

MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 65
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

6. Reset the dml_inserts counter and query the INNODB_METRICS table again for the
dml_inserts counter data. The %_RESET values that were reported previously, such as
COUNT_RESET and MAX_RESET, are set back to zero. Values such as COUNT, MAX_COUNT, and
AVG_COUNT, which cumulatively collect data from the time the counter is enabled, are unaffected
by the reset.

mysql> SET GLOBAL innodb_monitor_reset = dml_inserts;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.03529411764705882
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: 0
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 85
 TIME_RESET: 2014-12-04 14:19:44
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

7. To reset all counter values, you must first disable the counter. Disabling the counter sets the
STATUS value to disabled.

mysql> SET GLOBAL innodb_monitor_disable = dml_inserts;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.030612244897959183
 COUNT_RESET: 0
MAX_COUNT_RESET: 0
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: 0
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: 2014-12-04 14:20:06
 TIME_ELAPSED: 98
 TIME_RESET: NULL
 STATUS: disabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Note

Wildcard match is supported for counter and module names. For example,
instead of specifying the full dml_inserts counter name, you can specify
dml_i%. You can also enable, disable, or reset multiple counters or

3512

InnoDB INFORMATION_SCHEMA Temporary Table Info Table

modules at once using a wildcard match. For example, specify dml_% to
enable, disable, or reset all counters that begin with dml_.

8. After the counter is disabled, you can reset all counter values using the
innodb_monitor_reset_all option. All values are set to zero or NULL.

mysql> SET GLOBAL innodb_monitor_reset_all = dml_inserts;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME="dml_inserts"\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 0
 MAX_COUNT: NULL
 MIN_COUNT: NULL
 AVG_COUNT: NULL
 COUNT_RESET: 0
MAX_COUNT_RESET: NULL
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: NULL
 TIME_DISABLED: NULL
 TIME_ELAPSED: NULL
 TIME_RESET: NULL
 STATUS: disabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

17.15.7 InnoDB INFORMATION_SCHEMA Temporary Table Info Table

INNODB_TEMP_TABLE_INFO provides information about user-created InnoDB temporary tables that
are active in the InnoDB instance. It does not provide information about internal InnoDB temporary
tables used by the optimizer.

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB_TEMP%';
+---+
| Tables_in_INFORMATION_SCHEMA (INNODB_TEMP%) |
+---+
| INNODB_TEMP_TABLE_INFO |
+---+

For the table definition, see Section 28.4.27, “The INFORMATION_SCHEMA
INNODB_TEMP_TABLE_INFO Table”.

Example 17.12 INNODB_TEMP_TABLE_INFO

This example demonstrates characteristics of the INNODB_TEMP_TABLE_INFO table.

1. Create a simple InnoDB temporary table:

mysql> CREATE TEMPORARY TABLE t1 (c1 INT PRIMARY KEY) ENGINE=INNODB;

2. Query INNODB_TEMP_TABLE_INFO to view the temporary table metadata.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
 TABLE_ID: 194
 NAME: #sql7a79_1_0
 N_COLS: 4
 SPACE: 182

The TABLE_ID is a unique identifier for the temporary table. The NAME column displays the
system-generated name for the temporary table, which is prefixed with “#sql”. The number of
columns (N_COLS) is 4 rather than 1 because InnoDB always creates three hidden table columns
(DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR).

3. Restart MySQL and query INNODB_TEMP_TABLE_INFO.

3513

Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G

An empty set is returned because INNODB_TEMP_TABLE_INFO and its data are not persisted to
disk when the server is shut down.

4. Create a new temporary table.

mysql> CREATE TEMPORARY TABLE t1 (c1 INT PRIMARY KEY) ENGINE=INNODB;

5. Query INNODB_TEMP_TABLE_INFO to view the temporary table metadata.

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
 TABLE_ID: 196
 NAME: #sql7b0e_1_0
 N_COLS: 4
 SPACE: 184

The SPACE ID may be different because it is dynamically generated when the server is started.

17.15.8 Retrieving InnoDB Tablespace Metadata from
INFORMATION_SCHEMA.FILES

The Information Schema FILES table provides metadata about all InnoDB tablespace types including
file-per-table tablespaces, general tablespaces, the system tablespace, temporary table tablespaces,
and undo tablespaces (if present).

This section provides InnoDB-specific usage examples. For more information about data provided by
the Information Schema FILES table, see Section 28.3.15, “The INFORMATION_SCHEMA FILES
Table”.

Note

The INNODB_TABLESPACES and INNODB_DATAFILES tables also provide
metadata about InnoDB tablespaces, but data is limited to file-per-table,
general, and undo tablespaces.

This query retrieves metadata about the InnoDB system tablespace from fields of the Information
Schema FILES table that are pertinent to InnoDB tablespaces. FILES columns that are not relevant to
InnoDB always return NULL, and are excluded from the query.

mysql> SELECT FILE_ID, FILE_NAME, FILE_TYPE, TABLESPACE_NAME, FREE_EXTENTS,
 TOTAL_EXTENTS, EXTENT_SIZE, INITIAL_SIZE, MAXIMUM_SIZE, AUTOEXTEND_SIZE, DATA_FREE, STATUS ENGINE
 FROM INFORMATION_SCHEMA.FILES WHERE TABLESPACE_NAME LIKE 'innodb_system' \G
*************************** 1. row ***************************
 FILE_ID: 0
 FILE_NAME: ./ibdata1
 FILE_TYPE: TABLESPACE
TABLESPACE_NAME: innodb_system
 FREE_EXTENTS: 0
 TOTAL_EXTENTS: 12
 EXTENT_SIZE: 1048576
 INITIAL_SIZE: 12582912
 MAXIMUM_SIZE: NULL
AUTOEXTEND_SIZE: 67108864
 DATA_FREE: 4194304
 ENGINE: NORMAL

This query retrieves the FILE_ID (equivalent to the space ID) and the FILE_NAME (which includes
path information) for InnoDB file-per-table and general tablespaces. File-per-table and general
tablespaces have a .ibd file extension.

mysql> SELECT FILE_ID, FILE_NAME FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME LIKE '%.ibd%' ORDER BY FILE_ID;
 +---------+---------------------------------------+
 | FILE_ID | FILE_NAME |

3514

InnoDB Integration with MySQL Performance Schema

 +---------+---------------------------------------+
 | 2 | ./mysql/plugin.ibd |
 | 3 | ./mysql/servers.ibd |
 | 4 | ./mysql/help_topic.ibd |
 | 5 | ./mysql/help_category.ibd |
 | 6 | ./mysql/help_relation.ibd |
 | 7 | ./mysql/help_keyword.ibd |
 | 8 | ./mysql/time_zone_name.ibd |
 | 9 | ./mysql/time_zone.ibd |
 | 10 | ./mysql/time_zone_transition.ibd |
 | 11 | ./mysql/time_zone_transition_type.ibd |
 | 12 | ./mysql/time_zone_leap_second.ibd |
 | 13 | ./mysql/innodb_table_stats.ibd |
 | 14 | ./mysql/innodb_index_stats.ibd |
 | 15 | ./mysql/slave_relay_log_info.ibd |
 | 16 | ./mysql/slave_master_info.ibd |
 | 17 | ./mysql/slave_worker_info.ibd |
 | 18 | ./mysql/gtid_executed.ibd |
 | 19 | ./mysql/server_cost.ibd |
 | 20 | ./mysql/engine_cost.ibd |
 | 21 | ./sys/sys_config.ibd |
 | 23 | ./test/t1.ibd |
 | 26 | /home/user/test/test/t2.ibd |
 +---------+---------------------------------------+

This query retrieves the FILE_ID and FILE_NAME for the InnoDB global temporary tablespace.
Global temporary tablespace file names are prefixed by ibtmp.

mysql> SELECT FILE_ID, FILE_NAME FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME LIKE '%ibtmp%';
+---------+-----------+
| FILE_ID | FILE_NAME |
+---------+-----------+
| 22 | ./ibtmp1 |
+---------+-----------+

Similarly, InnoDB undo tablespace file names are prefixed by undo. The following query returns the
FILE_ID and FILE_NAME for InnoDB undo tablespaces.

mysql> SELECT FILE_ID, FILE_NAME FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME LIKE '%undo%';

17.16 InnoDB Integration with MySQL Performance Schema
This section provides a brief introduction to InnoDB integration with Performance Schema. For
comprehensive Performance Schema documentation, see Chapter 29, MySQL Performance Schema.

You can profile certain internal InnoDB operations using the MySQL Performance Schema feature.
This type of tuning is primarily for expert users who evaluate optimization strategies to overcome
performance bottlenecks. DBAs can also use this feature for capacity planning, to see whether their
typical workload encounters any performance bottlenecks with a particular combination of CPU, RAM,
and disk storage; and if so, to judge whether performance can be improved by increasing the capacity
of some part of the system.

To use this feature to examine InnoDB performance:

• You must be generally familiar with how to use the Performance Schema feature. For example, you
should know how enable instruments and consumers, and how to query performance_schema
tables to retrieve data. For an introductory overview, see Section 29.1, “Performance Schema Quick
Start”.

• You should be familiar with Performance Schema instruments that are available for InnoDB. To view
InnoDB-related instruments, you can query the setup_instruments table for instrument names
that contain 'innodb'.

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%innodb%';

3515

InnoDB Integration with MySQL Performance Schema

+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/commit_cond_mutex	NO	NO
wait/synch/mutex/innodb/innobase_share_mutex	NO	NO
wait/synch/mutex/innodb/autoinc_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_zip_mutex	NO	NO
wait/synch/mutex/innodb/cache_last_read_mutex	NO	NO
wait/synch/mutex/innodb/dict_foreign_err_mutex	NO	NO
wait/synch/mutex/innodb/dict_sys_mutex	NO	NO
wait/synch/mutex/innodb/recalc_pool_mutex	NO	NO
...		
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
stage/innodb/alter table (end)	YES	YES
stage/innodb/alter table (flush)	YES	YES
stage/innodb/alter table (insert)	YES	YES
stage/innodb/alter table (log apply index)	YES	YES
stage/innodb/alter table (log apply table)	YES	YES
stage/innodb/alter table (merge sort)	YES	YES
stage/innodb/alter table (read PK and internal sort)	YES	YES
stage/innodb/buffer pool load	YES	YES
memory/innodb/buf_buf_pool	NO	NO
memory/innodb/dict_stats_bg_recalc_pool_t	NO	NO
memory/innodb/dict_stats_index_map_t	NO	NO
memory/innodb/dict_stats_n_diff_on_level	NO	NO
memory/innodb/other	NO	NO
memory/innodb/row_log_buf	NO	NO
memory/innodb/row_merge_sort	NO	NO
memory/innodb/std	NO	NO
memory/innodb/sync_debug_latches	NO	NO
memory/innodb/trx_sys_t::rw_trx_ids	NO	NO
...
+---+---------+-------+
155 rows in set (0.00 sec)

For additional information about the instrumented InnoDB objects, you can query Performance
Schema instances tables, which provide additional information about instrumented objects. Instance
tables relevant to InnoDB include:

• The mutex_instances table

• The rwlock_instances table

• The cond_instances table

• The file_instances table

Note

Mutexes and RW-locks related to the InnoDB buffer pool are not included in
this coverage; the same applies to the output of the SHOW ENGINE INNODB
MUTEX command.

For example, to view information about instrumented InnoDB file objects seen by the Performance
Schema when executing file I/O instrumentation, you might issue the following query:

mysql> SELECT *
 FROM performance_schema.file_instances
 WHERE EVENT_NAME LIKE '%innodb%'\G
*************************** 1. row ***************************
 FILE_NAME: /home/dtprice/mysql-8.0/data/ibdata1
EVENT_NAME: wait/io/file/innodb/innodb_data_file
OPEN_COUNT: 3
*************************** 2. row ***************************
 FILE_NAME: /home/dtprice/mysql-8.0/data/#ib_16384_0.dblwr
EVENT_NAME: wait/io/file/innodb/innodb_dblwr_file

3516

Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema

OPEN_COUNT: 2
*************************** 3. row ***************************
 FILE_NAME: /home/dtprice/mysql-8.0/data/#ib_16384_1.dblwr
EVENT_NAME: wait/io/file/mysql-8.0/innodb_dblwr_file
OPEN_COUNT: 2
...

• You should be familiar with performance_schema tables that store InnoDB event data. Tables
relevant to InnoDB-related events include:

• The Wait Event tables, which store wait events.

• The Summary tables, which provide aggregated information for terminated events over time.
Summary tables include file I/O summary tables, which aggregate information about I/O
operations.

• Stage Event tables, which store event data for InnoDB ALTER TABLE and buffer pool load
operations. For more information, see Section 17.16.1, “Monitoring ALTER TABLE Progress for
InnoDB Tables Using Performance Schema”, and Monitoring Buffer Pool Load Progress Using
Performance Schema.

If you are only interested in InnoDB-related objects, use the clause WHERE EVENT_NAME LIKE
'%innodb%' or WHERE NAME LIKE '%innodb%' (as required) when querying these tables.

17.16.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using
Performance Schema

You can monitor ALTER TABLE progress for InnoDB tables using Performance Schema.

There are seven stage events that represent different phases of ALTER TABLE. Each stage event
reports a running total of WORK_COMPLETED and WORK_ESTIMATED for the overall ALTER TABLE
operation as it progresses through its different phases. WORK_ESTIMATED is calculated using a formula
that takes into account all of the work that ALTER TABLE performs, and may be revised during ALTER
TABLE processing. WORK_COMPLETED and WORK_ESTIMATED values are an abstract representation of
all of the work performed by ALTER TABLE.

In order of occurrence, ALTER TABLE stage events include:

• stage/innodb/alter table (read PK and internal sort): This stage is active
when ALTER TABLE is in the reading-primary-key phase. It starts with WORK_COMPLETED=0 and
WORK_ESTIMATED set to the estimated number of pages in the primary key. When the stage is
completed, WORK_ESTIMATED is updated to the actual number of pages in the primary key.

• stage/innodb/alter table (merge sort): This stage is repeated for each index added by
the ALTER TABLE operation.

• stage/innodb/alter table (insert): This stage is repeated for each index added by the
ALTER TABLE operation.

• stage/innodb/alter table (log apply index): This stage includes the application of DML
log generated while ALTER TABLE was running.

• stage/innodb/alter table (flush): Before this stage begins, WORK_ESTIMATED is updated
with a more accurate estimate, based on the length of the flush list.

• stage/innodb/alter table (log apply table): This stage includes the application
of concurrent DML log generated while ALTER TABLE was running. The duration of this phase
depends on the extent of table changes. This phase is instant if no concurrent DML was run on the
table.

• stage/innodb/alter table (end): Includes any remaining work that appeared after the flush
phase, such as reapplying DML that was executed on the table while ALTER TABLE was running.

3517

Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema

Note

InnoDB ALTER TABLE stage events do not currently account for the addition of
spatial indexes.

ALTER TABLE Monitoring Example Using Performance Schema

The following example demonstrates how to enable the stage/innodb/alter table% stage
event instruments and related consumer tables to monitor ALTER TABLE progress. For information
about Performance Schema stage event instruments and related consumers, see Section 29.12.5,
“Performance Schema Stage Event Tables”.

1. Enable the stage/innodb/alter% instruments:

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES'
 WHERE NAME LIKE 'stage/innodb/alter%';
Query OK, 7 rows affected (0.00 sec)
Rows matched: 7 Changed: 7 Warnings: 0

2. Enable the stage event consumer tables, which include events_stages_current,
events_stages_history, and events_stages_history_long.

mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%stages%';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

3. Run an ALTER TABLE operation. In this example, a middle_name column is added to the
employees table of the employees sample database.

mysql> ALTER TABLE employees.employees ADD COLUMN middle_name varchar(14) AFTER first_name;
Query OK, 0 rows affected (9.27 sec)
Records: 0 Duplicates: 0 Warnings: 0

4. Check the progress of the ALTER TABLE operation by querying the Performance Schema
events_stages_current table. The stage event shown differs depending on which ALTER
TABLE phase is currently in progress. The WORK_COMPLETED column shows the work completed.
The WORK_ESTIMATED column provides an estimate of the remaining work.

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED
 FROM performance_schema.events_stages_current;
+--+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+--+----------------+----------------+
| stage/innodb/alter table (read PK and internal sort) | 280 | 1245 |
+--+----------------+----------------+
1 row in set (0.01 sec)

The events_stages_current table returns an empty set if the ALTER TABLE operation has
completed. In this case, you can check the events_stages_history table to view event data for
the completed operation. For example:

mysql> SELECT EVENT_NAME, WORK_COMPLETED, WORK_ESTIMATED
 FROM performance_schema.events_stages_history;
+--+----------------+----------------+
| EVENT_NAME | WORK_COMPLETED | WORK_ESTIMATED |
+--+----------------+----------------+
stage/innodb/alter table (read PK and internal sort)	886	1213
stage/innodb/alter table (flush)	1213	1213
stage/innodb/alter table (log apply table)	1597	1597
stage/innodb/alter table (end)	1597	1597
stage/innodb/alter table (log apply table)	1981	1981
+--+----------------+----------------+
5 rows in set (0.00 sec)

3518

Monitoring InnoDB Mutex Waits Using Performance Schema

As shown above, the WORK_ESTIMATED value was revised during ALTER TABLE processing.
The estimated work after completion of the initial stage is 1213. When ALTER TABLE processing
completed, WORK_ESTIMATED was set to the actual value, which is 1981.

17.16.2 Monitoring InnoDB Mutex Waits Using Performance Schema

A mutex is a synchronization mechanism used in the code to enforce that only one thread at a given
time can have access to a common resource. When two or more threads executing in the server need
to access the same resource, the threads compete against each other. The first thread to obtain a lock
on the mutex causes the other threads to wait until the lock is released.

For InnoDB mutexes that are instrumented, mutex waits can be monitored using Performance
Schema. Wait event data collected in Performance Schema tables can help identify mutexes with the
most waits or the greatest total wait time, for example.

The following example demonstrates how to enable InnoDB mutex wait instruments, how to enable
associated consumers, and how to query wait event data.

1. To view available InnoDB mutex wait instruments, query the Performance Schema
setup_instruments table. All InnoDB mutex wait instruments are disabled by default.

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%wait/synch/mutex/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/commit_cond_mutex	NO	NO
wait/synch/mutex/innodb/innobase_share_mutex	NO	NO
wait/synch/mutex/innodb/autoinc_mutex	NO	NO
wait/synch/mutex/innodb/autoinc_persisted_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_flush_state_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_LRU_list_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_free_list_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_zip_free_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_zip_hash_mutex	NO	NO
wait/synch/mutex/innodb/buf_pool_zip_mutex	NO	NO
wait/synch/mutex/innodb/cache_last_read_mutex	NO	NO
wait/synch/mutex/innodb/dict_foreign_err_mutex	NO	NO
wait/synch/mutex/innodb/dict_persist_dirty_tables_mutex	NO	NO
wait/synch/mutex/innodb/dict_sys_mutex	NO	NO
wait/synch/mutex/innodb/recalc_pool_mutex	NO	NO
wait/synch/mutex/innodb/fil_system_mutex	NO	NO
wait/synch/mutex/innodb/flush_list_mutex	NO	NO
wait/synch/mutex/innodb/fts_bg_threads_mutex	NO	NO
wait/synch/mutex/innodb/fts_delete_mutex	NO	NO
wait/synch/mutex/innodb/fts_optimize_mutex	NO	NO
wait/synch/mutex/innodb/fts_doc_id_mutex	NO	NO
wait/synch/mutex/innodb/log_flush_order_mutex	NO	NO
wait/synch/mutex/innodb/hash_table_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_bitmap_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_mutex	NO	NO
wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex	NO	NO
wait/synch/mutex/innodb/log_sys_mutex	NO	NO
wait/synch/mutex/innodb/log_sys_write_mutex	NO	NO
wait/synch/mutex/innodb/mutex_list_mutex	NO	NO
wait/synch/mutex/innodb/page_zip_stat_per_index_mutex	NO	NO
wait/synch/mutex/innodb/purge_sys_pq_mutex	NO	NO
wait/synch/mutex/innodb/recv_sys_mutex	NO	NO
wait/synch/mutex/innodb/recv_writer_mutex	NO	NO
wait/synch/mutex/innodb/redo_rseg_mutex	NO	NO
wait/synch/mutex/innodb/noredo_rseg_mutex	NO	NO
wait/synch/mutex/innodb/rw_lock_list_mutex	NO	NO
wait/synch/mutex/innodb/rw_lock_mutex	NO	NO
wait/synch/mutex/innodb/srv_dict_tmpfile_mutex	NO	NO
wait/synch/mutex/innodb/srv_innodb_monitor_mutex	NO	NO
wait/synch/mutex/innodb/srv_misc_tmpfile_mutex	NO	NO
wait/synch/mutex/innodb/srv_monitor_file_mutex	NO	NO

3519

Monitoring InnoDB Mutex Waits Using Performance Schema

wait/synch/mutex/innodb/buf_dblwr_mutex	NO	NO
wait/synch/mutex/innodb/trx_undo_mutex	NO	NO
wait/synch/mutex/innodb/trx_pool_mutex	NO	NO
wait/synch/mutex/innodb/trx_pool_manager_mutex	NO	NO
wait/synch/mutex/innodb/srv_sys_mutex	NO	NO
wait/synch/mutex/innodb/lock_mutex	NO	NO
wait/synch/mutex/innodb/lock_wait_mutex	NO	NO
wait/synch/mutex/innodb/trx_mutex	NO	NO
wait/synch/mutex/innodb/srv_threads_mutex	NO	NO
wait/synch/mutex/innodb/rtr_active_mutex	NO	NO
wait/synch/mutex/innodb/rtr_match_mutex	NO	NO
wait/synch/mutex/innodb/rtr_path_mutex	NO	NO
wait/synch/mutex/innodb/rtr_ssn_mutex	NO	NO
wait/synch/mutex/innodb/trx_sys_mutex	NO	NO
wait/synch/mutex/innodb/zip_pad_mutex	NO	NO
wait/synch/mutex/innodb/master_key_id_mutex	NO	NO
+---+---------+-------+

2. Some InnoDB mutex instances are created at server startup and are only instrumented if the
associated instrument is also enabled at server startup. To ensure that all InnoDB mutex instances
are instrumented and enabled, add the following performance-schema-instrument rule to
your MySQL configuration file:

performance-schema-instrument='wait/synch/mutex/innodb/%=ON'

If you do not require wait event data for all InnoDB mutexes, you can disable specific instruments
by adding additional performance-schema-instrument rules to your MySQL configuration file.
For example, to disable InnoDB mutex wait event instruments related to full-text search, add the
following rule:

performance-schema-instrument='wait/synch/mutex/innodb/fts%=OFF'

Note

Rules with a longer prefix such as wait/synch/mutex/innodb/fts%
take precedence over rules with shorter prefixes such as wait/synch/
mutex/innodb/%.

After adding the performance-schema-instrument rules to your configuration file, restart the
server. All the InnoDB mutexes except for those related to full text search are enabled. To verify,
query the setup_instruments table. The ENABLED and TIMED columns should be set to YES for
the instruments that you enabled.

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%wait/synch/mutex/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/synch/mutex/innodb/commit_cond_mutex	YES	YES
wait/synch/mutex/innodb/innobase_share_mutex	YES	YES
wait/synch/mutex/innodb/autoinc_mutex	YES	YES
...		
wait/synch/mutex/innodb/master_key_id_mutex	YES	YES
+---+---------+-------+
49 rows in set (0.00 sec)

3. Enable wait event consumers by updating the setup_consumers table. Wait event consumers are
disabled by default.

mysql> UPDATE performance_schema.setup_consumers
 SET enabled = 'YES'
 WHERE name like 'events_waits%';
Query OK, 3 rows affected (0.00 sec)

3520

Monitoring InnoDB Mutex Waits Using Performance Schema

Rows matched: 3 Changed: 3 Warnings: 0

You can verify that wait event consumers are enabled by querying the setup_consumers table.
The events_waits_current, events_waits_history, and events_waits_history_long
consumers should be enabled.

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+
15 rows in set (0.00 sec)

4. Once instruments and consumers are enabled, run the workload that you want to monitor. In this
example, the mysqlslap load emulation client is used to simulate a workload.

$> ./mysqlslap --auto-generate-sql --concurrency=100 --iterations=10
 --number-of-queries=1000 --number-char-cols=6 --number-int-cols=6;

5. Query the wait event data. In this example, wait event data is queried from the
events_waits_summary_global_by_event_name table which aggregates data found in the
events_waits_current, events_waits_history, and events_waits_history_long
tables. Data is summarized by event name (EVENT_NAME), which is the name of the instrument that
produced the event. Summarized data includes:

• COUNT_STAR

The number of summarized wait events.

• SUM_TIMER_WAIT

The total wait time of the summarized timed wait events.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed wait events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed wait events.

• MAX_TIMER_WAIT

The maximum wait time of the summarized timed wait events.

The following query returns the instrument name (EVENT_NAME), the number of wait events
(COUNT_STAR), and the total wait time for the events for that instrument (SUM_TIMER_WAIT).
Because waits are timed in picoseconds (trillionths of a second) by default, wait times are divided
by 1000000000 to show wait times in milliseconds. Data is presented in descending order, by the

3521

InnoDB Monitors

number of summarized wait events (COUNT_STAR). You can adjust the ORDER BY clause to order
the data by total wait time.

mysql> SELECT EVENT_NAME, COUNT_STAR, SUM_TIMER_WAIT/1000000000 SUM_TIMER_WAIT_MS
 FROM performance_schema.events_waits_summary_global_by_event_name
 WHERE SUM_TIMER_WAIT > 0 AND EVENT_NAME LIKE 'wait/synch/mutex/innodb/%'
 ORDER BY COUNT_STAR DESC;
+---+------------+-------------------+
| EVENT_NAME | COUNT_STAR | SUM_TIMER_WAIT_MS |
+---+------------+-------------------+
wait/synch/mutex/innodb/trx_mutex	201111	23.4719
wait/synch/mutex/innodb/fil_system_mutex	62244	9.6426
wait/synch/mutex/innodb/redo_rseg_mutex	48238	3.1135
wait/synch/mutex/innodb/log_sys_mutex	46113	2.0434
wait/synch/mutex/innodb/trx_sys_mutex	35134	1068.1588
wait/synch/mutex/innodb/lock_mutex	34872	1039.2589
wait/synch/mutex/innodb/log_sys_write_mutex	17805	1526.0490
wait/synch/mutex/innodb/dict_sys_mutex	14912	1606.7348
wait/synch/mutex/innodb/trx_undo_mutex	10634	1.1424
wait/synch/mutex/innodb/rw_lock_list_mutex	8538	0.1960
wait/synch/mutex/innodb/buf_pool_free_list_mutex	5961	0.6473
wait/synch/mutex/innodb/trx_pool_mutex	4885	8821.7496
wait/synch/mutex/innodb/buf_pool_LRU_list_mutex	4364	0.2077
wait/synch/mutex/innodb/innobase_share_mutex	3212	0.2650
wait/synch/mutex/innodb/flush_list_mutex	3178	0.2349
wait/synch/mutex/innodb/trx_pool_manager_mutex	2495	0.1310
wait/synch/mutex/innodb/buf_pool_flush_state_mutex	1318	0.2161
wait/synch/mutex/innodb/log_flush_order_mutex	1250	0.0893
wait/synch/mutex/innodb/buf_dblwr_mutex	951	0.0918
wait/synch/mutex/innodb/recalc_pool_mutex	670	0.0942
wait/synch/mutex/innodb/dict_persist_dirty_tables_mutex	345	0.0414
wait/synch/mutex/innodb/lock_wait_mutex	303	0.1565
wait/synch/mutex/innodb/autoinc_mutex	196	0.0213
wait/synch/mutex/innodb/autoinc_persisted_mutex	196	0.0175
wait/synch/mutex/innodb/purge_sys_pq_mutex	117	0.0308
wait/synch/mutex/innodb/srv_sys_mutex	94	0.0077
wait/synch/mutex/innodb/ibuf_mutex	22	0.0086
wait/synch/mutex/innodb/recv_sys_mutex	12	0.0008
wait/synch/mutex/innodb/srv_innodb_monitor_mutex	4	0.0009
wait/synch/mutex/innodb/recv_writer_mutex	1	0.0005
+---+------------+-------------------+

Note

The preceding result set includes wait event data produced during
the startup process. To exclude this data, you can truncate the
events_waits_summary_global_by_event_name table immediately
after startup and before running your workload. However, the truncate
operation itself may produce a negligible amount wait event data.

mysql> TRUNCATE performance_schema.events_waits_summary_global_by_event_name;

17.17 InnoDB Monitors

InnoDB monitors provide information about the InnoDB internal state. This information is useful for
performance tuning.

17.17.1 InnoDB Monitor Types

There are two types of InnoDB monitor:

• The standard InnoDB Monitor displays the following types of information:

• Work done by the main background thread

• Semaphore waits

3522

Enabling InnoDB Monitors

• Data about the most recent foreign key and deadlock errors

• Lock waits for transactions

• Table and record locks held by active transactions

• Pending I/O operations and related statistics

• Insert buffer and adaptive hash index statistics

• Redo log data

• Buffer pool statistics

• Row operation data

• The InnoDB Lock Monitor prints additional lock information as part of the standard InnoDB Monitor
output.

17.17.2 Enabling InnoDB Monitors

When InnoDB monitors are enabled for periodic output, InnoDB writes the output to mysqld server
standard error output (stderr) every 15 seconds, approximately.

InnoDB sends the monitor output to stderr rather than to stdout or fixed-size memory buffers to
avoid potential buffer overflows.

On Windows, stderr is directed to the default log file unless configured otherwise. If you want to
direct the output to the console window rather than to the error log, start the server from a command
prompt in a console window with the --console option. For more information, see Default Error Log
Destination on Windows.

On Unix and Unix-like systems, stderr is typically directed to the terminal unless configured
otherwise. For more information, see Default Error Log Destination on Unix and Unix-Like Systems.

InnoDB monitors should only be enabled when you actually want to see monitor information because
output generation causes some performance decrement. Also, if monitor output is directed to the error
log, the log may become quite large if you forget to disable the monitor later.

Note

To assist with troubleshooting, InnoDB temporarily enables standard
InnoDB Monitor output under certain conditions. For more information, see
Section 17.21, “InnoDB Troubleshooting”.

InnoDB monitor output begins with a header containing a timestamp and the monitor name. For
example:

=====================================
2014-10-16 18:37:29 0x7fc2a95c1700 INNODB MONITOR OUTPUT
=====================================

The header for the standard InnoDB Monitor (INNODB MONITOR OUTPUT) is also used for the Lock
Monitor because the latter produces the same output with the addition of extra lock information.

The innodb_status_output and innodb_status_output_locks system variables are used to
enable the standard InnoDB Monitor and InnoDB Lock Monitor.

The PROCESS privilege is required to enable or disable InnoDB Monitors.

Enabling the Standard InnoDB Monitor

Enable the standard InnoDB Monitor by setting the innodb_status_output system variable to ON.

3523

InnoDB Standard Monitor and Lock Monitor Output

SET GLOBAL innodb_status_output=ON;

To disable the standard InnoDB Monitor, set innodb_status_output to OFF.

When you shut down the server, the innodb_status_output variable is set to the default OFF
value.

Enabling the InnoDB Lock Monitor

InnoDB Lock Monitor data is printed with the InnoDB Standard Monitor output. Both the InnoDB
Standard Monitor and InnoDB Lock Monitor must be enabled to have InnoDB Lock Monitor data
printed periodically.

To enable the InnoDB Lock Monitor, set the innodb_status_output_locks system variable to ON.
Both the InnoDB standard Monitor and InnoDB Lock Monitor must be enabled to have InnoDB Lock
Monitor data printed periodically:

SET GLOBAL innodb_status_output=ON;
SET GLOBAL innodb_status_output_locks=ON;

To disable the InnoDB Lock Monitor, set innodb_status_output_locks to OFF. Set
innodb_status_output to OFF to also disable the InnoDB Standard Monitor.

When you shut down the server, the innodb_status_output and
innodb_status_output_locks variables are set to the default OFF value.

Note

To enable the InnoDB Lock Monitor for SHOW ENGINE INNODB STATUS
output, you are only required to enable innodb_status_output_locks.

Obtaining Standard InnoDB Monitor Output On Demand

As an alternative to enabling the standard InnoDB Monitor for periodic output, you can obtain standard
InnoDB Monitor output on demand using the SHOW ENGINE INNODB STATUS SQL statement, which
fetches the output to your client program. If you are using the mysql interactive client, the output is
more readable if you replace the usual semicolon statement terminator with \G:

mysql> SHOW ENGINE INNODB STATUS\G

SHOW ENGINE INNODB STATUS output also includes InnoDB Lock Monitor data if the InnoDB Lock
Monitor is enabled.

Directing Standard InnoDB Monitor Output to a Status File

Standard InnoDB Monitor output can be enabled and directed to a status file by specifying the --
innodb-status-file option at startup. When this option is used, InnoDB creates a file named
innodb_status.pid in the data directory and writes output to it every 15 seconds, approximately.

InnoDB removes the status file when the server is shut down normally. If an abnormal shutdown
occurs, the status file may have to be removed manually.

The --innodb-status-file option is intended for temporary use, as output generation can affect
performance, and the innodb_status.pid file can become quite large over time.

17.17.3 InnoDB Standard Monitor and Lock Monitor Output

The Lock Monitor is the same as the Standard Monitor except that it includes additional lock
information. Enabling either monitor for periodic output turns on the same output stream, but the
stream includes extra information if the Lock Monitor is enabled. For example, if you enable the
Standard Monitor and Lock Monitor, that turns on a single output stream. The stream includes extra
lock information until you disable the Lock Monitor.

3524

InnoDB Standard Monitor and Lock Monitor Output

Standard Monitor output is limited to 1MB when produced using the SHOW ENGINE INNODB STATUS
statement. This limit does not apply to output written to server standard error output (stderr).

Example Standard Monitor output:

mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
 Type: InnoDB
 Name:
Status:
=====================================
2018-04-12 15:14:08 0x7f971c063700 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 4 seconds

BACKGROUND THREAD

srv_master_thread loops: 15 srv_active, 0 srv_shutdown, 1122 srv_idle
srv_master_thread log flush and writes: 0

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 24
OS WAIT ARRAY INFO: signal count 24
RW-shared spins 4, rounds 8, OS waits 4
RW-excl spins 2, rounds 60, OS waits 2
RW-sx spins 0, rounds 0, OS waits 0
Spin rounds per wait: 2.00 RW-shared, 30.00 RW-excl, 0.00 RW-sx

LATEST FOREIGN KEY ERROR

2018-04-12 14:57:24 0x7f97a9c91700 Transaction:
TRANSACTION 7717, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1136, 3 row lock(s), undo log entries 3
MySQL thread id 8, OS thread handle 140289365317376, query id 14 localhost root update
INSERT INTO child VALUES (NULL, 1), (NULL, 2), (NULL, 3), (NULL, 4), (NULL, 5), (NULL, 6)
Foreign key constraint fails for table `test`.`child`:
,
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent` (`id`) ON DELETE
 CASCADE ON UPDATE CASCADE
Trying to add in child table, in index par_ind tuple:
DATA TUPLE: 2 fields;
 0: len 4; hex 80000003; asc ;;
 1: len 4; hex 80000003; asc ;;

But in parent table `test`.`parent`, in index PRIMARY,
the closest match we can find is record:
PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000004; asc ;;
 1: len 6; hex 000000001e19; asc ;;
 2: len 7; hex 81000001110137; asc 7;;

TRANSACTIONS

Trx id counter 7748
Purge done for trx's n:o < 7747 undo n:o < 0 state: running but idle
History list length 19
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 421764459790000, not started
0 lock struct(s), heap size 1136, 0 row lock(s)
---TRANSACTION 7747, ACTIVE 23 sec starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 1136, 1 row lock(s)
MySQL thread id 9, OS thread handle 140286987249408, query id 51 localhost root updating
DELETE FROM t WHERE i = 1
------- TRX HAS BEEN WAITING 23 SEC FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 4 page no 4 n bits 72 index GEN_CLUST_INDEX of table `test`.`t`
trx id 7747 lock_mode X waiting
Record lock, heap no 3 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 6; hex 000000000202; asc ;;

3525

InnoDB Standard Monitor and Lock Monitor Output

 1: len 6; hex 000000001e41; asc A;;
 2: len 7; hex 820000008b0110; asc ;;
 3: len 4; hex 80000001; asc ;;

TABLE LOCK table `test`.`t` trx id 7747 lock mode IX
RECORD LOCKS space id 4 page no 4 n bits 72 index GEN_CLUST_INDEX of table `test`.`t`
trx id 7747 lock_mode X waiting
Record lock, heap no 3 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 6; hex 000000000202; asc ;;
 1: len 6; hex 000000001e41; asc A;;
 2: len 7; hex 820000008b0110; asc ;;
 3: len 4; hex 80000001; asc ;;

FILE I/O

I/O thread 0 state: waiting for i/o request (insert buffer thread)
I/O thread 1 state: waiting for i/o request (log thread)
I/O thread 2 state: waiting for i/o request (read thread)
I/O thread 3 state: waiting for i/o request (read thread)
I/O thread 4 state: waiting for i/o request (read thread)
I/O thread 5 state: waiting for i/o request (read thread)
I/O thread 6 state: waiting for i/o request (write thread)
I/O thread 7 state: waiting for i/o request (write thread)
I/O thread 8 state: waiting for i/o request (write thread)
I/O thread 9 state: waiting for i/o request (write thread)
Pending normal aio reads: [0, 0, 0, 0] , aio writes: [0, 0, 0, 0] ,
 ibuf aio reads:, log i/o's:, sync i/o's:
Pending flushes (fsync) log: 0; buffer pool: 0
833 OS file reads, 605 OS file writes, 208 OS fsyncs
0.00 reads/s, 0 avg bytes/read, 0.00 writes/s, 0.00 fsyncs/s

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges
merged operations:
 insert 0, delete mark 0, delete 0
discarded operations:
 insert 0, delete mark 0, delete 0
Hash table size 553253, node heap has 0 buffer(s)
Hash table size 553253, node heap has 1 buffer(s)
Hash table size 553253, node heap has 3 buffer(s)
Hash table size 553253, node heap has 0 buffer(s)
Hash table size 553253, node heap has 0 buffer(s)
Hash table size 553253, node heap has 0 buffer(s)
Hash table size 553253, node heap has 0 buffer(s)
Hash table size 553253, node heap has 0 buffer(s)
0.00 hash searches/s, 0.00 non-hash searches/s

LOG

Log sequence number 19643450
Log buffer assigned up to 19643450
Log buffer completed up to 19643450
Log written up to 19643450
Log flushed up to 19643450
Added dirty pages up to 19643450
Pages flushed up to 19643450
Last checkpoint at 19643450
129 log i/o's done, 0.00 log i/o's/second

BUFFER POOL AND MEMORY

Total large memory allocated 2198863872
Dictionary memory allocated 409606
Buffer pool size 131072
Free buffers 130095
Database pages 973
Old database pages 0
Modified db pages 0
Pending reads 0

3526

InnoDB Standard Monitor and Lock Monitor Output

Pending writes: LRU 0, flush list 0, single page 0
Pages made young 0, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 810, created 163, written 404
0.00 reads/s, 0.00 creates/s, 0.00 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s
LRU len: 973, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

INDIVIDUAL BUFFER POOL INFO

---BUFFER POOL 0
Buffer pool size 65536
Free buffers 65043
Database pages 491
Old database pages 0
Modified db pages 0
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 0, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 411, created 80, written 210
0.00 reads/s, 0.00 creates/s, 0.00 writes/s
Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s
LRU len: 491, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]
---BUFFER POOL 1
Buffer pool size 65536
Free buffers 65052
Database pages 482
Old database pages 0
Modified db pages 0
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 0, not young 0
0.00 youngs/s, 0.00 non-youngs/s
Pages read 399, created 83, written 194
0.00 reads/s, 0.00 creates/s, 0.00 writes/s
No buffer pool page gets since the last printout
Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s
LRU len: 482, unzip_LRU len: 0
I/O sum[0]:cur[0], unzip sum[0]:cur[0]

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue
0 read views open inside InnoDB
Process ID=5772, Main thread ID=140286437054208 , state=sleeping
Number of rows inserted 57, updated 354, deleted 4, read 4421
0.00 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s

END OF INNODB MONITOR OUTPUT
============================

Standard Monitor Output Sections

For a description of each metric reported by the Standard Monitor, refer to the Metrics chapter in the
Oracle Enterprise Manager for MySQL Database User's Guide.

• Status

This section shows the timestamp, the monitor name, and the number of seconds that per-second
averages are based on. The number of seconds is the elapsed time between the current time and
the last time InnoDB Monitor output was printed.

• BACKGROUND THREAD

The srv_master_thread lines shows work done by the main background thread.

3527

http://dev.mysql.com/doc/mysql-em-plugin/en/myoem-metrics.html
http://dev.mysql.com/doc/mysql-em-plugin/en/

InnoDB Standard Monitor and Lock Monitor Output

• SEMAPHORES

This section reports threads waiting for a semaphore and statistics on how many times threads have
needed a spin or a wait on a mutex or a rw-lock semaphore. A large number of threads waiting for
semaphores may be a result of disk I/O, or contention problems inside InnoDB. Contention can be
due to heavy parallelism of queries or problems in operating system thread scheduling. Setting the
innodb_thread_concurrency system variable smaller than the default value might help in such
situations. The Spin rounds per wait line shows the number of spinlock rounds per OS wait for
a mutex.

Mutex metrics are reported by SHOW ENGINE INNODB MUTEX.

• LATEST FOREIGN KEY ERROR

This section provides information about the most recent foreign key constraint error. It is not present
if no such error has occurred. The contents include the statement that failed as well as information
about the constraint that failed and the referenced and referencing tables.

• LATEST DETECTED DEADLOCK

This section provides information about the most recent deadlock. It is not present if no deadlock has
occurred. The contents show which transactions are involved, the statement each was attempting
to execute, the locks they have and need, and which transaction InnoDB decided to roll back to
break the deadlock. The lock modes reported in this section are explained in Section 17.7.1, “InnoDB
Locking”.

• TRANSACTIONS

If this section reports lock waits, your applications might have lock contention. The output can also
help to trace the reasons for transaction deadlocks.

• FILE I/O

This section provides information about threads that InnoDB uses to perform various types of I/
O. The first few of these are dedicated to general InnoDB processing. The contents also display
information for pending I/O operations and statistics for I/O performance.

The number of these threads are controlled by the innodb_read_io_threads and
innodb_write_io_threads parameters. See Section 17.14, “InnoDB Startup Options and
System Variables”.

• INSERT BUFFER AND ADAPTIVE HASH INDEX

This section shows the status of the InnoDB insert buffer (also referred to as the change buffer) and
the adaptive hash index.

For related information, see Section 17.5.2, “Change Buffer”, and Section 17.5.3, “Adaptive Hash
Index”.

• LOG

This section displays information about the InnoDB log. The contents include the current log
sequence number, how far the log has been flushed to disk, and the position at which InnoDB
last took a checkpoint. (See Section 17.11.3, “InnoDB Checkpoints”.) The section also displays
information about pending writes and write performance statistics.

3528

InnoDB Backup and Recovery

• BUFFER POOL AND MEMORY

This section gives you statistics on pages read and written. You can calculate from these numbers
how many data file I/O operations your queries currently are doing.

For buffer pool statistics descriptions, see Monitoring the Buffer Pool Using the InnoDB Standard
Monitor. For additional information about the operation of the buffer pool, see Section 17.5.1, “Buffer
Pool”.

• ROW OPERATIONS

This section shows what the main thread is doing, including the number and performance rate for
each type of row operation.

17.18 InnoDB Backup and Recovery
This section covers topics related to InnoDB backup and recovery.

• For information about backup techniques applicable to InnoDB, see Section 17.18.1, “InnoDB
Backup”.

• For information about point-in-time recovery, recovery from disk failure or corruption, and how
InnoDB performs crash recovery, see Section 17.18.2, “InnoDB Recovery”.

17.18.1 InnoDB Backup

The key to safe database management is making regular backups. Depending on your data volume,
number of MySQL servers, and database workload, you can use these backup techniques, alone or
in combination: hot backup with MySQL Enterprise Backup; cold backup by copying files while the
MySQL server is shut down; logical backup with mysqldump for smaller data volumes or to record the
structure of schema objects. Hot and cold backups are physical backups that copy actual data files,
which can be used directly by the mysqld server for faster restore.

Using MySQL Enterprise Backup is the recommended method for backing up InnoDB data.

Note

InnoDB does not support databases that are restored using third-party backup
tools.

Hot Backups

The mysqlbackup command, part of the MySQL Enterprise Backup component, lets you back
up a running MySQL instance, including InnoDB tables, with minimal disruption to operations
while producing a consistent snapshot of the database. When mysqlbackup is copying InnoDB
tables, reads and writes to InnoDB tables can continue. MySQL Enterprise Backup can also create
compressed backup files, and back up subsets of tables and databases. In conjunction with the MySQL
binary log, users can perform point-in-time recovery. MySQL Enterprise Backup is part of the MySQL
Enterprise subscription. For more details, see Section 32.1, “MySQL Enterprise Backup Overview”.

Cold Backups

If you can shut down the MySQL server, you can make a physical backup that consists of all files used
by InnoDB to manage its tables. Use the following procedure:

1. Perform a slow shutdown of the MySQL server and make sure that it stops without errors.

2. Copy all InnoDB data files (ibdata files and .ibd files) into a safe place.

3. Copy all InnoDB redo log files (#ib_redoN files in MySQL 8.0.30 and higher or ib_logfile files
in earlier releases) to a safe place.

3529

InnoDB Recovery

4. Copy your my.cnf configuration file or files to a safe place.

Logical Backups Using mysqldump

In addition to physical backups, it is recommended that you regularly create logical backups by
dumping your tables using mysqldump. A binary file might be corrupted without you noticing it.
Dumped tables are stored into text files that are human-readable, so spotting table corruption
becomes easier. Also, because the format is simpler, the chance for serious data corruption is smaller.
mysqldump also has a --single-transaction option for making a consistent snapshot without
locking out other clients. See Section 9.3.1, “Establishing a Backup Policy”.

Replication works with InnoDB tables, so you can use MySQL replication capabilities to keep a copy
of your database at database sites requiring high availability. See Section 17.19, “InnoDB and MySQL
Replication”.

17.18.2 InnoDB Recovery

This section describes InnoDB recovery. Topics include:

• Point-in-Time Recovery

• Recovery from Data Corruption or Disk Failure

• InnoDB Crash Recovery

• Tablespace Discovery During Crash Recovery

Point-in-Time Recovery

To recover an InnoDB database to the present from the time at which the physical backup was
made, you must run MySQL server with binary logging enabled, even before taking the backup. To
achieve point-in-time recovery after restoring a backup, you can apply changes from the binary log that
occurred after the backup was made. See Section 9.5, “Point-in-Time (Incremental) Recovery”.

Recovery from Data Corruption or Disk Failure

If your database becomes corrupted or disk failure occurs, you must perform the recovery using a
backup. In the case of corruption, first find a backup that is not corrupted. After restoring the base
backup, do a point-in-time recovery from the binary log files using mysqlbinlog and mysql to restore
the changes that occurred after the backup was made.

In some cases of database corruption, it is enough to dump, drop, and re-create one or a few corrupt
tables. You can use the CHECK TABLE statement to check whether a table is corrupt, although CHECK
TABLE naturally cannot detect every possible kind of corruption.

In some cases, apparent database page corruption is actually due to the operating system corrupting
its own file cache, and the data on disk may be okay. It is best to try restarting the computer first.
Doing so may eliminate errors that appeared to be database page corruption. If MySQL still has trouble
starting because of InnoDB consistency problems, see Section 17.21.3, “Forcing InnoDB Recovery”
for steps to start the instance in recovery mode, which permits you to dump the data.

InnoDB Crash Recovery

To recover from an unexpected MySQL server exit, the only requirement is to restart the MySQL
server. InnoDB automatically checks the logs and performs a roll-forward of the database to the
present. InnoDB automatically rolls back uncommitted transactions that were present at the time of the
crash.

InnoDB crash recovery consists of several steps:

• Tablespace discovery

3530

InnoDB Recovery

Tablespace discovery is the process that InnoDB uses to identify tablespaces that require redo log
application. See Tablespace Discovery During Crash Recovery.

• Redo log application

Redo log application is performed during initialization, before accepting any connections. If all
changes are flushed from the buffer pool to the tablespaces (ibdata* and *.ibd files) at the time
of the shutdown or crash, redo log application is skipped. InnoDB also skips redo log application if
redo log files are missing at startup.

• The current maximum auto-increment counter value is written to the redo log each time the value
changes, which makes it crash-safe. During recovery, InnoDB scans the redo log to collect
counter value changes and applies the changes to the in-memory table object.

For more information about how InnoDB handles auto-increment values, see Section 17.6.1.6,
“AUTO_INCREMENT Handling in InnoDB”, and InnoDB AUTO_INCREMENT Counter
Initialization.

• When encountering index tree corruption, InnoDB writes a corruption flag to the redo log, which
makes the corruption flag crash-safe. InnoDB also writes in-memory corruption flag data to an
engine-private system table on each checkpoint. During recovery, InnoDB reads corruption flags
from both locations and merges results before marking in-memory table and index objects as
corrupt.

• Removing redo logs to speed up recovery is not recommended, even if some data loss is
acceptable. Removing redo logs should only be considered after a clean shutdown, with
innodb_fast_shutdown set to 0 or 1.

• Roll back of incomplete transactions

Incomplete transactions are any transactions that were active at the time of unexpected exit or fast
shutdown. The time it takes to roll back an incomplete transaction can be three or four times the
amount of time a transaction is active before it is interrupted, depending on server load.

You cannot cancel transactions that are being rolled back. In extreme cases, when rolling back
transactions is expected to take an exceptionally long time, it may be faster to start InnoDB with
an innodb_force_recovery setting of 3 or greater. See Section 17.21.3, “Forcing InnoDB
Recovery”.

• Change buffer merge

Applying changes from the change buffer (part of the system tablespace) to leaf pages of secondary
indexes, as the index pages are read to the buffer pool.

• Purge

Deleting delete-marked records that are no longer visible to active transactions.

The steps that follow redo log application do not depend on the redo log (other than for logging the
writes) and are performed in parallel with normal processing. Of these, only rollback of incomplete
transactions is special to crash recovery. The insert buffer merge and the purge are performed during
normal processing.

After redo log application, InnoDB attempts to accept connections as early as possible, to reduce
downtime. As part of crash recovery, InnoDB rolls back transactions that were not committed or in XA
PREPARE state when the server exited. The rollback is performed by a background thread, executed
in parallel with transactions from new connections. Until the rollback operation is completed, new
connections may encounter locking conflicts with recovered transactions.

In most situations, even if the MySQL server was killed unexpectedly in the middle of heavy activity,
the recovery process happens automatically and no action is required of the DBA. If a hardware

3531

InnoDB and MySQL Replication

failure or severe system error corrupted InnoDB data, MySQL might refuse to start. In this case, see
Section 17.21.3, “Forcing InnoDB Recovery”.

For information about the binary log and InnoDB crash recovery, see Section 7.4.4, “The Binary Log”.

Tablespace Discovery During Crash Recovery

If, during recovery, InnoDB encounters redo logs written since the last checkpoint, the redo logs must
be applied to affected tablespaces. The process that identifies affected tablespaces during recovery is
referred to as tablespace discovery.

Tablespace discovery relies on the innodb_directories setting, which defines the directories
to scan at startup for tablespace files. The innodb_directories default setting is NULL, but
the directories defined by innodb_data_home_dir, innodb_undo_directory, and datadir
are always appended to the innodb_directories argument value when InnoDB builds a
list of directories to scan at startup. These directories are appended regardless of whether an
innodb_directories setting is specified explicitly. Tablespace files defined with an absolute path or
that reside outside of the directories appended to the innodb_directories setting should be added
to the innodb_directories setting. Recovery is terminated if any tablespace file referenced in a
redo log has not been discovered previously.

17.19 InnoDB and MySQL Replication

It is possible to use replication in a way where the storage engine on the replica is not the same as the
storage engine on the source. For example, you can replicate modifications to an InnoDB table on the
source to a MyISAM table on the replica. For more information see, Section 19.4.4, “Using Replication
with Different Source and Replica Storage Engines”.

For information about setting up a replica, see Section 19.1.2.6, “Setting Up Replicas”, and
Section 19.1.2.5, “Choosing a Method for Data Snapshots”. To make a new replica without taking down
the source or an existing replica, use the MySQL Enterprise Backup product.

Transactions that fail on the source do not affect replication. MySQL replication is based on the binary
log where MySQL writes SQL statements that modify data. A transaction that fails (for example,
because of a foreign key violation, or because it is rolled back) is not written to the binary log, so
it is not sent to replicas. See Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK
Statements”.

Replication and CASCADE. Cascading actions for InnoDB tables on the source are executed
on the replica only if the tables sharing the foreign key relation use InnoDB on both the source and
replica. This is true whether you are using statement-based or row-based replication. Suppose that you
have started replication, and then create two tables on the source, where InnoDB is defined as the
default storage engine, using the following CREATE TABLE statements:

CREATE TABLE fc1 (
 i INT PRIMARY KEY,
 j INT
);

CREATE TABLE fc2 (
 m INT PRIMARY KEY,
 n INT,
 FOREIGN KEY ni (n) REFERENCES fc1 (i)
 ON DELETE CASCADE
);

If the replica has MyISAM defined as the default storage engine, the same tables are created on the
replica, but they use the MyISAM storage engine, and the FOREIGN KEY option is ignored. Now we
insert some rows into the tables on the source:

source> INSERT INTO fc1 VALUES (1, 1), (2, 2);

3532

InnoDB and MySQL Replication

Query OK, 2 rows affected (0.09 sec)
Records: 2 Duplicates: 0 Warnings: 0

source> INSERT INTO fc2 VALUES (1, 1), (2, 2), (3, 1);
Query OK, 3 rows affected (0.19 sec)
Records: 3 Duplicates: 0 Warnings: 0

At this point, on both the source and the replica, table fc1 contains 2 rows, and table fc2 contains 3
rows, as shown here:

source> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

source> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

replica> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

replica> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

Now suppose that you perform the following DELETE statement on the source:

source> DELETE FROM fc1 WHERE i=1;
Query OK, 1 row affected (0.09 sec)

Due to the cascade, table fc2 on the source now contains only 1 row:

source> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 2 | 2 |
+---+---+
1 row in set (0.00 sec)

However, the cascade does not propagate on the replica because on the replica the DELETE for fc1
deletes no rows from fc2. The replica's copy of fc2 still contains all of the rows that were originally
inserted:

replica> SELECT * FROM fc2;
+---+---+
| m | n |

3533

InnoDB memcached Plugin

+---+---+
1	1
3	1
2	2
+---+---+
3 rows in set (0.00 sec)

This difference is due to the fact that the cascading deletes are handled internally by the InnoDB
storage engine, which means that none of the changes are logged.

17.20 InnoDB memcached Plugin

Important

The InnoDB memcached plugin was removed in MySQL 8.3.0, and was
deprecated in MySQL 8.0.22.

The InnoDB memcached plugin (daemon_memcached) provides an integrated memcached daemon
that automatically stores and retrieves data from InnoDB tables, turning the MySQL server into a fast
“key-value store”. Instead of formulating queries in SQL, you can use simple get, set, and incr
operations that avoid the performance overhead associated with SQL parsing and constructing a
query optimization plan. You can also access the same InnoDB tables through SQL for convenience,
complex queries, bulk operations, and other strengths of traditional database software.

This “NoSQL-style” interface uses the memcached API to speed up database operations, letting
InnoDB handle memory caching using its buffer pool mechanism. Data modified through memcached
operations such as add, set, and incr are stored to disk, in InnoDB tables. The combination
of memcached simplicity and InnoDB reliability and consistency provides users with the best of
both worlds, as explained in Section 17.20.1, “Benefits of the InnoDB memcached Plugin”. For an
architectural overview, see Section 17.20.2, “InnoDB memcached Architecture”.

17.20.1 Benefits of the InnoDB memcached Plugin

This section outlines advantages the daemon_memcached plugin. The combination of InnoDB tables
and memcached offers advantages over using either by themselves.

• Direct access to the InnoDB storage engine avoids the parsing and planning overhead of SQL.

• Running memcached in the same process space as the MySQL server avoids the network overhead
of passing requests back and forth.

• Data written using the memcached protocol is transparently written to an InnoDB table, without
going through the MySQL SQL layer. You can control frequency of writes to achieve higher raw
performance when updating non-critical data.

• Data requested through the memcached protocol is transparently queried from an InnoDB table,
without going through the MySQL SQL layer.

• Subsequent requests for the same data is served from the InnoDB buffer pool. The buffer pool
handles the in-memory caching. You can tune performance of data-intensive operations using
InnoDB configuration options.

• Data can be unstructured or structured, depending on the type of application. You can create a new
table for data, or use existing tables.

• InnoDB can handle composing and decomposing multiple column values into a single memcached
item value, reducing the amount of string parsing and concatenation required in your application. For
example, you can store the string value 2|4|6|8 in the memcached cache, and have InnoDB split
the value based on a separator character, then store the result in four numeric columns.

• The transfer between memory and disk is handled automatically, simplifying application logic.

3534

InnoDB memcached Architecture

• Data is stored in a MySQL database to protect against crashes, outages, and corruption.

• You can access the underlying InnoDB table through SQL for reporting, analysis, ad hoc queries,
bulk loading, multi-step transactional computations, set operations such as union and intersection,
and other operations suited to the expressiveness and flexibility of SQL.

• You can ensure high availability by using the daemon_memcached plugin on a source server in
combination with MySQL replication.

• The integration of memcached with MySQL provides a way to make in-memory data persistent, so
you can use it for more significant kinds of data. You can use more add, incr, and similar write
operations in your application without concern that data could be lost. You can stop and start the
memcached server without losing updates made to cached data. To guard against unexpected
outages, you can take advantage of InnoDB crash recovery, replication, and backup capabilities.

• The way InnoDB does fast primary key lookups is a natural fit for memcached single-item queries.
The direct, low-level database access path used by the daemon_memcached plugin is much more
efficient for key-value lookups than equivalent SQL queries.

• The serialization features of memcached, which can turn complex data structures, binary files, or
even code blocks into storable strings, offer a simple way to get such objects into a database.

• Because you can access the underlying data through SQL, you can produce reports, search or
update across multiple keys, and call functions such as AVG() and MAX() on memcached data. All
of these operations are expensive or complicated using memcached by itself.

• You do not need to manually load data into memcached at startup. As particular keys are requested
by an application, values are retrieved from the database automatically, and cached in memory using
the InnoDB buffer pool.

• Because memcached consumes relatively little CPU, and its memory footprint is easy to control, it
can run comfortably alongside a MySQL instance on the same system.

• Because data consistency is enforced by mechanisms used for regular InnoDB tables, you do not
have to worry about stale memcached data or fallback logic to query the database in the case of a
missing key.

17.20.2 InnoDB memcached Architecture

The InnoDB memcached plugin implements memcached as a MySQL plugin daemon that accesses
the InnoDB storage engine directly, bypassing the MySQL SQL layer.

The following diagram illustrates how an application accesses data through the daemon_memcached
plugin, compared with SQL.

3535

InnoDB memcached Architecture

Figure 17.4 MySQL Server with Integrated memcached Server

Features of the daemon_memcached plugin:

• memcached as a daemon plugin of mysqld. Both mysqld and memcached run in the same process
space, with very low latency access to data.

• Direct access to InnoDB tables, bypassing the SQL parser, the optimizer, and even the Handler API
layer.

• Standard memcached protocols, including the text-based protocol and the binary protocol. The
daemon_memcached plugin passes all 55 compatibility tests of the memcapable command.

• Multi-column support. You can map multiple columns into the “value” part of the key-value store, with
column values delimited by a user-specified separator character.

• By default, the memcached protocol is used to read and write data directly to InnoDB, letting
MySQL manage in-memory caching using the InnoDB buffer pool. The default settings represent
a combination of high reliability and the fewest surprises for database applications. For example,
default settings avoid uncommitted data on the database side, or stale data returned for memcached
get requests.

• Advanced users can configure the system as a traditional memcached server, with all data cached
only in the memcached engine (memory caching), or use a combination of the “memcached engine”
(memory caching) and the InnoDB memcached engine (InnoDB as back-end persistent storage).

• Control over how often data is passed back and forth between InnoDB and memcached operations
through the innodb_api_bk_commit_interval, daemon_memcached_r_batch_size, and
daemon_memcached_w_batch_size configuration options. Batch size options default to a value of
1 for maximum reliability.

• The ability to specify memcached options through the daemon_memcached_option configuration
parameter. For example, you can change the port that memcached listens on, reduce the maximum
number of simultaneous connections, change the maximum memory size for a key-value pair, or
enable debugging messages for the error log.

3536

Setting Up the InnoDB memcached Plugin

• The innodb_api_trx_level configuration option controls the transaction isolation level on
queries processed by memcached. Although memcached has no concept of transactions, you can
use this option to control how soon memcached sees changes caused by SQL statements issued on
the table used by the daemon_memcached plugin. By default, innodb_api_trx_level is set to
READ UNCOMMITTED.

• The innodb_api_enable_mdl option can be used to lock the table at the MySQL level, so that the
mapped table cannot be dropped or altered by DDL through the SQL interface. Without the lock, the
table can be dropped from the MySQL layer, but kept in InnoDB storage until memcached or some
other user stops using it. “MDL” stands for “metadata locking”.

17.20.3 Setting Up the InnoDB memcached Plugin

This section describes how to set up the daemon_memcached plugin on a MySQL server. Because the
memcached daemon is tightly integrated with the MySQL server to avoid network traffic and minimize
latency, you perform this process on each MySQL instance that uses this feature.

Note

Before setting up the daemon_memcached plugin, consult Section 17.20.5,
“Security Considerations for the InnoDB memcached Plugin” to understand the
security procedures required to prevent unauthorized access.

Prerequisites

• The daemon_memcached plugin is only supported on Linux, Solaris, and macOS platforms. Other
operating systems are not supported.

• When building MySQL from source, you must build with -DWITH_INNODB_MEMCACHED=ON. This
build option generates two shared libraries in the MySQL plugin directory (plugin_dir) that are
required to run the daemon_memcached plugin:

• libmemcached.so: the memcached daemon plugin to MySQL.

• innodb_engine.so: an InnoDB API plugin to memcached.

• libevent must be installed.

• If you did not build MySQL from source, the libevent library is not included in your installation.
Use the installation method for your operating system to install libevent 1.4.12 or later. For
example, depending on the operating system, you might use apt-get, yum, or port install.
For example, on Ubuntu Linux, use:

sudo apt-get install libevent-dev

• If you installed MySQL from a source code release, libevent 1.4.12 is bundled with the package
and is located at the top level of the MySQL source code directory. If you use the bundled version
of libevent, no action is required. If you want to use a local system version of libevent, you
must build MySQL with the -DWITH_LIBEVENT build option set to system or yes.

Installing and Configuring the InnoDB memcached Plugin

1. Configure the daemon_memcached plugin so it can interact with InnoDB tables by running the
innodb_memcached_config.sql configuration script, which is located in MYSQL_HOME/share.
This script installs the innodb_memcache database with three required tables (cache_policies,
config_options, and containers). It also installs the demo_test sample table in the test
database.

mysql> source MYSQL_HOME/share/innodb_memcached_config.sql

Running the innodb_memcached_config.sql script is a one-time operation. The tables remain
in place if you later uninstall and re-install the daemon_memcached plugin.

3537

Setting Up the InnoDB memcached Plugin

mysql> USE innodb_memcache;
mysql> SHOW TABLES;
+---------------------------+
| Tables_in_innodb_memcache |
+---------------------------+
| cache_policies |
| config_options |
| containers |
+---------------------------+

mysql> USE test;
mysql> SHOW TABLES;
+----------------+
| Tables_in_test |
+----------------+
| demo_test |
+----------------+

Of these tables, the innodb_memcache.containers table is the most important. Entries in the
containers table provide a mapping to InnoDB table columns. Each InnoDB table used with the
daemon_memcached plugin requires an entry in the containers table.

The innodb_memcached_config.sql script inserts a single entry in the containers table
that provides a mapping for the demo_test table. It also inserts a single row of data into the
demo_test table. This data allows you to immediately verify the installation after the setup is
completed.

mysql> SELECT * FROM innodb_memcache.containers\G
*************************** 1. row ***************************
 name: aaa
 db_schema: test
 db_table: demo_test
 key_columns: c1
 value_columns: c2
 flags: c3
 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY

mysql> SELECT * FROM test.demo_test;
+----+------------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+------------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
+----+------------------+------+------+------+

For more information about innodb_memcache tables and the demo_test sample table, see
Section 17.20.8, “InnoDB memcached Plugin Internals”.

2. Activate the daemon_memcached plugin by running the INSTALL PLUGIN statement:

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

Once the plugin is installed, it is automatically activated each time the MySQL server is restarted.

Verifying the InnoDB and memcached Setup

To verify the daemon_memcached plugin setup, use a telnet session to issue memcached
commands. By default, the memcached daemon listens on port 11211.

1. Retrieve data from the test.demo_test table. The single row of data in the demo_test table
has a key value of AA.

telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

3538

Setting Up the InnoDB memcached Plugin

get AA
VALUE AA 8 12
HELLO, HELLO
END

2. Insert data using a set command.

set BB 10 0 16
GOODBYE, GOODBYE
STORED

where:

• set is the command to store a value

• BB is the key

• 10 is a flag for the operation; ignored by memcached but may be used by the client to indicate
any type of information; specify 0 if unused

• 0 is the expiration time (TTL); specify 0 if unused

• 16 is the length of the supplied value block in bytes

• GOODBYE, GOODBYE is the value that is stored

3. Verify that the data inserted is stored in MySQL by connecting to the MySQL server and querying
the test.demo_test table.

mysql> SELECT * FROM test.demo_test;
+----+------------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+------------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
| BB | GOODBYE, GOODBYE | 10 | 1 | 0 |
+----+------------------+------+------+------+

4. Return to the telnet session and retrieve the data that you inserted earlier using key BB.

get BB
VALUE BB 10 16
GOODBYE, GOODBYE
END
quit

If you shut down the MySQL server, which also shuts off the integrated memcached server, further
attempts to access the memcached data fail with a connection error. Normally, the memcached data
also disappears at this point, and you would require application logic to load the data back into memory
when memcached is restarted. However, the InnoDB memcached plugin automates this process for
you.

When you restart MySQL, get operations once again return the key-value pairs you stored in the
earlier memcached session. When a key is requested and the associated value is not already in the
memory cache, the value is automatically queried from the MySQL test.demo_test table.

Creating a New Table and Column Mapping

This example shows how to setup your own InnoDB table with the daemon_memcached plugin.

1. Create an InnoDB table. The table must have a key column with a unique index. The key column of
the city table is city_id, which is defined as the primary key. The table must also include columns
for flags, cas, and expiry values. There may be one or more value columns. The city table
has three value columns (name, state, country).

3539

Setting Up the InnoDB memcached Plugin

Note

There is no special requirement with respect to column names as along as a
valid mapping is added to the innodb_memcache.containers table.

mysql> CREATE TABLE city (
 city_id VARCHAR(32),
 name VARCHAR(1024),
 state VARCHAR(1024),
 country VARCHAR(1024),
 flags INT,
 cas BIGINT UNSIGNED,
 expiry INT,
 primary key(city_id)
) ENGINE=InnoDB;

2. Add an entry to the innodb_memcache.containers table so that the daemon_memcached
plugin knows how to access the InnoDB table. The entry must satisfy the
innodb_memcache.containers table definition. For a description of each field, see
Section 17.20.8, “InnoDB memcached Plugin Internals”.

mysql> DESCRIBE innodb_memcache.containers;
+------------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------------+--------------+------+-----+---------+-------+
name	varchar(50)	NO	PRI	NULL	
db_schema	varchar(250)	NO		NULL	
db_table	varchar(250)	NO		NULL	
key_columns	varchar(250)	NO		NULL	
value_columns	varchar(250)	YES		NULL	
flags	varchar(250)	NO		0	
cas_column	varchar(250)	YES		NULL	
expire_time_column	varchar(250)	YES		NULL	
unique_idx_name_on_key	varchar(250)	NO		NULL	
+------------------------+--------------+------+-----+---------+-------+

The innodb_memcache.containers table entry for the city table is defined as:

mysql> INSERT INTO `innodb_memcache`.`containers` (
 `name`, `db_schema`, `db_table`, `key_columns`, `value_columns`,
 `flags`, `cas_column`, `expire_time_column`, `unique_idx_name_on_key`)
 VALUES ('default', 'test', 'city', 'city_id', 'name|state|country',
 'flags','cas','expiry','PRIMARY');

• default is specified for the containers.name column to configure the city table as the
default InnoDB table to be used with the daemon_memcached plugin.

• Multiple InnoDB table columns (name, state, country) are mapped to
containers.value_columns using a “|” delimiter.

• The flags, cas_column, and expire_time_column fields of the
innodb_memcache.containers table are typically not significant in applications using the
daemon_memcached plugin. However, a designated InnoDB table column is required for each.
When inserting data, specify 0 for these columns if they are unused.

3. After updating the innodb_memcache.containers table, restart the daemon_memcache plugin
to apply the changes.

mysql> UNINSTALL PLUGIN daemon_memcached;

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

4. Using telnet, insert data into the city table using a memcached set command.

telnet localhost 11211
Trying 127.0.0.1...

3540

Setting Up the InnoDB memcached Plugin

Connected to localhost.
Escape character is '^]'.
set B 0 0 22
BANGALORE|BANGALORE|IN
STORED

5. Using MySQL, query the test.city table to verify that the data you inserted was stored.

mysql> SELECT * FROM test.city;
+---------+-----------+-----------+---------+-------+------+--------+
| city_id | name | state | country | flags | cas | expiry |
+---------+-----------+-----------+---------+-------+------+--------+
| B | BANGALORE | BANGALORE | IN | 0 | 3 | 0 |
+---------+-----------+-----------+---------+-------+------+--------+

6. Using MySQL, insert additional data into the test.city table.

mysql> INSERT INTO city VALUES ('C','CHENNAI','TAMIL NADU','IN', 0, 0 ,0);
mysql> INSERT INTO city VALUES ('D','DELHI','DELHI','IN', 0, 0, 0);
mysql> INSERT INTO city VALUES ('H','HYDERABAD','TELANGANA','IN', 0, 0, 0);
mysql> INSERT INTO city VALUES ('M','MUMBAI','MAHARASHTRA','IN', 0, 0, 0);

Note

It is recommended that you specify a value of 0 for the flags,
cas_column, and expire_time_column fields if they are unused.

7. Using telnet, issue a memcached get command to retrieve data you inserted using MySQL.

get H
VALUE H 0 22
HYDERABAD|TELANGANA|IN
END

Configuring the InnoDB memcached Plugin

Traditional memcached configuration options may be specified in a MySQL configuration file or a
mysqld startup string, encoded in the argument of the daemon_memcached_option configuration
parameter. memcached configuration options take effect when the plugin is loaded, which occurs each
time the MySQL server is started.

For example, to make memcached listen on port 11222 instead of the default port 11211, specify -
p11222 as an argument of the daemon_memcached_option configuration option:

mysqld --daemon_memcached_option="-p11222"

Other memcached options can be encoded in the daemon_memcached_option string. For example,
you can specify options to reduce the maximum number of simultaneous connections, change the
maximum memory size for a key-value pair, or enable debugging messages for the error log, and so
on.

There are also configuration options specific to the daemon_memcached plugin. These include:

• daemon_memcached_engine_lib_name: Specifies the shared library that implements the InnoDB
memcached plugin. The default setting is innodb_engine.so.

• daemon_memcached_engine_lib_path: The path of the directory containing the shared library
that implements the InnoDB memcached plugin. The default is NULL, representing the plugin
directory.

• daemon_memcached_r_batch_size: Defines the batch commit size for read operations
(get). It specifies the number of memcached read operations after which a commit occurs.
daemon_memcached_r_batch_size is set to 1 by default so that every get request accesses
the most recently committed data in the InnoDB table, whether the data was updated through
memcached or by SQL. When the value is greater than 1, the counter for read operations is
incremented with each get call. A flush_all call resets both read and write counters.

3541

InnoDB memcached Multiple get and Range Query Support

• daemon_memcached_w_batch_size: Defines the batch commit size for write operations (set,
replace, append, prepend, incr, decr, and so on). daemon_memcached_w_batch_size is
set to 1 by default so that no uncommitted data is lost in case of an outage, and so that SQL queries
on the underlying table access the most recent data. When the value is greater than 1, the counter
for write operations is incremented for each add, set, incr, decr, and delete call. A flush_all
call resets both read and write counters.

By default, you do not need to modify daemon_memcached_engine_lib_name or
daemon_memcached_engine_lib_path. You might configure these options if, for example, you
want to use a different storage engine for memcached (such as the NDB memcached engine).

daemon_memcached plugin configuration parameters may be specified in the MySQL configuration file
or in a mysqld startup string. They take effect when you load the daemon_memcached plugin.

When making changes to daemon_memcached plugin configuration, reload the plugin to apply the
changes. To do so, issue the following statements:

mysql> UNINSTALL PLUGIN daemon_memcached;

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

Configuration settings, required tables, and data are preserved when the plugin is restarted.

For additional information about enabling and disabling plugins, see Section 7.6.1, “Installing and
Uninstalling Plugins”.

17.20.4 InnoDB memcached Multiple get and Range Query Support

The daemon_memcached plugin supports multiple get operations (fetching multiple key-value pairs in a
single memcached query) and range queries.

Multiple get Operations

The ability to fetch multiple key-value pairs in a single memcached query improves read performance
by reducing communication traffic between the client and server. For InnoDB, it means fewer
transactions and open-table operations.

The following example demonstrates multiple-get support. The example uses the test.city table
described in Creating a New Table and Column Mapping.

mysql> USE test;
mysql> SELECT * FROM test.city;
+---------+-----------+-------------+---------+-------+------+--------+
| city_id | name | state | country | flags | cas | expiry |
+---------+-----------+-------------+---------+-------+------+--------+
B	BANGALORE	BANGALORE	IN	0	1	0
C	CHENNAI	TAMIL NADU	IN	0	0	0
D	DELHI	DELHI	IN	0	0	0
H	HYDERABAD	TELANGANA	IN	0	0	0
M	MUMBAI	MAHARASHTRA	IN	0	0	0
+---------+-----------+-------------+---------+-------+------+--------+

Run a get command to retrieve all values from the city table. The results are returned in a key-value
pair sequence.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
get B C D H M
VALUE B 0 22
BANGALORE|BANGALORE|IN
VALUE C 0 21
CHENNAI|TAMIL NADU|IN
VALUE D 0 14

3542

InnoDB memcached Multiple get and Range Query Support

DELHI|DELHI|IN
VALUE H 0 22
HYDERABAD|TELANGANA|IN
VALUE M 0 21
MUMBAI|MAHARASHTRA|IN
END

When retrieving multiple values in a single get command, you can switch tables (using
@@containers.name notation) to retrieve the value for the first key, but you cannot switch tables for
subsequent keys. For example, the table switch in this example is valid:

get @@aaa.AA BB
VALUE @@aaa.AA 8 12
HELLO, HELLO
VALUE BB 10 16
GOODBYE, GOODBYE
END

Attempting to switch tables again in the same get command to retrieve a key value from a different
table is not supported.

There is no limit the number of keys that can be retrieved by a multiple get operation, but there is a
128MB memory limit for storing the result.

Range Queries

For range queries, the daemon_memcached plugin supports the following comparison operators: <, >,
<=, >=. An operator must be preceded by an @ symbol. When a range query finds multiple matching
key-value pairs, results are returned in a key-value pair sequence.

The following examples demonstrate range query support. The examples use the test.city table
described in Creating a New Table and Column Mapping.

mysql> SELECT * FROM test.city;
+---------+-----------+-------------+---------+-------+------+--------+
| city_id | name | state | country | flags | cas | expiry |
+---------+-----------+-------------+---------+-------+------+--------+
B	BANGALORE	BANGALORE	IN	0	1	0
C	CHENNAI	TAMIL NADU	IN	0	0	0
D	DELHI	DELHI	IN	0	0	0
H	HYDERABAD	TELANGANA	IN	0	0	0
M	MUMBAI	MAHARASHTRA	IN	0	0	0
+---------+-----------+-------------+---------+-------+------+--------+

Open a telnet session:

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.

To get all values greater than B, enter get @>B:

get @>B
VALUE C 0 21
CHENNAI|TAMIL NADU|IN
VALUE D 0 14
DELHI|DELHI|IN
VALUE H 0 22
HYDERABAD|TELANGANA|IN
VALUE M 0 21
MUMBAI|MAHARASHTRA|IN
END

To get all values less than M, enter get @<M:

get @<M
VALUE B 0 22

3543

Security Considerations for the InnoDB memcached Plugin

BANGALORE|BANGALORE|IN
VALUE C 0 21
CHENNAI|TAMIL NADU|IN
VALUE D 0 14
DELHI|DELHI|IN
VALUE H 0 22
HYDERABAD|TELANGANA|IN
END

To get all values less than and including M, enter get @<=M:

get @<=M
VALUE B 0 22
BANGALORE|BANGALORE|IN
VALUE C 0 21
CHENNAI|TAMIL NADU|IN
VALUE D 0 14
DELHI|DELHI|IN
VALUE H 0 22
HYDERABAD|TELANGANA|IN
VALUE M 0 21
MUMBAI|MAHARASHTRA|IN

To get values greater than B but less than M, enter get @>B@<M:

get @>B@<M
VALUE C 0 21
CHENNAI|TAMIL NADU|IN
VALUE D 0 14
DELHI|DELHI|IN
VALUE H 0 22
HYDERABAD|TELANGANA|IN
END

A maximum of two comparison operators can be parsed, one being either a 'less than' (@<) or 'less
than or equal to' (@<=) operator, and the other being either a 'greater than' (@>) or 'greater than or
equal to' (@>=) operator. Any additional operators are assumed to be part of the key. For example, if
you issue a get command with three operators, the third operator (@>C) is treated as part of the key,
and the get command searches for values smaller than M and greater than B@>C.

get @<M@>B@>C
VALUE C 0 21
CHENNAI|TAMIL NADU|IN
VALUE D 0 14
DELHI|DELHI|IN
VALUE H 0 22
HYDERABAD|TELANGANA|IN

17.20.5 Security Considerations for the InnoDB memcached Plugin

Caution

Consult this section before deploying the daemon_memcached plugin on a
production server, or even on a test server if the MySQL instance contains
sensitive data.

Because memcached does not use an authentication mechanism by default, and the optional SASL
authentication is not as strong as traditional DBMS security measures, only keep non-sensitive data
in the MySQL instance that uses the daemon_memcached plugin, and wall off any servers that use
this configuration from potential intruders. Do not allow memcached access to these servers from the
Internet; only allow access from within a firewalled intranet, ideally from a subnet whose membership
you can restrict.

Password-Protecting memcached Using SASL

SASL support provides the capability to protect your MySQL database from unauthenticated access
through memcached clients. This section explains how to enable SASL with the daemon_memcached

3544

Security Considerations for the InnoDB memcached Plugin

plugin. The steps are almost identical to those performed to enabled SASL for a traditional memcached
server.

SASL stands for “Simple Authentication and Security Layer”, a standard for adding authentication
support to connection-based protocols. memcached added SASL support in version 1.4.3.

SASL authentication is only supported with the binary protocol.

memcached clients are only able to access InnoDB tables that are registered in the
innodb_memcache.containers table. Even though a DBA can place access restrictions on such
tables, access through memcached applications cannot be controlled. For this reason, SASL support is
provided to control access to InnoDB tables associated with the daemon_memcached plugin.

The following section shows how to build, enable, and test an SASL-enabled daemon_memcached
plugin.

Building and Enabling SASL with the InnoDB memcached Plugin

By default, an SASL-enabled daemon_memcached plugin is not included in MySQL release packages,
since an SASL-enabled daemon_memcached plugin requires building memcached with SASL libraries.
To enable SASL support, download the MySQL source and rebuild the daemon_memcached plugin
after downloading the SASL libraries:

1. Install the SASL development and utility libraries. For example, on Ubuntu, use apt-get to obtain
the libraries:

sudo apt-get -f install libsasl2-2 sasl2-bin libsasl2-2 libsasl2-dev libsasl2-modules

2. Build the daemon_memcached plugin shared libraries with SASL capability by adding
ENABLE_MEMCACHED_SASL=1 to your cmake options. memcached also provides simple cleartext
password support, which facilitates testing. To enable simple cleartext password support, specify
the ENABLE_MEMCACHED_SASL_PWDB=1 cmake option.

In summary, add following three cmake options:

cmake ... -DWITH_INNODB_MEMCACHED=1 -DENABLE_MEMCACHED_SASL=1 -DENABLE_MEMCACHED_SASL_PWDB=1

3. Install the daemon_memcached plugin, as described in Section 17.20.3, “Setting Up the InnoDB
memcached Plugin”.

4. Configure a user name and password file. (This example uses memcached simple cleartext
password support.)

a. In a file, create a user named testname and define the password as testpasswd:

echo "testname:testpasswd:::::::" >/home/jy/memcached-sasl-db

b. Configure the MEMCACHED_SASL_PWDB environment variable to inform memcached of the user
name and password file:

export MEMCACHED_SASL_PWDB=/home/jy/memcached-sasl-db

c. Inform memcached that a cleartext password is used:

echo "mech_list: plain" > /home/jy/work2/msasl/clients/memcached.conf
export SASL_CONF_PATH=/home/jy/work2/msasl/clients

5. Enable SASL by restarting the MySQL server with the memcached -S option encoded in the
daemon_memcached_option configuration parameter:

3545

Writing Applications for the InnoDB memcached Plugin

mysqld ... --daemon_memcached_option="-S"

6. To test the setup, use an SASL-enabled client such as SASL-enabled libmemcached.

memcp --servers=localhost:11211 --binary --username=testname
 --password=password myfile.txt

memcat --servers=localhost:11211 --binary --username=testname
 --password=password myfile.txt

If you specify an incorrect user name or password, the operation is rejected with a memcache
error AUTHENTICATION FAILURE message. In this case, examine the cleartext password set in
the memcached-sasl-db file to verify that the credentials you supplied are correct.

There are other methods to test SASL authentication with memcached, but the method described
above is the most straightforward.

17.20.6 Writing Applications for the InnoDB memcached Plugin

Typically, writing an application for the InnoDB memcached plugin involves some degree of rewriting
or adapting existing code that uses MySQL or the memcached API.

• With the daemon_memcached plugin, instead of many traditional memcached servers running on
low-powered machines, you have the same number of memcached servers as MySQL servers,
running on relatively high-powered machines with substantial disk storage and memory. You might
reuse some existing code that works with the memcached API, but adaptation is likely required due
to the different server configuration.

• The data stored through the daemon_memcached plugin goes into VARCHAR, TEXT, or BLOB
columns, and must be converted to do numeric operations. You can perform the conversion on the
application side, or by using the CAST() function in queries.

• Coming from a database background, you might be used to general-purpose SQL tables with many
columns. The tables accessed by memcached code likely have only a few or even a single column
holding data values.

• You might adapt parts of your application that perform single-row queries, inserts, updates, or
deletes, to improve performance in critical sections of code. Both queries (read) and DML (write)
operations can be substantially faster when performed through the InnoDB memcached interface.
The performance improvement for writes is typically greater than the performance improvement for
reads, so you might focus on adapting code that performs logging or records interactive choices on a
website.

The following sections explore these points in more detail.

17.20.6.1 Adapting an Existing MySQL Schema for the InnoDB memcached Plugin

Consider these aspects of memcached applications when adapting an existing MySQL schema or
application to use the daemon_memcached plugin:

• memcached keys cannot contain spaces or newlines, because these characters are used as
separators in the ASCII protocol. If you are using lookup values that contain spaces, transform or
hash them into values without spaces before using them as keys in calls to add(), set(), get(),
and so on. Although theoretically these characters are allowed in keys in programs that use the
binary protocol, you should restrict the characters used in keys to ensure compatibility with a broad
range of clients.

• If there is a short numeric primary key column in an InnoDB table, use it as the unique lookup key
for memcached by converting the integer to a string value. If the memcached server is used for
multiple applications, or with more than one InnoDB table, consider modifying the name to ensure
that it is unique. For example, prepend the table name, or the database name and the table name,
before the numeric value.

3546

https://code.launchpad.net/~trond-norbye/libmemcached/sasl

Writing Applications for the InnoDB memcached Plugin

Note

The daemon_memcached plugin supports inserts and reads on mapped
InnoDB tables that have an INTEGER defined as the primary key.

• You cannot use a partitioned table for data queried or stored using memcached.

• The memcached protocol passes numeric values around as strings. To store numeric values in the
underlying InnoDB table, to implement counters that can be used in SQL functions such as SUM()
or AVG(), for example:

• Use VARCHAR columns with enough characters to hold all the digits of the largest expected
number (and additional characters if appropriate for the negative sign, decimal point, or both).

• In any query that performs arithmetic using column values, use the CAST() function to convert the
values from string to integer, or to some other numeric type. For example:

Alphabetic entries are returned as zero.

SELECT CAST(c2 as unsigned integer) FROM demo_test;

Since there could be numeric values of 0, can't disqualify them.
Test the string values to find the ones that are integers, and average only those.

SELECT AVG(cast(c2 as unsigned integer)) FROM demo_test
 WHERE c2 BETWEEN '0' and '9999999999';

Views let you hide the complexity of queries. The results are already converted;
no need to repeat conversion functions and WHERE clauses each time.

CREATE VIEW numbers AS SELECT c1 KEY, CAST(c2 AS UNSIGNED INTEGER) val
 FROM demo_test WHERE c2 BETWEEN '0' and '9999999999';
SELECT SUM(val) FROM numbers;

Note

Any alphabetic values in the result set are converted into 0 by the call
to CAST(). When using functions such as AVG(), which depend on the
number of rows in the result set, include WHERE clauses to filter out non-
numeric values.

• If the InnoDB column used as a key could have values longer than 250 bytes, hash the value to less
than 250 bytes.

• To use an existing table with the daemon_memcached plugin, define an entry for it in the
innodb_memcache.containers table. To make that table the default for all memcached requests,
specify a value of default in the name column, then restart the MySQL server to make the change
take effect. If you use multiple tables for different classes of memcached data, set up multiple
entries in the innodb_memcache.containers table with name values of your choice, then issue a
memcached request in the form of get @@name or set @@name within the application to specify the
table to be used for subsequent memcached requests.

For an example of using a table other than the predefined test.demo_test table, see
Example 17.13, “Using Your Own Table with an InnoDB memcached Application”. For the required
table layout, see Section 17.20.8, “InnoDB memcached Plugin Internals”.

• To use multiple InnoDB table column values with memcached key-value pairs, specify column
names separated by comma, semicolon, space, or pipe characters in the value_columns
field of the innodb_memcache.containers entry for the InnoDB table. For example, specify
col1,col2,col3 or col1|col2|col3 in the value_columns field.

Concatenate the column values into a single string using the pipe character as a separator before
passing the string to memcached add or set calls. The string is unpacked automatically into the

3547

Writing Applications for the InnoDB memcached Plugin

correct column. Each get call returns a single string containing the column values that is also
delimited by the pipe character. You can unpack the values using the appropriate application
language syntax.

Example 17.13 Using Your Own Table with an InnoDB memcached Application

This example shows how to use your own table with a sample Python application that uses
memcached for data manipulation.

The example assumes that the daemon_memcached plugin is installed as described in
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”. It also assumes that your system is
configured to run a Python script that uses the python-memcache module.

1. Create the multicol table which stores country information including population, area, and driver
side data ('R' for right and 'L' for left).

mysql> USE test;

mysql> CREATE TABLE `multicol` (
 `country` varchar(128) NOT NULL DEFAULT '',
 `population` varchar(10) DEFAULT NULL,
 `area_sq_km` varchar(9) DEFAULT NULL,
 `drive_side` varchar(1) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 `c4` bigint(20) unsigned DEFAULT NULL,
 `c5` int(11) DEFAULT NULL,
 PRIMARY KEY (`country`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

2. Insert a record into the innodb_memcache.containers table so that the daemon_memcached
plugin can access the multicol table.

mysql> INSERT INTO innodb_memcache.containers
 (name,db_schema,db_table,key_columns,value_columns,flags,cas_column,
 expire_time_column,unique_idx_name_on_key)
 VALUES
 ('bbb','test','multicol','country','population,area_sq_km,drive_side',
 'c3','c4','c5','PRIMARY');

mysql> COMMIT;

• The innodb_memcache.containers record for the multicol table specifies a name value of
'bbb', which is the table identifier.

Note

If a single InnoDB table is used for all memcached applications, the name
value can be set to default to avoid using @@ notation to switch tables.

• The db_schema column is set to test, which is the name of the database where the multicol
table resides.

• The db_table column is set to multicol, which is the name of the InnoDB table.

• key_columns is set to the unique country column. The country column is defined as the
primary key in the multicol table definition.

• Rather than a single InnoDB table column to hold a composite data value, data is divided among
three table columns (population, area_sq_km, and drive_side). To accommodate multiple
value columns, a comma-separated list of columns is specified in the value_columns field. The
columns defined in the value_columns field are the columns used when storing or retrieving
values.

• Values for the flags, expire_time, and cas_column fields are based on values used in the
demo.test sample table. These fields are typically not significant in applications that use the

3548

Writing Applications for the InnoDB memcached Plugin

daemon_memcached plugin because MySQL keeps data synchronized, and there is no need to
worry about data expiring or becoming stale.

• The unique_idx_name_on_key field is set to PRIMARY, which refers to the primary index
defined on the unique country column in the multicol table.

3. Copy the sample Python application into a file. In this example, the sample script is copied to a file
named multicol.py.

The sample Python application inserts data into the multicol table and retrieves data for all keys,
demonstrating how to access an InnoDB table through the daemon_memcached plugin.

import sys, os
import memcache

def connect_to_memcached():
 memc = memcache.Client(['127.0.0.1:11211'], debug=0);
 print "Connected to memcached."
 return memc

def banner(message):
 print
 print "=" * len(message)
 print message
 print "=" * len(message)

country_data = [
("Canada","34820000","9984670","R"),
("USA","314242000","9826675","R"),
("Ireland","6399152","84421","L"),
("UK","62262000","243610","L"),
("Mexico","113910608","1972550","R"),
("Denmark","5543453","43094","R"),
("Norway","5002942","385252","R"),
("UAE","8264070","83600","R"),
("India","1210193422","3287263","L"),
("China","1347350000","9640821","R"),
]

def switch_table(memc,table):
 key = "@@" + table
 print "Switching default table to '" + table + "' by issuing GET for '" + key + "'."
 result = memc.get(key)

def insert_country_data(memc):
 banner("Inserting initial data via memcached interface")
 for item in country_data:
 country = item[0]
 population = item[1]
 area = item[2]
 drive_side = item[3]

 key = country
 value = "|".join([population,area,drive_side])
 print "Key = " + key
 print "Value = " + value

 if memc.add(key,value):
 print "Added new key, value pair."
 else:
 print "Updating value for existing key."
 memc.set(key,value)

def query_country_data(memc):
 banner("Retrieving data for all keys (country names)")
 for item in country_data:
 key = item[0]
 result = memc.get(key)
 print "Here is the result retrieved from the database for key " + key + ":"
 print result

3549

Writing Applications for the InnoDB memcached Plugin

 (m_population, m_area, m_drive_side) = result.split("|")
 print "Unpacked population value: " + m_population
 print "Unpacked area value : " + m_area
 print "Unpacked drive side value: " + m_drive_side

if __name__ == '__main__':

 memc = connect_to_memcached()
 switch_table(memc,"bbb")
 insert_country_data(memc)
 query_country_data(memc)

 sys.exit(0)

Sample Python application notes:

• No database authorization is required to run the application, since data manipulation is performed
through the memcached interface. The only required information is the port number on the local
system where the memcached daemon listens.

• To make sure the application uses the multicol table, the switch_table() function
is called, which performs a dummy get or set request using @@ notation. The name
value in the request is bbb, which is the multicol table identifier defined in the
innodb_memcache.containers.name field.

A more descriptive name value might be used in a real-world application. This example simply
illustrates that a table identifier is specified rather than the table name in get @@... requests.

• The utility functions used to insert and query data demonstrate how to turn a Python data
structure into pipe-separated values for sending data to MySQL with add or set requests, and
how to unpack the pipe-separated values returned by get requests. This extra processing is only
required when mapping a single memcached value to multiple MySQL table columns.

4. Run the sample Python application.

$> python multicol.py

If successful, the sample application returns this output:

Connected to memcached.
Switching default table to 'bbb' by issuing GET for '@@bbb'.

==
Inserting initial data via memcached interface
==
Key = Canada
Value = 34820000|9984670|R
Added new key, value pair.
Key = USA
Value = 314242000|9826675|R
Added new key, value pair.
Key = Ireland
Value = 6399152|84421|L
Added new key, value pair.
Key = UK
Value = 62262000|243610|L
Added new key, value pair.
Key = Mexico
Value = 113910608|1972550|R
Added new key, value pair.
Key = Denmark
Value = 5543453|43094|R
Added new key, value pair.
Key = Norway
Value = 5002942|385252|R
Added new key, value pair.
Key = UAE
Value = 8264070|83600|R

3550

Writing Applications for the InnoDB memcached Plugin

Added new key, value pair.
Key = India
Value = 1210193422|3287263|L
Added new key, value pair.
Key = China
Value = 1347350000|9640821|R
Added new key, value pair.

==
Retrieving data for all keys (country names)
==
Here is the result retrieved from the database for key Canada:
34820000|9984670|R
Unpacked population value: 34820000
Unpacked area value : 9984670
Unpacked drive side value: R
Here is the result retrieved from the database for key USA:
314242000|9826675|R
Unpacked population value: 314242000
Unpacked area value : 9826675
Unpacked drive side value: R
Here is the result retrieved from the database for key Ireland:
6399152|84421|L
Unpacked population value: 6399152
Unpacked area value : 84421
Unpacked drive side value: L
Here is the result retrieved from the database for key UK:
62262000|243610|L
Unpacked population value: 62262000
Unpacked area value : 243610
Unpacked drive side value: L
Here is the result retrieved from the database for key Mexico:
113910608|1972550|R
Unpacked population value: 113910608
Unpacked area value : 1972550
Unpacked drive side value: R
Here is the result retrieved from the database for key Denmark:
5543453|43094|R
Unpacked population value: 5543453
Unpacked area value : 43094
Unpacked drive side value: R
Here is the result retrieved from the database for key Norway:
5002942|385252|R
Unpacked population value: 5002942
Unpacked area value : 385252
Unpacked drive side value: R
Here is the result retrieved from the database for key UAE:
8264070|83600|R
Unpacked population value: 8264070
Unpacked area value : 83600
Unpacked drive side value: R
Here is the result retrieved from the database for key India:
1210193422|3287263|L
Unpacked population value: 1210193422
Unpacked area value : 3287263
Unpacked drive side value: L
Here is the result retrieved from the database for key China:
1347350000|9640821|R
Unpacked population value: 1347350000
Unpacked area value : 9640821
Unpacked drive side value: R

5. Query the innodb_memcache.containers table to view the record you inserted earlier for the
multicol table. The first record is the sample entry for the demo_test table that is created during
the initial daemon_memcached plugin setup. The second record is the entry you inserted for the
multicol table.

mysql> SELECT * FROM innodb_memcache.containers\G
*************************** 1. row ***************************
 name: aaa
 db_schema: test

3551

Writing Applications for the InnoDB memcached Plugin

 db_table: demo_test
 key_columns: c1
 value_columns: c2
 flags: c3
 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY
*************************** 2. row ***************************
 name: bbb
 db_schema: test
 db_table: multicol
 key_columns: country
 value_columns: population,area_sq_km,drive_side
 flags: c3
 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY

6. Query the multicol table to view data inserted by the sample Python application. The data is
available for MySQL queries, which demonstrates how the same data can be accessed using SQL
or through applications (using the appropriate MySQL Connector or API).

mysql> SELECT * FROM test.multicol;
+---------+------------+------------+------------+------+------+------+
| country | population | area_sq_km | drive_side | c3 | c4 | c5 |
+---------+------------+------------+------------+------+------+------+
Canada	34820000	9984670	R	0	11	0
China	1347350000	9640821	R	0	20	0
Denmark	5543453	43094	R	0	16	0
India	1210193422	3287263	L	0	19	0
Ireland	6399152	84421	L	0	13	0
Mexico	113910608	1972550	R	0	15	0
Norway	5002942	385252	R	0	17	0
UAE	8264070	83600	R	0	18	0
UK	62262000	243610	L	0	14	0
USA	314242000	9826675	R	0	12	0
+---------+------------+------------+------------+------+------+------+

Note

Always allow sufficient size to hold necessary digits, decimal points, sign
characters, leading zeros, and so on when defining the length for columns
that are treated as numbers. Too-long values in a string column such as a
VARCHAR are truncated by removing some characters, which could produce
nonsensical numeric values.

7. Optionally, run report-type queries on the InnoDB table that stores the memcached data.

You can produce reports through SQL queries, performing calculations and tests across any
columns, not just the country key column. (Because the following examples use data from only
a few countries, the numbers are for illustration purposes only.) The following queries return the
average population of countries where people drive on the right, and the average size of countries
whose names start with “U”:

mysql> SELECT AVG(population) FROM multicol WHERE drive_side = 'R';
+-------------------+
| avg(population) |
+-------------------+
| 261304724.7142857 |
+-------------------+

mysql> SELECT SUM(area_sq_km) FROM multicol WHERE country LIKE 'U%';
+-----------------+
| sum(area_sq_km) |
+-----------------+
| 10153885 |

3552

Writing Applications for the InnoDB memcached Plugin

+-----------------+

Because the population and area_sq_km columns store character data rather than strongly
typed numeric data, functions such as AVG() and SUM() work by converting each value to
a number first. This approach does not work for operators such as < or >, for example, when
comparing character-based values, 9 > 1000, which is not expected from a clause such as
ORDER BY population DESC. For the most accurate type treatment, perform queries against
views that cast numeric columns to the appropriate types. This technique lets you issue simple
SELECT * queries from database applications, while ensuring that casting, filtering, and ordering
is correct. The following example shows a view that can be queried to find the top three countries
in descending order of population, with the results reflecting the latest data in the multicol table,
and with population and area figures treated as numbers:

mysql> CREATE VIEW populous_countries AS
 SELECT
 country,
 cast(population as unsigned integer) population,
 cast(area_sq_km as unsigned integer) area_sq_km,
 drive_side FROM multicol
 ORDER BY CAST(population as unsigned integer) DESC
 LIMIT 3;

mysql> SELECT * FROM populous_countries;
+---------+------------+------------+------------+
| country | population | area_sq_km | drive_side |
+---------+------------+------------+------------+
China	1347350000	9640821	R
India	1210193422	3287263	L
USA	314242000	9826675	R
+---------+------------+------------+------------+

mysql> DESC populous_countries;
+------------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------------+------+-----+---------+-------+
country	varchar(128)	NO			
population	bigint(10) unsigned	YES		NULL	
area_sq_km	int(9) unsigned	YES		NULL	
drive_side	varchar(1)	YES		NULL	
+------------+---------------------+------+-----+---------+-------+

17.20.6.2 Adapting a memcached Application for the InnoDB memcached Plugin

Consider these aspects of MySQL and InnoDB tables when adapting existing memcached applications
to use the daemon_memcached plugin:

• If there are key values longer than a few bytes, it may be more efficient to use a numeric auto-
increment column as the primary key of the InnoDB table, and to create a unique secondary
index on the column that contains the memcached key values. This is because InnoDB performs
best for large-scale insertions if primary key values are added in sorted order (as they are with
auto-increment values). Primary key values are included in secondary indexes, which takes up
unnecessary space if the primary key is a long string value.

• If you store several different classes of information using memcached, consider setting
up a separate InnoDB table for each type of data. Define additional table identifiers in the
innodb_memcache.containers table, and use the @@table_id.key notation to store and
retrieve items from different tables. Physically dividing different types of information allows you tune
the characteristics of each table for optimum space utilization, performance, and reliability. For
example, you might enable compression for a table that holds blog posts, but not for a table that
holds thumbnail images. You might back up one table more frequently than another because it holds
critical data. You might create additional secondary indexes on tables that are frequently used to
generate reports using SQL.

• Preferably, configure a stable set of table definitions for use with the daemon_memcached plugin,
and leave the tables in place permanently. Changes to the innodb_memcache.containers

3553

Writing Applications for the InnoDB memcached Plugin

table take effect the next time the innodb_memcache.containers table is queried. Entries in
the containers table are processed at startup, and are consulted whenever an unrecognized table
identifier (as defined by containers.name) is requested using @@ notation. Thus, new entries are
visible as soon as you use the associated table identifier, but changes to existing entries require a
server restart before they take effect.

• When you use the default innodb_only caching policy, calls to add(), set(), incr(), and so
on can succeed but still trigger debugging messages such as while expecting 'STORED',
got unexpected response 'NOT_STORED. Debug messages occur because new and updated
values are sent directly to the InnoDB table without being saved in the memory cache, due to the
innodb_only caching policy.

17.20.6.3 Tuning InnoDB memcached Plugin Performance

Because using InnoDB in combination with memcached involves writing all data to disk, whether
immediately or sometime later, raw performance is expected to be somewhat slower than using
memcached by itself. When using the InnoDB memcached plugin, focus tuning goals for memcached
operations on achieving better performance than equivalent SQL operations.

Benchmarks suggest that queries and DML operations (inserts, updates, and deletes) that use
the memcached interface are faster than traditional SQL. DML operations typically see a larger
improvements. Therefore, consider adapting write-intensive applications to use the memcached
interface first. Also consider prioritizing adaptation of write-intensive applications that use fast,
lightweight mechanisms that lack reliability.

Adapting SQL Queries

The types of queries that are most suited to simple GET requests are those with a single clause or a set
of AND conditions in the WHERE clause:

SQL:
SELECT col FROM tbl WHERE key = 'key_value';

memcached:
get key_value

SQL:
SELECT col FROM tbl WHERE col1 = val1 and col2 = val2 and col3 = val3;

memcached:
Since you must always know these 3 values to look up the key,
combine them into a unique string and use that as the key
for all ADD, SET, and GET operations.
key_value = val1 + ":" + val2 + ":" + val3
get key_value

SQL:
SELECT 'key exists!' FROM tbl
 WHERE EXISTS (SELECT col1 FROM tbl WHERE KEY = 'key_value') LIMIT 1;

memcached:
Test for existence of key by asking for its value and checking if the call succeeds,
ignoring the value itself. For existence checking, you typically only store a very
short value such as "1".
get key_value

Using System Memory

For best performance, deploy the daemon_memcached plugin on machines that are configured as
typical database servers, where the majority of system RAM is devoted to the InnoDB buffer pool,
through the innodb_buffer_pool_size configuration option. For systems with multi-gigabyte buffer
pools, consider raising the value of innodb_buffer_pool_instances for maximum throughput
when most operations involve data that is already cached in memory.

3554

Writing Applications for the InnoDB memcached Plugin

Reducing Redundant I/O

InnoDB has a number of settings that let you choose the balance between high reliability, in case of a
crash, and the amount of I/O overhead during high write workloads. For example, consider setting the
innodb_doublewrite to 0 and innodb_flush_log_at_trx_commit to 2. Measure performance
with different innodb_flush_method settings.

For other ways to reduce or tune I/O for table operations, see Section 10.5.8, “Optimizing InnoDB Disk
I/O”.

Reducing Transactional Overhead

A default value of 1 for daemon_memcached_r_batch_size and
daemon_memcached_w_batch_size is intended for maximum reliability of results and safety of
stored or updated data.

Depending on the type of application, you might increase one or both of these settings to
reduce the overhead of frequent commit operations. On a busy system, you might increase
daemon_memcached_r_batch_size, knowing that changes to data made through SQL
may not become visible to memcached immediately (that is, until N more get operations are
processed). When processing data where every write operation must be reliably stored, leave
daemon_memcached_w_batch_size set to 1. Increase the setting when processing large numbers
of updates intended only for statistical analysis, where losing the last N updates in an unexpected exit
is an acceptable risk.

For example, imagine a system that monitors traffic crossing a busy bridge, recording data for
approximately 100,000 vehicles each day. If the application counts different types of vehicles to
analyze traffic patterns, changing daemon_memcached_w_batch_size from 1 to 100 reduces I/
O overhead for commit operations by 99%. In case of an outage, a maximum of 100 records are
lost, which may be an acceptable margin of error. If instead the application performed automated toll
collection for each car, you would set daemon_memcached_w_batch_size to 1 to ensure that each
toll record is immediately saved to disk.

Because of the way InnoDB organizes memcached key values on disk, if you have a large number of
keys to create, it may be faster to sort the data items by key value in the application and add them in
sorted order, rather than create keys in arbitrary order.

The memslap command, which is part of the regular memcached distribution but not included with the
daemon_memcached plugin, can be useful for benchmarking different configurations. It can also be
used to generate sample key-value pairs to use in your own benchmarks.

17.20.6.4 Controlling Transactional Behavior of the InnoDB memcached Plugin

Unlike traditional memcached, the daemon_memcached plugin allows you to control durability of
data values produced through calls to add, set, incr, and so on. By default, data written through
the memcached interface is stored to disk, and calls to get return the most recent value from disk.
Although the default behavior does not offer the best possible raw performance, it is still fast compared
to the SQL interface for InnoDB tables.

As you gain experience using the daemon_memcached plugin, you can consider relaxing durability
settings for non-critical classes of data, at the risk of losing some updated values in the event of an
outage, or returning data that is slightly out-of-date.

Frequency of Commits

One tradeoff between durability and raw performance is how frequently new and changed data
is committed. If data is critical, is should be committed immediately so that it is safe in case of an
unexpected exit or outage. If data is less critical, such as counters that are reset after an unexpected

3555

Writing Applications for the InnoDB memcached Plugin

exit or logging data that you can afford to lose, you might prefer higher raw throughput that is available
with less frequent commits.

When a memcached operation inserts, updates, or deletes data in the underlying InnoDB table, the
change might be committed to the InnoDB table instantly (if daemon_memcached_w_batch_size=1)
or some time later (if the daemon_memcached_w_batch_size value is greater
than 1). In either case, the change cannot be rolled back. If you increase the value of
daemon_memcached_w_batch_size to avoid high I/O overhead during busy times, commits
could become infrequent when the workload decreases. As a safety measure, a background thread
automatically commits changes made through the memcached API at regular intervals. The interval
is controlled by the innodb_api_bk_commit_interval configuration option, which has a default
setting of 5 seconds.

When a memcached operation inserts or updates data in the underlying InnoDB table, the changed
data is immediately visible to other memcached requests because the new value remains in the
memory cache, even if it is not yet committed on the MySQL side.

Transaction Isolation

When a memcached operation such as get or incr causes a query or DML operation on the
underlying InnoDB table, you can control whether the operation sees the very latest data written to
the table, only data that has been committed, or other variations of transaction isolation level. Use the
innodb_api_trx_level configuration option to control this feature. The numeric values specified
for this option correspond to isolation levels such as REPEATABLE READ. See the description of the
innodb_api_trx_level option for information about other settings.

A strict isolation level ensures that data you retrieve is not rolled back or changed suddenly causing
subsequent queries to return different values. However, strict isolation levels require greater locking
overhead, which can cause waits. For a NoSQL-style application that does not use long-running
transactions, you can typically use the default isolation level or switch to a less strict isolation level.

Disabling Row Locks for memcached DML Operations

The innodb_api_disable_rowlock option can be used to disable row locks when
memcached requests through the daemon_memcached plugin cause DML operations. By default,
innodb_api_disable_rowlock is set to OFF which means that memcached requests row locks for
get and set operations. When innodb_api_disable_rowlock is set to ON, memcached requests
a table lock instead of row locks.

The innodb_api_disable_rowlock option is not dynamic. It must be specified at startup on the
mysqld command line or entered in a MySQL configuration file.

Allowing or Disallowing DDL

By default, you can perform DDL operations such as ALTER TABLE on tables used by
the daemon_memcached plugin. To avoid potential slowdowns when these tables are
used for high-throughput applications, disable DDL operations on these tables by enabling
innodb_api_enable_mdl at startup. This option is less appropriate when accessing the same tables
through both memcached and SQL, because it blocks CREATE INDEX statements on the tables, which
could be important for running reporting queries.

Storing Data on Disk, in Memory, or Both

The innodb_memcache.cache_policies table specifies whether to store data written through
the memcached interface to disk (innodb_only, the default); in memory only, as with traditional
memcached (cache_only); or both (caching).

With the caching setting, if memcached cannot find a key in memory, it searches for the value in an
InnoDB table. Values returned from get calls under the caching setting could be out-of-date if the
values were updated on disk in the InnoDB table but are not yet expired from the memory cache.

3556

Writing Applications for the InnoDB memcached Plugin

The caching policy can be set independently for get, set (including incr and decr), delete, and
flush operations.

For example, you might allow get and set operations to query or update a table and the memcached
memory cache at the same time (using the caching setting), while making delete, flush, or both
operate only on the in-memory copy (using the cache_only setting). That way, deleting or flushing an
item only expires the item from the cache, and the latest value is returned from the InnoDB table the
next time the item is requested.

mysql> SELECT * FROM innodb_memcache.cache_policies;
+--------------+-------------+-------------+---------------+--------------+
| policy_name | get_policy | set_policy | delete_policy | flush_policy |
+--------------+-------------+-------------+---------------+--------------+
| cache_policy | innodb_only | innodb_only | innodb_only | innodb_only |
+--------------+-------------+-------------+---------------+--------------+

mysql> UPDATE innodb_memcache.cache_policies SET set_policy = 'caching'
 WHERE policy_name = 'cache_policy';

innodb_memcache.cache_policies values are only read at startup. After changing values in this
table, uninstall and reinstall the daemon_memcached plugin to ensure that changes take effect.

mysql> UNINSTALL PLUGIN daemon_memcached;

mysql> INSTALL PLUGIN daemon_memcached soname "libmemcached.so";

17.20.6.5 Adapting DML Statements to memcached Operations

Benchmarks suggest that the daemon_memcached plugin speeds up DML operations (inserts,
updates, and deletes) more than it speeds up queries. Therefore, consider focussing initial
development efforts on write-intensive applications that are I/O-bound, and look for opportunities to use
MySQL with the daemon_memcached plugin for new write-intensive applications.

Single-row DML statements are the easiest types of statements to turn into memcached operations.
INSERT becomes add, UPDATE becomes set, incr or decr, and DELETE becomes delete. These
operations are guaranteed to only affect one row when issued through the memcached interface,
because the key is unique within the table.

In the following SQL examples, t1 refers to the table used for memcached operations, based on the
configuration in the innodb_memcache.containers table. key refers to the column listed under
key_columns, and val refers to the column listed under value_columns.

INSERT INTO t1 (key,val) VALUES (some_key,some_value);
SELECT val FROM t1 WHERE key = some_key;
UPDATE t1 SET val = new_value WHERE key = some_key;
UPDATE t1 SET val = val + x WHERE key = some_key;
DELETE FROM t1 WHERE key = some_key;

The following TRUNCATE TABLE and DELETE statements, which remove all rows from the table,
correspond to the flush_all operation, where t1 is configured as the table for memcached
operations, as in the previous example.

TRUNCATE TABLE t1;
DELETE FROM t1;

17.20.6.6 Performing DML and DDL Statements on the Underlying InnoDB Table

You can access the underlying InnoDB table (which is test.demo_test by default) through standard
SQL interfaces. However, there are some restrictions:

• When querying a table that is also accessed through the memcached interface, remember that
memcached operations can be configured to be committed periodically rather than after every write
operation. This behavior is controlled by the daemon_memcached_w_batch_size option. If this

3557

The InnoDB memcached Plugin and Replication

option is set to a value greater than 1, use READ UNCOMMITTED queries to find rows that were just
inserted.

mysql> SET SESSSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

mysql> SELECT * FROM demo_test;
+------+------+------+------+-----------+------+------+------+------+------+------+
| cx | cy | c1 | cz | c2 | ca | CB | c3 | cu | c4 | C5 |
+------+------+------+------+-----------+------+------+------+------+------+------+
| NULL | NULL | a11 | NULL | 123456789 | NULL | NULL | 10 | NULL | 3 | NULL |
+------+------+------+------+-----------+------+------+------+------+------+------+

• When modifying a table using SQL that is also accessed through the memcached interface, you can
configure memcached operations to start a new transaction periodically rather than for every read
operation. This behavior is controlled by the daemon_memcached_r_batch_size option. If this
option is set to a value greater than 1, changes made to the table using SQL are not immediately
visible to memcached operations.

• The InnoDB table is either IS (intention shared) or IX (intention exclusive) locked for all
operations in a transaction. If you increase daemon_memcached_r_batch_size and
daemon_memcached_w_batch_size substantially from their default value of 1, the table is most
likely locked between each operation, preventing DDL statements on the table.

17.20.7 The InnoDB memcached Plugin and Replication

Because the daemon_memcached plugin supports the MySQL binary log, source server through the
memcached interface can be replicated for backup, balancing intensive read workloads, and high
availability. All memcached commands are supported with binary logging.

You do not need to set up the daemon_memcached plugin on replica servers. The primary advantage
of this configuration is increased write throughput on the source. The speed of the replication
mechanism is not affected.

The following sections show how to use the binary log capability when using the daemon_memcached
plugin with MySQL replication. It is assumed that you have completed the setup described in
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”.

Enabling the InnoDB memcached Binary Log

1. To use the daemon_memcached plugin with the MySQL binary log, enable the
innodb_api_enable_binlog configuration option on the source server. This option can only be
set at server startup. You must also enable the MySQL binary log on the source server using the
--log-bin option. You can add these options to the MySQL configuration file, or on the mysqld
command line.

mysqld ... --log-bin -–innodb_api_enable_binlog=1

2. Configure the source and replica server, as described in Section 19.1.2, “Setting Up Binary Log File
Position Based Replication”.

3. Use mysqldump to create a source data snapshot, and sync the snapshot to the replica server.

source $> mysqldump --all-databases --lock-all-tables > dbdump.db
replica $> mysql < dbdump.db

4. On the source server, issue SHOW MASTER STATUS to obtain the source binary log coordinates.

mysql> SHOW MASTER STATUS;

5. On the replica server, use a CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23)
or CHANGE MASTER TO statement (before MySQL 8.0.23) to set up a replica server using the
source binary log coordinates.

3558

The InnoDB memcached Plugin and Replication

mysql> CHANGE MASTER TO
 MASTER_HOST='localhost',
 MASTER_USER='root',
 MASTER_PASSWORD='',
 MASTER_PORT = 13000,
 MASTER_LOG_FILE='0.000001,
 MASTER_LOG_POS=114;

Or from MySQL 8.0.23:
mysql> CHANGE REPLICATION SOURCE TO
 SOURCE_HOST='localhost',
 SOURCE_USER='root',
 SOURCE_PASSWORD='',
 SOURCE_PORT = 13000,
 SOURCE_LOG_FILE='0.000001,
 SOURCE_LOG_POS=114;

6. Start the replica.

mysql> START SLAVE;
Or from MySQL 8.0.22:
mysql> START REPLICA;

If the error log prints output similar to the following, the replica is ready for replication.

2013-09-24T13:04:38.639684Z 49 [Note] Replication I/O thread: connected to
source 'root@localhost:13000', replication started in log '0.000001'
at position 114

Testing the InnoDB memcached Replication Configuration

This example demonstrates how to test the InnoDB memcached replication configuration using the
memcached and telnet to insert, update, and delete data. A MySQL client is used to verify results on
the source and replica servers.

The example uses the demo_test table, which was created by the
innodb_memcached_config.sql configuration script during the initial setup of the
daemon_memcached plugin. The demo_test table contains a single example record.

1. Use the set command to insert a record with a key of test1, a flag value of 10, an expiration
value of 0, a cas value of 1, and a value of t1.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 1
t1
STORED

2. On the source server, check that the record was inserted into the demo_test table. Assuming the
demo_test table was not previously modified, there should be two records. The example record
with a key of AA, and the record you just inserted, with a key of test1. The c1 column maps to the
key, the c2 column to the value, the c3 column to the flag value, the c4 column to the cas value,
and the c5 column to the expiration time. The expiration time was set to 0, since it is unused.

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
| test1 | t1 | 10 | 1 | 0 |
+-------+--------------+------+------+------+

3. Check to verify that the same record was replicated to the replica server.

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+

3559

The InnoDB memcached Plugin and Replication

| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
| test1 | t1 | 10 | 1 | 0 |
+-------+--------------+------+------+------+

4. Use the set command to update the key to a value of new.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 2
new
STORED

The update is replicated to the replica server (notice that the cas value is also updated).

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
| test1 | new | 10 | 2 | 0 |
+-------+--------------+------+------+------+

5. Delete the test1 record using a delete command.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
delete test1
DELETED

When the delete operation is replicated to the replica, the test1 record on the replica is also
deleted.

mysql> SELECT * FROM test.demo_test;
+----+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+--------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
+----+--------------+------+------+------+

6. Remove all rows from the table using the flush_all command.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
flush_all
OK

mysql> SELECT * FROM test.demo_test;
Empty set (0.00 sec)

7. Telnet to the source server and enter two new records.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'
set test2 10 0 4
again
STORED
set test3 10 0 5
again1
STORED

8. Confirm that the two records were replicated to the replica server.

3560

InnoDB memcached Plugin Internals

mysql> SELECT * FROM test.demo_test;
+-------+--------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+-------+--------------+------+------+------+
| test2 | again | 10 | 4 | 0 |
| test3 | again1 | 10 | 5 | 0 |
+-------+--------------+------+------+------+

9. Remove all rows from the table using the flush_all command.

telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
flush_all
OK

10. Check to ensure that the flush_all operation was replicated on the replica server.

mysql> SELECT * FROM test.demo_test;
Empty set (0.00 sec)

InnoDB memcached Binary Log Notes

Binary Log Format:

• Most memcached operations are mapped to DML statements (analogous to insert, delete,
update). Since there is no actual SQL statement being processed by the MySQL server, all
memcached commands (except for flush_all) use Row-Based Replication (RBR) logging, which
is independent of any server binlog_format setting.

• The memcached flush_all command is mapped to the TRUNCATE TABLE command in MySQL
5.7 and earlier. Since DDL commands can only use statement-based logging, the flush_all
command is replicated by sending a TRUNCATE TABLE statement. In MySQL 8.0 and later,
flush_all is mapped to DELETE but is still replicated by sending a TRUNCATE TABLE statement.

Transactions:

• The concept of transactions has not typically been part of memcached applications. For performance
considerations, daemon_memcached_r_batch_size and daemon_memcached_w_batch_size
are used to control the batch size for read and write transactions. These settings do not affect
replication. Each SQL operation on the underlying InnoDB table is replicated after successful
completion.

• The default value of daemon_memcached_w_batch_size is 1, which means that each
memcached write operation is committed immediately. This default setting incurs a certain amount
of performance overhead to avoid inconsistencies in the data that is visible on the source and replica
servers. The replicated records are always available immediately on the replica server. If you set
daemon_memcached_w_batch_size to a value greater than 1, records inserted or updated
through memcached are not immediately visible on the source server; to view the records on the
source server before they are committed, issue SET TRANSACTION ISOLATION LEVEL READ
UNCOMMITTED.

17.20.8 InnoDB memcached Plugin Internals

InnoDB API for the InnoDB memcached Plugin

The InnoDB memcached engine accesses InnoDB through InnoDB APIs, most of which are directly
adopted from embedded InnoDB. InnoDB API functions are passed to the InnoDB memcached
engine as callback functions. InnoDB API functions access the InnoDB tables directly, and are mostly
DML operations with the exception of TRUNCATE TABLE.

3561

InnoDB memcached Plugin Internals

memcached commands are implemented through the InnoDB memcached API. The following table
outlines how memcached commands are mapped to DML or DDL operations.

Table 17.27 memcached Commands and Associated DML or DDL Operations

memcached Command DML or DDL Operations

get a read/fetch command

set a search followed by an INSERT or UPDATE
(depending on whether or not a key exists)

add a search followed by an INSERT or UPDATE

replace a search followed by an UPDATE

append a search followed by an UPDATE (appends data to
the result before UPDATE)

prepend a search followed by an UPDATE (prepends data
to the result before UPDATE)

incr a search followed by an UPDATE

decr a search followed by an UPDATE

delete a search followed by a DELETE

flush_all TRUNCATE TABLE (DDL)

InnoDB memcached Plugin Configuration Tables

This section describes configuration tables used by the daemon_memcached plugin. The
cache_policies table, config_options table, and containers table are created by the
innodb_memcached_config.sql configuration script in the innodb_memcache database.

mysql> USE innodb_memcache;
Database changed
mysql> SHOW TABLES;
+---------------------------+
| Tables_in_innodb_memcache |
+---------------------------+
| cache_policies |
| config_options |
| containers |
+---------------------------+

cache_policies Table

The cache_policies table defines a cache policy for the InnoDB memcached installation. You can
specify individual policies for get, set, delete, and flush operations, within a single cache policy.
The default setting for all operations is innodb_only.

• innodb_only: Use InnoDB as the data store.

• cache_only: Use the memcached engine as the data store.

• caching: Use both InnoDB and the memcached engine as data stores. In this case, if memcached
cannot find a key in memory, it searches for the value in an InnoDB table.

• disable: Disable caching.

Table 17.28 cache_policies Columns

Column Description

policy_name Name of the cache policy. The default cache
policy name is cache_policy.

3562

InnoDB memcached Plugin Internals

Column Description

get_policy The cache policy for get operations. Valid values
are innodb_only, cache_only, caching, or
disabled. The default setting is innodb_only.

set_policy The cache policy for set operations. Valid values
are innodb_only, cache_only, caching, or
disabled. The default setting is innodb_only.

delete_policy The cache policy for delete operations. Valid
values are innodb_only, cache_only,
caching, or disabled. The default setting is
innodb_only.

flush_policy The cache policy for flush operations. Valid values
are innodb_only, cache_only, caching, or
disabled. The default setting is innodb_only.

config_options Table

The config_options table stores memcached-related settings that can be changed at runtime using
SQL. Supported configuration options are separator and table_map_delimiter.

Table 17.29 config_options Columns

Column Description

Name Name of the memcached-related configuration
option. The following configuration options are
supported by the config_options table:

• separator: Used to separate values of a
long string into separate values when there are
multiple value_columns defined. By default,
the separator is a | character. For example, if
you define col1, col2 as value columns, and
you define | as the separator, you can issue the
following memcached command to insert values
into col1 and col2, respectively:

set keyx 10 0 19
valuecolx|valuecoly

valuecol1x is stored in col1 and
valuecoly is stored in col2.

• table_map_delimiter: The character
separating the schema name and the table
name when you use the @@ notation in a
key name to access a key in a specific
table. For example, @@t1.some_key and
@@t2.some_key have the same key value, but
are stored in different tables.

Value The value assigned to the memcached-related
configuration option.

containers Table

The containers table is the most important of the three configuration tables. Each InnoDB table
that is used to store memcached values must have an entry in the containers table. The entry
provides a mapping between InnoDB table columns and container table columns, which is required for
memcached to work with InnoDB tables.

3563

InnoDB memcached Plugin Internals

The containers table contains a default entry for the test.demo_test table, which is created by
the innodb_memcached_config.sql configuration script. To use the daemon_memcached plugin
with your own InnoDB table, you must create an entry in the containers table.

Table 17.30 containers Columns

Column Description

name The name given to the container. If an InnoDB
table is not requested by name using @@ notation,
the daemon_memcached plugin uses the
InnoDB table with a containers.name value of
default. If there is no such entry, the first entry
in the containers table, ordered alphabetically
by name (ascending), determines the default
InnoDB table.

db_schema The name of the database where the InnoDB
table resides. This is a required value.

db_table The name of the InnoDB table that stores
memcached values. This is a required value.

key_columns The column in the InnoDB table that contains
lookup key values for memcached operations.
This is a required value.

value_columns The InnoDB table columns (one or more) that
store memcached data. Multiple columns can be
specified using the separator character specified
in the innodb_memcached.config_options
table. By default, the separator is a pipe character
(“|”). To specify multiple columns, separate them
with the defined separator character. For example:
col1|col2|col3. This is a required value.

flags The InnoDB table columns that are used as
flags (a user-defined numeric value that is
stored and retrieved along with the main value)
for memcached. A flag value can be used as
a column specifier for some operations (such
as incr, prepend) if a memcached value is
mapped to multiple columns, so that an operation
is performed on a specified column. For example,
if you have mapped a value_columns to
three InnoDB table columns, and only want the
increment operation performed on one columns,
use the flags column to specify the column. If
you do not use the flags column, set a value of 0
to indicate that it is unused.

cas_column The InnoDB table column that stores compare-
and-swap (cas) values. The cas_column value
is related to the way memcached hashes requests
to different servers and caches data in memory.
Because the InnoDB memcached plugin is tightly
integrated with a single memcached daemon, and
the in-memory caching mechanism is handled by
MySQL and the InnoDB buffer pool, this column is
rarely needed. If you do not use this column, set a
value of 0 to indicate that it is unused.

expire_time_column The InnoDB table column that stores expiration
values. The expire_time_column value is

3564

InnoDB memcached Plugin Internals

Column Description
related to the way memcached hashes requests
to different servers and caches data in memory.
Because the InnoDB memcached plugin is tightly
integrated with a single memcached daemon, and
the in-memory caching mechanism is handled
by MySQL and the InnoDB buffer pool, this
column is rarely needed. If you do not use this
column, set a value of 0 to indicate that the
column is unused. The maximum expire time is
defined as INT_MAX32 or 2147483647 seconds
(approximately 68 years).

unique_idx_name_on_key The name of the index on the key column. It must
be a unique index. It can be the primary key or
a secondary index. Preferably, use the primary
key of the InnoDB table. Using the primary key
avoids a lookup that is performed when using a
secondary index. You cannot make a covering
index for memcached lookups; InnoDB returns an
error if you try to define a composite secondary
index over both the key and value columns.

containers Table Column Constraints

• You must supply a value for db_schema, db_name, key_columns, value_columns and
unique_idx_name_on_key. Specify 0 for flags, cas_column, and expire_time_column if
they are unused. Failing to do so could cause your setup to fail.

• key_columns: The maximum limit for a memcached key is 250 characters, which is enforced by
memcached. The mapped key must be a non-Null CHAR or VARCHAR type.

• value_columns: Must be mapped to a CHAR, VARCHAR, or BLOB column. There is no length
restriction and the value can be NULL.

• cas_column: The cas value is a 64 bit integer. It must be mapped to a BIGINT of at least 8 bytes.
If you do not use this column, set a value of 0 to indicate that it is unused.

• expiration_time_column: Must mapped to an INTEGER of at least 4 bytes. Expiration time is
defined as a 32-bit integer for Unix time (the number of seconds since January 1, 1970, as a 32-bit
value), or the number of seconds starting from the current time. For the latter, the number of seconds
may not exceed 60*60*24*30 (the number of seconds in 30 days). If the number sent by a client is
larger, the server considers it to be a real Unix time value rather than an offset from the current time.
If you do not use this column, set a value of 0 to indicate that it is unused.

• flags: Must be mapped to an INTEGER of at least 32-bits and can be NULL. If you do not use this
column, set a value of 0 to indicate that it is unused.

A pre-check is performed at plugin load time to enforce column constraints. If mismatches are found,
the plugin is not loaded.

Multiple Value Column Mapping

• During plugin initialization, when InnoDB memcached is configured with information defined in the
containers table, each mapped column defined in containers.value_columns is verified
against the mapped InnoDB table. If multiple InnoDB table columns are mapped, there is a check to
ensure that each column exists and is the right type.

• At run-time, for memcached insert operations, if there are more delimited values than the number
of mapped columns, only the number of mapped values are taken. For example, if there are six

3565

Troubleshooting the InnoDB memcached Plugin

mapped columns, and seven delimited values are provided, only the first six delimited values are
taken. The seventh delimited value is ignored.

• If there are fewer delimited values than mapped columns, unfilled columns are set to NULL. If an
unfilled column cannot be set to NULL, insert operations fail.

• If a table has more columns than mapped values, the extra columns do not affect results.

The demo_test Example Table

The innodb_memcached_config.sql configuration script creates a demo_test table in the test
database, which can be used to verify InnoDB memcached plugin installation immediately after setup.

The innodb_memcached_config.sql configuration script also creates an entry for the demo_test
table in the innodb_memcache.containers table.

mysql> SELECT * FROM innodb_memcache.containers\G
*************************** 1. row ***************************
 name: aaa
 db_schema: test
 db_table: demo_test
 key_columns: c1
 value_columns: c2
 flags: c3
 cas_column: c4
 expire_time_column: c5
unique_idx_name_on_key: PRIMARY

mysql> SELECT * FROM test.demo_test;
+----+------------------+------+------+------+
| c1 | c2 | c3 | c4 | c5 |
+----+------------------+------+------+------+
| AA | HELLO, HELLO | 8 | 0 | 0 |
+----+------------------+------+------+------+

17.20.9 Troubleshooting the InnoDB memcached Plugin

This section describes issues that you may encounter when using the InnoDB memcached plugin.

• If you encounter the following error in the MySQL error log, the server might fail to start:

failed to set rlimit for open files. Try running as root or requesting
smaller maxconns value.

The error message is from the memcached daemon. One solution is to raise the OS limit for the
number of open files. The commands for checking and increasing the open file limit varies by
operating system. This example shows commands for Linux and macOS:

Linux
$> ulimit -n
1024
$> ulimit -n 4096
$> ulimit -n
4096

macOS
$> ulimit -n
256
$> ulimit -n 4096
$> ulimit -n
4096

The other solution is to reduce the number of concurrent connections permitted for the memcached
daemon. To do so, encode the -c memcached option in the daemon_memcached_option
configuration parameter in the MySQL configuration file. The -c option has a default value of 1024.

3566

Troubleshooting the InnoDB memcached Plugin

[mysqld]
...
loose-daemon_memcached_option='-c 64'

• To troubleshoot problems where the memcached daemon is unable to store or retrieve InnoDB
table data, encode the -vvv memcached option in the daemon_memcached_option configuration
parameter in the MySQL configuration file. Examine the MySQL error log for debug output related to
memcached operations.

[mysqld]
...
loose-daemon_memcached_option='-vvv'

• If columns specified to hold memcached values are the wrong data type, such as a numeric type
instead of a string type, attempts to store key-value pairs fail with no specific error code or message.

• If the daemon_memcached plugin causes MySQL server startup issues, you can temporarily disable
the daemon_memcached plugin while troubleshooting by adding this line under the [mysqld] group
in the MySQL configuration file:

daemon_memcached=OFF

For example, if you run the INSTALL PLUGIN statement before running the
innodb_memcached_config.sql configuration script to set up the necessary database and
tables, the server might unexpectedly exit and fail to start. The server could also fail to start if you
incorrectly configure an entry in the innodb_memcache.containers table.

To uninstall the memcached plugin for a MySQL instance, issue the following statement:

mysql> UNINSTALL PLUGIN daemon_memcached;

• If you run more than one instance of MySQL on the same machine with the daemon_memcached
plugin enabled in each instance, use the daemon_memcached_option configuration parameter to
specify a unique memcached port for each daemon_memcached plugin.

• If an SQL statement cannot find the InnoDB table or finds no data in the table, but memcached
API calls retrieve the expected data, you may be missing an entry for the InnoDB table in the
innodb_memcache.containers table, or you may have not switched to the correct InnoDB
table by issuing a get or set request using @@table_id notation. This problem could also occur if
you change an existing entry in the innodb_memcache.containers table without restarting the
MySQL server afterward. The free-form storage mechanism is flexible enough that your requests to
store or retrieve a multi-column value such as col1|col2|col3 may still work, even if the daemon
is using the test.demo_test table which stores values in a single column.

• When defining your own InnoDB table for use with the daemon_memcached plugin, and columns
in the table are defined as NOT NULL, ensure that values are supplied for the NOT NULL columns
when inserting a record for the table into the innodb_memcache.containers table. If the INSERT
statement for the innodb_memcache.containers record contains fewer delimited values than
there are mapped columns, unfilled columns are set to NULL. Attempting to insert a NULL value into
a NOT NULL column causes the INSERT to fail, which may only become evident after you reinitialize
the daemon_memcached plugin to apply changes to the innodb_memcache.containers table.

• If cas_column and expire_time_column fields of the innodb_memcached.containers table
are set to NULL, the following error is returned when attempting to load the memcached plugin:

InnoDB_Memcached: column 6 in the entry for config table 'containers' in
database 'innodb_memcache' has an invalid NULL value.

The memcached plugin rejects usage of NULL in the cas_column and expire_time_column
columns. Set the value of these columns to 0 when the columns are unused.

• As the length of the memcached key and values increase, you might encounter size and length
limits.

3567

InnoDB Troubleshooting

• When the key exceeds 250 bytes, memcached operations return an error. This is currently a fixed
limit within memcached.

• InnoDB table limits may be encountered if values exceed 768 bytes in size, 3072 bytes in size, or
half of the innodb_page_size value. These limits primarily apply if you intend to create an index
on a value column to run report-generating queries on that column using SQL. See Section 17.22,
“InnoDB Limits” for details.

• The maximum size for the key-value combination is 1 MB.

• If you share configuration files across MySQL servers of different versions, using the latest
configuration options for the daemon_memcached plugin could cause startup errors on older MySQL
versions. To avoid compatibility problems, use the loose prefix with option names. For example,
use loose-daemon_memcached_option='-c 64' instead of daemon_memcached_option='-
c 64'.

• There is no restriction or check in place to validate character set settings. memcached stores and
retrieves keys and values in bytes and is therefore not character set sensitive. However, you must
ensure that the memcached client and the MySQL table use the same character set.

• memcached connections are blocked from accessing tables that contain an indexed virtual column.
Accessing an indexed virtual column requires a callback to the server, but a memcached connection
does not have access to the server code.

17.21 InnoDB Troubleshooting
The following general guidelines apply to troubleshooting InnoDB problems:

• When an operation fails or you suspect a bug, look at the MySQL server error log (see Section 7.4.2,
“The Error Log”). Server Error Message Reference provides troubleshooting information for some of
the common InnoDB-specific errors that you may encounter.

• If the failure is related to a deadlock, run with the innodb_print_all_deadlocks option enabled
so that details about each deadlock are printed to the MySQL server error log. For information about
deadlocks, see Section 17.7.5, “Deadlocks in InnoDB”.

• If the issue is related to the InnoDB data dictionary, see Section 17.21.4, “Troubleshooting InnoDB
Data Dictionary Operations”.

• When troubleshooting, it is usually best to run the MySQL server from the command prompt, rather
than through mysqld_safe or as a Windows service. You can then see what mysqld prints to the
console, and so have a better grasp of what is going on. On Windows, start mysqld with the --
console option to direct the output to the console window.

• Enable the InnoDB Monitors to obtain information about a problem (see Section 17.17, “InnoDB
Monitors”). If the problem is performance-related, or your server appears to be hung, you should
enable the standard Monitor to print information about the internal state of InnoDB. If the problem
is with locks, enable the Lock Monitor. If the problem is with table creation, tablespaces, or data
dictionary operations, refer to the InnoDB Information Schema system tables to examine contents of
the InnoDB internal data dictionary.

InnoDB temporarily enables standard InnoDB Monitor output under the following conditions:

• A long semaphore wait

• InnoDB cannot find free blocks in the buffer pool

• Over 67% of the buffer pool is occupied by lock heaps or the adaptive hash index

• If you suspect that a table is corrupt, run CHECK TABLE on that table.

3568

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

Troubleshooting InnoDB I/O Problems

17.21.1 Troubleshooting InnoDB I/O Problems

The troubleshooting steps for InnoDB I/O problems depend on when the problem occurs: during
startup of the MySQL server, or during normal operations when a DML or DDL statement fails due to
problems at the file system level.

Initialization Problems

If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, delete all
files created by InnoDB: all ibdata files and all redo log files (#ib_redoN files in MySQL 8.0.30
and higher or ib_logfile files in earlier releases). If you created any InnoDB tables, also delete
any .ibd files from the MySQL database directories. Then try initializing InnoDB again. For easiest
troubleshooting, start the MySQL server from a command prompt so that you see what is happening.

Runtime Problems

If InnoDB prints an operating system error during a file operation, usually the problem has one of the
following solutions:

• Make sure the InnoDB data file directory and the InnoDB log directory exist.

• Make sure mysqld has access rights to create files in those directories.

• Make sure mysqld can read the proper my.cnf or my.ini option file, so that it starts with the
options that you specified.

• Make sure the disk is not full and you are not exceeding any disk quota.

• Make sure that the names you specify for subdirectories and data files do not clash.

• Doublecheck the syntax of the innodb_data_home_dir and innodb_data_file_path values.
In particular, any MAX value in the innodb_data_file_path option is a hard limit, and exceeding
that limit causes a fatal error.

17.21.2 Troubleshooting Recovery Failures

From MySQL 8.0.26, checkpoints and advancing the checkpoint LSN are not permitted until redo log
recovery is complete and data dictionary dynamic metadata (srv_dict_metadata) is transferred
to data dictionary table (dict_table_t) objects. Should the redo log run out of space during
recovery or after recovery (but before data dictionary dynamic metadata is transferred to data
dictionary table objects) as a result of this change, an innodb_force_recovery restart may be
required, starting with at least the SRV_FORCE_NO_IBUF_MERGE setting or, in case that fails, the
SRV_FORCE_NO_LOG_REDO setting. If an innodb_force_recovery restart fails in this scenario,
recovery from backup may be necessary. (Bug #32200595)

17.21.3 Forcing InnoDB Recovery

To investigate database page corruption, you might dump your tables from the database with
SELECT ... INTO OUTFILE. Usually, most of the data obtained in this way is intact. Serious
corruption might cause SELECT * FROM tbl_name statements or InnoDB background operations to
unexpectedly exit or assert, or even cause InnoDB roll-forward recovery to crash. In such cases, you
can use the innodb_force_recovery option to force the InnoDB storage engine to start up while
preventing background operations from running, so that you can dump your tables. For example, you
can add the following line to the [mysqld] section of your option file before restarting the server:

[mysqld]
innodb_force_recovery = 1

For information about using option files, see Section 6.2.2.2, “Using Option Files”.

3569

Forcing InnoDB Recovery

Warning

Only set innodb_force_recovery to a value greater than 0 in an emergency
situation, so that you can start InnoDB and dump your tables. Before doing
so, ensure that you have a backup copy of your database in case you need to
recreate it. Values of 4 or greater can permanently corrupt data files. Only use
an innodb_force_recovery setting of 4 or greater on a production server
instance after you have successfully tested the setting on a separate physical
copy of your database. When forcing InnoDB recovery, you should always start
with innodb_force_recovery=1 and only increase the value incrementally,
as necessary.

innodb_force_recovery is 0 by default (normal startup without forced recovery). The permissible
nonzero values for innodb_force_recovery are 1 to 6. A larger value includes the functionality of
lesser values. For example, a value of 3 includes all of the functionality of values 1 and 2.

If you are able to dump your tables with an innodb_force_recovery value of 3 or less, then you
are relatively safe that only some data on corrupt individual pages is lost. A value of 4 or greater is
considered dangerous because data files can be permanently corrupted. A value of 6 is considered
drastic because database pages are left in an obsolete state, which in turn may introduce more
corruption into B-trees and other database structures.

As a safety measure, InnoDB prevents INSERT, UPDATE, or DELETE operations when
innodb_force_recovery is greater than 0. An innodb_force_recovery setting of 4 or greater
places InnoDB in read-only mode.

• 1 (SRV_FORCE_IGNORE_CORRUPT)

Lets the server run even if it detects a corrupt page. Tries to make SELECT * FROM tbl_name
jump over corrupt index records and pages, which helps in dumping tables.

• 2 (SRV_FORCE_NO_BACKGROUND)

Prevents the master thread and any purge threads from running. If an unexpected exit would occur
during the purge operation, this recovery value prevents it.

• 3 (SRV_FORCE_NO_TRX_UNDO)

Does not run transaction rollbacks after crash recovery.

• 4 (SRV_FORCE_NO_IBUF_MERGE)

Prevents insert buffer merge operations. If they would cause a crash, does not do them. Does not
calculate table statistics. This value can permanently corrupt data files. After using this value, be
prepared to drop and recreate all secondary indexes. Sets InnoDB to read-only.

• 5 (SRV_FORCE_NO_UNDO_LOG_SCAN)

Does not look at undo logs when starting the database: InnoDB treats even incomplete transactions
as committed. This value can permanently corrupt data files. Sets InnoDB to read-only.

• 6 (SRV_FORCE_NO_LOG_REDO)

Does not do the redo log roll-forward in connection with recovery. This value can permanently
corrupt data files. Leaves database pages in an obsolete state, which in turn may introduce more
corruption into B-trees and other database structures. Sets InnoDB to read-only.

You can SELECT from tables to dump them. With an innodb_force_recovery value of 3 or less you
can DROP or CREATE tables. DROP TABLE is also supported with an innodb_force_recovery value
greater than 3. DROP TABLE is not permitted with an innodb_force_recovery value greater than 4.

3570

Troubleshooting InnoDB Data Dictionary Operations

If you know that a given table is causing an unexpected exit on rollback, you can drop it. If you
encounter a runaway rollback caused by a failing mass import or ALTER TABLE, you can kill the
mysqld process and set innodb_force_recovery to 3 to bring the database up without the
rollback, and then DROP the table that is causing the runaway rollback.

If corruption within the table data prevents you from dumping the entire table contents, a query with
an ORDER BY primary_key DESC clause might be able to dump the portion of the table after the
corrupted part.

If a high innodb_force_recovery value is required to start InnoDB, there may be corrupted data
structures that could cause complex queries (queries containing WHERE, ORDER BY, or other clauses)
to fail. In this case, you may only be able to run basic SELECT * FROM t queries.

17.21.4 Troubleshooting InnoDB Data Dictionary Operations

Information about table definitions is stored in the InnoDB data dictionary. If you move data files
around, dictionary data can become inconsistent.

If a data dictionary corruption or consistency issue prevents you from starting InnoDB, see
Section 17.21.3, “Forcing InnoDB Recovery” for information about manual recovery.

Cannot Open Datafile

With innodb_file_per_table enabled (the default), the following messages may appear at startup
if a file-per-table tablespace file (.ibd file) is missing:

[ERROR] InnoDB: Operating system error number 2 in a file operation.
[ERROR] InnoDB: The error means the system cannot find the path specified.
[ERROR] InnoDB: Cannot open datafile for read-only: './test/t1.ibd' OS error: 71
[Warning] InnoDB: Ignoring tablespace `test/t1` because it could not be opened.

To address these messages, issue DROP TABLE statement to remove data about the missing table
from the data dictionary.

Restoring Orphan File-Per-Table ibd Files

This procedure describes how to restore orphan file-per-table .ibd files to another MySQL instance.
You might use this procedure if the system tablespace is lost or unrecoverable and you want to restore
.ibd file backups on a new MySQL instance.

The procedure is not supported for general tablespace .ibd files.

The procedure assumes that you only have .ibd file backups, you are recovering to the same version
of MySQL that initially created the orphan .ibd files, and that .ibd file backups are clean. See
Section 17.6.1.4, “Moving or Copying InnoDB Tables” for information about creating clean backups.

Table import limitations outlined in Section 17.6.1.3, “Importing InnoDB Tables” are applicable to this
procedure.

1. On the new MySQL instance, recreate the table in a database of the same name.

mysql> CREATE DATABASE sakila;

mysql> USE sakila;

mysql> CREATE TABLE actor (
 actor_id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 first_name VARCHAR(45) NOT NULL,
 last_name VARCHAR(45) NOT NULL,
 last_update TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (actor_id),
 KEY idx_actor_last_name (last_name)
)ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

2. Discard the tablespace of the newly created table.

3571

InnoDB Error Handling

mysql> ALTER TABLE sakila.actor DISCARD TABLESPACE;

3. Copy the orphan .ibd file from your backup directory to the new database directory.

$> cp /backup_directory/actor.ibd path/to/mysql-5.7/data/sakila/

4. Ensure that the .ibd file has the necessary file permissions.

5. Import the orphan .ibd file. A warning is issued indicating that InnoDB is attempting to import the
file without schema verification.

mysql> ALTER TABLE sakila.actor IMPORT TABLESPACE; SHOW WARNINGS;
Query OK, 0 rows affected, 1 warning (0.15 sec)

Warning | 1810 | InnoDB: IO Read error: (2, No such file or directory)
Error opening './sakila/actor.cfg', will attempt to import
without schema verification

6. Query the table to verify that the .ibd file was successfully restored.

mysql> SELECT COUNT(*) FROM sakila.actor;
+----------+
| count(*) |
+----------+
| 200 |
+----------+

17.21.5 InnoDB Error Handling

The following items describe how InnoDB performs error handling. InnoDB sometimes rolls back only
the statement that failed, other times it rolls back the entire transaction.

• If you run out of file space in a tablespace, a MySQL Table is full error occurs and InnoDB
rolls back the SQL statement.

• A transaction deadlock causes InnoDB to roll back the entire transaction. Retry the entire
transaction when this happens.

A lock wait timeout causes InnoDB to roll back the current statement (the statement that was
waiting for the lock and encountered the timeout). To have the entire transaction roll back, start the
server with --innodb-rollback-on-timeout enabled. Retry the statement if using the default
behavior, or the entire transaction if --innodb-rollback-on-timeout is enabled.

Both deadlocks and lock wait timeouts are normal on busy servers and it is necessary for
applications to be aware that they may happen and handle them by retrying. You can make them
less likely by doing as little work as possible between the first change to data during a transaction
and the commit, so the locks are held for the shortest possible time and for the smallest possible
number of rows. Sometimes splitting work between different transactions may be practical and
helpful.

• A duplicate-key error rolls back the SQL statement, if you have not specified the IGNORE option in
your statement.

• A row too long error rolls back the SQL statement.

• Other errors are mostly detected by the MySQL layer of code (above the InnoDB storage engine
level), and they roll back the corresponding SQL statement. Locks are not released in a rollback of a
single SQL statement.

During implicit rollbacks, as well as during the execution of an explicit ROLLBACK SQL statement, SHOW
PROCESSLIST displays Rolling back in the State column for the relevant connection.

17.22 InnoDB Limits

3572

InnoDB Limits

This section describes limits for InnoDB tables, indexes, tablespaces, and other aspects of the
InnoDB storage engine.

• A table can contain a maximum of 1017 columns. Virtual generated columns are included in this limit.

• A table can contain a maximum of 64 secondary indexes.

• The index key prefix length limit is 3072 bytes for InnoDB tables that use DYNAMIC or COMPRESSED
row format.

The index key prefix length limit is 767 bytes for InnoDB tables that use the REDUNDANT or COMPACT
row format. For example, you might hit this limit with a column prefix index of more than 191
characters on a TEXT or VARCHAR column, assuming a utf8mb4 character set and the maximum of
4 bytes for each character.

Attempting to use an index key prefix length that exceeds the limit returns an error.

If you reduce the InnoDB page size to 8KB or 4KB by specifying the innodb_page_size option
when creating the MySQL instance, the maximum length of the index key is lowered proportionally,
based on the limit of 3072 bytes for a 16KB page size. That is, the maximum index key length is
1536 bytes when the page size is 8KB, and 768 bytes when the page size is 4KB.

The limits that apply to index key prefixes also apply to full-column index keys.

• A maximum of 16 columns is permitted for multicolumn indexes. Exceeding the limit returns an error.

ERROR 1070 (42000): Too many key parts specified; max 16 parts allowed

• The maximum row size, excluding any variable-length columns that are stored off-page, is slightly
less than half of a page for 4KB, 8KB, 16KB, and 32KB page sizes. For example, the maximum row
size for the default innodb_page_size of 16KB is about 8000 bytes. However, for an InnoDB
page size of 64KB, the maximum row size is approximately 16000 bytes. LONGBLOB and LONGTEXT
columns must be less than 4GB, and the total row size, including BLOB and TEXT columns, must be
less than 4GB.

If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a
page, variable-length columns are chosen for external off-page storage until the row fits within half a
page, as described in Section 17.11.2, “File Space Management”.

• Although InnoDB supports row sizes larger than 65,535 bytes internally, MySQL itself imposes a
row-size limit of 65,535 for the combined size of all columns. See Section 10.4.7, “Limits on Table
Column Count and Row Size”.

• The maximum table or tablespace size is impacted by the server file system, which can impose a
maximum file size that is smaller than the internal 64 TiB size limit defined by InnoDB. For example,
the ext4 file system on Linux has a maximum file size of 16 TiB, so the maximum table or tablespace
size becomes 16 TiB instead of 64 TiB. Another example is the FAT32 file system, which has a
maximum file size of 4 GB.

If you require a larger system tablespace, configure it using several smaller data files rather than one
large data file, or distribute table data across file-per-table and general tablespace data files.

• The combined maximum size for InnoDB log files is 512GB.

• The minimum tablespace size is slightly larger than 10MB. The maximum tablespace size depends
on the InnoDB page size.

Table 17.31 InnoDB Maximum Tablespace Size

InnoDB Page Size Maximum Tablespace Size

4KB 16TB

3573

InnoDB Restrictions and Limitations

InnoDB Page Size Maximum Tablespace Size

8KB 32TB

16KB 64TB

32KB 128TB

64KB 256TB

The maximum tablespace size is also the maximum size for a table.

• An InnoDB instance supports up to 2^32 (4294967296) tablespaces, with a small number of those
tablespaces reserved for undo and temporary tables.

• Shared tablespaces support up to 2^32 (4294967296) tables.

• The path of a tablespace file, including the file name, cannot exceed the MAX_PATH limit on
Windows. Prior to Windows 10, the MAX_PATH limit is 260 characters. As of Windows 10, version
1607, MAX_PATH limitations are removed from common Win32 file and directory functions, but you
must enable the new behavior.

• For limits associated with concurrent read-write transactions, see Section 17.6.6, “Undo Logs”.

17.23 InnoDB Restrictions and Limitations

This section describes restrictions and limitations of the InnoDB storage engine.

• You cannot create a table with a column name that matches the name of an internal InnoDB column
(including DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR. This restriction applies to use of the names
in any lettercase.

mysql> CREATE TABLE t1 (c1 INT, db_row_id INT) ENGINE=INNODB;
ERROR 1166 (42000): Incorrect column name 'db_row_id'

• SHOW TABLE STATUS does not provide accurate statistics for InnoDB tables except for the physical
size reserved by the table. The row count is only a rough estimate used in SQL optimization.

• InnoDB does not keep an internal count of rows in a table because concurrent transactions might
“see” different numbers of rows at the same time. Consequently, SELECT COUNT(*) statements
only count rows visible to the current transaction.

For information about how InnoDB processes SELECT COUNT(*) statements, refer to the COUNT()
description in Section 14.19.1, “Aggregate Function Descriptions”.

• ROW_FORMAT=COMPRESSED is unsupported for page sizes greater than 16KB.

• A MySQL instance using a particular InnoDB page size (innodb_page_size) cannot use data files
or log files from an instance that uses a different page size.

• For limitations associated with importing tables using the Transportable Tablespaces feature, see
Table Import Limitations.

• For limitations associated with online DDL, see Section 17.12.8, “Online DDL Limitations”.

• For limitations associated with general tablespaces, see General Tablespace Limitations.

• For limitations associated with data-at-rest encryption, see Encryption Limitations.

3574

Chapter 18 Alternative Storage Engines

Table of Contents
18.1 Setting the Storage Engine .. 3578
18.2 The MyISAM Storage Engine ... 3579

18.2.1 MyISAM Startup Options ... 3581
18.2.2 Space Needed for Keys .. 3583
18.2.3 MyISAM Table Storage Formats .. 3583
18.2.4 MyISAM Table Problems ... 3586

18.3 The MEMORY Storage Engine .. 3587
18.4 The CSV Storage Engine .. 3592

18.4.1 Repairing and Checking CSV Tables ... 3592
18.4.2 CSV Limitations .. 3593

18.5 The ARCHIVE Storage Engine ... 3593
18.6 The BLACKHOLE Storage Engine ... 3595
18.7 The MERGE Storage Engine ... 3597

18.7.1 MERGE Table Advantages and Disadvantages .. 3599
18.7.2 MERGE Table Problems ... 3600

18.8 The FEDERATED Storage Engine ... 3602
18.8.1 FEDERATED Storage Engine Overview ... 3602
18.8.2 How to Create FEDERATED Tables .. 3603
18.8.3 FEDERATED Storage Engine Notes and Tips .. 3606
18.8.4 FEDERATED Storage Engine Resources ... 3607

18.9 The EXAMPLE Storage Engine .. 3607
18.10 Other Storage Engines .. 3608
18.11 Overview of MySQL Storage Engine Architecture .. 3608

18.11.1 Pluggable Storage Engine Architecture .. 3609
18.11.2 The Common Database Server Layer .. 3609

Storage engines are MySQL components that handle the SQL operations for different table types.
InnoDB is the default and most general-purpose storage engine, and Oracle recommends using it
for tables except for specialized use cases. (The CREATE TABLE statement in MySQL 8.0 creates
InnoDB tables by default.)

MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded
into and unloaded from a running MySQL server.

To determine which storage engines your server supports, use the SHOW ENGINES statement. The
value in the Support column indicates whether an engine can be used. A value of YES, NO, or
DEFAULT indicates that an engine is available, not available, or available and currently set as the
default storage engine.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 2. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 3. row ***************************
 Engine: MRG_MYISAM

3575

MySQL 8.0 Supported Storage Engines

 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
...

This chapter covers use cases for special-purpose MySQL storage engines. It does not cover the
default InnoDB storage engine or the NDB storage engine which are covered in Chapter 17, The
InnoDB Storage Engine and Chapter 25, MySQL NDB Cluster 8.0. For advanced users, it also contains
a description of the pluggable storage engine architecture (see Section 18.11, “Overview of MySQL
Storage Engine Architecture”).

For information about features offered in commercial MySQL Server binaries, see MySQL Editions, on
the MySQL website. The storage engines available might depend on which edition of MySQL you are
using.

For answers to commonly asked questions about MySQL storage engines, see Section A.2, “MySQL
8.0 FAQ: Storage Engines”.

MySQL 8.0 Supported Storage Engines

• InnoDB: The default storage engine in MySQL 8.0. InnoDB is a transaction-safe (ACID compliant)
storage engine for MySQL that has commit, rollback, and crash-recovery capabilities to protect user
data. InnoDB row-level locking (without escalation to coarser granularity locks) and Oracle-style
consistent nonlocking reads increase multi-user concurrency and performance. InnoDB stores user
data in clustered indexes to reduce I/O for common queries based on primary keys. To maintain data
integrity, InnoDB also supports FOREIGN KEY referential-integrity constraints. For more information
about InnoDB, see Chapter 17, The InnoDB Storage Engine.

• MyISAM: These tables have a small footprint. Table-level locking limits the performance in read/write
workloads, so it is often used in read-only or read-mostly workloads in Web and data warehousing
configurations.

• Memory: Stores all data in RAM, for fast access in environments that require quick lookups of non-
critical data. This engine was formerly known as the HEAP engine. Its use cases are decreasing;
InnoDB with its buffer pool memory area provides a general-purpose and durable way to keep most
or all data in memory, and NDBCLUSTER provides fast key-value lookups for huge distributed data
sets.

• CSV: Its tables are really text files with comma-separated values. CSV tables let you import or dump
data in CSV format, to exchange data with scripts and applications that read and write that same
format. Because CSV tables are not indexed, you typically keep the data in InnoDB tables during
normal operation, and only use CSV tables during the import or export stage.

• Archive: These compact, unindexed tables are intended for storing and retrieving large amounts of
seldom-referenced historical, archived, or security audit information.

• Blackhole: The Blackhole storage engine accepts but does not store data, similar to the Unix /
dev/null device. Queries always return an empty set. These tables can be used in replication

3576

https://www.mysql.com/products/

MySQL 8.0 Supported Storage Engines

configurations where DML statements are sent to replica servers, but the source server does not
keep its own copy of the data.

• NDB (also known as NDBCLUSTER): This clustered database engine is particularly suited for
applications that require the highest possible degree of uptime and availability.

• Merge: Enables a MySQL DBA or developer to logically group a series of identical MyISAM tables
and reference them as one object. Good for VLDB environments such as data warehousing.

• Federated: Offers the ability to link separate MySQL servers to create one logical database from
many physical servers. Very good for distributed or data mart environments.

• Example: This engine serves as an example in the MySQL source code that illustrates how to begin
writing new storage engines. It is primarily of interest to developers. The storage engine is a “stub”
that does nothing. You can create tables with this engine, but no data can be stored in them or
retrieved from them.

You are not restricted to using the same storage engine for an entire server or schema. You can
specify the storage engine for any table. For example, an application might use mostly InnoDB
tables, with one CSV table for exporting data to a spreadsheet and a few MEMORY tables for temporary
workspaces.

Choosing a Storage Engine

The various storage engines provided with MySQL are designed with different use cases in mind. The
following table provides an overview of some storage engines provided with MySQL, with clarifying
notes following the table.

Table 18.1 Storage Engines Feature Summary

Feature MyISAM Memory InnoDB Archive NDB

B-tree indexes Yes Yes Yes No No

Backup/point-
in-time recovery
(note 1)

Yes Yes Yes Yes Yes

Cluster
database
support

No No No No Yes

Clustered
indexes

No No Yes No No

Compressed
data

Yes (note 2) No Yes Yes No

Data caches No N/A Yes No Yes

Encrypted data Yes (note 3) Yes (note 3) Yes (note 4) Yes (note 3) Yes (note 5)

Foreign key
support

No No Yes No Yes

Full-text search
indexes

Yes No Yes (note 6) No No

Geospatial data
type support

Yes No Yes Yes Yes

Geospatial
indexing
support

Yes No Yes (note 7) No No

Hash indexes No Yes No (note 8) No Yes

Index caches Yes N/A Yes No Yes

3577

Setting the Storage Engine

Feature MyISAM Memory InnoDB Archive NDB

Locking
granularity

Table Table Row Row Row

MVCC No No Yes No No

Replication
support (note 1)

Yes Limited (note 9) Yes Yes Yes

Storage limits 256TB RAM 64TB None 384EB

T-tree indexes No No No No Yes

Transactions No No Yes No Yes

Update
statistics for
data dictionary

Yes Yes Yes Yes Yes

Notes:

1. Implemented in the server, rather than in the storage engine.

2. Compressed MyISAM tables are supported only when using the compressed row format. Tables
using the compressed row format with MyISAM are read only.

3. Implemented in the server via encryption functions.

4. Implemented in the server via encryption functions; In MySQL 5.7 and later, data-at-rest encryption
is supported.

5. Implemented in the server via encryption functions; encrypted NDB backups as of NDB 8.0.22;
transparent NDB file system encryption supported in NDB 8.0.29 and later.

6. Support for FULLTEXT indexes is available in MySQL 5.6 and later.

7. Support for geospatial indexing is available in MySQL 5.7 and later.

8. InnoDB utilizes hash indexes internally for its Adaptive Hash Index feature.

9. See the discussion later in this section.

18.1 Setting the Storage Engine
When you create a new table, you can specify which storage engine to use by adding an ENGINE table
option to the CREATE TABLE statement:

-- ENGINE=INNODB not needed unless you have set a different
-- default storage engine.
CREATE TABLE t1 (i INT) ENGINE = INNODB;
-- Simple table definitions can be switched from one to another.
CREATE TABLE t2 (i INT) ENGINE = CSV;
CREATE TABLE t3 (i INT) ENGINE = MEMORY;

When you omit the ENGINE option, the default storage engine is used. The default engine is InnoDB
in MySQL 8.0. You can specify the default engine by using the --default-storage-engine server
startup option, or by setting the default-storage-engine option in the my.cnf configuration file.

You can set the default storage engine for the current session by setting the
default_storage_engine variable:

SET default_storage_engine=NDBCLUSTER;

The storage engine for TEMPORARY tables created with CREATE TEMPORARY TABLE can be set
separately from the engine for permanent tables by setting the default_tmp_storage_engine,
either at startup or at runtime.

3578

The MyISAM Storage Engine

To convert a table from one storage engine to another, use an ALTER TABLE statement that indicates
the new engine:

ALTER TABLE t ENGINE = InnoDB;

See Section 15.1.20, “CREATE TABLE Statement”, and Section 15.1.9, “ALTER TABLE Statement”.

If you try to use a storage engine that is not compiled in or that is compiled in but deactivated, MySQL
instead creates a table using the default storage engine. For example, in a replication setup, perhaps
your source server uses InnoDB tables for maximum safety, but the replica servers use other storage
engines for speed at the expense of durability or concurrency.

By default, a warning is generated whenever CREATE TABLE or ALTER TABLE cannot use the default
storage engine. To prevent confusing, unintended behavior if the desired engine is unavailable, enable
the NO_ENGINE_SUBSTITUTION SQL mode. If the desired engine is unavailable, this setting produces
an error instead of a warning, and the table is not created or altered. See Section 7.1.11, “Server SQL
Modes”.

MySQL may store a table's index and data in one or more other files, depending on the storage engine.
Table and column definitions are stored in the MySQL data dictionary. Individual storage engines
create any additional files required for the tables that they manage. If a table name contains special
characters, the names for the table files contain encoded versions of those characters as described in
Section 11.2.4, “Mapping of Identifiers to File Names”.

18.2 The MyISAM Storage Engine
MyISAM is based on the older (and no longer available) ISAM storage engine but has many useful
extensions.

Table 18.2 MyISAM Storage Engine Features

Feature Support

B-tree indexes Yes

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes No

Compressed data Yes (Compressed MyISAM tables are supported
only when using the compressed row format.
Tables using the compressed row format with
MyISAM are read only.)

Data caches No

Encrypted data Yes (Implemented in the server via encryption
functions.)

Foreign key support No

Full-text search indexes Yes

Geospatial data type support Yes

Geospatial indexing support Yes

Hash indexes No

Index caches Yes

Locking granularity Table

MVCC No

Replication support (Implemented in the server,
rather than in the storage engine.)

Yes

3579

The MyISAM Storage Engine

Feature Support

Storage limits 256TB

T-tree indexes No

Transactions No

Update statistics for data dictionary Yes

Each MyISAM table is stored on disk in two files. The files have names that begin with the table
name and have an extension to indicate the file type. The data file has an .MYD (MYData) extension.
The index file has an .MYI (MYIndex) extension. The table definition is stored in the MySQL data
dictionary.

To specify explicitly that you want a MyISAM table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = MYISAM;

In MySQL 8.0, it is normally necessary to use ENGINE to specify the MyISAM storage engine because
InnoDB is the default engine.

You can check or repair MyISAM tables with the mysqlcheck client or myisamchk utility. You can
also compress MyISAM tables with myisampack to take up much less space. See Section 6.5.3,
“mysqlcheck — A Table Maintenance Program”, Section 6.6.4, “myisamchk — MyISAM Table-
Maintenance Utility”, and Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM
Tables”.

In MySQL 8.0, the MyISAM storage engine provides no partitioning support. Partitioned MyISAM tables
created in previous versions of MySQL cannot be used in MySQL 8.0. For more information, see
Section 26.6.2, “Partitioning Limitations Relating to Storage Engines”. For help with upgrading such
tables so that they can be used in MySQL 8.0, see Section 3.5, “Changes in MySQL 8.0”.

MyISAM tables have the following characteristics:

• All data values are stored with the low byte first. This makes the data machine and operating
system independent. The only requirements for binary portability are that the machine uses two's-
complement signed integers and IEEE floating-point format. These requirements are widely used
among mainstream machines. Binary compatibility might not be applicable to embedded systems,
which sometimes have peculiar processors.

There is no significant speed penalty for storing data low byte first; the bytes in a table row normally
are unaligned and it takes little more processing to read an unaligned byte in order than in reverse
order. Also, the code in the server that fetches column values is not time critical compared to other
code.

• All numeric key values are stored with the high byte first to permit better index compression.

• Large files (up to 63-bit file length) are supported on file systems and operating systems that support
large files.

• There is a limit of (232)2 (1.844E+19) rows in a MyISAM table.

• The maximum number of indexes per MyISAM table is 64.

The maximum number of columns per index is 16.

• The maximum key length is 1000 bytes. This can also be changed by changing the source and
recompiling. For the case of a key longer than 250 bytes, a larger key block size than the default of
1024 bytes is used.

• When rows are inserted in sorted order (as when you are using an AUTO_INCREMENT column), the
index tree is split so that the high node only contains one key. This improves space utilization in the
index tree.

3580

Additional Resources

• Internal handling of one AUTO_INCREMENT column per table is supported. MyISAM automatically
updates this column for INSERT and UPDATE operations. This makes AUTO_INCREMENT columns
faster (at least 10%). Values at the top of the sequence are not reused after being deleted. (When an
AUTO_INCREMENT column is defined as the last column of a multiple-column index, reuse of values
deleted from the top of a sequence does occur.) The AUTO_INCREMENT value can be reset with
ALTER TABLE or myisamchk.

• Dynamic-sized rows are much less fragmented when mixing deletes with updates and inserts. This is
done by automatically combining adjacent deleted blocks and by extending blocks if the next block is
deleted.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file,
you can INSERT new rows into it at the same time that other threads are reading from the table. A
free block can occur as a result of deleting rows or an update of a dynamic length row with more
data than its current contents. When all free blocks are used up (filled in), future inserts become
concurrent again. See Section 10.11.3, “Concurrent Inserts”.

• You can put the data file and index file in different directories on different physical devices to get
more speed with the DATA DIRECTORY and INDEX DIRECTORY table options to CREATE TABLE.
See Section 15.1.20, “CREATE TABLE Statement”.

• BLOB and TEXT columns can be indexed.

• NULL values are permitted in indexed columns. This takes 0 to 1 bytes per key.

• Each character column can have a different character set. See Chapter 12, Character Sets,
Collations, Unicode.

• There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If
mysqld is started with the myisam_recover_options system variable set, MyISAM tables are
automatically checked when opened, and are repaired if the table wasn't closed properly.

• myisamchk marks tables as checked if you run it with the --update-state option. myisamchk
--fast checks only those tables that don't have this mark.

• myisamchk --analyze stores statistics for portions of keys, as well as for entire keys.

• myisampack can pack BLOB and VARCHAR columns.

MyISAM also supports the following features:

• Support for a true VARCHAR type; a VARCHAR column starts with a length stored in one or two bytes.

• Tables with VARCHAR columns may have fixed or dynamic row length.

• The sum of the lengths of the VARCHAR and CHAR columns in a table may be up to 64KB.

• Arbitrary length UNIQUE constraints.

Additional Resources

• A forum dedicated to the MyISAM storage engine is available at https://forums.mysql.com/list.php?
21.

18.2.1 MyISAM Startup Options

The following options to mysqld can be used to change the behavior of MyISAM tables. For additional
information, see Section 7.1.7, “Server Command Options”.

Table 18.3 MyISAM Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

bulk_insert_buffer_sizeYes Yes Yes Both Yes

3581

https://forums.mysql.com/list.php?21
https://forums.mysql.com/list.php?21

MyISAM Startup Options

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

concurrent_insertYes Yes Yes Global Yes

delay_key_writeYes Yes Yes Global Yes

have_rtree_keys Yes Global No

key_buffer_sizeYes Yes Yes Global Yes

log-isam Yes Yes

myisam-
block-size

Yes Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam_recover_optionsYes Yes Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

myisam_use_mmapYes Yes Yes Global Yes

tmp_table_sizeYes Yes Yes Both Yes

The following system variables affect the behavior of MyISAM tables. For additional information, see
Section 7.1.8, “Server System Variables”.

• bulk_insert_buffer_size

The size of the tree cache used in bulk insert optimization.

Note

This is a limit per thread!

• delay_key_write=ALL

Don't flush key buffers between writes for any MyISAM table.

Note

If you do this, you should not access MyISAM tables from another program
(such as from another MySQL server or with myisamchk) when the tables
are in use. Doing so risks index corruption. Using --external-locking
does not eliminate this risk.

• myisam_max_sort_file_size

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA). If the file size would be larger than
this value, the index is created using the key cache instead, which is slower. The value is given in
bytes.

• myisam_recover_options=mode

Set the mode for automatic recovery of crashed MyISAM tables.

• myisam_sort_buffer_size

Set the size of the buffer used when recovering tables.

3582

Space Needed for Keys

Automatic recovery is activated if you start mysqld with the myisam_recover_options system
variable set. In this case, when the server opens a MyISAM table, it checks whether the table is marked
as crashed or whether the open count variable for the table is not 0 and you are running the server with
external locking disabled. If either of these conditions is true, the following happens:

• The server checks the table for errors.

• If the server finds an error, it tries to do a fast table repair (with sorting and without re-creating the
data file).

• If the repair fails because of an error in the data file (for example, a duplicate-key error), the server
tries again, this time re-creating the data file.

• If the repair still fails, the server tries once more with the old repair option method (write row by row
without sorting). This method should be able to repair any type of error and has low disk space
requirements.

If the recovery wouldn't be able to recover all rows from previously completed statements and you
didn't specify FORCE in the value of the myisam_recover_options system variable, automatic repair
aborts with an error message in the error log:

Error: Couldn't repair table: test.g00pages

If you specify FORCE, a warning like this is written instead:

Warning: Found 344 of 354 rows when repairing ./test/g00pages

If the automatic recovery value includes BACKUP, the recovery process creates files with names of the
form tbl_name-datetime.BAK. You should have a cron script that automatically moves these files
from the database directories to backup media.

18.2.2 Space Needed for Keys

MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as
(key_length+4)/0.67, summed over all keys. This is for the worst case when all keys are inserted
in sorted order and the table doesn't have any compressed keys.

String indexes are space compressed. If the first index part is a string, it is also prefix compressed.
Space compression makes the index file smaller than the worst-case figure if a string column has a lot
of trailing space or is a VARCHAR column that is not always used to the full length. Prefix compression
is used on keys that start with a string. Prefix compression helps if there are many strings with an
identical prefix.

In MyISAM tables, you can also prefix compress numbers by specifying the PACK_KEYS=1 table option
when you create the table. Numbers are stored with the high byte first, so this helps when you have
many integer keys that have an identical prefix.

18.2.3 MyISAM Table Storage Formats

MyISAM supports three different storage formats. Two of them, fixed and dynamic format, are chosen
automatically depending on the type of columns you are using. The third, compressed format, can be
created only with the myisampack utility (see Section 6.6.6, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”).

When you use CREATE TABLE or ALTER TABLE for a table that has no BLOB or TEXT columns, you
can force the table format to FIXED or DYNAMIC with the ROW_FORMAT table option.

See Section 15.1.20, “CREATE TABLE Statement”, for information about ROW_FORMAT.

You can decompress (unpack) compressed MyISAM tables using myisamchk --unpack; see
Section 6.6.4, “myisamchk — MyISAM Table-Maintenance Utility”, for more information.

3583

MyISAM Table Storage Formats

18.2.3.1 Static (Fixed-Length) Table Characteristics

Static format is the default for MyISAM tables. It is used when the table contains no variable-length
columns (VARCHAR, VARBINARY, BLOB, or TEXT). Each row is stored using a fixed number of bytes.

Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to
corruption). It is also the fastest of the on-disk formats due to the ease with which rows in the data file
can be found on disk: To look up a row based on a row number in the index, multiply the row number
by the row length to calculate the row position. Also, when scanning a table, it is very easy to read a
constant number of rows with each disk read operation.

The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-format
MyISAM file. In this case, myisamchk can easily determine where each row starts and ends, so it
can usually reclaim all rows except the partially written one. MyISAM table indexes can always be
reconstructed based on the data rows.

Note

Fixed-length row format is available only for tables having no BLOB or TEXT
columns. Creating a table having such columns with an explicit ROW_FORMAT
clause does not raise an error or warning; the format specification is ignored.

Static-format tables have these characteristics:

• CHAR and VARCHAR columns are space-padded to the specified column width, although the column
type is not altered. BINARY and VARBINARY columns are padded with 0x00 bytes to the column
width.

• NULL columns require additional space in the row to record whether their values are NULL. Each
NULL column takes one bit extra, rounded up to the nearest byte.

• Very quick.

• Easy to cache.

• Easy to reconstruct after a crash, because rows are located in fixed positions.

• Reorganization is unnecessary unless you delete a huge number of rows and want to return free disk
space to the operating system. To do this, use OPTIMIZE TABLE or myisamchk -r.

• Usually require more disk space than dynamic-format tables.

• The expected row length in bytes for static-sized rows is calculated using the following expression:

row length = 1
 + (sum of column lengths)
 + (number of NULL columns + delete_flag + 7)/8
 + (number of variable-length columns)

delete_flag is 1 for tables with static row format. Static tables use a bit in the row record for a flag
that indicates whether the row has been deleted. delete_flag is 0 for dynamic tables because the
flag is stored in the dynamic row header.

18.2.3.2 Dynamic Table Characteristics

Dynamic storage format is used if a MyISAM table contains any variable-length columns (VARCHAR,
VARBINARY, BLOB, or TEXT), or if the table was created with the ROW_FORMAT=DYNAMIC table option.

Dynamic format is a little more complex than static format because each row has a header that
indicates how long it is. A row can become fragmented (stored in noncontiguous pieces) when it is
made longer as a result of an update.

3584

MyISAM Table Storage Formats

You can use OPTIMIZE TABLE or myisamchk -r to defragment a table. If you have fixed-length
columns that you access or change frequently in a table that also contains some variable-length
columns, it might be a good idea to move the variable-length columns to other tables just to avoid
fragmentation.

Dynamic-format tables have these characteristics:

• All string columns are dynamic except those with a length less than four.

• Each row is preceded by a bitmap that indicates which columns contain the empty string (for string
columns) or zero (for numeric columns). This does not include columns that contain NULL values. If
a string column has a length of zero after trailing space removal, or a numeric column has a value of
zero, it is marked in the bitmap and not saved to disk. Nonempty strings are saved as a length byte
plus the string contents.

• NULL columns require additional space in the row to record whether their values are NULL. Each
NULL column takes one bit extra, rounded up to the nearest byte.

• Much less disk space usually is required than for fixed-length tables.

• Each row uses only as much space as is required. However, if a row becomes larger, it is split into
as many pieces as are required, resulting in row fragmentation. For example, if you update a row
with information that extends the row length, the row becomes fragmented. In this case, you may
have to run OPTIMIZE TABLE or myisamchk -r from time to time to improve performance. Use
myisamchk -ei to obtain table statistics.

• More difficult than static-format tables to reconstruct after a crash, because rows may be fragmented
into many pieces and links (fragments) may be missing.

• The expected row length for dynamic-sized rows is calculated using the following expression:

3
+ (number of columns + 7) / 8
+ (number of char columns)
+ (packed size of numeric columns)
+ (length of strings)
+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic row is linked whenever an update causes an
enlargement of the row. Each new link is at least 20 bytes, so the next enlargement probably goes in
the same link. If not, another link is created. You can find the number of links using myisamchk -
ed. All links may be removed with OPTIMIZE TABLE or myisamchk -r.

18.2.3.3 Compressed Table Characteristics

Compressed storage format is a read-only format that is generated with the myisampack tool.
Compressed tables can be uncompressed with myisamchk.

Compressed tables have the following characteristics:

• Compressed tables take very little disk space. This minimizes disk usage, which is helpful when
using slow disks (such as CD-ROMs).

• Each row is compressed separately, so there is very little access overhead. The header for a row
takes up one to three bytes depending on the biggest row in the table. Each column is compressed
differently. There is usually a different Huffman tree for each column. Some of the compression types
are:

• Suffix space compression.

• Prefix space compression.

• Numbers with a value of zero are stored using one bit.

3585

MyISAM Table Problems

• If values in an integer column have a small range, the column is stored using the smallest possible
type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one byte)
if all its values are in the range from -128 to 127.

• If a column has only a small set of possible values, the data type is converted to ENUM.

• A column may use any combination of the preceding compression types.

• Can be used for fixed-length or dynamic-length rows.

Note

While a compressed table is read only, and you cannot therefore update or add
rows in the table, DDL (Data Definition Language) operations are still valid. For
example, you may still use DROP to drop the table, and TRUNCATE TABLE to
empty the table.

18.2.4 MyISAM Table Problems

The file format that MySQL uses to store data has been extensively tested, but there are always
circumstances that may cause database tables to become corrupted. The following discussion
describes how this can happen and how to handle it.

18.2.4.1 Corrupted MyISAM Tables

Even though the MyISAM table format is very reliable (all changes to a table made by an SQL
statement are written before the statement returns), you can still get corrupted tables if any of the
following events occur:

• The mysqld process is killed in the middle of a write.

• An unexpected computer shutdown occurs (for example, the computer is turned off).

• Hardware failures.

• You are using an external program (such as myisamchk) to modify a table that is being modified by
the server at the same time.

• A software bug in the MySQL or MyISAM code.

Typical symptoms of a corrupt table are:

• You get the following error while selecting data from the table:

Incorrect key file for table: '...'. Try to repair it

• Queries don't find rows in the table or return incomplete results.

You can check the health of a MyISAM table using the CHECK TABLE statement, and repair a
corrupted MyISAM table with REPAIR TABLE. When mysqld is not running, you can also check or
repair a table with the myisamchk command. See Section 15.7.3.2, “CHECK TABLE Statement”,
Section 15.7.3.5, “REPAIR TABLE Statement”, and Section 6.6.4, “myisamchk — MyISAM Table-
Maintenance Utility”.

If your tables become corrupted frequently, you should try to determine why this is happening. The
most important thing to know is whether the table became corrupted as a result of an unexpected
server exit. You can verify this easily by looking for a recent restarted mysqld message in the
error log. If there is such a message, it is likely that table corruption is a result of the server dying.
Otherwise, corruption may have occurred during normal operation. This is a bug. You should try to
create a reproducible test case that demonstrates the problem. See Section B.3.3.3, “What to Do If
MySQL Keeps Crashing”, and Section 7.9, “Debugging MySQL”.

3586

The MEMORY Storage Engine

18.2.4.2 Problems from Tables Not Being Closed Properly

Each MyISAM index file (.MYI file) has a counter in the header that can be used to check whether a
table has been closed properly. If you get the following warning from CHECK TABLE or myisamchk, it
means that this counter has gone out of sync:

clients are using or haven't closed the table properly

This warning doesn't necessarily mean that the table is corrupted, but you should at least check the
table.

The counter works as follows:

• The first time a table is updated in MySQL, a counter in the header of the index files is incremented.

• The counter is not changed during further updates.

• When the last instance of a table is closed (because a FLUSH TABLES operation was performed
or because there is no room in the table cache), the counter is decremented if the table has been
updated at any point.

• When you repair the table or check the table and it is found to be okay, the counter is reset to zero.

• To avoid problems with interaction with other processes that might check the table, the counter is not
decremented on close if it was zero.

In other words, the counter can become incorrect only under these conditions:

• A MyISAM table is copied without first issuing LOCK TABLES and FLUSH TABLES.

• MySQL has crashed between an update and the final close. (The table may still be okay because
MySQL always issues writes for everything between each statement.)

• A table was modified by myisamchk --recover or myisamchk --update-state at the same
time that it was in use by mysqld.

• Multiple mysqld servers are using the table and one server performed a REPAIR TABLE or CHECK
TABLE on the table while it was in use by another server. In this setup, it is safe to use CHECK
TABLE, although you might get the warning from other servers. However, REPAIR TABLE should
be avoided because when one server replaces the data file with a new one, this is not known to the
other servers.

In general, it is a bad idea to share a data directory among multiple servers. See Section 7.8,
“Running Multiple MySQL Instances on One Machine”, for additional discussion.

18.3 The MEMORY Storage Engine
The MEMORY storage engine (formerly known as HEAP) creates special-purpose tables with contents
that are stored in memory. Because the data is vulnerable to crashes, hardware issues, or power
outages, only use these tables as temporary work areas or read-only caches for data pulled from other
tables.

Table 18.4 MEMORY Storage Engine Features

Feature Support

B-tree indexes Yes

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes No

3587

When to Use MEMORY or NDB Cluster

Feature Support

Compressed data No

Data caches N/A

Encrypted data Yes (Implemented in the server via encryption
functions.)

Foreign key support No

Full-text search indexes No

Geospatial data type support No

Geospatial indexing support No

Hash indexes Yes

Index caches N/A

Locking granularity Table

MVCC No

Replication support (Implemented in the server,
rather than in the storage engine.)

Limited (See the discussion later in this section.)

Storage limits RAM

T-tree indexes No

Transactions No

Update statistics for data dictionary Yes

• When to Use MEMORY or NDB Cluster

• Partitioning

• Performance Characteristics

• Characteristics of MEMORY Tables

• DDL Operations for MEMORY Tables

• Indexes

• User-Created and Temporary Tables

• Loading Data

• MEMORY Tables and Replication

• Managing Memory Use

• Additional Resources

When to Use MEMORY or NDB Cluster

Developers looking to deploy applications that use the MEMORY storage engine for important, highly
available, or frequently updated data should consider whether NDB Cluster is a better choice. A typical
use case for the MEMORY engine involves these characteristics:

• Operations involving transient, non-critical data such as session management or caching. When the
MySQL server halts or restarts, the data in MEMORY tables is lost.

• In-memory storage for fast access and low latency. Data volume can fit entirely in memory without
causing the operating system to swap out virtual memory pages.

• A read-only or read-mostly data access pattern (limited updates).

3588

Partitioning

NDB Cluster offers the same features as the MEMORY engine with higher performance levels, and
provides additional features not available with MEMORY:

• Row-level locking and multiple-thread operation for low contention between clients.

• Scalability even with statement mixes that include writes.

• Optional disk-backed operation for data durability.

• Shared-nothing architecture and multiple-host operation with no single point of failure, enabling
99.999% availability.

• Automatic data distribution across nodes; application developers need not craft custom sharding or
partitioning solutions.

• Support for variable-length data types (including BLOB and TEXT) not supported by MEMORY.

Partitioning

MEMORY tables cannot be partitioned.

Performance Characteristics

MEMORY performance is constrained by contention resulting from single-thread execution and table
lock overhead when processing updates. This limits scalability when load increases, particularly for
statement mixes that include writes.

Despite the in-memory processing for MEMORY tables, they are not necessarily faster than InnoDB
tables on a busy server, for general-purpose queries, or under a read/write workload. In particular, the
table locking involved with performing updates can slow down concurrent usage of MEMORY tables from
multiple sessions.

Depending on the kinds of queries performed on a MEMORY table, you might create indexes as either
the default hash data structure (for looking up single values based on a unique key), or a general-
purpose B-tree data structure (for all kinds of queries involving equality, inequality, or range operators
such as less than or greater than). The following sections illustrate the syntax for creating both kinds
of indexes. A common performance issue is using the default hash indexes in workloads where B-tree
indexes are more efficient.

Characteristics of MEMORY Tables

The MEMORY storage engine does not create any files on disk. The table definition is stored in the
MySQL data dictionary.

MEMORY tables have the following characteristics:

• Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts.
No overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows
are put in a linked list and are reused when you insert new data into the table. MEMORY tables also
have none of the problems commonly associated with deletes plus inserts in hashed tables.

• MEMORY tables use a fixed-length row-storage format. Variable-length types such as VARCHAR are
stored using a fixed length.

• MEMORY tables cannot contain BLOB or TEXT columns.

• MEMORY includes support for AUTO_INCREMENT columns.

• Non-TEMPORARY MEMORY tables are shared among all clients, just like any other non-TEMPORARY
table.

3589

DDL Operations for MEMORY Tables

DDL Operations for MEMORY Tables

To create a MEMORY table, specify the clause ENGINE=MEMORY on the CREATE TABLE statement.

CREATE TABLE t (i INT) ENGINE = MEMORY;

As indicated by the engine name, MEMORY tables are stored in memory. They use hash indexes by
default, which makes them very fast for single-value lookups, and very useful for creating temporary
tables. However, when the server shuts down, all rows stored in MEMORY tables are lost. The tables
themselves continue to exist because their definitions are stored in the MySQL data dictionary, but they
are empty when the server restarts.

This example shows how you might create, use, and remove a MEMORY table:

mysql> CREATE TABLE test ENGINE=MEMORY
 SELECT ip,SUM(downloads) AS down
 FROM log_table GROUP BY ip;
mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;

The maximum size of MEMORY tables is limited by the max_heap_table_size system variable, which
has a default value of 16MB. To enforce different size limits for MEMORY tables, change the value of
this variable. The value in effect for CREATE TABLE, or a subsequent ALTER TABLE or TRUNCATE
TABLE, is the value used for the life of the table. A server restart also sets the maximum size of existing
MEMORY tables to the global max_heap_table_size value. You can set the size for individual tables
as described later in this section.

Indexes

The MEMORY storage engine supports both HASH and BTREE indexes. You can specify one or the other
for a given index by adding a USING clause as shown here:

CREATE TABLE lookup
 (id INT, INDEX USING HASH (id))
 ENGINE = MEMORY;
CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

For general characteristics of B-tree and hash indexes, see Section 10.3.1, “How MySQL Uses
Indexes”.

MEMORY tables can have up to 64 indexes per table, 16 columns per index and a maximum key length
of 3072 bytes.

If a MEMORY table hash index has a high degree of key duplication (many index entries containing the
same value), updates to the table that affect key values and all deletes are significantly slower. The
degree of this slowdown is proportional to the degree of duplication (or, inversely proportional to the
index cardinality). You can use a BTREE index to avoid this problem.

MEMORY tables can have nonunique keys. (This is an uncommon feature for implementations of hash
indexes.)

Columns that are indexed can contain NULL values.

User-Created and Temporary Tables

MEMORY table contents are stored in memory, which is a property that MEMORY tables share with
internal temporary tables that the server creates on the fly while processing queries. However, the two
types of tables differ in that MEMORY tables are not subject to storage conversion, whereas internal
temporary tables are:

3590

Loading Data

• If an internal temporary table becomes too large, the server automatically converts it to on-disk
storage, as described in Section 10.4.4, “Internal Temporary Table Use in MySQL”.

• User-created MEMORY tables are never converted to disk tables.

Loading Data

To populate a MEMORY table when the MySQL server starts, you can use the init_file system
variable. For example, you can put statements such as INSERT INTO ... SELECT or LOAD DATA
into a file to load the table from a persistent data source, and use init_file to name the file. See
Section 7.1.8, “Server System Variables”, and Section 15.2.9, “LOAD DATA Statement”.

MEMORY Tables and Replication

When a replication source server shuts down and restarts, its MEMORY tables become empty. To
replicate this effect to replicas, the first time that the source uses a given MEMORY table after startup, it
logs an event that notifies replicas that the table must be emptied by writing a DELETE or (from MySQL
8.0.22) TRUNCATE TABLE statement for that table to the binary log. When a replica server shuts down
and restarts, its MEMORY tables also become empty, and it writes a DELETE or (from MySQL 8.0.22)
TRUNCATE TABLE statement to its own binary log, which is passed on to any downstream replicas.

When you use MEMORY tables in a replication topology, in some situations, the table on the source and
the table on the replica can differ. For information on handling each of these situations to prevent stale
reads or errors, see Section 19.5.1.21, “Replication and MEMORY Tables”.

Managing Memory Use

The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.

Memory is not reclaimed if you delete individual rows from a MEMORY table. Memory is reclaimed only
when the entire table is deleted. Memory that was previously used for deleted rows is re-used for
new rows within the same table. To free all the memory used by a MEMORY table when you no longer
require its contents, execute DELETE or TRUNCATE TABLE to remove all rows, or remove the table
altogether using DROP TABLE. To free up the memory used by deleted rows, use ALTER TABLE
ENGINE=MEMORY to force a table rebuild.

The memory needed for one row in a MEMORY table is calculated using the following expression:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) * 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) * 2)
+ ALIGN(length_of_row+1, sizeof(char*))

ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the char
pointer size. sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.

As mentioned earlier, the max_heap_table_size system variable sets the limit on the maximum
size of MEMORY tables. To control the maximum size for individual tables, set the session value of
this variable before creating each table. (Do not change the global max_heap_table_size value
unless you intend the value to be used for MEMORY tables created by all clients.) The following example
creates two MEMORY tables, with a maximum size of 1MB and 2MB, respectively:

mysql> SET max_heap_table_size = 1024*1024;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.01 sec)

mysql> SET max_heap_table_size = 1024*1024*2;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t2 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.00 sec)

3591

Additional Resources

Both tables revert to the server's global max_heap_table_size value if the server restarts.

You can also specify a MAX_ROWS table option in CREATE TABLE statements for MEMORY tables to
provide a hint about the number of rows you plan to store in them. This does not enable the table to
grow beyond the max_heap_table_size value, which still acts as a constraint on maximum table
size. For maximum flexibility in being able to use MAX_ROWS, set max_heap_table_size at least as
high as the value to which you want each MEMORY table to be able to grow.

Additional Resources

A forum dedicated to the MEMORY storage engine is available at https://forums.mysql.com/list.php?92.

18.4 The CSV Storage Engine

The CSV storage engine stores data in text files using comma-separated values format.

The CSV storage engine is always compiled into the MySQL server.

To examine the source for the CSV engine, look in the storage/csv directory of a MySQL source
distribution.

When you create a CSV table, the server creates a plain text data file having a name that begins with
the table name and has a .CSV extension. When you store data into the table, the storage engine
saves it into the data file in comma-separated values format.

mysql> CREATE TABLE test (i INT NOT NULL, c CHAR(10) NOT NULL)
 ENGINE = CSV;
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.05 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
+---+------------+
| i | c |
+---+------------+
| 1 | record one |
| 2 | record two |
+---+------------+
2 rows in set (0.00 sec)

Creating a CSV table also creates a corresponding metafile that stores the state of the table and the
number of rows that exist in the table. The name of this file is the same as the name of the table with
the extension CSM.

If you examine the test.CSV file in the database directory created by executing the preceding
statements, its contents should look like this:

"1","record one"
"2","record two"

This format can be read, and even written, by spreadsheet applications such as Microsoft Excel.

18.4.1 Repairing and Checking CSV Tables

The CSV storage engine supports the CHECK TABLE and REPAIR TABLE statements to verify and, if
possible, repair a damaged CSV table.

When running the CHECK TABLE statement, the CSV file is checked for validity by looking for the
correct field separators, escaped fields (matching or missing quotation marks), the correct number
of fields compared to the table definition and the existence of a corresponding CSV metafile. The first
invalid row discovered causes an error. Checking a valid table produces output like that shown here:

3592

https://forums.mysql.com/list.php?92

CSV Limitations

mysql> CHECK TABLE csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | status | OK |
+--------------+-------+----------+----------+

A check on a corrupted table returns a fault such as

mysql> CHECK TABLE csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | error | Corrupt |
+--------------+-------+----------+----------+

To repair a table, use REPAIR TABLE, which copies as many valid rows from the existing CSV data
as possible, and then replaces the existing CSV file with the recovered rows. Any rows beyond the
corrupted data are lost.

mysql> REPAIR TABLE csvtest;
+--------------+--------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+--------+----------+----------+
| test.csvtest | repair | status | OK |
+--------------+--------+----------+----------+

Warning

During repair, only the rows from the CSV file up to the first damaged row are
copied to the new table. All other rows from the first damaged row to the end of
the table are removed, even valid rows.

18.4.2 CSV Limitations

The CSV storage engine does not support indexing.

The CSV storage engine does not support partitioning.

All tables that you create using the CSV storage engine must have the NOT NULL attribute on all
columns.

18.5 The ARCHIVE Storage Engine

The ARCHIVE storage engine produces special-purpose tables that store large amounts of unindexed
data in a very small footprint.

Table 18.5 ARCHIVE Storage Engine Features

Feature Support

B-tree indexes No

Backup/point-in-time recovery (Implemented in
the server, rather than in the storage engine.)

Yes

Cluster database support No

Clustered indexes No

Compressed data Yes

Data caches No

Encrypted data Yes (Implemented in the server via encryption
functions.)

3593

The ARCHIVE Storage Engine

Feature Support

Foreign key support No

Full-text search indexes No

Geospatial data type support Yes

Geospatial indexing support No

Hash indexes No

Index caches No

Locking granularity Row

MVCC No

Replication support (Implemented in the server,
rather than in the storage engine.)

Yes

Storage limits None

T-tree indexes No

Transactions No

Update statistics for data dictionary Yes

The ARCHIVE storage engine is included in MySQL binary distributions. To enable this storage engine
if you build MySQL from source, invoke CMake with the -DWITH_ARCHIVE_STORAGE_ENGINE option.

To examine the source for the ARCHIVE engine, look in the storage/archive directory of a MySQL
source distribution.

You can check whether the ARCHIVE storage engine is available with the SHOW ENGINES statement.

When you create an ARCHIVE table, the storage engine creates files with names that begin with the
table name. The data file has an extension of .ARZ. An .ARN file may appear during optimization
operations.

The ARCHIVE engine supports INSERT, REPLACE, and SELECT, but not DELETE or UPDATE. It does
support ORDER BY operations, BLOB columns, and spatial data types (see Section 13.4.1, “Spatial
Data Types”). Geographic spatial reference systems are not supported. The ARCHIVE engine uses
row-level locking.

The ARCHIVE engine supports the AUTO_INCREMENT column attribute. The AUTO_INCREMENT
column can have either a unique or nonunique index. Attempting to create an index on any other
column results in an error. The ARCHIVE engine also supports the AUTO_INCREMENT table option in
CREATE TABLE statements to specify the initial sequence value for a new table or reset the sequence
value for an existing table, respectively.

ARCHIVE does not support inserting a value into an AUTO_INCREMENT column less than the current
maximum column value. Attempts to do so result in an ER_DUP_KEY error.

The ARCHIVE engine ignores BLOB columns if they are not requested and scans past them while
reading.

The ARCHIVE storage engine does not support partitioning.

Storage: Rows are compressed as they are inserted. The ARCHIVE engine uses zlib lossless data
compression (see http://www.zlib.net/). You can use OPTIMIZE TABLE to analyze the table and pack
it into a smaller format (for a reason to use OPTIMIZE TABLE, see later in this section). The engine
also supports CHECK TABLE. There are several types of insertions that are used:

• An INSERT statement just pushes rows into a compression buffer, and that buffer flushes as
necessary. The insertion into the buffer is protected by a lock. A SELECT forces a flush to occur.

3594

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_dup_key
http://www.zlib.net/

Additional Resources

• A bulk insert is visible only after it completes, unless other inserts occur at the same time, in which
case it can be seen partially. A SELECT never causes a flush of a bulk insert unless a normal insert
occurs while it is loading.

Retrieval: On retrieval, rows are uncompressed on demand; there is no row cache. A SELECT
operation performs a complete table scan: When a SELECT occurs, it finds out how many rows are
currently available and reads that number of rows. SELECT is performed as a consistent read. Note
that lots of SELECT statements during insertion can deteriorate the compression, unless only bulk
inserts are used. To achieve better compression, you can use OPTIMIZE TABLE or REPAIR TABLE.
The number of rows in ARCHIVE tables reported by SHOW TABLE STATUS is always accurate. See
Section 15.7.3.4, “OPTIMIZE TABLE Statement”, Section 15.7.3.5, “REPAIR TABLE Statement”, and
Section 15.7.7.38, “SHOW TABLE STATUS Statement”.

Additional Resources

• A forum dedicated to the ARCHIVE storage engine is available at https://forums.mysql.com/list.php?
112.

18.6 The BLACKHOLE Storage Engine

The BLACKHOLE storage engine acts as a “black hole” that accepts data but throws it away and does
not store it. Retrievals always return an empty result:

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = BLACKHOLE;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
Empty set (0.00 sec)

To enable the BLACKHOLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_BLACKHOLE_STORAGE_ENGINE option.

To examine the source for the BLACKHOLE engine, look in the sql directory of a MySQL source
distribution.

When you create a BLACKHOLE table, the server creates the table definition in the global data
dictionary. There are no files associated with the table.

The BLACKHOLE storage engine supports all kinds of indexes. That is, you can include index
declarations in the table definition.

The maximum key length is 3072 bytes as of MySQL 8.0.27. Prior to 8.0.27, the maximum key length is
1000 bytes.

The BLACKHOLE storage engine does not support partitioning.

You can check whether the BLACKHOLE storage engine is available with the SHOW ENGINES
statement.

Inserts into a BLACKHOLE table do not store any data, but if statement based binary logging is enabled,
the SQL statements are logged and replicated to replica servers. This can be useful as a repeater or
filter mechanism.

Suppose that your application requires replica-side filtering rules, but transferring all binary log data
to the replica first results in too much traffic. In such a case, it is possible to set up on the replication
source server a “dummy” replica process whose default storage engine is BLACKHOLE, depicted as
follows:

3595

https://forums.mysql.com/list.php?112
https://forums.mysql.com/list.php?112

The BLACKHOLE Storage Engine

Figure 18.1 Replication using BLACKHOLE for Filtering

The source writes to its binary log. The “dummy” mysqld process acts as a replica, applying the
desired combination of replicate-do-* and replicate-ignore-* rules, and writes a new,
filtered binary log of its own. (See Section 19.1.6, “Replication and Binary Logging Options and
Variables”.) This filtered log is provided to the replica.

The dummy process does not actually store any data, so there is little processing overhead incurred
by running the additional mysqld process on the replication source server. This type of setup can be
repeated with additional replicas.

INSERT triggers for BLACKHOLE tables work as expected. However, because the BLACKHOLE table
does not actually store any data, UPDATE and DELETE triggers are not activated: The FOR EACH ROW
clause in the trigger definition does not apply because there are no rows.

Other possible uses for the BLACKHOLE storage engine include:

• Verification of dump file syntax.

• Measurement of the overhead from binary logging, by comparing performance using BLACKHOLE
with and without binary logging enabled.

• BLACKHOLE is essentially a “no-op” storage engine, so it could be used for finding performance
bottlenecks not related to the storage engine itself.

The BLACKHOLE engine is transaction-aware, in the sense that committed transactions are written to
the binary log and rolled-back transactions are not.

Blackhole Engine and Auto Increment Columns

The BLACKHOLE engine is a no-op engine. Any operations performed on a table using BLACKHOLE
have no effect. This should be borne in mind when considering the behavior of primary key columns
that auto increment. The engine does not automatically increment field values, and does not retain auto
increment field state. This has important implications in replication.

Consider the following replication scenario where all three of the following conditions apply:

1. On a source server there is a blackhole table with an auto increment field that is a primary key.

2. On a replica the same table exists but using the MyISAM engine.

3596

The MERGE Storage Engine

3. Inserts are performed into the source's table without explicitly setting the auto increment value in
the INSERT statement itself or through using a SET INSERT_ID statement.

In this scenario replication fails with a duplicate entry error on the primary key column.

In statement based replication, the value of INSERT_ID in the context event is always the same.
Replication therefore fails due to trying insert a row with a duplicate value for a primary key column.

In row based replication, the value that the engine returns for the row always be the same for each
insert. This results in the replica attempting to replay two insert log entries using the same value for the
primary key column, and so replication fails.

Column Filtering

When using row-based replication, (binlog_format=ROW), a replica where the last columns are
missing from a table is supported, as described in the section Section 19.5.1.9, “Replication with
Differing Table Definitions on Source and Replica”.

This filtering works on the replica side, that is, the columns are copied to the replica before they are
filtered out. There are at least two cases where it is not desirable to copy the columns to the replica:

1. If the data is confidential, so the replica server should not have access to it.

2. If the source has many replicas, filtering before sending to the replicas may reduce network traffic.

Source column filtering can be achieved using the BLACKHOLE engine. This is carried out in a
way similar to how source table filtering is achieved - by using the BLACKHOLE engine and the --
replicate-do-table or --replicate-ignore-table option.

The setup for the source is:

CREATE TABLE t1 (public_col_1, ..., public_col_N,
 secret_col_1, ..., secret_col_M) ENGINE=MyISAM;

The setup for the trusted replica is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=BLACKHOLE;

The setup for the untrusted replica is:

CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=MyISAM;

18.7 The MERGE Storage Engine
The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyISAM
tables that can be used as one. “Identical” means that all tables have identical column data types and
index information. You cannot merge MyISAM tables in which the columns are listed in a different
order, do not have exactly the same data types in corresponding columns, or have the indexes in
different order. However, any or all of the MyISAM tables can be compressed with myisampack. See
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”. Differences
between tables such as these do not matter:

• Names of corresponding columns and indexes can differ.

• Comments for tables, columns, and indexes can differ.

• Table options such as AVG_ROW_LENGTH, MAX_ROWS, or PACK_KEYS can differ.

An alternative to a MERGE table is a partitioned table, which stores partitions of a single table in
separate files and enables some operations to be performed more efficiently. For more information, see
Chapter 26, Partitioning.

When you create a MERGE table, MySQL creates a .MRG file on disk that contains the names of the
underlying MyISAM tables that should be used as one. The table format of the MERGE table is stored

3597

The MERGE Storage Engine

in the MySQL data dictionary. The underlying tables do not have to be in the same database as the
MERGE table.

You can use SELECT, DELETE, UPDATE, and INSERT on MERGE tables. You must have SELECT,
DELETE, and UPDATE privileges on the MyISAM tables that you map to a MERGE table.

Note

The use of MERGE tables entails the following security issue: If a user has
access to MyISAM table t, that user can create a MERGE table m that accesses
t. However, if the user's privileges on t are subsequently revoked, the user can
continue to access t by doing so through m.

Use of DROP TABLE with a MERGE table drops only the MERGE specification. The underlying tables are
not affected.

To create a MERGE table, you must specify a UNION=(list-of-tables) option that indicates which
MyISAM tables to use. You can optionally specify an INSERT_METHOD option to control how inserts
into the MERGE table take place. Use a value of FIRST or LAST to cause inserts to be made in the first
or last underlying table, respectively. If you specify no INSERT_METHOD option or if you specify it with a
value of NO, inserts into the MERGE table are not permitted and attempts to do so result in an error.

The following example shows how to create a MERGE table:

mysql> CREATE TABLE t1 (
 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> CREATE TABLE t2 (
 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');
mysql> CREATE TABLE total (
 -> a INT NOT NULL AUTO_INCREMENT,
 -> message CHAR(20), INDEX(a))
 -> ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

Column a is indexed as a PRIMARY KEY in the underlying MyISAM tables, but not in the MERGE table.
There it is indexed but not as a PRIMARY KEY because a MERGE table cannot enforce uniqueness over
the set of underlying tables. (Similarly, a column with a UNIQUE index in the underlying tables should
be indexed in the MERGE table but not as a UNIQUE index.)

After creating the MERGE table, you can use it to issue queries that operate on the group of tables as a
whole:

mysql> SELECT * FROM total;
+---+---------+
| a | message |
+---+---------+
1	Testing
2	table
3	t1
1	Testing
2	table
3	t2
+---+---------+

To remap a MERGE table to a different collection of MyISAM tables, you can use one of the following
methods:

• DROP the MERGE table and re-create it.

• Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.

It is also possible to use ALTER TABLE ... UNION=() (that is, with an empty UNION clause)
to remove all of the underlying tables. However, in this case, the table is effectively empty and

3598

Additional Resources

inserts fail because there is no underlying table to take new rows. Such a table might be useful as a
template for creating new MERGE tables with CREATE TABLE ... LIKE.

The underlying table definitions and indexes must conform closely to the definition of the MERGE table.
Conformance is checked when a table that is part of a MERGE table is opened, not when the MERGE
table is created. If any table fails the conformance checks, the operation that triggered the opening of
the table fails. This means that changes to the definitions of tables within a MERGE may cause a failure
when the MERGE table is accessed. The conformance checks applied to each table are:

• The underlying table and the MERGE table must have the same number of columns.

• The column order in the underlying table and the MERGE table must match.

• Additionally, the specification for each corresponding column in the parent MERGE table and the
underlying tables are compared and must satisfy these checks:

• The column type in the underlying table and the MERGE table must be equal.

• The column length in the underlying table and the MERGE table must be equal.

• The column of the underlying table and the MERGE table can be NULL.

• The underlying table must have at least as many indexes as the MERGE table. The underlying table
may have more indexes than the MERGE table, but cannot have fewer.

Note

A known issue exists where indexes on the same columns must be in
identical order, in both the MERGE table and the underlying MyISAM table. See
Bug #33653.

Each index must satisfy these checks:

• The index type of the underlying table and the MERGE table must be the same.

• The number of index parts (that is, multiple columns within a compound index) in the index
definition for the underlying table and the MERGE table must be the same.

• For each index part:

• Index part lengths must be equal.

• Index part types must be equal.

• Index part languages must be equal.

• Check whether index parts can be NULL.

If a MERGE table cannot be opened or used because of a problem with an underlying table, CHECK
TABLE displays information about which table caused the problem.

Additional Resources

• A forum dedicated to the MERGE storage engine is available at https://forums.mysql.com/list.php?93.

18.7.1 MERGE Table Advantages and Disadvantages

MERGE tables can help you solve the following problems:

• Easily manage a set of log tables. For example, you can put data from different months into separate
tables, compress some of them with myisampack, and then create a MERGE table to use them as
one.

3599

https://forums.mysql.com/list.php?93

MERGE Table Problems

• Obtain more speed. You can split a large read-only table based on some criteria, and then put
individual tables on different disks. A MERGE table structured this way could be much faster than
using a single large table.

• Perform more efficient searches. If you know exactly what you are looking for, you can search in just
one of the underlying tables for some queries and use a MERGE table for others. You can even have
many different MERGE tables that use overlapping sets of tables.

• Perform more efficient repairs. It is easier to repair individual smaller tables that are mapped to a
MERGE table than to repair a single large table.

• Instantly map many tables as one. A MERGE table need not maintain an index of its own because it
uses the indexes of the individual tables. As a result, MERGE table collections are very fast to create
or remap. (You must still specify the index definitions when you create a MERGE table, even though
no indexes are created.)

• If you have a set of tables from which you create a large table on demand, you can instead create a
MERGE table from them on demand. This is much faster and saves a lot of disk space.

• Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit, but a
collection of MyISAM tables is not.

• You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to that
single table. There should be no really notable performance impact from doing this (only a couple of
indirect calls and memcpy() calls for each read).

The disadvantages of MERGE tables are:

• You can use only identical MyISAM tables for a MERGE table.

• Some MyISAM features are unavailable in MERGE tables. For example, you cannot create FULLTEXT
indexes on MERGE tables. (You can create FULLTEXT indexes on the underlying MyISAM tables, but
you cannot search the MERGE table with a full-text search.)

• If the MERGE table is nontemporary, all underlying MyISAM tables must be nontemporary. If the
MERGE table is temporary, the MyISAM tables can be any mix of temporary and nontemporary.

• MERGE tables use more file descriptors than MyISAM tables. If 10 clients are using a MERGE table
that maps to 10 tables, the server uses (10 × 10) + 10 file descriptors. (10 data file descriptors for
each of the 10 clients, and 10 index file descriptors shared among the clients.)

• Index reads are slower. When you read an index, the MERGE storage engine needs to issue a read
on all underlying tables to check which one most closely matches a given index value. To read
the next index value, the MERGE storage engine needs to search the read buffers to find the next
value. Only when one index buffer is used up does the storage engine need to read the next index
block. This makes MERGE indexes much slower on eq_ref searches, but not much slower on ref
searches. For more information about eq_ref and ref, see Section 15.8.2, “EXPLAIN Statement”.

18.7.2 MERGE Table Problems

The following are known problems with MERGE tables:

• MERGE child tables are locked through the parent table. If the parent is a temporary table, it is not
locked, and thus the child tables are also not locked; this means that parallel use of the underlying
MyISAM tables corrupts them.

• If you use ALTER TABLE to change a MERGE table to another storage engine, the mapping to the
underlying tables is lost. Instead, the rows from the underlying MyISAM tables are copied into the
altered table, which then uses the specified storage engine.

• The INSERT_METHOD table option for a MERGE table indicates which underlying MyISAM table to use
for inserts into the MERGE table. However, use of the AUTO_INCREMENT table option for that MyISAM

3600

MERGE Table Problems

table has no effect for inserts into the MERGE table until at least one row has been inserted directly
into the MyISAM table.

• A MERGE table cannot maintain uniqueness constraints over the entire table. When you perform an
INSERT, the data goes into the first or last MyISAM table (as determined by the INSERT_METHOD
option). MySQL ensures that unique key values remain unique within that MyISAM table, but not over
all the underlying tables in the collection.

• Because the MERGE engine cannot enforce uniqueness over the set of underlying tables, REPLACE
does not work as expected. The two key facts are:

• REPLACE can detect unique key violations only in the underlying table to which it is going to write
(which is determined by the INSERT_METHOD option). This differs from violations in the MERGE
table itself.

• If REPLACE detects a unique key violation, it changes only the corresponding row in the underlying
table it is writing to; that is, the first or last table, as determined by the INSERT_METHOD option.

Similar considerations apply for INSERT ... ON DUPLICATE KEY UPDATE.

• MERGE tables do not support partitioning. That is, you cannot partition a MERGE table, nor can any of
a MERGE table's underlying MyISAM tables be partitioned.

• You should not use ANALYZE TABLE, REPAIR TABLE, OPTIMIZE TABLE, ALTER TABLE, DROP
TABLE, DELETE without a WHERE clause, or TRUNCATE TABLE on any of the tables that are mapped
into an open MERGE table. If you do so, the MERGE table may still refer to the original table and yield
unexpected results. To work around this problem, ensure that no MERGE tables remain open by
issuing a FLUSH TABLES statement prior to performing any of the named operations.

The unexpected results include the possibility that the operation on the MERGE table reports table
corruption. If this occurs after one of the named operations on the underlying MyISAM tables, the
corruption message is spurious. To deal with this, issue a FLUSH TABLES statement after modifying
the MyISAM tables.

• DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the
MERGE storage engine's table mapping is hidden from the upper layer of MySQL. Windows does not
permit open files to be deleted, so you first must flush all MERGE tables (with FLUSH TABLES) or
drop the MERGE table before dropping the table.

• The definition of the MyISAM tables and the MERGE table are checked when the tables are accessed
(for example, as part of a SELECT or INSERT statement). The checks ensure that the definitions
of the tables and the parent MERGE table definition match by comparing column order, types, sizes
and associated indexes. If there is a difference between the tables, an error is returned and the
statement fails. Because these checks take place when the tables are opened, any changes to the
definition of a single table, including column changes, column ordering, and engine alterations cause
the statement to fail.

• The order of indexes in the MERGE table and its underlying tables should be the same. If you use
ALTER TABLE to add a UNIQUE index to a table used in a MERGE table, and then use ALTER TABLE
to add a nonunique index on the MERGE table, the index ordering is different for the tables if there
was already a nonunique index in the underlying table. (This happens because ALTER TABLE
puts UNIQUE indexes before nonunique indexes to facilitate rapid detection of duplicate keys.)
Consequently, queries on tables with such indexes may return unexpected results.

• If you encounter an error message similar to ERROR 1017 (HY000): Can't find file:
'tbl_name.MRG' (errno: 2), it generally indicates that some of the underlying tables do not
use the MyISAM storage engine. Confirm that all of these tables are MyISAM.

• The maximum number of rows in a MERGE table is 264 (~1.844E+19; the same as for a MyISAM
table). It is not possible to merge multiple MyISAM tables into a single MERGE table that would have
more than this number of rows.

3601

The FEDERATED Storage Engine

• Use of underlying MyISAM tables of differing row formats with a parent MERGE table is currently
known to fail. See Bug #32364.

• You cannot change the union list of a nontemporary MERGE table when LOCK TABLES is in effect.
The following does not work:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ...;
LOCK TABLES t1 WRITE, t2 WRITE, m1 WRITE;
ALTER TABLE m1 ... UNION=(t1,t2) ...;

However, you can do this with a temporary MERGE table.

• You cannot create a MERGE table with CREATE ... SELECT, neither as a temporary MERGE table,
nor as a nontemporary MERGE table. For example:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ... SELECT ...;

Attempts to do this result in an error: tbl_name is not BASE TABLE.

• In some cases, differing PACK_KEYS table option values among the MERGE and underlying
tables cause unexpected results if the underlying tables contain CHAR or BINARY columns. As a
workaround, use ALTER TABLE to ensure that all involved tables have the same PACK_KEYS value.
(Bug #50646)

18.8 The FEDERATED Storage Engine

The FEDERATED storage engine lets you access data from a remote MySQL database without using
replication or cluster technology. Querying a local FEDERATED table automatically pulls the data from
the remote (federated) tables. No data is stored on the local tables.

To include the FEDERATED storage engine if you build MySQL from source, invoke CMake with the -
DWITH_FEDERATED_STORAGE_ENGINE option.

The FEDERATED storage engine is not enabled by default in the running server; to enable FEDERATED,
you must start the MySQL server binary using the --federated option.

To examine the source for the FEDERATED engine, look in the storage/federated directory of a
MySQL source distribution.

18.8.1 FEDERATED Storage Engine Overview

When you create a table using one of the standard storage engines (such as MyISAM, CSV or
InnoDB), the table consists of the table definition and the associated data. When you create a
FEDERATED table, the table definition is the same, but the physical storage of the data is handled on a
remote server.

A FEDERATED table consists of two elements:

• A remote server with a database table, which in turn consists of the table definition (stored in the
MySQL data dictionary) and the associated table. The table type of the remote table may be any type
supported by the remote mysqld server, including MyISAM or InnoDB.

• A local server with a database table, where the table definition matches that of the corresponding
table on the remote server. The table definition is stored in the data dictionary. There is no data file
on the local server. Instead, the table definition includes a connection string that points to the remote
table.

When executing queries and statements on a FEDERATED table on the local server, the operations that
would normally insert, update or delete information from a local data file are instead sent to the remote
server for execution, where they update the data file on the remote server or return matching rows from
the remote server.

3602

How to Create FEDERATED Tables

The basic structure of a FEDERATED table setup is shown in Figure 18.2, “FEDERATED Table
Structure”.

Figure 18.2 FEDERATED Table Structure

When a client issues an SQL statement that refers to a FEDERATED table, the flow of information
between the local server (where the SQL statement is executed) and the remote server (where the
data is physically stored) is as follows:

1. The storage engine looks through each column that the FEDERATED table has and constructs an
appropriate SQL statement that refers to the remote table.

2. The statement is sent to the remote server using the MySQL client API.

3. The remote server processes the statement and the local server retrieves any result that the
statement produces (an affected-rows count or a result set).

4. If the statement produces a result set, each column is converted to internal storage engine format
that the FEDERATED engine expects and can use to display the result to the client that issued the
original statement.

The local server communicates with the remote server using MySQL client C API functions. It invokes
mysql_real_query() to send the statement. To read a result set, it uses mysql_store_result()
and fetches rows one at a time using mysql_fetch_row().

18.8.2 How to Create FEDERATED Tables

To create a FEDERATED table you should follow these steps:

1. Create the table on the remote server. Alternatively, make a note of the table definition of an
existing table, perhaps using the SHOW CREATE TABLE statement.

2. Create the table on the local server with an identical table definition, but adding the connection
information that links the local table to the remote table.

For example, you could create the following table on the remote server:

CREATE TABLE test_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),

3603

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-query.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-store-result.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-fetch-row.html

How to Create FEDERATED Tables

 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=MyISAM
DEFAULT CHARSET=utf8mb4;

To create the local table that is federated to the remote table, there are two options available. You
can either create the local table and specify the connection string (containing the server name, login,
password) to be used to connect to the remote table using the CONNECTION, or you can use an
existing connection that you have previously created using the CREATE SERVER statement.

Important

When you create the local table it must have an identical field definition to the
remote table.

Note

You can improve the performance of a FEDERATED table by adding indexes
to the table on the host. The optimization occurs because the query sent to
the remote server includes the contents of the WHERE clause and is sent to the
remote server and subsequently executed locally. This reduces the network
traffic that would otherwise request the entire table from the server for local
processing.

18.8.2.1 Creating a FEDERATED Table Using CONNECTION

To use the first method, you must specify the CONNECTION string after the engine type in a CREATE
TABLE statement. For example:

CREATE TABLE federated_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=utf8mb4
CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

Note

CONNECTION replaces the COMMENT used in some previous versions of MySQL.

The CONNECTION string contains the information required to connect to the remote server containing
the table in which the data physically resides. The connection string specifies the server name, login
credentials, port number and database/table information. In the example, the remote table is on the
server remote_host, using port 9306. The name and port number should match the host name (or IP
address) and port number of the remote MySQL server instance you want to use as your remote table.

The format of the connection string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Where:

• scheme: A recognized connection protocol. Only mysql is supported as the scheme value at this
point.

• user_name: The user name for the connection. This user must have been created on the remote
server, and must have suitable privileges to perform the required actions (SELECT, INSERT,
UPDATE, and so forth) on the remote table.

3604

How to Create FEDERATED Tables

• password: (Optional) The corresponding password for user_name.

• host_name: The host name or IP address of the remote server.

• port_num: (Optional) The port number for the remote server. The default is 3306.

• db_name: The name of the database holding the remote table.

• tbl_name: The name of the remote table. The name of the local and the remote table do not have to
match.

Sample connection strings:

CONNECTION='mysql://username:password@hostname:port/database/tablename'
CONNECTION='mysql://username@hostname/database/tablename'
CONNECTION='mysql://username:password@hostname/database/tablename'

18.8.2.2 Creating a FEDERATED Table Using CREATE SERVER

If you are creating a number of FEDERATED tables on the same server, or if you want to simplify the
process of creating FEDERATED tables, you can use the CREATE SERVER statement to define the
server connection parameters, just as you would with the CONNECTION string.

The format of the CREATE SERVER statement is:

CREATE SERVER
server_name
FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)

The server_name is used in the connection string when creating a new FEDERATED table.

For example, to create a server connection identical to the CONNECTION string:

CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

You would use the following statement:

CREATE SERVER fedlink
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'fed_user', HOST 'remote_host', PORT 9306, DATABASE 'federated');

To create a FEDERATED table that uses this connection, you still use the CONNECTION keyword, but
specify the name you used in the CREATE SERVER statement.

CREATE TABLE test_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=utf8mb4
CONNECTION='fedlink/test_table';

The connection name in this example contains the name of the connection (fedlink) and the name
of the table (test_table) to link to, separated by a slash. If you specify only the connection name
without a table name, the table name of the local table is used instead.

For more information on CREATE SERVER, see Section 15.1.18, “CREATE SERVER Statement”.

The CREATE SERVER statement accepts the same arguments as the CONNECTION string. The
CREATE SERVER statement updates the rows in the mysql.servers table. See the following table for
information on the correspondence between parameters in a connection string, options in the CREATE

3605

FEDERATED Storage Engine Notes and Tips

SERVER statement, and the columns in the mysql.servers table. For reference, the format of the
CONNECTION string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Description CONNECTION string CREATE SERVER
option

mysql.servers
column

Connection scheme scheme wrapper_name Wrapper

Remote user user_name USER Username

Remote password password PASSWORD Password

Remote host host_name HOST Host

Remote port port_num PORT Port

Remote database db_name DATABASE Db

18.8.3 FEDERATED Storage Engine Notes and Tips

You should be aware of the following points when using the FEDERATED storage engine:

• FEDERATED tables may be replicated to other replicas, but you must ensure that the replica servers
are able to use the user/password combination that is defined in the CONNECTION string (or the row
in the mysql.servers table) to connect to the remote server.

The following items indicate features that the FEDERATED storage engine does and does not support:

• The remote server must be a MySQL server.

• The remote table that a FEDERATED table points to must exist before you try to access the table
through the FEDERATED table.

• It is possible for one FEDERATED table to point to another, but you must be careful not to create a
loop.

• A FEDERATED table does not support indexes in the usual sense; because access to the table data
is handled remotely, it is actually the remote table that makes use of indexes. This means that, for a
query that cannot use any indexes and so requires a full table scan, the server fetches all rows from
the remote table and filters them locally. This occurs regardless of any WHERE or LIMIT used with
this SELECT statement; these clauses are applied locally to the returned rows.

Queries that fail to use indexes can thus cause poor performance and network overload. In addition,
since returned rows must be stored in memory, such a query can also lead to the local server
swapping, or even hanging.

• Care should be taken when creating a FEDERATED table since the index definition from an equivalent
MyISAM or other table may not be supported. For example, creating a FEDERATED table fails if the
table uses an index prefix on any VARCHAR, TEXT or BLOB columns. The following definition using
MyISAM is valid:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=MYISAM;

The key prefix in this example is incompatible with the FEDERATED engine, and the equivalent
statement fails:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=FEDERATED
 CONNECTION='MYSQL://127.0.0.1:3306/TEST/T1';

If possible, you should try to separate the column and index definition when creating tables on both
the remote server and the local server to avoid these index issues.

• Internally, the implementation uses SELECT, INSERT, UPDATE, and DELETE, but not HANDLER.

3606

FEDERATED Storage Engine Resources

• The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, TRUNCATE TABLE,
and indexes. It does not support ALTER TABLE, or any Data Definition Language statements that
directly affect the structure of the table, other than DROP TABLE. The current implementation does
not use prepared statements.

• FEDERATED accepts INSERT ... ON DUPLICATE KEY UPDATE statements, but if a duplicate-key
violation occurs, the statement fails with an error.

• Transactions are not supported.

• FEDERATED performs bulk-insert handling such that multiple rows are sent to the remote table in a
batch, which improves performance. Also, if the remote table is transactional, it enables the remote
storage engine to perform statement rollback properly should an error occur. This capability has the
following limitations:

• The size of the insert cannot exceed the maximum packet size between servers. If the insert
exceeds this size, it is broken into multiple packets and the rollback problem can occur.

• Bulk-insert handling does not occur for INSERT ... ON DUPLICATE KEY UPDATE.

• There is no way for the FEDERATED engine to know if the remote table has changed. The reason for
this is that this table must work like a data file that would never be written to by anything other than
the database system. The integrity of the data in the local table could be breached if there was any
change to the remote database.

• When using a CONNECTION string, you cannot use an '@' character in the password. You can get
round this limitation by using the CREATE SERVER statement to create a server connection.

• The insert_id and timestamp options are not propagated to the data provider.

• Any DROP TABLE statement issued against a FEDERATED table drops only the local table, not the
remote table.

• User-defined partitioning is not supported for FEDERATED tables.

18.8.4 FEDERATED Storage Engine Resources

The following additional resources are available for the FEDERATED storage engine:

• A forum dedicated to the FEDERATED storage engine is available at https://forums.mysql.com/
list.php?105.

18.9 The EXAMPLE Storage Engine
The EXAMPLE storage engine is a stub engine that does nothing. Its purpose is to serve as an example
in the MySQL source code that illustrates how to begin writing new storage engines. As such, it is
primarily of interest to developers.

To enable the EXAMPLE storage engine if you build MySQL from source, invoke CMake with the -
DWITH_EXAMPLE_STORAGE_ENGINE option.

To examine the source for the EXAMPLE engine, look in the storage/example directory of a MySQL
source distribution.

When you create an EXAMPLE table, no files are created. No data can be stored into the table.
Retrievals return an empty result.

mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;
Query OK, 0 rows affected (0.78 sec)

mysql> INSERT INTO test VALUES(1),(2),(3);
ERROR 1031 (HY000): Table storage engine for 'test' doesn't »
 have this option

3607

https://forums.mysql.com/list.php?105
https://forums.mysql.com/list.php?105

Other Storage Engines

mysql> SELECT * FROM test;
Empty set (0.31 sec)

The EXAMPLE storage engine does not support indexing.

The EXAMPLE storage engine does not support partitioning.

18.10 Other Storage Engines
Other storage engines may be available from third parties and community members that have used the
Custom Storage Engine interface.

Third party engines are not supported by MySQL. For further information, documentation, installation
guides, bug reporting or for any help or assistance with these engines, please contact the developer of
the engine directly.

For more information on developing a customer storage engine that can be used with the Pluggable
Storage Engine Architecture, see MySQL Internals: Writing a Custom Storage Engine.

18.11 Overview of MySQL Storage Engine Architecture
The MySQL pluggable storage engine architecture enables a database professional to select a
specialized storage engine for a particular application need while being completely shielded from the
need to manage any specific application coding requirements. The MySQL server architecture isolates
the application programmer and DBA from all of the low-level implementation details at the storage
level, providing a consistent and easy application model and API. Thus, although there are different
capabilities across different storage engines, the application is shielded from these differences.

The MySQL pluggable storage engine architecture is shown in Figure 18.3, “MySQL Architecture with
Pluggable Storage Engines”.

Figure 18.3 MySQL Architecture with Pluggable Storage Engines

3608

https://dev.mysql.com/doc/internals/en/custom-engine.html

Pluggable Storage Engine Architecture

The pluggable storage engine architecture provides a standard set of management and support
services that are common among all underlying storage engines. The storage engines themselves
are the components of the database server that actually perform actions on the underlying data that is
maintained at the physical server level.

This efficient and modular architecture provides huge benefits for those wishing to specifically
target a particular application need—such as data warehousing, transaction processing, or high
availability situations—while enjoying the advantage of utilizing a set of interfaces and services that are
independent of any one storage engine.

The application programmer and DBA interact with the MySQL database through Connector APIs and
service layers that are above the storage engines. If application changes bring about requirements
that demand the underlying storage engine change, or that one or more storage engines be added to
support new needs, no significant coding or process changes are required to make things work. The
MySQL server architecture shields the application from the underlying complexity of the storage engine
by presenting a consistent and easy-to-use API that applies across storage engines.

18.11.1 Pluggable Storage Engine Architecture

MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded
into and unloaded from a running MySQL server.

Plugging in a Storage Engine

Before a storage engine can be used, the storage engine plugin shared library must be loaded into
MySQL using the INSTALL PLUGIN statement. For example, if the EXAMPLE engine plugin is named
example and the shared library is named ha_example.so, you load it with the following statement:

INSTALL PLUGIN example SONAME 'ha_example.so';

To install a pluggable storage engine, the plugin file must be located in the MySQL plugin directory,
and the user issuing the INSTALL PLUGIN statement must have INSERT privilege for the
mysql.plugin table.

The shared library must be located in the MySQL server plugin directory, the location of which is given
by the plugin_dir system variable.

Unplugging a Storage Engine

To unplug a storage engine, use the UNINSTALL PLUGIN statement:

UNINSTALL PLUGIN example;

If you unplug a storage engine that is needed by existing tables, those tables become inaccessible,
but are still present on disk (where applicable). Ensure that there are no tables using a storage engine
before you unplug the storage engine.

18.11.2 The Common Database Server Layer

A MySQL pluggable storage engine is the component in the MySQL database server that is
responsible for performing the actual data I/O operations for a database as well as enabling and
enforcing certain feature sets that target a specific application need. A major benefit of using specific
storage engines is that you are only delivered the features needed for a particular application, and
therefore you have less system overhead in the database, with the end result being more efficient and
higher database performance. This is one of the reasons that MySQL has always been known to have
such high performance, matching or beating proprietary monolithic databases in industry standard
benchmarks.

From a technical perspective, what are some of the unique supporting infrastructure components that
are in a storage engine? Some of the key feature differentiations include:

3609

The Common Database Server Layer

• Concurrency: Some applications have more granular lock requirements (such as row-level locks)
than others. Choosing the right locking strategy can reduce overhead and therefore improve overall
performance. This area also includes support for capabilities such as multi-version concurrency
control or “snapshot” read.

• Transaction Support: Not every application needs transactions, but for those that do, there are very
well defined requirements such as ACID compliance and more.

• Referential Integrity: The need to have the server enforce relational database referential integrity
through DDL defined foreign keys.

• Physical Storage: This involves everything from the overall page size for tables and indexes as well
as the format used for storing data to physical disk.

• Index Support: Different application scenarios tend to benefit from different index strategies. Each
storage engine generally has its own indexing methods, although some (such as B-tree indexes) are
common to nearly all engines.

• Memory Caches: Different applications respond better to some memory caching strategies than
others, so although some memory caches are common to all storage engines (such as those used
for user connections), others are uniquely defined only when a particular storage engine is put in
play.

• Performance Aids: This includes multiple I/O threads for parallel operations, thread concurrency,
database checkpointing, bulk insert handling, and more.

• Miscellaneous Target Features: This may include support for geospatial operations, security
restrictions for certain data manipulation operations, and other similar features.

Each set of the pluggable storage engine infrastructure components are designed to offer a selective
set of benefits for a particular application. Conversely, avoiding a set of component features helps
reduce unnecessary overhead. It stands to reason that understanding a particular application's set of
requirements and selecting the proper MySQL storage engine can have a dramatic impact on overall
system efficiency and performance.

3610

Chapter 19 Replication

Table of Contents
19.1 Configuring Replication .. 3613

19.1.1 Binary Log File Position Based Replication Configuration Overview 3613
19.1.2 Setting Up Binary Log File Position Based Replication .. 3614
19.1.3 Replication with Global Transaction Identifiers .. 3625
19.1.4 Changing GTID Mode on Online Servers ... 3649
19.1.5 MySQL Multi-Source Replication ... 3655
19.1.6 Replication and Binary Logging Options and Variables ... 3662
19.1.7 Common Replication Administration Tasks ... 3778

19.2 Replication Implementation .. 3785
19.2.1 Replication Formats .. 3785
19.2.2 Replication Channels .. 3793
19.2.3 Replication Threads .. 3797
19.2.4 Relay Log and Replication Metadata Repositories .. 3799
19.2.5 How Servers Evaluate Replication Filtering Rules ... 3806

19.3 Replication Security ... 3815
19.3.1 Setting Up Replication to Use Encrypted Connections .. 3815
19.3.2 Encrypting Binary Log Files and Relay Log Files .. 3818
19.3.3 Replication Privilege Checks ... 3821

19.4 Replication Solutions ... 3828
19.4.1 Using Replication for Backups ... 3828
19.4.2 Handling an Unexpected Halt of a Replica ... 3832
19.4.3 Monitoring Row-based Replication ... 3834
19.4.4 Using Replication with Different Source and Replica Storage Engines 3835
19.4.5 Using Replication for Scale-Out ... 3836
19.4.6 Replicating Different Databases to Different Replicas .. 3838
19.4.7 Improving Replication Performance .. 3839
19.4.8 Switching Sources During Failover .. 3840
19.4.9 Switching Sources and Replicas with Asynchronous Connection Failover 3842
19.4.10 Semisynchronous Replication .. 3846
19.4.11 Delayed Replication .. 3852

19.5 Replication Notes and Tips .. 3855
19.5.1 Replication Features and Issues .. 3855
19.5.2 Replication Compatibility Between MySQL Versions ... 3882
19.5.3 Upgrading a Replication Topology ... 3883
19.5.4 Troubleshooting Replication .. 3885
19.5.5 How to Report Replication Bugs or Problems ... 3886

Replication enables data from one MySQL database server (known as a source) to be copied to
one or more MySQL database servers (known as replicas). Replication is asynchronous by default;
replicas do not need to be connected permanently to receive updates from a source. Depending on
the configuration, you can replicate all databases, selected databases, or even selected tables within a
database.

Advantages of replication in MySQL include:

• Scale-out solutions - spreading the load among multiple replicas to improve performance. In this
environment, all writes and updates must take place on the source server. Reads, however, may
take place on one or more replicas. This model can improve the performance of writes (since the
source is dedicated to updates), while dramatically increasing read speed across an increasing
number of replicas.

3611

• Data security - because the replica can pause the replication process, it is possible to run backup
services on the replica without corrupting the corresponding source data.

• Analytics - live data can be created on the source, while the analysis of the information can take
place on the replica without affecting the performance of the source.

• Long-distance data distribution - you can use replication to create a local copy of data for a remote
site to use, without permanent access to the source.

For information on how to use replication in such scenarios, see Section 19.4, “Replication Solutions”.

MySQL 8.0 supports different methods of replication. The traditional method is based on replicating
events from the source's binary log, and requires the log files and positions in them to be synchronized
between source and replica. The newer method based on global transaction identifiers (GTIDs) is
transactional and therefore does not require working with log files or positions within these files, which
greatly simplifies many common replication tasks. Replication using GTIDs guarantees consistency
between source and replica as long as all transactions committed on the source have also been
applied on the replica. For more information about GTIDs and GTID-based replication in MySQL, see
Section 19.1.3, “Replication with Global Transaction Identifiers”. For information on using binary log file
position based replication, see Section 19.1, “Configuring Replication”.

Replication in MySQL supports different types of synchronization. The original type of synchronization
is one-way, asynchronous replication, in which one server acts as the source, while one or more other
servers act as replicas. This is in contrast to the synchronous replication which is a characteristic of
NDB Cluster (see Chapter 25, MySQL NDB Cluster 8.0). In MySQL 8.0, semisynchronous replication
is supported in addition to the built-in asynchronous replication. With semisynchronous replication, a
commit performed on the source blocks before returning to the session that performed the transaction
until at least one replica acknowledges that it has received and logged the events for the transaction;
see Section 19.4.10, “Semisynchronous Replication”. MySQL 8.0 also supports delayed replication
such that a replica deliberately lags behind the source by at least a specified amount of time; see
Section 19.4.11, “Delayed Replication”. For scenarios where synchronous replication is required, use
NDB Cluster (see Chapter 25, MySQL NDB Cluster 8.0).

There are a number of solutions available for setting up replication between servers, and the best
method to use depends on the presence of data and the engine types you are using. For more
information on the available options, see Section 19.1.2, “Setting Up Binary Log File Position Based
Replication”.

There are two core types of replication format, Statement Based Replication (SBR), which replicates
entire SQL statements, and Row Based Replication (RBR), which replicates only the changed rows.
You can also use a third variety, Mixed Based Replication (MBR). For more information on the different
replication formats, see Section 19.2.1, “Replication Formats”.

Replication is controlled through a number of different options and variables. For more information, see
Section 19.1.6, “Replication and Binary Logging Options and Variables”. Additional security measures
can be applied to a replication topology, as described in Section 19.3, “Replication Security”.

You can use replication to solve a number of different problems, including performance, supporting
the backup of different databases, and as part of a larger solution to alleviate system failures. For
information on how to address these issues, see Section 19.4, “Replication Solutions”.

For notes and tips on how different data types and statements are treated during replication, including
details of replication features, version compatibility, upgrades, and potential problems and their
resolution, see Section 19.5, “Replication Notes and Tips”. For answers to some questions often asked
by those who are new to MySQL Replication, see Section A.14, “MySQL 8.0 FAQ: Replication”.

For detailed information on the implementation of replication, how replication works, the process and
contents of the binary log, background threads and the rules used to decide how statements are
recorded and replicated, see Section 19.2, “Replication Implementation”.

3612

Configuring Replication

19.1 Configuring Replication

This section describes how to configure the different types of replication available in MySQL and
includes the setup and configuration required for a replication environment, including step-by-step
instructions for creating a new replication environment. The major components of this section are:

• For a guide to setting up two or more servers for replication using binary log file positions,
Section 19.1.2, “Setting Up Binary Log File Position Based Replication”, deals with the configuration
of the servers and provides methods for copying data between the source and replicas.

• For a guide to setting up two or more servers for replication using GTID transactions, Section 19.1.3,
“Replication with Global Transaction Identifiers”, deals with the configuration of the servers.

• Events in the binary log are recorded using a number of formats. These are referred to as statement-
based replication (SBR) or row-based replication (RBR). A third type, mixed-format replication
(MIXED), uses SBR or RBR replication automatically to take advantage of the benefits of both
SBR and RBR formats when appropriate. The different formats are discussed in Section 19.2.1,
“Replication Formats”.

• Detailed information on the different configuration options and variables that apply to replication is
provided in Section 19.1.6, “Replication and Binary Logging Options and Variables”.

• Once started, the replication process should require little administration or monitoring. However, for
advice on common tasks that you may want to execute, see Section 19.1.7, “Common Replication
Administration Tasks”.

19.1.1 Binary Log File Position Based Replication Configuration Overview

This section describes replication between MySQL servers based on the binary log file position
method, where the MySQL instance operating as the source (where the database changes take place)
writes updates and changes as “events” to the binary log. The information in the binary log is stored in
different logging formats according to the database changes being recorded. Replicas are configured
to read the binary log from the source and to execute the events in the binary log on the replica's local
database.

Each replica receives a copy of the entire contents of the binary log. It is the responsibility of the replica
to decide which statements in the binary log should be executed. Unless you specify otherwise, all
events in the source's binary log are executed on the replica. If required, you can configure the replica
to process only events that apply to particular databases or tables.

Important

You cannot configure the source to log only certain events.

Each replica keeps a record of the binary log coordinates: the file name and position within the file that
it has read and processed from the source. This means that multiple replicas can be connected to the
source and executing different parts of the same binary log. Because the replicas control this process,
individual replicas can be connected and disconnected from the server without affecting the source's
operation. Also, because each replica records the current position within the binary log, it is possible for
replicas to be disconnected, reconnect and then resume processing.

The source and each replica must be configured with a unique ID (using the server_id system
variable). In addition, each replica must be configured with information about the source's host name,
log file name, and position within that file. These details can be controlled from within a MySQL session
using a CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO
statement (before MySQL 8.0.23) on the replica. The details are stored within the replica's connection
metadata repository (see Section 19.2.4, “Relay Log and Replication Metadata Repositories”).

3613

Setting Up Binary Log File Position Based Replication

19.1.2 Setting Up Binary Log File Position Based Replication

This section describes how to set up a MySQL server to use binary log file position based replication.
There are a number of different methods for setting up replication, and the exact method to use
depends on how you are setting up replication, and whether you already have data in the database on
the source that you want to replicate.

Tip

To deploy multiple instances of MySQL, you can use InnoDB Cluster which
enables you to easily administer a group of MySQL server instances in MySQL
Shell. InnoDB Cluster wraps MySQL Group Replication in a programmatic
environment that enables you easily deploy a cluster of MySQL instances to
achieve high availability. In addition, InnoDB Cluster interfaces seamlessly
with MySQL Router, which enables your applications to connect to the cluster
without writing your own failover process. For similar use cases that do not
require high availability, however, you can use InnoDB ReplicaSet. Installation
instructions for MySQL Shell can be found here.

There are some generic tasks that are common to all setups:

• On the source, you must ensure that binary logging is enabled, and configure a unique server
ID. This might require a server restart. See Section 19.1.2.1, “Setting the Replication Source
Configuration”.

• On each replica that you want to connect to the source, you must configure a unique server ID. This
might require a server restart. See Section 19.1.2.2, “Setting the Replica Configuration”.

• Optionally, create a separate user for your replicas to use during authentication with the source when
reading the binary log for replication. See Section 19.1.2.3, “Creating a User for Replication”.

• Before creating a data snapshot or starting the replication process, on the source you should record
the current position in the binary log. You need this information when configuring the replica so
that the replica knows where within the binary log to start executing events. See Section 19.1.2.4,
“Obtaining the Replication Source Binary Log Coordinates”.

• If you already have data on the source and want to use it to synchronize the replica, you need to
create a data snapshot to copy the data to the replica. The storage engine you are using has an
impact on how you create the snapshot. When you are using MyISAM, you must stop processing
statements on the source to obtain a read-lock, then obtain its current binary log coordinates and
dump its data, before permitting the source to continue executing statements. If you do not stop the
execution of statements, the data dump and the source status information become mismatched,
resulting in inconsistent or corrupted databases on the replicas. For more information on replicating a
MyISAM source, see Section 19.1.2.4, “Obtaining the Replication Source Binary Log Coordinates”. If
you are using InnoDB, you do not need a read-lock and a transaction that is long enough to transfer
the data snapshot is sufficient. For more information, see Section 17.19, “InnoDB and MySQL
Replication”.

• Configure the replica with settings for connecting to the source, such as the host name, login
credentials, and binary log file name and position. See Section 19.1.2.7, “Setting the Source
Configuration on the Replica”.

• Implement replication-specific security measures on the sources and replicas as appropriate for your
system. See Section 19.3, “Replication Security”.

Note

Certain steps within the setup process require the SUPER privilege. If you do not
have this privilege, it might not be possible to enable replication.

After configuring the basic options, select your scenario:

3614

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

Setting Up Binary Log File Position Based Replication

• To set up replication for a fresh installation of a source and replicas that contain no data, see Setting
Up Replication with New Source and Replicas.

• To set up replication of a new source using the data from an existing MySQL server, see Setting Up
Replication with Existing Data.

• To add replicas to an existing replication environment, see Section 19.1.2.8, “Adding Replicas to a
Replication Environment”.

Before administering MySQL replication servers, read this entire chapter and try all statements
mentioned in Section 15.4.1, “SQL Statements for Controlling Source Servers”, and Section 15.4.2,
“SQL Statements for Controlling Replica Servers”. Also familiarize yourself with the replication startup
options described in Section 19.1.6, “Replication and Binary Logging Options and Variables”.

19.1.2.1 Setting the Replication Source Configuration

To configure a source to use binary log file position based replication, you must ensure that binary
logging is enabled, and establish a unique server ID.

Each server within a replication topology must be configured with a unique server ID, which you can
specify using the server_id system variable. This server ID is used to identify individual servers
within the replication topology, and must be a positive integer between 1 and (232)−1. The default
server_id value from MySQL 8.0 is 1. You can change the server_id value dynamically by issuing
a statement like this:

SET GLOBAL server_id = 2;

How you organize and select the server IDs is your choice, so long as each server ID is different
from every other server ID in use by any other server in the replication topology. Note that if a value
of 0 (which was the default in earlier releases) was set previously for the server ID, you must restart
the server to initialize the source with your new nonzero server ID. Otherwise, a server restart is not
needed when you change the server ID, unless you make other configuration changes that require it.

Binary logging is required on the source because the binary log is the basis for replicating changes
from the source to its replicas. Binary logging is enabled by default (the log_bin system variable
is set to ON). The --log-bin option tells the server what base name to use for binary log files. It
is recommended that you specify this option to give the binary log files a non-default base name, so
that if the host name changes, you can easily continue to use the same binary log file names (see
Section B.3.7, “Known Issues in MySQL”). If binary logging was previously disabled on the source
using the --skip-log-bin option, you must restart the server without this option to enable it.

Note

The following options also have an impact on the source:

• For the greatest possible durability and consistency in a
replication setup using InnoDB with transactions, you should use
innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in the
source's my.cnf file.

• Ensure that the skip_networking system variable is not enabled on the
source. If networking has been disabled, the replica cannot communicate with
the source and replication fails.

19.1.2.2 Setting the Replica Configuration

Each replica must have a unique server ID, as specified by the server_id system variable. If you are
setting up multiple replicas, each one must have a unique server_id value that differs from that of
the source and from any of the other replicas. If the replica's server ID is not already set, or the current
value conflicts with the value that you have chosen for the source or another replica, you must change
it.

3615

Setting Up Binary Log File Position Based Replication

The default server_id value is 1. You can change the server_id value dynamically by issuing a
statement like this:

SET GLOBAL server_id = 21;

Note that a value of 0 for the server ID prevents a replica from connecting to a source. If that server
ID value (which was the default in earlier releases) was set previously, you must restart the server to
initialize the replica with your new nonzero server ID. Otherwise, a server restart is not needed when
you change the server ID, unless you make other configuration changes that require it. For example, if
binary logging was disabled on the server and you want it enabled for your replica, a server restart is
required to enable this.

If you are shutting down the replica server, you can edit the [mysqld] section of the configuration file
to specify a unique server ID. For example:

[mysqld]
server-id=21

Binary logging is enabled by default on all servers. A replica is not required to have binary logging
enabled for replication to take place. However, binary logging on a replica means that the replica's
binary log can be used for data backups and crash recovery. Replicas that have binary logging enabled
can also be used as part of a more complex replication topology. For example, you might want to set
up replication servers using this chained arrangement:

A -> B -> C

Here, A serves as the source for the replica B, and B serves as the source for the replica C. For this
to work, B must be both a source and a replica. Updates received from A must be logged by B to
its binary log, in order to be passed on to C. In addition to binary logging, this replication topology
requires the system variable log_replica_updates (from MySQL 8.0.26) or log_slave_updates
(before MySQL 8.0.26) to be enabled. With replica updates enabled, the replica writes updates that are
received from a source and performed by the replica's SQL thread to the replica's own binary log. The
log_replica_updates or log_slave_updates system variable is enabled by default.

If you need to disable binary logging or replica update logging on a replica, you can do this by
specifying the --skip-log-bin and --log-replica-updates=OFF or --log-slave-
updates=OFF options for the replica. If you decide to re-enable these features on the replica, remove
the relevant options and restart the server.

19.1.2.3 Creating a User for Replication

Each replica connects to the source using a MySQL user name and password, so there must be a
user account on the source that the replica can use to connect. The user name is specified by the
SOURCE_USER | MASTER_USER option of the CHANGE REPLICATION SOURCE TO statement (from
MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) when you set up a replica.
Any account can be used for this operation, providing it has been granted the REPLICATION SLAVE
privilege. You can choose to create a different account for each replica, or connect to the source using
the same account for each replica.

Although you do not have to create an account specifically for replication, you should be aware that
the replication user name and password are stored in plain text in the replica's connection metadata
repository mysql.slave_master_info (see Section 19.2.4.2, “Replication Metadata Repositories”).
Therefore, you may want to create a separate account that has privileges only for the replication
process, to minimize the possibility of compromise to other accounts.

To create a new account, use CREATE USER. To grant this account the privileges required for
replication, use the GRANT statement. If you create an account solely for the purposes of replication,
that account needs only the REPLICATION SLAVE privilege. For example, to set up a new user, repl,
that can connect for replication from any host within the example.com domain, issue these statements
on the source:

3616

Setting Up Binary Log File Position Based Replication

mysql> CREATE USER 'repl'@'%.example.com' IDENTIFIED BY 'password';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%.example.com';

See Section 15.7.1, “Account Management Statements”, for more information on statements for
manipulation of user accounts.

Important

To connect to the source using a user account that authenticates with
the caching_sha2_password plugin, you must either set up a secure
connection as described in Section 19.3.1, “Setting Up Replication to Use
Encrypted Connections”, or enable the unencrypted connection to support
password exchange using an RSA key pair. The caching_sha2_password
authentication plugin is the default for new users created from MySQL 8.0
(for details, see Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”).
If the user account that you create or use for replication (as specified by the
MASTER_USER option) uses this authentication plugin, and you are not using a
secure connection, you must enable RSA key pair-based password exchange
for a successful connection.

19.1.2.4 Obtaining the Replication Source Binary Log Coordinates

To configure the replica to start the replication process at the correct point, you need to note the
source's current coordinates within its binary log.

Warning

This procedure uses FLUSH TABLES WITH READ LOCK, which blocks
COMMIT operations for InnoDB tables.

If you are planning to shut down the source to create a data snapshot, you can optionally skip this
procedure and instead store a copy of the binary log index file along with the data snapshot. In that
situation, the source creates a new binary log file on restart. The source binary log coordinates where
the replica must start the replication process are therefore the start of that new file, which is the next
binary log file on the source following after the files that are listed in the copied binary log index file.

To obtain the source binary log coordinates, follow these steps:

1. Start a session on the source by connecting to it with the command-line client, and flush all tables
and block write statements by executing the FLUSH TABLES WITH READ LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

Warning

Leave the client from which you issued the FLUSH TABLES statement
running so that the read lock remains in effect. If you exit the client, the lock
is released.

2. In a different session on the source, use the SHOW MASTER STATUS statement to determine the
current binary log file name and position:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: mysql-bin.000003
 Position: 73
 Binlog_Do_DB: test
 Binlog_Ignore_DB: manual, mysql
Executed_Gtid_Set: 3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5
1 row in set (0.00 sec)

The File column shows the name of the log file and the Position column shows the position
within the file. In this example, the binary log file is mysql-bin.000003 and the position is 73.

3617

Setting Up Binary Log File Position Based Replication

Record these values. You need them later when you are setting up the replica. They represent the
replication coordinates at which the replica should begin processing new updates from the source.

If the source has been running previously with binary logging disabled, the log file name and
position values displayed by SHOW MASTER STATUS or mysqldump --master-data are empty.
In that case, the values that you need to use later when specifying the source's binary log file and
position are the empty string ('') and 4.

You now have the information you need to enable the replica to start reading from the source's binary
log in the correct place to start replication.

The next step depends on whether you have existing data on the source. Choose one of the following
options:

• If you have existing data that needs be to synchronized with the replica before you start replication,
leave the client running so that the lock remains in place. This prevents any further changes
being made, so that the data copied to the replica is in synchrony with the source. Proceed to
Section 19.1.2.5, “Choosing a Method for Data Snapshots”.

• If you are setting up a new source and replica combination, you can exit the first session to release
the read lock. See Setting Up Replication with New Source and Replicas for how to proceed.

19.1.2.5 Choosing a Method for Data Snapshots

If the source database contains existing data it is necessary to copy this data to each replica. There are
different ways to dump the data from the source database. The following sections describe possible
options.

To select the appropriate method of dumping the database, choose between these options:

• Use the mysqldump tool to create a dump of all the databases you want to replicate. This is the
recommended method, especially when using InnoDB.

• If your database is stored in binary portable files, you can copy the raw data files to a replica. This
can be more efficient than using mysqldump and importing the file on each replica, because it skips
the overhead of updating indexes as the INSERT statements are replayed. With storage engines
such as InnoDB this is not recommended.

• Use MySQL Server's clone plugin to transfer all the data from an existing replica to a clone. For
instructions to use this method, see Section 7.6.7.7, “Cloning for Replication”.

Tip

To deploy multiple instances of MySQL, you can use InnoDB Cluster which
enables you to easily administer a group of MySQL server instances in MySQL
Shell. InnoDB Cluster wraps MySQL Group Replication in a programmatic
environment that enables you easily deploy a cluster of MySQL instances to
achieve high availability. In addition, InnoDB Cluster interfaces seamlessly
with MySQL Router, which enables your applications to connect to the cluster
without writing your own failover process. For similar use cases that do not
require high availability, however, you can use InnoDB ReplicaSet. Installation
instructions for MySQL Shell can be found here.

Creating a Data Snapshot Using mysqldump

To create a snapshot of the data in an existing source database, use the mysqldump tool. Once the
data dump has been completed, import this data into the replica before starting the replication process.

The following example dumps all databases to a file named dbdump.db, and includes the --master-
data option which automatically appends the CHANGE REPLICATION SOURCE TO | CHANGE
MASTER TO statement required on the replica to start the replication process:

3618

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

Setting Up Binary Log File Position Based Replication

$> mysqldump --all-databases --master-data > dbdump.db

Note

If you do not use --master-data, then it is necessary to lock all tables in a
separate session manually. See Section 19.1.2.4, “Obtaining the Replication
Source Binary Log Coordinates”.

It is possible to exclude certain databases from the dump using the mysqldump tool. If you want to
choose which databases to include in the dump, do not use --all-databases. Choose one of these
options:

• Exclude all the tables in the database using --ignore-table option.

• Name only those databases which you want dumped using the --databases option.

Note

By default, if GTIDs are in use on the source (gtid_mode=ON), mysqldump
includes the GTIDs from the gtid_executed set on the source in the dump
output to add them to the gtid_purged set on the replica. If you are dumping
only specific databases or tables, it is important to note that the value that
is included by mysqldump includes the GTIDs of all transactions in the
gtid_executed set on the source, even those that changed suppressed
parts of the database, or other databases on the server that were not included
in the partial dump. Check the description for mysqldump's --set-gtid-
purged option to find the outcome of the default behavior for the MySQL Server
versions you are using, and how to change the behavior if this outcome is not
suitable for your situation.

For more information, see Section 6.5.4, “mysqldump — A Database Backup Program”.

To import the data, either copy the dump file to the replica, or access the file from the source when
connecting remotely to the replica.

Creating a Data Snapshot Using Raw Data Files

This section describes how to create a data snapshot using the raw files which make up the database.
Employing this method with a table using a storage engine that has complex caching or logging
algorithms requires extra steps to produce a perfect “point in time” snapshot: the initial copy command
could leave out cache information and logging updates, even if you have acquired a global read lock.
How the storage engine responds to this depends on its crash recovery abilities.

If you use InnoDB tables, you can use the mysqlbackup command from the MySQL Enterprise
Backup component to produce a consistent snapshot. This command records the log name and offset
corresponding to the snapshot to be used on the replica. MySQL Enterprise Backup is a commercial
product that is included as part of a MySQL Enterprise subscription. See Section 32.1, “MySQL
Enterprise Backup Overview” for detailed information.

This method also does not work reliably if the source and replica have different values for
ft_stopword_file, ft_min_word_len, or ft_max_word_len and you are copying tables having
full-text indexes.

Assuming the above exceptions do not apply to your database, use the cold backup technique to
obtain a reliable binary snapshot of InnoDB tables: do a slow shutdown of the MySQL Server, then
copy the data files manually.

To create a raw data snapshot of MyISAM tables when your MySQL data files exist on a single
file system, you can use standard file copy tools such as cp or copy, a remote copy tool such as
scp or rsync, an archiving tool such as zip or tar, or a file system snapshot tool such as dump.

3619

Setting Up Binary Log File Position Based Replication

If you are replicating only certain databases, copy only those files that relate to those tables. For
InnoDB, all tables in all databases are stored in the system tablespace files, unless you have the
innodb_file_per_table option enabled.

The following files are not required for replication:

• Files relating to the mysql database.

• The replica's connection metadata repository file master.info, if used; the use of this file is now
deprecated (see Section 19.2.4, “Relay Log and Replication Metadata Repositories”).

• The source's binary log files, with the exception of the binary log index file if you are going to use this
to locate the source binary log coordinates for the replica.

• Any relay log files.

Depending on whether you are using InnoDB tables or not, choose one of the following:

If you are using InnoDB tables, and also to get the most consistent results with a raw data snapshot,
shut down the source server during the process, as follows:

1. Acquire a read lock and get the source's status. See Section 19.1.2.4, “Obtaining the Replication
Source Binary Log Coordinates”.

2. In a separate session, shut down the source server:

$> mysqladmin shutdown

3. Make a copy of the MySQL data files. The following examples show common ways to do this. You
need to choose only one of them:

$> tar cf /tmp/db.tar ./data
$> zip -r /tmp/db.zip ./data
$> rsync --recursive ./data /tmp/dbdata

4. Restart the source server.

If you are not using InnoDB tables, you can get a snapshot of the system from a source without
shutting down the server as described in the following steps:

1. Acquire a read lock and get the source's status. See Section 19.1.2.4, “Obtaining the Replication
Source Binary Log Coordinates”.

2. Make a copy of the MySQL data files. The following examples show common ways to do this. You
need to choose only one of them:

$> tar cf /tmp/db.tar ./data
$> zip -r /tmp/db.zip ./data
$> rsync --recursive ./data /tmp/dbdata

3. In the client where you acquired the read lock, release the lock:

mysql> UNLOCK TABLES;

Once you have created the archive or copy of the database, copy the files to each replica before
starting the replication process.

19.1.2.6 Setting Up Replicas

The following sections describe how to set up replicas. Before you proceed, ensure that you have:

• Configured the source with the necessary configuration properties. See Section 19.1.2.1, “Setting the
Replication Source Configuration”.

3620

Setting Up Binary Log File Position Based Replication

• Obtained the source status information, or a copy of the source's binary log index file made during a
shutdown for the data snapshot. See Section 19.1.2.4, “Obtaining the Replication Source Binary Log
Coordinates”.

• On the source, released the read lock:

mysql> UNLOCK TABLES;

• On the replica, edited the MySQL configuration. See Section 19.1.2.2, “Setting the Replica
Configuration”.

The next steps depend on whether you have existing data to import to the replica or not. See
Section 19.1.2.5, “Choosing a Method for Data Snapshots” for more information. Choose one of the
following:

• If you do not have a snapshot of a database to import, see Setting Up Replication with New Source
and Replicas.

• If you have a snapshot of a database to import, see Setting Up Replication with Existing Data.

Setting Up Replication with New Source and Replicas

When there is no snapshot of a previous database to import, configure the replica to start replication
from the new source.

To set up replication between a source and a new replica:

1. Start up the replica.

2. Execute a CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement on the replica
to set the source configuration. See Section 19.1.2.7, “Setting the Source Configuration on the
Replica”.

Perform these replica setup steps on each replica.

This method can also be used if you are setting up new servers but have an existing dump of the
databases from a different server that you want to load into your replication configuration. By loading
the data into a new source, the data is automatically replicated to the replicas.

If you are setting up a new replication environment using the data from a different existing database
server to create a new source, run the dump file generated from that server on the new source. The
database updates are automatically propagated to the replicas:

$> mysql -h source < fulldb.dump

Setting Up Replication with Existing Data

When setting up replication with existing data, transfer the snapshot from the source to the replica
before starting replication. The process for importing data to the replica depends on how you created
the snapshot of data on the source.

Tip

To deploy multiple instances of MySQL, you can use InnoDB Cluster which
enables you to easily administer a group of MySQL server instances in MySQL
Shell. InnoDB Cluster wraps MySQL Group Replication in a programmatic
environment that enables you easily deploy a cluster of MySQL instances to
achieve high availability. In addition, InnoDB Cluster interfaces seamlessly
with MySQL Router, which enables your applications to connect to the cluster
without writing your own failover process. For similar use cases that do not

3621

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/

Setting Up Binary Log File Position Based Replication

require high availability, however, you can use InnoDB ReplicaSet. Installation
instructions for MySQL Shell can be found here.

Note

If the replication source server or existing replica that you are copying to create
the new replica has any scheduled events, ensure that these are disabled
on the new replica before you start it. If an event runs on the new replica that
has already run on the source, the duplicated operation causes an error. The
Event Scheduler is controlled by the event_scheduler system variable,
which defaults to ON from MySQL 8.0, so events that are active on the original
server run by default when the new replica starts up. To stop all events from
running on the new replica, set the event_scheduler system variable to
OFF or DISABLED on the new replica. Alternatively, you can use the ALTER
EVENT statement to set individual events to DISABLE or DISABLE ON SLAVE
to prevent them from running on the new replica. You can list the events on a
server using the SHOW statement or the Information Schema EVENTS table. For
more information, see Section 19.5.1.16, “Replication of Invoked Features”.

As an alternative to creating a new replica in this way, MySQL Server's clone plugin can be used to
transfer all the data and replication settings from an existing replica to a clone. For instructions to use
this method, see Section 7.6.7.7, “Cloning for Replication”.

Follow this procedure to set up replication with existing data:

1. If you used MySQL Server's clone plugin to create a clone from an existing replica (see
Section 7.6.7.7, “Cloning for Replication”), the data is already transferred. Otherwise, import the
data to the replica using one of the following methods.

a. If you used mysqldump, start the replica server, ensuring that replication does not start by
using the --skip-slave-start option, or from MySQL 8.0.24, the skip_slave_start
system variable. Then import the dump file:

$> mysql < fulldb.dump

b. If you created a snapshot using the raw data files, extract the data files into your replica's data
directory. For example:

$> tar xvf dbdump.tar

You may need to set permissions and ownership on the files so that the replica server can
access and modify them. Then start the replica server, ensuring that replication does not start
by using the --skip-slave-start option, or from MySQL 8.0.24, the skip_slave_start
system variable.

2. Configure the replica with the replication coordinates from the source. This tells the replica the
binary log file and position within the file where replication needs to start. Also, configure the replica
with the login credentials and host name of the source. For more information on the CHANGE
REPLICATION SOURCE TO | CHANGE MASTER TO statement required, see Section 19.1.2.7,
“Setting the Source Configuration on the Replica”.

3. Start the replication threads by issuing a START REPLICA (or before MySQL 8.0.22, START
SLAVE) statement.

After you have performed this procedure, the replica connects to the source and replicates any updates
that have occurred on the source since the snapshot was taken. Error messages are issued to the
replica's error log if it is not able to replicate for any reason.

The replica uses information logged in its connection metadata repository and applier metadata
repository to keep track of how much of the source's binary log it has processed. From MySQL 8.0, by
default, these repositories are tables named slave_master_info and slave_relay_log_info

3622

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

Setting Up Binary Log File Position Based Replication

in the mysql database. Do not remove or edit these tables unless you know exactly what you are
doing and fully understand the implications. Even in that case, it is preferred that you use the CHANGE
REPLICATION SOURCE TO | CHANGE MASTER TO statement to change replication parameters.
The replica uses the values specified in the statement to update the replication metadata repositories
automatically. See Section 19.2.4, “Relay Log and Replication Metadata Repositories”, for more
information.

Note

The contents of the replica's connection metadata repository override some
of the server options specified on the command line or in my.cnf. See
Section 19.1.6, “Replication and Binary Logging Options and Variables”, for
more details.

A single snapshot of the source suffices for multiple replicas. To set up additional replicas, use the
same source snapshot and follow the replica portion of the procedure just described.

19.1.2.7 Setting the Source Configuration on the Replica

To set up the replica to communicate with the source for replication, configure the replica with the
necessary connection information. To do this, on the replica, execute the CHANGE REPLICATION
SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL
8.0.23), replacing the option values with the actual values relevant to your system:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='source_host_name',
 -> MASTER_USER='replication_user_name',
 -> MASTER_PASSWORD='replication_password',
 -> MASTER_LOG_FILE='recorded_log_file_name',
 -> MASTER_LOG_POS=recorded_log_position;

Or from MySQL 8.0.23:
mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='source_host_name',
 -> SOURCE_USER='replication_user_name',
 -> SOURCE_PASSWORD='replication_password',
 -> SOURCE_LOG_FILE='recorded_log_file_name',
 -> SOURCE_LOG_POS=recorded_log_position;

Note

Replication cannot use Unix socket files. You must be able to connect to the
source MySQL server using TCP/IP.

The CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement has other options as
well. For example, it is possible to set up secure replication using SSL. For a full list of options, and
information about the maximum permissible length for the string-valued options, see Section 15.4.2.1,
“CHANGE MASTER TO Statement”.

Important

As noted in Section 19.1.2.3, “Creating a User for Replication”, if
you are not using a secure connection and the user account named
in the SOURCE_USER | MASTER_USER option authenticates with the
caching_sha2_password plugin (the default from MySQL 8.0), you must
specify the SOURCE_PUBLIC_KEY_PATH | MASTER_PUBLIC_KEY_PATH
or GET_SOURCE_PUBLIC_KEY | GET_MASTER_PUBLIC_KEY option in the
CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement to
enable RSA key pair-based password exchange.

19.1.2.8 Adding Replicas to a Replication Environment

You can add another replica to an existing replication configuration without stopping the source
server. To do this, you can set up the new replica by copying the data directory of an existing replica,

3623

Setting Up Binary Log File Position Based Replication

and giving the new replica a different server ID (which is user-specified) and server UUID (which is
generated at startup).

Note

If the replication source server or existing replica that you are copying to create
the new replica has any scheduled events, ensure that these are disabled
on the new replica before you start it. If an event runs on the new replica that
has already run on the source, the duplicated operation causes an error. The
Event Scheduler is controlled by the event_scheduler system variable,
which defaults to ON from MySQL 8.0, so events that are active on the original
server run by default when the new replica starts up. To stop all events from
running on the new replica, set the event_scheduler system variable to
OFF or DISABLED on the new replica. Alternatively, you can use the ALTER
EVENT statement to set individual events to DISABLE or DISABLE ON SLAVE
to prevent them from running on the new replica. You can list the events on a
server using the SHOW statement or the Information Schema EVENTS table. For
more information, see Section 19.5.1.16, “Replication of Invoked Features”.

As an alternative to creating a new replica in this way, MySQL Server's clone plugin can be used to
transfer all the data and replication settings from an existing replica to a clone. For instructions to use
this method, see Section 7.6.7.7, “Cloning for Replication”.

To duplicate an existing replica without cloning, follow these steps:

1. Stop the existing replica and record the replica status information, particularly the source binary log
file and relay log file positions. You can view the replica status either in the Performance Schema
replication tables (see Section 29.12.11, “Performance Schema Replication Tables”), or by issuing
SHOW REPLICA STATUS as follows:

mysql> STOP SLAVE;
mysql> SHOW SLAVE STATUS\G
Or from MySQL 8.0.22:
mysql> STOP REPLICA;
mysql> SHOW REPLICA STATUS\G

2. Shut down the existing replica:

$> mysqladmin shutdown

3. Copy the data directory from the existing replica to the new replica, including the log files and relay
log files. You can do this by creating an archive using tar or WinZip, or by performing a direct
copy using a tool such as cp or rsync.

Important

• Before copying, verify that all the files relating to the existing replica
actually are stored in the data directory. For example, the InnoDB
system tablespace, undo tablespace, and redo log might be stored
in an alternative location. InnoDB tablespace files and file-per-table
tablespaces might have been created in other directories. The binary logs
and relay logs for the replica might be in their own directories outside
the data directory. Check through the system variables that are set for
the existing replica and look for any alternative paths that have been
specified. If you find any, copy these directories over as well.

• During copying, if files have been used for the replication metadata
repositories (see Section 19.2.4, “Relay Log and Replication Metadata
Repositories”), ensure that you also copy these files from the existing
replica to the new replica. If tables have been used for the repositories,
which is the default from MySQL 8.0, the tables are in the data directory.

3624

Replication with Global Transaction Identifiers

• After copying, delete the auto.cnf file from the copy of the data directory
on the new replica, so that the new replica is started with a different
generated server UUID. The server UUID must be unique.

A common problem that is encountered when adding new replicas is that the new replica fails with
a series of warning and error messages like these:

071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so
replication may break when this MySQL server acts as a replica and has his hostname
changed!! Please use '--relay-log=new_replica_hostname-relay-bin' to avoid this problem.
071118 16:44:10 [ERROR] Failed to open the relay log './old_replica_hostname-relay-bin.003525'
(relay_log_pos 22940879)
071118 16:44:10 [ERROR] Could not find target log during relay log initialization
071118 16:44:10 [ERROR] Failed to initialize the master info structure

This situation can occur if the relay_log system variable is not specified, as the relay log files
contain the host name as part of their file names. This is also true of the relay log index file if the
relay_log_index system variable is not used. For more information about these variables, see
Section 19.1.6, “Replication and Binary Logging Options and Variables”.

To avoid this problem, use the same value for relay_log on the new replica that was
used on the existing replica. If this option was not set explicitly on the existing replica, use
existing_replica_hostname-relay-bin. If this is not possible, copy the existing replica's
relay log index file to the new replica and set the relay_log_index system variable on the new
replica to match what was used on the existing replica. If this option was not set explicitly on the
existing replica, use existing_replica_hostname-relay-bin.index. Alternatively, if you
have already tried to start the new replica after following the remaining steps in this section and
have encountered errors like those described previously, then perform the following steps:

a. If you have not already done so, issue STOP REPLICA on the new replica.

If you have already started the existing replica again, issue STOP REPLICA on the existing
replica as well.

b. Copy the contents of the existing replica's relay log index file into the new replica's relay log
index file, making sure to overwrite any content already in the file.

c. Proceed with the remaining steps in this section.

4. When copying is complete, restart the existing replica.

5. On the new replica, edit the configuration and give the new replica a unique server ID (using the
server_id system variable) that is not used by the source or any of the existing replicas.

6. Start the new replica server, ensuring that replication does not start yet by specifying the --skip-
slave-start option, or from MySQL 8.0.24, the skip_slave_start system variable. Use the
Performance Schema replication tables or issue SHOW REPLICA STATUS to confirm that the new
replica has the correct settings when compared with the existing replica. Also display the server ID
and server UUID and verify that these are correct and unique for the new replica.

7. Start the replica threads by issuing a START REPLICA statement. The new replica now uses the
information in its connection metadata repository to start the replication process.

19.1.3 Replication with Global Transaction Identifiers

This section explains transaction-based replication using global transaction identifiers (GTIDs). When
using GTIDs, each transaction can be identified and tracked as it is committed on the originating
server and applied by any replicas; this means that it is not necessary when using GTIDs to refer to log
files or positions within those files when starting a new replica or failing over to a new source, which
greatly simplifies these tasks. Because GTID-based replication is completely transaction-based, it is
simple to determine whether sources and replicas are consistent; as long as all transactions committed

3625

Replication with Global Transaction Identifiers

on a source are also committed on a replica, consistency between the two is guaranteed. You can
use either statement-based or row-based replication with GTIDs (see Section 19.2.1, “Replication
Formats”); however, for best results, we recommend that you use the row-based format.

GTIDs are always preserved between source and replica. This means that you can always determine
the source for any transaction applied on any replica by examining its binary log. In addition, once a
transaction with a given GTID is committed on a given server, any subsequent transaction having the
same GTID is ignored by that server. Thus, a transaction committed on the source can be applied no
more than once on the replica, which helps to guarantee consistency.

This section discusses the following topics:

• How GTIDs are defined and created, and how they are represented in a MySQL server (see
Section 19.1.3.1, “GTID Format and Storage”).

• The life cycle of a GTID (see Section 19.1.3.2, “GTID Life Cycle”).

• The auto-positioning function for synchronizing a replica and source that use GTIDs (see
Section 19.1.3.3, “GTID Auto-Positioning”).

• A general procedure for setting up and starting GTID-based replication (see Section 19.1.3.4,
“Setting Up Replication Using GTIDs”).

• Suggested methods for provisioning new replication servers when using GTIDs (see
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”).

• Restrictions and limitations that you should be aware of when using GTID-based replication (see
Section 19.1.3.7, “Restrictions on Replication with GTIDs”).

• Stored functions that you can use to work with GTIDs (see Section 19.1.3.8, “Stored Function
Examples to Manipulate GTIDs”).

For information about MySQL Server options and variables relating to GTID-based replication, see
Section 19.1.6.5, “Global Transaction ID System Variables”. See also Section 14.18.2, “Functions Used
with Global Transaction Identifiers (GTIDs)”, which describes SQL functions supported by MySQL 8.0
for use with GTIDs.

19.1.3.1 GTID Format and Storage

A global transaction identifier (GTID) is a unique identifier created and associated with each transaction
committed on the server of origin (the source). This identifier is unique not only to the server on which it
originated, but is unique across all servers in a given replication topology.

GTID assignment distinguishes between client transactions, which are committed on the source, and
replicated transactions, which are reproduced on a replica. When a client transaction is committed
on the source, it is assigned a new GTID, provided that the transaction was written to the binary log.
Client transactions are guaranteed to have monotonically increasing GTIDs without gaps between the
generated numbers. If a client transaction is not written to the binary log (for example, because the
transaction was filtered out, or the transaction was read-only), it is not assigned a GTID on the server
of origin.

Replicated transactions retain the same GTID that was assigned to the transaction on the server of
origin. The GTID is present before the replicated transaction begins to execute, and is persisted even
if the replicated transaction is not written to the binary log on the replica, or is filtered out on the replica.
The MySQL system table mysql.gtid_executed is used to preserve the assigned GTIDs of all the
transactions applied on a MySQL server, except those that are stored in a currently active binary log
file.

The auto-skip function for GTIDs means that a transaction committed on the source can be applied
no more than once on the replica, which helps to guarantee consistency. Once a transaction with a

3626

Replication with Global Transaction Identifiers

given GTID has been committed on a given server, any attempt to execute a subsequent transaction
with the same GTID is ignored by that server. No error is raised, and no statement in the transaction is
executed.

If a transaction with a given GTID has started to execute on a server, but has not yet committed or
rolled back, any attempt to start a concurrent transaction on the server with the same GTID blocks. The
server neither begins to execute the concurrent transaction nor returns control to the client. Once the
first attempt at the transaction commits or rolls back, concurrent sessions that were blocking on the
same GTID may proceed. If the first attempt rolled back, one concurrent session proceeds to attempt
the transaction, and any other concurrent sessions that were blocking on the same GTID remain
blocked. If the first attempt committed, all the concurrent sessions stop being blocked, and auto-skip all
the statements of the transaction.

A GTID is represented as a pair of coordinates, separated by a colon character (:), as shown here:

GTID = source_id:transaction_id

The source_id identifies the originating server. Normally, the source's server_uuid is used for
this purpose. The transaction_id is a sequence number determined by the order in which the
transaction was committed on the source. For example, the first transaction to be committed has 1
as its transaction_id, and the tenth transaction to be committed on the same originating server
is assigned a transaction_id of 10. It is not possible for a transaction to have 0 as a sequence
number in a GTID. For example, the twenty-third transaction to be committed originally on the server
with the UUID 3E11FA47-71CA-11E1-9E33-C80AA9429562 has this GTID:

3E11FA47-71CA-11E1-9E33-C80AA9429562:23

The upper limit for sequence numbers for GTIDs on a server instance is the number of non-negative
values for a signed 64-bit integer (2 to the power of 63 minus 1, or 9,223,372,036,854,775,807). If
the server runs out of GTIDs, it takes the action specified by binlog_error_action. From MySQL
8.0.23, a warning message is issued when the server instance is approaching the limit.

The GTID for a transaction is shown in the output from mysqlbinlog, and it is used to identify
an individual transaction in the Performance Schema replication status tables, for example,
replication_applier_status_by_worker. The value stored by the gtid_next system variable
(@@GLOBAL.gtid_next) is a single GTID.

GTID Sets

A GTID set is a set comprising one or more single GTIDs or ranges of GTIDs. GTID sets are used
in a MySQL server in several ways. For example, the values stored by the gtid_executed and
gtid_purged system variables are GTID sets. The START REPLICA (or before MySQL 8.0.22,
START SLAVE) clauses UNTIL SQL_BEFORE_GTIDS and UNTIL SQL_AFTER_GTIDS can be used
to make a replica process transactions only up to the first GTID in a GTID set, or stop after the last
GTID in a GTID set. The built-in functions GTID_SUBSET() and GTID_SUBTRACT() require GTID
sets as input.

A range of GTIDs originating from the same server can be collapsed into a single expression, as shown
here:

3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5

The above example represents the first through fifth transactions originating on the MySQL server
whose server_uuid is 3E11FA47-71CA-11E1-9E33-C80AA9429562. Multiple single GTIDs or
ranges of GTIDs originating from the same server can also be included in a single expression, with the
GTIDs or ranges separated by colons, as in the following example:

3E11FA47-71CA-11E1-9E33-C80AA9429562:1-3:11:47-49

A GTID set can include any combination of single GTIDs and ranges of GTIDs, and it can
include GTIDs originating from different servers. This example shows the GTID set stored in the

3627

Replication with Global Transaction Identifiers

gtid_executed system variable (@@GLOBAL.gtid_executed) of a replica that has applied
transactions from more than one source:

2174B383-5441-11E8-B90A-C80AA9429562:1-3, 24DA167-0C0C-11E8-8442-00059A3C7B00:1-19

When GTID sets are returned from server variables, UUIDs are in alphabetical order, and numeric
intervals are merged and in ascending order.

The syntax for a GTID set is as follows:

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9|A-F]

interval:
 n[-n]

 (n >= 1)

mysql.gtid_executed Table

GTIDs are stored in a table named gtid_executed, in the mysql database. A row in this table
contains, for each GTID or set of GTIDs that it represents, the UUID of the originating server, and the
starting and ending transaction IDs of the set; for a row referencing only a single GTID, these last two
values are the same.

The mysql.gtid_executed table is created (if it does not already exist) when MySQL Server is
installed or upgraded, using a CREATE TABLE statement similar to that shown here:

CREATE TABLE gtid_executed (
 source_uuid CHAR(36) NOT NULL,
 interval_start BIGINT(20) NOT NULL,
 interval_end BIGINT(20) NOT NULL,
 PRIMARY KEY (source_uuid, interval_start)
)

Warning

As with other MySQL system tables, do not attempt to create or modify this
table yourself.

The mysql.gtid_executed table is provided for internal use by the MySQL server. It enables a
replica to use GTIDs when binary logging is disabled on the replica, and it enables retention of the
GTID state when the binary logs have been lost. Note that the mysql.gtid_executed table is
cleared if you issue RESET MASTER.

GTIDs are stored in the mysql.gtid_executed table only when gtid_mode is ON or
ON_PERMISSIVE. If binary logging is disabled (log_bin is OFF), or if log_replica_updates or
log_slave_updates is disabled, the server stores the GTID belonging to each transaction together
with the transaction in the buffer when the transaction is committed, and the background thread
adds the contents of the buffer periodically as one or more entries to the mysql.gtid_executed
table. In addition, the table is compressed periodically at a user-configurable rate, as described in
mysql.gtid_executed Table Compression.

If binary logging is enabled (log_bin is ON), from MySQL 8.0.17 for the InnoDB storage engine only,
the server updates the mysql.gtid_executed table in the same way as when binary logging or

3628

Replication with Global Transaction Identifiers

replica update logging is disabled, storing the GTID for each transaction at transaction commit time.
However, in releases before MySQL 8.0.17, and for other storage engines, the server only updates
the mysql.gtid_executed table when the binary log is rotated or the server is shut down. At these
times, the server writes GTIDs for all transactions that were written into the previous binary log into
the mysql.gtid_executed table. This situation applies on a source prior to MySQL 8.0.17, or on
a replica prior to MySQL 8.0.17 where binary logging is enabled, or with storage engines other than
InnoDB, it has the following consequences:

• In the event of the server stopping unexpectedly, the set of GTIDs from the current binary log file
is not saved in the mysql.gtid_executed table. These GTIDs are added to the table from the
binary log file during recovery so that replication can continue. The exception to this is if you disable
binary logging when the server is restarted (using --skip-log-bin or --disable-log-bin). In
that case, the server cannot access the binary log file to recover the GTIDs, so replication cannot be
started.

• The mysql.gtid_executed table does not hold a complete record of the GTIDs for all executed
transactions. That information is provided by the global value of the gtid_executed system
variable. In releases before MySQL 8.0.17 and with storage engines other than InnoDB, always use
@@GLOBAL.gtid_executed, which is updated after every commit, to represent the GTID state for
the MySQL server, instead of querying the mysql.gtid_executed table.

The MySQL server can write to the mysql.gtid_executed table even when the server is in read
only or super read only mode. In releases before MySQL 8.0.17, this ensures that the binary log
file can still be rotated in these modes. If the mysql.gtid_executed table cannot be accessed
for writes, and the binary log file is rotated for any reason other than reaching the maximum file
size (max_binlog_size), the current binary log file continues to be used. An error message
is returned to the client that requested the rotation, and a warning is logged on the server. If the
mysql.gtid_executed table cannot be accessed for writes and max_binlog_size is reached, the
server responds according to its binlog_error_action setting. If IGNORE_ERROR is set, an error is
logged on the server and binary logging is halted, or if ABORT_SERVER is set, the server shuts down.

mysql.gtid_executed Table Compression

Over the course of time, the mysql.gtid_executed table can become filled with many rows referring
to individual GTIDs that originate on the same server, and whose transaction IDs make up a range,
similar to what is shown here:

+--------------------------------------+----------------+--------------+
| source_uuid | interval_start | interval_end |
|--------------------------------------+----------------+--------------|
3E11FA47-71CA-11E1-9E33-C80AA9429562	37	37
3E11FA47-71CA-11E1-9E33-C80AA9429562	38	38
3E11FA47-71CA-11E1-9E33-C80AA9429562	39	39
3E11FA47-71CA-11E1-9E33-C80AA9429562	40	40
3E11FA47-71CA-11E1-9E33-C80AA9429562	41	41
3E11FA47-71CA-11E1-9E33-C80AA9429562	42	42
3E11FA47-71CA-11E1-9E33-C80AA9429562	43	43
...

To save space, the MySQL server can compress the mysql.gtid_executed table periodically by
replacing each such set of rows with a single row that spans the entire interval of transaction identifiers,
like this:

+--------------------------------------+----------------+--------------+
| source_uuid | interval_start | interval_end |
|--------------------------------------+----------------+--------------|
| 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 37 | 43 |
...

The server can carry out compression using a dedicated foreground thread named thread/sql/
compress_gtid_table. This thread is not listed in the output of SHOW PROCESSLIST, but it can be
viewed as a row in the threads table, as shown here:

3629

Replication with Global Transaction Identifiers

mysql> SELECT * FROM performance_schema.threads WHERE NAME LIKE '%gtid%'\G
*************************** 1. row ***************************
 THREAD_ID: 26
 NAME: thread/sql/compress_gtid_table
 TYPE: FOREGROUND
 PROCESSLIST_ID: 1
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: Daemon
 PROCESSLIST_TIME: 1509
 PROCESSLIST_STATE: Suspending
 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: 1
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: NULL
 THREAD_OS_ID: 18677

When binary logging is enabled on the server, this compression method is not used, and instead the
mysql.gtid_executed table is compressed on each binary log rotation. However, when binary
logging is disabled on the server, the thread/sql/compress_gtid_table thread sleeps until
a specified number of transactions have been executed, then wakes up to perform compression of
the mysql.gtid_executed table. It then sleeps until the same number of transactions have taken
place, then wakes up to perform the compression again, repeating this loop indefinitely. The number of
transactions that elapse before the table is compressed, and thus the compression rate, is controlled
by the value of the gtid_executed_compression_period system variable. Setting that value to
0 means that the thread never wakes up, meaning that this explicit compression method is not used.
Instead, compression occurs implicitly as required.

From MySQL 8.0.17, InnoDB transactions are written to the mysql.gtid_executed table by
a separate process to non-InnoDB transactions. This process is controlled by a different thread,
innodb/clone_gtid_thread. This GTID persister thread collects GTIDs in groups, flushes
them to the mysql.gtid_executed table, then compresses the table. If the server has a mix of
InnoDB transactions and non-InnoDB transactions, which are written to the mysql.gtid_executed
table individually, the compression carried out by the compress_gtid_table thread interferes
with the work of the GTID persister thread and can slow it significantly. For this reason, from that
release it is recommended that you set gtid_executed_compression_period to 0, so that the
compress_gtid_table thread is never activated.

From MySQL 8.0.23, the gtid_executed_compression_period default value is 0, and both
InnoDB and non-InnoDB transactions are written to the mysql.gtid_executed table by the GTID
persister thread.

For releases before MySQL 8.0.17, the default value of 1000 for
gtid_executed_compression_period can be used, meaning that compression of the table is
performed after each 1000 transactions, or you can choose an alternative value. In those releases,
if you set a value of 0 and binary logging is disabled, explicit compression is not performed on the
mysql.gtid_executed table, and you should be prepared for a potentially large increase in the
amount of disk space that may be required by the table if you do this.

When a server instance is started, if gtid_executed_compression_period is set to a
nonzero value and the thread/sql/compress_gtid_table thread is launched, in most server
configurations, explicit compression is performed for the mysql.gtid_executed table. In releases
before MySQL 8.0.17 when binary logging is enabled, compression is triggered by the fact of the binary
log being rotated at startup. In releases from MySQL 8.0.20, compression is triggered by the thread
launch. In the intervening releases, compression does not take place at startup.

19.1.3.2 GTID Life Cycle

The life cycle of a GTID consists of the following steps:

3630

Replication with Global Transaction Identifiers

1. A transaction is executed and committed on the source. This client transaction is assigned a GTID
composed of the source's UUID and the smallest nonzero transaction sequence number not yet
used on this server. The GTID is written to the source's binary log (immediately preceding the
transaction itself in the log). If a client transaction is not written to the binary log (for example,
because the transaction was filtered out, or the transaction was read-only), it is not assigned a
GTID.

2. If a GTID was assigned for the transaction, the GTID is persisted atomically at commit time by
writing it to the binary log at the beginning of the transaction (as a Gtid_log_event). Whenever
the binary log is rotated or the server is shut down, the server writes GTIDs for all transactions that
were written into the previous binary log file into the mysql.gtid_executed table.

3. If a GTID was assigned for the transaction, the GTID is externalized non-atomically (very shortly
after the transaction is committed) by adding it to the set of GTIDs in the gtid_executed
system variable (@@GLOBAL.gtid_executed). This GTID set contains a representation of the
set of all committed GTID transactions, and it is used in replication as a token that represents
the server state. With binary logging enabled (as required for the source), the set of GTIDs in
the gtid_executed system variable is a complete record of the transactions applied, but the
mysql.gtid_executed table is not, because the most recent history is still in the current binary
log file.

4. After the binary log data is transmitted to the replica and stored in the replica's relay log (using
established mechanisms for this process, see Section 19.2, “Replication Implementation”, for
details), the replica reads the GTID and sets the value of its gtid_next system variable as this
GTID. This tells the replica that the next transaction must be logged using this GTID. It is important
to note that the replica sets gtid_next in a session context.

5. The replica verifies that no thread has yet taken ownership of the GTID in gtid_next in order to
process the transaction. By reading and checking the replicated transaction's GTID first, before
processing the transaction itself, the replica guarantees not only that no previous transaction having
this GTID has been applied on the replica, but also that no other session has already read this
GTID but has not yet committed the associated transaction. So if multiple clients attempt to apply
the same transaction concurrently, the server resolves this by letting only one of them execute. The
gtid_owned system variable (@@GLOBAL.gtid_owned) for the replica shows each GTID that is
currently in use and the ID of the thread that owns it. If the GTID has already been used, no error is
raised, and the auto-skip function is used to ignore the transaction.

6. If the GTID has not been used, the replica applies the replicated transaction. Because gtid_next
is set to the GTID already assigned by the source, the replica does not attempt to generate a new
GTID for this transaction, but instead uses the GTID stored in gtid_next.

7. If binary logging is enabled on the replica, the GTID is persisted atomically at commit time by writing
it to the binary log at the beginning of the transaction (as a Gtid_log_event). Whenever the
binary log is rotated or the server is shut down, the server writes GTIDs for all transactions that
were written into the previous binary log file into the mysql.gtid_executed table.

8. If binary logging is disabled on the replica, the GTID is persisted atomically by writing it directly into
the mysql.gtid_executed table. MySQL appends a statement to the transaction to insert the
GTID into the table. From MySQL 8.0, this operation is atomic for DDL statements as well as for
DML statements. In this situation, the mysql.gtid_executed table is a complete record of the
transactions applied on the replica.

9. Very shortly after the replicated transaction is committed on the replica, the GTID is externalized
non-atomically by adding it to the set of GTIDs in the gtid_executed system variable
(@@GLOBAL.gtid_executed) for the replica. As for the source, this GTID set contains a
representation of the set of all committed GTID transactions. If binary logging is disabled on the
replica, the mysql.gtid_executed table is also a complete record of the transactions applied on
the replica. If binary logging is enabled on the replica, meaning that some GTIDs are only recorded
in the binary log, the set of GTIDs in the gtid_executed system variable is the only complete
record.

3631

Replication with Global Transaction Identifiers

Client transactions that are completely filtered out on the source are not assigned a GTID, therefore
they are not added to the set of transactions in the gtid_executed system variable, or added
to the mysql.gtid_executed table. However, the GTIDs of replicated transactions that are
completely filtered out on the replica are persisted. If binary logging is enabled on the replica, the
filtered-out transaction is written to the binary log as a Gtid_log_event followed by an empty
transaction containing only BEGIN and COMMIT statements. If binary logging is disabled, the GTID of
the filtered-out transaction is written to the mysql.gtid_executed table. Preserving the GTIDs for
filtered-out transactions ensures that the mysql.gtid_executed table and the set of GTIDs in the
gtid_executed system variable can be compressed. It also ensures that the filtered-out transactions
are not retrieved again if the replica reconnects to the source, as explained in Section 19.1.3.3, “GTID
Auto-Positioning”.

On a multithreaded replica (with replica_parallel_workers > 0 or
slave_parallel_workers > 0), transactions can be applied in parallel, so replicated
transactions can commit out of order (unless replica_preserve_commit_order=1 or
slave_preserve_commit_order=1 is set). When that happens, the set of GTIDs in the
gtid_executed system variable contains multiple GTID ranges with gaps between them. (On
a source or a single-threaded replica, there are monotonically increasing GTIDs without gaps
between the numbers.) Gaps on multithreaded replicas only occur among the most recently applied
transactions, and are filled in as replication progresses. When replication threads are stopped cleanly
using the STOP REPLICA statement, ongoing transactions are applied so that the gaps are filled in. In
the event of a shutdown such as a server failure or the use of the KILL statement to stop replication
threads, the gaps might remain.

What changes are assigned a GTID?

The typical scenario is that the server generates a new GTID for a committed transaction. However,
GTIDs can also be assigned to other changes besides transactions, and in some cases a single
transaction can be assigned multiple GTIDs.

Every database change (DDL or DML) that is written to the binary log is assigned a GTID. This
includes changes that are autocommitted, and changes that are committed using BEGIN and COMMIT
or START TRANSACTION statements. A GTID is also assigned to the creation, alteration, or deletion
of a database, and of a non-table database object such as a procedure, function, trigger, event, view,
user, role, or grant.

Non-transactional updates as well as transactional updates are assigned GTIDs. In addition, for a non-
transactional update, if a disk write failure occurs while attempting to write to the binary log cache and a
gap is therefore created in the binary log, the resulting incident log event is assigned a GTID.

When a table is automatically dropped by a generated statement in the binary log, a GTID is assigned
to the statement. Temporary tables are dropped automatically when a replica begins to apply
events from a source that has just been started, and when statement-based replication is in use
(binlog_format=STATEMENT) and a user session that has open temporary tables disconnects.
Tables that use the MEMORY storage engine are deleted automatically the first time they are accessed
after the server is started, because rows might have been lost during the shutdown.

When a transaction is not written to the binary log on the server of origin, the server does not assign
a GTID to it. This includes transactions that are rolled back and transactions that are executed while
binary logging is disabled on the server of origin, either globally (with --skip-log-bin specified
in the server's configuration) or for the session (SET @@SESSION.sql_log_bin = 0). This also
includes no-op transactions when row-based replication is in use (binlog_format=ROW).

XA transactions are assigned separate GTIDs for the XA PREPARE phase of the transaction and the
XA COMMIT or XA ROLLBACK phase of the transaction. XA transactions are persistently prepared so
that users can commit them or roll them back in the case of a failure (which in a replication topology
might include a failover to another server). The two parts of the transaction are therefore replicated
separately, so they must have their own GTIDs, even though a non-XA transaction that is rolled back
would not have a GTID.

3632

Replication with Global Transaction Identifiers

In the following special cases, a single statement can generate multiple transactions, and therefore be
assigned multiple GTIDs:

• A stored procedure is invoked that commits multiple transactions. One GTID is generated for each
transaction that the procedure commits.

• A multi-table DROP TABLE statement drops tables of different types. Multiple GTIDs can be
generated if any of the tables use storage engines that do not support atomic DDL, or if any of the
tables are temporary tables.

• A CREATE TABLE ... SELECT statement is issued when row-based replication is in use
(binlog_format=ROW). One GTID is generated for the CREATE TABLE action and one GTID is
generated for the row-insert actions.

The gtid_next System Variable

By default, for new transactions committed in user sessions, the server automatically generates and
assigns a new GTID. When the transaction is applied on a replica, the GTID from the server of origin
is preserved. You can change this behavior by setting the session value of the gtid_next system
variable:

• When gtid_next is set to AUTOMATIC, which is the default, and a transaction is committed and
written to the binary log, the server automatically generates and assigns a new GTID. If a transaction
is rolled back or not written to the binary log for another reason, the server does not generate and
assign a GTID.

• If you set gtid_next to a valid GTID (consisting of a UUID and a transaction sequence number,
separated by a colon), the server assigns that GTID to your transaction. This GTID is assigned and
added to gtid_executed even when the transaction is not written to the binary log, or when the
transaction is empty.

Note that after you set gtid_next to a specific GTID, and the transaction has been committed or
rolled back, an explicit SET @@SESSION.gtid_next statement must be issued before any other
statement. You can use this to set the GTID value back to AUTOMATIC if you do not want to assign any
more GTIDs explicitly.

When replication applier threads apply replicated transactions, they use this technique, setting
@@SESSION.gtid_next explicitly to the GTID of the replicated transaction as assigned on the server
of origin. This means the GTID from the server of origin is retained, rather than a new GTID being
generated and assigned by the replica. It also means the GTID is added to gtid_executed on the
replica even when binary logging or replica update logging is disabled on the replica, or when the
transaction is a no-op or is filtered out on the replica.

It is possible for a client to simulate a replicated transaction by setting @@SESSION.gtid_next to a
specific GTID before executing the transaction. This technique is used by mysqlbinlog to generate a
dump of the binary log that the client can replay to preserve GTIDs. A simulated replicated transaction
committed through a client is completely equivalent to a replicated transaction committed through a
replication applier thread, and they cannot be distinguished after the fact.

The gtid_purged System Variable

The set of GTIDs in the gtid_purged system variable (@@GLOBAL.gtid_purged) contains the
GTIDs of all the transactions that have been committed on the server, but do not exist in any binary log
file on the server. gtid_purged is a subset of gtid_executed. The following categories of GTIDs
are in gtid_purged:

• GTIDs of replicated transactions that were committed with binary logging disabled on the replica.

• GTIDs of transactions that were written to a binary log file that has now been purged.

• GTIDs that were added explicitly to the set by the statement SET @@GLOBAL.gtid_purged.

3633

Replication with Global Transaction Identifiers

You can change the value of gtid_purged in order to record on the server that the transactions in a
certain GTID set have been applied, although they do not exist in any binary log on the server. When
you add GTIDs to gtid_purged, they are also added to gtid_executed. An example use case for
this action is when you are restoring a backup of one or more databases on a server, but you do not
have the relevant binary logs containing the transactions on the server. Before MySQL 8.0, you could
only change the value of gtid_purged when gtid_executed (and therefore gtid_purged) was
empty. From MySQL 8.0, this restriction does not apply, and you can also choose whether to replace
the whole GTID set in gtid_purged with a specified GTID set, or to add a specified GTID set to the
GTIDs already in gtid_purged. For details of how to do this, see the description for gtid_purged.

The sets of GTIDs in the gtid_executed and gtid_purged system variables are initialized when
the server starts. Every binary log file begins with the event Previous_gtids_log_event, which
contains the set of GTIDs in all previous binary log files (composed from the GTIDs in the preceding
file's Previous_gtids_log_event, and the GTIDs of every Gtid_log_event in the preceding file
itself). The contents of Previous_gtids_log_event in the oldest and most recent binary log files
are used to compute the gtid_executed and gtid_purged sets at server startup:

• gtid_executed is computed as the union of the GTIDs in Previous_gtids_log_event in the
most recent binary log file, the GTIDs of transactions in that binary log file, and the GTIDs stored in
the mysql.gtid_executed table. This GTID set contains all the GTIDs that have been used (or
added explicitly to gtid_purged) on the server, whether or not they are currently in a binary log file
on the server. It does not include the GTIDs for transactions that are currently being processed on
the server (@@GLOBAL.gtid_owned).

• gtid_purged is computed by first adding the GTIDs in Previous_gtids_log_event in the most
recent binary log file and the GTIDs of transactions in that binary log file. This step gives the set of
GTIDs that are currently, or were once, recorded in a binary log on the server (gtids_in_binlog).
Next, the GTIDs in Previous_gtids_log_event in the oldest binary log file are subtracted from
gtids_in_binlog. This step gives the set of GTIDs that are currently recorded in a binary log
on the server (gtids_in_binlog_not_purged). Finally, gtids_in_binlog_not_purged is
subtracted from gtid_executed. The result is the set of GTIDs that have been used on the server,
but are not currently recorded in a binary log file on the server, and this result is used to initialize
gtid_purged.

If binary logs from MySQL 5.7.7 or older are involved in these computations, it is possible for incorrect
GTID sets to be computed for gtid_executed and gtid_purged, and they remain incorrect even if
the server is later restarted. For details, see the description for the binlog_gtid_simple_recovery
system variable, which controls how the binary logs are iterated to compute the GTID sets. If one of the
situations described there applies on a server, set binlog_gtid_simple_recovery=FALSE in the
server's configuration file before starting it. That setting makes the server iterate all the binary log files
(not just the newest and oldest) to find where GTID events start to appear. This process could take a
long time if the server has a large number of binary log files without GTID events.

Resetting the GTID Execution History

If you need to reset the GTID execution history on a server, use the RESET MASTER statement. For
example, you might need to do this after carrying out test queries to verify a replication setup on new
GTID-enabled servers, or when you want to join a new server to a replication group but it contains
some unwanted local transactions that are not accepted by Group Replication.

Warning

Use RESET MASTER with caution to avoid losing any wanted GTID execution
history and binary log files.

Before issuing RESET MASTER, ensure that you have backups of the server's binary log files
and binary log index file, if any, and obtain and save the GTID set held in the global value of the
gtid_executed system variable (for example, by issuing a SELECT @@GLOBAL.gtid_executed
statement and saving the results). If you are removing unwanted transactions from that GTID set, use

3634

Replication with Global Transaction Identifiers

mysqlbinlog to examine the contents of the transactions to ensure that they have no value, contain
no data that must be saved or replicated, and did not result in data changes on the server.

When you issue RESET MASTER, the following reset operations are carried out:

• The value of the gtid_purged system variable is set to an empty string ('').

• The global value (but not the session value) of the gtid_executed system variable is set to an
empty string.

• The mysql.gtid_executed table is cleared (see mysql.gtid_executed Table).

• If the server has binary logging enabled, the existing binary log files are deleted and the binary log
index file is cleared.

Note that RESET MASTER is the method to reset the GTID execution history even if the server is a
replica where binary logging is disabled. RESET REPLICA has no effect on the GTID execution history.

19.1.3.3 GTID Auto-Positioning

GTIDs replace the file-offset pairs previously required to determine points for starting, stopping, or
resuming the flow of data between source and replica. When GTIDs are in use, all the information that
the replica needs for synchronizing with the source is obtained directly from the replication data stream.

To start a replica using GTID-based replication, you need to enable the SOURCE_AUTO_POSITION |
MASTER_AUTO_POSITION option in the CHANGE REPLICATION SOURCE TO statement (from MySQL
8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23). The alternative SOURCE_LOG_FILE
| MASTER_LOG_FILE and SOURCE_LOG_POS | MASTER_LOG_POS options specify the name of the
log file and the starting position within the file, but with GTIDs the replica does not need this nonlocal
data.. For full instructions to configure and start sources and replicas using GTID-based replication, see
Section 19.1.3.4, “Setting Up Replication Using GTIDs”.

The SOURCE_AUTO_POSITION | MASTER_AUTO_POSITION option is disabled by default. If
multi-source replication is enabled on the replica, you need to set the option for each applicable
replication channel. Disabling the SOURCE_AUTO_POSITION | MASTER_AUTO_POSITION
option again causes the replica to revert to position-based replication; this means that, when
GTID_ONLY=ON, some positions may be marked as invalid, in which case you must also specify both
SOURCE_LOG_FILE | MASTER_LOG_FILE and SOURCE_LOG_POS | MASTER_LOG_POS when disabling
SOURCE_AUTO_POSITION | MASTER_AUTO_POSITION.

When a replica has GTIDs enabled (GTID_MODE=ON, ON_PERMISSIVE, or OFF_PERMISSIVE
) and the MASTER_AUTO_POSITION option enabled, auto-positioning is activated for connection
to the source. The source must have GTID_MODE=ON set in order for the connection to succeed.
In the initial handshake, the replica sends a GTID set containing the transactions that it has
already received, committed, or both. This GTID set is equal to the union of the set of GTIDs
in the gtid_executed system variable (@@GLOBAL.gtid_executed), and the set of GTIDs
recorded in the Performance Schema replication_connection_status table as received
transactions (the result of the statement SELECT RECEIVED_TRANSACTION_SET FROM
PERFORMANCE_SCHEMA.replication_connection_status).

The source responds by sending all transactions recorded in its binary log whose GTID is not included
in the GTID set sent by the replica. To do this, the source first identifies the appropriate binary log file to
begin working with, by checking the Previous_gtids_log_event in the header of each of its binary
log files, starting with the most recent. When the source finds the first Previous_gtids_log_event
which contains no transactions that the replica is missing, it begins with that binary log file. This method
is efficient and only takes a significant amount of time if the replica is behind the source by a large
number of binary log files. The source then reads the transactions in that binary log file and subsequent
files up to the current one, sending the transactions with GTIDs that the replica is missing, and skipping
the transactions that were in the GTID set sent by the replica. The elapsed time until the replica

3635

Replication with Global Transaction Identifiers

receives the first missing transaction depends on its offset in the binary log file. This exchange ensures
that the source only sends the transactions with a GTID that the replica has not already received or
committed. If the replica receives transactions from more than one source, as in the case of a diamond
topology, the auto-skip function ensures that the transactions are not applied twice.

If any of the transactions that should be sent by the source have been purged from the source's binary
log, or added to the set of GTIDs in the gtid_purged system variable by another method, the source
sends the error ER_SOURCE_HAS_PURGED_REQUIRED_GTIDS to the replica, and replication does not
start. The GTIDs of the missing purged transactions are identified and listed in the source's error log in
the warning message ER_FOUND_MISSING_GTIDS. The replica cannot recover automatically from this
error because parts of the transaction history that are needed to catch up with the source have been
purged. Attempting to reconnect without the MASTER_AUTO_POSITION option enabled only results in
the loss of the purged transactions on the replica. The correct approach to recover from this situation is
for the replica to replicate the missing transactions listed in the ER_FOUND_MISSING_GTIDS message
from another source, or for the replica to be replaced by a new replica created from a more recent
backup. Consider revising the binary log expiration period (binlog_expire_logs_seconds) on the
source to ensure that the situation does not occur again.

If during the exchange of transactions it is found that the replica has received or committed
transactions with the source's UUID in the GTID, but the source itself does not have a record of them,
the source sends the error ER_REPLICA_HAS_MORE_GTIDS_THAN_SOURCE to the replica and
replication does not start. This situation can occur if a source that does not have sync_binlog=1 set
experiences a power failure or operating system crash, and loses committed transactions that have
not yet been synchronized to the binary log file, but have been received by the replica. The source and
replica can diverge if any clients commit transactions on the source after it is restarted, which can lead
to the situation where the source and replica are using the same GTID for different transactions. The
correct approach to recover from this situation is to check manually whether the source and replica
have diverged. If the same GTID is now in use for different transactions, you either need to perform
manual conflict resolution for individual transactions as required, or remove either the source or the
replica from the replication topology. If the issue is only missing transactions on the source, you can
make the source into a replica instead, allow it to catch up with the other servers in the replication
topology, and then make it a source again if needed.

For a multi-source replica in a diamond topology (where the replica replicates from two or more
sources, which in turn replicate from a common source), when GTID-based replication is in use,
ensure that any replication filters or other channel configuration are identical on all channels on the
multi-source replica. With GTID-based replication, filters are applied only to the transaction data, and
GTIDs are not filtered out. This happens so that a replica’s GTID set stays consistent with the source’s,
meaning GTID auto-positioning can be used without re-acquiring filtered out transactions each time.
In the case where the downstream replica is multi-source and receives the same transaction from
multiple sources in a diamond topology, the downstream replica now has multiple versions of the
transaction, and the result depends on which channel applies the transaction first. The second channel
to attempt it skips the transaction using GTID auto-skip, because the transaction’s GTID was added
to the gtid_executed set by the first channel. With identical filtering on the channels, there is no
problem because all versions of the transaction contain the same data, so the results are the same.
However, with different filtering on the channels, the database can become inconsistent and replication
can hang.

19.1.3.4 Setting Up Replication Using GTIDs

This section describes a process for configuring and starting GTID-based replication in MySQL 8.0.
This is a “cold start” procedure that assumes either that you are starting the source server for the first
time, or that it is possible to stop it; for information about provisioning replicas using GTIDs from a
running source server, see Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”. For information
about changing GTID mode on servers online, see Section 19.1.4, “Changing GTID Mode on Online
Servers”.

The key steps in this startup process for the simplest possible GTID replication topology, consisting of
one source and one replica, are as follows:

3636

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_source_has_purged_required_gtids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_found_missing_gtids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_found_missing_gtids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_replica_has_more_gtids_than_source

Replication with Global Transaction Identifiers

1. If replication is already running, synchronize both servers by making them read-only.

2. Stop both servers.

3. Restart both servers with GTIDs enabled and the correct options configured.

The mysqld options necessary to start the servers as described are discussed in the example that
follows later in this section.

4. Instruct the replica to use the source as the replication data source and to use auto-positioning. The
SQL statements needed to accomplish this step are described in the example that follows later in
this section.

5. Take a new backup. Binary logs containing transactions without GTIDs cannot be used on servers
where GTIDs are enabled, so backups taken before this point cannot be used with your new
configuration.

6. Start the replica, then disable read-only mode on both servers, so that they can accept updates.

In the following example, two servers are already running as source and replica, using MySQL's binary
log position-based replication protocol. If you are starting with new servers, see Section 19.1.2.3,
“Creating a User for Replication” for information about adding a specific user for replication connections
and Section 19.1.2.1, “Setting the Replication Source Configuration” for information about setting the
server_id variable. The following examples show how to store mysqld startup options in server's
option file, see Section 6.2.2.2, “Using Option Files” for more information. Alternatively you can use
startup options when running mysqld.

Most of the steps that follow require the use of the MySQL root account or another MySQL user
account that has the SUPER privilege. mysqladmin shutdown requires either the SUPER privilege or
the SHUTDOWN privilege.

Step 1: Synchronize the servers. This step is only required when working with servers which are
already replicating without using GTIDs. For new servers proceed to Step 3. Make the servers read-
only by setting the read_only system variable to ON on each server by issuing the following:

mysql> SET @@GLOBAL.read_only = ON;

Wait for all ongoing transactions to commit or roll back. Then, allow the replica to catch up with the
source. It is extremely important that you make sure the replica has processed all updates before
continuing.

If you use binary logs for anything other than replication, for example to do point in time backup and
restore, wait until you do not need the old binary logs containing transactions without GTIDs. Ideally,
wait for the server to purge all binary logs, and wait for any existing backup to expire.

Important

It is important to understand that logs containing transactions without GTIDs
cannot be used on servers where GTIDs are enabled. Before proceeding, you
must be sure that transactions without GTIDs do not exist anywhere in the
topology.

Step 2: Stop both servers. Stop each server using mysqladmin as shown here, where username
is the user name for a MySQL user having sufficient privileges to shut down the server:

$> mysqladmin -uusername -p shutdown

Then supply this user's password at the prompt.

Step 3: Start both servers with GTIDs enabled. To enable GTID-based replication, each server
must be started with GTID mode enabled by setting the gtid_mode variable to ON, and with the

3637

Replication with Global Transaction Identifiers

enforce_gtid_consistency variable enabled to ensure that only statements which are safe for
GTID-based replication are logged. For example:

gtid_mode=ON
enforce-gtid-consistency=ON

Start each replica with the --skip-slave-start option, or from MySQL 8.0.24, the
skip_slave_start system variable, to ensure that replication does not start until you
have configured the replica settings. From MySQL 8.0.26, use --skip-replica-start or
skip_replica_start instead. For more information on GTID related options and variables, see
Section 19.1.6.5, “Global Transaction ID System Variables”.

It is not mandatory to have binary logging enabled in order to use GTIDs when using the
mysql.gtid_executed Table. Source servers must always have binary logging enabled in order to be
able to replicate. However, replica servers can use GTIDs but without binary logging. If you need to
disable binary logging on a replica server, you can do this by specifying the --skip-log-bin and --
log-replica-updates=OFF or --log-slave-updates=OFF options for the replica.

Step 4: Configure the replica to use GTID-based auto-positioning. Tell the replica to use the
source with GTID based transactions as the replication data source, and to use GTID-based auto-
positioning rather than file-based positioning. Issue a CHANGE REPLICATION SOURCE TO statement
(from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) on the replica,
including the SOURCE_AUTO_POSITION | MASTER_AUTO_POSITION option in the statement to tell the
replica that the source's transactions are identified by GTIDs.

You may also need to supply appropriate values for the source's host name and port number as well as
the user name and password for a replication user account which can be used by the replica to connect
to the source; if these have already been set prior to Step 1 and no further changes need to be made,
the corresponding options can safely be omitted from the statement shown here.

mysql> CHANGE MASTER TO
 > MASTER_HOST = host,
 > MASTER_PORT = port,
 > MASTER_USER = user,
 > MASTER_PASSWORD = password,
 > MASTER_AUTO_POSITION = 1;

Or from MySQL 8.0.23:

mysql> CHANGE REPLICATION SOURCE TO
 > SOURCE_HOST = host,
 > SOURCE_PORT = port,
 > SOURCE_USER = user,
 > SOURCE_PASSWORD = password,
 > SOURCE_AUTO_POSITION = 1;

Step 5: Take a new backup. Existing backups that were made before you enabled GTIDs can no
longer be used on these servers now that you have enabled GTIDs. Take a new backup at this point,
so that you are not left without a usable backup.

For instance, you can execute FLUSH LOGS on the server where you are taking backups. Then either
explicitly take a backup or wait for the next iteration of any periodic backup routine you may have set
up.

Step 6: Start the replica and disable read-only mode. Start the replica like this:

mysql> START SLAVE;
Or from MySQL 8.0.22:
mysql> START REPLICA;

The following step is only necessary if you configured a server to be read-only in Step 1. To allow the
server to begin accepting updates again, issue the following statement:

mysql> SET @@GLOBAL.read_only = OFF;

3638

Replication with Global Transaction Identifiers

GTID-based replication should now be running, and you can begin (or resume) activity on the source
as before. Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”, discusses creation of new
replicas when using GTIDs.

19.1.3.5 Using GTIDs for Failover and Scaleout

There are a number of techniques when using MySQL Replication with Global Transaction Identifiers
(GTIDs) for provisioning a new replica which can then be used for scaleout, being promoted to source
as necessary for failover. This section describes the following techniques:

• Simple replication

• Copying data and transactions to the replica

• Injecting empty transactions

• Excluding transactions with gtid_purged

• Restoring GTID mode replicas

Global transaction identifiers were added to MySQL Replication for the purpose of simplifying in
general management of the replication data flow and of failover activities in particular. Each identifier
uniquely identifies a set of binary log events that together make up a transaction. GTIDs play a key role
in applying changes to the database: the server automatically skips any transaction having an identifier
which the server recognizes as one that it has processed before. This behavior is critical for automatic
replication positioning and correct failover.

The mapping between identifiers and sets of events comprising a given transaction is captured in the
binary log. This poses some challenges when provisioning a new server with data from another existing
server. To reproduce the identifier set on the new server, it is necessary to copy the identifiers from
the old server to the new one, and to preserve the relationship between the identifiers and the actual
events. This is necessary for restoring a replica that is immediately available as a candidate to become
a new source on failover or switchover.

Simple replication. The easiest way to reproduce all identifiers and transactions on a new server
is to make the new server into the replica of a source that has the entire execution history, and enable
global transaction identifiers on both servers. See Section 19.1.3.4, “Setting Up Replication Using
GTIDs”, for more information.

Once replication is started, the new server copies the entire binary log from the source and thus
obtains all information about all GTIDs.

This method is simple and effective, but requires the replica to read the binary log from the source; it
can sometimes take a comparatively long time for the new replica to catch up with the source, so this
method is not suitable for fast failover or restoring from backup. This section explains how to avoid
fetching all of the execution history from the source by copying binary log files to the new server.

Copying data and transactions to the replica. Executing the entire transaction history can be
time-consuming when the source server has processed a large number of transactions previously, and
this can represent a major bottleneck when setting up a new replica. To eliminate this requirement,
a snapshot of the data set, the binary logs and the global transaction information the source server
contains can be imported to the new replica. The server where the snapshot is taken can be either
the source or one of its replicas, but you must ensure that the server has processed all required
transactions before copying the data.

There are several variants of this method, the difference being in the manner in which data dumps and
transactions from binary logs are transferred to the replica, as outlined here:

Data Set 1. Create a dump file using mysqldump on the source server.
Set the mysqldump option --master-data (with the default

3639

Replication with Global Transaction Identifiers

value of 1) to include a CHANGE REPLICATION SOURCE TO |
CHANGE MASTER TO statement with binary logging information.
Set the --set-gtid-purged option to AUTO (the default) or
ON, to include information about executed transactions in the
dump. Then use the mysql client to import the dump file on the
target server.

2. Alternatively, create a data snapshot of the source server
using raw data files, then copy these files to the target server,
following the instructions in Section 19.1.2.5, “Choosing a
Method for Data Snapshots”. If you use InnoDB tables, you can
use the mysqlbackup command from the MySQL Enterprise
Backup component to produce a consistent snapshot. This
command records the log name and offset corresponding to the
snapshot to be used on the replica. MySQL Enterprise Backup
is a commercial product that is included as part of a MySQL
Enterprise subscription. See Section 32.1, “MySQL Enterprise
Backup Overview” for detailed information.

3. Alternatively, stop both the source and target servers, copy
the contents of the source's data directory to the new replica's
data directory, then restart the replica. If you use this method,
the replica must be configured for GTID-based replication, in
other words with gtid_mode=ON. For instructions and important
information for this method, see Section 19.1.2.8, “Adding
Replicas to a Replication Environment”.

Transaction History If the source server has a complete transaction history in its binary
logs (that is, the GTID set @@GLOBAL.gtid_purged is empty), you
can use these methods.

1. Import the binary logs from the source server to the new replica
using mysqlbinlog, with the --read-from-remote-
server, --read-from-remote-source, and --read-
from-remote-master options.

2. Alternatively, copy the source server's binary log files to
the replica. You can make copies from the replica using
mysqlbinlog with the --read-from-remote-server and
--raw options. These can be read into the replica by using
mysqlbinlog > file (without the --raw option) to export
the binary log files to SQL files, then passing these files to the
mysql client for processing. Ensure that all of the binary log
files are processed using a single mysql process, rather than
multiple connections. For example:

$> mysqlbinlog copied-binlog.000001 copied-binlog.000002 | mysql -u root -p

For more information, see Section 6.6.9.3, “Using mysqlbinlog to
Back Up Binary Log Files”.

This method has the advantage that a new server is available almost immediately; only those
transactions that were committed while the snapshot or dump file was being replayed still need to be
obtained from the existing source. This means that the replica's availability is not instantaneous, but
only a relatively short amount of time should be required for the replica to catch up with these few
remaining transactions.

Copying over binary logs to the target server in advance is usually faster than reading the entire
transaction execution history from the source in real time. However, it may not always be feasible to
move these files to the target when required, due to size or other considerations. The two remaining

3640

Replication with Global Transaction Identifiers

methods for provisioning a new replica discussed in this section use other means to transfer
information about transactions to the new replica.

Injecting empty transactions. The source's global gtid_executed variable contains the set
of all transactions executed on the source. Rather than copy the binary logs when taking a snapshot
to provision a new server, you can instead note the content of gtid_executed on the server from
which the snapshot was taken. Before adding the new server to the replication chain, simply commit
an empty transaction on the new server for each transaction identifier contained in the source's
gtid_executed, like this:

SET GTID_NEXT='aaa-bbb-ccc-ddd:N';

BEGIN;
COMMIT;

SET GTID_NEXT='AUTOMATIC';

Once all transaction identifiers have been reinstated in this way using empty transactions, you must
flush and purge the replica's binary logs, as shown here, where N is the nonzero suffix of the current
binary log file name:

FLUSH LOGS;
PURGE BINARY LOGS TO 'source-bin.00000N';

You should do this to prevent this server from flooding the replication stream with false transactions in
the event that it is later promoted to the source. (The FLUSH LOGS statement forces the creation of a
new binary log file; PURGE BINARY LOGS purges the empty transactions, but retains their identifiers.)

This method creates a server that is essentially a snapshot, but in time is able to become a source
as its binary log history converges with that of the replication stream (that is, as it catches up with the
source or sources). This outcome is similar in effect to that obtained using the remaining provisioning
method, which we discuss in the next few paragraphs.

Excluding transactions with gtid_purged. The source's global gtid_purged variable contains
the set of all transactions that have been purged from the source's binary log. As with the method
discussed previously (see Injecting empty transactions), you can record the value of gtid_executed
on the server from which the snapshot was taken (in place of copying the binary logs to the new
server). Unlike the previous method, there is no need to commit empty transactions (or to issue PURGE
BINARY LOGS); instead, you can set gtid_purged on the replica directly, based on the value of
gtid_executed on the server from which the backup or snapshot was taken.

As with the method using empty transactions, this method creates a server that is functionally a
snapshot, but in time is able to become a source as its binary log history converges with that of the
source and other replicas.

Restoring GTID mode replicas. When restoring a replica in a GTID based replication setup that
has encountered an error, injecting an empty transaction may not solve the problem because an event
does not have a GTID.

Use mysqlbinlog to find the next transaction, which is probably the first transaction in the next log file
after the event. Copy everything up to the COMMIT for that transaction, being sure to include the SET
@@SESSION.gtid_next. Even if you are not using row-based replication, you can still run binary log
row events in the command line client.

Stop the replica and run the transaction you copied. The mysqlbinlog output sets the delimiter to /
!/;, so set it back:

mysql> DELIMITER ;

Restart replication from the correct position automatically:

mysql> SET GTID_NEXT=automatic;

3641

Replication with Global Transaction Identifiers

mysql> RESET SLAVE;
mysql> START SLAVE;
Or from MySQL 8.0.22:
mysql> SET GTID_NEXT=automatic;
mysql> RESET REPLICA;
mysql> START REPLICA;

19.1.3.6 Replication From a Source Without GTIDs to a Replica With GTIDs

From MySQL 8.0.23, you can set up replication channels to assign a GTID to replicated transactions
that do not already have one. This feature enables replication from a source server that does not have
GTIDs enabled and does not use GTID-based replication, to a replica that has GTIDs enabled. If it is
possible to enable GTIDs on the replication source server, as described in Section 19.1.4, “Changing
GTID Mode on Online Servers”, use that approach instead. This feature is designed for replication
source servers where you cannot enable GTIDs. Note that as is standard for MySQL replication, this
feature does not support replication from MySQL source servers earlier than the previous release
series, so MySQL 5.7 is the earliest supported source for a MySQL 8.0 replica.

You can enable GTID assignment on a replication channel using the
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE REPLICATION SOURCE TO
statement. LOCAL assigns a GTID including the replica's own UUID (the server_uuid setting). uuid
assigns a GTID including the specified UUID, such as the server_uuid setting for the replication
source server. Using a nonlocal UUID lets you differentiate between transactions that originated on
the replica and transactions that originated on the source, and for a multi-source replica, between
transactions that originated on different sources. If any of the transactions sent by the source do have a
GTID already, that GTID is retained.

Important

A replica set up with ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS
on any channel cannot be promoted to replace the replication source
server in the event that a failover is required, and a backup taken from
the replica cannot be used to restore the replication source server. The
same restriction applies to replacing or restoring other replicas that use
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS on any channel.

The replica must have gtid_mode=ON set, and this cannot be changed afterwards, unless you remove
the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS=ON setting. If the replica server is started
without GTIDs enabled and with ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS set for any
replication channels, the settings are not changed, but a warning message is written to the error log
explaining how to change the situation.

For a multi-source replica, you can have a mix of channels that use
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, and channels that do not. Channels specific
to Group Replication cannot use ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, but an
asynchronous replication channel for another source on a server instance that is a Group Replication
group member can do so. For a channel on a Group Replication group member, do not specify the
Group Replication group name as the UUID for creating the GTIDs.

Using ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS on a replication channel is not the same
as introducing GTID-based replication for the channel. The GTID set (gtid_executed) from a
replica set up with ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS should not be transferred to
another server or compared with another server's gtid_executed set. The GTIDs that are assigned
to the anonymous transactions, and the UUID you choose for them, only have significance for that
replica's own use. The exception to this is any downstream replicas of the replica where you enabled
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, and any servers that were created from a backup
of that replica.

If you set up any downstream replicas, these servers do not have
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS enabled. Only the replica that

3642

Replication with Global Transaction Identifiers

is receiving transactions directly from the non-GTID source server needs to have
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS set on the relevant replication channel. Among that
replica and its downstream replicas, you can compare GTID sets, fail over from one replica to another,
and use backups to create additional replicas, as you would in any GTID-based replication topology.
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS is used where transactions are received from a
non-GTID server outside this group.

A replication channel using ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS has the following
behavior differences to GTID-based replication:

• GTIDs are assigned to the replicated transactions when they are applied (unless they already had a
GTID). A GTID would normally be assigned on the replication source server when the transaction is
committed, and sent to the replica along with the transaction. On a multi-threaded replica, this means
the order of the GTIDs does not necessarily match the order of the transactions, even if slave-
preserve-commit-order=1 is set.

• The SOURCE_LOG_FILE and SOURCE_LOG_POS options of the CHANGE REPLICATION
SOURCE TO statement are used to position the replication I/O (receiver) thread, rather than the
SOURCE_AUTO_POSITION option.

• The SET GLOBAL sql_replica_skip_counter or SET GLOBAL sql_slave_skip_counter
statement is used to skip transactions on a replication channel set up with
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, rather than the method of committing empty
transactions. For instructions, see Section 19.1.7.3, “Skipping Transactions”.

• The UNTIL SQL_BEFORE_GTIDS and UNTIL_SQL_AFTER_GTIDS options of the START REPLICA
statement cannot be used for the channel.

• The function WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), which is deprecated from MySQL
8.0.18, cannot be used with the channel. Its replacement WAIT_FOR_EXECUTED_GTID_SET(),
which works across the server, can be used to wait for any downstream replicas of the server
that has ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS enabled. To wait for the channel
with ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS enabled to catch up with the source,
which does not use GTIDs, use the SOURCE_POS_WAIT() function (from MySQL 8.0.26) or the
MASTER_POS_WAIT() function.

The Performance Schema replication_applier_configuration table shows whether GTIDs
are assigned to anonymous transactions on a replication channel, what the UUID is, and whether
it is the UUID of the replica server (LOCAL) or a user-specified UUID (UUID). The information is
also recorded in the applier metadata repository. A RESET REPLICA ALL statement resets the
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS setting, but a RESET REPLICA statement does
not.

19.1.3.7 Restrictions on Replication with GTIDs

Because GTID-based replication is dependent on transactions, some features otherwise available in
MySQL are not supported when using it. This section provides information about restrictions on and
limitations of replication with GTIDs.

Updates involving nontransactional storage engines. When using GTIDs, updates to tables
using nontransactional storage engines such as MyISAM cannot be made in the same statement or
transaction as updates to tables using transactional storage engines such as InnoDB.

This restriction is due to the fact that updates to tables that use a nontransactional storage engine
mixed with updates to tables that use a transactional storage engine within the same transaction can
result in multiple GTIDs being assigned to the same transaction.

Such problems can also occur when the source and the replica use different storage engines for their
respective versions of the same table, where one storage engine is transactional and the other is not.

3643

Replication with Global Transaction Identifiers

Also be aware that triggers that are defined to operate on nontransactional tables can be the cause of
these problems.

In any of the cases just mentioned, the one-to-one correspondence between transactions and GTIDs is
broken, with the result that GTID-based replication cannot function correctly.

CREATE TABLE ... SELECT statements. Prior to MySQL 8.0.21, CREATE TABLE ... SELECT
statements are not allowed when using GTID-based replication. When binlog_format is set
to STATEMENT, a CREATE TABLE ... SELECT statement is recorded in the binary log as one
transaction with one GTID, but if ROW format is used, the statement is recorded as two transactions with
two GTIDs. If a source used STATEMENT format and a replica used ROW format, the replica would be
unable to handle the transaction correctly, therefore the CREATE TABLE ... SELECT statement is
disallowed with GTIDs to prevent this scenario. This restriction is lifted in MySQL 8.0.21 on storage
engines that support atomic DDL. In this case, CREATE TABLE ... SELECT is recorded in the binary
log as one transaction. For more information, see Section 15.1.1, “Atomic Data Definition Statement
Support”.

Temporary tables. When binlog_format is set to STATEMENT, CREATE TEMPORARY TABLE
and DROP TEMPORARY TABLE statements cannot be used inside transactions, procedures, functions,
and triggers when GTIDs are in use on the server (that is, when the enforce_gtid_consistency
system variable is set to ON). They can be used outside these contexts when GTIDs are in use,
provided that autocommit=1 is set. From MySQL 8.0.13, when binlog_format is set to ROW or
MIXED, CREATE TEMPORARY TABLE and DROP TEMPORARY TABLE statements are allowed inside
a transaction, procedure, function, or trigger when GTIDs are in use. The statements are not written
to the binary log and are therefore not replicated to replicas. The use of row-based replication means
that the replicas remain in sync without the need to replicate temporary tables. If the removal of these
statements from a transaction results in an empty transaction, the transaction is not written to the
binary log.

Preventing execution of unsupported statements. To prevent execution of statements that
would cause GTID-based replication to fail, all servers must be started with the --enforce-gtid-
consistency option when enabling GTIDs. This causes statements of any of the types discussed
previously in this section to fail with an error.

Note that --enforce-gtid-consistency only takes effect if binary logging takes place for a
statement. If binary logging is disabled on the server, or if statements are not written to the binary log
because they are removed by a filter, GTID consistency is not checked or enforced for the statements
that are not logged.

For information about other required startup options when enabling GTIDs, see Section 19.1.3.4,
“Setting Up Replication Using GTIDs”.

Skipping transactions. sql_replica_skip_counter or sql_slave_skip_counter
is not available when using GTID-based replication. If you need to skip transactions, use the
value of the source's gtid_executed variable instead. If you have enabled GTID assignment
on a replication channel using the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option
of the CHANGE REPLICATION SOURCE TO statement, sql_replica_skip_counter or
sql_slave_skip_counter is available. For more information, see Section 19.1.7.3, “Skipping
Transactions”.

Ignoring servers. The IGNORE_SERVER_IDS option of the CHANGE REPLICATION SOURCE TO
| CHANGE MASTER TO statement is deprecated when using GTIDs, because transactions that have
already been applied are automatically ignored. Before starting GTID-based replication, check for
and clear all ignored server ID lists that have previously been set on the servers involved. The SHOW
REPLICA STATUS statement, which can be issued for individual channels, displays the list of ignored
server IDs if there is one. If there is no list, the Replicate_Ignore_Server_Ids field is blank.

GTID mode and mysql_upgrade. Prior to MySQL 8.0.16, when the server is running with
global transaction identifiers (GTIDs) enabled (gtid_mode=ON), do not enable binary logging by

3644

Replication with Global Transaction Identifiers

mysql_upgrade (the --write-binlog option). As of MySQL 8.0.16, the server performs the entire
MySQL upgrade procedure, but disables binary logging during the upgrade, so there is no issue.

19.1.3.8 Stored Function Examples to Manipulate GTIDs

This section provides examples of stored functions (see Chapter 27, Stored Objects) which you can
create using some of the built-in functions provided by MySQL for use with GTID-based replication,
listed here:

• GTID_SUBSET(): Shows whether one GTID set is a subset of another.

• GTID_SUBTRACT(): Returns the GTIDs from one GTID set that are not in another.

• WAIT_FOR_EXECUTED_GTID_SET(): Waits until all transactions in a given GTID set have been
executed.

See Section 14.18.2, “Functions Used with Global Transaction Identifiers (GTIDs)”, more more
information about the functions just listed.

Note that in these stored functions, the delimiter command has been used to change the MySQL
statement delimiter to a vertical bar, like this:

mysql> delimiter |

All of the stored functions shown in this section take string representations of GTID sets as arguments,
so GTID sets must always be quoted when used with them.

This function returns nonzero (true) if two GTID sets are the same set, even if they are not formatted in
the same way:

CREATE FUNCTION GTID_IS_EQUAL(gs1 LONGTEXT, gs2 LONGTEXT)
 RETURNS INT
 RETURN GTID_SUBSET(gs1, gs2) AND GTID_SUBSET(gs2, gs1)
|

This function returns nonzero (true) if two GTID sets are disjoint:

CREATE FUNCTION GTID_IS_DISJOINT(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS INT
 RETURN GTID_SUBSET(gs1, GTID_SUBTRACT(gs1, gs2))
|

This function returns nonzero (true) if two GTID sets are disjoint and sum is their union:

CREATE FUNCTION GTID_IS_DISJOINT_UNION(gs1 LONGTEXT, gs2 LONGTEXT, sum LONGTEXT)
RETURNS INT
 RETURN GTID_IS_EQUAL(GTID_SUBTRACT(sum, gs1), gs2) AND
 GTID_IS_EQUAL(GTID_SUBTRACT(sum, gs2), gs1)
|

This function returns a normalized form of the GTID set, in all uppercase, with no whitespace and no
duplicates, with UUIDs in alphabetic order and intervals in numeric order:

CREATE FUNCTION GTID_NORMALIZE(gs LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs, '')
|

This function returns the union of two GTID sets:

CREATE FUNCTION GTID_UNION(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_NORMALIZE(CONCAT(gs1, ',', gs2))
|

This function returns the intersection of two GTID sets.

3645

Replication with Global Transaction Identifiers

CREATE FUNCTION GTID_INTERSECTION(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs1, GTID_SUBTRACT(gs1, gs2))
|

This function returns the symmetric difference between two GTID sets, that is, the GTIDs that exist in
gs1 but not in gs2, as well as the GTIDs that exist in gs2 but not in gs1.

CREATE FUNCTION GTID_SYMMETRIC_DIFFERENCE(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(CONCAT(gs1, ',', gs2), GTID_INTERSECTION(gs1, gs2))
|

This function removes from a GTID set all the GTIDs with the specified origin, and returns the
remaining GTIDs, if any. The UUID is the identifier used by the server where the transaction originated,
which is normally the value of server_uuid.

CREATE FUNCTION GTID_SUBTRACT_UUID(gs LONGTEXT, uuid TEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs, CONCAT(UUID, ':1-', (1 << 63) - 2))
|

This function acts as the reverse of the previous one; it returns only those GTIDs from the GTID set
that originate from the server with the specified identifier (UUID).

CREATE FUNCTION GTID_INTERSECTION_WITH_UUID(gs LONGTEXT, uuid TEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs, GTID_SUBTRACT_UUID(gs, uuid))
|

Example 19.1 Verifying that a replica is up to date

The built-in functions GTID_SUBSET() and GTID_SUBTRACT() can be used to check that a replica
has applied at least every transaction that a source has applied.

To perform this check with GTID_SUBSET(), execute the following statement on the replica:

SELECT GTID_SUBSET(source_gtid_executed, replica_gtid_executed);

If the returns value is 0 (false), this means that some GTIDs in source_gtid_executed are not
present in replica_gtid_executed, and that the replica has not yet applied transactions that were
applied on the source, which means that the replica is not up to date.

To perform the same check with GTID_SUBTRACT(), execute the following statement on the replica:

SELECT GTID_SUBTRACT(source_gtid_executed, replica_gtid_executed);

This statement returns any GTIDs that are in source_gtid_executed but not in
replica_gtid_executed. If any GTIDs are returned, the source has applied some transactions that
the replica has not applied, and the replica is therefore not up to date.

Example 19.2 Backup and restore scenario

The stored functions GTID_IS_EQUAL(), GTID_IS_DISJOINT(), and
GTID_IS_DISJOINT_UNION() can be used to verify backup and restore operations involving
multiple databases and servers. In this example scenario, server1 contains database db1, and
server2 contains database db2. The goal is to copy database db2 to server1, and the result on
server1 should be the union of the two databases. The procedure used is to back up server2 using
mysqldump, then to restore this backup on server1.

Provided that mysqldump was run with --set-gtid-purged set to ON or AUTO (the default), the
output contains a SET @@GLOBAL.gtid_purged statement which adds the gtid_executed set
from server2 to the gtid_purged set on server1. gtid_purged contains the GTIDs of all the

3646

Replication with Global Transaction Identifiers

transactions that have been committed on a given server but which do not exist in any binary log file
on the server. When database db2 is copied to server1, the GTIDs of the transactions committed
on server2, which are not in the binary log files on server1, must be added to gtid_purged for
server1 to make the set complete.

The stored functions can be used to assist with the following steps in this scenario:

• Use GTID_IS_EQUAL() to verify that the backup operation computed the correct GTID set for
the SET @@GLOBAL.gtid_purged statement. On server2, extract that statement from the
mysqldump output, and store the GTID set into a local variable, such as $gtid_purged_set. Then
execute the following statement:

server2> SELECT GTID_IS_EQUAL($gtid_purged_set, @@GLOBAL.gtid_executed);

If the result is 1, the two GTID sets are equal, and the set has been computed correctly.

• Use GTID_IS_DISJOINT() to verify that the GTID set in the mysqldump output does not overlap
with the gtid_executed set on server1. Having identical GTIDs present on both servers
causes errors when copying database db2 to server1. To check, on server1, extract and store
gtid_purged from the output into a local variable as done previously, then execute the following
statement:

server1> SELECT GTID_IS_DISJOINT($gtid_purged_set, @@GLOBAL.gtid_executed);

If the result is 1, there is no overlap between the two GTID sets, so no duplicate GTIDs are present.

• Use GTID_IS_DISJOINT_UNION() to verify that the restore operation resulted in the correct GTID
state on server1. Before restoring the backup, on server1, obtain the existing gtid_executed
set by executing the following statement:

server1> SELECT @@GLOBAL.gtid_executed;

Store the result in a local variable $original_gtid_executed, as well as the set from
gtid_purged in another local variable as described previously. When the backup from server2
has been restored onto server1, execute the following statement to verify the GTID state:

server1> SELECT
 -> GTID_IS_DISJOINT_UNION($original_gtid_executed,
 -> $gtid_purged_set,
 -> @@GLOBAL.gtid_executed);

If the result is 1, the stored function has verified that the original gtid_executed set from server1
($original_gtid_executed) and the gtid_purged set that was added from server2
($gtid_purged_set) have no overlap, and that the updated gtid_executed set on server1
now consists of the previous gtid_executed set from server1 plus the gtid_purged set
from server2, which is the desired result. Ensure that this check is carried out before any further
transactions take place on server1, otherwise the new transactions in gtid_executed cause it to
fail.

Example 19.3 Selecting the most up-to-date replica for manual failover

The stored function GTID_UNION() can be used to identify the most up-to-date replica from a
set of replicas, in order to perform a manual failover operation after a source server has stopped
unexpectedly. If some of the replicas are experiencing replication lag, this stored function can
be used to compute the most up-to-date replica without waiting for all the replicas to apply their
existing relay logs, and therefore to minimize the failover time. The function can return the union
of gtid_executed on each replica with the set of transactions received by the replica, which is
recorded in the Performance Schema replication_connection_status table. You can compare
these results to find which replica's record of transactions is the most up to date, even if not all of the
transactions have been committed yet.

On each replica, compute the complete record of transactions by issuing the following statement:

3647

Replication with Global Transaction Identifiers

SELECT GTID_UNION(RECEIVED_TRANSACTION_SET, @@GLOBAL.gtid_executed)
 FROM performance_schema.replication_connection_status
 WHERE channel_name = 'name';

You can then compare the results from each replica to see which one has the most up-to-date record
of transactions, and use this replica as the new source.

Example 19.4 Checking for extraneous transactions on a replica

The stored function GTID_SUBTRACT_UUID() can be used to check whether a replica has received
transactions that did not originate from its designated source or sources. If it has, there might be an
issue with your replication setup, or with a proxy, router, or load balancer. This function works by
removing from a GTID set all the GTIDs from a specified originating server, and returning the remaining
GTIDs, if any.

For a replica with a single source, issue the following statement, giving the identifier of the originating
source, which is normally the same as server_uuid:

SELECT GTID_SUBTRACT_UUID(@@GLOBAL.gtid_executed, server_uuid_of_source);

If the result is not empty, the transactions returned are extra transactions that did not originate from the
designated source.

For a replica in a multisource topology, include the server UUID of each source in the function call, like
this:

SELECT
 GTID_SUBTRACT_UUID(GTID_SUBTRACT_UUID(@@GLOBAL.gtid_executed,
 server_uuid_of_source_1),
 server_uuid_of_source_2);

If the result is not empty, the transactions returned are extra transactions that did not originate from any
of the designated sources.

Example 19.5 Verifying that a server in a replication topology is read-only

The stored function GTID_INTERSECTION_WITH_UUID() can be used to verify that a server has
not originated any GTIDs and is in a read-only state. The function returns only those GTIDs from the
GTID set that originate from the server with the specified identifier. If any of the transactions listed in
gtid_executed from this server use the server's own identifier, the server itself originated those
transactions. You can issue the following statement on the server to check:

SELECT GTID_INTERSECTION_WITH_UUID(@@GLOBAL.gtid_executed, my_server_uuid);

Example 19.6 Validating an additional replica in multisource replication

The stored function GTID_INTERSECTION_WITH_UUID() can be used to find out if a replica attached
to a multisource replication setup has applied all the transactions originating from one particular source.
In this scenario, source1 and source2 are both sources and replicas and replicate to each other.
source2 also has its own replica. The replica also receives and applies transactions from source1
if source2 is configured with log_replica_updates=ON, but it does not do so if source2 uses
log_replica_updates=OFF. Whichever the case, we currently want only to find out if the replica
is up to date with source2. In this situation, GTID_INTERSECTION_WITH_UUID() can be used
to identify the transactions that source2 originated, discarding the transactions that source2 has
replicated from source1. The built-in function GTID_SUBSET() can then be used to compare the
result with the gtid_executed set on the replica. If the replica is up to date with source2, the
gtid_executed set on the replica contains all the transactions in the intersection set (the transactions
that originated from source2).

3648

Changing GTID Mode on Online Servers

To carry out this check, store the values of gtid_executed and the server UUID from source2 and
the value of gtid_executed from the replica into user variables as follows:

source2> SELECT @@GLOBAL.gtid_executed INTO @source2_gtid_executed;

source2> SELECT @@GLOBAL.server_uuid INTO @source2_server_uuid;

replica> SELECT @@GLOBAL.gtid_executed INTO @replica_gtid_executed;

Then use GTID_INTERSECTION_WITH_UUID() and GTID_SUBSET() with these variables as input,
as follows:

SELECT
 GTID_SUBSET(
 GTID_INTERSECTION_WITH_UUID(@source2_gtid_executed,
 @source2_server_uuid),
 @replica_gtid_executed);

The server identifier from source2 (@source2_server_uuid) is used with
GTID_INTERSECTION_WITH_UUID() to identify and return only those GTIDs from the set of GTIDs
that originated on source2, omitting those that originated on source1. The resulting GTID set is
then compared with the set of all executed GTIDs on the replica, using GTID_SUBSET(). If this
statement returns nonzero (true), all the identified GTIDs from source2 (the first set input) are also
found in gtid_executed from the replica, meaning that the replica has received and executed all the
transactions that originated from source2.

19.1.4 Changing GTID Mode on Online Servers

This section describes how to change the mode of replication from and to GTID mode without having to
take the server offline.

19.1.4.1 Replication Mode Concepts

Before setting the replication mode of an online server, it is important to understand some key concepts
of replication. This section explains these concepts and is essential reading before attempting to modify
the replication mode of an online server.

The modes of replication available in MySQL rely on different techniques for identifying logged
transactions. The types of transactions used by replication are listed here:

• GTID transactions are identified by a global transaction identifier (GTID) which takes the form
UUID:NUMBER. Every GTID transaction in the binary log is preceded by a Gtid_log_event. A
GTID transaction can be addressed either by its GTID, or by the name of the file in which it is logged
and its position within that file.

• An anonymous transaction has no GTID; MySQL 8.0 ensures that every anonymous transaction
in a log is preceded by an Anonymous_gtid_log_event. (In previous versions of MySQL, an
anonymous transaction was not preceded by any particular event.) An anonymous transaction can
be addressed by file name and position only.

When using GTIDs you can take advantage of GTID auto-positioning and automatic failover, and use
WAIT_FOR_EXECUTED_GTID_SET(), session_track_gtids, and Performance Schema tables to
monitor replicated transactions (see Section 29.12.11, “Performance Schema Replication Tables”).

A transaction in a relay log from a source running a previous version of MySQL might not be preceded
by any particular event, but after being replayed and recorded in the replica's binary log, it is preceded
with an Anonymous_gtid_log_event.

To change the replication mode online, it is necessary to set the gtid_mode and
enforce_gtid_consistency variables using an account that has privileges sufficient to set global

3649

Changing GTID Mode on Online Servers

system variables; see Section 7.1.9.1, “System Variable Privileges”. Permitted values for gtid_mode
are listed here, in order, with their meanings:

• OFF: Only anonymous transactions can be replicated.

• OFF_PERMISSIVE: New transactions are anonymous; replicated transactions may be either GTID or
anonymous.

• ON_PERMISSIVE: New transactions use GTIDs; replicated transactions may be either GTID or
anonymous.

• ON: All transaction must have GTIDs; anonymous transactions cannot be replicated.

It is possible to have servers using anonymous and servers using GTID transactions in the same
replication topology. For example, a source where gtid_mode=ON can replicate to a replica where
gtid_mode=ON_PERMISSIVE.

gtid_mode can be changed only one step at a time, based on the order of the values as shown in the
previous list. For example, if gtid_mode is set to OFF_PERMISSIVE, it is possible to change it to OFF
or ON_PERMISSIVE, but not to ON. This is to ensure that the process of changing from anonymous
transactions to GTID transactions online is handled correctly by the server; the GTID state (in other
words the value of gtid_executed) is persistent. This ensures that the GTID setting applied by the
server is always retained and is correct, regardless of any changes in the value of gtid_mode.

System variables which display GTID sets, such as gtid_executed and
gtid_purged, the RECEIVED_TRANSACTION_SET column of the Performance Schema
replication_connection_status table, and results relating to GTIDs in the output of SHOW
REPLICA STATUS all return empty strings when there are no GTIDs present. Sources of information
about a single GTID, such as the information shown in the CURRENT_TRANSACTION column of the
Performance Schema replication_applier_status_by_worker table, show ANONYMOUS when
GTID transactions are not in use.

Replication from a source using gtid_mode=ON provides the ability to use GTID auto-positioning,
configured using the SOURCE_AUTO_POSITION option of the CHANGE REPLICATION SOURCE
TO statement. The replication topology in use has an impact on whether it is possible to enable
auto-positioning or not, since this feature relies on GTIDs and is not compatible with anonymous
transactions. It is strongly recommended to ensure there are no anonymous transactions remaining
in the topology before enabling auto-positioning; see Section 19.1.4.2, “Enabling GTID Transactions
Online”.

Valid combinations of gtid_mode and auto-positioning on source and replica are shown in the next
table. The meaning of each entry is as follows:

• Y: The values of gtid_mode on the source and on the replica are compatible.

• N: The values of gtid_mode on the source and on the replica are not compatible.

• *: Auto-positioning can be used with this combination of values.

Table 19.1 Valid Combinations of Source and Replica gtid_mode

gtid_mode Source OFF Source
OFF_PERMISSIVE

Source
ON_PERMISSIVE

Source ON

Replica OFF Y Y N N

Replica
OFF_PERMISSIVE

Y Y Y Y*

Replica
ON_PERMISSIVE

Y Y Y Y*

Replica ON N N Y Y*

3650

Changing GTID Mode on Online Servers

The current value of gtid_mode also affects gtid_next. The next table shows the behavior of the
server for combinations of different values of gtid_mode and gtid_next. The meaning of each entry
is as follows:

• ANONYMOUS: Generate an anonymous transaction.

• Error: Generate an error, and do not execute SET GTID_NEXT.

• UUID:NUMBER: Generate a GTID with the specified UUID:NUMBER.

• New GTID: Generate a GTID with an automatically generated number.

Table 19.2 Valid Combinations of gtid_mode and gtid_next

gtid_next
AUTOMATIC

binary log on

gtid_next
AUTOMATIC

binary log off

gtid_next
ANONYMOUS

gtid_next
UUID:NUMBER

gtid_mode OFF ANONYMOUS ANONYMOUS ANONYMOUS Error

gtid_mode
OFF_PERMISSIVE

ANONYMOUS ANONYMOUS ANONYMOUS UUID:NUMBER

gtid_mode
ON_PERMISSIVE

New GTID ANONYMOUS ANONYMOUS UUID:NUMBER

gtid_mode ON New GTID ANONYMOUS Error UUID:NUMBER

When binary logging is not in use and gtid_next is AUTOMATIC, then no GTID is generated, which is
consistent with the behavior of previous versions of MySQL.

19.1.4.2 Enabling GTID Transactions Online

This section describes how to enable GTID transactions, and optionally auto-positioning, on servers
that are already online and using anonymous transactions. This procedure does not require taking the
server offline and is suited to use in production. However, if you have the possibility to take the servers
offline when enabling GTID transactions that process is easier.

Beginning with MySQL 8.0.23, you can set up replication channels to assign GTIDs to replicated
transactions that do not already have any. This feature enables replication from a source server that
does not use GTID-based replication, to a replica that does. If it is possible to enable GTIDs on the
replication source server, as described in this procedure, use this approach instead. Assigning GTIDs
is designed for replication source servers where you cannot enable GTIDs. For more information on
this option, see Section 19.1.3.6, “Replication From a Source Without GTIDs to a Replica With GTIDs”.

Before you start, ensure that the servers meet the following pre-conditions:

• All servers in your topology must use MySQL 5.7.6 or later. You cannot enable GTID transactions
online on any single server unless all servers which are in the topology are using this version.

• All servers have gtid_mode set to the default value OFF.

The following procedure can be paused at any time and later resumed where it was, or reversed by
jumping to the corresponding step of Section 19.1.4.3, “Disabling GTID Transactions Online”, the
online procedure to disable GTIDs. This makes the procedure fault-tolerant because any unrelated
issues that may appear in the middle of the procedure can be handled as usual, and then the
procedure continued where it was left off.

Note

It is crucial that you complete every step before continuing to the next step.

3651

Changing GTID Mode on Online Servers

To enable GTID transactions:

1. On each server, execute:

SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = WARN;

Let the server run for a while with your normal workload and monitor the logs. If this step causes
any warnings in the log, adjust your application so that it only uses GTID-compatible features and
does not generate any warnings.

Important

This is the first important step. You must ensure that no warnings are being
generated in the error logs before going to the next step.

2. On each server, execute:

SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = ON;

3. On each server, execute:

SET @@GLOBAL.GTID_MODE = OFF_PERMISSIVE;

It does not matter which server executes this statement first, but it is important that all servers
complete this step before any server begins the next step.

4. On each server, execute:

SET @@GLOBAL.GTID_MODE = ON_PERMISSIVE;

It does not matter which server executes this statement first.

5. On each server, wait until the status variable ONGOING_ANONYMOUS_TRANSACTION_COUNT is
zero. This can be checked using:

SHOW STATUS LIKE 'ONGOING_ANONYMOUS_TRANSACTION_COUNT';

Note

On a replica, it is theoretically possible that this shows zero and then
nonzero again. This is not a problem, it suffices that it shows zero once.

6. Wait for all transactions generated up to step 5 to replicate to all servers. You can do this without
stopping updates: the only important thing is that all anonymous transactions get replicated.

See Section 19.1.4.4, “Verifying Replication of Anonymous Transactions” for one method of
checking that all anonymous transactions have replicated to all servers.

7. If you use binary logs for anything other than replication, for example point in time backup and
restore, wait until you do not need the old binary logs having transactions without GTIDs.

For instance, after step 6 has completed, you can execute FLUSH LOGS on the server where you
are taking backups. Then either explicitly take a backup or wait for the next iteration of any periodic
backup routine you may have set up.

Ideally, wait for the server to purge all binary logs that existed when step 6 was completed. Also
wait for any backup taken before step 6 to expire.

Important

This is the second important point. It is vital to understand that binary logs
containing anonymous transactions, without GTIDs cannot be used after the
next step. After this step, you must be sure that transactions without GTIDs
do not exist anywhere in the topology.

3652

Changing GTID Mode on Online Servers

8. On each server, execute:

SET @@GLOBAL.GTID_MODE = ON;

9. On each server, add gtid_mode=ON and enforce_gtid_consistency=ON to my.cnf.

You are now guaranteed that all transactions have a GTID (except transactions generated in step
5 or earlier, which have already been processed). To start using the GTID protocol so that you can
later perform automatic fail-over, execute the following on each replica. Optionally, if you use multi-
source replication, do this for each channel and include the FOR CHANNEL channel clause:

STOP SLAVE [FOR CHANNEL 'channel'];
CHANGE MASTER TO MASTER_AUTO_POSITION = 1 [FOR CHANNEL 'channel'];
START SLAVE [FOR CHANNEL 'channel'];

Or from MySQL 8.0.22 / 8.0.23:
STOP REPLICA [FOR CHANNEL 'channel'];
CHANGE REPLICATION SOURCE TO SOURCE_AUTO_POSITION = 1 [FOR CHANNEL 'channel'];
START REPLICA [FOR CHANNEL 'channel'];

19.1.4.3 Disabling GTID Transactions Online

This section describes how to disable GTID transactions on servers that are already online. This
procedure does not require taking the server offline and is suited to use in production. However, if you
have the possibility to take the servers offline when disabling GTIDs mode that process is easier.

The process is similar to enabling GTID transactions while the server is online, but reversing the steps.
The only thing that differs is the point at which you wait for logged transactions to replicate.

Before you start, ensure that the servers meet the following pre-conditions:

• All servers in your topology must use MySQL 5.7.6 or later. You cannot disable GTID transactions
online on any single server unless all servers which are in the topology are using this version.

• All servers have gtid_mode set to ON.

• The --replicate-same-server-id option is not set on any server. You cannot disable GTID
transactions if this option is set together with the --log-slave-updates option (which is the
default) and binary logging is enabled (which is also the default). Without GTIDs, this combination of
options causes infinite loops in circular replication.

1. Execute the following statements on each replica, and if you are using multi-source replication,
do so for each channel, including the FOR CHANNEL clause when using multi-source replication
(MySQL 8.0.23 and later):

STOP REPLICA [FOR CHANNEL 'channel'];

CHANGE REPLICATION SOURCE TO
 SOURCE_AUTO_POSITION = 0,
 SOURCE_LOG_FILE = 'file',
 SOURCE_LOG_POS = position
 [FOR CHANNEL 'channel'];

START REPLICA [FOR CHANNEL 'channel'];

You can obtain the values for file and position from the relay_source_log_file and
exec_source_log_position columns in the output of SHOW REPLICA STATUS. The file
and channel names are strings; both of these must be quoted when used in the STOP REPLICA,
CHANGE REPLICATION SOURCE TO, and START REPLICA statements.

Prior to MySQL 8.0.23:

STOP SLAVE [FOR CHANNEL 'channel'];

3653

Changing GTID Mode on Online Servers

CHANGE MASTER TO
 MASTER_AUTO_POSITION = 0,
 MASTER_LOG_FILE = 'file',
 MASTER_LOG_POS = position
 [FOR CHANNEL 'channel'];

START SLAVE [FOR CHANNEL 'channel'];

In this case, obtain the values for file and position from the relay_source_log_file and
exec_source_log_position columns in the output of SHOW SLAVE STATUS. The file and
channel names are strings, and so must be quoted when used in the STOP SLAVE, CHANGE
MASTER TO, and START SLAVE statements.

2. On each server, execute the following statement:

SET @@global.gtid_mode = ON_PERMISSIVE;

3. On each server, execute the following statement:

SET @@global.gtid_mode = OFF_PERMISSIVE;

4. On each server, wait until the global value of gtid_owned is equal to the empty string. This can be
checked using the statement shown here:

SELECT @@global.gtid_owned;

On a replica, it is theoretically possible that this is empty and then becomes nonempty again. This
is not a problem; it suffices that the value is empty at least once.

5. Wait for all transactions that currently exist in any binary log to be committed on all replicas. See
Section 19.1.4.4, “Verifying Replication of Anonymous Transactions”, for one method of checking
that all anonymous transactions have replicated to all servers.

6. If you use binary logs for anything other than replication—for example, to perform point-in-time
backup or restore—wait until you no longer need any old binary logs containing GTID transactions.

For instance, after the previous step has completed, you can execute FLUSH LOGS on the server
where you are taking the backup. Then, either take a backup manually, or wait for the next iteration
of any periodic backup routine you may have set up.

Ideally, you should wait for the server to purge all binary logs that existed when step 5 was
completed, and for any backup taken before then to expire.

You should keep in mind that logs containing GTID transactions cannot be used after the next
step. For this reason, before proceeding further, you must be sure that no uncommitted GTID
transactions exist anywhere in the topology.

7. On each server, execute the following statement:

SET @@global.gtid_mode = OFF;

8. On each server, set gtid_mode=OFF in my.cnf.

Optionally, you can also set enforce_gtid_consistency=OFF. After doing so, you should add
enforce_gtid_consistency=OFF to your configuration file.

If you want to downgrade to an earlier version of MySQL, you can do so now, using the normal
downgrade procedure.

19.1.4.4 Verifying Replication of Anonymous Transactions

This section explains how to monitor a replication topology and verify that all anonymous transactions
have been replicated. This is helpful when changing the replication mode online as you can verify that it
is safe to change to GTID transactions.

3654

MySQL Multi-Source Replication

There are several possible ways to wait for transactions to replicate:

The simplest method, which works regardless of your topology but relies on timing is as follows: if you
are sure that the replica never lags more than N seconds, just wait for a bit more than N seconds. Or
wait for a day, or whatever time period you consider safe for your deployment.

A safer method in the sense that it does not depend on timing: if you only have a source with one or
more replicas, do the following:

1. On the source, execute:

SHOW MASTER STATUS;

Note down the values in the File and Position column.

2. On every replica, use the file and position information from the source to execute:

SELECT MASTER_POS_WAIT(file, position);

Or from MySQL 8.0.26:
SELECT SOURCE_POS_WAIT(file, position);

If you have a source and multiple levels of replicas, or in other words you have replicas of replicas,
repeat step 2 on each level, starting from the source, then all the direct replicas, then all the replicas of
replicas, and so on.

If you use a circular replication topology where multiple servers may have write clients, perform step 2
for each source-replica connection, until you have completed the full circle. Repeat the whole process
so that you do the full circle twice.

For example, suppose you have three servers A, B, and C, replicating in a circle so that A -> B -> C ->
A. The procedure is then:

• Do step 1 on A and step 2 on B.

• Do step 1 on B and step 2 on C.

• Do step 1 on C and step 2 on A.

• Do step 1 on A and step 2 on B.

• Do step 1 on B and step 2 on C.

• Do step 1 on C and step 2 on A.

19.1.5 MySQL Multi-Source Replication

MySQL multi-source replication enables a replica to receive transactions from multiple immediate
sources in parallel. In a multi-source replication topology, a replica creates a replication channel for
each source that it should receive transactions from. For more information on how replication channels
function, see Section 19.2.2, “Replication Channels”.

You might choose to implement multi-source replication to achieve goals like these:

• Backing up multiple servers to a single server.

• Merging table shards.

• Consolidating data from multiple servers to a single server.

Multi-source replication does not implement any conflict detection or resolution when applying
transactions, and those tasks are left to the application if required.

3655

MySQL Multi-Source Replication

Note

Each channel on a multi-source replica must replicate from a different source.
You cannot set up multiple replication channels from a single replica to a
single source. This is because the server IDs of replicas must be unique in a
replication topology. The source distinguishes replicas only by their server IDs,
not by the names of the replication channels, so it cannot recognize different
replication channels from the same replica.

A multi-source replica can also be set up as a multi-threaded replica, by setting the system variable
replica_parallel_workers (from MySQL 8.0.26) or slave_parallel_workers to a value
greater than 0. When you do this on a multi-source replica, each channel on the replica has the
specified number of applier threads, plus a coordinator thread to manage them. You cannot configure
the number of applier threads for individual channels.

From MySQL 8.0, multi-source replicas can be configured with replication filters on specific replication
channels. Channel specific replication filters can be used when the same database or table is
present on multiple sources, and you only need the replica to replicate it from one source. For GTID-
based replication, if the same transaction might arrive from multiple sources (such as in a diamond
topology), you must ensure the filtering setup is the same on all channels. For more information, see
Section 19.2.5.4, “Replication Channel Based Filters”.

This section provides tutorials on how to configure sources and replicas for multi-source replication,
how to start, stop and reset multi-source replicas, and how to monitor multi-source replication.

19.1.5.1 Configuring Multi-Source Replication

A multi-source replication topology requires at least two sources and one replica configured. In these
tutorials, we assume that you have two sources source1 and source2, and a replica replicahost.
The replica replicates one database from each of the sources, db1 from source1 and db2 from
source2.

Sources in a multi-source replication topology can be configured to use either GTID-based replication,
or binary log position-based replication. See Section 19.1.3.4, “Setting Up Replication Using GTIDs” for
how to configure a source using GTID-based replication. See Section 19.1.2.1, “Setting the Replication
Source Configuration” for how to configure a source using file position based replication.

Replicas in a multi-source replication topology require TABLE repositories for the replica's connection
metadata repository and applier metadata repository, which are the default in MySQL 8.0. Multi-source
replication is not compatible with the deprecated alternative file repositories.

Create a suitable user account on all the sources that the replica can use to connect. You can use the
same account on all the sources, or a different account on each. If you create an account solely for the
purposes of replication, that account needs only the REPLICATION SLAVE privilege. For example, to
set up a new user, ted, that can connect from the replica replicahost, use the mysql client to issue
these statements on each of the sources:

mysql> CREATE USER 'ted'@'replicahost' IDENTIFIED BY 'password';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'ted'@'replicahost';

For more details, and important information on the default authentication plugin for new users from
MySQL 8.0, see Section 19.1.2.3, “Creating a User for Replication”.

19.1.5.2 Provisioning a Multi-Source Replica for GTID-Based Replication

If the sources in the multi-source replication topology have existing data, it can save time to provision
the replica with the relevant data before starting replication. In a multi-source replication topology,
cloning or copying of the data directory cannot be used to provision the replica with data from all of
the sources, and you might also want to replicate only specific databases from each source. The best
strategy for provisioning such a replica is therefore to use mysqldump to create an appropriate dump
file on each source, then use the mysql client to import the dump file on the replica.

3656

MySQL Multi-Source Replication

If you are using GTID-based replication, you need to pay attention to the SET
@@GLOBAL.gtid_purged statement that mysqldump places in the dump output. This statement
transfers the GTIDs for the transactions executed on the source to the replica, and the replica requires
this information. However, for any case more complex than provisioning one new, empty replica from
one source, you need to check what effect the statement has in the version of MySQL used by the
replica, and handle the statement accordingly. The following guidance summarizes suitable actions, but
for more details, see the mysqldump documentation.

The behavior of the SET @@GLOBAL.gtid_purged statement written by mysqldump is different
in releases from MySQL 8.0 compared to MySQL 5.6 and 5.7. In MySQL 5.6 and 5.7, the statement
replaces the value of gtid_purged on the replica, and also in those releases that value can only be
changed when the replica's record of transactions with GTIDs (the gtid_executed set) is empty. In
a multi-source replication topology, you must therefore remove the SET @@GLOBAL.gtid_purged
statement from the dump output before replaying the dump files, because you cannot apply a second
or subsequent dump file including this statement. Also note that for MySQL 5.6 and 5.7, this limitation
means all the dump files from the sources must be applied in a single operation on a replica with
an empty gtid_executed set. You can clear a replica's GTID execution history by issuing RESET
MASTER on the replica, but if you have other, wanted transactions with GTIDs on the replica, choose an
alternative method of provisioning from those described in Section 19.1.3.5, “Using GTIDs for Failover
and Scaleout”.

From MySQL 8.0, the SET @@GLOBAL.gtid_purged statement adds the GTID set from the dump
file to the existing gtid_purged set on the replica. The statement can therefore potentially be left in
the dump output when you replay the dump files on the replica, and the dump files can be replayed
at different times. However, it is important to note that the value that is included by mysqldump
for the SET @@GLOBAL.gtid_purged statement includes the GTIDs of all transactions in the
gtid_executed set on the source, even those that changed suppressed parts of the database,
or other databases on the server that were not included in a partial dump. If you replay a second
or subsequent dump file on the replica that contains any of the same GTIDs (for example, another
partial dump from the same source, or a dump from another source that has overlapping transactions),
any SET @@GLOBAL.gtid_purged statement in the second dump file fails, and must therefore be
removed from the dump output.

For sources from MySQL 8.0.17, as an alternative to removing the SET @@GLOBAL.gtid_purged
statement, you may set mysqldump's --set-gtid-purged option to COMMENTED to include the
statement but commented out, so that it is not actioned when you load the dump file. If you are
provisioning the replica with two partial dumps from the same source, and the GTID set in the second
dump is the same as the first (so no new transactions have been executed on the source in between
the dumps), you can set mysqldump's --set-gtid-purged option to OFF when you output the
second dump file, to omit the statement.

In the following provisioning example, we assume that the SET @@GLOBAL.gtid_purged statement
cannot be left in the dump output, and must be removed from the files and handled manually. We also
assume that there are no wanted transactions with GTIDs on the replica before provisioning starts.

1. To create dump files for a database named db1 on source1 and a database named db2 on
source2, run mysqldump for source1 as follows:

mysqldump -u<user> -p<password> --single-transaction --triggers --routines --set-gtid-purged=ON --databases db1 > dumpM1.sql

Then run mysqldump for source2 as follows:

mysqldump -u<user> -p<password> --single-transaction --triggers --routines --set-gtid-purged=ON --databases db2 > dumpM2.sql

2. Record the gtid_purged value that mysqldump added to each of the dump files. For example,
for dump files created on MySQL 5.6 or 5.7, you can extract the value like this:

cat dumpM1.sql | grep GTID_PURGED | cut -f2 -d'=' | cut -f2 -d$'\''
cat dumpM2.sql | grep GTID_PURGED | cut -f2 -d'=' | cut -f2 -d$'\''

From MySQL 8.0, where the format has changed, you can extract the value like this:

3657

MySQL Multi-Source Replication

cat dumpM1.sql | grep GTID_PURGED | perl -p0 -e 's#/*.*?*/##sg' | cut -f2 -d'=' | cut -f2 -d$'\''
cat dumpM2.sql | grep GTID_PURGED | perl -p0 -e 's#/*.*?*/##sg' | cut -f2 -d'=' | cut -f2 -d$'\''

The result in each case should be a GTID set, for example:

source1: 2174B383-5441-11E8-B90A-C80AA9429562:1-1029
source2: 224DA167-0C0C-11E8-8442-00059A3C7B00:1-2695

3. Remove the line from each dump file that contains the SET @@GLOBAL.gtid_purged statement.
For example:

sed '/GTID_PURGED/d' dumpM1.sql > dumpM1_nopurge.sql
sed '/GTID_PURGED/d' dumpM2.sql > dumpM2_nopurge.sql

4. Use the mysql client to import each edited dump file into the replica. For example:

mysql -u<user> -p<password> < dumpM1_nopurge.sql
mysql -u<user> -p<password> < dumpM2_nopurge.sql

5. On the replica, issue RESET MASTER to clear the GTID execution history (assuming, as explained
above, that all the dump files have been imported and that there are no wanted transactions
with GTIDs on the replica). Then issue a SET @@GLOBAL.gtid_purged statement to set the
gtid_purged value to the union of all the GTID sets from all the dump files, as you recorded in
Step 2. For example:

mysql> RESET MASTER;
mysql> SET @@GLOBAL.gtid_purged = "2174B383-5441-11E8-B90A-C80AA9429562:1-1029, 224DA167-0C0C-11E8-8442-00059A3C7B00:1-2695";

If there are, or might be, overlapping transactions between the GTID sets in the dump files, you can
use the stored functions described in Section 19.1.3.8, “Stored Function Examples to Manipulate
GTIDs” to check this beforehand and to calculate the union of all the GTID sets.

19.1.5.3 Adding GTID-Based Sources to a Multi-Source Replica

These steps assume you have enabled GTIDs for transactions on the sources using gtid_mode=ON,
created a replication user, ensured that the replica is using TABLE based replication applier metadata
repositories, and provisioned the replica with data from the sources if appropriate.

Use the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER
TO statement (before MySQL 8.0.23) to configure a replication channel for each source on the
replica (see Section 19.2.2, “Replication Channels”). The FOR CHANNEL clause is used to specify
the channel. For GTID-based replication, GTID auto-positioning is used to synchronize with
the source (see Section 19.1.3.3, “GTID Auto-Positioning”). The SOURCE_AUTO_POSITION |
MASTER_AUTO_POSITION option is set to specify the use of auto-positioning.

For example, to add source1 and source2 as sources to the replica, use the mysql client to issue
the statement twice on the replica, like this:

mysql> CHANGE MASTER TO MASTER_HOST="source1", MASTER_USER="ted", \
MASTER_PASSWORD="password", MASTER_AUTO_POSITION=1 FOR CHANNEL "source_1";
mysql> CHANGE MASTER TO MASTER_HOST="source2", MASTER_USER="ted", \
MASTER_PASSWORD="password", MASTER_AUTO_POSITION=1 FOR CHANNEL "source_2";

Or from MySQL 8.0.23:
mysql> CHANGE REPLICATION SOURCE TO SOURCE_HOST="source1", SOURCE_USER="ted", \
SOURCE_PASSWORD="password", SOURCE_AUTO_POSITION=1 FOR CHANNEL "source_1";
mysql> CHANGE REPLICATION SOURCE TO SOURCE_HOST="source2", SOURCE_USER="ted", \
SOURCE_PASSWORD="password", SOURCE_AUTO_POSITION=1 FOR CHANNEL "source_2";

To make the replica replicate only database db1 from source1, and only database db2 from
source2, use the mysql client to issue the CHANGE REPLICATION FILTER statement for each
channel, like this:

mysql> CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db1.%') FOR CHANNEL "source_1";

3658

MySQL Multi-Source Replication

mysql> CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db2.%') FOR CHANNEL "source_2";

For the full syntax of the CHANGE REPLICATION FILTER statement and other available options, see
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”.

19.1.5.4 Adding Binary Log Based Replication Sources to a Multi-Source Replica

These steps assume that binary logging is enabled on the source (which is the default), the replica is
using TABLE based replication applier metadata repositories (which is the default in MySQL 8.0), and
that you have enabled a replication user and noted the current binary log file name and position.

Use the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER
TO statement (before MySQL 8.0.23) to configure a replication channel for each source on the replica
(see Section 19.2.2, “Replication Channels”). The FOR CHANNEL clause is used to specify the channel.
For example, to add source1 and source2 as sources to the replica, use the mysql client to issue
the statement twice on the replica, like this:

mysql> CHANGE MASTER TO MASTER_HOST="source1", MASTER_USER="ted", MASTER_PASSWORD="password", \
MASTER_LOG_FILE='source1-bin.000006', MASTER_LOG_POS=628 FOR CHANNEL "source_1";
mysql> CHANGE MASTER TO MASTER_HOST="source2", MASTER_USER="ted", MASTER_PASSWORD="password", \
MASTER_LOG_FILE='source2-bin.000018', MASTER_LOG_POS=104 FOR CHANNEL "source_2";

Or from MySQL 8.0.23:
mysql> CHANGE REPLICATION SOURCE TO SOURCE_HOST="source1", SOURCE_USER="ted", SOURCE_PASSWORD="password", \
SOURCE_LOG_FILE='source1-bin.000006', SOURCE_LOG_POS=628 FOR CHANNEL "source_1";
mysql> CHANGE REPLICATION SOURCE TO SOURCE_HOST="source2", SOURCE_USER="ted", SOURCE_PASSWORD="password", \
SOURCE_LOG_FILE='source2-bin.000018', SOURCE_LOG_POS=104 FOR CHANNEL "source_2";

To make the replica replicate only database db1 from source1, and only database db2 from
source2, use the mysql client to issue the CHANGE REPLICATION FILTER statement for each
channel, like this:

mysql> CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db1.%') FOR CHANNEL "source_1";
mysql> CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db2.%') FOR CHANNEL "source_2";

For the full syntax of the CHANGE REPLICATION FILTER statement and other available options, see
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”.

19.1.5.5 Starting Multi-Source Replicas

Once you have added channels for all of the replication sources, issue a START REPLICA (or before
MySQL 8.0.22, START SLAVE) statement to start replication. When you have enabled multiple
channels on a replica, you can choose to either start all channels, or select a specific channel to
start. For example, to start the two channels separately, use the mysql client to issue the following
statements:

mysql> START SLAVE FOR CHANNEL "source_1";
mysql> START SLAVE FOR CHANNEL "source_2";
Or from MySQL 8.0.22:
mysql> START REPLICA FOR CHANNEL "source_1";
mysql> START REPLICA FOR CHANNEL "source_2";

For the full syntax of the START REPLICA command and other available options, see Section 15.4.2.6,
“START REPLICA Statement”.

To verify that both channels have started and are operating correctly, you can issue SHOW REPLICA
STATUS statements on the replica, for example:

mysql> SHOW SLAVE STATUS FOR CHANNEL "source_1"\G
mysql> SHOW SLAVE STATUS FOR CHANNEL "source_2"\G
Or from MySQL 8.0.22:
mysql> SHOW REPLICA STATUS FOR CHANNEL "source_1"\G
mysql> SHOW REPLICA STATUS FOR CHANNEL "source_2"\G

19.1.5.6 Stopping Multi-Source Replicas

3659

MySQL Multi-Source Replication

The STOP REPLICA statement can be used to stop a multi-source replica. By default, if you use the
STOP REPLICA statement on a multi-source replica all channels are stopped. Optionally, use the FOR
CHANNEL channel clause to stop only a specific channel.

• To stop all currently configured replication channels:

mysql> STOP SLAVE;
Or from MySQL 8.0.22:
mysql> STOP REPLICA;

• To stop only a named channel, use a FOR CHANNEL channel clause:

mysql> STOP SLAVE FOR CHANNEL "source_1";
Or from MySQL 8.0.22:
mysql> STOP REPLICA FOR CHANNEL "source_1";

For the full syntax of the STOP REPLICA command and other available options, see Section 15.4.2.8,
“STOP REPLICA Statement”.

19.1.5.7 Resetting Multi-Source Replicas

The RESET REPLICA statement can be used to reset a multi-source replica. By default, if you use the
RESET REPLICA statement on a multi-source replica all channels are reset. Optionally, use the FOR
CHANNEL channel clause to reset only a specific channel.

• To reset all currently configured replication channels:

mysql> RESET SLAVE;
Or from MySQL 8.0.22:
mysql> RESET REPLICA;

• To reset only a named channel, use a FOR CHANNEL channel clause:

mysql> RESET SLAVE FOR CHANNEL "source_1";
Or from MySQL 8.0.22:
mysql> RESET REPLICA FOR CHANNEL "source_1";

For GTID-based replication, note that RESET REPLICA has no effect on the replica's GTID execution
history. If you want to clear this, issue RESET MASTER on the replica.

RESET REPLICA makes the replica forget its replication position, and clears the relay log, but it does
not change any replication connection parameters (such as the source host name) or replication filters.
If you want to remove these for a channel, issue RESET REPLICA ALL.

For the full syntax of the RESET REPLICA command and other available options, see Section 15.4.2.4,
“RESET REPLICA Statement”.

19.1.5.8 Monitoring Multi-Source Replication

To monitor the status of replication channels the following options exist:

• Using the replication Performance Schema tables. The first column of these tables is
Channel_Name. This enables you to write complex queries based on Channel_Name as a key. See
Section 29.12.11, “Performance Schema Replication Tables”.

• Using SHOW REPLICA STATUS FOR CHANNEL channel. By default, if the FOR CHANNEL
channel clause is not used, this statement shows the replica status for all channels with one row
per channel. The identifier Channel_name is added as a column in the result set. If a FOR CHANNEL
channel clause is provided, the results show the status of only the named replication channel.

Note

The SHOW VARIABLES statement does not work with multiple replication
channels. The information that was available through these variables has been

3660

MySQL Multi-Source Replication

migrated to the replication performance tables. Using a SHOW VARIABLES
statement in a topology with multiple channels shows the status of only the
default channel.

The error codes and messages that are issued when multi-source replication is enabled specify the
channel that generated the error.

Monitoring Channels Using Performance Schema Tables

This section explains how to use the replication Performance Schema tables to monitor channels. You
can choose to monitor all channels, or a subset of the existing channels.

To monitor the connection status of all channels:

mysql> SELECT * FROM replication_connection_status\G;
*************************** 1. row ***************************
CHANNEL_NAME: source_1
GROUP_NAME:
SOURCE_UUID: 046e41f8-a223-11e4-a975-0811960cc264
THREAD_ID: 24
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 046e41f8-a223-11e4-a975-0811960cc264:4-37
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
*************************** 2. row ***************************
CHANNEL_NAME: source_2
GROUP_NAME:
SOURCE_UUID: 7475e474-a223-11e4-a978-0811960cc264
THREAD_ID: 26
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 7475e474-a223-11e4-a978-0811960cc264:4-6
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
2 rows in set (0.00 sec)

In the above output there are two channels enabled, and as shown by the CHANNEL_NAME field they
are called source_1 and source_2.

The addition of the CHANNEL_NAME field enables you to query the Performance Schema tables
for a specific channel. To monitor the connection status of a named channel, use a WHERE
CHANNEL_NAME=channel clause:

mysql> SELECT * FROM replication_connection_status WHERE CHANNEL_NAME='source_1'\G
*************************** 1. row ***************************
CHANNEL_NAME: source_1
GROUP_NAME:
SOURCE_UUID: 046e41f8-a223-11e4-a975-0811960cc264
THREAD_ID: 24
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 046e41f8-a223-11e4-a975-0811960cc264:4-37
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
1 row in set (0.00 sec)

Similarly, the WHERE CHANNEL_NAME=channel clause can be used to monitor the other replication
Performance Schema tables for a specific channel. For more information, see Section 29.12.11,
“Performance Schema Replication Tables”.

3661

Replication and Binary Logging Options and Variables

19.1.6 Replication and Binary Logging Options and Variables

The following sections contain information about mysqld options and server variables that are used
in replication and for controlling the binary log. Options and variables for use on sources and replicas
are covered separately, as are options and variables relating to binary logging and global transaction
identifiers (GTIDs). A set of quick-reference tables providing basic information about these options and
variables is also included.

Of particular importance is the server_id system variable.

Command-Line Format --server-id=#

System Variable server_id

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 4294967295

This variable specifies the server ID. server_id is set to 1 by default. The server can be started with
this default ID, but when binary logging is enabled, an informational message is issued if you did not
set server_id explicitly to specify a server ID.

For servers that are used in a replication topology, you must specify a unique server ID for each
replication server, in the range from 1 to 232 − 1. “Unique” means that each ID must be different
from every other ID in use by any other source or replica in the replication topology. For additional
information, see Section 19.1.6.2, “Replication Source Options and Variables”, and Section 19.1.6.3,
“Replica Server Options and Variables”.

If the server ID is set to 0, binary logging takes place, but a source with a server ID of 0 refuses any
connections from replicas, and a replica with a server ID of 0 refuses to connect to a source. Note
that although you can change the server ID dynamically to a nonzero value, doing so does not enable
replication to start immediately. You must change the server ID and then restart the server to initialize
the replica.

For more information, see Section 19.1.2.2, “Setting the Replica Configuration”.

server_uuid

The MySQL server generates a true UUID in addition to the default or user-supplied server ID set in the
server_id system variable. This is available as the global, read-only variable server_uuid.

Note

The presence of the server_uuid system variable does not change the
requirement for setting a unique server_id value for each MySQL server as
part of preparing and running MySQL replication, as described earlier in this
section.

System Variable server_uuid

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

3662

Replication and Binary Logging Options and Variables

When starting, the MySQL server automatically obtains a UUID as follows:

1. Attempt to read and use the UUID written in the file data_dir/auto.cnf (where data_dir is
the server's data directory).

2. If data_dir/auto.cnf is not found, generate a new UUID and save it to this file, creating the file
if necessary.

The auto.cnf file has a format similar to that used for my.cnf or my.ini files. auto.cnf has only a
single [auto] section containing a single server_uuid setting and value; the file's contents appear
similar to what is shown here:

[auto]
server_uuid=8a94f357-aab4-11df-86ab-c80aa9429562

Important

The auto.cnf file is automatically generated; do not attempt to write or modify
this file.

When using MySQL replication, sources and replicas know each other's UUIDs. The value of a
replica's UUID can be seen in the output of SHOW REPLICAS (or before MySQL 8.0.22, SHOW SLAVE
HOSTS). Once START REPLICA has been executed, the value of the source's UUID is available on the
replica in the output of SHOW REPLICA STATUS. (In MySQL 8.0.22, the SLAVE keyword was replaced
by REPLICA.)

Note

Issuing a STOP REPLICA or RESET REPLICA statement does not reset the
source's UUID as used on the replica.

A server's server_uuid is also used in GTIDs for transactions originating on that server. For more
information, see Section 19.1.3, “Replication with Global Transaction Identifiers”.

When starting, the replication I/O (receiver) thread generates an error and aborts if its source's UUID
is equal to its own unless the --replicate-same-server-id option has been set. In addition, the
replication receiver thread generates a warning if either of the following is true:

• No source having the expected server_uuid exists.

• The source's server_uuid has changed, although no CHANGE REPLICATION SOURCE TO |
CHANGE MASTER TO statement has ever been executed.

19.1.6.1 Replication and Binary Logging Option and Variable Reference

The following two sections provide basic information about the MySQL command-line options and
system variables applicable to replication and the binary log.

Replication Options and Variables

The command-line options and system variables in the following list relate to replication source servers
and replicas. Section 19.1.6.2, “Replication Source Options and Variables” provides more detailed
information about options and variables relating to replication source servers. For more information
about options and variables relating to replicas, see Section 19.1.6.3, “Replica Server Options and
Variables”.

• abort-slave-event-count: Option used by mysql-test for debugging and testing of replication.

• auto_increment_increment: AUTO_INCREMENT columns are incremented by this value.

• auto_increment_offset: Offset added to AUTO_INCREMENT columns.

3663

Replication and Binary Logging Options and Variables

• Com_change_master: Count of CHANGE REPLICATION SOURCE TO and CHANGE MASTER
TO statements.

• Com_change_replication_source: Count of CHANGE REPLICATION SOURCE TO and
CHANGE MASTER TO statements.

• Com_replica_start: Count of START REPLICA and START SLAVE statements.

• Com_replica_stop: Count of STOP REPLICA and STOP SLAVE statements.

• Com_show_master_status: Count of SHOW MASTER STATUS statements.

• Com_show_replica_status: Count of SHOW REPLICA STATUS and SHOW SLAVE STATUS
statements.

• Com_show_replicas: Count of SHOW REPLICAS and SHOW SLAVE HOSTS statements.

• Com_show_slave_hosts: Count of SHOW REPLICAS and SHOW SLAVE HOSTS statements.

• Com_show_slave_status: Count of SHOW REPLICA STATUS and SHOW SLAVE STATUS
statements.

• Com_slave_start: Count of START REPLICA and START SLAVE statements.

• Com_slave_stop: Count of STOP REPLICA and STOP SLAVE statements.

• disconnect-slave-event-count: Option used by mysql-test for debugging and testing of
replication.

• enforce_gtid_consistency: Prevents execution of statements that cannot be logged in
transactionally safe manner.

• expire_logs_days: Purge binary logs after this many days.

• gtid_executed: Global: All GTIDs in binary log (global) or current transaction (session). Read-
only.

• gtid_executed_compression_period: Compress gtid_executed table each time this many
transactions have occurred. 0 means never compress this table. Applies only when binary logging is
disabled.

• gtid_mode: Controls whether GTID based logging is enabled and what type of transactions logs
can contain.

• gtid_next: Specifies GTID for subsequent transaction or transactions; see documentation for
details.

• gtid_owned: Set of GTIDs owned by this client (session), or by all clients, together with thread ID of
owner (global). Read-only.

• gtid_purged: Set of all GTIDs that have been purged from binary log.

• immediate_server_version: MySQL Server release number of server which is immediate
replication source.

• init_replica: Statements that are executed when replica connects to source.

• init_slave: Statements that are executed when replica connects to source.

• log_bin_trust_function_creators: If equal to 0 (default), then when --log-bin is used, stored
function creation is allowed only to users having SUPER privilege and only if function created does
not break binary logging.

• log_statements_unsafe_for_binlog: Disables error 1592 warnings being written to error log.

3664

Replication and Binary Logging Options and Variables

• master-info-file: Location and name of file that remembers source and where I/O replication
thread is in source's binary log.

• master-retry-count: Number of tries replica makes to connect to source before giving up.

• master_info_repository: Whether to write connection metadata repository, containing source
information and replication I/O thread location in source's binary log, to file or table.

• max_relay_log_size: If nonzero, relay log is rotated automatically when its size exceeds this
value. If zero, size at which rotation occurs is determined by value of max_binlog_size.

• original_commit_timestamp: Time when transaction was committed on original source.

• original_server_version: MySQL Server release number of server on which transaction was
originally committed.

• relay_log: Location and base name to use for relay logs.

• relay_log_basename: Complete path to relay log, including file name.

• relay_log_index: Location and name to use for file that keeps list of last relay logs.

• relay_log_info_file: File name for applier metadata repository in which replica records
information about relay logs.

• relay_log_info_repository: Whether to write location of replication SQL thread in relay logs to
file or table.

• relay_log_purge: Determines whether relay logs are purged.

• relay_log_recovery: Whether automatic recovery of relay log files from source at startup is
enabled; must be enabled for crash-safe replica.

• relay_log_space_limit: Maximum space to use for all relay logs.

• replica_checkpoint_group: Maximum number of transactions processed by multithreaded
replica before checkpoint operation is called to update progress status. Not supported by NDB
Cluster.

• replica_checkpoint_period: Update progress status of multithreaded replica and flush relay
log info to disk after this number of milliseconds. Not supported by NDB Cluster.

• replica_compressed_protocol: Use compression of source/replica protocol.

• replica_exec_mode: Allows for switching replication thread between IDEMPOTENT mode (key
and some other errors suppressed) and STRICT mode; STRICT mode is default, except for NDB
Cluster, where IDEMPOTENT is always used.

• replica_load_tmpdir: Location where replica should put its temporary files when replicating
LOAD DATA statements.

• replica_max_allowed_packet: Maximum size, in bytes, of packet that can be sent from
replication source server to replica; overrides max_allowed_packet.

• replica_net_timeout: Number of seconds to wait for more data from source/replica connection
before aborting read.

• Replica_open_temp_tables: Number of temporary tables that replication SQL thread currently
has open.

• replica_parallel_type: Tells replica to use timestamp information (LOGICAL_CLOCK) or
database partitioning (DATABASE) to parallelize transactions.

3665

Replication and Binary Logging Options and Variables

• replica_parallel_workers: Number of applier threads for executing replication transactions.
NDB Cluster: see documentation.

• replica_pending_jobs_size_max: Maximum size of replica worker queues holding events not
yet applied.

• replica_preserve_commit_order: Ensures that all commits by replica workers happen in same
order as on source to maintain consistency when using parallel applier threads.

• Replica_rows_last_search_algorithm_used: Search algorithm most recently used by this
replica to locate rows for row-based replication (index, table, or hash scan).

• replica_skip_errors: Tells replication thread to continue replication when query returns error
from provided list.

• replica_transaction_retries: Number of times replication SQL thread retries transaction in
case it failed with deadlock or elapsed lock wait timeout, before giving up and stopping.

• replica_type_conversions: Controls type conversion mode on replica. Value is list of zero or
more elements from this list: ALL_LOSSY, ALL_NON_LOSSY. Set to empty string to disallow type
conversions between source and replica.

• replicate-do-db: Tells replication SQL thread to restrict replication to specified database.

• replicate-do-table: Tells replication SQL thread to restrict replication to specified table.

• replicate-ignore-db: Tells replication SQL thread not to replicate to specified database.

• replicate-ignore-table: Tells replication SQL thread not to replicate to specified table.

• replicate-rewrite-db: Updates to database with different name from original.

• replicate-same-server-id: In replication, if enabled, do not skip events having our server id.

• replicate-wild-do-table: Tells replication SQL thread to restrict replication to tables that
match specified wildcard pattern.

• replicate-wild-ignore-table: Tells replication SQL thread not to replicate to tables that
match given wildcard pattern.

• replication_optimize_for_static_plugin_config: Shared locks for semisynchronous
replication.

• replication_sender_observe_commit_only: Limited callbacks for semisynchronous
replication.

• report_host: Host name or IP of replica to be reported to source during replica registration.

• report_password: Arbitrary password which replica server should report to source; not same as
password for replication user account.

• report_port: Port for connecting to replica reported to source during replica registration.

• report_user: Arbitrary user name which replica server should report to source; not same as name
used for replication user account.

• rpl_read_size: Set minimum amount of data in bytes which is read from binary log files and relay
log files.

• Rpl_semi_sync_master_clients: Number of semisynchronous replicas.

• rpl_semi_sync_master_enabled: Whether semisynchronous replication is enabled on source.

3666

Replication and Binary Logging Options and Variables

• Rpl_semi_sync_master_net_avg_wait_time: Average time source has waited for replies from
replica.

• Rpl_semi_sync_master_net_wait_time: Total time source has waited for replies from replica.

• Rpl_semi_sync_master_net_waits: Total number of times source waited for replies from
replica.

• Rpl_semi_sync_master_no_times: Number of times source turned off semisynchronous
replication.

• Rpl_semi_sync_master_no_tx: Number of commits not acknowledged successfully.

• Rpl_semi_sync_master_status: Whether semisynchronous replication is operational on source.

• Rpl_semi_sync_master_timefunc_failures: Number of times source failed when calling time
functions.

• rpl_semi_sync_master_timeout: Number of milliseconds to wait for replica acknowledgment.

• rpl_semi_sync_master_trace_level: Semisynchronous replication debug trace level on
source.

• Rpl_semi_sync_master_tx_avg_wait_time: Average time source waited for each transaction.

• Rpl_semi_sync_master_tx_wait_time: Total time source waited for transactions.

• Rpl_semi_sync_master_tx_waits: Total number of times source waited for transactions.

• rpl_semi_sync_master_wait_for_slave_count: Number of replica acknowledgments source
must receive per transaction before proceeding.

• rpl_semi_sync_master_wait_no_slave: Whether source waits for timeout even with no
replicas.

• rpl_semi_sync_master_wait_point: Wait point for replica transaction receipt
acknowledgment.

• Rpl_semi_sync_master_wait_pos_backtraverse: Total number of times source has waited
for event with binary coordinates lower than events waited for previously.

• Rpl_semi_sync_master_wait_sessions: Number of sessions currently waiting for replica
replies.

• Rpl_semi_sync_master_yes_tx: Number of commits acknowledged successfully.

• rpl_semi_sync_replica_enabled: Whether semisynchronous replication is enabled on replica.

• Rpl_semi_sync_replica_status: Whether semisynchronous replication is operational on
replica.

• rpl_semi_sync_replica_trace_level: Semisynchronous replication debug trace level on
replica.

• rpl_semi_sync_slave_enabled: Whether semisynchronous replication is enabled on replica.

• Rpl_semi_sync_slave_status: Whether semisynchronous replication is operational on replica.

• rpl_semi_sync_slave_trace_level: Semisynchronous replication debug trace level on replica.

• Rpl_semi_sync_source_clients: Number of semisynchronous replicas.

• rpl_semi_sync_source_enabled: Whether semisynchronous replication is enabled on source.

3667

Replication and Binary Logging Options and Variables

• Rpl_semi_sync_source_net_avg_wait_time: Average time source has waited for replies from
replica.

• Rpl_semi_sync_source_net_wait_time: Total time source has waited for replies from replica.

• Rpl_semi_sync_source_net_waits: Total number of times source waited for replies from
replica.

• Rpl_semi_sync_source_no_times: Number of times source turned off semisynchronous
replication.

• Rpl_semi_sync_source_no_tx: Number of commits not acknowledged successfully.

• Rpl_semi_sync_source_status: Whether semisynchronous replication is operational on source.

• Rpl_semi_sync_source_timefunc_failures: Number of times source failed when calling time
functions.

• rpl_semi_sync_source_timeout: Number of milliseconds to wait for replica acknowledgment.

• rpl_semi_sync_source_trace_level: Semisynchronous replication debug trace level on
source.

• Rpl_semi_sync_source_tx_avg_wait_time: Average time source waited for each transaction.

• Rpl_semi_sync_source_tx_wait_time: Total time source waited for transactions.

• Rpl_semi_sync_source_tx_waits: Total number of times source waited for transactions.

• rpl_semi_sync_source_wait_for_replica_count: Number of replica acknowledgments
source must receive per transaction before proceeding.

• rpl_semi_sync_source_wait_no_replica: Whether source waits for timeout even with no
replicas.

• rpl_semi_sync_source_wait_point: Wait point for replica transaction receipt
acknowledgment.

• Rpl_semi_sync_source_wait_pos_backtraverse: Total number of times source has waited
for event with binary coordinates lower than events waited for previously.

• Rpl_semi_sync_source_wait_sessions: Number of sessions currently waiting for replica
replies.

• Rpl_semi_sync_source_yes_tx: Number of commits acknowledged successfully.

• rpl_stop_replica_timeout: Number of seconds that STOP REPLICA waits before timing out.

• rpl_stop_slave_timeout: Number of seconds that STOP REPLICA or STOP SLAVE waits
before timing out.

• server_uuid: Server's globally unique ID, automatically (re)generated at server start.

• show-replica-auth-info: Show user name and password in SHOW REPLICAS on this source.

• show-slave-auth-info: Show user name and password in SHOW REPLICAS and SHOW
SLAVE HOSTS on this source.

• skip-replica-start: If set, replication is not autostarted when replica server starts.

• skip-slave-start: If set, replication is not autostarted when replica server starts.

• slave-skip-errors: Tells replication thread to continue replication when query returns error from
provided list.

3668

Replication and Binary Logging Options and Variables

• slave_checkpoint_group: Maximum number of transactions processed by multithreaded replica
before checkpoint operation is called to update progress status. Not supported by NDB Cluster.

• slave_checkpoint_period: Update progress status of multithreaded replica and flush relay log
info to disk after this number of milliseconds. Not supported by NDB Cluster.

• slave_compressed_protocol: Use compression of source/replica protocol.

• slave_exec_mode: Allows for switching replication thread between IDEMPOTENT mode (key and
some other errors suppressed) and STRICT mode; STRICT mode is default, except for NDB Cluster,
where IDEMPOTENT is always used.

• slave_load_tmpdir: Location where replica should put its temporary files when replicating LOAD
DATA statements.

• slave_max_allowed_packet: Maximum size, in bytes, of packet that can be sent from replication
source server to replica; overrides max_allowed_packet.

• slave_net_timeout: Number of seconds to wait for more data from source/replica connection
before aborting read.

• Slave_open_temp_tables: Number of temporary tables that replication SQL thread currently has
open.

• slave_parallel_type: Tells replica to use timestamp information (LOGICAL_CLOCK) or
database partioning (DATABASE) to parallelize transactions.

• slave_parallel_workers: Number of applier threads for executing replication transactions in
parallel; 0 or 1 disables replica multithreading. NDB Cluster: see documentation.

• slave_pending_jobs_size_max: Maximum size of replica worker queues holding events not yet
applied.

• slave_preserve_commit_order: Ensures that all commits by replica workers happen in same
order as on source to maintain consistency when using parallel applier threads.

• Slave_rows_last_search_algorithm_used: Search algorithm most recently used by this
replica to locate rows for row-based replication (index, table, or hash scan).

• slave_rows_search_algorithms: Determines search algorithms used for replica update
batching. Any 2 or 3 from this list: INDEX_SEARCH, TABLE_SCAN, HASH_SCAN.

• slave_transaction_retries: Number of times replication SQL thread retries transaction in
case it failed with deadlock or elapsed lock wait timeout, before giving up and stopping.

• slave_type_conversions: Controls type conversion mode on replica. Value is list of zero or
more elements from this list: ALL_LOSSY, ALL_NON_LOSSY. Set to empty string to disallow type
conversions between source and replica.

• sql_log_bin: Controls binary logging for current session.

• sql_replica_skip_counter: Number of events from source that replica should skip. Not
compatible with GTID replication.

• sql_slave_skip_counter: Number of events from source that replica should skip. Not
compatible with GTID replication.

• sync_master_info: Synchronize source information after every #th event.

• sync_relay_log: Synchronize relay log to disk after every #th event.

• sync_relay_log_info: Synchronize relay.info file to disk after every #th event.

3669

Replication and Binary Logging Options and Variables

• sync_source_info: Synchronize source information after every #th event.

• terminology_use_previous: Use terminology from before specified version where changes are
incompatible.

• transaction_write_set_extraction: Defines algorithm used to hash writes extracted during
transaction.

For a listing of all command-line options, system variables, and status variables used with mysqld, see
Section 7.1.4, “Server Option, System Variable, and Status Variable Reference”.

Binary Logging Options and Variables

The command-line options and system variables in the following list relate to the binary log.
Section 19.1.6.4, “Binary Logging Options and Variables”, provides more detailed information about
options and variables relating to binary logging. For additional general information about the binary log,
see Section 7.4.4, “The Binary Log”.

• binlog-checksum: Enable or disable binary log checksums.

• binlog-do-db: Limits binary logging to specific databases.

• binlog-ignore-db: Tells source that updates to given database should not be written to binary
log.

• binlog-row-event-max-size: Binary log max event size.

• Binlog_cache_disk_use: Number of transactions which used temporary file instead of binary log
cache.

• binlog_cache_size: Size of cache to hold SQL statements for binary log during transaction.

• Binlog_cache_use: Number of transactions that used temporary binary log cache.

• binlog_checksum: Enable or disable binary log checksums.

• binlog_direct_non_transactional_updates: Causes updates using statement format to
nontransactional engines to be written directly to binary log. See documentation before using.

• binlog_encryption: Enable encryption for binary log files and relay log files on this server.

• binlog_error_action: Controls what happens when server cannot write to binary log.

• binlog_expire_logs_auto_purge: Controls automatic purging of binary log files; can be
overridden when enabled, by setting both binlog_expire_logs_seconds and expire_logs_days to 0.

• binlog_expire_logs_seconds: Purge binary logs after this many seconds.

• binlog_format: Specifies format of binary log.

• binlog_group_commit_sync_delay: Sets number of microseconds to wait before synchronizing
transactions to disk.

• binlog_group_commit_sync_no_delay_count: Sets maximum number of transactions to wait
for before aborting current delay specified by binlog_group_commit_sync_delay.

• binlog_gtid_simple_recovery: Controls how binary logs are iterated during GTID recovery.

• binlog_max_flush_queue_time: How long to read transactions before flushing to binary log.

• binlog_order_commits: Whether to commit in same order as writes to binary log.

• binlog_rotate_encryption_master_key_at_startup: Rotate binary log master key at
server startup.

3670

Replication and Binary Logging Options and Variables

• binlog_row_image: Use full or minimal images when logging row changes.

• binlog_row_metadata: Whether to record all or only minimal table related metadata to binary log
when using row-based logging.

• binlog_row_value_options: Enables binary logging of partial JSON updates for row-based
replication.

• binlog_rows_query_log_events: When enabled, enables logging of rows query log events
when using row-based logging. Disabled by default..

• Binlog_stmt_cache_disk_use: Number of nontransactional statements that used temporary file
instead of binary log statement cache.

• binlog_stmt_cache_size: Size of cache to hold nontransactional statements for binary log
during transaction.

• Binlog_stmt_cache_use: Number of statements that used temporary binary log statement cache.

• binlog_transaction_compression: Enable compression for transaction payloads in binary log
files.

• binlog_transaction_compression_level_zstd: Compression level for transaction payloads
in binary log files.

• binlog_transaction_dependency_history_size: Number of row hashes kept for looking up
transaction that last updated some row.

• binlog_transaction_dependency_tracking: Source of dependency information (commit
timestamps or transaction write sets) from which to assess which transactions can be executed in
parallel by replica's multithreaded applier.

• Com_show_binlog_events: Count of SHOW BINLOG EVENTS statements.

• Com_show_binlogs: Count of SHOW BINLOGS statements.

• log-bin: Base name for binary log files.

• log-bin-index: Name of binary log index file.

• log_bin: Whether binary log is enabled.

• log_bin_basename: Path and base name for binary log files.

• log_bin_use_v1_row_events: Whether server is using version 1 binary log row events.

• log_replica_updates: Whether replica should log updates performed by its replication SQL
thread to its own binary log.

• log_slave_updates: Whether replica should log updates performed by its replication SQL thread
to its own binary log.

• master_verify_checksum: Cause source to examine checksums when reading from binary log.

• max-binlog-dump-events: Option used by mysql-test for debugging and testing of replication.

• max_binlog_cache_size: Can be used to restrict total size in bytes used to cache multi-
statement transactions.

• max_binlog_size: Binary log is rotated automatically when size exceeds this value.

• max_binlog_stmt_cache_size: Can be used to restrict total size used to cache all
nontransactional statements during transaction.

3671

Replication and Binary Logging Options and Variables

• replica_sql_verify_checksum: Cause replica to examine checksums when reading from relay
log.

• slave-sql-verify-checksum: Cause replica to examine checksums when reading from relay
log.

• slave_sql_verify_checksum: Cause replica to examine checksums when reading from relay
log.

• source_verify_checksum: Cause source to examine checksums when reading from binary log.

• sporadic-binlog-dump-fail: Option used by mysql-test for debugging and testing of
replication.

• sync_binlog: Synchronously flush binary log to disk after every #th event.

For a listing of all command-line options, system and status variables used with mysqld, see
Section 7.1.4, “Server Option, System Variable, and Status Variable Reference”.

19.1.6.2 Replication Source Options and Variables

This section describes the server options and system variables that you can use on replication source
servers. You can specify the options either on the command line or in an option file. You can specify
system variable values using SET.

On the source and each replica, you must set the server_id system variable to establish a unique
replication ID. For each server, you should pick a unique positive integer in the range from 1 to 232

− 1, and each ID must be different from every other ID in use by any other source or replica in the
replication topology. Example: server-id=3.

For options used on the source for controlling binary logging, see Section 19.1.6.4, “Binary Logging
Options and Variables”.

Startup Options for Replication Source Servers

The following list describes startup options for controlling replication source servers. Replication-related
system variables are discussed later in this section.

• --show-replica-auth-info

Command-Line Format --show-replica-auth-info[={OFF|ON}]

Introduced 8.0.26

Type Boolean

Default Value OFF

From MySQL 8.0.26, use --show-replica-auth-info, and before MySQL 8.0.26, use --show-
slave-auth-info. Both options have the same effect. The options display replication user names
and passwords in the output of SHOW REPLICAS (or before MySQL 8.0.22, SHOW SLAVE HOSTS)
on the source for replicas started with the --report-user and --report-password options.

• --show-slave-auth-info

Command-Line Format --show-slave-auth-info[={OFF|ON}]

Deprecated 8.0.26

Type Boolean

Default Value OFF

Use this option before MySQL 8.0.26 rather than --show-replica-auth-info. Both options
have the same effect.

3672

Replication and Binary Logging Options and Variables

System Variables Used on Replication Source Servers

The following system variables are used for or by replication source servers:

• auto_increment_increment

Command-Line Format --auto-increment-increment=#

System Variable auto_increment_increment

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

auto_increment_increment and auto_increment_offset are intended for use with circular
(source-to-source) replication, and can be used to control the operation of AUTO_INCREMENT
columns. Both variables have global and session values, and each can assume an integer value
between 1 and 65,535 inclusive. Setting the value of either of these two variables to 0 causes its
value to be set to 1 instead. Attempting to set the value of either of these two variables to an integer
greater than 65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set
the value of auto_increment_increment or auto_increment_offset to a noninteger value
produces an error, and the actual value of the variable remains unchanged.

Note

auto_increment_increment is also supported for use with NDB tables.

As of MySQL 8.0.18, setting the session value of this system variable is no longer a restricted
operation.

When Group Replication is started on a server, the value of auto_increment_increment is
changed to the value of group_replication_auto_increment_increment, which defaults
to 7, and the value of auto_increment_offset is changed to the server ID. The changes
are reverted when Group Replication is stopped. These changes are only made and reverted if
auto_increment_increment and auto_increment_offset each have their default value of 1.
If their values have already been modified from the default, Group Replication does not alter them.
From MySQL 8.0, the system variables are also not modified when Group Replication is in single-
primary mode, where only one server writes.

auto_increment_increment and auto_increment_offset affect AUTO_INCREMENT column
behavior as follows:

• auto_increment_increment controls the interval between successive column values. For
example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc1
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);

3673

Replication and Binary Logging Options and Variables

 Query OK, 0 rows affected (0.04 sec)

mysql> SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.01 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

• auto_increment_offset determines the starting point for the AUTO_INCREMENT column
value. Consider the following, assuming that these statements are executed during the same
session as the example given in the description for auto_increment_increment:

mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc2
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
| 5 |
| 15 |
| 25 |
| 35 |
+-----+
4 rows in set (0.02 sec)

When the value of auto_increment_offset is greater than that of
auto_increment_increment, the value of auto_increment_offset is ignored.

If either of these variables is changed, and then new rows inserted into a table containing
an AUTO_INCREMENT column, the results may seem counterintuitive because the series of
AUTO_INCREMENT values is calculated without regard to any values already present in the column,

3674

Replication and Binary Logging Options and Variables

and the next value inserted is the least value in the series that is greater than the maximum existing
value in the AUTO_INCREMENT column. The series is calculated like this:

auto_increment_offset + N × auto_increment_increment

where N is a positive integer value in the series [1, 2, 3, ...]. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
| 35 |
| 45 |
| 55 |
| 65 |
+-----+
8 rows in set (0.00 sec)

The values shown for auto_increment_increment and auto_increment_offset generate
the series 5 + N × 10, that is, [5, 15, 25, 35, 45, ...]. The highest value present in the col column
prior to the INSERT is 31, and the next available value in the AUTO_INCREMENT series is 35, so the
inserted values for col begin at that point and the results are as shown for the SELECT query.

It is not possible to restrict the effects of these two variables to a single table; these variables control
the behavior of all AUTO_INCREMENT columns in all tables on the MySQL server. If the global
value of either variable is set, its effects persist until the global value is changed or overridden by
setting the session value, or until mysqld is restarted. If the local value is set, the new value affects
AUTO_INCREMENT columns for all tables into which new rows are inserted by the current user for the
duration of the session, unless the values are changed during that session.

The default value of auto_increment_increment is 1. See Section 19.5.1.1, “Replication and
AUTO_INCREMENT”.

• auto_increment_offset

Command-Line Format --auto-increment-offset=#

System Variable auto_increment_offset

Scope Global, Session

3675

Replication and Binary Logging Options and Variables

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

This variable has a default value of 1. If it is left with its default value, and Group Replication is
started on the server in multi-primary mode, it is changed to the server ID. For more information, see
the description for auto_increment_increment.

Note

auto_increment_offset is also supported for use with NDB tables.

As of MySQL 8.0.18, setting the session value of this system variable is no longer a restricted
operation.

• immediate_server_version

Introduced 8.0.14

System Variable immediate_server_version

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 999999

Minimum Value 0

Maximum Value 999999

For internal use by replication. This session system variable holds the MySQL Server release
number of the server that is the immediate source in a replication topology (for example, 80014 for
a MySQL 8.0.14 server instance). If this immediate server is at a release that does not support the
session system variable, the value of the variable is set to 0 (UNKNOWN_SERVER_VERSION).

The value of the variable is replicated from a source to a replica. With this information the replica can
correctly process data originating from a source at an older release, by recognizing where syntax
changes or semantic changes have occurred between the releases involved and handling these
appropriately. The information can also be used in a Group Replication environment where one
or more members of the replication group is at a newer release than the others. The value of the
variable can be viewed in the binary log for each transaction (as part of the Gtid_log_event,
or Anonymous_gtid_log_event if GTIDs are not in use on the server), and could be helpful in
debugging cross-version replication issues.

Setting the session value of this system variable is a restricted operation. The session user must
have either the REPLICATION_APPLIER privilege (see Section 19.3.3, “Replication Privilege
Checks”), or privileges sufficient to set restricted session variables (see Section 7.1.9.1, “System
Variable Privileges”). However, note that the variable is not intended for users to set; it is set
automatically by the replication infrastructure.

• original_server_version

Introduced 8.0.14
3676

Replication and Binary Logging Options and Variables

System Variable original_server_version

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 999999

Minimum Value 0

Maximum Value 999999

For internal use by replication. This session system variable holds the MySQL Server release
number of the server where a transaction was originally committed (for example, 80014 for a MySQL
8.0.14 server instance). If this original server is at a release that does not support the session system
variable, the value of the variable is set to 0 (UNKNOWN_SERVER_VERSION). Note that when a
release number is set by the original server, the value of the variable is reset to 0 if the immediate
server or any other intervening server in the replication topology does not support the session
system variable, and so does not replicate its value.

The value of the variable is set and used in the same ways as for the
immediate_server_version system variable. If the value of the variable is the same as that for
the immediate_server_version system variable, only the latter is recorded in the binary log,
with an indicator that the original server version is the same.

In a Group Replication environment, view change log events, which are special transactions queued
by each group member when a new member joins the group, are tagged with the server version of
the group member queuing the transaction. This ensures that the server version of the original donor
is known to the joining member. Because the view change log events queued for a particular view
change have the same GTID on all members, for this case only, instances of the same GTID might
have a different original server version.

Setting the session value of this system variable is a restricted operation. The session user must
have either the REPLICATION_APPLIER privilege (see Section 19.3.3, “Replication Privilege
Checks”), or privileges sufficient to set restricted session variables (see Section 7.1.9.1, “System
Variable Privileges”). However, note that the variable is not intended for users to set; it is set
automatically by the replication infrastructure.

• rpl_semi_sync_master_enabled

Command-Line Format --rpl-semi-sync-master-
enabled[={OFF|ON}]

System Variable rpl_semi_sync_master_enabled

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Controls whether semisynchronous replication is enabled on the source server. To enable or disable
the plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_timeout

Command-Line Format --rpl-semi-sync-master-timeout=#

3677

Replication and Binary Logging Options and Variables

System Variable rpl_semi_sync_master_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

Unit milliseconds

A value in milliseconds that controls how long the source waits on a commit for acknowledgment
from a replica before timing out and reverting to asynchronous replication. The default value is 10000
(10 seconds).

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_trace_level

Command-Line Format --rpl-semi-sync-master-trace-level=#

System Variable rpl_semi_sync_master_trace_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

The semisynchronous replication debug trace level on the source server. Four levels are defined:

• 1 = general level (for example, time function failures)

• 16 = detail level (more verbose information)

• 32 = net wait level (more information about network waits)

• 64 = function level (information about function entry and exit)

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_for_slave_count

Command-Line Format --rpl-semi-sync-master-wait-for-
slave-count=#

System Variable rpl_semi_sync_master_wait_for_slave_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

3678

Replication and Binary Logging Options and Variables

Minimum Value 1

Maximum Value 65535

The number of replica acknowledgments the source must receive per transaction before
proceeding. By default rpl_semi_sync_master_wait_for_slave_count is 1, meaning that
semisynchronous replication proceeds after receiving a single replica acknowledgment. Performance
is best for small values of this variable.

For example, if rpl_semi_sync_master_wait_for_slave_count is 2, then 2 replicas
must acknowledge receipt of the transaction before the timeout period configured by
rpl_semi_sync_master_timeout for semisynchronous replication to proceed. If fewer replicas
acknowledge receipt of the transaction during the timeout period, the source reverts to normal
replication.

Note

This behavior also depends on rpl_semi_sync_master_wait_no_slave

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_no_slave

Command-Line Format --rpl-semi-sync-master-wait-no-
slave[={OFF|ON}]

System Variable rpl_semi_sync_master_wait_no_slave

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Controls whether the source waits for the timeout period configured by
rpl_semi_sync_master_timeout to expire, even if the replica count drops to less than the
number of replicas configured by rpl_semi_sync_master_wait_for_slave_count during the
timeout period.

When the value of rpl_semi_sync_master_wait_no_slave is ON (the default), it is permissible
for the replica count to drop to less than rpl_semi_sync_master_wait_for_slave_count
during the timeout period. As long as enough replicas acknowledge the transaction before the
timeout period expires, semisynchronous replication continues.

When the value of rpl_semi_sync_master_wait_no_slave is OFF, if the replica count drops
to less than the number configured in rpl_semi_sync_master_wait_for_slave_count at
any time during the timeout period configured by rpl_semi_sync_master_timeout, the source
reverts to normal replication.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_point

Command-Line Format --rpl-semi-sync-master-wait-
point=value

System Variable rpl_semi_sync_master_wait_point

Scope Global

Dynamic Yes

3679

Replication and Binary Logging Options and Variables

SET_VAR Hint Applies No

Type Enumeration

Default Value AFTER_SYNC

Valid Values AFTER_SYNC

AFTER_COMMIT

This variable controls the point at which a semisynchronous replication source server waits for
replica acknowledgment of transaction receipt before returning a status to the client that committed
the transaction. These values are permitted:

• AFTER_SYNC (the default): The source writes each transaction to its binary log and the replica,
and syncs the binary log to disk. The source waits for replica acknowledgment of transaction
receipt after the sync. Upon receiving acknowledgment, the source commits the transaction to the
storage engine and returns a result to the client, which then can proceed.

• AFTER_COMMIT: The source writes each transaction to its binary log and the replica, syncs
the binary log, and commits the transaction to the storage engine. The source waits for replica
acknowledgment of transaction receipt after the commit. Upon receiving acknowledgment, the
source returns a result to the client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time: After it has been
acknowledged by the replica and committed to the storage engine on the source. Thus, all clients
see the same data on the source.

In the event of source failure, all transactions committed on the source have been replicated to the
replica (saved to its relay log). An unexpected exit of the source server and failover to the replica
is lossless because the replica is up to date. Note, however, that the source cannot be restarted
in this scenario and must be discarded, because its binary log might contain uncommitted
transactions that would cause a conflict with the replica when externalized after binary log
recovery.

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives replica acknowledgment. After the commit and before
replica acknowledgment, other clients can see the committed transaction before the committing
client.

If something goes wrong such that the replica does not process the transaction, then in the event
of an unexpected source server exit and failover to the replica, it is possible for such clients to see
a loss of data relative to what they saw on the source.

This variable is available only if the source-side semisynchronous replication plugin is installed.

With the addition of rpl_semi_sync_master_wait_point in MySQL 5.7, a version compatibility
constraint was created because it increments the semisynchronous interface version: Servers for
MySQL 5.7 and higher do not work with semisynchronous replication plugins from older versions,
nor do servers from older versions work with semisynchronous replication plugins for MySQL 5.7 and
higher.

• rpl_semi_sync_source_enabled

Command-Line Format --rpl-semi-sync-source-
enabled[={OFF|ON}]

Introduced 8.0.26

System Variable rpl_semi_sync_source_enabled

3680

Replication and Binary Logging Options and Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

rpl_semi_sync_source_enabled is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
rpl_semi_sync_master_enabled is available instead.

rpl_semi_sync_source_enabled controls whether semisynchronous replication is enabled
on the source server. To enable or disable the plugin, set this variable to ON or OFF (or 1 or 0),
respectively. The default is OFF.

• rpl_semi_sync_source_timeout

Command-Line Format --rpl-semi-sync-source-timeout=#

Introduced 8.0.26

System Variable rpl_semi_sync_source_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

Unit milliseconds

rpl_semi_sync_source_timeout is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
rpl_semi_sync_master_timeout is available instead.

rpl_semi_sync_source_timeout controls how long the source waits on a commit for
acknowledgment from a replica before timing out and reverting to asynchronous replication. The
value is specified in milliseconds, and the default value is 10000 (10 seconds).

• rpl_semi_sync_source_trace_level

Command-Line Format --rpl-semi-sync-source-trace-level=#

Introduced 8.0.26

System Variable rpl_semi_sync_source_trace_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

3681

Replication and Binary Logging Options and Variables

rpl_semi_sync_source_trace_level is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
rpl_semi_sync_master_trace_level is available instead.

rpl_semi_sync_source_trace_level specifies the semisynchronous replication debug trace
level on the source server. Four levels are defined:

• 1 = general level (for example, time function failures)

• 16 = detail level (more verbose information)

• 32 = net wait level (more information about network waits)

• 64 = function level (information about function entry and exit)

• rpl_semi_sync_source_wait_for_replica_count

Command-Line Format --rpl-semi-sync-source-wait-for-
replica-count=#

Introduced 8.0.26

System Variable rpl_semi_sync_source_wait_for_replica_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

rpl_semi_sync_source_wait_for_replica_count is available when the
rpl_semi_sync_source (semisync_source.so library) plugin was installed on the replica to set
up semisynchronous replication. If the rpl_semi_sync_master plugin (semisync_master.so
library) was installed, rpl_semi_sync_master_wait_for_slave_count is available instead.

rpl_semi_sync_source_wait_for_replica_count specifies the number of replica
acknowledgments the source must receive per transaction before proceeding. By default
rpl_semi_sync_source_wait_for_replica_count is 1, meaning that semisynchronous
replication proceeds after receiving a single replica acknowledgment. Performance is best for small
values of this variable.

For example, if rpl_semi_sync_source_wait_for_replica_count is 2, then 2
replicas must acknowledge receipt of the transaction before the timeout period configured by
rpl_semi_sync_source_timeout for semisynchronous replication to proceed. If fewer replicas
acknowledge receipt of the transaction during the timeout period, the source reverts to normal
replication.

Note

This behavior also depends on
rpl_semi_sync_source_wait_no_replica.

3682

Replication and Binary Logging Options and Variables

• rpl_semi_sync_source_wait_no_replica

Command-Line Format --rpl-semi-sync-source-wait-no-
replica[={OFF|ON}]

Introduced 8.0.26

System Variable rpl_semi_sync_source_wait_no_replica

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

rpl_semi_sync_source_wait_no_replica is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
rpl_semi_sync_source_wait_no_replica is available instead.

rpl_semi_sync_source_wait_no_replica controls whether the source waits
for the timeout period configured by rpl_semi_sync_source_timeout to expire,
even if the replica count drops to less than the number of replicas configured by
rpl_semi_sync_source_wait_for_replica_count during the timeout period.

When the value of rpl_semi_sync_source_wait_no_replica is
ON (the default), it is permissible for the replica count to drop to less than
rpl_semi_sync_source_wait_for_replica_count during the timeout period. As long as
enough replicas acknowledge the transaction before the timeout period expires, semisynchronous
replication continues.

When the value of rpl_semi_sync_source_wait_no_replica is OFF, if the replica count drops
to less than the number configured in rpl_semi_sync_source_wait_for_replica_count at
any time during the timeout period configured by rpl_semi_sync_source_timeout, the source
reverts to normal replication.

• rpl_semi_sync_source_wait_point

Command-Line Format --rpl-semi-sync-source-wait-
point=value

Introduced 8.0.26

System Variable rpl_semi_sync_source_wait_point

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value AFTER_SYNC

Valid Values AFTER_SYNC

AFTER_COMMIT

rpl_semi_sync_source_wait_point is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the replica to set up semisynchronous

3683

Replication and Binary Logging Options and Variables

replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
rpl_semi_sync_master_wait_point is available instead.

rpl_semi_sync_source_wait_point controls the point at which a semisynchronous replication
source server waits for replica acknowledgment of transaction receipt before returning a status to the
client that committed the transaction. These values are permitted:

• AFTER_SYNC (the default): The source writes each transaction to its binary log and the replica,
and syncs the binary log to disk. The source waits for replica acknowledgment of transaction
receipt after the sync. Upon receiving acknowledgment, the source commits the transaction to the
storage engine and returns a result to the client, which then can proceed.

• AFTER_COMMIT: The source writes each transaction to its binary log and the replica, syncs
the binary log, and commits the transaction to the storage engine. The source waits for replica
acknowledgment of transaction receipt after the commit. Upon receiving acknowledgment, the
source returns a result to the client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time: After it has been
acknowledged by the replica and committed to the storage engine on the source. Thus, all clients
see the same data on the source.

In the event of source failure, all transactions committed on the source have been replicated to the
replica (saved to its relay log). An unexpected exit of the source server and failover to the replica
is lossless because the replica is up to date. Note, however, that the source cannot be restarted
in this scenario and must be discarded, because its binary log might contain uncommitted
transactions that would cause a conflict with the replica when externalized after binary log
recovery.

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives replica acknowledgment. After the commit and before
replica acknowledgment, other clients can see the committed transaction before the committing
client.

If something goes wrong such that the replica does not process the transaction, then in the event
of an unexpected source server exit and failover to the replica, it is possible for such clients to see
a loss of data relative to what they saw on the source.

19.1.6.3 Replica Server Options and Variables

This section explains the server options and system variables that apply to replica servers and contains
the following:

• Startup Options for Replica Servers

• System Variables Used on Replica Servers

Specify the options either on the command line or in an option file. Many of the options can be set
while the server is running by using the CHANGE REPLICATION SOURCE TO statement (from MySQL
8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23). Specify system variable values
using SET.

Server ID. On the source and each replica, you must set the server_id system variable to
establish a unique replication ID in the range from 1 to 232 − 1. “Unique” means that each ID must be
different from every other ID in use by any other source or replica in the replication topology. Example
my.cnf file:

[mysqld]
server-id=3

3684

Replication and Binary Logging Options and Variables

Startup Options for Replica Servers

This section explains startup options for controlling replica servers. Many of these options can be
set while the server is running by using the CHANGE REPLICATION SOURCE TO statement (from
MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23). Others, such as the --
replicate-* options, can be set only when the replica server starts. Replication-related system
variables are discussed later in this section.

• --master-info-file=file_name

Command-Line Format --master-info-file=file_name

Deprecated 8.0.18

Type File name

Default Value master.info

The use of this option is now deprecated. It was used to set the file name for the replica's connection
metadata repository if master_info_repository=FILE was set. --master-info-file and
the use of the master_info_repository system variable are deprecated because the use
of a file for the connection metadata repository has been superseded by crash-safe tables. For
information about the connection metadata repository, see Section 19.2.4.2, “Replication Metadata
Repositories”.

• --master-retry-count=count

Command-Line Format --master-retry-count=#

Deprecated Yes

Type Integer

Default Value 86400

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

The number of times that the replica tries to reconnect to the source before giving up. The default
value is 86400 times. A value of 0 means “infinite”, and the replica attempts to connect forever.
Reconnection attempts are triggered when the replica reaches its connection timeout (specified
by the replica_net_timeout or slave_net_timeout system variable) without receiving
data or a heartbeat signal from the source. Reconnection is attempted at intervals set by the
SOURCE_CONNECT_RETRY | MASTER_CONNECT_RETRY option of the CHANGE REPLICATION
SOURCE TO | CHANGE MASTER TO statement (which defaults to every 60 seconds).

This option is deprecated; expect it to be removed in a future MySQL release. Use the
SOURCE_RETRY_COUNT | MASTER_RETRY_COUNT option of the CHANGE REPLICATION SOURCE
TO | CHANGE MASTER TO statement instead.

• --max-relay-log-size=size

Command-Line Format --max-relay-log-size=#

System Variable max_relay_log_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

3685

Replication and Binary Logging Options and Variables

Minimum Value 0

Maximum Value 1073741824

Unit bytes

Block Size 4096

The size at which the server rotates relay log files automatically. If this value is nonzero, the relay
log is rotated automatically when its size exceeds this value. If this value is zero (the default), the
size at which relay log rotation occurs is determined by the value of max_binlog_size. For more
information, see Section 19.2.4.1, “The Relay Log”.

• --relay-log-purge={0|1}

Command-Line Format --relay-log-purge[={OFF|ON}]

System Variable relay_log_purge

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default
value is 1 (enabled). This is a global variable that can be changed dynamically with SET GLOBAL
relay_log_purge = N. Disabling purging of relay logs when enabling the --relay-log-
recovery option risks data consistency and is therefore not crash-safe.

• --relay-log-space-limit=size

Command-Line Format --relay-log-space-limit=#

System Variable relay_log_space_limit

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

This option places an upper limit on the total size in bytes of all relay logs on the replica. A value of
0 means “no limit”. This is useful for a replica server host that has limited disk space. When the limit
is reached, the I/O (receiver) thread stops reading binary log events from the source server until the
SQL thread has caught up and deleted some unused relay logs. Note that this limit is not absolute:
There are cases where the SQL (applier) thread needs more events before it can delete relay logs.
In that case, the receiver thread exceeds the limit until it becomes possible for the applier thread to
delete some relay logs because not doing so would cause a deadlock. You should not set --relay-
log-space-limit to less than twice the value of --max-relay-log-size (or --max-binlog-
size if --max-relay-log-size is 0). In that case, there is a chance that the receiver thread
waits for free space because --relay-log-space-limit is exceeded, but the applier thread has
no relay log to purge and is unable to satisfy the receiver thread. This forces the receiver thread to
ignore --relay-log-space-limit temporarily.

• --replicate-do-db=db_name

3686

Replication and Binary Logging Options and Variables

Command-Line Format --replicate-do-db=name

Type String

Creates a replication filter using the name of a database. Such filters can also be created using
CHANGE REPLICATION FILTER REPLICATE_DO_DB.

This option supports channel specific replication filters, enabling multi-source replicas to use
specific filters for different sources. To configure a channel specific replication filter on a channel
named channel_1 use --replicate-do-db:channel_1:db_name. In this case, the first
colon is interpreted as a separator and subsequent colons are literal colons. See Section 19.2.5.4,
“Replication Channel Based Filters” for more information.

Note

Global replication filters cannot be used on a MySQL server instance
that is configured for Group Replication, because filtering transactions
on some servers would make the group unable to reach agreement on a
consistent state. Channel specific replication filters can be used on replication
channels that are not directly involved with Group Replication, such as
where a group member also acts as a replica to a source that is outside the
group. They cannot be used on the group_replication_applier or
group_replication_recovery channels.

The precise effect of this replication filter depends on whether statement-based or row-based
replication is in use.

Statement-based replication. Tell the replication SQL thread to restrict replication to statements
where the default database (that is, the one selected by USE) is db_name. To specify more than
one database, use this option multiple times, once for each database; however, doing so does not
replicate cross-database statements such as UPDATE some_db.some_table SET foo='bar'
while a different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, if you supply a comma
separated list then the list is treated as the name of a single database.

An example of what does not work as you might expect when using statement-based replication: If
the replica is started with --replicate-do-db=sales and you issue the following statements on
the source, the UPDATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “check just the default database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for example, if you are using multiple-table
DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is
also faster to check only the default database rather than all databases if there is no need.

Row-based replication. Tells the replication SQL thread to restrict replication to database
db_name. Only tables belonging to db_name are changed; the current database has no effect
on this. Suppose that the replica is started with --replicate-do-db=sales and row-based
replication is in effect, and then the following statements are run on the source:

USE prices;

3687

Replication and Binary Logging Options and Variables

UPDATE sales.february SET amount=amount+100;

The february table in the sales database on the replica is changed in accordance with the
UPDATE statement; this occurs whether or not the USE statement was issued. However, issuing the
following statements on the source has no effect on the replica when using row-based replication
and --replicate-do-db=sales:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the statement USE prices were changed to USE sales, the UPDATE statement's effects
would still not be replicated.

Another important difference in how --replicate-do-db is handled in statement-based replication
as opposed to row-based replication occurs with regard to statements that refer to multiple
databases. Suppose that the replica is started with --replicate-do-db=db1, and the following
statements are executed on the source:

USE db1;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

If you are using statement-based replication, then both tables are updated on the replica. However,
when using row-based replication, only table1 is affected on the replica; since table2 is in a
different database, table2 on the replica is not changed by the UPDATE. Now suppose that, instead
of the USE db1 statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

In this case, the UPDATE statement would have no effect on the replica when using statement-based
replication. However, if you are using row-based replication, the UPDATE would change table1 on
the replica, but not table2—in other words, only tables in the database named by --replicate-
do-db are changed, and the choice of default database has no effect on this behavior.

If you need cross-database updates to work, use --replicate-wild-do-table=db_name.%
instead. See Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-do-db
affects binary logging, and the effects of the replication format on how --
replicate-do-db affects replication behavior are the same as those of the
logging format on the behavior of --binlog-do-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-ignore-db=db_name

Command-Line Format --replicate-ignore-db=name

Type String

Creates a replication filter using the name of a database. Such filters can also be created using
CHANGE REPLICATION FILTER REPLICATE_IGNORE_DB.

This option supports channel specific replication filters, enabling multi-source replicas to use
specific filters for different sources. To configure a channel specific replication filter on a channel
named channel_1 use --replicate-ignore-db:channel_1:db_name. In this case, the first

3688

Replication and Binary Logging Options and Variables

colon is interpreted as a separator and subsequent colons are literal colons. See Section 19.2.5.4,
“Replication Channel Based Filters” for more information.

Note

Global replication filters cannot be used on a MySQL server instance
that is configured for Group Replication, because filtering transactions
on some servers would make the group unable to reach agreement on a
consistent state. Channel specific replication filters can be used on replication
channels that are not directly involved with Group Replication, such as
where a group member also acts as a replica to a source that is outside the
group. They cannot be used on the group_replication_applier or
group_replication_recovery channels.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, if you supply a comma-separated list, it is treated as
the name of a single database.

As with --replicate-do-db, the precise effect of this filtering depends on whether statement-
based or row-based replication is in use, and are described in the next several paragraphs.

Statement-based replication. Tells the replication SQL thread not to replicate any statement
where the default database (that is, the one selected by USE) is db_name.

Row-based replication. Tells the replication SQL thread not to update any tables in the database
db_name. The default database has no effect.

When using statement-based replication, the following example does not work as you might expect.
Suppose that the replica is started with --replicate-ignore-db=sales and you issue the
following statements on the source:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is replicated in such a case because --replicate-ignore-db applies
only to the default database (determined by the USE statement). Because the sales database
was specified explicitly in the statement, the statement has not been filtered. However, when using
row-based replication, the UPDATE statement's effects are not propagated to the replica, and the
replica's copy of the sales.january table is unchanged; in this instance, --replicate-ignore-
db=sales causes all changes made to tables in the source's copy of the sales database to be
ignored by the replica.

You should not use this option if you are using cross-database updates and you do not want these
updates to be replicated. See Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”.

If you need cross-database updates to work, use --replicate-wild-ignore-table=db_name.
% instead. See Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-ignore-
db affects binary logging, and the effects of the replication format on how --
replicate-ignore-db affects replication behavior are the same as those
of the logging format on the behavior of --binlog-ignore-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-do-table=db_name.tbl_name

Command-Line Format --replicate-do-table=name
3689

Replication and Binary Logging Options and Variables

Type String

Creates a replication filter by telling the replication SQL thread to restrict replication to a given table.
To specify more than one table, use this option multiple times, once for each table. This works for
both cross-database updates and default database updates, in contrast to --replicate-do-db.
See Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”. You can also create such a
filter by issuing a CHANGE REPLICATION FILTER REPLICATE_DO_TABLE statement.

This option supports channel specific replication filters, enabling multi-source replicas to use
specific filters for different sources. To configure a channel specific replication filter on a channel
named channel_1 use --replicate-do-table:channel_1:db_name.tbl_name. In this
case, the first colon is interpreted as a separator and subsequent colons are literal colons. See
Section 19.2.5.4, “Replication Channel Based Filters” for more information.

Note

Global replication filters cannot be used on a MySQL server instance
that is configured for Group Replication, because filtering transactions
on some servers would make the group unable to reach agreement on a
consistent state. Channel specific replication filters can be used on replication
channels that are not directly involved with Group Replication, such as
where a group member also acts as a replica to a source that is outside the
group. They cannot be used on the group_replication_applier or
group_replication_recovery channels.

This option affects only statements that apply to tables. It does not affect statements that apply only
to other database objects, such as stored routines. To filter statements operating on stored routines,
use one or more of the --replicate-*-db options.

• --replicate-ignore-table=db_name.tbl_name

Command-Line Format --replicate-ignore-table=name

Type String

Creates a replication filter by telling the replication SQL thread not to replicate any statement that
updates the specified table, even if any other tables might be updated by the same statement. To
specify more than one table to ignore, use this option multiple times, once for each table. This works
for cross-database updates, in contrast to --replicate-ignore-db. See Section 19.2.5, “How
Servers Evaluate Replication Filtering Rules”. You can also create such a filter by issuing a CHANGE
REPLICATION FILTER REPLICATE_IGNORE_TABLE statement.

This option supports channel specific replication filters, enabling multi-source replicas to use specific
filters for different sources. To configure a channel specific replication filter on a channel named
channel_1 use --replicate-ignore-table:channel_1:db_name.tbl_name. In this
case, the first colon is interpreted as a separator and subsequent colons are literal colons. See
Section 19.2.5.4, “Replication Channel Based Filters” for more information.

Note

Global replication filters cannot be used on a MySQL server instance
that is configured for Group Replication, because filtering transactions
on some servers would make the group unable to reach agreement on a
consistent state. Channel specific replication filters can be used on replication
channels that are not directly involved with Group Replication, such as
where a group member also acts as a replica to a source that is outside the

3690

Replication and Binary Logging Options and Variables

group. They cannot be used on the group_replication_applier or
group_replication_recovery channels.

This option affects only statements that apply to tables. It does not affect statements that apply only
to other database objects, such as stored routines. To filter statements operating on stored routines,
use one or more of the --replicate-*-db options.

• --replicate-rewrite-db=from_name->to_name

Command-Line Format --replicate-rewrite-db=old_name-
>new_name

Type String

Tells the replica to create a replication filter that translates the specified database to to_name if it
was from_name on the source. Only statements involving tables are affected, not statements such
as CREATE DATABASE, DROP DATABASE, and ALTER DATABASE.

To specify multiple rewrites, use this option multiple times. The server uses the first one with a
from_name value that matches. The database name translation is done before the --replicate-
* rules are tested. You can also create such a filter by issuing a CHANGE REPLICATION FILTER
REPLICATE_REWRITE_DB statement.

If you use the --replicate-rewrite-db option on the command line and the > character is
special to your command interpreter, quote the option value. For example:

$> mysqld --replicate-rewrite-db="olddb->newdb"

The effect of the --replicate-rewrite-db option differs depending on whether statement-
based or row-based binary logging format is used for the query. With statement-based format, DML
statements are translated based on the current database, as specified by the USE statement. With
row-based format, DML statements are translated based on the database where the modified table
exists. DDL statements are always filtered based on the current database, as specified by the USE
statement, regardless of the binary logging format.

To ensure that rewriting produces the expected results, particularly in combination with other
replication filtering options, follow these recommendations when you use the --replicate-
rewrite-db option:

• Create the from_name and to_name databases manually on the source and the replica with
different names.

• If you use statement-based or mixed binary logging format, do not use cross-database queries,
and do not specify database names in queries. For both DDL and DML statements, rely on the
USE statement to specify the current database, and use only the table name in queries.

• If you use row-based binary logging format exclusively, for DDL statements, rely on the USE
statement to specify the current database, and use only the table name in queries. For DML
statements, you can use a fully qualified table name (db.table) if you want.

If these recommendations are followed, it is safe to use the --replicate-rewrite-db option in
combination with table-level replication filtering options such as --replicate-do-table.

This option supports channel specific replication filters, enabling multi-source replicas to use specific
filters for different sources. Specify the channel name followed by a colon, followed by the filter
specification. The first colon is interpreted as a separator, and any subsequent colons are interpreted

3691

Replication and Binary Logging Options and Variables

as literal colons. For example, to configure a channel specific replication filter on a channel named
channel_1, use:

$> mysqld --replicate-rewrite-db=channel_1:db_name1->db_name2

If you use a colon but do not specify a channel name, the option configures the replication filter for
the default replication channel. See Section 19.2.5.4, “Replication Channel Based Filters” for more
information.

Note

Global replication filters cannot be used on a MySQL server instance
that is configured for Group Replication, because filtering transactions
on some servers would make the group unable to reach agreement on a
consistent state. Channel specific replication filters can be used on replication
channels that are not directly involved with Group Replication, such as
where a group member also acts as a replica to a source that is outside the
group. They cannot be used on the group_replication_applier or
group_replication_recovery channels.

• --replicate-same-server-id

Command-Line Format --replicate-same-server-id[={OFF|
ON}]

Type Boolean

Default Value OFF

This option is for use on replicas. The default is 0 (FALSE). With this option set to 1 (TRUE), the
replica does not skip events that have its own server ID. This setting is normally useful only in rare
configurations.

When binary logging is enabled on a replica, the combination of the --replicate-same-server-
id and --log-slave-updates options on the replica can cause infinite loops in replication if the
server is part of a circular replication topology. (In MySQL 8.0, binary logging is enabled by default,
and replica update logging is the default when binary logging is enabled.) However, the use of global
transaction identifiers (GTIDs) prevents this situation by skipping the execution of transactions that
have already been applied. If gtid_mode=ON is set on the replica, you can start the server with this
combination of options, but you cannot change to any other GTID mode while the server is running. If
any other GTID mode is set, the server does not start with this combination of options.

By default, the replication I/O (receiver) thread does not write binary log events to the relay log if
they have the replica's server ID (this optimization helps save disk usage). If you want to use --
replicate-same-server-id, be sure to start the replica with this option before you make the
replica read its own events that you want the replication SQL (applier) thread to execute.

• --replicate-wild-do-table=db_name.tbl_name

Command-Line Format --replicate-wild-do-table=name

Type String

Creates a replication filter by telling the replication SQL (applier) thread to restrict replication to
statements where any of the updated tables match the specified database and table name patterns.
Patterns can contain the % and _ wildcard characters, which have the same meaning as for the LIKE
pattern-matching operator. To specify more than one table, use this option multiple times, once for
each table. This works for cross-database updates. See Section 19.2.5, “How Servers Evaluate

3692

Replication and Binary Logging Options and Variables

Replication Filtering Rules”. You can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_WILD_DO_TABLE statement.

This option supports channel specific replication filters, enabling multi-source replicas to use specific
filters for different sources. To configure a channel specific replication filter on a channel named
channel_1 use --replicate-wild-do-table:channel_1:db_name.tbl_name. In this
case, the first colon is interpreted as a separator and subsequent colons are literal colons. See
Section 19.2.5.4, “Replication Channel Based Filters” for more information.

Important

Global replication filters cannot be used on a MySQL server instance
that is configured for Group Replication, because filtering transactions
on some servers would make the group unable to reach agreement on a
consistent state. Channel specific replication filters can be used on replication
channels that are not directly involved with Group Replication, such as
where a group member also acts as a replica to a source that is outside the
group. They cannot be used on the group_replication_applier or
group_replication_recovery channels.

The replication filter specified by the --replicate-wild-do-table option applies to tables,
views, and triggers. It does not apply to stored procedures and functions, or events. To filter
statements operating on the latter objects, use one or more of the --replicate-*-db options.

As an example, --replicate-wild-do-table=foo%.bar% replicates only updates that use a
table where the database name starts with foo and the table name starts with bar.

If the table name pattern is %, it matches any table name and the option also applies to database-
level statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if
you use --replicate-wild-do-table=foo%.%, database-level statements are replicated if the
database name matches the pattern foo%.

Important

Table-level replication filters are only applied to tables that are explicitly
mentioned and operated on in the query. They do not apply to tables that
are implicitly updated by the query. For example, a GRANT statement, which
updates the mysql.user system table but does not mention that table, is not
affected by a filter that specifies mysql.% as the wildcard pattern.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named my_own%db, but not
replicate tables from the my1ownAABCdb database, you should escape the _ and % characters like
this: --replicate-wild-do-table=my_own\%db. If you use the option on the command line,
you might need to double the backslashes or quote the option value, depending on your command
interpreter. For example, with the bash shell, you would need to type --replicate-wild-do-
table=my_own\\%db.

• --replicate-wild-ignore-table=db_name.tbl_name

Command-Line Format --replicate-wild-ignore-table=name

Type String

Creates a replication filter which keeps the replication SQL thread from replicating a statement
in which any table matches the given wildcard pattern. To specify more than one table to ignore,
use this option multiple times, once for each table. This works for cross-database updates. See

3693

Replication and Binary Logging Options and Variables

Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”. You can also create such a filter
by issuing a CHANGE REPLICATION FILTER REPLICATE_WILD_IGNORE_TABLE statement.

This option supports channel specific replication filters, enabling multi-source replicas to use specific
filters for different sources. To configure a channel specific replication filter on a channel named
channel_1 use --replicate-wild-ignore:channel_1:db_name.tbl_name. In this
case, the first colon is interpreted as a separator and subsequent colons are literal colons. See
Section 19.2.5.4, “Replication Channel Based Filters” for more information.

Important

Global replication filters cannot be used on a MySQL server instance
that is configured for Group Replication, because filtering transactions
on some servers would make the group unable to reach agreement on a
consistent state. Channel specific replication filters can be used on replication
channels that are not directly involved with Group Replication, such as
where a group member also acts as a replica to a source that is outside the
group. They cannot be used on the group_replication_applier or
group_replication_recovery channels.

As an example, --replicate-wild-ignore-table=foo%.bar% does not replicate updates
that use a table where the database name starts with foo and the table name starts with bar. For
information about how matching works, see the description of the --replicate-wild-do-table
option. The rules for including literal wildcard characters in the option value are the same as for --
replicate-wild-ignore-table as well.

Important

Table-level replication filters are only applied to tables that are explicitly
mentioned and operated on in the query. They do not apply to tables that
are implicitly updated by the query. For example, a GRANT statement, which
updates the mysql.user system table but does not mention that table, is not
affected by a filter that specifies mysql.% as the wildcard pattern.

If you need to filter out GRANT statements or other administrative statements, a possible workaround
is to use the --replicate-ignore-db filter. This filter operates on the default database that is
currently in effect, as determined by the USE statement. You can therefore create a filter to ignore
statements for a database that is not replicated, then issue the USE statement to switch the default
database to that one immediately before issuing any administrative statements that you want to
ignore. In the administrative statement, name the actual database where the statement is applied.

For example, if --replicate-ignore-db=nonreplicated is configured on the replica server,
the following sequence of statements causes the GRANT statement to be ignored, because the
default database nonreplicated is in effect:

USE nonreplicated;
GRANT SELECT, INSERT ON replicated.t1 TO 'someuser'@'somehost';

• --skip-replica-start

Command-Line Format --skip-replica-start[={OFF|ON}]

Introduced 8.0.26

System Variable skip_replica_start

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

3694

Replication and Binary Logging Options and Variables

Default Value OFF

From MySQL 8.0.26, use --skip-replica-start in place of --skip-slave-start, which is
deprecated from that release. In releases before MySQL 8.0.26, use --skip-slave-start.

--skip-replica-start tells the replica server not to start the replication I/O (receiver) and
SQL (applier) threads when the server starts. To start the threads later, use a START REPLICA
statement.

You can use the skip_replica_start system variable in place of the command line option
to allow access to this feature using MySQL Server’s privilege structure, so that database
administrators do not need any privileged access to the operating system.

• --skip-slave-start

Command-Line Format --skip-slave-start[={OFF|ON}]

Deprecated 8.0.26

System Variable skip_slave_start

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, --skip-slave-start is deprecated and the alias --skip-replica-
start should be used instead. In releases before MySQL 8.0.26, use --skip-slave-start.

Tells the replica server not to start the replication I/O (receiver) and SQL (applier) threads when the
server starts. To start the threads later, use a START REPLICA statement.

From MySQL 8.0.24, you can use the skip_slave_start system variable in place of the
command line option to allow access to this feature using MySQL Server’s privilege structure, so that
database administrators do not need any privileged access to the operating system.

• --slave-skip-errors=[err_code1,err_code2,...|all|ddl_exist_errors]

Command-Line Format --slave-skip-errors=name

Deprecated 8.0.26

System Variable slave_skip_errors

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value OFF

Valid Values OFF

[list of error codes]

all

3695

Replication and Binary Logging Options and Variables

ddl_exist_errors

Normally, replication stops when an error occurs on the replica, which gives you the opportunity to
resolve the inconsistency in the data manually. This option causes the replication SQL thread to
continue replication when a statement returns any of the errors listed in the option value.

Do not use this option unless you fully understand why you are getting errors. If there are no
bugs in your replication setup and client programs, and no bugs in MySQL itself, an error that
stops replication should never occur. Indiscriminate use of this option results in replicas becoming
hopelessly out of synchrony with the source, with you having no idea why this has occurred.

For error codes, you should use the numbers provided by the error message in your replica's error
log and in the output of SHOW REPLICA STATUS. Appendix B, Error Messages and Common
Problems, lists server error codes.

The shorthand value ddl_exist_errors is equivalent to the error code list
1007,1008,1050,1051,1054,1060,1061,1068,1091,1146.

You can also (but should not) use the very nonrecommended value of all to cause the replica to
ignore all error messages and keeps going regardless of what happens. Needless to say, if you use
all, there are no guarantees regarding the integrity of your data. Please do not complain (or file bug
reports) in this case if the replica's data is not anywhere close to what it is on the source. You have
been warned.

This option does not work in the same way when replicating between NDB Clusters, due to the
internal NDB mechanism for checking epoch sequence numbers; normally, as soon as NDB detects
an epoch number that is missing or otherwise out of sequence, it immediately stops the replica
applier thread. Beginning with NDB 8.0.28, you can override this behavior by also specifying --ndb-
applier-allow-skip-epoch together with --slave-skip-errors; doing so causes NDB to
ignore skipped epoch transactions.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all
--slave-skip-errors=ddl_exist_errors

• --slave-sql-verify-checksum={0|1}

Command-Line Format --slave-sql-verify-checksum[={OFF|
ON}]

Type Boolean

Default Value ON

When this option is enabled, the replica examines checksums read from the relay log. In the event of
a mismatch, the replica stops with an error.

The following options are used internally by the MySQL test suite for replication testing and debugging.
They are not intended for use in a production setting.

• --abort-slave-event-count

Command-Line Format --abort-slave-event-count=#

Deprecated 8.0.29

Type Integer

Default Value 0

Minimum Value 0

3696

Replication and Binary Logging Options and Variables

When this option is set to some positive integer value other than 0 (the default) it affects replication
behavior as follows: After the replication SQL thread has started, value log events are permitted
to be executed; after that, the replication SQL thread does not receive any more events, just as if
the network connection from the source were cut. The replication SQL thread continues to run, and
the output from SHOW REPLICA STATUS displays Yes in both the Replica_IO_Running and the
Replica_SQL_Running columns, but no further events are read from the relay log.

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting. Beginning with MySQL 8.0.29, it is deprecated, and subject
to removal in a future version of MySQL.

• --disconnect-slave-event-count

Command-Line Format --disconnect-slave-event-count=#

Deprecated 8.0.29

Type Integer

Default Value 0

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting. Beginning with MySQL 8.0.29, it is deprecated, and subject
to removal in a future version of MySQL.

System Variables Used on Replica Servers

The following list describes system variables for controlling replica servers. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used with replicas are
listed earlier in this section.

• init_replica

Command-Line Format --init-replica=name

Introduced 8.0.26

System Variable init_replica

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

From MySQL 8.0.26, use init_replica in place of init_slave, which is deprecated from that
release. In releases before MySQL 8.0.26, use init_slave.

init_replica is similar to init_connect, but is a string to be executed by a replica server each
time the replication SQL thread starts. The format of the string is the same as for the init_connect
variable. The setting of this variable takes effect for subsequent START REPLICA statements.

Note

The replication SQL thread sends an acknowledgment to the client
before it executes init_replica. Therefore, it is not guaranteed that
init_replica has been executed when START REPLICA returns. See
Section 15.4.2.6, “START REPLICA Statement” for more information.

• init_slave

Command-Line Format --init-slave=name

3697

Replication and Binary Logging Options and Variables

Deprecated 8.0.26

System Variable init_slave

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

From MySQL 8.0.26, init_slave is deprecated and the alias init_replica should be used
instead. In releases before MySQL 8.0.26, use init_slave.

init_slave is similar to init_connect, but is a string to be executed by a replica server each
time the replication SQL thread starts. The format of the string is the same as for the init_connect
variable. The setting of this variable takes effect for subsequent START REPLICA statements.

Note

The replication SQL thread sends an acknowledgment to the client before
it executes init_slave. Therefore, it is not guaranteed that init_slave
has been executed when START REPLICA returns. See Section 15.4.2.6,
“START REPLICA Statement” for more information.

• log_slow_replica_statements

Command-Line Format --log-slow-replica-statements[={OFF|
ON}]

Introduced 8.0.26

System Variable log_slow_replica_statements

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, use log_slow_replica_statements in place of
log_slow_slave_statements, which is deprecated from that release. In releases before MySQL
8.0.26, use log_slow_slave_statements.

When the slow query log is enabled, log_slow_replica_statements enables logging for
queries that have taken more than long_query_time seconds to execute on the replica. Note
that if row-based replication is in use (binlog_format=ROW), log_slow_replica_statements
has no effect. Queries are only added to the replica's slow query log when they are logged
in statement format in the binary log, that is, when binlog_format=STATEMENT is set, or
when binlog_format=MIXED is set and the statement is logged in statement format. Slow
queries that are logged in row format when binlog_format=MIXED is set, or that are logged
when binlog_format=ROW is set, are not added to the replica's slow query log, even if
log_slow_replica_statements is enabled.

Setting log_slow_replica_statements has no immediate effect. The state of the variable
applies on all subsequent START REPLICA statements. Also note that the global setting for
long_query_time applies for the lifetime of the SQL thread. If you change that setting, you must
stop and restart the replication SQL thread to implement the change there (for example, by issuing
STOP REPLICA and START REPLICA statements with the SQL_THREAD option).

3698

Replication and Binary Logging Options and Variables

• log_slow_slave_statements

Command-Line Format --log-slow-slave-statements[={OFF|
ON}]

Deprecated 8.0.26

System Variable log_slow_slave_statements

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, log_slow_slave_statements is deprecated and the alias
log_slow_replica_statements should be used instead. In releases before MySQL 8.0.26, use
log_slow_slave_statements.

When the slow query log is enabled, log_slow_slave_statements enables logging for queries
that have taken more than long_query_time seconds to execute on the replica. Note that if row-
based replication is in use (binlog_format=ROW), log_slow_slave_statements has no effect.
Queries are only added to the replica's slow query log when they are logged in statement format in
the binary log, that is, when binlog_format=STATEMENT is set, or when binlog_format=MIXED
is set and the statement is logged in statement format. Slow queries that are logged in row format
when binlog_format=MIXED is set, or that are logged when binlog_format=ROW is set, are not
added to the replica's slow query log, even if log_slow_slave_statements is enabled.

Setting log_slow_slave_statements has no immediate effect. The state of the variable
applies on all subsequent START REPLICA statements. Also note that the global setting for
long_query_time applies for the lifetime of the SQL thread. If you change that setting, you must
stop and restart the replication SQL thread to implement the change there (for example, by issuing
STOP REPLICA and START REPLICA statements with the SQL_THREAD option).

• master_info_repository

Command-Line Format --master-info-repository={FILE|
TABLE}

Deprecated 8.0.23

System Variable master_info_repository

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value TABLE

Valid Values FILE

TABLE

The use of this system variable is now deprecated. The setting TABLE is the default, and is required
when multiple replication channels are configured. The alternative setting FILE was previously
deprecated.

With the default setting, the replica records metadata about the source, consisting of status
and connection information, to an InnoDB table in the mysql system database named

3699

Replication and Binary Logging Options and Variables

mysql.slave_master_info. For more information on the connection metadata repository, see
Section 19.2.4, “Relay Log and Replication Metadata Repositories”.

The FILE setting wrote the replica's connection metadata repository to a file, which was named
master.info by default. The name could be changed using the --master-info-file option.

• max_relay_log_size

Command-Line Format --max-relay-log-size=#

System Variable max_relay_log_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1073741824

Unit bytes

Block Size 4096

If a write by a replica to its relay log causes the current log file size to exceed the value of this
variable, the replica rotates the relay logs (closes the current file and opens the next one). If
max_relay_log_size is 0, the server uses max_binlog_size for both the binary log and
the relay log. If max_relay_log_size is greater than 0, it constrains the size of the relay log,
which enables you to have different sizes for the two logs. You must set max_relay_log_size
to between 4096 bytes and 1GB (inclusive), or to 0. The default value is 0. See Section 19.2.3,
“Replication Threads”.

• relay_log

Command-Line Format --relay-log=file_name

System Variable relay_log

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

The base name for relay log files. For the default replication channel, the default base name for relay
logs is host_name-relay-bin. For non-default replication channels, the default base name for
relay logs is host_name-relay-bin-channel, where channel is the name of the replication
channel recorded in this relay log.

The server writes the file in the data directory unless the base name is given with a leading absolute
path name to specify a different directory. The server creates relay log files in sequence by adding a
numeric suffix to the base name.

The relay log and relay log index on a replication server cannot be given the same names as the
binary log and binary log index, whose names are specified by the --log-bin and --log-bin-
index options. The server issues an error message and does not start if the binary log and relay log
file base names would be the same.

Due to the manner in which MySQL parses server options, if you specify this variable at server
startup, you must supply a value; the default base name is used only if the option is not actually

3700

Replication and Binary Logging Options and Variables

specified. If you specify the relay_log system variable at server startup without specifying a value,
unexpected behavior is likely to result; this behavior depends on the other options used, the order in
which they are specified, and whether they are specified on the command line or in an option file. For
more information about how MySQL handles server options, see Section 6.2.2, “Specifying Program
Options”.

If you specify this variable, the value specified is also used as the base name for the relay log index
file. You can override this behavior by specifying a different relay log index file base name using the
relay_log_index system variable.

When the server reads an entry from the index file, it checks whether the entry contains a relative
path. If it does, the relative part of the path is replaced with the absolute path set using the
relay_log system variable. An absolute path remains unchanged; in such a case, the index must
be edited manually to enable the new path or paths to be used.

You may find the relay_log system variable useful in performing the following tasks:

• Creating relay logs whose names are independent of host names.

• If you need to put the relay logs in some area other than the data directory because your relay logs
tend to be very large and you do not want to decrease max_relay_log_size.

• To increase speed by using load-balancing between disks.

You can obtain the relay log file name (and path) from the relay_log_basename system variable.

• relay_log_basename

System Variable relay_log_basename

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value datadir + '/' + hostname + '-relay-
bin'

Holds the base name and complete path to the relay log file. The maximum variable length is 256.
This variable is set by the server and is read only.

• relay_log_index

Command-Line Format --relay-log-index=file_name

System Variable relay_log_index

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value *host_name*-relay-bin.index

The name for the relay log index file. The maximum variable length is 256. If you do not specify this
variable, but the relay_log system variable is specified, its value is used as the default base name
for the relay log index file. If relay_log is also not specified, then for the default replication channel,
the default name is host_name-relay-bin.index, using the name of the host machine. For non-

3701

Replication and Binary Logging Options and Variables

default replication channels, the default name is host_name-relay-bin-channel.index, where
channel is the name of the replication channel recorded in this relay log index.

The default location for relay log files is the data directory, or any other location that was specified
using the relay_log system variable. You can use the relay_log_index system variable to
specify an alternative location, by adding a leading absolute path name to the base name to specify
a different directory.

The relay log and relay log index on a replication server cannot be given the same names as the
binary log and binary log index, whose names are specified by the --log-bin and --log-bin-
index options. The server issues an error message and does not start if the binary log and relay log
file base names would be the same.

Due to the manner in which MySQL parses server options, if you specify this variable at server
startup, you must supply a value; the default base name is used only if the option is not actually
specified. If you specify the relay_log_index system variable at server startup without specifying
a value, unexpected behavior is likely to result; this behavior depends on the other options used, the
order in which they are specified, and whether they are specified on the command line or in an option
file. For more information about how MySQL handles server options, see Section 6.2.2, “Specifying
Program Options”.

• relay_log_info_file

Command-Line Format --relay-log-info-file=file_name

Deprecated 8.0.18

System Variable relay_log_info_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value relay-log.info

The use of this system variable is now deprecated. It was used to set the file name for the
replica's applier metadata repository if relay_log_info_repository=FILE was set.
relay_log_info_file and the use of the relay_log_info_repository system variable
are deprecated because the use of a file for the applier metadata repository has been superseded
by crash-safe tables. For information about the applier metadata repository, see Section 19.2.4.2,
“Replication Metadata Repositories”.

• relay_log_info_repository

Command-Line Format --relay-log-info-repository=value

Deprecated 8.0.23

System Variable relay_log_info_repository

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value TABLE

Valid Values FILE

3702

Replication and Binary Logging Options and Variables

TABLE

The use of this system variable is now deprecated. The setting TABLE is the default, and is
required when multiple replication channels are configured. The TABLE setting for the replica's
applier metadata repository is also required to make replication resilient to unexpected halts. See
Section 19.4.2, “Handling an Unexpected Halt of a Replica” for more information. The alternative
setting FILE was previously deprecated.

With the default setting, the replica stores its applier metadata repository as an InnoDB table in the
mysql system database named mysql.slave_relay_log_info. For more information on the
applier metadata repository, see Section 19.2.4, “Relay Log and Replication Metadata Repositories”.

The FILE setting wrote the replica's applier metadata repository to a file, which was named relay-
log.info by default. The name could be changed using the relay_log_info_file system
variable.

• relay_log_purge

Command-Line Format --relay-log-purge[={OFF|ON}]

System Variable relay_log_purge

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Disables or enables automatic purging of relay log files as soon as they are not needed any more.
The default value is 1 (ON).

• relay_log_recovery

Command-Line Format --relay-log-recovery[={OFF|ON}]

System Variable relay_log_recovery

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

If enabled, this variable enables automatic relay log recovery immediately following server startup.
The recovery process creates a new relay log file, initializes the SQL (applier) thread position to this
new relay log, and initializes the I/O (receiver) thread to the applier thread position. Reading of the
relay log from the source then continues. If SOURCE_AUTO_POSITION=1 was set for the replication
channel using the CHANGE REPLICATION SOURCE TO option, the source position used to start
replication might be the one received in the connection and not the ones assigned in this process.

This global variable is read-only at runtime. Its value can be set with the --relay-log-recovery
option at replica server startup, which should be used following an unexpected halt of a replica to
ensure that no possibly corrupted relay logs are processed, and must be used in order to guarantee
a crash-safe replica. The default value is 0 (disabled). For information on the combination of settings

3703

Replication and Binary Logging Options and Variables

on a replica that is most resilient to unexpected halts, see Section 19.4.2, “Handling an Unexpected
Halt of a Replica”.

For a multithreaded replica (where replica_parallel_workers or slave_parallel_workers
is greater than 0), setting --relay-log-recovery at startup automatically handles any
inconsistencies and gaps in the sequence of transactions that have been executed from the relay
log. These gaps can occur when file position based replication is in use. (For more details, see
Section 19.5.1.34, “Replication and Transaction Inconsistencies”.) The relay log recovery process
deals with gaps using the same method as the START REPLICA UNTIL SQL_AFTER_MTS_GAPS
statement would. When the replica reaches a consistent gap-free state, the relay log recovery
process goes on to fetch further transactions from the source beginning at the SQL (applier) thread
position. When GTID-based replication is in use, from MySQL 8.0.18 a multithreaded replica checks
first whether MASTER_AUTO_POSITION is set to ON, and if it is, omits the step of calculating the
transactions that should be skipped or not skipped, so that the old relay logs are not required for the
recovery process.

Note

This variable does not affect the following Group Replication channels:

• group_replication_applier

• group_replication_recovery

Any other channels running on a group are affected, such as a channel which
is replicating from an outside source or another group.

• relay_log_space_limit

Command-Line Format --relay-log-space-limit=#

System Variable relay_log_space_limit

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

The maximum amount of space to use for all relay logs.

• replica_checkpoint_group

Command-Line Format --replica-checkpoint-group=#

Introduced 8.0.26

System Variable replica_checkpoint_group

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 512

Minimum Value 32

3704

Replication and Binary Logging Options and Variables

Maximum Value 524280

Block Size 8

From MySQL 8.0.26, use replica_checkpoint_group in place of slave_checkpoint_group,
which is deprecated from that release. In releases before MySQL 8.0.26, use
slave_checkpoint_group.

replica_checkpoint_group sets the maximum number of transactions that can be processed
by a multithreaded replica before a checkpoint operation is called to update its status as shown by
SHOW REPLICA STATUS. Setting this variable has no effect on replicas for which multithreading
is not enabled. Setting this variable has no immediate effect. The state of the variable applies to all
subsequent START REPLICA statements.

Previously, multithreaded replicas were not supported by NDB Cluster, which silently ignored the
setting for this variable. This restriction was lifted in MySQL 8.0.33.

This variable works in combination with the replica_checkpoint_period system variable in
such a way that, when either limit is exceeded, the checkpoint is executed and the counters tracking
both the number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 32, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to
a value that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before
storing the value. (Exception: No such rounding is performed by the debug server.) Regardless of
how the server was built, the default value is 512, and the maximum allowed value is 524280.

• replica_checkpoint_period

Command-Line Format --replica-checkpoint-period=#

Introduced 8.0.26

System Variable replica_checkpoint_period

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 300

Minimum Value 1

Maximum Value 4294967295

Unit milliseconds

In MySQL 8.0.26 and later, use replica_checkpoint_period in place of
slave_checkpoint_period, which is deprecated from that release; prior to MySQL 8.0.26, use
slave_checkpoint_period.

replica_checkpoint_period sets the maximum time (in milliseconds) that is allowed to pass
before a checkpoint operation is called to update the status of a multithreaded replica as shown by
SHOW REPLICA STATUS. Setting this variable has no effect on replicas for which multithreading

3705

Replication and Binary Logging Options and Variables

is not enabled. Setting this variable takes effect for all replication channels immediately, including
running channels.

Previously, multithreaded replicas were not supported by NDB Cluster, which silently ignored the
setting for this variable. This restriction was lifted in MySQL 8.0.33.

This variable works in combination with the replica_checkpoint_group system variable in such
a way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both
the number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 1, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 0. Regardless of how the server was built, the default value is
300 milliseconds, and the maximum possible value is 4294967295 milliseconds (approximately 49.7
days).

• replica_compressed_protocol

Command-Line Format --replica-compressed-protocol[={OFF|
ON}]

Introduced 8.0.26

System Variable replica_compressed_protocol

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, use replica_compressed_protocol in place of
slave_compressed_protocol, which is deprecated. In releases before MySQL 8.0.26, use
slave_compressed_protocol.

replica_compressed_protocol specifies whether to use compression of the source/replica
connection protocol if both source and replica support it. If this variable is disabled (the default),
connections are uncompressed. Changes to this variable take effect on subsequent connection
attempts; this includes after issuing a START REPLICA statement, as well as reconnections made by
a running replication I/O (receiver) thread.

Binary log transaction compression (available as of MySQL 8.0.20), which is activated by the
binlog_transaction_compression system variable, can also be used to save bandwidth.
If you use binary log transaction compression in combination with protocol compression, protocol
compression has less opportunity to act on the data, but can still compress headers and those
events and transaction payloads that are uncompressed. For more information on binary log
transaction compression, see Section 7.4.4.5, “Binary Log Transaction Compression”.

If replica_compressed_protocol is enabled, it takes precedence over any
SOURCE_COMPRESSION_ALGORITHMS option specified for the CHANGE REPLICATION SOURCE
TO statement. In this case, connections to the source use zlib compression if both the source
and replica support that algorithm. If replica_compressed_protocol is disabled, the value
of SOURCE_COMPRESSION_ALGORITHMS applies. For more information, see Section 6.2.8,
“Connection Compression Control”.

• replica_exec_mode

Command-Line Format --replica-exec-mode=mode

Introduced 8.0.26

System Variable replica_exec_mode

3706

Replication and Binary Logging Options and Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value IDEMPOTENT (NDB)

STRICT (Other)

Valid Values STRICT

IDEMPOTENT

From MySQL 8.0.26, use replica_exec_mode in place of slave_exec_mode, which is
deprecated from that release. In releases before MySQL 8.0.26, use slave_exec_mode.

replica_exec_mode controls how a replication thread resolves conflicts and errors during
replication. IDEMPOTENT mode causes suppression of duplicate-key and no-key-found errors;
STRICT means no such suppression takes place.

IDEMPOTENT mode is intended for use in multi-source replication, circular replication, and some
other special replication scenarios for NDB Cluster Replication. (See Section 25.7.10, “NDB
Cluster Replication: Bidirectional and Circular Replication”, and Section 25.7.12, “NDB Cluster
Replication Conflict Resolution”, for more information.) NDB Cluster ignores any value explicitly set
for replica_exec_mode, and always treats it as IDEMPOTENT.

In MySQL Server 8.0, STRICT mode is the default value.

Setting this variable takes immediate effect for all replication channels, including running channels.

For storage engines other than NDB, IDEMPOTENT mode should be used only when you are
absolutely sure that duplicate-key errors and key-not-found errors can safely be ignored. It is meant
to be used in fail-over scenarios for NDB Cluster where multi-source replication or circular replication
is employed, and is not recommended for use in other cases.

• replica_load_tmpdir

Command-Line Format --replica-load-tmpdir=dir_name

Introduced 8.0.26

System Variable replica_load_tmpdir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value Value of --tmpdir

From MySQL 8.0.26, use replica_load_tmpdir in place of slave_load_tmpdir, which is
deprecated from that release. In releases before MySQL 8.0.26, use slave_load_tmpdir.

replica_load_tmpdir specifies the name of the directory where the replica creates temporary
files. Setting this variable takes effect for all replication channels immediately, including running
channels. The variable value is by default equal to the value of the tmpdir system variable, or the
default that applies when that system variable is not specified.

When the replication SQL thread replicates a LOAD DATA statement, it extracts the file to be loaded
from the relay log into temporary files, and then loads these into the table. If the file loaded on the
source is huge, the temporary files on the replica are huge, too. Therefore, it might be advisable to

3707

Replication and Binary Logging Options and Variables

use this option to tell the replica to put temporary files in a directory located in some file system that
has a lot of available space. In that case, the relay logs are huge as well, so you might also want to
set the relay_log system variable to place the relay logs in that file system.

The directory specified by this option should be located in a disk-based file system (not a memory-
based file system) so that the temporary files used to replicate LOAD DATA statements can survive
machine restarts. The directory also should not be one that is cleared by the operating system during
the system startup process. However, replication can now continue after a restart if the temporary
files have been removed.

• replica_max_allowed_packet

Command-Line Format --replica-max-allowed-packet=#

Introduced 8.0.26

System Variable replica_max_allowed_packet

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1073741824

Minimum Value 1024

Maximum Value 1073741824

Unit bytes

Block Size 1024

From MySQL 8.0.26, use replica_max_allowed_packet in place of
slave_max_allowed_packet, which is deprecated from that release. In releases before MySQL
8.0.26, use slave_max_allowed_packet.

replica_max_allowed_packet sets the maximum packet size in bytes that the replication SQL
(applier)and I/O (receiver) threads can handle. Setting this variable takes effect for all replication
channels immediately, including running channels. It is possible for a source to write binary log
events longer than its max_allowed_packet setting once the event header is added. The setting
for replica_max_allowed_packet must be larger than the max_allowed_packet setting on
the source, so that large updates using row-based replication do not cause replication to fail.

This global variable always has a value that is a positive integer multiple of 1024; if you set it to some
value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or
used; setting replica_max_allowed_packet to 0 causes 1024 to be used. (A truncation warning
is issued in all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is
1024.

• replica_net_timeout

Command-Line Format --replica-net-timeout=#

Introduced 8.0.26

System Variable replica_net_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

3708

Replication and Binary Logging Options and Variables

Minimum Value 1

Maximum Value 31536000

Unit seconds

From MySQL 8.0.26, use replica_net_timeout in place of slave_net_timeout, which is
deprecated from that release. In releases before MySQL 8.0.26, use slave_net_timeout.

replica_net_timeout specifies the number of seconds to wait for more data or a heartbeat
signal from the source before the replica considers the connection broken, aborts the read, and tries
to reconnect. Setting this variable has no immediate effect. The state of the variable applies on all
subsequent START REPLICA commands.

The default value is 60 seconds (one minute). The first retry occurs immediately after the timeout.
The interval between retries is controlled by the SOURCE_CONNECT_RETRY option for the CHANGE
REPLICATION SOURCE TO statement, and the number of reconnection attempts is limited by the
SOURCE_RETRY_COUNT option.

The heartbeat interval, which stops the connection timeout occurring in the absence of data if
the connection is still good, is controlled by the SOURCE_HEARTBEAT_PERIOD option for the
CHANGE REPLICATION SOURCE TO statement. The heartbeat interval defaults to half the value
of replica_net_timeout, and it is recorded in the replica's connection metadata repository and
shown in the replication_connection_configuration Performance Schema table. Note that
a change to the value or default setting of replica_net_timeout does not automatically change
the heartbeat interval, whether that has been set explicitly or is using a previously calculated default.
If the connection timeout is changed, you must also issue CHANGE REPLICATION SOURCE TO to
adjust the heartbeat interval to an appropriate value so that it occurs before the connection timeout.

• replica_parallel_type

Command-Line Format --replica-parallel-type=value

Introduced 8.0.26

Deprecated 8.0.29

System Variable replica_parallel_type

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value (≥ 8.0.27) LOGICAL_CLOCK

Default Value (8.0.26) DATABASE

Valid Values DATABASE

LOGICAL_CLOCK

From MySQL 8.0.26, use replica_parallel_type in place of slave_parallel_type, which is
deprecated from that release. In releases before MySQL 8.0.26, use slave_parallel_type.

For multithreaded replicas (replicas on which replica_parallel_workers or
slave_parallel_workers is set to a value greater than 0), replica_parallel_type specifies
the policy used to decide which transactions are allowed to execute in parallel on the replica. The
variable has no effect on replicas for which multithreading is not enabled. The possible values are:

• LOGICAL_CLOCK: Transactions are applied in parallel on the replica, based on timestamps which
the replication source writes to the binary log. Dependencies between transactions are tracked
based on their timestamps to provide additional parallelization where possible.

3709

Replication and Binary Logging Options and Variables

• DATABASE: Transactions that update different databases are applied in parallel. This value is only
appropriate if data is partitioned into multiple databases which are being updated independently
and concurrently on the source. There must be no cross-database constraints, as such constraints
may be violated on the replica.

When replica_preserve_commit_order or slave_preserve_commit_order
is enabled, you must use LOGICAL_CLOCK. Before MySQL 8.0.27, DATABASE is the
default. From MySQL 8.0.27, multithreading is enabled by default for replica servers
(replica_parallel_workers=4 by default), and LOGICAL_CLOCK is the default. (In MySQL
8.0.27 and later, replica_preserve_commit_order is also enabled by default.)

When the replication topology uses multiple levels of replicas, LOGICAL_CLOCK may achieve
less parallelization for each level the replica is away from the source. To compensate for this
effect, you should set binlog_transaction_dependency_tracking to WRITESET or
WRITESET_SESSION on the source as well as on every intermediate replica to specify that write sets
are used instead of timestamps for parallelization where possible.

When binary log transaction compression is enabled using the
binlog_transaction_compression system variable, if replica_parallel_type is set
to DATABASE, all the databases affected by the transaction are mapped before the transaction is
scheduled. The use of binary log transaction compression with the DATABASE policy can reduce
parallelism compared to uncompressed transactions, which are mapped and scheduled for each
event.

replica_parallel_type is deprecated beginning with MySQL 8.0.29, as is support for
parallelization of transactions using database partitioning. Expect support for these to be removed in
a future release, and for LOGICAL_CLOCK to be used exclusively thereafter.

• replica_parallel_workers

Command-Line Format --replica-parallel-workers=#

Introduced 8.0.26

System Variable replica_parallel_workers

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27) 4

Default Value (8.0.26) 0

Minimum Value 0

Maximum Value 1024

Beginning with MySQL 8.0.26, slave_parallel_workers is deprecated, and you
should use replica_parallel_workers instead. (Prior to MySQL 8.0.26, you must use
slave_parallel_workers to set the number of applier threads.)

replica_parallel_workers enables multithreading on the replica and sets the number of
applier threads for executing replication transactions in parallel. When the value is greater than or
equal to 1, the replica uses the specified number of worker threads to execute transactions, plus a
coordinator thread that reads transactions from the relay log and schedules them to workers. When
the value is 0, there is only one thread that reads and applies transactions sequentially. If you are

3710

Replication and Binary Logging Options and Variables

using multiple replication channels, the value of this variable applies to the threads used by each
channel.

Prior to MySQL 8.0.27, the default value of this system variable is 0, so replicas use a single worker
thread by default. Beginning with MySQL 8.0.27, the default value is 4, which means that replicas are
multithreaded by default.

As of MySQL 8.0.30, setting this variable to 0 is deprecated, raises a warning, and is subject to
removal in a future MySQL release. For a single worker, set replica_parallel_workers to 1
instead.

When replica_preserve_commit_order (or slave_preserve_commit_order) is set
to ON (the default in MySQL 8.0.27 and later), transactions on a replica are externalized on the
replica in the same order as they appear in the replica's relay log. The way in which transactions
are distributed among applier threads is determined by replica_parallel_type (MySQL 8.0.26
and later) or slave_parallel_type (prior to MySQL 8.0.26). Starting with MySQL 8.0.27, these
system variables also have appropriate defaults for multithreading.

To disable parallel execution, set replica_parallel_workers to 1, in which case the replica
uses one coordinator thread which reads transactions, and one worker thread which applies them,
which means that transactions are applied sequentially. When replica_parallel_workers
is equal to 1, the replica_parallel_type (slave_parallel_type) and
replica_preserve_commit_order (slave_preserve_commit_order) system variables
have no effect and are ignored. If replica_parallel_workers is equal to 0 while the
CHANGE REPLICATION SOURCE TO option GTID_ONLY is enabled, the replica has one
coordinator thread and one worker thread, exactly as if replica_parallel_workers had
been set to 1. (GTID_ONLY is available in MySQL 8.0.27 and later.) With one parallel worker, the
replica_preserve_commit_order (slave_preserve_commit_order) system variable also
has no effect.

Setting replica_parallel_workers has no immediate effect but rather applies to all subsequent
START REPLICA statements.

Multithreaded replicas are supported by NDB Cluster beginning with NDB 8.0.33. (Previously, NDB
silently ignored any setting for replica_parallel_workers.) See Section 25.7.11, “NDB Cluster
Replication Using the Multithreaded Applier”, for more information.

Increasing the number of workers improves the potential for parallelism. Typically, this improves
performance up to a certain point, beyond which increasing the number of workers reduces
performance due to concurrency effects such as lock contention. The ideal number depends on
both hardware and workload; it can be difficult to predict and typically has to be found by testing.
Tables without primary keys, which always harm performance, may have even greater negative
performance impact on replicas having replica_parallel_workers > 1; so make sure that all
tables have primary keys before enabling this option.

• replica_pending_jobs_size_max

Command-Line Format --replica-pending-jobs-size-max=#

Introduced 8.0.26

System Variable replica_pending_jobs_size_max

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 128M

Minimum Value 1024

3711

Replication and Binary Logging Options and Variables

Maximum Value 16EiB

Unit bytes

Block Size 1024

From MySQL 8.0.26, use replica_pending_jobs_size_max in place of
slave_pending_jobs_size_max, which is deprecated from that release. In releases before
MySQL 8.0.26, use slave_pending_jobs_size_max.

For multithreaded replicas, this variable sets the maximum amount of memory (in bytes) available
to applier queues holding events not yet applied. Setting this variable has no effect on replicas for
which multithreading is not enabled. Setting this variable has no immediate effect. The state of the
variable applies on all subsequent START REPLICA statements.

The minimum possible value for this variable is 1024 bytes; the default is 128MB. The maximum
possible value is 18446744073709551615 (16 exbibytes). Values that are not exact multiples of
1024 bytes are rounded down to the next lower multiple of 1024 bytes prior to being stored.

The value of this variable is a soft limit and can be set to match the normal workload. If an unusually
large event exceeds this size, the transaction is held until all the worker threads have empty queues,
and then processed. All subsequent transactions are held until the large transaction has been
completed.

• replica_preserve_commit_order

Command-Line Format --replica-preserve-commit-
order[={OFF|ON}]

Introduced 8.0.26

System Variable replica_preserve_commit_order

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.27) ON

Default Value (8.0.26) OFF

From MySQL 8.0.26, use replica_preserve_commit_order in place of
slave_preserve_commit_order, which is deprecated from that release. In releases before
MySQL 8.0.26, use slave_preserve_commit_order.

For multithreaded replicas (replicas on which replica_parallel_workers is set to a value
greater than 0), setting replica_preserve_commit_order=ON ensures that transactions are
executed and committed on the replica in the same order as they appear in the replica's relay log.
This prevents gaps in the sequence of transactions that have been executed from the replica's relay
log, and preserves the same transaction history on the replica as on the source (with the limitations
listed below). This variable has no effect on replicas for which multithreading is not enabled.

Before MySQL 8.0.27, the default for this system variable is OFF, meaning that transactions may be
committed out of order. From MySQL 8.0.27, multithreading is enabled by default for replica servers
(replica_parallel_workers=4 by default), so replica_preserve_commit_order=ON
is the default, and the setting replica_parallel_type=LOGICAL_CLOCK is also the default.
Also from MySQL 8.0.27, the setting for replica_preserve_commit_order is ignored if

3712

Replication and Binary Logging Options and Variables

replica_parallel_workers is set to 1, because in that situation the order of transactions is
preserved anyway.

Binary logging and replica update logging are not required on the replica to set
replica_preserve_commit_order=ON, and can be disabled if wanted. Setting
replica_preserve_commit_order=ON requires that replica_parallel_type is set to
LOGICAL_CLOCK, which is not the default setting before MySQL 8.0.27. Before changing the value
of replica_preserve_commit_order or replica_parallel_type, the replication applier
thread (for all replication channels if you are using multiple replication channels) must be stopped.

When replica_preserve_commit_order=OFF is set, the transactions that a multithreaded
replica applies in parallel may commit out of order. Therefore, checking for the most recently
executed transaction does not guarantee that all previous transactions from the source have been
executed on the replica. There is a chance of gaps in the sequence of transactions that have been
executed from the replica's relay log. This has implications for logging and recovery when using a
multithreaded replica. See Section 19.5.1.34, “Replication and Transaction Inconsistencies” for more
information.

When replica_preserve_commit_order=ON is set, the executing worker thread waits until all
previous transactions are committed before committing. While a given thread is waiting for other
worker threads to commit their transactions, it reports its status as Waiting for preceding
transaction to commit. With this mode, a multithreaded replica never enters a state that the
source was not in. This supports the use of replication for read scale-out. See Section 19.4.5, “Using
Replication for Scale-Out”.

Note

• replica_preserve_commit_order=ON does not prevent source binary
log position lag, where Exec_master_log_pos is behind the position
up to which transactions have been executed. See Section 19.5.1.34,
“Replication and Transaction Inconsistencies”.

• replica_preserve_commit_order=ON does not preserve the commit
order and transaction history if the replica uses filters on its binary log, such
as --binlog-do-db.

• replica_preserve_commit_order=ON does not preserve the order of
non-transactional DML updates. These might commit before transactions
that precede them in the relay log, which might result in gaps in the
sequence of transactions that have been executed from the replica's relay
log.

• A limitation to preserving the commit order on the replica can occur if
statement-based replication is in use, and both transactional and non-
transactional storage engines participate in a non-XA transaction that is
rolled back on the source. Normally, non-XA transactions that are rolled
back on the source are not replicated to the replica, but in this particular
situation, the transaction might be replicated to the replica. If this does
happen, a multithreaded replica without binary logging does not handle the
transaction rollback, so the commit order on the replica diverges from the
relay log order of the transactions in that case.

• Group Replication—MySQL 9.2.0 and later: When a group primary
is receiving and applying transactions from an external source
through an asynchronous channel and a new member joins the group,
replica_preserve_commit_order=ON is not guaranteed to respect
the commit order of non-conflicting transactions. Because of this, there may
be temporary states on the secondary that never existed on the source;

3713

Replication and Binary Logging Options and Variables

since this occurs only with regard to non-conflicting transactions, there is no
actual divergence.

• replica_sql_verify_checksum

Command-Line Format --replica-sql-verify-checksum[={OFF|
ON}]

Introduced 8.0.26

System Variable replica_sql_verify_checksum

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

From MySQL 8.0.26, use replica_sql_verify_checksum in place of
slave_sql_verify_checksum, which is deprecated from that release. In releases before MySQL
8.0.26, use slave_sql_verify_checksum.

slave_sql_verify_checksum causes the replication SQL (applier) thread to verify data using
the checksums read from the relay log. In the event of a mismatch, the replica stops with an error.
Setting this variable takes effect for all replication channels immediately, including running channels.

Note

The replication I/O (receiver)thread always reads checksums if possible when
accepting events from over the network.

• replica_transaction_retries

Command-Line Format --replica-transaction-retries=#

Introduced 8.0.26

System Variable replica_transaction_retries

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 18446744073709551615

From MySQL 8.0.26, use replica_transaction_retries in place of
slave_transaction_retries, which is deprecated from that release. In releases before MySQL
8.0.26, use slave_transaction_retries.

replica_transaction_retries sets the maximum number of times for replication SQL
threads on a single-threaded or multithreaded replica to automatically retry failed transactions
before stopping. Setting this variable takes effect for all replication channels immediately, including
running channels. The default value is 10. Setting the variable to 0 disables automatic retrying of
transactions.

If a replication SQL thread fails to execute a transaction because of an InnoDB deadlock or
because the transaction's execution time exceeded InnoDB's innodb_lock_wait_timeout3714

Replication and Binary Logging Options and Variables

or NDB's TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout,
it automatically retries replica_transaction_retries times before stopping with an error.
Transactions with a non-temporary error are not retried.

The Performance Schema table replication_applier_status shows the number of retries
that took place on each replication channel, in the COUNT_TRANSACTIONS_RETRIES column.
The Performance Schema table replication_applier_status_by_worker shows detailed
information on transaction retries by individual applier threads on a single-threaded or multithreaded
replica, and identifies the errors that caused the last transaction and the transaction currently in
progress to be reattempted.

• replica_type_conversions

Command-Line Format --replica-type-conversions=set

Introduced 8.0.26

System Variable replica_type_conversions

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Set

Default Value

Valid Values ALL_LOSSY

ALL_NON_LOSSY

ALL_SIGNED

ALL_UNSIGNED

From MySQL 8.0.26, use replica_type_conversions in place of slave_type_conversions,
which is deprecated from that release. In releases before MySQL 8.0.26, use
slave_type_conversions.

replica_type_conversions controls the type conversion mode in effect on the replica when
using row-based replication. Its value is a comma-delimited set of zero or more elements from the
list: ALL_LOSSY, ALL_NON_LOSSY, ALL_SIGNED, ALL_UNSIGNED. Set this variable to an empty
string to disallow type conversions between the source and the replica. Setting this variable takes
effect for all replication channels immediately, including running channels.

For additional information on type conversion modes applicable to attribute promotion and demotion
in row-based replication, see Row-based replication: attribute promotion and demotion.

• replication_optimize_for_static_plugin_config

Command-Line Format --replication-optimize-for-static-
plugin-config[={OFF|ON}]

Introduced 8.0.23

System Variable replication_optimize_for_static_plugin_config

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

3715

Replication and Binary Logging Options and Variables

Default Value OFF

Use shared locks, and avoid unnecessary lock acquisitions, to improve performance for
semisynchronous replication. This setting and replication_sender_observe_commit_only
help as the number of replicas increases, because contention for locks can slow down performance.
While this system variable is enabled, the semisynchronous replication plugin cannot be uninstalled,
so you must disable the system variable before the uninstall can complete.

This system variable can be enabled before or after installing the semisynchronous replication
plugin, and can be enabled while replication is running. Semisynchronous replication source servers
can also get performance benefits from enabling this system variable, because they use the same
locking mechanisms as the replicas.

replication_optimize_for_static_plugin_config can be enabled when Group
Replication is in use on a server. In that scenario, it might benefit performance when there is
contention for locks due to high workloads.

• replication_sender_observe_commit_only

Command-Line Format --replication-sender-observe-commit-
only[={OFF|ON}]

Introduced 8.0.23

System Variable replication_sender_observe_commit_only

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Limit callbacks to improve performance for semisynchronous replication. This setting and
replication_optimize_for_static_plugin_config help as the number of replicas
increases, because contention for locks can slow down performance.

This system variable can be enabled before or after installing the semisynchronous replication
plugin, and can be enabled while replication is running. Semisynchronous replication source servers
can also get performance benefits from enabling this system variable, because they use the same
locking mechanisms as the replicas.

• report_host

Command-Line Format --report-host=host_name

System Variable report_host

Scope Global

Dynamic No

SET_VAR Hint Applies No

3716

Replication and Binary Logging Options and Variables

Type String

The host name or IP address of the replica to be reported to the source during replica registration.
This value appears in the output of SHOW REPLICAS on the source server. Leave the value unset if
you do not want the replica to register itself with the source.

Note

It is not sufficient for the source to simply read the IP address of the replica
server from the TCP/IP socket after the replica connects. Due to NAT and
other routing issues, that IP may not be valid for connecting to the replica
from the source or other hosts.

• report_password

Command-Line Format --report-password=name

System Variable report_password

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The account password of the replica to be reported to the source during replica registration. This
value appears in the output of SHOW REPLICAS on the source server if the source was started with
--show-replica-auth-info or --show-slave-auth-info.

Although the name of this variable might imply otherwise, report_password is not connected to
the MySQL user privilege system and so is not necessarily (or even likely to be) the same as the
password for the MySQL replication user account.

• report_port

Command-Line Format --report-port=port_num

System Variable report_port

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value [slave_port]

Minimum Value 0

Maximum Value 65535

The TCP/IP port number for connecting to the replica, to be reported to the source during replica
registration. Set this only if the replica is listening on a nondefault port or if you have a special tunnel
from the source or other clients to the replica. If you are not sure, do not use this option.

The default value for this option is the port number actually used by the replica. This is also the
default value displayed by SHOW REPLICAS.

• report_user

Command-Line Format --report-user=name

System Variable report_user 3717

Replication and Binary Logging Options and Variables

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The account user name of the replica to be reported to the source during replica registration. This
value appears in the output of SHOW REPLICAS on the source server if the source was started with
--show-replica-auth-info or --show-slave-auth-info.

Although the name of this variable might imply otherwise, report_user is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the name
of the MySQL replication user account.

• rpl_read_size

Command-Line Format --rpl-read-size=#

System Variable rpl_read_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8192

Minimum Value 8192

Maximum Value 4294959104

Unit bytes

Block Size 8192

The rpl_read_size system variable controls the minimum amount of data in bytes that is read
from the binary log files and relay log files. If heavy disk I/O activity for these files is impeding
performance for the database, increasing the read size might reduce file reads and I/O stalls when
the file data is not currently cached by the operating system.

The minimum and default value for rpl_read_size is 8192 bytes. The value must be a multiple of
4KB. Note that a buffer the size of this value is allocated for each thread that reads from the binary
log and relay log files, including dump threads on sources and coordinator threads on replicas.
Setting a large value might therefore have an impact on memory consumption for servers.

• rpl_semi_sync_replica_enabled

Command-Line Format --rpl-semi-sync-replica-
enabled[={OFF|ON}]

Introduced 8.0.26

System Variable rpl_semi_sync_replica_enabled

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

rpl_semi_sync_replica_enabled is available when the rpl_semi_sync_replica
(semisync_replica.so library) plugin was installed on the replica to set up semisynchronous

3718

Replication and Binary Logging Options and Variables

replication. If the rpl_semi_sync_slave plugin (semisync_slave.so library) was installed,
rpl_semi_sync_slave_enabled is available instead.

rpl_semi_sync_replica_enabled controls whether semisynchronous replication is enabled
on the replica server. To enable or disable the plugin, set this variable to ON or OFF (or 1 or 0),
respectively. The default is OFF.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• rpl_semi_sync_replica_trace_level

Command-Line Format --rpl-semi-sync-replica-trace-
level=#

Introduced 8.0.26

System Variable rpl_semi_sync_replica_trace_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

rpl_semi_sync_replica_trace_level is available when the rpl_semi_sync_replica
(semisync_replica.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_slave plugin (semisync_slave.so library) was installed,
rpl_semi_sync_slave_trace_level is available instead.

rpl_semi_sync_replica_trace_level controls the semisynchronous replication debug trace
level on the replica server. See rpl_semi_sync_master_trace_level for the permissible
values.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• rpl_semi_sync_slave_enabled

Command-Line Format --rpl-semi-sync-slave-enabled[={OFF|
ON}]

System Variable rpl_semi_sync_slave_enabled

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

rpl_semi_sync_slave_enabled is available when the rpl_semi_sync_slave
(semisync_slave.so library) plugin was installed on the replica to set up semisynchronous

3719

Replication and Binary Logging Options and Variables

replication. If the rpl_semi_sync_replica plugin (semisync_replica.so library) was
installed, rpl_semi_sync_replica_enabled is available instead.

rpl_semi_sync_slave_enabled controls whether semisynchronous replication is enabled on the
replica server. To enable or disable the plugin, set this variable to ON or OFF (or 1 or 0), respectively.
The default is OFF.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• rpl_semi_sync_slave_trace_level

Command-Line Format --rpl-semi-sync-slave-trace-level=#

System Variable rpl_semi_sync_slave_trace_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

rpl_semi_sync_slave_trace_level is available when the rpl_semi_sync_slave
(semisync_slave.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_replica plugin (semisync_replica.so library) was
installed, rpl_semi_sync_replica_trace_level is available instead.

rpl_semi_sync_slave_trace_level controls the semisynchronous replication debug trace
level on the replica server. See rpl_semi_sync_master_trace_level for the permissible
values.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• rpl_stop_replica_timeout

Command-Line Format --rpl-stop-replica-timeout=#

Introduced 8.0.26

System Variable rpl_stop_replica_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 31536000

Minimum Value 2

Maximum Value 31536000

3720

Replication and Binary Logging Options and Variables

Unit seconds

From MySQL 8.0.26, use rpl_stop_replica_timeout in place of rpl_stop_slave_timeout,
which is deprecated from that release. In releases before MySQL 8.0.26, use
rpl_stop_slave_timeout.

You can control the length of time (in seconds) that STOP REPLICA waits before timing out by
setting this variable. This can be used to avoid deadlocks between STOP REPLICA and other SQL
statements using different client connections to the replica.

The maximum and default value of rpl_stop_replica_timeout is 31536000 seconds (1 year).
The minimum is 2 seconds. Changes to this variable take effect for subsequent STOP REPLICA
statements.

This variable affects only the client that issues a STOP REPLICA statement. When the timeout
is reached, the issuing client returns an error message stating that the command execution is
incomplete. The client then stops waiting for the replication I/O (receiver)and SQL (applier) threads to
stop, but the replication threads continue to try to stop, and the STOP REPLICA statement remains
in effect. Once the replication threads are no longer busy, the STOP REPLICA statement is executed
and the replica stops.

• rpl_stop_slave_timeout

Command-Line Format --rpl-stop-slave-timeout=#

Deprecated 8.0.26

System Variable rpl_stop_slave_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 31536000

Minimum Value 2

Maximum Value 31536000

Unit seconds

From MySQL 8.0.26, rpl_stop_slave_timeout is deprecated and the alias
rpl_stop_replica_timeout should be used instead. In releases before MySQL 8.0.26, use
rpl_stop_slave_timeout.

You can control the length of time (in seconds) that STOP REPLICA waits before timing out by
setting this variable. This can be used to avoid deadlocks between STOP REPLICA and other SQL
statements using different client connections to the replica.

The maximum and default value of rpl_stop_slave_timeout is 31536000 seconds (1 year).
The minimum is 2 seconds. Changes to this variable take effect for subsequent STOP REPLICA
statements.

This variable affects only the client that issues a STOP REPLICA statement. When the timeout
is reached, the issuing client returns an error message stating that the command execution is
incomplete. The client then stops waiting for the replication I/O (receiver) and SQL (applier) threads
to stop, but the replication threads continue to try to stop, and the STOP REPLICA instruction
remains in effect. Once the replication threads are no longer busy, the STOP REPLICA statement is
executed and the replica stops.

3721

Replication and Binary Logging Options and Variables

• skip_replica_start

Command-Line Format --skip-replica-start[={OFF|ON}]

Introduced 8.0.26

System Variable skip_replica_start

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, use skip_replica_start in place of skip_slave_start, which is
deprecated from that release. In releases before MySQL 8.0.26, use skip_slave_start.

skip_replica_start tells the replica server not to start the replication I/O (receiver) and SQL
(applier) threads when the server starts. To start the threads later, use a START REPLICA
statement.

This system variable is read-only and can be set by using the PERSIST_ONLY keyword or the
@@persist_only qualifier with the SET statement. The --skip-replica-start command line
option also sets this system variable. You can use the system variable in place of the command line
option to allow access to this feature using MySQL Server’s privilege structure, so that database
administrators do not need any privileged access to the operating system.

• skip_slave_start

Command-Line Format --skip-slave-start[={OFF|ON}]

Deprecated 8.0.26

System Variable skip_slave_start

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, skip_slave_start is deprecated and the alias skip_replica_start
should be used instead. In releases before MySQL 8.0.26, use skip_slave_start.

Tells the replica server not to start the replication I/O (receiver) and SQL (applier) threads when the
server starts. To start the threads later, use a START REPLICA statement.

This system variable is available from MySQL 8.0.24. It is read-only and can be set by using the
PERSIST_ONLY keyword or the @@persist_only qualifier with the SET statement. The --skip-
slave-start command line option also sets this system variable. You can use the system variable
in place of the command line option to allow access to this feature using MySQL Server’s privilege
structure, so that database administrators do not need any privileged access to the operating
system.

• slave_checkpoint_group

Command-Line Format --slave-checkpoint-group=#

Deprecated 8.0.26

System Variable slave_checkpoint_group

3722

Replication and Binary Logging Options and Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 512

Minimum Value 32

Maximum Value 524280

Block Size 8

From MySQL 8.0.26, slave_checkpoint_group is deprecated and the alias
replica_checkpoint_group should be used instead. In releases before MySQL 8.0.26, use
slave_checkpoint_group.

slave_checkpoint_group sets the maximum number of transactions that can be processed
by a multithreaded replica before a checkpoint operation is called to update its status as shown by
SHOW REPLICA STATUS. Setting this variable has no effect on replicas for which multithreading is
not enabled. Setting this variable has no immediate effect. The state of the variable applies on all
subsequent START REPLICA statements.

Previously, multithreaded replicas were not supported by NDB Cluster, which silently ignored the
setting for this variable. This restriction was lifted in MySQL 8.0.33.

This variable works in combination with the slave_checkpoint_period system variable in such
a way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both
the number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 32, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to
a value that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before
storing the value. (Exception: No such rounding is performed by the debug server.) Regardless of
how the server was built, the default value is 512, and the maximum allowed value is 524280.

• slave_checkpoint_period

Command-Line Format --slave-checkpoint-period=#

Deprecated 8.0.26

System Variable slave_checkpoint_period

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 300

Minimum Value 1

Maximum Value 4294967295

Unit milliseconds

As of MySQL 8.0.26, slave_checkpoint_period is deprecated, and
replica_checkpoint_period should be used instead; prior to MySQL 8.0.26, use
slave_checkpoint_period.

slave_checkpoint_period sets the maximum time (in milliseconds) that is allowed to pass
before a checkpoint operation is called to update the status of a multithreaded replica as shown by

3723

Replication and Binary Logging Options and Variables

SHOW REPLICA STATUS. Setting this variable has no effect on replicas for which multithreading
is not enabled. Setting this variable takes effect for all replication channels immediately, including
running channels.

Previously, multithreaded replicas were not supported by NDB Cluster, which silently ignored the
setting for this variable. This restriction was lifted in MySQL 8.0.33.

This variable works in combination with the slave_checkpoint_group system variable in such a
way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both
the number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 1, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 0. Regardless of how the server was built, the default value is
300 milliseconds, and the maximum possible value is 4294967295 milliseconds (approximately 49.7
days).

• slave_compressed_protocol

Command-Line Format --slave-compressed-protocol[={OFF|
ON}]

Deprecated 8.0.18

System Variable slave_compressed_protocol

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

slave_compressed_protocol is deprecated, and from MySQL 8.0.26, the alias
replica_compressed_protocol should be used instead. In releases before MySQL 8.0.26, use
slave_compressed_protocol.

slave_compressed_protocol controls whether to use compression of the source/replica
connection protocol if both source and replica support it. If this variable is disabled (the default),
connections are uncompressed. Changes to this variable take effect on subsequent connection
attempts; this includes after issuing a START REPLICA statement, as well as reconnections made by
a running replication I/O (receiver) thread.

Binary log transaction compression (available as of MySQL 8.0.20), which is activated by the
binlog_transaction_compression system variable, can also be used to save bandwidth.
If you use binary log transaction compression in combination with protocol compression, protocol
compression has less opportunity to act on the data, but can still compress headers and those
events and transaction payloads that are uncompressed. For more information on binary log
transaction compression, see Section 7.4.4.5, “Binary Log Transaction Compression”.

As of MySQL 8.0.18, if slave_compressed_protocol is enabled, it takes precedence
over any SOURCE_COMPRESSION_ALGORITHMS | MASTER_COMPRESSION_ALGORITHMS
option specified for the CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO
statement. In this case, connections to the source use zlib compression if both the source
and replica support that algorithm. If slave_compressed_protocol is disabled, the value of
SOURCE_COMPRESSION_ALGORITHMS | MASTER_COMPRESSION_ALGORITHMS applies. For more
information, see Section 6.2.8, “Connection Compression Control”.

As of MySQL 8.0.18, this system variable is deprecated. You should expect it to be removed in a
future version of MySQL. See Configuring Legacy Connection Compression.

• slave_exec_mode

3724

Replication and Binary Logging Options and Variables

Command-Line Format --slave-exec-mode=mode

System Variable slave_exec_mode

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value IDEMPOTENT (NDB)

STRICT (Other)

Valid Values STRICT

IDEMPOTENT

From MySQL 8.0.26, slave_exec_mode is deprecated and the alias replica_exec_mode should
be used instead. In releases before MySQL 8.0.26, use slave_exec_mode.

slave_exec_mode controls how a replication thread resolves conflicts and errors during replication.
IDEMPOTENT mode causes suppression of duplicate-key and no-key-found errors; STRICT means
no such suppression takes place.

IDEMPOTENT mode is intended for use in multi-source replication, circular replication, and some
other special replication scenarios for NDB Cluster Replication. (See Section 25.7.10, “NDB
Cluster Replication: Bidirectional and Circular Replication”, and Section 25.7.12, “NDB Cluster
Replication Conflict Resolution”, for more information.) NDB Cluster ignores any value explicitly set
for slave_exec_mode, and always treats it as IDEMPOTENT.

In MySQL Server 8.0, STRICT mode is the default value.

Setting this variable takes immediate effect for all replication channels, including running channels.

For storage engines other than NDB, IDEMPOTENT mode should be used only when you are
absolutely sure that duplicate-key errors and key-not-found errors can safely be ignored. It is meant
to be used in fail-over scenarios for NDB Cluster where multi-source replication or circular replication
is employed, and is not recommended for use in other cases.

• slave_load_tmpdir

Command-Line Format --slave-load-tmpdir=dir_name

Deprecated 8.0.26

System Variable slave_load_tmpdir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value Value of --tmpdir

From MySQL 8.0.26, slave_load_tmpdir is deprecated and the alias replica_load_tmpdir
should be used instead. In releases before MySQL 8.0.26, use slave_load_tmpdir.

slave_load_tmpdir specifies the name of the directory where the replica creates temporary files.
Setting this variable takes effect for all replication channels immediately, including running channels.

3725

Replication and Binary Logging Options and Variables

The variable value is by default equal to the value of the tmpdir system variable, or the default that
applies when that system variable is not specified.

When the replication SQL thread replicates a LOAD DATA statement, it extracts the file to be loaded
from the relay log into temporary files, and then loads these into the table. If the file loaded on the
source is huge, the temporary files on the replica are huge, too. Therefore, it might be advisable to
use this option to tell the replica to put temporary files in a directory located in some file system that
has a lot of available space. In that case, the relay logs are huge as well, so you might also want to
set the relay_log system variable to place the relay logs in that file system.

The directory specified by this option should be located in a disk-based file system (not a memory-
based file system) so that the temporary files used to replicate LOAD DATA statements can survive
machine restarts. The directory also should not be one that is cleared by the operating system during
the system startup process. However, replication can now continue after a restart if the temporary
files have been removed.

• slave_max_allowed_packet

Command-Line Format --slave-max-allowed-packet=#

Deprecated 8.0.26

System Variable slave_max_allowed_packet

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1073741824

Minimum Value 1024

Maximum Value 1073741824

Unit bytes

Block Size 1024

From MySQL 8.0.26, slave_max_allowed_packet is deprecated and the alias
replica_max_allowed_packet should be used instead. In releases before MySQL 8.0.26, use
slave_max_allowed_packet.

slave_max_allowed_packet sets the maximum packet size in bytes that the replication SQL
(applier) and I/O (receiver) threads can handle. Setting this variable takes effect for all replication
channels immediately, including running channels. It is possible for a source to write binary log
events longer than its max_allowed_packet setting once the event header is added. The setting
for slave_max_allowed_packet must be larger than the max_allowed_packet setting on the
source, so that large updates using row-based replication do not cause replication to fail.

This global variable always has a value that is a positive integer multiple of 1024; if you set it to some
value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or
used; setting slave_max_allowed_packet to 0 causes 1024 to be used. (A truncation warning
is issued in all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is
1024.

• slave_net_timeout

Command-Line Format --slave-net-timeout=#

Deprecated 8.0.26

System Variable slave_net_timeout

3726

Replication and Binary Logging Options and Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

Minimum Value 1

Maximum Value 31536000

Unit seconds

From MySQL 8.0.26, slave_net_timeout is deprecated and the alias replica_net_timeout
should be used instead. In releases before MySQL 8.0.26, use slave_net_timeout.

slave_net_timeout specifies the number of seconds to wait for more data or a heartbeat signal
from the source before the replica considers the connection broken, aborts the read, and tries to
reconnect. Setting this variable has no immediate effect. The state of the variable applies on all
subsequent START REPLICA commands.

The default value is 60 seconds (one minute). The first retry occurs immediately after the
timeout. The interval between retries is controlled by the SOURCE_CONNECT_RETRY |
MASTER_CONNECT_RETRY option for the CHANGE REPLICATION SOURCE TO | CHANGE MASTER
TO statement, and the number of reconnection attempts is limited by the SOURCE_RETRY_COUNT |
MASTER_RETRY_COUNT option.

The heartbeat interval, which stops the connection timeout occurring in the absence of
data if the connection is still good, is controlled by the SOURCE_HEARTBEAT_PERIOD |
MASTER_HEARTBEAT_PERIOD option for the CHANGE REPLICATION SOURCE TO | CHANGE
MASTER TO statement. The heartbeat interval defaults to half the value of slave_net_timeout,
and it is recorded in the replica's connection metadata repository and shown in the
replication_connection_configuration Performance Schema table. Note that a change to
the value or default setting of slave_net_timeout does not automatically change the heartbeat
interval, whether that has been set explicitly or is using a previously calculated default. If the
connection timeout is changed, you must also issue CHANGE REPLICATION SOURCE TO | CHANGE
MASTER TO to adjust the heartbeat interval to an appropriate value so that it occurs before the
connection timeout.

• slave_parallel_type

Command-Line Format --slave-parallel-type=value

Deprecated 8.0.26

System Variable slave_parallel_type

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value (≥ 8.0.27) LOGICAL_CLOCK

Default Value (≤ 8.0.26) DATABASE

Valid Values DATABASE

3727

Replication and Binary Logging Options and Variables

LOGICAL_CLOCK

From MySQL 8.0.26, slave_parallel_type is deprecated and the alias
replica_parallel_type should be used instead. In releases before MySQL 8.0.26, use
slave_parallel_type.

For multithreaded replicas (replicas on which replica_parallel_workers or
slave_parallel_workers is set to a value greater than 0), slave_parallel_type specifies
the policy used to decide which transactions are allowed to execute in parallel on the replica. The
variable has no effect on replicas for which multithreading is not enabled. The possible values are:

• LOGICAL_CLOCK: Transactions that are part of the same binary log group commit on a source
are applied in parallel on a replica. The dependencies between transactions are tracked based on
their timestamps to provide additional parallelization where possible. When this value is set, the
binlog_transaction_dependency_tracking system variable can be used on the source to
specify that write sets are used for parallelization in place of timestamps, if a write set is available
for the transaction and gives improved results compared to timestamps.

• DATABASE: Transactions that update different databases are applied in parallel. This value is only
appropriate if data is partitioned into multiple databases which are being updated independently
and concurrently on the source. There must be no cross-database constraints, as such constraints
may be violated on the replica.

When replica_preserve_commit_order=ON or slave_preserve_commit_order
is ON, you must use LOGICAL_CLOCK. Before MySQL 8.0.27, DATABASE is the
default. From MySQL 8.0.27, multithreading is enabled by default for replica servers
(replica_parallel_workers=4 by default), so LOGICAL_CLOCK is the default, and the setting
replica_preserve_commit_order=ON is also the default.

All replication applier threads must be stopped prior to setting slave_parallel_type.

When your replication topology uses multiple levels of replicas, LOGICAL_CLOCK may achieve less
parallelization for each level the replica is away from the source. You can reduce this effect by using
binlog_transaction_dependency_tracking on the source to specify that write sets are used
instead of timestamps for parallelization where possible.

When binary log transaction compression is enabled using the
binlog_transaction_compression system variable, if replica_parallel_type or
slave_parallel_type is set to DATABASE, all the databases affected by the transaction are
mapped before the transaction is scheduled. The use of binary log transaction compression with
the DATABASE policy can reduce parallelism compared to uncompressed transactions, which are
mapped and scheduled for each event.

• slave_parallel_workers

Command-Line Format --slave-parallel-workers=#

Deprecated 8.0.26

System Variable slave_parallel_workers

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27) 4

Default Value (≤ 8.0.26) 0

Minimum Value 0

3728

Replication and Binary Logging Options and Variables

Maximum Value 1024

From MySQL 8.0.26, slave_parallel_workers is deprecated and the alias
replica_parallel_workers should be used instead. In releases before MySQL 8.0.26, use
slave_parallel_workers.

slave_parallel_workers enables multithreading on the replica and sets the number of applier
threads for executing replication transactions in parallel. When the value is a number greater than 0,
the replica is a multithreaded replica with the specified number of applier threads, plus a coordinator
thread to manage them. If you are using multiple replication channels, each channel has this number
of threads.

Before MySQL 8.0.27, the default for this system variable is 0, so replicas are not multithreaded by
default. From MySQL 8.0.27, the default is 4, so replicas are multithreaded by default.

Retrying of transactions is supported when multithreading is enabled on a replica. When
replica_preserve_commit_order=ON or slave_preserve_commit_order=ON is set,
transactions on a replica are externalized on the replica in the same order as they appear in
the replica's relay log. The way in which transactions are distributed among applier threads is
configured by replica_parallel_type (from MySQL 8.0.26) or slave_parallel_type
(before MySQL 8.0.26). From MySQL 8.0.27, these system variables also have appropriate defaults
for multithreading.

To disable parallel execution, set replica_parallel_workers to 0, which gives the replica a
single applier thread and no coordinator thread. With this setting, the replica_parallel_type
or slave_parallel_type and replica_preserve_commit_order or
slave_preserve_commit_order system variables have no effect and are ignored. From MySQL
8.0.27, if parallel execution is disabled when the CHANGE REPLICATION SOURCE TO option
GTID_ONLY is enabled on a replica, the replica actually uses one parallel worker to take advantage
of the method for retrying transactions without accessing the file positions. With one parallel worker,
the replica_preserve_commit_order (slave_preserve_commit_order) system variable
also has no effect.

Setting replica_parallel_workers has no immediate effect. The state of the variable applies
on all subsequent START REPLICA statements.

Previously, multithreaded replicas were not supported by NDB Cluster, which silently ignored the
setting for this variable. This restriction was lifted in MySQL 8.0.33.

• slave_pending_jobs_size_max

Command-Line Format --slave-pending-jobs-size-max=#

Deprecated 8.0.26

System Variable slave_pending_jobs_size_max

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.12) 128M

Default Value (8.0.11) 16M

Minimum Value 1024

Maximum Value 16EiB

Unit bytes

3729

Replication and Binary Logging Options and Variables

Block Size 1024

From MySQL 8.0.26, slave_pending_jobs_size_max is deprecated and the alias
replica_pending_jobs_size_max should be used instead. In releases before MySQL 8.0.26,
use slave_pending_jobs_size_max.

For multithreaded replicas, this variable sets the maximum amount of memory (in bytes) available
to applier queues holding events not yet applied. Setting this variable has no effect on replicas for
which multithreading is not enabled. Setting this variable has no immediate effect. The state of the
variable applies on all subsequent START REPLICA commands.

The minimum possible value for this variable is 1024 bytes; the default is 128MB. The maximum
possible value is 18446744073709551615 (16 exbibytes). Values that are not exact multiples of
1024 bytes are rounded down to the next lower multiple of 1024 bytes prior to being stored.

The value of this variable is a soft limit and can be set to match the normal workload. If an unusually
large event exceeds this size, the transaction is held until all the worker threads have empty queues,
and then processed. All subsequent transactions are held until the large transaction has been
completed.

• slave_preserve_commit_order

Command-Line Format --slave-preserve-commit-order[={OFF|
ON}]

Deprecated 8.0.26

System Variable slave_preserve_commit_order

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.27) ON

Default Value (≤ 8.0.26) OFF

From MySQL 8.0.26, slave_preserve_commit_order is deprecated and the alias
replica_preserve_commit_order should be used instead. In releases before MySQL 8.0.26,
use slave_preserve_commit_order.

For multithreaded replicas (replicas on which replica_parallel_workers
or slave_parallel_workers is set to a value greater than 0), setting
slave_preserve_commit_order=1 ensures that transactions are executed and committed on
the replica in the same order as they appear in the replica's relay log. This prevents gaps in the
sequence of transactions that have been executed from the replica's relay log, and preserves the
same transaction history on the replica as on the source (with the limitations listed below). This
variable has no effect on replicas for which multithreading is not enabled.

Before MySQL 8.0.27, the default for this system variable is OFF, meaning that transactions may
be committed out of order. From MySQL 8.0.27, multithreading is enabled by default for replica
servers (replica_parallel_workers=4 by default), so slave_preserve_commit_order=ON
is the default, and the setting slave_parallel_type=LOGICAL_CLOCK is also the default.
Also from MySQL 8.0.27, the setting for slave_preserve_commit_order is ignored if
slave_parallel_workers is set to 1, because in that situation the order of transactions is
preserved anyway.

Up to and including MySQL 8.0.18, setting slave_preserve_commit_order=ON requires that
binary logging (log_bin) and replica update logging (log_slave_updates) are enabled on the
replica, which are the default settings from MySQL 8.0. From MySQL 8.0.19, binary logging and

3730

Replication and Binary Logging Options and Variables

replica update logging are not required on the replica to set slave_preserve_commit_order=ON,
and can be disabled if wanted. In all releases, setting slave_preserve_commit_order=ON
requires that slave_parallel_type is set to LOGICAL_CLOCK, which is not the default setting
before MySQL 8.0.27. Before changing the value of slave_preserve_commit_order or
slave_parallel_type, the replication applier thread (for all replication channels if you are using
multiple replication channels) must be stopped.

When slave_preserve_commit_order=OFF is set, which is the default, the transactions that a
multithreaded replica applies in parallel may commit out of order. Therefore, checking for the most
recently executed transaction does not guarantee that all previous transactions from the source have
been executed on the replica. There is a chance of gaps in the sequence of transactions that have
been executed from the replica's relay log. This has implications for logging and recovery when using
a multithreaded replica. See Section 19.5.1.34, “Replication and Transaction Inconsistencies” for
more information.

When slave_preserve_commit_order is ON, the executing worker thread waits until all
previous transactions are committed before committing. While a given thread is waiting for other
worker threads to commit their transactions, it reports its status as Waiting for preceding
transaction to commit. With this mode, a multithreaded replica never enters a state that the
source was not in. This supports the use of replication for read scale-out. See Section 19.4.5, “Using
Replication for Scale-Out”.

Note

• slave_preserve_commit_order=ON does not prevent source binary
log position lag, where Exec_master_log_pos is behind the position
up to which transactions have been executed. See Section 19.5.1.34,
“Replication and Transaction Inconsistencies”.

• slave_preserve_commit_order=ON does not preserve the commit
order and transaction history if the replica uses filters on its binary log, such
as --binlog-do-db.

• slave_preserve_commit_order=ON does not preserve the order of
non-transactional DML updates. These might commit before transactions
that precede them in the relay log, which might result in gaps in the
sequence of transactions that have been executed from the replica's relay
log.

• In releases before MySQL 8.0.19, slave_preserve_commit_order=ON
does not preserve the order of statements with an IF EXISTS clause
when the object concerned does not exist. These might commit before
transactions that precede them in the relay log, which might result in gaps
in the sequence of transactions that have been executed from the replica's
relay log.

• A limitation to preserving the commit order on the replica can occur if
statement-based replication is in use, and both transactional and non-
transactional storage engines participate in a non-XA transaction that is
rolled back on the source. Normally, non-XA transactions that are rolled
back on the source are not replicated to the replica, but in this particular
situation, the transaction might be replicated to the replica. If this does
happen, a multithreaded replica without binary logging does not handle the
transaction rollback, so the commit order on the replica diverges from the
relay log order of the transactions in that case.

• slave_rows_search_algorithms

Command-Line Format --slave-rows-search-algorithms=value

3731

Replication and Binary Logging Options and Variables

Deprecated 8.0.18

System Variable slave_rows_search_algorithms

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Set

Default Value INDEX_SCAN,HASH_SCAN

Valid Values TABLE_SCAN,INDEX_SCAN

INDEX_SCAN,HASH_SCAN

TABLE_SCAN,HASH_SCAN

TABLE_SCAN,INDEX_SCAN,HASH_SCAN
(equivalent to INDEX_SCAN,HASH_SCAN)

When preparing batches of rows for row-based logging and replication, this system variable controls
how the rows are searched for matches, in particular whether hash scans are used. The use of
this system variable is now deprecated. The default setting INDEX_SCAN,HASH_SCAN is optimal
for performance and works correctly in all scenarios. See Section 19.5.1.27, “Replication and Row
Searches”.

• slave_skip_errors

Command-Line Format --slave-skip-errors=name

Deprecated 8.0.26

System Variable slave_skip_errors

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value OFF

Valid Values OFF

[list of error codes]

all

ddl_exist_errors

From MySQL 8.0.26, slave_skip_errors is deprecated and the alias replica_skip_errors
should be used instead. In releases before MySQL 8.0.26, use slave_skip_errors.

Normally, replication stops when an error occurs on the replica, which gives you the opportunity to
resolve the inconsistency in the data manually. This variable causes the replication SQL thread to
continue replication when a statement returns any of the errors listed in the variable value.

• replica_skip_errors

Command-Line Format --replica-skip-errors=name

Introduced 8.0.26

System Variable replica_skip_errors

3732

Replication and Binary Logging Options and Variables

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value OFF

Valid Values OFF

[list of error codes]

all

ddl_exist_errors

From MySQL 8.0.26, use replica_skip_errors in place of slave_skip_errors, which is
deprecated from that release. In releases before MySQL 8.0.26, use slave_skip_errors.

Normally, replication stops when an error occurs on the replica, which gives you the opportunity to
resolve the inconsistency in the data manually. This variable causes the replication SQL thread to
continue replication when a statement returns any of the errors listed in the variable value.

• slave_sql_verify_checksum

Command-Line Format --slave-sql-verify-checksum[={OFF|
ON}]

Deprecated 8.0.26

System Variable slave_sql_verify_checksum

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

From MySQL 8.0.26, slave_sql_verify_checksum is deprecated and the alias
replica_sql_verify_checksum should be used instead. In releases before MySQL 8.0.26, use
slave_sql_verify_checksum.

slave_sql_verify_checksum causes the replication SQL thread to verify data using the
checksums read from the relay log. In the event of a mismatch, the replica stops with an error.
Setting this variable takes effect for all replication channels immediately, including running channels.

Note

The replication I/O (receiver) thread always reads checksums if possible
when accepting events from over the network.

• slave_transaction_retries

Command-Line Format --slave-transaction-retries=#

Deprecated 8.0.26

System Variable slave_transaction_retries

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

3733

Replication and Binary Logging Options and Variables

Type Integer

Default Value 10

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

From MySQL 8.0.26, slave_transaction_retries is deprecated and the alias
replica_transaction_retries should be used instead. In releases before MySQL 8.0.26, use
slave_transaction_retries.

slave_transaction_retries sets the maximum number of times for replication SQL threads on
a single-threaded or multithreaded replica to automatically retry failed transactions before stopping.
Setting this variable takes effect for all replication channels immediately, including running channels.
The default value is 10. Setting the variable to 0 disables automatic retrying of transactions.

If a replication SQL thread fails to execute a transaction because of an InnoDB deadlock or
because the transaction's execution time exceeded InnoDB's innodb_lock_wait_timeout
or NDB's TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout,
it automatically retries slave_transaction_retries times before stopping with an error.
Transactions with a non-temporary error are not retried.

The Performance Schema table replication_applier_status shows the number of retries
that took place on each replication channel, in the COUNT_TRANSACTIONS_RETRIES column.
The Performance Schema table replication_applier_status_by_worker shows detailed
information on transaction retries by individual applier threads on a single-threaded or multithreaded
replica, and identifies the errors that caused the last transaction and the transaction currently in
progress to be reattempted.

• slave_type_conversions

Command-Line Format --slave-type-conversions=set

Deprecated 8.0.26

System Variable slave_type_conversions

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Set

Default Value

Valid Values ALL_LOSSY

ALL_NON_LOSSY

ALL_SIGNED

ALL_UNSIGNED

From MySQL 8.0.26, slave_type_conversions is deprecated and the alias
replica_type_conversions should be used instead. In releases before MySQL 8.0.26, use
slave_type_conversions.

slave_type_conversions controls the type conversion mode in effect on the replica when using
row-based replication. Its value is a comma-delimited set of zero or more elements from the list:
ALL_LOSSY, ALL_NON_LOSSY, ALL_SIGNED, ALL_UNSIGNED. Set this variable to an empty string

3734

Replication and Binary Logging Options and Variables

to disallow type conversions between the source and the replica. Setting this variable takes effect for
all replication channels immediately, including running channels.

For additional information on type conversion modes applicable to attribute promotion and demotion
in row-based replication, see Row-based replication: attribute promotion and demotion.

• sql_replica_skip_counter

Introduced 8.0.26

System Variable sql_replica_skip_counter

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

From MySQL 8.0.26, use sql_replica_skip_counter in place of sql_slave_skip_counter,
which is deprecated from that release. In releases before MySQL 8.0.26, use
sql_slave_skip_counter.

sql_replica_skip_counter specifies the number of events from the source that a replica
should skip. Setting the option has no immediate effect. The variable applies to the next START
REPLICA statement; the next START REPLICA statement also changes the value back to 0. When
this variable is set to a nonzero value and there are multiple replication channels configured, the
START REPLICA statement can only be used with the FOR CHANNEL channel clause.

This option is incompatible with GTID-based replication, and must not be set to a nonzero value
when gtid_mode=ON is set. If you need to skip transactions when employing GTIDs, use
gtid_executed from the source instead. If you have enabled GTID assignment on a replication
channel using the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE
REPLICATION SOURCE TO statement, sql_replica_skip_counter is available. See
Section 19.1.7.3, “Skipping Transactions”.

Important

If skipping the number of events specified by setting this variable would cause
the replica to begin in the middle of an event group, the replica continues to
skip until it finds the beginning of the next event group and begins from that
point. For more information, see Section 19.1.7.3, “Skipping Transactions”.

• sql_slave_skip_counter

Deprecated 8.0.26

System Variable sql_slave_skip_counter

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

3735

Replication and Binary Logging Options and Variables

Maximum Value 4294967295

From MySQL 8.0.26, sql_slave_skip_counter is deprecated and the alias
sql_replica_skip_counter should be used instead. In releases before MySQL 8.0.26, use
sql_slave_skip_counter.

sql_slave_skip_counter specifies the number of events from the source that a replica should
skip. Setting the option has no immediate effect. The variable applies to the next START REPLICA
statement; the next START REPLICA statement also changes the value back to 0. When this
variable is set to a nonzero value and there are multiple replication channels configured, the START
REPLICA statement can only be used with the FOR CHANNEL channel clause.

This option is incompatible with GTID-based replication, and must not be set to a nonzero
value when gtid_mode=ON is set. If you need to skip transactions when employing GTIDs,
use gtid_executed from the source instead. If you have enabled GTID assignment on a
replication channel using the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the
CHANGE REPLICATION SOURCE TO statement, sql_slave_skip_counter is available. See
Section 19.1.7.3, “Skipping Transactions”.

Important

If skipping the number of events specified by setting this variable would cause
the replica to begin in the middle of an event group, the replica continues to
skip until it finds the beginning of the next event group and begins from that
point. For more information, see Section 19.1.7.3, “Skipping Transactions”.

• sync_master_info

Command-Line Format --sync-master-info=#

Deprecated 8.0.26

System Variable sync_master_info

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

From MySQL 8.0.26, sync_master_info is deprecated and the alias sync_source_info should
be used instead. In releases before MySQL 8.0.26, use sync_master_info.

sync_master_info specifies the number of events after which the replica updates the connection
metadata repository. When the connection metadata repository is stored as an InnoDB table, which
is the default from MySQL 8.0, it is updated after this number of events. If the connection metadata
repository is stored as a file, which is deprecated from MySQL 8.0, the replica synchronizes its
master.info file to disk (using fdatasync()) after this number of events. The default value is
10000, and a zero value means that the repository is never updated. Setting this variable takes effect
for all replication channels immediately, including running channels.

• sync_relay_log

Command-Line Format --sync-relay-log=#

System Variable sync_relay_log

Scope Global

3736

Replication and Binary Logging Options and Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk
(using fdatasync()) after every sync_relay_log events are written to the relay log. Setting this
variable takes effect for all replication channels immediately, including running channels.

Setting sync_relay_log to 0 causes no synchronization to be done to disk; in this case, the server
relies on the operating system to flush the relay log's contents from time to time as for any other file.

A value of 1 is the safest choice because in the event of an unexpected halt you lose at most one
event from the relay log. However, it is also the slowest choice (unless the disk has a battery-backed
cache, which makes synchronization very fast). For information on the combination of settings on a
replica that is most resilient to unexpected halts, see Section 19.4.2, “Handling an Unexpected Halt
of a Replica”.

• sync_relay_log_info

Command-Line Format --sync-relay-log-info=#

Deprecated 8.0.34

System Variable sync_relay_log_info

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

The number of transactions after which the replica updates the applier metadata repository. When
the applier metadata repository is stored as an InnoDB table (the default in MySQL 8.0 and later),
it is updated after every transaction and this system variable is ignored. If the applier metadata
repository is stored as a file (deprecated in MySQL 8.0), the replica synchronizes its relay-
log.info file to disk (using fdatasync()) after this many transactions. 0 (zero) means that
the file contents are flushed by the operating system only. Setting this variable takes effect for all
replication channels immediately, including running channels.

Since storing applier metadata as a file is deprecated, this variable is also deprecated; as of
MySQL 8.0.34, the server raises a warning whenever you set it or read its value. You should expect
sync_relay_log_info to be removed in a future version of MySQL, and migrate applications now
that may depend on it.

• sync_source_info

Command-Line Format --sync-source-info=#

Introduced 8.0.26

System Variable sync_source_info

Scope Global
3737

Replication and Binary Logging Options and Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

From MySQL 8.0.26, use sync_source_info in place of sync_master_info, which is
deprecated from that release. In releases before MySQL 8.0.26, use sync_source_info.

sync_source_info specifies the number of events after which the replica updates the connection
metadata repository. When the connection metadata repository is stored as an InnoDB table, which
is the default from MySQL 8.0, it is updated after this number of events. If the connection metadata
repository is stored as a file, which is deprecated from MySQL 8.0, the replica synchronizes its
master.info file to disk (using fdatasync()) after this number of events. The default value is
10000, and a zero value means that the repository is never updated. Setting this variable takes effect
for all replication channels immediately, including running channels.

• terminology_use_previous

Command-Line Format --terminology-use-previous=#

Introduced 8.0.26

System Variable terminology_use_previous

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value NONE

Valid Values NONE

BEFORE_8_0_26

In MySQL 8.0.26, incompatible changes were made to instrumentation names containing the terms
master, slave, and mts (for “Multi-Threaded Slave”), which were changed respectively to source,
replica, and mta (for “Multi-Threaded Applier”). If these incompatible changes impact your
applications, set the terminology_use_previous system variable to BEFORE_8_0_26 to make
MySQL Server use the old versions of the names for the objects specified in the previous list. This
enables monitoring tools that rely on the old names to continue working until they can be updated to
use the new names.

Set the terminology_use_previous system variable with session scope to support individual
users, or with global scope to be the default for all new sessions. When global scope is used, the
slow query log contains the old versions of the names.

The affected instrumentation names are given in the following list. The
terminology_use_previous system variable only affects these items. It does not affect the new
aliases for system variables, status variables, and command-line options that were also introduced in
MySQL 8.0.26, and these can still be used when it is set.

• Instrumented locks (mutexes), visible in the mutex_instances and events_waits_*
Performance Schema tables with the prefix wait/synch/mutex/

• Read/write locks, visible in the rwlock_instances and events_waits_* Performance
Schema tables with the prefix wait/synch/rwlock/

3738

Replication and Binary Logging Options and Variables

• Instrumented condition variables, visible in the cond_instances and events_waits_*
Performance Schema tables with the prefix wait/synch/cond/

• Instrumented memory allocations, visible in the memory_summary_* Performance Schema tables
with the prefix memory/sql/

• Thread names, visible in the threads Performance Schema table with the prefix thread/sql/

• Thread stages, visible in the events_stages_* Performance Schema tables with the
prefix stage/sql/, and without the prefix in the threads and processlist Performance
Schema tables, the output from the SHOW PROCESSLIST statement, the Information Schema
processlist table, and the slow query log

• Thread commands, visible in the events_statements_history* and
events_statements_summary_*_by_event_name Performance Schema tables with the
prefix statement/com/, and without the prefix in the threads and processlist Performance
Schema tables, the output from the SHOW PROCESSLIST statement, the Information Schema
processlist table, and the output from the SHOW REPLICA STATUS statement

19.1.6.4 Binary Logging Options and Variables

• Startup Options Used with Binary Logging

• System Variables Used with Binary Logging

You can use the mysqld options and system variables that are described in this section to affect
the operation of the binary log as well as to control which statements are written to the binary log.
For additional information about the binary log, see Section 7.4.4, “The Binary Log”. For additional
information about using MySQL server options and system variables, see Section 7.1.7, “Server
Command Options”, and Section 7.1.8, “Server System Variables”.

Startup Options Used with Binary Logging

The following list describes startup options for enabling and configuring the binary log. System
variables used with binary logging are discussed later in this section.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

System Variable (≥ 8.0.14) binlog_row_event_max_size

Scope (≥ 8.0.14) Global

Dynamic (≥ 8.0.14) No

SET_VAR Hint Applies (≥ 8.0.14) No

Type Integer

Default Value 8192

Minimum Value 256

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

When row-based binary logging is used, this setting is a soft limit on the maximum size of a row-
based binary log event, in bytes. Where possible, rows stored in the binary log are grouped into
events with a size not exceeding the value of this setting. If an event cannot be split, the maximum
size can be exceeded. The value must be (or else gets rounded down to) a multiple of 256. The
default is 8192 bytes.

3739

Replication and Binary Logging Options and Variables

• --log-bin[=base_name]

Command-Line Format --log-bin=file_name

Type File name

Specifies the base name to use for binary log files. With binary logging enabled, the server logs all
statements that change data to the binary log, which is used for backup and replication. The binary
log is a sequence of files with a base name and numeric extension. The --log-bin option value
is the base name for the log sequence. The server creates binary log files in sequence by adding a
numeric suffix to the base name.

If you do not supply the --log-bin option, MySQL uses binlog as the default base name for the
binary log files. For compatibility with earlier releases, if you supply the --log-bin option with no
string or with an empty string, the base name defaults to host_name-bin, using the name of the
host machine.

The default location for binary log files is the data directory. You can use the --log-bin option to
specify an alternative location, by adding a leading absolute path name to the base name to specify
a different directory. When the server reads an entry from the binary log index file, which tracks the
binary log files that have been used, it checks whether the entry contains a relative path. If it does,
the relative part of the path is replaced with the absolute path set using the --log-bin option. An
absolute path recorded in the binary log index file remains unchanged; in such a case, the index file
must be edited manually to enable a new path or paths to be used. The binary log file base name
and any specified path are available as the log_bin_basename system variable.

In earlier MySQL versions, binary logging was disabled by default, and was enabled if you specified
the --log-bin option. From MySQL 8.0, binary logging is enabled by default, whether or not you
specify the --log-bin option. The exception is if you use mysqld to initialize the data directory
manually by invoking it with the --initialize or --initialize-insecure option, when binary
logging is disabled by default. It is possible to enable binary logging in this case by specifying the --
log-bin option. When binary logging is enabled, the log_bin system variable, which shows the
status of binary logging on the server, is set to ON.

To disable binary logging, you can specify the --skip-log-bin or --disable-log-bin option at
startup. If either of these options is specified and --log-bin is also specified, the option specified
later takes precedence. When binary logging is disabled, the log_bin system variable is set to OFF.

When GTIDs are in use on the server, if you disable binary logging when restarting the server after
an abnormal shutdown, some GTIDs are likely to be lost, causing replication to fail. In a normal
shutdown, the set of GTIDs from the current binary log file is saved in the mysql.gtid_executed
table. Following an abnormal shutdown where this did not happen, during recovery the GTIDs are
added to the table from the binary log file, provided that binary logging is still enabled. If binary
logging is disabled for the server restart, the server cannot access the binary log file to recover
the GTIDs, so replication cannot be started. Binary logging can be disabled safely after a normal
shutdown.

The --log-slave-updates and --slave-preserve-commit-order options require binary
logging. If you disable binary logging, either omit these options, or specify --log-slave-
updates=OFF and --skip-slave-preserve-commit-order. MySQL disables these options
by default when --skip-log-bin or --disable-log-bin is specified. If you specify --log-
slave-updates or --slave-preserve-commit-order together with --skip-log-bin or --
disable-log-bin, a warning or error message is issued.

In MySQL 5.7, a server ID had to be specified when binary logging was enabled, or the server would
not start. In MySQL 8.0, the server_id system variable is set to 1 by default. The server can now
be started with this default server ID when binary logging is enabled, but an informational message
is issued if you do not specify a server ID explicitly by setting the server_id system variable. For

3740

Replication and Binary Logging Options and Variables

servers that are used in a replication topology, you must specify a unique nonzero server ID for each
server.

For information on the format and management of the binary log, see Section 7.4.4, “The Binary
Log”.

• --log-bin-index[=file_name]

Command-Line Format --log-bin-index=file_name

System Variable log_bin_index

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

The name for the binary log index file, which contains the names of the binary log files. By default,
it has the same location and base name as the value specified for the binary log files using the --
log-bin option, plus the extension .index. If you do not specify --log-bin, the default binary
log index file name is binlog.index. If you specify --log-bin option with no string or an empty
string, the default binary log index file name is host_name-bin.index, using the name of the host
machine.

For information on the format and management of the binary log, see Section 7.4.4, “The Binary
Log”.

Statement selection options. The options in the following list affect which statements are written
to the binary log, and thus sent by a replication source server to its replicas. There are also options for
replicas that control which statements received from the source should be executed or ignored. For
details, see Section 19.1.6.3, “Replica Server Options and Variables”.

• --binlog-do-db=db_name

Command-Line Format --binlog-do-db=name

Type String

This option affects binary logging in a manner similar to the way that --replicate-do-db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is
in use, in the same way that the effects of --replicate-do-db depend on whether statement-
based or row-based replication is in use. You should keep in mind that the format used to log a given
statement may not necessarily be the same as that indicated by the value of binlog_format.
For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as
statements, without regard to the logging format in effect, so the following statement-based rules for
--binlog-do-db always apply in determining whether or not the statement is logged.

Statement-based logging. Only those statements are written to the binary log where the default
database (that is, the one selected by USE) is db_name. To specify more than one database,
use this option multiple times, once for each database; however, doing so does not cause cross-
database statements such as UPDATE some_db.some_table SET foo='bar' to be logged
while a different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, the list is treated as the
name of a single database if you supply a comma-separated list. 3741

Replication and Binary Logging Options and Variables

An example of what does not work as you might expect when using statement-based logging: If the
server is started with --binlog-do-db=sales and you issue the following statements, the UPDATE
statement is not logged:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “just check the default database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for example, if you are using multiple-table
DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is
also faster to check only the default database rather than all databases if there is no need.

Another case which may not be self-evident occurs when a given database is replicated even though
it was not specified when setting the option. If the server is started with --binlog-do-db=sales,
the following UPDATE statement is logged even though prices was not included when setting --
binlog-do-db:

USE sales;
UPDATE prices.discounts SET percentage = percentage + 10;

Because sales is the default database when the UPDATE statement is issued, the UPDATE is
logged.

Row-based logging. Logging is restricted to database db_name. Only changes to tables
belonging to db_name are logged; the default database has no effect on this. Suppose that the
server is started with --binlog-do-db=sales and row-based logging is in effect, and then the
following statements are executed:

USE prices;
UPDATE sales.february SET amount=amount+100;

The changes to the february table in the sales database are logged in accordance with the
UPDATE statement; this occurs whether or not the USE statement was issued. However, when using
the row-based logging format and --binlog-do-db=sales, changes made by the following
UPDATE are not logged:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the USE prices statement were changed to USE sales, the UPDATE statement's effects
would still not be written to the binary log.

Another important difference in --binlog-do-db handling for statement-based logging as opposed
to the row-based logging occurs with regard to statements that refer to multiple databases. Suppose
that the server is started with --binlog-do-db=db1, and the following statements are executed:

USE db1;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

If you are using statement-based logging, the updates to both tables are written to the binary log.
However, when using the row-based format, only the changes to table1 are logged; table2 is in a
different database, so it is not changed by the UPDATE. Now suppose that, instead of the USE db1
statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

In this case, the UPDATE statement is not written to the binary log when using statement-based
logging. However, when using row-based logging, the change to table1 is logged, but not that to
table2—in other words, only changes to tables in the database named by --binlog-do-db are
logged, and the choice of default database has no effect on this behavior.

3742

Replication and Binary Logging Options and Variables

• --binlog-ignore-db=db_name

Command-Line Format --binlog-ignore-db=name

Type String

This option affects binary logging in a manner similar to the way that --replicate-ignore-db
affects replication.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --replicate-ignore-db depend on whether statement-
based or row-based replication is in use. You should keep in mind that the format used to log a given
statement may not necessarily be the same as that indicated by the value of binlog_format.
For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as
statements, without regard to the logging format in effect, so the following statement-based rules for
--binlog-ignore-db always apply in determining whether or not the statement is logged.

Statement-based logging. Tells the server to not log any statement where the default database
(that is, the one selected by USE) is db_name.

When there is no default database, no --binlog-ignore-db options are applied, and such
statements are always logged. (Bug #11829838, Bug #60188)

Row-based format. Tells the server not to log updates to any tables in the database db_name.
The current database has no effect.

When using statement-based logging, the following example does not work as you might expect.
Suppose that the server is started with --binlog-ignore-db=sales and you issue the following
statements:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is logged in such a case because --binlog-ignore-db applies only
to the default database (determined by the USE statement). Because the sales database was
specified explicitly in the statement, the statement has not been filtered. However, when using row-
based logging, the UPDATE statement's effects are not written to the binary log, which means that no
changes to the sales.january table are logged; in this instance, --binlog-ignore-db=sales
causes all changes made to tables in the source's copy of the sales database to be ignored for
purposes of binary logging.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, the list is treated as the name of a single database if
you supply a comma-separated list.

You should not use this option if you are using cross-database updates and you do not want these
updates to be logged.

Checksum options. MySQL supports reading and writing of binary log checksums. These are
enabled using the two options listed here:

• --binlog-checksum={NONE|CRC32}

Command-Line Format --binlog-checksum=type

Type String

Default Value CRC32

Valid Values NONE

CRC32
3743

Replication and Binary Logging Options and Variables

Enabling this option causes the source to write checksums for events written to the binary log. Set to
NONE to disable, or the name of the algorithm to be used for generating checksums; currently, only
CRC32 checksums are supported, and CRC32 is the default. You cannot change the setting for this
option within a transaction.

To control reading of checksums by the replica (from the relay log), use the --slave-sql-verify-
checksum option.

Testing and debugging options. The following binary log options are used in replication testing
and debugging. They are not intended for use in normal operations.

• --max-binlog-dump-events=N

Command-Line Format --max-binlog-dump-events=#

Type Integer

Default Value 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --sporadic-binlog-dump-fail

Command-Line Format --sporadic-binlog-dump-fail[={OFF|
ON}]

Type Boolean

Default Value OFF

This option is used internally by the MySQL test suite for replication testing and debugging.

System Variables Used with Binary Logging

The following list describes system variables for controlling binary logging. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used to control binary
logging are listed earlier in this section.

• binlog_cache_size

Command-Line Format --binlog-cache-size=#

System Variable binlog_cache_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32768

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294963200

Unit bytes

Block Size 4096

The size of the memory buffer to hold changes to the binary log during a transaction.

When binary logging is enabled on the server (with the log_bin system variable set to ON),
a binary log cache is allocated for each client if the server supports any transactional storage

3744

Replication and Binary Logging Options and Variables

engines. If the data for the transaction exceeds the space in the memory buffer, the excess data
is stored in a temporary file. When binary log encryption is active on the server, the memory buffer
is not encrypted, but (from MySQL 8.0.17) any temporary file used to hold the binary log cache is
encrypted. After each transaction is committed, the binary log cache is reset by clearing the memory
buffer and truncating the temporary file if used.

If you often use large transactions, you can increase this cache size to get better performance
by reducing or eliminating the need to write to temporary files. The Binlog_cache_use and
Binlog_cache_disk_use status variables can be useful for tuning the size of this variable. See
Section 7.4.4, “The Binary Log”.

binlog_cache_size sets the size for the transaction cache only; the size of the statement cache
is governed by the binlog_stmt_cache_size system variable.

• binlog_checksum

Command-Line Format --binlog-checksum=type

System Variable binlog_checksum

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value CRC32

Valid Values NONE

CRC32

When enabled, this variable causes the source to write a checksum for each event in the binary
log. binlog_checksum supports the values NONE (which disables checksums) and CRC32. The
default is CRC32. When binlog_checksum is disabled (value NONE), the server verifies that it is
writing only complete events to the binary log by writing and checking the event length (rather than a
checksum) for each event.

Setting this variable on the source to a value unrecognized by the replica causes the replica to
set its own binlog_checksum value to NONE, and to stop replication with an error. If backward
compatibility with older replicas is a concern, you may want to set the value explicitly to NONE.

Up to and including MySQL 8.0.20, Group Replication cannot make use of checksums and does
not support their presence in the binary log, so you must set binlog_checksum=NONE when
configuring a server instance to become a group member. From MySQL 8.0.21, Group Replication
supports checksums, so group members may use the default setting.

Changing the value of binlog_checksum causes the binary log to be rotated, because checksums
must be written for an entire binary log file, and never for only part of one. You cannot change the
value of binlog_checksum within a transaction.

When binary log transaction compression is enabled using the
binlog_transaction_compression system variable, checksums are not written for individual
events in a compressed transaction payload. Instead a checksum is written for the GTID event, and
a checksum for the compressed Transaction_payload_event.

• binlog_direct_non_transactional_updates

Command-Line Format --binlog-direct-non-transactional-
updates[={OFF|ON}]

System Variable binlog_direct_non_transactional_updates
3745

Replication and Binary Logging Options and Variables

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Due to concurrency issues, a replica can become inconsistent when a transaction contains updates
to both transactional and nontransactional tables. MySQL tries to preserve causality among these
statements by writing nontransactional statements to the transaction cache, which is flushed upon
commit. However, problems arise when modifications done to nontransactional tables on behalf of
a transaction become immediately visible to other connections because these changes may not be
written immediately into the binary log.

The binlog_direct_non_transactional_updates variable offers one
possible workaround to this issue. By default, this variable is disabled. Enabling
binlog_direct_non_transactional_updates causes updates to nontransactional tables to
be written directly to the binary log, rather than to the transaction cache.

As of MySQL 8.0.14, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See Section 7.1.9.1,
“System Variable Privileges”.

binlog_direct_non_transactional_updates works only for statements that are replicated
using the statement-based binary logging format; that is, it works only when the value of
binlog_format is STATEMENT, or when binlog_format is MIXED and a given statement is
being replicated using the statement-based format. This variable has no effect when the binary log
format is ROW, or when binlog_format is set to MIXED and a given statement is replicated using
the row-based format.

Important

Before enabling this variable, you must make certain that there are no
dependencies between transactional and nontransactional tables; an
example of such a dependency would be the statement INSERT INTO
myisam_table SELECT * FROM innodb_table. Otherwise, such
statements are likely to cause the replica to diverge from the source.

This variable has no effect when the binary log format is ROW or MIXED.

• binlog_encryption

Command-Line Format --binlog-encryption[={OFF|ON}]

Introduced 8.0.14

System Variable binlog_encryption

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enables encryption for binary log files and relay log files on this server. OFF is the default. ON sets
encryption on for binary log files and relay log files. Binary logging does not need to be enabled on
the server to enable encryption, so you can encrypt the relay log files on a replica that has no binary
log. To use encryption, a keyring plugin must be installed and configured to supply MySQL Server's

3746

Replication and Binary Logging Options and Variables

keyring service. For instructions to do this, see Section 8.4.4, “The MySQL Keyring”. Any supported
keyring plugin can be used to store binary log encryption keys.

When you first start the server with binary log encryption enabled, a new binary log encryption
key is generated before the binary log and relay logs are initialized. This key is used to encrypt a
file password for each binary log file (if the server has binary logging enabled) and relay log file
(if the server has replication channels), and further keys generated from the file passwords are
used to encrypt the data in the files. Relay log files are encrypted for all channels, including Group
Replication applier channels and new channels that are created after encryption is activated. The
binary log index file and relay log index file are never encrypted.

If you activate encryption while the server is running, a new binary log encryption key is generated at
that time. The exception is if encryption was active previously on the server and was then disabled,
in which case the binary log encryption key that was in use before is used again. The binary log file
and relay log files are rotated immediately, and file passwords for the new files and all subsequent
binary log files and relay log files are encrypted using this binary log encryption key. Existing binary
log files and relay log files still present on the server are not automatically encrypted, but you can
purge them if they are no longer needed.

If you deactivate encryption by changing the binlog_encryption system variable to OFF, the
binary log file and relay log files are rotated immediately and all subsequent logging is unencrypted.
Previously encrypted files are not automatically decrypted, but the server is still able to read them.
The BINLOG_ENCRYPTION_ADMIN privilege (or the deprecated SUPER privilege) is required to
activate or deactivate encryption while the server is running. Group Replication applier channels are
not included in the relay log rotation request, so unencrypted logging for these channels does not
start until their logs are rotated in normal use.

For more information on binary log file and relay log file encryption, see Section 19.3.2, “Encrypting
Binary Log Files and Relay Log Files”.

• binlog_error_action

Command-Line Format --binlog-error-action[=value]

System Variable binlog_error_action

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value ABORT_SERVER

Valid Values IGNORE_ERROR

ABORT_SERVER

Controls what happens when the server encounters an error such as not being able to write to, flush
or synchronize the binary log, which can cause the source's binary log to become inconsistent and
replicas to lose synchronization.

This variable defaults to ABORT_SERVER, which makes the server halt logging and shut down
whenever it encounters such an error with the binary log. On restart, recovery proceeds as in the
case of an unexpected server halt (see Section 19.4.2, “Handling an Unexpected Halt of a Replica”).

When binlog_error_action is set to IGNORE_ERROR, if the server encounters such an error
it continues the ongoing transaction, logs the error then halts logging, and continues performing
updates. To resume binary logging log_bin must be enabled again, which requires a server restart.
This setting provides backward compatibility with older versions of MySQL.

• binlog_expire_logs_seconds

3747

Replication and Binary Logging Options and Variables

Command-Line Format --binlog-expire-logs-seconds=#

System Variable binlog_expire_logs_seconds

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2592000

Minimum Value 0

Maximum Value 4294967295

Unit seconds

Sets the binary log expiration period in seconds. After their expiration period ends, binary log files
can be automatically removed. Possible removals happen at startup and when the binary log is
flushed. Log flushing occurs as indicated in Section 7.4, “MySQL Server Logs”.

The default binary log expiration period is 2592000 seconds, which equals 30 days (30*24*60*60
seconds). The default applies if neither binlog_expire_logs_seconds nor the deprecated
system variable expire_logs_days has a value set at startup. If a non-zero value for one of the
variables binlog_expire_logs_seconds or expire_logs_days is set at startup, this value
is used as the binary log expiration period. If a non-zero value for both of those variables is set at
startup, the value for binlog_expire_logs_seconds is used as the binary log expiration period,
and the value for expire_logs_days is ignored with a warning message.

At runtime, you cannot set binlog_expire_logs_seconds or expire_logs_days
to a non-zero value if the other is currently set to a non-zero value. Because the
default value for binlog_expire_logs_seconds is non-zero, you must explicitly set
binlog_expire_logs_seconds to zero before you can set or change the value of
expire_logs_days.

Beginning with MySQL 8.0.29, automatic purging of the binary log can be disabled by setting the
binlog_expire_logs_auto_purge system variable to OFF. This takes precedence over any
setting for binlog_expire_logs_seconds.

In MySQL 8.0.28 and earlier, to disable automatic purging of the binary log, specify a
value of 0 explicitly for binlog_expire_logs_seconds, and do not specify a value for
expire_logs_days. For compatibility with earlier releases, automatic purging is also disabled
if you specify a value of 0 explicitly for expire_logs_days and do not specify a value for
binlog_expire_logs_seconds. In that case, the default for binlog_expire_logs_seconds
is not applied.

To remove binary log files manually, use the PURGE BINARY LOGS statement. See
Section 15.4.1.1, “PURGE BINARY LOGS Statement”.

• binlog_expire_logs_auto_purge

Command-Line Format --binlog-expire-logs-auto-purge={ON|
OFF}

Introduced 8.0.29

System Variable binlog_expire_logs_auto_purge

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

3748

Replication and Binary Logging Options and Variables

Type Boolean

Default Value ON

Enables or disables automatic purging of binary log files. Setting this variable to ON (the default)
enables automatic purging; setting it to OFF disables automatic purging. The interval to wait before
purging is controlled by binlog_expire_logs_seconds and expire_logs_days.

Note

Even if binlog_expire_logs_auto_purge is ON, setting both
binlog_expire_logs_seconds and expire_logs_days to 0 stops
automatic purging from taking place.

This variable has no effect on PURGE BINARY LOGS.

• binlog_format

Command-Line Format --binlog-format=format

Deprecated 8.0.34

System Variable binlog_format

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value ROW

Valid Values MIXED

STATEMENT

ROW

This system variable sets the binary logging format, and can be any one of STATEMENT, ROW, or
MIXED. (See Section 19.2.1, “Replication Formats”.) The setting takes effect when binary logging is
enabled on the server, which is the case when the log_bin system variable is set to ON. In MySQL
8.0, binary logging is enabled by default, and by default uses the row-based format.

Note

binlog_format is deprecated as of MySQL 8.0.34, and is subject to
removal in a future version of MySQL. This implies that support for logging
formats other than row-based is also subject to removal in a future release.

3749

Replication and Binary Logging Options and Variables

Thus, only row-based logging should be employed for any new MySQL
Replication setups.

binlog_format can be set at startup or at runtime, except that under some conditions, changing
this variable at runtime is not possible or causes replication to fail, as described later.

The default is ROW. Exception: In NDB Cluster, the default is MIXED; statement-based replication is
not supported for NDB Cluster.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

The rules governing when changes to this variable take effect and how long the effect lasts are the
same as for other MySQL server system variables. For more information, see Section 15.7.6.1, “SET
Syntax for Variable Assignment”.

When MIXED is specified, statement-based replication is used, except for cases where only
row-based replication is guaranteed to lead to proper results. For example, this happens when
statements contain loadable functions or the UUID() function.

For details of how stored programs (stored procedures and functions, triggers, and events) are
handled when each binary logging format is set, see Section 27.7, “Stored Program Binary Logging”.

There are exceptions when you cannot switch the replication format at runtime:

• The replication format cannot be changed from within a stored function or a trigger.

• If a session has open temporary tables, the replication format cannot be changed for the session
(SET @@SESSION.binlog_format).

• If any replication channel has open temporary tables, the replication format cannot be changed
globally (SET @@GLOBAL.binlog_format or SET @@PERSIST.binlog_format).

• If any replication channel applier thread is currently running, the replication format cannot be
changed globally (SET @@GLOBAL.binlog_format or SET @@PERSIST.binlog_format).

Trying to switch the replication format in any of these cases (or attempting to set the
current replication format) results in an error. You can, however, use PERSIST_ONLY (SET
@@PERSIST_ONLY.binlog_format) to change the replication format at any time, because this
action does not modify the runtime global system variable value, and takes effect only after a server
restart.

Switching the replication format at runtime is not recommended when any temporary tables exist,
because temporary tables are logged only when using statement-based replication, whereas with
row-based replication and mixed replication, they are not logged.

Changing the logging format on a replication source server does not cause a replica to change
its logging format to match. Switching the replication format while replication is ongoing can
cause issues if a replica has binary logging enabled, and the change results in the replica using
STATEMENT format logging while the source is using ROW or MIXED format logging. A replica is
not able to convert binary log entries received in ROW logging format to STATEMENT format for
use in its own binary log, so this situation can cause replication to fail. For more information, see
Section 7.4.4.2, “Setting The Binary Log Format”.

The binary log format affects the behavior of the following server options:

• --replicate-do-db

• --replicate-ignore-db

3750

Replication and Binary Logging Options and Variables

• --binlog-do-db

• --binlog-ignore-db

These effects are discussed in detail in the descriptions of the individual options.

• binlog_group_commit_sync_delay

Command-Line Format --binlog-group-commit-sync-delay=#

System Variable binlog_group_commit_sync_delay

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1000000

Unit microseconds

Controls how many microseconds the binary log commit waits before synchronizing the binary log
file to disk. By default binlog_group_commit_sync_delay is set to 0, meaning that there is
no delay. Setting binlog_group_commit_sync_delay to a microsecond delay enables more
transactions to be synchronized together to disk at once, reducing the overall time to commit a group
of transactions because the larger groups require fewer time units per group.

When sync_binlog=0 or sync_binlog=1 is set, the delay specified by
binlog_group_commit_sync_delay is applied for every binary log commit group before
synchronization (or in the case of sync_binlog=0, before proceeding). When sync_binlog is set
to a value n greater than 1, the delay is applied after every n binary log commit groups.

Setting binlog_group_commit_sync_delay can increase the number of parallel committing
transactions on any server that has (or might have after a failover) a replica, and therefore
can increase parallel execution on the replicas. To benefit from this effect, the replica
servers must have replica_parallel_type=LOGICAL_CLOCK (from MySQL 8.0.26)
or slave_parallel_type=LOGICAL_CLOCK set, and the effect is more significant when
binlog_transaction_dependency_tracking=COMMIT_ORDER is also set. It is important to
take into account both the source's throughput and the replicas' throughput when you are tuning the
setting for binlog_group_commit_sync_delay.

Setting binlog_group_commit_sync_delay can also reduce the number of fsync() calls to the
binary log on any server (source or replica) that has a binary log.

Note that setting binlog_group_commit_sync_delay increases the latency of transactions on
the server, which might affect client applications. Also, on highly concurrent workloads, it is possible
for the delay to increase contention and therefore reduce throughput. Typically, the benefits of setting
a delay outweigh the drawbacks, but tuning should always be carried out to determine the optimal
setting.

• binlog_group_commit_sync_no_delay_count

Command-Line Format --binlog-group-commit-sync-no-delay-
count=#

System Variable binlog_group_commit_sync_no_delay_count

Scope Global

3751

Replication and Binary Logging Options and Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 100000

The maximum number of transactions to wait for before aborting the current delay as specified by
binlog_group_commit_sync_delay. If binlog_group_commit_sync_delay is set to 0, then
this option has no effect.

• binlog_max_flush_queue_time

Command-Line Format --binlog-max-flush-queue-time=#

Deprecated Yes

System Variable binlog_max_flush_queue_time

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 100000

Unit microseconds

binlog_max_flush_queue_time is deprecated, and is marked for eventual removal in a future
MySQL release. Formerly, this system variable controlled the time in microseconds to continue
reading transactions from the flush queue before proceeding with group commit. It no longer has any
effect.

• binlog_order_commits

Command-Line Format --binlog-order-commits[={OFF|ON}]

System Variable binlog_order_commits

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

When this variable is enabled on a replication source server (which is the default), transaction
commit instructions issued to storage engines are serialized on a single thread, so that transactions
are always committed in the same order as they are written to the binary log. Disabling this variable
permits transaction commit instructions to be issued using multiple threads. Used in combination with
binary log group commit, this prevents the commit rate of a single transaction being a bottleneck to
throughput, and might therefore produce a performance improvement.

Transactions are written to the binary log at the point when all the storage engines involved
have confirmed that the transaction is prepared to commit. The binary log group commit
logic then commits a group of transactions after their binary log write has taken place. When

3752

Replication and Binary Logging Options and Variables

binlog_order_commits is disabled, because multiple threads are used for this process,
transactions in a commit group might be committed in a different order from their order in the binary
log. (Transactions from a single client always commit in chronological order.) In many cases this
does not matter, as operations carried out in separate transactions should produce consistent
results, and if that is not the case, a single transaction ought to be used instead.

If you want to ensure that the transaction history on the source and on a multithreaded replica
remains identical, set slave_preserve_commit_order=1 on the replica.

• binlog_rotate_encryption_master_key_at_startup

Command-Line Format --binlog-rotate-encryption-master-
key-at-startup[={OFF|ON}]

Introduced 8.0.14

System Variable binlog_rotate_encryption_master_key_at_startup

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Specifies whether or not the binary log master key is rotated at server startup. The binary log master
key is the binary log encryption key that is used to encrypt file passwords for the binary log files and
relay log files on the server. When a server is started for the first time with binary log encryption
enabled (binlog_encryption=ON), a new binary log encryption key is generated and used as
the binary log master key. If the binlog_rotate_encryption_master_key_at_startup
system variable is also set to ON, whenever the server is restarted, a further binary log encryption
key is generated and used as the binary log master key for all subsequent binary log files and relay
log files. If the binlog_rotate_encryption_master_key_at_startup system variable is
set to OFF, which is the default, the existing binary log master key is used again after the server
restarts. For more information on binary log encryption keys and the binary log master key, see
Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”.

• binlog_row_event_max_size

Command-Line Format --binlog-row-event-max-size=#

System Variable (≥ 8.0.14) binlog_row_event_max_size

Scope (≥ 8.0.14) Global

Dynamic (≥ 8.0.14) No

SET_VAR Hint Applies (≥ 8.0.14) No

Type Integer

Default Value 8192

Minimum Value 256

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

When row-based binary logging is used, this setting is a soft limit on the maximum size of a row-
based binary log event, in bytes. Where possible, rows stored in the binary log are grouped into

3753

Replication and Binary Logging Options and Variables

events with a size not exceeding the value of this setting. If an event cannot be split, the maximum
size can be exceeded. The default is 8192 bytes.

This global system variable is read-only and can be set only at server startup. Its value can therefore
only be modified by using the PERSIST_ONLY keyword or the @@persist_only qualifier with the
SET statement.

• binlog_row_image

Command-Line Format --binlog-row-image=image_type

System Variable binlog_row_image

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value full

Valid Values full (Log all columns)

minimal (Log only changed columns, and
columns needed to identify rows)

noblob (Log all columns, except for unneeded
BLOB and TEXT columns)

For MySQL row-based replication, this variable determines how row images are written to the binary
log.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

In MySQL row-based replication, each row change event contains two images, a “before” image
whose columns are matched against when searching for the row to be updated, and an “after” image
containing the changes. Normally, MySQL logs full rows (that is, all columns) for both the before and
after images. However, it is not strictly necessary to include every column in both images, and we
can often save disk, memory, and network usage by logging only those columns which are actually
required.

Note

When deleting a row, only the before image is logged, since there are no
changed values to propagate following the deletion. When inserting a row,
only the after image is logged, since there is no existing row to be matched.
Only when updating a row are both the before and after images required, and
both written to the binary log.

For the before image, it is necessary only that the minimum set of columns required to uniquely
identify rows is logged. If the table containing the row has a primary key, then only the primary key
column or columns are written to the binary log. Otherwise, if the table has a unique key all of whose
columns are NOT NULL, then only the columns in the unique key need be logged. (If the table has
neither a primary key nor a unique key without any NULL columns, then all columns must be used in

3754

Replication and Binary Logging Options and Variables

the before image, and logged.) In the after image, it is necessary to log only the columns which have
actually changed.

You can cause the server to log full or minimal rows using the binlog_row_image system variable.
This variable actually takes one of three possible values, as shown in the following list:

• full: Log all columns in both the before image and the after image.

• minimal: Log only those columns in the before image that are required to identify the row to
be changed; log only those columns in the after image where a value was specified by the SQL
statement, or generated by auto-increment.

• noblob: Log all columns (same as full), except for BLOB and TEXT columns that are not
required to identify rows, or that have not changed.

Note

This variable is not supported by NDB Cluster; setting it has no effect on the
logging of NDB tables.

The default value is full.

When using minimal or noblob, deletes and updates are guaranteed to work correctly for a given
table if and only if the following conditions are true for both the source and destination tables:

• All columns must be present and in the same order; each column must use the same data type as
its counterpart in the other table.

• The tables must have identical primary key definitions.

(In other words, the tables must be identical with the possible exception of indexes that are not part
of the tables' primary keys.)

If these conditions are not met, it is possible that the primary key column values in the destination
table may prove insufficient to provide a unique match for a delete or update. In this event, no
warning or error is issued; the source and replica silently diverge, thus breaking consistency.

Setting this variable has no effect when the binary logging format is STATEMENT. When
binlog_format is MIXED, the setting for binlog_row_image is applied to changes that are
logged using row-based format, but this setting has no effect on changes logged as statements.

Setting binlog_row_image on either the global or session level does not cause an implicit commit;
this means that this variable can be changed while a transaction is in progress without affecting the
transaction.

• binlog_row_metadata

Command-Line Format --binlog-row-metadata=metadata_type

System Variable binlog_row_metadata

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value MINIMAL

Valid Values FULL (All metadata is included)

3755

Replication and Binary Logging Options and Variables

MINIMAL (Limit included metadata)

Configures the amount of table metadata added to the binary log when using row-based logging.
When set to MINIMAL, the default, only metadata related to SIGNED flags, column character set
and geometry types are logged. When set to FULL complete metadata for tables is logged, such as
column name, ENUM or SET string values, PRIMARY KEY information, and so on.

The extended metadata serves the following purposes:

• Replicas use the metadata to transfer data when its table structure is different from the source's.

• External software can use the metadata to decode row events and store the data into external
databases, such as a data warehouse.

• binlog_row_value_options

Command-Line Format --binlog-row-value-options=#

System Variable binlog_row_value_options

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Set

Default Value

Valid Values PARTIAL_JSON

When set to PARTIAL_JSON, this enables use of a space-efficient binary log format for updates that
modify only a small portion of a JSON document, which causes row-based replication to write only
the modified parts of the JSON document to the after-image for the update in the binary log, rather
than writing the full document (see Partial Updates of JSON Values). This works for an UPDATE
statement which modifies a JSON column using any sequence of JSON_SET(), JSON_REPLACE(),
and JSON_REMOVE(). If the server is unable to generate a partial update, the full document is used
instead.

The default value is an empty string, which disables use of the format. To unset
binlog_row_value_options and revert to writing the full JSON document, set its value to the
empty string.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

binlog_row_value_options=PARTIAL_JSON takes effect only when binary logging
is enabled and binlog_format is set to ROW or MIXED. Statement-based replication
always logs only the modified parts of the JSON document, regardless of any value
set for binlog_row_value_options. To maximize the amount of space saved, use
binlog_row_image=NOBLOB or binlog_row_image=MINIMAL together with this option.
binlog_row_image=FULL saves less space than either of these, since the full JSON document is
stored in the before-image, and the partial update is stored only in the after-image.

mysqlbinlog output includes partial JSON updates in the form of events encoded as base-64
strings using BINLOG statements. If the --verbose option is specified, mysqlbinlog displays the
partial JSON updates as readable JSON using pseudo-SQL statements.

MySQL Replication generates an error if a modification cannot be applied to the JSON document
on the replica. This includes a failure to find the path. Be aware that, even with this and other safety
checks, if a JSON document on a replica has diverged from that on the source and a partial update

3756

Replication and Binary Logging Options and Variables

is applied, it remains theoretically possible to produce a valid but unexpected JSON document on the
replica.

• binlog_rows_query_log_events

Command-Line Format --binlog-rows-query-log-
events[={OFF|ON}]

System Variable binlog_rows_query_log_events

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This system variable affects row-based logging only. When enabled, it causes the server to write
informational log events such as row query log events into its binary log. This information can be
used for debugging and related purposes, such as obtaining the original query issued on the source
when it cannot be reconstructed from the row updates.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

These informational events are normally ignored by MySQL programs reading the binary log and
so cause no issues when replicating or restoring from backup. To view them, increase the verbosity
level by using mysqlbinlog's --verbose option twice, either as -vv or --verbose --verbose.

• binlog_stmt_cache_size

Command-Line Format --binlog-stmt-cache-size=#

System Variable binlog_stmt_cache_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32768

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294963200

Unit bytes

Block Size 4096

The size of the memory buffer for the binary log to hold nontransactional statements issued during a
transaction.

When binary logging is enabled on the server (with the log_bin system variable set to ON),
separate binary log transaction and statement caches are allocated for each client if the server
supports any transactional storage engines. If the data for the nontransactional statements used in
the transaction exceeds the space in the memory buffer, the excess data is stored in a temporary
file. When binary log encryption is active on the server, the memory buffer is not encrypted, but
(from MySQL 8.0.17) any temporary file used to hold the binary log cache is encrypted. After each

3757

Replication and Binary Logging Options and Variables

transaction is committed, the binary log statement cache is reset by clearing the memory buffer and
truncating the temporary file if used.

If you often use large nontransactional statements during transactions, you can increase this cache
size to get better performance by reducing or eliminating the need to write to temporary files. The
Binlog_stmt_cache_use and Binlog_stmt_cache_disk_use status variables can be useful
for tuning the size of this variable. See Section 7.4.4, “The Binary Log”.

The binlog_cache_size system variable sets the size for the transaction cache.

• binlog_transaction_compression

Command-Line Format --binlog-transaction-
compression[={OFF|ON}]

Introduced 8.0.20

System Variable binlog_transaction_compression

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enables compression for transactions that are written to binary log files on this server. OFF is the
default. Use the binlog_transaction_compression_level_zstd system variable to set the
level for the zstd algorithm that is used for compression.

Setting binlog_transaction_compression has no immediate effect but rather applies to all
subsequent START REPLICA (START SLAVE) statements.

When binary log transaction compression is enabled, transaction payloads are compressed and
then written to the binary log file as a single event (Transaction_payload_event). Compressed
transaction payloads remain in a compressed state while they are sent in the replication stream to
replicas, other Group Replication group members, or clients such as mysqlbinlog, and are written
to the relay log still in their compressed state. Binary log transaction compression therefore saves
storage space both on the originator of the transaction and on the recipient (and for their backups),
and saves network bandwidth when the transactions are sent between server instances.

For binlog_transaction_compression=ON to have a direct effect, binary logging must be
enabled on the server. When a MySQL server instance has no binary log, if it is at a release from
MySQL 8.0.20, it can receive, handle, and display compressed transaction payloads regardless of
its value for binlog_transaction_compression. Compressed transaction payloads received by
such server instances are written in their compressed state to the relay log, so they benefit indirectly
from compression carried out by other servers in the replication topology.

This system variable cannot be changed within the context of a transaction. Setting the session value
of this system variable is a restricted operation. The session user must have privileges sufficient to
set restricted session variables. See Section 7.1.9.1, “System Variable Privileges”.

For more information on binary log transaction compression, including details of what events are
and are not compressed, and changes in behavior when transaction compression is in use, see
Section 7.4.4.5, “Binary Log Transaction Compression”.

Prior to NDB 8.0.31: Setting this variable when the server is running has no effect on logging of
transactions on NDB tables. Binary log transaction compression can be enabled for NDB tables by

3758

Replication and Binary Logging Options and Variables

starting MySQL with --binlog-transaction-compression=ON on the command line or in an
option file but cannot be enabled or disabled while the server is running.

In NDB 8.0.31 and later: You can use the ndb_log_transaction_compression system variable
to enable this feature for NDB. In addition, setting --binlog-transaction-compression=ON
on the command line or in a my.cnf file causes ndb_log_transaction_compression to be
enabled on server startup. See the description of the variable for further information.

• binlog_transaction_compression_level_zstd

Command-Line Format --binlog-transaction-compression-
level-zstd=#

Introduced 8.0.20

System Variable binlog_transaction_compression_level_zstd

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value 1

Maximum Value 22

Sets the compression level for binary log transaction compression on this server, which is enabled
by the binlog_transaction_compression system variable. The value is an integer that
determines the compression effort, from 1 (the lowest effort) to 22 (the highest effort). If you do not
specify this system variable, the compression level is set to 3.

Setting binlog_transaction_compression_level_zstd has no immediate effect but rather
applies to all subsequent START REPLICA (START SLAVE) statements.

As the compression level increases, the data compression ratio increases, which reduces the
storage space and network bandwidth required for the transaction payload. However, the effort
required for data compression also increases, taking time and CPU and memory resources on the
originating server. Increases in the compression effort do not have a linear relationship to increases
in the data compression ratio.

This system variable cannot be changed within the context of a transaction. Setting the session value
of this system variable is a restricted operation. The session user must have privileges sufficient to
set restricted session variables. See Section 7.1.9.1, “System Variable Privileges”.

This variable has no effect on logging of transactions on NDB tables; in NDB Cluster 8.0.31 and later,
you can use ndb_log_transaction_compression_level_zstd instead.

• binlog_transaction_dependency_tracking

Command-Line Format --binlog-transaction-dependency-
tracking=value

Deprecated 8.0.35

System Variable binlog_transaction_dependency_tracking

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration
3759

Replication and Binary Logging Options and Variables

Default Value COMMIT_ORDER

Valid Values COMMIT_ORDER

WRITESET

WRITESET_SESSION

For a replication source server that has multithreaded replicas (replicas on which
replica_parallel_workers or slave_parallel_workers is is greater than 0),
binlog_transaction_dependency_tracking specifies how the source mysqld generates the
dependency information that it writes in the binary log to help replicas determine which transactions
can be executed in parallel.

The dependency information written by the replication source is represented using logical
timestamps. (Thus, setting this variable requires that replica_parallel_type or
slave_parallel_type already be set to LOGICAL_CLOCK.) There are two logical timestamps,
listed here, for each transaction:

• sequence_number: This is 1 for the first transaction in a given binary log, 2 for the second
transaction, and so on. The numbering restarts with 1 in each binary log file.

• last_committed: This refers to the sequence_number of the most recently committed
transaction found to conflict with the current transaction. This value is always less than
sequence_number.

binlog_transaction_dependency_tracking controls the choice of scheme used to compute
these logical timestamps. Available choices are listed here:

• COMMIT_ORDER: Two transactions are considered to be independent if the commit-time window
of the first transaction overlaps with the commit-time window of the second transaction. This the
default.

The commit-time window begins immediately following the execution of the last statement of the
transaction, and ends immediately before the storage engine commit ends. Since transactions hold
all row locks between these two points in time, we know that they cannot update the same rows.

• WRITESET: Logical timestamps are computed based on COMMIT_ORDER in combination with a
second scheme based on write sets for the transaction. Each row in the transaction adds a set of
one or more hashes to the transaction's write set, one of each unique key in the row. (If there are
no unique, nonnullable keys, a hash of the row is used.) This includes both deleted and inserted
rows; for updated rows, both the old and the new row are also included.

Two transactions are considered conflicting if their write sets overlap—that is, if there is
some number (hash) that occurs in the write sets of both transactions. In addition, due
to the way the write sets are computed, there are periodic serialization points, such that
the write set computation process regards every transaction after a serialization point as
conflicting with every transaction before the serialization point. Serialization points affect only
dependencies computed by the WRITESET algorithm; transactions on opposite sides of the
serialization point may have overlapping commit-time windows, and so can be parallelized
on replica in spite of this. Serialization points occur for DDL statements, for transactions
updating a table having a foreign key, and for transactions where the session value of
transaction_write_set_extraction is not the same as the global value. A serialization
point is also imposed if the transactions committed since the previous serialization point have
generated a total of at least binlog_transaction_dependency_history_size unique
hashes.

For multithreaded replicas to work with NDB Cluster replication (supported in NDB 8.0.33 and
later), this variable must be set to WRITESET on the source. See Section 25.7.11, “NDB Cluster
Replication Using the Multithreaded Applier”, for more information.

3760

Replication and Binary Logging Options and Variables

• WRITESET_SESSION: Two transactions are considered dependent if either of the following
statements is true:

• The transactions are dependent according to WRITESET.

• The transactions were committed in the same user session.

In WRITESET or WRITESET_SESSION mode, the source uses COMMIT_ORDER to generate
dependency information for transactions that have empty or partial write sets, transactions that
update tables without primary or unique keys, and transactions that update parent tables in a foreign
key relationship.

To set binlog_transaction_dependency_tracking to WRITESET or WRITESET_SESSION,
transaction_write_set_extraction must be set to a value other than OFF; the default
value (XXHASH64) is sufficient for this. transaction_write_set_extraction cannot be
changed whenever the value of binlog_transaction_dependency_tracking is WRITESET or
WRITESET_SESSION. Any change in the value does not take effect for replicated transactions until
after the replica has been stopped and restarted with STOP REPLICA and START REPLICA.

The number of row hashes to be kept and checked for the latest transaction to have changed a given
row is determined by the value of binlog_transaction_dependency_history_size.

Group Replication carries out its own parallelization after certification when
applying transactions from the relay log, independently of any value set for
binlog_transaction_dependency_tracking, but this variable does affect how transactions
are written to the binary logs on Group Replication members. The dependency information in
those logs is used to assist the process of state transfer from a donor's binary log for distributed
recovery, which takes place whenever a member joins or rejoins the group. For that process, setting
binlog_transaction_dependency_tracking to WRITESET can improve performance for a
group member, depending on the group's workload.

• binlog_transaction_dependency_history_size

Command-Line Format --binlog-transaction-dependency-
history-size=#

System Variable binlog_transaction_dependency_history_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 25000

Minimum Value 1

Maximum Value 1000000

Sets an upper limit on the number of row hashes which are kept in memory and used for looking up
the transaction that last modified a given row. Once this number of hashes has been reached, the
history is purged.

• expire_logs_days

Command-Line Format --expire-logs-days=#

Deprecated Yes

System Variable expire_logs_days

Scope Global

3761

Replication and Binary Logging Options and Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 99

Unit days

Specifies the number of days before automatic removal of binary log files. expire_logs_days
is deprecated, and you should expect it to be removed in a future release. Instead, use
binlog_expire_logs_seconds, which sets the binary log expiration period in seconds. If you do
not set a value for either system variable, the default expiration period is 30 days. Possible removals
happen at startup and when the binary log is flushed. Log flushing occurs as indicated in Section 7.4,
“MySQL Server Logs”.

Any non-zero value that you specify at startup for expire_logs_days is
ignored if binlog_expire_logs_seconds is also specified, and the value of
binlog_expire_logs_seconds is used instead as the binary log expiration period. A warning
message is issued in this situation. A non-zero startup value for expire_logs_days is only
applied as the binary log expiration period if binlog_expire_logs_seconds is not specified or is
specified as 0.

At runtime, you cannot set binlog_expire_logs_seconds or expire_logs_days
to a non-zero value if the other is currently set to a non-zero value. Because the
default value for binlog_expire_logs_seconds is non-zero, you must explicitly set
binlog_expire_logs_seconds to zero before you can set or change the value of
expire_logs_days.

To disable automatic purging of the binary log, specify a value of 0 explicitly for
binlog_expire_logs_seconds, and do not specify a value for expire_logs_days. For
compatibility with earlier releases, automatic purging is also disabled if you specify a value of 0
explicitly for expire_logs_days and do not specify a value for binlog_expire_logs_seconds.
In that case, the default for binlog_expire_logs_seconds is not applied.

To remove binary log files manually, use the PURGE BINARY LOGS statement. See
Section 15.4.1.1, “PURGE BINARY LOGS Statement”.

• log_bin

System Variable log_bin

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Shows the status of binary logging on the server, either enabled (ON) or disabled (OFF). With binary
logging enabled, the server logs all statements that change data to the binary log, which is used for
backup and replication. ON means that the binary log is available, OFF means that it is not in use.
The --log-bin option can be used to specify a base name and location for the binary log.

In earlier MySQL versions, binary logging was disabled by default, and was enabled if you specified
the --log-bin option. From MySQL 8.0, binary logging is enabled by default, with the log_bin
system variable set to ON, whether or not you specify the --log-bin option. The exception is if you
use mysqld to initialize the data directory manually by invoking it with the --initialize or --

3762

Replication and Binary Logging Options and Variables

initialize-insecure option, when binary logging is disabled by default. It is possible to enable
binary logging in this case by specifying the --log-bin option.

If the --skip-log-bin or --disable-log-bin option is specified at startup, binary logging is
disabled, with the log_bin system variable set to OFF. If either of these options is specified and --
log-bin is also specified, the option specified later takes precedence.

For information on the format and management of the binary log, see Section 7.4.4, “The Binary
Log”.

• log_bin_basename

System Variable log_bin_basename

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Holds the base name and path for the binary log files, which can be set with the --log-bin server
option. The maximum variable length is 256. In MySQL 8.0, if the --log-bin option is not supplied,
the default base name is binlog. For compatibility with MySQL 5.7, if the --log-bin option is
supplied with no string or with an empty string, the default base name is host_name-bin, using the
name of the host machine. The default location is the data directory.

• log_bin_index

Command-Line Format --log-bin-index=file_name

System Variable log_bin_index

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Holds the base name and path for the binary log index file, which can be set with the --log-bin-
index server option. The maximum variable length is 256.

• log_bin_trust_function_creators

Command-Line Format --log-bin-trust-function-
creators[={OFF|ON}]

Deprecated 8.0.34

System Variable log_bin_trust_function_creators

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This variable applies when binary logging is enabled. It controls whether stored function creators can
be trusted not to create stored functions that may cause unsafe events to be written to the binary
log. If set to 0 (the default), users are not permitted to create or alter stored functions unless they
have the SUPER privilege in addition to the CREATE ROUTINE or ALTER ROUTINE privilege. A
setting of 0 also enforces the restriction that a function must be declared with the DETERMINISTIC

3763

Replication and Binary Logging Options and Variables

characteristic, or with the READS SQL DATA or NO SQL characteristic. If the variable is set to 1,
MySQL does not enforce these restrictions on stored function creation. This variable also applies to
trigger creation. See Section 27.7, “Stored Program Binary Logging”.

• log_bin_use_v1_row_events

Command-Line Format --log-bin-use-v1-row-events[={OFF|
ON}]

Deprecated 8.0.18

System Variable log_bin_use_v1_row_events

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This read-only system variable is deprecated. Setting the system variable to ON at server startup
enabled row-based replication with replicas running MySQL Server 5.5 and earlier by writing the
binary log using Version 1 binary log row events, instead of Version 2 binary log row events which
are the default as of MySQL 5.6.

• log_replica_updates

Command-Line Format --log-replica-updates[={OFF|ON}]

Introduced 8.0.26

System Variable log_replica_updates

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

From MySQL 8.0.26, use log_replica_updates in place of log_slave_updates, which is
deprecated from that release. In releases before MySQL 8.0.26, use log_slave_updates.

log_replica_updates specifies whether updates received by a replica server from a replication
source server should be logged to the replica's own binary log.

Enabling this variable causes the replica to write the updates that are received from a source and
performed by the replication SQL thread to the replica's own binary log. Binary logging, which
is controlled by the --log-bin option and is enabled by default, must also be enabled on the
replica for updates to be logged. See Section 19.1.6, “Replication and Binary Logging Options and
Variables”. log_replica_updates is enabled by default, unless you specify --skip-log-bin to
disable binary logging, in which case MySQL also disables replica update logging by default. If you
need to disable replica update logging when binary logging is enabled, specify --log-replica-
updates=OFF at replica server startup.

Enabling log_replica_updates enables replication servers to be chained. For example, you
might want to set up replication servers using this arrangement:

A -> B -> C

Here, A serves as the source for the replica B, and B serves as the source for the replica C.
For this to work, B must be both a source and a replica. With binary logging enabled and3764

Replication and Binary Logging Options and Variables

log_replica_updates enabled, which are the default settings, updates received from A are
logged by B to its binary log, and can therefore be passed on to C.

• log_slave_updates

Command-Line Format --log-slave-updates[={OFF|ON}]

Deprecated 8.0.26

System Variable log_slave_updates

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

From MySQL 8.0.26, log_slave_updates is deprecated and the alias log_replica_updates
should be used instead. In releases before MySQL 8.0.26, use log_slave_updates.

log_slave_updates specifies whether updates received by a replica server from a replication
source server should be logged to the replica's own binary log.

Enabling this variable causes the replica to write the updates that are received from a source and
performed by the replication SQL thread to the replica's own binary log. Binary logging, which
is controlled by the --log-bin option and is enabled by default, must also be enabled on the
replica for updates to be logged. See Section 19.1.6, “Replication and Binary Logging Options and
Variables”. log_slave_updates is enabled by default, unless you specify --skip-log-bin
to disable binary logging, in which case MySQL also disables replica update logging by default. If
you need to disable replica update logging when binary logging is enabled, specify --log-slave-
updates=OFF at replica server startup.

Enabling log_slave_updates enables replication servers to be chained. For example, you might
want to set up replication servers using this arrangement:

A -> B -> C

Here, A serves as the source for the replica B, and B serves as the source for the replica C.
For this to work, B must be both a source and a replica. With binary logging enabled and
log_slave_updates enabled, which are the default settings, updates received from A are logged
by B to its binary log, and can therefore be passed on to C.

• log_statements_unsafe_for_binlog

Command-Line Format --log-statements-unsafe-for-
binlog[={OFF|ON}]

Deprecated 8.0.34

System Variable log_statements_unsafe_for_binlog

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

If error 1592 is encountered, controls whether the generated warnings are added to the error log or
not.

3765

Replication and Binary Logging Options and Variables

• master_verify_checksum

Command-Line Format --master-verify-checksum[={OFF|ON}]

Deprecated 8.0.26

System Variable master_verify_checksum

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, master_verify_checksum is deprecated and the alias
source_verify_checksum should be used instead. In releases before MySQL 8.0.26, use
master_verify_checksum.

Enabling master_verify_checksum causes the source to verify events read from the
binary log by examining checksums, and to stop with an error in the event of a mismatch.
master_verify_checksum is disabled by default; in this case, the source uses the event length
from the binary log to verify events, so that only complete events are read from the binary log.

• max_binlog_cache_size

Command-Line Format --max-binlog-cache-size=#

System Variable max_binlog_cache_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (64-bit platforms) 18446744073709547520

Default Value (32-bit platforms) 4294967295

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Block Size 4096

If a transaction requires more than this many bytes, the server generates a Multi-statement
transaction required more than 'max_binlog_cache_size' bytes of storage
error. When gtid_mode is not ON, the maximum recommended value is 4GB, due to the fact that, in
this case, MySQL cannot work with binary log positions greater than 4GB; when gtid_mode is ON,
this limitation does not apply, and the server can work with binary log positions of arbitrary size.

If, because gtid_mode is not ON, or for some other reason, you need to guarantee that the binary
log does not exceed a given size maxsize, you should set this variable according to the formula
shown here:

max_binlog_cache_size <

3766

Replication and Binary Logging Options and Variables

 (((maxsize - max_binlog_size) / max_connections) - 1000) / 1.2

This calculation takes into account the following conditions:

• The server writes to the binary log as long as the size before it begins to write is less than
max_binlog_size.

• The server does not write single transactions, but rather groups of transactions. The maximum
possible number of transactions in a group is equal to max_connections.

• The server writes data that is not included in the cache. This includes a 4-byte checksum for
each event; while this adds less than 20% to the transaction size, this amount is non-negible. In
addition, the server writes a Gtid_log_event for each transaction; each of these events can add
another 1 KB to what is written to the binary log.

max_binlog_cache_size sets the size for the transaction cache only; the upper limit for the
statement cache is governed by the max_binlog_stmt_cache_size system variable.

The visibility to sessions of max_binlog_cache_size matches that of the binlog_cache_size
system variable; in other words, changing its value affects only new sessions that are started after
the value is changed.

• max_binlog_size

Command-Line Format --max-binlog-size=#

System Variable max_binlog_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1073741824

Minimum Value 4096

Maximum Value 1073741824

Unit bytes

Block Size 4096

If a write to the binary log causes the current log file size to exceed the value of this variable, the
server rotates the binary logs (closes the current file and opens the next one). The minimum value
is 4096 bytes. The maximum and default value is 1GB. Encrypted binary log files have an additional
512-byte header, which is included in max_binlog_size.

A transaction is written in one chunk to the binary log, so it is never split between several
binary logs. Therefore, if you have big transactions, you might see binary log files larger than
max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.

With GTIDs in use on the server, when max_binlog_size is reached, if the system table
mysql.gtid_executed cannot be accessed to write the GTIDs from the current binary log
file, the binary log cannot be rotated. In this situation, the server responds according to its
binlog_error_action setting. If IGNORE_ERROR is set, an error is logged on the server and
binary logging is halted, or if ABORT_SERVER is set, the server shuts down.

• max_binlog_stmt_cache_size

Command-Line Format --max-binlog-stmt-cache-size=# 3767

Replication and Binary Logging Options and Variables

System Variable max_binlog_stmt_cache_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 18446744073709547520

Minimum Value 4096

Maximum Value 18446744073709547520

Unit bytes

Block Size 4096

If nontransactional statements within a transaction require more than this many bytes of memory, the
server generates an error. The minimum value is 4096. The maximum and default values are 4GB
on 32-bit platforms and 16EB (exabytes) on 64-bit platforms.

max_binlog_stmt_cache_size sets the size for the statement cache only; the upper limit for the
transaction cache is governed exclusively by the max_binlog_cache_size system variable.

• original_commit_timestamp

System Variable original_commit_timestamp

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Numeric

For internal use by replication. When re-executing a transaction on a replica, this is set to the time
when the transaction was committed on the original source, measured in microseconds since the
epoch. This allows the original commit timestamp to be propagated throughout a replication topology.

Setting the session value of this system variable is a restricted operation. The session user must
have either the REPLICATION_APPLIER privilege (see Section 19.3.3, “Replication Privilege
Checks”), or privileges sufficient to set restricted session variables (see Section 7.1.9.1, “System
Variable Privileges”). However, note that the variable is not intended for users to set; it is set
automatically by the replication infrastructure.

• source_verify_checksum

Command-Line Format --source-verify-checksum[={OFF|ON}]

Introduced 8.0.26

System Variable source_verify_checksum

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

3768

Replication and Binary Logging Options and Variables

Default Value OFF

From MySQL 8.0.26, use source_verify_checksum in place of master_verify_checksum,
which is deprecated from that release. In releases before MySQL 8.0.26, use
master_verify_checksum.

Enabling source_verify_checksum causes the source to verify events read from the
binary log by examining checksums, and to stop with an error in the event of a mismatch.
source_verify_checksum is disabled by default; in this case, the source uses the event length
from the binary log to verify events, so that only complete events are read from the binary log.

• sql_log_bin

System Variable sql_log_bin

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This variable controls whether logging to the binary log is enabled for the current session (assuming
that the binary log itself is enabled). The default value is ON. To disable or enable binary logging for
the current session, set the session sql_log_bin variable to OFF or ON.

Set this variable to OFF for a session to temporarily disable binary logging while making changes to
the source you do not want replicated to the replica.

Setting the session value of this system variable is a restricted operation. The session user must
have privileges sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable
Privileges”.

It is not possible to set the session value of sql_log_bin within a transaction or subquery.

Setting this variable to OFF prevents GTIDs from being assigned to transactions in the binary log. If
you are using GTIDs for replication, this means that even when binary logging is later enabled again,
the GTIDs written into the log from this point do not account for any transactions that occurred in the
meantime, so in effect those transactions are lost.

• sync_binlog

Command-Line Format --sync-binlog=#

System Variable sync_binlog

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 4294967295

Controls how often the MySQL server synchronizes the binary log to disk.

• sync_binlog=0: Disables synchronization of the binary log to disk by the MySQL server.
Instead, the MySQL server relies on the operating system to flush the binary log to disk from time3769

Replication and Binary Logging Options and Variables

to time as it does for any other file. This setting provides the best performance, but in the event of
a power failure or operating system crash, it is possible that the server has committed transactions
that have not been synchronized to the binary log.

• sync_binlog=1: Enables synchronization of the binary log to disk before transactions are
committed. This is the safest setting but can have a negative impact on performance due to
the increased number of disk writes. In the event of a power failure or operating system crash,
transactions that are missing from the binary log are only in a prepared state. This permits the
automatic recovery routine to roll back the transactions, which guarantees that no transaction is
lost from the binary log.

• sync_binlog=N, where N is a value other than 0 or 1: The binary log is synchronized to disk
after N binary log commit groups have been collected. In the event of a power failure or operating
system crash, it is possible that the server has committed transactions that have not been flushed
to the binary log. This setting can have a negative impact on performance due to the increased
number of disk writes. A higher value improves performance, but with an increased risk of data
loss.

For the greatest possible durability and consistency in a replication setup that uses InnoDB with
transactions, use these settings:

• sync_binlog=1.

• innodb_flush_log_at_trx_commit=1.

Caution

Many operating systems and some disk hardware fool the flush-to-disk
operation. They may tell mysqld that the flush has taken place, even though
it has not. In this case, the durability of transactions is not guaranteed even
with the recommended settings, and in the worst case, a power outage can
corrupt InnoDB data. Using a battery-backed disk cache in the SCSI disk
controller or in the disk itself speeds up file flushes, and makes the operation
safer. You can also try to disable the caching of disk writes in hardware
caches.

• transaction_write_set_extraction

Command-Line Format --transaction-write-set-
extraction[=value]

Deprecated 8.0.26

System Variable transaction_write_set_extraction

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value XXHASH64

Valid Values OFF

MURMUR32

3770

Replication and Binary Logging Options and Variables

XXHASH64

This system variable specifies the algorithm used to hash the writes extracted during a transaction.
The default is XXHASH64. OFF means that write sets are not collected.

transaction_write_set_extraction is deprecated as of MySQL 8.0.26; expect it to be
removed in a future MySQL release.

The XXHASH64 setting is required for Group Replication, where the process of
extracting the writes from a transaction is used for conflict detection and certification
on all group members (see Section 20.3.1, “Group Replication Requirements”).
For a replication source server that has multithreaded replicas (replicas on which
replica_parallel_workers or slave_parallel_workers is set to a value greater
than 0), where binlog_transaction_dependency_tracking is set to WRITESET or
WRITESET_SESSION, transaction_write_set_extraction must not be OFF. While
the current value of binlog_transaction_dependency_tracking is WRITESET or
WRITESET_SESSION, you cannot change the value of transaction_write_set_extraction.

As of MySQL 8.0.14, setting the session value of this system variable is a restricted operation; the
session user must have privileges sufficient to set restricted session variables (see Section 7.1.9.1,
“System Variable Privileges”). binlog_format must be set to ROW to change the value of
transaction_write_set_extraction. If you change the value, the new value does not take
effect on replicated transactions until after the replica has been stopped and restarted with STOP
REPLICA and START REPLICA.

19.1.6.5 Global Transaction ID System Variables

The MySQL Server system variables described in this section are used to monitor and control Global
Transaction Identifiers (GTIDs). For additional information, see Section 19.1.3, “Replication with Global
Transaction Identifiers”.

• binlog_gtid_simple_recovery

Command-Line Format --binlog-gtid-simple-recovery[={OFF|
ON}]

System Variable binlog_gtid_simple_recovery

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This variable controls how binary log files are iterated during the search for GTIDs when MySQL
starts or restarts.

When binlog_gtid_simple_recovery=TRUE, which is the default in MySQL 8.0, the
values of gtid_executed and gtid_purged are computed at startup based on the values of
Previous_gtids_log_event in the most recent and oldest binary log files. For a description of
the computation, see The gtid_purged System Variable. This setting accesses only two binary log
files during server restart. If all binary logs on the server were generated using MySQL 5.7.8 or later,
binlog_gtid_simple_recovery=TRUE can always safely be used.

If any binary logs from MySQL 5.7.7 or older are present on the server (for example, following
an upgrade of an older server to MySQL 8.0), with binlog_gtid_simple_recovery=TRUE,
gtid_executed and gtid_purged might be initialized incorrectly in the following two situations:

3771

Replication and Binary Logging Options and Variables

• The newest binary log was generated by MySQL 5.7.5 or earlier, and gtid_mode was ON for
some binary logs but OFF for the newest binary log.

• A SET @@GLOBAL.gtid_purged statement was issued on MySQL 5.7.7 or earlier, and the
binary log that was active at the time of the SET @@GLOBAL.gtid_purged statement has not yet
been purged.

If an incorrect GTID set is computed in either situation, it remains incorrect even if the server is
later restarted with binlog_gtid_simple_recovery=FALSE. If either of these situations apply
or might apply on the server, set binlog_gtid_simple_recovery=FALSE before starting or
restarting the server.

When binlog_gtid_simple_recovery=FALSE is set, the method of computing
gtid_executed and gtid_purged as described in The gtid_purged System Variable is
changed to iterate the binary log files as follows:

• Instead of using the value of Previous_gtids_log_event and GTID log events from the
newest binary log file, the computation for gtid_executed iterates from the newest binary log
file, and uses the value of Previous_gtids_log_event and any GTID log events from the first
binary log file where it finds a Previous_gtids_log_event value. If the server's most recent
binary log files do not have GTID log events, for example if gtid_mode=ON was used but the
server was later changed to gtid_mode=OFF, this process can take a long time.

• Instead of using the value of Previous_gtids_log_event from the oldest binary log file,
the computation for gtid_purged iterates from the oldest binary log file, and uses the value
of Previous_gtids_log_event from the first binary log file where it finds either a nonempty
Previous_gtids_log_event value, or at least one GTID log event (indicating that the use of
GTIDs starts at that point). If the server's older binary log files do not have GTID log events, for
example if gtid_mode=ON was only set recently on the server, this process can take a long time.

• enforce_gtid_consistency

Command-Line Format --enforce-gtid-consistency[=value]

System Variable enforce_gtid_consistency

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value OFF

Valid Values OFF

ON

WARN

Depending on the value of this variable, the server enforces GTID consistency by allowing execution
of only statements that can be safely logged using a GTID. You must set this variable to ON before
enabling GTID based replication.

The values that enforce_gtid_consistency can be configured to are:

• OFF: all transactions are allowed to violate GTID consistency.

• ON: no transaction is allowed to violate GTID consistency.

3772

Replication and Binary Logging Options and Variables

• WARN: all transactions are allowed to violate GTID consistency, but a warning is generated in this
case.

--enforce-gtid-consistency only takes effect if binary logging takes place for a statement.
If binary logging is disabled on the server, or if statements are not written to the binary log because
they are removed by a filter, GTID consistency is not checked or enforced for the statements that are
not logged.

Only statements that can be logged using GTID safe statements can be logged when
enforce_gtid_consistency is set to ON, so the operations listed here cannot be used with this
option:

• CREATE TEMPORARY TABLE or DROP TEMPORARY TABLE statements inside transactions.

• Transactions or statements that update both transactional and nontransactional tables. There is an
exception that nontransactional DML is allowed in the same transaction or in the same statement
as transactional DML, if all nontransactional tables are temporary.

• CREATE TABLE ... SELECT statements, prior to MySQL 8.0.21. From MySQL 8.0.21, CREATE
TABLE ... SELECT statements are allowed for storage engines that support atomic DDL.

For more information, see Section 19.1.3.7, “Restrictions on Replication with GTIDs”.

Prior to MySQL 5.7 and in early releases in that release series, the boolean
enforce_gtid_consistency defaulted to OFF. To maintain compatibility with these earlier
releases, the enumeration defaults to OFF, and setting --enforce-gtid-consistency
without a value is interpreted as setting the value to ON. The variable also has multiple
textual aliases for the values: 0=OFF=FALSE, 1=ON=TRUE,2=WARN. This differs from other
enumeration types but maintains compatibility with the boolean type used in previous
releases. These changes impact on what is returned by the variable. Using SELECT
@@ENFORCE_GTID_CONSISTENCY, SHOW VARIABLES LIKE 'ENFORCE_GTID_CONSISTENCY',
and SELECT * FROM INFORMATION_SCHEMA.VARIABLES WHERE 'VARIABLE_NAME' =
'ENFORCE_GTID_CONSISTENCY', all return the textual form, not the numeric form. This is an
incompatible change, since @@ENFORCE_GTID_CONSISTENCY returns the numeric form for
booleans but returns the textual form for SHOW and the Information Schema.

• gtid_executed

System Variable gtid_executed

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Unit set of GTIDs

When used with global scope, this variable contains a representation of the set of all transactions
executed on the server and GTIDs that have been set by a SET gtid_purged statement. This is
the same as the value of the Executed_Gtid_Set column in the output of SHOW MASTER STATUS
and SHOW REPLICA STATUS. The value of this variable is a GTID set, see GTID Sets for more
information.

When the server starts, @@GLOBAL.gtid_executed is initialized. See
binlog_gtid_simple_recovery for more information on how binary logs are iterated to populate

3773

Replication and Binary Logging Options and Variables

gtid_executed. GTIDs are then added to the set as transactions are executed, or if any SET
gtid_purged statement is executed.

The set of transactions that can be found in the binary logs at any given time is equal to
GTID_SUBTRACT(@@GLOBAL.gtid_executed, @@GLOBAL.gtid_purged); that is, to all
transactions in the binary log that have not yet been purged.

Issuing RESET MASTER causes the global value (but not the session value) of this variable to be
reset to an empty string. GTIDs are not otherwise removed from this set other than when the set is
cleared due to RESET MASTER.

• gtid_executed_compression_period

Command-Line Format --gtid-executed-compression-period=#

System Variable gtid_executed_compression_period

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.23) 0

Default Value (≤ 8.0.22) 1000

Minimum Value 0

Maximum Value 4294967295

Compress the mysql.gtid_executed table each time this many transactions have been
processed. When binary logging is enabled on the server, this compression method is not used,
and instead the mysql.gtid_executed table is compressed on each binary log rotation.
When binary logging is disabled on the server, the compression thread sleeps until the specified
number of transactions have been executed, then wakes up to perform compression of the
mysql.gtid_executed table. Setting the value of this system variable to 0 means that the thread
never wakes up, so this explicit compression method is not used. Instead, compression occurs
implicitly as required.

From MySQL 8.0.17, InnoDB transactions are written to the mysql.gtid_executed table by a
separate process to non-InnoDB transactions. If the server has a mix of InnoDB transactions and
non-InnoDB transactions, the compression controlled by this system variable interferes with the work
of this process and can slow it significantly. For this reason, from that release it is recommended that
you set gtid_executed_compression_period to 0.

From MySQL 8.0.23, InnoDB and non-InnoDB transactions are written
to the mysql.gtid_executed table by the same process, and the
gtid_executed_compression_period default value is 0.

See mysql.gtid_executed Table Compression for more information.

• gtid_mode

Command-Line Format --gtid-mode=MODE

System Variable gtid_mode

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

3774

Replication and Binary Logging Options and Variables

Default Value OFF

Valid Values OFF

OFF_PERMISSIVE

ON_PERMISSIVE

ON

Controls whether GTID based logging is enabled and what type of transactions the logs can
contain. You must have privileges sufficient to set global system variables. See Section 7.1.9.1,
“System Variable Privileges”. enforce_gtid_consistency must be set to ON before you can
set gtid_mode=ON. Before modifying this variable, see Section 19.1.4, “Changing GTID Mode on
Online Servers”.

Logged transactions can be either anonymous or use GTIDs. Anonymous transactions rely on binary
log file and position to identify specific transactions. GTID transactions have a unique identifier that is
used to refer to transactions. The different modes are:

• OFF: Both new and replicated transactions must be anonymous.

• OFF_PERMISSIVE: New transactions are anonymous. Replicated transactions can be either
anonymous or GTID transactions.

• ON_PERMISSIVE: New transactions are GTID transactions. Replicated transactions can be either
anonymous or GTID transactions.

• ON: Both new and replicated transactions must be GTID transactions.

Changes from one value to another can only be one step at a time. For example, if gtid_mode is
currently set to OFF_PERMISSIVE, it is possible to change to OFF or ON_PERMISSIVE but not to ON.

The values of gtid_purged and gtid_executed are persistent regardless of the value of
gtid_mode. Therefore even after changing the value of gtid_mode, these variables contain the
correct values.

• gtid_next

System Variable gtid_next

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value AUTOMATIC

Valid Values AUTOMATIC

ANONYMOUS

<UUID>:<NUMBER>

This variable is used to specify whether and how the next GTID is obtained.

Setting the session value of this system variable is a restricted operation. The session user must
have either the REPLICATION_APPLIER privilege (see Section 19.3.3, “Replication Privilege

3775

Replication and Binary Logging Options and Variables

Checks”), or privileges sufficient to set restricted session variables (see Section 7.1.9.1, “System
Variable Privileges”).

gtid_next can take any of the following values:

• AUTOMATIC: Use the next automatically-generated global transaction ID.

• ANONYMOUS: Transactions do not have global identifiers, and are identified by file and position
only.

• A global transaction ID in UUID:NUMBER format.

Exactly which of the above options are valid depends on the setting of gtid_mode, see
Section 19.1.4.1, “Replication Mode Concepts” for more information. Setting this variable has no
effect if gtid_mode is OFF.

After this variable has been set to UUID:NUMBER, and a transaction has been committed or rolled
back, an explicit SET GTID_NEXT statement must again be issued before any other statement.

DROP TABLE or DROP TEMPORARY TABLE fails with an explicit error when used on a combination
of nontemporary tables with temporary tables, or of temporary tables using transactional storage
engines with temporary tables using nontransactional storage engines.

• gtid_owned

System Variable gtid_owned

Scope Global, Session

Dynamic No

SET_VAR Hint Applies No

Type String

Unit set of GTIDs

This read-only variable is primarily for internal use. Its contents depend on its scope.

• When used with global scope, gtid_owned holds a list of all the GTIDs that are currently in use
on the server, with the IDs of the threads that own them. This variable is mainly useful for a multi-
threaded replica to check whether a transaction is already being applied on another thread. An
applier thread takes ownership of a transaction's GTID all the time it is processing the transaction,
so @@global.gtid_owned shows the GTID and owner for the duration of processing. When
a transaction has been committed (or rolled back), the applier thread releases ownership of the
GTID.

• When used with session scope, gtid_owned holds a single GTID that is currently in use by
and owned by this session. This variable is mainly useful for testing and debugging the use of
GTIDs when the client has explicitly assigned a GTID for the transaction by setting gtid_next.
In this case, @@session.gtid_owned displays the GTID all the time the client is processing
the transaction, until the transaction has been committed (or rolled back). When the client has
finished processing the transaction, the variable is cleared. If gtid_next=AUTOMATIC is used for
the session, gtid_owned is populated only briefly during the execution of the commit statement
for the transaction, so it cannot be observed from the session concerned, although it is listed if
@@global.gtid_owned is read at the right point. If you have a requirement to track the GTIDs
that are handled by a client in a session, you can enable the session state tracker controlled by the
session_track_gtids system variable.

• gtid_purged

System Variable gtid_purged

3776

Replication and Binary Logging Options and Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Unit set of GTIDs

The global value of the gtid_purged system variable (@@GLOBAL.gtid_purged) is a GTID
set consisting of the GTIDs of all the transactions that have been committed on the server, but do
not exist in any binary log file on the server. gtid_purged is a subset of gtid_executed. The
following categories of GTIDs are in gtid_purged:

• GTIDs of replicated transactions that were committed with binary logging disabled on the replica.

• GTIDs of transactions that were written to a binary log file that has now been purged.

• GTIDs that were added explicitly to the set by the statement SET @@GLOBAL.gtid_purged.

When the server starts, the global value of gtid_purged is initialized to a set of GTIDs.
For information on how this GTID set is computed, see The gtid_purged System Variable.
If binary logs from MySQL 5.7.7 or older are present on the server, you might need to set
binlog_gtid_simple_recovery=FALSE in the server's configuration file to produce the correct
computation. See the description for binlog_gtid_simple_recovery for details of the situations
in which this setting is needed.

Issuing RESET MASTER causes the value of gtid_purged to be reset to an empty string.

You can set the value of gtid_purged in order to record on the server that the transactions in a
certain GTID set have been applied, although they do not exist in any binary log on the server. An
example use case for this action is when you are restoring a backup of one or more databases on a
server, but you do not have the relevant binary logs containing the transactions on the server.

Important

The maximum number of GTIDs available on a given server instance is equal
to the number of non-negative values for a signed 64-bit integer (263 - 1). If
you set the value of gtid_purged to a number that approaches this limit,
subsequent commits can cause the server to run out of GTIDs and so take
the action specified by binlog_error_action. Beginning with MySQL
8.0.23, a warning message is issued when the server approaches this limit.

There are two ways to set the value of gtid_purged. You can either replace the value of
gtid_purged with a specified GTID set, or you can append a specified GTID set to the GTID set
that is already held by gtid_purged.

If the server has no existing GTIDs, as in the case of an empty server that you are provisioning with
a backup of an existing database, both methods have the same result. If you are restoring a backup
that overlaps the transactions that are already on the server, for example replacing a corrupted table
with a partial dump from the source made using mysqldump (which includes the GTIDs of all the
transactions on the server, even though the dump is partial), use the first method of replacing the
value of gtid_purged. If you are restoring a backup that is disjoint from the transactions that are

3777

Common Replication Administration Tasks

already on the server, for example provisioning a multi-source replica using dumps from two different
servers, use the second method of adding to the value of gtid_purged.

• To replace the value of gtid_purged with your specified GTID set, use the following statement:

SET @@GLOBAL.gtid_purged = 'gtid_set';

Group Replication must be stopped before changing the value of gtid_purged.

gtid_set must be a superset of the current value of gtid_purged, and must not intersect
with gtid_subtract(gtid_executed,gtid_purged). In other words, the new GTID set
must include any GTIDs that were already in gtid_purged, and must not include any GTIDs
in gtid_executed that have not yet been purged. gtid_set also cannot include any GTIDs
that are in @@global.gtid_owned, that is, the GTIDs for transactions that are currently being
processed on the server.

The result is that the global value of gtid_purged is set equal to gtid_set, and the value of
gtid_executed becomes the union of gtid_set and the previous value of gtid_executed.

• To append your specified GTID set to gtid_purged, use the following statement with a plus sign
(+) before the GTID set:

SET @@GLOBAL.gtid_purged = '+gtid_set';

gtid_set must not intersect with the current value of gtid_executed. In other words,
the new GTID set must not include any GTIDs in gtid_executed, including transactions
that are already also in gtid_purged. gtid_set also cannot include any GTIDs that are in
@@global.gtid_owned, that is, the GTIDs for transactions that are currently being processed on
the server.

The result is that gtid_set is added to both gtid_executed and gtid_purged.

Note

If any binary logs from MySQL 5.7.7 or older are present on the server
(for example, following an upgrade of an older server to MySQL 8.0), after
issuing a SET @@GLOBAL.gtid_purged statement, you might need to set
binlog_gtid_simple_recovery=FALSE in the server configuration file
before restarting the server; otherwise, gtid_purged can be computed
incorrectly. See the description for binlog_gtid_simple_recovery for
details of the situations in which this setting is needed.

19.1.7 Common Replication Administration Tasks

Once replication has been started it executes without requiring much regular administration. This
section describes how to check the status of replication, how to pause a replica, and how to skip a
failed transaction on a replica.

Tip

To deploy multiple instances of MySQL, you can use InnoDB Cluster which
enables you to easily administer a group of MySQL server instances in MySQL
Shell. InnoDB Cluster wraps MySQL Group Replication in a programmatic
environment that enables you easily deploy a cluster of MySQL instances to
achieve high availability. In addition, InnoDB Cluster interfaces seamlessly
with MySQL Router, which enables your applications to connect to the cluster
without writing your own failover process. For similar use cases that do not
require high availability, however, you can use InnoDB ReplicaSet. Installation
instructions for MySQL Shell can be found here.

3778

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

Common Replication Administration Tasks

19.1.7.1 Checking Replication Status

The most common task when managing a replication process is to ensure that replication is taking
place and that there have been no errors between the replica and the source.

The SHOW REPLICA STATUS statement, which you must execute on each replica, provides
information about the configuration and status of the connection between the replica server and the
source server. From MySQL 8.0.22, SHOW SLAVE STATUS is deprecated, and SHOW REPLICA
STATUS is available to use instead. The Performance Schema has replication tables that provide
this information in a more accessible form. See Section 29.12.11, “Performance Schema Replication
Tables”.

The replication heartbeat information shown in the Performance Schema replication tables lets
you check that the replication connection is active even if the source has not sent events to
the replica recently. The source sends a heartbeat signal to a replica if there are no updates
to, and no unsent events in, the binary log for a longer period than the heartbeat interval. The
MASTER_HEARTBEAT_PERIOD setting on the source (set by the CHANGE MASTER TO statement)
specifies the frequency of the heartbeat, which defaults to half of the connection timeout interval for
the replica (specified by the system variable replica_net_timeout or slave_net_timeout).
The replication_connection_status Performance Schema table shows when the most recent
heartbeat signal was received by a replica, and how many heartbeat signals it has received.

If you are using the SHOW REPLICA STATUS statement to check on the status of an individual replica,
the statement provides the following information:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
 Replica_IO_State: Waiting for source to send event
 Source_Host: 127.0.0.1
 Source_User: root
 Source_Port: 13000
 Connect_Retry: 1
 Source_Log_File: master-bin.000001
 Read_Source_Log_Pos: 927
 Relay_Log_File: slave-relay-bin.000002
 Relay_Log_Pos: 1145
 Relay_Source_Log_File: master-bin.000001
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Source_Log_Pos: 927
 Relay_Log_Space: 1355
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Source_SSL_Allowed: No
 Source_SSL_CA_File:
 Source_SSL_CA_Path:
 Source_SSL_Cert:
 Source_SSL_Cipher:
 Source_SSL_Key:
 Seconds_Behind_Source: 0
Source_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Source_Server_Id: 1

3779

Common Replication Administration Tasks

 Source_UUID: 73f86016-978b-11ee-ade5-8d2a2a562feb
 Source_Info_File: mysql.slave_master_info
 SQL_Delay: 0
 SQL_Remaining_Delay: NULL
 Replica_SQL_Running_State: Replica has read all relay log; waiting for more updates
 Source_Retry_Count: 10
 Source_Bind:
 Last_IO_Error_Timestamp:
 Last_SQL_Error_Timestamp:
 Source_SSL_Crl:
 Source_SSL_Crlpath:
 Retrieved_Gtid_Set: 73f86016-978b-11ee-ade5-8d2a2a562feb:1-3
 Executed_Gtid_Set: 73f86016-978b-11ee-ade5-8d2a2a562feb:1-3
 Auto_Position: 1
 Replicate_Rewrite_DB:
 Channel_Name:
 Source_TLS_Version:
 Source_public_key_path:
 Get_Source_public_key: 0
 Network_Namespace:

The key fields from the status report to examine are:

• Replica_IO_State: The current status of the replica. See Section 10.14.5, “Replication I/
O (Receiver) Thread States”, and Section 10.14.6, “Replication SQL Thread States”, for more
information.

• Replica_IO_Running: Whether the I/O (receiver) thread for reading the source's binary log is
running. Normally, you want this to be Yes unless you have not yet started replication or have
explicitly stopped it with STOP REPLICA.

• Replica_SQL_Running: Whether the SQL thread for executing events in the relay log is running.
As with the I/O thread, this should normally be Yes.

• Last_IO_Error, Last_SQL_Error: The last errors registered by the I/O (receiver) and SQL
(applier) threads when processing the relay log. Ideally these should be blank, indicating no errors.

• Seconds_Behind_Source: The number of seconds that the replication SQL (applier) thread is
behind processing the source binary log. A high number (or an increasing one) can indicate that the
replica is unable to handle events from the source in a timely fashion.

A value of 0 for Seconds_Behind_Source can usually be interpreted as meaning that the replica
has caught up with the source, but there are some cases where this is not strictly true. For example,
this can occur if the network connection between source and replica is broken but the replication I/O
(receiver) thread has not yet noticed this; that is, the time period set by replica_net_timeout or
slave_net_timeout has not yet elapsed.

It is also possible that transient values for Seconds_Behind_Source may not reflect
the situation accurately. When the replication SQL (applier) thread has caught up on I/O,
Seconds_Behind_Source displays 0; but when the replication I/O (receiver) thread is still
queuing up a new event, Seconds_Behind_Source may show a large value until the replication
applier thread finishes executing the new event. This is especially likely when the events have old
timestamps; in such cases, if you execute SHOW REPLICA STATUS several times in a relatively
short period, you may see this value change back and forth repeatedly between 0 and a relatively
large value.

Several pairs of fields provide information about the progress of the replica in reading events from the
source binary log and processing them in the relay log:

• (Master_Log_file, Read_Master_Log_Pos): Coordinates in the source binary log indicating
how far the replication I/O (receiver) thread has read events from that log.

• (Relay_Master_Log_File, Exec_Master_Log_Pos): Coordinates in the source binary log
indicating how far the replication SQL (applier) thread has executed events received from that log.

3780

Common Replication Administration Tasks

• (Relay_Log_File, Relay_Log_Pos): Coordinates in the replica relay log indicating how far the
replication SQL (applier) thread has executed the relay log. These correspond to the preceding
coordinates, but are expressed in replica relay log coordinates rather than source binary log
coordinates.

On the source, you can check the status of connected replicas using SHOW PROCESSLIST to examine
the list of running processes. Replica connections have Binlog Dump in the Command field:

mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
 Id: 10
 User: root
 Host: replica1:58371
 db: NULL
Command: Binlog Dump
 Time: 777
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL

Because it is the replica that drives the replication process, very little information is available in this
report.

For replicas that were started with the --report-host option and are connected to the source, the
SHOW REPLICAS (or before MySQL 8.0.22, SHOW SLAVE HOSTS) statement on the source shows
basic information about the replicas. The output includes the ID of the replica server, the value of the
--report-host option, the connecting port, and source ID:

mysql> SHOW REPLICAS;
+-----------+----------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Source_id |
+-----------+----------+------+-------------------+-----------+
| 10 | replica1 | 3306 | 0 | 1 |
+-----------+----------+------+-------------------+-----------+
1 row in set (0.00 sec)

19.1.7.2 Pausing Replication on the Replica

You can stop and start replication on the replica using the STOP REPLICA and START REPLICA
statements. From MySQL 8.0.22, STOP SLAVE and START SLAVE are deprecated, and STOP
REPLICA and START REPLICA are available to use instead.

To stop processing of the binary log from the source, use STOP REPLICA:

mysql> STOP SLAVE;
Or from MySQL 8.0.22:
mysql> STOP REPLICA;

When replication is stopped, the replication I/O (receiver) thread stops reading events from the source
binary log and writing them to the relay log, and the SQL thread stops reading events from the relay log
and executing them. You can pause the I/O (receiver) or SQL (applier) thread individually by specifying
the thread type:

mysql> STOP SLAVE IO_THREAD;
mysql> STOP SLAVE SQL_THREAD;
Or from MySQL 8.0.22:
mysql> STOP REPLICA IO_THREAD;
mysql> STOP REPLICA SQL_THREAD;

To start execution again, use the START REPLICA statement:

mysql> START SLAVE;
Or from MySQL 8.0.22:
mysql> START REPLICA;

To start a particular thread, specify the thread type:

mysql> START SLAVE IO_THREAD;
mysql> START SLAVE SQL_THREAD;

3781

Common Replication Administration Tasks

Or from MySQL 8.0.22:
mysql> START REPLICA IO_THREAD;
mysql> START REPLICA SQL_THREAD;

For a replica that performs updates only by processing events from the source, stopping only the SQL
thread can be useful if you want to perform a backup or other task. The I/O (receiver) thread continues
to read events from the source but they are not executed. This makes it easier for the replica to catch
up when you restart the SQL (applier) thread.

Stopping only the receiver thread enables the events in the relay log to be executed by the applier
thread up to the point where the relay log ends. This can be useful when you want to pause execution
to catch up with events already received from the source, when you want to perform administration on
the replica but also ensure that it has processed all updates to a specific point. This method can also
be used to pause event receipt on the replica while you conduct administration on the source. Stopping
the receiver thread but permitting the applier thread to run helps ensure that there is not a massive
backlog of events to be executed when replication is started again.

19.1.7.3 Skipping Transactions

If replication stops due to an issue with an event in a replicated transaction, you can resume replication
by skipping the failed transaction on the replica. Before skipping a transaction, ensure that the
replication I/O (receiver) thread is stopped as well as the SQL (applier) thread.

First you need to identify the replicated event that caused the error. Details of the error and
the last successfully applied transaction are recorded in the Performance Schema table
replication_applier_status_by_worker. You can use mysqlbinlog to retrieve and display
the events that were logged around the time of the error. For instructions to do this, see Section 9.5,
“Point-in-Time (Incremental) Recovery”. Alternatively, you can issue SHOW RELAYLOG EVENTS on the
replica or SHOW BINLOG EVENTS on the source.

Before skipping the transaction and restarting the replica, check these points:

• Is the transaction that stopped replication from an unknown or untrusted source? If so, investigate
the cause in case there are any security considerations that indicate the replica should not be
restarted.

• Does the transaction that stopped replication need to be applied on the replica? If so, either make
the appropriate corrections and reapply the transaction, or manually reconcile the data on the replica.

• Did the transaction that stopped replication need to be applied on the source? If not, undo the
transaction manually on the server where it originally took place.

To skip the transaction, choose one of the following methods as appropriate:

• When GTIDs are in use (gtid_mode is ON), see Skipping Transactions With GTIDs .

• When GTIDs are not in use or are being phased in (gtid_mode is OFF, OFF_PERMISSIVE, or
ON_PERMISSIVE), see Skipping Transactions Without GTIDs.

• If you have enabled GTID assignment on a replication channel using the
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE REPLICATION
SOURCE TO or CHANGE MASTER TO statement, see Skipping Transactions Without GTIDs. Using
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS on a replication channel is not the same as
introducing GTID-based replication for the channel, and you cannot use the transaction skipping
method for GTID-based replication with those channels.

To restart replication after skipping the transaction, issue START REPLICA, with the FOR CHANNEL
clause if the replica is a multi-source replica.

Skipping Transactions With GTIDs

When GTIDs are in use (gtid_mode is ON), the GTID for a committed transaction is persisted on
the replica even if the content of the transaction is filtered out. This feature prevents a replica from

3782

Common Replication Administration Tasks

retrieving previously filtered transactions when it reconnects to the source using GTID auto-positioning.
It can also be used to skip a transaction on the replica, by committing an empty transaction in place of
the failing transaction.

This method of skipping transactions is not suitable when you have enabled GTID assignment on a
replication channel using the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE
REPLICATION SOURCE TO statement.

If the failing transaction generated an error in a worker thread, you can obtain its GTID
directly from the APPLYING_TRANSACTION field in the Performance Schema table
replication_applier_status_by_worker. To see what the transaction is, issue SHOW
RELAYLOG EVENTS on the replica or SHOW BINLOG EVENTS on the source, and search the output for
a transaction preceded by that GTID.

When you have assessed the failing transaction for any other appropriate actions as described
previously (such as security considerations), to skip it, commit an empty transaction on the replica that
has the same GTID as the failing transaction. For example:

SET GTID_NEXT='aaa-bbb-ccc-ddd:N';
BEGIN;
COMMIT;
SET GTID_NEXT='AUTOMATIC';

The presence of this empty transaction on the replica means that when you issue a START REPLICA
statement to restart replication, the replica uses the auto-skip function to ignore the failing transaction,
because it sees a transaction with that GTID has already been applied. If the replica is a multi-source
replica, you do not need to specify the channel name when you commit the empty transaction, but you
do need to specify the channel name when you issue START REPLICA.

Note that if binary logging is in use on this replica, the empty transaction enters the replication stream
if the replica becomes a source or primary in the future. If you need to avoid this possibility, consider
flushing and purging the replica's binary logs, as in this example:

FLUSH LOGS;
PURGE BINARY LOGS TO 'binlog.000146';

The GTID of the empty transaction is persisted, but the transaction itself is removed by purging the
binary log files.

Skipping Transactions Without GTIDs

To skip failing transactions when GTIDs are not in use or are being phased in (gtid_mode is OFF,
OFF_PERMISSIVE, or ON_PERMISSIVE), you can skip a specified number of events by issuing a
SET GLOBAL sql_replica_skip_counter statement (from MySQL 8.0.26) or a SET GLOBAL
sql_slave_skip_counter statement. Alternatively, you can skip past an event or events by issuing
a CHANGE REPLICATION SOURCE TO or CHANGE MASTER TO statement to move the source binary
log position forward.

These methods are also suitable when you have enabled GTID assignment on a replication channel
using the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE REPLICATION
SOURCE TO or CHANGE MASTER TO statement.

When you use these methods, it is important to understand that you are not necessarily skipping a
complete transaction, as is always the case with the GTID-based method described previously. These
non-GTID-based methods are not aware of transactions as such, but instead operate on events.
The binary log is organized as a sequence of groups known as event groups, and each event group
consists of a sequence of events.

• For transactional tables, an event group corresponds to a transaction.

• For nontransactional tables, an event group corresponds to a single SQL statement.

3783

Common Replication Administration Tasks

A single transaction can contain changes to both transactional and nontransactional tables.

When you use a SET GLOBAL sql_replica_skip_counter or SET GLOBAL
sql_slave_skip_counter statement to skip events and the resulting position is in the middle of an
event group, the replica continues to skip events until it reaches the end of the group. Execution then
starts with the next event group. The CHANGE REPLICATION SOURCE TO or CHANGE MASTER TO
statement does not have this function, so you must be careful to identify the correct location to restart
replication at the beginning of an event group. However, using CHANGE REPLICATION SOURCE TO or
CHANGE MASTER TO means you do not have to count the events that need to be skipped, as you do
with SET GLOBAL sql_replica_skip_counter or SET GLOBAL sql_slave_skip_counter,
and instead you can just specify the location to restart.

Skipping Transactions With SET GLOBAL sql_slave_skip_counter

When you have assessed the failing transaction for any other appropriate actions as described
previously (such as security considerations), count the number of events that you need to
skip. One event normally corresponds to one SQL statement in the binary log, but note that
statements that use AUTO_INCREMENT or LAST_INSERT_ID() count as two events in the
binary log. When binary log transaction compression is in use, a compressed transaction payload
(Transaction_payload_event) is counted as a single counter value, so all the events inside it are
skipped as a unit.

If you want to skip the complete transaction, you can count the events to the end of the
transaction, or you can just skip the relevant event group. Remember that with SET GLOBAL
sql_replica_skip_counter or SET GLOBAL sql_slave_skip_counter, the replica continues
to skip to the end of an event group. Make sure you do not skip too far forward and go into the next
event group or transaction so that it is not also skipped.

Issue the SET statement as follows, where N is the number of events from the source to skip:

SET GLOBAL sql_slave_skip_counter = N

Or from MySQL 8.0.26:
SET GLOBAL sql_replica_skip_counter = N

This statement cannot be issued if gtid_mode=ON is set, or if the replication I/O (receiver) and SQL
(applier) threads are running.

The SET GLOBAL sql_replica_skip_counter or SET GLOBAL sql_slave_skip_counter
statement has no immediate effect. When you issue the START REPLICA statement for the next time
following this SET statement, the new value for the system variable sql_replica_skip_counter or
sql_slave_skip_counter is applied, and the events are skipped. That START REPLICA statement
also automatically sets the value of the system variable back to 0. If the replica is a multi-source
replica, when you issue that START REPLICA statement, the FOR CHANNEL clause is required. Make
sure that you name the correct channel, otherwise events are skipped on the wrong channel.

Skipping Transactions With CHANGE MASTER TO

When you have assessed the failing transaction for any other appropriate actions as described
previously (such as security considerations), identify the coordinates (file and position) in the source's
binary log that represent a suitable position to restart replication. This can be the start of the event
group following the event that caused the issue, or the start of the next transaction. The replication I/O
(receiver) thread begins reading from the source at these coordinates the next time the thread starts,
skipping the failing event. Make sure that you have identified the position accurately, because this
statement does not take event groups into account.

Issue the CHANGE REPLICATION SOURCE TO or CHANGE MASTER TO statement as follows, where
source_log_name is the binary log file that contains the restart position, and source_log_pos is
the number representing the restart position as stated in the binary log file:

CHANGE MASTER TO MASTER_LOG_FILE='source_log_name', MASTER_LOG_POS=source_log_pos;

3784

Replication Implementation

Or from MySQL 8.0.24:
CHANGE REPLICATION SOURCE TO SOURCE_LOG_FILE='source_log_name', SOURCE_LOG_POS=source_log_pos;

If the replica is a multi-source replica, you must use the FOR CHANNEL clause to name the appropriate
channel on the CHANGE REPLICATION SOURCE TO or CHANGE MASTER TO statement.

This statement cannot be issued if SOURCE_AUTO_POSITION=1 or MASTER_AUTO_POSITION=1 is
set, or if the replication I/O (receiver) and SQL (applier) threads are running. If you need to use this
method of skipping a transaction when SOURCE_AUTO_POSITION=1 or MASTER_AUTO_POSITION=1
is normally set, you can change the setting to SOURCE_AUTO_POSITION=0 or
MASTER_AUTO_POSITION=0 while issuing the statement, then change it back again afterwards. For
example:

CHANGE MASTER TO MASTER_AUTO_POSITION=0, MASTER_LOG_FILE='binlog.000145', MASTER_LOG_POS=235;
CHANGE MASTER TO MASTER_AUTO_POSITION=1;

Or from MySQL 8.0.24:

CHANGE REPLICATION SOURCE TO SOURCE_AUTO_POSITION=0, SOURCE_LOG_FILE='binlog.000145', SOURCE_LOG_POS=235;
CHANGE REPLICATION SOURCE TO SOURCE_AUTO_POSITION=1;

19.2 Replication Implementation
Replication is based on the source server keeping track of all changes to its databases (updates,
deletes, and so on) in its binary log. The binary log serves as a written record of all events that modify
database structure or content (data) from the moment the server was started. Typically, SELECT
statements are not recorded because they modify neither database structure nor content.

Each replica that connects to the source requests a copy of the binary log. That is, it pulls the data from
the source, rather than the source pushing the data to the replica. The replica also executes the events
from the binary log that it receives. This has the effect of repeating the original changes just as they
were made on the source. Tables are created or their structure modified, and data is inserted, deleted,
and updated according to the changes that were originally made on the source.

Because each replica is independent, the replaying of the changes from the source's binary log occurs
independently on each replica that is connected to the source. In addition, because each replica
receives a copy of the binary log only by requesting it from the source, the replica is able to read and
update the copy of the database at its own pace and can start and stop the replication process at will
without affecting the ability to update to the latest database status on either the source or replica side.

For more information on the specifics of the replication implementation, see Section 19.2.3,
“Replication Threads”.

Source servers and replicas report their status in respect of the replication process regularly so that
you can monitor them. See Section 10.14, “Examining Server Thread (Process) Information”, for
descriptions of all replicated-related states.

The source's binary log is written to a local relay log on the replica before it is processed. The replica
also records information about the current position with the source's binary log and the local relay log.
See Section 19.2.4, “Relay Log and Replication Metadata Repositories”.

Database changes are filtered on the replica according to a set of rules that are applied according to
the various configuration options and variables that control event evaluation. For details on how these
rules are applied, see Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”.

19.2.1 Replication Formats

Replication works because events written to the binary log are read from the source and then
processed on the replica. The events are recorded within the binary log in different formats according
to the type of event. The different replication formats used correspond to the binary logging format
used when the events were recorded in the source's binary log. The correlation between binary logging
formats and the terms used during replication are:

3785

Replication Formats

• When using statement-based binary logging, the source writes SQL statements to the binary log.
Replication of the source to the replica works by executing the SQL statements on the replica. This
is called statement-based replication (which can be abbreviated as SBR), which corresponds to the
MySQL statement-based binary logging format.

• When using row-based logging, the source writes events to the binary log that indicate how individual
table rows are changed. Replication of the source to the replica works by copying the events
representing the changes to the table rows to the replica. This is called row-based replication (which
can be abbreviated as RBR).

Row-based logging is the default method.

• You can also configure MySQL to use a mix of both statement-based and row-based logging,
depending on which is most appropriate for the change to be logged. This is called mixed-format
logging. When using mixed-format logging, a statement-based log is used by default. Depending
on certain statements, and also the storage engine being used, the log is automatically switched
to row-based in particular cases. Replication using the mixed format is referred to as mixed-based
replication or mixed-format replication. For more information, see Section 7.4.4.3, “Mixed Binary
Logging Format”.

NDB Cluster. The default binary logging format in MySQL NDB Cluster 8.0 is MIXED. You should
note that NDB Cluster Replication always uses row-based replication, and that the NDB storage engine
is incompatible with statement-based replication. See Section 25.7.2, “General Requirements for NDB
Cluster Replication”, for more information.

When using MIXED format, the binary logging format is determined in part by the storage engine being
used and the statement being executed. For more information on mixed-format logging and the rules
governing the support of different logging formats, see Section 7.4.4.3, “Mixed Binary Logging Format”.

The logging format in a running MySQL server is controlled by setting the binlog_format server
system variable. This variable can be set with session or global scope. The rules governing when and
how the new setting takes effect are the same as for other MySQL server system variables. Setting the
variable for the current session lasts only until the end of that session, and the change is not visible
to other sessions. Setting the variable globally takes effect for clients that connect after the change,
but not for any current client sessions, including the session where the variable setting was changed.
To make the global system variable setting permanent so that it applies across server restarts, you
must set it in an option file. For more information, see Section 15.7.6.1, “SET Syntax for Variable
Assignment”.

There are conditions under which you cannot change the binary logging format at runtime or doing so
causes replication to fail. See Section 7.4.4.2, “Setting The Binary Log Format”.

Changing the global binlog_format value requires privileges sufficient to set global system
variables. Changing the session binlog_format value requires privileges sufficient to set restricted
session system variables. See Section 7.1.9.1, “System Variable Privileges”.

Note

Changing the binary logging format (binlog_format system variable) is
deprecated as of MySQL 8.0.34. In a future version of MySQL, you can expect
binlog_format to be removed altogether, and for the row-based format to
become the only logging format used by MySQL.

The statement-based and row-based replication formats have different issues and limitations. For a
comparison of their relative advantages and disadvantages, see Section 19.2.1.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

With statement-based replication, you may encounter issues with replicating stored routines or
triggers. You can avoid these issues by using row-based replication instead. For more information, see
Section 27.7, “Stored Program Binary Logging”.

3786

Replication Formats

19.2.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication

Each binary logging format has advantages and disadvantages. For most users, the mixed replication
format should provide the best combination of data integrity and performance. If, however, you want to
take advantage of the features specific to the statement-based or row-based replication format when
performing certain tasks, you can use the information in this section, which provides a summary of their
relative advantages and disadvantages, to determine which is best for your needs.

• Advantages of statement-based replication

• Disadvantages of statement-based replication

• Advantages of row-based replication

• Disadvantages of row-based replication

Advantages of statement-based replication

• Proven technology.

• Less data written to log files. When updates or deletes affect many rows, this results in much less
storage space required for log files. This also means that taking and restoring from backups can be
accomplished more quickly.

• Log files contain all statements that made any changes, so they can be used to audit the database.

Disadvantages of statement-based replication

• Statements that are unsafe for SBR.
Not all statements which modify data (such as INSERT DELETE, UPDATE, and REPLACE statements)
can be replicated using statement-based replication. Any nondeterministic behavior is difficult to
replicate when using statement-based replication. Examples of such Data Modification Language
(DML) statements include the following:

• A statement that depends on a loadable function or stored program that is nondeterministic, since
the value returned by such a function or stored program or depends on factors other than the
parameters supplied to it. (Row-based replication, however, simply replicates the value returned by
the function or stored program, so its effect on table rows and data is the same on both the source
and replica.) See Section 19.5.1.16, “Replication of Invoked Features”, for more information.

• DELETE and UPDATE statements that use a LIMIT clause without an ORDER BY are
nondeterministic. See Section 19.5.1.18, “Replication and LIMIT”.

• Locking read statements (SELECT ... FOR UPDATE and SELECT ... FOR SHARE) that use
NOWAIT or SKIP LOCKED options. See Locking Read Concurrency with NOWAIT and SKIP
LOCKED.

• Deterministic loadable functions must be applied on the replicas.

• Statements using any of the following functions cannot be replicated properly using statement-
based replication:

• LOAD_FILE()

• UUID(), UUID_SHORT()

• USER()

• FOUND_ROWS()

• SYSDATE() (unless both the source and the replica are started with the --sysdate-is-now
option)

3787

Replication Formats

• GET_LOCK()

• IS_FREE_LOCK()

• IS_USED_LOCK()

• MASTER_POS_WAIT()

• RAND()

• RELEASE_LOCK()

• SOURCE_POS_WAIT()

• SLEEP()

• VERSION()

However, all other functions are replicated correctly using statement-based replication, including
NOW() and so forth.

For more information, see Section 19.5.1.14, “Replication and System Functions”.

Statements that cannot be replicated correctly using statement-based replication are logged with a
warning like the one shown here:

[Warning] Statement is not safe to log in statement format.

A similar warning is also issued to the client in such cases. The client can display it using SHOW
WARNINGS.

• INSERT ... SELECT requires a greater number of row-level locks than with row-based replication.

• UPDATE statements that require a table scan (because no index is used in the WHERE clause) must
lock a greater number of rows than with row-based replication.

• For InnoDB: An INSERT statement that uses AUTO_INCREMENT blocks other nonconflicting INSERT
statements.

• For complex statements, the statement must be evaluated and executed on the replica before the
rows are updated or inserted. With row-based replication, the replica only has to modify the affected
rows, not execute the full statement.

• If there is an error in evaluation on the replica, particularly when executing complex statements,
statement-based replication may slowly increase the margin of error across the affected rows over
time. See Section 19.5.1.29, “Replica Errors During Replication”.

• Stored functions execute with the same NOW() value as the calling statement. However, this is not
true of stored procedures.

• Deterministic loadable functions must be applied on the replicas.

• Table definitions must be (nearly) identical on source and replica. See Section 19.5.1.9, “Replication
with Differing Table Definitions on Source and Replica”, for more information.

• As of MySQL 8.0.22, DML operations that read data from MySQL grant tables (through a join list or
subquery) but do not modify them are performed as non-locking reads on the MySQL grant tables
and are therefore not safe for statement-based replication. For more information, see Grant Table
Concurrency.

Advantages of row-based replication

• All changes can be replicated. This is the safest form of replication.

3788

Replication Formats

Note

Statements that update the information in the mysql system schema, such as
GRANT, REVOKE and the manipulation of triggers, stored routines (including
stored procedures), and views, are all replicated to replicas using statement-
based replication.

For statements such as CREATE TABLE ... SELECT, a CREATE statement
is generated from the table definition and replicated using statement-based
format, while the row insertions are replicated using row-based format.

• Fewer row locks are required on the source, which thus achieves higher concurrency, for the
following types of statements:

• INSERT ... SELECT

• INSERT statements with AUTO_INCREMENT

• UPDATE or DELETE statements with WHERE clauses that do not use keys or do not change most of
the examined rows.

• Fewer row locks are required on the replica for any INSERT, UPDATE, or DELETE statement.

Disadvantages of row-based replication

• RBR can generate more data that must be logged. To replicate a DML statement (such as an
UPDATE or DELETE statement), statement-based replication writes only the statement to the binary
log. By contrast, row-based replication writes each changed row to the binary log. If the statement
changes many rows, row-based replication may write significantly more data to the binary log; this is
true even for statements that are rolled back. This also means that making and restoring a backup
can require more time. In addition, the binary log is locked for a longer time to write the data, which
may cause concurrency problems. Use binlog_row_image=minimal to reduce the disadvantage
considerably.

• Deterministic loadable functions that generate large BLOB values take longer to replicate with row-
based replication than with statement-based replication. This is because the BLOB column value is
logged, rather than the statement generating the data.

• You cannot see on the replica what statements were received from the source and executed.
However, you can see what data was changed using mysqlbinlog with the options --base64-
output=DECODE-ROWS and --verbose.

Alternatively, use the binlog_rows_query_log_events variable, which if enabled adds a
Rows_query event with the statement to mysqlbinlog output when the -vv option is used.

• For tables using the MyISAM storage engine, a stronger lock is required on the replica for INSERT
statements when applying them as row-based events to the binary log than when applying them as
statements. This means that concurrent inserts on MyISAM tables are not supported when using row-
based replication.

19.2.1.2 Usage of Row-Based Logging and Replication

MySQL uses statement-based logging (SBL), row-based logging (RBL) or mixed-format logging.
The type of binary log used impacts the size and efficiency of logging. Therefore the choice between
row-based replication (RBR) or statement-based replication (SBR) depends on your application and
environment. This section describes known issues when using a row-based format log, and describes
some best practices using it in replication.

For additional information, see Section 19.2.1, “Replication Formats”, and Section 19.2.1.1,
“Advantages and Disadvantages of Statement-Based and Row-Based Replication”.

3789

Replication Formats

For information about issues specific to NDB Cluster Replication (which depends on row-based
replication), see Section 25.7.3, “Known Issues in NDB Cluster Replication”.

• Row-based logging of temporary tables. As noted in Section 19.5.1.31, “Replication and
Temporary Tables”, temporary tables are not replicated when using row-based format or (from
MySQL 8.0.4) mixed format. For more information, see Section 19.2.1.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

Temporary tables are not replicated when using row-based or mixed format because there is no
need. In addition, because temporary tables can be read only from the thread which created them,
there is seldom if ever any benefit obtained from replicating them, even when using statement-based
format.

You can switch from statement-based to row-based binary logging format at runtime even when
temporary tables have been created. However, in MySQL 8.0, you cannot switch from row-based
or mixed format for binary logging to statement-based format at runtime, due to any CREATE
TEMPORARY TABLE statements having been omitted from the binary log in the previous mode.

The MySQL server tracks the logging mode that was in effect when each temporary table was
created. When a given client session ends, the server logs a DROP TEMPORARY TABLE IF
EXISTS statement for each temporary table that still exists and was created when statement-based
binary logging was in use. If row-based or mixed format binary logging was in use when the table
was created, the DROP TEMPORARY TABLE IF EXISTS statement is not logged. In releases
before MySQL 8.0.4 and 5.7.25, the DROP TEMPORARY TABLE IF EXISTS statement was logged
regardless of the logging mode that was in effect.

Nontransactional DML statements involving temporary tables are allowed when using
binlog_format=ROW, as long as any nontransactional tables affected by the statements are
temporary tables (Bug #14272672).

• RBL and synchronization of nontransactional tables. When many rows are affected, the set
of changes is split into several events; when the statement commits, all of these events are written
to the binary log. When executing on the replica, a table lock is taken on all tables involved, and then
the rows are applied in batch mode. Depending on the engine used for the replica's copy of the table,
this may or may not be effective.

• Latency and binary log size. RBL writes changes for each row to the binary log and so its size
can increase quite rapidly. This can significantly increase the time required to make changes on the
replica that match those on the source. You should be aware of the potential for this delay in your
applications.

• Reading the binary log. mysqlbinlog displays row-based events in the binary log using the
BINLOG statement. This statement displays an event as a base 64-encoded string, the meaning of
which is not evident. When invoked with the --base64-output=DECODE-ROWS and --verbose
options, mysqlbinlog formats the contents of the binary log to be human readable. When binary
log events were written in row-based format and you want to read or recover from a replication or
database failure you can use this command to read contents of the binary log. For more information,
see Section 6.6.9.2, “mysqlbinlog Row Event Display”.

• Binary log execution errors and replica execution mode. Using
slave_exec_mode=IDEMPOTENT is generally only useful with MySQL NDB Cluster replication,
for which IDEMPOTENT is the default value. (See Section 25.7.10, “NDB Cluster Replication:
Bidirectional and Circular Replication”). When the system variable replica_exec_mode
or slave_exec_mode is IDEMPOTENT, a failure to apply changes from RBL because the
original row cannot be found does not trigger an error or cause replication to fail. This means
that it is possible that updates are not applied on the replica, so that the source and replica are
no longer synchronized. Latency issues and use of nontransactional tables with RBR when
replica_exec_mode or slave_exec_mode is IDEMPOTENT can cause the source and replica to
diverge even further. For more information about replica_exec_mode and slave_exec_mode,
see Section 7.1.8, “Server System Variables”.

3790

Replication Formats

For other scenarios, setting replica_exec_mode or slave_exec_mode to STRICT is normally
sufficient; this is the default value for storage engines other than NDB.

• Filtering based on server ID not supported. You can filter based on server ID by using the
IGNORE_SERVER_IDS option for the CHANGE REPLICATION SOURCE TO statement (from MySQL
8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23). This option works with statement-
based and row-based logging formats, but is deprecated for use when GTID_MODE=ON is set.
Another method to filter out changes on some replicas is to use a WHERE clause that includes the
relation @@server_id <> id_value clause with UPDATE and DELETE statements. For example,
WHERE @@server_id <> 1. However, this does not work correctly with row-based logging. To use
the server_id system variable for statement filtering, use statement-based logging.

• RBL, nontransactional tables, and stopped replicas. When using row-based logging, if the
replica server is stopped while a replica thread is updating a nontransactional table, the replica
database can reach an inconsistent state. For this reason, it is recommended that you use a
transactional storage engine such as InnoDB for all tables replicated using the row-based format.
Use of STOP REPLICA or STOP REPLICA SQL_THREAD (prior to MySQL 8.0.22, use STOP slave
or STOP SLAVE SQL_THREAD) prior to shutting down the replica MySQL server helps prevent
issues from occurring, and is always recommended regardless of the logging format or storage
engine you use.

19.2.1.3 Determination of Safe and Unsafe Statements in Binary Logging

The “safeness” of a statement in MySQL replication refers to whether the statement and its effects can
be replicated correctly using statement-based format. If this is true of the statement, we refer to the
statement as safe; otherwise, we refer to it as unsafe.

In general, a statement is safe if it deterministic, and unsafe if it is not. However, certain
nondeterministic functions are not considered unsafe (see Nondeterministic functions not considered
unsafe, later in this section). In addition, statements using results from floating-point math functions—
which are hardware-dependent—are always considered unsafe (see Section 19.5.1.12, “Replication
and Floating-Point Values”).

Handling of safe and unsafe statements. A statement is treated differently depending on whether
the statement is considered safe, and with respect to the binary logging format (that is, the current
value of binlog_format).

• When using row-based logging, no distinction is made in the treatment of safe and unsafe
statements.

• When using mixed-format logging, statements flagged as unsafe are logged using the row-based
format; statements regarded as safe are logged using the statement-based format.

• When using statement-based logging, statements flagged as being unsafe generate a warning to this
effect. Safe statements are logged normally.

Each statement flagged as unsafe generates a warning. If a large number of such statements were
executed on the source, this could lead to excessively large error log files. To prevent this, MySQL has
a warning suppression mechanism. Whenever the 50 most recent ER_BINLOG_UNSAFE_STATEMENT
warnings have been generated more than 50 times in any 50-second period, warning suppression
is enabled. When activated, this causes such warnings not to be written to the error log; instead, for
each 50 warnings of this type, a note The last warning was repeated N times in last
S seconds is written to the error log. This continues as long as the 50 most recent such warnings
were issued in 50 seconds or less; once the rate has decreased below this threshold, the warnings are
once again logged normally. Warning suppression has no effect on how the safety of statements for
statement-based logging is determined, nor on how warnings are sent to the client. MySQL clients still
receive one warning for each such statement.

For more information, see Section 19.2.1, “Replication Formats”.

3791

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_binlog_unsafe_statement

Replication Formats

Statements considered unsafe.
Statements with the following characteristics are considered unsafe:

• Statements containing system functions that may return a different value on the replica.
These functions include FOUND_ROWS(), GET_LOCK(), IS_FREE_LOCK(), IS_USED_LOCK(),
LOAD_FILE(), MASTER_POS_WAIT(), RAND(), RELEASE_LOCK(), ROW_COUNT(),
SESSION_USER(), SLEEP(), SOURCE_POS_WAIT(), SYSDATE(), SYSTEM_USER(), USER(),
UUID(), and UUID_SHORT().

Nondeterministic functions not considered unsafe. Although these functions are not
deterministic, they are treated as safe for purposes of logging and replication: CONNECTION_ID(),
CURDATE(), CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP(), CURTIME(),
LAST_INSERT_ID(), LOCALTIME(), LOCALTIMESTAMP(), NOW(), UNIX_TIMESTAMP(),
UTC_DATE(), UTC_TIME(), and UTC_TIMESTAMP().

For more information, see Section 19.5.1.14, “Replication and System Functions”.

• References to system variables. Most system variables are not replicated correctly using the
statement-based format. See Section 19.5.1.39, “Replication and Variables”. For exceptions, see
Section 7.4.4.3, “Mixed Binary Logging Format”.

• Loadable Functions. Since we have no control over what a loadable function does, we must
assume that it is executing unsafe statements.

• Fulltext plugin. This plugin may behave differently on different MySQL servers; therefore,
statements depending on it could have different results. For this reason, all statements relying on the
fulltext plugin are treated as unsafe in MySQL.

• Trigger or stored program updates a table having an AUTO_INCREMENT column. This is
unsafe because the order in which the rows are updated may differ on the source and the replica.

In addition, an INSERT into a table that has a composite primary key containing an
AUTO_INCREMENT column that is not the first column of this composite key is unsafe.

For more information, see Section 19.5.1.1, “Replication and AUTO_INCREMENT”.

• INSERT ... ON DUPLICATE KEY UPDATE statements on tables with multiple primary or unique
keys. When executed against a table that contains more than one primary or unique key, this
statement is considered unsafe, being sensitive to the order in which the storage engine checks
the keys, which is not deterministic, and on which the choice of rows updated by the MySQL Server
depends.

An INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more than one
unique or primary key is marked as unsafe for statement-based replication. (Bug #11765650, Bug
#58637)

• Updates using LIMIT. The order in which rows are retrieved is not specified, and is therefore
considered unsafe. See Section 19.5.1.18, “Replication and LIMIT”.

• Accesses or references log tables. The contents of the system log table may differ between
source and replica.

• Nontransactional operations after transactional operations. Within a transaction, allowing
any nontransactional reads or writes to execute after any transactional reads or writes is considered
unsafe.

For more information, see Section 19.5.1.35, “Replication and Transactions”.

• Accesses or references self-logging tables. All reads and writes to self-logging tables are
considered unsafe. Within a transaction, any statement following a read or write to self-logging tables
is also considered unsafe.

3792

Replication Channels

• LOAD DATA statements. LOAD DATA is treated as unsafe and when binlog_format=MIXED
the statement is logged in row-based format. When binlog_format=STATEMENT LOAD DATA
does not generate a warning, unlike other unsafe statements.

• XA transactions. If two XA transactions committed in parallel on the source are being prepared
on the replica in the inverse order, locking dependencies can occur with statement-based replication
that cannot be safely resolved, and it is possible for replication to fail with deadlock on the replica.
When binlog_format=STATEMENT is set, DML statements inside XA transactions are flagged as
being unsafe and generate a warning. When binlog_format=MIXED or binlog_format=ROW
is set, DML statements inside XA transactions are logged using row-based replication, and the
potential issue is not present.

• DEFAULT clause that refers to a nondeterministic function. If an expression default value
refers to a nondeterministic function, any statement that causes the expression to be evaluated is
unsafe for statement-based replication. This includes statements such as INSERT, UPDATE, and
ALTER TABLE. Unlike most other unsafe statements, this category of statement cannot be replicated
safely in row-based format. When binlog_format is set to STATEMENT, the statement is logged
and executed but a warning message is written to the error log. When binlog_format is set to
MIXED or ROW, the statement is not executed and an error message is written to the error log. For
more information on the handling of explicit defaults, see Explicit Default Handling as of MySQL
8.0.13.

For additional information, see Section 19.5.1, “Replication Features and Issues”.

19.2.2 Replication Channels

In MySQL multi-source replication, a replica opens multiple replication channels, one for each source
server. The replication channels represent the path of transactions flowing from a source to the replica.
Each replication channel has its own receiver (I/O) thread, one or more applier (SQL) threads, and
relay log. When transactions from a source are received by a channel's receiver thread, they are added
to the channel's relay log file and passed through to the channel's applier threads. This enables each
channel to function independently.

This section describes how channels can be used in a replication topology, and the impact they
have on single-source replication. For instructions to configure sources and replicas for multi-source
replication, to start, stop and reset multi-source replicas, and to monitor multi-source replication, see
Section 19.1.5, “MySQL Multi-Source Replication”.

The maximum number of channels that can be created on one replica server in a multi-source
replication topology is 256. Each replication channel must have a unique (nonempty) name, as
explained in Section 19.2.2.4, “Replication Channel Naming Conventions”. The error codes and
messages that are issued when multi-source replication is enabled specify the channel that generated
the error.

Note

Each channel on a multi-source replica must replicate from a different source.
You cannot set up multiple replication channels from a single replica to a
single source. This is because the server IDs of replicas must be unique in a
replication topology. The source distinguishes replicas only by their server IDs,
not by the names of the replication channels, so it cannot recognize different
replication channels from the same replica.

A multi-source replica can also be set up as a multi-threaded replica, by setting the system variable
replica_parallel_workers (from MySQL 8.0.26) or slave_parallel_workers (before MySQL
8.0.26) to a value greater than 0. When you do this on a multi-source replica, each channel on the
replica has the specified number of applier threads, plus a coordinator thread to manage them. You
cannot configure the number of applier threads for individual channels.

From MySQL 8.0, multi-source replicas can be configured with replication filters on specific replication
channels. Channel specific replication filters can be used when the same database or table is

3793

Replication Channels

present on multiple sources, and you only need the replica to replicate it from one source. For GTID-
based replication, if the same transaction might arrive from multiple sources (such as in a diamond
topology), you must ensure the filtering setup is the same on all channels. For more information, see
Section 19.2.5.4, “Replication Channel Based Filters”.

To provide compatibility with previous versions, the MySQL server automatically creates on startup
a default channel whose name is the empty string (""). This channel is always present; it cannot
be created or destroyed by the user. If no other channels (having nonempty names) have been
created, replication statements act on the default channel only, so that all replication statements from
older replicas function as expected (see Section 19.2.2.2, “Compatibility with Previous Replication
Statements”. Statements applying to replication channels as described in this section can be used only
when there is at least one named channel.

19.2.2.1 Commands for Operations on a Single Channel

To enable MySQL replication operations to act on individual replication channels, use the FOR
CHANNEL channel clause with the following replication statements:

• CHANGE REPLICATION SOURCE TO

• CHANGE MASTER TO

• START REPLICA (or before MySQL 8.0.22, START SLAVE)

• STOP REPLICA (or before MySQL 8.0.22, STOP SLAVE)

• SHOW RELAYLOG EVENTS

• FLUSH RELAY LOGS

• SHOW REPLICA STATUS (or before MySQL 8.0.22, SHOW SLAVE STATUS)

• RESET REPLICA (or before MySQL 8.0.22, RESET SLAVE)

The following functions have a channel parameter:

• MASTER_POS_WAIT()

• SOURCE_POS_WAIT()

The following statements are disallowed for the group_replication_recovery channel:

• START REPLICA

• STOP REPLICA

The following statements are disallowed for the group_replication_applier channel:

• START REPLICA

• STOP REPLICA

• SHOW REPLICA STATUS

FLUSH RELAY LOGS is now permitted for the group_replication_applier channel, but if the
request is received while a transaction is being applied, the request is performed after the transaction
ends. The requester must wait while the transaction is completed and the rotation takes place. This
behavior prevents transactions from being split, which is not permitted for Group Replication.

19.2.2.2 Compatibility with Previous Replication Statements

When a replica has multiple channels and a FOR CHANNEL channel option is not specified, a valid
statement generally acts on all available channels, with some specific exceptions.

3794

Replication Channels

For example, the following statements behave as expected for all except certain Group Replication
channels:

• START REPLICA starts replication threads for all channels, except the
group_replication_recovery and group_replication_applier channels.

• STOP REPLICA stops replication threads for all channels, except the
group_replication_recovery and group_replication_applier channels.

• SHOW REPLICA STATUS reports the status for all channels, except the
group_replication_applier channel.

• RESET REPLICA resets all channels.

Warning

Use RESET REPLICA with caution as this statement deletes all existing
channels, purges their relay log files, and recreates only the default channel.

Some replication statements cannot operate on all channels. In this case, error 1964 Multiple
channels exist on the replica. Please provide channel name as an argument.
is generated. The following statements and functions generate this error when used in a multi-source
replication topology and a FOR CHANNEL channel option is not used to specify which channel to act
on:

• SHOW RELAYLOG EVENTS

• CHANGE REPLICATION SOURCE TO

• CHANGE MASTER TO

• MASTER_POS_WAIT()

• SOURCE_POS_WAIT()

Note that a default channel always exists in a single source replication topology, where statements and
functions behave as in previous versions of MySQL.

19.2.2.3 Startup Options and Replication Channels

This section describes startup options which are impacted by the addition of replication channels.

The master_info_repository and relay_log_info_repository system variables
must not be set to FILE when you use replication channels. In MySQL 8.0, the FILE setting
is deprecated, and TABLE is the default, so the system variables can be omitted. From
MySQL 8.0.23, they must be omitted because their use is deprecated from that release. If
these system variables are set to FILE, attempting to add more sources to a replica fails with
ER_REPLICA_NEW_CHANNEL_WRONG_REPOSITORY.

The following startup options now affect all channels in a replication topology.

• --log-replica-updates or --log-slave-updates

All transactions received by the replica (even from multiple sources) are written in the binary log.

• --relay-log-purge

When set, each channel purges its own relay log automatically.

• --replica-transaction-retries or --slave-transaction-retries

The specified number of transaction retries can take place on all applier threads of all channels.

3795

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_replica_new_channel_wrong_repository

Replication Channels

• --skip-replica-start or --skip-slave-start (or skip_replica_start or
skip_slave_start system variable set)

No replication threads start on any channels.

• --replica-skip-errors or --slave-skip-errors

Execution continues and errors are skipped for all channels.

The values set for the following startup options apply on each channel; since these are mysqld startup
options, they are applied on every channel.

• --max-relay-log-size=size

Maximum size of the individual relay log file for each channel; after reaching this limit, the file is
rotated.

• --relay-log-space-limit=size

Upper limit for the total size of all relay logs combined, for each individual channel. For N channels,
the combined size of these logs is limited to relay_log_space_limit * N.

• --replica-parallel-workers=value or --slave-parallel-workers=value

Number of replication applier threads per channel.

• replica_checkpoint_group or slave_checkpoint_group

Waiting time by an receiver thread for each source.

• --relay-log-index=filename

Base name for each channel's relay log index file. See Section 19.2.2.4, “Replication Channel
Naming Conventions”.

• --relay-log=filename

Denotes the base name of each channel's relay log file. See Section 19.2.2.4, “Replication Channel
Naming Conventions”.

• --replica-net-timeout=N or --slave-net-timeout=N

This value is set per channel, so that each channel waits for N seconds to check for a broken
connection.

• --replica-skip-counter=N or --slave-skip-counter=N

This value is set per channel, so that each channel skips N events from its source.

19.2.2.4 Replication Channel Naming Conventions

This section describes how naming conventions are impacted by replication channels.

Each replication channel has a unique name which is a string with a maximum length of 64 characters
and is case-insensitive. Because channel names are used in the replica's applier metadata repository
table, the character set used for these is always UTF-8. Although you are generally free to use any
name for channels, the following names are reserved:

• group_replication_applier

• group_replication_recovery

The name you choose for a replication channel also influences the file names used by
a multi-source replica. The relay log files and index files for each channel are named

3796

Replication Threads

relay_log_basename-channel.xxxxxx, where relay_log_basename is a base name specified
using the relay_log system variable, and channel is the name of the channel logged to this file. If
you do not specify the relay_log system variable, a default file name is used that also includes the
name of the channel.

19.2.3 Replication Threads

MySQL replication capabilities are implemented using the following types of threads:

• Binary log dump thread. The source creates a thread to send the binary log contents to a replica
when the replica connects. This thread can be identified in the output of SHOW PROCESSLIST on the
source as the Binlog Dump thread.

• Replication I/O receiver thread. When a START REPLICA statement is issued on a replica
server, the replica creates an I/O (receiver) thread, which connects to the source and asks it to send
the updates recorded in its binary logs.

The replication receiver thread reads the updates that the source's Binlog Dump thread sends (see
previous item) and copies them to local files that comprise the replica's relay log.

The state of this thread is shown as Slave_IO_running in the output of SHOW REPLICA STATUS.

• Replication SQL applier thread. When replica_parallel_workers (in MySQL 8.0.26 and
earlier, use slave_parallel_workers) is equal to 0, the replica creates an SQL (applier) thread
to read the relay log that is written by the replication receiver thread and execute the transactions
contained in it. When replica_parallel_workers is N >= 1, there are N applier threads and
one coordinator thread, which reads transactions sequentially from the relay log, and schedules
them to be applied by worker threads. Each worker applies the transactions that the coordinator has
assigned to it.

You can enable further parallelization for tasks on a replica by setting the system variable
replica_parallel_workers (MySQL 8.0.26 or later) or slave_parallel_workers (prior
to MySQL 8.0.26) to a value greater than 0. When this is done, the replica creates the specified
number of worker threads to apply transactions, plus a coordinator thread which reads transactions
from the relay log and assigns them to workers. A replica with replica_parallel_workers
(slave_parallel_workers) set to a value greater than 0 is called a multithreaded replica. If you
are using multiple replication channels, each channel has the number of threads specified using this
variable.

Note

Multithreaded replicas are supported by NDB Cluster beginning
with NDB 8.0.33. (Previously, NDB silently ignored any setting for
replica_parallel_workers.) See Section 25.7.11, “NDB Cluster
Replication Using the Multithreaded Applier”, for more information.

19.2.3.1 Monitoring Replication Main Threads

The SHOW PROCESSLIST statement provides information that tells you what is happening on the
source and on the replica regarding replication. For information on source states, see Section 10.14.4,
“Replication Source Thread States”. For replica states, see Section 10.14.5, “Replication I/O (Receiver)
Thread States”, and Section 10.14.6, “Replication SQL Thread States”.

The following example illustrates how the three main replication threads, the binary log dump thread,
replication I/O (receiver) thread, and replication SQL (applier) thread, show up in the output from SHOW
PROCESSLIST.

On the source server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

3797

Replication Threads

 Id: 2
 User: root
 Host: localhost:32931
 db: NULL
Command: Binlog Dump
 Time: 94
 State: Has sent all binlog to slave; waiting for binlog to
 be updated
 Info: NULL

Here, thread 2 is a Binlog Dump thread that services a connected replica. The State information
indicates that all outstanding updates have been sent to the replica and that the source is waiting
for more updates to occur. If you see no Binlog Dump threads on a source server, this means that
replication is not running; that is, no replicas are currently connected.

On a replica server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 10
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 11
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Has read all relay log; waiting for the slave I/O
 thread to update it
 Info: NULL

The State information indicates that thread 10 is the replication I/O (receiver) thread that is
communicating with the source server, and thread 11 is the replication SQL (applier) thread that is
processing the updates stored in the relay logs. At the time that SHOW PROCESSLIST was run, both
threads were idle, waiting for further updates.

The value in the Time column can show how late the replica is compared to the source. See
Section A.14, “MySQL 8.0 FAQ: Replication”. If sufficient time elapses on the source side without
activity on the Binlog Dump thread, the source determines that the replica is no longer connected. As
for any other client connection, the timeouts for this depend on the values of net_write_timeout
and net_retry_count; for more information about these, see Section 7.1.8, “Server System
Variables”.

The SHOW REPLICA STATUS statement provides additional information about replication processing
on a replica server. See Section 19.1.7.1, “Checking Replication Status”.

19.2.3.2 Monitoring Replication Applier Worker Threads

On a multithreaded replica, the Performance Schema tables
replication_applier_status_by_coordinator and
replication_applier_status_by_worker show status information for the replica's coordinator
thread and applier worker threads respectively. For a replica with multiple channels, the threads for
each channel are identified.

A multithreaded replica's coordinator thread also prints statistics to the replica's error log on a regular
basis if the verbosity setting is set to display informational messages. The statistics are printed
depending on the volume of events that the coordinator thread has assigned to applier worker threads,
with a maximum frequency of once every 120 seconds. The message lists the following statistics for
the relevant replication channel, or the default replication channel (which is not named):

3798

Relay Log and Replication Metadata Repositories

Seconds elapsed The difference in seconds between the current time and the last
time this information was printed to the error log.

Events assigned The total number of events that the coordinator thread has queued
to all applier worker threads since the coordinator thread was
started.

Worker queues filled over
overrun level

The current number of events that are queued to any of the applier
worker threads in excess of the overrun level, which is set at 90%
of the maximum queue length of 16384 events. If this value is zero,
no applier worker threads are operating at the upper limit of their
capacity.

Waited due to worker queue full The number of times that the coordinator thread had to wait to
schedule an event because an applier worker thread's queue was
full. If this value is zero, no applier worker threads exhausted their
capacity.

Waited due to the total size The number of times that the coordinator thread
had to wait to schedule an event because the
replica_pending_jobs_size_max or
slave_pending_jobs_size_max limit had been reached.
This system variable sets the maximum amount of memory (in
bytes) available to applier worker thread queues holding events
not yet applied. If an unusually large event exceeds this size, the
transaction is held until all the applier worker threads have empty
queues, and then processed. All subsequent transactions are held
until the large transaction has been completed.

Waited at clock conflicts The number of nanoseconds that the coordinator thread
had to wait to schedule an event because a transaction
that the event depended on had not yet been committed. If
replica_parallel_type or slave_parallel_type is set to
DATABASE (rather than LOGICAL_CLOCK), this value is always zero.

Waited (count) when workers
occupied

The number of times that the coordinator thread slept for a short
period, which it might do in two situations. The first situation is
where the coordinator thread assigns an event and finds the
applier worker thread's queue is filled beyond the underrun level
of 10% of the maximum queue length, in which case it sleeps
for a maximum of 1 millisecond. The second situation is where
replica_parallel_type or slave_parallel_type is set to
LOGICAL_CLOCK and the coordinator thread needs to assign the
first event of a transaction to an applier worker thread's queue, it
only does this to a worker with an empty queue, so if no queues are
empty, the coordinator thread sleeps until one becomes empty.

Waited when workers occupied The number of nanoseconds that the coordinator thread
slept while waiting for an empty applier worker thread queue
(that is, in the second situation described above, where
replica_parallel_type or slave_parallel_type is set to
LOGICAL_CLOCK and the first event of a transaction needs to be
assigned).

19.2.4 Relay Log and Replication Metadata Repositories

A replica server creates several repositories of information to use for the replication process:

• The replica's relay log, which is written by the replication I/O (receiver) thread, contains the
transactions read from the replication source server's binary log. The transactions in the relay log are

3799

Relay Log and Replication Metadata Repositories

applied on the replica by the replication SQL (applier) thread. For information about the relay log, see
Section 19.2.4.1, “The Relay Log”.

• The replica's connection metadata repository contains information that the replication receiver thread
needs to connect to the replication source server and retrieve transactions from the source's binary
log. The connection metadata repository is written to the mysql.slave_master_info table.

• The replica's applier metadata repository contains information that the replication applier thread
needs to read and apply transactions from the replica's relay log. The applier metadata repository is
written to the mysql.slave_relay_log_info table.

The replica's connection metadata repository and applier metadata repository are collectively known as
the replication metadata repositories. For information about these, see Section 19.2.4.2, “Replication
Metadata Repositories”.

Making replication resilient to unexpected halts. The mysql.slave_master_info and
mysql.slave_relay_log_info tables are created using the transactional storage engine InnoDB.
Updates to the replica's applier metadata repository table are committed together with the transactions,
meaning that the replica's progress information recorded in that repository is always consistent
with what has been applied to the database, even in the event of an unexpected server halt. For
information on the combination of settings on the replica that is most resilient to unexpected halts, see
Section 19.4.2, “Handling an Unexpected Halt of a Replica”.

19.2.4.1 The Relay Log

The relay log, like the binary log, consists of a set of numbered files containing events that describe
database changes, and an index file that contains the names of all used relay log files. The default
location for relay log files is the data directory.

The term “relay log file” generally denotes an individual numbered file containing database events. The
term “relay log” collectively denotes the set of numbered relay log files plus the index file.

Relay log files have the same format as binary log files and can be read using mysqlbinlog (see
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”). If binary log transaction
compression (available as of MySQL 8.0.20) is in use, transaction payloads written to the relay log
are compressed in the same way as for the binary log. For more information on binary log transaction
compression, see Section 7.4.4.5, “Binary Log Transaction Compression”.

For the default replication channel, relay log file names have the default form host_name-relay-
bin.nnnnnn, where host_name is the name of the replica server host and nnnnnn is a sequence
number. Successive relay log files are created using successive sequence numbers, beginning
with 000001. For non-default replication channels, the default base name is host_name-relay-
bin-channel, where channel is the name of the replication channel recorded in the relay log.

The replica uses an index file to track the relay log files currently in use. The default relay log index
file name is host_name-relay-bin.index for the default channel, and host_name-relay-
bin-channel.index for non-default replication channels.

The default relay log file and relay log index file names and locations can be overridden with,
respectively, the relay_log and relay_log_index system variables (see Section 19.1.6,
“Replication and Binary Logging Options and Variables”).

If a replica uses the default host-based relay log file names, changing a replica's host name after
replication has been set up can cause replication to fail with the errors Failed to open the relay
log and Could not find target log during relay log initialization. This is a known
issue (see Bug #2122). If you anticipate that a replica's host name might change in the future (for
example, if networking is set up on the replica such that its host name can be modified using DHCP),
you can avoid this issue entirely by using the relay_log and relay_log_index system variables to
specify relay log file names explicitly when you initially set up the replica. This causes the names to be
independent of server host name changes.

3800

Relay Log and Replication Metadata Repositories

If you encounter the issue after replication has already begun, one way to work around it is to stop the
replica server, prepend the contents of the old relay log index file to the new one, and then restart the
replica. On a Unix system, this can be done as shown here:

$> cat new_relay_log_name.index >> old_relay_log_name.index
$> mv old_relay_log_name.index new_relay_log_name.index

A replica server creates a new relay log file under the following conditions:

• Each time the replication I/O (receiver) thread starts.

• When the logs are flushed (for example, with FLUSH LOGS or mysqladmin flush-logs).

• When the size of the current relay log file becomes too large, which is determined as follows:

• If the value of max_relay_log_size is greater than 0, that is the maximum relay log file size.

• If the value of max_relay_log_size is 0, max_binlog_size determines the maximum relay
log file size.

The replication SQL (applier) thread automatically deletes each relay log file after it has executed all
events in the file and no longer needs it. There is no explicit mechanism for deleting relay logs because
the replication SQL thread takes care of doing so. However, FLUSH LOGS rotates relay logs, which
influences when the replication SQL thread deletes them.

19.2.4.2 Replication Metadata Repositories

A replica server creates two replication metadata repositories, the connection metadata repository
and the applier metadata repository. The replication metadata repositories survive a replica server's
shutdown. If binary log file position based replication is in use, when the replica restarts, it reads the
two repositories to determine how far it previously proceeded in reading the binary log from the source
and in processing its own relay log. If GTID-based replication is in use, the replica does not use the
replication metadata repositories for that purpose, but does need them for the other metadata that they
contain.

• The replica's connection metadata repository contains information that the replication I/O (receiver)
thread needs to connect to the replication source server and retrieve transactions from the source's
binary log. The metadata in this repository includes the connection configuration, the replication
user account details, the SSL settings for the connection, and the file name and position where the
replication receiver thread is currently reading from the source's binary log.

• The replica's applier metadata repository contains information that the replication SQL (applier)
thread needs to read and apply transactions from the replica's relay log. The metadata in this
repository includes the file name and position up to which the replication applier thread has executed
the transactions in the relay log, and the equivalent position in the source's binary log. It also
includes metadata for the process of applying transactions, such as the number of worker threads
and the PRIVILEGE_CHECKS_USER account for the channel.

The connection metadata repository is written to the slave_master_info table in the mysql system
schema, and the applier metadata repository is written to the slave_relay_log_info table in the
mysql system schema. A warning message is issued if mysqld is unable to initialize the tables for the
replication metadata repositories, but the replica is allowed to continue starting. This situation is most
likely to occur when upgrading from a version of MySQL that does not support the use of tables for the
repositories to one in which they are supported.

Important

1. Do not attempt to update or insert rows in the
mysql.slave_master_info or mysql.slave_relay_log_info tables
manually. Doing so can cause undefined behavior, and is not supported.
Execution of any statement requiring a write lock on either or both of the
slave_master_info and slave_relay_log_info tables is disallowed

3801

Relay Log and Replication Metadata Repositories

while replication is ongoing (although statements that perform only reads are
permitted at any time).

2. Access privileges for the connection metadata repository table
mysql.slave_master_info should be restricted to the database
administrator, because it contains the replication user account name and
password for connecting to the source. Use a restricted access mode to
protect database backups that include this table. From MySQL 8.0.21,
you can clear the replication user account credentials from the connection
metadata repository, and instead always provide them using the START
REPLICA statement or START GROUP_REPLICATION statement that starts
the replication channel. This approach means that the replication channel
always needs operator intervention to restart, but the account name and
password are not recorded in the replication metadata repositories.

RESET REPLICA clears the data in the replication metadata repositories, with the exception of the
replication connection parameters (depending on the MySQL Server release). For details, see the
description for RESET REPLICA.

From MySQL 8.0.27, you can set the GTID_ONLY option on the CHANGE REPLICATION SOURCE TO
statement to stop a replication channel from persisting file names and file positions in the replication
metadata repositories. This avoids writes and reads to the tables in situations where GTID-based
replication does not actually require them. With the GTID_ONLY setting, the connection metadata
repository and the applier metadata repository are not updated when the replica queues and applies
events in a transaction, or when the replication threads are stopped and started. File positions are
tracked in memory, and can be viewed using a SHOW REPLICA STATUS statement if they are needed.
The replication metadata repositories are only synchronized in the following situations:

• When a CHANGE REPLICATION SOURCE TO statement is issued.

• When a RESET REPLICA statement is issued. RESET REPLICA ALL deletes rather than updates
the repositories, so they are synchronized implicitly.

• When a replication channel is initialized.

• If the replication metadata repositories are moved from files to tables.

Before MySQL 8.0, to create the replication metadata repositories as tables, it was necessary to
specify master_info_repository=TABLE and relay_log_info_repository=TABLE at server
startup. Otherwise, the repositories were created as files in the data directory named master.info
and relay-log.info, or with alternative names and locations specified by the --master-info-
file option and relay_log_info_file system variable. From MySQL 8.0, creating the replication
metadata repositories as tables is the default, and the use of all these system variables is deprecated.

The mysql.slave_master_info and mysql.slave_relay_log_info tables are created
using the InnoDB transactional storage engine. Updates to the applier metadata repository table are
committed together with the transactions, meaning that the replica's progress information recorded in
that repository is always consistent with what has been applied to the database, even in the event of an
unexpected server halt. For information on the combination of settings on a replica that is most resilient
to unexpected halts, see Section 19.4.2, “Handling an Unexpected Halt of a Replica”.

When you back up the replica's data or transfer a snapshot of its data to create a new replica,
ensure that you include the mysql.slave_master_info and mysql.slave_relay_log_info
tables containing the replication metadata repositories. For cloning operations, note that when the
replication metadata repositories are created as tables, they are copied to the recipient during a cloning
operation, but when they are created as files, they are not copied. When binary log file position based
replication is in use, the replication metadata repositories are needed to resume replication after
restarting the restored, copied, or cloned replica. If you do not have the relay log files, but still have
the applier metadata repository, you can check it to determine how far the replication SQL thread
has executed in the source's binary log. Then you can use a CHANGE REPLICATION SOURCE TO
statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) with the

3802

Relay Log and Replication Metadata Repositories

SOURCE_LOG_FILE | MASTER_LOG_FILE and SOURCE_LOG_POS | MASTER_LOG_POS options to tell
the replica to re-read the binary logs from the source from that point (provided that the required binary
logs still exist on the source).

One additional repository, the applier worker metadata repository, is created primarily for internal use,
and holds status information about worker threads on a multithreaded replica. The applier worker
metadata repository includes the names and positions for the relay log file and the source's binary log
file for each worker thread. If the applier metadata repository is created as a table, which is the default,
the applier worker metadata repository is written to the mysql.slave_worker_info table. If the
applier metadata repository is written to a file, the applier worker metadata repository is written to the
worker-relay-log.info file. For external use, status information for worker threads is presented in
the Performance Schema replication_applier_status_by_worker table.

The replication metadata repositories originally contained information similar to that shown in the output
of the SHOW REPLICA STATUS statement, which is discussed in Section 15.4.2, “SQL Statements
for Controlling Replica Servers”. Further information has since been added to the replication metadata
repositories which is not displayed by the SHOW REPLICA STATUS statement.

For the connection metadata repository, the following table shows the correspondence between
the columns in the mysql.slave_master_info table, the columns displayed by SHOW REPLICA
STATUS, and the lines in the deprecated master.info file.

slave_master_info
Table Column

SHOW REPLICA
STATUS Column

master.info File Line Description

Number_of_lines [None] 1 Number of columns in
the table (or lines in the
file)

Master_log_name Source_Log_File 2 The name of the binary
log currently being read
from the source

Master_log_pos Read_Source_Log_Pos3 The current position
within the binary log that
has been read from the
source

Host Source_Host 4 The host name of the
replication source server

User_name Source_User 5 The replication user
account name used to
connect to the source

User_password Password (not shown
by SHOW REPLICA
STATUS)

6 The replication user
account password used
to connect to the source

Port Source_Port 7 The network port
used to connect to the
replication source server

Connect_retry Connect_Retry 8 The period (in seconds)
that the replica waits
before trying to
reconnect to the source

Enabled_ssl Source_SSL_Allowed 9 Whether the replica
supports SSL
connections

Ssl_ca Source_SSL_CA_File 10 The file used for the
Certificate Authority
(CA) certificate

3803

Relay Log and Replication Metadata Repositories

slave_master_info
Table Column

SHOW REPLICA
STATUS Column

master.info File Line Description

Ssl_capath Source_SSL_CA_Path 11 The path to the
Certificate Authority
(CA) certificate

Ssl_cert Source_SSL_Cert 12 The name of the SSL
certificate file

Ssl_cipher Source_SSL_Cipher 13 The list of possible
ciphers used in the
handshake for the SSL
connection

Ssl_key Source_SSL_Key 14 The name of the SSL
key file

Ssl_verify_server_certSource_SSL_Verify_Server_Cert15 Whether to verify the
server certificate

Heartbeat [None] 16 Interval between
replication heartbeats, in
seconds

Bind Source_Bind 17 Which of the replica's
network interfaces
should be used for
connecting to the source

Ignored_server_ids Replicate_Ignore_Server_Ids18 The list of server IDs to
be ignored. Note that for
Ignored_server_ids
the list of server IDs is
preceded by the total
number of server IDs to
ignore.

Uuid Source_UUID 19 The source's unique ID

Retry_count Source_Retry_Count 20 Maximum number of
reconnection attempts
permitted

Ssl_crl [None] 21 Path to an SSL
certificate revocation-list
file

Ssl_crlpath [None] 22 Path to a directory
containing SSL
certificate revocation-list
files

Enabled_auto_positionAuto_position 23 Whether GTID auto-
positioning is in use or
not

Channel_name Channel_name 24 The name of the
replication channel

Tls_version Source_TLS_Version 25 TLS version on the
source

Public_key_path Source_public_key_path26 Name of the RSA public
key file

Get_public_key Get_source_public_key27 Whether to request RSA
public key from source

3804

Relay Log and Replication Metadata Repositories

slave_master_info
Table Column

SHOW REPLICA
STATUS Column

master.info File Line Description

Network_namespace Network_namespace 28 Network namespace

Master_compression_algorithm[None] 29 Permitted compression
algorithms for the
connection to the source

Master_zstd_compression_level[None] 30 zstd compression level

Tls_ciphersuites [None] 31 Permitted ciphersuites
for TLSv1.3

Source_connection_auto_failover[None] 32 Whether the
asynchronous
connection failover
mechanism is activated

Gtid_only [None] 33 Whether the channel
uses only GTIDs
and does not persist
positions

For the applier metadata repository, the following table shows the correspondence between the
columns in the mysql.slave_relay_log_info table, the columns displayed by SHOW REPLICA
STATUS, and the lines in the deprecated relay-log.info file.

slave_relay_log_info
Table Column

SHOW REPLICA
STATUS Column

Line in relay-
log.info File

Description

Number_of_lines [None] 1 Number of columns in
the table or lines in the
file

Relay_log_name Relay_Log_File 2 The name of the current
relay log file

Relay_log_pos Relay_Log_Pos 3 The current position
within the relay log
file; events up to this
position have been
executed on the replica
database

Master_log_name Relay_Source_Log_File4 The name of the
source's binary log file
from which the events
in the relay log file were
read

Master_log_pos Exec_Source_Log_Pos5 The equivalent position
within the source's
binary log file of the
events that have been
executed on the replica

Sql_delay SQL_Delay 6 The number of seconds
that the replica must lag
the source

Number_of_workers [None] 7 The number of worker
threads for applying
replication transactions
in parallel

3805

How Servers Evaluate Replication Filtering Rules

slave_relay_log_info
Table Column

SHOW REPLICA
STATUS Column

Line in relay-
log.info File

Description

Id [None] 8 ID used for internal
purposes; currently this
is always 1

Channel_name Channel_name 9 The name of the
replication channel

Privilege_checks_username[None] 10 The user name for the
PRIVILEGE_CHECKS_USER
account for the channel

Privilege_checks_hostname[None] 11 The host name for the
PRIVILEGE_CHECKS_USER
account for the channel

Require_row_format [None] 12 Whether the channel
accepts only row-based
events

Require_table_primary_key_check[None] 13 The channel's policy
on whether tables must
have primary keys
for CREATE TABLE
and ALTER TABLE
operations

Assign_gtids_to_anonymous_transactions_type[None] 14 If the channel assigns
a GTID to replicated
transactions that do not
already have one, using
the replica's local UUID,
this value is LOCAL; if
the channel does so
using instead a UUID
which has been set
manually, the value is
UUID. If the channel
does not assign a GTID
in such cases, the value
is OFF.

Assign_gtids_to_anonymous_transactions_value[None] 15 The UUID used in the
GTIDs assigned to
anonymous transactions

19.2.5 How Servers Evaluate Replication Filtering Rules

If a replication source server does not write a statement to its binary log, the statement is not
replicated. If the server does log the statement, the statement is sent to all replicas and each replica
determines whether to execute it or ignore it.

On the source, you can control which databases to log changes for by using the --binlog-do-
db and --binlog-ignore-db options to control binary logging. For a description of the rules
that servers use in evaluating these options, see Section 19.2.5.1, “Evaluation of Database-Level
Replication and Binary Logging Options”. You should not use these options to control which databases
and tables are replicated. Instead, use filtering on the replica to control the events that are executed on
the replica.

On the replica side, decisions about whether to execute or ignore statements received from the
source are made according to the --replicate-* options that the replica was started with. (See

3806

How Servers Evaluate Replication Filtering Rules

Section 19.1.6, “Replication and Binary Logging Options and Variables”.) The filters governed by
these options can also be set dynamically using the CHANGE REPLICATION FILTER statement. The
rules governing such filters are the same whether they are created on startup using --replicate-*
options or while the replica server is running by CHANGE REPLICATION FILTER. Note that replication
filters cannot be used on Group Replication-specific channels on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some servers would make the group
unable to reach agreement on a consistent state.

In the simplest case, when there are no --replicate-* options, the replica executes all statements
that it receives from the source. Otherwise, the result depends on the particular options given.

Database-level options (--replicate-do-db, --replicate-ignore-db) are checked first;
see Section 19.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a
description of this process. If no database-level options are used, option checking proceeds to any
table-level options that may be in use (see Section 19.2.5.2, “Evaluation of Table-Level Replication
Options”, for a discussion of these). If one or more database-level options are used but none are
matched, the statement is not replicated.

For statements affecting databases only (that is, CREATE DATABASE, DROP DATABASE, and ALTER
DATABASE), database-level options always take precedence over any --replicate-wild-do-
table options. In other words, for such statements, --replicate-wild-do-table options are
checked if and only if there are no database-level options that apply.

To make it easier to determine what effect a given set of options has, it is recommended that you avoid
mixing do-* and ignore-* options, or options containing wildcards with options which do not.

If any --replicate-rewrite-db options were specified, they are applied before the --
replicate-* filtering rules are tested.

Note

All replication filtering options follow the same rules for case sensitivity that
apply to names of databases and tables elsewhere in the MySQL server,
including the effects of the lower_case_table_names system variable.

Beginning with MySQL 8.0.31, filtering rules are applied before performing any privilege checks; if a
transaction is filtered out, no privilege check is performed for that transaction, and thus no error can be
raised by it. See Section 19.5.1.29, “Replica Errors During Replication”, for more information.

19.2.5.1 Evaluation of Database-Level Replication and Binary Logging Options

When evaluating replication options, the replica begins by checking to see whether there are any --
replicate-do-db or --replicate-ignore-db options that apply. When using --binlog-do-db
or --binlog-ignore-db, the process is similar, but the options are checked on the source.

The database that is checked for a match depends on the binary log format of the statement that is
being handled. If the statement has been logged using the row format, the database where data is to
be changed is the database that is checked. If the statement has been logged using the statement
format, the default database (specified with a USE statement) is the database that is checked.

Note

Only DML statements can be logged using the row format. DDL statements
are always logged as statements, even when binlog_format=ROW. All DDL
statements are therefore always filtered according to the rules for statement-
based replication. This means that you must select the default database
explicitly with a USE statement in order for a DDL statement to be applied.

For replication, the steps involved are listed here:

1. Which logging format is used?

3807

How Servers Evaluate Replication Filtering Rules

• STATEMENT. Test the default database.

• ROW. Test the database affected by the changes.

2. Are there any --replicate-do-db options?

• Yes. Does the database match any of them?

• Yes. Continue to Step 4.

• No. Ignore the update and exit.

• No. Continue to step 3.

3. Are there any --replicate-ignore-db options?

• Yes. Does the database match any of them?

• Yes. Ignore the update and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Proceed to checking the table-level replication options, if there are any. For a description of how
these options are checked, see Section 19.2.5.2, “Evaluation of Table-Level Replication Options”.

Important

A statement that is still permitted at this stage is not yet actually executed.
The statement is not executed until all table-level options (if any) have also
been checked, and the outcome of that process permits execution of the
statement.

For binary logging, the steps involved are listed here:

1. Are there any --binlog-do-db or --binlog-ignore-db options?

• Yes. Continue to step 2.

• No. Log the statement and exit.

2. Is there a default database (has any database been selected by USE)?

• Yes. Continue to step 3.

• No. Ignore the statement and exit.

3. There is a default database. Are there any --binlog-do-db options?

• Yes. Do any of them match the database?

• Yes. Log the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 4.

4. Do any of the --binlog-ignore-db options match the database?

• Yes. Ignore the statement and exit.

• No. Log the statement and exit.

3808

How Servers Evaluate Replication Filtering Rules

Important

For statement-based logging, an exception is made in the rules just given for
the CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements.
In those cases, the database being created, altered, or dropped replaces the
default database when determining whether to log or ignore updates.

--binlog-do-db can sometimes mean “ignore other databases”. For example, when using
statement-based logging, a server running with only --binlog-do-db=sales does not write to
the binary log statements for which the default database differs from sales. When using row-based
logging with the same option, the server logs only those updates that change data in sales.

19.2.5.2 Evaluation of Table-Level Replication Options

The replica checks for and evaluates table options only if either of the following two conditions is true:

• No matching database options were found.

• One or more database options were found, and were evaluated to arrive at an “execute” condition
according to the rules described in the previous section (see Section 19.2.5.1, “Evaluation of
Database-Level Replication and Binary Logging Options”).

First, as a preliminary condition, the replica checks whether statement-based replication is enabled.
If so, and the statement occurs within a stored function, the replica executes the statement and exits.
If row-based replication is enabled, the replica does not know whether a statement occurred within a
stored function on the source, so this condition does not apply.

Note

For statement-based replication, replication events represent statements (all
changes making up a given event are associated with a single SQL statement);
for row-based replication, each event represents a change in a single table row
(thus a single statement such as UPDATE mytable SET mycol = 1 may
yield many row-based events). When viewed in terms of events, the process
of checking table options is the same for both row-based and statement-based
replication.

Having reached this point, if there are no table options, the replica simply executes all events. If there
are any --replicate-do-table or --replicate-wild-do-table options, the event must match
one of these if it is to be executed; otherwise, it is ignored. If there are any --replicate-ignore-
table or --replicate-wild-ignore-table options, all events are executed except those that
match any of these options.

Important

Table-level replication filters are only applied to tables that are explicitly
mentioned and operated on in the query. They do not apply to tables that
are implicitly updated by the query. For example, a GRANT statement, which
updates the mysql.user system table but does not mention that table, is not
affected by a filter that specifies mysql.% as the wildcard pattern.

The following steps describe this evaluation in more detail. The starting point is the end of the
evaluation of the database-level options, as described in Section 19.2.5.1, “Evaluation of Database-
Level Replication and Binary Logging Options”.

1. Are there any table replication options?

• Yes. Continue to step 2.

• No. Execute the update and exit.

2. Which logging format is used?

3809

How Servers Evaluate Replication Filtering Rules

• STATEMENT. Carry out the remaining steps for each statement that performs an update.

• ROW. Carry out the remaining steps for each update of a table row.

3. Are there any --replicate-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the update and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Are there any --replicate-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the update and exit.

• No. Continue to step 5.

• No. Continue to step 5.

5. Are there any --replicate-wild-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the update and exit.

• No. Continue to step 6.

• No. Continue to step 6.

6. Are there any --replicate-wild-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the update and exit.

• No. Continue to step 7.

• No. Continue to step 7.

7. Is there another table to be tested?

• Yes. Go back to step 3.

• No. Continue to step 8.

8. Are there any --replicate-do-table or --replicate-wild-do-table options?

• Yes. Ignore the update and exit.

• No. Execute the update and exit.

Note

Statement-based replication stops if a single SQL statement operates on both
a table that is included by a --replicate-do-table or --replicate-
wild-do-table option, and another table that is ignored by a --replicate-
ignore-table or --replicate-wild-ignore-table option. The
replica must either execute or ignore the complete statement (which forms

3810

How Servers Evaluate Replication Filtering Rules

a replication event), and it cannot logically do this. This also applies to row-
based replication for DDL statements, because DDL statements are always
logged as statements, without regard to the logging format in effect. The only
type of statement that can update both an included and an ignored table and
still be replicated successfully is a DML statement that has been logged with
binlog_format=ROW.

19.2.5.3 Interactions Between Replication Filtering Options

If you use a combination of database-level and table-level replication filtering options, the replica first
accepts or ignores events using the database options, then it evaluates all events permitted by those
options according to the table options. This can sometimes lead to results that seem counterintuitive.
It is also important to note that the results vary depending on whether the operation is logged using
statement-based or row-based binary logging format. If you want to be sure that your replication filters
always operate in the same way independently of the binary logging format, which is particularly
important if you are using mixed binary logging format, follow the guidance in this topic.

The effect of the replication filtering options differs between binary logging formats because of the way
the database name is identified. With statement-based format, DML statements are handled based on
the current database, as specified by the USE statement. With row-based format, DML statements are
handled based on the database where the modified table exists. DDL statements are always filtered
based on the current database, as specified by the USE statement, regardless of the binary logging
format.

An operation that involves multiple tables can also be affected differently by replication filtering options
depending on the binary logging format. Operations to watch out for include transactions involving
multi-table UPDATE statements, triggers, cascading foreign keys, stored functions that update multiple
tables, and DML statements that invoke stored functions that update one or more tables. If these
operations update both filtered-in and filtered-out tables, the results can vary with the binary logging
format.

If you need to guarantee that your replication filters operate consistently regardless of the binary
logging format, particularly if you are using mixed binary logging format (binlog_format=MIXED),
use only table-level replication filtering options, and do not use database-level replication filtering
options. Also, do not use multi-table DML statements that update both filtered-in and filtered-out tables.

If you need to use a combination of database-level and table-level replication filters, and want these to
operate as consistently as possible, choose one of the following strategies:

1. If you use row-based binary logging format (binlog_format=ROW), for DDL statements, rely on
the USE statement to set the database and do not specify the database name. You can consider
changing to row-based binary logging format for improved consistency with replication filtering.
See Section 7.4.4.2, “Setting The Binary Log Format” for the conditions that apply to changing the
binary logging format.

2. If you use statement-based or mixed binary logging format (binlog_format=STATEMENT or
MIXED), for both DML and DDL statements, rely on the USE statement and do not use the database
name. Also, do not use multi-table DML statements that update both filtered-in and filtered-out
tables.

Example 19.7 A --replicate-ignore-db option and a --replicate-do-table option

On the replication source server, the following statements are issued:

USE db1;
CREATE TABLE t2 LIKE t1;
INSERT INTO db2.t3 VALUES (1);

The replica has the following replication filtering options set:

replicate-ignore-db = db1
replicate-do-table = db2.t3

3811

How Servers Evaluate Replication Filtering Rules

The DDL statement CREATE TABLE creates the table in db1, as specified by the preceding USE
statement. The replica filters out this statement according to its --replicate-ignore-db = db1
option, because db1 is the current database. This result is the same whatever the binary logging
format is on the replication source server. However, the result of the DML INSERT statement is
different depending on the binary logging format:

• If row-based binary logging format is in use on the source (binlog_format=ROW), the replica
evaluates the INSERT operation using the database where the table exists, which is named as db2.
The database-level option --replicate-ignore-db = db1, which is evaluated first, therefore
does not apply. The table-level option --replicate-do-table = db2.t3 does apply, so the
replica applies the change to table t3.

• If statement-based binary logging format is in use on the source (binlog_format=STATEMENT),
the replica evaluates the INSERT operation using the default database, which was set by the USE
statement to db1 and has not been changed. According to its database-level --replicate-
ignore-db = db1 option, it therefore ignores the operation and does not apply the change to
table t3. The table-level option --replicate-do-table = db2.t3 is not checked, because the
statement already matched a database-level option and was ignored.

If the --replicate-ignore-db = db1 option on the replica is necessary, and the use of statement-
based (or mixed) binary logging format on the source is also necessary, the results can be made
consistent by omitting the database name from the INSERT statement and relying on a USE statement
instead, as follows:

USE db1;
CREATE TABLE t2 LIKE t1;
USE db2;
INSERT INTO t3 VALUES (1);

In this case, the replica always evaluates the INSERT statement based on the database db2. Whether
the operation is logged in statement-based or row-based binary format, the results remain the same.

19.2.5.4 Replication Channel Based Filters

This section explains how to work with replication filters when multiple replication channels exist,
for example in a multi-source replication topology. Before MySQL 8.0, all replication filters were
global, so filters were applied to all replication channels. From MySQL 8.0, replication filters can be
global or channel specific, enabling you to configure multi-source replicas with replication filters on
specific replication channels. Channel specific replication filters are particularly useful in a multi-source
replication topology when the same database or table is present on multiple sources, and the replica is
only required to replicate it from one source.

For instructions to set up replication channels, see Section 19.1.5, “MySQL Multi-Source Replication”,
and for more information on how they work, see Section 19.2.2, “Replication Channels”.

Important

Each channel on a multi-source replica must replicate from a different source.
You cannot set up multiple replication channels from a single replica to a single
source, even if you use replication filters to select different data to replicate on
each channel. This is because the server IDs of replicas must be unique in a
replication topology. The source distinguishes replicas only by their server IDs,
not by the names of the replication channels, so it cannot recognize different
replication channels from the same replica.

Important

On a MySQL server instance that is configured for Group Replication, channel
specific replication filters can be used on replication channels that are not
directly involved with Group Replication, such as where a group member also
acts as a replica to a source that is outside the group. They cannot be used on

3812

How Servers Evaluate Replication Filtering Rules

the group_replication_applier or group_replication_recovery
channels. Filtering on these channels would make the group unable to reach
agreement on a consistent state.

Important

For a multi-source replica in a diamond topology (where the replica replicates
from two or more sources, which in turn replicate from a common source),
when GTID-based replication is in use, ensure that any replication filters or
other channel configuration are identical on all channels on the multi-source
replica. With GTID-based replication, filters are applied only to the transaction
data, and GTIDs are not filtered out. This happens so that a replica’s GTID
set stays consistent with the source’s, meaning GTID auto-positioning can be
used without re-acquiring filtered out transactions each time. In the case where
the downstream replica is multi-source and receives the same transaction
from multiple sources in a diamond topology, the downstream replica now
has multiple versions of the transaction, and the result depends on which
channel applies the transaction first. The second channel to attempt it skips the
transaction using GTID auto-skip, because the transaction’s GTID was added
to the gtid_executed set by the first channel. With identical filtering on the
channels, there is no problem because all versions of the transaction contain
the same data, so the results are the same. However, with different filtering on
the channels, the database can become inconsistent and replication can hang.

Overview of Replication Filters and Channels

When multiple replication channels exist, for example in a multi-source replication topology, replication
filters are applied as follows:

• Any global replication filter specified is added to the global replication filters of the filter type (do_db,
do_ignore_table, and so on).

• Any channel specific replication filter adds the filter to the specified channel’s replication filters for the
specified filter type.

• Each replication channel copies global replication filters to its channel specific replication filters if no
channel specific replication filter of this type is configured.

• Each channel uses its channel specific replication filters to filter the replication stream.

The syntax to create channel specific replication filters extends the existing SQL statements
and command options. When a replication channel is not specified the global replication filter is
configured to ensure backwards compatibility. The CHANGE REPLICATION FILTER statement
supports the FOR CHANNEL clause to configure channel specific filters online. The --replicate-
* command options to configure filters can specify a replication channel using the form --
replicate-filter_type=channel_name:filter_details. Suppose channels channel_1
and channel_2 exist before the server starts; in this case, starting the replica with the command
line options --replicate-do-db=db1 --replicate-do-db=channel_1:db2 --replicate-
do-db=db3 --replicate-ignore-db=db4 --replicate-ignore-db=channel_2:db5 --
replicate-wild-do-table=channel_1:db6.t1% would result in:

• Global replication filters: do_db=db1,db3; ignore_db=db4

• Channel specific filters on channel_1: do_db=db2; ignore_db=db4; wild-do-table=db6.t1%

• Channel specific filters on channel_2: do_db=db1,db3; ignore_db=db5

These same rules could be applied at startup when included in the replica's my.cnf file, like this:

replicate-do-db=db1
replicate-do-db=channel_1:db2
replicate-ignore-db=db4

3813

How Servers Evaluate Replication Filtering Rules

replicate-ignore-db=channel_2:db5
replicate-wild-do-table=db6.channel_1.t1%

To monitor the replication filters in such a setup use the replication_applier_global_filters
and replication_applier_filters tables.

Configuring Channel Specific Replication Filters at Startup

The replication filter related command options can take an optional channel followed by a colon,
followed by the filter specification. The first colon is interpreted as a separator, subsequent colons are
interpreted as literal colons. The following command options support channel specific replication filters
using this format:

• --replicate-do-db=channel:database_id

• --replicate-ignore-db=channel:database_id

• --replicate-do-table=channel:table_id

• --replicate-ignore-table=channel:table_id

• --replicate-rewrite-db=channel:db1-db2

• --replicate-wild-do-table=channel:table pattern

• --replicate-wild-ignore-table=channel:table pattern

All of the options just listed can be used in the replica's my.cnf file, as with most other MySQL server
startup options, by omitting the two leading dashes. See Overview of Replication Filters and Channels,
for a brief example, as well as Section 6.2.2.2, “Using Option Files”.

If you use a colon but do not specify a channel for the filter option, for example --replicate-do-
db=:database_id, the option configures the replication filter for the default replication channel. The
default replication channel is the replication channel which always exists once replication has been
started, and differs from multi-source replication channels which you create manually. When neither
the colon nor a channel is specified the option configures the global replication filters, for example --
replicate-do-db=database_id configures the global --replicate-do-db filter.

If you configure multiple rewrite-db=from_name->to_name options with the same from_name
database, all filters are added together (put into the rewrite_do list) and the first one takes effect.

The pattern used for the --replicate-wild-*-table options can include any characters
allowed in identifiers as well as the wildcards % and _. These work the same way as when used with
the LIKE operator; for example, tbl% matches any table name beginning with tbl, and tbl_ matches
any table name matching tbl plus one additional character.

Changing Channel Specific Replication Filters Online

In addition to the --replicate-* options, replication filters can be configured using the CHANGE
REPLICATION FILTER statement. This removes the need to restart the server, but the replication
SQL thread must be stopped while making the change. To make this statement apply the filter to a
specific channel, use the FOR CHANNEL channel clause. For example:

CHANGE REPLICATION FILTER REPLICATE_DO_DB=(db1) FOR CHANNEL channel_1;

When a FOR CHANNEL clause is provided, the statement acts on the specified channel's replication
filters. If multiple types of filters (do_db, do_ignore_table, wild_do_table, and so on) are
specified, only the specified filter types are replaced by the statement. In a replication topology with
multiple channels, for example on a multi-source replica, when no FOR CHANNEL clause is provided,
the statement acts on the global replication filters and all channels’ replication filters, using a similar
logic as the FOR CHANNEL case. For more information see Section 15.4.2.2, “CHANGE REPLICATION
FILTER Statement”.

3814

Replication Security

Removing Channel Specific Replication Filters

When channel specific replication filters have been configured, you can remove the filter by issuing
an empty filter type statement. For example to remove all REPLICATE_REWRITE_DB filters from a
replication channel named channel_1 issue:

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB=() FOR CHANNEL channel_1;

Any REPLICATE_REWRITE_DB filters previously configured, using either command options or CHANGE
REPLICATION FILTER, are removed.

The RESET REPLICA ALL statement removes channel specific replication filters that were set on
channels deleted by the statement. When the deleted channel or channels are recreated, any global
replication filters specified for the replica are copied to them, and no channel specific replication filters
are applied.

19.3 Replication Security

To protect against unauthorized access to data that is stored on and transferred between replication
source servers and replicas, set up all the servers involved using the security measures that you would
choose for any MySQL instance in your installation, as described in Chapter 8, Security. In addition, for
servers in a replication topology, consider implementing the following security measures:

• Set up sources and replicas to use encrypted connections to transfer the binary log, which
protects this data in motion. Encryption for these connections must be activated using a CHANGE
REPLICATION SOURCE TO | CHANGE MASTER TO statement, in addition to setting up the servers
to support encrypted network connections. See Section 19.3.1, “Setting Up Replication to Use
Encrypted Connections”.

• Encrypt the binary log files and relay log files on sources and replicas, which protects this data at
rest, and also any data in use in the binary log cache. Binary log encryption is activated using the
binlog_encryption system variable. See Section 19.3.2, “Encrypting Binary Log Files and Relay
Log Files”.

• Apply privilege checks to replication appliers, which help to secure replication channels against
the unauthorized or accidental use of privileged or unwanted operations. Privilege checks are
implemented by setting up a PRIVILEGE_CHECKS_USER account, which MySQL uses to verify that
you have authorized each specific transaction for that channel. See Section 19.3.3, “Replication
Privilege Checks”.

For Group Replication, binary log encryption and privilege checks can be used as a security measure
on replication group members. You should also consider encrypting the connections between group
members, comprising group communication connections and distributed recovery connections, and
applying IP address allowlisting to exclude untrusted hosts. For information on these security measures
specific to Group Replication, see Section 20.6, “Group Replication Security”.

19.3.1 Setting Up Replication to Use Encrypted Connections

To use an encrypted connection for the transfer of the binary log required during replication, both the
source and the replica servers must support encrypted network connections. If either server does not
support encrypted connections (because it has not been compiled or configured for them), replication
through an encrypted connection is not possible.

Setting up encrypted connections for replication is similar to doing so for client/server connections.
You must obtain (or create) a suitable security certificate that you can use on the source, and a similar
certificate (from the same certificate authority) on each replica. You must also obtain suitable key files.

For more information on setting up a server and client for encrypted connections, see Section 8.3.1,
“Configuring MySQL to Use Encrypted Connections”.

3815

Setting Up Replication to Use Encrypted Connections

To enable encrypted connections on the source, you must create or obtain suitable certificate and
key files, and then add the following configuration parameters to the [mysqld] section of the source
my.cnf file, changing the file names as necessary:

[mysqld]
ssl_ca=cacert.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem

The paths to the files may be relative or absolute; we recommend that you always use complete paths
for this purpose.

The configuration parameters are as follows:

• ssl_ca: The path name of the Certificate Authority (CA) certificate file. (ssl_capath is similar but
specifies the path name of a directory of CA certificate files.)

• ssl_cert: The path name of the server public key certificate file. This certificate can be sent to the
client and authenticated against the CA certificate that it has.

• ssl_key: The path name of the server private key file.

To enable encrypted connections on the replica, use the CHANGE REPLICATION SOURCE TO
statement (MySQL 8.0.23 and later) or CHANGE MASTER TO statement (prior to MySQL 8.0.23).

• To name the replica's certificate and SSL private key files using CHANGE REPLICATION SOURCE
TO (CHANGE MASTER TO), add the appropriate SOURCE_SSL_xxx (MASTER_SSL_xxx) options, like
this:

 -> SOURCE_SSL_CA = 'ca_file_name',
 -> SOURCE_SSL_CAPATH = 'ca_directory_name',
 -> SOURCE_SSL_CERT = 'cert_file_name',
 -> SOURCE_SSL_KEY = 'key_file_name',

These options correspond to the --ssl-xxx options with the same names, as described in
Command Options for Encrypted Connections. For these options to take effect, SOURCE_SSL=1
must also be set. For a replication connection, specifying a value for either of SOURCE_SSL_CA or
SOURCE_SSL_CAPATH corresponds to setting --ssl-mode=VERIFY_CA. The connection attempt
succeeds only if a valid matching Certificate Authority (CA) certificate is found using the specified
information.

• To activate host name identity verification, add the SOURCE_SSL_VERIFY_SERVER_CERT option,
like this:

 -> SOURCE_SSL_VERIFY_SERVER_CERT=1,

This option corresponds to the --ssl-verify-server-cert option, which is
deprecated in MySQL 5.7 and removed in MySQL 8.0. For a replication connection,
specifying MASTER_SSL_VERIFY_SERVER_CERT=1 corresponds to setting --ssl-
mode=VERIFY_IDENTITY, as described in Command Options for Encrypted Connections. For this
option to take effect, SOURCE_SSL=1 must also be set. Host name identity verification does not work
with self-signed certificates.

• To activate certificate revocation list (CRL) checks, add the SOURCE_SSL_CRL or
SOURCE_SSL_CRLPATH option, as shown here:

 -> SOURCE_SSL_CRL = 'crl_file_name',
 -> SOURCE_SSL_CRLPATH = 'crl_directory_name',

These options correspond to the --ssl-xxx options with the same names, as described in
Command Options for Encrypted Connections. If they are not specified, no CRL checking takes
place.

3816

Setting Up Replication to Use Encrypted Connections

• To specify lists of ciphers, ciphersuites, and encryption protocols permitted by the replica for
the replication connection, use the SOURCE_SSL_CIPHER, SOURCE_TLS_VERSION, and
SOURCE_TLS_CIPHERSUITES options, like this:

 -> SOURCE_SSL_CIPHER = 'cipher_list',
 -> SOURCE_TLS_VERSION = 'protocol_list',
 -> SOURCE_TLS_CIPHERSUITES = 'ciphersuite_list',

• The SOURCE_SSL_CIPHER option specifies a colon-separated list of one or more ciphers
permitted by the replica for the replication connection.

• The SOURCE_TLS_VERSION option specifies a comma-separated list of the TLS encryption
protocols permitted by the replica for the replication connection, in a format like that for the
tls_version server system variable. The connection procedure negotiates the use of the
highest TLS version that both the source and the replica permit. To be able to connect, the replica
must have at least one TLS version in common with the source.

• The SOURCE_TLS_CIPHERSUITES option (available beginning with MySQL 8.0.19) specifies a
colon-separated list of one or more ciphersuites that are permitted by the replica for the replication
connection if TLSv1.3 is used for the connection. If this option is set to NULL when TLSv1.3 is
used (which is the default if you do not set the option), the ciphersuites that are enabled by default
are allowed. If you set the option to an empty string, no cipher suites are allowed, and TLSv1.3 is
therefore not used.

The protocols, ciphers, and ciphersuites that you can specify in these lists depend on the SSL library
used to compile MySQL. For information about the formats, the permitted values, and the defaults
if you do not specify the options, see Section 8.3.2, “Encrypted Connection TLS Protocols and
Ciphers”.

Note

In MySQL 8.0.16 through 8.0.18, MySQL supports TLSv1.3, but the
SOURCE_TLS_CIPHERSUITES option is not available. In these releases, if
TLSv1.3 is used for connections between a source and replica, the source
must permit the use of at least one TLSv1.3 ciphersuite that is enabled by
default. From MySQL 8.0.19, you can use the option to specify any selection
of ciphersuites, including only non-default ciphersuites if you want.

• After the source information has been updated, start the replication process on the replica, like this:

mysql> START SLAVE;

Beginning with MySQL 8.0.22, START REPLICA is preferred, as shown here:

mysql> START REPLICA;

You can use the SHOW REPLICA STATUS (prior to MySQL 8.0.22, SHOW SLAVE STATUS)
statement to confirm that an encrypted connection was established successfully.

• Requiring encrypted connections on the replica does not ensure that the source requires encrypted
connections from replicas. If you want to ensure that the source only accepts replicas that connect
using encrypted connections, create a replication user account on the source using the REQUIRE
SSL option, then grant that user the REPLICATION SLAVE privilege. For example:

mysql> CREATE USER 'repl'@'%.example.com' IDENTIFIED BY 'password'
 -> REQUIRE SSL;
mysql> GRANT REPLICATION SLAVE ON *.*
 -> TO 'repl'@'%.example.com';

If you have an existing replication user account on the source, you can add REQUIRE SSL to it with
this statement:

mysql> ALTER USER 'repl'@'%.example.com' REQUIRE SSL;

3817

Encrypting Binary Log Files and Relay Log Files

19.3.2 Encrypting Binary Log Files and Relay Log Files

From MySQL 8.0.14, binary log files and relay log files can be encrypted, helping to protect these files
and the potentially sensitive data contained in them from being misused by outside attackers, and also
from unauthorized viewing by users of the operating system where they are stored. The encryption
algorithm used for the files, the AES (Advanced Encryption Standard) cipher algorithm, is built in to
MySQL Server and cannot be configured.

You enable this encryption on a MySQL server by setting the binlog_encryption system variable
to ON. OFF is the default. The system variable sets encryption on for binary log files and relay log files.
Binary logging does not need to be enabled on the server to enable encryption, so you can encrypt
the relay log files on a replica that has no binary log. To use encryption, a keyring component or plugin
must be installed and configured to supply MySQL Server's keyring service. For instructions to do this,
see Section 8.4.4, “The MySQL Keyring”. Any supported keyring component or plugin can be used to
store binary log encryption keys.

When you first start the server with encryption enabled, a new binary log encryption key is generated
before the binary log and relay logs are initialized. This key is used to encrypt a file password for each
binary log file (if the server has binary logging enabled) and relay log file (if the server has replication
channels), and further keys generated from the file passwords are used to encrypt the data in the files.
The binary log encryption key that is currently in use on the server is called the binary log master key.
The two tier encryption key architecture means that the binary log master key can be rotated (replaced
by a new master key) as required, and only the file password for each file needs to be re-encrypted
with the new master key, not the whole file. Relay log files are encrypted for all channels, including new
channels that are created after encryption is activated. The binary log index file and relay log index file
are never encrypted.

If you activate encryption while the server is running, a new binary log encryption key is generated at
that time. The exception is if encryption was active previously on the server and was then disabled, in
which case the binary log encryption key that was in use before is used again. The binary log file and
relay log files are rotated immediately, and file passwords for the new files and all subsequent binary
log files and relay log files are encrypted using this binary log encryption key. Existing binary log files
and relay log files still present on the server are not encrypted, but you can purge them if they are no
longer needed.

If you deactivate encryption by changing the binlog_encryption system variable to OFF, the
binary log file and relay log files are rotated immediately and all subsequent logging is unencrypted.
Previously encrypted files are not automatically decrypted, but the server is still able to read them.
The BINLOG_ENCRYPTION_ADMIN privilege is required to activate or deactivate encryption while the
server is running.

Encrypted and unencrypted binary log files can be distinguished using the magic number at the start
of the file header for encrypted log files (0xFD62696E), which differs from that used for unencrypted
log files (0xFE62696E). The SHOW BINARY LOGS statement shows whether each binary log file is
encrypted or unencrypted.

When binary log files have been encrypted, mysqlbinlog cannot read them directly, but can read
them from the server using the --read-from-remote-server option. From MySQL 8.0.14,
mysqlbinlog returns a suitable error if you attempt to read an encrypted binary log file directly, but
older versions of mysqlbinlog do not recognize the file as a binary log file at all. If you back up
encrypted binary log files using mysqlbinlog, note that the copies of the files that are generated
using mysqlbinlog are stored in an unencrypted format.

Binary log encryption can be combined with binary log transaction compression (available as of MySQL
8.0.20). For more information on binary log transaction compression, see Section 7.4.4.5, “Binary Log
Transaction Compression”.

3818

Encrypting Binary Log Files and Relay Log Files

19.3.2.1 Scope of Binary Log Encryption

When binary log encryption is active for a MySQL server instance, the encryption coverage is as
follows:

• Data at rest that is written to the binary log files and relay log files is encrypted from the point in time
where encryption is started, using the two tier encryption architecture described above. Existing
binary log files and relay log files that were present on the server when you started encryption are
not encrypted. You can purge these files when they are no longer needed.

• Data in motion in the replication event stream, which is sent to MySQL clients including
mysqlbinlog, is decrypted for transmission, and should therefore be protected in transit by the
use of connection encryption (see Section 8.3, “Using Encrypted Connections” and Section 19.3.1,
“Setting Up Replication to Use Encrypted Connections”).

• Data in use that is held in the binary log transaction and statement caches during a transaction is in
unencrypted format in the memory buffer that stores the cache. The data is written to a temporary file
on disk if it exceeds the space available in the memory buffer. From MySQL 8.0.17, when binary log
encryption is active on the server, temporary files used to hold the binary log cache are encrypted
using AES-CTR (AES Counter mode) for stream encryption. Because the temporary files are volatile
and tied to a single process, they are encrypted using single-tier encryption, using a randomly
generated file password and initialization vector that exist only in memory and are never stored on
disk or in the keyring. After each transaction is committed, the binary log cache is reset: the memory
buffer is cleared, any temporary file used to hold the binary log cache is truncated, and a new file
password and initialization vector are randomly generated for use with the next transaction. This
reset also takes place when the server is restarted after a normal shutdown or an unexpected halt.

Note

If you use LOAD DATA when binlog_format=STATEMENT is set, which is
not recommended as the statement is considered unsafe for statement-based
replication, a temporary file containing the data is created on the replica where
the changes are applied. These temporary files are not encrypted when binary
log encryption is active on the server. Use row-based or mixed binary logging
format instead, which do not create the temporary files.

19.3.2.2 Binary Log Encryption Keys

The binary log encryption keys used to encrypt the file passwords for the log files are 256-bit keys that
are generated specifically for each MySQL server instance using MySQL Server's keyring service (see
Section 8.4.4, “The MySQL Keyring”). The keyring service handles the creation, retrieval, and deletion
of the binary log encryption keys. A server instance only creates and removes keys generated for itself,
but it can read keys generated for other instances if they are stored in the keyring, as in the case of a
server instance that has been cloned by file copying.

Important

The binary log encryption keys for a MySQL server instance must be included in
your backup and recovery procedures, because if the keys required to decrypt
the file passwords for current and retained binary log files or relay log files are
lost, it might not be possible to start the server.

The format of binary log encryption keys in the keyring is as follows:

MySQLReplicationKey_{UUID}_{SEQ_NO}

For example:

MySQLReplicationKey_00508583-b5ce-11e8-a6a5-0010e0734796_1

3819

Encrypting Binary Log Files and Relay Log Files

{UUID} is the true UUID generated by the MySQL server (the value of the server_uuid system
variable). {SEQ_NO} is the sequence number for the binary log encryption key, which is incremented
by 1 for each new key that is generated on the server.

The binary log encryption key that is currently in use on the server is called the binary log master key.
The sequence number for the current binary log master key is stored in the keyring. The binary log
master key is used to encrypt each new log file's file password, which is a randomly generated 32-byte
file password specific to the log file that is used to encrypt the file data. The file password is encrypted
using AES-CBC (AES Cipher Block Chaining mode) with the 256-bit binary log encryption key and
a random initialization vector (IV), and is stored in the log file's file header. The file data is encrypted
using AES-CTR (AES Counter mode) with a 256-bit key generated from the file password and a nonce
also generated from the file password. It is technically possible to decrypt an encrypted file offline, if
the binary log encryption key used to encrypt the file password is known, by using tools available in the
OpenSSL cryptography toolkit.

If you use file copying to clone a MySQL server instance that has encryption active so its binary
log files and relay log files are encrypted, ensure that the keyring is also copied, so that the clone
server can read the binary log encryption keys from the source server. When encryption is activated
on the clone server (either at startup or subsequently), the clone server recognizes that the binary
log encryption keys used with the copied files include the generated UUID of the source server. It
automatically generates a new binary log encryption key using its own generated UUID, and uses
this to encrypt the file passwords for subsequent binary log files and relay log files. The copied files
continue to be read using the source server's keys.

19.3.2.3 Binary Log Master Key Rotation

When binary log encryption is enabled, you can rotate the binary log master key at any time while the
server is running by issuing ALTER INSTANCE ROTATE BINLOG MASTER KEY. When the binary
log master key is rotated manually using this statement, the passwords for the new and subsequent
files are encrypted using the new binary log master key, and also the file passwords for existing
encrypted binary log files and relay log files are re-encrypted using the new binary log master key, so
the encryption is renewed completely. You can rotate the binary log master key on a regular basis to
comply with your organization's security policy, and also if you suspect that the current or any of the
previous binary log master keys might have been compromised.

When you rotate the binary log master key manually, MySQL Server takes the following actions in
sequence:

1. A new binary log encryption key is generated with the next available sequence number, stored on
the keyring, and used as the new binary log master key.

2. The binary log and relay log files are rotated on all channels.

3. The new binary log master key is used to encrypt the file passwords for the new binary log and
relay log files, and subsequent files until the key is changed again.

4. The file passwords for existing encrypted binary log files and relay log files on the server are re-
encrypted in turn using the new binary log master key, starting with the most recent files. Any
unencrypted files are skipped.

5. Binary log encryption keys that are no longer in use for any files after the re-encryption process are
removed from the keyring.

The BINLOG_ENCRYPTION_ADMIN privilege is required to issue ALTER INSTANCE ROTATE BINLOG
MASTER KEY, and the statement cannot be used if the binlog_encryption system variable is set to
OFF.

As the final step of the binary log master key rotation process, all binary log encryption keys that no
longer apply to any retained binary log files or relay log files are cleaned up from the keyring. If a
retained binary log file or relay log file cannot be initialized for re-encryption, the relevant binary log
encryption keys are not deleted in case the files can be recovered in the future. For example, this

3820

Replication Privilege Checks

might be the case if a file listed in a binary log index file is currently unreadable, or if a channel fails to
initialize. If the server UUID changes, for example because a backup created using MySQL Enterprise
Backup is used to set up a new replica, issuing ALTER INSTANCE ROTATE BINLOG MASTER KEY
on the new server does not delete any earlier binary log encryption keys that include the original server
UUID.

If any of the first four steps of the binary log master key rotation process cannot be completed correctly,
an error message is issued explaining the situation and the consequences for the encryption status
of the binary log files and relay log files. Files that were previously encrypted are always left in an
encrypted state, but their file passwords might still be encrypted using an old binary log master
key. If you see these errors, first retry the process by issuing ALTER INSTANCE ROTATE BINLOG
MASTER KEY again. Then investigate the status of individual files to see what is blocking the process,
especially if you suspect that the current or any of the previous binary log master keys might have been
compromised.

If the final step of the binary log master key rotation process cannot be completed correctly, a warning
message is issued explaining the situation. The warning message identifies whether the process could
not clean up the auxiliary keys in the keyring for rotating the binary log master key, or could not clean
up unused binary log encryption keys. You can choose to ignore the message as the keys are auxiliary
keys or no longer in use, or you can issue ALTER INSTANCE ROTATE BINLOG MASTER KEY again
to retry the process.

If the server stops and is restarted with binary log encryption still set to ON during the binary log master
key rotation process, new binary log files and relay log files after the restart are encrypted using the
new binary log master key. However, the re-encryption of existing files is not continued, so files that
did not get re-encrypted before the server stopped are left encrypted using the previous binary log
master key. To complete re-encryption and clean up unused binary log encryption keys, issue ALTER
INSTANCE ROTATE BINLOG MASTER KEY again after the restart.

ALTER INSTANCE ROTATE BINLOG MASTER KEY actions are not written to the binary log and are
not executed on replicas. Binary log master key rotation can therefore be carried out in replication
environments including a mix of MySQL versions. To schedule regular rotation of the binary log master
key on all applicable source and replica servers, you can enable the MySQL Event Scheduler on each
server and issue the ALTER INSTANCE ROTATE BINLOG MASTER KEY statement using a CREATE
EVENT statement. If you rotate the binary log master key because you suspect that the current or any
of the previous binary log master keys might have been compromised, issue the statement on every
applicable source and replica server. Issuing the statement on individual servers ensures that you can
verify immediate compliance, even in the case of replicas that are lagging, belong to multiple replication
topologies, or are not currently active in the replication topology but have binary log and relay log files.

The binlog_rotate_encryption_master_key_at_startup system variable controls whether
the binary log master key is automatically rotated when the server is restarted. If this system variable
is set to ON, a new binary log encryption key is generated and used as the new binary log master
key whenever the server is restarted. If it is set to OFF, which is the default, the existing binary log
master key is used again after the restart. When the binary log master key is rotated at startup, the
file passwords for the new binary log and relay log files are encrypted using the new key. The file
passwords for the existing encrypted binary log files and relay log files are not re-encrypted, so they
remain encrypted using the old key, which remains available on the keyring.

19.3.3 Replication Privilege Checks

By default, MySQL replication (including Group Replication) does not carry out privilege checks
when transactions that were already accepted by another server are applied on a replica or group
member. From MySQL 8.0.18, you can create a user account with the appropriate privileges
to apply the transactions that are normally replicated on a channel, and specify this as the
PRIVILEGE_CHECKS_USER account for the replication applier, using a CHANGE REPLICATION
SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL
8.0.23). MySQL then checks each transaction against the user account's privileges to verify that
you have authorized the operation for that channel. The account can also be safely used by an

3821

Replication Privilege Checks

administrator to apply or reapply transactions from mysqlbinlog output, for example to recover from
a replication error on the channel.

The use of a PRIVILEGE_CHECKS_USER account helps secure a replication channel against the
unauthorized or accidental use of privileged or unwanted operations. The PRIVILEGE_CHECKS_USER
account provides an additional layer of security in situations such as these:

• You are replicating between a server instance on your organization's network, and a server instance
on another network, such as an instance supplied by a cloud service provider.

• You want to have multiple on-premise or off-site deployments administered as separate units,
without giving one administrator account privileges on all the deployments.

• You want to have an administrator account that enables an administrator to perform only operations
that are directly relevant to the replication channel and the databases it replicates, rather than having
wide privileges on the server instance.

You can increase the security of a replication channel where privilege checks are applied by adding
one or both of these options to the CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO
statement when you specify the PRIVILEGE_CHECKS_USER account for the channel:

• The REQUIRE_ROW_FORMAT option (available from MySQL 8.0.19) makes the replication channel
accept only row-based replication events. When REQUIRE_ROW_FORMAT is set, you must use
row-based binary logging (binlog_format=ROW) on the source server. In MySQL 8.0.18,
REQUIRE_ROW_FORMAT is not available, but the use of row-based binary logging for secured
replication channels is still strongly recommended. With statement-based binary logging, some
administrator-level privileges might be required for the PRIVILEGE_CHECKS_USER account to
execute transactions successfully.

• The REQUIRE_TABLE_PRIMARY_KEY_CHECK option (available from MySQL 8.0.20) makes the
replication channel use its own policy for primary key checks. Setting ON means that primary keys
are always required, and setting OFF means that primary keys are never required. The default
setting, STREAM, sets the session value of the sql_require_primary_key system variable using
the value that is replicated from the source for each transaction. When PRIVILEGE_CHECKS_USER
is set, setting REQUIRE_TABLE_PRIMARY_KEY_CHECK to either ON or OFF means that the user
account does not need session administration level privileges to set restricted session variables,
which are required to change the value of sql_require_primary_key. It also normalizes the
behavior across replication channels for different sources.

You grant the REPLICATION_APPLIER privilege to enable a user account to appear as the
PRIVILEGE_CHECKS_USER for a replication applier thread, and to execute the internal-use BINLOG
statements used by mysqlbinlog. The user name and host name for the PRIVILEGE_CHECKS_USER
account must follow the syntax described in Section 8.2.4, “Specifying Account Names”, and the user
must not be an anonymous user (with a blank user name) or the CURRENT_USER. To create a new
account, use CREATE USER. To grant this account the REPLICATION_APPLIER privilege, use the
GRANT statement. For example, to create a user account priv_repl, which can be used manually by
an administrator from any host in the example.com domain, and requires an encrypted connection,
issue the following statements:

mysql> SET sql_log_bin = 0;
mysql> CREATE USER 'priv_repl'@'%.example.com' IDENTIFIED BY 'password' REQUIRE SSL;
mysql> GRANT REPLICATION_APPLIER ON *.* TO 'priv_repl'@'%.example.com';
mysql> SET sql_log_bin = 1;

The SET sql_log_bin statements are used so that the account management statements are not
added to the binary log and sent to the replication channels (see Section 15.4.1.3, “SET sql_log_bin
Statement”).

Important

The caching_sha2_password authentication plugin is the default for new
users created from MySQL 8.0 (for details, see Section 8.4.1.2, “Caching SHA-2

3822

Replication Privilege Checks

Pluggable Authentication”). To connect to a server using a user account that
authenticates with this plugin, you must either set up an encrypted connection
as described in Section 19.3.1, “Setting Up Replication to Use Encrypted
Connections”, or enable the unencrypted connection to support password
exchange using an RSA key pair.

After setting up the user account, use the GRANT statement to grant additional privileges to enable the
user account to make the database changes that you expect the applier thread to carry out, such as
updating specific tables held on the server. These same privileges enable an administrator to use the
account if they need to execute any of those transactions manually on the replication channel. If an
unexpected operation is attempted for which you did not grant the appropriate privileges, the operation
is disallowed and the replication applier thread stops with an error. Section 19.3.3.1, “Privileges For
The Replication PRIVILEGE_CHECKS_USER Account” explains what additional privileges the account
needs. For example, to grant the priv_repl user account the INSERT privilege to add rows to the
cust table in db1, issue the following statement:

mysql> GRANT INSERT ON db1.cust TO 'priv_repl'@'%.example.com';

You assign the PRIVILEGE_CHECKS_USER account for a replication channel using a CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement
(before MySQL 8.0.23). If replication is running, issue STOP REPLICA (or before MySQL 8.0.22, STOP
SLAVE) before the CHANGE MASTER TO statement, and START REPLICA after it. The use of row-
based binary logging is strongly recommended when PRIVILEGE_CHECKS_USER is set, and from
MySQL 8.0.19 you can use the statement to set REQUIRE_ROW_FORMAT to enforce this.

When you restart the replication channel, checks on dynamic privileges are applied from that point
on. However, static global privileges are not active in the applier's context until you reload the grant
tables, because these privileges are not changed for a connected client. To activate static privileges,
perform a flush-privileges operation. This can be done by issuing a FLUSH PRIVILEGES statement or
by executing a mysqladmin flush-privileges or mysqladmin reload command.

For example, to start privilege checks on the channel channel_1 on a running replica in MySQL
8.0.23 and later, issue the following statements:

mysql> STOP REPLICA FOR CHANNEL 'channel_1';
mysql> CHANGE REPLICATION SOURCE TO
 > PRIVILEGE_CHECKS_USER = 'priv_repl'@'%.example.com',
 > REQUIRE_ROW_FORMAT = 1 FOR CHANNEL 'channel_1';
mysql> FLUSH PRIVILEGES;
mysql> START REPLICA FOR CHANNEL 'channel_1';

Prior to MySQL 8.0.23, you can use the statements shown here:

mysql> STOP SLAVE FOR CHANNEL 'channel_1';
mysql> CHANGE MASTER TO
 > PRIVILEGE_CHECKS_USER = 'priv_repl'@'%.example.com',
 > REQUIRE_ROW_FORMAT = 1 FOR CHANNEL 'channel_1';
mysql> FLUSH PRIVILEGES;
mysql> START SLAVE FOR CHANNEL 'channel_1';

If you do not specify a channel and no other channels exist, the statement is applied to the default
channel. The user name and host name for the PRIVILEGE_CHECKS_USER account for a channel
are shown in the Performance Schema replication_applier_configuration table, where
they are properly escaped so they can be copied directly into SQL statements to execute individual
transactions.

In MySQL 8.0.31 and later, if you are using the Rewriter plugin, you should grant the
PRIVILEGE_CHECKS_USER user account the SKIP_QUERY_REWRITE privilege. This prevents
statements issued by this user from being rewritten. See Section 7.6.4, “The Rewriter Query Rewrite
Plugin”, for more information.

When REQUIRE_ROW_FORMAT is set for a replication channel, the replication applier does not
create or drop temporary tables, and so does not set the pseudo_thread_id session system

3823

Replication Privilege Checks

variable. It does not execute LOAD DATA INFILE instructions, and so does not attempt file
operations to access or delete the temporary files associated with data loads (logged as a
Format_description_log_event). It does not execute INTVAR, RAND, and USER_VAR events,
which are used to reproduce the client's connection state for statement-based replication. (An
exception is USER_VAR events that are associated with DDL queries, which are executed.) It does not
execute any statements that are logged within DML transactions. If the replication applier detects any
of these types of event while attempting to queue or apply a transaction, the event is not applied, and
replication stops with an error.

You can set REQUIRE_ROW_FORMAT for a replication channel whether or not you set a
PRIVILEGE_CHECKS_USER account. The restrictions implemented when you set this option increase
the security of the replication channel even without privilege checks. You can also specify the --
require-row-format option when you use mysqlbinlog, to enforce row-based replication events
in mysqlbinlog output.

Security Context. By default, when a replication applier thread is started with a user account
specified as the PRIVILEGE_CHECKS_USER, the security context is created using default roles, or with
all roles if activate_all_roles_on_login is set to ON.

You can use roles to supply a general privilege set to accounts that are used as
PRIVILEGE_CHECKS_USER accounts, as in the following example. Here, instead of granting the
INSERT privilege for the db1.cust table directly to a user account as in the earlier example, this
privilege is granted to the role priv_repl_role along with the REPLICATION_APPLIER privilege.
The role is then used to grant the privilege set to two user accounts, both of which can now be used as
PRIVILEGE_CHECKS_USER accounts:

mysql> SET sql_log_bin = 0;
mysql> CREATE USER 'priv_repa'@'%.example.com'
 IDENTIFIED BY 'password'
 REQUIRE SSL;
mysql> CREATE USER 'priv_repb'@'%.example.com'
 IDENTIFIED BY 'password'
 REQUIRE SSL;
mysql> CREATE ROLE 'priv_repl_role';
mysql> GRANT REPLICATION_APPLIER TO 'priv_repl_role';
mysql> GRANT INSERT ON db1.cust TO 'priv_repl_role';
mysql> GRANT 'priv_repl_role' TO
 'priv_repa'@'%.example.com',
 'priv_repb'@'%.example.com';
mysql> SET DEFAULT ROLE 'priv_repl_role' TO
 'priv_repa'@'%.example.com',
 'priv_repb'@'%.example.com';
mysql> SET sql_log_bin = 1;

Be aware that when the replication applier thread creates the security context, it checks the privileges
for the PRIVILEGE_CHECKS_USER account, but does not carry out password validation, and does not
carry out checks relating to account management, such as checking whether the account is locked.
The security context that is created remains unchanged for the lifetime of the replication applier thread.

Limitation. In MySQL 8.0.18 only, if the replica mysqld is restarted immediately after issuing
a RESET REPLICA statement (due to an unexpected server exit or deliberate restart), the
PRIVILEGE_CHECKS_USER account setting, which is held in the mysql.slave_relay_log_info
table, is lost and must be respecified. When you use privilege checks in that release, always verify
that they are in place after a restart, and respecify them if required. From MySQL 8.0.19, the
PRIVILEGE_CHECKS_USER account setting is preserved in this situation, so it is retrieved from the
table and reapplied to the channel.

19.3.3.1 Privileges For The Replication PRIVILEGE_CHECKS_USER Account

The user account that is specified using the CHANGE REPLICATION SOURCE TO | CHANGE MASTER
TO statement as the PRIVILEGE_CHECKS_USER account for a replication channel must have
the REPLICATION_APPLIER privilege, otherwise the replication applier thread does not start. As

3824

Replication Privilege Checks

explained in Section 19.3.3, “Replication Privilege Checks”, the account requires further privileges
that are sufficient to apply all the expected transactions expected on the replication channel. These
privileges are checked only when relevant transactions are executed.

The use of row-based binary logging (binlog_format=ROW) is strongly recommended for replication
channels that are secured using a PRIVILEGE_CHECKS_USER account. With statement-based binary
logging, some administrator-level privileges might be required for the PRIVILEGE_CHECKS_USER
account to execute transactions successfully. From MySQL 8.0.19, the REQUIRE_ROW_FORMAT setting
can be applied to secured channels, which restricts the channel from executing events that would
require these privileges.

The REPLICATION_APPLIER privilege explicitly or implicitly allows the PRIVILEGE_CHECKS_USER
account to carry out the following operations that a replication thread needs to perform:

• Setting the value of the system variables gtid_next, original_commit_timestamp,
original_server_version, immediate_server_version, and pseudo_replica_mode or
pseudo_slave_mode, to apply appropriate metadata and behaviors when executing transactions.

• Executing internal-use BINLOG statements to apply mysqlbinlog output, provided that the account
also has permission for the tables and operations in those statements.

• Updating the system tables mysql.gtid_executed, mysql.slave_relay_log_info,
mysql.slave_worker_info, and mysql.slave_master_info, to update replication metadata.
(If events access these tables explicitly for other purposes, you must grant the appropriate privileges
on the tables.)

• Applying a binary log Table_map_log_event, which provides table metadata but does not make
any database changes.

If the REQUIRE_TABLE_PRIMARY_KEY_CHECK option of the CHANGE REPLICATION SOURCE TO
| CHANGE MASTER TO statement is set to the default of STREAM, the PRIVILEGE_CHECKS_USER
account needs privileges sufficient to set restricted session variables, so that it can change the value
of the sql_require_primary_key system variable for the duration of a session to match the
setting replicated from the source. The SESSION_VARIABLES_ADMIN privilege gives the account this
capability. This privilege also allows the account to apply mysqlbinlog output that was created using
the --disable-log-bin option. If you set REQUIRE_TABLE_PRIMARY_KEY_CHECK to either ON
or OFF, the replica always uses that value for the sql_require_primary_key system variable in
replication operations, and so does not need these session administration level privileges.

If table encryption is in use, the table_encryption_privilege_check system variable is set
to ON, and the encryption setting for the tablespace involved in any event differs from the applying
server's default encryption setting (specified by the default_table_encryption system variable),
the PRIVILEGE_CHECKS_USER account needs the TABLE_ENCRYPTION_ADMIN privilege in order to
override the default encryption setting. It is strongly recommended that you do not grant this privilege.
Instead, ensure that the default encryption setting on a replica matches the encryption status of the
tablespaces that it replicates, and that replication group members have the same default encryption
setting, so that the privilege is not needed.

In order to execute specific replicated transactions from the relay log, or transactions from
mysqlbinlog output as required, the PRIVILEGE_CHECKS_USER account must have the following
privileges:

• For a row insertion logged in row format (which are logged as a Write_rows_log_event), the
INSERT privilege on the relevant table.

• For a row update logged in row format (which are logged as an Update_rows_log_event), the
UPDATE privilege on the relevant table.

• For a row deletion logged in row format (which are logged as a Delete_rows_log_event), the
DELETE privilege on the relevant table.

3825

Replication Privilege Checks

If statement-based binary logging is in use (which is not recommended with a
PRIVILEGE_CHECKS_USER account), for a transaction control statement such as BEGIN or
COMMIT or DML logged in statement format (which are logged as a Query_log_event), the
PRIVILEGE_CHECKS_USER account needs privileges to execute the statement contained in the event.

If LOAD DATA operations need to be carried out on the replication channel, use row-based binary
logging (binlog_format=ROW). With this logging format, the FILE privilege is not needed to execute
the event, so do not give the PRIVILEGE_CHECKS_USER account this privilege. The use of row-
based binary logging is strongly recommended with replication channels that are secured using a
PRIVILEGE_CHECKS_USER account. If REQUIRE_ROW_FORMAT is set for the channel, row-based
binary logging is required. The Format_description_log_event, which deletes any temporary
files created by LOAD DATA events, is processed without privilege checks. For more information, see
Section 19.5.1.19, “Replication and LOAD DATA”.

If the init_replica or init_slave system variable is set to specify one or more SQL statements
to be executed when the replication SQL thread starts, the PRIVILEGE_CHECKS_USER account must
have the privileges needed to execute these statements.

It is recommended that you never give any ACL privileges to the PRIVILEGE_CHECKS_USER account,
including CREATE USER, CREATE ROLE, DROP ROLE, and GRANT OPTION, and do not permit the
account to update the mysql.user table. With these privileges, the account could be used to create
or modify user accounts on the server. To avoid ACL statements issued on the source server being
replicated to the secured channel for execution (where they fail in the absence of these privileges), you
can issue SET sql_log_bin = 0 before all ACL statements and SET sql_log_bin = 1 after
them, to omit the statements from the source's binary log. Alternatively, you can set a dedicated current
database before executing all ACL statements, and use a replication filter (--binlog-ignore-db) to
filter out this database on the replica.

19.3.3.2 Privilege Checks For Group Replication Channels

From MySQL 8.0.19, as well as securing asynchronous and semi-synchronous replication, you may
choose to use a PRIVILEGE_CHECKS_USER account to secure the two replication applier threads
used by Group Replication. The group_replication_applier thread on each group member is
used for applying the group's transactions, and the group_replication_recovery thread on each
group member is used for state transfer from the binary log as part of distributed recovery when the
member joins or rejoins the group.

To secure one of these threads, stop Group Replication, then issue the CHANGE REPLICATION
SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL
8.0.23) with the PRIVILEGE_CHECKS_USER option, specifying group_replication_applier or
group_replication_recovery as the channel name. For example:

mysql> STOP GROUP_REPLICATION;
mysql> CHANGE MASTER TO PRIVILEGE_CHECKS_USER = 'gr_repl'@'%.example.com'
 FOR CHANNEL 'group_replication_recovery';
mysql> FLUSH PRIVILEGES;
mysql> START GROUP_REPLICATION;

Or from MySQL 8.0.23:
mysql> STOP GROUP_REPLICATION;
mysql> CHANGE REPLICATION SOURCE TO PRIVILEGE_CHECKS_USER = 'gr_repl'@'%.example.com'
 FOR CHANNEL 'group_replication_recovery';
mysql> FLUSH PRIVILEGES;
mysql> START GROUP_REPLICATION;

For Group Replication channels, the REQUIRE_ROW_FORMAT setting is automatically enabled when the
channel is created, and cannot be disabled, so you do not need to specify this.

Important

In MySQL 8.0.19, ensure that you do not issue the CHANGE
REPLICATION SOURCE TO | CHANGE MASTER TO statement with the
PRIVILEGE_CHECKS_USER option while Group Replication is running. This

3826

Replication Privilege Checks

action causes the relay log files for the channel to be purged, which might cause
the loss of transactions that have been received and queued in the relay log, but
not yet applied.

Group Replication requires every table that is to be replicated by the group to have a defined primary
key, or primary key equivalent where the equivalent is a non-null unique key. Rather than using
the checks carried out by the sql_require_primary_key system variable, Group Replication
has its own built-in set of checks for primary keys or primary key equivalents. You may set the
REQUIRE_TABLE_PRIMARY_KEY_CHECK option of the CHANGE REPLICATION SOURCE TO |
CHANGE MASTER TO statement to ON for a Group Replication channel. However, be aware that
you might find some transactions that are permitted under Group Replication's built-in checks
are not permitted under the checks carried out when you set sql_require_primary_key
= ON or REQUIRE_TABLE_PRIMARY_KEY_CHECK = ON. For this reason, new and upgraded
Group Replication channels from MySQL 8.0.20 (when the option was introduced) have
REQUIRE_TABLE_PRIMARY_KEY_CHECK set to the default of STREAM, rather than to ON.

If a remote cloning operation is used for distributed recovery in Group Replication
(see Section 20.5.4.2, “Cloning for Distributed Recovery”), from MySQL 8.0.19, the
PRIVILEGE_CHECKS_USER account and related settings from the donor are cloned to the joining
member. If the joining member is set to start Group Replication on boot, it automatically uses the
account for privilege checks on the appropriate replication channels.

In MySQL 8.0.18, due to a number of limitations, it is recommended that you do not use a
PRIVILEGE_CHECKS_USER account with Group Replication channels.

19.3.3.3 Recovering From Failed Replication Privilege Checks

If a privilege check against the PRIVILEGE_CHECKS_USER account fails, the transaction is not
executed and replication stops for the channel. Details of the error and the last applied transaction are
recorded in the Performance Schema replication_applier_status_by_worker table. Follow
this procedure to recover from the error:

1. Identify the replicated event that caused the error and verify whether or not the event is expected
and from a trusted source. You can use mysqlbinlog to retrieve and display the events that were
logged around the time of the error. For instructions to do this, see Section 9.5, “Point-in-Time
(Incremental) Recovery”.

2. If the replicated event is not expected or is not from a known and trusted source, investigate the
cause. If you can identify why the event took place and there are no security considerations,
proceed to fix the error as described below.

3. If the PRIVILEGE_CHECKS_USER account should have been permitted to execute the
transaction, but has been misconfigured, grant the missing privileges to the account, use a FLUSH
PRIVILEGES statement or execute a mysqladmin flush-privileges or mysqladmin
reload command to reload the grant tables, then restart replication for the channel.

4. If the transaction needs to be executed and you have verified that it is trusted, but the
PRIVILEGE_CHECKS_USER account should not have this privilege normally, you can grant the
required privilege to the PRIVILEGE_CHECKS_USER account temporarily. After the replicated event
has been applied, remove the privilege from the account, and take any necessary steps to ensure
the event does not recur if it is avoidable.

5. If the transaction is an administrative action that should only have taken place on the source
and not on the replica, or should only have taken place on a single replication group member,
skip the transaction on the server or servers where it stopped replication, then issue START
REPLICA to restart replication on the channel. To avoid the situation in future, you could issue such
administrative statements with SET sql_log_bin = 0 before them and SET sql_log_bin =
1 after them, so that they are not logged on the source.

6. If the transaction is a DDL or DML statement that should not have taken place on either the source
or the replica, skip the transaction on the server or servers where it stopped replication, undo the

3827

Replication Solutions

transaction manually on the server where it originally took place, then issue START REPLICA to
restart replication.

To skip a transaction, if GTIDs are in use, commit an empty transaction that has the GTID of the failing
transaction, for example:

SET GTID_NEXT='aaa-bbb-ccc-ddd:N';
BEGIN;
COMMIT;
SET GTID_NEXT='AUTOMATIC';

If GTIDs are not in use, issue a SET GLOBAL sql_replica_skip_counter or SET GLOBAL
sql_slave_skip_counter statement to skip the event. For instructions to use this alternative
method and more details about skipping transactions, see Section 19.1.7.3, “Skipping Transactions”.

19.4 Replication Solutions
Replication can be used in many different environments for a range of purposes. This section provides
general notes and advice on using replication for specific solution types.

For information on using replication in a backup environment, including notes on the setup, backup
procedure, and files to back up, see Section 19.4.1, “Using Replication for Backups”.

For advice and tips on using different storage engines on the source and replica, see Section 19.4.4,
“Using Replication with Different Source and Replica Storage Engines”.

Using replication as a scale-out solution requires some changes in the logic and operation of
applications that use the solution. See Section 19.4.5, “Using Replication for Scale-Out”.

For performance or data distribution reasons, you may want to replicate different databases to different
replicas. See Section 19.4.6, “Replicating Different Databases to Different Replicas”

As the number of replicas increases, the load on the source can increase and lead to reduced
performance (because of the need to replicate the binary log to each replica). For tips on improving
your replication performance, including using a single secondary server as the source, see
Section 19.4.7, “Improving Replication Performance”.

For guidance on switching sources, or converting replicas into sources as part of an emergency failover
solution, see Section 19.4.8, “Switching Sources During Failover”.

For information on security measures specific to servers in a replication topology, see Section 19.3,
“Replication Security”.

19.4.1 Using Replication for Backups

To use replication as a backup solution, replicate data from the source to a replica, and then back up
the replica. The replica can be paused and shut down without affecting the running operation of the
source, so you can produce an effective snapshot of “live” data that would otherwise require the source
to be shut down.

How you back up a database depends on its size and whether you are backing up only the data, or the
data and the replica state so that you can rebuild the replica in the event of failure. There are therefore
two choices:

• If you are using replication as a solution to enable you to back up the data on the source, and the
size of your database is not too large, the mysqldump tool may be suitable. See Section 19.4.1.1,
“Backing Up a Replica Using mysqldump”.

• For larger databases, where mysqldump would be impractical or inefficient, you can back up the
raw data files instead. Using the raw data files option also means that you can back up the binary
and relay logs that make it possible to re-create the replica in the event of a replica failure. For more
information, see Section 19.4.1.2, “Backing Up Raw Data from a Replica”.

3828

Using Replication for Backups

Another backup strategy, which can be used for either source or replica servers, is to put the server in
a read-only state. The backup is performed against the read-only server, which then is changed back
to its usual read/write operational status. See Section 19.4.1.3, “Backing Up a Source or Replica by
Making It Read Only”.

19.4.1.1 Backing Up a Replica Using mysqldump

Using mysqldump to create a copy of a database enables you to capture all of the data in the
database in a format that enables the information to be imported into another instance of MySQL
Server (see Section 6.5.4, “mysqldump — A Database Backup Program”). Because the format of the
information is SQL statements, the file can easily be distributed and applied to running servers in the
event that you need access to the data in an emergency. However, if the size of your data set is very
large, mysqldump may be impractical.

Tip

Consider using the MySQL Shell dump utilities, which provide parallel
dumping with multiple threads, file compression, and progress information
display, as well as cloud features such as Oracle Cloud Infrastructure Object
Storage streaming, and MySQL HeatWave Service compatibility checks and
modifications. Dumps can be easily imported into a MySQL Server instance
or a MySQL HeatWave Service DB System using the MySQL Shell load dump
utilities. Installation instructions for MySQL Shell can be found here.

When using mysqldump, you should stop replication on the replica before starting the dump process to
ensure that the dump contains a consistent set of data:

1. Stop the replica from processing requests. You can stop replication completely on the replica using
mysqladmin:

$> mysqladmin stop-slave

Alternatively, you can stop only the replication SQL thread to pause event execution:

$> mysql -e 'STOP SLAVE SQL_THREAD;'
Or from MySQL 8.0.22:
$> mysql -e 'STOP REPLICA SQL_THREAD;'

This enables the replica to continue to receive data change events from the source's binary log
and store them in the relay logs using the replication receiver thread, but prevents the replica from
executing these events and changing its data. Within busy replication environments, permitting
the replication receiver thread to run during backup may speed up the catch-up process when you
restart the replication applier thread.

2. Run mysqldump to dump your databases. You may either dump all databases or select databases
to be dumped. For example, to dump all databases:

$> mysqldump --all-databases > fulldb.dump

3. Once the dump has completed, start replication again:

$> mysqladmin start-slave

In the preceding example, you may want to add login credentials (user name, password) to the
commands, and bundle the process up into a script that you can run automatically each day.

If you use this approach, make sure you monitor the replication process to ensure that the time taken
to run the backup does not affect the replica's ability to keep up with events from the source. See
Section 19.1.7.1, “Checking Replication Status”. If the replica is unable to keep up, you may want
to add another replica and distribute the backup process. For an example of how to configure this
scenario, see Section 19.4.6, “Replicating Different Databases to Different Replicas”.

3829

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

Using Replication for Backups

19.4.1.2 Backing Up Raw Data from a Replica

To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL
replica should take place while your replica server is shut down. If the MySQL server is still running,
background tasks may still be updating the database files, particularly those involving storage engines
with background processes such as InnoDB. With InnoDB, these problems should be resolved during
crash recovery, but since the replica server can be shut down during the backup process without
affecting the execution of the source it makes sense to take advantage of this capability.

To shut down the server and back up the files:

1. Shut down the replica MySQL server:

$> mysqladmin shutdown

2. Copy the data files. You can use any suitable copying or archive utility, including cp, tar or
WinZip. For example, assuming that the data directory is located under the current directory, you
can archive the entire directory as follows:

$> tar cf /tmp/dbbackup.tar ./data

3. Start the MySQL server again. Under Unix:

$> mysqld_safe &

Under Windows:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqld"

Normally you should back up the entire data directory for the replica MySQL server. If you want to be
able to restore the data and operate as a replica (for example, in the event of failure of the replica),
in addition to the data, you need to have the replica's connection metadata repository and applier
metadata repository, and the relay log files. These items are needed to resume replication after you
restore the replica's data. Assuming tables have been used for the replica's connection metadata
repository and applier metadata repository (see Section 19.2.4, “Relay Log and Replication Metadata
Repositories”), which is the default in MySQL 8.0, these tables are backed up along with the data
directory. If files have been used for the repositories, which is deprecated, you must back these up
separately. The relay log files must be backed up separately if they have been placed in a different
location to the data directory.

If you lose the relay logs but still have the relay-log.info file, you can check it to determine how
far the replication SQL thread has executed in the source's binary logs. Then you can use CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement
(before MySQL 8.0.23) with the SOURCE_LOG_FILE | MASTER_LOG_FILE and SOURCE_LOG_POS |
MASTER_LOG_POS options to tell the replica to re-read the binary logs from that point. This requires
that the binary logs still exist on the source server.

If your replica is replicating LOAD DATA statements, you should also back up any SQL_LOAD-* files
that exist in the directory that the replica uses for this purpose. The replica needs these files to resume
replication of any interrupted LOAD DATA operations. The location of this directory is the value of the
system variable replica_load_tmpdir (from MySQL 8.0.26) or slave_load_tmpdir (before
MySQL 8.0.26). If the server was not started with that variable set, the directory location is the value of
the tmpdir system variable.

19.4.1.3 Backing Up a Source or Replica by Making It Read Only

It is possible to back up either source or replica servers in a replication setup by acquiring a global read
lock and manipulating the read_only system variable to change the read-only state of the server to
be backed up:

1. Make the server read-only, so that it processes only retrievals and blocks updates.

3830

Using Replication for Backups

2. Perform the backup.

3. Change the server back to its normal read/write state.

Note

The instructions in this section place the server to be backed up in a state that is
safe for backup methods that get the data from the server, such as mysqldump
(see Section 6.5.4, “mysqldump — A Database Backup Program”). You should
not attempt to use these instructions to make a binary backup by copying files
directly because the server may still have modified data cached in memory and
not flushed to disk.

The following instructions describe how to do this for a source and for a replica. For both scenarios
discussed here, suppose that you have the following replication setup:

• A source server S1

• A replica server R1 that has S1 as its source

• A client C1 connected to S1

• A client C2 connected to R1

In either scenario, the statements to acquire the global read lock and manipulate the read_only
variable are performed on the server to be backed up and do not propagate to any replicas of that
server.

Scenario 1: Backup with a Read-Only Source

Put the source S1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While S1 is in a read-only state, the following properties are true:

• Requests for updates sent by C1 to S1 block because the server is in read-only mode.

• Requests for query results sent by C1 to S1 succeed.

• Making a backup on S1 is safe.

• Making a backup on R1 is not safe. This server is still running, and might be processing the binary
log or update requests coming from client C2.

While S1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on S1 completes, restore S1 to its normal operational state by executing
these statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

Although performing the backup on S1 is safe (as far as the backup is concerned), it is not optimal for
performance because clients of S1 are blocked from executing updates.

This strategy applies to backing up a source in a replication setup, but can also be used for a single
server in a nonreplication setting.

Scenario 2: Backup with a Read-Only Replica

Put the replica R1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

3831

Handling an Unexpected Halt of a Replica

While R1 is in a read-only state, the following properties are true:

• The source S1 continues to operate, so making a backup on the source is not safe.

• The replica R1 is stopped, so making a backup on the replica R1 is safe.

These properties provide the basis for a popular backup scenario: Having one replica busy performing
a backup for a while is not a problem because it does not affect the entire network, and the system
is still running during the backup. In particular, clients can still perform updates on the source server,
which remains unaffected by backup activity on the replica.

While R1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on R1 completes, restore R1 to its normal operational state by executing
these statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

After the replica is restored to normal operation, it again synchronizes to the source by catching up with
any outstanding updates from the source's binary log.

19.4.2 Handling an Unexpected Halt of a Replica

In order for replication to be resilient to unexpected halts of the server (sometimes described as crash-
safe) it must be possible for the replica to recover its state before halting. This section describes the
impact of an unexpected halt of a replica during replication, and how to configure a replica for the best
chance of recovery to continue replication.

After an unexpected halt of a replica, upon restart the replication SQL thread must recover information
about which transactions have been executed already. The information required for recovery is stored
in the replica's applier metadata repository. From MySQL 8.0, this repository is created by default as an
InnoDB table named mysql.slave_relay_log_info. By using this transactional storage engine
the information is always recoverable upon restart. Updates to the applier metadata repository are
committed together with the transactions, meaning that the replica's progress information recorded in
that repository is always consistent with what has been applied to the database, even in the event of an
unexpected server halt. For more information on the applier metadata repository, see Section 19.2.4,
“Relay Log and Replication Metadata Repositories”.

DML transactions and also atomic DDL update the replication positions in the replica's applier
metadata repository in the mysql.slave_relay_log_info table together with applying the
changes to the database, as an atomic operation. In all other cases, including DDL statements
that are not fully atomic, and exempted storage engines that do not support atomic DDL, the
mysql.slave_relay_log_info table might be missing updates associated with replicated data
if the server halts unexpectedly. Restoring updates in this case is a manual process. For details on
atomic DDL support in MySQL 8.0, and the resulting behavior for the replication of certain statements,
see Section 15.1.1, “Atomic Data Definition Statement Support”.

The recovery process by which a replica recovers from an unexpected halt varies depending on the
configuration of the replica. The details of the recovery process are influenced by the chosen method of
replication, whether the replica is single-threaded or multithreaded, and the setting of relevant system
variables. The overall aim of the recovery process is to identify what transactions had already been
applied on the replica's database before the unexpected halt occurred, and retrieve and apply the
transactions that the replica missed following the unexpected halt.

• For GTID-based replication, the recovery process needs the GTIDs of the transactions that were
already received or committed by the replica. The missing transactions can be retrieved from the
source using GTID auto-positioning, which automatically compares the source's transactions to the
replica's transactions and identifies the missing transactions.

• For file position based replication, the recovery process needs an accurate replication SQL thread
(applier) position showing the last transaction that was applied on the replica. Based on that position,

3832

Handling an Unexpected Halt of a Replica

the replication I/O thread (receiver) retrieves from the source's binary log all of the transactions that
should be applied on the replica from that point on.

Using GTID-based replication makes it easiest to configure replication to be resilient to unexpected
halts. GTID auto-positioning means the replica can reliably identify and retrieve missing transactions,
even if there are gaps in the sequence of applied transactions.

The following information provides combinations of settings that are appropriate for different types of
replica to guarantee recovery as far as this is under the control of replication.

Important

Some factors outside the control of replication can have an impact on the
replication recovery process and the overall state of replication after the
recovery process. In particular, the settings that influence the recovery process
for individual storage engines might result in transactions being lost in the event
of an unexpected halt of a replica, and therefore unavailable to the replication
recovery process. The innodb_flush_log_at_trx_commit=1 setting
mentioned in the list below is a key setting for a replication setup that uses
InnoDB with transactions. However, other settings specific to InnoDB or to
other storage engines, especially those relating to flushing or synchronization,
can also have an impact. Always check for and apply recommendations made
by your chosen storage engines about crash-safe settings.

The following combination of settings on a replica is the most resilient to unexpected halts:

• When GTID-based replication is in use (gtid_mode=ON), set SOURCE_AUTO_POSITION=1 |
MASTER_AUTO_POSITION=1, which activates GTID auto-positioning for the connection to the
source to automatically identify and retrieve missing transactions. This option is set using a CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement
(before MySQL 8.0.23). If the replica has multiple replication channels, you need to set this option
for each channel individually. For details of how GTID auto-positioning works, see Section 19.1.3.3,
“GTID Auto-Positioning”. When file position based replication is in use, SOURCE_AUTO_POSITION=1
| MASTER_AUTO_POSITION=1 is not used, and instead the binary log position or relay log position is
used to control where replication starts.

• From MySQL 8.0.27, when GTID-based replication is in use (gtid_mode=ON), set GTID_ONLY=1,
which makes the replica use only GTIDs in the recovery process, and stop persisting binary log and
relay log file names and file positions in the replication metadata repositories. This option is set using
a CHANGE REPLICATION SOURCE TO statement. If the replica has multiple replication channels,
you need to set this option for each channel individually. With GTID_ONLY=1, during recovery, the
file position information is ignored and GTID auto-skip is used to skip transactions that have already
been supplied, rather than identifying the correct file position. This strategy is more efficient provided
that you purge relay logs using the default setting for relay_log_purge, which means only one
relay log file needs to be inspected.

• Set sync_relay_log=1, which instructs the replication receiver thread to synchronize the relay
log to disk after each received transaction is written to it. This means the replica's record of the
current position read from the source's binary log (in the applier metadata repository) is never ahead
of the record of transactions saved in the relay log. Note that although this setting is the safest,
it is also the slowest due to the number of disk writes involved. With sync_relay_log > 1, or
sync_relay_log=0 (where synchronization is handled by the operating system), in the event of an
unexpected halt of a replica there might be committed transactions that have not been synchronized
to disk. Such transactions can cause the recovery process to fail if the recovering replica, based
on the information it has in the relay log as last synchronized to disk, tries to retrieve and apply the
transactions again instead of skipping them. Setting sync_relay_log=1 is particularly important
for a multi-threaded replica, where the recovery process fails if gaps in the sequence of transactions
cannot be filled using the information in the relay log. For a single-threaded replica, the recovery
process only needs to use the relay log if the relevant information is not available in the applier
metadata repository.

3833

Monitoring Row-based Replication

• Set innodb_flush_log_at_trx_commit=1, which synchronizes the InnoDB logs to disk before
each transaction is committed. This setting, which is the default, ensures that InnoDB tables and
the InnoDB logs are saved on disk so that there is no longer a requirement for the information in
the relay log regarding the transaction. Combined with the setting sync_relay_log=1, this setting
further ensures that the content of the InnoDB tables and the InnoDB logs is consistent with the
content of the relay log at all times, so that purging the relay log files cannot cause unfillable gaps in
the replica's history of transactions in the event of an unexpected halt.

• Set relay_log_info_repository = TABLE, which stores the replication SQL thread position
in the InnoDB table mysql.slave_relay_log_info, and updates it together with the transaction
commit to ensure a record that is always accurate. This setting is the default from MySQL 8.0,
and the FILE setting is deprecated. From MySQL 8.0.23, the use of the system variable itself is
deprecated, so omit it and allow it to default. If the FILE setting is used, which was the default
in earlier releases, the information is stored in a file in the data directory that is updated after the
transaction has been applied. This creates a risk of losing synchrony with the source depending at
which stage of processing a transaction the replica halts at, or even corruption of the file itself. With
the setting relay_log_info_repository = FILE, recovery is not guaranteed.

• Set relay_log_recovery = ON, which enables automatic relay log recovery immediately
following server startup. This global variable defaults to OFF and is read-only at runtime, but you can
set it to ON with the --relay-log-recovery option at replica startup following an unexpected
halt of a replica. Note that this setting ignores the existing relay log files, in case they are corrupted
or inconsistent. The relay log recovery process starts a new relay log file and fetches transactions
from the source beginning at the replication SQL thread position recorded in the applier metadata
repository. The previous relay log files are removed over time by the replica's normal purge
mechanism.

For a multithreaded replica, setting relay_log_recovery = ON automatically handles any
inconsistencies and gaps in the sequence of transactions that have been executed from the relay
log. These gaps can occur when file position based replication is in use. (For more details, see
Section 19.5.1.34, “Replication and Transaction Inconsistencies”.) The relay log recovery process
deals with gaps using the same method as the START REPLICA UNTIL SQL_AFTER_MTS_GAPS
(or before MySQL 8.0.22, START SLAVE instead of START REPLICA) statement would. When
the replica reaches a consistent gap-free state, the relay log recovery process goes on to fetch
further transactions from the source beginning at the replication SQL thread position. When
GTID-based replication is in use, from MySQL 8.0.18 a multithreaded replica checks first whether
MASTER_AUTO_POSITION is set to ON, and if it is, omits the step of calculating the transactions that
should be skipped or not skipped, so that the old relay logs are not required for the recovery process.

19.4.3 Monitoring Row-based Replication

The current progress of the replication applier (SQL) thread when using row-based replication is
monitored through Performance Schema instrument stages, enabling you to track the processing of
operations and check the amount of work completed and work estimated. When these Performance
Schema instrument stages are enabled the events_stages_current table shows stages for applier
threads and their progress. For background information, see Section 29.12.5, “Performance Schema
Stage Event Tables”.

To track progress of all three row-based replication event types (write, update, delete):

• Enable the three Performance Schema stages by issuing:

mysql> UPDATE performance_schema.setup_instruments SET ENABLED = 'YES'
 -> WHERE NAME LIKE 'stage/sql/Applying batch of row changes%';

• Wait for some events to be processed by the replication applier thread and then check progress by
looking into the events_stages_current table. For example to get progress for update events
issue:

mysql> SELECT WORK_COMPLETED, WORK_ESTIMATED FROM performance_schema.events_stages_current
 -> WHERE EVENT_NAME LIKE 'stage/sql/Applying batch of row changes (update)'

3834

Using Replication with Different Source and Replica Storage Engines

• If binlog_rows_query_log_events is enabled, information about queries is stored in the binary
log and is exposed in the processlist_info field. To see the original query that triggered this
event:

mysql> SELECT db, processlist_state, processlist_info FROM performance_schema.threads
 -> WHERE processlist_state LIKE 'stage/sql/Applying batch of row changes%' AND thread_id = N;

19.4.4 Using Replication with Different Source and Replica Storage Engines

It does not matter for the replication process whether the original table on the source and the replicated
table on the replica use different storage engine types. In fact, the default_storage_engine
system variable is not replicated.

This provides a number of benefits in the replication process in that you can take advantage of different
engine types for different replication scenarios. For example, in a typical scale-out scenario (see
Section 19.4.5, “Using Replication for Scale-Out”), you want to use InnoDB tables on the source to
take advantage of the transactional functionality, but use MyISAM on the replicas where transaction
support is not required because the data is only read. When using replication in a data-logging
environment you may want to use the Archive storage engine on the replica.

Configuring different engines on the source and replica depends on how you set up the initial
replication process:

• If you used mysqldump to create the database snapshot on your source, you could edit the dump
file text to change the engine type used on each table.

Another alternative for mysqldump is to disable engine types that you do not want to use on the
replica before using the dump to build the data on the replica. For example, you can add the --
skip-federated option on your replica to disable the FEDERATED engine. If a specific engine
does not exist for a table to be created, MySQL uses the default engine type, usually InnoDB. (This
requires that the NO_ENGINE_SUBSTITUTION SQL mode is not enabled.) If you want to disable
additional engines in this way, you may want to consider building a special binary to be used on the
replica that supports only the engines you want.

• If you use raw data files (a binary backup) to set up the replica, it is not possible to change the
initial table format. Instead, use ALTER TABLE to change the table types after the replica has been
started.

• For new source/replica replication setups where there are currently no tables on the source, avoid
specifying the engine type when creating new tables.

If you are already running a replication solution and want to convert your existing tables to another
engine type, follow these steps:

1. Stop the replica from running replication updates:

mysql> STOP SLAVE;
Or from MySQL 8.0.22:
mysql> STOP REPLICA;

This makes it possible to change engine types without interruption.

2. Execute an ALTER TABLE ... ENGINE='engine_type' for each table to be changed.

3. Start the replication process again:

mysql> START SLAVE;

Or, beginning with MySQL 8.0.22:

mysql> START REPLICA;

3835

Using Replication for Scale-Out

Although the default_storage_engine variable is not replicated, be aware that CREATE TABLE
and ALTER TABLE statements that include the engine specification are replicated to the replica
correctly. If, in the case of a CSV table, you execute this statement:

mysql> ALTER TABLE csvtable ENGINE='MyISAM';

This statement is replicated; the table's engine type on the replica is converted to InnoDB, even
if you have previously changed the table type on the replica to an engine other than CSV. If you
want to retain engine differences on the source and replica, you should be careful to use the
default_storage_engine variable on the source when creating a new table. For example, instead
of:

mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;

Use this format:

mysql> SET default_storage_engine=MyISAM;
mysql> CREATE TABLE tablea (columna int);

When replicated, the default_storage_engine variable is ignored, and the CREATE TABLE
statement executes on the replica using the replica's default engine.

19.4.5 Using Replication for Scale-Out

You can use replication as a scale-out solution; that is, where you want to split up the load of database
queries across multiple database servers, within some reasonable limitations.

Because replication works from the distribution of one source to one or more replicas, using replication
for scale-out works best in an environment where you have a high number of reads and low number
of writes/updates. Most websites fit into this category, where users are browsing the website, reading
articles, posts, or viewing products. Updates only occur during session management, or when making a
purchase or adding a comment/message to a forum.

Replication in this situation enables you to distribute the reads over the replicas, while still enabling
your web servers to communicate with the source when a write is required. You can see a sample
replication layout for this scenario in Figure 19.1, “Using Replication to Improve Performance During
Scale-Out”.

3836

Using Replication for Scale-Out

Figure 19.1 Using Replication to Improve Performance During Scale-Out

If the part of your code that is responsible for database access has been properly abstracted/
modularized, converting it to run with a replicated setup should be very smooth and easy. Change the
implementation of your database access to send all writes to the source, and to send reads to either
the source or a replica. If your code does not have this level of abstraction, setting up a replicated
system gives you the opportunity and motivation to clean it up. Start by creating a wrapper library or
module that implements the following functions:

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all error conditions.
You can use different names for the functions. The important thing is to have a unified interface for
connecting for reads, connecting for writes, doing a read, and doing a write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at
first, but it pays off in the long run. All applications that use the approach just described are able to
take advantage of a source/replica configuration, even one involving multiple replicas. The code is
much easier to maintain, and adding troubleshooting options is trivial. You need modify only one or two

3837

Replicating Different Databases to Different Replicas

functions (for example, to log how long each statement took, or which statement among those issued
gave you an error).

If you have written a lot of code, you may want to automate the conversion task by writing a conversion
script. Ideally, your code uses consistent programming style conventions. If not, then you are probably
better off rewriting it anyway, or at least going through and manually regularizing it to use a consistent
style.

19.4.6 Replicating Different Databases to Different Replicas

There may be situations where you have a single source server and want to replicate different
databases to different replicas. For example, you may want to distribute different sales data to
different departments to help spread the load during data analysis. A sample of this layout is shown in
Figure 19.2, “Replicating Databases to Separate Replicas”.

Figure 19.2 Replicating Databases to Separate Replicas

You can achieve this separation by configuring the source and replicas as normal, and then limiting
the binary log statements that each replica processes by using the --replicate-wild-do-table
configuration option on each replica.

Important

You should not use --replicate-do-db for this purpose when using
statement-based replication, since statement-based replication causes this
option's effects to vary according to the database that is currently selected. This
applies to mixed-format replication as well, since this enables some updates to
be replicated using the statement-based format.

However, it should be safe to use --replicate-do-db for this purpose if you
are using row-based replication only, since in this case the currently selected
database has no effect on the option's operation.

For example, to support the separation as shown in Figure 19.2, “Replicating Databases to Separate
Replicas”, you should configure each replica as follows, before executing START REPLICA:

• Replica 1 should use --replicate-wild-do-table=databaseA.%.

• Replica 2 should use --replicate-wild-do-table=databaseB.%.

• Replica 3 should use --replicate-wild-do-table=databaseC.%.

Each replica in this configuration receives the entire binary log from the source, but executes
only those events from the binary log that apply to the databases and tables included by the --
replicate-wild-do-table option in effect on that replica.

If you have data that must be synchronized to the replicas before replication starts, you have a number
of choices:

• Synchronize all the data to each replica, and delete the databases, tables, or both that you do not
want to keep.

3838

Improving Replication Performance

• Use mysqldump to create a separate dump file for each database and load the appropriate dump file
on each replica.

• Use a raw data file dump and include only the specific files and databases that you need for each
replica.

Note

This does not work with InnoDB databases unless you use
innodb_file_per_table.

19.4.7 Improving Replication Performance

As the number of replicas connecting to a source increases, the load, although minimal, also increases,
as each replica uses a client connection to the source. Also, as each replica must receive a full copy of
the source's binary log, the network load on the source may also increase and create a bottleneck.

If you are using a large number of replicas connected to one source, and that source is also busy
processing requests (for example, as part of a scale-out solution), then you may want to improve the
performance of the replication process.

One way to improve the performance of the replication process is to create a deeper replication
structure that enables the source to replicate to only one replica, and for the remaining replicas to
connect to this primary replica for their individual replication requirements. A sample of this structure is
shown in Figure 19.3, “Using an Additional Replication Source to Improve Performance”.

Figure 19.3 Using an Additional Replication Source to Improve Performance

For this to work, you must configure the MySQL instances as follows:

• Source 1 is the primary source where all changes and updates are written to the database. Binary
logging is enabled on both source servers, which is the default.

• Source 2 is the replica to the server Source 1 that provides the replication functionality to the
remainder of the replicas in the replication structure. Source 2 is the only machine permitted to
connect to Source 1. Source 2 has the --log-slave-updates option enabled (which is the
default). With this option, replication instructions from Source 1 are also written to Source 2's binary
log so that they can then be replicated to the true replicas.

• Replica 1, Replica 2, and Replica 3 act as replicas to Source 2, and replicate the information from
Source 2, which actually consists of the upgrades logged on Source 1.

The above solution reduces the client load and the network interface load on the primary source, which
should improve the overall performance of the primary source when used as a direct database solution.

If your replicas are having trouble keeping up with the replication process on the source, there are a
number of options available:

• If possible, put the relay logs and the data files on different physical drives. To do this, set the
relay_log system variable to specify the location of the relay log.

3839

Switching Sources During Failover

• If heavy disk I/O activity for reads of the binary log file and relay log files is an issue, consider
increasing the value of the rpl_read_size system variable. This system variable controls the
minimum amount of data read from the log files, and increasing it might reduce file reads and I/O
stalls when the file data is not currently cached by the operating system. Note that a buffer the size
of this value is allocated for each thread that reads from the binary log and relay log files, including
dump threads on sources and coordinator threads on replicas. Setting a large value might therefore
have an impact on memory consumption for servers.

• If the replicas are significantly slower than the source, you may want to divide up the responsibility
for replicating different databases to different replicas. See Section 19.4.6, “Replicating Different
Databases to Different Replicas”.

• If your source makes use of transactions and you are not concerned about transaction support on
your replicas, use MyISAM or another nontransactional engine on the replicas. See Section 19.4.4,
“Using Replication with Different Source and Replica Storage Engines”.

• If your replicas are not acting as sources, and you have a potential solution in place to ensure
that you can bring up a source in the event of failure, then you can disable the system variable
log_replica_updates (from MySQL 8.0.26) or log_slave_updates (before MySQL 8.0.26)
on the replicas. This prevents “dumb” replicas from also logging events they have executed into their
own binary log.

19.4.8 Switching Sources During Failover

You can tell a replica to change to a new source using the CHANGE REPLICATION SOURCE TO
statement (prior to MySQL 8.0.23: CHANGE MASTER TO. The replica does not check whether the
databases on the source are compatible with those on the replica; it simply begins reading and
executing events from the specified coordinates in the new source's binary log. In a failover situation,
all the servers in the group are typically executing the same events from the same binary log file, so
changing the source of the events should not affect the structure or integrity of the database, provided
that you exercise care in making the change.

Replicas should be run with binary logging enabled (the --log-bin option), which is the default. If
you are not using GTIDs for replication, then the replicas should also be run with --log-slave-
updates=OFF (logging replica updates is the default). In this way, the replica is ready to become
a source without restarting the replica mysqld. Assume that you have the structure shown in
Figure 19.4, “Redundancy Using Replication, Initial Structure”.

Figure 19.4 Redundancy Using Replication, Initial Structure

3840

Switching Sources During Failover

In this diagram, the Source holds the source database, the Replica* hosts are replicas, and the Web
Client machines are issuing database reads and writes. Web clients that issue only reads (and would
normally be connected to the replicas) are not shown, as they do not need to switch to a new server
in the event of failure. For a more detailed example of a read/write scale-out replication structure, see
Section 19.4.5, “Using Replication for Scale-Out”.

Each MySQL replica (Replica 1, Replica 2, and Replica 3) is a replica running with binary
logging enabled, and with --log-slave-updates=OFF. Because updates received by a replica
from the source are not written to the binary log when --log-slave-updates=OFF is specified,
the binary log on each replica is initially empty. If for some reason Source becomes unavailable, you
can pick one of the replicas to become the new source. For example, if you pick Replica 1, all Web
Clients should be redirected to Replica 1, which writes the updates to its binary log. Replica 2
and Replica 3 should then replicate from Replica 1.

The reason for running the replica with --log-slave-updates=OFF is to prevent replicas from
receiving updates twice in case you cause one of the replicas to become the new source. If Replica
1 has --log-slave-updates enabled, which is the default, it writes any updates that it receives
from Source in its own binary log. This means that, when Replica 2 changes from Source to
Replica 1 as its source, it may receive updates from Replica 1 that it has already received from
Source.

Make sure that all replicas have processed any statements in their relay log. On each replica, issue
STOP REPLICA IO_THREAD, then check the output of SHOW PROCESSLIST until you see Has read
all relay log. When this is true for all replicas, they can be reconfigured to the new setup. On
the replica Replica 1 being promoted to become the source, issue STOP REPLICA and RESET
MASTER.

On the other replicas Replica 2 and Replica 3, use STOP REPLICA and CHANGE REPLICATION
SOURCE TO SOURCE_HOST='Replica1' or CHANGE MASTER TO MASTER_HOST='Replica1'
(where 'Replica1' represents the real host name of Replica 1). To use CHANGE REPLICATION
SOURCE TO, add all information about how to connect to Replica 1 from Replica 2 or Replica
3 (user, password, port). When issuing the statement in this scenario, there is no need to specify
the name of the Replica 1 binary log file or log position to read from, since the first binary log file and
position 4 are the defaults. Finally, execute START REPLICA on Replica 2 and Replica 3.

Once the new replication setup is in place, you need to tell each Web Client to direct its statements
to Replica 1. From that point on, all updates sent by Web Client to Replica 1 are written to
the binary log of Replica 1, which then contains every update sent to Replica 1 since Source
became unavailable.

The resulting server structure is shown in Figure 19.5, “Redundancy Using Replication, After Source
Failure”.

3841

Switching Sources and Replicas with Asynchronous Connection Failover

Figure 19.5 Redundancy Using Replication, After Source Failure

When Source becomes available again, you should make it a replica of Replica 1. To do this, issue
on Source the same CHANGE REPLICATION SOURCE TO (or CHANGE MASTER TO) statement as
that issued on Replica 2 and Replica 3 previously. Source then becomes a replica of Replica
1 and picks up the Web Client writes that it missed while it was offline.

To make Source a source again, use the preceding procedure as if Replica 1 were unavailable and
Source were to be the new source. During this procedure, do not forget to run RESET MASTER on
Source before making Replica 1, Replica 2, and Replica 3 replicas of Source. If you fail to
do this, the replicas may pick up stale writes from the Web Client applications dating from before the
point at which Source became unavailable.

You should be aware that there is no synchronization between replicas, even when they share the
same source, and thus some replicas might be considerably ahead of others. This means that in
some cases the procedure outlined in the previous example might not work as expected. In practice,
however, relay logs on all replicas should be relatively close together.

One way to keep applications informed about the location of the source is to have a dynamic DNS
entry for the source host. With BIND, you can use nsupdate to update the DNS dynamically.

19.4.9 Switching Sources and Replicas with Asynchronous Connection
Failover

Beginning with MySQL 8.0.22, you can use the asynchronous connection failover mechanism to
automatically establish an asynchronous (source to replica) replication connection to a new source
after the existing connection from a replica to its source fails. The asynchronous connection failover
mechanism can be used to keep a replica synchronized with multiple MySQL servers or groups of
servers that share data. The list of potential source servers is stored on the replica, and in the event of
a connection failure, a new source is selected from the list based on a weighted priority that you set.

From MySQL 8.0.23, the asynchronous connection failover mechanism also supports Group
Replication topologies, by automatically monitoring changes to group membership and distinguishing
between primary and secondary servers. When you add a group member to the source list and define
it as part of a managed group, the asynchronous connection failover mechanism updates the source
list to keep it in line with membership changes, adding and removing group members automatically as
they join or leave. Only online group members that are in the majority are used for connections and
obtaining status. The last remaining member of a managed group is not removed automatically even if

3842

Switching Sources and Replicas with Asynchronous Connection Failover

it leaves the group, so that the configuration of the managed group is kept. However, you can delete a
managed group manually if it is no longer needed.

From MySQL 8.0.27, the asynchronous connection failover mechanism also enables a replica
that is part of a managed replication group to automatically reconnect to the sender if the current
receiver (the primary of the group) fails. This feature works with Group Replication, on a group
configured in single-primary mode, where the group’s primary is a replica that has a replication channel
using the mechanism. The feature is designed for a group of senders and a group of receivers to
keep synchronized with each other even when some members are temporarily unavailable. It also
synchronizes a group of receivers with one or more senders that are not part of a managed group. A
replica that is not part of a replication group cannot use this feature.

The requirements for using the asynchronous connection failover mechanism are as follows:

• GTIDs must be in use on the source and the replica (gtid_mode=ON), and the
SOURCE_AUTO_POSITION | MASTER_AUTO_POSITION option of the CHANGE REPLICATION
SOURCE TO | CHANGE MASTER TO statement must be enabled on the replica, so that GTID auto-
positioning is used for the connection to the source.

• The same replication user account and password must exist on all the source servers in the source
list for the channel. This account is used for the connection to each of the sources. You can set up
different accounts for different channels.

• The replication user account must be given SELECT permissions on the Performance
Schema tables, for example, by issuing GRANT SELECT ON performance_schema.* TO
'repl_user';

• The replication user account and password cannot be specified on the statement used to start
replication, because they need to be available on the automatic restart for the connection to the
alternative source. They must be set for the channel using the CHANGE REPLICATION SOURCE
TO | CHANGE MASTER TO statement on the replica, and recorded in the replication metadata
repositories.

• If the channel where the asynchronous connection failover mechanism is in use is on the primary
of a Group Replication single-primary mode group, from MySQL 8.0.27, asynchronous connection
failover between replicas is also active by default. In this situation, the replication channel and the
replication user account and password for the channel must be set up on all the secondary servers
in the replication group, and on any new joining members. If the new servers are provisioned using
MySQL’s clone functionality, this all happens automatically.

Important

If you do not want asynchronous connection failover to take place
between replicas in this situation, disable it by disabling the member action
mysql_start_failover_channels_if_primary for the group, using
the group_replication_disable_member_action function. When the
feature is disabled, you do not need to configure the replication channel on
the secondary group members, but if the primary goes offline or into an error
state, replication stops for the channel.

From MySQL Shell 8.0.27 and MySQL 8.0.27, MySQL InnoDB ClusterSet is available to provide
disaster tolerance for InnoDB Cluster deployments by linking a primary InnoDB Cluster with one or
more replicas of itself in alternate locations, such as different datacenters. Consider using this solution
instead to simplify the setup of a new multi-group deployment for replication, failover, and disaster
recovery. You can adopt an existing Group Replication deployment as an InnoDB Cluster.

InnoDB ClusterSet and InnoDB Cluster are designed to abstract and simplify the procedures for
setting up, managing, monitoring, recovering, and repairing replication groups. InnoDB ClusterSet
automatically manages replication from a primary cluster to replica clusters using a dedicated
ClusterSet replication channel. You can use administrator commands to trigger a controlled switchover

3843

Switching Sources and Replicas with Asynchronous Connection Failover

or emergency failover between groups if the primary cluster is not functioning normally. Servers and
groups can easily be added to or removed from the InnoDB ClusterSet deployment after the initial
setup when demand changes. For more information, see MySQL InnoDB ClusterSet.

19.4.9.1 Asynchronous Connection Failover for Sources

To activate asynchronous connection failover for a replication channel set
SOURCE_CONNECTION_AUTO_FAILOVER=1 on the CHANGE REPLICATION SOURCE TO
statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) for the
channel. GTID auto-positioning must be in use for the channel (SOURCE_AUTO_POSITION = 1 |
MASTER_AUTO_POSITION = 1).

Important

When the existing connection to a source fails, the replica first retries the same
connection the number of times specified by the SOURCE_RETRY_COUNT |
MASTER_RETRY_COUNT option of the CHANGE REPLICATION SOURCE TO |
CHANGE MASTER TO statement. The interval between attempts is set by the
SOURCE_CONNECT_RETRY | MASTER_CONNECT_RETRY option. When these
attempts are exhausted, the asynchronous connection failover mechanism
takes over. Note that the defaults for these options, which were designed for a
connection to a single source, make the replica retry the same connection for
60 days. To ensure that the asynchronous connection failover mechanism can
be activated promptly, set SOURCE_RETRY_COUNT | MASTER_RETRY_COUNT
and SOURCE_CONNECT_RETRY | MASTER_CONNECT_RETRY to minimal
numbers that just allow a few retry attempts with the same source, in case
the connection failure is caused by a transient network outage. Suitable
values are SOURCE_RETRY_COUNT=3 | MASTER_RETRY_COUNT=3 and
SOURCE_CONNECT_RETRY=10 | MASTER_CONNECT_RETRY=10, which make
the replica retry the connection 3 times with 10-second intervals between.

You also need to set the source list for the replication channel, to specify
the sources that are available for failover. You set and manage source lists
using the asynchronous_connection_failover_add_source and
asynchronous_connection_failover_delete_source functions to add and
remove single replication source servers. To add and remove managed groups of
servers, use the asynchronous_connection_failover_add_managed and
asynchronous_connection_failover_delete_managed functions instead.

The functions name the relevant replication channel and specify the host name, port number, network
namespace, and weighted priority (1-100, with 100 being the highest priority) of a MySQL instance
to add to or delete from the channel's source list. For a managed group, you also specify the type of
managed service (currently only Group Replication is available), and the identifier of the managed
group (for Group Replication, this is the value of the group_replication_group_name system
variable). When you add a managed group, you only need to add one group member, and the replica
automatically adds the rest from the current group membership. When you delete a managed group,
you delete the entire group together.

In MySQL 8.0.22, the asynchronous connection failover mechanism is activated following the failure
of the replica's connection to the source, and it issues a START REPLICA statement to attempt to
connect to a new source. In this release, the connection fails over if the replication receiver thread
stops due to the source stopping or due to a network failure. The connection does not fail over in any
other situations, such as when the replication threads are stopped by a STOP REPLICA statement.

From MySQL 8.0.23, the asynchronous connection failover mechanism also fails over the connection
if another available server on the source list has a higher priority (weight) setting. This feature ensures
that the replica stays connected to the most suitable source server at all times, and it applies to both
managed groups and single (non-managed) servers. For a managed group, a source’s weight is
assigned depending on whether it is a primary or a secondary server. So assuming that you set up

3844

https://dev.mysql.com/doc/mysql-shell/8.0/en/innodb-clusterset.html

Switching Sources and Replicas with Asynchronous Connection Failover

the managed group to give a higher weight to a primary and a lower weight to a secondary, when the
primary changes, the higher weight is assigned to the new primary, so the replica changes over the
connection to it. The asynchronous connection failover mechanism additionally changes connection
if the currently connected managed source server leaves the managed group, or is no longer in the
majority in the managed group.

When failing over a connection, the source with the highest priority (weight) setting among the
alternative sources listed in the source list for the channel is chosen for the first connection attempt.
The replica checks first that it can connect to the source server, or in the case of a managed group,
that the source server has ONLINE status in the group (not RECOVERING or unavailable). If the highest
weighted source is not available, the replica tries with all the listed sources in descending order of
weight, then starts again from the highest weighted source. If multiple sources have the same weight,
the replica orders them randomly. If the replica needs to start working through the list again, it includes
and retries the source to which the original connection failure occurred.

The source lists are stored in the mysql.replication_asynchronous_connection_failover
and mysql.replication_asynchronous_connection_failover_managed tables, and can
be viewed in the Performance Schema replication_asynchronous_connection_failover
and replication_asynchronous_connection_failover_managed tables. The replica uses
a monitor thread to track the membership of managed groups and update the source list (thread/
sql/replica_monitor). The setting for the SOURCE_CONNECTION_AUTO_FAILOVER option of
the CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement, and the source list, are
transferred to a clone of the replica during a remote cloning operation.

19.4.9.2 Asynchronous Connection Failover for Replicas

In MySQL 8.0.27 and later, asynchronous connection failover for replicas is activated
automatically for a replication channel on a Group Replication primary when you set
SOURCE_CONNECTION_AUTO_FAILOVER=1 in the CHANGE REPLICATION SOURCE TO statement
for the channel. The feature is designed for a group of senders and a group of receivers to keep
synchronized with each other even when some members are temporarily unavailable. When the
feature is active and correctly configured, if the primary that is replicating goes offline or into an error
state, the new primary starts replication on the same channel when it is elected. The new primary uses
the source list for the channel to select the source with the highest priority (weight) setting, which might
not be the same as the original source.

To configure this feature, the replication channel and the replication user account and password
for the channel must be set up on all the member servers in the replication group, and on any
new joining members. Ensure that SOURCE_RETRY_COUNT and SOURCE_CONNECT_RETRY
are set to minimal numbers that just allow a few retry attempts, for example 3 and 10. You
can set up the replication channel using CHANGE REPLICATION SOURCE TO, or if the new
servers are provisioned using MySQL's clone functionality, this all happens automatically. The
SOURCE_CONNECTION_AUTO_FAILOVER setting for the channel is broadcast to group members
from the primary when they join. If you later disable SOURCE_CONNECTION_AUTO_FAILOVER for the
channel on the primary, this is also broadcast to the secondary servers, and they change the status of
the channel to match.

Note

A server participating in a group in single-primary mode must be started with --
skip-replica-start=ON. Otherwise, the server cannot join the group as a
secondary.

Asynchronous connection failover for replicas is activated and deactivated using the Group Replication
member action mysql_start_failover_channels_if_primary, which is enabled by default.
You can disable it for the whole group by disabling that member action on the primary, using the
group_replication_disable_member_action function, as in this example:

mysql> SELECT group_replication_disable_member_action("mysql_start_failover_channels_if_primary", "AFTER_PRIMARY_ELECTION");

3845

Semisynchronous Replication

The function can only be changed on a primary, and must be enabled or disabled for the
whole group, so you cannot have some members providing failover and others not. When
the mysql_start_failover_channels_if_primary member action is disabled, the
channel does not need to be configured on secondary members, but if the primary goes
offline or into an error state, replication stops for the channel. Note that if there is more than
one channel with SOURCE_CONNECTION_AUTO_FAILOVER=1 , the member action covers
all the channels, so they cannot be individually enabled and disabled by that method. Set
SOURCE_CONNECTION_AUTO_FAILOVER=0 on the primary to disable an individual channel.

The source list for a channel with SOURCE_CONNECTION_AUTO_FAILOVER=1 is broadcast to all
group members when they join, and also when it changes. This is the case whether the sources
are a managed group for which the membership is updated automatically, or whether they are
added or changed manually using asynchronous_connection_failover_add_source(),
asynchronous_connection_failover_delete_source(),
asynchronous_connection_failover_add_managed(), or
asynchronous_connection_failover_delete_managed().
All group members receive the current source list as recorded in the
mysql.replication_asynchronous_connection_failover and
mysql.replication_asynchronous_connection_failover_managed tables. Because the
sources do not have to be in a managed group, you can set up the function to synchronize a group
of receivers with one or more alternative standalone senders, or even a single sender. A standalone
replica that is not part of a replication group cannot use this feature.

19.4.10 Semisynchronous Replication

In addition to the built-in asynchronous replication, MySQL 8.0 supports an interface to
semisynchronous replication that is implemented by plugins. This section discusses what
semisynchronous replication is and how it works. The following sections cover the administrative
interface to semisynchronous replication and how to install, configure, and monitor it.

MySQL replication by default is asynchronous. The source writes events to its binary log and replicas
request them when they are ready. The source does not know whether or when a replica has retrieved
and processed the transactions, and there is no guarantee that any event ever reaches any replica.
With asynchronous replication, if the source crashes, transactions that it has committed might not have
been transmitted to any replica. Failover from source to replica in this case might result in failover to a
server that is missing transactions relative to the source.

With fully synchronous replication, when a source commits a transaction, all replicas have also
committed the transaction before the source returns to the session that performed the transaction.
Fully synchronous replication means failover from the source to any replica is possible at any time. The
drawback of fully synchronous replication is that there might be a lot of delay to complete a transaction.

Semisynchronous replication falls between asynchronous and fully synchronous replication. The
source waits until at least one replica has received and logged the events (the required number of
replicas is configurable), and then commits the transaction. The source does not wait for all replicas to
acknowledge receipt, and it requires only an acknowledgement from the replicas, not that the events
have been fully executed and committed on the replica side. Semisynchronous replication therefore
guarantees that if the source crashes, all the transactions that it has committed have been transmitted
to at least one replica.

Compared to asynchronous replication, semisynchronous replication provides improved data integrity,
because when a commit returns successfully, it is known that the data exists in at least two places.
Until a semisynchronous source receives acknowledgment from the required number of replicas, the
transaction is on hold and not committed.

Compared to fully synchronous replication, semisynchronous replication is faster, because it can be
configured to balance your requirements for data integrity (the number of replicas acknowledging
receipt of the transaction) with the speed of commits, which are slower due to the need to wait for
replicas.

3846

Semisynchronous Replication

Important

With semisynchronous replication, if the source crashes and a failover to a
replica is carried out, the failed source should not be reused as the replication
source, and should be discarded. It could have transactions that were not
acknowledged by any replica, which were therefore not committed before the
failover.

If your goal is to implement a fault-tolerant replication topology where all the
servers receive the same transactions in the same order, and a server that
crashes can rejoin the group and be brought up to date automatically, you can
use Group Replication to achieve this. For information, see Chapter 20, Group
Replication.

The performance impact of semisynchronous replication compared to asynchronous replication is the
tradeoff for increased data integrity. The amount of slowdown is at least the TCP/IP roundtrip time to
send the commit to the replica and wait for the acknowledgment of receipt by the replica. This means
that semisynchronous replication works best for close servers communicating over fast networks,
and worst for distant servers communicating over slow networks. Semisynchronous replication also
places a rate limit on busy sessions by constraining the speed at which binary log events can be sent
from source to replica. When one user is too busy, this slows it down, which can be useful in some
deployment situations.

Semisynchronous replication between a source and its replicas operates as follows:

• A replica indicates whether it is semisynchronous-capable when it connects to the source.

• If semisynchronous replication is enabled on the source side and there is at least one
semisynchronous replica, a thread that performs a transaction commit on the source blocks and
waits until at least one semisynchronous replica acknowledges that it has received all events for the
transaction, or until a timeout occurs.

• The replica acknowledges receipt of a transaction's events only after the events have been written to
its relay log and flushed to disk.

• If a timeout occurs without any replica having acknowledged the transaction, the source reverts to
asynchronous replication. When at least one semisynchronous replica catches up, the source returns
to semisynchronous replication.

• Semisynchronous replication must be enabled on both the source and replica sides. If
semisynchronous replication is disabled on the source, or enabled on the source but on no replicas,
the source uses asynchronous replication.

While the source is blocking (waiting for acknowledgment from a replica), it does not return to the
session that performed the transaction. When the block ends, the source returns to the session,
which then can proceed to execute other statements. At this point, the transaction has committed
on the source side, and receipt of its events has been acknowledged by at least one replica. The
number of replica acknowledgments the source must receive per transaction before returning to the
session is configurable, and defaults to one acknowledgement (see Section 19.4.10.2, “Configuring
Semisynchronous Replication”).

Blocking also occurs after rollbacks that are written to the binary log, which occurs when a transaction
that modifies nontransactional tables is rolled back. The rolled-back transaction is logged even though
it has no effect for transactional tables because the modifications to the nontransactional tables cannot
be rolled back and must be sent to replicas.

For statements that do not occur in transactional context (that is, when no transaction has been started
with START TRANSACTION or SET autocommit = 0), autocommit is enabled and each statement
commits implicitly. With semisynchronous replication, the source blocks for each such statement, just
as it does for explicit transaction commits.

3847

Semisynchronous Replication

By default, the source waits for replica acknowledgment of the transaction receipt after syncing the
binary log to disk, but before committing the transaction to the storage engine. As an alternative,
you can configure the source so that the source waits for replica acknowledgment after committing
the transaction to the storage engine, using the rpl_semi_sync_source_wait_point or
rpl_semi_sync_master_wait_point system variable. This setting affects the replication
characteristics and the data that clients can see on the source. For more information, see
Section 19.4.10.2, “Configuring Semisynchronous Replication”.

From MySQL 8.0.23, you can improve the performance of semisynchronous replication by enabling
the system variables replication_sender_observe_commit_only, which limits callbacks, and
replication_optimize_for_static_plugin_config, which adds shared locks and avoids
unnecessary lock acquisitions. These settings help as the number of replicas increases, because
contention for locks can slow down performance. Semisynchronous replication source servers can also
get performance benefits from enabling these system variables, because they use the same locking
mechanisms as the replicas.

19.4.10.1 Installing Semisynchronous Replication

Semisynchronous replication is implemented using plugins, which must be installed on the source and
on the replicas to make semisynchronous replication available on the instances. There are different
plugins for a source and for a replica. After a plugin has been installed, you control it by means of the
system variables associated with it. These system variables are available only when the associated
plugin has been installed.

This section describes how to install the semisynchronous replication plugins. For general information
about installing plugins, see Section 7.6.1, “Installing and Uninstalling Plugins”.

To use semisynchronous replication, the following requirements must be satisfied:

• The capability of installing plugins requires a MySQL server that supports dynamic loading. To
verify this, check that the value of the have_dynamic_loading system variable is YES. Binary
distributions should support dynamic loading.

• Replication must already be working, see Section 19.1, “Configuring Replication”.

• There must not be multiple replication channels configured. Semisynchronous replication is only
compatible with the default replication channel. See Section 19.2.2, “Replication Channels”.

MySQL 8.0.26 and later supply new versions of the plugins that implement semisynchronous
replication, one for the source server and one for the replica. The new plugins replace the terms
“master” and “slave” with “source” and “replica” in system variables and status variables, and you can
(and should) install these versions instead of the old ones (which are now deprecated, and thus subject
to removal in a future MySQL release). You cannot have both the new and the old versions of the
relevant plugin installed on an instance. If you use the new versions of the plugins, the new system
variables and status variables are available but the old ones are not; if you use the old versions of the
plugins, the old system variables and status variables are available but the new ones are not.

The file name suffix for the plugin library files differs per platform (for example, .so for Unix and Unix-
like systems, and .dll for Windows). The plugin and library file names are as follows:

• Source server, old terminology: rpl_semi_sync_master plugin (semisync_master.so or
semisync_master.dll library)

• Source server, new terminology (from MySQL 8.0.26): rpl_semi_sync_source plugin
(semisync_source.so or semisync_source.dll library)

• Replica, old terminology: rpl_semi_sync_slave plugin (semisync_slave.so or
semisync_slave.dll library)

• Replica, new terminology (from MySQL 8.0.26): rpl_semi_sync_replica plugin
(semisync_replica.so or semisync_replica.dll library)

3848

Semisynchronous Replication

To be usable by a source or replica server, the appropriate plugin library file must be located in the
MySQL plugin directory (the directory named by the plugin_dir system variable). If necessary,
configure the plugin directory location by setting the value of plugin_dir at server startup. The
source plugin library file must be present in the plugin directory of the source server. The replica plugin
library file must be present in the plugin directory of each replica server.

To set up semisynchronous replication, use the following instructions. The INSTALL PLUGIN,
SET GLOBAL, STOP REPLICA, and START REPLICA statements mentioned here require the
REPLICATION_SLAVE_ADMIN privilege (or the deprecated SUPER privilege).

To load the plugins, use the INSTALL PLUGIN statement on the source and on each replica that is to
be semisynchronous, adjusting the .so suffix for your platform as necessary.

On the source:

INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';

Or from MySQL 8.0.26:
INSTALL PLUGIN rpl_semi_sync_source SONAME 'semisync_source.so';

On each replica:

INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';

Or from MySQL 8.0.26:
INSTALL PLUGIN rpl_semi_sync_replica SONAME 'semisync_replica.so';

If an attempt to install a plugin results in an error on Linux similar to that shown here, you must install
libimf:

mysql> INSTALL PLUGIN rpl_semi_sync_source SONAME 'semisync_source.so';
ERROR 1126 (HY000): Can't open shared library
'/usr/local/mysql/lib/plugin/semisync_source.so'
(errno: 22 libimf.so: cannot open shared object file:
No such file or directory)

You can obtain libimf from https://dev.mysql.com/downloads/os-linux.html.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Section 7.6.2, “Obtaining Server Plugin Information”). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%semi%';
+----------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+----------------------+---------------+
| rpl_semi_sync_source | ACTIVE |
+----------------------+---------------+

If a plugin fails to initialize, check the server error log for diagnostic messages.

After a semisynchronous replication plugin has been installed, it is disabled by default. The plugins
must be enabled both on the source side and the replica side to enable semisynchronous replication.
If only one side is enabled, replication is asynchronous. To enable the plugins, set the appropriate
system variable either at runtime using SET GLOBAL, or at server startup on the command line or in an
option file. For example:

On the source:
SET GLOBAL rpl_semi_sync_master_enabled = 1;

Or from MySQL 8.0.26 with the rpl_semi_sync_source plugin:
SET GLOBAL rpl_semi_sync_source_enabled = 1;

On each replica:
SET GLOBAL rpl_semi_sync_slave_enabled = 1;

3849

https://dev.mysql.com/downloads/os-linux.html

Semisynchronous Replication

Or from MySQL 8.0.26 with the rpl_semi_sync_replica plugin:
SET GLOBAL rpl_semi_sync_replica_enabled = 1;

If you enable semisynchronous replication on a replica at runtime, you must also start the replication I/
O (receiver) thread (stopping it first if it is already running) to cause the replica to connect to the source
and register as a semisynchronous replica:

STOP SLAVE IO_THREAD;
START SLAVE IO_THREAD;

Or from MySQL 8.0.22:
STOP REPLICA IO_THREAD;
START REPLICA IO_THREAD;

If the replication I/O (receiver) thread is already running and you do not restart it, the replica continues
to use asynchronous replication.

A setting listed in an option file takes effect each time the server starts. For example, you can set the
variables in my.cnf files on the source and replica servers as follows:

 On the source:

[mysqld]
rpl_semi_sync_master_enabled=1

Or from MySQL 8.0.26 with the rpl_semi_sync_source plugin:
rpl_semi_sync_source_enabled=1

 On each replica:

[mysqld]
rpl_semi_sync_slave_enabled=1

Or from MySQL 8.0.26 with the rpl_semi_sync_source plugin:
rpl_semi_sync_replica_enabled=1

You can configure the behavior of the semisynchronous replication plugins using the system variables
that become available when you install the plugins. For information on key system variables, see
Section 19.4.10.2, “Configuring Semisynchronous Replication”.

19.4.10.2 Configuring Semisynchronous Replication

When you install the source and replica plugins for semisynchronous replication (see
Section 19.4.10.1, “Installing Semisynchronous Replication”), system variables become available to
control plugin behavior.

To check the current values of the status variables for semisynchronous replication, use SHOW
VARIABLES:

mysql> SHOW VARIABLES LIKE 'rpl_semi_sync%';

Beginning with MySQL 8.0.26, new versions of the source and replica plugins are supplied, which
replace the terms “master” and “slave” with “source” and “replica” in system variables and status
variables. If you install the new rpl_semi_sync_source and rpl_semi_sync_replica plugins,
the new system variables and status variables are available but the old ones are not. If you install the
old rpl_semi_sync_master and rpl_semi_sync_slave plugins, the old system variables and
status variables are available but the new ones are not. You cannot have both the new and the old
version of the relevant plugin installed on an instance.

All the rpl_semi_sync_xxx system variables are described at Section 19.1.6.2, “Replication Source
Options and Variables” and Section 19.1.6.3, “Replica Server Options and Variables”. Some key
system variables are:

rpl_semi_sync_source_enabled
or
rpl_semi_sync_master_enabled

Controls whether semisynchronous replication is enabled on the
source server. To enable or disable the plugin, set this variable to 1
or 0, respectively. The default is 0 (off).

3850

Semisynchronous Replication

rpl_semi_sync_replica_enabled
or
rpl_semi_sync_slave_enabled

Controls whether semisynchronous replication is enabled on the
replica.

rpl_semi_sync_source_timeout
or
rpl_semi_sync_master_timeout

A value in milliseconds that controls how long the source waits on
a commit for acknowledgment from a replica before timing out and
reverting to asynchronous replication. The default value is 10000
(10 seconds).

rpl_semi_sync_source_wait_for_replica_count
or
rpl_semi_sync_master_wait_for_slave_count

Controls the number of replica acknowledgments the source
must receive per transaction before returning to the session. The
default is 1, meaning that the source only waits for one replica to
acknowledge receipt of the transaction's events.

The rpl_semi_sync_source_wait_point or rpl_semi_sync_master_wait_point system
variable controls the point at which a semisynchronous source server waits for replica acknowledgment
of transaction receipt before returning a status to the client that committed the transaction. These
values are permitted:

• AFTER_SYNC (the default): The source writes each transaction to its binary log and the replica, and
syncs the binary log to disk. The source waits for replica acknowledgment of transaction receipt after
the sync. Upon receiving acknowledgment, the source commits the transaction to the storage engine
and returns a result to the client, which then can proceed.

• AFTER_COMMIT: The source writes each transaction to its binary log and the replica, syncs
the binary log, and commits the transaction to the storage engine. The source waits for replica
acknowledgment of transaction receipt after the commit. Upon receiving acknowledgment, the
source returns a result to the client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time, which is after it has
been acknowledged by the replica and committed to the storage engine on the source. Thus, all
clients see the same data on the source.

In the event of source failure, all transactions committed on the source have been replicated to the
replica (saved to its relay log). An unexpected exit of the source and failover to the replica is lossless
because the replica is up to date. As noted above, the source should not be reused after the failover.

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives replica acknowledgment. After the commit and before
replica acknowledgment, other clients can see the committed transaction before the committing
client.

If something goes wrong such that the replica does not process the transaction, then in the event of
an unexpected source exit and failover to the replica, it is possible for such clients to see a loss of
data relative to what they saw on the source.

From MySQL 8.0.23, you can improve the performance of semisynchronous replication by enabling
the system variables replication_sender_observe_commit_only, which limits callbacks, and
replication_optimize_for_static_plugin_config, which adds shared locks and avoids
unnecessary lock acquisitions. These settings help as the number of replicas increases, because
contention for locks can slow down performance. Semisynchronous replication source servers can also
get performance benefits from enabling these system variables, because they use the same locking
mechanisms as the replicas.

19.4.10.3 Semisynchronous Replication Monitoring

The plugins for semisynchronous replication expose a number of status variables that enable you to
monitor their operation. To check the current values of the status variables, use SHOW STATUS:

mysql> SHOW STATUS LIKE 'Rpl_semi_sync%';

3851

Delayed Replication

Beginning with MySQL 8.0.26, new versions of the source and replica plugins are supplied, which
replace the terms “master” and “slave” with “source” and “replica” in system variables and status
variables. If you install the new rpl_semi_sync_source and rpl_semi_sync_replica plugins,
the new system variables and status variables are available but the old ones are not. If you install the
old rpl_semi_sync_master and rpl_semi_sync_slave plugins, the old system variables and
status variables are available but the new ones are not. You cannot have both the new and the old
version of the relevant plugin installed on an instance.

All Rpl_semi_sync_xxx status variables are described at Section 7.1.10, “Server Status Variables”.
Some examples are:

• Rpl_semi_sync_source_clients or Rpl_semi_sync_master_clients

The number of semisynchronous replicas that are connected to the source server.

• Rpl_semi_sync_source_status or Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the source server. The value is
1 if the plugin has been enabled and a commit acknowledgment has not occurred. It is 0 if the
plugin is not enabled or the source has fallen back to asynchronous replication due to commit
acknowledgment timeout.

• Rpl_semi_sync_source_no_tx or Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a replica.

• Rpl_semi_sync_source_yes_tx or Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a replica.

• Rpl_semi_sync_replica_status or Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the replica. This is 1 if the plugin
has been enabled and the replication I/O (receiver) thread is running, 0 otherwise.

When the source switches between asynchronous or semisynchronous replication due to commit-
blocking timeout or a replica catching up, it sets the value of the Rpl_semi_sync_source_status
or Rpl_semi_sync_master_status status variable appropriately. Automatic fallback from
semisynchronous to asynchronous replication on the source means that it is possible for the
rpl_semi_sync_source_enabled or rpl_semi_sync_master_enabled system variable
to have a value of 1 on the source side even when semisynchronous replication is in fact
not operational at the moment. You can monitor the Rpl_semi_sync_source_status or
Rpl_semi_sync_master_status status variable to determine whether the source currently is using
asynchronous or semisynchronous replication.

19.4.11 Delayed Replication

MySQL supports delayed replication such that a replica server deliberately executes transactions
later than the source by at least a specified amount of time. This section describes how to configure a
replication delay on a replica, and how to monitor replication delay.

In MySQL 8.0, the method of delaying replication depends on two timestamps,
immediate_commit_timestamp and original_commit_timestamp (see Replication Delay
Timestamps). If all servers in the replication topology are running MySQL 8.0 or above, delayed
replication is measured using these timestamps. If either the immediate source or replica is not using
these timestamps, the implementation of delayed replication from MySQL 5.7 is used (see Delayed
Replication). This section describes delayed replication between servers which are all using these
timestamps.

The default replication delay is 0 seconds. Use a CHANGE REPLICATION SOURCE TO
SOURCE_DELAY=N statement (from MySQL 8.0.23) or a CHANGE MASTER TO MASTER_DELAY=N

3852

https://dev.mysql.com/doc/refman/5.7/en/replication-delayed.html
https://dev.mysql.com/doc/refman/5.7/en/replication-delayed.html

Delayed Replication

statement (before MySQL 8.0.23) to set the delay to N seconds. A transaction received from the source
is not executed until at least N seconds later than its commit on the immediate source. The delay
happens per transaction (not event as in previous MySQL versions) and the actual delay is imposed
only on gtid_log_event or anonymous_gtid_log_event. The other events in the transaction
always follow these events without any waiting time imposed on them.

Note

START REPLICA and STOP REPLICA take effect immediately and ignore any
delay. RESET REPLICA resets the delay to 0.

The replication_applier_configuration Performance Schema table contains the
DESIRED_DELAY column which shows the delay configured using the SOURCE_DELAY |
MASTER_DELAY option. The replication_applier_status Performance Schema table contains
the REMAINING_DELAY column which shows the number of delay seconds remaining.

Delayed replication can be used for several purposes:

• To protect against user mistakes on the source. With a delay you can roll back a delayed replica to
the time just before the mistake.

• To test how the system behaves when there is a lag. For example, in an application, a lag might
be caused by a heavy load on the replica. However, it can be difficult to generate this load level.
Delayed replication can simulate the lag without having to simulate the load. It can also be used to
debug conditions related to a lagging replica.

• To inspect what the database looked like in the past, without having to reload a backup. For
example, by configuring a replica with a delay of one week, if you then need to see what the
database looked like before the last few days' worth of development, the delayed replica can be
inspected.

Replication Delay Timestamps

MySQL 8.0 provides a new method for measuring delay (also referred to as replication lag) in
replication topologies that depends on the following timestamps associated with the GTID of each
transaction (instead of each event) written to the binary log.

• original_commit_timestamp: the number of microseconds since epoch when the transaction
was written (committed) to the binary log of the original source.

• immediate_commit_timestamp: the number of microseconds since epoch when the transaction
was written (committed) to the binary log of the immediate source.

The output of mysqlbinlog displays these timestamps in two formats, microseconds from epoch
and also TIMESTAMP format, which is based on the user defined time zone for better readability. For
example:

#170404 10:48:05 server id 1 end_log_pos 233 CRC32 0x016ce647 GTID last_committed=0
\ sequence_number=1 original_committed_timestamp=1491299285661130 immediate_commit_timestamp=1491299285843771
original_commit_timestamp=1491299285661130 (2017-04-04 10:48:05.661130 WEST)
immediate_commit_timestamp=1491299285843771 (2017-04-04 10:48:05.843771 WEST)
 /*!80001 SET @@SESSION.original_commit_timestamp=1491299285661130*//*!*/;
 SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:1'/*!*/;
at 233

As a rule, the original_commit_timestamp is always the same on all replicas where the
transaction is applied. In source-replica replication, the original_commit_timestamp
of a transaction in the (original) source’s binary log is always the same as its
immediate_commit_timestamp. In the replica’s relay log, the original_commit_timestamp
and immediate_commit_timestamp of the transaction are the same as in the source’s binary log;
whereas in its own binary log, the transaction’s immediate_commit_timestamp corresponds to
when the replica committed the transaction.

3853

Delayed Replication

In a Group Replication setup, when the original source is a member of a group, the
original_commit_timestamp is generated when the transaction is ready to be committed. In
other words, when it finished executing on the original source and its write set is ready to be sent to
all members of the group for certification. When the original source is a server outside the group, the
original_commit_timestamp is preserved. The same original_commit_timestamp for a
particular transaction is replicated to all servers in the group, and to any replica outside the group that
is replicating from a member. Beginning with MySQL 8.0.26, each recipient of the transaction also
stores the local commit time in its binary log using immediate_commit_timestamp.

View change events, which are exclusive to Group Replication, are a special case. Transactions
containing these events are generated by each group member but share the same GTID (so, they
are not first executed in a source and then replicated to the group, but all members of the group
execute and apply the same transaction). Before MySQL 8.0.26, these transactions have their
original_commit_timestamp set to zero, and they appear this way in viewable output. Beginning
with MySQL 8.0.26, for improved observability, group members set local timestamp values for
transactions associated with view change events.

Monitoring Replication Delay

One of the most common ways to monitor replication delay (lag) in previous MySQL versions was by
relying on the Seconds_Behind_Master field in the output of SHOW REPLICA STATUS. However,
this metric is not suitable when using replication topologies more complex than the traditional source-
replica setup, such as Group Replication. The addition of immediate_commit_timestamp and
original_commit_timestamp to MySQL 8 provides a much finer degree of information about
replication delay. The recommended method to monitor replication delay in a topology that supports
these timestamps is using the following Performance Schema tables.

• replication_connection_status: current status of the connection to the source, provides
information on the last and current transaction the connection thread queued into the relay log.

• replication_applier_status_by_coordinator: current status of the coordinator thread
that only displays information when using a multithreaded replica, provides information on the last
transaction buffered by the coordinator thread to a worker’s queue, as well as the transaction it is
currently buffering.

• replication_applier_status_by_worker: current status of the thread(s) applying
transactions received from the source, provides information about the transactions applied by the
replication SQL thread, or by each worker thread when using a multithreaded replica.

Using these tables you can monitor information about the last transaction the corresponding thread
processed and the transaction that thread is currently processing. This information comprises:

• a transaction’s GTID

• a transaction's original_commit_timestamp and immediate_commit_timestamp, retrieved
from the replica’s relay log

• the time a thread started processing a transaction

• for the last processed transaction, the time the thread finished processing it

In addition to the Performance Schema tables, the output of SHOW REPLICA STATUS has three fields
that show:

• SQL_Delay: A nonnegative integer indicating the replication delay configured using CHANGE
REPLICATION SOURCE TO SOURCE_DELAY=N (from MySQL 8.0.23) or CHANGE MASTER TO
MASTER_DELAY=N (before MySQL 8.0.23), measured in seconds.

• SQL_Remaining_Delay: When Replica_SQL_Running_State is Waiting until
MASTER_DELAY seconds after master executed event, this field contains an integer
indicating the number of seconds left of the delay. At other times, this field is NULL.

3854

Replication Notes and Tips

• Replica_SQL_Running_State: A string indicating the state of the SQL thread (analogous to
Replica_IO_State). The value is identical to the State value of the SQL thread as displayed by
SHOW PROCESSLIST.

When the replication SQL thread is waiting for the delay to elapse before executing an event, SHOW
PROCESSLIST displays its State value as Waiting until MASTER_DELAY seconds after
master executed event.

19.5 Replication Notes and Tips

19.5.1 Replication Features and Issues

The following sections provide information about what is supported and what is not in MySQL
replication, and about specific issues and situations that may occur when replicating certain
statements.

Statement-based replication depends on compatibility at the SQL level between the source and
replica. In other words, successful statement-based replication requires that any SQL features used
be supported by both the source and the replica servers. If you use a feature on the source server that
is available only in the current version of MySQL, you cannot replicate to a replica that uses an earlier
version of MySQL. Such incompatibilities can also occur within a release series as well as between
versions.

If you are planning to use statement-based replication between MySQL 8.0 and a previous MySQL
release series, it is a good idea to consult the edition of the MySQL Reference Manual corresponding
to the earlier release series for information regarding the replication characteristics of that series.

With MySQL's statement-based replication, there may be issues with replicating stored routines
or triggers. You can avoid these issues by using MySQL's row-based replication instead. For a
detailed list of issues, see Section 27.7, “Stored Program Binary Logging”. For more information about
row-based logging and row-based replication, see Section 7.4.4.1, “Binary Logging Formats”, and
Section 19.2.1, “Replication Formats”.

For additional information specific to replication and InnoDB, see Section 17.19, “InnoDB and MySQL
Replication”. For information relating to replication with NDB Cluster, see Section 25.7, “NDB Cluster
Replication”.

19.5.1.1 Replication and AUTO_INCREMENT

Statement-based replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is
carried out subject to the following exceptions:

• A statement invoking a trigger or function that causes an update to an AUTO_INCREMENT column is
not replicated correctly using statement-based replication. These statements are marked as unsafe.
(Bug #45677)

• An INSERT into a table that has a composite primary key that includes an AUTO_INCREMENT
column that is not the first column of this composite key is not safe for statement-based logging or
replication. These statements are marked as unsafe. (Bug #11754117, Bug #45670)

This issue does not affect tables using the InnoDB storage engine, since an InnoDB table with an
AUTO_INCREMENT column requires at least one key where the auto-increment column is the only
or leftmost column.

• Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same
ordering of the rows on the replica and the source. This occurs because the order in which the rows
are numbered depends on the specific storage engine used for the table and the order in which the
rows were inserted. If it is important to have the same order on the source and replica, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an

3855

Replication Features and Issues

AUTO_INCREMENT column to a table t1 that has columns col1 and col2, the following statements
produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both source and replica, the ORDER BY
clause must name all columns of t1.

The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign key
definitions are ignored, as are the DATA DIRECTORY and INDEX DIRECTORY table options. If a
table definition includes any of those characteristics, create t2 using a CREATE TABLE statement
that is identical to the one used to create t1, but with the addition of the AUTO_INCREMENT column.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT
column, the final step is to drop the original table and then rename the copy:

DROP t1;
ALTER TABLE t2 RENAME t1;

See also Section B.3.6.1, “Problems with ALTER TABLE”.

19.5.1.2 Replication and BLACKHOLE Tables

The BLACKHOLE storage engine accepts data but discards it and does not store it. When performing
binary logging, all inserts to such tables are always logged, regardless of the logging format in use.
Updates and deletes are handled differently depending on whether statement based or row based
logging is in use. With the statement based logging format, all statements affecting BLACKHOLE tables
are logged, but their effects ignored. When using row-based logging, updates and deletes to such
tables are simply skipped—they are not written to the binary log. A warning is logged whenever this
occurs.

For this reason we recommend when you replicate to tables using the BLACKHOLE storage engine that
you have the binlog_format server variable set to STATEMENT, and not to either ROW or MIXED.

19.5.1.3 Replication and Character Sets

The following applies to replication between MySQL servers that use different character sets:

• If the source has databases with a character set different from the global character_set_server
value, you should design your CREATE TABLE statements so that they do not implicitly rely on
the database default character set. A good workaround is to state the character set and collation
explicitly in CREATE TABLE statements.

19.5.1.4 Replication and CHECKSUM TABLE

CHECKSUM TABLE returns a checksum that is calculated row by row, using a method that depends
on the table row storage format. The storage format is not guaranteed to remain the same between
MySQL versions, so the checksum value might change following an upgrade.

19.5.1.5 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER

The statements CREATE SERVER, ALTER SERVER, and DROP SERVER are not written to the binary
log, regardless of the binary logging format that is in use.

19.5.1.6 Replication of CREATE ... IF NOT EXISTS Statements

MySQL applies these rules when various CREATE ... IF NOT EXISTS statements are replicated:

3856

Replication Features and Issues

• Every CREATE DATABASE IF NOT EXISTS statement is replicated, whether or not the database
already exists on the source.

• Similarly, every CREATE TABLE IF NOT EXISTS statement without a SELECT is replicated,
whether or not the table already exists on the source. This includes CREATE TABLE IF NOT
EXISTS ... LIKE. Replication of CREATE TABLE IF NOT EXISTS ... SELECT follows
somewhat different rules; see Section 19.5.1.7, “Replication of CREATE TABLE ... SELECT
Statements”, for more information.

• CREATE EVENT IF NOT EXISTS is always replicated, whether or not the event named in the
statement already exists on the source.

• CREATE USER is written to the binary log only if successful. If the statement includes IF NOT
EXISTS, it is considered successful, and is logged as long as at least one user named in the
statement is created; in such cases, the statement is logged as written; this includes references to
existing users that were not created. See CREATE USER Binary Logging, for more information.

• (MySQL 8.0.29 and later:) CREATE PROCEDURE IF NOT EXISTS, CREATE FUNCTION IF NOT
EXISTS, or CREATE TRIGGER IF NOT EXISTS, if successful, is written in its entirety to the binary
log (including the IF NOT EXISTS clause), whether or not the statement raised a warning because
the object (procedure, function, or trigger) already existed.

19.5.1.7 Replication of CREATE TABLE ... SELECT Statements

MySQL applies these rules when CREATE TABLE ... SELECT statements are replicated:

• CREATE TABLE ... SELECT always performs an implicit commit (Section 15.3.3, “Statements
That Cause an Implicit Commit”).

• If the destination table does not exist, logging occurs as follows. It does not matter whether IF NOT
EXISTS is present.

• STATEMENT or MIXED format: The statement is logged as written.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-
row events.

Prior to MySQL 8.0.21, the statement is logged as two transactions. As of MySQL 8.0.21, on
storage engines that support atomic DDL, it is logged as one transaction. For more information,
see Section 15.1.1, “Atomic Data Definition Statement Support”.

• If the CREATE TABLE ... SELECT statement fails, nothing is logged. This includes the case that
the destination table exists and IF NOT EXISTS is not given.

• If the destination table exists and IF NOT EXISTS is given, MySQL 8.0 ignores the statement
completely; nothing is inserted or logged.

MySQL 8.0 does not allow a CREATE TABLE ... SELECT statement to make any changes in tables
other than the table that is created by the statement.

19.5.1.8 Replication of CURRENT_USER()

The following statements support use of the CURRENT_USER() function to take the place of the name
of, and possibly the host for, an affected user or a definer:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

3857

Replication Features and Issues

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

When binary logging is enabled and CURRENT_USER() or CURRENT_USER is used as the definer in
any of these statements, MySQL Server ensures that the statement is applied to the same user on both
the source and the replica when the statement is replicated. In some cases, such as statements that
change passwords, the function reference is expanded before it is written to the binary log, so that the
statement includes the user name. For all other cases, the name of the current user on the source is
replicated to the replica as metadata, and the replica applies the statement to the current user named
in the metadata, rather than to the current user on the replica.

19.5.1.9 Replication with Differing Table Definitions on Source and Replica

Source and target tables for replication do not have to be identical. A table on the source can have
more or fewer columns than the replica's copy of the table. In addition, corresponding table columns on
the source and the replica can use different data types, subject to certain conditions.

Note

Replication between tables which are partitioned differently from one another is
not supported. See Section 19.5.1.24, “Replication and Partitioning”.

In all cases where the source and target tables do not have identical definitions, the database and table
names must be the same on both the source and the replica. Additional conditions are discussed, with
examples, in the following two sections.

Replication with More Columns on Source or Replica

You can replicate a table from the source to the replica such that the source and replica copies of the
table have differing numbers of columns, subject to the following conditions:

• Columns common to both versions of the table must be defined in the same order on the source and
the replica. (This is true even if both tables have the same number of columns.)

• Columns common to both versions of the table must be defined before any additional columns.

This means that executing an ALTER TABLE statement on the replica where a new column is
inserted into the table within the range of columns common to both tables causes replication to fail,
as shown in the following example:

Suppose that a table t, existing on the source and the replica, is defined by the following CREATE
TABLE statement:

CREATE TABLE t (
 c1 INT,
 c2 INT,
 c3 INT
);

Suppose that the ALTER TABLE statement shown here is executed on the replica:

3858

Replication Features and Issues

ALTER TABLE t ADD COLUMN cnew1 INT AFTER c3;

The previous ALTER TABLE is permitted on the replica because the columns c1, c2, and c3 that are
common to both versions of table t remain grouped together in both versions of the table, before any
columns that differ.

However, the following ALTER TABLE statement cannot be executed on the replica without causing
replication to break:

ALTER TABLE t ADD COLUMN cnew2 INT AFTER c2;

Replication fails after execution on the replica of the ALTER TABLE statement just shown, because
the new column cnew2 comes between columns common to both versions of t.

• Each “extra” column in the version of the table having more columns must have a default value.

A column's default value is determined by a number of factors, including its type, whether it is defined
with a DEFAULT option, whether it is declared as NULL, and the server SQL mode in effect at the
time of its creation; for more information, see Section 13.6, “Data Type Default Values”).

In addition, when the replica's copy of the table has more columns than the source's copy, each column
common to the tables must use the same data type in both tables.

Examples. The following examples illustrate some valid and invalid table definitions:

More columns on the source. The following table definitions are valid and replicate correctly:

source> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT);

The following table definitions would raise an error because the definitions of the columns common to
both versions of the table are in a different order on the replica than they are on the source:

source> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
replica> CREATE TABLE t1 (c2 INT, c1 INT);

The following table definitions would also raise an error because the definition of the extra column on
the source appears before the definitions of the columns common to both versions of the table:

source> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT);

More columns on the replica. The following table definitions are valid and replicate correctly:

source> CREATE TABLE t1 (c1 INT, c2 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

The following definitions raise an error because the columns common to both versions of the table are
not defined in the same order on both the source and the replica:

source> CREATE TABLE t1 (c1 INT, c2 INT);
replica> CREATE TABLE t1 (c2 INT, c1 INT, c3 INT);

The following table definitions also raise an error because the definition for the extra column in the
replica's version of the table appears before the definitions for the columns which are common to both
versions of the table:

source> CREATE TABLE t1 (c1 INT, c2 INT);
replica> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);

The following table definitions fail because the replica's version of the table has additional columns
compared to the source's version, and the two versions of the table use different data types for the
common column c2:

source> CREATE TABLE t1 (c1 INT, c2 BIGINT);

3859

Replication Features and Issues

replica> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

Replication of Columns Having Different Data Types

Corresponding columns on the source's and the replica's copies of the same table ideally should have
the same data type. However, this is not always strictly enforced, as long as certain conditions are met.

It is usually possible to replicate from a column of a given data type to another column of the same type
and same size or width, where applicable, or larger. For example, you can replicate from a CHAR(10)
column to another CHAR(10), or from a CHAR(10) column to a CHAR(25) column without any
problems. In certain cases, it also possible to replicate from a column having one data type (on the
source) to a column having a different data type (on the replica); when the data type of the source's
version of the column is promoted to a type that is the same size or larger on the replica, this is known
as attribute promotion.

Attribute promotion can be used with both statement-based and row-based replication, and is not
dependent on the storage engine used by either the source or the replica. However, the choice of
logging format does have an effect on the type conversions that are permitted; the particulars are
discussed later in this section.

Important

Whether you use statement-based or row-based replication, the replica's copy
of the table cannot contain more columns than the source's copy if you wish to
employ attribute promotion.

Statement-based replication. When using statement-based replication, a simple rule of thumb to
follow is, “If the statement run on the source would also execute successfully on the replica, it should
also replicate successfully”. In other words, if the statement uses a value that is compatible with the
type of a given column on the replica, the statement can be replicated. For example, you can insert any
value that fits in a TINYINT column into a BIGINT column as well; it follows that, even if you change
the type of a TINYINT column in the replica's copy of a table to BIGINT, any insert into that column
on the source that succeeds should also succeed on the replica, since it is impossible to have a legal
TINYINT value that is large enough to exceed a BIGINT column.

Row-based replication: attribute promotion and demotion. Row-based replication supports
attribute promotion and demotion between smaller data types and larger types. It is also possible to
specify whether or not to permit lossy (truncated) or non-lossy conversions of demoted column values,
as explained later in this section.

Lossy and non-lossy conversions. In the event that the target type cannot represent the value
being inserted, a decision must be made on how to handle the conversion. If we permit the conversion
but truncate (or otherwise modify) the source value to achieve a “fit” in the target column, we make
what is known as a lossy conversion. A conversion which does not require truncation or similar
modifications to fit the source column value in the target column is a non-lossy conversion.

Type conversion modes. The global value of the system variable replica_type_conversions
(from MySQL 8.0.26) or slave_type_conversions (before MySQL 8.0.26) controls the type
conversion mode used on the replica. This variable takes a set of values from the following list, which
describes the effects of each mode on the replica's type-conversion behavior:

ALL_LOSSY In this mode, type conversions that would mean loss of information
are permitted.

This does not imply that non-lossy conversions are permitted,
merely that only cases requiring either lossy conversions or no
conversion at all are permitted; for example, enabling only this
mode permits an INT column to be converted to TINYINT (a lossy
conversion), but not a TINYINT column to an INT column (non-
lossy). Attempting the latter conversion in this case would cause
replication to stop with an error on the replica.

3860

Replication Features and Issues

ALL_NON_LOSSY This mode permits conversions that do not require truncation
or other special handling of the source value; that is, it permits
conversions where the target type has a wider range than the
source type.

Setting this mode has no bearing on whether lossy conversions
are permitted; this is controlled with the ALL_LOSSY mode. If only
ALL_NON_LOSSY is set, but not ALL_LOSSY, then attempting a
conversion that would result in the loss of data (such as INT to
TINYINT, or CHAR(25) to VARCHAR(20)) causes the replica to
stop with an error.

ALL_LOSSY,ALL_NON_LOSSY When this mode is set, all supported type conversions are
permitted, whether or not they are lossy conversions.

ALL_SIGNED Treat promoted integer types as signed values (the default
behavior).

ALL_UNSIGNED Treat promoted integer types as unsigned values.

ALL_SIGNED,ALL_UNSIGNED Treat promoted integer types as signed if possible, otherwise as
unsigned.

[empty] When replica_type_conversions or
slave_type_conversions is not set, no attribute promotion or
demotion is permitted; this means that all columns in the source and
target tables must be of the same types.

This mode is the default.

When an integer type is promoted, its signedness is not preserved. By default, the replica treats
all such values as signed. You can control this behavior using ALL_SIGNED, ALL_UNSIGNED, or
both. ALL_SIGNED tells the replica to treat all promoted integer types as signed; ALL_UNSIGNED
instructs it to treat these as unsigned. Specifying both causes the replica to treat the value as signed if
possible, otherwise to treat it as unsigned; the order in which they are listed is not significant. Neither
ALL_SIGNED nor ALL_UNSIGNED has any effect if at least one of ALL_LOSSY or ALL_NONLOSSY is
not also used.

Changing the type conversion mode requires restarting the replica with the new
replica_type_conversions or slave_type_conversions setting.

Supported conversions. Supported conversions between different but similar data types are
shown in the following list:

• Between any of the integer types TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.

This includes conversions between the signed and unsigned versions of these types.

Lossy conversions are made by truncating the source value to the maximum (or minimum) permitted
by the target column. For ensuring non-lossy conversions when going from unsigned to signed types,
the target column must be large enough to accommodate the range of values in the source column.
For example, you can demote TINYINT UNSIGNED non-lossily to SMALLINT, but not to TINYINT.

• Between any of the decimal types DECIMAL, FLOAT, DOUBLE, and NUMERIC.

FLOAT to DOUBLE is a non-lossy conversion; DOUBLE to FLOAT can only be handled lossily. A
conversion from DECIMAL(M,D) to DECIMAL(M',D') where D' >= D and (M'-D') >= (M-D) is
non-lossy; for any case where M' < M, D' < D, or both, only a lossy conversion can be made.

For any of the decimal types, if a value to be stored cannot be fit in the target type, the value
is rounded down according to the rounding rules defined for the server elsewhere in the

3861

Replication Features and Issues

documentation. See Section 14.24.4, “Rounding Behavior”, for information about how this is done for
decimal types.

• Between any of the string types CHAR, VARCHAR, and TEXT, including conversions between different
widths.

Conversion of a CHAR, VARCHAR, or TEXT to a CHAR, VARCHAR, or TEXT column the same size or
larger is never lossy. Lossy conversion is handled by inserting only the first N characters of the string
on the replica, where N is the width of the target column.

Important

Replication between columns using different character sets is not supported.

• Between any of the binary data types BINARY, VARBINARY, and BLOB, including conversions
between different widths.

Conversion of a BINARY, VARBINARY, or BLOB to a BINARY, VARBINARY, or BLOB column the
same size or larger is never lossy. Lossy conversion is handled by inserting only the first N bytes of
the string on the replica, where N is the width of the target column.

• Between any 2 BIT columns of any 2 sizes.

When inserting a value from a BIT(M) column into a BIT(M') column, where M' > M, the most
significant bits of the BIT(M') columns are cleared (set to zero) and the M bits of the BIT(M) value
are set as the least significant bits of the BIT(M') column.

When inserting a value from a source BIT(M) column into a target BIT(M') column, where M' <
M, the maximum possible value for the BIT(M') column is assigned; in other words, an “all-set”
value is assigned to the target column.

Conversions between types not in the previous list are not permitted.

19.5.1.10 Replication and DIRECTORY Table Options

If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE statement
on the source server, the table option is also used on the replica. This can cause problems if no
corresponding directory exists in the replica host file system or if it exists but is not accessible to the
replica MySQL server. This can be overridden by using the NO_DIR_IN_CREATE server SQL mode on
the replica, which causes the replica to ignore the DATA DIRECTORY and INDEX DIRECTORY table
options when replicating CREATE TABLE statements. The result is that MyISAM data and index files
are created in the table's database directory.

For more information, see Section 7.1.11, “Server SQL Modes”.

19.5.1.11 Replication of DROP ... IF EXISTS Statements

The DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, and DROP VIEW IF EXISTS
statements are always replicated, even if the database, table, or view to be dropped does not exist on
the source. This is to ensure that the object to be dropped no longer exists on either the source or the
replica, once the replica has caught up with the source.

DROP ... IF EXISTS statements for stored programs (stored procedures and functions, triggers,
and events) are also replicated, even if the stored program to be dropped does not exist on the source.

19.5.1.12 Replication and Floating-Point Values

With statement-based replication, values are converted from decimal to binary. Because conversions
between decimal and binary representations of them may be approximate, comparisons involving
floating-point values are inexact. This is true for operations that use floating-point values explicitly,
or that use values that are converted to floating-point implicitly. Comparisons of floating-point values

3862

Replication Features and Issues

might yield different results on source and replica servers due to differences in computer architecture,
the compiler used to build MySQL, and so forth. See Section 14.3, “Type Conversion in Expression
Evaluation”, and Section B.3.4.8, “Problems with Floating-Point Values”.

19.5.1.13 Replication and FLUSH

Some forms of the FLUSH statement are not logged because they could cause problems if replicated
to a replica: FLUSH LOGS and FLUSH TABLES WITH READ LOCK. For a syntax example, see
Section 15.7.8.3, “FLUSH Statement”. The FLUSH TABLES, ANALYZE TABLE, OPTIMIZE TABLE,
and REPAIR TABLE statements are written to the binary log and thus replicated to replicas. This is not
normally a problem because these statements do not modify table data.

However, this behavior can cause difficulties under certain circumstances. If you replicate the privilege
tables in the mysql database and update those tables directly without using GRANT, you must issue
a FLUSH PRIVILEGES on the replicas to put the new privileges into effect. In addition, if you use
FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue FLUSH
TABLES manually on the replicas. These statements are written to the binary log unless you specify
NO_WRITE_TO_BINLOG or its alias LOCAL.

19.5.1.14 Replication and System Functions

Certain functions do not replicate well under some conditions:

• The USER(), CURRENT_USER() (or CURRENT_USER), UUID(), VERSION(), and LOAD_FILE()
functions are replicated without change and thus do not work reliably on the replica unless row-
based replication is enabled. (See Section 19.2.1, “Replication Formats”.)

USER() and CURRENT_USER() are automatically replicated using row-based replication when using
MIXED mode, and generate a warning in STATEMENT mode. (See also Section 19.5.1.8, “Replication
of CURRENT_USER()”.) This is also true for VERSION() and RAND().

• For NOW(), the binary log includes the timestamp. This means that the value as returned by the
call to this function on the source is replicated to the replica. To avoid unexpected results when
replicating between MySQL servers in different time zones, set the time zone on both source and
replica. For more information, see Section 19.5.1.33, “Replication and Time Zones”.

To explain the potential problems when replicating between servers which are in different time
zones, suppose that the source is located in New York, the replica is located in Stockholm, and
both servers are using local time. Suppose further that, on the source, you create a table mytable,
perform an INSERT statement on this table, and then select from the table, as shown here:

mysql> CREATE TABLE mytable (mycol TEXT);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO mytable VALUES (NOW());
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Local time in Stockholm is 6 hours later than in New York; so, if you issue SELECT NOW() on the
replica at that exact same instant, the value 2009-09-01 18:00:00 is returned. For this reason,
if you select from the replica's copy of mytable after the CREATE TABLE and INSERT statements
just shown have been replicated, you might expect mycol to contain the value 2009-09-01
18:00:00. However, this is not the case; when you select from the replica's copy of mytable, you
obtain exactly the same result as on the source:

mysql> SELECT * FROM mytable;

3863

Replication Features and Issues

+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Unlike NOW(), the SYSDATE() function is not replication-safe because it is not affected by SET
TIMESTAMP statements in the binary log and is nondeterministic if statement-based logging is used.
This is not a problem if row-based logging is used.

An alternative is to use the --sysdate-is-now option to cause SYSDATE() to be an alias for
NOW(). This must be done on the source and the replica to work correctly. In such cases, a warning
is still issued by this function, but can safely be ignored as long as --sysdate-is-now is used on
both the source and the replica.

SYSDATE() is automatically replicated using row-based replication when using MIXED mode, and
generates a warning in STATEMENT mode.

See also Section 19.5.1.33, “Replication and Time Zones”.

• The following restriction applies to statement-based replication only, not to row-based replication.
The GET_LOCK(), RELEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions that
handle user-level locks are replicated without the replica knowing the concurrency context on the
source. Therefore, these functions should not be used to insert into a source table because the
content on the replica would differ. For example, do not issue a statement such as INSERT INTO
mytable VALUES(GET_LOCK(...)).

These functions are automatically replicated using row-based replication when using MIXED mode,
and generate a warning in STATEMENT mode.

As a workaround for the preceding limitations when statement-based replication is in effect, you can
use the strategy of saving the problematic function result in a user variable and referring to the variable
in a later statement. For example, the following single-row INSERT is problematic due to the reference
to the UUID() function:

INSERT INTO t VALUES(UUID());

To work around the problem, do this instead:

SET @my_uuid = UUID();
INSERT INTO t VALUES(@my_uuid);

That sequence of statements replicates because the value of @my_uuid is stored in the binary log as a
user-variable event prior to the INSERT statement and is available for use in the INSERT.

The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert,
you can do this:

SET @my_uuid1 = UUID(); @my_uuid2 = UUID();
INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);

However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For
example, you cannot convert the following statement to one in which a given individual user variable is
associated with each row:

INSERT INTO t2 SELECT UUID(), * FROM t1;

Within a stored function, RAND() replicates correctly as long as it is invoked only once during the
execution of the function. (You can consider the function execution timestamp and random number
seed as implicit inputs that are identical on the source and replica.)

The FOUND_ROWS() and ROW_COUNT() functions are not replicated reliably using statement-based
replication. A workaround is to store the result of the function call in a user variable, and then use that

3864

Replication Features and Issues

in the INSERT statement. For example, if you wish to store the result in a table named mytable, you
might normally do so like this:

SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(FOUND_ROWS());

However, if you are replicating mytable, you should use SELECT ... INTO, and then store the
variable in the table, like this:

SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(@found_rows);

In this way, the user variable is replicated as part of the context, and applied on the replica correctly.

These functions are automatically replicated using row-based replication when using MIXED mode, and
generate a warning in STATEMENT mode. (Bug #12092, Bug #30244)

19.5.1.15 Replication and Fractional Seconds Support

MySQL 8.0 permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision. See Section 13.2.6, “Fractional Seconds in Time Values”.

19.5.1.16 Replication of Invoked Features

Replication of invoked features such as loadable functions and stored programs (stored procedures
and functions, triggers, and events) provides the following characteristics:

• The effects of the feature are always replicated.

• The following statements are replicated using statement-based replication:

• CREATE EVENT

• ALTER EVENT

• DROP EVENT

• CREATE PROCEDURE

• DROP PROCEDURE

• CREATE FUNCTION

• DROP FUNCTION

• CREATE TRIGGER

• DROP TRIGGER

However, the effects of features created, modified, or dropped using these statements are replicated
using row-based replication.

Note

Attempting to replicate invoked features using statement-based replication
produces the warning Statement is not safe to log in statement
format. For example, trying to replicate a loadable function with statement-
based replication generates this warning because it currently cannot be
determined by the MySQL server whether the function is deterministic. If you
are absolutely certain that the invoked feature's effects are deterministic, you
can safely disregard such warnings.

• In the case of CREATE EVENT and ALTER EVENT:

3865

Replication Features and Issues

• The status of the event is set to SLAVESIDE_DISABLED on the replica regardless of the state
specified (this does not apply to DROP EVENT).

• The source on which the event was created is identified on the replica by its server ID. The
ORIGINATOR column in INFORMATION_SCHEMA.EVENTS stores this information. See
Section 15.7.7.18, “SHOW EVENTS Statement”, for more information.

• The feature implementation resides on the replica in a renewable state so that if the source fails, the
replica can be used as the source without loss of event processing.

To determine whether there are any scheduled events on a MySQL server that were created on a
different server (that was acting as a source), query the Information Schema EVENTS table in a manner
similar to what is shown here:

SELECT EVENT_SCHEMA, EVENT_NAME
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

Alternatively, you can use the SHOW EVENTS statement, like this:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

When promoting a replica having such events to a source, you must enable each event using ALTER
EVENT event_name ENABLE, where event_name is the name of the event.

If more than one source was involved in creating events on this replica, and you wish to identify events
that were created only on a given source having the server ID source_id, modify the previous query
on the EVENTS table to include the ORIGINATOR column, as shown here:

SELECT EVENT_SCHEMA, EVENT_NAME, ORIGINATOR
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'source_id'

You can employ ORIGINATOR with the SHOW EVENTS statement in a similar fashion:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'source_id'

Before enabling events that were replicated from the source, you should disable the MySQL Event
Scheduler on the replica (using a statement such as SET GLOBAL event_scheduler = OFF;), run
any necessary ALTER EVENT statements, restart the server, then re-enable the Event Scheduler on
the replica afterward (using a statement such as SET GLOBAL event_scheduler = ON;)-

If you later demote the new source back to being a replica, you must disable manually all events
enabled by the ALTER EVENT statements. You can do this by storing in a separate table the event
names from the SELECT statement shown previously, or using ALTER EVENT statements to rename
the events with a common prefix such as replicated_ to identify them.

If you rename the events, then when demoting this server back to being a replica, you can identify the
events by querying the EVENTS table, as shown here:

SELECT CONCAT(EVENT_SCHEMA, '.', EVENT_NAME) AS 'Db.Event'
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE INSTR(EVENT_NAME, 'replicated_') = 1;

19.5.1.17 Replication of JSON Documents

Before MySQL 8.0, an update to a JSON column was always written to the binary log as the complete
document. In MySQL 8.0, it is possible to log partial updates to JSON documents (see Partial Updates
of JSON Values), which is more efficient. The logging behavior depends on the format used, as
described here:

3866

Replication Features and Issues

Statement-based replication. JSON partial updates are always logged as partial updates. This
cannot be disabled when using statement-based logging.

Row-based replication. JSON partial updates are not logged as such by default, but
instead are logged as complete documents. To enable logging of partial updates, set
binlog_row_value_options=PARTIAL_JSON. If a replication source has this variable set, partial
updates received from that source are handled and applied by a replica regardless of the replica's own
setting for the variable.

Servers running MySQL 8.0.2 or earlier do not recognize the log events used for JSON partial
updates. For this reason, when replicating to such a server from a server running MySQL 8.0.3 or later,
binlog_row_value_options must be disabled on the source by setting this variable to '' (empty
string). See the description of this variable for more information.

19.5.1.18 Replication and LIMIT

Statement-based replication of LIMIT clauses in DELETE, UPDATE, and INSERT ... SELECT
statements is unsafe since the order of the rows affected is not defined. (Such statements can be
replicated correctly with statement-based replication only if they also contain an ORDER BY clause.)
When such a statement is encountered:

• When using STATEMENT mode, a warning that the statement is not safe for statement-based
replication is now issued.

When using STATEMENT mode, warnings are issued for DML statements containing LIMIT even
when they also have an ORDER BY clause (and so are made deterministic). This is a known issue.
(Bug #42851)

• When using MIXED mode, the statement is now automatically replicated using row-based mode.

19.5.1.19 Replication and LOAD DATA

LOAD DATA is considered unsafe for statement-based logging (see Section 19.2.1.3, “Determination of
Safe and Unsafe Statements in Binary Logging”). When binlog_format=MIXED is set, the statement
is logged in row-based format. When binlog_format=STATEMENT is set, note that LOAD DATA does
not generate a warning, unlike other unsafe statements.

If you use LOAD DATA with binlog_format=STATEMENT, each replica on which the changes are to
be applied creates a temporary file containing the data. The replica then uses a LOAD DATA statement
to apply the changes. This temporary file is not encrypted, even if binary log encryption is active on
the source, If encryption is required, use row-based or mixed binary logging format instead, for which
replicas do not create the temporary file.

If a PRIVILEGE_CHECKS_USER account has been used to help secure the replication channel (see
Section 19.3.3, “Replication Privilege Checks”), it is strongly recommended that you log LOAD DATA
operations using row-based binary logging (binlog_format=ROW). If REQUIRE_ROW_FORMAT is
set for the channel, row-based binary logging is required. With this logging format, the FILE privilege
is not needed to execute the event, so do not give the PRIVILEGE_CHECKS_USER account this
privilege. If you need to recover from a replication error involving a LOAD DATA INFILE operation
logged in statement format, and the replicated event is trusted, you could grant the FILE privilege to
the PRIVILEGE_CHECKS_USER account temporarily, removing it after the replicated event has been
applied.

When mysqlbinlog reads log events for LOAD DATA statements logged in statement-based format,
a generated local file is created in a temporary directory. These temporary files are not automatically
removed by mysqlbinlog or any other MySQL program. If you do use LOAD DATA statements with
statement-based binary logging, you should delete the temporary files yourself after you no longer
need the statement log. For more information, see Section 6.6.9, “mysqlbinlog — Utility for Processing
Binary Log Files”.

19.5.1.20 Replication and max_allowed_packet

3867

Replication Features and Issues

max_allowed_packet sets an upper limit on the size of any single message between the MySQL
server and clients, including replicas. If you are replicating large column values (such as might
be found in TEXT or BLOB columns) and max_allowed_packet is too small on the source,
the source fails with an error, and the replica shuts down the replication I/O (receiver) thread. If
max_allowed_packet is too small on the replica, this also causes the replica to stop the I/O thread.

Row-based replication sends all columns and column values for updated rows from the source to the
replica, including values of columns that were not actually changed by the update. This means that,
when you are replicating large column values using row-based replication, you must take care to set
max_allowed_packet large enough to accommodate the largest row in any table to be replicated,
even if you are replicating updates only, or you are inserting only relatively small values.

On a multi-threaded replica (with replica_parallel_workers > 0
or slave_parallel_workers > 0), ensure that the system variable
replica_pending_jobs_size_max or slave_pending_jobs_size_max is set to a value equal
to or greater than the setting for the max_allowed_packet system variable on the source. The
default setting for replica_pending_jobs_size_max or slave_pending_jobs_size_max,
128M, is twice the default setting for max_allowed_packet, which is 64M. max_allowed_packet
limits the packet size that the source can send, but the addition of an event header can produce a
binary log event exceeding this size. Also, in row-based replication, a single event can be significantly
larger than the max_allowed_packet size, because the value of max_allowed_packet only limits
each column of the table.

The replica actually accepts packets up to the limit set by its replica_max_allowed_packet or
slave_max_allowed_packet setting, which default to the maximum setting of 1GB, to prevent a
replication failure due to a large packet. However, the value of replica_pending_jobs_size_max
or slave_pending_jobs_size_max controls the memory that is made available on the replica to
hold incoming packets. The specified memory is shared among all the replica worker queues.

The value of replica_pending_jobs_size_max or slave_pending_jobs_size_max is a
soft limit, and if an unusually large event (consisting of one or multiple packets) exceeds this size,
the transaction is held until all the replica workers have empty queues, and then processed. All
subsequent transactions are held until the large transaction has been completed. So although unusual
events larger than replica_pending_jobs_size_max or slave_pending_jobs_size_max
can be processed, the delay to clear the queues of all the replica workers and the wait to queue
subsequent transactions can cause lag on the replica and decreased concurrency of the replica
workers. replica_pending_jobs_size_max or slave_pending_jobs_size_max should
therefore be set high enough to accommodate most expected event sizes.

19.5.1.21 Replication and MEMORY Tables

When a replication source server shuts down and restarts, its MEMORY tables become empty. To
replicate this effect to replicas, the first time that the source uses a given MEMORY table after startup, it
logs an event that notifies replicas that the table must be emptied by writing a DELETE or (from MySQL
8.0.22) TRUNCATE TABLE statement for that table to the binary log. This generated event is identifiable
by a comment in the binary log, and if GTIDs are in use on the server, it has a GTID assigned. The
statement is always logged in statement format, even if the binary logging format is set to ROW, and it is
written even if read_only or super_read_only mode is set on the server. Note that the replica still
has outdated data in a MEMORY table during the interval between the source's restart and its first use of
the table. To avoid this interval when a direct query to the replica could return stale data, you can set
the init_file system variable to name a file containing statements that populate the MEMORY table
on the source at startup.

When a replica server shuts down and restarts, its MEMORY tables become empty. This causes the
replica to be out of synchrony with the source and may lead to other failures or cause the replica to
stop:

• Row-format updates and deletes received from the source may fail with Can't find record in
'memory_table'.

3868

Replication Features and Issues

• Statements such as INSERT INTO ... SELECT FROM memory_table may insert a different set
of rows on the source and replica.

The replica also writes a DELETE or (from MySQL 8.0.22) TRUNCATE TABLE statement to its own
binary log, which is passed on to any downstream replicas, causing them to empty their own MEMORY
tables.

The safe way to restart a replica that is replicating MEMORY tables is to first drop or delete all rows from
the MEMORY tables on the source and wait until those changes have replicated to the replica. Then it is
safe to restart the replica.

An alternative restart method may apply in some cases. When binlog_format=ROW, you can prevent
the replica from stopping if you set replica_exec_mode=IDEMPOTENT (from MySQL 8.0.26) or
slave_exec_mode=IDEMPOTENT (before MySQL 8.0.26) before you start the replica again. This
allows the replica to continue to replicate, but its MEMORY tables still differ from those on the source.
This is acceptable if the application logic is such that the contents of MEMORY tables can be safely lost
(for example, if the MEMORY tables are used for caching). replica_exec_mode=IDEMPOTENT or
slave_exec_mode=IDEMPOTENT applies globally to all tables, so it may hide other replication errors
in non-MEMORY tables.

(The method just described is not applicable in NDB Cluster, where replica_exec_mode or
slave_exec_mode is always IDEMPOTENT, and cannot be changed.)

The size of MEMORY tables is limited by the value of the max_heap_table_size system
variable, which is not replicated (see Section 19.5.1.39, “Replication and Variables”). A change in
max_heap_table_size takes effect for MEMORY tables that are created or updated using ALTER
TABLE ... ENGINE = MEMORY or TRUNCATE TABLE following the change, or for all MEMORY
tables following a server restart. If you increase the value of this variable on the source without doing
so on the replica, it becomes possible for a table on the source to grow larger than its counterpart
on the replica, leading to inserts that succeed on the source but fail on the replica with Table is
full errors. This is a known issue (Bug #48666). In such cases, you must set the global value of
max_heap_table_size on the replica as well as on the source, then restart replication. It is also
recommended that you restart both the source and replica MySQL servers, to ensure that the new
value takes complete (global) effect on each of them.

See Section 18.3, “The MEMORY Storage Engine”, for more information about MEMORY tables.

19.5.1.22 Replication of the mysql System Schema

Data modification statements made to tables in the mysql schema are replicated according to the
value of binlog_format; if this value is MIXED, these statements are replicated using row-based
format. However, statements that would normally update this information indirectly—such GRANT,
REVOKE, and statements manipulating triggers, stored routines, and views—are replicated to replicas
using statement-based replication.

19.5.1.23 Replication and the Query Optimizer

It is possible for the data on the source and replica to become different if a statement is written in such
a way that the data modification is nondeterministic; that is, left up the query optimizer. (In general, this
is not a good practice, even outside of replication.) Examples of nondeterministic statements include
DELETE or UPDATE statements that use LIMIT with no ORDER BY clause; see Section 19.5.1.18,
“Replication and LIMIT”, for a detailed discussion of these.

19.5.1.24 Replication and Partitioning

Replication is supported between partitioned tables as long as they use the same partitioning scheme
and otherwise have the same structure, except where an exception is specifically allowed (see
Section 19.5.1.9, “Replication with Differing Table Definitions on Source and Replica”).

Replication between tables that have different partitioning is generally not supported. This because
statements (such as ALTER TABLE ... DROP PARTITION) that act directly on partitions in such

3869

Replication Features and Issues

cases might produce different results on the source and the replica. In the case where a table is
partitioned on the source but not on the replica, any statements that operate on partitions on the
source's copy of the replica fail on the replica. When the replica's copy of the table is partitioned but
the source's copy is not, statements that act directly on partitions cannot be run on the source without
causing errors there. To avoid stopping replication or creating inconsistencies between the source and
replica, always ensure that a table on the source and the corresponding replicated table on the replica
are partitioned in the same way.

19.5.1.25 Replication and REPAIR TABLE

When used on a corrupted or otherwise damaged table, it is possible for the REPAIR TABLE statement
to delete rows that cannot be recovered. However, any such modifications of table data performed
by this statement are not replicated, which can cause source and replica to lose synchronization.
For this reason, in the event that a table on the source becomes damaged and you use REPAIR
TABLE to repair it, you should first stop replication (if it is still running) before using REPAIR TABLE,
then afterward compare the source's and replica's copies of the table and be prepared to correct any
discrepancies manually, before restarting replication.

19.5.1.26 Replication and Reserved Words

You can encounter problems when you attempt to replicate from an older source to a newer replica and
you make use of identifiers on the source that are reserved words in the newer MySQL version running
on the replica. For example, a table column named rank on a MySQL 5.7 source that is replicating to a
MySQL 8.0 replica could cause a problem because RANK is a reserved word beginning in MySQL 8.0.

Replication can fail in such cases with Error 1064 You have an error in your SQL
syntax..., even if a database or table named using the reserved word or a table having a column
named using the reserved word is excluded from replication. This is due to the fact that each SQL
event must be parsed by the replica prior to execution, so that the replica knows which database object
or objects would be affected. Only after the event is parsed can the replica apply any filtering rules
defined by --replicate-do-db, --replicate-do-table, --replicate-ignore-db, and --
replicate-ignore-table.

To work around the problem of database, table, or column names on the source which would be
regarded as reserved words by the replica, do one of the following:

• Use one or more ALTER TABLE statements on the source to change the names of any database
objects where these names would be considered reserved words on the replica, and change any
SQL statements that use the old names to use the new names instead.

• In any SQL statements using these database object names, write the names as quoted identifiers
using backtick characters (`).

For listings of reserved words by MySQL version, see Keywords and Reserved Words in MySQL 8.0, in
the MySQL Server Version Reference. For identifier quoting rules, see Section 11.2, “Schema Object
Names”.

19.5.1.27 Replication and Row Searches

When a replica using row-based replication format applies an UPDATE or DELETE operation, it must
search the relevant table for the matching rows. The algorithm used to carry out this process uses
one of the table's indexes to carry out the search as the first choice, and a hash table if there are no
suitable indexes.

The algorithm first assesses the available indexes in the table definition to see if there is any suitable
index to use, and if there are multiple possibilities, which index is the best fit for the operation. The
algorithm ignores the following types of index:

• Fulltext indexes.

• Hidden indexes.

3870

https://dev.mysql.com/doc/mysqld-version-reference/en/keywords-8-0.html

Replication Features and Issues

• Generated indexes.

• Multi-valued indexes.

• Any index where the before-image of the row event does not contain all the columns of the index.

If there are no suitable indexes after ruling out these index types, the algorithm does not use an index
for the search. If there are suitable indexes, one index is selected from the candidates, in the following
priority order:

1. A primary key.

2. A unique index where every column in the index has a NOT NULL attribute. If more than one such
index is available, the algorithm chooses the leftmost of these indexes.

3. Any other index. If more than one such index is available, the algorithm chooses the leftmost of
these indexes.

If the algorithm is able to select a primary key or a unique index where every column in the index has
a NOT NULL attribute, it uses this index to iterate over the rows in the UPDATE or DELETE operation.
For each row in the row event, the algorithm looks up the row in the index to locate the table record
to update. If no matching record is found, it returns the error ER_KEY_NOT_FOUND and stops the
replication applier thread.

If the algorithm was not able to find a suitable index, or was only able to find an index that was non-
unique or contained nulls, a hash table is used to assist in identifying the table records. The algorithm
creates a hash table containing the rows in the UPDATE or DELETE operation, with the key as the full
before-image of the row. The algorithm then iterates over all the records in the target table, using the
selected index if it found one, or else performing a full table scan. For each record in the target table,
it determines whether that row exists in the hash table. If the row is found in the hash table, the record
in the target table is updated, and the row is deleted from the hash table. When all the records in the
target table have been checked, the algorithm verifies whether the hash table is now empty. If there are
any unmatched rows remaining in the hash table, the algorithm returns the error ER_KEY_NOT_FOUND
and stops the replication applier thread.

The slave_rows_search_algorithms system variable was previously used to control how
rows are searched for matches. The use of this system variable is now deprecated, because the
default setting, which uses an index scan followed by a hash scan as described above, is optimal for
performance and works correctly in all scenarios.

19.5.1.28 Replication and Source or Replica Shutdowns

It is safe to shut down a replication source server and restart it later. When a replica loses its
connection to the source, the replica tries to reconnect immediately and retries periodically if that
fails. The default is to retry every 60 seconds. This may be changed with the CHANGE REPLICATION
SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL
8.0.23). A replica also is able to deal with network connectivity outages. However, the replica notices
the network outage only after receiving no data from the source for replica_net_timeout or
slave_net_timeout seconds. If your outages are short, you may want to decrease the value of
replica_net_timeout or slave_net_timeout. See Section 19.4.2, “Handling an Unexpected
Halt of a Replica”.

An unclean shutdown (for example, a crash) on the source side can result in the source's binary
log having a final position less than the most recent position read by the replica, due to the source's
binary log file not being flushed. This can cause the replica not to be able to replicate when the source
comes back up. Setting sync_binlog=1 in the source server's my.cnf file helps to minimize this
problem because it causes the source to flush its binary log more frequently. For the greatest possible
durability and consistency in a replication setup using InnoDB with transactions, you should also set
innodb_flush_log_at_trx_commit=1. With this setting, the contents of the InnoDB redo log
buffer are written out to the log file at each transaction commit and the log file is flushed to disk. Note

3871

Replication Features and Issues

that the durability of transactions is still not guaranteed with this setting, because operating systems or
disk hardware may tell mysqld that the flush-to-disk operation has taken place, even though it has not.

Shutting down a replica cleanly is safe because it keeps track of where it left off. However, be careful
that the replica does not have temporary tables open; see Section 19.5.1.31, “Replication and
Temporary Tables”. Unclean shutdowns might produce problems, especially if the disk cache was not
flushed to disk before the problem occurred:

• For transactions, the replica commits and then updates relay-log.info. If an unexpected exit
occurs between these two operations, relay log processing proceeds further than the information file
indicates and the replica re-executes the events from the last transaction in the relay log after it has
been restarted.

• A similar problem can occur if the replica updates relay-log.info but the server host
crashes before the write has been flushed to disk. To minimize the chance of this occurring, set
sync_relay_log_info=1 in the replica my.cnf file. Setting sync_relay_log_info to 0 causes
no writes to be forced to disk and the server relies on the operating system to flush the file from time
to time.

The fault tolerance of your system for these types of problems is greatly increased if you have a good
uninterruptible power supply.

19.5.1.29 Replica Errors During Replication

If a statement produces the same error (identical error code) on both the source and the replica, the
error is logged, but replication continues.

If a statement produces different errors on the source and the replica, the replication SQL thread
terminates, and the replica writes a message to its error log and waits for the database administrator
to decide what to do about the error. This includes the case that a statement produces an error on
the source or the replica, but not both. To address the issue, connect to the replica manually and
determine the cause of the problem. SHOW REPLICA STATUS (or before MySQL 8.0.22, SHOW SLAVE
STATUS) is useful for this. Then fix the problem and run START REPLICA (or before MySQL 8.0.22,
START SLAVE). For example, you might need to create a nonexistent table before you can start the
replica again.

Note

If a temporary error is recorded in the replica's error log, you do not necessarily
have to take any action suggested in the quoted error message. Temporary
errors should be handled by the client retrying the transaction. For example,
if the replication SQL thread records a temporary error relating to a deadlock,
you do not need to restart the transaction manually on the replica, unless the
replication SQL thread subsequently terminates with a nontemporary error
message.

If this error code validation behavior is not desirable, some or all errors can be masked out (ignored)
with the --slave-skip-errors option.

For nontransactional storage engines such as MyISAM, it is possible to have a statement that only
partially updates a table and returns an error code. This can happen, for example, on a multiple-row
insert that has one row violating a key constraint, or if a long update statement is killed after updating
some of the rows. If that happens on the source, the replica expects execution of the statement to
result in the same error code. If it does not, the replication SQL thread stops as described previously.

If you are replicating between tables that use different storage engines on the source and replica,
keep in mind that the same statement might produce a different error when run against one version of
the table, but not the other, or might cause an error for one version of the table, but not the other. For
example, since MyISAM ignores foreign key constraints, an INSERT or UPDATE statement accessing
an InnoDB table on the source might cause a foreign key violation but the same statement performed

3872

Replication Features and Issues

on a MyISAM version of the same table on the replica would produce no such error, causing replication
to stop.

Beginning with MySQL 8.0.31, replication filter rules are applied first, prior to making any privilege or
row format checks, making it possible to filter out any transactions that fail validation; no checks are
performed and thus no errors are raised for transactions which have been filtered out. This means
that the replica can accept only that part of the database to which a given user has been granted
access (as long as any updates to this part of the database use the row-based replication format).
This may be helpful when performing an upgrade or when migrating to a system or application that
uses administration tables to which the inbound replication user does not have access. See also
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”.

19.5.1.30 Replication and Server SQL Mode

Using different server SQL mode settings on the source and the replica may cause the same INSERT
statements to be handled differently on the source and the replica, leading the source and replica to
diverge. For best results, you should always use the same server SQL mode on the source and on the
replica. This advice applies whether you are using statement-based or row-based replication.

If you are replicating partitioned tables, using different SQL modes on the source and the replica is
likely to cause issues. At a minimum, this is likely to cause the distribution of data among partitions
to be different in the source's and replica's copies of a given table. It may also cause inserts into
partitioned tables that succeed on the source to fail on the replica.

For more information, see Section 7.1.11, “Server SQL Modes”.

19.5.1.31 Replication and Temporary Tables

In MySQL 8.0, when binlog_format is set to ROW or MIXED, statements that exclusively use
temporary tables are not logged on the source, and therefore the temporary tables are not replicated.
Statements that involve a mix of temporary and nontemporary tables are logged on the source only for
the operations on nontemporary tables, and the operations on temporary tables are not logged. This
means that there are never any temporary tables on the replica to be lost in the event of an unplanned
shutdown by the replica. For more information about row-based replication and temporary tables, see
Row-based logging of temporary tables.

When binlog_format is set to STATEMENT, operations on temporary tables are logged on the
source and replicated on the replica, provided that the statements involving temporary tables can be
logged safely using statement-based format. In this situation, loss of replicated temporary tables on
the replica can be an issue. In statement-based replication mode, CREATE TEMPORARY TABLE and
DROP TEMPORARY TABLE statements cannot be used inside a transaction, procedure, function, or
trigger when GTIDs are in use on the server (that is, when the enforce_gtid_consistency system
variable is set to ON). They can be used outside these contexts when GTIDs are in use, provided that
autocommit=1 is set.

Because of the differences in behavior between row-based or mixed replication mode and statement-
based replication mode regarding temporary tables, you cannot switch the replication format at runtime,
if the change applies to a context (global or session) that contains any open temporary tables. For
more details, see the description of the binlog_format option.

Safe replica shutdown when using temporary tables. In statement-based replication mode,
temporary tables are replicated except in the case where you stop the replica server (not just the
replication threads) and you have replicated temporary tables that are open for use in updates that
have not yet been executed on the replica. If you stop the replica server, the temporary tables needed
by those updates are no longer available when the replica is restarted. To avoid this problem, do not
shut down the replica while it has temporary tables open. Instead, use the following procedure:

1. Issue a STOP REPLICA SQL_THREAD statement.

2. Use SHOW STATUS to check the value of the Replica_open_temp_tables or
Slave_open_temp_tables status variable.

3873

Replication Features and Issues

3. If the value is not 0, restart the replication SQL thread with START REPLICA SQL_THREAD and
repeat the procedure later.

4. When the value is 0, issue a mysqladmin shutdown command to stop the replica.

Temporary tables and replication options. By default, with statement-based replication, all
temporary tables are replicated; this happens whether or not there are any matching --replicate-
do-db, --replicate-do-table, or --replicate-wild-do-table options in effect. However,
the --replicate-ignore-table and --replicate-wild-ignore-table options are honored
for temporary tables. The exception is that to enable correct removal of temporary tables at the end of
a session, a replica always replicates a DROP TEMPORARY TABLE IF EXISTS statement, regardless
of any exclusion rules that would normally apply for the specified table.

A recommended practice when using statement-based replication is to designate a prefix for exclusive
use in naming temporary tables that you do not want replicated, then employ a --replicate-
wild-ignore-table option to match that prefix. For example, you might give all such tables
names beginning with norep (such as norepmytable, norepyourtable, and so on), then use --
replicate-wild-ignore-table=norep% to prevent them from being replicated.

19.5.1.32 Replication Retries and Timeouts

The global value of the system variable replica_transaction_retries (from MySQL 8.0.26)
or slave_transaction_retries (before MySQL 8.0.26) sets the maximum number of times for
applier threads on a single-threaded or multithreaded replica to automatically retry failed transactions
before stopping. Transactions are automatically retried when the SQL thread fails to execute them
because of an InnoDB deadlock, or when the transaction's execution time exceeds the InnoDB
innodb_lock_wait_timeout value. If a transaction has a non-temporary error that prevents it from
succeeding, it is not retried.

The default setting for replica_transaction_retries or slave_transaction_retries is
10, meaning that a failing transaction with an apparently temporary error is retried 10 times before
the applier thread stops. Setting the variable to 0 disables automatic retrying of transactions. On
a multithreaded replica, the specified number of transaction retries can take place on all applier
threads of all channels. The Performance Schema table replication_applier_status
shows the total number of transaction retries that took place on each replication channel, in the
COUNT_TRANSACTIONS_RETRIES column.

The process of retrying transactions can cause lag on a replica or on a Group Replication group
member, which can be configured as a single-threaded or multithreaded replica. The Performance
Schema table replication_applier_status_by_worker shows detailed information on
transaction retries by the applier threads on a single-threaded or multithreaded replica. This data
includes timestamps showing how long it took the applier thread to apply the last transaction from
start to finish (and when the transaction currently in progress was started), and how long this was
after the commit on the original source and the immediate source. The data also shows the number of
retries for the last transaction and the transaction currently in progress, and enables you to identify the
transient errors that caused the transactions to be retried. You can use this information to see whether
transaction retries are the cause of replication lag, and investigate the root cause of the failures that led
to the retries.

19.5.1.33 Replication and Time Zones

By default, source and replica servers assume that they are in the same time zone. If you are
replicating between servers in different time zones, the time zone must be set on both source and
replica. Otherwise, statements depending on the local time on the source are not replicated properly,
such as statements that use the NOW() or FROM_UNIXTIME() functions.

Verify that your combination of settings for the system time zone (system_time_zone), server
current time zone (the global value of time_zone), and per-session time zones (the session value of
time_zone) on the source and replica is producing the correct results. In particular, if the time_zone

3874

Replication Features and Issues

system variable is set to the value SYSTEM, indicating that the server time zone is the same as the
system time zone, this can cause the source and replica to apply different time zones. For example, a
source could write the following statement in the binary log:

SET @@session.time_zone='SYSTEM';

If this source and its replica have a different setting for their system time zones, this statement can
produce unexpected results on the replica, even if the replica's global time_zone value has been set
to match the source's. For an explanation of MySQL Server's time zone settings, and how to change
them, see Section 7.1.15, “MySQL Server Time Zone Support”.

See also Section 19.5.1.14, “Replication and System Functions”.

19.5.1.34 Replication and Transaction Inconsistencies

Inconsistencies in the sequence of transactions that have been executed from the relay log can occur
depending on your replication configuration. This section explains how to avoid inconsistencies and
solve any problems they cause.

The following types of inconsistencies can exist:

• Half-applied transactions. A transaction which updates non-transactional tables has applied some
but not all of its changes.

• Gaps. A gap in the externalized transaction set appears when, given an ordered sequence of
transactions, a transaction that is later in the sequence is applied before some other transaction that
is prior in the sequence. Gaps can only appear when using a multithreaded replica.

To avoid gaps occurring on a multithreaded replica, set replica_preserve_commit_order=ON
(from MySQL 8.0.26) or slave_preserve_commit_order=ON (before MySQL 8.0.26). From
MySQL 8.0.27, this setting is the default, because all replicas are multithreaded by default from that
release.

Up to and including MySQL 8.0.18, preserving the commit order requires that binary logging
(log_bin) and replica update logging (log_replica_updates or log_slave_updates)
are also enabled, which are the default settings from MySQL 8.0. From MySQL
8.0.19, binary logging and replica update logging are not required on the replica to set
replica_preserve_commit_order=ON or slave_preserve_commit_order=ON, and can be
disabled if wanted.

In all releases, setting replica_preserve_commit_order=ON or
slave_preserve_commit_order=ON requires that replica_parallel_type (from MySQL
8.0.26) or slave_parallel_type (before MySQL 8.0.26) is set to LOGICAL_CLOCK. From MySQL
8.0.27 (but not for earlier releases), this is the default setting.

In some specific situations, as listed in the description for replica_preserve_commit_order
and slave_preserve_commit_order, setting replica_preserve_commit_order=ON or
slave_preserve_commit_order=ON cannot preserve commit order on the replica, so in these
cases gaps might still appear in the sequence of transactions that have been executed from the
replica's relay log.

Setting replica_preserve_commit_order=ON or slave_preserve_commit_order=ON does
not prevent source binary log position lag.

• Source binary log position lag. Even in the absence of gaps, it is possible that transactions after
Exec_master_log_pos have been applied. That is, all transactions up to point N have been
applied, and no transactions after N have been applied, but Exec_master_log_pos has a
value smaller than N. In this situation, Exec_master_log_pos is a “low-water mark” of the
transactions applied, and lags behind the position of the most recently applied transaction. This
can only happen on multithreaded replicas. Enabling replica_preserve_commit_order or
slave_preserve_commit_order does not prevent source binary log position lag.

3875

Replication Features and Issues

The following scenarios are relevant to the existence of half-applied transactions, gaps, and source
binary log position lag:

1. While replication threads are running, there may be gaps and half-applied transactions.

2. mysqld shuts down. Both clean and unclean shutdown abort ongoing transactions and may leave
gaps and half-applied transactions.

3. KILL of replication threads (the SQL thread when using a single-threaded replica, the coordinator
thread when using a multithreaded replica). This aborts ongoing transactions and may leave gaps
and half-applied transactions.

4. Error in applier threads. This may leave gaps. If the error is in a mixed transaction, that transaction
is half-applied. When using a multithreaded replica, workers which have not received an error
complete their queues, so it may take time to stop all threads.

5. STOP REPLICA when using a multithreaded replica. After issuing STOP REPLICA, the replica
waits for any gaps to be filled and then updates Exec_master_log_pos. This ensures it never
leaves gaps or source binary log position lag, unless any of the cases above applies, in other
words, before STOP REPLICA completes, either an error happens, or another thread issues KILL,
or the server restarts. In these cases, STOP REPLICA returns successfully.

6. If the last transaction in the relay log is only half-received and the multithreaded replica's
coordinator thread has started to schedule the transaction to a worker, then STOP REPLICA waits
up to 60 seconds for the transaction to be received. After this timeout, the coordinator gives up and
aborts the transaction. If the transaction is mixed, it may be left half-completed.

7. STOP REPLICA when the ongoing transaction updates transactional tables only, in which case it
is rolled back and STOP REPLICA stops immediately. If the ongoing transaction is mixed, STOP
REPLICA waits up to 60 seconds for the transaction to complete. After this timeout, it aborts the
transaction, so it may be left half-completed.

The global setting for the system variable rpl_stop_replica_timeout (from MySQL 8.0.26)
or rpl_stop_slave_timeout (before MySQL 8.0.26) is unrelated to the process of stopping the
replication threads. It only makes the client that issues STOP REPLICA return to the client, but the
replication threads continue to try to stop.

If a replication channel has gaps, it has the following consequences:

1. The replica database is in a state that may never have existed on the source.

2. The field Exec_master_log_pos in SHOW REPLICA STATUS is only a “low-water mark”. In
other words, transactions appearing before the position are guaranteed to have committed, but
transactions after the position may have committed or not.

3. CHANGE REPLICATION SOURCE TO and CHANGE MASTER TO statements for that channel fail
with an error, unless the applier threads are running and the statement only sets receiver options.

4. If mysqld is started with --relay-log-recovery, no recovery is done for that channel, and a
warning is printed.

5. If mysqldump is used with --dump-replica or --dump-slave, it does not record the
existence of gaps; thus it prints CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO with
RELAY_LOG_POS set to the “low-water mark” position in Exec_master_log_pos.

After applying the dump on another server, and starting the replication threads, transactions
appearing after the position are replicated again. Note that this is harmless if GTIDs are enabled
(however, in that case it is not recommended to use --dump-replica or --dump-slave).

If a replication channel has source binary log position lag but no gaps, cases 2 to 5 above apply, but
case 1 does not.

3876

Replication Features and Issues

The source binary log position information is persisted in binary format in the internal table
mysql.slave_worker_info. START REPLICA [SQL_THREAD] always consults this information so
that it applies only the correct transactions. This remains true even if replica_parallel_workers
or slave_parallel_workers has been changed to 0 before START REPLICA, and even if START
REPLICA is used with UNTIL clauses. START REPLICA UNTIL SQL_AFTER_MTS_GAPS only applies
as many transactions as needed in order to fill in the gaps. If START REPLICA is used with UNTIL
clauses that tell it to stop before it has consumed all the gaps, then it leaves remaining gaps.

Warning

RESET REPLICA removes the relay logs and resets the replication position.
Thus issuing RESET REPLICA on a multithreaded replica with gaps means the
replica loses any information about the gaps, without correcting the gaps. In this
situation, if binary log position based replication is in use, the recovery process
fails.

When GTID-based replication is in use (GTID_MODE=ON) and SOURCE_AUTO_POSITION is set for the
replication channel using the CHANGE REPLICATION SOURCE TO statement, the old relay logs are
not required for the recovery process. Instead, the replica can use GTID auto-positioning to calculate
what transactions it is missing compared to the source. From MySQL 8.0.26, the process used for
binary log position based replication to resolve gaps on a multithreaded replica is skipped entirely
when GTID-based replication is in use. When the process is skipped, a START REPLICA UNTIL
SQL_AFTER_MTS_GAPS statement behaves differently, and does not attempt to check for gaps in the
sequence of transactions. You can also issue CHANGE REPLICATION SOURCE TO statements, which
are not permitted on a non-GTID replica where there are gaps.

19.5.1.35 Replication and Transactions

Mixing transactional and nontransactional statements within the same transaction. In
general, you should avoid transactions that update both transactional and nontransactional tables in a
replication environment. You should also avoid using any statement that accesses both transactional
(or temporary) and nontransactional tables and writes to any of them.

The server uses these rules for binary logging:

• If the initial statements in a transaction are nontransactional, they are written to the binary log
immediately. The remaining statements in the transaction are cached and not written to the binary
log until the transaction is committed. (If the transaction is rolled back, the cached statements are
written to the binary log only if they make nontransactional changes that cannot be rolled back.
Otherwise, they are discarded.)

• For statement-based logging, logging of nontransactional statements is affected by the
binlog_direct_non_transactional_updates system variable. When this variable is OFF
(the default), logging is as just described. When this variable is ON, logging occurs immediately for
nontransactional statements occurring anywhere in the transaction (not just initial nontransactional
statements). Other statements are kept in the transaction cache and logged when the transaction
commits. binlog_direct_non_transactional_updates has no effect for row-format or mixed-
format binary logging.

Transactional, nontransactional, and mixed statements.
To apply those rules, the server considers a statement nontransactional if it changes only
nontransactional tables, and transactional if it changes only transactional tables. A statement that
references both nontransactional and transactional tables and updates any of the tables involved is
considered a “mixed” statement. Mixed statements, like transactional statements, are cached and
logged when the transaction commits.

A mixed statement that updates a transactional table is considered unsafe if the statement also
performs either of the following actions:

• Updates or reads a temporary table

3877

Replication Features and Issues

• Reads a nontransactional table and the transaction isolation level is less than REPEATABLE_READ

A mixed statement following the update of a transactional table within a transaction is considered
unsafe if it performs either of the following actions:

• Updates any table and reads from any temporary table

• Updates a nontransactional table and binlog_direct_non_transactional_updates is OFF

For more information, see Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary
Logging”.

Note

A mixed statement is unrelated to mixed binary logging format.

In situations where transactions mix updates to transactional and nontransactional tables, the order of
statements in the binary log is correct, and all needed statements are written to the binary log even in
case of a ROLLBACK. However, when a second connection updates the nontransactional table before
the first connection transaction is complete, statements can be logged out of order because the second
connection update is written immediately after it is performed, regardless of the state of the transaction
being performed by the first connection.

Using different storage engines on source and replica. It is possible to replicate transactional
tables on the source using nontransactional tables on the replica. For example, you can replicate
an InnoDB source table as a MyISAM replica table. However, if you do this, there are problems if
the replica is stopped in the middle of a BEGIN ... COMMIT block because the replica restarts at the
beginning of the BEGIN block.

It is also safe to replicate transactions from MyISAM tables on the source to transactional tables, such
as tables that use the InnoDB storage engine, on the replica. In such cases, an AUTOCOMMIT=1
statement issued on the source is replicated, thus enforcing AUTOCOMMIT mode on the replica.

When the storage engine type of the replica is nontransactional, transactions on the source that mix
updates of transactional and nontransactional tables should be avoided because they can cause
inconsistency of the data between the source transactional table and the replica nontransactional
table. That is, such transactions can lead to source storage engine-specific behavior with the possible
effect of replication going out of synchrony. MySQL does not issue a warning about this, so extra care
should be taken when replicating transactional tables from the source to nontransactional tables on the
replicas.

Changing the binary logging format within transactions. The binlog_format and
binlog_checksum system variables are read-only as long as a transaction is in progress.

Every transaction (including autocommit transactions) is recorded in the binary log as though it starts
with a BEGIN statement, and ends with either a COMMIT or a ROLLBACK statement. This is even true
for statements affecting tables that use a nontransactional storage engine (such as MyISAM).

Note

For restrictions that apply specifically to XA transactions, see Section 15.3.8.3,
“Restrictions on XA Transactions”.

19.5.1.36 Replication and Triggers

With statement-based replication, triggers executed on the source also execute on the replica. With
row-based replication, triggers executed on the source do not execute on the replica. Instead, the row
changes on the source resulting from trigger execution are replicated and applied on the replica.

This behavior is by design. If under row-based replication the replica applied the triggers as well as the
row changes caused by them, the changes would in effect be applied twice on the replica, leading to
different data on the source and the replica.

3878

Replication Features and Issues

If you want triggers to execute on both the source and the replica, perhaps because you have different
triggers on the source and replica, you must use statement-based replication. However, to enable
replica-side triggers, it is not necessary to use statement-based replication exclusively. It is sufficient to
switch to statement-based replication only for those statements where you want this effect, and to use
row-based replication the rest of the time.

A statement invoking a trigger (or function) that causes an update to an AUTO_INCREMENT column
is not replicated correctly using statement-based replication. MySQL 8.0 marks such statements as
unsafe. (Bug #45677)

A trigger can have triggers for different combinations of trigger event (INSERT, UPDATE, DELETE) and
action time (BEFORE, AFTER), and multiple triggers are permitted.

For brevity, “multiple triggers” here is shorthand for “multiple triggers that have the same trigger event
and action time.”

Upgrades. Multiple triggers are not supported in versions earlier than MySQL 5.7. If you upgrade
servers in a replication topology that use a version earlier than MySQL 5.7, upgrade the replicas first
and then upgrade the source. If an upgraded replication source server still has old replicas using
MySQL versions that do not support multiple triggers, an error occurs on those replicas if a trigger is
created on the source for a table that already has a trigger with the same trigger event and action time.

Downgrades. If you downgrade a server that supports multiple triggers to an older version that does
not, the downgrade has these effects:

• For each table that has triggers, all trigger definitions are in the .TRG file for the table. However,
if there are multiple triggers with the same trigger event and action time, the server executes only
one of them when the trigger event occurs. For information about .TRG files, see the Table Trigger
Storage section of the MySQL Server Doxygen documentation, available at https://dev.mysql.com/
doc/index-other.html.

• If triggers for the table are added or dropped subsequent to the downgrade, the server rewrites the
table's .TRG file. The rewritten file retains only one trigger per combination of trigger event and action
time; the others are lost.

To avoid these problems, modify your triggers before downgrading. For each table that has multiple
triggers per combination of trigger event and action time, convert each such set of triggers to a single
trigger as follows:

1. For each trigger, create a stored routine that contains all the code in the trigger. Values accessed
using NEW and OLD can be passed to the routine using parameters. If the trigger needs a single
result value from the code, you can put the code in a stored function and have the function return
the value. If the trigger needs multiple result values from the code, you can put the code in a stored
procedure and return the values using OUT parameters.

2. Drop all triggers for the table.

3. Create one new trigger for the table that invokes the stored routines just created. The effect for this
trigger is thus the same as the multiple triggers it replaces.

19.5.1.37 Replication and TRUNCATE TABLE

TRUNCATE TABLE is normally regarded as a DML statement, and so would be expected to be
logged and replicated using row-based format when the binary logging mode is ROW or MIXED.
However this caused issues when logging or replicating, in STATEMENT or MIXED mode, tables that
used transactional storage engines such as InnoDB when the transaction isolation level was READ
COMMITTED or READ UNCOMMITTED, which precludes statement-based logging.

TRUNCATE TABLE is treated for purposes of logging and replication as DDL rather than DML so that
it can be logged and replicated as a statement. However, the effects of the statement as applicable to

3879

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Replication Features and Issues

InnoDB and other transactional tables on replicas still follow the rules described in Section 15.1.37,
“TRUNCATE TABLE Statement” governing such tables. (Bug #36763)

19.5.1.38 Replication and User Name Length

The maximum length for user names in MySQL 8.0 is 32 characters. Replication of user names longer
than 16 characters fails when the replica runs a version of MySQL previous to 5.7, because those
versions support only shorter user names. This occurs only when replicating from a newer source to an
older replica, which is not a recommended configuration.

19.5.1.39 Replication and Variables

System variables are not replicated correctly when using STATEMENT mode, except for the following
variables when they are used with session scope:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

• pseudo_thread_id

• sql_auto_is_null

• time_zone

• timestamp

• unique_checks

When MIXED mode is used, the variables in the preceding list, when used with session scope, cause
a switch from statement-based to row-based logging. See Section 7.4.4.3, “Mixed Binary Logging
Format”.

sql_mode is also replicated except for the NO_DIR_IN_CREATE mode; the replica always preserves
its own value for NO_DIR_IN_CREATE, regardless of changes to it on the source. This is true for all
replication formats.

However, when mysqlbinlog parses a SET @@sql_mode = mode statement, the full mode value,
including NO_DIR_IN_CREATE, is passed to the receiving server. For this reason, replication of such a
statement may not be safe when STATEMENT mode is in use.

3880

Replication Features and Issues

The default_storage_engine system variable is not replicated, regardless of the logging mode;
this is intended to facilitate replication between different storage engines.

The read_only system variable is not replicated. In addition, the enabling this variable has different
effects with regard to temporary tables, table locking, and the SET PASSWORD statement in different
MySQL versions.

The max_heap_table_size system variable is not replicated. Increasing the value of this variable on
the source without doing so on the replica can lead eventually to Table is full errors on the replica
when trying to execute INSERT statements on a MEMORY table on the source that is thus permitted
to grow larger than its counterpart on the replica. For more information, see Section 19.5.1.21,
“Replication and MEMORY Tables”.

In statement-based replication, session variables are not replicated properly when used in statements
that update tables. For example, the following sequence of statements does not insert the same data
on the source and the replica:

SET max_join_size=1000;
INSERT INTO mytable VALUES(@@max_join_size);

This does not apply to the common sequence:

SET time_zone=...;
INSERT INTO mytable VALUES(CONVERT_TZ(..., ..., @@time_zone));

Replication of session variables is not a problem when row-based replication is being used, in which
case, session variables are always replicated safely. See Section 19.2.1, “Replication Formats”.

The following session variables are written to the binary log and honored by the replica when parsing
the binary log, regardless of the logging format:

• sql_mode

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

Important

Even though session variables relating to character sets and collations are
written to the binary log, replication between different character sets is not
supported.

To help reduce possible confusion, we recommend that you always use the same setting for the
lower_case_table_names system variable on both source and replica, especially when you are
running MySQL on platforms with case-sensitive file systems. The lower_case_table_names
setting can only be configured when initializing the server.

19.5.1.40 Replication and Views

Views are always replicated to replicas. Views are filtered by their own name, not by the tables they
refer to. This means that a view can be replicated to the replica even if the view contains a table
that would normally be filtered out by replication-ignore-table rules. Care should therefore

3881

Replication Compatibility Between MySQL Versions

be taken to ensure that views do not replicate table data that would normally be filtered for security
reasons.

Replication from a table to a same-named view is supported using statement-based logging, but not
when using row-based logging. Trying to do so when row-based logging is in effect causes an error.

19.5.2 Replication Compatibility Between MySQL Versions

MySQL supports replication from one release series to the next higher release series. For example,
you can replicate from a source running MySQL 5.6 to a replica running MySQL 5.7, from a source
running MySQL 5.7 to a replica running MySQL 8.0, and so on. However, you might encounter
difficulties when replicating from an older source to a newer replica if the source uses statements or
relies on behavior no longer supported in the version of MySQL used on the replica. For example,
foreign key names longer than 64 characters are no longer supported from MySQL 8.0.

The use of more than two MySQL Server versions is not supported in replication setups involving
multiple sources, regardless of the number of source or replica MySQL servers. This restriction applies
not only to release series, but to version numbers within the same release series as well. For example,
if you are using a chained or circular replication setup, you cannot use MySQL 8.0.22, MySQL 8.0.24,
and MySQL 8.0.28 concurrently, although you could use any two of these releases together.

Important

It is strongly recommended to use the most recent release available within a
given MySQL release series because replication (and other) capabilities are
continually being improved. It is also recommended to upgrade sources and
replicas that use early releases of a release series of MySQL to GA (production)
releases when the latter become available for that release series.

From MySQL 8.0.14, the server version is recorded in the binary log for each transaction for the server
that originally committed the transaction (original_server_version), and for the server that is the
immediate source of the current server in the replication topology (immediate_server_version).

Replication from newer sources to older replicas might be possible, but is generally not supported. This
is due to a number of factors:

• Binary log format changes. The binary log format can change between major releases. While
we attempt to maintain backward compatibility, this is not always possible. A source might also have
optional features enabled that are not understood by older replicas, such as binary log transaction
compression, where the resulting compressed transaction payloads cannot be read by a replica at a
release before MySQL 8.0.20.

This also has significant implications for upgrading replication servers; see Section 19.5.3,
“Upgrading a Replication Topology”, for more information.

• For more information about row-based replication, see Section 19.2.1, “Replication Formats”.

• SQL incompatibilities. You cannot replicate from a newer source to an older replica using
statement-based replication if the statements to be replicated use SQL features available on the
source but not on the replica.

However, if both the source and the replica support row-based replication, and there are no data
definition statements to be replicated that depend on SQL features found on the source but not on
the replica, you can use row-based replication to replicate the effects of data modification statements
even if the DDL run on the source is not supported on the replica.

In MySQL 8.0.26, incompatible changes were made to replication instrumentation names, including
the names of thread stages, containing the terms “master”, which is changed to “source”, “slave”,
which is changed to “replica”, and “mts” (for “multithreaded slave”), which is changed to “mta” (for
“multithreaded applier”). Monitoring tools that work with these instrumentation names might be

3882

Upgrading a Replication Topology

impacted. If the incompatible changes have an impact for you, set the terminology_use_previous
system variable to BEFORE_8_0_26 to make MySQL Server use the old versions of the names for
the objects specified in the previous list. This enables monitoring tools that rely on the old names to
continue working until they can be updated to use the new names.

For more information on potential replication issues, see Section 19.5.1, “Replication Features and
Issues”.

19.5.3 Upgrading a Replication Topology

When you upgrade servers that participate in a replication topology, you need to take into account each
server's role in the topology and look out for issues specific to replication. For general information and
instructions for upgrading a MySQL Server instance, see Chapter 3, Upgrading MySQL.

As explained in Section 19.5.2, “Replication Compatibility Between MySQL Versions”, MySQL supports
replication from a source running one release series to a replica running the next higher release series,
but does not support replication from a source running a later release to a replica running an earlier
release. A replica at an earlier release might not have the required capability to process transactions
that can be handled by the source at a later release. You must therefore upgrade all of the replicas in
a replication topology to the target MySQL Server release, before you upgrade the source server to the
target release. In this way you will never be in the situation where a replica still at the earlier release is
attempting to handle transactions from a source at the later release.

In a replication topology where there are multiple sources (multi-source replication), the use of more
than two MySQL Server versions is not supported, regardless of the number of source or replica
MySQL servers. This restriction applies not only to release series, but to version numbers within the
same release series as well. For example, you cannot use MySQL 8.0.22, MySQL 8.0.24, and MySQL
8.0.28 concurrently in such a setup, although you could use any two of these releases together.

If you need to downgrade the servers in a replication topology, the source must be downgraded before
the replicas are downgraded. On the replicas, you must ensure that the binary log and relay log have
been fully processed, and remove them before proceeding with the downgrade.

Behavior Changes Between Releases

Although this upgrade sequence is correct, it is possible to still encounter replication difficulties when
replicating from a source at an earlier release that has not yet been upgraded, to a replica at a later
release that has been upgraded. This can happen if the source uses statements or relies on behavior
that is no longer supported in the later release installed on the replica. You can use MySQL Shell's
upgrade checker utility util.checkForServerUpgrade() to check MySQL 5.7 server instances or
MySQL 8.0 server instances for upgrade to a GA MySQL 8.0 release. The utility identifies anything that
needs to be fixed for that server instance so that it does not cause an issue after the upgrade, including
features and behaviors that are no longer available in the later release. See Upgrade Checker Utility for
information on the upgrade checker utility.

If you are upgrading an existing replication setup from a version of MySQL that does not support global
transaction identifiers (GTIDs) to a version that does, only enable GTIDs on the source and the replicas
when you have made sure that the setup meets all the requirements for GTID-based replication. See
Section 19.1.3.4, “Setting Up Replication Using GTIDs” for information about converting binary log file
position based replication setups to use GTID-based replication.

Changes affecting operations in strict SQL mode (STRICT_TRANS_TABLES or STRICT_ALL_TABLES)
may result in replication failure on an upgraded replica. If you use statement-based logging
(binlog_format=STATEMENT), if a replica is upgraded before the source, the source executes
statements which succeed there but which may fail on the replica and so cause replication to stop.
To deal with this, stop all new statements on the source and wait until the replicas catch up, then
upgrade the replicas. Alternatively, if you cannot stop new statements, temporarily change to row-
based logging on the source (binlog_format=ROW) and wait until all replicas have processed all
binary logs produced up to the point of this change, then upgrade the replicas.

3883

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-upgrade.html

Upgrading a Replication Topology

The default character set has changed from latin1 to utf8mb4 in MySQL 8.0. In a replicated setting,
when upgrading from MySQL 5.7 to 8.0, it is advisable to change the default character set back to
the character set used in MySQL 5.7 before upgrading. After the upgrade is completed, the default
character set can be changed to utf8mb4. Assuming that the previous defaults were used, one way to
preserve them is to start the server with these lines in the my.cnf file:

[mysqld]
character_set_server=latin1
collation_server=latin1_swedish_ci

Standard Upgrade Procedure

To upgrade a replication topology, follow the instructions in Chapter 3, Upgrading MySQL for each
individual MySQL Server instance, using this overall procedure:

1. Upgrade the replicas first. On each replica instance:

• Carry out the preliminary checks and steps described in Section 3.6, “Preparing Your Installation
for Upgrade”.

• Shut down MySQL Server.

• Upgrade the MySQL Server binaries or packages.

• Restart MySQL Server.

• If you have upgraded to a release earlier than MySQL 8.0.16, invoke mysql_upgrade manually
to upgrade the system tables and schemas. When the server is running with global transaction
identifiers (GTIDs) enabled (gtid_mode=ON), do not enable binary logging by mysql_upgrade
(so do not use the --write-binlog option). Then shut down and restart the server.

• If you have upgraded to MySQL 8.0.16 or later, do not invoke mysql_upgrade. From that
release, MySQL Server performs the entire MySQL upgrade procedure, disabling binary logging
during the upgrade.

• Restart replication using a START REPLICA or START SLAVE statement.

2. When all the replicas have been upgraded, follow the same steps to upgrade and restart the source
server, with the exception of the START REPLICA or START SLAVE statement. If you made a
temporary change to row-based logging or to the default character set, you can revert the change
now.

Upgrade Procedure With Table Repair Or Rebuild

Some upgrades may require that you drop and re-create database objects when you move from one
MySQL series to the next. For example, collation changes might require that table indexes be rebuilt.
Such operations, if necessary, are detailed at Section 3.5, “Changes in MySQL 8.0”. It is safest to
perform these operations separately on the replicas and the source, and to disable replication of these
operations from the source to the replica. To achieve this, use the following procedure:

1. Stop all the replicas and upgrade the binaries or packages. Restart them with the --skip-slave-
start option, or from MySQL 8.0.24, the skip_slave_start system variable, so that they do
not connect to the source. Perform any table repair or rebuilding operations needed to re-create
database objects, such as use of REPAIR TABLE or ALTER TABLE, or dumping and reloading
tables or triggers.

2. Disable the binary log on the source. To do this without restarting the source, execute a SET
sql_log_bin = OFF statement. Alternatively, stop the source and restart it with the --skip-
log-bin option. If you restart the source, you might also want to disallow client connections. For
example, if all clients connect using TCP/IP, enable the skip_networking system variable when
you restart the source.

3884

Troubleshooting Replication

3. With the binary log disabled, perform any table repair or rebuilding operations needed to re-create
database objects. The binary log must be disabled during this step to prevent these operations from
being logged and sent to the replicas later.

4. Re-enable the binary log on the source. If you set sql_log_bin to OFF earlier, execute a SET
sql_log_bin = ON statement. If you restarted the source to disable the binary log, restart it
without --skip-log-bin, and without enabling the skip_networking system variable so that
clients and replicas can connect.

5. Restart the replicas, this time without the --skip-slave-start option or skip_slave_start
system variable.

19.5.4 Troubleshooting Replication

If you have followed the instructions but your replication setup is not working, the first thing to do is
check the error log for messages. Many users have lost time by not doing this soon enough after
encountering problems.

If you cannot tell from the error log what the problem was, try the following techniques:

• Verify that the source has binary logging enabled by issuing a SHOW MASTER STATUS statement.
Binary logging is enabled by default. If binary logging is enabled, Position is nonzero. If binary
logging is not enabled, verify that you are not running the source with any settings that disable binary
logging, such as the --skip-log-bin option.

• Verify that the server_id system variable was set at startup on both the source and replica and
that the ID value is unique on each server.

• Verify that the replica is running. Use SHOW REPLICA STATUS to check whether the
Replica_IO_Running and Replica_SQL_Running values are both Yes. If not, verify the
options that were used when starting the replica server. For example, the --skip-slave-start
command line option, or from MySQL 8.0.24, the skip_slave_start system variable, prevents the
replication threads from starting until you issue a START REPLICA statement.

• If the replica is running, check whether it established a connection to the source. Use SHOW
PROCESSLIST, find the I/O (receiver) and SQL (applier) threads and check their State column to
see what they display. See Section 19.2.3, “Replication Threads”. If the receiver thread state says
Connecting to master, check the following:

• Verify the privileges for the replication user on the source.

• Check that the host name of the source is correct and that you are using the correct port to
connect to the source. The port used for replication is the same as used for client network
communication (the default is 3306). For the host name, ensure that the name resolves to the
correct IP address.

• Check the configuration file to see whether the skip_networking system variable has been
enabled on the source or replica to disable networking. If so, comment the setting or remove it.

• If the source has a firewall or IP filtering configuration, ensure that the network port being used for
MySQL is not being filtered.

• Check that you can reach the source by using ping or traceroute/tracert to reach the host.

• If the replica was running previously but has stopped, the reason usually is that some statement
that succeeded on the source failed on the replica. This should never happen if you have taken a
proper snapshot of the source, and never modified the data on the replica outside of the replication
threads. If the replica stops unexpectedly, it is a bug or you have encountered one of the known
replication limitations described in Section 19.5.1, “Replication Features and Issues”. If it is a bug,
see Section 19.5.5, “How to Report Replication Bugs or Problems”, for instructions on how to report
it.

3885

How to Report Replication Bugs or Problems

• If a statement that succeeded on the source refuses to run on the replica, try the following procedure
if it is not feasible to do a full database resynchronization by deleting the replica's databases and
copying a new snapshot from the source:

1. Determine whether the affected table on the replica is different from the source table. Try to
understand how this happened. Then make the replica's table identical to the source's and run
START REPLICA.

2. If the preceding step does not work or does not apply, try to understand whether it would be safe
to make the update manually (if needed) and then ignore the next statement from the source.

3. If you decide that the replica can skip the next statement from the source, issue the following
statements:

mysql> SET GLOBAL sql_slave_skip_counter = N;
mysql> START SLAVE;

Or from MySQL 8.0.26:
mysql> SET GLOBAL sql_replica_skip_counter = N;
mysql> START REPLICA;

The value of N should be 1 if the next statement from the source does not use AUTO_INCREMENT
or LAST_INSERT_ID(). Otherwise, the value should be 2. The reason for using a value of 2 for
statements that use AUTO_INCREMENT or LAST_INSERT_ID() is that they take two events in
the binary log of the source.

See also SET GLOBAL sql_slave_skip_counter Syntax.

4. If you are sure that the replica started out perfectly synchronized with the source, and that no
one has updated the tables involved outside of the replication threads, then presumably the
discrepancy is the result of a bug. If you are running the most recent version of MySQL, please
report the problem. If you are running an older version, try upgrading to the latest production
release to determine whether the problem persists.

19.5.5 How to Report Replication Bugs or Problems

When you have determined that there is no user error involved, and replication still either does not
work at all or is unstable, it is time to send us a bug report. We need to obtain as much information as
possible from you to be able to track down the bug. Please spend some time and effort in preparing a
good bug report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database
using the instructions given in Section 1.5, “How to Report Bugs or Problems”. If you have a “phantom”
problem (one that you cannot duplicate at will), use the following procedure:

1. Verify that no user error is involved. For example, if you update the replica outside of the replication
threads, the data goes out of synchrony, and you can have unique key violations on updates. In this
case, the replication thread stops and waits for you to clean up the tables manually to bring them
into synchrony. This is not a replication problem. It is a problem of outside interference causing
replication to fail.

2. Ensure that the replica is running with binary logging enabled (the log_bin system variable), and
with the --log-slave-updates option enabled, which causes the replica to log the updates that
it receives from the source into its own binary logs. These settings are the defaults.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy
information, it becomes difficult or impossible for us to track down the problem. The evidence you
should collect is:

• All binary log files from the source

• All binary log files from the replica

3886

https://dev.mysql.com/doc/refman/5.7/en/set-global-sql-slave-skip-counter.html

How to Report Replication Bugs or Problems

• The output of SHOW MASTER STATUS from the source at the time you discovered the problem

• The output of SHOW REPLICA STATUS from the replica at the time you discovered the problem

• Error logs from the source and the replica

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the problem
statement. log_file and log_pos are the Master_Log_File and Read_Master_Log_Pos
values from SHOW REPLICA STATUS.

$> mysqlbinlog --start-position=log_pos log_file | head

After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then
enter the problem with as much information as possible into our bugs database using the instructions at
Section 1.5, “How to Report Bugs or Problems”.

3887

3888

Chapter 20 Group Replication

Table of Contents
20.1 Group Replication Background ... 3890

20.1.1 Replication Technologies .. 3891
20.1.2 Group Replication Use Cases ... 3894
20.1.3 Multi-Primary and Single-Primary Modes .. 3895
20.1.4 Group Replication Services ... 3899
20.1.5 Group Replication Plugin Architecture .. 3902

20.2 Getting Started .. 3903
20.2.1 Deploying Group Replication in Single-Primary Mode ... 3903
20.2.2 Deploying Group Replication Locally .. 3916

20.3 Requirements and Limitations .. 3917
20.3.1 Group Replication Requirements ... 3917
20.3.2 Group Replication Limitations .. 3920

20.4 Monitoring Group Replication ... 3923
20.4.1 GTIDs and Group Replication .. 3924
20.4.2 Group Replication Server States ... 3925
20.4.3 The replication_group_members Table .. 3926
20.4.4 The replication_group_member_stats Table ... 3927

20.5 Group Replication Operations .. 3927
20.5.1 Configuring an Online Group ... 3927
20.5.2 Restarting a Group ... 3933
20.5.3 Transaction Consistency Guarantees ... 3935
20.5.4 Distributed Recovery ... 3941
20.5.5 Support For IPv6 And For Mixed IPv6 And IPv4 Groups ... 3956
20.5.6 Using MySQL Enterprise Backup with Group Replication .. 3958

20.6 Group Replication Security ... 3964
20.6.1 Communication Stack for Connection Security Management 3964
20.6.2 Securing Group Communication Connections with Secure Socket Layer (SSL) 3967
20.6.3 Securing Distributed Recovery Connections ... 3970
20.6.4 Group Replication IP Address Permissions .. 3974

20.7 Group Replication Performance and Troubleshooting .. 3976
20.7.1 Fine Tuning the Group Communication Thread .. 3977
20.7.2 Flow Control ... 3977
20.7.3 Single Consensus Leader ... 3978
20.7.4 Message Compression .. 3979
20.7.5 Message Fragmentation .. 3981
20.7.6 XCom Cache Management ... 3982
20.7.7 Responses to Failure Detection and Network Partitioning .. 3984
20.7.8 Handling a Network Partition and Loss of Quorum .. 3990
20.7.9 Monitoring Group Replication Memory Usage with Performance Schema Memory
Instrumentation .. 3994

20.8 Upgrading Group Replication ... 4003
20.8.1 Combining Different Member Versions in a Group .. 4003
20.8.2 Group Replication Offline Upgrade .. 4005
20.8.3 Group Replication Online Upgrade .. 4006

20.9 Group Replication Variables ... 4009
20.9.1 Group Replication System Variables .. 4011
20.9.2 Group Replication Status Variables ... 4054

20.10 Frequently Asked Questions .. 4054

This chapter explains MySQL Group Replication and how to install, configure and monitor groups.
MySQL Group Replication enables you to create elastic, highly-available, fault-tolerant replication
topologies.

3889

Group Replication Background

Groups can operate in a single-primary mode with automatic primary election, where only one server
accepts updates at a time. Alternatively, groups can be deployed in multi-primary mode, where all
servers can accept updates, even if they are issued concurrently.

There is a built-in group membership service that keeps the view of the group consistent and available
for all servers at any given point in time. Servers can leave and join the group and the view is updated
accordingly. Sometimes servers can leave the group unexpectedly, in which case the failure detection
mechanism detects this and notifies the group that the view has changed. This is all automatic.

Group Replication guarantees that the database service is continuously available. However, it is
important to understand that if one of the group members becomes unavailable, the clients connected
to that group member must be redirected, or failed over, to a different server in the group, using a
connector, load balancer, router, or some form of middleware. Group Replication does not have an
inbuilt method to do this. For example, see MySQL Router 8.0.

Group Replication is provided as a plugin to MySQL Server. You can follow the instructions in this
chapter to configure the plugin on each of the server instances that you want in the group, start up the
group, and monitor and administer the group. An alternative way to deploy a group of MySQL server
instances is by using InnoDB Cluster.

Tip

To deploy multiple instances of MySQL, you can use InnoDB Cluster which
enables you to easily administer a group of MySQL server instances in MySQL
Shell. InnoDB Cluster wraps MySQL Group Replication in a programmatic
environment that enables you easily deploy a cluster of MySQL instances to
achieve high availability. In addition, InnoDB Cluster interfaces seamlessly
with MySQL Router, which enables your applications to connect to the cluster
without writing your own failover process. For similar use cases that do not
require high availability, however, you can use InnoDB ReplicaSet. Installation
instructions for MySQL Shell can be found here.

The chapter is structured as follows:

• Section 20.1, “Group Replication Background” provides an introduction to groups and how Group
Replication works.

• Section 20.2, “Getting Started” explains how to configure multiple MySQL Server instances to create
a group.

• Section 20.3, “Requirements and Limitations” explains architecture and setup requirements and
limitations for Group Replication.

• Section 20.4, “Monitoring Group Replication” explains how to monitor a group.

• Section 20.5, “Group Replication Operations” explains how to work with a group.

• Section 20.6, “Group Replication Security” explains how to secure a group.

• Section 20.7, “Group Replication Performance and Troubleshooting” explains how to fine tune
performance for a group.

• Section 20.8, “Upgrading Group Replication” explains how to upgrade a group.

• Section 20.9, “Group Replication Variables” is a reference for the system variables specific to Group
Replication.

• Section 20.10, “Frequently Asked Questions” provides answers to some technical questions about
deploying and operating Group Replication.

20.1 Group Replication Background

3890

https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

Replication Technologies

This section provides background information on MySQL Group Replication.

The most common way to create a fault-tolerant system is to resort to making components redundant,
in other words the component can be removed and the system should continue to operate as expected.
This creates a set of challenges that raise complexity of such systems to a whole different level.
Specifically, replicated databases have to deal with the fact that they require maintenance and
administration of several servers instead of just one. Moreover, as servers are cooperating together
to create the group several other classic distributed systems problems have to be dealt with, such as
network partitioning or split brain scenarios.

Therefore, the ultimate challenge is to fuse the logic of the database and data replication with the logic
of having several servers coordinated in a consistent and simple way. In other words, to have multiple
servers agreeing on the state of the system and the data on each and every change that the system
goes through. This can be summarized as having servers reaching agreement on each database
state transition, so that they all progress as one single database or alternatively that they eventually
converge to the same state. Meaning that they need to operate as a (distributed) state machine.

MySQL Group Replication provides distributed state machine replication with strong coordination
between servers. Servers coordinate themselves automatically when they are part of the same group.
The group can operate in a single-primary mode with automatic primary election, where only one
server accepts updates at a time. Alternatively, for more advanced users the group can be deployed in
multi-primary mode, where all servers can accept updates, even if they are issued concurrently. This
power comes at the expense of applications having to work around the limitations imposed by such
deployments.

There is a built-in group membership service that keeps the view of the group consistent and available
for all servers at any given point in time. Servers can leave and join the group and the view is updated
accordingly. Sometimes servers can leave the group unexpectedly, in which case the failure detection
mechanism detects this and notifies the group that the view has changed. This is all automatic.

For a transaction to commit, the majority of the group have to agree on the order of a given transaction
in the global sequence of transactions. Deciding to commit or abort a transaction is done by each
server individually, but all servers make the same decision. If there is a network partition, resulting in a
split where members are unable to reach agreement, then the system does not progress until this issue
is resolved. Hence there is also a built-in, automatic, split-brain protection mechanism.

All of this is powered by the provided Group Communication System (GCS) protocols. These provide a
failure detection mechanism, a group membership service, and safe and completely ordered message
delivery. All these properties are key to creating a system which ensures that data is consistently
replicated across the group of servers. At the very core of this technology lies an implementation of the
Paxos algorithm. It acts as the group communication engine.

20.1.1 Replication Technologies

Before getting into the details of MySQL Group Replication, this section introduces some background
concepts and an overview of how things work. This provides some context to help understand what
is required for Group Replication and what the differences are between classic asynchronous MySQL
Replication and Group Replication.

20.1.1.1 Source to Replica Replication

Traditional MySQL Replication provides a simple source to replica approach to replication. The
source is the primary, and there are one or more replicas, which are secondaries. The source applies
transactions, commits them and then they are later (thus asynchronously) sent to the replicas to be
either re-executed (in statement-based replication) or applied (in row-based replication). It is a shared-
nothing system, where all servers have a full copy of the data by default.

3891

Replication Technologies

Figure 20.1 MySQL Asynchronous Replication

There is also semisynchronous replication, which adds one synchronization step to the protocol. This
means that the primary waits, at apply time, for the secondary to acknowledge that it has received the
transaction. Only then does the primary resume the commit operation.

Figure 20.2 MySQL Semisynchronous Replication

In the two pictures there is a diagram of the classic asynchronous MySQL Replication protocol (and
its semisynchronous variant as well). The arrows between the different instances represent messages
exchanged between servers or messages exchanged between servers and the client application.

20.1.1.2 Group Replication

Group Replication is a technique that can be used to implement fault-tolerant systems. A replication
group is a set of servers, each of which has a complete copy of the data (a shared-nothing replication
scheme), which interact with each other through message passing. The communication layer provides
a set of guarantees such as atomic message and total order message delivery. These are very
powerful properties that translate into very useful abstractions that one can resort to build more
advanced database replication solutions.

3892

Replication Technologies

MySQL Group Replication builds on top of such properties and abstractions and implements a multi-
source update everywhere replication protocol. A replication group is formed by multiple servers; each
server in the group may execute transactions independently at any time. Read/write transactions
commit only after they have been approved by the group. In other words, for any read/write transaction
the group needs to decide whether it commits or not, so the commit operation is not a unilateral
decision from the originating server. Read-only transactions need no coordination within the group and
commit immediately.

When a read/write transaction is ready to commit at the originating server, the server atomically
broadcasts the write values (the rows that were changed) and the corresponding write set (the
unique identifiers of the rows that were updated). Because the transaction is sent through an atomic
broadcast, either all servers in the group receive the transaction or none do. If they receive it, then
they all receive it in the same order with respect to other transactions that were sent before. All servers
therefore receive the same set of transactions in the same order, and a global total order is established
for the transactions.

However, there may be conflicts between transactions that execute concurrently on different servers.
Such conflicts are detected by inspecting and comparing the write sets of two different and concurrent
transactions, in a process called certification. During certification, conflict detection is carried out at
row level: if two concurrent transactions, that executed on different servers, update the same row, then
there is a conflict. The conflict resolution procedure states that the transaction that was ordered first
commits on all servers, and the transaction ordered second aborts, and is therefore rolled back on the
originating server and dropped by the other servers in the group. For example, if t1 and t2 execute
concurrently at different sites, both changing the same row, and t2 is ordered before t1, then t2 wins
the conflict and t1 is rolled back. This is in fact a distributed first commit wins rule. Note that if two
transactions are bound to conflict more often than not, then it is a good practice to start them on the
same server, where they have a chance to synchronize on the local lock manager instead of being
rolled back as a result of certification.

For applying and externalizing the certified transactions, Group Replication permits servers to deviate
from the agreed order of the transactions if this does not break consistency and validity. Group
Replication is an eventual consistency system, meaning that as soon as the incoming traffic slows
down or stops, all group members have the same data content. While traffic is flowing, transactions
can be externalized in a slightly different order, or externalized on some members before the others.
For example, in multi-primary mode, a local transaction might be externalized immediately following
certification, although a remote transaction that is earlier in the global order has not yet been applied.
This is permitted when the certification process has established that there is no conflict between the
transactions. In single-primary mode, on the primary server, there is a small chance that concurrent,
non-conflicting local transactions might be committed and externalized in a different order from the
global order agreed by Group Replication. On the secondaries, which do not accept writes from clients,
transactions are always committed and externalized in the agreed order.

The following figure depicts the MySQL Group Replication protocol and by comparing it to MySQL
Replication (or even MySQL semisynchronous replication) you can see some differences. Some
underlying consensus and Paxos related messages are missing from this picture for the sake of clarity.

3893

Group Replication Use Cases

Figure 20.3 MySQL Group Replication Protocol

20.1.2 Group Replication Use Cases

Group Replication enables you to create fault-tolerant systems with redundancy by replicating the
system state to a set of servers. Even if some of the servers subsequently fail, as long it is not all
or a majority, the system is still available. Depending on the number of servers which fail the group
might have degraded performance or scalability, but it is still available. Server failures are isolated
and independent. They are tracked by a group membership service which relies on a distributed
failure detector that is able to signal when any servers leave the group, either voluntarily or due to an
unexpected halt. There is a distributed recovery procedure to ensure that when servers join the group
they are brought up to date automatically. There is no need for server failover, and the multi-source
update everywhere nature ensures that even updates are not blocked in the event of a single server
failure. To summarize, MySQL Group Replication guarantees that the database service is continuously
available.

It is important to understand that although the database service is available, in the event of an
unexpected server exit, those clients connected to it must be redirected, or failed over, to a different
server. This is not something Group Replication attempts to resolve. A connector, load balancer, router,
or some form of middleware are more suitable to deal with this issue. For example see MySQL Router
8.0.

To summarize, MySQL Group Replication provides a highly available, highly elastic, dependable
MySQL service.

Tip

To deploy multiple instances of MySQL, you can use InnoDB Cluster which
enables you to easily administer a group of MySQL server instances in MySQL
Shell. InnoDB Cluster wraps MySQL Group Replication in a programmatic
environment that enables you easily deploy a cluster of MySQL instances to
achieve high availability. In addition, InnoDB Cluster interfaces seamlessly
with MySQL Router, which enables your applications to connect to the cluster
without writing your own failover process. For similar use cases that do not
require high availability, however, you can use InnoDB ReplicaSet. Installation
instructions for MySQL Shell can be found here.

Example Use Cases

The following examples are typical use cases for Group Replication.

3894

https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

Multi-Primary and Single-Primary Modes

• Elastic Replication - Environments that require a very fluid replication infrastructure, where the
number of servers has to grow or shrink dynamically and with as few side-effects as possible. For
instance, database services for the cloud.

• Highly Available Shards - Sharding is a popular approach to achieve write scale-out. Use MySQL
Group Replication to implement highly available shards, where each shard maps to a replication
group.

• Alternative to asynchronous Source-Replica replication - In certain situations, using a single source
server makes it a single point of contention. Writing to an entire group may prove more scalable
under certain circumstances.

• Autonomic Systems - Additionally, you can deploy MySQL Group Replication purely for the
automation that is built into the replication protocol (described already in this and previous chapters).

20.1.3 Multi-Primary and Single-Primary Modes

Group Replication operates either in single-primary mode or in multi-primary
mode. The group's mode is a group-wide configuration setting, specified by the
group_replication_single_primary_mode system variable, which must be the same on all
members. ON means single-primary mode, which is the default mode, and OFF means multi-primary
mode. It is not possible to have members of the group deployed in different modes, for example one
member configured in multi-primary mode while another member is in single-primary mode.

You cannot change the value of group_replication_single_primary_mode
manually while Group Replication is running. In MySQL 8.0.13 and later, you can
use the group_replication_switch_to_single_primary_mode() and
group_replication_switch_to_multi_primary_mode() functions to move a group from
one mode to another while Group Replication is still running. These functions manage the process
of changing the group's mode and ensure the safety and consistency of your data. In earlier
releases, to change the group's mode you must stop Group Replication and change the value of
group_replication_single_primary_mode on all members. Then carry out a full reboot of the
group (a bootstrap by a server with group_replication_bootstrap_group=ON) to implement the
change to the new operating configuration. You do not need to restart the servers.

Regardless of the deployed mode, Group Replication does not handle client-side failover. That must
be handled by a middleware framework such as MySQL Router 8.0, a proxy, a connector, or the
application itself.

20.1.3.1 Single-Primary Mode

In single-primary mode (group_replication_single_primary_mode=ON) the group has a single
primary server that is set to read/write mode. All the other members in the group are set to read-only
mode (with super_read_only=ON). The primary typically bootstraps the entire group. All other
servers that join the group learn about the primary server and are automatically set to read-only mode.

In single-primary mode, Group Replication enforces that only a single server writes
to the group, so compared to multi-primary mode, consistency checking can be less
strict and DDL statements do not need to be handled with any extra care. The option
group_replication_enforce_update_everywhere_checks enables or disables strict
consistency checks for a group. When deploying in single-primary mode, or changing the group to
single-primary mode, this system variable must be set to OFF.

The member that is designated as the primary server can change in the following ways:

• If the existing primary leaves the group, whether voluntarily or unexpectedly, a new primary is
elected automatically.

• You can appoint a specific member as the new primary using the
group_replication_set_as_primary() function.

3895

https://dev.mysql.com/doc/mysql-router/8.0/en/

Multi-Primary and Single-Primary Modes

• If you use the group_replication_switch_to_single_primary_mode() function to change
a group that was running in multi-primary mode to run in single-primary mode, a new primary is
elected automatically, or you can appoint the new primary by specifying it with the function.

These functions can be used only when all group members are running MySQL 8.0.13 or later.

When a new primary server is elected (automatically or manually), it is automatically set to read/write,
and the other group members remain as secondaries, and as such, read-only. The following diagram
shows this process:

Figure 20.4 New Primary Election

When a new primary is chosen, it might have a backlog of changes that had been applied on the old
primary but have not yet been applied on the new one. In this case, until the new primary catches up
with the old one, read/write transactions might result in conflicts and be rolled back, and read-only
transactions might result in stale reads. The Group Replication flow control mechanism minimizes
the difference between fast and slow members, and so reduces the chances of this happening if it is
activated and properly tuned. For more information on flow control, see Section 20.7.2, “Flow Control”.
In MySQL 8.0.14 and later, you can also use the group_replication_consistency system
variable to set the group's level of transaction consistency to prevent this issue. Setting this variable to
BEFORE_ON_PRIMARY_FAILOVER (the default) or any higher consistency level holds new transactions
on a newly elected primary until the backlog has been applied.

For more information on transaction consistency, see Section 20.5.3, “Transaction Consistency
Guarantees”. If flow control and transaction consistency guarantees are not used for a group, it is a
good practice to wait for the new primary to apply its replication-related relay log before re-routing client
applications to it.

Primary Election Algorithm

The automatic primary member election process involves each member looking at the new view of the
group, ordering the potential new primary members, and choosing the member that qualifies as the
most suitable. Each member makes its own decision locally, following the primary election algorithm in
its MySQL Server release. Because all members must reach the same decision, members adapt their
primary election algorithm if other group members are running lower MySQL Server versions, so that
they have the same behavior as the member with the lowest MySQL Server version in the group.

The factors considered by members when electing a primary, in order, are as follows:

1. The first factor considered is which member or members are running the lowest MySQL Server
version. If all group members are running MySQL 8.0.17 or higher, members are first ordered by
the patch version of their release. If any members are running MySQL 5.7, or MySQL 8.0.16 or

3896

Multi-Primary and Single-Primary Modes

earlier, members are first ordered by the major version of their release, and the patch version is
ignored.

2. If more than one member is running the lowest MySQL Server version, the second
factor considered is the member weight of each of those members, as specified by the
group_replication_member_weight system variable on the member. If any member of the
group is running MySQL Server 5.7, where this system variable was not available, this factor is
ignored.

The group_replication_member_weight system variable specifies a number in the range
0-100. All members default to a weight of 50, so set a weight below this to lower their ordering, and
a weight above it to increase their ordering. You can use this weighting function to prioritize the use
of better hardware or to ensure failover to a specific member during scheduled maintenance of the
primary.

3. If more than one member is running the lowest MySQL Server version, and more than one of
those members has the highest member weight (or member weighting is being ignored), the third
factor considered is the lexicographical order of the generated server UUIDs of each member,
as specified by the server_uuid system variable. The member with the lowest server UUID is
chosen as the primary. This factor acts as a guaranteed and predictable tie-breaker so that all
group members reach the same decision if it cannot be determined by any important factors.

Finding the Primary

To find out which server is currently the primary when deployed in single-primary mode, use the
MEMBER_ROLE column in the performance_schema.replication_group_members table. For
example:

mysql> SELECT MEMBER_HOST, MEMBER_ROLE FROM performance_schema.replication_group_members;
+-------------------------+-------------+
| MEMBER_HOST | MEMBER_ROLE |
+-------------------------+-------------+
remote1.example.com	PRIMARY
remote2.example.com	SECONDARY
remote3.example.com	SECONDARY
+-------------------------+-------------+

Warning

The group_replication_primary_member status variable has been
deprecated; expect it to be removed in a future version.

Alternatively use the group_replication_primary_member status variable, like this:

mysql> SHOW STATUS LIKE 'group_replication_primary_member'

20.1.3.2 Multi-Primary Mode

In multi-primary mode (group_replication_single_primary_mode=OFF) no member has a
special role. Any member that is compatible with the other group members is set to read/write mode
when joining the group, and can process write transactions, even if they are issued concurrently.

If a member stops accepting write transactions, for example, in the event of an unexpected server
exit, clients connected to it can be redirected, or failed over, to any other member that is in read/write
mode. Group Replication does not handle client-side failover itself, so you need to arrange this using
a middleware framework such as MySQL Router 8.0, a proxy, a connector, or the application itself.
Figure 20.5, “Client Failover” shows how clients can reconnect to an alternative group member if a
member leaves the group.

3897

https://dev.mysql.com/doc/mysql-router/8.0/en/

Multi-Primary and Single-Primary Modes

Figure 20.5 Client Failover

Group Replication is an eventual consistency system. This means that as soon as the incoming
traffic slows down or stops, all group members have the same data content. While traffic is flowing,
transactions can be externalized on some members before the others, especially if some members
have less write throughput than others, creating the possibility of stale reads. In multi-primary mode,
slower members can also build up an excessive backlog of transactions to certify and apply, leading
to a greater risk of conflicts and certification failure. To limit these issues, you can activate and
tune Group Replication's flow control mechanism to minimize the difference between fast and slow
members. For more information on flow control, see Section 20.7.2, “Flow Control”.

In MySQL 8.0.14 and later, if you want to have a transaction consistency guarantee for every
transaction in the group, you can do this using the group_replication_consistency system
variable. You can choose a setting that suits the workload of your group and your priorities for
data reads and writes, taking into account the performance impact of the synchronization required
to increase consistency. You can also set the system variable for individual sessions to protect
particularly concurrency-sensitive transactions. For more information on transaction consistency, see
Section 20.5.3, “Transaction Consistency Guarantees”.

Transaction Checks

When a group is deployed in multi-primary mode, transactions are checked to ensure they are
compatible with the mode. The following strict consistency checks are made when Group Replication is
deployed in multi-primary mode:

• If a transaction is executed under the SERIALIZABLE isolation level, then its commit fails when
synchronizing itself with the group.

• If a transaction executes against a table that has foreign keys with cascading constraints, then its
commit fails when synchronizing itself with the group.

The checks are controlled by the group_replication_enforce_update_everywhere_checks
system variable. In multi-primary mode, the system variable should normally be set to ON, but the
checks can optionally be deactivated by setting the system variable to OFF. When deploying in single-
primary mode, the system variable must be set to OFF.

Data Definition Statements

In a Group Replication topology in multi-primary mode, care needs to be taken when executing data
definition statements, also commonly known as data definition language (DDL).

MySQL 8.0 introduces support for atomic Data Definition Language (DDL) statements, where the
complete DDL statement is either committed or rolled back as a single atomic transaction. DDL
statements, atomic or otherwise, implicitly end any transaction that is active in the current session,

3898

Group Replication Services

as if you had done a COMMIT before executing the statement. This means that DDL statements
cannot be performed within another transaction, within transaction control statements such as START
TRANSACTION ... COMMIT, or combined with other statements within the same transaction.

Group Replication is based on an optimistic replication paradigm, where statements are optimistically
executed and rolled back later if necessary. Each server executes without securing group agreement
first. Therefore, more care needs to be taken when replicating DDL statements in multi-primary
mode. If you make schema changes (using DDL) and changes to the data that an object contains
(using DML) for the same object, the changes need to be handled through the same server while the
schema operation has not yet completed and replicated everywhere. Failure to do so can result in data
inconsistency when operations are interrupted or only partially completed. If the group is deployed in
single-primary mode this issue does not occur, because all changes are performed through the same
server, the primary.

For more information about atomic DDL support in MySQL 8.0, and the resulting changes in behavior
for the replication of certain statements, see Section 15.1.1, “Atomic Data Definition Statement
Support”.

Version Compatibility

For optimal compatibility and performance, all members of a group should run the same version of
MySQL Server and therefore of Group Replication. In multi-primary mode, this is more significant
because all members would normally join the group in read/write mode. If a group includes members
running more than one MySQL Server version, there is a potential for some members to be
incompatible with others, because they support functions others do not, or lack functions others have.
To guard against this, when a new member joins (including a former member that has been upgraded
and restarted), the member carries out compatibility checks against the rest of the group.

One result of these compatibility checks is particularly important in multi-primary mode. If a joining
member is running a higher MySQL Server version than the lowest version that the existing group
members are running, it joins the group but remains in read-only mode. (In a group that is running in
single-primary mode, new members default to read-only in any case.) Members running MySQL 8.0.17
or later take into account the patch version of the release when checking their compatibility. Members
running MySQL 8.0.16 or ealrier, or MySQL 5.7, take into account the major version only.

In a group running in multi-primary mode with members that use different MySQL Server versions,
Group Replication automatically manages their read/write and read-only status. If a member leaves
the group, the members running the version that is now the lowest are automatically set to read/write
mode. When you change a group that was running in single-primary mode to run in multi-primary
mode, using the function group_replication_switch_to_multi_primary_mode(), Group
Replication automatically sets members to the correct mode. Members are automatically placed in
read-only mode if they are running a higher MySQL server version than the lowest version present in
the group, and members running the lowest version are placed in read/write mode.

For full information on version compatibility in a group and how this influences the behavior of a group
during an upgrade process, see Section 20.8.1, “Combining Different Member Versions in a Group” .

20.1.4 Group Replication Services

This section introduces some of the services that Group Replication builds on.

20.1.4.1 Group Membership

In MySQL Group Replication, a set of servers forms a replication group. A group has a name,
which takes the form of a UUID. The group is dynamic and servers can leave (either voluntarily or
involuntarily) and join it at any time. The group adjusts itself whenever servers join or leave.

If a server joins the group, it automatically brings itself up to date by fetching the missing state from
an existing server. If a server leaves the group, for instance it was taken down for maintenance, the
remaining servers notice that it has left and reconfigure the group automatically.

3899

Group Replication Services

Group Replication has a group membership service that defines which servers are online and
participating in the group. The list of online servers is referred to as a view. Every server in the group
has a consistent view of which servers are the members participating actively in the group at a given
moment in time.

Group members must agree not only on transaction commits, but also on which is the current
view. If existing members agree that a new server should become part of the group, the group is
reconfigured to integrate that server in it, which triggers a view change. If a server leaves the group,
either voluntarily or not, the group dynamically rearranges its configuration and a view change is
triggered.

In the case where a member leaves the group voluntarily, it first initiates a dynamic group
reconfiguration, during which all members have to agree on a new view without the leaving server.
However, if a member leaves the group involuntarily, for example because it has stopped unexpectedly
or the network connection is down, it cannot initiate the reconfiguration. In this situation, Group
Replication's failure detection mechanism recognizes after a short period of time that the member
has left, and a reconfiguration of the group without the failed member is proposed. As with a member
that leaves voluntarily, the reconfiguration requires agreement from the majority of servers in the
group. However, if the group is not able to reach agreement, for example because it partitioned in
such a way that there is no majority of servers online, the system is not able to dynamically change the
configuration, and blocks to prevent a split-brain situation. This situation requires intervention from an
administrator.

It is possible for a member to go offline for a short time, then attempt to rejoin the group again before
the failure detection mechanism has detected its failure, and before the group has been reconfigured
to remove the member. In this situation, the rejoining member forgets its previous state, but if other
members send it messages that are intended for its pre-crash state, this can cause issues including
possible data inconsistency. If a member in this situation participates in XCom's consensus protocol,
it could potentially cause XCom to deliver different values for the same consensus round, by making a
different decision before and after failure.

To counter this possibility, MySQL Group Replication checks for the situation where a new incarnation
of the same server is trying to join the group while its old incarnation (with the same address and port
number) is still listed as a member. The new incarnation is blocked from joining the group until the
old incarnation can be removed by a reconfiguration. Note that if a waiting period has been added by
the group_replication_member_expel_timeout system variable to allow additional time for
members to reconnect with the group before they are expelled, a member under suspicion can become
active in the group again as its current incarnation if it reconnects to the group before the suspicion
times out. When a member exceeds the expel timeout and is expelled from the group, or when Group
Replication is stopped on the server by a STOP GROUP_REPLICATION statement or a server failure, it
must rejoin as a new incarnation.

20.1.4.2 Failure Detection

Group Replication’s failure detection mechanism is a distributed service which is able to identify that
a server in the group is not communicating with the others, and is therefore suspected of being out of
service. If the group’s consensus is that the suspicion is probably true, the group takes a coordinated
decision to expel the member. Expelling a member that is not communicating is necessary because
the group needs a majority of its members to agree on a transaction or view change. If a member is
not participating in these decisions, the group must remove it to increase the chance that the group
contains a majority of correctly working members, and can therefore continue to process transactions.

In a replication group, each member has a point-to-point communication channel to each other
member, creating a fully connected graph. These connections are managed by the group
communication engine (XCom, a Paxos variant) and use TCP/IP sockets. One channel is used to send
messages to the member and the other channel is used to receive messages from the member. If a
member does not receive messages from another member for 5 seconds, it suspects that the member
has failed, and lists the status of that member as UNREACHABLE in its own Performance Schema table
replication_group_members. Usually, two members will suspect each other of having failed

3900

Group Replication Services

because they are each not communicating with the other. It is possible, though less likely, that member
A suspects member B of having failed but member B does not suspect member A of having failed -
perhaps due to a routing or firewall issue. A member can also create a suspicion of itself. A member
that is isolated from the rest of the group suspects that all the others have failed.

If a suspicion lasts for more than 10 seconds, the suspecting member tries to propagate its view that
the suspect member is faulty to the other members of the group. A suspecting member only does this
if it is a notifier, as calculated from its internal XCom node number. If a member is actually isolated
from the rest of the group, it might attempt to propagate its view, but that will have no consequences
as it cannot secure a quorum of the other members to agree on it. A suspicion only has consequences
if a member is a notifier, and its suspicion lasts long enough to be propagated to the other members
of the group, and the other members agree on it. In that case, the suspect member is marked for
expulsion from the group in a coordinated decision, and is expelled after the waiting period set by
the group_replication_member_expel_timeout system variable expires and the expelling
mechanism detects and implements the expulsion.

Where the network is unstable and members frequently lose and regain connection to each other in
different combinations, it is theoretically possible for a group to end up marking all its members for
expulsion, after which the group would cease to exist and have to be set up again. To counter this
possibility, in MySQL 8.0.20 and later, the Group Replication Group Communication System (GCS)
tracks the group members that have been marked for expulsion, and treats them as if they were in the
group of suspected members when deciding if there is a majority. This ensures at least one member
remains in the group and the group can continue to exist. When an expelled member has actually been
removed from the group, GCS removes its record of having marked the member for expulsion, so that
the member can rejoin the group if it is able to do so.

For information on the Group Replication system variables that you can configure to specify the
responses of working group members to failure situations, and the actions taken by group members
that are suspected of having failed, see Section 20.7.7, “Responses to Failure Detection and Network
Partitioning”.

20.1.4.3 Fault-tolerance

MySQL Group Replication builds on an implementation of the Paxos distributed algorithm to provide
distributed coordination between servers. As such, it requires a majority of servers to be active to reach
quorum and thus make a decision. This has direct impact on the number of failures the system can
tolerate without compromising itself and its overall functionality. The number of servers (n) needed to
tolerate f failures is then n = 2 x f + 1.

In practice this means that to tolerate one failure the group must have three servers in it. As such if
one server fails, there are still two servers to form a majority (two out of three) and allow the system to
continue to make decisions automatically and progress. However, if a second server fails involuntarily,
then the group (with one server left) blocks, because there is no majority to reach a decision.

The following is a small table illustrating the formula above.

Group Size Majority Instant Failures Tolerated

1 1 0

2 2 0

3 2 1

4 3 1

5 3 2

6 4 2

7 4 3

20.1.4.4 Observability

3901

Group Replication Plugin Architecture

There is a lot of automation built into the Group Replication plugin. Nonetheless, you might sometimes
need to understand what is happening behind the scenes. This is where the instrumentation of Group
Replication and Performance Schema becomes important. The entire state of the system (including
the view, conflict statistics and service states) can be queried through Performance Schema tables.
The distributed nature of the replication protocol and the fact that server instances agree and thus
synchronize on transactions and metadata makes it simpler to inspect the state of the group. For
example, you can connect to a single server in the group and obtain both local and global information
by issuing select statements on the Group Replication related Performance Schema tables. For more
information, see Section 20.4, “Monitoring Group Replication”.

20.1.5 Group Replication Plugin Architecture

MySQL Group Replication is a MySQL plugin and it builds on the existing MySQL replication
infrastructure, taking advantage of features such as the binary log, row-based logging, and global
transaction identifiers. It integrates with current MySQL frameworks, such as the performance schema
or plugin and service infrastructures. The following figure presents a block diagram depicting the overall
architecture of MySQL Group Replication.

Figure 20.6 Group Replication Plugin Block Diagram

3902

Getting Started

The MySQL Group Replication plugin includes a set of APIs for capture, apply, and lifecycle, which
control how the plugin interacts with MySQL Server. There are interfaces to make information flow
from the server to the plugin and vice versa. These interfaces isolate the MySQL Server core from
the Group Replication plugin, and are mostly hooks placed in the transaction execution pipeline. In
one direction, from server to the plugin, there are notifications for events such as the server starting,
the server recovering, the server being ready to accept connections, and the server being about to
commit a transaction. In the other direction, the plugin instructs the server to perform actions such as
committing or aborting ongoing transactions, or queuing transactions in the relay log.

The next layer of the Group Replication plugin architecture is a set of components that react when
a notification is routed to them. The capture component is responsible for keeping track of context
related to transactions that are executing. The applier component is responsible for executing
remote transactions on the database. The recovery component manages distributed recovery, and is
responsible for getting a server that is joining the group up to date by selecting the donor, managing
the catch up procedure and reacting to donor failures.

Continuing down the stack, the replication protocol module contains the specific logic of the replication
protocol. It handles conflict detection, and receives and propagates transactions to the group.

The final two layers of the Group Replication plugin architecture are the Group Communication System
(GCS) API, and an implementation of a Paxos-based group communication engine (XCom). The
GCS API is a high level API that abstracts the properties required to build a replicated state machine
(see Section 20.1, “Group Replication Background”). It therefore decouples the implementation of
the messaging layer from the remaining upper layers of the plugin. The group communication engine
handles communications with the members of the replication group.

20.2 Getting Started

MySQL Group Replication is provided as a plugin for the MySQL server; each server in a group
requires configuration and installation of the plugin. This section provides a detailed tutorial with the
steps required to create a replication group with at least three members.

Tip

To deploy multiple instances of MySQL, you can use InnoDB Cluster which
enables you to easily administer a group of MySQL server instances in MySQL
Shell. InnoDB Cluster wraps MySQL Group Replication in a programmatic
environment that enables you easily deploy a cluster of MySQL instances to
achieve high availability. In addition, InnoDB Cluster interfaces seamlessly
with MySQL Router, which enables your applications to connect to the cluster
without writing your own failover process. For similar use cases that do not
require high availability, however, you can use InnoDB ReplicaSet. Installation
instructions for MySQL Shell can be found here.

20.2.1 Deploying Group Replication in Single-Primary Mode

Each of the MySQL server instances in a group can run on an independent physical host machine,
which is the recommended way to deploy Group Replication. This section explains how to create
a replication group with three MySQL Server instances, each running on a different host machine.
See Section 20.2.2, “Deploying Group Replication Locally” for information about deploying multiple
MySQL server instances running Group Replication on the same host machine, for example for testing
purposes.

3903

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

Deploying Group Replication in Single-Primary Mode

Figure 20.7 Group Architecture

This tutorial explains how to get and deploy MySQL Server with the Group Replication plugin, how
to configure each server instance before creating a group, and how to use Performance Schema
monitoring to verify that everything is working correctly.

20.2.1.1 Deploying Instances for Group Replication

The first step is to deploy at least three instances of MySQL Server, this procedure demonstrates using
multiple hosts for the instances, named s1, s2, and s3. It is assumed that MySQL Server is installed
on each host (see Chapter 2, Installing MySQL). The Group Replication plugin is provided with MySQL
Server 8.0; no additional software is required, although the plugin must be installed in the running
MySQL server. See Section 20.2.1.1, “Deploying Instances for Group Replication”; for additional
information, see Section 7.6, “MySQL Server Plugins”.

In this example, three instances are used for the group, which is the minimum number of instances to
create a group. Adding more instances increases the fault tolerance of the group. For example if the
group consists of three members, in event of failure of one instance the group can continue. But in
the event of another failure the group can no longer continue processing write transactions. By adding
more instances, the number of servers which can fail while the group continues to process transactions
also increases. The maximum number of instances which can be used in a group is nine. For more
information see Section 20.1.4.2, “Failure Detection”.

20.2.1.2 Configuring an Instance for Group Replication

3904

Deploying Group Replication in Single-Primary Mode

This section explains the configuration settings required for MySQL Server instances that you want
to use for Group Replication. For background information, see Section 20.3, “Requirements and
Limitations”.

• Storage Engines

• Replication Framework

• Group Replication Settings

Storage Engines

For Group Replication, data must be stored in the InnoDB transactional storage engine (for details
of why, see Section 20.3.1, “Group Replication Requirements”). The use of other storage engines,
including the temporary MEMORY storage engine, might cause errors in Group Replication. Set the
disabled_storage_engines system variable as follows to prevent their use:

disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"

Note that with the MyISAM storage engine disabled, when you are upgrading a MySQL instance to a
release where mysql_upgrade is still used (before MySQL 8.0.16), mysql_upgrade might fail with
an error. To handle this, you can re-enable that storage engine while you run mysql_upgrade, then
disable it again when you restart the server. For more information, see Section 6.4.5, “mysql_upgrade
— Check and Upgrade MySQL Tables”.

Replication Framework

The following settings configure replication according to the MySQL Group Replication requirements.

server_id=1
gtid_mode=ON
enforce_gtid_consistency=ON

These settings configure the server to use the unique identifier number 1, to enable Section 19.1.3,
“Replication with Global Transaction Identifiers”, and to allow execution of only statements that can be
safely logged using a GTID.

Up to and including MySQL 8.0.20, the following setting is also required:

binlog_checksum=NONE

This setting disables checksums for events written to the binary log, which default to being enabled. In
MySQL 8.0.21 and later, Group Replication supports the presence of checksums in the binary log and
can use them to verify the integrity of events on some channels, so you can use the default setting. For
more details, see Section 20.3.2, “Group Replication Limitations”.

If you are using a version of MySQL earlier than 8.0.3, where the defaults were improved for
replication, you also need to add these lines to the member's option file. If you have any of these
system variables in the option file in later versions, ensure that they are set as shown. For more details
see Section 20.3.1, “Group Replication Requirements”.

log_bin=binlog
log_slave_updates=ON
binlog_format=ROW
master_info_repository=TABLE
relay_log_info_repository=TABLE
transaction_write_set_extraction=XXHASH64

Group Replication Settings

At this point the option file ensures that the server is configured and is instructed to instantiate the
replication infrastructure under a given configuration. The following section configures the Group
Replication settings for the server.

3905

Deploying Group Replication in Single-Primary Mode

plugin_load_add='group_replication.so'
group_replication_group_name="aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa"
group_replication_start_on_boot=off
group_replication_local_address= "s1:33061"
group_replication_group_seeds= "s1:33061,s2:33061,s3:33061"
group_replication_bootstrap_group=off

• plugin-load-add adds the Group Replication plugin to the list of plugins which the server loads at
startup. This is preferable in a production deployment to installing the plugin manually.

• Configuring group_replication_group_name tells the plugin that the group that it is joining, or
creating, is named "aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa".

The value of group_replication_group_name must be a valid UUID. You can use SELECT
UUID() to generate one. This UUID forms part of the GTIDs that are used when transactions
received by group members from clients, and view change events that are generated internally by
the group members, are written to the binary log.

• Configuring the group_replication_start_on_boot variable to off instructs the plugin to
not start operations automatically when the server starts. This is important when setting up Group
Replication as it ensures you can configure the server before manually starting the plugin. Once the
member is configured you can set group_replication_start_on_boot to on so that Group
Replication starts automatically upon server boot.

• Configuring group_replication_local_address sets the network address and port which the
member uses for internal communication with other members in the group. Group Replication uses
this address for internal member-to-member connections involving remote instances of the group
communication engine (XCom, a Paxos variant).

Important

The group replication local address must be different to the host name
and port used for SQL client connections, which are defined by MySQL
Server's hostname and port system variables. It must not be used for client
applications. It must be only be used for internal communication between the
members of the group while running Group Replication.

The network address configured by group_replication_local_address must be resolvable
by all group members. For example, if each server instance is on a different machine with a fixed
network address, you could use the IP address of the machine, such as 10.0.0.1. If you use a
host name, you must use a fully qualified name, and ensure it is resolvable through DNS, correctly
configured /etc/hosts files, or other name resolution processes. In MySQL 8.0.14 and later, IPv6
addresses (or host names that resolve to them) can be used as well as IPv4 addresses. A group
can contain a mix of members using IPv6 and members using IPv4. For more information on Group
Replication support for IPv6 networks and on mixed IPv4 and IPv6 groups, see Section 20.5.5,
“Support For IPv6 And For Mixed IPv6 And IPv4 Groups”.

The recommended port for group_replication_local_address is 33061. This is used by
Group Replication as the unique identifier for a group member within the replication group. You
can use the same port for all members of a replication group as long as the host names or IP
addresses are all different, as demonstrated in this tutorial. Alternatively you can use the same host
name or IP address for all members as long as the ports are all different, for example as shown in
Section 20.2.2, “Deploying Group Replication Locally”.

The connection that an existing member offers to a joining member for Group
Replication's distributed recovery process is not the network address configured by
group_replication_local_address. In MySQL 8.0.20 and earlier, group members offer their
standard SQL client connection to joining members for distributed recovery, as specified by MySQL
Server's hostname and port system variables. In MySQL 8.0.21 and later, group members may
advertise an alternative list of distributed recovery endpoints as dedicated client connections for
joining members. For more details, see Section 20.5.4.1, “Connections for Distributed Recovery”.

3906

Deploying Group Replication in Single-Primary Mode

Important

Distributed recovery can fail if a joining member cannot correctly identify
the other members using the host name as defined by MySQL Server's
hostname system variable. It is recommended that operating systems
running MySQL have a properly configured unique host name, either using
DNS or local settings. The host name that the server is using for SQL client
connections can be verified in the Member_host column of the Performance
Schema table replication_group_members. If multiple group members
externalize a default host name set by the operating system, there is a
chance of the joining member not resolving it to the correct member address
and not being able to connect for distributed recovery. In this situation you
can use MySQL Server's report_host system variable to configure a
unique host name to be externalized by each of the servers.

• Configuring group_replication_group_seeds sets the hostname and port of the group
members which are used by the new member to establish its connection to the group. These
members are called the seed members. Once the connection is established, the group membership
information is listed in the Performance Schema table replication_group_members. Usually
the group_replication_group_seeds list contains the hostname:port of each of the group
member's group_replication_local_address, but this is not obligatory and a subset of the
group members can be chosen as seeds.

Important

The hostname:port listed in group_replication_group_seeds
is the seed member's internal network address, configured by
group_replication_local_address and not the hostname:port used
for SQL client connections, which is shown for example in the Performance
Schema table replication_group_members.

The server that starts the group does not make use of this option, since it is the initial server and
as such, it is in charge of bootstrapping the group. In other words, any existing data which is on the
server bootstrapping the group is what is used as the data for the next joining member. The second
server joining asks the one and only member in the group to join, any missing data on the second
server is replicated from the donor data on the bootstrapping member, and then the group expands.
The third server joining can ask any of these two to join, data is synchronized to the new member,
and then the group expands again. Subsequent servers repeat this procedure when joining.

Warning

When joining multiple servers at the same time, make sure that they point to
seed members that are already in the group. Do not use members that are
also joining the group as seeds, because they might not yet be in the group
when contacted.

It is good practice to start the bootstrap member first, and let it create the
group. Then make it the seed member for the rest of the members that are
joining. This ensures that there is a group formed when joining the rest of the
members.

Creating a group and joining multiple members at the same time is not
supported. It might work, but chances are that the operations race and then
the act of joining the group ends up in an error or a time out.

A joining member must communicate with a seed member using the same protocol (IPv4 or IPv6)
that the seed member advertises in the group_replication_group_seeds option. For the
purpose of IP address permissions for Group Replication, the allowlist on the seed member must
include an IP address for the joining member for the protocol offered by the seed member, or a

3907

Deploying Group Replication in Single-Primary Mode

host name that resolves to an address for that protocol. This address or host name must be set up
and permitted in addition to the joining member's group_replication_local_address if the
protocol for that address does not match the seed member's advertised protocol. If a joining member
does not have a permitted address for the appropriate protocol, its connection attempt is refused. For
more information, see Section 20.6.4, “Group Replication IP Address Permissions”.

• Configuring group_replication_bootstrap_group instructs the plugin whether to bootstrap
the group or not. In this case, even though s1 is the first member of the group we set this variable
to off in the option file. Instead we configure group_replication_bootstrap_group when the
instance is running, to ensure that only one member actually bootstraps the group.

Important

The group_replication_bootstrap_group variable must only be
enabled on one server instance belonging to a group at any time, usually the
first time you bootstrap the group (or in case the entire group is brought down
and back up again). If you bootstrap the group multiple times, for example
when multiple server instances have this option set, then they could create an
artificial split brain scenario, in which two distinct groups with the same name
exist. Always set group_replication_bootstrap_group=off after the
first server instance comes online.

The system variables described in this tutorial are the required configuration settings to start a new
member, but further system variables are also available to configure group members. These are listed
in Section 20.9, “Group Replication Variables”.

Important

A number of system variables, some specific to Group Replication and others
not, are group-wide configuration settings that must have the same value on all
group members. If the group members have a value set for one of these system
variables, and a joining member has a different value set for it, the joining
member cannot join the group and an error message is returned. If the group
members have a value set for this system variable, and the joining member
does not support the system variable, it cannot join the group. These system
variables are all identified in Section 20.9, “Group Replication Variables”.

20.2.1.3 User Credentials For Distributed Recovery

Group Replication uses a distributed recovery process to synchronize group members when joining
them to the group. Distributed recovery involves transferring transactions from a donor's binary log to
a joining member using a replication channel named group_replication_recovery. You must
therefore set up a replication user with the correct permissions so that Group Replication can establish
direct member-to-member replication channels. If group members have been set up to support the
use of a remote cloning operation as part of distributed recovery, which is available in MySQL 8.0.17
and later, this replication user is also used as the clone user on the donor, and requires the correct
permissions for this role too. For a complete description of distributed recovery, see Section 20.5.4,
“Distributed Recovery”.

The same replication user must be used for distributed recovery on every group member. The process
of creating the replication user for distributed recovery can be captured in the binary log, and then
you can rely on distributed recovery to replicate the statements used to create the user. Alternatively,
you can disable binary logging before creating the replication user, and then create the user manually
on each member, for example if you want to avoid the changes being propagated to other server
instances. If you do this, ensure you re-enable binary logging once you have configured the user.

Important

If distributed recovery connections for your group use SSL, the replication
user must be created on each server before the joining member connects to

3908

Deploying Group Replication in Single-Primary Mode

the donor. For instructions to set up SSL for distributed recovery connections
and create a replication user that requires SSL, see Section 20.6.3, “Securing
Distributed Recovery Connections”

Important

By default, users created in MySQL 8 use Section 8.4.1.2, “Caching SHA-2
Pluggable Authentication”. If the replication user for distributed recovery
uses the caching SHA-2 authentication plugin, and you are not using SSL
for distributed recovery connections, RSA key-pairs are used for password
exchange. You can either copy the public key of the replication user to the
joining member, or configure the donors to provide the public key when
requested. For instructions to do this, see Section 20.6.3.1, “Secure User
Credentials for Distributed Recovery”.

To create the replication user for distributed recovery, follow these steps:

1. Start the MySQL server instance, then connect a client to it.

2. If you want to disable binary logging in order to create the replication user separately on each
instance, do so by issuing the following statement:

mysql> SET SQL_LOG_BIN=0;

3. Create a MySQL user with the following privileges:

• REPLICATION SLAVE, which is required for making a distributed recovery connection to a donor
to retrieve data.

• CONNECTION_ADMIN, which ensures that Group Replication connections are not terminated if
one of the servers involved is placed in offline mode.

• BACKUP_ADMIN, if the servers in the replication group are set up to support cloning (see
Section 20.5.4.2, “Cloning for Distributed Recovery”). This privilege is required for a member to
act as the donor in a cloning operation for distributed recovery.

• GROUP_REPLICATION_STREAM, if the MySQL communication stack is in use for the replication
group (see Section 20.6.1, “Communication Stack for Connection Security Management”). This
privilege is required for the user account to be able to establish and maintain connections for
Group Replication using the MySQL communication stack.

In this example the user rpl_user with the password password is shown. When configuring your
servers use a suitable user name and password:

mysql> CREATE USER rpl_user@'%' IDENTIFIED BY 'password';
mysql> GRANT REPLICATION SLAVE ON *.* TO rpl_user@'%';
mysql> GRANT CONNECTION_ADMIN ON *.* TO rpl_user@'%';
mysql> GRANT BACKUP_ADMIN ON *.* TO rpl_user@'%';
mysql> GRANT GROUP_REPLICATION_STREAM ON *.* TO rpl_user@'%';
mysql> FLUSH PRIVILEGES;

4. If you disabled binary logging, enable it again as soon as you have created the user, by issuing the
following statement:

mysql> SET SQL_LOG_BIN=1;

5. When you have created the replication user, you must supply the user credentials to the server
for use with distributed recovery. You can do this by setting the user credentials as the credentials
for the group_replication_recovery channel, using a CHANGE REPLICATION SOURCE TO
statement (MySQL 8.0.23 or later) or CHANGE MASTER TO statement (prior to MySQL 8.0.23).
Alternatively, in MySQL 8.0.21 and later, you can specify the user credentials for distributed
recovery on the START GROUP_REPLICATION statement.

3909

Deploying Group Replication in Single-Primary Mode

• User credentials set using CHANGE REPLICATION SOURCE TO | CHANGE MASTER
TO are stored in plain text in the replication metadata repositories on the server. They
are applied whenever Group Replication is started, including automatic starts if the
group_replication_start_on_boot system variable is set to ON.

• User credentials specified on START GROUP_REPLICATION are saved in memory only, and
are removed by a STOP GROUP_REPLICATION statement or server shutdown. You must issue
a START GROUP_REPLICATION statement to provide the credentials again, so you cannot
start Group Replication automatically with these credentials. This method of specifying the user
credentials helps to secure the Group Replication servers against unauthorized access.

For more information on the security implications of each method of providing the user credentials,
see Providing Replication User Credentials Securely. If you choose to provide the user credentials
using a CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement, issue the following
statement on the server instance now, replacing rpl_user and password with the values used
when creating the user:

mysql> CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='password' \\
 FOR CHANNEL 'group_replication_recovery';

Or in MySQL 8.0.23 or later:

mysql> CHANGE REPLICATION SOURCE TO SOURCE_USER='rpl_user', SOURCE_PASSWORD='password' \\
 FOR CHANNEL 'group_replication_recovery';

20.2.1.4 Launching Group Replication

It is first necessary to ensure that the Group Replication plugin is installed on server s1. If you used
plugin_load_add='group_replication.so' in the option file then the Group Replication plugin
is already installed, and you can proceed to the next step. Otherwise, you must install the plugin
manually; to do this, connect to the server using the mysql client, and issue the SQL statement shown
here:

mysql> INSTALL PLUGIN group_replication SONAME 'group_replication.so';

Important

The mysql.session user must exist before you can load Group Replication.
mysql.session was added in MySQL version 8.0.2. If your data dictionary
was initialized using an earlier version you must perform the MySQL
upgrade procedure (see Chapter 3, Upgrading MySQL). If the upgrade is
not run, Group Replication fails to start with the error message There was
an error when trying to access the server with user:
mysql.session@localhost. Make sure the user is present in
the server and that mysql_upgrade was ran after a server
update.

To check that the plugin was installed successfully, issue SHOW PLUGINS; and check the output. It
should show something like this:

mysql> SHOW PLUGINS;
+----------------------------+----------+--------------------+----------------------+-------------+
| Name | Status | Type | Library | License |
+----------------------------+----------+--------------------+----------------------+-------------+
| binlog | ACTIVE | STORAGE ENGINE | NULL | PROPRIETARY |

(...)

| group_replication | ACTIVE | GROUP REPLICATION | group_replication.so | PROPRIETARY |
+----------------------------+----------+--------------------+----------------------+-------------+

3910

Deploying Group Replication in Single-Primary Mode

20.2.1.5 Bootstrapping the Group

The process of starting a group for the first time is called bootstrapping. You use the
group_replication_bootstrap_group system variable to bootstrap a group. The bootstrap
should only be done by a single server, the one that starts the group and only once. This is why the
value of the group_replication_bootstrap_group option was not stored in the instance's option
file. If it is saved in the option file, upon restart the server automatically bootstraps a second group with
the same name. This would result in two distinct groups with the same name. The same reasoning
applies to stopping and restarting the plugin with this option set to ON. Therefore to safely bootstrap the
group, connect to s1 and issue the following statements:

mysql> SET GLOBAL group_replication_bootstrap_group=ON;
mysql> START GROUP_REPLICATION;
mysql> SET GLOBAL group_replication_bootstrap_group=OFF;

Or if you are providing user credentials for distributed recovery in the START GROUP_REPLICATION
statement (MySQL 8.0.21 and later), issue the following statements:

mysql> SET GLOBAL group_replication_bootstrap_group=ON;
mysql> START GROUP_REPLICATION USER='rpl_user', PASSWORD='password';
mysql> SET GLOBAL group_replication_bootstrap_group=OFF;

Once the START GROUP_REPLICATION statement returns, the group has been started. You can
check that the group is now created and that there is one member in it:

mysql> SELECT * FROM performance_schema.replication_group_members;
+---------------------------+--------------------------------------+-------------+-------------+---------------+-------------+----------------+----------------------------+
| CHANNEL_NAME | MEMBER_ID | MEMBER_HOST | MEMBER_PORT | MEMBER_STATE | MEMBER_ROLE | MEMBER_VERSION | MEMBER_COMMUNICATION_STACK |
+---------------------------+--------------------------------------+-------------+-------------+---------------+-------------+----------------+----------------------------+
| group_replication_applier | ce9be252-2b71-11e6-b8f4-00212844f856 | s1 | 3306 | ONLINE | | | XCom |
+---------------------------+--------------------------------------+-------------+-------------+---------------+-------------+----------------+----------------------------+
1 row in set (0.0108 sec)

The information in this table confirms that there is a member in the group with the unique identifier
ce9be252-2b71-11e6-b8f4-00212844f856, that it is ONLINE and is at s1 listening for client
connections on port 3306.

For the purpose of demonstrating that the server is indeed in a group and that it is able to handle load,
create a table and add some content to it.

mysql> CREATE DATABASE test;
mysql> USE test;
mysql> CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 TEXT NOT NULL);
mysql> INSERT INTO t1 VALUES (1, 'Luis');

Check the content of table t1 and the binary log.

mysql> SELECT * FROM t1;
+----+------+
| c1 | c2 |
+----+------+
| 1 | Luis |
+----+------+

mysql> SHOW BINLOG EVENTS;
+---------------+-----+----------------+-----------+-------------+--+
| Log_name | Pos | Event_type | Server_id | End_log_pos | Info |
+---------------+-----+----------------+-----------+-------------+--+
binlog.000001	4	Format_desc	1	123	Server ver: 8.0.42-log, Binlog ver: 4
binlog.000001	123	Previous_gtids	1	150	
binlog.000001	150	Gtid	1	211	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:1'
binlog.000001	211	Query	1	270	BEGIN
binlog.000001	270	View_change	1	369	view_id=14724817264259180:1
binlog.000001	369	Query	1	434	COMMIT
binlog.000001	434	Gtid	1	495	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:2'
binlog.000001	495	Query	1	585	CREATE DATABASE test
binlog.000001	585	Gtid	1	646	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:3'
binlog.000001	646	Query	1	770	use `test`; CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 TEXT NOT NULL)
binlog.000001	770	Gtid	1	831	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:4'

3911

Deploying Group Replication in Single-Primary Mode

binlog.000001	831	Query	1	899	BEGIN
binlog.000001	899	Table_map	1	942	table_id: 108 (test.t1)
binlog.000001	942	Write_rows	1	984	table_id: 108 flags: STMT_END_F
binlog.000001	984	Xid	1	1011	COMMIT /* xid=38 */
+---------------+-----+----------------+-----------+-------------+--+

As seen above, the database and the table objects were created and their corresponding DDL
statements were written to the binary log. Also, the data was inserted into the table and written to the
binary log, so it can be used for distributed recovery by state transfer from a donor's binary log.

20.2.1.6 Adding Instances to the Group

At this point, the group has one member in it, server s1, which has some data in it. It is now time to
expand the group by adding the other two servers configured previously.

Adding a Second Instance

In order to add a second instance, server s2, first create the configuration file for it. The configuration is
similar to the one used for server s1, except for things such as the server_id.

[mysqld]

#
Disable other storage engines
#
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"

#
Replication configuration parameters
#
server_id=2
gtid_mode=ON
enforce_gtid_consistency=ON
binlog_checksum=NONE # Not needed in 8.0.21 or later

#
Group Replication configuration
#
plugin_load_add='group_replication.so'
group_replication_group_name="aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa"
group_replication_start_on_boot=off
group_replication_local_address= "s2:33061"
group_replication_group_seeds= "s1:33061,s2:33061,s3:33061"
group_replication_bootstrap_group= off

Similar to the procedure for server s1, with the option file in place you launch the server. Then
configure the distributed recovery credentials as follows. The statements are the same as used when
setting up server s1 as the user is shared within the group. This member needs to have the same
replication user configured in Section 20.2.1.3, “User Credentials For Distributed Recovery”. If you are
relying on distributed recovery to configure the user on all members, when s2 connects to the seed s1
the replication user is replicated or cloned to s1. If you did not have binary logging enabled when you
configured the user credentials on s1, and a remote cloning operation is not used for state transfer, you
must create the replication user on s2. In this case, connect to s2 and issue:

SET SQL_LOG_BIN=0;
CREATE USER rpl_user@'%' IDENTIFIED BY 'password';
GRANT REPLICATION SLAVE ON *.* TO rpl_user@'%';
GRANT CONNECTION_ADMIN ON *.* TO rpl_user@'%';
GRANT BACKUP_ADMIN ON *.* TO rpl_user@'%';
GRANT GROUP_REPLICATION_STREAM ON *.* TO rpl_user@'%';
FLUSH PRIVILEGES;
SET SQL_LOG_BIN=1;

If you are providing user credentials using a CHANGE REPLICATION SOURCE TO | CHANGE MASTER
TO statement, issue the following statement after that:

CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='password' \\
 FOR CHANNEL 'group_replication_recovery';

3912

Deploying Group Replication in Single-Primary Mode

In MySQL 8.0.23 and lter, use this instead:

CHANGE REPLICATION SOURCE TO SOURCE_USER='rpl_user', SOURCE_PASSWORD='password' \\
 FOR CHANNEL 'group_replication_recovery';

Tip

If you are using the caching SHA-2 authentication plugin, the default in MySQL
8, see Replication User With The Caching SHA-2 Authentication Plugin.

If necessary, install the Group Replication plugin, see Section 20.2.1.4, “Launching Group Replication”.

Start Group Replication and s2 starts the process of joining the group.

mysql> START GROUP_REPLICATION;

If you are providing user credentials for distributed recovery as part of START GROUP_REPLICATION
(MySQL 8.0.21 or later), you can do so like this:

mysql> START GROUP_REPLICATION USER='rpl_user', PASSWORD='password';

Unlike the previous steps that were the same as those executed on s1, here there is a difference
in that you do not need to bootstrap the group because the group already exists. In other words on
s2 group_replication_bootstrap_group is set to OFF, and you do not issue SET GLOBAL
group_replication_bootstrap_group=ON; before starting Group Replication, because the
group has already been created and bootstrapped by server s1. At this point server s2 only needs to be
added to the already existing group.

Tip

When Group Replication starts successfully and the server joins the group it
checks the super_read_only variable. By setting super_read_only to
ON in the member's configuration file, you can ensure that servers which fail
when starting Group Replication for any reason do not accept transactions. If
the server should join the group as a read/write instance, for example as the
primary in a single-primary group or as a member of a multi-primary group,
when super_read_only is set to ON then it is set to OFF upon joining the
group.

Checking the performance_schema.replication_group_members table again shows that there
are now two ONLINE servers in the group.

mysql> SELECT * FROM performance_schema.replication_group_members;
+---------------------------+--------------------------------------+-------------+-------------+--------------+-------------+----------------+----------------------------+
| CHANNEL_NAME | MEMBER_ID | MEMBER_HOST | MEMBER_PORT | MEMBER_STATE | MEMBER_ROLE | MEMBER_VERSION | MEMBER_COMMUNICATION_STACK |
+---------------------------+--------------------------------------+-------------+-------------+--------------+-------------+----------------+----------------------------+
| group_replication_applier | 395409e1-6dfa-11e6-970b-00212844f856 | s1 | 3306 | ONLINE | PRIMARY | 8.0.42 | XCom |
| group_replication_applier | ac39f1e6-6dfa-11e6-a69d-00212844f856 | s2 | 3306 | ONLINE | SECONDARY | 8.0.42 | XCom |
+---------------------------+--------------------------------------+-------------+-------------+--------------+-------------+----------------+----------------------------+

When s2 attempted to join the group, Section 20.5.4, “Distributed Recovery” ensured that s2 applied
the same transactions which s1 had applied. Once this process completed, s2 could join the group as
a member, and at this point it is marked as ONLINE. In other words it must have already caught up
with server s1 automatically. Once s2 is ONLINE, it then begins to process transactions with the group.
Verify that s2 has indeed synchronized with server s1 as follows.

mysql> SHOW DATABASES LIKE 'test';
+-----------------+
| Database (test) |
+-----------------+
| test |
+-----------------+

mysql> SELECT * FROM test.t1;
+----+------+
| c1 | c2 |

3913

Deploying Group Replication in Single-Primary Mode

+----+------+
| 1 | Luis |
+----+------+

mysql> SHOW BINLOG EVENTS;
+---------------+------+----------------+-----------+-------------+--+
| Log_name | Pos | Event_type | Server_id | End_log_pos | Info |
+---------------+------+----------------+-----------+-------------+--+
binlog.000001	4	Format_desc	2	123	Server ver: 8.0.42-log, Binlog ver: 4
binlog.000001	123	Previous_gtids	2	150	
binlog.000001	150	Gtid	1	211	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:1'
binlog.000001	211	Query	1	270	BEGIN
binlog.000001	270	View_change	1	369	view_id=14724832985483517:1
binlog.000001	369	Query	1	434	COMMIT
binlog.000001	434	Gtid	1	495	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:2'
binlog.000001	495	Query	1	585	CREATE DATABASE test
binlog.000001	585	Gtid	1	646	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:3'
binlog.000001	646	Query	1	770	use `test`; CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 TEXT NOT NULL)
binlog.000001	770	Gtid	1	831	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:4'
binlog.000001	831	Query	1	890	BEGIN
binlog.000001	890	Table_map	1	933	table_id: 108 (test.t1)
binlog.000001	933	Write_rows	1	975	table_id: 108 flags: STMT_END_F
binlog.000001	975	Xid	1	1002	COMMIT /* xid=30 */
binlog.000001	1002	Gtid	1	1063	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:5'
binlog.000001	1063	Query	1	1122	BEGIN
binlog.000001	1122	View_change	1	1261	view_id=14724832985483517:2
binlog.000001	1261	Query	1	1326	COMMIT
+---------------+------+----------------+-----------+-------------+--+

As seen above, the second server has been added to the group and it has replicated the changes from
server s1 automatically. In other words, the transactions applied on s1 up to the point in time that s2
joined the group have been replicated to s2.

Adding Additional Instances

Adding additional instances to the group is essentially the same sequence of steps as adding the
second server, except that the configuration has to be changed as it had to be for server s2. To
summarise the required operations:

1. Create the configuration file.

[mysqld]

#
Disable other storage engines
#
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"

#
Replication configuration parameters
#
server_id=3
gtid_mode=ON
enforce_gtid_consistency=ON
binlog_checksum=NONE # Not needed from 8.0.21

#
Group Replication configuration
#
plugin_load_add='group_replication.so'
group_replication_group_name="aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa"
group_replication_start_on_boot=off
group_replication_local_address= "s3:33061"
group_replication_group_seeds= "s1:33061,s2:33061,s3:33061"
group_replication_bootstrap_group= off

2. Start the server and connect to it. Create the replication user for distributed recovery.

SET SQL_LOG_BIN=0;
CREATE USER rpl_user@'%' IDENTIFIED BY 'password';

3914

Deploying Group Replication in Single-Primary Mode

GRANT REPLICATION SLAVE ON *.* TO rpl_user@'%';
GRANT CONNECTION_ADMIN ON *.* TO rpl_user@'%';
GRANT BACKUP_ADMIN ON *.* TO rpl_user@'%';
GRANT GROUP_REPLICATION_STREAM ON *.* TO rpl_user@'%';
FLUSH PRIVILEGES;
SET SQL_LOG_BIN=1;

If you are providing user credentials using a CHANGE REPLICATION SOURCE TO | CHANGE
MASTER TO statement, issue the following statement after that:

CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='password' \\
 FOR CHANNEL 'group_replication_recovery';

In MySQL 8.0.23 or later, use this statement instead:

CHANGE REPLICATION SOURCE TO SOURCE_USER='rpl_user', SOURCE_PASSWORD='password' \\
 FOR CHANNEL 'group_replication_recovery';

3. Install the Group Replication plugin if necessary, like this:

mysql> INSTALL PLUGIN group_replication SONAME 'group_replication.so';

4. Start Group Replication:

mysql> START GROUP_REPLICATION;

If you are providing user credentials for distributed recovery in the START GROUP_REPLICATION
statement (MySQL 8.0.21 or later), you can do so like this:

mysql> START GROUP_REPLICATION USER='rpl_user', PASSWORD='password';

At this point server s3 is booted and running, has joined the group and caught up with the other servers
in the group. Consulting the performance_schema.replication_group_members table again
confirms this is the case.

mysql> SELECT * FROM performance_schema.replication_group_members;
+---------------------------+--------------------------------------+-------------+-------------+--------------+-------------+----------------+----------------------------+
| CHANNEL_NAME | MEMBER_ID | MEMBER_HOST | MEMBER_PORT | MEMBER_STATE | MEMBER_ROLE | MEMBER_VERSION | MEMBER_COMMUNICATION_STACK |
+---------------------------+--------------------------------------+-------------+-------------+--------------+-------------+----------------+----------------------------+
group_replication_applier	395409e1-6dfa-11e6-970b-00212844f856	s1	3306	ONLINE	PRIMARY	8.0.42	XCom
group_replication_applier	7eb217ff-6df3-11e6-966c-00212844f856	s3	3306	ONLINE	SECONDARY	8.0.42	XCom
group_replication_applier	ac39f1e6-6dfa-11e6-a69d-00212844f856	s2	3306	ONLINE	SECONDARY	8.0.42	XCom
+---------------------------+--------------------------------------+-------------+-------------+--------------+-------------+----------------+----------------------------+

Issuing this same query on server s2 or server s1 yields the same result. Also, you can verify that
server s3 has caught up:

mysql> SHOW DATABASES LIKE 'test';
+-----------------+
| Database (test) |
+-----------------+
| test |
+-----------------+

mysql> SELECT * FROM test.t1;
+----+------+
| c1 | c2 |
+----+------+
| 1 | Luis |
+----+------+

mysql> SHOW BINLOG EVENTS;
+---------------+------+----------------+-----------+-------------+--+
| Log_name | Pos | Event_type | Server_id | End_log_pos | Info |
+---------------+------+----------------+-----------+-------------+--+
binlog.000001	4	Format_desc	3	123	Server ver: 8.0.42-log, Binlog ver: 4
binlog.000001	123	Previous_gtids	3	150	
binlog.000001	150	Gtid	1	211	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:1'
binlog.000001	211	Query	1	270	BEGIN

3915

Deploying Group Replication Locally

binlog.000001	270	View_change	1	369	view_id=14724832985483517:1
binlog.000001	369	Query	1	434	COMMIT
binlog.000001	434	Gtid	1	495	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:2'
binlog.000001	495	Query	1	585	CREATE DATABASE test
binlog.000001	585	Gtid	1	646	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:3'
binlog.000001	646	Query	1	770	use `test`; CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 TEXT NOT NULL)
binlog.000001	770	Gtid	1	831	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:4'
binlog.000001	831	Query	1	890	BEGIN
binlog.000001	890	Table_map	1	933	table_id: 108 (test.t1)
binlog.000001	933	Write_rows	1	975	table_id: 108 flags: STMT_END_F
binlog.000001	975	Xid	1	1002	COMMIT /* xid=29 */
binlog.000001	1002	Gtid	1	1063	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:5'
binlog.000001	1063	Query	1	1122	BEGIN
binlog.000001	1122	View_change	1	1261	view_id=14724832985483517:2
binlog.000001	1261	Query	1	1326	COMMIT
binlog.000001	1326	Gtid	1	1387	SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:6'
binlog.000001	1387	Query	1	1446	BEGIN
binlog.000001	1446	View_change	1	1585	view_id=14724832985483517:3
binlog.000001	1585	Query	1	1650	COMMIT
+---------------+------+----------------+-----------+-------------+--+

20.2.2 Deploying Group Replication Locally

The most common way to deploy Group Replication is using multiple server instances, to provide high
availability. It is also possible to deploy Group Replication locally, for example for testing purposes.
This section explains how you can deploy Group Replication locally.

Important

Group Replication is usually deployed on multiple hosts because this ensures
that high-availability is provided. The instructions in this section are not suitable
for production deployments because all MySQL server instances are running on
the same single host. In the event of failure of this host, the whole group fails.
Therefore this information should be used for testing purposes and it should not
be used in a production environments.

This section explains how to create a replication group with three MySQL Server instances on one
physical machine. This means that three data directories are needed, one per server instance, and
that you need to configure each instance independently. This - procedure assumes that MySQL Server
was downloaded and unpacked - into the directory named mysql-8.0. Each MySQL server instance
requires a specific data directory. Create a directory named data, then in that directory create a
subdirectory for each server instance, for example s1, s2 and s3, and initialize each one.

mysql-8.0/bin/mysqld --initialize-insecure --basedir=$PWD/mysql-8.0 --datadir=$PWD/data/s1
mysql-8.0/bin/mysqld --initialize-insecure --basedir=$PWD/mysql-8.0 --datadir=$PWD/data/s2
mysql-8.0/bin/mysqld --initialize-insecure --basedir=$PWD/mysql-8.0 --datadir=$PWD/data/s3

Inside data/s1, data/s2, data/s3 is an initialized data directory, containing the mysql system
database and related tables and much more. To learn more about the initialization procedure, see
Section 2.9.1, “Initializing the Data Directory”.

Warning

Do not use -initialize-insecure in production environments, it is only
used here to simplify the tutorial. For more information on security settings, see
Section 20.6, “Group Replication Security”.

Configuration of Local Group Replication Members

When you are following Section 20.2.1.2, “Configuring an Instance for Group Replication”, you need to
add configuration for the data directories added in the previous section. For example:

[mysqld]

server configuration

3916

Requirements and Limitations

datadir=<full_path_to_data>/data/s1
basedir=<full_path_to_bin>/mysql-8.0/

port=24801
socket=<full_path_to_sock_dir>/s1.sock

These settings configure MySQL server to use the data directory created earlier and which port the
server should open and start listening for incoming connections.

Note

The non-default port of 24801 is used because in this tutorial the three server
instances use the same hostname. In a setup with three different machines this
would not be required.

Group Replication requires a network connection between the members, which means that each
member must be able to resolve the network address of all of the other members. For example in this
tutorial all three instances run on one machine, so to ensure that the members can contact each other
you could add a line to the option file such as report_host=127.0.0.1.

Then each member needs to be able to connect to the other members on their
group_replication_local_address. For example in the option file of member s1 add:

group_replication_local_address= "127.0.0.1:24901"
group_replication_group_seeds= "127.0.0.1:24901,127.0.0.1:24902,127.0.0.1:24903"

This configures s1 to use port 24901 for internal group communication with seed members. For each
server instance you want to add to the group, make these changes in the option file of the member.
For each member you must ensure a unique address is specified, so use a unique port per instance for
group_replication_local_address. Usually you want all members to be able to serve as seeds
for members that are joining the group and have not got the transactions processed by the group. In
this case, add all of the ports to group_replication_group_seeds as shown above.

The remaining steps of Section 20.2.1, “Deploying Group Replication in Single-Primary Mode” apply
equally to a group which you have deployed locally in this way.

20.3 Requirements and Limitations
This section lists and explains the requirements and limitations of Group Replication.

20.3.1 Group Replication Requirements

• Infrastructure

• Server Instance Configuration

Server instances that you want to use for Group Replication must satisfy the following requirements.

Infrastructure

• InnoDB Storage Engine. Data must be stored in the InnoDB transactional storage engine.
Transactions are executed optimistically and then, at commit time, are checked for conflicts. If there
are conflicts, in order to maintain consistency across the group, some transactions are rolled back.
This means that a transactional storage engine is required. Moreover, InnoDB provides some
additional functionality that enables better management and handling of conflicts when operating
together with Group Replication. The use of other storage engines, including the temporary MEMORY
storage engine, might cause errors in Group Replication. Convert any tables in other storage engines
to use InnoDB before using the instance with Group Replication. You can prevent the use of other
storage engines by setting the disabled_storage_engines system variable on group members,
for example:

disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"

3917

Group Replication Requirements

• Primary Keys. Every table that is to be replicated by the group must have a defined primary
key, or primary key equivalent where the equivalent is a non-null unique key. Such keys are
required as a unique identifier for every row within a table, enabling the system to determine
which transactions conflict by identifying exactly which rows each transaction has modified. Group
Replication has its own built-in set of checks for primary keys or primary key equivalents, and
does not use the checks carried out by the sql_require_primary_key system variable. You
may set sql_require_primary_key=ON for a server instance where Group Replication is
running, and you may set the REQUIRE_TABLE_PRIMARY_KEY_CHECK option of the CHANGE
REPLICATION SOURCE TO | CHANGE MASTER TO statement to ON for a Group Replication
channel. However, be aware that you might find some transactions that are permitted under
Group Replication's built-in checks are not permitted under the checks carried out when you set
sql_require_primary_key=ON or REQUIRE_TABLE_PRIMARY_KEY_CHECK=ON.

• Network Performance. MySQL Group Replication is designed to be deployed in a cluster
environment where server instances are very close to each other. The performance and stability
of a group can be impacted by both network latency and network bandwidth. Bi-directional
communication must be maintained at all times between all group members. If either inbound
or outbound communication is blocked for a server instance (for example, by a firewall, or by
connectivity issues), the member cannot function in the group, and the group members (including the
member with issues) might not be able to report the correct member status for the affected server
instance.

From MySQL 8.0.14, you can use an IPv4 or IPv6 network infrastructure, or a mix of the two, for TCP
communication between remote Group Replication servers. There is also nothing preventing Group
Replication from operating over a virtual private network (VPN).

Also from MySQL 8.0.14, where Group Replication server instances are co-located and share a local
group communication engine (XCom) instance, a dedicated input channel with lower overhead is
used for communication where possible instead of the TCP socket. For certain Group Replication
tasks that require communication between remote XCom instances, such as joining a group, the
TCP network is still used, so network performance influences the group's performance.

Server Instance Configuration

The following options must be configured as shown on server instances that are members of a group.

• Unique Server Identifier. Use the server_id system variable to configure the server with
a unique server ID, as required for all servers in replication topologies. The server ID must be a
positive integer between 1 and (232)−1, and it must be different from every other server ID in use by
any other server in the replication topology.

• Binary Log Active. Set --log-bin[=log_file_name]. From MySQL 8.0, binary logging is
enabled by default, and you do not need to specify this option unless you want to change the name
of the binary log files. Group Replication replicates the binary log's contents, therefore the binary log
needs to be on for it to operate. See Section 7.4.4, “The Binary Log”.

• Replica Updates Logged. Set log_replica_updates=ON (from MySQL 8.0.26) or
log_slave_updates=ON (before MySQL 8.0.26). From MySQL 8.0, this setting is the default, so
you do not need to specify it. Group members need to log transactions that are received from their
donors at joining time and applied through the replication applier, and to log all transactions that they
receive and apply from the group. This enables Group Replication to carry out distributed recovery
by state transfer from an existing group member's binary log.

• Binary Log Row Format. Set binlog_format=row. This setting is the default, so you do not
need to specify it. Group Replication relies on the row-based replication format to propagate changes
consistently among the servers in the group, and extract the necessary information to detect conflicts
among transactions that execute concurrently in different servers in the group. From MySQL 8.0.19,
the REQUIRE_ROW_FORMAT setting is automatically added to Group Replication's channels to
enforce the use of row-based replication when the transactions are applied. See Section 19.2.1,
“Replication Formats” and Section 19.3.3, “Replication Privilege Checks”.

3918

Group Replication Requirements

• Binary Log Checksums Off (to MySQL 8.0.20). Up to and including MySQL 8.0.20, set
binlog_checksum=NONE. In these releases, Group Replication cannot make use of checksums
and does not support their presence in the binary log. From MySQL 8.0.21, Group Replication
supports checksums, so group members may use the default setting binlog_checksum=CRC32,
and you do not need to specify it.

• Global Transaction Identifiers On. Set gtid_mode=ON and
enforce_gtid_consistency=ON. These settings are not the defaults. GTID-based replication is
required for Group Replication, which uses global transaction identifiers to track the transactions that
have been committed on every server instance in the group. See Section 19.1.3, “Replication with
Global Transaction Identifiers”.

In addition, if you need to set the value of gtid_purged, you must do so while Group Replication is
not running.

• Replication Information Repositories. Set master_info_repository=TABLE and
relay_log_info_repository=TABLE. In MySQL 8.0, these settings are the default, and
the FILE setting is deprecated. From MySQL 8.0.23, the use of these system variables is
deprecated, so omit the system variables and just allow the default. The replication applier
needs to have the replication metadata written to the mysql.slave_master_info and
mysql.slave_relay_log_info system tables to ensure the Group Replication plugin
has consistent recoverability and transactional management of the replication metadata. See
Section 19.2.4.2, “Replication Metadata Repositories”.

• Transaction Write Set Extraction. Set transaction_write_set_extraction=XXHASH64
so that while collecting rows to log them to the binary log, the server collects the write set as well.
In MySQL 8.0, this setting is the default, and from MySQL 8.0.26, the use of the system variable
is deprecated. The write set is based on the primary keys of each row and is a simplified and
compact view of a tag that uniquely identifies the row that was changed. Group Replication uses this
information for conflict detection and certification on all group members.

• Default Table Encryption. Set default_table_encryption to the same value on all group
members. Default schema and tablespace encryption can be either enabled (ON) or disabled (OFF,
the default) as long as the setting is the same on all members.

The value of default_table_encryption cannot be changed while Group Replication is running.

• Lower Case Table Names. Set lower_case_table_names to the same value on all group
members. A setting of 1 is correct for the use of the InnoDB storage engine, which is required for
Group Replication. Note that this setting is not the default on all platforms.

• Binary Log Dependency Tracking. Setting binlog_transaction_dependency_tracking
to WRITESET can improve performance for a group member, depending on the group's
workload. While Group Replication carries out its own parallelization after certification
when applying transactions from the relay log, independently of any value set for
binlog_transaction_dependency_tracking, this value does affect how transactions are
written to the binary logs on Group Replication members. The dependency information in those logs
is used to assist the process of state transfer for distributed recovery from a donor's binary log, which
takes place whenever a member joins or rejoins the group.

Note

When replica_preserve_commit_order is ON, setting
binlog_transaction_dependency_tracking to WRITESET has the
same effect as setting it to WRITESET_SESSION.

• Multithreaded Appliers. Group Replication members can be configured as multithreaded
replicas, enabling transactions to be applied in parallel. From MySQL 8.0.27, all replicas
are configured as multithreaded by default. A nonzero value for the system variable
replica_parallel_workers (from MySQL 8.0.26) or slave_parallel_workers (before

3919

Group Replication Limitations

MySQL 8.0.26) enables the multithreaded applier on the member. The default from MySQL
8.0.27 is 4 parallel applier threads, and up to 1024 parallel applier threads can be specified. For a
multithreaded replica, the following settings are also required, which are the defaults from MySQL
8.0.27:

replica_preserve_commit_order=ON
(from MySQL 8.0.26) or
slave_preserve_commit_order=ON
(before MySQL 8.0.26)

This setting is required to ensure that the final commit of parallel
transactions is in the same order as the original transactions.
Group Replication relies on consistency mechanisms built around
the guarantee that all participating members receive and apply
committed transactions in the same order.

replica_parallel_type=LOGICAL_CLOCK
(from MySQL 8.0.26) or
slave_parallel_type=LOGICAL_CLOCK
(before MySQL 8.0.26)

This setting is required with
replica_preserve_commit_order=ON or
slave_preserve_commit_order=ON. It specifies the policy
used to decide which transactions are allowed to execute in
parallel on the replica.

Setting replica_parallel_workers=0 or slave_parallel_workers=0 disables
parallel execution and gives the replica a single applier thread and no coordinator thread.
With that setting, the replica_parallel_type or slave_parallel_type and
replica_preserve_commit_order or slave_preserve_commit_order options have no
effect and are ignored. From MySQL 8.0.27, if parallel execution is disabled when GTIDs are in
use on a replica, the replica actually uses one parallel worker, to take advantage of the method for
retrying transactions without accessing the file positions. However, this behavior does not change
anything for the user.

• Detached XA transactions. MySQL 8.0.29 and later supports detached XA transactions. A
detached transaction is one which, once prepared, is no longer connected to the current session.
This happens automatically as part of executing XA PREPARE. The prepared XA transaction can be
committed or rolled back by another connection, and the current session can then initiate another XA
transaction or local transaction without waiting for the transaction that was just prepared to complete.

When detached XA transaction support is enabled (xa_detach_on_prepare = ON) it is possible
for any connection to this server to list (using XA RECOVER), roll back, or commit any prepared XA
transaction. In addition, you cannot use temporary tables within detached XA transactions.

You can disable support for detached XA transactions by setting xa_detach_on_prepare to OFF,
but this is not recommended. In particular, if this server is being set up as an instance in MySQL
group replication, you should leave this variable set to its default value (ON).

See Section 15.3.8.2, “XA Transaction States”, for more information.

20.3.2 Group Replication Limitations

• Limit on Group Size

• Limits on Transaction Size

The following known limitations exist for Group Replication. Note that the limitations and issues
described for multi-primary mode groups can also apply in single-primary mode clusters during a
failover event, while the newly elected primary flushes out its applier queue from the old primary.

Tip

Group Replication is built on GTID based replication, therefore you should also
be aware of Section 19.1.3.7, “Restrictions on Replication with GTIDs”.

• --upgrade=MINIMAL option. Group Replication cannot be started following a MySQL Server
upgrade that uses the MINIMAL option (--upgrade=MINIMAL), which does not upgrade system
tables on which the replication internals depend.

3920

Group Replication Limitations

• Gap Locks. Group Replication's certification process for concurrent transactions does not take
into account gap locks, as information about gap locks is not available outside of InnoDB. See Gap
Locks for more information.

Note

For a group in multi-primary mode, unless you rely on REPEATABLE READ
semantics in your applications, we recommend using the READ COMMITTED
isolation level with Group Replication. InnoDB does not use gap locks in
READ COMMITTED, which aligns the local conflict detection within InnoDB
with the distributed conflict detection performed by Group Replication. For a
group in single-primary mode, only the primary accepts writes, so the READ
COMMITTED isolation level is not important to Group Replication.

• Table Locks and Named Locks. The certification process does not take into account table locks
(see Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”) or named locks (see
GET_LOCK()).

• Binary Log Checksums. Up to and including MySQL 8.0.20, Group Replication cannot
make use of checksums and does not support their presence in the binary log, so you must set
binlog_checksum=NONE when configuring a server instance to become a group member. From
MySQL 8.0.21, Group Replication supports checksums, so group members may use the default
setting binlog_checksum=CRC32. The setting for binlog_checksum does not have to be the
same for all members of a group.

When checksums are available, Group Replication does not use them to verify incoming events
on the group_replication_applier channel, because events are written to that relay log
from multiple sources and before they are actually written to the originating server's binary log,
which is when a checksum is generated. Checksums are used to verify the integrity of events on
the group_replication_recovery channel and on any other replication channels on group
members.

• SERIALIZABLE Isolation Level. SERIALIZABLE isolation level is not supported in multi-
primary groups by default. Setting a transaction isolation level to SERIALIZABLE configures Group
Replication to refuse to commit the transaction.

• Concurrent DDL versus DML Operations. Concurrent data definition statements and data
manipulation statements executing against the same object but on different servers is not supported
when using multi-primary mode. During execution of Data Definition Language (DDL) statements
on an object, executing concurrent Data Manipulation Language (DML) on the same object but on
a different server instance has the risk of conflicting DDL executing on different instances not being
detected.

• Foreign Keys with Cascading Constraints. Multi-primary mode groups (members all
configured with group_replication_single_primary_mode=OFF) do not support tables
with multi-level foreign key dependencies, specifically tables that have defined CASCADING
foreign key constraints. This is because foreign key constraints that result in cascading
operations executed by a multi-primary mode group can result in undetected conflicts and
lead to inconsistent data across the members of the group. Therefore we recommend setting
group_replication_enforce_update_everywhere_checks=ON on server instances used in
multi-primary mode groups to avoid undetected conflicts.

In single-primary mode this is not a problem as it does not allow concurrent writes to multiple
members of the group and thus there is no risk of undetected conflicts.

• Multi-primary Mode Deadlock. When a group is operating in multi-primary mode, SELECT ..
FOR UPDATE statements can result in a deadlock. This is because the lock is not shared across the
members of the group, therefore the expectation for such a statement might not be reached.

• Replication Filters. Global replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some servers would make the

3921

Group Replication Limitations

group unable to reach agreement on a consistent state. Channel specific replication filters can be
used on replication channels that are not directly involved with Group Replication, such as where a
group member also acts as a replica to a source that is outside the group. They cannot be used on
the group_replication_applier or group_replication_recovery channels.

• Encrypted Connections. Support for the TLSv1.3 protocol is available in MySQL Server as
of MySQL 8.0.16, provided that MySQL was compiled using OpenSSL 1.1.1 or higher. In MySQL
8.0.16 and MySQL 8.0.17, if the server supports TLSv1.3, the protocol is not supported in the group
communication engine and cannot be used by Group Replication. Group Replication supports
TLSv1.3 from MySQL 8.0.18, where it can be used for group communication connections and
distributed recovery connections.

In MySQL 8.0.18, TLSv1.3 can be used in Group Replication for the distributed
recovery connection, but the group_replication_recovery_tls_version and
group_replication_recovery_tls_ciphersuites system variables are not available. The
donor servers must therefore permit the use of at least one TLSv1.3 ciphersuite that is enabled by
default, as listed in Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”. From MySQL
8.0.19, you can use the options to configure client support for any selection of ciphersuites, including
only non-default ciphersuites if you want.

• Cloning Operations. Group Replication initiates and manages cloning operations for distributed
recovery, but group members that have been set up to support cloning may also participate in
cloning operations that a user initiates manually. In releases before MySQL 8.0.20, you cannot
initiate a cloning operation manually if the operation involves a group member on which Group
Replication is running. From MySQL 8.0.20, you can do this, provided that the cloning operation
does not remove and replace the data on the recipient. The statement to initiate the cloning
operation must therefore include the DATA DIRECTORY clause if Group Replication is running. See
Cloning for Other Purposes.

Limit on Group Size

The maximum number of MySQL servers that can be members of a single replication group is 9. If
further members attempt to join the group, their request is refused. This limit has been identified from
testing and benchmarking as a safe boundary where the group performs reliably on a stable local area
network.

Limits on Transaction Size

If an individual transaction results in message contents which are large enough that the message
cannot be copied between group members over the network within a 5-second window, members
can be suspected of having failed, and then expelled, just because they are busy processing the
transaction. Large transactions can also cause the system to slow due to problems with memory
allocation. To avoid these issues use the following mitigations:

• If unnecessary expulsions occur due to large messages, use the system variable
group_replication_member_expel_timeout to allow additional time before a member under
suspicion of having failed is expelled. You can allow up to an hour after the initial 5-second detection
period before a suspect member is expelled from the group. From MySQL 8.0.21, an additional 5
seconds is allowed by default.

• Where possible, try and limit the size of your transactions before they are handled by Group
Replication. For example, split up files used with LOAD DATA into smaller chunks.

• Use the system variable group_replication_transaction_size_limit to specify a
maximum transaction size that the group accepts. In MySQL 8.0, this system variable defaults to
a maximum transaction size of 150000000 bytes (approximately 143 MB). Transactions above this
size are rolled back and are not sent to Group Replication's Group Communication System (GCS) for
distribution to the group. Adjust the value of this variable depending on the maximum message size
that you need the group to tolerate, bearing in mind that the time taken to process a transaction is
proportional to its size.

3922

Monitoring Group Replication

• Use the system variable group_replication_compression_threshold to specify a
message size above which compression is applied. This system variable defaults to 1000000
bytes (1 MB), so large messages are automatically compressed. Compression is carried out
by Group Replication's Group Communication System (GCS) when it receives a message that
was permitted by the group_replication_transaction_size_limit setting but exceeds
the group_replication_compression_threshold setting. For more information, see
Section 20.7.4, “Message Compression”.

• Use the system variable group_replication_communication_max_message_size
to specify a message size above which messages are fragmented. This system variable
defaults to 10485760 bytes (10 MiB), so large messages are automatically fragmented. GCS
carries out fragmentation after compression if the compressed message still exceeds the
group_replication_communication_max_message_size limit. In order for a replication
group to use fragmentation, all group members must be at MySQL 8.0.16 or above, and the Group
Replication communication protocol version in use by the group must allow fragmentation. For more
information, see Section 20.7.5, “Message Fragmentation”.

The maximum transaction size, message compression, and message fragmentation can all be
deactivated by specifying a zero value for the relevant system variable. If you have deactivated all
these safeguards, the upper size limit for a message that can be handled by the applier thread on
a member of a replication group is the value of the member's replica_max_allowed_packet
or slave_max_allowed_packet system variable, which have a default and maximum value of
1073741824 bytes (1 GB). A message that exceeds this limit fails when the receiving member attempts
to handle it. The upper size limit for a message that a group member can originate and attempt to
transmit to the group is 4294967295 bytes (approximately 4 GB). This is a hard limit on the packet size
that is accepted by the group communication engine for Group Replication (XCom, a Paxos variant),
which receives messages after GCS has handled them. A message that exceeds this limit fails when
the originating member attempts to broadcast it.

20.4 Monitoring Group Replication

You can use the MySQL Performance Schema to monitor Group Replication. These Performance
Schema tables display information specific to Group Replication:

• replication_group_member_stats: See Section 20.4.4, “The replication_group_member_stats
Table”.

• replication_group_members: See Section 20.4.3, “The replication_group_members Table”.

• replication_group_communication_information: See Section 29.12.11.12, “The
replication_group_communication_information Table”.

These Performance Schema replication tables also show information relating to Group Replication:

• replication_connection_status shows information regarding Group Replication, such as
transactions received from the group and queued in the applier queue (relay log).

• replication_applier_status shows the states of channels and threads relating to Group
Replication. These can also be used to monitor what individual worker threads are doing.

Replication channels created by the Group Replication plugin are listed here:

• group_replication_recovery: Used for replication changes related to distributed recovery.

• group_replication_applier: Used for the incoming changes from the group, to apply
transactions coming directly from the group.

For information about system variables affecting Group Replication, see Section 20.9.1, “Group
Replication System Variables”. See Section 20.9.2, “Group Replication Status Variables”, for status
variables providing information about Group Replication.

3923

GTIDs and Group Replication

Beginning with MySQL 8.0.21, messages relating to Group Replication lifecycle events other
than errors are classified as system messages; these are always written to the replication group
member' error log. You can use this information to review the history of a given server's membership
in a replication group. (Previously, such events were classified as information messages; for
a MySQL server from a release prior to 8.0.21, these can be added to the error log by setting
log_error_verbosity to 3.)

Some lifecycle events that affect the whole group are logged on every group member, such as a new
member entering ONLINE status in the group or a primary election. Other events are logged only on
the member where they take place, such as super read only mode being enabled or disabled on the
member, or the member leaving the group. A number of lifecycle events that can indicate an issue if
they occur frequently are logged as warning messages, including a member becoming unreachable
and then reachable again, and a member starting distributed recovery by state transfer from the binary
log or by a remote cloning operation.

Note

If you are monitoring one or more secondary instances using mysqladmin,
you should be aware that a FLUSH STATUS statement executed by this utility
creates a GTID event on the local instance which may impact future group
operations.

20.4.1 GTIDs and Group Replication

Group Replication uses GTIDs (global transaction identifiers) to track exactly which
transactions have been committed on every server instance. The settings gtid_mode=ON and
enforce_gtid_consistency=ON are required on all group members. Incoming transactions from
clients are assigned a GTID by the group member that receives them. Any replicated transactions that
are received by group members on asynchronous replication channels from source servers outside the
group retain the GTIDs that they have when they arrive on the group member.

The GTIDs that are assigned to incoming transactions from clients use the group name specified by
the group_replication_group_name system variable as the UUID part of the identifier, rather
than the server UUID of the individual group member that received the transaction. All the transactions
received directly by the group can therefore be identified and are grouped together in GTID sets,
and it does not matter which member originally received them. Each group member has a block
of consecutive GTIDs reserved for its use, and when these are consumed it reserves more. The
group_replication_gtid_assignment_block_size system variable sets the size of the blocks,
with a default of 1 million GTIDs in each block.

View change events (View_change_log_event), which are generated by the group itself when a
new member joins, are given GTIDs when they are recorded in the binary log. By default, the GTIDs for
these events also use the group name specified by the group_replication_group_name system
variable as the UUID part of the identifier. From MySQL 8.0.26, you can set the Group Replication
system variable group_replication_view_change_uuid to use an alternative UUID in the GTIDs
for view change events, so that they are easy to distinguish from transactions received by the group
from clients. This can be useful if your setup allows for failover between groups, and you need to
identify and discard transactions that were specific to the backup group. The alternative UUID must be
different from the server UUIDs of the members. It must also be different from any UUIDs in the GTIDs
applied to anonymous transactions using the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS
option of the CHANGE REPLICATION SOURCE TO statement.

From MySQL 8.0.27, the settings GTID_ONLY=1, REQUIRE_ROW_FORMAT = 1,
and SOURCE_AUTO_POSITION = 1 are applied for the Group Replication channels
group_replication_applier and group_replication_recovery. The settings are made
automatically on the Group Replication channels when they are created, or when a member server in
a replication group is upgraded to 8.0.27 or higher. These options are normally set using a CHANGE
REPLICATION SOURCE TO statement, but note that you cannot disable them for a Group Replication
channel. With these options set, the group member does not persist file names and file positions in the

3924

Group Replication Server States

replication metadata repositories for these channels. GTID auto-positioning and GTID auto-skip are
used to locate the correct receiver and applier positions when necessary.

Extra Transactions

If a joining member has transactions in its GTID set that are not present on the existing members of
the group, it is not allowed to complete the distributed recovery process, and cannot join the group. If
a remote cloning operation was carried out, these transactions would be deleted and lost, because the
data directory on the joining member is erased. If state transfer from a donor's binary log was carried
out, these transactions could conflict with the group's transactions.

Extra transactions might be present on a member if an administrative transaction is carried out on the
instance while Group Replication is stopped. To avoid introducing new transactions in that way, always
set the value of the sql_log_bin system variable to OFF before issuing administrative statements,
and back to ON afterwards:

SET SQL_LOG_BIN=0;
<administrator action>
SET SQL_LOG_BIN=1;

Setting this system variable to OFF means that the transactions that occur from that point until you set it
back to ON are not written to the binary log and do not have GTIDs assigned to them.

If an extra transaction is present on a joining member, check the binary log for the affected server to
see what the extra transaction actually contains. The safest method to reconcile the joining member’s
data and GTID set with the members currently in the group is to use MySQL's cloning functionality to
transfer the content from a server in the group to the affected server. For instructions to do this, see
Section 7.6.7.3, “Cloning Remote Data”. If the transaction is required, rerun it after the member has
successfully rejoined.

20.4.2 Group Replication Server States

The state of a Group Replication group member shows its current role in the group. The Performance
Schema table replication_group_members shows the state for each member in a group. If the
group is fully functional and all members are communicating properly, all members report the same
state for all other members. However, a member that has left the group or is part of a network partition
cannot report accurate information on the other servers. In this situation, the member does not attempt
to guess the status of the other servers, and instead reports them as unreachable.

A group member can be in the following states:

ONLINE The server is an active member of a group and in a fully functioning
state. Other group members can connect to it, as can clients if
applicable. A member is only fully synchronized with the group, and
participating in it, when it is in the ONLINE state.

RECOVERING The server has joined a group and is in the process of becoming an
active member. Distributed recovery is currently taking place, where
the member is receiving state transfer from a donor using a remote
cloning operation or the donor's binary log. This state is

For more information, see Section 20.5.4, “Distributed Recovery”.

OFFLINE The Group Replication plugin is loaded but the member does not
belong to any group. This status may briefly occur while a member
is joining or rejoining a group.

ERROR The member is in an error state and is not functioning correctly
as a group member. A member can enter error state either while
applying transactions or during the recovery phase. A member in

3925

The replication_group_members Table

this state does not participate in the group's transactions. For more
information on possible reasons for error states, see Section 20.7.7,
“Responses to Failure Detection and Network Partitioning”.

Depending on the exit action set by
group_replication_exit_state_action, the member
is in read-only mode (super_read_only=ON) and could also
be in offline mode (offline_mode=ON). Note that a server in
offline mode following the OFFLINE_MODE exit action is displayed
with ERROR status, not OFFLINE. A server with the exit action
ABORT_SERVER shuts down and is removed from the view of the
group. For more information, see Section 20.7.7.4, “Exit Action”.

While a member is joining or rejoining a replication group, its
status can be displayed as ERROR before the group completes the
compatibility checks and accepts it as a member.

UNREACHABLE The local failure detector suspects that the member cannot be
contacted, because the group's messages are timing out. This can
happen if a member is disconnected involuntarily, for example.
If you see this status for other servers, it can also mean that the
member where you query this table is part of a partition, where a
subset of the group's servers can contact each other but cannot
contact the other servers in the group. For more information, see
Section 20.7.8, “Handling a Network Partition and Loss of Quorum”.

See Section 20.4.3, “The replication_group_members Table” for an example of the Performance
Schema table contents.

20.4.3 The replication_group_members Table

The performance_schema.replication_group_members table is used for monitoring the status
of the different server instances that are members of the group. The information in the table is updated
whenever there is a view change, for example when the configuration of the group is dynamically
changed when a new member joins. At that point, servers exchange some of their metadata to
synchronize themselves and continue to cooperate together. The information is shared between all the
server instances that are members of the replication group, so information on all the group members
can be queried from any member. This table can be used to get a high level view of the state of a
replication group, for example by issuing:

SELECT * FROM performance_schema.replication_group_members;
+---------------------------+--------------------------------------+-------------+-------------+--------------+-------------+----------------+----------------------------+
| CHANNEL_NAME | MEMBER_ID | MEMBER_HOST | MEMBER_PORT | MEMBER_STATE | MEMBER_ROLE | MEMBER_VERSION | MEMBER_COMMUNICATION_STACK |
+---------------------------+--------------------------------------+-------------+-------------+--------------+-------------+----------------+----------------------------+
group_replication_applier	d391e9ee-2691-11ec-bf61-00059a3c7a00	example1	4410	ONLINE	PRIMARY	8.0.27	XCom
group_replication_applier	e059ce5c-2691-11ec-8632-00059a3c7a00	example2	4420	ONLINE	SECONDARY	8.0.27	XCom
group_replication_applier	ecd9ad06-2691-11ec-91c7-00059a3c7a00	example3	4430	ONLINE	SECONDARY	8.0.27	XCom
+---------------------------+--------------------------------------+-------------+-------------+--------------+-------------+----------------+----------------------------+
3 rows in set (0.0007 sec)

Based on this result we can see that the group consists of three members. Shown in the table is each
member's server_uuid, as well as the member's host name and port number, which clients use
to connect to it. The MEMBER_STATE column shows one of the Section 20.4.2, “Group Replication
Server States”, in this case it shows that all three members in this group are ONLINE, and the
MEMBER_ROLE column shows that there are two secondaries, and a single primary. Therefore this
group must be running in single-primary mode. The MEMBER_VERSION column can be useful when
you are upgrading a group and are combining members running different MySQL versions. The
MEMBER_COMMUNICATION_STACK column shows the communication stack used for the group.

For more information about the MEMBER_HOST value and its impact on the distributed recovery
process, see Section 20.2.1.3, “User Credentials For Distributed Recovery”.

3926

The replication_group_member_stats Table

20.4.4 The replication_group_member_stats Table

Each member in a replication group certifies and applies transactions received by the group. Statistics
regarding the certifier and applier procedures are useful to understand how the applier queue
is growing, how many conflicts have been found, how many transactions were checked, which
transactions are committed everywhere, and so on.

The performance_schema.replication_group_member_stats table provides group-level
information related to the certification process, and also statistics for the transactions received and
originated by each individual member of the replication group. The information is shared between
all the server instances that are members of the replication group, so information on all the group
members can be queried from any member. Note that refreshing of statistics for remote members is
controlled by the message period specified in the group_replication_flow_control_period
option, so these can differ slightly from the locally collected statistics for the member where the query is
made. To use this table to monitor a Group Replication member, issue the following statement:

mysql> SELECT * FROM performance_schema.replication_group_member_stats\G

Beginning with MySQL 8.0.19, you can also use the following statement:

mysql> TABLE performance_schema.replication_group_member_stats\G

These columns are important for monitoring the performance of the members connected in the group.
Suppose that one of the group's members always reports a large number of transactions in its queue
compared to other members. This means that the member is delayed and is not able to keep up to date
with the other members of the group. Based on this information, you could decide to either remove the
member from the group, or delay the processing of transactions on the other members of the group in
order to reduce the number of queued transactions. This information can also help you to decide how
to adjust the flow control of the Group Replication plugin, see Section 20.7.2, “Flow Control”.

20.5 Group Replication Operations

This section explains common operations for managing groups.

20.5.1 Configuring an Online Group

You can configure an online group while Group Replication is running by using a set of functions, which
rely on a group action coordinator. These functions are installed by the Group Replication plugin in
version 8.0.13 and higher. This section describes how changes are made to a running group, and the
available functions.

Important

For the coordinator to be able to configure group wide actions on a running
group, all members must be running MySQL 8.0.13 or higher and have the
functions installed.

To use the functions, connect to a member of the running group and invoke the function with the
SELECT statement. The Group Replication plugin processes the action and its parameters and the
coordinator sends it to all members which are visible to the member where you invoked the function.
If the action is accepted, all members execute the action and send a termination message when
completed. Once all members declare the action as finished, the invoking member returns the result to
the client.

When configuring a whole group, the distributed nature of the operations means that they interact with
many processes of the Group Replication plugin, and therefore you should observe the following:

You can issue configuration operations everywhere. If you want to make member A the new
primary you do not need to invoke the operation on member A. All operations are sent and executed in

3927

Configuring an Online Group

a coordinated way on all group members. Also, this distributed execution of an operation has a different
ramification: if the invoking member dies, any already running configuration process continues to run
on other members. In the unlikely event that the invoking member dies, you can still use the monitoring
features to ensure other members complete the operation successfully.

All members must be online. To simplify the migration or election processes and guarantee they
are as fast as possible, the group must not contain any member currently in the distributed recovery
process, otherwise the configuration action is rejected by the member where you issue the statement.

No members can join a group during a configuration change. Any member that attempts to join
the group during a coordinated configuration change leaves the group and cancels its join process.

Only one configuration at once. A group which is executing a configuration change cannot accept
any other group configuration change, because concurrent configuration operations could lead to
member divergence.

All members must be running MySQL 8.0.13 or higher. Due to the distributed nature of the
configuration actions, all members must recognize them in order to execute them. The operation is
therefore rejected if any server running MySQL Server version 8.0.12 or lower is present in the group.

20.5.1.1 Changing the Primary

This section explains how to change which member of a single-primary group is the primary, using the
group_replication_set_as_primary() function, which can be can be run on any member of the
group. When this is done, the current primary becomes a read-only secondary, and the specified group
member becomes the read-write primary; this replaces the usual primary election process as described
in Section 20.1.3.1, “Single-Primary Mode”.

If a standard source-to-replica replication channel is running on the existing primary member
in addition to the Group Replication channels, you must stop that replication channel
before you can change the primary member. You can identify the current primary using the
MEMBER_ROLE column in the Performance Schema table replication_group_members, or the
group_replication_primary_member status variable.

If all members are not running the same MySQL Server version, you can specify a new primary
member that is running the lowest MySQL Server version in the group only. This safeguard is applied
to ensure the group maintains compatibility with new functions. This is recommended for all MySQL
versions, and enforced beginning with MySQL 8.0.17.

Any uncommitted transactions that the group is waiting on must be committed, rolled back, or
terminated before the operation can complete. Before MySQL 8.0.29, the function waits for all active
transactions on the existing primary to end, including incoming transactions that are started after the
function is used. As of MySQL 8.0.29, you can specify a timeout from 1 to 3600 seconds (60 minutes)
for transactions that are running when you use the function. For the timeout to work, all members of the
group must be at MySQL 8.0.29 or higher. Specify 0 for no timeout (or do not specify a timeout value),
in which case the group waits indefinitely. If you do not set the timeout, there is no upper limit to the
wait time, and new transactions can start during that time.

When the timeout expires, for any transactions that did not yet reach their commit phase, the client
session is disconnected so that the transaction does not proceed. Transactions that reached their
commit phase are allowed to complete. When you set a timeout, it also prevents new transactions
starting on the primary from that point on. Explicitly defined transactions (with a START TRANSACTION
or BEGIN statement) are subject to the timeout, disconnection, and incoming transaction blocking
even if they do not modify any data. To allow inspection of the primary while the function is operating,
single statements that do not modify data, as listed in Permitted Queries Under Consistency Rules, are
permitted to proceed.

Pass in the server_uuid of the member which you want to become the new primary of the group by
issuing the following statement:

3928

Configuring an Online Group

SELECT group_replication_set_as_primary(member_uuid);

In MySQL 8.0.29 and later, you can add a timeout, as shown here:

SELECT group_replication_set_as_primary(‘00371d66-3c45-11ea-804b-080027337932’, 300)

To check the status of the timeout, use the PROCESSLIST_INFO column in the Performance Schema
threads table, like this:

mysql> SELECT NAME, PROCESSLIST_INFO FROM performance_schema.threads
 -> WHERE NAME="thread/group_rpl/THD_transaction_monitor"\G
*************************** 1. row ***************************
 NAME: thread/group_rpl/THD_transaction_monitor
PROCESSLIST_INFO: Group replication transaction monitor: Stopped client connections

The status shows when the transaction monitoring thread has been created, when new transactions
have been stopped, when the client connections with uncommitted transactions have been
disconnected, and finally, when the process is complete and new transactions are allowed again.

While the action runs, you can check its progress by issuing the statement shown here:

mysql> SELECT event_name, work_completed, work_estimated
 -> FROM performance_schema.events_stages_current
 -> WHERE event_name LIKE "%stage/group_rpl%"\G
*************************** 1. row ***************************
 EVENT_NAME: stage/group_rpl/Primary Election: Waiting for members to turn on super_read_only
WORK_COMPLETED: 3
WORK_ESTIMATED: 5

20.5.1.2 Changing the Group Mode

This section explains how to change the mode which a group is running in, either single or multi-
primary. The functions used to change a group's mode can be run on any member.

Changing to Single-Primary Mode

Use the group_replication_switch_to_single_primary_mode() function to change a group
running in multi-primary mode to single-primary mode by issuing:

SELECT group_replication_switch_to_single_primary_mode()

When you change to single-primary mode, strict consistency checks are
also disabled on all group members, as required in single-primary mode
(group_replication_enforce_update_everywhere_checks=OFF).

If no string is passed in, the election of the new primary in the resulting single-primary
group follows the election policies described in Section 20.1.3.1, “Single-Primary Mode”. To
override the election process and configure a specific member of the multi-primary group
as the new primary in the process, get the server_uuid of the member and pass it to
group_replication_switch_to_single_primary_mode(). For example, issue:

SELECT group_replication_switch_to_single_primary_mode(member_uuid);

If you invoke the function on a member running a MySQL Server version from 8.0.17, and all members
are running MySQL Server version 8.0.17 or higher, you can only specify a new primary member that
is running the lowest MySQL Server version in the group, based on the patch version. This safeguard
is applied to ensure the group maintains compatibility with new functions. If you do not specify a new
primary member, the election process considers the patch version of the group members.

If any member is running a MySQL Server version between MySQL 8.0.13 and MySQL 8.0.16,
this safeguard is not enforced for the group and you can specify any new primary member, but it is
recommended to select a primary that is running the lowest MySQL Server version in the group. If you
do not specify a new primary member, the election process considers only the major version of the
group members.

3929

Configuring an Online Group

While the action runs, you can check its progress by issuing:

SELECT event_name, work_completed, work_estimated FROM performance_schema.events_stages_current WHERE event_name LIKE "%stage/group_rpl%";
+--+----------------+----------------+
| event_name | work_completed | work_estimated |
+--+----------------+----------------+
| stage/group_rpl/Primary Switch: waiting for pending transactions to finish | 4 | 20 |
+--+----------------+----------------+

Changing to Multi-Primary Mode

Use the group_replication_switch_to_multi_primary_mode() function to change a group
running in single-primary mode to multi-primary mode by issuing:

SELECT group_replication_switch_to_multi_primary_mode()

After some coordinated group operations to ensure the safety and consistency of your data, all
members which belong to the group become primaries.

When you change a group that was running in single-primary mode to run in multi-primary mode,
members running MySQL 8.0.17 or higher are automatically placed in read-only mode if they are
running a higher MySQL server version than the lowest version present in the group. Members running
MySQL 8.0.16 or lower do not carry out this check, and are always placed in read-write mode.

While the action runs, you can check its progress by issuing:

SELECT event_name, work_completed, work_estimated FROM performance_schema.events_stages_current WHERE event_name LIKE "%stage/group_rpl%";
+--+----------------+----------------+
| event_name | work_completed | work_estimated |
+--+----------------+----------------+
| stage/group_rpl/Multi-primary Switch: applying buffered transactions | 0 | 1 |
+--+----------------+----------------+

20.5.1.3 Using Group Replication Group Write Consensus

This section explains how to inspect and configure the maximum number of consensus instances
at any time for a group. This maximum is referred to as the event horizon for a group, and is the
maximum number of consensus instances that the group can execute in parallel. This enables you to
fine tune the performance of your Group Replication deployment. For example, the default value of
10 is suitable for a group running on a LAN, but for groups operating over a slower network such as a
WAN, increase this number to improve performance.

Inspecting a Group's Write Concurrency

Use the group_replication_get_write_concurrency() function to inspect a group's event
horizon value at runtime by issuing:

SELECT group_replication_get_write_concurrency();

Configuring a Group's Write Concurrency

Use the group_replication_set_write_concurrency() function to set the maximum number
of consensus instances that the system can execute in parallel by issuing:

SELECT group_replication_set_write_concurrency(instances);

where instances is the new maximum number of consensus instances. The
GROUP_REPLICATION_ADMIN privilege is required to use this function.

20.5.1.4 Setting a Group's Communication Protocol Version

From MySQL 8.0.16, Group Replication has the concept of a communication protocol for the group.
The Group Replication communication protocol version can be managed explicitly, and set to
accommodate the oldest MySQL Server version that you want the group to support. This enables

3930

Configuring an Online Group

groups to be formed from members at different MySQL Server versions while ensuring backward
compatibility.

• Versions from MySQL 5.7.14 allow compression of messages (see Section 20.7.4, “Message
Compression”).

• Versions from MySQL 8.0.16 also allow fragmentation of messages (see Section 20.7.5, “Message
Fragmentation”).

• Versions from MySQL 8.0.27 also allow the group communication engine to operate
with a single consensus leader when the group is in single-primary mode and
group_replication_paxos_single_leader is set to true (see Section 20.7.3, “Single
Consensus Leader”).

All members of the group must use the same communication protocol version, so that group members
can be at different MySQL Server releases but only send messages that can be understood by all
group members.

A MySQL server at version X can only join and reach ONLINE status in a replication group if the
group's communication protocol version is less than or equal to X. When a new member joins a
replication group, it checks the communication protocol version that is announced by the existing
members of the group. If the joining member supports that version, it joins the group and uses the
communication protocol that the group has announced, even if the member supports additional
communication capabilities. If the joining member does not support the communication protocol
version, it is expelled from the group.

If two members attempt to join in the same membership change event, they can only join if
the communication protocol version for both members is already compatible with the group's
communication protocol version. Members with different communication protocol versions from the
group must join in isolation. For example:

• One MySQL Server 8.0.16 instance can successfully join a group that uses the communication
protocol version 5.7.24.

• One MySQL Server 5.7.24 instance cannot successfully join a group that uses the communication
protocol version 8.0.16.

• Two MySQL Server 8.0.16 instances cannot simultaneously join a group that uses the
communication protocol version 5.7.24.

• Two MySQL Server 8.0.16 instances can simultaneously join a group that uses the communication
protocol version 8.0.16.

You can inspect the communication protocol in use by a group by using the
group_replication_get_communication_protocol() function, which returns the oldest
MySQL Server version that the group supports. All existing members of the group return the same
communication protocol version. For example:

SELECT group_replication_get_communication_protocol();
+--+
| group_replication_get_communication_protocol() |
+--+
| 8.0.16 |
+--+

Note that the group_replication_get_communication_protocol() function returns the
minimum MySQL version that the group supports, which might differ from the version number that was
passed to the group_replication_set_communication_protocol() function, and from the
MySQL Server version that is installed on the member where you use the function.

If you need to change the communication protocol version of a group so that members at
earlier releases can join, use the group_replication_set_communication_protocol()

3931

Configuring an Online Group

function to specify the MySQL Server version of the oldest member that you want to allow.
This makes the group fall back to a compatible communication protocol version if possible. The
GROUP_REPLICATION_ADMIN privilege is required to use this function, and all existing group
members must be online when you issue the statement, with no loss of majority. For example:

SELECT group_replication_set_communication_protocol("5.7.25");

If you upgrade all the members of a replication group to a new MySQL Server release,
the group's communication protocol version is not automatically upgraded to match.
If you no longer need to support members at earlier releases, you can use the
group_replication_set_communication_protocol() function to set the communication
protocol version to the new MySQL Server version to which you have upgraded the members. For
example:

SELECT group_replication_set_communication_protocol("8.0.16");

The group_replication_set_communication_protocol() function is implemented as a
group action, so it is executed at the same time on all members of the group. The group action starts
buffering messages and waits for delivery of any outgoing messages that were already in progress to
complete, then changes the communication protocol version and sends the buffered messages. If a
member attempts to join the group at any time after you change the communication protocol version,
the group members announce the new protocol version.

MySQL InnoDB cluster automatically and transparently manages the communication protocol versions
of its members, whenever the cluster topology is changed using AdminAPI operations. An InnoDB
cluster always uses the most recent communication protocol version that is supported by all the
instances that are currently part of the cluster or joining it. For details, see InnoDB Cluster and Group
Replication Protocol.

20.5.1.5 Configuring Member Actions

From MySQL 8.0.26, Group Replication has the capability to set actions for the members of a group to
take in specified situations. Member actions can be enabled and disabled individually using functions.
The member actions configuration for a server can also be reset to the default after it has left the
group.

Administrators (with the GROUP_REPLICATION_ADMIN privilege) can configure a member
action on the group’s primary using the group_replication_enable_member_action or
group_replication_disable_member_action function. The member actions configuration,
consisting of all the member actions and whether they are enabled or disabled, is then propagated
to other group members and joining members using Group Replication’s group messages. All group
members therefore have the same member actions configuration. You can also configure member
actions on a server that is not part of a group, as long as the Group Replication plugin is installed. In
that case, the member actions configuration is not propagated to any other servers.

If the server where you use the functions to configure a member action is part of a group, it must be the
current primary in a group in single-primary mode, and it must be part of the majority. The configuration
change is tracked internally by Group Replication, but it is not given a GTID and is not written to the
binary log, so it is not propagated to any servers outside the group, such as downstream replicas.
Group Replication increments the version number for its member actions configuration each time a
member action is enabled or disabled.

The member actions configuration is propagated to members as follows:

• When starting a group, the member actions configuration of the server that bootstraps the group
becomes the configuration for the group.

• If a group’s lowest MySQL Server version supports member actions, joining members receive the
group’s member actions configuration during the state exchange process that takes place when
they join. In that case, the joining member replaces its own member actions configuration with the
group’s.

3932

https://dev.mysql.com/doc/mysql-shell/8.0/en/monitoring-innodb-cluster.html#innodb-cluster-group-replication-protocol
https://dev.mysql.com/doc/mysql-shell/8.0/en/monitoring-innodb-cluster.html#innodb-cluster-group-replication-protocol

Restarting a Group

• If a joining member that supports member actions joins a group where the lowest MySQL Server
version does not support member actions, it does not receive a member actions configuration when it
joins. In that case, the joining member resets its own configuration to the default.

A member that does not support member actions cannot join a group that has a member actions
configuration, because its MySQL Server version is lower than the lowest version that the existing
group members are running.

The Performance Schema table replication_group_member_actions lists the member actions
that are available in the configuration, the events that trigger them, and whether or not they are
currently enabled. Member actions have a priority from 1 to 100, with lower values being actioned
first. If an error occurs when the member action is being carried out, the failure of the member action
can be logged but otherwise ignored. If the failure of the member action is considered critical, it can
be handled according to the policy specified by the group_replication_exit_state_action
system variable.

The mysql.replication_group_configuration_version table, which can be viewed using the
Performance Schema table replication_group_configuration_version, records the current
version of the member actions configuration. Whenever a member action is enabled or disabled using
the functions, the version number is incremented.

The group_replication_reset_member_actions function can only be used on a server that
is not part of a group. It resets the member actions configuration to the default settings, and resets
its version number to 1. The server must be writeable (with the read_only system variable set
to OFF) and have the Group Replication plugin installed. You can use this function to remove the
member actions configuration that a server used when it was part of a group, if you intend to use it as a
standalone server with no member actions or different member actions.

Member action: mysql_disable_super_read_only_if_primary

The member action mysql_disable_super_read_only_if_primary can be configured to make
a group in single-primary mode stay in super read-only mode when a new primary is elected, so that
the group only accepts replicated transactions and does not accept any direct writes from clients.
This setup means that when a group’s purpose is to provide a secondary backup to another group for
disaster tolerance, you can ensure that the secondary group remains synchronized with the first.

By default, super read-only mode is disabled on the primary when it is elected, so that the primary
becomes read-write, and accepts updates from a replication source server and from clients. This
is the situation when the member action mysql_disable_super_read_only_if_primary
is enabled, which is its default setting. If you set the action to disabled using the
group_replication_disable_member_action function, the primary remains in super read-only
mode after election. In this state, it does not accept updates from any clients, even users who have the
CONNECTION_ADMIN or SUPER privilege. It does continue to accept updates performed by replication
threads.

20.5.2 Restarting a Group

Group Replication is designed to ensure that the database service is continuously available, even
if some of the servers that form the group are currently unable to participate in it due to planned
maintenance or unplanned issues. As long as the remaining members are a majority of the group
they can elect a new primary and continue to function as a group. However, if every member of
a replication group leaves the group, and Group Replication is stopped on every member by a
STOP GROUP_REPLICATION statement or system shutdown, the group now only exists in theory,
as a configuration on the members. In that situation, to re-create the group, it must be started by
bootstrapping as if it was being started for the first time.

The difference between bootstrapping a group for the first time and doing it for the second or
subsequent times is that in the latter situation, the members of a group that was shut down might have
different transaction sets from each other, depending on the order in which they were stopped or failed.
A member cannot join a group if it has transactions that are not present on the other group members.

3933

Restarting a Group

For Group Replication, this includes both transactions that have been committed and applied, which
are in the gtid_executed GTID set, and transactions that have been certified but not yet applied,
which are in the group_replication_applier channel. The exact point at which a transaction is
committed depends on the transaction consistency level that is set for the group (see Section 20.5.3,
“Transaction Consistency Guarantees”). However, a Group Replication group member never removes
a transaction that has been certified, which is a declaration of the member’s intent to commit the
transaction.

The replication group must therefore be restarted beginning with the most up to date member, that
is, the member that has the most transactions executed and certified. The members with fewer
transactions can then join and catch up with the transactions they are missing through distributed
recovery. It is not correct to assume that the last known primary member of the group is the most up to
date member of the group, because a member that was shut down later than the primary might have
more transactions. You must therefore restart each member to check the transactions, compare all the
transaction sets, and identify the most up to date member. This member can then be used to bootstrap
the group.

Follow this procedure to restart a replication group safely after every member shuts down.

1. For each group member in turn, in any order:

a. Connect a client to the group member. If Group Replication is not already stopped, issue a
STOP GROUP_REPLICATION statement and wait for Group Replication to stop.

b. Edit the MySQL Server configuration file (typically named my.cnf on Linux and
Unix systems, or my.ini on Windows systems) and set the system variable
group_replication_start_on_boot=OFF. This setting prevents Group Replication from
starting when MySQL Server is started, which is the default.

If you cannot change that setting on the system, you can just allow the server to
attempt to start Group Replication, which will fail because the group has been
fully shut down and not yet bootstrapped. If you take that approach, do not set
group_replication_bootstrap_group=ON on any server at this stage.

c. Start the MySQL Server instance, and verify that Group Replication has not been started (or has
failed to start). Do not start Group Replication at this stage.

d. Collect the following information from the group member:

• The contents of the gtid_executed GTID set. You can get this by issuing the following
statement:

mysql> SELECT @@GLOBAL.GTID_EXECUTED

• The set of certified transactions on the group_replication_applier channel. You can
get this by issuing the following statement:

mysql> SELECT received_transaction_set FROM \
 performance_schema.replication_connection_status WHERE \
 channel_name="group_replication_applier";

2. When you have collected the transaction sets from all the group members, compare them to find
which member has the biggest transaction set overall, including both the executed transactions
(gtid_executed) and the certified transactions (on the group_replication_applier
channel). You can do this manually by looking at the GTIDs, or you can compare the GTID sets
using stored functions, as described in Section 19.1.3.8, “Stored Function Examples to Manipulate
GTIDs”.

3. Use the member that has the biggest transaction set to bootstrap the group, by connecting a client
to the group member and issuing the following statements:

mysql> SET GLOBAL group_replication_bootstrap_group=ON;

3934

Transaction Consistency Guarantees

mysql> START GROUP_REPLICATION;
mysql> SET GLOBAL group_replication_bootstrap_group=OFF;

It is important not to store the setting group_replication_bootstrap_group=ON in the
configuration file, otherwise when the server is restarted again, a second group with the same
name is set up.

4. To verify that the group now exists with this founder member in it, issue this statement on the
member that bootstrapped it:

mysql> SELECT * FROM performance_schema.replication_group_members;

5. Add each of the other members back into the group, in any order, by issuing a START
GROUP_REPLICATION statement on each of them:

mysql> START GROUP_REPLICATION;

6. To verify that each member has joined the group, issue this statement on any member:

mysql> SELECT * FROM performance_schema.replication_group_members;

7. When the members have rejoined the group, if you edited their configuration files to set
group_replication_start_on_boot=OFF, you can edit them again to set ON (or remove the
system variable, since ON is the default).

20.5.3 Transaction Consistency Guarantees

One of the major implications of a distributed system such as Group Replication is the consistency
guarantees that it provides as a group. In other words, the consistency of the global synchronization
of transactions distributed across the members of the group. This section describes how Group
Replication handles consistency guarantees depending on the events that occur in a group, and how to
best configure your group's consistency guarantees.

20.5.3.1 Understanding Transaction Consistency Guarantees

In terms of distributed consistency guarantees, either in normal or failure repair operations, Group
Replication has always been an eventual consistency system. This means that as soon as the
incoming traffic slows down or stops, all group members have the same data content. The events that
relate to the consistency of a system can be split into control operations, either manual or automatically
triggered by failures; and data flow operations.

For Group Replication, the control operations that can be evaluated in terms of consistency are:

• a member joining or leaving, which is covered by Group Replication's Section 20.5.4, “Distributed
Recovery” and write protection.

• network failures, which are covered by the fencing modes.

• in single-primary groups, primary failover, which can also be an operation triggered by
group_replication_set_as_primary().

Consistency Guarantees and Primary Failover

In a single-primary group, in the event of a primary failover when a secondary is promoted to primary,
the new primary can either be made available to application traffic immediately, regardless of how
large the replication backlog is, or alternatively access to it can be restricted until the backlog has been
applied.

With the first approach, the group takes the minimum time possible to secure a stable group
membership after a primary failure by electing a new primary and then allowing data access
immediately while it is still applying any possible backlog from the old primary. Write consistency is

3935

Transaction Consistency Guarantees

ensured, but reads can temporarily retrieve stale data while the new primary applies the backlog. For
example, if client C1 wrote A=2 WHERE A=1 on the old primary just before its failure, when client C1 is
reconnected to the new primary it could potentially read A=1 until the new primary applies its backlog
and catches up with the state of the old primary before it left the group.

With the second alternative, the system secures a stable group membership after the primary failure
and elects a new primary in the same way as the first alternative, but in this case the group then waits
until the new primary applies all backlog and only then does it permit data access. This ensures that
in a situation as described previously, when client C1 is reconnected to the new primary it reads A=2.
However, the trade-off is that the time required to failover is then proportional to the size of the backlog,
which on a correctly configured group should be small .

Prior to MySQL 8.0.14 there was no way to set the failover policy; by default, availability was
maximized as described in the first approach. In a group with members running MySQL 8.0.14 and
higher, you can determine the level of transaction consistency guarantees provided by members during
primary failover using the group_replication_consistency variable. See Impact of Consistency
on Primary Election.

Data Flow Operations

Data flow is relevant to group consistency guarantees due to the reads and writes executed against
a group, especially when these operations are distributed across all members. Data flow operations
apply to both modes of Group Replication: single-primary and multi-primary, however to make this
explanation clearer it is restricted to single-primary mode. The usual way to split incoming read or write
transactions across a single-primary group's members is to route writes to the primary and evenly
distribute reads to the secondaries. Since the group should behave as a single entity, it is reasonable
to expect that writes on the primary are instantaneously available on the secondaries. Although
Group Replication is written using Group Communication System (GCS) protocols that implement
the Paxos algorithm, some parts of Group Replication are asynchronous, which implies that data is
asynchronously applied to secondaries. This means that a client C2 can write B=2 WHERE B=1 on
the primary, immediately connect to a secondary and read B=1. This is because the secondary is still
applying backlog, and has not applied the transaction which was applied by the primary.

Transaction Synchronization Points

You configure a group's consistency guarantee based on the point at which you want to synchronize
transactions across the group. To help you understand the concept, this section simplifies the points of
synchronizing transactions across a group to be at the time of a read operation or at the time of a write
operation. If data is synchronized at the time of a read, the current client session waits until a given
point, which is the point in time that all preceding update transactions have been applied, before it can
start executing. With this approach, only this session is affected, all other concurrent data operations
are not affected.

If data is synchronized at the time of write, the writing session waits until all secondaries have written
their data. Group Replication uses a total order on writes, and therefore this implies waiting for this
and all preceding writes that are in secondaries’ queues to be applied. Therefore when using this
synchronization point, the writing session waits for all secondaries queues to be applied.

Any alternative ensures that in the situation described for client C2 would always read B=2 even
if immediately connected to a secondary. Each alternative has its advantages and disadvantages,
which are directly related to your system workload. The following examples describe different types of
workloads and advise which point of synchronization is appropriate.

Imagine the following situations:

• You want to load-balance reads without deploying additional restrictions on which server you read
from to avoid reading stale data, group writes are much less common than group reads.

• For a group that has predominantly read-only data, you want read/write transactions to be applied
everywhere once they commit, so that subsequent reads are done on up-to-date data that includes

3936

Transaction Consistency Guarantees

the latest write. This ensures that you do not pay the synchronization cost for every read-only
transaction, but only for read/write transactions.

In these cases, you should choose to synchronize on writes.

Imagine the following situations:

• You want to load balance your reads without deploying additional restrictions on which server you
read from to avoid reading stale data, group writes are much more common than group reads.

• You want specific transactions in your workload to always read up-to-date data from the group, for
example whenever sensitive data is updated (such as credentials for a file or similar data) and you
want to enforce that reads retrieve the most up to date value.

In these cases, you should choose to synchronize on reads.

20.5.3.2 Configuring Transaction Consistency Guarantees

Although the Transaction Synchronization Points section explains that conceptually there are
two synchronization points from which you can choose: on read or on write, these terms were a
simplification and the terms used in Group Replication are: before and after transaction execution. The
consistency level can have different affects on read-only and read/write transactions processed by the
group as demonstrated in this section.

• How to Choose a Consistency Level

• Impacts of Consistency Levels

• Impact of Consistency on Primary Election

• Permitted Queries Under Consistency Rules

The following list shows the possible consistency levels that you can configure in Group Replication
using the group_replication_consistency variable, in order of increasing transaction
consistency guarantee:

• EVENTUAL

Neither read-only nor read/write transactions wait for preceding transactions to be
applied before executing. This was the behavior of Group Replication before the
group_replication_consistency variable was added. A read/write transaction does not wait
for other members to apply a transaction. This means that a transaction could be externalized on one
member before the others. This also means that in the event of a primary failover, the new primary
can accept new read-only and read/write transactions before the previous primary transactions are
all applied. Read-only transactions could result in outdated values, read/write transactions could
result in a rollback due to conflicts.

• BEFORE_ON_PRIMARY_FAILOVER

New read-only or read/write transactions with a newly elected primary that is applying a backlog
from the old primary are not applied until any backlog has been applied. This ensures that when a
primary failover happens, intentionally or not, clients always see the latest value on the primary. This
guarantees consistency, but means that clients must be able to handle the delay in the event that a
backlog is being applied. Usually this delay should be minimal, but it does depend on the size of the
backlog.

• BEFORE

A read/write transaction waits for all preceding transactions to complete before being applied. A
read-only transaction waits for all preceding transactions to complete before being executed. This
ensures that this transaction reads the latest value by only affecting the latency of the transaction.

3937

Transaction Consistency Guarantees

This reduces the overhead of synchronization on every read/write transaction, by ensuring
synchronization is used only on read-only transactions. This consistency level also includes the
consistency guarantees provided by BEFORE_ON_PRIMARY_FAILOVER.

• AFTER

A read/write transaction waits until its changes have been applied to all of the other members.
This value has no effect on read-only transactions. This mode ensures that when a transaction
is committed on the local member, any subsequent transaction reads the written value or a more
recent value on any group member. Use this mode with a group that is used for predominantly read-
only operations to ensure that applied read/write transactions are applied everywhere once they
commit. This could be used by your application to ensure that subsequent reads fetch the latest data
which includes the latest writes. This reduces the overhead of synchronization on every read-only
transaction, by ensuring synchronization is used only on read/write transactions. This consistency
level also includes the consistency guarantees provided by BEFORE_ON_PRIMARY_FAILOVER.

• BEFORE_AND_AFTER

A read/write transaction waits for 1) all preceding transactions to complete before being applied
and 2) until its changes have been applied on other members. A read-only transaction waits for
all preceding transactions to complete before execution takes place. This consistency level also
includes the consistency guarantees provided by BEFORE_ON_PRIMARY_FAILOVER.

The BEFORE and BEFORE_AND_AFTER consistency levels can be used on both read-only and read/
write transactions. The AFTER consistency level has no impact on read-only transactions, because they
do not generate changes.

How to Choose a Consistency Level

The different consistency levels provide flexibility to both DBAs, who can use them to set up their
infrastructure; and to developers who can use the consistency level that best suits their application's
requirements. The following scenarios show how to choose a consistency guarantee level based on
how you use your group:

• Scenario 1: You want to balance reads without being concerned about stale reads, and group write
operations are considerably fewer than group read operations. In this case, you should choose
AFTER.

• Scenario 2: For a data set that applies many writes, you want to perform occasional reads without
concerns about reading stale data. In this case, you should choose BEFORE.

• Scenario 3: You want specific transactions to read only up-to-date data from the group, so that
whenever sensitive data such as credentials for a file is updated, reads always use the most recent
value. In this case, you should choose BEFORE.

• Scenario 4: For a group that has predominantly read-only data, you want read/write transactions to
be applied everywhere once they commit, so that subsequent reads are done on data that includes
your latest writes and you do not incur the cost of synchronization for every read-only transaction, but
only for read/write transactions. In this case, you should choose AFTER.

• Scenario 5: For a group that works predominantly with read-only data, you want read/write
transactions to read up-to-date data from the group and to be applied everywhere once they commit,
so that subsequent reads are performed on data that includes the latest write and you do not incur
the cost of synchronization for every read-only transaction, but only for read/write transactions. In this
case, you should choose BEFORE_AND_AFTER.

You can choose the scope for which the consistency level is enforced by setting
group_replication_consistency with session or global scope. This is important because
consistency levels can have a negative impact on group performance they apply globally.

To enforce the consistency level for the current session, use session scope, like this:

3938

Transaction Consistency Guarantees

> SET @@SESSION.group_replication_consistency= 'BEFORE';

To enforce the consistency level for all sessions, use global scope, as shown here:

> SET @@GLOBAL.group_replication_consistency= 'BEFORE';

The possibility of setting the consistency level on specific sessions enables you to take advantage of
scenarios such as those listed here:

• Scenario 6: A given system handles several instructions that do not require a strong
consistency level, but one kind of instruction does require strong consistency: managing
access permissions to documents;. In this scenario, the system changes access permissions
and it wants to be sure that all clients see the correct permission. You only need to SET
@@SESSION.group_replication_consistency= ‘AFTER’, on those instructions and leave
the other instructions to run with EVENTUAL set at the global scope.

• Scenario 7: On the same system as described in Scenario 6, a command that performs analytics
needs to be executed daily, using the most up-to-date data. To achieve this, you need only run the
SQL statement SET @@SESSION.group_replication_consistency= ‘BEFORE’ prior to
executing the command.

In sum, you do not need to run all transactions with the same specific consistency level, especially if
only some transactions actually require it.

You should be aware that all read/write transactions are always ordered in Group Replication, so even
when you set the consistency level to AFTER for the current session, this transaction waits until its
changes are applied on all members, which means waiting for this and all preceding transactions that
could be in the secondaries' queues. In other words, the consistency level AFTER waits for everything
up to and including this transaction.

Impacts of Consistency Levels

Another way to classify the consistency levels is in terms of impact on the group, that is, the
repercussions that the consistency levels have on the other members.

The BEFORE consistency level, apart from being ordered on the transaction stream, only impacts on
the local member. That is, it does not require coordination with the other members and does not have
repercussions on their transactions. In other words, BEFORE only impacts the transactions on which it
is used.

The AFTER and BEFORE_AND_AFTER consistency levels do have side-effects on concurrent
transactions executed on other members. These consistency levels make the other members
transactions wait if transactions with the EVENTUAL consistency level start while a transaction with
AFTER or BEFORE_AND_AFTER is executing. The other members wait until the AFTER transaction is
committed on that member, even if the other member's transactions have the EVENTUAL consistency
level. In other words, AFTER and BEFORE_AND_AFTER impact all ONLINE group members.

To illustrate this further, imagine a group with 3 members, M1, M2 and M3. On member M1 a client
issues:

> SET @@SESSION.group_replication_consistency= AFTER;
> BEGIN;
> INSERT INTO t1 VALUES (1);
> COMMIT;

Then, while the above transaction is being applied, on member M2 a client issues:

> SET SESSION group_replication_consistency= EVENTUAL;

In this situation, even though the second transaction's consistency level is EVENTUAL, because it starts
executing while the first transaction is already in the commit phase on M2, the second transaction has
to wait for the first transaction to finish the commit and only then can it execute.

3939

Transaction Consistency Guarantees

You can only use the consistency levels BEFORE, AFTER and BEFORE_AND_AFTER on ONLINE
members, attempting to use them on members in other states causes a session error.

Transactions whose consistency level is not EVENTUAL hold execution until a timeout, configured
by wait_timeout value is reached, which defaults to 8 hours. If the timeout is reached an
ER_GR_HOLD_WAIT_TIMEOUT error is thrown.

Impact of Consistency on Primary Election

This section describes how a group's consistency level impacts on a single-primary group that has
elected a new primary. Such a group automatically detects failures and adjusts the view of the
members that are active, in other words the membership configuration. Furthermore, if a group
is deployed in single-primary mode, whenever the group's membership changes there is a check
performed to detect if there is still a primary member in the group. If there is none, a new one is
selected from the list of secondary members. Typically, this is known as the secondary promotion.

Given the fact that the system detects failures and reconfigures itself automatically, the user may also
expect that once the promotion takes place, the new primary is in the exact state, data-wise, as that of
the old one. In other words, the user may expect that there is no backlog of replicated transactions to
be applied on the new primary once he is able to read from and write to it. In practical terms, the user
may expect that once his application fails-over to the new primary, there would be no chance, even if
temporarily, to read old data or write into old data records.

When flow control is activated and properly tuned on a group, there is only a small chance of
transiently reading stale data from a newly elected primary immediately after the promotion, as there
should not be a backlog, or if there is one it should be small. Moreover, you might have a proxy or
middleware layers that govern application accesses to the primary after a promotion and enforce the
consistency criteria at that level. If all group members are using MySQL 8.0.14 or later, you can specify
the behavior of the new primary once it is promoted using the group_replication_consistency
variable, which controls whether a newly elected primary blocks both reads and writes until after the
backlog is fully applied, or if it behaves in the manner of members running MySQL 8.0.13 or earlier.
If the group_replication_consistency variable was set to BEFORE_ON_PRIMARY_FAILOVER
on a newly elected primary which has backlog to apply, and transactions are issued against the new
primary while it is still applying the backlog, incoming transactions are blocked until the backlog is fully
applied. This prevents the following anomalies:

• No stale reads for read-only and read/write transactions. This prevents stale reads from being
externalized to the application by the new primary.

• No spurious rollbacks for read/write transactions, due to write-write conflicts with replicated read/
write transactions still in the backlog waiting to be applied.

• No read skew on read/write transactions, such as this one:

> BEGIN;
> SELECT x FROM t1; -- x=1 because x=2 is in the backlog;
> INSERT x INTO t2;
> COMMIT;

This query should not cause a conflict but writes outdated values.

To summarize, when group_replication_consistency is set to
BEFORE_ON_PRIMARY_FAILOVER you are choosing to prioritize consistency over availability,
because reads and writes are held whenever a new primary is elected. This is the trade-off
you have to consider when configuring your group. It should also be remembered that if flow
control is working correctly, backlog should be minimal. Note that the higher consistency levels
BEFORE, AFTER, and BEFORE_AND_AFTER also include the consistency guarantees provided by
BEFORE_ON_PRIMARY_FAILOVER.

To guarantee that the group provides the same consistency level regardless of which member is
promoted to primary, all members of the group should have BEFORE_ON_PRIMARY_FAILOVER (or a
higher consistency level) persisted to their configuration. For example, on each member issue:

3940

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_gr_hold_wait_timeout

Distributed Recovery

> SET PERSIST group_replication_consistency='BEFORE_ON_PRIMARY_FAILOVER';

This ensures that the members all behave in the same way, and that the configuration is persisted after
a restart of the member.

A transaction cannot be on-hold forever, and if the time held exceeds wait_timeout it returns an
ER_GR_HOLD_WAIT_TIMEOUT error.

Permitted Queries Under Consistency Rules

Although all writes are held when using BEFORE_ON_PRIMARY_FAILOVER consistency level, not all
reads are blocked to ensure that you can still inspect the server while it is applying backlog after a
promotion took place. This is useful for debugging, monitoring, observability and troubleshooting. Some
queries that do not modify data are allowed, such as the following:

• SHOW statements: In MySQL 8.0.27 and later, these are restricted to those that do not depend on
data, only on status and configuration.

The SHOW statements that are allowed in MySQL 8.0.27 and later are SHOW VARIABLES, SHOW
PROCESSLIST, SHOW STATUS, SHOW ENGINE INNODB LOGS, SHOW ENGINE INNODB STATUS,
SHOW ENGINE INNODB MUTEX, SHOW MASTER STATUS, SHOW REPLICA STATUS, SHOW
CHARACTER SET, SHOW COLLATION, SHOW BINARY LOGS, SHOW OPEN TABLES, SHOW
REPLICAS, SHOW BINLOG EVENTS, SHOW WARNINGS, SHOW ERRORS, SHOW ENGINES, SHOW
PRIVILEGES, SHOW PROCEDURE STATUS, SHOW FUNCTION STATUS, SHOW PLUGINS,, SHOW
EVENTS, SHOW PROFILE, SHOW PROFILES, and SHOW RELAYLOG EVENTS.

• SET statements

• 1 DO statements that do not use tables or loadable functions

• EMPTY statements

• USE statements

• Using SELECT statements against the performance_schema and sys databases

• Using SELECT statements against the PROCESSLIST table from the infoschema database

• SELECT statements that do not use tables or loadable functions

• STOP GROUP_REPLICATION statements

• SHUTDOWN statements

• RESET PERSIST statements

20.5.4 Distributed Recovery

Whenever a member joins or rejoins a replication group, it must catch up with the transactions that
were applied by the group members before it joined, or while it was away. This process is called
distributed recovery.

The joining member begins by checking the relay log for its group_replication_applier channel
for any transactions that it already received from the group but did not yet apply. If the joining member
was in the group previously, it might find unapplied transactions from before it left, in which case it
applies these as a first step. A member that is new to the group does not have anything to apply.

After this, the joining member connects to an online existing member to carry out state transfer. The
joining member transfers all the transactions that took place in the group before it joined or while it
was away, which are provided by the existing member (called the donor). Next, the joining member
applies the transactions that took place in the group while this state transfer was in progress. When this

3941

Distributed Recovery

process is complete, the joining member has caught up with the remaining servers in the group, and it
begins to participate normally in the group.

Group Replication uses a combination of these methods for state transfer during distributed recovery:

• A remote cloning operation using the clone plugin's function, which is available beginning with
MySQL 8.0.17. To enable this method of state transfer, you must install the clone plugin on the group
members and the joining member. Group Replication automatically configures the required clone
plugin settings and manages the remote cloning operation.

• Replicating from a donor's binary log and applying the transactions on the joining
member. This method uses a standard asynchronous replication channel named
group_replication_recovery that is established between the donor and the joining member.

Group Replication automatically selects the best combination of these methods for state transfer after
you issue START GROUP_REPLICATION on the joining member. To do this, Group Replication checks
which existing members are suitable as donors, how many transactions the joining member needs from
a donor, and whether any required transactions are no longer present in the binary log files on any
group member. If the transaction gap between the joining member and a suitable donor is large, or if
some required transactions are not in any donor's binary log files, Group Replication begins distributed
recovery with a remote cloning operation. If there is not a large transaction gap, or if the clone plugin is
not installed, Group Replication proceeds directly to state transfer from a donor's binary log.

• During a remote cloning operation, the existing data on the joining member is removed, and replaced
with a copy of the donor's data. When the remote cloning operation is complete and the joining
member has restarted, state transfer from a donor's binary log is carried out to get the transactions
that the group applied while the remote cloning operation was in progress.

• During state transfer from a donor's binary log, the joining member replicates and applies the
required transactions from the donor's binary log, applying the transactions as they are received, up
to the point where the binary log records that the joining member joined the group (a view change
event). While this is in progress, the joining member buffers the new transactions that the group
applies. When state transfer from the binary log is complete, the joining member applies the buffered
transactions.

When the joining member is up to date with all the group's transactions, it is declared online and can
participate in the group as a normal member, and distributed recovery is complete.

Tip

State transfer from the binary log is Group Replication's base mechanism for
distributed recovery, and if the donors and joining members in your replication
group are not set up to support cloning, this is the only available option. As
state transfer from the binary log is based on classic asynchronous replication,
it might take a very long time if the server joining the group does not have the
group's data at all, or has data taken from a very old backup image. In this
situation, it is therefore recommended that before adding a server to the group,
you should set it up with the group's data by transferring a fairly recent snapshot
of a server already in the group. This minimizes the time taken for distributed
recovery, and reduces the impact on donor servers, since they have to retain
and transfer fewer binary log files.

20.5.4.1 Connections for Distributed Recovery

When a joining member connects to an online existing member for state transfer during distributed
recovery, the joining member acts as a client on the connection and the existing member acts as a
server. When state transfer from the donor's binary log is in progress over this connection (using the
asynchronous replication channel group_replication_recovery), the joining member acts as the
replica and the existing member acts as the source. When a remote cloning operation is in progress
over this connection, the joining member acts as a recipient and the existing member acts as a donor.

3942

Distributed Recovery

Configuration settings that apply to those roles outside the Group Replication context can apply for
Group Replication also, unless they are overridden by a Group Replication-specific configuration
setting or behavior.

The connection that an existing member offers to a joining member for distributed recovery is not the
same connection that is used by Group Replication for communication between online members of the
group.

• The connection used by the group communication engine for Group Replication (XCom, a
Paxos variant) for TCP communication between remote XCom instances is specified by the
group_replication_local_address system variable. This connection is used for TCP/IP
messages between online members. Communication with the local instance is over an input channel
using shared memory.

• For distributed recovery prior to MySQL 8.0.21, group members offer their standard SQL client
connection to joining members, as specified by hostname and port. If an alternative port number is
specified by report_port, that one is used instead.

• In MySQL 8.0.21 and later, group members may advertise an alternative list of distributed
recovery endpoints as dedicated client connections for joining members, allowing you to
control distributed recovery traffic separately from connections by regular client users of
the member. A member transmits the list of distributed recovery endpoints specified by
group_replication_advertise_recovery_endpoints to the group when it joins. By default,
the member continues to offer the standard SQL client connection as in earlier releases.

Important

Distributed recovery can fail if a joining member cannot correctly identify the
other members using the host name as defined by MySQL Server's hostname
system variable. It is recommended that operating systems running MySQL
have a properly configured unique host name, either using DNS or local
settings. The host name that the server is using for SQL client connections
can be verified in the Member_host column of the Performance Schema
table replication_group_members. If multiple group members externalize
a default host name set by the operating system, there is a chance of the
joining member not resolving it to the correct member address and not being
able to connect for distributed recovery. In this situation you can use MySQL
Server's report_host system variable to configure a unique host name to be
externalized by each of the servers.

The steps for a joining member to establish a connection for distributed recovery are as follows:

1. When the member joins the group, it connects with one of the seed members included
in the list in its group_replication_group_seeds system variable, initially using the
group_replication_local_address connection as specified in that list. The seed members
might be a subset of the group.

2. Over this connection, the seed member uses Group Replication's membership service to provide
the joining member with a list of all the members that are online in the group, in the form of a view.
The membership information includes the details of the distributed recovery endpoints or standard
SQL client connection offered by each member for distributed recovery.

3. The joining member selects a suitable group member from this list to be its donor for distributed
recovery, following the behaviors described in Section 20.5.4.4, “Fault Tolerance for Distributed
Recovery”.

4. The joining member then attempts to connect to the donor using the donor's advertised distributed
recovery endpoints, trying each in turn in the order they are specified in the list. If the donor
provides no endpoints, the joining member attempts to connect using the donor's standard
SQL client connection. The SSL requirements for the connection are as specified by the

3943

Distributed Recovery

group_replication_recovery_ssl_* options described in SSL and Authentication for
Distributed Recovery.

5. If the joining member is not able to connect to the selected donor, it retries with other suitable
donors, following the behaviors described in Section 20.5.4.4, “Fault Tolerance for Distributed
Recovery”. Note that if the joining member exhausts the list of advertised endpoints without making
a connection, it does not fall back to the donor's standard SQL client connection, but switches to
another donor.

6. When the joining member establishes a distributed recovery connection with a donor, it uses that
connection for state transfer as described in Section 20.5.4, “Distributed Recovery”. The host and
port for the connection that is used are shown in the joining member's log. Note that if a remote
cloning operation is used, when the joining member has restarted at the end of the operation, it
establishes a connection with a new donor for state transfer from the binary log. This might be a
connection to a different member from the original donor used for the remote cloning operation, or
it might be a different connection to the original donor. In any case, the distributed recovery process
continues in the same way as it would have with the original donor.

Selecting addresses for distributed recovery endpoints

IP addresses supplied by the group_replication_advertise_recovery_endpoints system
variable as distributed recovery endpoints do not have to be configured for MySQL Server (that
is, they do not have to be specified by the admin_address system variable or in the list for the
bind_address system variable). They do have to be assigned to the server. Any host names used
must resolve to a local IP address. IPv4 and IPv6 addresses can be used.

The ports supplied for the distributed recovery endpoints do have to be configured for MySQL Server,
so they must be specified by the port, report_port, or admin_port system variable. The server
must listen for TCP/IP connections on these ports. If you specify the admin_port, the replication user
for distributed recovery needs the SERVICE_CONNECTION_ADMIN privilege to connect. Selecting the
admin_port keeps distributed recovery connections separate from regular MySQL client connections.

Joining members try each of the endpoints in turn in the order they are specified on the list. If
group_replication_advertise_recovery_endpoints is set to DEFAULT rather than a list of
endpoints, the standard SQL client connection is offered. Note that the standard SQL client connection
is not automatically included on a list of distributed recovery endpoints, and is not offered as a fallback
if the donor's list of endpoints is exhausted without a connection. If you want to offer the standard SQL
client connection as one of a number of distributed recovery endpoints, you must include it explicitly in
the list specified by group_replication_advertise_recovery_endpoints. You can put it in the
last place so that it acts as a last resort for connection.

A group member's distributed recovery endpoints (or standard SQL client connection if
endpoints are not provided) do not need to be added to the Group Replication allowlist
specified by the group_replication_ip_allowlist (from MySQL 8.0.22) or
group_replication_ip_whitelist system variable. The allowlist is only for the address specified
by group_replication_local_address for each member. A joining member must have its initial
connection to the group permitted by the allowlist in order to retrieve the address or addresses for
distributed recovery.

The distributed recovery endpoints that you list are validated when the system variable is set and when
a START GROUP_REPLICATION statement has been issued. If the list cannot be parsed correctly, or
if any of the endpoints cannot be accessed on the host because the server is not listening on them,
Group Replication logs an error and does not start.

Compression for Distributed Recovery

In MySQL 8.0.18 and later, you can optionally configure compression for distributed recovery
by the method of state transfer from a donor's binary log. Compression can benefit distributed
recovery where network bandwidth is limited and the donor has to transfer many transactions to
the joining member. The group_replication_recovery_compression_algorithms and

3944

Distributed Recovery

group_replication_recovery_zstd_compression_level system variables determine
permitted compression algorithms, and the zstd compression level used when carrying out state
transfer from a donor's binary log. For more information, see Section 6.2.8, “Connection Compression
Control”.

These compression settings do not apply to remote cloning operations. When a remote cloning
operation is used for distributed recovery, the clone plugin's setting for clone_enable_compression
applies.

Replication User for Distributed Recovery

Distributed recovery requires a replication user that has the correct permissions so that Group
Replication can establish direct member-to-member replication channels. The replication user
must also have the correct permissions to act as the clone user on the donor for a remote cloning
operation. The same replication user must be used for distributed recovery on every group member.
For instructions to set up this replication user, see Section 20.2.1.3, “User Credentials For Distributed
Recovery”. For instructions to secure the replication user credentials, see Section 20.6.3.1, “Secure
User Credentials for Distributed Recovery”.

SSL and Authentication for Distributed Recovery

SSL for distributed recovery is configured separately from SSL for normal group communications,
which is determined by the server's SSL settings and the group_replication_ssl_mode system
variable. For distributed recovery connections, dedicated Group Replication distributed recovery SSL
system variables are available to configure the use of certificates and ciphers specifically for distributed
recovery.

By default, SSL is not used for distributed recovery connections. To activate it, set
group_replication_recovery_use_ssl=ON, and configure the Group Replication distributed
recovery SSL system variables as described in Section 20.6.3, “Securing Distributed Recovery
Connections”. You need a replication user that is set up to use SSL.

When distributed recovery is configured to use SSL, Group Replication applies this setting
for remote cloning operations, as well as for state transfer from a donor's binary log. Group
Replication automatically configures the settings for the clone SSL options (clone_ssl_ca,
clone_ssl_cert, and clone_ssl_key) to match your settings for the corresponding
Group Replication distributed recovery options (group_replication_recovery_ssl_ca,
group_replication_recovery_ssl_cert, and group_replication_recovery_ssl_key).

If you are not using SSL for distributed recovery (so group_replication_recovery_use_ssl
is set to OFF), and the replication user account for Group Replication authenticates with the
caching_sha2_password plugin (which is the default in MySQL 8.0) or the sha256_password
plugin, RSA key-pairs are used for password exchange. In this case, either use the
group_replication_recovery_public_key_path system variable to specify the RSA public key
file, or use the group_replication_recovery_get_public_key system variable to request the
public key from the source, as described in Replication User With The Caching SHA-2 Authentication
Plugin.

20.5.4.2 Cloning for Distributed Recovery

MySQL Server's clone plugin is available from MySQL 8.0.17. If you want to use remote cloning
operations for distributed recovery in a group, you must set up existing members and joining members
beforehand to support this function. If you do not want to use this function in a group, do not set it up, in
which case Group Replication only uses state transfer from the binary log.

To use cloning, at least one existing group member and the joining member must be set up beforehand
to support remote cloning operations. As a minimum, you must install the clone plugin on the donor and
joining member, grant the BACKUP_ADMIN permission to the replication user for distributed recovery,
and set the group_replication_clone_threshold system variable to an appropriate level.

3945

Distributed Recovery

To ensure the maximum availability of donors, it is advisable to set up all current and future group
members to support remote cloning operations.

Be aware that a remote cloning operation removes user-created tablespaces and data from the joining
member before transferring the data from the donor. If the operation is stopped while in progress, the
joining member might be left with partial data or no data. This can be repaired by retrying the remote
cloning operation, which Group Replication does automatically.

Prerequisites for Cloning

For full instructions to set up and configure the clone plugin, see Section 7.6.7, “The Clone Plugin” .
Detailed prerequisites for a remote cloning operation are covered in Section 7.6.7.3, “Cloning Remote
Data” . For Group Replication, note the following key points and differences:

• The donor (an existing group member) and the recipient (the joining member) must have the clone
plugin installed and active. For instructions to do this, see Section 7.6.7.1, “Installing the Clone
Plugin” .

• The donor and the recipient must run on the same operating system, and must use the same MySQL
Server release series. Cloning is therefore not suitable for groups where members run different minor
MySQL Server versions, such as MySQL 8.0 and 8.4.

Prior to MySQL 8.0.37, cloning required that donors and recipients used the same point release; this
restriction still applies if the donor, recipient, or both use MySQL 8.0.36 or earlier.

• The donor and the recipient must have the Group Replication plugin installed and active, and any
other plugins that are active on the donor (such as a keyring plugin) must also be active on the
recipient.

• If distributed recovery is configured to use SSL (group_replication_recovery_use_ssl=ON),
Group Replication applies this setting for remote cloning operations. Group Replication
automatically configures the settings for the clone SSL options (clone_ssl_ca,
clone_ssl_cert, and clone_ssl_key) to match your settings for the corresponding
Group Replication distributed recovery options (group_replication_recovery_ssl_ca,
group_replication_recovery_ssl_cert, and group_replication_recovery_ssl_key).

• You do not need to set up a list of valid donors in the clone_valid_donor_list system variable
for the purpose of joining a replication group. Group Replication configures this setting automatically
for you after it selects a donor from the existing group members. Note that remote cloning operations
use the server's SQL protocol hostname and port.

• The clone plugin has a number of system variables to manage the network load and performance
impact of the remote cloning operation. Group Replication does not configure these settings, so
you can review them and set them if you want to, or allow them to default. Note that when a remote
cloning operation is used for distributed recovery, the clone plugin's clone_enable_compression
setting applies to the operation, rather than the Group Replication compression setting.

• To invoke the remote cloning operation on the recipient, Group Replication uses the internal
mysql.session user, which already has the CLONE_ADMIN privilege, so you do not need to set
this up.

• As the clone user on the donor for the remote cloning operation, Group Replication uses the
replication user that you set up for distributed recovery (which is covered in Section 20.2.1.3, “User
Credentials For Distributed Recovery”). You must therefore give the BACKUP_ADMIN privilege to this
replication user on all group members that support cloning. Also give the privilege to the replication
user on joining members when you are configuring them for Group Replication, because they can
act as donors after they join the group. The same replication user is used for distributed recovery
on every group member. To give this privilege to the replication user on existing members, you can
issue this statement on each group member individually with binary logging disabled, or on one
group member with binary logging enabled:

3946

Distributed Recovery

GRANT BACKUP_ADMIN ON *.* TO rpl_user@'%';

• If you use START GROUP_REPLICATION to specify the replication user credentials on a
server that previously supplied the user credentials using CHANGE REPLICATION SOURCE
TO | CHANGE MASTER TO, ensure that you remove the user credentials from the replication
metadata repositories before any remote cloning operations take place. Also ensure that
group_replication_start_on_boot=OFF is set on the joining member. For instructions,
see Section 20.6.3, “Securing Distributed Recovery Connections”. If you do not unset the user
credentials, they are transferred to the joining member during remote cloning operations. The
group_replication_recovery channel could then be inadvertently started with the stored
credentials, on either the original member or members that were cloned from it. An automatic start of
Group Replication on server boot (including after a remote cloning operation) would use the stored
user credentials, and they would also be used if an operator did not specify the distributed recovery
credentials in a START GROUP_REPLICATION statement.

Threshold for Cloning

When group members have been set up to support cloning, the
group_replication_clone_threshold system variable specifies a threshold, expressed as a
number of transactions, for the use of a remote cloning operation in distributed recovery. If the gap
between the transactions on the donor and the transactions on the joining member is larger than
this number, a remote cloning operation is used for state transfer to the joining member when this is
technically possible. Group Replication calculates whether the threshold has been exceeded based
on the gtid_executed sets of the existing group members. Using a remote cloning operation in
the event of a large transaction gap lets you add new members to the group without transferring the
group's data to the server manually beforehand, and also enables a member that is very out of date to
catch up more efficiently.

The default setting for the group_replication_clone_threshold Group Replication system
variable is extremely high (the maximum permitted sequence number for a transaction in a GTID), so it
effectively deactivates cloning wherever state transfer from the binary log is possible. To enable Group
Replication to select a remote cloning operation for state transfer where this is more appropriate, set
the system variable to specify a number of transactions as the transaction gap above which you want
cloning to take place.

Warning

Do not use a low setting for group_replication_clone_threshold in an
active group. If a number of transactions above the threshold takes place in the
group while the remote cloning operation is in progress, the joining member
triggers a remote cloning operation again after restarting, and could continue
this indefinitely. To avoid this situation, ensure that you set the threshold to a
number higher than the number of transactions that you would expect to occur
in the group during the time taken for the remote cloning operation.

Group Replication attempts to execute a remote cloning operation regardless of your threshold when
state transfer from a donor's binary log is impossible, for example because the transactions needed
by the joining member are not available in the binary log on any existing group member. Group
Replication identifies this based on the gtid_purged sets of the existing group members. You cannot
use the group_replication_clone_threshold system variable to deactivate cloning when
the required transactions are not available in any member's binary log files, because in that situation
cloning is the only alternative to transferring data to the joining member manually.

Cloning Operations

When group members and joining members are set up for cloning, Group Replication manages remote
cloning operations for you. A remote cloning operation might take some time to complete, depending
on the size of the data. See Section 7.6.7.10, “Monitoring Cloning Operations” for information on
monitoring the process.

3947

Distributed Recovery

Note

When state transfer is complete, Group Replication restarts the joining member
to complete the process. If group_replication_start_on_boot=OFF is
set on the joining member, for example because you specify the replication
user credentials on the START GROUP_REPLICATION statement, you must
issue START GROUP_REPLICATION manually again following this restart.
If group_replication_start_on_boot=ON and other settings required
to start Group Replication were set in a configuration file or using a SET
PERSIST statement, you do not need to intervene and the process continues
automatically to bring the joining member online.

If the remote cloning procedure takes a long time, in releases before MySQL 8.0.22, it is possible for
the set of certification information that accumulates for the group during that time to become too large
to transmit to the joining member. In that case, the joining member logs an error message and does
not join the group. From MySQL 8.0.22, Group Replication manages the garbage collection process for
applied transactions differently to avoid this scenario. In earlier releases, if you do see this error, after
the remote cloning operation completes, wait two minutes to allow a round of garbage collection to take
place to reduce the size of the group's certification information. Then issue the following statement on
the joining member, so that it stops trying to apply the previous set of certification information:

RESET SLAVE FOR CHANNEL group_replication_recovery;
Or from MySQL 8.0.22:
RESET REPLICA FOR CHANNEL group_replication_recovery;

A remote cloning operation clones settings that are persisted in tables from the donor to the recipient,
as well as the data. Group Replication manages the settings that relate specifically to Group
Replication channels. Group Replication member settings that are persisted in configuration files, such
as the group replication local address, are not cloned and are not changed on the joining member.
Group Replication also preserves the channel settings that relate to the use of SSL, so these are
unique to the individual member.

If the replication user credentials used by the donor for the group_replication_recovery
replication channel have been stored in the replication metadata repositories using a CHANGE
REPLICATION SOURCE TO | CHANGE MASTER TO statement, they are transferred to and used by the
joining member after cloning, and they must be valid there. With stored credentials, all group members
that received state transfer by a remote cloning operation therefore automatically receive the replication
user and password for distributed recovery. If you specify the replication user credentials on the START
GROUP_REPLICATION statement, these are used to start the remote cloning operation, but they are
not transferred to and used by the joining member after cloning. If you do not want the credentials
transferred to new joiners and recorded there, ensure that you unset them before remote cloning
operations take place, as described in Section 20.6.3, “Securing Distributed Recovery Connections”,
and use START GROUP_REPLICATION to supply them instead.

If a PRIVILEGE_CHECKS_USER account has been used to help secure the replication appliers (see
Section 19.3.3.2, “Privilege Checks For Group Replication Channels”), from MySQL 8.0.19, the
PRIVILEGE_CHECKS_USER account and related settings from the donor are cloned to the joining
member. If the joining member is set to start Group Replication on boot, it automatically uses the
account for privilege checks on the appropriate replication channels. (In MySQL 8.0.18, due to a
number of limitations, it is recommended that you do not use a PRIVILEGE_CHECKS_USER account
with Group Replication channels.)

Cloning for Other Purposes

Group Replication initiates and manages cloning operations for distributed recovery. Group members
that have been set up to support cloning may also participate in cloning operations that a user initiates
manually. For example, you might want to create a new server instance by cloning from a group
member as the donor, but you do not want the new server instance to join the group immediately, or
maybe not ever.

3948

Distributed Recovery

In all releases that support cloning, you can initiate a cloning operation manually involving a group
member on which Group Replication is stopped. Note that because cloning requires that the active
plugins on a donor and recipient must match, the Group Replication plugin must be installed and active
on the other server instance, even if you do not intend that server instance to join a group. You can
install the plugin by issuing this statement:

INSTALL PLUGIN group_replication SONAME 'group_replication.so';

In releases before MySQL 8.0.20, you cannot initiate a cloning operation manually if the operation
involves a group member on which Group Replication is running. From MySQL 8.0.20, you can do
this, provided that the cloning operation does not remove and replace the data on the recipient. The
statement to initiate the cloning operation must therefore include the DATA DIRECTORY clause if
Group Replication is running.

20.5.4.3 Configuring Distributed Recovery

Several aspects of Group Replication's distributed recovery process can be configured to suit your
system.

Number of Connection Attempts

For state transfer from the binary log, Group Replication limits the number of attempts a joining
member makes when trying to connect to a donor from the pool of donors. If the connection retry
limit is reached without a successful connection, the distributed recovery procedure terminates with
an error. Note that this limit specifies the total number of attempts that the joining member makes to
connect to a donor. For example, if 2 group members are suitable donors, and the connection retry limit
is set to 4, the joining member makes 2 attempts to connect to each of the donors before reaching the
limit.

The default connection retry limit is 10. You can configure this setting using the
group_replication_recovery_retry_count system variable. The following statement sets the
maximum number of attempts to connect to a donor to 5:

mysql> SET GLOBAL group_replication_recovery_retry_count= 5;

For remote cloning operations, this limit does not apply. Group Replication makes only one connection
attempt to each suitable donor for cloning, before starting to attempt state transfer from the binary log.

Sleep Interval for Connection Attempts

For state transfer from the binary log, the group_replication_recovery_reconnect_interval
system variable defines how much time the distributed recovery process should sleep between
donor connection attempts. Note that distributed recovery does not sleep after every donor
connection attempt. As the joining member is connecting to different servers and not to the same
one repeatedly, it can assume that the problem that affects server A does not affect server B.
Distributed recovery therefore suspends only when it has gone through all the possible donors.
Once the server joining the group has made one attempt to connect to each of the suitable donors
in the group, the distributed recovery process sleeps for the number of seconds configured by the
group_replication_recovery_reconnect_interval system variable. For example, if 2 group
members are suitable donors, and the connection retry limit is set to 4, the joining member makes one
attempt to connect to each of the donors, then sleeps for the connection retry interval, then makes one
further attempt to connect to each of the donors before reaching the limit.

The default connection retry interval is 60 seconds, and you can change this value dynamically. The
following statement sets the distributed recovery donor connection retry interval to 120 seconds:

mysql> SET GLOBAL group_replication_recovery_reconnect_interval= 120;

For remote cloning operations, this interval does not apply. Group Replication makes only one
connection attempt to each suitable donor for cloning, before starting to attempt state transfer from the
binary log.

3949

Distributed Recovery

Marking the Joining Member Online

When distributed recovery has successfully completed state transfer from the donor to the joining
member, the joining member can be marked as online in the group and ready to participate. By default,
this is done after the joining member has received and applied all the transactions that it was missing.
Optionally, you can allow a joining member to be marked as online when it has received and certified
(that is, completed conflict detection for) all the transactions that it was missing, but before it has
applied them. If you want to do this, use the group_replication_recovery_complete_at
system variable to specify the alternative setting TRANSACTIONS_CERTIFIED.

20.5.4.4 Fault Tolerance for Distributed Recovery

Group Replication's distributed recovery process has a number of built-in measures to ensure fault
tolerance in the event of any problems during the process.

The donor for distributed recovery is selected randomly from the existing list of suitable online group
members in the current view. Selecting a random donor means that there is a good chance that the
same server is not selected more than once when multiple members enter the group. In MySQL 8.0.17
and later, for state transfer from the binary log, the joiner only selects a donor that is running a lower or
equal patch version of MySQL Server compared to itself. For earlier releases, all of the online members
are allowed to be a donor. For a remote cloning operation, the joiner selects a donor that is running
the same patch version as itself. When the member joining has restarted at the end of the operation,
it establishes a connection with a new donor for state transfer from the binary log, which might be a
different member from the original donor used for the remote cloning operation.

In the following situations, Group Replication detects an error in distributed recovery, automatically
switches over to a new donor, and retries the state transfer:

• Connection error - There is an authentication issue or another problem with making the connection to
a candidate donor.

• Replication errors - One of the replication threads (the receiver or applier threads) being used for
state transfer from the binary log fails. Because this method of state transfer uses the existing
MySQL replication framework, it is possible that some transient errors could cause errors in the
receiver or applier threads.

• Remote cloning operation errors - A remote cloning operation fails or is stopped before it completes.

• Donor leaves the group - The donor leaves the group, or Group Replication is stopped on the donor,
while state transfer is in progress.

The Performance Schema table replication_applier_status_by_worker displays the error
that caused the last retry. In these situations, the new connection following the error is attempted
with a new candidate donor. Selecting a different donor in the event of an error means that there is a
chance the new candidate donor does not have the same error. If the clone plugin is installed, Group
Replication attempts a remote cloning operation with each of the suitable online clone-supporting
donors first. If all those attempts fail, Group Replication attempts state transfer from the binary log with
all the suitable donors in turn, if that is possible.

Warning

For a remote cloning operation, user-created tablespaces and data on the
recipient (the joining member) are dropped before the remote cloning operation
begins to transfer the data from the donor. If the remote cloning operation starts
but does not complete, the joining member might be left with a partial set of
its original data files, or with no user data. Data transferred by the donor is
removed from the recipient if the cloning operation is stopped before the data
is fully cloned. This situation can be repaired by retrying the cloning operation,
which Group Replication does automatically.

3950

Distributed Recovery

In the following situations, the distributed recovery process cannot be completed, and the joining
member leaves the group:

• Purged transactions - Transactions that are required by the joining member are not present in
any online group member's binary log files, and the data cannot be obtained by a remote cloning
operation (because the clone plugin is not installed, or because cloning was attempted with all
possible donors but failed). The joining member is therefore unable to catch up with the group.

• Extra transactions - The joining member already contains some transactions that are not present in
the group. If a remote cloning operation was carried out, these transactions would be deleted and
lost, because the data directory on the joining member is erased. If state transfer from a donor's
binary log was carried out, these transactions could conflict with the group's transactions. For advice
on dealing with this situation, see Extra Transactions.

• Connection retry limit reached - The joining member has made all the connection
attempts allowed by the connection retry limit. You can configure this using the
group_replication_recovery_retry_count system variable (see Section 20.5.4.3,
“Configuring Distributed Recovery”).

• No more donors - The joining member has unsuccessfully attempted a remote cloning operation
with each of the online clone-supporting donors in turn (if the clone plugin is installed), then has
unsuccessfully attempted state transfer from the binary log with each of the suitable online donors in
turn, if possible.

• Joining member leaves the group - The joining member leaves the group or Group Replication is
stopped on the joining member while state transfer is in progress.

If the joining member left the group unintentionally, so in any situation listed above except the last, it
proceeds to take the action specified by the group_replication_exit_state_action system
variable.

20.5.4.5 How Distributed Recovery Works

When Group Replication's distributed recovery process is carrying out state transfer from the binary
log, to synchronize the joining member with the donor up to a specific point in time, the joining member
and donor make use of GTIDs (see Section 19.1.3, “Replication with Global Transaction Identifiers”).
However, GTIDs only provide a means to realize which transactions the joining member is missing.
They do not help marking a specific point in time to which the server joining the group must catch up,
nor do they convey certification information. This is the job of binary log view markers, which mark
view changes in the binary log stream, and also contain additional metadata information, supplying the
joining member with missing certification-related data.

This topic explains the role of view changes and the view change identifier, and the steps to carry out
state transfer from the binary log.

View and View Changes

A view corresponds to a group of members participating actively in the current configuration, in other
words at a specific point in time. They are functioning correctly and online in the group.

A view change occurs when a modification to the group configuration happens, such as a
member joining or leaving. Any group membership change results in an independent view change
communicated to all members at the same logical point in time.

A view identifier uniquely identifies a view. It is generated whenever a view change happens.

At the group communication layer, view changes with their associated view identifiers mark boundaries
between the data exchanged before and after a member joins. This concept is implemented through
a binary log event: the "view change log event" (VCLE). The view identifier is recorded to demarcate
transactions transmitted before and after changes happen in the group membership.

3951

Distributed Recovery

The view identifier itself is built from two parts: a randomly generated part, and a monotonically
increasing integer. The randomly generated part is generated when the group is created, and remains
unchanged while there is at least one member in the group. The integer is incremented every time a
view change happens. Using these two different parts enables the view identifier to identify incremental
group changes caused by members joining or leaving, and also to identify the situation where all
members leave the group in a full group shutdown, so no information remains of what view the group
was in. Randomly generating part of the identifier when the group is started from the beginning ensures
that the data markers in the binary log remain unique, and an identical identifier is not reused after a full
group shutdown, as this would cause issues with distributed recovery in the future.

Begin: Stable Group

All servers are online and processing incoming transactions from the group. Some servers may be a
little behind in terms of transactions replicated, but eventually they converge. The group acts as one
distributed and replicated database.

Figure 20.8 Stable Group

View Change: a Member Joins

Whenever a new member joins the group and therefore a view change is performed, every online
server queues a view change log event for execution. This is queued because before the view change,
several transactions can be queued on the server to be applied and as such, these belong to the old
view. Queuing the view change event after them guarantees a correct marking of when this happened.

Meanwhile, the joining member selects a suitable donor from the list of online servers as stated by the
membership service through the view abstraction. A member joins on view 4 and the online members
write a view change event to the binary log.

3952

Distributed Recovery

Figure 20.9 A Member Joins

State Transfer: Catching Up

If group members and the joining member are set up with the clone plugin (see Section 20.5.4.2,
“Cloning for Distributed Recovery”), and the difference in transactions between the
joining member and the group exceeds the threshold set for a remote cloning operation
(group_replication_clone_threshold), Group Replication begins distributed recovery with
a remote cloning operation. A remote cloning operation is also carried out if required transactions
are no longer present in any group member's binary log files. During a remote cloning operation, the
existing data on the joining member is removed, and replaced with a copy of the donor's data. When
the remote cloning operation is complete and the joining member has restarted, state transfer from a
donor's binary log is carried out to get the transactions that the group applied while the remote cloning
operation was in progress. If there is not a large transaction gap, or if the clone plugin is not installed,
Group Replication proceeds directly to state transfer from a donor's binary log.

For state transfer from a donor's binary log, a connection is established between the joining member
and the donor and state transfer begins. This interaction with the donor continues until the server
joining the group's applier thread processes the view change log event that corresponds to the view
change triggered when the server joining the group came into the group. In other words, the server
joining the group replicates from the donor, until it gets to the marker with the view identifier which
matches the view marker it is already in.

3953

Distributed Recovery

Figure 20.10 State Transfer: Catching Up

As view identifiers are transmitted to all members in the group at the same logical time, the server
joining the group knows at which view identifier it should stop replicating. This avoids complex GTID set
calculations because the view identifier clearly marks which data belongs to each group view.

While the server joining the group is replicating from the donor, it is also caching incoming transactions
from the group. Eventually, it stops replicating from the donor and switches to applying those that are
cached.

3954

Distributed Recovery

Figure 20.11 Queued Transactions

Finish: Caught Up

When the server joining the group recognizes a view change log event with the expected view
identifier, the connection to the donor is terminated and it starts applying the cached transactions.
Although it acts as a marker in the binary log, delimiting view changes, the view change log event also
plays another role. It conveys the certification information as perceived by all servers when the server
joining the group entered the group, in other words the last view change. Without it, the server joining
the group would not have the necessary information to be able to certify (detect conflicts) subsequent
transactions.

The duration of the catch up is not deterministic, because it depends on the workload and the rate
of incoming transactions to the group. This process is completely online and the server joining the
group does not block any other server in the group while it is catching up. Therefore the number of
transactions the server joining the group is behind when it moves to this stage can, for this reason, vary
and thus increase or decrease according to the workload.

3955

Support For IPv6 And For Mixed IPv6 And IPv4 Groups

When the server joining the group reaches zero queued transactions and its stored data is equal to the
other members, its public state changes to online.

Figure 20.12 Instance Online

20.5.5 Support For IPv6 And For Mixed IPv6 And IPv4 Groups

As of MySQL 8.0.14, Group Replication group members can use IPv6 addresses as an alternative to
IPv4 addresses for communications within the group. To use IPv6 addresses, the operating system
on the server host and the MySQL Server instance must both be configured to support IPv6. For
instructions to set up IPv6 support for a server instance, see Section 7.1.13, “IPv6 Support”.

IPv6 addresses, or host names that resolve to them, can be specified as the network address that the
member provides in the group_replication_local_address option for connections from other
members. When specified with a port number, an IPv6 address must be specified in square brackets,
for example:

group_replication_local_address= "[2001:db8:85a3:8d3:1319:8a2e:370:7348]:33061"

The network address or host name specified in group_replication_local_address is used
by Group Replication as the unique identifier for a group member within the replication group.
If a host name specified as the Group Replication local address for a server instance resolves
to both an IPv4 and an IPv6 address, the IPv4 address is always used for Group Replication
connections. The address or host name specified as the Group Replication local address is not the
same as the MySQL server SQL protocol host and port, and is not specified in the bind_address
system variable for the server instance. For the purpose of IP address permissions for Group
Replication (see Section 20.6.4, “Group Replication IP Address Permissions”), the address
that you specify for each group member in group_replication_local_address must

3956

Support For IPv6 And For Mixed IPv6 And IPv4 Groups

be added to the list for the group_replication_ip_allowlist (from MySQL 8.0.22) or
group_replication_ip_whitelist system variable on the other servers in the replication group.

A replication group can contain a combination of members that present an IPv6 address as
their Group Replication local address, and members that present an IPv4 address. When a
server joins such a mixed group, it must make the initial contact with the seed member using
the protocol that the seed member advertises in the group_replication_group_seeds
option, whether that is IPv4 or IPv6. If any of the seed members for the group are listed in the
group_replication_group_seeds option with an IPv6 address when a joining member has
an IPv4 Group Replication local address, or the reverse, you must also set up and permit an
alternative address for the joining member for the required protocol (or a host name that resolves
to an address for that protocol). If a joining member does not have a permitted address for the
appropriate protocol, its connection attempt is refused. The alternative address or host name
only needs to be added to the group_replication_ip_allowlist (from MySQL 8.0.22) or
group_replication_ip_whitelist system variable on the other servers in the replication group,
not to the group_replication_local_address value for the joining member (which can only
contain a single address).

For example, server A is a seed member for a group, and has the following configuration
settings for Group Replication, so that it is advertising an IPv6 address in the
group_replication_group_seeds option:

group_replication_bootstrap_group=on
group_replication_local_address= "[2001:db8:85a3:8d3:1319:8a2e:370:7348]:33061"
group_replication_group_seeds= "[2001:db8:85a3:8d3:1319:8a2e:370:7348]:33061"

Server B is a joining member for the group, and has the following configuration settings for Group
Replication, so that it has an IPv4 Group Replication local address:

group_replication_bootstrap_group=off
group_replication_local_address= "203.0.113.21:33061"
group_replication_group_seeds= "[2001:db8:85a3:8d3:1319:8a2e:370:7348]:33061"

Server B also has an alternative IPv6 address 2001:db8:8b0:40:3d9c:cc43:e006:19e8.
For Server B to join the group successfully, both its IPv4 Group Replication local address, and its
alternative IPv6 address, must be listed in Server A's allowlist, as in the following example:

group_replication_ip_allowlist=
"203.0.113.0/24,2001:db8:85a3:8d3:1319:8a2e:370:7348,
2001:db8:8b0:40:3d9c:cc43:e006:19e8"

As a best practice for Group Replication IP address permissions, Server B (and all other group
members) should have the same allowlist as Server A, unless security requirements demand
otherwise.

If any or all members of a replication group are using an older MySQL Server version that does not
support the use of IPv6 addresses for Group Replication, a member cannot participate in the group
using an IPv6 address (or a host name that resolves to one) as its Group Replication local address.
This applies both in the case where at least one existing member uses an IPv6 address and a new
member that does not support this attempts to join, and in the case where a new member attempts to
join using an IPv6 address but the group includes at least one member that does not support this. In
each situation, the new member cannot join. To make a joining member present an IPv4 address for
group communications, you can either change the value of group_replication_local_address
to an IPv4 address, or configure your DNS to resolve the joining member's existing host name to an
IPv4 address. After you have upgraded every group member to a MySQL Server version that supports
IPv6 for Group Replication, you can change the group_replication_local_address value for
each member to an IPv6 address, or configure your DNS to present an IPv6 address. Changing the
value of group_replication_local_address takes effect only when you stop and restart Group
Replication.

IPv6 addresses can also be used as distributed recovery endpoints, which can be specified in MySQL
8.0.21 and later using the group_replication_advertise_recovery_endpoints system

3957

Using MySQL Enterprise Backup with Group Replication

variable. The same rules apply to addresses used in this list. See Section 20.5.4.1, “Connections for
Distributed Recovery”.

20.5.6 Using MySQL Enterprise Backup with Group Replication

MySQL Enterprise Backup is a commercially-licensed backup utility for MySQL Server, available with
MySQL Enterprise Edition. This section explains how to back up and subsequently restore a Group
Replication member using MySQL Enterprise Backup. The same technique can be used to quickly add
a new member to a group.

Backing up a Group Replication Member Using MySQL Enterprise Backup

Backing up a Group Replication member is similar to backing up a stand-alone MySQL instance. The
following instructions assume that you are already familiar with how to use MySQL Enterprise Backup
to perform a backup; if that is not the case, please review Backing Up a Database Server. Also note
the requirements described in Grant MySQL Privileges to Backup Administrator and Using MySQL
Enterprise Backup with Group Replication.

Consider the following group with three members, s1, s2, and s3, running on hosts with the same
names:

mysql> SELECT member_host, member_port, member_state FROM performance_schema.replication_group_members;
+-------------+-------------+--------------+
| member_host | member_port | member_state |
+-------------+-------------+--------------+
s1	3306	ONLINE
s2	3306	ONLINE
s3	3306	ONLINE
+-------------+-------------+--------------+

Using MySQL Enterprise Backup, create a backup of s2 by issuing on its host, for example, the
following statement:

s2> mysqlbackup --defaults-file=/etc/my.cnf --backup-image=/backups/my.mbi_`date +%d%m_%H%M` \
 --backup-dir=/backups/backup_`date +%d%m_%H%M` --user=root -p \
 --host=127.0.0.1 backup-to-image

Notes

• For MySQL Enterprise Backup 8.0.18 and earlier, If the system variable
sql_require_primary_key is set to ON for the group, MySQL Enterprise
Backup is not able to log the backup progress on the servers. This is because
the backup_progress table on the server is a CSV table, for which primary
keys are not supported. In that case, mysqlbackup issues the following
warnings during the backup operation:

181011 11:17:06 MAIN WARNING: MySQL query 'CREATE TABLE IF NOT EXISTS
mysql.backup_progress(`backup_id` BIGINT NOT NULL, `tool_name` VARCHAR(4096)
NOT NULL, `error_code` INT NOT NULL, `error_message` VARCHAR(4096) NOT NULL,
`current_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON
UPDATE CURRENT_TIMESTAMP,`current_state` VARCHAR(200) NOT NULL) ENGINE=CSV
DEFAULT CHARSET=utf8mb3 COLLATE=utf8mb3_bin': 3750, Unable to create a table
without PK, when system variable 'sql_require_primary_key' is set. Add a PK
to the table or unset this variable to avoid this message. Note that tables
without PK can cause performance problems in row-based replication, so please
consult your DBA before changing this setting.
181011 11:17:06 MAIN WARNING: This backup operation's progress info cannot be
logged.

This does not prevent mysqlbackup from finishing the backup.

• For MySQL Enterprise Backup 8.0.20 and earlier, when backing up a
secondary member, as MySQL Enterprise Backup cannot write backup status
and metadata to a read-only server instance, it might issue warnings similar
to the following one during the backup operation:

3958

https://www.mysql.com/products/enterprise/
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/backing-up.html
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/mysqlbackup.privileges.html
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/meb-group-replication.html
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/meb-group-replication.html

Using MySQL Enterprise Backup with Group Replication

181113 21:31:08 MAIN WARNING: This backup operation cannot write to backup
progress. The MySQL server is running with the --super-read-only option.

You can avoid the warning by using the --no-history-logging option
with your backup command. This is not an issue for MySQL Enterprise
Backup 8.0.21 and higher—see Using MySQL Enterprise Backup with Group
Replication for details.

Restoring a Failed Member

Assume one of the members (s3 in the following example) is irreconcilably corrupted. The most recent
backup of group member s2 can be used to restore s3. Here are the steps for performing the restore:

1. Copy the backup of s2 onto the host for s3. The exact way to copy the backup depends on the
operating system and tools available to you. In this example, we assume the hosts are both Linux
servers and use SCP to copy the files between them:

s2/backups> scp my.mbi_2206_1429 s3:/backups

2. Restore the backup. Connect to the target host (the host for s3 in this case), and restore the
backup using MySQL Enterprise Backup. Here are the steps:

a. Stop the corrupted server, if it is still running. For example, on Linux distributions that use
systemd:

s3> systemctl stop mysqld

b. Preserve the two configuration files in the corrupted server's data directory, auto.cnf and
mysqld-auto.cnf (if it exists), by copying them to a safe location outside of the data
directory. This is for preserving the server's UUID and Section 7.1.9.3, “Persisted System
Variables” (if used), which are needed in the steps below.

c. Delete all contents in the data directory of s3. For example:

s3> rm -rf /var/lib/mysql/*

If the system variables innodb_data_home_dir, innodb_log_group_home_dir, and
innodb_undo_directory point to any directories other than the data directory, they should
also be made empty; otherwise, the restore operation fails.

d. Restore backup of s2 onto the host for s3:

s3> mysqlbackup --defaults-file=/etc/my.cnf \
 --datadir=/var/lib/mysql \
 --backup-image=/backups/my.mbi_2206_1429 \
 --backup-dir=/tmp/restore_`date +%d%m_%H%M` copy-back-and-apply-log

Note

The command above assumes that the binary logs and relay logs on s2
and s3 have the same base name and are at the same location on the
two servers. If these conditions are not met, you should use the --log-
bin and --relay-log options to restore the binary log and relay log
to their original file paths on s3. For example, if you know that on s3 the
binary log's base name is s3-bin and the relay-log's base name is s3-
relay-bin, your restore command should look like:

mysqlbackup --defaults-file=/etc/my.cnf \
 --datadir=/var/lib/mysql \
 --backup-image=/backups/my.mbi_2206_1429 \
 --log-bin=s3-bin --relay-log=s3-relay-bin \
 --backup-dir=/tmp/restore_`date +%d%m_%H%M` copy-back-and-apply-log

3959

https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/meb-group-replication.html
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/meb-group-replication.html
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/server-repository-options.html#option_meb_log-bin
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/server-repository-options.html#option_meb_log-bin
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/server-repository-options.html#option_meb_relay-log

Using MySQL Enterprise Backup with Group Replication

Being able to restore the binary log and relay log to the right file paths
makes the restore process easier; if that is impossible for some reason,
see Rebuild the Failed Member to Rejoin as a New Member.

3. Restore the auto.cnf file for s3. To rejoin the replication group, the restored member must have
the same server_uuid it used to join the group before. Supply the old server UUID by copying
the auto.cnf file preserved in step 2 above into the data directory of the restored member.

Note

If you cannot supply the failed member's original server_uuid to the
restored member by restoring its old auto.cnf file, you must let the
restored member join the group as a new member; see instructions in
Rebuild the Failed Member to Rejoin as a New Member below on how to do
that.

4. Restore the mysqld-auto.cnf file for s3 (only required if s3 used persistent system variables).
The settings for the Section 7.1.9.3, “Persisted System Variables” that were used to configure the
failed member must be provided to the restored member. These settings are to be found in the
mysqld-auto.cnf file of the failed server, which you should have preserved in step 2 above.
Restore the file to the data directory of the restored server. See Restoring Persisted System
Variables on what to do if you do not have a copy of the file.

5. Start the restored server. For example, on Linux distributions that use systemd:

systemctl start mysqld

Note

If the server you are restoring is a primary member, perform the steps
described in Restoring a Primary Member before starting the restored
server.

6. Restart Group Replication. Connect to the restarted s3 using, for example, a mysql client, and
issue the following statement:

mysql> START GROUP_REPLICATION;

Before the restored instance can become an online member of the group, it needs to apply any
transactions that have happened to the group after the backup was taken; this is achieved using
Group Replication's distributed recovery mechanism, and the process starts after the START
GROUP_REPLICATION statement has been issued. To check the member status of the restored
instance, issue:

mysql> SELECT member_host, member_port, member_state FROM performance_schema.replication_group_members;
+-------------+-------------+--------------+
| member_host | member_port | member_state |
+-------------+-------------+--------------+
s1	3306	ONLINE
s2	3306	ONLINE
s3	3306	RECOVERING
+-------------+-------------+--------------+

This shows that s3 is applying transactions to catch up with the group. Once it has caught up with
the rest of the group, its member_state changes to ONLINE:

mysql> SELECT member_host, member_port, member_state FROM performance_schema.replication_group_members;
+-------------+-------------+--------------+
| member_host | member_port | member_state |
+-------------+-------------+--------------+
s1	3306	ONLINE
s2	3306	ONLINE
s3	3306	ONLINE

3960

Using MySQL Enterprise Backup with Group Replication

+-------------+-------------+--------------+

Note

If the server you are restoring is a primary member, once it has gained
synchrony with the group and become ONLINE, perform the steps described
at the end of Restoring a Primary Member to revert the configuration
changes you had made to the server before you started it.

The member has now been fully restored from the backup and functions as a regular member of the
group.

Rebuild the Failed Member to Rejoin as a New Member

Sometimes, the steps outlined above in Restoring a Failed Member cannot be carried out because,
for example, the binary log or relay log is corrupted, or it is just missing from the backup. In such a
situation, use the backup to rebuild the member, and then add it to the group as a new member. In the
steps below, we assume the rebuilt member is named s3, like the failed member, and that it runs on
the same host as s3:

1. Copy the backup of s2 onto the host for s3 . The exact way to copy the backup depends on the
operating system and tools available to you. In this example we assume the hosts are both Linux
servers and use SCP to copy the files between them:

s2/backups> scp my.mbi_2206_1429 s3:/backups

2. Restore the backup. Connect to the target host (the host for s3 in this case), and restore the
backup using MySQL Enterprise Backup. Here are the steps:

a. Stop the corrupted server, if it is still running. For example, on Linux distributions that use
systemd:

s3> systemctl stop mysqld

b. Preserve the configuration file mysqld-auto.cnf, if it is found in the corrupted server's data
directory, by copying it to a safe location outside of the data directory. This is for preserving the
server's Section 7.1.9.3, “Persisted System Variables”, which are needed later.

c. Delete all contents in the data directory of s3. For example:

s3> rm -rf /var/lib/mysql/*

If the system variables innodb_data_home_dir, innodb_log_group_home_dir, and
innodb_undo_directory point to any directories other than the data directory, they should
also be made empty; otherwise, the restore operation fails.

d. Restore the backup of s2 onto the host of s3. With this approach, we are rebuilding s3 as a
new member, for which we do not need or do not want to use the old binary and relay logs in
the backup; therefore, if these logs have been included in your backup, exclude them using the
--skip-binlog and --skip-relaylog options:

s3> mysqlbackup --defaults-file=/etc/my.cnf \
 --datadir=/var/lib/mysql \
 --backup-image=/backups/my.mbi_2206_1429 \
 --backup-dir=/tmp/restore_`date +%d%m_%H%M` \
 --skip-binlog --skip-relaylog \
 copy-back-and-apply-log

Note

If you have healthy binary log and relay logs in the backup that you can
transfer onto the target host with no issues, you are recommended to

3961

https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/backup-capacity-options.html#option_meb_skip-binlog
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/backup-capacity-options.html#option_meb_skip-relaylog

Using MySQL Enterprise Backup with Group Replication

follow the easier procedure as described in Restoring a Failed Member
above.

3. Restore the mysqld-auto.cnf file for s3 (only required if s3 used persistent system variables).
The settings for the Section 7.1.9.3, “Persisted System Variables” that were used to configure
the failed member must be provided to the restored server. These settings are to be found in the
mysqld-auto.cnf file of the failed server, which you should have preserved in step 2 above.
Restore the file to the data directory of the restored server. See Restoring Persisted System
Variables on what to do if you do not have a copy of the file.

Note

Do NOT restore the corrupted server's auto.cnf file to the data directory of
the new member—when the rebuilt s3 joins the group as a new member, it
is going to be assigned a new server UUID.

4. Start the restored server. For example, on Linux distributions that use systemd:

systemctl start mysqld

Note

If the server you are restoring is a primary member, perform the steps
described in Restoring a Primary Member before starting the restored
server.

5. Reconfigure the restored member to join Group Replication. Connect to the restored server with a
mysql client and reset the source and replica information with the following statements:

mysql> RESET MASTER;

mysql> RESET MASTER;
mysql> RESET SLAVE ALL;

In MySQL 8.0.22 and later, use the statements shown here:

mysql> RESET MASTER;
mysql> RESET REPLICA ALL;

For the restored server to be able to recover automatically using Group Replication's built-
in mechanism for distributed recovery, configure the server's gtid_executed variable. To
do this, use the backup_gtid_executed.sql file included in the backup of s2, which is
usually restored under the restored member's data directory. Disable binary logging, use the
backup_gtid_executed.sql file to configure gtid_executed, and then re-enable binary
logging by issuing the following statements with your mysql client:

mysql> SET SQL_LOG_BIN=OFF;
mysql> SOURCE datadir/backup_gtid_executed.sql
mysql> SET SQL_LOG_BIN=ON;

Then, configure the Group Replication user credentials on the member using the SQL statements
shown here:

mysql> CHANGE MASTER TO MASTER_USER='rpl_user', MASTER_PASSWORD='password'
 -> FOR CHANNEL 'group_replication_recovery';

In MySQL 8.0.23 and later, use these statements instead:

mysql> CHANGE REPLICATION SOURCE TO SOURCE_USER='rpl_user', SOURCE_PASSWORD='password'
 -> FOR CHANNEL 'group_replication_recovery';

3962

Using MySQL Enterprise Backup with Group Replication

6. Restart Group Replication. Issue the following statement to the restored server with your mysql
client:

mysql>> START GROUP_REPLICATION;

Before the restored instance can become an online member of the group, it needs to apply any
transactions that have happened to the group after the backup was taken; this is achieved using
Group Replication's distributed recovery mechanism, and the process starts after the START
GROUP_REPLICATION statement has been issued. To check the member status of the restored
instance, issue:

mysql> SELECT member_host, member_port, member_state FROM performance_schema.replication_group_members;
+-------------+-------------+--------------+
| member_host | member_port | member_state |
+-------------+-------------+--------------+
s3	3306	RECOVERING
s2	3306	ONLINE
s1	3306	ONLINE
+-------------+-------------+--------------+

This shows that s3 is applying transactions to catch up with the group. Once it has caught up with
the rest of the group, its member_state changes to ONLINE:

mysql> SELECT member_host, member_port, member_state FROM performance_schema.replication_group_members;
+-------------+-------------+--------------+
| member_host | member_port | member_state |
+-------------+-------------+--------------+
s3	3306	ONLINE
s2	3306	ONLINE
s1	3306	ONLINE
+-------------+-------------+--------------+

Note

If the server you are restoring is a primary member, once it has gained
synchrony with the group and become ONLINE, perform the steps described
at the end of Restoring a Primary Member to revert the configuration
changes you had made to the server before you started it.

The member has now been restored to the group as a new member.

Restoring Persisted System Variables. mysqlbackup does not provide support for backing up or
preserving Section 7.1.9.3, “Persisted System Variables”—the file mysqld-auto.cnf is not included
in a backup. To start the restored member with its persisted variable settings, you need to do one of the
following:

• Preserve a copy of the mysqld-auto.cnf file from the corrupted server, and copy it to the restored
server's data directory.

• Copy the mysqld-auto.cnf file from another member of the group into the restored server's data
directory, if that member has the same persisted system variable settings as the corrupted member.

• After the restored server is started and before you restart Group Replication, set all the system
variables manually to their persisted values through a mysql client.

Restoring a Primary Member. If the restored member is a primary in the group, care must be taken
to prevent writes to the restored database during the Group Replication distributed recovery process.
Depending on how the group is accessed by clients, there is a possibility of DML statements being
executed on the restored member once it becomes accessible on the network, prior to the member
finishing its catch-up on the activities it has missed while off the group. To avoid this, before starting the
restored server, configure the following system variables in the server option file:

group_replication_start_on_boot=OFF
super_read_only=ON

3963

Group Replication Security

event_scheduler=OFF

These settings ensure that the member becomes read-only at startup, and that the event scheduler
is turned off while the member catches up with the group during the distributed recovery process.
Adequate error handling must also be provided for on the clients, since they are unable to perform DML
operations during this period on the member being restored.

Once the restoration process is fully completed and the restored member is synchronized with the
rest of the group, you can revert these changes. First, restart the event scheduler using the statement
shown here:

mysql> SET global event_scheduler=ON;

After this, you should set the following system variables in the member's option file, so that they have
the necessary values for the next time that the member is started:

group_replication_start_on_boot=ON
super_read_only=OFF
event_scheduler=ON

20.6 Group Replication Security

This section explains how to secure a group, securing the connections between members of a group,
or by establishing a security perimeter using an IP address allowlist.

20.6.1 Communication Stack for Connection Security Management

From MySQL 8.0.27, Group Replication can secure group communication connections between
members by one of the following methods:

• Using its own implementation of the security protocols, including TLS/SSL and the use of an allowlist
for incoming Group Communication System (GCS) connections. This is the only option for MySQL
8.0.26 and earlier.

• Using MySQL Server’s own connection security in place of Group Replication’s implementation.
Using the MySQL protocol means that standard methods of user authentication can be used for
granting (or revoking) access to the group in place of the allowlist, and the latest functionality of the
server’s protocol is always available on release. This option is available from MySQL 8.0.27.

The choice is made by setting the system variable group_replication_communication_stack
to XCOM to use Group Replication's own implementation (this is the default choice), or to MYSQL to use
MySQL Server's connection security.

The following additional configuration is required for a replication group to use the MySQL
communication stack. It is especially important to make sure these requirements are all fulfilled when
you switch from using the XCom communication stack to the MySQL communication stack for your
group.

Group Replication Requirements For The MySQL Communication Stack

• The network address configured by the group_replication_local_address system variable
for each group member must be set to one of the IP addresses and ports that MySQL Server is
listening on, as specified by the bind_address system variable for the server. The combination
of IP address and port for each member must be unique in the group. It is recommended that the
group_replication_group_seeds system variable for each group member be configured to
contain all the local addresses for all the group members.

• The MySQL communication stack supports network namespaces, which the XCom communication
stack does not support. If network namespaces are used with the Group Replication local addresses
for the group members (group_replication_local_address), these must be configured
for each group member using the CHANGE REPLICATION SOURCE TO statement. Also, the

3964

Communication Stack for Connection Security Management

report_host server system variable for each group member must be set to report the namespace.
All group members must use the same namespace to avoid possible issues with address resolution
during distributed recovery.

• The group_replication_ssl_mode system variable must be set to the required setting for group
communications. This system variable controls whether TLS/SSL is enabled or disabled for group
communications. For MySQL 8.0.26 and earlier, the TLS/SSL configuration is always taken from
the server’s SSL settings; for MySQL 8.0.27 and later, when the MySQL communication stack is
used, the TLS/SSL configuration is taken from Group Replication’s distributed recovery settings. This
setting should be the same on all the group members, to avoid potential conflicts.

• The settings for the --ssl or --skip-ssl server option and for the
require_secure_transport server system variable should be the same on all the group
members, to avoid potential conflicts. If group_replication_ssl_mode is set to REQUIRED,
VERIFY_CA, or VERIFY_IDENTITY, use --ssl and require_secure_transport=ON. If
group_replication_ssl_mode is set to DISABLED, use require_secure_transport=OFF.

• If TLS/SSL is enabled for group communications, Group Replication’s settings for securing
distributed recovery must be configured if they are not already in place, or validated if they
already are. The MySQL communication stack uses these settings not just for member-to-
member distributed recovery connections, but also for TLS/SSL configuration in general
group communications. group_replication_recovery_use_ssl and the other
group_replication_recovery_* system variables are explained in Section 20.6.3.2, “Secure
Socket Layer (SSL) Connections for Distributed Recovery”.

• The Group Replication allowlist is not used when the group is using the MySQL communication
stack, so the group_replication_ip_allowlist and group_replication_ip_whitelist
system variables are ignored and need not be configured.

• The replication user account that Group Replication uses for distributed recovery, as configured
using the CHANGE REPLICATION SOURCE TO statement, is used for authentication by the MySQL
communication stack when setting up Group Replication connections. This user account, which is
the same on all group members, must be given the following privileges:

• GROUP_REPLICATION_STREAM. This privilege is required for the user account to be able to
establish connections for Group Replication using the MySQL communication stack.

• CONNECTION_ADMIN. This privilege is required so that Group Replication connections are not
terminated if one of the servers involved is placed in offline mode. If the MySQL communication
stack is in use without this privilege, a member that is placed in offline mode is expelled from the
group.

These are in addition to the privileges REPLICATION SLAVE and BACKUP_ADMIN that all replication
user accounts must have (see Section 20.2.1.3, “User Credentials For Distributed Recovery”). When
you add the new privileges, ensure that you skip binary logging on each group member by issuing
SET SQL_LOG_BIN=0 before you issue the GRANT statements, and SET SQL_LOG_BIN=1 after
them, so that the local transaction does not interfere with restarting Group Replication.

group_replication_communication_stack is effectively a group-wide configuration setting,
and the setting must be the same on all group members. However, this is not policed by Group
Replication’s own checks for group-wide configuration settings. A member with a different value from
the rest of the group cannot communicate with the other members at all, because the communication
protocols are incompatible, so it cannot exchange information about its configuration settings.

This means that although the value of the system variable can be changed while Group Replication is
running, and takes effect after you restart Group Replication on the group member, the member still
cannot rejoin the group until the setting has been changed on all the members. You must therefore
stop Group Replication on all of the members and change the value of the system variable on them all
before you can restart the group. Because all of the members are stopped, a full reboot of the group
(a bootstrap by a server with group_replication_bootstrap_group=ON) is required in order for

3965

Communication Stack for Connection Security Management

the value change to take effect. You can make the other required changes to settings on the group
members while they are stopped.

For a running group, follow this procedure to change the value of
group_replication_communication_stack and the other required settings to migrate a
group from the XCom communication stack to the MySQL communication stack, or from the MySQL
communication stack to the XCom communication stack:

1. Stop Group Replication on each of the group members, using a STOP GROUP_REPLICATION
statement. Stop the primary member last, so that you do not trigger a new primary election and
have to wait for that to complete.

2. On each of the group members, set the system variable
group_replication_communication_stack to the new communication stack, MYSQL or
XCOM as appropriate. You can do this by editing the MySQL Server configuration file (typically
named my.cnf on Linux and Unix systems, or my.ini on Windows systems), or by using a SET
statement. For example:

SET PERSIST group_replication_communication_stack="MYSQL";

3. If you are migrating the replication group from the XCom communication stack (the default) to the
MySQL communication stack, on each of the group members, configure or reconfigure the required
system variables to appropriate settings, as described in the listing above. For example, the
group_replication_local_address system variable must be set to one of the IP addresses
and ports that MySQL Server is listening on. Also configure any network namespaces using a
CHANGE REPLICATION SOURCE TO statement.

4. If you are migrating the replication group from the XCom communication stack (the default) to
the MySQL communication stack, on each of the group members, issue GRANT statements to
give the replication user account the GROUP_REPLICATION_STREAM and CONNECTION_ADMIN
privileges. You will need to take the group members out of the read-only state that is applied when
Group Replication is stopped. Also ensure that you skip binary logging on each group member by
issuing SET SQL_LOG_BIN=0 before you issue the GRANT statements, and SET SQL_LOG_BIN=1
after them, so that the local transaction does not interfere with restarting Group Replication. For
example:

SET GLOBAL SUPER_READ_ONLY=OFF;
SET SQL_LOG_BIN=0;
GRANT GROUP_REPLICATION_STREAM ON *.* TO rpl_user@'%';
GRANT CONNECTION_ADMIN ON *.* TO rpl_user@'%';
SET SQL_LOG_BIN=1;

5. If you are migrating the replication group from the MySQL communication stack back to the XCom
communication stack, on each of the group members, reconfigure the system variables in the
requirements listing above to settings suitable for the XCom communication stack. Section 20.9,
“Group Replication Variables” lists the system variables with their defaults and requirements for the
XCom communication stack.

Note

• The XCom communication stack does not support network
namespaces, so the Group Replication local address
(group_replication_local_address system variable) cannot use
these. Unset them by issuing a CHANGE REPLICATION SOURCE TO
statement.

• When you move back to the XCom communication stack, the settings
specified by group_replication_recovery_use_ssl and the other
group_replication_recovery_* system variables are not used to
secure group communications. Instead, the Group Replication system
variable group_replication_ssl_mode is used to activate the use of
SSL for group communication connections and specify the security mode

3966

Securing Group Communication Connections with Secure Socket Layer (SSL)

for the connections, and the remainder of the configuration is taken from
the server's SSL configuration. For details, see Section 20.6.2, “Securing
Group Communication Connections with Secure Socket Layer (SSL)”.

6. To restart the group, follow the process in Section 20.5.2, “Restarting a Group”, which explains
how to safely bootstrap a group where transactions have been executed and certified. A bootstrap
by a server with group_replication_bootstrap_group=ON is necessary to change the
communication stack, because all of the members must be shut down.

7. Members now connect to each other using the new communication stack. Any server that has
group_replication_communication_stack set (or defaulted, in the case of XCom) to
the previous communication stack is no longer able to join the group. It is important to note that
because Group Replication cannot even see the joining attempt, it does not check and reject the
joining member with an error message. Instead, the attempted join fails silently when the previous
communication stack gives up trying to contact the new one.

20.6.2 Securing Group Communication Connections with Secure Socket
Layer (SSL)

Secure sockets can be used for group communication connections between members of a group.

The Group Replication system variable group_replication_ssl_mode is used to activate the use
of SSL for group communication connections and specify the security mode for the connections. This
value should be the same on all group members; if it differs, some members may not be able to join the
group. The default setting means that SSL is not used. This variable has the following possible values:

Table 20.1 group_replication_ssl_mode configuration values

Value Description

DISABLED Establish an unencrypted connection (the default).

REQUIRED Establish a secure connection if the server
supports secure connections.

VERIFY_CA Like REQUIRED, but additionally verify the server
TLS certificate against the configured Certificate
Authority (CA) certificates.

VERIFY_IDENTITY Like VERIFY_CA, but additionally verify that the
server certificate matches the host to which the
connection is attempted.

If SSL is used, the means for configuring the secure connection depends on whether the XCom or the
MySQL communication stack is used for group communication (a choice between the two is available
since MySQL 8.0.27).

When using the XCom communication stack
(group_replication_communication_stack=XCOM): The remainder of the configuration for
Group Replication's group communication connections is taken from the server's SSL configuration.
For more information on the options for configuring the server SSL, see Command Options for
Encrypted Connections. The server SSL options that are applied to Group Replication's group
communication connections are as follows:

Table 20.2 SSL Options

Server Configuration Description

ssl_key The path name of the SSL private key file in PEM
format. On the client side, this is the client private
key. On the server side, this is the server private
key.

3967

Securing Group Communication Connections with Secure Socket Layer (SSL)

Server Configuration Description

ssl_cert The path name of the SSL public key certificate
file in PEM format. On the client side, this is the
client public key certificate. On the server side,
this is the server public key certificate.

ssl_ca The path name of the Certificate Authority (CA)
certificate file in PEM format.

ssl_capath The path name of the directory that contains
trusted SSL certificate authority (CA) certificate
files in PEM format.

ssl_crl The path name of the file containing certificate
revocation lists in PEM format.

ssl_crlpath The path name of the directory that contains
certificate revocation list files in PEM format.

ssl_cipher A list of permissible ciphers for encrypted
connections.

tls_version A list of the TLS protocols the server permits for
encrypted connections.

tls_ciphersuites Which TLSv1.3 ciphersuites the server permits for
encrypted connections.

Important

• Support for the TLSv1 and TLSv1.1 connection protocols is removed from
MySQL Server as of MySQL 8.0.28. The protocols were deprecated from
MySQL 8.0.26, though MySQL Server clients, including Group Replication
server instances acting as a client, do not return warnings to the user if a
deprecated TLS protocol version is used. See Removal of Support for the
TLSv1 and TLSv1.1 Protocols for more information.

• Support for the TLSv1.3 protocol is available in MySQL Server as
of MySQL 8.0.16, provided that MySQL Server was compiled using
OpenSSL 1.1.1. The server checks the version of OpenSSL at startup,
and if it is lower than 1.1.1, TLSv1.3 is removed from the default value
for the server system variables relating to TLS versions (including the
group_replication_recovery_tls_version system variable).

• Group Replication supports TLSv1.3 from MySQL 8.0.18. In MySQL 8.0.16
and MySQL 8.0.17, if the server supports TLSv1.3, the protocol is not
supported in the group communication engine and cannot be used by Group
Replication.

• In MySQL 8.0.18, TLSv1.3 can be used in Group
Replication for the distributed recovery connection, but the
group_replication_recovery_tls_version and
group_replication_recovery_tls_ciphersuites system variables
are not available. The donor servers must therefore permit the use of at least
one TLSv1.3 ciphersuite that is enabled by default, as listed in Section 8.3.2,
“Encrypted Connection TLS Protocols and Ciphers”. From MySQL 8.0.19,
you can use the options to configure client support for any selection of
ciphersuites, including only non-default ciphersuites if you want.

• In the list of TLS protocols specified in the tls_version system
variable, ensure the specified versions are contiguous (for example,
TLSv1.2,TLSv1.3). If there are any gaps in the list of protocols (for

3968

Securing Group Communication Connections with Secure Socket Layer (SSL)

example, if you specified TLSv1,TLSv1.2, omitting TLS 1.1) Group
Replication might be unable to make group communication connections.

In a replication group, OpenSSL negotiates the use of the highest TLS protocol that is supported by all
members. A joining member that is configured to use only TLSv1.3 (tls_version=TLSv1.3) cannot
join a replication group where any existing member does not support TLSv1.3, because the group
members in that case are using a lower TLS protocol version. To join the member to the group, you
must configure the joining member to also permit the use of lower TLS protocol versions supported
by the existing group members. Conversely, if a joining member does not support TLSv1.3, but the
existing group members all do and are using that version for connections to each other, the member
can join if the existing group members already permit the use of a suitable lower TLS protocol version,
or if you configure them to do so. In that situation, OpenSSL uses a lower TLS protocol version for the
connections from each member to the joining member. Each member's connections to other existing
members continue to use the highest available protocol that both members support.

From MySQL 8.0.16, you can change the tls_version system variable at runtime to alter the
list of permitted TLS protocol versions for the server. Note that for Group Replication, the ALTER
INSTANCE RELOAD TLS statement, which reconfigures the server's TLS context from the current
values of the system variables that define the context, does not change the TLS context for Group
Replication's group communication connection while Group Replication is running. To apply the
reconfiguration to these connections, you must execute STOP GROUP_REPLICATION followed by
START GROUP_REPLICATION to restart Group Replication on the member or members where
you changed the tls_version system variable. Similarly, if you want to make all members of a
group change to using a higher or lower TLS protocol version, you must carry out a rolling restart of
Group Replication on the members after changing the list of permitted TLS protocol versions, so that
OpenSSL negotiates the use of the higher TLS protocol version when the rolling restart is completed.
For instructions to change the list of permitted TLS protocol versions at runtime, see Section 8.3.2,
“Encrypted Connection TLS Protocols and Ciphers” and Server-Side Runtime Configuration and
Monitoring for Encrypted Connections.

The following example shows a section from a my.cnf file that configures SSL on a server, and
activates SSL for Group Replication group communication connections:

[mysqld]
ssl_ca = "cacert.pem"
ssl_capath = "/.../ca_directory"
ssl_cert = "server-cert.pem"
ssl_cipher = "DHE-RSA-AEs256-SHA"
ssl_crl = "crl-server-revoked.crl"
ssl_crlpath = "/.../crl_directory"
ssl_key = "server-key.pem"
group_replication_ssl_mode= REQUIRED

Important

The ALTER INSTANCE RELOAD TLS statement, which reconfigures the
server's TLS context from the current values of the system variables that
define the context, does not change the TLS context for Group Replication's
group communication connections while Group Replication is running. To
apply the reconfiguration to these connections, you must execute STOP
GROUP_REPLICATION followed by START GROUP_REPLICATION to restart
Group Replication.

Connections made between a joining member and an existing member for distributed recovery are
not covered by the options described above. These connections use Group Replication's dedicated
distributed recovery SSL options, which are described in Section 20.6.3.2, “Secure Socket Layer (SSL)
Connections for Distributed Recovery”.

When using the MySQL communication stack
(group_replication_communication_stack=MYSQL): The security settings for distributed
recovery of the group are applied to the normal communications between group members. See
Section 20.6.3, “Securing Distributed Recovery Connections” on how to configure the security settings.

3969

Securing Distributed Recovery Connections

20.6.3 Securing Distributed Recovery Connections

Important

When using the MySQL communication stack
(group_replication_communication_stack=MYSQL) AND secure
connections between members (group_replication_ssl_mode is not set
to DISABLED), the security settings discussed in this section are applied not
just to distributed recovery connections, but to group communications between
members in general.

When a member joins the group, distributed recovery is carried out using a combination of a remote
cloning operation, if available and appropriate, and an asynchronous replication connection. For a full
description of distributed recovery, see Section 20.5.4, “Distributed Recovery”.

Up to MySQL 8.0.20, group members offer their standard SQL client connection to joining members
for distributed recovery, as specified by MySQL Server's hostname and port system variables.
From MySQL 8.0.21, group members may advertise an alternative list of distributed recovery
endpoints as dedicated client connections for joining members. For more details, see Section 20.5.4.1,
“Connections for Distributed Recovery”. Notice that such connections offered to a joining member for
distributed recovery is not the same connections that are used by Group Replication for communication
between online members when the XCom communication stack is used for group communications
(group_replication_communication_stack=XCOM).

To secure distributed recovery connections in the group, ensure that user credentials for the replication
user are properly secured, and use SSL for distributed recovery connections if possible.

20.6.3.1 Secure User Credentials for Distributed Recovery

State transfer from the binary log requires a replication user with the correct permissions so that Group
Replication can establish direct member-to-member replication channels. The same replication user is
used for distributed recovery on all the group members. If group members have been set up to support
the use of a remote cloning operation as part of distributed recovery, which is available from MySQL
8.0.17, this replication user is also used as the clone user on the donor, and requires the correct
permissions for this role too. For detailed instructions to set up this user, see Section 20.2.1.3, “User
Credentials For Distributed Recovery”.

To secure the user credentials, you can require SSL for connections with the user account, and (from
MySQL 8.0.21) you can provide the user credentials when Group Replication is started, rather than
storing them in the replica status tables. Also, if you are using caching SHA-2 authentication, you must
set up RSA key-pairs on the group members.

Important

When using the MySQL communication stack
(group_replication_communication_stack=MYSQL) AND secure
connections between members (group_replication_ssl_mode is not set
to DISABLED), the recovery users must be properly set up, as they are also
the users for group communications. Follow the instructions in Replication User
With SSL and Providing Replication User Credentials Securely.

Replication User With The Caching SHA-2 Authentication Plugin

By default, users created in MySQL 8 use Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”.
If the replication user you configure for distributed recovery uses the caching SHA-2 authentication
plugin, and you are not using SSL for distributed recovery connections, RSA key-pairs are used for
password exchange. For more information on RSA key-pairs, see Section 8.3.3, “Creating SSL and
RSA Certificates and Keys”.

3970

Securing Distributed Recovery Connections

In this situation, you can either copy the public key of the rpl_user to the joining member, or
configure the donors to provide the public key when requested. The more secure approach is to copy
the public key of the replication user account to the joining member. Then you need to configure the
group_replication_recovery_public_key_path system variable on the joining member with
the path to the public key for the replication user account.

The less secure approach is to set group_replication_recovery_get_public_key=ON
on donors so that they provide the public key of the replication user account to
joining members. There is no way to verify the identity of a server, therefore only set
group_replication_recovery_get_public_key=ON when you are sure there is no risk of
server identity being compromised, for example by a man-in-the-middle attack.

Replication User With SSL

A replication user that requires an SSL connection must be created before the server joining the group
(the joining member) connects to the donor. Typically, this is set up at the time you are provisioning
a server to join the group. To create a replication user for distributed recovery that requires an SSL
connection, issue these statements on all servers that are going to participate in the group:

mysql> SET SQL_LOG_BIN=0;
mysql> CREATE USER 'rec_ssl_user'@'%' IDENTIFIED BY 'password' REQUIRE SSL;
mysql> GRANT REPLICATION SLAVE ON *.* TO 'rec_ssl_user'@'%';
mysql> GRANT CONNECTION_ADMIN ON *.* TO 'rec_ssl_user'@'%';
mysql> GRANT BACKUP_ADMIN ON *.* TO 'rec_ssl_user'@'%';
mysql> GRANT GROUP_REPLICATION_STREAM ON *.* TO rec_ssl_user@'%';
mysql> FLUSH PRIVILEGES;
mysql> SET SQL_LOG_BIN=1;

Note

The GROUP_REPLICATION_STREAM privilege is required
when using both the MySQL communication stack
(group_replication_communication_stack=MYSQL) and secure
connections between members (group_replication_ssl_mode not set to
DISABLED). See Section 20.6.1, “Communication Stack for Connection Security
Management”.

Providing Replication User Credentials Securely

To supply the user credentials for the replication user, you can set them permanently as the credentials
for the group_replication_recovery channel, using a CHANGE REPLICATION SOURCE TO
| CHANGE MASTER TO statement. Alternatively, from MySQL 8.0.21, you can specify them on the
START GROUP_REPLICATION statement each time Group Replication is started. User credentials
specified on START GROUP_REPLICATION take precedence over any user credentials that have been
set using a CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement.

User credentials set using CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO are
stored in plain text in the replication metadata repositories on the server, but user credentials
specified on START GROUP_REPLICATION are saved in memory only, and are removed by a STOP
GROUP_REPLICATION statement or server shutdown. Using START GROUP_REPLICATION to specify
the user credentials therefore helps to secure the Group Replication servers against unauthorized
access. However, this method is not compatible with starting Group Replication automatically, as
specified by the group_replication_start_on_boot system variable.

If you want to set the user credentials permanently using a CHANGE REPLICATION SOURCE TO |
CHANGE MASTER TO statement, issue this statement on the member that is going to join the group:

mysql> CHANGE MASTER TO MASTER_USER='rec_ssl_user', MASTER_PASSWORD='password'
 FOR CHANNEL 'group_replication_recovery';

Or from MySQL 8.0.23:

3971

Securing Distributed Recovery Connections

mysql> CHANGE REPLICATION SOURCE TO SOURCE_USER='rec_ssl_user', SOURCE_PASSWORD='password'
 FOR CHANNEL 'group_replication_recovery';

To supply the user credentials on START GROUP_REPLICATION, issue this statement when starting
Group Replication for the first time, or after a server restart:

mysql> START GROUP_REPLICATION USER='rec_ssl_user', PASSWORD='password';

Important

If you switch to using START GROUP_REPLICATION to specify user
credentials on a server that previously supplied the credentials using CHANGE
REPLICATION SOURCE TO | CHANGE MASTER TO, you must complete the
following steps to get the security benefits of this change.

1. Stop Group Replication on the group member using a STOP GROUP_REPLICATION statement.
Although it is possible to take the following two steps while Group Replication is running, you need
to restart Group Replication to implement the changes.

2. Set the value of the group_replication_start_on_boot system variable to OFF (the default
is ON).

3. Remove the distributed recovery credentials from the replica status tables by issuing this statement:

mysql> CHANGE MASTER TO MASTER_USER='', MASTER_PASSWORD=''
 FOR CHANNEL 'group_replication_recovery';

Or from MySQL 8.0.23:
mysql> CHANGE REPLICATION SOURCE TO SOURCE_USER='', SOURCE_PASSWORD=''
 FOR CHANNEL 'group_replication_recovery';

4. Restart Group Replication on the group member using a START GROUP_REPLICATION statement
that specifies the distributed recovery user credentials.

Without these steps, the credentials remain stored in the replica status tables, and can also be
transferred to other group members during remote cloning operations for distributed recovery. The
group_replication_recovery channel could then be inadvertently started with the stored
credentials, on either the original member or members that were cloned from it. An automatic start of
Group Replication on server boot (including after a remote cloning operation) would use the stored
user credentials, and they would also be used if an operator did not specify the distributed recovery
credentials as part of START GROUP_REPLICATION.

20.6.3.2 Secure Socket Layer (SSL) Connections for Distributed Recovery

Important

When using the MySQL communication stack
(group_replication_communication_stack=MYSQL) AND secure
connections between members (group_replication_ssl_mode is not set
to DISABLED), the security settings discussed in this section are applied not
just to distributed recovery connections, but to group communications between
members in general. See Section 20.6.1, “Communication Stack for Connection
Security Management”.

Whether the distributed recovery connection is made using the standard SQL client connection or a
distributed recovery endpoint, to configure the connection securely, you can use Group Replication's
dedicated distributed recovery SSL options. These options correspond to the server SSL options that
are used for group communication connections, but they are only applied for distributed recovery
connections. By default, distributed recovery connections do not use SSL, even if you activated SSL for
group communication connections, and the server SSL options are not applied for distributed recovery
connections. You must configure these connections separately.

3972

Securing Distributed Recovery Connections

If a remote cloning operation is used as part of distributed recovery, Group Replication automatically
configures the clone plugin's SSL options to match your settings for the distributed recovery SSL
options. (For details of how the clone plugin uses SSL, see Configuring an Encrypted Connection for
Cloning.)

The distributed recovery SSL options are as follows:

• group_replication_recovery_use_ssl: Set to ON to make Group Replication use SSL for
distributed recovery connections, including remote cloning operations and state transfer from a
donor's binary log. If the server you connect to does not use the default configuration for this (see
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”), use the other distributed
recovery SSL options to determine which certificates and cipher suites to use.

• group_replication_recovery_ssl_ca: The path name of the Certificate Authority (CA) file to
use for distributed recovery connections. Group Replication automatically configures the clone SSL
option clone_ssl_ca to match this.

group_replication_recovery_ssl_capath: The path name of a directory that contains
trusted SSL certificate authority (CA) certificate files.

• group_replication_recovery_ssl_cert: The path name of the SSL public key certificate file
to use for distributed recovery connections. Group Replication automatically configures the clone
SSL option clone_ssl_cert to match this.

• group_replication_recovery_ssl_key: The path name of the SSL private key file to use for
distributed recovery connections. Group Replication automatically configures the clone SSL option
clone_ssl_cert to match this.

• group_replication_recovery_ssl_verify_server_cert: Makes the distributed recovery
connection check the server's Common Name value in the donor sent certificate. Setting this option
to ON is the equivalent for distributed recovery connections of setting VERIFY_IDENTITY for the
group_replication_ssl_mode option for group communication connections.

• group_replication_recovery_ssl_crl: The path name of a file containing certificate
revocation lists.

• group_replication_recovery_ssl_crlpath: The path name of a directory containing
certificate revocation lists.

• group_replication_recovery_ssl_cipher: A list of permissible ciphers for connection
encryption for the distributed recovery connection. Specify a list of one or more cipher names,
separated by colons. For information about which encryption ciphers MySQL supports, see
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”.

• group_replication_recovery_tls_version: A comma-separated list of one or more
permitted TLS protocols for connection encryption when this server instance is the client in the
distributed recovery connection, that is, the joining member. The default for this system variable
depends on the TLS protocol versions supported in the MySQL Server release. The group members
involved in each distributed recovery connection as the client (joining member) and server (donor)
negotiate the highest protocol version that they are both set up to support. This system variable is
available from MySQL 8.0.19.

• group_replication_recovery_tls_ciphersuites: A colon-separated list of one or more
permitted ciphersuites when TLSv1.3 is used for connection encryption for the distributed recovery
connection, and this server instance is the client in the distributed recovery connection, that is, the
joining member. If this system variable is set to NULL when TLSv1.3 is used (which is the default
if you do not set the system variable), the ciphersuites that are enabled by default are allowed, as
listed in Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”. If this system variable is
set to the empty string, no cipher suites are allowed, and TLSv1.3 is therefore not used. This system
variable is available beginning with MySQL 8.0.19.

3973

Group Replication IP Address Permissions

20.6.4 Group Replication IP Address Permissions

When and only when the XCom communication stack is used for establishing group communications
(group_replication_communication_stack=XCOM), the Group Replication plugin lets you
specify an allowlist of hosts from which an incoming Group Communication System connection
can be accepted. If you specify an allowlist on a server s1, then when server s2 is establishing a
connection to s1 for the purpose of engaging group communication, s1 first checks the allowlist
before accepting the connection from s2. If s2 is in the allowlist, then s1 accepts the connection,
otherwise s1 rejects the connection attempt by s2. Beginning with MySQL 8.0.22, the system variable
group_replication_ip_allowlist is used to specify the allowlist, and for releases before
MySQL 8.0.22, the system variable group_replication_ip_whitelist is used. The new system
variable works in the same way as the old system variable, only the terminology has changed.

Note

When the MySQL communication stack is used for establishing group
communications (group_replication_communication_stack=MYSQL),
the settings for group_replication_ip_allowlist and
group_replication_ip_whitelist are ignored. See Section 20.6.1,
“Communication Stack for Connection Security Management”.

If you do not specify an allowlist explicitly, the group communication engine (XCom) automatically
scans active interfaces on the host, and identifies those with addresses on private subnetworks,
together with the subnet mask that is configured for each interface. These addresses, and the
localhost IP address for IPv4 and (from MySQL 8.0.14) IPv6 are used to create an automatic Group
Replication allowlist. The automatic allowlist therefore includes any IP addresses that are found for the
host in the following ranges after the appropriate subnet mask has been applied:

IPv4 (as defined in RFC 1918)
10/8 prefix (10.0.0.0 - 10.255.255.255) - Class A
172.16/12 prefix (172.16.0.0 - 172.31.255.255) - Class B
192.168/16 prefix (192.168.0.0 - 192.168.255.255) - Class C

IPv6 (as defined in RFC 4193 and RFC 5156)
fc00:/7 prefix - unique-local addresses
fe80::/10 prefix - link-local unicast addresses

127.0.0.1 - localhost for IPv4
::1 - localhost for IPv6

An entry is added to the error log stating the addresses that have been allowed automatically for the
host.

The automatic allowlist of private addresses cannot be used for connections from servers outside the
private network, so a server, even if it has interfaces on public IPs, does not by default allow Group
Replication connections from external hosts. For Group Replication connections between server
instances that are on different machines, you must provide public IP addresses and specify these as an
explicit allowlist. If you specify any entries for the allowlist, the private and localhost addresses are
not added automatically, so if you use any of these, you must specify them explicitly.

To specify an allowlist manually, use the group_replication_ip_allowlist (MySQL 8.0.22 and
later) or group_replication_ip_whitelist system variable. Before MySQL 8.0.24, you cannot
change the allowlist on a server while it is an active member of a replication group. If the member
is active, you must execute STOP GROUP_REPLICATION before changing the allowlist, and START
GROUP_REPLICATION afterwards. From MySQL 8.0.24, you can change the allowlist while Group
Replication is running.

The allowlist must contain the IP address or host name that is specified in each member's
group_replication_local_address system variable. This address is not the same as the
MySQL server SQL protocol host and port, and is not specified in the bind_address system variable
for the server instance. If a host name used as the Group Replication local address for a server

3974

Group Replication IP Address Permissions

instance resolves to both an IPv4 and an IPv6 address, the IPv4 address is preferred for Group
Replication connections.

IP addresses specified as distributed recovery endpoints, and the IP address for the member's
standard SQL client connection if that is used for distributed recovery (which is the default),
do not need to be added to the allowlist. The allowlist is only for the address specified by
group_replication_local_address for each member. A joining member must have its initial
connection to the group permitted by the allowlist in order to retrieve the address or addresses for
distributed recovery.

In the allowlist, you can specify any combination of the following:

• IPv4 addresses (for example, 198.51.100.44)

• IPv4 addresses with CIDR notation (for example, 192.0.2.21/24)

• IPv6 addresses, from MySQL 8.0.14 (for example, 2001:db8:85a3:8d3:1319:8a2e:370:7348)

• IPv6 addresses with CIDR notation, from MySQL 8.0.14 (for example, 2001:db8:85a3:8d3::/64)

• Host names (for example, example.org)

• Host names with CIDR notation (for example, www.example.com/24)

Before MySQL 8.0.14, host names could only resolve to IPv4 addresses. From MySQL 8.0.14, host
names can resolve to IPv4 addresses, IPv6 addresses, or both. If a host name resolves to both an IPv4
and an IPv6 address, the IPv4 address is always used for Group Replication connections. You can use
CIDR notation in combination with host names or IP addresses to permit a block of IP addresses with a
particular network prefix, but do ensure that all the IP addresses in the specified subnet are under your
control.

Note

When a connection attempt from an IP address is refused because the address
is not in the allowlist, the refusal message always prints the IP address in IPv6
format. IPv4 addresses are preceded by ::ffff: in this format (an IPV4-
mapped IPv6 address). You do not need to use this format to specify IPv4
addresses in the allowlist; use the standard IPv4 format for them.

A comma must separate each entry in the allowlist. For example:

mysql> SET GLOBAL group_replication_ip_allowlist="192.0.2.21/24,198.51.100.44,203.0.113.0/24,2001:db8:85a3:8d3:1319:8a2e:370:7348,example.org,www.example.com/24";

To join a replication group, a server needs to be permitted on the seed member to which it makes
the request to join the group. Typically, this would be the bootstrap member for the replication group,
but it can be any of the servers listed by the group_replication_group_seeds option in the
configuration for the server joining the group. If any of the seed members for the group are listed
in the group_replication_group_seeds option with an IPv6 address when a joining member
has an IPv4 group_replication_local_address, or the reverse, you must also set up and
permit an alternative address for the joining member for the protocol offered by the seed member
(or a host name that resolves to an address for that protocol). This is because when a server joins a
replication group, it must make the initial contact with the seed member using the protocol that the
seed member advertises in the group_replication_group_seeds option, whether that is IPv4 or
IPv6. If a joining member does not have a permitted address for the appropriate protocol, its connection
attempt is refused. For more information on managing mixed IPv4 and IPv6 replication groups, see
Section 20.5.5, “Support For IPv6 And For Mixed IPv6 And IPv4 Groups”.

When a replication group is reconfigured (for example, when a new primary is elected or a member
joins or leaves), the group members re-establish connections between themselves. If a group member
is only permitted by servers that are no longer part of the replication group after the reconfiguration, it is

3975

Group Replication Performance and Troubleshooting

unable to reconnect to the remaining servers in the replication group that do not permit it. To avoid this
scenario entirely, specify the same allowlist for all servers that are members of the replication group.

Note

It is possible to configure different allowlists on different group members
according to your security requirements, for example, in order to keep different
subnets separate. If you need to configure different allowlists to meet your
security requirements, ensure that there is sufficient overlap between the
allowlists in the replication group to maximize the possibility of servers being
able to reconnect in the absence of their original seed member.

For host names, name resolution takes place only when a connection request is made by another
server. A host name that cannot be resolved is not considered for allowlist validation, and a warning
message is written to the error log. Forward-confirmed reverse DNS (FCrDNS) verification is carried
out for resolved host names.

Warning

Host names are inherently less secure than IP addresses in an allowlist.
FCrDNS verification provides a good level of protection, but can be
compromised by certain types of attack. Specify host names in your allowlist
only when strictly necessary, and ensure that all components used for name
resolution, such as DNS servers, are maintained under your control. You can
also implement name resolution locally using the hosts file, to avoid the use of
external components.

20.7 Group Replication Performance and Troubleshooting

Group Replication is designed to create fault-tolerant systems with built-in failure detection and
automated recovery. If a member server instance leaves voluntarily or stops communicating with
the group, the remaining members agree a reconfiguration of the group between themselves, and
choose a new primary if needed. Expelled members automatically attempt to rejoin the group, and
are brought up to date by distributed recovery. If a group experiences a level of difficulties such that
it cannot contact a majority of its members in order to agree on a decision, it identifies itself as having
lost quorum and stops processing transactions. Group Replication also has built-in mechanisms and
settings to help the group adapt to and manage variations in workload and message size, and stay
within the limitations of the underlying system and networking resources.

The default settings for Group Replication’s system variables are designed to maximize a group’s
performance and autonomy. The information in this section is to help you configure a replication group
to optimize the automatic handling of any recurring issues that you experience on your particular
systems, such as transient network outages or workloads and transactions that exceed a server
instance’s resources.

If you find that group members are being expelled and rejoining the group more frequently than you
would like, it is possible that Group Replication’s default failure detection settings are too sensitive
for your system. This might be the case on slower networks or machines, networks with a high rate
of unexpected transient outages, or during planned network outages. For advice on dealing with that
situation by adjusting the settings, see Section 20.7.7, “Responses to Failure Detection and Network
Partitioning”.

You should only need to intervene manually in a Group Replication setup if something happens that the
group cannot deal with automatically. Some key issues that can require administrator intervention are
when a member is in ERROR status and cannot rejoin the group, or when a network partition causes the
group to lose quorum.

• If an otherwise correctly functioning and configured member is unable to join or rejoin the group
using distributed recovery, and remains in ERROR status, Section 20.5.4.4, “Fault Tolerance for

3976

Fine Tuning the Group Communication Thread

Distributed Recovery”, explains the possible issues. One likely cause is that the joining member has
extra transactions that are not present on the existing members of the group. For advice on dealing
with that situation, see Section 20.4.1, “GTIDs and Group Replication”.

• If a group has lost quorum, this may be due to a network partition that divides the group into two
parts, or possibly due to the failure of the majority of the servers. For advice on dealing with that
situation, see Section 20.7.8, “Handling a Network Partition and Loss of Quorum”.

20.7.1 Fine Tuning the Group Communication Thread

The group communication thread (GCT) runs in a loop while the Group Replication plugin is loaded.
The GCT receives messages from the group and from the plugin, handles quorum and failure detection
related tasks, sends out some keep alive messages and also handles the incoming and outgoing
transactions from/to the server/group. The GCT waits for incoming messages in a queue. When there
are no messages, the GCT waits. By configuring this wait to be a little longer (doing an active wait)
before actually going to sleep can prove to be beneficial in some cases. This is because the alternative
is for the operating system to switch out the GCT from the processor and do a context switch.

To force the GCT to do an active wait, use the group_replication_poll_spin_loops option,
which makes the GCT loop, doing nothing relevant for the configured number of loops, before actually
polling the queue for the next message.

For example:

mysql> SET GLOBAL group_replication_poll_spin_loops= 10000;

20.7.2 Flow Control

MySQL Group Replication ensures that a transaction commits only after a majority of the members in
a group have received it and agreed on the relative order amongst all transactions sent concurrently.
This approach works well if the total number of writes to the group does not exceed the write capacity
of any member in the group. If it does, and some members have less write throughput than others—
particularly less than the writer members—these members may start lagging behind the writers.

When some members lag behind the rest of the group, reads on such members may externalize very
old data. Depending on why the member is lagging behind, other members in the group may have to
save more or less of the replication context to be able to fulfil potential data transfer requests from the
slow member.

The replication protocol provides a mechanism to avoid having too much distance, in terms of
transactions applied, between fast and slow members. This is known as the flow control mechanism,
which has the following objectives:

1. To keep members close, to minimize buffering and desynchronization between them

2. To adapt quickly to changing conditions like different workloads or more writers in the group

3. To give each member a share of the available write capacity

4. Not to reduce throughput more than strictly necessary to avoid wasting resources

Given the design of Group Replication, the decision whether to throttle, or not, may be made taking into
account two work queues, the certification queue, and the binary log applier queue. Whenever the size
of one of these queues exceeds the user-defined threshold, the throttling mechanism is triggered.

Flow control depends on two basic mechanisms:

1. Monitoring of members to collect statistics on throughput and queue sizes of all group members to
make educated guesses concerning the maximum write pressure to which each member should be
subjected

3977

Single Consensus Leader

2. Throttling of members that are trying to write beyond their alloted shares of the available capacity at
each moment in time

20.7.2.1 Probes and Statistics

The monitoring mechanism works by having each member deploying a set of probes to collect
information about its work queues and throughput. It then propagates that information to the group
periodically to share that data with the other members.

Such probes are scattered throughout the plugin stack and allow one to establish metrics, such as:

• the certifier queue size;

• the replication applier queue size;

• the total number of transactions certified;

• the total number of remote transactions applied in the member;

• the total number of local transactions.

Once a member receives a message with statistics from another member, it calculates additional
metrics regarding how many transactions were certified, applied and locally executed in the last
monitoring period.

Monitoring data is shared with others in the group periodically. The monitoring period must be high
enough to allow the other members to decide on the current write requests, but low enough that it
has minimal impact on group bandwidth. The information is shared every second, and this period is
sufficient to address both concerns.

20.7.2.2 Group Replication Throttling

Based on the metrics gathered across all servers in the group, a throttling mechanism kicks in and
decides whether to limit the rate a member is able to execute/commit new transactions.

Therefore, metrics acquired from all members are the basis for calculating the capacity of each
member: if a member has a large queue (for certification or the applier thread), then the capacity to
execute new transactions should be close to ones certified or applied in the last period.

The lowest capacity of all the members in the group determines the real capacity of the group, while
the number of local transactions determines how many members are writing to it, and, consequently,
how many members should that available capacity be shared with.

This means that every member has an established write quota based on the available capacity, in other
words a number of transactions it can safely issue for the next period. The writer-quota is enforced
by the throttling mechanism if the queue size of the certifier or the binary log applier exceeds a user-
defined threshold.

The quota is reduced by the number of transactions that were delayed in the last period, and then also
further reduced by 10% to allow the queue that triggered the problem to reduce its size. In order to
avoid large jumps in throughput once the queue size goes beyond the threshold, the throughput is only
allowed to grow by the same 10% per period after that.

The current throttling mechanism does not penalize transactions below quota, but delays finishing
those transactions that exceed it until the end of the monitoring period. As a consequence, if the
quota is very small for the write requests issued some transactions may have latencies close to the
monitoring period.

20.7.3 Single Consensus Leader

By default, the group communication engine for Group Replication (XCom, a Paxos variant)
operates using every member of the replication group as a leader. From MySQL 8.0.27, the group

3978

Message Compression

communication engine can use a single leader to drive consensus when the group is in single-primary
mode. Operating with a single consensus leader improves performance and resilience in single-primary
mode, particularly when some of the group’s secondary members are currently unreachable.

To use a single consensus leader, the group must be configured as follows:

• The group must be in single-primary mode.

• The group_replication_paxos_single_leader system variable must be set to ON. With the
default setting OFF, the behavior is disabled. You must carry out a full reboot of the replication group
(bootstrap) for Group Replication to pick up a change to this setting.

• The Group Replication communication protocol version must be set to 8.0.27 or later. Use the
group_replication_get_communication_protocol() function to view the group's
communication protocol version. If a lower version is in use, the group cannot use this behavior.
You can use the group_replication_set_communication_protocol() function to set the
group's communication protocol to a higher version if all group members support it. MySQL InnoDB
Cluster manages the communication protocol version automatically. For more information, see
Section 20.5.1.4, “Setting a Group's Communication Protocol Version”.

When this configuration is in place, Group Replication instructs the group communication engine
to use the group’s primary as the single leader to drive consensus. When a new primary is elected,
Group Replication tells the group communication engine to use it instead. If the primary is currently
unhealthy, the group communication engine uses an alternative member as the consensus leader.
The Performance Schema table replication_group_communication_information shows the
current preferred and actual consensus leader, with the preferred leader being Group Replication’s
choice, and the actual leader being the one selected by the group communication engine.

If the group is in multi-primary mode, has a lower communication protocol version, or the behavior
is disabled by the group_replication_paxos_single_leader setting, all members
are used as leaders to drive consensus. In this situation, the Performance Schema table
replication_group_communication_information shows all of the members as both the
preferred and actual leaders.

The WRITE_CONSENSUS_SINGLE_LEADER_CAPABLE column of the Performance Schema
table replication_group_communication_information table shows whether the group
supports the use of a single leader, even if group_replication_paxos_single_leader is
currently set to OFF on the queried member. The column value is 1 if the group was started with
group_replication_paxos_single_leader set to ON, and its communication protocol version
is MySQL 8.0.27 or above. This information is only returned for group members in ONLINE or
RECOVERING state.

20.7.4 Message Compression

For messages sent between online group members, Group Replication enables message compression
by default. Whether a specific message is compressed depends on the threshold that you configure
using the group_replication_compression_threshold system variable. Messages that have a
payload larger than the specified number of bytes are compressed.

The default compression threshold is 1000000 bytes. You could use the following statements to
increase the compression threshold to 2MB, for example:

STOP GROUP_REPLICATION;
SET GLOBAL group_replication_compression_threshold = 2097152;
START GROUP_REPLICATION;

If you set group_replication_compression_threshold to zero, message compression is
disabled.

Group Replication uses the LZ4 compression algorithm to compress messages sent
in the group. Note that the maximum supported input size for the LZ4 compression

3979

Message Compression

algorithm is 2113929216 bytes. This limit is lower than the maximum possible value for the
group_replication_compression_threshold system variable, which is matched to the
maximum message size accepted by XCom. The LZ4 maximum input size is therefore a practical
limit for message compression, and transactions above this size cannot be committed when message
compression is enabled. With the LZ4 compression algorithm, do not set a value greater than
2113929216 bytes for group_replication_compression_threshold.

The value of group_replication_compression_threshold is not required by Group Replication
to be the same on all group members. However, it is advisable to set the same value on all group
members in order to avoid unnecessary rollback of transactions, failure of message delivery, or failure
of message recovery.

From MySQL 8.0.18, you can also configure compression for messages sent for distributed
recovery by the method of state transfer from a donor's binary log. Compression for these
messages, which are sent from a donor already in the group to a joining member, is controlled
separately using the group_replication_recovery_compression_algorithms and
group_replication_recovery_zstd_compression_level system variables. For more
information, see Section 6.2.8, “Connection Compression Control”.

Binary log transaction compression (available as of MySQL 8.0.20), which is activated by the
binlog_transaction_compression system variable, can also be used to save bandwidth. The
transaction payloads remain compressed when they are transferred between group members. If you
use binary log transaction compression in combination with Group Replication's message compression,
message compression has less opportunity to act on the data, but can still compress headers and
those events and transaction payloads that are uncompressed. For more information on binary log
transaction compression, see Section 7.4.4.5, “Binary Log Transaction Compression”.

Compression for messages sent in the group happens at the group communication engine level,
before the data is handed over to the group communication thread, so it takes place within the
context of the mysql user session thread. If the message payload size exceeds the threshold set by
group_replication_compression_threshold, the transaction payload is compressed before
being sent out to the group, and decompressed when it is received. Upon receiving a message, the
member checks the message envelope to verify whether it is compressed or not. If needed, then the
member decompresses the transaction, before delivering it to the upper layer. This process is shown in
the following figure.

3980

Message Fragmentation

Figure 20.13 Compression Support

When network bandwidth is a bottleneck, message compression can provide up to 30-40% throughput
improvement at the group communication level. This is especially important within the context of
large groups of servers under load. The TCP peer-to-peer nature of the interconnections between N
participants in the group makes the sender send the same amount of data N times. Furthermore, binary
logs are likely to exhibit a high compression ratio. This makes compression a compelling feature for
Group Replication workloads that contain large transactions.

20.7.5 Message Fragmentation

When an abnormally large message is sent between Group Replication group members, it can result in
some group members being reported as failed and expelled from the group. This is because the single
thread used by Group Replication's group communication engine (XCom, a Paxos variant) is occupied
processing the message for too long, so some of the group members might report the receiver as
failed. From MySQL 8.0.16, by default, large messages are automatically split into fragments that are
sent separately and reassembled by the recipients.

3981

XCom Cache Management

The system variable group_replication_communication_max_message_size specifies
a maximum message size for Group Replication communications, above which messages are
fragmented. The default maximum message size is 10485760 bytes (10 MiB). The greatest
permitted value is the same as the maximum value of the replica_max_allowed_packet
and slave_max_allowed_packet system variables, which is 1073741824 bytes (1 GB).
The setting for group_replication_communication_max_message_size must
be less than replica_max_allowed_packet (or slave_max_allowed_packet),
because the applier thread cannot handle message fragments larger than the
maximum permitted packet size. To switch off fragmentation, specify a zero value for
group_replication_communication_max_message_size.

As with most other Group Replication system variables, you must restart the Group Replication plugin
for the change to take effect. For example:

STOP GROUP_REPLICATION;
SET GLOBAL group_replication_communication_max_message_size= 5242880;
START GROUP_REPLICATION;

Message delivery for a fragmented message is considered complete when all the fragments of the
message have been received and reassembled by all the group members. Fragmented messages
include information in their headers that enables a member joining during message transmission to
recover the earlier fragments that were sent before it joined. If the joining member fails to recover the
fragments, it expels itself from the group.

In order for a replication group to use fragmentation, all group members must be at MySQL 8.0.16
or above, and the Group Replication communication protocol version in use by the group must
allow fragmentation. You can inspect the communication protocol in use by a group by using the
group_replication_get_communication_protocol() function, which returns the oldest
MySQL Server version that the group supports. Versions from MySQL 5.7.14 allow compression
of messages, and versions from MySQL 8.0.16 also allow fragmentation of messages. If all group
members are at MySQL 8.0.16 or above and there is no requirement to allow members at earlier
releases to join, you can use the group_replication_set_communication_protocol()
function to set the communication protocol version to MySQL 8.0.16 or above in order to allow
fragmentation. For more information, see Section 20.5.1.4, “Setting a Group's Communication Protocol
Version”.

If a replication group cannot use fragmentation because some members do not support it, the
system variable group_replication_transaction_size_limit can be used to limit the
maximum size of transactions the group accepts. In MySQL 8.0, the default setting is approximately
143 MB. Transactions above this size are rolled back. You can also use the system variable
group_replication_member_expel_timeout to allow additional time (up to an hour) before a
member under suspicion of having failed is expelled from the group.

20.7.6 XCom Cache Management

The group communication engine for Group Replication (XCom, a Paxos variant) includes a cache for
messages (and their metadata) exchanged between the group members as a part of the consensus
protocol. Among other functions, the message cache is used for recovery of missed messages by
members that reconnect with the group after a period where they were unable to communicate with the
other group members.

From MySQL 8.0.16, a cache size limit can be set for XCom's message cache using the
group_replication_message_cache_size system variable. If the cache size limit is reached,
XCom removes the oldest entries that have been decided and delivered. The same cache size limit
should be set on all group members, because an unreachable member that is attempting to reconnect
selects any other member at random for recovery of missed messages. The same messages should
therefore be available in each member's cache.

Before MySQL 8.0.16, the cache size was 1 GB, and the default setting for the cache size from MySQL
8.0.16 is the same. Ensure that sufficient memory is available on your system for your chosen cache
size limit, considering the size of MySQL Server's other caches and object pools. Note that the limit set

3982

XCom Cache Management

using group_replication_message_cache_size applies only to the data stored in the cache,
and the cache structures require an additional 50 MB of memory.

When selecting a group_replication_message_cache_size setting, do so with reference to
the expected volume of messages in the time period before a member is expelled. The length of this
time period is controlled by the group_replication_member_expel_timeout system variable,
which determines the waiting period (up to an hour) that is allowed in addition to the initial 5-second
detection period for members to return to the group rather than being expelled. Note that before
MySQL 8.0.21, this time period defaulted to 5 seconds from the member becoming unavailable, which
is just the detection period before a suspicion is created, because the additional expel timeout set by
the group_replication_member_expel_timeout system variable defaulted to zero. From 8.0.21
the expel timeout defaults to 5 seconds, so by default a member is not expelled until it has been absent
for at least 10 seconds.

20.7.6.1 Increasing the cache size

If a member is absent for a period that is not long enough for it to be expelled from the group, it can
reconnect and start participating in the group again by retrieving missed transactions from another
member's XCom message cache. However, if the transactions that happened during the member's
absence have been deleted from the other members' XCom message caches because their maximum
size limit was reached, the member cannot reconnect in this way.

Group Replication's Group Communication System (GCS) alerts you, by a warning message, when a
message that is likely to be needed for recovery by a member that is currently unreachable is removed
from the message cache. This warning message is logged on all the active group members (only once
for each unreachable member). Although the group members cannot know for sure what message was
the last message seen by the unreachable member, the warning message indicates that the cache size
might not be sufficient to support your chosen waiting period before a member is expelled.

In this situation, consider increasing the group_replication_message_cache_size
limit with reference to the expected volume of messages in the time period specified by the
group_replication_member_expel_timeout system variable plus the 5-second detection
period, so that the cache contains all the missed messages required for members to return
successfully. You can also consider increasing the cache size limit temporarily if you expect a member
to become unreachable for an unusual period of time.

20.7.6.2 Reducing the cache size

The minimum setting for the XCom message cache size is 1 GB up to MySQL 8.0.20.
From MySQL 8.0.21, the minimum setting is 134217728 bytes (128 MB), which enables
deployment on a host that has a restricted amount of available memory. Having a very low
group_replication_message_cache_size setting is not recommended if the host is on an
unstable network, because a smaller message cache makes it harder for group members to reconnect
after a transient loss of connectivity.

If a reconnecting member cannot retrieve all the messages it needs from the XCom message cache,
the member must leave the group and rejoin it, in order to retrieve the missing transactions from
another member's binary log using distributed recovery. From MySQL 8.0.21, a member that has left
a group makes three auto-rejoin attempts by default, so the process of rejoining the group can still
take place without operator intervention. However, rejoining using distributed recovery is a significantly
longer and more complex process than retrieving messages from an XCom message cache, so the
member takes longer to become available and the performance of the group can be impacted. On
a stable network, which minimizes the frequency and duration of transient losses of connectivity for
members, the frequency of this occurrence should also be minimized, so the group might be able to
tolerate a smaller XCom message cache size without a significant impact on its performance.

If you are considering reducing the cache size limit, you can query the Performance Schema table
memory_summary_global_by_event_name using the following statement:

SELECT * FROM performance_schema.memory_summary_global_by_event_name

3983

Responses to Failure Detection and Network Partitioning

 WHERE EVENT_NAME LIKE 'memory/group_rpl/GCS_XCom::xcom_cache';

This returns memory usage statistics for the message cache, including the current number of cached
entries and current size of the cache. If you reduce the cache size limit, XCom removes the oldest
entries that have been decided and delivered until the current size is below the limit. XCom might
temporarily exceed the cache size limit while this removal process is ongoing.

20.7.7 Responses to Failure Detection and Network Partitioning

Group Replication's failure detection mechanism is designed to identify group members that are no
longer communicating with the group, and expel them as and when it seems likely that they have
failed. Having a failure detection mechanism increases the chance that the group contains a majority of
correctly working members, and that requests from clients are therefore processed correctly.

Normally, all group members regularly exchange messages with all other group members. If a group
member does not receive any messages from a particular fellow member for 5 seconds, when this
detection period ends, it creates a suspicion of the fellow member. When a suspicion times out, the
suspected member is assumed to have failed, and is expelled from the group. An expelled member
is removed from the membership list seen by the other members, but it does not know that it has
been expelled from the group, so it sees itself as online and the other members as unreachable. If
the member has not in fact failed (for example, because it was just disconnected due to a temporary
network issue) and it is able to resume communication with the other members, it receives a view
containing the information that it has been expelled from the group.

The responses of group members, including the failed member itself, to these situations can be
configured at a number of points in the process. By default, the following behaviors happen if a
member is suspected of having failed:

1. Up to MySQL 8.0.20, when a suspicion is created, it times out immediately. The suspected member
is liable for expulsion as soon as the expired suspicion is identified by the group. The member
could potentially survive for a further few seconds after the timeout because the check for expired
suspicions is carried out periodically. From MySQL 8.0.21, a waiting period of 5 seconds is added
before the suspicion times out and the suspected member is liable for expulsion.

2. If an expelled member resumes communication and realises that it was expelled, up to MySQL
8.0.20, it does not try to rejoin the group. From MySQL 8.0.21, it makes three automatic attempts to
rejoin the group (with 5 minutes between each attempt), and if this auto-rejoin procedure does not
work, it then stops trying to rejoin the group.

3. When an expelled member is not trying to rejoin the group, it switches to super read only mode and
awaits operator attention. (The exception is in releases from MySQL 8.0.12 to 8.0.15, where the
default was for the member to shut itself down. From MySQL 8.0.16, the behavior was changed to
match the behavior in MySQL 5.7.)

You can use the Group Replication configuration options described in this section to change these
behaviors either permanently or temporarily, to suit your system's requirements and your priorities. If
you are experiencing unnecessary expulsions caused by slower networks or machines, networks with
a high rate of unexpected transient outages, or planned network outages, consider increasing the expel
timeout and auto-rejoin attempts. From MySQL 8.0.21, the default settings have been changed in this
direction to reduce the frequency of the need for operator intervention to reinstate expelled members
in these situations. Note that while a member is undergoing any of the default behaviors described
above, although it does not accept writes, reads can still be made if the member is still communicating
with clients, with an increasing likelihood of stale reads over time. If avoiding stale reads is a higher
priority for you than avoiding operator intervention, consider reducing the expel timeout and auto-rejoin
attempts or setting them to zero.

Members that have not failed might lose contact with part, but not all, of the replication group
due to a network partition. For example, in a group of 5 servers (S1,S2,S3,S4,S5), if there is a
disconnection between (S1,S2) and (S3,S4,S5) there is a network partition. The first group (S1,S2)
is now in a minority because it cannot contact more than half of the group. Any transactions that are

3984

Responses to Failure Detection and Network Partitioning

processed by the members in the minority group are blocked, because the majority of the group is
unreachable, therefore the group cannot achieve quorum. For a detailed description of this scenario,
see Section 20.7.8, “Handling a Network Partition and Loss of Quorum”. In this situation, the default
behavior is for the members in both the minority and the majority to remain in the group, continue to
accept transactions (although they are blocked on the members in the minority), and wait for operator
intervention. This behavior is also configurable.

Note that where group members are at an older MySQL Server release that does not support a
relevant setting, or at a release with a different default, they act towards themselves and other group
members according to the default behaviors stated above. For example, a member that does not
support the group_replication_member_expel_timeout system variable expels other members
as soon as an expired suspicion is detected, and this expulsion is accepted by other members even if
they support the system variable and have a longer timeout set.

20.7.7.1 Expel Timeout

You can use the group_replication_member_expel_timeout system variable, which is
available from MySQL 8.0.13, to allow additional time between the creation of a suspicion and the
expulsion of the suspect member. A suspicion is created when one server does not receive messages
from another server, as explained in Section 20.1.4.2, “Failure Detection”.

There is an initial 5-second detection period before a Group Replication group member creates
a suspicion of another member (or of itself). A group member is then expelled when another
member's suspicion of it (or its own suspicion of itself) times out. A further short period of time
might elapse after that before the expelling mechanism detects and implements the expulsion.
group_replication_member_expel_timeout specifies the period of time in seconds, called the
expel timeout, that a group member waits between creating a suspicion, and expelling the suspected
member. Suspect members are listed as UNREACHABLE during this waiting period, but are not removed
from the group's membership list.

• If a suspect member becomes active again before the suspicion times out at the end of the waiting
period, the member applies all the messages that were buffered by the remaining group members in
XCom's message cache and enters ONLINE state, without operator intervention. In this situation, the
member is considered by the group as the same incarnation.

• If a suspect member becomes active only after the suspicion times out and is able to resume
communications, it receives a view where it is expelled and at that point realises it was expelled. You
can use group_replication_autorejoin_tries, which is available from MySQL 8.0.16, to
make the member automatically try to rejoin the group at this point. From MySQL 8.0.21, this feature
is activated by default and the member makes three auto-rejoin attempts. If the auto-rejoin procedure
does not succeed or is not attempted, the expelled member then follows the exit action specified by
group_replication_exit_state_action.

The waiting period before expelling a member only applies to members that have previously been
active in the group. Non-members that were never active in the group do not get this waiting period and
are removed after the initial detection period because they took too long to join.

If group_replication_member_expel_timeout is set to 0, there is no waiting period,
and a suspected member is liable for expulsion immediately after the 5-second detection
period ends. This setting is the default up to and including MySQL 8.0.20. This is also the
behavior of a group member which is at a MySQL Server version that does not support the
group_replication_member_expel_timeout system variable. From MySQL 8.0.21, the
value defaults to 5, meaning that a suspected member is liable for expulsion 5 seconds after the 5-
second detection period. It is not mandatory for all members of a group to have the same setting
for group_replication_member_expel_timeout, but it is recommended in order to avoid
unexpected expulsions. Any member can create a suspicion of any other member, including itself, so
the effective expel timeout is that of the member with the lowest setting.

Consider increasing the value of group_replication_member_expel_timeout from the default in
the following scenarios:

3985

Responses to Failure Detection and Network Partitioning

• The network is slow and the default 5 or 10 seconds before expulsion is not long enough for group
members to always exchange at least one message.

• The network sometimes has transient outages and you want to avoid unnecessary expulsions and
primary member changes at these times.

• The network is not under your direct control and you want to minimize the need for operator
intervention.

• A temporary network outage is expected and you do not want some or all of the members to be
expelled due to this.

• An individual machine is experiencing a slowdown and you do not want it to be expelled from the
group.

You can specify an expel timeout up to a maximum of 3600 seconds (1 hour). It is important to ensure
that XCom's message cache is sufficiently large to contain the expected volume of messages in your
specified time period, plus the initial 5-second detection period, otherwise members cannot reconnect.
You can adjust the cache size limit using the group_replication_message_cache_size system
variable. For more information, see Section 20.7.6, “XCom Cache Management”.

If any members in a group are currently under suspicion, the group membership cannot be
reconfigured (by adding or removing members or electing a new leader). If group membership changes
need to be implemented while one or more members are under suspicion, and you want the suspect
members to remain in the group, take any actions required to make the members active again, if that
is possible. If you cannot make the members active again and you want them to be expelled from
the group, you can force the suspicions to time out immediately. Do this by changing the value of
group_replication_member_expel_timeout on any active members to a value lower than the
time that has already elapsed since the suspicions were created. The suspect members then become
liable for expulsion immediately.

If a replication group member stops unexpectedly and is immediately restarted (for example,
because it was started with mysqld_safe), it automatically attempts to rejoin the group if
group_replication_start_on_boot=on is set. In this situation, it is possible for the restart and
rejoin attempt to take place before the member's previous incarnation has been expelled from the
group, in which case the member cannot rejoin. From MySQL 8.0.19, Group Replication automatically
uses a Group Communication System (GCS) feature to retry the rejoin attempt for the member 10
times, with a 5-second interval between each retry. This should cover most cases and allow enough
time for the previous incarnation to be expelled from the group, letting the member rejoin. Note that
if the group_replication_member_expel_timeout system variable is set to specify a longer
waiting period before the member is expelled, the automatic rejoin attempts might still not succeed.

For alternative mitigation strategies to avoid unnecessary expulsions where the
group_replication_member_expel_timeout system variable is not available, see
Section 20.3.2, “Group Replication Limitations”.

20.7.7.2 Unreachable Majority Timeout

By default, members that find themselves in a minority due to a network
partition do not automatically leave the group. You can use the system variable
group_replication_unreachable_majority_timeout to set a number of seconds for a
member to wait after losing contact with the majority of group members, and then exit the group.
Setting a timeout means you do not need to pro-actively monitor for servers that are in a minority group
after a network partition, and you can avoid the possibility of creating a split-brain situation (with two
versions of the group membership) due to inappropriate intervention.

When the timeout specified by group_replication_unreachable_majority_timeout elapses,
all pending transactions that have been processed by the member and the others in the minority
group are rolled back, and the servers in that group move to the ERROR state. You can use the
group_replication_autorejoin_tries system variable, which is available from MySQL 8.0.16,

3986

Responses to Failure Detection and Network Partitioning

to make the member automatically try to rejoin the group at this point. From MySQL 8.0.21, this feature
is activated by default and the member makes three auto-rejoin attempts. If the auto-rejoin procedure
does not succeed or is not attempted, the minority member then follows the exit action specified by
group_replication_exit_state_action.

Consider the following points when deciding whether or not to set an unreachable majority timeout:

• In a symmetric group, for example a group with two or four servers, if both partitions contain an equal
number of servers, both groups consider themselves to be in a minority and enter the ERROR state.
In this situation, the group has no functional partition.

• While a minority group exists, any transactions processed by the minority group are
accepted, but blocked because the minority servers cannot reach quorum, until either STOP
GROUP_REPLICATION is issued on those servers or the unreachable majority timeout is reached.

• If you do not set an unreachable majority timeout, the servers in the minority group never enter the
ERROR state automatically, and you must stop them manually.

• Setting an unreachable majority timeout has no effect if it is set on the servers in the minority group
after the loss of majority has been detected.

If you do not use the group_replication_unreachable_majority_timeoutsystem variable,
the process for operator invention in the event of a network partition is described in Section 20.7.8,
“Handling a Network Partition and Loss of Quorum”. The process involves checking which servers are
functioning and forcing a new group membership if necessary.

20.7.7.3 Auto-Rejoin

The group_replication_autorejoin_tries system variable, which is available from MySQL
8.0.16, makes a member that has been expelled or reached its unreachable majority timeout try to
rejoin the group automatically. Up to MySQL 8.0.20, the value of the system variable defaults to 0, so
auto-rejoin is not activated by default. From MySQL 8.0.21, the value of the system variable defaults
to 3, meaning that the member automatically makes 3 attempts to rejoin the group, with 5 minutes
between each.

When auto-rejoin is not activated, a member accepts its expulsion as soon
as it resumes communication, and proceeds to the action specified by the
group_replication_exit_state_action system variable. After this, manual intervention is
needed to bring the member back into the group. Using the auto-rejoin feature is appropriate if you can
tolerate the possibility of stale reads and want to minimize the need for manual intervention, especially
where transient network issues fairly often result in the expulsion of members.

With auto-rejoin, when the member's expulsion or unreachable majority timeout is reached, it
makes an attempt to rejoin (using the current plugin option values), then continues to make further
auto-rejoin attempts up to the specified number of tries. After an unsuccessful auto-rejoin attempt,
the member waits 5 minutes before the next try. The auto-rejoin attempts and the time between
them are called the auto-rejoin procedure. If the specified number of tries is exhausted without
the member rejoining or being stopped, the member proceeds to the action specified by the
group_replication_exit_state_action system variable.

During and between auto-rejoin attempts, a member remains in super read only mode and displays
an ERROR state on its view of the replication group. During this time, the member does not accept
writes. However, reads can still be made on the member, with an increasing likelihood of stale reads
over time. If you do want to intervene to take the member offline during the auto-rejoin procedure, the
member can be stopped manually at any time by using a STOP GROUP_REPLICATION statement or
shutting down the server. If you cannot tolerate the possibility of stale reads for any period of time, set
the group_replication_autorejoin_tries system variable to 0.

You can monitor the auto-rejoin procedure using the Performance Schema. While an auto-
rejoin procedure is taking place, the Performance Schema table events_stages_current
shows the event “Undergoing auto-rejoin procedure”, with the number of retries that have been

3987

Responses to Failure Detection and Network Partitioning

attempted so far during this instance of the procedure (in the WORK_COMPLETED column). The
events_stages_summary_global_by_event_name table shows the number of times
the server instance has initiated the auto-rejoin procedure (in the COUNT_STAR column). The
events_stages_history_long table shows the time each of these auto-rejoin procedures was
completed (in the TIMER_END column). While a member is rejoining a replication group, its status
can be displayed as OFFLINE or ERROR before the group completes the compatibility checks and
accepts it as a member. When the member is catching up with the group's transactions, its status is
RECOVERING.

20.7.7.4 Exit Action

The group_replication_exit_state_action system variable, which is available from MySQL
8.0.12 and MySQL 5.7.24, specifies what Group Replication does when the member leaves the group
unintentionally due to an error or problem, and either fails to auto-rejoin or does not try. Note that in
the case of an expelled member, the member does not know that it was expelled until it reconnects to
the group, so the specified action is only taken if the member manages to reconnect, or if the member
raises a suspicion on itself and expels itself.

In order of impact, the exit actions are as follows:

1. If READ_ONLY is the exit action, the instance switches MySQL to super read only mode by setting
the system variable super_read_only to ON. When the member is in super read only mode,
clients cannot make any updates, even if they have the CONNECTION_ADMIN privilege (or the
deprecated SUPER privilege). However, clients can still read data, and because updates are no
longer being made, there is a probability of stale reads which increases over time. With this setting,
you therefore need to pro-actively monitor the servers for failures. This exit action is the default
from MySQL 8.0.15. After this exit action is taken, the member's status is displayed as ERROR in the
view of the group.

2. If OFFLINE_MODE is the exit action, the instance switches MySQL to offline mode by setting the
system variable offline_mode to ON. When the member is in offline mode, connected client users
are disconnected on their next request and connections are no longer accepted, with the exception
of client users that have the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege).
Group Replication also sets the system variable super_read_only to ON, so clients cannot
make any updates, even if they have connected with the CONNECTION_ADMIN or SUPER privilege.
This exit action prevents both updates and stale reads (with the exception of reads by client users
with the stated privileges), and enables proxy tools such as MySQL Router to recognize that the
server is unavailable and redirect client connections. It also leaves the instance running so that
an administrator can attempt to resolve the issue without shutting down MySQL. This exit action
is available from MySQL 8.0.18. After this exit action is taken, the member's status is displayed
as ERROR in the view of the group (not OFFLINE, which means a member has Group Replication
functionality available but does not currently belong to a group).

3. If ABORT_SERVER is the exit action, the instance shuts down MySQL. Instructing the member to
shut itself down prevents all stale reads and client updates, but it means that the MySQL Server
instance is unavailable and must be restarted, even if the issue could have been resolved without
that step. This exit action was the default from MySQL 8.0.12, when the system variable was
added, to MySQL 8.0.15 inclusive. After this exit action is taken, the member is removed from the
listing of servers in the view of the group.

Bear in mind that operator intervention is required whatever exit action is set, as an ex-member that
has exhausted its auto-rejoin attempts (or never had any) and has been expelled from the group is
not allowed to rejoin without a restart of Group Replication. The exit action only influences whether or
not clients can still read data on the server that was unable to rejoin the group, and whether or not the
server stays running.

Important

If a failure occurs before the member has successfully joined the group, the
exit action specified by group_replication_exit_state_action is

3988

Responses to Failure Detection and Network Partitioning

not taken. This is the case if there is a failure during the local configuration
check, or a mismatch between the configuration of the joining member and
the configuration of the group. In these situations, the super_read_only
system variable is left with its original value, and the server does not shut
down MySQL. To ensure that the server cannot accept updates when Group
Replication did not start, we therefore recommend that super_read_only=ON
is set in the server's configuration file at startup, which Group Replication
changes to OFF on primary members after it has been started successfully. This
safeguard is particularly important when the server is configured to start Group
Replication on server boot (group_replication_start_on_boot=ON),
but it is also useful when Group Replication is started manually using a START
GROUP_REPLICATION statement.

If a failure occurs after the member has successfully joined the group, the specified exit action is taken.
This is the case in the following situations:

1. Applier error - There is an error in the replication applier. This issue is not recoverable.

2. Distributed recovery not possible - There is an issue that means Group Replication's distributed
recovery process (which uses remote cloning operations and state transfer from the binary log)
cannot be completed. Group Replication retries distributed recovery automatically where this
makes sense, but stops if there are no more options to complete the process. For details, see
Section 20.5.4.4, “Fault Tolerance for Distributed Recovery”.

3. Group configuration change error - An error occurred during a group-wide configuration change
carried out using a function, as described in Section 20.5.1, “Configuring an Online Group”.

4. Primary election error - An error occurred during election of a new primary member for a group in
single-primary mode, as described in Section 20.1.3.1, “Single-Primary Mode”.

5. Unreachable majority timeout - The member has lost contact with a majority
of the group members so is in a minority, and a timeout that was set by the
group_replication_unreachable_majority_timeout system variable has expired.

6. Member expelled from group - A suspicion has been raised on the member, and any timeout set
by the group_replication_member_expel_timeout system variable has expired, and the
member has resumed communication with the group and found that it has been expelled.

7. Out of auto-rejoin attempts - The group_replication_autorejoin_tries system variable
was set to specify a number of auto-rejoin attempts after a loss of majority or expulsion, and the
member completed this number of attempts without success.

The following table summarizes the failure scenarios and actions in each case:

Table 20.3 Exit actions in Group Replication failure situations

Failure situation Group Replication started with
START GROUP_REPLICATION

Group Replication started with
group_replication_start_on_boot
=ON

Member fails local configuration
check

Mismatch between joining
member and group configuration

super_read_only and
offline_mode unchanged

MySQL continues running

Set super_read_only=ON at
startup to prevent updates

super_read_only and
offline_mode unchanged

MySQL continues running

Set super_read_only=ON
at startup to prevent updates
(Important)

Applier error on member

Distributed recovery not possible

super_read_only set to ON

OR

super_read_only set to ON

OR

3989

Handling a Network Partition and Loss of Quorum

Failure situation Group Replication started with
START GROUP_REPLICATION

Group Replication started with
group_replication_start_on_boot
=ON

Group configuration change error

Primary election error

Unreachable majority timeout

Member expelled from group

Out of auto-rejoin attempts

offline_mode and
super_read_only set to ON

OR

MySQL shuts down

offline_mode and
super_read_only set to ON

OR

MySQL shuts down

20.7.8 Handling a Network Partition and Loss of Quorum

The group needs to achieve consensus whenever a change that needs to be replicated happens.
This is the case for regular transactions but is also required for group membership changes and
some internal messaging that keeps the group consistent. Consensus requires a majority of group
members to agree on a given decision. When a majority of group members is lost, the group is unable
to progress and blocks because it cannot secure majority or quorum.

Quorum may be lost when there are multiple involuntary failures, causing a majority of servers to be
removed abruptly from the group. For example, in a group of 5 servers, if 3 of them become silent at
once, the majority is compromised and thus no quorum can be achieved. In fact, the remaining two are
not able to tell if the other 3 servers have crashed or whether a network partition has isolated these 2
alone and therefore the group cannot be reconfigured automatically.

On the other hand, if servers exit the group voluntarily, they instruct the group that it should reconfigure
itself. In practice, this means that a server that is leaving tells others that it is going away. This
means that other members can reconfigure the group properly, the consistency of the membership is
maintained and the majority is recalculated. For example, in the above scenario of 5 servers where
3 leave at once, if the 3 leaving servers warn the group that they are leaving, one by one, then the
membership is able to adjust itself from 5 to 2, and at the same time, securing quorum while that
happens.

Note

Loss of quorum is by itself a side-effect of bad planning. Plan the group size
for the number of expected failures (regardless whether they are consecutive,
happen all at once or are sporadic).

For a group in single-primary mode, the primary might have transactions that are not yet present
on other members at the time of the network partition. If you are considering excluding the primary
from the new group, be aware that such transactions might be lost. A member with extra transactions
cannot rejoin the group, and the attempt results in an error with the message This member
has more executed transactions than those present in the group. Set the
group_replication_unreachable_majority_timeout system variable for the group members
to avoid this situation.

The following sections explain what to do if the system partitions in such a way that no quorum is
automatically achieved by the servers in the group.

Detecting Partitions

The replication_group_members performance schema table presents the status of each server
in the current view from the perspective of this server. The majority of the time the system does not
run into partitioning, and therefore the table shows information that is consistent across all servers
in the group. In other words, the status of each server on this table is agreed by all in the current

3990

Handling a Network Partition and Loss of Quorum

view. However, if there is network partitioning, and quorum is lost, then the table shows the status
UNREACHABLE for those servers that it cannot contact. This information is exported by the local failure
detector built into Group Replication.

Figure 20.14 Losing Quorum

To understand this type of network partition the following section describes a scenario where there are
initially 5 servers working together correctly, and the changes that then happen to the group once only
2 servers are online. The scenario is depicted in the figure.

As such, lets assume that there is a group with these 5 servers in it:

• Server s1 with member identifier 199b2df7-4aaf-11e6-bb16-28b2bd168d07

• Server s2 with member identifier 199bb88e-4aaf-11e6-babe-28b2bd168d07

• Server s3 with member identifier 1999b9fb-4aaf-11e6-bb54-28b2bd168d07

• Server s4 with member identifier 19ab72fc-4aaf-11e6-bb51-28b2bd168d07

3991

Handling a Network Partition and Loss of Quorum

• Server s5 with member identifier 19b33846-4aaf-11e6-ba81-28b2bd168d07

Initially the group is running fine and the servers are happily communicating with each other. You can
verify this by logging into s1 and looking at its replication_group_members performance schema
table. For example:

mysql> SELECT MEMBER_ID,MEMBER_STATE, MEMBER_ROLE FROM performance_schema.replication_group_members;
+--------------------------------------+--------------+-------------+
| MEMBER_ID | MEMBER_STATE | MEMBER_ROLE |
+--------------------------------------+--------------+-------------+
1999b9fb-4aaf-11e6-bb54-28b2bd168d07	ONLINE	SECONDARY
199b2df7-4aaf-11e6-bb16-28b2bd168d07	ONLINE	PRIMARY
199bb88e-4aaf-11e6-babe-28b2bd168d07	ONLINE	SECONDARY
19ab72fc-4aaf-11e6-bb51-28b2bd168d07	ONLINE	SECONDARY
19b33846-4aaf-11e6-ba81-28b2bd168d07	ONLINE	SECONDARY
+--------------------------------------+--------------+-------------+

However, moments later there is a catastrophic failure and servers s3, s4 and s5 stop unexpectedly.
A few seconds after this, looking again at the replication_group_members table on s1 shows
that it is still online, but several others members are not. In fact, as seen below they are marked as
UNREACHABLE. Moreover, the system could not reconfigure itself to change the membership, because
the majority has been lost.

mysql> SELECT MEMBER_ID,MEMBER_STATE FROM performance_schema.replication_group_members;
+--------------------------------------+--------------+
| MEMBER_ID | MEMBER_STATE |
+--------------------------------------+--------------+
1999b9fb-4aaf-11e6-bb54-28b2bd168d07	UNREACHABLE
199b2df7-4aaf-11e6-bb16-28b2bd168d07	ONLINE
199bb88e-4aaf-11e6-babe-28b2bd168d07	ONLINE
19ab72fc-4aaf-11e6-bb51-28b2bd168d07	UNREACHABLE
19b33846-4aaf-11e6-ba81-28b2bd168d07	UNREACHABLE
+--------------------------------------+--------------+

The table shows that s1 is now in a group that has no means of progressing without external
intervention, because a majority of the servers are unreachable. In this particular case, the group
membership list needs to be reset to allow the system to proceed, which is explained in this section.
Alternatively, you could also choose to stop Group Replication on s1 and s2 (or stop completely s1 and
s2), figure out what happened with s3, s4 and s5 and then restart Group Replication (or the servers).

Unblocking a Partition

Group replication enables you to reset the group membership list by forcing a specific configuration.
For instance in the case above, where s1 and s2 are the only servers online, you could choose to force
a membership configuration consisting of only s1 and s2. This requires checking some information
about s1 and s2 and then using the group_replication_force_members variable.

3992

Handling a Network Partition and Loss of Quorum

Figure 20.15 Forcing a New Membership

Suppose that you are back in the situation where s1 and s2 are the only servers left in the group.
Servers s3, s4 and s5 have left the group unexpectedly. To make servers s1 and s2 continue, you want
to force a membership configuration that contains only s1 and s2.

Warning

This procedure uses group_replication_force_members and should be
considered a last resort remedy. It must be used with extreme care and only
for overriding loss of quorum. If misused, it could create an artificial split-brain
scenario or block the entire system altogether.

When forcing a new membership configuration, make sure that any servers are going to be forced
out of the group are indeed stopped. In the scenario depicted above, if s3, s4 and s5 are not really
unreachable but instead are online, they may have formed their own functional partition (they are 3
out of 5, hence they have the majority). In that case, forcing a group membership list with s1 and s2
could create an artificial split-brain situation. Therefore it is important before forcing a new membership
configuration to ensure that the servers to be excluded are indeed shut down and if they are not, shut
them down before proceeding.

3993

Monitoring Group Replication Memory Usage with Performance Schema Memory Instrumentation

Warning

For a group in single-primary mode, the primary might have transactions that
are not yet present on other members at the time of the network partition. If you
are considering excluding the primary from the new group, be aware that such
transactions might be lost. A member with extra transactions cannot rejoin the
group, and the attempt results in an error with the message This member has
more executed transactions than those present in the group.
Set the group_replication_unreachable_majority_timeout system
variable for the group members to avoid this situation.

Recall that the system is blocked and the current configuration is the following (as perceived by the
local failure detector on s1):

mysql> SELECT MEMBER_ID,MEMBER_STATE FROM performance_schema.replication_group_members;
+--------------------------------------+--------------+
| MEMBER_ID | MEMBER_STATE |
+--------------------------------------+--------------+
1999b9fb-4aaf-11e6-bb54-28b2bd168d07	UNREACHABLE
199b2df7-4aaf-11e6-bb16-28b2bd168d07	ONLINE
199bb88e-4aaf-11e6-babe-28b2bd168d07	ONLINE
19ab72fc-4aaf-11e6-bb51-28b2bd168d07	UNREACHABLE
19b33846-4aaf-11e6-ba81-28b2bd168d07	UNREACHABLE
+--------------------------------------+--------------+

The first thing to do is to check what is the local address (group communication identifier) for s1 and s2.
Log in to s1 and s2 and get that information as follows.

mysql> SELECT @@group_replication_local_address;

Once you know the group communication addresses of s1 (127.0.0.1:10000) and s2
(127.0.0.1:10001), you can use that on one of the two servers to inject a new membership
configuration, thus overriding the existing one that has lost quorum. To do that on s1:

mysql> SET GLOBAL group_replication_force_members="127.0.0.1:10000,127.0.0.1:10001";

This unblocks the group by forcing a different configuration. Check replication_group_members
on both s1 and s2 to verify the group membership after this change. First on s1.

mysql> SELECT MEMBER_ID,MEMBER_STATE FROM performance_schema.replication_group_members;
+--------------------------------------+--------------+
| MEMBER_ID | MEMBER_STATE |
+--------------------------------------+--------------+
| b5ffe505-4ab6-11e6-b04b-28b2bd168d07 | ONLINE |
| b60907e7-4ab6-11e6-afb7-28b2bd168d07 | ONLINE |
+--------------------------------------+--------------+

And then on s2.

mysql> SELECT * FROM performance_schema.replication_group_members;
+--------------------------------------+--------------+
| MEMBER_ID | MEMBER_STATE |
+--------------------------------------+--------------+
| b5ffe505-4ab6-11e6-b04b-28b2bd168d07 | ONLINE |
| b60907e7-4ab6-11e6-afb7-28b2bd168d07 | ONLINE |
+--------------------------------------+--------------+

After you have used the group_replication_force_members system variable to successfully
force a new group membership and unblock the group, ensure that you clear the system
variable. group_replication_force_members must be empty in order to issue a START
GROUP_REPLICATION statement.

20.7.9 Monitoring Group Replication Memory Usage with Performance
Schema Memory Instrumentation

3994

Monitoring Group Replication Memory Usage with Performance Schema Memory Instrumentation

From MySQL 8.0.30, Performance Schema provides instrumentation for performance monitoring of
Group Replication memory usage. To view the available Group Replication instrumentation, issue the
following query:

mysql> SELECT NAME,ENABLED FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'memory/group_rpl/%';
+---+---------+
| NAME | ENABLED |
+---+---------+
memory/group_rpl/write_set_encoded	YES
memory/group_rpl/certification_data	YES
memory/group_rpl/certification_data_gc	YES
memory/group_rpl/certification_info	YES
memory/group_rpl/transaction_data	YES
memory/group_rpl/sql_service_command_data	YES
memory/group_rpl/mysql_thread_queued_task	YES
memory/group_rpl/message_service_queue	YES
memory/group_rpl/message_service_received_message	YES
memory/group_rpl/group_member_info	YES
memory/group_rpl/consistent_members_that_must_prepare_transaction	YES
memory/group_rpl/consistent_transactions	YES
memory/group_rpl/consistent_transactions_prepared	YES
memory/group_rpl/consistent_transactions_waiting	YES
memory/group_rpl/consistent_transactions_delayed_view_change	YES
memory/group_rpl/GCS_XCom::xcom_cache	YES
memory/group_rpl/Gcs_message_data::m_buffer	YES
+---+---------+

For more information on Performance Schema's memory instrumentation and events, see
Section 29.12.20.10, “Memory Summary Tables”.

Performance Schema Group Replication instruments memory allocation for Group
Replication.

The memory/group_rpl/ Performance Schema instrumentation was updated in 8.0.30 to extend
monitoring of Group Replication memory usage. memory/group_rpl/ contains the following
instruments:

• write_set_encoded: Memory allocated to encode the write set before it is broadcast to the group
members.

• Gcs_message_data::m_buffer: Memory allocated for the transaction data payload sent to the
network.

• certification_data: Memory allocated for certification of incoming transactions.

• certification_data_gc: Memory allocated for the GTID_EXECUTED sent by each member for
garbage collection.

• certification_info: Memory allocated for storage of certification information allocated to
resolve conflicts between concurrent transactions.

• transaction_data: Memory allocated for incoming transactions queued for the plugin pipeline.

• message_service_received_message: Memory allocated to receiving messages from Group
Replication delivery message service.

• sql_service_command_data: Memory allocated for processing the queue of internal SQL service
commands.

• mysql_thread_queued_task: Memory allocated when a MySQL-thread dependent task is added
to the processing queue.

• message_service_queue: Memory allocated for queued messages of the Group Replication
delivery message service.

3995

Monitoring Group Replication Memory Usage with Performance Schema Memory Instrumentation

• GCS_XCom::xcom_cache: Memory allocated to XCOM ache for messaging and metadata
exchanged between group members as part of the consensus protocol.

• consistent_members_that_must_prepare_transaction: Memory allocated to hold list of
members preparing transaction for Group Replication transaction consistency guarantees.

• consistent_transactions: Memory allocated to hold transaction and list of members that must
prepare that transaction for Group Replication transaction consistency guarantees.

• consistent_transactions_prepared: Memory allocated to hold list of transaction's info
prepared for the Group Replication Transaction Consistency Guarantees.

• consistent_transactions_waiting: Memory allocated to hold information on a
list of transactions while preceding prepared transactions with consistency of AFTER and
BEFORE_AND_AFTER are processed.

• consistent_transactions_delayed_view_change: Memory allocated to hold list of view
change events (view_change_log_event) delayed by prepared consistent transactions waiting for
prepare acknowledgement.

• group_member_info: Memory allocated to hold the group member properties. Properties such as
hostname, port, member weight and role, and so on.

The following instruments in the memory/sql/ grouping are also used to monitor Group Replication
memory:

• Log_event: Memory allocated for encoding transaction data into the binary log format; this is the
same format in which Group Replication transmits data.

• write_set_extraction: Memory allocated to the transaction's generated write set before it is
committed.

• Gtid_set::to_string: Memory allocated to stored the string representation of a GTID set.

• Gtid_set::Interval_chunk: Memory allocated to store the GTID object.

20.7.9.1 Enabling or Disabling Group Replication Instrumentation

To enable all the Group Replication instrumentation from the command line, run the following in the
SQL client of your choice:

 UPDATE performance_schema.setup_instruments SET ENABLED = 'YES'
 WHERE NAME LIKE 'memory/group_rpl/%';

To disable all the Group Replication instrumentation from the command line, run the following in the
SQL client of your choice:

 UPDATE performance_schema.setup_instruments SET ENABLED = 'NO'
 WHERE NAME LIKE 'memory/group_rpl/%';

To enable all the Group Replication instrumentation at server startup, add the following to your option
file:

 [mysqld]
 performance-schema-instrument='memory/group_rpl/%=ON'

To disable all the Group Replication instrumentation at server startup, add the following to your option
file:

 [mysqld]
 performance-schema-instrument='memory/group_rpl/%=OFF'

3996

Monitoring Group Replication Memory Usage with Performance Schema Memory Instrumentation

To enable or disable individual instruments in that group, replace the wildcard (%) with the full name of
the instrument.

For more information, see Section 29.3, “Performance Schema Startup Configuration” and
Section 29.4, “Performance Schema Runtime Configuration”.

20.7.9.2 Example Queries

This section describes sample queries using the instruments and events for
monitoring Group Replication memory usage. The queries retrieve data from the
memory_summary_global_by_event_name table.

The memory data can be queried for individual events, for example:

SELECT * FROM performance_schema.memory_summary_global_by_event_name
WHERE EVENT_NAME = 'memory/group_rpl/write_set_encoded'\G

*************************** 1. row ***************************
 EVENT_NAME: memory/group_rpl/write_set_encoded
 COUNT_ALLOC: 1
 COUNT_FREE: 0
 SUM_NUMBER_OF_BYTES_ALLOC: 45
 SUM_NUMBER_OF_BYTES_FREE: 0
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 1
 HIGH_COUNT_USED: 1
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 45
 HIGH_NUMBER_OF_BYTES_USED: 45

See Section 29.12.20.10, “Memory Summary Tables” for more information on the columns.

You can also define queries which sum various events to provide overviews of specific areas of
memory usage.

The following examples are described:

• Memory Used to Capture Transactions

• Memory Used to Broadcast Transactions

• Total Memory Used in Group Replication

• Memory Used in Certification

• Memory Used in Certification

• Memory Used in Replication Pipeline

• Memory Used in Consistency

• Memory Used in Delivery Message Service

• Memory Used to Broadcast and Receive Transactions

Memory Used to Capture Transactions

The memory allocated to capture user transactions is a sum of the write_set_encoded,
write_set_extraction, and Log_event event's values. For example:

SELECT * FROM (SELECT
 (CASE
 WHEN EVENT_NAME LIKE 'memory/group_rpl/write_set_encoded'
 THEN 'memory/group_rpl/memory_gr'

3997

Monitoring Group Replication Memory Usage with Performance Schema Memory Instrumentation

 WHEN EVENT_NAME = 'memory/sql/write_set_extraction'
 THEN 'memory/group_rpl/memory_gr'
 WHEN EVENT_NAME = 'memory/sql/Log_event'
 THEN 'memory/group_rpl/memory_gr'
 ELSE 'memory_gr_rest'
 END) AS EVENT_NAME,
 SUM(COUNT_ALLOC), SUM(COUNT_FREE),
 SUM(SUM_NUMBER_OF_BYTES_ALLOC),
 SUM(SUM_NUMBER_OF_BYTES_FREE), SUM(LOW_COUNT_USED),
 SUM(CURRENT_COUNT_USED), SUM(HIGH_COUNT_USED),
 SUM(LOW_NUMBER_OF_BYTES_USED), SUM(CURRENT_NUMBER_OF_BYTES_USED),
 SUM(HIGH_NUMBER_OF_BYTES_USED)
 FROM performance_schema.memory_summary_global_by_event_name
 GROUP BY (CASE
 WHEN EVENT_NAME LIKE 'memory/group_rpl/write_set_encoded'
 THEN 'memory/group_rpl/memory_gr'
 WHEN EVENT_NAME = 'memory/sql/write_set_extraction'
 THEN 'memory/group_rpl/memory_gr'
 WHEN EVENT_NAME = 'memory/sql/Log_event'
 THEN 'memory/group_rpl/memory_gr'
 ELSE 'memory_gr_rest'
 END)
) f
WHERE f.EVENT_NAME != 'memory_gr_rest'\G

*************************** 1. row ***************************
 EVENT_NAME: memory/group_rpl/memory_gr
 SUM(COUNT_ALLOC): 127
 SUM(COUNT_FREE): 117
 SUM(SUM_NUMBER_OF_BYTES_ALLOC): 54808
 SUM(SUM_NUMBER_OF_BYTES_FREE): 52051
 SUM(LOW_COUNT_USED): 0
 SUM(CURRENT_COUNT_USED): 10
 SUM(HIGH_COUNT_USED): 35
 SUM(LOW_NUMBER_OF_BYTES_USED): 0
SUM(CURRENT_NUMBER_OF_BYTES_USED): 2757
 SUM(HIGH_NUMBER_OF_BYTES_USED): 15630

Memory Used to Broadcast Transactions

The memory allocated to broadcast transactions is a sum of the Gcs_message_data::m_buffer,
transaction_data, and GCS_XCom::xcom_cache event values. For example:

SELECT * FROM (
 SELECT
 (CASE
 WHEN EVENT_NAME = 'memory/group_rpl/Gcs_message_data::m_buffer'
 THEN 'memory/group_rpl/memory_gr'
 WHEN EVENT_NAME = 'memory/group_rpl/GCS_XCom::xcom_cache'
 THEN 'memory/group_rpl/memory_gr'
 WHEN EVENT_NAME = 'memory/group_rpl/transaction_data'
 THEN 'memory/group_rpl/memory_gr'
 ELSE 'memory_gr_rest'
 END) AS EVENT_NAME,
 SUM(COUNT_ALLOC), SUM(COUNT_FREE),
 SUM(SUM_NUMBER_OF_BYTES_ALLOC),
 SUM(SUM_NUMBER_OF_BYTES_FREE), SUM(LOW_COUNT_USED),
 SUM(CURRENT_COUNT_USED), SUM(HIGH_COUNT_USED),
 SUM(LOW_NUMBER_OF_BYTES_USED), SUM(CURRENT_NUMBER_OF_BYTES_USED),
 SUM(HIGH_NUMBER_OF_BYTES_USED)
 FROM performance_schema.memory_summary_global_by_event_name
 GROUP BY (CASE
 WHEN EVENT_NAME = 'memory/group_rpl/Gcs_message_data::m_buffer'
 THEN 'memory/group_rpl/memory_gr'
 WHEN EVENT_NAME = 'memory/group_rpl/GCS_XCom::xcom_cache'
 THEN 'memory/group_rpl/memory_gr'
 WHEN EVENT_NAME = 'memory/group_rpl/transaction_data'
 THEN 'memory/group_rpl/memory_gr'
 ELSE 'memory_gr_rest'
 END)
) f
WHERE f.EVENT_NAME != 'memory_gr_rest'\G

3998

Monitoring Group Replication Memory Usage with Performance Schema Memory Instrumentation

*************************** 1. row ***************************
 EVENT_NAME: memory/group_rpl/memory_gr
 SUM(COUNT_ALLOC): 84
 SUM(COUNT_FREE): 31
 SUM(SUM_NUMBER_OF_BYTES_ALLOC): 1072324
 SUM(SUM_NUMBER_OF_BYTES_FREE): 7149
 SUM(LOW_COUNT_USED): 0
 SUM(CURRENT_COUNT_USED): 53
 SUM(HIGH_COUNT_USED): 59
 SUM(LOW_NUMBER_OF_BYTES_USED): 0
SUM(CURRENT_NUMBER_OF_BYTES_USED): 1065175
 SUM(HIGH_NUMBER_OF_BYTES_USED): 1065809

Total Memory Used in Group Replication

The memory allocation to sending and receiving transactions, certification, and all other major
processes. It is calculated by querying all the events of the memory/group_rpl/ group. For example:

SELECT * FROM (
 SELECT
 (CASE
 WHEN EVENT_NAME LIKE 'memory/group_rpl/%'
 THEN 'memory/group_rpl/memory_gr'
 ELSE 'memory_gr_rest'
 END) AS EVENT_NAME,
 SUM(COUNT_ALLOC), SUM(COUNT_FREE),
 SUM(SUM_NUMBER_OF_BYTES_ALLOC),
 SUM(SUM_NUMBER_OF_BYTES_FREE), SUM(LOW_COUNT_USED),
 SUM(CURRENT_COUNT_USED), SUM(HIGH_COUNT_USED),
 SUM(LOW_NUMBER_OF_BYTES_USED), SUM(CURRENT_NUMBER_OF_BYTES_USED),
 SUM(HIGH_NUMBER_OF_BYTES_USED)
 FROM performance_schema.memory_summary_global_by_event_name
 GROUP BY (CASE
 WHEN EVENT_NAME LIKE 'memory/group_rpl/%'
 THEN 'memory/group_rpl/memory_gr'
 ELSE 'memory_gr_rest'
 END)
) f
WHERE f.EVENT_NAME != 'memory_gr_rest'\G

*************************** 1. row ***************************
 EVENT_NAME: memory/group_rpl/memory_gr
 SUM(COUNT_ALLOC): 190
 SUM(COUNT_FREE): 127
 SUM(SUM_NUMBER_OF_BYTES_ALLOC): 1096370
 SUM(SUM_NUMBER_OF_BYTES_FREE): 28675
 SUM(LOW_COUNT_USED): 0
 SUM(CURRENT_COUNT_USED): 63
 SUM(HIGH_COUNT_USED): 77
 SUM(LOW_NUMBER_OF_BYTES_USED): 0
SUM(CURRENT_NUMBER_OF_BYTES_USED): 1067695
 SUM(HIGH_NUMBER_OF_BYTES_USED): 1069255

Memory Used in Certification

The memory allocation in the certification process is a sum of the certification_data,
certification_data_gc, and certification_info event values. For example:

SELECT * FROM (
 SELECT
 (CASE
 WHEN EVENT_NAME = 'memory/group_rpl/certification_data'
 THEN 'memory/group_rpl/certification'
 WHEN EVENT_NAME = 'memory/group_rpl/certification_data_gc'
 THEN 'memory/group_rpl/certification'
 WHEN EVENT_NAME = 'memory/group_rpl/certification_info'
 THEN 'memory/group_rpl/certification'
 ELSE 'memory_gr_rest'
 END) AS EVENT_NAME, SUM(COUNT_ALLOC), SUM(COUNT_FREE),
 SUM(SUM_NUMBER_OF_BYTES_ALLOC),

3999

Monitoring Group Replication Memory Usage with Performance Schema Memory Instrumentation

 SUM(SUM_NUMBER_OF_BYTES_FREE), SUM(LOW_COUNT_USED),
 SUM(CURRENT_COUNT_USED), SUM(HIGH_COUNT_USED),
 SUM(LOW_NUMBER_OF_BYTES_USED), SUM(CURRENT_NUMBER_OF_BYTES_USED),
 SUM(HIGH_NUMBER_OF_BYTES_USED)
 FROM performance_schema.memory_summary_global_by_event_name
 GROUP BY (CASE
 WHEN EVENT_NAME = 'memory/group_rpl/certification_data'
 THEN 'memory/group_rpl/certification'
 WHEN EVENT_NAME = 'memory/group_rpl/certification_data_gc'
 THEN 'memory/group_rpl/certification'
 WHEN EVENT_NAME = 'memory/group_rpl/certification_info'
 THEN 'memory/group_rpl/certification'
 ELSE 'memory_gr_rest'
 END)
) f
WHERE f.EVENT_NAME != 'memory_gr_rest'\G

*************************** 1. row ***************************
 EVENT_NAME: memory/group_rpl/certification
 SUM(COUNT_ALLOC): 80
 SUM(COUNT_FREE): 80
 SUM(SUM_NUMBER_OF_BYTES_ALLOC): 9442
 SUM(SUM_NUMBER_OF_BYTES_FREE): 9442
 SUM(LOW_COUNT_USED): 0
 SUM(CURRENT_COUNT_USED): 0
 SUM(HIGH_COUNT_USED): 66
 SUM(LOW_NUMBER_OF_BYTES_USED): 0
SUM(CURRENT_NUMBER_OF_BYTES_USED): 0
 SUM(HIGH_NUMBER_OF_BYTES_USED): 6561

Memory Used in Replication Pipeline

The memory allocation of the replication pipeline is the sum of the certification_data and
transaction_data event values. For example:

SELECT * FROM (
 SELECT
 (CASE
 WHEN EVENT_NAME LIKE 'memory/group_rpl/certification_data'
 THEN 'memory/group_rpl/pipeline'
 WHEN EVENT_NAME LIKE 'memory/group_rpl/transaction_data'
 THEN 'memory/group_rpl/pipeline'
 ELSE 'memory_gr_rest'
 END) AS EVENT_NAME, SUM(COUNT_ALLOC), SUM(COUNT_FREE),
 SUM(SUM_NUMBER_OF_BYTES_ALLOC),
 SUM(SUM_NUMBER_OF_BYTES_FREE), SUM(LOW_COUNT_USED),
 SUM(CURRENT_COUNT_USED), SUM(HIGH_COUNT_USED),
 SUM(LOW_NUMBER_OF_BYTES_USED), SUM(CURRENT_NUMBER_OF_BYTES_USED),
 SUM(HIGH_NUMBER_OF_BYTES_USED)
 FROM performance_schema.memory_summary_global_by_event_name
 GROUP BY (CASE
 WHEN EVENT_NAME LIKE 'memory/group_rpl/certification_data'
 THEN 'memory/group_rpl/pipeline'
 WHEN EVENT_NAME LIKE 'memory/group_rpl/transaction_data'
 THEN 'memory/group_rpl/pipeline'
 ELSE 'memory_gr_rest'
 END)
) f
WHERE f.EVENT_NAME != 'memory_gr_rest'\G

*************************** 1. row ***************************
 EVENT_NAME: memory/group_rpl/pipeline
 COUNT_ALLOC: 17
 COUNT_FREE: 13
 SUM_NUMBER_OF_BYTES_ALLOC: 2483
 SUM_NUMBER_OF_BYTES_FREE: 1668
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 4
 HIGH_COUNT_USED: 4
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 815
 HIGH_NUMBER_OF_BYTES_USED: 815

4000

Monitoring Group Replication Memory Usage with Performance Schema Memory Instrumentation

Memory Used in Consistency

The memory allocation for transaction consistency guarantees is the sum of the
consistent_members_that_must_prepare_transaction, consistent_transactions,
consistent_transactions_prepared, consistent_transactions_waiting, and
consistent_transactions_delayed_view_change event values. For example:

SELECT * FROM (
 SELECT
 (CASE
 WHEN EVENT_NAME = 'memory/group_rpl/consistent_members_that_must_prepare_transaction'
 THEN 'memory/group_rpl/consistency'
 WHEN EVENT_NAME = 'memory/group_rpl/consistent_transactions'
 THEN 'memory/group_rpl/consistency'
 WHEN EVENT_NAME = 'memory/group_rpl/consistent_transactions_prepared'
 THEN 'memory/group_rpl/consistency'
 WHEN EVENT_NAME = 'memory/group_rpl/consistent_transactions_waiting'
 THEN 'memory/group_rpl/consistency'
 WHEN EVENT_NAME = 'memory/group_rpl/consistent_transactions_delayed_view_change'
 THEN 'memory/group_rpl/consistency'
 ELSE 'memory_gr_rest'
 END) AS EVENT_NAME, SUM(COUNT_ALLOC), SUM(COUNT_FREE),
 SUM(SUM_NUMBER_OF_BYTES_ALLOC),
 SUM(SUM_NUMBER_OF_BYTES_FREE), SUM(LOW_COUNT_USED),
 SUM(CURRENT_COUNT_USED), SUM(HIGH_COUNT_USED),
 SUM(LOW_NUMBER_OF_BYTES_USED), SUM(CURRENT_NUMBER_OF_BYTES_USED),
 SUM(HIGH_NUMBER_OF_BYTES_USED)
 FROM performance_schema.memory_summary_global_by_event_name
 GROUP BY (CASE
 WHEN EVENT_NAME = 'memory/group_rpl/consistent_members_that_must_prepare_transaction'
 THEN 'memory/group_rpl/consistency'
 WHEN EVENT_NAME = 'memory/group_rpl/consistent_transactions'
 THEN 'memory/group_rpl/consistency'
 WHEN EVENT_NAME = 'memory/group_rpl/consistent_transactions_prepared'
 THEN 'memory/group_rpl/consistency'
 WHEN EVENT_NAME = 'memory/group_rpl/consistent_transactions_waiting'
 THEN 'memory/group_rpl/consistency'
 WHEN EVENT_NAME = 'memory/group_rpl/consistent_transactions_delayed_view_change'
 THEN 'memory/group_rpl/consistency'
 ELSE 'memory_gr_rest'
 END)
) f
WHERE f.EVENT_NAME != 'memory_gr_rest'\G

*************************** 1. row ***************************
 EVENT_NAME: memory/group_rpl/consistency
 COUNT_ALLOC: 16
 COUNT_FREE: 6
 SUM_NUMBER_OF_BYTES_ALLOC: 1464
 SUM_NUMBER_OF_BYTES_FREE: 528
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 10
 HIGH_COUNT_USED: 11
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 936
 HIGH_NUMBER_OF_BYTES_USED: 1024

Memory Used in Delivery Message Service

Note

This instrumentation applies only to data received, not data sent.

The memory allocation for the Group Replication delivery message service is the sum of the
message_service_received_message and message_service_queue event values. For
example:

SELECT * FROM (
 SELECT

4001

Monitoring Group Replication Memory Usage with Performance Schema Memory Instrumentation

 (CASE
 WHEN EVENT_NAME = 'memory/group_rpl/message_service_received_message'
 THEN 'memory/group_rpl/message_service'
 WHEN EVENT_NAME = 'memory/group_rpl/message_service_queue'
 THEN 'memory/group_rpl/message_service'
 ELSE 'memory_gr_rest'
 END) AS EVENT_NAME,
 SUM(COUNT_ALLOC), SUM(COUNT_FREE),
 SUM(SUM_NUMBER_OF_BYTES_ALLOC),
 SUM(SUM_NUMBER_OF_BYTES_FREE), SUM(LOW_COUNT_USED),
 SUM(CURRENT_COUNT_USED), SUM(HIGH_COUNT_USED),
 SUM(LOW_NUMBER_OF_BYTES_USED), SUM(CURRENT_NUMBER_OF_BYTES_USED),
 SUM(HIGH_NUMBER_OF_BYTES_USED)
 FROM performance_schema.memory_summary_global_by_event_name
 GROUP BY (CASE
 WHEN EVENT_NAME = 'memory/group_rpl/message_service_received_message'
 THEN 'memory/group_rpl/message_service'
 WHEN EVENT_NAME = 'memory/group_rpl/message_service_queue'
 THEN 'memory/group_rpl/message_service'
 ELSE 'memory_gr_rest'
 END)
) f
WHERE f.EVENT_NAME != 'memory_gr_rest'\G

*************************** 1. row ***************************
 EVENT_NAME: memory/group_rpl/message_service
 COUNT_ALLOC: 2
 COUNT_FREE: 0
 SUM_NUMBER_OF_BYTES_ALLOC: 1048664
 SUM_NUMBER_OF_BYTES_FREE: 0
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 2
 HIGH_COUNT_USED: 2
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 1048664
 HIGH_NUMBER_OF_BYTES_USED: 1048664

Memory Used to Broadcast and Receive Transactions

The memory allocation for the broadcasting and receiving transactions to and from the network is the
sum of the wGcs_message_data::m_buffer and GCS_XCom::xcom_cache event values. For
example:

SELECT * FROM (
 SELECT
 (CASE
 WHEN EVENT_NAME = 'memory/group_rpl/Gcs_message_data::m_buffer'
 THEN 'memory/group_rpl/memory_gr'
 WHEN EVENT_NAME = 'memory/group_rpl/GCS_XCom::xcom_cache'
 THEN 'memory/group_rpl/memory_gr'
 ELSE 'memory_gr_rest'
 END) AS EVENT_NAME,
 SUM(COUNT_ALLOC), SUM(COUNT_FREE),
 SUM(SUM_NUMBER_OF_BYTES_ALLOC),
 SUM(SUM_NUMBER_OF_BYTES_FREE), SUM(LOW_COUNT_USED),
 SUM(CURRENT_COUNT_USED), SUM(HIGH_COUNT_USED),
 SUM(LOW_NUMBER_OF_BYTES_USED), SUM(CURRENT_NUMBER_OF_BYTES_USED),
 SUM(HIGH_NUMBER_OF_BYTES_USED)
 FROM performance_schema.memory_summary_global_by_event_name
 GROUP BY (CASE
 WHEN EVENT_NAME = 'memory/group_rpl/Gcs_message_data::m_buffer'
 THEN 'memory/group_rpl/memory_gr'
 WHEN EVENT_NAME = 'memory/group_rpl/GCS_XCom::xcom_cache'
 THEN 'memory/group_rpl/memory_gr'
 ELSE 'memory_gr_rest'
 END)
) f
WHERE f.EVENT_NAME != 'memory_gr_rest'\G

*************************** 1. row ***************************
 EVENT_NAME: memory/group_rpl/memory_gr

4002

Upgrading Group Replication

 SUM(COUNT_ALLOC): 73
 SUM(COUNT_FREE): 20
 SUM(SUM_NUMBER_OF_BYTES_ALLOC): 1070845
 SUM(SUM_NUMBER_OF_BYTES_FREE): 5670
 SUM(LOW_COUNT_USED): 0
 SUM(CURRENT_COUNT_USED): 53
 SUM(HIGH_COUNT_USED): 56
 SUM(LOW_NUMBER_OF_BYTES_USED): 0
SUM(CURRENT_NUMBER_OF_BYTES_USED): 1065175
 SUM(HIGH_NUMBER_OF_BYTES_USED): 1065175

20.8 Upgrading Group Replication
This section explains how to upgrade a Group Replication setup. The basic process of upgrading
members of a group is the same as upgrading stand-alone instances, see Chapter 3, Upgrading
MySQL for the actual process of doing upgrade and types available. Choosing between an in-place
or logical upgrade depends on the amount of data stored in the group. Usually an in-place upgrade
is faster, and therefore is recommended. You should also consult Section 19.5.3, “Upgrading a
Replication Topology”.

While you are in the process of upgrading an online group, in order to maximize availability, you
might need to have members with different MySQL Server versions running at the same time. Group
Replication includes compatibility policies that enable you to safely combine members running different
versions of MySQL in the same group during the upgrade procedure. Depending on your group, the
effects of these policies might affect the order in which you should upgrade group members. For
details, see Section 20.8.1, “Combining Different Member Versions in a Group”.

If your group can be taken fully offline see Section 20.8.2, “Group Replication Offline Upgrade”. If your
group needs to remain online, as is common with production deployments, see Section 20.8.3, “Group
Replication Online Upgrade” for the different approaches available for upgrading a group with minimal
downtime.

20.8.1 Combining Different Member Versions in a Group

Group Replication is versioned according to the MySQL Server version that the Group Replication
plugin was bundled with. For example, if a member is running MySQL 5.7.26 then that is the version of
the Group Replication plugin. To check the version of MySQL Server on a group member issue:

SELECT MEMBER_HOST,MEMBER_PORT,MEMBER_VERSION FROM performance_schema.replication_group_members;
+-------------+-------------+----------------+
| member_host | member_port | member_version |
+-------------+-------------+----------------+
| example.com | 3306 | 8.0.13 |
+-------------+-------------+----------------+

For guidance on understanding the MySQL Server version and selecting a version, see Section 2.1.2,
“Which MySQL Version and Distribution to Install”.

For optimal compatibility and performance, all members of a group should run the same version of
MySQL Server and therefore of Group Replication. However, while you are in the process of upgrading
an online group, in order to maximize availability, you might need to have members with different
MySQL Server versions running at the same time. Depending on the changes made between the
versions of MySQL, you could encounter incompatibilities in this situation. For example, if a feature
has been deprecated between major versions, then combining the versions in a group might cause
members that rely on the deprecated feature to fail. Conversely, writing to a member running a newer
MySQL version while there are read-write members in the group running an older MySQL version
might cause issues on members that lack functions introduced in the newer release.

To prevent these issues, Group Replication includes compatibility policies that enable you to safely
combine members running different versions of MySQL in the same group. A member applies these
policies to decide whether to join the group normally, or join in read-only mode, or not join the group,
depending on which choice results in the safe operation of the joining member and of the existing

4003

Combining Different Member Versions in a Group

members of the group. In an upgrade scenario, each server must leave the group, be upgraded, and
rejoin the group with its new server version. At this point the member applies the policies for its new
server version, which might have changed from the policies it applied when it originally joined the
group.

As the administrator, you can instruct any server to attempt to join any group by configuring the server
appropriately and issuing a START GROUP_REPLICATION statement. A decision to join or not join
the group, or to join the group in read-only mode, is made and implemented by the joining member
itself after you attempt to add it to the group. The joining member receives information on the MySQL
Server versions of the current group members, assesses its own compatibility with those members,
and applies the policies used in its own MySQL Server version (not the policies used by the existing
members) to decide whether it is compatible.

The compatibility policies that a joining member applies when attempting to join a group are as follows:

• A member does not join a group if it is running a lower MySQL Server version than the lowest
version that the existing group members are running.

• A member joins a group normally if it is running the same MySQL Server version as the lowest
version that the existing group members are running.

• A member joins a group but remains in read-only mode if it is running a higher MySQL Server
version than the lowest version that the existing group members are running. This behavior only
makes a difference when the group is running in multi-primary mode, because in a group that is
running in single-primary mode, newly added members default to being read-only in any case.

Members running MySQL 8.0.17 or higher take into account the patch version of the release when
checking their compatibility. Members running MySQL 8.0.16 or lower, or MySQL 5.7, only take into
account the major version. For example, if you have a group with members all running MySQL version
8.0.13:

• A member that is running MySQL version 5.7 does not join.

• A member running MySQL 8.0.16 joins normally (because it considers the major version).

• A member running MySQL 8.0.17 joins but remains in read-only mode (because it considers the
patch version).

Note that joining members running releases before MySQL 5.7.27 check against all group members to
find whether their own MySQL Server major version is lower. They therefore fail this check for a group
where any members are running MySQL 8.0 releases, and cannot join the group even if it already
has other members running MySQL 5.7. From MySQL 5.7.27, joining members only check against
the group members that are running the lowest major version, so they can join a mixed version group
where other MySQL 5.7 servers are present.

In a multi-primary mode group with members that use different MySQL Server versions,
Group Replication automatically manages the read-write and read-only status of members
running MySQL 8.0.17 or higher. If a member leaves the group, the members running the
version that is now the lowest are automatically set to read-write mode. When you change
a group that was running in single-primary mode to run in multi-primary mode, using the
group_replication_switch_to_multi_primary_mode() function, Group Replication
automatically sets members to the correct mode. Members are automatically placed in read-only mode
if they are running a higher MySQL server version than the lowest version present in the group, and
members running the lowest version are placed in read-write mode.

20.8.1.1 Member Versions During Upgrades

During an online upgrade procedure, if the group is in single-primary mode, all the servers that are not
currently offline for upgrading function as they did before. The group elects a new primary whenever
necessary, following the election policies described in Section 20.1.3.1, “Single-Primary Mode”. Note
that if you require the primary to remain the same throughout (except when it is being upgraded itself),

4004

Group Replication Offline Upgrade

you must first upgrade all of the secondaries to a version higher than or equal to the target primary
member version, then upgrade the primary last. The primary cannot remain as the primary unless it is
running the lowest MySQL Server version in the group. After the primary has been upgraded, you can
use the group_replication_set_as_primary() function to reappoint it as the primary.

If the group is in multi-primary mode, fewer online members are available to perform writes during
the upgrade procedure, because upgraded members join in read-only mode after their upgrade.
From MySQL 8.0.17, this applies to upgrades between patch versions, and for lower releases, this
only applies to upgrades between major versions. When all members have been upgraded to the
same release, from MySQL 8.0.17, they all change back to read-write mode automatically. For earlier
releases, you must set super_read_only to OFF manually on each member that should function as a
primary following the upgrade.

To deal with a problem situation, for example if you have to roll back an upgrade or add extra capacity
to a group in an emergency, it is possible to allow a member to join an online group although it is
running a lower MySQL Server version than the lowest version in use by other group members. The
Group Replication system variable group_replication_allow_local_lower_version_join
can be used in such situations to override the normal compatibility policies.

Important

Setting group_replication_allow_local_lower_version_join to ON
does not make the new member compatible with the group; doing this allows
it to join the group without any safeguards against incompatible behaviors by
the existing members. This must therefore only be used carefully in specific
situations, and you must take additional precautions to avoid the new member
failing due to normal group activity. See the description of this variable for more
information.

20.8.1.2 Group Replication Communication Protocol Version

A replication group uses a Group Replication communication protocol version that can differ from the
MySQL Server version of the members. To check the group's communication protocol version, issue
the following statement on any member:

SELECT group_replication_get_communication_protocol();

The return value shows the oldest MySQL Server version that can join this group and use
the group's communication protocol. Versions from MySQL 5.7.14 allow compression of
messages, and versions from MySQL 8.0.16 also allow fragmentation of messages. Note that the
group_replication_get_communication_protocol() function returns the minimum MySQL
version that the group supports, which might differ from the version number that was passed to the
group_replication_set_communication_protocol() function, and from the MySQL Server
version that is installed on the member where you use the function.

When you upgrade all the members of a replication group to a new MySQL Server release, the Group
Replication communication protocol version is not automatically upgraded, in case there is still a
requirement to allow members at earlier releases to join. If you do not need to support older members
and want to allow the upgraded members to use any added communication capabilities, after the
upgrade use the group_replication_set_communication_protocol() function to upgrade
the communication protocol, specifying the new MySQL Server version to which you have upgraded
the members. For more information, see Section 20.5.1.4, “Setting a Group's Communication Protocol
Version”.

20.8.2 Group Replication Offline Upgrade

To perform an offline upgrade of a Group Replication group, you remove each member from the group,
perform an upgrade of the member and then restart the group as usual. In a multi-primary group you
can shutdown the members in any order. In a single-primary group, shutdown each secondary first
and then finally the primary. See Section 20.8.3.2, “Upgrading a Group Replication Member” for how to
remove members from a group and shutdown MySQL.

4005

Group Replication Online Upgrade

Once the group is offline, upgrade all of the members. See Chapter 3, Upgrading MySQL for how to
perform an upgrade. When all members have been upgraded, restart the members.

If you upgrade all the members of a replication group when they are offline and then restart the group,
the members join using the new release's Group Replication communication protocol version, so that
becomes the group's communication protocol version. If you have a requirement to allow members at
earlier releases to join, you can use the group_replication_set_communication_protocol()
function to downgrade the communication protocol version, specifying the MySQL Server version of the
prospective group member that has the oldest installed server version.

20.8.3 Group Replication Online Upgrade

When you have a group running which you want to upgrade but you need to keep the group online to
serve your application, you need to consider your approach to the upgrade. This section describes the
different elements involved in an online upgrade, and various methods of how to upgrade your group.

20.8.3.1 Online Upgrade Considerations

When upgrading an online group you should consider the following points:

• Regardless of the way which you upgrade your group, it is important to disable any writes to group
members until they are ready to rejoin the group.

• When a member is stopped, the super_read_only variable is set to on automatically, but this
change is not persisted.

• When MySQL 5.7.22 or MySQL 8.0.11 tries to join a group running MySQL 5.7.21 or lower it fails to
join the group because MySQL 5.7.21 does not send its value of lower_case_table_names.

20.8.3.2 Upgrading a Group Replication Member

This section explains the steps required for upgrading a member of a group. This procedure is part of
the methods described at Section 20.8.3.3, “Group Replication Online Upgrade Methods”. The process
of upgrading a member of a group is common to all methods and is explained first. The way which you
join upgraded members can depend on which method you are following, and other factors such as
whether the group is operating in single-primary or multi-primary mode. How you upgrade the server
instance, using either the in-place or provision approach, does not impact on the methods described
here.

The process of upgrading a member consists of removing it from the group, following your chosen
method of upgrading the member, and then rejoining the upgraded member to a group. The
recommended order of upgrading members in a single-primary group is to upgrade all secondaries,
and then upgrade the primary last. If the primary is upgraded before a secondary, a new primary using
the older MySQL version is chosen, but there is no need for this step.

To upgrade a member of a group:

• Connect a client to the group member and issue STOP GROUP_REPLICATION. Before proceeding,
ensure that the member's status is OFFLINE by monitoring the replication_group_members
table.

• Disable Group Replication from starting up automatically so that you can safely connect
to the member after upgrading and configure it without it rejoining the group by setting
group_replication_start_on_boot=0.

Important

If an upgraded member has group_replication_start_on_boot=1
then it could rejoin the group before you can perform the MySQL upgrade
procedure and could result in issues. For example, if the upgrade fails and
the server restarts again, then a possibly broken server could try to join the
group.

4006

Group Replication Online Upgrade

• Stop the member, for example using mysqladmin shutdown or the SHUTDOWN statement. Any
other members in the group continue running.

• Upgrade the member, using the in-place or provisioning approach. See Chapter 3,
Upgrading MySQL for details. When restarting the upgraded member, because
group_replication_start_on_boot is set to 0, Group Replication does not start on the
instance, and therefore it does not rejoin the group.

• Once the MySQL upgrade procedure has been performed on the member,
group_replication_start_on_boot must be set to 1 to ensure Group Replication starts
correctly after restart. Restart the member.

• Connect to the upgraded member and issue START GROUP_REPLICATION. This rejoins the
member to the group. The Group Replication metadata is in place on the upgraded server, therefore
there is usually no need to reconfigure Group Replication. The server has to catch up with any
transactions processed by the group while the server was offline. Once it has caught up with the
group, it becomes an online member of the group.

Note

The longer it takes to upgrade a server, the more time that member is offline
and therefore the more time it takes for the server to catch up when added
back to the group.

When an upgraded member joins a group which has any member running an earlier MySQL Server
version, the upgraded member joins with super_read_only=on. This ensures that no writes are
made to upgraded members until all members are running the newer version. In a multi-primary
mode group, when the upgrade has been completed successfully and the group is ready to process
transactions, members that are intended as writeable primaries must be set to read-write mode. As of
MySQL 8.0.17, when all members of a group have been upgraded to the same release, they all change
back to read-write mode automatically. For earlier releases you must set each member manually to
read-write mode. Connect to each member and issue:

SET GLOBAL super_read_only=OFF;

20.8.3.3 Group Replication Online Upgrade Methods

Choose one of the following methods of upgrading a Group Replication group:

Rolling In-Group Upgrade

This method is supported provided that servers running a newer version are not generating workload
to the group while there are still servers with an older version in it. In other words servers with a newer
version can join the group only as secondaries. In this method there is only ever one group, and each
server instance is removed from the group, upgraded and then rejoined to the group.

This method is well suited to single-primary groups. When the group is operating in single-primary
mode, if you require the primary to remain the same throughout (except when it is being upgraded
itself), it should be the last member to be upgraded. The primary cannot remain as the primary unless
it is running the lowest MySQL Server version in the group. After the primary has been upgraded, you
can use the group_replication_set_as_primary() function to reappoint it as the primary. If
you do not mind which member is the primary, the members can be upgraded in any order. The group
elects a new primary whenever necessary from among the members running the lowest MySQL Server
version, following the election policies described in Section 20.1.3.1, “Single-Primary Mode”.

For groups operating in multi-primary mode, during a rolling in-group upgrade the number of primaries
is decreased, causing a reduction in write availability. This is because if a member joins a group when
it is running a higher MySQL Server version than the lowest version that the existing group members
are running, it automatically remains in read-only mode (super_read_only=ON). Note that members
running MySQL 8.0.17 or higher take into account the patch version of the release when checking this,

4007

Group Replication Online Upgrade

but members running MySQL 8.0.16 or lower, or MySQL 5.7, only take into account the major version.
When all members have been upgraded to the same release, from MySQL 8.0.17, they all change
back to read-write mode automatically. For earlier releases, you must set super_read_only=OFF
manually on each member that should function as a primary following the upgrade.

For full information on version compatibility in a group and how this influences the behavior of a group
during an upgrade process, see Section 20.8.1, “Combining Different Member Versions in a Group” .

Rolling Migration Upgrade

In this method you remove members from the group, upgrade them and then create a second group
using the upgraded members. For groups operating in multi-primary mode, during this process the
number of primaries is decreased, causing a reduction in write availability. This does not impact groups
operating in single-primary mode.

Because the group running the older version is online while you are upgrading the members, you
need the group running the newer version to catch up with any transactions executed while the
members were being upgraded. Therefore one of the servers in the new group is configured as a
replica of a primary from the older group. This ensures that the new group catches up with the older
group. Because this method relies on an asynchronous replication channel which is used to replicate
data from one group to another, it is supported under the same assumptions and requirements of
asynchronous source-replica replication, see Chapter 19, Replication. For groups operating in single-
primary mode, the asynchronous replication connection to the old group must send data to the primary
in the new group, for a multi-primary group the asynchronous replication channel can connect to any
primary.

The process is to:

• remove members from the original group running the older server version one by one, see
Section 20.8.3.2, “Upgrading a Group Replication Member”

• upgrade the server version running on the member, see Chapter 3, Upgrading MySQL. You can
either follow an in-place or provision approach to upgrading.

• create a new group with the upgraded members, see Chapter 20, Group Replication. In this case you
need to configure a new group name on each member (because the old group is still running and
using the old name), bootstrap an initial upgraded member, and then add the remaining upgraded
members.

• set up an asynchronous replication channel between the old group and the new group, see
Section 19.1.3.4, “Setting Up Replication Using GTIDs”. Configure the older primary to function as
the asynchronous replication source server and the new group member as a GTID-based replica.

Before you can redirect your application to the new group, you must ensure that the new group has a
suitable number of members, for example so that the group can handle the failure of a member. Issue
SELECT * FROM performance_schema.replication_group_members and compare the initial
group size and the new group size. Wait until all data from the old group is propagated to the new
group and then drop the asynchronous replication connection and upgrade any missing members.

Rolling Duplication Upgrade

In this method you create a second group consisting of members which are running the newer version,
and the data missing from the older group is replicated to the newer group. This assumes that you
have enough servers to run both groups simultaneously. Due to the fact that during this process the
number of primaries is not decreased, for groups operating in multi-primary mode there is no reduction
in write availability. This makes rolling duplication upgrade well suited to groups operating in multi-
primary mode. This does not impact groups operating in single-primary mode.

Because the group running the older version is online while you are provisioning the members in
the new group, you need the group running the newer version to catch up with any transactions
executed while the members were being provisioned. Therefore one of the servers in the new group

4008

Group Replication Variables

is configured as a replica of a primary from the older group. This ensures that the new group catches
up with the older group. Because this method relies on an asynchronous replication channel which
is used to replicate data from one group to another, it is supported under the same assumptions and
requirements of asynchronous source-replica replication, see Chapter 19, Replication. For groups
operating in single-primary mode, the asynchronous replication connection to the old group must send
data to the primary in the new group, for a multi-primary group the asynchronous replication channel
can connect to any primary.

The process is to:

• deploy a suitable number of members so that the group running the newer version can handle failure
of a member

• take a backup of the existing data from a member of the group

• use the backup from the older member to provision the members of the new group, see
Section 20.8.3.4, “Group Replication Upgrade with mysqlbackup” for one method.

Note

You must restore the backup to the same version of MySQL which the
backup was taken from, and then perform an in-place upgrade. For
instructions, see Chapter 3, Upgrading MySQL.

• create a new group with the upgraded members, see Chapter 20, Group Replication. In this case you
need to configure a new group name on each member (because the old group is still running and
using the old name), bootstrap an initial upgraded member, and then add the remaining upgraded
members.

• set up an asynchronous replication channel between the old group and the new group, see
Section 19.1.3.4, “Setting Up Replication Using GTIDs”. Configure the older primary to function as
the asynchronous replication source server and the new group member as a GTID-based replica.

Once the ongoing data missing from the newer group is small enough to be quickly transferred, you
must redirect write operations to the new group. Wait until all data from the old group is propagated to
the new group and then drop the asynchronous replication connection.

20.8.3.4 Group Replication Upgrade with mysqlbackup

As part of a provisioning approach you can use MySQL Enterprise Backup to copy and restore the data
from a group member to new members. However you cannot use this technique to directly restore a
backup taken from a member running an older version of MySQL to a member running a newer version
of MySQL. The solution is to restore the backup to a new server instance which is running the same
version of MySQL as the member which the backup was taken from, and then upgrade the instance.
This process consists of:

• Take a backup from a member of the older group using mysqlbackup. See Section 20.5.6, “Using
MySQL Enterprise Backup with Group Replication”.

• Deploy a new server instance, which must be running the same version of MySQL as the older
member where the backup was taken.

• Restore the backup from the older member to the new instance using mysqlbackup.

• Upgrade MySQL on the new instance, see Chapter 3, Upgrading MySQL.

Repeat this process to create a suitable number of new instances, for example to be able to handle a
failover. Then join the instances to a group based on the Section 20.8.3.3, “Group Replication Online
Upgrade Methods”.`

20.9 Group Replication Variables

4009

Group Replication Variables

The next two sections contain information about MySQL server system and server status variables
which are specific to the Group Replication plugin.

Table 20.4 Group Replication Variable and Option Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

group_replication_advertise_recovery_endpointsYes Yes Yes Global Yes

group_replication_allow_local_lower_version_joinYes Yes Yes Global Yes

group_replication_auto_increment_incrementYes Yes Yes Global Yes

group_replication_autorejoin_triesYes Yes Yes Global Yes

group_replication_bootstrap_groupYes Yes Yes Global Yes

group_replication_clone_thresholdYes Yes Yes Global Yes

group_replication_communication_debug_optionsYes Yes Yes Global Yes

group_replication_communication_max_message_sizeYes Yes Yes Global Yes

group_replication_communication_stack Yes Global Yes

group_replication_components_stop_timeoutYes Yes Yes Global Yes

group_replication_compression_thresholdYes Yes Yes Global Yes

group_replication_consistencyYes Yes Yes Both Yes

group_replication_enforce_update_everywhere_checksYes Yes Yes Global Yes

group_replication_exit_state_actionYes Yes Yes Global Yes

group_replication_flow_control_applier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_certifier_thresholdYes Yes Yes Global Yes

group_replication_flow_control_hold_percentYes Yes Yes Global Yes

group_replication_flow_control_max_quotaYes Yes Yes Global Yes

group_replication_flow_control_member_quota_percentYes Yes Yes Global Yes

group_replication_flow_control_min_quotaYes Yes Yes Global Yes

group_replication_flow_control_min_recovery_quotaYes Yes Yes Global Yes

group_replication_flow_control_modeYes Yes Yes Global Yes

group_replication_flow_control_periodYes Yes Yes Global Yes

group_replication_flow_control_release_percentYes Yes Yes Global Yes

group_replication_force_membersYes Yes Yes Global Yes

group_replication_group_nameYes Yes Yes Global Yes

group_replication_group_seedsYes Yes Yes Global Yes

group_replication_gtid_assignment_block_sizeYes Yes Yes Global Yes

group_replication_ip_allowlistYes Yes Yes Global Yes

group_replication_ip_whitelistYes Yes Yes Global Yes

group_replication_local_addressYes Yes Yes Global Yes

group_replication_member_expel_timeoutYes Yes Yes Global Yes

group_replication_member_weightYes Yes Yes Global Yes

group_replication_message_cache_sizeYes Yes Yes Global Yes

group_replication_paxos_single_leaderYes Yes Yes Global Yes

group_replication_poll_spin_loopsYes Yes Yes Global Yes

group_replication_primary_member Yes Global No

group_replication_recovery_complete_atYes Yes Yes Global Yes

4010

Group Replication System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

group_replication_recovery_get_public_keyYes Yes Yes Global Yes

group_replication_recovery_public_key_pathYes Yes Yes Global Yes

group_replication_recovery_reconnect_intervalYes Yes Yes Global Yes

group_replication_recovery_retry_countYes Yes Yes Global Yes

group_replication_recovery_ssl_caYes Yes Yes Global Yes

group_replication_recovery_ssl_capathYes Yes Yes Global Yes

group_replication_recovery_ssl_certYes Yes Yes Global Yes

group_replication_recovery_ssl_cipherYes Yes Yes Global Yes

group_replication_recovery_ssl_crlYes Yes Yes Global Yes

group_replication_recovery_ssl_crlpathYes Yes Yes Global Yes

group_replication_recovery_ssl_keyYes Yes Yes Global Yes

group_replication_recovery_ssl_verify_server_certYes Yes Yes Global Yes

group_replication_recovery_tls_ciphersuitesYes Yes Yes Global Yes

group_replication_recovery_tls_versionYes Yes Yes Global Yes

group_replication_recovery_use_sslYes Yes Yes Global Yes

group_replication_single_primary_modeYes Yes Yes Global Yes

group_replication_ssl_modeYes Yes Yes Global Yes

group_replication_start_on_bootYes Yes Yes Global Yes

group_replication_transaction_size_limitYes Yes Yes Global Yes

group_replication_unreachable_majority_timeoutYes Yes Yes Global Yes

group_replication_view_change_uuidYes Yes Yes Global Yes

20.9.1 Group Replication System Variables

This section lists the system variables that are specific to the Group Replication plugin.

The name of each Group Replication system variable is prefixed with group_replication_.

Note

InnoDB Cluster uses Group Replication, but the default values of the Group
Replication system variables may differ from the defaults documented
in this section. For example, in InnoDB Cluster, the default value of
group_replication_communication_stack is MYSQL, not XCOM as it is
for a default Group Replication implementation.

For more information, see MySQL InnoDB Cluster.

Some system variables on a Group Replication group member, including some Group Replication-
specific system variables and some general system variables, are group-wide configuration settings.
These system variables must have the same value on all group members, and require a full reboot
of the group (a bootstrap by a server with group_replication_bootstrap_group=ON) in order
for the value change to take effect. For instructions to reboot a group where every member has been
stopped, see Section 20.5.2, “Restarting a Group”.

If a running group has a value set for a group-wide configuration setting, and a joining member has
a different value set for that system variable, the joining member cannot join the group until the value
is changed to match. If the group has a value set for one of these system variables, and the joining
member does not support the system variable, it cannot join the group.

The following system variables are group-wide configuration settings:

4011

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html

Group Replication System Variables

• group_replication_single_primary_mode

• group_replication_enforce_update_everywhere_checks

• group_replication_gtid_assignment_block_size

• group_replication_view_change_uuid

• group_replication_paxos_single_leader

• group_replication_communication_stack (a special case not policed by Group Replication's
own checks; see the system variable description for details)

• default_table_encryption

• lower_case_table_names

• transaction_write_set_extraction (deprecated as of MySQL 8.0.26)

Group-wide configuration settings cannot be changed by the usual methods
while Group Replication is running, but in MySQL 8.0.16 and later it is possible
to use the group_replication_switch_to_single_primary_mode()
and group_replication_switch_to_multi_primary_mode() functions
to change the values of group_replication_single_primary_mode and
group_replication_enforce_update_everywhere_checks while the group is still running. For
more information, see Section 20.5.1.2, “Changing the Group Mode”.

Most system variables for Group Replication can have different values on different group members.
For the following system variables, it is advisable to set the same value on all members of a group in
order to avoid unnecessary rollback of transactions, failure of message delivery, or failure of message
recovery:

• group_replication_auto_increment_increment

• group_replication_communication_max_message_size

• group_replication_compression_threshold

• group_replication_message_cache_size

• group_replication_transaction_size_limit

Most system variables for Group Replication are described as dynamic, and their values can be
changed while the server is running. However, in most cases, the change takes effect only after
you stop and restart Group Replication on the group member using a STOP GROUP_REPLICATION
statement followed by a START GROUP_REPLICATION statement. Changes to the following system
variables take effect without stopping and restarting Group Replication:

• group_replication_advertise_recovery_endpoints

• group_replication_autorejoin_tries

• group_replication_consistency

• group_replication_exit_state_action

• group_replication_flow_control_applier_threshold

• group_replication_flow_control_certifier_threshold

• group_replication_flow_control_hold_percent

• group_replication_flow_control_max_quota

• group_replication_flow_control_member_quota_percent

4012

Group Replication System Variables

• group_replication_flow_control_min_quota

• group_replication_flow_control_min_recovery_quota

• group_replication_flow_control_mode

• group_replication_flow_control_period

• group_replication_flow_control_release_percent

• group_replication_force_members

• group_replication_ip_allowlist

• group_replication_ip_whitelist

• group_replication_member_expel_timeout

• group_replication_member_weight

• group_replication_transaction_size_limit

• group_replication_unreachable_majority_timeout

When you change the values of any Group Replication system variables, bear in mind that if there is a
point where Group Replication is stopped on every member at once by a STOP GROUP_REPLICATION
statement or system shutdown, the group must be restarted by bootstrapping as if it was being started
for the first time. For instructions on doing this safely, see Section 20.5.2, “Restarting a Group”. In the
case of group-wide configuration settings, this is required, but if you are changing other settings, try to
ensure that at least one member is running at all times.

Important

• A number of system variables for Group Replication are not
completely validated during server startup if they are passed
as command line arguments to the server. These system
variables include group_replication_group_name,
group_replication_single_primary_mode,
group_replication_force_members, the SSL variables, and the flow
control system variables. They are fully validated only after the server has
started.

• System variables for Group Replication that specify IP addresses
or host names for group members are not validated until a START
GROUP_REPLICATION statement is issued. Group Replication's Group
Communication System (GCS) is not available to validate the values until that
point.

Server system variables specific to the Group Replication plugin, along with descriptions of their
function or purpose, are listed here:

• group_replication_advertise_recovery_endpoints

Command-Line Format --group-replication-advertise-
recovery-endpoints=value

Introduced 8.0.21

System Variable group_replication_advertise_recovery_endpoints

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

4013

Group Replication System Variables

Default Value DEFAULT

The value of this system variable can be changed while Group Replication is running. The change
takes effect immediately on the member. However, a joining member that already received the
previous value of the system variable continues to use that value. Only members that join after the
value change receive the new value.

group_replication_advertise_recovery_endpoints specifies how a joining member
can establish a connection to an existing member for state transfer for distributed recovery. The
connection is used for both remote cloning operations and state transfer from the donor's binary log.

A value of DEFAULT, which is the default setting, means joining members use the existing member's
standard SQL client connection, as specified by MySQL Server's hostname and port system
variables. If an alternative port number is specified by the report_port system variable, that
one is used instead. The Performance Schema replication_group_members table shows this
connection's address and port number in the MEMBER_HOST and MEMBER_PORT columns. This is the
behavior of group members running MySQL 8.0.20 or earlier.

Instead of DEFAULT, you can specify one or more distributed recovery endpoints, which the existing
member advertises to joining members for them to use. Offering distributed recovery endpoints lets
administrators control distributed recovery traffic separately from regular MySQL client connections
to the group members. Joining members try each of the endpoints in turn in the order they are
specified on the list.

Specify the distributed recovery endpoints as a comma-separated list of IP addresses and port
numbers, for example:

group_replication_advertise_recovery_endpoints= "127.0.0.1:3306,127.0.0.1:4567,[::1]:3306,localhost:3306"

IPv4 and IPv6 addresses and host names can be used in any combination. IPv6 addresses must
be specified in square brackets. Host names must resolve to a local IP address. Wildcard address
formats cannot be used, and you cannot specify an empty list. Note that the standard SQL client
connection is not automatically included on a list of distributed recovery endpoints. If you want to use
it as an endpoint, you must include it explicitly on the list.

For details of how to select IP addresses and ports as distributed recovery endpoints, and how
joining members use them, see Selecting addresses for distributed recovery endpoints. A summary
of the requirements is as follows:

• The IP addresses do not have to be configured for MySQL Server, but they do have to be
assigned to the server.

• The ports do have to be configured for MySQL Server using the port, report_port, or
admin_port system variable.

• Appropriate permissions are required for the replication user for distributed recovery if the
admin_port is used.

• The IP addresses do not need to be added to the Group Replication allowlist specified by the
group_replication_ip_allowlist or group_replication_ip_whitelist system
variable.

• The SSL requirements for the connection are as specified by the
group_replication_recovery_ssl_* options.

• group_replication_allow_local_lower_version_join

Command-Line Format --group-replication-allow-local-
lower-version-join[={OFF|ON}]

4014

Group Replication System Variables

System Variable group_replication_allow_local_lower_version_join

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_allow_local_lower_version_join allows the current server to join
the group even if it is running a lower MySQL Server version than the group. With the default setting
OFF, servers are not permitted to join a replication group if they are running a lower version than
the existing group members. This standard policy ensures that all members of a group are able to
exchange messages and apply transactions. Note that members running MySQL 8.0.17 or higher
take into account the patch version of the release when checking their compatibility. Members
running MySQL 8.0.16 or earlier, or MySQL 5.7, take into account the major version only.

Set group_replication_allow_local_lower_version_join to ON only in the following
scenarios:

• A server must be added to the group in an emergency in order to improve the group's fault
tolerance, and only older versions are available.

• You want to roll back an upgrade for one or more replication group members without shutting
down the whole group and bootstrapping it again.

Warning

Setting this option to ON does not make the new member compatible with
the group, and allows it to join the group without any safeguards against
incompatible behaviors by the existing members. To ensure the new
member's correct operation, take both of the following precautions:

1. Before the server running the lower version joins the group, stop all writes
on that server.

2. From the point where the server running the lower version joins the group,
stop all writes on the other servers in the group.

Without these precautions, the server running the lower version is likely to
experience difficulties and terminate with an error.

• group_replication_auto_increment_increment

Command-Line Format --group-replication-auto-increment-
increment=#

System Variable group_replication_auto_increment_increment

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 7

Minimum Value 1

4015

Group Replication System Variables

Maximum Value 65535

This system variable should have the same value on all group members. You cannot change the
value of this system variable while Group Replication is running. You must stop Group Replication,
change the value of the system variable, then restart Group Replication, on each of the group
members. During this process, the value of the system variable is permitted to differ between group
members, but some transactions on group members might be rolled back.

group_replication_auto_increment_increment determines the interval between
successive values for auto-incremented columns for transactions that execute on this server
instance. Adding an interval avoids the selection of duplicate auto-increment values for writes on
group members, which causes rollback of transactions. The default value of 7 represents a balance
between the number of usable values and the permitted maximum size of a replication group (9
members). If your group has more or fewer members, you can set this system variable to match the
expected number of group members before Group Replication is started.

Important

Setting group_replication_auto_increment_increment has no
effect when group_replication_single_primary_mode is ON.

When Group Replication is started on a server instance, the value of the server system
variable auto_increment_increment is changed to this value, and the value of the server
system variable auto_increment_offset is changed to the server ID. The changes are
reverted when Group Replication is stopped. These changes are only made and reverted if
auto_increment_increment and auto_increment_offset each have their default value of 1.
If their values have already been modified from the default, Group Replication does not alter them. In
MySQL 8.0, the system variables are also not modified when Group Replication is in single-primary
mode, where only one server writes.

• group_replication_autorejoin_tries

Command-Line Format --group-replication-autorejoin-
tries=#

Introduced 8.0.16

System Variable group_replication_autorejoin_tries

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.21) 3

Default Value (≤ 8.0.20) 0

Minimum Value 0

Maximum Value 2016

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately. The system variable's current value is read when an issue occurs
that means the behavior is needed.

group_replication_autorejoin_tries specifies the number of tries that a member
makes to automatically rejoin the group if it is expelled, or if it is unable to contact a majority of
the group before the group_replication_unreachable_majority_timeout setting is
reached. When the member's expulsion or unreachable majority timeout is reached, it makes an
attempt to rejoin (using the current plugin option values), then continues to make further auto-
rejoin attempts up to the specified number of tries. After an unsuccessful auto-rejoin attempt, the

4016

Group Replication System Variables

member waits 5 minutes before the next try. If the specified number of tries is exhausted without
the member rejoining or being stopped, the member proceeds to the action specified by the
group_replication_exit_state_action system variable.

Up to MySQL 8.0.20, the default setting is 0, meaning that the member does not try to rejoin
automatically. From MySQL 8.0.21, the default setting is 3, meaning that the member automatically
makes 3 attempts to rejoin the group, with 5 minutes between each. You can specify a maximum of
2016 tries.

During and between auto-rejoin attempts, a member remains in super read only mode and does
not accept writes, but reads can still be made on the member, with an increasing likelihood of
stale reads over time. If you cannot tolerate the possibility of stale reads for any period of time, set
group_replication_autorejoin_tries to 0. For more information on the auto-rejoin feature,
and considerations when choosing a value for this option, see Section 20.7.7.3, “Auto-Rejoin”.

• group_replication_bootstrap_group

Command-Line Format --group-replication-bootstrap-
group[={OFF|ON}]

System Variable group_replication_bootstrap_group

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

group_replication_bootstrap_group configures this server to bootstrap the group. This
system variable must only be set on one server, and only when starting the group for the first time or
restarting the entire group. After the group has been bootstrapped, set this option to OFF. It should
be set to OFF both dynamically and in the configuration files. Starting two servers or restarting one
server with this option set while the group is running may lead to an artificial split brain situation,
where two independent groups with the same name are bootstrapped.

For instructions to bootstrap a group for the first time, see Section 20.2.1.5, “Bootstrapping the
Group”. For instructions to safely bootstrap a group where transactions have been executed and
certified, see Section 20.5.2, “Restarting a Group”.

• group_replication_clone_threshold

Command-Line Format --group-replication-clone-
threshold=#

Introduced 8.0.17

System Variable group_replication_clone_threshold

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 9223372036854775807

Minimum Value 1

Maximum Value 9223372036854775807

4017

Group Replication System Variables

Unit transactions

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_clone_threshold specifies the transaction gap, as a number of
transactions, between the existing member (donor) and the joining member (recipient) that triggers
the use of a remote cloning operation for state transfer to the joining member during the distributed
recovery process. If the transaction gap between the joining member and a suitable donor exceeds
the threshold, Group Replication begins distributed recovery with a remote cloning operation. If the
transaction gap is below the threshold, or if the remote cloning operation is not technically possible,
Group Replication proceeds directly to state transfer from a donor's binary log.

Warning

Do not use a low setting for group_replication_clone_threshold in
an active group. If a number of transactions above the threshold takes place
in the group while the remote cloning operation is in progress, the joining
member triggers a remote cloning operation again after restarting, and could
continue this indefinitely. To avoid this situation, ensure that you set the
threshold to a number higher than the number of transactions that you would
expect to occur in the group during the time taken for the remote cloning
operation.

To use this function, both the donor and the joining member must be set up beforehand to support
cloning. For instructions, see Section 20.5.4.2, “Cloning for Distributed Recovery”. When a remote
cloning operation is carried out, Group Replication manages it for you, including the required server
restart, provided that group_replication_start_on_boot=ON is set. If not, you must restart the
server manually. The remote cloning operation replaces the existing data dictionary on the joining
member, but Group Replication checks and does not proceed if the joining member has additional
transactions that are not present on the other group members, because these transactions would be
erased by the cloning operation.

The default setting (which is the maximum permitted sequence number for a transaction in a GTID)
means that state transfer from a donor's binary log is virtually always attempted rather than cloning.
However, note that Group Replication always attempts to execute a cloning operation, regardless
of your threshold, if state transfer from a donor's binary log is impossible, for example because the
transactions needed by the joining member are not available in the binary logs on any existing group
member. If you do not want to use cloning at all in your replication group, do not install the clone
plugin on the members.

• group_replication_communication_debug_options

Command-Line Format --group-replication-communication-
debug-options=value

System Variable group_replication_communication_debug_options

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value GCS_DEBUG_NONE

Valid Values GCS_DEBUG_NONE

GCS_DEBUG_BASIC

GCS_DEBUG_TRACE

4018

Group Replication System Variables

XCOM_DEBUG_BASIC

XCOM_DEBUG_TRACE

GCS_DEBUG_ALL

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately.

group_replication_communication_debug_options configures the level of debugging
messages to provide for the different Group Replication components, such as the Group
Communication System (GCS) and the group communication engine (XCom, a Paxos variant). The
debug information is stored in the GCS_DEBUG_TRACE file in the data directory.

The set of available options, specified as strings, can be combined. The following options are
available:

• GCS_DEBUG_NONE disables all debugging levels for both GCS and XCom.

• GCS_DEBUG_BASIC enables basic debugging information in GCS.

• GCS_DEBUG_TRACE enables trace information in GCS.

• XCOM_DEBUG_BASIC enables basic debugging information in XCom.

• XCOM_DEBUG_TRACE enables trace information in XCom.

• GCS_DEBUG_ALL enables all debugging levels for both GCS and XCom.

Setting the debug level to GCS_DEBUG_NONE only has an effect when provided without any other
option. Setting the debug level to GCS_DEBUG_ALL overrides all other options.

• group_replication_communication_max_message_size

Command-Line Format --group-replication-communication-
max-message-size=#

Introduced 8.0.16

System Variable group_replication_communication_max_message_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10485760

Minimum Value 0

Maximum Value 1073741824

Unit bytes

This system variable should have the same value on all group members. You cannot change the
value of this system variable while Group Replication is running. You must stop Group Replication,
change the value of the system variable, then restart Group Replication, on each of the group
members. During this process, the value of the system variable is permitted to differ between group
members, but some transactions on group members might be rolled back.

group_replication_communication_max_message_size specifies a maximum message
size for Group Replication communications. Messages greater than this size are automatically split

4019

Group Replication System Variables

into fragments that are sent separately and reassembled by the recipients. For more information, see
Section 20.7.5, “Message Fragmentation”.

A maximum message size of 10485760 bytes (10 MiB) is set by default, which means
that fragmentation is used by default in MySQL 8.0.16 and later. The greatest permitted
value is the same as the maximum value of the replica_max_allowed_packet or
slave_max_allowed_packet system variable, which is 1073741824 bytes (1 GB).
group_replication_communication_max_message_size must be less than
replica_max_allowed_packet, because the applier thread cannot handle message
fragments larger than the maximum permitted packet size. To switch off fragmentation, set
group_replication_communication_max_message_size to 0.

In order for members of a replication group to use fragmentation, the
group's communication protocol version must be 8.0.16 or later. Use the
group_replication_get_communication_protocol() function to view the group's
communication protocol version. If a lower version is in use, group members do not fragment
messages. You can use the group_replication_set_communication_protocol() function
to set the group's communication protocol to a higher version if all group members support it. For
more information, see Section 20.5.1.4, “Setting a Group's Communication Protocol Version”.

• group_replication_communication_stack

Introduced 8.0.27

System Variable group_replication_communication_stack

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value XCOM

Valid Values XCOM

MYSQL

Note

This system variable is effectively a group-wide configuration setting;
although it can be set at runtime, a full reboot of the replication group is
required for any change to take effect.

group_replication_communication_stack specifies whether the XCom communication stack
or the MySQL communication stack is to be used to establish group communication connections
between members. The XCom communication stack is Group Replication’'s own implementation,
as used always in releases before MySQL 8.0.27, and does not support authentication or network
namespaces. The MySQL communication stack is MySQL Server’'s native implementation,

4020

Group Replication System Variables

with support for authentication and network namespaces, and access to new security functions
immediately on release. All members of a group must use the same communication stack.

When you use the MySQL communication stack in place of XCom, MySQL Server establishes each
connection between group members using its own authentication and encryption protocols.

Note

If you are using InnoDB Cluster, the default value of
group_replication_communication_stack is MYSQL.

For more information, see MySQL InnoDB Cluster.

Additional configuration is required when you set up a group to use MySQL’s communication stack;
see Section 20.6.1, “Communication Stack for Connection Security Management”.

group_replication_communication_stack is effectively a group-wide configuration setting,
and the setting must be the same on all group members. However, this is not policed by Group
Replication’s own checks for group-wide configuration settings. A member with a different value from
the rest of the group cannot communicate with the other members at all, because the communication
protocols are incompatible, so it cannot exchange information about its configuration settings.

This means that although the value of the system variable can be changed while Group Replication
is running, and takes effect after you restart Group Replication on the group member, the member
still cannot rejoin the group until the setting has been changed on all the members. You must
therefore stop Group Replication on all of the members and change the value of the system variable
on them all before you can restart the group. Because all of the members are stopped, a full
reboot of the group (a bootstrap by a server with group_replication_bootstrap_group=ON)
is required in order for the value change to take effect. For instructions to migrate from one
communication stack to another, see Section 20.6.1, “Communication Stack for Connection Security
Management”.

• group_replication_components_stop_timeout

Command-Line Format --group-replication-components-stop-
timeout=#

System Variable group_replication_components_stop_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27) 300

Default Value (≤ 8.0.26) 31536000

Minimum Value 2

Maximum Value 31536000

Unit seconds

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_components_stop_timeout specifies the time, in seconds, for which
Group Replication waits for each of its modules to complete ongoing processes while shutting down.

4021

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html

Group Replication System Variables

The component timeout applies after a STOP GROUP_REPLICATION statement is issued, which
happens automatically during server restart or auto-rejoin.

The timeout is used to resolve situations in which Group Replication components cannot be stopped
normally, which might happen if a member is expelled from the group while it is in an error state,
or while a process such as MySQL Enterprise Backup is holding a global lock on tables on the
member. In such situations, the member cannot stop the applier thread or complete the distributed
recovery process to rejoin. STOP GROUP_REPLICATION does not complete until either the situation
is resolved (for example, by the lock being released), or the component timeout expires and the
modules are shut down regardless of their status.

Before MySQL 8.0.27, the default component timeout is 31536000 seconds, or 365 days. With
this setting, the component timeout does not help in situations such as those described, so a lower
setting is recommended. Beginning with MySQL 8.0.27, the default value is 300 seconds, so that
Group Replication components are stopped after 5 minutes if the situation is not resolved before that
time, allowing the member to be restarted and to rejoin.

• group_replication_compression_threshold

Command-Line Format --group-replication-compression-
threshold=#

System Variable group_replication_compression_threshold

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1000000

Minimum Value 0

Maximum Value 4294967295

Unit bytes

The threshold value in bytes above which compression is applied to messages sent between
group members. If this system variable is set to zero, compression is disabled. The value of
group_replication_compression_threshold should be the same on all group members.

Group Replication uses the LZ4 compression algorithm to compress messages sent
in the group. Note that the maximum supported input size for the LZ4 compression
algorithm is 2113929216 bytes. This limit is lower than the maximum possible value for the
group_replication_compression_threshold system variable, which is matched to the
maximum message size accepted by XCom. With the LZ4 compression algorithm, do not set a value
greater than 2113929216 bytes for group_replication_compression_threshold, because
transactions above this size cannot be committed when message compression is enabled.

For more information, see Section 20.7.4, “Message Compression”.

• group_replication_consistency

Command-Line Format --group-replication-
consistency=value

Introduced 8.0.14

System Variable group_replication_consistency

Scope Global, Session

Dynamic Yes

4022

Group Replication System Variables

SET_VAR Hint Applies No

Type Enumeration

Default Value EVENTUAL

Valid Values EVENTUAL

BEFORE_ON_PRIMARY_FAILOVER

BEFORE

AFTER

BEFORE_AND_AFTER

group_replication_consistency is a server system variable rather than a Group Replication
plugin-specific variable, so a restart of Group Replication is not required for the change to take effect.
Changing the session value of the system variable takes effect immediately, and changing the global
value takes effect for new sessions that start after the change. The GROUP_REPLICATION_ADMIN
privilege is required to change the global setting for this system variable.

group_replication_consistency determines the transaction consistency guarantee which a
group provides; this can done globally, or per transaction. group_replication_consistency
also determines the fencing mechanism used by newly elected primaries in single primary groups.
The effect of the variable must be considered both for read-only and for read/write transactions. The
following list shows the possible values of this variable, in order of increasing transaction consistency
guarantee:

• EVENTUAL

Neither read-only nor read/write transactions wait for preceding transactions to be applied
before executing. (Before this variables was added, this was the default behavior.) A read/write
transaction does not wait for other members to apply a transaction. This means that a transaction
can be externalized on one member before the others. This also means that, in the event of a
primary failover, the new primary can accept new read-only and read/write transactions before the
previous primary transactions have all been applied.

• BEFORE_ON_PRIMARY_FAILOVER

New read-only or read/write transactions with a newly elected primary that is applying a backlog
from the old primary are not applied until any backlog has been applied. This ensures that, in the
event of primary failover, clients always see the latest value on the primary, regardless of whether
the failover is intentional. This guarantees consistency, but means that clients must be able to
handle the delay in the event that a backlog is being applied. The length of this delay depends on
the size of the backlog being processed, but is usually not great.

• BEFORE

A read/write transaction waits for all preceding transactions to complete before being applied.
A read-only transaction waits for all preceding transactions to complete before being executed.
This ensures that this transaction reads the latest value by affecting only the latency of the
transaction. This reduces any overhead from synchronization, by ensuring it is used on read-only
transactions only. This consistency level also includes the consistency guarantees provided by
BEFORE_ON_PRIMARY_FAILOVER.

• AFTER

A read/write transaction waits until its changes have been applied to all of the other members. This
value has no effect on read-only transactions, and ensures that, when a transaction is committed
on the local member, any subsequent transaction reads the value written or a more recent value

4023

Group Replication System Variables

on any group member. This means that read-only transactions on the other members remain
uncommitted until all preceding transactions are committed, increasing the latency of the affected
transaction.

Use this mode with a group that is intended primarily for read-only operations to ensure that any
read/write transactions are applied everywhere once they commit. This can be used by your
application to ensure that subsequent reads fetch the latest data, including the latest writes. This
reduces any overhead from synchronization, by ensuring that synchronization is used for read/
write transactions only.

AFTER includes the consistency guarantees provided by BEFORE_ON_PRIMARY_FAILOVER.

• BEFORE_AND_AFTER

A read/write transaction waits for all preceding transactions to complete, and for all its changes
to be applied on all other members, before being applied. A read-only transaction waits for all
preceding transactions to complete before execution takes place. This consistency level also
includes the consistency guarantees provided by BEFORE_ON_PRIMARY_FAILOVER.

For more information, see Section 20.5.3, “Transaction Consistency Guarantees”.

• group_replication_enforce_update_everywhere_checks

Command-Line Format --group-replication-enforce-update-
everywhere-checks[={OFF|ON}]

System Variable group_replication_enforce_update_everywhere_checks

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Note

This system variable is a group-wide configuration setting, and a full reboot of
the replication group is required for a change to take effect.

group_replication_enforce_update_everywhere_checks enables or disables strict
consistency checks for multi-primary update everywhere. The default is that checks are disabled.
In single-primary mode, this option must be disabled on all group members. In multi-primary mode,
when this option is enabled, statements are checked as follows to ensure they are compatible with
multi-primary mode:

• If a transaction is executed under the SERIALIZABLE isolation level, then its commit fails when
synchronizing itself with the group.

• If a transaction executes against a table that has foreign keys with cascading constraints, then the
transaction fails to commit when synchronizing itself with the group.

This system variable is a group-wide configuration setting. It must have the same value on all group
members, cannot be changed while Group Replication is running, and requires a full reboot of the
group (a bootstrap by a server with group_replication_bootstrap_group=ON) in order for
the value change to take effect. For instructions to safely bootstrap a group where transactions have
been executed and certified, see Section 20.5.2, “Restarting a Group”.

If the group has a value set for this system variable, and a joining member has a different value set
for the system variable, the joining member cannot join the group until the value is changed to match.

4024

Group Replication System Variables

If the group members have a value set for this system variable, and the joining member does not
support the system variable, it cannot join the group.

In MySQL 8.0.16 or later, use the group_replication_switch_to_single_primary_mode()
and group_replication_switch_to_multi_primary_mode() functions to change the value
of this system variable while the group is still running. For more information, see Section 20.5.1.2,
“Changing the Group Mode”.

• group_replication_exit_state_action

Command-Line Format --group-replication-exit-state-
action=value

Introduced 8.0.12

System Variable group_replication_exit_state_action

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value (≥ 8.0.16) READ_ONLY

Default Value (≥ 8.0.12, ≤ 8.0.15) ABORT_SERVER

Valid Values (≥ 8.0.18) ABORT_SERVER

OFFLINE_MODE

READ_ONLY

Valid Values (≥ 8.0.12, ≤ 8.0.17) ABORT_SERVER

READ_ONLY

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately. The system variable's current value is read when an issue occurs
that means the behavior is needed.

group_replication_exit_state_action configures how Group Replication behaves when
this server instance leaves the group unintentionally, for example after encountering an applier error,
or in the case of a loss of majority, or when another member of the group expels it due to a suspicion
timing out. The timeout period for a member to leave the group in the case of a loss of majority
is set by the group_replication_unreachable_majority_timeout system variable, and
the timeout period for suspicions is set by the group_replication_member_expel_timeout
system variable. Note that an expelled group member does not know that it was expelled until it
reconnects to the group, so the specified action is only taken if the member manages to reconnect,
or if the member raises a suspicion on itself and expels itself.

When a group member is expelled due to a suspicion timing out or a loss of majority, if the member
has the group_replication_autorejoin_tries system variable set to specify a number of
auto-rejoin attempts, it first makes the specified number of attempts while in super read only mode,
and then follows the action specified by group_replication_exit_state_action. Auto-rejoin
attempts are not made in case of an applier error, because these are not recoverable.

When group_replication_exit_state_action is set to READ_ONLY, if the member exits the
group unintentionally or exhausts its auto-rejoin attempts, the instance switches MySQL to super
read only mode (by setting the system variable super_read_only to ON). The READ_ONLY exit

4025

Group Replication System Variables

action was the behavior for MySQL 8.0 releases before the system variable was introduced, and
became the default again in MySQL 8.0.16.

When group_replication_exit_state_action is set to OFFLINE_MODE, if the member exits
the group unintentionally or exhausts its auto-rejoin attempts, the instance switches MySQL to offline
mode (by setting the system variable offline_mode to ON). In this mode, connected client users
are disconnected on their next request and connections are no longer accepted, with the exception
of client users that have the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege).
Group Replication also sets the system variable super_read_only to ON, so clients cannot make
any updates, even if they have connected with the CONNECTION_ADMIN or SUPER privilege. The
OFFLINE_MODE exit action is available in MySQL 8.0.18 and later.

When group_replication_exit_state_action is set to ABORT_SERVER, if the member exits
the group unintentionally or exhausts its auto-rejoin attempts, the instance shuts down MySQL. This
setting was the default from MySQL 8.0.12, when the system variable was added, to MySQL 8.0.15,
inclusive.

Important

If a failure occurs before the member has successfully joined the group, the
specified exit action is not taken. This is the case if there is a failure during
the local configuration check, or a mismatch between the configuration of the
joining member and the configuration of the group. In these situations, the
super_read_only system variable is left with its original value, connections
continue to be accepted, and the server does not shut down MySQL. To
ensure that the server cannot accept updates when Group Replication did
not start, we therefore recommend that super_read_only=ON is set in the
server's configuration file at startup, which Group Replication changes to OFF
on primary members after it has been started successfully. This safeguard is
particularly important when the server is configured to start Group Replication
on server boot (group_replication_start_on_boot=ON), but it is
also useful when Group Replication is started manually using a START
GROUP_REPLICATION statement.

For more information on using this option, and the full list of situations in which the exit action is
taken, see Section 20.7.7.4, “Exit Action”.

• group_replication_flow_control_applier_threshold

Command-Line Format --group-replication-flow-control-
applier-threshold=#

System Variable group_replication_flow_control_applier_threshold

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 25000

Minimum Value 0

Maximum Value 2147483647

Unit transactions

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately.

group_replication_flow_control_applier_threshold specifies the number of waiting
transactions in the applier queue that trigger flow control.

4026

Group Replication System Variables

• group_replication_flow_control_certifier_threshold

Command-Line Format --group-replication-flow-control-
certifier-threshold=#

System Variable group_replication_flow_control_certifier_threshold

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 25000

Minimum Value 0

Maximum Value 2147483647

Unit transactions

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately.

group_replication_flow_control_certifier_threshold specifies the number of waiting
transactions in the certifier queue that trigger flow control.

• group_replication_flow_control_hold_percent

Command-Line Format --group-replication-flow-control-
hold-percent=#

System Variable group_replication_flow_control_hold_percent

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 100

Unit percentage

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately.

group_replication_flow_control_hold_percent defines what percentage of the group
quota remains unused to allow a cluster under flow control to catch up on backlog. A value of 0
implies that no part of the quota is reserved for catching up on the work backlog.

• group_replication_flow_control_max_quota

Command-Line Format --group-replication-flow-control-
max-quota=#

System Variable group_replication_flow_control_max_quota

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

4027

Group Replication System Variables

Default Value 0

Minimum Value 0

Maximum Value 2147483647

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately.

group_replication_flow_control_max_quota defines the maximum flow control
quota of the group, or the maximum available quota for any period while flow control is
enabled. A value of 0 implies that there is no maximum quota set. The value of this system
variable cannot be smaller than group_replication_flow_control_min_quota and
group_replication_flow_control_min_recovery_quota.

• group_replication_flow_control_member_quota_percent

Command-Line Format --group-replication-flow-control-
member-quota-percent=#

System Variable group_replication_flow_control_member_quota_percent

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 100

Unit percentage

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately.

group_replication_flow_control_member_quota_percent defines the percentage of the
quota that a member should assume is available for itself when calculating the quotas. A value of 0
implies that the quota should be split equally between members that were writers in the last period.

• group_replication_flow_control_min_quota

Command-Line Format --group-replication-flow-control-
min-quota=#

System Variable group_replication_flow_control_min_quota

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

4028

Group Replication System Variables

Maximum Value 2147483647

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately.

group_replication_flow_control_min_quota controls the lowest flow control quota that
can be assigned to a member, independently of the calculated minimum quota executed in the last
period. A value of 0 implies that there is no minimum quota. The value of this system variable cannot
be larger than group_replication_flow_control_max_quota.

• group_replication_flow_control_min_recovery_quota

Command-Line Format --group-replication-flow-control-
min-recovery-quota=#

System Variable group_replication_flow_control_min_recovery_quota

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2147483647

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately.

group_replication_flow_control_min_recovery_quota controls the lowest quota
that can be assigned to a member because of another recovering member in the group,
independently of the calculated minimum quota executed in the last period. A value of 0
implies that there is no minimum quota. The value of this system variable cannot be larger than
group_replication_flow_control_max_quota.

• group_replication_flow_control_mode

Command-Line Format --group-replication-flow-control-
mode=value

System Variable group_replication_flow_control_mode

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value QUOTA

Valid Values DISABLED

QUOTA

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately.

group_replication_flow_control_mode specifies the mode used for flow control.

4029

Group Replication System Variables

• group_replication_flow_control_period

Command-Line Format --group-replication-flow-control-
period=#

System Variable group_replication_flow_control_period

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 60

Unit seconds

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately.

group_replication_flow_control_period defines how many seconds to wait between flow
control iterations, in which flow control messages are sent and flow control management tasks are
run.

• group_replication_flow_control_release_percent

Command-Line Format --group-replication-flow-control-
release-percent=#

System Variable group_replication_flow_control_release_percent

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 50

Minimum Value 0

Maximum Value 1000

Unit percentage

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately.

group_replication_flow_control_release_percent defines how the group quota
should be released when flow control no longer needs to throttle the writer members, with this
percentage being the quota increase per flow control period. A value of 0 implies that once the flow
control thresholds are within limits the quota is released in a single flow control iteration. The range
allows the quota to be released at up to 10 times current quota, as that allows a greater degree of
adaptation, mainly when the flow control period is large and the quotas are very small.

• group_replication_force_members

Command-Line Format --group-replication-force-
members=value

System Variable group_replication_force_members

Scope Global4030

Group Replication System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type String

This system variable is used to force a new group membership. The value of this system variable
can be changed while Group Replication is running, and the change takes effect immediately. You
only need to set the value of the system variable on one of the group members that is to remain in
the group. For details of the situation in which you might need to force a new group membership,
and a procedure to follow when using this system variable, see Section 20.7.8, “Handling a Network
Partition and Loss of Quorum”.

group_replication_force_members specifies a list of peer addresses as a comma separated
list, such as host1:port1,host2:port2. Any existing members that are not included in the list do
not receive a new view of the group and are blocked. For each existing member that is to continue
as a member, you must include the IP address or host name and the port, as they are given in the
group_replication_local_address system variable for each member. An IPv6 address must
be specified in square brackets. For example:

"198.51.100.44:33061,[2001:db8:85a3:8d3:1319:8a2e:370:7348]:33061,example.org:33061"

The group communication engine for Group Replication (XCom) checks that the supplied IP
addresses are in a valid format, and checks that you have not included any group members that are
currently unreachable. Otherwise, the new configuration is not validated, so you must be careful to
include only online servers that are reachable members of the group. Any incorrect values or invalid
host names in the list could cause the group to be blocked with an invalid configuration.

It is important before forcing a new membership configuration to ensure that the servers to be
excluded have been shut down. If they are not, shut them down before proceeding. Group members
that are still online can automatically form new configurations, and if this has already taken place,
forcing a further new configuration could create an artificial split-brain situation for the group.

After you have used the group_replication_force_members system variable to successfully
force a new group membership and unblock the group, ensure that you clear the system
variable. group_replication_force_members must be empty in order to issue a START
GROUP_REPLICATION statement.

• group_replication_group_name

Command-Line Format --group-replication-group-name=value

System Variable group_replication_group_name

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

The value of this system variable cannot be changed while Group Replication is running.

group_replication_group_name specifies the name of the group which this server instance
belongs to, which must be a valid UUID. This UUID forms part of the GTIDs that are used when
transactions received by group members from clients, and view change events that are generated
internally by the group members, are written to the binary log.

Important

A unique UUID must be used.

4031

Group Replication System Variables

• group_replication_group_seeds

Command-Line Format --group-replication-group-
seeds=value

System Variable group_replication_group_seeds

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_group_seeds is a list of group members to which a joining member can
connect to obtain details of all the current group members. The joining member uses these details to
select and connect to a group member to obtain the data needed for synchrony with the group. The
list consists of a single internal network address or host name for each included seed member, as
configured in the seed member's group_replication_local_address system variable (not the
seed member's SQL client connection, as specified by MySQL Server's hostname and port system
variables). The addresses of the seed members are specified as a comma separated list, such as
host1:port1,host2:port2. An IPv6 address must be specified in square brackets. For example:

group_replication_group_seeds= "198.51.100.44:33061,[2001:db8:85a3:8d3:1319:8a2e:370:7348]:33061, example.org:33061"

Note that the value you specify for this variable is not validated until a START GROUP_REPLICATION
statement is issued and the Group Communication System (GCS) is available.

Usually this list consists of all members of the group, but you can choose a subset of the group
members to be seeds. The list must contain at least one valid member address. Each address is
validated when starting Group Replication. If the list does not contain any valid member addresses,
issuing START GROUP_REPLICATION fails.

When a server is joining a replication group, it attempts to connect to the first seed member listed in
its group_replication_group_seeds system variable. If the connection is refused, the joining
member tries to connect to each of the other seed members in the list in order. If the joining member
connects to a seed member but does not get added to the replication group as a result (for example,
because the seed member does not have the joining member's address in its allowlist and closes the
connection), the joining member continues to try the remaining seed members in the list in order.

A joining member must communicate with the seed member using the same protocol (IPv4 or IPv6)
that the seed member advertises in the group_replication_group_seeds option. For the
purpose of IP address permissions for Group Replication, the allowlist on the seed member must
include an IP address for the joining member for the protocol offered by the seed member, or a
host name that resolves to an address for that protocol. This address or host name must be set up
and permitted in addition to the joining member's group_replication_local_address if the
protocol for that address does not match the seed member's advertised protocol. If a joining member
does not have a permitted address for the appropriate protocol, its connection attempt is refused. For
more information, see Section 20.6.4, “Group Replication IP Address Permissions”.

• group_replication_gtid_assignment_block_size

Command-Line Format --group-replication-gtid-assignment-
block-size=#

System Variable group_replication_gtid_assignment_block_size

Scope Global

Dynamic Yes
4032

Group Replication System Variables

SET_VAR Hint Applies No

Type Integer

Default Value 1000000

Minimum Value 1

Maximum Value (64-bit platforms) 9223372036854775807

Maximum Value (32-bit platforms) 4294967295

Note

This system variable is a group-wide configuration setting, and a full reboot of
the replication group is required for a change to take effect.

group_replication_gtid_assignment_block_size specifies the number of consecutive
GTIDs that are reserved for each group member. Each member consumes its own blocks and
reserves more when needed.

This system variable is a group-wide configuration setting. It must have the same value on all group
members, cannot be changed while Group Replication is running, and requires a full reboot of the
group (a bootstrap by a server with group_replication_bootstrap_group=ON) in order for
the value change to take effect. For instructions to safely bootstrap a group where transactions have
been executed and certified, see Section 20.5.2, “Restarting a Group”.

If the group has a value set for this system variable, and a joining member has a different value set
for the system variable, the joining member cannot join the group until the value is changed to match.
If the group members have a value set for this system variable, and the joining member does not
support the system variable, it cannot join the group.

• group_replication_ip_allowlist

Command-Line Format --group-replication-ip-
allowlist=value

Introduced 8.0.22

System Variable group_replication_ip_allowlist

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value AUTOMATIC

group_replication_ip_allowlist is available from MySQL 8.0.22 to replace
group_replication_ip_whitelist. From MySQL 8.0.24, the value of this system variable
can be changed while Group Replication is running, and the change takes effect immediately on the
member.

group_replication_ip_allowlist specifies which hosts are permitted to
connect to the group. When the XCom communication stack is in use for the group
(group_replication_communication_stack=XCOM), the allowlist is used to control
access to the group. When the MySQL communication stack is in use for the group
(group_replication_communication_stack=MYSQL), user authentication is used to control
access to the group, and the allowlist is not used and is ignored if set.

The address that you specify for each group member in group_replication_local_address
must be permitted on the other servers in the replication group. Note that the value you specify

4033

Group Replication System Variables

for this variable is not validated until a START GROUP_REPLICATION statement is issued and the
Group Communication System (GCS) is available.

By default, this system variable is set to AUTOMATIC, which permits connections from private
subnetworks active on the host. The group communication engine for Group Replication (XCom)
automatically scans active interfaces on the host, and identifies those with addresses on private
subnetworks. These addresses and the localhost IP address for IPv4 and (from MySQL 8.0.14)
IPv6 are used to create the Group Replication allowlist. For a list of the ranges from which addresses
are automatically permitted, see Section 20.6.4, “Group Replication IP Address Permissions”.

The automatic allowlist of private addresses cannot be used for connections from servers outside
the private network. For Group Replication connections between server instances that are on
different machines, you must provide public IP addresses and specify these as an explicit allowlist.
If you specify any entries for the allowlist, the private addresses are not added automatically, so if
you use any of these, you must specify them explicitly. The localhost IP addresses are added
automatically.

As the value of the group_replication_ip_allowlist option, you can specify any combination
of the following:

• IPv4 addresses (for example, 198.51.100.44)

• IPv4 addresses with CIDR notation (for example, 192.0.2.21/24)

• IPv6 addresses, in MySQL 8.0.14 and later (for example,
2001:db8:85a3:8d3:1319:8a2e:370:7348)

• IPv6 addresses using CIDR notation, in MySQL 8.0.14 and later (for example,
2001:db8:85a3:8d3::/64)

• Host names (for example, example.org)

• Host names with CIDR notation (for example, www.example.com/24)

Prior to MySQL 8.0.14, host names could resolve to IPv4 addresses only. As of MySQL 8.0.14, host
names can resolve to IPv4 addresses, IPv6 addresses, or both. If a host name resolves to both
an IPv4 and an IPv6 address, the IPv4 address is always used for Group Replication connections.
You can use CIDR notation in combination with host names or IP addresses to permit a block of IP
addresses with a particular network prefix, but you should ensure that all the IP addresses in the
specified subnet are under your control.

A comma must separate each entry in the allowlist. For example:

"192.0.2.21/24,198.51.100.44,203.0.113.0/24,2001:db8:85a3:8d3:1319:8a2e:370:7348,example.org,www.example.com/24"

If any of the seed members for the group are listed in the group_replication_group_seeds
option with an IPv6 address when a joining member has an IPv4
group_replication_local_address, or the reverse, you must also set up and permit an
alternative address for the joining member for the protocol offered by the seed member (or a host
name that resolves to an address for that protocol). For more information, see Section 20.6.4, “Group
Replication IP Address Permissions”.

It is possible to configure different allowlists on different group members according to your security
requirements, for example, in order to keep different subnets separate. However, this can cause
issues when a group is reconfigured. If you do not have a specific security requirement to do
otherwise, use the same allowlist on all members of a group. For more details, see Section 20.6.4,
“Group Replication IP Address Permissions”.

For host names, name resolution takes place only when a connection request is made by another
server. A host name that cannot be resolved is not considered for allowlist validation, and a warning

4034

Group Replication System Variables

message is written to the error log. Forward-confirmed reverse DNS (FCrDNS) verification is carried
out for resolved host names.

Warning

Host names are inherently less secure than IP addresses in an allowlist.
FCrDNS verification provides a good level of protection, but can be
compromised by certain types of attack. Specify host names in your allowlist
only when strictly necessary, and ensure that all components used for name
resolution, such as DNS servers, are maintained under your control. You can
also implement name resolution locally using the hosts file, to avoid the use of
external components.

• group_replication_ip_whitelist

Command-Line Format --group-replication-ip-
whitelist=value

Deprecated 8.0.22

System Variable group_replication_ip_whitelist

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value AUTOMATIC

From MySQL 8.0.22, group_replication_ip_whitelist is deprecated, and
group_replication_ip_allowlist is available to replace it. For both system variables, the
default value is AUTOMATIC.

At Group Replication startup, if either one of the system variables has been set to a user-defined
value and the other has not, the changed value is used. If both of the system variables have been set
to a user-defined value, the value of group_replication_ip_allowlist is used.

If you change the value of group_replication_ip_whitelist or
group_replication_ip_allowlist while Group Replication is running, which is possible from
MySQL 8.0.24, neither variable has precedence over the other.

The new system variable works in the same way as the old system variable, only the terminology has
changed. The behavior description given for group_replication_ip_allowlist applies to both
the old and new system variables.

• group_replication_local_address

Command-Line Format --group-replication-local-
address=value

System Variable group_replication_local_address

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

4035

Group Replication System Variables

Type String

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_local_address sets the network address which the member provides for
connections from other members, specified as a host:port formatted string. This address must
be reachable by all members of the group because it is used by the group communication engine
for Group Replication (XCom, a Paxos variant) for TCP communication between remote XCom
instances. If you are using the MySQL communication stack to establish group communication
connections between members (group_replication_communication_stack = MYSQL), the
address must be one of the IP addresses and ports where MySQL Server is listening on, as specified
by the bind_address system variable for the server.

Warning

Do not use this address to query or administer the databases on the member.
This is not the SQL client connection host and port.

The address or host name that you specify in group_replication_local_address is used by
Group Replication as the unique identifier for a group member within the replication group. You can
use the same port for all members of a replication group as long as the host names or IP addresses
are all different, and you can use the same host name or IP address for all members as long as
the ports are all different. The recommended port for group_replication_local_address
is 33061. Note that the value you specify for this variable is not validated until the START
GROUP_REPLICATION statement is issued and the Group Communication System (GCS) is
available.

The network address configured by group_replication_local_address must be resolvable
by all group members. For example, if each server instance is on a different machine with a fixed
network address, you could use the IP address of the machine, such as 10.0.0.1. If you use a
host name, you must use a fully qualified name, and ensure it is resolvable through DNS, correctly
configured /etc/hosts files, or other name resolution processes. From MySQL 8.0.14, IPv6
addresses (or host names that resolve to them) can be used as well as IPv4 addresses. An IPv6
address must be specified in square brackets in order to distinguish the port number, for example:

group_replication_local_address= "[2001:db8:85a3:8d3:1319:8a2e:370:7348]:33061"

If a host name specified as the Group Replication local address for a server instance resolves to both
an IPv4 and an IPv6 address, the IPv4 address is always used for Group Replication connections.
For more information on Group Replication support for IPv6 networks and on replication groups with
a mix of members using IPv4 and members using IPv6, see Section 20.5.5, “Support For IPv6 And
For Mixed IPv6 And IPv4 Groups”.

If you are using the XCom communication stack to establish group communication connections
between members (group_replication_communication_stack = XCOM), the address
that you specify for each group member in group_replication_local_address must
be added to the list for the group_replication_ip_allowlist (from MySQL 8.0.22) or
group_replication_ip_whitelist (for MySQL 8.0.21 and earlier) system variable on the
other servers in the replication group. When the XCom communication stack is in use for the
group, the allowlist is used to control access to the group. When the MySQL communication
stack is in use for the group, user authentication is used to control access to the group, and the
allowlist is not used and is ignored if set. If any of the seed members for the group are listed in
group_replication_group_seeds with an IPv6 address when this member has an IPv4
group_replication_local_address, or the reverse, you must also set up and permit an
alternative address for this member for the required protocol (or a host name that resolves to an
address for that protocol). For more information, see Section 20.6.4, “Group Replication IP Address
Permissions”.

4036

Group Replication System Variables

• group_replication_member_expel_timeout

Command-Line Format --group-replication-member-expel-
timeout=#

Introduced 8.0.13

System Variable group_replication_member_expel_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.21) 5

Default Value (≤ 8.0.20) 0

Minimum Value 0

Maximum Value (≥ 8.0.14) 3600

Maximum Value (≤ 8.0.13) 31536000

Unit seconds

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately. The current value of the system variable is read whenever Group
Replication checks the timeout. It is not mandatory for all members of a group to have the same
setting, but it is recommended in order to avoid unexpected expulsions.

group_replication_member_expel_timeout specifies the period of time in seconds that a
Group Replication group member waits after creating a suspicion, before expelling from the group
the member suspected of having failed. The initial 5-second detection period before a suspicion
is created does not count as part of this time. Up to and including MySQL 8.0.20, the value of
group_replication_member_expel_timeout defaults to 0, meaning that there is no waiting
period and a suspected member is liable for expulsion immediately after the 5-second detection
period ends. From MySQL 8.0.21, the value defaults to 5, meaning that a suspected member is liable
for expulsion 5 seconds after the 5-second detection period.

Changing the value of group_replication_member_expel_timeout on a group member takes
effect immediately for existing as well as future suspicions on that group member. You can therefore
use this as a method to force a suspicion to time out and expel a suspected member, allowing
changes to the group configuration. For more information, see Section 20.7.7.1, “Expel Timeout”.

Increasing the value of group_replication_member_expel_timeout can help to avoid
unnecessary expulsions on slower or less stable networks, or in the case of expected transient
network outages or machine slowdowns. If a suspect member becomes active again before the
suspicion times out, it applies all the messages that were buffered by the remaining group members
and enters ONLINE state, without operator intervention. You can specify a timeout value up to
a maximum of 3600 seconds (1 hour). It is important to ensure that XCom's message cache is
sufficiently large to contain the expected volume of messages in your specified time period, plus
the initial 5-second detection period, otherwise members are unable to reconnect. You can adjust
the cache size limit using the group_replication_message_cache_size system variable. For
more information, see Section 20.7.6, “XCom Cache Management”.

If the timeout is exceeded, the suspect member is liable for expulsion immediately after the suspicion
times out. If the member is able to resume communications and receives a view where it is expelled,
and the member has the group_replication_autorejoin_tries system variable set to
specify a number of auto-rejoin attempts, it proceeds to make the specified number of attempts
to rejoin the group while in super read only mode. If the member does not have any auto-rejoin

4037

Group Replication System Variables

attempts specified, or if it has exhausted the specified number of attempts, it follows the action
specified by the system variable group_replication_exit_state_action.

For more information on using the group_replication_member_expel_timeout setting,
see Section 20.7.7.1, “Expel Timeout”. For alternative mitigation strategies to avoid unnecessary
expulsions where this system variable is not available, see Section 20.3.2, “Group Replication
Limitations”.

• group_replication_member_weight

Command-Line Format --group-replication-member-weight=#

System Variable group_replication_member_weight

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 50

Minimum Value 0

Maximum Value 100

Unit percentage

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately. The system variable's current value is read when a failover
situation occurs.

group_replication_member_weight specifies a percentage weight that can be assigned to
members to influence the chance of the member being elected as primary in the event of failover,
for example when the existing primary leaves a single-primary group. Assign numeric weights to
members to ensure that specific members are elected, for example during scheduled maintenance of
the primary or to ensure certain hardware is prioritized in the event of failover.

For a group with members configured as follows:

• member-1: group_replication_member_weight=30, server_uuid=aaaa

• member-2: group_replication_member_weight=40, server_uuid=bbbb

• member-3: group_replication_member_weight=40, server_uuid=cccc

• member-4: group_replication_member_weight=40, server_uuid=dddd

during election of a new primary the members above would be sorted as member-2, member-3,
member-4, and member-1. This results in member-2 being chosen as the new primary in the event
of failover. For more information, see Section 20.1.3.1, “Single-Primary Mode”.

• group_replication_message_cache_size

Command-Line Format --group-replication-message-cache-
size=#

Introduced 8.0.16

System Variable group_replication_message_cache_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No
4038

Group Replication System Variables

Type Integer

Default Value 1073741824 (1 GB)

Minimum Value (64-bit platforms, ≥ 8.0.21) 134217728 (128 MB)

Minimum Value (64-bit platforms, ≤ 8.0.20) 1073741824 (1 GB)

Minimum Value (32-bit platforms, ≥ 8.0.21) 134217728 (128 MB)

Minimum Value (32-bit platforms, ≤ 8.0.20) 1073741824 (1 GB)

Maximum Value (64-bit platforms) 18446744073709551615 (16 EiB)

Maximum Value (32-bit platforms) 315360004294967295 (4 GB)

Unit bytes

This system variable should have the same value on all group members. The value of this system
variable can be changed while Group Replication is running. The change takes effect on each group
member after you stop and restart Group Replication on the member. During this process, the value
of the system variable is permitted to differ between group members, but members might be unable
to reconnect in the event of a disconnection.

group_replication_message_cache_size sets the maximum amount of memory that is
available for the message cache in the group communication engine for Group Replication (XCom).
The XCom message cache holds messages (and their metadata) that are exchanged between the
group members as a part of the consensus protocol. Among other functions, the message cache
is used for recovery of missed messages by members that reconnect with the group after a period
where they were unable to communicate with the other group members.

The group_replication_member_expel_timeout system variable determines the waiting
period (up to an hour) that is allowed in addition to the initial 5-second detection period for members
to return to the group rather than being expelled. The size of the XCom message cache should be
set with reference to the expected volume of messages in this time period, so that it contains all the
missed messages required for members to return successfully. Up to MySQL 8.0.20, the default is
only the 5-second detection period, but starting with MySQL 8.0.21, the default is a 5-second waiting
period after the 5-second detection period, for a total time period of 10 seconds.

Ensure that sufficient memory is available on your system for your chosen cache size limit,
considering the size of the server's other caches and object pools. The default setting is 1073741824
bytes (1 GB). The minimum setting is also 1 GB up to MySQL 8.0.20. From MySQL 8.0.21, the
minimum setting is 134217728 bytes (128 MB), which enables deployment on a host that has a
restricted amount of available memory, and good network connectivity to minimize the frequency
and duration of transient losses of connectivity for group members. Note that the limit set using
group_replication_message_cache_size applies only to the data stored in the cache, and
the cache structures require an additional 50 MB of memory.

The cache size limit can be increased or reduced dynamically at runtime. If you reduce the cache
size limit, XCom removes the oldest entries that have been decided and delivered until the current
size is below the limit. Group Replication's Group Communication System (GCS) alerts you, by a
warning message, when a message that is likely to be needed for recovery by a member that is
currently unreachable is removed from the message cache. For more information on tuning the
message cache size, see Section 20.7.6, “XCom Cache Management”.

• group_replication_paxos_single_leader

Command-Line Format --group-replication-paxos-single-
leader[={OFF|ON}]

Introduced 8.0.27

System Variable group_replication_paxos_single_leader

Scope Global

4039

Group Replication System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Note

This system variable is a group-wide configuration setting, and a full reboot of
the replication group is required for a change to take effect.

group_replication_paxos_single_leader enables the group communication engine to
operate with a single consensus leader when the group is in single-primary mode. With the default
setting OFF, this behavior is disabled, and every member of the group is used as a leader, which
is the behavior in releases before this system variable was available. When this variable is set to
ON, the group communication engine can use a single leader to drive consensus. Operating with a
single consensus leader improves performance and resilience in single-primary mode, particularly
when some of the group’s secondary members are currently unreachable. For more information, see
Section 20.7.3, “Single Consensus Leader”.

In order for the group communication engine to use a single consensus leader,
the group's communication protocol version must be MySQL 8.0.27 or later. Use
group_replication_get_communication_protocol() to obtain the group's communication
protocol version. If a lower version is in use, the group cannot use this behavior. You can use
group_replication_set_communication_protocol() to set the communication protocol to
a higher version if all group members support it. For more information, see Section 20.5.1.4, “Setting
a Group's Communication Protocol Version”.

This system variable is a group-wide configuration setting. It must have the same value on all group
members, cannot be changed while Group Replication is running, and requires a full reboot of the
group (a bootstrap by a server with group_replication_bootstrap_group=ON) in order for
the value change to take effect. For instructions to safely bootstrap a group where transactions have
been executed and certified, see Section 20.5.2, “Restarting a Group”.

If the group has a value set for this system variable, and a joining member has a different value set
for the system variable, the joining member cannot join the group until the value is changed to match.
If the group members have a value set for this system variable, and the joining member does not
support the system variable, it cannot join the group.

The WRITE_CONSENSUS_SINGLE_LEADER_CAPABLE column of the Performance Schema
table replication_group_communication_information shows whether the group
supports the use of a single leader, even if group_replication_paxos_single_leader is
currently set to OFF on the queried member. The column value is 1 if the group was started with
group_replication_paxos_single_leader set to ON, and its communication protocol version
is MySQL 8.0.27 or later.

• group_replication_poll_spin_loops

Command-Line Format --group-replication-poll-spin-
loops=#

System Variable group_replication_poll_spin_loops

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

4040

Group Replication System Variables

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_poll_spin_loops specifies the number of times the group communication
thread waits for the communication engine mutex to be released before the thread waits for more
incoming network messages.

• group_replication_recovery_complete_at

Command-Line Format --group-replication-recovery-
complete-at=value

Deprecated 8.0.34

System Variable group_replication_recovery_complete_at

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value TRANSACTIONS_APPLIED

Valid Values TRANSACTIONS_CERTIFIED

TRANSACTIONS_APPLIED

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_complete_at specifies the policy applied during the
distributed recovery process when handling cached transactions after state transfer from an existing
member. You can choose whether a member is marked online after it has received and certified all
transactions that it missed before it joined the group (TRANSACTIONS_CERTIFIED), or only after it
has received, certified, and applied them (TRANSACTIONS_APPLIED).

This variable is deprecated as of MySQL 8.0.34 (as is TRANSACTIONS_CERTIFIED). Expect its
removal in a future release of MySQL.

• group_replication_recovery_compression_algorithms

Command-Line Format --group-replication-recovery-
compression-algorithms=value

Introduced 8.0.18

System Variable group_replication_recovery_compression_algorithms

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Set

Default Value uncompressed

Valid Values zlib

zstd
4041

Group Replication System Variables

uncompressed

group_replication_recovery_compression_algorithms specifies the compression
algorithms permitted for Group Replication distributed recovery connections for state
transfer from a donor's binary log. The available algorithms are the same as for the
protocol_compression_algorithms system variable. For more information, see Section 6.2.8,
“Connection Compression Control”.

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

This setting does not apply if the server has been set up to support cloning (see Section 20.5.4.2,
“Cloning for Distributed Recovery”) and a remote cloning operation is used during distributed
recovery. For this method of state transfer, the clone plugin's clone_enable_compression setting
applies.

• group_replication_recovery_get_public_key

Command-Line Format --group-replication-recovery-get-
public-key[={OFF|ON}]

System Variable group_replication_recovery_get_public_key

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_get_public_key specifies whether to request
from the source the public key required for RSA key pair-based password exchange. If
group_replication_recovery_public_key_path is set to a valid public key file, it takes
precedence over group_replication_recovery_get_public_key. This variable applies if
you are not using SSL for distributed recovery over the group_replication_recovery channel
(group_replication_recovery_use_ssl=ON), and the replication user account for Group
Replication authenticates with the caching_sha2_password plugin (the default). For more details,
see Replication User With The Caching SHA-2 Authentication Plugin.

• group_replication_recovery_public_key_path

Command-Line Format --group-replication-recovery-public-
key-path=file_name

System Variable group_replication_recovery_public_key_path

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

4042

Group Replication System Variables

Default Value empty string

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_public_key_path specifies the path name
to a file containing a replica-side copy of the public key required by the source
for RSA key pair-based password exchange. The file must be in PEM format. If
group_replication_recovery_public_key_path is set to a valid public key file, it takes
precedence over group_replication_recovery_get_public_key. This variable applies
if you are not using SSL for distributed recovery over the group_replication_recovery
channel (so group_replication_recovery_use_ssl is set to OFF), and the replication
user account for Group Replication authenticates with the caching_sha2_password
plugin (the default) or the sha256_password plugin. (For sha256_password, setting
group_replication_recovery_public_key_path applies only if MySQL was built using
OpenSSL.) For more details, see Replication User With The Caching SHA-2 Authentication Plugin.

• group_replication_recovery_reconnect_interval

Command-Line Format --group-replication-recovery-
reconnect-interval=#

System Variable group_replication_recovery_reconnect_interval

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

Minimum Value 0

Maximum Value 31536000

Unit seconds

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_reconnect_interval specifies the sleep time, in seconds,
between reconnection attempts when no suitable donor was found in the group for distributed
recovery.

• group_replication_recovery_retry_count

Command-Line Format --group-replication-recovery-retry-
count=#

System Variable group_replication_recovery_retry_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

4043

Group Replication System Variables

Maximum Value 31536000

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_retry_count specifies the number of times that the member
that is joining tries to connect to the available donors for distributed recovery before giving up.

• group_replication_recovery_ssl_ca

Command-Line Format --group-replication-recovery-ssl-
ca=value

System Variable group_replication_recovery_ssl_ca

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_ssl_ca specifies the path to a file that contains a list of trusted
SSL certificate authorities for distributed recovery connections. See Section 20.6.2, “Securing Group
Communication Connections with Secure Socket Layer (SSL)” for information on configuring SSL for
distributed recovery.

If this server has been set up to support cloning (see Section 20.5.4.2, “Cloning for Distributed
Recovery”), and you have set group_replication_recovery_use_ssl to ON, Group
Replication automatically configures the setting for the clone SSL option clone_ssl_ca to match
your setting for group_replication_recovery_ssl_ca.

When the MySQL communication stack is in use for the group
(group_replication_communication_stack = MYSQL), this setting is used for the TLS/SSL
configuration for group communication connections, as well as for distributed recovery connections.

• group_replication_recovery_ssl_capath

Command-Line Format --group-replication-recovery-ssl-
capath=value

System Variable group_replication_recovery_ssl_capath

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_ssl_capath specifies the path to a directory that contains
trusted SSL certificate authority certificates for distributed recovery connections. See Section 20.6.2,

4044

Group Replication System Variables

“Securing Group Communication Connections with Secure Socket Layer (SSL)” for information on
configuring SSL for distributed recovery.

When the MySQL communication stack is in use for the group
(group_replication_communication_stack = MYSQL), this setting is used for the TLS/SSL
configuration for group communication connections, as well as for distributed recovery connections.

• group_replication_recovery_ssl_cert

Command-Line Format --group-replication-recovery-ssl-
cert=value

System Variable group_replication_recovery_ssl_cert

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_ssl_cert specifies the name of the SSL certificate file to use
for establishing a secure connection for distributed recovery. See Section 20.6.2, “Securing Group
Communication Connections with Secure Socket Layer (SSL)” for information on configuring SSL for
distributed recovery.

If this server has been set up to support cloning (see Section 20.5.4.2, “Cloning for Distributed
Recovery”), and you have set group_replication_recovery_use_ssl to ON, Group
Replication automatically configures the setting for the clone SSL option clone_ssl_cert to match
your setting for group_replication_recovery_ssl_cert.

When the MySQL communication stack is in use for the group
(group_replication_communication_stack = MYSQL), this setting is used for the TLS/SSL
configuration for group communication connections, as well as for distributed recovery connections.

• group_replication_recovery_ssl_cipher

Command-Line Format --group-replication-recovery-ssl-
cipher=value

System Variable group_replication_recovery_ssl_cipher

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_ssl_cipher specifies the list of permissible ciphers for SSL
encryption. See Section 20.6.2, “Securing Group Communication Connections with Secure Socket
Layer (SSL)” for information on configuring SSL for distributed recovery.

When the MySQL communication stack is in use for the group
(group_replication_communication_stack = MYSQL), this setting is used for the TLS/SSL
configuration for group communication connections, as well as for distributed recovery connections.

• group_replication_recovery_ssl_crl

4045

Group Replication System Variables

Command-Line Format --group-replication-recovery-ssl-
crl=value

System Variable group_replication_recovery_ssl_crl

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_ssl_crl specifies the path to a directory that contains
files containing certificate revocation lists. See Section 20.6.2, “Securing Group Communication
Connections with Secure Socket Layer (SSL)” for information on configuring SSL for distributed
recovery.

When the MySQL communication stack is in use for the group
(group_replication_communication_stack = MYSQL), this setting is used for the TLS/SSL
configuration for group communication connections, as well as for distributed recovery connections.

• group_replication_recovery_ssl_crlpath

Command-Line Format --group-replication-recovery-ssl-
crlpath=value

System Variable group_replication_recovery_ssl_crlpath

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Directory name

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_ssl_crlpath specifies the path to a directory that contains
files containing certificate revocation lists. See Section 20.6.2, “Securing Group Communication
Connections with Secure Socket Layer (SSL)” for information on configuring SSL for distributed
recovery.

When the MySQL communication stack is in use for the group
(group_replication_communication_stack = MYSQL), this setting is used for the TLS/SSL
configuration for group communication connections, as well as for distributed recovery connections.

• group_replication_recovery_ssl_key

Command-Line Format --group-replication-recovery-ssl-
key=value

System Variable group_replication_recovery_ssl_key

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

4046

Group Replication System Variables

Type String

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_ssl_key specifies the name of the SSL key file to use for
establishing a secure connection. See Section 20.6.2, “Securing Group Communication Connections
with Secure Socket Layer (SSL)” for information on configuring SSL for distributed recovery.

If this server has been set up to support cloning (see Section 20.5.4.2, “Cloning for Distributed
Recovery”), and you have set group_replication_recovery_use_ssl to ON, Group
Replication automatically configures the setting for the clone SSL option clone_ssl_key to match
your setting for group_replication_recovery_ssl_key.

When the MySQL communication stack is in use for the group
(group_replication_communication_stack = MYSQL), this setting is used for the TLS/SSL
configuration for group communication connections, as well as for distributed recovery connections.

• group_replication_recovery_ssl_verify_server_cert

Command-Line Format --group-replication-recovery-ssl-
verify-server-cert[={OFF|ON}]

System Variable group_replication_recovery_ssl_verify_server_cert

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_ssl_verify_server_cert specifies whether the distributed
recovery connection should check the server's Common Name value in the certificate sent by the
donor. See Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer
(SSL)” for information on configuring SSL for distributed recovery.

When the MySQL communication stack is in use for the group
(group_replication_communication_stack = MYSQL), this setting is used for the TLS/SSL
configuration for group communication connections, as well as for distributed recovery connections.

• group_replication_recovery_tls_ciphersuites

Command-Line Format --group-replication-recovery-tls-
ciphersuites=value

Introduced 8.0.19

System Variable group_replication_recovery_tls_ciphersuites

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

4047

Group Replication System Variables

Default Value NULL

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_tls_ciphersuites specifies a colon-separated list of one
or more permitted ciphersuites when TLSv1.3 is used for connection encryption for the distributed
recovery connection, and this server instance is the client in the distributed recovery connection,
that is, the joining member. If this system variable is set to NULL when TLSv1.3 is used (which is
the default if you do not set the system variable), the ciphersuites that are enabled by default are
allowed, as listed in Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”. If this system
variable is set to the empty string, no cipher suites are allowed, and TLSv1.3 is therefore not used.
See Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”,
for information on configuring SSL for distributed recovery.

When the MySQL communication stack is in use for the group
(group_replication_communication_stack = MYSQL), this setting is used for the TLS/SSL
configuration for group communication connections, as well as for distributed recovery connections.

• group_replication_recovery_tls_version

Command-Line Format --group-replication-recovery-tls-
version=value

Introduced 8.0.19

System Variable group_replication_recovery_tls_version

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value (≥ 8.0.28) TLSv1.2,TLSv1.3

Default Value (≥ 8.0.19, ≤ 8.0.27) TLSv1,TLSv1.1,TLSv1.2,TLSv1.3

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_tls_version specifies a comma-separated list of one or
more permitted TLS protocols for connection encryption when this server instance is the client in
the distributed recovery connection, that is, the joining member. The group members involved in
each distributed recovery connection as the client (joining member) and server (donor) negotiate the
highest protocol version that they are both set up to support.

When the MySQL communication stack is in use for the group
(group_replication_communication_stack = MYSQL), this setting is used for the TLS/SSL
configuration for group communication connections, as well as for distributed recovery connections.

If this system variable is not set, the default “TLSv1,TLSv1.1,TLSv1.2,TLSv1.3” is used up to
and including MySQL 8.0.27, and from MySQL 8.0.28, the default “TLSv1.2,TLSv1.3” is used.
Ensure the specified protocol versions are contiguous, with no versions numbers skipped from the
middle of the sequence.

Important

• Support for the TLSv1 and TLSv1.1 connection protocols is removed
from MySQL as of MySQL 8.0.28. The protocols were deprecated in
MySQL 8.0.26, although MySQL clients, including Group Replication server
instances acting as clients, do not return any warnings when a deprecated

4048

Group Replication System Variables

TLS protocol version is used. See Removal of Support for the TLSv1 and
TLSv1.1 Protocols for more information.

• Support for the TLSv1.3 protocol is available in MySQL Server as of
MySQL 8.0.16, provided that MySQL was compiled using OpenSSL 1.1.1.
The server checks the version of OpenSSL at startup, and if it is lower than
1.1.1, TLSv1.3 is removed from the default value for the system variable. In
that case, the default is TLSv1,TLSv1.1,TLSv1.2 prior to MySQL 8.0.28,
and TLSv1.2 thereafter.

• Group Replication supports TLSv1.3 as of MySQL 8.0.18, with support
for ciphersuite selection added in MySQL 8.0.19. See Section 20.6.2,
“Securing Group Communication Connections with Secure Socket Layer
(SSL)” for more information.

See Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
for information on configuring SSL for distributed recovery.

• group_replication_recovery_use_ssl

Command-Line Format --group-replication-recovery-use-
ssl[={OFF|ON}]

System Variable group_replication_recovery_use_ssl

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_use_ssl specifies whether Group Replication distributed
recovery connections between group members should use SSL or not. See Section 20.6.2,
“Securing Group Communication Connections with Secure Socket Layer (SSL)” for information on
configuring SSL for distributed recovery.

If this server has been set up to support cloning (see Section 20.5.4.2, “Cloning for Distributed
Recovery”), and you set this option to ON, Group Replication uses SSL for remote cloning operations
as well as for state transfer from a donor's binary log. If you set this option to OFF, Group Replication
does not use SSL for remote cloning operations.

• group_replication_recovery_zstd_compression_level

Command-Line Format --group-replication-recovery-zstd-
compression-level=#

Introduced 8.0.18

System Variable group_replication_recovery_zstd_compression_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value 1

4049

Group Replication System Variables

Maximum Value 22

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_recovery_zstd_compression_level specifies the compression level
to use for Group Replication distributed recovery connections that use the zstd compression
algorithm. The permitted levels are from 1 to 22, with larger values indicating increasing levels of
compression. The default zstd compression level is 3. For distributed recovery connections that do
not use zstd compression, this variable has no effect.

For more information, see Section 6.2.8, “Connection Compression Control”.

• group_replication_single_primary_mode

Command-Line Format --group-replication-single-primary-
mode[={OFF|ON}]

System Variable group_replication_single_primary_mode

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Note

This system variable is a group-wide configuration setting, and a full reboot of
the replication group is required for a change to take effect.

group_replication_single_primary_mode instructs the group to pick a single server
automatically to be the one that handles read/write workload. This server is the primary and all others
are secondaries.

This system variable is a group-wide configuration setting. It must have the same value on all group
members, cannot be changed while Group Replication is running, and requires a full reboot of the
group (a bootstrap by a server with group_replication_bootstrap_group=ON) in order for
the value change to take effect. For instructions to safely bootstrap a group where transactions have
been executed and certified, see Section 20.5.2, “Restarting a Group”.

If the group has a value set for this system variable, and a joining member has a different value set
for the system variable, the joining member cannot join the group until the value is changed to match.
If the group members have a value set for this system variable, and the joining member does not
support the system variable, it cannot join the group.

Setting this variable ON causes any setting for
group_replication_auto_increment_increment to be ignored.

In MySQL 8.0.16 and later, you can use the functions
group_replication_switch_to_single_primary_mode() and
group_replication_switch_to_multi_primary_mode() to change the value of this system
variable while the group is still running. For more information, see Section 20.5.1.2, “Changing the
Group Mode”.

• group_replication_ssl_mode

Command-Line Format --group-replication-ssl-mode=value

System Variable group_replication_ssl_mode

4050

Group Replication System Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value DISABLED

Valid Values DISABLED

REQUIRED

VERIFY_CA

VERIFY_IDENTITY

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_ssl_mode sets the security state of group communication connections
between Group Replication members. The possible values are as follows:

DISABLED Establish an unencrypted connection (the default).

REQUIRED Establish a secure connection if the server supports secure
connections.

VERIFY_CA Like REQUIRED, but additionally verify the server TLS certificate
against the configured Certificate Authority (CA) certificates.

VERIFY_IDENTITY Like VERIFY_CA, but additionally verify that the server certificate
matches the host to which the connection is attempted.

This variable should have the same value on all members of the group; otherwise, new members
may be unable to join.

See Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
for information on configuring SSL for group communication.

• group_replication_start_on_boot

Command-Line Format --group-replication-start-on-
boot[={OFF|ON}]

System Variable group_replication_start_on_boot

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_start_on_boot specifies whether the server should start Group
Replication automatically (ON) or not (OFF) during server start. When you set this option to ON, Group
Replication restarts automatically after a remote cloning operation is used for distributed recovery.

To start Group Replication automatically during server start, the user credentials for distributed
recovery must be stored in the replication metadata repositories on the server using the CHANGE

4051

Group Replication System Variables

REPLICATION SOURCE TO | CHANGE MASTER TO statement. If you prefer to specify user
credentials as part of START GROUP_REPLICATION, which stores the user credentials in memory
only, ensure that group_replication_start_on_boot is set to OFF.

• group_replication_tls_source

Command-Line Format --group-replication-tls-source=value

Introduced 8.0.21

System Variable group_replication_tls_source

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value mysql_main

Valid Values mysql_main

mysql_admin

The value of this system variable can be changed while Group Replication is running, but the change
takes effect only after you stop and restart Group Replication on the group member.

group_replication_tls_source specifies the source of TLS material for Group Replication.

• group_replication_transaction_size_limit

Command-Line Format --group-replication-transaction-
size-limit=#

System Variable group_replication_transaction_size_limit

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 150000000

Minimum Value 0

Maximum Value 2147483647

Unit bytes

This system variable should have the same value on all group members. The value of this system
variable can be changed while Group Replication is running. The change takes effect immediately
on the group member, and applies from the next transaction started on that member. During this
process, the value of the system variable is permitted to differ between group members, but some
transactions might be rejected.

group_replication_transaction_size_limit configures the maximum transaction size in
bytes which the replication group accepts. Transactions larger than this size are rolled back by the
receiving member and are not broadcast to the group. Large transactions can cause problems for
a replication group in terms of memory allocation, which can cause the system to slow down, or in
terms of network bandwidth consumption, which can cause a member to be suspected of having
failed because it is busy processing the large transaction.

When this system variable is set to 0 there is no limit to the size of transactions the group
accepts. The default is 150000000 bytes (approximately 143 MB). Adjust the value of this system
variable depending on the maximum message size that you need the group to tolerate, bearing

4052

Group Replication System Variables

in mind that the time taken to process a transaction is proportional to its size. The value of
group_replication_transaction_size_limit should be the same on all group members.
For further mitigation strategies for large transactions, see Section 20.3.2, “Group Replication
Limitations”.

• group_replication_unreachable_majority_timeout

Command-Line Format --group-replication-unreachable-
majority-timeout=#

System Variable group_replication_unreachable_majority_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 31536000

Unit seconds

The value of this system variable can be changed while Group Replication is running, and the
change takes effect immediately. The current value of the system variable is read when an issue
occurs that means the behavior is needed.

group_replication_unreachable_majority_timeout specifies a number of seconds for
which members that suffer a network partition and cannot connect to the majority wait before leaving
the group. In a group of 5 servers (S1,S2,S3,S4,S5), if there is a disconnection between (S1,S2)
and (S3,S4,S5) there is a network partition. The first group (S1,S2) is now in a minority because it
cannot contact more than half of the group. While the majority group (S3,S4,S5) remains running, the
minority group waits for the specified time for a network reconnection. For a detailed description of
this scenario, see Section 20.7.8, “Handling a Network Partition and Loss of Quorum”.

By default, group_replication_unreachable_majority_timeout is set to 0, which means
that members that find themselves in a minority due to a network partition wait forever to leave the
group. If you set a timeout, when the specified time elapses, all pending transactions processed
by the minority are rolled back, and the servers in the minority partition move to the ERROR state.
If a member has the group_replication_autorejoin_tries system variable set to specify
a number of auto-rejoin attempts, it proceeds to make the specified number of attempts to rejoin
the group while in super read only mode. If the member does not have any auto-rejoin attempts
specified, or if it has exhausted the specified number of attempts, it follows the action specified by
the system variable group_replication_exit_state_action.

Warning

When you have a symmetric group, with just two members for example
(S0,S2), if there is a network partition and there is no majority, after the
configured timeout all members enter the ERROR state.

For more information on using this option, see Section 20.7.7.2, “Unreachable Majority Timeout”.

• group_replication_view_change_uuid

Command-Line Format --group-replication-view-change-
uuid=value

Introduced 8.0.26

System Variable group_replication_view_change_uuid

4053

Group Replication Status Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value AUTOMATIC

Note

This system variable is a group-wide configuration setting, and a full reboot of
the replication group is required for a change to take effect.

group_replication_view_change_uuid specifies an alternative UUID to use as the UUID part
of the identifier in the GTIDs for view change events generated by the group. The alternative UUID
makes these internally generated transactions easy to distinguish from transactions received by the
group from clients. This can be useful if your setup allows for failover between groups, and you need
to identify and discard transactions that were specific to the backup group. The default value for this
system variable is AUTOMATIC, meaning that the GTIDs for view change events use the group name
specified by the group_replication_group_name system variable, as transactions from clients
do. Group members at a release that does not have this system variable are treated as having the
value AUTOMATIC.

The alternative UUID must be different from the group name specified by the
group_replication_group_name system variable, and it must be different from the server
UUID of any group member. It must also be different from any UUIDs used in the GTIDs that are
applied to anonymous transactions on replication channels anywhere in this topology, using the
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE REPLICATION SOURCE
TO statement.

This system variable is a group-wide configuration setting. It must have the same value on all group
members, cannot be changed while Group Replication is running, and requires a full reboot of the
group (a bootstrap by a server with group_replication_bootstrap_group=ON) in order for
the value change to take effect. For instructions to safely bootstrap a group where transactions have
been executed and certified, see Section 20.5.2, “Restarting a Group”.

If the group has a value set for this system variable, and a joining member has a different value set
for the system variable, the joining member cannot join the group until the value is changed to match.
If the group members have a value set for this system variable, and the joining member does not
support the system variable, it cannot join the group.

20.9.2 Group Replication Status Variables

MySQL 8.0 supports one status variable providing information about Group Replication. This variable is
described here:

• group_replication_primary_member

Shows the primary member's UUID when the group is operating in single-primary mode. If the group
is operating in multi-primary mode, this is an empty string.

Warning

The group_replication_primary_member status variable has been
deprecated and is scheduled to be removed in a future version.

See Finding the Primary.

20.10 Frequently Asked Questions
4054

What is the maximum number of MySQL servers in a group?

This section provides answers to frequently asked questions.

What is the maximum number of MySQL servers in a group?

A group can consist of maximum 9 servers. Attempting to add another server to a group with 9
members causes the request to join to be refused. This limit has been identified from testing and
benchmarking as a safe boundary where the group performs reliably on a stable local area network.

How are servers in a group connected?

Servers in a group connect to the other servers in the group by opening a peer-to-
peer TCP connection. These connections are only used for internal communication
and message passing between servers in the group. This address is configured by the
group_replication_local_address variable.

What is the group_replication_bootstrap_group option used for?

The bootstrap flag instructs a member to create a group and act as the initial seed server. The second
member joining the group needs to ask the member that bootstrapped the group to dynamically change
the configuration in order for it to be added to the group.

A member needs to bootstrap the group in two scenarios. When the group is originally created, or
when shutting down and restarting the entire group.

How do I set credentials for the distributed recovery process?

You can set the user credentials permanently as the credentials for the
group_replication_recovery channel, using a CHANGE REPLICATION SOURCE TO statement
(from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23). Alternatively, from
MySQL 8.0.21, you can specify them on the START GROUP_REPLICATION statement each time
Group Replication is started.

User credentials set using CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO are
stored in plain text in the replication metadata repositories on the server, but user credentials
specified on START GROUP_REPLICATION are saved in memory only, and are removed by a STOP
GROUP_REPLICATION statement or server shutdown. Using START GROUP_REPLICATION to specify
the user credentials therefore helps to secure the Group Replication servers against unauthorized
access. However, this method is not compatible with starting Group Replication automatically, as
specified by the group_replication_start_on_boot system variable. For more information, see
Section 20.6.3.1, “Secure User Credentials for Distributed Recovery”.

Can I scale-out my write-load using Group Replication?

Not directly, but MySQL Group replication is a shared nothing full replication solution, where all servers
in the group replicate the same amount of data. Therefore if one member in the group writes N bytes to
storage as the result of a transaction commit operation, then roughly N bytes are written to storage on
other members as well, because the transaction is replicated everywhere.

However, given that other members do not have to do the same amount of processing that the
original member had to do when it originally executed the transaction, they apply the changes faster.
Transactions are replicated in a format that is used to apply row transformations only, without having to
re-execute transactions again (row-based format).

Furthermore, given that changes are propagated and applied in row-based format, this means that
they are received in an optimized and compact format, and likely reducing the number of IO operations
required when compared to the originating member.

To summarize, you can scale-out processing, by spreading conflict free transactions throughout
different members in the group. And you can likely scale-out a small fraction of your IO operations,

4055

Does Group Replication require more network bandwidth and CPU,
when compared to simple replication and under the same workload?

since remote servers receive only the necessary changes to read-modify-write changes to stable
storage.

Does Group Replication require more network bandwidth and CPU, when
compared to simple replication and under the same workload?

Some additional load is expected because servers need to be constantly interacting with each other
for synchronization purposes. It is difficult to quantify how much more data. It also depends on the size
of the group (three servers puts less stress on the bandwidth requirements than nine servers in the
group).

Also the memory and CPU footprint are larger, because more complex work is done for the server
synchronization part and for the group messaging.

Can I deploy Group Replication across wide-area networks?

Yes, but the network connection between each member must be reliable and have suitable
performance. Low latency, high bandwidth network connections are a requirement for optimal
performance.

If network bandwidth alone is an issue, then Section 20.7.4, “Message Compression” can be used to
lower the bandwidth required. However, if the network drops packets, leading to re-transmissions and
higher end-to-end latency, throughput and latency are both negatively affected.

Warning

When the network round-trip time (RTT) between any group members is 5
seconds or more you could encounter problems as the built-in failure detection
mechanism could be incorrectly triggered.

Do members automatically rejoin a group in case of temporary connectivity
problems?

This depends on the reason for the connectivity problem. If the connectivity problem is transient and
the reconnection is quick enough that the failure detector is not aware of it, then the server may not
be removed from the group. If it is a "long" connectivity problem, then the failure detector eventually
suspects a problem and the server is removed from the group.

From MySQL 8.0, two settings are available to increase the chances of a member remaining in or
rejoining a group:

• group_replication_member_expel_timeout increases the time between the creation of
a suspicion (which happens after an initial 5-second detection period) and the expulsion of the
member. You can set a waiting period of up to 1 hour. From MySQL 8.0.21, a waiting period of 5
seconds is set by default.

• group_replication_autorejoin_tries makes a member try to rejoin the group after an
expulsion or unreachable majority timeout. The member makes the specified number of auto-rejoin
attempts five minutes apart. From MySQL 8.0.21, this feature is activated by default and the member
makes three auto-rejoin attempts.

If a server is expelled from the group and any auto-rejoin attempts do not succeed, you need to join
it back again. In other words, after a server is removed explicitly from the group you need to rejoin it
manually (or have a script doing it automatically).

When is a member excluded from a group?

If the member becomes silent, the other members remove it from the group configuration. In practice
this may happen when the member has crashed or there is a network disconnection.

4056

What happens when one node is significantly lagging behind?

The failure is detected after a given timeout elapses for a given member and a new configuration
without the silent member in it is created.

What happens when one node is significantly lagging behind?

There is no method for defining policies for when to expel members automatically from the group. You
need to find out why a member is lagging behind and fix that or remove the member from the group.
Otherwise, if the server is so slow that it triggers the flow control, then the entire group slows down as
well. The flow control can be configured according to the your needs.

Upon suspicion of a problem in the group, is there a special member
responsible for triggering a reconfiguration?

No, there is no special member in the group in charge of triggering a reconfiguration.

Any member can suspect that there is a problem. All members need to (automatically) agree that
a given member has failed. One member is in charge of expelling it from the group, by triggering a
reconfiguration. Which member is responsible for expelling the member is not something you can
control or set.

Can I use Group Replication for sharding?

Group Replication is designed to provide highly available replica sets; data and writes are duplicated
on each member in the group. For scaling beyond what a single system can provide, you need an
orchestration and sharding framework built around a number of Group Replication sets, where each
replica set maintains and manages a given shard or partition of your total dataset. This type of setup,
often called a “sharded cluster”, allows you to scale reads and writes linearly and without limit.

How do I use Group Replication with SELinux?

If SELinux is enabled, which you can verify using sestatus -v, then you need to enable the use of
the Group Replication communication port. See Setting the TCP Port Context for Group Replication.

How do I use Group Replication with iptables?

If iptables is enabled, then you need to open up the Group Replication port for communication
between the machines. To see the current rules in place on each machine, issue iptables -L.
Assuming the port configured is 33061, enable communication over the necessary port by issuing
iptables -A INPUT -p tcp --dport 33061 -j ACCEPT.

How do I recover the relay log for a replication channel used by a group
member?

The replication channels used by Group Replication behave in the same way as replication channels
used in asynchronous source to replica replication, and as such rely on the relay log. In the event of a
change of the relay_log variable, or when the option is not set and the host name changes, there
is a chance of errors. See Section 19.2.4.1, “The Relay Log” for a recovery procedure in this situation.
Alternatively, another way of fixing the issue specifically in Group Replication is to issue a STOP
GROUP_REPLICATION statement and then a START GROUP_REPLICATION statement to restart the
instance. The Group Replication plugin creates the group_replication_applier channel again.

Why does Group Replication use two bind addresses?

Group Replication uses two bind addresses in order to split network traffic between the SQL address,
used by clients to communicate with the member, and the group_replication_local_address,
used internally by the group members to communicate. For example, assume a server with two
network interfaces assigned to the network addresses 203.0.113.1 and 198.51.100.179. In

4057

How does Group Replication use network addresses and hostnames?

such a situation you could use 203.0.113.1:33061 for the internal group network address by
setting group_replication_local_address=203.0.113.1:33061. Then you could use
198.51.100.179 for hostname and 3306 for the port. Client SQL applications would then connect
to the member at 198.51.100.179:3306. This enables you to configure different rules on the
different networks. Similarly, the internal group communication can be separated from the network
connection used for client applications, for increased security.

How does Group Replication use network addresses and hostnames?

Group Replication uses network connections between members and therefore its functionality
is directly impacted by how you configure hostnames and ports. For example, Group
Replication's distributed recovery process creates a connection to an existing group
member using the server's hostname and port. When a member joins a group it receives
the group membership information, using the network address information that is listed at
performance_schema.replication_group_members. One of the members listed in that table is
selected as the donor of the missing data from the group to the joining member.

This means that any value you configure using a hostname, such as the SQL network address or the
group seeds address, must be a fully qualified name and resolvable by each member of the group.
You can ensure this for example through DNS, or correctly configured /etc/hosts files, or other
local processes. If a you want to configure the MEMBER_HOST value on a server, specify it using the --
report-host option on the server before joining it to the group.

Important

The assigned value is used directly and is not affected by the
skip_name_resolve system variable.

To configure MEMBER_PORT on a server, specify it using the report_port system variable.

Why did the auto increment setting on the server change?

When Group Replication is started on a server, the value of auto_increment_increment is
changed to the value of group_replication_auto_increment_increment, which defaults to 7,
and the value of auto_increment_offset is changed to the server ID. The changes are reverted
when Group Replication is stopped. These settings avoid the selection of duplicate auto-increment
values for writes on group members, which causes rollback of transactions. The default auto increment
value of 7 for Group Replication represents a balance between the number of usable values and the
permitted maximum size of a replication group (9 members).

The changes are only made and reverted if auto_increment_increment and
auto_increment_offset each have their default value of 1. If their values have already been
modified from the default, Group Replication does not alter them. From MySQL 8.0, the system
variables are also not modified when Group Replication is in single-primary mode, where only one
server writes.

How do I find the primary?

If the group is operating in single-primary mode, it can be useful to find out which member is the
primary. See Finding the Primary

4058

Chapter 21 MySQL Shell
MySQL Shell is an advanced client and code editor for MySQL Server. In addition to the provided
SQL functionality, similar to mysql, MySQL Shell provides scripting capabilities for JavaScript and
Python and includes APIs for working with MySQL. MySQL Shell is a component that you can install
separately.

The following discussion briefly describes MySQL Shell's capabilities. For more information, see the
MySQL Shell manual, available at https://dev.mysql.com/doc/mysql-shell/en/.

MySQL Shell includes the following APIs implemented in JavaScript and Python which you can use to
develop code that interacts with MySQL.

• The X DevAPI enables developers to work with both relational and document data when MySQL
Shell is connected to a MySQL server using the X Protocol. This enables you to use MySQL as a
Document Store, sometimes referred to as “using NoSQL”. For more information, see Chapter 22,
Using MySQL as a Document Store. For documentation on the concepts and usage of X DevAPI,
which is implemented in MySQL Shell, see X DevAPI User Guide.

• The AdminAPI enables database administrators to work with InnoDB Cluster, which provides an
integrated solution for high availability and scalability using InnoDB based MySQL databases,
without requiring advanced MySQL expertise. The AdminAPI also includes support for InnoDB
ReplicaSet, which enables you to administer a set of MySQL instances running asynchronous
GTID-based replication in a similar way to InnoDB Cluster. Additionally, the AdminAPI makes
administration of MySQL Router easier, including integration with both InnoDB Cluster and InnoDB
ReplicaSet. See MySQL AdminAPI.

MySQL Shell is available in two editions, the Community Edition and the Commercial Edition. The
Community Edition is available free of charge. The Commercial Edition provides additional Enterprise
features at low cost.

4059

https://dev.mysql.com/doc/mysql-shell/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

4060

Chapter 22 Using MySQL as a Document Store

Table of Contents
22.1 Interfaces to a MySQL Document Store ... 4062
22.2 Document Store Concepts ... 4062
22.3 JavaScript Quick-Start Guide: MySQL Shell for Document Store .. 4063

22.3.1 MySQL Shell .. 4064
22.3.2 Download and Import world_x Database .. 4065
22.3.3 Documents and Collections ... 4066
22.3.4 Relational Tables .. 4076
22.3.5 Documents in Tables .. 4082

22.4 Python Quick-Start Guide: MySQL Shell for Document Store ... 4083
22.4.1 MySQL Shell .. 4083
22.4.2 Download and Import world_x Database .. 4085
22.4.3 Documents and Collections ... 4085
22.4.4 Relational Tables .. 4096
22.4.5 Documents in Tables .. 4102

22.5 X Plugin .. 4103
22.5.1 Checking X Plugin Installation ... 4103
22.5.2 Disabling X Plugin .. 4103
22.5.3 Using Encrypted Connections with X Plugin ... 4103
22.5.4 Using X Plugin with the Caching SHA-2 Authentication Plugin 4104
22.5.5 Connection Compression with X Plugin .. 4105
22.5.6 X Plugin Options and Variables ... 4108
22.5.7 Monitoring X Plugin .. 4128

This chapter introduces an alternative way of working with MySQL as a document store, sometimes
referred to as “using NoSQL”. If your intention is to use MySQL in a traditional (SQL) way, this chapter
is probably not relevant to you.

Traditionally, relational databases such as MySQL have usually required a schema to be defined
before documents can be stored. The features described in this section enable you to use MySQL as a
document store, which is a schema-less, and therefore schema-flexible, storage system for documents.
For example, when you create documents describing products, you do not need to know and define
all possible attributes of any products before storing and operating with the documents. This differs
from working with a relational database and storing products in a table, when all columns of the table
must be known and defined before adding any products to the database. The features described in
this chapter enable you to choose how you configure MySQL, using only the document store model, or
combining the flexibility of the document store model with the power of the relational model.

To use MySQL as a document store, you use the following server features:

• X Plugin enables MySQL Server to communicate with clients using X Protocol, which is a
prerequisite for using MySQL as a document store. X Plugin is enabled by default in MySQL Server
as of MySQL 8.0. For instructions to verify X Plugin installation and to configure and monitor X
Plugin, see Section 22.5, “X Plugin”.

• X Protocol supports both CRUD and SQL operations, authentication via SASL, allows streaming
(pipelining) of commands and is extensible on the protocol and the message layer. Clients
compatible with X Protocol include MySQL Shell and MySQL 8.0 Connectors.

• Clients that communicate with a MySQL Server using X Protocol can use X DevAPI to develop
applications. X DevAPI offers a modern programming interface with a simple yet powerful design
which provides support for established industry standard concepts. This chapter explains how to get
started using either the JavaScript or Python implementation of X DevAPI in MySQL Shell as a client.
See X DevAPI User Guide for in-depth tutorials on using X DevAPI.

4061

https://dev.mysql.com/doc/x-devapi-userguide/en/

Interfaces to a MySQL Document Store

22.1 Interfaces to a MySQL Document Store

To work with MySQL as a document store, you use dedicated components and a choice of clients that
support communicating with the MySQL server to develop document based applications.

• The following MySQL products support X Protocol and enable you to use X DevAPI in your chosen
language to develop applications that communicate with a MySQL Server functioning as a document
store:

• MySQL Shell (which provides implementations of X DevAPI in JavaScript and Python)

• Connector/C++

• Connector/J

• Connector/Node.js

• Connector/NET

• Connector/Python

• MySQL Shell is an interactive interface to MySQL supporting JavaScript, Python, or SQL modes.
You can use MySQL Shell to prototype applications, execute queries and update data. Installing
MySQL Shell has instructions to download and install MySQL Shell.

• The quick-start guides (tutorials) in this chapter help you to get started using MySQL Shell with
MySQL as a document store.

The quick-start guide for JavaScript is here: Section 22.3, “JavaScript Quick-Start Guide: MySQL
Shell for Document Store”.

The quick-start guide for Python is here: Section 22.4, “Python Quick-Start Guide: MySQL Shell for
Document Store”.

• The MySQL Shell User Guide at MySQL Shell 8.0 provides detailed information about configuring
and using MySQL Shell.

22.2 Document Store Concepts

This section explains the concepts introduced as part of using MySQL as a document store.

• JSON Document

• Collection

• CRUD Operations

JSON Document

A JSON document is a data structure composed of key-value pairs and is the fundamental structure
for using MySQL as document store. For example, the world_x schema (installed later in this chapter)
contains this document:

{
 "GNP": 4834,
 "_id": "00005de917d80000000000000023",
 "Code": "BWA",
 "Name": "Botswana",
 "IndepYear": 1966,
 "geography": {
 "Region": "Southern Africa",
 "Continent": "Africa",

4062

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/

Collection

 "SurfaceArea": 581730
 },
 "government": {
 "HeadOfState": "Festus G. Mogae",
 "GovernmentForm": "Republic"
 },
 "demographics": {
 "Population": 1622000,
 "LifeExpectancy": 39.29999923706055
 }
}

This document shows that the values of keys can be simple data types, such as integers or strings,
but can also contain other documents, arrays, and lists of documents. For example, the geography
key's value consists of multiple key-value pairs. A JSON document is represented internally using the
MySQL binary JSON object, through the JSON MySQL datatype.

The most important differences between a document and the tables known from traditional relational
databases are that the structure of a document does not have to be defined in advance, and a
collection can contain multiple documents with different structures. Relational tables on the other hand
require that their structure be defined, and all rows in the table must contain the same columns.

Collection

A collection is a container that is used to store JSON documents in a MySQL database. Applications
usually run operations against a collection of documents, for example to find a specific document.

CRUD Operations

The four basic operations that can be issued against a collection are Create, Read, Update and Delete
(CRUD). In terms of MySQL this means:

• Create a new document (insertion or addition)

• Read one or more documents (queries)

• Update one or more documents

• Delete one or more documents

22.3 JavaScript Quick-Start Guide: MySQL Shell for Document
Store

This quick-start guide provides instructions to begin prototyping document store applications
interactively with MySQL Shell. The guide includes the following topics:

• Introduction to MySQL functionality, MySQL Shell, and the world_x example schema.

• Operations to manage collections and documents.

• Operations to manage relational tables.

• Operations that apply to documents within tables.

To follow this quick-start guide you need a MySQL server with X Plugin installed, the default in 8.0, and
MySQL Shell to use as the client. MySQL Shell 8.0 provides more in-depth information about MySQL
Shell. The Document Store is accessed using X DevAPI, and MySQL Shell provides this API in both
JavaScript and Python.

Related Information

• MySQL Shell 8.0 provides more in-depth information about MySQL Shell.

4063

https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/

MySQL Shell

• See Installing MySQL Shell and Section 22.5, “X Plugin” for more information about the tools used in
this quick-start guide.

• X DevAPI User Guide provides more examples of using X DevAPI to develop applications which use
Document Store.

• A Python quick-start guide is also available.

22.3.1 MySQL Shell

This quick-start guide assumes a certain level of familiarity with MySQL Shell. The following section
is a high level overview, see the MySQL Shell documentation for more information. MySQL Shell is a
unified scripting interface to MySQL Server. It supports scripting in JavaScript and Python. JavaScript
is the default processing mode.

Start MySQL Shell

After you have installed and started MySQL server, connect MySQL Shell to the server instance. You
need to know the address of the MySQL server instance you plan to connect to. To be able to use
the instance as a Document Store, the server instance must have X Plugin installed and you should
connect to the server using X Protocol. For example to connect to the instance ds1.example.com on
the default X Protocol port of 33060 use the network string user@ds1.example.com:33060.

Tip

If you connect to the instance using classic MySQL protocol, for example by
using the default port of 3306 instead of the mysqlx_port, you cannot use
the Document Store functionality shown in this tutorial. For example the db
global object is not populated. To use the Document Store, always connect
using X Protocol.

If MySQL Shell is not already running, open a terminal window and issue:

mysqlsh user@ds1.example.com:33060/world_x

Alternatively, if MySQL Shell is already running use the \connect command by issuing:

\connect user@ds1.example.com:33060/world_x

You need to specify the address of the MySQL server instance which you want to connect MySQL
Shell to. For example in the previous example:

• user represents the user name of your MySQL account.

• ds1.example.com is the hostname of the server instance running MySQL. Replace this with the
hostname of the MySQL server instance you are using as a Document Store.

• The default schema for this session is world_x. For instructions on setting up the world_x
schema, see Section 22.3.2, “Download and Import world_x Database”.

For more information, see Section 6.2.5, “Connecting to the Server Using URI-Like Strings or Key-
Value Pairs”.

Once MySQL Shell opens, the mysql-js> prompt indicates that the active language for this session is
JavaScript.

mysql-js>

MySQL Shell supports input-line editing as follows:

• left-arrow and right-arrow keys move horizontally within the current input line.

• up-arrow and down-arrow keys move up and down through the set of previously entered lines.

4064

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/x-devapi-userguide/en/

Download and Import world_x Database

• Backspace deletes the character before the cursor and typing new characters enters them at the
cursor position.

• Enter sends the current input line to the server.

Get Help for MySQL Shell

Type mysqlsh --help at the prompt of your command interpreter for a list of command-line options.

mysqlsh --help

Type \help at the MySQL Shell prompt for a list of available commands and their descriptions.

mysql-js> \help

Type \help followed by a command name for detailed help about an individual MySQL Shell
command. For example, to view help on the \connect command, issue:

mysql-js> \help \connect

Quit MySQL Shell

To quit MySQL Shell, issue the following command:

mysql-js> \quit

Related Information

• See Interactive Code Execution for an explanation of how interactive code execution works in
MySQL Shell.

• See Getting Started with MySQL Shell to learn about session and connection alternatives.

22.3.2 Download and Import world_x Database

As part of this quick-start guide, an example schema is provided which is referred to as the world_x
schema. Many of the examples demonstrate Document Store functionality using this schema. Start
your MySQL server so that you can load the world_x schema, then follow these steps:

1. Download world_x-db.zip.

2. Extract the installation archive to a temporary location such as /tmp/. Unpacking the archive
results in a single file named world_x.sql.

3. Import the world_x.sql file to your server. You can either:

• Start MySQL Shell in SQL mode and import the file by issuing:

mysqlsh -u root --sql --file /tmp/world_x-db/world_x.sql
Enter password: ****

• Set MySQL Shell to SQL mode while it is running and source the schema file by issuing:

\sql
Switching to SQL mode... Commands end with ;
\source /tmp/world_x-db/world_x.sql

Replace /tmp/ with the path to the world_x.sql file on your system. Enter your password if
prompted. A non-root account can be used as long as the account has privileges to create new
schemas.

The world_x Schema

The world_x example schema contains the following JSON collection and relational tables:

4065

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-interactive-code-execution.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-getting-started.html
http://downloads.mysql.com/docs/world_x-db.zip

Documents and Collections

• Collection

• countryinfo: Information about countries in the world.

• Tables

• country: Minimal information about countries of the world.

• city: Information about some of the cities in those countries.

• countrylanguage: Languages spoken in each country.

Related Information

• MySQL Shell Sessions explains session types.

22.3.3 Documents and Collections

When you are using MySQL as a Document Store, collections are containers within a schema that you
can create, list, and drop. Collections contain JSON documents that you can add, find, update, and
remove.

The examples in this section use the countryinfo collection in the world_x schema. For
instructions on setting up the world_x schema, see Section 22.3.2, “Download and Import world_x
Database”.

Documents

In MySQL, documents are represented as JSON objects. Internally, they are stored in an efficient
binary format that enables fast lookups and updates.

• Simple document format for JavaScript:

{field1: "value", field2 : 10, "field 3": null}

An array of documents consists of a set of documents separated by commas and enclosed within [
and] characters.

• Simple array of documents for JavaScript:

[{"Name": "Aruba", "Code:": "ABW"}, {"Name": "Angola", "Code:": "AGO"}]

MySQL supports the following JavaScript value types in JSON documents:

• numbers (integer and floating point)

• strings

• boolean (False and True)

• null

• arrays of more JSON values

• nested (or embedded) objects of more JSON values

Collections

Collections are containers for documents that share a purpose and possibly share one or more
indexes. Each collection has a unique name and exists within a single schema.

The term schema is equivalent to a database, which means a group of database objects as opposed to
a relational schema, used to enforce structure and constraints over data. A schema does not enforce
conformity on the documents in a collection.

4066

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-sessions.html

Documents and Collections

In this quick-start guide:

• Basic objects include:

Object form Description

db db is a global variable assigned to the current
active schema. When you want to run operations
against the schema, for example to retrieve a
collection, you use methods available for the db
variable.

db.getCollections() db.getCollections() returns a list of collections
in the schema. Use the list to get references to
collection objects, iterate over them, and so on.

• Basic operations scoped by collections include:

Operation form Description

db.name.add() The add() method inserts one document or a list
of documents into the named collection.

db.name.find() The find() method returns some or all documents
in the named collection.

db.name.modify() The modify() method updates documents in the
named collection.

db.name.remove() The remove() method deletes one document or a
list of documents from the named collection.

Related Information

• See Working with Collections for a general overview.

• CRUD EBNF Definitions provides a complete list of operations.

22.3.3.1 Create, List, and Drop Collections

In MySQL Shell, you can create new collections, get a list of the existing collections in a schema, and
remove an existing collection from a schema. Collection names are case-sensitive and each collection
name must be unique.

Confirm the Schema

To show the value that is assigned to the schema variable, issue:

mysql-js> db

If the schema value is not Schema:world_x, then set the db variable by issuing:

mysql-js> \use world_x

Create a Collection

To create a new collection in an existing schema, use the db object's createCollection() method.
The following example creates a collection called flags in the world_x schema.

mysql-js> db.createCollection("flags")

The method returns a collection object.

<Collection:flags>

4067

https://dev.mysql.com/doc/x-devapi-userguide/en/devapi-users-working-with-collections.html
https://dev.mysql.com/doc/x-devapi-userguide/en/mysql-x-crud-ebnf-definitions.html

Documents and Collections

List Collections

To display all collections in the world_x schema, use the db object's getCollections() method.
Collections returned by the server you are currently connected to appear between brackets.

mysql-js> db.getCollections()
[
 <Collection:countryinfo>,
 <Collection:flags>
]

Drop a Collection

To drop an existing collection from a schema, use the db object's dropCollection() method. For
example, to drop the flags collection from the current schema, issue:

mysql-js> db.dropCollection("flags")

The dropCollection() method is also used in MySQL Shell to drop a relational table from a
schema.

Related Information

• See Collection Objects for more examples.

22.3.3.2 Working with Collections

To work with the collections in a schema, use the db global object to access the current schema. In this
example we are using the world_x schema imported previously, and the countryinfo collection.
Therefore, the format of the operations you issue is db.collection_name.operation, where
collection_name is the name of the collection which the operation is executed against. In the
following examples, the operations are executed against the countryinfo collection.

Add a Document

Use the add() method to insert one document or a list of documents into an existing collection. Insert
the following document into the countryinfo collection. As this is multi-line content, press Enter
twice to insert the document.

mysql-js> db.countryinfo.add(
 {
 GNP: .6,
 IndepYear: 1967,
 Name: "Sealand",
 Code: "SEA",
 demographics: {
 LifeExpectancy: 79,
 Population: 27
 },
 geography: {
 Continent: "Europe",
 Region: "British Islands",
 SurfaceArea: 193
 },
 government: {
 GovernmentForm: "Monarchy",
 HeadOfState: "Michael Bates"
 }
 }
)

The method returns the status of the operation. You can verify the operation by searching for the
document. For example:

mysql-js> db.countryinfo.find("Name = 'Sealand'")
{
 "GNP": 0.6,

4068

https://dev.mysql.com/doc/x-devapi-userguide/en/collection-objects.html

Documents and Collections

 "_id": "00005e2ff4af00000000000000f4",
 "Name": "Sealand",
 "Code:": "SEA",
 "IndepYear": 1967,
 "geography": {
 "Region": "British Islands",
 "Continent": "Europe",
 "SurfaceArea": 193
 },
 "government": {
 "HeadOfState": "Michael Bates",
 "GovernmentForm": "Monarchy"
 },
 "demographics": {
 "Population": 27,
 "LifeExpectancy": 79
 }
}

Note that in addition to the fields specified when the document was added, there is one more field,
the _id. Each document requires an identifier field called _id. The value of the _id field must be
unique among all documents in the same collection. In MySQL 8.0.11 and higher, document IDs are
generated by the server, not the client, so MySQL Shell does not automatically set an _id value. A
MySQL server at 8.0.11 or higher sets an _id value if the document does not contain the _id field.
A MySQL server at an earlier 8.0 release or at 5.7 does not set an _id value in this situation, so you
must specify it explicitly. If you do not, MySQL Shell returns error 5115 Document is missing a
required field. For more information see Understanding Document IDs.

Related Information

• See CollectionAddFunction for the full syntax definition.

• See Understanding Document IDs.

22.3.3.3 Find Documents

You can use the find() method to query for and return documents from a collection in a schema.
MySQL Shell provides additional methods to use with the find() method to filter and sort the returned
documents.

MySQL provides the following operators to specify search conditions: OR (||), AND (&&), XOR, IS, NOT,
BETWEEN, IN, LIKE, !=, <>, >, >=, <, <=, &, |, <<, >>, +, -, *, /, ~, and %.

Find All Documents in a Collection

To return all documents in a collection, use the find() method without specifying search conditions.
For example, the following operation returns all documents in the countryinfo collection.

mysql-js> db.countryinfo.find()
[
 {
 "GNP": 828,
 "Code:": "ABW",
 "Name": "Aruba",
 "IndepYear": null,
 "geography": {
 "Continent": "North America",
 "Region": "Caribbean",
 "SurfaceArea": 193
 },
 "government": {
 "GovernmentForm": "Nonmetropolitan Territory of The Netherlands",
 "HeadOfState": "Beatrix"
 }
 "demographics": {
 "LifeExpectancy": 78.4000015258789,
 "Population": 103000

4069

https://dev.mysql.com/doc/x-devapi-userguide/en/understanding-automatic-document-ids.html
https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-collection-crud-functions.html#crud-ebnf-collectionaddfunction
https://dev.mysql.com/doc/x-devapi-userguide/en/understanding-automatic-document-ids.html

Documents and Collections

 },
 ...
 }
]
240 documents in set (0.00 sec)

The method produces results that contain operational information in addition to all documents in the
collection.

An empty set (no matching documents) returns the following information:

Empty set (0.00 sec)

Filter Searches

You can include search conditions with the find() method. The syntax for expressions that form a
search condition is the same as that of traditional MySQL Chapter 14, Functions and Operators. You
must enclose all expressions in quotes. For the sake of brevity, some of the examples do not display
output.

A simple search condition could consist of the Name field and a value we know is in a document. The
following example returns a single document:

mysql-js> db.countryinfo.find("Name = 'Australia'")
[
 {
 "GNP": 351182,
 "Code:": "AUS",
 "Name": "Australia",
 "IndepYear": 1901,
 "geography": {
 "Continent": "Oceania",
 "Region": "Australia and New Zealand",
 "SurfaceArea": 7741220
 },
 "government": {
 "GovernmentForm": "Constitutional Monarchy, Federation",
 "HeadOfState": "Elisabeth II"
 }
 "demographics": {
 "LifeExpectancy": 79.80000305175781,
 "Population": 18886000
 },
 }
]

The following example searches for all countries that have a GNP higher than $500 billion. The
countryinfo collection measures GNP in units of million.

mysql-js> db.countryinfo.find("GNP > 500000")
...[output removed]
10 documents in set (0.00 sec)

The Population field in the following query is embedded within the demographics object. To access
the embedded field, use a period between demographics and Population to identify the relationship.
Document and field names are case-sensitive.

mysql-js> db.countryinfo.find("GNP > 500000 and demographics.Population < 100000000")
...[output removed]
6 documents in set (0.00 sec)

Arithmetic operators in the following expression are used to query for countries with a GNP per capita
higher than $30000. Search conditions can include arithmetic operators and most MySQL functions.

Note

Seven documents in the countryinfo collection have a population value of
zero. Therefore warning messages appear at the end of the output.

4070

Documents and Collections

mysql-js> db.countryinfo.find("GNP*1000000/demographics.Population > 30000")
...[output removed]
9 documents in set, 7 warnings (0.00 sec)
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0

You can separate a value from the search condition by using the bind() method. For example,
instead of specifying a hard-coded country name as the condition, substitute a named placeholder
consisting of a colon followed by a name that begins with a letter, such as country. Then use the
bind(placeholder, value) method as follows:

mysql-js> db.countryinfo.find("Name = :country").bind("country", "Italy")
{
 "GNP": 1161755,
 "_id": "00005de917d8000000000000006a",
 "Code": "ITA",
 "Name": "Italy",
 "Airports": [],
 "IndepYear": 1861,
 "geography": {
 "Region": "Southern Europe",
 "Continent": "Europe",
 "SurfaceArea": 301316
 },
 "government": {
 "HeadOfState": "Carlo Azeglio Ciampi",
 "GovernmentForm": "Republic"
 },
 "demographics": {
 "Population": 57680000,
 "LifeExpectancy": 79
 }
}
1 document in set (0.01 sec)

Tip

Within a program, binding enables you to specify placeholders in your
expressions, which are filled in with values before execution and can benefit
from automatic escaping, as appropriate.

Always use binding to sanitize input. Avoid introducing values in queries using
string concatenation, which can produce invalid input and, in some cases, can
cause security issues.

You can use placeholders and the bind() method to create saved searches which you can then call
with different values. For example to create a saved search for a country:

mysql-js> var myFind = db.countryinfo.find("Name = :country")
mysql-js> myFind.bind('country', 'France')
{
 "GNP": 1424285,
 "_id": "00005de917d80000000000000048",
 "Code": "FRA",
 "Name": "France",
 "IndepYear": 843,
 "geography": {
 "Region": "Western Europe",
 "Continent": "Europe",
 "SurfaceArea": 551500
 },
 "government": {
 "HeadOfState": "Jacques Chirac",
 "GovernmentForm": "Republic"

4071

Documents and Collections

 },
 "demographics": {
 "Population": 59225700,
 "LifeExpectancy": 78.80000305175781
 }
}
1 document in set (0.0028 sec)

mysql-js> myFind.bind('country', 'Germany')
{
 "GNP": 2133367,
 "_id": "00005de917d80000000000000038",
 "Code": "DEU",
 "Name": "Germany",
 "IndepYear": 1955,
 "geography": {
 "Region": "Western Europe",
 "Continent": "Europe",
 "SurfaceArea": 357022
 },
 "government": {
 "HeadOfState": "Johannes Rau",
 "GovernmentForm": "Federal Republic"
 },
 "demographics": {
 "Population": 82164700,
 "LifeExpectancy": 77.4000015258789
 }
}

1 document in set (0.0026 sec)

Project Results

You can return specific fields of a document, instead of returning all the fields. The following example
returns the GNP and Name fields of all documents in the countryinfo collection matching the search
conditions.

Use the fields() method to pass the list of fields to return.

mysql-js> db.countryinfo.find("GNP > 5000000").fields(["GNP", "Name"])
[
 {
 "GNP": 8510700,
 "Name": "United States"
 }
]
1 document in set (0.00 sec)

In addition, you can alter the returned documents—adding, renaming, nesting and even computing new
field values—with an expression that describes the document to return. For example, alter the names
of the fields with the following expression to return only two documents.

mysql-js> db.countryinfo.find().fields(
mysqlx.expr('{"Name": upper(Name), "GNPPerCapita": GNP*1000000/demographics.Population}')).limit(2)
{
 "Name": "ARUBA",
 "GNPPerCapita": 8038.834951456311
}
{
 "Name": "AFGHANISTAN",
 "GNPPerCapita": 263.0281690140845
}

Limit, Sort, and Skip Results

You can apply the limit(), sort(), and skip() methods to manage the number and order of
documents returned by the find() method.

4072

Documents and Collections

To specify the number of documents included in a result set, append the limit() method with a
value to the find() method. The following query returns the first five documents in the countryinfo
collection.

mysql-js> db.countryinfo.find().limit(5)
... [output removed]
5 documents in set (0.00 sec)

To specify an order for the results, append the sort() method to the find() method. Pass to
the sort() method a list of one or more fields to sort by and, optionally, the descending (desc) or
ascending (asc) attribute as appropriate. Ascending order is the default order type.

For example, the following query sorts all documents by the IndepYear field and then returns the first
eight documents in descending order.

mysql-js> db.countryinfo.find().sort(["IndepYear desc"]).limit(8)
... [output removed]
8 documents in set (0.00 sec)

By default, the limit() method starts from the first document in the collection. You can use the
skip() method to change the starting document. For example, to ignore the first document and return
the next eight documents matching the condition, pass to the skip() method a value of 1.

mysql-js> db.countryinfo.find().sort(["IndepYear desc"]).limit(8).skip(1)
... [output removed]
8 documents in set (0.00 sec)

Related Information

• The MySQL Reference Manual provides detailed documentation on functions and operators.

• See CollectionFindFunction for the full syntax definition.

22.3.3.4 Modify Documents

You can use the modify() method to update one or more documents in a collection. The X DevAPI
provides additional methods for use with the modify() method to:

• Set and unset fields within documents.

• Append, insert, and delete arrays.

• Bind, limit, and sort the documents to be modified.

Set and Unset Document Fields

The modify() method works by filtering a collection to include only the documents to be modified and
then applying the operations that you specify to those documents.

In the following example, the modify() method uses the search condition to identify the document to
change and then the set() method replaces two values within the nested demographics object.

mysql-js> db.countryinfo.modify("Code = 'SEA'").set(
"demographics", {"LifeExpectancy": 78, "Population": 28})

After you modify a document, use the find() method to verify the change.

To remove content from a document, use the modify() and unset() methods. For example, the
following query removes the GNP from a document that matches the search condition.

mysql-js> db.countryinfo.modify("Name = 'Sealand'").unset("GNP")

Use the find() method to verify the change.

mysql-js> db.countryinfo.find("Name = 'Sealand'")

4073

https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-collection-crud-functions.html#crud-ebnf-collectionfindfunction

Documents and Collections

{
 "_id": "00005e2ff4af00000000000000f4",
 "Name": "Sealand",
 "Code:": "SEA",
 "IndepYear": 1967,
 "geography": {
 "Region": "British Islands",
 "Continent": "Europe",
 "SurfaceArea": 193
 },
 "government": {
 "HeadOfState": "Michael Bates",
 "GovernmentForm": "Monarchy"
 },
 "demographics": {
 "Population": 27,
 "LifeExpectancy": 79
 }
}

Append, Insert, and Delete Arrays

To append an element to an array field, or insert, or delete elements in an array, use the
arrayAppend(), arrayInsert(), or arrayDelete() methods. The following examples modify the
countryinfo collection to enable tracking of international airports.

The first example uses the modify() and set() methods to create a new Airports field in all
documents.

Caution

Use care when you modify documents without specifying a search condition;
doing so modifies all documents in the collection.

mysql-js> db.countryinfo.modify("true").set("Airports", [])

With the Airports field added, the next example uses the arrayAppend() method to add a new airport
to one of the documents. $.Airports in the following example represents the Airports field of the current
document.

mysql-js> db.countryinfo.modify("Name = 'France'").arrayAppend("$.Airports", "ORY")

Use find() to see the change.

mysql-js> db.countryinfo.find("Name = 'France'")
{
 "GNP": 1424285,
 "_id": "00005de917d80000000000000048",
 "Code": "FRA",
 "Name": "France",
 "Airports": [
 "ORY"
],
 "IndepYear": 843,
 "geography": {
 "Region": "Western Europe",
 "Continent": "Europe",
 "SurfaceArea": 551500
 },
 "government": {
 "HeadOfState": "Jacques Chirac",
 "GovernmentForm": "Republic"
 },
 "demographics": {
 "Population": 59225700,
 "LifeExpectancy": 78.80000305175781
 }
}

4074

Documents and Collections

To insert an element at a different position in the array, use the arrayInsert() method to specify
which index to insert in the path expression. In this case, the index is 0, or the first element in the array.

mysql-js> db.countryinfo.modify("Name = 'France'").arrayInsert("$.Airports[0]", "CDG")

To delete an element from the array, you must pass to the arrayDelete() method the index of the
element to be deleted.

mysql-js> db.countryinfo.modify("Name = 'France'").arrayDelete("$.Airports[1]")

Related Information

• The MySQL Reference Manual provides instructions to help you search for and modify JSON values.

• See CollectionModifyFunction for the full syntax definition.

22.3.3.5 Remove Documents

You can use the remove() method to delete some or all documents from a collection in a schema.
The X DevAPI provides additional methods for use with the remove() method to filter and sort the
documents to be removed.

Remove Documents Using Conditions

The following example passes a search condition to the remove() method. All documents matching
the condition are removed from the countryinfo collection. In this example, one document matches
the condition.

mysql-js> db.countryinfo.remove("Code = 'SEA'")

Remove the First Document

To remove the first document in the countryinfo collection, use the limit() method with a value of
1.

mysql-js> db.countryinfo.remove("true").limit(1)

Remove the Last Document in an Order

The following example removes the last document in the countryinfo collection by country name.

mysql-js> db.countryinfo.remove("true").sort(["Name desc"]).limit(1)

Remove All Documents in a Collection

You can remove all documents in a collection. To do so, use the remove("true") method without
specifying a search condition.

Caution

Use care when you remove documents without specifying a search condition.
This action deletes all documents from the collection.

Alternatively, use the db.drop_collection('countryinfo') operation to delete the
countryinfo collection.

Related Information

• See CollectionRemoveFunction for the full syntax definition.

• See Section 22.3.2, “Download and Import world_x Database” for instructions to recreate the
world_x schema.

4075

https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-collection-crud-functions.html#crud-ebnf-collectionmodifyfunction
https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-collection-crud-functions.html#crud-ebnf-collectionremovefunction

Relational Tables

22.3.3.6 Create and Drop Indexes

Indexes are used to find documents with specific field values quickly. Without an index, MySQL must
begin with the first document and then read through the entire collection to find the relevant fields.
The larger the collection, the more this costs. If a collection is large and queries on a specific field are
common, then consider creating an index on a specific field inside a document.

For example, the following query performs better with an index on the Population field:

mysql-js> db.countryinfo.find("demographics.Population < 100")
...[output removed]
8 documents in set (0.00 sec)

The createIndex() method creates an index that you can define with a JSON document that
specifies which fields to use. This section is a high level overview of indexing. For more information see
Indexing Collections.

Add a Nonunique Index

To create a nonunique index, pass an index name and the index information to the createIndex()
method. Duplicate index names are prohibited.

The following example specifies an index named popul, defined against the Population field from
the demographics object, indexed as an Integer numeric value. The final parameter indicates
whether the field should require the NOT NULL constraint. If the value is false, the field can contain
NULL values. The index information is a JSON document with details of one or more fields to include in
the index. Each field definition must include the full document path to the field, and specify the type of
the field.

mysql-js> db.countryinfo.createIndex("popul", {fields:
[{field: '$.demographics.Population', type: 'INTEGER'}]})

Here, the index is created using an integer numeric value. Further options are available, including
options for use with GeoJSON data. You can also specify the type of index, which has been omitted
here because the default type “index” is appropriate.

Add a Unique Index

To create a unique index, pass an index name, the index definition, and the index type “unique” to the
createIndex() method. This example shows a unique index created on the country name ("Name"),
which is another common field in the countryinfo collection to index. In the index field description,
"TEXT(40)" represents the number of characters to index, and "required": True specifies that
the field is required to exist in the document.

mysql-js> db.countryinfo.createIndex("name",
{"fields": [{"field": "$.Name", "type": "TEXT(40)", "required": true}], "unique": true})

Drop an Index

To drop an index, pass the name of the index to drop to the dropIndex() method. For example, you
can drop the “popul” index as follows:

mysql-js> db.countryinfo.dropIndex("popul")

Related Information

• See Indexing Collections for more information.

• See Defining an Index for more information on the JSON document that defines an index.

• See Collection Index Management Functions for the full syntax definition.

22.3.4 Relational Tables

4076

https://dev.mysql.com/doc/x-devapi-userguide/en/collection-indexing.html
https://dev.mysql.com/doc/x-devapi-userguide/en/collection-indexing.html
https://dev.mysql.com/doc/x-devapi-userguide/en/collection-indexing.html#collection-index-definitions
https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-collection-index-management-functions.html

Relational Tables

You can also use X DevAPI to work with relational tables. In MySQL, each relational table is associated
with a particular storage engine. The examples in this section use InnoDB tables in the world_x
schema.

Confirm the Schema

To show the schema that is assigned to the db global variable, issue db.

mysql-js> db
<Schema:world_x>

If the returned value is not Schema:world_x, set the db variable as follows:

mysql-js> \use world_x
Schema `world_x` accessible through db.

Show All Tables

To display all relational tables in the world_x schema, use the getTables() method on the db
object.

mysql-js> db.getTables()
{
 "city": <Table:city>,
 "country": <Table:country>,
 "countrylanguage": <Table:countrylanguage>
}

Basic Table Operations

Basic operations scoped by tables include:

Operation form Description

db.name.insert() The insert() method inserts one or more records
into the named table.

db.name.select() The select() method returns some or all records in
the named table.

db.name.update() The update() method updates records in the
named table.

db.name.delete() The delete() method deletes one or more records
from the named table.

Related Information

• See Working with Relational Tables for more information.

• CRUD EBNF Definitions provides a complete list of operations.

• See Section 22.3.2, “Download and Import world_x Database” for instructions on setting up the
world_x schema sample.

22.3.4.1 Insert Records into Tables

You can use the insert() method with the values() method to insert records into an existing
relational table. The insert() method accepts individual columns or all columns in the table. Use one
or more values() methods to specify the values to be inserted.

Insert a Complete Record

To insert a complete record, pass to the insert() method all columns in the table. Then pass to the
values() method one value for each column in the table. For example, to add a new record to the city
table in the world_x schema, insert the following record and press Enter twice.

4077

https://dev.mysql.com/doc/x-devapi-userguide/en/devapi-users-working-with-relational-tables.html
https://dev.mysql.com/doc/x-devapi-userguide/en/mysql-x-crud-ebnf-definitions.html

Relational Tables

mysql-js> db.city.insert("ID", "Name", "CountryCode", "District", "Info").values(
None, "Olympia", "USA", "Washington", '{"Population": 5000}')

The city table has five columns: ID, Name, CountryCode, District, and Info. Each value must match the
data type of the column it represents.

Insert a Partial Record

The following example inserts values into the ID, Name, and CountryCode columns of the city table.

mysql-js> db.city.insert("ID", "Name", "CountryCode").values(
None, "Little Falls", "USA").values(None, "Happy Valley", "USA")

When you specify columns using the insert() method, the number of values must match the
number of columns. In the previous example, you must supply three values to match the three columns
specified.

Related Information

• See TableInsertFunction for the full syntax definition.

22.3.4.2 Select Tables

You can use the select() method to query for and return records from a table in a database. The X
DevAPI provides additional methods to use with the select() method to filter and sort the returned
records.

MySQL provides the following operators to specify search conditions: OR (||), AND (&&), XOR, IS, NOT,
BETWEEN, IN, LIKE, !=, <>, >, >=, <, <=, &, |, <<, >>, +, -, *, /, ~, and %.

Select All Records

To issue a query that returns all records from an existing table, use the select() method without
specifying search conditions. The following example selects all records from the city table in the
world_x database.

Note

Limit the use of the empty select() method to interactive statements. Always
use explicit column-name selections in your application code.

mysql-js> db.city.select()
+------+------------+-------------+------------+-------------------------+
| ID | Name | CountryCode | District | Info |
+------+------------+-------------+------------+-------------------------+
1	Kabul	AFG	Kabol	{"Population": 1780000}
2	Qandahar	AFG	Qandahar	{"Population": 237500}
3	Herat	AFG	Herat	{"Population": 186800}
... 				
4079	Rafah	PSE	Rafah	{"Population": 92020}
+------+------- ----+-------------+------------+-------------------------+
4082 rows in set (0.01 sec)

An empty set (no matching records) returns the following information:

Empty set (0.00 sec)

Filter Searches

To issue a query that returns a set of table columns, use the select() method and specify the
columns to return between square brackets. This query returns the Name and CountryCode columns
from the city table.

mysql-js> db.city.select(["Name", "CountryCode"])

4078

https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-table-crud-functions.html#crud-ebnf-tableinsertfunction

Relational Tables

+-------------------+-------------+
| Name | CountryCode |
+-------------------+-------------+
Kabul	AFG
Qandahar	AFG
Herat	AFG
Mazar-e-Sharif	AFG
Amsterdam	NLD
... ...	
Rafah	PSE
Olympia	USA
Little Falls	USA
Happy Valley	USA
+-------------------+-------------+
4082 rows in set (0.00 sec)

To issue a query that returns rows matching specific search conditions, use the where() method to
include those conditions. For example, the following example returns the names and country codes of
the cities that start with the letter Z.

mysql-js> db.city.select(["Name", "CountryCode"]).where("Name like 'Z%'")
+-------------------+-------------+
| Name | CountryCode |
+-------------------+-------------+
Zaanstad	NLD
Zoetermeer	NLD
Zwolle	NLD
Zenica	BIH
Zagazig	EGY
Zaragoza	ESP
Zamboanga	PHL
Zahedan	IRN
Zanjan	IRN
Zabol	IRN
Zama	JPN
Zhezqazghan	KAZ
Zhengzhou	CHN
... ...	
Zeleznogorsk	RUS
+-------------------+-------------+
59 rows in set (0.00 sec)

You can separate a value from the search condition by using the bind() method. For example,
instead of using "Name = 'Z%' " as the condition, substitute a named placeholder consisting of a colon
followed by a name that begins with a letter, such as name. Then include the placeholder and value in
the bind() method as follows:

mysql-js> db.city.select(["Name", "CountryCode"]).
 where("Name like :name").bind("name", "Z%")

Tip

Within a program, binding enables you to specify placeholders in your
expressions, which are filled in with values before execution and can benefit
from automatic escaping, as appropriate.

Always use binding to sanitize input. Avoid introducing values in queries using
string concatenation, which can produce invalid input and, in some cases, can
cause security issues.

Project Results

To issue a query using the AND operator, add the operator between search conditions in the where()
method.

mysql-js> db.city.select(["Name", "CountryCode"]).where(
"Name like 'Z%' and CountryCode = 'CHN'")
+----------------+-------------+

4079

Relational Tables

| Name | CountryCode |
+----------------+-------------+
Zhengzhou	CHN
Zibo	CHN
Zhangjiakou	CHN
Zhuzhou	CHN
Zhangjiang	CHN
Zigong	CHN
Zaozhuang	CHN
... ...	
Zhangjiagang	CHN
+----------------+-------------+
22 rows in set (0.01 sec)

To specify multiple conditional operators, you can enclose the search conditions in parenthesis to
change the operator precedence. The following example demonstrates the placement of AND and OR
operators.

mysql-js> db.city.select(["Name", "CountryCode"]).
where("Name like 'Z%' and (CountryCode = 'CHN' or CountryCode = 'RUS')")
+-------------------+-------------+
| Name | CountryCode |
+-------------------+-------------+
Zhengzhou	CHN
Zibo	CHN
Zhangjiakou	CHN
Zhuzhou	CHN
... ...	
Zeleznogorsk	RUS
+-------------------+-------------+
29 rows in set (0.01 sec)

Limit, Order, and Offset Results

You can apply the limit(), orderBy(), and offSet() methods to manage the number and order
of records returned by the select() method.

To specify the number of records included in a result set, append the limit() method with a value
to the select() method. For example, the following query returns the first five records in the country
table.

mysql-js> db.country.select(["Code", "Name"]).limit(5)
+------+-------------+
| Code | Name |
+------+-------------+
ABW	Aruba
AFG	Afghanistan
AGO	Angola
AIA	Anguilla
ALB	Albania
+------+-------------+
5 rows in set (0.00 sec)

To specify an order for the results, append the orderBy() method to the select() method. Pass to
the orderBy() method a list of one or more columns to sort by and, optionally, the descending (desc)
or ascending (asc) attribute as appropriate. Ascending order is the default order type.

For example, the following query sorts all records by the Name column and then returns the first three
records in descending order .

mysql-js> db.country.select(["Code", "Name"]).orderBy(["Name desc"]).limit(3)
+------+------------+
| Code | Name |
+------+------------+
ZWE	Zimbabwe
ZMB	Zambia
YUG	Yugoslavia
+------+------------+
3 rows in set (0.00 sec)

4080

Relational Tables

By default, the limit() method starts from the first record in the table. You can use the offset()
method to change the starting record. For example, to ignore the first record and return the next three
records matching the condition, pass to the offset() method a value of 1.

mysql-js> db.country.select(["Code", "Name"]).orderBy(["Name desc"]).limit(3).offset(1)
+------+------------+
| Code | Name |
+------+------------+
ZMB	Zambia
YUG	Yugoslavia
YEM	Yemen
+------+------------+
3 rows in set (0.00 sec)

Related Information

• The MySQL Reference Manual provides detailed documentation on functions and operators.

• See TableSelectFunction for the full syntax definition.

22.3.4.3 Update Tables

You can use the update() method to modify one or more records in a table. The update() method
works by filtering a query to include only the records to be updated and then applying the operations
you specify to those records.

To replace a city name in the city table, pass to the set() method the new city name. Then, pass to
the where() method the city name to locate and replace. The following example replaces the city
Peking with Beijing.

mysql-js> db.city.update().set("Name", "Beijing").where("Name = 'Peking'")

Use the select() method to verify the change.

mysql-js> db.city.select(["ID", "Name", "CountryCode", "District", "Info"]).where("Name = 'Beijing'")
+------+-----------+-------------+----------+-----------------------------+
| ID | Name | CountryCode | District | Info |
+------+-----------+-------------+----------+-----------------------------+
| 1891 | Beijing | CHN | Peking | {"Population": 7472000} |
+------+-----------+-------------+----------+-----------------------------+
1 row in set (0.00 sec)

Related Information

• See TableUpdateFunction for the full syntax definition.

22.3.4.4 Delete Tables

You can use the delete() method to remove some or all records from a table in a database. The X
DevAPI provides additional methods to use with the delete() method to filter and order the records
to be deleted.

Delete Records Using Conditions

The following example passes search conditions to the delete() method. All records matching the
condition are deleted from the city table. In this example, one record matches the condition.

mysql-js> db.city.delete().where("Name = 'Olympia'")

Delete the First Record

To delete the first record in the city table, use the limit() method with a value of 1.

mysql-js> db.city.delete().limit(1)

4081

https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-table-crud-functions.html#crud-ebnf-tableselectfunction
https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-table-crud-functions.html#crud-ebnf-tableupdatefunction

Documents in Tables

Delete All Records in a Table

You can delete all records in a table. To do so, use the delete() method without specifying a search
condition.

Caution

Use care when you delete records without specifying a search condition; doing
so deletes all records from the table.

Drop a Table

The dropCollection() method is also used in MySQL Shell to drop a relational table from a
database. For example, to drop the citytest table from the world_x database, issue:

mysql-js> session.dropCollection("world_x", "citytest")

Related Information

• See TableDeleteFunction for the full syntax definition.

• See Section 22.3.2, “Download and Import world_x Database” for instructions to recreate the
world_x database.

22.3.5 Documents in Tables

In MySQL, a table may contain traditional relational data, JSON values, or both. You can combine
traditional data with JSON documents by storing the documents in columns having a native JSON data
type.

Examples in this section use the city table in the world_x schema.

city Table Description

The city table has five columns (or fields).

+---------------+------------+-------+-------+---------+------------------+
| Field | Type | Null | Key | Default | Extra |
+---------------+------------+-------+-------+---------+------------------+
ID	int(11)	NO	PRI	null	auto_increment
Name	char(35)	NO			
CountryCode	char(3)	NO			
District	char(20)	NO			
Info	json	YES		null	
+---------------+------------+-------+-------+---------+------------------+

Insert a Record

To insert a document into the column of a table, pass to the values() method a well-formed JSON
document in the correct order. In the following example, a document is passed as the final value to be
inserted into the Info column.

mysql-js> db.city.insert().values(
None, "San Francisco", "USA", "California", '{"Population":830000}')

Select a Record

You can issue a query with a search condition that evaluates document values in the expression.

mysql-js> db.city.select(["ID", "Name", "CountryCode", "District", "Info"]).where(
"CountryCode = :country and Info->'$.Population' > 1000000").bind(
'country', 'USA')
+------+----------------+-------------+----------------+-----------------------------+
| ID | Name | CountryCode | District | Info |

4082

https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-table-crud-functions.html#crud-ebnf-tabledeletefunction

Python Quick-Start Guide: MySQL Shell for Document Store

+------+----------------+-------------+----------------+-----------------------------+
3793	New York	USA	New York	{"Population": 8008278}
3794	Los Angeles	USA	California	{"Population": 3694820}
3795	Chicago	USA	Illinois	{"Population": 2896016}
3796	Houston	USA	Texas	{"Population": 1953631}
3797	Philadelphia	USA	Pennsylvania	{"Population": 1517550}
3798	Phoenix	USA	Arizona	{"Population": 1321045}
3799	San Diego	USA	California	{"Population": 1223400}
3800	Dallas	USA	Texas	{"Population": 1188580}
3801	San Antonio	USA	Texas	{"Population": 1144646}
+------+----------------+-------------+----------------+-----------------------------+
9 rows in set (0.01 sec)

Related Information

• See Working with Relational Tables and Documents for more information.

• See Section 13.5, “The JSON Data Type” for a detailed description of the data type.

22.4 Python Quick-Start Guide: MySQL Shell for Document Store
This quick-start guide provides instructions to begin prototyping document store applications
interactively with MySQL Shell. The guide includes the following topics:

• Introduction to MySQL functionality, MySQL Shell, and the world_x example schema.

• Operations to manage collections and documents.

• Operations to manage relational tables.

• Operations that apply to documents within tables.

To follow this quick-start guide you need a MySQL server with X Plugin installed, the default in 8.0, and
MySQL Shell to use as the client. MySQL Shell includes X DevAPI, implemented in both JavaScript
and Python, which enables you to connect to the MySQL server instance using X Protocol and use the
server as a Document Store.

Related Information

• MySQL Shell 8.0 provides more in-depth information about MySQL Shell.

• See Installing MySQL Shell and Section 22.5, “X Plugin” for more information about the tools used in
this quick-start guide.

• See Supported Languages for more information about the languages MySQL Shell supports.

• X DevAPI User Guide provides more examples of using X DevAPI to develop applications which use
MySQL as a Document Store.

• A JavaScript quick-start guide is also available.

22.4.1 MySQL Shell

This quick-start guide assumes a certain level of familiarity with MySQL Shell. The following section
is a high level overview, see the MySQL Shell documentation for more information. MySQL Shell is a
unified scripting interface to MySQL Server. It supports scripting in JavaScript and Python. JavaScript
is the default processing mode.

Start MySQL Shell

After you have installed and started MySQL server, connect MySQL Shell to the server instance. You
need to know the address of the MySQL server instance you plan to connect to. To be able to use
the instance as a Document Store, the server instance must have X Plugin installed and you should

4083

https://dev.mysql.com/doc/x-devapi-userguide/en/devapi-users-working-with-relational-tables-and-documents.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-features.html#shell-supported-languages
https://dev.mysql.com/doc/x-devapi-userguide/en/

MySQL Shell

connect to the server using X Protocol. For example to connect to the instance ds1.example.com on
the default X Protocol port of 33060 use the network string user@ds1.example.com:33060.

Tip

If you connect to the instance using classic MySQL protocol, for example by
using the default port of 3306 instead of the mysqlx_port, you cannot use
the Document Store functionality shown in this tutorial. For example the db
global object is not populated. To use the Document Store, always connect
using X Protocol.

If MySQL Shell is not already running, open a terminal window and issue:

mysqlsh user@ds1.example.com:33060/world_x

Alternatively, if MySQL Shell is already running use the \connect command by issuing:

\connect user@ds1.example.com:33060/world_x

You need to specify the address of the MySQL server instance which you want to connect MySQL
Shell to. For example in the previous example:

• user represents the user name of your MySQL account.

• ds1.example.com is the hostname of the server instance running MySQL. Replace this with the
hostname of the MySQL server instance you are using as a Document Store.

• The default schema for this session is world_x. For instructions on setting up the world_x
schema, see Section 22.4.2, “Download and Import world_x Database”.

For more information, see Section 6.2.5, “Connecting to the Server Using URI-Like Strings or Key-
Value Pairs”.

Once MySQL Shell opens, the mysql-js> prompt indicates that the active language for this session is
JavaScript. To switch MySQL Shell to Python mode, use the \py command.

mysql-js> \py
Switching to Python mode...
mysql-py>

MySQL Shell supports input-line editing as follows:

• left-arrow and right-arrow keys move horizontally within the current input line.

• up-arrow and down-arrow keys move up and down through the set of previously entered lines.

• Backspace deletes the character before the cursor and typing new characters enters them at the
cursor position.

• Enter sends the current input line to the server.

Get Help for MySQL Shell

Type mysqlsh --help at the prompt of your command interpreter for a list of command-line options.

mysqlsh --help

Type \help at the MySQL Shell prompt for a list of available commands and their descriptions.

mysql-py> \help

Type \help followed by a command name for detailed help about an individual MySQL Shell
command. For example, to view help on the \connect command, issue:

mysql-py> \help \connect

4084

Download and Import world_x Database

Quit MySQL Shell

To quit MySQL Shell, issue the following command:

mysql-py> \quit

Related Information

• See Interactive Code Execution for an explanation of how interactive code execution works in
MySQL Shell.

• See Getting Started with MySQL Shell to learn about session and connection alternatives.

22.4.2 Download and Import world_x Database

As part of this quick-start guide, an example schema is provided which is referred to as the world_x
schema. Many of the examples demonstrate Document Store functionality using this schema. Start
your MySQL server so that you can load the world_x schema, then follow these steps:

1. Download world_x-db.zip.

2. Extract the installation archive to a temporary location such as /tmp/. Unpacking the archive
results in a single file named world_x.sql.

3. Import the world_x.sql file to your server. You can either:

• Start MySQL Shell in SQL mode and import the file by issuing:

mysqlsh -u root --sql --file /tmp/world_x-db/world_x.sql
Enter password: ****

• Set MySQL Shell to SQL mode while it is running and source the schema file by issuing:

\sql
Switching to SQL mode... Commands end with ;
\source /tmp/world_x-db/world_x.sql

Replace /tmp/ with the path to the world_x.sql file on your system. Enter your password if
prompted. A non-root account can be used as long as the account has privileges to create new
schemas.

The world_x Schema

The world_x example schema contains the following JSON collection and relational tables:

• Collection

• countryinfo: Information about countries in the world.

• Tables

• country: Minimal information about countries of the world.

• city: Information about some of the cities in those countries.

• countrylanguage: Languages spoken in each country.

Related Information

• MySQL Shell Sessions explains session types.

22.4.3 Documents and Collections

4085

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-interactive-code-execution.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-getting-started.html
http://downloads.mysql.com/docs/world_x-db.zip
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-sessions.html

Documents and Collections

When you are using MySQL as a Document Store, collections are containers within a schema that you
can create, list, and drop. Collections contain JSON documents that you can add, find, update, and
remove.

The examples in this section use the countryinfo collection in the world_x schema. For
instructions on setting up the world_x schema, see Section 22.4.2, “Download and Import world_x
Database”.

Documents

In MySQL, documents are represented as JSON objects. Internally, they are stored in an efficient
binary format that enables fast lookups and updates.

• Simple document format for Python:

{"field1": "value", "field2" : 10, "field 3": null}

An array of documents consists of a set of documents separated by commas and enclosed within [
and] characters.

• Simple array of documents for Python:

[{"Name": "Aruba", "Code:": "ABW"}, {"Name": "Angola", "Code:": "AGO"}]

MySQL supports the following Python value types in JSON documents:

• numbers (integer and floating point)

• strings

• boolean (False and True)

• None

• arrays of more JSON values

• nested (or embedded) objects of more JSON values

Collections

Collections are containers for documents that share a purpose and possibly share one or more
indexes. Each collection has a unique name and exists within a single schema.

The term schema is equivalent to a database, which means a group of database objects as opposed to
a relational schema, used to enforce structure and constraints over data. A schema does not enforce
conformity on the documents in a collection.

In this quick-start guide:

• Basic objects include:

Object form Description

db db is a global variable assigned to the current
active schema. When you want to run operations
against the schema, for example to retrieve a
collection, you use methods available for the db
variable.

db.get_collections() db.get_collections() returns a list of collections
in the schema. Use the list to get references to
collection objects, iterate over them, and so on.

4086

Documents and Collections

• Basic operations scoped by collections include:

Operation form Description

db.name.add() The add() method inserts one document or a list
of documents into the named collection.

db.name.find() The find() method returns some or all documents
in the named collection.

db.name.modify() The modify() method updates documents in the
named collection.

db.name.remove() The remove() method deletes one document or a
list of documents from the named collection.

Related Information

• See Working with Collections for a general overview.

• CRUD EBNF Definitions provides a complete list of operations.

22.4.3.1 Create, List, and Drop Collections

In MySQL Shell, you can create new collections, get a list of the existing collections in a schema, and
remove an existing collection from a schema. Collection names are case-sensitive and each collection
name must be unique.

Confirm the Schema

To show the value that is assigned to the schema variable, issue:

mysql-py> db

If the schema value is not Schema:world_x, then set the db variable by issuing:

mysql-py> \use world_x

Create a Collection

To create a new collection in an existing schema, use the db object's createCollection() method.
The following example creates a collection called flags in the world_x schema.

mysql-py> db.create_collection("flags")

The method returns a collection object.

<Collection:flags>

List Collections

To display all collections in the world_x schema, use the db object's get_collections() method.
Collections returned by the server you are currently connected to appear between brackets.

mysql-py> db.get_collections()
[
 <Collection:countryinfo>,
 <Collection:flags>
]

Drop a Collection

To drop an existing collection from a schema, use the db object's drop_collection() method. For
example, to drop the flags collection from the current schema, issue:

4087

https://dev.mysql.com/doc/x-devapi-userguide/en/devapi-users-working-with-collections.html
https://dev.mysql.com/doc/x-devapi-userguide/en/mysql-x-crud-ebnf-definitions.html

Documents and Collections

mysql-py> db.drop_collection("flags")

The drop_collection() method is also used in MySQL Shell to drop a relational table from a
schema.

Related Information

• See Collection Objects for more examples.

22.4.3.2 Working with Collections

To work with the collections in a schema, use the db global object to access the current schema. In this
example we are using the world_x schema imported previously, and the countryinfo collection.
Therefore, the format of the operations you issue is db.collection_name.operation, where
collection_name is the name of the collection which the operation is executed against. In the
following examples, the operations are executed against the countryinfo collection.

Add a Document

Use the add() method to insert one document or a list of documents into an existing collection. Insert
the following document into the countryinfo collection. As this is multi-line content, press Enter
twice to insert the document.

mysql-py> db.countryinfo.add(
 {
 "GNP": .6,
 "IndepYear": 1967,
 "Name": "Sealand",
 "Code:": "SEA",
 "demographics": {
 "LifeExpectancy": 79,
 "Population": 27
 },
 "geography": {
 "Continent": "Europe",
 "Region": "British Islands",
 "SurfaceArea": 193
 },
 "government": {
 "GovernmentForm": "Monarchy",
 "HeadOfState": "Michael Bates"
 }
 }
)

The method returns the status of the operation. You can verify the operation by searching for the
document. For example:

mysql-py> db.countryinfo.find("Name = 'Sealand'")
{
 "GNP": 0.6,
 "_id": "00005e2ff4af00000000000000f4",
 "Name": "Sealand",
 "Code:": "SEA",
 "IndepYear": 1967,
 "geography": {
 "Region": "British Islands",
 "Continent": "Europe",
 "SurfaceArea": 193
 },
 "government": {
 "HeadOfState": "Michael Bates",
 "GovernmentForm": "Monarchy"
 },
 "demographics": {
 "Population": 27,
 "LifeExpectancy": 79

4088

https://dev.mysql.com/doc/x-devapi-userguide/en/collection-objects.html

Documents and Collections

 }
}

Note that in addition to the fields specified when the document was added, there is one more field,
the _id. Each document requires an identifier field called _id. The value of the _id field must be
unique among all documents in the same collection. In MySQL 8.0.11 and higher, document IDs are
generated by the server, not the client, so MySQL Shell does not automatically set an _id value. A
MySQL server at 8.0.11 or higher sets an _id value if the document does not contain the _id field.
A MySQL server at an earlier 8.0 release or at 5.7 does not set an _id value in this situation, so you
must specify it explicitly. If you do not, MySQL Shell returns error 5115 Document is missing a
required field. For more information see Understanding Document IDs.

Related Information

• See CollectionAddFunction for the full syntax definition.

• See Understanding Document IDs.

22.4.3.3 Find Documents

You can use the find() method to query for and return documents from a collection in a schema.
MySQL Shell provides additional methods to use with the find() method to filter and sort the returned
documents.

MySQL provides the following operators to specify search conditions: OR (||), AND (&&), XOR, IS, NOT,
BETWEEN, IN, LIKE, !=, <>, >, >=, <, <=, &, |, <<, >>, +, -, *, /, ~, and %.

Find All Documents in a Collection

To return all documents in a collection, use the find() method without specifying search conditions.
For example, the following operation returns all documents in the countryinfo collection.

mysql-py> db.countryinfo.find()
[
 {
 "GNP": 828,
 "Code:": "ABW",
 "Name": "Aruba",
 "IndepYear": null,
 "geography": {
 "Continent": "North America",
 "Region": "Caribbean",
 "SurfaceArea": 193
 },
 "government": {
 "GovernmentForm": "Nonmetropolitan Territory of The Netherlands",
 "HeadOfState": "Beatrix"
 }
 "demographics": {
 "LifeExpectancy": 78.4000015258789,
 "Population": 103000
 },
 ...
 }
]
240 documents in set (0.00 sec)

The method produces results that contain operational information in addition to all documents in the
collection.

An empty set (no matching documents) returns the following information:

Empty set (0.00 sec)

Filter Searches

4089

https://dev.mysql.com/doc/x-devapi-userguide/en/understanding-automatic-document-ids.html
https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-collection-crud-functions.html#crud-ebnf-collectionaddfunction
https://dev.mysql.com/doc/x-devapi-userguide/en/understanding-automatic-document-ids.html

Documents and Collections

You can include search conditions with the find() method. The syntax for expressions that form a
search condition is the same as that of traditional MySQL Chapter 14, Functions and Operators. You
must enclose all expressions in quotes. For the sake of brevity, some of the examples do not display
output.

A simple search condition could consist of the Name field and a value we know is in a document. The
following example returns a single document:

mysql-py> db.countryinfo.find("Name = 'Australia'")
[
 {
 "GNP": 351182,
 "Code:": "AUS",
 "Name": "Australia",
 "IndepYear": 1901,
 "geography": {
 "Continent": "Oceania",
 "Region": "Australia and New Zealand",
 "SurfaceArea": 7741220
 },
 "government": {
 "GovernmentForm": "Constitutional Monarchy, Federation",
 "HeadOfState": "Elisabeth II"
 }
 "demographics": {
 "LifeExpectancy": 79.80000305175781,
 "Population": 18886000
 },
 }
]

The following example searches for all countries that have a GNP higher than $500 billion. The
countryinfo collection measures GNP in units of million.

mysql-py> db.countryinfo.find("GNP > 500000")
...[output removed]
10 documents in set (0.00 sec)

The Population field in the following query is embedded within the demographics object. To access
the embedded field, use a period between demographics and Population to identify the relationship.
Document and field names are case-sensitive.

mysql-py> db.countryinfo.find("GNP > 500000 and demographics.Population < 100000000")
...[output removed]
6 documents in set (0.00 sec)

Arithmetic operators in the following expression are used to query for countries with a GNP per capita
higher than $30000. Search conditions can include arithmetic operators and most MySQL functions.

Note

Seven documents in the countryinfo collection have a population value of
zero. Therefore warning messages appear at the end of the output.

mysql-py> db.countryinfo.find("GNP*1000000/demographics.Population > 30000")
...[output removed]
9 documents in set, 7 warnings (0.00 sec)
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0
Warning (Code 1365): Division by 0

You can separate a value from the search condition by using the bind() method. For example,
instead of specifying a hard-coded country name as the condition, substitute a named placeholder

4090

Documents and Collections

consisting of a colon followed by a name that begins with a letter, such as country. Then use the
bind(placeholder, value) method as follows:

mysql-py> db.countryinfo.find("Name = :country").bind("country", "Italy")
{
 "GNP": 1161755,
 "_id": "00005de917d8000000000000006a",
 "Code": "ITA",
 "Name": "Italy",
 "Airports": [],
 "IndepYear": 1861,
 "geography": {
 "Region": "Southern Europe",
 "Continent": "Europe",
 "SurfaceArea": 301316
 },
 "government": {
 "HeadOfState": "Carlo Azeglio Ciampi",
 "GovernmentForm": "Republic"
 },
 "demographics": {
 "Population": 57680000,
 "LifeExpectancy": 79
 }
}
1 document in set (0.01 sec)

Tip

Within a program, binding enables you to specify placeholders in your
expressions, which are filled in with values before execution and can benefit
from automatic escaping, as appropriate.

Always use binding to sanitize input. Avoid introducing values in queries using
string concatenation, which can produce invalid input and, in some cases, can
cause security issues.

You can use placeholders and the bind() method to create saved searches which you can then call
with different values. For example to create a saved search for a country:

mysql-py> myFind = db.countryinfo.find("Name = :country")
mysql-py> myFind.bind('country', 'France')
{
 "GNP": 1424285,
 "_id": "00005de917d80000000000000048",
 "Code": "FRA",
 "Name": "France",
 "IndepYear": 843,
 "geography": {
 "Region": "Western Europe",
 "Continent": "Europe",
 "SurfaceArea": 551500
 },
 "government": {
 "HeadOfState": "Jacques Chirac",
 "GovernmentForm": "Republic"
 },
 "demographics": {
 "Population": 59225700,
 "LifeExpectancy": 78.80000305175781
 }
}
1 document in set (0.0028 sec)

mysql-py> myFind.bind('country', 'Germany')
{
 "GNP": 2133367,
 "_id": "00005de917d80000000000000038",
 "Code": "DEU",
 "Name": "Germany",

4091

Documents and Collections

 "IndepYear": 1955,
 "geography": {
 "Region": "Western Europe",
 "Continent": "Europe",
 "SurfaceArea": 357022
 },
 "government": {
 "HeadOfState": "Johannes Rau",
 "GovernmentForm": "Federal Republic"
 },
 "demographics": {
 "Population": 82164700,
 "LifeExpectancy": 77.4000015258789
 }
}

1 document in set (0.0026 sec)

Project Results

You can return specific fields of a document, instead of returning all the fields. The following example
returns the GNP and Name fields of all documents in the countryinfo collection matching the search
conditions.

Use the fields() method to pass the list of fields to return.

mysql-py> db.countryinfo.find("GNP > 5000000").fields(["GNP", "Name"])
[
 {
 "GNP": 8510700,
 "Name": "United States"
 }
]
1 document in set (0.00 sec)

In addition, you can alter the returned documents—adding, renaming, nesting and even computing new
field values—with an expression that describes the document to return. For example, alter the names
of the fields with the following expression to return only two documents.

mysql-py> db.countryinfo.find().fields(
mysqlx.expr('{"Name": upper(Name), "GNPPerCapita": GNP*1000000/demographics.Population}')).limit(2)
{
 "Name": "ARUBA",
 "GNPPerCapita": 8038.834951456311
}
{
 "Name": "AFGHANISTAN",
 "GNPPerCapita": 263.0281690140845
}

Limit, Sort, and Skip Results

You can apply the limit(), sort(), and skip() methods to manage the number and order of
documents returned by the find() method.

To specify the number of documents included in a result set, append the limit() method with a
value to the find() method. The following query returns the first five documents in the countryinfo
collection.

mysql-py> db.countryinfo.find().limit(5)
... [output removed]
5 documents in set (0.00 sec)

To specify an order for the results, append the sort() method to the find() method. Pass to
the sort() method a list of one or more fields to sort by and, optionally, the descending (desc) or
ascending (asc) attribute as appropriate. Ascending order is the default order type.

4092

Documents and Collections

For example, the following query sorts all documents by the IndepYear field and then returns the first
eight documents in descending order.

mysql-py> db.countryinfo.find().sort(["IndepYear desc"]).limit(8)
... [output removed]
8 documents in set (0.00 sec)

By default, the limit() method starts from the first document in the collection. You can use the
skip() method to change the starting document. For example, to ignore the first document and return
the next eight documents matching the condition, pass to the skip() method a value of 1.

mysql-py> db.countryinfo.find().sort(["IndepYear desc"]).limit(8).skip(1)
... [output removed]
8 documents in set (0.00 sec)

Related Information

• The MySQL Reference Manual provides detailed documentation on functions and operators.

• See CollectionFindFunction for the full syntax definition.

22.4.3.4 Modify Documents

You can use the modify() method to update one or more documents in a collection. The X DevAPI
provides additional methods for use with the modify() method to:

• Set and unset fields within documents.

• Append, insert, and delete arrays.

• Bind, limit, and sort the documents to be modified.

Set and Unset Document Fields

The modify() method works by filtering a collection to include only the documents to be modified and
then applying the operations that you specify to those documents.

In the following example, the modify() method uses the search condition to identify the document to
change and then the set() method replaces two values within the nested demographics object.

mysql-py> db.countryinfo.modify("Code = 'SEA'").set(
"demographics", {"LifeExpectancy": 78, "Population": 28})

After you modify a document, use the find() method to verify the change.

To remove content from a document, use the modify() and unset() methods. For example, the
following query removes the GNP from a document that matches the search condition.

mysql-py> db.countryinfo.modify("Name = 'Sealand'").unset("GNP")

Use the find() method to verify the change.

mysql-py> db.countryinfo.find("Name = 'Sealand'")
{
 "_id": "00005e2ff4af00000000000000f4",
 "Name": "Sealand",
 "Code:": "SEA",
 "IndepYear": 1967,
 "geography": {
 "Region": "British Islands",
 "Continent": "Europe",
 "SurfaceArea": 193
 },
 "government": {
 "HeadOfState": "Michael Bates",
 "GovernmentForm": "Monarchy"
 },

4093

https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-collection-crud-functions.html#crud-ebnf-collectionfindfunction

Documents and Collections

 "demographics": {
 "Population": 27,
 "LifeExpectancy": 79
 }
}

Append, Insert, and Delete Arrays

To append an element to an array field, or insert, or delete elements in an array, use the
array_append(), array_insert(), or array_delete() methods. The following examples
modify the countryinfo collection to enable tracking of international airports.

The first example uses the modify() and set() methods to create a new Airports field in all
documents.

Caution

Use care when you modify documents without specifying a search condition;
doing so modifies all documents in the collection.

mysql-py> db.countryinfo.modify("true").set("Airports", [])

With the Airports field added, the next example uses the array_append() method to add a new
airport to one of the documents. $.Airports in the following example represents the Airports field of the
current document.

mysql-py> db.countryinfo.modify("Name = 'France'").array_append("$.Airports", "ORY")

Use find() to see the change.

mysql-py> db.countryinfo.find("Name = 'France'")
{
 "GNP": 1424285,
 "_id": "00005de917d80000000000000048",
 "Code": "FRA",
 "Name": "France",
 "Airports": [
 "ORY"
],
 "IndepYear": 843,
 "geography": {
 "Region": "Western Europe",
 "Continent": "Europe",
 "SurfaceArea": 551500
 },
 "government": {
 "HeadOfState": "Jacques Chirac",
 "GovernmentForm": "Republic"
 },
 "demographics": {
 "Population": 59225700,
 "LifeExpectancy": 78.80000305175781
 }
}

To insert an element at a different position in the array, use the array_insert() method to specify
which index to insert in the path expression. In this case, the index is 0, or the first element in the array.

mysql-py> db.countryinfo.modify("Name = 'France'").array_insert("$.Airports[0]", "CDG")

To delete an element from the array, you must pass to the array_delete() method the index of the
element to be deleted.

mysql-py> db.countryinfo.modify("Name = 'France'").array_delete("$.Airports[1]")

Related Information

• The MySQL Reference Manual provides instructions to help you search for and modify JSON values.

4094

Documents and Collections

• See CollectionModifyFunction for the full syntax definition.

22.4.3.5 Remove Documents

You can use the remove() method to delete some or all documents from a collection in a schema.
The X DevAPI provides additional methods for use with the remove() method to filter and sort the
documents to be removed.

Remove Documents Using Conditions

The following example passes a search condition to the remove() method. All documents matching
the condition are removed from the countryinfo collection. In this example, one document matches
the condition.

mysql-py> db.countryinfo.remove("Code = 'SEA'")

Remove the First Document

To remove the first document in the countryinfo collection, use the limit() method with a value of
1.

mysql-py> db.countryinfo.remove("true").limit(1)

Remove the Last Document in an Order

The following example removes the last document in the countryinfo collection by country name.

mysql-py> db.countryinfo.remove("true").sort(["Name desc"]).limit(1)

Remove All Documents in a Collection

You can remove all documents in a collection. To do so, use the remove("true") method without
specifying a search condition.

Caution

Use care when you remove documents without specifying a search condition.
This action deletes all documents from the collection.

Alternatively, use the db.drop_collection('countryinfo') operation to delete the
countryinfo collection.

Related Information

• See CollectionRemoveFunction for the full syntax definition.

• See Section 22.4.2, “Download and Import world_x Database” for instructions to recreate the
world_x schema.

22.4.3.6 Create and Drop Indexes

Indexes are used to find documents with specific field values quickly. Without an index, MySQL must
begin with the first document and then read through the entire collection to find the relevant fields.
The larger the collection, the more this costs. If a collection is large and queries on a specific field are
common, then consider creating an index on a specific field inside a document.

For example, the following query performs better with an index on the Population field:

mysql-py> db.countryinfo.find("demographics.Population < 100")
...[output removed]
8 documents in set (0.00 sec)

4095

https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-collection-crud-functions.html#crud-ebnf-collectionmodifyfunction
https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-collection-crud-functions.html#crud-ebnf-collectionremovefunction

Relational Tables

The create_index() method creates an index that you can define with a JSON document that
specifies which fields to use. This section is a high level overview of indexing. For more information see
Indexing Collections.

Add a Nonunique Index

To create a nonunique index, pass an index name and the index information to the create_index()
method. Duplicate index names are prohibited.

The following example specifies an index named popul, defined against the Population field from
the demographics object, indexed as an Integer numeric value. The final parameter indicates
whether the field should require the NOT NULL constraint. If the value is false, the field can contain
NULL values. The index information is a JSON document with details of one or more fields to include in
the index. Each field definition must include the full document path to the field, and specify the type of
the field.

mysql-py> db.countryinfo.createIndex("popul", {fields:
[{field: '$.demographics.Population', type: 'INTEGER'}]})

Here, the index is created using an integer numeric value. Further options are available, including
options for use with GeoJSON data. You can also specify the type of index, which has been omitted
here because the default type “index” is appropriate.

Add a Unique Index

To create a unique index, pass an index name, the index definition, and the index type “unique” to
the create_index() method. This example shows a unique index created on the country name
("Name"), which is another common field in the countryinfo collection to index. In the index field
description, "TEXT(40)" represents the number of characters to index, and "required": True
specifies that the field is required to exist in the document.

mysql-py> db.countryinfo.create_index("name",
{"fields": [{"field": "$.Name", "type": "TEXT(40)", "required": True}], "unique": True})

Drop an Index

To drop an index, pass the name of the index to drop to the drop_index() method. For example, you
can drop the “popul” index as follows:

mysql-py> db.countryinfo.drop_index("popul")

Related Information

• See Indexing Collections for more information.

• See Defining an Index for more information on the JSON document that defines an index.

• See Collection Index Management Functions for the full syntax definition.

22.4.4 Relational Tables

You can also use X DevAPI to work with relational tables. In MySQL, each relational table is associated
with a particular storage engine. The examples in this section use InnoDB tables in the world_x
schema.

Confirm the Schema

To show the schema that is assigned to the db global variable, issue db.

mysql-py> db
<Schema:world_x>

If the returned value is not Schema:world_x, set the db variable as follows:

4096

https://dev.mysql.com/doc/x-devapi-userguide/en/collection-indexing.html
https://dev.mysql.com/doc/x-devapi-userguide/en/collection-indexing.html
https://dev.mysql.com/doc/x-devapi-userguide/en/collection-indexing.html#collection-index-definitions
https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-collection-index-management-functions.html

Relational Tables

mysql-py> \use world_x
Schema `world_x` accessible through db.

Show All Tables

To display all relational tables in the world_x schema, use the get_tables() method on the db
object.

mysql-py> db.get_tables()
[
 <Table:city>,
 <Table:country>,
 <Table:countrylanguage>
]

Basic Table Operations

Basic operations scoped by tables include:

Operation form Description

db.name.insert() The insert() method inserts one or more records
into the named table.

db.name.select() The select() method returns some or all records in
the named table.

db.name.update() The update() method updates records in the
named table.

db.name.delete() The delete() method deletes one or more records
from the named table.

Related Information

• See Working with Relational Tables for more information.

• CRUD EBNF Definitions provides a complete list of operations.

• See Section 22.4.2, “Download and Import world_x Database” for instructions on setting up the
world_x schema sample.

22.4.4.1 Insert Records into Tables

You can use the insert() method with the values() method to insert records into an existing
relational table. The insert() method accepts individual columns or all columns in the table. Use one
or more values() methods to specify the values to be inserted.

Insert a Complete Record

To insert a complete record, pass to the insert() method all columns in the table. Then pass to the
values() method one value for each column. For example, to add a new record to the city table in the
world_x database, insert the following record and press Enter twice.

mysql-py> db.city.insert("ID", "Name", "CountryCode", "District", "Info").values(
None, "Olympia", "USA", "Washington", '{"Population": 5000}')

The city table has five columns: ID, Name, CountryCode, District, and Info. Each value must match the
data type of the column it represents.

Insert a Partial Record

The following example inserts values into the ID, Name, and CountryCode columns of the city table.

mysql-py> db.city.insert("ID", "Name", "CountryCode").values(

4097

https://dev.mysql.com/doc/x-devapi-userguide/en/devapi-users-working-with-relational-tables.html
https://dev.mysql.com/doc/x-devapi-userguide/en/mysql-x-crud-ebnf-definitions.html

Relational Tables

None, "Little Falls", "USA").values(None, "Happy Valley", "USA")

When you specify columns using the insert() method, the number of values must match the
number of columns. In the previous example, you must supply three values to match the three columns
specified.

Related Information

• See TableInsertFunction for the full syntax definition.

22.4.4.2 Select Tables

You can use the select() method to query for and return records from a table in a database. The X
DevAPI provides additional methods to use with the select() method to filter and sort the returned
records.

MySQL provides the following operators to specify search conditions: OR (||), AND (&&), XOR, IS, NOT,
BETWEEN, IN, LIKE, !=, <>, >, >=, <, <=, &, |, <<, >>, +, -, *, /, ~, and %.

Select All Records

To issue a query that returns all records from an existing table, use the select() method without
specifying search conditions. The following example selects all records from the city table in the
world_x database.

Note

Limit the use of the empty select() method to interactive statements. Always
use explicit column-name selections in your application code.

mysql-py> db.city.select()
+------+------------+-------------+------------+-------------------------+
| ID | Name | CountryCode | District | Info |
+------+------------+-------------+------------+-------------------------+
1	Kabul	AFG	Kabol	{"Population": 1780000}
2	Qandahar	AFG	Qandahar	{"Population": 237500}
3	Herat	AFG	Herat	{"Population": 186800}
... 				
4079	Rafah	PSE	Rafah	{"Population": 92020}
+------+------- ----+-------------+------------+-------------------------+
4082 rows in set (0.01 sec)

An empty set (no matching records) returns the following information:

Empty set (0.00 sec)

Filter Searches

To issue a query that returns a set of table columns, use the select() method and specify the
columns to return between square brackets. This query returns the Name and CountryCode columns
from the city table.

mysql-py> db.city.select(["Name", "CountryCode"])
+-------------------+-------------+
| Name | CountryCode |
+-------------------+-------------+
Kabul	AFG
Qandahar	AFG
Herat	AFG
Mazar-e-Sharif	AFG
Amsterdam	NLD
... ...	
Rafah	PSE
Olympia	USA
Little Falls	USA

4098

https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-table-crud-functions.html#crud-ebnf-tableinsertfunction

Relational Tables

| Happy Valley | USA |
+-------------------+-------------+
4082 rows in set (0.00 sec)

To issue a query that returns rows matching specific search conditions, use the where() method to
include those conditions. For example, the following example returns the names and country codes of
the cities that start with the letter Z.

mysql-py> db.city.select(["Name", "CountryCode"]).where("Name like 'Z%'")
+-------------------+-------------+
| Name | CountryCode |
+-------------------+-------------+
Zaanstad	NLD
Zoetermeer	NLD
Zwolle	NLD
Zenica	BIH
Zagazig	EGY
Zaragoza	ESP
Zamboanga	PHL
Zahedan	IRN
Zanjan	IRN
Zabol	IRN
Zama	JPN
Zhezqazghan	KAZ
Zhengzhou	CHN
... ...	
Zeleznogorsk	RUS
+-------------------+-------------+
59 rows in set (0.00 sec)

You can separate a value from the search condition by using the bind() method. For example,
instead of using "Name = 'Z%' " as the condition, substitute a named placeholder consisting of a colon
followed by a name that begins with a letter, such as name. Then include the placeholder and value in
the bind() method as follows:

mysql-py> db.city.select(["Name", "CountryCode"]).where(
"Name like :name").bind("name", "Z%")

Tip

Within a program, binding enables you to specify placeholders in your
expressions, which are filled in with values before execution and can benefit
from automatic escaping, as appropriate.

Always use binding to sanitize input. Avoid introducing values in queries using
string concatenation, which can produce invalid input and, in some cases, can
cause security issues.

Project Results

To issue a query using the AND operator, add the operator between search conditions in the where()
method.

mysql-py> db.city.select(["Name", "CountryCode"]).where(
"Name like 'Z%' and CountryCode = 'CHN'")
+----------------+-------------+
| Name | CountryCode |
+----------------+-------------+
Zhengzhou	CHN
Zibo	CHN
Zhangjiakou	CHN
Zhuzhou	CHN
Zhangjiang	CHN
Zigong	CHN
Zaozhuang	CHN
... ...	
Zhangjiagang	CHN
+----------------+-------------+

4099

Relational Tables

22 rows in set (0.01 sec)

To specify multiple conditional operators, you can enclose the search conditions in parenthesis to
change the operator precedence. The following example demonstrates the placement of AND and OR
operators.

mysql-py> db.city.select(["Name", "CountryCode"]).where(
"Name like 'Z%' and (CountryCode = 'CHN' or CountryCode = 'RUS')")
+-------------------+-------------+
| Name | CountryCode |
+-------------------+-------------+
Zhengzhou	CHN
Zibo	CHN
Zhangjiakou	CHN
Zhuzhou	CHN
... ...	
Zeleznogorsk	RUS
+-------------------+-------------+
29 rows in set (0.01 sec)

Limit, Order, and Offset Results

You can apply the limit(), order_by(), and offset() methods to manage the number and order
of records returned by the select() method.

To specify the number of records included in a result set, append the limit() method with a value
to the select() method. For example, the following query returns the first five records in the country
table.

mysql-py> db.country.select(["Code", "Name"]).limit(5)
+------+-------------+
| Code | Name |
+------+-------------+
ABW	Aruba
AFG	Afghanistan
AGO	Angola
AIA	Anguilla
ALB	Albania
+------+-------------+
5 rows in set (0.00 sec)

To specify an order for the results, append the order_by() method to the select() method. Pass
to the order_by() method a list of one or more columns to sort by and, optionally, the descending
(desc) or ascending (asc) attribute as appropriate. Ascending order is the default order type.

For example, the following query sorts all records by the Name column and then returns the first three
records in descending order .

mysql-py> db.country.select(["Code", "Name"]).order_by(["Name desc"]).limit(3)
+------+------------+
| Code | Name |
+------+------------+
ZWE	Zimbabwe
ZMB	Zambia
YUG	Yugoslavia
+------+------------+
3 rows in set (0.00 sec)

By default, the limit() method starts from the first record in the table. You can use the offset()
method to change the starting record. For example, to ignore the first record and return the next three
records matching the condition, pass to the offset() method a value of 1.

mysql-py> db.country.select(["Code", "Name"]).order_by(["Name desc"]).limit(3).offset(1)
+------+------------+
| Code | Name |
+------+------------+
| ZMB | Zambia |
| YUG | Yugoslavia |

4100

Relational Tables

| YEM | Yemen |
+------+------------+
3 rows in set (0.00 sec)

Related Information

• The MySQL Reference Manual provides detailed documentation on functions and operators.

• See TableSelectFunction for the full syntax definition.

22.4.4.3 Update Tables

You can use the update() method to modify one or more records in a table. The update() method
works by filtering a query to include only the records to be updated and then applying the operations
you specify to those records.

To replace a city name in the city table, pass to the set() method the new city name. Then, pass to
the where() method the city name to locate and replace. The following example replaces the city
Peking with Beijing.

mysql-py> db.city.update().set("Name", "Beijing").where("Name = 'Peking'")

Use the select() method to verify the change.

mysql-py> db.city.select(["ID", "Name", "CountryCode", "District", "Info"]).where("Name = 'Beijing'")
+------+-----------+-------------+----------+-----------------------------+
| ID | Name | CountryCode | District | Info |
+------+-----------+-------------+----------+-----------------------------+
| 1891 | Beijing | CHN | Peking | {"Population": 7472000} |
+------+-----------+-------------+----------+-----------------------------+
1 row in set (0.00 sec)

Related Information

• See TableUpdateFunction for the full syntax definition.

22.4.4.4 Delete Tables

You can use the delete() method to remove some or all records from a table in a database. The X
DevAPI provides additional methods to use with the delete() method to filter and order the records
to be deleted.

Delete Records Using Conditions

The example that follows passes search conditions to the delete() method. All records matching the
condition are deleted from the city table. In this example, one record matches the condition.

mysql-py> db.city.delete().where("Name = 'Olympia'")

Delete the First Record

To delete the first record in the city table, use the limit() method with a value of 1.

mysql-py> db.city.delete().limit(1)

Delete All Records in a Table

You can delete all records in a table. To do so, use the delete() method without specifying a search
condition.

Caution

Use care when you delete records without specifying a search condition; doing
so deletes all records from the table.

4101

https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-table-crud-functions.html#crud-ebnf-tableselectfunction
https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-table-crud-functions.html#crud-ebnf-tableupdatefunction

Documents in Tables

Drop a Table

The drop_collection() method is also used in MySQL Shell to drop a relational table from a
database. For example, to drop the citytest table from the world_x database, issue:

mysql-py> db.drop_collection("citytest")

Related Information

• See TableDeleteFunction for the full syntax definition.

• See Section 22.4.2, “Download and Import world_x Database” for instructions to recreate the
world_x database.

22.4.5 Documents in Tables

In MySQL, a table may contain traditional relational data, JSON values, or both. You can combine
traditional data with JSON documents by storing the documents in columns having a native JSON data
type.

Examples in this section use the city table in the world_x schema.

city Table Description

The city table has five columns (or fields).

+---------------+------------+-------+-------+---------+------------------+
| Field | Type | Null | Key | Default | Extra |
+---------------+------------+-------+-------+---------+------------------+
ID	int(11)	NO	PRI	null	auto_increment
Name	char(35)	NO			
CountryCode	char(3)	NO			
District	char(20)	NO			
Info	json	YES		null	
+---------------+------------+-------+-------+---------+------------------+

Insert a Record

To insert a document into the column of a table, pass to the values() method a well-formed JSON
document in the correct order. In the following example, a document is passed as the final value to be
inserted into the Info column.

mysql-py> db.city.insert().values(
None, "San Francisco", "USA", "California", '{"Population":830000}')

Select a Record

You can issue a query with a search condition that evaluates document values in the expression.

mysql-py> db.city.select(["ID", "Name", "CountryCode", "District", "Info"]).where(
"CountryCode = :country and Info->'$.Population' > 1000000").bind(
'country', 'USA')
+------+----------------+-------------+----------------+-----------------------------+
| ID | Name | CountryCode | District | Info |
+------+----------------+-------------+----------------+-----------------------------+
3793	New York	USA	New York	{"Population": 8008278}
3794	Los Angeles	USA	California	{"Population": 3694820}
3795	Chicago	USA	Illinois	{"Population": 2896016}
3796	Houston	USA	Texas	{"Population": 1953631}
3797	Philadelphia	USA	Pennsylvania	{"Population": 1517550}
3798	Phoenix	USA	Arizona	{"Population": 1321045}
3799	San Diego	USA	California	{"Population": 1223400}
3800	Dallas	USA	Texas	{"Population": 1188580}
3801	San Antonio	USA	Texas	{"Population": 1144646}
+------+----------------+-------------+----------------+-----------------------------+
9 rows in set (0.01 sec)

4102

https://dev.mysql.com/doc/x-devapi-userguide/en/crud-ebnf-table-crud-functions.html#crud-ebnf-tabledeletefunction

X Plugin

Related Information

• See Working with Relational Tables and Documents for more information.

• See Section 13.5, “The JSON Data Type” for a detailed description of the data type.

22.5 X Plugin
This section explains how to use, configure and monitor X Plugin.

22.5.1 Checking X Plugin Installation

X Plugin is enabled by default in MySQL 8, therefore installing or upgrading to MySQL 8 makes the
plugin available. You can verify X Plugin is installed on an instance of MySQL server by using the SHOW
plugins statement to view the plugins list.

To use MySQL Shell to verify X Plugin is installed, issue:

$> mysqlsh -u user --sqlc -P 3306 -e "SHOW plugins"

To use MySQL Client to verify X Plugin is installed, issue:

$> mysql -u user -p -e "SHOW plugins"

An example result if X Plugin is installed is highlighted here:

+----------------------------+----------+--------------------+---------+---------+
| Name | Status | Type | Library | License |
+----------------------------+----------+--------------------+---------+---------+

...

| mysqlx | ACTIVE | DAEMON | NULL | GPL |

...

+----------------------------+----------+--------------------+---------+---------+

22.5.2 Disabling X Plugin

The X Plugin can be disabled at startup by either setting mysqlx=0 in your MySQL configuration file,
or by passing in either --mysqlx=0 or --skip-mysqlx when starting the MySQL server.

Alternatively, use the -DWITH_MYSQLX=OFF CMake option to compile MySQL Server without X Plugin.

22.5.3 Using Encrypted Connections with X Plugin

This section explains how to configure X Plugin to use encrypted connections. For more background
information, see Section 8.3, “Using Encrypted Connections”.

To enable configuring support for encrypted connections, X Plugin has mysqlx_ssl_xxx system
variables, which can have different values from the ssl_xxx system variables used with MySQL
Server. For example, X Plugin can have SSL key, certificate, and certificate authority files that
differ from those used for MySQL Server. These variables are described at Section 22.5.6.2, “X
Plugin Options and System Variables”. Similarly, X Plugin has its own Mysqlx_ssl_xxx status
variables that correspond to the MySQL Server encrypted-connection Ssl_xxx status variables. See
Section 22.5.6.3, “X Plugin Status Variables”.

At initialization, X Plugin determines its TLS context for encrypted connections as follows:

• If all mysqlx_ssl_xxx system variables have their default values, X Plugin uses the same TLS
context as the MySQL Server main connection interface, which is determined by the values of the
ssl_xxx system variables.

4103

https://dev.mysql.com/doc/x-devapi-userguide/en/devapi-users-working-with-relational-tables-and-documents.html

Using X Plugin with the Caching SHA-2 Authentication Plugin

• If any mysqlx_ssl_xxx variable has a nondefault value, X Plugin uses the TLS context defined by
the values of its own system variables. (This is the case if any mysqlx_ssl_xxx system variable is
set to a value different from its default.)

This means that, on a server with X Plugin enabled, you can choose to have MySQL Protocol and X
Protocol connections share the same encryption configuration by setting only the ssl_xxx variables,
or have separate encryption configurations for MySQL Protocol and X Protocol connections by
configuring the ssl_xxx and mysqlx_ssl_xxx variables separately.

To have MySQL Protocol and X Protocol connections use the same encryption configuration, set only
the ssl_xxx system variables in my.cnf:

[mysqld]
ssl_ca=ca.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem

To configure encryption separately for MySQL Protocol and X Protocol connections, set both the
ssl_xxx and mysqlx_ssl_xxx system variables in my.cnf:

[mysqld]
ssl_ca=ca1.pem
ssl_cert=server-cert1.pem
ssl_key=server-key1.pem

mysqlx_ssl_ca=ca2.pem
mysqlx_ssl_cert=server-cert2.pem
mysqlx_ssl_key=server-key2.pem

For general information about configuring connection-encryption support, see Section 8.3.1,
“Configuring MySQL to Use Encrypted Connections”. That discussion is written for MySQL Server, but
the parameter names are similar for X Plugin. (The X Plugin mysqlx_ssl_xxx system variable names
correspond to the MySQL Server ssl_xxx system variable names.)

The tls_version system variable that determines the permitted TLS versions for MySQL Protocol
connections also applies to X Protocol connections. The permitted TLS versions for both types of
connections are therefore the same.

Encryption per connection is optional, but a specific user can be required to use encryption for
X Protocol and MySQL Protocol connections by including an appropriate REQUIRE clause in the
CREATE USER statement that creates the user. For details, see Section 15.7.1.3, “CREATE USER
Statement”. Alternatively, to require all users to use encryption for X Protocol and MySQL Protocol
connections, enable the require_secure_transport system variable. For additional information,
see Configuring Encrypted Connections as Mandatory.

22.5.4 Using X Plugin with the Caching SHA-2 Authentication Plugin

X Plugin supports MySQL user accounts created with the caching_sha2_password authentication
plugin. For more information on this plugin, see Section 8.4.1.2, “Caching SHA-2 Pluggable
Authentication”. You can use X Plugin to authenticate against such accounts using non-SSL
connections with SHA256_MEMORY authentication and SSL connections with PLAIN authentication.

Although the caching_sha2_password authentication plugin holds an authentication cache, this
cache is not shared with X Plugin, so X Plugin uses its own authentication cache for SHA256_MEMORY
authentication. The X Plugin authentication cache stores hashes of user account passwords,
and cannot be accessed using SQL. If a user account is modified or removed, the relevant
entries are removed from the cache. The X Plugin authentication cache is maintained by the
mysqlx_cache_cleaner plugin, which is enabled by default, and has no related system variables or
status variables.

Before you can use non-SSL X Protocol connections to authenticate an account that uses the
caching_sha2_password authentication plugin, the account must have authenticated at least once

4104

Connection Compression with X Plugin

over an X Protocol connection with SSL, to supply the password to the X Plugin authentication cache.
Once this initial authentication over SSL has succeeded, non-SSL X Protocol connections can be used.

It is possible to disable the mysqlx_cache_cleaner plugin by starting the MySQL server with
the option --mysqlx_cache_cleaner=0. If you do this, the X Plugin authentication cache is
disabled, and therefore SSL must always be used for X Protocol connections when authenticating with
SHA256_MEMORY authentication.

22.5.5 Connection Compression with X Plugin

From MySQL 8.0.19, X Plugin supports compression of messages sent over X Protocol connections.
Connections can be compressed if the server and the client agree on a mutually supported
compression algorithm. Enabling compression reduces the number of bytes sent over the network, but
adds to the server and client an additional CPU cost for compression and decompression operations.
The benefits of compression therefore occur primarily when there is low network bandwidth, network
transfer time dominates the cost of compression and decompression operations, and result sets are
large.

Note

Different MySQL clients implement support for connection compression
differently; consult your client documentation for details. For example, for classic
MySQL protocol connections, see Section 6.2.8, “Connection Compression
Control”.

• Configuring Connection Compression for X Plugin

• Compressed Connection Characteristics for X Plugin

• Monitoring Connection Compression for X Plugin

Configuring Connection Compression for X Plugin

By default, X Plugin supports the zstd, LZ4, and Deflate compression algorithms. Compression with the
Deflate algorithm is carried out using the zlib software library, so the deflate_stream compression
algorithm setting for X Protocol connections is equivalent to the zlib setting for classic MySQL
protocol connections.

On the server side, you can disallow any of the compression algorithms by setting the
mysqlx_compression_algorithms system variable to include only those permitted. The algorithm
names zstd_stream, lz4_message, and deflate_stream can be specified in any combination,
and the order and lettercase are not important. If the system variable value is the empty string, no
compression algorithms are permitted and connections are uncompressed.

The following table compares the characteristics of the different compression algorithms and shows
their assigned priorities. By default, the server chooses the highest-priority algorithm permitted in
common by the server and the client; clients may change the priorities as described later. The short
form alias for the algorithms can be used by clients when specifying them.

Table 22.1 X Protocol Compression Algorithm Characteristics

Algorithm Alias Compression
Ratio

Throughput CPU Cost Default Priority

zsth_stream zstd High High Medium First

lz4_message lz4 Low High Lowest Second

deflate_streamdeflate High Low Highest Third

The X Protocol set of permitted compression algorithms (whether user-specified or default) is
independent of the set of compression algorithms permitted by MySQL Server for classic MySQL
protocol connections, which is specified by the protocol_compression_algorithms server

4105

Connection Compression with X Plugin

system variable. If you do not specify the mysqlx_compression_algorithms system variable,
X Plugin does not fall back to using compression settings for classic MySQL protocol connections.
Instead, its default is to permit all algorithms shown in Table 22.1, “X Protocol Compression
Algorithm Characteristics”. This is unlike the situation for the TLS context, where MySQL Server
settings are used if the X Plugin system variables are not set, as described in Section 22.5.3, “Using
Encrypted Connections with X Plugin”. For information about compression for classic MySQL protocol
connections, see Section 6.2.8, “Connection Compression Control”.

On the client side, an X Protocol connection request can specify several parameters for compression
control:

• The compression mode.

• The compression level (from MySQL 8.0.20).

• The list of permitted compression algorithms in priority order (from MySQL 8.0.22).

Note

Some clients or Connectors might not support a given compression-control
feature. For example, specifying compression level for X Protocol connections is
supported only by MySQL Shell, not by other MySQL clients or Connectors. See
the documentation for specific products for details about supported features and
how to use them.

The connection mode has these permitted values:

• disabled: The connection is uncompressed.

• preferred: The server and client negotiate to find a compression algorithm they both permit. If
no common algorithm is available, the connection is uncompressed. This is the default mode if not
specified explicitly.

• required: Compression algorithm negotiation occurs as for preferred mode, but if no common
algorithm is available, the connection request terminates with an error.

In addition to agreeing on a compression algorithm for each connection, the server and client can
agree on a compression level from the numeric range that applies to the agreed algorithm. As the
compression level for an algorithm increases, the data compression ratio increases, which reduces the
network bandwidth and transfer time needed to send the message to the client. However, the effort
required for data compression also increases, taking up time and CPU and memory resources on
the server. Increases in the compression effort do not have a linear relationship to increases in the
compression ratio.

In MySQL 8.0.19, X Plugin always uses the library default compression level for each algorithm (3 for
zstd, 0 for LZ4, and 6 for Deflate), and the client cannot negotiate this. From MySQL 8.0.20, the client
can request a specific compression level during capability negotiations with the server for an X Protocol
connection.

The default compression levels used by X Plugin from MySQL 8.0.20 have been selected through
performance testing as being a good trade-off between compression time and network transit time.
These defaults are not necessarily the same as the library default for each algorithm. They apply if
the client does not request a compression level for the algorithm. The default compression levels
are initially set to 3 for zstd, 2 for LZ4, and 3 for Deflate. You can adjust these settings using the
mysqlx_zstd_default_compression_level, mysqlx_lz4_default_compression_level,
and mysqlx_deflate_default_compression_level system variables.

To prevent excessive resource consumption on the server, X Plugin sets a maximum
compression level that the server permits for each algorithm. If a client requests a compression
level that exceeds this setting, the server uses its maximum permitted compression level
(compression level requests by a client are supported only by MySQL Shell). The maximum

4106

Connection Compression with X Plugin

compression levels are initially set to 11 for zstd, 8 for LZ4, and 5 for Deflate. You can
adjust these settings using the mysqlx_zstd_max_client_compression_level,
mysqlx_lz4_max_client_compression_level, and
mysqlx_deflate_max_client_compression_level system variables.

If the server and client permit more than one algorithm in common, the default priority order for
choosing an algorithm during negotiation is shown in Table 22.1, “X Protocol Compression Algorithm
Characteristics”. From MySQL 8.0.22, for clients that support specifying compression algorithms, the
connection request can include a list of algorithms permitted by the client, specified using the algorithm
name or its alias. The order of these algorithms in the list is taken as a priority order by the server. The
algorithm used in this case is the first of those in the client list that is also permitted on the server side.
However, the option for compression algorithms is subject to the compression mode:

• If the compression mode is disabled, the compression algorithms option is ignored.

• If the compression mode is preferred but no algorithm permitted on the client side is permitted on
the server side, the connection is uncompressed.

• If the compression mode is required but no algorithm permitted on the client side is permitted on
the server side, an error occurs.

To monitor the effects of message compression, use the X Plugin status variables described in
Monitoring Connection Compression for X Plugin. You can use these status variables to calculate
the benefit of message compression with your current settings, and use that information to tune your
settings.

Compressed Connection Characteristics for X Plugin

X Protocol connection compression operates with the following behaviors and boundaries:

• The _stream and _message suffixes in algorithm names refer to two different operational modes:
In stream mode, all X Protocol messages in a single connection are compressed into a continuous
stream and must be decompressed in the same manner—following the order they were compressed
and without skipping any messages. In message mode, each message is compressed individually
and independently, and need not be decompressed in the order in which they were compressed.
Also, message mode does not require all compressed messages to be decompressed.

• Compression is not applied to any messages that are sent before authentication succeeds.

• Compression is not applied to control flow messages such as Mysqlx.Ok, Mysqlx.Error, and
Mysqlx.Sql.StmtExecuteOk messages.

• All other X Protocol messages can be compressed if the server and client agree on a mutually
permitted compression algorithm during capability negotiation. If the client does not request
compression at that stage, neither the client nor the server applies compression to messages.

• When messages sent over X Protocol connections are compressed, the limit specified by the
mysqlx_max_allowed_packet system variable still applies. The network packet must be smaller
than this limit after the message payload has been decompressed. If the limit is exceeded, X Plugin
returns a decompression error and closes the connection.

• The following points pertain to compression level requests by clients, which is supported only by
MySQL Shell:

• Compression levels must be specified by the client as an integer. If any other type of value is
supplied, the connection closes with an error.

• If a client specifies an algorithm but not a compression level, the server uses its default
compression level for the algorithm.

• If a client requests an algorithm compression level that exceeds the server maximum permitted
level, the server uses the maximum permitted level.

4107

X Plugin Options and Variables

• If a client requests an algorithm compression level that is less than the server minimum permitted
level, the server uses the minimum permitted level.

Monitoring Connection Compression for X Plugin

You can monitor the effects of message compression using the X Plugin status variables. When
message compression is in use, the session Mysqlx_compression_algorithm status
variable shows which compression algorithm is in use for the current X Protocol connection, and
Mysqlx_compression_level shows the compression level that was selected. These session status
variables are available from MySQL 8.0.20.

From MySQL 8.0.19, X Plugin status variables can be used to calculate the efficiency of the
compression algorithms that are selected (the data compression ratio), and the overall effect of using
message compression. Use the session value of the status variables in the following calculations to
see what the benefit of message compression was for a specific session with a known compression
algorithm. Or use the global value of the status variables to check the overall benefit of message
compression for your server across all sessions using X Protocol connections, including all the
compression algorithms that have been used for those sessions, and all sessions that did not
use message compression. You can then tune message compression by adjusting the permitted
compression algorithms, maximum compression level, and default compression level, as described in
Configuring Connection Compression for X Plugin.

When message compression is in use, the Mysqlx_bytes_sent status variable shows the total
number of bytes sent out from the server, including compressed message payloads measured after
compression, any items in compressed messages that were not compressed such as X Protocol
headers, and any uncompressed messages. The Mysqlx_bytes_sent_compressed_payload
status variable shows the total number of bytes sent as compressed message payloads, measured
after compression, and the Mysqlx_bytes_sent_uncompressed_frame status variable shows
the total number of bytes for those same message payloads but measured before compression.
The compression ratio, which shows the efficiency of the compression algorithm, can therefore be
calculated using the following expression:

mysqlx_bytes_sent_uncompressed_frame / mysqlx_bytes_sent_compressed_payload

The effectiveness of compression for X Protocol messages sent by the server can be calculated using
the following expression:

(mysqlx_bytes_sent - mysqlx_bytes_sent_compressed_payload + mysqlx_bytes_sent_uncompressed_frame) / mysqlx_bytes_sent

For messages received by the server from clients, the
Mysqlx_bytes_received_compressed_payload status variable shows the total number
of bytes received as compressed message payloads, measured before decompression, and
the Mysqlx_bytes_received_uncompressed_frame status variable shows the total
number of bytes for those same message payloads but measured after decompression. The
Mysqlx_bytes_received status variable includes compressed message payloads measured
before decompression, any uncompressed items in compressed messages, and any uncompressed
messages.

22.5.6 X Plugin Options and Variables

This section describes the command options and system variables that configure X Plugin, as well
as the status variables available for monitoring purposes. If configuration values specified at startup
time are incorrect, X Plugin could fail to initialize properly and the server does not load it. In this case,
the server could also produce error messages for other X Plugin settings because it cannot recognize
them.

22.5.6.1 X Plugin Option and Variable Reference

This table provides an overview of the command options, system variables, and status variables
provided by X Plugin.

4108

X Plugin Options and Variables

Table 22.2 X Plugin Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

mysqlx Yes Yes

Mysqlx_aborted_clients Yes Global No

Mysqlx_address Yes Global No

mysqlx_bind_addressYes Yes Yes Global No

Mysqlx_bytes_received Yes Both No

Mysqlx_bytes_received_compressed_payload Yes Both No

Mysqlx_bytes_received_uncompressed_frame Yes Both No

Mysqlx_bytes_sent Yes Both No

Mysqlx_bytes_sent_compressed_payload Yes Both No

Mysqlx_bytes_sent_uncompressed_frame Yes Both No

Mysqlx_compression_algorithm Yes Session No

mysqlx_compression_algorithmsYes Yes Yes Global Yes

Mysqlx_compression_level Yes Session No

mysqlx_connect_timeoutYes Yes Yes Global Yes

Mysqlx_connection_accept_errors Yes Both No

Mysqlx_connection_errors Yes Both No

Mysqlx_connections_accepted Yes Global No

Mysqlx_connections_closed Yes Global No

Mysqlx_connections_rejected Yes Global No

Mysqlx_crud_create_view Yes Both No

Mysqlx_crud_delete Yes Both No

Mysqlx_crud_drop_view Yes Both No

Mysqlx_crud_find Yes Both No

Mysqlx_crud_insert Yes Both No

Mysqlx_crud_modify_view Yes Both No

Mysqlx_crud_update Yes Both No

mysqlx_deflate_default_compression_levelYes Yes Yes Global Yes

mysqlx_deflate_max_client_compression_levelYes Yes Yes Global Yes

mysqlx_document_id_unique_prefixYes Yes Yes Global Yes

mysqlx_enable_hello_noticeYes Yes Yes Global Yes

Mysqlx_errors_sent Yes Both No

Mysqlx_errors_unknown_message_type Yes Both No

Mysqlx_expect_close Yes Both No

Mysqlx_expect_open Yes Both No

mysqlx_idle_worker_thread_timeoutYes Yes Yes Global Yes

Mysqlx_init_error Yes Both No

mysqlx_interactive_timeoutYes Yes Yes Global Yes

mysqlx_lz4_default_compression_levelYes Yes Yes Global Yes

mysqlx_lz4_max_client_compression_levelYes Yes Yes Global Yes

mysqlx_max_allowed_packetYes Yes Yes Global Yes

4109

X Plugin Options and Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

mysqlx_max_connectionsYes Yes Yes Global Yes

Mysqlx_messages_sent Yes Both No

mysqlx_min_worker_threadsYes Yes Yes Global Yes

Mysqlx_notice_global_sent Yes Both No

Mysqlx_notice_other_sent Yes Both No

Mysqlx_notice_warning_sent Yes Both No

Mysqlx_notified_by_group_replication Yes Both No

Mysqlx_port Yes Global No

mysqlx_port Yes Yes Yes Global No

mysqlx_port_open_timeoutYes Yes Yes Global No

mysqlx_read_timeoutYes Yes Yes Session Yes

Mysqlx_rows_sent Yes Both No

Mysqlx_sessions Yes Global No

Mysqlx_sessions_accepted Yes Global No

Mysqlx_sessions_closed Yes Global No

Mysqlx_sessions_fatal_error Yes Global No

Mysqlx_sessions_killed Yes Global No

Mysqlx_sessions_rejected Yes Global No

Mysqlx_socket Yes Global No

mysqlx_socketYes Yes Yes Global No

Mysqlx_ssl_accept_renegotiates Yes Global No

Mysqlx_ssl_accepts Yes Global No

Mysqlx_ssl_active Yes Both No

mysqlx_ssl_caYes Yes Yes Global No

mysqlx_ssl_capathYes Yes Yes Global No

mysqlx_ssl_certYes Yes Yes Global No

Mysqlx_ssl_cipher Yes Both No

mysqlx_ssl_cipherYes Yes Yes Global No

Mysqlx_ssl_cipher_list Yes Both No

mysqlx_ssl_crlYes Yes Yes Global No

mysqlx_ssl_crlpathYes Yes Yes Global No

Mysqlx_ssl_ctx_verify_depth Yes Both No

Mysqlx_ssl_ctx_verify_mode Yes Both No

Mysqlx_ssl_finished_accepts Yes Global No

mysqlx_ssl_keyYes Yes Yes Global No

Mysqlx_ssl_server_not_after Yes Global No

Mysqlx_ssl_server_not_before Yes Global No

Mysqlx_ssl_verify_depth Yes Global No

Mysqlx_ssl_verify_mode Yes Global No

Mysqlx_ssl_version Yes Both No

Mysqlx_stmt_create_collection Yes Both No

4110

X Plugin Options and Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Mysqlx_stmt_create_collection_index Yes Both No

Mysqlx_stmt_disable_notices Yes Both No

Mysqlx_stmt_drop_collection Yes Both No

Mysqlx_stmt_drop_collection_index Yes Both No

Mysqlx_stmt_enable_notices Yes Both No

Mysqlx_stmt_ensure_collection Yes Both No

Mysqlx_stmt_execute_mysqlx Yes Both No

Mysqlx_stmt_execute_sql Yes Both No

Mysqlx_stmt_execute_xplugin Yes Both No

Mysqlx_stmt_get_collection_options Yes Both No

Mysqlx_stmt_kill_client Yes Both No

Mysqlx_stmt_list_clients Yes Both No

Mysqlx_stmt_list_notices Yes Both No

Mysqlx_stmt_list_objects Yes Both No

Mysqlx_stmt_modify_collection_options Yes Both No

Mysqlx_stmt_ping Yes Both No

mysqlx_wait_timeoutYes Yes Yes Session Yes

Mysqlx_worker_threads Yes Global No

Mysqlx_worker_threads_active Yes Global No

mysqlx_write_timeoutYes Yes Yes Session Yes

mysqlx_zstd_default_compression_levelYes Yes Yes Global Yes

mysqlx_zstd_max_client_compression_levelYes Yes Yes Global Yes

22.5.6.2 X Plugin Options and System Variables

To control activation of X Plugin, use this option:

• --mysqlx[=value]

Command-Line Format --mysqlx[=value]

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

FORCE_PLUS_PERMANENT

This option controls how the server loads X Plugin at startup. In MySQL 8.0, X Plugin is enabled by
default, but this option may be used to control its activation state.

The option value should be one of those available for plugin-loading options, as described in
Section 7.6.1, “Installing and Uninstalling Plugins”.

If X Plugin is enabled, it exposes several system variables that permit control over its operation:

• mysqlx_bind_address

4111

X Plugin Options and Variables

Command-Line Format --mysqlx-bind-address=addr

System Variable mysqlx_bind_address

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value *

The network address on which X Plugin listens for TCP/IP connections. This variable is not dynamic
and can be configured only at startup. This is the X Plugin equivalent of the bind_address system
variable; see that variable description for more information.

By default, X Plugin accepts TCP/IP connections on all server host IPv4 interfaces, and, if the server
host supports IPv6, on all IPv6 interfaces. If mysqlx_bind_address is specified, its value must
satisfy these requirements:

• Prior to MySQL 8.0.21, mysqlx_bind_address accepts a single address value, which may
specify a single non-wildcard IP address (either IPv4 or IPv6), or a host name, or one of the
wildcard address formats that permit listening on multiple network interfaces (*, 0.0.0.0, or ::).

• As of MySQL 8.0.21, mysqlx_bind_address accepts either a single value as just described, or
a list of comma-separated values. When the variable names a list of multiple values, each value
must specify a single non-wildcard IP address (either IPv4 or IPv6) or a host name. Wildcard
address formats (*, 0.0.0.0, or ::) are not allowed in a list of values.

• As of MySQL 8.0.22, the value may include a network namespace specifier.

IP addresses can be specified as IPv4 or IPv6 addresses. For any value that is a host name, X
Plugin resolves the name to an IP address and binds to that address. If a host name resolves to
multiple IP addresses, X Plugin uses the first IPv4 address if there are any, or the first IPv6 address
otherwise.

X Plugin treats different types of addresses as follows:

• If the address is *, X Plugin accepts TCP/IP connections on all server host IPv4 interfaces, and,
if the server host supports IPv6, on all IPv6 interfaces. Use this address to permit both IPv4 and
IPv6 connections for X Plugin. This value is the default. If the variable specifies a list of multiple
values, this value is not permitted.

• If the address is 0.0.0.0, X Plugin accepts TCP/IP connections on all server host IPv4 interfaces.
If the variable specifies a list of multiple values, this value is not permitted.

• If the address is ::, X Plugin accepts TCP/IP connections on all server host IPv4 and IPv6
interfaces. If the variable specifies a list of multiple values, this value is not permitted.

• If the address is an IPv4-mapped address, X Plugin accepts TCP/IP connections for that address,
in either IPv4 or IPv6 format. For example, if X Plugin is bound to ::ffff:127.0.0.1, a client
such as MySQL Shell can connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.

• If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), X Plugin accepts
TCP/IP connections only for that IPv4 or IPv6 address.

These rules apply to specifying a network namespace for an address:

• A network namespace can be specified for an IP address or a host name.

• A network namespace cannot be specified for a wildcard IP address.

4112

X Plugin Options and Variables

• For a given address, the network namespace is optional. If given, it must be specified as a /ns
suffix immediately following the address.

• An address with no /ns suffix uses the host system global namespace. The global namespace is
therefore the default.

• An address with a /ns suffix uses the namespace named ns.

• The host system must support network namespaces and each named namespace must previously
have been set up. Naming a nonexistent namespace produces an error.

• If the variable value specifies multiple addresses, it can include addresses in the global
namespace, in named namespaces, or a mix.

For additional information about network namespaces, see Section 7.1.14, “Network Namespace
Support”.

Important

Because X Plugin is not a mandatory plugin, it does not prevent server
startup if there is an error in the specified address or list of addresses (as
MySQL Server does for bind_address errors). With X Plugin, if one of
the listed addresses cannot be parsed or if X Plugin cannot bind to it, the
address is skipped, an error message is logged, and X Plugin attempts to
bind to each of the remaining addresses. X Plugin's Mysqlx_address
status variable displays only those addresses from the list for which the
bind succeeded. If none of the listed addresses results in a successful
bind, or if a single specified address fails, X Plugin logs the error message
ER_XPLUGIN_FAILED_TO_PREPARE_IO_INTERFACES stating that X
Protocol cannot be used. mysqlx_bind_address is not dynamic, so to fix
any issues you must stop the server, correct the system variable value, and
restart the server.

• mysqlx_compression_algorithms

Command-Line Format --mysqlx-compression-
algorithms=value

Introduced 8.0.19

System Variable mysqlx_compression_algorithms

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Set

Default Value deflate_stream,lz4_message,zstd_stream

Valid Values deflate_stream

lz4_message

zstd_stream

The compression algorithms that are permitted for use on X Protocol connections. By default,
the Deflate, LZ4, and zstd algorithms are all permitted. To disallow any of the algorithms, set
mysqlx_compression_algorithms to include only the ones you permit. The algorithm names
deflate_stream, lz4_message, and zstd_stream can be specified in any combination, and the
order and case are not important. If you set the system variable to the empty string, no compression
algorithms are permitted and only uncompressed connections are used. Use the algorithm-specific

4113

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_xplugin_failed_to_prepare_io_interfaces

X Plugin Options and Variables

system variables to adjust the default and maximum compression level for each permitted algorithm.
For more details, and information on how connection compression for X Protocol relates to the
equivalent settings for MySQL Server, see Section 22.5.5, “Connection Compression with X Plugin”.

• mysqlx_connect_timeout

Command-Line Format --mysqlx-connect-timeout=#

System Variable mysqlx_connect_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 30

Minimum Value 1

Maximum Value 1000000000

Unit seconds

The number of seconds X Plugin waits for the first packet to be received from newly connected
clients. This is the X Plugin equivalent of connect_timeout; see that variable description for more
information.

• mysqlx_deflate_default_compression_level

Command-Line Format --
mysqlx_deflate_default_compression_level=#

Introduced 8.0.20

System Variable mysqlx_deflate_default_compression_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value 1

Maximum Value 9

The default compression level that the server uses for the Deflate algorithm on X Protocol
connections. Specify the level as an integer from 1 (the lowest compression effort) to 9 (the
highest effort). This level is used if the client does not request a compression level during capability
negotiation. If you do not specify this system variable, the server uses level 3 as the default. For
more information, see Section 22.5.5, “Connection Compression with X Plugin”.

• mysqlx_deflate_max_client_compression_level

Command-Line Format --
mysqlx_deflate_max_client_compression_level=#

Introduced 8.0.20

System Variable mysqlx_deflate_max_client_compression_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

4114

X Plugin Options and Variables

Type Integer

Default Value 5

Minimum Value 1

Maximum Value 9

The maximum compression level that the server permits for the Deflate algorithm on X Protocol
connections. The range is the same as for the default compression level for this algorithm. If the
client requests a higher compression level than this, the server uses the level you set here. If you do
not specify this system variable, the server sets a maximum compression level of 5.

• mysqlx_document_id_unique_prefix

Command-Line Format --mysqlx-document-id-unique-prefix=#

System Variable mysqlx_document_id_unique_prefix

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 65535

Sets the first 4 bytes of document IDs generated by the server when documents are added to a
collection. By setting this variable to a unique value per instance, you can ensure document IDs are
unique across instances. See Understanding Document IDs.

• mysqlx_enable_hello_notice

Command-Line Format --mysqlx-enable-hello-notice[={OFF|
ON}]

System Variable mysqlx_enable_hello_notice

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Controls messages sent to classic MySQL protocol clients that try to connect over X Protocol. When
enabled, clients which do not support X Protocol that attempt to connect to the server X Protocol port
receive an error explaining they are using the wrong protocol.

• mysqlx_idle_worker_thread_timeout

Command-Line Format --mysqlx-idle-worker-thread-
timeout=#

System Variable mysqlx_idle_worker_thread_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

4115

https://dev.mysql.com/doc/x-devapi-userguide/en/understanding-automatic-document-ids.html

X Plugin Options and Variables

Default Value 60

Minimum Value 0

Maximum Value 3600

Unit seconds

The number of seconds after which idle worker threads are terminated.

• mysqlx_interactive_timeout

Command-Line Format --mysqlx-interactive-timeout=#

System Variable mysqlx_interactive_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 28800

Minimum Value 1

Maximum Value 2147483

Unit seconds

The default value of the mysqlx_wait_timeout session variable for interactive clients. (The
number of seconds to wait for interactive clients to timeout.)

• mysqlx_lz4_default_compression_level

Command-Line Format --
mysqlx_lz4_default_compression_level=#

Introduced 8.0.20

System Variable mysqlx_lz4_default_compression_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2

Minimum Value 0

Maximum Value 16

The default compression level that the server uses for the LZ4 algorithm on X Protocol connections.
Specify the level as an integer from 0 (the lowest compression effort) to 16 (the highest effort). This
level is used if the client does not request a compression level during capability negotiation. If you
do not specify this system variable, the server uses level 2 as the default. For more information, see
Section 22.5.5, “Connection Compression with X Plugin”.

• mysqlx_lz4_max_client_compression_level

Command-Line Format --
mysqlx_lz4_max_client_compression_level=#

Introduced 8.0.20

System Variable mysqlx_lz4_max_client_compression_level
4116

X Plugin Options and Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8

Minimum Value 0

Maximum Value 16

The maximum compression level that the server permits for the LZ4 algorithm on X Protocol
connections. The range is the same as for the default compression level for this algorithm. If the
client requests a higher compression level than this, the server uses the level you set here. If you do
not specify this system variable, the server sets a maximum compression level of 8.

• mysqlx_max_allowed_packet

Command-Line Format --mysqlx-max-allowed-packet=#

System Variable mysqlx_max_allowed_packet

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 67108864

Minimum Value 512

Maximum Value 1073741824

Unit bytes

The maximum size of network packets that can be received by X Plugin. This limit also applies when
compression is used for the connection, so the network packet must be smaller than this size after
the message has been decompressed. This is the X Plugin equivalent of max_allowed_packet;
see that variable description for more information.

• mysqlx_max_connections

Command-Line Format --mysqlx-max-connections=#

System Variable mysqlx_max_connections

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 100

Minimum Value 1

Maximum Value 65535

The maximum number of concurrent client connections X Plugin can accept. This is the X Plugin
equivalent of max_connections; see that variable description for more information.

For modifications to this variable, if the new value is smaller than the current number of connections,
the new limit is taken into account only for new connections.

• mysqlx_min_worker_threads

4117

X Plugin Options and Variables

Command-Line Format --mysqlx-min-worker-threads=#

System Variable mysqlx_min_worker_threads

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2

Minimum Value 1

Maximum Value 100

The minimum number of worker threads used by X Plugin for handling client requests.

• mysqlx_port

Command-Line Format --mysqlx-port=port_num

System Variable mysqlx_port

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 33060

Minimum Value 1

Maximum Value 65535

The network port on which X Plugin listens for TCP/IP connections. This is the X Plugin equivalent of
port; see that variable description for more information.

• mysqlx_port_open_timeout

Command-Line Format --mysqlx-port-open-timeout=#

System Variable mysqlx_port_open_timeout

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 120

Unit seconds

The number of seconds X Plugin waits for a TCP/IP port to become free.

• mysqlx_read_timeout

Command-Line Format --mysqlx-read-timeout=#

System Variable mysqlx_read_timeout

Scope Session

4118

X Plugin Options and Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 30

Minimum Value 1

Maximum Value 2147483

Unit seconds

The number of seconds that X Plugin waits for blocking read operations to complete. After this time,
if the read operation is not successful, X Plugin closes the connection and returns a warning notice
with the error code ER_IO_READ_ERROR to the client application.

• mysqlx_socket

Command-Line Format --mysqlx-socket=file_name

System Variable mysqlx_socket

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value /tmp/mysqlx.sock

The path to a Unix socket file which X Plugin uses for connections. This setting is only used by
MySQL Server when running on Unix operating systems. Clients can use this socket to connect to
MySQL Server using X Plugin.

The default mysqlx_socket path and file name is based on the default path and file name for the
main socket file for MySQL Server, with the addition of an x appended to the file name. The default
path and file name for the main socket file is /tmp/mysql.sock, therefore the default path and file
name for the X Plugin socket file is /tmp/mysqlx.sock.

If you specify an alternative path and file name for the main socket file at server startup using the
socket system variable, this does not affect the default for the X Plugin socket file. In this situation,
if you want to store both sockets at a single path, you must set the mysqlx_socket system variable
as well. For example in a configuration file:

socket=/home/sockets/mysqld/mysql.sock
mysqlx_socket=/home/sockets/xplugin/xplugin.sock

If you change the default path and file name for the main socket file at compile time using the
MYSQL_UNIX_ADDR compile option, this does affect the default for the X Plugin socket file, which is
formed by appending an x to the MYSQL_UNIX_ADDR file name. If you want to set a different default
for the X Plugin socket file at compile time, use the MYSQLX_UNIX_ADDR compile option.

The MYSQLX_UNIX_PORT environment variable can also be used to set a default for the X
Plugin socket file at server startup (see Section 6.9, “Environment Variables”). If you set this
environment variable, it overrides the compiled MYSQLX_UNIX_ADDR value, but is overridden by the
mysqlx_socket value.

• mysqlx_ssl_ca

Command-Line Format --mysqlx-ssl-ca=file_name

System Variable mysqlx_ssl_ca

Scope Global 4119

X Plugin Options and Variables

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value NULL

The mysqlx_ssl_ca system variable is like ssl_ca, except that it applies to X Plugin rather than
the MySQL Server main connection interface. For information about configuring encryption support
for X Plugin, see Section 22.5.3, “Using Encrypted Connections with X Plugin”.

• mysqlx_ssl_capath

Command-Line Format --mysqlx-ssl-capath=dir_name

System Variable mysqlx_ssl_capath

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value NULL

The mysqlx_ssl_capath system variable is like ssl_capath, except that it applies to X Plugin
rather than the MySQL Server main connection interface. For information about configuring
encryption support for X Plugin, see Section 22.5.3, “Using Encrypted Connections with X Plugin”.

• mysqlx_ssl_cert

Command-Line Format --mysqlx-ssl-cert=file_name

System Variable mysqlx_ssl_cert

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value NULL

The mysqlx_ssl_cert system variable is like ssl_cert, except that it applies to X Plugin rather
than the MySQL Server main connection interface. For information about configuring encryption
support for X Plugin, see Section 22.5.3, “Using Encrypted Connections with X Plugin”.

• mysqlx_ssl_cipher

Command-Line Format --mysqlx-ssl-cipher=name

System Variable mysqlx_ssl_cipher

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value NULL

The mysqlx_ssl_cipher system variable is like ssl_cipher, except that it applies to X Plugin
rather than the MySQL Server main connection interface. For information about configuring
encryption support for X Plugin, see Section 22.5.3, “Using Encrypted Connections with X Plugin”.4120

X Plugin Options and Variables

• mysqlx_ssl_crl

Command-Line Format --mysqlx-ssl-crl=file_name

System Variable mysqlx_ssl_crl

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value NULL

The mysqlx_ssl_crl system variable is like ssl_crl, except that it applies to X Plugin rather
than the MySQL Server main connection interface. For information about configuring encryption
support for X Plugin, see Section 22.5.3, “Using Encrypted Connections with X Plugin”.

• mysqlx_ssl_crlpath

Command-Line Format --mysqlx-ssl-crlpath=dir_name

System Variable mysqlx_ssl_crlpath

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value NULL

The mysqlx_ssl_crlpath system variable is like ssl_crlpath, except that it applies to X
Plugin rather than the MySQL Server main connection interface. For information about configuring
encryption support for X Plugin, see Section 22.5.3, “Using Encrypted Connections with X Plugin”.

• mysqlx_ssl_key

Command-Line Format --mysqlx-ssl-key=file_name

System Variable mysqlx_ssl_key

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value NULL

The mysqlx_ssl_key system variable is like ssl_key, except that it applies to X Plugin rather
than the MySQL Server main connection interface. For information about configuring encryption
support for X Plugin, see Section 22.5.3, “Using Encrypted Connections with X Plugin”.

• mysqlx_wait_timeout

Command-Line Format --mysqlx-wait-timeout=#

System Variable mysqlx_wait_timeout

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

4121

X Plugin Options and Variables

Default Value 28800

Minimum Value 1

Maximum Value 2147483

Unit seconds

The number of seconds that X Plugin waits for activity on a connection. After this time, if the read
operation is not successful, X Plugin closes the connection. If the client is noninteractive, the initial
value of the session variable is copied from the global mysqlx_wait_timeout variable. For
interactive clients, the initial value is copied from the session mysqlx_interactive_timeout.

• mysqlx_write_timeout

Command-Line Format --mysqlx-write-timeout=#

System Variable mysqlx_write_timeout

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

Minimum Value 1

Maximum Value 2147483

Unit seconds

The number of seconds that X Plugin waits for blocking write operations to complete. After this time,
if the write operation is not successful, X Plugin closes the connection.

• mysqlx_zstd_default_compression_level

Command-Line Format --
mysqlx_zstd_default_compression_level=#

Introduced 8.0.20

System Variable mysqlx_zstd_default_compression_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value -131072

Maximum Value 22

The default compression level that the server uses for the zstd algorithm on X Protocol connections.
For versions of the zstd library from 1.4.0, you can set positive values from 1 to 22 (the highest
compression effort), or negative values which represent progressively lower effort. A value of 0 is
converted to a value of 1. For earlier versions of the zstd library, you can only specify the value 3.
This level is used if the client does not request a compression level during capability negotiation. If
you do not specify this system variable, the server uses level 3 as the default. For more information,
see Section 22.5.5, “Connection Compression with X Plugin”.

4122

X Plugin Options and Variables

• mysqlx_zstd_max_client_compression_level

Command-Line Format --
mysqlx_zstd_max_client_compression_level=#

Introduced 8.0.20

System Variable mysqlx_zstd_max_client_compression_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 11

Minimum Value -131072

Maximum Value 22

The maximum compression level that the server permits for the zstd algorithm on X Protocol
connections. The range is the same as for the default compression level for this algorithm. If the
client requests a higher compression level than this, the server uses the level you set here. If you do
not specify this system variable, the server sets a maximum compression level of 11.

22.5.6.3 X Plugin Status Variables

The X Plugin status variables have the following meanings.

• Mysqlx_aborted_clients

The number of clients that were disconnected because of an input or output error.

• Mysqlx_address

The network address or addresses for which X Plugin accepts TCP/IP connections. If multiple
addresses were specified using the mysqlx_bind_address system variable, Mysqlx_address
displays only those addresses for which the bind succeeded. If the bind has failed for every network
address specified by mysqlx_bind_address, or if the skip_networking option has been used,
the value of Mysqlx_address is UNDEFINED. If X Plugin startup is not yet complete, the value of
Mysqlx_address is empty.

• Mysqlx_bytes_received

The total number of bytes received through the network. If compression is used for the connection,
this figure comprises compressed message payloads measured before decompression
(Mysqlx_bytes_received_compressed_payload), any items in compressed messages that
were not compressed such as X Protocol headers, and any uncompressed messages.

• Mysqlx_bytes_received_compressed_payload

The number of bytes received as compressed message payloads, measured before decompression.

• Mysqlx_bytes_received_uncompressed_frame

The number of bytes received as compressed message payloads, measured after decompression.

• Mysqlx_bytes_sent

The total number of bytes sent through the network. If compression is used for the connection,
this figure comprises compressed message payloads measured after compression
(Mysqlx_bytes_sent_compressed_payload), any items in compressed messages that were
not compressed such as X Protocol headers, and any uncompressed messages.

4123

X Plugin Options and Variables

• Mysqlx_bytes_sent_compressed_payload

The number of bytes sent as compressed message payloads, measured after compression.

• Mysqlx_bytes_sent_uncompressed_frame

The number of bytes sent as compressed message payloads, measured before compression.

• Mysqlx_compression_algorithm

(Session scope) The compression algorithm in use for the X Protocol connection for this session.
The permitted compression algorithms are listed by the mysqlx_compression_algorithms
system variable.

• Mysqlx_compression_level

(Session scope) The compression level in use for the X Protocol connection for this session.

• Mysqlx_connection_accept_errors

The number of connections which have caused accept errors.

• Mysqlx_connection_errors

The number of connections which have caused errors.

• Mysqlx_connections_accepted

The number of connections which have been accepted.

• Mysqlx_connections_closed

The number of connections which have been closed.

• Mysqlx_connections_rejected

The number of connections which have been rejected.

• Mysqlx_crud_create_view

The number of create view requests received.

• Mysqlx_crud_delete

The number of delete requests received.

• Mysqlx_crud_drop_view

The number of drop view requests received.

• Mysqlx_crud_find

The number of find requests received.

• Mysqlx_crud_insert

The number of insert requests received.

• Mysqlx_crud_modify_view

The number of modify view requests received.

• Mysqlx_crud_update

The number of update requests received.

4124

X Plugin Options and Variables

• Mysqlx_cursor_close

The number of cursor-close messages received

• Mysqlx_cursor_fetch

The number of cursor-fetch messages received

• Mysqlx_cursor_open

The number of cursor-open messages received

• Mysqlx_errors_sent

The number of errors sent to clients.

• Mysqlx_errors_unknown_message_type

The number of unknown message types that have been received.

• Mysqlx_expect_close

The number of expectation blocks closed.

• Mysqlx_expect_open

The number of expectation blocks opened.

• Mysqlx_init_error

The number of errors during initialisation.

• Mysqlx_messages_sent

The total number of messages of all types sent to clients.

• Mysqlx_notice_global_sent

The number of global notifications sent to clients.

• Mysqlx_notice_other_sent

The number of other types of notices sent back to clients.

• Mysqlx_notice_warning_sent

The number of warning notices sent back to clients.

• Mysqlx_notified_by_group_replication

Number of Group Replication notifications sent to clients.

• Mysqlx_port

The TCP port which X Plugin is listening to. If a network bind has failed, or if the skip_networking
system variable is enabled, the value shows UNDEFINED.

• Mysqlx_prep_deallocate

The number of prepared-statement-deallocate messages received

• Mysqlx_prep_execute

The number of prepared-statement-execute messages received

4125

X Plugin Options and Variables

• Mysqlx_prep_prepare

The number of prepared-statement messages received

• Mysqlx_rows_sent

The number of rows sent back to clients.

• Mysqlx_sessions

The number of sessions that have been opened.

• Mysqlx_sessions_accepted

The number of session attempts which have been accepted.

• Mysqlx_sessions_closed

The number of sessions that have been closed.

• Mysqlx_sessions_fatal_error

The number of sessions that have closed with a fatal error.

• Mysqlx_sessions_killed

The number of sessions which have been killed.

• Mysqlx_sessions_rejected

The number of session attempts which have been rejected.

• Mysqlx_socket

The Unix socket which X Plugin is listening to.

• Mysqlx_ssl_accept_renegotiates

The number of negotiations needed to establish the connection.

• Mysqlx_ssl_accepts

The number of accepted SSL connections.

• Mysqlx_ssl_active

If SSL is active.

• Mysqlx_ssl_cipher

The current SSL cipher (empty for non-SSL connections).

• Mysqlx_ssl_cipher_list

A list of possible SSL ciphers (empty for non-SSL connections).

• Mysqlx_ssl_ctx_verify_depth

The certificate verification depth limit currently set in ctx.

• Mysqlx_ssl_ctx_verify_mode

The certificate verification mode currently set in ctx.

• Mysqlx_ssl_finished_accepts

4126

X Plugin Options and Variables

The number of successful SSL connections to the server.

• Mysqlx_ssl_server_not_after

The last date for which the SSL certificate is valid.

• Mysqlx_ssl_server_not_before

The first date for which the SSL certificate is valid.

• Mysqlx_ssl_verify_depth

The certificate verification depth for SSL connections.

• Mysqlx_ssl_verify_mode

The certificate verification mode for SSL connections.

• Mysqlx_ssl_version

The name of the protocol used for SSL connections.

• Mysqlx_stmt_create_collection

The number of create collection statements received.

• Mysqlx_stmt_create_collection_index

The number of create collection index statements received.

• Mysqlx_stmt_disable_notices

The number of disable notice statements received.

• Mysqlx_stmt_drop_collection

The number of drop collection statements received.

• Mysqlx_stmt_drop_collection_index

The number of drop collection index statements received.

• Mysqlx_stmt_enable_notices

The number of enable notice statements received.

• Mysqlx_stmt_ensure_collection

The number of ensure collection statements received.

• Mysqlx_stmt_execute_mysqlx

The number of StmtExecute messages received with namespace set to mysqlx.

• Mysqlx_stmt_execute_sql

The number of StmtExecute requests received for the SQL namespace.

• Mysqlx_stmt_execute_xplugin

The number of StmtExecute requests received for the xplugin namespace. From MySQL 8.0.19,
the xplugin namespace has been removed so this status variable is no longer used.

• Mysqlx_stmt_get_collection_options

4127

Monitoring X Plugin

The number of get collection object statements received.

• Mysqlx_stmt_kill_client

The number of kill client statements received.

• Mysqlx_stmt_list_clients

The number of list client statements received.

• Mysqlx_stmt_list_notices

The number of list notice statements received.

• Mysqlx_stmt_list_objects

The number of list object statements received.

• Mysqlx_stmt_modify_collection_options

The number of modify collection options statements received.

• Mysqlx_stmt_ping

The number of ping statements received.

• Mysqlx_worker_threads

The number of worker threads available.

• Mysqlx_worker_threads_active

The number of worker threads currently used.

22.5.7 Monitoring X Plugin

For general X Plugin monitoring, use the status variables that it exposes. See Section 22.5.6.3,
“X Plugin Status Variables”. For information specifically about monitoring the effects of message
compression, see Monitoring Connection Compression for X Plugin.

Monitoring SQL Generated by X Plugin

This section describes how to monitor the SQL statements which X Plugin generates when you run
X DevAPI operations. When you execute a CRUD statement, it is translated into SQL and executed
against the server. To be able to monitor the generated SQL, the Performance Schema tables must be
enabled. The SQL is registered under the performance_schema.events_statements_current,
performance_schema.events_statements_history, and
performance_schema.events_statements_history_long tables. The following example uses
the world_x schema, imported as part of the quickstart tutorials in this section. We use MySQL Shell
in Python mode, and the \sql command which enables you to issue SQL statements without changing
to SQL mode. This is important, because if you instead try to switch to SQL mode, the procedure
shows the result of this operation rather than the X DevAPI operation. The \sql command is used in
the same way if you are using MySQL Shell in JavaScript mode.

1. Check if the events_statements_history consumer is enabled. Issue:

mysql-py> \sql SELECT enabled FROM performance_schema.setup_consumers WHERE NAME = 'events_statements_history'
+---------+
| enabled |
+---------+
| YES |
+---------+

4128

Monitoring X Plugin

2. Check if all instruments report data to the consumer. Issue:

mysql-py> \sql SELECT NAME, ENABLED, TIMED FROM performance_schema.setup_instruments WHERE NAME LIKE 'statement/%' AND NOT (ENABLED and TIMED)

If this statement reports at least one row, you need to enable the instruments. See Section 29.4,
“Performance Schema Runtime Configuration”.

3. Get the thread ID of the current connection. Issue:

mysql-py> \sql SELECT thread_id INTO @id FROM performance_schema.threads WHERE processlist_id=connection_id()

4. Execute the X DevAPI CRUD operation for which you want to see the generated SQL. For
example, issue:

mysql-py> db.CountryInfo.find("Name = :country").bind("country", "Italy")

You must not issue any further operations for the next step to show the correct result.

5. Show the last SQL query made by this thread ID. Issue:

mysql-py> \sql SELECT THREAD_ID, MYSQL_ERRNO,SQL_TEXT FROM performance_schema.events_statements_history WHERE THREAD_ID=@id ORDER BY TIMER_START DESC LIMIT 1;
+-----------+-------------+--+
| THREAD_ID | MYSQL_ERRNO | SQL_TEXT |
+-----------+-------------+--+
| 29 | 0 | SELECT doc FROM `world_x`.`CountryInfo` WHERE (JSON_EXTRACT(doc,'$.Name') = 'Italy') |
+-----------+-------------+--+

The result shows the SQL generated by X Plugin based on the most recent statement, in this case
the X DevAPI CRUD operation from the previous step.

4129

4130

Chapter 23 InnoDB Cluster
This chapter introduces MySQL InnoDB Cluster, which combines MySQL technologies to enable you
to deploy and administer a complete integrated high availability solution for MySQL. This content is a
high-level overview of InnoDB Cluster, for full documentation, see MySQL InnoDB Cluster.

Important

InnoDB Cluster does not provide support for MySQL NDB Cluster. For more
information about MySQL NDB Cluster, see Chapter 25, MySQL NDB Cluster
8.0 and Section 25.2.6, “MySQL Server Using InnoDB Compared with NDB
Cluster”.

An InnoDB Cluster consists of at least three MySQL Server instances, and it provides high-availability
and scaling features. InnoDB Cluster uses the following MySQL technologies:

• MySQL Shell, which is an advanced client and code editor for MySQL.

• MySQL Server, and Group Replication, which enables a set of MySQL instances to provide high-
availability. InnoDB Cluster provides an alternative, easy to use programmatic way to work with
Group Replication.

• MySQL Router, a lightweight middleware that provides transparent routing between your application
and InnoDB Cluster.

The following diagram shows an overview of how these technologies work together:

Figure 23.1 InnoDB Cluster overview

Being built on MySQL Group Replication, provides features such as automatic membership
management, fault tolerance, automatic failover, and so on. An InnoDB Cluster usually runs in a single-
primary mode, with one primary instance (read-write) and multiple secondary instances (read-only).
Advanced users can also take advantage of a multi-primary mode, where all instances are primaries.
You can even change the topology of the cluster while InnoDB Cluster is online, to ensure the highest
possible availability.

4131

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/

You work with InnoDB Cluster using the AdminAPI, provided as part of MySQL Shell. AdminAPI is
available in JavaScript and Python, and is well suited to scripting and automation of deployments of
MySQL to achieve high-availability and scalability. By using MySQL Shell's AdminAPI, you can avoid
the need to configure many instances manually. Instead, AdminAPI provides an effective modern
interface to sets of MySQL instances and enables you to provision, administer, and monitor your
deployment from one central tool.

To get started with InnoDB Cluster you need to download and install MySQL Shell. You need some
hosts with MySQL Server instances installed, and you can also install MySQL Router.

InnoDB Cluster supports MySQL Clone, which enables you to provision instances simply. In the past,
to provision a new instance before it joins a set of MySQL instances you would need to somehow
manually transfer the transactions to the joining instance. This could involve making file copies,
manually copying them, and so on. Using InnoDB Cluster, you can simply add an instance to the
cluster and it is automatically provisioned.

Similarly, InnoDB Cluster is tightly integrated with MySQL Router, and you can use AdminAPI to work
with them together. MySQL Router can automatically configure itself based on an InnoDB Cluster, in a
process called bootstrapping, which removes the need for you to configure routing manually. MySQL
Router then transparently connects client applications to the InnoDB Cluster, providing routing and
load-balancing for client connections. This integration also enables you to administer some aspects
of a MySQL Router bootstrapped against an InnoDB Cluster using AdminAPI. InnoDB Cluster status
information includes details about MySQL Routers bootstrapped against the cluster. Operations enable
you to create MySQL Router users at the cluster level, to work with the MySQL Routers bootstrapped
against the cluster, and so on.

For more information on these technologies, see the user documentation linked in the descriptions.
In addition to this user documentation, there is developer documentation for all AdminAPI methods
in the MySQL Shell JavaScript API Reference or MySQL Shell Python API Reference, available from
Connectors and APIs.

4132

https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-overview.html
https://dev.mysql.com/downloads/shell/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-installation.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/add-instances-cluster.html
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/registered-routers.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/registered-routers.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-bootstrapping-router.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/configuring-router-user.html
https://dev.mysql.com/doc/index-connectors.html

Chapter 24 InnoDB ReplicaSet
This chapter introduces MySQL InnoDB ReplicaSet, which combines MySQL technologies to enable
you to deploy and administer Chapter 19, Replication. This content is a high-level overview of InnoDB
ReplicaSet, for full documentation, see MySQL InnoDB ReplicaSet.

An InnoDB ReplicaSet consists of at least two MySQL Server instances, and it provides all of the
MySQL Replication features you are familiar with, such as read scale-out and data security. InnoDB
ReplicaSet uses the following MySQL technologies:

• MySQL Shell, which is an advanced client and code editor for MySQL.

• MySQL Server, and Chapter 19, Replication, which enables a set of MySQL instances to provide
availability and asynchronous read scale-out. InnoDB ReplicaSet provides an alternative, easy to use
programmatic way to work with Replication.

• MySQL Router, a lightweight middleware that provides transparent routing between your application
and InnoDB ReplicaSet.

The interface to an InnoDB ReplicaSet is similar to MySQL InnoDB Cluster, you use MySQL Shell to
work with MySQL Server instances as a ReplicaSet, and MySQL Router is also tightly integrated in the
same way as InnoDB Cluster.

Being based on MySQL Replication, an InnoDB ReplicaSet has a single primary, which replicates to
one or more secondary instances. An InnoDB ReplicaSet does not provide all of the features which
InnoDB Cluster provides, such as automatic failover, or multi-primary mode. But, it does support
features such as configuring, adding, and removing instances in a similar way. You can manually
switch over or fail over to a secondary instance, for example in the event of a failure. You can even
adopt an existing Replication deployment and then administer it as an InnoDB ReplicaSet.

You work with InnoDB ReplicaSet using the AdminAPI, provided as part of MySQL Shell. AdminAPI
is available in JavaScript and Python, and is well suited to scripting and automation of deployments
of MySQL to achieve high-availability and scalability. By using MySQL Shell's AdminAPI, you can
avoid the need to configure many instances manually. Instead, AdminAPI provides an effective modern
interface to sets of MySQL instances and enables you to provision, administer, and monitor your
deployment from one central tool.

To get started with InnoDB ReplicaSet you need to download and install MySQL Shell. You need some
hosts with MySQL Server instances installed, and you can also install MySQL Router.

InnoDB ReplicaSet supports MySQL Clone, which enables you to provision instances simply. In the
past, to provision a new instance before it joined a MySQL Replication deployment, you would need
to somehow manually transfer the transactions to the joining instance. This could involve making file
copies, manually copying them, and so on. You can simply add an instance to the replica set and it is
automatically provisioned.

Similarly, InnoDB ReplicaSet is tightly integrated with MySQL Router, and you can use AdminAPI
to work with them together. MySQL Router can automatically configure itself based on an InnoDB
ReplicaSet, in a process called bootstrapping, which removes the need for you to configure routing
manually. MySQL Router then transparently connects client applications to the InnoDB ReplicaSet,
providing routing and load-balancing for client connections. This integration also enables you to
administer some aspects of a MySQL Router bootstrapped against an InnoDB ReplicaSet using
AdminAPI. InnoDB ReplicaSet status information includes details about MySQL Routers bootstrapped
against the ReplicaSet. Operations enable you to create MySQL Router users at the ReplicaSet level,
to work with the MySQL Routers bootstrapped against the ReplicaSet, and so on.

For more information on these technologies, see the user documentation linked in the descriptions.
In addition to this user documentation, there is developer documentation for all AdminAPI methods
in the MySQL Shell JavaScript API Reference or MySQL Shell Python API Reference, available from
Connectors and APIs.

4133

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-overview.html
https://dev.mysql.com/downloads/shell/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-installation.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/add-instance-replicaset.html
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/registered-routers.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-bootstrapping-router.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/configuring-router-user.html
https://dev.mysql.com/doc/index-connectors.html

4134

Chapter 25 MySQL NDB Cluster 8.0

Table of Contents
25.1 General Information ... 4137
25.2 NDB Cluster Overview ... 4139

25.2.1 NDB Cluster Core Concepts .. 4140
25.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions 4143
25.2.3 NDB Cluster Hardware, Software, and Networking Requirements 4146
25.2.4 What is New in MySQL NDB Cluster 8.0 ... 4147
25.2.5 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0 4176
25.2.6 MySQL Server Using InnoDB Compared with NDB Cluster 4181
25.2.7 Known Limitations of NDB Cluster ... 4184

25.3 NDB Cluster Installation ... 4196
25.3.1 Installation of NDB Cluster on Linux .. 4198
25.3.2 Installing NDB Cluster on Windows ... 4208
25.3.3 Initial Configuration of NDB Cluster ... 4217
25.3.4 Initial Startup of NDB Cluster .. 4218
25.3.5 NDB Cluster Example with Tables and Data .. 4219
25.3.6 Safe Shutdown and Restart of NDB Cluster ... 4222
25.3.7 Upgrading and Downgrading NDB Cluster ... 4223
25.3.8 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED) 4229

25.4 Configuration of NDB Cluster ... 4229
25.4.1 Quick Test Setup of NDB Cluster .. 4229
25.4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables 4231
25.4.3 NDB Cluster Configuration Files .. 4253
25.4.4 Using High-Speed Interconnects with NDB Cluster ... 4461

25.5 NDB Cluster Programs .. 4461
25.5.1 ndbd — The NDB Cluster Data Node Daemon ... 4461
25.5.2 ndbinfo_select_all — Select From ndbinfo Tables ... 4472
25.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded) 4477
25.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon 4478
25.5.5 ndb_mgm — The NDB Cluster Management Client .. 4490
25.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster
Tables ... 4495
25.5.7 ndb_config — Extract NDB Cluster Configuration Information 4501
25.5.8 ndb_delete_all — Delete All Rows from an NDB Table ... 4514
25.5.9 ndb_desc — Describe NDB Tables ... 4519
25.5.10 ndb_drop_index — Drop Index from an NDB Table .. 4528
25.5.11 ndb_drop_table — Drop an NDB Table .. 4533
25.5.12 ndb_error_reporter — NDB Error-Reporting Utility .. 4537
25.5.13 ndb_import — Import CSV Data Into NDB .. 4538
25.5.14 ndb_index_stat — NDB Index Statistics Utility .. 4555
25.5.15 ndb_move_data — NDB Data Copy Utility ... 4562
25.5.16 ndb_perror — Obtain NDB Error Message Information .. 4568
25.5.17 ndb_print_backup_file — Print NDB Backup File Contents 4570
25.5.18 ndb_print_file — Print NDB Disk Data File Contents ... 4576
25.5.19 ndb_print_frag_file — Print NDB Fragment List File Contents 4577
25.5.20 ndb_print_schema_file — Print NDB Schema File Contents 4578
25.5.21 ndb_print_sys_file — Print NDB System File Contents .. 4578
25.5.22 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log 4579
25.5.23 ndb_restore — Restore an NDB Cluster Backup .. 4582
25.5.24 ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File 4613
25.5.25 ndb_select_all — Print Rows from an NDB Table ... 4616
25.5.26 ndb_select_count — Print Row Counts for NDB Tables .. 4622
25.5.27 ndb_show_tables — Display List of NDB Tables .. 4626

4135

25.5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator 4631
25.5.29 ndb_top — View CPU usage information for NDB threads 4634
25.5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status 4640
25.5.31 ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster .. 4647

25.6 Management of NDB Cluster ... 4654
25.6.1 Commands in the NDB Cluster Management Client .. 4654
25.6.2 NDB Cluster Log Messages .. 4660
25.6.3 Event Reports Generated in NDB Cluster .. 4679
25.6.4 Summary of NDB Cluster Start Phases .. 4690
25.6.5 Performing a Rolling Restart of an NDB Cluster ... 4692
25.6.6 NDB Cluster Single User Mode ... 4694
25.6.7 Adding NDB Cluster Data Nodes Online .. 4695
25.6.8 Online Backup of NDB Cluster .. 4705
25.6.9 Importing Data Into MySQL Cluster ... 4712
25.6.10 MySQL Server Usage for NDB Cluster .. 4712
25.6.11 NDB Cluster Disk Data Tables .. 4714
25.6.12 Online Operations with ALTER TABLE in NDB Cluster .. 4720
25.6.13 Privilege Synchronization and NDB_STORED_USER ... 4723
25.6.14 File System Encryption for NDB Cluster ... 4724
25.6.15 NDB API Statistics Counters and Variables .. 4727
25.6.16 ndbinfo: The NDB Cluster Information Database ... 4739
25.6.17 INFORMATION_SCHEMA Tables for NDB Cluster ... 4827
25.6.18 NDB Cluster and the Performance Schema .. 4828
25.6.19 Quick Reference: NDB Cluster SQL Statements ... 4829
25.6.20 NDB Cluster Security Issues ... 4835

25.7 NDB Cluster Replication .. 4842
25.7.1 NDB Cluster Replication: Abbreviations and Symbols ... 4844
25.7.2 General Requirements for NDB Cluster Replication .. 4845
25.7.3 Known Issues in NDB Cluster Replication .. 4846
25.7.4 NDB Cluster Replication Schema and Tables ... 4853
25.7.5 Preparing the NDB Cluster for Replication ... 4860
25.7.6 Starting NDB Cluster Replication (Single Replication Channel) 4862
25.7.7 Using Two Replication Channels for NDB Cluster Replication 4864
25.7.8 Implementing Failover with NDB Cluster Replication ... 4865
25.7.9 NDB Cluster Backups With NDB Cluster Replication ... 4867
25.7.10 NDB Cluster Replication: Bidirectional and Circular Replication 4873
25.7.11 NDB Cluster Replication Using the Multithreaded Applier 4877
25.7.12 NDB Cluster Replication Conflict Resolution ... 4881

25.8 NDB Cluster Release Notes ... 4898

This chapter provides information about MySQL NDB Cluster, a high-availability, high-redundancy
version of MySQL adapted for the distributed computing environment, using the NDB storage engine
(also known as NDBCLUSTER) to enable running several computers with MySQL servers and other
software in a cluster. NDB Cluster 8.0, now available as a General Availability (GA) release (beginning
with version 8.0.19), incorporates version 8.0 of the NDB storage engine. This chapter also provides
information specific to NDB Cluster 8.0, and covers releases through 8.0.41. NDB Cluster 8.4 (NDB
8.4.5), based on version 8.4 of the NDB storage engine, is also available as an LTS release. See
What is New in MySQL NDB Cluster 8.4 for information about differences in NDB 8.4 as compared
to earlier releases. NDB Cluster 7.6 and NDB Cluster 7.5, still available as GA releases, use versions
7.6 and 7.5 of NDB, respectively. NDB Cluster 7.6 and 7.5 are previous GA releases still supported in
production; for information about NDB Cluster 7.6, see What is New in NDB Cluster 7.6. For similar
information about NDB Cluster 7.5, see What is New in NDB Cluster 7.5. Previous GA releases NDB
Cluster 7.4 and NDB Cluster 7.3 incorporated NDB versions 7.4 and 7.3, respectively. NDB 7.4 and
older release series are no longer supported or maintained. Both NDB 8.0 and NDB 8.4 are supported
in production, and are recommended for new deployments.

4136

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-5.html

General Information

25.1 General Information

MySQL NDB Cluster uses the MySQL server with the NDB storage engine. Support for the NDB storage
engine is not included in standard MySQL Server 8.0 binaries built by Oracle. Instead, users of NDB
Cluster binaries from Oracle should upgrade to the most recent binary release of NDB Cluster for
supported platforms—these include RPMs that should work with most Linux distributions. NDB Cluster
8.0 users who build from source should use the sources provided for MySQL 8.0 and build with the
options required to provide NDB support. (Locations where the sources can be obtained are listed later
in this section.)

Important

MySQL NDB Cluster does not support InnoDB Cluster, which must be deployed
using MySQL Server 8.0 with the InnoDB storage engine as well as additional
applications that are not included in the NDB Cluster distribution. MySQL
Server 8.0 binaries cannot be used with MySQL NDB Cluster. For more
information about deploying and using InnoDB Cluster, see MySQL AdminAPI.
Section 25.2.6, “MySQL Server Using InnoDB Compared with NDB Cluster”,
discusses differences between the NDB and InnoDB storage engines.

Supported Platforms. NDB Cluster is currently available and supported on a number of platforms.
For exact levels of support available for on specific combinations of operating system versions,
operating system distributions, and hardware platforms, please refer to https://www.mysql.com/support/
supportedplatforms/cluster.html.

Availability. NDB Cluster binary and source packages are available for supported platforms from
https://dev.mysql.com/downloads/cluster/.

NDB Cluster release numbers. NDB 8.0 follows the same release pattern as the MySQL Server
8.0 series of releases, beginning with MySQL 8.0.13 and MySQL NDB Cluster 8.0.13. In this Manual
and other MySQL documentation, we identify these and later NDB Cluster releases employing a
version number that begins with “NDB”. This version number is that of the NDBCLUSTER storage engine
used in the NDB 8.0 release, and is the same as the MySQL 8.0 server version on which the NDB
Cluster 8.0 release is based.

Version strings used in NDB Cluster software. The version string displayed by the mysql client
supplied with the MySQL NDB Cluster distribution uses this format:

mysql-mysql_server_version-cluster

mysql_server_version represents the version of the MySQL Server on which the NDB Cluster
release is based. For all NDB Cluster 8.0 releases, this is 8.0.n, where n is the release number.
Building from source using -DWITH_NDB or the equivalent adds the -cluster suffix to the version
string. (See Section 25.3.1.4, “Building NDB Cluster from Source on Linux”, and Section 25.3.2.2,
“Compiling and Installing NDB Cluster from Source on Windows”.) You can see this format used in the
mysql client, as shown here:

$> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 8.0.42-cluster Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT VERSION()\G
*************************** 1. row ***************************
VERSION(): 8.0.42-cluster
1 row in set (0.00 sec)

The first General Availability release of NDB Cluster using MySQL 8.0 is NDB 8.0.19, using MySQL
8.0.19.

4137

https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://dev.mysql.com/downloads/cluster/

General Information

The version string displayed by other NDB Cluster programs not normally included with the MySQL 8.0
distribution uses this format:

mysql-mysql_server_version ndb-ndb_engine_version

mysql_server_version represents the version of the MySQL Server on which the NDB Cluster
release is based. For all NDB Cluster 8.0 releases, this is 8.0.n, where n is the release number.
ndb_engine_version is the version of the NDB storage engine used by this release of the NDB
Cluster software. For all NDB 8.0 releases, this number is the same as the MySQL Server version. You
can see this format used in the output of the SHOW command in the ndb_mgm client, like this:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @10.0.10.6 (mysql-8.0.42 ndb-8.0.42, Nodegroup: 0, *)
id=2 @10.0.10.8 (mysql-8.0.42 ndb-8.0.42, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=3 @10.0.10.2 (mysql-8.0.42 ndb-8.0.42)

[mysqld(API)] 2 node(s)
id=4 @10.0.10.10 (mysql-8.0.42 ndb-8.0.42)
id=5 (not connected, accepting connect from any host)

Compatibility with standard MySQL 8.0 releases. While many standard MySQL schemas and
applications can work using NDB Cluster, it is also true that unmodified applications and database
schemas may be slightly incompatible or have suboptimal performance when run using NDB Cluster
(see Section 25.2.7, “Known Limitations of NDB Cluster”). Most of these issues can be overcome,
but this also means that you are very unlikely to be able to switch an existing application datastore—
that currently uses, for example, MyISAM or InnoDB—to use the NDB storage engine without allowing
for the possibility of changes in schemas, queries, and applications. A mysqld compiled without NDB
support (that is, built without -DWITH_NDB or -DWITH_NDBCLUSTER_STORAGE_ENGINE) cannot
function as a drop-in replacement for a mysqld that is built with it.

NDB Cluster development source trees. NDB Cluster development trees can also be accessed
from https://github.com/mysql/mysql-server.

The NDB Cluster development sources maintained at https://github.com/mysql/mysql-server are
licensed under the GPL. For information about obtaining MySQL sources using Git and building them
yourself, see Section 2.8.5, “Installing MySQL Using a Development Source Tree”.

Note

As with MySQL Server 8.0, NDB Cluster 8.0 releases are built using CMake.

NDB Cluster 8.0 is available beginning with NDB 8.0.19 as a General Availability release, and is
recommended for new deployments. NDB Cluster 7.6 and 7.5 are previous GA releases still supported
in production; for information about NDB Cluster 7.6, see What is New in NDB Cluster 7.6. For similar
information about NDB Cluster 7.5, see What is New in NDB Cluster 7.5. NDB Cluster 7.4 and 7.3
are previous GA releases which are no longer maintained. We recommend that new deployments for
production use MySQL NDB Cluster 8.0.

The contents of this chapter are subject to revision as NDB Cluster continues to evolve. Additional
information regarding NDB Cluster can be found on the MySQL website at http://www.mysql.com/
products/cluster/.

Additional Resources. More information about NDB Cluster can be found in the following places:

• For answers to some commonly asked questions about NDB Cluster, see Section A.10, “MySQL 8.0
FAQ: NDB Cluster”.

4138

https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-5.html
http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/

NDB Cluster Overview

• The NDB Cluster Forum: https://forums.mysql.com/list.php?25.

• Many NDB Cluster users and developers blog about their experiences with NDB Cluster, and make
feeds of these available through PlanetMySQL.

25.2 NDB Cluster Overview

NDB Cluster is a technology that enables clustering of in-memory databases in a shared-nothing
system. The shared-nothing architecture enables the system to work with very inexpensive hardware,
and with a minimum of specific requirements for hardware or software.

NDB Cluster is designed not to have any single point of failure. In a shared-nothing system, each
component is expected to have its own memory and disk, and the use of shared storage mechanisms
such as network shares, network file systems, and SANs is not recommended or supported.

NDB Cluster integrates the standard MySQL server with an in-memory clustered storage engine
called NDB (which stands for “Network DataBase”). In our documentation, the term NDB refers to the
part of the setup that is specific to the storage engine, whereas “MySQL NDB Cluster” refers to the
combination of one or more MySQL servers with the NDB storage engine.

An NDB Cluster consists of a set of computers, known as hosts, each running one or more processes.
These processes, known as nodes, may include MySQL servers (for access to NDB data), data nodes
(for storage of the data), one or more management servers, and possibly other specialized data access
programs. The relationship of these components in an NDB Cluster is shown here:

Figure 25.1 NDB Cluster Components

All these programs work together to form an NDB Cluster (see Section 25.5, “NDB Cluster Programs”.
When data is stored by the NDB storage engine, the tables (and table data) are stored in the data

4139

https://forums.mysql.com/list.php?25
http://www.planetmysql.org/

NDB Cluster Core Concepts

nodes. Such tables are directly accessible from all other MySQL servers (SQL nodes) in the cluster.
Thus, in a payroll application storing data in a cluster, if one application updates the salary of an
employee, all other MySQL servers that query this data can see this change immediately.

As of NDB 8.0.31, an NDB Cluster 8.0 SQL node uses the mysqld server daemon which is the same
as the mysqld supplied with MySQL Server 8.0 distributions. In NDB 8.0.30 and previous releases,
it differed in a number of critical respects from the mysqld binary supplied with MySQL Server, and
the two versions of mysqld were not interchangeable. You should keep in mind that an instance of
mysqld, regardless of version, that is not connected to an NDB Cluster cannot use the NDB storage
engine and cannot access any NDB Cluster data.

The data stored in the data nodes for NDB Cluster can be mirrored; the cluster can handle failures of
individual data nodes with no other impact than that a small number of transactions are aborted due
to losing the transaction state. Because transactional applications are expected to handle transaction
failure, this should not be a source of problems.

Individual nodes can be stopped and restarted, and can then rejoin the system (cluster). Rolling
restarts (in which all nodes are restarted in turn) are used in making configuration changes and
software upgrades (see Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”). Rolling
restarts are also used as part of the process of adding new data nodes online (see Section 25.6.7,
“Adding NDB Cluster Data Nodes Online”). For more information about data nodes, how they are
organized in an NDB Cluster, and how they handle and store NDB Cluster data, see Section 25.2.2,
“NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”.

Backing up and restoring NDB Cluster databases can be done using the NDB-native functionality
found in the NDB Cluster management client and the ndb_restore program included in the NDB
Cluster distribution. For more information, see Section 25.6.8, “Online Backup of NDB Cluster”,
and Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”. You can also use the
standard MySQL functionality provided for this purpose in mysqldump and the MySQL server. See
Section 6.5.4, “mysqldump — A Database Backup Program”, for more information.

NDB Cluster nodes can employ different transport mechanisms for inter-node communications; TCP/IP
over standard 100 Mbps or faster Ethernet hardware is used in most real-world deployments.

25.2.1 NDB Cluster Core Concepts

NDBCLUSTER (also known as NDB) is an in-memory storage engine offering high-availability and data-
persistence features.

The NDBCLUSTER storage engine can be configured with a range of failover and load-balancing
options, but it is easiest to start with the storage engine at the cluster level. NDB Cluster's NDB storage
engine contains a complete set of data, dependent only on other data within the cluster itself.

The “Cluster” portion of NDB Cluster is configured independently of the MySQL servers. In an NDB
Cluster, each part of the cluster is considered to be a node.

Note

In many contexts, the term “node” is used to indicate a computer, but when
discussing NDB Cluster it means a process. It is possible to run multiple nodes
on a single computer; for a computer on which one or more cluster nodes are
being run we use the term cluster host.

There are three types of cluster nodes, and in a minimal NDB Cluster configuration, there are at least
three nodes, one of each of these types:

• Management node: The role of this type of node is to manage the other nodes within the NDB
Cluster, performing such functions as providing configuration data, starting and stopping nodes, and
running backups. Because this node type manages the configuration of the other nodes, a node

4140

NDB Cluster Core Concepts

of this type should be started first, before any other node. A management node is started with the
command ndb_mgmd.

• Data node: This type of node stores cluster data. There are as many data nodes as there are
fragment replicas, times the number of fragments (see Section 25.2.2, “NDB Cluster Nodes, Node
Groups, Fragment Replicas, and Partitions”). For example, with two fragment replicas, each having
two fragments, you need four data nodes. One fragment replica is sufficient for data storage, but
provides no redundancy; therefore, it is recommended to have two (or more) fragment replicas to
provide redundancy, and thus high availability. A data node is started with the command ndbd (see
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”) or ndbmtd (see Section 25.5.3,
“ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”).

NDB Cluster tables are normally stored completely in memory rather than on disk (this is why we
refer to NDB Cluster as an in-memory database). However, some NDB Cluster data can be stored
on disk; see Section 25.6.11, “NDB Cluster Disk Data Tables”, for more information.

• SQL node: This is a node that accesses the cluster data. In the case of NDB Cluster, an SQL node
is a traditional MySQL server that uses the NDBCLUSTER storage engine. An SQL node is a mysqld
process started with the --ndbcluster and --ndb-connectstring options, which are explained
elsewhere in this chapter, possibly with additional MySQL server options as well.

An SQL node is actually just a specialized type of API node, which designates any application which
accesses NDB Cluster data. Another example of an API node is the ndb_restore utility that is
used to restore a cluster backup. It is possible to write such applications using the NDB API. For
basic information about the NDB API, see Getting Started with the NDB API.

Important

It is not realistic to expect to employ a three-node setup in a production
environment. Such a configuration provides no redundancy; to benefit from NDB
Cluster's high-availability features, you must use multiple data and SQL nodes.
The use of multiple management nodes is also highly recommended.

For a brief introduction to the relationships between nodes, node groups, fragment replicas, and
partitions in NDB Cluster, see Section 25.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas,
and Partitions”.

Configuration of a cluster involves configuring each individual node in the cluster and setting up
individual communication links between nodes. NDB Cluster is currently designed with the intention
that data nodes are homogeneous in terms of processor power, memory space, and bandwidth. In
addition, to provide a single point of configuration, all configuration data for the cluster as a whole is
located in one configuration file.

The management server manages the cluster configuration file and the cluster log. Each node in
the cluster retrieves the configuration data from the management server, and so requires a way to
determine where the management server resides. When interesting events occur in the data nodes,
the nodes transfer information about these events to the management server, which then writes the
information to the cluster log.

In addition, there can be any number of cluster client processes or applications. These include
standard MySQL clients, NDB-specific API programs, and management clients. These are described in
the next few paragraphs.

Standard MySQL clients. NDB Cluster can be used with existing MySQL applications written in
PHP, Perl, C, C++, Java, Python, and so on. Such client applications send SQL statements to and
receive responses from MySQL servers acting as NDB Cluster SQL nodes in much the same way that
they interact with standalone MySQL servers.

MySQL clients using an NDB Cluster as a data source can be modified to take advantage of the ability
to connect with multiple MySQL servers to achieve load balancing and failover. For example, Java

4141

https://dev.mysql.com/doc/ndbapi/en/ndb-getting-started.html

NDB Cluster Core Concepts

clients using Connector/J 5.0.6 and later can use jdbc:mysql:loadbalance:// URLs (improved
in Connector/J 5.1.7) to achieve load balancing transparently; for more information about using
Connector/J with NDB Cluster, see Using Connector/J with NDB Cluster.

NDB client programs. Client programs can be written that access NDB Cluster data directly from
the NDBCLUSTER storage engine, bypassing any MySQL Servers that may be connected to the cluster,
using the NDB API, a high-level C++ API. Such applications may be useful for specialized purposes
where an SQL interface to the data is not needed. For more information, see The NDB API.

NDB-specific Java applications can also be written for NDB Cluster using the NDB Cluster Connector
for Java. This NDB Cluster Connector includes ClusterJ, a high-level database API similar to object-
relational mapping persistence frameworks such as Hibernate and JPA that connect directly to
NDBCLUSTER, and so does not require access to a MySQL Server. See Java and NDB Cluster, and
The ClusterJ API and Data Object Model, for more information.

NDB Cluster also supports applications written in JavaScript using Node.js. The MySQL Connector
for JavaScript includes adapters for direct access to the NDB storage engine and as well as for the
MySQL Server. Applications using this Connector are typically event-driven and use a domain object
model similar in many ways to that employed by ClusterJ. For more information, see MySQL NoSQL
Connector for JavaScript.

Management clients. These clients connect to the management server and provide commands
for starting and stopping nodes gracefully, starting and stopping message tracing (debug versions
only), showing node versions and status, starting and stopping backups, and so on. An example of this
type of program is the ndb_mgm management client supplied with NDB Cluster (see Section 25.5.5,
“ndb_mgm — The NDB Cluster Management Client”). Such applications can be written using the MGM
API, a C-language API that communicates directly with one or more NDB Cluster management servers.
For more information, see The MGM API.

Oracle also makes available MySQL Cluster Manager, which provides an advanced command-line
interface simplifying many complex NDB Cluster management tasks, such restarting an NDB Cluster
with a large number of nodes. The MySQL Cluster Manager client also supports commands for getting
and setting the values of most node configuration parameters as well as mysqld server options and
variables relating to NDB Cluster. MySQL Cluster Manager 8.0 provides support for NDB 8.0. See
MySQL Cluster Manager 8.0.42 User Manual, for more information.

Event logs. NDB Cluster logs events by category (startup, shutdown, errors, checkpoints, and so
on), priority, and severity. A complete listing of all reportable events may be found in Section 25.6.3,
“Event Reports Generated in NDB Cluster”. Event logs are of the two types listed here:

• Cluster log: Keeps a record of all desired reportable events for the cluster as a whole.

• Node log: A separate log which is also kept for each individual node.

Note

Under normal circumstances, it is necessary and sufficient to keep and examine
only the cluster log. The node logs need be consulted only for application
development and debugging purposes.

Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been
reached. More specific to NDB Cluster, a checkpoint is a point in time where all committed transactions
are stored on disk. With regard to the NDB storage engine, there are two types of checkpoints which
work together to ensure that a consistent view of the cluster's data is maintained. These are shown in
the following list:

• Local Checkpoint (LCP): This is a checkpoint that is specific to a single node; however, LCPs
take place for all nodes in the cluster more or less concurrently. An LCP usually occurs every few
minutes; the precise interval varies, and depends upon the amount of data stored by the node, the
level of cluster activity, and other factors.

4142

https://dev.mysql.com/doc/ndbapi/en/mccj-using-connectorj.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/mysql-cluster-manager/8.0/en/

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

NDB 8.0 supports partial LCPs, which can significantly improve performance under some conditions.
See the descriptions of the EnablePartialLcp and RecoveryWork configuration parameters
which enable partial LCPs and control the amount of storage they use.

• Global Checkpoint (GCP): A GCP occurs every few seconds, when transactions for all nodes are
synchronized and the redo-log is flushed to disk.

For more information about the files and directories created by local checkpoints and global
checkpoints, see NDB Cluster Data Node File System Directory.

Transporter. We use the term transporter for the data transport mechanism employed between
data nodes. MySQL NDB Cluster 8.0 supports three of these, which are listed here:

• TCP/IP over Ethernet. See Section 25.4.3.10, “NDB Cluster TCP/IP Connections”.

• Direct TCP/IP. Uses machine-to-machine connections. See Section 25.4.3.11, “NDB Cluster TCP/IP
Connections Using Direct Connections”.

Although this transporter uses the same TCP/IP protocol as mentioned in the previous item, it
requires setting up the hardware differently and is configured differently as well. For this reason, it is
considered a separate transport mechanism for NDB Cluster.

• Shared memory (SHM). See Section 25.4.3.12, “NDB Cluster Shared-Memory Connections”.

Because it is ubiquitous, most users employ TCP/IP over Ethernet for NDB Cluster.

Regardless of the transporter used, NDB attempts to make sure that communication between data node
processes is performed using chunks that are as large as possible since this benefits all types of data
transmission.

25.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

This section discusses the manner in which NDB Cluster divides and duplicates data for storage.

A number of concepts central to an understanding of this topic are discussed in the next few
paragraphs.

Data node. An ndbd or ndbmtd process, which stores one or more fragment replicas—that is,
copies of the partitions (discussed later in this section) assigned to the node group of which the node is
a member.

Each data node should be located on a separate computer. While it is also possible to host multiple
data node processes on a single computer, such a configuration is not usually recommended.

It is common for the terms “node” and “data node” to be used interchangeably when referring to an
ndbd or ndbmtd process; where mentioned, management nodes (ndb_mgmd processes) and SQL
nodes (mysqld processes) are specified as such in this discussion.

Node group. A node group consists of one or more nodes, and stores partitions, or sets of fragment
replicas (see next item).

The number of node groups in an NDB Cluster is not directly configurable; it is a function of the number
of data nodes and of the number of fragment replicas (NoOfReplicas configuration parameter), as
shown here:

[# of node groups] = [# of data nodes] / NoOfReplicas

Thus, an NDB Cluster with 4 data nodes has 4 node groups if NoOfReplicas is set to 1 in the
config.ini file, 2 node groups if NoOfReplicas is set to 2, and 1 node group if NoOfReplicas
is set to 4. Fragment replicas are discussed later in this section; for more information about
NoOfReplicas, see Section 25.4.3.6, “Defining NDB Cluster Data Nodes”.

4143

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

Note

All node groups in an NDB Cluster must have the same number of data nodes.

You can add new node groups (and thus new data nodes) online, to a running NDB Cluster; see
Section 25.6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

Partition. This is a portion of the data stored by the cluster. Each node is responsible for keeping
at least one copy of any partitions assigned to it (that is, at least one fragment replica) available to the
cluster.

The number of partitions used by default by NDB Cluster depends on the number of data nodes and
the number of LDM threads in use by the data nodes, as shown here:

[# of partitions] = [# of data nodes] * [# of LDM threads]

When using data nodes running ndbmtd, the number of LDM threads is controlled by the setting
for MaxNoOfExecutionThreads. When using ndbd there is a single LDM thread, which means
that there are as many cluster partitions as nodes participating in the cluster. This is also the
case when using ndbmtd with MaxNoOfExecutionThreads set to 3 or less. (You should be
aware that the number of LDM threads increases with the value of this parameter, but not in a
strictly linear fashion, and that there are additional constraints on setting it; see the description of
MaxNoOfExecutionThreads for more information.)

NDB and user-defined partitioning. NDB Cluster normally partitions NDBCLUSTER tables
automatically. However, it is also possible to employ user-defined partitioning with NDBCLUSTER tables.
This is subject to the following limitations:

1. Only the KEY and LINEAR KEY partitioning schemes are supported in production with NDB tables.

2. The maximum number of partitions that may be defined explicitly for any NDB table is 8 *
[number of LDM threads] * [number of node groups], the number of node groups
in an NDB Cluster being determined as discussed previously in this section. When running ndbd
for data node processes, setting the number of LDM threads has no effect (since ThreadConfig
applies only to ndbmtd); in such cases, this value can be treated as though it were equal to 1 for
purposes of performing this calculation.

See Section 25.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”, for more
information.

For more information relating to NDB Cluster and user-defined partitioning, see Section 25.2.7, “Known
Limitations of NDB Cluster”, and Section 26.6.2, “Partitioning Limitations Relating to Storage Engines”.

Fragment replica. This is a copy of a cluster partition. Each node in a node group stores a fragment
replica. Also sometimes known as a partition replica. The number of fragment replicas is equal to the
number of nodes per node group.

A fragment replica belongs entirely to a single node; a node can (and usually does) store several
fragment replicas.

The following diagram illustrates an NDB Cluster with four data nodes running ndbd, arranged in two
node groups of two nodes each; nodes 1 and 2 belong to node group 0, and nodes 3 and 4 belong to
node group 1.

Note

Only data nodes are shown here; although a working NDB Cluster requires
an ndb_mgmd process for cluster management and at least one SQL node to
access the data stored by the cluster, these have been omitted from the figure
for clarity.

4144

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

Figure 25.2 NDB Cluster with Two Node Groups

The data stored by the cluster is divided into four partitions, numbered 0, 1, 2, and 3. Each partition is
stored—in multiple copies—on the same node group. Partitions are stored on alternate node groups as
follows:

• Partition 0 is stored on node group 0; a primary fragment replica (primary copy) is stored on node 1,
and a backup fragment replica (backup copy of the partition) is stored on node 2.

• Partition 1 is stored on the other node group (node group 1); this partition's primary fragment replica
is on node 3, and its backup fragment replica is on node 4.

• Partition 2 is stored on node group 0. However, the placing of its two fragment replicas is reversed
from that of Partition 0; for Partition 2, the primary fragment replica is stored on node 2, and the
backup on node 1.

• Partition 3 is stored on node group 1, and the placement of its two fragment replicas are reversed
from those of partition 1. That is, its primary fragment replica is located on node 4, with the backup
on node 3.

What this means regarding the continued operation of an NDB Cluster is this: so long as each node
group participating in the cluster has at least one node operating, the cluster has a complete copy of all
data and remains viable. This is illustrated in the next diagram.

4145

NDB Cluster Hardware, Software, and Networking Requirements

Figure 25.3 Nodes Required for a 2x2 NDB Cluster

In this example, the cluster consists of two node groups each consisting of two data nodes. Each data
node is running an instance of ndbd. Any combination of at least one node from node group 0 and at
least one node from node group 1 is sufficient to keep the cluster “alive”. However, if both nodes from a
single node group fail, the combination consisting of the remaining two nodes in the other node group
is not sufficient. In this situation, the cluster has lost an entire partition and so can no longer provide
access to a complete set of all NDB Cluster data.

The maximum number of node groups supported for a single NDB Cluster instance is 48.

25.2.3 NDB Cluster Hardware, Software, and Networking Requirements

One of the strengths of NDB Cluster is that it can be run on commodity hardware and has no unusual
requirements in this regard, other than for large amounts of RAM, due to the fact that all live data
storage is done in memory. (It is possible to reduce this requirement using Disk Data tables—see
Section 25.6.11, “NDB Cluster Disk Data Tables”, for more information about these.) Naturally, multiple
and faster CPUs can enhance performance. Memory requirements for other NDB Cluster processes
are relatively small.

Increasing the number of CPUs, using faster CPUs, or both, on the computers hosting data nodes can
generally be expected to enhance the performance of NDB Cluster. Memory requirements for cluster
processes other than the data nodes are relatively small.

The software requirements for NDB Cluster are also modest. Host operating systems do not require
any unusual modules, services, applications, or configuration to support NDB Cluster. For supported
operating systems, a standard installation should be sufficient. The MySQL software requirements are
simple: all that is needed is a production release of NDB Cluster. It is not strictly necessary to compile
MySQL yourself merely to be able to use NDB Cluster. We assume that you are using the binaries
appropriate to your platform, available from the NDB Cluster software downloads page at https://
dev.mysql.com/downloads/cluster/.

For communication between nodes, NDB Cluster supports TCP/IP networking in any standard
topology, and the minimum expected for each host is a standard 100 Mbps Ethernet card, plus
a switch, hub, or router to provide network connectivity for the cluster as a whole. We strongly
recommend that an NDB Cluster be run on its own subnet which is not shared with machines not
forming part of the cluster for the following reasons:

• Security. Communications between NDB Cluster nodes are not encrypted or shielded in any
way. The only means of protecting transmissions within an NDB Cluster is to run your NDB Cluster
on a protected network. If you intend to use NDB Cluster for Web applications, the cluster should
definitely reside behind your firewall and not in your network's De-Militarized Zone (DMZ) or
elsewhere.

4146

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm

What is New in MySQL NDB Cluster 8.0

See Section 25.6.20.1, “NDB Cluster Security and Networking Issues”, for more information.

• Efficiency. Setting up an NDB Cluster on a private or protected network enables the cluster
to make exclusive use of bandwidth between cluster hosts. Using a separate switch for your NDB
Cluster not only helps protect against unauthorized access to NDB Cluster data, it also ensures
that NDB Cluster nodes are shielded from interference caused by transmissions between other
computers on the network. For enhanced reliability, you can use dual switches and dual cards
to remove the network as a single point of failure; many device drivers support failover for such
communication links.

Network communication and latency. NDB Cluster requires communication between data nodes
and API nodes (including SQL nodes), as well as between data nodes and other data nodes, to
execute queries and updates. Communication latency between these processes can directly affect the
observed performance and latency of user queries. In addition, to maintain consistency and service
despite the silent failure of nodes, NDB Cluster uses heartbeating and timeout mechanisms which treat
an extended loss of communication from a node as node failure. This can lead to reduced redundancy.
Recall that, to maintain data consistency, an NDB Cluster shuts down when the last node in a node
group fails. Thus, to avoid increasing the risk of a forced shutdown, breaks in communication between
nodes should be avoided wherever possible.

The failure of a data or API node results in the abort of all uncommitted transactions involving the
failed node. Data node recovery requires synchronization of the failed node's data from a surviving
data node, and re-establishment of disk-based redo and checkpoint logs, before the data node
returns to service. This recovery can take some time, during which the Cluster operates with reduced
redundancy.

Heartbeating relies on timely generation of heartbeat signals by all nodes. This may not be possible
if the node is overloaded, has insufficient machine CPU due to sharing with other programs, or is
experiencing delays due to swapping. If heartbeat generation is sufficiently delayed, other nodes treat
the node that is slow to respond as failed.

This treatment of a slow node as a failed one may or may not be desirable in some circumstances,
depending on the impact of the node's slowed operation on the rest of the cluster. When setting timeout
values such as HeartbeatIntervalDbDb and HeartbeatIntervalDbApi for NDB Cluster, care
must be taken care to achieve quick detection, failover, and return to service, while avoiding potentially
expensive false positives.

Where communication latencies between data nodes are expected to be higher than would be
expected in a LAN environment (on the order of 100 µs), timeout parameters must be increased to
ensure that any allowed periods of latency periods are well within configured timeouts. Increasing
timeouts in this way has a corresponding effect on the worst-case time to detect failure and therefore
time to service recovery.

LAN environments can typically be configured with stable low latency, and such that they can provide
redundancy with fast failover. Individual link failures can be recovered from with minimal and controlled
latency visible at the TCP level (where NDB Cluster normally operates). WAN environments may offer
a range of latencies, as well as redundancy with slower failover times. Individual link failures may
require route changes to propagate before end-to-end connectivity is restored. At the TCP level this
can appear as large latencies on individual channels. The worst-case observed TCP latency in these
scenarios is related to the worst-case time for the IP layer to reroute around the failures.

25.2.4 What is New in MySQL NDB Cluster 8.0

The following sections describe changes in the implementation of MySQL NDB Cluster in NDB Cluster
8.0 through 8.0.42, as compared to earlier release series.

NDB Cluster 8.4 is also available for production; while NDB 8.0 is still supported, we suggest that you
use NDB 8.4 for new deployments; for more information, see MySQL NDB Cluster 8.4. NDB Cluster
9.3 is available as a Development release for preview and testing of new features currently under
development; see What is New in NDB Cluster 9.3.

4147

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.3/en/mysql-cluster-what-is-new.html#mysql-cluster-what-is-new-9-3

What is New in MySQL NDB Cluster 8.0

NDB Cluster 7.6 (see What is New in NDB Cluster 7.6) is a previous GA release which is still supported
in production, although we recommend that new deployments for production use MySQL NDB Cluster
8.4. NDB Cluster 7.5, 7.4, and 7.3 were previous GA releases which have reached their end of life,
and are no longer supported or maintained. We recommend that new deployments for production use
MySQL NDB Cluster 8.4.

What is New in NDB Cluster 8.0

Major changes and new features in NDB Cluster 8.0 which are likely to be of interest are shown in the
following list:

• Compatibility enhancements. The following changes reduce longstanding nonessential
differences in NDB behavior as compared to that of other MySQL storage engines:

• Development in parallel with MySQL server. Beginning with this release, MySQL NDB
Cluster is being developed in parallel with the standard MySQL 8.0 server under a new unified
release model with the following features:

• NDB 8.0 is developed in, built from, and released with the MySQL 8.0 source code tree.

• The numbering scheme for NDB Cluster 8.0 releases follows the scheme for MySQL 8.0.

• Building the source with NDB support appends -cluster to the version string returned by
mysql -V, as shown here:

$> mysql -V
mysql Ver 8.0.42-cluster for Linux on x86_64 (Source distribution)

NDB binaries continue to display both the MySQL Server version and the NDB engine version,
like this:

$> ndb_mgm -V
MySQL distrib mysql-8.0.42 ndb-8.0.42, for Linux (x86_64)

In MySQL Cluster NDB 8.0, these two version numbers are always the same.

To build the MySQL source with NDB Cluster support, use the CMake option -DWITH_NDB (NDB
8.0.31 and later; for earlier releases, use -DWITH_NDBCLUSTER instead).

• Platform support notes. NDB 8.0 makes the following changes in platform support:

• NDBCLUSTER no longer supports 32-bit platforms. Beginning with NDB 8.0.21, the NDB build
process checks the system architecture and aborts if it is not a 64-bit platform.

• It is now possible to build NDB from source for 64-bit ARM CPUs. Currently, this support is
source-only, and we do not provide any precompiled binaries for this platform.

• Database and table names. NDB 8.0 removes the previous 63-byte limit on identifiers for
databases and tables. These identifiers can now use up to 64 bytes, as for such objects using
other MySQL storage engines. See Section 25.2.7.11, “Previous NDB Cluster Issues Resolved in
NDB Cluster 8.0”.

• Generated names for foreign keys. NDB now uses the pattern tbl_name_fk_N for naming
internally generated foreign keys. This is similar to the pattern used by InnoDB.

• Schema and metadata distribution and synchronization. NDB 8.0 makes use of the
MySQL data dictionary to distribute schema information to SQL nodes joining a cluster and to
synchronize new schema changes between existing SQL nodes. The following list describes
individual enhancements relating to this integration work:

• Schema distribution enhancements. The NDB schema distribution coordinator, which handles
schema operations and tracks their progress, has been extended in NDB 8.0 to ensure that

4148

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html

What is New in MySQL NDB Cluster 8.0

resources used during a schema operation are released at its conclusion. Previously, some of this
work was done by the schema distribution client; this has been changed due to the fact that the
client did not always have all needed state information, which could lead to resource leaks when
the client decided to abandon the schema operation prior to completion and without informing the
coordinator.

To help fix this issue, schema operation timeout detection has been moved from the schema
distribution client to the coordinator, providing the coordinator with an opportunity to clean up
any resources used during the schema operation. The coordinator now checks ongoing schema
operations for timeout at regular intervals, and marks participants that have not yet completed
a given schema operation as failed when detecting timeout. It also provides suitable warnings
whenever a schema operation timeout occurs. (It should be noted that, after such a timeout is
detected, the schema operation itself continues.) Additional reporting is done by printing a list
of active schema operations at regular intervals whenever one or more of these operations is
ongoing.

As an additional part of this work, a new mysqld option --ndb-schema-dist-timeout makes
it possible to set the length of time to wait until a schema operation is marked as having timed out.

• Disk data file distribution. NDB Cluster 8.0.14, uses the MySQL data dictionary to make sure
that disk data files and related constructs such as tablespaces and log file groups are correctly
distributed between all connected SQL nodes.

• Schema synchronization of tablespace objects. When a MySQL Server connects as an
SQL node to an NDB cluster, it checks its data dictionary against the information found in the NDB
dictionary.

Previously, the only NDB objects synchronized on connection of a new SQL node were databases
and tables; MySQL NDB Cluster 8.0 also implements schema synchronization of disk data objects
including tablespaces and log file groups. Among other benefits, this eliminates the possibility of
a mismatch between the MySQL data dictionary and the NDB dictionary following a native backup
and restore, in which tablespaces and log file groups were restored to the NDB dictionary, but not
to the MySQL Server's data dictionary.

It is also no longer possible to issue a CREATE TABLE statement that refers to a nonexistent
tablespace. Such a statement now fails with an error.

• Database DDL synchronization enhancements. Work done for NDB 8.0 insures that
synchronization of databases by newly joined (or rejoined) SQL nodes with those on existing
SQL nodes now makes proper use of the data dictionary so that any database-level operations
(CREATE DATABASE, ALTER DATABASE, or DROP DATABASE) that may have been missed by
this SQL node are now correctly duplicated on it when it connects (or reconnects) to the cluster.

As part of the schema synchronization procedure performed when starting, an SQL node
now compares all databases on the cluster's data nodes with those in its own data dictionary,
and if any of these is found to be missing from the SQL node's data dictionary, the SQL
Node installs it locally by executing a CREATE DATABASE statement. A database thus
created uses the default MySQL Server database properties (such as those as determined by
character_set_database and collation_database) that are in effect on this SQL node at
the time the statement is executed.

• NDB metadata change detection and synchronization. NDB 8.0 implements a new
mechanism for detection of updates to metadata for data objects such as tables, tablespaces, and
log file groups with the MySQL data dictionary. This is done using a thread, the NDB metadata
change monitor thread, which runs in the background and checks periodically for inconsistencies
between the NDB dictionary and the MySQL data dictionary.

The monitor performs metadata checks every 60 seconds by default. The polling interval can be
adjusted by setting the value of the ndb_metadata_check_interval system variable; polling

4149

What is New in MySQL NDB Cluster 8.0

can be disabled altogether by setting the ndb_metadata_check system variable to OFF. The
status variable Ndb_metadata_detected_count shows the number of times since mysqld was
last started that inconsistencies have been detected.

NDB ensures that NDB database, table, log file group, and tablespace objects submitted by the
metadata change monitor thread during operations following startup are automatically checked for
mismatches and synchronized by the NDB binlog thread.

NDB 8.0 adds two status variables relating to automatic synchronization:
Ndb_metadata_synced_count shows the number of objects synchronized automatically;
Ndb_metadata_excluded_count indicates the number of objects for which synchronization
has failed (prior to NDB 8.0.22, this variable was named Ndb_metadata_blacklist_size). In
addition, you can see which objects have been synchronized by inspecting the cluster log.

Setting the ndb_metadata_sync system variable to true overrides any settings that have been
made for ndb_metadata_check_interval and ndb_metadata_check, causing the change
monitor thread to begin continuous metadata change detection.

In NDB 8.0.22 and later, setting ndb_metadata_sync to true clears the list of objects for which
synchronization has failed previously, which means it is no longer necessary to discover individual
tables or to re-trigger synchronization by reconnecting the SQL node to the cluster. In addition,
setting this variable to false clears the list of objects waiting to be retried.

Beginning with NDB 8.0.21, more detailed information about the current state of automatic
synchronization than can be obtained from log messages or status variables is provided by two
new tables added to the MySQL Performance Schema. The tables are listed here:

• ndb_sync_pending_objects: Contains information about database objects for which
mismatches have been detected between the NDB dictionary and the MySQL data dictionary
(and which have not been excluded from automatic synchronization).

• ndb_sync_excluded_objects: Contains information about NDB database objects which
have been excluded because they cannot be synchronized between the NDB dictionary and the
MySQL data dictionary, and thus require manual intervention.

A row in one of these tables provides the database object's parent schema, name, and
type. Types of objects include schemas, tablespaces, log file groups, and tables. (If the
object is a log file group or tablespace, the parent schema is NULL.) In addition, the
ndb_sync_excluded_objects table shows the reason for which the object has been excluded.

These tables are present only if NDBCLUSTER storage engine support is enabled. For more
information about these tables, see Section 29.12.12, “Performance Schema NDB Cluster Tables”.

• Changes in NDB table extra metadata. The extra metadata property of an NDB table is used
for storing serialized metadata from the MySQL data dictionary, rather than storing the binary
representation of the table as in previous versions. (This was a .frm file, no longer used by the
MySQL Server—see Chapter 16, MySQL Data Dictionary.) As part of the work to support this
change, the available size of the table's extra metadata has been increased. This means that NDB
tables created in NDB Cluster 8.0 are not compatible with previous NDB Cluster releases. Tables
created in previous releases can be used with NDB 8.0, but cannot be opened afterwards by an
earlier version.

This metadata is accessible using the NDB API methods getExtraMetadata() and
setExtraMetadata().

For more information, see Section 25.3.7, “Upgrading and Downgrading NDB Cluster”.

• On-the-fly upgrades of tables using .frm files. A table created in NDB 7.6 and earlier
contains metadata in the form of a compressed .frm file, which is no longer supported in MySQL
8.0. To facilitate online upgrades to NDB 8.0, NDB performs on-the-fly translation of this metadata

4150

https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getextrametadata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setextrametadata

What is New in MySQL NDB Cluster 8.0

and writes it into the MySQL Server's data dictionary, which enables the mysqld in NDB Cluster
8.0 to work with the table without preventing subsequent use of the table by a previous version of
the NDB software.

Important

Once a table's structure has been modified in NDB 8.0, its metadata is
stored using the data dictionary, and it can no longer be accessed by NDB
7.6 and earlier.

This enhancement also makes it possible to restore an NDB backup made using an earlier version
to a cluster running NDB 8.0 (or later).

• Metadata consistency check error logging. As part of work previously done in NDB 8.0,
the metadata check performed as part of auto-synchronization between the representation of an
NDB table in the NDB dictionary and its counterpart in the MySQL data dictionary includes the
table's name, storage engine, and internal ID. Beginning with NDB 8.0.23, the range of properties
checked is expanded to include properties of the following data objects:

• Columns

• Indexes

• Foreign keys

In addition, details of any mismatches in metadata properties are now written to the MySQL
server error log. The formats used for the error log messages differ slightly depending on
whether the discrepancy is found on the table level or on the level of a column, index, or foreign
key. The format for a log error resulting from a table-level property mismatch is shown here,
where property is the property name, ndb_value is the property value as stored in the
NDB dictionary, and mysqld_value is the value of the property as stored in the MySQL data
dictionary:

Diff in 'property' detected, 'ndb_value' != 'mysqld_value'

For mismatches in properties of columns, indexes, and foreign keys, the format is as follows,
where obj_type is one of column, index, or foreign key, and obj_name is the name of the
object:

Diff in obj_type 'obj_name.property' detected, 'ndb_value' != 'mysqld_value'

Metadata checks are performed during automatic synchronization of NDB tables when they are
installed in the data dictionary of any mysqld acting as an SQL node in an NDB Cluster. If the
mysqld is debug-compiled, checks are also made whenever a CREATE TABLE statement is
executed, and whenever an NDB table is opened.

• Synchronization of user privileges with NDB_STORED_USER. A new mechanism for sharing
and synchronizing users, roles, and privileges between SQL nodes is available in NDB 8.0, using

4151

What is New in MySQL NDB Cluster 8.0

the NDB_STORED_USER privilege. Distributed privileges as implemented in NDB 7.6 and earlier (see
Distributed Privileges Using Shared Grant Tables) are no longer supported.

Once a user account is created on an SQL node, the user and its privileges can be stored in NDB and
thus shared between all SQL nodes in the cluster by issuing a GRANT statement such as this one:

GRANT NDB_STORED_USER ON *.* TO 'jon'@'localhost';

NDB_STORED_USER always has global scope and must be granted using ON *.*. System reserved
accounts such as mysql.session@localhost or mysql.infoschema@localhost cannot be
assigned this privilege.

Roles can also be shared between SQL nodes by issuing the appropriate GRANT
NDB_STORED_USER statement. Assigning such a role to a user does not cause the user to be
shared; the NDB_STORED_USER privilege must be granted to each user explicitly.

A user or role having NDB_STORED_USER, along with its privileges, is shared with all SQL nodes as
soon as they join a given NDB Cluster. It is possible to make such changes from any connected SQL
node, but recommended practice is to do so from a designated SQL node only, since the order of
execution of statements affecting privileges from different SQL nodes cannot be guaranteed to be
the same on all SQL nodes.

Prior to NDB 8.0.27, changes to the privileges of a user or role were synchronized immediately with
all connected SQL nodes. Beginning with MySQL 8.0.27, an SQL node takes a global read lock
when updating privileges, which keeps concurrent changes executed by multiple SQL nodes from
causing a deadlock.

Implications for upgrades. Due to changes in the MySQL server's privilege system (see
Section 8.2.3, “Grant Tables”), privilege tables using the NDB storage engine do not function correctly
in NDB 8.0. It is safe but not necessary to retain such privilege tables created in NDB 7.6 or earlier,
but they are no longer used for access control. In NDB 8.0, a mysqld acting as an SQL node and
detecting such tables in NDB writes a warning to the MySQL server log, and creates InnoDB shadow
tables local to itself; such shadow tables are created on each MySQL server connected to the
cluster. When performing an upgrade from NDB 7.6 or earlier, the privilege tables using NDB can be
removed safely using ndb_drop_table once all MySQL servers acting as SQL nodes have been
upgraded (see Section 25.3.7, “Upgrading and Downgrading NDB Cluster”).

The ndb_restore utility's --restore-privilege-tables option is deprecated but continues
to be honored in NDB 8.0, and can still be used to restore distributed privilege tables present in a
backup taken from a previous release of NDB Cluster to a cluster running NDB 8.0. These tables are
handled as described in the preceding paragraph.

Shared users and grants are stored in the ndb_sql_metadata table, which ndb_restore by
default does not restore in NDB 8.0; you can specify the --include-stored-grants option to
cause it to do so.

See Section 25.6.13, “Privilege Synchronization and NDB_STORED_USER”, for more information.

• INFORMATION_SCHEMA changes. The following changes are made in the display of
information regarding Disk Data files in the Information Schema FILES table:

• Tablespaces and log file groups are no longer represented in the FILES table. (These constructs
are not actually files.)

• Each data file is now represented by a single row in the FILES table. Each undo log file is also
now represented in this table by one row only. (Previously, a row was displayed for each copy of
each of these files on each data node.)

In addition, INFORMATION_SCHEMA tables are now populated with tablespace statistics for MySQL
Cluster tables. (Bug #27167728)

4152

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html

What is New in MySQL NDB Cluster 8.0

• Error information with ndb_perror. The deprecated --ndb option for perror has been
removed. Instead, use ndb_perror to obtain error message information from NDB error codes. (Bug
#81704, Bug #81705, Bug #23523926, Bug #23523957)

• Condition pushdown enhancements. Previously, condition pushdown was limited to predicate
terms referring to column values from the same table to which the condition was being pushed. In
NDB 8.0, this restriction is removed such that column values from tables earlier in the query plan can
also be referred to from pushed conditions. NDB 8.0 supports joins comparing column expressions,
as well as comparisons between columns in the same table. Columns and column expressions to be
compared must be of exactly the same type; this means they must also be of the same signedness,
length, character set, precision, and scale, whenever these attributes apply. Conditions being pushed
could not be part of pushed joins prior to NDB 8.0.27, when this restriction is lifted.

Pushing down larger parts of a condition allows more rows to be filtered out by the data nodes,
thereby reducing the number of rows which mysqld must handle during join processing. Another
benefit of these enhancements is that filtering can be performed in parallel in the LDM threads,
rather than in a single mysqld process on an SQL node; this has the potential to improve query
performance significantly.

Existing rules for type compatibility between column values being compared continue to apply (see
Section 10.2.1.5, “Engine Condition Pushdown Optimization”).

Pushdown of outer joins and semijoins. Work done in NDB 8.0.20 allows many outer joins and
semijoins, and not only those using a primary key or unique key lookup, to be pushed down to the
data nodes (see Section 10.2.1.5, “Engine Condition Pushdown Optimization”).

Outer joins using scans which can now be pushed include those which meet the following conditions:

• There are no unpushed conditions on the table

• There are no unpushed conditions on other tables in the same join nest, or in upper join nests on
which it depends

• All other tables in the same join nest, or in upper join nests on which it depends, are also pushed

A semijoin that uses an index scan can now be pushed if it meets the conditions just noted for a
pushed outer join, and it uses the firstMatch strategy (see Section 10.2.2.1, “Optimizing IN and
EXISTS Subquery Predicates with Semijoin Transformations”).

These additional improvements are made in NDB 8.0.21:

• Antijoins produced by the MySQL Optimizer through the transformation of NOT EXISTS and NOT
IN queries (see Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin
Transformations”) can be pushed down to the data nodes by NDB.

This can be done when there is no unpushed condition on the table, and the query fulfills any other
conditions which must be met for an outer join to be pushed down.

• NDB attempts to identify and evaluate a non-dependent scalar subquery before trying to retrieve
any rows from the table to which it is attached. When it can do so, the value obtained is used as
part of a pushed condition, instead of using the subquery which provided the value.

Beginning with NDB 8.0.27, conditions pushed as part of a pushed query can now refer to columns
from ancestor tables within the same pushed query, subject to the following conditions:

• Pushed conditions may include any of the comparison operators <, <=, >, >=, =, and <>.

• Values being compared must be of the same type, including length, precision, and scale.

• NULL handling is performed according to the comparison semantics specified by the ISO SQL
standard; any comparison with NULL returns NULL.

4153

What is New in MySQL NDB Cluster 8.0

Consider the table created using the statement shown here:

CREATE TABLE t (
 x INT PRIMARY KEY,
 y INT
) ENGINE=NDB;

A query such as SELECT * FROM t AS m JOIN t AS n ON m.x >= n.y can now use the
engine condition pushdown optimization to push down the condition column y.

When a join cannot be pushed, EXPLAIN should provide the reason or reasons.

See Section 10.2.1.5, “Engine Condition Pushdown Optimization”, for more information.

The NDB API methods branch_col_eq_param(), branch_col_ne_param(),
branch_col_lt_param(), branch_col_le_param(), branch_col_gt_param(),
and branch_col_ge_param() were added in NDB 8.0.27 as part of this work. These
NdbInterpretedCode can be used to compare column values with values of parameters.

In addition, NdbScanFilter::cmp_param(), also added in NDB 8.0.27, makes it possible to
define comparisons between column values and parameter values for use in performing scans.

• Increase in maximum row size. NDB 8.0 increases the maximum number of bytes that can be
stored in an NDBCLUSTER table from 14000 to 30000 bytes.

A BLOB or TEXT column continues to use 264 bytes of this total, as before.

The maximum offset for a fixed-width column of an NDB table is 8188 bytes; this is also unchanged
from previous releases.

See Section 25.2.7.5, “Limits Associated with Database Objects in NDB Cluster”, for more
information.

• ndb_mgm SHOW command and single user mode. In NDB 8.0, when the cluster in single user
mode, the output of the management client SHOW command indicates which API or SQL node has
exclusive access while this mode is in effect.

• Online column renames. Columns of NDB tables can now be renamed online, using
ALGORITHM=INPLACE. See Section 25.6.12, “Online Operations with ALTER TABLE in NDB
Cluster”, for more information.

• Improved ndb_mgmd startup times. Start times for management nodes daemon have been
significantly improved in NDB 8.0, in the following ways:

• Due to replacing the list data structure formerly used by ndb_mgmd for handling node properties
from configuration data with a hash table, overall startup times for the management server have
been decreased by a factor of 6 or more.

• In addition, in cases where data and SQL node host names not present in the management
server's hosts file are used in the cluster configuration file, ndb_mgmd start times can be up to 20
times shorter than was previously the case.

4154

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp-param

What is New in MySQL NDB Cluster 8.0

• NDB API enhancements. NdbScanFilter::cmp() and several comparison methods of
NdbInterpretedCode can now be used to compare table column values with each other. The
affected NdbInterpretedCode methods are listed here:

• branch_col_eq()

• branch_col_ge()

• branch_col_gt()

• branch_col_le()

• branch_col_lt()

• branch_col_ne()

For all of the methods just listed, table column values to be compared much be of exactly matching
types, including with respect to length, precision, signedness, scale, character set, and collation, as
applicable.

See the descriptions of the individual API methods for more information.

• Offline multithreaded index builds. It is now possible to specify a set of cores to be used for
I/O threads performing offline multithreaded builds of ordered indexes, as opposed to normal I/O
duties such as file I/O， compression， or decompression. “Offline” in this context refers to building
of ordered indexes performed when the parent table is not being written to; such building takes place
when an NDB cluster performs a node or system restart, or as part of restoring a cluster from backup
using ndb_restore --rebuild-indexes.

In addition, the default behavior for offline index build work is modified to use all cores available to
ndbmtd, rather limiting itself to the core reserved for the I/O thread. Doing so can improve restart
and restore times and performance, availability, and the user experience.

This enhancement is implemented as follows:

1. The default value for BuildIndexThreads is changed from 0 to 128. This means that offline
ordered index builds are now multithreaded by default.

2. The default value for TwoPassInitialNodeRestartCopy is changed from false to true.
This means that an initial node restart first copies all data from a “live” node to one that is starting
—without creating any indexes—builds ordered indexes offline, and then again synchronizes its
data with the live node, that is, synchronizing twice and building indexes offline between the two
synchronizations. This causes an initial node restart to behave more like the normal restart of a
node, and reduces the time required for building indexes.

3. A new thread type (idxbld) is defined for the ThreadConfig configuration parameter, to allow
locking of offline index build threads to specific CPUs.

In addition, NDB now distinguishes the thread types that are accessible to ThreadConfig by these
two criteria:

1. Whether the thread is an execution thread. Threads of types main, ldm, recv, rep, tc, and
send are execution threads; thread types io, watchdog, and idxbld are not.

2. Whether the allocation of the thread to a given task is permanent or temporary. Currently all
thread types except idxbld are permanent.

For additional information, see the descriptions of the indicated parameters in the Manual. (Bug
#25835748, Bug #26928111)

4155

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne

What is New in MySQL NDB Cluster 8.0

• logbuffers table backup process information. When performing an NDB backup, the
ndbinfo.logbuffers table now displays information regarding buffer usage by the backup
process on each data node. This is implemented as rows reflecting two new log types in addition to
REDO and DD-UNDO. One of these rows has the log type BACKUP-DATA, which shows the amount
of data buffer used during backup to copy fragments to backup files. The other row has the log type
BACKUP-LOG, which displays the amount of log buffer used during the backup to record changes
made after the backup has started. One each of these log_type rows is shown in the logbuffers
table for each data node in the cluster. Rows having these two log types are present in the table only
while an NDB backup is currently in progress. (Bug #25822988)

• ndbinfo.processes table on Windows. The process ID of the monitor process used on Windows
platforms by RESTART to spawn and restart a mysqld is now shown in the processes table as an
angel_pid.

• String hashing improvements. Prior to NDB 8.0, all string hashing was based on first
transforming the string into a normalized form, then MD5-hashing the resulting binary image. This
could give rise to some performance problems, for the following reasons:

• The normalized string is always space padded to its full length. For a VARCHAR, this often involved
adding more spaces than there were characters in the original string.

• The string libraries were not optimized for this space padding, which added considerable overhead
in some use cases.

• The padding semantics varied between character sets, some of which were not padded to their full
length.

• The transformed string could become quite large, even without space padding; some Unicode 9.0
collations can transform a single code point into 100 bytes or more of character data.

• Subsequent MD5 hashing consisted mainly of padding with spaces, and was not particularly
efficient, possibly causing additional performance penalties by flushing significant portions of the
L1 cache.

A collation provides its own hash function, which hashes the string directly without first creating a
normalized string. In addition, for a Unicode 9.0 collation, the hash is computed without padding. NDB
now takes advantage of this built-in function whenever hashing a string identified as using a Unicode
9.0 collation.

Since, for other collations, there are existing databases which are hash partitioned on the
transformed string, NDB continues to employ the previous method for hashing strings that use these,
to maintain compatibility. (Bug #89590, Bug #89604, Bug #89609, Bug #27515000, Bug #27523758,
Bug #27522732)

• RESET MASTER changes. Because the MySQL Server now executes RESET MASTER with a
global read lock, the behavior of this statement when used with NDB Cluster has changed in the
following two respects:

• It is no longer guaranteed to be synchronous; that is, it is now possible that a read coming
immediately before RESET MASTER is issued may not be logged until after the binary log has been
rotated.

• It now behaves in exactly the same fashion, whether the statement is issued on the same SQL
node that is writing the binary log, or on a different SQL node in the same cluster.

Note

SHOW BINLOG EVENTS, FLUSH LOGS, and most data definition statements
continue, as they did in previous NDB versions, to operate in a synchronous
fashion.

4156

What is New in MySQL NDB Cluster 8.0

• ndb_restore option usage. The --nodeid and --backupid options are now both required
when invoking ndb_restore.

• ndb_log_bin default. NDB 8.0 changes the default value of the ndb_log_bin system variable
from TRUE to FALSE.

• Dynamic transactional resource allocation. Allocation of resources in the transaction
coordinator is now performed using dynamic memory pools. This means that resource allocation
determined by data node configuration parameters such as MaxDMLOperationsPerTransaction,
MaxNoOfConcurrentIndexOperations, MaxNoOfConcurrentOperations,
MaxNoOfConcurrentScans, MaxNoOfConcurrentTransactions, MaxNoOfFiredTriggers,
MaxNoOfLocalScans, and TransactionBufferMemory is now done in such a way that, if the
load represented by each of these parameters is within the target load for all such resources, others
of these resources can be limited so as not to exceed the total resources available.

As part of this work, several new data node parameters controlling transactional resources in DBTC,
listed here, have been added:

• ReservedConcurrentIndexOperations

• ReservedConcurrentOperations

• ReservedConcurrentScans

• ReservedConcurrentTransactions

• ReservedFiredTriggers

• ReservedLocalScans

• ReservedTransactionBufferMemory.

See the descriptions of the parameters just listed for further information.

• Backups using multiple LDMs per data node. NDB backups can now be performed in a
parallel fashion on individual data nodes using multiple local data managers (LDMs). (Previously,
backups were done in parallel across data nodes, but were always serial within data node
processes.) No special syntax is required for the START BACKUP command in the ndb_mgm client
to enable this feature, but all data nodes must be using multiple LDMs. This means that data
nodes must be running ndbmtd (ndbd is single-threaded and thus always has only one LDM)
and they must be configured to use multiple LDMs before taking the backup; you can do this by
choosing an appropriate setting for one of the multi-threaded data node configuration parameters
MaxNoOfExecutionThreads or ThreadConfig.

Backups using multiple LDMs create subdirectories, one per LDM, under the BACKUP/
BACKUP-backup_id/ directory. ndb_restore now detects these subdirectories automatically,
and if they exist, attempts to restore the backup in parallel; see Section 25.5.23.3, “Restoring from a
backup taken in parallel”, for details. (Single-threaded backups are restored as in previous versions
of NDB.) It is also possible to restore backups taken in parallel using an ndb_restore binary from
a previous version of NDB Cluster by modifying the usual restore procedure; Restoring a parallel
backup serially, provides information on how to do this.

You can force the creation of single-threaded backups by setting the
EnableMultithreadedBackup data node parameter to 0 for all data nodes in the [ndbd
default] section of the cluster's global configuration file (config.ini).

• Binary configuration file enhancements. NDB 8.0 uses a new format for the management
server's binary configuration file. Previously, a maximum of 16381 sections could appear in the

4157

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

What is New in MySQL NDB Cluster 8.0

cluster configuration file; now the maximum number of sections is 4G. This is intended to support
larger numbers of nodes in a cluster than was possible before this change.

Upgrades to the new format are relatively seamless, and should seldom if ever require manual
intervention, as the management server continues to be able to read the old format without issue. A
downgrade from NDB 8.0 to an older version of the NDB Cluster software requires manual removal
of any binary configuration files or, alternatively, starting the older management server binary with
the --initial option.

For more information, see Section 25.3.7, “Upgrading and Downgrading NDB Cluster”.

• Increased number of data nodes. NDB 8.0 increases the maximum number of data nodes
supported per cluster to 144 (previously, this was 48). Data nodes can now use node IDs in the
range 1 to 144, inclusive.

Previously, the recommended node IDs for management nodes were 49 and 50. These are still
supported for management nodes, but using them as such limits the maximum number of data nodes
to 142; for this reason, it is now recommended that node IDs 145 and 146 are used for management
nodes.

As part of this work, the format used for the data node sysfile has been updated to version 2.
This file records information such as the last global checkpoint index, restart status, and node group
membership of each node (see NDB Cluster Data Node File System Directory).

• RedoOverCommitCounter and RedoOverCommitLimit changes. Due to ambiguities in
the semantics for setting them to 0, the minimum value for each of the data node configuration
parameters RedoOverCommitCounter and RedoOverCommitLimit has been increased to 1.

• ndb_autoincrement_prefetch_sz changes. The default value of the
ndb_autoincrement_prefetch_sz server system variable is increased to 512.

• Changes in parameter maximums and defaults. NDB 8.0 makes the following changes in
configuration parameter maximum and default values:

• The maximum for DataMemory is increased to 16 terabytes.

• The maximum for DiskPageBufferMemory is also increased to 16 terabytes.

• The default value for StringMemory is increased to 25%.

• The default for LcpScanProgressTimeout is increased to 180 seconds.

• Disk Data checkpointing improvements. NDB Cluster 8.0 provides a number of new
enhancements which help to reduce the latency of checkpoints of Disk Data tables and tablespaces
when using non-volatile memory devices such as solid-state drives and the NVMe specification for
such devices. These improvements include those in the following list:

• Avoiding bursts of checkpoint disk writes

• Speeding up checkpoints for disk data tablespaces when the redo log or the undo log becomes full

• Balancing checkpoints to disk and in-memory checkpoints against one other, when necessary

• Protecting disk devices from overload to help ensure low latency under high loads

As part of this work, two data node configuration parameters have been added.
MaxDiskDataLatency places a ceiling on the degree of latency permitted for disk access and
causes transactions taking longer than this length of time to be aborted. DiskDataUsingSameDisk

4158

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

What is New in MySQL NDB Cluster 8.0

makes it possible to take advantage of housing Disk Data tablespaces on separate disks by
increasing the rate at which checkpoints of such tablespaces can be performed.

In addition, three new tables in the ndbinfo database provide information about Disk Data
performance:

• The diskstat table reports on writes to Disk Data tablespaces during the past second

• The diskstats_1sec table reports on writes to Disk Data tablespaces for each of the last 20
seconds

• The pgman_time_track_stats table reports on the latency of disk operations relating to Disk
Data tablespaces

• Memory allocation and TransactionMemory. A new TransactionMemory parameter
simplifies allocation of data node memory for transactions as part of the work done to pool
transactional and Local Data Manager (LDM) memory. This parameter is intended to replace several
older transactional memory parameters which have been deprecated.

Transaction memory can now be set in any of the three ways listed here:

• Several configuration parameters are incompatible with TransactionMemory. If any of these are
set, TransactionMemory cannot be set (see Parameters incompatible with TransactionMemory),
and the data node's transaction memory is determined as it was previous to NDB 8.0.

Note

Attempting to set TransactionMemory and any of these parameters
concurrently in the config.ini file prevents the management server from
starting.

• If TransactionMemory is set, this value is used for determining transaction memory.
TransactionMemory cannot be set if any of the incompatible parameters mentioned in the
previous item have also been set.

• If none of the incompatible parameters are set and TransactionMemory is also not set,
transaction memory is set by NDB.

For more information, see the description of TransactionMemory, as well as Section 25.4.3.13,
“Data Node Memory Management”.

• Support for additional fragment replicas. NDB 8.0 increases the maximum number of fragment
replicas supported in production from two to four. (Previously, it was possible to set NoOfReplicas
to 3 or 4, but this was not officially supported or verified in testing.)

• Restoring by slices. Beginning with NDB 8.0.20, it is possible to divide a backup into roughly
equal portions (slices) and to restore these slices in parallel using two new options implemented for
ndb_restore:

• --num-slices determines the number of slices into which the backup should be divided.

• --slice-id provides the ID of the slice to be restored by the current instance of ndb_restore.

This makes it possible to employ multiple instances of ndb_restore to restore subsets of the
backup in parallel, potentially reducing the amount of time required to perform the restore operation.

For more information, see the description of the ndb_restore --num-slices option.

• Read from any fragment replica enabled. Read from any fragment replica is enabled by default
for all NDB tables. This means that the default value for the ndb_read_backup system variable is
now ON, and that the value of the NDB_TABLE comment option READ_BACKUP is 1 when creating a

4159

What is New in MySQL NDB Cluster 8.0

new NDB table. Enabling read from any fragment replica significantly improves performance for reads
from NDB tables, with minimal impact on writes.

For more information, see the description of the ndb_read_backup system variable, and
Section 15.1.20.12, “Setting NDB Comment Options”.

• ndb_blob_tool enhancements. Beginning with NDB 8.0.20, the ndb_blob_tool utility can
detect missing blob parts for which inline parts exist and replace these with placeholder blob parts
(consisting of space characters) of the correct length. To check whether there are missing blob
parts, use the --check-missing option with this program. To replace any missing blob parts with
placeholders, use the --add-missing option.

For more information, see Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT
columns of NDB Cluster Tables”.

• ndbinfo versioning. NDB 8.0.20 and later supports versioning for ndbinfo tables, and maintains
the current definitions for its tables internally. At startup, NDB compares its supported ndbinfo
version with the version stored in the data dictionary. If the versions differ, NDB drops any old
ndbinfo tables and recreates them using the current definitions.

• Support for Fedora Linux. Beginning with NDB 8.0.20, Fedora Linux is a supported platform for
NDB Cluster Community releases and can be installed using the RPMs supplied for this purpose by
Oracle. These can be obtained from the NDB Cluster downloads page.

• NDB programs—NDBT dependency removal. The dependency of a number of NDB utility
programs on the NDBT library has been removed. This library is used internally for development, and
is not required for normal use; its inclusion in these programs could lead to unwanted issues when
testing.

Affected programs are listed here, along with the NDB versions in which the dependency was
removed:

• ndb_restore

• ndb_delete_all

• ndb_show_tables (NDB 8.0.20)

• ndb_waiter (NDB 8.0.20)

The principal effect of this change for users is that these programs no longer print
NDBT_ProgramExit - status following completion of a run. Applications that depend upon such
behavior should be updated to reflect the change when upgrading to the indicated versions.

• Foreign keys and lettercasing. NDB stores the names of foreign keys using the case with
which they were defined. Formerly, when the value of the lower_case_table_names system
variable was set to 0, it performed case-sensitive comparisons of foreign key names as used in
SELECT and other SQL statements with the names as stored. Beginning with NDB 8.0.20, such
comparisons are now always performed in a case-insensitive fashion, regardless of the value of
lower_case_table_names.

• Multiple transporters. NDB 8.0.20 introduces support for multiple transporters to handle
node-to-node communication between pairs of data nodes. This facilitates higher rates of update
operations for each node group in the cluster, and helps avoid constraints imposed by system or
other limitations on inter-node communications using a single socket.

By default, NDB now uses a number of transporters based on the number of local data management
(LDM) threads or the number of transaction coordinator (TC) threads, whichever is greater. By
default, the number of transporters is equal to half of this number. While the default should perform
well for most workloads, it is possible to adjust the number of transporters employed by each node
group by setting the NodeGroupTransporters data node configuration parameter (also introduced

4160

https://dev.mysql.com/downloads/cluster/

What is New in MySQL NDB Cluster 8.0

in NDB 8.0.20), up a maximum of the greater of the number of LDM threads or the number of TC
threads. Setting it to 0 causes the number of transporters to be the same as the number of LDM
threads.

• ndb_restore: primary key schema changes. NDB 8.0.21 (and later) supports different primary
key definitions for source and target tables when restoring an NDB native backup with ndb_restore
when it is run with the --allow-pk-changes option. Both increasing and decreasing the number of
columns making up the original primary key are supported.

When the primary key is extended with an additional column or columns, any columns added must
be defined as NOT NULL, and no values in any such columns may be changed during the time that
the backup is being taken. Because some applications set all column values in a row when updating
it, whether or not all values are actually changed, this can cause a restore operation to fail even if no
values in the column to be added to the primary key have changed. You can override this behavior
using the --ignore-extended-pk-updates option also added in NDB 8.0.21; in this case, you
must ensure that no such values are changed.

A column can be removed from the table's primary key whether or not this column remains part of
the table.

For more information, see the description of the --allow-pk-changes option for ndb_restore.

• Merging backups with ndb_restore. In some cases, it may be desirable to consolidate data
originally stored in different instances of NDB Cluster (all using the same schema) into a single
target NDB Cluster. This is now supported when using backups created in the ndb_mgm client (see
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”) and restoring
them with ndb_restore, using the --remap-column option added in NDB 8.0.21 along with --
restore-data (and possibly additional compatible options as needed or desired). --remap-
column can be employed to handle cases in which primary and unique key values are overlapping
between source clusters, and it is necessary that they do not overlap in the target cluster, as well as
to preserve other relationships between tables such as foreign keys.

--remap-column takes as its argument a string having the format db.tbl.col:fn:args, where
db, tbl, and col are, respectively, the names of the database, table, and column, fn is the name
of a remapping function, and args is one or more arguments to fn. There is no default value. Only
offset is supported as the function name, with args as the integer offset to be applied to the value
of the column when inserting it into the target table from the backup. This column must be one of INT
or BIGINT; the allowed range of the offset value is the same as the signed version of that type (this
allows the offset to be negative if desired).

The new option can be used multiple times in the same invocation of ndb_restore, so that you can
remap to new values multiple columns of the same table, different tables, or both. The offset value
does not have to be the same for all instances of the option.

In addition, two new options are provided for ndb_desc, also beginning in NDB 8.0.21:

• --auto-inc (short form -a): Includes the next auto-increment value in the output, if the table has
an AUTO_INCREMENT column.

• --context (short form -x): Provides extra information about the table, including the schema,
database name, table name, and internal ID.

For more information and examples, see the description of the --remap-column option.

• Send thread improvements. As of NDB 8.0.20, each send thread now handles sends to a
subset of transporters, and each block thread now assists only one send thread, resulting in more
send threads, and thus better performance and data node scalability.

• Adaptive spin control using SpinMethod. A simple interface for setting up adaptive CPU spin
on platforms supporting it, using the SpinMethod data node parameter. This parameter (added in

4161

What is New in MySQL NDB Cluster 8.0

NDB 8.0.20, functional beginning with NDB 8.0.24) has four settings, one each for static spinning,
cost-based adaptive spinning, latency-optimized adaptive spinning, and adaptive spinning optimized
for database machines on which each thread has its own CPU. Each of these settings causes the
data node to use a set of predetermined values for one or more spin parameters which enable
adaptive spinning, set spin timing, and set spin overhead, as appropriate to a given scenario, thus
obviating the need to set these directly for common use cases.

For fine-tuning spin behavior, it is also possible to set these and additional spin parameters directly,
using the existing SchedulerSpinTimer data node configuration parameter as well as the
following DUMP commands in the ndb_mgm client:

• DUMP 104000 (SetSchedulerSpinTimerAll): Sets spin time for all threads

• DUMP 104001 (SetSchedulerSpinTimerThread): Sets spin time for a specified thread

• DUMP 104002 (SetAllowedSpinOverhead): Sets spin overhead as the number of units of
CPU time allowed to gain 1 unit of latency

• DUMP 104003 (SetSpintimePerCall): Sets the time for a call to spin

• DUMP 104004 (EnableAdaptiveSpinning): Enables or disables adaptive spinning

NDB 8.0.20 also adds a new TCP configuration parameter TcpSpinTime which sets the time to spin
for a given TCP connection.

The ndb_top tool is also enhanced to provide spin time information per thread.

For additional information, see the description of the SpinMethod parameter, the listed DUMP
commands, and Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”.

• Disk Data and cluster restarts. Beginning with NDB 8.0.21, an initial restart of the cluster forces
the removal of all Disk Data objects such as tablespaces and log file groups, including any data files
and undo log files associated with these objects.

See Section 25.6.11, “NDB Cluster Disk Data Tables”, for more information.

• Disk Data extent allocation. Beginning with NDB 8.0.20, allocation of extents in data files is
done in a round-robin fashion among all data files used by a given tablespace. This is expected to
improve distribution of data in cases where multiple storage devices are used for Disk Data storage.

For more information, see Section 25.6.11.1, “NDB Cluster Disk Data Objects”.

• --ndb-log-fail-terminate option. Beginning with NDB 8.0.21, you can cause the SQL node to
terminate whenever it is unable to log all row events fully. This can be done by starting mysqld with
the --ndb-log-fail-terminate option.

• AllowUnresolvedHostNames parameter. By default, a management node refuses to start when
it cannot resolve a host name present in the global configuration file, which can be problematic in
some environments such as Kubernetes. Beginning with NDB 8.0.22, it is possible to override this
behavior by setting AllowUnresolvedHostNames to true in the [tcp default] section of the
cluster global configuration file (config.ini file). Doing so causes such errors to be treated as
warnings instead, and to permit ndb_mgmd to continue starting

• Blob write performance enhancements. NDB 8.0.22 implements a number of improvements
which allow more efficient batching when modifying multiple blob columns in the same row, or when
modifying multiple rows containing blob columns in the same statement, by reducing the number of
round trips required between an SQL or other API node and the data nodes when applying these
modifications. The performance of many INSERT, UPDATE, and DELETE statements can thus be

4162

https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104000.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104001.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104003.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html

What is New in MySQL NDB Cluster 8.0

improved. Examples of such statements are listed here, where table is an NDB table containing one
or more Blob columns:

• INSERT INTO table VALUES ROW(1, blob_value1, blob_value2, ...), that is,
insertion of a row containing one or more Blob columns

• INSERT INTO table VALUES ROW(1, blob_value1), ROW(2, blob_value2),
ROW(3, blob_value3), ..., that is, insertion of multiple rows containing one or more Blob
columns

• UPDATE table SET blob_column1 = blob_value1, blob_column2 =
blob_value2, ...

• UPDATE table SET blob_column = blob_value WHERE primary_key_column in
(value_list), where the primary key column is not a Blob type

• DELETE FROM table WHERE primary_key_column = value, where the primary key
column is not a Blob type

• DELETE FROM table WHERE primary_key_column IN (value_list), where the primary
key column is not a Blob type

Other SQL statements may benefit from these improvements as well. These include LOAD DATA
INFILE and CREATE TABLE ... SELECT In addition, ALTER TABLE table ENGINE =
NDB, where table uses a storage engine other than NDB prior to execution of the statement, may
also execute more efficiently.

This enhancement applies to statements affecting columns of MySQL type BLOB, MEDIUMBLOB,
LONGBLOB, TEXT, MEDIUMTEXT, and LONGTEXT. Statements which update TINYBLOB or TINYTEXT
columns (or both types) only are not affected by this work, and no changes in their performance
should be expected.

The performance of some SQL statements is not noticeably improved by this enhancement, due to
the fact that they require scans of table Blob columns, which breaks up batching. Such statements
include those of the types listed here:

• SELECT FROM table [WHERE key_column IN (blob_value_list)], where rows are
selected by matching on a primary key or unique key column which uses a Blob type

• UPDATE table SET blob_column = blob_value WHERE condition, using a condition
which does not depend on a unique value

• DELETE FROM table WHERE condition to delete rows containing one or more Blob columns,
using a condition which does not depend on a unique value

• A copying ALTER TABLE statement on a table which already used the NDB storage engine prior
to executing the statement, and whose rows contain one or more Blob columns before or after the
statement is executed (or both)

To take advantage of this improvement to its fullest extent, you may wish to increase the values
used for the --ndb-batch-size and --ndb-blob-write-batch-bytes options for mysqld, to
minimize the number of round trips required to modify blobs. For replication, it is also recommended
that you enable the slave_allow_batching system variable, which minimizes the number of
round trips required by the replica cluster to apply epoch transactions.

Note

Beginning with NDB 8.0.30, you should also use
ndb_replica_batch_size instead of --ndb-batch-size, and
ndb_replica_blob_write_batch_bytes rather than --ndb-blob-

4163

What is New in MySQL NDB Cluster 8.0

write-batch-bytes. See the descriptions of these variables, as well
as Section 25.7.5, “Preparing the NDB Cluster for Replication”, for more
information.

• Node.js update. Beginning with NDB 8.0.22, the NDB adapter for Node.js is built using version
12.18.3, and only that version (or a later version of Node.js) is now supported.

• Encrypted backups. NDB 8.0.22 adds support for backup files encrypted using AES-256-
CBC; this is intended to protect against recovery of data from backups that have been accessed
by unauthorized parties. When encrypted, backup data is protected by a user-supplied password.
The password can be any string consisting of up to 256 characters from the range of printable ASCII
characters other than !, ', ", $, %, \, and ^. Retention of the password used to encrypt any given
NDB Cluster backup must be performed by the user or application; NDB does not save the password.
The password can be empty, although this is not recommended.

When taking an NDB Cluster backup, you can encrypt it by using ENCRYPT PASSWORD=password
with the management client START BACKUP command. Users of the MGM API can also initiate an
encrypted backup by calling ndb_mgm_start_backup4().

You can encrypt existing backup files using the ndbxfrm utility which is added to the NDB Cluster
distribution in the 8.0.22 release; this program can also be employed for decrypting encrypted
backup files. In addition, ndbxfrm can compress backup files and decompress compressed backup
files using the same method that is employed by NDB Cluster for creating backups when the
CompressedBackup configuration parameter is set to 1.

To restore from an encrypted backup, use ndb_restore with the options --decrypt
and --backup-password. Both options are required, along with any others that would be
needed to restore the same backup if it were not encrypted. ndb_print_backup_file and
ndbxfrm can also read encrypted files using, respectively, -P password and --decrypt-
password=password.

In all cases in which a password is supplied together with an option for encryption or decryption,
the password must be quoted; you can use either single or double quotation marks to delimit the
password.

Beginning with NDB 8.0.24, several NDB programs, listed here, also support input of the password
from standard input, similarly to how this is done when logging in interactively with the mysql client
using the --password option (without including the password on the command line):

• For ndb_restore and ndb_print_backup_file, the --backup-password-from-stdin
option enables input of the password in a secure fashion, similar to how it is done by the mysql
client' --password option. For ndb_restore, use the option together with the --decrypt
option; for ndb_print_backup_file, use the option in place of the -P option.

• For ndb_mgm the option --backup-password-from-stdin, is supported together with --
execute "START BACKUP [options]" for starting a cluster backup from the system shell.

• Two ndbxfrm options, --encrypt-password-from-stdin and --decrypt-password-
from-stdin, cause similar behavior when using that program to encrypt or to decrypt a backup
file.

See the descriptions of the programs just listed for more information.

It is also possible, beginning with NDB 8.0.22, to enforce encryption of backups by setting
RequireEncryptedBackup=1 in the [ndbd default] section of the cluster global configuration

4164

https://dev.mysql.com/doc/ndbapi/en/mgm-functions-backup.html#mgm-ndb-mgm-start-backup4

What is New in MySQL NDB Cluster 8.0

file. When this is done, the ndb_mgm client rejects any attempt to perform a backup that is not
encrypted.

Beginning with NDB 8.0.24, you can cause ndb_mgm to use encryption whenever it creates a backup
by starting it with --encrypt-backup. In this case, the user is prompted for a password when
invoking START BACKUP if none is supplied.

• IPv6 support. Beginning with NDB 8.0.22, IPv6 addressing is supported for connections to
management and data nodes; this includes connections between management and data nodes with
SQL nodes. When configuring a cluster, you can use numeric IPv6 addresses, host names which
resolve to IPv6 addresses or both.

For IPv6 addressing to work, the operating platform and network on which the cluster is deployed
must support IPv6. As when using IPv4 addressing, hostname resolution to IPv6 addresses must be
provided by the operating platform.

A known issue on Linux platforms when running NDB 8.0.22 and later was that the operating system
kernel was required to provide IPv6 support, even when no IPv6 addresses were in use. This issue is
fixed in NDB 8.0.34 and later, where it is safe to disable IPv6 support in the Linux kernel if you do not
intend to use IPv6 addressing (Bug #33324817, Bug #33870642).

IPv4 addressing continues to be supported by NDB. Using IPv4 and IPv6 addresses concurrently is
not recommended, but can be made to work in the following cases:

• When the management node is configured with IPv6 and data nodes are configured with IPv4
addresses in the config.ini file: This works if --bind-address is not used with mgmd, and
data nodes are started with --ndb-connectstring set to the IPv4 address of the management
nodes.

• When the management node is configured with IPv4 and data nodes are configured with IPv6
addresses in config.ini: Similarly to the other case, this works if --bind-address is not
passed to mgmd and data nodes are started with --ndb-connectstring set to the IPv6 address
of the management node.

These cases work because ndb_mgmd does not bind to any IP address by default.

To perform an upgrade from a version of NDB that does not support IPv6 addressing to one that
does, provided that the network supports IPv4 and IPv6, first perform the software upgrade; after this
has been done, you can update IPv4 addresses used in the config.ini file with IPv6 addresses.
After this, to cause the configuration changes to take effect and to make the cluster start using the
IPv6 addresses, it is necessary to perform a system restart of the cluster.

• Auto-Installer deprecation and removal. The MySQL NDB Cluster Auto-Installer web-based
installation tool (ndb_setup.py) is deprecated in NDB 8.0.22, and is removed in NDB 8.0.23 and
later. It is no longer supported.

• ndbmemcache deprecation and removal. ndbmemcache is no longer supported.
ndbmemcache was deprecated in NDB 8.0.22, and removed in NDB 8.0.23.

• ndbinfo backup_id table. NDB 8.0.24 adds a backup_id table to the ndbinfo information
database. This is intended to serve as a replacement for obtaining this information by using
ndb_select_all to dump the contents of the internal SYSTAB_0 table, which is error-prone and
takes an excessively long time to perform.

This table has a single column and row containing the ID of the most recent backup of the cluster
taken using the START BACKUP management client command. In the event that no backup of this
cluster can be found, the table contains a single row whose column value is 0.

• Table partitioning enhancements. NDB 8.0.23 introduces a new method for handling table
partitions and fragments, which can determine the number of local data managers (LDMs) for a given
data node independently of the number of redo log parts. This means that the number of LDMs can

4165

What is New in MySQL NDB Cluster 8.0

now be highly variable. NDB can employ this method when the ClassicFragmentation data node
configuration parameter, also implemented in NDB 8.0.23, is set to false; when this is the case,
the number of LDMs is no longer used to determine how many partitions to create for a table per
data node, and the value of the PartitionsPerNode parameter (also introduced in NDB 8.0.23)
determines this number instead, which is also used for calculating the number of fragments used for
a table.

When ClassicFragmentation has its default value true, then the traditional method of using the
number of LDMs is used to determine the number of fragments that a table should have.

For more information, see the descriptions of the new parameters referenced previously, in Multi-
Threading Configuration Parameters (ndbmtd).

• Terminology updates. To align with work begun in MySQL 8.0.21 and NDB 8.0.21, NDB 8.0.23
implements a number of changes in terminology, listed here:

• The system variable ndb_slave_conflict_role is now deprecated. It is replaced by
ndb_conflict_role.

• Many NDB status variables are deprecated. These variables, and their replacements, are shown in
the following table:

Table 25.1 Deprecated NDB status variables and their replacements

Deprecated variable Replacement

Ndb_api_adaptive_send_deferred_count_slaveNdb_api_adaptive_send_deferred_count_replica

Ndb_api_adaptive_send_forced_count_slaveNdb_api_adaptive_send_forced_count_replica

Ndb_api_adaptive_send_unforced_count_slaveNdb_api_adaptive_send_unforced_count_replica

Ndb_api_bytes_received_count_slave Ndb_api_bytes_received_count_replica

Ndb_api_bytes_sent_count_slave Ndb_api_bytes_sent_count_replica

Ndb_api_pk_op_count_slave Ndb_api_pk_op_count_replica

Ndb_api_pruned_scan_count_slave Ndb_api_pruned_scan_count_replica

Ndb_api_range_scan_count_slave Ndb_api_range_scan_count_replica

Ndb_api_read_row_count_slave Ndb_api_read_row_count_replica

Ndb_api_scan_batch_count_slave Ndb_api_scan_batch_count_replica

Ndb_api_table_scan_count_slave Ndb_api_table_scan_count_replica

Ndb_api_trans_abort_count_slave Ndb_api_trans_abort_count_replica

Ndb_api_trans_close_count_slave Ndb_api_trans_close_count_replica

Ndb_api_trans_commit_count_slave Ndb_api_trans_commit_count_replica

Ndb_api_trans_local_read_row_count_slaveNdb_api_trans_local_read_row_count_replica

Ndb_api_trans_start_count_slave Ndb_api_trans_start_count_replica

Ndb_api_uk_op_count_slave Ndb_api_uk_op_count_replica

Ndb_api_wait_exec_complete_count_slaveNdb_api_wait_exec_complete_count_replica

Ndb_api_wait_meta_request_count_slaveNdb_api_wait_meta_request_count_replica

Ndb_api_wait_nanos_count_slave Ndb_api_wait_nanos_count_replica

Ndb_api_wait_scan_result_count_slave Ndb_api_wait_scan_result_count_replica

Ndb_slave_max_replicated_epoch Ndb_replica_max_replicated_epoch

The deprecated status variables continue to be shown in the output of SHOW STATUS, but
applications should be updated as soon as possible not to rely upon them any longer, since their
availability in future release series is not guaranteed.

4166

What is New in MySQL NDB Cluster 8.0

• The values ADD_TABLE_MASTER and ADD_TABLE_SLAVE previously shown in the
tab_copy_status column of the ndbinfo ndbinfo.table_distribution_status table
are deprecated. These are replaced by, respectively, the values ADD_TABLE_COORDINATOR and
ADD_TABLE_PARTICIPANT.

• The --help output of some NDB client and utility programs such as ndb_restore has been
modified.

• ThreadConfig enhancements. As of NDB 8.0.23, the configurability of the ThreadConfig
parameter has been extended with two new thread types, listed here:

• query: A query thread works (only) on READ COMMITTED queries. A query thread also acts as
a recovery thread. The number of query threads must be 0, 1, 2, or 3 times the number of LDM
threads. 0 (the default, unless using ThreadConfig, or AutomaticThreadConfig is enabled)
causes LDMs to behave as they did prior to NDB 8.0.23.

• recover: A recovery thread retrieves data from a local checkpoint. A recovery thread specified as
such never acts as a query thread.

It is also possible to combine the existing main and rep threads in either of two ways:

• Into a single thread by setting either one of these arguments to 0. When this is done, the resulting
combined thread is shown with the name main_rep in the ndbinfo.threads table.

• Together with the recv thread by setting both ldm and tc to 0, and setting recv to 1. In this case,
the combined thread is named main_rep_recv.

In addition, the maximum numbers of a number of existing thread types have been increased. The
new maximums, including those for query threads and recovery threads, are listed here:

• LDM: 332

• Query: 332

• Recovery: 332

• TC: 128

• Receive: 64

• Send: 64

• Main: 2

Maximums for other thread types remain unchanged.

Also, as the result of work done relating to this task, NDB now employs mutexes to protect job buffers
when using more than 32 block threads. While this can cause a slight decrease in performance (1 to
2 percent in most cases), it also significantly reduces the amount of memory required by very large
configurations. For example, a setup with 64 threads which used 2 GB of job buffer memory prior
to NDB 8.0.23 should require only about 1 GB instead in NDB 8.0.23 and later. In our testing this
has resulted in an overall improvement on the order of 5 percent in the execution of very complex
queries.

For further information, see the descriptions of the ThreadConfig parameter and the
ndbinfo.threads table.

• ThreadConfig thread count changes. As the result of work done in NDB 8.0.30, setting the
value of ThreadConfig requires including main, rep, recv, and ldm in the ThreadConfig value
string explicitly, in this and subsequent NDB Cluster releases. In addition, count=0 must be set

4167

What is New in MySQL NDB Cluster 8.0

explicitly for each thread type (of main, rep, or ldm) that is not to be used, and setting count=1 for
replication threads (rep) requires also setting count=1 for main.

These changes can have a significant impact on upgrades of NDB clusters where this parameter is
in use; see Section 25.3.7, “Upgrading and Downgrading NDB Cluster”, for more information.

• ndbmtd Thread Auto-Configuration. Beginning with NDB 8.0.23, it is possible to employ
automatic configuration of threads for multi-threaded data nodes using the ndbmtd configuration
parameter AutomaticThreadConfig. When this parameter is set to 1, NDB sets up thread
assignments automatically, based on the number of processors available to applications, for all
thread supported thread types, including the new query and recover thread types described
in the previous item. If the system does not limit the number of processors, you can do so if
desired by setting NumCPUs (also added in NDB 8.0.23). Otherwise, automatic thread configuration
accommodates up to 1024 CPUs.

Automatic thread configuration occurs regardless of any values set for ThreadConfig or
MaxNoOfExecutionThreads in config.ini; this means that it is not necessary to set either of
these parameters.

In addition, NDB 8.0.23 implements a number of new ndbinfo information database tables
providing information about hardware and CPU availability, as well as CPU usage by NDB data
nodes. These tables are listed here:

• cpudata

• cpudata_1sec

• cpudata_20sec

• cpudata_50ms

• cpuinfo

• hwinfo

Some of these tables are not available on every platform supported by NDB Cluster; see the
individual descriptions of them for more information.

• Hierarchical views of NDB database objects. The dict_obj_tree table, added to the
ndbinfo information database in NDB 8.0.24, can provide hierarchical and tree-like views of many
NDB database objects, including the following:

• Tables and associated indexes

• Tablespaces and associated data files

• Logfile groups and associated undo log files

For more information and examples, see Section 25.6.16.25, “The ndbinfo dict_obj_tree Table”.

4168

What is New in MySQL NDB Cluster 8.0

• Index statistics enhancements. NDB 8.0.24 implements the following improvements in
calculation of index statistics:

• Index statistics were previously collected from one fragment only; this is changed such that this
extrapolation is extended to additional fragments.

• The algorithm used for very small tables, such as those having very few rows where results are
discarded, has been improved, so that estimates for such tables should be more accurate than
previously.

As of NDB 8.0.27, the index statistics tables are created and updated automatically by default,
IndexStatAutoCreate and IndexStatAutoUpdate both default to 1 (enabled) rather than 0
(disabled), and it is no longer necessary to run ANALYZE TABLE to update the statistics.

For additional information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Conversion between NULL and NOT NULL during restore operations. Beginning with NDB
8.0.26, ndb_restore can support restoring of NULL columns as NOT NULL and the reverse, using
the options listed here:

• To restore a NULL column as NOT NULL, use the --lossy-conversions option.

The column originally declared as NULL must not contain any NULL rows; if it does, ndb_restore
exits with an error.

• To restore a NOT NULL column as NULL, use the --promote-attributes option.

For more information, see the descriptions of the indicated ndb_restore options.

• SQL-compliant NULL comparison mode for NdbScanFilter. Traditionally, when making
comparisons involving NULL, NdbScanFilter treats NULL as equal to NULL (and thus considers
NULL == NULL to be TRUE). This is not the same as specified by the SQL Standard, which requires
that any comparison with NULL return NULL, including NULL == NULL.

Previously, it was not possible for an NDB API application to override this behavior; beginning
with NDB 8.0.26, you can do so by calling NdbScanFilter::setSqlCmpSemantics() prior to
creating a scan filter. (Thus, this method is always invoked as a class method and not as an instance
method.) Doing so causes the next NdbScanFilter object to be created to employ SQL-compliant
NULL comparison for all comparison operations performed over the lifetime of the instance. You must
invoke the method for each NdbScanFilter object that should use SQL-compliant comparisons.

For more information, see NdbScanFilter::setSqlCmpSemantics().

• Deprecation of NDB API .FRM file methods. MySQL 8.0 and NDB 8.0 no longer use
.FRM files for storing table metadata. For this reason, the NDB API methods getFrmData(),
getFrmLength(), and setFrm() are deprecated as of NDB 8.0.27, and subject to removal
in a future release. For reading and writing table metadata, use getExtraMetadata() and
setExtraMetadata() instead.

• Preference for IPv4 or IPv6 addressing. NDB 8.0.26 adds the PreferIPVersion
configuration parameter, which controls the addressing preference for DNS resolution. IPv4
(PreferIPVersion=4) is the default. Because configuration retrieval in NDB requires that this
preference be the same for all TCP connections, you should set it only in the [tcp default]
section of the cluster global configuration (config.ini) file.

See Section 25.4.3.10, “NDB Cluster TCP/IP Connections”, for more information.

• Logging enhancements. Previously, analysis of NDB Cluster data node and management node
logs could be hampered by the fact that different log messages used different formats, and that not
all log messages included timestamps. Such issues were due in part to the fact that logging was

4169

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getfrmdata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getfrmlength
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setfrm
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getextrametadata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setextrametadata

What is New in MySQL NDB Cluster 8.0

performed by a number of different mechanisms, such as the functions printf, fprintf, ndbout,
and ndbout_c, overloading of the << operator, and so on.

We fix these problems by standardizing on the EventLogger mechanism, which is already present
in NDB, and which begins each log message with a timestamp in YYYY-MM-DD HH:MM:SS format.

See Section 25.6.3, “Event Reports Generated in NDB Cluster”, for more information about NDB
Cluster event logs and the EventLogger log message format.

• Copying ALTER TABLE improvements. Beginning with NDB 8.0.27, a copying ALTER TABLE
on an NDB table compares the fragment commit counts for the source table before and after
performing the copy. This allows the SQL node executing this statement to determine whether
there has been any concurrent write activity to the table being altered; if so, the SQL node can then
terminate the operation.

When concurrent writes are detected being made to the table being altered, the ALTER TABLE
statement is rejected with the error Detected change to data in source table
during copying ALTER TABLE. Alter aborted to avoid inconsistency
(ER_TABLE_DEF_CHANGED). Stopping the alter operation, rather than allowing it to proceed with
concurrent writes taking place, can help prevent silent data loss or corruption.

• ndbinfo index_stats table. NDB 8.0.28 adds the index_stats table, which provides basic
information about NDB index statistics. It is intended primarily for internal testing, but may be useful
as a supplement to ndb_index_stat.

• ndb_import --table option. Prior to NDB 8.0.28, ndb_import always imported the data read
from a CSV file into a table whose name was derived from the name of the file being read. NDB
8.0.28 adds a --table option (short form: -t) for this program to specify the name of the target
table directly, and override the previous behavior.

The default behavior for ndb_import remains to use the base name of the input file as the name of
the target table.

• ndb_import --missing-ai-column option. Beginning with NDB 8.0.29, ndb_import can import
data from a CSV file that contains empty values for an AUTO_INCREMENT column, using the --
missing-ai-column option introduced in that release. The option can be used with one or more
tables containing such a column.

In order for this option to work, the AUTO_INCREMENT column in the CSV file must not contain any
values. Otherwise, the import operation cannot proceed.

• ndb_import and empty lines. ndb_import has always rejected any empty lines encountered
in an incoming CSV file. NDB 8.0.30 adds support for importing empty lines into a single column,
provided that it is possible to convert the empty value into a column value.

• ndb_restore --with-apply-status option. Beginning with NDB 8.0.29, it is possible to restore the
ndb_apply_status table from an NDB backup, using ndb_restore with the --with-apply-
status option added in that release. To use this option, you must also use --restore-data when
invoking ndb_restore.

--with-apply-status restores all rows of the ndb_apply_status table except for the row
having server_id = 0; to restore this row, use --restore-epoch. For more information, see
ndb_apply_status Table, as the description of the --with-apply-status option.

• SQL access to tables with missing indexes. Prior to NDB 8.0.29, when a user query attempted
to open an NDB table with a missing or broken index, the MySQL server raised NDB error 4243
(Index not found). This situation could arise when constraint violations or missing data make it

4170

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_table_def_changed
https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4243

What is New in MySQL NDB Cluster 8.0

impossible to restore an index on an NDB table, and ndb_restore --disable-indexes was used
to restore the data without the index.

Beginning with NDB 8.0.29, an SQL query against an NDB table which has missing indexes
succeeds if the query does not use any of the missing indexes. Otherwise, the query is rejected
with ER_NOT_KEYFILE. In this case, you can use ALTER TABLE ... ALTER INDEX ...
INVISIBLE to keep the MySQL Optimizer from trying to use the index, or drop the index (and then
possibly re-create it) using the appropriate SQL statements.

• NDB API List::clear() method. The NDB API Dictionary methods listEvents(),
listIndexes(), and listObjects() each require a reference to a List object which is empty.
Previously, reusing an existing List with any of these methods was problematic for this reason.
NDB 8.0.29 makes this easier by implementing a clear() method which removes all data from the
list.

As part of this work, the List class destructor now calls List::clear() before removing any
elements or attributes from the list.

• NDB dictionary tables in ndbinfo. NDB 8.0.29 introduces several new tables in the ndbinfo
database providing information from NdbDictionary that previously required the use of ndb_desc,
ndb_select_all, and other NDB utility programs.

Two of these tables are actually views. The hash_maps table provides information about hash maps
used by NDB; the files table shows information regarding files used for storing data on disk (see
Section 25.6.11, “NDB Cluster Disk Data Tables”).

The remaining six ndbinfo tables added in NDB 8.0.29 are base tables. These tables are not
hidden and are not named using the prefix ndb$. These tables are listed here, with descriptions of
the objects represented in each table:

• blobs: Blob tables used to store the variable-size parts of BLOB and TEXT columns

• dictionary_columns: Columns of NDB tables

• dictionary_tables: NDB tables

• events: Event subscriptions in the NDB API

• foreign_keys: Foreign keys on NDB tables

• index_columns: Indexes on NDB tables

NDB 8.0.29 also makes changes in the ndbinfo storage engine's implementation of primary keys to
improve compatibility with NdbDictionary.

• ndbcluster plugin and Performance Schema. As of NDB 8.0.29, ndbcluster plugin threads
are shown in the Performance Schema threads and setup_threads tables, making it possible
to obtain information about the performance of these threads. The three threads exposed in
performance_schema tables are listed here:

• ndb_binlog: Binary logging thread

• ndb_index_stat: Index statistics thread

• ndb_metadata: Metadata thread

See ndbcluster Plugin Threads, for more information and examples.

In NDB 8.0.30 and later, transaction batching memory usage is visible as memory/
ndbcluster/Thd_ndb::batch_mem_root in the Performance Schema
memory_summary_by_thread_by_event_name and setup_instruments tables. You can use

4171

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_keyfile
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listevents
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listindexes
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listobjects
https://dev.mysql.com/doc/ndbapi/en/ndb-list.html
https://dev.mysql.com/doc/ndbapi/en/ndb-list.html#ndb-list-clear
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbdictionary.html

What is New in MySQL NDB Cluster 8.0

this information to see how much memory is being used by transactions. For additional information,
see Transaction Memory Usage.

• Configurable blob inline size. Beginning with NDB 8.0.30, it is possible to set a blob column's
inline size as part of CREATE TABLE or ALTER TABLE. The maximum inline size supported by NDB
Cluster is 29980 bytes.

For additional information and examples, see NDB_COLUMN Options, as well as String Type
Storage Requirements.

• replica_allow_batching enabled by default. Replica write batching improves NDB Cluster
Replication performance greatly, especially when replicating blob-type columns (TEXT, BLOB, and
JSON), and so generally should be enabled whenever using replication with NDB Cluster. For this
reason, beginning with NDB 8.0.30, the replica_allow_batching system variable is enabled by
default, and setting it to OFF raises a warning.

• Conflict resolution insert operation support. Prior to NDB 8.0.30, there were only two
strategies available for resolving primary key conflicts for update and delete operations, implemented
as the functions NDB$MAX() and NDB$MAX_DELETE_WIN(). Neither of these has any effect on
write operations, other than that a write operation with the same primary key as a previous write is
always rejected, and accepted and applied only if no operation having the same primary key already
exists. NDB 8.0.30 introduces two new conflict resolution functions NDB$MAX_INS() and NDB
$MAX_DEL_WIN_INS() that handle primary key conflicts between insert operations. These functions
handle conflicting writes as follows:

1. If there is no conflicting write, apply this one (this is the same as NDB$MAX()).

2. Otherwise, apply “greatest timestamp wins” conflict resolution, as follows:

a. If the timestamp for the incoming write is greater than that of the conflicting write, apply the
incoming operation.

b. If the timestamp for the incoming write is not greater, reject the incoming write operation.

For conflicting update and delete operations, NDB$MAX_INS() behaves as NDB$MAX() does, and
NDB$MAX_DEL_WIN_INS() behaves in the same way as NDB$MAX_DELETE_WIN().

This enhancement provides support for configuring conflict detection when handling conflicting
replicated write operations, so that a replicated INSERT with a higher timestamp column value is
applied idempotently, while a replicated INSERT with a lower timestamp column value is rejected.

As with the other conflict resolution functions, rejected operations can optionally be logged in an
exceptions table; rejected operations increment a counter (status variables Ndb_conflict_fn_max
for “greatest timestamp wins” and Ndb_conflict_fn_old for “same timestamp wins”).

For more information, see the descriptions of the new conflict resolution functions, and as well as
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Replication applier batch size control. Previously, the size of batches used when writing to
a replica NDB Cluster was controlled by --ndb-batch-size, and the batch size used for writing
blob data to the replica was determined by ndb-blob-write-batch-bytes. One problem with
this arrangement was that the replica used the global values of these variables which meant that
changing either of them for the replica also affected the value used by all other sessions. In addition,
it was not possible to set different defaults for these values exclusive to the replica, which should
preferably have a higher default value than other sessions.

NDB 8.0.30 adds two new system variables which are specific to the replica applier.
ndb_replica_batch_size now controls the batch size used for the replica applier, and

4172

What is New in MySQL NDB Cluster 8.0

ndb_replica_blob_write_batch_bytes variable now determines the blob write batch size
used to perform batch blob writes on the replica.

This change should improve the behavior of MySQL NDB Cluster Replication using default settings,
and lets the user fine tune NDB replication performance without affecting user threads, such as those
performing processing of SQL queries.

For more information, see the descriptions of the new variables. See also Section 25.7.5, “Preparing
the NDB Cluster for Replication”.

• Binary Log Transaction Compression. NDB 8.0.31 adds support for binary
logs using compressed transactions with ZSTD compression. To enable this feature,
set the ndb_log_transaction_compression system variable introduced
in this release to ON. The level of compression used can be controlled using the
ndb_log_transaction_compression_level_zstd system variable, which is also added in that
release; the default compression level is 3.

Although the binlog_transaction_compression and
binlog_transaction_compression_level_zstd server system variables have no effect on
binary logging of NDB tables, starting mysqld with --binlog-transaction-compression=ON
causes ndb_log_transaction_compression to be enabled automatically. You can disable it in
a MySQL client session using SET @@global.ndb_log_transaction_compression=OFF after
server startup has completed.

See the description of ndb_log_transaction_compression as well as Section 7.4.4.5, “Binary
Log Transaction Compression”, for more information.

• NDB Replication: Multithreaded Applier. As of NDB 8.0.33, NDB Cluster replication
supports the MySQL multithreaded applier (MTA) on replica servers (and nonzero values of
replica_parallel_workers), which enables the application of binary log transactions in parallel
on the replica and thereby increasing throughput. (For more information about the multithreaded
applier in the MySQL server, see Section 19.2.3, “Replication Threads”.)

Enabling this feature on the replica requires that the source be started with --ndb-log-
transaction-dependency set to ON (this option is also implemented in NDB 8.0.33). It is also
necessary on the source to set binlog_transaction_dependency_tracking to WRITESET.
In addition, you must ensure that replica_parallel_workers has a value greater than 1 on the
replica, and thus, that the replica uses multiple worker threads.

For additional information and requirements, see Section 25.7.11, “NDB Cluster Replication Using
the Multithreaded Applier”.

• Changes in build options. NDB 8.0.31 makes the following changes in CMake options used for
building MySQL Cluster.

• The WITH_NDBCLUSTER option is deprecated, and WITH_PLUGIN_NDBCLUSTER is removed.

• To build MySQL Cluster from source, use the newly-added WITH_NDB option.

• WITH_NDBCLUSTER_STORAGE_ENGINE continues to be supported, but is no longer needed for
most builds.

See CMake Options for Compiling NDB Cluster, for more information.

• File system encryption. Transparent Data Encryption (TDE) provides protection by encryption
of NDB data at rest, that is, of all NDB table data and log files which are persisted to disk. This is

4173

What is New in MySQL NDB Cluster 8.0

intended to protect against recovering data after obtaining unauthorized access to NDB Cluster data
files such as tablespace files or logs.

Encryption is implemented transparently by the NDB file system layer (NDBFS) on the data nodes;
data is encrypted and decrypted as it is read from and written to the file, and NDBFS internal client
blocks operate on files as normal.

NDBFS can transparently encrypt a file directly from a user provided password, but decoupling the
encryption and decryption of individual files from the user provided password can be advantageous
for reasons of efficiency, usability, security, and flexibility. See Section 25.6.14.2, “NDB File System
Encryption Implementation”.

TDE uses two types of keys. A secret key is used to encrypt the actual data and log files stored
on disk (including LCP, redo, undo, and tablespace files). A master key is then used to encrypt the
secret key.

The EncryptedFileSystem data node configuration parameter, available beginning with NDB
8.0.29, when set to 1, enforces encryption on files storing table data. This includes LCP data files,
redo log files, tablespace files, and undo log files.

It is also necessary to provide a password to each data node when starting or restarting it, using
one of the options --filesystem-password or --filesystem-password-from-stdin. See
Section 25.6.14.1, “NDB File System Encryption Setup and Usage”. This password uses the same
format and is subject to the same constraints as the password used for an encrypted NDB backup
(see the description of the ndb_restore --backup-password option for details).

Only tables using the NDB storage engine are subject to encryption by this feature; see
Section 25.6.14.3, “NDB File System Encryption Limitations”. Other tables, such as those used for
NDB schema distribution, replication, and binary logging, typically use InnoDB; see Section 17.13,
“InnoDB Data-at-Rest Encryption”. For information about encryption of binary log files, see
Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”.

Files generated or used by NDB processes, such as operating system logs, crash logs, and core
dumps, are not encrypted. Files used by NDB but not containing any user table data are also not
encrypted; these include LCP control files, schema files, and system files (see NDB Cluster Data
Node File System). The management server configuration cache is also not encrypted.

In addition, NDB 8.0.31 adds a new utility ndb_secretsfile_reader for extracting key
information from a secrets file (S0.sysfile).

This enhancement builds on work done in NDB 8.0.22 to implement encrypted NDB backups. For
more information about encrypted backups, see the description of the RequireEncryptedBackup
configuration parameter, as well as Section 25.6.8.2, “Using The NDB Cluster Management Client to
Create a Backup”.

4174

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbfs.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystem.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystem.html

What is New in MySQL NDB Cluster 8.0

• Removal of unneeded program options. A number of “junk” command-line options for NDB
utility and other programs which had never been implemented were removed in NDB Cluster 8.0.31.
The options and the programs from which they have been dropped are listed here:

• --ndb-optimized-node-selection:

ndbd, ndbmtd, ndb_mgm, ndb_delete_all, ndb_desc, ndb_drop_index,
ndb_drop_table, ndb_show_table, ndb_blob_tool, ndb_config, ndb_index_stat,
ndb_move_data, ndbinfo_select_all, ndb_select_count

• --character-sets-dir:

ndb_mgm, ndb_mgmd, ndb_config, ndb_delete_all, ndb_desc, ndb_drop_index,
ndb_drop_table, ndb_show_table, ndb_blob_tool, ndb_config, ndb_index_stat,
ndb_move_data, ndbinfo_select_all, ndb_select_count, ndb_waiter

• --core-file:

ndb_mgm, ndb_mgmd, ndb_config, ndb_delete_all, ndb_desc, ndb_drop_index,
ndb_drop_table, ndb_show_table, ndb_blob_tool, ndb_config, ndb_index_stat,
ndb_move_data, ndbinfo_select_all, ndb_select_count, ndb_waiter

• --connect-retries and --connect-retry-delay:

ndb_mgmd

• --ndb-nodeid:

ndb_config

For more information, see the relevant program and option descriptions in Section 25.5, “NDB
Cluster Programs”.

• Reading Configuration Cache Files. Beginning with NDB 8.0.32, it is possible to read binary
configuration cache files created by ndb_mgmd using the ndb_config option --config-binary-
file introduced in that release. This can simplify the process of determining whether the settings in
a given configuration file have been applied to the cluster, or of recovery of settings from the binary
cache after the config.ini file has somehow been damaged or lost.

For more information and examples, see the description of this option in Section 25.5.7, “ndb_config
— Extract NDB Cluster Configuration Information”.

• ndbinfo transporter_details table. This ndbinfo table provides information about individual
transporters used in an NDB cluster. Added in NDB 8.0.37, it is otherwise similar to the ndbinfo
transporters table.

Several additional columns were added to this table in NDB 8.0.38. These are listed here:

• sendbuffer_used_bytes

• sendbuffer_max_used_bytes

• sendbuffer_alloc_bytes

• sendbuffer_max_alloc_bytes

• type

See Section 25.6.16.64, “The ndbinfo transporter_details Table”, for more information.

• Binary log transaction cache sizing. NDB 8.0.40 adds the ndb_log_cache_size server
system variable, which makes it possible to set the size of the transaction cache used for writing

4175

Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0

the binary log. This enables use of a large cache for logging NDB transactions, and (using
binlog_cache_size) a smaller cache for logging other transactions, thus making more efficient
use of resources.

• Ndb.cfg file deprecation. Use of an Ndb.cfg file for setting the connection string for an NDB
process was not well documented or supported. As of NDB 8.0.40, use of this file is now formally
deprecated; you should expect support for it to be removed in a future release of MySQL Cluster.

MySQL Cluster Manager provides support for NDB Cluster 8.0. MySQL Cluster Manager has an
advanced command-line interface that can simplify many complex NDB Cluster management tasks.
See MySQL Cluster Manager 8.0.42 User Manual, for more information.

25.2.5 Options, Variables, and Parameters Added, Deprecated or Removed
in NDB 8.0

• Parameters Introduced in NDB 8.0

• Parameters Deprecated in NDB 8.0

• Parameters Removed in NDB 8.0

• Options and Variables Introduced in NDB 8.0

• Options and Variables Deprecated in NDB 8.0

• Options and Variables Removed in NDB 8.0

The next few sections contain information about NDB node configuration parameters and NDB-specific
mysqld options and variables that have been added to, deprecated in, or removed from NDB 8.0.

Parameters Introduced in NDB 8.0

The following node configuration parameters have been added in NDB 8.0.

• AllowUnresolvedHostNames: When false (default), failure by management node to resolve host
name results in fatal error; when true, unresolved host names are reported as warnings only. Added
in NDB 8.0.22.

• ApiFailureHandlingTimeout: Maximum time for API node failure handling before escalating. 0
means no time limit; minimum usable value is 10. Added in NDB 8.0.42.

• AutomaticThreadConfig: Use automatic thread configuration; overrides any settings for
ThreadConfig and MaxNoOfExecutionThreads, and disables ClassicFragmentation. Added in NDB
8.0.23.

• ClassicFragmentation: When true, use traditional table fragmentation; set false to enable
flexible distribution of fragments among LDMs. Disabled by AutomaticThreadConfig. Added in NDB
8.0.23.

• DiskDataUsingSameDisk: Set to false if Disk Data tablespaces are located on separate physical
disks. Added in NDB 8.0.19.

• EnableMultithreadedBackup: Enable multi-threaded backup. Added in NDB 8.0.16.

• EncryptedFileSystem: Encrypt local checkpoint and tablespace files. EXPERIMENTAL; NOT
SUPPORTED IN PRODUCTION. Added in NDB 8.0.29.

• KeepAliveSendInterval: Time between keep-alive signals on links between data nodes, in
milliseconds. Set to 0 to disable. Added in NDB 8.0.27.

• MaxDiskDataLatency: Maximum allowed mean latency of disk access (ms) before starting to
abort transactions. Added in NDB 8.0.19.

4176

https://dev.mysql.com/doc/mysql-cluster-manager/8.0/en/

Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0

• NodeGroupTransporters: Number of transporters to use between nodes in same node group.
Added in NDB 8.0.20.

• NumCPUs: Specify number of CPUs to use with AutomaticThreadConfig. Added in NDB 8.0.23.

• PartitionsPerNode: Determines the number of table partitions created on each data node; not
used if ClassicFragmentation is enabled. Added in NDB 8.0.23.

• PreferIPVersion: Indicate DNS resolver preference for IP version 4 or 6. Added in NDB 8.0.26.

• RequireEncryptedBackup: Whether backups must be encrypted (1 = encryption required,
otherwise 0). Added in NDB 8.0.22.

• ReservedConcurrentIndexOperations: Number of simultaneous index operations having
dedicated resources on one data node. Added in NDB 8.0.16.

• ReservedConcurrentOperations: Number of simultaneous operations having dedicated
resources in transaction coordinators on one data node. Added in NDB 8.0.16.

• ReservedConcurrentScans: Number of simultaneous scans having dedicated resources on one
data node. Added in NDB 8.0.16.

• ReservedConcurrentTransactions: Number of simultaneous transactions having dedicated
resources on one data node. Added in NDB 8.0.16.

• ReservedFiredTriggers: Number of triggers having dedicated resources on one data node.
Added in NDB 8.0.16.

• ReservedLocalScans: Number of simultaneous fragment scans having dedicated resources on
one data node. Added in NDB 8.0.16.

• ReservedTransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node. Added in NDB 8.0.16.

• SpinMethod: Determines spin method used by data node; see documentation for details. Added in
NDB 8.0.20.

• TcpSpinTime: Time to spin before going to sleep when receiving. Added in NDB 8.0.20.

• TransactionMemory: Memory allocated for transactions on each data node. Added in NDB 8.0.19.

Parameters Deprecated in NDB 8.0

The following node configuration parameters have been deprecated in NDB 8.0.

• BatchSizePerLocalScan: Used to calculate number of lock records for scan with hold lock.
Deprecated in NDB 8.0.19.

• MaxAllocate: No longer used; has no effect. Deprecated in NDB 8.0.27.

• MaxNoOfConcurrentIndexOperations: Total number of index operations that can execute
simultaneously on one data node. Deprecated in NDB 8.0.19.

• MaxNoOfConcurrentTransactions: Maximum number of transactions executing concurrently
on this data node, total number of transactions that can be executed concurrently is this value times
number of data nodes in cluster. Deprecated in NDB 8.0.19.

• MaxNoOfFiredTriggers: Total number of triggers that can fire simultaneously on one data node.
Deprecated in NDB 8.0.19.

• MaxNoOfLocalOperations: Maximum number of operation records defined on this data node.
Deprecated in NDB 8.0.19.

• MaxNoOfLocalScans: Maximum number of fragment scans in parallel on this data node.
Deprecated in NDB 8.0.19.

4177

Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0

• ReservedTransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node. Deprecated in NDB 8.0.19.

• UndoDataBuffer: Unused; has no effect. Deprecated in NDB 8.0.27.

• UndoIndexBuffer: Unused; has no effect. Deprecated in NDB 8.0.27.

Parameters Removed in NDB 8.0

No node configuration parameters have been removed in NDB 8.0.

Options and Variables Introduced in NDB 8.0

The following system variables, status variables, and server options have been added in NDB 8.0.

• Ndb_api_adaptive_send_deferred_count_replica: Number of adaptive send calls not
actually sent by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_adaptive_send_forced_count_replica: Number of adaptive sends with forced-
send set sent by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_adaptive_send_unforced_count_replica: Number of adaptive sends without
forced-send sent by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_bytes_received_count_replica: Quantity of data (in bytes) received from data
nodes by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_bytes_sent_count_replica: Qunatity of data (in bytes) sent to data nodes by this
replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_pk_op_count_replica: Number of operations based on or using primary keys by this
replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_pruned_scan_count_replica: Number of scans that have been pruned to one
partition by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_range_scan_count_replica: Number of range scans that have been started by this
replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_read_row_count_replica: Total number of rows that have been read by this replica.
Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_scan_batch_count_replica: Number of batches of rows received by this replica.
Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_table_scan_count_replica: Number of table scans that have been started, including
scans of internal tables, by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_trans_abort_count_replica: Number of transactions aborted by this replica. Added
in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_trans_close_count_replica: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_trans_commit_count_replica: Number of transactions committed by this replica.
Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_trans_local_read_row_count_replica: Total number of rows that have been read
by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_trans_start_count_replica: Number of transactions started by this replica. Added
in NDB 8.0.23-ndb-8.0.23.

4178

Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0

• Ndb_api_uk_op_count_replica: Number of operations based on or using unique keys by this
replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_wait_exec_complete_count_replica: Number of times thread has been blocked
while waiting for operation execution to complete by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_wait_meta_request_count_replica: Number of times thread has been blocked
waiting for metadata-based signal by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_wait_nanos_count_replica: Total time (in nanoseconds) spent waiting for some type
of signal from data nodes by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_wait_scan_result_count_replica: Number of times thread has been blocked while
waiting for scan-based signal by this replica. Added in NDB 8.0.23-ndb-8.0.23.

• Ndb_config_generation: Generation number of the current configuration of the cluster. Added in
NDB 8.0.24-ndb-8.0.24.

• Ndb_conflict_fn_max_del_win_ins: Number of times that NDB replication conflict resolution
based on outcome of NDB$MAX_DEL_WIN_INS() has been applied to insert operations. Added in
NDB 8.0.30-ndb-8.0.30.

• Ndb_conflict_fn_max_ins: Number of times that NDB replication conflict resolution based on
"greater timestamp wins" has been applied to insert operations. Added in NDB 8.0.30-ndb-8.0.30.

• Ndb_fetch_table_stats: Number of times table statistics were fetched from tables rather than
cache. Added in NDB 8.0.27-ndb-8.0.27.

• Ndb_metadata_blacklist_size: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Added in NDB
8.0.18-ndb-8.0.18.

• Ndb_metadata_detected_count: Number of times NDB metadata change monitor thread has
detected changes. Added in NDB 8.0.16-ndb-8.0.16.

• Ndb_metadata_excluded_count: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize. Added in NDB 8.0.18-ndb-8.0.22.

• Ndb_metadata_synced_count: Number of NDB metadata objects which have been
synchronized. Added in NDB 8.0.18-ndb-8.0.18.

• Ndb_trans_hint_count_session: Number of transactions using hints that have been started in
this session. Added in NDB 8.0.17-ndb-8.0.17.

• ndb-applier-allow-skip-epoch: Lets replication applier skip epochs. Added in NDB 8.0.28-
ndb-8.0.28.

• ndb-log-fail-terminate: Terminate mysqld process if complete logging of all found row events
is not possible. Added in NDB 8.0.21-ndb-8.0.21.

• ndb-log-transaction-dependency: Make binary log thread calculate transaction dependencies
for every transaction it writes to binary log. Added in NDB 8.0.33-ndb-8.0.33.

• ndb-schema-dist-timeout: How long to wait before detecting timeout during schema
distribution. Added in NDB 8.0.17-ndb-8.0.17.

• ndb_conflict_role: Role for replica to play in conflict detection and resolution. Value is one of
PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information. Added in NDB 8.0.23-ndb-8.0.23.

• ndb_dbg_check_shares: Check for any lingering shares (debug builds only). Added in NDB
8.0.13-ndb-8.0.13.

4179

Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0

• ndb_log_transaction_compression: Whether to compress NDB binary log; can also be
enabled on startup by enabling --binlog-transaction-compression option. Added in NDB 8.0.31-
ndb-8.0.31.

• ndb_log_transaction_compression_level_zstd: The ZSTD compression level to use when
writing compressed transactions to the NDB binary log. Added in NDB 8.0.31-ndb-8.0.31.

• ndb_metadata_check: Enable auto-detection of NDB metadata changes with respect to MySQL
data dictionary; enabled by default. Added in NDB 8.0.16-ndb-8.0.16.

• ndb_metadata_check_interval: Interval in seconds to perform check for NDB metadata
changes with respect to MySQL data dictionary. Added in NDB 8.0.16-ndb-8.0.16.

• ndb_metadata_sync: Triggers immediate synchronization of all changes between NDB dictionary
and MySQL data dictionary; causes ndb_metadata_check and ndb_metadata_check_interval values
to be ignored. Resets to false when synchronization is complete. Added in NDB 8.0.19-ndb-8.0.19.

• ndb_replica_batch_size: Batch size in bytes for replica applier. Added in NDB 8.0.30-
ndb-8.0.30.

• ndb_schema_dist_lock_wait_timeout: Time during schema distribution to wait for lock before
returning error. Added in NDB 8.0.18-ndb-8.0.18.

• ndb_schema_dist_timeout: Time to wait before detecting timeout during schema distribution.
Added in NDB 8.0.16-ndb-8.0.16.

• ndb_schema_dist_upgrade_allowed: Allow schema distribution table upgrade when connecting
to NDB. Added in NDB 8.0.17-ndb-8.0.17.

• ndbinfo: Enable ndbinfo plugin, if supported. Added in NDB 8.0.13-ndb-8.0.13.

• replica_allow_batching: Turns update batching on and off for replica. Added in NDB 8.0.26-
ndb-8.0.26.

Options and Variables Deprecated in NDB 8.0

The following system variables, status variables, and options have been deprecated in NDB 8.0.

• Ndb_api_adaptive_send_deferred_count_slave: Number of adaptive send calls not actually
sent by this replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_adaptive_send_forced_count_slave: Number of adaptive sends with forced-send
set sent by this replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_adaptive_send_unforced_count_slave: Number of adaptive sends without forced-
send sent by this replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_bytes_received_count_slave: Quantity of data (in bytes) received from data nodes
by this replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_bytes_sent_count_slave: Qunatity of data (in bytes) sent to data nodes by this
replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_pk_op_count_slave: Number of operations based on or using primary keys by this
replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_pruned_scan_count_slave: Number of scans that have been pruned to one partition
by this replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_range_scan_count_slave: Number of range scans that have been started by this
replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_read_row_count_slave: Total number of rows that have been read by this replica.
Deprecated in NDB 8.0.23-ndb-8.0.23.

4180

MySQL Server Using InnoDB Compared with NDB Cluster

• Ndb_api_scan_batch_count_slave: Number of batches of rows received by this replica.
Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_table_scan_count_slave: Number of table scans that have been started, including
scans of internal tables, by this replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_trans_abort_count_slave: Number of transactions aborted by this replica.
Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_trans_close_count_slave: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) by this replica. Deprecated in NDB 8.0.23-
ndb-8.0.23.

• Ndb_api_trans_commit_count_slave: Number of transactions committed by this replica.
Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_trans_local_read_row_count_slave: Total number of rows that have been read by
this replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_trans_start_count_slave: Number of transactions started by this replica.
Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_uk_op_count_slave: Number of operations based on or using unique keys by this
replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_wait_exec_complete_count_slave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_wait_meta_request_count_slave: Number of times thread has been blocked waiting
for metadata-based signal by this replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_wait_nanos_count_slave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_api_wait_scan_result_count_slave: Number of times thread has been blocked while
waiting for scan-based signal by this replica. Deprecated in NDB 8.0.23-ndb-8.0.23.

• Ndb_metadata_blacklist_size: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Deprecated in
NDB 8.0.21-ndb-8.0.21.

• Ndb_replica_max_replicated_epoch: Most recently committed NDB epoch on this replica.
When this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet
been detected. Deprecated in NDB 8.0.23-ndb-8.0.23.

• ndb_slave_conflict_role: Role for replica to play in conflict detection and resolution. Value is
one of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication
SQL thread is stopped. See documentation for further information. Deprecated in NDB 8.0.23-
ndb-8.0.23.

• slave_allow_batching: Turns update batching on and off for replica. Deprecated in NDB 8.0.26-
ndb-8.0.26.

Options and Variables Removed in NDB 8.0

The following system variables, status variables, and options have been removed in NDB 8.0.

• Ndb_metadata_blacklist_size: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Removed in NDB
8.0.22-ndb-8.0.22.

25.2.6 MySQL Server Using InnoDB Compared with NDB Cluster

4181

MySQL Server Using InnoDB Compared with NDB Cluster

MySQL Server offers a number of choices in storage engines. Since both NDB and InnoDB can serve
as transactional MySQL storage engines, users of MySQL Server sometimes become interested
in NDB Cluster. They see NDB as a possible alternative or upgrade to the default InnoDB storage
engine in MySQL 8.0. While NDB and InnoDB share common characteristics, there are differences
in architecture and implementation, so that some existing MySQL Server applications and usage
scenarios can be a good fit for NDB Cluster, but not all of them.

In this section, we discuss and compare some characteristics of the NDB storage engine used by NDB
8.0 with InnoDB used in MySQL 8.0. The next few sections provide a technical comparison. In many
instances, decisions about when and where to use NDB Cluster must be made on a case-by-case
basis, taking all factors into consideration. While it is beyond the scope of this documentation to provide
specifics for every conceivable usage scenario, we also attempt to offer some very general guidance
on the relative suitability of some common types of applications for NDB as opposed to InnoDB back
ends.

NDB Cluster 8.0 uses a mysqld based on MySQL 8.0, including support for InnoDB 1.1. While it is
possible to use InnoDB tables with NDB Cluster, such tables are not clustered. It is also not possible to
use programs or libraries from an NDB Cluster 8.0 distribution with MySQL Server 8.0, or the reverse.

While it is also true that some types of common business applications can be run either on NDB
Cluster or on MySQL Server (most likely using the InnoDB storage engine), there are some important
architectural and implementation differences. Section 25.2.6.1, “Differences Between the NDB and
InnoDB Storage Engines”, provides a summary of the these differences. Due to the differences, some
usage scenarios are clearly more suitable for one engine or the other; see Section 25.2.6.2, “NDB
and InnoDB Workloads”. This in turn has an impact on the types of applications that better suited for
use with NDB or InnoDB. See Section 25.2.6.3, “NDB and InnoDB Feature Usage Summary”, for a
comparison of the relative suitability of each for use in common types of database applications.

For information about the relative characteristics of the NDB and MEMORY storage engines, see When to
Use MEMORY or NDB Cluster.

See Chapter 18, Alternative Storage Engines, for additional information about MySQL storage engines.

25.2.6.1 Differences Between the NDB and InnoDB Storage Engines

The NDB storage engine is implemented using a distributed, shared-nothing architecture, which causes
it to behave differently from InnoDB in a number of ways. For those unaccustomed to working with
NDB, unexpected behaviors can arise due to its distributed nature with regard to transactions, foreign
keys, table limits, and other characteristics. These are shown in the following table:

Table 25.2 Differences between InnoDB and NDB storage engines

Feature InnoDB (MySQL 8.0) NDB 8.0

MySQL Server Version 8.0 8.0

InnoDB Version InnoDB 8.0.42 InnoDB 8.0.42

NDB Cluster Version N/A NDB 8.0.42/8.0.42

Storage Limits 64TB 128TB

Foreign Keys Yes Yes

Transactions All standard types READ COMMITTED

MVCC Yes No

Data Compression Yes No (NDB checkpoint and backup
files can be compressed)

Large Row Support (> 14K) Supported for VARBINARY,
VARCHAR, BLOB, and TEXT
columns

Supported for BLOB and
TEXT columns only (Using
these types to store very large
amounts of data can lower NDB
performance)

4182

MySQL Server Using InnoDB Compared with NDB Cluster

Feature InnoDB (MySQL 8.0) NDB 8.0

Replication Support Asynchronous and
semisynchronous replication
using MySQL Replication;
MySQL Group Replication

Automatic synchronous
replication within an NDB
Cluster; asynchronous replication
between NDB Clusters,
using MySQL Replication
(Semisynchronous replication is
not supported)

Scaleout for Read Operations Yes (MySQL Replication) Yes (Automatic partitioning
in NDB Cluster; NDB Cluster
Replication)

Scaleout for Write Operations Requires application-level
partitioning (sharding)

Yes (Automatic partitioning in
NDB Cluster is transparent to
applications)

High Availability (HA) Built-in, from InnoDB cluster Yes (Designed for 99.999%
uptime)

Node Failure Recovery and
Failover

From MySQL Group Replication Automatic (Key element in NDB
architecture)

Time for Node Failure Recovery 30 seconds or longer Typically < 1 second

Real-Time Performance No Yes

In-Memory Tables No Yes (Some data can optionally
be stored on disk; both in-
memory and disk data storage
are durable)

NoSQL Access to Storage
Engine

Yes Yes (Multiple APIs, including
Memcached, Node.js/JavaScript,
Java, JPA, C++, and HTTP/
REST)

Concurrent and Parallel Writes Yes Up to 48 writers, optimized for
concurrent writes

Conflict Detection and Resolution
(Multiple Sources)

Yes (MySQL Group Replication) Yes

Hash Indexes No Yes

Online Addition of Nodes Read/write replicas using MySQL
Group Replication

Yes (all node types)

Online Upgrades Yes (using replication) Yes

Online Schema Modifications Yes, as part of MySQL 8.0 Yes

25.2.6.2 NDB and InnoDB Workloads

NDB Cluster has a range of unique attributes that make it ideal to serve applications requiring high
availability, fast failover, high throughput, and low latency. Due to its distributed architecture and multi-
node implementation, NDB Cluster also has specific constraints that may keep some workloads from
performing well. A number of major differences in behavior between the NDB and InnoDB storage
engines with regard to some common types of database-driven application workloads are shown in the
following table::

Table 25.3 Differences between InnoDB and NDB storage engines, common types of data-driven
application workloads.

Workload InnoDB NDB Cluster (NDB)

High-Volume OLTP Applications Yes Yes

4183

Known Limitations of NDB Cluster

Workload InnoDB NDB Cluster (NDB)

DSS Applications (data marts,
analytics)

Yes Limited (Join operations across
OLTP datasets not exceeding
3TB in size)

Custom Applications Yes Yes

Packaged Applications Yes Limited (should be mostly
primary key access); NDB
Cluster 8.0 supports foreign keys

In-Network Telecoms
Applications (HLR, HSS, SDP)

No Yes

Session Management and
Caching

Yes Yes

E-Commerce Applications Yes Yes

User Profile Management, AAA
Protocol

Yes Yes

25.2.6.3 NDB and InnoDB Feature Usage Summary

When comparing application feature requirements to the capabilities of InnoDB with NDB, some are
clearly more compatible with one storage engine than the other.

The following table lists supported application features according to the storage engine to which each
feature is typically better suited.

Table 25.4 Supported application features according to the storage engine to which each
feature is typically better suited

Preferred application requirements for InnoDB Preferred application requirements for NDB

• Foreign keys

Note

NDB Cluster 8.0
supports foreign keys

• Full table scans

• Very large databases, rows, or transactions

• Transactions other than READ COMMITTED

• Write scaling

• 99.999% uptime

• Online addition of nodes and online schema
operations

• Multiple SQL and NoSQL APIs (see NDB
Cluster APIs: Overview and Concepts)

• Real-time performance

• Limited use of BLOB columns

• Foreign keys are supported, although their use
may have an impact on performance at high
throughput

25.2.7 Known Limitations of NDB Cluster

In the sections that follow, we discuss known limitations in current releases of NDB Cluster as
compared with the features available when using the MyISAM and InnoDB storage engines. If you
check the “Cluster” category in the MySQL bugs database at http://bugs.mysql.com, you can find
known bugs in the following categories under “MySQL Server:” in the MySQL bugs database at http://
bugs.mysql.com, which we intend to correct in upcoming releases of NDB Cluster:

• NDB Cluster

4184

https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
http://bugs.mysql.com
http://bugs.mysql.com
http://bugs.mysql.com

Known Limitations of NDB Cluster

• Cluster Direct API (NDBAPI)

• Cluster Disk Data

• Cluster Replication

• ClusterJ

This information is intended to be complete with respect to the conditions just set forth. You can report
any discrepancies that you encounter to the MySQL bugs database using the instructions given in
Section 1.5, “How to Report Bugs or Problems”. Any problem which we do not plan to fix in NDB
Cluster 8.0, is added to the list.

See Section 25.2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 8.0” for a list of issues
in earlier releases that have been resolved in NDB Cluster 8.0.

Note

Limitations and other issues specific to NDB Cluster Replication are described
in Section 25.7.3, “Known Issues in NDB Cluster Replication”.

25.2.7.1 Noncompliance with SQL Syntax in NDB Cluster

Some SQL statements relating to certain MySQL features produce errors when used with NDB tables,
as described in the following list:

• Temporary tables. Temporary tables are not supported. Trying either to create a temporary table
that uses the NDB storage engine or to alter an existing temporary table to use NDB fails with the
error Table storage engine 'ndbcluster' does not support the create option
'TEMPORARY'.

• Indexes and keys in NDB tables. Keys and indexes on NDB Cluster tables are subject to the
following limitations:

• Column width. Attempting to create an index on an NDB table column whose width is greater
than 3072 bytes is rejected with ER_TOO_LONG_KEY: Specified key was too long; max
key length is 3072 bytes.

Attempting to create an index on an NDB table column whose width is greater than 3056 bytes
succeeds with a warning. In such cases, statistical information is not generated, which means a
nonoptimal execution plan may be selected. For this reason, you should consider making the index
length shorter than 3056 bytes if possible.

• TEXT and BLOB columns. You cannot create indexes on NDB table columns that use any of
the TEXT or BLOB data types.

• FULLTEXT indexes. The NDB storage engine does not support FULLTEXT indexes, which are
possible for MyISAM and InnoDB tables only.

However, you can create indexes on VARCHAR columns of NDB tables.

• USING HASH keys and NULL. Using nullable columns in unique keys and primary keys
means that queries using these columns are handled as full table scans. To work around this
issue, make the column NOT NULL, or re-create the index without the USING HASH option.

• Prefixes. There are no prefix indexes; only entire columns can be indexed. (The size of an NDB
column index is always the same as the width of the column in bytes, up to and including 3072
bytes, as described earlier in this section. Also see Section 25.2.7.6, “Unsupported or Missing
Features in NDB Cluster”, for additional information.)

• BIT columns. A BIT column cannot be a primary key, unique key, or index, nor can it be part of
a composite primary key, unique key, or index.

4185

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_too_long_key

Known Limitations of NDB Cluster

• AUTO_INCREMENT columns. Like other MySQL storage engines, the NDB storage engine
can handle a maximum of one AUTO_INCREMENT column per table, and this column must be
indexed. However, in the case of an NDB table with no explicit primary key, an AUTO_INCREMENT
column is automatically defined and used as a “hidden” primary key. For this reason, you cannot
create an NDB table having an AUTO_INCREMENT column and no explicit primary key.

The following CREATE TABLE statements do not work, as shown here:

No index on AUTO_INCREMENT column; table has no primary key
Raises ER_WRONG_AUTO_KEY
mysql> CREATE TABLE n (
 -> a INT,
 -> b INT AUTO_INCREMENT
 ->)
 -> ENGINE=NDB;
ERROR 1075 (42000): Incorrect table definition; there can be only one auto
column and it must be defined as a key

Index on AUTO_INCREMENT column; table has no primary key
Raises NDB error 4335
mysql> CREATE TABLE n (
 -> a INT,
 -> b INT AUTO_INCREMENT,
 -> KEY k (b)
 ->)
 -> ENGINE=NDB;
ERROR 1296 (HY000): Got error 4335 'Only one autoincrement column allowed per
table. Having a table without primary key uses an autoincr' from NDBCLUSTER

The following statement creates a table with a primary key, an AUTO_INCREMENT column, and an
index on this column, and succeeds:

Index on AUTO_INCREMENT column; table has a primary key
mysql> CREATE TABLE n (
 -> a INT PRIMARY KEY,
 -> b INT AUTO_INCREMENT,
 -> KEY k (b)
 ->)
 -> ENGINE=NDB;
Query OK, 0 rows affected (0.38 sec)

• Restrictions on foreign keys. Support for foreign key constraints in NDB 8.0 is comparable to
that provided by InnoDB, subject to the following restrictions:

• Every column referenced as a foreign key requires an explicit unique key, if it is not the table's
primary key.

• ON UPDATE CASCADE is not supported when the reference is to the parent table's primary key.

This is because an update of a primary key is implemented as a delete of the old row (containing
the old primary key) plus an insert of the new row (with a new primary key). This is not visible to
the NDB kernel, which views these two rows as being the same, and thus has no way of knowing
that this update should be cascaded.

• ON DELETE CASCADE is also not supported where the child table contains one or more columns
of any of the TEXT or BLOB types. (Bug #89511, Bug #27484882)

• SET DEFAULT is not supported. (Also not supported by InnoDB.)

• The NO ACTION keyword is accepted but treated as RESTRICT. NO ACTION, which is a standard
SQL keyword, is the default in MySQL 8.0. (Also the same as with InnoDB.)

• In earlier versions of NDB Cluster, when creating a table with foreign key referencing an index in
another table, it sometimes appeared possible to create the foreign key even if the order of the
columns in the indexes did not match, due to the fact that an appropriate error was not always

4186

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_auto_key
https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4335

Known Limitations of NDB Cluster

returned internally. A partial fix for this issue improved the error used internally to work in most
cases; however, it remains possible for this situation to occur in the event that the parent index is a
unique index. (Bug #18094360)

For more information, see Section 15.1.20.5, “FOREIGN KEY Constraints”, and Section 1.6.3.2,
“FOREIGN KEY Constraints”.

• NDB Cluster and geometry data types.
Geometry data types (WKT and WKB) are supported for NDB tables. However, spatial indexes are not
supported.

• Character sets and binary log files. Currently, the ndb_apply_status and
ndb_binlog_index tables are created using the latin1 (ASCII) character set. Because names
of binary logs are recorded in this table, binary log files named using non-Latin characters are
not referenced correctly in these tables. This is a known issue, which we are working to fix. (Bug
#50226)

To work around this problem, use only Latin-1 characters when naming binary log files or setting any
the --basedir, --log-bin, or --log-bin-index options.

• Creating NDB tables with user-defined partitioning. Support for user-defined partitioning
in NDB Cluster is restricted to [LINEAR] KEY partitioning. Using any other partitioning type with
ENGINE=NDB or ENGINE=NDBCLUSTER in a CREATE TABLE statement results in an error.

It is possible to override this restriction, but doing so is not supported for use in production settings.
For details, see User-defined partitioning and the NDB storage engine (NDB Cluster).

Default partitioning scheme. All NDB Cluster tables are by default partitioned by KEY using
the table's primary key as the partitioning key. If no primary key is explicitly set for the table, the
“hidden” primary key automatically created by the NDB storage engine is used instead. For additional
discussion of these and related issues, see Section 26.2.5, “KEY Partitioning”.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDBCLUSTER
table not to meet either or both of the following two requirements are not permitted, and fail with an
error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception. If a user-partitioned NDBCLUSTER table is created using an empty column-list (that is,
using PARTITION BY [LINEAR] KEY()), then no explicit primary key is required.

Maximum number of partitions for NDBCLUSTER tables. The maximum number of partitions
that can defined for a NDBCLUSTER table when employing user-defined partitioning is 8 per node
group. (See Section 25.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”,
for more information about NDB Cluster node groups.

DROP PARTITION not supported. It is not possible to drop partitions from NDB tables using
ALTER TABLE ... DROP PARTITION. The other partitioning extensions to ALTER TABLE—ADD
PARTITION, REORGANIZE PARTITION, and COALESCE PARTITION—are supported for NDB
tables, but use copying and so are not optimized. See Section 26.3.1, “Management of RANGE and
LIST Partitions” and Section 15.1.9, “ALTER TABLE Statement”.

Partition selection. Partition selection is not supported for NDB tables. See Section 26.5,
“Partition Selection”, for more information.

• JSON data type. The MySQL JSON data type is supported for NDB tables in the mysqld supplied
with NDB 8.0.

An NDB table can have a maximum of 3 JSON columns.

4187

Known Limitations of NDB Cluster

The NDB API has no special provision for working with JSON data, which it views simply as BLOB
data. Handling data as JSON must be performed by the application.

25.2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits

In this section, we list limits found in NDB Cluster that either differ from limits found in, or that are not
found in, standard MySQL.

Memory usage and recovery. Memory consumed when data is inserted into an NDB table is not
automatically recovered when deleted, as it is with other storage engines. Instead, the following rules
hold true:

• A DELETE statement on an NDB table makes the memory formerly used by the deleted rows
available for re-use by inserts on the same table only. However, this memory can be made available
for general re-use by performing OPTIMIZE TABLE.

A rolling restart of the cluster also frees any memory used by deleted rows. See Section 25.6.5,
“Performing a Rolling Restart of an NDB Cluster”.

• A DROP TABLE or TRUNCATE TABLE operation on an NDB table frees the memory that was used by
this table for re-use by any NDB table, either by the same table or by another NDB table.

Note

Recall that TRUNCATE TABLE drops and re-creates the table. See
Section 15.1.37, “TRUNCATE TABLE Statement”.

• Limits imposed by the cluster's configuration.
A number of hard limits exist which are configurable, but available main memory in the cluster
sets limits. See the complete list of configuration parameters in Section 25.4.3, “NDB Cluster
Configuration Files”. Most configuration parameters can be upgraded online. These hard limits
include:

• Database memory size and index memory size (DataMemory and IndexMemory, respectively).

DataMemory is allocated as 32KB pages. As each DataMemory page is used, it is assigned to a
specific table; once allocated, this memory cannot be freed except by dropping the table.

See Section 25.4.3.6, “Defining NDB Cluster Data Nodes”, for more information.

• The maximum number of operations that can be performed per transaction is set using the
configuration parameters MaxNoOfConcurrentOperations and MaxNoOfLocalOperations.

Note

Bulk loading, TRUNCATE TABLE, and ALTER TABLE are handled as
special cases by running multiple transactions, and so are not subject to
this limitation.

• Different limits related to tables and indexes. For example, the maximum number of ordered
indexes in the cluster is determined by MaxNoOfOrderedIndexes, and the maximum number of
ordered indexes per table is 16.

• Node and data object maximums. The following limits apply to numbers of cluster nodes and
metadata objects:

• The maximum number of data nodes is 144. (In NDB 7.6 and earlier, this was 48.)

A data node must have a node ID in the range of 1 to 144, inclusive.

Management and API nodes may use node IDs in the range 1 to 255, inclusive.

4188

Known Limitations of NDB Cluster

• The total maximum number of nodes in an NDB Cluster is 255. This number includes all SQL
nodes (MySQL Servers), API nodes (applications accessing the cluster other than MySQL
servers), data nodes, and management servers.

• The maximum number of metadata objects in current versions of NDB Cluster is 20320. This limit
is hard-coded.

See Section 25.2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 8.0”, for more
information.

25.2.7.3 Limits Relating to Transaction Handling in NDB Cluster

A number of limitations exist in NDB Cluster with regard to the handling of transactions. These include
the following:

• Transaction isolation level. The NDBCLUSTER storage engine supports only the READ
COMMITTED transaction isolation level. (InnoDB, for example, supports READ COMMITTED, READ
UNCOMMITTED, REPEATABLE READ, and SERIALIZABLE.) You should keep in mind that NDB
implements READ COMMITTED on a per-row basis; when a read request arrives at the data node
storing the row, what is returned is the last committed version of the row at that time.

Uncommitted data is never returned, but when a transaction modifying a number of rows commits
concurrently with a transaction reading the same rows, the transaction performing the read can
observe “before” values, “after” values, or both, for different rows among these, due to the fact that a
given row read request can be processed either before or after the commit of the other transaction.

To ensure that a given transaction reads only before or after values, you can impose row locks using
SELECT ... LOCK IN SHARE MODE. In such cases, the lock is held until the owning transaction is
committed. Using row locks can also cause the following issues:

• Increased frequency of lock wait timeout errors, and reduced concurrency

• Increased transaction processing overhead due to reads requiring a commit phase

• Possibility of exhausting the available number of concurrent locks, which is limited by
MaxNoOfConcurrentOperations

NDB uses READ COMMITTED for all reads unless a modifier such as LOCK IN SHARE MODE or FOR
UPDATE is used. LOCK IN SHARE MODE causes shared row locks to be used; FOR UPDATE causes
exclusive row locks to be used. Unique key reads have their locks upgraded automatically by NDB to
ensure a self-consistent read; BLOB reads also employ extra locking for consistency.

See Section 25.6.8.4, “NDB Cluster Backup Troubleshooting”, for information on how NDB Cluster's
implementation of transaction isolation level can affect backup and restoration of NDB databases.

• Transactions and BLOB or TEXT columns. NDBCLUSTER stores only part of a column value
that uses any of MySQL's BLOB or TEXT data types in the table visible to MySQL; the remainder of
the BLOB or TEXT is stored in a separate internal table that is not accessible to MySQL. This gives
rise to two related issues of which you should be aware whenever executing SELECT statements on
tables that contain columns of these types:

1. For any SELECT from an NDB Cluster table: If the SELECT includes a BLOB or TEXT column, the
READ COMMITTED transaction isolation level is converted to a read with read lock. This is done
to guarantee consistency.

2. For any SELECT which uses a unique key lookup to retrieve any columns that use any of the
BLOB or TEXT data types and that is executed within a transaction, a shared read lock is held on
the table for the duration of the transaction—that is, until the transaction is either committed or
aborted.

4189

Known Limitations of NDB Cluster

This issue does not occur for queries that use index or table scans, even against NDB tables
having BLOB or TEXT columns.

For example, consider the table t defined by the following CREATE TABLE statement:

CREATE TABLE t (
 a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b INT NOT NULL,
 c INT NOT NULL,
 d TEXT,
 INDEX i(b),
 UNIQUE KEY u(c)
) ENGINE = NDB,

The following query on t causes a shared read lock, because it uses a unique key lookup:

SELECT * FROM t WHERE c = 1;

However, none of the four queries shown here causes a shared read lock:

SELECT * FROM t WHERE b = 1;

SELECT * FROM t WHERE d = '1';

SELECT * FROM t;

SELECT b,c WHERE a = 1;

This is because, of these four queries, the first uses an index scan, the second and third use
table scans, and the fourth, while using a primary key lookup, does not retrieve the value of any
BLOB or TEXT columns.

You can help minimize issues with shared read locks by avoiding queries that use unique key
lookups that retrieve BLOB or TEXT columns, or, in cases where such queries are not avoidable,
by committing transactions as soon as possible afterward.

• Unique key lookups and transaction isolation. Unique indexes are implemented in NDB using
a hidden index table which is maintained internally. When a user-created NDB table is accessed
using a unique index, the hidden index table is first read to find the primary key that is then used to
read the user-created table. To avoid modification of the index during this double-read operation, the
row found in the hidden index table is locked. When a row referenced by a unique index in the user-
created NDB table is updated, the hidden index table is subject to an exclusive lock by the transaction
in which the update is performed. This means that any read operation on the same (user-created)
NDB table must wait for the update to complete. This is true even when the transaction level of the
read operation is READ COMMITTED.

One workaround which can be used to bypass potentially blocking reads is to force the SQL node to
ignore the unique index when performing the read. This can be done by using the IGNORE INDEX
index hint as part of the SELECT statement reading the table (see Section 10.9.4, “Index Hints”).
Because the MySQL server creates a shadowing ordered index for every unique index created
in NDB, this lets the ordered index be read instead, and avoids unique index access locking. The
resulting read is as consistent as a committed read by primary key, returning the last committed
value at the time the row is read.

Reading via an ordered index makes less efficient use of resources in the cluster, and may have
higher latency.

It is also possible to avoid using the unique index for access by querying for ranges rather than for
unique values.

4190

Known Limitations of NDB Cluster

• Rollbacks. There are no partial transactions, and no partial rollbacks of transactions. A duplicate
key or similar error causes the entire transaction to be rolled back.

This behavior differs from that of other transactional storage engines such as InnoDB that may roll
back individual statements.

• Transactions and memory usage.
As noted elsewhere in this chapter, NDB Cluster does not handle large transactions well; it is better
to perform a number of small transactions with a few operations each than to attempt a single large
transaction containing a great many operations. Among other considerations, large transactions
require very large amounts of memory. Because of this, the transactional behavior of a number of
MySQL statements is affected as described in the following list:

• TRUNCATE TABLE is not transactional when used on NDB tables. If a TRUNCATE TABLE fails to
empty the table, then it must be re-run until it is successful.

• DELETE FROM (even with no WHERE clause) is transactional. For tables containing a great
many rows, you may find that performance is improved by using several DELETE FROM ...
LIMIT ... statements to “chunk” the delete operation. If your objective is to empty the table, then
you may wish to use TRUNCATE TABLE instead.

• LOAD DATA statements. LOAD DATA is not transactional when used on NDB tables.

Important

When executing a LOAD DATA statement, the NDB engine performs
commits at irregular intervals that enable better utilization of the
communication network. It is not possible to know ahead of time when such
commits take place.

• ALTER TABLE and transactions. When copying an NDB table as part of an ALTER TABLE,
the creation of the copy is nontransactional. (In any case, this operation is rolled back when the
copy is deleted.)

• Transactions and the COUNT() function. When using NDB Cluster Replication, it is not possible
to guarantee the transactional consistency of the COUNT() function on the replica. In other words,
when performing on the source a series of statements (INSERT, DELETE, or both) that changes
the number of rows in a table within a single transaction, executing SELECT COUNT(*) FROM
table queries on the replica may yield intermediate results. This is due to the fact that SELECT
COUNT(...) may perform dirty reads, and is not a bug in the NDB storage engine. (See Bug #31321
for more information.)

25.2.7.4 NDB Cluster Error Handling

Starting, stopping, or restarting a node may give rise to temporary errors causing some transactions to
fail. These include the following cases:

• Temporary errors. When first starting a node, it is possible that you may see Error 1204
Temporary failure, distribution changed and similar temporary errors.

• Errors due to node failure. The stopping or failure of any data node can result in a number of
different node failure errors. (However, there should be no aborted transactions when performing a
planned shutdown of the cluster.)

In either of these cases, any errors that are generated must be handled within the application. This
should be done by retrying the transaction.

See also Section 25.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”.

25.2.7.5 Limits Associated with Database Objects in NDB Cluster

4191

Known Limitations of NDB Cluster

Some database objects such as tables and indexes have different limitations when using the
NDBCLUSTER storage engine:

• Number of database objects. The maximum number of all NDB database objects in a single NDB
Cluster—including databases, tables, and indexes—is limited to 20320.

• Attributes per table. The maximum number of attributes (that is, columns and indexes) that can
belong to a given table is 512.

• Attributes per key. The maximum number of attributes per key is 32.

• Row size. In NDB 8.0, the maximum permitted size of any one row is 30000 bytes (increased
from 14000 bytes in previous releases).

Each BLOB or TEXT column contributes 256 + 8 = 264 bytes to this total; this includes JSON
columns. See String Type Storage Requirements, as well as JSON Storage Requirements, for more
information relating to these types.

In addition, the maximum offset for a fixed-width column of an NDB table is 8188 bytes; attempting
to create a table that violates this limitation fails with NDB error 851 Maximum offset for
fixed-size columns exceeded. For memory-based columns, you can work around this
limitation by using a variable-width column type such as VARCHAR or defining the column as
COLUMN_FORMAT=DYNAMIC; this does not work with columns stored on disk. For disk-based
columns, you may be able to do so by reordering one or more of the table's disk-based columns
such that the combined width of all but the disk-based column defined last in the CREATE TABLE
statement used to create the table does not exceed 8188 bytes, less any possible rounding
performed for some data types such as CHAR or VARCHAR; otherwise it is necessary to use memory-
based storage for one or more of the offending column or columns instead.

• BIT column storage per table. The maximum combined width for all BIT columns used in a
given NDB table is 4096.

• FIXED column storage. NDB Cluster 8.0 supports a maximum of 128 TB per fragment of data in
FIXED columns.

25.2.7.6 Unsupported or Missing Features in NDB Cluster

A number of features supported by other storage engines are not supported for NDB tables. Trying to
use any of these features in NDB Cluster does not cause errors in or of itself; however, errors may
occur in applications that expects the features to be supported or enforced. Statements referencing
such features, even if effectively ignored by NDB, must be syntactically and otherwise valid.

• Index prefixes. Prefixes on indexes are not supported for NDB tables. If a prefix is used as part of
an index specification in a statement such as CREATE TABLE, ALTER TABLE, or CREATE INDEX,
the prefix is not created by NDB.

A statement containing an index prefix, and creating or modifying an NDB table, must still be
syntactically valid. For example, the following statement always fails with Error 1089 Incorrect
prefix key; the used key part is not a string, the used length is longer
than the key part, or the storage engine doesn't support unique prefix
keys, regardless of storage engine:

CREATE TABLE t1 (
 c1 INT NOT NULL,
 c2 VARCHAR(100),
 INDEX i1 (c2(500))
);

This happens on account of the SQL syntax rule that no index may have a prefix larger than itself.

• Savepoints and rollbacks. Savepoints and rollbacks to savepoints are ignored as in MyISAM.

4192

Known Limitations of NDB Cluster

• Durability of commits. There are no durable commits on disk. Commits are replicated, but there
is no guarantee that logs are flushed to disk on commit.

• Replication. Statement-based replication is not supported. Use --binlog-format=ROW (or
--binlog-format=MIXED) when setting up cluster replication. See Section 25.7, “NDB Cluster
Replication”, for more information.

Replication using global transaction identifiers (GTIDs) is not compatible with NDB Cluster, and is not
supported in NDB Cluster 8.0. Do not enable GTIDs when using the NDB storage engine, as this is
very likely to cause problems up to and including failure of NDB Cluster Replication.

Semisynchronous replication is not supported in NDB Cluster.

• Generated columns. The NDB storage engine does not support indexes on virtual generated
columns.

As with other storage engines, you can create an index on a stored generated column, but you
should bear in mind that NDB uses DataMemory for storage of the generated column as well as
IndexMemory for the index. See JSON columns and indirect indexing in NDB Cluster, for an
example.

NDB Cluster writes changes in stored generated columns to the binary log, but does log not those
made to virtual columns. This should not effect NDB Cluster Replication or replication between NDB
and other MySQL storage engines.

Note

See Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”,
for more information relating to limitations on transaction handling in NDB.

25.2.7.7 Limitations Relating to Performance in NDB Cluster

The following performance issues are specific to or especially pronounced in NDB Cluster:

• Range scans. There are query performance issues due to sequential access to the NDB storage
engine; it is also relatively more expensive to do many range scans than it is with either MyISAM or
InnoDB.

• Reliability of Records in range. The Records in range statistic is available but is not
completely tested or officially supported. This may result in nonoptimal query plans in some cases.
If necessary, you can employ USE INDEX or FORCE INDEX to alter the execution plan. See
Section 10.9.4, “Index Hints”, for more information on how to do this.

• Unique hash indexes. Unique hash indexes created with USING HASH cannot be used for
accessing a table if NULL is given as part of the key.

25.2.7.8 Issues Exclusive to NDB Cluster

The following are limitations specific to the NDB storage engine:

• Machine architecture. All machines used in the cluster must have the same architecture. That is,
all machines hosting nodes must be either big-endian or little-endian, and you cannot use a mixture
of both. For example, you cannot have a management node running on a PowerPC which directs
a data node that is running on an x86 machine. This restriction does not apply to machines simply
running mysql or other clients that may be accessing the cluster's SQL nodes.

• Binary logging.
NDB Cluster has the following limitations or restrictions with regard to binary logging:

• NDB Cluster cannot produce a binary log for tables having BLOB columns but no primary key.

4193

Known Limitations of NDB Cluster

• Only the following schema operations are logged in a cluster binary log which is not on the
mysqld executing the statement:

• CREATE TABLE

• ALTER TABLE

• DROP TABLE

• CREATE DATABASE / CREATE SCHEMA

• DROP DATABASE / DROP SCHEMA

• CREATE TABLESPACE

• ALTER TABLESPACE

• DROP TABLESPACE

• CREATE LOGFILE GROUP

• ALTER LOGFILE GROUP

• DROP LOGFILE GROUP

• Schema operations. Schema operations (DDL statements) are rejected while any data
node restarts. Schema operations are also not supported while performing an online upgrade or
downgrade.

• Number of fragment replicas. The number of fragment replicas, as determined by the
NoOfReplicas data node configuration parameter, is the number of copies of all data stored
by NDB Cluster. Setting this parameter to 1 means there is only a single copy; in this case, no
redundancy is provided, and the loss of a data node entails loss of data. To guarantee redundancy,
and thus preservation of data even if a data node fails, set this parameter to 2, which is the default
and recommended value in production.

Setting NoOfReplicas to a value greater than 2 is supported (to a maximum of 4) but unnecessary
to guard against loss of data.

See also Section 25.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”.

25.2.7.9 Limitations Relating to NDB Cluster Disk Data Storage

Disk Data object maximums and minimums. Disk data objects are subject to the following
maximums and minimums:

• Maximum number of tablespaces: 232 (4294967296)

• Maximum number of data files per tablespace: 216 (65536)

• The minimum and maximum possible sizes of extents for tablespace data files are 32K and 2G,
respectively. See Section 15.1.21, “CREATE TABLESPACE Statement”, for more information.

In addition, when working with NDB Disk Data tables, you should be aware of the following issues
regarding data files and extents:

• Data files use DataMemory. Usage is the same as for in-memory data.

• Data files use file descriptors. It is important to keep in mind that data files are always open, which
means the file descriptors are always in use and cannot be re-used for other system tasks.

• Extents require sufficient DiskPageBufferMemory; you must reserve enough for this parameter to
account for all memory used by all extents (number of extents times size of extents).

4194

Known Limitations of NDB Cluster

Disk Data tables and diskless mode. Use of Disk Data tables is not supported when running the
cluster in diskless mode.

25.2.7.10 Limitations Relating to Multiple NDB Cluster Nodes

Multiple SQL nodes.
The following are issues relating to the use of multiple MySQL servers as NDB Cluster SQL nodes, and
are specific to the NDBCLUSTER storage engine:

• Stored programs not distributed. Stored procedures, stored functions, triggers, and scheduled
events are all supported by tables using the NDB storage engine, but these do not propagate
automatically between MySQL Servers acting as Cluster SQL nodes, and must be re-created
separately on each SQL node. See Stored routines and triggers in NDB Cluster.

• No distributed table locks. A LOCK TABLES statement or GET_LOCK() call works only for the
SQL node on which the lock is issued; no other SQL node in the cluster “sees” this lock. This is true
for a lock issued by any statement that locks tables as part of its operations. (See next item for an
example.)

Implementing table locks in NDBCLUSTER can be done in an API application, and ensuring that all
applications start by setting LockMode to LM_Read or LM_Exclusive. For more information about
how to do this, see the description of NdbOperation::getLockHandle() in the NDB Cluster API
Guide.

• ALTER TABLE operations. ALTER TABLE is not fully locking when running multiple MySQL
servers (SQL nodes). (As discussed in the previous item, NDB Cluster does not support distributed
table locks.)

Multiple management nodes.
When using multiple management servers:

• If any of the management servers are running on the same host, you must give nodes explicit
IDs in connection strings because automatic allocation of node IDs does not work across multiple
management servers on the same host. This is not required if every management server resides on
a different host.

• When a management server starts, it first checks for any other management server in the same NDB
Cluster, and upon successful connection to the other management server uses its configuration data.
This means that the management server --reload and --initial startup options are ignored
unless the management server is the only one running. It also means that, when performing a rolling
restart of an NDB Cluster with multiple management nodes, the management server reads its own
configuration file if (and only if) it is the only management server running in this NDB Cluster. See
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”, for more information.

Multiple network addresses. Multiple network addresses per data node are not supported.
Use of these is liable to cause problems: In the event of a data node failure, an SQL node waits for
confirmation that the data node went down but never receives it because another route to that data
node remains open. This can effectively make the cluster inoperable.

Note

It is possible to use multiple network hardware interfaces (such as Ethernet
cards) for a single data node, but these must be bound to the same address.
This also means that it not possible to use more than one [tcp] section per
connection in the config.ini file. See Section 25.4.3.10, “NDB Cluster TCP/
IP Connections”, for more information.

25.2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0

A number of limitations and related issues that existed in earlier versions of NDB Cluster have been
resolved in NDB 8.0. These are described briefly in the following list:

4195

https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-lockmode
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-getlockhandle

NDB Cluster Installation

• Database and table names. In NDB 7.6 and earlier, when using the NDB storage engine,
the maximum allowed length both for database names and for table names was 63 bytes, and a
statement using a database name or table name longer than this limit failed with an appropriate
error. In NDB 8.0, this restriction is lifted; identifiers for NDB databases and tables may now use up to
64 characters, as with other MySQL database and table names.

• IPv6 support. Prior to NDB 8.0.22, it was necessary for all network addresses used for
connections between nodes within an NDB Cluster to use or to be resolvable to IPv4 addresses.
Beginning with NDB 8.0.22, NDB supports IPv6 addresses for all types of cluster nodes, as well as for
applications that use the NDB API or MGM API.

For more information, see Known Issues When Upgrading or Downgrading NDB Cluster.

• Multithreaded replicas. In NDB 8.0.32 and earlier, multithreaded replicas were not supported for
NDB Cluster Replication. This restriction is lifted in NDB Cluster 8.0.33.

See Section 25.7.3, “Known Issues in NDB Cluster Replication”, for more information.

25.3 NDB Cluster Installation

This section describes the basics for planning, installing, configuring, and running an NDB Cluster.
Whereas the examples in Section 25.4, “Configuration of NDB Cluster” provide more in-depth
information on a variety of clustering options and configuration, the result of following the guidelines
and procedures outlined here should be a usable NDB Cluster which meets the minimum requirements
for availability and safeguarding of data.

For information about upgrading or downgrading an NDB Cluster between release versions, see
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”.

This section covers hardware and software requirements; networking issues; installation of NDB
Cluster; basic configuration issues; starting, stopping, and restarting the cluster; loading of a sample
database; and performing queries.

Assumptions. The following sections make a number of assumptions regarding the cluster's
physical and network configuration. These assumptions are discussed in the next few paragraphs.

Cluster nodes and host computers. The cluster consists of four nodes, each on a separate host
computer, and each with a fixed network address on a typical Ethernet network as shown here:

Table 25.5 Network addresses of nodes in example cluster

Node IP Address

Management node (mgmd) 198.51.100.10

SQL node (mysqld) 198.51.100.20

Data node "A" (ndbd) 198.51.100.30

Data node "B" (ndbd) 198.51.100.40

This setup is also shown in the following diagram:

4196

NDB Cluster Installation

Figure 25.4 NDB Cluster Multi-Computer Setup

Network addressing. In the interest of simplicity (and reliability), this How-To uses only numeric
IP addresses. However, if DNS resolution is available on your network, it is possible to use host names
in lieu of IP addresses in configuring Cluster. Alternatively, you can use the hosts file (typically /etc/
hosts for Linux and other Unix-like operating systems, C:\WINDOWS\system32\drivers\etc
\hosts on Windows, or your operating system's equivalent) for providing a means to do host lookup if
such is available.

As of NDB 8.0.22, NDB supports IPv6 for connections between all NDB Cluster nodes.

A known issue on Linux platforms when running NDB 8.0.22 and later was that the operating system
kernel was required to provide IPv6 support, even when no IPv6 addresses were in use. This issue is
fixed in NDB 8.0.34 and later (Bug #33324817, Bug #33870642).

If you are using an affected version and wish to disable support for IPv6 on the system (because you
do not plan to use any IPv6 addresses for NDB Cluster nodes), do so after booting the system, like
this:

$> sysctl -w net.ipv6.conf.all.disable_ipv6=1
$> sysctl -w net.ipv6.conf.default.disable_ipv6=1

(Alternatively, you can add the corresponding lines to /etc/sysctl.conf.) In NDB Cluster 8.0.34
and later, the preceding is not necessary, and you can simply disable IPv6 support in the Linux kernel if
you do not want or need it.

In NDB 8.0.21 and earlier releases, all network addresses used for connections to or from data and
management nodes must use or be resolvable using IPv4, including addresses used by SQL nodes to
contact the other nodes.

Potential hosts file issues. A common problem when trying to use host names for Cluster nodes
arises because of the way in which some operating systems (including some Linux distributions) set
up the system's own host name in the /etc/hosts during installation. Consider two machines with
the host names ndb1 and ndb2, both in the cluster network domain. Red Hat Linux (including some
derivatives such as CentOS and Fedora) places the following entries in these machines' /etc/hosts
files:

ndb1 /etc/hosts:

4197

Installation of NDB Cluster on Linux

127.0.0.1 ndb1.cluster ndb1 localhost.localdomain localhost

ndb2 /etc/hosts:
127.0.0.1 ndb2.cluster ndb2 localhost.localdomain localhost

SUSE Linux (including OpenSUSE) places these entries in the machines' /etc/hosts files:

ndb1 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb1.cluster ndb1

ndb2 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb2.cluster ndb2

In both instances, ndb1 routes ndb1.cluster to a loopback IP address, but gets a public IP address
from DNS for ndb2.cluster, while ndb2 routes ndb2.cluster to a loopback address and obtains
a public address for ndb1.cluster. The result is that each data node connects to the management
server, but cannot tell when any other data nodes have connected, and so the data nodes appear to
hang while starting.

Caution

You cannot mix localhost and other host names or IP addresses in
config.ini. For these reasons, the solution in such cases (other than to use
IP addresses for all config.ini HostName entries) is to remove the fully
qualified host names from /etc/hosts and use these in config.ini for all
cluster hosts.

Host computer type. Each host computer in our installation scenario is an Intel-based desktop
PC running a supported operating system installed to disk in a standard configuration, and running no
unnecessary services. The core operating system with standard TCP/IP networking capabilities should
be sufficient. Also for the sake of simplicity, we also assume that the file systems on all hosts are set up
identically. In the event that they are not, you should adapt these instructions accordingly.

Network hardware. Standard 100 Mbps or 1 gigabit Ethernet cards are installed on each machine,
along with the proper drivers for the cards, and that all four hosts are connected through a standard-
issue Ethernet networking appliance such as a switch. (All machines should use network cards with
the same throughput. That is, all four machines in the cluster should have 100 Mbps cards or all four
machines should have 1 Gbps cards.) NDB Cluster works in a 100 Mbps network; however, gigabit
Ethernet provides better performance.

Important

NDB Cluster is not intended for use in a network for which throughput is less
than 100 Mbps or which experiences a high degree of latency. For this reason
(among others), attempting to run an NDB Cluster over a wide area network
such as the Internet is not likely to be successful, and is not supported in
production.

Sample data. We use the world database which is available for download from the MySQL
website (see https://dev.mysql.com/doc/index-other.html). We assume that each machine has sufficient
memory for running the operating system, required NDB Cluster processes, and (on the data nodes)
storing the database.

For general information about installing MySQL, see Chapter 2, Installing MySQL. For information
about installation of NDB Cluster on Linux and other Unix-like operating systems, see Section 25.3.1,
“Installation of NDB Cluster on Linux”. For information about installation of NDB Cluster on Windows
operating systems, see Section 25.3.2, “Installing NDB Cluster on Windows”.

For general information about NDB Cluster hardware, software, and networking requirements, see
Section 25.2.3, “NDB Cluster Hardware, Software, and Networking Requirements”.

25.3.1 Installation of NDB Cluster on Linux

4198

https://dev.mysql.com/doc/index-other.html

Installation of NDB Cluster on Linux

This section covers installation methods for NDB Cluster on Linux and other Unix-like operating
systems. While the next few sections refer to a Linux operating system, the instructions and procedures
given there should be easily adaptable to other supported Unix-like platforms. For manual installation
and setup instructions specific to Windows systems, see Section 25.3.2, “Installing NDB Cluster on
Windows”.

Each NDB Cluster host computer must have the correct executable programs installed. A host running
an SQL node must have installed on it a MySQL Server binary (mysqld). Management nodes require
the management server daemon (ndb_mgmd); data nodes require the data node daemon (ndbd or
ndbmtd). It is not necessary to install the MySQL Server binary on management node hosts and
data node hosts. It is recommended that you also install the management client (ndb_mgm) on the
management server host.

Installation of NDB Cluster on Linux can be done using precompiled binaries from Oracle (downloaded
as a .tar.gz archive), with RPM packages (also available from Oracle), or from source code. All three of
these installation methods are described in the section that follow.

Regardless of the method used, it is still necessary following installation of the NDB Cluster binaries
to create configuration files for all cluster nodes, before you can start the cluster. See Section 25.3.3,
“Initial Configuration of NDB Cluster”.

25.3.1.1 Installing an NDB Cluster Binary Release on Linux

This section covers the steps necessary to install the correct executables for each type of Cluster node
from precompiled binaries supplied by Oracle.

For setting up a cluster using precompiled binaries, the first step in the installation process for each
cluster host is to download the binary archive from the NDB Cluster downloads page. (For the
most recent 64-bit NDB 8.0 release, this is mysql-cluster-gpl-8.0.41-linux-glibc2.12-
x86_64.tar.gz.) We assume that you have placed this file in each machine's /var/tmp directory.

If you require a custom binary, see Section 2.8.5, “Installing MySQL Using a Development Source
Tree”.

Note

After completing the installation, do not yet start any of the binaries. We show
you how to do so following the configuration of the nodes (see Section 25.3.3,
“Initial Configuration of NDB Cluster”).

SQL nodes. On each of the machines designated to host SQL nodes, perform the following steps
as the system root user:

1. Check your /etc/passwd and /etc/group files (or use whatever tools are provided by your
operating system for managing users and groups) to see whether there is already a mysql group
and mysql user on the system. Some OS distributions create these as part of the operating system
installation process. If they are not already present, create a new mysql user group, and then add
a mysql user to this group:

$> groupadd mysql
$> useradd -g mysql -s /bin/false mysql

The syntax for useradd and groupadd may differ slightly on different versions of Unix, or they
may have different names such as adduser and addgroup.

2. Change location to the directory containing the downloaded file, unpack the archive, and create a
symbolic link named mysql to the mysql directory.

Note

The actual file and directory names vary according to the NDB Cluster
version number.

4199

https://dev.mysql.com/downloads/cluster/

Installation of NDB Cluster on Linux

$> cd /var/tmp
$> tar -C /usr/local -xzvf mysql-cluster-gpl-8.0.41-linux-glibc2.12-x86_64.tar.gz
$> ln -s /usr/local/mysql-cluster-gpl-8.0.41-linux-glibc2.12-x86_64 /usr/local/mysql

3. Change location to the mysql directory and set up the system databases using mysqld --
initialize as shown here:

$> cd mysql
$> mysqld --initialize

This generates a random password for the MySQL root account. If you do not want the
random password to be generated, you can substitute the --initialize-insecure option
for --initialize. In either case, you should review Section 2.9.1, “Initializing the Data
Directory”, for additional information before performing this step. See also Section 6.4.2,
“mysql_secure_installation — Improve MySQL Installation Security”.

4. Set the necessary permissions for the MySQL server and data directories:

$> chown -R root .
$> chown -R mysql data
$> chgrp -R mysql .

5. Copy the MySQL startup script to the appropriate directory, make it executable, and set it to start
when the operating system is booted up:

$> cp support-files/mysql.server /etc/rc.d/init.d/
$> chmod +x /etc/rc.d/init.d/mysql.server
$> chkconfig --add mysql.server

(The startup scripts directory may vary depending on your operating system and version—for
example, in some Linux distributions, it is /etc/init.d.)

Here we use Red Hat's chkconfig for creating links to the startup scripts; use whatever means is
appropriate for this purpose on your platform, such as update-rc.d on Debian.

Remember that the preceding steps must be repeated on each machine where an SQL node is to
reside.

Data nodes. Installation of the data nodes does not require the mysqld binary. Only the NDB
Cluster data node executable ndbd (single-threaded) or ndbmtd (multithreaded) is required. These
binaries can also be found in the .tar.gz archive. Again, we assume that you have placed this
archive in /var/tmp.

As system root (that is, after using sudo, su root, or your system's equivalent for temporarily
assuming the system administrator account's privileges), perform the following steps to install the data
node binaries on the data node hosts:

1. Change location to the /var/tmp directory, and extract the ndbd and ndbmtd binaries from the
archive into a suitable directory such as /usr/local/bin:

$> cd /var/tmp
$> tar -zxvf mysql-cluster-gpl-8.0.41-linux-glibc2.12-x86_64.tar.gz
$> cd mysql-cluster-gpl-8.0.41-linux-glibc2.12-x86_64
$> cp bin/ndbd /usr/local/bin/ndbd
$> cp bin/ndbmtd /usr/local/bin/ndbmtd

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin

4200

Installation of NDB Cluster on Linux

$> chmod +x ndb*

The preceding steps should be repeated on each data node host.

Although only one of the data node executables is required to run an NDB Cluster data node, we have
shown you how to install both ndbd and ndbmtd in the preceding instructions. We recommend that
you do this when installing or upgrading NDB Cluster, even if you plan to use only one of them, since
this saves time and trouble in the event that you later decide to change from one to the other.

Note

The data directory on each machine hosting a data node is /usr/local/
mysql/data. This piece of information is essential when configuring the
management node. (See Section 25.3.3, “Initial Configuration of NDB Cluster”.)

Management nodes. Installation of the management node does not require the mysqld binary.
Only the NDB Cluster management server (ndb_mgmd) is required; you most likely want to install the
management client (ndb_mgm) as well. Both of these binaries also be found in the .tar.gz archive.
Again, we assume that you have placed this archive in /var/tmp.

As system root, perform the following steps to install ndb_mgmd and ndb_mgm on the management
node host:

1. Change location to the /var/tmp directory, and extract the ndb_mgm and ndb_mgmd from the
archive into a suitable directory such as /usr/local/bin:

$> cd /var/tmp
$> tar -zxvf mysql-cluster-gpl-8.0.41-linux-glibc2.12-x86_64.tar.gz
$> cd mysql-cluster-gpl-8.0.41-linux-glibc2.12-x86_64
$> cp bin/ndb_mgm* /usr/local/bin

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chmod +x ndb_mgm*

In Section 25.3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes
in our example NDB Cluster.

25.3.1.2 Installing NDB Cluster from RPM

This section covers the steps necessary to install the correct executables for each type of NDB Cluster
8.0 node using RPM packages supplied by Oracle.

As an alternative to the method described in this section, Oracle provides MySQL Repositories for NDB
Cluster that are compatible with many common Linux distributions. Two repositories, listed here, are
available for RPM-based distributions:

• For distributions using yum or dnf, you can use the MySQL Yum Repository for NDB Cluster. See
Installing MySQL NDB Cluster Using the Yum Repository, for instructions and additional information.

• For SLES, you can use the MySQL SLES Repository for NDB Cluster. See Installing MySQL NDB
Cluster Using the SLES Repository, for instructions and additional information.

RPMs are available for both 32-bit and 64-bit Linux platforms. The filenames for these RPMs use the
following pattern:

mysql-cluster-community-data-node-8.0.41-1.el7.x86_64.rpm

4201

https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-fresh-cluster-install
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/#repo-qg-sles-fresh-cluster-install
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/#repo-qg-sles-fresh-cluster-install

Installation of NDB Cluster on Linux

mysql-cluster-license-component-ver-rev.distro.arch.rpm

 license:= {commercial | community}

 component: {management-server | data-node | server | client | other—see text}

 ver: major.minor.release

 rev: major[.minor]

 distro: {el6 | el7 | sles12}

 arch: {i686 | x86_64}

license indicates whether the RPM is part of a Commercial or Community release of NDB Cluster. In
the remainder of this section, we assume for the examples that you are installing a Community release.

Possible values for component, with descriptions, can be found in the following table:

Table 25.6 Components of the NDB Cluster RPM distribution

Component Description

auto-installer (DEPRECATED) NDB Cluster Auto Installer program; see
Section 25.3.8, “The NDB Cluster Auto-Installer
(NO LONGER SUPPORTED)”, for usage

client MySQL and NDB client programs; includes mysql
client, ndb_mgm client, and other client tools

common Character set and error message information
needed by the MySQL server

data-node ndbd and ndbmtd data node binaries

devel Headers and library files needed for MySQL client
development

embedded Embedded MySQL server

embedded-compat Backwards-compatible embedded MySQL server

embedded-devel Header and library files for developing applications
for embedded MySQL

java JAR files needed for support of ClusterJ
applications

libs MySQL client libraries

libs-compat Backwards-compatible MySQL client libraries

management-server The NDB Cluster management server
(ndb_mgmd)

memcached Files needed to support ndbmemcache

minimal-debuginfo Debug information for package server-minimal;
useful when developing applications that use this
package or when debugging this package

ndbclient NDB client library for running NDB API and MGM
API applications (libndbclient)

ndbclient-devel Header and other files needed for developing NDB
API and MGM API applications

nodejs Files needed to set up Node.JS support for NDB
Cluster

server The MySQL server (mysqld) with NDB storage
engine support included, and associated MySQL
server programs

4202

Installation of NDB Cluster on Linux

Component Description

server-minimal Minimal installation of the MySQL server for NDB
and related tools

test mysqltest, other MySQL test programs, and
support files

A single bundle (.tar file) of all NDB Cluster RPMs for a given platform and architecture is also
available. The name of this file follows the pattern shown here:

mysql-cluster-license-ver-rev.distro.arch.rpm-bundle.tar

You can extract the individual RPM files from this file using tar or your preferred tool for extracting
archives.

The components required to install the three major types of NDB Cluster nodes are given in the
following list:

• Management node: management-server

• Data node: data-node

• SQL node: server and common

In addition, the client RPM should be installed to provide the ndb_mgm management client on
at least one management node. You may also wish to install it on SQL nodes, to have mysql and
other MySQL client programs available on these. We discuss installation of nodes by type later in this
section.

ver represents the three-part NDB storage engine version number in 8.0.x format, shown as 8.0.41 in
the examples. rev provides the RPM revision number in major.minor format. In the examples shown
in this section, we use 1.1 for this value.

The distro (Linux distribution) is one of rhel5 (Oracle Linux 5, Red Hat Enterprise Linux 4 and 5),
el6 (Oracle Linux 6, Red Hat Enterprise Linux 6), el7 (Oracle Linux 7, Red Hat Enterprise Linux 7), or
sles12 (SUSE Enterprise Linux 12). For the examples in this section, we assume that the host runs
Oracle Linux 7, Red Hat Enterprise Linux 7, or the equivalent (el7).

arch is i686 for 32-bit RPMs and x86_64 for 64-bit versions. In the examples shown here, we
assume a 64-bit platform.

The NDB Cluster version number in the RPM file names (shown here as 8.0.41) can vary according
to the version which you are actually using. It is very important that all of the Cluster RPMs to be
installed have the same version number. The architecture should also be appropriate to the machine
on which the RPM is to be installed; in particular, you should keep in mind that 64-bit RPMs (x86_64)
cannot be used with 32-bit operating systems (use i686 for the latter).

Data nodes. On a computer that is to host an NDB Cluster data node it is necessary to install only
the data-node RPM. To do so, copy this RPM to the data node host, and run the following command
as the system root user, replacing the name shown for the RPM as necessary to match that of the
RPM downloaded from the MySQL website:

$> rpm -Uhv mysql-cluster-community-data-node-8.0.41-1.el7.x86_64.rpm

This installs the ndbd and ndbmtd data node binaries in /usr/sbin. Either of these can be used to
run a data node process on this host.

SQL nodes. Copy the server and common RPMs to each machine to be used for hosting an NDB
Cluster SQL node (server requires common). Install the server RPM by executing the following
command as the system root user, replacing the name shown for the RPM as necessary to match the
name of the RPM downloaded from the MySQL website:

$> rpm -Uhv mysql-cluster-community-server-8.0.41-1.el7.x86_64.rpm

4203

Installation of NDB Cluster on Linux

This installs the MySQL server binary (mysqld), with NDB storage engine support, in the /usr/sbin
directory. It also installs all needed MySQL Server support files and useful MySQL server programs,
including the mysql.server and mysqld_safe startup scripts (in /usr/share/mysql and /
usr/bin, respectively). The RPM installer should take care of general configuration issues (such as
creating the mysql user and group, if needed) automatically.

Important

You must use the versions of these RPMs released for NDB Cluster; those
released for the standard MySQL server do not provide support for the NDB
storage engine.

To administer the SQL node (MySQL server), you should also install the client RPM, as shown here:

$> rpm -Uhv mysql-cluster-community-client-8.0.41-1.el7.x86_64.rpm

This installs the mysql client and other MySQL client programs, such as mysqladmin and
mysqldump, to /usr/bin.

Management nodes. To install the NDB Cluster management server, it is necessary only to use
the management-server RPM. Copy this RPM to the computer intended to host the management
node, and then install it by running the following command as the system root user (replace the name
shown for the RPM as necessary to match that of the management-server RPM downloaded from
the MySQL website):

$> rpm -Uhv mysql-cluster-community-management-server-8.0.41-1.el7.x86_64.rpm

This RPM installs the management server binary ndb_mgmd in the /usr/sbin directory. While this
is the only program actually required for running a management node, it is also a good idea to have
the ndb_mgm NDB Cluster management client available as well. You can obtain this program, as well
as other NDB client programs such as ndb_desc and ndb_config, by installing the client RPM as
described previously.

See Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”, for general
information about installing MySQL using RPMs supplied by Oracle.

After installing from RPM, you still need to configure the cluster; see Section 25.3.3, “Initial
Configuration of NDB Cluster”, for the relevant information.

It is very important that all of the Cluster RPMs to be installed have the same version number. The
architecture designation should also be appropriate to the machine on which the RPM is to be
installed; in particular, you should keep in mind that 64-bit RPMs cannot be used with 32-bit operating
systems.

Data nodes. On a computer that is to host a cluster data node it is necessary to install only the
server RPM. To do so, copy this RPM to the data node host, and run the following command as
the system root user, replacing the name shown for the RPM as necessary to match that of the RPM
downloaded from the MySQL website:

$> rpm -Uhv MySQL-Cluster-server-gpl-8.0.41-1.sles11.i386.rpm

Although this installs all NDB Cluster binaries, only the program ndbd or ndbmtd (both in /usr/sbin)
is actually needed to run an NDB Cluster data node.

SQL nodes. On each machine to be used for hosting a cluster SQL node, install the server RPM
by executing the following command as the system root user, replacing the name shown for the RPM
as necessary to match the name of the RPM downloaded from the MySQL website:

$> rpm -Uhv MySQL-Cluster-server-gpl-8.0.41-1.sles11.i386.rpm

This installs the MySQL server binary (mysqld) with NDB storage engine support in the /usr/sbin
directory, as well as all needed MySQL Server support files. It also installs the mysql.server and
mysqld_safe startup scripts (in /usr/share/mysql and /usr/bin, respectively). The RPM

4204

Installation of NDB Cluster on Linux

installer should take care of general configuration issues (such as creating the mysql user and group,
if needed) automatically.

To administer the SQL node (MySQL server), you should also install the client RPM, as shown here:

$> rpm -Uhv MySQL-Cluster-client-gpl-8.0.41-1.sles11.i386.rpm

This installs the mysql client program.

Management nodes. To install the NDB Cluster management server, it is necessary only to use the
server RPM. Copy this RPM to the computer intended to host the management node, and then install
it by running the following command as the system root user (replace the name shown for the RPM as
necessary to match that of the server RPM downloaded from the MySQL website):

$> rpm -Uhv MySQL-Cluster-server-gpl-8.0.41-1.sles11.i386.rpm

Although this RPM installs many other files, only the management server binary ndb_mgmd (in the
/usr/sbin directory) is actually required for running a management node. The server RPM also
installs ndb_mgm, the NDB management client.

See Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”, for general
information about installing MySQL using RPMs supplied by Oracle. See Section 25.3.3, “Initial
Configuration of NDB Cluster”, for information about required post-installation configuration.

25.3.1.3 Installing NDB Cluster Using .deb Files

The section provides information about installing NDB Cluster on Debian and related Linux distributions
such Ubuntu using the .deb files supplied by Oracle for this purpose.

Oracle also provides an NDB Cluster APT repository for Debian and other distributions. See Installing
MySQL NDB Cluster Using the APT Repository, for instructions and additional information.

Oracle provides .deb installer files for NDB Cluster for 32-bit and 64-bit platforms. For a Debian-
based system, only a single installer file is necessary. This file is named using the pattern shown here,
according to the applicable NDB Cluster version, Debian version, and architecture:

mysql-cluster-gpl-ndbver-debiandebianver-arch.deb

Here, ndbver is the 3-part NDB engine version number, debianver is the major version of Debian (8
or 9), and arch is one of i686 or x86_64. In the examples that follow, we assume you wish to install
NDB 8.0.41 on a 64-bit Debian 9 system; in this case, the installer file is named mysql-cluster-
gpl-8.0.41-debian9-x86_64.deb-bundle.tar.

Once you have downloaded the appropriate .deb file, you can untar it, and then install it from the
command line using dpkg, like this:

$> dpkg -i mysql-cluster-gpl-8.0.41-debian9-i686.deb

You can also remove it using dpkg as shown here:

$> dpkg -r mysql

The installer file should also be compatible with most graphical package managers that work with .deb
files, such as GDebi for the Gnome desktop.

The .deb file installs NDB Cluster under /opt/mysql/server-version/, where version is the
2-part release series version for the included MySQL server. For NDB 8.0, this is always 8.0. The
directory layout is the same as that for the generic Linux binary distribution (see Table 2.3, “MySQL
Installation Layout for Generic Unix/Linux Binary Package”), with the exception that startup scripts and
configuration files are found in support-files instead of share. All NDB Cluster executables, such
as ndb_mgm, ndbd, and ndb_mgmd, are placed in the bin directory.

25.3.1.4 Building NDB Cluster from Source on Linux

4205

https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#repo-qg-apt-cluster-install
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#repo-qg-apt-cluster-install

Installation of NDB Cluster on Linux

This section provides information about compiling NDB Cluster on Linux and other Unix-like platforms.
Building NDB Cluster from source is similar to building the standard MySQL Server, although it differs
in a few key respects discussed here. For general information about building MySQL from source, see
Section 2.8, “Installing MySQL from Source”. For information about compiling NDB Cluster on Windows
platforms, see Section 25.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”.

Building MySQL NDB Cluster 8.0 requires using the MySQL Server 8.0 sources. These are available
from the MySQL downloads page at https://dev.mysql.com/downloads/. The archived source file should
have a name similar to mysql-8.0.41.tar.gz. You can also obtain the sources from GitHub at
https://github.com/mysql/mysql-server.

Note

In previous versions, building of NDB Cluster from standard MySQL Server
sources was not supported. In MySQL 8.0 and NDB Cluster 8.0, this is no
longer the case—both products are now built from the same sources.

The WITH_NDB option for CMake causes the binaries for the management nodes, data nodes, and
other NDB Cluster programs to be built; it also causes mysqld to be compiled with NDB storage engine
support. This option (or, prior to NDB 8.0.31, WITH_NDBCLUSTER) is required when building NDB
Cluster.

Important

The WITH_NDB_JAVA option is enabled by default. This means that, by default,
if CMake cannot find the location of Java on your system, the configuration
process fails; if you do not wish to enable Java and ClusterJ support, you must
indicate this explicitly by configuring the build using -DWITH_NDB_JAVA=OFF.
Use WITH_CLASSPATH to provide the Java classpath if needed.

For more information about CMake options specific to building NDB Cluster, see CMake Options for
Compiling NDB Cluster.

After you have run make && make install (or your system's equivalent), the result is similar to
what is obtained by unpacking a precompiled binary to the same location.

Management nodes. When building from source and running the default make install, the
management server and management client binaries (ndb_mgmd and ndb_mgm) can be found in /
usr/local/mysql/bin. Only ndb_mgmd is required to be present on a management node host;
however, it is also a good idea to have ndb_mgm present on the same host machine. Neither of these
executables requires a specific location on the host machine's file system.

Data nodes. The only executable required on a data node host is the data node binary ndbd or
ndbmtd. (mysqld, for example, does not have to be present on the host machine.) By default, when
building from source, this file is placed in the directory /usr/local/mysql/bin. For installing on
multiple data node hosts, only ndbd or ndbmtd need be copied to the other host machine or machines.
(This assumes that all data node hosts use the same architecture and operating system; otherwise you
may need to compile separately for each different platform.) The data node binary need not be in any
particular location on the host's file system, as long as the location is known.

When compiling NDB Cluster from source, no special options are required for building multithreaded
data node binaries. Configuring the build with NDB storage engine support causes ndbmtd to be built
automatically; make install places the ndbmtd binary in the installation bin directory along with
mysqld, ndbd, and ndb_mgm.

SQL nodes. If you compile MySQL with clustering support, and perform the default installation
(using make install as the system root user), mysqld is placed in /usr/local/mysql/bin.
Follow the steps given in Section 2.8, “Installing MySQL from Source” to make mysqld ready for use.
If you want to run multiple SQL nodes, you can use a copy of the same mysqld executable and its
associated support files on several machines. The easiest way to do this is to copy the entire /usr/
local/mysql directory and all directories and files contained within it to the other SQL node host or

4206

https://dev.mysql.com/downloads/
https://github.com/mysql/mysql-server

Installation of NDB Cluster on Linux

hosts, then repeat the steps from Section 2.8, “Installing MySQL from Source” on each machine. If you
configure the build with a nondefault PREFIX option, you must adjust the directory accordingly.

In Section 25.3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes
in our example NDB Cluster.

25.3.1.5 Deploying NDB Cluster with Docker Containers

Downloading a MySQL NDB Cluster Docker Image

Downloading the Docker image in a separate step is not strictly necessary; however, performing this
step before you create your Docker containers ensures your local image is up to date. To download
the MySQL NDB Cluster Community Edition image from the Oracle Container Registry (OCR), run this
command:

docker pull container-registry.oracle.com/mysql/community-cluster:tag

The tag is the label for the image version you want to pull (for example, 7.5, 7.6, 8.0, or latest).
If :tag is omitted, the latest label is used, and the image for the latest GA version of MySQL NDB
Cluster is downloaded.

You can list downloaded Docker images with this command:

$> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
container-registry.oracle.com/mysql/community-cluster 8.0 d1b28e457ac5 5 weeks ago 636MB

To download the MySQL Commercial Cluster image from the OCR, you need to first accept the license
agreement . Follow these steps:

• Visit the OCR at https://container-registry.oracle.com/ and choose MySQL.

• Under the list of MySQL repositories, choose commercial-cluster.

• If you have not signed in to the OCR yet, click the Sign in button on the right of the page, and then
enter your Oracle account credentials when prompted to.

• Follow the instructions on the right of the page to accept the license agreement.

Download the Docker image for MySQL Commercial Cluster from the OCR with this command:

docker pull container-registry.oracle.com/mysql/commercial-cluster:tag

Starting a MySQL Cluster Using Default Configuration

First, create an internal Docker network named cluster for the containers to communicate with each
other:

docker network create cluster --subnet=192.168.0.0/16

Then, start the management node:

docker run -d --net=cluster --name=management1 --ip=192.168.0.2 container-registry.oracle.com/mysql/community-cluster ndb_mgmd

Next, start the two data nodes

docker run -d --net=cluster --name=ndb1 --ip=192.168.0.3 container-registry.oracle.com/mysql/community-cluster ndbd

docker run -d --net=cluster --name=ndb2 --ip=192.168.0.4 container-registry.oracle.com/mysql/community-cluster ndbd

Finally, start the MySQL server node:

docker run -d --net=cluster --name=mysql1 --ip=192.168.0.10 -e MYSQL_RANDOM_ROOT_PASSWORD=true container-registry.oracle.com/mysql/community-cluster mysqld

The server is then initialized with a randomized password, which needs to be changed. Fetch the
password from the log:

docker logs mysql1 2>&1 | grep PASSWORD

4207

https://container-registry.oracle.com/
https://container-registry.oracle.com/

Installing NDB Cluster on Windows

If no password is returned by the command, the server has not finished initializing yet. Wait a while and
try again. Once you get the password, change it by logging into the server with the mysql client:

docker exec -it mysql1 mysql -uroot -p

Once you are on the server, change the root password with the following statement:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'password';

Finally, start a container with an interactive management client ndb_mgm to monitor the cluster:

$> docker run -it --net=cluster container-registry.oracle.com/mysql/community-cluster ndb_mgm
[Entrypoint] MySQL Docker Image 8.0.41-1.2.10-cluster
[Entrypoint] Starting ndb_mgm
-- NDB Cluster -- Management Client --

Run the SHOW command to print the cluster's status. You should see the following:

ndb_mgm> SHOW
Connected to Management Server at: 192.168.0.2:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @192.168.0.3 (mysql-8.0.41-ndb-8.0.41, Nodegroup: 0, *)
id=3 @192.168.0.4 (mysql-8.0.41-ndb-8.0.41, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @192.168.0.2 (mysql-8.0.41-ndb-8.0.41)

[mysqld(API)] 1 node(s)
id=4 @192.168.0.10 (mysql-8.0.41-ndb-8.0.41)

Customizing MySQL Cluster

The default MySQL NDB Cluster image includes two configuration files, which are also available in the
GitHub repository for MySQL NDB Cluster

• /etc/my.cnf

• /etc/mysql-cluster.cnf

To change the cluster (for instance, adding more nodes or changing the network setup), these files
must be updated. For more information, see Section 25.4.3, “NDB Cluster Configuration Files”. To
use custom configuration files when starting the container, use the -v flag to load external files. For
example (enter the whole command on the same line):

$> docker run -d --net=cluster --name=management1 \
 --ip=192.168.0.2 -v /etc/my.cnf:/etc/my.cnf -v \
 /etc/mysql-cluster.cnf:/etc/mysql-cluster.cnf \
 container-registry.oracle.com/mysql/community-cluster ndb_mgmd

25.3.2 Installing NDB Cluster on Windows

This section describes installation procedures for NDB Cluster on Windows hosts. NDB Cluster
8.0 binaries for Windows can be obtained from https://dev.mysql.com/downloads/cluster/. For
information about installing NDB Cluster on Windows from a binary release provided by Oracle, see
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”.

It is also possible to compile and install NDB Cluster from source on Windows using Microsoft Visual
Studio. For more information, see Section 25.3.2.2, “Compiling and Installing NDB Cluster from Source
on Windows”.

25.3.2.1 Installing NDB Cluster on Windows from a Binary Release

This section describes a basic installation of NDB Cluster on Windows using a binary “no-install” NDB
Cluster release provided by Oracle, using the same 4-node setup outlined in the beginning of this
section (see Section 25.3, “NDB Cluster Installation”), as shown in the following table:

4208

https://github.com/mysql/mysql-docker/tree/mysql-cluster
https://dev.mysql.com/downloads/cluster/

Installing NDB Cluster on Windows

Table 25.7 Network addresses of nodes in example cluster

Node IP Address

Management node (mgmd) 198.51.100.10

SQL node (mysqld) 198.51.100.20

Data node "A" (ndbd) 198.51.100.30

Data node "B" (ndbd) 198.51.100.40

As on other platforms, the NDB Cluster host computer running an SQL node must have installed on
it a MySQL Server binary (mysqld.exe). You should also have the MySQL client (mysql.exe) on
this host. For management nodes and data nodes, it is not necessary to install the MySQL Server
binary; however, each management node requires the management server daemon (ndb_mgmd.exe);
each data node requires the data node daemon (ndbd.exe or ndbmtd.exe). For this example, we
refer to ndbd.exe as the data node executable, but you can install ndbmtd.exe, the multithreaded
version of this program, instead, in exactly the same way. You should also install the management
client (ndb_mgm.exe) on the management server host. This section covers the steps necessary to
install the correct Windows binaries for each type of NDB Cluster node.

Note

As with other Windows programs, NDB Cluster executables are named with
the .exe file extension. However, it is not necessary to include the .exe
extension when invoking these programs from the command line. Therefore,
we often simply refer to these programs in this documentation as mysqld,
mysql, ndb_mgmd, and so on. You should understand that, whether we refer
(for example) to mysqld or mysqld.exe, either name means the same thing
(the MySQL Server program).

For setting up an NDB Cluster using Oracles's no-install binaries, the first step in the installation
process is to download the latest NDB Cluster Windows ZIP binary archive from https://dev.mysql.com/
downloads/cluster/. This archive has a filename of the mysql-cluster-gpl-ver-winarch.zip,
where ver is the NDB storage engine version (such as 8.0.41), and arch is the architecture (32
for 32-bit binaries, and 64 for 64-bit binaries). For example, the NDB Cluster 8.0.41 archive for 64-bit
Windows systems is named mysql-cluster-gpl-8.0.41-win64.zip.

You can run 32-bit NDB Cluster binaries on both 32-bit and 64-bit versions of Windows; however, 64-
bit NDB Cluster binaries can be used only on 64-bit versions of Windows. If you are using a 32-bit
version of Windows on a computer that has a 64-bit CPU, then you must use the 32-bit NDB Cluster
binaries.

To minimize the number of files that need to be downloaded from the Internet or copied between
machines, we start with the computer where you intend to run the SQL node.

SQL node. We assume that you have placed a copy of the archive in the directory C:\Documents
and Settings\username\My Documents\Downloads on the computer having the IP address
198.51.100.20, where username is the name of the current user. (You can obtain this name using
ECHO %USERNAME% on the command line.) To install and run NDB Cluster executables as Windows
services, this user should be a member of the Administrators group.

Extract all the files from the archive. The Extraction Wizard integrated with Windows Explorer is
adequate for this task. (If you use a different archive program, be sure that it extracts all files and
directories from the archive, and that it preserves the archive's directory structure.) When you are
asked for a destination directory, enter C:\, which causes the Extraction Wizard to extract the archive
to the directory C:\mysql-cluster-gpl-ver-winarch. Rename this directory to C:\mysql.

It is possible to install the NDB Cluster binaries to directories other than C:\mysql\bin; however, if
you do so, you must modify the paths shown in this procedure accordingly. In particular, if the MySQL
Server (SQL node) binary is installed to a location other than C:\mysql or C:\Program Files
\MySQL\MySQL Server 8.0, or if the SQL node's data directory is in a location other than C:

4209

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/

Installing NDB Cluster on Windows

\mysql\data or C:\Program Files\MySQL\MySQL Server 8.0\data, extra configuration
options must be used on the command line or added to the my.ini or my.cnf file when starting the
SQL node. For more information about configuring a MySQL Server to run in a nonstandard location,
see Section 2.3.4, “Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive”.

For a MySQL Server with NDB Cluster support to run as part of an NDB Cluster, it must be started with
the options --ndbcluster and --ndb-connectstring. While you can specify these options on the
command line, it is usually more convenient to place them in an option file. To do this, create a new
text file in Notepad or another text editor. Enter the following configuration information into this file:

[mysqld]
Options for mysqld process:
ndbcluster # run NDB storage engine
ndb-connectstring=198.51.100.10 # location of management server

You can add other options used by this MySQL Server if desired (see Section 2.3.4.2, “Creating an
Option File”), but the file must contain the options shown, at a minimum. Save this file as C:\mysql
\my.ini. This completes the installation and setup for the SQL node.

Data nodes. An NDB Cluster data node on a Windows host requires only a single executable, one
of either ndbd.exe or ndbmtd.exe. For this example, we assume that you are using ndbd.exe,
but the same instructions apply when using ndbmtd.exe. On each computer where you wish to run
a data node (the computers having the IP addresses 198.51.100.30 and 198.51.100.40), create the
directories C:\mysql, C:\mysql\bin, and C:\mysql\cluster-data; then, on the computer
where you downloaded and extracted the no-install archive, locate ndbd.exe in the C:\mysql
\bin directory. Copy this file to the C:\mysql\bin directory on each of the two data node hosts.

To function as part of an NDB Cluster, each data node must be given the address or hostname of
the management server. You can supply this information on the command line using the --ndb-
connectstring or -c option when starting each data node process. However, it is usually preferable
to put this information in an option file. To do this, create a new text file in Notepad or another text
editor and enter the following text:

[mysql_cluster]
Options for data node process:
ndb-connectstring=198.51.100.10 # location of management server

Save this file as C:\mysql\my.ini on the data node host. Create another text file containing the
same information and save it on as C:mysql\my.ini on the other data node host, or copy the my.ini
file from the first data node host to the second one, making sure to place the copy in the second data
node's C:\mysql directory. Both data node hosts are now ready to be used in the NDB Cluster, which
leaves only the management node to be installed and configured.

Management node. The only executable program required on a computer used for hosting an
NDB Cluster management node is the management server program ndb_mgmd.exe. However, in
order to administer the NDB Cluster once it has been started, you should also install the NDB Cluster
management client program ndb_mgm.exe on the same machine as the management server. Locate
these two programs on the machine where you downloaded and extracted the no-install archive;
this should be the directory C:\mysql\bin on the SQL node host. Create the directory C:\mysql
\bin on the computer having the IP address 198.51.100.10, then copy both programs to this directory.

You should now create two configuration files for use by ndb_mgmd.exe:

1. A local configuration file to supply configuration data specific to the management node itself.
Typically, this file needs only to supply the location of the NDB Cluster global configuration file (see
item 2).

To create this file, start a new text file in Notepad or another text editor, and enter the following
information:

[mysql_cluster]
Options for management node process

4210

Installing NDB Cluster on Windows

config-file=C:/mysql/bin/config.ini

Save this file as the text file C:\mysql\bin\my.ini.

2. A global configuration file from which the management node can obtain configuration information
governing the NDB Cluster as a whole. At a minimum, this file must contain a section for each node
in the NDB Cluster, and the IP addresses or hostnames for the management node and all data
nodes (HostName configuration parameter). It is also advisable to include the following additional
information:

• The IP address or hostname of any SQL nodes

• The data memory and index memory allocated to each data node (DataMemory and
IndexMemory configuration parameters)

• The number of fragment replicas, using the NoOfReplicas configuration parameter (see
Section 25.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”)

• The directory where each data node stores it data and log file, and the directory where the
management node keeps its log files (in both cases, the DataDir configuration parameter)

Create a new text file using a text editor such as Notepad, and input the following information:

[ndbd default]
Options affecting ndbd processes on all data nodes:
NoOfReplicas=2 # Number of fragment replicas
DataDir=C:/mysql/cluster-data # Directory for each data node's data files
 # Forward slashes used in directory path,
 # rather than backslashes. This is correct;
 # see Important note in text
DataMemory=80M # Memory allocated to data storage
IndexMemory=18M # Memory allocated to index storage
 # For DataMemory and IndexMemory, we have used the
 # default values. Since the "world" database takes up
 # only about 500KB, this should be more than enough for
 # this example Cluster setup.

[ndb_mgmd]
Management process options:
HostName=198.51.100.10 # Hostname or IP address of management node
DataDir=C:/mysql/bin/cluster-logs # Directory for management node log files

[ndbd]
Options for data node "A":
 # (one [ndbd] section per data node)
HostName=198.51.100.30 # Hostname or IP address

[ndbd]
Options for data node "B":
HostName=198.51.100.40 # Hostname or IP address

[mysqld]
SQL node options:
HostName=198.51.100.20 # Hostname or IP address

Save this file as the text file C:\mysql\bin\config.ini.

Important

A single backslash character (\) cannot be used when specifying directory
paths in program options or configuration files used by NDB Cluster on
Windows. Instead, you must either escape each backslash character with a
second backslash (\\), or replace the backslash with a forward slash character
(/). For example, the following line from the [ndb_mgmd] section of an NDB
Cluster config.ini file does not work:

DataDir=C:\mysql\bin\cluster-logs

4211

Installing NDB Cluster on Windows

Instead, you may use either of the following:

DataDir=C:\\mysql\\bin\\cluster-logs # Escaped backslashes

DataDir=C:/mysql/bin/cluster-logs # Forward slashes

For reasons of brevity and legibility, we recommend that you use forward
slashes in directory paths used in NDB Cluster program options and
configuration files on Windows.

25.3.2.2 Compiling and Installing NDB Cluster from Source on Windows

Oracle provides precompiled NDB Cluster binaries for Windows which should be adequate for most
users. However, if you wish, it is also possible to compile NDB Cluster for Windows from source code.
The procedure for doing this is almost identical to the procedure used to compile the standard MySQL
Server binaries for Windows, and uses the same tools. However, there are two major differences:

• Building MySQL NDB Cluster 8.0 requires using the MySQL Server 8.0 sources. These are available
from the MySQL downloads page at https://dev.mysql.com/downloads/. The archived source file
should have a name similar to mysql-8.0.41.tar.gz. You can also obtain the sources from
GitHub at https://github.com/mysql/mysql-server.

• You must configure the build using the WITH_NDB option in addition to any other build options you
wish to use with CMake. WITH_NDBCLUSTER is also supported for backwards compatibility, but is
deprecated as of NDB 8.0.31.

Important

The WITH_NDB_JAVA option is enabled by default. This means that, by default,
if CMake cannot find the location of Java on your system, the configuration
process fails; if you do not wish to enable Java and ClusterJ support, you must
indicate this explicitly by configuring the build using -DWITH_NDB_JAVA=OFF.
(Bug #12379735) Use WITH_CLASSPATH to provide the Java classpath if
needed.

For more information about CMake options specific to building NDB Cluster, see CMake Options for
Compiling NDB Cluster.

Once the build process is complete, you can create a Zip archive containing the compiled binaries;
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution” provides the commands
needed to perform this task on Windows systems. The NDB Cluster binaries can be found in the bin
directory of the resulting archive, which is equivalent to the no-install archive, and which can be
installed and configured in the same manner. For more information, see Section 25.3.2.1, “Installing
NDB Cluster on Windows from a Binary Release”.

25.3.2.3 Initial Startup of NDB Cluster on Windows

Once the NDB Cluster executables and needed configuration files are in place, performing an initial
start of the cluster is simply a matter of starting the NDB Cluster executables for all nodes in the
cluster. Each cluster node process must be started separately, and on the host computer where it
resides. The management node should be started first, followed by the data nodes, and then finally by
any SQL nodes.

1. On the management node host, issue the following command from the command line to start the
management node process. The output should appear similar to what is shown here:

C:\mysql\bin> ndb_mgmd
2010-06-23 07:53:34 [MgmtSrvr] INFO -- NDB Cluster Management Server. mysql-8.0.42-ndb-8.0.42
2010-06-23 07:53:34 [MgmtSrvr] INFO -- Reading cluster configuration from 'config.ini'

The management node process continues to print logging output to the console. This is normal,
because the management node is not running as a Windows service. (If you have used NDB

4212

https://dev.mysql.com/downloads/
https://github.com/mysql/mysql-server

Installing NDB Cluster on Windows

Cluster on a Unix-like platform such as Linux, you may notice that the management node's default
behavior in this regard on Windows is effectively the opposite of its behavior on Unix systems,
where it runs by default as a Unix daemon process. This behavior is also true of NDB Cluster
data node processes running on Windows.) For this reason, do not close the window in which
ndb_mgmd.exe is running; doing so kills the management node process. (See Section 25.3.2.4,
“Installing NDB Cluster Processes as Windows Services”, where we show how to install and run
NDB Cluster processes as Windows services.)

The required -f option tells the management node where to find the global configuration file
(config.ini). The long form of this option is --config-file.

Important

An NDB Cluster management node caches the configuration data that
it reads from config.ini; once it has created a configuration cache, it
ignores the config.ini file on subsequent starts unless forced to do
otherwise. This means that, if the management node fails to start due
to an error in this file, you must make the management node re-read
config.ini after you have corrected any errors in it. You can do this by
starting ndb_mgmd.exe with the --reload or --initial option on the
command line. Either of these options works to refresh the configuration
cache.

It is not necessary or advisable to use either of these options in the
management node's my.ini file.

2. On each of the data node hosts, run the command shown here to start the data node processes:

C:\mysql\bin> ndbd
2010-06-23 07:53:46 [ndbd] INFO -- Configuration fetched from 'localhost:1186', generation: 1

In each case, the first line of output from the data node process should resemble what is shown
in the preceding example, and is followed by additional lines of logging output. As with the
management node process, this is normal, because the data node is not running as a Windows
service. For this reason, do not close the console window in which the data node process is
running; doing so kills ndbd.exe. (For more information, see Section 25.3.2.4, “Installing NDB
Cluster Processes as Windows Services”.)

3. Do not start the SQL node yet; it cannot connect to the cluster until the data nodes have finished
starting, which may take some time. Instead, in a new console window on the management node
host, start the NDB Cluster management client ndb_mgm.exe, which should be in C:\mysql\bin
on the management node host. (Do not try to re-use the console window where ndb_mgmd.exe is
running by typing CTRL+C, as this kills the management node.) The resulting output should look
like this:

C:\mysql\bin> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm>

When the prompt ndb_mgm> appears, this indicates that the management client is ready to receive
NDB Cluster management commands. You can observe the status of the data nodes as they start
by entering ALL STATUS at the management client prompt. This command causes a running report
of the data nodes's startup sequence, which should look something like this:

ndb_mgm> ALL STATUS
Connected to Management Server at: localhost:1186
Node 2: starting (Last completed phase 3) (mysql-8.0.42-ndb-8.0.42)
Node 3: starting (Last completed phase 3) (mysql-8.0.42-ndb-8.0.42)

Node 2: starting (Last completed phase 4) (mysql-8.0.42-ndb-8.0.42)
Node 3: starting (Last completed phase 4) (mysql-8.0.42-ndb-8.0.42)

Node 2: Started (version 8.0.42)

4213

Installing NDB Cluster on Windows

Node 3: Started (version 8.0.42)

ndb_mgm>

Note

Commands issued in the management client are not case-sensitive; we
use uppercase as the canonical form of these commands, but you are not
required to observe this convention when inputting them into the ndb_mgm
client. For more information, see Section 25.6.1, “Commands in the NDB
Cluster Management Client”.

The output produced by ALL STATUS is likely to vary from what is shown here, according to the
speed at which the data nodes are able to start, the release version number of the NDB Cluster
software you are using, and other factors. What is significant is that, when you see that both data
nodes have started, you are ready to start the SQL node.

You can leave ndb_mgm.exe running; it has no negative impact on the performance of the NDB
Cluster, and we use it in the next step to verify that the SQL node is connected to the cluster after
you have started it.

4. On the computer designated as the SQL node host, open a console window and navigate to the
directory where you unpacked the NDB Cluster binaries (if you are following our example, this is C:
\mysql\bin).

Start the SQL node by invoking mysqld.exe from the command line, as shown here:

C:\mysql\bin> mysqld --console

The --console option causes logging information to be written to the console, which can
be helpful in the event of problems. (Once you are satisfied that the SQL node is running in a
satisfactory manner, you can stop it and restart it out without the --console option, so that logging
is performed normally.)

In the console window where the management client (ndb_mgm.exe) is running on the
management node host, enter the SHOW command, which should produce output similar to what is
shown here:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @198.51.100.30 (Version: 8.0.42-ndb-8.0.42, Nodegroup: 0, *)
id=3 @198.51.100.40 (Version: 8.0.42-ndb-8.0.42, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @198.51.100.10 (Version: 8.0.42-ndb-8.0.42)

[mysqld(API)] 1 node(s)
id=4 @198.51.100.20 (Version: 8.0.42-ndb-8.0.42)

You can also verify that the SQL node is connected to the NDB Cluster in the mysql client
(mysql.exe) using the SHOW ENGINE NDB STATUS statement.

You should now be ready to work with database objects and data using NDB Cluster 's NDBCLUSTER
storage engine. See Section 25.3.5, “NDB Cluster Example with Tables and Data”, for more
information and examples.

You can also install ndb_mgmd.exe, ndbd.exe, and ndbmtd.exe as Windows services. For
information on how to do this, see Section 25.3.2.4, “Installing NDB Cluster Processes as Windows
Services”).

4214

Installing NDB Cluster on Windows

25.3.2.4 Installing NDB Cluster Processes as Windows Services

Once you are satisfied that NDB Cluster is running as desired, you can install the management nodes
and data nodes as Windows services, so that these processes are started and stopped automatically
whenever Windows is started or stopped. This also makes it possible to control these processes from
the command line with the appropriate SC START and SC STOP commands, or using the Windows
graphical Services utility. NET START and NET STOP commands can also be used.

Installing programs as Windows services usually must be done using an account that has Administrator
rights on the system.

To install the management node as a service on Windows, invoke ndb_mgmd.exe from the command
line on the machine hosting the management node, using the --install option, as shown here:

C:\> C:\mysql\bin\ndb_mgmd.exe --install
Installing service 'NDB Cluster Management Server'
 as '"C:\mysql\bin\ndbd.exe" "--service=ndb_mgmd"'
Service successfully installed.

Important

When installing an NDB Cluster program as a Windows service, you should
always specify the complete path; otherwise the service installation may fail with
the error The system cannot find the file specified.

The --install option must be used first, ahead of any other options that might be specified for
ndb_mgmd.exe. However, it is preferable to specify such options in an options file instead. If your
options file is not in one of the default locations as shown in the output of ndb_mgmd.exe --help, you
can specify the location using the --config-file option.

Now you should be able to start and stop the management server like this:

C:\> SC START ndb_mgmd

C:\> SC STOP ndb_mgmd

Note

If using NET commands, you can also start or stop the management server as a
Windows service using the descriptive name, as shown here:

C:\> NET START 'NDB Cluster Management Server'
The NDB Cluster Management Server service is starting.
The NDB Cluster Management Server service was started successfully.

C:\> NET STOP 'NDB Cluster Management Server'
The NDB Cluster Management Server service is stopping..
The NDB Cluster Management Server service was stopped successfully.

It is usually simpler to specify a short service name or to permit the default service name to be used
when installing the service, and then reference that name when starting or stopping the service. To
specify a service name other than ndb_mgmd, append it to the --install option, as shown in this
example:

C:\> C:\mysql\bin\ndb_mgmd.exe --install=mgmd1
Installing service 'NDB Cluster Management Server'
 as '"C:\mysql\bin\ndb_mgmd.exe" "--service=mgmd1"'
Service successfully installed.

Now you should be able to start or stop the service using the name you have specified, like this:

C:\> SC START mgmd1

C:\> SC STOP mgmd1

4215

Installing NDB Cluster on Windows

To remove the management node service, use SC DELETE service_name:

C:\> SC DELETE mgmd1

Alternatively, invoke ndb_mgmd.exe with the --remove option, as shown here:

C:\> C:\mysql\bin\ndb_mgmd.exe --remove
Removing service 'NDB Cluster Management Server'
Service successfully removed.

If you installed the service using a service name other than the default, pass the service name as the
value of the ndb_mgmd.exe --remove option, like this:

C:\> C:\mysql\bin\ndb_mgmd.exe --remove=mgmd1
Removing service 'mgmd1'
Service successfully removed.

Installation of an NDB Cluster data node process as a Windows service can be done in a similar
fashion, using the --install option for ndbd.exe (or ndbmtd.exe), as shown here:

C:\> C:\mysql\bin\ndbd.exe --install
Installing service 'NDB Cluster Data Node Daemon' as '"C:\mysql\bin\ndbd.exe" "--service=ndbd"'
Service successfully installed.

Now you can start or stop the data node as shown in the following example:

C:\> SC START ndbd

C:\> SC STOP ndbd

To remove the data node service, use SC DELETE service_name:

C:\> SC DELETE ndbd

Alternatively, invoke ndbd.exe with the --remove option, as shown here:

C:\> C:\mysql\bin\ndbd.exe --remove
Removing service 'NDB Cluster Data Node Daemon'
Service successfully removed.

As with ndb_mgmd.exe (and mysqld.exe), when installing ndbd.exe as a Windows service, you
can also specify a name for the service as the value of --install, and then use it when starting or
stopping the service, like this:

C:\> C:\mysql\bin\ndbd.exe --install=dnode1
Installing service 'dnode1' as '"C:\mysql\bin\ndbd.exe" "--service=dnode1"'
Service successfully installed.

C:\> SC START dnode1

C:\> SC STOP dnode1

If you specified a service name when installing the data node service, you can use this name when
removing it as well, as shown here:

C:\> SC DELETE dnode1

Alternatively, you can pass the service name as the value of the ndbd.exe --remove option, as
shown here:

C:\> C:\mysql\bin\ndbd.exe --remove=dnode1
Removing service 'dnode1'
Service successfully removed.

Installation of the SQL node as a Windows service, starting the service, stopping the service, and
removing the service are done in a similar fashion, using mysqld --install, SC START, SC STOP,
and SC DELETE (or mysqld --remove). NET commands can also be used to start or stop a service.
For additional information, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.

4216

Initial Configuration of NDB Cluster

25.3.3 Initial Configuration of NDB Cluster

In this section, we discuss manual configuration of an installed NDB Cluster by creating and editing
configuration files.

For our four-node, four-host NDB Cluster (see Cluster nodes and host computers), it is necessary to
write four configuration files, one per node host.

• Each data node or SQL node requires a my.cnf file that provides two pieces of information: a
connection string that tells the node where to find the management node, and a line telling the
MySQL server on this host (the machine hosting the data node) to enable the NDBCLUSTER storage
engine.

For more information on connection strings, see Section 25.4.3.3, “NDB Cluster Connection Strings”.

• The management node needs a config.ini file telling it how many fragment replicas to maintain,
how much memory to allocate for data and indexes on each data node, where to find the data nodes,
where to save data to disk on each data node, and where to find any SQL nodes.

Configuring the data nodes and SQL nodes. The my.cnf file needed for the data nodes is fairly
simple. The configuration file should be located in the /etc directory and can be edited using any text
editor. (Create the file if it does not exist.) For example:

$> vi /etc/my.cnf

Note

We show vi being used here to create the file, but any text editor should work
just as well.

For each data node and SQL node in our example setup, my.cnf should look like this:

[mysqld]
Options for mysqld process:
ndbcluster # run NDB storage engine

[mysql_cluster]
Options for NDB Cluster processes:
ndb-connectstring=198.51.100.10 # location of management server

After entering the preceding information, save this file and exit the text editor. Do this for the machines
hosting data node “A”, data node “B”, and the SQL node.

Important

Once you have started a mysqld process with the ndbcluster and ndb-
connectstring parameters in the [mysqld] and [mysql_cluster]
sections of the my.cnf file as shown previously, you cannot execute any
CREATE TABLE or ALTER TABLE statements without having actually started
the cluster. Otherwise, these statements fail with an error. This is by design.

Configuring the management node. The first step in configuring the management node is to
create the directory in which the configuration file can be found and then to create the file itself. For
example (running as root):

$> mkdir /var/lib/mysql-cluster
$> cd /var/lib/mysql-cluster
$> vi config.ini

For our representative setup, the config.ini file should read as follows:

[ndbd default]
Options affecting ndbd processes on all data nodes:
NoOfReplicas=2 # Number of fragment replicas

4217

Initial Startup of NDB Cluster

DataMemory=98M # How much memory to allocate for data storage

[ndb_mgmd]
Management process options:
HostName=198.51.100.10 # Hostname or IP address of management node
DataDir=/var/lib/mysql-cluster # Directory for management node log files

[ndbd]
Options for data node "A":
 # (one [ndbd] section per data node)
HostName=198.51.100.30 # Hostname or IP address
NodeId=2 # Node ID for this data node
DataDir=/usr/local/mysql/data # Directory for this data node's data files

[ndbd]
Options for data node "B":
HostName=198.51.100.40 # Hostname or IP address
NodeId=3 # Node ID for this data node
DataDir=/usr/local/mysql/data # Directory for this data node's data files

[mysqld]
SQL node options:
HostName=198.51.100.20 # Hostname or IP address
 # (additional mysqld connections can be
 # specified for this node for various
 # purposes such as running ndb_restore)

Note

The world database can be downloaded from https://dev.mysql.com/doc/index-
other.html.

After all the configuration files have been created and these minimal options have been specified, you
are ready to proceed with starting the cluster and verifying that all processes are running. We discuss
how this is done in Section 25.3.4, “Initial Startup of NDB Cluster”.

For more detailed information about the available NDB Cluster configuration parameters and their
uses, see Section 25.4.3, “NDB Cluster Configuration Files”, and Section 25.4, “Configuration of
NDB Cluster”. For configuration of NDB Cluster as relates to making backups, see Section 25.6.8.3,
“Configuration for NDB Cluster Backups”.

The default port for Cluster management nodes is 1186. For data nodes, the cluster can automatically
allocate ports from those that are already free.

25.3.4 Initial Startup of NDB Cluster

Starting the cluster is not very difficult after it has been configured. Each cluster node process must
be started separately, and on the host where it resides. The management node should be started first,
followed by the data nodes, and then finally by any SQL nodes:

1. On the management host, issue the following command from the system shell to start the
management node process:

$> ndb_mgmd --initial -f /var/lib/mysql-cluster/config.ini

The first time that it is started, ndb_mgmd must be told where to find its configuration file, using
the -f or --config-file option. This option requires that --initial or --reload also be
specified; see Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, for
details.

2. On each of the data node hosts, run this command to start the ndbd process:

$> ndbd

3. If you used RPM files to install MySQL on the cluster host where the SQL node is to reside, you can
(and should) use the supplied startup script to start the MySQL server process on the SQL node.

4218

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

NDB Cluster Example with Tables and Data

If all has gone well, and the cluster has been set up correctly, the cluster should now be operational.
You can test this by invoking the ndb_mgm management node client. The output should look like that
shown here, although you might see some slight differences in the output depending upon the exact
version of MySQL that you are using:

$> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @198.51.100.30 (Version: 8.0.42-ndb-8.0.42, Nodegroup: 0, *)
id=3 @198.51.100.40 (Version: 8.0.42-ndb-8.0.42, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @198.51.100.10 (Version: 8.0.42-ndb-8.0.42)

[mysqld(API)] 1 node(s)
id=4 @198.51.100.20 (Version: 8.0.42-ndb-8.0.42)

The SQL node is referenced here as [mysqld(API)], which reflects the fact that the mysqld process
is acting as an NDB Cluster API node.

Note

The IP address shown for a given NDB Cluster SQL or other API node in the
output of SHOW is the address used by the SQL or API node to connect to the
cluster data nodes, and not to any management node.

You should now be ready to work with databases, tables, and data in NDB Cluster. See Section 25.3.5,
“NDB Cluster Example with Tables and Data”, for a brief discussion.

25.3.5 NDB Cluster Example with Tables and Data

Note

The information in this section applies to NDB Cluster running on both Unix and
Windows platforms.

Working with database tables and data in NDB Cluster is not much different from doing so in standard
MySQL. There are two key points to keep in mind:

• For a table to be replicated in the cluster, it must use the NDBCLUSTER storage engine. To specify
this, use the ENGINE=NDBCLUSTER or ENGINE=NDB option when creating the table:

CREATE TABLE tbl_name (col_name column_definitions) ENGINE=NDBCLUSTER;

Alternatively, for an existing table that uses a different storage engine, use ALTER TABLE to change
the table to use NDBCLUSTER:

ALTER TABLE tbl_name ENGINE=NDBCLUSTER;

• Every NDBCLUSTER table has a primary key. If no primary key is defined by the user when a table is
created, the NDBCLUSTER storage engine automatically generates a hidden one. Such a key takes
up space just as does any other table index. (It is not uncommon to encounter problems due to
insufficient memory for accommodating these automatically created indexes.)

If you are importing tables from an existing database using the output of mysqldump, you can open
the SQL script in a text editor and add the ENGINE option to any table creation statements, or replace
any existing ENGINE options. Suppose that you have the world sample database on another MySQL
server that does not support NDB Cluster, and you want to export the City table:

$> mysqldump --add-drop-table world City > city_table.sql

4219

NDB Cluster Example with Tables and Data

The resulting city_table.sql file contains this table creation statement (and the INSERT
statements necessary to import the table data):

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
 `ID` int(11) NOT NULL auto_increment,
 `Name` char(35) NOT NULL default '',
 `CountryCode` char(3) NOT NULL default '',
 `District` char(20) NOT NULL default '',
 `Population` int(11) NOT NULL default '0',
 PRIMARY KEY (`ID`)
) ENGINE=MyISAM;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

You need to make sure that MySQL uses the NDBCLUSTER storage engine for this table. There are
two ways that this can be accomplished. One of these is to modify the table definition before importing
it into the Cluster database. Using the City table as an example, modify the ENGINE option of the
definition as follows:

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
 `ID` int(11) NOT NULL auto_increment,
 `Name` char(35) NOT NULL default '',
 `CountryCode` char(3) NOT NULL default '',
 `District` char(20) NOT NULL default '',
 `Population` int(11) NOT NULL default '0',
 PRIMARY KEY (`ID`)
) ENGINE=NDBCLUSTER;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

This must be done for the definition of each table that is to be part of the clustered database. The
easiest way to accomplish this is to do a search-and-replace on the file that contains the definitions and
replace all instances of TYPE=engine_name or ENGINE=engine_name with ENGINE=NDBCLUSTER.
If you do not want to modify the file, you can use the unmodified file to create the tables, and then use
ALTER TABLE to change their storage engine. The particulars are given later in this section.

Assuming that you have already created a database named world on the SQL node of the cluster, you
can then use the mysql command-line client to read city_table.sql, and create and populate the
corresponding table in the usual manner:

$> mysql world < city_table.sql

It is very important to keep in mind that the preceding command must be executed on the host where
the SQL node is running (in this case, on the machine with the IP address 198.51.100.20).

To create a copy of the entire world database on the SQL node, use mysqldump on the noncluster
server to export the database to a file named world.sql (for example, in the /tmp directory). Then
modify the table definitions as just described and import the file into the SQL node of the cluster like
this:

$> mysql world < /tmp/world.sql

If you save the file to a different location, adjust the preceding instructions accordingly.

Running SELECT queries on the SQL node is no different from running them on any other instance of a
MySQL server. To run queries from the command line, you first need to log in to the MySQL Monitor in
the usual way (specify the root password at the Enter password: prompt):

$> mysql -u root -p

4220

NDB Cluster Example with Tables and Data

Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 8.0.42-ndb-8.0.42

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

We simply use the MySQL server's root account and assume that you have followed the standard
security precautions for installing a MySQL server, including setting a strong root password. For more
information, see Section 2.9.4, “Securing the Initial MySQL Account”.

It is worth taking into account that NDB Cluster nodes do not make use of the MySQL privilege
system when accessing one another. Setting or changing MySQL user accounts (including the root
account) effects only applications that access the SQL node, not interaction between nodes. See
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”, for more information.

If you did not modify the ENGINE clauses in the table definitions prior to importing the SQL script, you
should run the following statements at this point:

mysql> USE world;
mysql> ALTER TABLE City ENGINE=NDBCLUSTER;
mysql> ALTER TABLE Country ENGINE=NDBCLUSTER;
mysql> ALTER TABLE CountryLanguage ENGINE=NDBCLUSTER;

Selecting a database and running a SELECT query against a table in that database is also
accomplished in the usual manner, as is exiting the MySQL Monitor:

mysql> USE world;
mysql> SELECT Name, Population FROM City ORDER BY Population DESC LIMIT 5;
+-----------+------------+
| Name | Population |
+-----------+------------+
Bombay	10500000
Seoul	9981619
São Paulo	9968485
Shanghai	9696300
Jakarta	9604900
+-----------+------------+
5 rows in set (0.34 sec)

mysql> \q
Bye

$>

Applications that use MySQL can employ standard APIs to access NDB tables. It is important to
remember that your application must access the SQL node, and not the management or data nodes.
This brief example shows how we might execute the SELECT statement just shown by using the PHP
5.X mysqli extension running on a Web server elsewhere on the network:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">
 <title>SIMPLE mysqli SELECT</title>
</head>
<body>
<?php
 # connect to SQL node:
 $link = new mysqli('198.51.100.20', 'root', 'root_password', 'world');
 # parameters for mysqli constructor are:
 # host, user, password, database

 if(mysqli_connect_errno())
 die("Connect failed: " . mysqli_connect_error());

4221

Safe Shutdown and Restart of NDB Cluster

 $query = "SELECT Name, Population
 FROM City
 ORDER BY Population DESC
 LIMIT 5";

 # if no errors...
 if($result = $link->query($query))
 {
?>
<table border="1" width="40%" cellpadding="4" cellspacing ="1">
 <tbody>
 <tr>
 <th width="10%">City</th>
 <th>Population</th>
 </tr>
<?
 # then display the results...
 while($row = $result->fetch_object())
 printf("<tr>\n <td align=\"center\">%s</td><td>%d</td>\n</tr>\n",
 $row->Name, $row->Population);
?>
 </tbody
</table>
<?
 # ...and verify the number of rows that were retrieved
 printf("<p>Affected rows: %d</p>\n", $link->affected_rows);
 }
 else
 # otherwise, tell us what went wrong
 echo mysqli_error();

 # free the result set and the mysqli connection object
 $result->close();
 $link->close();
?>
</body>
</html>

We assume that the process running on the Web server can reach the IP address of the SQL node.

In a similar fashion, you can use the MySQL C API, Perl-DBI, Python-mysql, or MySQL Connectors to
perform the tasks of data definition and manipulation just as you would normally with MySQL.

25.3.6 Safe Shutdown and Restart of NDB Cluster

To shut down the cluster, enter the following command in a shell on the machine hosting the
management node:

$> ndb_mgm -e shutdown

The -e option here is used to pass a command to the ndb_mgm client from the shell. The command
causes the ndb_mgm, ndb_mgmd, and any ndbd or ndbmtd processes to terminate gracefully.
Any SQL nodes can be terminated using mysqladmin shutdown and other means. On Windows
platforms, assuming that you have installed the SQL node as a Windows service, you can use SC
STOP service_name or NET STOP service_name.

To restart the cluster on Unix platforms, run these commands:

• On the management host (198.51.100.10 in our example setup):

$> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

• On each of the data node hosts (198.51.100.30 and 198.51.100.40):

$> ndbd

• Use the ndb_mgm client to verify that both data nodes have started successfully.

4222

Upgrading and Downgrading NDB Cluster

• On the SQL host (198.51.100.20):

$> mysqld_safe &

On Windows platforms, assuming that you have installed all NDB Cluster processes as Windows
services using the default service names (see Section 25.3.2.4, “Installing NDB Cluster Processes as
Windows Services”), you can restart the cluster as follows:

• On the management host (198.51.100.10 in our example setup), execute the following command:

C:\> SC START ndb_mgmd

• On each of the data node hosts (198.51.100.30 and 198.51.100.40), execute the following
command:

C:\> SC START ndbd

• On the management node host, use the ndb_mgm client to verify that the management node and
both data nodes have started successfully (see Section 25.3.2.3, “Initial Startup of NDB Cluster on
Windows”).

• On the SQL node host (198.51.100.20), execute the following command:

C:\> SC START mysql

In a production setting, it is usually not desirable to shut down the cluster completely. In many cases,
even when making configuration changes, or performing upgrades to the cluster hardware or software
(or both), which require shutting down individual host machines, it is possible to do so without shutting
down the cluster as a whole by performing a rolling restart of the cluster. For more information about
doing this, see Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”.

25.3.7 Upgrading and Downgrading NDB Cluster

• Versions Supported for Upgrade to NDB 8.0

• Reverting an NDB Cluster 8.0 Upgrade

• Known Issues When Upgrading or Downgrading NDB Cluster

This section provides information about NDB Cluster software and compatibility between different
NDB Cluster 8.0 releases with regard to performing upgrades and downgrades. You should already be
familiar with installing and configuring NDB Cluster prior to attempting an upgrade or downgrade. See
Section 25.4, “Configuration of NDB Cluster”.

Important

Online upgrades and downgrades between minor releases of the NDB storage
engine are supported within NDB 8.0. In-place upgrades of the included MySQL
Server (SQL node mysqld) are also supported; with multiple SQL nodes, it is
possible to keep an SQL application online while individual mysqld processes
are restarted. In-place downgrades of the included MySQL Server are not
supported (see Chapter 4, Downgrading MySQL).

It may be possible in some cases to revert a recent upgrade from one NDB 8.0
minor release version to a later one, and to restore the needed states of any
MySQL Server instances running as SQL nodes. Against the event that this
becomes desirable or necessary, you are strongly advised to take a complete
backup of each SQL node prior to upgrading NDB Cluster. For the same
reason, you should also start the mysqld binaries from the new version with --
ndb-schema-dist-upgrade-allowed=0, and not allow it to be set back to
1 until you are sure any likelihood of reverting to an older version is past. For
more information, see Reverting an NDB Cluster 8.0 Upgrade.

4223

Upgrading and Downgrading NDB Cluster

For information about upgrades to NDB 8.0 from versions previous to 8.0, see Versions Supported for
Upgrade to NDB 8.0.

For information about known issues and problems encountered when upgrading or downgrading NDB
8.0, see Known Issues When Upgrading or Downgrading NDB Cluster.

Versions Supported for Upgrade to NDB 8.0

The following versions of NDB Cluster are supported for upgrades to GA releases of NDB Cluster 8.0
(8.0.19 and later):

• NDB Cluster 7.6: NDB 7.6.4 and later

• NDB Cluster 7.5: NDB 7.5.4 and later

• NDB Cluster 7.4: NDB 7.4.6 and later

To upgrade from a release series previous to NDB 7.4, you must upgrade in stages, first to one of the
versions just listed, and then from that version to the latest NDB 8.0 release. In such cases, upgrading
to the latest NDB 7.6 release is recommended as the first step. For information about upgrades to NDB
7.6 from previous versions, see Upgrading and Downgrading NDB 7.6.

Reverting an NDB Cluster 8.0 Upgrade

Following a recent software upgrade of an NDB Cluster to an NDB 8.0 release, it is possible to revert
the NDB software back to the earlier version, provided certain conditions are met before the upgrade,
during the time the cluster is running the newer version, and after the NDB Cluster software is reverted
to the earlier version. Specifics depend on local conditions; this section provides general information
about what should be done at each of the points in the upgrade and rollback process just described.

In most cases, upgrading and downgrading the data nodes can be done without issue, as described
elsewhere; see Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”. (Prior to performing
an upgrade or downgrade, you should perform an NDB backup; see Section 25.6.8, “Online Backup of
NDB Cluster”, for information about how to do this.) Downgrading SQL nodes online is not supported,
due to the following issues:

• mysqld from a version 8.0 release cannot start if it detects a file system from a later version of
MySQL.

• In many cases, mysqld cannot open tables that were created or modified by a later version of
MySQL.

• In most if not all cases, mysqld cannot read binary log files that were created or modified in a later
version of MySQL.

The procedure outlined next provides the basic steps necessary to upgrade a cluster from version X to
version Y while allowing for a possible future rollback to X. (The procedure for reverting the upgraded
cluster to version X follows later in this section.) For this purpose, version X is any NDB 8.0 GA release,
or any previous NDB release supported for upgrade to NDB 8.0 (see Versions Supported for Upgrade
to NDB 8.0), and version Y is an NDB 8.0 release which is later than X.

• Prior to upgrade: Take backups of NDB X SQL node states. This can be accomplished as one or
more of the following:

• A copy of the version X SQL node file system in a quiescent state using one or more system tools
such as cp, rsync, fwbackups, Amanda, and so forth.

A dump of any version X tables not stored in NDB. You can generate this dump using mysqldump.

A backup created using MySQL Enterprise Backup; see Section 32.1, “MySQL Enterprise Backup
Overview”, for more information.

4224

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-upgrade-downgrade-7-6.html

Upgrading and Downgrading NDB Cluster

Backing up the SQL nodes is recommended prior to any upgrade, whether or not you later intend to
revert the cluster to the previous NDB version.

• Upgrade to NDB Y: All NDB Y mysqld binaries must be started with --ndb-schema-
dist-upgrade-allowed=0 to prevent any automatic schema upgrade. (Once any
possibility of a downgrade is past, you can safely change the corresponding system variable
ndb_schema_dist_upgrade_allowed back to 1, the default, in the mysql client.) When each
NDB Y SQL node starts, it connects to the cluster and synchronizes its NDB table schemas. After
this, you can restore MySQL table and state data from backup.

To assure continuity of NDB replication, it is necessary to upgrade the cluster's SQL nodes in such a
way that at least one mysqld is acting as the replication source at any given point in time during the
upgrade. With two SQL nodes A and B, you can do so like this:

1. While using SQL node B as the replication channel, upgrade SQL node A from NDB version X to
version Y. This results in a gap in the binary log on A at epoch E1.

2. After all replication appliers have consumed the binary log from SQL node B past epoch E1,
switch the replication channel to use SQL node A.

3. Upgrade SQL node B to NDB version Y. This results in a gap in the binary log on B at epoch E2.

4. After all replication appliers have consumed the binary log from SQL node A past epoch E2, you
can once again switch the replication channel to use either SQL node as desired.

Do not use ALTER TABLE on any existing NDB tables; do not create any new NDB tables which
cannot be safely dropped prior to downgrading.

The following procedure shows the basic steps needed to roll back (revert) an NDB Cluster from
version X to version Y after an upgrade performed as just described. Here, version X is any NDB 8.0
GA release, or any previous NDB release supported for upgrade to NDB 8.0 (see Versions Supported
for Upgrade to NDB 8.0); version Y is an NDB 8.0 release which is later than X.

• Prior to rollback: Gather any mysqld state information from the NDB Y SQL nodes that should be
retained. In most cases, you can do this using mysqldump.

After backing up the state data, drop all NDB tables which have been created or altered since the
upgrade took place.

Backing up the SQL nodes is always recommended prior to any NDB Cluster software version
change.

You must provide a file system compatible with MySQL X for each mysqld (SQL node). You can use
either of the following two methods:

• Create a new, compatible file system state by reinitializing the on-disk state of the version X
SQL node. You can do this by removing the SQL node file system, then running mysqld --
initialize.

• Restore a file system that is compatible from a backup taken prior to the upgrade (see Section 9.4,
“Using mysqldump for Backups”).

• Following NDB downgrade: After downgrading the data nodes to NDB X, start the version X SQL
nodes (instances of mysqld). Restore or repair any other local state information needed on each
SQL node. The MySQLD state can be aligned as necessary with some combination (0 or more) of
the following actions:

• Initialization commands such as mysqld --initialize.

• Restore any desired or required state information captured from the version X SQL node.

4225

Upgrading and Downgrading NDB Cluster

• Restore any desired or required state information captured from the version Y SQL node.

• Perform cleanup such as deleting stale logs such as binary logs, or relay logs, and removing any
time-dependent state which is no longer valid.

As when upgrading, it is necessary when downgrading to maintain continuity of NDB replication
to downgrade the cluster's SQL nodes in such a way that at least one mysqld is acting as the
replication source at any given point in time during the downgrade process. This can be done in a
manner very similar to that described previously for upgrading the SQL nodes. With two SQL nodes
A and B, you can maintain binary logging without any gaps during the downgrade like this:

1. With SQL node B acting as the replication channel, downgrade SQL node A from NDB version Y
to version X. This results in a gap in the binary log on A at epoch F1.

2. After all replication appliers have consumed the binary log from SQL node B past epoch F1,
switch the replication channel to use SQL node A.

3. Downgrade SQL node B to NDB version X. This results in a gap in the binary log on B at epoch
F2.

4. After all replication appliers have consumed the binary log from SQL node A past epoch F2,
redundancy of binary logging is restored, and you can again use either SQL node as the
replication channel as desired.

See also Section 25.7.7, “Using Two Replication Channels for NDB Cluster Replication”.

Known Issues When Upgrading or Downgrading NDB Cluster

In this section, provide information about issues known to occur when upgrading or downgrading to,
from, or between NDB 8.0 releases.

We recommend that you not attempt any schema changes during any NDB Cluster software upgrade
or downgrade. Some of the reasons for this are listed here:

• DDL statements on NDB tables are not possible during some phases of data node startup.

• DDL statements on NDB tables may be rejected if any data nodes are stopped during execution;
stopping each data node binary (so it can be replaced with a binary from the target version) is
required as part of the upgrade or downgrade process.

• DDL statements on NDB tables are not allowed while there are data nodes in the same cluster
running different release versions of the NDB Cluster software.

For additional information regarding the rolling restart procedure used to perform an online upgrade or
downgrade of the data nodes, see Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”.

You should be aware of the issues in the following list when you perform an online upgrade between
minor versions of NDB 8.0. These issues also apply when upgrading from a previous major version of
NDB Cluster to any of the NDB 8.0 releases stated.

• NDB 8.0.22 adds support for IPv6 addressing for management nodes and data nodes in the
config.ini file. To begin using IPv6 addresses as part of an upgrade, perform the following steps:

1. Perform an upgrade of the cluster to version 8.0.22 or a later version of the NDB Cluster software
in the usual manner.

2. Change the addresses used in the config.ini file to IPv6 addresses.

3. Perform a system restart of the cluster.

4226

Upgrading and Downgrading NDB Cluster

A known issue on Linux platforms when running NDB 8.0.22 and later was that the operating system
kernel was required to provide IPv6 support, even when no IPv6 addresses were in use. This issue is
fixed in NDB 8.0.34 and later (Bug #33324817, Bug #33870642).

If you are using an affected version and wish to disable support for IPv6 on the system (because you
do not plan to use any IPv6 addresses for NDB Cluster nodes), do so after booting the system, like
this:

$> sysctl -w net.ipv6.conf.all.disable_ipv6=1
$> sysctl -w net.ipv6.conf.default.disable_ipv6=1

(Alternatively, you can add the corresponding lines to /etc/sysctl.conf.) In NDB Cluster 8.0.34
and later, the preceding is not necessary, and you can simply disable IPv6 support in the Linux
kernel if you do not want or need it.

• Due to changes in the internal mysql.ndb_schema table, if you upgrade to an NDB 8.0 release
prior to 8.0.24, then you are advised to use --ndb-schema-dist-upgrade-allowed = 0 to
avoid unexpected outages (Bug #30876990, Bug #31016905).

In addition, if there is any possibility that you may revert to a previous version of NDB Cluster
following an upgrade to a newer version, you must start all mysqld processes from the newer
version with --ndb-schema-dist-upgrade-allowed = 0 to prevent changes incompatible with
the older version from being made to the ndb_schema table. See Reverting an NDB Cluster 8.0
Upgrade, for information about how to do this.

• The EncryptedFileSystem configuration parameter, introduced in NDB 8.0.29, could in some
cases cause undo log files to be encrypted, even when set explicitly to 0, which could lead to issues
when using Disk Data tables and attempting to upgrade or downgrade to NDB 8.0.29. In such cases,
you can work around the problem by performing initial restarts of the data nodes as part of the rolling
restart process.

• If you are using multithreaded data nodes (ndbmtd) and the ThreadConfig configuration
parameter, you may need to make changes in the value set for this in the config.ini file when
upgrading from a previous release to NDB 8.0.30 or later. When upgrading from NDB 8.0.23 or
earlier, any usage of main, rep, recv, or ldm threads that was implicit in the earlier version must be
explicitly set. When upgrading from NDB 8.0.23 or later to NDB 8.0.30 or later, any usage of recv
threads must be set explicitly in the ThreadConfig string. In addition, to avoid using main, rep, or
ldm threads in NDB 8.0.30 or later, you must set the thread count for the given type to 0 explicitly.

An example follows.

NDB 8.0.22 and earlier:

• config.ini file contains ThreadConfig=ldm.

• This is interpreted by these versions of NDB as ThreadConfig=main,ldm,recv,rep.

• Required in config.ini to match effect in NDB 8.0.30 or later:
ThreadConfig=main,ldm,recv,rep.

NDB 8.0.23—8.0.29:

• config.ini file contains ThreadConfig=ldm.

• This is interpreted by these versions of NDB as ThreadConfig=ldm,recv.

• Required in config.ini to match effect in NDB 8.0.30 or later:
ThreadConfig=main={count=0},ldm,recv,rep={count=0}.

For more information, see the description of the ThreadConfig configuration parameter.

4227

Upgrading and Downgrading NDB Cluster

Upgrades from previous major versions of NDB Cluster (7.4, 7.5, 7.6) to NDB 8.0 are supported; see
Versions Supported for Upgrade to NDB 8.0, for specific versions. Such upgrades are subject to the
issues listed here:

• In NDB 8.0, the default value for log_bin is 1, a change from earlier releases. In addition,
as of NDB 8.0.16, the default value for ndb_log_bin changed from 1 to 0, which means that
ndb_log_bin must be set explicitly to 1 to enable binary logging in this and later versions.

• Distributed privileges shared between MySQL servers as implemented in prior release series (see
Distributed Privileges Using Shared Grant Tables) are not supported in NDB Cluster 8.0. When
started, the mysqld supplied with NDB 8.0 and later checks for the existence of any grant tables
which use the NDB storage engine; if it finds any, it creates local copies (“shadow tables”) of these
using InnoDB. This is true for each MySQL server connected to NDB Cluster. After this has been
performed on all MySQL servers acting as NDB Cluster SQL nodes, the NDB grant tables may be
safely removed using the ndb_drop_table utility supplied with the NDB Cluster distribution, like
this:

ndb_drop_table -d mysql user db columns_priv tables_priv proxies_priv procs_priv

It is safe to retain the NDB grant tables, but they are not used for access control and are effectively
ignored.

For more information about the MySQL privileges system used in NDB 8.0, see Section 25.6.13,
“Privilege Synchronization and NDB_STORED_USER”, as well as Section 8.2.3, “Grant Tables”.

• It is necessary to restart all data nodes with --initial when upgrading any release prior to NDB
7.6 to any NDB 8.0 release. This is due to the addition of support for increased numbers of nodes in
NDB 8.0.

Issues encountered when trying to downgrade from NDB 8.0 to a previous major version can be found
in the following list:

• Tables created in NDB 8.0 are not backwards compatible with NDB 7.6 and earlier releases due to
a change in usage of the extra metadata property implemented by NDB tables to provide full support
for the MySQL data dictionary. This means that it is necessary to take extra steps to preserve any
desired state information from the cluster's SQL nodes prior to the downgrade, and then to restore it
afterwards.

More specifically, online downgrades of the NDBCLUSTER storage engine—that is, of the data nodes
—are supported, but SQL nodes cannot be downgraded online. This is because a MySQL Server
(mysqld) of a given MySQL 8.0 or earlier version cannot use system files from a (later) 8.0 version,
and cannot open tables that were created in the later version. It may be possible to roll back a cluster
that has recently been upgraded from a previous NDB release; see Reverting an NDB Cluster 8.0
Upgrade, for information regarding when and how this can be done.

For additional information relating to these issues, see Changes in NDB table extra metadata; see
also Chapter 16, MySQL Data Dictionary.

• In NDB 8.0, the binary configuration file format has been enhanced to provide support for greater
numbers of nodes than in previous versions. The new format is not accessible to nodes running older
versions of NDB, although newer management servers can detect older nodes and communicate with
them using the appropriate format.

While upgrades to NDB 8.0 should not be problematic in this regard, older management servers
cannot read the newer binary configuration file format, so that some manual intervention is required
when downgrading from NDB 8.0 to a previous major version. When performing such a downgrade,
it is necessary to remove any cached binary configuration files prior to starting the management
using the older NDB software version, and to have the plaintext configuration file available for the
management server to read. Alternatively, you can start the older management server using the
--initial option (again, it is necessary to have the config.ini available). If the cluster uses

4228

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html

The NDB Cluster Auto-Installer (NO LONGER SUPPORTED)

multiple management servers, one of these two things must be done for each management server
binary.

Also in connection with support for increased numbers of nodes, and due to incompatible changes
implemented in NDB 8.0 in the data node LCP Sysfile, it is necessary, when performing an online
downgrade from NDB 8.0 to a prior major version, to restart all data nodes using the --initial
option.

• Online downgrades of clusters running more than 48 data nodes, or with data nodes using node IDs
greater than 48, to earlier NDB Cluster releases from NDB 8.0 are not supported. It is necessary
in such cases to reduce the number of data nodes, to change the configurations for all data nodes
such that they use node IDs less than or equal to 48, or both, as required not to exceed the old
maximums.

• If you are downgrading from NDB 8.0 to NDB 7.5 or NDB 7.4, you must set an explicit value for
IndexMemory in the cluster configuration file if none is already present. This is because NDB 8.0
does not use this parameter (which was removed in NDB 7.6) and sets it to 0 by default, whereas
it is required in NDB 7.5 and NDB 7.4, in both of which the cluster refuses to start with Invalid
configuration received from Management Server... if IndexMemory is not set to a
nonzero value.

Setting IndexMemory is not required for downgrades from NDB 8.0 to NDB 7.6.

25.3.8 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED)

Note

This feature has been removed from NDB Cluster, and is no longer supported.
See Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”, for more
information.

The web-based graphical configuration installer (Auto-Installer) was removed in NDB 8.0.23, and is no
longer included as part of the NDB Cluster distribution.

25.4 Configuration of NDB Cluster
A MySQL server that is part of an NDB Cluster differs in one chief respect from a normal (nonclustered)
MySQL server, in that it employs the NDB storage engine. This engine is also referred to sometimes as
NDBCLUSTER, although NDB is preferred.

To avoid unnecessary allocation of resources, the server is configured by default with the NDB storage
engine disabled. To enable NDB, you must modify the server's my.cnf configuration file, or start the
server with the --ndbcluster option.

This MySQL server is a part of the cluster, so it also must know how to access a management node
to obtain the cluster configuration data. The default behavior is to look for the management node
on localhost. However, should you need to specify that its location is elsewhere, this can be
done in my.cnf, or with the mysql client. Before the NDB storage engine can be used, at least one
management node must be operational, as well as any desired data nodes.

For more information about --ndbcluster and other mysqld options specific to NDB Cluster, see
MySQL Server Options for NDB Cluster.

For general information about installing NDB Cluster, see Section 25.3, “NDB Cluster Installation”.

25.4.1 Quick Test Setup of NDB Cluster

To familiarize you with the basics, we describe the simplest possible configuration for a functional NDB
Cluster. After this, you should be able to design your desired setup from the information provided in the
other relevant sections of this chapter.

4229

Quick Test Setup of NDB Cluster

First, you need to create a configuration directory such as /var/lib/mysql-cluster, by executing
the following command as the system root user:

$> mkdir /var/lib/mysql-cluster

In this directory, create a file named config.ini that contains the following information. Substitute
appropriate values for HostName and DataDir as necessary for your system.

file "config.ini" - showing minimal setup consisting of 1 data node,
1 management server, and 3 MySQL servers.
The empty default sections are not required, and are shown only for
the sake of completeness.
Data nodes must provide a hostname but MySQL Servers are not required
to do so.
If you do not know the hostname for your machine, use localhost.
The DataDir parameter also has a default value, but it is recommended to
set it explicitly.
[api] and [mgm] are aliases for [mysqld] and [ndb_mgmd], respectively.

[ndbd default]
NoOfReplicas= 1

[mysqld default]
[ndb_mgmd default]
[tcp default]

[ndb_mgmd]
HostName= myhost.example.com

[ndbd]
HostName= myhost.example.com
DataDir= /var/lib/mysql-cluster

[mysqld]
[mysqld]
[mysqld]

You can now start the ndb_mgmd management server. By default, it attempts to read the config.ini
file in its current working directory, so change location into the directory where the file is located and
then invoke ndb_mgmd:

$> cd /var/lib/mysql-cluster
$> ndb_mgmd

Then start a single data node by running ndbd:

$> ndbd

By default, ndbd looks for the management server at localhost on port 1186.

Note

If you have installed MySQL from a binary tarball, you must to specify the path
of the ndb_mgmd and ndbd servers explicitly. (Normally, these can be found in
/usr/local/mysql/bin.)

Finally, change location to the MySQL data directory (usually /var/lib/mysql or /usr/local/
mysql/data), and make sure that the my.cnf file contains the option necessary to enable the NDB
storage engine:

[mysqld]
ndbcluster

You can now start the MySQL server as usual:

$> mysqld_safe --user=mysql &

Wait a moment to make sure the MySQL server is running properly. If you see the notice mysql
ended, check the server's .err file to find out what went wrong.

4230

Overview of NDB Cluster Configuration Parameters, Options, and Variables

If all has gone well so far, you now can start using the cluster. Connect to the server and verify that the
NDBCLUSTER storage engine is enabled:

$> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 8.0.42

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW ENGINES\G
...
*************************** 12. row ***************************
Engine: NDBCLUSTER
Support: YES
Comment: Clustered, fault-tolerant, memory-based tables
*************************** 13. row ***************************
Engine: NDB
Support: YES
Comment: Alias for NDBCLUSTER
...

The row numbers shown in the preceding example output may be different from those shown on your
system, depending upon how your server is configured.

Try to create an NDBCLUSTER table:

$> mysql
mysql> USE test;
Database changed

mysql> CREATE TABLE ctest (i INT) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (0.09 sec)

mysql> SHOW CREATE TABLE ctest \G
*************************** 1. row ***************************
 Table: ctest
Create Table: CREATE TABLE `ctest` (
 `i` int(11) default NULL
) ENGINE=ndbcluster DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

To check that your nodes were set up properly, start the management client:

$> ndb_mgm

Use the SHOW command from within the management client to obtain a report on the cluster's status:

ndb_mgm> SHOW
Cluster Configuration

[ndbd(NDB)] 1 node(s)
id=2 @127.0.0.1 (Version: 8.0.42-ndb-8.0.42, Nodegroup: 0, *)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @127.0.0.1 (Version: 8.0.42-ndb-8.0.42)

[mysqld(API)] 3 node(s)
id=3 @127.0.0.1 (Version: 8.0.42-ndb-8.0.42)
id=4 (not connected, accepting connect from any host)
id=5 (not connected, accepting connect from any host)

At this point, you have successfully set up a working NDB Cluster . You can now store data in the
cluster by using any table created with ENGINE=NDBCLUSTER or its alias ENGINE=NDB.

25.4.2 Overview of NDB Cluster Configuration Parameters, Options, and
Variables

4231

Overview of NDB Cluster Configuration Parameters, Options, and Variables

The next several sections provide summary tables of NDB Cluster node configuration parameters used
in the config.ini file to govern various aspects of node behavior, as well as of options and variables
read by mysqld from a my.cnf file or from the command line when run as an NDB Cluster process.
Each of the node parameter tables lists the parameters for a given type (ndbd, ndb_mgmd, mysqld,
computer, tcp, or shm). All tables include the data type for the parameter, option, or variable, as well
as its default, minimum, and maximum values as applicable.

Considerations when restarting nodes. For node parameters, these tables also indicate what
type of restart is required (node restart or system restart)—and whether the restart must be done with
--initial—to change the value of a given configuration parameter. When performing a node restart
or an initial node restart, all of the cluster's data nodes must be restarted in turn (also referred to as a
rolling restart). It is possible to update cluster configuration parameters marked as node online—that is,
without shutting down the cluster—in this fashion. An initial node restart requires restarting each ndbd
process with the --initial option.

A system restart requires a complete shutdown and restart of the entire cluster. An initial system restart
requires taking a backup of the cluster, wiping the cluster file system after shutdown, and then restoring
from the backup following the restart.

In any cluster restart, all of the cluster's management servers must be restarted for them to read the
updated configuration parameter values.

Important

Values for numeric cluster parameters can generally be increased without
any problems, although it is advisable to do so progressively, making such
adjustments in relatively small increments. Many of these can be increased
online, using a rolling restart.

However, decreasing the values of such parameters—whether this is
done using a node restart, node initial restart, or even a complete system
restart of the cluster—is not to be undertaken lightly; it is recommended
that you do so only after careful planning and testing. This is especially
true with regard to those parameters that relate to memory usage and
disk space, such as MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes. In addition, it is the generally the case that
configuration parameters relating to memory and disk usage can be raised
using a simple node restart, but they require an initial node restart to be
lowered.

Because some of these parameters can be used for configuring more than one type of cluster node,
they may appear in more than one of the tables.

Note

4294967039 often appears as a maximum value in these tables. This value
is defined in the NDBCLUSTER sources as MAX_INT_RNIL and is equal to
0xFFFFFEFF, or 232 − 28 − 1.

25.4.2.1 NDB Cluster Data Node Configuration Parameters

The listings in this section provide information about parameters used in the [ndbd] or [ndbd
default] sections of a config.ini file for configuring NDB Cluster data nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 25.4.3.6,
“Defining NDB Cluster Data Nodes”.

These parameters also apply to ndbmtd, the multithreaded version of ndbd. A separate listing of
parameters specific to ndbmtd follows.

4232

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ApiFailureHandlingTimeout: Maximum time for API node failure handling before escalating. 0
means no time limit; minimum usable value is 10.

• Arbitration: How arbitration should be performed to avoid split-brain issues in event of node
failure.

• ArbitrationTimeout: Maximum time (milliseconds) database partition waits for arbitration signal.

• BackupDataBufferSize: Default size of databuffer for backup (in bytes).

• BackupDataDir: Path to where to store backups. Note that string '/BACKUP' is always appended to
this setting, so that *effective* default is FileSystemPath/BACKUP.

• BackupDiskWriteSpeedPct: Sets percentage of data node's allocated maximum write speed
(MaxDiskWriteSpeed) to reserve for LCPs when starting backup.

• BackupLogBufferSize: Default size of log buffer for backup (in bytes).

• BackupMaxWriteSize: Maximum size of file system writes made by backup (in bytes).

• BackupMemory: Total memory allocated for backups per node (in bytes).

• BackupReportFrequency: Frequency of backup status reports during backup in seconds.

• BackupWriteSize: Default size of file system writes made by backup (in bytes).

• BatchSizePerLocalScan: Used to calculate number of lock records for scan with hold lock.

• BuildIndexThreads: Number of threads to use for building ordered indexes during system or
node restart. Also applies when running ndb_restore --rebuild-indexes. Setting this parameter to 0
disables multithreaded building of ordered indexes.

• CompressedBackup: Use zlib to compress backups as they are written.

• CompressedLCP: Write compressed LCPs using zlib.

• ConnectCheckIntervalDelay: Time between data node connectivity check stages. Data node is
considered suspect after 1 interval and dead after 2 intervals with no response.

• CrashOnCorruptedTuple: When enabled, forces node to shut down whenever it detects
corrupted tuple.

• DataDir: Data directory for this node.

• DataMemory: Number of bytes on each data node allocated for storing data; subject to available
system RAM and size of IndexMemory.

• DefaultHashMapSize: Set size (in buckets) to use for table hash maps. Three values are
supported: 0, 240, and 3840.

• DictTrace: Enable DBDICT debugging; for NDB development.

• DiskDataUsingSameDisk: Set to false if Disk Data tablespaces are located on separate physical
disks.

• DiskIOThreadPool: Number of unbound threads for file access, applies to disk data only.

• Diskless: Run without using disk.

• DiskPageBufferEntries: Memory to allocate in DiskPageBufferMemory; very large disk
transactions may require increasing this value.

• DiskPageBufferMemory: Number of bytes on each data node allocated for disk page buffer
cache.

4233

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• DiskSyncSize: Amount of data written to file before synch is forced.

• EnablePartialLcp: Enable partial LCP (true); if this is disabled (false), all LCPs write full
checkpoints.

• EnableRedoControl: Enable adaptive checkpointing speed for controlling redo log usage.

• EncryptedFileSystem: Encrypt local checkpoint and tablespace files. EXPERIMENTAL; NOT
SUPPORTED IN PRODUCTION.

• EventLogBufferSize: Size of circular buffer for NDB log events within data nodes.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• FileSystemPath: Path to directory where data node stores its data (directory must exist).

• FileSystemPathDataFiles: Path to directory where data node stores its Disk Data files. Default
value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value of
DataDir is used.

• FileSystemPathDD: Path to directory where data node stores its Disk Data and undo files. Default
value is FileSystemPath, if set; otherwise, value of DataDir is used.

• FileSystemPathUndoFiles: Path to directory where data node stores its undo files for Disk Data.
Default value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise,
value of DataDir is used.

• FragmentLogFileSize: Size of each redo log file.

• HeartbeatIntervalDbApi: Time between API node-data node heartbeats. (API connection
closed after 3 missed heartbeats).

• HeartbeatIntervalDbDb: Time between data node-to-data node heartbeats; data node
considered dead after 3 missed heartbeats.

• HeartbeatOrder: Sets order in which data nodes check each others' heartbeats for determining
whether given node is still active and connected to cluster. Must be zero for all data nodes or distinct
nonzero values for all data nodes; see documentation for further guidance.

• HostName: Host name or IP address for this data node.

• IndexMemory: Number of bytes on each data node allocated for storing indexes; subject to
available system RAM and size of DataMemory.

• IndexStatAutoCreate: Enable/disable automatic statistics collection when indexes are created.

• IndexStatAutoUpdate: Monitor indexes for changes and trigger automatic statistics updates.

• IndexStatSaveScale: Scaling factor used in determining size of stored index statistics.

• IndexStatSaveSize: Maximum size in bytes for saved statistics per index.

• IndexStatTriggerPct: Threshold percent change in DML operations for index statistics updates.
Value is scaled down by IndexStatTriggerScale.

• IndexStatTriggerScale: Scale down IndexStatTriggerPct by this amount, multiplied by base 2
logarithm of index size, for large index. Set to 0 to disable scaling.

• IndexStatUpdateDelay: Minimum delay between automatic index statistics updates for given
index. 0 means no delay.

4234

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• InitFragmentLogFiles: Initialize fragment log files, using sparse or full format.

• InitialLogFileGroup: Describes log file group that is created during initial start. See
documentation for format.

• InitialNoOfOpenFiles: Initial number of files open per data node. (One thread is created per
file).

• InitialTablespace: Describes tablespace that is created during initial start. See documentation
for format.

• InsertRecoveryWork: Percentage of RecoveryWork used for inserted rows; has no effect unless
partial local checkpoints are in use.

• KeepAliveSendInterval: Time between keep-alive signals on links between data nodes, in
milliseconds. Set to 0 to disable.

• LateAlloc: Allocate memory after connection to management server has been established.

• LcpScanProgressTimeout: Maximum time that local checkpoint fragment scan can be stalled
before node is shut down to ensure systemwide LCP progress. Use 0 to disable.

• LocationDomainId: Assign this data node to specific availability domain or zone. 0 (default) leaves
this unset.

• LockExecuteThreadToCPU: Comma-delimited list of CPU IDs.

• LockMaintThreadsToCPU: CPU ID indicating which CPU runs maintenance threads.

• LockPagesInMainMemory: 0=disable locking, 1=lock after memory allocation, 2=lock before
memory allocation.

• LogLevelCheckpoint: Log level of local and global checkpoint information printed to stdout.

• LogLevelCongestion: Level of congestion information printed to stdout.

• LogLevelConnection: Level of node connect/disconnect information printed to stdout.

• LogLevelError: Transporter, heartbeat errors printed to stdout.

• LogLevelInfo: Heartbeat and log information printed to stdout.

• LogLevelNodeRestart: Level of node restart and node failure information printed to stdout.

• LogLevelShutdown: Level of node shutdown information printed to stdout.

• LogLevelStartup: Level of node startup information printed to stdout.

• LogLevelStatistic: Level of transaction, operation, and transporter information printed to stdout.

• LongMessageBuffer: Number of bytes allocated on each data node for internal long messages.

• MaxAllocate: No longer used; has no effect.

• MaxBufferedEpochs: Allowed numbered of epochs that subscribing node can lag behind
(unprocessed epochs). Exceeding causes lagging subscribers to be disconnected.

• MaxBufferedEpochBytes: Total number of bytes allocated for buffering epochs.

• MaxDiskDataLatency: Maximum allowed mean latency of disk access (ms) before starting to
abort transactions.

• MaxDiskWriteSpeed: Maximum number of bytes per second that can be written by LCP and
backup when no restarts are ongoing.

4235

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• MaxDiskWriteSpeedOtherNodeRestart: Maximum number of bytes per second that can be
written by LCP and backup when another node is restarting.

• MaxDiskWriteSpeedOwnRestart: Maximum number of bytes per second that can be written by
LCP and backup when this node is restarting.

• MaxFKBuildBatchSize: Maximum scan batch size to use for building foreign keys. Increasing this
value may speed up builds of foreign keys but impacts ongoing traffic as well.

• MaxDMLOperationsPerTransaction: Limit size of transaction; aborts transaction if it requires
more than this many DML operations.

• MaxLCPStartDelay: Time in seconds that LCP polls for checkpoint mutex (to allow other data
nodes to complete metadata synchronization), before putting itself in lock queue for parallel recovery
of table data.

• MaxNoOfAttributes: Suggests total number of attributes stored in database (sum over all tables).

• MaxNoOfConcurrentIndexOperations: Total number of index operations that can execute
simultaneously on one data node.

• MaxNoOfConcurrentOperations: Maximum number of operation records in transaction
coordinator.

• MaxNoOfConcurrentScans: Maximum number of scans executing concurrently on data node.

• MaxNoOfConcurrentSubOperations: Maximum number of concurrent subscriber operations.

• MaxNoOfConcurrentTransactions: Maximum number of transactions executing concurrently
on this data node, total number of transactions that can be executed concurrently is this value times
number of data nodes in cluster.

• MaxNoOfFiredTriggers: Total number of triggers that can fire simultaneously on one data node.

• MaxNoOfLocalOperations: Maximum number of operation records defined on this data node.

• MaxNoOfLocalScans: Maximum number of fragment scans in parallel on this data node.

• MaxNoOfOpenFiles: Maximum number of files open per data node.(One thread is created per file).

• MaxNoOfOrderedIndexes: Total number of ordered indexes that can be defined in system.

• MaxNoOfSavedMessages: Maximum number of error messages to write in error log and maximum
number of trace files to retain.

• MaxNoOfSubscribers: Maximum number of subscribers.

• MaxNoOfSubscriptions: Maximum number of subscriptions (default 0 = MaxNoOfTables).

• MaxNoOfTables: Suggests total number of NDB tables stored in database.

• MaxNoOfTriggers: Total number of triggers that can be defined in system.

• MaxNoOfUniqueHashIndexes: Total number of unique hash indexes that can be defined in
system.

• MaxParallelCopyInstances: Number of parallel copies during node restarts. Default is 0, which
uses number of LDMs on both nodes, to maximum of 16.

• MaxParallelScansPerFragment: Maximum number of parallel scans per fragment. Once this
limit is reached, scans are serialized.

• MaxReorgBuildBatchSize: Maximum scan batch size to use for reorganization of table partitions.
Increasing this value may speed up table partition reorganization but impacts ongoing traffic as well.

4236

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• MaxStartFailRetries: Maximum retries when data node fails on startup, requires StopOnError =
0. Setting to 0 causes start attempts to continue indefinitely.

• MaxUIBuildBatchSize: Maximum scan batch size to use for building unique keys. Increasing this
value may speed up builds of unique keys but impacts ongoing traffic as well.

• MemReportFrequency: Frequency of memory reports in seconds; 0 = report only when exceeding
percentage limits.

• MinDiskWriteSpeed: Minimum number of bytes per second that can be written by LCP and
backup.

• MinFreePct: Percentage of memory resources to keep in reserve for restarts.

• NodeGroup: Node group to which data node belongs; used only during initial start of cluster.

• NodeGroupTransporters: Number of transporters to use between nodes in same node group.

• NodeId: Number uniquely identifying data node among all nodes in cluster.

• NoOfFragmentLogFiles: Number of 16 MB redo log files in each of 4 file sets belonging to data
node.

• NoOfReplicas: Number of copies of all data in database.

• Numa: (Linux only; requires libnuma) Controls NUMA support. Setting to 0 permits system to
determine use of interleaving by data node process; 1 means that it is determined by data node.

• ODirect: Use O_DIRECT file reads and writes when possible.

• ODirectSyncFlag: O_DIRECT writes are treated as synchronized writes; ignored when ODirect is
not enabled, InitFragmentLogFiles is set to SPARSE, or both.

• RealtimeScheduler: When true, data node threads are scheduled as real-time threads. Default is
false.

• RecoveryWork: Percentage of storage overhead for LCP files: greater value means less work in
normal operations, more work during recovery.

• RedoBuffer: Number of bytes on each data node allocated for writing redo logs.

• RedoOverCommitCounter: When RedoOverCommitLimit has been exceeded this
many times, transactions are aborted, and operations are handled as specified by
DefaultOperationRedoProblemAction.

• RedoOverCommitLimit: Each time that flushing current redo buffer takes longer than this many
seconds, number of times that this has happened is compared to RedoOverCommitCounter.

• RequireEncryptedBackup: Whether backups must be encrypted (1 = encryption required,
otherwise 0).

• ReservedConcurrentIndexOperations: Number of simultaneous index operations having
dedicated resources on one data node.

• ReservedConcurrentOperations: Number of simultaneous operations having dedicated
resources in transaction coordinators on one data node.

• ReservedConcurrentScans: Number of simultaneous scans having dedicated resources on one
data node.

• ReservedConcurrentTransactions: Number of simultaneous transactions having dedicated
resources on one data node.

• ReservedFiredTriggers: Number of triggers having dedicated resources on one data node.

4237

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ReservedLocalScans: Number of simultaneous fragment scans having dedicated resources on
one data node.

• ReservedTransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node.

• RestartOnErrorInsert: Control type of restart caused by inserting error (when StopOnError is
enabled).

• RestartSubscriberConnectTimeout: Amount of time for data node to wait for subscribing API
nodes to connect. Set to 0 to disable timeout, which is always resolved to nearest full second.

• SchedulerExecutionTimer: Number of microseconds to execute in scheduler before sending.

• SchedulerResponsiveness: Set NDB scheduler response optimization 0-10; higher values
provide better response time but lower throughput.

• SchedulerSpinTimer: Number of microseconds to execute in scheduler before sleeping.

• ServerPort: Port used to set up transporter for incoming connections from API nodes.

• SharedGlobalMemory: Total number of bytes on each data node allocated for any use.

• SpinMethod: Determines spin method used by data node; see documentation for details.

• StartFailRetryDelay: Delay in seconds after start failure prior to retry; requires StopOnError =
0.

• StartFailureTimeout: Milliseconds to wait before terminating. (0=Wait forever).

• StartNoNodeGroupTimeout: Time to wait for nodes without nodegroup before trying to start
(0=forever).

• StartPartialTimeout: Milliseconds to wait before trying to start without all nodes. (0=Wait
forever).

• StartPartitionedTimeout: Milliseconds to wait before trying to start partitioned. (0=Wait
forever).

• StartupStatusReportFrequency: Frequency of status reports during startup.

• StopOnError: When set to 0, data node automatically restarts and recovers following node failures.

• StringMemory: Default size of string memory (0 to 100 = % of maximum, 101+ = actual bytes).

• TcpBind_INADDR_ANY: Bind IP_ADDR_ANY so that connections can be made from anywhere (for
autogenerated connections).

• TimeBetweenEpochs: Time between epochs (synchronization used for replication).

• TimeBetweenEpochsTimeout: Timeout for time between epochs. Exceeding causes node
shutdown.

• TimeBetweenGlobalCheckpoints: Time between group commits of transactions to disk.

• TimeBetweenGlobalCheckpointsTimeout: Minimum timeout for group commit of transactions
to disk.

• TimeBetweenInactiveTransactionAbortCheck: Time between checks for inactive
transactions.

• TimeBetweenLocalCheckpoints: Time between taking snapshots of database (expressed in
base-2 logarithm of bytes).

4238

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• TimeBetweenWatchDogCheck: Time between execution checks inside data node.

• TimeBetweenWatchDogCheckInitial: Time between execution checks inside data node (early
start phases when memory is allocated).

• TotalSendBufferMemory: Total memory to use for all transporter send buffers..

• TransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data allocated
for each data node.

• TransactionDeadlockDetectionTimeout: Time transaction can spend executing within data
node. This is time that transaction coordinator waits for each data node participating in transaction to
execute request. If data node takes more than this amount of time, transaction is aborted.

• TransactionInactiveTimeout: Milliseconds that application waits before executing another part
of transaction. This is time transaction coordinator waits for application to execute or send another
part (query, statement) of transaction. If application takes too much time, then transaction is aborted.
Timeout = 0 means that application never times out.

• TransactionMemory: Memory allocated for transactions on each data node.

• TwoPassInitialNodeRestartCopy: Copy data in 2 passes during initial node restart, which
enables multithreaded building of ordered indexes for such restarts.

• UndoDataBuffer: Unused; has no effect.

• UndoIndexBuffer: Unused; has no effect.

• UseShm: Use shared memory connections between this data node and API node also running on this
host.

• WatchDogImmediateKill: When true, threads are immediately killed whenever watchdog issues
occur; used for testing and debugging.

The following parameters are specific to ndbmtd:

• AutomaticThreadConfig: Use automatic thread configuration; overrides any settings for
ThreadConfig and MaxNoOfExecutionThreads, and disables ClassicFragmentation.

• ClassicFragmentation: When true, use traditional table fragmentation; set false to enable
flexible distribution of fragments among LDMs. Disabled by AutomaticThreadConfig.

• EnableMultithreadedBackup: Enable multi-threaded backup.

• MaxNoOfExecutionThreads: For ndbmtd only, specify maximum number of execution threads.

• MaxSendDelay: Maximum number of microseconds to delay sending by ndbmtd.

• NoOfFragmentLogParts: Number of redo log file groups belonging to this data node.

• NumCPUs: Specify number of CPUs to use with AutomaticThreadConfig.

• PartitionsPerNode: Determines the number of table partitions created on each data node; not
used if ClassicFragmentation is enabled.

• ThreadConfig: Used for configuration of multithreaded data nodes (ndbmtd). Default is empty
string; see documentation for syntax and other information.

25.4.2.2 NDB Cluster Management Node Configuration Parameters

The listing in this section provides information about parameters used in the [ndb_mgmd] or
[mgm] section of a config.ini file for configuring NDB Cluster management nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 25.4.3.5,
“Defining an NDB Cluster Management Server”.

4239

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ArbitrationDelay: When asked to arbitrate, arbitrator waits this long before voting (milliseconds).

• ArbitrationRank: If 0, then management node is not arbitrator. Kernel selects arbitrators in order
1, 2.

• DataDir: Data directory for this node.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• HeartbeatIntervalMgmdMgmd: Time between management-node-to-management-node
heartbeats; connection between management nodes is considered lost after 3 missed heartbeats.

• HeartbeatThreadPriority: Set heartbeat thread policy and priority for management nodes; see
manual for allowed values.

• HostName: Host name or IP address for this management node.

• Id: Number identifying management node. Now deprecated; use NodeId instead.

• LocationDomainId: Assign this management node to specific availability domain or zone. 0
(default) leaves this unset.

• LogDestination: Where to send log messages: console, system log, or specified log file.

• NodeId: Number uniquely identifying management node among all nodes in cluster.

• PortNumber: Port number to send commands to and fetch configuration from management server.

• PortNumberStats: Port number used to get statistical information from management server.

• TotalSendBufferMemory: Total memory to use for all transporter send buffers.

• wan: Use WAN TCP setting as default.

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.
See Section 25.4.3.5, “Defining an NDB Cluster Management Server”, for more
information.

To add new management servers to a running NDB Cluster, it is also necessary
perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using
multiple management nodes, see Section 25.2.7.10, “Limitations Relating to
Multiple NDB Cluster Nodes”.

25.4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters

The listing in this section provides information about parameters used in the [mysqld] and [api]
sections of a config.ini file for configuring NDB Cluster SQL nodes and API nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 25.4.3.7,
“Defining SQL and Other API Nodes in an NDB Cluster”.

• ApiVerbose: Enable NDB API debugging; for NDB development.

• ArbitrationDelay: When asked to arbitrate, arbitrator waits this many milliseconds before voting.

• ArbitrationRank: If 0, then API node is not arbitrator. Kernel selects arbitrators in order 1, 2.

4240

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• AutoReconnect: Specifies whether an API node should reconnect fully when disconnected from
cluster.

• BatchByteSize: Default batch size in bytes.

• BatchSize: Default batch size in number of records.

• ConnectBackoffMaxTime: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this API node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting
to 0. If no data nodes are currently connected to this API node, StartConnectBackoffMaxTime is
used instead.

• ConnectionMap: Specifies which data nodes to connect.

• DefaultHashMapSize: Set size (in buckets) to use for table hash maps. Three values are
supported: 0, 240, and 3840.

• DefaultOperationRedoProblemAction: How operations are handled in event that
RedoOverCommitCounter is exceeded.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• HeartbeatThreadPriority: Set heartbeat thread policy and priority for API nodes; see manual
for allowed values.

• HostName: Host name or IP address for this SQL or API node.

• Id: Number identifying MySQL server or API node (Id). Now deprecated; use NodeId instead.

• LocationDomainId: Assign this API node to specific availability domain or zone. 0 (default) leaves
this unset.

• MaxScanBatchSize: Maximum collective batch size for one scan.

• NodeId: Number uniquely identifying SQL node or API node among all nodes in cluster.

• StartConnectBackoffMaxTime: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this API node.

• TotalSendBufferMemory: Total memory to use for all transporter send buffers.

• wan: Use WAN TCP setting as default.

For a discussion of MySQL server options for NDB Cluster, see MySQL Server Options for NDB
Cluster. For information about MySQL server system variables relating to NDB Cluster, see NDB
Cluster System Variables.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using
more than one management server). This must be done before the new SQL or
API nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes
can employ previously unused API slots in the cluster configuration to connect
to the cluster.

4241

Overview of NDB Cluster Configuration Parameters, Options, and Variables

25.4.2.4 Other NDB Cluster Configuration Parameters

The listings in this section provide information about parameters used in the [computer], [tcp],
and [shm] sections of a config.ini file for configuring NDB Cluster. For detailed descriptions
and additional information about individual parameters, see Section 25.4.3.10, “NDB Cluster TCP/IP
Connections”, or Section 25.4.3.12, “NDB Cluster Shared-Memory Connections”, as appropriate.

The following parameters apply to the config.ini file's [computer] section:

• HostName: Host name or IP address of this computer.

• Id: Unique identifier for this computer.

The following parameters apply to the config.ini file's [tcp] section:

• AllowUnresolvedHostNames: When false (default), failure by management node to resolve host
name results in fatal error; when true, unresolved host names are reported as warnings only.

• Checksum: If checksum is enabled, all signals between nodes are checked for errors.

• Group: Used for group proximity; smaller value is interpreted as being closer.

• HostName1: Name or IP address of first of two computers joined by TCP connection.

• HostName2: Name or IP address of second of two computers joined by TCP connection.

• NodeId1: ID of node (data node, API node, or management node) on one side of connection.

• NodeId2: ID of node (data node, API node, or management node) on one side of connection.

• NodeIdServer: Set server side of TCP connection.

• OverloadLimit: When more than this many unsent bytes are in send buffer, connection is
considered overloaded.

• PreferIPVersion: Indicate DNS resolver preference for IP version 4 or 6.

• PreSendChecksum: If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all TCP signals between nodes for errors.

• Proxy:

• ReceiveBufferMemory: Bytes of buffer for signals received by this node.

• SendBufferMemory: Bytes of TCP buffer for signals sent from this node.

• SendSignalId: Sends ID in each signal. Used in trace files. Defaults to true in debug builds.

• TcpSpinTime: Time to spin before going to sleep when receiving.

• TCP_MAXSEG_SIZE: Value used for TCP_MAXSEG.

• TCP_RCV_BUF_SIZE: Value used for SO_RCVBUF.

• TCP_SND_BUF_SIZE: Value used for SO_SNDBUF.

• TcpBind_INADDR_ANY: Bind InAddrAny instead of host name for server part of connection.

The following parameters apply to the config.ini file's [shm] section:

• Checksum: If checksum is enabled, all signals between nodes are checked for errors.

• Group: Used for group proximity; smaller value is interpreted as being closer.

4242

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• HostName1: Name or IP address of first of two computers joined by SHM connection.

• HostName2: Name or IP address of second of two computers joined by SHM connection.

• NodeId1: ID of node (data node, API node, or management node) on one side of connection.

• NodeId2: ID of node (data node, API node, or management node) on one side of connection.

• NodeIdServer: Set server side of SHM connection.

• OverloadLimit: When more than this many unsent bytes are in send buffer, connection is
considered overloaded.

• PreSendChecksum: If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all SHM signals between nodes for errors.

• SendBufferMemory: Bytes in shared memory buffer for signals sent from this node.

• SendSignalId: Sends ID in each signal. Used in trace files.

• ShmKey: Shared memory key; when set to 1, this is calculated by NDB.

• ShmSpinTime: When receiving, number of microseconds to spin before sleeping.

• ShmSize: Size of shared memory segment.

• Signum: Signal number to be used for signalling.

25.4.2.5 NDB Cluster mysqld Option and Variable Reference

The following list includes command-line options, system variables, and status variables applicable
within mysqld when it is running as an SQL node in an NDB Cluster. For a reference to all command-
line options, system variables, and status variables used with or relating to mysqld, see Section 7.1.4,
“Server Option, System Variable, and Status Variable Reference”.

• Com_show_ndb_status: Count of SHOW NDB STATUS statements.

• Handler_discover: Number of times that tables have been discovered.

• ndb-applier-allow-skip-epoch: Lets replication applier skip epochs.

• ndb-batch-size: Size (in bytes) to use for NDB transaction batches.

• ndb-blob-read-batch-bytes: Specifies size in bytes that large BLOB reads should be batched
into. 0 = no limit.

• ndb-blob-write-batch-bytes: Specifies size in bytes that large BLOB writes should be batched
into. 0 = no limit.

• ndb-cluster-connection-pool: Number of connections to cluster used by MySQL.

• ndb-cluster-connection-pool-nodeids: Comma-separated list of node IDs for connections
to cluster used by MySQL; number of nodes in list must match value set for --ndb-cluster-connection-
pool.

• ndb-connectstring: Address of NDB management server distributing configuration information
for this cluster.

• ndb-default-column-format: Use this value (FIXED or DYNAMIC) by default for
COLUMN_FORMAT and ROW_FORMAT options when creating or adding table columns.

• ndb-deferred-constraints: Specifies that constraint checks on unique indexes (where these
are supported) should be deferred until commit time. Not normally needed or used; for testing
purposes only.

4243

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ndb-distribution: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

• ndb-log-apply-status: Cause MySQL server acting as replica to log mysql.ndb_apply_status
updates received from its immediate source in its own binary log, using its own server ID. Effective
only if server is started with --ndbcluster option.

• ndb-log-empty-epochs: When enabled, causes epochs in which there were no changes to be
written to ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

• ndb-log-empty-update: When enabled, causes updates that produced no changes to be written
to ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

• ndb-log-exclusive-reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

• ndb-log-fail-terminate: Terminate mysqld process if complete logging of all found row events
is not possible.

• ndb-log-orig: Log originating server id and epoch in mysql.ndb_binlog_index table.

• ndb-log-transaction-dependency: Make binary log thread calculate transaction dependencies
for every transaction it writes to binary log.

• ndb-log-transaction-id: Write NDB transaction IDs in binary log. Requires --log-bin-v1-
events=OFF.

• ndb-log-update-minimal: Log updates in minimal format.

• ndb-log-updated-only: Log updates only (ON) or complete rows (OFF).

• ndb-log-update-as-write: Toggles logging of updates on source between updates (OFF) and
writes (ON).

• ndb-mgmd-host: Set host (and port, if desired) for connecting to management server.

• ndb-nodeid: NDB Cluster node ID for this MySQL server.

• ndb-optimized-node-selection: Enable optimizations for selection of nodes for transactions.
Enabled by default; use --skip-ndb-optimized-node-selection to disable.

• ndb-transid-mysql-connection-map: Enable or disable ndb_transid_mysql_connection_map
plugin; that is, enable or disable INFORMATION_SCHEMA table having that name.

• ndb-wait-connected: Time (in seconds) for MySQL server to wait for connection to cluster
management and data nodes before accepting MySQL client connections.

• ndb-wait-setup: Time (in seconds) for MySQL server to wait for NDB engine setup to complete.

• ndb-allow-copying-alter-table: Set to OFF to keep ALTER TABLE from using copying
operations on NDB tables.

• Ndb_api_adaptive_send_deferred_count: Number of adaptive send calls not actually sent by
this MySQL Server (SQL node).

• Ndb_api_adaptive_send_deferred_count_session: Number of adaptive send calls not
actually sent in this client session.

• Ndb_api_adaptive_send_deferred_count_replica: Number of adaptive send calls not
actually sent by this replica.

• Ndb_api_adaptive_send_deferred_count_slave: Number of adaptive send calls not actually
sent by this replica.

4244

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_api_adaptive_send_forced_count: Number of adaptive sends with forced-send set sent
by this MySQL Server (SQL node).

• Ndb_api_adaptive_send_forced_count_session: Number of adaptive sends with forced-
send set in this client session.

• Ndb_api_adaptive_send_forced_count_replica: Number of adaptive sends with forced-
send set sent by this replica.

• Ndb_api_adaptive_send_forced_count_slave: Number of adaptive sends with forced-send
set sent by this replica.

• Ndb_api_adaptive_send_unforced_count: Number of adaptive sends without forced-send
sent by this MySQL Server (SQL node).

• Ndb_api_adaptive_send_unforced_count_session: Number of adaptive sends without
forced-send in this client session.

• Ndb_api_adaptive_send_unforced_count_replica: Number of adaptive sends without
forced-send sent by this replica.

• Ndb_api_adaptive_send_unforced_count_slave: Number of adaptive sends without forced-
send sent by this replica.

• Ndb_api_bytes_received_count: Quantity of data (in bytes) received from data nodes by this
MySQL Server (SQL node).

• Ndb_api_bytes_received_count_session: Quantity of data (in bytes) received from data
nodes in this client session.

• Ndb_api_bytes_received_count_replica: Quantity of data (in bytes) received from data
nodes by this replica.

• Ndb_api_bytes_received_count_slave: Quantity of data (in bytes) received from data nodes
by this replica.

• Ndb_api_bytes_sent_count: Quantity of data (in bytes) sent to data nodes by this MySQL
Server (SQL node).

• Ndb_api_bytes_sent_count_session: Quantity of data (in bytes) sent to data nodes in this
client session.

• Ndb_api_bytes_sent_count_replica: Qunatity of data (in bytes) sent to data nodes by this
replica.

• Ndb_api_bytes_sent_count_slave: Qunatity of data (in bytes) sent to data nodes by this
replica.

• Ndb_api_event_bytes_count: Number of bytes of events received by this MySQL Server (SQL
node).

• Ndb_api_event_bytes_count_injector: Number of bytes of event data received by NDB
binary log injector thread.

• Ndb_api_event_data_count: Number of row change events received by this MySQL Server
(SQL node).

• Ndb_api_event_data_count_injector: Number of row change events received by NDB binary
log injector thread.

• Ndb_api_event_nondata_count: Number of events received, other than row change events, by
this MySQL Server (SQL node).

4245

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_api_event_nondata_count_injector: Number of events received, other than row change
events, by NDB binary log injector thread.

• Ndb_api_pk_op_count: Number of operations based on or using primary keys by this MySQL
Server (SQL node).

• Ndb_api_pk_op_count_session: Number of operations based on or using primary keys in this
client session.

• Ndb_api_pk_op_count_replica: Number of operations based on or using primary keys by this
replica.

• Ndb_api_pk_op_count_slave: Number of operations based on or using primary keys by this
replica.

• Ndb_api_pruned_scan_count: Number of scans that have been pruned to one partition by this
MySQL Server (SQL node).

• Ndb_api_pruned_scan_count_session: Number of scans that have been pruned to one
partition in this client session.

• Ndb_api_pruned_scan_count_replica: Number of scans that have been pruned to one
partition by this replica.

• Ndb_api_pruned_scan_count_slave: Number of scans that have been pruned to one partition
by this replica.

• Ndb_api_range_scan_count: Number of range scans that have been started by this MySQL
Server (SQL node).

• Ndb_api_range_scan_count_session: Number of range scans that have been started in this
client session.

• Ndb_api_range_scan_count_replica: Number of range scans that have been started by this
replica.

• Ndb_api_range_scan_count_slave: Number of range scans that have been started by this
replica.

• Ndb_api_read_row_count: Total number of rows that have been read by this MySQL Server
(SQL node).

• Ndb_api_read_row_count_session: Total number of rows that have been read in this client
session.

• Ndb_api_read_row_count_replica: Total number of rows that have been read by this replica.

• Ndb_api_read_row_count_slave: Total number of rows that have been read by this replica.

• Ndb_api_scan_batch_count: Number of batches of rows received by this MySQL Server (SQL
node).

• Ndb_api_scan_batch_count_session: Number of batches of rows received in this client
session.

• Ndb_api_scan_batch_count_replica: Number of batches of rows received by this replica.

• Ndb_api_scan_batch_count_slave: Number of batches of rows received by this replica.

• Ndb_api_table_scan_count: Number of table scans that have been started, including scans of
internal tables, by this MySQL Server (SQL node).

• Ndb_api_table_scan_count_session: Number of table scans that have been started, including
scans of internal tables, in this client session.

4246

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_api_table_scan_count_replica: Number of table scans that have been started, including
scans of internal tables, by this replica.

• Ndb_api_table_scan_count_slave: Number of table scans that have been started, including
scans of internal tables, by this replica.

• Ndb_api_trans_abort_count: Number of transactions aborted by this MySQL Server (SQL
node).

• Ndb_api_trans_abort_count_session: Number of transactions aborted in this client session.

• Ndb_api_trans_abort_count_replica: Number of transactions aborted by this replica.

• Ndb_api_trans_abort_count_slave: Number of transactions aborted by this replica.

• Ndb_api_trans_close_count: Number of transactions closed by this MySQL Server (SQL
node); may be greater than sum of TransCommitCount and TransAbortCount.

• Ndb_api_trans_close_count_session: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) in this client session.

• Ndb_api_trans_close_count_replica: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) by this replica.

• Ndb_api_trans_close_count_slave: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) by this replica.

• Ndb_api_trans_commit_count: Number of transactions committed by this MySQL Server (SQL
node).

• Ndb_api_trans_commit_count_session: Number of transactions committed in this client
session.

• Ndb_api_trans_commit_count_replica: Number of transactions committed by this replica.

• Ndb_api_trans_commit_count_slave: Number of transactions committed by this replica.

• Ndb_api_trans_local_read_row_count: Total number of rows that have been read by this
MySQL Server (SQL node).

• Ndb_api_trans_local_read_row_count_session: Total number of rows that have been read
in this client session.

• Ndb_api_trans_local_read_row_count_replica: Total number of rows that have been read
by this replica.

• Ndb_api_trans_local_read_row_count_slave: Total number of rows that have been read by
this replica.

• Ndb_api_trans_start_count: Number of transactions started by this MySQL Server (SQL
node).

• Ndb_api_trans_start_count_session: Number of transactions started in this client session.

• Ndb_api_trans_start_count_replica: Number of transactions started by this replica.

• Ndb_api_trans_start_count_slave: Number of transactions started by this replica.

• Ndb_api_uk_op_count: Number of operations based on or using unique keys by this MySQL
Server (SQL node).

• Ndb_api_uk_op_count_session: Number of operations based on or using unique keys in this
client session.

4247

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_api_uk_op_count_replica: Number of operations based on or using unique keys by this
replica.

• Ndb_api_uk_op_count_slave: Number of operations based on or using unique keys by this
replica.

• Ndb_api_wait_exec_complete_count: Number of times thread has been blocked while waiting
for operation execution to complete by this MySQL Server (SQL node).

• Ndb_api_wait_exec_complete_count_session: Number of times thread has been blocked
while waiting for operation execution to complete in this client session.

• Ndb_api_wait_exec_complete_count_replica: Number of times thread has been blocked
while waiting for operation execution to complete by this replica.

• Ndb_api_wait_exec_complete_count_slave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica.

• Ndb_api_wait_meta_request_count: Number of times thread has been blocked waiting for
metadata-based signal by this MySQL Server (SQL node).

• Ndb_api_wait_meta_request_count_session: Number of times thread has been blocked
waiting for metadata-based signal in this client session.

• Ndb_api_wait_meta_request_count_replica: Number of times thread has been blocked
waiting for metadata-based signal by this replica.

• Ndb_api_wait_meta_request_count_slave: Number of times thread has been blocked waiting
for metadata-based signal by this replica.

• Ndb_api_wait_nanos_count: Total time (in nanoseconds) spent waiting for some type of signal
from data nodes by this MySQL Server (SQL node).

• Ndb_api_wait_nanos_count_session: Total time (in nanoseconds) spent waiting for some type
of signal from data nodes in this client session.

• Ndb_api_wait_nanos_count_replica: Total time (in nanoseconds) spent waiting for some type
of signal from data nodes by this replica.

• Ndb_api_wait_nanos_count_slave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica.

• Ndb_api_wait_scan_result_count: Number of times thread has been blocked while waiting for
scan-based signal by this MySQL Server (SQL node).

• Ndb_api_wait_scan_result_count_session: Number of times thread has been blocked while
waiting for scan-based signal in this client session.

• Ndb_api_wait_scan_result_count_replica: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

• Ndb_api_wait_scan_result_count_slave: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

• ndb_autoincrement_prefetch_sz: NDB auto-increment prefetch size.

• ndb_clear_apply_status: Causes RESET SLAVE/RESET REPLICA to clear all rows from
ndb_apply_status table; ON by default.

• Ndb_cluster_node_id: Node ID of this server when acting as NDB Cluster SQL node.

• Ndb_config_from_host: NDB Cluster management server host name or IP address.

• Ndb_config_from_port: Port for connecting to NDB Cluster management server.

4248

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• Ndb_config_generation: Generation number of the current configuration of the cluster.

• Ndb_conflict_fn_epoch: Number of rows that have been found in conflict by NDB$EPOCH()
NDB replication conflict detection function.

• Ndb_conflict_fn_epoch2: Number of rows that have been found in conflict by NDB replication
NDB$EPOCH2() conflict detection function.

• Ndb_conflict_fn_epoch2_trans: Number of rows that have been found in conflict by NDB
replication NDB$EPOCH2_TRANS() conflict detection function.

• Ndb_conflict_fn_epoch_trans: Number of rows that have been found in conflict by NDB
$EPOCH_TRANS() conflict detection function.

• Ndb_conflict_fn_max: Number of times that NDB replication conflict resolution based on "greater
timestamp wins" has been applied to update and delete operations.

• Ndb_conflict_fn_max_del_win: Number of times that NDB replication conflict resolution based
on outcome of NDB$MAX_DELETE_WIN() has been applied to update and delete operations.

• Ndb_conflict_fn_max_ins: Number of times that NDB replication conflict resolution based on
"greater timestamp wins" has been applied to insert operations.

• Ndb_conflict_fn_max_del_win_ins: Number of times that NDB replication conflict resolution
based on outcome of NDB$MAX_DEL_WIN_INS() has been applied to insert operations.

• Ndb_conflict_fn_old: Number of times that NDB replication "same timestamp wins" conflict
resolution has been applied.

• Ndb_conflict_last_conflict_epoch: Most recent NDB epoch on this replica in which some
conflict was detected.

• Ndb_conflict_last_stable_epoch: Most recent epoch containing no conflicts.

• Ndb_conflict_reflected_op_discard_count: Number of reflected operations that were not
applied due error during execution.

• Ndb_conflict_reflected_op_prepare_count: Number of reflected operations received that
have been prepared for execution.

• Ndb_conflict_refresh_op_count: Number of refresh operations that have been prepared.

• ndb_conflict_role: Role for replica to play in conflict detection and resolution. Value is one of
PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information.

• Ndb_conflict_trans_conflict_commit_count: Number of epoch transactions committed
after requiring transactional conflict handling.

• Ndb_conflict_trans_detect_iter_count: Number of internal iterations
required to commit epoch transaction. Should be (slightly) greater than or equal to
Ndb_conflict_trans_conflict_commit_count.

• Ndb_conflict_trans_reject_count: Number of transactions rejected after being found in
conflict by transactional conflict function.

• Ndb_conflict_trans_row_conflict_count: Number of rows found in conflict by transactional
conflict function. Includes any rows included in or dependent on conflicting transactions.

• Ndb_conflict_trans_row_reject_count: Total number of rows realigned after being found
in conflict by transactional conflict function. Includes Ndb_conflict_trans_row_conflict_count and any
rows included in or dependent on conflicting transactions.

4249

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ndb_data_node_neighbour: Specifies cluster data node "closest" to this MySQL Server, for
transaction hinting and fully replicated tables.

• ndb_default_column_format: Sets default row format and column format (FIXED or DYNAMIC)
used for new NDB tables.

• ndb_deferred_constraints: Specifies that constraint checks should be deferred (where these
are supported). Not normally needed or used; for testing purposes only.

• ndb_dbg_check_shares: Check for any lingering shares (debug builds only).

• ndb-schema-dist-timeout: How long to wait before detecting timeout during schema
distribution.

• ndb_distribution: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

• Ndb_epoch_delete_delete_count: Number of delete-delete conflicts detected (delete operation
is applied, but row does not exist).

• ndb_eventbuffer_free_percent: Percentage of free memory that should be available in event
buffer before resumption of buffering, after reaching limit set by ndb_eventbuffer_max_alloc.

• ndb_eventbuffer_max_alloc: Maximum memory that can be allocated for buffering events by
NDB API. Defaults to 0 (no limit).

• Ndb_execute_count: Number of round trips to NDB kernel made by operations.

• ndb_extra_logging: Controls logging of NDB Cluster schema, connection, and data distribution
events in MySQL error log.

• Ndb_fetch_table_stats: Number of times table statistics were fetched from tables rather than
cache.

• ndb_force_send: Forces sending of buffers to NDB immediately, without waiting for other threads.

• ndb_fully_replicated: Whether new NDB tables are fully replicated.

• ndb_index_stat_enable: Use NDB index statistics in query optimization.

• ndb_index_stat_option: Comma-separated list of tunable options for NDB index statistics; list
should contain no spaces.

• ndb_join_pushdown: Enables pushing down of joins to data nodes.

• Ndb_last_commit_epoch_server: Epoch most recently committed by NDB.

• Ndb_last_commit_epoch_session: Epoch most recently committed by this NDB client.

• ndb_log_apply_status: Whether or not MySQL server acting as replica logs
mysql.ndb_apply_status updates received from its immediate source in its own binary log, using its
own server ID.

• ndb_log_bin: Write updates to NDB tables in binary log. Effective only if binary logging is enabled
with --log-bin.

• ndb_log_binlog_index: Insert mapping between epochs and binary log positions into
ndb_binlog_index table. Defaults to ON. Effective only if binary logging is enabled.

• ndb_log_cache_size: Set size of transaction cache used for recording NDB binary log.

• ndb_log_empty_epochs: When enabled, epochs in which there were no changes are
written to ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or
log_slave_updates is enabled.

4250

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ndb_log_empty_update: When enabled, updates which produce no changes are written
to ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or
log_slave_updates is enabled.

• ndb_log_exclusive_reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

• ndb_log_orig: Whether id and epoch of originating server are recorded in mysql.ndb_binlog_index
table. Set using --ndb-log-orig option when starting mysqld.

• ndb_log_transaction_id: Whether NDB transaction IDs are written into binary log (Read-only).

• ndb_log_transaction_compression: Whether to compress NDB binary log; can also be
enabled on startup by enabling --binlog-transaction-compression option.

• ndb_log_transaction_compression_level_zstd: The ZSTD compression level to use when
writing compressed transactions to the NDB binary log.

• ndb_metadata_check: Enable auto-detection of NDB metadata changes with respect to MySQL
data dictionary; enabled by default.

• Ndb_metadata_blacklist_size: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count.

• ndb_metadata_check_interval: Interval in seconds to perform check for NDB metadata
changes with respect to MySQL data dictionary.

• Ndb_metadata_detected_count: Number of times NDB metadata change monitor thread has
detected changes.

• Ndb_metadata_excluded_count: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize.

• ndb_metadata_sync: Triggers immediate synchronization of all changes between NDB dictionary
and MySQL data dictionary; causes ndb_metadata_check and ndb_metadata_check_interval values
to be ignored. Resets to false when synchronization is complete.

• Ndb_metadata_synced_count: Number of NDB metadata objects which have been
synchronized.

• Ndb_number_of_data_nodes: Number of data nodes in this NDB cluster; set only if server
participates in cluster.

• ndb-optimization-delay: Number of milliseconds to wait between processing sets of rows by
OPTIMIZE TABLE on NDB tables.

• ndb_optimized_node_selection: Determines how SQL node chooses cluster data node to use
as transaction coordinator.

• Ndb_pruned_scan_count: Number of scans executed by NDB since cluster was last started
where partition pruning could be used.

• Ndb_pushed_queries_defined: Number of joins that API nodes have attempted to push down to
data nodes.

• Ndb_pushed_queries_dropped: Number of joins that API nodes have tried to push down, but
failed.

• Ndb_pushed_queries_executed: Number of joins successfully pushed down and executed on
data nodes.

• Ndb_pushed_reads: Number of reads executed on data nodes by pushed-down joins.

4251

Overview of NDB Cluster Configuration Parameters, Options, and Variables

• ndb_read_backup: Enable read from any replica for all NDB tables; use
NDB_TABLE=READ_BACKUP={0|1} with CREATE TABLE or ALTER TABLE to enable or disable
for individual NDB tables.

• ndb_recv_thread_activation_threshold: Activation threshold when receive thread takes
over polling of cluster connection (measured in concurrently active threads).

• ndb_recv_thread_cpu_mask: CPU mask for locking receiver threads to specific CPUs; specified
as hexadecimal. See documentation for details.

• Ndb_replica_max_replicated_epoch: Most recently committed NDB epoch on this replica.
When this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet
been detected.

• ndb_replica_batch_size: Batch size in bytes for replica applier.

• ndb_report_thresh_binlog_epoch_slip: NDB 7.5 and later: Threshold for number of epochs
completely buffered, but not yet consumed by binlog injector thread which when exceeded generates
BUFFERED_EPOCHS_OVER_THRESHOLD event buffer status message; prior to NDB 7.5:
Threshold for number of epochs to lag behind before reporting binary log status.

• ndb_report_thresh_binlog_mem_usage: Threshold for percentage of free memory remaining
before reporting binary log status.

• ndb_row_checksum: When enabled, set row checksums; enabled by default.

• Ndb_scan_count: Total number of scans executed by NDB since cluster was last started.

• ndb_schema_dist_lock_wait_timeout: Time during schema distribution to wait for lock before
returning error.

• ndb_schema_dist_timeout: Time to wait before detecting timeout during schema distribution.

• ndb_schema_dist_upgrade_allowed: Allow schema distribution table upgrade when connecting
to NDB.

• Ndb_schema_participant_count: Number of MySQL servers participating in NDB schema
change distribution.

• ndb_show_foreign_key_mock_tables: Show mock tables used to support
foreign_key_checks=0.

• ndb_slave_conflict_role: Role for replica to play in conflict detection and resolution. Value is
one of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication
SQL thread is stopped. See documentation for further information.

• Ndb_slave_max_replicated_epoch: Most recently committed NDB epoch on this replica. When
this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been
detected.

• Ndb_system_name: Configured cluster system name; empty if server not connected to NDB.

• ndb_table_no_logging: NDB tables created when this setting is enabled are not checkpointed to
disk (although table schema files are created). Setting in effect when table is created with or altered
to use NDBCLUSTER persists for table's lifetime.

• ndb_table_temporary: NDB tables are not persistent on disk: no schema files are created and
tables are not logged.

• Ndb_trans_hint_count_session: Number of transactions using hints that have been started in
this session.

• ndb_use_copying_alter_table: Use copying ALTER TABLE operations in NDB Cluster.

4252

NDB Cluster Configuration Files

• ndb_use_exact_count: Forces NDB to use a count of records during SELECT COUNT(*) query
planning to speed up this type of query.

• ndb_use_transactions: Set to OFF, to disable transaction support by NDB. Not recommended
except in certain special cases; see documentation for details.

• ndb_version: Shows build and NDB engine version as an integer.

• ndb_version_string: Shows build information including NDB engine version in ndb-x.y.z format.

• ndbcluster: Enable NDB Cluster (if this version of MySQL supports it). Disabled by --skip-
ndbcluster.

• ndbinfo: Enable ndbinfo plugin, if supported.

• ndbinfo_database: Name used for NDB information database; read only.

• ndbinfo_max_bytes: Used for debugging only.

• ndbinfo_max_rows: Used for debugging only.

• ndbinfo_offline: Put ndbinfo database into offline mode, in which no rows are returned from
tables or views.

• ndbinfo_show_hidden: Whether to show ndbinfo internal base tables in mysql client; default is
OFF.

• ndbinfo_table_prefix: Prefix to use for naming ndbinfo internal base tables; read only.

• ndbinfo_version: ndbinfo engine version; read only.

• replica_allow_batching: Turns update batching on and off for replica.

• server_id_bits: Number of least significant bits in server_id actually used for identifying server,
permitting NDB API applications to store application data in most significant bits. server_id must be
less than 2 to power of this value.

• skip-ndbcluster: Disable NDB Cluster storage engine.

• slave_allow_batching: Turns update batching on and off for replica.

• transaction_allow_batching: Allows batching of statements within one transaction. Disable
AUTOCOMMIT to use.

25.4.3 NDB Cluster Configuration Files

Configuring NDB Cluster requires working with two files:

• my.cnf: Specifies options for all NDB Cluster executables. This file, with which you should be
familiar with from previous work with MySQL, must be accessible by each executable running in the
cluster.

• config.ini: This file, sometimes known as the global configuration file, is read only by the NDB
Cluster management server, which then distributes the information contained therein to all processes
participating in the cluster. config.ini contains a description of each node involved in the cluster.
This includes configuration parameters for data nodes and configuration parameters for connections
between all nodes in the cluster. For a quick reference to the sections that can appear in this file,
and what sorts of configuration parameters may be placed in each section, see Sections of the
config.ini File.

Caching of configuration data. NDB uses stateful configuration. Rather than reading the global
configuration file every time the management server is restarted, the management server caches the

4253

NDB Cluster Configuration Files

configuration the first time it is started, and thereafter, the global configuration file is read only when
one of the following conditions is true:

• The management server is started using the --initial option. When --initial is used, the
global configuration file is re-read, any existing cache files are deleted, and the management server
creates a new configuration cache.

• The management server is started using the --reload option. The --reload option causes
the management server to compare its cache with the global configuration file. If they differ,
the management server creates a new configuration cache; any existing configuration cache is
preserved, but not used. If the management server's cache and the global configuration file contain
the same configuration data, then the existing cache is used, and no new cache is created.

• The management server is started using --config-cache=FALSE. This disables --
config-cache (enabled by default), and can be used to force the management server to bypass
configuration caching altogether. In this case, the management server ignores any configuration files
that may be present, always reading its configuration data from the config.ini file instead.

• No configuration cache is found. In this case, the management server reads the global
configuration file and creates a cache containing the same configuration data as found in the file.

Configuration cache files. The management server by default creates configuration cache files
in a directory named mysql-cluster in the MySQL installation directory. (If you build NDB Cluster
from source on a Unix system, the default location is /usr/local/mysql-cluster.) This can be
overridden at runtime by starting the management server with the --configdir option. Configuration
cache files are binary files named according to the pattern ndb_node_id_config.bin.seq_id,
where node_id is the management server's node ID in the cluster, and seq_id is a cache identifier.
Cache files are numbered sequentially using seq_id, in the order in which they are created. The
management server uses the latest cache file as determined by the seq_id.

Note

It is possible to roll back to a previous configuration by deleting later
configuration cache files, or by renaming an earlier cache file so that it has a
higher seq_id. However, since configuration cache files are written in a binary
format, you should not attempt to edit their contents by hand.

For more information about the --configdir, --config-cache, --initial, and --reload
options for the NDB Cluster management server, see Section 25.5.4, “ndb_mgmd — The NDB Cluster
Management Server Daemon”.

We are continuously making improvements in NDB Cluster configuration and attempting to simplify this
process. Although we strive to maintain backward compatibility, there may be times when introduce an
incompatible change. In such cases we try to let NDB Cluster users know in advance if a change is not
backward compatible. If you find such a change and we have not documented it, please report it in the
MySQL bugs database using the instructions given in Section 1.5, “How to Report Bugs or Problems”.

25.4.3.1 NDB Cluster Configuration: Basic Example

To support NDB Cluster, you should update my.cnf as shown in the following example. You may also
specify these parameters on the command line when invoking the executables.

Note

The options shown here should not be confused with those that are used
in config.ini global configuration files. Global configuration options are
discussed later in this section.

my.cnf
example additions to my.cnf for NDB Cluster
(valid in MySQL 8.0)

4254

NDB Cluster Configuration Files

enable ndbcluster storage engine, and provide connection string for
management server host (default port is 1186)
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com

provide connection string for management server host (default port: 1186)
[ndbd]
connect-string=ndb_mgmd.mysql.com

provide connection string for management server host (default port: 1186)
[ndb_mgm]
connect-string=ndb_mgmd.mysql.com

provide location of cluster configuration file
IMPORTANT: When starting the management server with this option in the
configuration file, the use of --initial or --reload on the command line when
invoking ndb_mgmd is also required.
[ndb_mgmd]
config-file=/etc/config.ini

(For more information on connection strings, see Section 25.4.3.3, “NDB Cluster Connection Strings”.)

my.cnf
example additions to my.cnf for NDB Cluster
(works on all versions)

enable ndbcluster storage engine, and provide connection string for management
server host to the default port 1186
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com:1186

Important

Once you have started a mysqld process with the NDBCLUSTER and ndb-
connectstring parameters in the [mysqld] in the my.cnf file as shown
previously, you cannot execute any CREATE TABLE or ALTER TABLE
statements without having actually started the cluster. Otherwise, these
statements fail with an error. This is by design.

You may also use a separate [mysql_cluster] section in the cluster my.cnf file for settings to be
read and used by all executables:

cluster-specific settings
[mysql_cluster]
ndb-connectstring=ndb_mgmd.mysql.com:1186

For additional NDB variables that can be set in the my.cnf file, see NDB Cluster System Variables.

The NDB Cluster global configuration file is by convention named config.ini (but this is not
required). If needed, it is read by ndb_mgmd at startup and can be placed in any location that
can be read by it. The location and name of the configuration are specified using --config-
file=path_name with ndb_mgmd on the command line. This option has no default value, and is
ignored if ndb_mgmd uses the configuration cache.

The global configuration file for NDB Cluster uses INI format, which consists of sections preceded
by section headings (surrounded by square brackets), followed by the appropriate parameter names
and values. One deviation from the standard INI format is that the parameter name and value can be
separated by a colon (:) as well as the equal sign (=); however, the equal sign is preferred. Another
deviation is that sections are not uniquely identified by section name. Instead, unique sections (such as
two different nodes of the same type) are identified by a unique ID specified as a parameter within the
section.

Default values are defined for most parameters, and can also be specified in config.ini. To create
a default value section, simply add the word default to the section name. For example, an [ndbd]

4255

NDB Cluster Configuration Files

section contains parameters that apply to a particular data node, whereas an [ndbd default]
section contains parameters that apply to all data nodes. Suppose that all data nodes should use the
same data memory size. To configure them all, create an [ndbd default] section that contains a
DataMemory line to specify the data memory size.

If used, the [ndbd default] section must precede any [ndbd] sections in the configuration file.
This is also true for default sections of any other type.

Note

In some older releases of NDB Cluster, there was no default value for
NoOfReplicas, which always had to be specified explicitly in the [ndbd
default] section. Although this parameter now has a default value of 2,
which is the recommended setting in most common usage scenarios, it is still
recommended practice to set this parameter explicitly.

The global configuration file must define the computers and nodes involved in the cluster and on which
computers these nodes are located. An example of a simple configuration file for a cluster consisting of
one management server, two data nodes and two MySQL servers is shown here:

file "config.ini" - 2 data nodes and 2 SQL nodes
This file is placed in the startup directory of ndb_mgmd (the
management server)
The first MySQL Server can be started from any host. The second
can be started only on the host mysqld_5.mysql.com

[ndbd default]
NoOfReplicas= 2
DataDir= /var/lib/mysql-cluster

[ndb_mgmd]
Hostname= ndb_mgmd.mysql.com
DataDir= /var/lib/mysql-cluster

[ndbd]
HostName= ndbd_2.mysql.com

[ndbd]
HostName= ndbd_3.mysql.com

[mysqld]
[mysqld]
HostName= mysqld_5.mysql.com

Note

The preceding example is intended as a minimal starting configuration for
purposes of familiarization with NDB Cluster , and is almost certain not to be
sufficient for production settings. See Section 25.4.3.2, “Recommended Starting
Configuration for NDB Cluster”, which provides a more complete example
starting configuration.

Each node has its own section in the config.ini file. For example, this cluster has two data nodes,
so the preceding configuration file contains two [ndbd] sections defining these nodes.

Note

Do not place comments on the same line as a section heading in the
config.ini file; this causes the management server not to start because it
cannot parse the configuration file in such cases.

Sections of the config.ini File

There are six different sections that you can use in the config.ini configuration file, as described in
the following list:

4256

NDB Cluster Configuration Files

• [computer]: Defines cluster hosts. This is not required to configure a viable NDB Cluster, but
be may used as a convenience when setting up a large cluster. See Section 25.4.3.4, “Defining
Computers in an NDB Cluster”, for more information.

• [ndbd]: Defines a cluster data node (ndbd process). See Section 25.4.3.6, “Defining NDB Cluster
Data Nodes”, for details.

• [mysqld]: Defines the cluster's MySQL server nodes (also called SQL or API nodes). For a
discussion of SQL node configuration, see Section 25.4.3.7, “Defining SQL and Other API Nodes in
an NDB Cluster”.

• [mgm] or [ndb_mgmd]: Defines a cluster management server (MGM) node. For information
concerning the configuration of management nodes, see Section 25.4.3.5, “Defining an NDB Cluster
Management Server”.

• [tcp]: Defines a TCP/IP connection between cluster nodes, with TCP/IP being the default
transport protocol. Normally, [tcp] or [tcp default] sections are not required to set up an
NDB Cluster, as the cluster handles this automatically; however, it may be necessary in some
situations to override the defaults provided by the cluster. See Section 25.4.3.10, “NDB Cluster
TCP/IP Connections”, for information about available TCP/IP configuration parameters and how to
use them. (You may also find Section 25.4.3.11, “NDB Cluster TCP/IP Connections Using Direct
Connections” to be of interest in some cases.)

• [shm]: Defines shared-memory connections between nodes. In MySQL 8.0, it is enabled by
default, but should still be considered experimental. For a discussion of SHM interconnects, see
Section 25.4.3.12, “NDB Cluster Shared-Memory Connections”.

• [sci]: Defines Scalable Coherent Interface connections between cluster data nodes. Not supported
in NDB 8.0.

You can define default values for each section. If used, a default section should come before
any other sections of that type. For example, an [ndbd default] section should appear in the
configuration file before any [ndbd] sections.

NDB Cluster parameter names are case-insensitive, unless specified in MySQL Server my.cnf or
my.ini files.

25.4.3.2 Recommended Starting Configuration for NDB Cluster

Achieving the best performance from an NDB Cluster depends on a number of factors including the
following:

• NDB Cluster software version

• Numbers of data nodes and SQL nodes

• Hardware

• Operating system

• Amount of data to be stored

• Size and type of load under which the cluster is to operate

Therefore, obtaining an optimum configuration is likely to be an iterative process, the outcome of which
can vary widely with the specifics of each NDB Cluster deployment. Changes in configuration are
also likely to be indicated when changes are made in the platform on which the cluster is run, or in
applications that use the NDB Cluster 's data. For these reasons, it is not possible to offer a single
configuration that is ideal for all usage scenarios. However, in this section, we provide a recommended
base configuration.

4257

NDB Cluster Configuration Files

Starting config.ini file. The following config.ini file is a recommended starting point for
configuring a cluster running NDB Cluster 8.0:

TCP PARAMETERS

[tcp default]
SendBufferMemory=2M
ReceiveBufferMemory=2M

Increasing the sizes of these 2 buffers beyond the default values
helps prevent bottlenecks due to slow disk I/O.

MANAGEMENT NODE PARAMETERS

[ndb_mgmd default]
DataDir=path/to/management/server/data/directory

It is possible to use a different data directory for each management
server, but for ease of administration it is preferable to be
consistent.

[ndb_mgmd]
HostName=management-server-A-hostname
NodeId=management-server-A-nodeid

[ndb_mgmd]
HostName=management-server-B-hostname
NodeId=management-server-B-nodeid

Using 2 management servers helps guarantee that there is always an
arbitrator in the event of network partitioning, and so is
recommended for high availability. Each management server must be
identified by a HostName. You may for the sake of convenience specify
a NodeId for any management server, although one is allocated
for it automatically; if you do so, it must be in the range 1-255
inclusive and must be unique among all IDs specified for cluster
nodes.

DATA NODE PARAMETERS

[ndbd default]
NoOfReplicas=2

Using two fragment replicas is recommended to guarantee availability of data;
using only one fragment replica does not provide any redundancy, which means
that the failure of a single data node causes the entire cluster to shut down.
It is also possible (but not required) in NDB 8.0 to use more than two
fragment replicas, although two fragment replicas are sufficient to provide
high availability.

LockPagesInMainMemory=1

On Linux and Solaris systems, setting this parameter locks data node
processes into memory. Doing so prevents them from swapping to disk,
which can severely degrade cluster performance.

DataMemory=3456M

The value provided for DataMemory assumes 4 GB RAM
per data node. However, for best results, you should first calculate
the memory that would be used based on the data you actually plan to
store (you may find the ndb_size.pl utility helpful in estimating
this), then allow an extra 20% over the calculated values. Naturally,
you should ensure that each data node host has at least as much
physical memory as the sum of these two values.

ODirect=1

Enabling this parameter causes NDBCLUSTER to try using O_DIRECT
writes for local checkpoints and redo logs; this can reduce load on
CPUs. We recommend doing so when using NDB Cluster on systems running
Linux kernel 2.6 or later.

4258

NDB Cluster Configuration Files

NoOfFragmentLogFiles=300
DataDir=path/to/data/node/data/directory
MaxNoOfConcurrentOperations=100000

SchedulerSpinTimer=400
SchedulerExecutionTimer=100
RealTimeScheduler=1
Setting these parameters allows you to take advantage of real-time scheduling
of NDB threads to achieve increased throughput when using ndbd. They
are not needed when using ndbmtd; in particular, you should not set
RealTimeScheduler for ndbmtd data nodes.

TimeBetweenGlobalCheckpoints=1000
TimeBetweenEpochs=200
RedoBuffer=32M

CompressedLCP=1
CompressedBackup=1
Enabling CompressedLCP and CompressedBackup causes, respectively, local
checkpoint files and backup files to be compressed, which can result in a space
savings of up to 50% over noncompressed LCPs and backups.

MaxNoOfLocalScans=64
MaxNoOfTables=1024
MaxNoOfOrderedIndexes=256

[ndbd]
HostName=data-node-A-hostname
NodeId=data-node-A-nodeid

LockExecuteThreadToCPU=1
LockMaintThreadsToCPU=0
On systems with multiple CPUs, these parameters can be used to lock NDBCLUSTER
threads to specific CPUs

[ndbd]
HostName=data-node-B-hostname
NodeId=data-node-B-nodeid

LockExecuteThreadToCPU=1
LockMaintThreadsToCPU=0

You must have an [ndbd] section for every data node in the cluster;
each of these sections must include a HostName. Each section may
optionally include a NodeId for convenience, but in most cases, it is
sufficient to allow the cluster to allocate node IDs dynamically. If
you do specify the node ID for a data node, it must be in the range 1
to 144 inclusive and must be unique among all IDs specified for
cluster nodes.

SQL NODE / API NODE PARAMETERS

[mysqld]
HostName=sql-node-A-hostname
NodeId=sql-node-A-nodeid

[mysqld]

[mysqld]

Each API or SQL node that connects to the cluster requires a [mysqld]
or [api] section of its own. Each such section defines a connection
“slot”; you should have at least as many of these sections in the
config.ini file as the total number of API nodes and SQL nodes that
you wish to have connected to the cluster at any given time. There is
no performance or other penalty for having extra slots available in
case you find later that you want or need more API or SQL nodes to
connect to the cluster at the same time.
If no HostName is specified for a given [mysqld] or [api] section,
then any API or SQL node may use that slot to connect to the
cluster. You may wish to use an explicit HostName for one connection slot

4259

NDB Cluster Configuration Files

to guarantee that an API or SQL node from that host can always
connect to the cluster. If you wish to prevent API or SQL nodes from
connecting from other than a desired host or hosts, then use a
HostName for every [mysqld] or [api] section in the config.ini file.
You can if you wish define a node ID (NodeId parameter) for any API or
SQL node, but this is not necessary; if you do so, it must be in the
range 1 to 255 inclusive and must be unique among all IDs specified
for cluster nodes.

Required my.cnf options for SQL nodes. MySQL servers acting as NDB Cluster SQL nodes
must always be started with the --ndbcluster and --ndb-connectstring options, either on the
command line or in my.cnf.

25.4.3.3 NDB Cluster Connection Strings

With the exception of the NDB Cluster management server (ndb_mgmd), each node that is part
of an NDB Cluster requires a connection string that points to the management server's location.
This connection string is used in establishing a connection to the management server as well as in
performing other tasks depending on the node's role in the cluster. The syntax for a connection string is
as follows:

[nodeid=node_id,]host-definition[, host-definition[, ...]]

host-definition:
 host_name[:port_number]

node_id is an integer greater than or equal to 1 which identifies a node in config.ini. host_name
is a string representing a valid Internet host name or IP address. port_number is an integer referring
to a TCP/IP port number.

example 1 (long): "nodeid=2,myhost1:1100,myhost2:1100,198.51.100.3:1200"
example 2 (short): "myhost1"

localhost:1186 is used as the default connection string value if none is provided. If port_num is
omitted from the connection string, the default port is 1186. This port should always be available on the
network because it has been assigned by IANA for this purpose (see http://www.iana.org/assignments/
port-numbers for details).

By listing multiple host definitions, it is possible to designate several redundant management servers.
An NDB Cluster data or API node attempts to contact successive management servers on each host in
the order specified, until a successful connection has been established.

It is also possible to specify in a connection string one or more bind addresses to be used by nodes
having multiple network interfaces for connecting to management servers. A bind address consists of
a hostname or network address and an optional port number. This enhanced syntax for connection
strings is shown here:

[nodeid=node_id,]
 [bind-address=host-definition,]
 host-definition[; bind-address=host-definition]
 host-definition[; bind-address=host-definition]
 [, ...]]

host-definition:
 host_name[:port_number]

If a single bind address is used in the connection string prior to specifying any management hosts,
then this address is used as the default for connecting to any of them (unless overridden for a given
management server; see later in this section for an example). For example, the following connection
string causes the node to use 198.51.100.242 regardless of the management server to which it
connects:

bind-address=198.51.100.242, poseidon:1186, perch:1186

If a bind address is specified following a management host definition, then it is used only for connecting
to that management node. Consider the following connection string:

4260

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

NDB Cluster Configuration Files

poseidon:1186;bind-address=localhost, perch:1186;bind-address=198.51.100.242

In this case, the node uses localhost to connect to the management server running on the host
named poseidon and 198.51.100.242 to connect to the management server running on the host
named perch.

You can specify a default bind address and then override this default for one or more specific
management hosts. In the following example, localhost is used for connecting to the management
server running on host poseidon; since 198.51.100.242 is specified first (before any management
server definitions), it is the default bind address and so is used for connecting to the management
servers on hosts perch and orca:

bind-address=198.51.100.242,poseidon:1186;bind-address=localhost,perch:1186,orca:2200

There are a number of different ways to specify the connection string:

• Each executable has its own command-line option which enables specifying the management server
at startup. (See the documentation for the respective executable.)

• It is also possible to set the connection string for all nodes in the cluster at once by placing it in a
[mysql_cluster] section in the management server's my.cnf file.

• For backward compatibility, two other options are available, using the same syntax:

1. Set the NDB_CONNECTSTRING environment variable to contain the connection string.

This should be considered deprecated, and not used in new installations.

2. Write the connection string for each executable into a text file named Ndb.cfg and place this file
in the executable's startup directory.

Use of this file is deprecated in NDB 8.0.40; you should expect it to be removed in a future
release of MySQL Cluster.

The recommended method for specifying the connection string is to set it on the command line or in the
my.cnf file for each executable.

25.4.3.4 Defining Computers in an NDB Cluster

The [computer] section has no real significance other than serving as a way to avoid the need of
defining host names for each node in the system. All parameters mentioned here are required.

• Id

Version (or
later)

NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting

4261

NDB Cluster Configuration Files

the cluster.
(NDB 8.0.13)

This is a unique identifier, used to refer to the host computer elsewhere in the configuration file.

Important

The computer ID is not the same as the node ID used for a management,
API, or data node. Unlike the case with node IDs, you cannot use NodeId in
place of Id in the [computer] section of the config.ini file.

• HostName

Version (or
later)

NDB 8.0.13

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This is the computer's hostname or IP address.

Restart types. Information about the restart types used by the parameter descriptions in this section
is shown in the following table:

Table 25.8 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 25.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in
this parameter

I Initial Data nodes must be restarted
using the --initial option

25.4.3.5 Defining an NDB Cluster Management Server

The [ndb_mgmd] section is used to configure the behavior of the management server. If multiple
management servers are employed, you can specify parameters common to all of them in an
[ndb_mgmd default] section. [mgm] and [mgm default] are older aliases for these, supported
for backward compatibility.

All parameters in the following list are optional and assume their default values if omitted.

Note

If neither the ExecuteOnComputer nor the HostName parameter is present,
the default value localhost is assumed for both.

4262

NDB Cluster Configuration Files

• Id

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster.
(NDB 8.0.13)

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255, inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of
node.

Note

Data node IDs must be less than 145. If you plan to deploy a large number of
data nodes, it is a good idea to limit the node IDs for management nodes (and
API nodes) to values greater than 144.

The use of the Id parameter for identifying management nodes is deprecated in favor of NodeId.
Although Id continues to be supported for backward compatibility, it now generates a warning and is
subject to removal in a future version of NDB Cluster.

• NodeId

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting

4263

NDB Cluster Configuration Files

the cluster.
(NDB 8.0.13)

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255 inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of
node.

Note

Data node IDs must be less than 145. If you plan to deploy a large number of
data nodes, it is a good idea to limit the node IDs for management nodes (and
API nodes) to values greater than 144.

NodeId is the preferred parameter name to use when identifying management nodes. Although the
older Id continues to be supported for backward compatibility, it is now deprecated and generates a
warning when used; it is also subject to removal in a future NDB Cluster release.

• ExecuteOnComputer

Version (or
later)

NDB 8.0.13

Type or units name

Default [...]

Range ...

Deprecated Yes (in NDB
7.5)

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

This refers to the Id set for one of the computers defined in a [computer] section of the
config.ini file.

Important

This parameter is deprecated, and is subject to removal in a future release.
Use the HostName parameter instead.

• PortNumber

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 1186

Range 0 - 64K

Restart Type System
Restart:
Requires a
complete
shutdown and

4264

NDB Cluster Configuration Files

restart of the
cluster. (NDB
8.0.13)

This is the port number on which the management server listens for configuration requests and
management commands.

•

The node ID for this node can be given out only to connections that explicitly request it. A
management server that requests “any” node ID cannot use this one. This parameter can be used
when running multiple management servers on the same host, and HostName is not sufficient for
distinguishing among processes.

• HostName

Version (or
later)

NDB 8.0.13

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Specifying this parameter defines the host name of the computer on which the management node is
to reside. Use HostName to specify a host name other than localhost.

• LocationDomainId

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 16

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

Assigns a management node to a specific availability domain (also known as an availability zone)
within a cloud. By informing NDB which nodes are in which availability domains, performance can be
improved in a cloud environment in the following ways:

• If requested data is not found on the same node, reads can be directed to another node in the
same availability domain.

• Communication between nodes in different availability domains are guaranteed to use NDB
transporters' WAN support without any further manual intervention.

4265

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

NDB Cluster Configuration Files

• The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain
whenever possible.

• The arbitrator can be selected from an availability domain in which no data nodes are present, or,
if no such availability domain can be found, from a third availability domain.

LocationDomainId takes an integer value between 0 and 16 inclusive, with 0 being the default;
using 0 is the same as leaving the parameter unset.

• LogDestination

Version (or
later)

NDB 8.0.13

Type or units {CONSOLE|
SYSLOG|FILE}

Default FILE:
filename=ndb_nodeid_cluster.log,
maxsize=1000000,
maxfiles=6

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies where to send cluster logging information. There are three options in this
regard—CONSOLE, SYSLOG, and FILE—with FILE being the default:

• CONSOLE outputs the log to stdout:

CONSOLE

• SYSLOG sends the log to a syslog facility, possible values being one of auth, authpriv,
cron, daemon, ftp, kern, lpr, mail, news, syslog, user, uucp, local0, local1, local2,
local3, local4, local5, local6, or local7.

Note

Not every facility is necessarily supported by every operating system.

SYSLOG:facility=syslog

4266

NDB Cluster Configuration Files

• FILE pipes the cluster log output to a regular file on the same machine. The following values can
be specified:

• filename: The name of the log file.

The default log file name used in such cases is ndb_nodeid_cluster.log.

• maxsize: The maximum size (in bytes) to which the file can grow before logging rolls over to a
new file. When this occurs, the old log file is renamed by appending .N to the file name, where N
is the next number not yet used with this name.

• maxfiles: The maximum number of log files.

FILE:filename=cluster.log,maxsize=1000000,maxfiles=6

The default value for the FILE parameter is
FILE:filename=ndb_node_id_cluster.log,maxsize=1000000,maxfiles=6, where
node_id is the ID of the node.

It is possible to specify multiple log destinations separated by semicolons as shown here:

CONSOLE;SYSLOG:facility=local0;FILE:filename=/var/log/mgmd

• ArbitrationRank

Version (or
later)

NDB 8.0.13

Type or units 0-2

Default 1

Range 0 - 2

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter is used to define which nodes can act as arbitrators. Only management nodes and
SQL nodes can be arbitrators. ArbitrationRank can take one of the following values:

• 0: The node is never used as an arbitrator.

• 1: The node has high priority; that is, it is preferred as an arbitrator over low-priority nodes.

• 2: Indicates a low-priority node which is used as an arbitrator only if a node with a higher priority is
not available for that purpose.

Normally, the management server should be configured as an arbitrator by setting its
ArbitrationRank to 1 (the default for management nodes) and those for all SQL nodes to 0 (the
default for SQL nodes).

You can disable arbitration completely either by setting ArbitrationRank to 0 on all management
and SQL nodes, or by setting the Arbitration parameter in the [ndbd default] section
of the config.ini global configuration file. Setting Arbitration causes any settings for
ArbitrationRank to be disregarded.

4267

NDB Cluster Configuration Files

• ArbitrationDelay

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

An integer value which causes the management server's responses to arbitration requests to be
delayed by that number of milliseconds. By default, this value is 0; it is normally not necessary to
change it.

• DataDir

Version (or
later)

NDB 8.0.13

Type or units path

Default .

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This specifies the directory where output files from the management server are placed. These files
include cluster log files, process output files, and the daemon's process ID (PID) file. (For log files,
this location can be overridden by setting the FILE parameter for LogDestination, as discussed
previously in this section.)

The default value for this parameter is the directory in which ndb_mgmd is located.

• PortNumberStats

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default [...]

Range 0 - 64K

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies the port number used to obtain statistical information from an NDB Cluster
management server. It has no default value.

4268

NDB Cluster Configuration Files

• Wan

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Use WAN TCP setting as default.

• HeartbeatThreadPriority

Version (or
later)

NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Set the scheduling policy and priority of heartbeat threads for management and API nodes.

The syntax for setting this parameter is shown here:

HeartbeatThreadPriority = policy[, priority]

policy:
 {FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FIFO (first in, first out) or RR
(round robin). The policy value is followed optionally by the priority (an integer).

• ExtraSendBufferMemory

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 0

Range 0 - 32G

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any
that has been set using TotalSendBufferMemory, SendBufferMemory, or both. 4269

NDB Cluster Configuration Files

• TotalSendBufferMemory

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 0

Range 256K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter is used to determine the total amount of memory to allocate on this node for shared
send buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has
not been set. For more detailed information, see Section 25.4.3.14, “Configuring NDB Cluster Send
Buffer Parameters”.

• HeartbeatIntervalMgmdMgmd

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 1500

Range 100 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Specify the interval between heartbeat messages used to determine whether another management
node is on contact with this one. The management node waits after 3 of these intervals to declare the
connection dead; thus, the default setting of 1500 milliseconds causes the management node to wait
for approximately 1600 ms before timing out.

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.

To add new management servers to a running NDB Cluster, it is also necessary
to perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using
multiple management nodes, see Section 25.2.7.10, “Limitations Relating to
Multiple NDB Cluster Nodes”.

Restart types. Information about the restart types used by the parameter descriptions in this section
is shown in the following table:

4270

NDB Cluster Configuration Files

Table 25.9 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 25.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in
this parameter

I Initial Data nodes must be restarted
using the --initial option

25.4.3.6 Defining NDB Cluster Data Nodes

The [ndbd] and [ndbd default] sections are used to configure the behavior of the cluster's data
nodes.

[ndbd] and [ndbd default] are always used as the section names whether you are using ndbd or
ndbmtd binaries for the data node processes.

There are many parameters which control buffer sizes, pool sizes, timeouts, and so forth. The only
mandatory parameter is HostName; this must be defined in the local [ndbd] section.

The parameter NoOfReplicas should be defined in the [ndbd default] section, as it is common to
all Cluster data nodes. It is not strictly necessary to set NoOfReplicas, but it is good practice to set it
explicitly.

Most data node parameters are set in the [ndbd default] section. Only those parameters explicitly
stated as being able to set local values are permitted to be changed in the [ndbd] section. Where
present, HostName and NodeId must be defined in the local [ndbd] section, and not in any other
section of config.ini. In other words, settings for these parameters are specific to one data node.

For those parameters affecting memory usage or buffer sizes, it is possible to use K, M, or G as a suffix
to indicate units of 1024, 1024×1024, or 1024×1024×1024. (For example, 100K means 100 × 1024 =
102400.)

Parameter names and values are case-insensitive, unless used in a MySQL Server my.cnf or my.ini
file, in which case they are case-sensitive.

Information about configuration parameters specific to NDB Cluster Disk Data tables can be found later
in this section (see Disk Data Configuration Parameters).

All of these parameters also apply to ndbmtd (the multithreaded version of ndbd). Three additional
data node configuration parameters—MaxNoOfExecutionThreads, ThreadConfig, and
NoOfFragmentLogParts—apply to ndbmtd only; these have no effect when used with ndbd. For
more information, see Multi-Threading Configuration Parameters (ndbmtd). See also Section 25.5.3,
“ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”.

Identifying data nodes. The NodeId or Id value (that is, the data node identifier) can be allocated
on the command line when the node is started or in the configuration file.

• NodeId

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default [...]

4271

NDB Cluster Configuration Files

Range 1 - 48

Version (or
later)

NDB 8.0.18

Type or units unsigned

Default [...]

Range 1 - 144

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster.
(NDB 8.0.13)

A unique node ID is used as the node's address for all cluster internal messages. For data nodes,
this is an integer in the range 1 to 144 inclusive. Each node in the cluster must have a unique
identifier.

NodeId is the only supported parameter name to use when identifying data nodes.

• ExecuteOnComputer

Version (or
later)

NDB 8.0.13

Type or units name

Default [...]

Range ...

Deprecated Yes (in NDB
7.5)

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

This refers to the Id set for one of the computers defined in a [computer] section.

Important

This parameter is deprecated, and is subject to removal in a future release.
Use the HostName parameter instead.

•

The node ID for this node can be given out only to connections that explicitly request it. A
management server that requests “any” node ID cannot use this one. This parameter can be used

4272

NDB Cluster Configuration Files

when running multiple management servers on the same host, and HostName is not sufficient for
distinguishing among processes.

• HostName

Version (or
later)

NDB 8.0.13

Type or units name or IP
address

Default localhost

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Specifying this parameter defines the hostname of the computer on which the data node is to reside.
Use HostName to specify a host name other than localhost.

• ServerPort

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default [...]

Range 1 - 64K

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

Each node in the cluster uses a port to connect to other nodes. By default, this port is allocated
dynamically in such a way as to ensure that no two nodes on the same host computer receive the
same port number, so it should normally not be necessary to specify a value for this parameter.

However, if you need to be able to open specific ports in a firewall to permit communication between
data nodes and API nodes (including SQL nodes), you can set this parameter to the number of
the desired port in an [ndbd] section or (if you need to do this for multiple data nodes) the [ndbd
default] section of the config.ini file, and then open the port having that number for incoming
connections from SQL nodes, API nodes, or both.

Note

Connections from data nodes to management nodes is done using the
ndb_mgmd management port (the management server's PortNumber) so
outgoing connections to that port from any data nodes should always be
permitted.

4273

NDB Cluster Configuration Files

• TcpBind_INADDR_ANY

Setting this parameter to TRUE or 1 binds IP_ADDR_ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

• NodeGroup

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default [...]

Range 0 - 65536

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster.
(NDB 8.0.13)

This parameter can be used to assign a data node to a specific node group. It is read only when the
cluster is started for the first time, and cannot be used to reassign a data node to a different node
group online. It is generally not desirable to use this parameter in the [ndbd default] section of
the config.ini file, and care must be taken not to assign nodes to node groups in such a way that
an invalid numbers of nodes are assigned to any node groups.

The NodeGroup parameter is chiefly intended for use in adding a new node group to a running NDB
Cluster without having to perform a rolling restart. For this purpose, you should set it to 65536 (the
maximum value). You are not required to set a NodeGroup value for all cluster data nodes, only
for those nodes which are to be started and added to the cluster as a new node group at a later
time. For more information, see Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed
Example”.

• LocationDomainId

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 16

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the

4274

NDB Cluster Configuration Files

cluster. (NDB
8.0.13)

Assigns a data node to a specific availability domain (also known as an availability zone) within
a cloud. By informing NDB which nodes are in which availability domains, performance can be
improved in a cloud environment in the following ways:

• If requested data is not found on the same node, reads can be directed to another node in the
same availability domain.

• Communication between nodes in different availability domains are guaranteed to use NDB
transporters' WAN support without any further manual intervention.

• The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain
whenever possible.

• The arbitrator can be selected from an availability domain in which no data nodes are present, or,
if no such availability domain can be found, from a third availability domain.

LocationDomainId takes an integer value between 0 and 16 inclusive, with 0 being the default;
using 0 is the same as leaving the parameter unset.

• NoOfReplicas

Version (or
later)

NDB 8.0.13

Type or units integer

Default 2

Range 1 - 2

Version (or
later)

NDB 8.0.19

Type or units integer

Default 2

Range 1 - 4

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster.
(NDB 8.0.13)

This global parameter can be set only in the [ndbd default] section, and defines the number of
fragment replicas for each table stored in the cluster. This parameter also specifies the size of node
groups. A node group is a set of nodes all storing the same information.

Node groups are formed implicitly. The first node group is formed by the set of data nodes with the
lowest node IDs, the next node group by the set of the next lowest node identities, and so on. By way
of example, assume that we have 4 data nodes and that NoOfReplicas is set to 2. The four data

4275

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

NDB Cluster Configuration Files

nodes have node IDs 2, 3, 4 and 5. Then the first node group is formed from nodes 2 and 3, and the
second node group by nodes 4 and 5. It is important to configure the cluster in such a manner that
nodes in the same node groups are not placed on the same computer because a single hardware
failure would cause the entire cluster to fail.

If no node IDs are provided, the order of the data nodes is the determining factor for the node group.
Whether or not explicit assignments are made, they can be viewed in the output of the management
client's SHOW command.

The default value for NoOfReplicas is 2. This is the recommended value for most production
environments. In NDB 8.0, setting this parameter's value to 3 or 4 is fully tested and supported in
production.

Warning

Setting NoOfReplicas to 1 means that there is only a single copy of all
Cluster data; in this case, the loss of a single data node causes the cluster to
fail because there are no additional copies of the data stored by that node.

The number of data nodes in the cluster must be evenly divisible by the value of this parameter. For
example, if there are two data nodes, then NoOfReplicas must be equal to either 1 or 2, since 2/3
and 2/4 both yield fractional values; if there are four data nodes, then NoOfReplicas must be equal
to 1, 2, or 4.

• DataDir

Version (or
later)

NDB 8.0.13

Type or units path

Default .

Range ...

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

This parameter specifies the directory where trace files, log files, pid files and error logs are placed.

The default is the data node process working directory.

• FileSystemPath

Version (or
later)

NDB 8.0.13

Type or units path

Default DataDir

Range ...

Restart Type Initial Node
Restart:
Requires a

4276

NDB Cluster Configuration Files

rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

This parameter specifies the directory where all files created for metadata, REDO logs, UNDO logs
(for Disk Data tables), and data files are placed. The default is the directory specified by DataDir.

Note

This directory must exist before the ndbd process is initiated.

The recommended directory hierarchy for NDB Cluster includes /var/lib/mysql-cluster, under
which a directory for the node's file system is created. The name of this subdirectory contains the
node ID. For example, if the node ID is 2, this subdirectory is named ndb_2_fs.

• BackupDataDir

Version (or
later)

NDB 8.0.13

Type or units path

Default FileSystemPath

Range ...

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

This parameter specifies the directory in which backups are placed.

Important

The string '/BACKUP' is always appended to this value. For example, if you
set the value of BackupDataDir to /var/lib/cluster-data, then
all backups are stored under /var/lib/cluster-data/BACKUP. This
also means that the effective default backup location is the directory named
BACKUP under the location specified by the FileSystemPath parameter.

Data Memory, Index Memory, and String Memory

DataMemory and IndexMemory are [ndbd] parameters specifying the size of memory segments
used to store the actual records and their indexes. In setting values for these, it is important to
understand how DataMemory is used, as it usually needs to be updated to reflect actual usage by the
cluster.

Note

IndexMemory is deprecated, and subject to removal in a future version of NDB
Cluster. See the descriptions that follow for further information.

4277

NDB Cluster Configuration Files

• DataMemory

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 98M

Range 1M - 1T

Version (or
later)

NDB 8.0.19

Type or units bytes

Default 98M

Range 1M - 16T

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter defines the amount of space (in bytes) available for storing database records. The
entire amount specified by this value is allocated in memory, so it is extremely important that the
machine has sufficient physical memory to accommodate it.

The memory allocated by DataMemory is used to store both the actual records and indexes. There
is a 16-byte overhead on each record; an additional amount for each record is incurred because it
is stored in a 32KB page with 128 byte page overhead (see below). There is also a small amount
wasted per page due to the fact that each record is stored in only one page.

For variable-size table attributes, the data is stored on separate data pages, allocated from
DataMemory. Variable-length records use a fixed-size part with an extra overhead of 4 bytes to
reference the variable-size part. The variable-size part has 2 bytes overhead plus 2 bytes per
attribute.

In NDB 8.0, the maximum record size is 30000 bytes.

Resources assigned to DataMemory are used for storing all data and indexes. (Any memory
configured as IndexMemory is automatically added to that used by DataMemory to form a common
resource pool.)

The memory space allocated by DataMemory consists of 32KB pages, which are allocated to table
fragments. Each table is normally partitioned into the same number of fragments as there are data
nodes in the cluster. Thus, for each node, there are the same number of fragments as are set in
NoOfReplicas.

Once a page has been allocated, it is currently not possible to return it to the pool of free pages,
except by deleting the table. (This also means that DataMemory pages, once allocated to a given
table, cannot be used by other tables.) Performing a data node recovery also compresses the
partition because all records are inserted into empty partitions from other live nodes.

The DataMemory memory space also contains UNDO information: For each update, a copy of
the unaltered record is allocated in the DataMemory. There is also a reference to each copy in
the ordered table indexes. Unique hash indexes are updated only when the unique index columns
are updated, in which case a new entry in the index table is inserted and the old entry is deleted
upon commit. For this reason, it is also necessary to allocate enough memory to handle the largest

4278

NDB Cluster Configuration Files

transactions performed by applications using the cluster. In any case, performing a few large
transactions holds no advantage over using many smaller ones, for the following reasons:

• Large transactions are not any faster than smaller ones

• Large transactions increase the number of operations that are lost and must be repeated in event
of transaction failure

• Large transactions use more memory

The default value for DataMemory in NDB 8.0 is 98MB. The minimum value is 1MB. There is no
maximum size, but in reality the maximum size has to be adapted so that the process does not start
swapping when the limit is reached. This limit is determined by the amount of physical RAM available
on the machine and by the amount of memory that the operating system may commit to any one
process. 32-bit operating systems are generally limited to 2−4GB per process; 64-bit operating
systems can use more. For large databases, it may be preferable to use a 64-bit operating system
for this reason.

• IndexMemory

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 0

Range 1M - 1T

Deprecated Yes (in NDB
7.6)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The IndexMemory parameter is deprecated (and subject to future removal); any memory
assigned to IndexMemory is allocated instead to the same pool as DataMemory, which is solely
responsible for all resources needed for storing data and indexes in memory. In NDB 8.0, the use of
IndexMemory in the cluster configuration file triggers a warning from the management server.

You can estimate the size of a hash index using this formula:

 size = ((fragments * 32K) + (rows * 18))
 * fragment_replicas

fragments is the number of fragments, fragment_replicas is the number of fragment replicas
(normally 2), and rows is the number of rows. If a table has one million rows, eight fragments, and
two fragment replicas, the expected index memory usage is calculated as shown here:

 ((8 * 32K) + (1000000 * 18)) * 2 = ((8 * 32768) + (1000000 * 18)) * 2
 = (262144 + 18000000) * 2
 = 18262144 * 2 = 36524288 bytes = ~35MB

Index statistics for ordered indexes (when these are enabled) are stored in the
mysql.ndb_index_stat_sample table. Since this table has a hash index, this adds to index
memory usage. An upper bound to the number of rows for a given ordered index can be calculated
as follows:

 sample_size= key_size + ((key_attributes + 1) * 4)

 sample_rows = IndexStatSaveSize
 * ((0.01 * IndexStatSaveScale * log2(rows * sample_size)) + 1)

4279

NDB Cluster Configuration Files

 / sample_size

In the preceding formula, key_size is the size of the ordered index key in bytes, key_attributes
is the number of attributes in the ordered index key, and rows is the number of rows in the base
table.

Assume that table t1 has 1 million rows and an ordered index named ix1 on two four-byte integers.
Assume in addition that IndexStatSaveSize and IndexStatSaveScale are set to their default
values (32K and 100, respectively). Using the previous 2 formulas, we can calculate as follows:

 sample_size = 8 + ((1 + 2) * 4) = 20 bytes

 sample_rows = 32K
 * ((0.01 * 100 * log2(1000000*20)) + 1)
 / 20
 = 32768 * ((1 * ~16.811) +1) / 20
 = 32768 * ~17.811 / 20
 = ~29182 rows

The expected index memory usage is thus 2 * 18 * 29182 = ~1050550 bytes.

In NDB 8.0, the minimum and default value for this parameter is 0 (zero).

• StringMemory

Version (or
later)

NDB 8.0.13

Type or units % or bytes

Default 25

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

This parameter determines how much memory is allocated for strings such as table names, and
is specified in an [ndbd] or [ndbd default] section of the config.ini file. A value between
0 and 100 inclusive is interpreted as a percent of the maximum default value, which is calculated
based on a number of factors including the number of tables, maximum table name size, maximum
size of .FRM files, MaxNoOfTriggers, maximum column name size, and maximum default column
value.

A value greater than 100 is interpreted as a number of bytes.

The default value is 25—that is, 25 percent of the default maximum.

Under most circumstances, the default value should be sufficient, but when you have a great many
NDB tables (1000 or more), it is possible to get Error 773 Out of string memory, please
modify StringMemory config parameter: Permanent error: Schema error, in which
case you should increase this value. 25 (25 percent) is not excessive, and should prevent this error
from recurring in all but the most extreme conditions.

The following example illustrates how memory is used for a table. Consider this table definition:

CREATE TABLE example (
 a INT NOT NULL,

4280

NDB Cluster Configuration Files

 b INT NOT NULL,
 c INT NOT NULL,
 PRIMARY KEY(a),
 UNIQUE(b)
) ENGINE=NDBCLUSTER;

For each record, there are 12 bytes of data plus 12 bytes overhead. Having no nullable columns saves
4 bytes of overhead. In addition, we have two ordered indexes on columns a and b consuming roughly
10 bytes each per record. There is a primary key hash index on the base table using roughly 29 bytes
per record. The unique constraint is implemented by a separate table with b as primary key and a as a
column. This other table consumes an additional 29 bytes of index memory per record in the example
table as well 8 bytes of record data plus 12 bytes of overhead.

Thus, for one million records, we need 58MB for index memory to handle the hash indexes for the
primary key and the unique constraint. We also need 64MB for the records of the base table and the
unique index table, plus the two ordered index tables.

You can see that hash indexes takes up a fair amount of memory space; however, they provide very
fast access to the data in return. They are also used in NDB Cluster to handle uniqueness constraints.

Currently, the only partitioning algorithm is hashing and ordered indexes are local to each node. Thus,
ordered indexes cannot be used to handle uniqueness constraints in the general case.

An important point for both IndexMemory and DataMemory is that the total database size is the
sum of all data memory and all index memory for each node group. Each node group is used to store
replicated information, so if there are four nodes with two fragment replicas, there are two node groups.
Thus, the total data memory available is 2 × DataMemory for each data node.

It is highly recommended that DataMemory and IndexMemory be set to the same values for all
nodes. Data distribution is even over all nodes in the cluster, so the maximum amount of space
available for any node can be no greater than that of the smallest node in the cluster.

DataMemory can be changed, but decreasing it can be risky; doing so can easily lead to a node or
even an entire NDB Cluster that is unable to restart due to there being insufficient memory space.
Increasing these values should be acceptable, but it is recommended that such upgrades are
performed in the same manner as a software upgrade, beginning with an update of the configuration
file, and then restarting the management server followed by restarting each data node in turn.

MinFreePct. A proportion (5% by default) of data node resources including DataMemory is kept in
reserve to insure that the data node does not exhaust its memory when performing a restart. This can
be adjusted using the MinFreePct data node configuration parameter (default 5).

Version (or later) NDB 8.0.13

Type or units unsigned

Default 5

Range 0 - 100

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Updates do not increase the amount of index memory used. Inserts take effect immediately; however,
rows are not actually deleted until the transaction is committed.

Transaction parameters. The next few [ndbd] parameters that we discuss are important because
they affect the number of parallel transactions and the sizes of transactions that can be handled by the

4281

NDB Cluster Configuration Files

system. MaxNoOfConcurrentTransactions sets the number of parallel transactions possible in a
node. MaxNoOfConcurrentOperations sets the number of records that can be in update phase or
locked simultaneously.

Both of these parameters (especially MaxNoOfConcurrentOperations) are likely targets for users
setting specific values and not using the default value. The default value is set for systems using small
transactions, to ensure that these do not use excessive memory.

MaxDMLOperationsPerTransaction sets the maximum number of DML operations that can be
performed in a given transaction.

• MaxNoOfConcurrentTransactions

Version (or
later)

NDB 8.0.13

Type or units integer

Default 4096

Range 32 -
4294967039
(0xFFFFFEFF)

Deprecated NDB 8.0.19

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Each cluster data node requires a transaction record for each active transaction in the cluster. The
task of coordinating transactions is distributed among all of the data nodes. The total number of
transaction records in the cluster is the number of transactions in any given node times the number
of nodes in the cluster.

Transaction records are allocated to individual MySQL servers. Each connection to a MySQL server
requires at least one transaction record, plus an additional transaction object per table accessed by
that connection. This means that a reasonable minimum for the total number of transactions in the
cluster can be expressed as

TotalNoOfConcurrentTransactions =
 (maximum number of tables accessed in any single transaction + 1)
 * number of SQL nodes

Suppose that there are 10 SQL nodes using the cluster. A single join involving 10 tables requires
11 transaction records; if there are 10 such joins in a transaction, then 10 * 11 = 110 transaction
records are required for this transaction, per MySQL server, or 110 * 10 = 1100 transaction
records total. Each data node can be expected to handle TotalNoOfConcurrentTransactions /
number of data nodes. For an NDB Cluster having 4 data nodes, this would mean setting
MaxNoOfConcurrentTransactions on each data node to 1100 / 4 = 275. In addition, you should
provide for failure recovery by ensuring that a single node group can accommodate all concurrent
transactions; in other words, that each data node's MaxNoOfConcurrentTransactions is sufficient to
cover a number of transactions equal to TotalNoOfConcurrentTransactions / number of node groups.
If this cluster has a single node group, then MaxNoOfConcurrentTransactions should be set to
1100 (the same as the total number of concurrent transactions for the entire cluster).

In addition, each transaction involves at least one operation; for this reason, the value set
for MaxNoOfConcurrentTransactions should always be no more than the value of
MaxNoOfConcurrentOperations.

4282

NDB Cluster Configuration Files

This parameter must be set to the same value for all cluster data nodes. This is due to the fact that,
when a data node fails, the oldest surviving node re-creates the transaction state of all transactions
that were ongoing in the failed node.

It is possible to change this value using a rolling restart, but the amount of traffic on the cluster must
be such that no more transactions occur than the lower of the old and new levels while this is taking
place.

The default value is 4096.

• MaxNoOfConcurrentOperations

Version (or
later)

NDB 8.0.13

Type or units integer

Default 32K

Range 32 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

It is a good idea to adjust the value of this parameter according to the size and number of
transactions. When performing transactions which involve only a few operations and records, the
default value for this parameter is usually sufficient. Performing large transactions involving many
records usually requires that you increase its value.

Records are kept for each transaction updating cluster data, both in the transaction coordinator
and in the nodes where the actual updates are performed. These records contain state information
needed to find UNDO records for rollback, lock queues, and other purposes.

This parameter should be set at a minimum to the number of records to be updated simultaneously
in transactions, divided by the number of cluster data nodes. For example, in a cluster which has
four data nodes and which is expected to handle one million concurrent updates using transactions,
you should set this value to 1000000 / 4 = 250000. To help provide resiliency against failures, it is
suggested that you set this parameter to a value that is high enough to permit an individual data
node to handle the load for its node group. In other words, you should set the value equal to total
number of concurrent operations / number of node groups. (In the case where there

4283

NDB Cluster Configuration Files

is a single node group, this is the same as the total number of concurrent operations for the entire
cluster.)

Because each transaction always involves at least one operation, the value of
MaxNoOfConcurrentOperations should always be greater than or equal to the value of
MaxNoOfConcurrentTransactions.

Read queries which set locks also cause operation records to be created. Some extra space is
allocated within individual nodes to accommodate cases where the distribution is not perfect over the
nodes.

When queries make use of the unique hash index, there are actually two operation records used
per record in the transaction. The first record represents the read in the index table and the second
handles the operation on the base table.

The default value is 32768.

This parameter actually handles two values that can be configured separately. The first of these
specifies how many operation records are to be placed with the transaction coordinator. The second
part specifies how many operation records are to be local to the database.

A very large transaction performed on an eight-node cluster requires as many operation records
in the transaction coordinator as there are reads, updates, and deletes involved in the transaction.
However, the operation records of the are spread over all eight nodes. Thus, if it is necessary to
configure the system for one very large transaction, it is a good idea to configure the two parts
separately. MaxNoOfConcurrentOperations is always used to calculate the number of operation
records in the transaction coordinator portion of the node.

It is also important to have an idea of the memory requirements for operation records. These
consume about 1KB per record.

• MaxNoOfLocalOperations

Version (or
later)

NDB 8.0.13

Type or units integer

Default UNDEFINED

Range 32 -
4294967039
(0xFFFFFEFF)

Deprecated NDB 8.0.19

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

By default, this parameter is calculated as 1.1 × MaxNoOfConcurrentOperations. This fits
systems with many simultaneous transactions, none of them being very large. If there is a need to
handle one very large transaction at a time and there are many nodes, it is a good idea to override
the default value by explicitly specifying this parameter.

This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the TransactionMemory parameter; if you try to set
values for both parameters in the cluster configuration file (config.ini), the management server
refuses to start.

• MaxDMLOperationsPerTransaction

4284

NDB Cluster Configuration Files

Version (or
later)

NDB 8.0.13

Type or units operations
(DML)

Default 4294967295

Range 32 -
4294967295

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter limits the size of a transaction. The transaction is aborted if it requires more than this
many DML operations.

The value of this parameter cannot exceed that set for MaxNoOfConcurrentOperations.

Transaction temporary storage. The next set of [ndbd] parameters is used to determine
temporary storage when executing a statement that is part of a Cluster transaction. All records are
released when the statement is completed and the cluster is waiting for the commit or rollback.

The default values for these parameters are adequate for most situations. However, users with a need
to support transactions involving large numbers of rows or operations may need to increase these
values to enable better parallelism in the system, whereas users whose applications require relatively
small transactions can decrease the values to save memory.

• MaxNoOfConcurrentIndexOperations

Version (or
later)

NDB 8.0.13

Type or units integer

Default 8K

Range 0 - 4294967039
(0xFFFFFEFF)

Deprecated NDB 8.0.19

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

For queries using a unique hash index, another temporary set of operation records is used during
a query's execution phase. This parameter sets the size of that pool of records. Thus, this record is
allocated only while executing a part of a query. As soon as this part has been executed, the record
is released. The state needed to handle aborts and commits is handled by the normal operation
records, where the pool size is set by the parameter MaxNoOfConcurrentOperations.

The default value of this parameter is 8192. Only in rare cases of extremely high parallelism using
unique hash indexes should it be necessary to increase this value. Using a smaller value is possible
and can save memory if the DBA is certain that a high degree of parallelism is not required for the
cluster.

This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the TransactionMemory parameter; if you try to set

4285

NDB Cluster Configuration Files

values for both parameters in the cluster configuration file (config.ini), the management server
refuses to start.

• MaxNoOfFiredTriggers

Version (or
later)

NDB 8.0.13

Type or units integer

Default 4000

Range 0 - 4294967039
(0xFFFFFEFF)

Deprecated NDB 8.0.19

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The default value of MaxNoOfFiredTriggers is 4000, which is sufficient for most situations. In
some cases it can even be decreased if the DBA feels certain the need for parallelism in the cluster
is not high.

A record is created when an operation is performed that affects a unique hash index. Inserting or
deleting a record in a table with unique hash indexes or updating a column that is part of a unique
hash index fires an insert or a delete in the index table. The resulting record is used to represent this
index table operation while waiting for the original operation that fired it to complete. This operation is
short-lived but can still require a large number of records in its pool for situations with many parallel
write operations on a base table containing a set of unique hash indexes.

This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the TransactionMemory parameter; if you try to set
values for both parameters in the cluster configuration file (config.ini), the management server
refuses to start.

• TransactionBufferMemory

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 1M

Range 1K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The memory affected by this parameter is used for tracking operations fired when updating index
tables and reading unique indexes. This memory is used to store the key and column information for

4286

NDB Cluster Configuration Files

these operations. It is only very rarely that the value for this parameter needs to be altered from the
default.

The default value for TransactionBufferMemory is 1MB.

Normal read and write operations use a similar buffer, whose usage is even more short-lived.
The compile-time parameter ZATTRBUF_FILESIZE (found in ndb/src/kernel/blocks/
Dbtc/Dbtc.hpp) set to 4000 × 128 bytes (500KB). A similar buffer for key information,
ZDATABUF_FILESIZE (also in Dbtc.hpp) contains 4000 × 16 = 62.5KB of buffer space. Dbtc is
the module that handles transaction coordination.

Transaction resource allocation parameters. The parameters in the following list are
used to allocate transaction resources in the transaction coordinator (DBTC). Leaving any
one of these set to the default (0) dedicates transaction memory for 25% of estimated total
data node usage for the corresponding resource. The actual maximum possible values for
these parameters are typically limited by the amount of memory available to the data node;
setting them has no impact on the total amount of memory allocated to the data node. In
addition, you should keep in mind that they control numbers of reserved internal records
for the data node independent of any settings for MaxDMLOperationsPerTransaction,
MaxNoOfConcurrentIndexOperations, MaxNoOfConcurrentOperations,
MaxNoOfConcurrentScans, MaxNoOfConcurrentTransactions, MaxNoOfFiredTriggers,
MaxNoOfLocalScans, or TransactionBufferMemory (see Transaction parameters and
Transaction temporary storage).

• ReservedConcurrentIndexOperations

Version (or
later)

NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Added NDB 8.0.16

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Number of simultaneous index operations having dedicated resources on one data node.

• ReservedConcurrentOperations

Version (or
later)

NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Added NDB 8.0.16

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

4287

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

NDB Cluster Configuration Files

Number of simultaneous operations having dedicated resources in transaction coordinators on one
data node.

• ReservedConcurrentScans

Version (or
later)

NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Added NDB 8.0.16

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Number of simultaneous scans having dedicated resources on one data node.

• ReservedConcurrentTransactions

Version (or
later)

NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Added NDB 8.0.16

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Number of simultaneous transactions having dedicated resources on one data node.

• ReservedFiredTriggers

Version (or
later)

NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Added NDB 8.0.16

Restart Type Node Restart:
Requires a
rolling restart

4288

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

Number of triggers that have dedicated resources on one ndbd(DB) node.

• ReservedLocalScans

Version (or
later)

NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Added NDB 8.0.16

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Number of simultaneous fragment scans having dedicated resources on one data node.

• ReservedTransactionBufferMemory

Version (or
later)

NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Added NDB 8.0.16

Deprecated NDB 8.0.19

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Dynamic buffer space (in bytes) for key and attribute data allocated to each data node.

• TransactionMemory

Version (or
later)

NDB 8.0.19

Type or units bytes

Default 0

Range 0 - 16384G

Added NDB 8.0.19

Restart Type Node Restart:
Requires a
rolling restart

4289

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

Important

A number of configuration parameters are incompatible with
TransactionMemory; it is not possible to set any of these parameters
concurrently with TransactionMemory, and if you attempt to do so, the
management server is unable to start (see Parameters incompatible with
TransactionMemory).

This parameter determines the memory (in bytes) allocated for transactions on each data node.
Setting of transaction memory is handled as follows:

• If TransactionMemory is set, this value is used for determining transaction memory.

• Otherwise, transaction memory is calculated as it was previous to NDB 8.0.

Parameters incompatible with TransactionMemory. The following parameters cannot be used
concurrently with TransactionMemory and are deprecated in NDB 8.0:

• MaxNoOfConcurrentIndexOperations

• MaxNoOfFiredTriggers

• MaxNoOfLocalOperations

• MaxNoOfLocalScans

Explicitly setting any of the parameters just listed when TransactionMemory has also been set in
the cluster configuration file (config.ini) keeps the management node from starting.

For more information regarding resource allocation in NDB Cluster data nodes, see
Section 25.4.3.13, “Data Node Memory Management”.

Scans and buffering. There are additional [ndbd] parameters in the Dblqh module (in
ndb/src/kernel/blocks/Dblqh/Dblqh.hpp) that affect reads and updates. These include
ZATTRINBUF_FILESIZE, set by default to 10000 × 128 bytes (1250KB) and ZDATABUF_FILE_SIZE,
set by default to 10000*16 bytes (roughly 156KB) of buffer space. To date, there have been neither any
reports from users nor any results from our own extensive tests suggesting that either of these compile-
time limits should be increased.

• BatchSizePerLocalScan

Version (or
later)

NDB 8.0.13

Type or units integer

Default 256

Range 1 - 992

Deprecated NDB 8.0.19

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter is used to calculate the number of lock records used to handle concurrent scan
operations.

4290

NDB Cluster Configuration Files

BatchSizePerLocalScan has a strong connection to the BatchSize defined in the SQL nodes.

Deprecated in NDB 8.0.

• LongMessageBuffer

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 64M

Range 512K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This is an internal buffer used for passing messages within individual nodes and between nodes. The
default is 64MB.

This parameter seldom needs to be changed from the default.

• MaxFKBuildBatchSize

Version (or
later)

NDB 8.0.13

Type or units integer

Default 64

Range 16 - 512

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Maximum scan batch size used for building foreign keys. Increasing the value set for this parameter
may speed up building of foreign key builds at the expense of greater impact to ongoing traffic.

• MaxNoOfConcurrentScans

Version (or
later)

NDB 8.0.13

Type or units integer

Default 256

Range 2 - 500

Restart Type Node Restart:
Requires a
rolling restart

4291

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

This parameter is used to control the number of parallel scans that can be performed in the
cluster. Each transaction coordinator can handle the number of parallel scans defined for this
parameter. Each scan query is performed by scanning all partitions in parallel. Each partition
scan uses a scan record in the node where the partition is located, the number of records being
the value of this parameter times the number of nodes. The cluster should be able to sustain
MaxNoOfConcurrentScans scans concurrently from all nodes in the cluster.

Scans are actually performed in two cases. The first of these cases occurs when no hash or ordered
indexes exists to handle the query, in which case the query is executed by performing a full table
scan. The second case is encountered when there is no hash index to support the query but there is
an ordered index. Using the ordered index means executing a parallel range scan. The order is kept
on the local partitions only, so it is necessary to perform the index scan on all partitions.

The default value of MaxNoOfConcurrentScans is 256. The maximum value is 500.

• MaxNoOfLocalScans

Version (or
later)

NDB 8.0.13

Type or units integer

Default 4 *
MaxNoOfConcurrentScans
* [# of data
nodes] + 2

Range 32 -
4294967039
(0xFFFFFEFF)

Deprecated NDB 8.0.19

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Specifies the number of local scan records if many scans are not fully parallelized. When the number
of local scan records is not provided, it is calculated as shown here:

4 * MaxNoOfConcurrentScans * [# data nodes] + 2

This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the TransactionMemory parameter; if you try to set
values for both parameters in the cluster configuration file (config.ini), the management server
refuses to start.

• MaxParallelCopyInstances

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 64

Restart Type Node Restart:
Requires a

4292

NDB Cluster Configuration Files

rolling restart
of the cluster.
(NDB 8.0.13)

This parameter sets the parallelization used in the copy phase of a node restart or system restart,
when a node that is currently just starting is synchronised with a node that already has current data
by copying over any changed records from the node that is up to date. Because full parallelism in
such cases can lead to overload situations, MaxParallelCopyInstances provides a means to
decrease it. This parameter's default value 0. This value means that the effective parallelism is equal
to the number of LDM instances in the node just starting as well as the node updating it.

• MaxParallelScansPerFragment

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 256

Range 1 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

It is possible to configure the maximum number of parallel scans (TUP scans and TUX scans) allowed
before they begin queuing for serial handling. You can increase this to take advantage of any unused
CPU when performing large number of scans in parallel and improve their performance.

• MaxReorgBuildBatchSize

Version (or
later)

NDB 8.0.13

Type or units integer

Default 64

Range 16 - 512

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Maximum scan batch size used for reorganization of table partitions. Increasing the value set for this
parameter may speed up reorganization at the expense of greater impact to ongoing traffic.

• MaxUIBuildBatchSize

Version (or
later)

NDB 8.0.13

Type or units integer

Default 64

Range 16 - 512

Restart Type Node Restart:
Requires a 4293

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html

NDB Cluster Configuration Files

rolling restart
of the cluster.
(NDB 8.0.13)

Maximum scan batch size used for building unique keys. Increasing the value set for this parameter
may speed up such builds at the expense of greater impact to ongoing traffic.

Memory Allocation

MaxAllocate

Version (or later) NDB 8.0.13

Type or units unsigned

Default 32M

Range 1M - 1G

Deprecated NDB 8.0.27

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter was used in older versions of NDB Cluster, but has no effect in NDB 8.0. It is
deprecated as of NDB 8.0.27, and subject to removal in a future release.

Multiple Transporters

Beginning with version 8.0.20, NDB allocates multiple transporters for communication between pairs of
data nodes. The number of transporters so allocated can be influenced by setting an appropriate value
for the NodeGroupTransporters parameter introduced in that release.

NodeGroupTransporters

Version (or later) NDB 8.0.20

Type or units integer

Default 0

Range 0 - 32

Added NDB 8.0.20

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter determines the number of transporters used between nodes in the same node group.
The default value (0) means that the number of transporters used is the same as the number of LDMs
in the node. This should be sufficient for most use cases; thus it should seldom be necessary to
change this value from its default.

Setting NodeGroupTransporters to a number greater than the number of LDM threads or the
number of TC threads, whichever is higher, causes NDB to use the maximum of these two numbers of
threads. This means that a value greater than this is effectively ignored.

Hash Map Size

DefaultHashMapSize

Version (or later) NDB 8.0.13

4294

NDB Cluster Configuration Files

Type or units LDM threads

Default 240

Range 0 - 3840

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The original intended use for this parameter was to facilitate upgrades and especially downgrades to
and from very old releases with differing default hash map sizes. This is not an issue when upgrading
from NDB Cluster 7.3 (or later) to later versions.

Decreasing this parameter online after any tables have been created or modified with
DefaultHashMapSize equal to 3840 is not currently supported.

Logging and checkpointing. The following [ndbd] parameters control log and checkpoint
behavior.

• FragmentLogFileSize

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 16M

Range 4M - 1G

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

Setting this parameter enables you to control directly the size of redo log files. This can be useful in
situations when NDB Cluster is operating under a high load and it is unable to close fragment log
files quickly enough before attempting to open new ones (only 2 fragment log files can be open at
one time); increasing the size of the fragment log files gives the cluster more time before having to
open each new fragment log file. The default value for this parameter is 16M.

For more information about fragment log files, see the description for NoOfFragmentLogFiles.

• InitialNoOfOpenFiles

Version (or
later)

NDB 8.0.13

Type or units files

Default 27

Range 20 -
4294967039
(0xFFFFFEFF)

4295

NDB Cluster Configuration Files

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter sets the initial number of internal threads to allocate for open files.

The default value is 27.

• InitFragmentLogFiles

Version (or
later)

NDB 8.0.13

Type or units [see values]

Default SPARSE

Range SPARSE, FULL

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

By default, fragment log files are created sparsely when performing an initial start of a data
node—that is, depending on the operating system and file system in use, not all bytes are
necessarily written to disk. However, it is possible to override this behavior and force all bytes to
be written, regardless of the platform and file system type being used, by means of this parameter.
InitFragmentLogFiles takes either of two values:

• SPARSE. Fragment log files are created sparsely. This is the default value.

• FULL. Force all bytes of the fragment log file to be written to disk.

Depending on your operating system and file system, setting InitFragmentLogFiles=FULL may
help eliminate I/O errors on writes to the redo log.

• EnablePartialLcp

Version (or
later)

NDB 8.0.13

Type or units boolean

Default true

Range ...

Restart Type Node Restart:
Requires a
rolling restart

4296

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

When true, enable partial local checkpoints: This means that each LCP records only part of the full
database, plus any records containing rows changed since the last LCP; if no rows have changed,
the LCP updates only the LCP control file and does not update any data files.

If EnablePartialLcp is disabled (false), each LCP uses only a single file and writes a full
checkpoint; this requires the least amount of disk space for LCPs, but increases the write load for
each LCP. The default value is enabled (true). The proportion of space used by partial LCPS can
be modified by the setting for the RecoveryWork configuration parameter.

For more information about files and directories used for full and partial LCPs, see NDB Cluster Data
Node File System Directory.

Setting this parameter to false also disables the calculation of disk write speed used by the
adaptive LCP control mechanism.

• LcpScanProgressTimeout

Version (or
later)

NDB 8.0.13

Type or units second

Default 60

Range 0 - 4294967039
(0xFFFFFEFF)

Version (or
later)

NDB 8.0.19

Type or units second

Default 180

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

A local checkpoint fragment scan watchdog checks periodically for no progress in each fragment
scan performed as part of a local checkpoint, and shuts down the node if there is no progress after a
given amount of time has elapsed. This interval can be set using the LcpScanProgressTimeout
data node configuration parameter, which sets the maximum time for which the local checkpoint can
be stalled before the LCP fragment scan watchdog shuts down the node.

The default value is 60 seconds (providing compatibility with previous releases). Setting this
parameter to 0 disables the LCP fragment scan watchdog altogether.

• MaxNoOfOpenFiles

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 0

4297

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

NDB Cluster Configuration Files

Range 20 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter sets a ceiling on how many internal threads to allocate for open files. Any situation
requiring a change in this parameter should be reported as a bug.

The default value is 0. However, the minimum value to which this parameter can be set is 20.

• MaxNoOfSavedMessages

Version (or
later)

NDB 8.0.13

Type or units integer

Default 25

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter sets the maximum number of errors written in the error log as well as the maximum
number of trace files that are kept before overwriting the existing ones. Trace files are generated
when, for whatever reason, the node crashes.

The default is 25, which sets these maximums to 25 error messages and 25 trace files.

• MaxLCPStartDelay

Version (or
later)

NDB 8.0.13

Type or units seconds

Default 0

Range 0 - 600

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

In parallel data node recovery, only table data is actually copied and synchronized in parallel;
synchronization of metadata such as dictionary and checkpoint information is done in a serial
fashion. In addition, recovery of dictionary and checkpoint information cannot be executed in parallel
with performing of local checkpoints. This means that, when starting or restarting many data nodes

4298

NDB Cluster Configuration Files

concurrently, data nodes may be forced to wait while a local checkpoint is performed, which can
result in longer node recovery times.

It is possible to force a delay in the local checkpoint to permit more (and possibly all) data nodes to
complete metadata synchronization; once each data node's metadata synchronization is complete,
all of the data nodes can recover table data in parallel, even while the local checkpoint is being
executed. To force such a delay, set MaxLCPStartDelay, which determines the number of
seconds the cluster can wait to begin a local checkpoint while data nodes continue to synchronize
metadata. This parameter should be set in the [ndbd default] section of the config.ini file,
so that it is the same for all data nodes. The maximum value is 600; the default is 0.

• NoOfFragmentLogFiles

Version (or
later)

NDB 8.0.13

Type or units integer

Default 16

Range 3 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

This parameter sets the number of REDO log files for the node, and thus the amount of space
allocated to REDO logging. Because the REDO log files are organized in a ring, it is extremely
important that the first and last log files in the set (sometimes referred to as the “head” and “tail” log
files, respectively) do not meet. When these approach one another too closely, the node begins
aborting all transactions encompassing updates due to a lack of room for new log records.

A REDO log record is not removed until both required local checkpoints have been completed since
that log record was inserted. Checkpointing frequency is determined by its own set of configuration
parameters discussed elsewhere in this chapter.

The default parameter value is 16, which by default means 16 sets of 4 16MB files for a total of
1024MB. The size of the individual log files is configurable using the FragmentLogFileSize
parameter. In scenarios requiring a great many updates, the value for NoOfFragmentLogFiles
may need to be set as high as 300 or even higher to provide sufficient space for REDO logs.

If the checkpointing is slow and there are so many writes to the database that the log files are full
and the log tail cannot be cut without jeopardizing recovery, all updating transactions are aborted
with internal error code 410 (Out of log file space temporarily). This condition prevails
until a checkpoint has completed and the log tail can be moved forward.

Important

This parameter cannot be changed “on the fly”; you must restart the node
using --initial. If you wish to change this value for all data nodes in a
running cluster, you can do so using a rolling node restart (using --initial
when starting each data node).

• RecoveryWork

4299

NDB Cluster Configuration Files

Version (or
later)

NDB 8.0.13

Type or units integer

Default 60

Range 25 - 100

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Percentage of storage overhead for LCP files. This parameter has an effect only when
EnablePartialLcp is true, that is, only when partial local checkpoints are enabled. A higher value
means:

• Fewer records are written for each LCP, LCPs use more space

• More work is needed during restarts

A lower value for RecoveryWork means:

• More records are written during each LCP, but LCPs require less space on disk.

• Less work during restart and thus faster restarts, at the expense of more work during normal
operations

For example, setting RecoveryWork to 60 means that the total size of an LCP is roughly 1 + 0.6 =
1.6 times the size of the data to be checkpointed. This means that 60% more work is required during
the restore phase of a restart compared to the work done during a restart that uses full checkpoints.
(This is more than compensated for during other phases of the restart such that the restart as a
whole is still faster when using partial LCPs than when using full LCPs.) In order not to fill up the
redo log, it is necessary to write at 1 + (1 / RecoveryWork) times the rate of data changes during
checkpoints—thus, when RecoveryWork = 60, it is necessary to write at approximately 1 + (1 / 0.6)
= 2.67 times the change rate. In other words, if changes are being written at 10 MByte per second,
the checkpoint needs to be written at roughly 26.7 MByte per second.

Setting RecoveryWork = 40 means that only 1.4 times the total LCP size is needed (and thus the
restore phase takes 10 to 15 percent less time. In this case, the checkpoint write rate is 3.5 times the
rate of change.

The NDB source distribution includes a test program for simulating LCPs. lcp_simulator.cc
can be found in storage/ndb/src/kernel/blocks/backup/. To compile and run it on Unix
platforms, execute the commands shown here:

$> gcc lcp_simulator.cc
$> ./a.out

This program has no dependencies other than stdio.h, and does not require a connection to an
NDB cluster or a MySQL server. By default, it simulates 300 LCPs (three sets of 100 LCPs, each
consisting of inserts, updates, and deletes, in turn), reporting the size of the LCP after each one.
You can alter the simulation by changing the values of recovery_work, insert_work, and
delete_work in the source and recompiling. For more information, see the source of the program.

• InsertRecoveryWork

Version (or
later)

NDB 8.0.13

4300

NDB Cluster Configuration Files

Type or units integer

Default 40

Range 0 - 70

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Percentage of RecoveryWork used for inserted rows. A higher value increases the number of writes
during a local checkpoint, and decreases the total size of the LCP. A lower value decreases the
number of writes during an LCP, but results in more space being used for the LCP, which means that
recovery takes longer. This parameter has an effect only when EnablePartialLcp is true, that is,
only when partial local checkpoints are enabled.

• EnableRedoControl

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range ...

Version (or
later)

NDB 8.0.1

Type or units boolean

Default true

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Enable adaptive checkpointing speed for controlling redo log usage.

When enabled (the default), EnableRedoControl allows the data nodes greater flexibility with
regard to the rate at which they write LCPs to disk. More specifically, enabling this parameter means
that higher write rates can be employed, so that LCPs can complete and redo logs be trimmed more
quickly, thereby reducing recovery time and disk space requirements. This functionality allows data
nodes to make better use of the higher rate of I/O and greater bandwidth available from modern
solid-state storage devices and protocols, such as solid-state drives (SSDs) using Non-Volatile
Memory Express (NVMe).

When NDB is deployed on systems whose I/O or bandwidth is constrained relative to those
employing solid-state technology, such as those using conventional hard disks (HDDs), the
EnableRedoControl mechanism can easily cause the I/O subsystem to become saturated,
increasing wait times for data node input and output. In particular, this can cause issues with NDB
Disk Data tables which have tablespaces or log file groups sharing a constrained I/O subsystem
with data node LCP and redo log files; such problems potentially include node or cluster failure due
to GCP stop errors. Set EnableRedoControl to false to disable it in such situations. Setting
EnablePartialLcp to false also disables the adaptive calculation.

4301

NDB Cluster Configuration Files

Metadata objects. The next set of [ndbd] parameters defines pool sizes for metadata objects,
used to define the maximum number of attributes, tables, indexes, and trigger objects used by indexes,
events, and replication between clusters.

Note

These act merely as “suggestions” to the cluster, and any that are not specified
revert to the default values shown.

• MaxNoOfAttributes

Version (or
later)

NDB 8.0.13

Type or units integer

Default 1000

Range 32 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter sets a suggested maximum number of attributes that can be defined in the cluster;
like MaxNoOfTables, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create
more tables than could be replicated, and sometimes led to confusion when it was possible [or not
possible, depending on the circumstances] to create more than MaxNoOfAttributes attributes.)

The default value is 1000, with the minimum possible value being 32. The maximum is 4294967039.
Each attribute consumes around 200 bytes of storage per node due to the fact that all metadata is
fully replicated on the servers.

When setting MaxNoOfAttributes, it is important to prepare in advance for any ALTER
TABLE statements that you might want to perform in the future. This is due to the fact, during the
execution of ALTER TABLE on a Cluster table, 3 times the number of attributes as in the original
table are used, and a good practice is to permit double this amount. For example, if the NDB
Cluster table having the greatest number of attributes (greatest_number_of_attributes)
has 100 attributes, a good starting point for the value of MaxNoOfAttributes would be 6 *
greatest_number_of_attributes = 600.

You should also estimate the average number of attributes per table and multiply this by
MaxNoOfTables. If this value is larger than the value obtained in the previous paragraph, you
should use the larger value instead.

Assuming that you can create all desired tables without any problems, you should also verify that
this number is sufficient by trying an actual ALTER TABLE after configuring the parameter. If this is
not successful, increase MaxNoOfAttributes by another multiple of MaxNoOfTables and test it
again.

• MaxNoOfTables

Version (or
later)

NDB 8.0.13

Type or units integer

4302

NDB Cluster Configuration Files

Default 128

Range 8 - 20320

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

A table object is allocated for each table and for each unique hash index in the cluster. This
parameter sets a suggested maximum number of table objects for the cluster as a whole; like
MaxNoOfAttributes, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create
more tables than could be replicated, and sometimes led to confusion when it was possible [or not
possible, depending on the circumstances] to create more than MaxNoOfTables tables.)

For each attribute that has a BLOB data type an extra table is used to store most of the BLOB data.
These tables also must be taken into account when defining the total number of tables.

The default value of this parameter is 128. The minimum is 8 and the maximum is 20320. Each table
object consumes approximately 20KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfOrderedIndexes

Version (or
later)

NDB 8.0.13

Type or units integer

Default 128

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

For each ordered index in the cluster, an object is allocated describing what is being indexed and
its storage segments. By default, each index so defined also defines an ordered index. Each unique
index and primary key has both an ordered index and a hash index. MaxNoOfOrderedIndexes
sets the total number of ordered indexes that can be in use in the system at any one time.

The default value of this parameter is 128. Each index object consumes approximately 10KB of data
per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

4303

NDB Cluster Configuration Files

• MaxNoOfUniqueHashIndexes

Version (or
later)

NDB 8.0.13

Type or units integer

Default 64

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

For each unique index that is not a primary key, a special table is allocated that maps the unique key
to the primary key of the indexed table. By default, an ordered index is also defined for each unique
index. To prevent this, you must specify the USING HASH option when defining the unique index.

The default value is 64. Each index consumes approximately 15KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfTriggers

Version (or
later)

NDB 8.0.13

Type or units integer

Default 768

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Internal update, insert, and delete triggers are allocated for each unique hash index. (This means
that three triggers are created for each unique hash index.) However, an ordered index requires only
a single trigger object. Backups also use three trigger objects for each normal table in the cluster.

Replication between clusters also makes use of internal triggers.

This parameter sets the maximum number of trigger objects in the cluster.

The default value is 768.

• MaxNoOfSubscriptions

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 04304

NDB Cluster Configuration Files

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Each NDB table in an NDB Cluster requires a subscription in the NDB kernel. For some NDB API
applications, it may be necessary or desirable to change this parameter. However, for normal usage
with MySQL servers acting as SQL nodes, there is not any need to do so.

The default value for MaxNoOfSubscriptions is 0, which is treated as equal to MaxNoOfTables.
Each subscription consumes 108 bytes.

• MaxNoOfSubscribers

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter is of interest only when using NDB Cluster Replication. The default value is 0. Prior
to NDB 8.0.26, this was treated as 2 * MaxNoOfTables; beginning with NDB 8.0.26, it is treated
as 2 * MaxNoOfTables + 2 * [number of API nodes]. There is one subscription per
NDB table for each of two MySQL servers (one acting as the replication source and the other as the
replica). Each subscriber uses 16 bytes of memory.

When using circular replication, multi-source replication, and other replication setups involving more
than 2 MySQL servers, you should increase this parameter to the number of mysqld processes
included in replication (this is often, but not always, the same as the number of clusters). For
example, if you have a circular replication setup using three NDB Clusters, with one mysqld
attached to each cluster, and each of these mysqld processes acts as a source and as a replica,
you should set MaxNoOfSubscribers equal to 3 * MaxNoOfTables.

For more information, see Section 25.7, “NDB Cluster Replication”.

• MaxNoOfConcurrentSubOperations

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 256

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart

4305

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

This parameter sets a ceiling on the number of operations that can be performed by all API nodes
in the cluster at one time. The default value (256) is sufficient for normal operations, and might need
to be adjusted only in scenarios where there are a great many API nodes each performing a high
volume of operations concurrently.

Boolean parameters. The behavior of data nodes is also affected by a set of [ndbd] parameters
taking on boolean values. These parameters can each be specified as TRUE by setting them equal to 1
or Y, and as FALSE by setting them equal to 0 or N.

• CompressedLCP

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Setting this parameter to 1 causes local checkpoint files to be compressed. The compression used is
equivalent to gzip --fast, and can save 50% or more of the space required on the data node to
store uncompressed checkpoint files. Compressed LCPs can be enabled for individual data nodes,
or for all data nodes (by setting this parameter in the [ndbd default] section of the config.ini
file).

Important

You cannot restore a compressed local checkpoint to a cluster running a
MySQL version that does not support this feature.

The default value is 0 (disabled).

Prior to NDB 8.0.29, this parameter had no effect on Windows platforms (BUG#106075,
BUG#33727690).

• CrashOnCorruptedTuple

Version (or
later)

NDB 8.0.13

Type or units boolean

Default true

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When this parameter is enabled (the default), it forces a data node to shut down whenever it
encounters a corrupted tuple.4306

NDB Cluster Configuration Files

• Diskless

Version (or
later)

NDB 8.0.13

Type or units true|false (1|0)

Default false

Range true, false

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster.
(NDB 8.0.13)

It is possible to specify NDB Cluster tables as diskless, meaning that tables are not checkpointed
to disk and that no logging occurs. Such tables exist only in main memory. A consequence of using
diskless tables is that neither the tables nor the records in those tables survive a crash. However,
when operating in diskless mode, it is possible to run ndbd on a diskless computer.

Important

This feature causes the entire cluster to operate in diskless mode.

When this feature is enabled, NDB Cluster online backup is disabled. In addition, a partial start of the
cluster is not possible.

Diskless is disabled by default.

• EncryptedFileSystem

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 1

Added NDB 8.0.29

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with

4307

NDB Cluster Configuration Files

--initial.
(NDB 8.0.13)

Encrypt LCP and tablespace files, including undo logs and redo logs. Disabled by default (0); set to 1
to enable.

Important

When file system encryption is enabled, you must supply a password to
each data node when starting it, using one of the options --filesystem-
password or --filesystem-password-from-stdin. Otherwise, the
data node cannot start.

For more information, see Section 25.6.14, “File System Encryption for NDB Cluster”.

• LateAlloc

Version (or
later)

NDB 8.0.13

Type or units numeric

Default 1

Range 0 - 1

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Allocate memory for this data node after a connection to the management server has been
established. Enabled by default.

• LockPagesInMainMemory

Version (or
later)

NDB 8.0.13

Type or units numeric

Default 0

Range 0 - 2

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

For a number of operating systems, including Solaris and Linux, it is possible to lock a process into
memory and so avoid any swapping to disk. This can be used to help guarantee the cluster's real-
time characteristics.

This parameter takes one of the integer values 0, 1, or 2, which act as shown in the following list:

• 0: Disables locking. This is the default value.

• 1: Performs the lock after allocating memory for the process.

4308

NDB Cluster Configuration Files

• 2: Performs the lock before memory for the process is allocated.

If the operating system is not configured to permit unprivileged users to lock pages, then
the data node process making use of this parameter may have to be run as system root.
(LockPagesInMainMemory uses the mlockall function. From Linux kernel 2.6.9, unprivileged
users can lock memory as limited by max locked memory. For more information, see ulimit -l
and http://linux.die.net/man/2/mlock).

Note

In older NDB Cluster releases, this parameter was a Boolean. 0 or false
was the default setting, and disabled locking. 1 or true enabled locking of
the process after its memory was allocated. NDB Cluster 8.0 treats true or
false for the value of this parameter as an error.

Important

Beginning with glibc 2.10, glibc uses per-thread arenas to reduce lock
contention on a shared pool, which consumes real memory. In general, a data
node process does not need per-thread arenas, since it does not perform any
memory allocation after startup. (This difference in allocators does not appear
to affect performance significantly.)

The glibc behavior is intended to be configurable via the
MALLOC_ARENA_MAX environment variable, but a bug in this mechanism
prior to glibc 2.16 meant that this variable could not be set to less than 8, so
that the wasted memory could not be reclaimed. (Bug #15907219; see also
http://sourceware.org/bugzilla/show_bug.cgi?id=13137 for more information
concerning this issue.)

One possible workaround for this problem is to use the LD_PRELOAD
environment variable to preload a jemalloc memory allocation library to
take the place of that supplied with glibc.

• ODirect

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Enabling this parameter causes NDB to attempt using O_DIRECT writes for LCP, backups, and redo
logs, often lowering kswapd and CPU usage. When using NDB Cluster on Linux, enable ODirect if
you are using a 2.6 or later kernel.

ODirect is disabled by default.

• ODirectSyncFlag

Version (or
later)

NDB 8.0.13

4309

http://linux.die.net/man/2/mlock
http://sourceware.org/bugzilla/show_bug.cgi?id=13137

NDB Cluster Configuration Files

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When this parameter is enabled, redo log writes are performed such that each completed file system
write is handled as a call to fsync. The setting for this parameter is ignored if at least one of the
following conditions is true:

• ODirect is not enabled.

• InitFragmentLogFiles is set to SPARSE.

Disabled by default.

• RestartOnErrorInsert

Version (or
later)

NDB 8.0.13

Type or units error code

Default 2

Range 0 - 4

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This feature is accessible only when building the debug version where it is possible to insert errors in
the execution of individual blocks of code as part of testing.

This feature is disabled by default.

• StopOnError

Version (or
later)

NDB 8.0.13

Type or units boolean

Default 1

Range 0, 1

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies whether a data node process should exit or perform an automatic restart
when an error condition is encountered.

This parameter's default value is 1; this means that, by default, an error causes the data node
process to halt.

4310

NDB Cluster Configuration Files

When an error is encountered and StopOnError is 0, the data node process is restarted.

Users of MySQL Cluster Manager should note that, when StopOnError equals 1, this prevents the
MySQL Cluster Manager agent from restarting any data nodes after it has performed its own restart
and recovery. See Starting and Stopping the Agent on Linux, for more information.

• UseShm

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Enable a shared memory connection between this data node and the API node also running on this
host. Set to 1 to enable.

Controlling Timeouts, Intervals, and Disk Paging

There are a number of [ndbd] parameters specifying timeouts and intervals between various actions
in Cluster data nodes. Most of the timeout values are specified in milliseconds. Any exceptions to this
are mentioned where applicable.

• TimeBetweenWatchDogCheck

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 6000

Range 70 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

To prevent the main thread from getting stuck in an endless loop at some point, a “watchdog” thread
checks the main thread. This parameter specifies the number of milliseconds between checks. If the
process remains in the same state after three checks, the watchdog thread terminates it.

This parameter can easily be changed for purposes of experimentation or to adapt to local
conditions. It can be specified on a per-node basis although there seems to be little reason for doing
so.

The default timeout is 6000 milliseconds (6 seconds).

• TimeBetweenWatchDogCheckInitial

4311

https://dev.mysql.com/doc/mysql-cluster-manager/8.0/en/mcm-using-start-stop-agent-linux.html

NDB Cluster Configuration Files

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 6000

Range 70 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This is similar to the TimeBetweenWatchDogCheck parameter, except that
TimeBetweenWatchDogCheckInitial controls the amount of time that passes between
execution checks inside a storage node in the early start phases during which memory is allocated.

The default timeout is 6000 milliseconds (6 seconds).

• StartPartialTimeout

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 30000

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies how long the Cluster waits for all data nodes to come up before the cluster
initialization routine is invoked. This timeout is used to avoid a partial Cluster startup whenever
possible.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default value is 30000 milliseconds (30 seconds). 0 disables the timeout, in which case the
cluster may start only if all nodes are available.

• StartPartitionedTimeout

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart

4312

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

If the cluster is ready to start after waiting for StartPartialTimeout milliseconds but
is still possibly in a partitioned state, the cluster waits until this timeout has also passed. If
StartPartitionedTimeout is set to 0, the cluster waits indefinitely (232−1 ms, or approximately
49.71 days).

This parameter is overridden when performing an initial start or initial restart of the cluster.

• StartFailureTimeout

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

If a data node has not completed its startup sequence within the time specified by this parameter, the
node startup fails. Setting this parameter to 0 (the default value) means that no data node timeout is
applied.

For nonzero values, this parameter is measured in milliseconds. For data nodes containing
extremely large amounts of data, this parameter should be increased. For example, in the case of a
data node containing several gigabytes of data, a period as long as 10−15 minutes (that is, 600000
to 1000000 milliseconds) might be required to perform a node restart.

• StartNoNodeGroupTimeout

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 15000

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When a data node is configured with Nodegroup = 65536, is regarded as not being assigned to
any node group. When that is done, the cluster waits StartNoNodegroupTimeout milliseconds,
then treats such nodes as though they had been added to the list passed to the --nowait-nodes
option, and starts. The default value is 15000 (that is, the management server waits 15 seconds).
Setting this parameter equal to 0 means that the cluster waits indefinitely.

StartNoNodegroupTimeout must be the same for all data nodes in the cluster; for this reason,
you should always set it in the [ndbd default] section of the config.ini file, rather than for
individual data nodes.

4313

NDB Cluster Configuration Files

See Section 25.6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

• HeartbeatIntervalDbDb

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 5000

Range 10 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

One of the primary methods of discovering failed nodes is by the use of heartbeats. This parameter
states how often heartbeat signals are sent and how often to expect to receive them. Heartbeats
cannot be disabled.

After missing four heartbeat intervals in a row, the node is declared dead. Thus, the maximum time
for discovering a failure through the heartbeat mechanism is five times the heartbeat interval.

The default heartbeat interval is 5000 milliseconds (5 seconds). This parameter must not be changed
drastically and should not vary widely between nodes. If one node uses 5000 milliseconds and the
node watching it uses 1000 milliseconds, obviously the node is declared dead very quickly. This
parameter can be changed during an online software upgrade, but only in small increments.

See also Network communication and latency, as well as the description of the
ConnectCheckIntervalDelay configuration parameter.

• HeartbeatIntervalDbApi

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 1500

Range 100 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Each data node sends heartbeat signals to each MySQL server (SQL node) to ensure that it remains
in contact. If a MySQL server fails to send a heartbeat in time it is declared “dead,” in which case all
ongoing transactions are completed and all resources released. The SQL node cannot reconnect

4314

NDB Cluster Configuration Files

until all activities initiated by the previous MySQL instance have been completed. The three-
heartbeat criteria for this determination are the same as described for HeartbeatIntervalDbDb.

The default interval is 1500 milliseconds (1.5 seconds). This interval can vary between individual
data nodes because each data node watches the MySQL servers connected to it, independently of
all other data nodes.

For more information, see Network communication and latency.

• HeartbeatOrder

Version (or
later)

NDB 8.0.13

Type or units numeric

Default 0

Range 0 - 65535

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

Data nodes send heartbeats to one another in a circular fashion whereby each data node monitors
the previous one. If a heartbeat is not detected by a given data node, this node declares the previous
data node in the circle “dead” (that is, no longer accessible by the cluster). The determination that a
data node is dead is done globally; in other words; once a data node is declared dead, it is regarded
as such by all nodes in the cluster.

It is possible for heartbeats between data nodes residing on different hosts to be too slow compared
to heartbeats between other pairs of nodes (for example, due to a very low heartbeat interval or
temporary connection problem), such that a data node is declared dead, even though the node can
still function as part of the cluster. .

In this type of situation, it may be that the order in which heartbeats are transmitted between data
nodes makes a difference as to whether or not a particular data node is declared dead. If this
declaration occurs unnecessarily, this can in turn lead to the unnecessary loss of a node group and
as thus to a failure of the cluster.

Consider a setup where there are 4 data nodes A, B, C, and D running on 2 host computers host1
and host2, and that these data nodes make up 2 node groups, as shown in the following table:

Table 25.10 Four data nodes A, B, C, D running on two host computers host1, host2; each
data node belongs to one of two node groups.

Node Group Nodes Running on host1 Nodes Running on host2

Node Group 0: Node A Node B

Node Group 1: Node C Node D

Suppose the heartbeats are transmitted in the order A->B->C->D->A. In this case, the loss of the
heartbeat between the hosts causes node B to declare node A dead and node C to declare node B
dead. This results in loss of Node Group 0, and so the cluster fails. On the other hand, if the order
of transmission is A->B->D->C->A (and all other conditions remain as previously stated), the loss of

4315

NDB Cluster Configuration Files

the heartbeat causes nodes A and D to be declared dead; in this case, each node group has one
surviving node, and the cluster survives.

The HeartbeatOrder configuration parameter makes the order of heartbeat transmission user-
configurable. The default value for HeartbeatOrder is zero; allowing the default value to be
used on all data nodes causes the order of heartbeat transmission to be determined by NDB. If this
parameter is used, it must be set to a nonzero value (maximum 65535) for every data node in the
cluster, and this value must be unique for each data node; this causes the heartbeat transmission to
proceed from data node to data node in the order of their HeartbeatOrder values from lowest to
highest (and then directly from the data node having the highest HeartbeatOrder to the data node
having the lowest value, to complete the circle). The values need not be consecutive. For example,
to force the heartbeat transmission order A->B->D->C->A in the scenario outlined previously, you
could set the HeartbeatOrder values as shown here:

Table 25.11 HeartbeatOrder values to force a heartbeat transition order of A->B->D->C->A.

Node HeartbeatOrder Value

A 10

B 20

C 30

D 25

To use this parameter to change the heartbeat transmission order in a running NDB Cluster,
you must first set HeartbeatOrder for each data node in the cluster in the global configuration
(config.ini) file (or files). To cause the change to take effect, you must perform either of the
following:

• A complete shutdown and restart of the entire cluster.

• 2 rolling restarts of the cluster in succession. All nodes must be restarted in the same order in both
rolling restarts.

You can use DUMP 908 to observe the effect of this parameter in the data node logs.

• ConnectCheckIntervalDelay

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter enables connection checking between data nodes after one of them has failed
heartbeat checks for 5 intervals of up to HeartbeatIntervalDbDb milliseconds.

Such a data node that further fails to respond within an interval of ConnectCheckIntervalDelay
milliseconds is considered suspect, and is considered dead after two such intervals. This can be
useful in setups with known latency issues.

The default value for this parameter is 0 (disabled).
4316

https://dev.mysql.com/doc/ndb-internals/en/dump-command-908.html

NDB Cluster Configuration Files

• TimeBetweenLocalCheckpoints

Version (or
later)

NDB 8.0.13

Type or units number of 4-
byte words,
as base-2
logarithm

Default 20

Range 0 - 31

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter is an exception in that it does not specify a time to wait before starting a new local
checkpoint; rather, it is used to ensure that local checkpoints are not performed in a cluster where
relatively few updates are taking place. In most clusters with high update rates, it is likely that a new
local checkpoint is started immediately after the previous one has been completed.

The size of all write operations executed since the start of the previous local checkpoints is added.
This parameter is also exceptional in that it is specified as the base-2 logarithm of the number of 4-
byte words, so that the default value 20 means 4MB (4 × 220) of write operations, 21 would mean
8MB, and so on up to a maximum value of 31, which equates to 8GB of write operations.

All the write operations in the cluster are added together. Setting
TimeBetweenLocalCheckpoints to 6 or less means that local checkpoints are executed
continuously without pause, independent of the cluster's workload.

• TimeBetweenGlobalCheckpoints

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 2000

Range 20 - 32000

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When a transaction is committed, it is committed in main memory in all nodes on which the data
is mirrored. However, transaction log records are not flushed to disk as part of the commit. The
reasoning behind this behavior is that having the transaction safely committed on at least two
autonomous host machines should meet reasonable standards for durability.

It is also important to ensure that even the worst of cases—a complete crash of the cluster—is
handled properly. To guarantee that this happens, all transactions taking place within a given interval
are put into a global checkpoint, which can be thought of as a set of committed transactions that
has been flushed to disk. In other words, as part of the commit process, a transaction is placed in a

4317

NDB Cluster Configuration Files

global checkpoint group. Later, this group's log records are flushed to disk, and then the entire group
of transactions is safely committed to disk on all computers in the cluster.

In NDB 8.0, we recommended when you are using solid-state disks (especially those employing
NVMe) with Disk Data tables that you reduce this value. In such cases, you should also ensure that
MaxDiskDataLatency is set to a proper level.

This parameter defines the interval between global checkpoints. The default is 2000 milliseconds.

• TimeBetweenGlobalCheckpointsTimeout

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 120000

Range 10 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter defines the minimum timeout between global checkpoints. The default is 120000
milliseconds.

• TimeBetweenEpochs

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 100

Range 0 - 32000

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter defines the interval between synchronization epochs for NDB Cluster Replication.
The default value is 100 milliseconds.

TimeBetweenEpochs is part of the implementation of “micro-GCPs”, which can be used to improve
the performance of NDB Cluster Replication.

• TimeBetweenEpochsTimeout

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 256000

Restart Type Node Restart:
Requires a

4318

NDB Cluster Configuration Files

rolling restart
of the cluster.
(NDB 8.0.13)

This parameter defines a timeout for synchronization epochs for NDB Cluster Replication. If a node
fails to participate in a global checkpoint within the time determined by this parameter, the node is
shut down. The default value is 0; in other words, the timeout is disabled.

TimeBetweenEpochsTimeout is part of the implementation of “micro-GCPs”, which can be used to
improve the performance of NDB Cluster Replication.

The current value of this parameter and a warning are written to the cluster log whenever a GCP
save takes longer than 1 minute or a GCP commit takes longer than 10 seconds.

Setting this parameter to zero has the effect of disabling GCP stops caused by save timeouts,
commit timeouts, or both. The maximum possible value for this parameter is 256000 milliseconds.

• MaxBufferedEpochs

Version (or
later)

NDB 8.0.13

Type or units epochs

Default 100

Range 0 - 100000

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The number of unprocessed epochs by which a subscribing node can lag behind. Exceeding this
number causes a lagging subscriber to be disconnected.

The default value of 100 is sufficient for most normal operations. If a subscribing node does lag
enough to cause disconnections, it is usually due to network or scheduling issues with regard to
processes or threads. (In rare circumstances, the problem may be due to a bug in the NDB client.) It
may be desirable to set the value lower than the default when epochs are longer.

Disconnection prevents client issues from affecting the data node service, running out of memory
to buffer data, and eventually shutting down. Instead, only the client is affected as a result of the
disconnect (by, for example gap events in the binary log), forcing the client to reconnect or restart the
process.

• MaxBufferedEpochBytes

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 26214400

Range 26214400
(0x01900000)
- 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart 4319

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

The total number of bytes allocated for buffering epochs by this node.

• TimeBetweenInactiveTransactionAbortCheck

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 1000

Range 1000 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Timeout handling is performed by checking a timer on each transaction once for every interval
specified by this parameter. Thus, if this parameter is set to 1000 milliseconds, every transaction is
checked for timing out once per second.

The default value is 1000 milliseconds (1 second).

• TransactionInactiveTimeout

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 4294967039
(0xFFFFFEFF)

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter states the maximum time that is permitted to lapse between operations in the same
transaction before the transaction is aborted.

The default for this parameter is 4G (also the maximum). For a real-time database that needs to
ensure that no transaction keeps locks for too long, this parameter should be set to a relatively small
value. Setting it to 0 means that the application never times out. The unit is milliseconds.

• TransactionDeadlockDetectionTimeout

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 1200
4320

NDB Cluster Configuration Files

Range 50 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When a node executes a query involving a transaction, the node waits for the other nodes in the
cluster to respond before continuing. This parameter sets the amount of time that the transaction can
spend executing within a data node, that is, the time that the transaction coordinator waits for each
data node participating in the transaction to execute a request.

A failure to respond can occur for any of the following reasons:

• The node is “dead”

• The operation has entered a lock queue

• The node requested to perform the action could be heavily overloaded.

This timeout parameter states how long the transaction coordinator waits for query execution by
another node before aborting the transaction, and is important for both node failure handling and
deadlock detection.

The default timeout value is 1200 milliseconds (1.2 seconds).

The minimum for this parameter is 50 milliseconds.

• DiskSyncSize

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 4M

Range 32K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This is the maximum number of bytes to store before flushing data to a local checkpoint file. This is
done to prevent write buffering, which can impede performance significantly. This parameter is not
intended to take the place of TimeBetweenLocalCheckpoints.

Note

When ODirect is enabled, it is not necessary to set DiskSyncSize; in fact,
in such cases its value is simply ignored.

The default value is 4M (4 megabytes).

4321

NDB Cluster Configuration Files

• MaxDiskWriteSpeed

Version (or
later)

NDB 8.0.13

Type or units numeric

Default 20M

Range 1M - 1024G

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations when no restarts (by this data node or any other data node) are taking place in this NDB
Cluster.

For setting the maximum rate of disk writes allowed while this data node is restarting, use
MaxDiskWriteSpeedOwnRestart. For setting the maximum rate of disk writes allowed while other
data nodes are restarting, use MaxDiskWriteSpeedOtherNodeRestart. The minimum speed for
disk writes by all LCPs and backup operations can be adjusted by setting MinDiskWriteSpeed.

• MaxDiskWriteSpeedOtherNodeRestart

Version (or
later)

NDB 8.0.13

Type or units numeric

Default 50M

Range 1M - 1024G

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations when one or more data nodes in this NDB Cluster are restarting, other than this node.

For setting the maximum rate of disk writes allowed while this data node is restarting, use
MaxDiskWriteSpeedOwnRestart. For setting the maximum rate of disk writes allowed when no
data nodes are restarting anywhere in the cluster, use MaxDiskWriteSpeed. The minimum speed
for disk writes by all LCPs and backup operations can be adjusted by setting MinDiskWriteSpeed.

• MaxDiskWriteSpeedOwnRestart

Version (or
later)

NDB 8.0.13

Type or units numeric

Default 200M

4322

NDB Cluster Configuration Files

Range 1M - 1024G

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations while this data node is restarting.

For setting the maximum rate of disk writes allowed while other data nodes are restarting, use
MaxDiskWriteSpeedOtherNodeRestart. For setting the maximum rate of disk writes allowed
when no data nodes are restarting anywhere in the cluster, use MaxDiskWriteSpeed. The
minimum speed for disk writes by all LCPs and backup operations can be adjusted by setting
MinDiskWriteSpeed.

• MinDiskWriteSpeed

Version (or
later)

NDB 8.0.13

Type or units numeric

Default 10M

Range 1M - 1024G

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

Set the minimum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations.

The maximum rates of disk writes allowed for LCPs and backups under various conditions are
adjustable using the parameters MaxDiskWriteSpeed, MaxDiskWriteSpeedOwnRestart, and
MaxDiskWriteSpeedOtherNodeRestart. See the descriptions of these parameters for more
information.

• ApiFailureHandlingTimeout

Version (or
later)

NDB 8.0.42

Type or units seconds

Default 600

Range 0 - 4294967039
(0xFFFFFEFF)

Added NDB 8.0.42

4323

NDB Cluster Configuration Files

Restart Type

Specifies the maximum time (in seconds) that the data node waits for API node failure handling to
complete before escalating it to data node failure handling.

Added in NDB 8.0.42.

• ArbitrationTimeout

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 7500

Range 10 -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies how long data nodes wait for a response from the arbitrator to an arbitration
message. If this is exceeded, the network is assumed to have split.

The default value is 7500 milliseconds (7.5 seconds).

• Arbitration

Version (or
later)

NDB 8.0.13

Type or units enumeration

Default Default

Range Default,
Disabled,
WaitExternal

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The Arbitration parameter enables a choice of arbitration schemes, corresponding to one of 3
possible values for this parameter:

• Default. This enables arbitration to proceed normally, as determined by the
ArbitrationRank settings for the management and API nodes. This is the default value.

• Disabled. Setting Arbitration = Disabled in the [ndbd default] section of the
config.ini file to accomplishes the same task as setting ArbitrationRank to 0 on all
management and API nodes. When Arbitration is set in this way, any ArbitrationRank
settings are ignored.

• WaitExternal. The Arbitration parameter also makes it possible to configure arbitration
in such a way that the cluster waits until after the time determined by ArbitrationTimeout
has passed for an external cluster manager application to perform arbitration instead of handling

4324

NDB Cluster Configuration Files

arbitration internally. This can be done by setting Arbitration = WaitExternal in the [ndbd
default] section of the config.ini file. For best results with the WaitExternal setting, it
is recommended that ArbitrationTimeout be 2 times as long as the interval required by the
external cluster manager to perform arbitration.

Important

This parameter should be used only in the [ndbd default] section of the
cluster configuration file. The behavior of the cluster is unspecified when
Arbitration is set to different values for individual data nodes.

• RestartSubscriberConnectTimeout

Version (or
later)

NDB 8.0.13

Type or units ms

Default 12000

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter determines the time that a data node waits for subscribing API nodes to connect.
Once this timeout expires, any “missing” API nodes are disconnected from the cluster. To disable
this timeout, set RestartSubscriberConnectTimeout to 0.

While this parameter is specified in milliseconds, the timeout itself is resolved to the next-greatest
whole second.

• KeepAliveSendInterval

Version (or
later)

NDB 8.0.13

Type or units integer

Default 60000

Range 0 - 4294967039
(0xFFFFFEFF)

Added NDB 8.0.27

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Beginning with NDB 8.0.27, it is possible to enable and control the interval between
keep-alive signals sent between data nodes by setting this parameter. The default for
KeepAliveSendInterval is 60000 milliseconds (one minute); setting it to 0 disables keep-alive
signals. Values between 1 and 10 inclusive are treated as 10.

This parameter may prove useful in environments which monitor and disconnect idle TCP
connections, possibly causing unnecessary data node failures when the cluster is idle.

4325

NDB Cluster Configuration Files

The heartbeat interval between management nodes and data nodes is always 100 milliseconds, and is
not configurable.

Buffering and logging. Several [ndbd] configuration parameters enable the advanced user to
have more control over the resources used by node processes and to adjust various buffer sizes at
need.

These buffers are used as front ends to the file system when writing log records to disk. If the node is
running in diskless mode, these parameters can be set to their minimum values without penalty due to
the fact that disk writes are “faked” by the NDB storage engine's file system abstraction layer.

• UndoIndexBuffer

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 2M

Range 1M -
4294967039
(0xFFFFFEFF)

Deprecated NDB 8.0.27

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter formerly set the size of the undo index buffer, but has no effect in current versions of
NDB Cluster.

In NDB 8.0.27 and later, the use of this parameter in the cluster configuration file raises a
deprecation warning; you should expect it to be removed in a future NDB Cluster release.

• UndoDataBuffer

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 16M

Range 1M -
4294967039
(0xFFFFFEFF)

Deprecated NDB 8.0.27

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter formerly set the size of the undo data buffer, but has no effect in current versions of
NDB Cluster.

In NDB 8.0.27 and later, the use of this parameter in the cluster configuration file raises a
deprecation warning; you should expect it to be removed in a future NDB Cluster release.

• RedoBuffer

4326

NDB Cluster Configuration Files

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 32M

Range 1M -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

All update activities also need to be logged. The REDO log makes it possible to replay these updates
whenever the system is restarted. The NDB recovery algorithm uses a “fuzzy” checkpoint of the
data together with the UNDO log, and then applies the REDO log to play back all changes up to the
restoration point.

RedoBuffer sets the size of the buffer in which the REDO log is written. The default value is 32MB;
the minimum value is 1MB.

If this buffer is too small, the NDB storage engine issues error code 1221 (REDO log buffers
overloaded). For this reason, you should exercise care if you attempt to decrease the value of
RedoBuffer as part of an online change in the cluster's configuration.

ndbmtd allocates a separate buffer for each LDM thread (see ThreadConfig). For example, with 4
LDM threads, an ndbmtd data node actually has 4 buffers and allocates RedoBuffer bytes to each
one, for a total of 4 * RedoBuffer bytes.

• EventLogBufferSize

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 8192

Range 0 - 64K

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

Controls the size of the circular buffer used for NDB log events within data nodes.

Controlling log messages. In managing the cluster, it is very important to be able to control the
number of log messages sent for various event types to stdout. For each event category, there are
16 possible event levels (numbered 0 through 15). Setting event reporting for a given event category to
level 15 means all event reports in that category are sent to stdout; setting it to 0 means that no event
reports in that category are made.

4327

NDB Cluster Configuration Files

By default, only the startup message is sent to stdout, with the remaining event reporting level
defaults being set to 0. The reason for this is that these messages are also sent to the management
server's cluster log.

An analogous set of levels can be set for the management client to determine which event levels to
record in the cluster log.

• LogLevelStartup

Version (or
later)

NDB 8.0.13

Type or units integer

Default 1

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The reporting level for events generated during startup of the process.

The default level is 1.

• LogLevelShutdown

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The reporting level for events generated as part of graceful shutdown of a node.

The default level is 0.

• LogLevelStatistic

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

4328

NDB Cluster Configuration Files

The reporting level for statistical events such as number of primary key reads, number of updates,
number of inserts, information relating to buffer usage, and so on.

The default level is 0.

• LogLevelCheckpoint

Version (or
later)

NDB 8.0.13

Type or units log level

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The reporting level for events generated by local and global checkpoints.

The default level is 0.

• LogLevelNodeRestart

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The reporting level for events generated during node restart.

The default level is 0.

• LogLevelConnection

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart

4329

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

The reporting level for events generated by connections between cluster nodes.

The default level is 0.

• LogLevelError

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The reporting level for events generated by errors and warnings by the cluster as a whole. These
errors do not cause any node failure but are still considered worth reporting.

The default level is 0.

• LogLevelCongestion

Version (or
later)

NDB 8.0.13

Type or units level

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The reporting level for events generated by congestion. These errors do not cause node failure but
are still considered worth reporting.

The default level is 0.

• LogLevelInfo

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 15

Restart Type Node Restart:
Requires a
rolling restart

4330

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

The reporting level for events generated for information about the general state of the cluster.

The default level is 0.

• MemReportFrequency

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter controls how often data node memory usage reports are recorded in the cluster log; it
is an integer value representing the number of seconds between reports.

Each data node's data memory and index memory usage is logged as both a percentage and
a number of 32 KB pages of DataMemory, as set in the config.ini file. For example, if
DataMemory is equal to 100 MB, and a given data node is using 50 MB for data memory storage,
the corresponding line in the cluster log might look like this:

2006-12-24 01:18:16 [MgmSrvr] INFO -- Node 2: Data usage is 50%(1280 32K pages of total 2560)

MemReportFrequency is not a required parameter. If used, it can be set for all cluster data nodes
in the [ndbd default] section of config.ini, and can also be set or overridden for individual
data nodes in the corresponding [ndbd] sections of the configuration file. The minimum value—
which is also the default value—is 0, in which case memory reports are logged only when memory
usage reaches certain percentages (80%, 90%, and 100%), as mentioned in the discussion of
statistics events in Section 25.6.3.2, “NDB Cluster Log Events”.

• StartupStatusReportFrequency

Version (or
later)

NDB 8.0.13

Type or units seconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When a data node is started with the --initial, it initializes the redo log file during Start Phase
4 (see Section 25.6.4, “Summary of NDB Cluster Start Phases”). When very large values are set
for NoOfFragmentLogFiles, FragmentLogFileSize, or both, this initialization can take a long
time. You can force reports on the progress of this process to be logged periodically, by means of4331

NDB Cluster Configuration Files

the StartupStatusReportFrequency configuration parameter. In this case, progress is reported
in the cluster log, in terms of both the number of files and the amount of space that have been
initialized, as shown here:

2009-06-20 16:39:23 [MgmSrvr] INFO -- Node 1: Local redo log file initialization status:
#Total files: 80, Completed: 60
#Total MBytes: 20480, Completed: 15557
2009-06-20 16:39:23 [MgmSrvr] INFO -- Node 2: Local redo log file initialization status:
#Total files: 80, Completed: 60
#Total MBytes: 20480, Completed: 15570

These reports are logged each StartupStatusReportFrequency seconds during Start Phase 4.
If StartupStatusReportFrequency is 0 (the default), then reports are written to the cluster log
only when at the beginning and at the completion of the redo log file initialization process.

Data Node Debugging Parameters

The following parameters are intended for use during testing or debugging of data nodes, and not for
use in production.

• DictTrace

Version (or
later)

NDB 8.0.13

Type or units bytes

Default undefined

Range 0 - 100

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

It is possible to cause logging of traces for events generated by creating and dropping tables using
DictTrace. This parameter is useful only in debugging NDB kernel code. DictTrace takes an
integer value. 0 is the default, and means no logging is performed; 1 enables trace logging, and 2
enables logging of additional DBDICT debugging output.

• WatchDogImmediateKill

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

You can cause threads to be killed immediately whenever watchdog issues occur by enabling the
WatchDogImmediateKill data node configuration parameter. This parameter should be used only
when debugging or troubleshooting, to obtain trace files reporting exactly what was occurring the
instant that execution ceased.

Backup parameters. The [ndbd] parameters discussed in this section define memory buffers set
aside for execution of online backups.

4332

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

NDB Cluster Configuration Files

• BackupDataBufferSize

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 16M

Range 512K -
4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB
7.6)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

In creating a backup, there are two buffers used for sending data to the disk. The backup data
buffer is used to fill in data recorded by scanning a node's tables. Once this buffer has been filled to
the level specified as BackupWriteSize, the pages are sent to disk. While flushing data to disk,
the backup process can continue filling this buffer until it runs out of space. When this happens,
the backup process pauses the scan and waits until some disk writes have completed freeing up
memory so that scanning may continue.

The default value for this parameter is 16MB. The minimum is 512K.

• BackupDiskWriteSpeedPct

Version (or
later)

NDB 8.0.13

Type or units percent

Default 50

Range 0 - 90

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

BackupDiskWriteSpeedPct applies only when a backup is single-threaded. With the introduction
of multi-threaded backups in NDB 8.0.16, it is usually no longer necessary to adjust this parameter,
which has no effect in the multi-threaded case. The discussion that follows is specific to single-
threaded backups.

During normal operation, data nodes attempt to maximize the disk write speed used for local
checkpoints and backups while remaining within the bounds set by MinDiskWriteSpeed and
MaxDiskWriteSpeed. Disk write throttling gives each LDM thread an equal share of the total
budget. This allows parallel LCPs to take place without exceeding the disk I/O budget. Because a
backup is executed by only one LDM thread, this effectively caused a budget cut, resulting in longer
backup completion times, and—if the rate of change is sufficiently high—in failure to complete the
backup when the backup log buffer fill rate is higher than the achievable write rate.

This problem can be addressed by using the BackupDiskWriteSpeedPct configuration
parameter, which takes a value in the range 0-90 (inclusive) which is interpreted as the percentage
of the node's maximum write rate budget that is reserved prior to sharing out the remainder of the

4333

NDB Cluster Configuration Files

budget among LDM threads for LCPs. The LDM thread running the backup receives the whole write
rate budget for the backup, plus its (reduced) share of the write rate budget for local checkpoints.

The default value for this parameter is 50 (interpreted as 50%).

• BackupLogBufferSize

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 16M

Range 2M -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The backup log buffer fulfills a role similar to that played by the backup data buffer, except that
it is used for generating a log of all table writes made during execution of the backup. The same
principles apply for writing these pages as with the backup data buffer, except that when there is no
more space in the backup log buffer, the backup fails. For that reason, the size of the backup log
buffer must be large enough to handle the load caused by write activities while the backup is being
made. See Section 25.6.8.3, “Configuration for NDB Cluster Backups”.

The default value for this parameter should be sufficient for most applications. In fact, it is more likely
for a backup failure to be caused by insufficient disk write speed than it is for the backup log buffer
to become full. If the disk subsystem is not configured for the write load caused by applications, the
cluster is unlikely to be able to perform the desired operations.

It is preferable to configure cluster nodes in such a manner that the processor becomes the
bottleneck rather than the disks or the network connections.

The default value for this parameter is 16MB.

• BackupMemory

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 32M

Range 0 - 4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB
7.4)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter is deprecated, and subject to removal in a future version of NDB Cluster. Any setting
made for it is ignored.

4334

NDB Cluster Configuration Files

• BackupReportFrequency

Version (or
later)

NDB 8.0.13

Type or units seconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter controls how often backup status reports are issued in the management client during
a backup, as well as how often such reports are written to the cluster log (provided cluster event
logging is configured to permit it—see Logging and checkpointing). BackupReportFrequency
represents the time in seconds between backup status reports.

The default value is 0.

• BackupWriteSize

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 256K

Range 32K -
4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB
7.6)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies the default size of messages written to disk by the backup log and backup
data buffers.

The default value for this parameter is 256KB.

• BackupMaxWriteSize

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 1M

Range 256K -
4294967039
(0xFFFFFEFF)

4335

NDB Cluster Configuration Files

Deprecated Yes (in NDB
7.6)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies the maximum size of messages written to disk by the backup log and
backup data buffers.

The default value for this parameter is 1MB.

• CompressedBackup

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Enabling this parameter causes backup files to be compressed. The compression used is equivalent
to gzip --fast, and can save 50% or more of the space required on the data node to store
uncompressed backup files. Compressed backups can be enabled for individual data nodes, or for
all data nodes (by setting this parameter in the [ndbd default] section of the config.ini file).

Important

You cannot restore a compressed backup to a cluster running a MySQL
version that does not support this feature.

The default value is 0 (disabled).

• RequireEncryptedBackup

Version (or
later)

NDB 8.0.22

Type or units integer

Default 0

Range 0 - 1

Added NDB 8.0.22

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

If set to 1, backups must be encrypted. While it is possible to set this parameter for each data
node individually, it is recommended that you set it in the [ndbd default] section of the

4336

NDB Cluster Configuration Files

config.ini global configuration file. For more information about performing encrypted backups,
see Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”.

Added in NDB 8.0.22.

Note

The location of the backup files is determined by the BackupDataDir data
node configuration parameter.

Additional requirements. When specifying these parameters, the following relationships must hold
true. Otherwise, the data node cannot start.

• BackupDataBufferSize >= BackupWriteSize + 188KB

• BackupLogBufferSize >= BackupWriteSize + 16KB

• BackupMaxWriteSize >= BackupWriteSize

NDB Cluster Realtime Performance Parameters

The [ndbd] parameters discussed in this section are used in scheduling and locking of threads to
specific CPUs on multiprocessor data node hosts.

Note

To make use of these parameters, the data node process must be run as
system root.

• BuildIndexThreads

Version (or
later)

NDB 8.0.13

Type or units numeric

Default 128

Range 0 - 128

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter determines the number of threads to create when rebuilding ordered indexes
during a system or node start, as well as when running ndb_restore --rebuild-indexes. It is
supported only when there is more than one fragment for the table per data node (for example, when
COMMENT="NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_LDM_X_2" is used with CREATE
TABLE).

Setting this parameter to 0 (the default) disables multithreaded building of ordered indexes.

This parameter is supported when using ndbd or ndbmtd.

You can enable multithreaded builds during data node initial restarts by setting the
TwoPassInitialNodeRestartCopy data node configuration parameter to TRUE.

• LockExecuteThreadToCPU

Version (or
later)

NDB 8.0.13

Type or units set of CPU IDs

4337

NDB Cluster Configuration Files

Default 0

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When used with ndbd, this parameter (now a string) specifies the ID of the CPU assigned to handle
the NDBCLUSTER execution thread. When used with ndbmtd, the value of this parameter is a
comma-separated list of CPU IDs assigned to handle execution threads. Each CPU ID in the list
should be an integer in the range 0 to 65535 (inclusive).

The number of IDs specified should match the number of execution threads determined by
MaxNoOfExecutionThreads. However, there is no guarantee that threads are assigned to CPUs
in any given order when using this parameter. You can obtain more finely-grained control of this type
using ThreadConfig.

LockExecuteThreadToCPU has no default value.

• LockMaintThreadsToCPU

Version (or
later)

NDB 8.0.13

Type or units CPU ID

Default 0

Range 0 - 64K

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies the ID of the CPU assigned to handle NDBCLUSTER maintenance threads.

The value of this parameter is an integer in the range 0 to 65535 (inclusive). There is no default
value.

• Numa

Version (or
later)

NDB 8.0.13

Type or units numeric

Default 1

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter determines whether Non-Uniform Memory Access (NUMA) is controlled by the
operating system or by the data node process, whether the data node uses ndbd or ndbmtd. By
default, NDB attempts to use an interleaved NUMA memory allocation policy on any data node where
the host operating system provides NUMA support.

4338

NDB Cluster Configuration Files

Setting Numa = 0 means that the datanode process does not itself attempt to set a policy for
memory allocation, and permits this behavior to be determined by the operating system, which
may be further guided by the separate numactl tool. That is, Numa = 0 yields the system default
behavior, which can be customised by numactl. For many Linux systems, the system default
behavior is to allocate socket-local memory to any given process at allocation time. This can be
problematic when using ndbmtd; this is because nbdmtd allocates all memory at startup, leading to
an imbalance, giving different access speeds for different sockets, especially when locking pages in
main memory.

Setting Numa = 1 means that the data node process uses libnuma to request interleaved memory
allocation. (This can also be accomplished manually, on the operating system level, using numactl.)
Using interleaved allocation in effect tells the data node process to ignore non-uniform memory
access but does not attempt to take any advantage of fast local memory; instead, the data node
process tries to avoid imbalances due to slow remote memory. If interleaved allocation is not desired,
set Numa to 0 so that the desired behavior can be determined on the operating system level.

The Numa configuration parameter is supported only on Linux systems where libnuma.so is
available.

• RealtimeScheduler

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Setting this parameter to 1 enables real-time scheduling of data node threads.

The default is 0 (scheduling disabled).

• SchedulerExecutionTimer

Version (or
later)

NDB 8.0.13

Type or units µs

Default 50

Range 0 - 11000

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies the time in microseconds for threads to be executed in the scheduler
before being sent. Setting it to 0 minimizes the response time; to achieve higher throughput, you can
increase the value at the expense of longer response times.

The default is 50 μsec, which our testing shows to increase throughput slightly in high-load cases
without materially delaying requests.

4339

NDB Cluster Configuration Files

• SchedulerResponsiveness

Version (or
later)

NDB 8.0.13

Type or units integer

Default 5

Range 0 - 10

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Set the balance in the NDB scheduler between speed and throughput. This parameter takes an
integer whose value is in the range 0-10 inclusive, with 5 as the default. Higher values provide better
response times relative to throughput. Lower values provide increased throughput at the expense of
longer response times.

• SchedulerSpinTimer

Version (or
later)

NDB 8.0.13

Type or units µs

Default 0

Range 0 - 500

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies the time in microseconds for threads to be executed in the scheduler before
sleeping.

Starting with NDB 8.0.20, if SpinMethod is set, any setting for this parameter is ignored.

• SpinMethod

Version (or
later)

NDB 8.0.20

Type or units enumeration

Default StaticSpinning

Range CostBasedSpinning,
LatencyOptimisedSpinning,
DatabaseMachineSpinning,
StaticSpinning

Added NDB 8.0.20

Restart Type Node Restart:
Requires a
rolling restart

4340

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

This parameter is present beginning in NDB 8.0.20, but has no effect prior to NDB 8.0.24. It provides
a simple interface to control adaptive spinning on data nodes, with four possible values furnishing
presets for spin parameter values, as shown in the following list:

1. StaticSpinning (default): Sets EnableAdaptiveSpinning to false and
SchedulerSpinTimer to 0. (SetAllowedSpinOverhead is not relevant in this case.)

2. CostBasedSpinning: Sets EnableAdaptiveSpinning to true, SchedulerSpinTimer to
100, and SetAllowedSpinOverhead to 200.

3. LatencyOptimisedSpinning: Sets EnableAdaptiveSpinning to true,
SchedulerSpinTimer to 200, and SetAllowedSpinOverhead to 1000.

4. DatabaseMachineSpinning: Sets EnableAdaptiveSpinning to true,
SchedulerSpinTimer to 500, and SetAllowedSpinOverhead to 10000. This is intended for
use in cases where threads own their own CPUs.

The spin parameters modified by SpinMethod are described in the following list:

• SchedulerSpinTimer: This is the same as the data node configuration parameter of that name.
The setting applied to this parameter by SpinMethod overrides any value set in the config.ini
file.

• EnableAdaptiveSpinning: Enables or disables adaptive spinning. Disabling it causes spinning
to be performed without making any checks for CPU resources. This parameter cannot be set
directly in the cluster configuration file, and under most circumstances should not need to be, but
can be enabled directly using DUMP 104004 1 or disabled with DUMP 104004 0 in the ndb_mgm
management client.

• SetAllowedSpinOverhead: Sets the amount of CPU time to allow for gaining latency. This
parameter cannot be set directly in the config.ini file. In most cases, the setting applied by
SpinMethod should be satisfactory, but if it is necessary to change it directly, you can use DUMP
104002 overhead to do so, where overhead is a value ranging from 0 to 10000, inclusive; see
the description of the indicated DUMP command for details.

On platforms lacking usable spin instructions, such as PowerPC and some SPARC platforms, spin
time is set to 0 in all situations, and values for SpinMethod other than StaticSpinning are
ignored.

• TwoPassInitialNodeRestartCopy

Version (or
later)

NDB 8.0.13

Type or units boolean

Default true

Range true, false

Restart Type Node Restart:
Requires a
rolling restart

4341

https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

Multithreaded building of ordered indexes can be enabled for initial restarts of data nodes by setting
this configuration parameter to true (the default value), which enables two-pass copying of data
during initial node restarts.

You must also set BuildIndexThreads to a nonzero value.

Multi-Threading Configuration Parameters (ndbmtd). ndbmtd runs by default as a single-
threaded process and must be configured to use multiple threads, using either of two methods, both of
which require setting configuration parameters in the config.ini file. The first method is simply to set
an appropriate value for the MaxNoOfExecutionThreads configuration parameter. A second method
makes it possible to set up more complex rules for ndbmtd multithreading using ThreadConfig. The
next few paragraphs provide information about these parameters and their use with multithreaded data
nodes.

Note

A backup using parallelism on the data nodes requires that multiple LDMs
are in use on all data nodes in the cluster prior to taking the backup. For
more information, see Section 25.6.8.5, “Taking an NDB Backup with Parallel
Data Nodes”, as well as Section 25.5.23.3, “Restoring from a backup taken in
parallel”.

• AutomaticThreadConfig

Version (or
later)

NDB 8.0.23

Type or units boolean

Default false

Range true, false

Added NDB 8.0.23

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster.
(NDB 8.0.13)

When set to 1, enables automatic thread configuration employing the number of CPUs available
to a data node taking into account any limits set by taskset, numactl, virtual machines, Docker,
and other such means of controlling which CPUs are available to a given application (on Windows
platforms, automatic thread configuration uses all CPUs which are online); alternatively, you
can set NumCPUs to the desired number of CPUs (up to 1024, the maximum number of CPUs
that can be handled by automatic thread configuration). Any settings for ThreadConfig and
MaxNoOfExecutionThreads are ignored. In addition, enabling this parameter automatically
disables ClassicFragmentation.

• ClassicFragmentation

4342

NDB Cluster Configuration Files

Version (or
later)

NDB 8.0.23

Type or units boolean

Default true

Range true, false

Added NDB 8.0.23

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When enabled (set to true), NDB distributes fragments among LDMs in the manner always used by
NDB prior to NDB 8.0.23; that is, the default number of partitions per node is equal to the minimum
number of local data manager (LDM) threads per data node.

For new clusters for which a downgrade to NDB 8.0.22 or earlier is never expected to occur, setting
ClassicFragmentation to false when first setting up the cluster is preferable; doing so causes
the number of partitions per node to be equal to the value of PartitionsPerNode, ensuring that all
partitions are spread out evenly between all LDMs.

This parameter and AutomaticThreadConfig are mutually exclusive; enabling
AutomaticThreadConfig automatically disables ClassicFragmentation.

• EnableMultithreadedBackup

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 1

Range 0 - 1

Added NDB 8.0.16

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Enables multi-threaded backup. If each data node has at least 2 LDMs, all LDM threads participate
in the backup, which is created using one subdirectory per LDM thread, and each subdirectory
containing .ctl, .Data, and .log backup files.

This parameter is normally enabled (set to 1) for ndbmtd. To force a single-threaded backup that
can be restored easily using older versions of ndb_restore, disable multi-threaded backup by
setting this parameter to 0. This must be done for each data node in the cluster.

See Section 25.6.8.5, “Taking an NDB Backup with Parallel Data Nodes”, and Section 25.5.23.3,
“Restoring from a backup taken in parallel”, for more information.

• MaxNoOfExecutionThreads

Version (or
later)

NDB 8.0.13

Type or units integer

4343

NDB Cluster Configuration Files

Default 2

Range 2 - 72

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

This parameter directly controls the number of execution threads used by ndbmtd, up to a maximum
of 72. Although this parameter is set in [ndbd] or [ndbd default] sections of the config.ini
file, it is exclusive to ndbmtd and does not apply to ndbd.

Enabling AutomaticThreadConfig causes any setting for this parameter to be ignored.

Setting MaxNoOfExecutionThreads sets the number of threads for each type as determined by
a matrix in the file storage/ndb/src/common/mt_thr_config.cpp. (Prior to NDB 8.0.30, this
was storage/ndb/src/kernel/vm/mt_thr_config.cpp.) This table shows these numbers of
threads for possible values of MaxNoOfExecutionThreads.

Table 25.12 MaxNoOfExecutionThreads values and the corresponding number of threads by
thread type (LQH, TC, Send, Receive).

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

0 .. 3 1 0 0 1

4 .. 6 2 0 0 1

7 .. 8 4 0 0 1

9 4 2 0 1

10 4 2 1 1

11 4 3 1 1

12 6 2 1 1

13 6 3 1 1

14 6 3 1 2

15 6 3 2 2

16 8 3 1 2

17 8 4 1 2

18 8 4 2 2

19 8 5 2 2

20 10 4 2 2

21 10 5 2 2

22 10 5 2 3

23 10 6 2 3

24 12 5 2 3

25 12 6 2 3

26 12 6 3 3

27 12 7 3 3

4344

NDB Cluster Configuration Files

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

28 12 7 3 4

29 12 8 3 4

30 12 8 4 4

31 12 9 4 4

32 16 8 3 3

33 16 8 3 4

34 16 8 4 4

35 16 9 4 4

36 16 10 4 4

37 16 10 4 5

38 16 11 4 5

39 16 11 5 5

40 20 10 4 4

41 20 10 4 5

42 20 11 4 5

43 20 11 5 5

44 20 12 5 5

45 20 12 5 6

46 20 13 5 6

47 20 13 6 6

48 24 12 5 5

49 24 12 5 6

50 24 13 5 6

51 24 13 6 6

52 24 14 6 6

53 24 14 6 7

54 24 15 6 7

55 24 15 7 7

56 24 16 7 7

57 24 16 7 8

58 24 17 7 8

59 24 17 8 8

60 24 18 8 8

61 24 18 8 9

62 24 19 8 9

63 24 19 9 9

64 32 16 7 7

65 32 16 7 8

66 32 17 7 8

67 32 17 8 8

4345

NDB Cluster Configuration Files

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

68 32 18 8 8

69 32 18 8 9

70 32 19 8 9

71 32 20 8 9

72 32 20 8 10

There is always one SUMA (replication) thread.

NoOfFragmentLogParts should be set equal to the number of LDM threads used by ndbmtd,
as determined by the setting for this parameter. This ratio should not be any greater than 4:1; a
configuration in which this is the case is specifically disallowed.

The number of LDM threads also determines the number of partitions used by an NDB table that is
not explicitly partitioned; this is the number of LDM threads times the number of data nodes in the
cluster. (If ndbd is used on the data nodes rather than ndbmtd, then there is always a single LDM
thread; in this case, the number of partitions created automatically is simply equal to the number
of data nodes. See Section 25.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and
Partitions”, for more information.

Adding large tablespaces for Disk Data tables when using more than the default number of LDM
threads may cause issues with resource and CPU usage if the disk page buffer is insufficiently large;
see the description of the DiskPageBufferMemory configuration parameter, for more information.

The thread types are described later in this section (see ThreadConfig).

Setting this parameter outside the permitted range of values causes the management server to abort
on startup with the error Error line number: Illegal value value for parameter
MaxNoOfExecutionThreads.

For MaxNoOfExecutionThreads, a value of 0 or 1 is rounded up internally by NDB to 2, so that 2 is
considered this parameter's default and minimum value.

MaxNoOfExecutionThreads is generally intended to be set equal to the number of CPU threads
available, and to allocate a number of threads of each type suitable to typical workloads. It does not
assign particular threads to specified CPUs. For cases where it is desirable to vary from the settings
provided, or to bind threads to CPUs, you should use ThreadConfig instead, which allows you to
allocate each thread directly to a desired type, CPU, or both.

The multithreaded data node process always spawns, at a minimum, the threads listed here:

• 1 local query handler (LDM) thread

• 1 receive thread

• 1 subscription manager (SUMA or replication) thread

For a MaxNoOfExecutionThreads value of 8 or less, no TC threads are created, and TC handling
is instead performed by the main thread.

Changing the number of LDM threads normally requires a system restart, whether it is changed
using this parameter or ThreadConfig, but it is possible to effect the change using a node initial
restart (NI) provided the following two conditions are met:

• Each LDM thread handles a maximum of 8 fragments, and

4346

NDB Cluster Configuration Files

• The total number of table fragments is an integer multiple of the number of LDM threads.

In NDB 8.0, an initial restart is not required to effect a change in this parameter, as it was in some
older versions of NDB Cluster.

• MaxSendDelay

Version (or
later)

NDB 8.0.13

Type or units microseconds

Default 0

Range 0 - 11000

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter can be used to cause data nodes to wait momentarily before sending data to API
nodes; in some circumstances, described in the following paragraphs, this can result in more efficient
sending of larger volumes of data and higher overall throughput.

MaxSendDelay can be useful when there are a great many API nodes at saturation point or close to
it, which can result in waves of increasing and decreasing performance. This occurs when the data
nodes are able to send results back to the API nodes relatively quickly, with many small packets to
process, which can take longer to process per byte compared to large packets, thus slowing down
the API nodes; later, the data nodes start sending larger packets again.

To handle this type of scenario, you can set MaxSendDelay to a nonzero value, which helps
to ensure that responses are not sent back to the API nodes so quickly. When this is done,
responses are sent immediately when there is no other competing traffic, but when there is, setting
MaxSendDelay causes the data nodes to wait long enough to ensure that they send larger packets.
In effect, this introduces an artificial bottleneck into the send process, which can actually improve
throughput significantly.

• NoOfFragmentLogParts

Version (or
later)

NDB 8.0.13

Type or units numeric

Default 4

Range 4, 6, 8, 10, 12,
16, 20, 24, 32

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with

4347

NDB Cluster Configuration Files

--initial.
(NDB 8.0.13)

Set the number of log file groups for redo logs belonging to this ndbmtd. The value of this parameter
should be set equal to the number of LDM threads used by ndbmtd as determined by the setting
for MaxNoOfExecutionThreads. A configuration using more than 4 redo log parts per LDM is
disallowed.

See the description of MaxNoOfExecutionThreads for more information.

• NumCPUs

Version (or
later)

NDB 8.0.23

Type or units integer

Default 0

Range 0 - 1024

Added NDB 8.0.23

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster.
(NDB 8.0.13)

Cause automatic thread configuration to use only this many CPUs. Has no effect if
AutomaticThreadConfig is not enabled.

• PartitionsPerNode

Version (or
later)

NDB 8.0.23

Type or units integer

Default 2

Range 1 - 32

Added NDB 8.0.23

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Sets the number of partitions used on each node when creating a new NDB table. This makes it
possible to avoid splitting up tables into an excessive number of partitions when the number of local
data managers (LDMs) grows high.

While it is possible to set this parameter to different values on different data nodes and there are
no known issues with doing so, this is also not likely to be of any advantage; for this reason, it is

4348

NDB Cluster Configuration Files

recommended simply to set it once, for all data nodes, in the [ndbd default] section of the global
config.ini file.

If ClassicFragmentation is enabled, any setting for this parameter is ignored. (Remember that
enabling AutomaticThreadConfig disables ClassicFragmentation.)

• ThreadConfig

Version (or
later)

NDB 8.0.13

Type or units string

Default ''

Range ...

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

This parameter is used with ndbmtd to assign threads of different types to different CPUs. Its value
is a string whose format has the following syntax:

ThreadConfig := entry[,entry[,...]]

entry := type={param[,param[,...]]}

type (NDB 8.0.22 and earlier) := ldm | main | recv | send | rep | io | tc | watchdog | idxbld

type (NDB 8.0.23 and later) := ldm | query | recover | main | recv | send | rep | io | tc | watchdog | idxbld

param := count=number
 | cpubind=cpu_list
 | cpuset=cpu_list
 | spintime=number
 | realtime={0|1}
 | nosend={0|1}
 | thread_prio={0..10}
 | cpubind_exclusive=cpu_list
 | cpuset_exclusive=cpu_list

The curly braces ({...}) surrounding the list of parameters are required, even if there is only one
parameter in the list.

A param (parameter) specifies any or all of the following information:

• The number of threads of the given type (count).

• The set of CPUs to which the threads of the given type are to be nonexclusively bound. This is
determined by either one of cpubind or cpuset). cpubind causes each thread to be bound
(nonexclusively) to a CPU in the set; cpuset means that each thread is bound (nonexclusively) to
the set of CPUs specified.

On Solaris, you can instead specify a set of CPUs to which the threads of the given type are to be
bound exclusively. cpubind_exclusive causes each thread to be bound exclusively to a CPU

4349

NDB Cluster Configuration Files

in the set; cpuset_exclsuive means that each thread is bound exclusively to the set of CPUs
specified.

Only one of cpubind, cpuset, cpubind_exclusive, or cpuset_exclusive can be provided
in a single configuration.

• spintime determines the wait time in microseconds the thread spins before going to sleep.

The default value for spintime is the value of the SchedulerSpinTimer data node
configuration parameter.

spintime does not apply to I/O threads, watchdog, or offline index build threads, and so cannot
be set for these thread types.

• realtime can be set to 0 or 1. If it is set to 1, the threads run with real-time priority. This also
means that thread_prio cannot be set.

The realtime parameter is set by default to the value of the RealtimeScheduler data node
configuration parameter.

realtime cannot be set for offline index build threads.

• By setting nosend to 1, you can prevent a main, ldm, rep, or tc thread from assisting the send
threads. This parameter is 0 by default, and cannot be used with other types of threads.

• thread_prio is a thread priority level that can be set from 0 to 10, with 10 representing the
greatest priority. The default is 5. The precise effects of this parameter are platform-specific, and
are described later in this section.

The thread priority level cannot be set for offline index build threads.

thread_prio settings and effects by platform. The implementation of thread_prio differs
between Linux/FreeBSD, Solaris, and Windows. In the following list, we discuss its effects on each of
these platforms in turn:

• Linux and FreeBSD: We map thread_prio to a value to be supplied to the nice system
call. Since a lower niceness value for a process indicates a higher process priority, increasing
thread_prio has the effect of lowering the nice value.

Table 25.13 Mapping of thread_prio to nice values on Linux and FreeBSD

thread_prio value nice value

0 19

1 16

2 12

3 8

4 4

5 0

6 -4

7 -8

8 -12

9 -16

4350

NDB Cluster Configuration Files

thread_prio value nice value

10 -20

Some operating systems may provide for a maximum process niceness level of 20, but this is not
supported by all targeted versions; for this reason, we choose 19 as the maximum nice value that
can be set.

• Solaris: Setting thread_prio on Solaris sets the Solaris FX priority, with mappings as shown in
the following table:

Table 25.14 Mapping of thread_prio to FX priority on Solaris

thread_prio value Solaris FX priority

0 15

1 20

2 25

3 30

4 35

5 40

6 45

7 50

8 55

9 59

10 60

A thread_prio setting of 9 is mapped on Solaris to the special FX priority value 59, which
means that the operating system also attempts to force the thread to run alone on its own CPU
core.

• Windows: We map thread_prio to a Windows thread priority value passed to the Windows API
SetThreadPriority() function. This mapping is shown in the following table:

Table 25.15 Mapping of thread_prio to Windows thread priority

thread_prio value Windows thread priority

0 - 1 THREAD_PRIORITY_LOWEST

2 - 3 THREAD_PRIORITY_BELOW_NORMAL

4 - 5 THREAD_PRIORITY_NORMAL

6 - 7 THREAD_PRIORITY_ABOVE_NORMAL

8 - 10 THREAD_PRIORITY_HIGHEST

The type attribute represents an NDB thread type. The thread types supported, and the range of
permitted count values for each, are provided in the following list:

• ldm: Local query handler (DBLQH kernel block) that handles data. The more LDM threads that
are used, the more highly partitioned the data becomes. (Beginning with NDB 8.0.23, when
ClassicFragmentation is set to 0, the number of partitions is independent of the number of
LDM threads, and depends on the value of PartitionsPerNode instead.) Each LDM thread
maintains its own sets of data and index partitions, as well as its own redo log. Prior to NDB
8.0.23, the value set for ldm must be one of the values 1, 2, 4, 6, 8, 12, 16, 24, or 32. In NDB
8.0.23 and later, it is possible to set ldm to any value in the range 1 to 332 inclusive; it also

4351

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html

NDB Cluster Configuration Files

becomes possible to set it to 0, provided that main, rep, and tc are also 0, and that recv is set
to 1; doing this causes ndbmtd to emulate ndbd.

Each LDM thread is normally grouped with 1 query thread to form an LDM group. A set of 4 to 8
LDM groups is grouped into a round robin groups. Each LDM thread can be assisted in execution
by any query or threads in the same round robin group. NDB attempts to form round robin groups
such that all threads in each round robin group are locked to CPUs that are attached to the same
L3 cache, within the limits of the range stated for a round robin group's size.

Changing the number of LDM threads normally requires a system restart to be effective and
safe for cluster operations; this requirement is relaxed in certain cases, as explained later in this
section. This is also true when this is done using MaxNoOfExecutionThreads.

Adding large tablespaces (hundreds of gigabytes or more) for Disk Data tables when using
more than the default number of LDMs may cause issues with resource and CPU usage if
DiskPageBufferMemory is not sufficiently large.

In NDB 8.0.30 (only), ldm must be included in the ThreadConfig value string. Beginning with
NDB 8.0.31, if this is omitted, one ldm thread is created. These changes may affect upgrades
from previous releases; see Section 25.3.7, “Upgrading and Downgrading NDB Cluster”, for more
information.

• query (Added in NDB 8.0.23): A query thread is tied to an LDM and together with it forms an LDM
group; acts only on READ COMMITTED queries. The number of query threads must be set to 0, 1,
2, or 3 times the number of LDM threads. Query threads are not used, unless this is overridden by
setting query to a nonzero value, or by enabling the AutomaticThreadConfig parameter, in
which case LDMs behave as they did prior to NDB 8.0.23.

A query thread also acts as a recovery thread (see next item), although the reverse is not true.

Changing the number of query threads requires a node restart.

• recover (Added in NDB 8.0.23): A recovery thread restores data from a fragment as part of an
LCP.

Changing the number of recovery threads requires a node restart.

• tc: Transaction coordinator thread (DBTC kernel block) containing the state of an ongoing
transaction. In NDB 8.0.23 and later, the maximum number of TC threads is 128; previously, this
was 32.

Optimally, every new transaction can be assigned to a new TC thread. In most cases 1 TC thread
per 2 LDM threads is sufficient to guarantee that this can happen. In cases where the number
of writes is relatively small when compared to the number of reads, it is possible that only 1 TC
thread per 4 LQH threads is required to maintain transaction states. Conversely, in applications
that perform a great many updates, it may be necessary for the ratio of TC threads to LDM threads
to approach 1 (for example, 3 TC threads to 4 LDM threads).

Setting tc to 0 causes TC handling to be done by the main thread. In most cases, this is
effectively the same as setting it to 1.

Range: 0-64 (NDB 8.0.22 and earlier: 0 - 32)

4352

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

NDB Cluster Configuration Files

• main: Data dictionary and transaction coordinator (DBDIH and DBTC kernel blocks), providing
schema management. Prior to NDB 8.0.23, this was always handled by a single dedicated thread,
beginning with NDB 8.0.23, it is also possible to specify zero or two main threads.

Range:

• NDB 8.0.22 and earlier: 1 only.

NDB 8.0.23 and later: 0-2.

Setting main to 0 and rep to 1 causes the main blocks to be placed into the rep thread; the
combined thread is shown in the ndbinfo.threads table as main_rep. This is effectively the
same as setting rep equal to 1 and main equal to 0.

It is also possible to set both main and rep to 0, in which case both threads are placed in the
first recv thread; the resulting combined thread is named main_rep_recv in the threads
table.

In NDB 8.0.30 (only), main must be included in the ThreadConfig value string. Beginning with
NDB 8.0.31, if this is omitted, one main thread is created. These changes may affect upgrades
from previous releases; see Section 25.3.7, “Upgrading and Downgrading NDB Cluster”, for more
information.

• recv: Receive thread (CMVMI kernel block). Each receive thread handles one or more sockets
for communicating with other nodes in an NDB Cluster, with one socket per node. NDB Cluster
supports multiple receive threads; the maximum is 16 such threads.

Range:

• NDB 8.0.22 and earlier: 1 - 16

• NDB 8.0.23 and later: 1 - 64

In NDB 8.0.30 (only), recv must be included in the ThreadConfig value string. Beginning with
NDB 8.0.31, if this is omitted, one recv thread is created. These changes may affect upgrades
from previous releases; see Section 25.3.7, “Upgrading and Downgrading NDB Cluster”, for more
information.

• send: Send thread (CMVMI kernel block). To increase throughput, it is possible to perform sends
from one or more separate, dedicated threads (maximum 8).

In NDB 8.0.20 and later, due to changes in the multithreading implementation, using many send
threads can have an adverse effect on scalability.

Previously, all threads handled their own sending directly; this can still be made to happen by
setting the number of send threads to 0 (this also happens when MaxNoOfExecutionThreads
is set less than 10). While doing so can have an adverse impact on throughput, it can also in some
cases provide decreased latency.

Range:

• NDB 8.0.22 and earlier: 0 - 16

• NDB 8.0.23 and later: 0 - 64

4353

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-cmvmi.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-cmvmi.html

NDB Cluster Configuration Files

• rep: Replication thread (SUMA kernel block). Prior to NDB 8.0.23, asynchronous replication
operations are always handled by a single, dedicated thread. Beginning with NDB 8.0.23, this
thread can be combined with the main thread (see range information).

Range:

• NDB 8.0.22 and earlier: 1 only.

• NDB 8.0.23 and later: 0-1.

Setting rep to 0 and main to 1 causes the rep blocks to be placed into the main thread; the
combined thread is shown in the ndbinfo.threads table as main_rep. This is effectively the
same as setting main equal to 1 and rep equal to 0.

It is also possible to set both main and rep to 0, in which case both threads are placed in the
first recv thread; the resulting combined thread is named main_rep_recv in the threads
table.

In NDB 8.0.30 (only), rep must be included in the ThreadConfig value string. Beginning with
NDB 8.0.31, if this is omitted, one rep thread is created. These changes may affect upgrades
from previous releases; see Section 25.3.7, “Upgrading and Downgrading NDB Cluster”, for more
information.

• io: File system and other miscellaneous operations. These are not demanding tasks, and are
always handled as a group by a single, dedicated I/O thread.

Range: 1 only.

• watchdog: Parameters settings associated with this type are actually applied to several threads,
each having a specific use. These threads include the SocketServer thread, which receives
connection setups from other nodes; the SocketClient thread, which attempts to set up
connections to other nodes; and the thread watchdog thread that checks that threads are
progressing.

Range: 1 only.

• idxbld: Offline index build threads. Unlike the other thread types listed previously, which are
permanent, these are temporary threads which are created and used only during node or system
restarts, or when running ndb_restore --rebuild-indexes. They may be bound to CPU sets
which overlap with CPU sets bound to permanent thread types.

thread_prio, realtime, and spintime values cannot be set for offline index build threads. In
addition, count is ignored for this type of thread.

If idxbld is not specified, the default behavior is as follows:

• Offline index build threads are not bound if the I/O thread is also not bound, and these threads
use any available cores.

• If the I/O thread is bound, then the offline index build threads are bound to the entire set of
bound threads, due to the fact that there should be no other tasks for these threads to perform.

Range: 0 - 1.

Changing ThreadCOnfig normally requires a system initial restart, but this requirement can be
relaxed under certain circumstances:

• If, following the change, the number of LDM threads remains the same as before, nothing more
than a simple node restart (rolling restart, or N) is required to implement the change.

4354

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html

NDB Cluster Configuration Files

• Otherwise (that is, if the number of LDM threads changes), it is still possible to effect the change
using a node initial restart (NI) provided the following two conditions are met:

a. Each LDM thread handles a maximum of 8 fragments, and

b. The total number of table fragments is an integer multiple of the number of LDM threads.

In any other case, a system initial restart is needed to change this parameter.

NDB can distinguish between thread types by both of the following criteria:

• Whether the thread is an execution thread. Threads of type main, ldm, query (NDB 8.0.23 and
later), recv, rep, tc, and send are execution threads; io, recover (NDB 8.0.23 and later),
watchdog, and idxbld threads are not considered execution threads.

• Whether the allocation of threads to a given task is permanent or temporary. Currently all thread
types except idxbld are considered permanent; idxbld threads are regarded as temporary
threads.

Simple examples:

Example 1.

ThreadConfig=ldm={count=2,cpubind=1,2},main={cpubind=12},rep={cpubind=11}

Example 2.

Threadconfig=main={cpubind=0},ldm={count=4,cpubind=1,2,5,6},io={cpubind=3}

It is usually desirable when configuring thread usage for a data node host to reserve one or more
number of CPUs for operating system and other tasks. Thus, for a host machine with 24 CPUs, you
might want to use 20 CPU threads (leaving 4 for other uses), with 8 LDM threads, 4 TC threads
(half the number of LDM threads), 3 send threads, 3 receive threads, and 1 thread each for schema
management, asynchronous replication, and I/O operations. (This is almost the same distribution of
threads used when MaxNoOfExecutionThreads is set equal to 20.) The following ThreadConfig
setting performs these assignments, additionally binding all of these threads to specific CPUs:

ThreadConfig=ldm{count=8,cpubind=1,2,3,4,5,6,7,8},main={cpubind=9},io={cpubind=9}, \
rep={cpubind=10},tc{count=4,cpubind=11,12,13,14},recv={count=3,cpubind=15,16,17}, \
send{count=3,cpubind=18,19,20}

It should be possible in most cases to bind the main (schema management) thread and the I/O
thread to the same CPU, as we have done in the example just shown.

The following example incorporates groups of CPUs defined using both cpuset and cpubind, as
well as use of thread prioritization.

ThreadConfig=ldm={count=4,cpuset=0-3,thread_prio=8,spintime=200}, \
ldm={count=4,cpubind=4-7,thread_prio=8,spintime=200}, \
tc={count=4,cpuset=8-9,thread_prio=6},send={count=2,thread_prio=10,cpubind=10-11}, \
main={count=1,cpubind=10},rep={count=1,cpubind=11}

In this case we create two LDM groups; the first uses cpubind and the second uses cpuset.
thread_prio and spintime are set to the same values for each group. This means there are
eight LDM threads in total. (You should ensure that NoOfFragmentLogParts is also set to 8.)
The four TC threads use only two CPUs; it is possible when using cpuset to specify fewer CPUs
than threads in the group. (This is not true for cpubind.) The send threads use two threads using

4355

NDB Cluster Configuration Files

cpubind to bind these threads to CPUs 10 and 11. The main and rep threads can reuse these
CPUs.

This example shows how ThreadConfig and NoOfFragmentLogParts might be set up for a
24-CPU host with hyperthreading, leaving CPUs 10, 11, 22, and 23 available for operating system
functions and interrupts:

NoOfFragmentLogParts=10
ThreadConfig=ldm={count=10,cpubind=0-4,12-16,thread_prio=9,spintime=200}, \
tc={count=4,cpuset=6-7,18-19,thread_prio=8},send={count=1,cpuset=8}, \
recv={count=1,cpuset=20},main={count=1,cpuset=9,21},rep={count=1,cpuset=9,21}, \
io={count=1,cpuset=9,21,thread_prio=8},watchdog={count=1,cpuset=9,21,thread_prio=9}

The next few examples include settings for idxbld. The first two of these demonstrate how a CPU
set defined for idxbld can overlap those specified for other (permanent) thread types, the first using
cpuset and the second using cpubind:

ThreadConfig=main,ldm={count=4,cpuset=1-4},tc={count=4,cpuset=5,6,7}, \
io={cpubind=8},idxbld={cpuset=1-8}

ThreadConfig=main,ldm={count=1,cpubind=1},idxbld={count=1,cpubind=1}

The next example specifies a CPU for the I/O thread, but not for the index build threads:

ThreadConfig=main,ldm={count=4,cpuset=1-4},tc={count=4,cpuset=5,6,7}, \
io={cpubind=8}

Since the ThreadConfig setting just shown locks threads to eight cores numbered 1 through 8, it is
equivalent to the setting shown here:

ThreadConfig=main,ldm={count=4,cpuset=1-4},tc={count=4,cpuset=5,6,7}, \
io={cpubind=8},idxbld={cpuset=1,2,3,4,5,6,7,8}

In order to take advantage of the enhanced stability that the use of ThreadConfig offers, it is
necessary to insure that CPUs are isolated, and that they not subject to interrupts, or to being
scheduled for other tasks by the operating system. On many Linux systems, you can do this by
setting IRQBALANCE_BANNED_CPUS in /etc/sysconfig/irqbalance to 0xFFFFF0, and by
using the isolcpus boot option in grub.conf. For specific information, see your operating system
or platform documentation.

Disk Data Configuration Parameters. Configuration parameters affecting Disk Data behavior
include the following:

• DiskPageBufferEntries

Version (or
later)

NDB 8.0.13

Type or units 32K pages

Default 10

Range 1 - 1000

Version (or
later)

NDB 8.0.19

Type or units bytes

Default 64MB

Range 4MB - 16TB

Restart Type Node Restart:
Requires a
rolling restart

4356

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

This is the number of page entries (page references) to allocate. It is specified as a number of 32K
pages in DiskPageBufferMemory. The default is sufficient for most cases but you may need to
increase the value of this parameter if you encounter problems with very large transactions on Disk
Data tables. Each page entry requires approximately 100 bytes.

• DiskPageBufferMemory

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 64M

Range 4M - 1T

Version (or
later)

NDB 8.0.19

Type or units bytes

Default 64M

Range 4M - 16T

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This determines the amount of space used for caching pages on disk, and is set in the [ndbd] or
[ndbd default] section of the config.ini file.

Note

Previously, this parameter was specified as a number of 32 KB pages. In
NDB 8.0, it is specified as a number of bytes.

If the value for DiskPageBufferMemory is set too low in conjunction with using more than the
default number of LDM threads in ThreadConfig (for example {ldm=6...}), problems can arise
when trying to add a large (for example 500G) data file to a disk-based NDB table, wherein the
process takes indefinitely long while occupying one of the CPU cores.

This is due to the fact that, as part of adding a data file to a tablespace, extent pages are locked into
memory in an extra PGMAN worker thread, for quick metadata access. When adding a large file,
this worker has insufficient memory for all of the data file metadata. In such cases, you should either
increase DiskPageBufferMemory, or add smaller tablespace files. You may also need to adjust
DiskPageBufferEntries.

You can query the ndbinfo.diskpagebuffer table to help determine whether the value for this
parameter should be increased to minimize unnecessary disk seeks. See Section 25.6.16.30, “The
ndbinfo diskpagebuffer Table”, for more information.

• SharedGlobalMemory

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 128M
4357

NDB Cluster Configuration Files

Range 0 - 64T

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter determines the amount of memory that is used for log buffers, disk operations (such
as page requests and wait queues), and metadata for tablespaces, log file groups, UNDO files, and
data files. The shared global memory pool also provides memory used for satisfying the memory
requirements of the UNDO_BUFFER_SIZE option used with CREATE LOGFILE GROUP and ALTER
LOGFILE GROUP statements, including any default value implied for this options by the setting of the
InitialLogFileGroup data node configuration parameter. SharedGlobalMemory can be set in
the [ndbd] or [ndbd default] section of the config.ini configuration file, and is measured in
bytes.

The default value is 128M.

• DiskIOThreadPool

Version (or
later)

NDB 8.0.13

Type or units threads

Default 2

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter determines the number of unbound threads used for Disk Data file access. Before
DiskIOThreadPool was introduced, exactly one thread was spawned for each Disk Data
file, which could lead to performance issues, particularly when using very large data files. With
DiskIOThreadPool, you can—for example—access a single large data file using several threads
working in parallel.

This parameter applies to Disk Data I/O threads only.

The optimum value for this parameter depends on your hardware and configuration, and includes
these factors:

• Physical distribution of Disk Data files. You can obtain better performance by placing data
files, undo log files, and the data node file system on separate physical disks. If you do this with
some or all of these sets of files, then you can (and should) set DiskIOThreadPool higher to
enable separate threads to handle the files on each disk.

In NDB 8.0, you should also disable DiskDataUsingSameDisk when using a separate disk or
disks for Disk Data files; this increases the rate at which checkpoints of Disk Data tablespaces can
be performed.

• Disk performance and types. The number of threads that can be accommodated for Disk
Data file handling is also dependent on the speed and throughput of the disks. Faster disks and
higher throughput allow for more disk I/O threads. Our test results indicate that solid-state disk

4358

NDB Cluster Configuration Files

drives can handle many more disk I/O threads than conventional disks, and thus higher values for
DiskIOThreadPool.

Decreasing TimeBetweenGlobalCheckpoints is also recommended when using solid-state
disk drives, in particular those using NVMe. See also Disk Data latency parameters.

The default value for this parameter is 2.

• Disk Data file system parameters. The parameters in the following list make it possible to place
NDB Cluster Disk Data files in specific directories without the need for using symbolic links.

• FileSystemPathDD

Version (or
later)

NDB 8.0.13

Type or units filename

Default FileSystemPath

Range ...

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

If this parameter is specified, then NDB Cluster Disk Data data files and undo log files are
placed in the indicated directory. This can be overridden for data files, undo log files, or both, by
specifying values for FileSystemPathDataFiles, FileSystemPathUndoFiles, or both,
as explained for these parameters. It can also be overridden for data files by specifying a path
in the ADD DATAFILE clause of a CREATE TABLESPACE or ALTER TABLESPACE statement,
and for undo log files by specifying a path in the ADD UNDOFILE clause of a CREATE LOGFILE
GROUP or ALTER LOGFILE GROUP statement. If FileSystemPathDD is not specified, then
FileSystemPath is used.

If a FileSystemPathDD directory is specified for a given data node (including the case where the
parameter is specified in the [ndbd default] section of the config.ini file), then starting that
data node with --initial causes all files in the directory to be deleted.

• FileSystemPathDataFiles

Version (or
later)

NDB 8.0.13

Type or units filename

Default FileSystemPathDD

Range ...

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be

4359

NDB Cluster Configuration Files

restarted with
--initial.
(NDB 8.0.13)

If this parameter is specified, then NDB Cluster Disk Data data files are placed in the indicated
directory. This overrides any value set for FileSystemPathDD. This parameter can be overridden
for a given data file by specifying a path in the ADD DATAFILE clause of a CREATE TABLESPACE
or ALTER TABLESPACE statement used to create that data file. If FileSystemPathDataFiles
is not specified, then FileSystemPathDD is used (or FileSystemPath, if FileSystemPathDD
has also not been set).

If a FileSystemPathDataFiles directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd default] section of the config.ini file), then
starting that data node with --initial causes all files in the directory to be deleted.

• FileSystemPathUndoFiles

Version (or
later)

NDB 8.0.13

Type or units filename

Default FileSystemPathDD

Range ...

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

If this parameter is specified, then NDB Cluster Disk Data undo log files are placed in the
indicated directory. This overrides any value set for FileSystemPathDD. This parameter
can be overridden for a given data file by specifying a path in the ADD UNDO clause of a
CREATE LOGFILE GROUP or ALTER LOGFILE GROUP statement used to create that data
file. If FileSystemPathUndoFiles is not specified, then FileSystemPathDD is used (or
FileSystemPath, if FileSystemPathDD has also not been set).

If a FileSystemPathUndoFiles directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd default] section of the config.ini file), then
starting that data node with --initial causes all files in the directory to be deleted.

For more information, see Section 25.6.11.1, “NDB Cluster Disk Data Objects”.

• Disk Data object creation parameters. The next two parameters enable you—when starting
the cluster for the first time—to cause a Disk Data log file group, tablespace, or both, to be created
without the use of SQL statements.

• InitialLogFileGroup

Version (or
later)

NDB 8.0.13

Type or units string

4360

NDB Cluster Configuration Files

Default [see
documentation]

Range ...

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

This parameter can be used to specify a log file group that is created when performing an initial
start of the cluster. InitialLogFileGroup is specified as shown here:

InitialLogFileGroup = [name=name;] [undo_buffer_size=size;] file-specification-list

file-specification-list:
 file-specification[; file-specification[; ...]]

file-specification:
 filename:size

The name of the log file group is optional and defaults to DEFAULT-LG. The undo_buffer_size
is also optional; if omitted, it defaults to 64M. Each file-specification corresponds to
an undo log file, and at least one must be specified in the file-specification-list.
Undo log files are placed according to any values that have been set for FileSystemPath,
FileSystemPathDD, and FileSystemPathUndoFiles, just as if they had been created as the
result of a CREATE LOGFILE GROUP or ALTER LOGFILE GROUP statement.

Consider the following:

InitialLogFileGroup = name=LG1; undo_buffer_size=128M; undo1.log:250M; undo2.log:150M

This is equivalent to the following SQL statements:

CREATE LOGFILE GROUP LG1
 ADD UNDOFILE 'undo1.log'
 INITIAL_SIZE 250M
 UNDO_BUFFER_SIZE 128M
 ENGINE NDBCLUSTER;

ALTER LOGFILE GROUP LG1
 ADD UNDOFILE 'undo2.log'
 INITIAL_SIZE 150M
 ENGINE NDBCLUSTER;

This logfile group is created when the data nodes are started with --initial.

Resources for the initial log file group are added to the global memory pool along with those
indicated by the value of SharedGlobalMemory.

This parameter, if used, should always be set in the [ndbd default] section of the
config.ini file. The behavior of an NDB Cluster when different values are set on different data
nodes is not defined.

• InitialTablespace

Version (or
later)

NDB 8.0.13

Type or units string

4361

NDB Cluster Configuration Files

Default [see
documentation]

Range ...

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the
cluster. (NDB
8.0.13)

This parameter can be used to specify an NDB Cluster Disk Data tablespace that is created when
performing an initial start of the cluster. InitialTablespace is specified as shown here:

InitialTablespace = [name=name;] [extent_size=size;] file-specification-list

The name of the tablespace is optional and defaults to DEFAULT-TS. The extent_size
is also optional; it defaults to 1M. The file-specification-list uses the same syntax
as shown with the InitialLogfileGroup parameter, the only difference being that each
file-specification used with InitialTablespace corresponds to a data file. At
least one must be specified in the file-specification-list. Data files are placed
according to any values that have been set for FileSystemPath, FileSystemPathDD, and
FileSystemPathDataFiles, just as if they had been created as the result of a CREATE
TABLESPACE or ALTER TABLESPACE statement.

For example, consider the following line specifying InitialTablespace in the [ndbd
default] section of the config.ini file (as with InitialLogfileGroup, this parameter
should always be set in the [ndbd default] section, as the behavior of an NDB Cluster when
different values are set on different data nodes is not defined):

InitialTablespace = name=TS1; extent_size=8M; data1.dat:2G; data2.dat:4G

This is equivalent to the following SQL statements:

CREATE TABLESPACE TS1
 ADD DATAFILE 'data1.dat'
 EXTENT_SIZE 8M
 INITIAL_SIZE 2G
 ENGINE NDBCLUSTER;

ALTER TABLESPACE TS1
 ADD DATAFILE 'data2.dat'
 INITIAL_SIZE 4G
 ENGINE NDBCLUSTER;

This tablespace is created when the data nodes are started with --initial, and can be used
whenever creating NDB Cluster Disk Data tables thereafter.

• Disk Data latency parameters. The two parameters listed here can be used to improve handling
of latency issues with NDB Cluster Disk Data tables.

• MaxDiskDataLatency

Version (or
later)

NDB 8.0.19

Type or units ms

Default 0

Range 0 - 8000

4362

NDB Cluster Configuration Files

Added NDB 8.0.19

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter controls the maximum allowed mean latency for disk access (maximum 8000
milliseconds). When this limit is reached, NDB begins to abort transactions in order to decrease
pressure on the Disk Data I/O subsystem. Use 0 to disable the latency check.

• DiskDataUsingSameDisk

Version (or
later)

NDB 8.0.19

Type or units boolean

Default true

Range ...

Added NDB 8.0.19

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Set this parameter to false if your Disk Data tablespaces use one or more separate disks. Doing
so allows checkpoints to tablespaces to be executed at a higher rate than normally used for when
disks are shared.

When DiskDataUsingSameDisk is true, NDB decreases the rate of Disk Data checkpointing
whenever an in-memory checkpoint is in progress to help ensure that disk load remains constant.

Disk Data and GCP Stop errors. Errors encountered when using Disk Data tables such as Node
nodeid killed this node because GCP stop was detected (error 2303) are often referred
to as “GCP stop errors”. Such errors occur when the redo log is not flushed to disk quickly enough; this
is usually due to slow disks and insufficient disk throughput.

You can help prevent these errors from occurring by using faster disks, and by placing
Disk Data files on a separate disk from the data node file system. Reducing the value of
TimeBetweenGlobalCheckpoints tends to decrease the amount of data to be written for each
global checkpoint, and so may provide some protection against redo log buffer overflows when trying
to write a global checkpoint; however, reducing this value also permits less time in which to write the
GCP, so this must be done with caution.

In addition to the considerations given for DiskPageBufferMemory as explained previously, it is
also very important that the DiskIOThreadPool configuration parameter be set correctly; having
DiskIOThreadPool set too high is very likely to cause GCP stop errors (Bug #37227).

GCP stops can be caused by save or commit timeouts; the TimeBetweenEpochsTimeout data node
configuration parameter determines the timeout for commits. However, it is possible to disable both
types of timeouts by setting this parameter to 0.

Parameters for configuring send buffer memory allocation. Send buffer memory is allocated
dynamically from a memory pool shared between all transporters, which means that the size of the
send buffer can be adjusted as necessary. (Previously, the NDB kernel used a fixed-size send buffer
for every node in the cluster, which was allocated when the node started and could not be changed

4363

NDB Cluster Configuration Files

while the node was running.) The TotalSendBufferMemory and OverLoadLimit data node
configuration parameters permit the setting of limits on this memory allocation. For more information
about the use of these parameters (as well as SendBufferMemory), see Section 25.4.3.14,
“Configuring NDB Cluster Send Buffer Parameters”.

• ExtraSendBufferMemory

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any
set using TotalSendBufferMemory, SendBufferMemory, or both.

• TotalSendBufferMemory

This parameter is used to determine the total amount of memory to allocate on this node for shared
send buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has
not been set. For more detailed information, see Section 25.4.3.14, “Configuring NDB Cluster Send
Buffer Parameters”.

See also Section 25.6.7, “Adding NDB Cluster Data Nodes Online”.

Redo log over-commit handling. It is possible to control a data node's handling of operations
when too much time is taken flushing redo logs to disk. This occurs when a given redo log flush takes
longer than RedoOverCommitLimit seconds, more than RedoOverCommitCounter times, causing
any pending transactions to be aborted. When this happens, the API node that sent the transaction can
handle the operations that should have been committed either by queuing the operations and re-trying
them, or by aborting them, as determined by DefaultOperationRedoProblemAction. The data
node configuration parameters for setting the timeout and number of times it may be exceeded before
the API node takes this action are described in the following list:

• RedoOverCommitCounter

Version (or
later)

NDB 8.0.13

Type or units numeric

Default 3

Range 1 - 4294967039
(0xFFFFFEFF)

Version (or
later)

NDB 8.0.19

Type or units numeric

Default 3

Range 1 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When RedoOverCommitLimit is exceeded when trying to write a given redo log to disk this many
times or more, any transactions that were not committed as a result are aborted, and an API node
where any of these transactions originated handles the operations making up those transactions
according to its value for DefaultOperationRedoProblemAction (by either queuing the
operations to be re-tried, or aborting them).

• RedoOverCommitLimit

4364

NDB Cluster Configuration Files

Version (or
later)

NDB 8.0.13

Type or units seconds

Default 20

Range 1 - 4294967039
(0xFFFFFEFF)

Version (or
later)

NDB 8.0.19

Type or units seconds

Default 20

Range 1 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter sets an upper limit in seconds for trying to write a given redo log to disk before
timing out. The number of times the data node tries to flush this redo log, but takes longer than
RedoOverCommitLimit, is kept and compared with RedoOverCommitCounter, and when
flushing takes too long more times than the value of that parameter, any transactions that were not
committed as a result of the flush timeout are aborted. When this occurs, the API node where any of
these transactions originated handles the operations making up those transactions according to its
DefaultOperationRedoProblemAction setting (it either queues the operations to be re-tried, or
aborts them).

Controlling restart attempts. It is possible to exercise finely-grained control over restart attempts
by data nodes when they fail to start using the MaxStartFailRetries and StartFailRetryDelay
data node configuration parameters.

MaxStartFailRetries limits the total number of retries made before giving up on starting the
data node, StartFailRetryDelay sets the number of seconds between retry attempts. These
parameters are listed here:

• StartFailRetryDelay

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Use this parameter to set the number of seconds between restart attempts by the data node in the
event on failure on startup. The default is 0 (no delay).

Both this parameter and MaxStartFailRetries are ignored unless StopOnError is equal to 0.

4365

NDB Cluster Configuration Files

• MaxStartFailRetries

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 3

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Use this parameter to limit the number restart attempts made by the data node in the event that it
fails on startup. The default is 3 attempts.

Both this parameter and StartFailRetryDelay are ignored unless StopOnError is equal to 0.

NDB index statistics parameters. The parameters in the following list relate to NDB index
statistics generation.

• IndexStatAutoCreate

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0, 1

Version (or
later)

NDB 8.0.27

Type or units integer

Default 1

Range 0, 1

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Enable (set equal to 1) or disable (set equal to 0) automatic statistics collection when indexes are
created.

• IndexStatAutoUpdate

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0, 1

Version (or
later)

NDB 8.0.27

4366

NDB Cluster Configuration Files

Type or units integer

Default 1

Range 0, 1

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Enable (set equal to 1) or disable (set equal to 0) monitoring of indexes for changes, and
trigger automatic statistics updates when these are detected. The degree of change needed
to trigger the updates are determined by the settings for the IndexStatTriggerPct and
IndexStatTriggerScale options.

• IndexStatSaveSize

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 32768

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

Maximum space in bytes allowed for the saved statistics of any given index in the NDB system tables
and in the mysqld memory cache.

At least one sample is always produced, regardless of any size limit. This size is scaled by
IndexStatSaveScale.

The size specified by IndexStatSaveSize is scaled by the value of IndexStatTriggerPct for
a large index, times 0.01. This is further multiplied by the logarithm to the base 2 of the index size.
Setting IndexStatTriggerPct equal to 0 disables the scaling effect.

• IndexStatSaveScale

Version (or
later)

NDB 8.0.13

Type or units percentage

Default 100

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a

4367

NDB Cluster Configuration Files

rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

The size specified by IndexStatSaveSize is scaled by the value of IndexStatTriggerPct for
a large index, times 0.01. This is further multiplied by the logarithm to the base 2 of the index size.
Setting IndexStatTriggerPct equal to 0 disables the scaling effect.

• IndexStatTriggerPct

Version (or
later)

NDB 8.0.13

Type or units percentage

Default 100

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

Percentage change in updates that triggers an index statistics update. The value is
scaled by IndexStatTriggerScale. You can disable this trigger altogether by setting
IndexStatTriggerPct to 0.

• IndexStatTriggerScale

Version (or
later)

NDB 8.0.13

Type or units percentage

Default 100

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with

4368

NDB Cluster Configuration Files

--initial.
(NDB 8.0.13)

Scale IndexStatTriggerPct by this amount times 0.01 for a large index. A value of 0 disables
scaling.

• IndexStatUpdateDelay

Version (or
later)

NDB 8.0.13

Type or units seconds

Default 60

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Initial Node
Restart:
Requires a
rolling restart
of the cluster;
each data
node must be
restarted with
--initial.
(NDB 8.0.13)

Minimum delay in seconds between automatic index statistics updates for a given index. Setting this
variable to 0 disables any delay. The default is 60 seconds.

Restart types. Information about the restart types used by the parameter descriptions in this section
is shown in the following table:

Table 25.16 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 25.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in
this parameter

I Initial Data nodes must be restarted
using the --initial option

25.4.3.7 Defining SQL and Other API Nodes in an NDB Cluster

The [mysqld] and [api] sections in the config.ini file define the behavior of the MySQL servers
(SQL nodes) and other applications (API nodes) used to access cluster data. None of the parameters
shown is required. If no computer or host name is provided, any host can use this SQL or API node.

Generally speaking, a [mysqld] section is used to indicate a MySQL server providing an SQL
interface to the cluster, and an [api] section is used for applications other than mysqld processes
accessing cluster data, but the two designations are actually synonymous; you can, for instance, list
parameters for a MySQL server acting as an SQL node in an [api] section.

4369

NDB Cluster Configuration Files

Note

For a discussion of MySQL server options for NDB Cluster, see MySQL Server
Options for NDB Cluster. For information about MySQL server system variables
relating to NDB Cluster, see NDB Cluster System Variables.

• Id

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster.
(NDB 8.0.13)

The Id is an integer value used to identify the node in all cluster internal messages. The permitted
range of values is 1 to 255 inclusive. This value must be unique for each node in the cluster,
regardless of the type of node.

Note

In NDB 8.0, data node IDs must be less than 145. If you plan to deploy a
large number of data nodes, it is a good idea to limit the node IDs for API
nodes (and management nodes) to values greater than 144. (Previously, the
maximum supported value for a data node ID was 48.)

NodeId is the preferred parameter name to use when identifying API nodes. (Id continues to be
supported for backward compatibility, but is now deprecated and generates a warning when used. It
is also subject to future removal.)

• ConnectionMap

Version (or
later)

NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Specifies which data nodes to connect.4370

NDB Cluster Configuration Files

• NodeId

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster.
(NDB 8.0.13)

The NodeId is an integer value used to identify the node in all cluster internal messages. The
permitted range of values is 1 to 255 inclusive. This value must be unique for each node in the
cluster, regardless of the type of node.

Note

In NDB 8.0, data node IDs must be less than 145. If you plan to deploy a
large number of data nodes, it is a good idea to limit the node IDs for API
nodes (and management nodes) to values greater than 144. (Previously, the
maximum supported value for a data node ID was 48.)

NodeId is the preferred parameter name to use when identifying management nodes. An alias, Id,
was used for this purpose in very old versions of NDB Cluster, and continues to be supported for
backward compatibility; it is now deprecated and generates a warning when used, and is subject to
removal in a future release of NDB Cluster.

• ExecuteOnComputer

Version (or
later)

NDB 8.0.13

Type or units name

Default [...]

Range ...

Deprecated Yes (in NDB
7.5)

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the

4371

NDB Cluster Configuration Files

cluster. (NDB
8.0.13)

This refers to the Id set for one of the computers (hosts) defined in a [computer] section of the
configuration file.

Important

This parameter is deprecated, and is subject to removal in a future release.
Use the HostName parameter instead.

•

The node ID for this node can be given out only to connections that explicitly request it. A
management server that requests “any” node ID cannot use this one. This parameter can be used
when running multiple management servers on the same host, and HostName is not sufficient for
distinguishing among processes.

• HostName

Version (or
later)

NDB 8.0.13

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Specifying this parameter defines the hostname of the computer on which the SQL node (API node)
is to reside.

If no HostName is specified in a given [mysql] or [api] section of the config.ini file, then an
SQL or API node may connect using the corresponding “slot” from any host which can establish a
network connection to the management server host machine. This differs from the default behavior
for data nodes, where localhost is assumed for HostName unless otherwise specified.

• LocationDomainId

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 16

Restart Type System
Restart:
Requires a
complete
shutdown and
restart of the

4372

NDB Cluster Configuration Files

cluster. (NDB
8.0.13)

Assigns an SQL or other API node to a specific availability domain (also known as an availability
zone) within a cloud. By informing NDB which nodes are in which availability domains, performance
can be improved in a cloud environment in the following ways:

• If requested data is not found on the same node, reads can be directed to another node in the
same availability domain.

• Communication between nodes in different availability domains are guaranteed to use NDB
transporters' WAN support without any further manual intervention.

• The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain
whenever possible.

• The arbitrator can be selected from an availability domain in which no data nodes are present, or,
if no such availability domain can be found, from a third availability domain.

LocationDomainId takes an integer value between 0 and 16 inclusive, with 0 being the default;
using 0 is the same as leaving the parameter unset.

• ArbitrationRank

Version (or
later)

NDB 8.0.13

Type or units 0-2

Default 0

Range 0 - 2

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter defines which nodes can act as arbitrators. Both management nodes and SQL
nodes can be arbitrators. A value of 0 means that the given node is never used as an arbitrator, a
value of 1 gives the node high priority as an arbitrator, and a value of 2 gives it low priority. A normal
configuration uses the management server as arbitrator, setting its ArbitrationRank to 1 (the
default for management nodes) and those for all SQL nodes to 0 (the default for SQL nodes).

By setting ArbitrationRank to 0 on all management and SQL nodes, you can disable arbitration
completely. You can also control arbitration by overriding this parameter; to do so, set the
Arbitration parameter in the [ndbd default] section of the config.ini global configuration
file.

• ArbitrationDelay

Version (or
later)

NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

4373

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

NDB Cluster Configuration Files

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Setting this parameter to any other value than 0 (the default) means that responses by the arbitrator
to arbitration requests are delayed by the stated number of milliseconds. It is usually not necessary
to change this value.

• BatchByteSize

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 16K

Range 1K - 1M

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

For queries that are translated into full table scans or range scans on indexes, it is important for best
performance to fetch records in properly sized batches. It is possible to set the proper size both in
terms of number of records (BatchSize) and in terms of bytes (BatchByteSize). The actual batch
size is limited by both parameters.

The speed at which queries are performed can vary by more than 40% depending upon how this
parameter is set.

This parameter is measured in bytes. The default value is 16K.

• BatchSize

Version (or
later)

NDB 8.0.13

Type or units records

Default 256

Range 1 - 992

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter is measured in number of records and is by default set to 256. The maximum size is
992.

• ExtraSendBufferMemory

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 0

4374

NDB Cluster Configuration Files

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any
that has been set using TotalSendBufferMemory, SendBufferMemory, or both.

• HeartbeatThreadPriority

Version (or
later)

NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Use this parameter to set the scheduling policy and priority of heartbeat threads for management and
API nodes. The syntax for setting this parameter is shown here:

HeartbeatThreadPriority = policy[, priority]

policy:
 {FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FIFO (first in, first in) or RR
(round robin). This followed optionally by the priority (an integer).

• MaxScanBatchSize

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 256K

Range 32K - 16M

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The batch size is the size of each batch sent from each data node. Most scans are performed in
parallel to protect the MySQL Server from receiving too much data from many nodes in parallel; this
parameter sets a limit to the total batch size over all nodes.

The default value of this parameter is set to 256KB. Its maximum size is 16MB.

4375

NDB Cluster Configuration Files

• TotalSendBufferMemory

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 0

Range 256K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter is used to determine the total amount of memory to allocate on this node for shared
send buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has
not been set. For more detailed information, see Section 25.4.3.14, “Configuring NDB Cluster Send
Buffer Parameters”.

• AutoReconnect

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter is false by default. This forces disconnected API nodes (including MySQL Servers
acting as SQL nodes) to use a new connection to the cluster rather than attempting to re-use an
existing one, as re-use of connections can cause problems when using dynamically-allocated node
IDs. (Bug #45921)

Note

This parameter can be overridden using the NDB API. For more
information, see Ndb_cluster_connection::set_auto_reconnect(), and
Ndb_cluster_connection::get_auto_reconnect().

• DefaultOperationRedoProblemAction

Version (or
later)

NDB 8.0.13

Type or units enumeration

Default QUEUE

Range ABORT,
QUEUE4376

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-auto-reconnect
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-get-auto-reconnect

NDB Cluster Configuration Files

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter (along with RedoOverCommitLimit and RedoOverCommitCounter) controls
the data node's handling of operations when too much time is taken flushing redo logs to disk. This
occurs when a given redo log flush takes longer than RedoOverCommitLimit seconds, more than
RedoOverCommitCounter times, causing any pending transactions to be aborted.

When this happens, the node can respond in either of two ways, according to the value of
DefaultOperationRedoProblemAction, listed here:

• ABORT: Any pending operations from aborted transactions are also aborted.

• QUEUE: Pending operations from transactions that were aborted are queued up to be re-tried.
This the default. Pending operations are still aborted when the redo log runs out of space—that is,
when P_TAIL_PROBLEM errors occur.

• DefaultHashMapSize

Version (or
later)

NDB 8.0.13

Type or units buckets

Default 3840

Range 0 - 3840

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The size of the table hash maps used by NDB is configurable using this parameter.
DefaultHashMapSize can take any of three possible values (0, 240, 3840). These values and their
effects are described in the following table.

Table 25.17 DefaultHashMapSize parameter values

Value Description / Effect

0 Use the lowest value set, if any, for this
parameter among all data nodes and API nodes
in the cluster; if it is not set on any data or API
node, use the default value.

240 Old default hash map size

3840 Hash map size used by default in NDB 8.0

The original intended use for this parameter was to facilitate upgrades and downgrades to and from
older NDB Cluster versions, in which the hash map size differed, due to the fact that this change was
not otherwise backward compatible. This is not an issue when upgrading to or downgrading from
NDB Cluster 8.0.

• Wan

Version (or
later)

NDB 8.0.13

4377

NDB Cluster Configuration Files

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Use WAN TCP setting as default.

• ConnectBackoffMaxTime

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

In an NDB Cluster with many unstarted data nodes, the value of this parameter can be raised to
circumvent connection attempts to data nodes which have not yet begun to function in the cluster,
as well as moderate high traffic to management nodes. As long as the API node is not connected
to any new data nodes, the value of the StartConnectBackoffMaxTime parameter is applied;
otherwise, ConnectBackoffMaxTime is used to determine the length of time in milliseconds to wait
between connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
ConnectBackoffMaxTime milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message)
that it has connected to other data nodes, connection attempts to those data nodes are no longer
affected by this parameter, and are made every 100 ms thereafter until connected. Once a data node
has started, it can take up HeartbeatIntervalDbApi for the API node to be notified that this has
occurred.

• StartConnectBackoffMaxTime

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart

4378

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

In an NDB Cluster with many unstarted data nodes, the value of this parameter can be raised to
circumvent connection attempts to data nodes which have not yet begun to function in the cluster,
as well as moderate high traffic to management nodes. As long as the API node is not connected
to any new data nodes, the value of the StartConnectBackoffMaxTime parameter is applied;
otherwise, ConnectBackoffMaxTime is used to determine the length of time in milliseconds to wait
between connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
StartConnectBackoffMaxTime milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message)
that it has connected to other data nodes, connection attempts to those data nodes are no longer
affected by this parameter, and are made every 100 ms thereafter until connected. Once a data node
has started, it can take up HeartbeatIntervalDbApi for the API node to be notified that this has
occurred.

API Node Debugging Parameters. You can use the ApiVerbose configuration parameter to
enable debugging output from a given API node. This parameter takes an integer value. 0 is the
default, and disables such debugging; 1 enables debugging output to the cluster log; 2 adds DBDICT
debugging output as well. (Bug #20638450) See also DUMP 1229.

You can also obtain information from a MySQL server running as an NDB Cluster SQL node using
SHOW STATUS in the mysql client, as shown here:

mysql> SHOW STATUS LIKE 'ndb%';
+-----------------------------+----------------+
| Variable_name | Value |
+-----------------------------+----------------+
Ndb_cluster_node_id	5
Ndb_config_from_host	198.51.100.112
Ndb_config_from_port	1186
Ndb_number_of_storage_nodes	4
+-----------------------------+----------------+
4 rows in set (0.02 sec)

For information about the status variables appearing in the output from this statement, see NDB Cluster
Status Variables.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using
more than one management server). This must be done before the new SQL or
API nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes
can employ previously unused API slots in the cluster configuration to connect
to the cluster.

Restart types. Information about the restart types used by the parameter descriptions in this section
is shown in the following table:

Table 25.18 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see

4379

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1229.html

NDB Cluster Configuration Files

Symbol Restart Type Description
Section 25.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in
this parameter

I Initial Data nodes must be restarted
using the --initial option

25.4.3.8 Defining the System

The [system] section is used for parameters applying to the cluster as a whole. The Name
system parameter is used with MySQL Enterprise Monitor; ConfigGenerationNumber and
PrimaryMGMNode are not used in production environments. Except when using NDB Cluster with
MySQL Enterprise Monitor, is not necessary to have a [system] section in the config.ini file.

More information about these parameters can be found in the following list:

• ConfigGenerationNumber

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Configuration generation number. This parameter is currently unused.

• Name

Version (or
later)

NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Set a name for the cluster. This parameter is required for deployments with MySQL Enterprise
Monitor; it is otherwise unused.

You can obtain the value of this parameter by checking the Ndb_system_name status variable. In
NDB API applications, you can also retrieve it using get_system_name().

4380

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-get-system-name

NDB Cluster Configuration Files

• PrimaryMGMNode

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Node ID of the primary management node. This parameter is currently unused.

Restart types. Information about the restart types used by the parameter descriptions in this section
is shown in the following table:

Table 25.19 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 25.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in
this parameter

I Initial Data nodes must be restarted
using the --initial option

25.4.3.9 MySQL Server Options and Variables for NDB Cluster

This section provides information about MySQL server options, server and status variables that are
specific to NDB Cluster. For general information on using these, and for other options and variables not
specific to NDB Cluster, see Section 7.1, “The MySQL Server”.

For NDB Cluster configuration parameters used in the cluster configuration file (usually named
config.ini), see Section 25.4, “Configuration of NDB Cluster”.

MySQL Server Options for NDB Cluster

This section provides descriptions of mysqld server options relating to NDB Cluster. For information
about mysqld options not specific to NDB Cluster, and for general information about the use of options
with mysqld, see Section 7.1.7, “Server Command Options”.

For information about command-line options used with other NDB Cluster processes, see Section 25.5,
“NDB Cluster Programs”.

• --ndbcluster

Command-Line Format --ndbcluster[=value]

Disabled by skip-ndbcluster

Type (≥ 8.0.13-ndb-8.0.13) Enumeration

4381

NDB Cluster Configuration Files

Type (≤ 8.0.0-ndb-8.0.0) Boolean

Default Value (≥ 8.0.13-ndb-8.0.13) ON

Default Value (≤ 8.0.0-ndb-8.0.0) OFF

Valid Values OFF

FORCE

The NDBCLUSTER storage engine is necessary for using NDB Cluster. If a mysqld binary includes
support for the NDBCLUSTER storage engine, the engine is disabled by default. Use the --
ndbcluster option to enable it. Use --skip-ndbcluster to explicitly disable the engine.

The --ndbcluster option is ignored (and the NDB storage engine is not enabled) if --
initialize is also used. (It is neither necessary nor desirable to use this option together with --
initialize.)

• --ndb-allow-copying-alter-table=[ON|OFF]

Command-Line Format --ndb-allow-copying-alter-
table[={OFF|ON}]

System Variable ndb_allow_copying_alter_table

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Let ALTER TABLE and other DDL statements use copying operations on NDB tables. Set to OFF to
keep this from happening; doing so may improve performance of critical applications.

• --ndb-applier-allow-skip-epoch

Command-Line Format --ndb-applier-allow-skip-epoch

Introduced 8.0.28-ndb-8.0.28

System Variable ndb_applier_allow_skip_epoch

Scope Global

Dynamic No

SET_VAR Hint Applies No

Use together with --slave-skip-errors to cause NDB to ignore skipped epoch transactions. Has
no effect when used alone.

• --ndb-batch-size=#

Command-Line Format --ndb-batch-size

System Variable ndb_batch_size

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32768

Minimum Value 0

4382

NDB Cluster Configuration Files

Maximum Value (≥ 8.0.29-ndb-8.0.29) 2147483648

Maximum Value 2147483648

Maximum Value 2147483648

Maximum Value (≤ 8.0.28-ndb-8.0.28) 31536000

Unit bytes

This sets the size in bytes that is used for NDB transaction batches.

• --ndb-cluster-connection-pool=#

Command-Line Format --ndb-cluster-connection-pool

System Variable ndb_cluster_connection_pool

System Variable ndb_cluster_connection_pool

Scope Global

Scope Global

Dynamic No

Dynamic No

SET_VAR Hint Applies No

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 63

By setting this option to a value greater than 1 (the default), a mysqld process can use multiple
connections to the cluster, effectively mimicking several SQL nodes. Each connection requires its
own [api] or [mysqld] section in the cluster configuration (config.ini) file, and counts against
the maximum number of API connections supported by the cluster.

Suppose that you have 2 cluster host computers, each running an SQL node whose mysqld
process was started with --ndb-cluster-connection-pool=4; this means that the cluster must
have 8 API slots available for these connections (instead of 2). All of these connections are set up
when the SQL node connects to the cluster, and are allocated to threads in a round-robin fashion.

This option is useful only when running mysqld on host machines having multiple CPUs, multiple
cores, or both. For best results, the value should be smaller than the total number of cores available
on the host machine. Setting it to a value greater than this is likely to degrade performance severely.

Important

Because each SQL node using connection pooling occupies multiple API
node slots—each slot having its own node ID in the cluster—you must not
use a node ID as part of the cluster connection string when starting any
mysqld process that employs connection pooling.

Setting a node ID in the connection string when using the --ndb-cluster-
connection-pool option causes node ID allocation errors when the SQL
node attempts to connect to the cluster.

• --ndb-cluster-connection-pool-nodeids=list

Command-Line Format --ndb-cluster-connection-pool-
nodeids

4383

NDB Cluster Configuration Files

System Variable ndb_cluster_connection_pool_nodeids

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Set

Default Value

Specifies a comma-separated list of node IDs for connections to the cluster used by an SQL node.
The number of nodes in this list must be the same as the value set for the --ndb-cluster-
connection-pool option.

• --ndb-blob-read-batch-bytes=bytes

Command-Line Format --ndb-blob-read-batch-bytes

System Variable ndb_blob_read_batch_bytes

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 65536

Minimum Value 0

Maximum Value 4294967295

This option can be used to set the size (in bytes) for batching of BLOB data reads in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be read within the
current transaction, any pending BLOB read operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect
of disabling BLOB read batching.

Note

In NDB API applications, you can control BLOB write
batching with the setMaxPendingBlobReadBytes() and
getMaxPendingBlobReadBytes() methods.

• --ndb-blob-write-batch-bytes=bytes

Command-Line Format --ndb-blob-write-batch-bytes

System Variable ndb_blob_write_batch_bytes

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 65536

Minimum Value 0

Maximum Value 4294967295

4384

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setmaxpendingblobreadbytes
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-getmaxpendingblobreadbytes

NDB Cluster Configuration Files

Unit bytes

This option can be used to set the size (in bytes) for batching of BLOB data writes in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be written within the
current transaction, any pending BLOB write operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect
of disabling BLOB write batching.

Note

In NDB API applications, you can control BLOB write
batching with the setMaxPendingBlobWriteBytes() and
getMaxPendingBlobWriteBytes() methods.

• --ndb-connectstring=connection_string

Command-Line Format --ndb-connectstring

Type String

When using the NDBCLUSTER storage engine, this option specifies the management server that
distributes cluster configuration data. See Section 25.4.3.3, “NDB Cluster Connection Strings”, for
syntax.

• --ndb-default-column-format=[FIXED|DYNAMIC]

Command-Line Format --ndb-default-column-format={FIXED|
DYNAMIC}

System Variable ndb_default_column_format

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value FIXED

Valid Values FIXED

DYNAMIC

Sets the default COLUMN_FORMAT and ROW_FORMAT for new tables (see Section 15.1.20, “CREATE
TABLE Statement”). The default is FIXED.

• --ndb-deferred-constraints=[0|1]

Command-Line Format --ndb-deferred-constraints

System Variable ndb_deferred_constraints

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

4385

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setmaxpendingblobwritebytes
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-getmaxpendingblobwritebytes

NDB Cluster Configuration Files

Maximum Value 1

Controls whether or not constraint checks on unique indexes are deferred until commit time, where
such checks are supported. 0 is the default.

This option is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is
intended primarily for use in testing.

• --ndb-schema-dist-timeout=#

Command-Line Format --ndb-schema-dist-timeout=#

Introduced 8.0.17-ndb-8.0.17

System Variable ndb_schema_dist_timeout

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 120

Minimum Value 5

Maximum Value 1200

Unit seconds

Specifies the maximum time in seconds that this mysqld waits for a schema operation to complete
before marking it as having timed out.

• --ndb-distribution=[KEYHASH|LINHASH]

Command-Line Format --ndb-distribution={KEYHASH|LINHASH}

System Variable ndb_distribution

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value KEYHASH

Valid Values LINHASH

KEYHASH

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key
hashing) or LINHASH (linear hashing). KEYHASH is the default.

• --ndb-log-apply-status

Command-Line Format --ndb-log-apply-status[={OFF|ON}]

System Variable ndb_log_apply_status

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

4386

NDB Cluster Configuration Files

Causes a replica mysqld to log any updates received from its immediate source to the
mysql.ndb_apply_status table in its own binary log using its own server ID rather than the
server ID of the source. In a circular or chain replication setting, this allows such updates to
propagate to the mysql.ndb_apply_status tables of any MySQL servers configured as replicas
of the current mysqld.

In a chain replication setup, using this option allows downstream (replica) clusters to be aware of
their positions relative to all of their upstream contributors (sourcess).

In a circular replication setup, this option causes changes to ndb_apply_status tables to
complete the entire circuit, eventually propagating back to the originating NDB Cluster. This also
allows a cluster acting as a replication source to see when its changes (epochs) have been applied
to the other clusters in the circle.

This option has no effect unless the MySQL server is started with the --ndbcluster option.

• --ndb-log-empty-epochs=[ON|OFF]

Command-Line Format --ndb-log-empty-epochs[={OFF|ON}]

System Variable ndb_log_empty_epochs

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Causes epochs during which there were no changes to be written to the ndb_apply_status and
ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

By default this option is disabled. Disabling --ndb-log-empty-epochs causes epoch transactions
with no changes not to be written to the binary log, although a row is still written even for an empty
epoch in ndb_binlog_index.

Because --ndb-log-empty-epochs=1 causes the size of the ndb_binlog_index table to
increase independently of the size of the binary log, users should be prepared to manage the growth
of this table, even if they expect the cluster to be idle a large part of the time.

• --ndb-log-empty-update=[ON|OFF]

Command-Line Format --ndb-log-empty-update[={OFF|ON}]

System Variable ndb_log_empty_update

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Causes updates that produced no changes to be written to the ndb_apply_status and
ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

By default this option is disabled (OFF). Disabling --ndb-log-empty-update causes updates with
no changes not to be written to the binary log.

4387

NDB Cluster Configuration Files

• --ndb-log-exclusive-reads=[0|1]

Command-Line Format --ndb-log-exclusive-reads[={OFF|ON}]

System Variable ndb_log_exclusive_reads

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value 0

Starting the server with this option causes primary key reads to be logged with exclusive locks,
which allows for NDB Cluster Replication conflict detection and resolution based on read
conflicts. You can also enable and disable these locks at runtime by setting the value of the
ndb_log_exclusive_reads system variable to 1 or 0, respectively. 0 (disable locking) is the
default.

For more information, see Read conflict detection and resolution.

• --ndb-log-fail-terminate

Command-Line Format --ndb-log-fail-terminate

Introduced 8.0.21-ndb-8.0.21

System Variable ndb_log_fail_terminate

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value FALSE

When this option is specified, and complete logging of all found row events is not possible, the
mysqld process is terminated.

• --ndb-log-orig

Command-Line Format --ndb-log-orig[={OFF|ON}]

System Variable ndb_log_orig

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Log the originating server ID and epoch in the ndb_binlog_index table.

Note

This makes it possible for a given epoch to have multiple rows in
ndb_binlog_index, one for each originating epoch.

For more information, see Section 25.7.4, “NDB Cluster Replication Schema and Tables”.

4388

NDB Cluster Configuration Files

• --ndb-log-transaction-dependency

Command-Line Format --ndb-log-transaction-
dependency={true|false}

Introduced 8.0.33-ndb-8.0.33

System Variable ndb_log_transaction_dependency

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value false

Causes the NDB binary logging thread to calculate transaction dependencies for each transaction
which it writes to the binary log. The default value is FALSE.

This option cannot be set at runtime; the corresponding ndb_log_transaction_dependency
system variable is read-only.

• --ndb-log-transaction-id

Command-Line Format --ndb-log-transaction-id[={OFF|ON}]

System Variable ndb_log_transaction_id

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Causes a replica mysqld to write the NDB transaction ID in each row of the binary log. The default
value is FALSE.

--ndb-log-transaction-id is required to enable NDB Cluster Replication conflict detection
and resolution using the NDB$EPOCH_TRANS() function (see NDB$EPOCH_TRANS()). For more
information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

The deprecated log_bin_use_v1_row_events system variable, which defaults to OFF, must not
be set to ON when you use --ndb-log-transaction-id=ON.

• --ndb-log-update-as-write

Command-Line Format --ndb-log-update-as-write[={OFF|ON}]

System Variable ndb_log_update_as_write

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

4389

NDB Cluster Configuration Files

Default Value ON

Whether updates on the source are written to the binary log as updates (OFF) or writes (ON). When
this option is enabled, and both --ndb-log-updated-only and --ndb-log-update-minimal
are disabled, operations of different types are loǵged as described in the following list:

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

UPDATE: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

DELETE: Logged as a DELETE_ROW event with all columns logged in the before image; the after
image is not logged.

This option can be used for NDB Replication conflict resolution in combination with the other two
NDB logging options mentioned previously; see ndb_replication Table, for more information.

• --ndb-log-updated-only

Command-Line Format --ndb-log-updated-only[={OFF|ON}]

System Variable ndb_log_updated_only

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether mysqld writes updates only (ON) or complete rows (OFF) to the binary log. When this option
is enabled, and both --ndb-log-update-as-write and --ndb-log-update-minimal are
disabled, operations of different types are loǵged as described in the following list:

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

• UPDATE: Logged as an UPDATE_ROW event with primary key columns and updated columns
present in both the before and after images.

• DELETE: Logged as a DELETE_ROW event with primary key columns incuded in the before image;
the after image is not logged.

This option can be used for NDB Replication conflict resolution in combination with the other two
NDB logging options mentioned previously; see ndb_replication Table, for more information about
how these options interact with one another.

• --ndb-log-update-minimal

Command-Line Format --ndb-log-update-minimal[={OFF|ON}]

System Variable ndb_log_update_minimal

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

4390

NDB Cluster Configuration Files

Default Value OFF

Log updates in a minimal fashion, by writing only the primary key values in the before image, and
only the changed columns in the after image. This may cause compatibility problems if replicating
to storage engines other than NDB. When this option is enabled, and both --ndb-log-updated-
only and --ndb-log-update-as-write are disabled, operations of different types are loǵged as
described in the following list:

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

• UPDATE: Logged as an UPDATE_ROW event with primary key columns in the before image; all
columns except primary key columns are logged in the after image.

• DELETE: Logged as a DELETE_ROW event with all columns in the before image; the after image is
not logged.

This option can be used for NDB Replication conflict resolution in combination with the other two
NDB logging options mentioned previously; see ndb_replication Table, for more information.

• --ndb-mgmd-host=host[:port]

Command-Line Format --ndb-mgmd-host=host_name[:port_num]

Type String

Default Value localhost:1186

Can be used to set the host and port number of a single management server for the program to
connect to. If the program requires node IDs or references to multiple management servers (or both)
in its connection information, use the --ndb-connectstring option instead.

• --ndb-nodeid=#

Command-Line Format --ndb-nodeid=#

Status Variable Ndb_cluster_node_id

Scope Global

Dynamic No

Type Integer

Default Value N/A

Minimum Value 1

Maximum Value 255

Maximum Value 63

Set this MySQL server's node ID in an NDB Cluster.

The --ndb-nodeid option overrides any node ID set with --ndb-connectstring, regardless of
the order in which the two options are used.

In addition, if --ndb-nodeid is used, then either a matching node ID must be found in a [mysqld]
or [api] section of config.ini, or there must be an “open” [mysqld] or [api] section in the

4391

NDB Cluster Configuration Files

file (that is, a section without a NodeId or Id parameter specified). This is also true if the node ID is
specified as part of the connection string.

Regardless of how the node ID is determined, its is shown as the value of the global status variable
Ndb_cluster_node_id in the output of SHOW STATUS, and as cluster_node_id in the
connection row of the output of SHOW ENGINE NDBCLUSTER STATUS.

For more information about node IDs for NDB Cluster SQL nodes, see Section 25.4.3.7, “Defining
SQL and Other API Nodes in an NDB Cluster”.

• --ndbinfo={ON|OFF|FORCE}

Command-Line Format --ndbinfo[=value] (≥ 8.0.13-ndb-8.0.13)

Introduced 8.0.13-ndb-8.0.13

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

Enables the plugin for the ndbinfo information database. By default this is ON whenever
NDBCLUSTER is enabled.

• --ndb-optimization-delay=milliseconds

Command-Line Format --ndb-optimization-delay=#

System Variable ndb_optimization_delay

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 100000

Unit milliseconds

Set the number of milliseconds to wait between sets of rows by OPTIMIZE TABLE statements on
NDB tables. The default is 10.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

System Variable ndb_optimized_node_selection

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value 0
4392

NDB Cluster Configuration Files

Maximum Value 3

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --ndb-transid-mysql-connection-map=state

Command-Line Format --ndb-transid-mysql-connection-
map[=state]

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

Enables or disables the plugin that handles the ndb_transid_mysql_connection_map
table in the INFORMATION_SCHEMA database. Takes one of the values ON, OFF, or
FORCE. ON (the default) enables the plugin. OFF disables the plugin, which makes
ndb_transid_mysql_connection_map inaccessible. FORCE keeps the MySQL Server from
starting if the plugin fails to load and start.

You can see whether the ndb_transid_mysql_connection_map table plugin is running by
checking the output of SHOW PLUGINS.

• --ndb-wait-connected=seconds

Command-Line Format --ndb-wait-connected=#

System Variable ndb_wait_connected

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27-ndb-8.0.27) 120

Default Value (≤ 8.0.26-ndb-8.0.26) 30

Default Value 30

Minimum Value 0

Maximum Value 31536000

Unit seconds

This option sets the period of time that the MySQL server waits for connections to NDB Cluster
management and data nodes to be established before accepting MySQL client connections. The
time is specified in seconds. The default value is 30.

• --ndb-wait-setup=seconds

Command-Line Format --ndb-wait-setup=#

System Variable ndb_wait_setup

Scope Global

Dynamic No

SET_VAR Hint Applies No

4393

NDB Cluster Configuration Files

Type Integer

Default Value (≥ 8.0.27-ndb-8.0.27) 120

Default Value (≤ 8.0.26-ndb-8.0.26) 30

Default Value 30

Default Value 15

Default Value 15

Minimum Value 0

Maximum Value 31536000

Unit seconds

This variable shows the period of time that the MySQL server waits for the NDB storage engine to
complete setup before timing out and treating NDB as unavailable. The time is specified in seconds.
The default value is 30.

• --skip-ndbcluster

Command-Line Format --skip-ndbcluster

Disable the NDBCLUSTER storage engine. This is the default for binaries that were built with
NDBCLUSTER storage engine support; the server allocates memory and other resources for this
storage engine only if the --ndbcluster option is given explicitly. See Section 25.4.1, “Quick Test
Setup of NDB Cluster”, for an example.

NDB Cluster System Variables

This section provides detailed information about MySQL server system variables that are specific
to NDB Cluster and the NDB storage engine. For system variables not specific to NDB Cluster, see
Section 7.1.8, “Server System Variables”. For general information on using system variables, see
Section 7.1.9, “Using System Variables”.

• ndb_autoincrement_prefetch_sz

Command-Line Format --ndb-autoincrement-prefetch-sz=#

System Variable ndb_autoincrement_prefetch_sz

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.19-ndb-8.0.19) 512

Default Value (≤ 8.0.18-ndb-8.0.18) 1

Minimum Value 1

Maximum Value 65536

Determines the probability of gaps in an autoincremented column. Set it to 1 to minimize this. Setting
it to a high value for optimization makes inserts faster, but decreases the likelihood of consecutive
autoincrement numbers being used in a batch of inserts.

This variable affects only the number of AUTO_INCREMENT IDs that are fetched between statements;
within a given statement, at least 32 IDs are obtained at a time.

4394

NDB Cluster Configuration Files

Important

This variable does not affect inserts performed using INSERT ... SELECT.

• ndb_clear_apply_status

Command-Line Format --ndb-clear-apply-status[={OFF|ON}]

System Variable ndb_clear_apply_status

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

By the default, executing RESET SLAVE causes an NDB Cluster replica to purge all rows from its
ndb_apply_status table. You can disable this by setting ndb_clear_apply_status=OFF.

• ndb_conflict_role

Command-Line Format --ndb-conflict-role=value

Introduced 8.0.23-ndb-8.0.23

System Variable ndb_conflict_role

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value NONE

Valid Values NONE

PRIMARY

SECONDARY

PASS

Determines the role of this SQL node (and NDB Cluster) in a circular (“active-active”) replication
setup. ndb_slave_conflict_role can take any one of the values PRIMARY, SECONDARY,
PASS, or NULL (the default). The replica SQL thread must be stopped before you can change
ndb_slave_conflict_role. In addition, it is not possible to change directly between PASS and
either of PRIMARY or SECONDARY directly; in such cases, you must ensure that the SQL thread is
stopped, then execute SET @@GLOBAL.ndb_slave_conflict_role = 'NONE' first.

This variable replaces ndb_slave_conflict_role, which is deprecated as of NDB 8.0.23.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• ndb_data_node_neighbour

Command-Line Format --ndb-data-node-neighbour=#

System Variable ndb_data_node_neighbour

Scope Global

Dynamic Yes

4395

NDB Cluster Configuration Files

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 255

Sets the ID of a “nearest” data node—that is, a preferred nonlocal data node is chosen to execute
the transaction, rather than one running on the same host as the SQL or API node. This used to
ensure that when a fully replicated table is accessed, we access it on this data node, to ensure that
the local copy of the table is always used whenever possible. This can also be used for providing
hints for transactions.

This can improve data access times in the case of a node that is physically closer than and thus has
higher network throughput than others on the same host.

See Section 15.1.20.12, “Setting NDB Comment Options”, for further information.

Note

An equivalent method set_data_node_neighbour() is provided for use in
NDB API applications.

• ndb_dbg_check_shares

Command-Line Format --ndb-dbg-check-shares=#

Introduced 8.0.13-ndb-8.0.13

System Variable ndb_dbg_check_shares

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

When set to 1, check that no shares are lingering. Available in debug builds only.

• ndb_default_column_format

Command-Line Format --ndb-default-column-format={FIXED|
DYNAMIC}

System Variable ndb_default_column_format

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value FIXED

Valid Values FIXED

4396

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-data-node-neighbour

NDB Cluster Configuration Files

DYNAMIC

Sets the default COLUMN_FORMAT and ROW_FORMAT for new tables (see Section 15.1.20, “CREATE
TABLE Statement”). The default is FIXED.

• ndb_deferred_constraints

Command-Line Format --ndb-deferred-constraints=#

System Variable ndb_deferred_constraints

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

Controls whether or not constraint checks are deferred, where these are supported. 0 is the default.

This variable is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is
intended primarily for use in testing.

• ndb_distribution

Command-Line Format --ndb-distribution={KEYHASH|LINHASH}

System Variable ndb_distribution

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value KEYHASH

Valid Values LINHASH

KEYHASH

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key
hashing) or LINHASH (linear hashing). KEYHASH is the default.

• ndb_eventbuffer_free_percent

Command-Line Format --ndb-eventbuffer-free-percent=#

System Variable ndb_eventbuffer_free_percent

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 20

Minimum Value 1

4397

NDB Cluster Configuration Files

Maximum Value 99

Sets the percentage of the maximum memory allocated to the event buffer
(ndb_eventbuffer_max_alloc) that should be available in event buffer after reaching the maximum,
before starting to buffer again.

• ndb_eventbuffer_max_alloc

Command-Line Format --ndb-eventbuffer-max-alloc=#

System Variable ndb_eventbuffer_max_alloc

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (≥ 8.0.26-ndb-8.0.26) 9223372036854775807

Maximum Value 9223372036854775807

Maximum Value 9223372036854775807

Maximum Value (≤ 8.0.25-ndb-8.0.25) 4294967295

Sets the maximum amount memory (in bytes) that can be allocated for buffering events by the NDB
API. 0 means that no limit is imposed, and is the default.

• ndb_extra_logging

Command-Line Format ndb_extra_logging=#

System Variable ndb_extra_logging

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 1

This variable enables recording in the MySQL error log of information specific to the NDB storage
engine.

When this variable is set to 0, the only information specific to NDB that is written to the MySQL error
log relates to transaction handling. If it set to a value greater than 0 but less than 10, NDB table
schema and connection events are also logged, as well as whether or not conflict resolution is in
use, and other NDB errors and information. If the value is set to 10 or more, information about NDB
internals, such as the progress of data distribution among cluster nodes, is also written to the MySQL
error log. The default is 1.

• ndb_force_send

Command-Line Format --ndb-force-send[={OFF|ON}]

System Variable ndb_force_send
4398

NDB Cluster Configuration Files

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Forces sending of buffers to NDB immediately, without waiting for other threads. Defaults to ON.

• ndb_fully_replicated

Command-Line Format --ndb-fully-replicated[={OFF|ON}]

System Variable ndb_fully_replicated

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Determines whether new NDB tables are fully replicated. This setting can be overridden for an
individual table using COMMENT="NDB_TABLE=FULLY_REPLICATED=..." in a CREATE TABLE or
ALTER TABLE statement; see Section 15.1.20.12, “Setting NDB Comment Options”, for syntax and
other information.

• ndb_index_stat_enable

Command-Line Format --ndb-index-stat-enable[={OFF|ON}]

System Variable ndb_index_stat_enable

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Use NDB index statistics in query optimization. The default is ON.

Prior to NDB 8.0.27, starting the server with --ndb-index-stat-enable set to OFF prevented the
creation of the index statistics tables. In NDB 8.0.27 and later, these tables are always created when
the server starts, regardless of this option's value.

• ndb_index_stat_option

Command-Line Format --ndb-index-stat-option=value

System Variable ndb_index_stat_option

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value loop_checkon=1000ms,loop_idle=1000ms,loop_busy=100ms,
update_batch=1,read_batch=4,idle_batch=32,check_batch=32,
check_delay=1m,delete_batch=8,clean_delay=0,error_batch=4,4399

NDB Cluster Configuration Files

error_delay=1m,evict_batch=8,evict_delay=1m,cache_limit=32M,
cache_lowpct=90

This variable is used for providing tuning options for NDB index statistics generation. The list consist
of comma-separated name-value pairs of option names and values, and this list must not contain any
space characters.

Options not used when setting ndb_index_stat_option are not changed from
their default values. For example, you can set ndb_index_stat_option =
'loop_idle=1000ms,cache_limit=32M'.

Time values can be optionally suffixed with h (hours), m (minutes), or s (seconds). Millisecond values
can optionally be specified using ms; millisecond values cannot be specified using h, m, or s.) Integer
values can be suffixed with K, M, or G.

The names of the options that can be set using this variable are shown in the table that follows. The
table also provides brief descriptions of the options, their default values, and (where applicable) their
minimum and maximum values.

Table 25.20 ndb_index_stat_option options and values

Name Description Default/Units Minimum/Maximum

loop_enable 1000 ms 0/4G

loop_idle Time to sleep when idle 1000 ms 0/4G

loop_busy Time to sleep when
more work is waiting

100 ms 0/4G

update_batch 1 0/4G

read_batch 4 1/4G

idle_batch 32 1/4G

check_batch 8 1/4G

check_delay How often to check for
new statistics

10 m 1/4G

delete_batch 8 0/4G

clean_delay 1 m 0/4G

error_batch 4 1/4G

error_delay 1 m 1/4G

evict_batch 8 1/4G

evict_delay Clean LRU cache, from
read time

1 m 0/4G

cache_limit Maximum amount
of memory in bytes
used for cached
index statistics by this
mysqld; clean up the
cache when this is
exceeded.

32 M 0/4G

cache_lowpct 90 0/100

zero_total Setting this to 1 resets
all accumulating
counters in
ndb_index_stat_status
to 0. This option value

0 0/1

4400

NDB Cluster Configuration Files

Name Description Default/Units Minimum/Maximum
is also reset to 0 when
this is done.

• ndb_join_pushdown

System Variable ndb_join_pushdown

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This variable controls whether joins on NDB tables are pushed down to the NDB kernel (data nodes).
Previously, a join was handled using multiple accesses of NDB by the SQL node; however, when
ndb_join_pushdown is enabled, a pushable join is sent in its entirety to the data nodes, where it
can be distributed among the data nodes and executed in parallel on multiple copies of the data, with
a single, merged result being returned to mysqld. This can reduce greatly the number of round trips
between an SQL node and the data nodes required to handle such a join.

By default, ndb_join_pushdown is enabled.

Conditions for NDB pushdown joins. In order for a join to be pushable, it must meet the
following conditions:

1. Only columns can be compared, and all columns to be joined must use exactly the same data
type. This means that (for example) a join on an INT column and a BIGINT column also cannot
be pushed down.

Previously, expressions such as t1.a = t2.a + constant could not be pushed down. This
restriction is lifted in NDB 8.0. The result of any operations on any column to be compared must
yield the same type as the column itself.

Expressions comparing columns from the same table can also be pushed down. The columns
(or the result of any operations on those columns) must be of exactly the same type, including
the same signedness, length, character set and collation, precision, and scale, where these are
applicable.

2. Queries referencing BLOB or TEXT columns are not supported.

3. Explicit locking is not supported; however, the NDB storage engine's characteristic implicit row-
based locking is enforced.

This means that a join using FOR UPDATE cannot be pushed down.

4. In order for a join to be pushed down, child tables in the join must be accessed using one of the
ref, eq_ref, or const access methods, or some combination of these methods.

Outer joined child tables can only be pushed using eq_ref.

If the root of the pushed join is an eq_ref or const, only child tables joined by eq_ref can be
appended. (A table joined by ref is likely to become the root of another pushed join.)

If the query optimizer decides on Using join cache for a candidate child table, that table
cannot be pushed as a child. However, it may be the root of another set of pushed tables.

5. Joins referencing tables explicitly partitioned by [LINEAR] HASH, LIST, or RANGE currently
cannot be pushed down.

4401

NDB Cluster Configuration Files

You can see whether a given join can be pushed down by checking it with EXPLAIN; when the join
can be pushed down, you can see references to the pushed join in the Extra column of the
output, as shown in this example:

mysql> EXPLAIN
 -> SELECT e.first_name, e.last_name, t.title, d.dept_name
 -> FROM employees e
 -> JOIN dept_emp de ON e.emp_no=de.emp_no
 -> JOIN departments d ON d.dept_no=de.dept_no
 -> JOIN titles t ON e.emp_no=t.emp_no\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: d
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 9
 Extra: Parent of 4 pushed join@1
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: de
 type: ref
possible_keys: PRIMARY,emp_no,dept_no
 key: dept_no
 key_len: 4
 ref: employees.d.dept_no
 rows: 5305
 Extra: Child of 'd' in pushed join@1
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: e
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: employees.de.emp_no
 rows: 1
 Extra: Child of 'de' in pushed join@1
*************************** 4. row ***************************
 id: 1
 select_type: SIMPLE
 table: t
 type: ref
possible_keys: PRIMARY,emp_no
 key: emp_no
 key_len: 4
 ref: employees.de.emp_no
 rows: 19
 Extra: Child of 'e' in pushed join@1
4 rows in set (0.00 sec)

Note

If inner joined child tables are joined by ref, and the result is ordered or
grouped by a sorted index, this index cannot provide sorted rows, which
forces writing to a sorted tempfile.

Two additional sources of information about pushed join performance are available:

1. The status variables Ndb_pushed_queries_defined, Ndb_pushed_queries_dropped,
Ndb_pushed_queries_executed, and Ndb_pushed_reads.

2. The counters in the ndbinfo.counters table that belong to the DBSPJ kernel block.

4402

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

NDB Cluster Configuration Files

• ndb_log_apply_status

Command-Line Format --ndb-log-apply-status[={OFF|ON}]

System Variable ndb_log_apply_status

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

A read-only variable which shows whether the server was started with the --ndb-log-apply-
status option.

• ndb_log_bin

Command-Line Format --ndb-log-bin[={OFF|ON}]

System Variable ndb_log_bin

Scope Global, Session

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.16-ndb-8.0.16) OFF

Default Value (≤ 8.0.15-ndb-8.0.15) ON

Causes updates to NDB tables to be written to the binary log. The setting for this variable has
no effect if binary logging is not already enabled on the server using log_bin. In NDB 8.0,
ndb_log_bin defaults to 0 (FALSE).

• ndb_log_binlog_index

Command-Line Format --ndb-log-binlog-index[={OFF|ON}]

System Variable ndb_log_binlog_index

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Causes a mapping of epochs to positions in the binary log to be inserted into the
ndb_binlog_index table. Setting this variable has no effect if binary logging is not already
enabled for the server using log_bin. (In addition, ndb_log_bin must not be disabled.)
ndb_log_binlog_index defaults to 1 (ON); normally, there is never any need to change this value
in a production environment.

• ndb_log_cache_size

Command-Line Format --ndb-log-cache-size=#

Introduced 8.0.40-ndb_8.0.40

System Variable ndb_log_cache_size

Scope Global
4403

NDB Cluster Configuration Files

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 64M

Minimum Value 4096

Maximum Value 18446744073709551615

Set the size of the transaction cache used for writing the NDB binary log.

• ndb_log_empty_epochs

Command-Line Format --ndb-log-empty-epochs[={OFF|ON}]

System Variable ndb_log_empty_epochs

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When this variable is set to 0, epoch transactions with no changes are not written to the binary log,
although a row is still written even for an empty epoch in ndb_binlog_index.

• ndb_log_empty_update

Command-Line Format --ndb-log-empty-update[={OFF|ON}]

System Variable ndb_log_empty_update

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When this variable is set to ON (1), update transactions with no changes are written to the binary log,
even when log_replica_updates or log_slave_updates is enabled.

• ndb_log_exclusive_reads

Command-Line Format --ndb-log-exclusive-reads[={OFF|ON}]

System Variable ndb_log_exclusive_reads

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value 0

This variable determines whether primary key reads are logged with exclusive locks, which allows for
NDB Cluster Replication conflict detection and resolution based on read conflicts. To enable these

4404

NDB Cluster Configuration Files

locks, set the value of ndb_log_exclusive_reads to 1. 0, which disables such locking, is the
default.

For more information, see Read conflict detection and resolution.

• ndb_log_orig

Command-Line Format --ndb-log-orig[={OFF|ON}]

System Variable ndb_log_orig

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Shows whether the originating server ID and epoch are logged in the ndb_binlog_index table.
Set using the --ndb-log-orig server option.

• ndb_log_transaction_id

System Variable ndb_log_transaction_id

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This read-only, Boolean system variable shows whether a replica mysqld writes NDB
transaction IDs in the binary log (required to use “active-active” NDB Cluster Replication with NDB
$EPOCH_TRANS() conflict detection). To change the setting, use the --ndb-log-transaction-
id option.

ndb_log_transaction_id is not supported in mainline MySQL Server 8.0.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• ndb_log_transaction_compression

Command-Line Format --ndb-log-transaction-compression

Introduced 8.0.31-ndb-8.0.31

System Variable ndb_log_transaction_compression

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

4405

NDB Cluster Configuration Files

Default Value OFF

Whether a replica mysqld writes compressed transactions in the binary log; present only if mysqld
was compiled with support for NDB.

You should note that starting the MySQL server with --binlog-transaction-compression
forces this variable to be enabled (ON), and that this overrides any setting for --ndb-log-
transaction-compression made on the command line or in a my.cnf file, as shown here:

$> mysqld_safe --ndbcluster --ndb-connectstring=127.0.0.1 \
 --binlog-transaction-compression=ON --ndb-log-transaction-compression=OFF &
[1] 27667
$> 2022-07-07T12:29:20.459937Z mysqld_safe Logging to '/usr/local/mysql/data/myhost.err'.
2022-07-07T12:29:20.509873Z mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/data

$> mysql -e 'SHOW VARIABLES LIKE "%transaction_compression%"'
+--+-------+
| Variable_name | Value |
+--+-------+
binlog_transaction_compression	ON
binlog_transaction_compression_level_zstd	3
ndb_log_transaction_compression	ON
ndb_log_transaction_compression_level_zstd	3
+--+-------+

To disable binary log transaction compression for NDB tables only, set the
ndb_log_transaction_compression system variable to OFF in a mysql or other client session
after starting mysqld.

Setting the binlog_transaction_compression variable after startup has no effect on the value
of ndb_log_transaction_compression.

For more information on binary log transaction compression, such as which events are or are
not compressed and as well as behavior changes to be aware of when this feature is used, see
Section 7.4.4.5, “Binary Log Transaction Compression”.

• ndb_log_transaction_compression_level_zstd

Command-Line Format --ndb-log-transaction-compression-
level-zstd=#

Introduced 8.0.31-ndb-8.0.31

System Variable ndb_log_transaction_compression_level_zstd

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value 1

Maximum Value 22

The ZSTD compression level used for writing compressed transactions to the replica's binary log if
enabled by ndb_log_transaction_compression. Not supported if mysqld was not compiled
with support for the NDB storage engine.

See Section 7.4.4.5, “Binary Log Transaction Compression”, for more information.

4406

NDB Cluster Configuration Files

• ndb_metadata_check

Command-Line Format --ndb-metadata-check[={OFF|ON}]

Introduced 8.0.16-ndb-8.0.16

System Variable ndb_metadata_check

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

NDB uses a background thread to check for metadata changes each
ndb_metadata_check_interval seconds as compared with the MySQL data dictionary. This
metadata change detection thread can be disabled by setting ndb_metadata_check to OFF. The
thread is enabled by default.

• ndb_metadata_check_interval

Command-Line Format --ndb-metadata-check-interval=#

Introduced 8.0.16-ndb-8.0.16

System Variable ndb_metadata_check_interval

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

Minimum Value 0

Maximum Value 31536000

Unit seconds

NDB runs a metadata change detection thread in the background to determine when the
NDB dictionary has changed with respect to the MySQL data dictionary. By default,the
interval between such checks is 60 seconds; this can be adjusted by setting the value of
ndb_metadata_check_interval. To enable or disable the thread, use ndb_metadata_check.

• ndb_metadata_sync

Introduced 8.0.19-ndb-8.0.19

System Variable ndb_metadata_sync

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value false

Setting this variable causes the change monitor thread to override any values set for
ndb_metadata_check or ndb_metadata_check_interval, and to enter a period of continuous
change detection. When the thread ascertains that there are no more changes to be detected,
it stalls until the binary logging thread has finished synchronization of all detected objects.

4407

NDB Cluster Configuration Files

ndb_metadata_sync is then set to false, and the change monitor thread reverts to the behavior
determined by the settings for ndb_metadata_check and ndb_metadata_check_interval.

In NDB 8.0.22 and later, setting this variable to true causes the list of excluded objects to be
cleared, and setting it to false clears the list of objects to be retried.

• ndb_optimized_node_selection

Command-Line Format --ndb-optimized-node-selection=#

System Variable ndb_optimized_node_selection

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 3

There are two forms of optimized node selection, described here:

1. The SQL node uses promixity to determine the transaction coordinator; that is, the “closest” data
node to the SQL node is chosen as the transaction coordinator. For this purpose, a data node
having a shared memory connection with the SQL node is considered to be “closest” to the SQL
node; the next closest (in order of decreasing proximity) are: TCP connection to localhost,
followed by TCP connection from a host other than localhost.

2. The SQL thread uses distribution awareness to select the data node. That is, the data node
housing the cluster partition accessed by the first statement of a given transaction is used as the
transaction coordinator for the entire transaction. (This is effective only if the first statement of the
transaction accesses no more than one cluster partition.)

This option takes one of the integer values 0, 1, 2, or 3. 3 is the default. These values affect node
selection as follows:

• 0: Node selection is not optimized. Each data node is employed as the transaction coordinator 8
times before the SQL thread proceeds to the next data node.

• 1: Proximity to the SQL node is used to determine the transaction coordinator.

• 2: Distribution awareness is used to select the transaction coordinator. However, if the first
statement of the transaction accesses more than one cluster partition, the SQL node reverts to the
round-robin behavior seen when this option is set to 0.

• 3: If distribution awareness can be employed to determine the transaction coordinator, then it
is used; otherwise proximity is used to select the transaction coordinator. (This is the default
behavior.)

Proximity is determined as follows:

1. Start with the value set for the Group parameter (default 55).

2. For an API node sharing the same host with other API nodes, decrement the value by 1.
Assuming the default value for Group, the effective value for data nodes on same host as the
API node is 54, and for remote data nodes 55.

3. Setting ndb_data_node_neighbour further decreases the effective Group value by 50,
causing this node to be regarded as the nearest node. This is needed only when all data nodes

4408

NDB Cluster Configuration Files

are on hosts other than that hosts the API node and it is desirable to dedicate one of them to the
API node. In normal cases, the default adjustment described previously is sufficient.

Frequent changes in ndb_data_node_neighbour are not advisable, since this changes the state
of the cluster connection and thus may disrupt the selection algorithm for new transactions from each
thread until it stablilizes.

• ndb_read_backup

Command-Line Format --ndb-read-backup[={OFF|ON}]

System Variable ndb_read_backup

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.19-ndb-8.0.19) ON

Default Value (≤ 8.0.18-ndb-8.0.18) OFF

Enable read from any fragment replica for any NDB table subsequently created; doing so greatly
improves the table read performance at a relatively small cost to writes.

If the SQL node and the data node use the same host name or IP address, this fact is detected
automatically, so that the preference is to send reads to the same host. If these nodes are on the
same host but use different IP addresses, you can tell the SQL node to use the correct data node by
setting the value of ndb_data_node_neighbour on the SQL node to the node ID of the data node.

To enable or disable read from any fragment replica for an individual table, you can set the
NDB_TABLE option READ_BACKUP for the table accordingly, in a CREATE TABLE or ALTER TABLE
statement; see Section 15.1.20.12, “Setting NDB Comment Options”, for more information.

• ndb_recv_thread_activation_threshold

Command-Line Format --ndb-recv-thread-activation-
threshold=#

System Variable ndb_recv_thread_activation_threshold

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8

Minimum Value 0 (MIN_ACTIVATION_THRESHOLD)

Maximum Value 16 (MAX_ACTIVATION_THRESHOLD)

When this number of concurrently active threads is reached, the receive thread takes over polling of
the cluster connection.

This variable is global in scope. It can also be set at startup.

• ndb_recv_thread_cpu_mask

Command-Line Format --ndb-recv-thread-cpu-mask=mask

System Variable ndb_recv_thread_cpu_mask

Scope Global

4409

NDB Cluster Configuration Files

Dynamic Yes

SET_VAR Hint Applies No

Type Bitmap

Default Value [empty]

CPU mask for locking receiver threads to specific CPUs. This is specified as a hexadecimal bitmask.
For example, 0x33 means that one CPU is used per receiver thread. An empty string is the default;
setting ndb_recv_thread_cpu_mask to this value removes any receiver thread locks previously
set.

This variable is global in scope. It can also be set at startup.

• ndb_report_thresh_binlog_epoch_slip

Command-Line Format --ndb-report-thresh-binlog-epoch-
slip=#

System Variable ndb_report_thresh_binlog_epoch_slip

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 256

This represents the threshold for the number of epochs completely buffered in the event buffer, but
not yet consumed by the binlog injector thread. When this degree of slippage (lag) is exceeded, an
event buffer status message is reported, with BUFFERED_EPOCHS_OVER_THRESHOLD supplied
as the reason (see Section 25.6.2.3, “Event Buffer Reporting in the Cluster Log”). Slip is increased
when an epoch is received from data nodes and buffered completely in the event buffer; it is
decreased when an epoch is consumed by the binlog injector thread, it is reduced. Empty epochs
are buffered and queued, and so included in this calculation only when this is enabled using the
Ndb::setEventBufferQueueEmptyEpoch() method from the NDB API.

• ndb_report_thresh_binlog_mem_usage

Command-Line Format --ndb-report-thresh-binlog-mem-
usage=#

System Variable ndb_report_thresh_binlog_mem_usage

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 10

This is a threshold on the percentage of free memory remaining before reporting binary log status.
For example, a value of 10 (the default) means that if the amount of available memory for receiving
binary log data from the data nodes falls below 10%, a status message is sent to the cluster log.

4410

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-seteventbufferqueueemptyepoch

NDB Cluster Configuration Files

• ndb_row_checksum

System Variable ndb_row_checksum

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 1

Traditionally, NDB has created tables with row checksums, which checks for hardware issues at the
expense of performance. Setting ndb_row_checksum to 0 means that row checksums are not used
for new or altered tables, which has a significant impact on performance for all types of queries. This
variable is set to 1 by default, to provide backward-compatible behavior.

• ndb_schema_dist_lock_wait_timeout

Command-Line Format --ndb-schema-dist-lock-wait-
timeout=value

Introduced 8.0.18-ndb-8.0.18

System Variable ndb_schema_dist_lock_wait_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 30

Minimum Value 0

Maximum Value 1200

Unit seconds

Number of seconds to wait during schema distribution for the metadata lock taken on each SQL
node in order to change its local data dictionary to reflect the DDL statement change. After this time
has elapsed, a warning is returned to the effect that a given SQL node's data dictionary was not
updated with the change. This avoids having the binary logging thread wait an excessive length of
time while handling schema operations.

• ndb_schema_dist_timeout

Command-Line Format --ndb-schema-dist-timeout=value

Introduced 8.0.16-ndb-8.0.16

System Variable ndb_schema_dist_timeout

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 120

Minimum Value 5

4411

NDB Cluster Configuration Files

Maximum Value 1200

Unit seconds

Number of seconds to wait before detecting a timeout during schema distribution. This can indicate
that other SQL nodes are experiencing excessive activity, or that they are somehow being prevented
from acquiring necessary resources at this time.

• ndb_schema_dist_upgrade_allowed

Command-Line Format --ndb-schema-dist-upgrade-
allowed=value

Introduced 8.0.17-ndb-8.0.17

System Variable ndb_schema_dist_upgrade_allowed

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value true

Allow upgrading of the schema distribution table when connecting to NDB. When true (the default),
this change is deferred until all SQL nodes have been upgraded to the same version of the NDB
Cluster software.

Note

The performance of the schema distribution may be somewhat degraded until
the upgrade has been performed.

• ndb_show_foreign_key_mock_tables

Command-Line Format --ndb-show-foreign-key-mock-
tables[={OFF|ON}]

System Variable ndb_show_foreign_key_mock_tables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Show the mock tables used by NDB to support foreign_key_checks=0. When this is enabled,
extra warnings are shown when creating and dropping the tables. The real (internal) name of the
table can be seen in the output of SHOW CREATE TABLE.

• ndb_slave_conflict_role

Command-Line Format --ndb-slave-conflict-role=value

Deprecated 8.0.23-ndb-8.0.23

System Variable ndb_slave_conflict_role

Scope Global

Dynamic Yes

SET_VAR Hint Applies No4412

NDB Cluster Configuration Files

Type Enumeration

Default Value NONE

Valid Values NONE

PRIMARY

SECONDARY

PASS

Deprecated in NDB 8.0.23, and subject to removal in a future release. Use ndb_conflict_role
instead.

• ndb_table_no_logging

System Variable ndb_table_no_logging

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When this variable is set to ON or 1, it causes all tables created or altered using ENGINE NDB to be
nonlogging; that is, no data changes for this table are written to the redo log or checkpointed to disk,
just as if the table had been created or altered using the NOLOGGING option for CREATE TABLE or
ALTER TABLE.

For more information about nonlogging NDB tables, see NDB_TABLE Options.

ndb_table_no_logging has no effect on the creation of NDB table schema files; to suppress
these, use ndb_table_temporary instead.

• ndb_table_temporary

System Variable ndb_table_temporary

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When set to ON or 1, this variable causes NDB tables not to be written to disk: This means that no
table schema files are created, and that the tables are not logged.

Note

Setting this variable currently has no effect. This is a known issue; see Bug
#34036.

• ndb_use_copying_alter_table

System Variable ndb_use_copying_alter_table

Scope Global, Session

Dynamic No 4413

NDB Cluster Configuration Files

SET_VAR Hint Applies No

Forces NDB to use copying of tables in the event of problems with online ALTER TABLE operations.
The default value is OFF.

• ndb_use_exact_count

System Variable ndb_use_exact_count

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Forces NDB to use a count of records during SELECT COUNT(*) query planning to speed up this
type of query. The default value is OFF, which allows for faster queries overall.

• ndb_use_transactions

Command-Line Format --ndb-use-transactions[={OFF|ON}]

System Variable ndb_use_transactions

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

You can disable NDB transaction support by setting this variable's value to OFF. This is generally not
recommended, although it may be useful to disable transaction support within a given client session
when that session is used to import one or more dump files with large transactions; this allows a
multi-row insert to be executed in parts, rather than as a single transaction. In such cases, once
the import has been completed, you should either reset the variable value for this session to ON, or
simply terminate the session.

• ndb_version

System Variable ndb_version

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value

NDB engine version, as a composite integer.

• ndb_version_string

System Variable ndb_version_string

Scope Global

Dynamic No

SET_VAR Hint Applies No
4414

NDB Cluster Configuration Files

Type String

Default Value

NDB engine version in ndb-x.y.z format.

• replica_allow_batching

Command-Line Format --replica-allow-batching[={OFF|ON}]

Introduced 8.0.26-ndb-8.0.26

System Variable replica_allow_batching

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.30-ndb-8.0.30) ON

Default Value (≤ 8.0.29-ndb-8.0.29) OFF

Whether or not batched updates are enabled on NDB Cluster replicas. Beginning with NDB 8.0.26,
you should use replica_allow_batching in place of slave_allow_batching, which is
deprecated in that release.

Allowing batched updates on the replica greatly improves performance, particularly when replicating
TEXT, BLOB, and JSON columns. For this reason, replica_allow_batching is enabled by default
in NDB 8.0.30 and later.

Setting this variable has an effect only when using replication with the NDB storage engine; in MySQL
Server 8.0, it is present but does nothing. For more information, see Section 25.7.6, “Starting NDB
Cluster Replication (Single Replication Channel)”.

• ndb_replica_batch_size

Command-Line Format --ndb-replica-batch-size=#

Introduced 8.0.30-ndb-8.0.30

System Variable ndb_replica_batch_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2097152

Minimum Value 0

Maximum Value 2147483648

Unit bytes

Determines the batch size in bytes used by the replication applier thread. In NDB 8.0.30 and later,
set this variable rather than the --ndb-batch-size option to apply this setting to the replica,
exclusive of any other sessions.

If this variable is unset (default 2 MB), its effective value is the greater of the value of --ndb-
batch-size and 2 MB.

4415

NDB Cluster Configuration Files

• ndb_replica_blob_write_batch_bytes

Command-Line Format --ndb-replica-blob-write-batch-
bytes=#

Introduced 8.0.30-ndb-8.0.30

System Variable ndb_replica_blob_write_batch_bytes

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2097152

Minimum Value 0

Maximum Value 2147483648

Unit bytes

Control the batch write size used for blob data by the replication applier thread.

Beginning with NDB 8.0.30, you should set this variable rather than the --ndb-blob-write-
batch-bytes option to control the blob batch write size on the replica, exclusive of any other
sessions. The reason for this is that, when ndb_replica_blob_write_batch_bytesis not
set,the effective blob batch size (that is, the maximum number of pending bytes to write for blob
columns) is determined by the greater of the value of --ndb-blob-write-batch-bytes and 2
MB (the default for ndb_replica_blob_write_batch_bytes).

Setting ndb_replica_blob_write_batch_bytes to 0 means that NDB imposes no limit on the
size of blob batch writes on the replica.

• server_id_bits

Command-Line Format --server-id-bits=#

System Variable server_id_bits

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 32

Minimum Value 7

Maximum Value 32

This variable indicates the number of least significant bits within the 32-bit server_id which
actually identify the server. Indicating that the server is actually identified by fewer than 32 bits
makes it possible for some of the remaining bits to be used for other purposes, such as storing
user data generated by applications using the NDB API's Event API within the AnyValue of an
OperationOptions structure (NDB Cluster uses the AnyValue to store the server ID).

When extracting the effective server ID from server_id for purposes such as detection of
replication loops, the server ignores the remaining bits. The server_id_bits variable is used to

4416

https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-operationoptions

NDB Cluster Configuration Files

mask out any irrelevant bits of server_id in the I/O and SQL threads when deciding whether an
event should be ignored based on the server ID.

This data can be read from the binary log by mysqlbinlog, provided that it is run with its own
server_id_bits variable set to 32 (the default).

If the value of server_id greater than or equal to 2 to the power of server_id_bits; otherwise,
mysqld refuses to start.

This system variable is supported only by NDB Cluster. It is not supported in the standard MySQL
8.0 Server.

• slave_allow_batching

Command-Line Format --slave-allow-batching[={OFF|ON}]

Deprecated 8.0.26-ndb-8.0.26

System Variable slave_allow_batching

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.30-ndb-8.0.30) ON

Default Value (≤ 8.0.29-ndb-8.0.29) OFF

Whether or not batched updates are enabled on NDB Cluster replicas. Beginning with NDB 8.0.26,
this variable is deprecated, and you should use replica_allow_batching instead.

Allowing batched updates on the replica greatly improves performance, particularly when replicating
TEXT, BLOB, and JSON columns. For this reason, replica_allow_batching is ON by default in
NDB 8.0.30 and later. Also beginning with NDB 8.0.30, a warning is issued whenever this variable is
set to OFF.

Setting this variable has an effect only when using replication with the NDB storage engine; in MySQL
Server 8.0, it is present but does nothing. For more information, see Section 25.7.6, “Starting NDB
Cluster Replication (Single Replication Channel)”.

• transaction_allow_batching

System Variable transaction_allow_batching

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

4417

NDB Cluster Configuration Files

Default Value OFF

When set to 1 or ON, this variable enables batching of statements within the same transaction. To
use this variable, autocommit must first be disabled by setting it to 0 or OFF; otherwise, setting
transaction_allow_batching has no effect.

It is safe to use this variable with transactions that performs writes only, as having it enabled
can lead to reads from the “before” image. You should ensure that any pending transactions are
committed (using an explicit COMMIT if desired) before issuing a SELECT.

Important

transaction_allow_batching should not be used whenever there is the
possibility that the effects of a given statement depend on the outcome of a
previous statement within the same transaction.

This variable is currently supported for NDB Cluster only.

The system variables in the following list all relate to the ndbinfo information database.

• ndbinfo_database

System Variable ndbinfo_database

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value ndbinfo

Shows the name used for the NDB information database; the default is ndbinfo. This is a read-only
variable whose value is determined at compile time.

• ndbinfo_max_bytes

Command-Line Format --ndbinfo-max-bytes=#

System Variable ndbinfo_max_bytes

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 65535

Used in testing and debugging only.

• ndbinfo_max_rows

Command-Line Format --ndbinfo-max-rows=#

System Variable ndbinfo_max_rows

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

4418

NDB Cluster Configuration Files

Type Integer

Default Value 10

Minimum Value 1

Maximum Value 256

Used in testing and debugging only.

• ndbinfo_offline

System Variable ndbinfo_offline

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Place the ndbinfo database into offline mode, in which tables and views can be opened even
when they do not actually exist, or when they exist but have different definitions in NDB. No rows are
returned from such tables (or views).

• ndbinfo_show_hidden

Command-Line Format --ndbinfo-show-hidden[={OFF|ON}]

System Variable ndbinfo_show_hidden

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Valid Values ON

OFF

Whether or not the ndbinfo database's underlying internal tables are shown in the mysql client.
The default is OFF.

Note

When ndbinfo_show_hidden is enabled, the internal tables are shown
in the ndbinfo database only; they are not visible in TABLES or other
INFORMATION_SCHEMA tables, regardless of the variable's setting.

• ndbinfo_table_prefix

System Variable ndbinfo_table_prefix

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

4419

NDB Cluster Configuration Files

Default Value ndb$

The prefix used in naming the ndbinfo database's base tables (normally hidden, unless exposed
by setting ndbinfo_show_hidden). This is a read-only variable whose default value is ndb$; the
prefix itself is determined at compile time.

• ndbinfo_version

System Variable ndbinfo_version

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value

Shows the version of the ndbinfo engine in use; read-only.

NDB Cluster Status Variables

This section provides detailed information about MySQL server status variables that relate to NDB
Cluster and the NDB storage engine. For status variables not specific to NDB Cluster, and for general
information on using status variables, see Section 7.1.10, “Server Status Variables”.

• Handler_discover

The MySQL server can ask the NDBCLUSTER storage engine if it knows about a table with a given
name. This is called discovery. Handler_discover indicates the number of times that tables have
been discovered using this mechanism.

• Ndb_api_adaptive_send_deferred_count

Number of adaptive send calls that were not actually sent.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_deferred_count_session

Number of adaptive send calls that were not actually sent.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_deferred_count_replica

Number of adaptive send calls that were not actually sent by this replica.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_deferred_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_adaptive_send_deferred_count_replica instead.

Number of adaptive send calls that were not actually sent by this replica.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count
4420

NDB Cluster Configuration Files

Number of adaptive send calls using forced-send sent by this MySQL Server (SQL node).

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count_session

Number of adaptive send calls using forced-send sent in this client session.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count_replica

Number of adaptive send calls using forced-send sent by this replica.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_adaptive_send_forced_count_replica instead.

Number of adaptive send calls using forced-send sent by this replica.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count

Number of adaptive send calls without forced-send sent by this MySQL server (SQL node).

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count_session

Number of adaptive send calls without forced-send sent in this client session.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count_replica

Number of adaptive send calls without forced-send sent by this replica.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_adaptive_send_unforced_count_replica instead.

Number of adaptive send calls without forced-send sent by this replica.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

4421

NDB Cluster Configuration Files

• Ndb_api_bytes_sent_count_session

Amount of data (in bytes) sent to the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count_replica

Amount of data (in bytes) sent to the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_bytes_sent_count_replica
instead.

Amount of data (in bytes) sent to the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count

Amount of data (in bytes) sent to the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count_session

Amount of data (in bytes) received from the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count_replica

Amount of data (in bytes) received from the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count_slave

4422

NDB Cluster Configuration Files

Note

Deprecated in NDB 8.0.23; use
Ndb_api_bytes_received_count_replica instead.

Amount of data (in bytes) received from the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count

Amount of data (in bytes) received from the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_data_count_injector

The number of row change events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_data_count

The number of row change events received by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_nondata_count_injector

The number of events received, other than row change events, by the NDB binary log injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_nondata_count

The number of events received, other than row change events, by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

4423

NDB Cluster Configuration Files

• Ndb_api_event_bytes_count_injector

The number of bytes of events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_bytes_count

The number of bytes of events received by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count_session

The number of operations in this client session based on or using primary keys. This includes
operations on blob tables, implicit unlock operations, and auto-increment operations, as well as user-
visible primary key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count_replica

The number of operations by this replica based on or using primary keys. This includes operations
on blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible
primary key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_pk_op_count_replica instead.

The number of operations by this replica based on or using primary keys. This includes operations
on blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible
primary key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count

The number of operations by this MySQL Server (SQL node) based on or using primary keys. This
includes operations on blob tables, implicit unlock operations, and auto-increment operations, as well
as user-visible primary key operations.

4424

NDB Cluster Configuration Files

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count_session

The number of scans in this client session that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count_replica

The number of scans by this replica that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_pruned_scan_count_replica
instead.

The number of scans by this replica that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count

The number of scans by this MySQL Server (SQL node) that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count_session

The number of range scans that have been started in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

4425

NDB Cluster Configuration Files

• Ndb_api_range_scan_count_replica

The number of range scans that have been started by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_range_scan_count_replica
instead.

The number of range scans that have been started by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count

The number of range scans that have been started by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count_session

The total number of rows that have been read in this client session. This includes all rows read by
any primary key, unique key, or scan operation made in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count_replica

The total number of rows that have been read by this replica. This includes all rows read by any
primary key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

4426

NDB Cluster Configuration Files

• Ndb_api_read_row_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_read_row_count_replica
instead.

The total number of rows that have been read by this replica. This includes all rows read by any
primary key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count

The total number of rows that have been read by this MySQL Server (SQL node). This includes all
rows read by any primary key, unique key, or scan operation made by this MySQL Server (SQL
node).

You should be aware that this value may not be completely accurate with regard to rows read by
SELECT COUNT(*) queries, due to the fact that, in this case, the MySQL server actually reads
pseudo-rows in the form [table fragment ID]:[number of rows in fragment] and
sums the rows per fragment for all fragments in the table to derive an estimated count for all rows.
Ndb_api_read_row_count uses this estimate and not the actual number of rows in the table.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count_session

The number of batches of rows received in this client session. 1 batch is defined as 1 set of scan
results from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count_replica

The number of batches of rows received by this replica. 1 batch is defined as 1 set of scan results
from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

4427

NDB Cluster Configuration Files

• Ndb_api_scan_batch_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_scan_batch_count_replica
instead.

The number of batches of rows received by this replica. 1 batch is defined as 1 set of scan results
from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count

The number of batches of rows received by this MySQL Server (SQL node). 1 batch is defined as 1
set of scan results from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count_session

The number of table scans that have been started in this client session, including scans of internal
tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count_replica

The number of table scans that have been started by this replica, including scans of internal tables.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_table_scan_count_replica
instead.

The number of table scans that have been started by this replica, including scans of internal tables.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

4428

NDB Cluster Configuration Files

• Ndb_api_table_scan_count

The number of table scans that have been started by this MySQL Server (SQL node), including
scans of internal tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count_session

The number of transactions aborted in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count_replica

The number of transactions aborted by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_trans_abort_count_replica
instead.

The number of transactions aborted by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count

The number of transactions aborted by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count_session

The number of transactions closed in this client session. This value may be greater than the sum of
Ndb_api_trans_commit_count_session and Ndb_api_trans_abort_count_session,
since some transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

4429

NDB Cluster Configuration Files

• Ndb_api_trans_close_count_replica

The number of transactions closed by this replica. This value may be greater than the sum of
Ndb_api_trans_commit_count_replica and Ndb_api_trans_abort_count_replica,
since some transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_trans_close_count_replica
instead.

The number of transactions closed by this replica. This value may be greater than the sum of
Ndb_api_trans_commit_count_replica and Ndb_api_trans_abort_count_replica,
since some transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count

The number of transactions closed by this MySQL Server (SQL node). This value may be greater
than the sum of Ndb_api_trans_commit_count and Ndb_api_trans_abort_count, since
some transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count_session

The number of transactions committed in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count_replica

The number of transactions committed by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

4430

NDB Cluster Configuration Files

• Ndb_api_trans_commit_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_trans_commit_count_replica instead.

The number of transactions committed by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count

The number of transactions committed by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count_session

The total number of rows that have been read in this client session. This includes all rows read by
any primary key, unique key, or scan operation made in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count_replica

The total number of rows that have been read by this replica. This includes all rows read by any
primary key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_trans_local_read_row_count_replica instead.

The total number of rows that have been read by this replica. This includes all rows read by any
primary key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

4431

NDB Cluster Configuration Files

• Ndb_api_trans_local_read_row_count

The total number of rows that have been read by this MySQL Server (SQL node). This includes all
rows read by any primary key, unique key, or scan operation made by this MySQL Server (SQL
node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count_session

The number of transactions started in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count_replica

The number of transactions started by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_trans_start_count_replica
instead.

The number of transactions started by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count

The number of transactions started by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count_session

The number of operations in this client session based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.4432

NDB Cluster Configuration Files

• Ndb_api_uk_op_count_replica

The number of operations by this replica based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_uk_op_count_replica instead.

The number of operations by this replica based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count

The number of operations by this MySQL Server (SQL node) based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count_session

The number of times a thread has been blocked in this client session while waiting for execution of
an operation to complete. This includes all execute() calls as well as implicit executes for blob and
auto-increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count_replica

The number of times a thread has been blocked by this replica while waiting for execution of an
operation to complete. This includes all execute() calls as well as implicit executes for blob and
auto-increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_wait_exec_complete_count_replica instead.

4433

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute

NDB Cluster Configuration Files

The number of times a thread has been blocked by this replica while waiting for execution of an
operation to complete. This includes all execute() calls as well as implicit executes for blob and
auto-increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count

The number of times a thread has been blocked by this MySQL Server (SQL node) while waiting for
execution of an operation to complete. This includes all execute() calls as well as implicit executes
for blob and auto-increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count_session

The number of times a thread has been blocked in this client session waiting for a metadata-based
signal, such as is expected for DDL requests, new epochs, and seizure of transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count_replica

The number of times a thread has been blocked by this replica waiting for a metadata-based signal,
such as is expected for DDL requests, new epochs, and seizure of transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_wait_meta_request_count_replica instead.

The number of times a thread has been blocked by this replica waiting for a metadata-based signal,
such as is expected for DDL requests, new epochs, and seizure of transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

4434

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute

NDB Cluster Configuration Files

• Ndb_api_wait_meta_request_count

The number of times a thread has been blocked by this MySQL Server (SQL node) waiting for
a metadata-based signal, such as is expected for DDL requests, new epochs, and seizure of
transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_session

Total time (in nanoseconds) spent in this client session waiting for any type of signal from the data
nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_replica

Total time (in nanoseconds) spent by this replica waiting for any type of signal from the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_wait_nanos_count_replica
instead.

Total time (in nanoseconds) spent by this replica waiting for any type of signal from the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count

Total time (in nanoseconds) spent by this MySQL Server (SQL node) waiting for any type of signal
from the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

4435

NDB Cluster Configuration Files

• Ndb_api_wait_scan_result_count_session

The number of times a thread has been blocked in this client session while waiting for a scan-based
signal, such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count_replica

The number of times a thread has been blocked by this replica while waiting for a scan-based signal,
such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_wait_scan_result_count_replica instead.

The number of times a thread has been blocked by this replica while waiting for a scan-based signal,
such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope. If this MySQL server does not act as a replica, or does not
use NDB tables, this value is always 0.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count

The number of times a thread has been blocked by this MySQL Server (SQL node) while waiting for
a scan-based signal, such as when waiting for more results from a scan, or when waiting for a scan
to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION
STATUS, it is effectively global in scope.

For more information, see Section 25.6.15, “NDB API Statistics Counters and Variables”.

• Ndb_cluster_node_id

If the server is acting as an NDB Cluster node, then the value of this variable its node ID in the
cluster.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_config_from_host

If the server is part of an NDB Cluster, the value of this variable is the host name or IP address of the
Cluster management server from which it gets its configuration data.

If the server is not part of an NDB Cluster, then the value of this variable is an empty string.

• Ndb_config_from_port

4436

NDB Cluster Configuration Files

If the server is part of an NDB Cluster, the value of this variable is the number of the port through
which it is connected to the Cluster management server from which it gets its configuration data.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_config_generation

Shows the generation number of the cluster's current configuration. This can be used as an
indicator to determine whether the configuration of the cluster has changed since this SQL node last
connected to the cluster.

• Ndb_conflict_fn_epoch

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found
to be in conflict using NDB$EPOCH() conflict resolution on a given mysqld since the last time it was
restarted.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_epoch_trans

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to
be in conflict using NDB$EPOCH_TRANS() conflict resolution on a given mysqld since the last time it
was restarted.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_epoch2

Shows the number of rows found to be in conflict in NDB Cluster Replication conflict resolution, when
using NDB$EPOCH2(), on the source designated as the primary since the last time it was restarted.

For more information, see NDB$EPOCH2().

• Ndb_conflict_fn_epoch2_trans

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to
be in conflict using NDB$EPOCH_TRANS2() conflict resolution on a given mysqld since the last time
it was restarted.

For more information, see NDB$EPOCH2_TRANS().

• Ndb_conflict_fn_max

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a
row was not applied on the current SQL node due to “greatest timestamp wins” conflict resolution
since the last time that this mysqld was started.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_max_del_win

Shows the number of times that a row was rejected on the current SQL node due to NDB Cluster
Replication conflict resolution using NDB$MAX_DELETE_WIN(), since the last time that this mysqld
was started.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

4437

NDB Cluster Configuration Files

• Ndb_conflict_fn_max_del_win_ins

Shows the number of times that insertion of a row was rejected on the current SQL node due to NDB
Cluster Replication conflict resolution using NDB$MAX_DEL_WIN_INS(), since the last time that this
mysqld was started.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_max_ins

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a
row was not inserted on the current SQL node due to “greatest timestamp wins” conflict resolution
since the last time that this mysqld was started.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_old

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a
row was not applied as the result of “same timestamp wins” conflict resolution on a given mysqld
since the last time it was restarted.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_last_conflict_epoch

The most recent epoch in which a conflict was detected on this replica. You can compare this value
with Ndb_replica_max_replicated_epoch; if Ndb_replica_max_replicated_epoch is
greater than Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.

See Section 25.7.12, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_reflected_op_discard_count

When using NDB Cluster Replication conflict resolution, this is the number of reflected operations
that were not applied on the secondary, due to encountering an error during execution.

See Section 25.7.12, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_reflected_op_prepare_count

When using conflict resolution with NDB Cluster Replication, this status variable contains the number
of reflected operations that have been defined (that is, prepared for execution on the secondary).

See Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_refresh_op_count

When using conflict resolution with NDB Cluster Replication, this gives the number of refresh
operations that have been prepared for execution on the secondary.

See Section 25.7.12, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_last_stable_epoch

Number of rows found to be in conflict by a transactional conflict function

See Section 25.7.12, “NDB Cluster Replication Conflict Resolution”, for more information.

4438

NDB Cluster Configuration Files

• Ndb_conflict_trans_row_conflict_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the number of rows
found to be directly in-conflict by a transactional conflict function on a given mysqld since the last
time it was restarted.

Currently, the only transactional conflict detection function supported by NDB
Cluster is NDB$EPOCH_TRANS(), so this status variable is effectively the same as
Ndb_conflict_fn_epoch_trans.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_row_reject_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the total number of
rows realigned due to being determined as conflicting by a transactional conflict detection function.
This includes not only Ndb_conflict_trans_row_conflict_count, but any rows in or
dependent on conflicting transactions.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_reject_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the number of
transactions found to be in conflict by a transactional conflict detection function.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_detect_iter_count

Used in NDB Cluster Replication conflict resolution, this shows the number of internal
iterations required to commit an epoch transaction. Should be (slightly) greater than or equal to
Ndb_conflict_trans_conflict_commit_count.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_conflict_commit_count

Used in NDB Cluster Replication conflict resolution, this shows the number of epoch transactions
committed after they required transactional conflict handling.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_epoch_delete_delete_count

When using delete-delete conflict detection, this is the number of delete-delete conflicts detected,
where a delete operation is applied, but the indicated row does not exist.

• Ndb_execute_count

Provides the number of round trips to the NDB kernel made by operations.

• Ndb_fetch_table_stats

This count is incremented whenever a MySQL Server acting as an NDB CLuster API node fetches
table statistics for a given table, rather than using cached statistics.

This status variable was added in NDB 8.0.27.

• Ndb_last_commit_epoch_server

The epoch most recently committed by NDB.
4439

NDB Cluster Configuration Files

• Ndb_last_commit_epoch_session

The epoch most recently committed by this NDB client.

• Ndb_metadata_detected_count

The number of times since this server was last started that the NDB metadata change detection
thread has discovered changes with respect to the MySQL data dictionary.

• Ndb_metadata_excluded_count

The number of metadata objects that the NDB binlog thread has been unable to synchronize on this
SQL node since it was last restarted.

Should an object be excluded, it is not again considered for automatic synchronization until the user
corrects the mismatch manually. This can be done by attempting to use the table with a statement
such as SHOW CREATE TABLE table, SELECT * FROM table, or any other statement that
would trigger table discovery.

Prior to NDB 8.0.22, this variable was named Ndb_metadata_blacklist_size.

• Ndb_metadata_synced_count

The number of NDB metadata objects which have been synchronized on this SQL node since it was
last restarted.

• Ndb_number_of_data_nodes

If the server is part of an NDB Cluster, the value of this variable is the number of data nodes in the
cluster.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_pushed_queries_defined

The total number of joins pushed down to the NDB kernel for distributed handling on the data nodes.

Note

Joins tested using EXPLAIN that can be pushed down contribute to this
number.

• Ndb_pushed_queries_dropped

The number of joins that were pushed down to the NDB kernel but that could not be handled there.

• Ndb_pushed_queries_executed

The number of joins successfully pushed down to NDB and executed there.

• Ndb_pushed_reads

The number of rows returned to mysqld from the NDB kernel by joins that were pushed down.

Note

Executing EXPLAIN on joins that can be pushed down to NDB does not add to
this number.

• Ndb_pruned_scan_count

This variable holds a count of the number of scans executed by NDBCLUSTER since the NDB Cluster
was last started where NDBCLUSTER was able to use partition pruning.

4440

NDB Cluster Configuration Files

Using this variable together with Ndb_scan_count can be helpful in schema design to maximize the
ability of the server to prune scans to a single table partition, thereby involving replica only a single
data node.

• Ndb_replica_max_replicated_epoch

The most recently committed epoch on this replica. You can compare this value with
Ndb_conflict_last_conflict_epoch; if Ndb_replica_max_replicated_epoch is the
greater of the two, no conflicts have yet been detected.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_scan_count

This variable holds a count of the total number of scans executed by NDBCLUSTER since the NDB
Cluster was last started.

• Ndb_schema_participant_count

Indicates the number of MySQL servers that are participating in NDB schema change distribution.

Added in NDB 8.0.42.

• Ndb_slave_max_replicated_epoch

Note

Deprecated in NDB 8.0.23; use Ndb_slave_max_replicated_epoch
instead.

The most recently committed epoch on this replica. You can compare this value with
Ndb_conflict_last_conflict_epoch; if Ndb_slave_max_replicated_epoch is the greater
of the two, no conflicts have yet been detected.

For more information, see Section 25.7.12, “NDB Cluster Replication Conflict Resolution”.

• Ndb_system_name

If this MySQL Server is connected to an NDB cluster, this read-only variable shows the cluster
system name. Otherwise, the value is an empty string.

• Ndb_trans_hint_count_session

The number of transactions using hints that have been started in the current session. Compare with
Ndb_api_trans_start_count_session to obtain the proportion of all NDB transactions able to
use hints.

25.4.3.10 NDB Cluster TCP/IP Connections

TCP/IP is the default transport mechanism for all connections between nodes in an NDB Cluster.
Normally it is not necessary to define TCP/IP connections; NDB Cluster automatically sets up such
connections for all data nodes, management nodes, and SQL or API nodes.

Note

For an exception to this rule, see Section 25.4.3.11, “NDB Cluster TCP/IP
Connections Using Direct Connections”.

To override the default connection parameters, it is necessary to define a connection using one
or more [tcp] sections in the config.ini file. Each [tcp] section explicitly defines a TCP/IP
connection between two NDB Cluster nodes, and must contain at a minimum the parameters NodeId1
and NodeId2, as well as any connection parameters to override.

4441

NDB Cluster Configuration Files

It is also possible to change the default values for these parameters by setting them in the [tcp
default] section.

Important

Any [tcp] sections in the config.ini file should be listed last, following all
other sections in the file. However, this is not required for a [tcp default]
section. This requirement is a known issue with the way in which the
config.ini file is read by the NDB Cluster management server.

Connection parameters which can be set in [tcp] and [tcp default] sections of the config.ini
file are listed here:

• AllowUnresolvedHostNames

Version (or
later)

NDB 8.0.22

Type or units boolean

Default false

Range true, false

Added NDB 8.0.22

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

By default, when a management node fails to resolve a host name while trying to connect, this
results in a fatal error. This behavior can be overridden by setting AllowUnresolvedHostNames to
true in the [tcp default] section of the global configuration file (usually named config.ini),
in which case failure to resolve a host name is treated as a warning and ndb_mgmd startup continues
uninterrupted.

• Checksum

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter is disabled by default. When it is enabled (set to Y or 1), checksums for all messages
are calculated before they placed in the send buffer. This feature ensures that messages are not
corrupted while waiting in the send buffer, or by the transport mechanism.

• Group

When ndb_optimized_node_selection is enabled, node proximity is used in some cases to
select which node to connect to. This parameter can be used to influence proximity by setting it to
a lower value, which is interpreted as “closer”. See the description of the system variable for more
information.

4442

NDB Cluster Configuration Files

• HostName1

Version (or
later)

NDB 8.0.13

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to
be used for a given TCP connection between two nodes. The values used for these parameters can
be host names or IP addresses.

• HostName2

Version (or
later)

NDB 8.0.13

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to
be used for a given TCP connection between two nodes. The values used for these parameters can
be host names or IP addresses.

• NodeId1

Version (or
later)

NDB 8.0.13

Type or units numeric

Default [none]

Range 1 - 255

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique
Id values for each of these nodes as described in Section 25.4.3.7, “Defining SQL and Other API
Nodes in an NDB Cluster”.

4443

NDB Cluster Configuration Files

• NodeId2

Version (or
later)

NDB 8.0.13

Type or units numeric

Default [none]

Range 1 - 255

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique
Id values for each of these nodes as described in Section 25.4.3.7, “Defining SQL and Other API
Nodes in an NDB Cluster”.

• NodeIdServer

Version (or
later)

NDB 8.0.13

Type or units numeric

Default [none]

Range 1 - 63

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Set the server side of a TCP connection.

• OverloadLimit

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When more than this many unsent bytes are in the send buffer, the connection is considered
overloaded.

This parameter can be used to determine the amount of unsent data that must be present in the
send buffer before the connection is considered overloaded. See Section 25.4.3.14, “Configuring
NDB Cluster Send Buffer Parameters”, for more information.

4444

NDB Cluster Configuration Files

• PreferIPVersion

Version (or
later)

NDB 8.0.26

Type or units enumeration

Default 4

Range 4, 6

Added NDB 8.0.26

Restart Type Initial System
Restart:
Requires a
complete
shutdown of the
cluster, wiping
and restoring
the cluster file
system from a
backup, and
then restarting
the cluster.
(NDB 8.0.13)

Determines the preference of DNS resolution for IP version 4 or version 6. Because the configuration
retrieval mechanism employed by NDB Cluster requires that all connections use the same
preference, this parameter should be set in the [tcp default] of the config.ini global
configuration file.

• PreSendChecksum

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

If this parameter and Checksum are both enabled, perform pre-send checksum checks, and check
all TCP signals between nodes for errors. Has no effect if Checksum is not also enabled.

• Proxy

Version (or
later)

NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart

4445

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

Set a proxy for the TCP connection.

• ReceiveBufferMemory

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 2M

Range 16K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Specifies the size of the buffer used when receiving data from the TCP/IP socket.

The default value of this parameter is 2MB. The minimum possible value is 16KB; the theoretical
maximum is 4GB.

• SendBufferMemory

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 2M

Range 256K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

TCP transporters use a buffer to store all messages before performing the send call to the operating
system. When this buffer reaches 64KB its contents are sent; these are also sent when a round of
messages have been executed. To handle temporary overload situations it is also possible to define
a bigger send buffer.

If this parameter is set explicitly, then the memory is not dedicated to each transporter; instead,
the value used denotes the hard limit for how much memory (out of the total available memory
—that is, TotalSendBufferMemory) that may be used by a single transporter. For more
information about configuring dynamic transporter send buffer memory allocation in NDB Cluster,
see Section 25.4.3.14, “Configuring NDB Cluster Send Buffer Parameters”.

The default size of the send buffer is 2MB, which is the size recommended in most situations. The
minimum size is 64 KB; the theoretical maximum is 4 GB.

4446

NDB Cluster Configuration Files

• SendSignalId

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false (debug
builds: true)

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

To be able to retrace a distributed message datagram, it is necessary to identify each message.
When this parameter is set to Y, message IDs are transported over the network. This feature is
disabled by default in production builds, and enabled in -debug builds.

• TcpBind_INADDR_ANY

Setting this parameter to TRUE or 1 binds IP_ADDR_ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

• TcpSpinTime

Version (or
later)

NDB 8.0.20

Type or units µsec

Default 0

Range 0 - 2000

Added NDB 8.0.20

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Controls spin for a TCP transporter; no enable, set to a nonzero value. This works for both the data
node and management or SQL node side of the connection.

• TCP_MAXSEG_SIZE

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 2G

Restart Type Node Restart:
Requires a
rolling restart

4447

NDB Cluster Configuration Files

of the cluster.
(NDB 8.0.13)

Determines the size of the memory set during TCP transporter initialization. The default is
recommended for most common usage cases.

• TCP_RCV_BUF_SIZE

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 2G

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Determines the size of the receive buffer set during TCP transporter initialization. The default and
minimum value is 0, which allows the operating system or platform to set this value. The default is
recommended for most common usage cases.

• TCP_SND_BUF_SIZE

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 2G

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Determines the size of the send buffer set during TCP transporter initialization. The default and
minimum value is 0, which allows the operating system or platform to set this value. The default is
recommended for most common usage cases.

Restart types. Information about the restart types used by the parameter descriptions in this section
is shown in the following table:

Table 25.21 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 25.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in
this parameter

4448

NDB Cluster Configuration Files

Symbol Restart Type Description

I Initial Data nodes must be restarted
using the --initial option

25.4.3.11 NDB Cluster TCP/IP Connections Using Direct Connections

Setting up a cluster using direct connections between data nodes requires specifying explicitly
the crossover IP addresses of the data nodes so connected in the [tcp] section of the cluster
config.ini file.

In the following example, we envision a cluster with at least four hosts, one each for a management
server, an SQL node, and two data nodes. The cluster as a whole resides on the 172.23.72.*
subnet of a LAN. In addition to the usual network connections, the two data nodes are connected
directly using a standard crossover cable, and communicate with one another directly using IP
addresses in the 1.1.0.* address range as shown:

Management Server
[ndb_mgmd]
Id=1
HostName=172.23.72.20

SQL Node
[mysqld]
Id=2
HostName=172.23.72.21

Data Nodes
[ndbd]
Id=3
HostName=172.23.72.22

[ndbd]
Id=4
HostName=172.23.72.23

TCP/IP Connections
[tcp]
NodeId1=3
NodeId2=4
HostName1=1.1.0.1
HostName2=1.1.0.2

The HostName1 and HostName2 parameters are used only when specifying direct connections.

The use of direct TCP connections between data nodes can improve the cluster's overall efficiency by
enabling the data nodes to bypass an Ethernet device such as a switch, hub, or router, thus cutting
down on the cluster's latency.

Note

To take the best advantage of direct connections in this fashion with more than
two data nodes, you must have a direct connection between each data node
and every other data node in the same node group.

25.4.3.12 NDB Cluster Shared-Memory Connections

Communications between NDB cluster nodes are normally handled using TCP/IP. The shared memory
(SHM) transporter is distinguished by the fact that signals are transmitted by writing in memory rather
than on a socket. The shared-memory transporter (SHM) can improve performance by negating up to
20% of the overhead required by a TCP connection when running an API node (usually an SQL node)
and a data node together on the same host. You can enable a shared memory connection in either of
the two ways listed here:

• By setting the UseShm data node configuration parameter to 1, and setting HostName for the data
node and HostName for the API node to the same value.

4449

NDB Cluster Configuration Files

• By using [shm] sections in the cluster configuration file, each containing settings for NodeId1 and
NodeId2. This method is described in more detail later in this section.

Suppose a cluster is running a data node which has node ID 1 and an SQL node having node ID 51 on
the same host computer at 10.0.0.1. To enable an SHM connection between these two nodes, all that
is necessary is to insure that the following entries are included in the cluster configuration file:

[ndbd]
NodeId=1
HostName=10.0.0.1
UseShm=1

[mysqld]
NodeId=51
HostName=10.0.0.1

Important

The two entries just shown are in addition to any other entries and parameter
settings needed by the cluster. A more complete example is shown later in this
section.

Before starting data nodes that use SHM connections, it is also necessary to make sure that the
operating system on each computer hosting such a data node has sufficient memory allocated to
shared memory segments. See the documentation for your operating platform for information regarding
this. In setups where multiple hosts are each running a data node and an API node, it is possible to
enable shared memory on all such hosts by setting UseShm in the [ndbd default] section of the
configuration file. This is shown in the example later in this section.

While not strictly required, tuning for all SHM connections in the cluster can be done by setting one
or more of the following parameters in the [shm default] section of the cluster configuration
(config.ini) file:

• ShmSize: Shared memory size

• ShmSpinTime: Time in µs to spin before sleeping

• SendBufferMemory: Size of buffer for signals sent from this node, in bytes.

• SendSignalId: Indicates that a signal ID is included in each signal sent through the transporter.

• Checksum: Indicates that a checksum is included in each signal sent through the transporter.

• PreSendChecksum: Checks of the checksum are made prior to sending the signal; Checksum must
also be enabled for this to work

This example shows a simple setup with SHM connections defined on multiple hosts, in an NDB
Cluster using 3 computers listed here by host name, hosting the node types shown:

1. 10.0.0.0: The management server

2. 10.0.0.1: A data node and an SQL node

3. 10.0.0.2: A data node and an SQL node

In this scenario, each data node communicates with both the management server and the other data
node using TCP transporters; each SQL node uses a shared memory transporter to communicate with
the data nodes that is local to it, and a TCP transporter to communicate with the remote data node. A
basic configuration reflecting this setup is enabled by the config.ini file whose contents are shown here:

[ndbd default]
DataDir=/path/to/datadir
UseShm=1

[shm default]
ShmSize=8M
ShmSpintime=200

4450

NDB Cluster Configuration Files

SendBufferMemory=4M

[tcp default]
SendBufferMemory=8M

[ndb_mgmd]
NodeId=49
Hostname=10.0.0.0
DataDir=/path/to/datadir

[ndbd]
NodeId=1
Hostname=10.0.0.1
DataDir=/path/to/datadir

[ndbd]
NodeId=2
Hostname=10.0.0.2
DataDir=/path/to/datadir

[mysqld]
NodeId=51
Hostname=10.0.0.1

[mysqld]
NodeId=52
Hostname=10.0.0.2

[api]
[api]

Parameters affecting all shared memory transporters are set in the [shm default] section; these
can be overridden on a per-connection basis in one or more [shm] sections. Each such section must
be associated with a given SHM connection using NodeId1 and NodeId2; the values required for
these parameters are the node IDs of the two nodes connected by the transporter. You can also
identify the nodes by host name using HostName1 and HostName2, but these parameters are not
required.

The API nodes for which no host names are set use the TCP transporter to communicate with data
nodes independent of the hosts on which they are started; the parameters and values set in the [tcp
default] section of the configuration file apply to all TCP transporters in the cluster.

For optimum performance, you can define a spin time for the SHM transporter (ShmSpinTime
parameter); this affects both the data node receiver thread and the poll owner (receive thread or user
thread) in NDB.

• Checksum

Version (or
later)

NDB 8.0.13

Type or units boolean

Default true

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter is a boolean (Y/N) parameter which is disabled by default. When it is enabled,
checksums for all messages are calculated before being placed in the send buffer.

This feature prevents messages from being corrupted while waiting in the send buffer. It also serves
as a check against data being corrupted during transport.

4451

NDB Cluster Configuration Files

• Group

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 35

Range 0 - 200

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Determines the group proximity; a smaller value is interpreted as being closer. The default value is
sufficient for most conditions.

• HostName1

Version (or
later)

NDB 8.0.13

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to
be used for a given SHM connection between two nodes. The values used for these parameters can
be host names or IP addresses.

• HostName2

Version (or
later)

NDB 8.0.13

Type or units name or IP
address

Default [...]

Range ...

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to
be used for a given SHM connection between two nodes. The values used for these parameters can
be host names or IP addresses.

4452

NDB Cluster Configuration Files

• NodeId1

Version (or
later)

NDB 8.0.13

Type or units numeric

Default [none]

Range 1 - 255

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

To identify a connection between two nodes it is necessary to provide node identifiers for each of
them, as NodeId1 and NodeId2.

• NodeId2

Version (or
later)

NDB 8.0.13

Type or units numeric

Default [none]

Range 1 - 255

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

To identify a connection between two nodes it is necessary to provide node identifiers for each of
them, as NodeId1 and NodeId2.

• NodeIdServer

Version (or
later)

NDB 8.0.13

Type or units numeric

Default [none]

Range 1 - 63

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Identify the server end of a shared memory connection. By default, this is the node ID of the data
node.

• OverloadLimit

Version (or
later)

NDB 8.0.13

Type or units bytes 4453

NDB Cluster Configuration Files

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When more than this many unsent bytes are in the send buffer, the connection is considered
overloaded. See Section 25.4.3.14, “Configuring NDB Cluster Send Buffer Parameters”, and
Section 25.6.16.65, “The ndbinfo transporters Table”, for more information.

• PreSendChecksum

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

If this parameter and Checksum are both enabled, perform pre-send checksum checks, and check
all SHM signals between nodes for errors. Has no effect if Checksum is not also enabled.

• SendBufferMemory

Version (or
later)

NDB 8.0.13

Type or units integer

Default 2M

Range 256K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Size (in bytes) of the shared memory buffer for signals sent from this node using a shared memory
connection.

• SendSignalId

Version (or
later)

NDB 8.0.13

Type or units boolean

Default false
4454

NDB Cluster Configuration Files

Range true, false

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

To retrace the path of a distributed message, it is necessary to provide each message with a unique
identifier. Setting this parameter to Y causes these message IDs to be transported over the network
as well. This feature is disabled by default in production builds, and enabled in -debug builds.

• ShmKey

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When setting up shared memory segments, a node ID, expressed as an integer, is used to identify
uniquely the shared memory segment to use for the communication. There is no default value. If
UseShm is enabled, the shared memory key is calculated automatically by NDB.

• ShmSize

Version (or
later)

NDB 8.0.13

Type or units bytes

Default 4M

Range 64K -
4294967039
(0xFFFFFEFF)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

Each SHM connection has a shared memory segment where messages between nodes are placed
by the sender and read by the reader. The size of this segment is defined by ShmSize. The default
value is 4MB.

• ShmSpinTime

Version (or
later)

NDB 8.0.13

Type or units integer

Default 0 4455

NDB Cluster Configuration Files

Range 0 - 2000

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

When receiving, the time to wait before sleeping, in microseconds.

• SigNum

Version (or
later)

NDB 8.0.13

Type or units unsigned

Default [...]

Range 0 - 4294967039
(0xFFFFFEFF)

Deprecated Yes (in NDB
7.6)

Restart Type Node Restart:
Requires a
rolling restart
of the cluster.
(NDB 8.0.13)

This parameter was used formerly to override operating system signal numbers; in NDB 8.0, it is no
longer used, and any setting for it is ignored.

Restart types. Information about the restart types used by the parameter descriptions in this section
is shown in the following table:

Table 25.22 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 25.6.5, “Performing
a Rolling Restart of an NDB
Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in
this parameter

I Initial Data nodes must be restarted
using the --initial option

25.4.3.13 Data Node Memory Management

All memory allocation for a data node is performed when the node is started. This ensures that the data
node can run in a stable manner without using swap memory, so that NDB can be used for latency-
sensitive (realtime) applications. The following types of memory are allocated on data node startup:

• Data memory

• Shared global memory

• Redo log buffers

4456

NDB Cluster Configuration Files

• Job buffers

• Send buffers

• Page cache for disk data records

• Schema transaction memory

• Transaction memory

• Undo log buffer

• Query memory

• Block objects

• Schema memory

• Block data structures

• Long signal memory

• Shared memory communication buffers

The NDB memory manager, which regulates most data node memory, handles the following memory
resources:

• Data Memory (DataMemory)

• Redo log buffers (RedoBuffer)

• Job buffers

• Send buffers (SendBufferMemory, TotalSendBufferMemory, ExtraSendBufferMemory)

• Disk Data record page cache (DiskPageBufferMemory, DiskPageBufferEntries)

• Transaction memory (TransactionMemory)

• Query memory

• Disk access records

• File buffers

Each of these resources is set up with a reserved memory area and a maximum memory area. The
reserved memory area can be used only by the resource for which it is reserved and cannot be shared
with other resources; a given resource can never allocate more than the maximum memory allowed for
the resource. A resource that has no maximum memory can expand to use all the shared memory in
the memory manager.

The size of the global shared memory for these resources is controlled by the SharedGlobalMemory
configuration parameter (default: 128 MB).

Data memory is always reserved and never acquires any memory from shared memory. It is controlled
using the DataMemory configuration parameter, whose maximum is 16384 GB. DataMemory is where
records are stored, including hash indexes (approximately 15 bytes per row), ordered indexes (10-12
bytes per row per index), and row headers (16-32 bytes per row).

Redo log buffers also use reserved memory only; this is controlled by the RedoBuffer configuration
parameter, which sets the size of the redo log buffer per LDM thread. This means that the actual
amount of memory used is the value of this parameter multiplied by the number of LDM threads in the
data node.

Job buffers use reserved memory only; the size of this memory is calculated by NDB, based on the
numbers of threads of various types.

4457

NDB Cluster Configuration Files

Send buffers have a reserved part but can also allocate an additional 25% of shared global memory.
The send buffer reserved size is calculated in two steps:

1. Use the value of the TotalSendBufferMemory configuration parameter (no default value) or the
sum of the individual send buffers used by all individual connections to the data node. A data node
is connected to all other data nodes, to all API nodes, and to all management nodes. This means
that, in a cluster with 2 data nodes, 2 management nodes, and 10 API nodes each data node has
13 node connections. Since the default value for SendBufferMemory for a data node connection
is 2 MByte, this works out to 26 MB total.

2. To obtain the total reserved size for the send buffer, the value of the ExtraSendBufferMemory
configuration parameter, if any (default value 0). is added to the value obtained in the previous step.

In other words, if TotalSendBufferMemory has been set, the send buffer size is
TotalSendBufferMemory + ExtraSendBufferMemory; otherwise, the size of the
send buffer is equal to ([number of node connections] * SendBufferMemory) +
ExtraSendBufferMemory.

The page cache for disk data records uses a reserved resource only; the size of this resource
is controlled by the DiskPageBufferMemory configuration parameter (default 64 MB).
Memory for 32 KB disk page entries is also allocated; the number of these is determined by the
DiskPageBufferEntries configuration parameter (default 10).

Transaction memory has a reserved part that either is calculated by NDB, or is set explicitly using the
TransactionMemory configuration parameter, introduced in NDB 8.0 (previously, this value was
always calculated by NDB); transaction memory can also use an unlimited amount of shared global
memory. Transaction memory is used for all operational resources handling transactions, scans, locks,
scan buffers, and trigger operations. It also holds table rows as they are updated, before the next
commit writes them to data memory.

Previously, operational records used dedicated resources whose sizes were controlled by a number
of configuration parameters. In NDB 8.0, these are all allocated from a common transaction memory
resource and can also use resources from global shared memory. the size of this resource can be
controlled using a single TransactionMemory configuration parameter.

Reserved memory for undo log buffers can be set using the InitialLogFileGroup configuration
parameter. If an undo log buffer is created as part of a CREATE LOGFILE GROUP SQL statement, the
memory is taken from the transaction memory.

A number of resources relating to metadata for Disk Data resources also have no reserved part, and
use shared global memory only. Shared global shared memory is thus shared between send buffers,
transaction memory, and Disk Data metadata.

If TransactionMemory is not set, it is calculated based on the following parameters:

• MaxNoOfConcurrentOperations

• MaxNoOfConcurrentTransactions

• MaxNoOfFiredTriggers

• MaxNoOfLocalOperations

• MaxNoOfConcurrentIndexOperations

• MaxNoOfConcurrentScans

• MaxNoOfLocalScans

• BatchSizePerLocalScan

• TransactionBufferMemory

4458

NDB Cluster Configuration Files

When TransactionMemory is set explicitly, none of the configuration parameters just listed are used
to calculate memory size. In addition, the parameters MaxNoOfConcurrentIndexOperations,
MaxNoOfFiredTriggers, MaxNoOfLocalOperations, and MaxNoOfLocalScans
are incompatible with TransactionMemory and cannot be set concurrently with it; if
TransactionMemory is set and any of these four parameters are also set in the config.ini
configuration file, the management server cannot start. Note: Prior to NDB 8.0.29, this restriction was
not enforced for MaxNoOfFiredTriggers, MaxNoOfLocalScans, or MaxNoOfLocalOperations
(Bug #102509, Bug #32474988).

The MaxNoOfConcurrentIndexOperations, MaxNoOfFiredTriggers,
MaxNoOfLocalOperations, and MaxNoOfLocalScans parameters are all deprecated in NDB 8.0;
you should expect them to be removed from a future release of MySQL NDB Cluster.

Prior to NDB 8.0.29, it was not possible to set any of MaxNoOfConcurrentTransactions,
MaxNoOfConcurrentOperations, or MaxNoOfConcurrentScans concurrently with
TransactionMemory.

The transaction memory resource contains a large number of memory pools. Each memory pool
represents an object type and contains a set of objects; each pool includes a reserved part allocated to
the pool at startup; this reserved memory is never returned to shared global memory. Reserved records
are found using a data structure having only a single level for fast retrieval, which means that a number
of records in each pool should be reserved. The number of reserved records in each pool has some
impact on performance and reserved memory allocation, but is generally necessary only in certain very
advanced use cases to set the reserved sizes explicitly.

The size of the reserved part of the pool can be controlled by setting the following configuration
parameters:

• ReservedConcurrentIndexOperations

• ReservedFiredTriggers

• ReservedConcurrentOperations

• ReservedLocalScans

• ReservedConcurrentTransactions

• ReservedConcurrentScans

• ReservedTransactionBufferMemory

For any of the parameters just listed that is not set explicitly in config.ini, the
reserved setting is calculated as 25% of the corresponding maximum setting. For
example, if unset, ReservedConcurrentIndexOperations is calculated as 25% of
MaxNoOfConcurrentIndexOperations, and ReservedLocalScans is calculated as 25% of
MaxNoOfLocalScans.

Note

If ReservedTransactionBufferMemory is not set, it is calculated as 25% of
TransactionBufferMemory.

The number of reserved records is per data node; these records are split among the threads handling
them (LDM and TC threads) on each node. In most cases, it is sufficient to set TransactionMemory
alone, and to allow the number of records in pools to be governed by its value.

MaxNoOfConcurrentScans limits the number of concurrent scans that can be active in each TC
thread. This is important in guarding against cluster overload.

MaxNoOfConcurrentOperations limits the number of operations that can be active at any one time
in updating transactions. (Simple reads are not affected by this parameter.) This number needs to be
limited because it is necessary to preallocate memory for node failure handling, and a resource must

4459

NDB Cluster Configuration Files

be available for handling the maximum number of active operations in one TC thread when contending
with node failures. It is imperative that MaxNoOfConcurrentOperations be set to the same number
on all nodes (this can be done most easily by setting a value for it once, in the [ndbd default]
section of the config.ini global configuration file). While its value can be increased using a rolling
restart (see Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”), decreasing it in this way
is not considered safe due to the possibility of a node failure occurring during the rolling restart.

It is possible to limit the size of a single transaction in NDB Cluster through the
MaxDMLOperationsPerTransaction parameter. If this is not set, the size of one transaction
is limited by MaxNoOfConcurrentOperations since this parameter limits the total number of
concurrent operations per TC thread.

Schema memory size is controlled by the following set of configuration parameters:

• MaxNoOfSubscriptions

• MaxNoOfSubscribers

• MaxNoOfConcurrentSubOperations

• MaxNoOfAttributes

• MaxNoOfTables

• MaxNoOfOrderedIndexes

• MaxNoOfUniqueHashIndexes

• MaxNoOfTriggers

The number of nodes and the number of LDM threads also have a major impact on the size of schema
memory since the number of partitions in each table and each partition (and its fragment replicas) have
to be represented in schema memory.

In addition, a number of other records are allocated during startup. These are relatively small. Each
block in each thread contains block objects that use memory. This memory size is also normally quite
small compared to the other data node memory structures.

25.4.3.14 Configuring NDB Cluster Send Buffer Parameters

The NDB kernel employs a unified send buffer whose memory is allocated dynamically from a pool
shared by all transporters. This means that the size of the send buffer can be adjusted as necessary.
Configuration of the unified send buffer can accomplished by setting the following parameters:

• TotalSendBufferMemory. This parameter can be set for all types of NDB Cluster nodes—that
is, it can be set in the [ndbd], [mgm], and [api] (or [mysql]) sections of the config.ini file. It
represents the total amount of memory (in bytes) to be allocated by each node for which it is set for
use among all configured transporters. If set, its minimum is 256KB; the maximum is 4294967039.

To be backward-compatible with existing configurations, this parameter takes as its default value the
sum of the maximum send buffer sizes of all configured transporters, plus an additional 32KB (one
page) per transporter. The maximum depends on the type of transporter, as shown in the following
table:

Table 25.23 Transporter types with maximum send buffer sizes

Transporter Maximum Send Buffer Size (bytes)

TCP SendBufferMemory (default = 2M)

SHM 20K

This enables existing configurations to function in close to the same way as they did with NDB
Cluster 6.3 and earlier, with the same amount of memory and send buffer space available to

4460

Using High-Speed Interconnects with NDB Cluster

each transporter. However, memory that is unused by one transporter is not available to other
transporters.

• OverloadLimit. This parameter is used in the config.ini file [tcp] section, and denotes
the amount of unsent data (in bytes) that must be present in the send buffer before the connection
is considered overloaded. When such an overload condition occurs, transactions that affect the
overloaded connection fail with NDB API Error 1218 (Send Buffers overloaded in NDB
kernel) until the overload status passes. The default value is 0, in which case the effective overload
limit is calculated as SendBufferMemory * 0.8 for a given connection. The maximum value for
this parameter is 4G.

• SendBufferMemory. This value denotes a hard limit for the amount of memory that may
be used by a single transporter out of the entire pool specified by TotalSendBufferMemory.
However, the sum of SendBufferMemory for all configured transporters may be greater than the
TotalSendBufferMemory that is set for a given node. This is a way to save memory when many
nodes are in use, as long as the maximum amount of memory is never required by all transporters at
the same time.

You can use the ndbinfo.transporters table to monitor send buffer memory usage, and to detect
slowdown and overload conditions that can adversely affect performance.

25.4.4 Using High-Speed Interconnects with NDB Cluster

Even before design of NDBCLUSTER began in 1996, it was evident that one of the major problems to be
encountered in building parallel databases would be communication between the nodes in the network.
For this reason, NDBCLUSTER was designed from the very beginning to permit the use of a number of
different data transport mechanisms, or transporters.

NDB Cluster 8.0 supports three of these (see Section 25.2.1, “NDB Cluster Core Concepts”). A fourth
transporter, Scalable Coherent Interface (SCI), was also supported in very old versions of NDB. This
required specialized hardware, software, and MySQL binaries that are no longer available.

25.5 NDB Cluster Programs

Using and managing an NDB Cluster requires several specialized programs, which we describe in this
chapter. We discuss the purposes of these programs in an NDB Cluster, how to use the programs, and
what startup options are available for each of them.

These programs include the NDB Cluster data, management, and SQL node processes (ndbd,
ndbmtd, ndb_mgmd, and mysqld) and the management client (ndb_mgm).

For information about using mysqld as an NDB Cluster process, see Section 25.6.10, “MySQL Server
Usage for NDB Cluster”.

Other NDB utility, diagnostic, and example programs are included with the NDB Cluster distribution.
These include ndb_restore, ndb_show_tables, and ndb_config. These programs are also
covered in this section.

25.5.1 ndbd — The NDB Cluster Data Node Daemon

The ndbd binary provides the single-threaded version of the process that is used to handle all the data
in tables employing the NDBCLUSTER storage engine. This data node process enables a data node to
accomplish distributed transaction handling, node recovery, checkpointing to disk, online backup, and
related tasks. In NDB 8.0.38 and later, when started, ndbd logs a warning similar to that shown here:

2024-05-28 13:32:16 [ndbd] WARNING -- Running ndbd with a single thread of
signal execution. For multi-threaded signal execution run the ndbmtd binary.

ndbmtd is the multi-threaded version of this binary.

4461

ndbd — The NDB Cluster Data Node Daemon

In an NDB Cluster, a set of ndbd processes cooperate in handling data. These processes can execute
on the same computer (host) or on different computers. The correspondences between data nodes and
Cluster hosts is completely configurable.

Options that can be used with ndbd are shown in the following table. Additional descriptions follow the
table.

Table 25.24 Command-line options used with the program ndbd

Format Description Added, Deprecated, or
Removed

--bind-address=name Local bind address (Supported in all NDB releases
based on MySQL 8.0)

--character-sets-
dir=path

Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-delay=# Obsolete synonym for --connect-
retry-delay, which should be
used instead of this option

REMOVED: NDB 8.0.28

--connect-retries=# Set the number of times to retry
a connection before giving up;
0 means 1 attempt only (and
no retries); -1 means continue
retrying indefinitely

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Time to wait between attempts
to contact a management server,
in seconds; 0 means do not wait
between attempts

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--daemon,

-d

Start ndbd as daemon (default);
override with --nodaemon

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--filesystem-
password=password

Password for node file system
encryption; can be passed from
stdin, tty, or my.cnf file

ADDED: NDB 8.0.31

--filesystem-password-
from-stdin={TRUE|FALSE}

Get password for node file
system encryption, passed from
stdin

ADDED: NDB 8.0.31

--foreground Run ndbd in foreground,
provided for debugging purposes
(implies --nodaemon)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

4462

ndbd — The NDB Cluster Data Node Daemon

Format Description Added, Deprecated, or
Removed

--initial Perform initial start of ndbd,
including file system cleanup;
consult documentation before
using this option

(Supported in all NDB releases
based on MySQL 8.0)

--initial-start Perform partial initial start
(requires --nowait-nodes)

(Supported in all NDB releases
based on MySQL 8.0)

--install[=name] Used to install data node process
as Windows service; does not
apply on other platforms

(Supported in all NDB releases
based on MySQL 8.0)

--logbuffer-size=# Control size of log buffer; for
use when debugging with many
log messages being generated;
default is sufficient for normal
operations

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--nodaemon Do not start ndbd as daemon;
provided for testing purposes

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--nostart,

-n

Do not start ndbd immediately;
ndbd waits for command to start
from ndb_mgm

(Supported in all NDB releases
based on MySQL 8.0)

--nowait-nodes=list Do not wait for these data nodes
to start (takes comma-separated
list of node IDs); requires --ndb-
nodeid

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--remove[=name] Used to remove data node
process that was previously

(Supported in all NDB releases
based on MySQL 8.0)

4463

ndbd — The NDB Cluster Data Node Daemon

Format Description Added, Deprecated, or
Removed

installed as Windows service;
does not apply on other
platforms

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose,

-v

Write extra debugging
information to node log

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

Note

All of these options also apply to the multithreaded version of this program
(ndbmtd) and you may substitute “ndbmtd” for “ndbd” wherever the latter
occurs in this section.

• --bind-address

Command-Line Format --bind-address=name

Type String

Default Value

Causes ndbd to bind to a specific network interface (host name or IP address). This option has no
default value.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-delay=#

Command-Line Format --connect-delay=#

Deprecated Yes (removed in 8.0.28-ndb-8.0.28)

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value 3600

Determines the time to wait between attempts to contact a management server when starting (the
number of attempts is controlled by the --connect-retries option). The default is 5 seconds.

This option is deprecated, and is subject to removal in a future release of NDB Cluster. Use --
connect-retry-delay instead.

• --connect-retries=#

Command-Line Format --connect-retries=#

Type Numeric

4464

ndbd — The NDB Cluster Data Node Daemon

Default Value 12

Minimum Value (≥ 8.0.28-ndb-8.0.28) -1

Minimum Value -1

Minimum Value -1

Minimum Value (≤ 8.0.27-ndb-8.0.27) 0

Maximum Value 65535

Set the number of times to retry a connection before giving up; 0 means 1 attempt only (and no
retries). The default is 12 attempts. The time to wait between attempts is controlled by the --
connect-retry-delay option.

Beginning with NDB 8.0.28, you can set this option to -1, in which case, the data node process
continues indefinitely to try to connect.

• --connect-retry-delay=#

Command-Line Format --connect-retry-delay=#

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value 4294967295

Determines the time to wait between attempts to contact a management server when starting (the
time between attempts is controlled by the --connect-retries option). The default is 5 seconds.

This option takes the place of the --connect-delay option, which is now deprecated and subject
to removal in a future release of NDB Cluster.

The short form -r for this option is deprecated as of NDB 8.0.28, and subject to removal in a future
release of NDB Cluster. Use the long form instead.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --daemon, -d

Command-Line Format --daemon

Instructs ndbd or ndbmtd to execute as a daemon process. This is the default behavior. --
nodaemon can be used to prevent the process from running as a daemon.

This option has no effect when running ndbd or ndbmtd on Windows platforms. 4465

ndbd — The NDB Cluster Data Node Daemon

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --filesystem-password

Command-Line Format --filesystem-password=password

Introduced 8.0.31-ndb-8.0.31

Pass the filesystem encryption and decryption password to the data node process using stdin,
tty, or the my.cnf file.

Requires EncryptedFileSystem = 1.

For more information, see Section 25.6.14, “File System Encryption for NDB Cluster”.

• --filesystem-password-from-stdin

Command-Line Format --filesystem-password-from-
stdin={TRUE|FALSE}

Introduced 8.0.31-ndb-8.0.31

Pass the filesystem encryption and decryption password to the data node process from stdin
(only).

Requires EncryptedFileSystem = 1.

For more information, see Section 25.6.14, “File System Encryption for NDB Cluster”.

• --foreground

Command-Line Format --foreground

Causes ndbd or ndbmtd to execute as a foreground process, primarily for debugging purposes. This
option implies the --nodaemon option.

This option has no effect when running ndbd or ndbmtd on Windows platforms.

4466

ndbd — The NDB Cluster Data Node Daemon

• --help

Command-Line Format --help

Display help text and exit.

• --initial

Command-Line Format --initial

Instructs ndbd to perform an initial start. An initial start erases any files created for recovery
purposes by earlier instances of ndbd. It also re-creates recovery log files. On some operating
systems, this process can take a substantial amount of time.

An --initial start is to be used only when starting the ndbd process under very special
circumstances; this is because this option causes all files to be removed from the NDB Cluster file
system and all redo log files to be re-created. These circumstances are listed here:

• When performing a software upgrade which has changed the contents of any files.

• When restarting the node with a new version of ndbd.

• As a measure of last resort when for some reason the node restart or system restart repeatedly
fails. In this case, be aware that this node can no longer be used to restore data due to the
destruction of the data files.

Warning

To avoid the possibility of eventual data loss, it is recommended that you not
use the --initial option together with StopOnError = 0. Instead, set
StopOnError to 0 in config.ini only after the cluster has been started,
then restart the data nodes normally—that is, without the --initial option.
See the description of the StopOnError parameter for a detailed explanation
of this issue. (Bug #24945638)

Use of this option prevents the StartPartialTimeout and StartPartitionedTimeout
configuration parameters from having any effect.

Important

This option does not affect backup files that have already been created by the
affected node.

Prior to NDB 8.0.21, the --initial option also did not affect any Disk
Data files. In NDB 8.0.21 and later, when used to perform an initial restart
of the cluster, the option causes the removal of all data files associated with
Disk Data tablespaces and undo log files associated with log file groups that
existed previously on this data node (see Section 25.6.11, “NDB Cluster Disk
Data Tables”).

This option also has no effect on recovery of data by a data node that is just
starting (or restarting) from data nodes that are already running (unless they
also were started with --initial, as part of an initial restart). This recovery
of data occurs automatically, and requires no user intervention in an NDB
Cluster that is running normally.

It is permissible to use this option when starting the cluster for the very first time (that is, before any
data node files have been created); however, it is not necessary to do so.

4467

ndbd — The NDB Cluster Data Node Daemon

• --initial-start

Command-Line Format --initial-start

This option is used when performing a partial initial start of the cluster. Each node should be started
with this option, as well as --nowait-nodes.

Suppose that you have a 4-node cluster whose data nodes have the IDs 2, 3, 4, and 5, and you wish
to perform a partial initial start using only nodes 2, 4, and 5—that is, omitting node 3:

$> ndbd --ndb-nodeid=2 --nowait-nodes=3 --initial-start
$> ndbd --ndb-nodeid=4 --nowait-nodes=3 --initial-start
$> ndbd --ndb-nodeid=5 --nowait-nodes=3 --initial-start

When using this option, you must also specify the node ID for the data node being started with the
--ndb-nodeid option.

Important

Do not confuse this option with the --nowait-nodes option for ndb_mgmd,
which can be used to enable a cluster configured with multiple management
servers to be started without all management servers being online.

• --install[=name]

Command-Line Format --install[=name]

Platform Specific Windows

Type String

Default Value ndbd

Causes ndbd to be installed as a Windows service. Optionally, you can specify a name for the
service; if not set, the service name defaults to ndbd. Although it is preferable to specify other ndbd
program options in a my.ini or my.cnf configuration file, it is possible to use together with --
install. However, in such cases, the --install option must be specified first, before any other
options are given, for the Windows service installation to succeed.

It is generally not advisable to use this option together with the --initial option, since this causes
the data node file system to be wiped and rebuilt every time the service is stopped and started.
Extreme care should also be taken if you intend to use any of the other ndbd options that affect
the starting of data nodes—including --initial-start, --nostart, and --nowait-nodes—
together with --install, and you should make absolutely certain you fully understand and allow for
any possible consequences of doing so.

The --install option has no effect on non-Windows platforms.

• --logbuffer-size=#

Command-Line Format --logbuffer-size=#

Type Integer

Default Value 32768

Minimum Value 2048

Maximum Value 4294967295

Sets the size of the data node log buffer. When debugging with high amounts of extra logging, it
is possible for the log buffer to run out of space if there are too many log messages, in which case
some log messages can be lost. This should not occur during normal operations.

• --login-path

4468

ndbd — The NDB Cluster Data Node Daemon

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --nodaemon

Command-Line Format --nodaemon

Prevents ndbd or ndbmtd from executing as a daemon process. This option overrides the --
daemon option. This is useful for redirecting output to the screen when debugging the binary.

The default behavior for ndbd and ndbmtd on Windows is to run in the foreground, making this
option unnecessary on Windows platforms, where it has no effect.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

4469

ndbd — The NDB Cluster Data Node Daemon

• --nostart, -n

Command-Line Format --nostart

Instructs ndbd not to start automatically. When this option is used, ndbd connects to the
management server, obtains configuration data from it, and initializes communication objects.
However, it does not actually start the execution engine until specifically requested to do so by
the management server. This can be accomplished by issuing the proper START command in the
management client (see Section 25.6.1, “Commands in the NDB Cluster Management Client”).

• --nowait-nodes=node_id_1[, node_id_2[, ...]]

Command-Line Format --nowait-nodes=list

Type String

Default Value

This option takes a list of data nodes for which the cluster does not wait, prior to starting.

This can be used to start the cluster in a partitioned state. For example, to start the cluster with only
half of the data nodes (nodes 2, 3, 4, and 5) running in a 4-node cluster, you can start each ndbd
process with --nowait-nodes=3,5. In this case, the cluster starts as soon as nodes 2 and 4
connect, and does not wait StartPartitionedTimeout milliseconds for nodes 3 and 5 to connect
as it would otherwise.

If you wanted to start up the same cluster as in the previous example without one ndbd (say, for
example, that the host machine for node 3 has suffered a hardware failure) then start nodes 2, 4, and
5 with --nowait-nodes=3. Then the cluster starts as soon as nodes 2, 4, and 5 connect, and does
not wait for node 3 to start.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --remove[=name]

Command-Line Format --remove[=name]

Platform Specific Windows

Type String

Default Value ndbd

Causes an ndbd process that was previously installed as a Windows service to be removed.
Optionally, you can specify a name for the service to be uninstalled; if not set, the service name
defaults to ndbd.

The --remove option has no effect on non-Windows platforms.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

4470

ndbd — The NDB Cluster Data Node Daemon

• --verbose, -v

Causes extra debug output to be written to the node log.

You can also use NODELOG DEBUG ON and NODELOG DEBUG OFF to enable and disable this extra
logging while the data node is running.

• --version

Command-Line Format --version

Display version information and exit.

ndbd generates a set of log files which are placed in the directory specified by DataDir in the
config.ini configuration file.

These log files are listed below. node_id is and represents the node's unique identifier. For example,
ndb_2_error.log is the error log generated by the data node whose node ID is 2.

• ndb_node_id_error.log is a file containing records of all crashes which the referenced ndbd
process has encountered. Each record in this file contains a brief error string and a reference to a
trace file for this crash. A typical entry in this file might appear as shown here:

Date/Time: Saturday 30 July 2004 - 00:20:01
Type of error: error
Message: Internal program error (failed ndbrequire)
Fault ID: 2341
Problem data: DbtupFixAlloc.cpp
Object of reference: DBTUP (Line: 173)
ProgramName: NDB Kernel
ProcessID: 14909
TraceFile: ndb_2_trace.log.2
EOM

Listings of possible ndbd exit codes and messages generated when a data node process shuts
down prematurely can be found in Data Node Error Messages.

Important

The last entry in the error log file is not necessarily the newest one (nor is
it likely to be). Entries in the error log are not listed in chronological order;
rather, they correspond to the order of the trace files as determined in the
ndb_node_id_trace.log.next file (see below). Error log entries are thus
overwritten in a cyclical and not sequential fashion.

• ndb_node_id_trace.log.trace_id is a trace file describing exactly what happened just
before the error occurred. This information is useful for analysis by the NDB Cluster development
team.

It is possible to configure the number of these trace files that are created before old files are
overwritten. trace_id is a number which is incremented for each successive trace file.

• ndb_node_id_trace.log.next is the file that keeps track of the next trace file number to be
assigned.

• ndb_node_id_out.log is a file containing any data output by the ndbd process. This file is
created only if ndbd is started as a daemon, which is the default behavior.

• ndb_node_id.pid is a file containing the process ID of the ndbd process when started as a
daemon. It also functions as a lock file to avoid the starting of nodes with the same identifier.

• ndb_node_id_signal.log is a file used only in debug versions of ndbd, where it is possible to
trace all incoming, outgoing, and internal messages with their data in the ndbd process.

4471

https://dev.mysql.com/doc/ndb-internals/en/ndb-node-error-messages.html

ndbinfo_select_all — Select From ndbinfo Tables

It is recommended not to use a directory mounted through NFS because in some environments this
can cause problems whereby the lock on the .pid file remains in effect even after the process has
terminated.

To start ndbd, it may also be necessary to specify the host name of the management server and the
port on which it is listening. Optionally, one may also specify the node ID that the process is to use.

$> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

See Section 25.4.3.3, “NDB Cluster Connection Strings”, for additional information about this issue.
For more information about data node configuration parameters, see Section 25.4.3.6, “Defining NDB
Cluster Data Nodes”.

When ndbd starts, it actually initiates two processes. The first of these is called the “angel process”; its
only job is to discover when the execution process has been completed, and then to restart the ndbd
process if it is configured to do so. Thus, if you attempt to kill ndbd using the Unix kill command,
it is necessary to kill both processes, beginning with the angel process. The preferred method of
terminating an ndbd process is to use the management client and stop the process from there.

The execution process uses one thread for reading, writing, and scanning data, as well as all other
activities. This thread is implemented asynchronously so that it can easily handle thousands of
concurrent actions. In addition, a watch-dog thread supervises the execution thread to make sure that
it does not hang in an endless loop. A pool of threads handles file I/O, with each thread able to handle
one open file. Threads can also be used for transporter connections by the transporters in the ndbd
process. In a multi-processor system performing a large number of operations (including updates), the
ndbd process can consume up to 2 CPUs if permitted to do so.

For a machine with many CPUs it is possible to use several ndbd processes which belong to different
node groups; however, such a configuration is still considered experimental and is not supported for
MySQL 8.0 in a production setting. See Section 25.2.7, “Known Limitations of NDB Cluster”.

25.5.2 ndbinfo_select_all — Select From ndbinfo Tables

ndbinfo_select_all is a client program that selects all rows and columns from one or more tables
in the ndbinfo database

Not all ndbinfo tables available in the mysql client can be read by this program (see later in this
section). In addition, ndbinfo_select_all can show information about some tables internal to
ndbinfo which cannot be accessed using SQL, including the tables and columns metadata tables.

To select from one or more ndbinfo tables using ndbinfo_select_all, it is necessary to supply
the names of the tables when invoking the program as shown here:

$> ndbinfo_select_all table_name1 [table_name2] [...]

For example:

$> ndbinfo_select_all logbuffers logspaces
== logbuffers ==
node_id log_type log_id log_part total used high
5 0 0 0 33554432 262144 0
6 0 0 0 33554432 262144 0
7 0 0 0 33554432 262144 0
8 0 0 0 33554432 262144 0
== logspaces ==
node_id log_type log_id log_part total used high
5 0 0 0 268435456 0 0
5 0 0 1 268435456 0 0
5 0 0 2 268435456 0 0
5 0 0 3 268435456 0 0
6 0 0 0 268435456 0 0
6 0 0 1 268435456 0 0

4472

ndbinfo_select_all — Select From ndbinfo Tables

6 0 0 2 268435456 0 0
6 0 0 3 268435456 0 0
7 0 0 0 268435456 0 0
7 0 0 1 268435456 0 0
7 0 0 2 268435456 0 0
7 0 0 3 268435456 0 0
8 0 0 0 268435456 0 0
8 0 0 1 268435456 0 0
8 0 0 2 268435456 0 0
8 0 0 3 268435456 0 0
$>

Options that can be used with ndbinfo_select_all are shown in the following table. Additional
descriptions follow the table.

Table 25.25 Command-line options used with the program ndbinfo_select_all

Format Description Added, Deprecated, or
Removed

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection-string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--database=db_name,

-d

Name of database where table is
located

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--delay=# Set delay in seconds between
loops

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--loops=#,

-l

Set number of times to perform
select

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection-
string,

-c

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in

(Supported in all NDB releases
based on MySQL 8.0)

4473

ndbinfo_select_all — Select From ndbinfo Tables

Format Description Added, Deprecated, or
Removed

NDB_CONNECTSTRING and
my.cnf

--ndb-mgmd-
host=connection-string,

-c

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--parallelism=#,

-p

Set degree of parallelism (Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

4474

ndbinfo_select_all — Select From ndbinfo Tables

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection-string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delay=seconds

Command-Line Format --delay=#

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value MAX_INT

This option sets the number of seconds to wait between executing loops. Has no effect if --loops is
set to 0 or 1.

4475

ndbinfo_select_all — Select From ndbinfo Tables

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --loops=number, -l number

Command-Line Format --loops=#

Type Numeric

Default Value 1

Minimum Value 0

Maximum Value MAX_INT

This option sets the number of times to execute the select. Use --delay to set the time between
loops.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection-
string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection-string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

4476

ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

ndbinfo_select_all is unable to read the following tables:

• arbitrator_validity_detail

• arbitrator_validity_summary

• cluster_locks

• cluster_operations

• cluster_transactions

• disk_write_speed_aggregate_node

• locks_per_fragment

• memory_per_fragment

• memoryusage

• operations_per_fragment

• server_locks

• server_operations

• server_transactions

• table_info

25.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)

ndbmtd is a multithreaded version of ndbd, the process that is used to handle all the data in tables
using the NDBCLUSTER storage engine. ndbmtd is intended for use on host computers having multiple

4477

ndb_mgmd — The NDB Cluster Management Server Daemon

CPU cores. Except where otherwise noted, ndbmtd functions in the same way as ndbd; therefore, in
this section, we concentrate on the ways in which ndbmtd differs from ndbd, and you should consult
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”, for additional information about
running NDB Cluster data nodes that apply to both the single-threaded and multithreaded versions of
the data node process.

Command-line options and configuration parameters used with ndbd also apply to ndbmtd. For more
information about these options and parameters, see Section 25.5.1, “ndbd — The NDB Cluster Data
Node Daemon”, and Section 25.4.3.6, “Defining NDB Cluster Data Nodes”, respectively.

ndbmtd is also file system-compatible with ndbd. In other words, a data node running ndbd can be
stopped, the binary replaced with ndbmtd, and then restarted without any loss of data. (However,
when doing this, you must make sure that MaxNoOfExecutionThreads is set to an appropriate value
before restarting the node if you wish for ndbmtd to run in multithreaded fashion.) Similarly, an ndbmtd
binary can be replaced with ndbd simply by stopping the node and then starting ndbd in place of the
multithreaded binary. It is not necessary when switching between the two to start the data node binary
using --initial.

Using ndbmtd differs from using ndbd in two key respects:

1. Because ndbmtd runs by default in single-threaded mode (that is, it behaves like ndbd), you
must configure it to use multiple threads. This can be done by setting an appropriate value in
the config.ini file for the MaxNoOfExecutionThreads configuration parameter or the
ThreadConfig configuration parameter. Using MaxNoOfExecutionThreads is simpler, but
ThreadConfig offers more flexibility. For more information about these configuration parameters
and their use, see Multi-Threading Configuration Parameters (ndbmtd).

2. Trace files are generated by critical errors in ndbmtd processes in a somewhat different fashion
from how these are generated by ndbd failures. These differences are discussed in more detail in
the next few paragraphs.

Like ndbd, ndbmtd generates a set of log files which are placed in the directory specified by DataDir
in the config.ini configuration file. Except for trace files, these are generated in the same way and
have the same names as those generated by ndbd.

In the event of a critical error, ndbmtd generates trace files describing what happened just prior to the
error' occurrence. These files, which can be found in the data node's DataDir, are useful for analysis
of problems by the NDB Cluster Development and Support teams. One trace file is generated for each
ndbmtd thread. The names of these files have the following pattern:

ndb_node_id_trace.log.trace_id_tthread_id,

In this pattern, node_id stands for the data node's unique node ID in the cluster, trace_id
is a trace sequence number, and thread_id is the thread ID. For example, in the event of
the failure of an ndbmtd process running as an NDB Cluster data node having the node ID 3
and with MaxNoOfExecutionThreads equal to 4, four trace files are generated in the data
node's data directory. If the is the first time this node has failed, then these files are named
ndb_3_trace.log.1_t1, ndb_3_trace.log.1_t2, ndb_3_trace.log.1_t3, and
ndb_3_trace.log.1_t4. Internally, these trace files follow the same format as ndbd trace files.

The ndbd exit codes and messages that are generated when a data node process shuts down
prematurely are also used by ndbmtd. See Data Node Error Messages, for a listing of these.

Note

It is possible to use ndbd and ndbmtd concurrently on different data nodes
in the same NDB Cluster. However, such configurations have not been tested
extensively; thus, we cannot recommend doing so in a production setting at this
time.

25.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon

4478

https://dev.mysql.com/doc/ndb-internals/en/ndb-node-error-messages.html

ndb_mgmd — The NDB Cluster Management Server Daemon

The management server is the process that reads the cluster configuration file and distributes this
information to all nodes in the cluster that request it. It also maintains a log of cluster activities.
Management clients can connect to the management server and check the cluster's status.

All options that can be used with ndb_mgmd are shown in the following table. Additional descriptions
follow the table.

Table 25.26 Command-line options used with the program ndb_mgmd

Format Description Added, Deprecated, or
Removed

--bind-address=host Local bind address (Supported in all NDB releases
based on MySQL 8.0)

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--cluster-config-
suffix=name

Override defaults group suffix
when reading cluster_config
sections in my.cnf file; used in
testing

ADDED: 8.0.24

--config-cache[=TRUE|
FALSE]

Enable management server
configuration cache; true by
default

(Supported in all NDB releases
based on MySQL 8.0)

--config-file=file,

-f file

Specify cluster configuration file;
also specify --reload or --initial to
override configuration cache if
present

(Supported in all NDB releases
based on MySQL 8.0)

--configdir=directory,

--config-dir=directory

Specify cluster management
server configuration cache
directory

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

REMOVED: 8.0.31

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

REMOVED: 8.0.31

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--daemon,

-d

Run ndb_mgmd in daemon
mode (default)

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--initial Causes management server to
reload configuration data from

(Supported in all NDB releases
based on MySQL 8.0)

4479

ndb_mgmd — The NDB Cluster Management Server Daemon

Format Description Added, Deprecated, or
Removed

configuration file, bypassing
configuration cache

--install[=name] Used to install management
server process as Windows
service; does not apply on other
platforms

(Supported in all NDB releases
based on MySQL 8.0)

--interactive Run ndb_mgmd in interactive
mode (not officially supported in
production; for testing purposes
only)

(Supported in all NDB releases
based on MySQL 8.0)

--log-name=name Name to use when writing cluster
log messages applying to this
node

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--mycnf Read cluster configuration data
from my.cnf file

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--no-nodeid-checks Do not perform any node ID
checks

(Supported in all NDB releases
based on MySQL 8.0)

--nodaemon Do not run ndb_mgmd as a
daemon

(Supported in all NDB releases
based on MySQL 8.0)

--nowait-nodes=list Do not wait for management
nodes specified when starting
this management server;
requires --ndb-nodeid option

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

4480

ndb_mgmd — The NDB Cluster Management Server Daemon

Format Description Added, Deprecated, or
Removed

--print-full-config,

-P

Print full configuration and exit (Supported in all NDB releases
based on MySQL 8.0)

--reload Causes management server to
compare configuration file with
configuration cache

(Supported in all NDB releases
based on MySQL 8.0)

--remove[=name] Used to remove management
server process that was
previously installed as Windows
service, optionally specifying
name of service to be removed;
does not apply on other
platforms

(Supported in all NDB releases
based on MySQL 8.0)

--skip-config-file Do not use configuration file (Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose,

-v

Write additional information to
log

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --bind-address=host

Command-Line Format --bind-address=host

Type String

Default Value [none]

Causes the management server to bind to a specific network interface (host name or IP address).
This option has no default value.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• cluster-config-suffix

Command-Line Format --cluster-config-suffix=name

Introduced 8.0.24

Type String

Default Value [none]

Override defaults group suffix when reading cluster configuration sections in my.cnf; used in
testing.

4481

ndb_mgmd — The NDB Cluster Management Server Daemon

• --config-cache

Command-Line Format --config-cache[=TRUE|FALSE]

Type Boolean

Default Value TRUE

This option, whose default value is 1 (or TRUE, or ON), can be used to disable the management
server's configuration cache, so that it reads its configuration from config.ini every time it starts
(see Section 25.4.3, “NDB Cluster Configuration Files”). You can do this by starting the ndb_mgmd
process with any one of the following options:

• --config-cache=0

• --config-cache=FALSE

• --config-cache=OFF

• --skip-config-cache

Using one of the options just listed is effective only if the management server has no stored
configuration at the time it is started. If the management server finds any configuration cache files,
then the --config-cache option or the --skip-config-cache option is ignored. Therefore, to
disable configuration caching, the option should be used the first time that the management server
is started. Otherwise—that is, if you wish to disable configuration caching for a management server
that has already created a configuration cache—you must stop the management server, delete
any existing configuration cache files manually, then restart the management server with --skip-
config-cache (or with --config-cache set equal to 0, OFF, or FALSE).

Configuration cache files are normally created in a directory named mysql-cluster under the
installation directory (unless this location has been overridden using the --configdir option). Each
time the management server updates its configuration data, it writes a new cache file. The files are
named sequentially in order of creation using the following format:

ndb_node-id_config.bin.seq-number

node-id is the management server's node ID; seq-number is a sequence number, beginning with
1. For example, if the management server's node ID is 5, then the first three configuration cache files
would, when they are created, be named ndb_5_config.bin.1, ndb_5_config.bin.2, and
ndb_5_config.bin.3.

If your intent is to purge or reload the configuration cache without actually disabling caching, you
should start ndb_mgmd with one of the options --reload or --initial instead of --skip-
config-cache.

To re-enable the configuration cache, simply restart the management server, but without the
--config-cache or --skip-config-cache option that was used previously to disable the
configuration cache.

ndb_mgmd does not check for the configuration directory (--configdir) or attempts to create one
when --skip-config-cache is used. (Bug #13428853)

• --config-file=filename, -f filename

Command-Line Format --config-file=file

Disabled by skip-config-file

Type File name

4482

ndb_mgmd — The NDB Cluster Management Server Daemon

Default Value [none]

Instructs the management server as to which file it should use for its configuration file. By default,
the management server looks for a file named config.ini in the same directory as the ndb_mgmd
executable; otherwise the file name and location must be specified explicitly.

This option has no default value, and is ignored unless the management server is forced to read the
configuration file, either because ndb_mgmd was started with the --reload or --initial option,
or because the management server could not find any configuration cache. Beginning with NDB
8.0.26, ndb_mgmd refuses to start if --config-file is specified without either of --initial or
--reload.

The --config-file option is also read if ndb_mgmd was started with --config-cache=OFF.
See Section 25.4.3, “NDB Cluster Configuration Files”, for more information.

• --configdir=dir_name

Command-Line Format --configdir=directory

--config-dir=directory

Type File name

Default Value $INSTALLDIR/mysql-cluster

Specifies the cluster management server's configuration cache directory. --config-dir is an alias
for this option.

In NDB 8.0.27 and later, this must be an absolute path. Otherwise, the management server refuses
to start.

• --connect-retries

Command-Line Format --connect-retries=#

Removed 8.0.31

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Removed 8.0.31

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string
4483

ndb_mgmd — The NDB Cluster Management Server Daemon

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --daemon, -d

Command-Line Format --daemon

Instructs ndb_mgmd to start as a daemon process. This is the default behavior.

This option has no effect when running ndb_mgmd on Windows platforms.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

• --initial

Command-Line Format --initial

Configuration data is cached internally, rather than being read from the cluster global configuration
file each time the management server is started (see Section 25.4.3, “NDB Cluster Configuration

4484

ndb_mgmd — The NDB Cluster Management Server Daemon

Files”). Using the --initial option overrides this behavior, by forcing the management server
to delete any existing cache files, and then to re-read the configuration data from the cluster
configuration file and to build a new cache.

This differs in two ways from the --reload option. First, --reload forces the server to check the
configuration file against the cache and reload its data only if the contents of the file are different
from the cache. Second, --reload does not delete any existing cache files.

If ndb_mgmd is invoked with --initial but cannot find a global configuration file, the management
server cannot start.

When a management server starts, it checks for another management server in the same NDB
Cluster and tries to use the other management server's configuration data. This behavior has
implications when performing a rolling restart of an NDB Cluster with multiple management nodes.
See Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”, for more information.

When used together with the --config-file option, the cache is cleared only if the configuration
file is actually found.

• --install[=name]

Command-Line Format --install[=name]

Platform Specific Windows

Type String

Default Value ndb_mgmd

Causes ndb_mgmd to be installed as a Windows service. Optionally, you can specify a name for the
service; if not set, the service name defaults to ndb_mgmd. Although it is preferable to specify other
ndb_mgmd program options in a my.ini or my.cnf configuration file, it is possible to use them
together with --install. However, in such cases, the --install option must be specified first,
before any other options are given, for the Windows service installation to succeed.

It is generally not advisable to use this option together with the --initial option, since this causes
the configuration cache to be wiped and rebuilt every time the service is stopped and started. Care
should also be taken if you intend to use any other ndb_mgmd options that affect the starting of the
management server, and you should make absolutely certain you fully understand and allow for any
possible consequences of doing so.

The --install option has no effect on non-Windows platforms.

• --interactive

Command-Line Format --interactive

Starts ndb_mgmd in interactive mode; that is, an ndb_mgm client session is started as soon as the
management server is running. This option does not start any other NDB Cluster nodes.

• --log-name=name

Command-Line Format --log-name=name

Type String

Default Value MgmtSrvr

Provides a name to be used for this node in the cluster log.

• --login-path

Command-Line Format --login-path=path

4485

ndb_mgmd — The NDB Cluster Management Server Daemon

Type String

Default Value [none]

Read given path from login file.

• --mycnf

Command-Line Format --mycnf

Read configuration data from the my.cnf file.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connection string. Syntax: [nodeid=id;][host=]hostname[:port]. Overrides entries in
NDB_CONNECTSTRING and my.cnf. Ignored if --config-file is specified; beginning with NDB
8.0.27, a warning is issued when both options are used.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-nodeid-checks

Command-Line Format --no-nodeid-checks

Do not perform any checks of node IDs.

4486

ndb_mgmd — The NDB Cluster Management Server Daemon

• --nodaemon

Command-Line Format --nodaemon

Instructs ndb_mgmd not to start as a daemon process.

The default behavior for ndb_mgmd on Windows is to run in the foreground, making this option
unnecessary on Windows platforms.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --nowait-nodes

Command-Line Format --nowait-nodes=list

Type Numeric

Default Value [none]

Minimum Value 1

Maximum Value 255

When starting an NDB Cluster is configured with two management nodes, each management server
normally checks to see whether the other ndb_mgmd is also operational and whether the other
management server's configuration is identical to its own. However, it is sometimes desirable to start
the cluster with only one management node (and perhaps to allow the other ndb_mgmd to be started
later). This option causes the management node to bypass any checks for any other management
nodes whose node IDs are passed to this option, permitting the cluster to start as though configured
to use only the management node that was started.

For purposes of illustration, consider the following portion of a config.ini file (where we have
omitted most of the configuration parameters that are not relevant to this example):

[ndbd]
NodeId = 1
HostName = 198.51.100.101

[ndbd]
NodeId = 2
HostName = 198.51.100.102

[ndbd]
NodeId = 3
HostName = 198.51.100.103

[ndbd]
NodeId = 4
HostName = 198.51.100.104

[ndb_mgmd]
NodeId = 10
HostName = 198.51.100.150

[ndb_mgmd]
NodeId = 11
HostName = 198.51.100.151

[api]
NodeId = 20
HostName = 198.51.100.200

[api] 4487

ndb_mgmd — The NDB Cluster Management Server Daemon

NodeId = 21
HostName = 198.51.100.201

Assume that you wish to start this cluster using only the management server having node ID 10 and
running on the host having the IP address 198.51.100.150. (Suppose, for example, that the host
computer on which you intend to the other management server is temporarily unavailable due to
a hardware failure, and you are waiting for it to be repaired.) To start the cluster in this way, use a
command line on the machine at 198.51.100.150 to enter the following command:

$> ndb_mgmd --ndb-nodeid=10 --nowait-nodes=11

As shown in the preceding example, when using --nowait-nodes, you must also use the --ndb-
nodeid option to specify the node ID of this ndb_mgmd process.

You can then start each of the cluster's data nodes in the usual way. If you wish to start and use
the second management server in addition to the first management server at a later time without
restarting the data nodes, you must start each data node with a connection string that references
both management servers, like this:

$> ndbd -c 198.51.100.150,198.51.100.151

The same is true with regard to the connection string used with any mysqld processes that you wish
to start as NDB Cluster SQL nodes connected to this cluster. See Section 25.4.3.3, “NDB Cluster
Connection Strings”, for more information.

When used with ndb_mgmd, this option affects the behavior of the management node with regard to
other management nodes only. Do not confuse it with the --nowait-nodes option used with ndbd
or ndbmtd to permit a cluster to start with fewer than its full complement of data nodes; when used
with data nodes, this option affects their behavior only with regard to other data nodes.

Multiple management node IDs may be passed to this option as a comma-separated list. Each node
ID must be no less than 1 and no greater than 255. In practice, it is quite rare to use more than two
management servers for the same NDB Cluster (or to have any need for doing so); in most cases
you need to pass to this option only the single node ID for the one management server that you do
not wish to use when starting the cluster.

Note

When you later start the “missing” management server, its configuration
must match that of the management server that is already in use by the
cluster. Otherwise, it fails the configuration check performed by the existing
management server, and does not start.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --print-full-config, -P

Command-Line Format --print-full-config

Shows extended information regarding the configuration of the cluster. With this option on the
command line the ndb_mgmd process prints information about the cluster setup including an
extensive list of the cluster configuration sections as well as parameters and their values. Normally
used together with the --config-file (-f) option.

• --reload

Command-Line Format --reload

4488

ndb_mgmd — The NDB Cluster Management Server Daemon

NDB Cluster configuration data is stored internally rather than being read from the cluster global
configuration file each time the management server is started (see Section 25.4.3, “NDB Cluster
Configuration Files”). Using this option forces the management server to check its internal data store
against the cluster configuration file and to reload the configuration if it finds that the configuration file
does not match the cache. Existing configuration cache files are preserved, but not used.

This differs in two ways from the --initial option. First, --initial causes all cache files to be
deleted. Second, --initial forces the management server to re-read the global configuration file
and construct a new cache.

If the management server cannot find a global configuration file, then the --reload option is
ignored.

When --reload is used, the management server must be able to communicate with data nodes
and any other management servers in the cluster before it attempts to read the global configuration
file; otherwise, the management server fails to start. This can happen due to changes in the
networking environment, such as new IP addresses for nodes or an altered firewall configuration.
In such cases, you must use --initial instead to force the existing cached configuration to be
discarded and reloaded from the file. See Section 25.6.5, “Performing a Rolling Restart of an NDB
Cluster”, for additional information.

• --remove[=name]

Command-Line Format --remove[=name]

Platform Specific Windows

Type String

Default Value ndb_mgmd

Remove a management server process that has been installed as a Windows service, optionally
specifying the name of the service to be removed. Applies only to Windows platforms.

• --skip-config-file

Command-Line Format --skip-config-file

Do not read cluster configuration file; ignore --initial and --reload options if specified.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose, -v

Command-Line Format --verbose

Remove a management server process that has been installed as a Windows service, optionally
specifying the name of the service to be removed. Applies only to Windows platforms.

• --version

Command-Line Format --version

Display version information and exit.
4489

ndb_mgm — The NDB Cluster Management Client

It is not strictly necessary to specify a connection string when starting the management server.
However, if you are using more than one management server, a connection string should be provided
and each node in the cluster should specify its node ID explicitly.

See Section 25.4.3.3, “NDB Cluster Connection Strings”, for information about using connection
strings. Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, describes
other options for ndb_mgmd.

The following files are created or used by ndb_mgmd in its starting directory, and are placed in the
DataDir as specified in the config.ini configuration file. In the list that follows, node_id is the
unique node identifier.

• config.ini is the configuration file for the cluster as a whole. This file is created by the user and
read by the management server. Section 25.4, “Configuration of NDB Cluster”, discusses how to set
up this file.

• ndb_node_id_cluster.log is the cluster events log file. Examples of such events include
checkpoint startup and completion, node startup events, node failures, and levels of memory usage.
A complete listing of cluster events with descriptions may be found in Section 25.6, “Management of
NDB Cluster”.

By default, when the size of the cluster log reaches one million bytes, the file is renamed to
ndb_node_id_cluster.log.seq_id, where seq_id is the sequence number of the cluster log
file. (For example: If files with the sequence numbers 1, 2, and 3 already exist, the next log file is
named using the number 4.) You can change the size and number of files, and other characteristics
of the cluster log, using the LogDestination configuration parameter.

• ndb_node_id_out.log is the file used for stdout and stderr when running the management
server as a daemon.

• ndb_node_id.pid is the process ID file used when running the management server as a daemon.

25.5.5 ndb_mgm — The NDB Cluster Management Client

The ndb_mgm management client process is actually not needed to run the cluster. Its value lies in
providing a set of commands for checking the cluster's status, starting backups, and performing other
administrative functions. The management client accesses the management server using a C API.
Advanced users can also employ this API for programming dedicated management processes to
perform tasks similar to those performed by ndb_mgm.

To start the management client, it is necessary to supply the host name and port number of the
management server:

$> ndb_mgm [host_name [port_num]]

For example:

$> ndb_mgm ndb_mgmd.mysql.com 1186

The default host name and port number are localhost and 1186, respectively.

All options that can be used with ndb_mgm are shown in the following table. Additional descriptions
follow the table.

Table 25.27 Command-line options used with the program ndb_mgm

Format Description Added, Deprecated, or
Removed

--backup-password-from-
stdin

Get decryption password in a
secure fashion from STDIN;
use together with --execute and
ndb_mgm START BACKUP
command

ADDED: NDB 8.0.24

4490

ndb_mgm — The NDB Cluster Management Client

Format Description Added, Deprecated, or
Removed

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--connect-retries=# Set number of times to retry
connection before giving up; 0
means 1 attempt only (and no
retries)

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--encrypt-backup Cause START BACKUP to
encrypt whenever making a
backup, prompting for password
if not supplied by user

ADDED: NDB 8.0.24

--execute=command,

-e command

Execute command and exit (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;

REMOVED: 8.0.31

4491

ndb_mgm — The NDB Cluster Management Client

Format Description Added, Deprecated, or
Removed

use --skip-ndb-optimized-node-
selection to disable

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--try-reconnect=#,

-t #

Set number of times to retry
connection before giving up;
synonym for --connect-retries

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --backup-password-from-stdin[=TRUE|FALSE]

Command-Line Format --backup-password-from-stdin

Introduced 8.0.24-ndb-8.0.24

This option enables input of the backup password from the system shell (stdin) when using --
execute "START BACKUP" or similar to create a backup. Use of this option requires use of --
execute as well.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --connect-retries=#

Command-Line Format --connect-retries=#

Type Numeric

Default Value 3

Minimum Value 0

Maximum Value 4294967295

This option specifies the number of times following the first attempt to retry a connection before
giving up (the client always tries the connection at least once). The length of time to wait per attempt
is set using --connect-retry-delay.

This option is synonymous with the --try-reconnect option, which is now deprecated.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

4492

ndb_mgm — The NDB Cluster Management Client

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --encrypt-backup

Command-Line Format --encrypt-backup

Introduced 8.0.24-ndb-8.0.24

When used, this option causes all backups to be encrypted. To make this happen whenever
ndb_mgm is run, put the option in the [ndb_mgm] section of the my.cnf file.

• --execute=command, -e command

Command-Line Format --execute=command

4493

ndb_mgm — The NDB Cluster Management Client

This option can be used to send a command to the NDB Cluster management client from the system
shell. For example, either of the following is equivalent to executing SHOW in the management client:

$> ndb_mgm -e "SHOW"

$> ndb_mgm --execute="SHOW"

This is analogous to how the --execute or -e option works with the mysql command-line client.
See Section 6.2.2.1, “Using Options on the Command Line”.

Note

If the management client command to be passed using this option contains
any space characters, then the command must be enclosed in quotation
marks. Either single or double quotation marks may be used. If the
management client command contains no space characters, the quotation
marks are optional.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: [nodeid=id;][host=]hostname[:port].
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

4494

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --try-reconnect=number

Command-Line Format --try-reconnect=#

Deprecated Yes

Type Numeric

Type Integer

Default Value 12

Default Value 3

Minimum Value 0

Maximum Value 4294967295

If the connection to the management server is broken, the node tries to reconnect to it every 5
seconds until it succeeds. By using this option, it is possible to limit the number of attempts to
number before giving up and reporting an error instead.

This option is deprecated and subject to removal in a future release. Use --connect-retries,
instead.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

Additional information about using ndb_mgm can be found in Section 25.6.1, “Commands in the NDB
Cluster Management Client”.

25.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB
Cluster Tables

4495

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

This tool can be used to check for and remove orphaned BLOB column parts from NDB tables, as well
as to generate a file listing any orphaned parts. It is sometimes useful in diagnosing and repairing
corrupted or damaged NDB tables containing BLOB or TEXT columns.

The basic syntax for ndb_blob_tool is shown here:

ndb_blob_tool [options] table [column, ...]

Unless you use the --help option, you must specify an action to be performed by including one or
more of the options --check-orphans, --delete-orphans, or --dump-file. These options
cause ndb_blob_tool to check for orphaned BLOB parts, remove any orphaned BLOB parts, and
generate a dump file listing orphaned BLOB parts, respectively, and are described in more detail later
in this section.

You must also specify the name of a table when invoking ndb_blob_tool. In addition, you can
optionally follow the table name with the (comma-separated) names of one or more BLOB or TEXT
columns from that table. If no columns are listed, the tool works on all of the table's BLOB and TEXT
columns. If you need to specify a database, use the --database (-d) option.

The --verbose option provides additional information in the output about the tool's progress.

All options that can be used with ndb_mgmd are shown in the following table. Additional descriptions
follow the table.

Table 25.28 Command-line options used with the program ndb_blob_tool

Format Description Added, Deprecated, or
Removed

--add-missing Write dummy blob parts to take
place of those which are missing

ADDED: NDB 8.0.20

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--check-missing Check for blobs having inline
parts but missing one or more
parts from parts table

ADDED: NDB 8.0.20

--check-orphans Check for blob parts having no
corresponding inline parts

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--database=name,

-d name

Database to find the table in (Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

4496

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Format Description Added, Deprecated, or
Removed

--delete-orphans Delete blob parts having no
corresponding inline parts

(Supported in all NDB releases
based on MySQL 8.0)

--dump-file=file Write orphan keys to specified
file

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose,

-v

Verbose output (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --add-missing

Command-Line Format --add-missing

Introduced 8.0.20-ndb-8.0.20

For each inline part in NDB Cluster tables which has no corresponding BLOB part, write a dummy
BLOB part of the required length, consisting of spaces.

4497

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --check-missing

Command-Line Format --check-missing

Introduced 8.0.20-ndb-8.0.20

Check for inline parts in NDB Cluster tables which have no corresponding BLOB parts.

• --check-orphans

Command-Line Format --check-orphans

Check for BLOB parts in NDB Cluster tables which have no corresponding inline parts.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

4498

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

• --database=db_name, -d

Command-Line Format --database=name

Type String

Default Value [none]

Specify the database to find the table in.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delete-orphans

Command-Line Format --delete-orphans

Remove BLOB parts from NDB Cluster tables which have no corresponding inline parts.

• --dump-file=file

Command-Line Format --dump-file=file

Type File name

Default Value [none]

Writes a list of orphaned BLOB column parts to file. The information written to the file includes the
table key and BLOB part number for each orphaned BLOB part.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

4499

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

4500

ndb_config — Extract NDB Cluster Configuration Information

• --verbose

Command-Line Format --verbose

Provide extra information in the tool's output regarding its progress.

• --version

Command-Line Format --version

Display version information and exit.

Example

First we create an NDB table in the test database, using the CREATE TABLE statement shown here:

USE test;

CREATE TABLE btest (
 c0 BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c1 TEXT,
 c2 BLOB
) ENGINE=NDB;

Then we insert a few rows into this table, using a series of statements similar to this one:

INSERT INTO btest VALUES (NULL, 'x', REPEAT('x', 1000));

When run with --check-orphans against this table, ndb_blob_tool generates the following output:

$> ndb_blob_tool --check-orphans --verbose -d test btest
connected
processing 2 blobs
processing blob #0 c1 NDB$BLOB_19_1
NDB$BLOB_19_1: nextResult: res=1
total parts: 0
orphan parts: 0
processing blob #1 c2 NDB$BLOB_19_2
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=1
total parts: 10
orphan parts: 0
disconnected

The tool reports that there are no NDB BLOB column parts associated with column c1, even though
c1 is a TEXT column. This is due to the fact that, in an NDB table, only the first 256 bytes of a BLOB or
TEXT column value are stored inline, and only the excess, if any, is stored separately; thus, if there are
no values using more than 256 bytes in a given column of one of these types, no BLOB column parts
are created by NDB for this column. See Section 13.7, “Data Type Storage Requirements”, for more
information.

25.5.7 ndb_config — Extract NDB Cluster Configuration Information

This tool extracts current configuration information for data nodes, SQL nodes, and API nodes from
one of a number of sources: an NDB Cluster management node, or its config.ini or my.cnf file. By
default, the management node is the source for the configuration data; to override the default, execute
ndb_config with the --config-file or --mycnf option. It is also possible to use a data node as the
source by specifying its node ID with --config_from_node=node_id.

4501

ndb_config — Extract NDB Cluster Configuration Information

ndb_config can also provide an offline dump of all configuration parameters which can be used,
along with their default, maximum, and minimum values and other information. The dump can be
produced in either text or XML format; for more information, see the discussion of the --configinfo
and --xml options later in this section).

You can filter the results by section (DB, SYSTEM, or CONNECTIONS) using one of the options --
nodes, --system, or --connections.

All options that can be used with ndb_config are shown in the following table. Additional descriptions
follow the table.

Table 25.29 Command-line options used with the program ndb_config

Format Description Added, Deprecated, or
Removed

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--cluster-config-
suffix=name

Override defaults group suffix
when reading cluster_config
sections in my.cnf file; used in
testing

ADDED: NDB 8.0.24

--config-binary-
file=path/to/file

Read this binary configuration file ADDED: NDB 8.0.32

--config-file=file_name Set the path to config.ini file (Supported in all NDB releases
based on MySQL 8.0)

--config-from-node=# Obtain configuration data from
the node having this ID (must be
a data node)

(Supported in all NDB releases
based on MySQL 8.0)

--configinfo Dumps information about all
NDB configuration parameters
in text format with default,
maximum, and minimum values.
Use with --xml to obtain XML
output

(Supported in all NDB releases
based on MySQL 8.0)

--connections Print information only about
connections specified in [tcp],
[tcp default], [sci], [sci default],
[shm], or [shm default] sections
of cluster configuration file.
Cannot be used with --system or
--nodes

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

4502

ndb_config — Extract NDB Cluster Configuration Information

Format Description Added, Deprecated, or
Removed

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--diff-default Print only configuration
parameters that have non-default
values

(Supported in all NDB releases
based on MySQL 8.0)

--fields=string,

-f

Field separator (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--host=name Specify host (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--mycnf Read configuration data from
my.cnf file

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

REMOVED: 8.0.31

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--nodeid=# Get configuration of node with
this ID

(Supported in all NDB releases
based on MySQL 8.0)

--nodes Print node information ([ndbd] or
[ndbd default] section of cluster
configuration file) only. Cannot
be used with --system or --
connections

(Supported in all NDB releases
based on MySQL 8.0)

--query=string,

-q string

One or more query options
(attributes)

(Supported in all NDB releases
based on MySQL 8.0)

4503

ndb_config — Extract NDB Cluster Configuration Information

Format Description Added, Deprecated, or
Removed

--query-all,

-a

Dumps all parameters and
values to a single comma-
delimited string

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--rows=string,

-r string

Row separator (Supported in all NDB releases
based on MySQL 8.0)

--system Print SYSTEM section
information only (see ndb_config
--configinfo output). Cannot
be used with --nodes or --
connections

(Supported in all NDB releases
based on MySQL 8.0)

--type=name Specify node type (Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--configinfo --xml Use --xml with --configinfo
to obtain a dump of all NDB
configuration parameters in XML
format with default, maximum,
and minimum values

(Supported in all NDB releases
based on MySQL 8.0)

• cluster-config-suffix

Command-Line Format --cluster-config-suffix=name

Introduced 8.0.24-ndb-8.0.24

Type String

Default Value [none]

Override defaults group suffix when reading cluster configuration sections in my.cnf; used in
testing.

• --configinfo

The --configinfo option causes ndb_config to dump a list of each NDB Cluster configuration
parameter supported by the NDB Cluster distribution of which ndb_config is a part, including the
following information:

• A brief description of each parameter's purpose, effects, and usage

• The section of the config.ini file where the parameter may be used

• The parameter's data type or unit of measurement

• Where applicable, the parameter's default, minimum, and maximum values

• NDB Cluster release version and build information

By default, this output is in text format. Part of this output is shown here:

4504

ndb_config — Extract NDB Cluster Configuration Information

$> ndb_config --configinfo

****** SYSTEM ******

Name (String)
Name of system (NDB Cluster)
MANDATORY

PrimaryMGMNode (Non-negative Integer)
Node id of Primary ndb_mgmd(MGM) node
Default: 0 (Min: 0, Max: 4294967039)

ConfigGenerationNumber (Non-negative Integer)
Configuration generation number
Default: 0 (Min: 0, Max: 4294967039)

****** DB ******

MaxNoOfSubscriptions (Non-negative Integer)
Max no of subscriptions (default 0 == MaxNoOfTables)
Default: 0 (Min: 0, Max: 4294967039)

MaxNoOfSubscribers (Non-negative Integer)
Max no of subscribers (default 0 == 2 * MaxNoOfTables)
Default: 0 (Min: 0, Max: 4294967039)

…

Use this option together with the --xml option to obtain output in XML format.

• --config-binary-file=path-to-file

Command-Line Format --config-binary-file=path/to/file

Introduced 8.0.32-ndb-8.0.32

Type File name

Default Value

Gives the path to the management server's cached binary configuration file
(ndb_nodeID_config.bin.seqno). This may be a relative or absolute path. If the management
server and the ndb_config binary used reside on different hosts, you must use an absolute path.

This example demonstrates combining --config-binary-file with other ndb_config options
to obtain useful output:

> ndb_config --config-binary-file=ndb_50_config.bin.1 --diff-default --type=ndbd
config of [DB] node id 5 that is different from default
CONFIG_PARAMETER,ACTUAL_VALUE,DEFAULT_VALUE
NodeId,5,(mandatory)
BackupDataDir,/home/jon/data/8.0,(null)
DataDir,/home/jon/data/8.0,.
DataMemory,2G,98M
FileSystemPath,/home/jon/data/8.0,(null)
HostName,127.0.0.1,localhost
Nodegroup,0,(null)
ThreadConfig,,(null)

config of [DB] node id 6 that is different from default
CONFIG_PARAMETER,ACTUAL_VALUE,DEFAULT_VALUE
NodeId,6,(mandatory)
BackupDataDir,/home/jon/data/8.0,(null)
DataDir,/home/jon/data/8.0,.
DataMemory,2G,98M
FileSystemPath,/home/jon/data/8.0,(null)
HostName,127.0.0.1,localhost
Nodegroup,0,(null)
ThreadConfig,,(null)

4505

ndb_config — Extract NDB Cluster Configuration Information

> ndb_config --config-binary-file=ndb_50_config.bin.1 --diff-default --system
config of [SYSTEM] system
CONFIG_PARAMETER,ACTUAL_VALUE,DEFAULT_VALUE
Name,MC_20220216092809,(mandatory)
ConfigGenerationNumber,1,0
PrimaryMGMNode,50,0

The relevant portions of the config.ini file are shown here:

[ndbd default]
DataMemory= 2G
NoOfReplicas= 2

[ndb_mgmd]
NodeId= 50
HostName= 127.0.0.1

[ndbd]
NodeId= 5
HostName= 127.0.0.1
DataDir= /home/jon/data/8.0

[ndbd]
NodeId= 6
HostName= 127.0.0.1
DataDir= /home/jon/data/8.0

By comparing the output with the configuration file, you can see that all of the settings in the file have
been written by the management server to the binary cache, and thus, applied to the cluster.

• --config-file=path-to-file

Command-Line Format --config-file=file_name

Type File name

Default Value

Gives the path to the cluster configuration file (config.ini). This may be a relative or absolute
path. If the management server and the ndb_config binary used reside on different hosts, you
must use an absolute path.

• --config_from_node=#

Command-Line Format --config-from-node=#

Type Numeric

Default Value none

Minimum Value 1

Maximum Value 48

Obtain the cluster's configuration data from the data node that has this ID.

If the node having this ID is not a data node, ndb_config fails with an error. (To obtain
configuration data from the management node instead, simply omit this option.)

• --connections

Command-Line Format --connections

Tells ndb_config to print CONNECTIONS information only—that is, information about parameters
found in the [tcp], [tcp default], [shm], or [shm default] sections of the cluster

4506

ndb_config — Extract NDB Cluster Configuration Information

configuration file (see Section 25.4.3.10, “NDB Cluster TCP/IP Connections”, and Section 25.4.3.12,
“NDB Cluster Shared-Memory Connections”, for more information).

This option is mutually exclusive with --nodes and --system; only one of these 3 options can be
used.

• --diff-default

Command-Line Format --diff-default

Print only configuration parameters that have non-default values.

• --fields=delimiter, -f delimiter

Command-Line Format --fields=string

Type String

Default Value

Specifies a delimiter string used to separate the fields in the result. The default is , (the comma
character).

Note

If the delimiter contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

• --host=hostname

Command-Line Format --host=name

Type String

Default Value

Specifies the host name of the node for which configuration information is to be obtained.

Note

While the hostname localhost usually resolves to the IP address
127.0.0.1, this may not necessarily be true for all operating platforms and
configurations. This means that it is possible, when localhost is used in
config.ini, for ndb_config --host=localhost to fail if ndb_config
is run on a different host where localhost resolves to a different address
(for example, on some versions of SUSE Linux, this is 127.0.0.2). In
general, for best results, you should use numeric IP addresses for all NDB
Cluster configuration values relating to hosts, or verify that all NDB Cluster
hosts handle localhost in the same fashion.

• --mycnf

Command-Line Format --mycnf

Read configuration data from the my.cnf file.

• --ndb-connectstring=connection_string, -c connection_string

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

4507

ndb_config — Extract NDB Cluster Configuration Information

Specifies the connection string to use in connecting to the management server. The format for the
connection string is the same as described in Section 25.4.3.3, “NDB Cluster Connection Strings”,
and defaults to localhost:1186.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --nodeid=node_id

Command-Line Format --ndb-nodeid=#

Removed 8.0.31

Type Integer

Default Value [none]

Specify the node ID of the node for which configuration information is to be obtained.

• --nodes

Command-Line Format --nodes

Tells ndb_config to print information relating only to parameters defined in an [ndbd] or [ndbd
default] section of the cluster configuration file (see Section 25.4.3.6, “Defining NDB Cluster Data
Nodes”).

This option is mutually exclusive with --connections and --system; only one of these 3 options
can be used.

• --query=query-options, -q query-options

Command-Line Format --query=string

Type String

Default Value

This is a comma-delimited list of query options—that is, a list of one or more node attributes to be
returned. These include nodeid (node ID), type (node type—that is, ndbd, mysqld, or ndb_mgmd),
and any configuration parameters whose values are to be obtained.

For example, --query=nodeid,type,datamemory,datadir returns the node ID, node type,
DataMemory, and DataDir for each node.

Note

If a given parameter is not applicable to a certain type of node, than an empty
string is returned for the corresponding value. See the examples later in this
section for more information.

• --query-all, -a

Command-Line Format --query-all

Type String

4508

ndb_config — Extract NDB Cluster Configuration Information

Default Value

Returns a comma-delimited list of all query options (node attributes; note that this list is a single
string.

• --rows=separator, -r separator

Command-Line Format --rows=string

Type String

Default Value

Specifies a separator string used to separate the rows in the result. The default is a space
character.

Note

If the separator contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

• --system

Command-Line Format --system

Tells ndb_config to print SYSTEM information only. This consists of system variables that cannot
be changed at run time; thus, there is no corresponding section of the cluster configuration file for
them. They can be seen (prefixed with ****** SYSTEM ******) in the output of ndb_config --
configinfo.

This option is mutually exclusive with --nodes and --connections; only one of these 3 options
can be used.

• --type=node_type

Command-Line Format --type=name

Type Enumeration

Default Value [none]

Valid Values ndbd

mysqld

ndb_mgmd

Filters results so that only configuration values applying to nodes of the specified node_type (ndbd,
mysqld, or ndb_mgmd) are returned.

• --usage, --help, or -?

Command-Line Format --help

Causes ndb_config to print a list of available options, and then exit.

• --version, -V

Command-Line Format --version

Causes ndb_config to print a version information string, and then exit.

• --configinfo --xml

4509

ndb_config — Extract NDB Cluster Configuration Information

Command-Line Format --configinfo --xml

Cause ndb_config --configinfo to provide output as XML by adding this option. A portion of
such output is shown in this example:

$> ndb_config --configinfo --xml

<configvariables protocolversion="1" ndbversionstring="5.7.44-ndb-7.5.36"
 ndbversion="460032" ndbversionmajor="7" ndbversionminor="5"
 ndbversionbuild="0">
 <section name="SYSTEM">
 <param name="Name" comment="Name of system (NDB Cluster)" type="string"
 mandatory="true"/>
 <param name="PrimaryMGMNode" comment="Node id of Primary ndb_mgmd(MGM) node"
 type="unsigned" default="0" min="0" max="4294967039"/>
 <param name="ConfigGenerationNumber" comment="Configuration generation number"
 type="unsigned" default="0" min="0" max="4294967039"/>
 </section>
 <section name="MYSQLD" primarykeys="NodeId">
 <param name="wan" comment="Use WAN TCP setting as default" type="bool"
 default="false"/>
 <param name="HostName" comment="Name of computer for this node"
 type="string" default=""/>
 <param name="Id" comment="NodeId" type="unsigned" mandatory="true"
 min="1" max="255" deprecated="true"/>
 <param name="NodeId" comment="Number identifying application node (mysqld(API))"
 type="unsigned" mandatory="true" min="1" max="255"/>
 <param name="ExecuteOnComputer" comment="HostName" type="string"
 deprecated="true"/>

 …

 </section>

 …

</configvariables>

Note

Normally, the XML output produced by ndb_config --configinfo --xml
is formatted using one line per element; we have added extra whitespace in
the previous example, as well as the next one, for reasons of legibility. This
should not make any difference to applications using this output, since most
XML processors either ignore nonessential whitespace as a matter of course,
or can be instructed to do so.

The XML output also indicates when changing a given parameter requires that data nodes be
restarted using the --initial option. This is shown by the presence of an initial="true"
attribute in the corresponding <param> element. In addition, the restart type (system or node)
is also shown; if a given parameter requires a system restart, this is indicated by the presence of
a restart="system" attribute in the corresponding <param> element. For example, changing
the value set for the Diskless parameter requires a system initial restart, as shown here (with the
restart and initial attributes highlighted for visibility):

<param name="Diskless" comment="Run wo/ disk" type="bool" default="false"
 restart="system" initial="true"/>

Currently, no initial attribute is included in the XML output for <param> elements corresponding
to parameters which do not require initial restarts; in other words, initial="false" is the default,
and the value false should be assumed if the attribute is not present. Similarly, the default restart
type is node (that is, an online or “rolling” restart of the cluster), but the restart attribute is included

4510

ndb_config — Extract NDB Cluster Configuration Information

only if the restart type is system (meaning that all cluster nodes must be shut down at the same
time, then restarted).

Deprecated parameters are indicated in the XML output by the deprecated attribute, as shown
here:

<param name="NoOfDiskPagesToDiskAfterRestartACC" comment="DiskCheckpointSpeed"
 type="unsigned" default="20" min="1" max="4294967039" deprecated="true"/>

In such cases, the comment refers to one or more parameters that supersede the deprecated
parameter. Similarly to initial, the deprecated attribute is indicated only when the parameter
is deprecated, with deprecated="true", and does not appear at all for parameters which are not
deprecated. (Bug #21127135)

Parameters that are required are indicated with mandatory="true", as shown here:

<param name="NodeId"
 comment="Number identifying application node (mysqld(API))"
 type="unsigned" mandatory="true" min="1" max="255"/>

In much the same way that the initial or deprecated attribute is displayed only for a parameter
that requires an initial restart or that is deprecated, the mandatory attribute is included only if the
given parameter is actually required.

Important

The --xml option can be used only with the --configinfo option. Using
--xml without --configinfo fails with an error.

Unlike the options used with this program to obtain current configuration data, --configinfo and
--xml use information obtained from the NDB Cluster sources when ndb_config was compiled.
For this reason, no connection to a running NDB Cluster or access to a config.ini or my.cnf file
is required for these two options.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

4511

ndb_config — Extract NDB Cluster Configuration Information

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --help

Command-Line Format --help

Display help text and exit.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Removed 8.0.31

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

4512

ndb_config — Extract NDB Cluster Configuration Information

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

Combining other ndb_config options (such as --query or --type) with --configinfo (with
or without the --xml option is not supported. Currently, if you attempt to do so, the usual result is
that all other options besides --configinfo or --xml are simply ignored. However, this behavior
is not guaranteed and is subject to change at any time. In addition, since ndb_config, when used
with the --configinfo option, does not access the NDB Cluster or read any files, trying to specify
additional options such as --ndb-connectstring or --config-file with --configinfo serves
no purpose.

Examples

1. To obtain the node ID and type of each node in the cluster:

$> ./ndb_config --query=nodeid,type --fields=':' --rows='\n'
1:ndbd
2:ndbd
3:ndbd
4:ndbd
5:ndb_mgmd
6:mysqld
7:mysqld
8:mysqld
9:mysqld

In this example, we used the --fields options to separate the ID and type of each node with a
colon character (:), and the --rows options to place the values for each node on a new line in the
output.

4513

ndb_delete_all — Delete All Rows from an NDB Table

2. To produce a connection string that can be used by data, SQL, and API nodes to connect to the
management server:

$> ./ndb_config --config-file=usr/local/mysql/cluster-data/config.ini \
--query=hostname,portnumber --fields=: --rows=, --type=ndb_mgmd
198.51.100.179:1186

3. This invocation of ndb_config checks only data nodes (using the --type option), and shows
the values for each node's ID and host name, as well as the values set for its DataMemory and
DataDir parameters:

$> ./ndb_config --type=ndbd --query=nodeid,host,datamemory,datadir -f ' : ' -r '\n'
1 : 198.51.100.193 : 83886080 : /usr/local/mysql/cluster-data
2 : 198.51.100.112 : 83886080 : /usr/local/mysql/cluster-data
3 : 198.51.100.176 : 83886080 : /usr/local/mysql/cluster-data
4 : 198.51.100.119 : 83886080 : /usr/local/mysql/cluster-data

In this example, we used the short options -f and -r for setting the field delimiter and row
separator, respectively, as well as the short option -q to pass a list of parameters to be obtained.

4. To exclude results from any host except one in particular, use the --host option:

$> ./ndb_config --host=198.51.100.176 -f : -r '\n' -q id,type
3:ndbd
5:ndb_mgmd

In this example, we also used the short form -q to determine the attributes to be queried.

Similarly, you can limit results to a node with a specific ID using the --nodeid option.

25.5.8 ndb_delete_all — Delete All Rows from an NDB Table

ndb_delete_all deletes all rows from the given NDB table. In some cases, this can be much faster
than DELETE or even TRUNCATE TABLE.

Usage

ndb_delete_all -c connection_string tbl_name -d db_name

This deletes all rows from the table named tbl_name in the database named db_name. It is exactly
equivalent to executing TRUNCATE db_name.tbl_name in MySQL.

Options that can be used with ndb_delete_all are shown in the following table. Additional
descriptions follow the table.

Table 25.30 Command-line options used with the program ndb_delete_all

Format Description Added, Deprecated, or
Removed

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

4514

ndb_delete_all — Delete All Rows from an NDB Table

Format Description Added, Deprecated, or
Removed

--database=name,

-d name

Name of the database in which
the table is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--diskscan Perform disk scan (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--transactional,

-t

Perform delete in one single
transaction; possible to run out of
operations when used

(Supported in all NDB releases
based on MySQL 8.0)

--tupscan Perform tuple scan (Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version, Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

4515

ndb_delete_all — Delete All Rows from an NDB Table

Format Description Added, Deprecated, or
Removed

-V

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --database, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database containing the table to delete from.

4516

ndb_delete_all — Delete All Rows from an NDB Table

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --diskscan

Command-Line Format --diskscan

Run a disk scan.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

4517

ndb_delete_all — Delete All Rows from an NDB Table

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --transactional, -t

Use of this option causes the delete operation to be performed as a single transaction.

Warning

With very large tables, using this option may cause the number of operations
available to the cluster to be exceeded.

• --tupscan

Run a tuple scan.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

4518

ndb_desc — Describe NDB Tables

Display version information and exit.

In NDB 7.6 and earlier, this program printed NDBT_ProgramExit - status upon completion of
its run, due to an unnecessary dependency on the NDBT testing library. This dependency has been
removed in NDB 8.0, eliminating the extraneous output.

25.5.9 ndb_desc — Describe NDB Tables

ndb_desc provides a detailed description of one or more NDB tables.

Usage

ndb_desc -c connection_string tbl_name -d db_name [options]

ndb_desc -c connection_string index_name -d db_name -t tbl_name

Additional options that can be used with ndb_desc are listed later in this section.

Sample Output

MySQL table creation and population statements:

USE test;

CREATE TABLE fish (
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 length_mm INT NOT NULL,
 weight_gm INT NOT NULL,

 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
) ENGINE=NDB;

INSERT INTO fish VALUES
 (NULL, 'guppy', 35, 2), (NULL, 'tuna', 2500, 150000),
 (NULL, 'shark', 3000, 110000), (NULL, 'manta ray', 1500, 50000),
 (NULL, 'grouper', 900, 125000), (NULL ,'puffer', 250, 2500);

Output from ndb_desc:

$> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 2
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 337
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 2
FragmentCount: 2
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY DYNAMIC
length_mm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC

4519

ndb_desc — Describe NDB Tables

weight_gm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC
-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk(name) - OrderedIndex
uk$unique(name) - UniqueHashIndex
-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory Extent_space Free extent_space
0 2 2 32768 32768 0 0
1 4 4 32768 32768 0 0

Information about multiple tables can be obtained in a single invocation of ndb_desc by using their
names, separated by spaces. All of the tables must be in the same database.

You can obtain additional information about a specific index using the --table (short form: -t) option
and supplying the name of the index as the first argument to ndb_desc, as shown here:

$> ./ndb_desc uk -d test -t fish
-- uk --
Version: 2
Base table: fish
Number of attributes: 1
Logging: 0
Index type: OrderedIndex
Index status: Retrieved
-- Attributes --
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
-- IndexTable 10/uk --
Version: 2
Fragment type: FragUndefined
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: yes
Number of attributes: 2
Number of primary keys: 1
Length of frm data: 0
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 2
ForceVarPart: 0
PartitionCount: 2
FragmentCount: 2
FragmentCountType: ONE_PER_LDM_PER_NODE
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
-- Attributes --
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
NDB$TNODE Unsigned [64] PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
-- Indexes --
PRIMARY KEY(NDB$TNODE) - UniqueHashIndex

When an index is specified in this way, the --extra-partition-info and --extra-node-info
options have no effect.

The Version column in the output contains the table's schema object version. For information about
interpreting this value, see NDB Schema Object Versions.

Three of the table properties that can be set using NDB_TABLE comments embedded in
CREATE TABLE and ALTER TABLE statements are also visible in ndb_desc output. The table's
FRAGMENT_COUNT_TYPE is always shown in the FragmentCountType column. READ_ONLY and
FULLY_REPLICATED, if set to 1, are shown in the Table options column. You can see this after
executing the following ALTER TABLE statement in the mysql client:

mysql> ALTER TABLE fish COMMENT='NDB_TABLE=READ_ONLY=1,FULLY_REPLICATED=1';
1 row in set, 1 warning (0.00 sec)

4520

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

ndb_desc — Describe NDB Tables

mysql> SHOW WARNINGS\G
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1296 | Got error 4503 'Table property is FRAGMENT_COUNT_TYPE=ONE_PER_LDM_PER_NODE but not in comment' from NDB |
+---------+------+---+
1 row in set (0.00 sec)

The warning is issued because READ_ONLY=1 requires that the table's fragment count type is (or be
set to) ONE_PER_LDM_PER_NODE_GROUP; NDB sets this automatically in such cases. You can check
that the ALTER TABLE statement has the desired effect using SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE fish\G
*************************** 1. row ***************************
 Table: fish
Create Table: CREATE TABLE `fish` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(20) NOT NULL,
 `length_mm` int(11) NOT NULL,
 `weight_gm` int(11) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `uk` (`name`)
) ENGINE=ndbcluster DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
COMMENT='NDB_TABLE=READ_BACKUP=1,FULLY_REPLICATED=1'
1 row in set (0.01 sec)

Because FRAGMENT_COUNT_TYPE was not set explicitly, its value is not shown in the comment text
printed by SHOW CREATE TABLE. ndb_desc, however, displays the updated value for this attribute.
The Table options column shows the binary properties just enabled. You can see this in the output
shown here (emphasized text):

$> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 4
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 380
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 1
FragmentCount: 1
FragmentCountType: ONE_PER_LDM_PER_NODE_GROUP
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options: readbackup, fullyreplicated
HashMap: DEFAULT-HASHMAP-3840-1
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY DYNAMIC
length_mm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC
weight_gm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC
-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk(name) - OrderedIndex
uk$unique(name) - UniqueHashIndex
-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory Extent_space Free extent_space

For more information about these table properties, see Section 15.1.20.12, “Setting NDB Comment
Options”.

4521

ndb_desc — Describe NDB Tables

The Extent_space and Free extent_space columns are applicable only to NDB tables having
columns on disk; for tables having only in-memory columns, these columns always contain the value 0.

To illustrate their use, we modify the previous example. First, we must create the necessary Disk Data
objects, as shown here:

CREATE LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_1.log'
 INITIAL_SIZE 16M
 UNDO_BUFFER_SIZE 2M
 ENGINE NDB;

ALTER LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_2.log'
 INITIAL_SIZE 12M
 ENGINE NDB;

CREATE TABLESPACE ts_1
 ADD DATAFILE 'data_1.dat'
 USE LOGFILE GROUP lg_1
 INITIAL_SIZE 32M
 ENGINE NDB;

ALTER TABLESPACE ts_1
 ADD DATAFILE 'data_2.dat'
 INITIAL_SIZE 48M
 ENGINE NDB;

(For more information on the statements just shown and the objects created by them, see
Section 25.6.11.1, “NDB Cluster Disk Data Objects”, as well as Section 15.1.16, “CREATE LOGFILE
GROUP Statement”, and Section 15.1.21, “CREATE TABLESPACE Statement”.)

Now we can create and populate a version of the fish table that stores 2 of its columns on disk
(deleting the previous version of the table first, if it already exists):

DROP TABLE IF EXISTS fish;

CREATE TABLE fish (
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 length_mm INT NOT NULL,
 weight_gm INT NOT NULL,

 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
) TABLESPACE ts_1 STORAGE DISK
ENGINE=NDB;

INSERT INTO fish VALUES
 (NULL, 'guppy', 35, 2), (NULL, 'tuna', 2500, 150000),
 (NULL, 'shark', 3000, 110000), (NULL, 'manta ray', 1500, 50000),
 (NULL, 'grouper', 900, 125000), (NULL ,'puffer', 250, 2500);

When run against this version of the table, ndb_desc displays the following output:

$> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 1
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 1001
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1

4522

ndb_desc — Describe NDB Tables

PartitionCount: 2
FragmentCount: 2
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options: readbackup
HashMap: DEFAULT-HASHMAP-3840-2
Tablespace id: 16
Tablespace: ts_1
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(80;utf8mb4_0900_ai_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
length_mm Int NOT NULL AT=FIXED ST=DISK
weight_gm Int NOT NULL AT=FIXED ST=DISK
-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk(name) - OrderedIndex
uk$unique(name) - UniqueHashIndex
-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory Extent_space Free extent_space
0 2 2 32768 32768 1048576 1044440
1 4 4 32768 32768 1048576 1044400

This means that 1048576 bytes are allocated from the tablespace for this table on each partition, of
which 1044440 bytes remain free for additional storage. In other words, 1048576 - 1044440 = 4136
bytes per partition is currently being used to store the data from this table's disk-based columns. The
number of bytes shown as Free extent_space is available for storing on-disk column data from the
fish table only; for this reason, it is not visible when selecting from the Information Schema FILES
table.

Tablespace id and Tablespace are displayed for Disk Data tables beginning with NDB 8.0.21.

For fully replicated tables, ndb_desc shows only the nodes holding primary partition fragment replicas;
nodes with copy fragment replicas (only) are ignored. You can obtain such information, using the
mysql client, from the table_distribution_status, table_fragments, table_info, and
table_replicas tables in the ndbinfo database.

All options that can be used with ndb_desc are shown in the following table. Additional descriptions
follow the table.

Table 25.31 Command-line options used with the program ndb_desc

Format Description Added, Deprecated, or
Removed

--auto-inc,

-a

Show next value for
AUTO_INCREMENT oolumn if
table has one

ADDED: NDB 8.0.21

--blob-info,

-b

Include partition information for
BLOB tables in output. Requires
that the -p option also be used

(Supported in all NDB releases
based on MySQL 8.0)

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

4523

ndb_desc — Describe NDB Tables

Format Description Added, Deprecated, or
Removed

--context,

-x

Show extra information for table
such as database, schema,
name, and internal ID

ADDED: NDB 8.0.21

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--database=name,

-d name

Name of database containing
table

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--extra-node-info,

-n

Include partition-to-data-node
mappings in output; requires --
extra-partition-info

(Supported in all NDB releases
based on MySQL 8.0)

--extra-partition-info,

-p

Display information about
partitions

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

4524

ndb_desc — Describe NDB Tables

Format Description Added, Deprecated, or
Removed

--retries=#,

-r #

Number of times to retry the
connection (once per second)

(Supported in all NDB releases
based on MySQL 8.0)

--table=name,

-t name

Specify the table in which to find
an index. When this option is
used, -p and -n have no effect
and are ignored

(Supported in all NDB releases
based on MySQL 8.0)

--unqualified,

-u

Use unqualified table names (Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --auto-inc, -a

Show the next value for a table's AUTO_INCREMENT column, if it has one.

• --blob-info, -b

Include information about subordinate BLOB and TEXT columns.

Use of this option also requires the use of the --extra-partition-info (-p) option.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

4525

ndb_desc — Describe NDB Tables

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --context, -x

Show additional contextual information for the table such as schema, database name, table name,
and the table's internal ID.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --database=db_name, -d

Specify the database in which the table should be found.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --extra-node-info, -n

Include information about the mappings between table partitions and the data nodes upon which
they reside. This information can be useful for verifying distribution awareness mechanisms and
supporting more efficient application access to the data stored in NDB Cluster.

Use of this option also requires the use of the --extra-partition-info (-p) option.

• --extra-partition-info, -p

4526

ndb_desc — Describe NDB Tables

Print additional information about the table's partitions.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

4527

ndb_drop_index — Drop Index from an NDB Table

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --retries=#, -r

Try to connect this many times before giving up. One connect attempt is made per second.

• --table=tbl_name, -t

Specify the table in which to look for an index.

• --unqualified, -u

Use unqualified table names.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

Table indexes listed in the output are ordered by ID.

25.5.10 ndb_drop_index — Drop Index from an NDB Table

ndb_drop_index drops the specified index from an NDB table. It is recommended that you use this
utility only as an example for writing NDB API applications—see the Warning later in this section for
details.

Usage

ndb_drop_index -c connection_string table_name index -d db_name

The statement shown above drops the index named index from the table in the database.

Options that can be used with ndb_drop_index are shown in the following table. Additional
descriptions follow the table.

Table 25.32 Command-line options used with the program ndb_drop_index

Format Description Added, Deprecated, or
Removed

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

4528

ndb_drop_index — Drop Index from an NDB Table

Format Description Added, Deprecated, or
Removed

-c connection_string

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

4529

ndb_drop_index — Drop Index from an NDB Table

Removed 8.0.31

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --database, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database in which the table resides.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

4530

ndb_drop_index — Drop Index from an NDB Table

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

4531

ndb_drop_index — Drop Index from an NDB Table

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

Warning

Operations performed on Cluster table indexes using the NDB API are not
visible to MySQL and make the table unusable by a MySQL server. If you use
this program to drop an index, then try to access the table from an SQL node,
an error results, as shown here:

$> ./ndb_drop_index -c localhost dogs ix -d ctest1
Dropping index dogs/idx...OK

$> ./mysql -u jon -p ctest1
Enter password: *******
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 5.7.44-ndb-7.5.36

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW TABLES;
+------------------+
| Tables_in_ctest1 |
+------------------+
| a |
| bt1 |
| bt2 |
| dogs |
| employees |
| fish |
+------------------+
6 rows in set (0.00 sec)

4532

ndb_drop_table — Drop an NDB Table

mysql> SELECT * FROM dogs;
ERROR 1296 (HY000): Got error 4243 'Index not found' from NDBCLUSTER

In such a case, your only option for making the table available to MySQL again is to drop the table and
re-create it. You can use either the SQL statementDROP TABLE or the ndb_drop_table utility (see
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”) to drop the table.

25.5.11 ndb_drop_table — Drop an NDB Table

ndb_drop_table drops the specified NDB table. (If you try to use this on a table created with a
storage engine other than NDB, the attempt fails with the error 723: No such table exists.) This
operation is extremely fast; in some cases, it can be an order of magnitude faster than using a MySQL
DROP TABLE statement on an NDB table.

Usage

ndb_drop_table -c connection_string tbl_name -d db_name

Options that can be used with ndb_drop_table are shown in the following table. Additional
descriptions follow the table.

Table 25.33 Command-line options used with the program ndb_drop_table

Format Description Added, Deprecated, or
Removed

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".

(Supported in all NDB releases
based on MySQL 8.0)

4533

ndb_drop_table — Drop an NDB Table

Format Description Added, Deprecated, or
Removed

Overrides entries in
NDB_CONNECTSTRING and
my.cnf

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

4534

ndb_drop_table — Drop an NDB Table

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --database, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database in which the table resides.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

4535

ndb_drop_table — Drop an NDB Table

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

4536

ndb_error_reporter — NDB Error-Reporting Utility

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

25.5.12 ndb_error_reporter — NDB Error-Reporting Utility

ndb_error_reporter creates an archive from data node and management node log files that can be
used to help diagnose bugs or other problems with a cluster. It is highly recommended that you make
use of this utility when filing reports of bugs in NDB Cluster.

Options that can be used with ndb_error_reporter are shown in the following table. Additional
descriptions follow the table.

Table 25.34 Command-line options used with the program ndb_error_reporter

Format Description Added, Deprecated, or
Removed

--connection-timeout=# Number of seconds to wait when
connecting to nodes before
timing out

(Supported in all NDB releases
based on MySQL 8.0)

--dry-scp Disable scp with remote hosts;
used in testing only

(Supported in all NDB releases
based on MySQL 8.0)

--fs Include file system data in error
report; can use a large amount of
disk space

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--skip-nodegroup=# Skip all nodes in the node group
having this ID

(Supported in all NDB releases
based on MySQL 8.0)

Usage

ndb_error_reporter path/to/config-file [username] [options]

This utility is intended for use on a management node host, and requires the path to the management
host configuration file (usually named config.ini). Optionally, you can supply the name of a
user that is able to access the cluster's data nodes using SSH, to copy the data node log files.
ndb_error_reporter then includes all of these files in archive that is created in the same directory
in which it is run. The archive is named ndb_error_report_YYYYMMDDhhmmss.tar.bz2, where
YYYYMMDDhhmmss is a datetime string.

 ndb_error_reporter also accepts the options listed here:

• --connection-timeout=timeout

Command-Line Format --connection-timeout=#

Type Integer

Default Value 0

Wait this many seconds when trying to connect to nodes before timing out.

4537

ndb_import — Import CSV Data Into NDB

• --dry-scp

Command-Line Format --dry-scp

Run ndb_error_reporter without using scp from remote hosts. Used for testing only.

• --help

Command-Line Format --help

Display help text and exit.

• --fs

Command-Line Format --fs

Copy the data node file systems to the management host and include them in the archive.

Because data node file systems can be extremely large, even after being compressed, we ask that
you please do not send archives created using this option to Oracle unless you are specifically
requested to do so.

• --skip-nodegroup=nodegroup_id

Command-Line Format --connection-timeout=#

Type Integer

Default Value 0

Skip all nodes belong to the node group having the supplied node group ID.

25.5.13 ndb_import — Import CSV Data Into NDB

ndb_import imports CSV-formatted data, such as that produced by mysqldump --tab, directly
into NDB using the NDB API. ndb_import requires a connection to an NDB management server
(ndb_mgmd) to function; it does not require a connection to a MySQL Server.

Usage

ndb_import db_name file_name options

ndb_import requires two arguments. db_name is the name of the database where the table into
which to import the data is found; file_name is the name of the CSV file from which to read the
data; this must include the path to this file if it is not in the current directory. The name of the file must
match that of the table; the file's extension, if any, is not taken into consideration. Options supported
by ndb_import include those for specifying field separators, escapes, and line terminators, and are
described later in this section.

Prior to NDB 8.0.30, ndb_import rejects any empty lines which it reads from the CSV file. Beginning
with NDB 8.0.30, when importing a single column, an empty value that can be used as the column
value, ndb_import handles it in the same manner as a LOAD DATA statement does.

ndb_import must be able to connect to an NDB Cluster management server; for this reason, there
must be an unused [api] slot in the cluster config.ini file.

To duplicate an existing table that uses a different storage engine, such as InnoDB, as an NDB table,
use the mysql client to perform a SELECT INTO OUTFILE statement to export the existing table to
a CSV file, then to execute a CREATE TABLE LIKE statement to create a new table having the same
structure as the existing table, then perform ALTER TABLE ... ENGINE=NDB on the new table; after
this, from the system shell, invoke ndb_import to load the data into the new NDB table. For example,
an existing InnoDB table named myinnodb_table in a database named myinnodb can be exported

4538

ndb_import — Import CSV Data Into NDB

into an NDB table named myndb_table in a database named myndb as shown here, assuming that
you are already logged in as a MySQL user with the appropriate privileges:

1. In the mysql client:

mysql> USE myinnodb;

mysql> SELECT * INTO OUTFILE '/tmp/myndb_table.csv'
 > FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'
 > LINES TERMINATED BY '\n'
 > FROM myinnodbtable;

mysql> CREATE DATABASE myndb;

mysql> USE myndb;

mysql> CREATE TABLE myndb_table LIKE myinnodb.myinnodb_table;

mysql> ALTER TABLE myndb_table ENGINE=NDB;

mysql> EXIT;
Bye
$>

Once the target database and table have been created, a running mysqld is no longer required.
You can stop it using mysqladmin shutdown or another method before proceeding, if you wish.

2. In the system shell:

if you are not already in the MySQL bin directory:
$> cd path-to-mysql-bin-dir

$> ndb_import myndb /tmp/myndb_table.csv --fields-optionally-enclosed-by='"' \
 --fields-terminated-by="," --fields-escaped-by='\\'

The output should resemble what is shown here:

job-1 import myndb.myndb_table from /tmp/myndb_table.csv
job-1 [running] import myndb.myndb_table from /tmp/myndb_table.csv
job-1 [success] import myndb.myndb_table from /tmp/myndb_table.csv
job-1 imported 19984 rows in 0h0m9s at 2277 rows/s
jobs summary: defined: 1 run: 1 with success: 1 with failure: 0
$>

All options that can be used with ndb_import are shown in the following table. Additional descriptions
follow the table.

Table 25.35 Command-line options used with the program ndb_import

Format Description Added, Deprecated, or
Removed

--abort-on-error Dump core on any fatal error;
used for debugging

(Supported in all NDB releases
based on MySQL 8.0)

--ai-increment=# For table with hidden PK, specify
autoincrement increment. See
mysqld

(Supported in all NDB releases
based on MySQL 8.0)

--ai-offset=# For table with hidden PK, specify
autoincrement offset. See
mysqld

(Supported in all NDB releases
based on MySQL 8.0)

--ai-prefetch-sz=# For table with hidden PK, specify
number of autoincrement values
that are prefetched. See mysqld

(Supported in all NDB releases
based on MySQL 8.0)

--character-sets-
dir=path

Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

4539

ndb_import — Import CSV Data Into NDB

Format Description Added, Deprecated, or
Removed

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--connections=# Number of cluster connections to
create

(Supported in all NDB releases
based on MySQL 8.0)

--continue When job fails, continue to next
job

(Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--csvopt=opts Shorthand option for setting
typical CSV option values. See
documentation for syntax and
other information

(Supported in all NDB releases
based on MySQL 8.0)

--db-workers=# Number of threads, per data
node, executing database
operations

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--errins-type=name Error insert type, for testing
purposes; use "list" to obtain all
possible values

(Supported in all NDB releases
based on MySQL 8.0)

--errins-delay=# Error insert delay in milliseconds;
random variation is added

(Supported in all NDB releases
based on MySQL 8.0)

--fields-enclosed-
by=char

Same as FIELDS ENCLOSED
BY option for LOAD DATA
statements. For CSV input this is
same as using --fields-optionally-
enclosed-by

(Supported in all NDB releases
based on MySQL 8.0)

--fields-escaped-by=char Same as FIELDS ESCAPED
BY option for LOAD DATA
statements

(Supported in all NDB releases
based on MySQL 8.0)

--fields-optionally-
enclosed-by=char

Same as FIELDS OPTIONALLY
ENCLOSED BY option for LOAD
DATA statements

(Supported in all NDB releases
based on MySQL 8.0)

--fields-terminated-
by=char

Same as FIELDS TERMINATED
BY option for LOAD DATA
statements

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

4540

ndb_import — Import CSV Data Into NDB

Format Description Added, Deprecated, or
Removed

--idlesleep=# Number of milliseconds to sleep
waiting for more to do

(Supported in all NDB releases
based on MySQL 8.0)

--idlespin=# Number of times to retry before
idlesleep

(Supported in all NDB releases
based on MySQL 8.0)

--ignore-lines=# Ignore first # lines in input file.
Used to skip a non-data header

(Supported in all NDB releases
based on MySQL 8.0)

--input-type=name Input type: random or csv (Supported in all NDB releases
based on MySQL 8.0)

--input-workers=# Number of threads processing
input. Must be 2 or more if --
input-type is csv

(Supported in all NDB releases
based on MySQL 8.0)

--keep-state State files (except non-empty
*.rej files) are normally removed
on job completion. Using this
option causes all state files to be
preserved instead

(Supported in all NDB releases
based on MySQL 8.0)

--lines-terminated-
by=char

Same as LINES TERMINATED
BY option for LOAD DATA
statements

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--max-rows=# Import only this number of input
data rows; default is 0, which
imports all rows

(Supported in all NDB releases
based on MySQL 8.0)

--missing-ai-
column='name'

Indicates that auto-increment
values are missing from CSV file
to be imported.

ADDED: NDB 8.0.30

--monitor=# Periodically print status of
running job if something has
changed (status, rejected
rows, temporary errors). Value
0 disables. Value 1 prints
any change seen. Higher
values reduce status printing
exponentially up to some pre-
defined limit

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

4541

ndb_import — Import CSV Data Into NDB

Format Description Added, Deprecated, or
Removed

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-asynch Run database operations as
batches, in single transactions

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--no-hint Tells transaction coordinator not
to use distribution key hint when
selecting data node

(Supported in all NDB releases
based on MySQL 8.0)

--opbatch=# A db execution batch is a set of
transactions and operations sent
to NDB kernel. This option limits
NDB operations (including blob
operations) in a db execution
batch. Therefore it also limits
number of asynch transactions.
Value 0 is not valid

(Supported in all NDB releases
based on MySQL 8.0)

--opbytes=# Limit bytes in execution batch
(default 0 = no limit)

(Supported in all NDB releases
based on MySQL 8.0)

--output-type=name Output type: ndb is default, null
used for testing

(Supported in all NDB releases
based on MySQL 8.0)

--output-workers=# Number of threads processing
output or relaying database
operations

(Supported in all NDB releases
based on MySQL 8.0)

--pagesize=# Align I/O buffers to given size (Supported in all NDB releases
based on MySQL 8.0)

--pagecnt=# Size of I/O buffers as multiple
of page size. CSV input worker
allocates double-sized buffer

(Supported in all NDB releases
based on MySQL 8.0)

--polltimeout=# Timeout per poll for completed
asynchonous transactions;
polling continues until all polls
are completed, or error occurs

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--rejects=# Limit number of rejected rows
(rows with permanent error) in
data load. Default is 0 which
means that any rejected row
causes a fatal error. The row
exceeding the limit is also added
to *.rej

(Supported in all NDB releases
based on MySQL 8.0)

--resume If job aborted (temporary error,
user interrupt), resume with rows
not yet processed

(Supported in all NDB releases
based on MySQL 8.0)

4542

ndb_import — Import CSV Data Into NDB

Format Description Added, Deprecated, or
Removed

--rowbatch=# Limit rows in row queues (default
0 = no limit); must be 1 or more if
--input-type is random

(Supported in all NDB releases
based on MySQL 8.0)

--rowbytes=# Limit bytes in row queues (0 = no
limit)

(Supported in all NDB releases
based on MySQL 8.0)

--state-dir=path Where to write state files; currect
directory is default

(Supported in all NDB releases
based on MySQL 8.0)

--stats Save performance related
options and internal statistics
in *.sto and *.stt files. These
files are kept on successful
completion even if --keep-state is
not used

(Supported in all NDB releases
based on MySQL 8.0)

--table=name,

-t name

Name of target to import data
into; default is base name of
input file

ADDED: NDB 8.0.28

--tempdelay=# Number of milliseconds to sleep
between temporary errors

(Supported in all NDB releases
based on MySQL 8.0)

--temperrors=# Number of times a transaction
can fail due to a temporary error,
per execution batch; 0 means
any temporary error is fatal. Such
errors do not cause any rows to
be written to .rej file

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose[=#],

-v [#]

Enable verbose output (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --abort-on-error

Command-Line Format --abort-on-error

Dump core on any fatal error; used for debugging only.

• --ai-increment=#

Command-Line Format --ai-increment=#

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 4294967295

For a table with a hidden primary key, specify the autoincrement increment, like the
auto_increment_increment system variable does in the MySQL Server.

• --ai-offset=#

4543

ndb_import — Import CSV Data Into NDB

Command-Line Format --ai-offset=#

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 4294967295

For a table with hidden primary key, specify the autoincrement offset. Similar to the
auto_increment_offset system variable.

• --ai-prefetch-sz=#

Command-Line Format --ai-prefetch-sz=#

Type Integer

Default Value 1024

Minimum Value 1

Maximum Value 4294967295

For a table with a hidden primary key, specify the number of autoincrement values that are
prefetched. Behaves like the ndb_autoincrement_prefetch_sz system variable does in the
MySQL Server.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connections=#

Command-Line Format --connections=#

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 4294967295

Number of cluster connections to create.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer
4544

ndb_import — Import CSV Data Into NDB

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --continue

Command-Line Format --continue

When a job fails, continue to the next job.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --csvopt=string

Command-Line Format --csvopt=opts

Type String

Default Value [none]

Provides a shortcut method for setting typical CSV import options. The argument to this option is a
string consisting of one or more of the following parameters:

• c: Fields terminated by comma

• d: Use defaults, except where overridden by another parameter

• n: Lines terminated by \n

• q: Fields optionally enclosed by double quote characters (")

• r: Line terminated by \r

In NDB 8.0.28 and later, the order of parameters used in the argument to this option is handled such
that the rightmost parameter always takes precedence over any potentially conflicting parameters
which have already been used in the same argument value. This also applies to any duplicate
instances of a given parameter. Prior to NDB 8.0.28, the order of the parameters made no difference,
other than that, when both n and r were specified, the one occurring last (rightmost) was the
parameter which actually took effect.

This option is intended for use in testing under conditions in which it is difficult to transmit escapes or
quotation marks.

• --db-workers=#

Command-Line Format --db-workers=#

4545

ndb_import — Import CSV Data Into NDB

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 4294967295

Number of threads, per data node, executing database operations.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --errins-type=name

Command-Line Format --errins-type=name

Type Enumeration

Default Value [none]

Valid Values stopjob

stopall

sighup

sigint

list

Error insert type; use list as the name value to obtain all possible values. This option is used for
testing purposes only.

• --errins-delay=#

Command-Line Format --errins-delay=#

Type Integer

Default Value 1000

4546

ndb_import — Import CSV Data Into NDB

Minimum Value 0

Maximum Value 4294967295

Unit ms

Error insert delay in milliseconds; random variation is added. This option is used for testing purposes
only.

• --fields-enclosed-by=char

Command-Line Format --fields-enclosed-by=char

Type String

Default Value [none]

This works in the same way as the FIELDS ENCLOSED BY option does for the LOAD DATA
statement, specifying a character to be interpreted as quoting field values. For CSV input, this is the
same as --fields-optionally-enclosed-by.

• --fields-escaped-by=name

Command-Line Format --fields-escaped-by=char

Type String

Default Value \

Specify an escape character in the same way as the FIELDS ESCAPED BY option does for the SQL
LOAD DATA statement.

• --fields-optionally-enclosed-by=char

Command-Line Format --fields-optionally-enclosed-by=char

Type String

Default Value [none]

This works in the same way as the FIELDS OPTIONALLY ENCLOSED BY option does for the LOAD
DATA statement, specifying a character to be interpreted as optionally quoting field values. For CSV
input, this is the same as --fields-enclosed-by.

• --fields-terminated-by=char

Command-Line Format --fields-terminated-by=char

Type String

Default Value \t

This works in the same way as the FIELDS TERMINATED BY option does for the LOAD DATA
statement, specifying a character to be interpreted as the field separator.

• --help

Command-Line Format --help

Display help text and exit.

• --idlesleep=#

Command-Line Format --idlesleep=#

Type Integer

4547

ndb_import — Import CSV Data Into NDB

Default Value 1

Minimum Value 1

Maximum Value 4294967295

Unit ms

Number of milliseconds to sleep waiting for more work to perform.

• --idlespin=#

Command-Line Format --idlespin=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Number of times to retry before sleeping.

• --ignore-lines=#

Command-Line Format --ignore-lines=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Cause ndb_import to ignore the first # lines of the input file. This can be employed to skip a file
header that does not contain any data.

• --input-type=name

Command-Line Format --input-type=name

Type Enumeration

Default Value csv

Valid Values random

csv

Set the type of input type. The default is csv; random is intended for testing purposes only. .

• --input-workers=#

Command-Line Format --input-workers=#

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 4294967295

Set the number of threads processing input.

• --keep-state

Command-Line Format --keep-state

4548

ndb_import — Import CSV Data Into NDB

By default, ndb_import removes all state files (except non-empty *.rej files) when it completes a
job. Specify this option (nor argument is required) to force the program to retain all state files instead.

• --lines-terminated-by=name

Command-Line Format --lines-terminated-by=char

Type String

Default Value \n

This works in the same way as the LINES TERMINATED BY option does for the LOAD DATA
statement, specifying a character to be interpreted as end-of-line.

• --log-level=#

Command-Line Format --log-level=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2

Performs internal logging at the given level. This option is intended primarily for internal and
development use.

In debug builds of NDB only, the logging level can be set using this option to a maximum of 4.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --max-rows=#

Command-Line Format --max-rows=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Import only this number of input data rows; the default is 0, which imports all rows.

• --missing-ai-column

Command-Line Format --missing-ai-column='name'

Introduced 8.0.30-ndb-8.0.30

Type Boolean

4549

ndb_import — Import CSV Data Into NDB

Default Value FALSE

This option can be employed when importing a single table, or multiple tables. When used, it
indicates that the CSV file being imported does not contain any values for an AUTO_INCREMENT
column, and that ndb_import should supply them; if the option is used and the AUTO_INCREMENT
column contains any values, the import operation cannot proceed.

• --monitor=#

Command-Line Format --monitor=#

Type Integer

Default Value 2

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Periodically print the status of a running job if something has changed (status, rejected rows,
temporary errors). Set to 0 to disable this reporting. Setting to 1 prints any change that is seen.
Higher values reduce the frequency of this status reporting.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.4550

ndb_import — Import CSV Data Into NDB

• --no-asynch

Command-Line Format --no-asynch

Run database operations as batches, in single transactions.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --no-hint

Command-Line Format --no-hint

Do not use distribution key hinting to select a data node.

• --opbatch=#

Command-Line Format --opbatch=#

Type Integer

Default Value 256

Minimum Value 1

Maximum Value 4294967295

Unit bytes

Set a limit on the number of operations (including blob operations), and thus the number of
asynchronous transactions, per execution batch.

• --opbytes=#

Command-Line Format --opbytes=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Set a limit on the number of bytes per execution batch. Use 0 for no limit.

• --output-type=name

Command-Line Format --output-type=name

Type Enumeration

Default Value ndb

Valid Values null

Set the output type. ndb is the default. null is used only for testing.

• --output-workers=#

Command-Line Format --output-workers=#

Type Integer

4551

ndb_import — Import CSV Data Into NDB

Default Value 2

Minimum Value 1

Maximum Value 4294967295

Set the number of threads processing output or relaying database operations.

• --pagesize=#

Command-Line Format --pagesize=#

Type Integer

Default Value 4096

Minimum Value 1

Maximum Value 4294967295

Unit bytes

Align I/O buffers to the given size.

• --pagecnt=#

Command-Line Format --pagecnt=#

Type Integer

Default Value 64

Minimum Value 1

Maximum Value 4294967295

Set the size of I/O buffers as multiple of page size. The CSV input worker allocates buffer that is
doubled in size.

• --polltimeout=#

Command-Line Format --polltimeout=#

Type Integer

Default Value 1000

Minimum Value 1

Maximum Value 4294967295

Unit ms

Set a timeout per poll for completed asynchronous transactions; polling continues until all polls are
completed, or until an error occurs.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --rejects=#

Command-Line Format --rejects=#

Type Integer

Default Value 0

Minimum Value 0

4552

ndb_import — Import CSV Data Into NDB

Maximum Value 4294967295

Limit the number of rejected rows (rows with permanent errors) in the data load. The default is 0,
which means that any rejected row causes a fatal error. Any rows causing the limit to be exceeded
are added to the .rej file.

The limit imposed by this option is effective for the duration of the current run. A run restarted using
--resume is considered a “new” run for this purpose.

• --resume

Command-Line Format --resume

If a job is aborted (due to a temporary db error or when interrupted by the user), resume with any
rows not yet processed.

• --rowbatch=#

Command-Line Format --rowbatch=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit rows

Set a limit on the number of rows per row queue. Use 0 for no limit.

• --rowbytes=#

Command-Line Format --rowbytes=#

Type Integer

Default Value 262144

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Set a limit on the number of bytes per row queue. Use 0 for no limit.

• --stats

Command-Line Format --stats

Save information about options related to performance and other internal statistics in files named
*.sto and *.stt. These files are always kept on successful completion (even if --keep-state is
not also specified).

• --state-dir=name

Command-Line Format --state-dir=path

Type String

Default Value .

Where to write the state files (tbl_name.map, tbl_name.rej, tbl_name.res, and
tbl_name.stt) produced by a run of the program; the default is the current directory.

4553

ndb_import — Import CSV Data Into NDB

• --table=name

Command-Line Format --table=name

Introduced 8.0.28-ndb-8.0.28

Type String

Default Value [input file base name]

By default, ndb_import attempts to import data into a table whose name is the base name of the
CSV file from which the data is being read. Beginning with NDB 8.0.28, you can override the choice
of table name by specifying it using the --table option (short form -t).

• --tempdelay=#

Command-Line Format --tempdelay=#

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 4294967295

Unit ms

Number of milliseconds to sleep between temporary errors.

• --temperrors=#

Command-Line Format --temperrors=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Number of times a transaction can fail due to a temporary error, per execution batch. The default
is 0, which means that any temporary error is fatal. Temporary errors do not cause any rows to be
added to the .rej file.

• --verbose, -v

Command-Line Format --verbose[=#]

Type Boolean

Default Value false

Enable verbose output.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

4554

ndb_index_stat — NDB Index Statistics Utility

As with LOAD DATA, options for field and line formatting much match those used to create the CSV
file, whether this was done using SELECT INTO ... OUTFILE, or by some other means. There is no
equivalent to the LOAD DATA statement STARTING WITH option.

25.5.14 ndb_index_stat — NDB Index Statistics Utility

ndb_index_stat provides per-fragment statistical information about indexes on NDB tables. This
includes cache version and age, number of index entries per partition, and memory consumption by
indexes.

Usage

To obtain basic index statistics about a given NDB table, invoke ndb_index_stat as shown here, with
the name of the table as the first argument and the name of the database containing this table specified
immediately following it, using the --database (-d) option:

ndb_index_stat table -d database

In this example, we use ndb_index_stat to obtain such information about an NDB table named
mytable in the test database:

$> ndb_index_stat -d test mytable
table:City index:PRIMARY fragCount:2
sampleVersion:3 loadTime:1399585986 sampleCount:1994 keyBytes:7976
query cache: valid:1 sampleCount:1994 totalBytes:27916
times in ms: save: 7.133 sort: 1.974 sort per sample: 0.000

sampleVersion is the version number of the cache from which the statistics data is taken. Running
ndb_index_stat with the --update option causes sampleVersion to be incremented.

loadTime shows when the cache was last updated. This is expressed as seconds since the Unix
Epoch.

sampleCount is the number of index entries found per partition. You can estimate the total number of
entries by multiplying this by the number of fragments (shown as fragCount).

sampleCount can be compared with the cardinality of SHOW INDEX or
INFORMATION_SCHEMA.STATISTICS, although the latter two provide a view of the table as a whole,
while ndb_index_stat provides a per-fragment average.

keyBytes is the number of bytes used by the index. In this example, the primary key is an integer,
which requires four bytes for each index, so keyBytes can be calculated in this case as shown here:

 keyBytes = sampleCount * (4 bytes per index) = 1994 * 4 = 7976

This information can also be obtained using the corresponding column definitions from
INFORMATION_SCHEMA.COLUMNS (this requires a MySQL Server and a MySQL client application).

totalBytes is the total memory consumed by all indexes on the table, in bytes.

Timings shown in the preceding examples are specific to each invocation of ndb_index_stat.

The --verbose option provides some additional output, as shown here:

$> ndb_index_stat -d test mytable --verbose
random seed 1337010518
connected
loop 1 of 1
table:mytable index:PRIMARY fragCount:4
sampleVersion:2 loadTime:1336751773 sampleCount:0 keyBytes:0
read stats
query cache created
query cache: valid:1 sampleCount:0 totalBytes:0
times in ms: save: 20.766 sort: 0.001
disconnected

4555

ndb_index_stat — NDB Index Statistics Utility

$>

If the output from the program is empty, this may indicate that no statistics yet exist. To force them to
be created (or updated if they already exist), invoke ndb_index_stat with the --update option, or
execute ANALYZE TABLE on the table in the mysql client.

Options

The following table includes options that are specific to the NDB Cluster ndb_index_stat utility.
Additional descriptions are listed following the table.

Table 25.36 Command-line options used with the program ndb_index_stat

Format Description Added, Deprecated, or
Removed

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--database=name,

-d name

Name of database containing
table

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--delete Delete index statistics for table,
stopping any auto-update
previously configured

(Supported in all NDB releases
based on MySQL 8.0)

--dump Print query cache (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--loops=# Set the number of times to
perform given command; default
is 0

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in

(Supported in all NDB releases
based on MySQL 8.0)

4556

ndb_index_stat — NDB Index Statistics Utility

Format Description Added, Deprecated, or
Removed

NDB_CONNECTSTRING and
my.cnf

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--query=# Perform random range queries
on first key attr (must be int
unsigned)

(Supported in all NDB releases
based on MySQL 8.0)

--sys-drop Drop any statistics tables
and events in NDB kernel (all
statistics are lost)

(Supported in all NDB releases
based on MySQL 8.0)

--sys-create Create all statistics tables and
events in NDB kernel, if none of
them already exist

(Supported in all NDB releases
based on MySQL 8.0)

--sys-create-if-not-
exist

Create any statistics tables and
events in NDB kernel that do not
already exist

(Supported in all NDB releases
based on MySQL 8.0)

--sys-create-if-not-
valid

Create any statistics tables or
events that do not already exist
in the NDB kernel, after dropping
any that are invalid

(Supported in all NDB releases
based on MySQL 8.0)

--sys-check Verify that NDB system index
statistics and event tables exist

(Supported in all NDB releases
based on MySQL 8.0)

--sys-skip-tables Do not apply sys-* options to
tables

(Supported in all NDB releases
based on MySQL 8.0)

--sys-skip-events Do not apply sys-* options to
events

(Supported in all NDB releases
based on MySQL 8.0)

--update Update index statistics for table,
restarting any auto-update
previously configured

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose,

-v

Turn on verbose output (Supported in all NDB releases
based on MySQL 8.0)

4557

ndb_index_stat — NDB Index Statistics Utility

Format Description Added, Deprecated, or
Removed

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --database=name, -d name

Command-Line Format --database=name

Type String

Default Value [none]

4558

ndb_index_stat — NDB Index Statistics Utility

Minimum Value

Maximum Value

The name of the database that contains the table being queried.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delete

Command-Line Format --delete

Delete the index statistics for the given table, stopping any auto-update that was previously
configured.

• --dump

Command-Line Format --dump

Dump the contents of the query cache.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

4559

ndb_index_stat — NDB Index Statistics Utility

• --loops=#

Command-Line Format --loops=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value MAX_INT

Repeat commands this number of times (for use in testing).

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

4560

ndb_index_stat — NDB Index Statistics Utility

• --query=#

Command-Line Format --query=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value MAX_INT

Perform random range queries on first key attribute (must be int unsigned).

• --sys-drop

Command-Line Format --sys-drop

Drop all statistics tables and events in the NDB kernel. This causes all statistics to be lost.

• --sys-create

Command-Line Format --sys-create

Create all statistics tables and events in the NDB kernel. This works only if none of them exist
previously.

• --sys-create-if-not-exist

Command-Line Format --sys-create-if-not-exist

Create any NDB system statistics tables or events (or both) that do not already exist when the
program is invoked.

• --sys-create-if-not-valid

Command-Line Format --sys-create-if-not-valid

Create any NDB system statistics tables or events that do not already exist, after dropping any that
are invalid.

• --sys-check

Command-Line Format --sys-check

Verify that all required system statistics tables and events exist in the NDB kernel.

• --sys-skip-tables

Command-Line Format --sys-skip-tables

Do not apply any --sys-* options to any statistics tables.

• --sys-skip-events

Command-Line Format --sys-skip-events

Do not apply any --sys-* options to any events.

• --update

Command-Line Format --update

4561

ndb_move_data — NDB Data Copy Utility

Update the index statistics for the given table, and restart any auto-update that was previously
configured.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose

Turn on verbose output.

• --version

Command-Line Format --version

Display version information and exit.

ndb_index_stat system options. The following options are used to generate and update the
statistics tables in the NDB kernel. None of these options can be mixed with statistics options (see
ndb_index_stat statistics options).

• --sys-drop

• --sys-create

• --sys-create-if-not-exist

• --sys-create-if-not-valid

• --sys-check

• --sys-skip-tables

• --sys-skip-events

ndb_index_stat statistics options. The options listed here are used to generate index statistics.
They work with a given table and database. They cannot be mixed with system options (see
ndb_index_stat system options).

• --database

• --delete

• --update

• --dump

• --query

25.5.15 ndb_move_data — NDB Data Copy Utility

ndb_move_data copies data from one NDB table to another.

Usage

The program is invoked with the names of the source and target tables; either or both of these may be
qualified optionally with the database name. Both tables must use the NDB storage engine.

4562

ndb_move_data — NDB Data Copy Utility

ndb_move_data options source target

Options that can be used with ndb_move_data are shown in the following table. Additional
descriptions follow the table.

Table 25.37 Command-line options used with the program ndb_move_data

Format Description Added, Deprecated, or
Removed

--abort-on-error Dump core on permanent error
(debug option)

(Supported in all NDB releases
based on MySQL 8.0)

--character-sets-
dir=path

Directory where character sets
are

REMOVED: 8.0.31

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--drop-source Drop source table after all rows
have been moved

(Supported in all NDB releases
based on MySQL 8.0)

--error-insert Insert random temporary errors
(used in testing)

(Supported in all NDB releases
based on MySQL 8.0)

--exclude-missing-
columns

Ignore extra columns in source
or target table

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--lossy-conversions,

-l

Allow attribute data to be
truncated when converted to
smaller type

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

4563

ndb_move_data — NDB Data Copy Utility

Format Description Added, Deprecated, or
Removed

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--promote-attributes,

-A

Allow attribute data to be
converted to larger type

(Supported in all NDB releases
based on MySQL 8.0)

--staging-
tries=x[,y[,z]]

Specify tries on temporary errors;
format is x[,y[,z]] where x=max
tries (0=no limit), y=min delay
(ms), z=max delay (ms)

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose Enable verbose messages (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --abort-on-error

Command-Line Format --abort-on-error

Dump core on permanent error (debug option).

• --character-sets-dir=name

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Type String

Default Value [none]

Directory where character sets are.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

4564

ndb_move_data — NDB Data Copy Utility

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --database=dbname, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database in which the table is found.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

4565

ndb_move_data — NDB Data Copy Utility

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --drop-source

Command-Line Format --drop-source

Drop source table after all rows have been moved.

• --error-insert

Command-Line Format --error-insert

Insert random temporary errors (testing option).

• --exclude-missing-columns

Command-Line Format --exclude-missing-columns

Ignore extra columns in source or target table.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --lossy-conversions, -l

Command-Line Format --lossy-conversions

Allow attribute data to be truncated when converted to a smaller type.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

4566

ndb_move_data — NDB Data Copy Utility

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --promote-attributes, -A

Command-Line Format --promote-attributes

Allow attribute data to be converted to a larger type.

• --staging-tries=x[,y[,z]]

Command-Line Format --staging-tries=x[,y[,z]]

Type String

Default Value 0,1000,60000

Specify tries on temporary errors. Format is x[,y[,z]] where x=max tries (0=no limit), y=min delay
(ms), z=max delay (ms).

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

4567

ndb_perror — Obtain NDB Error Message Information

Command-Line Format --verbose

Enable verbose messages.

• --version

Command-Line Format --version

Display version information and exit.

25.5.16 ndb_perror — Obtain NDB Error Message Information

ndb_perror shows information about an NDB error, given its error code. This includes the error
message, the type of error, and whether the error is permanent or temporary. This is intended as a
drop-in replacement for perror --ndb, which is no longer supported.

Usage

ndb_perror [options] error_code

ndb_perror does not need to access a running NDB Cluster, or any nodes (including SQL nodes). To
view information about a given NDB error, invoke the program, using the error code as an argument,
like this:

$> ndb_perror 323
NDB error code 323: Invalid nodegroup id, nodegroup already existing: Permanent error: Application error

To display only the error message, invoke ndb_perror with the --silent option (short form -s), as
shown here:

$> ndb_perror -s 323
Invalid nodegroup id, nodegroup already existing: Permanent error: Application error

Like perror, ndb_perror accepts multiple error codes:

$> ndb_perror 321 1001
NDB error code 321: Invalid nodegroup id: Permanent error: Application error
NDB error code 1001: Illegal connect string

Additional program options for ndb_perror are described later in this section.

ndb_perror replaces perror --ndb, which is no longer supported by NDB Cluster. To make
substitution easier in scripts and other applications that might depend on perror for obtaining NDB
error information, ndb_perror supports its own “dummy” --ndb option, which does nothing.

The following table includes all options that are specific to the NDB Cluster program ndb_perror.
Additional descriptions follow the table.

Table 25.38 Command-line options used with the program ndb_perror

Format Description Added, Deprecated, or
Removed

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text (Supported in all NDB releases
based on MySQL 8.0)

4568

ndb_perror — Obtain NDB Error Message Information

Format Description Added, Deprecated, or
Removed

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb For compatibility with
applications depending on old
versions of perror; does nothing

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--silent,

-s

Show error message only (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Print program version information
and exit

(Supported in all NDB releases
based on MySQL 8.0)

--verbose,

-v

Verbose output; disable with --
silent

(Supported in all NDB releases
based on MySQL 8.0)

Additional Options

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help, -?

Command-Line Format --help

Display program help text and exit.

• --login-path

4569

ndb_print_backup_file — Print NDB Backup File Contents

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb

Command-Line Format --ndb

For compatibility with applications depending on old versions of perror that use that program's --
ndb option. The option when used with ndb_perror does nothing, and is ignored by it.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --silent, -s

Command-Line Format --silent

Show error message only.

• --version, -V

Command-Line Format --version

Print program version information and exit.

• --verbose, -v

Command-Line Format --verbose

Verbose output; disable with --silent.

25.5.17 ndb_print_backup_file — Print NDB Backup File Contents

ndb_print_backup_file obtains diagnostic information from a cluster backup file.

Table 25.39 Command-line options used with the program ndb_print_backup_file

Format Description Added, Deprecated, or
Removed

--backup-key=key,

-K password

Use this password to decrypt file ADDED: NDB 8.0.31

--backup-key-from-stdin Get decryption key in a secure
fashion from STDIN

ADDED: NDB 8.0.31

--backup-
password=password,

Use this password to decrypt file ADDED: NDB 8.0.22

4570

ndb_print_backup_file — Print NDB Backup File Contents

Format Description Added, Deprecated, or
Removed

-P password

--backup-password-from-
stdin

Get decryption password in a
secure fashion from STDIN

ADDED: NDB 8.0.24

--control-directory-
number=#,

-c #

Control directory number ADDED: NDB 8.0.24

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--fragment-id=#,

-f #

Fragment ID ADDED: NDB 8.0.24

--help,

--usage,

-h,

-?

Print usage information ADDED: NDB 8.0.24

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--no-print-rows,

-u

Do not print rows ADDED: NDB 8.0.24

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--print-header-words,

-h

Print header words ADDED: NDB 8.0.24

--print-restored-rows Print restored rows ADDED: NDB 8.0.24

--print-rows,

-U

Print rows. Enabled by default;
disable with --no-print-rows

ADDED: NDB 8.0.24

--print-rows-per-page Print rows per page ADDED: NDB 8.0.24

--rowid-file=path,

-n path

File containing row ID to check
for

ADDED: NDB 8.0.24

--show-ignored-rows,

-i

Show ignored rows ADDED: NDB 8.0.24

--table-id=#,

-t #

Table ID; used with --print-
restored rows

ADDED: NDB 8.0.24

4571

ndb_print_backup_file — Print NDB Backup File Contents

Format Description Added, Deprecated, or
Removed

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose[=#],

-v

Verbosity level ADDED: NDB 8.0.24

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

Usage

ndb_print_backup_file [-P password] file_name

file_name is the name of a cluster backup file. This can be any of the files (.Data, .ctl, or .log
file) found in a cluster backup directory. These files are found in the data node's backup directory under
the subdirectory BACKUP-#, where # is the sequence number for the backup. For more information
about cluster backup files and their contents, see Section 25.6.8.1, “NDB Cluster Backup Concepts”.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management
server) ndb_print_backup_file must be run on a cluster data node, since it accesses the data
node file system directly. Because it does not make use of the management server, this utility can be
used when the management server is not running, and even when the cluster has been completely
shut down.

In NDB 8.0, this program can also be used to read undo log files.

Options

Prior to NDB 8.0.24, ndb_print_backup_file supported only the -P option. Beginning with NDB
8.0.24, the program supports a number of options, which are described in the following list.

• --backup-key, -K

Command-Line Format --backup-key=key

Introduced 8.0.31-ndb-8.0.31

Specify the key needed to decrypt an encrypted backup.

• --backup-key-from-stdin

Command-Line Format --backup-key-from-stdin

Introduced 8.0.31-ndb-8.0.31

Allow input of the decryption key from standard input, similar to entering a password after invoking
mysql --password with no password supplied.

• --backup-password

Command-Line Format --backup-password=password

Introduced 8.0.22-ndb-8.0.22

Type String

Default Value [none]

Specify the password needed to decrypt an encrypted backup.

4572

ndb_print_backup_file — Print NDB Backup File Contents

The long form of this option is available beginning with NDB 8.0.24.

• --backup-password-from-stdin

Command-Line Format --backup-password-from-stdin

Introduced 8.0.24-ndb-8.0.24

Allow input of the password from standard input, similar to entering a password after invoking mysql
--password with no password supplied.

• --control-directory-number

Command-Line Format --control-directory-number=#

Introduced 8.0.24-ndb-8.0.24

Type Integer

Default Value 0

Control file directory number. Used together with --print-restored-rows.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --fragment-id

Command-Line Format --fragment-id=#

Introduced 8.0.24-ndb-8.0.24

Type Integer

Default Value 0

Fragment ID. Used together with --print-restored-rows. 4573

ndb_print_backup_file — Print NDB Backup File Contents

• --help

Command-Line Format --help

--usage

Introduced 8.0.24-ndb-8.0.24

Print program usage information.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --no-print-rows

Command-Line Format --no-print-rows

Introduced 8.0.24-ndb-8.0.24

Do not include rows in output.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --print-header-words

Command-Line Format --print-header-words

Introduced 8.0.24-ndb-8.0.24

Include header words in output.

• --print-restored-rows

Command-Line Format --print-restored-rows

Introduced 8.0.24-ndb-8.0.24

Include restored rows in output, using the file LCP/c/TtFf.ctl, for which the values are set as
follows:

• c is the control file number set using --control-directory-number

• t is the table ID set using --table-id

• f is the fragment ID set using --fragment-id

• --print-rows

4574

ndb_print_backup_file — Print NDB Backup File Contents

Command-Line Format --print-rows

Introduced 8.0.24-ndb-8.0.24

Print rows. This option is enabled by default; to disable it, use --no-print-rows.

• --print-rows-per-page

Command-Line Format --print-rows-per-page

Introduced 8.0.24-ndb-8.0.24

Print rows per page.

• --rowid-file

Command-Line Format --rowid-file=path

Introduced 8.0.24-ndb-8.0.24

Type File name

Default Value [none]

File to check for row ID.

• --show-ignored-rows

Command-Line Format --show-ignored-rows

Introduced 8.0.24-ndb-8.0.24

Show ignored rows.

• --table-id

Command-Line Format --table-id=#

Introduced 8.0.24-ndb-8.0.24

Type Integer

Default Value [none]

Table ID. Used together with --print-restored-rows.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose[=#]

Introduced 8.0.24-ndb-8.0.24

Type Integer

Default Value 0

Verbosity level of output. A greater value indicates increased verbosity. 4575

ndb_print_file — Print NDB Disk Data File Contents

• --version

Command-Line Format --version

Display version information and exit.

25.5.18 ndb_print_file — Print NDB Disk Data File Contents

ndb_print_file obtains information from an NDB Cluster Disk Data file.

Usage

ndb_print_file [-v] [-q] file_name+

file_name is the name of an NDB Cluster Disk Data file. Multiple filenames are accepted, separated
by spaces.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management
server) ndb_print_file must be run on an NDB Cluster data node, since it accesses the data node
file system directly. Because it does not make use of the management server, this utility can be used
when the management server is not running, and even when the cluster has been completely shut
down.

Options

Table 25.40 Command-line options used with the program ndb_print_file

Format Description Added, Deprecated, or
Removed

--file-key=hex_data,

-K hex_data

Supply encryption key using
stdin, tty, or my.cnf file

ADDED: NDB 8.0.31

--file-key-from-stdin Supply encryption key using
stdin

ADDED: NDB 8.0.31

--help,

-?

Display help text and exit; same
as --usage

(Supported in all NDB releases
based on MySQL 8.0)

--quiet,

-q

Reduce verbosity of output (Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose,

-v

Increase verbosity of output (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

ndb_print_file supports the following options:

• --file-key, -K

Command-Line Format --file-key=hex_data

Introduced 8.0.31-ndb-8.0.31

Supply file system encryption or decryption key from stdin, tty, or a my.cnf file.

4576

ndb_print_frag_file — Print NDB Fragment List File Contents

• --file-key-from-stdin

Command-Line Format --file-key-from-stdin

Introduced 8.0.31-ndb-8.0.31

Type Boolean

Default Value FALSE

Valid Values TRUE

Supply file system encryption or decryption key from stdin.

• --help, -h, -?

Command-Line Format --help

Print help message and exit.

• --quiet, -q

Command-Line Format --quiet

Suppress output (quiet mode).

• --usage, -?

Command-Line Format --usage

Print help message and exit.

• --verbose, -v

Command-Line Format --verbose

Make output verbose.

• --version, -v

Command-Line Format --version

Print version information and exit.

For more information, see Section 25.6.11, “NDB Cluster Disk Data Tables”.

25.5.19 ndb_print_frag_file — Print NDB Fragment List File Contents

ndb_print_frag_file obtains information from a cluster fragment list file. It is intended for use in
helping to diagnose issues with data node restarts.

Usage

ndb_print_frag_file file_name

file_name is the name of a cluster fragment list file, which matches the pattern SX.FragList,
where X is a digit in the range 2-9 inclusive, and are found in the data node file system of the data node
having the node ID nodeid, in directories named ndb_nodeid_fs/DN/DBDIH/, where N is 1 or 2.
Each fragment file contains records of the fragments belonging to each NDB table. For more information
about cluster fragment files, see NDB Cluster Data Node File System Directory.

Like ndb_print_backup_file, ndb_print_sys_file, and ndb_print_schema_file (and
unlike most of the other NDB utilities that are intended to be run on a management server host or to

4577

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_print_schema_file — Print NDB Schema File Contents

connect to a management server), ndb_print_frag_file must be run on a cluster data node,
since it accesses the data node file system directly. Because it does not make use of the management
server, this utility can be used when the management server is not running, and even when the cluster
has been completely shut down.

Additional Options

None.

Sample Output

$> ndb_print_frag_file /usr/local/mysqld/data/ndb_3_fs/D1/DBDIH/S2.FragList
Filename: /usr/local/mysqld/data/ndb_3_fs/D1/DBDIH/S2.FragList with size 8192
noOfPages = 1 noOfWords = 182
Table Data

Num Frags: 2 NoOfReplicas: 2 hashpointer: 4294967040
kvalue: 6 mask: 0x00000000 method: HashMap
Storage is on Logged and checkpointed, survives SR
------ Fragment with FragId: 0 --------
Preferred Primary: 2 numStoredReplicas: 2 numOldStoredReplicas: 0 distKey: 0 LogPartId: 0
-------Stored Replica----------
Replica node is: 2 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
-------Stored Replica----------
Replica node is: 3 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
------ Fragment with FragId: 1 --------
Preferred Primary: 3 numStoredReplicas: 2 numOldStoredReplicas: 0 distKey: 0 LogPartId: 1
-------Stored Replica----------
Replica node is: 3 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
-------Stored Replica----------
Replica node is: 2 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid

25.5.20 ndb_print_schema_file — Print NDB Schema File Contents

ndb_print_schema_file obtains diagnostic information from a cluster schema file.

Usage

ndb_print_schema_file file_name

file_name is the name of a cluster schema file. For more information about cluster schema files, see
NDB Cluster Data Node File System Directory.

Like ndb_print_backup_file and ndb_print_sys_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management
server) ndb_print_schema_file must be run on a cluster data node, since it accesses the data
node file system directly. Because it does not make use of the management server, this utility can be
used when the management server is not running, and even when the cluster has been completely
shut down.

Additional Options

None.

25.5.21 ndb_print_sys_file — Print NDB System File Contents

ndb_print_sys_file obtains diagnostic information from an NDB Cluster system file.

4578

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

Usage

ndb_print_sys_file file_name

file_name is the name of a cluster system file (sysfile). Cluster system files are located in a data
node's data directory (DataDir); the path under this directory to system files matches the pattern
ndb_#_fs/D#/DBDIH/P#.sysfile. In each case, the # represents a number (not necessarily the
same number). For more information, see NDB Cluster Data Node File System Directory.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management
server) ndb_print_backup_file must be run on a cluster data node, since it accesses the data
node file system directly. Because it does not make use of the management server, this utility can be
used when the management server is not running, and even when the cluster has been completely
shut down.

Additional Options

None.

25.5.22 ndb_redo_log_reader — Check and Print Content of Cluster Redo
Log

Reads a redo log file, checking it for errors, printing its contents in a human-readable format, or both.
ndb_redo_log_reader is intended for use primarily by NDB Cluster developers and Support
personnel in debugging and diagnosing problems.

This utility remains under development, and its syntax and behavior are subject to change in future
NDB Cluster releases.

The C++ source files for ndb_redo_log_reader can be found in the directory /storage/ndb/src/
kernel/blocks/dblqh/redoLogReader.

Options that can be used with ndb_redo_log_reader are shown in the following table. Additional
descriptions follow the table.

Table 25.41 Command-line options used with the program ndb_redo_log_reader

Format Description Added, Deprecated, or
Removed

-dump Print dump info (Supported in all NDB releases
based on MySQL 8.0)

--file-key=key,

-K key

Supply decryption key ADDED: NDB 8.0.31

--file-key-from-stdin Supply decryption key using
stdin

ADDED: NDB 8.0.31

-filedescriptors Print file descriptors only (Supported in all NDB releases
based on MySQL 8.0)

--help Print usage information (has no
short form)

(Supported in all NDB releases
based on MySQL 8.0)

-lap Provide lap info, with max GCI
started and completed

(Supported in all NDB releases
based on MySQL 8.0)

-mbyte # Starting megabyte (Supported in all NDB releases
based on MySQL 8.0)

-mbyteheaders Show only first page header of
each megabyte in file

(Supported in all NDB releases
based on MySQL 8.0)

4579

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

Format Description Added, Deprecated, or
Removed

-nocheck Do not check records for errors (Supported in all NDB releases
based on MySQL 8.0)

-noprint Do not print records (Supported in all NDB releases
based on MySQL 8.0)

-page # Start with this page (Supported in all NDB releases
based on MySQL 8.0)

-pageheaders Show page headers only (Supported in all NDB releases
based on MySQL 8.0)

-pageindex # Start with this page index (Supported in all NDB releases
based on MySQL 8.0)

-twiddle Bit-shifted dump (Supported in all NDB releases
based on MySQL 8.0)

Usage

ndb_redo_log_reader file_name [options]

file_name is the name of a cluster redo log file. redo log files are located in the numbered directories
under the data node's data directory (DataDir); the path under this directory to the redo log files
matches the pattern ndb_nodeid_fs/D#/DBLQH/S#.FragLog. nodeid is the data node's node
ID. The two instances of # each represent a number (not necessarily the same number); the number
following D is in the range 8-39 inclusive; the range of the number following S varies according to the
value of the NoOfFragmentLogFiles configuration parameter, whose default value is 16; thus, the
default range of the number in the file name is 0-15 inclusive. For more information, see NDB Cluster
Data Node File System Directory.

The name of the file to be read may be followed by one or more of the options listed here:

• -dump

Command-Line Format -dump

Print dump info.

• --file-key, -K

Command-Line Format --file-key=key

Introduced 8.0.31-ndb-8.0.31

Supply file decryption key using stdin, tty, or a my.cnf file.

• --file-key-from-stdin

Command-Line Format --file-key-from-stdin

Introduced 8.0.31-ndb-8.0.31

Supply file decryption key using stdin.

• Command-Line Format -filedescriptors

-filedescriptors: Print file descriptors only.

• Command-Line Format --help

--help: Print usage information.

4580

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_redo_log_reader — Check and Print Content of Cluster Redo Log

• -lap

Command-Line Format -lap

Provide lap info, with max GCI started and completed.

• Command-Line Format -mbyte #

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 15

-mbyte #: Starting megabyte.

is an integer in the range 0 to 15, inclusive.

• Command-Line Format -mbyteheaders

-mbyteheaders: Show only the first page header of every megabyte in the file.

• Command-Line Format -noprint

-noprint: Do not print the contents of the log file.

• Command-Line Format -nocheck

-nocheck: Do not check the log file for errors.

• Command-Line Format -page #

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 31

-page #: Start at this page.

is an integer in the range 0 to 31, inclusive.

• Command-Line Format -pageheaders

-pageheaders: Show page headers only.

• Command-Line Format -pageindex #

Type Integer

Default Value 12

Minimum Value 12

Maximum Value 8191

-pageindex #: Start at this page index.

is an integer between 12 and 8191, inclusive.

• -twiddle

Command-Line Format -twiddle

4581

ndb_restore — Restore an NDB Cluster Backup

Bit-shifted dump.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_redo_log_reader must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when
the management server is not running, and even when the cluster has been completely shut down.

25.5.23 ndb_restore — Restore an NDB Cluster Backup

The NDB Cluster restoration program is implemented as a separate command-line utility
ndb_restore, which can normally be found in the MySQL bin directory. This program reads the files
created as a result of the backup and inserts the stored information into the database.

In NDB 7.6 and earlier, this program printed NDBT_ProgramExit - status upon completion of
its run, due to an unnecessary dependency on the NDBT testing library. This dependency has been
removed in NDB 8.0, eliminating the extraneous output.

ndb_restore must be executed once for each of the backup files that were created by the START
BACKUP command used to create the backup (see Section 25.6.8.2, “Using The NDB Cluster
Management Client to Create a Backup”). This is equal to the number of data nodes in the cluster at
the time that the backup was created.

Note

Before using ndb_restore, it is recommended that the cluster be running in
single user mode, unless you are restoring multiple data nodes in parallel. See
Section 25.6.6, “NDB Cluster Single User Mode”, for more information.

Options that can be used with ndb_restore are shown in the following table. Additional descriptions
follow the table.

Table 25.42 Command-line options used with the program ndb_restore

Format Description Added, Deprecated, or
Removed

--allow-pk-changes[=0|1] Allow changes to set of columns
making up table's primary key

ADDED: NDB 8.0.21

--append Append data to tab-delimited file (Supported in all NDB releases
based on MySQL 8.0)

--backup-
password=password

Supply a password for decrypting
an encrypted backup with --
decrypt; see documentation for
allowed values

ADDED: NDB 8.0.22

--backup-password-from-
stdin

Get decryption password in a
secure fashion from STDIN; use
together with --decrypt option

ADDED: NDB 8.0.24

--backup-path=path Path to backup files directory (Supported in all NDB releases
based on MySQL 8.0)

--backupid=#,

-b #

Restore from backup having this
ID

(Supported in all NDB releases
based on MySQL 8.0)

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--
connect=connection_string,

Alias for --connectstring (Supported in all NDB releases
based on MySQL 8.0)

4582

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

-c connection_string

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--decrypt Decrypt an encrypted backup;
requires --backup-password

ADDED: NDB 8.0.22

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--disable-indexes Causes indexes from backup to
be ignored; may decrease time
needed to restore data

(Supported in all NDB releases
based on MySQL 8.0)

--dont-ignore-systab-0,

-f

Do not ignore system table
during restore; experimental
only; not for production use

(Supported in all NDB releases
based on MySQL 8.0)

--exclude-databases=list List of one or more databases
to exclude (includes those not
named)

(Supported in all NDB releases
based on MySQL 8.0)

--exclude-intermediate-
sql-tables[=TRUE|FALSE]

Do not restore any intermediate
tables (having names prefixed
with '#sql-') that were left over
from copying ALTER TABLE
operations; specify FALSE to
restore such tables

(Supported in all NDB releases
based on MySQL 8.0)

--exclude-missing-
columns

Causes columns from backup
version of table that are missing
from version of table in database
to be ignored

(Supported in all NDB releases
based on MySQL 8.0)

--exclude-missing-tables Causes tables from backup that
are missing from database to be
ignored

(Supported in all NDB releases
based on MySQL 8.0)

--exclude-tables=list List of one or more tables to
exclude (includes those in same
database that are not named);
each table reference must
include database name

(Supported in all NDB releases
based on MySQL 8.0)

--fields-enclosed-
by=char

Fields are enclosed by this
character

(Supported in all NDB releases
based on MySQL 8.0)

4583

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

--fields-optionally-
enclosed-by

Fields are optionally enclosed by
this character

(Supported in all NDB releases
based on MySQL 8.0)

--fields-terminated-
by=char

Fields are terminated by this
character

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--hex Print binary types in hexadecimal
format

(Supported in all NDB releases
based on MySQL 8.0)

--ignore-extended-pk-
updates[=0|1]

Ignore log entries containing
updates to columns now included
in extended primary key

ADDED: NDB 8.0.21

--include-databases=list List of one or more databases
to restore (excludes those not
named)

(Supported in all NDB releases
based on MySQL 8.0)

--include-stored-grants Restore shared users and grants
to ndb_sql_metadata table

ADDED: NDB 8.0.19

--include-tables=list List of one or more tables to
restore (excludes those in same
database that are not named);
each table reference must
include database name

(Supported in all NDB releases
based on MySQL 8.0)

--lines-terminated-
by=char

Lines are terminated by this
character

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--lossy-conversions,

-L

Allow lossy conversions of
column values (type demotions
or changes in sign) when
restoring data from backup

(Supported in all NDB releases
based on MySQL 8.0)

--no-binlog If mysqld is connected and
using binary logging, do not log
restored data

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--no-restore-disk-
objects,

-d

Do not restore objects relating to
Disk Data

(Supported in all NDB releases
based on MySQL 8.0)

--no-upgrade,

-u

Do not upgrade array type for
varsize attributes which do not
already resize VAR data, and do
not change column attributes

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in

(Supported in all NDB releases
based on MySQL 8.0)

4584

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

NDB_CONNECTSTRING and
my.cnf

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodegroup-map=map,

-z

Specify node group map;
unused, unsupported

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--nodeid=#,

-n #

ID of node where backup was
taken

(Supported in all NDB releases
based on MySQL 8.0)

--num-slices=# Number of slices to apply when
restoring by slice

ADDED: NDB 8.0.20

--parallelism=#,

-p #

Number of parallel transactions
to use while restoring data

(Supported in all NDB releases
based on MySQL 8.0)

--preserve-trailing-
spaces,

-P

Allow preservation of trailing
spaces (including padding) when
promoting fixed-width string
types to variable-width types

(Supported in all NDB releases
based on MySQL 8.0)

--print Print metadata, data, and log to
stdout (equivalent to --print-meta
--print-data --print-log)

(Supported in all NDB releases
based on MySQL 8.0)

--print-data Print data to stdout (Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--print-log Print log to stdout (Supported in all NDB releases
based on MySQL 8.0)

--print-meta Print metadata to stdout (Supported in all NDB releases
based on MySQL 8.0)

--print-sql-log Write SQL log to stdout (Supported in all NDB releases
based on MySQL 8.0)

--progress-frequency=# Print status of restore each given
number of seconds

(Supported in all NDB releases
based on MySQL 8.0)

--promote-attributes,

-A

Allow attributes to be promoted
when restoring data from backup

(Supported in all NDB releases
based on MySQL 8.0)

--rebuild-indexes Causes multithreaded rebuilding
of ordered indexes found in
backup; number of threads

(Supported in all NDB releases
based on MySQL 8.0)

4585

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

used is determined by setting
BuildIndexThreads

--remap-column=string Apply offset to value of specified
column using indicated function
and arguments. Format is
[db].[tbl].[col]:[fn]:[args]; see
documentation for details

ADDED: NDB 8.0.21

--restore-data,

-r

Restore table data and logs into
NDB Cluster using NDB API

(Supported in all NDB releases
based on MySQL 8.0)

--restore-epoch,

-e

Restore epoch info into
status table; useful on replica
cluster for starting replication;
updates or inserts row in
mysql.ndb_apply_status with ID
0

(Supported in all NDB releases
based on MySQL 8.0)

--restore-meta,

-m

Restore metadata to NDB
Cluster using NDB API

(Supported in all NDB releases
based on MySQL 8.0)

--restore-privilege-
tables

Restore MySQL privilege tables
that were previously moved to
NDB

DEPRECATED: NDB 8.0.16

--rewrite-
database=string

Restore to differently named
database; format is olddb,newdb

(Supported in all NDB releases
based on MySQL 8.0)

--skip-broken-objects Ignore missing blob tables in
backup file

(Supported in all NDB releases
based on MySQL 8.0)

--skip-table-check,

-s

Skip table structure check during
restore

(Supported in all NDB releases
based on MySQL 8.0)

--skip-unknown-objects Causes schema objects not
recognized by ndb_restore to be
ignored when restoring backup
made from newer NDB version to
older version

(Supported in all NDB releases
based on MySQL 8.0)

--slice-id=# Slice ID, when restoring by slices ADDED: NDB 8.0.20

--tab=path,

-T path

Creates a tab-separated .txt file
for each table in path provided

(Supported in all NDB releases
based on MySQL 8.0)

--timestamp-
printouts{=true|false}

Prefix all info, error, and debug
log messages with timestamps

ADDED: NDB 8.0.33

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose=# Level of verbosity in output (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--with-apply-status Restore the ndb_apply_status
table. Requires --restore-data

ADDED: NDB 8.0.29

4586

ndb_restore — Restore an NDB Cluster Backup

• --allow-pk-changes

Command-Line Format --allow-pk-changes[=0|1]

Introduced 8.0.21-ndb-8.0.21

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

When this option is set to 1, ndb_restore allows the primary keys in a table definition to differ from
that of the same table in the backup. This may be desirable when backing up and restoring between
different schema versions with primary key changes on one or more tables, and it appears that
performing the restore operation using ndb_restore is simpler or more efficient than issuing many
ALTER TABLE statements after restoring table schemas and data.

The following changes in primary key definitions are supported by --allow-pk-changes:

• Extending the primary key: A non-nullable column that exists in the table schema in the backup
becomes part of the table's primary key in the database.

Important

When extending a table's primary key, any columns which become part
of primary key must not be updated while the backup is being taken; any
such updates discovered by ndb_restore cause the restore operation to
fail, even when no change in value takes place. In some cases, it may be
possible to override this behavior using the --ignore-extended-pk-
updates option; see the description of this option for more information.

• Contracting the primary key (1): A column that is already part of the table's primary key in the
backup schema is no longer part of the primary key, but remains in the table.

• Contracting the primary key (2): A column that is already part of the table's primary key in the
backup schema is removed from the table entirely.

These differences can be combined with other schema differences supported by ndb_restore,
including changes to blob and text columns requiring the use of staging tables.

Basic steps in a typical scenario using primary key schema changes are listed here:

1. Restore table schemas using ndb_restore --restore-meta

2. Alter schema to that desired, or create it

3. Back up the desired schema

4. Run ndb_restore --disable-indexes using the backup from the previous step, to drop
indexes and constraints

5. Run ndb_restore --allow-pk-changes (possibly along with --ignore-extended-pk-
updates, --disable-indexes, and possibly other options as needed) to restore all data

6. Run ndb_restore --rebuild-indexes using the backup made with the desired schema, to
rebuild indexes and constraints

When extending the primary key, it may be necessary for ndb_restore to use a temporary
secondary unique index during the restore operation to map from the old primary key to the new one.
Such an index is created only when necessary to apply events from the backup log to a table which

4587

ndb_restore — Restore an NDB Cluster Backup

has an extended primary key. This index is named NDB$RESTORE_PK_MAPPING, and is created
on each table requiring it; it can be shared, if necessary, by multiple instances of ndb_restore
instances running in parallel. (Running ndb_restore --rebuild-indexes at the end of the
restore process causes this index to be dropped.)

• --append

Command-Line Format --append

When used with the --tab and --print-data options, this causes the data to be appended to any
existing files having the same names.

• --backup-path=dir_name

Command-Line Format --backup-path=path

Type Directory name

Default Value ./

The path to the backup directory is required; this is supplied to ndb_restore using the --backup-
path option, and must include the subdirectory corresponding to the ID backup of the backup to be
restored. For example, if the data node's DataDir is /var/lib/mysql-cluster, then the backup
directory is /var/lib/mysql-cluster/BACKUP, and the backup files for the backup with the ID
3 can be found in /var/lib/mysql-cluster/BACKUP/BACKUP-3. The path may be absolute
or relative to the directory in which the ndb_restore executable is located, and may be optionally
prefixed with backup-path=.

It is possible to restore a backup to a database with a different configuration than it was created from.
For example, suppose that a backup with backup ID 12, created in a cluster with two storage nodes
having the node IDs 2 and 3, is to be restored to a cluster with four nodes. Then ndb_restore
must be run twice—once for each storage node in the cluster where the backup was taken. However,
ndb_restore cannot always restore backups made from a cluster running one version of MySQL to
a cluster running a different MySQL version. See Section 25.3.7, “Upgrading and Downgrading NDB
Cluster”, for more information.

Important

It is not possible to restore a backup made from a newer version of NDB
Cluster using an older version of ndb_restore. You can restore a backup
made from a newer version of MySQL to an older cluster, but you must use a
copy of ndb_restore from the newer NDB Cluster version to do so.

For example, to restore a cluster backup taken from a cluster running NDB
Cluster 8.0.42 to a cluster running NDB Cluster 7.6.34, you must use the
ndb_restore that comes with the NDB Cluster 7.6.34 distribution.

For more rapid restoration, the data may be restored in parallel, provided that there is a sufficient
number of cluster connections available. That is, when restoring to multiple nodes in parallel,
you must have an [api] or [mysqld] section in the cluster config.ini file available for each
concurrent ndb_restore process. However, the data files must always be applied before the logs.

• --backup-password=password

Command-Line Format --backup-password=password

Introduced 8.0.22-ndb-8.0.22

Type String

4588

ndb_restore — Restore an NDB Cluster Backup

Default Value [none]

This option specifies a password to be used when decrypting an encrypted backup with the --
decrypt option. This must be the same password that was used to encrypt the backup.

The password must be 1 to 256 characters in length, and must be enclosed by single or double
quotation marks. It can contain any of the ASCII characters having character codes 32, 35, 38,
40-91, 93, 95, and 97-126; in other words, it can use any printable ASCII characters except for !, ',
", $, %, \, and ^.

In MySQL 8.0.24 and later, it is possible to omit the password, in which case ndb_restore waits for
it to be supplied from stdin, as when using --backup-password-from-stdin.

• --backup-password-from-stdin[=TRUE|FALSE]

Command-Line Format --backup-password-from-stdin

Introduced 8.0.24-ndb-8.0.24

When used in place of --backup-password, this option enables input of the backup password
from the system shell (stdin), similar to how this is done when supplying the password interactively
to mysql when using the --password without supplying the password on the command line.

• --backupid=#, -b

Command-Line Format --backupid=#

Type Numeric

Default Value none

This option is used to specify the ID or sequence number of the backup, and is the same number
shown by the management client in the Backup backup_id completed message displayed
upon completion of a backup. (See Section 25.6.8.2, “Using The NDB Cluster Management Client to
Create a Backup”.)

Important

When restoring cluster backups, you must be sure to restore all data nodes
from backups having the same backup ID. Using files from different backups
results at best in restoring the cluster to an inconsistent state, and is likely to
fail altogether.

In NDB 8.0, this option is required.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --connect, -c

Command-Line Format --connect=connection_string

Type String

Default Value localhost:1186

Alias for --ndb-connectstring.

• --connect-retries

4589

ndb_restore — Restore an NDB Cluster Backup

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --decrypt

Command-Line Format --decrypt

Introduced 8.0.22-ndb-8.0.22

Decrypt an encrypted backup using the password supplied by the --backup-password option.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String
4590

ndb_restore — Restore an NDB Cluster Backup

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --disable-indexes

Command-Line Format --disable-indexes

Disable restoration of indexes during restoration of the data from a native NDB backup. Afterwards,
you can restore indexes for all tables at once with multithreaded building of indexes using --
rebuild-indexes, which should be faster than rebuilding indexes concurrently for very large
tables.

In NDB 8.0.27 and later, this option also drops any foreign keys specified in the backup.

Prior to NDB 8.0.29, attempting to access from MySQL an NDB table for which one or more indexes
could not be found was always rejected with error 4243 Index not found. Beginning with NDB
8.0.29, it is possible for MySQL to open such a table, provided the query does not use any of the
affected indexes; otherwise the query is rejected with ER_NOT_KEYFILE. In the latter case, you can
temporarily work around the problem by executing an ALTER TABLE statement such as this one:

ALTER TABLE tbl ALTER INDEX idx INVISIBLE;

This causes MySQL to ignore the index idx on table tbl. See Primary Keys and Indexes, for more
information.

• --dont-ignore-systab-0, -f

Command-Line Format --dont-ignore-systab-0

Normally, when restoring table data and metadata, ndb_restore ignores the copy of the NDB
system table that is present in the backup. --dont-ignore-systab-0 causes the system table
to be restored. This option is intended for experimental and development use only, and is not
recommended in a production environment.

• --exclude-databases=db-list

Command-Line Format --exclude-databases=list

Type String

Default Value

Comma-delimited list of one or more databases which should not be restored.

This option is often used in combination with --exclude-tables; see that option's description for
further information and examples.

• --exclude-intermediate-sql-tables[=TRUE|FALSE]

Command-Line Format --exclude-intermediate-sql-
tables[=TRUE|FALSE]

4591

https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4243
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_keyfile

ndb_restore — Restore an NDB Cluster Backup

Type Boolean

Default Value TRUE

When performing copying ALTER TABLE operations, mysqld creates intermediate tables (whose
names are prefixed with #sql-). When TRUE, the --exclude-intermediate-sql-tables
option keeps ndb_restore from restoring such tables that may have been left over from these
operations. This option is TRUE by default.

• --exclude-missing-columns

Command-Line Format --exclude-missing-columns

It is possible to restore only selected table columns using this option, which causes ndb_restore
to ignore any columns missing from tables being restored as compared to the versions of those
tables found in the backup. This option applies to all tables being restored. If you wish to apply this
option only to selected tables or databases, you can use it in combination with one or more of the --
include-* or --exclude-* options described elsewhere in this section to do so, then restore data
to the remaining tables using a complementary set of these options.

• --exclude-missing-tables

Command-Line Format --exclude-missing-tables

It is possible to restore only selected tables using this option, which causes ndb_restore to ignore
any tables from the backup that are not found in the target database.

• --exclude-tables=table-list

Command-Line Format --exclude-tables=list

Type String

Default Value

List of one or more tables to exclude; each table reference must include the database name. Often
used together with --exclude-databases.

When --exclude-databases or --exclude-tables is used, only those databases or tables
named by the option are excluded; all other databases and tables are restored by ndb_restore.

This table shows several invocations of ndb_restore using --exclude-* options (other options
possibly required have been omitted for clarity), and the effects these options have on restoring from
an NDB Cluster backup:

Table 25.43 Several invocations of ndb_restore using --exclude-* options, and the effects
these options have on restoring from an NDB Cluster backup.

Option Result

--exclude-databases=db1 All tables in all databases except db1 are
restored; no tables in db1 are restored

--exclude-databases=db1,db2 (or --
exclude-databases=db1 --exclude-
databases=db2)

All tables in all databases except db1 and
db2 are restored; no tables in db1 or db2 are
restored

--exclude-tables=db1.t1 All tables except t1 in database db1 are
restored; all other tables in db1 are restored; all
tables in all other databases are restored

--exclude-tables=db1.t2,db2.t1 (or
--exclude-tables=db1.t2 --exclude-
tables=db2.t1)

All tables in database db1 except for t2 and
all tables in database db2 except for table t1
are restored; no other tables in db1 or db2 are

4592

ndb_restore — Restore an NDB Cluster Backup

Option Result
restored; all tables in all other databases are
restored

You can use these two options together. For example, the following causes all tables in all databases
except for databases db1 and db2, and tables t1 and t2 in database db3, to be restored:

$> ndb_restore [...] --exclude-databases=db1,db2 --exclude-tables=db3.t1,db3.t2

(Again, we have omitted other possibly necessary options in the interest of clarity and brevity from
the example just shown.)

You can use --include-* and --exclude-* options together, subject to the following rules:

• The actions of all --include-* and --exclude-* options are cumulative.

• All --include-* and --exclude-* options are evaluated in the order passed to ndb_restore,
from right to left.

• In the event of conflicting options, the first (rightmost) option takes precedence. In other words, the
first option (going from right to left) that matches against a given database or table “wins”.

For example, the following set of options causes ndb_restore to restore all tables from database
db1 except db1.t1, while restoring no other tables from any other databases:

--include-databases=db1 --exclude-tables=db1.t1

However, reversing the order of the options just given simply causes all tables from database db1 to
be restored (including db1.t1, but no tables from any other database), because the --include-
databases option, being farthest to the right, is the first match against database db1 and thus takes
precedence over any other option that matches db1 or any tables in db1:

--exclude-tables=db1.t1 --include-databases=db1

• --fields-enclosed-by=char

Command-Line Format --fields-enclosed-by=char

Type String

Default Value

Each column value is enclosed by the string passed to this option (regardless of data type; see the
description of --fields-optionally-enclosed-by).

• --fields-optionally-enclosed-by

Command-Line Format --fields-optionally-enclosed-by

Type String

Default Value

The string passed to this option is used to enclose column values containing character data (such as
CHAR, VARCHAR, BINARY, TEXT, or ENUM).

• --fields-terminated-by=char

Command-Line Format --fields-terminated-by=char

Type String

4593

ndb_restore — Restore an NDB Cluster Backup

Default Value \t (tab)

The string passed to this option is used to separate column values. The default value is a tab
character (\t).

• --help

Command-Line Format --help

Display help text and exit.

• --hex

Command-Line Format --hex

If this option is used, all binary values are output in hexadecimal format.

• --ignore-extended-pk-updates

Command-Line Format --ignore-extended-pk-updates[=0|1]

Introduced 8.0.21-ndb-8.0.21

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

When using --allow-pk-changes, columns which become part of a table's primary key must not
be updated while the backup is being taken; such columns should keep the same values from the
time values are inserted into them until the rows containing the values are deleted. If ndb_restore
encounters updates to these columns when restoring a backup, the restore fails. Because some
applications may set values for all columns when updating a row, even when some column values
are not changed, the backup may include log events appearing to update columns which are not
in fact modified. In such cases you can set --ignore-extended-pk-updates to 1, forcing
ndb_restore to ignore such updates.

Important

When causing these updates to be ignored, the user is responsible for
ensuring that there are no updates to the values of any columns that become
part of the primary key.

For more information, see the description of --allow-pk-changes.

• --include-databases=db-list

Command-Line Format --include-databases=list

Type String

Default Value

Comma-delimited list of one or more databases to restore. Often used together with --include-
tables; see the description of that option for further information and examples.

• --include-stored-grants

Command-Line Format --include-stored-grants

Introduced 8.0.19-ndb-8.0.19

4594

ndb_restore — Restore an NDB Cluster Backup

In NDB 8.0, ndb_restore does not by default restore shared users and grants
(see Section 25.6.13, “Privilege Synchronization and NDB_STORED_USER”) to the
ndb_sql_metadata table. Specifying this option causes it to do so.

• --include-tables=table-list

Command-Line Format --include-tables=list

Type String

Default Value

Comma-delimited list of tables to restore; each table reference must include the database name.

When --include-databases or --include-tables is used, only those databases or tables
named by the option are restored; all other databases and tables are excluded by ndb_restore,
and are not restored.

The following table shows several invocations of ndb_restore using --include-* options (other
options possibly required have been omitted for clarity), and the effects these have on restoring from
an NDB Cluster backup:

Table 25.44 Several invocations of ndb_restore using --include-* options, and their effects on
restoring from an NDB Cluster backup.

Option Result

--include-databases=db1 Only tables in database db1 are restored; all
tables in all other databases are ignored

--include-databases=db1,db2 (or --
include-databases=db1 --include-
databases=db2)

Only tables in databases db1 and db2 are
restored; all tables in all other databases are
ignored

--include-tables=db1.t1 Only table t1 in database db1 is restored; no
other tables in db1 or in any other database are
restored

--include-tables=db1.t2,db2.t1 (or
--include-tables=db1.t2 --include-
tables=db2.t1)

Only the table t2 in database db1 and the table
t1 in database db2 are restored; no other tables
in db1, db2, or any other database are restored

You can also use these two options together. For example, the following causes all tables in
databases db1 and db2, together with the tables t1 and t2 in database db3, to be restored (and no
other databases or tables):

$> ndb_restore [...] --include-databases=db1,db2 --include-tables=db3.t1,db3.t2

(Again we have omitted other, possibly required, options in the example just shown.)

It also possible to restore only selected databases, or selected tables from a single database, without
any --include-* (or --exclude-*) options, using the syntax shown here:

ndb_restore other_options db_name,[db_name[,...] | tbl_name[,tbl_name][,...]]

In other words, you can specify either of the following to be restored:

• All tables from one or more databases

• One or more tables from a single database

4595

ndb_restore — Restore an NDB Cluster Backup

• --lines-terminated-by=char

Command-Line Format --lines-terminated-by=char

Type String

Default Value \n (linebreak)

Specifies the string used to end each line of output. The default is a linefeed character (\n).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --lossy-conversions, -L

Command-Line Format --lossy-conversions

This option is intended to complement the --promote-attributes option. Using --lossy-
conversions allows lossy conversions of column values (type demotions or changes in sign) when
restoring data from backup. With some exceptions, the rules governing demotion are the same as for
MySQL replication; see Replication of Columns Having Different Data Types, for information about
specific type conversions currently supported by attribute demotion.

Beginning with NDB 8.0.26, this option also makes it possible to restore a NULL column as NOT
NULL. The column must not contain any NULL entries; otherwise ndb_restore stops with an error.

ndb_restore reports any truncation of data that it performs during lossy conversions once per
attribute and column.

• --no-binlog

Command-Line Format --no-binlog

This option prevents any connected SQL nodes from writing data restored by ndb_restore to their
binary logs.

• --no-restore-disk-objects, -d

Command-Line Format --no-restore-disk-objects

This option stops ndb_restore from restoring any NDB Cluster Disk Data objects, such as
tablespaces and log file groups; see Section 25.6.11, “NDB Cluster Disk Data Tables”, for more
information about these.

• --no-upgrade, -u

Command-Line Format --no-upgrade

When using ndb_restore to restore a backup, VARCHAR columns created using the old fixed
format are resized and recreated using the variable-width format now employed. This behavior can
be overridden by specifying --no-upgrade.4596

ndb_restore — Restore an NDB Cluster Backup

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodegroup-map=map, -z

Command-Line Format --ndb-nodegroup-map=map

Intended for restoring a backup taken from one node group to a different node group, but never
completely implemented; unsupported.

All code supporting this option was removed in NDB 8.0.27; in this and later versions, any value set
for it is ignored, and the option itself does nothing.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --nodeid=#, -n

Command-Line Format --nodeid=#

Type Numeric

4597

ndb_restore — Restore an NDB Cluster Backup

Default Value none

Specify the node ID of the data node on which the backup was taken.

When restoring to a cluster with different number of data nodes from that where the backup was
taken, this information helps identify the correct set or sets of files to be restored to a given node. (In
such cases, multiple files usually need to be restored to a single data node.) See Section 25.5.23.2,
“Restoring to a different number of data nodes”, for additional information and examples.

In NDB 8.0, this option is required.

• --num-slices=#

Command-Line Format --num-slices=#

Introduced 8.0.20-ndb-8.0.20

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 1024

When restoring a backup by slices, this option sets the number of slices into which to divide the
backup. This allows multiple instances of ndb_restore to restore disjoint subsets in parallel,
potentially reducing the amount of time required to perform the restore operation.

A slice is a subset of the data in a given backup; that is, it is a set of fragments having the same slice
ID, specified using the --slice-id option. The two options must always be used together, and the
value set by --slice-id must always be less than the number of slices.

ndb_restore encounters fragments and assigns each one a fragment counter. When restoring
by slices, a slice ID is assigned to each fragment; this slice ID is in the range 0 to 1 less than the
number of slices. For a table that is not a BLOB table, the slice to which a given fragment belongs is
determined using the formula shown here:

[slice_ID] = [fragment_counter] % [number_of_slices]

For a BLOB table, a fragment counter is not used; the fragment number is used instead, along with
the ID of the main table for the BLOB table (recall that NDB stores BLOB values in a separate table
internally). In this case, the slice ID for a given fragment is calculated as shown here:

[slice_ID] =
([main_table_ID] + [fragment_ID]) % [number_of_slices]

Thus, restoring by N slices means running N instances of ndb_restore, all with --num-slices=N
(along with any other necessary options) and one each with --slice-id=1, --slice-id=2, --
slice-id=3, and so on through slice-id=N-1.

Example. Assume that you want to restore a backup named BACKUP-1, found in the default
directory /var/lib/mysql-cluster/BACKUP/BACKUP-3 on the node file system on each data
node, to a cluster with four data nodes having the node IDs 1, 2, 3, and 4. To perform this operation
using five slices, execute the sets of commands shown in the following list:

1. Restore the cluster metadata using ndb_restore as shown here:

$> ndb_restore -b 1 -n 1 -m --disable-indexes --backup-path=/home/ndbuser/backups

2. Restore the cluster data to the data nodes invoking ndb_restore as shown here:

$> ndb_restore -b 1 -n 1 -r --num-slices=5 --slice-id=0 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 1 -r --num-slices=5 --slice-id=1 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 1 -r --num-slices=5 --slice-id=2 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

4598

ndb_restore — Restore an NDB Cluster Backup

$> ndb_restore -b 1 -n 1 -r --num-slices=5 --slice-id=3 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 1 -r --num-slices=5 --slice-id=4 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

$> ndb_restore -b 1 -n 2 -r --num-slices=5 --slice-id=0 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 2 -r --num-slices=5 --slice-id=1 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 2 -r --num-slices=5 --slice-id=2 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 2 -r --num-slices=5 --slice-id=3 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 2 -r --num-slices=5 --slice-id=4 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

$> ndb_restore -b 1 -n 3 -r --num-slices=5 --slice-id=0 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 3 -r --num-slices=5 --slice-id=1 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 3 -r --num-slices=5 --slice-id=2 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 3 -r --num-slices=5 --slice-id=3 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 3 -r --num-slices=5 --slice-id=4 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

$> ndb_restore -b 1 -n 4 -r --num-slices=5 --slice-id=0 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 4 -r --num-slices=5 --slice-id=1 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 4 -r --num-slices=5 --slice-id=2 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 4 -r --num-slices=5 --slice-id=3 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 4 -r --num-slices=5 --slice-id=4 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

All of the commands just shown in this step can be executed in parallel, provided there are
enough slots for connections to the cluster (see the description for the --backup-path option).

3. Restore indexes as usual, as shown here:

$> ndb_restore -b 1 -n 1 --rebuild-indexes --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

4. Finally, restore the epoch, using the command shown here:

$> ndb_restore -b 1 -n 1 --restore-epoch --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

You should use slicing to restore the cluster data only; it is not necessary to employ --num-slices
or --slice-id when restoring the metadata, indexes, or epoch information. If either or both of
these options are used with the ndb_restore options controlling restoration of these, the program
ignores them.

The effects of using the --parallelism option on the speed of restoration are independent of
those produced by slicing or parallel restoration using multiple instances of ndb_restore (--
parallelism specifies the number of parallel transactions executed by a single ndb_restore
thread), but it can be used together with either or both of these. You should be aware that increasing
--parallelism causes ndb_restore to impose a greater load on the cluster; if the system can
handle this, restoration should complete even more quickly.

The value of --num-slices is not directly dependent on values relating to hardware such as
number of CPUs or CPU cores, amount of RAM, and so forth, nor does it depend on the number of
LDMs.

It is possible to employ different values for this option on different data nodes as part of the same
restoration; doing so should not in and of itself produce any ill effects.

• --parallelism=#, -p

Command-Line Format --parallelism=#

Type Numeric

Default Value 128

Minimum Value 1

4599

ndb_restore — Restore an NDB Cluster Backup

Maximum Value 1024

ndb_restore uses single-row transactions to apply many rows concurrently. This parameter
determines the number of parallel transactions (concurrent rows) that an instance of ndb_restore
tries to use. By default, this is 128; the minimum is 1, and the maximum is 1024.

The work of performing the inserts is parallelized across the threads in the data nodes involved. This
mechanism is employed for restoring bulk data from the .Data file—that is, the fuzzy snapshot of
the data; it is not used for building or rebuilding indexes. The change log is applied serially; index
drops and builds are DDL operations and handled separately. There is no thread-level parallelism on
the client side of the restore.

• --preserve-trailing-spaces, -P

Command-Line Format --preserve-trailing-spaces

Cause trailing spaces to be preserved when promoting a fixed-width character data type to its
variable-width equivalent—that is, when promoting a CHAR column value to VARCHAR, or a BINARY
column value to VARBINARY. Otherwise, any trailing spaces are dropped from such column values
when they are inserted into the new columns.

Note

Although you can promote CHAR columns to VARCHAR and BINARY
columns to VARBINARY, you cannot promote VARCHAR columns to CHAR or
VARBINARY columns to BINARY.

• --print

Command-Line Format --print

Causes ndb_restore to print all data, metadata, and logs to stdout. Equivalent to using the --
print-data, --print-meta, and --print-log options together.

Note

Use of --print or any of the --print_* options is in effect performing
a dry run. Including one or more of these options causes any output to be
redirected to stdout; in such cases, ndb_restore makes no attempt to
restore data or metadata to an NDB Cluster.

• --print-data

Command-Line Format --print-data

Cause ndb_restore to direct its output to stdout. Often used together with one or more of --tab,
--fields-enclosed-by, --fields-optionally-enclosed-by, --fields-terminated-
by, --hex, and --append.

TEXT and BLOB column values are always truncated. Such values are truncated to the first 256 bytes
in the output. This cannot currently be overridden when using --print-data.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.4600

ndb_restore — Restore an NDB Cluster Backup

• --print-log

Command-Line Format --print-log

Cause ndb_restore to output its log to stdout.

• --print-meta

Command-Line Format --print-meta

Print all metadata to stdout.

• print-sql-log

Command-Line Format --print-sql-log

Log SQL statements to stdout. Use the option to enable; normally this behavior is disabled. The
option checks before attempting to log whether all the tables being restored have explicitly defined
primary keys; queries on a table having only the hidden primary key implemented by NDB cannot be
converted to valid SQL.

This option does not work with tables having BLOB columns.

• --progress-frequency=N

Command-Line Format --progress-frequency=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 65535

Print a status report each N seconds while the backup is in progress. 0 (the default) causes no status
reports to be printed. The maximum is 65535.

• --promote-attributes, -A

Command-Line Format --promote-attributes

ndb_restore supports limited attribute promotion in much the same way that it is supported
by MySQL replication; that is, data backed up from a column of a given type can generally be
restored to a column using a “larger, similar” type. For example, data from a CHAR(20) column
can be restored to a column declared as VARCHAR(20), VARCHAR(30), or CHAR(30); data
from a MEDIUMINT column can be restored to a column of type INT or BIGINT. See Replication
of Columns Having Different Data Types, for a table of type conversions currently supported by
attribute promotion.

Beginning with NDB 8.0.26, this option also makes it possible to restore a NOT NULL column as
NULL.

Attribute promotion by ndb_restore must be enabled explicitly, as follows:

1. Prepare the table to which the backup is to be restored. ndb_restore cannot be used to re-
create the table with a different definition from the original; this means that you must either create

4601

ndb_restore — Restore an NDB Cluster Backup

the table manually, or alter the columns which you wish to promote using ALTER TABLE after
restoring the table metadata but before restoring the data.

2. Invoke ndb_restore with the --promote-attributes option (short form -A) when restoring
the table data. Attribute promotion does not occur if this option is not used; instead, the restore
operation fails with an error.

When converting between character data types and TEXT or BLOB, only conversions between
character types (CHAR and VARCHAR) and binary types (BINARY and VARBINARY) can be performed
at the same time. For example, you cannot promote an INT column to BIGINT while promoting a
VARCHAR column to TEXT in the same invocation of ndb_restore.

Converting between TEXT columns using different character sets is not supported, and is expressly
disallowed.

When performing conversions of character or binary types to TEXT or BLOB with ndb_restore, you
may notice that it creates and uses one or more staging tables named table_name$STnode_id.
These tables are not needed afterwards, and are normally deleted by ndb_restore following a
successful restoration.

• --rebuild-indexes

Command-Line Format --rebuild-indexes

Enable multithreaded rebuilding of the ordered indexes while restoring a native NDB backup. The
number of threads used for building ordered indexes by ndb_restore with this option is controlled
by the BuildIndexThreads data node configuration parameter and the number of LDMs.

It is necessary to use this option only for the first run of ndb_restore; this causes all ordered
indexes to be rebuilt without using --rebuild-indexes again when restoring subsequent nodes.
You should use this option prior to inserting new rows into the database; otherwise, it is possible for
a row to be inserted that later causes a unique constraint violation when trying to rebuild the indexes.

Building of ordered indices is parallelized with the number of LDMs by default. Offline index builds
performed during node and system restarts can be made faster using the BuildIndexThreads
data node configuration parameter; this parameter has no effect on dropping and rebuilding of
indexes by ndb_restore, which is performed online.

Rebuilding of unique indexes uses disk write bandwidth for redo logging and local checkpointing.
An insufficient amount of this bandwidth can lead to redo buffer overload or log overload errors. In
such cases you can run ndb_restore --rebuild-indexes again; the process resumes at the
point where the error occurred. You can also do this when you have encountered temporary errors.
You can repeat execution of ndb_restore --rebuild-indexes indefinitely; you may be able
to stop such errors by reducing the value of --parallelism. If the problem is insufficient space,
you can increase the size of the redo log (FragmentLogFileSize node configuration parameter),
or you can increase the speed at which LCPs are performed (MaxDiskWriteSpeed and related
parameters), in order to free space more quickly.

• --remap-column=db.tbl.col:fn:args

Command-Line Format --remap-column=string

Introduced 8.0.21-ndb-8.0.21

Type String

4602

ndb_restore — Restore an NDB Cluster Backup

Default Value [none]

When used together with --restore-data, this option applies a function to the value of the
indicated column. Values in the argument string are listed here:

• db: Database name, following any renames performed by --rewrite-database.

• tbl: Table name.

• col: Name of the column to be updated. This column must be of type INT or BIGINT. The column
can also be but is not required to be UNSIGNED.

• fn: Function name; currently, the only supported name is offset.

• args: Arguments supplied to the function. Currently, only a single argument, the size of the offset
to be added by the offset function, is supported. Negative values are supported. The size of
the argument cannot exceed that of the signed variant of the column's type; for example, if col
is an INT column, then the allowed range of the argument passed to the offset function is
-2147483648 to 2147483647 (see Section 13.1.2, “Integer Types (Exact Value) - INTEGER,
INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT”).

If applying the offset value to the column would cause an overflow or underflow, the restore
operation fails. This could happen, for example, if the column is a BIGINT, and the option
attempts to apply an offset value of 8 on a row in which the column value is 4294967291, since
4294967291 + 8 = 4294967299 > 4294967295.

This option can be useful when you wish to merge data stored in multiple source instances of NDB
Cluster (all using the same schema) into a single destination NDB Cluster, using NDB native backup
(see Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”) and
ndb_restore to merge the data, where primary and unique key values are overlapping between
source clusters, and it is necessary as part of the process to remap these values to ranges that do
not overlap. It may also be necessary to preserve other relationships between tables. To fulfill such
requirements, it is possible to use the option multiple times in the same invocation of ndb_restore
to remap columns of different tables, as shown here:

$> ndb_restore --restore-data --remap-column=hr.employee.id:offset:1000 \
 --remap-column=hr.manager.id:offset:1000 --remap-column=hr.firstaiders.id:offset:1000

(Other options not shown here may also be used.)

--remap-column can also be used to update multiple columns of the same table. Combinations
of multiple tables and columns are possible. Different offset values can also be used for different
columns of the same table, like this:

$> ndb_restore --restore-data --remap-column=hr.employee.salary:offset:10000 \
 --remap-column=hr.employee.hours:offset:-10

When source backups contain duplicate tables which should not be merged, you can handle this by
using --exclude-tables, --exclude-databases, or by some other means in your application.

Information about the structure and other characteristics of tables to be merged can obtained using
SHOW CREATE TABLE; the ndb_desc tool; and MAX(), MIN(), LAST_INSERT_ID(), and other
MySQL functions.

Replication of changes from merged to unmerged tables, or from unmerged to merged tables, in
separate instances of NDB Cluster is not supported.

4603

ndb_restore — Restore an NDB Cluster Backup

• --restore-data, -r

Command-Line Format --restore-data

Output NDB table data and logs.

• --restore-epoch, -e

Command-Line Format --restore-epoch

Add (or restore) epoch information to the cluster replication status table. This is useful for
starting replication on an NDB Cluster replica. When this option is used, the row in the
mysql.ndb_apply_status having 0 in the id column is updated if it already exists; such a row
is inserted if it does not already exist. (See Section 25.7.9, “NDB Cluster Backups With NDB Cluster
Replication”.)

• --restore-meta, -m

Command-Line Format --restore-meta

This option causes ndb_restore to print NDB table metadata.

The first time you run the ndb_restore restoration program, you also need to restore the metadata.
In other words, you must re-create the database tables—this can be done by running it with the --
restore-meta (-m) option. Restoring the metadata need be done only on a single data node; this
is sufficient to restore it to the entire cluster.

In older versions of NDB Cluster, tables whose schemas were restored using this option used the
same number of partitions as they did on the original cluster, even if it had a differing number of
data nodes from the new cluster. In NDB 8.0, when restoring metadata, this is no longer an issue;
ndb_restore now uses the default number of partitions for the target cluster, unless the number of
local data manager threads is also changed from what it was for data nodes in the original cluster.

When using this option in NDB 8.0, it is recommended that auto synchronization be disabled by
setting ndb_metadata_check=OFF until ndb_restore has completed restoring the metadata,
after which it can it turned on again to synchronize objects newly created in the NDB dictionary.

Note

The cluster should have an empty database when starting to restore a
backup. (In other words, you should start the data nodes with --initial
prior to performing the restore.)

• --restore-privilege-tables

Command-Line Format --restore-privilege-tables

Deprecated 8.0.16-ndb-8.0.16

ndb_restore does not by default restore distributed MySQL privilege tables created in releases
of NDB Cluster prior to version 8.0, which does not support distributed privileges as implemented in
NDB 7.6 and earlier. This option causes ndb_restore to restore them.

In NDB 8.0, such tables are not used for access control; as part of the MySQL server's upgrade
process, the server creates InnoDB copies of these tables local to itself. For more information, see
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”, as well as Section 8.2.3, “Grant Tables”.

• --rewrite-database=olddb,newdb

Command-Line Format --rewrite-database=string

4604

ndb_restore — Restore an NDB Cluster Backup

Type String

Default Value none

This option makes it possible to restore to a database having a different name from that used in the
backup. For example, if a backup is made of a database named products, you can restore the
data it contains to a database named inventory, use this option as shown here (omitting any other
options that might be required):

$> ndb_restore --rewrite-database=product,inventory

The option can be employed multiple times in a single invocation of ndb_restore. Thus it is
possible to restore simultaneously from a database named db1 to a database named db2 and from
a database named db3 to one named db4 using --rewrite-database=db1,db2 --rewrite-
database=db3,db4. Other ndb_restore options may be used between multiple occurrences of
--rewrite-database.

In the event of conflicts between multiple --rewrite-database options, the last --rewrite-
database option used, reading from left to right, is the one that takes effect. For example,
if --rewrite-database=db1,db2 --rewrite-database=db1,db3 is used, only --
rewrite-database=db1,db3 is honored, and --rewrite-database=db1,db2 is ignored.
It is also possible to restore from multiple databases to a single database, so that --rewrite-
database=db1,db3 --rewrite-database=db2,db3 restores all tables and data from
databases db1 and db2 into database db3.

Important

When restoring from multiple backup databases into a single target database
using --rewrite-database, no check is made for collisions between
table or other object names, and the order in which rows are restored is
not guaranteed. This means that it is possible in such cases for rows to be
overwritten and updates to be lost.

• --skip-broken-objects

Command-Line Format --skip-broken-objects

This option causes ndb_restore to ignore corrupt tables while reading a native NDB backup, and
to continue restoring any remaining tables (that are not also corrupted). Currently, the --skip-
broken-objects option works only in the case of missing blob parts tables.

• --skip-table-check, -s

Command-Line Format --skip-table-check

It is possible to restore data without restoring table metadata. By default when doing this,
ndb_restore fails with an error if a mismatch is found between the table data and the table
schema; this option overrides that behavior.

Some of the restrictions on mismatches in column definitions when restoring data using
ndb_restore are relaxed; when one of these types of mismatches is encountered, ndb_restore
does not stop with an error as it did previously, but rather accepts the data and inserts it into the
target table while issuing a warning to the user that this is being done. This behavior occurs whether

4605

ndb_restore — Restore an NDB Cluster Backup

or not either of the options --skip-table-check or --promote-attributes is in use. These
differences in column definitions are of the following types:

• Different COLUMN_FORMAT settings (FIXED, DYNAMIC, DEFAULT)

• Different STORAGE settings (MEMORY, DISK)

• Different default values

• Different distribution key settings

• --skip-unknown-objects

Command-Line Format --skip-unknown-objects

This option causes ndb_restore to ignore any schema objects it does not recognize while reading
a native NDB backup. This can be used for restoring a backup made from a cluster running (for
example) NDB 7.6 to a cluster running NDB Cluster 7.5.

• --slice-id=#

Command-Line Format --slice-id=#

Introduced 8.0.20-ndb-8.0.20

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1023

When restoring by slices, this is the ID of the slice to restore. This option is always used together
with --num-slices, and its value must be always less than that of --num-slices.

For more information, see the description of the --num-slices elsewhere in this section.

• --tab=dir_name, -T dir_name

Command-Line Format --tab=path

Type Directory name

Causes --print-data to create dump files, one per table, each named tbl_name.txt. It
requires as its argument the path to the directory where the files should be saved; use . for the
current directory.

• --timestamp-printouts

Command-Line Format --timestamp-printouts{=true|false}

Introduced 8.0.33-ndb-8.0.33

Type Boolean

Default Value true

Causes info, error, and debug log messages to be prefixed with timestamps.

This option is enabled by default in NDB 8.0. Disable it with --timestamp-printouts=false.

4606

ndb_restore — Restore an NDB Cluster Backup

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose=#

Command-Line Format --verbose=#

Type Numeric

Default Value 1

Minimum Value 0

Maximum Value 255

Sets the level for the verbosity of the output. The minimum is 0; the maximum is 255. The default
value is 1.

• --version

Command-Line Format --version

Display version information and exit.

• --with-apply-status

Command-Line Format --with-apply-status

Introduced 8.0.29-ndb-8.0.29

Restore all rows from the backup's ndb_apply_status table (except for the row having
server_id = 0, which is generated using --restore-epoch). This option requires that --
restore-data also be used.

If the ndb_apply_status table from the backup already contains a row with server_id =
0, ndb_restore --with-apply-status deletes it. For this reason, we recommend that you
use ndb_restore --restore-epoch after invoking ndb_restore with the --with-apply-
status option. You can also use --restore-epoch concurrently with the last of any invocations
of ndb_restore --with-apply-status used to restore the cluster.

For more information, see ndb_apply_status Table.

Typical options for this utility are shown here:

ndb_restore [-c connection_string] -n node_id -b backup_id \
 [-m] -r --backup-path=/path/to/backup/files

Normally, when restoring from an NDB Cluster backup, ndb_restore requires at a minimum the --
nodeid (short form: -n), --backupid (short form: -b), and --backup-path options.

The -c option is used to specify a connection string which tells ndb_restore where to locate the
cluster management server (see Section 25.4.3.3, “NDB Cluster Connection Strings”). If this option is
not used, then ndb_restore attempts to connect to a management server on localhost:1186.
This utility acts as a cluster API node, and so requires a free connection “slot” to connect to the cluster
management server. This means that there must be at least one [api] or [mysqld] section that can
be used by it in the cluster config.ini file. It is a good idea to keep at least one empty [api] or
[mysqld] section in config.ini that is not being used for a MySQL server or other application for
this reason (see Section 25.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”).

4607

ndb_restore — Restore an NDB Cluster Backup

In NDB 8.0.22 and later, ndb_restore can decrypt an encrypted backup using --decrypt and --
backup-password. Both options must be specified to perform decryption. See the documentation for
the START BACKUP management client command for information on creating encrypted backups.

You can verify that ndb_restore is connected to the cluster by using the SHOW command in the
ndb_mgm management client. You can also accomplish this from a system shell, as shown here:

$> ndb_mgm -e "SHOW"

Error reporting.
ndb_restore reports both temporary and permanent errors. In the case of temporary errors, it may
able to recover from them, and reports Restore successful, but encountered temporary
error, please look at configuration in such cases.

Important

After using ndb_restore to initialize an NDB Cluster for use in circular
replication, binary logs on the SQL node acting as the replica are not
automatically created, and you must cause them to be created manually. To
cause the binary logs to be created, issue a SHOW TABLES statement on that
SQL node before running START SLAVE. This is a known issue in NDB Cluster.

25.5.23.1 Restoring an NDB Backup to a Different Version of NDB Cluster

The following two sections provide information about restoring a native NDB backup to a different
version of NDB Cluster from the version in which the backup was taken.

In addition, you should consult Section 25.3.7, “Upgrading and Downgrading NDB Cluster”, for other
issues you may encounter when attempting to restore an NDB backup to a cluster running a different
version of the NDB software.

It is also advisable to review What is New in NDB Cluster 8.0, as well as Section 3.5, “Changes in
MySQL 8.0”, for other changes between NDB 8.0 and previous versions of NDB Cluster that may be
relevant to your particular circumstances.

Restoring an NDB backup to a previous version of NDB Cluster

You may encounter issues when restoring a backup taken from a later version of NDB Cluster to a
previous one, due to the use of features which do not exist in the earlier version. Some of these issues
are listed here:

• utf8mb4_ai_ci character set. Tables created in NDB 8.0 by default use the utf8mb4_ai_ci
character set, which is not available in NDB 7.6 and earlier, and so cannot be read by an
ndb_restore binary from one of these earlier versions. In such cases, it is necessary to alter any
tables using utf8mb4_ai_ci so that they use a character set supported in the older version prior to
performing the backup.

• Table metadata format. Due to changes in how the MySQL Server and NDB handle table
metadata, tables created or altered using the included MySQL server binary from NDB 8.0 cannot
be restored using ndb_restore to NDB 7.6 or an earlier version of NDB Cluster. Such tables use
.sdi files which are not understood by older versions of mysqld.

A backup taken in NDB 8.0 of tables which were created in NDB 7.6 or earlier, and which have not
been altered since upgrading to NDB 8.0, should be restorable to older versions of NDB Cluster.

Since it is possible to restore metadata and table data separately, you can in such cases restore
the table schemas from a dump made using mysqldump, or by executing the necessary CREATE
TABLE statements manually, then import only the table data using ndb_restore with the --
restore-data option.

• Multi-threaded backups. Multi-threaded backups taken in NDB 8.0 can be restored to an cluster
running an earlier version of NDB in either of the following two ways:

4608

ndb_restore — Restore an NDB Cluster Backup

• Using an ndb_restore binary from NDB 8.0, perform a parallel restore. See Restoring a parallel
backup in parallel.

• Restore the backups serially; in this case, a later version of ndb_restore is not required. See
Restoring a parallel backup serially.

• Encrypted backups. Encrypted backups created in NDB 8.0.22 and later cannot be restored
using ndb_restore from NDB 8.0.21 or earlier.

• NDB_STORED_USER privilege. The NDB_STORED_USER privilege is supported only in NDB 8.0.

• Maximum number of data nodes. NDB Cluster 8.0 supports up to 144 data nodes, while earlier
versions support a maximum of only 48 data nodes. See Restoring to Fewer Nodes Than the
Original, for information with situations in which this incompatibility causes an issue.

Restoring an NDB backup to a later version of NDB Cluster

In general, it should be possible to restore a backup created using the ndb_mgm client START
BACKUP command in an older version of NDB to a newer version, provided that you use the
ndb_restore binary that comes with the newer version. (It may be possible to use the older version
of ndb_restore, but this is not recommended.) Additional potential issues are listed here:

• When restoring the metadata from a backup (--restore-meta option), ndb_restore normally
attempts to reproduce the captured table schema exactly as it was when the backup was taken.

Tables created in versions of NDB prior to 8.0 use .frm files for their metadata. These files can be
read by the mysqld in NDB 8.0, which can use the information contained therein to create the .sdi
files used by the MySQL data dictionary in later versions.

• When restoring an older backup to a newer version of NDB, it may not be possible to take advantage
of newer features such as hashmap partitioning, greater number of hashmap buckets, read backup,
and different partitioning layouts. For this reason, it may be preferable to restore older schemas
using mysqldump and the mysql client, which allows NDB to make use of the new schema features.

• Tables using the old temporal types which did not support fractional seconds (used prior to MySQL
5.6.4 and NDB 7.3.31) cannot be restored to NDB 8.0 using ndb_restore. You can check such
tables using CHECK TABLE, and then upgrade them to the newer temporal column format, if
necessary, using REPAIR TABLE in the mysql client; this must be done prior to taking the backup.
See Section 3.6, “Preparing Your Installation for Upgrade”, for more information.

You also restore such tables using a dump created with mysqldump.

• Distributed grant tables created in NDB 7.6 and earlier are not supported in NDB 8.0. Such tables
can be restored to an NDB 8.0 cluster, but they have no effect on access control.

25.5.23.2 Restoring to a different number of data nodes

It is possible to restore from an NDB backup to a cluster having a different number of data nodes than
the original from which the backup was taken. The following two sections discuss, respectively, the
cases where the target cluster has a lesser or greater number of data nodes than the source of the
backup.

Restoring to Fewer Nodes Than the Original

You can restore to a cluster having fewer data nodes than the original provided that the larger number
of nodes is an even multiple of the smaller number. In the following example, we use a backup taken
on a cluster having four data nodes to a cluster having two data nodes.

1. The management server for the original cluster is on host host10. The original cluster has four
data nodes, with the node IDs and host names shown in the following extract from the management
server's config.ini file:

4609

ndb_restore — Restore an NDB Cluster Backup

[ndbd]
NodeId=2
HostName=host2

[ndbd]
NodeId=4
HostName=host4

[ndbd]
NodeId=6
HostName=host6

[ndbd]
NodeId=8
HostName=host8

We assume that each data node was originally started with ndbmtd --ndb-
connectstring=host10 or the equivalent.

2. Perform a backup in the normal manner. See Section 25.6.8.2, “Using The NDB Cluster
Management Client to Create a Backup”, for information about how to do this.

3. The files created by the backup on each data node are listed here, where N is the node ID and B is
the backup ID.

• BACKUP-B-0.N.Data

• BACKUP-B.N.ctl

• BACKUP-B.N.log

These files are found under BackupDataDir/BACKUP/BACKUP-B, on each data node. For the
rest of this example, we assume that the backup ID is 1.

Have all of these files available for later copying to the new data nodes (where they can be
accessed on the data node's local file system by ndb_restore). It is simplest to copy them all to a
single location; we assume that this is what you have done.

4. The management server for the target cluster is on host host20, and the target has two data
nodes, with the node IDs and host names shown, from the management server config.ini file
on host20:

[ndbd]
NodeId=3
hostname=host3

[ndbd]
NodeId=5
hostname=host5

Each of the data node processes on host3 and host5 should be started with ndbmtd -c host20
--initial or the equivalent, so that the new (target) cluster starts with clean data node file
systems.

5. Copy two different sets of two backup files to each of the target data nodes. For this example, copy
the backup files from nodes 2 and 4 from the original cluster to node 3 in the target cluster. These
files are listed here:

• BACKUP-1-0.2.Data

• BACKUP-1.2.ctl

• BACKUP-1.2.log

• BACKUP-1-0.4.Data

4610

ndb_restore — Restore an NDB Cluster Backup

• BACKUP-1.4.ctl

• BACKUP-1.4.log

Then copy the backup files from nodes 6 and 8 to node 5; these files are shown in the following list:

• BACKUP-1-0.6.Data

• BACKUP-1.6.ctl

• BACKUP-1.6.log

• BACKUP-1-0.8.Data

• BACKUP-1.8.ctl

• BACKUP-1.8.log

For the remainder of this example, we assume that the respective backup files have been saved to
the directory /BACKUP-1 on each of nodes 3 and 5.

6. On each of the two target data nodes, you must restore from both sets of backups. First, restore the
backups from nodes 2 and 4 to node 3 by invoking ndb_restore on host3 as shown here:

$> ndb_restore -c host20 --nodeid=2 --backupid=1 --restore-data --backup-path=/BACKUP-1

$> ndb_restore -c host20 --nodeid=4 --backupid=1 --restore-data --backup-path=/BACKUP-1

Then restore the backups from nodes 6 and 8 to node 5 by invoking ndb_restore on host5, like
this:

$> ndb_restore -c host20 --nodeid=6 --backupid=1 --restore-data --backup-path=/BACKUP-1

$> ndb_restore -c host20 --nodeid=8 --backupid=1 --restore-data --backup-path=/BACKUP-1

Restoring to More Nodes Than the Original

The node ID specified for a given ndb_restore command is that of the node in the original backup
and not that of the data node to restore it to. When performing a backup using the method described
in this section, ndb_restore connects to the management server and obtains a list of data nodes
in the cluster the backup is being restored to. The restored data is distributed accordingly, so that the
number of nodes in the target cluster does not need to be to be known or calculated when performing
the backup.

Note

When changing the total number of LCP threads or LQH threads per node
group, you should recreate the schema from backup created using mysqldump.

1. Create the backup of the data. You can do this by invoking the ndb_mgm client START BACKUP
command from the system shell, like this:

$> ndb_mgm -e "START BACKUP 1"

This assumes that the desired backup ID is 1.

2. Create a backup of the schema. This step is necessary only if the total number of LCP threads or
LQH threads per node group is changed.

$> mysqldump --no-data --routines --events --triggers --databases > myschema.sql

4611

ndb_restore — Restore an NDB Cluster Backup

Important

Once you have created the NDB native backup using ndb_mgm, you must
not make any schema changes before creating the backup of the schema, if
you do so.

3. Copy the backup directory to the new cluster. For example if the backup you want to restore has ID
1 and BackupDataDir = /backups/node_nodeid, then the path to the backup on this node is /
backups/node_1/BACKUP/BACKUP-1. Inside this directory there are three files, listed here:

• BACKUP-1-0.1.Data

• BACKUP-1.1.ctl

• BACKUP-1.1.log

You should copy the entire directory to the new node.

If you needed to create a schema file, copy this to a location on an SQL node where it can be read
by mysqld.

There is no requirement for the backup to be restored from a specific node or nodes.

To restore from the backup just created, perform the following steps:

1. Restore the schema.

• If you created a separate schema backup file using mysqldump, import this file using the mysql
client, similar to what is shown here:

$> mysql < myschema.sql

When importing the schema file, you may need to specify the --user and --password options
(and possibly others) in addition to what is shown, in order for the mysql client to be able to
connect to the MySQL server.

• If you did not need to create a schema file, you can re-create the schema using ndb_restore
--restore-meta (short form -m), similar to what is shown here:

$> ndb_restore --nodeid=1 --backupid=1 --restore-meta --backup-path=/backups/node_1/BACKUP/BACKUP-1

ndb_restore must be able to contact the management server; add the --ndb-
connectstring option if and as needed to make this possible.

2. Restore the data. This needs to be done once for each data node in the original cluster, each
time using that data node's node ID. Assuming that there were 4 data nodes originally, the set of
commands required would look something like this:

ndb_restore --nodeid=1 --backupid=1 --restore-data --backup-path=/backups/node_1/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=2 --backupid=1 --restore-data --backup-path=/backups/node_2/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=3 --backupid=1 --restore-data --backup-path=/backups/node_3/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=4 --backupid=1 --restore-data --backup-path=/backups/node_4/BACKUP/BACKUP-1 --disable-indexes

These can be run in parallel.

Be sure to add the --ndb-connectstring option as needed.

3. Rebuild the indexes. These were disabled by the --disable-indexes option used in the
commands just shown. Recreating the indexes avoids errors due to the restore not being consistent
at all points. Rebuilding the indexes can also improve performance in some cases. To rebuild the
indexes, execute the following command once, on a single node:

$> ndb_restore --nodeid=1 --backupid=1 --backup-path=/backups/node_1/BACKUP/BACKUP-1 --rebuild-indexes

4612

ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File

As mentioned previously, you may need to add the --ndb-connectstring option, so that
ndb_restore can contact the management server.

25.5.23.3 Restoring from a backup taken in parallel

NDB Cluster 8.0 supports parallel backups on each data node using ndbmtd with multiple LDMs (see
Section 25.6.8.5, “Taking an NDB Backup with Parallel Data Nodes”). The next two sections describe
how to restore backups that were taken in this fashion.

Restoring a parallel backup in parallel

Restoring a parallel backup in parallel requires an ndb_restore binary from an NDB 8.0 distribution.
The process is not substantially different from that outlined in the general usage section under the
description of the ndb_restore program, and consists of executing ndb_restore twice, similarly to
what is shown here:

$> ndb_restore -n 1 -b 1 -m --backup-path=path/to/backup_dir/BACKUP/BACKUP-backup_id
$> ndb_restore -n 1 -b 1 -r --backup-path=path/to/backup_dir/BACKUP/BACKUP-backup_id

backup_id is the ID of the backup to be restored. In the general case, no additional special
arguments are required; ndb_restore always checks for the existence of parallel subdirectories
under the directory indicated by the --backup-path option and restores the metadata (serially) and
then the table data (in parallel).

Restoring a parallel backup serially

It is possible to restore a backup that was made using parallelism on the data nodes in serial fashion.
To do this, invoke ndb_restore with --backup-path pointing to the subdirectories created by each
LDM under the main backup directory, once to any one of the subdirectories to restore the metadata
(it does not matter which one, since each subdirectory contains a complete copy of the metadata),
then to each of the subdirectories in turn to restore the data. Suppose that we want to restore the
backup having backup ID 100 that was taken with four LDMs, and that the BackupDataDir is /opt.
To restore the metadata in this case, we can invoke ndb_restore like this:

$> ndb_restore -n 1 -b 1 -m --backup-path=opt/BACKUP/BACKUP-100/BACKUP-100-PART-1-OF-4

To restore the table data, execute ndb_restore four times, each time using one of the subdirectories
in turn, as shown here:

$> ndb_restore -n 1 -b 1 -r --backup-path=opt/BACKUP/BACKUP-100/BACKUP-100-PART-1-OF-4
$> ndb_restore -n 1 -b 1 -r --backup-path=opt/BACKUP/BACKUP-100/BACKUP-100-PART-2-OF-4
$> ndb_restore -n 1 -b 1 -r --backup-path=opt/BACKUP/BACKUP-100/BACKUP-100-PART-3-OF-4
$> ndb_restore -n 1 -b 1 -r --backup-path=opt/BACKUP/BACKUP-100/BACKUP-100-PART-4-OF-4

You can employ the same technique to restore a parallel backup to an older version of NDB Cluster
(7.6 or earlier) that does not support parallel backups, using the ndb_restore binary supplied with the
older version of the NDB Cluster software.

25.5.24 ndb_secretsfile_reader — Obtain Key Information from an
Encrypted NDB Data File

ndb_secretsfile_reader gets the encryption key from an NDB encryption secrets file, given the
password.

Usage

ndb_secretsfile_reader options file

The options must include one of --filesystem-password or --filesystem-password-from-
stdin, and the encryption password must be supplied, as shown here:

> ndb_secretsfile_reader --filesystem-password=54kl14 ndb_5_fs/D1/NDBCNTR/S0.sysfile

4613

ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File

ndb_secretsfile_reader: [Warning] Using a password on the command line interface can be insecure.
cac256e18b2ddf6b5ef82d99a72f18e864b78453cc7fa40bfaf0c40b91122d18

These and other options that can be used with ndb_secretsfile_reader are shown in the
following table. Additional descriptions follow the table.

Table 25.45 Command-line options used with the program ndb_secretsfile_reader

Format Description Added, Deprecated, or
Removed

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--filesystem-
password=password

Password for node file system
encryption; can be passed from
stdin, tty, or my.cnf file

ADDED: 8.0.31

--filesystem-password-
from-stdin={TRUE|FALSE}

Get encryption password from
stdin

ADDED: 8.0.31

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

4614

ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --filesystem-password

Command-Line Format --filesystem-password=password

Introduced 8.0.31

Pass the filesystem encryption and decryption password to ndb_secretsfile_reader using
stdin, tty, or the my.cnf file.

• --filesystem-password-from-stdin

Command-Line Format --filesystem-password-from-
stdin={TRUE|FALSE}

Introduced 8.0.31

Pass the filesystem encryption and decryption password to ndb_secretsfile_reader from
stdin (only).

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

4615

ndb_select_all — Print Rows from an NDB Table

Command-Line Format --version

Display version information and exit.

ndb_secretsfile_reader was added in NDB 8.0.31.

25.5.25 ndb_select_all — Print Rows from an NDB Table

ndb_select_all prints all rows from an NDB table to stdout.

Usage

ndb_select_all -c connection_string tbl_name -d db_name [> file_name]

Options that can be used with ndb_select_all are shown in the following table. Additional
descriptions follow the table.

Table 25.46 Command-line options used with the program ndb_select_all

Format Description Added, Deprecated, or
Removed

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--delimiter=char,

-D char

Set column delimiter (Supported in all NDB releases
based on MySQL 8.0)

--descending,

-z

Sort resultset in descending
order (requires --order)

(Supported in all NDB releases
based on MySQL 8.0)

--disk Print disk references (useful
only for Disk Data tables having
unindexed columns)

(Supported in all NDB releases
based on MySQL 8.0)

--gci Include GCI in output (Supported in all NDB releases
based on MySQL 8.0)

4616

ndb_select_all — Print Rows from an NDB Table

Format Description Added, Deprecated, or
Removed

--gci64 Include GCI and row epoch in
output

(Supported in all NDB releases
based on MySQL 8.0)

--header[=value],

-h

Print header (set to 0|FALSE to
disable headers in output)

(Supported in all NDB releases
based on MySQL 8.0)

--lock=#,

-l #

Lock type (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--nodata Do not print table column data (Supported in all NDB releases
based on MySQL 8.0)

--order=index,

-o index

Sort resultset according to index
having this name

(Supported in all NDB releases
based on MySQL 8.0)

--parallelism=#,

-p #

Degree of parallelism (Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--rowid Print row ID (Supported in all NDB releases
based on MySQL 8.0)

--tupscan,

-t

Scan in tup order (Supported in all NDB releases
based on MySQL 8.0)

4617

ndb_select_all — Print Rows from an NDB Table

Format Description Added, Deprecated, or
Removed

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--useHexFormat,

-x

Output numbers in hexadecimal
format

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

4618

ndb_select_all — Print Rows from an NDB Table

• --database=dbname, -d dbname

Name of the database in which the table is found. The default value is TEST_DB.

• --descending, -z

Sorts the output in descending order. This option can be used only in conjunction with the -o (--
order) option.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delimiter=character, -D character

Causes the character to be used as a column delimiter. Only table data columns are separated by
this delimiter.

The default delimiter is the tab character.

• --disk

Adds a disk reference column to the output. The column is nonempty only for Disk Data tables
having nonindexed columns.

• --gci

Adds a GCI column to the output showing the global checkpoint at which each row was last updated.
See Section 25.2, “NDB Cluster Overview”, and Section 25.6.3.2, “NDB Cluster Log Events”, for
more information about checkpoints.

• --gci64

Adds a ROW$GCI64 column to the output showing the global checkpoint at which each row was last
updated, as well as the number of the epoch in which this update occurred.

• --help

Command-Line Format --help

4619

ndb_select_all — Print Rows from an NDB Table

Display help text and exit.

• --lock=lock_type, -l lock_type

Employs a lock when reading the table. Possible values for lock_type are:

• 0: Read lock

• 1: Read lock with hold

• 2: Exclusive read lock

There is no default value for this option.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --header=FALSE

Excludes column headers from the output.

• --nodata

Causes any table data to be omitted.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

4620

ndb_select_all — Print Rows from an NDB Table

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --order=index_name, -o index_name

Orders the output according to the index named index_name.

Note

This is the name of an index, not of a column; the index must have been
explicitly named when created.

• parallelism=#, -p #

Specifies the degree of parallelism.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --rowid

Adds a ROWID column providing information about the fragments in which rows are stored.

• --tupscan, -t

Scan the table in the order of the tuples.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --useHexFormat -x

Causes all numeric values to be displayed in hexadecimal format. This does not affect the output of
numerals contained in strings or datetime values.

• --version

Command-Line Format --version

Display version information and exit.

Sample Output

Output from a MySQL SELECT statement:

mysql> SELECT * FROM ctest1.fish;

4621

ndb_select_count — Print Row Counts for NDB Tables

+----+-----------+
| id | name |
+----+-----------+
3	shark
6	puffer
2	tuna
4	manta ray
5	grouper
1	guppy
+----+-----------+
6 rows in set (0.04 sec)

Output from the equivalent invocation of ndb_select_all:

$> ./ndb_select_all -c localhost fish -d ctest1
id name
3 [shark]
6 [puffer]
2 [tuna]
4 [manta ray]
5 [grouper]
1 [guppy]
6 rows returned

All string values are enclosed by square brackets ([...]) in the output of ndb_select_all. For
another example, consider the table created and populated as shown here:

CREATE TABLE dogs (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(25) NOT NULL,
 breed VARCHAR(50) NOT NULL,
 PRIMARY KEY pk (id),
 KEY ix (name)
)
TABLESPACE ts STORAGE DISK
ENGINE=NDBCLUSTER;

INSERT INTO dogs VALUES
 ('', 'Lassie', 'collie'),
 ('', 'Scooby-Doo', 'Great Dane'),
 ('', 'Rin-Tin-Tin', 'Alsatian'),
 ('', 'Rosscoe', 'Mutt');

This demonstrates the use of several additional ndb_select_all options:

$> ./ndb_select_all -d ctest1 dogs -o ix -z --gci --disk
GCI id name breed DISK_REF
834461 2 [Scooby-Doo] [Great Dane] [m_file_no: 0 m_page: 98 m_page_idx: 0]
834878 4 [Rosscoe] [Mutt] [m_file_no: 0 m_page: 98 m_page_idx: 16]
834463 3 [Rin-Tin-Tin] [Alsatian] [m_file_no: 0 m_page: 34 m_page_idx: 0]
835657 1 [Lassie] [Collie] [m_file_no: 0 m_page: 66 m_page_idx: 0]
4 rows returned

25.5.26 ndb_select_count — Print Row Counts for NDB Tables

ndb_select_count prints the number of rows in one or more NDB tables. With a single table,
the result is equivalent to that obtained by using the MySQL statement SELECT COUNT(*) FROM
tbl_name.

Usage

ndb_select_count [-c connection_string] -ddb_name tbl_name[, tbl_name2[, ...]]

Options that can be used with ndb_select_count are shown in the following table. Additional
descriptions follow the table.

4622

ndb_select_count — Print Row Counts for NDB Tables

Table 25.47 Command-line options used with the program ndb_select_count

Format Description Added, Deprecated, or
Removed

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--lock=#,

-l #

Lock type (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

4623

ndb_select_count — Print Row Counts for NDB Tables

Format Description Added, Deprecated, or
Removed

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--parallelism=#,

-p #

Degree of parallelism (Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.
4624

ndb_select_count — Print Row Counts for NDB Tables

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --help

Command-Line Format --help

Display help text and exit.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

4625

ndb_show_tables — Display List of NDB Tables

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

You can obtain row counts from multiple tables in the same database by listing the table names
separated by spaces when invoking this command, as shown under Sample Output.

Sample Output

$> ./ndb_select_count -c localhost -d ctest1 fish dogs
6 records in table fish
4 records in table dogs

25.5.27 ndb_show_tables — Display List of NDB Tables

4626

ndb_show_tables — Display List of NDB Tables

ndb_show_tables displays a list of all NDB database objects in the cluster. By default, this includes
not only both user-created tables and NDB system tables, but NDB-specific indexes, internal triggers,
and NDB Cluster Disk Data objects as well.

Options that can be used with ndb_show_tables are shown in the following table. Additional
descriptions follow the table.

Table 25.48 Command-line options used with the program ndb_show_tables

Format Description Added, Deprecated, or
Removed

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--database=name,

-d name

Specifies database in which table
is found; database name must be
followed by table name

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--loops=#,

-l #

Number of times to repeat output (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

4627

ndb_show_tables — Display List of NDB Tables

Format Description Added, Deprecated, or
Removed

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--parsable,

-p

Return output suitable for
MySQL LOAD DATA statement

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--show-temp-status Show table temporary flag (Supported in all NDB releases
based on MySQL 8.0)

--type=#,

-t #

Limit output to objects of this
type

(Supported in all NDB releases
based on MySQL 8.0)

--unqualified,

-u

Do not qualify table names (Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

Usage

ndb_show_tables [-c connection_string]

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#
4628

ndb_show_tables — Display List of NDB Tables

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --database, -d

Specifies the name of the database in which the desired table is found. If this option is given, the
name of a table must follow the database name.

If this option has not been specified, and no tables are found in the TEST_DB database,
ndb_show_tables issues a warning.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

4629

ndb_show_tables — Display List of NDB Tables

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --loops, -l

Specifies the number of times the utility should execute. This is 1 when this option is not specified,
but if you do use the option, you must supply an integer argument for it.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

4630

ndb_size.pl — NDBCLUSTER Size Requirement Estimator

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --parsable, -p

Using this option causes the output to be in a format suitable for use with LOAD DATA.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --show-temp-status

If specified, this causes temporary tables to be displayed.

• --type, -t

Can be used to restrict the output to one type of object, specified by an integer type code as shown
here:

• 1: System table

• 2: User-created table

• 3: Unique hash index

Any other value causes all NDB database objects to be listed (the default).

• --unqualified, -u

If specified, this causes unqualified object names to be displayed.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

Note

Only user-created NDB Cluster tables may be accessed from MySQL; system
tables such as SYSTAB_0 are not visible to mysqld. However, you can
examine the contents of system tables using NDB API applications such as
ndb_select_all (see Section 25.5.25, “ndb_select_all — Print Rows from an
NDB Table”).

Prior to NDB 8.0.20, this program printed NDBT_ProgramExit - status upon completion of its run,
due to an unnecessary dependency on the NDBT testing library. This dependency has been removed,
eliminating the extraneous output.

25.5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator

4631

ndb_size.pl — NDBCLUSTER Size Requirement Estimator

This is a Perl script that can be used to estimate the amount of space that would be required by a
MySQL database if it were converted to use the NDBCLUSTER storage engine. Unlike the other utilities
discussed in this section, it does not require access to an NDB Cluster (in fact, there is no reason for
it to do so). However, it does need to access the MySQL server on which the database to be tested
resides.

Note

ndb_size.pl is deprecated, and no longer supported, in NDB 8.0.40 and later.
You should expect it to be removed from a future version of the NDB Cluster
distribution, and modify any dependent applications accordingly.

Requirements

• A running MySQL server. The server instance does not have to provide support for NDB Cluster.

• A working installation of Perl.

• The DBI module, which can be obtained from CPAN if it is not already part of your Perl installation.
(Many Linux and other operating system distributions provide their own packages for this library.)

• A MySQL user account having the necessary privileges. If you do not wish to use an existing
account, then creating one using GRANT USAGE ON db_name.*—where db_name is the name of
the database to be examined—is sufficient for this purpose.

ndb_size.pl can also be found in the MySQL sources in storage/ndb/tools.

Options that can be used with ndb_size.pl are shown in the following table. Additional descriptions
follow the table.

Table 25.49 Command-line options used with the program ndb_size.pl

Format Description Added, Deprecated, or
Removed

--database=string Database or databases to
examine; a comma-delimited list;
default is ALL (use all databases
found on server)

(Supported in all NDB releases
based on MySQL 8.0)

--hostname=string Specify host and optional port in
host[:port] format

(Supported in all NDB releases
based on MySQL 8.0)

--socket=path Specify socket to connect to (Supported in all NDB releases
based on MySQL 8.0)

--user=string Specify MySQL user name (Supported in all NDB releases
based on MySQL 8.0)

--password=password Specify MySQL user password (Supported in all NDB releases
based on MySQL 8.0)

--format=string Set output format (text or HTML) (Supported in all NDB releases
based on MySQL 8.0)

--excludetables=list Skip any tables in comma-
separated list

(Supported in all NDB releases
based on MySQL 8.0)

--excludedbs=list Skip any databases in comma-
separated list

(Supported in all NDB releases
based on MySQL 8.0)

--savequeries=path Saves all queries on database
into file specified

(Supported in all NDB releases
based on MySQL 8.0)

--loadqueries=path Loads all queries from file
specified; does not connect to
database

(Supported in all NDB releases
based on MySQL 8.0)

4632

ndb_size.pl — NDBCLUSTER Size Requirement Estimator

Format Description Added, Deprecated, or
Removed

--real_table_name=string Designates table to handle
unique index size calculations

(Supported in all NDB releases
based on MySQL 8.0)

Usage

perl ndb_size.pl [--database={db_name|ALL}] [--hostname=host[:port]] [--socket=socket] \
 [--user=user] [--password=password] \
 [--help|-h] [--format={html|text}] \
 [--loadqueries=file_name] [--savequeries=file_name]

By default, this utility attempts to analyze all databases on the server. You can specify a single
database using the --database option; the default behavior can be made explicit by using ALL for
the name of the database. You can also exclude one or more databases by using the --excludedbs
option with a comma-separated list of the names of the databases to be skipped. Similarly, you
can cause specific tables to be skipped by listing their names, separated by commas, following the
optional --excludetables option. A host name can be specified using --hostname; the default is
localhost. You can specify a port in addition to the host using host:port format for the value of --
hostname. The default port number is 3306. If necessary, you can also specify a socket; the default
is /var/lib/mysql.sock. A MySQL user name and password can be specified the corresponding
options shown. It also possible to control the format of the output using the --format option; this can
take either of the values html or text, with text being the default. An example of the text output is
shown here:

$> ndb_size.pl --database=test --socket=/tmp/mysql.sock
ndb_size.pl report for database: 'test' (1 tables)
--
Connected to: DBI:mysql:host=localhost;mysql_socket=/tmp/mysql.sock

Including information for versions: 4.1, 5.0, 5.1

test.t1

DataMemory for Columns (* means varsized DataMemory):
 Column Name Type Varsized Key 4.1 5.0 5.1
 HIDDEN_NDB_PKEY bigint PRI 8 8 8
 c2 varchar(50) Y 52 52 4*
 c1 int(11) 4 4 4
 -- -- --
Fixed Size Columns DM/Row 64 64 12
 Varsize Columns DM/Row 0 0 4

DataMemory for Indexes:
 Index Name Type 4.1 5.0 5.1
 PRIMARY BTREE 16 16 16
 -- -- --
 Total Index DM/Row 16 16 16

IndexMemory for Indexes:
 Index Name 4.1 5.0 5.1
 PRIMARY 33 16 16
 -- -- --
 Indexes IM/Row 33 16 16

Summary (for THIS table):
 4.1 5.0 5.1
 Fixed Overhead DM/Row 12 12 16
 NULL Bytes/Row 4 4 4
 DataMemory/Row 96 96 48
 (Includes overhead, bitmap and indexes)

 Varsize Overhead DM/Row 0 0 8
 Varsize NULL Bytes/Row 0 0 4
 Avg Varside DM/Row 0 0 16

4633

ndb_top — View CPU usage information for NDB threads

 No. Rows 0 0 0

 Rows/32kb DM Page 340 340 680
Fixedsize DataMemory (KB) 0 0 0

Rows/32kb Varsize DM Page 0 0 2040
 Varsize DataMemory (KB) 0 0 0

 Rows/8kb IM Page 248 512 512
 IndexMemory (KB) 0 0 0

Parameter Minimum Requirements

* indicates greater than default

 Parameter Default 4.1 5.0 5.1
 DataMemory (KB) 81920 0 0 0
 NoOfOrderedIndexes 128 1 1 1
 NoOfTables 128 1 1 1
 IndexMemory (KB) 18432 0 0 0
 NoOfUniqueHashIndexes 64 0 0 0
 NoOfAttributes 1000 3 3 3
 NoOfTriggers 768 5 5 5

For debugging purposes, the Perl arrays containing the queries run by this script can be read from the
file specified using can be saved to a file using --savequeries; a file containing such arrays to be
read during script execution can be specified using --loadqueries. Neither of these options has a
default value.

To produce output in HTML format, use the --format option and redirect the output to a file, as
shown here:

$> ndb_size.pl --database=test --socket=/tmp/mysql.sock --format=html > ndb_size.html

(Without the redirection, the output is sent to stdout.)

The output from this script includes the following information:

• Minimum values for the DataMemory, IndexMemory, MaxNoOfTables, MaxNoOfAttributes,
MaxNoOfOrderedIndexes, and MaxNoOfTriggers configuration parameters required to
accommodate the tables analyzed.

• Memory requirements for all of the tables, attributes, ordered indexes, and unique hash indexes
defined in the database.

• The IndexMemory and DataMemory required per table and table row.

25.5.29 ndb_top — View CPU usage information for NDB threads

ndb_top displays running information in the terminal about CPU usage by NDB threads on an NDB
Cluster data node. Each thread is represented by two rows in the output, the first showing system
statistics, the second showing the measured statistics for the thread.

ndb_top is available beginning with MySQL NDB Cluster 7.6.3.

Usage

ndb_top [-h hostname] [-t port] [-u user] [-p pass] [-n node_id]

ndb_top connects to a MySQL Server running as an SQL node of the cluster. By default, it attempts
to connect to a mysqld running on localhost and port 3306, as the MySQL root user with no
password specified. You can override the default host and port using, respectively, --host (-h) and
--port (-t). To specify a MySQL user and password, use the --user (-u) and --passwd (-p)
options. This user must be able to read tables in the ndbinfo database (ndb_top uses information
from ndbinfo.cpustat and related tables).

4634

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs-ndb-top.html#option_ndb_top_passwd

ndb_top — View CPU usage information for NDB threads

For more information about MySQL user accounts and passwords, see Section 8.2, “Access Control
and Account Management”.

Output is available as plain text or an ASCII graph; you can specify this using the --text (-x) and --
graph (-g) options, respectively. These two display modes provide the same information; they can be
used concurrently. At least one display mode must be in use.

Color display of the graph is supported and enabled by default (--color or -c option). With color
support enabled, the graph display shows OS user time in blue, OS system time in green, and idle time
as blank. For measured load, blue is used for execution time, yellow for send time, red for time spent
in send buffer full waits, and blank spaces for idle time. The percentage shown in the graph display is
the sum of percentages for all threads which are not idle. Colors are not currently configurable; you can
use grayscale instead by using --skip-color.

The sorted view (--sort, -r) is based on the maximum of the measured load and the load reported
by the OS. Display of these can be enabled and disabled using the --measured-load (-m) and --
os-load (-o) options. Display of at least one of these loads must be enabled.

The program tries to obtain statistics from a data node having the node ID given by the --node-id (-
n) option; if unspecified, this is 1. ndb_top cannot provide information about other types of nodes.

The view adjusts itself to the height and width of the terminal window; the minimum supported width is
76 characters.

Once started, ndb_top runs continuously until forced to exit; you can quit the program using Ctrl-C.
The display updates once per second; to set a different delay interval, use --sleep-time (-s).

Note

ndb_top is available on macOS, Linux, and Solaris. It is not currently
supported on Windows platforms.

The following table includes all options that are specific to the NDB Cluster program ndb_top.
Additional descriptions follow the table.

Table 25.50 Command-line options used with the program ndb_top

Format Description Added, Deprecated, or
Removed

--color,

-c

Show ASCII graphs in color; use
--skip-colors to disable

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--graph,

-g

Display data using graphs; use --
skip-graphs to disable

(Supported in all NDB releases
based on MySQL 8.0)

--help Show program usage information (Supported in all NDB releases
based on MySQL 8.0)

--host=string,

-h string

Host name or IP address of
MySQL Server to connect to

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

4635

ndb_top — View CPU usage information for NDB threads

Format Description Added, Deprecated, or
Removed

--measured-load,

-m

Show measured load by thread (Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--node-id=#,

-n #

Watch node having this node ID (Supported in all NDB releases
based on MySQL 8.0)

--os-load,

-o

Show load measured by
operating system

(Supported in all NDB releases
based on MySQL 8.0)

--password=password,

-p password

Connect using this password (Supported in all NDB releases
based on MySQL 8.0)

--port=#,

-P # (>=7.6.6)

Port number to use when
connecting to MySQL Server

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--sleep-time=#,

-s #

Time to wait between display
refreshes, in seconds

(Supported in all NDB releases
based on MySQL 8.0)

--socket=path,

-S path

Socket file to use for connection (Supported in all NDB releases
based on MySQL 8.0)

--sort,

-r

Sort threads by usage; use --
skip-sort to disable

(Supported in all NDB releases
based on MySQL 8.0)

--text,

-t (>=7.6.6)

Display data using text (Supported in all NDB releases
based on MySQL 8.0)

--usage Show program usage
information; same as --help

(Supported in all NDB releases
based on MySQL 8.0)

--user=name,

-u name

Connect as this MySQL user (Supported in all NDB releases
based on MySQL 8.0)

Additional Options

• --color, -c

Command-Line Format --color

Show ASCII graphs in color; use --skip-colors to disable.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

4636

ndb_top — View CPU usage information for NDB threads

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --graph, -g

Command-Line Format --graph

Display data using graphs; use --skip-graphs to disable. This option or --text must be true;
both options may be true.

• --help, -?

Command-Line Format --help

Show program usage information.

• --host[=name], -h

Command-Line Format --host=string

Type String

Default Value localhost

Host name or IP address of MySQL Server to connect to.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --measured-load, -m

Command-Line Format --measured-load

Show measured load by thread. This option or --os-load must be true; both options may be true.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

4637

ndb_top — View CPU usage information for NDB threads

• --node-id[=#], -n

Command-Line Format --node-id=#

Type Integer

Default Value 1

Watch the data node having this node ID.

• --os-load, -o

Command-Line Format --os-load

Show load measured by operating system. This option or --measured-load must be true; both
options may be true.

• --password[=password], -p

Command-Line Format --password=password

Type String

Default Value NULL

Connect to a MySQL Server using this password and the MySQL user specified by --user.

This password is associated with a MySQL user account only, and is not related in any way to the
password used with encrypted NDB backups.

• --port[=#], -P

Command-Line Format --port=#

Type Integer

Default Value 3306

Port number to use when connecting to MySQL Server.

(Formerly, the short form for this option was -t, which was repurposed as the short form of --text.)

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --sleep-time[=seconds], -s

Command-Line Format --sleep-time=#

Type Integer

Default Value 1

Time to wait between display refreshes, in seconds.

• --socket=path/to/file, -S

Command-Line Format --socket=path

Type Path name

4638

ndb_top — View CPU usage information for NDB threads

Default Value [none]

Use the specified socket file for the connection.

• --sort, -r

Command-Line Format --sort

Sort threads by usage; use --skip-sort to disable.

• --text, -t

Command-Line Format --text

Display data using text. This option or --graph must be true; both options may be true.

(The short form for this option was -x in previous versions of NDB Cluster, but this is no longer
supported.)

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --user[=name], -u

Command-Line Format --user=name

Type String

Default Value root

Connect as this MySQL user. Normally requires a password supplied by the --password option.

Sample Output. The next figure shows ndb_top running in a terminal window on a Linux system
with an ndbmtd data node under a moderate load. Here, the program has been invoked using
ndb_top -n8 -x to provide both text and graph output:

4639

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Figure 25.5 ndb_top Running in Terminal

Beginning with NDB 8.0.20, ndb_top also shows spin times for threads, displayed in green.

25.5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status

ndb_waiter repeatedly (each 100 milliseconds) prints out the status of all cluster data nodes until
either the cluster reaches a given status or the --timeout limit is exceeded, then exits. By default, it
waits for the cluster to achieve STARTED status, in which all nodes have started and connected to the
cluster. This can be overridden using the --no-contact and --not-started options.

The node states reported by this utility are as follows:

• NO_CONTACT: The node cannot be contacted.

• UNKNOWN: The node can be contacted, but its status is not yet known. Usually, this means that the
node has received a START or RESTART command from the management server, but has not yet
acted on it.

• NOT_STARTED: The node has stopped, but remains in contact with the cluster. This is seen when
restarting the node using the management client's RESTART command.

• STARTING: The node's ndbd process has started, but the node has not yet joined the cluster.

• STARTED: The node is operational, and has joined the cluster.

4640

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

• SHUTTING_DOWN: The node is shutting down.

• SINGLE USER MODE: This is shown for all cluster data nodes when the cluster is in single user
mode.

Options that can be used with ndb_waiter are shown in the following table. Additional descriptions
follow the table.

Table 25.51 Command-line options used with the program ndb_waiter

Format Description Added, Deprecated, or
Removed

--character-sets-
dir=path

Directory containing character
sets

REMOVED: 8.0.31

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

REMOVED: 8.0.31

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

REMOVED: 8.0.31

--ndb-optimized-node-
selection

Enable optimizations for
selection of nodes for
transactions. Enabled by default;
use --skip-ndb-optimized-node-
selection to disable

REMOVED: 8.0.31

4641

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Format Description Added, Deprecated, or
Removed

--no-contact,

-n

Wait for cluster to reach NO
CONTACT state

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--not-started Wait for cluster to reach NOT
STARTED state

(Supported in all NDB releases
based on MySQL 8.0)

--nowait-nodes=list List of nodes not to be waited for (Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--single-user Wait for cluster to enter single
user mode

(Supported in all NDB releases
based on MySQL 8.0)

--timeout=#,

-t #

Wait this many seconds, then
exit whether or not cluster has
reached desired state

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose=#,

-v

Set output verbosity level; see
text for input and return values

ADDED: 8.0.37

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--wait-nodes=list,

-w list

List of nodes to be waited for (Supported in all NDB releases
based on MySQL 8.0)

Usage

ndb_waiter [-c connection_string]

Additional Options

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Removed 8.0.31

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

4642

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Removed 8.0.31

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

4643

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Read given path from login file.

• --help

Command-Line Format --help

Display help text and exit.

• --ndb-connectstring

Command-Line Format --ndb-
connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]".
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Removed 8.0.31

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Removed 8.0.31

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-contact, -n

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NO_CONTACT status before exiting.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.4644

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

• --not-started

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NOT_STARTED status before exiting.

• --nowait-nodes=list

When this option is used, ndb_waiter does not wait for the nodes whose IDs are listed. The list is
comma-delimited; ranges can be indicated by dashes, as shown here:

$> ndb_waiter --nowait-nodes=1,3,7-9

Important

Do not use this option together with the --wait-nodes option.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --timeout=seconds, -t seconds

Time to wait. The program exits if the desired state is not achieved within this number of seconds.
The default is 120 seconds (1200 reporting cycles).

• --single-user

The program waits for the cluster to enter single user mode.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose=#

Introduced 8.0.37

Type Integer

Default Value 2

Minimum Value 0

Maximum Value 2

Controls verbosity level of printout. Possible levels and their effects are listed here:

• 0: Do not print (return exit code only; see following for exit codes).

• 1: Print final connection status only.

• 2: Print status each time it is checked.

This is the same behavior as in versions of NDB Cluster previous to 8.4.

Exit codes returned by ndb_waiter are listed here, with their meanings:

• 0: Success.

4645

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

• 1: Wait timed out.

• 2: Parameter error, such as an invalid node ID.

• 3: Failed to connect to the management server.

• --version

Command-Line Format --version

Display version information and exit.

• --wait-nodes=list, -w list

When this option is used, ndb_waiter waits only for the nodes whose IDs are listed. The list is
comma-delimited; ranges can be indicated by dashes, as shown here:

$> ndb_waiter --wait-nodes=2,4-6,10

Important

Do not use this option together with the --nowait-nodes option.

Sample Output. Shown here is the output from ndb_waiter when run against a 4-node cluster in
which two nodes have been shut down and then started again manually. Duplicate reports (indicated
by ...) are omitted.

$> ./ndb_waiter -c localhost

Connecting to mgmsrv at (localhost)
State node 1 STARTED
State node 2 NO_CONTACT
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 UNKNOWN
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 UNKNOWN
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

4646

ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTED
Waiting for cluster enter state STARTED

Note

If no connection string is specified, then ndb_waiter tries to connect to a
management on localhost, and reports Connecting to mgmsrv at
(null).

Prior to NDB 8.0.20, this program printed NDBT_ProgramExit - status upon completion of its run,
due to an unnecessary dependency on the NDBT testing library. This dependency has been removed,
eliminating the extraneous output.

25.5.31 ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files
Created by NDB Cluster

The ndbxfrm utility, introduced in NDB 8.0.22, can be used to decompress, decrypt, and output
information about files created by NDB Cluster that are compressed, encrypted, or both. It can also be
used to compress or encrypt files.

Table 25.52 Command-line options used with the program ndbxfrm

Format Description Added, Deprecated, or
Removed

--compress,

-c

Compress file ADDED: NDB 8.0.22

--decrypt-key=key Supply file decryption key ADDED: NDB 8.0.31

--decrypt-key-from-stdin Supply file decryption key from
stdin

ADDED: NDB 8.0.31

--decrypt-
password=password

Use this password to decrypt file ADDED: NDB 8.0.22

--decrypt-password-from-
stdin

Get decryption password in a
secure fashion from STDIN

ADDED: NDB 8.0.24

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--encrypt-block-size=# Print info about file including file
header and trailer

ADDED: NDB 8.0.31

--encrypt-block-size=# Size of input data chunks
encrypted as a unit. Used with
XTS, set to zero for CBC mode

ADDED: NDB 8.0.29

4647

ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster

Format Description Added, Deprecated, or
Removed

--encrypt-cipher=# Encryption cipher: 1 for CBC, 2
for XTS

ADDED: NDB 8.0.29

--encrypt-kdf-iter-
count=#,

-k #

Number of iterations used in key
definition

ADDED: NDB 8.0.22

--encrypt-key=key Use this key to encrypt file ADDED: NDB 8.0.31

--encrypt-key-from-stdin Use key supplied from stdin to
encrypt file

ADDED: NDB 8.0.31

--encrypt-
password=password

Use this password to encrypt file ADDED: NDB 8.0.22

--encrypt-password-from-
stdin

Get encryption password in a
secure fashion from STDIN

ADDED: NDB 8.0.24

--help,

-?

Print usage information ADDED: NDB 8.0.22

--info,

-i

Print file information ADDED: NDB 8.0.22

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login
file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Prints usage information;
synonym for --help

ADDED: NDB 8.0.22

--version,

-V

Output version information ADDED: NDB 8.0.22

Usage

ndbxfrm --info file[file ...]

ndbxfrm --compress input_file output_file

ndbxfrm --decrypt-password=password input_file output_file

ndbxfrm [--encrypt-ldf-iter-count=#] --encrypt-password=password input_file output_file

input_file and output_file cannot be the same file.

Options

• --compress, -c

Command-Line Format --compress

Introduced 8.0.22-ndb-8.0.22

Compresses the input file, using the same compression method as is used for compressing NDB
Cluster backups, and writes the output to an output file. To decompress a compressed NDB backup

4648

ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster

file that is not encrypted, it is necessary only to invoke ndbxfrm using the names of the compressed
file and an output file (with no options required).

• --decrypt-key=key, -K key

Command-Line Format --decrypt-key=key

Introduced 8.0.31-ndb-8.0.31

Decrypts a file encrypted by NDB using the supplied key.

Note

This option cannot be used together with --decrypt-password.

• --decrypt-key-from-stdin

Command-Line Format --decrypt-key-from-stdin

Introduced 8.0.31-ndb-8.0.31

Decrypts a file encrypted by NDB using the key supplied from stdin.

• --decrypt-password=password

Command-Line Format --decrypt-password=password

Introduced 8.0.22-ndb-8.0.22

Type String

Default Value [none]

Decrypts a file encrypted by NDB using the password supplied.

Note

This option cannot be used together with --decrypt-key.

• --decrypt-password-from-stdin[=TRUE|FALSE]

Command-Line Format --decrypt-password-from-stdin

Introduced 8.0.24-ndb-8.0.24

Decrypts a file encrypted by NDB, using a password supplied from standard input. This is similar to
entering a password after invoking mysql --password with no password following the option.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

4649

ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with CONCAT(group, suffix).

• --detailed-info

Command-Line Format --encrypt-block-size=#

Introduced 8.0.31-ndb-8.0.31

Type Boolean

Default Value FALSE

Print out file information like --info, but include the file's header and trailer.

Example:

$> ndbxfrm --detailed-info S0.sysfile
File=/var/lib/cluster-data/ndb_7_fs/D1/NDBCNTR/S0.sysfile, compression=no, encryption=yes
header: {
 fixed_header: {
 magic: {
 magic: { 78, 68, 66, 88, 70, 82, 77, 49 },
 endian: 18364758544493064720,
 header_size: 32768,
 fixed_header_size: 160,
 zeros: { 0, 0 }
 },
 flags: 73728,
 flag_extended: 0,
 flag_zeros: 0,
 flag_file_checksum: 0,
 flag_data_checksum: 0,
 flag_compress: 0,
 flag_compress_method: 0,
 flag_compress_padding: 0,
 flag_encrypt: 18,
 flag_encrypt_cipher: 2,
 flag_encrypt_krm: 1,
 flag_encrypt_padding: 0,
 flag_encrypt_key_selection_mode: 0,
 dbg_writer_ndb_version: 524320,
 octets_size: 32,
 file_block_size: 32768,
 trailer_max_size: 80,
 file_checksum: { 0, 0, 0, 0 },
 data_checksum: { 0, 0, 0, 0 },
 zeros01: { 0 },
 compress_dbg_writer_header_version: { ... },
 compress_dbg_writer_library_version: { ... },
 encrypt_dbg_writer_header_version: { ... },
 encrypt_dbg_writer_library_version: { ... },
 encrypt_key_definition_iterator_count: 100000,
 encrypt_krm_keying_material_size: 32,
 encrypt_krm_keying_material_count: 1,
 encrypt_key_data_unit_size: 32768,
 encrypt_krm_keying_material_position_in_octets: 0,
 },
 octets: {
 102, 68, 56, 125, 78, 217, 110, 94, 145, 121, 203, 234, 26, 164, 137, 180,
 100, 224, 7, 88, 173, 123, 209, 110, 185, 227, 85, 174, 109, 123, 96, 156,

4650

ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster

 }
}
trailer: {
 fixed_trailer: {
 flags: 48,
 flag_extended: 0,
 flag_zeros: 0,
 flag_file_checksum: 0,
 flag_data_checksum: 3,
 data_size: 512,
 file_checksum: { 0, 0, 0, 0 },
 data_checksum: { 226, 223, 102, 207 },
 magic: {
 zeros: { 0, 0 }
 fixed_trailer_size: 56,
 trailer_size: 32256,
 endian: 18364758544493064720,
 magic: { 78, 68, 66, 88, 70, 82, 77, 49 },
 },
 }
}

• --encrypt-block-size=#

Command-Line Format --encrypt-block-size=#

Introduced 8.0.29-ndb-8.0.29

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2147483647

Size of input data chunks that are encrypted as a unit. Used with XTS; set to 0 (the default) for CBC
mode.

• --encrypt-cipher=#

Command-Line Format --encrypt-cipher=#

Introduced 8.0.29-ndb-8.0.29

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 2147483647

Cipher used for encryption. Set to 1 for CBC mode (the default), or 2 for XTS.

• --encrypt-kdf-iter-count=#, -k #

Command-Line Format --encrypt-kdf-iter-count=#

Introduced 8.0.22-ndb-8.0.22

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2147483647

When encrypting a file, specifies the number of iterations to use for the encryption key. Requires the
--encrypt-password option.

4651

ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster

• --encrypt-key=key

Command-Line Format --encrypt-key=key

Introduced 8.0.31-ndb-8.0.31

Encrypts a file using the supplied key.

Note

This option cannot be used together with --encrypt-password.

• --encrypt-key-from-stdin

Command-Line Format --encrypt-key-from-stdin

Introduced 8.0.31-ndb-8.0.31

Encrypt a file using the key supplied from stdin.

• --encrypt-password=password

Command-Line Format --encrypt-password=password

Introduced 8.0.22-ndb-8.0.22

Type String

Default Value [none]

Encrypts the backup file using the password supplied by the option. The password must meet the
requirements listed here:

• Uses any of the printable ASCII characters except !, ', ", $, %, \, `, and ^

• Is no more than 256 characters in length

• Is enclosed by single or double quotation marks

Note

This option cannot be used together with --encrypt-key.

• --encrypt-password-from-stdin[=TRUE|FALSE]

Command-Line Format --encrypt-password-from-stdin

Introduced 8.0.24-ndb-8.0.24

Encrypts a file using a password supplied from standard input. This is similar to entering a password
is entered after invoking mysql --password with no password following the option.

• --help, -?

Command-Line Format --help

Introduced 8.0.22-ndb-8.0.22

Prints usage information for the program.

• --info, -i

Command-Line Format --info

4652

ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster

Introduced 8.0.22-ndb-8.0.22

Prints the following information about one or more input files:

• The name of the file

• Whether the file is compressed (compression=yes or compression=no)

• Whether the file is encrypted (encryption=yes or encryption=no)

Example:

$> ndbxfrm -i BACKUP-10-0.5.Data BACKUP-10.5.ctl BACKUP-10.5.log
File=BACKUP-10-0.5.Data, compression=no, encryption=yes
File=BACKUP-10.5.ctl, compression=no, encryption=yes
File=BACKUP-10.5.log, compression=no, encryption=yes

Beginning with NDB 8.0.31, you can also see the file's header and trailer using the --detailed-
info option.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage, -?

Command-Line Format --usage

Introduced 8.0.22-ndb-8.0.22

Synonym for --help.

• --version, -V

Command-Line Format --version

Introduced 8.0.22-ndb-8.0.22

Prints out version information.

ndbxfrm can encrypt backups created by any version of NDB Cluster. The .Data, .ctl, and
.log files comprising the backup must be encrypted separately, and these files must be encrypted
separately for each data node. Once encrypted, such backups can be decrypted only by ndbxfrm,
ndb_restore, or ndb_print_backup from NDB Cluster 8.0.22 or later.

4653

Management of NDB Cluster

An encrypted file can be re-encrypted with a new password using the --encrypt-password and --
decrypt-password options together, like this:

ndbxfrm --decrypt-password=old --encrypt-password=new input_file output_file

In the example just shown, old and new are the old and new passwords, respectively; both of these
must be quoted. The input file is decrypted and then encrypted as the output file. The input file itself is
not changed; if you do not want it to be accessible using the old password, you must remove the input
file manually.

25.6 Management of NDB Cluster
Managing an NDB Cluster involves a number of tasks, the first of which is to configure and start NDB
Cluster. This is covered in Section 25.4, “Configuration of NDB Cluster”, and Section 25.5, “NDB
Cluster Programs”.

The next few sections cover the management of a running NDB Cluster.

For information about security issues relating to management and deployment of an NDB Cluster, see
Section 25.6.20, “NDB Cluster Security Issues”.

There are essentially two methods of actively managing a running NDB Cluster. The first of these
is through the use of commands entered into the management client whereby cluster status can be
checked, log levels changed, backups started and stopped, and nodes stopped and started. The
second method involves studying the contents of the cluster log ndb_node_id_cluster.log; this is
usually found in the management server's DataDir directory, but this location can be overridden using
the LogDestination option. (Recall that node_id represents the unique identifier of the node whose
activity is being logged.) The cluster log contains event reports generated by ndbd. It is also possible to
send cluster log entries to a Unix system log.

Some aspects of the cluster's operation can be also be monitored from an SQL node using the SHOW
ENGINE NDB STATUS statement.

More detailed information about NDB Cluster operations is available in real time through an SQL
interface using the ndbinfo database. For more information, see Section 25.6.16, “ndbinfo: The NDB
Cluster Information Database”.

NDB statistics counters provide improved monitoring using the mysql client. These counters,
implemented in the NDB kernel, relate to operations performed by or affecting Ndb objects, such as
starting, closing, and aborting transactions; primary key and unique key operations; table, range, and
pruned scans; blocked threads waiting for various operations to complete; and data and events sent
and received by NDB Cluster. The counters are incremented by the NDB kernel whenever NDB API
calls are made or data is sent to or received by the data nodes.

mysqld exposes the NDB API statistics counters as system status variables, which can be identified
from the prefix common to all of their names (Ndb_api_). The values of these variables can be read in
the mysql client from the output of a SHOW STATUS statement, or by querying either the Performance
Schema session_status or global_status table. By comparing the values of the status variables
before and after the execution of an SQL statement that acts on NDB tables, you can observe the
actions taken on the NDB API level that correspond to this statement, which can be beneficial for
monitoring and performance tuning of NDB Cluster.

MySQL Cluster Manager provides an advanced command-line interface that simplifies many otherwise
complex NDB Cluster management tasks, such as starting, stopping, or restarting an NDB Cluster
with a large number of nodes. The MySQL Cluster Manager client also supports commands for getting
and setting the values of most node configuration parameters as well as mysqld server options and
variables relating to NDB Cluster. MySQL Cluster Manager 8.0 provides support for NDB 8.0. See
MySQL Cluster Manager 8.0.42 User Manual, for more information.

25.6.1 Commands in the NDB Cluster Management Client

4654

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/mysql-cluster-manager/8.0/en/

Commands in the NDB Cluster Management Client

In addition to the central configuration file, a cluster may also be controlled through a command-
line interface available through the management client ndb_mgm. This is the primary administrative
interface to a running cluster.

Commands for the event logs are given in Section 25.6.3, “Event Reports Generated in NDB Cluster”;
commands for creating backups and restoring from them are provided in Section 25.6.8, “Online
Backup of NDB Cluster”.

Using ndb_mgm with MySQL Cluster Manager. MySQL Cluster Manager 1.4.8 provides
experimental support for NDB 8.0. MySQL Cluster Manager handles starting and stopping processes
and tracks their states internally, so it is not necessary to use ndb_mgm for these tasks for an NDB
Cluster that is under MySQL Cluster Manager control. It is recommended not to use the ndb_mgm
command-line client that comes with the NDB Cluster distribution to perform operations that involve
starting or stopping nodes. These include but are not limited to the START, STOP, RESTART, and
SHUTDOWN commands. For more information, see MySQL Cluster Manager Process Commands.

The management client has the following basic commands. In the listing that follows, node_id denotes
either a data node ID or the keyword ALL, which indicates that the command should be applied to all of
the cluster's data nodes.

• CONNECT connection-string

Connects to the management server indicated by the connection string. If the client is already
connected to this server, the client reconnects.

• CREATE NODEGROUP nodeid[, nodeid, ...]

Creates a new NDB Cluster node group and causes data nodes to join it.

This command is used after adding new data nodes online to an NDB Cluster, and causes them
to join a new node group and thus to begin participating fully in the cluster. The command takes
as its sole parameter a comma-separated list of node IDs—these are the IDs of the nodes just
added and started, and that are to join the new node group. The list must contain no duplicate IDs;
beginning with NDB 8.0.26, the presence of any duplicates causes the command to return an error.
The number of nodes in the list must be the same as the number of nodes in each node group that
is already part of the cluster (each NDB Cluster node group must have the same number of nodes).
In other words, if the NDB Cluster consists of 2 node groups having 2 data nodes each, then the new
node group must also have 2 data nodes.

The node group ID of the new node group created by this command is determined automatically, and
always the next highest unused node group ID in the cluster; it is not possible to set it manually.

For more information, see Section 25.6.7, “Adding NDB Cluster Data Nodes Online”.

• DROP NODEGROUP nodegroup_id

Drops the NDB Cluster node group with the given nodegroup_id.

This command can be used to drop a node group from an NDB Cluster. DROP NODEGROUP takes as
its sole argument the node group ID of the node group to be dropped.

DROP NODEGROUP acts only to remove the data nodes in the effected node group from that node
group. It does not stop data nodes, assign them to a different node group, or remove them from the
cluster's configuration. A data node that does not belong to a node group is indicated in the output of
the management client SHOW command with no nodegroup in place of the node group ID, like this
(indicated using bold text):

id=3 @10.100.2.67 (8.0.42-ndb-8.0.42, no nodegroup)

DROP NODEGROUP works only when all data nodes in the node group to be dropped are completely
empty of any table data and table definitions. Since there is currently no way using ndb_mgm or

4655

https://dev.mysql.com/doc/mysql-cluster-manager/8.0/en/mcm-process-commands.html

Commands in the NDB Cluster Management Client

the mysql client to remove all data from a specific data node or node group, this means that the
command succeeds only in the two following cases:

1. After issuing CREATE NODEGROUP in the ndb_mgm client, but before issuing any ALTER
TABLE ... REORGANIZE PARTITION statements in the mysql client.

2. After dropping all NDBCLUSTER tables using DROP TABLE.

TRUNCATE TABLE does not work for this purpose because this removes only the table data; the
data nodes continue to store an NDBCLUSTER table's definition until a DROP TABLE statement is
issued that causes the table metadata to be dropped.

For more information about DROP NODEGROUP, see Section 25.6.7, “Adding NDB Cluster Data
Nodes Online”.

• ENTER SINGLE USER MODE node_id

Enters single user mode, whereby only the MySQL server identified by the node ID node_id is
permitted to access the database.

The ndb_mgm client provides a clear acknowledgement that this command has been issued and has
taken effect, as shown here:

ndb_mgm> ENTER SINGLE USER MODE 100
Single user mode entered
Access is granted for API node 100 only.

In addition, the API or SQL node having exclusive access when in single user mode is indicated in
the output of the SHOW command, like this:

ndb_mgm> SHOW
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=5 @127.0.0.1 (mysql-8.0.42 ndb-8.0.42, single user mode, Nodegroup: 0, *)
id=6 @127.0.0.1 (mysql-8.0.42 ndb-8.0.42, single user mode, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=50 @127.0.0.1 (mysql-8.0.42 ndb-8.0.42)

[mysqld(API)] 2 node(s)
id=100 @127.0.0.1 (mysql-8.0.42 ndb-8.0.42, allowed single user)
id=101 (not connected, accepting connect from any host)

• EXIT SINGLE USER MODE

Exits single user mode, enabling all SQL nodes (that is, all running mysqld processes) to access the
database.

Note

It is possible to use EXIT SINGLE USER MODE even when not in single user
mode, although the command has no effect in this case.

• HELP

Displays information on all available commands.

• node_id NODELOG DEBUG {ON|OFF}

Toggles debug logging in the node log, as though the effected data node or nodes had been started
with the --verbose option. NODELOG DEBUG ON starts debug logging; NODELOG DEBUG OFF
switches debug logging off.

• PROMPT [prompt]

4656

Commands in the NDB Cluster Management Client

Changes the prompt shown by ndb_mgm to the string literal prompt.

prompt should not be quoted (unless you want the prompt to include the quotation marks). Unlike
the case with the mysql client, special character sequences and escapes are not recognized. If
called without an argument, the command resets the prompt to the default value (ndb_mgm>).

Some examples are shown here:

ndb_mgm> PROMPT mgm#1:
mgm#1: SHOW
Cluster Configuration
...
mgm#1: PROMPT mymgm >
mymgm > PROMPT 'mymgm:'
'mymgm:' PROMPT mymgm:
mymgm: PROMPT
ndb_mgm> EXIT
$>

Note that leading spaces and spaces within the prompt string are not trimmed. Trailing spaces are
removed.

• QUIT, EXIT

Terminates the management client.

This command does not affect any nodes connected to the cluster.

• node_id REPORT report-type

Displays a report of type report-type for the data node identified by node_id, or for all data
nodes using ALL.

Currently, there are three accepted values for report-type:

• BackupStatus provides a status report on a cluster backup in progress

• MemoryUsage displays how much data memory and index memory is being used by each data
node as shown in this example:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(177 32K pages of total 3200)
Node 1: Index usage is 0%(108 8K pages of total 12832)
Node 2: Data usage is 5%(177 32K pages of total 3200)
Node 2: Index usage is 0%(108 8K pages of total 12832)

This information is also available from the ndbinfo.memoryusage table.

• EventLog reports events from the event log buffers of one or more data nodes.

report-type is case-insensitive and “fuzzy”; for MemoryUsage, you can use MEMORY (as shown in
the prior example), memory, or even simply MEM (or mem). You can abbreviate BackupStatus in a
similar fashion.

4657

Commands in the NDB Cluster Management Client

• node_id RESTART [-n] [-i] [-a] [-f]

Restarts the data node identified by node_id (or all data nodes).

Using the -i option with RESTART causes the data node to perform an initial restart; that is, the
node's file system is deleted and recreated. The effect is the same as that obtained from stopping the
data node process and then starting it again using ndbd --initial from the system shell.

Note

Backup files and Disk Data files are not removed when this option is used.

Using the -n option causes the data node process to be restarted, but the data node is not actually
brought online until the appropriate START command is issued. The effect of this option is the same
as that obtained from stopping the data node and then starting it again using ndbd --nostart or
ndbd -n from the system shell.

Using the -a causes all current transactions relying on this node to be aborted. No GCP check is
done when the node rejoins the cluster.

Normally, RESTART fails if taking the node offline would result in an incomplete cluster. The -f
option forces the node to restart without checking for this. If this option is used and the result is an
incomplete cluster, the entire cluster is restarted.

• SHOW

Displays basic information about the cluster and cluster nodes. For all nodes, the output includes the
node's ID, type, and NDB software version. If the node is connected, its IP address is also shown;
otherwise the output shows not connected, accepting connect from ip_address, with
any host used for nodes that are permitted to connect from any address.

In addition, for data nodes, the output includes starting if the node has not yet started, and shows
the node group of which the node is a member. If the data node is acting as the master node, this is
indicated with an asterisk (*).

Consider a cluster whose configuration file includes the information shown here (possible additional
settings are omitted for clarity):

[ndbd default]
DataMemory= 128G
NoOfReplicas= 2

[ndb_mgmd]
NodeId=50
HostName=198.51.100.150

[ndbd]
NodeId=5
HostName=198.51.100.10
DataDir=/var/lib/mysql-cluster

[ndbd]
NodeId=6
HostName=198.51.100.20
DataDir=/var/lib/mysql-cluster

[ndbd]
NodeId=7
HostName=198.51.100.30
DataDir=/var/lib/mysql-cluster

[ndbd]
NodeId=8
HostName=198.51.100.40
DataDir=/var/lib/mysql-cluster

4658

Commands in the NDB Cluster Management Client

[mysqld]
NodeId=100
HostName=198.51.100.100

[api]
NodeId=101

After this cluster (including one SQL node) has been started, SHOW displays the following output:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 4 node(s)
id=5 @198.51.100.10 (mysql-8.0.42 ndb-8.0.42, Nodegroup: 0, *)
id=6 @198.51.100.20 (mysql-8.0.42 ndb-8.0.42, Nodegroup: 0)
id=7 @198.51.100.30 (mysql-8.0.42 ndb-8.0.42, Nodegroup: 1)
id=8 @198.51.100.40 (mysql-8.0.42 ndb-8.0.42, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)
id=50 @198.51.100.150 (mysql-8.0.42 ndb-8.0.42)

[mysqld(API)] 2 node(s)
id=100 @198.51.100.100 (mysql-8.0.42 ndb-8.0.42)
id=101 (not connected, accepting connect from any host)

The output from this command also indicates when the cluster is in single user mode (see the
description of the ENTER SINGLE USER MODE command, as well as Section 25.6.6, “NDB Cluster
Single User Mode”). In NDB 8.0, it also indicates which API or SQL node has exclusive access when
this mode is in effect; this works only when all data nodes and management nodes connected to the
cluster are running NDB 8.0.

• SHUTDOWN

Shuts down all cluster data nodes and management nodes. To exit the management client after this
has been done, use EXIT or QUIT.

This command does not shut down any SQL nodes or API nodes that are connected to the cluster.

• node_id START

Brings online the data node identified by node_id (or all data nodes).

ALL START works on all data nodes only, and does not affect management nodes.

Important

To use this command to bring a data node online, the data node must have
been started using --nostart or -n.

• node_id STATUS

Displays status information for the data node identified by node_id (or for all data nodes).

Possible node status values include UNKNOWN, NO_CONTACT, NOT_STARTED, STARTING, STARTED,
SHUTTING_DOWN, and RESTARTING.

The output from this command also indicates when the cluster is in single user mode.

4659

NDB Cluster Log Messages

• node_id STOP [-a] [-f]

Stops the data or management node identified by node_id.

Note

ALL STOP works to stop all data nodes only, and does not affect
management nodes.

A node affected by this command disconnects from the cluster, and its associated ndbd or
ndb_mgmd process terminates.

The -a option causes the node to be stopped immediately, without waiting for the completion of any
pending transactions.

Normally, STOP fails if the result would cause an incomplete cluster. The -f option forces the node
to shut down without checking for this. If this option is used and the result is an incomplete cluster,
the cluster immediately shuts down.

Warning

Use of the -a option also disables the safety check otherwise performed
when STOP is invoked to insure that stopping the node does not cause an
incomplete cluster. In other words, you should exercise extreme care when
using the -a option with the STOP command, due to the fact that this option
makes it possible for the cluster to undergo a forced shutdown because it no
longer has a complete copy of all data stored in NDB.

Additional commands. A number of other commands available in the ndb_mgm client are
described elsewhere, as shown in the following list:

• START BACKUP is used to perform an online backup in the ndb_mgm client; the ABORT BACKUP
command is used to cancel a backup already in progress. For more information, see Section 25.6.8,
“Online Backup of NDB Cluster”.

• The CLUSTERLOG command is used to perform various logging functions. See Section 25.6.3, “Event
Reports Generated in NDB Cluster”, for more information and examples. NODELOG DEBUG activates
or deactivates debug printouts in node logs, as described previously in this section.

• For testing and diagnostics work, the client supports a DUMP command which can be used to execute
internal commands on the cluster. It should never be used in a production setting unless directed
to do so by MySQL Support. For more information, see NDB Cluster Management Client DUMP
Commands.

25.6.2 NDB Cluster Log Messages

This section contains information about the messages written to the cluster log in response to different
cluster log events. It provides additional, more specific information on NDB transporter errors.

25.6.2.1 NDB Cluster: Messages in the Cluster Log

The following table lists the most common NDB cluster log messages. For information about the cluster
log, log events, and event types, see Section 25.6.3, “Event Reports Generated in NDB Cluster”. These
log messages also correspond to log event types in the MGM API; see The Ndb_logevent_type Type,
for related information of interest to Cluster API developers.

Table 25.53 Common NDB cluster log messages

Log Message Description Event Name Event Type Priority Severity

Node
mgm_node_id:
Node

The data node
having node
ID node_id

Connected Connection 8 INFO

4660

https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndbapi/en/mgm-types.html#mgm-ndb-logevent-type

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
data_node_id
Connected

has connected
to the
management
server (node
mgm_node_id).

Node
mgm_node_id:
Node
data_node_id
Disconnected

The data node
having node ID
data_node_id
has
disconnected
from the
management
server (node
mgm_node_id).

Disconnected Connection 8 ALERT

Node
data_node_id:
Communication
to Node
api_node_id
closed

The API node
or SQL node
having node ID
api_node_id
is no longer
communicating
with data node
data_node_id.

CommunicationClosedConnection 8 INFO

Node
data_node_id:
Communication
to Node
api_node_id
opened

The API node
or SQL node
having node ID
api_node_id
is now
communicating
with data node
data_node_id.

CommunicationOpenedConnection 8 INFO

Node
mgm_node_id:
Node
api_node_id:
API version

The API node
having node ID
api_node_id
has connected
to management
node
mgm_node_id
using NDB
API version
version
(generally the
same as the
MySQL version
number).

ConnectedApiVersionConnection 8 INFO

Node
node_id:
Global
checkpoint
gci started

A global
checkpoint with
the ID gci has
been started;
node node_id
is the master
responsible
for this global
checkpoint.

GlobalCheckpointStartedCheckpoint 9 INFO

4661

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity

Node
node_id:
Global
checkpoint
gci
completed

The global
checkpoint
having the ID
gci has been
completed;
node node_id
was the master
responsible
for this global
checkpoint.

GlobalCheckpointCompletedCheckpoint 10 INFO

Node
node_id:
Local
checkpoint
lcp
started.
Keep GCI =
current_gci
oldest
restorable
GCI =
old_gci

The local
checkpoint
having
sequence ID
lcp has been
started on node
node_id. The
most recent
GCI that can
be used has
the index
current_gci,
and the oldest
GCI from which
the cluster can
be restored
has the index
old_gci.

LocalCheckpointStartedCheckpoint 7 INFO

Node
node_id:
Local
checkpoint
lcp
completed

The local
checkpoint
having
sequence ID
lcp on node
node_id
has been
completed.

LocalCheckpointCompletedCheckpoint 8 INFO

Node
node_id:
Local
Checkpoint
stopped in
CALCULATED_KEEP_GCI

The node
was unable to
determine the
most recent
usable GCI.

LCPStoppedInCalcKeepGciCheckpoint 0 ALERT

Node
node_id:
Table ID =
table_id,
fragment
ID =
fragment_id
has
completed
LCP on Node
node_id
maxGciStarted:
started_gci

A table
fragment
has been
checkpointed
to disk on node
node_id. The
GCI in progress
has the index
started_gci,
and the most
recent GCI
to have been
completed

LCPFragmentCompletedCheckpoint 11 INFO

4662

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
maxGciCompleted:
completed_gci

has the index
completed_gci.

Node
node_id:
ACC Blocked
num_1 and
TUP Blocked
num_2 times
last second

Undo logging
is blocked
because the log
buffer is close
to overflowing.

UndoLogBlockedCheckpoint 7 INFO

Node
node_id:
Start
initiated
version

Data node
node_id,
running
NDB version
version, is
beginning its
startup process.

NDBStartStartedStartUp 1 INFO

Node
node_id:
Started
version

Data node
node_id,
running
NDB version
version,
has started
successfully.

NDBStartCompletedStartUp 1 INFO

Node
node_id:
STTORRY
received
after
restart
finished

The node has
received a
signal indicating
that a cluster
restart has
completed.

STTORRYRecievedStartUp 15 INFO

Node
node_id:
Start
phase phase
completed
(type)

The node has
completed
start phase
phase of a
type start. For
a listing of start
phases, see
Section 25.6.4,
“Summary of
NDB Cluster
Start Phases”.
(type is one
of initial,
system, node,
initial
node, or
<Unknown>.)

StartPhaseCompletedStartUp 4 INFO

Node
node_id:
CM_REGCONF
president =
president_id,
own Node
= own_id,

Node
president_id
has been
selected as
“president”.
own_id and
dynamic_id

CM_REGCONF StartUp 3 INFO

4663

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
our dynamic
id =
dynamic_id

should always
be the same
as the ID
(node_id) of
the reporting
node.

Node
node_id:
CM_REGREF
from Node
president_id
to our Node
node_id.
Cause =
cause

The reporting
node (ID
node_id)
was unable to
accept node
president_id
as president.
The cause of
the problem
is given as
one of Busy,
Election
with wait
= false, Not
president,
Election
without
selecting
new
candidate,
or No such
cause.

CM_REGREF StartUp 8 INFO

Node
node_id:
We are Node
own_id with
dynamic ID
dynamic_id,
our left
neighbor is
Node id_1,
our right
is Node
id_2

The node has
discovered its
neighboring
nodes in the
cluster (node
id_1 and
node id_2).
node_id,
own_id, and
dynamic_id
should always
be the same;
if they are not,
this indicates
a serious
misconfiguration
of the cluster
nodes.

FIND_NEIGHBOURSStartUp 8 INFO

Node
node_id:
type
shutdown
initiated

The node
has received
a shutdown
signal. The
type of
shutdown is
either Cluster
or Node.

NDBStopStartedStartUp 1 INFO

4664

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity

Node
node_id:
Node
shutdown
completed
[, action]
[Initiated
by signal
signal.]

The node
has been
shut down.
This report
may include
an action,
which if present
is one of
restarting,
no start,
or initial.
The report may
also include a
reference to an
NDB Protocol
signal;
for possible
signals, refer to
Operations and
Signals.

NDBStopCompletedStartUp 1 INFO

Node
node_id:
Forced node
shutdown
completed
[, action].
[Occurred
during
startphase
start_phase.]
[Initiated
by signal.]
[Caused
by error
error_code:
'error_message(error_classification).
error_status'.
[(extra info
extra_code)]]

The node has
been forcibly
shut down. The
action (one of
restarting,
no start,
or initial)
subsequently
being taken,
if any, is also
reported. If
the shutdown
occurred while
the node
was starting,
the report
includes the
start_phase
during which
the node failed.
If this was
a result of a
signal sent to
the node, this
information is
also provided
(see Operations
and Signals,
for more
information).
If the error
causing the
failure is known,
this is also
included;
for more

NDBStopForcedStartUp 1 ALERT

4665

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
information
about NDB error
messages and
classifications,
see NDB
Cluster API
Errors.

Node
node_id:
Node
shutdown
aborted

The node
shutdown
process was
aborted by the
user.

NDBStopAbortedStartUp 1 INFO

Node
node_id:
StartLog:
[GCI Keep:
keep_pos
LastCompleted:
last_pos
NewestRestorable:
restore_pos]

This reports
global
checkpoints
referenced
during a node
start. The redo
log prior to
keep_pos
is dropped.
last_pos is
the last global
checkpoint
in which data
node the
participated;
restore_pos
is the global
checkpoint
which is
actually used to
restore all data
nodes.

StartREDOLog StartUp 4 INFO

startup_message
[Listed
separately; see
below.]

There are a
number of
possible startup
messages that
can be logged
under different
circumstances.
These are listed
separately; see
Section 25.6.2.2,
“NDB Cluster
Log Startup
Messages”.

StartReport StartUp 4 INFO

Node
node_id:
Node
restart
completed
copy of
dictionary
information

Copying of
data dictionary
information to
the restarted
node has been
completed.

NR_CopyDict NodeRestart 8 INFO

4666

https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity

Node
node_id:
Node
restart
completed
copy of
distribution
information

Copying of data
distribution
information to
the restarted
node has been
completed.

NR_CopyDistr NodeRestart 8 INFO

Node
node_id:
Node
restart
starting
to copy the
fragments
to Node
node_id

Copy of
fragments to
starting data
node node_id
has begun

NR_CopyFragsStartedNodeRestart 8 INFO

Node
node_id:
Table ID =
table_id,
fragment
ID =
fragment_id
have been
copied
to Node
node_id

Fragment
fragment_id
from table
table_id has
been copied
to data node
node_id

NR_CopyFragDoneNodeRestart 10 INFO

Node
node_id:
Node
restart
completed
copying the
fragments
to Node
node_id

Copying of all
table fragments
to restarting
data node
node_id has
been completed

NR_CopyFragsCompletedNodeRestart 8 INFO

Node
node_id:
Node
node1_id
completed
failure
of Node
node2_id

Data node
node1_id
has detected
the failure of
data node
node2_id

NodeFailCompletedNodeRestart 8 ALERT

All nodes
completed
failure
of Node
node_id

All (remaining)
data nodes
have detected
the failure of
data node
node_id

NodeFailCompletedNodeRestart 8 ALERT

Node
failure of

The failure
of data node
node_id

NodeFailCompletedNodeRestart 8 ALERT

4667

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
node_idblock
completed

has been
detected in
the blockNDB
kernel block,
where block
is 1 of DBTC,
DBDICT,
DBDIH,
or DBLQH;
for more
information, see
NDB Kernel
Blocks

Node
mgm_node_id:
Node
data_node_id
has failed.
The Node
state at
failure was
state_code

A data node
has failed. Its
state at the
time of failure
is described by
an arbitration
state code
state_code:
possible state
code values
can be found
in the file
include/
kernel/
signaldata/
ArbitSignalData.hpp.

NODE_FAILREP NodeRestart 8 ALERT

President
restarts
arbitration
thread
[state=state_code]
or Prepare
arbitrator
node
node_id
[ticket=ticket_id]
or Receive
arbitrator
node
node_id
[ticket=ticket_id]
or Started
arbitrator
node
node_id
[ticket=ticket_id]
or Lost
arbitrator
node
node_id
- process
failure
[state=state_code]

This is a report
on the current
state and
progress of
arbitration in
the cluster.
node_id is the
node ID of the
management
node or
SQL node
selected as
the arbitrator.
state_code
is an arbitration
state code,
as found in
include/
kernel/
signaldata/
ArbitSignalData.hpp.
When an
error has
occurred, an
error_message,
also defined in
ArbitSignalData.hpp,

ArbitState NodeRestart 6 INFO

4668

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
or Lost
arbitrator
node
node_id
- process
exit
[state=state_code]
or Lost
arbitrator
node
node_id -
error_message
[state=state_code]

is provided.
ticket_id
is a unique
identifier
handed out by
the arbitrator
when it is
selected to all
the nodes that
participated in
its selection;
this is used to
ensure that
each node
requesting
arbitration
was one of
the nodes that
took part in
the selection
process.

Arbitration
check lost
- less than
1/2 nodes
left or
Arbitration
check won
- all node
groups and
more than
1/2 nodes
left or
Arbitration
check won -
node group
majority or
Arbitration
check lost
- missing
node group
or Network
partitioning
-
arbitration
required or
Arbitration
won -
positive
reply
from node
node_id or
Arbitration
lost -
negative
reply

This message
reports on
the result of
arbitration.
In the event
of arbitration
failure, an
error_message
and an
arbitration
state_code
are provided;
definitions for
both of these
are found in
include/
kernel/
signaldata/
ArbitSignalData.hpp.

ArbitResult NodeRestart 2 ALERT

4669

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
from node
node_id
or Network
partitioning
- no
arbitrator
available
or Network
partitioning
- no
arbitrator
configured or
Arbitration
failure -
error_message
[state=state_code]

Node
node_id:
GCP Take
over
started

This node is
attempting
to assume
responsibility
for the
next global
checkpoint
(that is, it is
becoming the
master node)

GCP_TakeoverStartedNodeRestart 7 INFO

Node
node_id:
GCP Take
over
completed

This node has
become the
master, and
has assumed
responsibility
for the
next global
checkpoint

GCP_TakeoverCompletedNodeRestart 7 INFO

Node
node_id:
LCP Take
over
started

This node is
attempting
to assume
responsibility
for the next
set of local
checkpoints
(that is, it is
becoming the
master node)

LCP_TakeoverStartedNodeRestart 7 INFO

Node
node_id:
LCP Take
over
completed

This node has
become the
master, and
has assumed
responsibility
for the next
set of local
checkpoints

LCP_TakeoverCompletedNodeRestart 7 INFO

Node
node_id:

This report of
transaction

TransReportCountersStatistic 8 INFO

4670

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
Trans.
Count =
transactions,
Commit
Count =
commits,
Read Count
= reads,
Simple Read
Count =
simple_reads,
Write Count
= writes,
AttrInfo
Count =
AttrInfo_objects,
Concurrent
Operations
=
concurrent_operations,
Abort Count
= aborts,
Scans =
scans,
Range
scans =
range_scans

activity is given
approximately
once every 10
seconds

Node
node_id:
Operations=operations

Number of
operations
performed
by this node,
provided
approximately
once every 10
seconds

OperationReportCountersStatistic 8 INFO

Node
node_id:
Table
with ID =
table_id
created

A table having
the table ID
shown has
been created

TableCreated Statistic 7 INFO

Node
node_id:
Mean loop
Counter in
doJob last
8192 times
= count

JobStatistic Statistic 9 INFO

Mean send
size to
Node =
node_id
last 4096
sends =
bytes bytes

This node is
sending an
average of
bytes bytes
per send to
node node_id

SendBytesStatisticStatistic 9 INFO

4671

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity

Mean
receive
size to
Node =
node_id
last 4096
sends =
bytes bytes

This node is
receiving an
average of
bytes of data
each time it
receives data
from node
node_id

ReceiveBytesStatisticStatistic 9 INFO

Node
node_id:
Data
usage is
data_memory_percentage%
(data_pages_used
32K pages
of total
data_pages_total)
/ Node
node_id:
Index
usage is
index_memory_percentage%
(index_pages_used
8K pages
of total
index_pages_total)

This report
is generated
when a DUMP
1000 command
is issued in
the cluster
management
client

MemoryUsage Statistic 5 INFO

Node
node1_id:
Transporter
to node
node2_id
reported
error
error_code:
error_message

A transporter
error occurred
while
communicating
with node
node2_id;
for a listing
of transporter
error codes
and messages,
see NDB
Transporter
Errors, in
MySQL
NDB Cluster
Internals
Manual

TransporterErrorError 2 ERROR

Node
node1_id:
Transporter
to node
node2_id
reported
error
error_code:
error_message

A warning of
a potential
transporter
problem while
communicating
with node
node2_id;
for a listing
of transporter
error codes
and messages,
see NDB

TransporterWarningError 8 WARNING

4672

https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
Transporter
Errors, for more
information

Node
node1_id:
Node
node2_id
missed
heartbeat
heartbeat_id

This node
missed a
heartbeat
from node
node2_id

MissedHeartbeatError 8 WARNING

Node
node1_id:
Node
node2_id
declared
dead due
to missed
heartbeat

This node has
missed at least
3 heartbeats
from node
node2_id,
and so has
declared that
node “dead”

DeadDueToHeartbeatError 8 ALERT

Node
node1_id:
Node Sent
Heartbeat
to node =
node2_id

This node
has sent a
heartbeat
to node
node2_id

SentHeartbeatInfo 12 INFO

Node
node_id:
Event
buffer
status
(object_id):
used=bytes_used
(percent_used%
of alloc)
alloc=bytes_allocated
max=bytes_available
latest_consumed_epoch=latest_consumed_epoch
latest_buffered_epoch=latest_buffered_epoch
report_reason=report_reason

This report is
seen during
heavy event
buffer usage,
for example,
when many
updates are
being applied
in a relatively
short period
of time; the
report shows
the number of
bytes and the
percentage of
event buffer
memory used,
the bytes
allocated and
percentage
still available,
and the latest
buffered and
consumed
epochs;
for more
information, see
Section 25.6.2.3,
“Event Buffer
Reporting in the
Cluster Log”

EventBufferStatus2Info 7 INFO

4673

https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity

Node
node_id:
Entering
single user
mode, Node
node_id:
Entered
single user
mode Node
API_node_id
has
exclusive
access, Node
node_id:
Entering
single user
mode

These reports
are written
to the cluster
log when
entering and
exiting single
user mode;
API_node_id
is the node ID
of the API or
SQL having
exclusive
access to
the cluster
(for more
information, see
Section 25.6.6,
“NDB Cluster
Single User
Mode”); the
message
Unknown
single
user report
API_node_id
indicates an
error has taken
place and
should never be
seen in normal
operation

SingleUser Info 7 INFO

Node
node_id:
Backup
backup_id
started
from node
mgm_node_id

A backup has
been started
using the
management
node having
mgm_node_id;
this message is
also displayed
in the cluster
management
client when
the START
BACKUP
command is
issued; for more
information, see
Section 25.6.8.2,
“Using The
NDB Cluster
Management
Client to Create
a Backup”

BackupStartedBackup 7 INFO

Node
node_id:

The backup
having the ID

BackupCompletedBackup 7 INFO

4674

NDB Cluster Log Messages

Log Message Description Event Name Event Type Priority Severity
Backup
backup_id
started
from node
mgm_node_id
completed.
StartGCP:
start_gcp
StopGCP:
stop_gcp
#Records:
records
#LogRecords:
log_records
Data:
data_bytes
bytes Log:
log_bytes
bytes

backup_id
has been
completed;
for more
information, see
Section 25.6.8.2,
“Using The
NDB Cluster
Management
Client to Create
a Backup”

Node
node_id:
Backup
request
from
mgm_node_id
failed to
start.
Error:
error_code

The backup
failed to start;
for error codes,
see MGM API
Errors

BackupFailedToStartBackup 7 ALERT

Node
node_id:
Backup
backup_id
started
from
mgm_node_id
has been
aborted.
Error:
error_code

The backup
was terminated
after starting,
possibly
due to user
intervention

BackupAbortedBackup 7 ALERT

25.6.2.2 NDB Cluster Log Startup Messages

Possible startup messages with descriptions are provided in the following list:

• Initial start, waiting for %s to connect, nodes [all: %s connected: %s
no-wait: %s]

• Waiting until nodes: %s connects, nodes [all: %s connected: %s no-wait:
%s]

• Waiting %u sec for nodes %s to connect, nodes [all: %s connected: %s no-
wait: %s]

• Waiting for non partitioned start, nodes [all: %s connected: %s missing:
%s no-wait: %s]

4675

https://dev.mysql.com/doc/ndbapi/en/mgm-errors.html
https://dev.mysql.com/doc/ndbapi/en/mgm-errors.html

NDB Cluster Log Messages

• Waiting %u sec for non partitioned start, nodes [all: %s connected: %s
missing: %s no-wait: %s]

• Initial start with nodes %s [missing: %s no-wait: %s]

• Start with all nodes %s

• Start with nodes %s [missing: %s no-wait: %s]

• Start potentially partitioned with nodes %s [missing: %s no-wait: %s]

• Unknown startreport: 0x%x [%s %s %s %s]

25.6.2.3 Event Buffer Reporting in the Cluster Log

NDB uses one or more memory buffers for events received from the data nodes. There is one such
buffer for each Ndb object subscribing to table events, which means that there are usually two buffers
for each mysqld performing binary logging (one buffer for schema events, and one for data events).
Each buffer contains epochs made up of events. These events consist of operation types (insert,
update, delete) and row data (before and after images plus metadata).

NDB generates messages in the cluster log to describe the state of these buffers. Although these
reports appear in the cluster log, they refer to buffers on API nodes (unlike most other cluster log
messages, which are generated by data nodes).

Event buffer logging reports in the cluster log use the format shown here:

Node node_id: Event buffer status (object_id):
used=bytes_used (percent_used% of alloc)
alloc=bytes_allocated (percent_alloc% of max) max=bytes_available
latest_consumed_epoch=latest_consumed_epoch
latest_buffered_epoch=latest_buffered_epoch
report_reason=report_reason

The fields making up this report are listed here, with descriptions:

• node_id: ID of the node where the report originated.

• object_id: ID of the Ndb object where the report originated.

• bytes_used: Number of bytes used by the buffer.

• percent_used: Percentage of allocated bytes used.

• bytes_allocated: Number of bytes allocated to this buffer.

• percent_alloc: Percentage of available bytes used; not printed if
ndb_eventbuffer_max_alloc is equal to 0 (unlimited).

• bytes_available: Number of bytes available; this is 0 if ndb_eventbuffer_max_alloc is 0
(unlimited).

• latest_consumed_epoch: The epoch most recently consumed to completion. (In NDB API
applications, this is done by calling nextEvent().)

• latest_buffered_epoch: The epoch most recently buffered (completely) in the event buffer.

• report_reason: The reason for making the report. Possible reasons are shown later in this
section.

Possible reasons for reporting are described in the following list:

• ENOUGH_FREE_EVENTBUFFER: The event buffer has sufficient space.

LOW_FREE_EVENTBUFFER: The event buffer is running low on free space.

4676

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent

NDB Cluster Log Messages

The threshold free percentage level triggering these reports can be adjusted by setting the
ndb_report_thresh_binlog_mem_usage server variable.

• BUFFERED_EPOCHS_OVER_THRESHOLD: Whether the number of buffered epochs has exceeded the
configured threshold. This number is the difference between the latest epoch that has been received
in its entirety and the epoch that has most recently been consumed (in NDB API applications, this
is done by calling nextEvent() or nextEvent2()). The report is generated every second until
the number of buffered epochs goes below the threshold, which can be adjusted by setting the
ndb_report_thresh_binlog_epoch_slip server variable. You can also adjust the threshold in
NDB API applications by calling setEventBufferQueueEmptyEpoch().

• PARTIALLY_DISCARDING: Event buffer memory is exhausted—that is, 100% of
ndb_eventbuffer_max_alloc has been used. Any partially buffered epoch is buffered to
completion even is usage exceeds 100%, but any new epochs received are discarded. This means
that a gap has occurred in the event stream.

• COMPLETELY_DISCARDING: No epochs are buffered.

• PARTIALLY_BUFFERING: The buffer free percentage following the gap has risen to the threshold,
which can be set in the mysql client using the ndb_eventbuffer_free_percent server system
variable or in NDB API applications by calling set_eventbuffer_free_percent(). New epochs
are buffered. Epochs that could not be completed due to the gap are discarded.

• COMPLETELY_BUFFERING: All epochs received are being buffered, which means that there is
sufficient event buffer memory. The gap in the event stream has been closed.

25.6.2.4 NDB Cluster: NDB Transporter Errors

This section lists error codes, names, and messages that are written to the cluster log in the event of
transporter errors.

0x00 TE_NO_ERROR

No error

0x01 TE_ERROR_CLOSING_SOCKET

Error found during closing of socket

0x02 TE_ERROR_IN_SELECT_BEFORE_ACCEPT

Error found before accept. The transporter will
retry

0x03 TE_INVALID_MESSAGE_LENGTH

Error found in message (invalid message length)

0x04 TE_INVALID_CHECKSUM

Error found in message (checksum)

0x05 TE_COULD_NOT_CREATE_SOCKET

Error found while creating socket(can't create
socket)

0x06 TE_COULD_NOT_BIND_SOCKET

Error found while binding server socket

0x07 TE_LISTEN_FAILED

4677

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-seteventbufferqueueemptyepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-set-eventbuffer-free-percent

NDB Cluster Log Messages

Error found while listening to server socket

0x08 TE_ACCEPT_RETURN_ERROR

Error found during accept(accept return error)

0x0b TE_SHM_DISCONNECT

The remote node has disconnected

0x0c TE_SHM_IPC_STAT

Unable to check shm segment

0x0d TE_SHM_UNABLE_TO_CREATE_SEGMENT

Unable to create shm segment

0x0e TE_SHM_UNABLE_TO_ATTACH_SEGMENT

Unable to attach shm segment

0x0f TE_SHM_UNABLE_TO_REMOVE_SEGMENT

Unable to remove shm segment

0x10 TE_TOO_SMALL_SIGID

Sig ID too small

0x11 TE_TOO_LARGE_SIGID

Sig ID too large

0x12 TE_WAIT_STACK_FULL

Wait stack was full

0x13 TE_RECEIVE_BUFFER_FULL

Receive buffer was full

0x14 TE_SIGNAL_LOST_SEND_BUFFER_FULL

Send buffer was full,and trying to force send
fails

0x15 TE_SIGNAL_LOST

Send failed for unknown reason(signal lost)

0x16 TE_SEND_BUFFER_FULL

The send buffer was full, but sleeping for a while
solved

0x21 TE_SHM_IPC_PERMANENT

Shm ipc Permanent error

4678

Event Reports Generated in NDB Cluster

Note

Transporter error codes 0x17 through 0x20 and 0x22 are reserved for SCI
connections, which are not supported in this version of NDB Cluster, and so are
not included here.

25.6.3 Event Reports Generated in NDB Cluster

In this section, we discuss the types of event logs provided by NDB Cluster, and the types of events
that are logged.

NDB Cluster provides two types of event log:

• The cluster log, which includes events generated by all cluster nodes. The cluster log is the log
recommended for most uses because it provides logging information for an entire cluster in a single
location.

By default, the cluster log is saved to a file named ndb_node_id_cluster.log, (where node_id
is the node ID of the management server) in the management server's DataDir.

Cluster logging information can also be sent to stdout or a syslog facility in addition to or instead
of being saved to a file, as determined by the values set for the DataDir and LogDestination
configuration parameters. See Section 25.4.3.5, “Defining an NDB Cluster Management Server”, for
more information about these parameters.

• Node logs are local to each node.

Output generated by node event logging is written to the file ndb_node_id_out.log (where
node_id is the node's node ID) in the node's DataDir. Node event logs are generated for both
management nodes and data nodes.

Node logs are intended to be used only during application development, or for debugging application
code.

Each reportable event can be distinguished according to three different criteria:

• Category: This can be any one of the following values: STARTUP, SHUTDOWN, STATISTICS,
CHECKPOINT, NODERESTART, CONNECTION, ERROR, or INFO.

• Priority: This is represented by one of the numbers from 0 to 15 inclusive, where 0 indicates “most
important” and 15 “least important.”

• Severity Level: This can be any one of the following values: ON, DEBUG, INFO, WARNING, ERROR,
CRITICAL, ALERT, or ALL. (This is also sometimes referred to as the log level.)

The cluster log can be filtered on these properties using the NDB management client CLUSTERLOG
command. This command affects the cluster log only, and has no effect on the node logs; debug
logging in one or more node logs can be turned on and off using the ndb_mgm NODELOG DEBUG
command.

The format used in a log message generated by NDB Cluster (as of NDB 8.0.26) is as shown here:

timestamp [node_type] level -- Node node_id: message

Each line in the log, or log message, contains the following information:

• A timestamp in YYYY-MM-DD HH:MM:SS format. The timestamp value currently resolves to whole
seconds only; fractional seconds are not supported.

• The node_type, or type of node or application which is performing the logging. In the cluster log,
this is always [MgmSrvr]; in the data node log, it is always [ndbd]. [NdbApi] and other values
are possible in logs generated by NDB API applications and tools.

4679

Event Reports Generated in NDB Cluster

• The level of the event, sometimes also referred to as its severity level or log level. See earlier in
this section, as well as Section 25.6.3.1, “NDB Cluster Logging Management Commands”, for more
information about severity levels.

• The ID of the node reporting the event (node_id).

• A message containing a description of the event. The most common types of events to appear
in the log are connections and disconnections between different nodes in the cluster, and when
checkpoints occur. In some cases, the description may contain status or other information.

A sample from an actual cluster log is shown here:

2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 5 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 5 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 6 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 6 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: President restarts arbitration thread [state=1]
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 7 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 7 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 8 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 8 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 9 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 9 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 50 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 50 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 101 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 101 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Started (mysql-8.0.42 ndb-8.0.42)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Started (mysql-8.0.42 ndb-8.0.42)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Node 50: API mysql-8.0.42 ndb-8.0.42
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Node 50: API mysql-8.0.42 ndb-8.0.42
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 6: Prepare arbitrator node 50 [ticket=75fd00010fa8b608]
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 5: Started arbitrator node 50 [ticket=75fd00010fa8b608]
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 6: Communication to Node 100 opened
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 6: Communication to Node 101 opened
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 5: Communication to Node 100 opened
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 5: Communication to Node 101 opened
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Alloc node id 100 succeeded
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Nodeid 100 allocated for API at 127.0.0.1
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Node 100: mysqld --server-id=1
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Node 5: Node 100 Connected
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Node 6: Node 100 Connected
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Node 5: Node 100: API mysql-8.0.42 ndb-8.0.42
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Node 6: Node 100: API mysql-8.0.42 ndb-8.0.42

For additional information, see Section 25.6.3.2, “NDB Cluster Log Events”.

25.6.3.1 NDB Cluster Logging Management Commands

ndb_mgm supports a number of management commands related to the cluster log and node logs. In
the listing that follows, node_id denotes either a storage node ID or the keyword ALL, which indicates
that the command should be applied to all of the cluster's data nodes.

• CLUSTERLOG ON

Turns the cluster log on.

• CLUSTERLOG OFF

Turns the cluster log off.

• CLUSTERLOG INFO

Provides information about cluster log settings.

• node_id CLUSTERLOG category=threshold

Logs category events with priority less than or equal to threshold in the cluster log.

4680

Event Reports Generated in NDB Cluster

• CLUSTERLOG TOGGLE severity_level

Toggles cluster logging of events of the specified severity_level.

The following table describes the default setting (for all data nodes) of the cluster log category
threshold. If an event has a priority with a value lower than or equal to the priority threshold, it is
reported in the cluster log.

Note

Events are reported per data node, and that the threshold can be set to different
values on different nodes.

Table 25.54 Cluster log categories, with default threshold setting

Category Default threshold (All data nodes)

STARTUP 7

SHUTDOWN 7

STATISTICS 7

CHECKPOINT 7

NODERESTART 7

CONNECTION 8

ERROR 15

INFO 7

BACKUP 15

CONGESTION 7

SCHEMA 7

The STATISTICS category can provide a great deal of useful data. See Section 25.6.3.3, “Using
CLUSTERLOG STATISTICS in the NDB Cluster Management Client”, for more information.

Thresholds are used to filter events within each category. For example, a STARTUP event with a priority
of 3 is not logged unless the threshold for STARTUP is set to 3 or higher. Only events with priority 3 or
lower are sent if the threshold is 3.

The following table shows the event severity levels.

Note

These correspond to Unix syslog levels, except for LOG_EMERG and
LOG_NOTICE, which are not used or mapped.

Table 25.55 Event severity levels

Severity Level Value Severity Description

1 ALERT A condition that should be
corrected immediately, such as a
corrupted system database

2 CRITICAL Critical conditions, such as
device errors or insufficient
resources

3 ERROR Conditions that should be
corrected, such as configuration
errors

4681

Event Reports Generated in NDB Cluster

Severity Level Value Severity Description

4 WARNING Conditions that are not errors,
but that might require special
handling

5 INFO Informational messages

6 DEBUG Debugging messages used for
NDBCLUSTER development

Event severity levels can be turned on or off using CLUSTERLOG TOGGLE. If a severity level is turned
on, then all events with a priority less than or equal to the category thresholds are logged. If the
severity level is turned off then no events belonging to that severity level are logged.

Important

Cluster log levels are set on a per ndb_mgmd, per subscriber basis. This
means that, in an NDB Cluster with multiple management servers, using
a CLUSTERLOG command in an instance of ndb_mgm connected to one
management server affects only logs generated by that management server but
not by any of the others. This also means that, should one of the management
servers be restarted, only logs generated by that management server are
affected by the resetting of log levels caused by the restart.

25.6.3.2 NDB Cluster Log Events

An event report reported in the event logs has the following format:

datetime [string] severity -- message

For example:

09:19:30 2005-07-24 [NDB] INFO -- Node 4 Start phase 4 completed

This section discusses all reportable events, ordered by category and severity level within each
category.

In the event descriptions, GCP and LCP mean “Global Checkpoint” and “Local Checkpoint”,
respectively.

CONNECTION Events

These events are associated with connections between Cluster nodes.

Table 25.56 Events associated with connections between cluster nodes

Event Priority Severity Level Description

Connected 8 INFO Data nodes connected

Disconnected 8 ALERT Data nodes
disconnected

CommunicationClosed8 INFO SQL node or data node
connection closed

CommunicationOpened8 INFO SQL node or data node
connection open

ConnectedApiVersion8 INFO Connection using API
version

CHECKPOINT Events

The logging messages shown here are associated with checkpoints.

4682

Event Reports Generated in NDB Cluster

Table 25.57 Events associated with checkpoints

Event Priority Severity Level Description

GlobalCheckpointStarted9 INFO Start of GCP: REDO log
is written to disk

GlobalCheckpointCompleted10 INFO GCP finished

LocalCheckpointStarted7 INFO Start of LCP: data
written to disk

LocalCheckpointCompleted7 INFO LCP completed normally

LCPStoppedInCalcKeepGci0 ALERT LCP stopped

LCPFragmentCompleted11 INFO LCP on a fragment has
been completed

UndoLogBlocked 7 INFO UNDO logging blocked;
buffer near overflow

RedoStatus 7 INFO Redo status

STARTUP Events

The following events are generated in response to the startup of a node or of the cluster and of its
success or failure. They also provide information relating to the progress of the startup process,
including information concerning logging activities.

Table 25.58 Events relating to the startup of a node or cluster

Event Priority Severity Level Description

NDBStartStarted 1 INFO Data node start phases
initiated (all nodes
starting)

NDBStartCompleted 1 INFO Start phases completed,
all data nodes

STTORRYRecieved 15 INFO Blocks received after
completion of restart

StartPhaseCompleted4 INFO Data node start phase X
completed

CM_REGCONF 3 INFO Node has been
successfully included
into the cluster; shows
the node, managing
node, and dynamic ID

CM_REGREF 8 INFO Node has been refused
for inclusion in the
cluster; cannot be
included in cluster due
to misconfiguration,
inability to establish
communication, or other
problem

FIND_NEIGHBOURS 8 INFO Shows neighboring data
nodes

NDBStopStarted 1 INFO Data node shutdown
initiated

NDBStopCompleted 1 INFO Data node shutdown
complete

4683

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description

NDBStopForced 1 ALERT Forced shutdown of
data node

NDBStopAborted 1 INFO Unable to shut down
data node normally

StartREDOLog 4 INFO New redo log started;
GCI keep X, newest
restorable GCI Y

StartLog 10 INFO New log started; log part
X, start MB Y, stop MB Z

UNDORecordsExecuted15 INFO Undo records executed

StartReport 4 INFO Report started

LogFileInitStatus 7 INFO Log file initialization
status

LogFileInitCompStatus7 INFO Log file completion
status

StartReadLCP 10 INFO Start read for local
checkpoint

ReadLCPComplete 10 INFO Read for local
checkpoint completed

RunRedo 8 INFO Running the redo log

RebuildIndex 10 INFO Rebuilding indexes

NODERESTART Events

The following events are generated when restarting a node and relate to the success or failure of the
node restart process.

Table 25.59 Events relating to restarting a node

Event Priority Severity Level Description

NR_CopyDict 7 INFO Completed copying of
dictionary information

NR_CopyDistr 7 INFO Completed copying
distribution information

NR_CopyFragsStarted7 INFO Starting to copy
fragments

NR_CopyFragDone 10 INFO Completed copying a
fragment

NR_CopyFragsCompleted7 INFO Completed copying all
fragments

NodeFailCompleted 8 ALERT Node failure phase
completed

NODE_FAILREP 8 ALERT Reports that a node has
failed

ArbitState 6 INFO Report whether an
arbitrator is found or not;
there are seven different
possible outcomes when
seeking an arbitrator,
listed here:

4684

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description
• Management server

restarts arbitration
thread [state=X]

• Prepare arbitrator
node X [ticket=Y]

• Receive arbitrator
node X [ticket=Y]

• Started arbitrator
node X [ticket=Y]

• Lost arbitrator node
X - process failure
[state=Y]

• Lost arbitrator node
X - process exit
[state=Y]

• Lost arbitrator node X
<error msg> [state=Y]

ArbitResult 2 ALERT Report arbitrator results;
there are eight different
possible results for
arbitration attempts,
listed here:

• Arbitration check
failed: less than 1/2
nodes left

• Arbitration check
succeeded: node
group majority

• Arbitration check
failed: missing node
group

• Network partitioning:
arbitration required

• Arbitration succeeded:
affirmative response
from node X

• Arbitration failed:
negative response
from node X

• Network partitioning:
no arbitrator available

• Network partitioning:
no arbitrator
configured

4685

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description

GCP_TakeoverStarted7 INFO GCP takeover started

GCP_TakeoverCompleted7 INFO GCP takeover complete

LCP_TakeoverStarted7 INFO LCP takeover started

LCP_TakeoverCompleted7 INFO LCP takeover complete
(state = X)

ConnectCheckStarted6 INFO Connection check
started

ConnectCheckCompleted6 INFO Connection check
completed

NodeFailRejected 6 ALERT Node failure phase
failed

STATISTICS Events

The following events are of a statistical nature. They provide information such as numbers of
transactions and other operations, amount of data sent or received by individual nodes, and memory
usage.

Table 25.60 Events of a statistical nature

Event Priority Severity Level Description

TransReportCounters8 INFO Report transaction
statistics, including
numbers of transactions,
commits, reads, simple
reads, writes, concurrent
operations, attribute
information, and aborts

OperationReportCounters8 INFO Number of operations

TableCreated 7 INFO Report number of tables
created

JobStatistic 9 INFO Mean internal job
scheduling statistics

ThreadConfigLoop 9 INFO Number of thread
configuration loops

SendBytesStatistic 9 INFO Mean number of bytes
sent to node X

ReceiveBytesStatistic9 INFO Mean number of bytes
received from node X

MemoryUsage 5 INFO Data and index memory
usage (80%, 90%, and
100%)

MTSignalStatistics 9 INFO Multithreaded signals

SCHEMA Events

These events relate to NDB Cluster schema operations.

Table 25.61 Events relating to NDB Cluster schema operations

Event Priority Severity Level Description

CreateSchemaObject 8 INFO Schema objected
created

4686

Event Reports Generated in NDB Cluster

Event Priority Severity Level Description

AlterSchemaObject 8 INFO Schema object updated

DropSchemaObject 8 INFO Schema object dropped

ERROR Events

These events relate to Cluster errors and warnings. The presence of one or more of these generally
indicates that a major malfunction or failure has occurred.

Table 25.62 Events relating to cluster errors and warnings

Event Priority Severity Level Description

TransporterError 2 ERROR Transporter error

TransporterWarning 8 WARNING Transporter warning

MissedHeartbeat 8 WARNING Node X missed
heartbeat number Y

DeadDueToHeartbeat 8 ALERT Node X declared “dead”
due to missed heartbeat

WarningEvent 2 WARNING General warning event

SubscriptionStatus 4 WARNING Change in subscription
status

INFO Events

These events provide general information about the state of the cluster and activities associated with
Cluster maintenance, such as logging and heartbeat transmission.

Table 25.63 Information events

Event Priority Severity Level Description

SentHeartbeat 12 INFO Sent heartbeat

CreateLogBytes 11 INFO Create log: Log part, log
file, size in MB

InfoEvent 2 INFO General informational
event

EventBufferStatus 7 INFO Event buffer status

EventBufferStatus2 7 INFO Improved event buffer
status information

Note

SentHeartbeat events are available only if NDB Cluster was compiled with
VM_TRACE enabled.

SINGLEUSER Events

These events are associated with entering and exiting single user mode.

Table 25.64 Events relating to single user mode

Event Priority Severity Level Description

SingleUser 7 INFO Entering or exiting single
user mode

BACKUP Events

These events provide information about backups being created or restored.

4687

Event Reports Generated in NDB Cluster

Table 25.65 Backup events

Event Priority Severity Level Description

BackupStarted 7 INFO Backup started

BackupStatus 7 INFO Backup status

BackupCompleted 7 INFO Backup completed

BackupFailedToStart7 ALERT Backup failed to start

BackupAborted 7 ALERT Backup aborted by user

RestoreStarted 7 INFO Started restoring from
backup

RestoreMetaData 7 INFO Restoring metadata

RestoreData 7 INFO Restoring data

RestoreLog 7 INFO Restoring log files

RestoreCompleted 7 INFO Completed restoring
from backup

SavedEvent 7 INFO Event saved

25.6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

The NDB management client's CLUSTERLOG STATISTICS command can provide a number of useful
statistics in its output. Counters providing information about the state of the cluster are updated at 5-
second reporting intervals by the transaction coordinator (TC) and the local query handler (LQH), and
written to the cluster log.

Transaction coordinator statistics. Each transaction has one transaction coordinator, which is
chosen by one of the following methods:

• In a round-robin fashion

• By communication proximity

• By supplying a data placement hint when the transaction is started

Note

You can determine which TC selection method is used for transactions started
from a given SQL node using the ndb_optimized_node_selection system
variable.

All operations within the same transaction use the same transaction coordinator, which reports the
following statistics:

• Trans count. This is the number transactions started in the last interval using this TC as the
transaction coordinator. Any of these transactions may have committed, have been aborted, or
remain uncommitted at the end of the reporting interval.

Note

Transactions do not migrate between TCs.

• Commit count. This is the number of transactions using this TC as the transaction coordinator
that were committed in the last reporting interval. Because some transactions committed in this
reporting interval may have started in a previous reporting interval, it is possible for Commit count
to be greater than Trans count.

• Read count. This is the number of primary key read operations using this TC as the transaction
coordinator that were started in the last reporting interval, including simple reads. This count

4688

Event Reports Generated in NDB Cluster

also includes reads performed as part of unique index operations. A unique index read operation
generates 2 primary key read operations—1 for the hidden unique index table, and 1 for the table on
which the read takes place.

• Simple read count. This is the number of simple read operations using this TC as the transaction
coordinator that were started in the last reporting interval.

• Write count. This is the number of primary key write operations using this TC as the transaction
coordinator that were started in the last reporting interval. This includes all inserts, updates, writes
and deletes, as well as writes performed as part of unique index operations.

Note

A unique index update operation can generate multiple PK read and write
operations on the index table and on the base table.

• AttrInfoCount. This is the number of 32-bit data words received in the last reporting interval for
primary key operations using this TC as the transaction coordinator. For reads, this is proportional
to the number of columns requested. For inserts and updates, this is proportional to the number of
columns written, and the size of their data. For delete operations, this is usually zero.

Unique index operations generate multiple PK operations and so increase this count. However, data
words sent to describe the PK operation itself, and the key information sent, are not counted here.
Attribute information sent to describe columns to read for scans, or to describe ScanFilters, is also
not counted in AttrInfoCount.

• Concurrent Operations. This is the number of primary key or scan operations using this TC
as the transaction coordinator that were started during the last reporting interval but that were not
completed. Operations increment this counter when they are started and decrement it when they
are completed; this occurs after the transaction commits. Dirty reads and writes—as well as failed
operations—decrement this counter.

The maximum value that Concurrent Operations can have is the maximum
number of operations that a TC block can support; currently, this is (2 *
MaxNoOfConcurrentOperations) + 16 + MaxNoOfConcurrentTransactions. (For
more information about these configuration parameters, see the Transaction Parameters section of
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”.)

• Abort count. This is the number of transactions using this TC as the transaction coordinator
that were aborted during the last reporting interval. Because some transactions that were aborted
in the last reporting interval may have started in a previous reporting interval, Abort count can
sometimes be greater than Trans count.

• Scans. This is the number of table scans using this TC as the transaction coordinator that were
started during the last reporting interval. This does not include range scans (that is, ordered index
scans).

• Range scans. This is the number of ordered index scans using this TC as the transaction
coordinator that were started in the last reporting interval.

• Local reads. This is the number of primary-key read operations performed using a transaction
coordinator on a node that also holds the primary fragment replica of the record. This count can also
be obtained from the LOCAL_READS counter in the ndbinfo.counters table.

• Local writes. This contains the number of primary-key read operations that were performed using
a transaction coordinator on a node that also holds the primary fragment replica of the record. This
count can also be obtained from the LOCAL_WRITES counter in the ndbinfo.counters table.

Local query handler statistics (Operations). There is 1 cluster event per local query handler
block (that is, 1 per data node process). Operations are recorded in the LQH where the data they are
operating on resides.

4689

Summary of NDB Cluster Start Phases

Note

A single transaction may operate on data stored in multiple LQH blocks.

The Operations statistic provides the number of local operations performed by this LQH block in the
last reporting interval, and includes all types of read and write operations (insert, update, write, and
delete operations). This also includes operations used to replicate writes. For example, in a cluster with
two fragment replicas, the write to the primary fragment replica is recorded in the primary LQH, and
the write to the backup is recorded in the backup LQH. Unique key operations may result in multiple
local operations; however, this does not include local operations generated as a result of a table scan
or ordered index scan, which are not counted.

Process scheduler statistics. In addition to the statistics reported by the transaction coordinator
and local query handler, each ndbd process has a scheduler which also provides useful metrics
relating to the performance of an NDB Cluster. This scheduler runs in an infinite loop; during each loop
the scheduler performs the following tasks:

1. Read any incoming messages from sockets into a job buffer.

2. Check whether there are any timed messages to be executed; if so, put these into the job buffer as
well.

3. Execute (in a loop) any messages in the job buffer.

4. Send any distributed messages that were generated by executing the messages in the job buffer.

5. Wait for any new incoming messages.

Process scheduler statistics include the following:

• Mean Loop Counter. This is the number of loops executed in the third step from the preceding
list. This statistic increases in size as the utilization of the TCP/IP buffer improves. You can use this
to monitor changes in performance as you add new data node processes.

• Mean send size and Mean receive size. These statistics enable you to gauge the efficiency of,
respectively writes and reads between nodes. The values are given in bytes. Higher values mean a
lower cost per byte sent or received; the maximum value is 64K.

To cause all cluster log statistics to be logged, you can use the following command in the NDB
management client:

ndb_mgm> ALL CLUSTERLOG STATISTICS=15

Note

Setting the threshold for STATISTICS to 15 causes the cluster log to become
very verbose, and to grow quite rapidly in size, in direct proportion to the
number of cluster nodes and the amount of activity in the NDB Cluster.

For more information about NDB Cluster management client commands relating to logging and
reporting, see Section 25.6.3.1, “NDB Cluster Logging Management Commands”.

25.6.4 Summary of NDB Cluster Start Phases

This section provides a simplified outline of the steps involved when NDB Cluster data nodes are
started. More complete information can be found in NDB Cluster Start Phases, in the NDB Internals
Guide.

These phases are the same as those reported in the output from the node_id STATUS command
in the management client (see Section 25.6.1, “Commands in the NDB Cluster Management Client”).
These start phases are also reported in the start_phase column of the ndbinfo.nodes table.

4690

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html

Summary of NDB Cluster Start Phases

Start types. There are several different startup types and modes, as shown in the following list:

• Initial start. The cluster starts with a clean file system on all data nodes. This occurs either when
the cluster started for the very first time, or when all data nodes are restarted using the --initial
option.

Note

Disk Data files are not removed when restarting a node using --initial.

• System restart. The cluster starts and reads data stored in the data nodes. This occurs when
the cluster has been shut down after having been in use, when it is desired for the cluster to resume
operations from the point where it left off.

• Node restart. This is the online restart of a cluster node while the cluster itself is running.

• Initial node restart. This is the same as a node restart, except that the node is reinitialized and
started with a clean file system.

Setup and initialization (phase -1). Prior to startup, each data node (ndbd process) must be
initialized. Initialization consists of the following steps:

1. Obtain a node ID

2. Fetch configuration data

3. Allocate ports to be used for inter-node communications

4. Allocate memory according to settings obtained from the configuration file

When a data node or SQL node first connects to the management node, it reserves a cluster node
ID. To make sure that no other node allocates the same node ID, this ID is retained until the node has
managed to connect to the cluster and at least one ndbd reports that this node is connected. This
retention of the node ID is guarded by the connection between the node in question and ndb_mgmd.

After each data node has been initialized, the cluster startup process can proceed. The stages which
the cluster goes through during this process are listed here:

• Phase 0. The NDBFS and NDBCNTR blocks start. Data node file systems are cleared on those data
nodes that were started with --initial option.

• Phase 1. In this stage, all remaining NDB kernel blocks are started. NDB Cluster connections are
set up, inter-block communications are established, and heartbeats are started. In the case of a node
restart, API node connections are also checked.

Note

When one or more nodes hang in Phase 1 while the remaining node or
nodes hang in Phase 2, this often indicates network problems. One possible
cause of such issues is one or more cluster hosts having multiple network
interfaces. Another common source of problems causing this condition is the
blocking of TCP/IP ports needed for communications between cluster nodes.
In the latter case, this is often due to a misconfigured firewall.

• Phase 2. The NDBCNTR kernel block checks the states of all existing nodes. The master node is
chosen, and the cluster schema file is initialized.

• Phase 3. The DBLQH and DBTC kernel blocks set up communications between them. The startup
type is determined; if this is a restart, the DBDIH block obtains permission to perform the restart.

• Phase 4. For an initial start or initial node restart, the redo log files are created. The number of
these files is equal to NoOfFragmentLogFiles.

4691

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbfs.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html

Performing a Rolling Restart of an NDB Cluster

For a system restart:

• Read schema or schemas.

• Read data from the local checkpoint.

• Apply all redo information until the latest restorable global checkpoint has been reached.

For a node restart, find the tail of the redo log.

• Phase 5. Most of the database-related portion of a data node start is performed during this phase.
For an initial start or system restart, a local checkpoint is executed, followed by a global checkpoint.
Periodic checks of memory usage begin during this phase, and any required node takeovers are
performed.

• Phase 6. In this phase, node groups are defined and set up.

• Phase 7. The arbitrator node is selected and begins to function. The next backup ID is set, as
is the backup disk write speed. Nodes reaching this start phase are marked as Started. It is now
possible for API nodes (including SQL nodes) to connect to the cluster.

• Phase 8. If this is a system restart, all indexes are rebuilt (by DBDIH).

• Phase 9. The node internal startup variables are reset.

• Phase 100 (OBSOLETE). Formerly, it was at this point during a node restart or initial node restart
that API nodes could connect to the node and begin to receive events. Currently, this phase is
empty.

• Phase 101. At this point in a node restart or initial node restart, event delivery is handed over to
the node joining the cluster. The newly-joined node takes over responsibility for delivering its primary
data to subscribers. This phase is also referred to as SUMA handover phase.

After this process is completed for an initial start or system restart, transaction handling is enabled. For
a node restart or initial node restart, completion of the startup process means that the node may now
act as a transaction coordinator.

25.6.5 Performing a Rolling Restart of an NDB Cluster

This section discusses how to perform a rolling restart of an NDB Cluster installation, so called
because it involves stopping and starting (or restarting) each node in turn, so that the cluster itself
remains operational. This is often done as part of a rolling upgrade or rolling downgrade, where high
availability of the cluster is mandatory and no downtime of the cluster as a whole is permissible. Where
we refer to upgrades, the information provided here also generally applies to downgrades as well.

There are a number of reasons why a rolling restart might be desirable. These are described in the
next few paragraphs.

Configuration change.
To make a change in the cluster's configuration, such as adding an SQL node to the cluster, or setting
a configuration parameter to a new value.

NDB Cluster software upgrade or downgrade. To upgrade the cluster to a newer version of the
NDB Cluster software (or to downgrade it to an older version). This is usually referred to as a “rolling
upgrade” (or “rolling downgrade”, when reverting to an older version of NDB Cluster).

Change on node host. To make changes in the hardware or operating system on which one or
more NDB Cluster node processes are running.

System reset (cluster reset).

4692

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html

Performing a Rolling Restart of an NDB Cluster

To reset the cluster because it has reached an undesirable state. In such cases it is often desirable to
reload the data and metadata of one or more data nodes. This can be done in any of three ways:

• Start each data node process (ndbd or possibly ndbmtd) with the --initial option, which forces
the data node to clear its file system and to reload all NDB Cluster data and metadata from the other
data nodes.

Beginning with NDB 8.0.21, this also forces the removal of all Disk Data objects and files associated
with those objects.

• Create a backup using the ndb_mgm client START BACKUP command prior to performing the restart.
Following the upgrade, restore the node or nodes using ndb_restore.

See Section 25.6.8, “Online Backup of NDB Cluster”, and Section 25.5.23, “ndb_restore — Restore
an NDB Cluster Backup”, for more information.

• Use mysqldump to create a backup prior to the upgrade; afterward, restore the dump using LOAD
DATA.

Resource Recovery.
To free memory previously allocated to a table by successive INSERT and DELETE operations, for re-
use by other NDB Cluster tables.

The process for performing a rolling restart may be generalized as follows:

1. Stop all cluster management nodes (ndb_mgmd processes), reconfigure them, then restart them.
(See Rolling restarts with multiple management servers.)

2. Stop, reconfigure, then restart each cluster data node (ndbd process) in turn.

Some node configuration parameters can be updated by issuing RESTART for each of the data
nodes in the ndb_mgm client following the previous step. Other parameters require that the data
node be stopped completely using the management client STOP command, then started again
from a system shell by invoking the ndbd or ndbmtd executable as appropriate. (A shell command
such as kill can also be used on most Unix systems to stop a data node process, but the STOP
command is preferred and usually simpler.)

Note

On Windows, you can also use SC STOP and SC START commands, NET
STOP and NET START commands, or the Windows Service Manager to
stop and start nodes which have been installed as Windows services (see
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”).

The type of restart required is indicated in the documentation for each node configuration
parameter. See Section 25.4.3, “NDB Cluster Configuration Files”.

3. Stop, reconfigure, then restart each cluster SQL node (mysqld process) in turn.

NDB Cluster supports a somewhat flexible order for upgrading nodes. When upgrading an NDB
Cluster, you may upgrade API nodes (including SQL nodes) before upgrading the management nodes,
data nodes, or both. In other words, you are permitted to upgrade the API and SQL nodes in any order.
This is subject to the following provisions:

• This functionality is intended for use as part of an online upgrade only. A mix of node binaries from
different NDB Cluster releases is neither intended nor supported for continuous, long-term use in a
production setting.

• You must upgrade all nodes of the same type (management, data, or API node) before upgrading
any nodes of a different type. This remains true regardless of the order in which the nodes are
upgraded.

4693

NDB Cluster Single User Mode

• You must upgrade all management nodes before upgrading any data nodes. This remains true
regardless of the order in which you upgrade the cluster's API and SQL nodes.

• Features specific to the “new” version must not be used until all management nodes and data nodes
have been upgraded.

This also applies to any MySQL Server version change that may apply, in addition to the NDB engine
version change, so do not forget to take this into account when planning the upgrade. (This is true for
online upgrades of NDB Cluster in general.)

It is not possible for any API node to perform schema operations (such as data definition statements)
during a node restart. Due in part to this limitation, schema operations are also not supported during an
online upgrade or downgrade. In addition, it is not possible to perform native backups while an upgrade
or downgrade is ongoing.

Rolling restarts with multiple management servers. When performing a rolling restart of an
NDB Cluster with multiple management nodes, you should keep in mind that ndb_mgmd checks to see
if any other management node is running, and, if so, tries to use that node's configuration data. To
keep this from occurring, and to force ndb_mgmd to re-read its configuration file, perform the following
steps:

1. Stop all NDB Cluster ndb_mgmd processes.

2. Update all config.ini files.

3. Start a single ndb_mgmd with --reload, --initial, or both options as desired.

4. If you started the first ndb_mgmd with the --initial option, you must also start any remaining
ndb_mgmd processes using --initial.

Regardless of any other options used when starting the first ndb_mgmd, you should not start any
remaining ndb_mgmd processes after the first one using --reload.

5. Complete the rolling restarts of the data nodes and API nodes as normal.

When performing a rolling restart to update the cluster's configuration, you can use the
config_generation column of the ndbinfo.nodes table to keep track of which data nodes have
been successfully restarted with the new configuration. See Section 25.6.16.47, “The ndbinfo nodes
Table”.

25.6.6 NDB Cluster Single User Mode

Single user mode enables the database administrator to restrict access to the database system to a
single API node, such as a MySQL server (SQL node) or an instance of ndb_restore. When entering
single user mode, connections to all other API nodes are closed gracefully and all running transactions
are aborted. No new transactions are permitted to start.

Once the cluster has entered single user mode, only the designated API node is granted access to the
database.

You can use the ALL STATUS command in the ndb_mgm client to see when the cluster has entered
single user mode. You can also check the status column of the ndbinfo.nodes table (see
Section 25.6.16.47, “The ndbinfo nodes Table”, for more information).

Example:

ndb_mgm> ENTER SINGLE USER MODE 5

After this command has executed and the cluster has entered single user mode, the API node whose
node ID is 5 becomes the cluster's only permitted user.

The node specified in the preceding command must be an API node; attempting to specify any other
type of node is rejected.

4694

Adding NDB Cluster Data Nodes Online

Note

When the preceding command is invoked, all transactions running on the
designated node are aborted, the connection is closed, and the server must be
restarted.

The command EXIT SINGLE USER MODE changes the state of the cluster's data nodes from single
user mode to normal mode. API nodes—such as MySQL Servers—waiting for a connection (that is,
waiting for the cluster to become ready and available), are again permitted to connect. The API node
denoted as the single-user node continues to run (if still connected) during and after the state change.

Example:

ndb_mgm> EXIT SINGLE USER MODE

There are two recommended ways to handle a node failure when running in single user mode:

• Method 1:

1. Finish all single user mode transactions

2. Issue the EXIT SINGLE USER MODE command

3. Restart the cluster's data nodes

• Method 2:

Restart storage nodes prior to entering single user mode.

25.6.7 Adding NDB Cluster Data Nodes Online

This section describes how to add NDB Cluster data nodes “online”—that is, without needing to shut
down the cluster completely and restart it as part of the process.

Important

Currently, you must add new data nodes to an NDB Cluster as part of a new
node group. In addition, it is not possible to change the number of fragment
replicas (or the number of nodes per node group) online.

25.6.7.1 Adding NDB Cluster Data Nodes Online: General Issues

This section provides general information about the behavior of and current limitations in adding NDB
Cluster nodes online.

Redistribution of Data. The ability to add new nodes online includes a means to reorganize
NDBCLUSTER table data and indexes so that they are distributed across all data nodes, including
the new ones, by means of the ALTER TABLE ... REORGANIZE PARTITION statement. Table
reorganization of both in-memory and Disk Data tables is supported. This redistribution does not
currently include unique indexes (only ordered indexes are redistributed).

The redistribution for NDBCLUSTER tables already existing before the new data nodes were added is
not automatic, but can be accomplished using simple SQL statements in mysql or another MySQL
client application. However, all data and indexes added to tables created after a new node group has
been added are distributed automatically among all cluster data nodes, including those added as part
of the new node group.

Partial starts. It is possible to add a new node group without all of the new data nodes being
started. It is also possible to add a new node group to a degraded cluster—that is, a cluster that is only
partially started, or where one or more data nodes are not running. In the latter case, the cluster must
have enough nodes running to be viable before the new node group can be added.

4695

Adding NDB Cluster Data Nodes Online

Effects on ongoing operations. Normal DML operations using NDB Cluster data are not prevented
by the creation or addition of a new node group, or by table reorganization. However, it is not possible
to perform DDL concurrently with table reorganization—that is, no other DDL statements can be issued
while an ALTER TABLE ... REORGANIZE PARTITION statement is executing. In addition, during
the execution of ALTER TABLE ... REORGANIZE PARTITION (or the execution of any other DDL
statement), it is not possible to restart cluster data nodes.

Failure handling. Failures of data nodes during node group creation and table reorganization are
handled as shown in the following table:

Table 25.66 Data node failure handling during node group creation and table reorganization

Failure during Failure in “Old” data
node

Failure in “New” data
node

System Failure

Node group creation • If a node other than
the master fails:
The creation of the
node group is always
rolled forward.

• If the master fails:

• If the internal
commit point has
been reached:
The creation of the
node group is rolled
forward.

• If the internal
commit point
has not yet been
reached. The
creation of the node
group is rolled back

• If a node other than
the master fails:
The creation of the
node group is always
rolled forward.

• If the master fails:

• If the internal
commit point has
been reached:
The creation of the
node group is rolled
forward.

• If the internal
commit point
has not yet been
reached. The
creation of the node
group is rolled back

• If the execution
of CREATE
NODEGROUP has
reached the internal
commit point:
When restarted, the
cluster includes the
new node group.
Otherwise it without.

• If the execution
of CREATE
NODEGROUP has
not yet reached the
internal commit
point: When
restarted, the cluster
does not include the
new node group.

Table reorganization • If a node other
than the master
fails: The table
reorganization is
always rolled forward.

• If the master fails:

• If the internal
commit point
has been
reached: The
table reorganization
is rolled forward.

• If the internal
commit point
has not yet been
reached. The
table reorganization
is rolled back.

• If a node other
than the master
fails: The table
reorganization is
always rolled forward.

• If the master fails:

• If the internal
commit point
has been
reached: The
table reorganization
is rolled forward.

• If the internal
commit point
has not yet been
reached. The
table reorganization
is rolled back.

• If the execution of
an ALTER TABLE ...
REORGANIZE
PARTITION
statement has
reached the internal
commit point:
When the cluster
is restarted, the
data and indexes
belonging to table
are distributed using
the “new” data nodes.

• If the execution of
an ALTER TABLE ...
REORGANIZE
PARTITION
statement has not
yet reached the
internal commit
point: When the
cluster is restarted,
the data and indexes

4696

Adding NDB Cluster Data Nodes Online

Failure during Failure in “Old” data
node

Failure in “New” data
node

System Failure

belonging to table
are distributed using
only the “old” data
nodes.

Dropping node groups. The ndb_mgm client supports a DROP NODEGROUP command, but it is
possible to drop a node group only when no data nodes in the node group contain any data. Since
there is currently no way to “empty” a specific data node or node group, this command works only the
following two cases:

1. After issuing CREATE NODEGROUP in the ndb_mgm client, but before issuing any ALTER
TABLE ... REORGANIZE PARTITION statements in the mysql client.

2. After dropping all NDBCLUSTER tables using DROP TABLE.

TRUNCATE TABLE does not work for this purpose because the data nodes continue to store the
table definitions.

25.6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedure

In this section, we list the basic steps required to add new data nodes to an NDB Cluster. This
procedure applies whether you are using ndbd or ndbmtd binaries for the data node processes. For
a more detailed example, see Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed
Example”.

Assuming that you already have a running NDB Cluster, adding data nodes online requires the
following steps:

1. Edit the cluster configuration config.ini file, adding new [ndbd] sections corresponding to
the nodes to be added. In the case where the cluster uses multiple management servers, these
changes need to be made to all config.ini files used by the management servers.

You must be careful that node IDs for any new data nodes added in the config.ini file do not
overlap node IDs used by existing nodes. In the event that you have API nodes using dynamically
allocated node IDs and these IDs match node IDs that you want to use for new data nodes, it is
possible to force any such API nodes to “migrate”, as described later in this procedure.

2. Perform a rolling restart of all NDB Cluster management servers.

Important

All management servers must be restarted with the --reload or --
initial option to force the reading of the new configuration.

3. Perform a rolling restart of all existing NDB Cluster data nodes. It is not necessary (or usually even
desirable) to use --initial when restarting the existing data nodes.

If you are using API nodes with dynamically allocated IDs matching any node IDs that you wish to
assign to new data nodes, you must restart all API nodes (including SQL nodes) before restarting
any of the data nodes processes in this step. This causes any API nodes with node IDs that were
previously not explicitly assigned to relinquish those node IDs and acquire new ones.

4. Perform a rolling restart of any SQL or API nodes connected to the NDB Cluster.

5. Start the new data nodes.

The new data nodes may be started in any order. They can also be started concurrently, as long as
they are started after the rolling restarts of all existing data nodes have been completed, and before
proceeding to the next step.

4697

Adding NDB Cluster Data Nodes Online

6. Execute one or more CREATE NODEGROUP commands in the NDB Cluster management client to
create the new node group or node groups to which the new data nodes belong.

7. Redistribute the cluster's data among all data nodes, including the new ones. Normally this is done
by issuing an ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE PARTITION statement
in the mysql client for each NDBCLUSTER table.

Exception: For tables created using the MAX_ROWS option, this statement does not work; instead,
use ALTER TABLE ... ALGORITHM=INPLACE MAX_ROWS=... to reorganize such tables. You
should also bear in mind that using MAX_ROWS to set the number of partitions in this fashion is
deprecated, and you should use PARTITION_BALANCE instead; see Section 15.1.20.12, “Setting
NDB Comment Options”, for more information.

Note

This needs to be done only for tables already existing at the time the new
node group is added. Data in tables created after the new node group is
added is distributed automatically; however, data added to any given table
tbl that existed before the new nodes were added is not distributed using
the new nodes until that table has been reorganized.

8. ALTER TABLE ... REORGANIZE PARTITION ALGORITHM=INPLACE reorganizes partitions
but does not reclaim the space freed on the “old” nodes. You can do this by issuing, for each
NDBCLUSTER table, an OPTIMIZE TABLE statement in the mysql client.

This works for space used by variable-width columns of in-memory NDB tables. OPTIMIZE TABLE
is not supported for fixed-width columns of in-memory tables; it is also not supported for Disk Data
tables.

You can add all the nodes desired, then issue several CREATE NODEGROUP commands in succession
to add the new node groups to the cluster.

25.6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Example

In this section we provide a detailed example illustrating how to add new NDB Cluster data nodes
online, starting with an NDB Cluster having 2 data nodes in a single node group and concluding with a
cluster having 4 data nodes in 2 node groups.

Starting configuration. For purposes of illustration, we assume a minimal configuration, and that
the cluster uses a config.ini file containing only the following information:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 198.51.100.1

[ndbd]
Id = 2
HostName = 198.51.100.2

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21

4698

Adding NDB Cluster Data Nodes Online

HostName = 198.51.100.21

Note

We have left a gap in the sequence between data node IDs and other nodes.
This make it easier later to assign node IDs that are not already in use to data
nodes which are newly added.

We also assume that you have already started the cluster using the appropriate command line or
my.cnf options, and that running SHOW in the management client produces output similar to what is
shown here:

-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (8.0.42-ndb-8.0.42, Nodegroup: 0, *)
id=2 @198.51.100.2 (8.0.42-ndb-8.0.42, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (8.0.42-ndb-8.0.42)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (8.0.42-ndb-8.0.42)
id=21 @198.51.100.21 (8.0.42-ndb-8.0.42)

Finally, we assume that the cluster contains a single NDBCLUSTER table created as shown here:

USE n;

CREATE TABLE ips (
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 country_code CHAR(2) NOT NULL,
 type CHAR(4) NOT NULL,
 ip_address VARCHAR(15) NOT NULL,
 addresses BIGINT UNSIGNED DEFAULT NULL,
 date BIGINT UNSIGNED DEFAULT NULL
) ENGINE NDBCLUSTER;

The memory usage and related information shown later in this section was generated after inserting
approximately 50000 rows into this table.

Note

In this example, we show the single-threaded ndbd being used for the
data node processes. You can also apply this example, if you are using the
multithreaded ndbmtd by substituting ndbmtd for ndbd wherever it appears in
the steps that follow.

Step 1: Update configuration file. Open the cluster global configuration file in a text editor and
add [ndbd] sections corresponding to the 2 new data nodes. (We give these data nodes IDs 3 and 4,
and assume that they are to be run on host machines at addresses 198.51.100.3 and 198.51.100.4,
respectively.) After you have added the new sections, the contents of the config.ini file should look
like what is shown here, where the additions to the file are shown in bold type:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 198.51.100.1

4699

Adding NDB Cluster Data Nodes Online

[ndbd]
Id = 2
HostName = 198.51.100.2

[ndbd]
Id = 3
HostName = 198.51.100.3

[ndbd]
Id = 4
HostName = 198.51.100.4

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21
HostName = 198.51.100.21

Once you have made the necessary changes, save the file.

Step 2: Restart the management server. Restarting the cluster management server requires that
you issue separate commands to stop the management server and then to start it again, as follows:

1. Stop the management server using the management client STOP command, as shown here:

ndb_mgm> 10 STOP
Node 10 has shut down.
Disconnecting to allow Management Server to shutdown

$>

2. Because shutting down the management server causes the management client to terminate,
you must start the management server from the system shell. For simplicity, we assume that
config.ini is in the same directory as the management server binary, but in practice, you must
supply the correct path to the configuration file. You must also supply the --reload or --initial
option so that the management server reads the new configuration from the file rather than its
configuration cache. If your shell's current directory is also the same as the directory where the
management server binary is located, then you can invoke the management server as shown here:

$> ndb_mgmd -f config.ini --reload
2008-12-08 17:29:23 [MgmSrvr] INFO -- NDB Cluster Management Server. 8.0.42-ndb-8.0.42
2008-12-08 17:29:23 [MgmSrvr] INFO -- Reading cluster configuration from 'config.ini'

If you check the output of SHOW in the management client after restarting the ndb_mgm process, you
should now see something like this:

-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (8.0.42-ndb-8.0.42, Nodegroup: 0, *)
id=2 @198.51.100.2 (8.0.42-ndb-8.0.42, Nodegroup: 0)
id=3 (not connected, accepting connect from 198.51.100.3)
id=4 (not connected, accepting connect from 198.51.100.4)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (8.0.42-ndb-8.0.42)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (8.0.42-ndb-8.0.42)
id=21 @198.51.100.21 (8.0.42-ndb-8.0.42)

4700

Adding NDB Cluster Data Nodes Online

Step 3: Perform a rolling restart of the existing data nodes. This step can be accomplished
entirely within the cluster management client using the RESTART command, as shown here:

ndb_mgm> 1 RESTART
Node 1: Node shutdown initiated
Node 1: Node shutdown completed, restarting, no start.
Node 1 is being restarted

ndb_mgm> Node 1: Start initiated (version 8.0.42)
Node 1: Started (version 8.0.42)

ndb_mgm> 2 RESTART
Node 2: Node shutdown initiated
Node 2: Node shutdown completed, restarting, no start.
Node 2 is being restarted

ndb_mgm> Node 2: Start initiated (version 8.0.42)

ndb_mgm> Node 2: Started (version 8.0.42)

Important

After issuing each X RESTART command, wait until the management client
reports Node X: Started (version ...) before proceeding any further.

You can verify that all existing data nodes were restarted using the updated configuration by checking
the ndbinfo.nodes table in the mysql client.

Step 4: Perform a rolling restart of all cluster API nodes. Shut down and restart each MySQL
server acting as an SQL node in the cluster using mysqladmin shutdown followed by mysqld_safe
(or another startup script). This should be similar to what is shown here, where password is the
MySQL root password for a given MySQL server instance:

$> mysqladmin -uroot -ppassword shutdown
081208 20:19:56 mysqld_safe mysqld from pid file
/usr/local/mysql/var/tonfisk.pid ended
$> mysqld_safe --ndbcluster --ndb-connectstring=198.51.100.10 &
081208 20:20:06 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
081208 20:20:06 mysqld_safe Starting mysqld daemon with databases
from /usr/local/mysql/var

Of course, the exact input and output depend on how and where MySQL is installed on the system,
as well as which options you choose to start it (and whether or not some or all of these options are
specified in a my.cnf file).

Step 5: Perform an initial start of the new data nodes. From a system shell on each of the hosts
for the new data nodes, start the data nodes as shown here, using the --initial option:

$> ndbd -c 198.51.100.10 --initial

Note

Unlike the case with restarting the existing data nodes, you can start the new
data nodes concurrently; you do not need to wait for one to finish starting before
starting the other.

Wait until both of the new data nodes have started before proceeding with the next step. Once the new
data nodes have started, you can see in the output of the management client SHOW command that they
do not yet belong to any node group (as indicated with bold type here):

ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (8.0.42-ndb-8.0.42, Nodegroup: 0, *)
id=2 @198.51.100.2 (8.0.42-ndb-8.0.42, Nodegroup: 0)
id=3 @198.51.100.3 (8.0.42-ndb-8.0.42, no nodegroup)

4701

Adding NDB Cluster Data Nodes Online

id=4 @198.51.100.4 (8.0.42-ndb-8.0.42, no nodegroup)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (8.0.42-ndb-8.0.42)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (8.0.42-ndb-8.0.42)
id=21 @198.51.100.21 (8.0.42-ndb-8.0.42)

Step 6: Create a new node group. You can do this by issuing a CREATE NODEGROUP command
in the cluster management client. This command takes as its argument a comma-separated list of the
node IDs of the data nodes to be included in the new node group, as shown here:

ndb_mgm> CREATE NODEGROUP 3,4
Nodegroup 1 created

By issuing SHOW again, you can verify that data nodes 3 and 4 have joined the new node group (again
indicated in bold type):

ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (8.0.42-ndb-8.0.42, Nodegroup: 0, *)
id=2 @198.51.100.2 (8.0.42-ndb-8.0.42, Nodegroup: 0)
id=3 @198.51.100.3 (8.0.42-ndb-8.0.42, Nodegroup: 1)
id=4 @198.51.100.4 (8.0.42-ndb-8.0.42, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (8.0.42-ndb-8.0.42)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (8.0.42-ndb-8.0.42)
id=21 @198.51.100.21 (8.0.42-ndb-8.0.42)

Step 7: Redistribute cluster data. When a node group is created, existing data and indexes
are not automatically distributed to the new node group's data nodes, as you can see by issuing the
appropriate REPORT command in the management client:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(177 32K pages of total 3200)
Node 1: Index usage is 0%(108 8K pages of total 12832)
Node 2: Data usage is 5%(177 32K pages of total 3200)
Node 2: Index usage is 0%(108 8K pages of total 12832)
Node 3: Data usage is 0%(0 32K pages of total 3200)
Node 3: Index usage is 0%(0 8K pages of total 12832)
Node 4: Data usage is 0%(0 32K pages of total 3200)
Node 4: Index usage is 0%(0 8K pages of total 12832)

By using ndb_desc with the -p option, which causes the output to include partitioning information, you
can see that the table still uses only 2 partitions (in the Per partition info section of the output,
shown here in bold text):

$> ndb_desc -c 198.51.100.10 -d n ips -p
-- ips --
Version: 1
Fragment type: 9
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 6
Number of primary keys: 1
Length of frm data: 340
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2

4702

Adding NDB Cluster Data Nodes Online

TableStatus: Retrieved
-- Attributes --
id Bigint PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
country_code Char(2;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
type Char(4;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
ip_address Varchar(15;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
addresses Bigunsigned NULL AT=FIXED ST=MEMORY
date Bigunsigned NULL AT=FIXED ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex

-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory
0 26086 26086 1572864 557056
1 26329 26329 1605632 557056

You can cause the data to be redistributed among all of the data nodes by performing, for each NDB
table, an ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE PARTITION statement in the
mysql client.

Important

ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE PARTITION does
not work on tables that were created with the MAX_ROWS option. Instead, use
ALTER TABLE ... ALGORITHM=INPLACE, MAX_ROWS=... to reorganize
such tables.

Keep in mind that using MAX_ROWS to set the number of partitions per table
is deprecated, and you should use PARTITION_BALANCE instead; see
Section 15.1.20.12, “Setting NDB Comment Options”, for more information.

After issuing the statement ALTER TABLE ips ALGORITHM=INPLACE, REORGANIZE PARTITION,
you can see using ndb_desc that the data for this table is now stored using 4 partitions, as shown
here (with the relevant portions of the output in bold type):

$> ndb_desc -c 198.51.100.10 -d n ips -p
-- ips --
Version: 16777217
Fragment type: 9
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 6
Number of primary keys: 1
Length of frm data: 341
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 4
TableStatus: Retrieved
-- Attributes --
id Bigint PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
country_code Char(2;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
type Char(4;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
ip_address Varchar(15;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
addresses Bigunsigned NULL AT=FIXED ST=MEMORY
date Bigunsigned NULL AT=FIXED ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex

-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory
0 12981 52296 1572864 557056

4703

Adding NDB Cluster Data Nodes Online

1 13236 52515 1605632 557056
2 13105 13105 819200 294912
3 13093 13093 819200 294912

Note

Normally, ALTER TABLE table_name [ALGORITHM=INPLACE,]
REORGANIZE PARTITION is used with a list of partition identifiers and a set
of partition definitions to create a new partitioning scheme for a table that has
already been explicitly partitioned. Its use here to redistribute data onto a new
NDB Cluster node group is an exception in this regard; when used in this way,
no other keywords or identifiers follow REORGANIZE PARTITION.

For more information, see Section 15.1.9, “ALTER TABLE Statement”.

In addition, for each table, the ALTER TABLE statement should be followed by an OPTIMIZE TABLE
to reclaim wasted space. You can obtain a list of all NDBCLUSTER tables using the following query
against the Information Schema TABLES table:

SELECT TABLE_SCHEMA, TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES
 WHERE ENGINE = 'NDBCLUSTER';

Note

The INFORMATION_SCHEMA.TABLES.ENGINE value for an NDB Cluster table
is always NDBCLUSTER, regardless of whether the CREATE TABLE statement
used to create the table (or ALTER TABLE statement used to convert an
existing table from a different storage engine) used NDB or NDBCLUSTER in its
ENGINE option.

You can see after performing these statements in the output of ALL REPORT MEMORY that the data
and indexes are now redistributed between all cluster data nodes, as shown here:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(176 32K pages of total 3200)
Node 1: Index usage is 0%(76 8K pages of total 12832)
Node 2: Data usage is 5%(176 32K pages of total 3200)
Node 2: Index usage is 0%(76 8K pages of total 12832)
Node 3: Data usage is 2%(80 32K pages of total 3200)
Node 3: Index usage is 0%(51 8K pages of total 12832)
Node 4: Data usage is 2%(80 32K pages of total 3200)
Node 4: Index usage is 0%(50 8K pages of total 12832)

Note

Since only one DDL operation on NDBCLUSTER tables can be executed at a
time, you must wait for each ALTER TABLE ... REORGANIZE PARTITION
statement to finish before issuing the next one.

It is not necessary to issue ALTER TABLE ... REORGANIZE PARTITION statements for
NDBCLUSTER tables created after the new data nodes have been added; data added to such tables is
distributed among all data nodes automatically. However, in NDBCLUSTER tables that existed prior to
the addition of the new nodes, neither existing nor new data is distributed using the new nodes until
these tables have been reorganized using ALTER TABLE ... REORGANIZE PARTITION.

Alternative procedure, without rolling restart. It is possible to avoid the need for a rolling restart
by configuring the extra data nodes, but not starting them, when first starting the cluster. We assume,
as before, that you wish to start with two data nodes—nodes 1 and 2—in one node group and later to
expand the cluster to four data nodes, by adding a second node group consisting of nodes 3 and 4:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M

4704

Online Backup of NDB Cluster

NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 198.51.100.1

[ndbd]
Id = 2
HostName = 198.51.100.2

[ndbd]
Id = 3
HostName = 198.51.100.3
Nodegroup = 65536

[ndbd]
Id = 4
HostName = 198.51.100.4
Nodegroup = 65536

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21
HostName = 198.51.100.21

The data nodes to be brought online at a later time (nodes 3 and 4) can be configured with NodeGroup
= 65536, in which case nodes 1 and 2 can each be started as shown here:

$> ndbd -c 198.51.100.10 --initial

The data nodes configured with NodeGroup = 65536 are treated by the management server as
though you had started nodes 1 and 2 using --nowait-nodes=3,4 after waiting for a period of time
determined by the setting for the StartNoNodeGroupTimeout data node configuration parameter. By
default, this is 15 seconds (15000 milliseconds).

Note

StartNoNodegroupTimeout must be the same for all data nodes in the
cluster; for this reason, you should always set it in the [ndbd default]
section of the config.ini file, rather than for individual data nodes.

When you are ready to add the second node group, you need only perform the following additional
steps:

1. Start data nodes 3 and 4, invoking the data node process once for each new node:

$> ndbd -c 198.51.100.10 --initial

2. Issue the appropriate CREATE NODEGROUP command in the management client:

ndb_mgm> CREATE NODEGROUP 3,4

3. In the mysql client, issue ALTER TABLE ... REORGANIZE PARTITION and OPTIMIZE TABLE
statements for each existing NDBCLUSTER table. (As noted elsewhere in this section, existing NDB
Cluster tables cannot use the new nodes for data distribution until this has been done.)

25.6.8 Online Backup of NDB Cluster

The next few sections describe how to prepare for and then to create an NDB Cluster backup using
the functionality for this purpose found in the ndb_mgm management client. To distinguish this type

4705

Online Backup of NDB Cluster

of backup from a backup made using mysqldump, we sometimes refer to it as a “native” NDB
Cluster backup. (For information about the creation of backups with mysqldump, see Section 6.5.4,
“mysqldump — A Database Backup Program”.) Restoration of NDB Cluster backups is done using the
ndb_restore utility provided with the NDB Cluster distribution; for information about ndb_restore
and its use in restoring NDB Cluster backups, see Section 25.5.23, “ndb_restore — Restore an NDB
Cluster Backup”.

NDB 8.0 makes it possible to create backups using multiple LDMs to achieve parallelism on the data
nodes. See Section 25.6.8.5, “Taking an NDB Backup with Parallel Data Nodes”.

25.6.8.1 NDB Cluster Backup Concepts

A backup is a snapshot of the database at a given time. The backup consists of three main parts:

• Metadata. The names and definitions of all database tables

• Table records. The data actually stored in the database tables at the time that the backup was
made

• Transaction log. A sequential record telling how and when data was stored in the database

Each of these parts is saved on all nodes participating in the backup. During backup, each node saves
these three parts into three files on disk:

• BACKUP-backup_id.node_id.ctl

A control file containing control information and metadata. Each node saves the same table
definitions (for all tables in the cluster) to its own version of this file.

• BACKUP-backup_id-0.node_id.data

A data file containing the table records, which are saved on a per-fragment basis. That is, different
nodes save different fragments during the backup. The file saved by each node starts with a header
that states the tables to which the records belong. Following the list of records there is a footer
containing a checksum for all records.

• BACKUP-backup_id.node_id.log

A log file containing records of committed transactions. Only transactions on tables stored in the
backup are stored in the log. Nodes involved in the backup save different records because different
nodes host different database fragments.

In the listing just shown, backup_id stands for the backup identifier and node_id is the unique
identifier for the node creating the file.

The location of the backup files is determined by the BackupDataDir parameter.

25.6.8.2 Using The NDB Cluster Management Client to Create a Backup

Before starting a backup, make sure that the cluster is properly configured for performing one. (See
Section 25.6.8.3, “Configuration for NDB Cluster Backups”.)

The START BACKUP command is used to create a backup, and has the syntax shown here:

START BACKUP [backup_id]
 [encryption_option]
 [wait_option]
 [snapshot_option]

encryption_option:
ENCRYPT [PASSWORD=password]

password:
{'password_string' | "password_string"}

4706

Online Backup of NDB Cluster

wait_option:
WAIT {STARTED | COMPLETED} | NOWAIT

snapshot_option:
SNAPSHOTSTART | SNAPSHOTEND

Successive backups are automatically identified sequentially, so the backup_id, an integer greater
than or equal to 1, is optional; if it is omitted, the next available value is used. If an existing backup_id
value is used, the backup fails with the error Backup failed: file already exists. If used, the
backup_id must follow immediately after the START BACKUP keywords, before any other options are
used.

In NDB 8.0.22 and later, START BACKUP supports the creation of encrypted backups using ENCRYPT
PASSWORD=password. The password must meet all of the following requirements:

• Uses any of the printable ASCII characters except !, ', ", $, %, \, and ^

• Is no more than 256 characters in length

• Is enclosed by single or double quotation marks

When ENCRYPT PASSWORD='password' is used, the backup data record and log files written by
each data node are encrypted with a key derived from the user-provided password and a randomly-
generated salt using a key derivation function (KDF) that employs the PBKDF2-SHA256 algorithm to
generate a symmetric encryption key for that file. This function has the form shown here:

key = KDF(random_salt, password)

The key so generated is then used to encrypt the backup data using AES 256 CBC inline, and
symmetric encryption is employed for encrypting the backup fileset (with the generated key).

Note

NDB Cluster never saves the user-furnished password or generated encryption
key.

Starting with NDB 8.0.24, the PASSWORD option can be omitted from encryption_option. In this
case, the management client prompts the user for a password.

It is possible using PASSWORD to set an empty password ('' or ""), but this is not recommended.

An encrypted backup can be decrypted using any of the following commands:

• ndb_restore --decrypt --backup-password=password

• ndbxfrm --decrypt-password=password input_file output_file

• ndb_print_backup_file -P password file_name

NDB 8.0.24 and later supports the additional commands listed here:

• ndb_restore --decrypt --backup-password-from-stdin

• ndbxfrm --decrypt-password-from-stdin input_file output_file

• ndb_print_backup_file --backup-password=password file_name

• ndb_print_backup_file --backup-password-from-stdin file_name

• ndb_mgm --backup-password-from-stdin --execute "START BACKUP ..."

See the descriptions of these programs for more information, such as additional options that may be
required.

The wait_option can be used to determine when control is returned to the management client after
a START BACKUP command is issued, as shown in the following list:

4707

Online Backup of NDB Cluster

• If NOWAIT is specified, the management client displays a prompt immediately, as seen here:

ndb_mgm> START BACKUP NOWAIT
ndb_mgm>

In this case, the management client can be used even while it prints progress information from the
backup process.

• With WAIT STARTED the management client waits until the backup has started before returning
control to the user, as shown here:

ndb_mgm> START BACKUP WAIT STARTED
Waiting for started, this may take several minutes
Node 2: Backup 3 started from node 1
ndb_mgm>

• WAIT COMPLETED causes the management client to wait until the backup process is complete
before returning control to the user.

WAIT COMPLETED is the default.

 A snapshot_option can be used to determine whether the backup matches the state of the
cluster when START BACKUP was issued, or when it was completed. SNAPSHOTSTART causes the
backup to match the state of the cluster when the backup began; SNAPSHOTEND causes the backup
to reflect the state of the cluster when the backup was finished. SNAPSHOTEND is the default, and
matches the behavior found in previous NDB Cluster releases.

Note

If you use the SNAPSHOTSTART option with START BACKUP, and the
CompressedBackup parameter is enabled, only the data and control files are
compressed—the log file is not compressed.

If both a wait_option and a snapshot_option are used, they may be specified in either order. For
example, all of the following commands are valid, assuming that there is no existing backup having 4
as its ID:

START BACKUP WAIT STARTED SNAPSHOTSTART
START BACKUP SNAPSHOTSTART WAIT STARTED
START BACKUP 4 WAIT COMPLETED SNAPSHOTSTART
START BACKUP SNAPSHOTEND WAIT COMPLETED
START BACKUP 4 NOWAIT SNAPSHOTSTART

The procedure for creating a backup consists of the following steps:

1. Start the management client (ndb_mgm), if it not running already.

2. Execute the START BACKUP command. This produces several lines of output indicating the
progress of the backup, as shown here:

ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 2: Backup 1 started from node 1
Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes
ndb_mgm>

3. When the backup has started the management client displays this message:

Backup backup_id started from node node_id

backup_id is the unique identifier for this particular backup. This identifier is saved in the cluster
log, if it has not been configured otherwise. node_id is the identifier of the management server
that is coordinating the backup with the data nodes. At this point in the backup process the cluster

4708

Online Backup of NDB Cluster

has received and processed the backup request. It does not mean that the backup has finished. An
example of this statement is shown here:

Node 2: Backup 1 started from node 1

4. The management client indicates with a message like this one that the backup has started:

Backup backup_id started from node node_id completed

As is the case for the notification that the backup has started, backup_id is the unique identifier
for this particular backup, and node_id is the node ID of the management server that is
coordinating the backup with the data nodes. This output is accompanied by additional information
including relevant global checkpoints, the number of records backed up, and the size of the data, as
shown here:

Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes

It is also possible to perform a backup from the system shell by invoking ndb_mgm with the -e or --
execute option, as shown in this example:

$> ndb_mgm -e "START BACKUP 6 WAIT COMPLETED SNAPSHOTSTART"

When using START BACKUP in this way, you must specify the backup ID.

Cluster backups are created by default in the BACKUP subdirectory of the DataDir on each data node.
This can be overridden for one or more data nodes individually, or for all cluster data nodes in the
config.ini file using the BackupDataDir configuration parameter. The backup files created for
a backup with a given backup_id are stored in a subdirectory named BACKUP-backup_id in the
backup directory.

Cancelling backups. To cancel or abort a backup that is already in progress, perform the following
steps:

1. Start the management client.

2. Execute this command:

ndb_mgm> ABORT BACKUP backup_id

The number backup_id is the identifier of the backup that was included in the response of the
management client when the backup was started (in the message Backup backup_id started
from node management_node_id).

3. The management client acknowledges the abort request with Abort of backup backup_id
ordered.

Note

At this point, the management client has not yet received a response from
the cluster data nodes to this request, and the backup has not yet actually
been aborted.

4. After the backup has been aborted, the management client reports this fact in a manner similar to
what is shown here:

Node 1: Backup 3 started from 5 has been aborted.
 Error: 1321 - Backup aborted by user request: Permanent error: User defined error
Node 3: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error
Node 2: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error
Node 4: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error

4709

Online Backup of NDB Cluster

In this example, we have shown sample output for a cluster with 4 data nodes, where the
sequence number of the backup to be aborted is 3, and the management node to which the cluster
management client is connected has the node ID 5. The first node to complete its part in aborting
the backup reports that the reason for the abort was due to a request by the user. (The remaining
nodes report that the backup was aborted due to an unspecified internal error.)

Note

There is no guarantee that the cluster nodes respond to an ABORT BACKUP
command in any particular order.

The Backup backup_id started from node management_node_id has been aborted
messages mean that the backup has been terminated and that all files relating to this backup have
been removed from the cluster file system.

It is also possible to abort a backup in progress from a system shell using this command:

$> ndb_mgm -e "ABORT BACKUP backup_id"

Note

If there is no backup having the ID backup_id running when an ABORT
BACKUP is issued, the management client makes no response, nor is it indicated
in the cluster log that an invalid abort command was sent.

25.6.8.3 Configuration for NDB Cluster Backups

Five configuration parameters are essential for backup:

• BackupDataBufferSize

The amount of memory used to buffer data before it is written to disk.

• BackupLogBufferSize

The amount of memory used to buffer log records before these are written to disk.

• BackupMemory

The total memory allocated in a data node for backups. This should be the sum of the memory
allocated for the backup data buffer and the backup log buffer.

• BackupWriteSize

The default size of blocks written to disk. This applies for both the backup data buffer and the backup
log buffer.

• BackupMaxWriteSize

The maximum size of blocks written to disk. This applies for both the backup data buffer and the
backup log buffer.

In addition, CompressedBackup causes NDB to use compression when creating and writing to backup
files.

More detailed information about these parameters can be found in Backup Parameters.

You can also set a location for the backup files using the BackupDataDir configuration parameter.
The default is FileSystemPath/BACKUP/BACKUP-backup_id.

In NDB 8.0.22 and later, you can enforce encryption of backup files by enabling
RequireEncryptedBackup. When this parameter is set to 1, backups cannot be created without
specifying ENCRYPT PASSWORD=password as part of a START BACKUP command.

4710

Online Backup of NDB Cluster

25.6.8.4 NDB Cluster Backup Troubleshooting

If an error code is returned when issuing a backup request, the most likely cause is insufficient memory
or disk space. You should check that there is enough memory allocated for the backup.

Important

If you have set BackupDataBufferSize and BackupLogBufferSize and
their sum is greater than 4MB, then you must also set BackupMemory as well.

You should also make sure that there is sufficient space on the hard drive partition of the backup
target.

NDB does not support repeatable reads, which can cause problems with the restoration process.
Although the backup process is “hot”, restoring an NDB Cluster from backup is not a 100% “hot”
process. This is due to the fact that, for the duration of the restore process, running transactions get
nonrepeatable reads from the restored data. This means that the state of the data is inconsistent while
the restore is in progress.

25.6.8.5 Taking an NDB Backup with Parallel Data Nodes

It is possible in NDB 8.0 to take a backup with multiple local data managers (LDMs) acting in parallel
on the data nodes. For this to work, all data nodes in the cluster must use multiple LDMs, and each
data node must use the same number of LDMs. This means that all data nodes must run ndbmtd
(ndbd is single-threaded and thus always has only one LDM) and they must be configured to use
multiple LDMs before taking the backup; ndbmtd by default runs in single-threaded mode. You can
cause them to use multiple LDMs by choosing an appropriate setting for one of the multi-threaded data
node configuration parameters MaxNoOfExecutionThreads or ThreadConfig. Keep in mind that
changing these parameters requires a restart of the cluster; this can be a rolling restart. In addition, the
EnableMultithreadedBackup parameter must be set to 1 for each data node (this is the default).

Depending on the number of LDMs and other factors, you may also need to increase
NoOfFragmentLogParts. If you are using large Disk Data tables, you may also need to increase
DiskPageBufferMemory. As with single-threaded backups, you may also want or need to make
adjustments to settings for BackupDataBufferSize, BackupMemory, and other configuration
parameters relating to backups (see Backup parameters).

Once all data nodes are using multiple LDMs, you can take the parallel backup using the START
BACKUP command in the NDB management client just as you would if the data nodes were running
ndbd (or ndbmtd in single-threaded mode); no additional or special syntax is required, and you can
specify a backup ID, wait option, or snapshot option in any combination as needed or desired.

Backups using multiple LDMs create subdirectories, one per LDM, under the directory BACKUP/
BACKUP-backup_id/ (which in turn resides under the BackupDataDir) on each data node;
these subdirectories are named BACKUP-backup_id-PART-1-OF-N/, BACKUP-backup_id-
PART-2-OF-N/, and so on, up to BACKUP-backup_id-PART-N-OF-N/, where backup_id
is the backup ID used for this backup and N is the number of LDMs per data node. Each of
these subdirectories contains the usual backup files BACKUP-backup_id-0.node_id.Data,
BACKUP-backup_id.node_id.ctl, and BACKUP-backup_id.node_id.log, where node_id is
the node ID of this data node.

ndb_restore automatically checks for the presence of the subdirectories just described; if it finds
them, it attempts to restore the backup in parallel. For information about restoring backups taken with
multiple LDMs, see Section 25.5.23.3, “Restoring from a backup taken in parallel”.

To force creation of a single-threaded backup that can easily be imported by ndb_restore from an
NDB release prior to 8.0, you can set EnableMultithreadedBackup = 0 for all data nodes (you
can do this by setting the parameter in the [ndbd default] section of the config.ini global
configuration file). It is also possible to restore a parallel backup to a cluster running an older version of
NDB. See Restoring an NDB backup to a previous version of NDB Cluster, for more information.

4711

Importing Data Into MySQL Cluster

25.6.9 Importing Data Into MySQL Cluster

It is common when setting up a new instance of NDB Cluster to need to import data from an existing
NDB Cluster, instance of MySQL, or other source. This data is most often available in one or more of
the following formats:

• An SQL dump file such as produced by mysqldump or mysqlpump. This can be imported using the
mysql client, as shown later in this section.

• A CSV file produced by mysqldump or other export program. Such files can be imported into NDB
using LOAD DATA INFILE in the mysql client, or with the ndb_import utility provided with the
NDB Cluster distribution. For more information about the latter, see Section 25.5.13, “ndb_import —
Import CSV Data Into NDB”.

• A native NDB backup produced using START BACKUP in the NDB management client. To import
a native backup, you must use the ndb_restore program that comes as part of NDB Cluster.
See Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”, for more about using this
program.

When importing data from an SQL file, it is often not necessary to enforce transactions or foreign keys,
and temporarily disabling these features can speed up the import process greatly. This can be done
using the mysql client, either from a client session, or by invoking it on the command line. Within a
mysql client session, you can perform the import using the following SQL statements:

SET ndb_use_transactions=0;
SET foreign_key_checks=0;

source path/to/dumpfile;

SET ndb_use_transactions=1;
SET foreign_key_checks=1;

When performing the import in this fashion, you must enable ndb_use_transaction and
foreign_key_checks again following execution of the mysql client's source command. Otherwise,
it is possible for later statements in same session may also be executed without enforcing transactions
or foreign key constraints, and which could lead to data inconcsistency.

From the system shell, you can import the SQL file while disabling enforcement of transaction and
foreign keys by using the mysql client with the --init-command option, like this:

$> mysql --init-command='SET ndb_use_transactions=0; SET foreign_key_checks=0' < path/to/dumpfile

It is also possible to load the data into an InnoDB table, and convert it to use the NDB storage engine
afterwards using ALTER TABLE ... ENGINE NDB). You should take into account, especially for many
tables, that this may require a number of such operations; in addition, if foreign keys are used, you
must mind the order of the ALTER TABLE statements carefully, due to the fact that foreign keys do not
work between tables using different MySQL storage engines.

You should be aware that the methods described previously in this section are not optimized for
very large data sets or large transactions. Should an application really need big transactions or
many concurrent transactions as part of normal operation, you may wish to increase the value of the
MaxNoOfConcurrentOperations data node configuration parameter, which reserves more memory
to allow a data node to take over a transaction if its transaction coordinator stops unexpectedly.

You may also wish to do this when performing bulk DELETE or UPDATE operations on NDB Cluster
tables. If possible, try to have applications perform these operations in chunks, for example, by adding
LIMIT to such statements.

If a data import operation does not complete successfully, for whatever reason, you should be prepared
to perform any necessary cleanup including possibly one or more DROP TABLE statements, DROP
DATABASE statements, or both. Failing to do so may leave the database in an inconsistent state.

25.6.10 MySQL Server Usage for NDB Cluster

4712

MySQL Server Usage for NDB Cluster

mysqld is the traditional MySQL server process. To be used with NDB Cluster, mysqld needs to
be built with support for the NDB storage engine, as it is in the precompiled binaries available from
https://dev.mysql.com/downloads/. If you build MySQL from source, you must invoke CMake with the -
DWITH_NDB=1 or (deprecated) -DWITH_NDBCLUSTER=1 option to include support for NDB.

For more information about compiling NDB Cluster from source, see Section 25.3.1.4, “Building NDB
Cluster from Source on Linux”, and Section 25.3.2.2, “Compiling and Installing NDB Cluster from
Source on Windows”.

(For information about mysqld options and variables, in addition to those discussed in this section,
which are relevant to NDB Cluster, see Section 25.4.3.9, “MySQL Server Options and Variables for
NDB Cluster”.)

If the mysqld binary has been built with Cluster support, the NDBCLUSTER storage engine is still
disabled by default. You can use either of two possible options to enable this engine:

• Use --ndbcluster as a startup option on the command line when starting mysqld.

• Insert a line containing ndbcluster in the [mysqld] section of your my.cnf file.

An easy way to verify that your server is running with the NDBCLUSTER storage engine enabled is to
issue the SHOW ENGINES statement in the MySQL Monitor (mysql). You should see the value YES
as the Support value in the row for NDBCLUSTER. If you see NO in this row or if there is no such row
displayed in the output, you are not running an NDB-enabled version of MySQL. If you see DISABLED
in this row, you need to enable it in either one of the two ways just described.

To read cluster configuration data, the MySQL server requires at a minimum three pieces of
information:

• The MySQL server's own cluster node ID

• The host name or IP address for the management server

• The number of the TCP/IP port on which it can connect to the management server

Node IDs can be allocated dynamically, so it is not strictly necessary to specify them explicitly.

The mysqld parameter ndb-connectstring is used to specify the connection string either on the
command line when starting mysqld or in my.cnf. The connection string contains the host name or IP
address where the management server can be found, as well as the TCP/IP port it uses.

In the following example, ndb_mgmd.mysql.com is the host where the management server resides,
and the management server listens for cluster messages on port 1186:

$> mysqld --ndbcluster --ndb-connectstring=ndb_mgmd.mysql.com:1186

See Section 25.4.3.3, “NDB Cluster Connection Strings”, for more information on connection strings.

Given this information, the MySQL server can act as a full participant in the cluster. (We often refer to
a mysqld process running in this manner as an SQL node.) It is fully aware of all cluster data nodes
as well as their status, and establishes connections to all data nodes. In this case, it is able to use any
data node as a transaction coordinator and to read and update node data.

You can see in the mysql client whether a MySQL server is connected to the cluster using SHOW
PROCESSLIST. If the MySQL server is connected to the cluster, and you have the PROCESS privilege,
then the first row of the output is as shown here:

mysql> SHOW PROCESSLIST \G
*************************** 1. row ***************************
 Id: 1
 User: system user
 Host:
 db:
Command: Daemon

4713

https://dev.mysql.com/downloads/

NDB Cluster Disk Data Tables

 Time: 1
 State: Waiting for event from ndbcluster
 Info: NULL

Important

To participate in an NDB Cluster, the mysqld process must be started with both
the options --ndbcluster and --ndb-connectstring (or their equivalents
in my.cnf). If mysqld is started with only the --ndbcluster option, or if it
is unable to contact the cluster, it is not possible to work with NDB tables, nor
is it possible to create any new tables regardless of storage engine. The latter
restriction is a safety measure intended to prevent the creation of tables having
the same names as NDB tables while the SQL node is not connected to the
cluster. If you wish to create tables using a different storage engine while the
mysqld process is not participating in an NDB Cluster, you must restart the
server without the --ndbcluster option.

25.6.11 NDB Cluster Disk Data Tables

NDB Cluster supports storing nonindexed columns of NDB tables on disk, rather than in RAM. Column
data and logging metadata are kept in data files and undo log files, conceptualized as tablespaces
and log file groups, as described in the next section—see Section 25.6.11.1, “NDB Cluster Disk Data
Objects”.

NDB Cluster Disk Data performance can be influenced by a number of configuration parameters. For
information about these parameters and their effects, see Disk Data Configuration Parameters, and
Disk Data and GCP Stop errors.

You should also set the DiskDataUsingSameDisk data node configuration parameter to false
when using separate disks for Disk Data files.

See also Disk Data file system parameters.

NDB 8.0 provides improved support when using Disk Data tables with solid-state drives, in particular
those using NVMe. See the following documentation for more information:

• Disk Data latency parameters

• Section 25.6.16.31, “The ndbinfo diskstat Table”

• Section 25.6.16.32, “The ndbinfo diskstats_1sec Table”

• Section 25.6.16.49, “The ndbinfo pgman_time_track_stats Table”

25.6.11.1 NDB Cluster Disk Data Objects

NDB Cluster Disk Data storage is implemented using the following objects:

• Tablespace: Acts as containers for other Disk Data objects. A tablespace contains one or more data
files and one or more undo log file groups.

• Data file: Stores column data. A data file is assigned directly to a tablespace.

• Undo log file: Contains undo information required for rolling back transactions. Assigned to an undo
log file group.

• log file group: Contains one or more undo log files. Assigned to a tablespace.

Undo log files and data files are actual files in the file system of each data node; by default they are
placed in ndb_node_id_fs in the DataDir specified in the NDB Cluster config.ini file, and where
node_id is the data node's node ID. It is possible to place these elsewhere by specifying either an
absolute or relative path as part of the filename when creating the undo log or data file. Statements that
create these files are shown later in this section.

4714

NDB Cluster Disk Data Tables

Undo log files are used only by Disk Data tables, and are not needed or used by NDB tables that are
stored in memory only.

NDB Cluster tablespaces and log file groups are not implemented as files.

Although not all Disk Data objects are implemented as files, they all share the same namespace. This
means that each Disk Data object must be uniquely named (and not merely each Disk Data object of a
given type). For example, you cannot have a tablespace and a log file group both named dd1.

Assuming that you have already set up an NDB Cluster with all nodes (including management and SQL
nodes), the basic steps for creating an NDB Cluster table on disk are as follows:

1. Create a log file group, and assign one or more undo log files to it (an undo log file is also
sometimes referred to as an undofile).

2. Create a tablespace; assign the log file group, as well as one or more data files, to the tablespace.

3. Create a Disk Data table that uses this tablespace for data storage.

Each of these tasks can be accomplished using SQL statements in the mysql client or other MySQL
client application, as shown in the example that follows.

1. We create a log file group named lg_1 using CREATE LOGFILE GROUP. This log file group is to
be made up of two undo log files, which we name undo_1.log and undo_2.log, whose initial
sizes are 16 MB and 12 MB, respectively. (The default initial size for an undo log file is 128 MB.)
Optionally, you can also specify a size for the log file group's undo buffer, or permit it to assume
the default value of 8 MB. In this example, we set the UNDO buffer's size at 2 MB. A log file group
must be created with an undo log file; so we add undo_1.log to lg_1 in this CREATE LOGFILE
GROUP statement:

CREATE LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_1.log'
 INITIAL_SIZE 16M
 UNDO_BUFFER_SIZE 2M
 ENGINE NDBCLUSTER;

To add undo_2.log to the log file group, use the following ALTER LOGFILE GROUP statement:

ALTER LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_2.log'
 INITIAL_SIZE 12M
 ENGINE NDBCLUSTER;

Some items of note:

• The .log file extension used here is not required. We employ it merely to make the log files
easily recognizable.

• Every CREATE LOGFILE GROUP and ALTER LOGFILE GROUP statement must include an
ENGINE option. The only permitted values for this option are NDBCLUSTER and NDB.

Important

There can exist at most one log file group in the same NDB Cluster at any
given time.

• When you add an undo log file to a log file group using ADD UNDOFILE 'filename', a file with
the name filename is created in the ndb_node_id_fs directory within the DataDir of each
data node in the cluster, where node_id is the node ID of the data node. Each undo log file is of
the size specified in the SQL statement. For example, if an NDB Cluster has 4 data nodes, then
the ALTER LOGFILE GROUP statement just shown creates 4 undo log files, 1 each on in the
data directory of each of the 4 data nodes; each of these files is named undo_2.log and each
file is 12 MB in size.

4715

NDB Cluster Disk Data Tables

• UNDO_BUFFER_SIZE is limited by the amount of system memory available.

• See Section 15.1.16, “CREATE LOGFILE GROUP Statement”, and Section 15.1.6, “ALTER
LOGFILE GROUP Statement”, for more information about these statements.

2. Now we can create a tablespace—an abstract container for files used by Disk Data tables to store
data. A tablespace is associated with a particular log file group; when creating a new tablespace,
you must specify the log file group it uses for undo logging. You must also specify at least one data
file; you can add more data files to the tablespace after the tablespace is created. It is also possible
to drop data files from a tablespace (see example later in this section).

Assume that we wish to create a tablespace named ts_1 which uses lg_1 as its log file group. We
want the tablespace to contain two data files, named data_1.dat and data_2.dat, whose initial
sizes are 32 MB and 48 MB, respectively. (The default value for INITIAL_SIZE is 128 MB.) We
can do this using two SQL statements, as shown here:

CREATE TABLESPACE ts_1
 ADD DATAFILE 'data_1.dat'
 USE LOGFILE GROUP lg_1
 INITIAL_SIZE 32M
 ENGINE NDBCLUSTER;

ALTER TABLESPACE ts_1
 ADD DATAFILE 'data_2.dat'
 INITIAL_SIZE 48M;

The CREATE TABLESPACE statement creates a tablespace ts_1 with the data file data_1.dat,
and associates ts_1 with log file group lg_1. The ALTER TABLESPACE adds the second data file
(data_2.dat).

Some items of note:

• As is the case with the .log file extension used in this example for undo log files, there is no
special significance for the .dat file extension; it is used merely for easy recognition.

• When you add a data file to a tablespace using ADD DATAFILE 'filename', a file with the
name filename is created in the ndb_node_id_fs directory within the DataDir of each data
node in the cluster, where node_id is the node ID of the data node. Each data file is of the
size specified in the SQL statement. For example, if an NDB Cluster has 4 data nodes, then the
ALTER TABLESPACE statement just shown creates 4 data files, 1 each in the data directory of
each of the 4 data nodes; each of these files is named data_2.dat and each file is 48 MB in
size.

• NDB reserves 4% of each tablespace for use during data node restarts. This space is not
available for storing data.

• CREATE TABLESPACE statements must contain an ENGINE clause; only tables using the same
storage engine as the tablespace can be created in the tablespace. For ALTER TABLESPACE, an
ENGINE clause is accepted but is deprecated and subject to removal in a future release. For NDB
tablespaces, the only permitted values for this option are NDBCLUSTER and NDB.

• In NDB 8.0.20 and later, allocation of extents is performed in round-robin fashion among all data
files used by a given tablespace.

• For more information about the CREATE TABLESPACE and ALTER TABLESPACE statements,
see Section 15.1.21, “CREATE TABLESPACE Statement”, and Section 15.1.10, “ALTER
TABLESPACE Statement”.

3. Now it is possible to create a table whose unindexed columns are stored on disk using files in
tablespace ts_1:

CREATE TABLE dt_1 (

4716

NDB Cluster Disk Data Tables

 member_id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 last_name VARCHAR(50) NOT NULL,
 first_name VARCHAR(50) NOT NULL,
 dob DATE NOT NULL,
 joined DATE NOT NULL,
 INDEX(last_name, first_name)
)
 TABLESPACE ts_1 STORAGE DISK
 ENGINE NDBCLUSTER;

TABLESPACE ts_1 STORAGE DISK tells the NDB storage engine to use tablespace ts_1 for data
storage on disk.

Once table ts_1 has been created as shown, you can perform INSERT, SELECT, UPDATE, and
DELETE statements on it just as you would with any other MySQL table.

It is also possible to specify whether an individual column is stored on disk or in memory by
using a STORAGE clause as part of the column's definition in a CREATE TABLE or ALTER TABLE
statement. STORAGE DISK causes the column to be stored on disk, and STORAGE MEMORY causes
in-memory storage to be used. See Section 15.1.20, “CREATE TABLE Statement”, for more
information.

You can obtain information about the NDB disk data files and undo log files just created by querying the
FILES table in the INFORMATION_SCHEMA database, as shown here:

mysql> SELECT
 FILE_NAME AS File, FILE_TYPE AS Type,
 TABLESPACE_NAME AS Tablespace, TABLE_NAME AS Name,
 LOGFILE_GROUP_NAME AS 'File group',
 FREE_EXTENTS AS Free, TOTAL_EXTENTS AS Total
 FROM INFORMATION_SCHEMA.FILES
 WHERE ENGINE='ndbcluster';
+--------------+----------+------------+------+------------+------+---------+
| File | Type | Tablespace | Name | File group | Free | Total |
+--------------+----------+------------+------+------------+------+---------+
./undo_1.log	UNDO LOG	lg_1	NULL	lg_1	0	4194304
./undo_2.log	UNDO LOG	lg_1	NULL	lg_1	0	3145728
./data_1.dat	DATAFILE	ts_1	NULL	lg_1	32	32
./data_2.dat	DATAFILE	ts_1	NULL	lg_1	48	48
+--------------+----------+------------+------+------------+------+---------+
4 rows in set (0.00 sec)

For more information and examples, see Section 28.3.15, “The INFORMATION_SCHEMA FILES
Table”.

Indexing of columns implicitly stored on disk. For table dt_1 as defined in the example just
shown, only the dob and joined columns are stored on disk. This is because there are indexes on
the id, last_name, and first_name columns, and so data belonging to these columns is stored in
RAM. Only nonindexed columns can be held on disk; indexes and indexed column data continue to be
stored in memory. This tradeoff between the use of indexes and conservation of RAM is something you
must keep in mind as you design Disk Data tables.

You cannot add an index to a column that has been explicitly declared STORAGE DISK, without first
changing its storage type to MEMORY; any attempt to do so fails with an error. A column which implicitly
uses disk storage can be indexed; when this is done, the column's storage type is changed to MEMORY
automatically. By “implicitly”, we mean a column whose storage type is not declared, but which is which
inherited from the parent table. In the following CREATE TABLE statement (using the tablespace ts_1
defined previously), columns c2 and c3 use disk storage implicitly:

mysql> CREATE TABLE ti (
 -> c1 INT PRIMARY KEY,
 -> c2 INT,
 -> c3 INT,
 -> c4 INT
 ->)
 -> STORAGE DISK
 -> TABLESPACE ts_1

4717

NDB Cluster Disk Data Tables

 -> ENGINE NDBCLUSTER;
Query OK, 0 rows affected (1.31 sec)

Because c2, c3, and c4 are themselves not declared with STORAGE DISK, it is possible to index
them. Here, we add indexes to c2 and c3, using, respectively, CREATE INDEX and ALTER TABLE:

mysql> CREATE INDEX i1 ON ti(c2);
Query OK, 0 rows affected (2.72 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE ti ADD INDEX i2(c3);
Query OK, 0 rows affected (0.92 sec)
Records: 0 Duplicates: 0 Warnings: 0

SHOW CREATE TABLE confirms that the indexes were added.

mysql> SHOW CREATE TABLE ti\G
*************************** 1. row ***************************
 Table: ti
Create Table: CREATE TABLE `ti` (
 `c1` int(11) NOT NULL,
 `c2` int(11) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 `c4` int(11) DEFAULT NULL,
 PRIMARY KEY (`c1`),
 KEY `i1` (`c2`),
 KEY `i2` (`c3`)
) /*!50100 TABLESPACE `ts_1` STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

You can see using ndb_desc that the indexed columns (emphasized text) now use in-memory rather
than on-disk storage:

$> ./ndb_desc -d test t1
-- t1 --
Version: 33554433
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 317
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 4
FragmentCount: 4
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
HashMap: DEFAULT-HASHMAP-3840-4
-- Attributes --
c1 Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
c2 Int NULL AT=FIXED ST=MEMORY
c3 Int NULL AT=FIXED ST=MEMORY
c4 Int NULL AT=FIXED ST=DISK
-- Indexes --
PRIMARY KEY(c1) - UniqueHashIndex
i2(c3) - OrderedIndex
PRIMARY(c1) - OrderedIndex
i1(c2) - OrderedIndex

Performance note. The performance of a cluster using Disk Data storage is greatly improved if Disk
Data files are kept on a separate physical disk from the data node file system. This must be done for
each data node in the cluster to derive any noticeable benefit.

4718

NDB Cluster Disk Data Tables

You can use absolute and relative file system paths with ADD UNDOFILE and ADD DATAFILE; relative
paths are calculated with respect to the data node's data directory.

A log file group, a tablespace, and any Disk Data tables using these must be created in a particular
order. This is also true for dropping these objects, subject to the following constraints:

• A log file group cannot be dropped as long as any tablespaces use it.

• A tablespace cannot be dropped as long as it contains any data files.

• You cannot drop any data files from a tablespace as long as there remain any tables which are using
the tablespace.

• It is not possible to drop files created in association with a different tablespace other than the one
with which the files were created.

For example, to drop all the objects created so far in this section, you can use the following statements:

mysql> DROP TABLE dt_1;

mysql> ALTER TABLESPACE ts_1
 -> DROP DATAFILE 'data_2.dat'
 -> ENGINE NDBCLUSTER;

mysql> ALTER TABLESPACE ts_1
 -> DROP DATAFILE 'data_1.dat'
 -> ENGINE NDBCLUSTER;

mysql> DROP TABLESPACE ts_1
 -> ENGINE NDBCLUSTER;

mysql> DROP LOGFILE GROUP lg_1
 -> ENGINE NDBCLUSTER;

These statements must be performed in the order shown, except that the two ALTER
TABLESPACE ... DROP DATAFILE statements may be executed in either order.

25.6.11.2 NDB Cluster Disk Data Storage Requirements

 The following items apply to Disk Data storage requirements:

• Variable-length columns of Disk Data tables take up a fixed amount of space. For each row, this is
equal to the space required to store the largest possible value for that column.

For general information about calculating these values, see Section 13.7, “Data Type Storage
Requirements”.

You can obtain an estimate the amount of space available in data files and undo log files by querying
the Information Schema FILES table. For more information and examples, see Section 28.3.15, “The
INFORMATION_SCHEMA FILES Table”.

Note

The OPTIMIZE TABLE statement does not have any effect on Disk Data
tables.

• In a Disk Data table, the first 256 bytes of a TEXT or BLOB column are stored in memory; only the
remainder is stored on disk.

• Each row in a Disk Data table uses 8 bytes in memory to point to the data stored on disk. This
means that, in some cases, converting an in-memory column to the disk-based format can actually
result in greater memory usage. For example, converting a CHAR(4) column from memory-based to
disk-based format increases the amount of DataMemory used per row from 4 to 8 bytes.

4719

Online Operations with ALTER TABLE in NDB Cluster

Important

Starting the cluster with the --initial option does not remove Disk Data files.
You must remove these manually prior to performing an initial restart of the
cluster.

Performance of Disk Data tables can be improved by minimizing the number of disk seeks by making
sure that DiskPageBufferMemory is of sufficient size. You can query the diskpagebuffer table to
help determine whether the value for this parameter needs to be increased.

25.6.12 Online Operations with ALTER TABLE in NDB Cluster

MySQL NDB Cluster 8.0 supports online table schema changes using ALTER TABLE ...
ALGORITHM=DEFAULT|INPLACE|COPY. NDB Cluster handles COPY and INPLACE as described in the
next few paragraphs.

For ALGORITHM=COPY, the mysqld NDB Cluster handler performs the following actions:

• Tells the data nodes to create an empty copy of the table, and to make the required schema changes
to this copy.

• Reads rows from the original table, and writes them to the copy.

• Tells the data nodes to drop the original table and then to rename the copy.

We sometimes refer to this as a “copying” or “offline” ALTER TABLE.

DML operations are not permitted concurrently with a copying ALTER TABLE.

The mysqld on which the copying ALTER TABLE statement is issued takes a metadata lock, but this is
in effect only on that mysqld. Other NDB clients can modify row data during a copying ALTER TABLE,
resulting in inconsistency.

For ALGORITHM=INPLACE, the NDB Cluster handler tells the data nodes to make the required
changes, and does not perform any copying of data.

We also refer to this as a “non-copying” or “online” ALTER TABLE.

A non-copying ALTER TABLE allows concurrent DML operations.

ALGORITHM=INSTANT is not supported by NDB 8.0.

Regardless of the algorithm used, the mysqld takes a Global Schema Lock (GSL) while executing
ALTER TABLE; this prevents execution of any (other) DDL or backups concurrently on this or any other
SQL node in the cluster. This is normally not problematic, unless the ALTER TABLE takes a very long
time.

Note

Some older releases of NDB Cluster used a syntax specific to NDB for online
ALTER TABLE operations. That syntax has since been removed.

Operations that add and drop indexes on variable-width columns of NDB tables occur online. Online
operations are noncopying; that is, they do not require that indexes be re-created. They do not lock
the table being altered from access by other API nodes in an NDB Cluster (but see Limitations of NDB
online operations, later in this section). Such operations do not require single user mode for NDB table
alterations made in an NDB cluster with multiple API nodes; transactions can continue uninterrupted
during online DDL operations.

ALGORITHM=INPLACE can be used to perform online ADD COLUMN, ADD INDEX (including CREATE
INDEX statements), and DROP INDEX operations on NDB tables. Online renaming of NDB tables is also
supported (prior to NDB 8.0, such columns could not be renamed online).

4720

Online Operations with ALTER TABLE in NDB Cluster

Disk-based columns cannot be added to NDB tables online. This means that, if you wish to add an in-
memory column to an NDB table that uses a table-level STORAGE DISK option, you must declare the
new column as using memory-based storage explicitly. For example—assuming that you have already
created tablespace ts1—suppose that you create table t1 as follows:

mysql> CREATE TABLE t1 (
 > c1 INT NOT NULL PRIMARY KEY,
 > c2 VARCHAR(30)
 >)
 > TABLESPACE ts1 STORAGE DISK
 > ENGINE NDB;
Query OK, 0 rows affected (1.73 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can add a new in-memory column to this table online as shown here:

mysql> ALTER TABLE t1
 > ADD COLUMN c3 INT COLUMN_FORMAT DYNAMIC STORAGE MEMORY,
 > ALGORITHM=INPLACE;
Query OK, 0 rows affected (1.25 sec)
Records: 0 Duplicates: 0 Warnings: 0

This statement fails if the STORAGE MEMORY option is omitted:

mysql> ALTER TABLE t1
 > ADD COLUMN c4 INT COLUMN_FORMAT DYNAMIC,
 > ALGORITHM=INPLACE;
ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason:
Adding column(s) or add/reorganize partition not supported online. Try
ALGORITHM=COPY.

If you omit the COLUMN_FORMAT DYNAMIC option, the dynamic column format is employed
automatically, but a warning is issued, as shown here:

mysql> ALTER ONLINE TABLE t1 ADD COLUMN c4 INT STORAGE MEMORY;
Query OK, 0 rows affected, 1 warning (1.17 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: DYNAMIC column c4 with STORAGE DISK is not supported, column will
become FIXED

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int(11) NOT NULL,
 `c2` varchar(30) DEFAULT NULL,
 `c3` int(11) /*!50606 STORAGE MEMORY */ /*!50606 COLUMN_FORMAT DYNAMIC */ DEFAULT NULL,
 `c4` int(11) /*!50606 STORAGE MEMORY */ DEFAULT NULL,
 PRIMARY KEY (`c1`)
) /*!50606 TABLESPACE ts_1 STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.03 sec)

Note

The STORAGE and COLUMN_FORMAT keywords are supported only in NDB
Cluster; in any other version of MySQL, attempting to use either of these
keywords in a CREATE TABLE or ALTER TABLE statement results in an error.

It is also possible to use the statement ALTER TABLE ... REORGANIZE PARTITION,
ALGORITHM=INPLACE with no partition_names INTO (partition_definitions) option on
NDB tables. This can be used to redistribute NDB Cluster data among new data nodes that have been
added to the cluster online. This does not perform any defragmentation, which requires an OPTIMIZE

4721

Online Operations with ALTER TABLE in NDB Cluster

TABLE or null ALTER TABLE statement. For more information, see Section 25.6.7, “Adding NDB
Cluster Data Nodes Online”.

Limitations of NDB online operations

Online DROP COLUMN operations are not supported.

Online ALTER TABLE, CREATE INDEX, or DROP INDEX statements that add columns or add or drop
indexes are subject to the following limitations:

• A given online ALTER TABLE can use only one of ADD COLUMN, ADD INDEX, or DROP INDEX.
One or more columns can be added online in a single statement; only one index may be created or
dropped online in a single statement.

• The table being altered is not locked with respect to API nodes other than the one on which an online
ALTER TABLE ADD COLUMN, ADD INDEX, or DROP INDEX operation (or CREATE INDEX or DROP
INDEX statement) is run. However, the table is locked against any other operations originating on the
same API node while the online operation is being executed.

• The table to be altered must have an explicit primary key; the hidden primary key created by the NDB
storage engine is not sufficient for this purpose.

• The storage engine used by the table cannot be changed online.

• The tablespace used by the table cannot be changed online. Beginning with NDB
8.0.21, a statement such as ALTER TABLE ndb_table ... ALGORITHM=INPLACE,
TABLESPACE=new_tablespace is specifically disallowed. (Bug #99269, Bug #31180526)

• When used with NDB Cluster Disk Data tables, it is not possible to change the storage type (DISK or
MEMORY) of a column online. This means, that when you add or drop an index in such a way that the
operation would be performed online, and you want the storage type of the column or columns to be
changed, you must use ALGORITHM=COPY in the statement that adds or drops the index.

Columns to be added online cannot use the BLOB or TEXT type, and must meet the following criteria:

• The columns must be dynamic; that is, it must be possible to create them using COLUMN_FORMAT
DYNAMIC. If you omit the COLUMN_FORMAT DYNAMIC option, the dynamic column format is
employed automatically.

• The columns must permit NULL values and not have any explicit default value other than NULL.
Columns added online are automatically created as DEFAULT NULL, as can be seen here:

mysql> CREATE TABLE t2 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY
 >) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER TABLE t2
 > ADD COLUMN c2 INT,
 > ADD COLUMN c3 INT,
 > ALGORITHM=INPLACE;
Query OK, 0 rows affected, 2 warnings (0.93 sec)

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t2` (
 `c1` int(11) NOT NULL AUTO_INCREMENT,
 `c2` int(11) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 PRIMARY KEY (`c1`)
) ENGINE=ndbcluster DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

• The columns must be added following any existing columns. If you attempt to add a column online
before any existing columns or using the FIRST keyword, the statement fails with an error.

4722

Privilege Synchronization and NDB_STORED_USER

• Existing table columns cannot be reordered online.

For online ALTER TABLE operations on NDB tables, fixed-format columns are converted to dynamic
when they are added online, or when indexes are created or dropped online, as shown here (repeating
the CREATE TABLE and ALTER TABLE statements just shown for the sake of clarity):

mysql> CREATE TABLE t2 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY
 >) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER TABLE t2
 > ADD COLUMN c2 INT,
 > ADD COLUMN c3 INT,
 > ALGORITHM=INPLACE;
Query OK, 0 rows affected, 2 warnings (0.93 sec)

mysql> SHOW WARNINGS;
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c2' to DYNAMIC to enable online ADD COLUMN
*************************** 2. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c3' to DYNAMIC to enable online ADD COLUMN
2 rows in set (0.00 sec)

Only the column or columns to be added online must be dynamic. Existing columns need not be; this
includes the table's primary key, which may also be FIXED, as shown here:

mysql> CREATE TABLE t3 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY COLUMN_FORMAT FIXED
 >) ENGINE=NDB;
Query OK, 0 rows affected (2.10 sec)

mysql> ALTER TABLE t3 ADD COLUMN c2 INT, ALGORITHM=INPLACE;
Query OK, 0 rows affected, 1 warning (0.78 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW WARNINGS;
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c2' to DYNAMIC to enable online ADD COLUMN
1 row in set (0.00 sec)

Columns are not converted from FIXED to DYNAMIC column format by renaming operations. For more
information about COLUMN_FORMAT, see Section 15.1.20, “CREATE TABLE Statement”.

The KEY, CONSTRAINT, and IGNORE keywords are supported in ALTER TABLE statements using
ALGORITHM=INPLACE.

Setting MAX_ROWS to 0 using an online ALTER TABLE statement is disallowed. You must use a
copying ALTER TABLE to perform this operation. (Bug #21960004)

25.6.13 Privilege Synchronization and NDB_STORED_USER

NDB 8.0 introduces a new mechanism for sharing and synchronizing users, roles, and privileges
between SQL nodes connected to an NDB Cluster. This can be enabled by granting the
NDB_STORED_USER privilege. See the description of the privilege for usage information.

NDB_STORED_USER is printed in the output of SHOW GRANTS as with any other privilege, as shown
here:

mysql> SHOW GRANTS for 'jon'@'localhost';

4723

File System Encryption for NDB Cluster

+---+
| Grants for jon@localhost |
+---+
| GRANT USAGE ON *.* TO `jon`@`localhost` |
| GRANT NDB_STORED_USER ON *.* TO `jon`@`localhost` |
+---+

You can also verify that privileges are shared for this account using the ndb_select_all utility
supplied with NDB Cluster, like this (some output wrapped to preserve formatting):

$> ndb_select_all -d mysql ndb_sql_metadata | grep '`jon`@`localhost`'
12 "'jon'@'localhost'" 0 [NULL] "GRANT USAGE ON *.* TO `jon`@`localhost`"
11 "'jon'@'localhost'" 0 2 "CREATE USER `jon`@`localhost`
IDENTIFIED WITH 'caching_sha2_password' AS
0x2441243030352466014340225A107D590E6E653B5D587922306102716D752E6656772F3038512F
6C5072776D30376D37347A384B557A4C564F70495158656A31382E45324E33
REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT UNLOCK PASSWORD HISTORY DEFAULT
PASSWORD REUSE INTERVAL DEFAULT PASSWORD REQUIRE CURRENT DEFAULT"
12 "'jon'@'localhost'" 1 [NULL] "GRANT NDB_STORED_USER ON *.* TO `jon`@`localhost`"

ndb_sql_metadata is a special NDB table that is not visible using the mysql or other MySQL client.

A statement granting the NDB_STORED_USER privilege, such as GRANT NDB_STORED_USER ON
. TO 'cluster_app_user'@'localhost', works by directing NDB to create a snapshot using
the queries SHOW CREATE USER cluster_app_user@localhost and SHOW GRANTS FOR
cluster_app_user@localhost, then storing the results in ndb_sql_metadata. Any other SQL
nodes are then requested to read and apply the snapshot. Whenever a MySQL server starts up and
joins the cluster as an SQL node it executes these stored CREATE USER and GRANT statements as
part of the cluster schema synchronization process.

Whenever an SQL statement is executed on an SQL node other than the one where it originated, the
statement is run in a utility thread of the NDBCLUSTER storage engine; this is done within a security
environment equivalent to that of the MySQL replication replica applier thread.

Beginning with NDB 8.0.27, an SQL node performing a change to user privileges takes a global lock
before doing so, which prevents deadlocks by concurrent ACL operations on different SQL nodes. Prior
to NDB 8.0.27, changes to users with NDB_STORED_USER were updated in a completely asynchronous
fashion, without any locks being taken.

You should keep in mind that, because shared schema change operations are performed
synchronously, the next shared schema change following a change to any shared user or users serves
as a synchronization point. Any pending user changes run to completion before the schema change
distribution can begin; after this the schema change itself runs synchronously. For example, if a DROP
DATABASE statement follows a DROP USER of a distributed user, the drop of the database cannot take
place until the drop of the user has completed on all SQL nodes.

In the event that multiple GRANT, REVOKE, or other user administration statements from multiple SQL
nodes cause privileges for a given user to diverge on different SQL nodes, you can fix this problem by
issuing GRANT NDB_STORED_USER for this user on an SQL node where the privileges are known to
be correct; this causes a new snapshot of the privileges to be taken and synchronized to the other SQL
nodes.

NDB Cluster 8.0 does not support distribution of MySQL users and privileges across SQL nodes in an
NDB Cluster by altering the MySQL privilege tables such that they used the NDB storage engine as in
NDB 7.6 and earlier releases (see Distributed Privileges Using Shared Grant Tables). For information
about the impact of this change on upgrades to NDB 8.0 from a previous release, see Section 25.3.7,
“Upgrading and Downgrading NDB Cluster”.

25.6.14 File System Encryption for NDB Cluster

The following sections provide information about NDB data node file system encryption, as implemented
in NDB 8.0.31 and later.

4724

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html

File System Encryption for NDB Cluster

25.6.14.1 NDB File System Encryption Setup and Usage

Encryption of file system: To enable encryption of a previously unencrypted file system, the following
steps are required:

1. Set the required data node parameters in the [ndbd default] section of the config.ini file,
as shown here:

[ndbd default]
EncryptedFileSystem= 1

These parameters must be set as shown on all data nodes.

2. Start the management server with either --initial or --reload to cause it to read the updated
configuration file.

3. Perform a rolling initial start (or restart) of all the data nodes (see Section 25.6.5, “Performing a
Rolling Restart of an NDB Cluster”): Start each data node with --initial; in addition, supply
either of the options --filesystem-password or --filesystem-password-from-stdin,
plus a password, to each data node process. When you supply the password on the command line,
a warning is shown, similar to this one:

> ndbmtd -c 127.0.0.1 --filesystem-password=ndbsecret
ndbmtd: [Warning] Using a password on the command line interface can be insecure.
2022-08-22 16:17:58 [ndbd] INFO -- Angel connected to '127.0.0.1:1186'
2022-08-22 16:17:58 [ndbd] INFO -- Angel allocated nodeid: 5

--filesystem-password can accept the password form a file, tty, or stdin; --filesystem-
password-from-stdin accepts the password from stdin only. The latter protects the password
from exposure on the process command line or in the file system, and allows for the possibility of
passing it from another secure application.

You can also place the password in a my.cnf file that can be read by the data node process,
but not by other users of the system. Using the same password as in the previous example, the
relevant portion of the file should look like this:

[ndbd]

filesystem-password=ndbsecret

You can also prompt the user starting the data node process to supply the encryption password
when doing so, by using the --filesystem-password-from-stdin option in the my.cnf file
instead, like this:

[ndbd]

filesystem-password-from-stdin

In this case, the user is prompted for the password when starting the data node process, as shown
here:

> ndbmtd -c 127.0.0.1
Enter filesystem password: *********
2022-08-22 16:36:00 [ndbd] INFO -- Angel connected to '127.0.0.1:1186'
2022-08-22 16:36:00 [ndbd] INFO -- Angel allocated nodeid: 5
>

Regardless of the method used, the format of the encryption password is the same as that used
for passwords for encrypted backups (see Section 25.6.8.2, “Using The NDB Cluster Management
Client to Create a Backup”); the password must be supplied when starting each data node process;
otherwise the data node process cannot start. This is indicated by the following message in the
data node log:

> tail -n2 ndb_5_out.log
2022-08-22 16:08:30 [ndbd] INFO -- Data node configured to have encryption but password not provided

4725

File System Encryption for NDB Cluster

2022-08-22 16:08:31 [ndbd] ALERT -- Node 5: Forced node shutdown completed. Occurred during startphase 0.

When restarted as just described, each data node clears its on-disk state, and rebuilds it in
encrypted form.

Rotation of File system password: To update the encryption password used by the data nodes, perform
a rolling initial restart of the data nodes, supplying the new password to each data node when restarting
it using --filesystem-password or --filesystem-password-from-stdin.

Decryption of file system: To remove encryption from an encrypted file system, do the following:

1. In the [ndbd default] section of the config.ini file, set EncryptedFileSystem = OFF.

2. Restart the management server with --initial or --reload.

3. Perform a rolling initial restart of the data nodes. Do not use any password-related options when
restarting the node binaries.

When restarted, each data node clears its on-disk state, and rebuilds it in unencrypted form.

To see whether file system encryption is properly configured, you can use a query against the
ndbinfo config_values and config_params tables similar to this one:

mysql> SELECT v.node_id AS Node, p.param_name AS Parameter, v.config_value AS Value
 -> FROM ndbinfo.config_values v
 -> JOIN ndbinfo.config_params p
 -> ON v.config_param=p.param_number
 -> WHERE p.param_name='EncryptedFileSystem';
+------+----------------------+-------+
| Node | Parameter | Value |
+------+----------------------+-------+
5	EncryptedFileSystem	1
6	EncryptedFileSystem	1
7	EncryptedFileSystem	1
8	EncryptedFileSystem	1
+------+----------------------+-------+
4 rows in set (0.10 sec)

Here, EncryptedFileSystem is equal to 1 on all data nodes, which means that filesystem encryption
is enabled for this cluster.

25.6.14.2 NDB File System Encryption Implementation

For NDB Transparent Data Encryption (TDE), data nodes encrypt user data at rest, with security
provided by a password (file system password), which is used to encrypt and decrypt a secrets file on
each data node. The secrets file contains a Node Master Key (NMK), a key used later to encrypt the
different file types used for persistence. NDB TDE encrypts user data files including LCP files, redo log
files, tablespace files, and undo log files.

You can use the ndbxfrm utility to see whether a file is encrypted, as shown here:

> ndbxfrm -i ndb_5_fs/LCP/0/T2F0.Data
File=ndb_5_fs/LCP/0/T2F0.Data, compression=no, encryption=yes
> ndbxfrm -i ndb_6_fs/LCP/0/T2F0.Data
File=ndb_6_fs/LCP/0/T2F0.Data, compression=no, encryption=no

Beginning with NDB 8.0.31, it is possible to obtain the key from the secrets file using the
ndb_secretsfile_reader program added in that release, like this:

> ndb_secretsfile_reader --filesystem-password=54kl14 ndb_5_fs/D1/NDBCNTR/S0.sysfile
ndb_secretsfile_reader: [Warning] Using a password on the command line interface can be insecure.
cac256e18b2ddf6b5ef82d99a72f18e864b78453cc7fa40bfaf0c40b91122d18

The per-node key hierarchy can be represented as follows:

• A user-supplied passphrase (P) is processed by a key-derivation function using a random salt to
generate a unique passphase key (PK).

4726

NDB API Statistics Counters and Variables

• The PK (unique to each node) encrypts the data on each node in its own secrets file.

• The data in the secrets file includes a unique, randomly generated Node Master Key (NMK).

• The NMK encrypts (using wrapping) one or more randomly generated data encryption key (DEK)
values in the header of each encrypted file (including LCP and TS files, and redo and undo logs).

• Data encryption key values (DEK0, ..., DEKn) are used for encryption of [subsets of] data in each file.

The passphrase indirectly encrypts the secrets file containing the random NMK, which encrypts a
portion of the header of each encrypted file on the node. The encrypted file header contains random
data keys used for the data in that file.

Encryption is implemented transparently by the NDBFS layer within the data nodes. NDBFS internal
client blocks operate on their files as normal; NDBFS wraps the physical file with extra header and
footer information supporting encryption, and encrypts and decrypts data as it is read from and written
to the file. The wrapped file format is referred to as ndbxfrm1.

The node password is processed with PBKDF2 and the random salt to encrypt the secrets file,
which contains the randomly generated NMK which is used to encrypt the randomly generated data
encryption key in each encrypted file.

The work of encryption and decryption is performed in the NDBFS I/O threads (rather than in signal
execution threads such as main, tc, ldm, or rep). This is similar to what happens with compressed
LCPs and compressed backups, and normally results in increased I/O thread CPU usage; you may
wish to adjust ThreadConfig (if in use) with regard to the I/O threads.

25.6.14.3 NDB File System Encryption Limitations

Transparent data encryption in NDB Cluster is subject to the following restrictions and limitations:

• The file system password must be supplied to each individual data node.

• File system password rotation requires an initial rolling restart of the data nodes; this must be
performed manually, or by an application external to NDB).

• For a cluster with only a single replica (NoOfReplicas = 1), a full backup and restore is required
for file system password rotation.

• Rotation of all data encryption keys requires an initial node restart.

NDB TDE and NDB Replication. The use of an encrypted filesystem does not have any effect on
NDB Replication. All of the following scenarios are supported:

• Replication of an NDB Cluster having an encrypted file system to an NDB Cluster whose file system
is not encrypted.

• Replication of an NDB Cluster whose file system is not encrypted to an NDB Cluster whose file
system is encrypted.

• Replication of an NDB Cluster whose file system is encrypted to a standalone MySQL server using
InnoDB tables which are not encrypted.

• Replication of an NDB Cluster with an unencrypted file system to a standalone MySQL server using
InnoDB tables with file sytem encryption.

25.6.15 NDB API Statistics Counters and Variables

A number of types of statistical counters relating to actions performed by or affecting Ndb objects are
available. Such actions include starting and closing (or aborting) transactions; primary key and unique
key operations; table, range, and pruned scans; threads blocked while waiting for the completion
of various operations; and data and events sent and received by NDBCLUSTER. The counters are
incremented inside the NDB kernel whenever NDB API calls are made or data is sent to or received

4727

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbfs.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

NDB API Statistics Counters and Variables

by the data nodes. mysqld exposes these counters as system status variables; their values can be
read in the output of SHOW STATUS, or by querying the Performance Schema session_status or
global_status table. By comparing the values before and after statements operating on NDB tables,
you can observe the corresponding actions taken on the API level, and thus the cost of performing the
statement.

You can list all of these status variables using the following SHOW STATUS statement:

mysql> SHOW STATUS LIKE 'ndb_api%';
+--+-----------+
| Variable_name | Value |
+--+-----------+
Ndb_api_wait_exec_complete_count	297
Ndb_api_wait_scan_result_count	0
Ndb_api_wait_meta_request_count	321
Ndb_api_wait_nanos_count	228438645
Ndb_api_bytes_sent_count	33988
Ndb_api_bytes_received_count	66236
Ndb_api_trans_start_count	148
Ndb_api_trans_commit_count	148
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	148
Ndb_api_pk_op_count	151
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	0
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	0
Ndb_api_read_row_count	147
Ndb_api_trans_local_read_row_count	37
Ndb_api_adaptive_send_forced_count	3
Ndb_api_adaptive_send_unforced_count	294
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_api_wait_exec_complete_count_replica	0
Ndb_api_wait_scan_result_count_replica	0
Ndb_api_wait_meta_request_count_replica	0
Ndb_api_wait_nanos_count_replica	0
Ndb_api_bytes_sent_count_replica	0
Ndb_api_bytes_received_count_replica	0
Ndb_api_trans_start_count_replica	0
Ndb_api_trans_commit_count_replica	0
Ndb_api_trans_abort_count_replica	0
Ndb_api_trans_close_count_replica	0
Ndb_api_pk_op_count_replica	0
Ndb_api_uk_op_count_replica	0
Ndb_api_table_scan_count_replica	0
Ndb_api_range_scan_count_replica	0

4728

NDB API Statistics Counters and Variables

Ndb_api_pruned_scan_count_replica	0
Ndb_api_scan_batch_count_replica	0
Ndb_api_read_row_count_replica	0
Ndb_api_trans_local_read_row_count_replica	0
Ndb_api_adaptive_send_forced_count_replica	0
Ndb_api_adaptive_send_unforced_count_replica	0
Ndb_api_adaptive_send_deferred_count_replica	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
+--+-----------+
90 rows in set (0.01 sec)

These status variables are also available from the Performance Schema session_status and
global_status tables, as shown here:

mysql> SELECT * FROM performance_schema.session_status
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%';
+--+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--+----------------+
Ndb_api_wait_exec_complete_count	617
Ndb_api_wait_scan_result_count	0
Ndb_api_wait_meta_request_count	649
Ndb_api_wait_nanos_count	335663491
Ndb_api_bytes_sent_count	65764
Ndb_api_bytes_received_count	86940
Ndb_api_trans_start_count	308
Ndb_api_trans_commit_count	308
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	308
Ndb_api_pk_op_count	311
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	0
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	0
Ndb_api_read_row_count	307
Ndb_api_trans_local_read_row_count	77
Ndb_api_adaptive_send_forced_count	3
Ndb_api_adaptive_send_unforced_count	614
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0

4729

NDB API Statistics Counters and Variables

Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_api_wait_exec_complete_count_replica	0
Ndb_api_wait_scan_result_count_replica	0
Ndb_api_wait_meta_request_count_replica	0
Ndb_api_wait_nanos_count_replica	0
Ndb_api_bytes_sent_count_replica	0
Ndb_api_bytes_received_count_replica	0
Ndb_api_trans_start_count_replica	0
Ndb_api_trans_commit_count_replica	0
Ndb_api_trans_abort_count_replica	0
Ndb_api_trans_close_count_replica	0
Ndb_api_pk_op_count_replica	0
Ndb_api_uk_op_count_replica	0
Ndb_api_table_scan_count_replica	0
Ndb_api_range_scan_count_replica	0
Ndb_api_pruned_scan_count_replica	0
Ndb_api_scan_batch_count_replica	0
Ndb_api_read_row_count_replica	0
Ndb_api_trans_local_read_row_count_replica	0
Ndb_api_adaptive_send_forced_count_replica	0
Ndb_api_adaptive_send_unforced_count_replica	0
Ndb_api_adaptive_send_deferred_count_replica	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
+--+----------------+
90 rows in set (0.01 sec)

mysql> SELECT * FROM performance_schema.global_status
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%';
+--+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--+----------------+
Ndb_api_wait_exec_complete_count	741
Ndb_api_wait_scan_result_count	0
Ndb_api_wait_meta_request_count	777
Ndb_api_wait_nanos_count	373888309

4730

NDB API Statistics Counters and Variables

Ndb_api_bytes_sent_count	78124
Ndb_api_bytes_received_count	94988
Ndb_api_trans_start_count	370
Ndb_api_trans_commit_count	370
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	370
Ndb_api_pk_op_count	373
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	0
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	0
Ndb_api_read_row_count	369
Ndb_api_trans_local_read_row_count	93
Ndb_api_adaptive_send_forced_count	3
Ndb_api_adaptive_send_unforced_count	738
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_api_wait_exec_complete_count_replica	0
Ndb_api_wait_scan_result_count_replica	0
Ndb_api_wait_meta_request_count_replica	0
Ndb_api_wait_nanos_count_replica	0
Ndb_api_bytes_sent_count_replica	0
Ndb_api_bytes_received_count_replica	0
Ndb_api_trans_start_count_replica	0
Ndb_api_trans_commit_count_replica	0
Ndb_api_trans_abort_count_replica	0
Ndb_api_trans_close_count_replica	0
Ndb_api_pk_op_count_replica	0
Ndb_api_uk_op_count_replica	0
Ndb_api_table_scan_count_replica	0
Ndb_api_range_scan_count_replica	0
Ndb_api_pruned_scan_count_replica	0
Ndb_api_scan_batch_count_replica	0
Ndb_api_read_row_count_replica	0
Ndb_api_trans_local_read_row_count_replica	0
Ndb_api_adaptive_send_forced_count_replica	0
Ndb_api_adaptive_send_unforced_count_replica	0
Ndb_api_adaptive_send_deferred_count_replica	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0

4731

NDB API Statistics Counters and Variables

Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
+--+----------------+
90 rows in set (0.01 sec)

Each Ndb object has its own counters. NDB API applications can read the values of the counters
for use in optimization or monitoring. For multithreaded clients which use more than one Ndb object
concurrently, it is also possible to obtain a summed view of counters from all Ndb objects belonging to
a given Ndb_cluster_connection.

Four sets of these counters are exposed. One set applies to the current session only; the other 3 are
global. This is in spite of the fact that their values can be obtained as either session or global status
variables in the mysql client. This means that specifying the SESSION or GLOBAL keyword with SHOW
STATUS has no effect on the values reported for NDB API statistics status variables, and the value for
each of these variables is the same whether the value is obtained from the equivalent column of the
session_status or the global_status table.

• Session counters (session specific)

Session counters relate to the Ndb objects in use by (only) the current session. Use of such objects
by other MySQL clients does not influence these counts.

In order to minimize confusion with standard MySQL session variables, we refer to the variables that
correspond to these NDB API session counters as “_session variables”, with a leading underscore.

• Replica counters (global)

This set of counters relates to the Ndb objects used by the replica SQL thread, if any. If this mysqld
does not act as a replica, or does not use NDB tables, then all of these counts are 0.

We refer to the related status variables as “_slave variables” (with a leading underscore).

• Injector counters (global)

Injector counters relate to the Ndb object used to listen to cluster events by the binary log injector
thread. Even when not writing a binary log, mysqld processes attached to an NDB Cluster continue
to listen for some events, such as schema changes.

We refer to the status variables that correspond to NDB API injector counters as “_injector
variables” (with a leading underscore).

• Server (Global) counters (global)

This set of counters relates to all Ndb objects currently used by this mysqld. This includes all
MySQL client applications, the replica SQL thread (if any), the binary log injector, and the NDB utility
thread.

We refer to the status variables that correspond to these counters as “global variables” or “mysqld-
level variables”.

4732

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

NDB API Statistics Counters and Variables

You can obtain values for a particular set of variables by additionally filtering for the substring
session, slave, or injector in the variable name (along with the common prefix Ndb_api). For
_session variables, this can be done as shown here:

mysql> SHOW STATUS LIKE 'ndb_api%session';
+--+---------+
| Variable_name | Value |
+--+---------+
Ndb_api_wait_exec_complete_count_session	2
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	1
Ndb_api_wait_nanos_count_session	8144375
Ndb_api_bytes_sent_count_session	68
Ndb_api_bytes_received_count_session	84
Ndb_api_trans_start_count_session	1
Ndb_api_trans_commit_count_session	1
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	1
Ndb_api_pk_op_count_session	1
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	1
Ndb_api_trans_local_read_row_count_session	1
+--+---------+
18 rows in set (0.50 sec)

To obtain a listing of the NDB API mysqld-level status variables, filter for variable names beginning
with ndb_api and ending in _count, like this:

mysql> SELECT * FROM performance_schema.session_status
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%count';
+------------------------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+------------------------------------+----------------+
NDB_API_WAIT_EXEC_COMPLETE_COUNT	4
NDB_API_WAIT_SCAN_RESULT_COUNT	3
NDB_API_WAIT_META_REQUEST_COUNT	28
NDB_API_WAIT_NANOS_COUNT	53756398
NDB_API_BYTES_SENT_COUNT	1060
NDB_API_BYTES_RECEIVED_COUNT	9724
NDB_API_TRANS_START_COUNT	3
NDB_API_TRANS_COMMIT_COUNT	2
NDB_API_TRANS_ABORT_COUNT	0
NDB_API_TRANS_CLOSE_COUNT	3
NDB_API_PK_OP_COUNT	2
NDB_API_UK_OP_COUNT	0
NDB_API_TABLE_SCAN_COUNT	1
NDB_API_RANGE_SCAN_COUNT	0
NDB_API_PRUNED_SCAN_COUNT	0
NDB_API_SCAN_BATCH_COUNT	0
NDB_API_READ_ROW_COUNT	2
NDB_API_TRANS_LOCAL_READ_ROW_COUNT	2
NDB_API_EVENT_DATA_COUNT	0
NDB_API_EVENT_NONDATA_COUNT	0
NDB_API_EVENT_BYTES_COUNT	0
+------------------------------------+----------------+
21 rows in set (0.09 sec)

Not all counters are reflected in all 4 sets of status variables. For the event counters
DataEventsRecvdCount, NondataEventsRecvdCount, and EventBytesRecvdCount, only
_injector and mysqld-level NDB API status variables are available:

mysql> SHOW STATUS LIKE 'ndb_api%event%';
+--------------------------------------+-------+
| Variable_name | Value |
+--------------------------------------+-------+
| Ndb_api_event_data_count_injector | 0 |
| Ndb_api_event_nondata_count_injector | 0 |

4733

NDB API Statistics Counters and Variables

Ndb_api_event_bytes_count_injector	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
+--------------------------------------+-------+
6 rows in set (0.00 sec)

_injector status variables are not implemented for any other NDB API counters, as shown here:

mysql> SHOW STATUS LIKE 'ndb_api%injector%';
+--------------------------------------+-------+
| Variable_name | Value |
+--------------------------------------+-------+
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
+--------------------------------------+-------+
3 rows in set (0.00 sec)

The names of the status variables can easily be associated with the names of the corresponding
counters. Each NDB API statistics counter is listed in the following table with a description as well as
the names of any MySQL server status variables corresponding to this counter.

Table 25.67 NDB API statistics counters

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server

WaitExecCompleteCount Number of times thread has
been blocked while waiting
for execution of an operation
to complete. Includes all
execute() calls as well
as implicit executes for blob
operations and auto-increment
not visible to clients.

• Ndb_api_wait_exec_complete_count_session

• Ndb_api_wait_exec_complete_count_slave

• [none]

• Ndb_api_wait_exec_complete_count

WaitScanResultCount Number of times thread has
been blocked while waiting for a
scan-based signal, such waiting
for additional results, or for a
scan to close.

• Ndb_api_wait_scan_result_count_session

• Ndb_api_wait_scan_result_count_slave

• [none]

• Ndb_api_wait_scan_result_count

WaitMetaRequestCount Number of times thread has
been blocked waiting for a
metadata-based signal; this can
occur when waiting for a DDL
operation or for an epoch to be
started (or ended).

• Ndb_api_wait_meta_request_count_session

• Ndb_api_wait_meta_request_count_slave

• [none]

• Ndb_api_wait_meta_request_count

WaitNanosCount Total time (in nanoseconds)
spent waiting for some type of
signal from the data nodes.

• Ndb_api_wait_nanos_count_session

• Ndb_api_wait_nanos_count_slave

• [none]

4734

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server
• Ndb_api_wait_nanos_count

BytesSentCount Amount of data (in bytes) sent to
the data nodes

• Ndb_api_bytes_sent_count_session

• Ndb_api_bytes_sent_count_slave

• [none]

• Ndb_api_bytes_sent_count

BytesRecvdCount Amount of data (in bytes)
received from the data nodes

• Ndb_api_bytes_received_count_session

• Ndb_api_bytes_received_count_slave

• [none]

• Ndb_api_bytes_received_count

TransStartCount Number of transactions started. • Ndb_api_trans_start_count_session

• Ndb_api_trans_start_count_slave

• [none]

• Ndb_api_trans_start_count

TransCommitCount Number of transactions
committed.

• Ndb_api_trans_commit_count_session

• Ndb_api_trans_commit_count_slave

• [none]

• Ndb_api_trans_commit_count

TransAbortCount Number of transactions aborted. • Ndb_api_trans_abort_count_session

• Ndb_api_trans_abort_count_slave

• [none]

• Ndb_api_trans_abort_count

TransCloseCount Number of transactions aborted.
(This value may be greater than
the sum of TransCommitCount
and TransAbortCount.)

• Ndb_api_trans_close_count_session

• Ndb_api_trans_close_count_slave

• [none]

• Ndb_api_trans_close_count

PkOpCount Number of operations based
on or using primary keys. This
count includes blob-part table
operations, implicit unlocking
operations, and auto-increment

• Ndb_api_pk_op_count_session

• Ndb_api_pk_op_count_slave

• [none]

4735

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server
operations, as well as primary
key operations normally visible to
MySQL clients.

• Ndb_api_pk_op_count

UkOpCount Number of operations based on
or using unique keys.

• Ndb_api_uk_op_count_session

• Ndb_api_uk_op_count_slave

• [none]

• Ndb_api_uk_op_count

TableScanCount Number of table scans that
have been started. This includes
scans of internal tables.

• Ndb_api_table_scan_count_session

• Ndb_api_table_scan_count_slave

• [none]

• Ndb_api_table_scan_count

RangeScanCount Number of range scans that have
been started.

• Ndb_api_range_scan_count_session

• Ndb_api_range_scan_count_slave

• [none]

• Ndb_api_range_scan_count

PrunedScanCount Number of scans that have been
pruned to a single partition.

• Ndb_api_pruned_scan_count_session

• Ndb_api_pruned_scan_count_slave

• [none]

• Ndb_api_pruned_scan_count

ScanBatchCount Number of batches of rows
received. (A batch in this context
is a set of scan results from a
single fragment.)

• Ndb_api_scan_batch_count_session

• Ndb_api_scan_batch_count_slave

• [none]

• Ndb_api_scan_batch_count

ReadRowCount Total number of rows that have
been read. Includes rows read
using primary key, unique key,
and scan operations.

• Ndb_api_read_row_count_session

• Ndb_api_read_row_count_slave

• [none]

• Ndb_api_read_row_count

TransLocalReadRowCount Number of rows read from the
data same node on which the
transaction was being run.

• Ndb_api_trans_local_read_row_count_session

• Ndb_api_trans_local_read_row_count_slave

4736

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server
• [none]

• Ndb_api_trans_local_read_row_count

DataEventsRecvdCount Number of row change events
received.

• [none]

• [none]

• Ndb_api_event_data_count_injector

• Ndb_api_event_data_count

NondataEventsRecvdCount Number of events received, other
than row change events.

• [none]

• [none]

• Ndb_api_event_nondata_count_injector

• Ndb_api_event_nondata_count

EventBytesRecvdCount Number of bytes of events
received.

• [none]

• [none]

• Ndb_api_event_bytes_count_injector

• Ndb_api_event_bytes_count

To see all counts of committed transactions—that is, all TransCommitCount counter status variables
—you can filter the results of SHOW STATUS for the substring trans_commit_count, like this:

mysql> SHOW STATUS LIKE '%trans_commit_count%';
+------------------------------------+-------+
| Variable_name | Value |
+------------------------------------+-------+
Ndb_api_trans_commit_count_session	1
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_commit_count	2
+------------------------------------+-------+
3 rows in set (0.00 sec)

From this you can determine that 1 transaction has been committed in the current mysql client
session, and 2 transactions have been committed on this mysqld since it was last restarted.

You can see how various NDB API counters are incremented by a given SQL statement by comparing
the values of the corresponding _session status variables immediately before and after performing
the statement. In this example, after getting the initial values from SHOW STATUS, we create in the
test database an NDB table, named t, that has a single column:

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+--------+
| Variable_name | Value |
+--+--------+
Ndb_api_wait_exec_complete_count_session	2
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	3

4737

NDB API Statistics Counters and Variables

Ndb_api_wait_nanos_count_session	820705
Ndb_api_bytes_sent_count_session	132
Ndb_api_bytes_received_count_session	372
Ndb_api_trans_start_count_session	1
Ndb_api_trans_commit_count_session	1
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	1
Ndb_api_pk_op_count_session	1
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	1
Ndb_api_trans_local_read_row_count_session	1
+--+--------+
18 rows in set (0.00 sec)

mysql> USE test;
Database changed
mysql> CREATE TABLE t (c INT) ENGINE NDBCLUSTER;
Query OK, 0 rows affected (0.85 sec)

Now you can execute a new SHOW STATUS statement and observe the changes, as shown here (with
the changed rows highlighted in the output):

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+-----------+
| Variable_name | Value |
+--+-----------+
Ndb_api_wait_exec_complete_count_session	8
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	17
Ndb_api_wait_nanos_count_session	706871709
Ndb_api_bytes_sent_count_session	2376
Ndb_api_bytes_received_count_session	3844
Ndb_api_trans_start_count_session	4
Ndb_api_trans_commit_count_session	4
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	4
Ndb_api_pk_op_count_session	6
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	2
Ndb_api_trans_local_read_row_count_session	1
+--+-----------+
18 rows in set (0.00 sec)

Similarly, you can see the changes in the NDB API statistics counters caused by inserting a row into t:
Insert the row, then run the same SHOW STATUS statement used in the previous example, as shown
here:

mysql> INSERT INTO t VALUES (100);
Query OK, 1 row affected (0.00 sec)

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+-----------+
| Variable_name | Value |
+--+-----------+
Ndb_api_wait_exec_complete_count_session	11
Ndb_api_wait_scan_result_count_session	6
Ndb_api_wait_meta_request_count_session	20
Ndb_api_wait_nanos_count_session	707370418
Ndb_api_bytes_sent_count_session	2724
Ndb_api_bytes_received_count_session	4116
Ndb_api_trans_start_count_session	7
Ndb_api_trans_commit_count_session	6
Ndb_api_trans_abort_count_session	0

4738

ndbinfo: The NDB Cluster Information Database

Ndb_api_trans_close_count_session	7
Ndb_api_pk_op_count_session	8
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	1
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	3
Ndb_api_trans_local_read_row_count_session	2
+--+-----------+
18 rows in set (0.00 sec)

We can make a number of observations from these results:

• Although we created t with no explicit primary key, 5 primary key operations were performed in
doing so (the difference in the “before” and “after” values of Ndb_api_pk_op_count_session, or
6 minus 1). This reflects the creation of the hidden primary key that is a feature of all tables using the
NDB storage engine.

• By comparing successive values for Ndb_api_wait_nanos_count_session, we can see that the
NDB API operations implementing the CREATE TABLE statement waited much longer (706871709
- 820705 = 706051004 nanoseconds, or approximately 0.7 second) for responses from the data
nodes than those executed by the INSERT (707370418 - 706871709 = 498709 ns or roughly .0005
second). The execution times reported for these statements in the mysql client correlate roughly
with these figures.

On platforms without sufficient (nanosecond) time resolution, small changes in the value of
the WaitNanosCount NDB API counter due to SQL statements that execute very quickly
may not always be visible in the values of Ndb_api_wait_nanos_count_session,
Ndb_api_wait_nanos_count_slave, or Ndb_api_wait_nanos_count.

• The INSERT statement incremented both the ReadRowCount and
TransLocalReadRowCount NDB API statistics counters, as reflected
by the increased values of Ndb_api_read_row_count_session and
Ndb_api_trans_local_read_row_count_session.

25.6.16 ndbinfo: The NDB Cluster Information Database

ndbinfo is a database containing information specific to NDB Cluster.

This database contains a number of tables, each providing a different sort of data about NDB Cluster
node status, resource usage, and operations. You can find more detailed information about each of
these tables in the next several sections.

ndbinfo is included with NDB Cluster support in the MySQL Server; no special compilation or
configuration steps are required; the tables are created by the MySQL Server when it connects to the
cluster. You can verify that ndbinfo support is active in a given MySQL Server instance using SHOW
PLUGINS; if ndbinfo support is enabled, you should see a row containing ndbinfo in the Name
column and ACTIVE in the Status column, as shown here (emphasized text):

mysql> SHOW PLUGINS;
+----------------------------------+--------+--------------------+---------+---------+
| Name | Status | Type | Library | License |
+----------------------------------+--------+--------------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
mysql_native_password	ACTIVE	AUTHENTICATION	NULL	GPL
sha256_password	ACTIVE	AUTHENTICATION	NULL	GPL
caching_sha2_password	ACTIVE	AUTHENTICATION	NULL	GPL
sha2_cache_cleaner	ACTIVE	AUDIT	NULL	GPL
daemon_keyring_proxy_plugin	ACTIVE	DAEMON	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
INNODB_TRX	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL

4739

ndbinfo: The NDB Cluster Information Database

INNODB_CMPMEM	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMPMEM_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP_PER_INDEX	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP_PER_INDEX_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_BUFFER_PAGE	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_BUFFER_PAGE_LRU	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_BUFFER_POOL_STATS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_TEMP_TABLE_INFO	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_METRICS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_DEFAULT_STOPWORD	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_DELETED	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_BEING_DELETED	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_CONFIG	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_INDEX_CACHE	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_INDEX_TABLE	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_TABLES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_TABLESTATS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_INDEXES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_TABLESPACES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_COLUMNS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_VIRTUAL	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CACHED_INDEXES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SESSION_TEMP_TABLESPACES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
PERFORMANCE_SCHEMA	ACTIVE	STORAGE ENGINE	NULL	GPL
TempTable	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbinfo	ACTIVE	STORAGE ENGINE	NULL	GPL
ndb_transid_mysql_connection_map	ACTIVE	INFORMATION SCHEMA	NULL	GPL
ngram	ACTIVE	FTPARSER	NULL	GPL
mysqlx_cache_cleaner	ACTIVE	AUDIT	NULL	GPL
mysqlx	ACTIVE	DAEMON	NULL	GPL
+----------------------------------+--------+--------------------+---------+---------+
47 rows in set (0.00 sec)

You can also do this by checking the output of SHOW ENGINES for a line including ndbinfo in the
Engine column and YES in the Support column, as shown here (emphasized text):

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: ndbcluster
 Support: YES
 Comment: Clustered, fault-tolerant tables
Transactions: YES
 XA: NO
 Savepoints: NO
*************************** 2. row ***************************
 Engine: CSV
 Support: YES
 Comment: CSV storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MyISAM

4740

ndbinfo: The NDB Cluster Information Database

 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 7. row ***************************
 Engine: ARCHIVE
 Support: YES
 Comment: Archive storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 8. row ***************************
 Engine: ndbinfo
 Support: YES
 Comment: NDB Cluster system information storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 9. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 10. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
10 rows in set (0.00 sec)

If ndbinfo support is enabled, then you can access ndbinfo using SQL statements in mysql or
another MySQL client. For example, you can see ndbinfo listed in the output of SHOW DATABASES,
as shown here (emphasized text):

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| ndbinfo |
| performance_schema |
| sys |
+--------------------+
5 rows in set (0.04 sec)

If the mysqld process was not started with the --ndbcluster option, ndbinfo is not available and
is not displayed by SHOW DATABASES. If mysqld was formerly connected to an NDB Cluster but the
cluster becomes unavailable (due to events such as cluster shutdown, loss of network connectivity,
and so forth), ndbinfo and its tables remain visible, but an attempt to access any tables (other than
blocks or config_params) fails with Got error 157 'Connection to NDB failed' from
NDBINFO.

With the exception of the blocks and config_params tables, what we refer to as ndbinfo “tables”
are actually views generated from internal NDB tables not normally visible to the MySQL Server. You
can make these tables visible by setting the ndbinfo_show_hidden system variable to ON (or 1), but
this is normally not necessary.

4741

ndbinfo: The NDB Cluster Information Database

All ndbinfo tables are read-only, and are generated on demand when queried. Because many of
them are generated in parallel by the data nodes while other are specific to a given SQL node, they are
not guaranteed to provide a consistent snapshot.

In addition, pushing down of joins is not supported on ndbinfo tables; so joining large ndbinfo tables
can require transfer of a large amount of data to the requesting API node, even when the query makes
use of a WHERE clause.

ndbinfo tables are not included in the query cache. (Bug #59831)

You can select the ndbinfo database with a USE statement, and then issue a SHOW TABLES
statement to obtain a list of tables, just as for any other database, like this:

mysql> USE ndbinfo;
Database changed

mysql> SHOW TABLES;
+---------------------------------+
| Tables_in_ndbinfo |
+---------------------------------+
| arbitrator_validity_detail |
| arbitrator_validity_summary |
| backup_id |
| blobs |
| blocks |
| cluster_locks |
| cluster_operations |
| cluster_transactions |
| config_nodes |
| config_params |
| config_values |
| counters |
| cpudata |
| cpudata_1sec |
| cpudata_20sec |
| cpudata_50ms |
| cpuinfo |
| cpustat |
| cpustat_1sec |
| cpustat_20sec |
| cpustat_50ms |
| dict_obj_info |
| dict_obj_tree |
| dict_obj_types |
| dictionary_columns |
| dictionary_tables |
| disk_write_speed_aggregate |
| disk_write_speed_aggregate_node |
| disk_write_speed_base |
| diskpagebuffer |
| diskstat |
| diskstats_1sec |
| error_messages |
| events |
| files |
| foreign_keys |
| hash_maps |
| hwinfo |
| index_columns |
| index_stats |
| locks_per_fragment |
| logbuffers |
| logspaces |
| membership |
| memory_per_fragment |
| memoryusage |
| nodes |
| operations_per_fragment |
| pgman_time_track_stats |
| processes |

4742

ndbinfo: The NDB Cluster Information Database

| resources |
| restart_info |
| server_locks |
| server_operations |
| server_transactions |
| table_distribution_status |
| table_fragments |
| table_info |
| table_replicas |
| tc_time_track_stats |
| threadblocks |
| threads |
| threadstat |
| transporter_details |
| transporters |
+---------------------------------+
65 rows in set (0.00 sec)

All ndbinfo tables use the NDB storage engine; however, an ndbinfo entry still appears in the output
of SHOW ENGINES and SHOW PLUGINS as described previously.

You can execute SELECT statements against these tables, just as you would normally expect:

mysql> SELECT * FROM memoryusage;
+---------+---------------------+--------+------------+------------+-------------+
| node_id | memory_type | used | used_pages | total | total_pages |
+---------+---------------------+--------+------------+------------+-------------+
5	Data memory	425984	13	2147483648	65536
5	Long message buffer	393216	1536	67108864	262144
6	Data memory	425984	13	2147483648	65536
6	Long message buffer	393216	1536	67108864	262144
7	Data memory	425984	13	2147483648	65536
7	Long message buffer	393216	1536	67108864	262144
8	Data memory	425984	13	2147483648	65536
8	Long message buffer	393216	1536	67108864	262144
+---------+---------------------+--------+------------+------------+-------------+
8 rows in set (0.09 sec)

More complex queries, such as the two following SELECT statements using the memoryusage table,
are possible:

mysql> SELECT SUM(used) as 'Data Memory Used, All Nodes'
 > FROM memoryusage
 > WHERE memory_type = 'Data memory';
+-----------------------------+
| Data Memory Used, All Nodes |
+-----------------------------+
| 6460 |
+-----------------------------+
1 row in set (0.09 sec)

mysql> SELECT SUM(used) as 'Long Message Buffer, All Nodes'
 > FROM memoryusage
 > WHERE memory_type = 'Long message buffer';
+-------------------------------------+
| Long Message Buffer Used, All Nodes |
+-------------------------------------+
| 1179648 |
+-------------------------------------+
1 row in set (0.08 sec)

ndbinfo table and column names are case-sensitive (as is the name of the ndbinfo database itself).
These identifiers are in lowercase. Trying to use the wrong lettercase results in an error, as shown in
this example:

mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
| 5 | 17707 | STARTED | 0 | 1 |

4743

ndbinfo: The NDB Cluster Information Database

6	17706	STARTED	0	1
7	17705	STARTED	0	1
8	17704	STARTED	0	1
+---------+--------+---------+-------------+-------------------+
4 rows in set (0.06 sec)

mysql> SELECT * FROM Nodes;
ERROR 1146 (42S02): Table 'ndbinfo.Nodes' doesn't exist

mysqldump ignores the ndbinfo database entirely, and excludes it from any output. This is true even
when using the --databases or --all-databases option.

NDB Cluster also maintains tables in the INFORMATION_SCHEMA information database, including the
FILES table which contains information about files used for NDB Cluster Disk Data storage, and the
ndb_transid_mysql_connection_map table, which shows the relationships between transactions,
transaction coordinators, and NDB Cluster API nodes. For more information, see the descriptions of the
tables or Section 25.6.17, “INFORMATION_SCHEMA Tables for NDB Cluster”.

25.6.16.1 The ndbinfo arbitrator_validity_detail Table

The arbitrator_validity_detail table shows the view that each data node in the cluster has of
the arbitrator. It is a subset of the membership table.

The arbitrator_validity_detail table contains the following columns:

• node_id

This node's node ID

• arbitrator

Node ID of arbitrator

• arb_ticket

Internal identifier used to track arbitration

• arb_connected

Whether this node is connected to the arbitrator; either of Yes or No

• arb_state

Arbitration state

Notes

The node ID is the same as that reported by ndb_mgm -e "SHOW".

All nodes should show the same arbitrator and arb_ticket values as well as the same
arb_state value. Possible arb_state values are ARBIT_NULL, ARBIT_INIT, ARBIT_FIND,
ARBIT_PREP1, ARBIT_PREP2, ARBIT_START, ARBIT_RUN, ARBIT_CHOOSE, ARBIT_CRASH, and
UNKNOWN.

arb_connected shows whether the current node is connected to the arbitrator.

25.6.16.2 The ndbinfo arbitrator_validity_summary Table

The arbitrator_validity_summary table provides a composite view of the arbitrator with regard
to the cluster's data nodes.

The arbitrator_validity_summary table contains the following columns:

• arbitrator

4744

ndbinfo: The NDB Cluster Information Database

Node ID of arbitrator

• arb_ticket

Internal identifier used to track arbitration

• arb_connected

Whether this arbitrator is connected to the cluster

• consensus_count

Number of data nodes that see this node as arbitrator; either of Yes or No

Notes

In normal operations, this table should have only 1 row for any appreciable length of time. If it has more
than 1 row for longer than a few moments, then either not all nodes are connected to the arbitrator, or
all nodes are connected, but do not agree on the same arbitrator.

The arbitrator column shows the arbitrator's node ID.

arb_ticket is the internal identifier used by this arbitrator.

arb_connected shows whether this node is connected to the cluster as an arbitrator.

25.6.16.3 The ndbinfo backup_id Table

This table provides a way to find the ID of the backup started most recently for this cluster.

The backup_id table contains a single column id, which corresponds to a backup ID taken using the
ndb_mgm client START BACKUP command. This table contains a single row.

Example: Assume the following sequence of START BACKUP commands issued in the NDB
management client, with no other backups taken since the cluster was first started:

ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 5: Backup 1 started from node 50
Node 5: Backup 1 started from node 50 completed
 StartGCP: 27894 StopGCP: 27897
 #Records: 2057 #LogRecords: 0
 Data: 51580 bytes Log: 0 bytes
ndb_mgm> START BACKUP 5
Waiting for completed, this may take several minutes
Node 5: Backup 5 started from node 50
Node 5: Backup 5 started from node 50 completed
 StartGCP: 27905 StopGCP: 27908
 #Records: 2057 #LogRecords: 0
 Data: 51580 bytes Log: 0 bytes
ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 5: Backup 6 started from node 50
Node 5: Backup 6 started from node 50 completed
 StartGCP: 27912 StopGCP: 27915
 #Records: 2057 #LogRecords: 0
 Data: 51580 bytes Log: 0 bytes
ndb_mgm> START BACKUP 3
Connected to Management Server at: localhost:1186
Waiting for completed, this may take several minutes
Node 5: Backup 3 started from node 50
Node 5: Backup 3 started from node 50 completed
 StartGCP: 28149 StopGCP: 28152
 #Records: 2057 #LogRecords: 0
 Data: 51580 bytes Log: 0 bytes
ndb_mgm>

4745

ndbinfo: The NDB Cluster Information Database

After this, the backup_id table contains the single row shown here, using the mysql client:

mysql> USE ndbinfo;

Database changed
mysql> SELECT * FROM backup_id;
+------+
| id |
+------+
| 3 |
+------+
1 row in set (0.00 sec)

If no backups can be found, the table contains a single row with 0 as the id value.

The backup_id table was added in NDB 8.0.24.

25.6.16.4 The ndbinfo blobs Table

This table provides about blob values stored in NDB. The blobs table has the columns listed here:

• table_id

Unique ID of the table containing the column

• database_name

Name of the database in which this table resides

• table_name

Name of the table

• column_id

The column's unique ID within the table

• column_name

Name of the column

• inline_size

Inline size of the column

• part_size

Part size of the column

• stripe_size

Stripe size of the column

• blob_table_name

Name of the blob table containing this column's blob data, if any

Rows exist in this table for those NDB table columns that store BLOB, TEXT values taking up more than
255 bytes and thus require the use of a blob table. Parts of JSON values exceeding 4000 bytes in size
are also stored in this table. For more information about how NDB Cluster stores columns of such
types, see String Type Storage Requirements.

The part and (NDB 8.0.30 and later) inline sizes of NDB blob columns can be set using CREATE
TABLE and ALTER TABLE statements containing NDB table column comments (see NDB_COLUMN

4746

ndbinfo: The NDB Cluster Information Database

Options); this can also be done in NDB API applications (see Column::setPartSize() and
setInlineSize()).

The blobs table was added in NDB 8.0.29.

25.6.16.5 The ndbinfo blocks Table

The blocks table is a static table which simply contains the names and internal IDs of all NDB kernel
blocks (see NDB Kernel Blocks). It is for use by the other ndbinfo tables (most of which are actually
views) in mapping block numbers to block names for producing human-readable output.

The blocks table contains the following columns:

• block_number

Block number

• block_name

Block name

Notes

To obtain a list of all block names, simply execute SELECT block_name FROM ndbinfo.blocks.
Although this is a static table, its content can vary between different NDB Cluster releases.

25.6.16.6 The ndbinfo cluster_locks Table

The cluster_locks table provides information about current lock requests holding and
waiting for locks on NDB tables in an NDB Cluster, and is intended as a companion table to
cluster_operations. Information obtain from the cluster_locks table may be useful in
investigating stalls and deadlocks.

The cluster_locks table contains the following columns:

• node_id

ID of reporting node

• block_instance

ID of reporting LDM instance

• tableid

ID of table containing this row

• fragmentid

ID of fragment containing locked row

• rowid

ID of locked row

• transid

Transaction ID

• mode

Lock request mode

4747

https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-setpartsize
https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-setinlinesize
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

ndbinfo: The NDB Cluster Information Database

• state

Lock state

• detail

Whether this is first holding lock in row lock queue

• op

Operation type

• duration_millis

Milliseconds spent waiting or holding lock

• lock_num

ID of lock object

• waiting_for

Waiting for lock with this ID

Notes

The table ID (tableid column) is assigned internally, and is the same as that used in other ndbinfo
tables. It is also shown in the output of ndb_show_tables.

The transaction ID (transid column) is the identifier generated by the NDB API for the transaction
requesting or holding the current lock.

The mode column shows the lock mode; this is always one of S (indicating a shared lock) or X (an
exclusive lock). If a transaction holds an exclusive lock on a given row, all other locks on that row have
the same transaction ID.

The state column shows the lock state. Its value is always one of H (holding) or W (waiting). A waiting
lock request waits for a lock held by a different transaction.

When the detail column contains a * (asterisk character), this means that this lock is the first holding
lock in the affected row's lock queue; otherwise, this column is empty. This information can be used to
help identify the unique entries in a list of lock requests.

The op column shows the type of operation requesting the lock. This is always one of the values READ,
INSERT, UPDATE, DELETE, SCAN, or REFRESH.

The duration_millis column shows the number of milliseconds for which this lock request has
been waiting or holding the lock. This is reset to 0 when a lock is granted for a waiting request.

The lock ID (lockid column) is unique to this node and block instance.

The lock state is shown in the lock_state column; if this is W, the lock is waiting to be granted, and
the waiting_for column shows the lock ID of the lock object this request is waiting for. Otherwise,
the waiting_for column is empty. waiting_for can refer only to locks on the same row, as
identified by node_id, block_instance, tableid, fragmentid, and rowid.

25.6.16.7 The ndbinfo cluster_operations Table

The cluster_operations table provides a per-operation (stateful primary key op) view of all activity
in the NDB Cluster from the point of view of the local data management (LQH) blocks (see The DBLQH
Block).

4748

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html

ndbinfo: The NDB Cluster Information Database

The cluster_operations table contains the following columns:

• node_id

Node ID of reporting LQH block

• block_instance

LQH block instance

• transid

Transaction ID

• operation_type

Operation type (see text for possible values)

• state

Operation state (see text for possible values)

• tableid

Table ID

• fragmentid

Fragment ID

• client_node_id

Client node ID

• client_block_ref

Client block reference

• tc_node_id

Transaction coordinator node ID

• tc_block_no

Transaction coordinator block number

• tc_block_instance

Transaction coordinator block instance

Notes

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API
transaction ID of an ongoing transaction.)

The operation_type column can take any one of the values READ, READ-SH, READ-EX, INSERT,
UPDATE, DELETE, WRITE, UNLOCK, REFRESH, SCAN, SCAN-SH, SCAN-EX, or <unknown>.

The state column can have any one of the values ABORT_QUEUED, ABORT_STOPPED,
COMMITTED, COMMIT_QUEUED, COMMIT_STOPPED, COPY_CLOSE_STOPPED,
COPY_FIRST_STOPPED, COPY_STOPPED, COPY_TUPKEY, IDLE, LOG_ABORT_QUEUED,
LOG_COMMIT_QUEUED, LOG_COMMIT_QUEUED_WAIT_SIGNAL, LOG_COMMIT_WRITTEN,

4749

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid

ndbinfo: The NDB Cluster Information Database

LOG_COMMIT_WRITTEN_WAIT_SIGNAL, LOG_QUEUED, PREPARED, PREPARED_RECEIVED_COMMIT,
SCAN_CHECK_STOPPED, SCAN_CLOSE_STOPPED, SCAN_FIRST_STOPPED,
SCAN_RELEASE_STOPPED, SCAN_STATE_USED, SCAN_STOPPED, SCAN_TUPKEY, STOPPED,
TC_NOT_CONNECTED, WAIT_ACC, WAIT_ACC_ABORT, WAIT_AI_AFTER_ABORT, WAIT_ATTR,
WAIT_SCAN_AI, WAIT_TUP, WAIT_TUPKEYINFO, WAIT_TUP_COMMIT, or WAIT_TUP_TO_ABORT. (If
the MySQL Server is running with ndbinfo_show_hidden enabled, you can view this list of states by
selecting from the ndb$dblqh_tcconnect_state table, which is normally hidden.)

You can obtain the name of an NDB table from its table ID by checking the output of
ndb_show_tables.

The fragid is the same as the partition number seen in the output of ndb_desc --extra-
partition-info (short form -p).

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node
(that is, an NDB API client or a MySQL Server attached to the cluster).

The block_instance and tc_block_instance column provide, respectively, the DBLQH and DBTC
block instance numbers. You can use these along with the block names to obtain information about
specific threads from the threadblocks table.

25.6.16.8 The ndbinfo cluster_transactions Table

The cluster_transactions table shows information about all ongoing transactions in an NDB
Cluster.

The cluster_transactions table contains the following columns:

• node_id

Node ID of transaction coordinator

• block_instance

TC block instance

• transid

Transaction ID

• state

Operation state (see text for possible values)

• count_operations

Number of stateful primary key operations in transaction (includes reads with locks, as well as DML
operations)

• outstanding_operations

Operations still being executed in local data management blocks

• inactive_seconds

Time spent waiting for API

• client_node_id

Client node ID

• client_block_ref

4750

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

Client block reference

Notes

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API
transaction ID of an ongoing transaction.)

block_instance refers to an instance of a kernel block. Together with the block name, this number
can be used to look up a given instance in the threadblocks table.

The state column can have any one of the values CS_ABORTING, CS_COMMITTING,
CS_COMMIT_SENT, CS_COMPLETE_SENT, CS_COMPLETING, CS_CONNECTED, CS_DISCONNECTED,
CS_FAIL_ABORTED, CS_FAIL_ABORTING, CS_FAIL_COMMITTED, CS_FAIL_COMMITTING,
CS_FAIL_COMPLETED, CS_FAIL_PREPARED, CS_PREPARE_TO_COMMIT, CS_RECEIVING,
CS_REC_COMMITTING, CS_RESTART, CS_SEND_FIRE_TRIG_REQ, CS_STARTED,
CS_START_COMMITTING, CS_START_SCAN, CS_WAIT_ABORT_CONF, CS_WAIT_COMMIT_CONF,
CS_WAIT_COMPLETE_CONF, CS_WAIT_FIRE_TRIG_REQ. (If the MySQL Server is running with
ndbinfo_show_hidden enabled, you can view this list of states by selecting from the ndb
$dbtc_apiconnect_state table, which is normally hidden.)

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node
(that is, an NDB API client or a MySQL Server attached to the cluster).

The tc_block_instance column provides the DBTC block instance number. You can use this along
with the block name to obtain information about specific threads from the threadblocks table.

25.6.16.9 The ndbinfo config_nodes Table

The config_nodes table shows nodes configured in an NDB Cluster config.ini file. For each
node, the table displays a row containing the node ID, the type of node (management node, data node,
or API node), and the name or IP address of the host on which the node is configured to run.

This table does not indicate whether a given node is actually running, or whether it is currently
connected to the cluster. Information about nodes connected to an NDB Cluster can be obtained from
the nodes and processes table.

The config_nodes table contains the following columns:

• node_id

The node's ID

• node_type

The type of node

• node_hostname

The name or IP address of the host on which the node resides

Notes

The node_id column shows the node ID used in the config.ini file for this node; if none is
specified, the node ID that would be assigned automatically to this node is displayed.

The node_type column displays one of the following three values:

• MGM: Management node.

4751

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

• NDB: Data node.

• API: API node; this includes SQL nodes.

The node_hostname column shows the node host as specified in the config.ini file. This can be
empty for an API node, if HostName has not been set in the cluster configuration file. If HostName has
not been set for a data node in the configuration file, localhost is used here. localhost is also
used if HostName has not been specified for a management node.

25.6.16.10 The ndbinfo config_params Table

The config_params table is a static table which provides the names and internal ID numbers of
and other information about NDB Cluster configuration parameters. This table can also be used in
conjunction with the config_values table for obtaining realtime information about node configuration
parameters.

The config_params table contains the following columns:

• param_number

The parameter's internal ID number

• param_name

The name of the parameter

• param_description

A brief description of the parameter

• param_type

The parameter's data type

• param_default

The parameter's default value, if any

• param_min

The parameter's maximum value, if any

• param_max

The parameter's minimum value, if any

• param_mandatory

This is 1 if the parameter is required, otherwise 0

• param_status

Currently unused

Notes

This table is read-only.

Although this is a static table, its content can vary between NDB Cluster installations, since supported
parameters can vary due to differences between software releases, cluster hardware configurations,
and other factors.

25.6.16.11 The ndbinfo config_values Table

4752

ndbinfo: The NDB Cluster Information Database

The config_values table provides information about the current state of node configuration
parameter values. Each row in the table corresponds to the current value of a parameter on a given
node.

The config_values table contains the following columns:

• node_id

ID of the node in the cluster

• config_param

The parameter's internal ID number

• config_value

Current value of the parameter

Notes

This table's config_param column and the config_params table's param_number column use
the same parameter identifiers. By joining the two tables on these columns, you can obtain detailed
information about desired node configuration parameters. The query shown here provides the current
values for all parameters on each data node in the cluster, ordered by node ID and parameter name:

SELECT v.node_id AS 'Node Id',
 p.param_name AS 'Parameter',
 v.config_value AS 'Value'
FROM config_values v
JOIN config_params p
ON v.config_param=p.param_number
WHERE p.param_name NOT LIKE '__%'
ORDER BY v.node_id, p.param_name;

Partial output from the previous query when run on a small example cluster used for simple testing:

+---------+--+----------------+
| Node Id | Parameter | Value |
+---------+--+----------------+
2	Arbitration	1
2	ArbitrationTimeout	7500
2	BackupDataBufferSize	16777216
2	BackupDataDir	/home/jon/data
2	BackupDiskWriteSpeedPct	50
2	BackupLogBufferSize	16777216

...

3	TotalSendBufferMemory	0
3	TransactionBufferMemory	1048576
3	TransactionDeadlockDetectionTimeout	1200
3	TransactionInactiveTimeout	4294967039
3	TwoPassInitialNodeRestartCopy	0
3	UndoDataBuffer	16777216
3	UndoIndexBuffer	2097152
+---------+--+----------------+
248 rows in set (0.02 sec)

The WHERE clause filters out parameters whose names begin with a double underscore (__); these
parameters are reserved for testing and other internal uses by the NDB developers, and are not
intended for use in a production NDB Cluster.

You can obtain output that is more specific, more detailed, or both by issuing the proper queries. This
example provides all types of available information about the NodeId, NoOfReplicas, HostName,
DataMemory, IndexMemory, and TotalSendBufferMemory parameters as currently set for all data
nodes in the cluster:

4753

ndbinfo: The NDB Cluster Information Database

SELECT p.param_name AS Name,
 v.node_id AS Node,
 p.param_type AS Type,
 p.param_default AS 'Default',
 p.param_min AS Minimum,
 p.param_max AS Maximum,
 CASE p.param_mandatory WHEN 1 THEN 'Y' ELSE 'N' END AS 'Required',
 v.config_value AS Current
FROM config_params p
JOIN config_values v
ON p.param_number = v.config_param
WHERE p. param_name
 IN ('NodeId', 'NoOfReplicas', 'HostName',
 'DataMemory', 'IndexMemory', 'TotalSendBufferMemory')\G

The output from this query when run on a small NDB Cluster with 2 data nodes used for simple testing
is shown here:

*************************** 1. row ***************************
 Name: NodeId
 Node: 2
 Type: unsigned
 Default:
 Minimum: 1
 Maximum: 144
Required: Y
 Current: 2
*************************** 2. row ***************************
 Name: HostName
 Node: 2
 Type: string
 Default: localhost
 Minimum:
 Maximum:
Required: N
 Current: 127.0.0.1
*************************** 3. row ***************************
 Name: TotalSendBufferMemory
 Node: 2
 Type: unsigned
 Default: 0
 Minimum: 262144
 Maximum: 4294967039
Required: N
 Current: 0
*************************** 4. row ***************************
 Name: NoOfReplicas
 Node: 2
 Type: unsigned
 Default: 2
 Minimum: 1
 Maximum: 4
Required: N
 Current: 2
*************************** 5. row ***************************
 Name: DataMemory
 Node: 2
 Type: unsigned
 Default: 102760448
 Minimum: 1048576
 Maximum: 1099511627776
Required: N
 Current: 524288000
*************************** 6. row ***************************
 Name: NodeId
 Node: 3
 Type: unsigned
 Default:
 Minimum: 1
 Maximum: 144
Required: Y
 Current: 3

4754

ndbinfo: The NDB Cluster Information Database

*************************** 7. row ***************************
 Name: HostName
 Node: 3
 Type: string
 Default: localhost
 Minimum:
 Maximum:
Required: N
 Current: 127.0.0.1
*************************** 8. row ***************************
 Name: TotalSendBufferMemory
 Node: 3
 Type: unsigned
 Default: 0
 Minimum: 262144
 Maximum: 4294967039
Required: N
 Current: 0
*************************** 9. row ***************************
 Name: NoOfReplicas
 Node: 3
 Type: unsigned
 Default: 2
 Minimum: 1
 Maximum: 4
Required: N
 Current: 2
*************************** 10. row ***************************
 Name: DataMemory
 Node: 3
 Type: unsigned
 Default: 102760448
 Minimum: 1048576
 Maximum: 1099511627776
Required: N
 Current: 524288000
10 rows in set (0.01 sec)

25.6.16.12 The ndbinfo counters Table

The counters table provides running totals of events such as reads and writes for specific kernel
blocks and data nodes. Counts are kept from the most recent node start or restart; a node start or
restart resets all counters on that node. Not all kernel blocks have all types of counters.

The counters table contains the following columns:

• node_id

The data node ID

• block_name

Name of the associated NDB kernel block (see NDB Kernel Blocks).

• block_instance

Block instance

• counter_id

The counter's internal ID number; normally an integer between 1 and 10, inclusive.

• counter_name

The name of the counter. See text for names of individual counters and the NDB kernel block with
which each counter is associated.

• val

4755

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

ndbinfo: The NDB Cluster Information Database

The counter's value

Notes

Each counter is associated with a particular NDB kernel block.

The OPERATIONS counter is associated with the DBLQH (local query handler) kernel block. A primary-
key read counts as one operation, as does a primary-key update. For reads, there is one operation in
DBLQH per operation in DBTC. For writes, there is one operation counted per fragment replica.

The ATTRINFO, TRANSACTIONS, COMMITS, READS, LOCAL_READS, SIMPLE_READS, WRITES,
LOCAL_WRITES, ABORTS, TABLE_SCANS, and RANGE_SCANS counters are associated with the DBTC
(transaction co-ordinator) kernel block.

LOCAL_WRITES and LOCAL_READS are primary-key operations using a transaction coordinator in a
node that also holds the primary fragment replica of the record.

The READS counter includes all reads. LOCAL_READS includes only those reads of the primary
fragment replica on the same node as this transaction coordinator. SIMPLE_READS includes only those
reads in which the read operation is the beginning and ending operation for a given transaction. Simple
reads do not hold locks but are part of a transaction, in that they observe uncommitted changes made
by the transaction containing them but not of any other uncommitted transactions. Such reads are
“simple” from the point of view of the TC block; since they hold no locks they are not durable, and once
DBTC has routed them to the relevant LQH block, it holds no state for them.

ATTRINFO keeps a count of the number of times an interpreted program is sent to the data node. See
NDB Protocol Messages, for more information about ATTRINFO messages in the NDB kernel.

The LOCAL_TABLE_SCANS_SENT, READS_RECEIVED, PRUNED_RANGE_SCANS_RECEIVED,
RANGE_SCANS_RECEIVED, LOCAL_READS_SENT, CONST_PRUNED_RANGE_SCANS_RECEIVED,
LOCAL_RANGE_SCANS_SENT, REMOTE_READS_SENT, REMOTE_RANGE_SCANS_SENT,
READS_NOT_FOUND, SCAN_BATCHES_RETURNED, TABLE_SCANS_RECEIVED, and
SCAN_ROWS_RETURNED counters are associated with the DBSPJ (select push-down join) kernel block.

The block_name and block_instance columns provide, respectively, the applicable NDB kernel
block name and instance number. You can use these to obtain information about specific threads from
the threadblocks table.

A number of counters provide information about transporter overload and send buffer sizing when
troubleshooting such issues. For each LQH instance, there is one instance of each counter in the
following list:

• LQHKEY_OVERLOAD: Number of primary key requests rejected at the LQH block instance due to
transporter overload

• LQHKEY_OVERLOAD_TC: Count of instances of LQHKEY_OVERLOAD where the TC node transporter
was overloaded

• LQHKEY_OVERLOAD_READER: Count of instances of LQHKEY_OVERLOAD where the API reader
(reads only) node was overloaded.

• LQHKEY_OVERLOAD_NODE_PEER: Count of instances of LQHKEY_OVERLOAD where the next backup
data node (writes only) was overloaded

• LQHKEY_OVERLOAD_SUBSCRIBER: Count of instances of LQHKEY_OVERLOAD where a event
subscriber (writes only) was overloaded.

• LQHSCAN_SLOWDOWNS: Count of instances where a fragment scan batch size was reduced due to
scanning API transporter overload.

4756

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-messages.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

ndbinfo: The NDB Cluster Information Database

25.6.16.13 The ndbinfo cpudata Table

The cpudata table provides data about CPU usage during the last second.

The cpustat table contains the following columns:

• node_id

Node ID

• cpu_no

CPU ID

• cpu_online

1 if the CPU is currently online, otherwise 0

• cpu_userspace_time

CPU time spent in userspace

• cpu_idle_time

CPU time spent idle

• cpu_system_time

CPU time spent in system time

• cpu_interrupt_time

CPU time spent handling interrupts (hardware and software)

• cpu_exec_vm_time

CPU time spent in virtual machine execution

Notes

The cpudata table is available only on Linux and Solaris operating systems.

This table was added in NDB 8.0.23.

25.6.16.14 The ndbinfo cpudata_1sec Table

The cpudata_1sec table provides data about CPU usage per second over the last 20 seconds.

The cpustat table contains the following columns:

• node_id

Node ID

• measurement_id

Measurement sequence ID; later measurements have lower IDs

• cpu_no

CPU ID

• cpu_online

4757

ndbinfo: The NDB Cluster Information Database

1 if the CPU is currently online, otherwise 0

• cpu_userspace_time

CPU time spent in userspace

• cpu_idle_time

CPU time spent idle

• cpu_system_time

CPU time spent in system time

• cpu_interrupt_time

CPU time spent handling interrupts (hardware and software)

• cpu_exec_vm_time

CPU time spent in virtual machine execution

• elapsed_time

Time in microseconds used for this measurement

Notes

The cpudata_1sec table is available only on Linux and Solaris operating systems.

This table was added in NDB 8.0.23.

25.6.16.15 The ndbinfo cpudata_20sec Table

The cpudata_20sec table provides data about CPU usage per 20-second interval over the last 400
seconds.

The cpustat table contains the following columns:

• node_id

Node ID

• measurement_id

Measurement sequence ID; later measurements have lower IDs

• cpu_no

CPU ID

• cpu_online

1 if the CPU is currently online, otherwise 0

• cpu_userspace_time

CPU time spent in userspace

• cpu_idle_time

CPU time spent idle

4758

ndbinfo: The NDB Cluster Information Database

• cpu_system_time

CPU time spent in system time

• cpu_interrupt_time

CPU time spent handling interrupts (hardware and software)

• cpu_exec_vm_time

CPU time spent in virtual machine execution

• elapsed_time

Time in microseconds used for this measurement

Notes

The cpudata_20sec table is available only on Linux and Solaris operating systems.

This table was added in NDB 8.0.23.

25.6.16.16 The ndbinfo cpudata_50ms Table

The cpudata_50ms table provides data about CPU usage per 50-millisecond interval over the last
second.

The cpustat table contains the following columns:

• node_id

Node ID

• measurement_id

Measurement sequence ID; later measurements have lower IDs

• cpu_no

CPU ID

• cpu_online

1 if the CPU is currently online, otherwise 0

• cpu_userspace_time

CPU time spent in userspace

• cpu_idle_time

CPU time spent idle

• cpu_system_time

CPU time spent in system time

• cpu_interrupt_time

CPU time spent handling interrupts (hardware and software)

• cpu_exec_vm_time

CPU time spent in virtual machine execution

4759

ndbinfo: The NDB Cluster Information Database

• elapsed_time

Time in microseconds used for this measurement

Notes

The cpudata_50ms table is available only on Linux and Solaris operating systems.

This table was added in NDB 8.0.23.

25.6.16.17 The ndbinfo cpuinfo Table

The cpuinfo table provides information about the CPU on which a given data node executes.

The cpuinfo table contains the following columns:

• node_id

Node ID

• cpu_no

CPU ID

• cpu_online

1 if the CPU is online, otherwise 0

• core_id

CPU core ID

• socket_id

CPU socket ID

Notes

The cpuinfo table is available on all operating systems supported by NDB, with the exception of
MacOS and FreeBSD.

This table was added in NDB 8.0.23.

25.6.16.18 The ndbinfo cpustat Table

The cpustat table provides per-thread CPU statistics gathered each second, for each thread running
in the NDB kernel.

The cpustat table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• OS_user

OS user time

• OS_system

4760

ndbinfo: The NDB Cluster Information Database

OS system time

• OS_idle

OS idle time

• thread_exec

Thread execution time

• thread_sleeping

Thread sleep time

• thread_spinning

Thread spin time

• thread_send

Thread send time

• thread_buffer_full

Thread buffer full time

• elapsed_time

Elapsed time

25.6.16.19 The ndbinfo cpustat_50ms Table

The cpustat_50ms table provides raw, per-thread CPU data obtained each 50 milliseconds for each
thread running in the NDB kernel.

Like cpustat_1sec and cpustat_20sec, this table shows 20 measurement sets per thread, each
referencing a period of the named duration. Thus, cpsustat_50ms provides 1 second of history.

The cpustat_50ms table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• OS_user_time

OS user time

• OS_system_time

OS system time

• OS_idle_time

OS idle time

• exec_time

Thread execution time

4761

ndbinfo: The NDB Cluster Information Database

• sleep_time

Thread sleep time

• spin_time

Thread spin time

• send_time

Thread send time

• buffer_full_time

Thread buffer full time

• elapsed_time

Elapsed time

25.6.16.20 The ndbinfo cpustat_1sec Table

The cpustat-1sec table provides raw, per-thread CPU data obtained each second for each thread
running in the NDB kernel.

Like cpustat_50ms and cpustat_20sec, this table shows 20 measurement sets per thread, each
referencing a period of the named duration. Thus, cpsustat_1sec provides 20 seconds of history.

The cpustat_1sec table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• OS_user_time

OS user time

• OS_system_time

OS system time

• OS_idle_time

OS idle time

• exec_time

Thread execution time

• sleep_time

Thread sleep time

• spin_time

Thread spin time

• send_time

4762

ndbinfo: The NDB Cluster Information Database

Thread send time

• buffer_full_time

Thread buffer full time

• elapsed_time

Elapsed time

25.6.16.21 The ndbinfo cpustat_20sec Table

The cpustat_20sec table provides raw, per-thread CPU data obtained each 20 seconds, for each
thread running in the NDB kernel.

Like cpustat_50ms and cpustat_1sec, this table shows 20 measurement sets per thread, each
referencing a period of the named duration. Thus, cpsustat_20sec provides 400 seconds of history.

The cpustat_20sec table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• OS_user_time

OS user time

• OS_system_time

OS system time

• OS_idle_time

OS idle time

• exec_time

Thread execution time

• sleep_time

Thread sleep time

• spin_time

Thread spin time

• send_time

Thread send time

• buffer_full_time

Thread buffer full time

• elapsed_time

Elapsed time

4763

ndbinfo: The NDB Cluster Information Database

25.6.16.22 The ndbinfo dictionary_columns Table

The table provides NDB dictionary information about columns of NDB tables. dictionary_columns
has the columns listed here (with brief descriptions):

• table_id

ID of the table containing the column

• column_id

The column's unique ID

• name

Name of the column

• column_type

Data type of the column from the NDB API; see Column::Type, for possible values

• default_value

The column's default value, if any

• nullable

Either of NULL or NOT NULL

• array_type

The column's internal attribute storage format; one of FIXED, SHORT_VAR, or MEDIUM_VAR; for more
information, see Column::ArrayType, in the NDB API documentation

• storage_type

Type of storage used by the table; either of MEMORY or DISK

• primary_key

1 if this is a primary key column, otherwise 0

• partition_key

1 if this is a partitioning key column, otherwise 0

• dynamic

1 if the column is dynamic, otherwise 0

• auto_inc

1 if this is an AUTO_INCREMENT column, otherwise 0

You can obtain information about all of the columns in a given table by joining dictionary_columns
with the dictionary_tables table, like this:

SELECT dc.*
 FROM dictionary_columns dc
JOIN dictionary_tables dt
 ON dc.table_id=dt.table_id
WHERE dt.table_name='t1'
 AND dt.database_name='mydb';

The dictionary_columns table was added in NDB 8.0.29.

4764

https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-type
https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-arraytype

ndbinfo: The NDB Cluster Information Database

Note

Blob columns are not shown in this table. This is a known issue.

25.6.16.23 The ndbinfo dictionary_tables Table

This table provides NDB dictionary information for NDB tables. dictionary_tables contains the
columns listed here:

• table_id

The table' unique ID

• database_name

Name of the database containing the table

• table_name

Name of the table

• status

The table status; one of New, Changed, Retrieved, Invalid, or Altered. (See Object::Status,
for more information about object status values.)

• attributes

Number of table attributes

• primary_key_cols

Number of columns in the table's primary key

• primary_key

A comma-separated list of the columns in the table's primary key

• storage

Type of storage used by the table; one of memory, disk, or default

• logging

Whether logging is enabled for this table

• dynamic

1 if the table is dynamic, otherwise 0; the table is considered dynamic if table-
>getForceVarPart() is true, or if at least one table column is dynamic

• read_backup

1 if read from any replica (READ_BACKUP option is enabled for this table, otherwise 0; see
Section 15.1.20.12, “Setting NDB Comment Options”)

• fully_replicated

1 if FULLY_REPLICATED is enabled for this table (each data node in the cluster has a complete copy
of the table), 0 if not; see Section 15.1.20.12, “Setting NDB Comment Options”

• checksum

4765

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-status
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getforcevarpart

ndbinfo: The NDB Cluster Information Database

If this table uses a checksum, the value in this column is 1; if not, it is 0

• row_size

The amount of data, in bytes that can be stored in one row, not including any blob data stored
separately in blob tables; see Table::getRowSizeInBytes(), in the API documentation, for more
information

• min_rows

Minimum number of rows, as used for calculating partitions; see Table::getMinRows(), in the API
documentation, for more information

• max_rows

Maximum number of rows, as used for calculating partitions; see Table::getMaxRows(), in the API
documentation, for more information

• tablespace

ID of the tablespace to which the table belongs, if any; this is 0, if the table does not use data on disk

• fragment_type

The table's fragment type; one of Single, AllSmall, AllMedium, AllLarge, DistrKeyHash,
DistrKeyLin, UserDefined, unused, or HashMapPartition; for more information, see
Object::FragmentType, in the NDB API documentation

• hash_map

The hash map used by the table

• fragments

Number of table fragments

• partitions

Number of partitions used by the table

• partition_balance

Type of partition balance used, if any; one of FOR_RP_BY_NODE, FOR_RA_BY_NODE,
FOR_RP_BY_LDM, FOR_RA_BY_LDM, FOR_RA_BY_LDM_X_2, FOR_RA_BY_LDM_X_3, or
FOR_RA_BY_LDM_X_4; see Section 15.1.20.12, “Setting NDB Comment Options”

• contains_GCI

1 if the table includes a global checkpoint index, otherwise 0

• single_user_mode

Type of access allowed to the table when single user mode is in effect; one of locked,
read_only, or read_write; these are equivalent to the values SingleUserModeLocked,
SingleUserModeReadOnly, and SingleUserModeReadWrite, respectively, of the
Table::SingleUserMode type in the NDB API

• force_var_part

This is 1 if table->getForceVarPart() is true for this table, and 0 if it is not

• GCI_bits

4766

https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getrowsizeinbytes
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getminrows
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getmaxrows
https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-fragmenttype
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-singleusermode
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getforcevarpart

ndbinfo: The NDB Cluster Information Database

Used in testing

• author_bits

Used in testing

The dictionary_tables table was added in NDB 8.0.29.

25.6.16.24 The ndbinfo dict_obj_info Table

The dict_obj_info table provides information about NDB data dictionary (DICT) objects such
as tables and indexes. (The dict_obj_types table can be queried for a list of all the types.) This
information includes the object's type, state, parent object (if any), and fully qualified name.

The dict_obj_info table contains the following columns:

• type

Type of DICT object; join on dict_obj_types to obtain the name

• id

Object identifier; for Disk Data undo log files and data files, this is the same as the value shown in
the LOGFILE_GROUP_NUMBER column of the Information Schema FILES table; for undo log files,
it also the same as the value shown for the log_id column in the ndbinfo logbuffers and
logspaces tables

• version

Object version

• state

Object state; see Object::State for values and descriptions.

• parent_obj_type

Parent object's type (a dict_obj_types type ID); 0 indicates that the object has no parent

• parent_obj_id

Parent object ID (such as a base table); 0 indicates that the object has no parent

• fq_name

Fully qualified object name; for a table, this has the form database_name/def/table_name,
for a primary key, the form is sys/def/table_id/PRIMARY, and for a unique key it is sys/
def/table_id/uk_name$unique

25.6.16.25 The ndbinfo dict_obj_tree Table

The dict_obj_tree table provides a tree-based view of table information from the dict_obj_info
table. This is intended primarily for use in testing, but can be useful in visualizing hierarchies of NDB
database objects.

The dict_obj_tree table contains the following columns:

• type

Type of DICT object; join on dict_obj_types to obtain the name of the object type

• id

4767

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-state
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

ndbinfo: The NDB Cluster Information Database

Object identifier; same as the id column in dict_obj_info

For Disk Data undo log files and data files, this is the same as the value shown in the
LOGFILE_GROUP_NUMBER column of the Information Schema FILES table; for undo log files, it also
the same as the value shown for the log_id column in the ndbinfo logbuffers and logspaces
tables

• name

The fully qualified name of the object; the same as the fq_name column in dict_obj_info

For a table, this is database_name/def/table_name (the same as its parent_name); for an
index of any type, this takes the form NDB$INDEX_index_id_CUSTOM

• parent_type

The DICT object type of this object's parent object; join on dict_obj_types to obtain the name of
the object type

• parent_id

Identifier for this object's parent object; the same as the dict_obj_info table's id column

• parent_name

Fully qualified name of this object's parent object; the same as the dict_obj_info table's
fq_name column

For a table, this has the form database_name/def/table_name. For an index, the name is sys/
def/table_id/index_name. For a primary key, it is sys/def/table_id/PRIMARY, and for a
unique key it is sys/def/table_id/uk_name$unique

• root_type

The DICT object type of the root object; join on dict_obj_types to obtain the name of the object
type

• root_id

Identifier for the root object; the same as the dict_obj_info table's id column

• root_name

Fully qualified name of the root object; the same as the dict_obj_info table's fq_name column

• level

Level of the object in the hierarchy

• path

Complete path to the object in the NDB object hierarchy; objects are separated by a right arrow
(represented as ->), starting with the root object on the left

• indented_name

The name prefixed with a right arrow (represented as ->) with a number of spaces preceding it that
correspond to the object's depth in the hierarchy

The path column is useful for obtaining a complete path to a given NDB database object in a single
line, whereas the indented_name column can be used to obtain a tree-like layout of complete
hierarchy information for a desired object.

4768

ndbinfo: The NDB Cluster Information Database

Example: Assuming the existence of a test database and no existing table named t1 in this
database, execute the following SQL statement:

CREATE TABLE test.t1 (
 a INT PRIMARY KEY,
 b INT,
 UNIQUE KEY(b)
) ENGINE = NDB;

You can obtain the path to the table just created using the query shown here:

mysql> SELECT path FROM ndbinfo.dict_obj_tree
 -> WHERE name LIKE 'test%t1';
+-------------+
| path |
+-------------+
| test/def/t1 |
+-------------+
1 row in set (0.14 sec)

You can see the paths to all dependent objects of this table using the path to the table as the root
name in a query like this one:

mysql> SELECT path FROM ndbinfo.dict_obj_tree
 -> WHERE root_name = 'test/def/t1';
+--+
| path |
+--+
| test/def/t1 |
| test/def/t1 -> sys/def/13/b |
| test/def/t1 -> sys/def/13/b -> NDB$INDEX_15_CUSTOM |
| test/def/t1 -> sys/def/13/b$unique |
| test/def/t1 -> sys/def/13/b$unique -> NDB$INDEX_16_UI |
| test/def/t1 -> sys/def/13/PRIMARY |
| test/def/t1 -> sys/def/13/PRIMARY -> NDB$INDEX_14_CUSTOM |
+--+
7 rows in set (0.16 sec)

To obtain a hierarchical view of the t1 table with all its dependent objects, execute a query similar to
this one which selects the indented name of each object having test/def/t1 as the name of its root
object:

mysql> SELECT indented_name FROM ndbinfo.dict_obj_tree
 -> WHERE root_name = 'test/def/t1';
+----------------------------+
| indented_name |
+----------------------------+
| test/def/t1 |
| -> sys/def/13/b |
| -> NDB$INDEX_15_CUSTOM |
| -> sys/def/13/b$unique |
| -> NDB$INDEX_16_UI |
| -> sys/def/13/PRIMARY |
| -> NDB$INDEX_14_CUSTOM |
+----------------------------+
7 rows in set (0.15 sec)

When working with Disk Data tables, note that, in this context, a tablespace or log file group is
considered a root object. This means that you must know the name of any tablespace or log file group
associated with a given table, or obtain this information from SHOW CREATE TABLE and then querying
INFORMATION_SCHEMA.FILES, or similar means as shown here:

mysql> SHOW CREATE TABLE test.dt_1\G
*************************** 1. row ***************************
 Table: dt_1
Create Table: CREATE TABLE `dt_1` (
 `member_id` int unsigned NOT NULL AUTO_INCREMENT,
 `last_name` varchar(50) NOT NULL,
 `first_name` varchar(50) NOT NULL,

4769

ndbinfo: The NDB Cluster Information Database

 `dob` date NOT NULL,
 `joined` date NOT NULL,
 PRIMARY KEY (`member_id`),
 KEY `last_name` (`last_name`,`first_name`)
) /*!50100 TABLESPACE `ts_1` STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

mysql> SELECT DISTINCT TABLESPACE_NAME, LOGFILE_GROUP_NAME
 -> FROM INFORMATION_SCHEMA.FILES WHERE TABLESPACE_NAME='ts_1';
+-----------------+--------------------+
| TABLESPACE_NAME | LOGFILE_GROUP_NAME |
+-----------------+--------------------+
| ts_1 | lg_1 |
+-----------------+--------------------+
1 row in set (0.00 sec)

Now you can obtain hierarchical information for the table, tablespace, and log file group like this:

mysql> SELECT indented_name FROM ndbinfo.dict_obj_tree
 -> WHERE root_name = 'test/def/dt_1';
+----------------------------+
| indented_name |
+----------------------------+
| test/def/dt_1 |
| -> sys/def/23/last_name |
| -> NDB$INDEX_25_CUSTOM |
| -> sys/def/23/PRIMARY |
| -> NDB$INDEX_24_CUSTOM |
+----------------------------+
5 rows in set (0.15 sec)

mysql> SELECT indented_name FROM ndbinfo.dict_obj_tree
 -> WHERE root_name = 'ts_1';
+-----------------+
| indented_name |
+-----------------+
| ts_1 |
| -> data_1.dat |
| -> data_2.dat |
+-----------------+
3 rows in set (0.17 sec)

mysql> SELECT indented_name FROM ndbinfo.dict_obj_tree
 -> WHERE root_name LIKE 'lg_1';
+-----------------+
| indented_name |
+-----------------+
| lg_1 |
| -> undo_1.log |
| -> undo_2.log |
+-----------------+
3 rows in set (0.16 sec)

The dict_obj_tree table was added in NDB 8.0.24.

25.6.16.26 The ndbinfo dict_obj_types Table

The dict_obj_types table is a static table listing possible dictionary object types used in the NDB
kernel. These are the same types defined by Object::Type in the NDB API.

The dict_obj_types table contains the following columns:

• type_id

The type ID for this type

• type_name

The name of this type

4770

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-type

ndbinfo: The NDB Cluster Information Database

25.6.16.27 The ndbinfo disk_write_speed_base Table

The disk_write_speed_base table provides base information about the speed of disk writes during
LCP, backup, and restore operations.

The disk_write_speed_base table contains the following columns:

• node_id

Node ID of this node

• thr_no

Thread ID of this LDM thread

• millis_ago

Milliseconds since this reporting period ended

• millis_passed

Milliseconds elapsed in this reporting period

• backup_lcp_bytes_written

Number of bytes written to disk by local checkpoints and backup processes during this period

• redo_bytes_written

Number of bytes written to REDO log during this period

• target_disk_write_speed

Actual speed of disk writes per LDM thread (base data)

25.6.16.28 The ndbinfo disk_write_speed_aggregate Table

The disk_write_speed_aggregate table provides aggregated information about the speed of disk
writes during LCP, backup, and restore operations.

The disk_write_speed_aggregate table contains the following columns:

• node_id

Node ID of this node

• thr_no

Thread ID of this LDM thread

• backup_lcp_speed_last_sec

Number of bytes written to disk by backup and LCP processes in the last second

• redo_speed_last_sec

Number of bytes written to REDO log in the last second

• backup_lcp_speed_last_10sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 10
seconds

• redo_speed_last_10sec

4771

ndbinfo: The NDB Cluster Information Database

Number of bytes written to REDO log per second, averaged over the last 10 seconds

• std_dev_backup_lcp_speed_last_10sec

Standard deviation in number of bytes written to disk by backup and LCP processes per second,
averaged over the last 10 seconds

• std_dev_redo_speed_last_10sec

Standard deviation in number of bytes written to REDO log per second, averaged over the last 10
seconds

• backup_lcp_speed_last_60sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 60
seconds

• redo_speed_last_60sec

Number of bytes written to REDO log per second, averaged over the last 10 seconds

• std_dev_backup_lcp_speed_last_60sec

Standard deviation in number of bytes written to disk by backup and LCP processes per second,
averaged over the last 60 seconds

• std_dev_redo_speed_last_60sec

Standard deviation in number of bytes written to REDO log per second, averaged over the last 60
seconds

• slowdowns_due_to_io_lag

Number of seconds since last node start that disk writes were slowed due to REDO log I/O lag

• slowdowns_due_to_high_cpu

Number of seconds since last node start that disk writes were slowed due to high CPU usage

• disk_write_speed_set_to_min

Number of seconds since last node start that disk write speed was set to minimum

• current_target_disk_write_speed

Actual speed of disk writes per LDM thread (aggregated)

25.6.16.29 The ndbinfo disk_write_speed_aggregate_node Table

The disk_write_speed_aggregate_node table provides aggregated information per node about
the speed of disk writes during LCP, backup, and restore operations.

The disk_write_speed_aggregate_node table contains the following columns:

• node_id

Node ID of this node

• backup_lcp_speed_last_sec

Number of bytes written to disk by backup and LCP processes in the last second

• redo_speed_last_sec

4772

ndbinfo: The NDB Cluster Information Database

Number of bytes written to the redo log in the last second

• backup_lcp_speed_last_10sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 10
seconds

• redo_speed_last_10sec

Number of bytes written to the redo log each second, averaged over the last 10 seconds

• backup_lcp_speed_last_60sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 60
seconds

• redo_speed_last_60sec

Number of bytes written to the redo log each second, averaged over the last 60 seconds

25.6.16.30 The ndbinfo diskpagebuffer Table

The diskpagebuffer table provides statistics about disk page buffer usage by NDB Cluster Disk
Data tables.

The diskpagebuffer table contains the following columns:

• node_id

The data node ID

• block_instance

Block instance

• pages_written

Number of pages written to disk.

• pages_written_lcp

Number of pages written by local checkpoints.

• pages_read

Number of pages read from disk

• log_waits

Number of page writes waiting for log to be written to disk

• page_requests_direct_return

Number of requests for pages that were available in buffer

• page_requests_wait_queue

Number of requests that had to wait for pages to become available in buffer

• page_requests_wait_io

Number of requests that had to be read from pages on disk (pages were unavailable in buffer)

4773

ndbinfo: The NDB Cluster Information Database

Notes

You can use this table with NDB Cluster Disk Data tables to determine whether
DiskPageBufferMemory is sufficiently large to allow data to be read from the buffer rather from disk;
minimizing disk seeks can help improve performance of such tables.

You can determine the proportion of reads from DiskPageBufferMemory to the total number of
reads using a query such as this one, which obtains this ratio as a percentage:

SELECT
 node_id,
 100 * page_requests_direct_return /
 (page_requests_direct_return + page_requests_wait_io)
 AS hit_ratio
FROM ndbinfo.diskpagebuffer;

The result from this query should be similar to what is shown here, with one row for each data node in
the cluster (in this example, the cluster has 4 data nodes):

+---------+-----------+
| node_id | hit_ratio |
+---------+-----------+
5	97.6744
6	97.6879
7	98.1776
8	98.1343
+---------+-----------+
4 rows in set (0.00 sec)

hit_ratio values approaching 100% indicate that only a very small number of reads are being made
from disk rather than from the buffer, which means that Disk Data read performance is approaching
an optimum level. If any of these values are less than 95%, this is a strong indicator that the setting for
DiskPageBufferMemory needs to be increased in the config.ini file.

Note

A change in DiskPageBufferMemory requires a rolling restart of all of the
cluster's data nodes before it takes effect.

block_instance refers to an instance of a kernel block. Together with the block name, this number
can be used to look up a given instance in the threadblocks table. Using this information, you can
obtain information about disk page buffer metrics relating to individual threads; an example query using
LIMIT 1 to limit the output to a single thread is shown here:

mysql> SELECT
 > node_id, thr_no, block_name, thread_name, pages_written,
 > pages_written_lcp, pages_read, log_waits,
 > page_requests_direct_return, page_requests_wait_queue,
 > page_requests_wait_io
 > FROM ndbinfo.diskpagebuffer
 > INNER JOIN ndbinfo.threadblocks USING (node_id, block_instance)
 > INNER JOIN ndbinfo.threads USING (node_id, thr_no)
 > WHERE block_name = 'PGMAN' LIMIT 1\G
*************************** 1. row ***************************
 node_id: 1
 thr_no: 1
 block_name: PGMAN
 thread_name: rep
 pages_written: 0
 pages_written_lcp: 0
 pages_read: 1
 log_waits: 0
page_requests_direct_return: 4
 page_requests_wait_queue: 0
 page_requests_wait_io: 1
1 row in set (0.01 sec)

25.6.16.31 The ndbinfo diskstat Table

4774

ndbinfo: The NDB Cluster Information Database

The diskstat table provides information about writes to Disk Data tablespaces during the past 1
second.

The diskstat table contains the following columns:

• node_id

Node ID of this node

• block_instance

ID of reporting instance of PGMAN

• pages_made_dirty

Number of pages made dirty during the past second

• reads_issued

Reads issued during the past second

• reads_completed

Reads completed during the past second

• writes_issued

Writes issued during the past second

• writes_completed

Writes completed during the past second

• log_writes_issued

Number of times a page write has required a log write during the past second

• log_writes_completed

Number of log writes completed during the last second

• get_page_calls_issued

Number of get_page() calls issued during the past second

• get_page_reqs_issued

Number of times that a get_page() call has resulted in a wait for I/O or completion of I/O already
begun during the past second

• get_page_reqs_completed

Number of get_page() calls waiting for I/O or I/O completion that have completed during the past
second

Notes

Each row in this table corresponds to an instance of PGMAN; there is one such instance per LDM thread
plus an additional instance for each data node.

25.6.16.32 The ndbinfo diskstats_1sec Table

The diskstats_1sec table provides information about writes to Disk Data tablespaces over the past
20 seconds.

4775

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html

ndbinfo: The NDB Cluster Information Database

The diskstat table contains the following columns:

• node_id

Node ID of this node

• block_instance

ID of reporting instance of PGMAN

• pages_made_dirty

Pages made dirty during the designated 1-second interval

• reads_issued

Reads issued during the designated 1-second interval

• reads_completed

Reads completed during the designated 1-second interval

• writes_issued

Writes issued during the designated 1-second interval

• writes_completed

Writes completed during the designated 1-second interval

• log_writes_issued

Number of times a page write has required a log write during the designated 1-second interval

• log_writes_completed

Number of log writes completed during the designated 1-second interval

• get_page_calls_issued

Number of get_page() calls issued during the designated 1-second interval

• get_page_reqs_issued

Number of times that a get_page() call has resulted in a wait for I/O or completion of I/O already
begun during the designated 1-second interval

• get_page_reqs_completed

Number of get_page() calls waiting for I/O or I/O completion that have completed during the
designated 1-second interval

• seconds_ago

Number of 1-second intervals in the past of the interval to which this row applies

Notes

Each row in this table corresponds to an instance of PGMAN during a 1-second interval occurring from
0 to 19 seconds ago; there is one such instance per LDM thread plus an additional instance for each
data node.

25.6.16.33 The ndbinfo error_messages Table

4776

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html

ndbinfo: The NDB Cluster Information Database

The error_messages table provides information about

The error_messages table contains the following columns:

• error_code

Numeric error code

• error_description

Description of error

• error_status

Error status code

• error_classification

Error classification code

Notes

error_code is a numeric NDB error code. This is the same error code that can be supplied to
ndb_perror.

error_description provides a basic description of the condition causing the error.

The error_status column provides status information relating to the error. Possible values for this
column are listed here:

• No error

• Illegal connect string

• Illegal server handle

• Illegal reply from server

• Illegal number of nodes

• Illegal node status

• Out of memory

• Management server not connected

• Could not connect to socket

• Start failed

• Stop failed

• Restart failed

• Could not start backup

• Could not abort backup

• Could not enter single user mode

• Could not exit single user mode

• Failed to complete configuration change

• Failed to get configuration

4777

ndbinfo: The NDB Cluster Information Database

• Usage error

• Success

• Permanent error

• Temporary error

• Unknown result

• Temporary error, restart node

• Permanent error, external action needed

• Ndbd file system error, restart node initial

• Unknown

The error_classification column shows the error classification. See NDB Error Classifications, for
information about classification codes and their meanings.

25.6.16.34 The ndbinfo events Table

This table provides information about event subscriptions in NDB. The columns of the events table are
listed here, with short descriptions of each:

• event_id

The event ID

• name

The name of the event

• table_id

The ID of the table on which the event occurred

• reporting

One of updated, all, subscribe, or DDL

• columns

A comma-separated list of columns affected by the event

• table_event

One or more of INSERT, DELETE, UPDATE, SCAN, DROP, ALTER, CREATE, GCP_COMPLETE,
CLUSTER_FAILURE, STOP, NODE_FAILURE, SUBSCRIBE, UNSUBSCRIBE, and ALL (defined by
Event::TableEvent in the NDB API)

The events table was added in NDB 8.0.29.

25.6.16.35 The ndbinfo files Table

The files tables provides information about files and other objects used by NDB disk data tables, and
contains the columns listed here:

• id

Object ID

• type

4778

https://dev.mysql.com/doc/ndbapi/en/ndb-error-classifications.html
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent

ndbinfo: The NDB Cluster Information Database

The type of object; one of Log file group, Tablespace, Undo file, or Data file

• name

The name of the object

• parent

ID of the parent object

• parent_name

Name of the parent object

• free_extents

Number of free extents

• total_extents

Total number of extents

• extent_size

Extent size (MB)

• initial_size

Initial size (bytes)

• maximum_size

Maximum size (bytes)

• autoextend_size

Autoextend size (bytes)

For log file groups and tablespaces, parent is always 0, and the parent_name, free_extents,
total_extents, extent_size, initial_size, maximum_size, and autoentend_size
columns are all NULL.

The files table is empty if no disk data objects have been created in NDB. See Section 25.6.11.1,
“NDB Cluster Disk Data Objects”, for more information.

The files table was added in NDB 8.0.29.

See also Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”.

25.6.16.36 The ndbinfo foreign_keys Table

The foreign_keys table provides information about foreign keys on NDB tables. This table has the
following columns:

• object_id

The foreign key's object ID

• name

Name of the foreign key

• parent_table

4779

ndbinfo: The NDB Cluster Information Database

The name of the foreign key's parent table

• parent_columns

A comma-delimited list of parent columns

• child_table

The name of the child table

• child_columns

A comma-separated list of child columns

• parent_index

Name of the parent index

• child_index

Name of the child index

• on_update_action

The ON UPDATE action specified for the foreign key; one of No Action, Restrict, Cascade, Set
Null, or Set Default

• on_delete_action

The ON DELETE action specified for the foreign key; one of No Action, Restrict, Cascade, Set
Null, or Set Default

The foreign_keys table was added in NDB 8.0.29.

25.6.16.37 The ndbinfo hash_maps Table

• id

The hash map's unique ID

• version

Hash map version (integer)

• state

Hash map state; see Object::State for values and descriptions.

• fq_name

The hash map's fully qualified name

The hash_maps table is actually a view consisting of the four columns having the same names of the
dict_obj_info table, as shown here:

CREATE VIEW hash_maps AS
 SELECT id, version, state, fq_name
 FROM dict_obj_info
 WHERE type=24; # Hash map; defined in dict_obj_types

See the description of dict_obj_info for more information.

The hash_maps table was added in NDB 8.0.29.

4780

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-state

ndbinfo: The NDB Cluster Information Database

25.6.16.38 The ndbinfo hwinfo Table

The hwinfo table provides information about the hardware on which a given data node executes.

The hwinfo table contains the following columns:

• node_id

Node ID

• cpu_cnt_max

Number of processors on this host

• cpu_cnt

Number of processors available to this node

• num_cpu_cores

Number of CPU cores on this host

• num_cpu_sockets

Number of CPU sockets on this host

• HW_memory_size

Amount of memory available on this host

• model_name

CPU model name

Notes

The hwinfo table is available on all operating systems supported by NDB.

This table was added in NDB 8.0.23.

25.6.16.39 The ndbinfo index_columns Table

This table provides information about indexes on NDB tables. The columns of the index_columns
table are listed here, along with brief descriptions:

• table_id

Unique ID of the NDB table for which the index is defined

• Name of the database containing this table

varchar(64)

• table_name

Name of the table

• index_object_id

Object ID of this index

• index_name

Name of the index; if the index is not named, the name of the first column in the index is used

4781

ndbinfo: The NDB Cluster Information Database

• index_type

Type of index; normally this is 3 (unique hash index) or 6 (ordered index); the values are the same as
those in the type_id column of the dict_obj_types table

• status

One of new, changed, retrieved, invalid, or altered

• columns

A comma-delimited list of columns making up the index

The index_columns table was added in NDB 8.0.29.

25.6.16.40 The ndbinfo index_stats Table

The index_stats table provides basic information about NDB index statistics.

More complete index statistics information can be obtained using the ndb_index_stat utility.

The index_stats table contains the following columns:

• index_id

Index ID

• index_version

Index version

• sample_version

Sample version

Notes

This table was added in NDB 8.0.28.

25.6.16.41 The ndbinfo locks_per_fragment Table

The locks_per_fragment table provides information about counts of lock claim requests,
and the outcomes of these requests on a per-fragment basis, serving as a companion table to
operations_per_fragment and memory_per_fragment. This table also shows the total time
spent waiting for locks successfully and unsuccessfully since fragment or table creation, or since the
most recent restart.

The locks_per_fragment table contains the following columns:

• fq_name

Fully qualified table name

• parent_fq_name

Fully qualified name of parent object

• type

Table type; see text for possible values

• table_id

Table ID

4782

ndbinfo: The NDB Cluster Information Database

• node_id

Reporting node ID

• block_instance

LDM instance ID

• fragment_num

Fragment identifier

• ex_req

Exclusive lock requests started

• ex_imm_ok

Exclusive lock requests immediately granted

• ex_wait_ok

Exclusive lock requests granted following wait

• ex_wait_fail

Exclusive lock requests not granted

• sh_req

Shared lock requests started

• sh_imm_ok

Shared lock requests immediately granted

• sh_wait_ok

Shared lock requests granted following wait

• sh_wait_fail

Shared lock requests not granted

• wait_ok_millis

Time spent waiting for lock requests that were granted, in milliseconds

• wait_fail_millis

Time spent waiting for lock requests that failed, in milliseconds

Notes

block_instance refers to an instance of a kernel block. Together with the block name, this number
can be used to look up a given instance in the threadblocks table.

fq_name is a fully qualified database object name in database/schema/name format, such as test/
def/t1 or sys/def/10/b$unique.

parent_fq_name is the fully qualified name of this object's parent object (table).

table_id is the table's internal ID generated by NDB. This is the same internal table ID shown in other
ndbinfo tables; it is also visible in the output of ndb_show_tables.

4783

ndbinfo: The NDB Cluster Information Database

The type column shows the type of table. This is always one of System table, User table,
Unique hash index, Hash index, Unique ordered index, Ordered index, Hash index
trigger, Subscription trigger, Read only constraint, Index trigger, Reorganize
trigger, Tablespace, Log file group, Data file, Undo file, Hash map, Foreign key
definition, Foreign key parent trigger, Foreign key child trigger, or Schema
transaction.

The values shown in all of the columns ex_req, ex_req_imm_ok, ex_wait_ok, ex_wait_fail,
sh_req, sh_req_imm_ok, sh_wait_ok, and sh_wait_fail represent cumulative numbers of
requests since the table or fragment was created, or since the last restart of this node, whichever
of these occurred later. This is also true for the time values shown in the wait_ok_millis and
wait_fail_millis columns.

Every lock request is considered either to be in progress, or to have completed in some way (that is, to
have succeeded or failed). This means that the following relationships are true:

ex_req >= (ex_req_imm_ok + ex_wait_ok + ex_wait_fail)

sh_req >= (sh_req_imm_ok + sh_wait_ok + sh_wait_fail)

The number of requests currently in progress is the current number of incomplete requests, which can
be found as shown here:

[exclusive lock requests in progress] =
 ex_req - (ex_req_imm_ok + ex_wait_ok + ex_wait_fail)

[shared lock requests in progress] =
 sh_req - (sh_req_imm_ok + sh_wait_ok + sh_wait_fail)

A failed wait indicates an aborted transaction, but the abort may or may not be caused by a lock wait
timeout. You can obtain the total number of aborts while waiting for locks as shown here:

[aborts while waiting for locks] = ex_wait_fail + sh_wait_fail

25.6.16.42 The ndbinfo logbuffers Table

The logbuffer table provides information on NDB Cluster log buffer usage.

The logbuffers table contains the following columns:

• node_id

The ID of this data node.

• log_type

Type of log. One of: REDO, DD-UNDO, BACKUP-DATA, or BACKUP-LOG.

• log_id

The log ID; for Disk Data undo log files, this is the same as the value shown in the
LOGFILE_GROUP_NUMBER column of the Information Schema FILES table as well as the value
shown for the log_id column of the ndbinfo logspaces table

• log_part

The log part number

• total

Total space available for this log

• used

Space used by this log

4784

ndbinfo: The NDB Cluster Information Database

Notes

logbuffers table rows reflecting two additional log types are available when performing an NDB
backup. One of these rows has the log type BACKUP-DATA, which shows the amount of data buffer
used during backup to copy fragments to backup files. The other row has the log type BACKUP-
LOG, which displays the amount of log buffer used during the backup to record changes made after
the backup has started. One each of these log_type rows is shown in the logbuffers table for
each data node in the cluster. These rows are not present unless an NDB backup is currently being
performed.

25.6.16.43 The ndbinfo logspaces Table

This table provides information about NDB Cluster log space usage.

The logspaces table contains the following columns:

• node_id

The ID of this data node.

• log_type

Type of log; one of: REDO or DD-UNDO.

• node_id

The log ID; for Disk Data undo log files, this is the same as the value shown in the
LOGFILE_GROUP_NUMBER column of the Information Schema FILES table, as well as the value
shown for the log_id column of the ndbinfo logbuffers table

• log_part

The log part number.

• total

Total space available for this log.

• used

Space used by this log.

25.6.16.44 The ndbinfo membership Table

The membership table describes the view that each data node has of all the others in the cluster,
including node group membership, president node, arbitrator, arbitrator successor, arbitrator
connection states, and other information.

The membership table contains the following columns:

• node_id

This node's node ID

• group_id

Node group to which this node belongs

• left node

Node ID of the previous node

• right_node

4785

ndbinfo: The NDB Cluster Information Database

Node ID of the next node

• president

President's node ID

• successor

Node ID of successor to president

• succession_order

Order in which this node succeeds to presidency

• Conf_HB_order

-

• arbitrator

Node ID of arbitrator

• arb_ticket

Internal identifier used to track arbitration

• arb_state

Arbitration state

• arb_connected

Whether this node is connected to the arbitrator; either of Yes or No

• connected_rank1_arbs

Connected arbitrators of rank 1

• connected_rank2_arbs

Connected arbitrators of rank 1

Notes

The node ID and node group ID are the same as reported by ndb_mgm -e "SHOW".

left_node and right_node are defined in terms of a model that connects all data nodes in a circle,
in order of their node IDs, similar to the ordering of the numbers on a clock dial, as shown here:

Figure 25.6 Circular Arrangement of NDB Cluster Nodes

4786

ndbinfo: The NDB Cluster Information Database

In this example, we have 8 data nodes, numbered 5, 6, 7, 8, 12, 13, 14, and 15, ordered clockwise in
a circle. We determine “left” and “right” from the interior of the circle. The node to the left of node 5 is
node 15, and the node to the right of node 5 is node 6. You can see all these relationships by running
the following query and observing the output:

mysql> SELECT node_id,left_node,right_node
 -> FROM ndbinfo.membership;
+---------+-----------+------------+
| node_id | left_node | right_node |
+---------+-----------+------------+
5	15	6
6	5	7
7	6	8
8	7	12
12	8	13
13	12	14
14	13	15
15	14	5
+---------+-----------+------------+
8 rows in set (0.00 sec)

The designations “left” and “right” are used in the event log in the same way.

The president node is the node viewed by the current node as responsible for setting an arbitrator
(see NDB Cluster Start Phases). If the president fails or becomes disconnected, the current node
expects the node whose ID is shown in the successor column to become the new president. The
succession_order column shows the place in the succession queue that the current node views
itself as having.

In a normal NDB Cluster, all data nodes should see the same node as president, and the same
node (other than the president) as its successor. In addition, the current president should see itself as
1 in the order of succession, the successor node should see itself as 2, and so on.

All nodes should show the same arb_ticket values as well as the same arb_state values.
Possible arb_state values are ARBIT_NULL, ARBIT_INIT, ARBIT_FIND, ARBIT_PREP1,
ARBIT_PREP2, ARBIT_START, ARBIT_RUN, ARBIT_CHOOSE, ARBIT_CRASH, and UNKNOWN.

arb_connected shows whether this node is connected to the node shown as this node's
arbitrator.

The connected_rank1_arbs and connected_rank2_arbs columns each display a list of 0 or
more arbitrators having an ArbitrationRank equal to 1, or to 2, respectively.

Note

Both management nodes and API nodes are eligible to become arbitrators.

25.6.16.45 The ndbinfo memoryusage Table

Querying this table provides information similar to that provided by the ALL REPORT MemoryUsage
command in the ndb_mgm client, or logged by ALL DUMP 1000.

The memoryusage table contains the following columns:

• node_id

The node ID of this data node.

• memory_type

One of Data memory, Index memory, or Long message buffer.

• used

4787

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html

ndbinfo: The NDB Cluster Information Database

Number of bytes currently used for data memory or index memory by this data node.

• used_pages

Number of pages currently used for data memory or index memory by this data node; see text.

• total

Total number of bytes of data memory or index memory available for this data node; see text.

• total_pages

Total number of memory pages available for data memory or index memory on this data node; see
text.

Notes

The total column represents the total amount of memory in bytes available for the given resource
(data memory or index memory) on a particular data node. This number should be approximately equal
to the setting of the corresponding configuration parameter in the config.ini file.

Suppose that the cluster has 2 data nodes having node IDs 5 and 6, and the config.ini file contains
the following:

[ndbd default]
DataMemory = 1G
IndexMemory = 1G

Suppose also that the value of the LongMessageBuffer configuration parameter is allowed to
assume its default (64 MB).

The following query shows approximately the same values:

mysql> SELECT node_id, memory_type, total
 > FROM ndbinfo.memoryusage;
+---------+---------------------+------------+
| node_id | memory_type | total |
+---------+---------------------+------------+
5	Data memory	1073741824
5	Index memory	1074003968
5	Long message buffer	67108864
6	Data memory	1073741824
6	Index memory	1074003968
6	Long message buffer	67108864
+---------+---------------------+------------+
6 rows in set (0.00 sec)

In this case, the total column values for index memory are slightly higher than the value set of
IndexMemory due to internal rounding.

For the used_pages and total_pages columns, resources are measured in pages, which are 32K
in size for DataMemory and 8K for IndexMemory. For long message buffer memory, the page size is
256 bytes.

25.6.16.46 The ndbinfo memory_per_fragment Table

• memory_per_fragment Table: Notes

• memory_per_fragment Table: Examples

The memory_per_fragment table provides information about the usage of memory by individual
fragments. See the Notes later in this section to see how you can use this to find out how much
memory is used by NDB tables.

4788

ndbinfo: The NDB Cluster Information Database

The memory_per_fragment table contains the following columns:

• fq_name

Name of this fragment

• parent_fq_name

Name of this fragment's parent

• type

Dictionary object type (Object::Type, in the NDB API) used for this fragment; one of System
table, User table, Unique hash index, Hash index, Unique ordered index, Ordered
index, Hash index trigger, Subscription trigger, Read only constraint, Index
trigger, Reorganize trigger, Tablespace, Log file group, Data file, Undo file,
Hash map, Foreign key definition, Foreign key parent trigger, Foreign key
child trigger, or Schema transaction.

You can also obtain this list by executing TABLE ndbinfo.dict_obj_types in the mysql client.

• table_id

Table ID for this table

• node_id

Node ID for this node

• block_instance

NDB kernel block instance ID; you can use this number to obtain information about specific threads
from the threadblocks table.

• fragment_num

Fragment ID (number)

• fixed_elem_alloc_bytes

Number of bytes allocated for fixed-sized elements

• fixed_elem_free_bytes

Free bytes remaining in pages allocated to fixed-size elements

• fixed_elem_size_bytes

Length of each fixed-size element in bytes

• fixed_elem_count

Number of fixed-size elements

• fixed_elem_free_count

Number of free rows for fixed-size elements

• var_elem_alloc_bytes

Number of bytes allocated for variable-size elements

• var_elem_free_bytes

4789

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-type

ndbinfo: The NDB Cluster Information Database

Free bytes remaining in pages allocated to variable-size elements

• var_elem_count

Number of variable-size elements

• hash_index_alloc_bytes

Number of bytes allocated to hash indexes

memory_per_fragment Table: Notes

The memory_per_fragment table contains one row for every table fragment replica and every index
fragment replica in the system; this means that, for example, when NoOfReplicas=2, there are
normally two fragment replicas for each fragment. This is true as long as all data nodes are running
and connected to the cluster; for a data node that is missing, there are no rows for the fragment
replicas that it hosts.

The columns of the memory_per_fragment table can be grouped according to their function or
purpose as follows:

• Key columns: fq_name, type, table_id, node_id, block_instance, and fragment_num

• Relationship column: parent_fq_name

• Fixed-size storage columns: fixed_elem_alloc_bytes, fixed_elem_free_bytes,
fixed_elem_size_bytes, fixed_elem_count, and fixed_elem_free_count

• Variable-sized storage columns: var_elem_alloc_bytes, var_elem_free_bytes, and
var_elem_count

• Hash index column: hash_index_alloc_bytes

The parent_fq_name and fq_name columns can be used to identify indexes associated with a table.
Similar schema object hierarchy information is available in other ndbinfo tables.

Table and index fragment replicas allocate DataMemory in 32KB pages. These memory pages are
managed as listed here:

• Fixed-size pages: These store the fixed-size parts of rows stored in a given fragment. Every row has
a fixed-size part.

• Variable-sized pages: These store variable-sized parts for rows in the fragment. Every row having
one or more variable-sized, one or more dynamic columns (or both) has a variable-sized part.

• Hash index pages: These are allocated as 8 KB subpages, and store the primary key hash index
structure.

Each row in an NDB table has a fixed-size part, consisting of a row header, and one or more fixed-size
columns. The row may also contain one or more variable-size part references, one or more disk part
references, or both. Each row also has a primary key hash index entry (corresponding to the hidden
primary key that is part of every NDB table).

From the foregoing we can see that each table fragment and index fragment together allocate the
amount of DataMemory calculated as shown here:

DataMemory =
 (number_of_fixed_pages + number_of_var_pages) * 32KB
 + number_of_hash_pages * 8KB

Since fixed_elem_alloc_bytes and var_elem_alloc_bytes are always multiples of 32768
bytes, we can further determine that number_of_fixed_pages = fixed_elem_alloc_bytes /

4790

ndbinfo: The NDB Cluster Information Database

32768 and number_of_var_pages = var_elem_alloc_bytes / 32768.
hash_index_alloc_bytes is always a multiple of 8192 bytes, so number_of_hash_pages =
hash_index_alloc_bytes / 8192.

A fixed size page has an internal header and a number of fixed-size slots, each of which can contain
one row's fixed-size part. The size of a given row's fixed size part is schema-dependent, and is
provided by the fixed_elem_size_bytes column; the number of fixed-size slots per page can be
determined by calculating the total number of slots and the total number of pages, like this:

fixed_slots = fixed_elem_count + fixed_elem_free_count

fixed_pages = fixed_elem_alloc_bytes / 32768

slots_per_page = total_slots / total_pages

fixed_elem_count is in effect the row count for a given table fragment, since each row has
1 fixed element, fixed_elem_free_count is the total number of free fixed-size slots across
the allocated pages. fixed_elem_free_bytes is equal to fixed_elem_free_count *
fixed_elem_size_bytes.

A fragment can have any number of fixed-size pages; when the last row on a fixed-size page is
deleted, the page is released to the DataMemory page pool. Fixed-size pages can be fragmented, with
more pages allocated than is required by the number of fixed-size slots in use. You can check whether
this is the case by comparing the pages required to the pages allocated, which you can calculate like
this:

fixed_pages_required = 1 + (fixed_elem_count / slots_per_page)

fixed_page_utilization = fixed_pages_required / fixed_pages

A variable-sized page has an internal header and uses the remaining space to store one or more
variable-sized row parts; the number of parts stored depends on the schema and the actual data
stored. Since not all schemas or rows have a variable-sized part, var_elem_count can be less than
fixed_elem_count. The total free space available on all variable-sized pages in the fragment is
shown by the var_elem_free_bytes column; because this space may be spread over multiple
pages, it cannot necessarily be used to store an entry of a particular size. Each variable-sized page
is reorganized as needed to fit the changing size of variable-sized row parts as they are inserted,
updated, and deleted; if a given row part grows too large for the page it is in, it can be moved to a
different page.

Variable-sized page utilisation can be calculated as shown here:

var_page_used_bytes = var_elem_alloc_bytes - var_elem_free_bytes

var_page_utilisation = var_page_used_bytes / var_elem_alloc_bytes

avg_row_var_part_size = var_page_used_bytes / fixed_elem_count

We can obtain the average variable part size per row like this:

avg_row_var_part_size = var_page_used_bytes / fixed_elem_count

Secondary unique indexes are implemented internally as independent tables with the following
schema:

• Primary key: Indexed columns in base table.

• Values: Primary key columns from base table.

These tables are distributed and fragmented as normal. This means that their fragment replicas use
fixed, variable, and hash index pages as with any other NDB table.

Secondary ordered indexes are fragmented and distributed in the same way as the base table.
Ordered index fragments are T-tree structures which maintain a balanced tree containing row

4791

ndbinfo: The NDB Cluster Information Database

references in the order implied by the indexed columns. Since the tree contains references rather than
actual data, the T-tree storage cost is not dependent on the size or number of indexed columns, but
is rather a function of the number of rows. The tree is constructed using fixed-size node structures,
each of which may contain a number of row references; the number of nodes required depends on
the number of rows in the table, and the tree structure necessary to represent the ordering. In the
memory_per_fragment table, we can see that ordered indexes allocate only fixed-size pages, so as
usual the relevant columns from this table are as listed here:

• fixed_elem_alloc_bytes: This is equal to 32768 times the number of fixed-size pages.

• fixed_elem_count: The number of T-tree nodes in use.

• fixed_elem_size_bytes: The number of bytes per T-tree node.

• fixed_elem_free_count: The number of T-tree node slots available in the pages allocated.

• fixed_elem_free_bytes: This is equal to fixed_elem_free_count *
fixed_elem_size_bytes.

If free space in a page is fragmented, the page is defragmented. OPTIMIZE TABLE can be used to
defragment a table's variable-sized pages; this moves row variable-sized parts between pages so that
some whole pages can be freed for re-use.

memory_per_fragment Table: Examples

• Getting general information about fragments and memory usage

• Finding a table and its indexes

• Finding the memory allocated by schema elements

• Finding the memory allocated for a table and all indexes

• Finding the memory allocated per row

• Finding the total memory in use per row

• Finding the memory allocated per element

• Finding the average memory allocated per row, by element

• Finding the average memory allocated per row

• Finding the average memory allocated per row for a table

• Finding the memory in use by each schema element

• Finding the average memory in use by each schema element

• Finding the average memory in use per row, by element

• Finding the total average memory in use per row

For the following examples, we create a simple table with three integer columns, one of which has a
primary key, one having a unique index, and one with no indexes, as well as one VARCHAR column with
no indexes, as shown here:

mysql> CREATE DATABASE IF NOT EXISTS test;
Query OK, 1 row affected (0.06 sec)

mysql> USE test;
Database changed

4792

ndbinfo: The NDB Cluster Information Database

mysql> CREATE TABLE t1 (
 -> c1 BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> c2 INT,
 -> c3 INT UNIQUE,
 ->) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (0.27 sec)

Following creation of the table, we insert 50,000 rows containing random data; the precise method
of generating and inserting these rows makes no practical difference, and we leave the method of
accomplishing as an exercise for the user.

Getting general information about fragments and memory usage

This query shows general information about memory usage for each fragment:

mysql> SELECT
 -> fq_name, node_id, block_instance, fragment_num, fixed_elem_alloc_bytes,
 -> fixed_elem_free_bytes, fixed_elem_size_bytes, fixed_elem_count,
 -> fixed_elem_free_count, var_elem_alloc_bytes, var_elem_free_bytes,
 -> var_elem_count
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = "test/def/t1"\G
*************************** 1. row ***************************
 fq_name: test/def/t1
 node_id: 5
 block_instance: 1
 fragment_num: 0
fixed_elem_alloc_bytes: 1114112
 fixed_elem_free_bytes: 11836
 fixed_elem_size_bytes: 44
 fixed_elem_count: 24925
 fixed_elem_free_count: 269
 var_elem_alloc_bytes: 1245184
 var_elem_free_bytes: 32552
 var_elem_count: 24925
*************************** 2. row ***************************
 fq_name: test/def/t1
 node_id: 5
 block_instance: 1
 fragment_num: 1
fixed_elem_alloc_bytes: 1114112
 fixed_elem_free_bytes: 5236
 fixed_elem_size_bytes: 44
 fixed_elem_count: 25075
 fixed_elem_free_count: 119
 var_elem_alloc_bytes: 1277952
 var_elem_free_bytes: 54232
 var_elem_count: 25075
*************************** 3. row ***************************
 fq_name: test/def/t1
 node_id: 6
 block_instance: 1
 fragment_num: 0
fixed_elem_alloc_bytes: 1114112
 fixed_elem_free_bytes: 11836
 fixed_elem_size_bytes: 44
 fixed_elem_count: 24925
 fixed_elem_free_count: 269
 var_elem_alloc_bytes: 1245184
 var_elem_free_bytes: 32552
 var_elem_count: 24925
*************************** 4. row ***************************
 fq_name: test/def/t1
 node_id: 6
 block_instance: 1
 fragment_num: 1
fixed_elem_alloc_bytes: 1114112
 fixed_elem_free_bytes: 5236
 fixed_elem_size_bytes: 44
 fixed_elem_count: 25075
 fixed_elem_free_count: 119

4793

ndbinfo: The NDB Cluster Information Database

 var_elem_alloc_bytes: 1277952
 var_elem_free_bytes: 54232
 var_elem_count: 25075
4 rows in set (0.12 sec)

Finding a table and its indexes

This query can be used to find a specific table and its indexes:

mysql> SELECT fq_name
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+
| fq_name |
+----------------------+
| test/def/t1 |
| sys/def/13/PRIMARY |
| sys/def/13/c3 |
| sys/def/13/c3$unique |
+----------------------+
4 rows in set (0.13 sec)

mysql> SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 50000 |
+----------+
1 row in set (0.00 sec)

Finding the memory allocated by schema elements

This query shows the memory allocated by each schema element (in total across all replicas):

mysql> SELECT
 -> fq_name AS Name,
 -> SUM(fixed_elem_alloc_bytes) AS Fixed,
 -> SUM(var_elem_alloc_bytes) AS Var,
 -> SUM(hash_index_alloc_bytes) AS Hash,
 -> SUM(fixed_elem_alloc_bytes+var_elem_alloc_bytes+hash_index_alloc_bytes) AS Total
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+---------+---------+---------+----------+
| Name | Fixed | Var | Hash | Total |
+----------------------+---------+---------+---------+----------+
test/def/t1	4456448	5046272	1425408	10928128
sys/def/13/PRIMARY	1966080	0	0	1966080
sys/def/13/c3	1441792	0	0	1441792
sys/def/13/c3$unique	3276800	0	1425408	4702208
+----------------------+---------+---------+---------+----------+
4 rows in set (0.11 sec)

Finding the memory allocated for a table and all indexes

The sum of memory allocated for the table and all its indexes (in total across all replicas) can be
obtained using the query shown here:

mysql> SELECT
 -> SUM(fixed_elem_alloc_bytes) AS Fixed,
 -> SUM(var_elem_alloc_bytes) AS Var,
 -> SUM(hash_index_alloc_bytes) AS Hash,
 -> SUM(fixed_elem_alloc_bytes+var_elem_alloc_bytes+hash_index_alloc_bytes) AS Total
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+----------+---------+---------+----------+
| Fixed | Var | Hash | Total |
+----------+---------+---------+----------+
| 11141120 | 5046272 | 2850816 | 19038208 |

4794

ndbinfo: The NDB Cluster Information Database

+----------+---------+---------+----------+
1 row in set (0.12 sec)

This is an abbreviated version of the previous query which shows only the total memory used by the
table:

mysql> SELECT
 -> SUM(fixed_elem_alloc_bytes+var_elem_alloc_bytes+hash_index_alloc_bytes) AS Total
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+----------+
| Total |
+----------+
| 19038208 |
+----------+
1 row in set (0.12 sec)

Finding the memory allocated per row

The following query shows the total memory allocated per row (across all replicas):

mysql> SELECT
 -> SUM(fixed_elem_alloc_bytes+var_elem_alloc_bytes+hash_index_alloc_bytes)
 -> /
 -> SUM(fixed_elem_count) AS Total_alloc_per_row
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1';
+---------------------+
| Total_alloc_per_row |
+---------------------+
| 109.2813 |
+---------------------+
1 row in set (0.12 sec)

Finding the total memory in use per row

To obtain the total memory in use per row (across all replicas), we need the total memory used divided
by the row count, which is the fixed_elem_count for the base table like this:

mysql> SELECT
 -> SUM(
 -> (fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> + (var_elem_alloc_bytes - var_elem_free_bytes)
 -> + hash_index_alloc_bytes
 ->)
 -> /
 -> SUM(fixed_elem_count)
 -> AS total_in_use_per_row
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1';
+----------------------+
| total_in_use_per_row |
+----------------------+
| 107.2042 |
+----------------------+
1 row in set (0.12 sec)

Finding the memory allocated per element

The memory allocated by each schema element (in total across all replicas) can be found using the
following query:

mysql> SELECT
 -> fq_name AS Name,
 -> SUM(fixed_elem_alloc_bytes) AS Fixed,
 -> SUM(var_elem_alloc_bytes) AS Var,
 -> SUM(hash_index_alloc_bytes) AS Hash,
 -> SUM(fixed_elem_alloc_bytes + var_elem_alloc_bytes + hash_index_alloc_bytes)

4795

ndbinfo: The NDB Cluster Information Database

 -> AS Total_alloc
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+---------+---------+---------+-------------+
| Name | Fixed | Var | Hash | Total_alloc |
+----------------------+---------+---------+---------+-------------+
test/def/t1	4456448	5046272	1425408	10928128
sys/def/13/PRIMARY	1966080	0	0	1966080
sys/def/13/c3	1441792	0	0	1441792
sys/def/13/c3$unique	3276800	0	1425408	4702208
+----------------------+---------+---------+---------+-------------+
4 rows in set (0.11 sec)

Finding the average memory allocated per row, by element

To obtain the average memory allocated per row by each schema element (in total across all replicas),
we use a subquery to get the base table fixed element count each time to get an average per row since
fixed_elem_count for the indexes is not necessarily the same as for the base table, as shown here:

mysql> SELECT
 -> fq_name AS Name,
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Table_rows,
 ->
 -> SUM(fixed_elem_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Avg_fixed_alloc,
 ->
 -> SUM(var_elem_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') as Avg_var_alloc,
 ->
 -> SUM(hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') as Avg_hash_alloc,
 ->
 -> SUM(fixed_elem_alloc_bytes+var_elem_alloc_bytes+hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') as Avg_total_alloc
 ->
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' or parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+------------+-----------------+---------------+----------------+-----------------+
| Name | Table_rows | Avg_fixed_alloc | Avg_var_alloc | Avg_hash_alloc | Avg_total_alloc |
+----------------------+------------+-----------------+---------------+----------------+-----------------+
test/def/t1	100000	44.5645	50.4627	14.2541	109.2813
sys/def/13/PRIMARY	100000	19.6608	0.0000	0.0000	19.6608
sys/def/13/c3	100000	14.4179	0.0000	0.0000	14.4179
sys/def/13/c3$unique	100000	32.7680	0.0000	14.2541	47.0221
+----------------------+------------+-----------------+---------------+----------------+-----------------+
4 rows in set (0.70 sec)

Finding the average memory allocated per row

Average memory allocated per row (in total across all replicas):

mysql> SELECT
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment

4796

ndbinfo: The NDB Cluster Information Database

 -> WHERE fq_name='test/def/t1') AS Table_rows,
 ->
 -> SUM(fixed_elem_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Avg_fixed_alloc,
 ->
 -> SUM(var_elem_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Avg_var_alloc,
 ->
 -> SUM(hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Avg_hash_alloc,
 ->
 -> SUM(fixed_elem_alloc_bytes + var_elem_alloc_bytes + hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS Avg_total_alloc
 ->
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+------------+-----------------+---------------+----------------+-----------------+
| Table_rows | Avg_fixed_alloc | Avg_var_alloc | Avg_hash_alloc | Avg_total_alloc |
+------------+-----------------+---------------+----------------+-----------------+
| 100000 | 111.4112 | 50.4627 | 28.5082 | 190.3821 |
+------------+-----------------+---------------+----------------+-----------------+
1 row in set (0.71 sec)

Finding the average memory allocated per row for a table

To get the average amount of memory allocated per row for the entire table across all replicas, we can
use the query shown here:

mysql> SELECT
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS table_rows,
 ->
 -> SUM(fixed_elem_alloc_bytes + var_elem_alloc_bytes + hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_total_alloc
 ->
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+------------+-----------------+
| table_rows | avg_total_alloc |
+------------+-----------------+
| 100000 | 190.3821 |
+------------+-----------------+
1 row in set (0.33 sec)

Finding the memory in use by each schema element

To obtain the memory in use per schema element across all replicas, we need to sum the difference
between allocated and free memory for each element, like this:

mysql> SELECT
 -> fq_name AS Name,
 -> SUM(fixed_elem_alloc_bytes - fixed_elem_free_bytes) AS fixed_inuse,
 -> SUM(var_elem_alloc_bytes-var_elem_free_bytes) AS var_inuse,
 -> SUM(hash_index_alloc_bytes) AS hash_memory,

4797

ndbinfo: The NDB Cluster Information Database

 -> SUM((fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> + (var_elem_alloc_bytes - var_elem_free_bytes)
 -> + hash_index_alloc_bytes) AS total_alloc
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+-------------+-----------+---------+-------------+
| fq_name | fixed_inuse | var_inuse | hash | total_alloc |
+----------------------+-------------+-----------+---------+-------------+
test/def/t1	4422304	4872704	1425408	10720416
sys/def/13/PRIMARY	1950848	0	0	1950848
sys/def/13/c3	1428736	0	0	1428736
sys/def/13/c3$unique	3212800	0	1425408	4638208
+----------------------+-------------+-----------+---------+-------------+
4 rows in set (0.13 sec)

Finding the average memory in use by each schema element

This query gets the average memory in use per schema element across all replicas:

mysql> SELECT
 -> fq_name AS Name,
 ->
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS table_rows,
 ->
 -> SUM(fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_fixed_inuse,
 ->
 -> SUM(var_elem_alloc_bytes - var_elem_free_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_var_inuse,
 ->
 -> SUM(hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_hash,
 ->
 -> SUM(
 -> (fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> + (var_elem_alloc_bytes - var_elem_free_bytes) + hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_total_inuse
 ->
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1'
 -> GROUP BY fq_name;
+----------------------+------------+-----------------+---------------+----------+-----------------+
| Name | table_rows | avg_fixed_inuse | avg_var_inuse | avg_hash | avg_total_inuse |
+----------------------+------------+-----------------+---------------+----------+-----------------+
test/def/t1	100000	44.2230	48.7270	14.2541	107.2042
sys/def/13/PRIMARY	100000	19.5085	0.0000	0.0000	19.5085
sys/def/13/c3	100000	14.2874	0.0000	0.0000	14.2874
sys/def/13/c3$unique	100000	32.1280	0.0000	14.2541	46.3821
+----------------------+------------+-----------------+---------------+----------+-----------------+
4 rows in set (0.72 sec)

Finding the average memory in use per row, by element

This query gets the average memory in use per row, by element, across all replicas:

mysql> SELECT

4798

ndbinfo: The NDB Cluster Information Database

 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS table_rows,
 ->
 -> SUM(fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_fixed_inuse,
 ->
 -> SUM(var_elem_alloc_bytes - var_elem_free_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_var_inuse,
 ->
 -> SUM(hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_hash,
 ->
 -> SUM(
 -> (fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> + (var_elem_alloc_bytes - var_elem_free_bytes)
 -> + hash_index_alloc_bytes)
 -> /
 -> (SELECT SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_total_inuse
 ->
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+------------+-----------------+---------------+----------+-----------------+
| table_rows | avg_fixed_inuse | avg_var_inuse | avg_hash | avg_total_inuse |
+------------+-----------------+---------------+----------+-----------------+
| 100000 | 110.1469 | 48.7270 | 28.5082 | 187.3821 |
+------------+-----------------+---------------+----------+-----------------+
1 row in set (0.68 sec)

Finding the total average memory in use per row

This query obtains the total average memory in use, per row:

mysql> SELECT
 -> SUM(
 -> (fixed_elem_alloc_bytes - fixed_elem_free_bytes)
 -> + (var_elem_alloc_bytes - var_elem_free_bytes)
 -> + hash_index_alloc_bytes)
 -> /
 -> (SELECT
 -> SUM(fixed_elem_count)
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name='test/def/t1') AS avg_total_in_use
 -> FROM ndbinfo.memory_per_fragment
 -> WHERE fq_name = 'test/def/t1' OR parent_fq_name='test/def/t1';
+------------------+
| avg_total_in_use |
+------------------+
| 187.3821 |
+------------------+
1 row in set (0.24 sec)

25.6.16.47 The ndbinfo nodes Table

This table contains information on the status of data nodes. For each data node that is running in the
cluster, a corresponding row in this table provides the node's node ID, status, and uptime. For nodes
that are starting, it also shows the current start phase.

The nodes table contains the following columns:

4799

ndbinfo: The NDB Cluster Information Database

• node_id

The data node's unique node ID in the cluster.

• uptime

Time since the node was last started, in seconds.

• status

Current status of the data node; see text for possible values.

• start_phase

If the data node is starting, the current start phase.

• config_generation

The version of the cluster configuration file in use on this data node.

Notes

The uptime column shows the time in seconds that this node has been running since it was last
started or restarted. This is a BIGINT value. This figure includes the time actually needed to start the
node; in other words, this counter starts running the moment that ndbd or ndbmtd is first invoked; thus,
even for a node that has not yet finished starting, uptime may show a nonzero value.

The status column shows the node's current status. This is one of: NOTHING, CMVMI, STARTING,
STARTED, SINGLEUSER, STOPPING_1, STOPPING_2, STOPPING_3, or STOPPING_4. When the
status is STARTING, you can see the current start phase in the start_phase column (see later in
this section). SINGLEUSER is displayed in the status column for all data nodes when the cluster is in
single user mode (see Section 25.6.6, “NDB Cluster Single User Mode”). Seeing one of the STOPPING
states does not necessarily mean that the node is shutting down but can mean rather that it is entering
a new state. For example, if you put the cluster in single user mode, you can sometimes see data
nodes report their state briefly as STOPPING_2 before the status changes to SINGLEUSER.

The start_phase column uses the same range of values as those used in the output of the ndb_mgm
client node_id STATUS command (see Section 25.6.1, “Commands in the NDB Cluster Management
Client”). If the node is not currently starting, then this column shows 0. For a listing of NDB Cluster start
phases with descriptions, see Section 25.6.4, “Summary of NDB Cluster Start Phases”.

The config_generation column shows which version of the cluster configuration is in effect on
each data node. This can be useful when performing a rolling restart of the cluster in order to make
changes in configuration parameters. For example, from the output of the following SELECT statement,
you can see that node 3 is not yet using the latest version of the cluster configuration (6) although
nodes 1, 2, and 4 are doing so:

mysql> USE ndbinfo;
Database changed
mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
1	10462	STARTED	0	6
2	10460	STARTED	0	6
3	10457	STARTED	0	5
4	10455	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
2 rows in set (0.04 sec)

Therefore, for the case just shown, you should restart node 3 to complete the rolling restart of the
cluster.

4800

ndbinfo: The NDB Cluster Information Database

Nodes that are stopped are not accounted for in this table. Suppose that you have an NDB Cluster with
4 data nodes (node IDs 1, 2, 3 and 4), and all nodes are running normally, then this table contains 4
rows, 1 for each data node:

mysql> USE ndbinfo;
Database changed
mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
1	11776	STARTED	0	6
2	11774	STARTED	0	6
3	11771	STARTED	0	6
4	11769	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
4 rows in set (0.04 sec)

If you shut down one of the nodes, only the nodes that are still running are represented in the output of
this SELECT statement, as shown here:

ndb_mgm> 2 STOP
Node 2: Node shutdown initiated
Node 2: Node shutdown completed.
Node 2 has shutdown.

mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
1	11807	STARTED	0	6
3	11802	STARTED	0	6
4	11800	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
3 rows in set (0.02 sec)

25.6.16.48 The ndbinfo operations_per_fragment Table

The operations_per_fragment table provides information about the operations performed on
individual fragments and fragment replicas, as well as about some of the results from these operations.

The operations_per_fragment table contains the following columns:

• fq_name

Name of this fragment

• parent_fq_name

Name of this fragment's parent

• type

Type of object; see text for possible values

• table_id

Table ID for this table

• node_id

Node ID for this node

• block_instance

Kernel block instance ID

• fragment_num

4801

ndbinfo: The NDB Cluster Information Database

Fragment ID (number)

• tot_key_reads

Total number of key reads for this fragment replica

• tot_key_inserts

Total number of key inserts for this fragment replica

• tot_key_updates

total number of key updates for this fragment replica

• tot_key_writes

Total number of key writes for this fragment replica

• tot_key_deletes

Total number of key deletes for this fragment replica

• tot_key_refs

Number of key operations refused

• tot_key_attrinfo_bytes

Total size of all attrinfo attributes

• tot_key_keyinfo_bytes

Total size of all keyinfo attributes

• tot_key_prog_bytes

Total size of all interpreted programs carried by attrinfo attributes

• tot_key_inst_exec

Total number of instructions executed by interpreted programs for key operations

• tot_key_bytes_returned

Total size of all data and metadata returned from key read operations

• tot_frag_scans

Total number of scans performed on this fragment replica

• tot_scan_rows_examined

Total number of rows examined by scans

• tot_scan_rows_returned

Total number of rows returned to client

• tot_scan_bytes_returned

Total size of data and metadata returned to the client

• tot_scan_prog_bytes

4802

ndbinfo: The NDB Cluster Information Database

Total size of interpreted programs for scan operations

• tot_scan_bound_bytes

Total size of all bounds used in ordered index scans

• tot_scan_inst_exec

Total number of instructions executed for scans

• tot_qd_frag_scans

Number of times that scans of this fragment replica have been queued

• conc_frag_scans

Number of scans currently active on this fragment replica (excluding queued scans)

• conc_qd_frag_scans

Number of scans currently queued for this fragment replica

• tot_commits

Total number of row changes committed to this fragment replica

Notes

The fq_name contains the fully qualified name of the schema object to which this fragment replica
belongs. This currently has the following formats:

• Base table: DbName/def/TblName

• BLOB table: DbName/def/NDB$BLOB_BaseTblId_ColNo

• Ordered index: sys/def/BaseTblId/IndexName

• Unique index: sys/def/BaseTblId/IndexName$unique

The $unique suffix shown for unique indexes is added by mysqld; for an index created by a different
NDB API client application, this may differ, or not be present.

The syntax just shown for fully qualified object names is an internal interface which is subject to change
in future releases.

Consider a table t1 created and modified by the following SQL statements:

CREATE DATABASE mydb;

USE mydb;

CREATE TABLE t1 (
 a INT NOT NULL,
 b INT NOT NULL,
 t TEXT NOT NULL,
 PRIMARY KEY (b)
) ENGINE=ndbcluster;

CREATE UNIQUE INDEX ix1 ON t1(b) USING HASH;

If t1 is assigned table ID 11, this yields the fq_name values shown here:

• Base table: mydb/def/t1

4803

ndbinfo: The NDB Cluster Information Database

• BLOB table: mydb/def/NDB$BLOB_11_2

• Ordered index (primary key): sys/def/11/PRIMARY

• Unique index: sys/def/11/ix1$unique

For indexes or BLOB tables, the parent_fq_name column contains the fq_name of the corresponding
base table. For base tables, this column is always NULL.

The type column shows the schema object type used for this fragment, which can take any one of the
values System table, User table, Unique hash index, or Ordered index. BLOB tables are
shown as User table.

The table_id column value is unique at any given time, but can be reused if the corresponding object
has been deleted. The same ID can be seen using the ndb_show_tables utility.

The block_instance column shows which LDM instance this fragment replica belongs to. You can
use this to obtain information about specific threads from the threadblocks table. The first such
instance is always numbered 0.

Since there are typically two fragment replicas, and assuming that this is so, each fragment_num
value should appear twice in the table, on two different data nodes from the same node group.

Since NDB does not use single-key access for ordered indexes, the counts for tot_key_reads,
tot_key_inserts, tot_key_updates, tot_key_writes, and tot_key_deletes are not
incremented by ordered index operations.

Note

When using tot_key_writes, you should keep in mind that a write operation
in this context updates the row if the key exists, and inserts a new row
otherwise. (One use of this is in the NDB implementation of the REPLACE SQL
statement.)

The tot_key_refs column shows the number of key operations refused by the LDM. Generally, such
a refusal is due to duplicate keys (inserts), Key not found errors (updates, deletes, and reads), or
the operation was rejected by an interpreted program used as a predicate on the row matching the key.

The attrinfo and keyinfo attributes counted by the tot_key_attrinfo_bytes and
tot_key_keyinfo_bytes columns are attributes of an LQHKEYREQ signal (see The NDB
Communication Protocol) used to initiate a key operation by the LDM. An attrinfo typically contains
tuple field values (inserts and updates) or projection specifications (for reads); keyinfo contains the
primary or unique key needed to locate a given tuple in this schema object.

The value shown by tot_frag_scans includes both full scans (that examine every row) and scans
of subsets. Unique indexes and BLOB tables are never scanned, so this value, like other scan-related
counts, is 0 for fragment replicas of these.

tot_scan_rows_examined may display less than the total number of rows in a given fragment
replica, since ordered index scans can limited by bounds. In addition, a client may choose to end
a scan before all potentially matching rows have been examined; this occurs when using an SQL
statement containing a LIMIT or EXISTS clause, for example. tot_scan_rows_returned is always
less than or equal to tot_scan_rows_examined.

tot_scan_bytes_returned includes, in the case of pushed joins, projections returned to the DBSPJ
block in the NDB kernel.

tot_qd_frag_scans can be effected by the setting for the MaxParallelScansPerFragment data
node configuration parameter, which limits the number of scans that may execute concurrently on a
single fragment replica.

4804

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

ndbinfo: The NDB Cluster Information Database

25.6.16.49 The ndbinfo pgman_time_track_stats Table

This table provides information regarding the latency of disk operations for NDB Cluster Disk Data
tablespaces.

The pgman_time_track_stats table contains the following columns:

• node_id

Unique node ID of this node in the cluster

• block_number

Block number (from blocks table)

• block_instance

Block instance number

• upper_bound

Upper bound

• page_reads

Page read latency (ms)

• page_writes

Page write latency (ms)

• log_waits

Log wait latency (ms)

• get_page

Latency of get_page() calls (ms)

Notes

The read latency (page_reads column) measures the time from when the read request is sent to the
file system thread until the read is complete and has been reported back to the execution thread. The
write latency (page_writes) is calculated in a similar fashion. The size of the page read to or written
from a Disk Data tablespace is always 32 KB.

Log wait latency (log_waits column) is the length of time a page write must wait for the undo log to
be flushed, which must be done prior to each page write.

25.6.16.50 The ndbinfo processes Table

This table contains information about NDB Cluster node processes; each node is represented by the
row in the table. Only nodes that are connected to the cluster are shown in this table. You can obtain
information about nodes that are configured but not connected to the cluster from the nodes and
config_nodes tables.

The processes table contains the following columns:

• node_id

The node's unique node ID in the cluster

• node_type

4805

ndbinfo: The NDB Cluster Information Database

Type of node (management, data, or API node; see text)

• node_version

Version of the NDB software program running on this node.

• process_id

This node's process ID

• angel_process_id

Process ID of this node's angel process

• process_name

Name of the executable

• service_URI

Service URI of this node (see text)

Notes

node_id is the ID assigned to this node in the cluster.

The node_type column displays one of the following three values:

• MGM: Management node.

• NDB: Data node.

• API: API or SQL node.

For an executable shipped with the NDB Cluster distribution, node_version shows the software
Cluster version string, such as 8.0.42-ndb-8.0.42.

process_id is the node executable's process ID as shown by the host operating system using a
process display application such as top on Linux, or the Task Manager on Windows platforms.

angel_process_id is the system process ID for the node's angel process, which ensures that a data
node or SQL is automatically restarted in cases of failures. For management nodes and API nodes
other than SQL nodes, the value of this column is NULL.

The process_name column shows the name of the running executable. For management nodes,
this is ndb_mgmd. For data nodes, this is ndbd (single-threaded) or ndbmtd (multithreaded).
For SQL nodes, this is mysqld. For other types of API nodes, it is the name of the executable
program connected to the cluster; NDB API applications can set a custom value for this using
Ndb_cluster_connection::set_name().

service_URI shows the service network address. For management nodes and data nodes, the
scheme used is ndb://. For SQL nodes, this is mysql://. By default, API nodes other than SQL
nodes use ndb:// for the scheme; NDB API applications can set this to a custom value using
Ndb_cluster_connection::set_service_uri(). regardless of the node type, the scheme is
followed by the IP address used by the NDB transporter for the node in question. For management
nodes and SQL nodes, this address includes the port number (usually 1186 for management nodes
and 3306 for SQL nodes). If the SQL node was started with the bind_address system variable set,
this address is used instead of the transporter address, unless the bind address is set to *, 0.0.0.0,
or ::.

Additional path information may be included in the service_URI value for an SQL node reflecting
various configuration options. For example, mysql://198.51.100.3/tmp/mysql.sock

4806

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-name

ndbinfo: The NDB Cluster Information Database

indicates that the SQL node was started with the skip_networking system variable enabled, and
mysql://198.51.100.3:3306/?server-id=1 shows that replication is enabled for this SQL
node.

25.6.16.51 The ndbinfo resources Table

This table provides information about data node resource availability and usage.

These resources are sometimes known as super-pools.

The resources table contains the following columns:

• node_id

The unique node ID of this data node.

• resource_name

Name of the resource; see text.

• reserved

The amount reserved for this resource, as a number of 32KB pages.

• used

The amount actually used by this resource, as a number of 32KB pages.

• max

The maximum amount (number of 32KB pages) of this resource that is available to this data node.

Notes

The resource_name can be any one of the names shown in the following table:

• RESERVED: Reserved by the system; cannot be overridden.

• TRANSACTION_MEMORY: Memory allocated for transactions on this data node. In NDB 8.0.19 and
later this can be controlled using the TransactionMemory configuration parameter.

• DISK_OPERATIONS: If a log file group is allocated, the size of the undo log buffer is used to set the
size of this resource. This resource is used only to allocate the undo log buffer for an undo log file
group; there can only be one such group. Overallocation occurs as needed by CREATE LOGFILE
GROUP.

• DISK_RECORDS: Records allocated for Disk Data operations.

• DATA_MEMORY: Used for main memory tuples, indexes, and hash indexes. Sum of DataMemory and
IndexMemory, plus 8 pages of 32 KB each if IndexMemory has been set. Cannot be overallocated.

• JOBBUFFER: Used for allocating job buffers by the NDB scheduler; cannot be overallocated. This
is approximately 2 MB per thread plus a 1 MB buffer in both directions for all threads that can
communicate. For large configurations this consume several GB.

• FILE_BUFFERS: Used by the redo log handler in the DBLQH kernel block; cannot be overallocated.
Size is NoOfFragmentLogParts * RedoBuffer, plus 1 MB per log file part.

• TRANSPORTER_BUFFERS: Used for send buffers by ndbmtd; the sum of
TotalSendBufferMemory and ExtraSendBufferMemory. This resource that can be
overallocated by up to 25 percent. TotalSendBufferMemory is calculated by summing the
send buffer memory per node, the default value of which is 2 MB. Thus, in a system having

4807

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html

ndbinfo: The NDB Cluster Information Database

four data nodes and eight API nodes, the data nodes have 12 * 2 MB send buffer memory.
ExtraSendBufferMemory is used by ndbmtd and amounts to 2 MB extra memory per thread.
Thus, with 4 LDM threads, 2 TC threads, 1 main thread, 1 replication thread, and 2 receive threads,
ExtraSendBufferMemory is 10 * 2 MB. Overallocation of this resource can be performed by
setting the SharedGlobalMemory data node configuration parameter.

• DISK_PAGE_BUFFER: Used for the disk page buffer; determined by the DiskPageBufferMemory
configuration parameter. Cannot be overallocated.

• QUERY_MEMORY: Used by the DBSPJ kernel block.

• SCHEMA_TRANS_MEMORY: Minimum is 2 MB; can be overallocated to use any remaining available
memory.

25.6.16.52 The ndbinfo restart_info Table

The restart_info table contains information about node restart operations. Each entry in the table
corresponds to a node restart status report in real time from a data node with the given node ID. Only
the most recent report for any given node is shown.

The restart_info table contains the following columns:

• node_id

Node ID in the cluster

• node_restart_status

Node status; see text for values. Each of these corresponds to a possible value of
node_restart_status_int.

• node_restart_status_int

Node status code; see text for values.

• secs_to_complete_node_failure

Time in seconds to complete node failure handling

• secs_to_allocate_node_id

Time in seconds from node failure completion to allocation of node ID

• secs_to_include_in_heartbeat_protocol

Time in seconds from allocation of node ID to inclusion in heartbeat protocol

• secs_until_wait_for_ndbcntr_master

Time in seconds from being included in heartbeat protocol until waiting for NDBCNTR master began

• secs_wait_for_ndbcntr_master

Time in seconds spent waiting to be accepted by NDBCNTR master for starting

• secs_to_get_start_permitted

Time in seconds elapsed from receiving of permission for start from master until all nodes have
accepted start of this node

• secs_to_wait_for_lcp_for_copy_meta_data

Time in seconds spent waiting for LCP completion before copying metadata

4808

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html

ndbinfo: The NDB Cluster Information Database

• secs_to_copy_meta_data

Time in seconds required to copy metadata from master to newly starting node

• secs_to_include_node

Time in seconds waited for GCP and inclusion of all nodes into protocols

• secs_starting_node_to_request_local_recovery

Time in seconds that the node just starting spent waiting to request local recovery

• secs_for_local_recovery

Time in seconds required for local recovery by node just starting

• secs_restore_fragments

Time in seconds required to restore fragments from LCP files

• secs_undo_disk_data

Time in seconds required to execute undo log on disk data part of records

• secs_exec_redo_log

Time in seconds required to execute redo log on all restored fragments

• secs_index_rebuild

Time in seconds required to rebuild indexes on restored fragments

• secs_to_synchronize_starting_node

Time in seconds required to synchronize starting node from live nodes

• secs_wait_lcp_for_restart

Time in seconds required for LCP start and completion before restart was completed

• secs_wait_subscription_handover

Time in seconds spent waiting for handover of replication subscriptions

• total_restart_secs

Total number of seconds from node failure until node is started again

Notes

The following list contains values defined for the node_restart_status_int column with
their internal status names (in parentheses), and the corresponding messages shown in the
node_restart_status column:

• 0 (ALLOCATED_NODE_ID)

Allocated node id

• 1 (INCLUDED_IN_HB_PROTOCOL)

Included in heartbeat protocol

• 2 (NDBCNTR_START_WAIT)

4809

ndbinfo: The NDB Cluster Information Database

Wait for NDBCNTR master to permit us to start

• 3 (NDBCNTR_STARTED)

NDBCNTR master permitted us to start

• 4 (START_PERMITTED)

All nodes permitted us to start

• 5 (WAIT_LCP_TO_COPY_DICT)

Wait for LCP completion to start copying metadata

• 6 (COPY_DICT_TO_STARTING_NODE)

Copying metadata to starting node

• 7 (INCLUDE_NODE_IN_LCP_AND_GCP)

Include node in LCP and GCP protocols

• 8 (LOCAL_RECOVERY_STARTED)

Restore fragments ongoing

• 9 (COPY_FRAGMENTS_STARTED)

Synchronizing starting node with live nodes

• 10 (WAIT_LCP_FOR_RESTART)

Wait for LCP to ensure durability

• 11 (WAIT_SUMA_HANDOVER)

Wait for handover of subscriptions

• 12 (RESTART_COMPLETED)

Restart completed

• 13 (NODE_FAILED)

Node failed, failure handling in progress

• 14 (NODE_FAILURE_COMPLETED)

Node failure handling completed

• 15 (NODE_GETTING_PERMIT)

All nodes permitted us to start

• 16 (NODE_GETTING_INCLUDED)

Include node in LCP and GCP protocols

• 17 (NODE_GETTING_SYNCHED)

Synchronizing starting node with live nodes

• 18 (NODE_GETTING_LCP_WAITED)

4810

ndbinfo: The NDB Cluster Information Database

[none]

• 19 (NODE_ACTIVE)

Restart completed

• 20 (NOT_DEFINED_IN_CLUSTER)

[none]

• 21 (NODE_NOT_RESTARTED_YET)

Initial state

Status numbers 0 through 12 apply on master nodes only; the remainder of those shown in the table
apply to all restarting data nodes. Status numbers 13 and 14 define node failure states; 20 and 21
occur when no information about the restart of a given node is available.

See also Section 25.6.4, “Summary of NDB Cluster Start Phases”.

25.6.16.53 The ndbinfo server_locks Table

The server_locks table is similar in structure to the cluster_locks table, and provides a subset
of the information found in the latter table, but which is specific to the SQL node (MySQL server)
where it resides. (The cluster_locks table provides information about all locks in the cluster.) More
precisely, server_locks contains information about locks requested by threads belonging to the
current mysqld instance, and serves as a companion table to server_operations. This may be
useful for correlating locking patterns with specific MySQL user sessions, queries, or use cases.

The server_locks table contains the following columns:

• mysql_connection_id

MySQL connection ID

• node_id

ID of reporting node

• block_instance

ID of reporting LDM instance

• tableid

ID of table containing this row

• fragmentid

ID of fragment containing locked row

• rowid

ID of locked row

• transid

Transaction ID

• mode

Lock request mode

4811

ndbinfo: The NDB Cluster Information Database

• state

Lock state

• detail

Whether this is first holding lock in row lock queue

• op

Operation type

• duration_millis

Milliseconds spent waiting or holding lock

• lock_num

ID of lock object

• waiting_for

Waiting for lock with this ID

Notes

The mysql_connection_id column shows the MySQL connection or thread ID as shown by SHOW
PROCESSLIST.

block_instance refers to an instance of a kernel block. Together with the block name, this number
can be used to look up a given instance in the threadblocks table.

The tableid is assigned to the table by NDB; the same ID is used for this table in other ndbinfo
tables, as well as in the output of ndb_show_tables.

The transaction ID shown in the transid column is the identifier generated by the NDB API for the
transaction requesting or holding the current lock.

The mode column shows the lock mode, which is always one of S (shared lock) or X (exclusive lock).
If a transaction has an exclusive lock on a given row, all other locks on that row have the same
transaction ID.

The state column shows the lock state. Its value is always one of H (holding) or W (waiting). A waiting
lock request waits for a lock held by a different transaction.

The detail column indicates whether this lock is the first holding lock in the affected row's lock queue,
in which case it contains a * (asterisk character); otherwise, this column is empty. This information can
be used to help identify the unique entries in a list of lock requests.

The op column shows the type of operation requesting the lock. This is always one of the values READ,
INSERT, UPDATE, DELETE, SCAN, or REFRESH.

The duration_millis column shows the number of milliseconds for which this lock request has
been waiting or holding the lock. This is reset to 0 when a lock is granted for a waiting request.

The lock ID (lockid column) is unique to this node and block instance.

If the lock_state column's value is W, this lock is waiting to be granted, and the waiting_for
column shows the lock ID of the lock object this request is waiting for. Otherwise, waiting_for
is empty. waiting_for can refer only to locks on the same row (as identified by node_id,
block_instance, tableid, fragmentid, and rowid).

25.6.16.54 The ndbinfo server_operations Table

4812

ndbinfo: The NDB Cluster Information Database

The server_operations table contains entries for all ongoing NDB operations that the current SQL
node (MySQL Server) is currently involved in. It effectively is a subset of the cluster_operations
table, in which operations for other SQL and API nodes are not shown.

The server_operations table contains the following columns:

• mysql_connection_id

MySQL Server connection ID

• node_id

Node ID

• block_instance

Block instance

• transid

Transaction ID

• operation_type

Operation type (see text for possible values)

• state

Operation state (see text for possible values)

• tableid

Table ID

• fragmentid

Fragment ID

• client_node_id

Client node ID

• client_block_ref

Client block reference

• tc_node_id

Transaction coordinator node ID

• tc_block_no

Transaction coordinator block number

• tc_block_instance

Transaction coordinator block instance

Notes

The mysql_connection_id is the same as the connection or session ID shown in the
output of SHOW PROCESSLIST. It is obtained from the INFORMATION_SCHEMA table
NDB_TRANSID_MYSQL_CONNECTION_MAP.

4813

ndbinfo: The NDB Cluster Information Database

block_instance refers to an instance of a kernel block. Together with the block name, this number
can be used to look up a given instance in the threadblocks table.

The transaction ID (transid) is a unique 64-bit number which can be obtained using the NDB
API's getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API
transaction ID of an ongoing transaction.)

The operation_type column can take any one of the values READ, READ-SH, READ-EX, INSERT,
UPDATE, DELETE, WRITE, UNLOCK, REFRESH, SCAN, SCAN-SH, SCAN-EX, or <unknown>.

The state column can have any one of the values ABORT_QUEUED, ABORT_STOPPED,
COMMITTED, COMMIT_QUEUED, COMMIT_STOPPED, COPY_CLOSE_STOPPED,
COPY_FIRST_STOPPED, COPY_STOPPED, COPY_TUPKEY, IDLE, LOG_ABORT_QUEUED,
LOG_COMMIT_QUEUED, LOG_COMMIT_QUEUED_WAIT_SIGNAL, LOG_COMMIT_WRITTEN,
LOG_COMMIT_WRITTEN_WAIT_SIGNAL, LOG_QUEUED, PREPARED, PREPARED_RECEIVED_COMMIT,
SCAN_CHECK_STOPPED, SCAN_CLOSE_STOPPED, SCAN_FIRST_STOPPED,
SCAN_RELEASE_STOPPED, SCAN_STATE_USED, SCAN_STOPPED, SCAN_TUPKEY, STOPPED,
TC_NOT_CONNECTED, WAIT_ACC, WAIT_ACC_ABORT, WAIT_AI_AFTER_ABORT, WAIT_ATTR,
WAIT_SCAN_AI, WAIT_TUP, WAIT_TUPKEYINFO, WAIT_TUP_COMMIT, or WAIT_TUP_TO_ABORT. (If
the MySQL Server is running with ndbinfo_show_hidden enabled, you can view this list of states by
selecting from the ndb$dblqh_tcconnect_state table, which is normally hidden.)

You can obtain the name of an NDB table from its table ID by checking the output of
ndb_show_tables.

The fragid is the same as the partition number seen in the output of ndb_desc --extra-
partition-info (short form -p).

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node
(that is, an NDB API client or a MySQL Server attached to the cluster).

The block_instance and tc_block_instance column provide NDB kernel block instance
numbers. You can use these to obtain information about specific threads from the threadblocks
table.

25.6.16.55 The ndbinfo server_transactions Table

The server_transactions table is subset of the cluster_transactions table, but includes only
those transactions in which the current SQL node (MySQL Server) is a participant, while including the
relevant connection IDs.

The server_transactions table contains the following columns:

• mysql_connection_id

MySQL Server connection ID

• node_id

Transaction coordinator node ID

• block_instance

Transaction coordinator block instance

• transid

Transaction ID

• state

Operation state (see text for possible values)

4814

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid

ndbinfo: The NDB Cluster Information Database

• count_operations

Number of stateful operations in the transaction

• outstanding_operations

Operations still being executed by local data management layer (LQH blocks)

• inactive_seconds

Time spent waiting for API

• client_node_id

Client node ID

• client_block_ref

Client block reference

Notes

The mysql_connection_id is the same as the connection or session ID shown in the
output of SHOW PROCESSLIST. It is obtained from the INFORMATION_SCHEMA table
NDB_TRANSID_MYSQL_CONNECTION_MAP.

block_instance refers to an instance of a kernel block. Together with the block name, this number
can be used to look up a given instance in the threadblocks table.

The transaction ID (transid) is a unique 64-bit number which can be obtained using the NDB
API's getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API
transaction ID of an ongoing transaction.)

The state column can have any one of the values CS_ABORTING, CS_COMMITTING,
CS_COMMIT_SENT, CS_COMPLETE_SENT, CS_COMPLETING, CS_CONNECTED, CS_DISCONNECTED,
CS_FAIL_ABORTED, CS_FAIL_ABORTING, CS_FAIL_COMMITTED, CS_FAIL_COMMITTING,
CS_FAIL_COMPLETED, CS_FAIL_PREPARED, CS_PREPARE_TO_COMMIT, CS_RECEIVING,
CS_REC_COMMITTING, CS_RESTART, CS_SEND_FIRE_TRIG_REQ, CS_STARTED,
CS_START_COMMITTING, CS_START_SCAN, CS_WAIT_ABORT_CONF, CS_WAIT_COMMIT_CONF,
CS_WAIT_COMPLETE_CONF, CS_WAIT_FIRE_TRIG_REQ. (If the MySQL Server is running with
ndbinfo_show_hidden enabled, you can view this list of states by selecting from the ndb
$dbtc_apiconnect_state table, which is normally hidden.)

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node
(that is, an NDB API client or a MySQL Server attached to the cluster).

The block_instance column provides the DBTC kernel block instance number. You can use this to
obtain information about specific threads from the threadblocks table.

25.6.16.56 The ndbinfo table_distribution_status Table

The table_distribution_status table provides information about the progress of table
distribution for NDB tables.

The table_distribution_status table contains the following columns:

• node_id

Node id

• table_id

4815

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

Table ID

• tab_copy_status

Status of copying of table distribution data to disk; one of IDLE, SR_PHASE1_READ_PAGES,
SR_PHASE2_READ_TABLE, SR_PHASE3_COPY_TABLE, REMOVE_NODE, LCP_READ_TABLE,
COPY_TAB_REQ, COPY_NODE_STATE, ADD_TABLE_COORDINATOR (prior to NDB 8.0.23:
ADD_TABLE_MASTER), ADD_TABLE_PARTICIPANT (prior to NDB 8.0.23: ADD_TABLE_SLAVE),
INVALIDATE_NODE_LCP, ALTER_TABLE, COPY_TO_SAVE, or GET_TABINFO

• tab_update_status

Status of updating of table distribution data; one of IDLE, LOCAL_CHECKPOINT,
LOCAL_CHECKPOINT_QUEUED, REMOVE_NODE, COPY_TAB_REQ, ADD_TABLE_MASTER,
ADD_TABLE_SLAVE, INVALIDATE_NODE_LCP, or CALLBACK

• tab_lcp_status

Status of table LCP; one of ACTIVE (waiting for local checkpoint to be performed),
WRITING_TO_FILE (checkpoint performed but not yet written to disk), or COMPLETED (checkpoint
performed and persisted to disk)

• tab_status

Table internal status; one of ACTIVE (table exists), CREATING (table is being created), or DROPPING
(table is being dropped)

• tab_storage

Table recoverability; one of NORMAL (fully recoverable with redo logging and checkpointing),
NOLOGGING (recoverable from node crash, empty following cluster crash), or TEMPORARY (not
recoverable)

• tab_partitions

Number of partitions in table

• tab_fragments

Number of fragments in table; normally same as tab_partitions; for fully replicated tables equal
to tab_partitions * [number of node groups]

• current_scan_count

Current number of active scans

• scan_count_wait

Current number of scans waiting to be performed before ALTER TABLE can complete.

• is_reorg_ongoing

Whether the table is currently being reorganized (1 if true)

25.6.16.57 The ndbinfo table_fragments Table

The table_fragments table provides information about the fragmentation, partitioning, distribution,
and (internal) replication of NDB tables.

The table_fragments table contains the following columns:

• node_id

4816

ndbinfo: The NDB Cluster Information Database

Node ID (DIH master)

• table_id

Table ID

• partition_id

Partition ID

• fragment_id

Fragment ID (same as partition ID unless table is fully replicated)

• partition_order

Order of fragment in partition

• log_part_id

Log part ID of fragment

• no_of_replicas

Number of fragment replicas

• current_primary

Current primary node ID

• preferred_primary

Preferred primary node ID

• current_first_backup

Current first backup node ID

• current_second_backup

Current second backup node ID

• current_third_backup

Current third backup node ID

• num_alive_replicas

Current number of live fragment replicas

• num_dead_replicas

Current number of dead fragment replicas

• num_lcp_replicas

Number of fragment replicas remaining to be checkpointed

25.6.16.58 The ndbinfo table_info Table

The table_info table provides information about logging, checkpointing, distribution, and storage
options in effect for individual NDB tables.

4817

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html

ndbinfo: The NDB Cluster Information Database

The table_info table contains the following columns:

• table_id

Table ID

• logged_table

Whether table is logged (1) or not (0)

• row_contains_gci

Whether table rows contain GCI (1 true, 0 false)

• row_contains_checksum

Whether table rows contain checksum (1 true, 0 false)

• read_backup

If backup fragment replicas are read this is 1, otherwise 0

• fully_replicated

If table is fully replicated this is 1, otherwise 0

• storage_type

Table storage type; one of MEMORY or DISK

• hashmap_id

Hashmap ID

• partition_balance

Partition balance (fragment count type) used for table; one of FOR_RP_BY_NODE,
FOR_RA_BY_NODE, FOR_RP_BY_LDM, or FOR_RA_BY_LDM

• create_gci

GCI in which table was created

25.6.16.59 The ndbinfo table_replicas Table

The table_replicas table provides information about the copying, distribution, and checkpointing of
NDB table fragments and fragment replicas.

The table_replicas table contains the following columns:

• node_id

ID of the node from which data is fetched (DIH master)

• table_id

Table ID

• fragment_id

Fragment ID

• initial_gci

4818

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html

ndbinfo: The NDB Cluster Information Database

Initial GCI for table

• replica_node_id

ID of node where fragment replica is stored

• is_lcp_ongoing

Is 1 if LCP is ongoing on this fragment, 0 otherwise

• num_crashed_replicas

Number of crashed fragment replica instances

• last_max_gci_started

Highest GCI started in most recent LCP

• last_max_gci_completed

Highest GCI completed in most recent LCP

• last_lcp_id

ID of most recent LCP

• prev_lcp_id

ID of previous LCP

• prev_max_gci_started

Highest GCI started in previous LCP

• prev_max_gci_completed

Highest GCI completed in previous LCP

• last_create_gci

Last Create GCI of last crashed fragment replica instance

• last_replica_gci

Last GCI of last crashed fragment replica instance

• is_replica_alive

1 if this fragment replica is alive, 0 otherwise

25.6.16.60 The ndbinfo tc_time_track_stats Table

The tc_time_track_stats table provides time-tracking information obtained from the DBTC block
(TC) instances in the data nodes, through API nodes access NDB. Each TC instance tracks latencies
for a set of activities it undertakes on behalf of API nodes or other data nodes; these activities include
transactions, transaction errors, key reads, key writes, unique index operations, failed key operations of
any type, scans, failed scans, fragment scans, and failed fragment scans.

A set of counters is maintained for each activity, each counter covering a range of latencies less
than or equal to an upper bound. At the conclusion of each activity, its latency is determined and the
appropriate counter incremented. tc_time_track_stats presents this information as rows, with a
row for each instance of the following:

4819

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

• Data node, using its ID

• TC block instance

• Other communicating data node or API node, using its ID

• Upper bound value

Each row contains a value for each activity type. This is the number of times that this activity occurred
with a latency within the range specified by the row (that is, where the latency does not exceed the
upper bound).

The tc_time_track_stats table contains the following columns:

• node_id

Requesting node ID

• block_number

TC block number

• block_instance

TC block instance number

• comm_node_id

Node ID of communicating API or data node

• upper_bound

Upper bound of interval (in microseconds)

• scans

Based on duration of successful scans from opening to closing, tracked against the API or data
nodes requesting them.

• scan_errors

Based on duration of failed scans from opening to closing, tracked against the API or data nodes
requesting them.

• scan_fragments

Based on duration of successful fragment scans from opening to closing, tracked against the data
nodes executing them

• scan_fragment_errors

Based on duration of failed fragment scans from opening to closing, tracked against the data nodes
executing them

• transactions

Based on duration of successful transactions from beginning until sending of commit ACK, tracked
against the API or data nodes requesting them. Stateless transactions are not included.

• transaction_errors

Based on duration of failing transactions from start to point of failure, tracked against the API or data
nodes requesting them.

4820

ndbinfo: The NDB Cluster Information Database

• read_key_ops

Based on duration of successful primary key reads with locks. Tracked against both the API or data
node requesting them and the data node executing them.

• write_key_ops

Based on duration of successful primary key writes, tracked against both the API or data node
requesting them and the data node executing them.

• index_key_ops

Based on duration of successful unique index key operations, tracked against both the API or data
node requesting them and the data node executing reads of base tables.

• key_op_errors

Based on duration of all unsuccessful key read or write operations, tracked against both the API or
data node requesting them and the data node executing them.

Notes

The block_instance column provides the DBTC kernel block instance number. You can use this
together with the block name to obtain information about specific threads from the threadblocks
table.

25.6.16.61 The ndbinfo threadblocks Table

The threadblocks table associates data nodes, threads, and instances of NDB kernel blocks.

The threadblocks table contains the following columns:

• node_id

Node ID

• thr_no

Thread ID

• block_name

Block name

• block_instance

Block instance number

Notes

The value of the block_name in this table is one of the values found in the block_name column when
selecting from the ndbinfo.blocks table. Although the list of possible values is static for a given
NDB Cluster release, the list may vary between releases.

The block_instance column provides the kernel block instance number.

25.6.16.62 The ndbinfo threads Table

The threads table provides information about threads running in the NDB kernel.

The threads table contains the following columns:

• node_id

4821

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

ndbinfo: The NDB Cluster Information Database

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• thread_name

Thread name (type of thread)

• thread_description

Thread (type) description

Notes

Sample output from a 2-node example cluster, including thread descriptions, is shown here:

mysql> SELECT * FROM threads;
+---------+--------+-------------+--+
| node_id | thr_no | thread_name | thread_description |
+---------+--------+-------------+--+
5	0	main	main thread, schema and distribution handling
5	1	rep	rep thread, asynch replication and proxy block handling
5	2	ldm	ldm thread, handling a set of data partitions
5	3	recv	receive thread, performing receive and polling for new receives
6	0	main	main thread, schema and distribution handling
6	1	rep	rep thread, asynch replication and proxy block handling
6	2	ldm	ldm thread, handling a set of data partitions
6	3	recv	receive thread, performing receive and polling for new receives
+---------+--------+-------------+--+
8 rows in set (0.01 sec)

NDB 8.0.23 introduces the possibility to set either of the ThreadConfig arguments main or rep to 0
while keeping the other at 1, in which case the thread name is main_rep and its description is main
and rep thread, schema, distribution, proxy block and asynch replication
handling. It is also possible beginning with NDB 8.0.23 to set both main and rep to 0, in which
case the name of the resulting thread is shown in this table as main_rep_recv, and its description
is main, rep and recv thread, schema, distribution, proxy block and asynch
replication handling and handling receive and polling for new receives.

25.6.16.63 The ndbinfo threadstat Table

The threadstat table provides a rough snapshot of statistics for threads running in the NDB kernel.

The threadstat table contains the following columns:

• node_id

Node ID

• thr_no

Thread ID

• thr_nm

Thread name

• c_loop

Number of loops in main loop

• c_exec

4822

ndbinfo: The NDB Cluster Information Database

Number of signals executed

• c_wait

Number of times waiting for additional input

• c_l_sent_prioa

Number of priority A signals sent to own node

• c_l_sent_priob

Number of priority B signals sent to own node

• c_r_sent_prioa

Number of priority A signals sent to remote node

• c_r_sent_priob

Number of priority B signals sent to remote node

• os_tid

OS thread ID

• os_now

OS time (ms)

• os_ru_utime

OS user CPU time (µs)

• os_ru_stime

OS system CPU time (µs)

• os_ru_minflt

OS page reclaims (soft page faults)

• os_ru_majflt

OS page faults (hard page faults)

• os_ru_nvcsw

OS voluntary context switches

• os_ru_nivcsw

OS involuntary context switches

Notes

os_time uses the system gettimeofday() call.

The values of the os_ru_utime, os_ru_stime, os_ru_minflt, os_ru_majflt, os_ru_nvcsw,
and os_ru_nivcsw columns are obtained using the system getrusage() call, or the equivalent.

Since this table contains counts taken at a given point in time, for best results it is necessary to
query this table periodically and store the results in an intermediate table or tables. The MySQL

4823

ndbinfo: The NDB Cluster Information Database

Server's Event Scheduler can be employed to automate such monitoring. For more information, see
Section 27.4, “Using the Event Scheduler”.

25.6.16.64 The ndbinfo transporter_details Table

This table contains information about individual NDB transporters, rather than aggregate information as
shown by the transporters table. The transporter_details table was added in NDB 8.0.37.

The transporter_details table contains the following columns:

• node_id

This data node's unique node ID in the cluster

• block_instance

• trp_id

The transporter ID

• remote_node_id

The remote data node's node ID

• status

Status of the connection

• remote_address

Name or IP address of the remote host

• bytes_sent

Number of bytes sent using this connection

• bytes_received

Number of bytes received using this connection

• connect_count

Number of times connection established on this transporter

• overloaded

1 if this transporter is currently overloaded, otherwise 0

• overload_count

Number of times this transporter has entered overload state since connecting

• slowdown

1 if this transporter is in slowdown state, otherwise 0

• slowdown_count

Number of times this transporter has entered slowdown state since connecting

• encrypted

If this transporter is connected using TLS, this column is 1, otherwise it is 0.

4824

ndbinfo: The NDB Cluster Information Database

• sendbuffer_used_bytes

The amount, in bytes, of signal data currently awaiting send by this transporter.

• sendbuffer_max_used_bytes

The maximum amount, in bytes, of signal data awaiting send at any one time by this transporter.

• sendbuffer_alloc_bytes

Amount of send buffer, in bytes, currently allocated for signal data storage for this transporter.

• sendbuffer_max_alloc_bytes

Maxmimum amount of send buffer, in bytes, allocated for signal data storage at any one time for this
transporter.

• type

The connection type used by this transporter (TCP or SHM).

The transporter_details table displays a row showing the status of each transporter in the
cluster. See the Notes for the transporters table for more information about each of the columns in
this table.

The sendbuffer_used_bytes, sendbuffer_max_used_bytes, sendbuffer_alloc_bytes,
sendbuffer_max_alloc_bytes, and type columns were added in NDB 8.0.38.

25.6.16.65 The ndbinfo transporters Table

This table contains aggregated information about NDB transporters. In NDB 8.0.37 and later, you can
obtain similar information about individual transporters from the transporter_details table.

The transporters table contains the following columns:

• node_id

This data node's unique node ID in the cluster

• remote_node_id

The remote data node's node ID

• status

Status of the connection

• remote_address

Name or IP address of the remote host

• bytes_sent

Number of bytes sent using this connection

• bytes_received

Number of bytes received using this connection

• connect_count

Number of times connection established on this transporter

4825

ndbinfo: The NDB Cluster Information Database

• overloaded

1 if this transporter is currently overloaded, otherwise 0

• overload_count

Number of times this transporter has entered overload state since connecting

• slowdown

1 if this transporter is in slowdown state, otherwise 0

• slowdown_count

Number of times this transporter has entered slowdown state since connecting

Notes

For each running data node in the cluster, the transporters table displays a row showing the status
of each of that node's connections with all nodes in the cluster, including itself. This information is
shown in the table's status column, which can have any one of the following values: CONNECTING,
CONNECTED, DISCONNECTING, or DISCONNECTED.

Connections to API and management nodes which are configured but not currently connected to the
cluster are shown with status DISCONNECTED. Rows where the node_id is that of a data node which
is not currently connected are not shown in this table. (This is similar omission of disconnected nodes
in the ndbinfo.nodes table.

The remote_address is the host name or address for the node whose ID is shown in the
remote_node_id column. The bytes_sent from this node and bytes_received by this node
are the numbers, respectively, of bytes sent and received by the node using this connection since it
was established. For nodes whose status is CONNECTING or DISCONNECTED, these columns always
display 0.

Assume you have a 5-node cluster consisting of 2 data nodes, 2 SQL nodes, and 1 management node,
as shown in the output of the SHOW command in the ndb_mgm client:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @10.100.10.1 (8.0.42-ndb-8.0.42, Nodegroup: 0, *)
id=2 @10.100.10.2 (8.0.42-ndb-8.0.42, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @10.100.10.10 (8.0.42-ndb-8.0.42)

[mysqld(API)] 2 node(s)
id=20 @10.100.10.20 (8.0.42-ndb-8.0.42)
id=21 @10.100.10.21 (8.0.42-ndb-8.0.42)

There are 10 rows in the transporters table—5 for the first data node, and 5 for the second—
assuming that all data nodes are running, as shown here:

mysql> SELECT node_id, remote_node_id, status
 -> FROM ndbinfo.transporters;
+---------+----------------+---------------+
| node_id | remote_node_id | status |
+---------+----------------+---------------+
1	1	DISCONNECTED
1	2	CONNECTED
1	10	CONNECTED
1	20	CONNECTED
1	21	CONNECTED

4826

INFORMATION_SCHEMA Tables for NDB Cluster

2	1	CONNECTED
2	2	DISCONNECTED
2	10	CONNECTED
2	20	CONNECTED
2	21	CONNECTED
+---------+----------------+---------------+
10 rows in set (0.04 sec)

If you shut down one of the data nodes in this cluster using the command 2 STOP in the ndb_mgm
client, then repeat the previous query (again using the mysql client), this table now shows only 5 rows
—1 row for each connection from the remaining management node to another node, including both
itself and the data node that is currently offline—and displays CONNECTING for the status of each
remaining connection to the data node that is currently offline, as shown here:

mysql> SELECT node_id, remote_node_id, status
 -> FROM ndbinfo.transporters;
+---------+----------------+---------------+
| node_id | remote_node_id | status |
+---------+----------------+---------------+
1	1	DISCONNECTED
1	2	CONNECTING
1	10	CONNECTED
1	20	CONNECTED
1	21	CONNECTED
+---------+----------------+---------------+
5 rows in set (0.02 sec)

The connect_count, overloaded, overload_count, slowdown, and slowdown_count counters
are reset on connection, and retain their values after the remote node disconnects. The bytes_sent
and bytes_received counters are also reset on connection, and so retain their values following
disconnection (until the next connection resets them).

The overload state referred to by the overloaded and overload_count columns occurs
when this transporter's send buffer contains more than OVerloadLimit bytes (default is 80% of
SendBufferMemory, that is, 0.8 * 2097152 = 1677721 bytes). When a given transporter is in a state
of overload, any new transaction that tries to use this transporter fails with Error 1218 (Send Buffers
overloaded in NDB kernel). This affects both scans and primary key operations.

The slowdown state referenced by the slowdown and slowdown_count columns of this table
occurs when the transporter's send buffer contains more than 60% of the overload limit (equal to 0.6 *
2097152 = 1258291 bytes by default). In this state, any new scan using this transporter has its batch
size reduced to minimize the load on the transporter.

Common causes of send buffer slowdown or overloading include the following:

• Data size, in particular the quantity of data stored in TEXT columns or BLOB columns (or both types
of columns)

• Having a data node (ndbd or ndbmtd) on the same host as an SQL node that is engaged in binary
logging

• Large number of rows per transaction or transaction batch

• Configuration issues such as insufficient SendBufferMemory

• Hardware issues such as insufficient RAM or poor network connectivity

See also Section 25.4.3.14, “Configuring NDB Cluster Send Buffer Parameters”.

25.6.17 INFORMATION_SCHEMA Tables for NDB Cluster

Two INFORMATION_SCHEMA tables provide information that is of particular use when managing
an NDB Cluster. The FILES table provides information about NDB Cluster Disk Data files (see

4827

NDB Cluster and the Performance Schema

Section 25.6.11.1, “NDB Cluster Disk Data Objects”). The ndb_transid_mysql_connection_map
table provides a mapping between transactions, transaction coordinators, and API nodes.

Additional statistical and other data about NDB Cluster transactions, operations, threads, blocks,
and other aspects of performance can be obtained from the tables in the ndbinfo database. For
information about these tables, see Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”.

25.6.18 NDB Cluster and the Performance Schema

NDB 8.0 provides information in the MySQL Performance Schema about threads and transaction
memory usage; NDB 8.0.29 adds ndbcluster plugin threads, and NDB 8.0.30 adds instrumenting for
transaction batch memory. These features are described in greater detail in the sections which follow.

ndbcluster Plugin Threads

Beginning with NDB 8.0.29, ndbcluster plugin threads are visible in the Performance Schema
threads table, as shown in the following query:

mysql> SELECT name, type, thread_id, thread_os_id
 -> FROM performance_schema.threads
 -> WHERE name LIKE '%ndbcluster%'\G
+----------------------------------+------------+-----------+--------------+
| name | type | thread_id | thread_os_id |
+----------------------------------+------------+-----------+--------------+
thread/ndbcluster/ndb_binlog	BACKGROUND	30	11980
thread/ndbcluster/ndb_index_stat	BACKGROUND	31	11981
thread/ndbcluster/ndb_metadata	BACKGROUND	32	11982
+----------------------------------+------------+-----------+--------------+

The threads table shows all three of the threads listed here:

• ndb_binlog: Binary logging thread

• ndb_index_stat: Index statistics thread

• ndb_metadata: Metadata thread

These threads are also shown by name in the setup_threads table.

Thread names are shown in the name column of the threads and setup_threads tables using
the format prefix/plugin_name/thread_name. prefix, the object type as determined by the
performance_schema engine, is thread for plugin threads (see Thread Instrument Elements). The
plugin_name is ndbcluster. thread_name is the standalone name of the thread (ndb_binlog,
ndb_index_stat, or ndb_metadata).

Using the thread ID or OS thread ID for a given thread in the threads or setup_threads table,
it is possible to obtain considerable information from Performance Schema about plugin execution
and resource usage. This example shows how to obtain the amount of memory allocated by the
threads created by the ndbcluster plugin from the mem_root arena by joining the threads and
memory_summary_by_thread_by_event_name tables:

mysql> SELECT
 -> t.name,
 -> m.sum_number_of_bytes_alloc,
 -> IF(m.sum_number_of_bytes_alloc > 0, "true", "false") AS 'Has allocated memory'
 -> FROM performance_schema.memory_summary_by_thread_by_event_name m
 -> JOIN performance_schema.threads t
 -> ON m.thread_id = t.thread_id
 -> WHERE t.name LIKE '%ndbcluster%'
 -> AND event_name LIKE '%THD::main_mem_root%';
+----------------------------------+---------------------------+----------------------+
| name | sum_number_of_bytes_alloc | Has allocated memory |
+----------------------------------+---------------------------+----------------------+
thread/ndbcluster/ndb_binlog	20576	true
thread/ndbcluster/ndb_index_stat	0	false
thread/ndbcluster/ndb_metadata	8240	true

4828

Quick Reference: NDB Cluster SQL Statements

+----------------------------------+---------------------------+----------------------+

Transaction Memory Usage

Starting with NDB 8.0.30, you can see the amount of memory used for transaction batching by
querying the Performance Schema memory_summary_by_thread_by_event_name table, similar to
what is shown here:

mysql> SELECT EVENT_NAME
 -> FROM performance_schema.memory_summary_by_thread_by_event_name
 -> WHERE THREAD_ID = PS_CURRENT_THREAD_ID()
 -> AND EVENT_NAME LIKE 'memory/ndbcluster/%';
+---+
| EVENT_NAME |
+---+
| memory/ndbcluster/Thd_ndb::batch_mem_root |
+---+
1 row in set (0.01 sec)

The ndbcluster transaction memory instrument is also visible in the Performance Schema
setup_instruments table, as shown here:

mysql> SELECT * from performance_schema.setup_instruments
 -> WHERE NAME LIKE '%ndb%'\G
*************************** 1. row ***************************
 NAME: memory/ndbcluster/Thd_ndb::batch_mem_root
 ENABLED: YES
 TIMED: NULL
 PROPERTIES:
 VOLATILITY: 0
DOCUMENTATION: Memory used for transaction batching
1 row in set (0.01 sec)

25.6.19 Quick Reference: NDB Cluster SQL Statements

This section discusses several SQL statements that can prove useful in managing and monitoring a
MySQL server that is connected to an NDB Cluster, and in some cases provide information about the
cluster itself.

• SHOW ENGINE NDB STATUS, SHOW ENGINE NDBCLUSTER STATUS

The output of this statement contains information about the server's connection to the cluster,
creation and usage of NDB Cluster objects, and binary logging for NDB Cluster replication.

See Section 15.7.7.15, “SHOW ENGINE Statement”, for a usage example and more detailed
information.

• SHOW ENGINES

This statement can be used to determine whether or not clustering support is enabled in the MySQL
server, and if so, whether it is active.

See Section 15.7.7.16, “SHOW ENGINES Statement”, for more detailed information.

Note

This statement does not support a LIKE clause. However, you can use LIKE
to filter queries against the Information Schema ENGINES table, as discussed
in the next item.

• SELECT * FROM INFORMATION_SCHEMA.ENGINES [WHERE ENGINE LIKE 'NDB%']

This is the equivalent of SHOW ENGINES, but uses the ENGINES table of the
INFORMATION_SCHEMA database. Unlike the case with the SHOW ENGINES statement, it is possible
to filter the results using a LIKE clause, and to select specific columns to obtain information that may

4829

Quick Reference: NDB Cluster SQL Statements

be of use in scripts. For example, the following query shows whether the server was built with NDB
support and, if so, whether it is enabled:

mysql> SELECT ENGINE, SUPPORT FROM INFORMATION_SCHEMA.ENGINES
 -> WHERE ENGINE LIKE 'NDB%';
+------------+---------+
| ENGINE | SUPPORT |
+------------+---------+
| ndbcluster | YES |
| ndbinfo | YES |
+------------+---------+

If NDB support is not enabled, the preceding query returns an empty set. See Section 28.3.13, “The
INFORMATION_SCHEMA ENGINES Table”, for more information.

• SHOW VARIABLES LIKE 'NDB%'

This statement provides a list of most server system variables relating to the NDB storage engine,
and their values, as shown here:

mysql> SHOW VARIABLES LIKE 'NDB%';
+--------------------------------------+---------------------------------------+
| Variable_name | Value |
+--------------------------------------+---------------------------------------+
ndb_allow_copying_alter_table	ON
ndb_autoincrement_prefetch_sz	512
ndb_batch_size	32768
ndb_blob_read_batch_bytes	65536
ndb_blob_write_batch_bytes	65536
ndb_clear_apply_status	ON
ndb_cluster_connection_pool	1
ndb_cluster_connection_pool_nodeids	
ndb_connectstring	127.0.0.1
ndb_data_node_neighbour	0
ndb_default_column_format	FIXED
ndb_deferred_constraints	0
ndb_distribution	KEYHASH
ndb_eventbuffer_free_percent	20
ndb_eventbuffer_max_alloc	0
ndb_extra_logging	1
ndb_force_send	ON
ndb_fully_replicated	OFF
ndb_index_stat_enable	ON
ndb_index_stat_option	loop_enable=1000ms,loop_idle=1000ms,
loop_busy=100ms,update_batch=1,read_batch=4,idle_batch=32,check_batch=8,	
check_delay=10m,delete_batch=8,clean_delay=1m,error_batch=4,error_delay=1m,	
evict_batch=8,evict_delay=1m,cache_limit=32M,cache_lowpct=90,zero_total=0	
ndb_join_pushdown	ON
ndb_log_apply_status	OFF
ndb_log_bin	OFF
ndb_log_binlog_index	ON
ndb_log_empty_epochs	OFF
ndb_log_empty_update	OFF
ndb_log_exclusive_reads	OFF
ndb_log_orig	OFF
ndb_log_transaction_id	OFF
ndb_log_update_as_write	ON
ndb_log_update_minimal	OFF
ndb_log_updated_only	ON
ndb_metadata_check	ON
ndb_metadata_check_interval	60
ndb_metadata_sync	OFF
ndb_mgmd_host	127.0.0.1
ndb_nodeid	0
ndb_optimization_delay	10
ndb_optimized_node_selection	3
ndb_read_backup	ON
ndb_recv_thread_activation_threshold	8
ndb_recv_thread_cpu_mask	
ndb_report_thresh_binlog_epoch_slip	10
ndb_report_thresh_binlog_mem_usage	10

4830

Quick Reference: NDB Cluster SQL Statements

ndb_row_checksum	1
ndb_schema_dist_lock_wait_timeout	30
ndb_schema_dist_timeout	120
ndb_schema_dist_upgrade_allowed	ON
ndb_show_foreign_key_mock_tables	OFF
ndb_slave_conflict_role	NONE
ndb_table_no_logging	OFF
ndb_table_temporary	OFF
ndb_use_copying_alter_table	OFF
ndb_use_exact_count	OFF
ndb_use_transactions	ON
ndb_version	524308
ndb_version_string	ndb-8.0.42
ndb_wait_connected	30
ndb_wait_setup	30
ndbinfo_database	ndbinfo
ndbinfo_max_bytes	0
ndbinfo_max_rows	10
ndbinfo_offline	OFF
ndbinfo_show_hidden	OFF
ndbinfo_table_prefix	ndb$
ndbinfo_version	524308
+--------------------------------------+---------------------------------------+

See Section 7.1.8, “Server System Variables”, for more information.

• SELECT * FROM performance_schema.global_variables WHERE VARIABLE_NAME LIKE
'NDB%'

This statement is the equivalent of the SHOW VARIABLES statement described in the previous item,
and provides almost identical output, as shown here:

mysql> SELECT * FROM performance_schema.global_variables
 -> WHERE VARIABLE_NAME LIKE 'NDB%';
+--------------------------------------+---------------------------------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--------------------------------------+---------------------------------------+
ndb_allow_copying_alter_table	ON
ndb_autoincrement_prefetch_sz	512
ndb_batch_size	32768
ndb_blob_read_batch_bytes	65536
ndb_blob_write_batch_bytes	65536
ndb_clear_apply_status	ON
ndb_cluster_connection_pool	1
ndb_cluster_connection_pool_nodeids	
ndb_connectstring	127.0.0.1
ndb_data_node_neighbour	0
ndb_default_column_format	FIXED
ndb_deferred_constraints	0
ndb_distribution	KEYHASH
ndb_eventbuffer_free_percent	20
ndb_eventbuffer_max_alloc	0
ndb_extra_logging	1
ndb_force_send	ON
ndb_fully_replicated	OFF
ndb_index_stat_enable	ON
ndb_index_stat_option	loop_enable=1000ms,loop_idle=1000ms,
loop_busy=100ms,update_batch=1,read_batch=4,idle_batch=32,check_batch=8,	
check_delay=10m,delete_batch=8,clean_delay=1m,error_batch=4,error_delay=1m,	
evict_batch=8,evict_delay=1m,cache_limit=32M,cache_lowpct=90,zero_total=0	
ndb_join_pushdown	ON
ndb_log_apply_status	OFF
ndb_log_bin	OFF
ndb_log_binlog_index	ON
ndb_log_empty_epochs	OFF
ndb_log_empty_update	OFF
ndb_log_exclusive_reads	OFF
ndb_log_orig	OFF
ndb_log_transaction_id	OFF
ndb_log_update_as_write	ON
ndb_log_update_minimal	OFF

4831

Quick Reference: NDB Cluster SQL Statements

ndb_log_updated_only	ON
ndb_metadata_check	ON
ndb_metadata_check_interval	60
ndb_metadata_sync	OFF
ndb_mgmd_host	127.0.0.1
ndb_nodeid	0
ndb_optimization_delay	10
ndb_optimized_node_selection	3
ndb_read_backup	ON
ndb_recv_thread_activation_threshold	8
ndb_recv_thread_cpu_mask	
ndb_report_thresh_binlog_epoch_slip	10
ndb_report_thresh_binlog_mem_usage	10
ndb_row_checksum	1
ndb_schema_dist_lock_wait_timeout	30
ndb_schema_dist_timeout	120
ndb_schema_dist_upgrade_allowed	ON
ndb_show_foreign_key_mock_tables	OFF
ndb_slave_conflict_role	NONE
ndb_table_no_logging	OFF
ndb_table_temporary	OFF
ndb_use_copying_alter_table	OFF
ndb_use_exact_count	OFF
ndb_use_transactions	ON
ndb_version	524308
ndb_version_string	ndb-8.0.42
ndb_wait_connected	30
ndb_wait_setup	30
ndbinfo_database	ndbinfo
ndbinfo_max_bytes	0
ndbinfo_max_rows	10
ndbinfo_offline	OFF
ndbinfo_show_hidden	OFF
ndbinfo_table_prefix	ndb$
ndbinfo_version	524308
+--------------------------------------+---------------------------------------+

Unlike the case with the SHOW VARIABLES statement, it is possible to select individual columns. For
example:

mysql> SELECT VARIABLE_VALUE
 -> FROM performance_schema.global_variables
 -> WHERE VARIABLE_NAME = 'ndb_force_send';
+----------------+
| VARIABLE_VALUE |
+----------------+
| ON |
+----------------+

A more useful query is shown here:

mysql> SELECT VARIABLE_NAME AS Name, VARIABLE_VALUE AS Value
 > FROM performance_schema.global_variables
 > WHERE VARIABLE_NAME
 > IN ('version', 'ndb_version',
 > 'ndb_version_string', 'ndbinfo_version');

+--------------------+----------------+
| Name | Value |
+--------------------+----------------+
ndb_version	524317
ndb_version_string	ndb-8.0.29
ndbinfo_version	524317
version	8.0.29-cluster
+--------------------+----------------+
4 rows in set (0.00 sec)

For more information, see Section 29.12.15, “Performance Schema Status Variable Tables”, and
Section 7.1.8, “Server System Variables”.

• SHOW STATUS LIKE 'NDB%'

4832

Quick Reference: NDB Cluster SQL Statements

This statement shows at a glance whether or not the MySQL server is acting as a cluster SQL node,
and if so, it provides the MySQL server's cluster node ID, the host name and port for the cluster
management server to which it is connected, and the number of data nodes in the cluster, as shown
here:

mysql> SHOW STATUS LIKE 'NDB%';
+--+-------------------------------+
| Variable_name | Value |
+--+-------------------------------+
Ndb_metadata_detected_count	0
Ndb_cluster_node_id	100
Ndb_config_from_host	127.0.0.1
Ndb_config_from_port	1186
Ndb_number_of_data_nodes	2
Ndb_number_of_ready_data_nodes	2
Ndb_connect_count	0
Ndb_execute_count	0
Ndb_scan_count	0
Ndb_pruned_scan_count	0
Ndb_schema_locks_count	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	1
Ndb_api_wait_nanos_count_session	163446
Ndb_api_bytes_sent_count_session	60
Ndb_api_bytes_received_count_session	28
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
Ndb_trans_hint_count_session	0
Ndb_sorted_scan_count	0
Ndb_pushed_queries_defined	0
Ndb_pushed_queries_dropped	0
Ndb_pushed_queries_executed	0
Ndb_pushed_reads	0
Ndb_last_commit_epoch_server	37632503447571
Ndb_last_commit_epoch_session	0
Ndb_system_name	MC_20191126162038
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0

4833

Quick Reference: NDB Cluster SQL Statements

Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_slave_max_replicated_epoch	0
Ndb_api_wait_exec_complete_count	4
Ndb_api_wait_scan_result_count	7
Ndb_api_wait_meta_request_count	172
Ndb_api_wait_nanos_count	1083548094028
Ndb_api_bytes_sent_count	4640
Ndb_api_bytes_received_count	109356
Ndb_api_trans_start_count	4
Ndb_api_trans_commit_count	1
Ndb_api_trans_abort_count	1
Ndb_api_trans_close_count	4
Ndb_api_pk_op_count	2
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	1
Ndb_api_range_scan_count	1
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	1
Ndb_api_read_row_count	3
Ndb_api_trans_local_read_row_count	2
Ndb_api_adaptive_send_forced_count	1
Ndb_api_adaptive_send_unforced_count	5
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_metadata_excluded_count	0
Ndb_metadata_synced_count	0
Ndb_conflict_fn_max	0
Ndb_conflict_fn_old	0
Ndb_conflict_fn_max_del_win	0
Ndb_conflict_fn_epoch	0
Ndb_conflict_fn_epoch_trans	0
Ndb_conflict_fn_epoch2	0
Ndb_conflict_fn_epoch2_trans	0
Ndb_conflict_trans_row_conflict_count	0
Ndb_conflict_trans_row_reject_count	0
Ndb_conflict_trans_reject_count	0
Ndb_conflict_trans_detect_iter_count	0
Ndb_conflict_trans_conflict_commit_count	0
Ndb_conflict_epoch_delete_delete_count	0
Ndb_conflict_reflected_op_prepare_count	0
Ndb_conflict_reflected_op_discard_count	0
Ndb_conflict_refresh_op_count	0
Ndb_conflict_last_conflict_epoch	0
Ndb_conflict_last_stable_epoch	0
Ndb_index_stat_status	allow:1,enable:1,busy:0,
loop:1000,list:(new:0,update:0,read:0,idle:0,check:0,delete:0,error:0,total:0),	
analyze:(queue:0,wait:0),stats:(nostats:0,wait:0),total:(analyze:(all:0,error:0),	
query:(all:0,nostats:0,error:0),event:(act:0,skip:0,miss:0),cache:(refresh:0,	
clean:0,pinned:0,drop:0,evict:0)),cache:(query:0,clean:0,drop:0,evict:0,	
usedpct:0.00,highpct:0.00)	
Ndb_index_stat_cache_query	0
Ndb_index_stat_cache_clean	0
+--+-------------------------------+

If the MySQL server was built with NDB support, but it is not currently connected to a cluster, every
row in the output of this statement contains a zero or an empty string for the Value column.

See also Section 15.7.7.37, “SHOW STATUS Statement”.

4834

NDB Cluster Security Issues

• SELECT * FROM performance_schema.global_status WHERE VARIABLE_NAME LIKE
'NDB%'

This statement provides similar output to the SHOW STATUS statement discussed in the previous
item. Unlike the case with SHOW STATUS, it is possible using SELECT statements to extract values in
SQL for use in scripts for monitoring and automation purposes.

For more information, see Section 29.12.15, “Performance Schema Status Variable Tables”.

• SELECT * FROM INFORMATION_SCHEMA.PLUGINS WHERE PLUGIN_NAME LIKE 'NDB%'

This statement displays information from the Information Schema PLUGINS table about plugins
associated with NDB Cluster, such as version, author, and license, as shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.PLUGINS
 > WHERE PLUGIN_NAME LIKE 'NDB%'\G
*************************** 1. row ***************************
 PLUGIN_NAME: ndbcluster
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 80042.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: Clustered, fault-tolerant tables
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
*************************** 2. row ***************************
 PLUGIN_NAME: ndbinfo
 PLUGIN_VERSION: 0.1
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 80042.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: MySQL Cluster system information storage engine
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
*************************** 3. row ***************************
 PLUGIN_NAME: ndb_transid_mysql_connection_map
 PLUGIN_VERSION: 0.1
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: INFORMATION SCHEMA
 PLUGIN_TYPE_VERSION: 80042.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: Map between MySQL connection ID and NDB transaction ID
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON

You can also use the SHOW PLUGINS statement to display this information, but the output from that
statement cannot easily be filtered. See also The MySQL Plugin API, which describes where and
how the information in the PLUGINS table is obtained.

You can also query the tables in the ndbinfo information database for real-time data about many NDB
Cluster operations. See Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”.

25.6.20 NDB Cluster Security Issues

This section discusses security considerations to take into account when setting up and running NDB
Cluster.

Topics covered in this section include the following:

• NDB Cluster and network security issues

4835

https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-api.html

NDB Cluster Security Issues

• Configuration issues relating to running NDB Cluster securely

• NDB Cluster and the MySQL privilege system

• MySQL standard security procedures as applicable to NDB Cluster

25.6.20.1 NDB Cluster Security and Networking Issues

In this section, we discuss basic network security issues as they relate to NDB Cluster. It is extremely
important to remember that NDB Cluster “out of the box” is not secure; you or your network
administrator must take the proper steps to ensure that your cluster cannot be compromised over the
network.

Cluster communication protocols are inherently insecure, and no encryption or similar security
measures are used in communications between nodes in the cluster. Because network speed and
latency have a direct impact on the cluster's efficiency, it is also not advisable to employ SSL or other
encryption to network connections between nodes, as such schemes cause slow communications.

It is also true that no authentication is used for controlling API node access to an NDB Cluster. As with
encryption, the overhead of imposing authentication requirements would have an adverse impact on
Cluster performance.

In addition, there is no checking of the source IP address for either of the following when accessing the
cluster:

• SQL or API nodes using “free slots” created by empty [mysqld] or [api] sections in the
config.ini file

This means that, if there are any empty [mysqld] or [api] sections in the config.ini file, then
any API nodes (including SQL nodes) that know the management server's host name (or IP address)
and port can connect to the cluster and access its data without restriction. (See Section 25.6.20.2,
“NDB Cluster and MySQL Privileges”, for more information about this and related issues.)

Note

 You can exercise some control over SQL and API node access to the
cluster by specifying a HostName parameter for all [mysqld] and [api]
sections in the config.ini file. However, this also means that, should you
wish to connect an API node to the cluster from a previously unused host, you
need to add an [api] section containing its host name to the config.ini
file.

More information is available elsewhere in this chapter about the HostName
parameter. Also see Section 25.4.1, “Quick Test Setup of NDB Cluster”, for
configuration examples using HostName with API nodes.

• Any ndb_mgm client

This means that any cluster management client that is given the management server's host name
(or IP address) and port (if not the standard port) can connect to the cluster and execute any
management client command. This includes commands such as ALL STOP and SHUTDOWN.

 For these reasons, it is necessary to protect the cluster on the network level. The safest network
configuration for Cluster is one which isolates connections between Cluster nodes from any other
network communications. This can be accomplished by any of the following methods:

1. Keeping Cluster nodes on a network that is physically separate from any public networks. This
option is the most dependable; however, it is the most expensive to implement.

We show an example of an NDB Cluster setup using such a physically segregated network here:

4836

NDB Cluster Security Issues

Figure 25.7 NDB Cluster with Hardware Firewall

This setup has two networks, one private (solid box) for the Cluster management servers and
data nodes, and one public (dotted box) where the SQL nodes reside. (We show the management
and data nodes connected using a gigabit switch since this provides the best performance.) Both
networks are protected from the outside by a hardware firewall, sometimes also known as a
network-based firewall.

This network setup is safest because no packets can reach the cluster's management or data
nodes from outside the network—and none of the cluster's internal communications can reach
the outside—without going through the SQL nodes, as long as the SQL nodes do not permit any
packets to be forwarded. This means, of course, that all SQL nodes must be secured against
hacking attempts.

Important

With regard to potential security vulnerabilities, an SQL node is no different
from any other MySQL server. See Section 8.1.3, “Making MySQL Secure
Against Attackers”, for a description of techniques you can use to secure
MySQL servers.

2. Using one or more software firewalls (also known as host-based firewalls) to control which packets
pass through to the cluster from portions of the network that do not require access to it. In this type

4837

NDB Cluster Security Issues

of setup, a software firewall must be installed on every host in the cluster which might otherwise be
accessible from outside the local network.

The host-based option is the least expensive to implement, but relies purely on software to provide
protection and so is the most difficult to keep secure.

This type of network setup for NDB Cluster is illustrated here:

Figure 25.8 NDB Cluster with Software Firewalls

Using this type of network setup means that there are two zones of NDB Cluster hosts. Each
cluster host must be able to communicate with all of the other machines in the cluster, but only
those hosting SQL nodes (dotted box) can be permitted to have any contact with the outside, while
those in the zone containing the data nodes and management nodes (solid box) must be isolated
from any machines that are not part of the cluster. Applications using the cluster and user of those
applications must not be permitted to have direct access to the management and data node hosts.

To accomplish this, you must set up software firewalls that limit the traffic to the type or types
shown in the following table, according to the type of node that is running on each cluster host
computer:

Table 25.68 Node types in a host-based firewall cluster configuration

Node Type Permitted Traffic

SQL or API node • It originates from the IP address of a
management or data node (using any TCP or
UDP port).

• It originates from within the network in which
the cluster resides and is on the port that your
application is using.

Data node or Management node • It originates from the IP address of a
management or data node (using any TCP or
UDP port).

4838

NDB Cluster Security Issues

Node Type Permitted Traffic
• It originates from the IP address of an SQL or

API node.

Any traffic other than that shown in the table for a given node type should be denied.

The specifics of configuring a firewall vary from firewall application to firewall application, and are
beyond the scope of this Manual. iptables is a very common and reliable firewall application,
which is often used with APF as a front end to make configuration easier. You can (and should)
consult the documentation for the software firewall that you employ, should you choose to
implement an NDB Cluster network setup of this type, or of a “mixed” type as discussed under the
next item.

3. It is also possible to employ a combination of the first two methods, using both hardware and
software to secure the cluster—that is, using both network-based and host-based firewalls. This is
between the first two schemes in terms of both security level and cost. This type of network setup
keeps the cluster behind the hardware firewall, but permits incoming packets to travel beyond the
router connecting all cluster hosts to reach the SQL nodes.

One possible network deployment of an NDB Cluster using hardware and software firewalls in
combination is shown here:

Figure 25.9 NDB Cluster with a Combination of Hardware and Software Firewalls

In this case, you can set the rules in the hardware firewall to deny any external traffic except to SQL
nodes and API nodes, and then permit traffic to them only on the ports required by your application.

Whatever network configuration you use, remember that your objective from the viewpoint of keeping
the cluster secure remains the same—to prevent any unessential traffic from reaching the cluster while
ensuring the most efficient communication between the nodes in the cluster.

 Because NDB Cluster requires large numbers of ports to be open for communications between
nodes, the recommended option is to use a segregated network. This represents the simplest way to
prevent unwanted traffic from reaching the cluster.

Note

 If you wish to administer an NDB Cluster remotely (that is, from outside the
local network), the recommended way to do this is to use ssh or another secure
login shell to access an SQL node host. From this host, you can then run the

4839

NDB Cluster Security Issues

management client to access the management server safely, from within the
cluster's own local network.

Even though it is possible to do so in theory, it is not recommended to use
ndb_mgm to manage a Cluster directly from outside the local network on which
the Cluster is running. Since neither authentication nor encryption takes place
between the management client and the management server, this represents an
extremely insecure means of managing the cluster, and is almost certain to be
compromised sooner or later.

25.6.20.2 NDB Cluster and MySQL Privileges

In this section, we discuss how the MySQL privilege system works in relation to NDB Cluster and the
implications of this for keeping an NDB Cluster secure.

 Standard MySQL privileges apply to NDB Cluster tables. This includes all MySQL privilege types
(SELECT privilege, UPDATE privilege, DELETE privilege, and so on) granted on the database, table, and
column level. As with any other MySQL Server, user and privilege information is stored in the mysql
system database. The SQL statements used to grant and revoke privileges on NDB tables, databases
containing such tables, and columns within such tables are identical in all respects with the GRANT and
REVOKE statements used in connection with database objects involving any (other) MySQL storage
engine. The same thing is true with respect to the CREATE USER and DROP USER statements.

 It is important to keep in mind that, by default, the MySQL grant tables use the InnoDB storage
engine. Because of this, those tables are not normally duplicated or shared among MySQL servers
acting as SQL nodes in an NDB Cluster. In other words, changes in users and their privileges do not
automatically propagate between SQL nodes by default. If you wish, you can enable synchronization
of MySQL users and privileges across NDB Cluster SQL nodes; see Section 25.6.13, “Privilege
Synchronization and NDB_STORED_USER”, for details.

 Conversely, because there is no way in MySQL to deny privileges (privileges can either be revoked
or not granted in the first place, but not denied as such), there is no special protection for NDB tables
on one SQL node from users that have privileges on another SQL node; this is true even if you are
not using automatic distribution of user privileges. The definitive example of this is the MySQL root
account, which can perform any action on any database object. In combination with empty [mysqld]
or [api] sections of the config.ini file, this account can be especially dangerous. To understand
why, consider the following scenario:

• The config.ini file contains at least one empty [mysqld] or [api] section. This means that the
NDB Cluster management server performs no checking of the host from which a MySQL Server (or
other API node) accesses the NDB Cluster.

• There is no firewall, or the firewall fails to protect against access to the NDB Cluster from hosts
external to the network.

• The host name or IP address of the NDB Cluster management server is known or can be determined
from outside the network.

If these conditions are true, then anyone, anywhere can start a MySQL Server with --ndbcluster
--ndb-connectstring=management_host and access this NDB Cluster. Using the MySQL root
account, this person can then perform the following actions:

• Execute metadata statements such as SHOW DATABASES statement (to obtain a list of all NDB
databases on the server) or SHOW TABLES FROM some_ndb_database statement to obtain a list
of all NDB tables in a given database

• Run any legal MySQL statements on any of the discovered tables, such as:

• SELECT * FROM some_table or TABLE some_table to read all the data from any table

• DELETE FROM some_table or TRUNCATE TABLE to delete all the data from a table

4840

NDB Cluster Security Issues

• DESCRIBE some_table or SHOW CREATE TABLE some_table to determine the table schema

• UPDATE some_table SET column1 = some_value to fill a table column with “garbage” data;
this could actually cause much greater damage than simply deleting all the data

More insidious variations might include statements like these:

UPDATE some_table SET an_int_column = an_int_column + 1

or

UPDATE some_table SET a_varchar_column = REVERSE(a_varchar_column)

Such malicious statements are limited only by the imagination of the attacker.

The only tables that would be safe from this sort of mayhem would be those tables that were created
using storage engines other than NDB, and so not visible to a “rogue” SQL node.

 A user who can log in as root can also access the INFORMATION_SCHEMA database and its
tables, and so obtain information about databases, tables, stored routines, scheduled events, and
any other database objects for which metadata is stored in INFORMATION_SCHEMA.

It is also a very good idea to use different passwords for the root accounts on different NDB Cluster
SQL nodes unless you are using shared privileges.

In sum, you cannot have a safe NDB Cluster if it is directly accessible from outside your local network.

Important

Never leave the MySQL root account password empty. This is just as true
when running MySQL as an NDB Cluster SQL node as it is when running it as
a standalone (non-Cluster) MySQL Server, and should be done as part of the
MySQL installation process before configuring the MySQL Server as an SQL
node in an NDB Cluster.

If you need to synchronize mysql system tables between SQL nodes, you can use standard MySQL
replication to do so, or employ a script to copy table entries between the MySQL servers. Users and
their privileges can be shared and kept in synch using the NDB_STORED_USER privilege.

Summary. The most important points to remember regarding the MySQL privilege system with
regard to NDB Cluster are listed here:

1. Users and privileges established on one SQL node do not automatically exist or take effect on other
SQL nodes in the cluster. Conversely, removing a user or privilege on one SQL node in the cluster
does not remove the user or privilege from any other SQL nodes.

2. You can share MySQL users and privileges among SQL nodes using NDB_STORED_USER.

3. Once a MySQL user is granted privileges on an NDB table from one SQL node in an NDB Cluster,
that user can “see” any data in that table regardless of the SQL node from which the data
originated, even if that user is not shared.

25.6.20.3 NDB Cluster and MySQL Security Procedures

In this section, we discuss MySQL standard security procedures as they apply to running NDB Cluster.

In general, any standard procedure for running MySQL securely also applies to running a MySQL
Server as part of an NDB Cluster. First and foremost, you should always run a MySQL Server as the
mysql operating system user; this is no different from running MySQL in a standard (non-Cluster)
environment. The mysql system account should be uniquely and clearly defined. Fortunately, this is

4841

NDB Cluster Replication

the default behavior for a new MySQL installation. You can verify that the mysqld process is running
as the mysql operating system user by using the system command such as the one shown here:

$> ps aux | grep mysql
root 10467 0.0 0.1 3616 1380 pts/3 S 11:53 0:00 \
 /bin/sh ./mysqld_safe --ndbcluster --ndb-connectstring=localhost:1186
mysql 10512 0.2 2.5 58528 26636 pts/3 Sl 11:53 0:00 \
 /usr/local/mysql/libexec/mysqld --basedir=/usr/local/mysql \
 --datadir=/usr/local/mysql/var --user=mysql --ndbcluster \
 --ndb-connectstring=localhost:1186 --pid-file=/usr/local/mysql/var/mothra.pid \
 --log-error=/usr/local/mysql/var/mothra.err
jon 10579 0.0 0.0 2736 688 pts/0 S+ 11:54 0:00 grep mysql

If the mysqld process is running as any other user than mysql, you should immediately shut it down
and restart it as the mysql user. If this user does not exist on the system, the mysql user account
should be created, and this user should be part of the mysql user group; in this case, you should
also make sure that the MySQL data directory on this system (as set using the --datadir option for
mysqld) is owned by the mysql user, and that the SQL node's my.cnf file includes user=mysql in
the [mysqld] section. Alternatively, you can start the MySQL server process with --user=mysql
on the command line, but it is preferable to use the my.cnf option, since you might forget to use the
command-line option and so have mysqld running as another user unintentionally. The mysqld_safe
startup script forces MySQL to run as the mysql user.

Important

Never run mysqld as the system root user. Doing so means that potentially
any file on the system can be read by MySQL, and thus—should MySQL be
compromised—by an attacker.

 As mentioned in the previous section (see Section 25.6.20.2, “NDB Cluster and MySQL Privileges”),
you should always set a root password for the MySQL Server as soon as you have it running. You
should also delete the anonymous user account that is installed by default. You can accomplish these
tasks using the following statements:

$> mysql -u root

mysql> UPDATE mysql.user
 -> SET Password=PASSWORD('secure_password')
 -> WHERE User='root';

mysql> DELETE FROM mysql.user
 -> WHERE User='';

mysql> FLUSH PRIVILEGES;

Be very careful when executing the DELETE statement not to omit the WHERE clause, or you risk
deleting all MySQL users. Be sure to run the FLUSH PRIVILEGES statement as soon as you
have modified the mysql.user table, so that the changes take immediate effect. Without FLUSH
PRIVILEGES, the changes do not take effect until the next time that the server is restarted.

Note

 Many of the NDB Cluster utilities such as ndb_show_tables, ndb_desc,
and ndb_select_all also work without authentication and can reveal table
names, schemas, and data. By default these are installed on Unix-style systems
with the permissions wxr-xr-x (755), which means they can be executed by
any user that can access the mysql/bin directory.

See Section 25.5, “NDB Cluster Programs”, for more information about these
utilities.

25.7 NDB Cluster Replication

4842

NDB Cluster Replication

NDB Cluster supports asynchronous replication, more usually referred to simply as “replication”.
This section explains how to set up and manage a configuration in which one group of computers
operating as an NDB Cluster replicates to a second computer or group of computers. We assume
some familiarity on the part of the reader with standard MySQL replication as discussed elsewhere in
this Manual. (See Chapter 19, Replication).

Note

NDB Cluster does not support replication using GTIDs; semisynchronous
replication and group replication are also not supported by the NDB storage
engine.

Normal (non-clustered) replication involves a source server and a replica server, the source being
so named because operations and data to be replicated originate with it, and the replica being the
recipient of these. In NDB Cluster, replication is conceptually very similar but can be more complex
in practice, as it may be extended to cover a number of different configurations including replicating
between two complete clusters. Although an NDB Cluster itself depends on the NDB storage engine
for clustering functionality, it is not necessary to use NDB as the storage engine for the replica's copies
of the replicated tables (see Replication from NDB to other storage engines). However, for maximum
availability, it is possible (and preferable) to replicate from one NDB Cluster to another, and it is this
scenario that we discuss, as shown in the following figure:

Figure 25.10 NDB Cluster-to-Cluster Replication Layout

In this scenario, the replication process is one in which successive states of a source cluster are
logged and saved to a replica cluster. This process is accomplished by a special thread known as

4843

NDB Cluster Replication: Abbreviations and Symbols

the NDB binary log injector thread, which runs on each MySQL server and produces a binary log
(binlog). This thread ensures that all changes in the cluster producing the binary log—and not just
those changes that are effected through the MySQL Server—are inserted into the binary log with the
correct serialization order. We refer to the MySQL source and replica servers as replication servers or
replication nodes, and the data flow or line of communication between them as a replication channel.

For information about performing point-in-time recovery with NDB Cluster and NDB Cluster Replication,
see Section 25.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”.

NDB API replica status variables. NDB API counters can provide enhanced monitoring capabilities
on replica clusters. These counters are implemented as NDB statistics _slave status variables, as
seen in the output of SHOW STATUS, or in the results of queries against the Performance Schema
session_status or global_status table in a mysql client session connected to a MySQL Server
that is acting as a replica in NDB Cluster Replication. By comparing the values of these status variables
before and after the execution of statements affecting replicated NDB tables, you can observe the
corresponding actions taken on the NDB API level by the replica, which can be useful when monitoring
or troubleshooting NDB Cluster Replication. Section 25.6.15, “NDB API Statistics Counters and
Variables”, provides additional information.

Replication from NDB to non-NDB tables. It is possible to replicate NDB tables from an NDB
Cluster acting as the replication source to tables using other MySQL storage engines such as InnoDB
or MyISAM on a replica mysqld. This is subject to a number of conditions; see Replication from NDB
to other storage engines, and Replication from NDB to a nontransactional storage engine, for more
information.

25.7.1 NDB Cluster Replication: Abbreviations and Symbols

Throughout this section, we use the following abbreviations or symbols for referring to the source and
replica clusters, and to processes and commands run on the clusters or cluster nodes:

Table 25.69 Abbreviations used throughout this section referring to source and replica clusters,
and to processes and commands run on cluster nodes

Symbol or Abbreviation Description (Refers to...)

S The cluster serving as the (primary) replication
source

R The cluster acting as the (primary) replica

shellS> Shell command to be issued on the source cluster

mysqlS> MySQL client command issued on a single
MySQL server running as an SQL node on the
source cluster

mysqlS*> MySQL client command to be issued on all SQL
nodes participating in the replication source
cluster

shellR> Shell command to be issued on the replica cluster

mysqlR> MySQL client command issued on a single
MySQL server running as an SQL node on the
replica cluster

mysqlR*> MySQL client command to be issued on all SQL
nodes participating in the replica cluster

C Primary replication channel

C' Secondary replication channel

S' Secondary replication source

4844

General Requirements for NDB Cluster Replication

Symbol or Abbreviation Description (Refers to...)

R' Secondary replica

25.7.2 General Requirements for NDB Cluster Replication

A replication channel requires two MySQL servers acting as replication servers (one each for the
source and replica). For example, this means that in the case of a replication setup with two replication
channels (to provide an extra channel for redundancy), there should be a total of four replication nodes,
two per cluster.

Replication of an NDB Cluster as described in this section and those following is dependent on row-
based replication. This means that the replication source MySQL server must be running with --
binlog-format=ROW or --binlog-format=MIXED, as described in Section 25.7.6, “Starting NDB
Cluster Replication (Single Replication Channel)”. For general information about row-based replication,
see Section 19.2.1, “Replication Formats”.

Important

If you attempt to use NDB Cluster Replication with --binlog-
format=STATEMENT, replication fails to work properly because the
ndb_binlog_index table on the source cluster and the epoch column of
the ndb_apply_status table on the replica cluster are not updated (see
Section 25.7.4, “NDB Cluster Replication Schema and Tables”). Instead, only
updates on the MySQL server acting as the replication source propagate to the
replica, and no updates from any other SQL nodes in the source cluster are
replicated.

The default value for the --binlog-format option is MIXED.

Each MySQL server used for replication in either cluster must be uniquely identified among all the
MySQL replication servers participating in either cluster (you cannot have replication servers on both
the source and replica clusters sharing the same ID). This can be done by starting each SQL node
using the --server-id=id option, where id is a unique integer. Although it is not strictly necessary,
we assume for purposes of this discussion that all NDB Cluster binaries are of the same release
version.

It is generally true in MySQL Replication that both MySQL servers (mysqld processes) involved must
be compatible with one another with respect to both the version of the replication protocol used and the
SQL feature sets which they support (see Section 19.5.2, “Replication Compatibility Between MySQL
Versions”). It is due to such differences between the binaries in the NDB Cluster and MySQL Server
8.0 distributions that NDB Cluster Replication has the additional requirement that both mysqld binaries
come from an NDB Cluster distribution. The simplest and easiest way to assure that the mysqld
servers are compatible is to use the same NDB Cluster distribution for all source and replica mysqld
binaries.

We assume that the replica server or cluster is dedicated to replication of the source cluster, and that
no other data is being stored on it.

All NDB tables being replicated must be created using a MySQL server and client. Tables and other
database objects created using the NDB API (with, for example, Dictionary::createTable()) are
not visible to a MySQL server and so are not replicated. Updates by NDB API applications to existing
tables that were created using a MySQL server can be replicated.

Note

It is possible to replicate an NDB Cluster using statement-based replication.
However, in this case, the following restrictions apply:

• All updates to data rows on the cluster acting as the source must be directed
to a single MySQL server.

4845

https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-createtable

Known Issues in NDB Cluster Replication

• It is not possible to replicate a cluster using multiple simultaneous MySQL
replication processes.

• Only changes made at the SQL level are replicated.

These are in addition to the other limitations of statement-based replication
as opposed to row-based replication; see Section 19.2.1.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”, for more
specific information concerning the differences between the two replication
formats.

25.7.3 Known Issues in NDB Cluster Replication

This section discusses known problems or issues when using replication with NDB Cluster.

Loss of connection between source and replica. A loss of connection can occur either between
the source cluster SQL node and the replica cluster SQL node, or between the source SQL node and
the data nodes of the source cluster. In the latter case, this can occur not only as a result of loss of
physical connection (for example, a broken network cable), but due to the overflow of data node event
buffers; if the SQL node is too slow to respond, it may be dropped by the cluster (this is controllable
to some degree by adjusting the MaxBufferedEpochs and TimeBetweenEpochs configuration
parameters). If this occurs, it is entirely possible for new data to be inserted into the source cluster
without being recorded in the source SQL node's binary log. For this reason, to guarantee high
availability, it is extremely important to maintain a backup replication channel, to monitor the primary
channel, and to fail over to the secondary replication channel when necessary to keep the replica
cluster synchronized with the source. NDB Cluster is not designed to perform such monitoring on its
own; for this, an external application is required.

 The source SQL node issues a “gap” event when connecting or reconnecting to the source cluster.
(A gap event is a type of “incident event,” which indicates an incident that occurs that affects the
contents of the database but that cannot easily be represented as a set of changes. Examples of
incidents are server failures, database resynchronization, some software updates, and some hardware
changes.) When the replica encounters a gap in the replication log, it stops with an error message. This
message is available in the output of SHOW REPLICA STATUS (prior to NDB 8.0.22, use SHOW SLAVE
STATUS), and indicates that the SQL thread has stopped due to an incident registered in the replication
stream, and that manual intervention is required. See Section 25.7.8, “Implementing Failover with NDB
Cluster Replication”, for more information about what to do in such circumstances.

Important

Because NDB Cluster is not designed on its own to monitor replication status
or provide failover, if high availability is a requirement for the replica server
or cluster, then you must set up multiple replication lines, monitor the source
mysqld on the primary replication line, and be prepared fail over to a secondary
line if and as necessary. This must be done manually, or possibly by means
of a third-party application. For information about implementing this type of
setup, see Section 25.7.7, “Using Two Replication Channels for NDB Cluster
Replication”, and Section 25.7.8, “Implementing Failover with NDB Cluster
Replication”.

If you are replicating from a standalone MySQL server to an NDB Cluster, one
channel is usually sufficient.

Circular replication. NDB Cluster Replication supports circular replication, as shown in the next
example. The replication setup involves three NDB Clusters numbered 1, 2, and 3, in which Cluster
1 acts as the replication source for Cluster 2, Cluster 2 acts as the source for Cluster 3, and Cluster
3 acts as the source for Cluster 1, thus completing the circle. Each NDB Cluster has two SQL nodes,
with SQL nodes A and B belonging to Cluster 1, SQL nodes C and D belonging to Cluster 2, and SQL
nodes E and F belonging to Cluster 3.

4846

Known Issues in NDB Cluster Replication

Circular replication using these clusters is supported as long as the following conditions are met:

• The SQL nodes on all source and replica clusters are the same.

• All SQL nodes acting as sources and replicas are started with the system variable
log_replica_updates (NDB 8.0.26 and later) or log_slave_updates (prior to NDB 8.0.26)
enabled.

This type of circular replication setup is shown in the following diagram:

Figure 25.11 NDB Cluster Circular Replication With All Sources As Replicas

In this scenario, SQL node A in Cluster 1 replicates to SQL node C in Cluster 2; SQL node C replicates
to SQL node E in Cluster 3; SQL node E replicates to SQL node A. In other words, the replication line
(indicated by the curved arrows in the diagram) directly connects all SQL nodes used as sources and
replicas.

4847

Known Issues in NDB Cluster Replication

It should also be possible to set up circular replication in which not all source SQL nodes are also
replicas, as shown here:

Figure 25.12 NDB Cluster Circular Replication Where Not All Sources Are Replicas

In this case, different SQL nodes in each cluster are used as sources and replicas. However, you
must not start any of the SQL nodes with the log_replica_updates or log_slave_updates
system variable enabled. This type of circular replication scheme for NDB Cluster, in which the line of
replication (again indicated by the curved arrows in the diagram) is discontinuous, should be possible,
but it should be noted that it has not yet been thoroughly tested and must therefore still be considered
experimental.

Note

The NDB storage engine uses idempotent execution mode, which suppresses
duplicate-key and other errors that otherwise break circular replication of NDB

4848

Known Issues in NDB Cluster Replication

Cluster. This is equivalent to setting the global value of the system variable
replica_exec_mode or slave_exec_mode to IDEMPOTENT, although this is
not necessary in NDB Cluster replication, since NDB Cluster sets this variable
automatically and ignores any attempts to set it explicitly.

NDB Cluster replication and primary keys. In the event of a node failure, errors in replication of
NDB tables without primary keys can still occur, due to the possibility of duplicate rows being inserted in
such cases. For this reason, it is highly recommended that all NDB tables being replicated have explicit
primary keys.

NDB Cluster Replication and Unique Keys. In older versions of NDB Cluster, operations
that updated values of unique key columns of NDB tables could result in duplicate-key errors when
replicated. This issue is solved for replication between NDB tables by deferring unique key checks until
after all table row updates have been performed.

Deferring constraints in this way is currently supported only by NDB. Thus, updates of unique keys
when replicating from NDB to a different storage engine such as InnoDB or MyISAM are still not
supported.

The problem encountered when replicating without deferred checking of unique key updates can be
illustrated using NDB table such as t, is created and populated on the source (and transmitted to a
replica that does not support deferred unique key updates) as shown here:

CREATE TABLE t (
 p INT PRIMARY KEY,
 c INT,
 UNIQUE KEY u (c)
) ENGINE NDB;

INSERT INTO t
 VALUES (1,1), (2,2), (3,3), (4,4), (5,5);

The following UPDATE statement on t succeeds on the source, since the rows affected are processed
in the order determined by the ORDER BY option, performed over the entire table:

UPDATE t SET c = c - 1 ORDER BY p;

The same statement fails with a duplicate key error or other constraint violation on the replica, because
the ordering of the row updates is performed for one partition at a time, rather than for the table as a
whole.

Note

Every NDB table is implicitly partitioned by key when it is created. See
Section 26.2.5, “KEY Partitioning”, for more information.

GTIDs not supported. Replication using global transaction IDs is not compatible with the NDB
storage engine, and is not supported. Enabling GTIDs is likely to cause NDB Cluster Replication to fail.

Multithreaded replicas. Previously, NDB Cluster did not support multithreaded replicas. This
restriction was removed in NDB 8.0.33.

To enable multithreading on the replica in NDB 8.0.33 and later, it is necessary to perform the following
steps:

1. Set --ndb-log-transaction-dependency to ON when starting the source mysqld.

2. Also on the source mysqld, set binlog_transaction_dependency_tracking to WRITESET.
This can be done at while the mysqld process is running.

3. To ensure that the replica uses multiple worker threads, set the value of the
replica_parallel_workers greater than 1. The default is 4, and can be changed on the
replica at while it is running.

4849

Known Issues in NDB Cluster Replication

Prior to NDB 8.0.26, setting any system variables relating to multithreaded replicas
such as replica_parallel_workers or slave_parallel_workers, and
replica_checkpoint_group or slave_checkpoint_group (or the equivalent mysqld startup
options) was completely ignored, and had no effect.

In NDB 8.0.27 through NDB 8.0.32, replica_parallel_workers must be set to 0. In these
versions, if this is set to any other value on startup, NDB changes it to 0, and writes a message to the
mysqld server log file. This restriction is also lifted in NDB 8.0.33.

Restarting with --initial. Restarting the cluster with the --initial option causes the sequence
of GCI and epoch numbers to start over from 0. (This is generally true of NDB Cluster and not
limited to replication scenarios involving Cluster.) The MySQL servers involved in replication should
in this case be restarted. After this, you should use the RESET MASTER and RESET REPLICA
(prior to NDB 8.0.22, use RESET SLAVE) statements to clear the invalid ndb_binlog_index and
ndb_apply_status tables, respectively.

Replication from NDB to other storage engines. It is possible to replicate an NDB table on the
source to a table using a different storage engine on the replica, taking into account the restrictions
listed here:

• Multi-source and circular replication are not supported (tables on both the source and the replica
must use the NDB storage engine for this to work).

• Using a storage engine which does not perform binary logging for tables on the replica requires
special handling.

• Use of a nontransactional storage engine for tables on the replica also requires special handling.

• The source mysqld must be started with --ndb-log-update-as-write=0 or --ndb-log-
update-as-write=OFF.

The next few paragraphs provide additional information about each of the issues just described.

Multiple sources not supported when replicating NDB to other storage engines. For replication
from NDB to a different storage engine, the relationship between the two databases must be one-to-
one. This means that bidirectional or circular replication is not supported between NDB Cluster and
other storage engines.

In addition, it is not possible to configure more than one replication channel when replicating between
NDB and a different storage engine. (An NDB Cluster database can simultaneously replicate to multiple
NDB Cluster databases.) If the source uses NDB tables, it is still possible to have more than one
MySQL Server maintain a binary log of all changes, but for the replica to change sources (fail over), the
new source-replica relationship must be explicitly defined on the replica.

Replicating NDB tables to a storage engine that does not perform binary logging. If you
attempt to replicate from an NDB Cluster to a replica that uses a storage engine that does not
handle its own binary logging, the replication process aborts with the error Binary logging not
possible ... Statement cannot be written atomically since more than one
engine involved and at least one engine is self-logging (Error 1595). It is possible
to work around this issue in one of the following ways:

• Turn off binary logging on the replica. This can be accomplished by setting sql_log_bin =
0.

• Change the storage engine used for the mysql.ndb_apply_status table. Causing this
table to use an engine that does not handle its own binary logging can also eliminate the conflict.
This can be done by issuing a statement such as ALTER TABLE mysql.ndb_apply_status
ENGINE=MyISAM on the replica. It is safe to do this when using a storage engine other than NDB on
the replica, since you do not need to worry about keeping multiple replicas synchronized.

• Filter out changes to the mysql.ndb_apply_status table on the replica. This can be done by
starting the replica with --replicate-ignore-table=mysql.ndb_apply_status. If you need

4850

Known Issues in NDB Cluster Replication

for other tables to be ignored by replication, you might wish to use an appropriate --replicate-
wild-ignore-table option instead.

Important

You should not disable replication or binary logging of
mysql.ndb_apply_status or change the storage engine used for this table
when replicating from one NDB Cluster to another. See Replication and binary
log filtering rules with replication between NDB Clusters, for details.

Replication from NDB to a nontransactional storage engine. When replicating from NDB to a
nontransactional storage engine such as MyISAM, you may encounter unnecessary duplicate key
errors when replicating INSERT ... ON DUPLICATE KEY UPDATE statements. You can suppress
these by using --ndb-log-update-as-write=0, which forces updates to be logged as writes,
rather than as updates.

NDB Replication and File System Encryption (TDE). The use of an encrypted filesystem does not
have any effect on NDB Replication. All of the following scenarios are supported:

• Replication of an NDB Cluster having an encrypted file system to an NDB Cluster whose file system
is not encrypted.

• Replication of an NDB Cluster whose file system is not encrypted to an NDB Cluster whose file
system is encrypted.

• Replication of an NDB Cluster whose file system is encrypted to a standalone MySQL server using
InnoDB tables which are not encrypted.

• Replication of an NDB Cluster with an unencrypted file system to a standalone MySQL server using
InnoDB tables with file sytem encryption.

Replication and binary log filtering rules with replication between NDB Clusters. If you are
using any of the options --replicate-do-*, --replicate-ignore-*, --binlog-do-db, or --
binlog-ignore-db to filter databases or tables being replicated, you must take care not to block
replication or binary logging of the mysql.ndb_apply_status, which is required for replication
between NDB Clusters to operate properly. In particular, you must keep in mind the following:

1. Using --replicate-do-db=db_name (and no other --replicate-do-* or --replicate-
ignore-* options) means that only tables in database db_name are replicated. In this case, you
should also use --replicate-do-db=mysql, --binlog-do-db=mysql, or --replicate-
do-table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is
populated on replicas.

Using --binlog-do-db=db_name (and no other --binlog-do-db options) means that
changes only to tables in database db_name are written to the binary log. In this case, you should
also use --replicate-do-db=mysql, --binlog-do-db=mysql, or --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is populated on
replicas.

2. Using --replicate-ignore-db=mysql means that no tables in the mysql
database are replicated. In this case, you should also use --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is replicated.

Using --binlog-ignore-db=mysql means that no changes to tables in the mysql
database are written to the binary log. In this case, you should also use --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is replicated.

You should also remember that each replication rule requires the following:

1. Its own --replicate-do-* or --replicate-ignore-* option, and that multiple rules
cannot be expressed in a single replication filtering option. For information about these rules, see
Section 19.1.6, “Replication and Binary Logging Options and Variables”.

4851

Known Issues in NDB Cluster Replication

2. Its own --binlog-do-db or --binlog-ignore-db option, and that multiple rules cannot
be expressed in a single binary log filtering option. For information about these rules, see
Section 7.4.4, “The Binary Log”.

If you are replicating an NDB Cluster to a replica that uses a storage engine other than NDB, the
considerations just given previously may not apply, as discussed elsewhere in this section.

NDB Cluster Replication and IPv6. Beginning with NDB 8.0.22, all types of NDB Cluster nodes
support IPv6; this includes management nodes, data nodes, and API or SQL nodes.

Prior to NDB 8.0.22, the NDB API and MGM API (and thus data nodes and management nodes) do
not support IPv6, although MySQL Servers—including those acting as SQL nodes in an NDB Cluster
—can use IPv6 to contact other MySQL Servers. In versions of NDB Cluster prior to 8.0.22, you can
replicate between clusters using IPv6 to connect the SQL nodes acting as source and replica as shown
by the dotted arrow in the following diagram:

Figure 25.13 Replication Between SQL Nodes Connected Using IPv6

Prior to NDB 8.0.22, all connections originating within the NDB Cluster —represented in the preceding
diagram by solid arrows—must use IPv4. In other words, all NDB Cluster data nodes, management
servers, and management clients must be accessible from one another using IPv4. In addition, SQL
nodes must use IPv4 to communicate with the cluster. In NDB 8.0.22 and later, these restrictions no
longer apply; in addition, any applications written using the NDB and MGM APIs can be written and
deployed assuming an IPv6-only environment.

Note

In versions 8.0.22 through 8.0.33 inclusive, NDB required system support for
IPv6 to run, whether or not the cluster actually used any IPv6 addresses. In
NDB Cluster 8.0.34 and later, this is no longer an issue, and you are free to
disable IPv6 in the Linux kernel if IPv6 addressing is not in use by the cluster.

Attribute promotion and demotion. NDB Cluster Replication includes support for attribute
promotion and demotion. The implementation of the latter distinguishes between lossy and
non-lossy type conversions, and their use on the replica can be controlled by setting the
global value of the system variable replica_type_conversions (NDB 8.0.26 and later) or
slave_type_conversions (prior to NDB 8.0.26).

4852

NDB Cluster Replication Schema and Tables

For more information about attribute promotion and demotion in NDB Cluster, see Row-based
replication: attribute promotion and demotion.

NDB, unlike InnoDB or MyISAM, does not write changes to virtual columns to the binary log; however,
this has no detrimental effects on NDB Cluster Replication or replication between NDB and other
storage engines. Changes to stored generated columns are logged.

25.7.4 NDB Cluster Replication Schema and Tables

• ndb_apply_status Table

• ndb_binlog_index Table

• ndb_replication Table

Replication in NDB Cluster makes use of a number of dedicated tables in the mysql database on each
MySQL Server instance acting as an SQL node in both the cluster being replicated and in the replica.
This is true regardless of whether the replica is a single server or a cluster.

The ndb_binlog_index and ndb_apply_status tables are created in the mysql database. They
should not be explicitly replicated by the user. User intervention is normally not required to create or
maintain either of these tables, since both are maintained by the NDB binary log (binlog) injector thread.
This keeps the source mysqld process updated to changes performed by the NDB storage engine.
The NDB binlog injector thread receives events directly from the NDB storage engine. The NDB injector
is responsible for capturing all the data events within the cluster, and ensures that all events which
change, insert, or delete data are recorded in the ndb_binlog_index table. The replica I/O (receiver)
thread transfers the events from the source's binary log to the replica's relay log.

The ndb_replication table must be created manually. This table can be updated by the
user to perform filtering by database or table. See ndb_replication Table, for more information.
ndb_replication is also used in NDB Replication conflict detection and resolution for conflict
resolution control; see Conflict Resolution Control.

Even though ndb_binlog_index and ndb_apply_status are created and maintained
automatically, it is advisable to check for the existence and integrity of these tables as an initial step
in preparing an NDB Cluster for replication. It is possible to view event data recorded in the binary
log by querying the mysql.ndb_binlog_index table directly on the source. This can be also be
accomplished using the SHOW BINLOG EVENTS statement on either the source or replica SQL node.
(See Section 15.7.7.2, “SHOW BINLOG EVENTS Statement”.)

You can also obtain useful information from the output of SHOW ENGINE NDB STATUS.

Note

When performing schema changes on NDB tables, applications should wait
until the ALTER TABLE statement has returned in the MySQL client connection
that issued the statement before attempting to use the updated definition of the
table.

ndb_apply_status Table

ndb_apply_status is used to keep a record of the operations that have been replicated from the
source to the replica. If the ndb_apply_status table does not exist on the replica, ndb_restore re-
creates it.

Unlike the case with ndb_binlog_index, the data in this table is not specific to any one SQL node in
the (replica) cluster, and so ndb_apply_status can use the NDBCLUSTER storage engine, as shown
here:

CREATE TABLE `ndb_apply_status` (
 `server_id` INT(10) UNSIGNED NOT NULL,

4853

NDB Cluster Replication Schema and Tables

 `epoch` BIGINT(20) UNSIGNED NOT NULL,
 `log_name` VARCHAR(255) CHARACTER SET latin1 COLLATE latin1_bin NOT NULL,
 `start_pos` BIGINT(20) UNSIGNED NOT NULL,
 `end_pos` BIGINT(20) UNSIGNED NOT NULL,
 PRIMARY KEY (`server_id`) USING HASH
) ENGINE=NDBCLUSTER DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

The ndb_apply_status table is populated only on replicas, which means that, on the
source, this table never contains any rows; thus, there is no need to allot any DataMemory to
ndb_apply_status there.

Because this table is populated from data originating on the source, it should be allowed to replicate;
any replication filtering or binary log filtering rules that inadvertently prevent the replica from updating
ndb_apply_status, or that prevent the source from writing into the binary log may prevent
replication between clusters from operating properly. For more information about potential problems
arising from such filtering rules, see Replication and binary log filtering rules with replication between
NDB Clusters.

It is possible to delete this table, but this is not recommended. Deleting it puts all SQL nodes
in read-only mode; in NDB 8.0.24 and later, NDB detects that this table has been dropped, and
re-creates it, after which it is possible once again to perform updates. Dropping and re-creating
ndb_apply_status creates a gap event in the binary log; the gap event causes replica SQL nodes to
stop applying changes from the source until the replication channel is restarted. Prior to NDB 8.0.24, it
was necessary in such cases to restart all SQL nodes to bring them out of read-only mode, and then to
re-create ndb_apply_status manually.

0 in the epoch column of this table indicates a transaction originating from a storage engine other than
NDB.

ndb_apply_status is used to record which epoch transactions have been replicated and applied
to a replica cluster from an upstream source. This information is captured in an NDB online backup,
but (by design) it is not restored by ndb_restore. In some cases, it can be helpful to restore
this information for use in new setups; beginning with NDB 8.0.29, you can do this by invoking
ndb_restore with the --with-apply-status option. See the description of the option for more
information.

ndb_binlog_index Table

NDB Cluster Replication uses the ndb_binlog_index table for storing the binary log's indexing
data. Since this table is local to each MySQL server and does not participate in clustering, it uses the
InnoDB storage engine. This means that it must be created separately on each mysqld participating in
the source cluster. (The binary log itself contains updates from all MySQL servers in the cluster.) This
table is defined as follows:

CREATE TABLE `ndb_binlog_index` (
 `Position` BIGINT(20) UNSIGNED NOT NULL,
 `File` VARCHAR(255) NOT NULL,
 `epoch` BIGINT(20) UNSIGNED NOT NULL,
 `inserts` INT(10) UNSIGNED NOT NULL,
 `updates` INT(10) UNSIGNED NOT NULL,
 `deletes` INT(10) UNSIGNED NOT NULL,
 `schemaops` INT(10) UNSIGNED NOT NULL,
 `orig_server_id` INT(10) UNSIGNED NOT NULL,
 `orig_epoch` BIGINT(20) UNSIGNED NOT NULL,
 `gci` INT(10) UNSIGNED NOT NULL,
 `next_position` bigint(20) unsigned NOT NULL,
 `next_file` varchar(255) NOT NULL,
 PRIMARY KEY (`epoch`,`orig_server_id`,`orig_epoch`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

Note

If you are upgrading from an older release (prior to NDB 7.5.2), perform the
MySQL upgrade procedure and ensure that the system tables are upgraded

4854

NDB Cluster Replication Schema and Tables

by starting the MySQL server with the --upgrade=FORCE option. The system
table upgrade causes an ALTER TABLE ... ENGINE=INNODB statement
to be executed for this table. Use of the MyISAM storage engine for this table
continues to be supported for backward compatibility.

ndb_binlog_index may require additional disk space after being converted
to InnoDB. If this becomes an issue, you may be able to conserve space
by using an InnoDB tablespace for this table, changing its ROW_FORMAT to
COMPRESSED, or both. For more information, see Section 15.1.21, “CREATE
TABLESPACE Statement”, and Section 15.1.20, “CREATE TABLE Statement”,
as well as Section 17.6.3, “Tablespaces”.

The size of the ndb_binlog_index table is dependent on the number of epochs per binary log file
and the number of binary log files. The number of epochs per binary log file normally depends on
the amount of binary log generated per epoch and the size of the binary log file, with smaller epochs
resulting in more epochs per file. You should be aware that empty epochs produce inserts to the
ndb_binlog_index table, even when the --ndb-log-empty-epochs option is OFF, meaning that
the number of entries per file depends on the length of time that the file is in use; this relationship can
be represented by the formula shown here:

[number of epochs per file] = [time spent per file] / TimeBetweenEpochs

A busy NDB Cluster writes to the binary log regularly and presumably rotates binary log files more
quickly than a quiet one. This means that a “quiet” NDB Cluster with --ndb-log-empty-epochs=ON
can actually have a much higher number of ndb_binlog_index rows per file than one with a great
deal of activity.

When mysqld is started with the --ndb-log-orig option, the orig_server_id and orig_epoch
columns store, respectively, the ID of the server on which the event originated and the epoch in
which the event took place on the originating server, which is useful in NDB Cluster replication setups
employing multiple sources. The SELECT statement used to find the closest binary log position to
the highest applied epoch on the replica in a multi-source setup (see Section 25.7.10, “NDB Cluster
Replication: Bidirectional and Circular Replication”) employs these two columns, which are not indexed.
This can lead to performance issues when trying to fail over, since the query must perform a table
scan, especially when the source has been running with --ndb-log-empty-epochs=ON. You can
improve multi-source failover times by adding an index to these columns, as shown here:

ALTER TABLE mysql.ndb_binlog_index
 ADD INDEX orig_lookup USING BTREE (orig_server_id, orig_epoch);

Adding this index provides no benefit when replicating from a single source to a single replica, since
the query used to get the binary log position in such cases makes no use of orig_server_id or
orig_epoch.

See Section 25.7.8, “Implementing Failover with NDB Cluster Replication”, for more information about
using the next_position and next_file columns.

The following figure shows the relationship of the NDB Cluster replication source server, its binary log
injector thread, and the mysql.ndb_binlog_index table.

4855

NDB Cluster Replication Schema and Tables

Figure 25.14 The Replication Source Cluster

ndb_replication Table

The ndb_replication table is used to control binary logging and conflict resolution, and acts on a
per-table basis. Each row in this table corresponds to a table being replicated, determines how to log
changes to the table and, if a conflict resolution function is specified, and determines how to resolve
conflicts for that table.

Unlike the ndb_apply_status and ndb_replication tables, the ndb_replication table must
be created manually, using the SQL statement shown here:

CREATE TABLE mysql.ndb_replication (
 db VARBINARY(63),
 table_name VARBINARY(63),
 server_id INT UNSIGNED,
 binlog_type INT UNSIGNED,
 conflict_fn VARBINARY(128),
 PRIMARY KEY USING HASH (db, table_name, server_id)
) ENGINE=NDB
PARTITION BY KEY(db,table_name);

The columns of this table are listed here, with descriptions:

• db column

The name of the database containing the table to be replicated.

You may employ either or both of the wildcards _ and % as part of the database name. (See
Matching with wildcards, later in this section.)

• table_name column

The name of the table to be replicated.

The table name may include either or both of the wildcards _ and %. See Matching with wildcards,
later in this section.

• server_id column

The unique server ID of the MySQL instance (SQL node) where the table resides.

4856

NDB Cluster Replication Schema and Tables

0 in this column acts like a wildcard equivalent to %, and matches any server ID. (See Matching with
wildcards, later in this section.)

• binlog_type column

The type of binary logging to be employed. See text for values and descriptions.

• conflict_fn column

The conflict resolution function to be applied; one of NDB$OLD(), NDB$MAX(), NDB
$MAX_DELETE_WIN(), NDB$EPOCH(), NDB$EPOCH_TRANS(), NDB$EPOCH2(), NDB
$EPOCH2_TRANS(); NULL indicates that conflict resolution is not used for this table. NDB
8.0.30 and later supports two additional conflict resolution functions NDB$MAX_INS() and NDB
$MAX_DEL_WIN_INS().

See Conflict Resolution Functions, for more information about these functions and their uses in NDB
Replication conflict resolution.

Some conflict resolution functions (NDB$OLD(), NDB$EPOCH(), NDB$EPOCH_TRANS()) require the
use of one or more user-created exceptions tables. See Conflict Resolution Exceptions Table.

To enable conflict resolution with NDB Replication, it is necessary to create and populate this table with
control information on the SQL node or nodes on which the conflict should be resolved. Depending on
the conflict resolution type and method to be employed, this may be the source, the replica, or both
servers. In a simple source-replica setup where data can also be changed locally on the replica this
is typically the replica. In a more complex replication scheme, such as bidirectional replication, this is
usually all of the sources involved. See Section 25.7.12, “NDB Cluster Replication Conflict Resolution”,
for more information.

The ndb_replication table allows table-level control over binary logging outside the scope of
conflict resolution, in which case conflict_fn is specified as NULL, while the remaining column
values are used to control binary logging for a given table or set of tables matching a wildcard
expression. By setting the proper value for the binlog_type column, you can make logging for a
given table or tables use a desired binary log format, or disabling binary logging altogether. Possible
values for this column, with values and descriptions, are shown in the following table:

Table 25.70 binlog_type values, with values and descriptions

Value Description

0 Use server default

1 Do not log this table in the binary log (same effect
as sql_log_bin = 0, but applies to one or more
specified tables only)

2 Log updated attributes only; log these as WRITE_ROW
events

3 Log full row, even if not updated (MySQL server default
behavior)

6 Use updated attributes, even if values are unchanged

7 Log full row, even if no values are changed; log
updates as UPDATE_ROW events

8 Log update as UPDATE_ROW; log only primary key
columns in before image, and only updated columns
in after image (same effect as --ndb-log-update-
minimal, but applies to one or more specified tables
only)

4857

NDB Cluster Replication Schema and Tables

Value Description

9 Log update as UPDATE_ROW; log only primary key
columns in before image, and all columns other than
primary key columns in after image

Note

binlog_type values 4 and 5 are not used, and so are omitted from the table
just shown, as well as from the next table.

Several binlog_type values are equivalent to various combinations of the mysqld logging options
--ndb-log-updated-only, --ndb-log-update-as-write, and --ndb-log-update-
minimal, as shown in the following table:

Table 25.71 binlog_type values with equivalent combinations of NDB logging options

Value --ndb-log-updated-only
Value

--ndb-log-update-as-
write Value

--ndb-log-update-
minimal Value

0 -- -- --

1 -- -- --

2 ON ON OFF

3 OFF ON OFF

6 ON OFF OFF

7 OFF OFF OFF

8 ON OFF ON

9 OFF OFF ON

Binary logging can be set to different formats for different tables by inserting rows into the
ndb_replication table using the appropriate db, table_name, and binlog_type column values.
The internal integer value shown in the preceding table should be used when setting the binary logging
format. The following two statements set binary logging to logging of full rows (value 3) for table
test.a, and to logging of updates only (value 2) for table test.b:

Table test.a: Log full rows
INSERT INTO mysql.ndb_replication VALUES("test", "a", 0, 3, NULL);

Table test.b: log updates only
INSERT INTO mysql.ndb_replication VALUES("test", "b", 0, 2, NULL);

To disable logging for one or more tables, use 1 for binlog_type, as shown here:

Disable binary logging for table test.t1
INSERT INTO mysql.ndb_replication VALUES("test", "t1", 0, 1, NULL);

Disable binary logging for any table in 'test' whose name begins with 't'
INSERT INTO mysql.ndb_replication VALUES("test", "t%", 0, 1, NULL);

Disabling logging for a given table is the equivalent of setting sql_log_bin = 0, except that it
applies to one or more tables individually. If an SQL node is not performing binary logging for a given
table, it is not sent the row change events for those tables. This means that it is not receiving all
changes and discarding some, but rather it is not subscribing to these changes.

Disabling logging can be useful for a number of reasons, including those listed here:

• Not sending changes across the network generally saves bandwidth, buffering, and CPU resources.

• Not logging changes to tables with very frequent updates but whose value is not great is a good
fit for transient data (such as session data) that may be relatively unimportant in the event of a
complete failure of the cluster.

4858

NDB Cluster Replication Schema and Tables

• Using a session variable (or sql_log_bin) and application code, it is also possible to log (or not to
log) certain SQL statements or types of SQL statements; for example, it may be desirable in some
cases not to record DDL statements on one or more tables.

• Splitting replication streams into two (or more) binary logs can be done for reasons of performance,
a need to replicate different databases to different places, use of different binary logging types for
different databases, and so on.

Matching with wildcards. In order not to make it necessary to insert a row in the
ndb_replication table for each and every combination of database, table, and SQL node in
your replication setup, NDB supports wildcard matching on the this table's db, table_name, and
server_id columns. Database and table names used in, respectively, db and table_name may
contain either or both of the following wildcards:

• _ (underscore character): matches zero or more characters

• % (percent sign): matches a single character

(These are the same wildcards as supported by the MySQL LIKE operator.)

The server_id column supports 0 as a wildcard equivalent to _ (matches anything). This is used in
the examples shown previously.

A given row in the ndb_replication table can use wildcards to match any of the database name,
table name, and server ID in any combination. Where there are multiple potential matches in the table,
the best match is chosen, according to the table shown here, where W represents a wildcard match, E
an exact match, and the greater the value in the Quality column, the better the match:

Table 25.72 Weights of different combinations of wildcard and exact matches on columns in
the mysql.ndb_replication table

db table_name server_id Quality

W W W 1

W W E 2

W E W 3

W E E 4

E W W 5

E W E 6

E E W 7

E E E 8

Thus, an exact match on database name, table name, and server ID is considered best (strongest),
while the weakest (worst) match is a wildcard match on all three columns. Only the strength of the
match is considered when choosing which rule to apply; the order in which the rows occur in the table
has no effect on this determination.

Logging Full or Partial Rows. There are two basic methods of logging rows, as determined by the
setting of the --ndb-log-updated-only option for mysqld:

• Log complete rows (option set to ON)

• Log only column data that has been updated—that is, column data whose value has been set,
regardless of whether or not this value was actually changed. This is the default behavior (option set
to OFF).

It is usually sufficient—and more efficient—to log updated columns only; however, if you need to log full
rows, you can do so by setting --ndb-log-updated-only to 0 or OFF.

Logging Changed Data as Updates. The setting of the MySQL Server's --ndb-log-update-
as-write option determines whether logging is performed with or without the “before” image.

4859

Preparing the NDB Cluster for Replication

Because conflict resolution for updates and delete operations is done in the MySQL Server's update
handler, it is necessary to control the logging performed by the replication source such that updates are
updates and not writes; that is, such that updates are treated as changes in existing rows rather than
the writing of new rows, even though these replace existing rows.

This option is turned on by default; in other words, updates are treated as writes. That is, updates are
by default written as write_row events in the binary log, rather than as update_row events.

To disable the option, start the source mysqld with --ndb-log-update-as-write=0 or --ndb-
log-update-as-write=OFF. You must do this when replicating from NDB tables to tables using
a different storage engine; see Replication from NDB to other storage engines, and Replication from
NDB to a nontransactional storage engine, for more information.

Important

(NDB 8.0.30 and later:) For insert conflict resolution using NDB$MAX_INS()
or NDB$MAX_DEL_WIN_INS(), an SQL node (that is, a mysqld process) can
record row updates on the source cluster as WRITE_ROW events with the --
ndb-log-update-as-write option enabled for idempotency and optimal
size. This works for these algorithms since they both map a WRITE_ROW event
to an insert or update depending on whether the row already exists, and the
required metadata (the “after” image for the timestamp column) is present in the
“WRITE_ROW” event.

25.7.5 Preparing the NDB Cluster for Replication

Preparing the NDB Cluster for replication consists of the following steps:

1. Check all MySQL servers for version compatibility (see Section 25.7.2, “General Requirements for
NDB Cluster Replication”).

2. Create a replication account on the source Cluster with the appropriate privileges, using the
following two SQL statements:

mysqlS> CREATE USER 'replica_user'@'replica_host'
 -> IDENTIFIED BY 'replica_password';

mysqlS> GRANT REPLICATION SLAVE ON *.*
 -> TO 'replica_user'@'replica_host';

In the previous statement, replica_user is the replication account user name, replica_host is
the host name or IP address of the replica, and replica_password is the password to assign to
this account.

For example, to create a replica user account with the name myreplica, logging in from the host
named replica-host, and using the password 53cr37, use the following CREATE USER and
GRANT statements:

mysqlS> CREATE USER 'myreplica'@'replica-host'
 -> IDENTIFIED BY '53cr37';

mysqlS> GRANT REPLICATION SLAVE ON *.*
 -> TO 'myreplica'@'replica-host';

For security reasons, it is preferable to use a unique user account—not employed for any other
purpose—for the replication account.

3. Set up the replica to use the source. Using the mysql client, this can be accomplished with the
CHANGE REPLICATION SOURCE TO statement (beginning with NDB 8.0.23) or CHANGE MASTER
TO statement (prior to NDB 8.0.23):

mysqlR> CHANGE MASTER TO
 -> MASTER_HOST='source_host',
 -> MASTER_PORT=source_port,

4860

Preparing the NDB Cluster for Replication

 -> MASTER_USER='replica_user',
 -> MASTER_PASSWORD='replica_password';

Beginning with NDB 8.0.23, you can also use the following statement:

mysqlR> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='source_host',
 -> SOURCE_PORT=source_port,
 -> SOURCE_USER='replica_user',
 -> SOURCE_PASSWORD='replica_password';

In the previous statement, source_host is the host name or IP address of the replication source,
source_port is the port for the replica to use when connecting to the source, replica_user is
the user name set up for the replica on the source, and replica_password is the password set
for that user account in the previous step.

For example, to tell the replica to use the MySQL server whose host name is rep-source with the
replication account created in the previous step, use the following statement:

mysqlR> CHANGE MASTER TO
 -> MASTER_HOST='rep-source',
 -> MASTER_PORT=3306,
 -> MASTER_USER='myreplica',
 -> MASTER_PASSWORD='53cr37';

Beginning with NDB 8.0.23, you can also use the following statement:

mysqlR> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='rep-source',
 -> SOURCE_PORT=3306,
 -> SOURCE_USER='myreplica',
 -> SOURCE_PASSWORD='53cr37';

For a complete list of options that can be used with this statement, see Section 15.4.2.1, “CHANGE
MASTER TO Statement”.

To provide replication backup capability, you also need to add an --ndb-connectstring option
to the replica's my.cnf file prior to starting the replication process. See Section 25.7.9, “NDB
Cluster Backups With NDB Cluster Replication”, for details.

For additional options that can be set in my.cnf for replicas, see Section 19.1.6, “Replication and
Binary Logging Options and Variables”.

4. If the source cluster is already in use, you can create a backup of the source and load this onto
the replica to cut down on the amount of time required for the replica to synchronize itself with
the source. If the replica is also running NDB Cluster, this can be accomplished using the backup
and restore procedure described in Section 25.7.9, “NDB Cluster Backups With NDB Cluster
Replication”.

ndb-connectstring=management_host[:port]

In the event that you are not using NDB Cluster on the replica, you can create a backup with this
command on the source:

shellS> mysqldump --master-data=1

Then import the resulting data dump onto the replica by copying the dump file over to it. After this,
you can use the mysql client to import the data from the dumpfile into the replica database as

4861

Starting NDB Cluster Replication (Single Replication Channel)

shown here, where dump_file is the name of the file that was generated using mysqldump on the
source, and db_name is the name of the database to be replicated:

shellR> mysql -u root -p db_name < dump_file

For a complete list of options to use with mysqldump, see Section 6.5.4, “mysqldump — A
Database Backup Program”.

Note

If you copy the data to the replica in this fashion, make sure that you stop
the replica from trying to connect to the source to begin replicating before
all the data has been loaded. You can do this by starting the replica with the
--skip-slave-start option on the command line, by including skip-
slave-start in the replica's my.cnf file, or beginning with NDB 8.0.24,
by setting the skip_slave_start system variable. Beginning with NDB
8.0.26, use --skip-replica-start or skip_replica_start instead.
Once the data loading has completed, follow the additional steps outlined in
the next two sections.

5. Ensure that each MySQL server acting as a replication source is assigned a unique server ID,
and has binary logging enabled, using the row-based format. (See Section 19.2.1, “Replication
Formats”.) In addition, we strongly recommend enabling the replica_allow_batching system
variable (NDB 8.0.26 and later; prior to NDB 8.0.26, use slave_allow_batching). Beginning
with NDB 8.0.30, this is enabled by default.

If you are using a release of NDB Cluster prior to NDB 8.0.30, you should also consider increasing
the values used with the --ndb-batch-size and --ndb-blob-write-batch-bytes options
as well. In NDB 8.0.30 and later, use --ndb-replica-batch-size to set the batch size used
for writes on the replica instead of --ndb-batch-size, and --ndb-replica-blob-write-
batch-bytes rather than --ndb-blob-write-batch-bytes to determine the batch size
used by the replication applier for writing blob data. All of these options can be set either in the
source server's my.cnf file, or on the command line when starting the source mysqld process.
See Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”, for more
information.

25.7.6 Starting NDB Cluster Replication (Single Replication Channel)

This section outlines the procedure for starting NDB Cluster replication using a single replication
channel.

1. Start the MySQL replication source server by issuing this command, where id is this server's
unique ID (see Section 25.7.2, “General Requirements for NDB Cluster Replication”):

shellS> mysqld --ndbcluster --server-id=id \
 --log-bin --ndb-log-bin &

This starts the server's mysqld process with binary logging enabled using the proper logging
format. It is also necessary in NDB 8.0 to enable logging of updates to NDB tables explicitly, using
the --ndb-log-bin option; this is a change from previous versions of NDB Cluster, in which this
option was enabled by default.

Note

You can also start the source with --binlog-format=MIXED, in which
case row-based replication is used automatically when replicating between
clusters. Statement-based binary logging is not supported for NDB Cluster
Replication (see Section 25.7.2, “General Requirements for NDB Cluster
Replication”).

2. Start the MySQL replica server as shown here:

4862

Starting NDB Cluster Replication (Single Replication Channel)

shellR> mysqld --ndbcluster --server-id=id &

In the command just shown, id is the replica server's unique ID. It is not necessary to enable
logging on the replica.

Note

Unless you want replication to begin immediately, delay the start of the
replication threads until the appropriate START REPLICA statement has
been issued, as explained in Step 4 below. You can do this by starting
the replica with the --skip-slave-start option on the command
line, by including skip-slave-start in the replica's my.cnf file, or
in NDB 8.0.24 and later, by setting the skip_slave_start system
variable. In NDB 8.0.26 and later, use --skip-replica-start and
skip_replica_start.

3. It is necessary to synchronize the replica server with the source server's replication binary log. If
binary logging has not previously been running on the source, run the following statement on the
replica:

mysqlR> CHANGE MASTER TO
 -> MASTER_LOG_FILE='',
 -> MASTER_LOG_POS=4;

Beginning with NDB 8.0.23, you can also use the following statement:

mysqlR> CHANGE REPLICATION SOURCE TO
 -> SOURCE_LOG_FILE='',
 -> SOURCE_LOG_POS=4;

This instructs the replica to begin reading the source server's binary log from the log's starting point.
Otherwise—that is, if you are loading data from the source using a backup—see Section 25.7.8,
“Implementing Failover with NDB Cluster Replication”, for information on how to obtain the
correct values to use for SOURCE_LOG_FILE | MASTER_LOG_FILE and SOURCE_LOG_POS |
MASTER_LOG_POS in such cases.

4. Finally, instruct the replica to begin applying replication by issuing this command from the mysql
client on the replica:

mysqlR> START SLAVE;

In NDB 8.0.22 and later, you can also use the following statement:

mysqlR> START REPLICA;

This also initiates the transmission of data and changes from the source to the replica.

It is also possible to use two replication channels, in a manner similar to the procedure described in
the next section; the differences between this and using a single replication channel are covered in
Section 25.7.7, “Using Two Replication Channels for NDB Cluster Replication”.

It is also possible to improve cluster replication performance by enabling batched updates. This can
be accomplished by setting the system variable replica_allow_batching (NDB 8.0.26 and later)
or slave_allow_batching (prior to NDB 8.0.26) on the replicas' mysqld processes. Normally,
updates are applied as soon as they are received. However, the use of batching causes updates to be
applied in batches of 32 KB each; this can result in higher throughput and less CPU usage, particularly
where individual updates are relatively small.

Note

Batching works on a per-epoch basis; updates belonging to more than one
transaction can be sent as part of the same batch.

4863

Using Two Replication Channels for NDB Cluster Replication

All outstanding updates are applied when the end of an epoch is reached, even
if the updates total less than 32 KB.

Batching can be turned on and off at runtime. To activate it at runtime, you can use either of these two
statements:

SET GLOBAL slave_allow_batching = 1;
SET GLOBAL slave_allow_batching = ON;

Beginning with NDB 8.0.26, you can (and should) use one of the following statements:

SET GLOBAL replica_allow_batching = 1;
SET GLOBAL replica_allow_batching = ON;

If a particular batch causes problems (such as a statement whose effects do not appear to be
replicated correctly), batching can be deactivated using either of the following statements:

SET GLOBAL slave_allow_batching = 0;
SET GLOBAL slave_allow_batching = OFF;

Beginning with NDB 8.0.26, you can (and should) use one of the following statements instead:

SET GLOBAL replica_allow_batching = 0;
SET GLOBAL replica_allow_batching = OFF;

You can check whether batching is currently being used by means of an appropriate SHOW
VARIABLES statement, like this one:

mysql> SHOW VARIABLES LIKE 'slave%';

In ŃDB 8.0.26 and later, use the following statement:

mysql> SHOW VARIABLES LIKE 'replica%';

25.7.7 Using Two Replication Channels for NDB Cluster Replication

In a more complete example scenario, we envision two replication channels to provide redundancy
and thereby guard against possible failure of a single replication channel. This requires a total of four
replication servers, two source servers on the source cluster and two replica servers on the replica
cluster. For purposes of the discussion that follows, we assume that unique identifiers are assigned as
shown here:

Table 25.73 NDB Cluster replication servers described in the text

Server ID Description

1 Source - primary replication channel (S)

2 Source - secondary replication channel (S')

3 Replica - primary replication channel (R)

4 replica - secondary replication channel (R')

Setting up replication with two channels is not radically different from setting up a single replication
channel. First, the mysqld processes for the primary and secondary replication source servers must
be started, followed by those for the primary and secondary replicas. The replication processes can be
initiated by issuing the START REPLICA statement on each of the replicas. The commands and the
order in which they need to be issued are shown here:

1. Start the primary replication source:

shellS> mysqld --ndbcluster --server-id=1 \

4864

Implementing Failover with NDB Cluster Replication

 --log-bin &

2. Start the secondary replication source:

shellS'> mysqld --ndbcluster --server-id=2 \
 --log-bin &

3. Start the primary replica server:

shellR> mysqld --ndbcluster --server-id=3 \
 --skip-slave-start &

4. Start the secondary replica server:

shellR'> mysqld --ndbcluster --server-id=4 \
 --skip-slave-start &

5. Finally, initiate replication on the primary channel by executing the START REPLICA statement on
the primary replica as shown here:

mysqlR> START SLAVE;

Beginning with NDB 8.0.22, you can also use the following statement:

mysqlR> START REPLICA;

Warning

Only the primary channel must be started at this point. The secondary
replication channel needs to be started only in the event that the primary
replication channel fails, as described in Section 25.7.8, “Implementing
Failover with NDB Cluster Replication”. Running multiple replication
channels simultaneously can result in unwanted duplicate records being
created on the replicas.

As mentioned previously, it is not necessary to enable binary logging on the replicas.

25.7.8 Implementing Failover with NDB Cluster Replication

In the event that the primary Cluster replication process fails, it is possible to switch over to the
secondary replication channel. The following procedure describes the steps required to accomplish
this.

1. Obtain the time of the most recent global checkpoint (GCP). That is, you need to determine the
most recent epoch from the ndb_apply_status table on the replica cluster, which can be found
using the following query:

mysqlR'> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status;

In a circular replication topology, with a source and a replica running on each host, when you are
using ndb_log_apply_status=1, NDB Cluster epochs are written in the replicas' binary logs.
This means that the ndb_apply_status table contains information for the replica on this host as
well as for any other host which acts as a replica of the replication source server running on this
host.

In this case, you need to determine the latest epoch on this replica to the exclusion of
any epochs from any other replicas in this replica's binary log that were not listed in the
IGNORE_SERVER_IDS options of the CHANGE REPLICATION SOURCE TO | CHANGE MASTER
TO statement used to set up this replica. The reason for excluding such epochs is that rows in the
mysql.ndb_apply_status table whose server IDs have a match in the IGNORE_SERVER_IDS
list from the CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement used to
prepare this replicas's source are also considered to be from local servers, in addition to those

4865

Implementing Failover with NDB Cluster Replication

having the replica's own server ID. You can retrieve this list as Replicate_Ignore_Server_Ids
from the output of SHOW REPLICA STATUS. We assume that you have obtained this list and are
substituting it for ignore_server_ids in the query shown here, which like the previous version of
the query, selects the greatest epoch into a variable named @latest:

mysqlR'> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status
 -> WHERE server_id NOT IN (ignore_server_ids);

In some cases, it may be simpler or more efficient (or both) to use a list of the server IDs to be
included and server_id IN server_id_list in the WHERE condition of the preceding query.

2. Using the information obtained from the query shown in Step 1, obtain the corresponding records
from the ndb_binlog_index table on the source cluster.

You can use the following query to obtain the needed records from the ndb_binlog_index table
on the source:

mysqlS'> SELECT
 -> @file:=SUBSTRING_INDEX(next_file, '/', -1),
 -> @pos:=next_position
 -> FROM mysql.ndb_binlog_index
 -> WHERE epoch = @latest;

These are the records saved on the source since the failure of the primary replication channel. We
have employed a user variable @latest here to represent the value obtained in Step 1. Of course,
it is not possible for one mysqld instance to access user variables set on another server instance
directly. These values must be “plugged in” to the second query manually or by an application.

Important

You must ensure that the replica mysqld is started with --slave-skip-
errors=ddl_exist_errors before executing START REPLICA.
Otherwise, replication may stop with duplicate DDL errors.

3. Now it is possible to synchronize the secondary channel by running the following query on the
secondary replica server:

mysqlR'> CHANGE MASTER TO
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

In NDB 8.0.23 and later, you can also use the statement shown here:

mysqlR'> CHANGE REPLICATION SOURCE TO
 -> SOURCE_LOG_FILE='@file',
 -> SOURCE_LOG_POS=@pos;

Again we have employed user variables (in this case @file and @pos) to represent the values
obtained in Step 2 and applied in Step 3; in practice these values must be inserted manually or
using an application that can access both of the servers involved.

Note

@file is a string value such as '/var/log/mysql/replication-
source-bin.00001', and so must be quoted when used in SQL or
application code. However, the value represented by @pos must not be
quoted. Although MySQL normally attempts to convert strings to numbers,
this case is an exception.

4. You can now initiate replication on the secondary channel by issuing the appropriate command on
the secondary replica mysqld:

mysqlR'> START SLAVE;

4866

NDB Cluster Backups With NDB Cluster Replication

In NDB 8.0.22 or later, you can also use the following statement:

mysqlR'> START REPLICA;

Once the secondary replication channel is active, you can investigate the failure of the primary and
effect repairs. The precise actions required to do this depend upon the reasons for which the primary
channel failed.

Warning

The secondary replication channel is to be started only if and when the
primary replication channel has failed. Running multiple replication channels
simultaneously can result in unwanted duplicate records being created on the
replicas.

If the failure is limited to a single server, it should in theory be possible to replicate from S to R', or from
S' to R.

25.7.9 NDB Cluster Backups With NDB Cluster Replication

This section discusses making backups and restoring from them using NDB Cluster replication.
We assume that the replication servers have already been configured as covered previously (see
Section 25.7.5, “Preparing the NDB Cluster for Replication”, and the sections immediately following).
This having been done, the procedure for making a backup and then restoring from it is as follows:

1. There are two different methods by which the backup may be started.

• Method A. This method requires that the cluster backup process was previously enabled on
the source server, prior to starting the replication process. This can be done by including the
following line in a [mysql_cluster] section in the my.cnf file, where management_host
is the IP address or host name of the NDB management server for the source cluster, and port is
the management server's port number:

ndb-connectstring=management_host[:port]

Note

The port number needs to be specified only if the default port (1186) is not
being used. See Section 25.3.3, “Initial Configuration of NDB Cluster”, for
more information about ports and port allocation in NDB Cluster.

 In this case, the backup can be started by executing this statement on the replication source:

shellS> ndb_mgm -e "START BACKUP"

• Method B. If the my.cnf file does not specify where to find the management host, you can
start the backup process by passing this information to the NDB management client as part of the
START BACKUP command. This can be done as shown here, where management_host and
port are the host name and port number of the management server:

shellS> ndb_mgm management_host:port -e "START BACKUP"

In our scenario as outlined earlier (see Section 25.7.5, “Preparing the NDB Cluster for
Replication”), this would be executed as follows:

shellS> ndb_mgm rep-source:1186 -e "START BACKUP"

2. Copy the cluster backup files to the replica that is being brought on line. Each system running an
ndbd process for the source cluster has cluster backup files located on it, and all of these files must
be copied to the replica to ensure a successful restore. The backup files can be copied into any
directory on the computer where the replica's management host resides, as long as the MySQL and

4867

NDB Cluster Backups With NDB Cluster Replication

NDB binaries have read permissions in that directory. In this case, we assume that these files have
been copied into the directory /var/BACKUPS/BACKUP-1.

While it is not necessary that the replica cluster have the same number of data nodes as the
source, it is highly recommended this number be the same. It is necessary that the replication
process is prevented from starting when the replica server starts. You can do this by starting the
replica with the --skip-slave-start option on the command line, by including skip-slave-
start in the replica's my.cnf file, or in NDB 8.0.24 or later, by setting the skip_slave_start
system variable.

3. Create any databases on the replica cluster that are present on the source cluster and that are to
be replicated.

Important

A CREATE DATABASE (or CREATE SCHEMA) statement corresponding to
each database to be replicated must be executed on each SQL node in the
replica cluster.

4. Reset the replica cluster using this statement in the mysql client:

mysqlR> RESET SLAVE;

In NDB 8.0.22 or later, you can also use this statement:

mysqlR> RESET REPLICA;

5. You can now start the cluster restoration process on the replica using the ndb_restore command
for each backup file in turn. For the first of these, it is necessary to include the -m option to restore
the cluster metadata, as shown here:

shellR> ndb_restore -c replica_host:port -n node-id \
 -b backup-id -m -r dir

dir is the path to the directory where the backup files have been placed on the replica. For the
ndb_restore commands corresponding to the remaining backup files, the -m option should not be
used.

For restoring from a source cluster with four data nodes (as shown in the figure in Section 25.7,
“NDB Cluster Replication”) where the backup files have been copied to the directory /var/
BACKUPS/BACKUP-1, the proper sequence of commands to be executed on the replica might look
like this:

shellR> ndb_restore -c replica-host:1186 -n 2 -b 1 -m \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 3 -b 1 \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 4 -b 1 \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 5 -b 1 -e \
 -r ./var/BACKUPS/BACKUP-1

Important

The -e (or --restore-epoch) option in the final invocation of
ndb_restore in this example is required to make sure that the epoch is
written to the replica's mysql.ndb_apply_status table. Without this
information, the replica cannot synchronize properly with the source. (See
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”.)

6. Now you need to obtain the most recent epoch from the ndb_apply_status table on the replica
(as discussed in Section 25.7.8, “Implementing Failover with NDB Cluster Replication”):

mysqlR> SELECT @latest:=MAX(epoch)

4868

NDB Cluster Backups With NDB Cluster Replication

 FROM mysql.ndb_apply_status;

7. Using @latest as the epoch value obtained in the previous step, you can obtain the correct
starting position @pos in the correct binary log file @file from the mysql.ndb_binlog_index
table on the source. The query shown here gets these from the Position and File columns from
the last epoch applied before the logical restore position:

mysqlS> SELECT
 -> @file:=SUBSTRING_INDEX(File, '/', -1),
 -> @pos:=Position
 -> FROM mysql.ndb_binlog_index
 -> WHERE epoch > @latest
 -> ORDER BY epoch ASC LIMIT 1;

In the event that there is currently no replication traffic, you can get similar information by running
SHOW MASTER STATUS on the source and using the value shown in the Position column of the
output for the file whose name has the suffix with the greatest value for all files shown in the File
column. In this case, you must determine which file this is and supply the name in the next step
manually or by parsing the output with a script.

8. Using the values obtained in the previous step, you can now issue the appropriate in the replica's
mysql client. In NDB 8.0.23 and later, use the following CHANGE REPLICATION SOURCE TO
statement:

mysqlR> CHANGE REPLICATION SOURCE TO
 -> SOURCE_LOG_FILE='@file',
 -> SOURCE_LOG_POS=@pos;

Prior to NDB 8.0.23, you can must use the CHANGE MASTER TO statement shown here:

mysqlR> CHANGE MASTER TO
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

9. Now that the replica knows from what point in which binary log file to start reading data from the
source, you can cause the replica to begin replicating with this statement:

mysqlR> START SLAVE;

Beginning with NDB 8.0.22, you can also use the following statement:

mysqlR> START REPLICA;

To perform a backup and restore on a second replication channel, it is necessary only to repeat these
steps, substituting the host names and IDs of the secondary source and replica for those of the primary
source and replica servers where appropriate, and running the preceding statements on them.

For additional information on performing Cluster backups and restoring Cluster from backups, see
Section 25.6.8, “Online Backup of NDB Cluster”.

25.7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the
Source Binary Log

It is possible to automate much of the process described in the previous section (see Section 25.7.9,
“NDB Cluster Backups With NDB Cluster Replication”). The following Perl script reset-replica.pl
serves as an example of how you can do this.

#!/user/bin/perl -w

file: reset-replica.pl

Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

4869

NDB Cluster Backups With NDB Cluster Replication

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA
#
Version 1.1

######################## Includes ###############################

use DBI;

######################## Globals ################################

my $m_host='';
my $m_port='';
my $m_user='';
my $m_pass='';
my $s_host='';
my $s_port='';
my $s_user='';
my $s_pass='';
my $dbhM='';
my $dbhS='';

####################### Sub Prototypes ##########################

sub CollectCommandPromptInfo;
sub ConnectToDatabases;
sub DisconnectFromDatabases;
sub GetReplicaEpoch;
sub GetSourceInfo;
sub UpdateReplica;

######################## Program Main ###########################

CollectCommandPromptInfo;
ConnectToDatabases;
GetReplicaEpoch;
GetSourceInfo;
UpdateReplica;
DisconnectFromDatabases;

################## Collect Command Prompt Info ##################

sub CollectCommandPromptInfo
{
 ### Check that user has supplied correct number of command line args
 die "Usage:\n
 reset-replica >source MySQL host< >source MySQL port< \n
 >source user< >source pass< >replica MySQL host< \n
 >replica MySQL port< >replica user< >replica pass< \n
 All 8 arguments must be passed. Use BLANK for NULL passwords\n"
 unless @ARGV == 8;

 $m_host = $ARGV[0];
 $m_port = $ARGV[1];
 $m_user = $ARGV[2];
 $m_pass = $ARGV[3];
 $s_host = $ARGV[4];
 $s_port = $ARGV[5];
 $s_user = $ARGV[6];
 $s_pass = $ARGV[7];

4870

NDB Cluster Backups With NDB Cluster Replication

 if ($m_pass eq "BLANK") { $m_pass = '';}
 if ($s_pass eq "BLANK") { $s_pass = '';}
}

############### Make connections to both databases #############

sub ConnectToDatabases
{
 ### Connect to both source and replica cluster databases

 ### Connect to source
 $dbhM
 = DBI->connect(
 "dbi:mysql:database=mysql;host=$m_host;port=$m_port",
 "$m_user", "$m_pass")
 or die "Can't connect to source cluster MySQL process!
 Error: $DBI::errstr\n";

 ### Connect to replica
 $dbhS
 = DBI->connect(
 "dbi:mysql:database=mysql;host=$s_host",
 "$s_user", "$s_pass")
 or die "Can't connect to replica cluster MySQL process!
 Error: $DBI::errstr\n";
}

################ Disconnect from both databases ################

sub DisconnectFromDatabases
{
 ### Disconnect from source

 $dbhM->disconnect
 or warn " Disconnection failed: $DBI::errstr\n";

 ### Disconnect from replica

 $dbhS->disconnect
 or warn " Disconnection failed: $DBI::errstr\n";
}

###################### Find the last good GCI ##################

sub GetReplicaEpoch
{
 $sth = $dbhS->prepare("SELECT MAX(epoch)
 FROM mysql.ndb_apply_status;")
 or die "Error while preparing to select epoch from replica: ",
 $dbhS->errstr;

 $sth->execute
 or die "Selecting epoch from replica error: ", $sth->errstr;

 $sth->bind_col (1, \$epoch);
 $sth->fetch;
 print "\tReplica epoch = $epoch\n";
 $sth->finish;
}

####### Find the position of the last GCI in the binary log ########

sub GetSourceInfo
{
 $sth = $dbhM->prepare("SELECT
 SUBSTRING_INDEX(File, '/', -1), Position
 FROM mysql.ndb_binlog_index
 WHERE epoch > $epoch
 ORDER BY epoch ASC LIMIT 1;")
 or die "Prepare to select from source error: ", $dbhM->errstr;

 $sth->execute

4871

NDB Cluster Backups With NDB Cluster Replication

 or die "Selecting from source error: ", $sth->errstr;

 $sth->bind_col (1, \$binlog);
 $sth->bind_col (2, \$binpos);
 $sth->fetch;
 print "\tSource binary log file = $binlog\n";
 print "\tSource binary log position = $binpos\n";
 $sth->finish;
}

########## Set the replica to process from that location #########

sub UpdateReplica
{
 $sth = $dbhS->prepare("CHANGE MASTER TO
 MASTER_LOG_FILE='$binlog',
 MASTER_LOG_POS=$binpos;")
 or die "Prepare to CHANGE MASTER error: ", $dbhS->errstr;

 $sth->execute
 or die "CHANGE MASTER on replica error: ", $sth->errstr;
 $sth->finish;
 print "\tReplica has been updated. You may now start the replica.\n";
}

end reset-replica.pl

25.7.9.2 Point-In-Time Recovery Using NDB Cluster Replication

Point-in-time recovery—that is, recovery of data changes made since a given point in time—is
performed after restoring a full backup that returns the server to its state when the backup was made.
Performing point-in-time recovery of NDB Cluster tables with NDB Cluster and NDB Cluster Replication
can be accomplished using a native NDB data backup (taken by issuing CREATE BACKUP in the
ndb_mgm client) and restoring the ndb_binlog_index table (from a dump made using mysqldump).

To perform point-in-time recovery of NDB Cluster, it is necessary to follow the steps shown here:

1. Back up all NDB databases in the cluster, using the START BACKUP command in the ndb_mgm
client (see Section 25.6.8, “Online Backup of NDB Cluster”).

2. At some later point, prior to restoring the cluster, make a backup of the
mysql.ndb_binlog_index table. It is probably simplest to use mysqldump for this task. Also
back up the binary log files at this time.

This backup should be updated regularly—perhaps even hourly—depending on your needs.

3. (Catastrophic failure or error occurs.)

4. Locate the last known good backup.

5. Clear the data node file systems (using ndbd --initial or ndbmtd --initial).

Note

Beginning with NDB 8.0.21, Disk Data tablespace and log files are removed
by --initial. Previously, it was necessary to delete these manually.

6. Use DROP TABLE or TRUNCATE TABLE with the mysql.ndb_binlog_index table.

7. Execute ndb_restore, restoring all data. You must include the --restore-epoch option
when you run ndb_restore, so that the ndb_apply_status table is populated correctly. (See
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”, for more information.)

8. Restore the ndb_binlog_index table from the output of mysqldump and restore the binary log
files from backup, if necessary.

4872

NDB Cluster Replication: Bidirectional and Circular Replication

9. Find the epoch applied most recently—that is, the maximum epoch column value in the
ndb_apply_status table—as the user variable @LATEST_EPOCH (emphasized):

SELECT @LATEST_EPOCH:=MAX(epoch)
 FROM mysql.ndb_apply_status;

10. Find the latest binary log file (@FIRST_FILE) and position (Position column value) within this file
that correspond to @LATEST_EPOCH in the ndb_binlog_index table:

SELECT Position, @FIRST_FILE:=File
 FROM mysql.ndb_binlog_index
 WHERE epoch > @LATEST_EPOCH ORDER BY epoch ASC LIMIT 1;

11. Using mysqlbinlog, replay the binary log events from the given file and position up to the point of
the failure. (See Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”.)

See also Section 9.5, “Point-in-Time (Incremental) Recovery”, for more information about the binary
log, replication, and incremental recovery.

25.7.10 NDB Cluster Replication: Bidirectional and Circular Replication

It is possible to use NDB Cluster for bidirectional replication between two clusters, as well as for
circular replication between any number of clusters.

Circular replication example. In the next few paragraphs we consider the example of a replication
setup involving three NDB Clusters numbered 1, 2, and 3, in which Cluster 1 acts as the replication
source for Cluster 2, Cluster 2 acts as the source for Cluster 3, and Cluster 3 acts as the source for
Cluster 1. Each cluster has two SQL nodes, with SQL nodes A and B belonging to Cluster 1, SQL
nodes C and D belonging to Cluster 2, and SQL nodes E and F belonging to Cluster 3.

Circular replication using these clusters is supported as long as the following conditions are met:

• The SQL nodes on all sources and replicas are the same.

• All SQL nodes acting as sources and replicas are started with the system variable
log_replica_updates (beginning with NDB 8.0.26) or log_slave_updates (NDB 8.0.26 and
earlier) enabled.

This type of circular replication setup is shown in the following diagram:

4873

NDB Cluster Replication: Bidirectional and Circular Replication

Figure 25.15 NDB Cluster Circular Replication with All Sources As Replicas

In this scenario, SQL node A in Cluster 1 replicates to SQL node C in Cluster 2; SQL node C replicates
to SQL node E in Cluster 3; SQL node E replicates to SQL node A. In other words, the replication line
(indicated by the curved arrows in the diagram) directly connects all SQL nodes used as replication
sources and replicas.

It is also possible to set up circular replication in such a way that not all source SQL nodes are also
replicas, as shown here:

4874

NDB Cluster Replication: Bidirectional and Circular Replication

Figure 25.16 NDB Cluster Circular Replication Where Not All Sources Are Replicas

In this case, different SQL nodes in each cluster are used as replication sources and replicas. You
must not start any of the SQL nodes with the system variable log_replica_updates (NDB 8.0.26
and later) or log_slave_updates (prior to NDB 8.0.26) enabled. This type of circular replication
scheme for NDB Cluster, in which the line of replication (again indicated by the curved arrows in the
diagram) is discontinuous, should be possible, but it should be noted that it has not yet been thoroughly
tested and must therefore still be considered experimental.

Using NDB-native backup and restore to initialize a replica cluster. When setting up circular
replication, it is possible to initialize the replica cluster by using the management client START BACKUP
command on one NDB Cluster to create a backup and then applying this backup on another NDB
Cluster using ndb_restore. This does not automatically create binary logs on the second NDB
Cluster's SQL node acting as the replica; in order to cause the binary logs to be created, you must
issue a SHOW TABLES statement on that SQL node; this should be done prior to running START
REPLICA. This is a known issue.

4875

NDB Cluster Replication: Bidirectional and Circular Replication

Multi-source failover example. In this section, we discuss failover in a multi-source NDB Cluster
replication setup with three NDB Clusters having server IDs 1, 2, and 3. In this scenario, Cluster 1
replicates to Clusters 2 and 3; Cluster 2 also replicates to Cluster 3. This relationship is shown here:

Figure 25.17 NDB Cluster Multi-Master Replication With 3 Sources

In other words, data replicates from Cluster 1 to Cluster 3 through 2 different routes: directly, and by
way of Cluster 2.

Not all MySQL servers taking part in multi-source replication must act as both source and replica, and
a given NDB Cluster might use different SQL nodes for different replication channels. Such a case is
shown here:

Figure 25.18 NDB Cluster Multi-Source Replication, With MySQL Servers

MySQL servers acting as replicas must be run with the system variable log_replica_updates
(beginning with NDB 8.0.26) or log_slave_updates (NDB 8.0.26 and earlier) enabled. Which
mysqld processes require this option is also shown in the preceding diagram.

4876

NDB Cluster Replication Using the Multithreaded Applier

Note

Using the log_replica_updates or log_slave_updates system variable
has no effect on servers not being run as replicas.

The need for failover arises when one of the replicating clusters goes down. In this example, we
consider the case where Cluster 1 is lost to service, and so Cluster 3 loses 2 sources of updates from
Cluster 1. Because replication between NDB Clusters is asynchronous, there is no guarantee that
Cluster 3's updates originating directly from Cluster 1 are more recent than those received through
Cluster 2. You can handle this by ensuring that Cluster 3 catches up to Cluster 2 with regard to updates
from Cluster 1. In terms of MySQL servers, this means that you need to replicate any outstanding
updates from MySQL server C to server F.

On server C, perform the following queries:

mysqlC> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status
 -> WHERE server_id=1;

mysqlC> SELECT
 -> @file:=SUBSTRING_INDEX(File, '/', -1),
 -> @pos:=Position
 -> FROM mysql.ndb_binlog_index
 -> WHERE orig_epoch >= @latest
 -> AND orig_server_id = 1
 -> ORDER BY epoch ASC LIMIT 1;

Note

You can improve the performance of this query, and thus likely speed
up failover times significantly, by adding the appropriate index to the
ndb_binlog_index table. See Section 25.7.4, “NDB Cluster Replication
Schema and Tables”, for more information.

Copy over the values for @file and @pos manually from server C to server F (or have your application
perform the equivalent). Then, on server F, execute the following CHANGE REPLICATION SOURCE TO
statement (NDB 8.0.23 and later) or CHANGE MASTER TO statement (prior to NDB 8.0.23):

mysqlF> CHANGE MASTER TO
 -> MASTER_HOST = 'serverC'
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

Beginning with NDB 8.0.23, you can also use the following statement:

mysqlF> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST = 'serverC'
 -> SOURCE_LOG_FILE='@file',
 -> SOURCE_LOG_POS=@pos;

Once this has been done, you can issue a START REPLICA statement on MySQL server F; this
causes any missing updates originating from server B to be replicated to server F.

The CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement also supports an
IGNORE_SERVER_IDS option which takes a comma-separated list of server IDs and causes events
originating from the corresponding servers to be ignored. For more information, see Section 15.4.2.1,
“CHANGE MASTER TO Statement”, and Section 15.7.7.36, “SHOW SLAVE | REPLICA STATUS
Statement”. For information about how this option interacts with the ndb_log_apply_status
variable, see Section 25.7.8, “Implementing Failover with NDB Cluster Replication”.

25.7.11 NDB Cluster Replication Using the Multithreaded Applier

• Requirements

4877

NDB Cluster Replication Using the Multithreaded Applier

• MTA Configuration: Source

• MTA Configuration: Replica

• Transaction Dependency and Writeset Handling

• Writeset Tracking Memory Usage

• Known Limitations

Beginning with NDB 8.0.33, NDB replication supports the use of the generic MySQL Server
Multithreaded Applier mechanism (MTA), which allows independent binary log transactions to be
applied in parallel on a replica, increasing peak replication throughput.

Requirements

The MySQL Server MTA implementation delegates the processing of separate binary log transactions
to a pool of worker threads (whose size is configurable), and coordinates the worker threads to ensure
that transaction dependencies encoded in the binary log are respected, and that commit ordering is
maintained if required (see Section 19.2.3, “Replication Threads”). To use this functionality with NDB
Cluster, it is necessary that the following three conditions be met:

1. Binary log transaction dependencies are determined at the source.

For this to be true, the binlog_transaction_dependency_tracking server system variable
must be set to WRITESET on the source. This is supported by NDB 8.0.33 and later. (The default is
COMMIT_ORDER.)

Writeset maintenance work in NDB is performed by the MySQL binary log injector thread as part of
preparing and committing each epoch transaction to the binary log. This requires extra resources,
and may reduce peak throughput.

2. Transaction dependencies are encoded into the binary log.

NDB 8.0.33 and later supports the --ndb-log-transaction-dependency startup option for
mysqld; set this option to ON to enable writing of NDB transaction dependencies into the binary log.

3. The replica is configured to use multiple worker threads.

NDB 8.0.33 and later supports setting replica_parallel_workers to nonzero values to control
the number of worker threads on the replica. The default is 4.

MTA Configuration: Source

Source mysqld configuration for the NDB MTA must include the following explicit settings:

• binlog_transaction_dependency_tracking must be set to WRITESET.

• The replication source mysqld must be started with --ndb-log-transaction-dependency=ON.

If set, replica_parallel_type must be LOGICAL_CLOCK (the default value).

Note

NDB does not support replica_parallel_type=DATABASE.

In addition, it is recommended that you set the amount of memory used to track binary log transaction
writesets on the source (binlog_transaction_dependency_history_size) to E * P, where
E is the average epoch size (as the number of operations per epoch) and P is the maximum expected
parallelism. See Writeset Tracking Memory Usage, for more information.

4878

NDB Cluster Replication Using the Multithreaded Applier

MTA Configuration: Replica

Replica mysqld configuration for the NDB MTA requires that replica_parallel_workers is
greater than 1. The recommended starting value when first enabling MTA is 4, which is the default.

In addition, replica_preserve_commit_order must be ON. This is also the default value.

Transaction Dependency and Writeset Handling

Transaction dependencies are detected using analysis of each transaction's writeset, that is, the
set of rows (table, key values) written by the transaction. Where two transactions modify the same
row they are considered to be dependent, and must be applied in order (in other words, serially) to
avoid deadlocks or incorrect results. Where a table has secondary unique keys, these values are
also added to the transaction's writeset to detect the case where there are transaction dependencies
implied by different transactions affecting the same unique key value, and so requiring ordering.
Where dependencies cannot be efficiently determined, mysqld falls back to considering transactions
dependent for reasons of safety.

Transaction dependencies are encoded in the binary log by the source mysqld. Dependencies are
encoded in an ANONYMOUS_GTID event using a scheme called 'Logical clock'. (See Section 19.1.4.1,
“Replication Mode Concepts”.)

The writeset implementation employed by MySQL (and NDB Cluster) uses hash-based conflict
detection based on matching 64-bit row hashes of relevant table and index values. This detects reliably
when the same key is seen twice, but can also produce false positives if different table and index
values hash to the same 64-bit value; this may result in artificial dependencies which can reduce the
available parallelism.

Transaction dependencies are forced by any of the following:

• DDL statements

• Binary log rotation or encountering binary log file boundaries

• Writeset history size limitations

• Writes which reference parent foreign keys in the target table

More specifically, transactions which perform inserts, updates, and deletes on foreign key parent
tables are serialized relative to all preceding and following transactions, and not just to those
transactions affecting tables involved in a constraint relationship. Conversely, transactions
performing inserts, updates and deletes on foreign key child tables (referencing) are not especially
serialized with regard to one another.

The MySQL MTA implementation attempts to apply independent binary log transactions in parallel. NDB
records all changes occurring in all user transactions committing in an epoch (TimeBetweenEpochs,
default 100 milliseconds), in one binary log transaction, referred to as an epoch transaction. Therefore,
for two consecutive epoch transactions to be independent, and possible to apply in parallel, it is
required that no row is modified in both epochs. If any single row is modified in both epochs, then they
are dependent, and are applied serially, which can limit the expolitable parallelism available.

Epoch transactions are considered independent based on the set of rows modified on the source
cluster in the epoch, but not including the generated mysql.ndb_apply_status WRITE_ROW
events that convey epoch metadata. This avoids every epoch transaction being trivially dependent on
the preceding epoch, but does require that the binlog is applied at the replica with the commit order
preserved. This also implies that an NDB binary log with writeset dependencies is not suitable for use
by a replica database using a different MySQL storage engine.

It may be possible or desirable to modify application transaction behavior to avoid patterns of repeated
modifications to the same rows, in separate transactions over a short time period, to increase
exploitable apply parallelism.

4879

NDB Cluster Replication Using the Multithreaded Applier

Writeset Tracking Memory Usage

The amount of memory used to track binary log transaction writesets can be set using the
binlog_transaction_dependency_history_size server system variable, which defaults to
25000 row hashes.

If an average binary log transaction modifies N rows, then to be able to identify
independent (parallelizable) transactions up to a parallelism level of P, we need
binlog_transaction_dependency_history_size to be at least N * P. (The maximum is
1000000.)

The finite size of the history results in a finite maximum dependency length that can be reliably
determined, giving a finite parallelism that can be expressed. Any row not found in the history may be
dependent on the last transaction purged from the history.

Writeset history does not act like a sliding window over the last N transactions; rather, it is a finite
buffer which is allowed to fill up completely, then its contents entirely discarded when it becomes full.
This means that the history size follows a sawtooth pattern over time, and therefore the maximum
detectable dependency length also follows a sawtooth pattern over time, such that independent
transactions may still be marked as dependent if the writeset history buffer has been reset between
their being processed.

In this scheme, each transaction in a binary log file is annotated with a sequence_number (1, 2, 3, ...),
and as well as the sequence number of the most recent binary log transaction that it depends on, to
which we refer as last_committed.

Within a given binary log file, the first transaction has sequence_number 1 and last_committed 0.

Where a binary log transaction depends on its immediate predecessor, its application is serialized. If
the dependency is on an earlier transaction then it may be possible to apply the transaction in parallel
with the preceding independent transactions.

The content of ANONYMOUS_GTID events, including sequence_number and last_committed (and
thus the transaction dependencies), can be seen using mysqlbinlog.

The ANONYMOUS_GTID events generated on the source are handled separately from the compressed
transaction payload with bulk BEGIN, TABLE_MAP*, WRITE_ROW*, UPDATE_ROW*, DELETE_ROW*,
and COMMIT events, allowing dependencies to be determined prior to decompression. This means that
the replica coordinator thread can delegate transaction payload decompression to a worker thread,
providing automatic parallel decompression of independent transactions on the replica.

Known Limitations

Secondary unique columns. Tables with secondary unique columns (that is, unique keys other
than the primary key) have all columns sent to the source so that unique-key related conflicts can be
detected.

Where the current binary logging mode does not include all columns, but only changed columns (--
ndb-log-updated-only=OFF, --ndb-log-update-minimal=ON, --ndb-log-update-as-
write=OFF), this can increase the volume of data sent from data nodes to SQL nodes.

The impact depends on both the rate of modification (update or delete) of rows in such tables and the
volume of data in columns which are not actually modified.

Replicating NDB to InnoDB. NDB binary log injector transaction dependency tracking intentionally
ignores the inter-transaction dependencies created by generated mysql.ndb_apply_status
metadata events, which are handled separately as part of the commit of the epoch transaction on
the replica applier. For replication to InnoDB, there is no special handling; this may result in reduced
performance or other issues when using an InnoDB multithreaded applier to consume an NDB MTA
binary log.

4880

NDB Cluster Replication Conflict Resolution

25.7.12 NDB Cluster Replication Conflict Resolution

• Requirements

• Source Column Control

• Conflict Resolution Control

• Conflict Resolution Functions

• Conflict Resolution Exceptions Table

• Conflict Detection Status Variables

• Examples

When using a replication setup involving multiple sources (including circular replication), it is possible
that different sources may try to update the same row on the replica with different data. Conflict
resolution in NDB Cluster Replication provides a means of resolving such conflicts by permitting a user-
defined resolution column to be used to determine whether or not an update on a given source should
be applied on the replica.

Some types of conflict resolution supported by NDB Cluster (NDB$OLD(), NDB$MAX(), and
NDB$MAX_DELETE_WIN(); additionally, in NDB 8.0.30 and later, NDB$MAX_INS() and NDB
$MAX_DEL_WIN_INS()) implement this user-defined column as a “timestamp” column (although
its type cannot be TIMESTAMP, as explained later in this section). These types of conflict resolution
are always applied a row-by-row basis rather than a transactional basis. The epoch-based conflict
resolution functions NDB$EPOCH() and NDB$EPOCH_TRANS() compare the order in which epochs
are replicated (and thus these functions are transactional). Different methods can be used to compare
resolution column values on the replica when conflicts occur, as explained later in this section; the
method used can be set to act on a single table, database, or server, or on a set of one or more tables
using pattern matching. See Matching with wildcards, for information about using pattern matches in
the db, table_name, and server_id columns of the mysql.ndb_replication table.

You should also keep in mind that it is the application's responsibility to ensure that the resolution
column is correctly populated with relevant values, so that the resolution function can make the
appropriate choice when determining whether to apply an update.

Requirements

Preparations for conflict resolution must be made on both the source and the replica. These tasks are
described in the following list:

• On the source writing the binary logs, you must determine which columns are sent (all columns or
only those that have been updated). This is done for the MySQL Server as a whole by applying the
mysqld startup option --ndb-log-updated-only (described later in this section), or on one
or more specific tables by placing the proper entries in the mysql.ndb_replication table (see
ndb_replication Table).

Note

If you are replicating tables with very large columns (such as TEXT or BLOB
columns), --ndb-log-updated-only can also be useful for reducing
the size of the binary logs and avoiding possible replication failures due to
exceeding max_allowed_packet.

See Section 19.5.1.20, “Replication and max_allowed_packet”, for more
information about this issue.

• On the replica, you must determine which type of conflict resolution to apply (“latest timestamp wins”,
“same timestamp wins”, “primary wins”, “primary wins, complete transaction”, or none). This is done

4881

NDB Cluster Replication Conflict Resolution

using the mysql.ndb_replication system table, and applies to one or more specific tables (see
ndb_replication Table).

• NDB Cluster also supports read conflict detection, that is, detecting conflicts between reads of a
given row in one cluster and updates or deletes of the same row in another cluster. This requires
exclusive read locks obtained by setting ndb_log_exclusive_reads equal to 1 on the replica. All
rows read by a conflicting read are logged in the exceptions table. For more information, see Read
conflict detection and resolution.

• Prior to NDB 8.0.30, NDB applied WRITE_ROW events strictly as inserts, requiring that there was
not already any such row; that is, an incoming write was always rejected if the row already existed.
(This is still the case when using any conflict resolution function other than NDB$MAX_INS() or NDB
$MAX_DEL_WIN_INS().)

Beginning with NDB 8.0.30, when using NDB$MAX_INS() or NDB$MAX_DEL_WIN_INS(), NDB can
apply WRITE_ROW events idempotently, mapping such an event to an insert when the incoming row
does not already exist, or to an update if it does.

When using the functions NDB$OLD(), NDB$MAX(), and NDB$MAX_DELETE_WIN() for timestamp-
based conflict resolution (as well as NDB$MAX_INS() and NDB$MAX_DEL_WIN_INS(), beginning
with NDB 8.0.30), we often refer to the column used for determining updates as a “timestamp” column.
However, the data type of this column is never TIMESTAMP; instead, its data type should be INT
(INTEGER) or BIGINT. The “timestamp” column should also be UNSIGNED and NOT NULL.

The NDB$EPOCH() and NDB$EPOCH_TRANS() functions discussed later in this section work by
comparing the relative order of replication epochs applied on a primary and secondary NDB Cluster,
and do not make use of timestamps.

Source Column Control

 We can see update operations in terms of “before” and “after” images—that is, the states of the table
before and after the update is applied. Normally, when updating a table with a primary key, the “before”
image is not of great interest; however, when we need to determine on a per-update basis whether
or not to use the updated values on a replica, we need to make sure that both images are written to
the source's binary log. This is done with the --ndb-log-update-as-write option for mysqld, as
described later in this section.

Important

Whether logging of complete rows or of updated columns only is done is
decided when the MySQL server is started, and cannot be changed online;
you must either restart mysqld, or start a new mysqld instance with different
logging options.

Conflict Resolution Control

 Conflict resolution is usually enabled on the server where conflicts can occur. Like logging method
selection, it is enabled by entries in the mysql.ndb_replication table.

NBT_UPDATED_ONLY_MINIMAL and NBT_UPDATED_FULL_MINIMAL can be used with NDB
$EPOCH(), NDB$EPOCH2(), and NDB$EPOCH_TRANS(), because these do not require “before” values
of columns which are not primary keys. Conflict resolution algorithms requiring the old values, such as
NDB$MAX() and NDB$OLD(), do not work correctly with these binlog_type values.

Conflict Resolution Functions

This section provides detailed information about the functions which can be used for conflict detection
and resolution with NDB Replication.

• NDB$OLD()

4882

NDB Cluster Replication Conflict Resolution

• NDB$MAX()

• NDB$MAX_DELETE_WIN()

• NDB$MAX_INS()

• NDB$MAX_DEL_WIN_INS()

• NDB$EPOCH()

• NDB$EPOCH_TRANS()

• NDB$EPOCH2()

• NDB$EPOCH2_TRANS()

NDB$OLD()

 If the value of column_name is the same on both the source and the replica, then the update is
applied; otherwise, the update is not applied on the replica and an exception is written to the log. This
is illustrated by the following pseudocode:

if (source_old_column_value == replica_current_column_value)
 apply_update();
else
 log_exception();

 This function can be used for “same value wins” conflict resolution. This type of conflict resolution
ensures that updates are not applied on the replica from the wrong source.

Important

The column value from the source's “before” image is used by this function.

NDB$MAX()

 For an update or delete operation, if the “timestamp” column value for a given row coming from the
source is higher than that on the replica, it is applied; otherwise it is not applied on the replica. This is
illustrated by the following pseudocode:

if (source_new_column_value > replica_current_column_value)
 apply_update();

 This function can be used for “greatest timestamp wins” conflict resolution. This type of conflict
resolution ensures that, in the event of a conflict, the version of the row that was most recently updated
is the version that persists.

This function has no effects on conflicts between write operations, other than that a write operation with
the same primary key as a previous write is always rejected; it is accepted and applied only if no write
operation using the same primary key already exists. Beginning with NDB 8.0.30, you can use NDB
$MAX_INS() to handle conflict resolution between writes.

Important

The column value from the sources's “after” image is used by this function.

NDB$MAX_DELETE_WIN()

 This is a variation on NDB$MAX(). Due to the fact that no timestamp is available for a delete operation,
a delete using NDB$MAX() is in fact processed as NDB$OLD, but for some use cases, this is not
optimal. For NDB$MAX_DELETE_WIN(), if the “timestamp” column value for a given row adding
or updating an existing row coming from the source is higher than that on the replica, it is applied.

4883

NDB Cluster Replication Conflict Resolution

However, delete operations are treated as always having the higher value. This is illustrated by the
following pseudocode:

if ((source_new_column_value > replica_current_column_value)
 ||
 operation.type == "delete")
 apply_update();

 This function can be used for “greatest timestamp, delete wins” conflict resolution. This type of conflict
resolution ensures that, in the event of a conflict, the version of the row that was deleted or (otherwise)
most recently updated is the version that persists.

Note

As with NDB$MAX(), the column value from the source's “after” image is the
value used by this function.

NDB$MAX_INS()

 This function provides support for resolution of conflicting write operations. Such conflicts are handled
by “NDB$MAX_INS()” as follows:

1. If there is no conflicting write, apply this one (this is the same as NDB$MAX()).

2. Otherwise, apply “greatest timestamp wins” conflict resolution, as follows:

a. If the timestamp for the incoming write is greater than that of the conflicting write, apply the
incoming operation.

b. If the timestamp for the incoming write is not greater, reject the incoming write operation.

When handling an insert operation, NDB$MAX_INS() compares timestamps from the source and
replica as illustrated by the following pseudocode:

if (source_new_column_value > replica_current_column_value)
 apply_insert();
else
 log_exception();

For an update operation, the updated timestamp column value from the source is compared with the
replica's timestamp column value, as shown here:

if (source_new_column_value > replica_current_column_value)
 apply_update();
else
 log_exception();

This is the same as performed by NDB$MAX().

For delete operations, the handling is also the same as that performed by NDB$MAX() (and thus the
same as NDB$OLD()), and is done like this:

if (source_new_column_value == replica_current_column_value)
 apply_delete();
else
 log_exception();

NDB$MAX_INS() was added in NDB 8.0.30.

NDB$MAX_DEL_WIN_INS()

 This function provides support for resolution of conflicting write operations, along with “delete
wins” resolution like that of NDB$MAX_DELETE_WIN(). Write conflicts are handled by NDB
$MAX_DEL_WIN_INS() as shown here:

4884

NDB Cluster Replication Conflict Resolution

1. If there is no conflicting write, apply this one (this is the same as NDB$MAX_DELETE_WIN()).

2. Otherwise, apply “greatest timestamp wins” conflict resolution, as follows:

a. If the timestamp for the incoming write is greater than that of the conflicting write, apply the
incoming operation.

b. If the timestamp for the incoming write is not greater, reject the incoming write operation.

Handling of insert operations as performed by NDB$MAX_DEL_WIN_INS() can be represented in
pseudocode as shown here:

if (source_new_column_value > replica_current_column_value)
 apply_insert();
else
 log_exception();

For update operations, the source's updated timestamp column value is compared with replica's
timestamp column value, like this (again using pseudocode):

if (source_new_column_value > replica_current_column_value)
 apply_update();
else
 log_exception();

Deletes are handled using a “delete always wins” strategy (the same as NDB$MAX_DELETE_WIN());
a DELETE is always applied without any regard to any timestamp values, as illustrated by this
pseudocode:

if (operation.type == "delete")
 apply_delete();

For conflicts between update and delete operations, this function behaves identically to NDB
$MAX_DELETE_WIN().

NDB$MAX_DEL_WIN_INS() was added in NDB 8.0.30.

NDB$EPOCH()

 The NDB$EPOCH() function tracks the order in which replicated epochs are applied on a replica
cluster relative to changes originating on the replica. This relative ordering is used to determine
whether changes originating on the replica are concurrent with any changes that originate locally, and
are therefore potentially in conflict.

Most of what follows in the description of NDB$EPOCH() also applies to NDB$EPOCH_TRANS(). Any
exceptions are noted in the text.

NDB$EPOCH() is asymmetric, operating on one NDB Cluster in a bidirectional replication configuration
(sometimes referred to as “active-active” replication). We refer here to cluster on which it operates as
the primary, and the other as the secondary. The replica on the primary is responsible for detecting
and handling conflicts, while the replica on the secondary is not involved in any conflict detection or
handling.

When the replica on the primary detects conflicts, it injects events into its own binary log to compensate
for these; this ensures that the secondary NDB Cluster eventually realigns itself with the primary and
so keeps the primary and secondary from diverging. This compensation and realignment mechanism
requires that the primary NDB Cluster always wins any conflicts with the secondary—that is, that the
primary's changes are always used rather than those from the secondary in event of a conflict. This
“primary always wins” rule has the following implications:

• Operations that change data, once committed on the primary, are fully persistent and are not undone
or rolled back by conflict detection and resolution.

4885

NDB Cluster Replication Conflict Resolution

• Data read from the primary is fully consistent. Any changes committed on the Primary (locally or from
the replica) are not reverted later.

• Operations that change data on the secondary may later be reverted if the primary determines that
they are in conflict.

• Individual rows read on the secondary are self-consistent at all times, each row always reflecting
either a state committed by the secondary, or one committed by the primary.

• Sets of rows read on the secondary may not necessarily be consistent at a given single point in time.
For NDB$EPOCH_TRANS(), this is a transient state; for NDB$EPOCH(), it can be a persistent state.

• Assuming a period of sufficient length without any conflicts, all data on the secondary NDB Cluster
(eventually) becomes consistent with the primary's data.

NDB$EPOCH() and NDB$EPOCH_TRANS() do not require any user schema modifications, or
application changes to provide conflict detection. However, careful thought must be given to the
schema used, and the access patterns used, to verify that the complete system behaves within
specified limits.

Each of the NDB$EPOCH() and NDB$EPOCH_TRANS() functions can take an optional parameter; this
is the number of bits to use to represent the lower 32 bits of the epoch, and should be set to no less
than the value calculated as shown here:

CEIL(LOG2(TimeBetweenGlobalCheckpoints / TimeBetweenEpochs), 1)

For the default values of these configuration parameters (2000 and 100 milliseconds, respectively),
this gives a value of 5 bits, so the default value (6) should be sufficient, unless other values are used
for TimeBetweenGlobalCheckpoints, TimeBetweenEpochs, or both. A value that is too small
can result in false positives, while one that is too large could lead to excessive wasted space in the
database.

Both NDB$EPOCH() and NDB$EPOCH_TRANS() insert entries for conflicting rows into the relevant
exceptions tables, provided that these tables have been defined according to the same exceptions
table schema rules as described elsewhere in this section (see NDB$OLD()). You must create any
exceptions table before creating the data table with which it is to be used.

As with the other conflict detection functions discussed in this section, NDB$EPOCH() and NDB
$EPOCH_TRANS() are activated by including relevant entries in the mysql.ndb_replication table
(see ndb_replication Table). The roles of the primary and secondary NDB Clusters in this scenario are
fully determined by mysql.ndb_replication table entries.

Because the conflict detection algorithms employed by NDB$EPOCH() and NDB$EPOCH_TRANS() are
asymmetric, you must use different values for the server_id entries of the primary and secondary
replicas.

A conflict between DELETE operations alone is not sufficient to trigger a conflict using NDB$EPOCH() or
NDB$EPOCH_TRANS(), and the relative placement within epochs does not matter.

Limitations on NDB$EPOCH()

 The following limitations currently apply when using NDB$EPOCH() to perform conflict detection:

• Conflicts are detected using NDB Cluster epoch boundaries, with granularity proportional to
TimeBetweenEpochs (default: 100 milliseconds). The minimum conflict window is the minimum
time during which concurrent updates to the same data on both clusters always report a conflict. This
is always a nonzero length of time, and is roughly proportional to 2 * (latency + queueing +
TimeBetweenEpochs). This implies that—assuming the default for TimeBetweenEpochs and
ignoring any latency between clusters (as well as any queuing delays)—the minimum conflict window
size is approximately 200 milliseconds. This minimum window should be considered when looking at
expected application “race” patterns.

4886

NDB Cluster Replication Conflict Resolution

• Additional storage is required for tables using the NDB$EPOCH() and NDB$EPOCH_TRANS()
functions; from 1 to 32 bits extra space per row is required, depending on the value passed to the
function.

• Conflicts between delete operations may result in divergence between the primary and secondary.
When a row is deleted on both clusters concurrently, the conflict can be detected, but is not
recorded, since the row is deleted. This means that further conflicts during the propagation of any
subsequent realignment operations are not detected, which can lead to divergence.

Deletes should be externally serialized, or routed to one cluster only. Alternatively, a separate row
should be updated transactionally with such deletes and any inserts that follow them, so that conflicts
can be tracked across row deletes. This may require changes in applications.

• Only two NDB Clusters in a bidirectional “active-active” configuration are currently supported when
using NDB$EPOCH() or NDB$EPOCH_TRANS() for conflict detection.

• Tables having BLOB or TEXT columns are not currently supported with NDB$EPOCH() or NDB
$EPOCH_TRANS().

NDB$EPOCH_TRANS()

 NDB$EPOCH_TRANS() extends the NDB$EPOCH() function. Conflicts are detected and handled in the
same way using the “primary wins all” rule (see NDB$EPOCH()) but with the extra condition that any
other rows updated in the same transaction in which the conflict occurred are also regarded as being
in conflict. In other words, where NDB$EPOCH() realigns individual conflicting rows on the secondary,
NDB$EPOCH_TRANS() realigns conflicting transactions.

In addition, any transactions which are detectably dependent on a conflicting transaction are also
regarded as being in conflict, these dependencies being determined by the contents of the secondary
cluster's binary log. Since the binary log contains only data modification operations (inserts, updates,
and deletes), only overlapping data modifications are used to determine dependencies between
transactions.

NDB$EPOCH_TRANS() is subject to the same conditions and limitations as NDB$EPOCH(), and in
addition requires that all transaction IDs are recorded in the secondary's binary log, using --ndb-log-
transaction-id set to ON. This adds a variable amount of overhead (up to 13 bytes per row).

The deprecated log_bin_use_v1_row_events system variable, which defaults to OFF, must not be
set to ON with NDB$EPOCH_TRANS().

See NDB$EPOCH().

NDB$EPOCH2()

 The NDB$EPOCH2() function is similar to NDB$EPOCH(), except that NDB$EPOCH2() provides for
delete-delete handling with a bidirectional replication topology. In this scenario, primary and secondary
roles are assigned to the two sources by setting the ndb_slave_conflict_role system variable to
the appropriate value on each source (usually one each of PRIMARY, SECONDARY). When this is done,
modifications made by the secondary are reflected by the primary back to the secondary which then
conditionally applies them.

NDB$EPOCH2_TRANS()

 NDB$EPOCH2_TRANS() extends the NDB$EPOCH2() function. Conflicts are detected and handled
in the same way, and assigning primary and secondary roles to the replicating clusters, but with the
extra condition that any other rows updated in the same transaction in which the conflict occurred are
also regarded as being in conflict. That is, NDB$EPOCH2() realigns individual conflicting rows on the
secondary, while NDB$EPOCH_TRANS() realigns conflicting transactions.

Where NDB$EPOCH() and NDB$EPOCH_TRANS() use metadata that is specified per row, per last
modified epoch, to determine on the primary whether an incoming replicated row change from the

4887

NDB Cluster Replication Conflict Resolution

secondary is concurrent with a locally committed change; concurrent changes are regarded as
conflicting, with subsequent exceptions table updates and realignment of the secondary. A problem
arises when a row is deleted on the primary so there is no longer any last-modified epoch available to
determine whether any replicated operations conflict, which means that conflicting delete operations
are not detected. This can result in divergence, an example being a delete on one cluster which is
concurrent with a delete and insert on the other; this why delete operations can be routed to only one
cluster when using NDB$EPOCH() and NDB$EPOCH_TRANS().

NDB$EPOCH2() bypasses the issue just described—storing information about deleted rows on the
PRIMARY—by ignoring any delete-delete conflict, and by avoiding any potential resultant divergence
as well. This is accomplished by reflecting any operation successfully applied on and replicated from
the secondary back to the secondary. On its return to the secondary, it can be used to reapply an
operation on the secondary which was deleted by an operation originating from the primary.

When using NDB$EPOCH2(), you should keep in mind that the secondary applies the delete from the
primary, removing the new row until it is restored by a reflected operation. In theory, the subsequent
insert or update on the secondary conflicts with the delete from the primary, but in this case, we choose
to ignore this and allow the secondary to “win”, in the interest of preventing divergence between the
clusters. In other words, after a delete, the primary does not detect conflicts, and instead adopts the
secondary's following changes immediately. Because of this, the secondary's state can revisit multiple
previous committed states as it progresses to a final (stable) state, and some of these may be visible.

You should also be aware that reflecting all operations from the secondary back to the primary
increases the size of the primary's logbinary log, as well as demands on bandwidth, CPU usage, and
disk I/O.

Application of reflected operations on the secondary depends on the state of the target
row on the secondary. Whether or not reflected changes are applied on the secondary
can be tracked by checking the Ndb_conflict_reflected_op_prepare_count
and Ndb_conflict_reflected_op_discard_count status variables. The number
of changes applied is simply the difference between these two values (note that
Ndb_conflict_reflected_op_prepare_count is always greater than or equal to
Ndb_conflict_reflected_op_discard_count).

Events are applied if and only if both of the following conditions are true:

• The existence of the row—that is, whether or not it exists—is in accordance with the type of event.
For delete and update operations, the row must already exist. For insert operations, the row must not
exist.

• The row was last modified by the primary. It is possible that the modification was accomplished
through the execution of a reflected operation.

If both of these conditions are not met, the reflected operation is discarded by the secondary.

Conflict Resolution Exceptions Table

 To use the NDB$OLD() conflict resolution function, it is also necessary to create an exceptions table
corresponding to each NDB table for which this type of conflict resolution is to be employed. This is
also true when using NDB$EPOCH() or NDB$EPOCH_TRANS(). The name of this table is that of the
table for which conflict resolution is to be applied, with the string $EX appended. (For example, if the
name of the original table is mytable, the name of the corresponding exceptions table name should be
mytable$EX.) The syntax for creating the exceptions table is as shown here:

CREATE TABLE original_table$EX (
 [NDB$]server_id INT UNSIGNED,
 [NDB$]source_server_id INT UNSIGNED,
 [NDB$]source_epoch BIGINT UNSIGNED,
 [NDB$]count INT UNSIGNED,

 [NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,]

4888

NDB Cluster Replication Conflict Resolution

 [NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,]
 [NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL,]

 original_table_pk_columns,

 [orig_table_column|orig_table_column$OLD|orig_table_column$NEW,]

 [additional_columns,]

 PRIMARY KEY([NDB$]server_id, [NDB$]source_server_id, [NDB$]source_epoch, [NDB$]count)
) ENGINE=NDB;

The first four columns are required. The names of the first four columns and the columns matching
the original table's primary key columns are not critical; however, we suggest for reasons of clarity
and consistency, that you use the names shown here for the server_id, source_server_id,
source_epoch, and count columns, and that you use the same names as in the original table for the
columns matching those in the original table's primary key.

If the exceptions table uses one or more of the optional columns NDBOP_TYPE, NDBCFT_CAUSE, or
NDB$ORIG_TRANSID discussed later in this section, then each of the required columns must also be
named using the prefix NDB$. If desired, you can use the NDB$ prefix to name the required columns
even if you do not define any optional columns, but in this case, all four of the required columns must
be named using the prefix.

Following these columns, the columns making up the original table's primary key should be copied
in the order in which they are used to define the primary key of the original table. The data types for
the columns duplicating the primary key columns of the original table should be the same as (or larger
than) those of the original columns. A subset of the primary key columns may be used.

The exceptions table must use the NDB storage engine. (An example that uses NDB$OLD() with an
exceptions table is shown later in this section.)

Additional columns may optionally be defined following the copied primary key columns, but not before
any of them; any such extra columns cannot be NOT NULL. NDB Cluster supports three additional,
predefined optional columns NDBOP_TYPE, NDBCFT_CAUSE, and NDB$ORIG_TRANSID, which are
described in the next few paragraphs.

 NDB$OP_TYPE: This column can be used to obtain the type of operation causing the conflict. If you
use this column, define it as shown here:

NDB$OP_TYPE ENUM('WRITE_ROW', 'UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL

The WRITE_ROW, UPDATE_ROW, and DELETE_ROW operation types represent user-initiated operations.
REFRESH_ROW operations are operations generated by conflict resolution in compensating transactions
sent back to the originating cluster from the cluster that detected the conflict. READ_ROW operations are
user-initiated read tracking operations defined with exclusive row locks.

 NDB$CFT_CAUSE: You can define an optional column NDB$CFT_CAUSE which provides the cause of
the registered conflict. This column, if used, is defined as shown here:

NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL

ROW_DOES_NOT_EXIST can be reported as the cause for UPDATE_ROW and WRITE_ROW operations;
ROW_ALREADY_EXISTS can be reported for WRITE_ROW events. DATA_IN_CONFLICT is reported
when a row-based conflict function detects a conflict; TRANS_IN_CONFLICT is reported when a
transactional conflict function rejects all of the operations belonging to a complete transaction.

 NDB$ORIG_TRANSID: The NDB$ORIG_TRANSID column, if used, contains the ID of the originating
transaction. This column should be defined as follows:

NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL

4889

NDB Cluster Replication Conflict Resolution

NDB$ORIG_TRANSID is a 64-bit value generated by NDB. This value can be used to correlate multiple
exceptions table entries belonging to the same conflicting transaction from the same or different
exceptions tables.

Additional reference columns which are not part of the original table's primary key can be named
colname$OLD or colname$NEW. colname$OLD references old values in update and delete
operations—that is, operations containing DELETE_ROW events. colname$NEW can be used to
reference new values in insert and update operations—in other words, operations using WRITE_ROW
events, UPDATE_ROW events, or both types of events. Where a conflicting operation does not supply a
value for a given reference column that is not a primary key, the exceptions table row contains either
NULL, or a defined default value for that column.

Important

The mysql.ndb_replication table is read when a data table is set up
for replication, so the row corresponding to a table to be replicated must be
inserted into mysql.ndb_replication before the table to be replicated is
created.

Conflict Detection Status Variables

 Several status variables can be used to monitor conflict detection. You can see how many rows have
been found in conflict by NDB$EPOCH() since this replica was last restarted from the current value of
the Ndb_conflict_fn_epoch system status variable.

Ndb_conflict_fn_epoch_trans provides the number of rows that have been
found directly in conflict by NDB$EPOCH_TRANS(). Ndb_conflict_fn_epoch2 and
Ndb_conflict_fn_epoch2_trans show the number of rows found in conflict by NDB$EPOCH2()
and NDB$EPOCH2_TRANS(), respectively. The number of rows actually realigned, including those
affected due to their membership in or dependency on the same transactions as other conflicting rows,
is given by Ndb_conflict_trans_row_reject_count.

Another server status variable Ndb_conflict_fn_max provides a count of the number of times that a
row was not applied on the current SQL node due to “greatest timestamp wins” conflict resolution since
the last time that mysqld was started. Ndb_conflict_fn_max_del_win provides a count of the
number of times that conflict resolution based on the outcome of NDB$MAX_DELETE_WIN() has been
applied.

NDB 8.0.30 and later provides Ndb_conflict_fn_max_ins for tracking the number of
times that “greater timestamp wins” handling has been applied to write operations (using NDB
$MAX_INS()); a count of the number of times that “same timestamp wins” handling of writes has
been applied (as implemented by NDB$MAX_DEL_WIN_INS()), is provided by the status variable
Ndb_conflict_fn_max_del_win_ins.

The number of times that a row was not applied as the result of “same timestamp wins” conflict
resolution on a given mysqld since the last time it was restarted is given by the global status variable
Ndb_conflict_fn_old. In addition to incrementing Ndb_conflict_fn_old, the primary key of the
row that was not used is inserted into an exceptions table, as explained elsewhere in this section.

See also NDB Cluster Status Variables.

Examples

The following examples assume that you have already a working NDB Cluster replication setup, as
described in Section 25.7.5, “Preparing the NDB Cluster for Replication”, and Section 25.7.6, “Starting
NDB Cluster Replication (Single Replication Channel)”.

NDB$MAX() example. Suppose you wish to enable “greatest timestamp wins” conflict resolution on
table test.t1, using column mycol as the “timestamp”. This can be done using the following steps:

1. Make sure that you have started the source mysqld with --ndb-log-update-as-write=OFF.

4890

NDB Cluster Replication Conflict Resolution

2. On the source, perform this INSERT statement:

INSERT INTO mysql.ndb_replication
 VALUES ('test', 't1', 0, NULL, 'NDB$MAX(mycol)');

Note

If the ndb_replication table does not already exist, you must create it.
See ndb_replication Table.

Inserting a 0 into the server_id column indicates that all SQL nodes accessing this table should
use conflict resolution. If you want to use conflict resolution on a specific mysqld only, use the
actual server ID.

Inserting NULL into the binlog_type column has the same effect as inserting 0 (NBT_DEFAULT);
the server default is used.

3. Create the test.t1 table:

CREATE TABLE test.t1 (
 columns
 mycol INT UNSIGNED,
 columns
) ENGINE=NDB;

Now, when updates are performed on this table, conflict resolution is applied, and the version of the
row having the greatest value for mycol is written to the replica.

Note

Other binlog_type options such as NBT_UPDATED_ONLY_USE_UPDATE (6)
should be used to control logging on the source using the ndb_replication
table rather than by using command-line options.

NDB$OLD() example. Suppose an NDB table such as the one defined here is being replicated, and
you wish to enable “same timestamp wins” conflict resolution for updates to this table:

CREATE TABLE test.t2 (
 a INT UNSIGNED NOT NULL,
 b CHAR(25) NOT NULL,
 columns,
 mycol INT UNSIGNED NOT NULL,
 columns,
 PRIMARY KEY pk (a, b)
) ENGINE=NDB;

The following steps are required, in the order shown:

1. First—and prior to creating test.t2—you must insert a row into the mysql.ndb_replication
table, as shown here:

INSERT INTO mysql.ndb_replication
 VALUES ('test', 't2', 0, 0, 'NDB$OLD(mycol)');

Possible values for the binlog_type column are shown earlier in this section; in this case, we
use 0 to specify that the server default logging behavior be used. The value 'NDB$OLD(mycol)'
should be inserted into the conflict_fn column.

2. Create an appropriate exceptions table for test.t2. The table creation statement shown here
includes all required columns; any additional columns must be declared following these columns,
and before the definition of the table's primary key.

CREATE TABLE test.t2$EX (
 server_id INT UNSIGNED,
 source_server_id INT UNSIGNED,

4891

NDB Cluster Replication Conflict Resolution

 source_epoch BIGINT UNSIGNED,
 count INT UNSIGNED,
 a INT UNSIGNED NOT NULL,
 b CHAR(25) NOT NULL,

 [additional_columns,]

 PRIMARY KEY(server_id, source_server_id, source_epoch, count)
) ENGINE=NDB;

We can include additional columns for information about the type, cause, and originating
transaction ID for a given conflict. We are also not required to supply matching columns for all
primary key columns in the original table. This means you can create the exceptions table like this:

CREATE TABLE test.t2$EX (
 NDB$server_id INT UNSIGNED,
 NDB$source_server_id INT UNSIGNED,
 NDB$source_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,
 a INT UNSIGNED NOT NULL,

 NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,
 NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL,

 [additional_columns,]

 PRIMARY KEY(NDB$server_id, NDB$source_server_id, NDB$source_epoch, NDB$count)
) ENGINE=NDB;

Note

The NDB$ prefix is required for the four required columns since we included
at least one of the columns NDBOP_TYPE, NDBCFT_CAUSE, or NDB
$ORIG_TRANSID in the table definition.

3. Create the table test.t2 as shown previously.

These steps must be followed for every table for which you wish to perform conflict resolution using
NDB$OLD(). For each such table, there must be a corresponding row in mysql.ndb_replication,
and there must be an exceptions table in the same database as the table being replicated.

Read conflict detection and resolution. NDB Cluster also supports tracking of read operations,
which makes it possible in circular replication setups to manage conflicts between reads of a given
row in one cluster and updates or deletes of the same row in another. This example uses employee
and department tables to model a scenario in which an employee is moved from one department
to another on the source cluster (which we refer to hereafter as cluster A) while the replica cluster
(hereafter B) updates the employee count of the employee's former department in an interleaved
transaction.

The data tables have been created using the following SQL statements:

Employee table
CREATE TABLE employee (
 id INT PRIMARY KEY,
 name VARCHAR(2000),
 dept INT NOT NULL
) ENGINE=NDB;

Department table
CREATE TABLE department (
 id INT PRIMARY KEY,
 name VARCHAR(2000),
 members INT
) ENGINE=NDB;

4892

NDB Cluster Replication Conflict Resolution

The contents of the two tables include the rows shown in the (partial) output of the following SELECT
statements:

mysql> SELECT id, name, dept FROM employee;
+---------------+------+
| id | name | dept |
+------+--------+------+
...
998	Mike	3
999	Joe	3
1000	Mary	3
...
+------+--------+------+

mysql> SELECT id, name, members FROM department;
+-----+-------------+---------+
| id | name | members |
+-----+-------------+---------+
...
| 3 | Old project | 24 |
...
+-----+-------------+---------+

We assume that we are already using an exceptions table that includes the four required columns (and
these are used for this table's primary key), the optional columns for operation type and cause, and the
original table's primary key column, created using the SQL statement shown here:

CREATE TABLE employee$EX (
 NDB$server_id INT UNSIGNED,
 NDB$source_server_id INT UNSIGNED,
 NDB$source_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,

 NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW','READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST',
 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT',
 'TRANS_IN_CONFLICT') NOT NULL,

 id INT NOT NULL,

 PRIMARY KEY(NDB$server_id, NDB$source_server_id, NDB$source_epoch, NDB$count)
) ENGINE=NDB;

Suppose there occur the two simultaneous transactions on the two clusters. On cluster A, we create
a new department, then move employee number 999 into that department, using the following SQL
statements:

BEGIN;
 INSERT INTO department VALUES (4, "New project", 1);
 UPDATE employee SET dept = 4 WHERE id = 999;
COMMIT;

At the same time, on cluster B, another transaction reads from employee, as shown here:

BEGIN;
 SELECT name FROM employee WHERE id = 999;
 UPDATE department SET members = members - 1 WHERE id = 3;
commit;

The conflicting transactions are not normally detected by the conflict resolution mechanism, since
the conflict is between a read (SELECT) and an update operation. You can circumvent this issue by
executing SET ndb_log_exclusive_reads = 1 on the replica cluster. Acquiring exclusive read
locks in this way causes any rows read on the source to be flagged as needing conflict resolution on
the replica cluster. If we enable exclusive reads in this way prior to the logging of these transactions,
the read on cluster B is tracked and sent to cluster A for resolution; the conflict on the employee row is
subsequently detected and the transaction on cluster B is aborted.

4893

NDB Cluster Replication Conflict Resolution

The conflict is registered in the exceptions table (on cluster A) as a READ_ROW operation (see Conflict
Resolution Exceptions Table, for a description of operation types), as shown here:

mysql> SELECT id, NDBOP_TYPE, NDBCFT_CAUSE FROM employee$EX;
+-------+-------------+-------------------+
| id | NDB$OP_TYPE | NDB$CFT_CAUSE |
+-------+-------------+-------------------+
...
| 999 | READ_ROW | TRANS_IN_CONFLICT |
+-------+-------------+-------------------+

Any existing rows found in the read operation are flagged. This means that multiple rows resulting
from the same conflict may be logged in the exception table, as shown by examining the effects a
conflict between an update on cluster A and a read of multiple rows on cluster B from the same table in
simultaneous transactions. The transaction executed on cluster A is shown here:

BEGIN;
 INSERT INTO department VALUES (4, "New project", 0);
 UPDATE employee SET dept = 4 WHERE dept = 3;
 SELECT COUNT(*) INTO @count FROM employee WHERE dept = 4;
 UPDATE department SET members = @count WHERE id = 4;
COMMIT;

Concurrently a transaction containing the statements shown here runs on cluster B:

SET ndb_log_exclusive_reads = 1; # Must be set if not already enabled
...
BEGIN;
 SELECT COUNT(*) INTO @count FROM employee WHERE dept = 3 FOR UPDATE;
 UPDATE department SET members = @count WHERE id = 3;
COMMIT;

In this case, all three rows matching the WHERE condition in the second transaction's SELECT are read,
and are thus flagged in the exceptions table, as shown here:

mysql> SELECT id, NDBOP_TYPE, NDBCFT_CAUSE FROM employee$EX;
+-------+-------------+-------------------+
| id | NDB$OP_TYPE | NDB$CFT_CAUSE |
+-------+-------------+-------------------+
...
998	READ_ROW	TRANS_IN_CONFLICT
999	READ_ROW	TRANS_IN_CONFLICT
1000	READ_ROW	TRANS_IN_CONFLICT
...
+-------+-------------+-------------------+

Read tracking is performed on the basis of existing rows only. A read based on a given condition
track conflicts only of any rows that are found and not of any rows that are inserted in an interleaved
transaction. This is similar to how exclusive row locking is performed in a single instance of NDB
Cluster.

Insert conflict detection and resolution example (NDB 8.0.30 and later). The following example
illustrates the use of the insert conflict detection functions added in NDB 8.0.30. We assume that we
are replicating two tables t1 and t2 in database test, and that we wish to use insert conflict detection
with NDB$MAX_INS() for t1 and NDB$MAX_DEL_WIN_INS() for t2. The two data tables are not
created until later in the setup process.

Setting up insert conflict resolution is similar to setting up other conflict detection and resolution
algorithms as shown in the previous examples. If the mysql.ndb_replication table used to
configure binary logging and conflict resolution, does not already exist, it is first necessary to create it,
as shown here:

CREATE TABLE mysql.ndb_replication (
 db VARBINARY(63),
 table_name VARBINARY(63),
 server_id INT UNSIGNED,
 binlog_type INT UNSIGNED,

4894

NDB Cluster Replication Conflict Resolution

 conflict_fn VARBINARY(128),
 PRIMARY KEY USING HASH (db, table_name, server_id)
) ENGINE=NDB
PARTITION BY KEY(db,table_name);

The ndb_replication table acts on a per-table basis; that is, we need to insert a row containing
table information, a binlog_type value, the conflict resolution function to be employed, and the name
of the timestamp column (X) for each table to be set up, like this:

INSERT INTO mysql.ndb_replication VALUES ("test", "t1", 0, 7, "NDB$MAX_INS(X)");
INSERT INTO mysql.ndb_replication VALUES ("test", "t2", 0, 7, "NDB$MAX_DEL_WIN_INS(X)");

Here we have set the binlog_type as NBT_FULL_USE_UPDATE (7) which means that full rows are
always logged. See ndb_replication Table, for other possible values.

You can also create an exceptions table corresponding to each NDB table for which conflict resolution
is to be employed. An exceptions table records all rows rejected by the conflict resolution function for
a given table. Exceptions tables for replication conflict detection for tables t1 and t2 can be created
using the following two SQL statements:

CREATE TABLE `t1$EX` (
 NDB$server_id INT UNSIGNED,
 NDB$master_server_id INT UNSIGNED,
 NDB$master_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,
 NDB$OP_TYPE ENUM('WRITE_ROW', 'UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,
 a INT NOT NULL,
 PRIMARY KEY(NDB$server_id, NDB$master_server_id,
 NDB$master_epoch, NDB$count)
) ENGINE=NDB;

CREATE TABLE `t2$EX` (
 NDB$server_id INT UNSIGNED,
 NDB$master_server_id INT UNSIGNED,
 NDB$master_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,
 NDB$OP_TYPE ENUM('WRITE_ROW', 'UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,
 a INT NOT NULL,
 PRIMARY KEY(NDB$server_id, NDB$master_server_id,
 NDB$master_epoch, NDB$count)
) ENGINE=NDB;

Finally, after creating the exception tables just shown, you can create the data tables to be replicated
and subject to conflict resolution control, using the following two SQL statements:

CREATE TABLE t1 (
 a INT PRIMARY KEY,
 b VARCHAR(32),
 X INT UNSIGNED
) ENGINE=NDB;

CREATE TABLE t2 (
 a INT PRIMARY KEY,
 b VARCHAR(32),
 X INT UNSIGNED
) ENGINE=NDB;

For each table, the X column is used as the timestamp column.

Once created on the source, t1 and t2 are replicated and can be assumed to exist on both the
source and the replica. In the remainder of this example, we use mysqlS> to indicate a mysql client
connected to the source, and mysqlR> to indicate a mysql client running on the replica.

4895

NDB Cluster Replication Conflict Resolution

First we insert one row each into the tables on the source, like this:

mysqlS> INSERT INTO t1 VALUES (1, 'Initial X=1', 1);
Query OK, 1 row affected (0.01 sec)

mysqlS> INSERT INTO t2 VALUES (1, 'Initial X=1', 1);
Query OK, 1 row affected (0.01 sec)

We can be certain that these two rows are replicated without causing any conflicts, since the tables
on the replica did not contain any rows prior to issuing the INSERT statements on the source. We can
verify this by selecting from the tables on the replica as shown here:

mysqlR> TABLE t1 ORDER BY a;
+---+-------------+------+
| a | b | X |
+---+-------------+------+
| 1 | Initial X=1 | 1 |
+---+-------------+------+
1 row in set (0.00 sec)

mysqlR> TABLE t2 ORDER BY a;
+---+-------------+------+
| a | b | X |
+---+-------------+------+
| 1 | Initial X=1 | 1 |
+---+-------------+------+
1 row in set (0.00 sec)

Next, we insert new rows into the tables on the replica, like this:

mysqlR> INSERT INTO t1 VALUES (2, 'Replica X=2', 2);
Query OK, 1 row affected (0.01 sec)

mysqlR> INSERT INTO t2 VALUES (2, 'Replica X=2', 2);
Query OK, 1 row affected (0.01 sec)

Now we insert conflicting rows into the tables on the source having greater timestamp (X) column
values, using the statements shown here:

mysqlS> INSERT INTO t1 VALUES (2, 'Source X=20', 20);
Query OK, 1 row affected (0.01 sec)

mysqlS> INSERT INTO t2 VALUES (2, 'Source X=20', 20);
Query OK, 1 row affected (0.01 sec)

Now we observe the results by selecting (again) from both tables on the replica, as shown here:

mysqlR> TABLE t1 ORDER BY a;
+---+-------------+-------+
| a | b | X |
+---+-------------+-------+
| 1 | Initial X=1 | 1 |
+---+-------------+-------+
| 2 | Source X=20 | 20 |
+---+-------------+-------+
2 rows in set (0.00 sec)

mysqlR> TABLE t2 ORDER BY a;
+---+-------------+-------+
| a | b | X |
+---+-------------+-------+
| 1 | Initial X=1 | 1 |
+---+-------------+-------+
| 1 | Source X=20 | 20 |
+---+-------------+-------+
2 rows in set (0.00 sec)

The rows inserted on the source, having greater timestamps than those in the conflicting rows on the
replica, have replaced those rows. On the replica, we next insert two new rows which do not conflict
with any existing rows in t1 or t2, like this:

4896

NDB Cluster Replication Conflict Resolution

mysqlR> INSERT INTO t1 VALUES (3, 'Slave X=30', 30);
Query OK, 1 row affected (0.01 sec)

mysqlR> INSERT INTO t2 VALUES (3, 'Slave X=30', 30);
Query OK, 1 row affected (0.01 sec)

Inserting more rows on the source with the same primary key value (3) brings about conflicts as before,
but this time we use a value for the timestamp column less than that in same column in the conflicting
rows on the replica.

mysqlS> INSERT INTO t1 VALUES (3, 'Source X=3', 3);
Query OK, 1 row affected (0.01 sec)

mysqlS> INSERT INTO t2 VALUES (3, 'Source X=3', 3);
Query OK, 1 row affected (0.01 sec)

We can see by querying the tables that both inserts from the source were rejected by the replica, and
the rows inserted on the replica previously have not been overwritten, as shown here in the mysql
client on the replica:

mysqlR> TABLE t1 ORDER BY a;
+---+--------------+-------+
| a | b | X |
+---+--------------+-------+
| 1 | Initial X=1 | 1 |
+---+--------------+-------+
| 2 | Source X=20 | 20 |
+---+--------------+-------+
| 3 | Replica X=30 | 30 |
+---+--------------+-------+
3 rows in set (0.00 sec)

mysqlR> TABLE t2 ORDER BY a;
+---+--------------+-------+
| a | b | X |
+---+--------------+-------+
| 1 | Initial X=1 | 1 |
+---+--------------+-------+
| 2 | Source X=20 | 20 |
+---+--------------+-------+
| 3 | Replica X=30 | 30 |
+---+--------------+-------+
3 rows in set (0.00 sec)

You can see information about the rows that were rejected in the exception tables, as shown here:

mysqlR> SELECT NDB$server_id, NDB$master_server_id, NDB$count,
 > NDBOP_TYPE, NDBCFT_CAUSE, a
 > FROM t1$EX
 > ORDER BY NDB$count\G
*************************** 1. row ***************************
NDB$server_id : 2
NDB$master_server_id: 1
NDB$count : 1
NDB$OP_TYPE : WRITE_ROW
NDB$CFT_CAUSE : DATA_IN_CONFLICT
a : 3
1 row in set (0.00 sec)

mysqlR> SELECT NDB$server_id, NDB$master_server_id, NDB$count,
 > NDBOP_TYPE, NDBCFT_CAUSE, a
 > FROM t2$EX
 > ORDER BY NDB$count\G
*************************** 1. row ***************************
NDB$server_id : 2
NDB$master_server_id: 1
NDB$count : 1
NDB$OP_TYPE : WRITE_ROW
NDB$CFT_CAUSE : DATA_IN_CONFLICT
a : 3
1 row in set (0.00 sec)

4897

NDB Cluster Release Notes

As we saw earlier, no other rows inserted on the source were rejected by the replica, only those rows
having a lesser timestamp value than the rows in conflict on the replica.

25.8 NDB Cluster Release Notes

Changes in NDB Cluster releases are documented separately from this reference manual; you can find
release notes for the changes in each NDB Cluster 8.0 release at NDB 8.0 Release Notes.

You can obtain release notes for older versions of NDB Cluster from NDB Cluster Release Notes.

4898

https://dev.mysql.com/doc/relnotes/mysql-cluster/8.0/en/
https://dev.mysql.com/doc/index-cluster.html#cluster-relnotes

Chapter 26 Partitioning

Table of Contents
26.1 Overview of Partitioning in MySQL ... 4900
26.2 Partitioning Types .. 4903

26.2.1 RANGE Partitioning .. 4904
26.2.2 LIST Partitioning ... 4908
26.2.3 COLUMNS Partitioning ... 4911
26.2.4 HASH Partitioning ... 4918
26.2.5 KEY Partitioning ... 4921
26.2.6 Subpartitioning .. 4922
26.2.7 How MySQL Partitioning Handles NULL .. 4924

26.3 Partition Management .. 4928
26.3.1 Management of RANGE and LIST Partitions .. 4929
26.3.2 Management of HASH and KEY Partitions ... 4935
26.3.3 Exchanging Partitions and Subpartitions with Tables .. 4936
26.3.4 Maintenance of Partitions .. 4943
26.3.5 Obtaining Information About Partitions ... 4944

26.4 Partition Pruning .. 4946
26.5 Partition Selection .. 4949
26.6 Restrictions and Limitations on Partitioning ... 4955

26.6.1 Partitioning Keys, Primary Keys, and Unique Keys ... 4961
26.6.2 Partitioning Limitations Relating to Storage Engines ... 4964
26.6.3 Partitioning Limitations Relating to Functions .. 4965

This chapter discusses user-defined partitioning.

Note

Table partitioning differs from partitioning as used by window functions. For
information about window functions, see Section 14.20, “Window Functions”.

In MySQL 8.0, partitioning support is provided by the InnoDB and NDB storage engines.

MySQL 8.0 does not currently support partitioning of tables using any storage engine other than
InnoDB or NDB, such as MyISAM. An attempt to create a partitioned tables using a storage engine that
does not supply native partitioning support fails with ER_CHECK_NOT_IMPLEMENTED.

MySQL 8.0 Community binaries provided by Oracle include partitioning support provided by the
InnoDB and NDB storage engines. For information about partitioning support offered in MySQL
Enterprise Edition binaries, see Chapter 32, MySQL Enterprise Edition.

If you are compiling MySQL 8.0 from source, configuring the build with InnoDB support is sufficient
to produce binaries with partition support for InnoDB tables. For more information, see Section 2.8,
“Installing MySQL from Source”.

Nothing further needs to be done to enable partitioning support by InnoDB (for example, no special
entries are required in the my.cnf file).

It is not possible to disable partitioning support by the InnoDB storage engine.

See Section 26.1, “Overview of Partitioning in MySQL”, for an introduction to partitioning and
partitioning concepts.

Several types of partitioning are supported, as well as subpartitioning; see Section 26.2, “Partitioning
Types”, and Section 26.2.6, “Subpartitioning”.

4899

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_check_not_implemented

Overview of Partitioning in MySQL

Section 26.3, “Partition Management”, covers methods of adding, removing, and altering partitions in
existing partitioned tables.

Section 26.3.4, “Maintenance of Partitions”, discusses table maintenance commands for use with
partitioned tables.

The PARTITIONS table in the INFORMATION_SCHEMA database provides information about partitions
and partitioned tables. See Section 28.3.21, “The INFORMATION_SCHEMA PARTITIONS Table”, for
more information; for some examples of queries against this table, see Section 26.2.7, “How MySQL
Partitioning Handles NULL”.

For known issues with partitioning in MySQL 8.0, see Section 26.6, “Restrictions and Limitations on
Partitioning”.

You may also find the following resources to be useful when working with partitioned tables.

Additional Resources. Other sources of information about user-defined partitioning in MySQL
include the following:

• MySQL Partitioning Forum

This is the official discussion forum for those interested in or experimenting with MySQL Partitioning
technology. It features announcements and updates from MySQL developers and others. It is
monitored by members of the Partitioning Development and Documentation Teams.

• PlanetMySQL

A MySQL news site featuring MySQL-related blogs, which should be of interest to anyone using
my MySQL. We encourage you to check here for links to blogs kept by those working with MySQL
Partitioning, or to have your own blog added to those covered.

26.1 Overview of Partitioning in MySQL

This section provides a conceptual overview of partitioning in MySQL 8.0.

For information on partitioning restrictions and feature limitations, see Section 26.6, “Restrictions and
Limitations on Partitioning”.

The SQL standard does not provide much in the way of guidance regarding the physical aspects
of data storage. The SQL language itself is intended to work independently of any data structures
or media underlying the schemas, tables, rows, or columns with which it works. Nonetheless, most
advanced database management systems have evolved some means of determining the physical
location to be used for storing specific pieces of data in terms of the file system, hardware or even
both. In MySQL, the InnoDB storage engine has long supported the notion of a tablespace (see
Section 17.6.3, “Tablespaces”), and the MySQL Server, even prior to the introduction of partitioning,
could be configured to employ different physical directories for storing different databases (see
Section 10.12.2, “Using Symbolic Links”, for an explanation of how this is done).

Partitioning takes this notion a step further, by enabling you to distribute portions of individual tables
across a file system according to rules which you can set largely as needed. In effect, different portions
of a table are stored as separate tables in different locations. The user-selected rule by which the
division of data is accomplished is known as a partitioning function, which in MySQL can be the
modulus, simple matching against a set of ranges or value lists, an internal hashing function, or a linear
hashing function. The function is selected according to the partitioning type specified by the user, and
takes as its parameter the value of a user-supplied expression. This expression can be a column value,
a function acting on one or more column values, or a set of one or more column values, depending on
the type of partitioning that is used.

In the case of RANGE, LIST, and [LINEAR] HASH partitioning, the value of the partitioning column
is passed to the partitioning function, which returns an integer value representing the number of the

4900

https://forums.mysql.com/list.php?106
http://www.planetmysql.org/

Overview of Partitioning in MySQL

partition in which that particular record should be stored. This function must be nonconstant and
nonrandom. It may not contain any queries, but may use an SQL expression that is valid in MySQL, as
long as that expression returns either NULL or an integer intval such that

-MAXVALUE <= intval <= MAXVALUE

(MAXVALUE is used to represent the least upper bound for the type of integer in question. -MAXVALUE
represents the greatest lower bound.)

For [LINEAR] KEY, RANGE COLUMNS, and LIST COLUMNS partitioning, the partitioning expression
consists of a list of one or more columns.

For [LINEAR] KEY partitioning, the partitioning function is supplied by MySQL.

For more information about permitted partitioning column types and partitioning functions, see
Section 26.2, “Partitioning Types”, as well as Section 15.1.20, “CREATE TABLE Statement”, which
provides partitioning syntax descriptions and additional examples. For information about restrictions on
partitioning functions, see Section 26.6.3, “Partitioning Limitations Relating to Functions”.

This is known as horizontal partitioning—that is, different rows of a table may be assigned to different
physical partitions. MySQL 8.0 does not support vertical partitioning, in which different columns of a
table are assigned to different physical partitions. There are no plans at this time to introduce vertical
partitioning into MySQL.

For creating partitioned tables, you must use a storage engine that supports them. In MySQL 8.0, all
partitions of the same partitioned table must use the same storage engine. However, there is nothing
preventing you from using different storage engines for different partitioned tables on the same MySQL
server or even in the same database.

In MySQL 8.0, the only storage engines that support partitioning are InnoDB and NDB. Partitioning
cannot be used with storage engines that do not support it; these include the MyISAM, MERGE, CSV,
and FEDERATED storage engines.

Partitioning by KEY or LINEAR KEY is possible with NDB, but other types of user-defined partitioning
are not supported for tables using this storage engine. In addition, an NDB table that employs user-
defined partitioning must have an explicit primary key, and any columns referenced in the table's
partitioning expression must be part of the primary key. However, if no columns are listed in the
PARTITION BY KEY or PARTITION BY LINEAR KEY clause of the CREATE TABLE or ALTER
TABLE statement used to create or modify a user-partitioned NDB table, then the table is not required
to have an explicit primary key. For more information, see Section 25.2.7.1, “Noncompliance with SQL
Syntax in NDB Cluster”.

When creating a partitioned table, the default storage engine is used just as when creating any other
table; to override this behavior, it is necessary only to use the [STORAGE] ENGINE option just as
you would for a table that is not partitioned. The target storage engine must provide native partitioning
support, or the statement fails. You should keep in mind that [STORAGE] ENGINE (and other table
options) need to be listed before any partitioning options are used in a CREATE TABLE statement. This
example shows how to create a table that is partitioned by hash into 6 partitions and which uses the
InnoDB storage engine (regardless of the value of default_storage_engine):

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE)
 ENGINE=INNODB
 PARTITION BY HASH(MONTH(tr_date))
 PARTITIONS 6;

Each PARTITION clause can include a [STORAGE] ENGINE option, but in MySQL 8.0 this has no
effect.

Unless otherwise specified, the remaining examples in this discussion assume that
default_storage_engine is InnoDB.

4901

Overview of Partitioning in MySQL

Important

Partitioning applies to all data and indexes of a table; you cannot partition only
the data and not the indexes, or vice versa, nor can you partition only a portion
of the table.

Data and indexes for each partition can be assigned to a specific directory using the DATA
DIRECTORY and INDEX DIRECTORY options for the PARTITION clause of the CREATE TABLE
statement used to create the partitioned table.

Only the DATA DIRECTORY option is supported for individual partitions and subpartitions of InnoDB
tables. As of MySQL 8.0.21, the directory specified in a DATA DIRECTORY clause must be known to
InnoDB. For more information, see Using the DATA DIRECTORY Clause.

All columns used in the table's partitioning expression must be part of every unique key that the table
may have, including any primary key. This means that a table such as this one, created by the following
SQL statement, cannot be partitioned:

CREATE TABLE tnp (
 id INT NOT NULL AUTO_INCREMENT,
 ref BIGINT NOT NULL,
 name VARCHAR(255),
 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
);

Because the keys pk and uk have no columns in common, there are no columns available for use in a
partitioning expression. Possible workarounds in this situation include adding the name column to the
table's primary key, adding the id column to uk, or simply removing the unique key altogether. See
Section 26.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”, for more information.

In addition, MAX_ROWS and MIN_ROWS can be used to determine the maximum and minimum numbers
of rows, respectively, that can be stored in each partition. See Section 26.3, “Partition Management”,
for more information on these options.

The MAX_ROWS option can also be useful for creating NDB Cluster tables with extra partitions, thus
allowing for greater storage of hash indexes. See the documentation for the DataMemory data node
configuration parameter, as well as Section 25.2.2, “NDB Cluster Nodes, Node Groups, Fragment
Replicas, and Partitions”, for more information.

Some advantages of partitioning are listed here:

• Partitioning makes it possible to store more data in one table than can be held on a single disk or file
system partition.

• Data that loses its usefulness can often be easily removed from a partitioned table by dropping the
partition (or partitions) containing only that data. Conversely, the process of adding new data can in
some cases be greatly facilitated by adding one or more new partitions for storing specifically that
data.

• Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE clause
can be stored only on one or more partitions, which automatically excludes any remaining partitions
from the search. Because partitions can be altered after a partitioned table has been created, you
can reorganize your data to enhance frequent queries that may not have been often used when the
partitioning scheme was first set up. This ability to exclude non-matching partitions (and thus any
rows they contain) is often referred to as partition pruning. For more information, see Section 26.4,
“Partition Pruning”.

In addition, MySQL supports explicit partition selection for queries. For example, SELECT * FROM
t PARTITION (p0,p1) WHERE c < 5 selects only those rows in partitions p0 and p1 that
match the WHERE condition. In this case, MySQL does not check any other partitions of table t;
this can greatly speed up queries when you already know which partition or partitions you wish to

4902

Partitioning Types

examine. Partition selection is also supported for the data modification statements DELETE, INSERT,
REPLACE, UPDATE, and LOAD DATA, LOAD XML. See the descriptions of these statements for more
information and examples.

26.2 Partitioning Types
This section discusses the types of partitioning which are available in MySQL 8.0. These include the
types listed here:

• RANGE partitioning. This type of partitioning assigns rows to partitions based on column values
falling within a given range. See Section 26.2.1, “RANGE Partitioning”. For information about an
extension to this type, RANGE COLUMNS, see Section 26.2.3.1, “RANGE COLUMNS partitioning”.

• LIST partitioning. Similar to partitioning by RANGE, except that the partition is selected based
on columns matching one of a set of discrete values. See Section 26.2.2, “LIST Partitioning”. For
information about an extension to this type, LIST COLUMNS, see Section 26.2.3.2, “LIST COLUMNS
partitioning”.

• HASH partitioning. With this type of partitioning, a partition is selected based on the value
returned by a user-defined expression that operates on column values in rows to be inserted into the
table. The function may consist of any expression valid in MySQL that yields an integer value. See
Section 26.2.4, “HASH Partitioning”.

An extension to this type, LINEAR HASH, is also available, see Section 26.2.4.1, “LINEAR HASH
Partitioning”.

• KEY partitioning. This type of partitioning is similar to partitioning by HASH, except that only one
or more columns to be evaluated are supplied, and the MySQL server provides its own hashing
function. These columns can contain other than integer values, since the hashing function supplied
by MySQL guarantees an integer result regardless of the column data type. An extension to this
type, LINEAR KEY, is also available. See Section 26.2.5, “KEY Partitioning”.

A very common use of database partitioning is to segregate data by date. Some database systems
support explicit date partitioning, which MySQL does not implement in 8.0. However, it is not difficult
in MySQL to create partitioning schemes based on DATE, TIME, or DATETIME columns, or based on
expressions making use of such columns.

When partitioning by KEY or LINEAR KEY, you can use a DATE, TIME, or DATETIME column as the
partitioning column without performing any modification of the column value. For example, this table
creation statement is perfectly valid in MySQL:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY KEY(joined)
PARTITIONS 6;

In MySQL 8.0, it is also possible to use a DATE or DATETIME column as the partitioning column using
RANGE COLUMNS and LIST COLUMNS partitioning.

Other partitioning types require a partitioning expression that yields an integer value or NULL. If you
wish to use date-based partitioning by RANGE, LIST, HASH, or LINEAR HASH, you can simply employ
a function that operates on a DATE, TIME, or DATETIME column and returns such a value, as shown
here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,

4903

RANGE Partitioning

 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (
 PARTITION p0 VALUES LESS THAN (1960),
 PARTITION p1 VALUES LESS THAN (1970),
 PARTITION p2 VALUES LESS THAN (1980),
 PARTITION p3 VALUES LESS THAN (1990),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

Additional examples of partitioning using dates may be found in the following sections of this chapter:

• Section 26.2.1, “RANGE Partitioning”

• Section 26.2.4, “HASH Partitioning”

• Section 26.2.4.1, “LINEAR HASH Partitioning”

For more complex examples of date-based partitioning, see the following sections:

• Section 26.4, “Partition Pruning”

• Section 26.2.6, “Subpartitioning”

MySQL partitioning is optimized for use with the TO_DAYS(), YEAR(), and TO_SECONDS()
functions. However, you can use other date and time functions that return an integer or NULL, such
as WEEKDAY(), DAYOFYEAR(), or MONTH(). See Section 14.7, “Date and Time Functions”, for more
information about such functions.

It is important to remember—regardless of the type of partitioning that you use—that partitions are
always numbered automatically and in sequence when created, starting with 0. When a new row is
inserted into a partitioned table, it is these partition numbers that are used in identifying the correct
partition. For example, if your table uses 4 partitions, these partitions are numbered 0, 1, 2, and 3. For
the RANGE and LIST partitioning types, it is necessary to ensure that there is a partition defined for
each partition number. For HASH partitioning, the user-supplied expression must evaluate to an integer
value. For KEY partitioning, this issue is taken care of automatically by the hashing function which the
MySQL server employs internally.

Names of partitions generally follow the rules governing other MySQL identifiers, such as those for
tables and databases. However, you should note that partition names are not case-sensitive. For
example, the following CREATE TABLE statement fails as shown:

mysql> CREATE TABLE t2 (val INT)
 -> PARTITION BY LIST(val)(
 -> PARTITION mypart VALUES IN (1,3,5),
 -> PARTITION MyPart VALUES IN (2,4,6)
 ->);
ERROR 1488 (HY000): Duplicate partition name mypart

Failure occurs because MySQL sees no difference between the partition names mypart and MyPart.

When you specify the number of partitions for the table, this must be expressed as a positive, nonzero
integer literal with no leading zeros, and may not be an expression such as 0.8E+01 or 6-2, even if it
evaluates to an integer value. Decimal fractions are not permitted.

In the sections that follow, we do not necessarily provide all possible forms for the syntax that can
be used for creating each partition type; for this information, see Section 15.1.20, “CREATE TABLE
Statement”.

26.2.1 RANGE Partitioning

A table that is partitioned by range is partitioned in such a way that each partition contains rows for
which the partitioning expression value lies within a given range. Ranges should be contiguous but

4904

RANGE Partitioning

not overlapping, and are defined using the VALUES LESS THAN operator. For the next few examples,
suppose that you are creating a table such as the following to hold personnel records for a chain of 20
video stores, numbered 1 through 20:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Note

The employees table used here has no primary or unique keys. While the
examples work as shown for purposes of the present discussion, you should
keep in mind that tables are extremely likely in practice to have primary keys,
unique keys, or both, and that allowable choices for partitioning columns
depend on the columns used for these keys, if any are present. For a discussion
of these issues, see Section 26.6.1, “Partitioning Keys, Primary Keys, and
Unique Keys”.

This table can be partitioned by range in a number of ways, depending on your needs. One way would
be to use the store_id column. For instance, you might decide to partition the table 4 ways by adding
a PARTITION BY RANGE clause as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN (21)
);

In this partitioning scheme, all rows corresponding to employees working at stores 1 through 5 are
stored in partition p0, to those employed at stores 6 through 10 are stored in partition p1, and so on.
Each partition is defined in order, from lowest to highest. This is a requirement of the PARTITION BY
RANGE syntax; you can think of it as being analogous to a series of if ... elseif ... statements
in C or Java in this regard.

It is easy to determine that a new row containing the data (72, 'Mitchell', 'Wilson',
'1998-06-25', DEFAULT, 7, 13) is inserted into partition p2, but what happens when your chain
adds a 21st store? Under this scheme, there is no rule that covers a row whose store_id is greater
than 20, so an error results because the server does not know where to place it. You can keep this
from occurring by using a “catchall” VALUES LESS THAN clause in the CREATE TABLE statement that
provides for all values greater than the highest value explicitly named:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)

4905

RANGE Partitioning

PARTITION BY RANGE (store_id) (
 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

(As with the other examples in this chapter, we assume that the default storage engine is InnoDB.)

Another way to avoid an error when no matching value is found is to use the IGNORE keyword as part
of the INSERT statement. For an example, see Section 26.2.2, “LIST Partitioning”.

MAXVALUE represents an integer value that is always greater than the largest possible integer value (in
mathematical language, it serves as a least upper bound). Now, any rows whose store_id column
value is greater than or equal to 16 (the highest value defined) are stored in partition p3. At some point
in the future—when the number of stores has increased to 25, 30, or more—you can use an ALTER
TABLE statement to add new partitions for stores 21-25, 26-30, and so on (see Section 26.3, “Partition
Management”, for details of how to do this).

In much the same fashion, you could partition the table based on employee job codes—that is, based
on ranges of job_code column values. For example—assuming that two-digit job codes are used for
regular (in-store) workers, three-digit codes are used for office and support personnel, and four-digit
codes are used for management positions—you could create the partitioned table using the following
statement:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (job_code) (
 PARTITION p0 VALUES LESS THAN (100),
 PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (10000)
);

In this instance, all rows relating to in-store workers would be stored in partition p0, those relating to
office and support staff in p1, and those relating to managers in partition p2.

It is also possible to use an expression in VALUES LESS THAN clauses. However, MySQL must be
able to evaluate the expression's return value as part of a LESS THAN (<) comparison.

Rather than splitting up the table data according to store number, you can use an expression based on
one of the two DATE columns instead. For example, let us suppose that you wish to partition based on
the year that each employee left the company; that is, the value of YEAR(separated). An example of
a CREATE TABLE statement that implements such a partitioning scheme is shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY RANGE (YEAR(separated)) (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (1996),
 PARTITION p2 VALUES LESS THAN (2001),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

4906

RANGE Partitioning

In this scheme, for all employees who left before 1991, the rows are stored in partition p0; for those
who left in the years 1991 through 1995, in p1; for those who left in the years 1996 through 2000, in
p2; and for any workers who left after the year 2000, in p3.

It is also possible to partition a table by RANGE, based on the value of a TIMESTAMP column, using the
UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
 report_id INT NOT NULL,
 report_status VARCHAR(20) NOT NULL,
 report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),
 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
 PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
 PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
 PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
 PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
 PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),
 PARTITION p9 VALUES LESS THAN (MAXVALUE)
);

Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)

Range partitioning is particularly useful when one or more of the following conditions is true:

• You want or need to delete “old” data. If you are using the partitioning scheme shown previously
for the employees table, you can simply use ALTER TABLE employees DROP PARTITION
p0; to delete all rows relating to employees who stopped working for the firm prior to 1991. (See
Section 15.1.9, “ALTER TABLE Statement”, and Section 26.3, “Partition Management”, for more
information.) For a table with a great many rows, this can be much more efficient than running a
DELETE query such as DELETE FROM employees WHERE YEAR(separated) <= 1990;.

• You want to use a column containing date or time values, or containing values arising from some
other series.

• You frequently run queries that depend directly on the column used for partitioning the table. For
example, when executing a query such as EXPLAIN SELECT COUNT(*) FROM employees
WHERE separated BETWEEN '2000-01-01' AND '2000-12-31' GROUP BY store_id;,
MySQL can quickly determine that only partition p2 needs to be scanned because the remaining
partitions cannot contain any records satisfying the WHERE clause. See Section 26.4, “Partition
Pruning”, for more information about how this is accomplished.

A variant on this type of partitioning is RANGE COLUMNS partitioning. Partitioning by RANGE COLUMNS
makes it possible to employ multiple columns for defining partitioning ranges that apply both to
placement of rows in partitions and for determining the inclusion or exclusion of specific partitions
when performing partition pruning. See Section 26.2.3.1, “RANGE COLUMNS partitioning”, for more
information.

Partitioning schemes based on time intervals. If you wish to implement a partitioning scheme
based on ranges or intervals of time in MySQL 8.0, you have two options:

1. Partition the table by RANGE, and for the partitioning expression, employ a function operating on a
DATE, TIME, or DATETIME column and returning an integer value, as shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (

4907

LIST Partitioning

 PARTITION p0 VALUES LESS THAN (1960),
 PARTITION p1 VALUES LESS THAN (1970),
 PARTITION p2 VALUES LESS THAN (1980),
 PARTITION p3 VALUES LESS THAN (1990),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

In MySQL 8.0, it is also possible to partition a table by RANGE based on the value of a TIMESTAMP
column, using the UNIX_TIMESTAMP() function, as shown in this example:

CREATE TABLE quarterly_report_status (
 report_id INT NOT NULL,
 report_status VARCHAR(20) NOT NULL,
 report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),
 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
 PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
 PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
 PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
 PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
 PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),
 PARTITION p9 VALUES LESS THAN (MAXVALUE)
);

In MySQL 8.0, any other expressions involving TIMESTAMP values are not permitted. (See Bug
#42849.)

Note

It is also possible in MySQL 8.0 to use
UNIX_TIMESTAMP(timestamp_column) as a partitioning expression for
tables that are partitioned by LIST. However, it is usually not practical to do
so.

2. Partition the table by RANGE COLUMNS, using a DATE or DATETIME column as the partitioning
column. For example, the members table could be defined using the joined column directly, as
shown here:

CREATE TABLE members (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 username VARCHAR(16) NOT NULL,
 email VARCHAR(35),
 joined DATE NOT NULL
)
PARTITION BY RANGE COLUMNS(joined) (
 PARTITION p0 VALUES LESS THAN ('1960-01-01'),
 PARTITION p1 VALUES LESS THAN ('1970-01-01'),
 PARTITION p2 VALUES LESS THAN ('1980-01-01'),
 PARTITION p3 VALUES LESS THAN ('1990-01-01'),
 PARTITION p4 VALUES LESS THAN MAXVALUE
);

Note

The use of partitioning columns employing date or time types other than DATE
or DATETIME is not supported with RANGE COLUMNS.

26.2.2 LIST Partitioning

List partitioning in MySQL is similar to range partitioning in many ways. As in partitioning by RANGE,
each partition must be explicitly defined. The chief difference between the two types of partitioning is
that, in list partitioning, each partition is defined and selected based on the membership of a column

4908

LIST Partitioning

value in one of a set of value lists, rather than in one of a set of contiguous ranges of values. This is
done by using PARTITION BY LIST(expr) where expr is a column value or an expression based
on a column value and returning an integer value, and then defining each partition by means of a
VALUES IN (value_list), where value_list is a comma-separated list of integers.

Note

In MySQL 8.0, it is possible to match against only a list of integers (and possibly
NULL—see Section 26.2.7, “How MySQL Partitioning Handles NULL”) when
partitioning by LIST.

However, other column types may be used in value lists when employing LIST
COLUMN partitioning, which is described later in this section.

Unlike the case with partitions defined by range, list partitions do not need to be declared in any
particular order. For more detailed syntactical information, see Section 15.1.20, “CREATE TABLE
Statement”.

For the examples that follow, we assume that the basic definition of the table to be partitioned is
provided by the CREATE TABLE statement shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
);

(This is the same table used as a basis for the examples in Section 26.2.1, “RANGE Partitioning”. As
with the other partitioning examples, we assume that the default_storage_engine is InnoDB.)

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table.

Region Store ID Numbers

North 3, 5, 6, 9, 17

East 1, 2, 10, 11, 19, 20

West 4, 12, 13, 14, 18

Central 7, 8, 15, 16

To partition this table in such a way that rows for stores belonging to the same region are stored in the
same partition, you could use the CREATE TABLE statement shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY LIST(store_id) (
 PARTITION pNorth VALUES IN (3,5,6,9,17),
 PARTITION pEast VALUES IN (1,2,10,11,19,20),
 PARTITION pWest VALUES IN (4,12,13,14,18),
 PARTITION pCentral VALUES IN (7,8,15,16)
);

This makes it easy to add or drop employee records relating to specific regions to or from the table.
For instance, suppose that all stores in the West region are sold to another company. In MySQL
8.0, all rows relating to employees working at stores in that region can be deleted with the query

4909

LIST Partitioning

ALTER TABLE employees TRUNCATE PARTITION pWest, which can be executed much more
efficiently than the equivalent DELETE statement DELETE FROM employees WHERE store_id IN
(4,12,13,14,18);. (Using ALTER TABLE employees DROP PARTITION pWest would also
delete all of these rows, but would also remove the partition pWest from the definition of the table; you
would need to use an ALTER TABLE ... ADD PARTITION statement to restore the table's original
partitioning scheme.)

As with RANGE partitioning, it is possible to combine LIST partitioning with partitioning by hash or key
to produce a composite partitioning (subpartitioning). See Section 26.2.6, “Subpartitioning”.

Unlike the case with RANGE partitioning, there is no “catch-all” such as MAXVALUE; all expected values
for the partitioning expression should be covered in PARTITION ... VALUES IN (...) clauses.
An INSERT statement containing an unmatched partitioning column value fails with an error, as shown
in this example:

mysql> CREATE TABLE h2 (
 -> c1 INT,
 -> c2 INT
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (1, 4, 7),
 -> PARTITION p1 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.11 sec)

mysql> INSERT INTO h2 VALUES (3, 5);
ERROR 1525 (HY000): Table has no partition for value 3

When inserting multiple rows using a single INSERT statement into a single InnoDB table, InnoDB
considers the statement a single transaction, so that the presence of any unmatched values causes the
statement to fail completely, and so no rows are inserted.

You can cause this type of error to be ignored by using the IGNORE keyword, although a warning is
issued for each row containing unmatched partitioning column values, as shown here.

mysql> TRUNCATE h2;
Query OK, 1 row affected (0.00 sec)

mysql> TABLE h2;
Empty set (0.00 sec)

mysql> INSERT IGNORE INTO h2 VALUES (2, 5), (6, 10), (7, 5), (3, 1), (1, 9);
Query OK, 3 rows affected, 2 warnings (0.01 sec)
Records: 5 Duplicates: 2 Warnings: 2

mysql> SHOW WARNINGS;
+---------+------+------------------------------------+
| Level | Code | Message |
+---------+------+------------------------------------+
| Warning | 1526 | Table has no partition for value 6 |
| Warning | 1526 | Table has no partition for value 3 |
+---------+------+------------------------------------+
2 rows in set (0.00 sec)

You can see in the output of the following TABLE statement that rows containing unmatched
partitioning column values were silently rejected, while rows containing no unmatched values were
inserted into the table:

mysql> TABLE h2;
+------+------+
| c1 | c2 |
+------+------+
7	5
1	9
2	5
+------+------+
3 rows in set (0.00 sec)

4910

COLUMNS Partitioning

MySQL also provides support for LIST COLUMNS partitioning, a variant of LIST partitioning
that enables you to use columns of types other than integer for partitioning columns, and to use
multiple columns as partitioning keys. For more information, see Section 26.2.3.2, “LIST COLUMNS
partitioning”.

26.2.3 COLUMNS Partitioning

The next two sections discuss COLUMNS partitioning, which are variants on RANGE and LIST
partitioning. COLUMNS partitioning enables the use of multiple columns in partitioning keys. All of
these columns are taken into account both for the purpose of placing rows in partitions and for the
determination of which partitions are to be checked for matching rows in partition pruning.

In addition, both RANGE COLUMNS partitioning and LIST COLUMNS partitioning support the use of non-
integer columns for defining value ranges or list members. The permitted data types are shown in the
following list:

• All integer types: TINYINT, SMALLINT, MEDIUMINT, INT (INTEGER), and BIGINT. (This is the
same as with partitioning by RANGE and LIST.)

Other numeric data types (such as DECIMAL or FLOAT) are not supported as partitioning columns.

• DATE and DATETIME.

Columns using other data types relating to dates or times are not supported as partitioning columns.

• The following string types: CHAR, VARCHAR, BINARY, and VARBINARY.

TEXT and BLOB columns are not supported as partitioning columns.

The discussions of RANGE COLUMNS and LIST COLUMNS partitioning in the next two sections assume
that you are already familiar with partitioning based on ranges and lists as supported in MySQL 5.1 and
later; for more information about these, see Section 26.2.1, “RANGE Partitioning”, and Section 26.2.2,
“LIST Partitioning”, respectively.

26.2.3.1 RANGE COLUMNS partitioning

Range columns partitioning is similar to range partitioning, but enables you to define partitions using
ranges based on multiple column values. In addition, you can define the ranges using columns of types
other than integer types.

RANGE COLUMNS partitioning differs significantly from RANGE partitioning in the following ways:

• RANGE COLUMNS does not accept expressions, only names of columns.

• RANGE COLUMNS accepts a list of one or more columns.

RANGE COLUMNS partitions are based on comparisons between tuples (lists of column values) rather
than comparisons between scalar values. Placement of rows in RANGE COLUMNS partitions is also
based on comparisons between tuples; this is discussed further later in this section.

• RANGE COLUMNS partitioning columns are not restricted to integer columns; string, DATE and
DATETIME columns can also be used as partitioning columns. (See Section 26.2.3, “COLUMNS
Partitioning”, for details.)

The basic syntax for creating a table partitioned by RANGE COLUMNS is shown here:

CREATE TABLE table_name
PARTITION BY RANGE COLUMNS(column_list) (
 PARTITION partition_name VALUES LESS THAN (value_list)[,
 PARTITION partition_name VALUES LESS THAN (value_list)][,
 ...]
)

column_list:

4911

COLUMNS Partitioning

 column_name[, column_name][, ...]

value_list:
 value[, value][, ...]

Note

Not all CREATE TABLE options that can be used when creating partitioned
tables are shown here. For complete information, see Section 15.1.20,
“CREATE TABLE Statement”.

In the syntax just shown, column_list is a list of one or more columns (sometimes called a
partitioning column list), and value_list is a list of values (that is, it is a partition definition value list).
A value_list must be supplied for each partition definition, and each value_list must have the
same number of values as the column_list has columns. Generally speaking, if you use N columns
in the COLUMNS clause, then each VALUES LESS THAN clause must also be supplied with a list of N
values.

The elements in the partitioning column list and in the value list defining each partition must occur
in the same order. In addition, each element in the value list must be of the same data type as the
corresponding element in the column list. However, the order of the column names in the partitioning
column list and the value lists does not have to be the same as the order of the table column definitions
in the main part of the CREATE TABLE statement. As with table partitioned by RANGE, you can use
MAXVALUE to represent a value such that any legal value inserted into a given column is always less
than this value. Here is an example of a CREATE TABLE statement that helps to illustrate all of these
points:

mysql> CREATE TABLE rcx (
 -> a INT,
 -> b INT,
 -> c CHAR(3),
 -> d INT
 ->)
 -> PARTITION BY RANGE COLUMNS(a,d,c) (
 -> PARTITION p0 VALUES LESS THAN (5,10,'ggg'),
 -> PARTITION p1 VALUES LESS THAN (10,20,'mmm'),
 -> PARTITION p2 VALUES LESS THAN (15,30,'sss'),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
 ->);
Query OK, 0 rows affected (0.15 sec)

Table rcx contains the columns a, b, c, d. The partitioning column list supplied to the COLUMNS
clause uses 3 of these columns, in the order a, d, c. Each value list used to define a partition contains
3 values in the same order; that is, each value list tuple has the form (INT, INT, CHAR(3)), which
corresponds to the data types used by columns a, d, and c (in that order).

Placement of rows into partitions is determined by comparing the tuple from a row to be inserted that
matches the column list in the COLUMNS clause with the tuples used in the VALUES LESS THAN
clauses to define partitions of the table. Because we are comparing tuples (that is, lists or sets
of values) rather than scalar values, the semantics of VALUES LESS THAN as used with RANGE
COLUMNS partitions differs somewhat from the case with simple RANGE partitions. In RANGE partitioning,
a row generating an expression value that is equal to a limiting value in a VALUES LESS THAN is
never placed in the corresponding partition; however, when using RANGE COLUMNS partitioning, it is
sometimes possible for a row whose partitioning column list's first element is equal in value to the that
of the first element in a VALUES LESS THAN value list to be placed in the corresponding partition.

Consider the RANGE partitioned table created by this statement:

CREATE TABLE r1 (
 a INT,
 b INT
)
PARTITION BY RANGE (a) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (MAXVALUE)

4912

COLUMNS Partitioning

);

If we insert 3 rows into this table such that the column value for a is 5 for each row, all 3 rows are
stored in partition p1 because the a column value is in each case not less than 5, as we can see by
executing the proper query against the Information Schema PARTITIONS table:

mysql> INSERT INTO r1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'r1';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 3 |
+----------------+------------+
2 rows in set (0.00 sec)

Now consider a similar table rc1 that uses RANGE COLUMNS partitioning with both columns a and b
referenced in the COLUMNS clause, created as shown here:

CREATE TABLE rc1 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a, b) (
 PARTITION p0 VALUES LESS THAN (5, 12),
 PARTITION p3 VALUES LESS THAN (MAXVALUE, MAXVALUE)
);

If we insert exactly the same rows into rc1 as we just inserted into r1, the distribution of the rows is
quite different:

mysql> INSERT INTO rc1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'rc1';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 2 |
| p3 | 1 |
+----------------+------------+
2 rows in set (0.00 sec)

This is because we are comparing rows rather than scalar values. We can compare the row values
inserted with the limiting row value from the VALUES THAN LESS THAN clause used to define partition
p0 in table rc1, like this:

mysql> SELECT (5,10) < (5,12), (5,11) < (5,12), (5,12) < (5,12);
+-----------------+-----------------+-----------------+
| (5,10) < (5,12) | (5,11) < (5,12) | (5,12) < (5,12) |
+-----------------+-----------------+-----------------+
| 1 | 1 | 0 |
+-----------------+-----------------+-----------------+
1 row in set (0.00 sec)

The 2 tuples (5,10) and (5,11) evaluate as less than (5,12), so they are stored in partition p0.
Since 5 is not less than 5 and 12 is not less than 12, (5,12) is considered not less than (5,12), and
is stored in partition p1.

The SELECT statement in the preceding example could also have been written using explicit row
constructors, like this:

4913

COLUMNS Partitioning

SELECT ROW(5,10) < ROW(5,12), ROW(5,11) < ROW(5,12), ROW(5,12) < ROW(5,12);

For more information about the use of row constructors in MySQL, see Section 15.2.15.5, “Row
Subqueries”.

For a table partitioned by RANGE COLUMNS using only a single partitioning column, the storing of
rows in partitions is the same as that of an equivalent table that is partitioned by RANGE. The following
CREATE TABLE statement creates a table partitioned by RANGE COLUMNS using 1 partitioning column:

CREATE TABLE rx (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS (a) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (MAXVALUE)
);

If we insert the rows (5,10), (5,11), and (5,12) into this table, we can see that their placement is
the same as it is for the table r we created and populated earlier:

mysql> INSERT INTO rx VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT PARTITION_NAME,TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'rx';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 3 |
+----------------+------------+
2 rows in set (0.00 sec)

It is also possible to create tables partitioned by RANGE COLUMNS where limiting values for one or
more columns are repeated in successive partition definitions. You can do this as long as the tuples of
column values used to define the partitions are strictly increasing. For example, each of the following
CREATE TABLE statements is valid:

CREATE TABLE rc2 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (0,10),
 PARTITION p1 VALUES LESS THAN (10,20),
 PARTITION p2 VALUES LESS THAN (10,30),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

CREATE TABLE rc3 (
 a INT,
 b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
 PARTITION p0 VALUES LESS THAN (0,10),
 PARTITION p1 VALUES LESS THAN (10,20),
 PARTITION p2 VALUES LESS THAN (10,30),
 PARTITION p3 VALUES LESS THAN (10,35),
 PARTITION p4 VALUES LESS THAN (20,40),
 PARTITION p5 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);

The following statement also succeeds, even though it might appear at first glance that it would not,
since the limiting value of column b is 25 for partition p0 and 20 for partition p1, and the limiting value
of column c is 100 for partition p1 and 50 for partition p2:

4914

COLUMNS Partitioning

CREATE TABLE rc4 (
 a INT,
 b INT,
 c INT
)
PARTITION BY RANGE COLUMNS(a,b,c) (
 PARTITION p0 VALUES LESS THAN (0,25,50),
 PARTITION p1 VALUES LESS THAN (10,20,100),
 PARTITION p2 VALUES LESS THAN (10,30,50),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
);

When designing tables partitioned by RANGE COLUMNS, you can always test successive partition
definitions by comparing the desired tuples using the mysql client, like this:

mysql> SELECT (0,25,50) < (10,20,100), (10,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (10,20,100) | (10,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 1 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

If a CREATE TABLE statement contains partition definitions that are not in strictly increasing order, it
fails with an error, as shown in this example:

mysql> CREATE TABLE rcf (
 -> a INT,
 -> b INT,
 -> c INT
 ->)
 -> PARTITION BY RANGE COLUMNS(a,b,c) (
 -> PARTITION p0 VALUES LESS THAN (0,25,50),
 -> PARTITION p1 VALUES LESS THAN (20,20,100),
 -> PARTITION p2 VALUES LESS THAN (10,30,50),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
 ->);
ERROR 1493 (HY000): VALUES LESS THAN value must be strictly increasing for each partition

When you get such an error, you can deduce which partition definitions are invalid by making “less
than” comparisons between their column lists. In this case, the problem is with the definition of partition
p2 because the tuple used to define it is not less than the tuple used to define partition p3, as shown
here:

mysql> SELECT (0,25,50) < (20,20,100), (20,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (20,20,100) | (20,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 0 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)

It is also possible for MAXVALUE to appear for the same column in more than one VALUES LESS THAN
clause when using RANGE COLUMNS. However, the limiting values for individual columns in successive
partition definitions should otherwise be increasing, there should be no more than one partition defined
where MAXVALUE is used as the upper limit for all column values, and this partition definition should
appear last in the list of PARTITION ... VALUES LESS THAN clauses. In addition, you cannot use
MAXVALUE as the limiting value for the first column in more than one partition definition.

As stated previously, it is also possible with RANGE COLUMNS partitioning to use non-integer columns
as partitioning columns. (See Section 26.2.3, “COLUMNS Partitioning”, for a complete listing of these.)
Consider a table named employees (which is not partitioned), created using the following statement:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',

4915

COLUMNS Partitioning

 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Using RANGE COLUMNS partitioning, you can create a version of this table that stores each row in one
of four partitions based on the employee's last name, like this:

CREATE TABLE employees_by_lname (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE COLUMNS (lname) (
 PARTITION p0 VALUES LESS THAN ('g'),
 PARTITION p1 VALUES LESS THAN ('m'),
 PARTITION p2 VALUES LESS THAN ('t'),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Alternatively, you could cause the employees table as created previously to be partitioned using this
scheme by executing the following ALTER TABLE statement:

ALTER TABLE employees PARTITION BY RANGE COLUMNS (lname) (
 PARTITION p0 VALUES LESS THAN ('g'),
 PARTITION p1 VALUES LESS THAN ('m'),
 PARTITION p2 VALUES LESS THAN ('t'),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

Note

Because different character sets and collations have different sort orders,
the character sets and collations in use may effect which partition of a table
partitioned by RANGE COLUMNS a given row is stored in when using string
columns as partitioning columns. In addition, changing the character set or
collation for a given database, table, or column after such a table is created may
cause changes in how rows are distributed. For example, when using a case-
sensitive collation, 'and' sorts before 'Andersen', but when using a collation
that is case-insensitive, the reverse is true.

For information about how MySQL handles character sets and collations, see
Chapter 12, Character Sets, Collations, Unicode.

Similarly, you can cause the employees table to be partitioned in such a way that each row is stored
in one of several partitions based on the decade in which the corresponding employee was hired using
the ALTER TABLE statement shown here:

ALTER TABLE employees PARTITION BY RANGE COLUMNS (hired) (
 PARTITION p0 VALUES LESS THAN ('1970-01-01'),
 PARTITION p1 VALUES LESS THAN ('1980-01-01'),
 PARTITION p2 VALUES LESS THAN ('1990-01-01'),
 PARTITION p3 VALUES LESS THAN ('2000-01-01'),
 PARTITION p4 VALUES LESS THAN ('2010-01-01'),
 PARTITION p5 VALUES LESS THAN (MAXVALUE)
);

See Section 15.1.20, “CREATE TABLE Statement”, for additional information about PARTITION BY
RANGE COLUMNS syntax.

26.2.3.2 LIST COLUMNS partitioning

MySQL 8.0 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning
that enables the use of multiple columns as partition keys, and for columns of data types other than

4916

COLUMNS Partitioning

integer types to be used as partitioning columns; you can use string types, DATE, and DATETIME
columns. (For more information about permitted data types for COLUMNS partitioning columns, see
Section 26.2.3, “COLUMNS Partitioning”.)

Suppose that you have a business that has customers in 12 cities which, for sales and marketing
purposes, you organize into 4 regions of 3 cities each as shown in the following table:

Region Cities

1 Oskarshamn, Högsby, Mönsterås

2 Vimmerby, Hultsfred, Västervik

3 Nässjö, Eksjö, Vetlanda

4 Uppvidinge, Alvesta, Växjo

With LIST COLUMNS partitioning, you can create a table for customer data that assigns a row to any of
4 partitions corresponding to these regions based on the name of the city where a customer resides, as
shown here:

CREATE TABLE customers_1 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY LIST COLUMNS(city) (
 PARTITION pRegion_1 VALUES IN('Oskarshamn', 'Högsby', 'Mönsterås'),
 PARTITION pRegion_2 VALUES IN('Vimmerby', 'Hultsfred', 'Västervik'),
 PARTITION pRegion_3 VALUES IN('Nässjö', 'Eksjö', 'Vetlanda'),
 PARTITION pRegion_4 VALUES IN('Uppvidinge', 'Alvesta', 'Växjo')
);

As with partitioning by RANGE COLUMNS, you do not need to use expressions in the COLUMNS() clause
to convert column values into integers. (In fact, the use of expressions other than column names is not
permitted with COLUMNS().)

It is also possible to use DATE and DATETIME columns, as shown in the following example that
uses the same name and columns as the customers_1 table shown previously, but employs LIST
COLUMNS partitioning based on the renewal column to store rows in one of 4 partitions depending on
the week in February 2010 the customer's account is scheduled to renew:

CREATE TABLE customers_2 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY LIST COLUMNS(renewal) (
 PARTITION pWeek_1 VALUES IN('2010-02-01', '2010-02-02', '2010-02-03',
 '2010-02-04', '2010-02-05', '2010-02-06', '2010-02-07'),
 PARTITION pWeek_2 VALUES IN('2010-02-08', '2010-02-09', '2010-02-10',
 '2010-02-11', '2010-02-12', '2010-02-13', '2010-02-14'),
 PARTITION pWeek_3 VALUES IN('2010-02-15', '2010-02-16', '2010-02-17',
 '2010-02-18', '2010-02-19', '2010-02-20', '2010-02-21'),
 PARTITION pWeek_4 VALUES IN('2010-02-22', '2010-02-23', '2010-02-24',
 '2010-02-25', '2010-02-26', '2010-02-27', '2010-02-28')
);

This works, but becomes cumbersome to define and maintain if the number of dates involved grows
very large; in such cases, it is usually more practical to employ RANGE or RANGE COLUMNS partitioning
instead. In this case, since the column we wish to use as the partitioning key is a DATE column, we use
RANGE COLUMNS partitioning, as shown here:

4917

HASH Partitioning

CREATE TABLE customers_3 (
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 street_1 VARCHAR(30),
 street_2 VARCHAR(30),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY RANGE COLUMNS(renewal) (
 PARTITION pWeek_1 VALUES LESS THAN('2010-02-09'),
 PARTITION pWeek_2 VALUES LESS THAN('2010-02-15'),
 PARTITION pWeek_3 VALUES LESS THAN('2010-02-22'),
 PARTITION pWeek_4 VALUES LESS THAN('2010-03-01')
);

See Section 26.2.3.1, “RANGE COLUMNS partitioning”, for more information.

In addition (as with RANGE COLUMNS partitioning), you can use multiple columns in the COLUMNS()
clause.

See Section 15.1.20, “CREATE TABLE Statement”, for additional information about PARTITION BY
LIST COLUMNS() syntax.

26.2.4 HASH Partitioning

Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined
number of partitions. With range or list partitioning, you must specify explicitly which partition a given
column value or set of column values should be stored in; with hash partitioning, this decision is taken
care of for you, and you need only specify a column value or expression based on a column value to be
hashed and the number of partitions into which the partitioned table is to be divided.

To partition a table using HASH partitioning, it is necessary to append to the CREATE TABLE statement
a PARTITION BY HASH (expr) clause, where expr is an expression that returns an integer. This
can simply be the name of a column whose type is one of MySQL's integer types. In addition, you
most likely want to follow this with PARTITIONS num, where num is a positive integer representing the
number of partitions into which the table is to be divided.

Note

For simplicity, the tables in the examples that follow do not use any keys. You
should be aware that, if a table has any unique keys, every column used in the
partitioning expression for this table must be part of every unique key, including
the primary key. See Section 26.6.1, “Partitioning Keys, Primary Keys, and
Unique Keys”, for more information.

The following statement creates a table that uses hashing on the store_id column and is divided into
4 partitions:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY HASH(store_id)
PARTITIONS 4;

If you do not include a PARTITIONS clause, the number of partitions defaults to 1; using the
PARTITIONS keyword without a number following it results in a syntax error.

You can also use an SQL expression that returns an integer for expr. For instance, you might want to
partition based on the year in which an employee was hired. This can be done as shown here:

4918

HASH Partitioning

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY HASH(YEAR(hired))
PARTITIONS 4;

expr must return a nonconstant, nonrandom integer value (in other words, it should be varying
but deterministic), and must not contain any prohibited constructs as described in Section 26.6,
“Restrictions and Limitations on Partitioning”. You should also keep in mind that this expression is
evaluated each time a row is inserted or updated (or possibly deleted); this means that very complex
expressions may give rise to performance issues, particularly when performing operations (such as
batch inserts) that affect a great many rows at one time.

The most efficient hashing function is one which operates upon a single table column and whose value
increases or decreases consistently with the column value, as this allows for “pruning” on ranges of
partitions. That is, the more closely that the expression varies with the value of the column on which it
is based, the more efficiently MySQL can use the expression for hash partitioning.

For example, where date_col is a column of type DATE, then the expression TO_DAYS(date_col)
is said to vary directly with the value of date_col, because for every change in the value
of date_col, the value of the expression changes in a consistent manner. The variance of
the expression YEAR(date_col) with respect to date_col is not quite as direct as that of
TO_DAYS(date_col), because not every possible change in date_col produces an equivalent
change in YEAR(date_col). Even so, YEAR(date_col) is a good candidate for a hashing function,
because it varies directly with a portion of date_col and there is no possible change in date_col
that produces a disproportionate change in YEAR(date_col).

By way of contrast, suppose that you have a column named int_col whose type is INT. Now
consider the expression POW(5-int_col,3) + 6. This would be a poor choice for a hashing
function because a change in the value of int_col is not guaranteed to produce a proportional
change in the value of the expression. Changing the value of int_col by a given amount can produce
widely differing changes in the value of the expression. For example, changing int_col from 5 to 6
produces a change of -1 in the value of the expression, but changing the value of int_col from 6 to
7 produces a change of -7 in the expression value.

In other words, the more closely the graph of the column value versus the value of the expression
follows a straight line as traced by the equation y=cx where c is some nonzero constant, the better the
expression is suited to hashing. This has to do with the fact that the more nonlinear an expression is,
the more uneven the distribution of data among the partitions it tends to produce.

In theory, pruning is also possible for expressions involving more than one column value, but
determining which of such expressions are suitable can be quite difficult and time-consuming. For this
reason, the use of hashing expressions involving multiple columns is not particularly recommended.

When PARTITION BY HASH is used, the storage engine determines which partition of num partitions
to use based on the modulus of the result of the expression. In other words, for a given expression
expr, the partition in which the record is stored is partition number N, where N = MOD(expr, num).
Suppose that table t1 is defined as follows, so that it has 4 partitions:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY HASH(YEAR(col3))
 PARTITIONS 4;

If you insert a record into t1 whose col3 value is '2005-09-15', then the partition in which it is
stored is determined as follows:

MOD(YEAR('2005-09-01'),4)
= MOD(2005,4)

4919

HASH Partitioning

= 1

MySQL 8.0 also supports a variant of HASH partitioning known as linear hashing which employs a more
complex algorithm for determining the placement of new rows inserted into the partitioned table. See
Section 26.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm.

The user-supplied expression is evaluated each time a record is inserted or updated. It may also—
depending on the circumstances—be evaluated when records are deleted.

26.2.4.1 LINEAR HASH Partitioning

MySQL also supports linear hashing, which differs from regular hashing in that linear hashing utilizes a
linear powers-of-two algorithm whereas regular hashing employs the modulus of the hashing function's
value.

Syntactically, the only difference between linear-hash partitioning and regular hashing is the addition of
the LINEAR keyword in the PARTITION BY clause, as shown here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY LINEAR HASH(YEAR(hired))
PARTITIONS 4;

Given an expression expr, the partition in which the record is stored when linear hashing is used is
partition number N from among num partitions, where N is derived according to the following algorithm:

1. Find the next power of 2 greater than num. We call this value V; it can be calculated as:

V = POWER(2, CEILING(LOG(2, num)))

(Suppose that num is 13. Then LOG(2,13) is 3.7004397181411. CEILING(3.7004397181411)
is 4, and V = POWER(2,4), which is 16.)

2. Set N = F(column_list) & (V - 1).

3. While N >= num:

• Set V = V / 2

• Set N = N & (V - 1)

Suppose that the table t1, using linear hash partitioning and having 6 partitions, is created using this
statement:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
 PARTITION BY LINEAR HASH(YEAR(col3))
 PARTITIONS 6;

Now assume that you want to insert two records into t1 having the col3 column values
'2003-04-14' and '1998-10-19'. The partition number for the first of these is determined as
follows:

V = POWER(2, CEILING(LOG(2,6))) = 8
N = YEAR('2003-04-14') & (8 - 1)
 = 2003 & 7
 = 3

(3 >= 6 is FALSE: record stored in partition #3)

The number of the partition where the second record is stored is calculated as shown here:

4920

KEY Partitioning

V = 8
N = YEAR('1998-10-19') & (8 - 1)
 = 1998 & 7
 = 6

(6 >= 6 is TRUE: additional step required)

N = 6 & ((8 / 2) - 1)
 = 6 & 3
 = 2

(2 >= 6 is FALSE: record stored in partition #2)

The advantage in partitioning by linear hash is that the adding, dropping, merging, and splitting of
partitions is made much faster, which can be beneficial when dealing with tables containing extremely
large amounts (terabytes) of data. The disadvantage is that data is less likely to be evenly distributed
between partitions as compared with the distribution obtained using regular hash partitioning.

26.2.5 KEY Partitioning

Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a
user-defined expression, the hashing function for key partitioning is supplied by the MySQL server.
NDB Cluster uses MD5() for this purpose; for tables using other storage engines, the server employs
its own internal hashing function.

The syntax rules for CREATE TABLE ... PARTITION BY KEY are similar to those for creating a
table that is partitioned by hash. The major differences are listed here:

• KEY is used rather than HASH.

• KEY takes only a list of zero or more column names. Any columns used as the partitioning key
must comprise part or all of the table's primary key, if the table has one. Where no column name is
specified as the partitioning key, the table's primary key is used, if there is one. For example, the
following CREATE TABLE statement is valid in MySQL 8.0:

CREATE TABLE k1 (
 id INT NOT NULL PRIMARY KEY,
 name VARCHAR(20)
)
PARTITION BY KEY()
PARTITIONS 2;

If there is no primary key but there is a unique key, then the unique key is used for the partitioning
key:

CREATE TABLE k1 (
 id INT NOT NULL,
 name VARCHAR(20),
 UNIQUE KEY (id)
)
PARTITION BY KEY()
PARTITIONS 2;

However, if the unique key column were not defined as NOT NULL, then the previous statement
would fail.

In both of these cases, the partitioning key is the id column, even though it is not shown in the
output of SHOW CREATE TABLE or in the PARTITION_EXPRESSION column of the Information
Schema PARTITIONS table.

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted
to integer or NULL values. For example, the following CREATE TABLE statement is valid:

CREATE TABLE tm1 (
 s1 CHAR(32) PRIMARY KEY
)

4921

Subpartitioning

PARTITION BY KEY(s1)
PARTITIONS 10;

The preceding statement would not be valid, were a different partitioning type to be specified. (In
this case, simply using PARTITION BY KEY() would also be valid and have the same effect as
PARTITION BY KEY(s1), since s1 is the table's primary key.)

For additional information about this issue, see Section 26.6, “Restrictions and Limitations on
Partitioning”.

Columns with index prefixes are not supported in partitioning keys. This means that CHAR, VARCHAR,
BINARY, and VARBINARY columns can be used in a partitioning key, as long as they do not employ
prefixes; because a prefix must be specified for BLOB and TEXT columns in index definitions, it is
not possible to use columns of these two types in partitioning keys. Prior to MySQL 8.0.21, columns
using prefixes were permitted when creating, altering, or upgrading a partitioned table, even though
they were not included in the table's partitioning key; in MySQL 8.0.21 and later, this permissive
behavior is deprecated, and the server displays appropriate warnings or errors when one or more
such columns are used. See Column index prefixes not supported for key partitioning, for more
information and examples.

Note

Tables using the NDB storage engine are implicitly partitioned by KEY, using
the table's primary key as the partitioning key (as with other MySQL storage
engines). In the event that the NDB Cluster table has no explicit primary key,
the “hidden” primary key generated by the NDB storage engine for each NDB
Cluster table is used as the partitioning key.

If you define an explicit partitioning scheme for an NDB table, the table
must have an explicit primary key, and any columns used in the partitioning
expression must be part of this key. However, if the table uses an “empty”
partitioning expression—that is, PARTITION BY KEY() with no column
references—then no explicit primary key is required.

You can observe this partitioning using the ndb_desc utility (with the -p
option).

Important

For a key-partitioned table, you cannot execute an ALTER TABLE DROP
PRIMARY KEY, as doing so generates the error ERROR 1466 (HY000):
Field in list of fields for partition function not found
in table. This is not an issue for NDB Cluster tables which are partitioned
by KEY; in such cases, the table is reorganized using the “hidden” primary key
as the table's new partitioning key. See Chapter 25, MySQL NDB Cluster 8.0.

It is also possible to partition a table by linear key. Here is a simple example:

CREATE TABLE tk (
 col1 INT NOT NULL,
 col2 CHAR(5),
 col3 DATE
)
PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;

The LINEAR keyword has the same effect on KEY partitioning as it does on HASH partitioning, with the
partition number being derived using a powers-of-two algorithm rather than modulo arithmetic. See
Section 26.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm and its implications.

26.2.6 Subpartitioning

4922

Subpartitioning

Subpartitioning—also known as composite partitioning—is the further division of each partition in a
partitioned table. Consider the following CREATE TABLE statement:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased))
 SUBPARTITIONS 2 (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

Table ts has 3 RANGE partitions. Each of these partitions—p0, p1, and p2—is further divided into
2 subpartitions. In effect, the entire table is divided into 3 * 2 = 6 partitions. However, due to the
action of the PARTITION BY RANGE clause, the first 2 of these store only those records with a value
less than 1990 in the purchased column.

It is possible to subpartition tables that are partitioned by RANGE or LIST. Subpartitions may use either
HASH or KEY partitioning. This is also known as composite partitioning.

Note

SUBPARTITION BY HASH and SUBPARTITION BY KEY generally follow
the same syntax rules as PARTITION BY HASH and PARTITION BY KEY,
respectively. An exception to this is that SUBPARTITION BY KEY (unlike
PARTITION BY KEY) does not currently support a default column, so the
column used for this purpose must be specified, even if the table has an explicit
primary key. This is a known issue which we are working to address; see Issues
with subpartitions, for more information and an example.

It is also possible to define subpartitions explicitly using SUBPARTITION clauses to specify options for
individual subpartitions. For example, a more verbose fashion of creating the same table ts as shown
in the previous example would be:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2,
 SUBPARTITION s3
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4,
 SUBPARTITION s5
)
);

Some syntactical items of note are listed here:

• Each partition must have the same number of subpartitions.

• If you explicitly define any subpartitions using SUBPARTITION on any partition of a partitioned table,
you must define them all. In other words, the following statement fails:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE (

4923

How MySQL Partitioning Handles NULL

 SUBPARTITION s2,
 SUBPARTITION s3
)
);

This statement would still fail even if it used SUBPARTITIONS 2.

• Each SUBPARTITION clause must include (at a minimum) a name for the subpartition. Otherwise,
you may set any desired option for the subpartition or allow it to assume its default setting for that
option.

• Subpartition names must be unique across the entire table. For example, the following CREATE
TABLE statement is valid:

CREATE TABLE ts (id INT, purchased DATE)
 PARTITION BY RANGE(YEAR(purchased))
 SUBPARTITION BY HASH(TO_DAYS(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990) (
 SUBPARTITION s0,
 SUBPARTITION s1
),
 PARTITION p1 VALUES LESS THAN (2000) (
 SUBPARTITION s2,
 SUBPARTITION s3
),
 PARTITION p2 VALUES LESS THAN MAXVALUE (
 SUBPARTITION s4,
 SUBPARTITION s5
)
);

26.2.7 How MySQL Partitioning Handles NULL

Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression, whether
it is a column value or the value of a user-supplied expression. Even though it is permitted to use
NULL as the value of an expression that must otherwise yield an integer, it is important to keep in mind
that NULL is not a number. MySQL's partitioning implementation treats NULL as being less than any
non-NULL value, just as ORDER BY does.

This means that treatment of NULL varies between partitioning of different types, and may produce
behavior which you do not expect if you are not prepared for it. This being the case, we discuss in
this section how each MySQL partitioning type handles NULL values when determining the partition in
which a row should be stored, and provide examples for each.

Handling of NULL with RANGE partitioning. If you insert a row into a table partitioned by RANGE
such that the column value used to determine the partition is NULL, the row is inserted into the lowest
partition. Consider these two tables in a database named p, created as follows:

mysql> CREATE TABLE t1 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (0),
 -> PARTITION p1 VALUES LESS THAN (10),
 -> PARTITION p2 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE t2 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (10),
 -> PARTITION p3 VALUES LESS THAN MAXVALUE

4924

How MySQL Partitioning Handles NULL

 ->);
Query OK, 0 rows affected (0.09 sec)

You can see the partitions created by these two CREATE TABLE statements using the following query
against the PARTITIONS table in the INFORMATION_SCHEMA database:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
t1	p0	0	0	0
t1	p1	0	0	0
t1	p2	0	0	0
t2	p0	0	0	0
t2	p1	0	0	0
t2	p2	0	0	0
t2	p3	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.00 sec)

(For more information about this table, see Section 28.3.21, “The INFORMATION_SCHEMA
PARTITIONS Table”.) Now let us populate each of these tables with a single row containing a NULL in
the column used as the partitioning key, and verify that the rows were inserted using a pair of SELECT
statements:

mysql> INSERT INTO t1 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

You can see which partitions are used to store the inserted rows by rerunning the previous query
against INFORMATION_SCHEMA.PARTITIONS and inspecting the output:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
t1	p0	1	20	20
t1	p1	0	0	0
t1	p2	0	0	0
t2	p0	1	20	20
t2	p1	0	0	0
t2	p2	0	0	0
t2	p3	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

You can also demonstrate that these rows were stored in the lowest-numbered partition of each table
by dropping these partitions, and then re-running the SELECT statements:

4925

How MySQL Partitioning Handles NULL

mysql> ALTER TABLE t1 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> ALTER TABLE t2 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> SELECT * FROM t1;
Empty set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

(For more information on ALTER TABLE ... DROP PARTITION, see Section 15.1.9, “ALTER TABLE
Statement”.)

NULL is also treated in this way for partitioning expressions that use SQL functions. Suppose that we
define a table using a CREATE TABLE statement such as this one:

CREATE TABLE tndate (
 id INT,
 dt DATE
)
PARTITION BY RANGE(YEAR(dt)) (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

As with other MySQL functions, YEAR(NULL) returns NULL. A row with a dt column value of NULL is
treated as though the partitioning expression evaluated to a value less than any other value, and so is
inserted into partition p0.

Handling of NULL with LIST partitioning. A table that is partitioned by LIST admits NULL values
if and only if one of its partitions is defined using that value-list that contains NULL. The converse of
this is that a table partitioned by LIST which does not explicitly use NULL in a value list rejects rows
resulting in a NULL value for the partitioning expression, as shown in this example:

mysql> CREATE TABLE ts1 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7),
 -> PARTITION p2 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO ts1 VALUES (9, 'mothra');
ERROR 1504 (HY000): Table has no partition for value 9

mysql> INSERT INTO ts1 VALUES (NULL, 'mothra');
ERROR 1504 (HY000): Table has no partition for value NULL

Only rows having a c1 value between 0 and 8 inclusive can be inserted into ts1. NULL falls outside
this range, just like the number 9. We can create tables ts2 and ts3 having value lists containing
NULL, as shown here:

mysql> CREATE TABLE ts2 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7),
 -> PARTITION p2 VALUES IN (2, 5, 8),
 -> PARTITION p3 VALUES IN (NULL)
 ->);
Query OK, 0 rows affected (0.01 sec)

4926

How MySQL Partitioning Handles NULL

mysql> CREATE TABLE ts3 (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY LIST(c1) (
 -> PARTITION p0 VALUES IN (0, 3, 6),
 -> PARTITION p1 VALUES IN (1, 4, 7, NULL),
 -> PARTITION p2 VALUES IN (2, 5, 8)
 ->);
Query OK, 0 rows affected (0.01 sec)

When defining value lists for partitioning, you can (and should) treat NULL just as you would any other
value. For example, both VALUES IN (NULL) and VALUES IN (1, 4, 7, NULL) are valid, as are
VALUES IN (1, NULL, 4, 7), VALUES IN (NULL, 1, 4, 7), and so on. You can insert a row
having NULL for column c1 into each of the tables ts2 and ts3:

mysql> INSERT INTO ts2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO ts3 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

By issuing the appropriate query against INFORMATION_SCHEMA.PARTITIONS, you can determine
which partitions were used to store the rows just inserted (we assume, as in the previous examples,
that the partitioned tables were created in the p database):

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 'ts_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
ts2	p0	0	0	0
ts2	p1	0	0	0
ts2	p2	0	0	0
ts2	p3	1	20	20
ts3	p0	0	0	0
ts3	p1	1	20	20
ts3	p2	0	0	0
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)

As shown earlier in this section, you can also verify which partitions were used for storing the rows by
deleting these partitions and then performing a SELECT.

Handling of NULL with HASH and KEY partitioning. NULL is handled somewhat differently for
tables partitioned by HASH or KEY. In these cases, any partition expression that yields a NULL value
is treated as though its return value were zero. We can verify this behavior by examining the effects
on the file system of creating a table partitioned by HASH and populating it with a record containing
appropriate values. Suppose that you have a table th (also in the p database) created using the
following statement:

mysql> CREATE TABLE th (
 -> c1 INT,
 -> c2 VARCHAR(20)
 ->)
 -> PARTITION BY HASH(c1)
 -> PARTITIONS 2;
Query OK, 0 rows affected (0.00 sec)

The partitions belonging to this table can be viewed using the query shown here:

mysql> SELECT TABLE_NAME,PARTITION_NAME,TABLE_ROWS,AVG_ROW_LENGTH,DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+

4927

Partition Management

| th | p0 | 0 | 0 | 0 |
| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

TABLE_ROWS for each partition is 0. Now insert two rows into th whose c1 column values are NULL
and 0, and verify that these rows were inserted, as shown here:

mysql> INSERT INTO th VALUES (NULL, 'mothra'), (0, 'gigan');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM th;
+------+---------+
| c1 | c2 |
+------+---------+
| NULL | mothra |
+------+---------+
| 0 | gigan |
+------+---------+
2 rows in set (0.01 sec)

Recall that for any integer N, the value of NULL MOD N is always NULL. For tables that are partitioned
by HASH or KEY, this result is treated for determining the correct partition as 0. Checking the
Information Schema PARTITIONS table once again, we can see that both rows were inserted into
partition p0:

mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
 > FROM INFORMATION_SCHEMA.PARTITIONS
 > WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th | p0 | 2 | 20 | 20 |
| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)

By repeating the last example using PARTITION BY KEY in place of PARTITION BY HASH in the
definition of the table, you can verify that NULL is also treated like 0 for this type of partitioning.

26.3 Partition Management
There are a number of ways using SQL statements to modify partitioned tables; it is possible to add,
drop, redefine, merge, or split existing partitions using the partitioning extensions to the ALTER TABLE
statement. There are also ways to obtain information about partitioned tables and partitions. We
discuss these topics in the sections that follow.

• For information about partition management in tables partitioned by RANGE or LIST, see
Section 26.3.1, “Management of RANGE and LIST Partitions”.

• For a discussion of managing HASH and KEY partitions, see Section 26.3.2, “Management of HASH
and KEY Partitions”.

• See Section 26.3.5, “Obtaining Information About Partitions”, for a discussion of mechanisms
provided in MySQL 8.0 for obtaining information about partitioned tables and partitions.

• For a discussion of performing maintenance operations on partitions, see Section 26.3.4,
“Maintenance of Partitions”.

Note

All partitions of a partitioned table must have the same number of subpartitions;
it is not possible to change the subpartitioning once the table has been created.

To change a table's partitioning scheme, it is necessary only to use the ALTER TABLE statement with
a partition_options option, which has the same syntax as that as used with CREATE TABLE

4928

Management of RANGE and LIST Partitions

for creating a partitioned table; this option (also) always begins with the keywords PARTITION BY.
Suppose that the following CREATE TABLE statement was used to create a table that is partitioned by
range:

CREATE TABLE trb3 (id INT, name VARCHAR(50), purchased DATE)
 PARTITION BY RANGE(YEAR(purchased)) (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (1995),
 PARTITION p2 VALUES LESS THAN (2000),
 PARTITION p3 VALUES LESS THAN (2005)
);

To repartition this table so that it is partitioned by key into two partitions using the id column value as
the basis for the key, you can use this statement:

ALTER TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;

This has the same effect on the structure of the table as dropping the table and re-creating it using
CREATE TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;.

ALTER TABLE ... ENGINE = ... changes only the storage engine used by the table, and leaves
the table's partitioning scheme intact. The statement succeeds only if the target storage engine
provides partitioning support. You can use ALTER TABLE ... REMOVE PARTITIONING to remove a
table's partitioning; see Section 15.1.9, “ALTER TABLE Statement”.

Important

Only a single PARTITION BY, ADD PARTITION, DROP PARTITION,
REORGANIZE PARTITION, or COALESCE PARTITION clause can be used in a
given ALTER TABLE statement. If you (for example) wish to drop a partition and
reorganize a table's remaining partitions, you must do so in two separate ALTER
TABLE statements (one using DROP PARTITION and then a second one using
REORGANIZE PARTITION).

You can delete all rows from one or more selected partitions using ALTER TABLE ... TRUNCATE
PARTITION.

26.3.1 Management of RANGE and LIST Partitions

Adding and dropping of range and list partitions are handled in a similar fashion, so we discuss the
management of both sorts of partitioning in this section. For information about working with tables that
are partitioned by hash or key, see Section 26.3.2, “Management of HASH and KEY Partitions”.

Dropping a partition from a table that is partitioned by either RANGE or by LIST can be accomplished
using the ALTER TABLE statement with the DROP PARTITION option. Suppose that you have created
a table that is partitioned by range and then populated with 10 records using the following CREATE
TABLE and INSERT statements:

mysql> CREATE TABLE tr (id INT, name VARCHAR(50), purchased DATE)
 -> PARTITION BY RANGE(YEAR(purchased)) (
 -> PARTITION p0 VALUES LESS THAN (1990),
 -> PARTITION p1 VALUES LESS THAN (1995),
 -> PARTITION p2 VALUES LESS THAN (2000),
 -> PARTITION p3 VALUES LESS THAN (2005),
 -> PARTITION p4 VALUES LESS THAN (2010),
 -> PARTITION p5 VALUES LESS THAN (2015)
 ->);
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO tr VALUES
 -> (1, 'desk organiser', '2003-10-15'),
 -> (2, 'alarm clock', '1997-11-05'),
 -> (3, 'chair', '2009-03-10'),
 -> (4, 'bookcase', '1989-01-10'),
 -> (5, 'exercise bike', '2014-05-09'),
 -> (6, 'sofa', '1987-06-05'),

4929

Management of RANGE and LIST Partitions

 -> (7, 'espresso maker', '2011-11-22'),
 -> (8, 'aquarium', '1992-08-04'),
 -> (9, 'study desk', '2006-09-16'),
 -> (10, 'lava lamp', '1998-12-25');
Query OK, 10 rows affected (0.05 sec)
Records: 10 Duplicates: 0 Warnings: 0

You can see which items should have been inserted into partition p2 as shown here:

mysql> SELECT * FROM tr
 -> WHERE purchased BETWEEN '1995-01-01' AND '1999-12-31';
+------+-------------+------------+
| id | name | purchased |
+------+-------------+------------+
| 2 | alarm clock | 1997-11-05 |
| 10 | lava lamp | 1998-12-25 |
+------+-------------+------------+
2 rows in set (0.00 sec)

You can also get this information using partition selection, as shown here:

mysql> SELECT * FROM tr PARTITION (p2);
+------+-------------+------------+
| id | name | purchased |
+------+-------------+------------+
| 2 | alarm clock | 1997-11-05 |
| 10 | lava lamp | 1998-12-25 |
+------+-------------+------------+
2 rows in set (0.00 sec)

See Section 26.5, “Partition Selection”, for more information.

To drop the partition named p2, execute the following command:

mysql> ALTER TABLE tr DROP PARTITION p2;
Query OK, 0 rows affected (0.03 sec)

Note

The NDBCLUSTER storage engine does not support ALTER TABLE ... DROP
PARTITION. It does, however, support the other partitioning-related extensions
to ALTER TABLE that are described in this chapter.

It is very important to remember that, when you drop a partition, you also delete all the data that was
stored in that partition. You can see that this is the case by re-running the previous SELECT query:

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '1999-12-31';
Empty set (0.00 sec)

Note

DROP PARTITION is supported by native partitioning in-place APIs and
may be used with ALGORITHM={COPY|INPLACE}. DROP PARTITION
with ALGORITHM=INPLACE deletes data stored in the partition and drops
the partition. However, DROP PARTITION with ALGORITHM=COPY or
old_alter_table=ON rebuilds the partitioned table and attempts to
move data from the dropped partition to another partition with a compatible
PARTITION ... VALUES definition. Data that cannot be moved to another
partition is deleted.

Because of this, you must have the DROP privilege for a table before you can execute ALTER
TABLE ... DROP PARTITION on that table.

If you wish to drop all data from all partitions while preserving the table definition and its partitioning
scheme, use the TRUNCATE TABLE statement. (See Section 15.1.37, “TRUNCATE TABLE
Statement”.)

4930

Management of RANGE and LIST Partitions

If you intend to change the partitioning of a table without losing data, use ALTER TABLE ...
REORGANIZE PARTITION instead. See below or in Section 15.1.9, “ALTER TABLE Statement”, for
information about REORGANIZE PARTITION.

If you now execute a SHOW CREATE TABLE statement, you can see how the partitioning makeup of
the table has been changed:

mysql> SHOW CREATE TABLE tr\G
*************************** 1. row ***************************
 Table: tr
Create Table: CREATE TABLE `tr` (
 `id` int(11) DEFAULT NULL,
 `name` varchar(50) DEFAULT NULL,
 `purchased` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
/*!50100 PARTITION BY RANGE (YEAR(purchased))
(PARTITION p0 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1995) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2005) ENGINE = InnoDB,
 PARTITION p4 VALUES LESS THAN (2010) ENGINE = InnoDB,
 PARTITION p5 VALUES LESS THAN (2015) ENGINE = InnoDB) */
1 row in set (0.00 sec)

When you insert new rows into the changed table with purchased column values between
'1995-01-01' and '2004-12-31' inclusive, those rows are stored in partition p3. You can verify
this as follows:

mysql> INSERT INTO tr VALUES (11, 'pencil holder', '1995-07-12');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '2004-12-31';
+------+----------------+------------+
| id | name | purchased |
+------+----------------+------------+
| 1 | desk organiser | 2003-10-15 |
| 11 | pencil holder | 1995-07-12 |
+------+----------------+------------+
2 rows in set (0.00 sec)

mysql> ALTER TABLE tr DROP PARTITION p3;
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT * FROM tr WHERE purchased
 -> BETWEEN '1995-01-01' AND '2004-12-31';
Empty set (0.00 sec)

The number of rows dropped from the table as a result of ALTER TABLE ... DROP PARTITION is
not reported by the server as it would be by the equivalent DELETE query.

Dropping LIST partitions uses exactly the same ALTER TABLE ... DROP PARTITION syntax as
used for dropping RANGE partitions. However, there is one important difference in the effect this has
on your use of the table afterward: You can no longer insert into the table any rows having any of the
values that were included in the value list defining the deleted partition. (See Section 26.2.2, “LIST
Partitioning”, for an example.)

To add a new range or list partition to a previously partitioned table, use the ALTER TABLE ... ADD
PARTITION statement. For tables which are partitioned by RANGE, this can be used to add a new
range to the end of the list of existing partitions. Suppose that you have a partitioned table containing
membership data for your organization, which is defined as follows:

CREATE TABLE members (
 id INT,
 fname VARCHAR(25),
 lname VARCHAR(25),
 dob DATE
)

4931

Management of RANGE and LIST Partitions

PARTITION BY RANGE(YEAR(dob)) (
 PARTITION p0 VALUES LESS THAN (1980),
 PARTITION p1 VALUES LESS THAN (1990),
 PARTITION p2 VALUES LESS THAN (2000)
);

Suppose further that the minimum age for members is 16. As the calendar approaches the end of
2015, you realize that you must soon be prepared to admit members who were born in 2000 (and
later). You can modify the members table to accommodate new members born in the years 2000 to
2010 as shown here:

ALTER TABLE members ADD PARTITION (PARTITION p3 VALUES LESS THAN (2010));

With tables that are partitioned by range, you can use ADD PARTITION to add new partitions to the
high end of the partitions list only. Trying to add a new partition in this manner between or before
existing partitions results in an error as shown here:

mysql> ALTER TABLE members
 > ADD PARTITION (
 > PARTITION n VALUES LESS THAN (1970));
ERROR 1463 (HY000): VALUES LESS THAN value must be strictly »
 increasing for each partition

You can work around this problem by reorganizing the first partition into two new ones that split the
range between them, like this:

ALTER TABLE members
 REORGANIZE PARTITION p0 INTO (
 PARTITION n0 VALUES LESS THAN (1970),
 PARTITION n1 VALUES LESS THAN (1980)
);

Using SHOW CREATE TABLE you can see that the ALTER TABLE statement has had the desired
effect:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
 Table: members
Create Table: CREATE TABLE `members` (
 `id` int(11) DEFAULT NULL,
 `fname` varchar(25) DEFAULT NULL,
 `lname` varchar(25) DEFAULT NULL,
 `dob` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
/*!50100 PARTITION BY RANGE (YEAR(dob))
(PARTITION n0 VALUES LESS THAN (1970) ENGINE = InnoDB,
 PARTITION n1 VALUES LESS THAN (1980) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2010) ENGINE = InnoDB) */
1 row in set (0.00 sec)

See also Section 15.1.9.1, “ALTER TABLE Partition Operations”.

You can also use ALTER TABLE ... ADD PARTITION to add new partitions to a table that is
partitioned by LIST. Suppose a table tt is defined using the following CREATE TABLE statement:

CREATE TABLE tt (
 id INT,
 data INT
)
PARTITION BY LIST(data) (
 PARTITION p0 VALUES IN (5, 10, 15),
 PARTITION p1 VALUES IN (6, 12, 18)
);

You can add a new partition in which to store rows having the data column values 7, 14, and 21 as
shown:

4932

Management of RANGE and LIST Partitions

ALTER TABLE tt ADD PARTITION (PARTITION p2 VALUES IN (7, 14, 21));

Keep in mind that you cannot add a new LIST partition encompassing any values that are already
included in the value list of an existing partition. If you attempt to do so, an error results:

mysql> ALTER TABLE tt ADD PARTITION
 > (PARTITION np VALUES IN (4, 8, 12));
ERROR 1465 (HY000): Multiple definition of same constant »
 in list partitioning

Because any rows with the data column value 12 have already been assigned to partition p1, you
cannot create a new partition on table tt that includes 12 in its value list. To accomplish this, you could
drop p1, and add np and then a new p1 with a modified definition. However, as discussed earlier, this
would result in the loss of all data stored in p1—and it is often the case that this is not what you really
want to do. Another solution might appear to be to make a copy of the table with the new partitioning
and to copy the data into it using CREATE TABLE ... SELECT ..., then drop the old table and
rename the new one, but this could be very time-consuming when dealing with a large amounts of
data. This also might not be feasible in situations where high availability is a requirement.

You can add multiple partitions in a single ALTER TABLE ... ADD PARTITION statement as shown
here:

CREATE TABLE employees (
 id INT NOT NULL,
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 hired DATE NOT NULL
)
PARTITION BY RANGE(YEAR(hired)) (
 PARTITION p1 VALUES LESS THAN (1991),
 PARTITION p2 VALUES LESS THAN (1996),
 PARTITION p3 VALUES LESS THAN (2001),
 PARTITION p4 VALUES LESS THAN (2005)
);

ALTER TABLE employees ADD PARTITION (
 PARTITION p5 VALUES LESS THAN (2010),
 PARTITION p6 VALUES LESS THAN MAXVALUE
);

Fortunately, MySQL's partitioning implementation provides ways to redefine partitions without losing
data. Let us look first at a couple of simple examples involving RANGE partitioning. Recall the members
table which is now defined as shown here:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
 Table: members
Create Table: CREATE TABLE `members` (
 `id` int(11) DEFAULT NULL,
 `fname` varchar(25) DEFAULT NULL,
 `lname` varchar(25) DEFAULT NULL,
 `dob` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
/*!50100 PARTITION BY RANGE (YEAR(dob))
(PARTITION n0 VALUES LESS THAN (1970) ENGINE = InnoDB,
 PARTITION n1 VALUES LESS THAN (1980) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2010) ENGINE = InnoDB) */
1 row in set (0.00 sec)

Suppose that you would like to move all rows representing members born before 1960 into a separate
partition. As we have already seen, this cannot be done using ALTER TABLE ... ADD PARTITION.
However, you can use another partition-related extension to ALTER TABLE to accomplish this:

ALTER TABLE members REORGANIZE PARTITION n0 INTO (
 PARTITION s0 VALUES LESS THAN (1960),
 PARTITION s1 VALUES LESS THAN (1970)

4933

Management of RANGE and LIST Partitions

);

In effect, this command splits partition n0 into two new partitions s0 and s1. It also moves the data that
was stored in n0 into the new partitions according to the rules embodied in the two PARTITION ...
VALUES ... clauses, so that s0 contains only those records for which YEAR(dob) is less than 1960
and s1 contains those rows in which YEAR(dob) is greater than or equal to 1960 but less than 1970.

A REORGANIZE PARTITION clause may also be used for merging adjacent partitions. You can
reverse the effect of the previous statement on the members table as shown here:

ALTER TABLE members REORGANIZE PARTITION s0,s1 INTO (
 PARTITION p0 VALUES LESS THAN (1970)
);

No data is lost in splitting or merging partitions using REORGANIZE PARTITION. In executing the
above statement, MySQL moves all of the records that were stored in partitions s0 and s1 into partition
p0.

The general syntax for REORGANIZE PARTITION is shown here:

ALTER TABLE tbl_name
 REORGANIZE PARTITION partition_list
 INTO (partition_definitions);

Here, tbl_name is the name of the partitioned table, and partition_list is a comma-separated
list of names of one or more existing partitions to be changed. partition_definitions
is a comma-separated list of new partition definitions, which follow the same rules as for the
partition_definitions list used in CREATE TABLE. You are not limited to merging several
partitions into one, or to splitting one partition into many, when using REORGANIZE PARTITION. For
example, you can reorganize all four partitions of the members table into two, like this:

ALTER TABLE members REORGANIZE PARTITION p0,p1,p2,p3 INTO (
 PARTITION m0 VALUES LESS THAN (1980),
 PARTITION m1 VALUES LESS THAN (2000)
);

You can also use REORGANIZE PARTITION with tables that are partitioned by LIST. Let us return
to the problem of adding a new partition to the list-partitioned tt table and failing because the new
partition had a value that was already present in the value-list of one of the existing partitions. We can
handle this by adding a partition that contains only nonconflicting values, and then reorganizing the
new partition and the existing one so that the value which was stored in the existing one is now moved
to the new one:

ALTER TABLE tt ADD PARTITION (PARTITION np VALUES IN (4, 8));
ALTER TABLE tt REORGANIZE PARTITION p1,np INTO (
 PARTITION p1 VALUES IN (6, 18),
 PARTITION np VALUES in (4, 8, 12)
);

Here are some key points to keep in mind when using ALTER TABLE ... REORGANIZE PARTITION
to repartition tables that are partitioned by RANGE or LIST:

• The PARTITION options used to determine the new partitioning scheme are subject to the same
rules as those used with a CREATE TABLE statement.

A new RANGE partitioning scheme cannot have any overlapping ranges; a new LIST partitioning
scheme cannot have any overlapping sets of values.

• The combination of partitions in the partition_definitions list should account for the same
range or set of values overall as the combined partitions named in the partition_list.

For example, partitions p1 and p2 together cover the years 1980 through 1999 in the members table
used as an example in this section. Any reorganization of these two partitions should cover the same
range of years overall.

4934

Management of HASH and KEY Partitions

• For tables partitioned by RANGE, you can reorganize only adjacent partitions; you cannot skip range
partitions.

For instance, you could not reorganize the example members table using a statement beginning with
ALTER TABLE members REORGANIZE PARTITION p0,p2 INTO ... because p0 covers the
years prior to 1970 and p2 the years from 1990 through 1999 inclusive, so these are not adjacent
partitions. (You cannot skip partition p1 in this case.)

• You cannot use REORGANIZE PARTITION to change the type of partitioning used by the table (for
example, you cannot change RANGE partitions to HASH partitions or the reverse). You also cannot
use this statement to change the partitioning expression or column. To accomplish either of these
tasks without dropping and re-creating the table, you can use ALTER TABLE ... PARTITION
BY ..., as shown here:

ALTER TABLE members
 PARTITION BY HASH(YEAR(dob))
 PARTITIONS 8;

26.3.2 Management of HASH and KEY Partitions

Tables which are partitioned by hash or by key are very similar to one another with regard to making
changes in a partitioning setup, and both differ in a number of ways from tables which have been
partitioned by range or list. For that reason, this section addresses the modification of tables partitioned
by hash or by key only. For a discussion of adding and dropping of partitions of tables that are
partitioned by range or list, see Section 26.3.1, “Management of RANGE and LIST Partitions”.

You cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that
you can from tables that are partitioned by RANGE or LIST. However, you can merge HASH or KEY
partitions using ALTER TABLE ... COALESCE PARTITION. Suppose that a clients table
containing data about clients is divided into 12 partitions, created as shown here:

CREATE TABLE clients (
 id INT,
 fname VARCHAR(30),
 lname VARCHAR(30),
 signed DATE
)
PARTITION BY HASH(MONTH(signed))
PARTITIONS 12;

To reduce the number of partitions from 12 to 8, execute the following ALTER TABLE statement:

mysql> ALTER TABLE clients COALESCE PARTITION 4;
Query OK, 0 rows affected (0.02 sec)

COALESCE works equally well with tables that are partitioned by HASH, KEY, LINEAR HASH, or LINEAR
KEY. Here is an example similar to the previous one, differing only in that the table is partitioned by
LINEAR KEY:

mysql> CREATE TABLE clients_lk (
 -> id INT,
 -> fname VARCHAR(30),
 -> lname VARCHAR(30),
 -> signed DATE
 ->)
 -> PARTITION BY LINEAR KEY(signed)
 -> PARTITIONS 12;
Query OK, 0 rows affected (0.03 sec)

mysql> ALTER TABLE clients_lk COALESCE PARTITION 4;
Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

The number following COALESCE PARTITION is the number of partitions to merge into the remainder
—in other words, it is the number of partitions to remove from the table.

4935

Exchanging Partitions and Subpartitions with Tables

Attempting to remove more partitions than are in the table results in an error like this one:

mysql> ALTER TABLE clients COALESCE PARTITION 18;
ERROR 1478 (HY000): Cannot remove all partitions, use DROP TABLE instead

To increase the number of partitions for the clients table from 12 to 18, use ALTER TABLE ...
ADD PARTITION as shown here:

ALTER TABLE clients ADD PARTITION PARTITIONS 6;

26.3.3 Exchanging Partitions and Subpartitions with Tables

In MySQL 8.0, it is possible to exchange a table partition or subpartition with a table using ALTER
TABLE pt EXCHANGE PARTITION p WITH TABLE nt, where pt is the partitioned table and p
is the partition or subpartition of pt to be exchanged with unpartitioned table nt, provided that the
following statements are true:

1. Table nt is not itself partitioned.

2. Table nt is not a temporary table.

3. The structures of tables pt and nt are otherwise identical.

4. Table nt contains no foreign key references, and no other table has any foreign keys that refer to
nt.

5. There are no rows in nt that lie outside the boundaries of the partition definition for p. This
condition does not apply if WITHOUT VALIDATION is used.

6. Both tables must use the same character set and collation.

7. For InnoDB tables, both tables must use the same row format. To determine the row format of an
InnoDB table, query INFORMATION_SCHEMA.INNODB_TABLES.

8. Any partition-level MAX_ROWS setting for p must be the same as the table-level MAX_ROWS value set
for nt. The setting for any partition-level MIN_ROWS setting for p must also be the same any table-
level MIN_ROWS value set for nt.

This is true in either case whether not pt has an explicit table-level MAX_ROWS or MIN_ROWS option
in effect.

9. The AVG_ROW_LENGTH cannot differ between the two tables pt and nt.

10. pt does not have any partitions that use the DATA DIRECTORY option. This restriction is lifted for
InnoDB tables in MySQL 8.0.14 and later.

11. INDEX DIRECTORY cannot differ between the table and the partition to be exchanged with it.

12. No table or partition TABLESPACE options can be used in either of the tables.

In addition to the ALTER, INSERT, and CREATE privileges usually required for ALTER TABLE
statements, you must have the DROP privilege to perform ALTER TABLE ... EXCHANGE
PARTITION.

You should also be aware of the following effects of ALTER TABLE ... EXCHANGE PARTITION:

• Executing ALTER TABLE ... EXCHANGE PARTITION does not invoke any triggers on either the
partitioned table or the table to be exchanged.

• Any AUTO_INCREMENT columns in the exchanged table are reset.

• The IGNORE keyword has no effect when used with ALTER TABLE ... EXCHANGE PARTITION.

4936

Exchanging Partitions and Subpartitions with Tables

The syntax for ALTER TABLE ... EXCHANGE PARTITION is shown here, where pt is the
partitioned table, p is the partition (or subpartition) to be exchanged, and nt is the nonpartitioned table
to be exchanged with p:

ALTER TABLE pt
 EXCHANGE PARTITION p
 WITH TABLE nt;

Optionally, you can append WITH VALIDATION or WITHOUT VALIDATION. When WITHOUT
VALIDATION is specified, the ALTER TABLE ... EXCHANGE PARTITION operation does not
perform any row-by-row validation when exchanging a partition a nonpartitioned table, allowing
database administrators to assume responsibility for ensuring that rows are within the boundaries of
the partition definition. WITH VALIDATION is the default.

One and only one partition or subpartition may be exchanged with one and only one nonpartitioned
table in a single ALTER TABLE EXCHANGE PARTITION statement. To exchange multiple partitions
or subpartitions, use multiple ALTER TABLE EXCHANGE PARTITION statements. EXCHANGE
PARTITION may not be combined with other ALTER TABLE options. The partitioning and (if
applicable) subpartitioning used by the partitioned table may be of any type or types supported in
MySQL 8.0.

Exchanging a Partition with a Nonpartitioned Table

Suppose that a partitioned table e has been created and populated using the following SQL
statements:

CREATE TABLE e (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
)
 PARTITION BY RANGE (id) (
 PARTITION p0 VALUES LESS THAN (50),
 PARTITION p1 VALUES LESS THAN (100),
 PARTITION p2 VALUES LESS THAN (150),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

INSERT INTO e VALUES
 (1669, "Jim", "Smith"),
 (337, "Mary", "Jones"),
 (16, "Frank", "White"),
 (2005, "Linda", "Black");

Now we create a nonpartitioned copy of e named e2. This can be done using the mysql client as
shown here:

mysql> CREATE TABLE e2 LIKE e;
Query OK, 0 rows affected (0.04 sec)

mysql> ALTER TABLE e2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.07 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can see which partitions in table e contain rows by querying the Information Schema PARTITIONS
table, like this:

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3

4937

Exchanging Partitions and Subpartitions with Tables

+----------------+------------+
2 rows in set (0.00 sec)

Note

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column
of the Information Schema PARTITIONS table is only an estimated value used
in SQL optimization, and is not always exact.

To exchange partition p0 in table e with table e2, you can use ALTER TABLE, as shown here:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.04 sec)

More precisely, the statement just issued causes any rows found in the partition to be swapped with
those found in the table. You can observe how this has happened by querying the Information Schema
PARTITIONS table, as before. The table row that was previously found in partition p0 is no longer
present:

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	0
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

If you query table e2, you can see that the “missing” row can now be found there:

mysql> SELECT * FROM e2;
+----+-------+-------+
| id | fname | lname |
+----+-------+-------+
| 16 | Frank | White |
+----+-------+-------+
1 row in set (0.00 sec)

The table to be exchanged with the partition does not necessarily have to be empty. To demonstrate
this, we first insert a new row into table e, making sure that this row is stored in partition p0 by
choosing an id column value that is less than 50, and verifying this afterward by querying the
PARTITIONS table:

mysql> INSERT INTO e VALUES (41, "Michael", "Green");
Query OK, 1 row affected (0.05 sec)

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

Now we once again exchange partition p0 with table e2 using the same ALTER TABLE statement as
previously:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.28 sec)

4938

Exchanging Partitions and Subpartitions with Tables

The output of the following queries shows that the table row that was stored in partition p0 and the
table row that was stored in table e2, prior to issuing the ALTER TABLE statement, have now switched
places:

mysql> SELECT * FROM e;
+------+-------+-------+
| id | fname | lname |
+------+-------+-------+
16	Frank	White
1669	Jim	Smith
337	Mary	Jones
2005	Linda	Black
+------+-------+-------+
4 rows in set (0.00 sec)

mysql> SELECT PARTITION_NAME, TABLE_ROWS
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
p0	1
p1	0
p2	0
p3	3
+----------------+------------+
4 rows in set (0.00 sec)

mysql> SELECT * FROM e2;
+----+---------+-------+
| id | fname | lname |
+----+---------+-------+
| 41 | Michael | Green |
+----+---------+-------+
1 row in set (0.00 sec)

Nonmatching Rows

You should keep in mind that any rows found in the nonpartitioned table prior to issuing the ALTER
TABLE ... EXCHANGE PARTITION statement must meet the conditions required for them to be
stored in the target partition; otherwise, the statement fails. To see how this occurs, first insert a row
into e2 that is outside the boundaries of the partition definition for partition p0 of table e. For example,
insert a row with an id column value that is too large; then, try to exchange the table with the partition
again:

mysql> INSERT INTO e2 VALUES (51, "Ellen", "McDonald");
Query OK, 1 row affected (0.08 sec)

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
ERROR 1707 (HY000): Found row that does not match the partition

Only the WITHOUT VALIDATION option would permit this operation to succeed:

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2 WITHOUT VALIDATION;
Query OK, 0 rows affected (0.02 sec)

When a partition is exchanged with a table that contains rows that do not match the partition definition,
it is the responsibility of the database administrator to fix the non-matching rows, which can be
performed using REPAIR TABLE or ALTER TABLE ... REPAIR PARTITION.

Exchanging Partitions Without Row-By-Row Validation

To avoid time consuming validation when exchanging a partition with a table that has many rows, it is
possible to skip the row-by-row validation step by appending WITHOUT VALIDATION to the ALTER
TABLE ... EXCHANGE PARTITION statement.

The following example compares the difference between execution times when exchanging a partition
with a nonpartitioned table, with and without validation. The partitioned table (table e) contains two

4939

Exchanging Partitions and Subpartitions with Tables

partitions of 1 million rows each. The rows in p0 of table e are removed and p0 is exchanged with
a nonpartitioned table of 1 million rows. The WITH VALIDATION operation takes 0.74 seconds. By
comparison, the WITHOUT VALIDATION operation takes 0.01 seconds.

Create a partitioned table with 1 million rows in each partition

CREATE TABLE e (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
)
 PARTITION BY RANGE (id) (
 PARTITION p0 VALUES LESS THAN (1000001),
 PARTITION p1 VALUES LESS THAN (2000001),
);

mysql> SELECT COUNT(*) FROM e;
| COUNT(*) |
+----------+
| 2000000 |
+----------+
1 row in set (0.27 sec)

View the rows in each partition

SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+-------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+-------------+
| p0 | 1000000 |
| p1 | 1000000 |
+----------------+-------------+
2 rows in set (0.00 sec)

Create a nonpartitioned table of the same structure and populate it with 1 million rows

CREATE TABLE e2 (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
);

mysql> SELECT COUNT(*) FROM e2;
+----------+
| COUNT(*) |
+----------+
| 1000000 |
+----------+
1 row in set (0.24 sec)

Create another nonpartitioned table of the same structure and populate it with 1 million rows

CREATE TABLE e3 (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30)
);

mysql> SELECT COUNT(*) FROM e3;
+----------+
| COUNT(*) |
+----------+
| 1000000 |
+----------+
1 row in set (0.25 sec)

Drop the rows from p0 of table e

mysql> DELETE FROM e WHERE id < 1000001;
Query OK, 1000000 rows affected (5.55 sec)

Confirm that there are no rows in partition p0

4940

Exchanging Partitions and Subpartitions with Tables

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

Exchange partition p0 of table e with the table e2 'WITH VALIDATION'

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2 WITH VALIDATION;
Query OK, 0 rows affected (0.74 sec)

Confirm that the partition was exchanged with table e2

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 1000000 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

Once again, drop the rows from p0 of table e

mysql> DELETE FROM e WHERE id < 1000001;
Query OK, 1000000 rows affected (5.55 sec)

Confirm that there are no rows in partition p0

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

Exchange partition p0 of table e with the table e3 'WITHOUT VALIDATION'

mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e3 WITHOUT VALIDATION;
Query OK, 0 rows affected (0.01 sec)

Confirm that the partition was exchanged with table e3

mysql> SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 1000000 |
| p1 | 1000000 |
+----------------+------------+
2 rows in set (0.00 sec)

If a partition is exchanged with a table that contains rows that do not match the partition definition, it is
the responsibility of the database administrator to fix the non-matching rows, which can be performed
using REPAIR TABLE or ALTER TABLE ... REPAIR PARTITION.

Exchanging a Subpartition with a Nonpartitioned Table

You can also exchange a subpartition of a subpartitioned table (see Section 26.2.6, “Subpartitioning”)
with a nonpartitioned table using an ALTER TABLE ... EXCHANGE PARTITION statement. In the
following example, we first create a table es that is partitioned by RANGE and subpartitioned by KEY,
populate this table as we did table e, and then create an empty, nonpartitioned copy es2 of the table,
as shown here:

4941

Exchanging Partitions and Subpartitions with Tables

mysql> CREATE TABLE es (
 -> id INT NOT NULL,
 -> fname VARCHAR(30),
 -> lname VARCHAR(30)
 ->)
 -> PARTITION BY RANGE (id)
 -> SUBPARTITION BY KEY (lname)
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (50),
 -> PARTITION p1 VALUES LESS THAN (100),
 -> PARTITION p2 VALUES LESS THAN (150),
 -> PARTITION p3 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (2.76 sec)

mysql> INSERT INTO es VALUES
 -> (1669, "Jim", "Smith"),
 -> (337, "Mary", "Jones"),
 -> (16, "Frank", "White"),
 -> (2005, "Linda", "Black");
Query OK, 4 rows affected (0.04 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> CREATE TABLE es2 LIKE es;
Query OK, 0 rows affected (1.27 sec)

mysql> ALTER TABLE es2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.70 sec)
Records: 0 Duplicates: 0 Warnings: 0

Although we did not explicitly name any of the subpartitions when creating table es, we can obtain
generated names for these by including the SUBPARTITION_NAME column of the PARTITIONS table
from INFORMATION_SCHEMA when selecting from that table, as shown here:

mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+
| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
p0	p0sp0	1
p0	p0sp1	0
p1	p1sp0	0
p1	p1sp1	0
p2	p2sp0	0
p2	p2sp1	0
p3	p3sp0	3
p3	p3sp1	0
+----------------+-------------------+------------+
8 rows in set (0.00 sec)

The following ALTER TABLE statement exchanges subpartition p3sp0 in table es with the
nonpartitioned table es2:

mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es2;
Query OK, 0 rows affected (0.29 sec)

You can verify that the rows were exchanged by issuing the following queries:

mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
 -> FROM INFORMATION_SCHEMA.PARTITIONS
 -> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+
| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
p0	p0sp0	1
p0	p0sp1	0
p1	p1sp0	0
p1	p1sp1	0
p2	p2sp0	0
p2	p2sp1	0

4942

Maintenance of Partitions

| p3 | p3sp0 | 0 |
| p3 | p3sp1 | 0 |
+----------------+-------------------+------------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM es2;
+------+-------+-------+
| id | fname | lname |
+------+-------+-------+
1669	Jim	Smith
337	Mary	Jones
2005	Linda	Black
+------+-------+-------+
3 rows in set (0.00 sec)

If a table is subpartitioned, you can exchange only a subpartition of the table—not an entire partition—
with an unpartitioned table, as shown here:

mysql> ALTER TABLE es EXCHANGE PARTITION p3 WITH TABLE es2;
ERROR 1704 (HY000): Subpartitioned table, use subpartition instead of partition

Table structures are compared in a strict fashion; the number, order, names, and types of columns
and indexes of the partitioned table and the nonpartitioned table must match exactly. In addition, both
tables must use the same storage engine:

mysql> CREATE TABLE es3 LIKE e;
Query OK, 0 rows affected (1.31 sec)

mysql> ALTER TABLE es3 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.53 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE es3\G
*************************** 1. row ***************************
 Table: es3
Create Table: CREATE TABLE `es3` (
 `id` int(11) NOT NULL,
 `fname` varchar(30) DEFAULT NULL,
 `lname` varchar(30) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

mysql> ALTER TABLE es3 ENGINE = MyISAM;
Query OK, 0 rows affected (0.15 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es3;
ERROR 1497 (HY000): The mix of handlers in the partitions is not allowed in this version of MySQL

26.3.4 Maintenance of Partitions

A number of table and partition maintenance tasks can be carried out on partitioned tables using SQL
statements intended for such purposes.

Table maintenance of partitioned tables can be accomplished using the statements CHECK TABLE,
OPTIMIZE TABLE, ANALYZE TABLE, and REPAIR TABLE, which are supported for partitioned tables.

You can use a number of extensions to ALTER TABLE for performing operations of this type on one or
more partitions directly, as described in the following list:

• Rebuilding partitions. Rebuilds the partition; this has the same effect as dropping all records
stored in the partition, then reinserting them. This can be useful for purposes of defragmentation.

Example:

ALTER TABLE t1 REBUILD PARTITION p0, p1;

• Optimizing partitions. If you have deleted a large number of rows from a partition or if you have
made many changes to a partitioned table with variable-length rows (that is, having VARCHAR, BLOB,

4943

Obtaining Information About Partitions

or TEXT columns), you can use ALTER TABLE ... OPTIMIZE PARTITION to reclaim any unused
space and to defragment the partition data file.

Example:

ALTER TABLE t1 OPTIMIZE PARTITION p0, p1;

Using OPTIMIZE PARTITION on a given partition is equivalent to running CHECK PARTITION,
ANALYZE PARTITION, and REPAIR PARTITION on that partition.

Some MySQL storage engines, including InnoDB, do not support per-partition optimization; in
these cases, ALTER TABLE ... OPTIMIZE PARTITION analyzes and rebuilds the entire table,
and causes an appropriate warning to be issued. (Bug #11751825, Bug #42822) Use ALTER
TABLE ... REBUILD PARTITION and ALTER TABLE ... ANALYZE PARTITION instead, to
avoid this issue.

• Analyzing partitions. This reads and stores the key distributions for partitions.

Example:

ALTER TABLE t1 ANALYZE PARTITION p3;

• Repairing partitions. This repairs corrupted partitions.

Example:

ALTER TABLE t1 REPAIR PARTITION p0,p1;

Normally, REPAIR PARTITION fails when the partition contains duplicate key errors. You can use
ALTER IGNORE TABLE with this option, in which case all rows that cannot be moved due to the
presence of duplicate keys are removed from the partition (Bug #16900947).

• Checking partitions. You can check partitions for errors in much the same way that you can use
CHECK TABLE with nonpartitioned tables.

Example:

ALTER TABLE trb3 CHECK PARTITION p1;

This statement tells you whether the data or indexes in partition p1 of table t1 are corrupted. If this is
the case, use ALTER TABLE ... REPAIR PARTITION to repair the partition.

Normally, CHECK PARTITION fails when the partition contains duplicate key errors. You can use
ALTER IGNORE TABLE with this option, in which case the statement returns the contents of each
row in the partition where a duplicate key violation is found. Only the values for the columns in the
partitioning expression for the table are reported. (Bug #16900947)

Each of the statements in the list just shown also supports the keyword ALL in place of the list of
partition names. Using ALL causes the statement to act on all partitions in the table.

You can also truncate partitions using ALTER TABLE ... TRUNCATE PARTITION. This statement
can be used to delete all rows from one or more partitions in much the same way that TRUNCATE
TABLE deletes all rows from a table.

ALTER TABLE ... TRUNCATE PARTITION ALL truncates all partitions in the table.

26.3.5 Obtaining Information About Partitions

This section discusses obtaining information about existing partitions, which can be done in a number
of ways. Methods of obtaining such information include the following:

• Using the SHOW CREATE TABLE statement to view the partitioning clauses used in creating a
partitioned table.

4944

Obtaining Information About Partitions

• Using the SHOW TABLE STATUS statement to determine whether a table is partitioned.

• Querying the Information Schema PARTITIONS table.

• Using the statement EXPLAIN SELECT to see which partitions are used by a given SELECT.

From MySQL 8.0.16, when insertions, deletions, or updates are made to partitioned tables, the
binary log records information about the partition and (if any) the subpartition in which the row event
took place. A new row event is created for a modification that takes place in a different partition
or subpartition, even if the table involved is the same. So if a transaction involves three partitions
or subpartitions, three row events are generated. For an update event, the partition information is
recorded for both the “before” image and the “after” image. The partition information is displayed if
you specify the -v or --verbose option when viewing the binary log using mysqlbinlog. Partition
information is only recorded when row-based logging is in use (binlog_format=ROW).

As discussed elsewhere in this chapter, SHOW CREATE TABLE includes in its output the PARTITION
BY clause used to create a partitioned table. For example:

mysql> SHOW CREATE TABLE trb3\G
*************************** 1. row ***************************
 Table: trb3
Create Table: CREATE TABLE `trb3` (
 `id` int(11) DEFAULT NULL,
 `name` varchar(50) DEFAULT NULL,
 `purchased` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
/*!50100 PARTITION BY RANGE (YEAR(purchased))
(PARTITION p0 VALUES LESS THAN (1990) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (1995) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (2000) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (2005) ENGINE = InnoDB) */
0 row in set (0.00 sec)

The output from SHOW TABLE STATUS for partitioned tables is the same as that for nonpartitioned
tables, except that the Create_options column contains the string partitioned. The
Engine column contains the name of the storage engine used by all partitions of the table. (See
Section 15.7.7.38, “SHOW TABLE STATUS Statement”, for more information about this statement.)

You can also obtain information about partitions from INFORMATION_SCHEMA, which contains a
PARTITIONS table. See Section 28.3.21, “The INFORMATION_SCHEMA PARTITIONS Table”.

It is possible to determine which partitions of a partitioned table are involved in a given SELECT query
using EXPLAIN. The partitions column in the EXPLAIN output lists the partitions from which
records would be matched by the query.

Suppose that a table trb1 is created and populated as follows:

CREATE TABLE trb1 (id INT, name VARCHAR(50), purchased DATE)
 PARTITION BY RANGE(id)
 (
 PARTITION p0 VALUES LESS THAN (3),
 PARTITION p1 VALUES LESS THAN (7),
 PARTITION p2 VALUES LESS THAN (9),
 PARTITION p3 VALUES LESS THAN (11)
);

INSERT INTO trb1 VALUES
 (1, 'desk organiser', '2003-10-15'),
 (2, 'CD player', '1993-11-05'),
 (3, 'TV set', '1996-03-10'),
 (4, 'bookcase', '1982-01-10'),
 (5, 'exercise bike', '2004-05-09'),
 (6, 'sofa', '1987-06-05'),
 (7, 'popcorn maker', '2001-11-22'),
 (8, 'aquarium', '1992-08-04'),
 (9, 'study desk', '1984-09-16'),

4945

Partition Pruning

 (10, 'lava lamp', '1998-12-25');

You can see which partitions are used in a query such as SELECT * FROM trb1;, as shown here:

mysql> EXPLAIN SELECT * FROM trb1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1,p2,p3
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using filesort

In this case, all four partitions are searched. However, when a limiting condition making use of the
partitioning key is added to the query, you can see that only those partitions containing matching
values are scanned, as shown here:

mysql> EXPLAIN SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using where

EXPLAIN also provides information about keys used and possible keys:

mysql> ALTER TABLE trb1 ADD PRIMARY KEY (id);
Query OK, 10 rows affected (0.03 sec)
Records: 10 Duplicates: 0 Warnings: 0

mysql> EXPLAIN SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: trb1
 partitions: p0,p1
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 7
 Extra: Using where

If EXPLAIN is used to examine a query against a nonpartitioned table, no error is produced, but the
value of the partitions column is always NULL.

The rows column of EXPLAIN output displays the total number of rows in the table.

See also Section 15.8.2, “EXPLAIN Statement”.

26.4 Partition Pruning

The optimization known as partition pruning is based on a relatively simple concept which can be
described as “Do not scan partitions where there can be no matching values”. Suppose a partitioned
table t1 is created by this statement:

4946

Partition Pruning

CREATE TABLE t1 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY RANGE(region_code) (
 PARTITION p0 VALUES LESS THAN (64),
 PARTITION p1 VALUES LESS THAN (128),
 PARTITION p2 VALUES LESS THAN (192),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

Suppose that you wish to obtain results from a SELECT statement such as this one:

SELECT fname, lname, region_code, dob
 FROM t1
 WHERE region_code > 125 AND region_code < 130;

It is easy to see that none of the rows which ought to be returned are in either of the partitions p0 or
p3; that is, we need search only in partitions p1 and p2 to find matching rows. By limiting the search, it
is possible to expend much less time and effort in finding matching rows than by scanning all partitions
in the table. This “cutting away” of unneeded partitions is known as pruning. When the optimizer can
make use of partition pruning in performing this query, execution of the query can be an order of
magnitude faster than the same query against a nonpartitioned table containing the same column
definitions and data.

The optimizer can perform pruning whenever a WHERE condition can be reduced to either one of the
following two cases:

• partition_column = constant

• partition_column IN (constant1, constant2, ..., constantN)

In the first case, the optimizer simply evaluates the partitioning expression for the value given,
determines which partition contains that value, and scans only this partition. In many cases, the equal
sign can be replaced with another arithmetic comparison, including <, >, <=, >=, and <>. Some queries
using BETWEEN in the WHERE clause can also take advantage of partition pruning. See the examples
later in this section.

In the second case, the optimizer evaluates the partitioning expression for each value in the list,
creates a list of matching partitions, and then scans only the partitions in this partition list.

SELECT, DELETE, and UPDATE statements support partition pruning. An INSERT statement also
accesses only one partition per inserted row; this is true even for a table that is partitioned by HASH or
KEY although this is not currently shown in the output of EXPLAIN.

Pruning can also be applied to short ranges, which the optimizer can convert into equivalent lists
of values. For instance, in the previous example, the WHERE clause can be converted to WHERE
region_code IN (126, 127, 128, 129). Then the optimizer can determine that the first two
values in the list are found in partition p1, the remaining two values in partition p2, and that the other
partitions contain no relevant values and so do not need to be searched for matching rows.

The optimizer can also perform pruning for WHERE conditions that involve comparisons of the preceding
types on multiple columns for tables that use RANGE COLUMNS or LIST COLUMNS partitioning.

This type of optimization can be applied whenever the partitioning expression consists of an equality or
a range which can be reduced to a set of equalities, or when the partitioning expression represents an
increasing or decreasing relationship. Pruning can also be applied for tables partitioned on a DATE or
DATETIME column when the partitioning expression uses the YEAR() or TO_DAYS() function. Pruning
can also be applied for such tables when the partitioning expression uses the TO_SECONDS() function.

Suppose that table t2, partitioned on a DATE column, is created using the statement shown here:

4947

Partition Pruning

CREATE TABLE t2 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY RANGE(YEAR(dob)) (
 PARTITION d0 VALUES LESS THAN (1970),
 PARTITION d1 VALUES LESS THAN (1975),
 PARTITION d2 VALUES LESS THAN (1980),
 PARTITION d3 VALUES LESS THAN (1985),
 PARTITION d4 VALUES LESS THAN (1990),
 PARTITION d5 VALUES LESS THAN (2000),
 PARTITION d6 VALUES LESS THAN (2005),
 PARTITION d7 VALUES LESS THAN MAXVALUE
);

The following statements using t2 can make of use partition pruning:

SELECT * FROM t2 WHERE dob = '1982-06-23';

UPDATE t2 SET region_code = 8 WHERE dob BETWEEN '1991-02-15' AND '1997-04-25';

DELETE FROM t2 WHERE dob >= '1984-06-21' AND dob <= '1999-06-21'

In the case of the last statement, the optimizer can also act as follows:

1. Find the partition containing the low end of the range.

YEAR('1984-06-21') yields the value 1984, which is found in partition d3.

2. Find the partition containing the high end of the range.

YEAR('1999-06-21') evaluates to 1999, which is found in partition d5.

3. Scan only these two partitions and any partitions that may lie between them.

In this case, this means that only partitions d3, d4, and d5 are scanned. The remaining partitions
may be safely ignored (and are ignored).

Important

Invalid DATE and DATETIME values referenced in the WHERE condition of
a statement against a partitioned table are treated as NULL. This means
that a query such as SELECT * FROM partitioned_table WHERE
date_column < '2008-12-00' does not return any values (see Bug
#40972).

So far, we have looked only at examples using RANGE partitioning, but pruning can be applied with
other partitioning types as well.

Consider a table that is partitioned by LIST, where the partitioning expression is increasing or
decreasing, such as the table t3 shown here. (In this example, we assume for the sake of brevity that
the region_code column is limited to values between 1 and 10 inclusive.)

CREATE TABLE t3 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY LIST(region_code) (
 PARTITION r0 VALUES IN (1, 3),
 PARTITION r1 VALUES IN (2, 5, 8),
 PARTITION r2 VALUES IN (4, 9),
 PARTITION r3 VALUES IN (6, 7, 10)
);

4948

Partition Selection

For a statement such as SELECT * FROM t3 WHERE region_code BETWEEN 1 AND 3, the
optimizer determines in which partitions the values 1, 2, and 3 are found (r0 and r1) and skips the
remaining ones (r2 and r3).

For tables that are partitioned by HASH or [LINEAR] KEY, partition pruning is also possible in cases in
which the WHERE clause uses a simple = relation against a column used in the partitioning expression.
Consider a table created like this:

CREATE TABLE t4 (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 region_code TINYINT UNSIGNED NOT NULL,
 dob DATE NOT NULL
)
PARTITION BY KEY(region_code)
PARTITIONS 8;

A statement that compares a column value with a constant can be pruned:

UPDATE t4 WHERE region_code = 7;

Pruning can also be employed for short ranges, because the optimizer can turn such conditions into IN
relations. For example, using the same table t4 as defined previously, queries such as these can be
pruned:

SELECT * FROM t4 WHERE region_code > 2 AND region_code < 6;

SELECT * FROM t4 WHERE region_code BETWEEN 3 AND 5;

In both these cases, the WHERE clause is transformed by the optimizer into WHERE region_code IN
(3, 4, 5).

Important

This optimization is used only if the range size is smaller than the number of
partitions. Consider this statement:

DELETE FROM t4 WHERE region_code BETWEEN 4 AND 12;

The range in the WHERE clause covers 9 values (4, 5, 6, 7, 8, 9, 10, 11, 12), but
t4 has only 8 partitions. This means that the DELETE cannot be pruned.

When a table is partitioned by HASH or [LINEAR] KEY, pruning can be used only on integer columns.
For example, this statement cannot use pruning because dob is a DATE column:

SELECT * FROM t4 WHERE dob >= '2001-04-14' AND dob <= '2005-10-15';

However, if the table stores year values in an INT column, then a query having WHERE year_col >=
2001 AND year_col <= 2005 can be pruned.

Tables using a storage engine that provides automatic partitioning, such as the NDB storage engine
used by MySQL Cluster can be pruned if they are explicitly partitioned.

26.5 Partition Selection
Explicit selection of partitions and subpartitions for rows matching a given WHERE condition is
supported. Partition selection is similar to partition pruning, in that only specific partitions are checked
for matches, but differs in two key respects:

1. The partitions to be checked are specified by the issuer of the statement, unlike partition pruning,
which is automatic.

2. Whereas partition pruning applies only to queries, explicit selection of partitions is supported for
both queries and a number of DML statements.

4949

Partition Selection

SQL statements supporting explicit partition selection are listed here:

• SELECT

• DELETE

• INSERT

• REPLACE

• UPDATE

• LOAD DATA.

• LOAD XML.

The remainder of this section discusses explicit partition selection as it applies generally to the
statements just listed, and provides some examples.

Explicit partition selection is implemented using a PARTITION option. For all supported statements,
this option uses the syntax shown here:

 PARTITION (partition_names)

 partition_names:
 partition_name, ...

This option always follows the name of the table to which the partition or partitions belong.
partition_names is a comma-separated list of partitions or subpartitions to be used. Each
name in this list must be the name of an existing partition or subpartition of the specified table; if
any of the partitions or subpartitions are not found, the statement fails with an error (partition
'partition_name' doesn't exist). Partitions and subpartitions named in partition_names
may be listed in any order, and may overlap.

When the PARTITION option is used, only the partitions and subpartitions listed are checked for
matching rows. This option can be used in a SELECT statement to determine which rows belong to
a given partition. Consider a partitioned table named employees, created and populated using the
statements shown here:

SET @@SQL_MODE = '';

CREATE TABLE employees (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 fname VARCHAR(25) NOT NULL,
 lname VARCHAR(25) NOT NULL,
 store_id INT NOT NULL,
 department_id INT NOT NULL
)
 PARTITION BY RANGE(id) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (10),
 PARTITION p2 VALUES LESS THAN (15),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

INSERT INTO employees VALUES
 ('', 'Bob', 'Taylor', 3, 2), ('', 'Frank', 'Williams', 1, 2),
 ('', 'Ellen', 'Johnson', 3, 4), ('', 'Jim', 'Smith', 2, 4),
 ('', 'Mary', 'Jones', 1, 1), ('', 'Linda', 'Black', 2, 3),
 ('', 'Ed', 'Jones', 2, 1), ('', 'June', 'Wilson', 3, 1),
 ('', 'Andy', 'Smith', 1, 3), ('', 'Lou', 'Waters', 2, 4),
 ('', 'Jill', 'Stone', 1, 4), ('', 'Roger', 'White', 3, 2),
 ('', 'Howard', 'Andrews', 1, 2), ('', 'Fred', 'Goldberg', 3, 3),
 ('', 'Barbara', 'Brown', 2, 3), ('', 'Alice', 'Rogers', 2, 2),
 ('', 'Mark', 'Morgan', 3, 3), ('', 'Karen', 'Cole', 3, 2);

You can see which rows are stored in partition p1 like this:

4950

Partition Selection

mysql> SELECT * FROM employees PARTITION (p1);
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+--------+----------+---------------+
5	Mary	Jones	1	1
6	Linda	Black	2	3
7	Ed	Jones	2	1
8	June	Wilson	3	1
9	Andy	Smith	1	3
+----+-------+--------+----------+---------------+
5 rows in set (0.00 sec)

The result is the same as obtained by the query SELECT * FROM employees WHERE id BETWEEN
5 AND 9.

To obtain rows from multiple partitions, supply their names as a comma-delimited list. For example,
SELECT * FROM employees PARTITION (p1, p2) returns all rows from partitions p1 and p2
while excluding rows from the remaining partitions.

Any valid query against a partitioned table can be rewritten with a PARTITION option to restrict the
result to one or more desired partitions. You can use WHERE conditions, ORDER BY and LIMIT options,
and so on. You can also use aggregate functions with HAVING and GROUP BY options. Each of the
following queries produces a valid result when run on the employees table as previously defined:

mysql> SELECT * FROM employees PARTITION (p0, p2)
 -> WHERE lname LIKE 'S%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 4 | Jim | Smith | 2 | 4 |
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
2 rows in set (0.00 sec)

mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
 -> FROM employees PARTITION (p0) ORDER BY lname;
+----+----------------+
| id | name |
+----+----------------+
3	Ellen Johnson
4	Jim Smith
1	Bob Taylor
2	Frank Williams
+----+----------------+
4 rows in set (0.06 sec)

mysql> SELECT store_id, COUNT(department_id) AS c
 -> FROM employees PARTITION (p1,p2,p3)
 -> GROUP BY store_id HAVING c > 4;
+---+----------+
| c | store_id |
+---+----------+
| 5 | 2 |
| 5 | 3 |
+---+----------+
2 rows in set (0.00 sec)

Statements using partition selection can be employed with tables using any of the supported
partitioning types. When a table is created using [LINEAR] HASH or [LINEAR] KEY partitioning and
the names of the partitions are not specified, MySQL automatically names the partitions p0, p1, p2, ...,
pN-1, where N is the number of partitions. For subpartitions not explicitly named, MySQL assigns
automatically to the subpartitions in each partition pX the names pXsp0, pXsp1, pXsp2, ..., pXspM-1,
where M is the number of subpartitions. When executing against this table a SELECT (or other SQL
statement for which explicit partition selection is allowed), you can use these generated names in a
PARTITION option, as shown here:

mysql> CREATE TABLE employees_sub (
 -> id INT NOT NULL AUTO_INCREMENT,

4951

Partition Selection

 -> fname VARCHAR(25) NOT NULL,
 -> lname VARCHAR(25) NOT NULL,
 -> store_id INT NOT NULL,
 -> department_id INT NOT NULL,
 -> PRIMARY KEY pk (id, lname)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY (lname)
 -> SUBPARTITIONS 2 (
 -> PARTITION p0 VALUES LESS THAN (5),
 -> PARTITION p1 VALUES LESS THAN (10),
 -> PARTITION p2 VALUES LESS THAN (15),
 -> PARTITION p3 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 0 rows affected (1.14 sec)

mysql> INSERT INTO employees_sub # reuse data in employees table
 -> SELECT * FROM employees;
Query OK, 18 rows affected (0.09 sec)
Records: 18 Duplicates: 0 Warnings: 0

mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
 -> FROM employees_sub PARTITION (p2sp1);
+----+---------------+
| id | name |
+----+---------------+
| 10 | Lou Waters |
| 14 | Fred Goldberg |
+----+---------------+
2 rows in set (0.00 sec)

You may also use a PARTITION option in the SELECT portion of an INSERT ... SELECT statement,
as shown here:

mysql> CREATE TABLE employees_copy LIKE employees;
Query OK, 0 rows affected (0.28 sec)

mysql> INSERT INTO employees_copy
 -> SELECT * FROM employees PARTITION (p2);
Query OK, 5 rows affected (0.04 sec)
Records: 5 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM employees_copy;
+----+--------+----------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+--------+----------+----------+---------------+
10	Lou	Waters	2	4
11	Jill	Stone	1	4
12	Roger	White	3	2
13	Howard	Andrews	1	2
14	Fred	Goldberg	3	3
+----+--------+----------+----------+---------------+
5 rows in set (0.00 sec)

Partition selection can also be used with joins. Suppose we create and populate two tables using the
statements shown here:

CREATE TABLE stores (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 city VARCHAR(30) NOT NULL
)
 PARTITION BY HASH(id)
 PARTITIONS 2;

INSERT INTO stores VALUES
 ('', 'Nambucca'), ('', 'Uranga'),
 ('', 'Bellingen'), ('', 'Grafton');

CREATE TABLE departments (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30) NOT NULL
)

4952

Partition Selection

 PARTITION BY KEY(id)
 PARTITIONS 2;

INSERT INTO departments VALUES
 ('', 'Sales'), ('', 'Customer Service'),
 ('', 'Delivery'), ('', 'Accounting');

You can explicitly select partitions (or subpartitions, or both) from any or all of the tables in a join.
(The PARTITION option used to select partitions from a given table immediately follows the name of
the table, before all other options, including any table alias.) For example, the following query gets
the name, employee ID, department, and city of all employees who work in the Sales or Delivery
department (partition p1 of the departments table) at the stores in either of the cities of Nambucca
and Bellingen (partition p0 of the stores table):

mysql> SELECT
 -> e.id AS 'Employee ID', CONCAT(e.fname, ' ', e.lname) AS Name,
 -> s.city AS City, d.name AS department
 -> FROM employees AS e
 -> JOIN stores PARTITION (p1) AS s ON e.store_id=s.id
 -> JOIN departments PARTITION (p0) AS d ON e.department_id=d.id
 -> ORDER BY e.lname;
+-------------+---------------+-----------+------------+
| Employee ID | Name | City | department |
+-------------+---------------+-----------+------------+
14	Fred Goldberg	Bellingen	Delivery
5	Mary Jones	Nambucca	Sales
17	Mark Morgan	Bellingen	Delivery
9	Andy Smith	Nambucca	Delivery
8	June Wilson	Bellingen	Sales
+-------------+---------------+-----------+------------+
5 rows in set (0.00 sec)

For general information about joins in MySQL, see Section 15.2.13.2, “JOIN Clause”.

When the PARTITION option is used with DELETE statements, only those partitions (and subpartitions,
if any) listed with the option are checked for rows to be deleted. Any other partitions are ignored, as
shown here:

mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+--------+----------+---------------+
4	Jim	Smith	2	4
8	June	Wilson	3	1
11	Jill	Stone	1	4
+----+-------+--------+----------+---------------+
3 rows in set (0.00 sec)

mysql> DELETE FROM employees PARTITION (p0, p1)
 -> WHERE fname LIKE 'j%';
Query OK, 2 rows affected (0.09 sec)

mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

Only the two rows in partitions p0 and p1 matching the WHERE condition were deleted. As you can see
from the result when the SELECT is run a second time, there remains a row in the table matching the
WHERE condition, but residing in a different partition (p2).

UPDATE statements using explicit partition selection behave in the same way; only rows in the
partitions referenced by the PARTITION option are considered when determining the rows to be
updated, as can be seen by executing the following statements:

mysql> UPDATE employees PARTITION (p0)

4953

Partition Selection

 -> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0 Changed: 0 Warnings: 0

mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

mysql> UPDATE employees PARTITION (p2)
 -> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 1 row affected (0.09 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 2 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)

In the same way, when PARTITION is used with DELETE, only rows in the partition or partitions named
in the partition list are checked for deletion.

For statements that insert rows, the behavior differs in that failure to find a suitable partition causes the
statement to fail. This is true for both INSERT and REPLACE statements, as shown here:

mysql> INSERT INTO employees PARTITION (p2) VALUES (20, 'Jan', 'Jones', 1, 3);
ERROR 1729 (HY000): Found a row not matching the given partition set
mysql> INSERT INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 1, 3);
Query OK, 1 row affected (0.07 sec)

mysql> REPLACE INTO employees PARTITION (p0) VALUES (20, 'Jan', 'Jones', 3, 2);
ERROR 1729 (HY000): Found a row not matching the given partition set

mysql> REPLACE INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 3, 2);
Query OK, 2 rows affected (0.09 sec)

For statements that write multiple rows to a partitioned table that using the InnoDB storage engine:
If any row in the list following VALUES cannot be written to one of the partitions specified in the
partition_names list, the entire statement fails and no rows are written. This is shown for INSERT
statements in the following example, reusing the employees table created previously:

mysql> ALTER TABLE employees
 -> REORGANIZE PARTITION p3 INTO (
 -> PARTITION p3 VALUES LESS THAN (20),
 -> PARTITION p4 VALUES LESS THAN (25),
 -> PARTITION p5 VALUES LESS THAN MAXVALUE
 ->);
Query OK, 6 rows affected (2.09 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE employees\G
*************************** 1. row ***************************
 Table: employees
Create Table: CREATE TABLE `employees` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `fname` varchar(25) NOT NULL,
 `lname` varchar(25) NOT NULL,
 `store_id` int(11) NOT NULL,
 `department_id` int(11) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=27 DEFAULT CHARSET=utf8mb4
/*!50100 PARTITION BY RANGE (id)
(PARTITION p0 VALUES LESS THAN (5) ENGINE = InnoDB,
 PARTITION p1 VALUES LESS THAN (10) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (15) ENGINE = InnoDB,

4954

Restrictions and Limitations on Partitioning

 PARTITION p3 VALUES LESS THAN (20) ENGINE = InnoDB,
 PARTITION p4 VALUES LESS THAN (25) ENGINE = InnoDB,
 PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */
1 row in set (0.00 sec)

mysql> INSERT INTO employees PARTITION (p3, p4) VALUES
 -> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
ERROR 1729 (HY000): Found a row not matching the given partition set

mysql> INSERT INTO employees PARTITION (p3, p4, p5) VALUES
 -> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
Query OK, 2 rows affected (0.06 sec)
Records: 2 Duplicates: 0 Warnings: 0

The preceding is true for both INSERT statements and REPLACE statements that write multiple rows.

Partition selection is disabled for tables employing a storage engine that supplies automatic
partitioning, such as NDB.

26.6 Restrictions and Limitations on Partitioning
This section discusses current restrictions and limitations on MySQL partitioning support.

Prohibited constructs. The following constructs are not permitted in partitioning expressions:

• Stored procedures, stored functions, loadable functions, or plugins.

• Declared variables or user variables.

For a list of SQL functions which are permitted in partitioning expressions, see Section 26.6.3,
“Partitioning Limitations Relating to Functions”.

Arithmetic and logical operators. Use of the arithmetic operators +, -, and * is permitted in
partitioning expressions. However, the result must be an integer value or NULL (except in the case of
[LINEAR] KEY partitioning, as discussed elsewhere in this chapter; see Section 26.2, “Partitioning
Types”, for more information).

The DIV operator is also supported; the / operator is not permitted.

The bit operators |, &, ^, <<, >>, and ~ are not permitted in partitioning expressions.

Server SQL mode. Tables employing user-defined partitioning do not preserve the SQL mode in
effect at the time that they were created. As discussed elsewhere in this Manual (see Section 7.1.11,
“Server SQL Modes”), the results of many MySQL functions and operators may change according
to the server SQL mode. Therefore, a change in the SQL mode at any time after the creation of
partitioned tables may lead to major changes in the behavior of such tables, and could easily lead to
corruption or loss of data. For these reasons, it is strongly recommended that you never change the
server SQL mode after creating partitioned tables.

For one such change in the server SQL mode making a partitioned tables unusable, consider
the following CREATE TABLE statement, which can be executed successfully only if the
NO_UNSIGNED_SUBTRACTION mode is in effect:

mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
 -> PARTITION BY RANGE(c1 - 10) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (5),

4955

Restrictions and Limitations on Partitioning

 -> PARTITION p3 VALUES LESS THAN (10),
 -> PARTITION p4 VALUES LESS THAN (MAXVALUE)
 ->);
ERROR 1563 (HY000): Partition constant is out of partition function domain

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@sql_mode;
+-------------------------+
| @@sql_mode |
+-------------------------+
| NO_UNSIGNED_SUBTRACTION |
+-------------------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
 -> PARTITION BY RANGE(c1 - 10) (
 -> PARTITION p0 VALUES LESS THAN (-5),
 -> PARTITION p1 VALUES LESS THAN (0),
 -> PARTITION p2 VALUES LESS THAN (5),
 -> PARTITION p3 VALUES LESS THAN (10),
 -> PARTITION p4 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (0.05 sec)

If you remove the NO_UNSIGNED_SUBTRACTION server SQL mode after creating tu, you may no
longer be able to access this table:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM tu;
ERROR 1563 (HY000): Partition constant is out of partition function domain
mysql> INSERT INTO tu VALUES (20);
ERROR 1563 (HY000): Partition constant is out of partition function domain

See also Section 7.1.11, “Server SQL Modes”.

Server SQL modes also impact replication of partitioned tables. Disparate SQL modes on source and
replica can lead to partitioning expressions being evaluated differently; this can cause the distribution of
data among partitions to be different in the source's and replica's copies of a given table, and may even
cause inserts into partitioned tables that succeed on the source to fail on the replica. For best results,
you should always use the same server SQL mode on the source and on the replica.

Performance considerations. Some effects of partitioning operations on performance are given in
the following list:

• File system operations. Partitioning and repartitioning operations (such as ALTER TABLE
with PARTITION BY ..., REORGANIZE PARTITION, or REMOVE PARTITIONING) depend on
file system operations for their implementation. This means that the speed of these operations
is affected by such factors as file system type and characteristics, disk speed, swap space, file
handling efficiency of the operating system, and MySQL server options and variables that relate to
file handling. In particular, you should make sure that large_files_support is enabled and that
open_files_limit is set properly. Partitioning and repartitioning operations involving InnoDB
tables may be made more efficient by enabling innodb_file_per_table.

See also Maximum number of partitions.

• Table locks. Generally, the process executing a partitioning operation on a table takes a write
lock on the table. Reads from such tables are relatively unaffected; pending INSERT and UPDATE
operations are performed as soon as the partitioning operation has completed. For InnoDB-specific
exceptions to this limitation, see Partitioning Operations.

• Indexes; partition pruning. As with nonpartitioned tables, proper use of indexes can speed
up queries on partitioned tables significantly. In addition, designing partitioned tables and queries

4956

Restrictions and Limitations on Partitioning

on these tables to take advantage of partition pruning can improve performance dramatically. See
Section 26.4, “Partition Pruning”, for more information.

Index condition pushdown is supported for partitioned tables. See Section 10.2.1.6, “Index Condition
Pushdown Optimization”.

• Performance with LOAD DATA. In MySQL 8.0, LOAD DATA uses buffering to improve
performance. You should be aware that the buffer uses 130 KB memory per partition to achieve this.

Maximum number of partitions.
The maximum possible number of partitions for a given table not using the NDB storage engine is 8192.
This number includes subpartitions.

The maximum possible number of user-defined partitions for a table using the NDB storage engine
is determined according to the version of the NDB Cluster software being used, the number of data
nodes, and other factors. See NDB and user-defined partitioning, for more information.

If, when creating tables with a large number of partitions (but less than the maximum), you encounter
an error message such as Got error ... from storage engine: Out of resources
when opening file, you may be able to address the issue by increasing the value of the
open_files_limit system variable. However, this is dependent on the operating system, and may
not be possible or advisable on all platforms; see Section B.3.2.16, “File Not Found and Similar Errors”,
for more information. In some cases, using large numbers (hundreds) of partitions may also not be
advisable due to other concerns, so using more partitions does not automatically lead to better results.

See also File system operations.

Foreign keys not supported for partitioned InnoDB tables.
Partitioned tables using the InnoDB storage engine do not support foreign keys. More specifically, this
means that the following two statements are true:

1. No definition of an InnoDB table employing user-defined partitioning may contain foreign key
references; no InnoDB table whose definition contains foreign key references may be partitioned.

2. No InnoDB table definition may contain a foreign key reference to a user-partitioned table; no
InnoDB table with user-defined partitioning may contain columns referenced by foreign keys.

The scope of the restrictions just listed includes all tables that use the InnoDB storage engine. CREATE
TABLE and ALTER TABLE statements that would result in tables violating these restrictions are not
allowed.

ALTER TABLE ... ORDER BY. An ALTER TABLE ... ORDER BY column statement run against
a partitioned table causes ordering of rows only within each partition.

ADD COLUMN ... ALGORITHM=INSTANT. Once you perform ALTER TABLE ... ADD
COLUMN ... ALGORITHM=INSTANT on a partitioned table, it is no longer possible to exchange
partitions with this table.

Effects on REPLACE statements by modification of primary keys. It can be desirable in some
cases (see Section 26.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”) to modify a table's
primary key. Be aware that, if your application uses REPLACE statements and you do this, the results
of these statements can be drastically altered. See Section 15.2.12, “REPLACE Statement”, for more
information and an example.

FULLTEXT indexes.
Partitioned tables do not support FULLTEXT indexes or searches.

Spatial columns. Columns with spatial data types such as POINT or GEOMETRY cannot be used in
partitioned tables.

Temporary tables.

4957

Restrictions and Limitations on Partitioning

Temporary tables cannot be partitioned.

Log tables. It is not possible to partition the log tables; an ALTER TABLE ... PARTITION
BY ... statement on such a table fails with an error.

Data type of partitioning key.
A partitioning key must be either an integer column or an expression that resolves to an integer.
Expressions employing ENUM columns cannot be used. The column or expression value may also be
NULL; see Section 26.2.7, “How MySQL Partitioning Handles NULL”.

There are two exceptions to this restriction:

1. When partitioning by [LINEAR] KEY, it is possible to use columns of any valid MySQL data type
other than TEXT or BLOB as partitioning keys, because the internal key-hashing functions produce
the correct data type from these types. For example, the following two CREATE TABLE statements
are valid:

CREATE TABLE tkc (c1 CHAR)
PARTITION BY KEY(c1)
PARTITIONS 4;

CREATE TABLE tke
 (c1 ENUM('red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet'))
PARTITION BY LINEAR KEY(c1)
PARTITIONS 6;

2. When partitioning by RANGE COLUMNS or LIST COLUMNS, it is possible to use string, DATE, and
DATETIME columns. For example, each of the following CREATE TABLE statements is valid:

CREATE TABLE rc (c1 INT, c2 DATE)
PARTITION BY RANGE COLUMNS(c2) (
 PARTITION p0 VALUES LESS THAN('1990-01-01'),
 PARTITION p1 VALUES LESS THAN('1995-01-01'),
 PARTITION p2 VALUES LESS THAN('2000-01-01'),
 PARTITION p3 VALUES LESS THAN('2005-01-01'),
 PARTITION p4 VALUES LESS THAN(MAXVALUE)
);

CREATE TABLE lc (c1 INT, c2 CHAR(1))
PARTITION BY LIST COLUMNS(c2) (
 PARTITION p0 VALUES IN('a', 'd', 'g', 'j', 'm', 'p', 's', 'v', 'y'),
 PARTITION p1 VALUES IN('b', 'e', 'h', 'k', 'n', 'q', 't', 'w', 'z'),
 PARTITION p2 VALUES IN('c', 'f', 'i', 'l', 'o', 'r', 'u', 'x', NULL)
);

Neither of the preceding exceptions applies to BLOB or TEXT column types.

Subqueries.
A partitioning key may not be a subquery, even if that subquery resolves to an integer value or NULL.

Column index prefixes not supported for key partitioning. When creating a table that is
partitioned by key, any columns in the partitioning key which use column prefixes are not used in
the table's partitioning function. Consider the following CREATE TABLE statement, which has three
VARCHAR columns, and whose primary key uses all three columns and specifies prefixes for two of
them:

CREATE TABLE t1 (
 a VARCHAR(10000),
 b VARCHAR(25),
 c VARCHAR(10),
 PRIMARY KEY (a(10), b, c(2))
) PARTITION BY KEY() PARTITIONS 2;

This statement is accepted, but the resulting table is actually created as if you had issued the following
statement, using only the primary key column which does not include a prefix (column b) for the
partitioning key:

4958

Restrictions and Limitations on Partitioning

CREATE TABLE t1 (
 a VARCHAR(10000),
 b VARCHAR(25),
 c VARCHAR(10),
 PRIMARY KEY (a(10), b, c(2))
) PARTITION BY KEY(b) PARTITIONS 2;

Prior to MySQL 8.0.21, no warning was issued or any other indication provided that this occurred,
except in the event that all columns specified for the partitioning key used prefixes, in which case the
statement failed, but with a misleading error message, as shown here:

mysql> CREATE TABLE t2 (
 -> a VARCHAR(10000),
 -> b VARCHAR(25),
 -> c VARCHAR(10),
 -> PRIMARY KEY (a(10), b(5), c(2))
 ->) PARTITION BY KEY() PARTITIONS 2;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the
table's partitioning function

This also occurred when performing ALTER TABLE or when upgrading such tables.

This permissive behavior is deprecated as of MySQL 8.0.21 (and is subject to removal in a future
version of MySQL). Beginning with MySQL 8.0.21, using one or more columns having a prefix in the
partitioning key results in a warning for each such column, as shown here:

mysql> CREATE TABLE t1 (
 -> a VARCHAR(10000),
 -> b VARCHAR(25),
 -> c VARCHAR(10),
 -> PRIMARY KEY (a(10), b, c(2))
 ->) PARTITION BY KEY() PARTITIONS 2;
Query OK, 0 rows affected, 2 warnings (1.25 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1681
Message: Column 'test.t1.a' having prefix key part 'a(10)' is ignored by the
partitioning function. Use of prefixed columns in the PARTITION BY KEY() clause
is deprecated and will be removed in a future release.
*************************** 2. row ***************************
 Level: Warning
 Code: 1681
Message: Column 'test.t1.c' having prefix key part 'c(2)' is ignored by the
partitioning function. Use of prefixed columns in the PARTITION BY KEY() clause
is deprecated and will be removed in a future release.
2 rows in set (0.00 sec)

This includes cases in which the columns used in the partitioning function are defined implicitly as
those in the table's primary key by employing an empty PARTITION BY KEY() clause.

In MySQL 8.0.21 and later, if all columns specified for the partitioning key employ prefixes, the CREATE
TABLE statement used fails with an error message that identifies the issue correctly:

mysql> CREATE TABLE t1 (
 -> a VARCHAR(10000),
 -> b VARCHAR(25),
 -> c VARCHAR(10),
 -> PRIMARY KEY (a(10), b(5), c(2))
 ->) PARTITION BY KEY() PARTITIONS 2;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's
partitioning function (prefixed columns are not considered).

For general information about partitioning tables by key, see Section 26.2.5, “KEY Partitioning”.

Issues with subpartitions.
Subpartitions must use HASH or KEY partitioning. Only RANGE and LIST partitions may be
subpartitioned; HASH and KEY partitions cannot be subpartitioned.

4959

Restrictions and Limitations on Partitioning

 SUBPARTITION BY KEY requires that the subpartitioning column or columns be specified explicitly,
unlike the case with PARTITION BY KEY, where it can be omitted (in which case the table's primary
key column is used by default). Consider the table created by this statement:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
);

You can create a table having the same columns, partitioned by KEY, using a statement such as this
one:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
)
PARTITION BY KEY()
PARTITIONS 4;

The previous statement is treated as though it had been written like this, with the table's primary key
column used as the partitioning column:

CREATE TABLE ts (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(30)
)
PARTITION BY KEY(id)
PARTITIONS 4;

However, the following statement that attempts to create a subpartitioned table using the default
column as the subpartitioning column fails, and the column must be specified for the statement to
succeed, as shown here:

mysql> CREATE TABLE ts (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(30)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY()
 -> SUBPARTITIONS 4
 -> (
 -> PARTITION p0 VALUES LESS THAN (100),
 -> PARTITION p1 VALUES LESS THAN (MAXVALUE)
 ->);
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near ')

mysql> CREATE TABLE ts (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(30)
 ->)
 -> PARTITION BY RANGE(id)
 -> SUBPARTITION BY KEY(id)
 -> SUBPARTITIONS 4
 -> (
 -> PARTITION p0 VALUES LESS THAN (100),
 -> PARTITION p1 VALUES LESS THAN (MAXVALUE)
 ->);
Query OK, 0 rows affected (0.07 sec)

This is a known issue (see Bug #51470).

DATA DIRECTORY and INDEX DIRECTORY options. Table-level DATA DIRECTORY and
INDEX DIRECTORY options are ignored (see Bug #32091). You can employ these options for
individual partitions or subpartitions of InnoDB tables. As of MySQL 8.0.21, the directory specified in
a DATA DIRECTORY clause must be known to InnoDB. For more information, see Using the DATA
DIRECTORY Clause.

4960

Partitioning Keys, Primary Keys, and Unique Keys

Repairing and rebuilding partitioned tables. The statements CHECK TABLE, OPTIMIZE TABLE,
ANALYZE TABLE, and REPAIR TABLE are supported for partitioned tables.

In addition, you can use ALTER TABLE ... REBUILD PARTITION to rebuild one or more partitions
of a partitioned table; ALTER TABLE ... REORGANIZE PARTITION also causes partitions to
be rebuilt. See Section 15.1.9, “ALTER TABLE Statement”, for more information about these two
statements.

ANALYZE, CHECK, OPTIMIZE, REPAIR, and TRUNCATE operations are supported with subpartitions.
See Section 15.1.9.1, “ALTER TABLE Partition Operations”.

File name delimiters for partitions and subpartitions. Table partition and subpartition file names
include generated delimiters such as #P# and #SP#. The lettercase of such delimiters can vary and
should not be depended upon.

26.6.1 Partitioning Keys, Primary Keys, and Unique Keys

This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule
governing this relationship can be expressed as follows: All columns used in the partitioning expression
for a partitioned table must be part of every unique key that the table may have.

In other words, every unique key on the table must use every column in the table's partitioning
expression. (This also includes the table's primary key, since it is by definition a unique key. This
particular case is discussed later in this section.) For example, each of the following table creation
statements is invalid:

CREATE TABLE t1 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1),
 UNIQUE KEY (col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

In each case, the proposed table would have at least one unique key that does not include all columns
used in the partitioning expression.

Each of the following statements is valid, and represents one way in which the corresponding invalid
table creation statement could be made to work:

CREATE TABLE t1 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col2, col3)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,

4961

Partitioning Keys, Primary Keys, and Unique Keys

 col4 INT NOT NULL,
 UNIQUE KEY (col1, col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

This example shows the error produced in such cases:

mysql> CREATE TABLE t3 (
 -> col1 INT NOT NULL,
 -> col2 DATE NOT NULL,
 -> col3 INT NOT NULL,
 -> col4 INT NOT NULL,
 -> UNIQUE KEY (col1, col2),
 -> UNIQUE KEY (col3)
 ->)
 -> PARTITION BY HASH(col1 + col3)
 -> PARTITIONS 4;
ERROR 1491 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

The CREATE TABLE statement fails because both col1 and col3 are included in the proposed
partitioning key, but neither of these columns is part of both of unique keys on the table. This shows
one possible fix for the invalid table definition:

mysql> CREATE TABLE t3 (
 -> col1 INT NOT NULL,
 -> col2 DATE NOT NULL,
 -> col3 INT NOT NULL,
 -> col4 INT NOT NULL,
 -> UNIQUE KEY (col1, col2, col3),
 -> UNIQUE KEY (col3)
 ->)
 -> PARTITION BY HASH(col3)
 -> PARTITIONS 4;
Query OK, 0 rows affected (0.05 sec)

In this case, the proposed partitioning key col3 is part of both unique keys, and the table creation
statement succeeds.

The following table cannot be partitioned at all, because there is no way to include in a partitioning key
any columns that belong to both unique keys:

CREATE TABLE t4 (
 col1 INT NOT NULL,
 col2 INT NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 UNIQUE KEY (col1, col3),
 UNIQUE KEY (col2, col4)
);

Since every primary key is by definition a unique key, this restriction also includes the table's primary
key, if it has one. For example, the next two statements are invalid:

CREATE TABLE t5 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t6 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col3),

4962

Partitioning Keys, Primary Keys, and Unique Keys

 UNIQUE KEY(col2)
)
PARTITION BY HASH(YEAR(col2))
PARTITIONS 4;

In both cases, the primary key does not include all columns referenced in the partitioning expression.
However, both of the next two statements are valid:

CREATE TABLE t7 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

CREATE TABLE t8 (
 col1 INT NOT NULL,
 col2 DATE NOT NULL,
 col3 INT NOT NULL,
 col4 INT NOT NULL,
 PRIMARY KEY(col1, col2, col4),
 UNIQUE KEY(col2, col1)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

If a table has no unique keys—this includes having no primary key—then this restriction does not
apply, and you may use any column or columns in the partitioning expression as long as the column
type is compatible with the partitioning type.

For the same reason, you cannot later add a unique key to a partitioned table unless the key includes
all columns used by the table's partitioning expression. Consider the partitioned table created as shown
here:

mysql> CREATE TABLE t_no_pk (c1 INT, c2 INT)
 -> PARTITION BY RANGE(c1) (
 -> PARTITION p0 VALUES LESS THAN (10),
 -> PARTITION p1 VALUES LESS THAN (20),
 -> PARTITION p2 VALUES LESS THAN (30),
 -> PARTITION p3 VALUES LESS THAN (40)
 ->);
Query OK, 0 rows affected (0.12 sec)

It is possible to add a primary key to t_no_pk using either of these ALTER TABLE statements:

possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1);
Query OK, 0 rows affected (0.13 sec)
Records: 0 Duplicates: 0 Warnings: 0

drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.10 sec)
Records: 0 Duplicates: 0 Warnings: 0

use another possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1, c2);
Query OK, 0 rows affected (0.12 sec)
Records: 0 Duplicates: 0 Warnings: 0

drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

However, the next statement fails, because c1 is part of the partitioning key, but is not part of the
proposed primary key:

4963

Partitioning Limitations Relating to Storage Engines

fails with error 1503
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c2);
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

Since t_no_pk has only c1 in its partitioning expression, attempting to adding a unique key on c2
alone fails. However, you can add a unique key that uses both c1 and c2.

These rules also apply to existing nonpartitioned tables that you wish to partition using ALTER
TABLE ... PARTITION BY. Consider a table np_pk created as shown here:

mysql> CREATE TABLE np_pk (
 -> id INT NOT NULL AUTO_INCREMENT,
 -> name VARCHAR(50),
 -> added DATE,
 -> PRIMARY KEY (id)
 ->);
Query OK, 0 rows affected (0.08 sec)

The following ALTER TABLE statement fails with an error, because the added column is not part of
any unique key in the table:

mysql> ALTER TABLE np_pk
 -> PARTITION BY HASH(TO_DAYS(added))
 -> PARTITIONS 4;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

However, this statement using the id column for the partitioning column is valid, as shown here:

mysql> ALTER TABLE np_pk
 -> PARTITION BY HASH(id)
 -> PARTITIONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

In the case of np_pk, the only column that may be used as part of a partitioning expression is id; if
you wish to partition this table using any other column or columns in the partitioning expression, you
must first modify the table, either by adding the desired column or columns to the primary key, or by
dropping the primary key altogether.

26.6.2 Partitioning Limitations Relating to Storage Engines

In MySQL 8.0, partitioning support is not actually provided by the MySQL Server, but rather by a table
storage engine's own or native partitioning handler. In MySQL 8.0, only the InnoDB and NDB storage
engines provide native partitioning handlers. This means that partitioned tables cannot be created
using any other storage engine than these. (You must be using MySQL NDB Cluster with the NDB
storage engine to create NDB tables.)

InnoDB storage engine. InnoDB foreign keys and MySQL partitioning are not compatible.
Partitioned InnoDB tables cannot have foreign key references, nor can they have columns referenced
by foreign keys. InnoDB tables which have or which are referenced by foreign keys cannot be
partitioned.

ALTER TABLE ... OPTIMIZE PARTITION does not work correctly with partitioned tables that
use InnoDB. Use ALTER TABLE ... REBUILD PARTITION and ALTER TABLE ... ANALYZE
PARTITION, instead, for such tables. For more information, see Section 15.1.9.1, “ALTER TABLE
Partition Operations”.

User-defined partitioning and the NDB storage engine (NDB Cluster). Partitioning by KEY
(including LINEAR KEY) is the only type of partitioning supported for the NDB storage engine. It is
not possible under normal circumstances in NDB Cluster to create an NDB Cluster table using any
partitioning type other than [LINEAR] KEY, and attempting to do so fails with an error.

Exception (not for production): It is possible to override this restriction by setting the new system
variable on NDB Cluster SQL nodes to ON. If you choose to do this, you should be aware that tables

4964

Partitioning Limitations Relating to Functions

using partitioning types other than [LINEAR] KEY are not supported in production. In such cases,
you can create and use tables with partitioning types other than KEY or LINEAR KEY, but you do this
entirely at your own risk. You should also be aware that this functionality is now deprecated and subject
to removal without further notice in a future release of NDB Cluster.

The maximum number of partitions that can be defined for an NDB table depends on the number of
data nodes and node groups in the cluster, the version of the NDB Cluster software in use, and other
factors. See NDB and user-defined partitioning, for more information.

The maximum amount of fixed-size data that can be stored per partition in an NDB table is 128 TB.
Previously, this was 16 GB.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDB table not to
meet either or both of the following two requirements are not permitted, and fail with an error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception. If a user-partitioned NDB table is created using an empty column-list (that is, using
PARTITION BY KEY() or PARTITION BY LINEAR KEY()), then no explicit primary key is required.

Partition selection. Partition selection is not supported for NDB tables. See Section 26.5, “Partition
Selection”, for more information.

Upgrading partitioned tables. When performing an upgrade, tables which are partitioned by KEY
must be dumped and reloaded. Partitioned tables using storage engines other than InnoDB cannot
be upgraded from MySQL 5.7 or earlier to MySQL 8.0 or later; you must either drop the partitioning
from such tables with ALTER TABLE ... REMOVE PARTITIONING or convert them to InnoDB using
ALTER TABLE ... ENGINE=INNODB prior to the upgrade.

For information about converting MyISAM tables to InnoDB, see Section 17.6.1.5, “Converting Tables
from MyISAM to InnoDB”.

26.6.3 Partitioning Limitations Relating to Functions

This section discusses limitations in MySQL Partitioning relating specifically to functions used in
partitioning expressions.

Only the MySQL functions shown in the following list are allowed in partitioning expressions:

• ABS()

• CEILING() (see CEILING() and FLOOR())

• DATEDIFF()

• DAY()

• DAYOFMONTH()

• DAYOFWEEK()

• DAYOFYEAR()

• EXTRACT() (see EXTRACT() function with WEEK specifier)

• FLOOR() (see CEILING() and FLOOR())

• HOUR()

• MICROSECOND()

4965

Partitioning Limitations Relating to Functions

• MINUTE()

• MOD()

• MONTH()

• QUARTER()

• SECOND()

• TIME_TO_SEC()

• TO_DAYS()

• TO_SECONDS()

• UNIX_TIMESTAMP() (with TIMESTAMP columns)

• WEEKDAY()

• YEAR()

• YEARWEEK()

In MySQL 8.0, partition pruning is supported for the TO_DAYS(), TO_SECONDS(), YEAR(), and
UNIX_TIMESTAMP() functions. See Section 26.4, “Partition Pruning”, for more information.

CEILING() and FLOOR(). Each of these functions returns an integer only if it is passed an argument
of an exact numeric type, such as one of the INT types or DECIMAL. This means, for example, that the
following CREATE TABLE statement fails with an error, as shown here:

mysql> CREATE TABLE t (c FLOAT) PARTITION BY LIST(FLOOR(c))(
 -> PARTITION p0 VALUES IN (1,3,5),
 -> PARTITION p1 VALUES IN (2,4,6)
 ->);
ERROR 1490 (HY000): The PARTITION function returns the wrong type

EXTRACT() function with WEEK specifier. The value returned by the EXTRACT() function, when
used as EXTRACT(WEEK FROM col), depends on the value of the default_week_format system
variable. For this reason, EXTRACT() is not permitted as a partitioning function when it specifies the
unit as WEEK. (Bug #54483)

See Section 14.6.2, “Mathematical Functions”, for more information about the return types of these
functions, as well as Section 13.1, “Numeric Data Types”.

4966

Chapter 27 Stored Objects

Table of Contents
27.1 Defining Stored Programs .. 4968
27.2 Using Stored Routines ... 4969

27.2.1 Stored Routine Syntax .. 4970
27.2.2 Stored Routines and MySQL Privileges ... 4970
27.2.3 Stored Routine Metadata .. 4971
27.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 4971

27.3 Using Triggers ... 4971
27.3.1 Trigger Syntax and Examples .. 4972
27.3.2 Trigger Metadata .. 4976

27.4 Using the Event Scheduler .. 4976
27.4.1 Event Scheduler Overview .. 4977
27.4.2 Event Scheduler Configuration .. 4977
27.4.3 Event Syntax .. 4980
27.4.4 Event Metadata .. 4980
27.4.5 Event Scheduler Status ... 4981
27.4.6 The Event Scheduler and MySQL Privileges .. 4981

27.5 Using Views .. 4984
27.5.1 View Syntax ... 4984
27.5.2 View Processing Algorithms .. 4984
27.5.3 Updatable and Insertable Views .. 4985
27.5.4 The View WITH CHECK OPTION Clause .. 4988
27.5.5 View Metadata .. 4989

27.6 Stored Object Access Control .. 4989
27.7 Stored Program Binary Logging ... 4993
27.8 Restrictions on Stored Programs .. 4999
27.9 Restrictions on Views .. 5002

This chapter discusses stored database objects that are defined in terms of SQL code that is stored on
the server for later execution.

Stored objects include these object types:

• Stored procedure: An object created with CREATE PROCEDURE and invoked using the CALL
statement. A procedure does not have a return value but can modify its parameters for later
inspection by the caller. It can also generate result sets to be returned to the client program.

• Stored function: An object created with CREATE FUNCTION and used much like a built-in function.
You invoke it in an expression and it returns a value during expression evaluation.

• Trigger: An object created with CREATE TRIGGER that is associated with a table. A trigger is
activated when a particular event occurs for the table, such as an insert or update.

• Event: An object created with CREATE EVENT and invoked by the server according to schedule.

• View: An object created with CREATE VIEW that when referenced produces a result set. A view acts
as a virtual table.

Terminology used in this document reflects the stored object hierarchy:

• Stored routines include stored procedures and functions.

• Stored programs include stored routines, triggers, and events.

• Stored objects include stored programs and views.

4967

Defining Stored Programs

This chapter describes how to use stored objects. The following sections provide additional information
about SQL syntax for statements related to these objects, and about object processing:

• For each object type, there are CREATE, ALTER, and DROP statements that control which objects
exist and how they are defined. See Section 15.1, “Data Definition Statements”.

• The CALL statement is used to invoke stored procedures. See Section 15.2.1, “CALL Statement”.

• Stored program definitions include a body that may use compound statements, loops, conditionals,
and declared variables. See Section 15.6, “Compound Statement Syntax”.

• Metadata changes to objects referred to by stored programs are detected and cause automatic
reparsing of the affected statements when the program is next executed. For more information, see
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”.

27.1 Defining Stored Programs

Each stored program contains a body that consists of an SQL statement. This statement may be a
compound statement made up of several statements separated by semicolon (;) characters. For
example, the following stored procedure has a body made up of a BEGIN ... END block that contains
a SET statement and a REPEAT loop that itself contains another SET statement:

CREATE PROCEDURE dorepeat(p1 INT)
BEGIN
 SET @x = 0;
 REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
END;

If you use the mysql client program to define a stored program containing semicolon characters, a
problem arises. By default, mysql itself recognizes the semicolon as a statement delimiter, so you
must redefine the delimiter temporarily to cause mysql to pass the entire stored program definition to
the server.

To redefine the mysql delimiter, use the delimiter command. The following example shows how to
do this for the dorepeat() procedure just shown. The delimiter is changed to // to enable the entire
definition to be passed to the server as a single statement, and then restored to ; before invoking the
procedure. This enables the ; delimiter used in the procedure body to be passed through to the server
rather than being interpreted by mysql itself.

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 -> BEGIN
 -> SET @x = 0;
 -> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
 -> END
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL dorepeat(1000);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x;
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

You can redefine the delimiter to a string other than //, and the delimiter can consist of a single
character or multiple characters. You should avoid the use of the backslash (\) character because that
is the escape character for MySQL.

4968

Using Stored Routines

The following is an example of a function that takes a parameter, performs an operation using an SQL
function, and returns the result. In this case, it is unnecessary to use delimiter because the function
definition contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

27.2 Using Stored Routines

MySQL supports stored routines (procedures and functions). A stored routine is a set of SQL
statements that can be stored in the server. Once this has been done, clients don't need to keep
reissuing the individual statements but can refer to the stored routine instead.

Stored routines can be particularly useful in certain situations:

• When multiple client applications are written in different languages or work on different platforms, but
need to perform the same database operations.

• When security is paramount. Banks, for example, use stored procedures and functions for all
common operations. This provides a consistent and secure environment, and routines can ensure
that each operation is properly logged. In such a setup, applications and users would have no access
to the database tables directly, but can only execute specific stored routines.

Stored routines can provide improved performance because less information needs to be sent between
the server and the client. The tradeoff is that this does increase the load on the database server
because more of the work is done on the server side and less is done on the client (application)
side. Consider this if many client machines (such as Web servers) are serviced by only one or a few
database servers.

Stored routines also enable you to have libraries of functions in the database server. This is a feature
shared by modern application languages that enable such design internally (for example, by using
classes). Using these client application language features is beneficial for the programmer even
outside the scope of database use.

MySQL follows the SQL:2003 syntax for stored routines, which is also used by IBM's DB2. All syntax
described here is supported and any limitations and extensions are documented where appropriate.

Additional Resources

• You may find the Stored Procedures User Forum of use when working with stored procedures and
functions.

• For answers to some commonly asked questions regarding stored routines in MySQL, see
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”.

• There are some restrictions on the use of stored routines. See Section 27.8, “Restrictions on Stored
Programs”.

• Binary logging for stored routines takes place as described in Section 27.7, “Stored Program Binary
Logging”.

4969

https://forums.mysql.com/list.php?98

Stored Routine Syntax

27.2.1 Stored Routine Syntax

A stored routine is either a procedure or a function. Stored routines are created with the CREATE
PROCEDURE and CREATE FUNCTION statements (see Section 15.1.17, “CREATE PROCEDURE
and CREATE FUNCTION Statements”). A procedure is invoked using a CALL statement (see
Section 15.2.1, “CALL Statement”), and can only pass back values using output variables. A function
can be called from inside a statement just like any other function (that is, by invoking the function's
name), and can return a scalar value. The body of a stored routine can use compound statements (see
Section 15.6, “Compound Statement Syntax”).

Stored routines can be dropped with the DROP PROCEDURE and DROP FUNCTION statements (see
Section 15.1.29, “DROP PROCEDURE and DROP FUNCTION Statements”), and altered with the
ALTER PROCEDURE and ALTER FUNCTION statements (see Section 15.1.7, “ALTER PROCEDURE
Statement”).

A stored procedure or function is associated with a particular database. This has several implications:

• When the routine is invoked, an implicit USE db_name is performed (and undone when the routine
terminates). USE statements within stored routines are not permitted.

• You can qualify routine names with the database name. This can be used to refer to a routine that
is not in the current database. For example, to invoke a stored procedure p or function f that is
associated with the test database, you can say CALL test.p() or test.f().

• When a database is dropped, all stored routines associated with it are dropped as well.

Stored functions cannot be recursive.

Recursion in stored procedures is permitted but disabled by default. To enable recursion, set
the max_sp_recursion_depth server system variable to a value greater than zero. Stored
procedure recursion increases the demand on thread stack space. If you increase the value of
max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the
value of thread_stack at server startup. See Section 7.1.8, “Server System Variables”, for more
information.

MySQL supports a very useful extension that enables the use of regular SELECT statements (that
is, without using cursors or local variables) inside a stored procedure. The result set of such a query
is simply sent directly to the client. Multiple SELECT statements generate multiple result sets, so
the client must use a MySQL client library that supports multiple result sets. This means the client
must use a client library from a version of MySQL at least as recent as 4.1. The client should also
specify the CLIENT_MULTI_RESULTS option when it connects. For C programs, this can be done with
the mysql_real_connect() C API function. See mysql_real_connect(), and Multiple Statement
Execution Support.

In MySQL 8.0.22 and later, a user variable referenced by a statement in a stored procedure has its
type determined the first time the procedure is invoked, and retains this type each time the procedure is
invoked thereafter.

27.2.2 Stored Routines and MySQL Privileges

The MySQL grant system takes stored routines into account as follows:

• The CREATE ROUTINE privilege is needed to create stored routines.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is granted
automatically to the creator of a routine if necessary, and dropped from the creator when the routine
is dropped.

• The EXECUTE privilege is required to execute stored routines. However, this privilege is granted
automatically to the creator of a routine if necessary (and dropped from the creator when the routine
is dropped). Also, the default SQL SECURITY characteristic for a routine is DEFINER, which enables
users who have access to the database with which the routine is associated to execute the routine.

4970

https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-multiple-queries.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-multiple-queries.html

Stored Routine Metadata

• If the automatic_sp_privileges system variable is 0, the EXECUTE and ALTER ROUTINE
privileges are not automatically granted to and dropped from the routine creator.

• The creator of a routine is the account used to execute the CREATE statement for it. This might not
be the same as the account named as the DEFINER in the routine definition.

• The account named as a routine DEFINER can see all routine properties, including its definition. The
account thus has full access to the routine output as produced by:

• The contents of the Information Schema ROUTINES table.

• The SHOW CREATE FUNCTION and SHOW CREATE PROCEDURE statements.

• The SHOW FUNCTION CODE and SHOW PROCEDURE CODE statements.

• The SHOW FUNCTION STATUS and SHOW PROCEDURE STATUS statements.

• For an account other than the account named as the routine DEFINER, access to routine properties
depends on the privileges granted to the account:

• With the SHOW_ROUTINE privilege or the global SELECT privilege, the account can see all routine
properties, including its definition.

• With the CREATE ROUTINE, ALTER ROUTINE or EXECUTE privilege granted at a scope that
includes the routine, the account can see all routine properties except its definition.

27.2.3 Stored Routine Metadata

To obtain metadata about stored routines:

• Query the ROUTINES table of the INFORMATION_SCHEMA database. See Section 28.3.30, “The
INFORMATION_SCHEMA ROUTINES Table”.

• Use the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements to see routine
definitions. See Section 15.7.7.9, “SHOW CREATE PROCEDURE Statement”.

• Use the SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS statements to see routine
characteristics. See Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”.

• Use the SHOW PROCEDURE CODE and SHOW FUNCTION CODE statements to see a representation
of the internal implementation of the routine. See Section 15.7.7.27, “SHOW PROCEDURE CODE
Statement”.

27.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

Within the body of a stored routine (procedure or function) or a trigger, the value of
LAST_INSERT_ID() changes the same way as for statements executed outside the body of these
kinds of objects (see Section 14.15, “Information Functions”). The effect of a stored routine or trigger
upon the value of LAST_INSERT_ID() that is seen by following statements depends on the kind of
routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so following statements do not see a changed value.

27.3 Using Triggers
A trigger is a named database object that is associated with a table, and that activates when a
particular event occurs for the table. Some uses for triggers are to perform checks of values to be
inserted into a table or to perform calculations on values involved in an update.

4971

Additional Resources

A trigger is defined to activate when a statement inserts, updates, or deletes rows in the associated
table. These row operations are trigger events. For example, rows can be inserted by INSERT or LOAD
DATA statements, and an insert trigger activates for each inserted row. A trigger can be set to activate
either before or after the trigger event. For example, you can have a trigger activate before each row
that is inserted into a table or after each row that is updated.

Important

MySQL triggers activate only for changes made to tables by SQL statements.
This includes changes to base tables that underlie updatable views. Triggers
do not activate for changes to tables made by APIs that do not transmit SQL
statements to the MySQL Server. This means that triggers are not activated by
updates made using the NDB API.

Triggers are not activated by changes in INFORMATION_SCHEMA or
performance_schema tables. Those tables are actually views and triggers are
not permitted on views.

The following sections describe the syntax for creating and dropping triggers, show some examples of
how to use them, and indicate how to obtain trigger metadata.

Additional Resources

• You may find the MySQL User Forums helpful when working with triggers.

• For answers to commonly asked questions regarding triggers in MySQL, see Section A.5, “MySQL
8.0 FAQ: Triggers”.

• There are some restrictions on the use of triggers; see Section 27.8, “Restrictions on Stored
Programs”.

• Binary logging for triggers takes place as described in Section 27.7, “Stored Program Binary
Logging”.

27.3.1 Trigger Syntax and Examples

To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement,
described in Section 15.1.22, “CREATE TRIGGER Statement”, and Section 15.1.34, “DROP TRIGGER
Statement”.

Here is a simple example that associates a trigger with a table, to activate for INSERT operations. The
trigger acts as an accumulator, summing the values inserted into one of the columns of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
 FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.01 sec)

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the
account table. It also includes clauses that specify the trigger action time, the triggering event, and
what to do when the trigger activates:

• The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each
row inserted into the table. The other permitted keyword here is AFTER.

• The keyword INSERT indicates the trigger event; that is, the type of operation that activates the
trigger. In the example, INSERT operations cause trigger activation. You can also create triggers for
DELETE and UPDATE operations.

• The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute
each time the trigger activates, which occurs once for each row affected by the triggering event.

4972

https://forums.mysql.com/list.php?20

Trigger Syntax and Examples

In the example, the trigger body is a simple SET that accumulates into a user variable the values
inserted into the amount column. The statement refers to the column as NEW.amount which means
“the value of the amount column to be inserted into the new row.”

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see
what value the variable has afterward:

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 -
100, or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the
trigger is not in the default schema:

mysql> DROP TRIGGER test.ins_sum;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names
within a schema. Triggers in different schemas can have the same name.

It is possible to define multiple triggers for a given table that have the same trigger event and action
time. For example, you can have two BEFORE UPDATE triggers for a table. By default, triggers that
have the same trigger event and action time activate in the order they were created. To affect trigger
order, specify a clause after FOR EACH ROW that indicates FOLLOWS or PRECEDES and the name of
an existing trigger that also has the same trigger event and action time. With FOLLOWS, the new trigger
activates after the existing trigger. With PRECEDES, the new trigger activates before the existing trigger.

For example, the following trigger definition defines another BEFORE INSERT trigger for the account
table:

mysql> CREATE TRIGGER ins_transaction BEFORE INSERT ON account
 FOR EACH ROW PRECEDES ins_sum
 SET
 @deposits = @deposits + IF(NEW.amount>0,NEW.amount,0),
 @withdrawals = @withdrawals + IF(NEW.amount<0,-NEW.amount,0);
Query OK, 0 rows affected (0.01 sec)

This trigger, ins_transaction, is similar to ins_sum but accumulates deposits and withdrawals
separately. It has a PRECEDES clause that causes it to activate before ins_sum; without that clause, it
would activate after ins_sum because it is created after ins_sum.

Within the trigger body, the OLD and NEW keywords enable you to access columns in the rows affected
by a trigger. OLD and NEW are MySQL extensions to triggers; they are not case-sensitive.

In an INSERT trigger, only NEW.col_name can be used; there is no old row. In a DELETE trigger, only
OLD.col_name can be used; there is no new row. In an UPDATE trigger, you can use OLD.col_name
to refer to the columns of a row before it is updated and NEW.col_name to refer to the columns of the
row after it is updated.

A column named with OLD is read only. You can refer to it (if you have the SELECT privilege), but
not modify it. You can refer to a column named with NEW if you have the SELECT privilege for it. In a
BEFORE trigger, you can also change its value with SET NEW.col_name = value if you have the
UPDATE privilege for it. This means you can use a trigger to modify the values to be inserted into a new
row or used to update a row. (Such a SET statement has no effect in an AFTER trigger because the row
change has already occurred.)

4973

Trigger Syntax and Examples

In a BEFORE trigger, the NEW value for an AUTO_INCREMENT column is 0, not the sequence number
that is generated automatically when the new row actually is inserted.

By using the BEGIN ... END construct, you can define a trigger that executes multiple statements.
Within the BEGIN block, you also can use other syntax that is permitted within stored routines such as
conditionals and loops. However, just as for stored routines, if you use the mysql program to define a
trigger that executes multiple statements, it is necessary to redefine the mysql statement delimiter so
that you can use the ; statement delimiter within the trigger definition. The following example illustrates
these points. It defines an UPDATE trigger that checks the new value to be used for updating each row,
and modifies the value to be within the range from 0 to 100. This must be a BEFORE trigger because
the value must be checked before it is used to update the row:

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
 FOR EACH ROW
 BEGIN
 IF NEW.amount < 0 THEN
 SET NEW.amount = 0;
 ELSEIF NEW.amount > 100 THEN
 SET NEW.amount = 100;
 END IF;
 END;//
mysql> delimiter ;

It can be easier to define a stored procedure separately and then invoke it from the trigger using a
simple CALL statement. This is also advantageous if you want to execute the same code from within
several triggers.

There are limitations on what can appear in statements that a trigger executes when activated:

• The trigger cannot use the CALL statement to invoke stored procedures that return data to the client
or that use dynamic SQL. (Stored procedures are permitted to return data to the trigger through OUT
or INOUT parameters.)

• The trigger cannot use statements that explicitly or implicitly begin or end a transaction, such as
START TRANSACTION, COMMIT, or ROLLBACK. (ROLLBACK to SAVEPOINT is permitted because it
does not end a transaction.).

See also Section 27.8, “Restrictions on Stored Programs”.

MySQL handles errors during trigger execution as follows:

• If a BEFORE trigger fails, the operation on the corresponding row is not performed.

• A BEFORE trigger is activated by the attempt to insert or modify the row, regardless of whether the
attempt subsequently succeeds.

• An AFTER trigger is executed only if any BEFORE triggers and the row operation execute
successfully.

• An error during either a BEFORE or AFTER trigger results in failure of the entire statement that caused
trigger invocation.

• For transactional tables, failure of a statement should cause rollback of all changes performed by the
statement. Failure of a trigger causes the statement to fail, so trigger failure also causes rollback. For
nontransactional tables, such rollback cannot be done, so although the statement fails, any changes
performed prior to the point of the error remain in effect.

Triggers can contain direct references to tables by name, such as the trigger named testref shown
in this example:

CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);

4974

Trigger Syntax and Examples

CREATE TABLE test4(
 a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b4 INT DEFAULT 0
);

delimiter |

CREATE TRIGGER testref BEFORE INSERT ON test1
 FOR EACH ROW
 BEGIN
 INSERT INTO test2 SET a2 = NEW.a1;
 DELETE FROM test3 WHERE a3 = NEW.a1;
 UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;
 END;
|

delimiter ;

INSERT INTO test3 (a3) VALUES
 (NULL), (NULL), (NULL), (NULL), (NULL),
 (NULL), (NULL), (NULL), (NULL), (NULL);

INSERT INTO test4 (a4) VALUES
 (0), (0), (0), (0), (0), (0), (0), (0), (0), (0);

Suppose that you insert the following values into table test1 as shown here:

mysql> INSERT INTO test1 VALUES
 (1), (3), (1), (7), (1), (8), (4), (4);
Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0

As a result, the four tables contain the following data:

mysql> SELECT * FROM test1;
+------+
| a1 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| a2 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test3;
+----+
| a3 |
+----+
| 2 |
| 5 |
| 6 |
| 9 |

4975

Trigger Metadata

| 10 |
+----+
5 rows in set (0.00 sec)

mysql> SELECT * FROM test4;
+----+------+
| a4 | b4 |
+----+------+
1	3
2	0
3	1
4	2
5	0
6	0
7	1
8	1
9	0
10	0
+----+------+
10 rows in set (0.00 sec)

27.3.2 Trigger Metadata

To obtain metadata about triggers:

• Query the TRIGGERS table of the INFORMATION_SCHEMA database. See Section 28.3.45, “The
INFORMATION_SCHEMA TRIGGERS Table”.

• Use the SHOW CREATE TRIGGER statement. See Section 15.7.7.11, “SHOW CREATE TRIGGER
Statement”.

• Use the SHOW TRIGGERS statement. See Section 15.7.7.40, “SHOW TRIGGERS Statement”.

27.4 Using the Event Scheduler
The MySQL Event Scheduler manages the scheduling and execution of events, that is, tasks that run
according to a schedule. The following discussion covers the Event Scheduler and is divided into the
following sections:

• Section 27.4.1, “Event Scheduler Overview”, provides an introduction to and conceptual overview of
MySQL Events.

• Section 27.4.3, “Event Syntax”, discusses the SQL statements for creating, altering, and dropping
MySQL Events.

• Section 27.4.4, “Event Metadata”, shows how to obtain information about events and how this
information is stored by the MySQL Server.

• Section 27.4.6, “The Event Scheduler and MySQL Privileges”, discusses the privileges required to
work with events and the ramifications that events have with regard to privileges when executing.

Stored routines require the events data dictionary table in the mysql system database. This table is
created during the MySQL 8.0 installation procedure. If you are upgrading to MySQL 8.0 from an earlier
version, be sure to perform the upgrade procedure to make sure that your system database is up to
date. See Chapter 3, Upgrading MySQL.

Additional Resources

• There are some restrictions on the use of events; see Section 27.8, “Restrictions on Stored
Programs”.

• Binary logging for events takes place as described in Section 27.7, “Stored Program Binary Logging”.

• You may also find the MySQL User Forums to be helpful.

4976

https://forums.mysql.com/list.php?20

Event Scheduler Overview

27.4.1 Event Scheduler Overview

MySQL Events are tasks that run according to a schedule. Therefore, we sometimes refer to them as
scheduled events. When you create an event, you are creating a named database object containing
one or more SQL statements to be executed at one or more regular intervals, beginning and ending at
a specific date and time. Conceptually, this is similar to the idea of the Unix crontab (also known as a
“cron job”) or the Windows Task Scheduler.

Scheduled tasks of this type are also sometimes known as “temporal triggers”, implying that these are
objects that are triggered by the passage of time. While this is essentially correct, we prefer to use the
term events to avoid confusion with triggers of the type discussed in Section 27.3, “Using Triggers”.
Events should more specifically not be confused with “temporary triggers”. Whereas a trigger is a
database object whose statements are executed in response to a specific type of event that occurs
on a given table, a (scheduled) event is an object whose statements are executed in response to the
passage of a specified time interval.

While there is no provision in the SQL Standard for event scheduling, there are precedents in other
database systems, and you may notice some similarities between these implementations and that
found in the MySQL Server.

MySQL Events have the following major features and properties:

• In MySQL, an event is uniquely identified by its name and the schema to which it is assigned.

• An event performs a specific action according to a schedule. This action consists of an SQL
statement, which can be a compound statement in a BEGIN ... END block if desired (see
Section 15.6, “Compound Statement Syntax”). An event's timing can be either one-time or recurrent.
A one-time event executes one time only. A recurrent event repeats its action at a regular interval,
and the schedule for a recurring event can be assigned a specific start day and time, end day and
time, both, or neither. (By default, a recurring event's schedule begins as soon as it is created, and
continues indefinitely, until it is disabled or dropped.)

If a repeating event does not terminate within its scheduling interval, the result may be multiple
instances of the event executing simultaneously. If this is undesirable, you should institute a
mechanism to prevent simultaneous instances. For example, you could use the GET_LOCK()
function, or row or table locking.

• Users can create, modify, and drop scheduled events using SQL statements intended for these
purposes. Syntactically invalid event creation and modification statements fail with an appropriate
error message. A user may include statements in an event's action which require privileges that the
user does not actually have. The event creation or modification statement succeeds but the event's
action fails. See Section 27.4.6, “The Event Scheduler and MySQL Privileges” for details.

• Many of the properties of an event can be set or modified using SQL statements. These properties
include the event's name, timing, persistence (that is, whether it is preserved following the expiration
of its schedule), status (enabled or disabled), action to be performed, and the schema to which it is
assigned. See Section 15.1.3, “ALTER EVENT Statement”.

The default definer of an event is the user who created the event, unless the event has been altered,
in which case the definer is the user who issued the last ALTER EVENT statement affecting that
event. An event can be modified by any user having the EVENT privilege on the database for which
the event is defined. See Section 27.4.6, “The Event Scheduler and MySQL Privileges”.

• An event's action statement may include most SQL statements permitted within stored routines. For
restrictions, see Section 27.8, “Restrictions on Stored Programs”.

27.4.2 Event Scheduler Configuration

Events are executed by a special event scheduler thread; when we refer to the Event Scheduler, we
actually refer to this thread. When running, the event scheduler thread and its current state can be

4977

Event Scheduler Configuration

seen by users having the PROCESS privilege in the output of SHOW PROCESSLIST, as shown in the
discussion that follows.

The global event_scheduler system variable determines whether the Event Scheduler is enabled
and running on the server. It has one of the following values, which affect event scheduling as
described:

• ON: The Event Scheduler is started; the event scheduler thread runs and executes all scheduled
events. ON is the default event_scheduler value.

When the Event Scheduler is ON, the event scheduler thread is listed in the output of SHOW
PROCESSLIST as a daemon process, and its state is represented as shown here:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: root
 Host: localhost
 db: NULL
Command: Query
 Time: 0
 State: NULL
 Info: show processlist
*************************** 2. row ***************************
 Id: 2
 User: event_scheduler
 Host: localhost
 db: NULL
Command: Daemon
 Time: 3
 State: Waiting for next activation
 Info: NULL
2 rows in set (0.00 sec)

Event scheduling can be stopped by setting the value of event_scheduler to OFF.

• OFF: The Event Scheduler is stopped. The event scheduler thread does not run, is not shown in the
output of SHOW PROCESSLIST, and no scheduled events execute.

When the Event Scheduler is stopped (event_scheduler is OFF), it can be started by setting the
value of event_scheduler to ON. (See next item.)

• DISABLED: This value renders the Event Scheduler nonoperational. When the Event Scheduler is
DISABLED, the event scheduler thread does not run (and so does not appear in the output of SHOW
PROCESSLIST). In addition, the Event Scheduler state cannot be changed at runtime.

If the Event Scheduler status has not been set to DISABLED, event_scheduler can be toggled
between ON and OFF (using SET). It is also possible to use 0 for OFF, and 1 for ON when setting this
variable. Thus, any of the following 4 statements can be used in the mysql client to turn on the Event
Scheduler:

SET GLOBAL event_scheduler = ON;
SET @@GLOBAL.event_scheduler = ON;
SET GLOBAL event_scheduler = 1;
SET @@GLOBAL.event_scheduler = 1;

Similarly, any of these 4 statements can be used to turn off the Event Scheduler:

SET GLOBAL event_scheduler = OFF;
SET @@GLOBAL.event_scheduler = OFF;
SET GLOBAL event_scheduler = 0;
SET @@GLOBAL.event_scheduler = 0;

Note

If the Event Scheduler is enabled, enabling the super_read_only system
variable prevents it from updating event “last executed” timestamps in the

4978

Event Scheduler Configuration

events data dictionary table. This causes the Event Scheduler to stop the
next time it tries to execute a scheduled event, after writing a message to the
server error log. (In this situation the event_scheduler system variable
does not change from ON to OFF. An implication is that this variable rejects
the DBA intent that the Event Scheduler be enabled or disabled, where its
actual status of started or stopped may be distinct.). If super_read_only is
subsequently disabled after being enabled, the server automatically restarts the
Event Scheduler as needed, as of MySQL 8.0.26. Prior to MySQL 8.0.26, it is
necessary to manually restart the Event Scheduler by enabling it again.

Although ON and OFF have numeric equivalents, the value displayed for event_scheduler by
SELECT or SHOW VARIABLES is always one of OFF, ON, or DISABLED. DISABLED has no numeric
equivalent. For this reason, ON and OFF are usually preferred over 1 and 0 when setting this variable.

Note that attempting to set event_scheduler without specifying it as a global variable causes an
error:

mysql< SET @@event_scheduler = OFF;
ERROR 1229 (HY000): Variable 'event_scheduler' is a GLOBAL
variable and should be set with SET GLOBAL

Important

It is possible to set the Event Scheduler to DISABLED only at server startup. If
event_scheduler is ON or OFF, you cannot set it to DISABLED at runtime.
Also, if the Event Scheduler is set to DISABLED at startup, you cannot change
the value of event_scheduler at runtime.

To disable the event scheduler, use one of the following two methods:

• As a command-line option when starting the server:

--event-scheduler=DISABLED

• In the server configuration file (my.cnf, or my.ini on Windows systems), include the line where it
can be read by the server (for example, in a [mysqld] section):

event_scheduler=DISABLED

To enable the Event Scheduler, restart the server without the --event-scheduler=DISABLED
command-line option, or after removing or commenting out the line containing event-
scheduler=DISABLED in the server configuration file, as appropriate. Alternatively, you can use ON
(or 1) or OFF (or 0) in place of the DISABLED value when starting the server.

Note

You can issue event-manipulation statements when event_scheduler is set
to DISABLED. No warnings or errors are generated in such cases (provided
that the statements are themselves valid). However, scheduled events cannot
execute until this variable is set to ON (or 1). Once this has been done, the event
scheduler thread executes all events whose scheduling conditions are satisfied.

Starting the MySQL server with the --skip-grant-tables option causes event_scheduler to
be set to DISABLED, overriding any other value set either on the command line or in the my.cnf or
my.ini file (Bug #26807).

For SQL statements used to create, alter, and drop events, see Section 27.4.3, “Event Syntax”.

MySQL provides an EVENTS table in the INFORMATION_SCHEMA database. This table can be
queried to obtain information about scheduled events which have been defined on the server. See
Section 27.4.4, “Event Metadata”, and Section 28.3.14, “The INFORMATION_SCHEMA EVENTS
Table”, for more information.

4979

Event Syntax

For information regarding event scheduling and the MySQL privilege system, see Section 27.4.6, “The
Event Scheduler and MySQL Privileges”.

27.4.3 Event Syntax

MySQL provides several SQL statements for working with scheduled events:

• New events are defined using the CREATE EVENT statement. See Section 15.1.13, “CREATE
EVENT Statement”.

• The definition of an existing event can be changed by means of the ALTER EVENT statement. See
Section 15.1.3, “ALTER EVENT Statement”.

• When a scheduled event is no longer wanted or needed, it can be deleted from the server by
its definer using the DROP EVENT statement. See Section 15.1.25, “DROP EVENT Statement”.
Whether an event persists past the end of its schedule also depends on its ON COMPLETION clause,
if it has one. See Section 15.1.13, “CREATE EVENT Statement”.

An event can be dropped by any user having the EVENT privilege for the database on which the
event is defined. See Section 27.4.6, “The Event Scheduler and MySQL Privileges”.

27.4.4 Event Metadata

To obtain metadata about events:

• Query the EVENTS table of the INFORMATION_SCHEMA database. See Section 28.3.14, “The
INFORMATION_SCHEMA EVENTS Table”.

• Use the SHOW CREATE EVENT statement. See Section 15.7.7.7, “SHOW CREATE EVENT
Statement”.

• Use the SHOW EVENTS statement. See Section 15.7.7.18, “SHOW EVENTS Statement”.

Event Scheduler Time Representation

Each session in MySQL has a session time zone (STZ). This is the session time_zone value that is
initialized from the server's global time_zone value when the session begins but may be changed
during the session.

The session time zone that is current when a CREATE EVENT or ALTER EVENT statement executes is
used to interpret times specified in the event definition. This becomes the event time zone (ETZ); that
is, the time zone that is used for event scheduling and is in effect within the event as it executes.

For representation of event information in the data dictionary, the execute_at, starts, and ends
times are converted to UTC and stored along with the event time zone. This enables event execution
to proceed as defined regardless of any subsequent changes to the server time zone or daylight saving
time effects. The last_executed time is also stored in UTC.

Event times can be obtained by selecting from the Information Schema EVENTS table or from SHOW
EVENTS, but they are reported as ETZ or STZ values. The following table summarizes representation
of event times.

Value EVENTS Table SHOW EVENTS

Execute at ETZ ETZ

Starts ETZ ETZ

Ends ETZ ETZ

Last executed ETZ n/a

Created STZ n/a

Last altered STZ n/a

4980

Event Scheduler Status

27.4.5 Event Scheduler Status

The Event Scheduler writes information about event execution that terminates with an error or warning
to the MySQL Server's error log. See Section 27.4.6, “The Event Scheduler and MySQL Privileges” for
an example.

To obtain information about the state of the Event Scheduler for debugging and troubleshooting
purposes, run mysqladmin debug (see Section 6.5.2, “mysqladmin — A MySQL Server
Administration Program”); after running this command, the server's error log contains output relating to
the Event Scheduler, similar to what is shown here:

Events status:
LLA = Last Locked At LUA = Last Unlocked At
WOC = Waiting On Condition DL = Data Locked

Event scheduler status:
State : INITIALIZED
Thread id : 0
LLA : n/a:0
LUA : n/a:0
WOC : NO
Workers : 0
Executed : 0
Data locked: NO

Event queue status:
Element count : 0
Data locked : NO
Attempting lock : NO
LLA : init_queue:95
LUA : init_queue:103
WOC : NO
Next activation : never

In statements that occur as part of events executed by the Event Scheduler, diagnostics messages
(not only errors, but also warnings) are written to the error log, and, on Windows, to the application
event log. For frequently executed events, it is possible for this to result in many logged messages.
For example, for SELECT ... INTO var_list statements, if the query returns no rows, a warning
with error code 1329 occurs (No data), and the variable values remain unchanged. If the query
returns multiple rows, error 1172 occurs (Result consisted of more than one row). For
either condition, you can avoid having the warnings be logged by declaring a condition handler; see
Section 15.6.7.2, “DECLARE ... HANDLER Statement”. For statements that may retrieve multiple rows,
another strategy is to use LIMIT 1 to limit the result set to a single row.

27.4.6 The Event Scheduler and MySQL Privileges

To enable or disable the execution of scheduled events, it is necessary to set the value of the global
event_scheduler system variable. This requires privileges sufficient to set global system variables.
See Section 7.1.9.1, “System Variable Privileges”.

The EVENT privilege governs the creation, modification, and deletion of events. This privilege can
be bestowed using GRANT. For example, this GRANT statement confers the EVENT privilege for the
schema named myschema on the user jon@ghidora:

GRANT EVENT ON myschema.* TO jon@ghidora;

(We assume that this user account already exists, and that we wish for it to remain unchanged
otherwise.)

To grant this same user the EVENT privilege on all schemas, use the following statement:

GRANT EVENT ON *.* TO jon@ghidora;

The EVENT privilege has global or schema-level scope. Therefore, trying to grant it on a single table
results in an error as shown:

4981

The Event Scheduler and MySQL Privileges

mysql> GRANT EVENT ON myschema.mytable TO jon@ghidora;
ERROR 1144 (42000): Illegal GRANT/REVOKE command; please
consult the manual to see which privileges can be used

It is important to understand that an event is executed with the privileges of its definer, and that it
cannot perform any actions for which its definer does not have the requisite privileges. For example,
suppose that jon@ghidora has the EVENT privilege for myschema. Suppose also that this user
has the SELECT privilege for myschema, but no other privileges for this schema. It is possible for
jon@ghidora to create a new event such as this one:

CREATE EVENT e_store_ts
 ON SCHEDULE
 EVERY 10 SECOND
 DO
 INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());

The user waits for a minute or so, and then performs a SELECT * FROM mytable; query, expecting
to see several new rows in the table. Instead, the table is empty. Since the user does not have the
INSERT privilege for the table in question, the event has no effect.

If you inspect the MySQL error log (hostname.err), you can see that the event is executing, but the
action it is attempting to perform fails:

2013-09-24T12:41:31.261992Z 25 [ERROR] Event Scheduler:
[jon@ghidora][cookbook.e_store_ts] INSERT command denied to user
'jon'@'ghidora' for table 'mytable'
2013-09-24T12:41:31.262022Z 25 [Note] Event Scheduler:
[jon@ghidora].[myschema.e_store_ts] event execution failed.
2013-09-24T12:41:41.271796Z 26 [ERROR] Event Scheduler:
[jon@ghidora][cookbook.e_store_ts] INSERT command denied to user
'jon'@'ghidora' for table 'mytable'
2013-09-24T12:41:41.272761Z 26 [Note] Event Scheduler:
[jon@ghidora].[myschema.e_store_ts] event execution failed.

Since this user very likely does not have access to the error log, it is possible to verify whether the
event's action statement is valid by executing it directly:

mysql> INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());
ERROR 1142 (42000): INSERT command denied to user
'jon'@'ghidora' for table 'mytable'

Inspection of the Information Schema EVENTS table shows that e_store_ts exists and is enabled,
but its LAST_EXECUTED column is NULL:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 > WHERE EVENT_NAME='e_store_ts'
 > AND EVENT_SCHEMA='myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: NULL
 EVENT_SCHEMA: myschema
 EVENT_NAME: e_store_ts
 DEFINER: jon@ghidora
 EVENT_BODY: SQL
EVENT_DEFINITION: INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP())
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 5
 INTERVAL_FIELD: SECOND
 SQL_MODE: NULL
 STARTS: 0000-00-00 00:00:00
 ENDS: 0000-00-00 00:00:00
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2006-02-09 22:36:06
 LAST_ALTERED: 2006-02-09 22:36:06
 LAST_EXECUTED: NULL
 EVENT_COMMENT:
1 row in set (0.00 sec)

4982

The Event Scheduler and MySQL Privileges

To rescind the EVENT privilege, use the REVOKE statement. In this example, the EVENT privilege on the
schema myschema is removed from the jon@ghidora user account:

REVOKE EVENT ON myschema.* FROM jon@ghidora;

Important

Revoking the EVENT privilege from a user does not delete or disable any events
that may have been created by that user.

An event is not migrated or dropped as a result of renaming or dropping the
user who created it.

Suppose that the user jon@ghidora has been granted the EVENT and INSERT privileges on the
myschema schema. This user then creates the following event:

CREATE EVENT e_insert
 ON SCHEDULE
 EVERY 7 SECOND
 DO
 INSERT INTO myschema.mytable;

After this event has been created, root revokes the EVENT privilege for jon@ghidora. However,
e_insert continues to execute, inserting a new row into mytable each seven seconds. The same
would be true if root had issued either of these statements:

• DROP USER jon@ghidora;

• RENAME USER jon@ghidora TO someotherguy@ghidora;

You can verify that this is true by examining the Information Schema EVENTS table before and after
issuing a DROP USER or RENAME USER statement.

Event definitions are stored in the data dictionary. To drop an event created by another user account,
you must be the MySQL root user or another user with the necessary privileges.

Users' EVENT privileges are stored in the Event_priv columns of the mysql.user and
mysql.db tables. In both cases, this column holds one of the values 'Y' or 'N'. 'N' is the default.
mysql.user.Event_priv is set to 'Y' for a given user only if that user has the global EVENT privilege
(that is, if the privilege was bestowed using GRANT EVENT ON *.*). For a schema-level EVENT
privilege, GRANT creates a row in mysql.db and sets that row's Db column to the name of the schema,
the User column to the name of the user, and the Event_priv column to 'Y'. There should never be
any need to manipulate these tables directly, since the GRANT EVENT and REVOKE EVENT statements
perform the required operations on them.

Five status variables provide counts of event-related operations (but not of statements executed by
events; see Section 27.8, “Restrictions on Stored Programs”). These are:

• Com_create_event: The number of CREATE EVENT statements executed since the last server
restart.

• Com_alter_event: The number of ALTER EVENT statements executed since the last server
restart.

• Com_drop_event: The number of DROP EVENT statements executed since the last server restart.

• Com_show_create_event: The number of SHOW CREATE EVENT statements executed since the
last server restart.

• Com_show_events: The number of SHOW EVENTS statements executed since the last server
restart.

You can view current values for all of these at one time by running the statement SHOW STATUS LIKE
'%event%';.

4983

Using Views

27.5 Using Views
MySQL supports views, including updatable views. Views are stored queries that when invoked
produce a result set. A view acts as a virtual table.

The following discussion describes the syntax for creating and dropping views, and shows some
examples of how to use them.

Additional Resources

• You may find the MySQL User Forums helpful when working with views.

• For answers to some commonly asked questions regarding views in MySQL, see Section A.6,
“MySQL 8.0 FAQ: Views”.

• There are some restrictions on the use of views; see Section 27.9, “Restrictions on Views”.

27.5.1 View Syntax

The CREATE VIEW statement creates a new view (see Section 15.1.23, “CREATE VIEW Statement”).
To alter the definition of a view or drop a view, use ALTER VIEW (see Section 15.1.11, “ALTER VIEW
Statement”), or DROP VIEW (see Section 15.1.35, “DROP VIEW Statement”).

A view can be created from many kinds of SELECT statements. It can refer to base tables or other
views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The
following example defines a view that selects two columns from another table, as well as an expression
calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50), (5, 60);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
| 5 | 60 | 300 |
+------+-------+-------+
mysql> SELECT * FROM v WHERE qty = 5;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 5 | 60 | 300 |
+------+-------+-------+

27.5.2 View Processing Algorithms

The optional ALGORITHM clause for CREATE VIEW or ALTER VIEW is a MySQL extension to standard
SQL. It affects how MySQL processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE,
or UNDEFINED.

• For MERGE, the text of a statement that refers to the view and the view definition are merged such
that parts of the view definition replace corresponding parts of the statement.

• For TEMPTABLE, the results from the view are retrieved into a temporary table, which then is used to
execute the statement.

• For UNDEFINED, MySQL chooses which algorithm to use. It prefers MERGE over TEMPTABLE if
possible, because MERGE is usually more efficient and because a view cannot be updated if a
temporary table is used.

• If no ALGORITHM clause is present, the default algorithm is determined by the value of the
derived_merge flag of the optimizer_switch system variable. For additional discussion, see

4984

https://forums.mysql.com/list.php?20

Updatable and Insertable Views

Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions
with Merging or Materialization”.

A reason to specify TEMPTABLE explicitly is that locks can be released on underlying tables after the
temporary table has been created and before it is used to finish processing the statement. This might
result in quicker lock release than the MERGE algorithm so that other clients that use the view are not
blocked as long.

A view algorithm can be UNDEFINED for three reasons:

• No ALGORITHM clause is present in the CREATE VIEW statement.

• The CREATE VIEW statement has an explicit ALGORITHM = UNDEFINED clause.

• ALGORITHM = MERGE is specified for a view that can be processed only with a temporary table. In
this case, MySQL generates a warning and sets the algorithm to UNDEFINED.

As mentioned earlier, MERGE is handled by merging corresponding parts of a view definition into the
statement that refers to the view. The following examples briefly illustrate how the MERGE algorithm
works. The examples assume that there is a view v_merge that has this definition:

CREATE ALGORITHM = MERGE VIEW v_merge (vc1, vc2) AS
SELECT c1, c2 FROM t WHERE c3 > 100;

Example 1: Suppose that we issue this statement:

SELECT * FROM v_merge;

MySQL handles the statement as follows:

• v_merge becomes t

• * becomes vc1, vc2, which corresponds to c1, c2

• The view WHERE clause is added

The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE c3 > 100;

Example 2: Suppose that we issue this statement:

SELECT * FROM v_merge WHERE vc1 < 100;

This statement is handled similarly to the previous one, except that vc1 < 100 becomes c1 < 100
and the view WHERE clause is added to the statement WHERE clause using an AND connective (and
parentheses are added to make sure the parts of the clause are executed with correct precedence).
The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE (c3 > 100) AND (c1 < 100);

Effectively, the statement to be executed has a WHERE clause of this form:

WHERE (select WHERE) AND (view WHERE)

If the MERGE algorithm cannot be used, a temporary table must be used instead. Constructs
that prevent merging are the same as those that prevent merging in derived tables and common
table expressions. Examples are SELECT DISTINCT or LIMIT in the subquery. For details, see
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”.

27.5.3 Updatable and Insertable Views

Some views are updatable and references to them can be used to specify tables to be updated in data
change statements. That is, you can use them in statements such as UPDATE, DELETE, or INSERT to
update the contents of the underlying table. Derived tables and common table expressions can also be

4985

Updatable and Insertable Views

specified in multiple-table UPDATE and DELETE statements, but can only be used for reading data to
specify rows to be updated or deleted. Generally, the view references must be updatable, meaning that
they may be merged and not materialized. Composite views have more complex rules.

For a view to be updatable, there must be a one-to-one relationship between the rows in the view
and the rows in the underlying table. There are also certain other constructs that make a view
nonupdatable. To be more specific, a view is not updatable if it contains any of the following:

• Aggregate functions or window functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• UNION or UNION ALL

• Subquery in the select list

Nondependent subqueries in the select list fail for INSERT, but are okay for UPDATE, DELETE. For
dependent subqueries in the select list, no data change statements are permitted.

• Certain joins (see additional join discussion later in this section)

• Reference to nonupdatable view in the FROM clause

• Subquery in the WHERE clause that refers to a table in the FROM clause

• Refers only to literal values (in this case, there is no underlying table to update)

• ALGORITHM = TEMPTABLE (use of a temporary table always makes a view nonupdatable)

• Multiple references to any column of a base table (fails for INSERT, okay for UPDATE, DELETE)

A generated column in a view is considered updatable because it is possible to assign to it. However,
if such a column is updated explicitly, the only permitted value is DEFAULT. For information about
generated columns, see Section 15.1.20.8, “CREATE TABLE and Generated Columns”.

It is sometimes possible for a multiple-table view to be updatable, assuming that it can be processed
with the MERGE algorithm. For this to work, the view must use an inner join (not an outer join or a
UNION). Also, only a single table in the view definition can be updated, so the SET clause must name
only columns from one of the tables in the view. Views that use UNION ALL are not permitted even
though they might be theoretically updatable.

With respect to insertability (being updatable with INSERT statements), an updatable view is insertable
if it also satisfies these additional requirements for the view columns:

• There must be no duplicate view column names.

• The view must contain all columns in the base table that do not have a default value.

• The view columns must be simple column references. They must not be expressions, such as these:

3.14159
col1 + 3
UPPER(col2)
col3 / col4
(subquery)

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true)
if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO
(false). The IS_UPDATABLE column in the Information Schema VIEWS table displays the status of this
flag. It means that the server always knows whether a view is updatable.

4986

Updatable and Insertable Views

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are rejected.
(Even if a view is updatable, it might not be possible to insert into it, as described elsewhere in this
section.)

The updatability of views may be affected by the value of the updatable_views_with_limit
system variable. See Section 7.1.8, “Server System Variables”.

For the following discussion, suppose that these tables and views exist:

CREATE TABLE t1 (x INTEGER);
CREATE TABLE t2 (c INTEGER);
CREATE VIEW vmat AS SELECT SUM(x) AS s FROM t1;
CREATE VIEW vup AS SELECT * FROM t2;
CREATE VIEW vjoin AS SELECT * FROM vmat JOIN vup ON vmat.s=vup.c;

INSERT, UPDATE, and DELETE statements are permitted as follows:

• INSERT: The insert table of an INSERT statement may be a view reference that is merged. If the
view is a join view, all components of the view must be updatable (not materialized). For a multiple-
table updatable view, INSERT can work if it inserts into a single table.

This statement is invalid because one component of the join view is nonupdatable:

INSERT INTO vjoin (c) VALUES (1);

This statement is valid; the view contains no materialized components:

INSERT INTO vup (c) VALUES (1);

• UPDATE: The table or tables to be updated in an UPDATE statement may be view references that are
merged. If a view is a join view, at least one component of the view must be updatable (this differs
from INSERT).

In a multiple-table UPDATE statement, the updated table references of the statement must be base
tables or updatable view references. Nonupdated table references may be materialized views or
derived tables.

This statement is valid; column c is from the updatable part of the join view:

UPDATE vjoin SET c=c+1;

This statement is invalid; column x is from the nonupdatable part:

UPDATE vjoin SET x=x+1;

This statement is valid; the updated table reference of the multiple-table UPDATE is an updatable
view (vup):

UPDATE vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...
SET c=c+1;

This statement is invalid; it tries to update a materialized derived table:

UPDATE vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...
SET s=s+1;

• DELETE: The table or tables to be deleted from in a DELETE statement must be merged views. Join
views are not allowed (this differs from INSERT and UPDATE).

This statement is invalid because the view is a join view:

DELETE vjoin WHERE ...;

This statement is valid because the view is a merged (updatable) view:

DELETE vup WHERE ...;

4987

The View WITH CHECK OPTION Clause

This statement is valid because it deletes from a merged (updatable) view:

DELETE vup FROM vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...;

Additional discussion and examples follow.

Earlier discussion in this section pointed out that a view is not insertable if not all columns are simple
column references (for example, if it contains columns that are expressions or composite expressions).
Although such a view is not insertable, it can be updatable if you update only columns that are not
expressions. Consider this view:

CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;

This view is not insertable because col2 is an expression. But it is updatable if the update does not try
to update col2. This update is permissible:

UPDATE v SET col1 = 0;

This update is not permissible because it attempts to update an expression column:

UPDATE v SET col2 = 0;

If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that
does not include the AUTO_INCREMENT column does not change the value of LAST_INSERT_ID(),
because the side effects of inserting default values into columns not part of the view should not be
visible.

27.5.4 The View WITH CHECK OPTION Clause

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts to rows for
which the WHERE clause in the select_statement is not true. It also prevents updates to rows for
which the WHERE clause is true but the update would cause it to be not true (in other words, it prevents
visible rows from being updated to nonvisible rows).

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords
determine the scope of check testing when the view is defined in terms of another view. When neither
keyword is given, the default is CASCADED.

WITH CHECK OPTION testing is standard-compliant:

• With LOCAL, the view WHERE clause is checked, then checking recurses to underlying views and
applies the same rules.

• With CASCADED, the view WHERE clause is checked, then checking recurses to underlying views,
adds WITH CASCADED CHECK OPTION to them (for purposes of the check; their definitions remain
unchanged), and applies the same rules.

• With no check option, the view WHERE clause is not checked, then checking recurses to underlying
views, and applies the same rules.

Consider the definitions for the following table and set of views:

CREATE TABLE t1 (a INT);
CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2
WITH CHECK OPTION;
CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0
WITH LOCAL CHECK OPTION;
CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0
WITH CASCADED CHECK OPTION;

Here the v2 and v3 views are defined in terms of another view, v1.

Inserts for v2 are checked against its LOCAL check option, then the check recurses to v1 and the rules
are applied again. The rules for v1 cause a check failure. The check for v3 also fails:

4988

View Metadata

mysql> INSERT INTO v2 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v2'
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

27.5.5 View Metadata

To obtain metadata about views:

• Query the VIEWS table of the INFORMATION_SCHEMA database. See Section 28.3.48, “The
INFORMATION_SCHEMA VIEWS Table”.

• Use the SHOW CREATE VIEW statement. See Section 15.7.7.13, “SHOW CREATE VIEW
Statement”.

27.6 Stored Object Access Control
Stored programs (procedures, functions, triggers, and events) and views are defined prior to use and,
when referenced, execute within a security context that determines their privileges. The privileges
applicable to execution of a stored object are controlled by its DEFINER attribute and SQL SECURITY
characteristic.

• The DEFINER Attribute

• The SQL SECURITY Characteristic

• Examples

• Orphan Stored Objects

• Risk-Minimization Guidelines

The DEFINER Attribute

A stored object definition can include a DEFINER attribute that names a MySQL account. If a definition
omits the DEFINER attribute, the default object definer is the user who creates it.

The following rules determine which accounts you can specify as the DEFINER attribute for a stored
object:

• If you have the SET_USER_ID privilege (or the deprecated SUPER privilege), you can specify any
account as the DEFINER attribute. If the account does not exist, a warning is generated. Additionally,
to set a stored object DEFINER attribute to an account that has the SYSTEM_USER privilege, you
must have the SYSTEM_USER privilege.

• Otherwise, the only permitted account is your own, specified either literally or as CURRENT_USER or
CURRENT_USER(). You cannot set the definer to any other account.

Creating a stored object with a nonexistent DEFINER account creates an orphan object, which may
have negative consequences; see Orphan Stored Objects.

The SQL SECURITY Characteristic

For stored routines (procedures and functions) and views, the object definition can include an SQL
SECURITY characteristic with a value of DEFINER or INVOKER to specify whether the object executes
in definer or invoker context. If the definition omits the SQL SECURITY characteristic, the default is
definer context.

Triggers and events have no SQL SECURITY characteristic and always execute in definer context. The
server invokes these objects automatically as necessary, so there is no invoking user.

Definer and invoker security contexts differ as follows:

4989

Examples

• A stored object that executes in definer security context executes with the privileges of the account
named by its DEFINER attribute. These privileges may be entirely different from those of the invoking
user. The invoker must have appropriate privileges to reference the object (for example, EXECUTE to
call a stored procedure or SELECT to select from a view), but during object execution, the invoker's
privileges are ignored and only the DEFINER account privileges matter. If the DEFINER account has
few privileges, the object is correspondingly limited in the operations it can perform. If the DEFINER
account is highly privileged (such as an administrative account), the object can perform powerful
operations no matter who invokes it.

• A stored routine or view that executes in invoker security context can perform only operations for
which the invoker has privileges. The DEFINER attribute has no effect on object execution.

Examples

Consider the following stored procedure, which is declared with SQL SECURITY DEFINER to execute
in definer security context:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p1()
SQL SECURITY DEFINER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;

Any user who has the EXECUTE privilege for p1 can invoke it with a CALL statement. However,
when p1 executes, it does so in definer security context and thus executes with the privileges of
'admin'@'localhost', the account named as its DEFINER attribute. This account must have the
EXECUTE privilege for p1 as well as the UPDATE privilege for the table t1 referenced within the object
body. Otherwise, the procedure fails.

Now consider this stored procedure, which is identical to p1 except that its SQL SECURITY
characteristic is INVOKER:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p2()
SQL SECURITY INVOKER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;

Unlike p1, p2 executes in invoker security context and thus with the privileges of the invoking user
regardless of the DEFINER attribute value. p2 fails if the invoker lacks the EXECUTE privilege for p2 or
the UPDATE privilege for the table t1.

Orphan Stored Objects

An orphan stored object is one for which its DEFINER attribute names a nonexistent account:

• An orphan stored object can be created by specifying a nonexistent DEFINER account at object-
creation time.

• An existing stored object can become orphaned through execution of a DROP USER statement that
drops the object DEFINER account, or a RENAME USER statement that renames the object DEFINER
account.

An orphan stored object may be problematic in these ways:

• Because the DEFINER account does not exist, the object may not work as expected if it executes in
definer security context:

• For a stored routine, an error occurs at routine execution time if the SQL SECURITY value is
DEFINER but the definer account does not exist.

• For a trigger, it is not a good idea for trigger activation to occur until the account actually does
exist. Otherwise, the behavior with respect to privilege checking is undefined.

4990

Orphan Stored Objects

• For an event, an error occurs at event execution time if the account does not exist.

• For a view, an error occurs when the view is referenced if the SQL SECURITY value is DEFINER
but the definer account does not exist.

• The object may present a security risk if the nonexistent DEFINER account is subsequently re-
created for a purpose unrelated to the object. In this case, the account “adopts” the object and, with
the appropriate privileges, is able to execute it even if that is not intended.

As of MySQL 8.0.22, the server imposes additional account-management security checks designed to
prevent operations that (perhaps inadvertently) cause stored objects to become orphaned or that cause
adoption of stored objects that are currently orphaned:

• DROP USER fails with an error if any account to be dropped is named as the DEFINER attribute for
any stored object. (That is, the statement fails if dropping an account would cause a stored object to
become orphaned.)

• RENAME USER fails with an error if any account to be renamed is named as the DEFINER attribute
for any stored object. (That is, the statement fails if renaming an account would cause a stored object
to become orphaned.)

• CREATE USER fails with an error if any account to be created is named as the DEFINER attribute
for any stored object. (That is, the statement fails if creating an account would cause the account to
adopt a currently orphaned stored object.)

In certain situations, it may be necessary to deliberately execute those account-management
statements even when they would otherwise fail. To make this possible, if a user has the
SET_USER_ID privilege, that privilege overrides the orphan object security checks and the statements
succeed with a warning rather than failing with an error.

To obtain information about the accounts used as stored object definers in a MySQL installation, query
the INFORMATION_SCHEMA.

This query identifies which INFORMATION_SCHEMA tables describe objects that have a DEFINER
attribute:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME FROM INFORMATION_SCHEMA.COLUMNS
 WHERE COLUMN_NAME = 'DEFINER';
+--------------------+------------+
| TABLE_SCHEMA | TABLE_NAME |
+--------------------+------------+
information_schema	EVENTS
information_schema	ROUTINES
information_schema	TRIGGERS
information_schema	VIEWS
+--------------------+------------+

The result tells you which tables to query to discover which stored object DEFINER values exist and
which objects have a particular DEFINER value:

• To identify which DEFINER values exist in each table, use these queries:

SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.EVENTS;
SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.ROUTINES;
SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.TRIGGERS;
SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.VIEWS;

The query results are significant for any account displayed as follows:

• If the account exists, dropping or renaming it causes stored objects to become orphaned. If
you plan to drop or rename the account, consider first dropping its associated stored objects or
redefining them to have a different definer.

4991

Risk-Minimization Guidelines

• If the account does not exist, creating it causes it to adopt currently orphaned stored objects. If you
plan to create the account, consider whether the orphaned objects should be associated with it. If
not, redefine them to have a different definer.

To redefine an object with a different definer, you can use ALTER EVENT or ALTER VIEW to directly
modify the DEFINER account of events and views. For stored procedures and functions and for
triggers, you must drop the object and re-create it to assign a different DEFINER account

• To identify which objects have a given DEFINER account, use these queries, substituting the account
of interest for user_name@host_name:

SELECT EVENT_SCHEMA, EVENT_NAME FROM INFORMATION_SCHEMA.EVENTS
WHERE DEFINER = 'user_name@host_name';
SELECT ROUTINE_SCHEMA, ROUTINE_NAME, ROUTINE_TYPE
FROM INFORMATION_SCHEMA.ROUTINES
WHERE DEFINER = 'user_name@host_name';
SELECT TRIGGER_SCHEMA, TRIGGER_NAME FROM INFORMATION_SCHEMA.TRIGGERS
WHERE DEFINER = 'user_name@host_name';
SELECT TABLE_SCHEMA, TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
WHERE DEFINER = 'user_name@host_name';

For the ROUTINES table, the query includes the ROUTINE_TYPE column so that output rows
distinguish whether the DEFINER is for a stored procedure or stored function.

If the account you are searching for does not exist, any objects displayed by those queries are
orphan objects.

Risk-Minimization Guidelines

To minimize the risk potential for stored object creation and use, follow these guidelines:

• Do not create orphan stored objects; that is, objects for which the DEFINER attribute names a
nonexistent account. Do not cause stored objects to become orphaned by dropping or renaming an
account named by the DEFINER attribute of any existing object.

• For a stored routine or view, use SQL SECURITY INVOKER in the object definition when possible so
that it can be used only by users with permissions appropriate for the operations performed by the
object.

• If you create definer-context stored objects while using an account that has the SET_USER_ID
privilege (or the deprecated SUPER privilege), specify an explicit DEFINER attribute that names an
account possessing only the privileges required for the operations performed by the object. Specify a
highly privileged DEFINER account only when absolutely necessary.

• Administrators can prevent users from creating stored objects that specify highly privileged DEFINER
accounts by not granting them the SET_USER_ID privilege (or the deprecated SUPER privilege).

• Definer-context objects should be written keeping in mind that they may be able to access data
for which the invoking user has no privileges. In some cases, you can prevent references to these
objects by not granting unauthorized users particular privileges:

• A stored routine cannot be referenced by a user who does not have the EXECUTE privilege for it.

• A view cannot be referenced by a user who does not have the appropriate privilege for it (SELECT
to select from it, INSERT to insert into it, and so forth).

However, no such control exists for triggers and events because they always execute in definer
context. The server invokes these objects automatically as necessary, and users do not reference
them directly:

• A trigger is activated by access to the table with which it is associated, even ordinary table
accesses by users with no special privileges.

4992

Stored Program Binary Logging

• An event is executed by the server on a scheduled basis.

In both cases, if the DEFINER account is highly privileged, the object may be able to perform
sensitive or dangerous operations. This remains true if the privileges needed to create the object
are revoked from the account of the user who created it. Administrators should be especially careful
about granting users object-creation privileges.

• By default, when a routine with the SQL SECURITY DEFINER characteristic is executed, MySQL
Server does not set any active roles for the MySQL account named in the DEFINER clause, only the
default roles. The exception is if the activate_all_roles_on_login system variable is enabled,
in which case MySQL Server sets all roles granted to the DEFINER user, including mandatory
roles. Any privileges granted through roles are therefore not checked by default when the CREATE
PROCEDURE or CREATE FUNCTION statement is issued. For stored programs, if execution should
occur with roles different from the default, the program body can execute SET ROLE to activate
the required roles. This must be done with caution since the privileges assigned to roles can be
changed.

27.7 Stored Program Binary Logging
The binary log contains information about SQL statements that modify database contents. This
information is stored in the form of “events” that describe the modifications. (Binary log events differ
from scheduled event stored objects.) The binary log has two important purposes:

• For replication, the binary log is used on source replication servers as a record of the statements
to be sent to replica servers. The source sends the events contained in its binary log to its replicas,
which execute those events to make the same data changes that were made on the source. See
Section 19.2, “Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup file has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These
events bring databases up to date from the point of the backup. See Section 9.3.2, “Using Backups
for Recovery”.

However, if logging occurs at the statement level, there are certain binary logging issues with respect to
stored programs (stored procedures and functions, triggers, and events):

• In some cases, a statement might affect different sets of rows on source and replica.

• Replicated statements executed on a replica are processed by the replica's applier thread.
Unless you implement replication privilege checks, which are available from MySQL 8.0.18 (see
Section 19.3.3, “Replication Privilege Checks”), the applier thread has full privileges. In this situation,
it is possible for a procedure to follow different execution paths on source and replica servers, so a
user could write a routine containing a dangerous statement that executes only on the replica.

• If a stored program that modifies data is nondeterministic, it is not repeatable. This can result in
different data on source and replica, or cause restored data to differ from the original data.

This section describes how MySQL handles binary logging for stored programs. It states the current
conditions that the implementation places on the use of stored programs, and what you can do to avoid
logging problems. It also provides additional information about the reasons for these conditions.

Unless noted otherwise, the remarks here assume that binary logging is enabled on the server (see
Section 7.4.4, “The Binary Log”.) If the binary log is not enabled, replication is not possible, nor is the
binary log available for data recovery. From MySQL 8.0, binary logging is enabled by default, and is
only disabled if you specify the --skip-log-bin or --disable-log-bin option at startup.

In general, the issues described here result when binary logging occurs at the SQL statement level
(statement-based binary logging). If you use row-based binary logging, the log contains changes made
to individual rows as a result of executing SQL statements. When routines or triggers execute, row
changes are logged, not the statements that make the changes. For stored procedures, this means

4993

Stored Program Binary Logging

that the CALL statement is not logged. For stored functions, row changes made within the function are
logged, not the function invocation. For triggers, row changes made by the trigger are logged. On the
replica side, only the row changes are seen, not the stored program invocation.

Mixed format binary logging (binlog_format=MIXED) uses statement-based binary logging, except
for cases where only row-based binary logging is guaranteed to lead to proper results. With mixed
format, when a stored function, stored procedure, trigger, event, or prepared statement contains
anything that is not safe for statement-based binary logging, the entire statement is marked as unsafe
and logged in row format. The statements used to create and drop procedures, functions, triggers,
and events are always safe, and are logged in statement format. For more information about row-
based, mixed, and statement-based logging, and how safe and unsafe statements are determined, see
Section 19.2.1, “Replication Formats”.

The conditions on the use of stored functions in MySQL can be summarized as follows. These
conditions do not apply to stored procedures or Event Scheduler events and they do not apply unless
binary logging is enabled.

• To create or alter a stored function, you must have the SET_USER_ID privilege (or the deprecated
SUPER privilege), in addition to the CREATE ROUTINE or ALTER ROUTINE privilege that is normally
required. (Depending on the DEFINER value in the function definition, SET_USER_ID or SUPER
might be required regardless of whether binary logging is enabled. See Section 15.1.17, “CREATE
PROCEDURE and CREATE FUNCTION Statements”.)

• When you create a stored function, you must declare either that it is deterministic or that it does not
modify data. Otherwise, it may be unsafe for data recovery or replication.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

This function is deterministic (and does not modify data), so it is safe:

CREATE FUNCTION f1(i INT)
RETURNS INT
DETERMINISTIC
READS SQL DATA
BEGIN
 RETURN i;
END;

This function uses UUID(), which is not deterministic, so the function also is not deterministic and is
not safe:

CREATE FUNCTION f2()
RETURNS CHAR(36) CHARACTER SET utf8mb4
BEGIN
 RETURN UUID();
END;

This function modifies data, so it may not be safe:

CREATE FUNCTION f3(p_id INT)
RETURNS INT
BEGIN
 UPDATE t SET modtime = NOW() WHERE id = p_id;
 RETURN ROW_COUNT();
END;

Assessment of the nature of a function is based on the “honesty” of the creator. MySQL does not
check that a function declared DETERMINISTIC is free of statements that produce nondeterministic
results.

4994

Stored Program Binary Logging

• When you attempt to execute a stored function, if binlog_format=STATEMENT is set, the
DETERMINISTIC keyword must be specified in the function definition. If this is not the case, an error
is generated and the function does not run, unless log_bin_trust_function_creators=1
is specified to override this check (see below). For recursive function calls, the DETERMINISTIC
keyword is required on the outermost call only. If row-based or mixed binary logging is in use, the
statement is accepted and replicated even if the function was defined without the DETERMINISTIC
keyword.

• Because MySQL does not check if a function really is deterministic at creation time, the invocation
of a stored function with the DETERMINISTIC keyword might carry out an action that is unsafe for
statement-based logging, or invoke a function or procedure containing unsafe statements. If this
occurs when binlog_format=STATEMENT is set, a warning message is issued. If row-based or
mixed binary logging is in use, no warning is issued, and the statement is replicated in row-based
format.

• To relax the preceding conditions on function creation (that you must have the SUPER privilege
and that a function must be declared deterministic or to not modify data), set the global
log_bin_trust_function_creators system variable to 1. By default, this variable has a value
of 0, but you can change it like this:

mysql> SET GLOBAL log_bin_trust_function_creators = 1;

You can also set this variable at server startup.

If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is
not required for function creation unless, as described previously, the DEFINER value in the function
definition requires it.

• For information about built-in functions that may be unsafe for replication (and thus cause stored
functions that use them to be unsafe as well), see Section 19.5.1, “Replication Features and Issues”.

Triggers are similar to stored functions, so the preceding remarks regarding functions also apply to
triggers with the following exception: CREATE TRIGGER does not have an optional DETERMINISTIC
characteristic, so triggers are assumed to be always deterministic. However, this assumption might be
invalid in some cases. For example, the UUID() function is nondeterministic (and does not replicate).
Be careful about using such functions in triggers.

Triggers can update tables, so error messages similar to those for stored functions occur with CREATE
TRIGGER if you do not have the required privileges. On the replica side, the replica uses the trigger
DEFINER attribute to determine which user is considered to be the creator of the trigger.

The rest of this section provides additional detail about the logging implementation and its implications.
You need not read it unless you are interested in the background on the rationale for the current
logging-related conditions on stored routine use. This discussion applies only for statement-based
logging, and not for row-based logging, with the exception of the first item: CREATE and DROP
statements are logged as statements regardless of the logging mode.

• The server writes CREATE EVENT, CREATE PROCEDURE, CREATE FUNCTION, ALTER EVENT,
ALTER PROCEDURE, ALTER FUNCTION, DROP EVENT, DROP PROCEDURE, and DROP FUNCTION
statements to the binary log.

• A stored function invocation is logged as a SELECT statement if the function changes data and
occurs within a statement that would not otherwise be logged. This prevents nonreplication of data
changes that result from use of stored functions in nonlogged statements. For example, SELECT
statements are not written to the binary log, but a SELECT might invoke a stored function that makes
changes. To handle this, a SELECT func_name() statement is written to the binary log when the
given function makes a change. Suppose that the following statements are executed on the source
server:

CREATE FUNCTION f1(a INT) RETURNS INT
BEGIN

4995

Stored Program Binary Logging

 IF (a < 3) THEN
 INSERT INTO t2 VALUES (a);
 END IF;
 RETURN 0;
END;

CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1),(2),(3);

SELECT f1(a) FROM t1;

When the SELECT statement executes, the function f1() is invoked three times. Two of those
invocations insert a row, and MySQL logs a SELECT statement for each of them. That is, MySQL
writes the following statements to the binary log:

SELECT f1(1);
SELECT f1(2);

The server also logs a SELECT statement for a stored function invocation when the function invokes
a stored procedure that causes an error. In this case, the server writes the SELECT statement to the
log along with the expected error code. On the replica, if the same error occurs, that is the expected
result and replication continues. Otherwise, replication stops.

• Logging stored function invocations rather than the statements executed by a function has a security
implication for replication, which arises from two factors:

• It is possible for a function to follow different execution paths on source and replica servers.

• Statements executed on a replica are processed by the replica's applier thread. Unless
you implement replication privilege checks, which are available from MySQL 8.0.18 (see
Section 19.3.3, “Replication Privilege Checks”), the applier thread has full privileges.

The implication is that although a user must have the CREATE ROUTINE privilege to create a
function, the user can write a function containing a dangerous statement that executes only on the
replica where it is processed by a thread that has full privileges. For example, if the source and
replica servers have server ID values of 1 and 2, respectively, a user on the source server could
create and invoke an unsafe function unsafe_func() as follows:

mysql> delimiter //
mysql> CREATE FUNCTION unsafe_func () RETURNS INT
 -> BEGIN
 -> IF @@server_id=2 THEN dangerous_statement; END IF;
 -> RETURN 1;
 -> END;
 -> //
mysql> delimiter ;
mysql> INSERT INTO t VALUES(unsafe_func());

The CREATE FUNCTION and INSERT statements are written to the binary log, so the replica
executes them. Because the replica's applier thread has full privileges, it executes the dangerous
statement. Thus, the function invocation has different effects on the source and replica and is not
replication-safe.

To guard against this danger for servers that have binary logging enabled, stored function creators
must have the SUPER privilege, in addition to the usual CREATE ROUTINE privilege that is required.
Similarly, to use ALTER FUNCTION, you must have the SUPER privilege in addition to the ALTER
ROUTINE privilege. Without the SUPER privilege, an error occurs:

ERROR 1419 (HY000): You do not have the SUPER privilege and
binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

If you do not want to require function creators to have the SUPER privilege (for example, if all users
with the CREATE ROUTINE privilege on your system are experienced application developers), set
the global log_bin_trust_function_creators system variable to 1. You can also set this

4996

Stored Program Binary Logging

variable at server startup. If binary logging is not enabled, log_bin_trust_function_creators
does not apply. SUPER is not required for function creation unless, as described previously, the
DEFINER value in the function definition requires it.

• The use of replication privilege checks where available (from MySQL 8.0.18) is recommended
whatever choice you make about privileges for function creators. Replication privilege checks can
be set up to ensure that only expected and relevant operations are authorized for the replication
channel. For instructions to do this, see Section 19.3.3, “Replication Privilege Checks”.

• If a function that performs updates is nondeterministic, it is not repeatable. This can have two
undesirable effects:

• It causes a replica to differ from the source.

• Restored data does not match the original data.

To deal with these problems, MySQL enforces the following requirement: On a source server,
creation and alteration of a function is refused unless you declare the function to be deterministic or
to not modify data. Two sets of function characteristics apply here:

• The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a function
always produces the same result for given inputs. The default is NOT DETERMINISTIC if
neither characteristic is given. To declare that a function is deterministic, you must specify
DETERMINISTIC explicitly.

• The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA characteristics
provide information about whether the function reads or writes data. Either NO SQL or READS SQL
DATA indicates that a function does not change data, but you must specify one of these explicitly
because the default is CONTAINS SQL if no characteristic is given.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

If you set log_bin_trust_function_creators to 1, the requirement that functions be
deterministic or not modify data is dropped.

• Stored procedure calls are logged at the statement level rather than at the CALL level. That is, the
server does not log the CALL statement, it logs those statements within the procedure that actually
execute. As a result, the same changes that occur on the source server also occur on replicas. This
prevents problems that could result from a procedure having different execution paths on different
machines.

In general, statements executed within a stored procedure are written to the binary log using the
same rules that would apply were the statements to be executed in standalone fashion. Some
special care is taken when logging procedure statements because statement execution within
procedures is not quite the same as in nonprocedure context:

• A statement to be logged might contain references to local procedure variables. These variables
do not exist outside of stored procedure context, so a statement that refers to such a variable
cannot be logged literally. Instead, each reference to a local variable is replaced by this construct
for logging purposes:

NAME_CONST(var_name, var_value)

var_name is the local variable name, and var_value is a constant indicating the value that the
variable has at the time the statement is logged. NAME_CONST() has a value of var_value, and
a “name” of var_name. Thus, if you invoke this function directly, you get a result like this:

4997

Stored Program Binary Logging

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

NAME_CONST() enables a logged standalone statement to be executed on a replica with the same
effect as the original statement that was executed on the source within a stored procedure.

The use of NAME_CONST() can result in a problem for CREATE TABLE ... SELECT statements
when the source column expressions refer to local variables. Converting these references to
NAME_CONST() expressions can result in column names that are different on the source and
replica servers, or names that are too long to be legal column identifiers. A workaround is to supply
aliases for columns that refer to local variables. Consider this statement when myvar has a value
of 1:

CREATE TABLE t1 SELECT myvar;

This is rewritten as follows:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1);

To ensure that the source and replica tables have the same column names, write the statement
like this:

CREATE TABLE t1 SELECT myvar AS myvar;

The rewritten statement becomes:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1) AS myvar;

• A statement to be logged might contain references to user-defined variables. To handle this,
MySQL writes a SET statement to the binary log to make sure that the variable exists on the
replica with the same value as on the source. For example, if a statement refers to a variable
@my_var, that statement is preceded in the binary log by the following statement, where value is
the value of @my_var on the source:

SET @my_var = value;

• Procedure calls can occur within a committed or rolled-back transaction. Transactional context is
accounted for so that the transactional aspects of procedure execution are replicated correctly.
That is, the server logs those statements within the procedure that actually execute and modify
data, and also logs BEGIN, COMMIT, and ROLLBACK statements as necessary. For example, if
a procedure updates only transactional tables and is executed within a transaction that is rolled
back, those updates are not logged. If the procedure occurs within a committed transaction, BEGIN
and COMMIT statements are logged with the updates. For a procedure that executes within a
rolled-back transaction, its statements are logged using the same rules that would apply if the
statements were executed in standalone fashion:

• Updates to transactional tables are not logged.

• Updates to nontransactional tables are logged because rollback does not cancel them.

• Updates to a mix of transactional and nontransactional tables are logged surrounded by BEGIN
and ROLLBACK so that replicas make the same changes and rollbacks as on the source.

• A stored procedure call is not written to the binary log at the statement level if the procedure is
invoked from within a stored function. In that case, the only thing logged is the statement that invokes
the function (if it occurs within a statement that is logged) or a DO statement (if it occurs within a
statement that is not logged). For this reason, care should be exercised in the use of stored functions
that invoke a procedure, even if the procedure is otherwise safe in itself.

4998

Restrictions on Stored Programs

27.8 Restrictions on Stored Programs
• SQL Statements Not Permitted in Stored Routines

• Restrictions for Stored Functions

• Restrictions for Triggers

• Name Conflicts within Stored Routines

• Replication Considerations

• Debugging Considerations

• Unsupported Syntax from the SQL:2003 Standard

• Stored Routine Concurrency Considerations

• Event Scheduler Restrictions

• Stored routines and triggers in NDB Cluster

These restrictions apply to the features described in Chapter 27, Stored Objects.

Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures
and stored functions. There are also some restrictions specific to stored functions but not to stored
procedures.

The restrictions for stored functions also apply to triggers. There are also some restrictions specific to
triggers.

The restrictions for stored procedures also apply to the DO clause of Event Scheduler event definitions.
There are also some restrictions specific to events.

SQL Statements Not Permitted in Stored Routines

Stored routines cannot contain arbitrary SQL statements. The following statements are not permitted:

• The locking statements LOCK TABLES and UNLOCK TABLES.

• ALTER VIEW.

• LOAD DATA and LOAD XML.

• SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE) can be used in stored
procedures, but not in stored functions or triggers. Thus, stored functions and triggers cannot use
dynamic SQL (where you construct statements as strings and then execute them).

• Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. For a list of statements supported as prepared statements, see Section 15.5, “Prepared
Statements”. Exceptions are SIGNAL, RESIGNAL, and GET DIAGNOSTICS, which are not
permissible as prepared statements but are permitted in stored programs.

• Because local variables are in scope only during stored program execution, references to them
are not permitted in prepared statements created within a stored program. Prepared statement
scope is the current session, not the stored program, so the statement could be executed after the
program ends, at which point the variables would no longer be in scope. For example, SELECT ...
INTO local_var cannot be used as a prepared statement. This restriction also applies to stored
procedure and function parameters. See Section 15.5.1, “PREPARE Statement”.

• Within all stored programs (stored procedures and functions, triggers, and events), the parser treats
BEGIN [WORK] as the beginning of a BEGIN ... END block.

To begin a transaction within a stored procedure or event, use START TRANSACTION instead.

4999

Restrictions for Stored Functions

START TRANSACTION cannot be used within a stored function or trigger.

Restrictions for Stored Functions

The following additional statements or operations are not permitted within stored functions. They are
permitted within stored procedures, except stored procedures that are invoked from within a stored
function or trigger. For example, if you use FLUSH in a stored procedure, that stored procedure cannot
be called from a stored function or trigger.

• Statements that perform explicit or implicit commit or rollback. Support for these statements is not
required by the SQL standard, which states that each DBMS vendor may decide whether to permit
them.

• Statements that return a result set. This includes SELECT statements that do not have an INTO
var_list clause and other statements such as SHOW, EXPLAIN, and CHECK TABLE. A function
can process a result set either with SELECT ... INTO var_list or by using a cursor and FETCH
statements. See Section 15.2.13.1, “SELECT ... INTO Statement”, and Section 15.6.6, “Cursors”.

• FLUSH statements.

• Stored functions cannot be used recursively.

• A stored function or trigger cannot modify a table that is already being used (for reading or writing) by
the statement that invoked the function or trigger.

• If you refer to a temporary table multiple times in a stored function under different aliases, a Can't
reopen table: 'tbl_name' error occurs, even if the references occur in different statements
within the function.

• HANDLER ... READ statements that invoke stored functions can cause replication errors and are
disallowed.

Restrictions for Triggers

For triggers, the following additional restrictions apply:

• Triggers are not activated by foreign key actions.

• When using row-based replication, triggers on the replica are not activated by statements originating
on the source. The triggers on the replica are activated when using statement-based replication. For
more information, see Section 19.5.1.36, “Replication and Triggers”.

• The RETURN statement is not permitted in triggers, which cannot return a value. To exit a trigger
immediately, use the LEAVE statement.

• Triggers are not permitted on tables in the mysql database. Nor are they permitted on
INFORMATION_SCHEMA or performance_schema tables. Those tables are actually views and
triggers are not permitted on views.

• The trigger cache does not detect when metadata of the underlying objects has changed. If a trigger
uses a table and the table has changed since the trigger was loaded into the cache, the trigger
operates using the outdated metadata.

Name Conflicts within Stored Routines

The same identifier might be used for a routine parameter, a local variable, and a table column. Also,
the same local variable name can be used in nested blocks. For example:

CREATE PROCEDURE p (i INT)
BEGIN
 DECLARE i INT DEFAULT 0;
 SELECT i FROM t;

5000

Replication Considerations

 BEGIN
 DECLARE i INT DEFAULT 1;
 SELECT i FROM t;
 END;
END;

In such cases, the identifier is ambiguous and the following precedence rules apply:

• A local variable takes precedence over a routine parameter or table column.

• A routine parameter takes precedence over a table column.

• A local variable in an inner block takes precedence over a local variable in an outer block.

The behavior that variables take precedence over table columns is nonstandard.

Replication Considerations

Use of stored routines can cause replication problems. This issue is discussed further in Section 27.7,
“Stored Program Binary Logging”.

The --replicate-wild-do-table=db_name.tbl_name option applies to tables, views, and
triggers. It does not apply to stored procedures and functions, or events. To filter statements operating
on the latter objects, use one or more of the --replicate-*-db options.

Debugging Considerations

There are no stored routine debugging facilities.

Unsupported Syntax from the SQL:2003 Standard

The MySQL stored routine syntax is based on the SQL:2003 standard. The following items from that
standard are not currently supported:

• UNDO handlers

• FOR loops

Stored Routine Concurrency Considerations

To prevent problems of interaction between sessions, when a client issues a statement, the server
uses a snapshot of routines and triggers available for execution of the statement. That is, the server
calculates a list of procedures, functions, and triggers that may be used during execution of the
statement, loads them, and then proceeds to execute the statement. While the statement executes, it
does not see changes to routines performed by other sessions.

For maximum concurrency, stored functions should minimize their side-effects; in particular, updating
a table within a stored function can reduce concurrent operations on that table. A stored function
acquires table locks before executing, to avoid inconsistency in the binary log due to mismatch of the
order in which statements execute and when they appear in the log. When statement-based binary
logging is used, statements that invoke a function are recorded rather than the statements executed
within the function. Consequently, stored functions that update the same underlying tables do not
execute in parallel. In contrast, stored procedures do not acquire table-level locks. All statements
executed within stored procedures are written to the binary log, even for statement-based binary
logging. See Section 27.7, “Stored Program Binary Logging”.

Event Scheduler Restrictions

The following limitations are specific to the Event Scheduler:

• Event names are handled in case-insensitive fashion. For example, you cannot have two events in
the same database with the names anEvent and AnEvent.

5001

Stored routines and triggers in NDB Cluster

• An event may not be created from within a stored program. An event may not be altered, or dropped
from within a stored program, if the event name is specified by means of a variable. An event also
may not create, alter, or drop stored routines or triggers.

• DDL statements on events are prohibited while a LOCK TABLES statement is in effect.

• Event timings using the intervals YEAR, QUARTER, MONTH, and YEAR_MONTH are resolved in months;
those using any other interval are resolved in seconds. There is no way to cause events scheduled
to occur at the same second to execute in a given order. In addition—due to rounding, the nature of
threaded applications, and the fact that a nonzero length of time is required to create events and to
signal their execution—events may be delayed by as much as 1 or 2 seconds. However, the time
shown in the Information Schema EVENTS table's LAST_EXECUTED column is always accurate to
within one second of the actual event execution time. (See also Bug #16522.)

• Each execution of the statements contained in the body of an event takes place in a new connection;
thus, these statements have no effect in a given user session on the server's statement counts such
as Com_select and Com_insert that are displayed by SHOW STATUS. However, such counts are
updated in the global scope. (Bug #16422)

• Events do not support times later than the end of the Unix Epoch; this is approximately the beginning
of the year 2038. Such dates are specifically not permitted by the Event Scheduler. (Bug #16396)

• References to stored functions, loadable functions, and tables in the ON SCHEDULE clauses of
CREATE EVENT and ALTER EVENT statements are not supported. These sorts of references are not
permitted. (See Bug #22830 for more information.)

Stored routines and triggers in NDB Cluster

While stored procedures, stored functions, triggers, and scheduled events are all supported by tables
using the NDB storage engine, you must keep in mind that these do not propagate automatically
between MySQL Servers acting as Cluster SQL nodes. This is because stored routine and trigger
definitions are stored in tables in the mysql system database using InnoDB tables, which are not
copied between Cluster nodes.

Any stored routine or trigger that interacts with MySQL Cluster tables must be re-created by running
the appropriate CREATE PROCEDURE, CREATE FUNCTION, or CREATE TRIGGER statements on
each MySQL Server that participates in the cluster where you wish to use the stored routine or trigger.
Similarly, any changes to existing stored routines or triggers must be carried out explicitly on all Cluster
SQL nodes, using the appropriate ALTER or DROP statements on each MySQL Server accessing the
cluster.

Warning

Do not attempt to work around the issue just described by converting any
mysql database tables to use the NDB storage engine. Altering the system
tables in the mysql database is not supported and is very likely to produce
undesirable results.

27.9 Restrictions on Views

The maximum number of tables that can be referenced in the definition of a view is 61.

View processing is not optimized:

• It is not possible to create an index on a view.

• Indexes can be used for views processed using the merge algorithm. However, a view that is
processed with the temptable algorithm is unable to take advantage of indexes on its underlying
tables (although indexes can be used during generation of the temporary tables).

5002

Restrictions on Views

There is a general principle that you cannot modify a table and select from the same table in a
subquery. See Section 15.2.15.12, “Restrictions on Subqueries”.

The same principle also applies if you select from a view that selects from the table, if the view selects
from the table in a subquery and the view is evaluated using the merge algorithm. Example:

CREATE VIEW v1 AS
SELECT * FROM t2 WHERE EXISTS (SELECT 1 FROM t1 WHERE t1.a = t2.a);

UPDATE t1, v2 SET t1.a = 1 WHERE t1.b = v2.b;

If the view is evaluated using a temporary table, you can select from the table in the view subquery
and still modify that table in the outer query. In this case, the view is stored in a temporary table
and thus you are not really selecting from the table in a subquery and modifying it at the same time.
(This is another reason you might wish to force MySQL to use the temptable algorithm by specifying
ALGORITHM = TEMPTABLE in the view definition.)

You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition.
No warning results from the DROP or ALTER operation, even though this invalidates the view. Instead,
an error occurs later, when the view is used. CHECK TABLE can be used to check for views that have
been invalidated by DROP or ALTER operations.

With regard to view updatability, the overall goal for views is that if any view is theoretically updatable,
it should be updatable in practice. Many theoretically updatable views can be updated now, but
limitations still exist. For details, see Section 27.5.3, “Updatable and Insertable Views”.

There exists a shortcoming with the current implementation of views. If a user is granted the basic
privileges necessary to create a view (the CREATE VIEW and SELECT privileges), that user cannot call
SHOW CREATE VIEW on that object unless the user is also granted the SHOW VIEW privilege.

That shortcoming can lead to problems backing up a database with mysqldump, which may fail due to
insufficient privileges. This problem is described in Bug #22062.

The workaround to the problem is for the administrator to manually grant the SHOW VIEW privilege to
users who are granted CREATE VIEW, since MySQL doesn't grant it implicitly when views are created.

Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view
is not permitted.

SHOW CREATE VIEW displays view definitions using an AS alias_name clause for each column. If a
column is created from an expression, the default alias is the expression text, which can be quite long.
Aliases for column names in CREATE VIEW statements are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters). As a result, views created
from the output of SHOW CREATE VIEW fail if any column alias exceeds 64 characters. This can cause
problems in the following circumstances for views with too-long aliases:

• View definitions fail to replicate to newer replicas that enforce the column-length restriction.

• Dump files created with mysqldump cannot be loaded into servers that enforce the column-length
restriction.

A workaround for either problem is to modify each problematic view definition to use aliases that
provide shorter column names. Then the view replicates properly, and can be dumped and reloaded
without causing an error. To modify the definition, drop and create the view again with DROP VIEW and
CREATE VIEW, or replace the definition with CREATE OR REPLACE VIEW.

For problems that occur when reloading view definitions in dump files, another workaround is to edit
the dump file to modify its CREATE VIEW statements. However, this does not change the original view
definitions, which may cause problems for subsequent dump operations.

5003

5004

Chapter 28 INFORMATION_SCHEMA Tables

Table of Contents
28.1 Introduction ... 5006
28.2 INFORMATION_SCHEMA Table Reference ... 5009
28.3 INFORMATION_SCHEMA General Tables ... 5014

28.3.1 INFORMATION_SCHEMA General Table Reference .. 5014
28.3.2 The INFORMATION_SCHEMA ADMINISTRABLE_ROLE_AUTHORIZATIONS Table 5016
28.3.3 The INFORMATION_SCHEMA APPLICABLE_ROLES Table 5017
28.3.4 The INFORMATION_SCHEMA CHARACTER_SETS Table 5017
28.3.5 The INFORMATION_SCHEMA CHECK_CONSTRAINTS Table 5018
28.3.6 The INFORMATION_SCHEMA COLLATIONS Table .. 5018
28.3.7 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table .. 5019
28.3.8 The INFORMATION_SCHEMA COLUMNS Table ... 5019
28.3.9 The INFORMATION_SCHEMA COLUMNS_EXTENSIONS Table 5022
28.3.10 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table 5023
28.3.11 The INFORMATION_SCHEMA COLUMN_STATISTICS Table 5023
28.3.12 The INFORMATION_SCHEMA ENABLED_ROLES Table 5024
28.3.13 The INFORMATION_SCHEMA ENGINES Table .. 5024
28.3.14 The INFORMATION_SCHEMA EVENTS Table .. 5025
28.3.15 The INFORMATION_SCHEMA FILES Table .. 5029
28.3.16 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 5036
28.3.17 The INFORMATION_SCHEMA KEYWORDS Table .. 5037
28.3.18 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table 5038
28.3.19 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table 5039
28.3.20 The INFORMATION_SCHEMA PARAMETERS Table ... 5040
28.3.21 The INFORMATION_SCHEMA PARTITIONS Table .. 5041
28.3.22 The INFORMATION_SCHEMA PLUGINS Table ... 5044
28.3.23 The INFORMATION_SCHEMA PROCESSLIST Table .. 5045
28.3.24 The INFORMATION_SCHEMA PROFILING Table .. 5047
28.3.25 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 5048
28.3.26 The INFORMATION_SCHEMA RESOURCE_GROUPS Table 5049
28.3.27 The INFORMATION_SCHEMA ROLE_COLUMN_GRANTS Table 5049
28.3.28 The INFORMATION_SCHEMA ROLE_ROUTINE_GRANTS Table 5050
28.3.29 The INFORMATION_SCHEMA ROLE_TABLE_GRANTS Table 5051
28.3.30 The INFORMATION_SCHEMA ROUTINES Table .. 5052
28.3.31 The INFORMATION_SCHEMA SCHEMATA Table ... 5054
28.3.32 The INFORMATION_SCHEMA SCHEMATA_EXTENSIONS Table 5055
28.3.33 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 5056
28.3.34 The INFORMATION_SCHEMA STATISTICS Table .. 5056
28.3.35 The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table 5059
28.3.36 The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS Table 5059
28.3.37 The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table 5061
28.3.38 The INFORMATION_SCHEMA TABLES Table ... 5061
28.3.39 The INFORMATION_SCHEMA TABLES_EXTENSIONS Table 5065
28.3.40 The INFORMATION_SCHEMA TABLESPACES Table .. 5065
28.3.41 The INFORMATION_SCHEMA TABLESPACES_EXTENSIONS Table 5066
28.3.42 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 5066
28.3.43 The INFORMATION_SCHEMA TABLE_CONSTRAINTS_EXTENSIONS Table 5067
28.3.44 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table 5067
28.3.45 The INFORMATION_SCHEMA TRIGGERS Table .. 5068
28.3.46 The INFORMATION_SCHEMA USER_ATTRIBUTES Table 5070
28.3.47 The INFORMATION_SCHEMA USER_PRIVILEGES Table 5071
28.3.48 The INFORMATION_SCHEMA VIEWS Table ... 5071

5005

Introduction

28.3.49 The INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Table 5073
28.3.50 The INFORMATION_SCHEMA VIEW_TABLE_USAGE Table 5073

28.4 INFORMATION_SCHEMA InnoDB Tables .. 5074
28.4.1 INFORMATION_SCHEMA InnoDB Table Reference ... 5074
28.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table 5075
28.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 5079
28.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 5082
28.4.5 The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table 5085
28.4.6 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables .. 5086
28.4.7 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables .. 5087
28.4.8 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables ... 5089
28.4.9 The INFORMATION_SCHEMA INNODB_COLUMNS Table 5090
28.4.10 The INFORMATION_SCHEMA INNODB_DATAFILES Table 5092
28.4.11 The INFORMATION_SCHEMA INNODB_FIELDS Table 5092
28.4.12 The INFORMATION_SCHEMA INNODB_FOREIGN Table 5093
28.4.13 The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table 5094
28.4.14 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 5094
28.4.15 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table 5095
28.4.16 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table 5096
28.4.17 The INFORMATION_SCHEMA INNODB_FT_DELETED Table 5097
28.4.18 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 5098
28.4.19 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 5099
28.4.20 The INFORMATION_SCHEMA INNODB_INDEXES Table 5101
28.4.21 The INFORMATION_SCHEMA INNODB_METRICS Table 5102
28.4.22 The INFORMATION_SCHEMA INNODB_SESSION_TEMP_TABLESPACES Table 5104
28.4.23 The INFORMATION_SCHEMA INNODB_TABLES Table 5105
28.4.24 The INFORMATION_SCHEMA INNODB_TABLESPACES Table 5106
28.4.25 The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table 5109
28.4.26 The INFORMATION_SCHEMA INNODB_TABLESTATS View 5109
28.4.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table 5111
28.4.28 The INFORMATION_SCHEMA INNODB_TRX Table .. 5112
28.4.29 The INFORMATION_SCHEMA INNODB_VIRTUAL Table 5114

28.5 INFORMATION_SCHEMA Thread Pool Tables ... 5116
28.5.1 INFORMATION_SCHEMA Thread Pool Table Reference .. 5116
28.5.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table 5116
28.5.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table 5117
28.5.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table 5117

28.6 INFORMATION_SCHEMA Connection Control Tables ... 5118
28.6.1 INFORMATION_SCHEMA Connection Control Table Reference 5118
28.6.2 The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table 5118

28.7 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables ... 5118
28.7.1 INFORMATION_SCHEMA Firewall Table Reference .. 5118
28.7.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table 5119
28.7.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table 5119

28.8 Extensions to SHOW Statements ... 5119

INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server
such as the name of a database or table, the data type of a column, or access privileges. Other terms
that are sometimes used for this information are data dictionary and system catalog.

28.1 Introduction
INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server
such as the name of a database or table, the data type of a column, or access privileges. Other terms
that are sometimes used for this information are data dictionary and system catalog.

5006

INFORMATION_SCHEMA Usage Notes

• INFORMATION_SCHEMA Usage Notes

• Character Set Considerations

• INFORMATION_SCHEMA as Alternative to SHOW Statements

• INFORMATION_SCHEMA and Privileges

• Performance Considerations

• Standards Considerations

• Conventions in the INFORMATION_SCHEMA Reference Sections

• Related Information

INFORMATION_SCHEMA Usage Notes

INFORMATION_SCHEMA is a database within each MySQL instance, the place that stores information
about all the other databases that the MySQL server maintains. The INFORMATION_SCHEMA database
contains several read-only tables. They are actually views, not base tables, so there are no files
associated with them, and you cannot set triggers on them. Also, there is no database directory with
that name.

Although you can select INFORMATION_SCHEMA as the default database with a USE statement, you
can only read the contents of tables, not perform INSERT, UPDATE, or DELETE operations on them.

Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine
 FROM information_schema.tables
 WHERE table_schema = 'db5'
 ORDER BY table_name;
+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
fk	BASE TABLE	InnoDB
fk2	BASE TABLE	InnoDB
goto	BASE TABLE	MyISAM
into	BASE TABLE	MyISAM
k	BASE TABLE	MyISAM
kurs	BASE TABLE	MyISAM
loop	BASE TABLE	MyISAM
pk	BASE TABLE	InnoDB
t	BASE TABLE	MyISAM
t2	BASE TABLE	MyISAM
t3	BASE TABLE	MyISAM
t7	BASE TABLE	MyISAM
tables	BASE TABLE	MyISAM
v	VIEW	NULL
v2	VIEW	NULL
v3	VIEW	NULL
v56	VIEW	NULL
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, showing just three pieces
of information: the name of the table, its type, and its storage engine.

Beginning with MySQL 8.0.30, information about generated invisible primary keys is visible
by default in all INFORMATION_SCHEMA tables describing table columns, keys, or both,
such as the COLUMNS and STATISTICS tables. If you wish to make such information
hidden from queries that select from these tables, you can do so by setting the value of the
show_gipk_in_create_table_and_information_schema server system variable to OFF. For
more information, see Section 15.1.20.11, “Generated Invisible Primary Keys”.

5007

Character Set Considerations

Character Set Considerations

The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N)
CHARACTER SET utf8mb3 where N is at least 64. MySQL uses the default collation for this character
set (utf8mb3_general_ci) for all searches, sorts, comparisons, and other string operations on such
columns.

Because some MySQL objects are represented as files, searches in INFORMATION_SCHEMA string
columns can be affected by file system case sensitivity. For more information, see Section 12.8.7,
“Using Collation in INFORMATION_SCHEMA Searches”.

INFORMATION_SCHEMA as Alternative to SHOW Statements

The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way
to provide access to the information provided by the various SHOW statements that MySQL supports
(SHOW DATABASES, SHOW TABLES, and so forth). Using SELECT has these advantages, compared to
SHOW:

• It conforms to Codd's rules, because all access is done on tables.

• You can use the familiar syntax of the SELECT statement, and only need to learn some table and
column names.

• The implementor need not worry about adding keywords.

• You can filter, sort, concatenate, and transform the results from INFORMATION_SCHEMA queries into
whatever format your application needs, such as a data structure or a text representation to parse.

• This technique is more interoperable with other database systems. For example, Oracle Database
users are familiar with querying tables in the Oracle data dictionary.

Because SHOW is familiar and widely used, the SHOW statements remain as an alternative. In fact, along
with the implementation of INFORMATION_SCHEMA, there are enhancements to SHOW as described in
Section 28.8, “Extensions to SHOW Statements”.

INFORMATION_SCHEMA and Privileges

For most INFORMATION_SCHEMA tables, each MySQL user has the right to access them, but
can see only the rows in the tables that correspond to objects for which the user has the proper
access privileges. In some cases (for example, the ROUTINE_DEFINITION column in the
INFORMATION_SCHEMA ROUTINES table), users who have insufficient privileges see NULL. Some
tables have different privilege requirements; for these, the requirements are mentioned in the
applicable table descriptions. For example, InnoDB tables (tables with names that begin with
INNODB_) require the PROCESS privilege.

The same privileges apply to selecting information from INFORMATION_SCHEMA and viewing the same
information through SHOW statements. In either case, you must have some privilege on an object to see
information about it.

Performance Considerations

INFORMATION_SCHEMA queries that search for information from more than one database might take
a long time and impact performance. To check the efficiency of a query, you can use EXPLAIN. For
information about using EXPLAIN output to tune INFORMATION_SCHEMA queries, see Section 10.2.3,
“Optimizing INFORMATION_SCHEMA Queries”.

Standards Considerations

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/ISO
SQL:2003 standard Part 11 Schemata. Our intent is approximate compliance with SQL:2003 core
feature F021 Basic information schema.

5008

Conventions in the INFORMATION_SCHEMA Reference Sections

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity.
However, MySQL has omitted many columns that are not relevant for our implementation, and
added columns that are MySQL-specific. One such added column is the ENGINE column in the
INFORMATION_SCHEMA TABLES table.

Although other DBMSs use a variety of names, like syscat or system, the standard name is
INFORMATION_SCHEMA.

To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we
changed the names of some columns marked “MySQL extension”. (For example, we changed
COLLATION to TABLE_COLLATION in the TABLES table.) See the list of reserved words near the
end of this article: https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-
disarticles/gulutzan5.

Conventions in the INFORMATION_SCHEMA Reference Sections

The following sections describe each of the tables and columns in INFORMATION_SCHEMA. For each
column, there are three pieces of information:

• “INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMATION_SCHEMA
table. This corresponds to the standard SQL name unless the “Remarks” field says “MySQL
extension.”

• “SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.

• “Remarks” provides additional information where applicable. If this field is NULL, it means that the
value of the column is always NULL. If this field says “MySQL extension,” the column is a MySQL
extension to standard SQL.

Many sections indicate what SHOW statement is equivalent to a SELECT that retrieves information from
INFORMATION_SCHEMA. For SHOW statements that display information for the default database if you
omit a FROM db_name clause, you can often select information for the default database by adding an
AND TABLE_SCHEMA = SCHEMA() condition to the WHERE clause of a query that retrieves information
from an INFORMATION_SCHEMA table.

Related Information

These sections discuss additional INFORMATION_SCHEMA-related topics:

• information about INFORMATION_SCHEMA tables specific to the InnoDB storage engine:
Section 28.4, “INFORMATION_SCHEMA InnoDB Tables”

• information about INFORMATION_SCHEMA tables specific to the thread pool plugin: Section 28.5,
“INFORMATION_SCHEMA Thread Pool Tables”

• information about INFORMATION_SCHEMA tables specific to the CONNECTION_CONTROL plugin:
Section 28.6, “INFORMATION_SCHEMA Connection Control Tables”

• Answers to questions that are often asked concerning the INFORMATION_SCHEMA database:
Section A.7, “MySQL 8.0 FAQ: INFORMATION_SCHEMA”

• INFORMATION_SCHEMA queries and the optimizer: Section 10.2.3, “Optimizing
INFORMATION_SCHEMA Queries”

• The effect of collation on INFORMATION_SCHEMA comparisons: Section 12.8.7, “Using Collation in
INFORMATION_SCHEMA Searches”

28.2 INFORMATION_SCHEMA Table Reference
The following table summarizes all available INFORMATION_SCHEMA tables. For greater detail, see the
individual table descriptions.

5009

https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5
https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5

INFORMATION_SCHEMA Table Reference

Table 28.1 INFORMATION_SCHEMA Tables

Table Name Description Introduced Deprecated

ADMINISTRABLE_ROLE_AUTHORIZATIONSGrantable users or roles
for current user or role

8.0.19

APPLICABLE_ROLES Applicable roles for
current user

8.0.19

CHARACTER_SETS Available character sets

CHECK_CONSTRAINTS Table and column
CHECK constraints

8.0.16

COLLATION_CHARACTER_SET_APPLICABILITYCharacter set applicable
to each collation

COLLATIONS Collations for each
character set

COLUMN_PRIVILEGES Privileges defined on
columns

COLUMN_STATISTICS Histogram statistics for
column values

COLUMNS Columns in each table

COLUMNS_EXTENSIONS Column attributes for
primary and secondary
storage engines

8.0.21

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTSCurrent number of
consecutive failed
connection attempts per
account

ENABLED_ROLES Roles enabled within
current session

8.0.19

ENGINES Storage engine
properties

EVENTS Event Manager events

FILES Files that store
tablespace data

INNODB_BUFFER_PAGE Pages in InnoDB buffer
pool

INNODB_BUFFER_PAGE_LRULRU ordering of pages
in InnoDB buffer pool

INNODB_BUFFER_POOL_STATSInnoDB buffer pool
statistics

INNODB_CACHED_INDEXESNumber of index pages
cached per index in
InnoDB buffer pool

INNODB_CMP Status for operations
related to compressed
InnoDB tables

INNODB_CMP_PER_INDEXStatus for operations
related to compressed
InnoDB tables and
indexes

5010

INFORMATION_SCHEMA Table Reference

Table Name Description Introduced Deprecated

INNODB_CMP_PER_INDEX_RESETStatus for operations
related to compressed
InnoDB tables and
indexes

INNODB_CMP_RESET Status for operations
related to compressed
InnoDB tables

INNODB_CMPMEM Status for compressed
pages within InnoDB
buffer pool

INNODB_CMPMEM_RESETStatus for compressed
pages within InnoDB
buffer pool

INNODB_COLUMNS Columns in each
InnoDB table

INNODB_DATAFILES Data file path
information for InnoDB
file-per-table and
general tablespaces

INNODB_FIELDS Key columns of InnoDB
indexes

INNODB_FOREIGN InnoDB foreign-key
metadata

INNODB_FOREIGN_COLSInnoDB foreign-
key column status
information

INNODB_FT_BEING_DELETEDSnapshot of
INNODB_FT_DELETED
table

INNODB_FT_CONFIG Metadata for InnoDB
table FULLTEXT
index and associated
processing

INNODB_FT_DEFAULT_STOPWORDDefault list of stopwords
for InnoDB FULLTEXT
indexes

INNODB_FT_DELETED Rows deleted
from InnoDB table
FULLTEXT index

INNODB_FT_INDEX_CACHEToken information for
newly inserted rows
in InnoDB FULLTEXT
index

INNODB_FT_INDEX_TABLEInverted index
information for
processing text
searches against
InnoDB table
FULLTEXT index

INNODB_INDEXES InnoDB index metadata

5011

INFORMATION_SCHEMA Table Reference

Table Name Description Introduced Deprecated

INNODB_METRICS InnoDB performance
information

INNODB_SESSION_TEMP_TABLESPACESSession temporary-
tablespace metadata

8.0.13

INNODB_TABLES InnoDB table metadata

INNODB_TABLESPACES InnoDB file-per-table,
general, and undo
tablespace metadata

INNODB_TABLESPACES_BRIEFBrief file-per-table,
general, undo, and
system tablespace
metadata

INNODB_TABLESTATS InnoDB table low-level
status information

INNODB_TEMP_TABLE_INFOInformation about active
user-created InnoDB
temporary tables

INNODB_TRX Active InnoDB
transaction information

INNODB_VIRTUAL InnoDB virtual
generated column
metadata

KEY_COLUMN_USAGE Which key columns
have constraints

KEYWORDS MySQL keywords

MYSQL_FIREWALL_USERSFirewall in-memory data
for account profiles

8.0.26

MYSQL_FIREWALL_WHITELISTFirewall in-memory
data for account profile
allowlists

8.0.26

ndb_transid_mysql_connection_mapNDB transaction
information

OPTIMIZER_TRACE Information produced by
optimizer trace activity

PARAMETERS Stored routine
parameters and stored
function return values

PARTITIONS Table partition
information

PLUGINS Plugin information

PROCESSLIST Information about
currently executing
threads

PROFILING Statement profiling
information

REFERENTIAL_CONSTRAINTSForeign key information

RESOURCE_GROUPS Resource group
information

5012

INFORMATION_SCHEMA Table Reference

Table Name Description Introduced Deprecated

ROLE_COLUMN_GRANTS Column privileges for
roles available to or
granted by currently
enabled roles

8.0.19

ROLE_ROUTINE_GRANTSRoutine privileges for
roles available to or
granted by currently
enabled roles

8.0.19

ROLE_TABLE_GRANTS Table privileges for roles
available to or granted
by currently enabled
roles

8.0.19

ROUTINES Stored routine
information

SCHEMA_PRIVILEGES Privileges defined on
schemas

SCHEMATA Schema information

SCHEMATA_EXTENSIONSSchema options 8.0.22

ST_GEOMETRY_COLUMNSColumns in each table
that store spatial data

ST_SPATIAL_REFERENCE_SYSTEMSAvailable spatial
reference systems

ST_UNITS_OF_MEASUREAcceptable units for
ST_Distance()

8.0.14

STATISTICS Table index statistics

TABLE_CONSTRAINTS Which tables have
constraints

TABLE_CONSTRAINTS_EXTENSIONSTable constraint
attributes for primary
and secondary storage
engines

8.0.21

TABLE_PRIVILEGES Privileges defined on
tables

TABLES Table information

TABLES_EXTENSIONS Table attributes for
primary and secondary
storage engines

8.0.21

TABLESPACES Tablespace information 8.0.22

TABLESPACES_EXTENSIONSTablespace attributes
for primary storage
engines

8.0.21

TP_THREAD_GROUP_STATEThread pool thread
group states

TP_THREAD_GROUP_STATSThread pool thread
group statistics

TP_THREAD_STATE Thread pool thread
information

TRIGGERS Trigger information

5013

INFORMATION_SCHEMA General Tables

Table Name Description Introduced Deprecated

USER_ATTRIBUTES User comments and
attributes

8.0.21

USER_PRIVILEGES Privileges defined
globally per user

VIEW_ROUTINE_USAGE Stored functions used in
views

8.0.13

VIEW_TABLE_USAGE Tables and views used
in views

8.0.13

VIEWS View information

28.3 INFORMATION_SCHEMA General Tables

The following sections describe what may be denoted as the “general” set of INFORMATION_SCHEMA
tables. These are the tables not associated with particular storage engines, components, or plugins.

28.3.1 INFORMATION_SCHEMA General Table Reference

The following table summarizes INFORMATION_SCHEMA general tables. For greater detail, see the
individual table descriptions.

Table 28.2 INFORMATION_SCHEMA General Tables

Table Name Description Introduced Deprecated

ADMINISTRABLE_ROLE_AUTHORIZATIONSGrantable users or roles
for current user or role

8.0.19

APPLICABLE_ROLES Applicable roles for
current user

8.0.19

CHARACTER_SETS Available character sets

CHECK_CONSTRAINTS Table and column
CHECK constraints

8.0.16

COLLATION_CHARACTER_SET_APPLICABILITYCharacter set applicable
to each collation

COLLATIONS Collations for each
character set

COLUMN_PRIVILEGES Privileges defined on
columns

COLUMN_STATISTICS Histogram statistics for
column values

COLUMNS Columns in each table

COLUMNS_EXTENSIONS Column attributes for
primary and secondary
storage engines

8.0.21

ENABLED_ROLES Roles enabled within
current session

8.0.19

ENGINES Storage engine
properties

EVENTS Event Manager events

FILES Files that store
tablespace data

5014

INFORMATION_SCHEMA General Table Reference

Table Name Description Introduced Deprecated

KEY_COLUMN_USAGE Which key columns
have constraints

KEYWORDS MySQL keywords

ndb_transid_mysql_connection_mapNDB transaction
information

OPTIMIZER_TRACE Information produced by
optimizer trace activity

PARAMETERS Stored routine
parameters and stored
function return values

PARTITIONS Table partition
information

PLUGINS Plugin information

PROCESSLIST Information about
currently executing
threads

PROFILING Statement profiling
information

REFERENTIAL_CONSTRAINTSForeign key information

RESOURCE_GROUPS Resource group
information

ROLE_COLUMN_GRANTS Column privileges for
roles available to or
granted by currently
enabled roles

8.0.19

ROLE_ROUTINE_GRANTSRoutine privileges for
roles available to or
granted by currently
enabled roles

8.0.19

ROLE_TABLE_GRANTS Table privileges for roles
available to or granted
by currently enabled
roles

8.0.19

ROUTINES Stored routine
information

SCHEMA_PRIVILEGES Privileges defined on
schemas

SCHEMATA Schema information

SCHEMATA_EXTENSIONSSchema options 8.0.22

ST_GEOMETRY_COLUMNSColumns in each table
that store spatial data

ST_SPATIAL_REFERENCE_SYSTEMSAvailable spatial
reference systems

ST_UNITS_OF_MEASUREAcceptable units for
ST_Distance()

8.0.14

STATISTICS Table index statistics

TABLE_CONSTRAINTS Which tables have
constraints

5015

The INFORMATION_SCHEMA ADMINISTRABLE_ROLE_AUTHORIZATIONS Table

Table Name Description Introduced Deprecated

TABLE_CONSTRAINTS_EXTENSIONSTable constraint
attributes for primary
and secondary storage
engines

8.0.21

TABLE_PRIVILEGES Privileges defined on
tables

TABLES Table information

TABLES_EXTENSIONS Table attributes for
primary and secondary
storage engines

8.0.21

TABLESPACES Tablespace information 8.0.22

TABLESPACES_EXTENSIONSTablespace attributes
for primary storage
engines

8.0.21

TRIGGERS Trigger information

USER_ATTRIBUTES User comments and
attributes

8.0.21

USER_PRIVILEGES Privileges defined
globally per user

VIEW_ROUTINE_USAGE Stored functions used in
views

8.0.13

VIEW_TABLE_USAGE Tables and views used
in views

8.0.13

VIEWS View information

28.3.2 The INFORMATION_SCHEMA
ADMINISTRABLE_ROLE_AUTHORIZATIONS Table

The ADMINISTRABLE_ROLE_AUTHORIZATIONS table (available as of MySQL 8.0.19) provides
information about which roles applicable for the current user or role can be granted to other users or
roles.

The ADMINISTRABLE_ROLE_AUTHORIZATIONS table has these columns:

• USER

The user name part of the current user account.

• HOST

The host name part of the current user account.

• GRANTEE

The user name part of the account to which the role is granted.

• GRANTEE_HOST

The host name part of the account to which the role is granted.

• ROLE_NAME

The user name part of the granted role.

• ROLE_HOST

5016

The INFORMATION_SCHEMA APPLICABLE_ROLES Table

The host name part of the granted role.

• IS_GRANTABLE

YES or NO, depending on whether the role is grantable to other accounts.

• IS_DEFAULT

YES or NO, depending on whether the role is a default role.

• IS_MANDATORY

YES or NO, depending on whether the role is mandatory.

28.3.3 The INFORMATION_SCHEMA APPLICABLE_ROLES Table

The APPLICABLE_ROLES table (available as of MySQL 8.0.19) provides information about the roles
that are applicable for the current user.

The APPLICABLE_ROLES table has these columns:

• USER

The user name part of the current user account.

• HOST

The host name part of the current user account.

• GRANTEE

The user name part of the account to which the role is granted.

• GRANTEE_HOST

The host name part of the account to which the role is granted.

• ROLE_NAME

The user name part of the granted role.

• ROLE_HOST

The host name part of the granted role.

• IS_GRANTABLE

YES or NO, depending on whether the role is grantable to other accounts.

• IS_DEFAULT

YES or NO, depending on whether the role is a default role.

• IS_MANDATORY

YES or NO, depending on whether the role is mandatory.

28.3.4 The INFORMATION_SCHEMA CHARACTER_SETS Table

The CHARACTER_SETS table provides information about available character sets.

The CHARACTER_SETS table has these columns:

5017

The INFORMATION_SCHEMA CHECK_CONSTRAINTS Table

• CHARACTER_SET_NAME

The character set name.

• DEFAULT_COLLATE_NAME

The default collation for the character set.

• DESCRIPTION

A description of the character set.

• MAXLEN

The maximum number of bytes required to store one character.

Notes

Character set information is also available from the SHOW CHARACTER SET statement. See
Section 15.7.7.3, “SHOW CHARACTER SET Statement”. The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 [WHERE CHARACTER_SET_NAME LIKE 'wild']

SHOW CHARACTER SET
 [LIKE 'wild']

28.3.5 The INFORMATION_SCHEMA CHECK_CONSTRAINTS Table

As of MySQL 8.0.16, CREATE TABLE permits the core features of table and column CHECK constraints,
and the CHECK_CONSTRAINTS table provides information about these constraints.

The CHECK_CONSTRAINTS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• CHECK_CLAUSE

The expression that specifies the constraint condition.

28.3.6 The INFORMATION_SCHEMA COLLATIONS Table

The COLLATIONS table provides information about collations for each character set.

The COLLATIONS table has these columns:

• COLLATION_NAME

The collation name.

• CHARACTER_SET_NAME

The name of the character set with which the collation is associated.

• ID

5018

The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table

The collation ID.

• IS_DEFAULT

Whether the collation is the default for its character set.

• IS_COMPILED

Whether the character set is compiled into the server.

• SORTLEN

This is related to the amount of memory required to sort strings expressed in the character set.

• PAD_ATTRIBUTE

The collation pad attribute, either NO PAD or PAD SPACE. This attribute affects whether trailing
spaces are significant in string comparisons; see Trailing Space Handling in Comparisons.

Notes

Collation information is also available from the SHOW COLLATION statement. See Section 15.7.7.4,
“SHOW COLLATION Statement”. The following statements are equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
 [WHERE COLLATION_NAME LIKE 'wild']

SHOW COLLATION
 [LIKE 'wild']

28.3.7 The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applicable
for what collation.

The COLLATION_CHARACTER_SET_APPLICABILITY table has these columns:

• COLLATION_NAME

The collation name.

• CHARACTER_SET_NAME

The name of the character set with which the collation is associated.

Notes

The COLLATION_CHARACTER_SET_APPLICABILITY columns are equivalent to the first two columns
displayed by the SHOW COLLATION statement.

28.3.8 The INFORMATION_SCHEMA COLUMNS Table

The COLUMNS table provides information about columns in tables. The related
ST_GEOMETRY_COLUMNS table provides information about table columns that store spatial data. See
Section 28.3.35, “The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table”.

The COLUMNS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table containing the column belongs. This value is always def.

5019

The INFORMATION_SCHEMA COLUMNS Table

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the column belongs.

• TABLE_NAME

The name of the table containing the column.

• COLUMN_NAME

The name of the column.

• ORDINAL_POSITION

The position of the column within the table. ORDINAL_POSITION is necessary because you might
want to say ORDER BY ORDINAL_POSITION. Unlike SHOW COLUMNS, SELECT from the COLUMNS
table does not have automatic ordering.

• COLUMN_DEFAULT

The default value for the column. This is NULL if the column has an explicit default of NULL, or if the
column definition includes no DEFAULT clause.

• IS_NULLABLE

The column nullability. The value is YES if NULL values can be stored in the column, NO if not.

• DATA_TYPE

The column data type.

The DATA_TYPE value is the type name only with no other information. The COLUMN_TYPE value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

For string columns, the maximum length in characters.

• CHARACTER_OCTET_LENGTH

For string columns, the maximum length in bytes.

• NUMERIC_PRECISION

For numeric columns, the numeric precision.

• NUMERIC_SCALE

For numeric columns, the numeric scale.

• DATETIME_PRECISION

For temporal columns, the fractional seconds precision.

• CHARACTER_SET_NAME

For character string columns, the character set name.

• COLLATION_NAME

For character string columns, the collation name.

• COLUMN_TYPE

5020

The INFORMATION_SCHEMA COLUMNS Table

The column data type.

The DATA_TYPE value is the type name only with no other information. The COLUMN_TYPE value
contains the type name and possibly other information such as the precision or length.

• COLUMN_KEY

Whether the column is indexed:

• If COLUMN_KEY is empty, the column either is not indexed or is indexed only as a secondary
column in a multiple-column, nonunique index.

• If COLUMN_KEY is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-
column PRIMARY KEY.

• If COLUMN_KEY is UNI, the column is the first column of a UNIQUE index. (A UNIQUE index permits
multiple NULL values, but you can tell whether the column permits NULL by checking the Null
column.)

• If COLUMN_KEY is MUL, the column is the first column of a nonunique index in which multiple
occurrences of a given value are permitted within the column.

If more than one of the COLUMN_KEY values applies to a given column of a table, COLUMN_KEY
displays the one with the highest priority, in the order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY
KEY in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE
index; although the combination of the columns is unique, each column can still hold multiple
occurrences of a given value.

• EXTRA

Any additional information that is available about a given column. The value is nonempty in these
cases:

• auto_increment for columns that have the AUTO_INCREMENT attribute.

• on update CURRENT_TIMESTAMP for TIMESTAMP or DATETIME columns that have the ON
UPDATE CURRENT_TIMESTAMP attribute.

• STORED GENERATED or VIRTUAL GENERATED for generated columns.

• DEFAULT_GENERATED for columns that have an expression default value.

• PRIVILEGES

The privileges you have for the column.

• COLUMN_COMMENT

Any comment included in the column definition.

• GENERATION_EXPRESSION

For generated columns, displays the expression used to compute column values. Empty for
nongenerated columns. For information about generated columns, see Section 15.1.20.8, “CREATE
TABLE and Generated Columns”.

• SRS_ID

This value applies to spatial columns. It contains the column SRID value that indicates the spatial
reference system for values stored in the column. See Section 13.4.1, “Spatial Data Types”, and

5021

The INFORMATION_SCHEMA COLUMNS_EXTENSIONS Table

Section 13.4.5, “Spatial Reference System Support”. The value is NULL for nonspatial columns and
spatial columns with no SRID attribute.

Notes

• In SHOW COLUMNS, the Type display includes values from several different COLUMNS columns.

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except for
multibyte character sets.

• CHARACTER_SET_NAME can be derived from COLLATION_NAME. For example, if you say
SHOW FULL COLUMNS FROM t, and you see in the COLLATION_NAME column a value of
utf8mb4_swedish_ci, the character set is what appears before the first underscore: utf8mb4.

Column information is also available from the SHOW COLUMNS statement. See Section 15.7.7.5,
“SHOW COLUMNS Statement”. The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE table_name = 'tbl_name'
 [AND table_schema = 'db_name']
 [AND column_name LIKE 'wild']

SHOW COLUMNS
 FROM tbl_name
 [FROM db_name]
 [LIKE 'wild']

In MySQL 8.0.30 and later, information about generated invisible primary key columns
is visible in this table by default. You can cause such information to be hidden by setting
show_gipk_in_create_table_and_information_schema = OFF. For more information, see
Section 15.1.20.11, “Generated Invisible Primary Keys”.

28.3.9 The INFORMATION_SCHEMA COLUMNS_EXTENSIONS Table

The COLUMNS_EXTENSIONS table (available as of MySQL 8.0.21) provides information about column
attributes defined for primary and secondary storage engines.

Note

The COLUMNS_EXTENSIONS table is reserved for future use.

The COLUMNS_EXTENSIONS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• COLUMN_NAME

The name of the column.

• ENGINE_ATTRIBUTE

Column attributes defined for the primary storage engine. Reserved for future use.

5022

The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table

• SECONDARY_ENGINE_ATTRIBUTE

Column attributes defined for the secondary storage engine. Reserved for future use.

28.3.10 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table

The COLUMN_PRIVILEGES table provides information about column privileges. It takes its values from
the mysql.columns_priv system table.

The COLUMN_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog to which the table containing the column belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the column belongs.

• TABLE_NAME

The name of the table containing the column.

• COLUMN_NAME

The name of the column.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the column level; see
Section 15.7.1.6, “GRANT Statement”. Each row lists a single privilege, so there is one row per
column privilege held by the grantee.

In the output from SHOW FULL COLUMNS, the privileges are all in one column and in lowercase, for
example, select,insert,update,references. In COLUMN_PRIVILEGES, there is one privilege
per row, in uppercase.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT
OPTION as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• COLUMN_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

SHOW GRANTS ...

28.3.11 The INFORMATION_SCHEMA COLUMN_STATISTICS Table

The COLUMN_STATISTICS table provides access to histogram statistics for column values.

For information about histogram statistics, see Section 10.9.6, “Optimizer Statistics”, and
Section 15.7.3.1, “ANALYZE TABLE Statement”.

You can see information only for columns for which you have some privilege.

5023

The INFORMATION_SCHEMA ENABLED_ROLES Table

The COLUMN_STATISTICS table has these columns:

• SCHEMA_NAME

The names of the schema for which the statistics apply.

• TABLE_NAME

The names of the column for which the statistics apply.

• COLUMN_NAME

The names of the column for which the statistics apply.

• HISTOGRAM

A JSON object describing the column statistics, stored as a histogram.

28.3.12 The INFORMATION_SCHEMA ENABLED_ROLES Table

The ENABLED_ROLES table (available as of MySQL 8.0.19) provides information about the roles that
are enabled within the current session.

The ENABLED_ROLES table has these columns:

• ROLE_NAME

The user name part of the granted role.

• ROLE_HOST

The host name part of the granted role.

• IS_DEFAULT

YES or NO, depending on whether the role is a default role.

• IS_MANDATORY

YES or NO, depending on whether the role is mandatory.

28.3.13 The INFORMATION_SCHEMA ENGINES Table

The ENGINES table provides information about storage engines. This is particularly useful for checking
whether a storage engine is supported, or to see what the default engine is.

The ENGINES table has these columns:

• ENGINE

The name of the storage engine.

• SUPPORT

The server's level of support for the storage engine, as shown in the following table.

Value Meaning

YES The engine is supported and is active

DEFAULT Like YES, plus this is the default engine

NO The engine is not supported

DISABLED The engine is supported but has been disabled

5024

The INFORMATION_SCHEMA EVENTS Table

A value of NO means that the server was compiled without support for the engine, so it cannot be
enabled at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the
engine, or because not all options required to enable it were given. In the latter case, the error log
should contain a reason indicating why the option is disabled. See Section 7.4.2, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine_name option. For the NDB storage engine, DISABLED means the
server was compiled with support for NDB Cluster, but was not started with the --ndbcluster
option.

All MySQL servers support MyISAM tables. It is not possible to disable MyISAM.

• COMMENT

A brief description of the storage engine.

• TRANSACTIONS

Whether the storage engine supports transactions.

• XA

Whether the storage engine supports XA transactions.

• SAVEPOINTS

Whether the storage engine supports savepoints.

Notes

• ENGINES is a nonstandard INFORMATION_SCHEMA table.

Storage engine information is also available from the SHOW ENGINES statement. See
Section 15.7.7.16, “SHOW ENGINES Statement”. The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.ENGINES

SHOW ENGINES

28.3.14 The INFORMATION_SCHEMA EVENTS Table

The EVENTS table provides information about Event Manager events, which are discussed in
Section 27.4, “Using the Event Scheduler”.

The EVENTS table has these columns:

• EVENT_CATALOG

The name of the catalog to which the event belongs. This value is always def.

• EVENT_SCHEMA

The name of the schema (database) to which the event belongs.

• EVENT_NAME

The name of the event.

• DEFINER

5025

The INFORMATION_SCHEMA EVENTS Table

The account named in the DEFINER clause (often the user who created the event), in
'user_name'@'host_name' format.

• TIME_ZONE

The event time zone, which is the time zone used for scheduling the event and that is in effect within
the event as it executes. The default value is SYSTEM.

• EVENT_BODY

The language used for the statements in the event's DO clause. The value is always SQL.

• EVENT_DEFINITION

The text of the SQL statement making up the event's DO clause; in other words, the statement
executed by this event.

• EVENT_TYPE

The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• EXECUTE_AT

For a one-time event, this is the DATETIME value specified in the AT clause of the CREATE EVENT
statement used to create the event, or of the last ALTER EVENT statement that modified the
event. The value shown in this column reflects the addition or subtraction of any INTERVAL value
included in the event's AT clause. For example, if an event is created using ON SCHEDULE AT
CURRENT_TIMESTAMP + '1:6' DAY_HOUR, and the event was created at 2018-02-09 14:05:30,
the value shown in this column would be '2018-02-10 20:05:30'. If the event's timing is
determined by an EVERY clause instead of an AT clause (that is, if the event is recurring), the value
of this column is NULL.

• INTERVAL_VALUE

For a recurring event, the number of intervals to wait between event executions. For a transient
event, the value is always NULL.

• INTERVAL_FIELD

The time units used for the interval which a recurring event waits before repeating. For a transient
event, the value is always NULL.

• SQL_MODE

The SQL mode in effect when the event was created or altered, and under which the event executes.
For the permitted values, see Section 7.1.11, “Server SQL Modes”.

• STARTS

The start date and time for a recurring event. This is displayed as a DATETIME value, and is NULL
if no start date and time are defined for the event. For a transient event, this column is always
NULL. For a recurring event whose definition includes a STARTS clause, this column contains
the corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any
expressions used. If there is no STARTS clause affecting the timing of the event, this column is NULL

• ENDS

For a recurring event whose definition includes a ENDS clause, this column contains the
corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any
expressions used. If there is no ENDS clause affecting the timing of the event, this column is NULL.

• STATUS

5026

The INFORMATION_SCHEMA EVENTS Table

The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED. SLAVESIDE_DISABLED
indicates that the creation of the event occurred on another MySQL server acting as a replication
source and replicated to the current MySQL server which is acting as a replica, but the event is not
presently being executed on the replica. For more information, see Section 19.5.1.16, “Replication of
Invoked Features”. information.

• ON_COMPLETION

One of the two values PRESERVE or NOT PRESERVE.

• CREATED

The date and time when the event was created. This is a TIMESTAMP value.

• LAST_ALTERED

The date and time when the event was last modified. This is a TIMESTAMP value. If the event has
not been modified since its creation, this value is the same as the CREATED value.

• LAST_EXECUTED

The date and time when the event last executed. This is a DATETIME value. If the event has never
executed, this column is NULL.

LAST_EXECUTED indicates when the event started. As a result, the ENDS column is never less than
LAST_EXECUTED.

• EVENT_COMMENT

The text of the comment, if the event has one. If not, this value is empty.

• ORIGINATOR

The server ID of the MySQL server on which the event was created; used in replication. This value
may be updated by ALTER EVENT to the server ID of the server on which that statement occurs, if
executed on a replication source. The default value is 0.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the event was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the event was created.

• DATABASE_COLLATION

The collation of the database with which the event is associated.

Notes

• EVENTS is a nonstandard INFORMATION_SCHEMA table.

• Times in the EVENTS table are displayed using the event time zone, the current session time zone,
or UTC, as described in Section 27.4.4, “Event Metadata”.

• For more information about SLAVESIDE_DISABLED and the ORIGINATOR column, see
Section 19.5.1.16, “Replication of Invoked Features”.

Example

Suppose that the user 'jon'@'ghidora' creates an event named e_daily, and then modifies it a
few minutes later using an ALTER EVENT statement, as shown here:

5027

The INFORMATION_SCHEMA EVENTS Table

DELIMITER |

CREATE EVENT e_daily
 ON SCHEDULE
 EVERY 1 DAY
 COMMENT 'Saves total number of sessions then clears the table each day'
 DO
 BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END |

DELIMITER ;

ALTER EVENT e_daily
 ENABLE;

(Note that comments can span multiple lines.)

This user can then run the following SELECT statement, and obtain the output shown:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 WHERE EVENT_NAME = 'e_daily'
 AND EVENT_SCHEMA = 'myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: def
 EVENT_SCHEMA: myschema
 EVENT_NAME: e_daily
 DEFINER: jon@ghidora
 TIME_ZONE: SYSTEM
 EVENT_BODY: SQL
 EVENT_DEFINITION: BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 1
 INTERVAL_FIELD: DAY
 SQL_MODE: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_ENGINE_SUBSTITUTION
 STARTS: 2018-08-08 11:06:34
 ENDS: NULL
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2018-08-08 11:06:34
 LAST_ALTERED: 2018-08-08 11:06:34
 LAST_EXECUTED: 2018-08-08 16:06:34
 EVENT_COMMENT: Saves total number of sessions then clears the
 table each day
 ORIGINATOR: 1
CHARACTER_SET_CLIENT: utf8mb4
COLLATION_CONNECTION: utf8mb4_0900_ai_ci
 DATABASE_COLLATION: utf8mb4_0900_ai_ci

Event information is also available from the SHOW EVENTS statement. See Section 15.7.7.18, “SHOW
EVENTS Statement”. The following statements are equivalent:

SELECT
 EVENT_SCHEMA, EVENT_NAME, DEFINER, TIME_ZONE, EVENT_TYPE, EXECUTE_AT,
 INTERVAL_VALUE, INTERVAL_FIELD, STARTS, ENDS, STATUS, ORIGINATOR,
 CHARACTER_SET_CLIENT, COLLATION_CONNECTION, DATABASE_COLLATION
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE table_schema = 'db_name'
 [AND column_name LIKE 'wild']

5028

The INFORMATION_SCHEMA FILES Table

SHOW EVENTS
 [FROM db_name]
 [LIKE 'wild']

28.3.15 The INFORMATION_SCHEMA FILES Table

The FILES table provides information about the files in which MySQL tablespace data is stored.

The FILES table provides information about InnoDB data files. In NDB Cluster, this table also provides
information about the files in which NDB Cluster Disk Data tables are stored. For additional information
specific to InnoDB, see InnoDB Notes, later in this section; for additional information specific to NDB
Cluster, see NDB Notes.

The FILES table has these columns:

• FILE_ID

For InnoDB: The tablespace ID, also referred to as the space_id or fil_space_t::id.

For NDB: A file identifier. FILE_ID column values are auto-generated.

• FILE_NAME

For InnoDB: The name of the data file. File-per-table and general tablespaces have an .ibd file
name extension. Undo tablespaces are prefixed by undo. The system tablespace is prefixed by
ibdata. The global temporary tablespace is prefixed by ibtmp. The file name includes the file path,
which may be relative to the MySQL data directory (the value of the datadir system variable).

For NDB: The name of an undo log file created by CREATE LOGFILE GROUP or ALTER LOGFILE
GROUP, or of a data file created by CREATE TABLESPACE or ALTER TABLESPACE. In NDB
8.0, the file name is shown with a relative path; for an undo log file, this path is relative to the
directory DataDir/ndb_NodeId_fs/LG; for a data file, it is relative to the directory DataDir/
ndb_NodeId_fs/TS. This means, for example, that the name of a data file created with ALTER
TABLESPACE ts ADD DATAFILE 'data_2.dat' INITIAL SIZE 256M is shown as ./
data_2.dat.

• FILE_TYPE

For InnoDB: The tablespace file type. There are three possible file types for InnoDB files.
TABLESPACE is the file type for any system, general, or file-per-table tablespace file that holds
tables, indexes, or other forms of user data. TEMPORARY is the file type for temporary tablespaces.
UNDO LOG is the file type for undo tablespaces, which hold undo records.

For NDB: One of the values UNDO LOG or DATAFILE. Prior to NDB 8.0.13, TABLESPACE was also a
possible value.

• TABLESPACE_NAME

The name of the tablespace with which the file is associated.

For InnoDB: General tablespace names are as specified when created. File-per-table
tablespace names are shown in the following format: schema_name/table_name. The
InnoDB system tablespace name is innodb_system. The global temporary tablespace
name is innodb_temporary. Default undo tablespace names are innodb_undo_001 and
innodb_undo_002. User-created undo tablespace names are as specified when created.

• TABLE_CATALOG

This value is always empty.

• TABLE_SCHEMA

5029

The INFORMATION_SCHEMA FILES Table

This is always NULL.

• TABLE_NAME

This is always NULL.

• LOGFILE_GROUP_NAME

For InnoDB: This is always NULL.

For NDB: The name of the log file group to which the log file or data file belongs.

• LOGFILE_GROUP_NUMBER

For InnoDB: This is always NULL.

For NDB: For a Disk Data undo log file, the auto-generated ID number of the log file group
to which the log file belongs. This is the same as the value shown for the id column in the
ndbinfo.dict_obj_info table and the log_id column in the ndbinfo.logspaces and
ndbinfo.logspaces tables for this undo log file.

• ENGINE

For InnoDB: This value is always InnoDB.

For NDB: This value is always ndbcluster.

• FULLTEXT_KEYS

This is always NULL.

• DELETED_ROWS

This is always NULL.

• UPDATE_COUNT

This is always NULL.

• FREE_EXTENTS

For InnoDB: The number of fully free extents in the current data file.

For NDB: The number of extents which have not yet been used by the file.

• TOTAL_EXTENTS

For InnoDB: The number of full extents used in the current data file. Any partial extent at the end of
the file is not counted.

For NDB: The total number of extents allocated to the file.

• EXTENT_SIZE

For InnoDB: Extent size is 1048576 (1MB) for files with a 4KB, 8KB, or 16KB page size. Extent
size is 2097152 bytes (2MB) for files with a 32KB page size, and 4194304 (4MB) for files with
a 64KB page size. FILES does not report InnoDB page size. Page size is defined by the
innodb_page_size system variable. Extent size information can also be retrieved from the
INNODB_TABLESPACES table where FILES.FILE_ID = INNODB_TABLESPACES.SPACE.

For NDB: The size of an extent for the file in bytes.

• INITIAL_SIZE

5030

The INFORMATION_SCHEMA FILES Table

For InnoDB: The initial size of the file in bytes.

For NDB: The size of the file in bytes. This is the same value that was used in the INITIAL_SIZE
clause of the CREATE LOGFILE GROUP, ALTER LOGFILE GROUP, CREATE TABLESPACE, or
ALTER TABLESPACE statement used to create the file.

• MAXIMUM_SIZE

For InnoDB: The maximum number of bytes permitted in the file. The value is NULL for all data
files except for predefined system tablespace data files. Maximum system tablespace file size is
defined by innodb_data_file_path. Maximum global temporary tablespace file size is defined
by innodb_temp_data_file_path. A NULL value for a predefined system tablespace data file
indicates that a file size limit was not defined explicitly.

For NDB: This value is always the same as the INITIAL_SIZE value.

• AUTOEXTEND_SIZE

The auto-extend size of the tablespace. For NDB, AUTOEXTEND_SIZE is always NULL.

• CREATION_TIME

This is always NULL.

• LAST_UPDATE_TIME

This is always NULL.

• LAST_ACCESS_TIME

This is always NULL.

• RECOVER_TIME

This is always NULL.

• TRANSACTION_COUNTER

This is always NULL.

• VERSION

For InnoDB: This is always NULL.

For NDB: The version number of the file.

• ROW_FORMAT

For InnoDB: This is always NULL.

For NDB: One of FIXED or DYNAMIC.

• TABLE_ROWS

This is always NULL.

• AVG_ROW_LENGTH

This is always NULL.

• DATA_LENGTH

This is always NULL.

5031

The INFORMATION_SCHEMA FILES Table

• MAX_DATA_LENGTH

This is always NULL.

• INDEX_LENGTH

This is always NULL.

• DATA_FREE

For InnoDB: The total amount of free space (in bytes) for the entire tablespace. Predefined system
tablespaces, which include the system tablespace and temporary table tablespaces, may have one
or more data files.

For NDB: This is always NULL.

• CREATE_TIME

This is always NULL.

• UPDATE_TIME

This is always NULL.

• CHECK_TIME

This is always NULL.

• CHECKSUM

This is always NULL.

• STATUS

For InnoDB: This value is NORMAL by default. InnoDB file-per-table tablespaces may report
IMPORTING, which indicates that the tablespace is not yet available.

For NDB: For NDB Cluster Disk Data files, this value is always NORMAL.

• EXTRA

For InnoDB: This is always NULL.

For NDB: (NDB 8.0.15 and later) For undo log files, this column shows the undo log buffer size; for
data files, it is always NULL. A more detailed explanation is provided in the next few paragraphs.

NDBCLUSTER stores a copy of each data file and each undo log file on each data node in the cluster.
In NDB 8.0.13 and later, the FILES table contains only one row for each such file. Suppose that you
run the following two statements on an NDB Cluster with four data nodes:

CREATE LOGFILE GROUP mygroup
 ADD UNDOFILE 'new_undo.dat'
 INITIAL_SIZE 2G
 ENGINE NDBCLUSTER;

CREATE TABLESPACE myts
 ADD DATAFILE 'data_1.dat'
 USE LOGFILE GROUP mygroup
 INITIAL_SIZE 256M
 ENGINE NDBCLUSTER;

After running these two statements successfully, you should see a result similar to the one shown
here for this query against the FILES table:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_TYPE, EXTRA

5032

The INFORMATION_SCHEMA FILES Table

 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE ENGINE = 'ndbcluster';

+--------------------+-----------+--------------------------+
| LOGFILE_GROUP_NAME | FILE_TYPE | EXTRA |
+--------------------+-----------+--------------------------+
| mygroup | UNDO LOG | UNDO_BUFFER_SIZE=8388608 |
| mygroup | DATAFILE | NULL |
+--------------------+-----------+--------------------------+

The undo log buffer size information was inadvertently removed in NDB 8.0.13, but was restored in
NDB 8.0.15. (Bug #92796, Bug #28800252)

Prior to NDB 8.0.13, the FILES table contained a row for each of these files on each data node the
file belonged to, as well as the size of its undo buffer. In these versions, the result of the same query
contains one row per data node, as shown here:

+--------------------+-----------+---+
| LOGFILE_GROUP_NAME | FILE_TYPE | EXTRA |
+--------------------+-----------+---+
mygroup	UNDO LOG	CLUSTER_NODE=5;UNDO_BUFFER_SIZE=8388608
mygroup	UNDO LOG	CLUSTER_NODE=6;UNDO_BUFFER_SIZE=8388608
mygroup	UNDO LOG	CLUSTER_NODE=7;UNDO_BUFFER_SIZE=8388608
mygroup	UNDO LOG	CLUSTER_NODE=8;UNDO_BUFFER_SIZE=8388608
mygroup	DATAFILE	CLUSTER_NODE=5
mygroup	DATAFILE	CLUSTER_NODE=6
mygroup	DATAFILE	CLUSTER_NODE=7
mygroup	DATAFILE	CLUSTER_NODE=8
+--------------------+-----------+---+

Notes

• FILES is a nonstandard INFORMATION_SCHEMA table.

• As of MySQL 8.0.21, you must have the PROCESS privilege to query this table.

InnoDB Notes

The following notes apply to InnoDB data files.

• Information reported by FILES is obtained from the InnoDB in-memory cache for open files,
whereas INNODB_DATAFILES gets its data from the InnoDB SYS_DATAFILES internal data
dictionary table.

• The information provided by FILES includes global temporary tablespace information which is not
available in the InnoDB SYS_DATAFILES internal data dictionary table, and is therefore not included
in INNODB_DATAFILES.

• Undo tablespace information is shown in FILES when separate undo tablespaces are present, as
they are by default in MySQL 8.0.

• The following query returns all FILES table information relating to InnoDB tablespaces.

SELECT
 FILE_ID, FILE_NAME, FILE_TYPE, TABLESPACE_NAME, FREE_EXTENTS,
 TOTAL_EXTENTS, EXTENT_SIZE, INITIAL_SIZE, MAXIMUM_SIZE,
 AUTOEXTEND_SIZE, DATA_FREE, STATUS
FROM INFORMATION_SCHEMA.FILES
WHERE ENGINE='InnoDB'\G

NDB Notes

• The FILES table provides information about Disk Data files only; you cannot use it for determining
disk space allocation or availability for individual NDB tables. However, it is possible to see how much
space is allocated for each NDB table having data stored on disk—as well as how much remains
available for storage of data on disk for that table—using ndb_desc.

5033

The INFORMATION_SCHEMA FILES Table

• Beginning with NDB 8.0.29 much of the information in the FILES table can also be found in the
ndbinfo.files table.

• The CREATION_TIME, LAST_UPDATE_TIME, and LAST_ACCESSED values are as reported by the
operating system, and are not supplied by the NDB storage engine. Where no value is provided by
the operating system, these columns display NULL.

• The difference between the TOTAL EXTENTS and FREE_EXTENTS columns is the number of extents
currently in use by the file:

SELECT TOTAL_EXTENTS - FREE_EXTENTS AS extents_used
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = './myfile.dat';

To approximate the amount of disk space in use by the file, multiply that difference by the value of
the EXTENT_SIZE column, which gives the size of an extent for the file in bytes:

SELECT (TOTAL_EXTENTS - FREE_EXTENTS) * EXTENT_SIZE AS bytes_used
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = './myfile.dat';

Similarly, you can estimate the amount of space that remains available in a given file by multiplying
FREE_EXTENTS by EXTENT_SIZE:

SELECT FREE_EXTENTS * EXTENT_SIZE AS bytes_free
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = './myfile.dat';

Important

The byte values produced by the preceding queries are approximations only,
and their precision is inversely proportional to the value of EXTENT_SIZE.
That is, the larger EXTENT_SIZE becomes, the less accurate the
approximations are.

It is also important to remember that once an extent is used, it cannot be freed again without
dropping the data file of which it is a part. This means that deletes from a Disk Data table do not
release disk space.

The extent size can be set in a CREATE TABLESPACE statement. For more information, see
Section 15.1.21, “CREATE TABLESPACE Statement”.

• Prior to NDB 8.0.13, an additional row was present in the FILES table following the creation
of a logfile group, having NULL in the FILE_NAME column. In NDB 8.0.13 and later, this row
— which did not correspond to any file—is no longer shown, and it is necessary to query the
ndbinfo.logspaces table to obtain undo log file usage information. See the description of this
table as well as Section 25.6.11.1, “NDB Cluster Disk Data Objects”, for more information.

The remainder of the discussion in this item applies only to NDB 8.0.12 and earlier. For the row
having NULL in the FILE_NAME column, the value of the FILE_ID column is always 0, that of the
FILE_TYPE column is always UNDO LOG, and that of the STATUS column is always NORMAL. The
value of the ENGINE column is always ndbcluster.

The FREE_EXTENTS column in this row shows the total number of free extents available to
all undo files belonging to a given log file group whose name and number are shown in the
LOGFILE_GROUP_NAME and LOGFILE_GROUP_NUMBER columns, respectively.

Suppose there are no existing log file groups on your NDB Cluster, and you create one using the
following statement:

mysql> CREATE LOGFILE GROUP lg1
 ADD UNDOFILE 'undofile.dat'
 INITIAL_SIZE = 16M
 UNDO_BUFFER_SIZE = 1M

5034

The INFORMATION_SCHEMA FILES Table

 ENGINE = NDB;

You can now see this NULL row when you query the FILES table:

mysql> SELECT DISTINCT
 FILE_NAME AS File,
 FREE_EXTENTS AS Free,
 TOTAL_EXTENTS AS Total,
 EXTENT_SIZE AS Size,
 INITIAL_SIZE AS Initial
 FROM INFORMATION_SCHEMA.FILES;
+--------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |
+--------------+---------+---------+------+----------+
| undofile.dat | NULL | 4194304 | 4 | 16777216 |
| NULL | 4184068 | NULL | 4 | NULL |
+--------------+---------+---------+------+----------+

The total number of free extents available for undo logging is always somewhat less than the sum of
the TOTAL_EXTENTS column values for all undo files in the log file group due to overhead required
for maintaining the undo files. This can be seen by adding a second undo file to the log file group,
then repeating the previous query against the FILES table:

mysql> ALTER LOGFILE GROUP lg1
 ADD UNDOFILE 'undofile02.dat'
 INITIAL_SIZE = 4M
 ENGINE = NDB;

mysql> SELECT DISTINCT
 FILE_NAME AS File,
 FREE_EXTENTS AS Free,
 TOTAL_EXTENTS AS Total,
 EXTENT_SIZE AS Size,
 INITIAL_SIZE AS Initial
 FROM INFORMATION_SCHEMA.FILES;
+----------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |
+----------------+---------+---------+------+----------+
undofile.dat	NULL	4194304	4	16777216
undofile02.dat	NULL	1048576	4	4194304
NULL	5223944	NULL	4	NULL
+----------------+---------+---------+------+----------+

The amount of free space in bytes which is available for undo logging by Disk Data tables using this
log file group can be approximated by multiplying the number of free extents by the initial size:

mysql> SELECT
 FREE_EXTENTS AS 'Free Extents',
 FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
 FROM INFORMATION_SCHEMA.FILES
 WHERE LOGFILE_GROUP_NAME = 'lg1'
 AND FILE_NAME IS NULL;
+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
| 5223944 | 20895776 |
+--------------+------------+

If you create an NDB Cluster Disk Data table and then insert some rows into it, you can see
approximately how much space remains for undo logging afterward, for example:

mysql> CREATE TABLESPACE ts1
 ADD DATAFILE 'data1.dat'
 USE LOGFILE GROUP lg1
 INITIAL_SIZE 512M
 ENGINE = NDB;

mysql> CREATE TABLE dd (
 c1 INT NOT NULL PRIMARY KEY,
 c2 INT,

5035

The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table

 c3 DATE
)
 TABLESPACE ts1 STORAGE DISK
 ENGINE = NDB;

mysql> INSERT INTO dd VALUES
 (NULL, 1234567890, '2007-02-02'),
 (NULL, 1126789005, '2007-02-03'),
 (NULL, 1357924680, '2007-02-04'),
 (NULL, 1642097531, '2007-02-05');

mysql> SELECT
 FREE_EXTENTS AS 'Free Extents',
 FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
 FROM INFORMATION_SCHEMA.FILES
 WHERE LOGFILE_GROUP_NAME = 'lg1'
 AND FILE_NAME IS NULL;
+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
| 5207565 | 20830260 |
+--------------+------------+

• Prior to NDB 8.0.13, an additional row was present in the FILES table for each NDB Cluster Disk
Data tablespace. Because it did not correspond to an actual file, it was removed in NDB 8.0.13.
This row had NULL for the value of the FILE_NAME column, the value of the FILE_ID column was
always 0, that of the FILE_TYPE column was always TABLESPACE, that of the STATUS column was
always NORMAL, and the value of the ENGINE column is always NDBCLUSTER.

In NDB 8.0.13 and later, you can obtain information about Disk Data tablespaces using the
ndb_desc utility. For more information, see Section 25.6.11.1, “NDB Cluster Disk Data Objects”, as
well as the description of ndb_desc.

• For additional information, and examples of creating, dropping, and obtaining information about NDB
Cluster Disk Data objects, see Section 25.6.11, “NDB Cluster Disk Data Tables”.

28.3.16 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table

The KEY_COLUMN_USAGE table describes which key columns have constraints. This table provides no
information about functional key parts because they are expressions and the table provides information
only about columns.

The KEY_COLUMN_USAGE table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

5036

The INFORMATION_SCHEMA KEYWORDS Table

The name of the table that has the constraint.

• COLUMN_NAME

The name of the column that has the constraint.

If the constraint is a foreign key, then this is the column of the foreign key, not the column that the
foreign key references.

• ORDINAL_POSITION

The column's position within the constraint, not the column's position within the table. Column
positions are numbered beginning with 1.

• POSITION_IN_UNIQUE_CONSTRAINT

NULL for unique and primary-key constraints. For foreign-key constraints, this column is the ordinal
position in key of the table that is being referenced.

• REFERENCED_TABLE_SCHEMA

The name of the schema referenced by the constraint.

• REFERENCED_TABLE_NAME

The name of the table referenced by the constraint.

• REFERENCED_COLUMN_NAME

The name of the column referenced by the constraint.

Suppose that there are two tables name t1 and t3 that have the following definitions:

CREATE TABLE t1
(
 s1 INT,
 s2 INT,
 s3 INT,
 PRIMARY KEY(s3)
) ENGINE=InnoDB;

CREATE TABLE t3
(
 s1 INT,
 s2 INT,
 s3 INT,
 KEY(s1),
 CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)
) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME = 's3',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.

For NDB: This value is always NULL.

• One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = 1.

28.3.17 The INFORMATION_SCHEMA KEYWORDS Table

The KEYWORDS table lists the words considered keywords by MySQL and, for each one, indicates
whether it is reserved. Reserved keywords may require special treatment in some contexts, such as

5037

The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table

special quoting when used as identifiers (see Section 11.3, “Keywords and Reserved Words”). This
table provides applications a runtime source of MySQL keyword information.

Prior to MySQL 8.0.13, selecting from the KEYWORDS table with no default database selected produced
an error. (Bug #90160, Bug #27729859)

The KEYWORDS table has these columns:

• WORD

The keyword.

• RESERVED

An integer indicating whether the keyword is reserved (1) or nonreserved (0).

These queries lists all keywords, all reserved keywords, and all nonreserved keywords, respectively:

SELECT * FROM INFORMATION_SCHEMA.KEYWORDS;
SELECT WORD FROM INFORMATION_SCHEMA.KEYWORDS WHERE RESERVED = 1;
SELECT WORD FROM INFORMATION_SCHEMA.KEYWORDS WHERE RESERVED = 0;

The latter two queries are equivalent to:

SELECT WORD FROM INFORMATION_SCHEMA.KEYWORDS WHERE RESERVED;
SELECT WORD FROM INFORMATION_SCHEMA.KEYWORDS WHERE NOT RESERVED;

If you build MySQL from source, the build process generates a keyword_list.h header file
containing an array of keywords and their reserved status. This file can be found in the sql directory
under the build directory. This file may be useful for applications that require a static source for the
keyword list.

28.3.18 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map
Table

The ndb_transid_mysql_connection_map table provides a mapping between NDB transactions,
NDB transaction coordinators, and MySQL Servers attached to an NDB Cluster as API nodes. This
information is used when populating the server_operations and server_transactions tables
of the ndbinfo NDB Cluster information database.

INFORMATION_SCHEMA Name SHOW Name Remarks

mysql_connection_id MySQL Server connection ID

node_id Transaction coordinator node ID

ndb_transid NDB transaction ID

The mysql_connection_id is the same as the connection or session ID shown in the output of
SHOW PROCESSLIST.

There are no SHOW statements associated with this table.

This is a nonstandard table, specific to NDB Cluster. It is implemented as an INFORMATION_SCHEMA
plugin; you can verify that it is supported by checking the output of SHOW PLUGINS. If
ndb_transid_mysql_connection_map support is enabled, the output from this statement includes
a plugin having this name, of type INFORMATION SCHEMA, and having status ACTIVE, as shown here
(using emphasized text):

mysql> SHOW PLUGINS;

5038

The INFORMATION_SCHEMA OPTIMIZER_TRACE Table

+----------------------------------+--------+--------------------+---------+---------+
| Name | Status | Type | Library | License |
+----------------------------------+--------+--------------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
mysql_native_password	ACTIVE	AUTHENTICATION	NULL	GPL
sha256_password	ACTIVE	AUTHENTICATION	NULL	GPL
caching_sha2_password	ACTIVE	AUTHENTICATION	NULL	GPL
sha2_cache_cleaner	ACTIVE	AUDIT	NULL	GPL
daemon_keyring_proxy_plugin	ACTIVE	DAEMON	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
INNODB_TRX	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP	ACTIVE	INFORMATION SCHEMA	NULL	GPL

...

INNODB_SESSION_TEMP_TABLESPACES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
PERFORMANCE_SCHEMA	ACTIVE	STORAGE ENGINE	NULL	GPL
TempTable	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbinfo	ACTIVE	STORAGE ENGINE	NULL	GPL
ndb_transid_mysql_connection_map	ACTIVE	INFORMATION SCHEMA	NULL	GPL
ngram	ACTIVE	FTPARSER	NULL	GPL
mysqlx_cache_cleaner	ACTIVE	AUDIT	NULL	GPL
mysqlx	ACTIVE	DAEMON	NULL	GPL
+----------------------------------+--------+--------------------+---------+---------+
47 rows in set (0.01 sec)

The plugin is enabled by default. You can disable it (or force the server not to run unless the plugin
starts) by starting the server with the --ndb-transid-mysql-connection-map option. If the plugin
is disabled, the status is shown by SHOW PLUGINS as DISABLED. The plugin cannot be enabled or
disabled at runtime.

Although the names of this table and its columns are displayed using lowercase, you can use
uppercase or lowercase when referring to them in SQL statements.

For this table to be created, the MySQL Server must be a binary supplied with the NDB Cluster
distribution, or one built from the NDB Cluster sources with NDB storage engine support enabled. It is
not available in the standard MySQL 8.0 Server.

28.3.19 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table

The OPTIMIZER_TRACE table provides information produced by the optimizer tracing capability for
traced statements. To enable tracking, use the optimizer_trace system variable. For details, see
Section 10.15, “Tracing the Optimizer”.

The OPTIMIZER_TRACE table has these columns:

• QUERY

The text of the traced statement.

• TRACE

The trace, in JSON format.

• MISSING_BYTES_BEYOND_MAX_MEM_SIZE

Each remembered trace is a string that is extended as optimization progresses and appends data
to it. The optimizer_trace_max_mem_size variable sets a limit on the total amount of memory
used by all currently remembered traces. If this limit is reached, the current trace is not extended

5039

The INFORMATION_SCHEMA PARAMETERS Table

(and thus is incomplete), and the MISSING_BYTES_BEYOND_MAX_MEM_SIZE column shows the
number of bytes missing from the trace.

• INSUFFICIENT_PRIVILEGES

If a traced query uses views or stored routines that have SQL SECURITY with a value of DEFINER,
it may be that a user other than the definer is denied from seeing the trace of the query. In that case,
the trace is shown as empty and INSUFFICIENT_PRIVILEGES has a value of 1. Otherwise, the
value is 0.

28.3.20 The INFORMATION_SCHEMA PARAMETERS Table

The PARAMETERS table provides information about parameters for stored routines (stored procedures
and stored functions), and about return values for stored functions. The PARAMETERS table does not
include built-in (native) functions or loadable functions.

The PARAMETERS table has these columns:

• SPECIFIC_CATALOG

The name of the catalog to which the routine containing the parameter belongs. This value is always
def.

• SPECIFIC_SCHEMA

The name of the schema (database) to which the routine containing the parameter belongs.

• SPECIFIC_NAME

The name of the routine containing the parameter.

• ORDINAL_POSITION

For successive parameters of a stored procedure or function, the ORDINAL_POSITION values are
1, 2, 3, and so forth. For a stored function, there is also a row that applies to the function return value
(as described by the RETURNS clause). The return value is not a true parameter, so the row that
describes it has these unique characteristics:

• The ORDINAL_POSITION value is 0.

• The PARAMETER_NAME and PARAMETER_MODE values are NULL because the return value has no
name and the mode does not apply.

• PARAMETER_MODE

The mode of the parameter. This value is one of IN, OUT, or INOUT. For a stored function return
value, this value is NULL.

• PARAMETER_NAME

The name of the parameter. For a stored function return value, this value is NULL.

• DATA_TYPE

The parameter data type.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

For string parameters, the maximum length in characters.

• CHARACTER_OCTET_LENGTH

5040

The INFORMATION_SCHEMA PARTITIONS Table

For string parameters, the maximum length in bytes.

• NUMERIC_PRECISION

For numeric parameters, the numeric precision.

• NUMERIC_SCALE

For numeric parameters, the numeric scale.

• DATETIME_PRECISION

For temporal parameters, the fractional seconds precision.

• CHARACTER_SET_NAME

For character string parameters, the character set name.

• COLLATION_NAME

For character string parameters, the collation name.

• DTD_IDENTIFIER

The parameter data type.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• ROUTINE_TYPE

PROCEDURE for stored procedures, FUNCTION for stored functions.

28.3.21 The INFORMATION_SCHEMA PARTITIONS Table

The PARTITIONS table provides information about table partitions. Each row in this table corresponds
to an individual partition or subpartition of a partitioned table. For more information about partitioning
tables, see Chapter 26, Partitioning.

The PARTITIONS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table containing the partition.

• PARTITION_NAME

The name of the partition.

• SUBPARTITION_NAME

If the PARTITIONS table row represents a subpartition, the name of subpartition; otherwise NULL.

For NDB: This value is always NULL.

• PARTITION_ORDINAL_POSITION

5041

The INFORMATION_SCHEMA PARTITIONS Table

All partitions are indexed in the same order as they are defined, with 1 being the number assigned
to the first partition. The indexing can change as partitions are added, dropped, and reorganized; the
number shown is this column reflects the current order, taking into account any indexing changes.

• SUBPARTITION_ORDINAL_POSITION

Subpartitions within a given partition are also indexed and reindexed in the same manner as
partitions are indexed within a table.

• PARTITION_METHOD

One of the values RANGE, LIST, HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the
available partitioning types as discussed in Section 26.2, “Partitioning Types”.

• SUBPARTITION_METHOD

One of the values HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the available
subpartitioning types as discussed in Section 26.2.6, “Subpartitioning”.

• PARTITION_EXPRESSION

The expression for the partitioning function used in the CREATE TABLE or ALTER TABLE statement
that created the table's current partitioning scheme.

For example, consider a partitioned table created in the test database using this statement:

CREATE TABLE tp (
 c1 INT,
 c2 INT,
 c3 VARCHAR(25)
)
PARTITION BY HASH(c1 + c2)
PARTITIONS 4;

The PARTITION_EXPRESSION column in a PARTITIONS table row for a partition from this table
displays c1 + c2, as shown here:

mysql> SELECT DISTINCT PARTITION_EXPRESSION
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME='tp' AND TABLE_SCHEMA='test';
+----------------------+
| PARTITION_EXPRESSION |
+----------------------+
| c1 + c2 |
+----------------------+

For a table that is not explicitly partitioned, this column is always NULL, regardless of storage engine.

• SUBPARTITION_EXPRESSION

This works in the same fashion for the subpartitioning expression that defines the subpartitioning for
a table as PARTITION_EXPRESSION does for the partitioning expression used to define a table's
partitioning.

If the table has no subpartitions, this column is NULL.

• PARTITION_DESCRIPTION

This column is used for RANGE and LIST partitions. For a RANGE partition, it contains the value set
in the partition's VALUES LESS THAN clause, which can be either an integer or MAXVALUE. For a
LIST partition, this column contains the values defined in the partition's VALUES IN clause, which is
a list of comma-separated integer values.

For partitions whose PARTITION_METHOD is other than RANGE or LIST, this column is always NULL.

5042

The INFORMATION_SCHEMA PARTITIONS Table

• TABLE_ROWS

The number of table rows in the partition.

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column is only an estimated
value used in SQL optimization, and may not always be exact.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• AVG_ROW_LENGTH

The average length of the rows stored in this partition or subpartition, in bytes. This is the same as
DATA_LENGTH divided by TABLE_ROWS.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• DATA_LENGTH

The total length of all rows stored in this partition or subpartition, in bytes; that is, the total number of
bytes stored in the partition or subpartition.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• MAX_DATA_LENGTH

The maximum number of bytes that can be stored in this partition or subpartition.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• INDEX_LENGTH

The length of the index file for this partition or subpartition, in bytes.

For partitions of NDB tables, whether the tables use implicit or explicit partitioning, the
INDEX_LENGTH column value is always 0. However, you can obtain equivalent information using the
ndb_desc utility.

• DATA_FREE

The number of bytes allocated to the partition or subpartition but not used.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• CREATE_TIME

The time that the partition or subpartition was created.

• UPDATE_TIME

The time that the partition or subpartition was last modified.

• CHECK_TIME

The last time that the table to which this partition or subpartition belongs was checked.

For partitioned InnoDB tables, the value is always NULL.

• CHECKSUM

The checksum value, if any; otherwise NULL.

• PARTITION_COMMENT

The text of the comment, if the partition has one. If not, this value is empty.

5043

The INFORMATION_SCHEMA PLUGINS Table

The maximum length for a partition comment is defined as 1024 characters, and the display width of
the PARTITION_COMMENT column is also 1024, characters to match this limit.

• NODEGROUP

This is the nodegroup to which the partition belongs. For NDB Cluster tables, this is always
default. For partitioned tables using storage engines other than NDB, the value is also default.
Otherwise, this column is empty.

• TABLESPACE_NAME

The name of the tablespace to which the partition belongs. The value is always DEFAULT, unless the
table uses the NDB storage engine (see the Notes at the end of this section).

Notes

• PARTITIONS is a nonstandard INFORMATION_SCHEMA table.

• A table using any storage engine other than NDB and which is not partitioned has one row in
the PARTITIONS table. However, the values of the PARTITION_NAME, SUBPARTITION_NAME,
PARTITION_ORDINAL_POSITION, SUBPARTITION_ORDINAL_POSITION, PARTITION_METHOD,
SUBPARTITION_METHOD, PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, and
PARTITION_DESCRIPTION columns are all NULL. Also, the PARTITION_COMMENT column in this
case is blank.

• An NDB table which is not explicitly partitioned has one row in the PARTITIONS table for each data
node in the NDB cluster. For each such row:

• The SUBPARTITION_NAME, SUBPARTITION_ORDINAL_POSITION, SUBPARTITION_METHOD,
PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, CREATE_TIME, UPDATE_TIME,
CHECK_TIME, CHECKSUM, and TABLESPACE_NAME columns are all NULL.

• The PARTITION_METHOD is always AUTO.

• The NODEGROUP column is default.

• The PARTITION_COMMENT column is empty.

28.3.22 The INFORMATION_SCHEMA PLUGINS Table

The PLUGINS table provides information about server plugins.

The PLUGINS table has these columns:

• PLUGIN_NAME

The name used to refer to the plugin in statements such as INSTALL PLUGIN and UNINSTALL
PLUGIN.

• PLUGIN_VERSION

The version from the plugin's general type descriptor.

• PLUGIN_STATUS

The plugin status, one of ACTIVE, INACTIVE, DISABLED, DELETING, or DELETED.

• PLUGIN_TYPE

The type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or AUTHENTICATION.

• PLUGIN_TYPE_VERSION

5044

The INFORMATION_SCHEMA PROCESSLIST Table

The version from the plugin's type-specific descriptor.

• PLUGIN_LIBRARY

The name of the plugin shared library file. This is the name used to refer to the plugin file in
statements such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the directory
named by the plugin_dir system variable. If the library name is NULL, the plugin is compiled in
and cannot be uninstalled with UNINSTALL PLUGIN.

• PLUGIN_LIBRARY_VERSION

The plugin API interface version.

• PLUGIN_AUTHOR

The plugin author.

• PLUGIN_DESCRIPTION

A short description of the plugin.

• PLUGIN_LICENSE

How the plugin is licensed (for example, GPL).

• LOAD_OPTION

How the plugin was loaded. The value is OFF, ON, FORCE, or FORCE_PLUS_PERMANENT. See
Section 7.6.1, “Installing and Uninstalling Plugins”.

Notes

• PLUGINS is a nonstandard INFORMATION_SCHEMA table.

• For plugins installed with INSTALL PLUGIN, the PLUGIN_NAME and PLUGIN_LIBRARY values are
also registered in the mysql.plugin table.

• For information about plugin data structures that form the basis of the information in the PLUGINS
table, see The MySQL Plugin API.

Plugin information is also available from the SHOW PLUGINS statement. See Section 15.7.7.25,
“SHOW PLUGINS Statement”. These statements are equivalent:

SELECT
 PLUGIN_NAME, PLUGIN_STATUS, PLUGIN_TYPE,
 PLUGIN_LIBRARY, PLUGIN_LICENSE
FROM INFORMATION_SCHEMA.PLUGINS;

SHOW PLUGINS;

28.3.23 The INFORMATION_SCHEMA PROCESSLIST Table

Important

INFORMATION_SCHEMA.PROCESSLIST is deprecated and subject to
removal in a future MySQL release. As such, the implementation of SHOW
PROCESSLIST which uses this table is also deprecated. It is recommended to
use the Performance Schema implementation of PROCESSLIST instead.

The MySQL process list indicates the operations currently being performed by the set of threads
executing within the server. The PROCESSLIST table is one source of process information. For a
comparison of this table with other sources, see Sources of Process Information.

The PROCESSLIST table has these columns:

5045

https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-api.html

The INFORMATION_SCHEMA PROCESSLIST Table

• ID

The connection identifier. This is the same value displayed in the Id column of the SHOW
PROCESSLIST statement, displayed in the PROCESSLIST_ID column of the Performance Schema
threads table, and returned by the CONNECTION_ID() function within the thread.

• USER

The MySQL user who issued the statement. A value of system user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an
I/O or SQL thread used on replica hosts. For system user, there is no host specified in the Host
column. unauthenticated user refers to a thread that has become associated with a client
connection but for which authentication of the client user has not yet occurred. event_scheduler
refers to the thread that monitors scheduled events (see Section 27.4, “Using the Event Scheduler”).

Note

A USER value of system user is distinct from the SYSTEM_USER privilege.
The former designates internal threads. The latter distinguishes the system
user and regular user account categories (see Section 8.2.11, “Account
Categories”).

• HOST

The host name of the client issuing the statement (except for system user, for which there is no
host). The host name for TCP/IP connections is reported in host_name:client_port format to
make it easier to determine which client is doing what.

• DB

The default database for the thread, or NULL if none has been selected.

• COMMAND

The type of command the thread is executing on behalf of the client, or Sleep if the session is idle.
For descriptions of thread commands, see Section 10.14, “Examining Server Thread (Process)
Information”. The value of this column corresponds to the COM_xxx commands of the client/server
protocol and Com_xxx status variables. See Section 7.1.10, “Server Status Variables”.

• TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Section 19.2.3, “Replication Threads”.

• STATE

An action, event, or state that indicates what the thread is doing. For descriptions of STATE values,
see Section 10.14, “Examining Server Thread (Process) Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the INFO value shows the SELECT statement.

5046

The INFORMATION_SCHEMA PROFILING Table

Notes

• PROCESSLIST is a nonstandard INFORMATION_SCHEMA table.

• Like the output from the SHOW PROCESSLIST statement, the PROCESSLIST table provides
information about all threads, even those belonging to other users, if you have the PROCESS
privilege. Otherwise (without the PROCESS privilege), nonanonymous users have access to
information about their own threads but not threads for other users, and anonymous users have no
access to thread information.

• If an SQL statement refers to the PROCESSLIST table, MySQL populates the entire table once, when
statement execution begins, so there is read consistency during the statement. There is no read
consistency for a multi-statement transaction.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST

SHOW FULL PROCESSLIST

28.3.24 The INFORMATION_SCHEMA PROFILING Table

The PROFILING table provides statement profiling information. Its contents correspond to the
information produced by the SHOW PROFILE and SHOW PROFILES statements (see Section 15.7.7.30,
“SHOW PROFILE Statement”). The table is empty unless the profiling session variable is set to 1.

Note

This table is deprecated; expect it to be removed in a future MySQL release.
Use the Performance Schema instead; see Section 29.19.1, “Query Profiling
Using Performance Schema”.

The PROFILING table has these columns:

• QUERY_ID

A numeric statement identifier.

• SEQ

A sequence number indicating the display order for rows with the same QUERY_ID value.

• STATE

The profiling state to which the row measurements apply.

• DURATION

How long statement execution remained in the given state, in seconds.

• CPU_USER, CPU_SYSTEM

User and system CPU use, in seconds.

• CONTEXT_VOLUNTARY, CONTEXT_INVOLUNTARY

How many voluntary and involuntary context switches occurred.

• BLOCK_OPS_IN, BLOCK_OPS_OUT

The number of block input and output operations.

• MESSAGES_SENT, MESSAGES_RECEIVED

The number of communication messages sent and received.

5047

The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table

• PAGE_FAULTS_MAJOR, PAGE_FAULTS_MINOR

The number of major and minor page faults.

• SWAPS

How many swaps occurred.

• SOURCE_FUNCTION, SOURCE_FILE, and SOURCE_LINE

Information indicating where in the source code the profiled state executes.

Notes

• PROFILING is a nonstandard INFORMATION_SCHEMA table.

Profiling information is also available from the SHOW PROFILE and SHOW PROFILES statements. See
Section 15.7.7.30, “SHOW PROFILE Statement”. For example, the following queries are equivalent:

SHOW PROFILE FOR QUERY 2;

SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;

28.3.25 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table

The REFERENTIAL_CONSTRAINTS table provides information about foreign keys.

The REFERENTIAL_CONSTRAINTS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• UNIQUE_CONSTRAINT_CATALOG

The name of the catalog containing the unique constraint that the constraint references. This value is
always def.

• UNIQUE_CONSTRAINT_SCHEMA

The name of the schema containing the unique constraint that the constraint references.

• UNIQUE_CONSTRAINT_NAME

The name of the unique constraint that the constraint references.

• MATCH_OPTION

The value of the constraint MATCH attribute. The only valid value at this time is NONE.

• UPDATE_RULE

The value of the constraint ON UPDATE attribute. The possible values are CASCADE, SET NULL, SET
DEFAULT, RESTRICT, NO ACTION.

5048

The INFORMATION_SCHEMA RESOURCE_GROUPS Table

• DELETE_RULE

The value of the constraint ON DELETE attribute. The possible values are CASCADE, SET NULL, SET
DEFAULT, RESTRICT, NO ACTION.

• TABLE_NAME

The name of the table. This value is the same as in the TABLE_CONSTRAINTS table.

• REFERENCED_TABLE_NAME

The name of the table referenced by the constraint.

28.3.26 The INFORMATION_SCHEMA RESOURCE_GROUPS Table

The RESOURCE_GROUPS table provides access to information about resource groups. For general
discussion of the resource group capability, see Section 7.1.16, “Resource Groups”.

You can see information only for columns for which you have some privilege.

The RESOURCE_GROUPS table has these columns:

• RESOURCE_GROUP_NAME

The name of the resource group.

• RESOURCE_GROUP_TYPE

The resource group type, either SYSTEM or USER.

• RESOURCE_GROUP_ENABLED

Whether the resource group is enabled (1) or disabled (0);

• VCPU_IDS

The CPU affinity; that is, the set of virtual CPUs that the resource group can use. The value is a list
of comma-separated CPU numbers or ranges.

• THREAD_PRIORITY

The priority for threads assigned to the resource group. The priority ranges from -20 (highest priority)
to 19 (lowest priority). System resource groups have a priority that ranges from -20 to 0. User
resource groups have a priority that ranges from 0 to 19.

28.3.27 The INFORMATION_SCHEMA ROLE_COLUMN_GRANTS Table

The ROLE_COLUMN_GRANTS table (available as of MySQL 8.0.19) provides information about the
column privileges for roles that are available to or granted by the currently enabled roles.

The ROLE_COLUMN_GRANTS table has these columns:

• GRANTOR

The user name part of the account that granted the role.

• GRANTOR_HOST

The host name part of the account that granted the role.

• GRANTEE

The user name part of the account to which the role is granted.

5049

The INFORMATION_SCHEMA ROLE_ROUTINE_GRANTS Table

• GRANTEE_HOST

The host name part of the account to which the role is granted.

• TABLE_CATALOG

The name of the catalog to which the role applies. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the role applies.

• TABLE_NAME

The name of the table to which the role applies.

• COLUMN_NAME

The name of the column to which the role applies.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the column level; see
Section 15.7.1.6, “GRANT Statement”. Each row lists a single privilege, so there is one row per
column privilege held by the grantee.

• IS_GRANTABLE

YES or NO, depending on whether the role is grantable to other accounts.

28.3.28 The INFORMATION_SCHEMA ROLE_ROUTINE_GRANTS Table

The ROLE_ROUTINE_GRANTS table (available as of MySQL 8.0.19) provides information about the
routine privileges for roles that are available to or granted by the currently enabled roles.

The ROLE_ROUTINE_GRANTS table has these columns:

• GRANTOR

The user name part of the account that granted the role.

• GRANTOR_HOST

The host name part of the account that granted the role.

• GRANTEE

The user name part of the account to which the role is granted.

• GRANTEE_HOST

The host name part of the account to which the role is granted.

• SPECIFIC_CATALOG

The name of the catalog to which the routine belongs. This value is always def.

• SPECIFIC_SCHEMA

The name of the schema (database) to which the routine belongs.

• SPECIFIC_NAME

The name of the routine.

5050

The INFORMATION_SCHEMA ROLE_TABLE_GRANTS Table

• ROUTINE_CATALOG

The name of the catalog to which the routine belongs. This value is always def.

• ROUTINE_SCHEMA

The name of the schema (database) to which the routine belongs.

• ROUTINE_NAME

The name of the routine.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the routine level; see
Section 15.7.1.6, “GRANT Statement”. Each row lists a single privilege, so there is one row per
column privilege held by the grantee.

• IS_GRANTABLE

YES or NO, depending on whether the role is grantable to other accounts.

28.3.29 The INFORMATION_SCHEMA ROLE_TABLE_GRANTS Table

The ROLE_TABLE_GRANTS table (available as of MySQL 8.0.19) provides information about the table
privileges for roles that are available to or granted by the currently enabled roles.

The ROLE_TABLE_GRANTS table has these columns:

• GRANTOR

The user name part of the account that granted the role.

• GRANTOR_HOST

The host name part of the account that granted the role.

• GRANTEE

The user name part of the account to which the role is granted.

• GRANTEE_HOST

The host name part of the account to which the role is granted.

• TABLE_CATALOG

The name of the catalog to which the role applies. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the role applies.

• TABLE_NAME

The name of the table to which the role applies.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the table level; see
Section 15.7.1.6, “GRANT Statement”. Each row lists a single privilege, so there is one row per
column privilege held by the grantee.

• IS_GRANTABLE

5051

The INFORMATION_SCHEMA ROUTINES Table

YES or NO, depending on whether the role is grantable to other accounts.

28.3.30 The INFORMATION_SCHEMA ROUTINES Table

The ROUTINES table provides information about stored routines (stored procedures and stored
functions). The ROUTINES table does not include built-in (native) functions or loadable functions.

The ROUTINES table has these columns:

• SPECIFIC_NAME

The name of the routine.

• ROUTINE_CATALOG

The name of the catalog to which the routine belongs. This value is always def.

• ROUTINE_SCHEMA

The name of the schema (database) to which the routine belongs.

• ROUTINE_NAME

The name of the routine.

• ROUTINE_TYPE

PROCEDURE for stored procedures, FUNCTION for stored functions.

• DATA_TYPE

If the routine is a stored function, the return value data type. If the routine is a stored procedure, this
value is empty.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

For stored function string return values, the maximum length in characters. If the routine is a stored
procedure, this value is NULL.

• CHARACTER_OCTET_LENGTH

For stored function string return values, the maximum length in bytes. If the routine is a stored
procedure, this value is NULL.

• NUMERIC_PRECISION

For stored function numeric return values, the numeric precision. If the routine is a stored procedure,
this value is NULL.

• NUMERIC_SCALE

For stored function numeric return values, the numeric scale. If the routine is a stored procedure, this
value is NULL.

• DATETIME_PRECISION

For stored function temporal return values, the fractional seconds precision. If the routine is a stored
procedure, this value is NULL.

• CHARACTER_SET_NAME

5052

The INFORMATION_SCHEMA ROUTINES Table

For stored function character string return values, the character set name. If the routine is a stored
procedure, this value is NULL.

• COLLATION_NAME

For stored function character string return values, the collation name. If the routine is a stored
procedure, this value is NULL.

• DTD_IDENTIFIER

If the routine is a stored function, the return value data type. If the routine is a stored procedure, this
value is empty.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• ROUTINE_BODY

The language used for the routine definition. This value is always SQL.

• ROUTINE_DEFINITION

The text of the SQL statement executed by the routine.

• EXTERNAL_NAME

This value is always NULL.

• EXTERNAL_LANGUAGE

The language of the stored routine. The value is read from the external_language column of the
mysql.routines data dictionary table.

• PARAMETER_STYLE

This value is always SQL.

• IS_DETERMINISTIC

YES or NO, depending on whether the routine is defined with the DETERMINISTIC characteristic.

• SQL_DATA_ACCESS

The data access characteristic for the routine. The value is one of CONTAINS SQL, NO SQL, READS
SQL DATA, or MODIFIES SQL DATA.

• SQL_PATH

This value is always NULL.

• SECURITY_TYPE

The routine SQL SECURITY characteristic. The value is one of DEFINER or INVOKER.

• CREATED

The date and time when the routine was created. This is a TIMESTAMP value.

• LAST_ALTERED

The date and time when the routine was last modified. This is a TIMESTAMP value. If the routine has
not been modified since its creation, this value is the same as the CREATED value.

• SQL_MODE

5053

The INFORMATION_SCHEMA SCHEMATA Table

The SQL mode in effect when the routine was created or altered, and under which the routine
executes. For the permitted values, see Section 7.1.11, “Server SQL Modes”.

• ROUTINE_COMMENT

The text of the comment, if the routine has one. If not, this value is empty.

• DEFINER

The account named in the DEFINER clause (often the user who created the routine), in
'user_name'@'host_name' format.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the routine was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the routine was created.

• DATABASE_COLLATION

The collation of the database with which the routine is associated.

Notes

• To see information about a routine, you must be the user named as the routine DEFINER, have
the SHOW_ROUTINE privilege, have the SELECT privilege at the global level, or have the CREATE
ROUTINE, ALTER ROUTINE, or EXECUTE privilege granted at a scope that includes the routine. The
ROUTINE_DEFINITION column is NULL if you have only CREATE ROUTINE, ALTER ROUTINE, or
EXECUTE.

• Information about stored function return values is also available in the PARAMETERS table. The return
value row for a stored function can be identified as the row that has an ORDINAL_POSITION value
of 0.

28.3.31 The INFORMATION_SCHEMA SCHEMATA Table

A schema is a database, so the SCHEMATA table provides information about databases.

The SCHEMATA table has these columns:

• CATALOG_NAME

The name of the catalog to which the schema belongs. This value is always def.

• SCHEMA_NAME

The name of the schema.

• DEFAULT_CHARACTER_SET_NAME

The schema default character set.

• DEFAULT_COLLATION_NAME

The schema default collation.

• SQL_PATH

This value is always NULL.

• DEFAULT_ENCRYPTION

5054

The INFORMATION_SCHEMA SCHEMATA_EXTENSIONS Table

The schema default encryption. This column was added in MySQL 8.0.16.

Schema names are also available from the SHOW DATABASES statement. See Section 15.7.7.14,
“SHOW DATABASES Statement”. The following statements are equivalent:

SELECT SCHEMA_NAME AS `Database`
 FROM INFORMATION_SCHEMA.SCHEMATA
 [WHERE SCHEMA_NAME LIKE 'wild']

SHOW DATABASES
 [LIKE 'wild']

You see only those databases for which you have some kind of privilege, unless you have the global
SHOW DATABASES privilege.

Caution

Because any static global privilege is considered a privilege for all databases,
any static global privilege enables a user to see all database names with SHOW
DATABASES or by examining the SCHEMATA table of INFORMATION_SCHEMA,
except databases that have been restricted at the database level by partial
revokes.

Notes

• The SCHEMATA_EXTENSIONS table augments the SCHEMATA table with information about schema
options.

28.3.32 The INFORMATION_SCHEMA SCHEMATA_EXTENSIONS Table

The SCHEMATA_EXTENSIONS table (available as of MySQL 8.0.22) augments the SCHEMATA table
with information about schema options.

The SCHEMATA_EXTENSIONS table has these columns:

• CATALOG_NAME

The name of the catalog to which the schema belongs. This value is always def.

• SCHEMA_NAME

The name of the schema.

• OPTIONS

The options for the schema. If the schema is read only, the value contains READ ONLY=1. If the
schema is not read only, no READ ONLY option appears.

Example

mysql> ALTER SCHEMA mydb READ ONLY = 1;
mysql> SELECT * FROM INFORMATION_SCHEMA.SCHEMATA_EXTENSIONS
 WHERE SCHEMA_NAME = 'mydb';
+--------------+-------------+-------------+
| CATALOG_NAME | SCHEMA_NAME | OPTIONS |
+--------------+-------------+-------------+
| def | mydb | READ ONLY=1 |
+--------------+-------------+-------------+

mysql> ALTER SCHEMA mydb READ ONLY = 0;
mysql> SELECT * FROM INFORMATION_SCHEMA.SCHEMATA_EXTENSIONS
 WHERE SCHEMA_NAME = 'mydb';
+--------------+-------------+---------+
| CATALOG_NAME | SCHEMA_NAME | OPTIONS |
+--------------+-------------+---------+

5055

The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table

| def | mydb | |
+--------------+-------------+---------+

Notes

• SCHEMATA_EXTENSIONS is a nonstandard INFORMATION_SCHEMA table.

28.3.33 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table

The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. It takes its
values from the mysql.db system table.

The SCHEMA_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog to which the schema belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the schema level; see
Section 15.7.1.6, “GRANT Statement”. Each row lists a single privilege, so there is one row per
schema privilege held by the grantee.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT
OPTION as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• SCHEMA_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.SCHEMA_PRIVILEGES

SHOW GRANTS ...

28.3.34 The INFORMATION_SCHEMA STATISTICS Table

The STATISTICS table provides information about table indexes.

Columns in STATISTICS that represent table statistics hold cached values. The
information_schema_stats_expiry system variable defines the period of time before
cached table statistics expire. The default is 86400 seconds (24 hours). If there are no
cached statistics or statistics have expired, statistics are retrieved from storage engines when
querying table statistics columns. To update cached values at any time for a given table, use
ANALYZE TABLE. To always retrieve the latest statistics directly from storage engines, set
information_schema_stats_expiry=0. For more information, see Section 10.2.3, “Optimizing
INFORMATION_SCHEMA Queries”.

Note

If the innodb_read_only system variable is enabled, ANALYZE TABLE
may fail because it cannot update statistics tables in the data dictionary,

5056

The INFORMATION_SCHEMA STATISTICS Table

which use InnoDB. For ANALYZE TABLE operations that update the key
distribution, failure may occur even if the operation updates the table itself (for
example, if it is a MyISAM table). To obtain the updated distribution statistics, set
information_schema_stats_expiry=0.

The STATISTICS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table containing the index belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the index belongs.

• TABLE_NAME

The name of the table containing the index.

• NON_UNIQUE

0 if the index cannot contain duplicates, 1 if it can.

• INDEX_SCHEMA

The name of the schema (database) to which the index belongs.

• INDEX_NAME

The name of the index. If the index is the primary key, the name is always PRIMARY.

• SEQ_IN_INDEX

The column sequence number in the index, starting with 1.

• COLUMN_NAME

The column name. See also the description for the EXPRESSION column.

• COLLATION

How the column is sorted in the index. This can have values A (ascending), D (descending), or NULL
(not sorted).

• CARDINALITY

An estimate of the number of unique values in the index. To update this number, run ANALYZE
TABLE or (for MyISAM tables) myisamchk -a.

CARDINALITY is counted based on statistics stored as integers, so the value is not necessarily
exact even for small tables. The higher the cardinality, the greater the chance that MySQL uses the
index when doing joins.

• SUB_PART

The index prefix. That is, the number of indexed characters if the column is only partly indexed, NULL
if the entire column is indexed.

Note

Prefix limits are measured in bytes. However, prefix lengths for index
specifications in CREATE TABLE, ALTER TABLE, and CREATE INDEX
statements are interpreted as number of characters for nonbinary string types

5057

The INFORMATION_SCHEMA STATISTICS Table

(CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY,
VARBINARY, BLOB). Take this into account when specifying a prefix length for
a nonbinary string column that uses a multibyte character set.

For additional information about index prefixes, see Section 10.3.5, “Column Indexes”, and
Section 15.1.15, “CREATE INDEX Statement”.

• PACKED

Indicates how the key is packed. NULL if it is not.

• NULLABLE

Contains YES if the column may contain NULL values and '' if not.

• INDEX_TYPE

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• COMMENT

Information about the index not described in its own column, such as disabled if the index is
disabled.

• INDEX_COMMENT

Any comment provided for the index with a COMMENT attribute when the index was created.

• IS_VISIBLE

Whether the index is visible to the optimizer. See Section 10.3.12, “Invisible Indexes”.

• EXPRESSION

MySQL 8.0.13 and higher supports functional key parts (see Functional Key Parts), which affects
both the COLUMN_NAME and EXPRESSION columns:

• For a nonfunctional key part, COLUMN_NAME indicates the column indexed by the key part and
EXPRESSION is NULL.

• For a functional key part, COLUMN_NAME column is NULL and EXPRESSION indicates the
expression for the key part.

Notes

• There is no standard INFORMATION_SCHEMA table for indexes. The MySQL column list is similar
to what SQL Server 2000 returns for sp_statistics, except that QUALIFIER and OWNER are
replaced with CATALOG and SCHEMA, respectively.

Information about table indexes is also available from the SHOW INDEX statement. See
Section 15.7.7.22, “SHOW INDEX Statement”. The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
 WHERE table_name = 'tbl_name'
 AND table_schema = 'db_name'

SHOW INDEX
 FROM tbl_name
 FROM db_name

In MySQL 8.0.30 and later, information about generated invisible primary key columns
is visible in this table by default. You can cause such information to be hidden by setting
show_gipk_in_create_table_and_information_schema = OFF. For more information, see
Section 15.1.20.11, “Generated Invisible Primary Keys”.

5058

The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table

28.3.35 The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table

The ST_GEOMETRY_COLUMNS table provides information about table columns that store spatial data.
This table is based on the SQL/MM (ISO/IEC 13249-3) standard, with extensions as noted. MySQL
implements ST_GEOMETRY_COLUMNS as a view on the INFORMATION_SCHEMA COLUMNS table.

The ST_GEOMETRY_COLUMNS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table containing the column belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the column belongs.

• TABLE_NAME

The name of the table containing the column.

• COLUMN_NAME

The name of the column.

• SRS_NAME

The spatial reference system (SRS) name.

• SRS_ID

The spatial reference system ID (SRID).

• GEOMETRY_TYPE_NAME

The column data type. Permitted values are: geometry, point, linestring, polygon,
multipoint, multilinestring, multipolygon, geometrycollection. This column is a
MySQL extension to the standard.

28.3.36 The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS
Table

The ST_SPATIAL_REFERENCE_SYSTEMS table provides information about available spatial reference
systems (SRSs) for spatial data. This table is based on the SQL/MM (ISO/IEC 13249-3) standard.

Entries in the ST_SPATIAL_REFERENCE_SYSTEMS table are based on the European Petroleum
Survey Group (EPSG) data set, except for SRID 0, which corresponds to a special SRS used in
MySQL that represents an infinite flat Cartesian plane with no units assigned to its axes. For additional
information about SRSs, see Section 13.4.5, “Spatial Reference System Support”.

The ST_SPATIAL_REFERENCE_SYSTEMS table has these columns:

• SRS_NAME

The spatial reference system name. This value is unique.

• SRS_ID

The spatial reference system numeric ID. This value is unique.

SRS_ID values represent the same kind of values as the SRID of geometry values or passed as the
SRID argument to spatial functions. SRID 0 (the unitless Cartesian plane) is special. It is always a

5059

http://epsg.org
http://epsg.org

The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS Table

legal spatial reference system ID and can be used in any computations on spatial data that depend
on SRID values.

• ORGANIZATION

The name of the organization that defined the coordinate system on which the spatial reference
system is based.

• ORGANIZATION_COORDSYS_ID

The numeric ID given to the spatial reference system by the organization that defined it.

• DEFINITION

The spatial reference system definition. DEFINITION values are WKT values, represented as
specified in the Open Geospatial Consortium document OGC 12-063r5.

SRS definition parsing occurs on demand when definitions are needed by GIS functions. Parsed
definitions are stored in the data dictionary cache to enable reuse and avoid incurring parsing
overhead for every statement that needs SRS information.

• DESCRIPTION

The spatial reference system description.

Notes

• The SRS_NAME, ORGANIZATION, ORGANIZATION_COORDSYS_ID, and DESCRIPTION columns
contain information that may be of interest to users, but they are not used by MySQL.

Example

mysql> SELECT * FROM ST_SPATIAL_REFERENCE_SYSTEMS
 WHERE SRS_ID = 4326\G
*************************** 1. row ***************************
 SRS_NAME: WGS 84
 SRS_ID: 4326
 ORGANIZATION: EPSG
ORGANIZATION_COORDSYS_ID: 4326
 DEFINITION: GEOGCS["WGS 84",DATUM["World Geodetic System 1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.017453292519943278,
 AUTHORITY["EPSG","9122"]],
 AXIS["Lat",NORTH],AXIS["Long",EAST],
 AUTHORITY["EPSG","4326"]]
 DESCRIPTION:

This entry describes the SRS used for GPS systems. It has a name (SRS_NAME) of WGS 84 and an ID
(SRS_ID) of 4326, which is the ID used by the European Petroleum Survey Group (EPSG).

The DEFINITION values for projected and geographic SRSs begin with PROJCS and GEOGCS,
respectively. The definition for SRID 0 is special and has an empty DEFINITION value. The following
query determines how many entries in the ST_SPATIAL_REFERENCE_SYSTEMS table correspond to
projected, geographic, and other SRSs, based on DEFINITION values:

mysql> SELECT
 COUNT(*),
 CASE LEFT(DEFINITION, 6)
 WHEN 'PROJCS' THEN 'Projected'
 WHEN 'GEOGCS' THEN 'Geographic'
 ELSE 'Other'
 END AS SRS_TYPE
 FROM INFORMATION_SCHEMA.ST_SPATIAL_REFERENCE_SYSTEMS

5060

http://www.opengeospatial.org
http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
http://epsg.org

The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table

 GROUP BY SRS_TYPE;
+----------+------------+
| COUNT(*) | SRS_TYPE |
+----------+------------+
1	Other
4668	Projected
483	Geographic
+----------+------------+

To enable manipulation of SRS entries stored in the data dictionary, MySQL provides these SQL
statements:

• CREATE SPATIAL REFERENCE SYSTEM: See Section 15.1.19, “CREATE SPATIAL REFERENCE
SYSTEM Statement”. The description for this statement includes additional information about SRS
components.

• DROP SPATIAL REFERENCE SYSTEM: See Section 15.1.31, “DROP SPATIAL REFERENCE
SYSTEM Statement”.

28.3.37 The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table

The ST_UNITS_OF_MEASURE table (available as of MySQL 8.0.14) provides information about
acceptable units for the ST_Distance() function.

The ST_UNITS_OF_MEASURE table has these columns:

• UNIT_NAME

The name of the unit.

• UNIT_TYPE

The unit type (for example, LINEAR).

• CONVERSION_FACTOR

A conversion factor used for internal calculations.

• DESCRIPTION

A description of the unit.

28.3.38 The INFORMATION_SCHEMA TABLES Table

The TABLES table provides information about tables in databases.

Columns in TABLES that represent table statistics hold cached values. The
information_schema_stats_expiry system variable defines the period of time before cached
table statistics expire. The default is 86400 seconds (24 hours). If there are no cached statistics or
statistics have expired, statistics are retrieved from storage engines when querying table statistics
columns. To update cached values at any time for a given table, use ANALYZE TABLE. To always
retrieve the latest statistics directly from storage engines, set information_schema_stats_expiry
to 0. For more information, see Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”.

Note

If the innodb_read_only system variable is enabled, ANALYZE TABLE
may fail because it cannot update statistics tables in the data dictionary,
which use InnoDB. For ANALYZE TABLE operations that update the key
distribution, failure may occur even if the operation updates the table itself (for
example, if it is a MyISAM table). To obtain the updated distribution statistics, set
information_schema_stats_expiry=0.

5061

The INFORMATION_SCHEMA TABLES Table

The TABLES table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• TABLE_TYPE

BASE TABLE for a table, VIEW for a view, or SYSTEM VIEW for an INFORMATION_SCHEMA table.

The TABLES table does not list TEMPORARY tables.

• ENGINE

The storage engine for the table. See Chapter 17, The InnoDB Storage Engine, and Chapter 18,
Alternative Storage Engines.

For partitioned tables, ENGINE shows the name of the storage engine used by all partitions.

• VERSION

This column is unused. With the removal of .frm files in MySQL 8.0, this column now reports a
hardcoded value of 10, which is the last .frm file version used in MySQL 5.7.

• ROW_FORMAT

The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM
tables, Dynamic corresponds to what myisamchk -dvv reports as Packed.

• TABLE_ROWS

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other
storage engines, such as InnoDB, this value is an approximation, and may vary from the actual
value by as much as 40% to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate
count.

TABLE_ROWS is NULL for INFORMATION_SCHEMA tables.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also
true if the InnoDB table is partitioned.)

• AVG_ROW_LENGTH

The average row length.

• DATA_LENGTH

For MyISAM, DATA_LENGTH is the length of the data file, in bytes.

For InnoDB, DATA_LENGTH is the approximate amount of space allocated for the clustered index, in
bytes. Specifically, it is the clustered index size, in pages, multiplied by the InnoDB page size.

Refer to the notes at the end of this section for information regarding other storage engines.

• MAX_DATA_LENGTH

5062

The INFORMATION_SCHEMA TABLES Table

For MyISAM, MAX_DATA_LENGTH is maximum length of the data file. This is the total number of
bytes of data that can be stored in the table, given the data pointer size used.

Unused for InnoDB.

Refer to the notes at the end of this section for information regarding other storage engines.

• INDEX_LENGTH

For MyISAM, INDEX_LENGTH is the length of the index file, in bytes.

For InnoDB, INDEX_LENGTH is the approximate amount of space allocated for non-clustered
indexes, in bytes. Specifically, it is the sum of non-clustered index sizes, in pages, multiplied by the
InnoDB page size.

Refer to the notes at the end of this section for information regarding other storage engines.

• DATA_FREE

The number of allocated but unused bytes.

InnoDB tables report the free space of the tablespace to which the table belongs. For a table located
in the shared tablespace, this is the free space of the shared tablespace. If you are using multiple
tablespaces and the table has its own tablespace, the free space is for only that table. Free space
means the number of bytes in completely free extents minus a safety margin. Even if free space
displays as 0, it may be possible to insert rows as long as new extents need not be allocated.

For NDB Cluster, DATA_FREE shows the space allocated on disk for, but not used by, a Disk Data
table or fragment on disk. (In-memory data resource usage is reported by the DATA_LENGTH
column.)

For partitioned tables, this value is only an estimate and may not be absolutely correct. A more
accurate method of obtaining this information in such cases is to query the INFORMATION_SCHEMA
PARTITIONS table, as shown in this example:

SELECT SUM(DATA_FREE)
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_SCHEMA = 'mydb'
 AND TABLE_NAME = 'mytable';

For more information, see Section 28.3.21, “The INFORMATION_SCHEMA PARTITIONS Table”.

• AUTO_INCREMENT

The next AUTO_INCREMENT value.

• CREATE_TIME

When the table was created.

• UPDATE_TIME

When the table was last updated. For some storage engines, this value is NULL. Even with file-per-
table mode with each InnoDB table in a separate .ibd file, change buffering can delay the write to
the data file, so the file modification time is different from the time of the last insert, update, or delete.
For MyISAM, the data file timestamp is used; however, on Windows the timestamp is not updated by
updates, so the value is inaccurate.

UPDATE_TIME displays a timestamp value for the last UPDATE, INSERT, or DELETE performed on
InnoDB tables that are not partitioned. For MVCC, the timestamp value reflects the COMMIT time,
which is considered the last update time. Timestamps are not persisted when the server is restarted
or when the table is evicted from the InnoDB data dictionary cache.

5063

The INFORMATION_SCHEMA TABLES Table

• CHECK_TIME

When the table was last checked. Not all storage engines update this time, in which case, the value
is always NULL.

For partitioned InnoDB tables, CHECK_TIME is always NULL.

• TABLE_COLLATION

The table default collation. The output does not explicitly list the table default character set, but the
collation name begins with the character set name.

• CHECKSUM

The live checksum value, if any.

• CREATE_OPTIONS

Extra options used with CREATE TABLE.

CREATE_OPTIONS shows partitioned for a partitioned table.

Prior to MySQL 8.0.16, CREATE_OPTIONS shows the ENCRYPTION clause specified for tables
created in file-per-table tablespaces. As of MySQL 8.0.16, it shows the encryption clause for file-
per-table tablespaces if the table is encrypted or if the specified encryption differs from the schema
encryption. The encryption clause is not shown for tables created in general tablespaces. To identify
encrypted file-per-table and general tablespaces, query the INNODB_TABLESPACES ENCRYPTION
column.

When creating a table with strict mode disabled, the storage engine's default row format is used
if the specified row format is not supported. The actual row format of the table is reported in the
ROW_FORMAT column. CREATE_OPTIONS shows the row format that was specified in the CREATE
TABLE statement.

When altering the storage engine of a table, table options that are not applicable to the new storage
engine are retained in the table definition to enable reverting the table with its previously defined
options to the original storage engine, if necessary. The CREATE_OPTIONS column may show
retained options.

• TABLE_COMMENT

The comment used when creating the table (or information as to why MySQL could not access the
table information).

Notes

• For NDB tables, the output of this statement shows appropriate values for the AVG_ROW_LENGTH and
DATA_LENGTH columns, with the exception that BLOB columns are not taken into account.

• For NDB tables, DATA_LENGTH includes data stored in main memory only; the MAX_DATA_LENGTH
and DATA_FREE columns apply to Disk Data.

• For NDB Cluster Disk Data tables, MAX_DATA_LENGTH shows the space allocated for the disk part
of a Disk Data table or fragment. (In-memory data resource usage is reported by the DATA_LENGTH
column.)

• For MEMORY tables, the DATA_LENGTH, MAX_DATA_LENGTH, and INDEX_LENGTH values
approximate the actual amount of allocated memory. The allocation algorithm reserves memory in
large amounts to reduce the number of allocation operations.

• For views, most TABLES columns are 0 or NULL except that TABLE_NAME indicates the view name,
CREATE_TIME indicates the creation time, and TABLE_COMMENT says VIEW.

5064

The INFORMATION_SCHEMA TABLES_EXTENSIONS Table

Table information is also available from the SHOW TABLE STATUS and SHOW TABLES statements.
See Section 15.7.7.38, “SHOW TABLE STATUS Statement”, and Section 15.7.7.39, “SHOW TABLES
Statement”. The following statements are equivalent:

SELECT
 TABLE_NAME, ENGINE, VERSION, ROW_FORMAT, TABLE_ROWS, AVG_ROW_LENGTH,
 DATA_LENGTH, MAX_DATA_LENGTH, INDEX_LENGTH, DATA_FREE, AUTO_INCREMENT,
 CREATE_TIME, UPDATE_TIME, CHECK_TIME, TABLE_COLLATION, CHECKSUM,
 CREATE_OPTIONS, TABLE_COMMENT
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_schema = 'db_name'
 [AND table_name LIKE 'wild']

SHOW TABLE STATUS
 FROM db_name
 [LIKE 'wild']

The following statements are equivalent:

SELECT
 TABLE_NAME, TABLE_TYPE
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_schema = 'db_name'
 [AND table_name LIKE 'wild']

SHOW FULL TABLES
 FROM db_name
 [LIKE 'wild']

28.3.39 The INFORMATION_SCHEMA TABLES_EXTENSIONS Table

The TABLES_EXTENSIONS table (available as of MySQL 8.0.21) provides information about table
attributes defined for primary and secondary storage engines.

Note

The TABLES_EXTENSIONS table is reserved for future use.

The TABLES_EXTENSIONS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• ENGINE_ATTRIBUTE

Table attributes defined for the primary storage engine. Reserved for future use.

• SECONDARY_ENGINE_ATTRIBUTE

Table attributes defined for the secondary storage engine. Reserved for future use.

28.3.40 The INFORMATION_SCHEMA TABLESPACES Table

This table is unused. It is deprecated; expect it to be removed in a future MySQL release. Other
INFORMATION_SCHEMA tables may provide related information:

• For NDB, the INFORMATION_SCHEMA FILES table provides tablespace-related information.

5065

The INFORMATION_SCHEMA TABLESPACES_EXTENSIONS Table

• For InnoDB, the INFORMATION_SCHEMA INNODB_TABLESPACES and INNODB_DATAFILES tables
provide tablespace metadata.

28.3.41 The INFORMATION_SCHEMA TABLESPACES_EXTENSIONS Table

The TABLESPACES_EXTENSIONS table (available as of MySQL 8.0.21) provides information about
tablespace attributes defined for primary storage engines.

Note

The TABLESPACES_EXTENSIONS table is reserved for future use.

The TABLESPACES_EXTENSIONS table has these columns:

• TABLESPACE_NAME

The name of the tablespace.

• ENGINE_ATTRIBUTE

Tablespace attributes defined for the primary storage engine. Reserved for future use.

28.3.42 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table

The TABLE_CONSTRAINTS table describes which tables have constraints.

The TABLE_CONSTRAINTS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• CONSTRAINT_TYPE

The type of constraint. The value can be UNIQUE, PRIMARY KEY, FOREIGN KEY, or (as of MySQL
8.0.16) CHECK. This is a CHAR (not ENUM) column.

The UNIQUE and PRIMARY KEY information is about the same as what you get from the Key_name
column in the output from SHOW INDEX when the Non_unique column is 0.

• ENFORCED

For CHECK constraints, the value is YES or NO to indicate whether the constraint is enforced. For
other constraints, the value is always YES.

This column was added in MySQL 8.0.16.

5066

The INFORMATION_SCHEMA TABLE_CONSTRAINTS_EXTENSIONS Table

28.3.43 The INFORMATION_SCHEMA TABLE_CONSTRAINTS_EXTENSIONS
Table

The TABLE_CONSTRAINTS_EXTENSIONS table (available as of MySQL 8.0.21) provides information
about table constraint attributes defined for primary and secondary storage engines.

Note

The TABLE_CONSTRAINTS_EXTENSIONS table is reserved for future use.

The TABLE_CONSTRAINTS_EXTENSIONS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the table belongs.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the table belongs.

• CONSTRAINT_NAME

The name of the constraint.

• TABLE_NAME

The name of the table.

• ENGINE_ATTRIBUTE

Constraint attributes defined for the primary storage engine. Reserved for future use.

• SECONDARY_ENGINE_ATTRIBUTE

Constraint attributes defined for the secondary storage engine. Reserved for future use.

28.3.44 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table

The TABLE_PRIVILEGES table provides information about table privileges. It takes its values from the
mysql.tables_priv system table.

The TABLE_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the table level; see
Section 15.7.1.6, “GRANT Statement”. Each row lists a single privilege, so there is one row per table
privilege held by the grantee.

5067

The INFORMATION_SCHEMA TRIGGERS Table

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT
OPTION as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• TABLE_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

SHOW GRANTS ...

28.3.45 The INFORMATION_SCHEMA TRIGGERS Table

The TRIGGERS table provides information about triggers. To see information about a table's triggers,
you must have the TRIGGER privilege for the table.

The TRIGGERS table has these columns:

• TRIGGER_CATALOG

The name of the catalog to which the trigger belongs. This value is always def.

• TRIGGER_SCHEMA

The name of the schema (database) to which the trigger belongs.

• TRIGGER_NAME

The name of the trigger.

• EVENT_MANIPULATION

The trigger event. This is the type of operation on the associated table for which the trigger activates.
The value is INSERT (a row was inserted), DELETE (a row was deleted), or UPDATE (a row was
modified).

• EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA, and EVENT_OBJECT_TABLE

As noted in Section 27.3, “Using Triggers”, every trigger is associated with exactly one table. These
columns indicate the catalog and schema (database) in which this table occurs, and the table name,
respectively. The EVENT_OBJECT_CATALOG value is always def.

• ACTION_ORDER

The ordinal position of the trigger's action within the list of triggers on the same table with the same
EVENT_MANIPULATION and ACTION_TIMING values.

• ACTION_CONDITION

This value is always NULL.

• ACTION_STATEMENT

The trigger body; that is, the statement executed when the trigger activates. This text uses UTF-8
encoding.

• ACTION_ORIENTATION

This value is always ROW.

• ACTION_TIMING

5068

The INFORMATION_SCHEMA TRIGGERS Table

Whether the trigger activates before or after the triggering event. The value is BEFORE or AFTER.

• ACTION_REFERENCE_OLD_TABLE

This value is always NULL.

• ACTION_REFERENCE_NEW_TABLE

This value is always NULL.

• ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW

The old and new column identifiers, respectively. The ACTION_REFERENCE_OLD_ROW value is
always OLD and the ACTION_REFERENCE_NEW_ROW value is always NEW.

• CREATED

The date and time when the trigger was created. This is a TIMESTAMP(2) value (with a fractional
part in hundredths of seconds) for triggers.

• SQL_MODE

The SQL mode in effect when the trigger was created, and under which the trigger executes. For the
permitted values, see Section 7.1.11, “Server SQL Modes”.

• DEFINER

The account named in the DEFINER clause (often the user who created the trigger), in
'user_name'@'host_name' format.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the trigger was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the trigger was created.

• DATABASE_COLLATION

The collation of the database with which the trigger is associated.

Example

The following example uses the ins_sum trigger defined in Section 27.3, “Using Triggers”:

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS
 WHERE TRIGGER_SCHEMA='test' AND TRIGGER_NAME='ins_sum'\G
*************************** 1. row ***************************
 TRIGGER_CATALOG: def
 TRIGGER_SCHEMA: test
 TRIGGER_NAME: ins_sum
 EVENT_MANIPULATION: INSERT
 EVENT_OBJECT_CATALOG: def
 EVENT_OBJECT_SCHEMA: test
 EVENT_OBJECT_TABLE: account
 ACTION_ORDER: 1
 ACTION_CONDITION: NULL
 ACTION_STATEMENT: SET @sum = @sum + NEW.amount
 ACTION_ORIENTATION: ROW
 ACTION_TIMING: BEFORE
ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
 ACTION_REFERENCE_OLD_ROW: OLD
 ACTION_REFERENCE_NEW_ROW: NEW
 CREATED: 2018-08-08 10:10:12.61

5069

The INFORMATION_SCHEMA USER_ATTRIBUTES Table

 SQL_MODE: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_ENGINE_SUBSTITUTION
 DEFINER: me@localhost
 CHARACTER_SET_CLIENT: utf8mb4
 COLLATION_CONNECTION: utf8mb4_0900_ai_ci
 DATABASE_COLLATION: utf8mb4_0900_ai_ci

Trigger information is also available from the SHOW TRIGGERS statement. See Section 15.7.7.40,
“SHOW TRIGGERS Statement”.

28.3.46 The INFORMATION_SCHEMA USER_ATTRIBUTES Table

The USER_ATTRIBUTES table (available as of MySQL 8.0.21) provides information about user
comments and user attributes. It takes its values from the mysql.user system table.

The USER_ATTRIBUTES table has these columns:

• USER

The user name portion of the account to which the ATTRIBUTE column value applies.

• HOST

The host name portion of the account to which the ATTRIBUTE column value applies.

• ATTRIBUTE

The user comment, user attribute, or both belonging to the account specified by the USER and HOST
columns. The value is in JSON object notation. Attributes are shown exactly as set using CREATE
USER and ALTER USER statements with ATTRIBUTE or COMMENT options. A comment is shown as
a key-value pair having comment as the key. For additional information and examples, see CREATE
USER Comment and Attribute Options.

Notes

• USER_ATTRIBUTES is a nonstandard INFORMATION_SCHEMA table.

• To obtain only the user comment for a given user as an unquoted string, you can employ a query
such as this one:

mysql> SELECT ATTRIBUTE->>"$.comment" AS Comment
 -> FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER='bill' AND HOST='localhost';
+-----------+
| Comment |
+-----------+
| A comment |
+-----------+

Similarly, you can obtain the unquoted value for a given user attribute using its key.

• Prior to MySQL 8.0.22, USER_ATTRIBUTES contents are accessible by anyone. As of MySQL
8.0.22, USER_ATTRIBUTES contents are accessible as follows:

• All rows are accessible if:

• The current thread is a replica thread.

• The access control system has not been initialized (for example, the server was started with the
--skip-grant-tables option).

• The currently authenticated account has the UPDATE or SELECT privilege for the mysql.user
system table.

5070

The INFORMATION_SCHEMA USER_PRIVILEGES Table

• The currently authenticated account has the CREATE USER and SYSTEM_USER privileges.

• Otherwise, the currently authenticated account can see the row for that account. Additionally, if the
account has the CREATE USER privilege but not the SYSTEM_USER privilege, it can see rows for
all other accounts that do not have the SYSTEM_USER privilege.

For more information about specifying account comments and attributes, see Section 15.7.1.3,
“CREATE USER Statement”.

28.3.47 The INFORMATION_SCHEMA USER_PRIVILEGES Table

The USER_PRIVILEGES table provides information about global privileges. It takes its values from the
mysql.user system table.

The USER_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog. This value is always def.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the global level; see
Section 15.7.1.6, “GRANT Statement”. Each row lists a single privilege, so there is one row per
global privilege held by the grantee.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT
OPTION as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• USER_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.USER_PRIVILEGES

SHOW GRANTS ...

28.3.48 The INFORMATION_SCHEMA VIEWS Table

The VIEWS table provides information about views in databases. You must have the SHOW VIEW
privilege to access this table.

The VIEWS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the view belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the view belongs.

• TABLE_NAME

The name of the view.

5071

The INFORMATION_SCHEMA VIEWS Table

• VIEW_DEFINITION

The SELECT statement that provides the definition of the view. This column has most of what you
see in the Create Table column that SHOW CREATE VIEW produces. Skip the words before
SELECT and skip the words WITH CHECK OPTION. Suppose that the original statement was:

CREATE VIEW v AS
 SELECT s2,s1 FROM t
 WHERE s1 > 5
 ORDER BY s1
 WITH CHECK OPTION;

Then the view definition looks like this:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• CHECK_OPTION

The value of the CHECK_OPTION attribute. The value is one of NONE, CASCADE, or LOCAL.

• IS_UPDATABLE

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES
(true) if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is
set to NO (false). The IS_UPDATABLE column in the VIEWS table displays the status of this flag. It
means that the server always knows whether a view is updatable.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are
rejected. (Even if a view is updatable, it might not be possible to insert into it; for details, refer to
Section 27.5.3, “Updatable and Insertable Views”.)

• DEFINER

The account of the user who created the view, in 'user_name'@'host_name' format.

• SECURITY_TYPE

The view SQL SECURITY characteristic. The value is one of DEFINER or INVOKER.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the view was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the view was created.

Notes

MySQL permits different sql_mode settings to tell the server the type of SQL syntax to support.
For example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard
SQL concatenation operator, the double bar (||), in your queries. If you then create a view that
concatenates items, you might worry that changing the sql_mode setting to a value different from
ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a
view definition, MySQL always stores it the same way, in a canonical form. Here is an example that
shows how the server changes a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT VIEW_DEFINITION FROM INFORMATION_SCHEMA.VIEWS

5072

The INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Table

 WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v';
+----------------------------------+
| VIEW_DEFINITION |
+----------------------------------+
| select concat('a','b') AS `col1` |
+----------------------------------+
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value
of sql_mode do not affect the results from the view. However, an additional consequence is that
comments prior to SELECT are stripped from the definition by the server.

28.3.49 The INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Table

The VIEW_ROUTINE_USAGE table (available as of MySQL 8.0.13) provides access to information
about stored functions used in view definitions. The table does not list information about built-in (native)
functions or loadable functions used in the definitions.

You can see information only for views for which you have some privilege, and only for functions for
which you have some privilege.

The VIEW_ROUTINE_USAGE table has these columns:

• TABLE_CATALOG

The name of the catalog to which the view belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the view belongs.

• TABLE_NAME

The name of the view.

• SPECIFIC_CATALOG

The name of the catalog to which the function used in the view definition belongs. This value is
always def.

• SPECIFIC_SCHEMA

The name of the schema (database) to which the function used in the view definition belongs.

• SPECIFIC_NAME

The name of the function used in the view definition.

28.3.50 The INFORMATION_SCHEMA VIEW_TABLE_USAGE Table

The VIEW_TABLE_USAGE table (available as of MySQL 8.0.13) provides access to information about
tables and views used in view definitions.

You can see information only for views for which you have some privilege, and only for tables for which
you have some privilege.

The VIEW_TABLE_USAGE table has these columns:

• VIEW_CATALOG

The name of the catalog to which the view belongs. This value is always def.

• VIEW_SCHEMA

The name of the schema (database) to which the view belongs.

5073

INFORMATION_SCHEMA InnoDB Tables

• VIEW_NAME

The name of the view.

• TABLE_CATALOG

The name of the catalog to which the table or view used in the view definition belongs. This value is
always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table or view used in the view definition belongs.

• TABLE_NAME

The name of the table or view used in the view definition.

28.4 INFORMATION_SCHEMA InnoDB Tables

This section provides table definitions for INFORMATION_SCHEMA InnoDB tables. For related
information and examples, see Section 17.15, “InnoDB INFORMATION_SCHEMA Tables”.

INFORMATION_SCHEMA InnoDB tables can be used to monitor ongoing InnoDB activity, to detect
inefficiencies before they turn into issues, or to troubleshoot performance and capacity issues. As your
database becomes bigger and busier, running up against the limits of your hardware capacity, you
monitor and tune these aspects to keep the database running smoothly.

28.4.1 INFORMATION_SCHEMA InnoDB Table Reference

The following table summarizes INFORMATION_SCHEMA InnoDB tables. For greater detail, see the
individual table descriptions.

Table 28.3 INFORMATION_SCHEMA InnoDB Tables

Table Name Description Introduced

INNODB_BUFFER_PAGE Pages in InnoDB buffer pool

INNODB_BUFFER_PAGE_LRU LRU ordering of pages in InnoDB
buffer pool

INNODB_BUFFER_POOL_STATS InnoDB buffer pool statistics

INNODB_CACHED_INDEXES Number of index pages cached
per index in InnoDB buffer pool

INNODB_CMP Status for operations related to
compressed InnoDB tables

INNODB_CMP_PER_INDEX Status for operations related to
compressed InnoDB tables and
indexes

INNODB_CMP_PER_INDEX_RESETStatus for operations related to
compressed InnoDB tables and
indexes

INNODB_CMP_RESET Status for operations related to
compressed InnoDB tables

INNODB_CMPMEM Status for compressed pages
within InnoDB buffer pool

INNODB_CMPMEM_RESET Status for compressed pages
within InnoDB buffer pool

5074

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

Table Name Description Introduced

INNODB_COLUMNS Columns in each InnoDB table

INNODB_DATAFILES Data file path information for
InnoDB file-per-table and general
tablespaces

INNODB_FIELDS Key columns of InnoDB indexes

INNODB_FOREIGN InnoDB foreign-key metadata

INNODB_FOREIGN_COLS InnoDB foreign-key column
status information

INNODB_FT_BEING_DELETED Snapshot of
INNODB_FT_DELETED table

INNODB_FT_CONFIG Metadata for InnoDB table
FULLTEXT index and associated
processing

INNODB_FT_DEFAULT_STOPWORDDefault list of stopwords for
InnoDB FULLTEXT indexes

INNODB_FT_DELETED Rows deleted from InnoDB table
FULLTEXT index

INNODB_FT_INDEX_CACHE Token information for newly
inserted rows in InnoDB
FULLTEXT index

INNODB_FT_INDEX_TABLE Inverted index information for
processing text searches against
InnoDB table FULLTEXT index

INNODB_INDEXES InnoDB index metadata

INNODB_METRICS InnoDB performance information

INNODB_SESSION_TEMP_TABLESPACESSession temporary-tablespace
metadata

8.0.13

INNODB_TABLES InnoDB table metadata

INNODB_TABLESPACES InnoDB file-per-table, general,
and undo tablespace metadata

INNODB_TABLESPACES_BRIEF Brief file-per-table, general,
undo, and system tablespace
metadata

INNODB_TABLESTATS InnoDB table low-level status
information

INNODB_TEMP_TABLE_INFO Information about active user-
created InnoDB temporary tables

INNODB_TRX Active InnoDB transaction
information

INNODB_VIRTUAL InnoDB virtual generated column
metadata

28.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

The INNODB_BUFFER_PAGE table provides information about each page in the InnoDB buffer pool.

For related usage information and examples, see Section 17.15.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

5075

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

Warning

Querying the INNODB_BUFFER_PAGE table can affect performance. Do
not query this table on a production system unless you are aware of the
performance impact and have determined it to be acceptable. To avoid
impacting performance on a production system, reproduce the issue you want
to investigate and query buffer pool statistics on a test instance.

The INNODB_BUFFER_PAGE table has these columns:

• POOL_ID

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• BLOCK_ID

The buffer pool block ID.

• SPACE

The tablespace ID; the same value as INNODB_TABLES.SPACE.

• PAGE_NUMBER

The page number.

• PAGE_TYPE

The page type. The following table shows the permitted values.

Table 28.4 INNODB_BUFFER_PAGE.PAGE_TYPE Values

Page Type Description

ALLOCATED Freshly allocated page

BLOB Uncompressed BLOB page

COMPRESSED_BLOB2 Subsequent comp BLOB page

COMPRESSED_BLOB First compressed BLOB page

ENCRYPTED_RTREE Encrypted R-tree

EXTENT_DESCRIPTOR Extent descriptor page

FILE_SPACE_HEADER File space header

FIL_PAGE_TYPE_UNUSED Unused

IBUF_BITMAP Insert buffer bitmap

IBUF_FREE_LIST Insert buffer free list

IBUF_INDEX Insert buffer index

INDEX B-tree node

INODE Index node

LOB_DATA Uncompressed LOB data

LOB_FIRST First page of uncompressed LOB

LOB_INDEX Uncompressed LOB index

PAGE_IO_COMPRESSED Compressed page

PAGE_IO_COMPRESSED_ENCRYPTED Compressed and encrypted page

PAGE_IO_ENCRYPTED Encrypted page

RSEG_ARRAY Rollback segment array

5076

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

Page Type Description

RTREE_INDEX R-tree index

SDI_BLOB Uncompressed SDI BLOB

SDI_COMPRESSED_BLOB Compressed SDI BLOB

SDI_INDEX SDI index

SYSTEM System page

TRX_SYSTEM Transaction system data

UNDO_LOG Undo log page

UNKNOWN Unknown

ZLOB_DATA Compressed LOB data

ZLOB_FIRST First page of compressed LOB

ZLOB_FRAG Compressed LOB fragment

ZLOB_FRAG_ENTRY Compressed LOB fragment index

ZLOB_INDEX Compressed LOB index

• FLUSH_TYPE

The flush type.

• FIX_COUNT

The number of threads using this block within the buffer pool. When zero, the block is eligible to be
evicted.

• IS_HASHED

Whether a hash index has been built on this page.

• NEWEST_MODIFICATION

The Log Sequence Number of the youngest modification.

• OLDEST_MODIFICATION

The Log Sequence Number of the oldest modification.

• ACCESS_TIME

An abstract number used to judge the first access time of the page.

• TABLE_NAME

The name of the table the page belongs to. This column is applicable only to pages with a
PAGE_TYPE value of INDEX. The column is NULL if the server has not yet accessed the table.

• INDEX_NAME

The name of the index the page belongs to. This can be the name of a clustered index or a
secondary index. This column is applicable only to pages with a PAGE_TYPE value of INDEX.

• NUMBER_RECORDS

The number of records within the page.

5077

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

• DATA_SIZE

The sum of the sizes of the records. This column is applicable only to pages with a PAGE_TYPE
value of INDEX.

• COMPRESSED_SIZE

The compressed page size. NULL for pages that are not compressed.

• PAGE_STATE

The page state. The following table shows the permitted values.

Table 28.5 INNODB_BUFFER_PAGE.PAGE_STATE Values

Page State Description

FILE_PAGE A buffered file page

MEMORY Contains a main memory object

NOT_USED In the free list

NULL Clean compressed pages, compressed pages
in the flush list, pages used as buffer pool watch
sentinels

READY_FOR_USE A free page

REMOVE_HASH Hash index should be removed before placing in
the free list

• IO_FIX

Whether any I/O is pending for this page: IO_NONE = no pending I/O, IO_READ = read pending,
IO_WRITE = write pending, IO_PIN = relocation and removal from the flush not permitted.

• IS_OLD

Whether the block is in the sublist of old blocks in the LRU list.

• FREE_PAGE_CLOCK

The value of the freed_page_clock counter when the block was the last placed at the head of the
LRU list. The freed_page_clock counter tracks the number of blocks removed from the end of the
LRU list.

• IS_STALE

Whether the page is stale. Added in MySQL 8.0.24.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE LIMIT 1\G
*************************** 1. row ***************************
 POOL_ID: 0
 BLOCK_ID: 0
 SPACE: 97
 PAGE_NUMBER: 2473
 PAGE_TYPE: INDEX
 FLUSH_TYPE: 1
 FIX_COUNT: 0
 IS_HASHED: YES
NEWEST_MODIFICATION: 733855581
OLDEST_MODIFICATION: 0
 ACCESS_TIME: 3378385672
 TABLE_NAME: `employees`.`salaries`
 INDEX_NAME: PRIMARY
 NUMBER_RECORDS: 468

5078

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

 DATA_SIZE: 14976
 COMPRESSED_SIZE: 0
 PAGE_STATE: FILE_PAGE
 IO_FIX: IO_NONE
 IS_OLD: YES
 FREE_PAGE_CLOCK: 66
 IS_STALE: NO

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the buffer
pool until space is required for other data. The INNODB_BUFFER_PAGE table reports information
about these pages until they are evicted from the buffer pool. For more information about how the
InnoDB manages buffer pool data, see Section 17.5.1, “Buffer Pool”.

28.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

The INNODB_BUFFER_PAGE_LRU table provides information about the pages in the InnoDB buffer
pool; in particular, how they are ordered in the LRU list that determines which pages to evict from the
buffer pool when it becomes full.

The INNODB_BUFFER_PAGE_LRU table has the same columns as the INNODB_BUFFER_PAGE table
with a few exceptions. It has LRU_POSITION and COMPRESSED columns instead of BLOCK_ID and
PAGE_STATE columns, and it does not include and IS_STALE column.

For related usage information and examples, see Section 17.15.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

Warning

Querying the INNODB_BUFFER_PAGE_LRU table can affect performance.
Do not query this table on a production system unless you are aware of
the performance impact and have determined it to be acceptable. To avoid
impacting performance on a production system, reproduce the issue you want
to investigate and query buffer pool statistics on a test instance.

The INNODB_BUFFER_PAGE_LRU table has these columns:

• POOL_ID

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• LRU_POSITION

The position of the page in the LRU list.

• SPACE

The tablespace ID; the same value as INNODB_TABLES.SPACE.

• PAGE_NUMBER

The page number.

• PAGE_TYPE

The page type. The following table shows the permitted values.

5079

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

Table 28.6 INNODB_BUFFER_PAGE_LRU.PAGE_TYPE Values

Page Type Description

ALLOCATED Freshly allocated page

BLOB Uncompressed BLOB page

COMPRESSED_BLOB2 Subsequent comp BLOB page

COMPRESSED_BLOB First compressed BLOB page

ENCRYPTED_RTREE Encrypted R-tree

EXTENT_DESCRIPTOR Extent descriptor page

FILE_SPACE_HEADER File space header

FIL_PAGE_TYPE_UNUSED Unused

IBUF_BITMAP Insert buffer bitmap

IBUF_FREE_LIST Insert buffer free list

IBUF_INDEX Insert buffer index

INDEX B-tree node

INODE Index node

LOB_DATA Uncompressed LOB data

LOB_FIRST First page of uncompressed LOB

LOB_INDEX Uncompressed LOB index

PAGE_IO_COMPRESSED Compressed page

PAGE_IO_COMPRESSED_ENCRYPTED Compressed and encrypted page

PAGE_IO_ENCRYPTED Encrypted page

RSEG_ARRAY Rollback segment array

RTREE_INDEX R-tree index

SDI_BLOB Uncompressed SDI BLOB

SDI_COMPRESSED_BLOB Compressed SDI BLOB

SDI_INDEX SDI index

SYSTEM System page

TRX_SYSTEM Transaction system data

UNDO_LOG Undo log page

UNKNOWN Unknown

ZLOB_DATA Compressed LOB data

ZLOB_FIRST First page of compressed LOB

ZLOB_FRAG Compressed LOB fragment

ZLOB_FRAG_ENTRY Compressed LOB fragment index

ZLOB_INDEX Compressed LOB index

• FLUSH_TYPE

The flush type.

• FIX_COUNT

The number of threads using this block within the buffer pool. When zero, the block is eligible to be
evicted.

5080

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

• IS_HASHED

Whether a hash index has been built on this page.

• NEWEST_MODIFICATION

The Log Sequence Number of the youngest modification.

• OLDEST_MODIFICATION

The Log Sequence Number of the oldest modification.

• ACCESS_TIME

An abstract number used to judge the first access time of the page.

• TABLE_NAME

The name of the table the page belongs to. This column is applicable only to pages with a
PAGE_TYPE value of INDEX. The column is NULL if the server has not yet accessed the table.

• INDEX_NAME

The name of the index the page belongs to. This can be the name of a clustered index or a
secondary index. This column is applicable only to pages with a PAGE_TYPE value of INDEX.

• NUMBER_RECORDS

The number of records within the page.

• DATA_SIZE

The sum of the sizes of the records. This column is applicable only to pages with a PAGE_TYPE
value of INDEX.

• COMPRESSED_SIZE

The compressed page size. NULL for pages that are not compressed.

• COMPRESSED

Whether the page is compressed.

• IO_FIX

Whether any I/O is pending for this page: IO_NONE = no pending I/O, IO_READ = read pending,
IO_WRITE = write pending.

• IS_OLD

Whether the block is in the sublist of old blocks in the LRU list.

• FREE_PAGE_CLOCK

The value of the freed_page_clock counter when the block was the last placed at the head of the
LRU list. The freed_page_clock counter tracks the number of blocks removed from the end of the
LRU list.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU LIMIT 1\G
*************************** 1. row ***************************
 POOL_ID: 0
 LRU_POSITION: 0

5081

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

 SPACE: 97
 PAGE_NUMBER: 1984
 PAGE_TYPE: INDEX
 FLUSH_TYPE: 1
 FIX_COUNT: 0
 IS_HASHED: YES
NEWEST_MODIFICATION: 719490396
OLDEST_MODIFICATION: 0
 ACCESS_TIME: 3378383796
 TABLE_NAME: `employees`.`salaries`
 INDEX_NAME: PRIMARY
 NUMBER_RECORDS: 468
 DATA_SIZE: 14976
 COMPRESSED_SIZE: 0
 COMPRESSED: NO
 IO_FIX: IO_NONE
 IS_OLD: YES
 FREE_PAGE_CLOCK: 0

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• Querying this table can require MySQL to allocate a large block of contiguous memory, more than 64
bytes times the number of active pages in the buffer pool. This allocation could potentially cause an
out-of-memory error, especially for systems with multi-gigabyte buffer pools.

• Querying this table requires MySQL to lock the data structure representing the buffer pool while
traversing the LRU list, which can reduce concurrency, especially for systems with multi-gigabyte
buffer pools.

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the
buffer pool until space is required for other data. The INNODB_BUFFER_PAGE_LRU table reports
information about these pages until they are evicted from the buffer pool. For more information about
how the InnoDB manages buffer pool data, see Section 17.5.1, “Buffer Pool”.

28.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

The INNODB_BUFFER_POOL_STATS table provides much of the same buffer pool information provided
in SHOW ENGINE INNODB STATUS output. Much of the same information may also be obtained using
InnoDB buffer pool server status variables.

The idea of making pages in the buffer pool “young” or “not young” refers to transferring them between
the sublists at the head and tail of the buffer pool data structure. Pages made “young” take longer
to age out of the buffer pool, while pages made “not young” are moved much closer to the point of
eviction.

For related usage information and examples, see Section 17.15.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

The INNODB_BUFFER_POOL_STATS table has these columns:

• POOL_ID

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• POOL_SIZE

The InnoDB buffer pool size in pages.

5082

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

• FREE_BUFFERS

The number of free pages in the InnoDB buffer pool.

• DATABASE_PAGES

The number of pages in the InnoDB buffer pool containing data. This number includes both dirty and
clean pages.

• OLD_DATABASE_PAGES

The number of pages in the old buffer pool sublist.

• MODIFIED_DATABASE_PAGES

The number of modified (dirty) database pages.

• PENDING_DECOMPRESS

The number of pages pending decompression.

• PENDING_READS

The number of pending reads.

• PENDING_FLUSH_LRU

The number of pages pending flush in the LRU.

• PENDING_FLUSH_LIST

The number of pages pending flush in the flush list.

• PAGES_MADE_YOUNG

The number of pages made young.

• PAGES_NOT_MADE_YOUNG

The number of pages not made young.

• PAGES_MADE_YOUNG_RATE

The number of pages made young per second (pages made young since the last printout / time
elapsed).

• PAGES_MADE_NOT_YOUNG_RATE

The number of pages not made per second (pages not made young since the last printout / time
elapsed).

• NUMBER_PAGES_READ

The number of pages read.

• NUMBER_PAGES_CREATED

The number of pages created.

• NUMBER_PAGES_WRITTEN

The number of pages written.

• PAGES_READ_RATE

5083

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

The number of pages read per second (pages read since the last printout / time elapsed).

• PAGES_CREATE_RATE

The number of pages created per second (pages created since the last printout / time elapsed).

• PAGES_WRITTEN_RATE

The number of pages written per second (pages written since the last printout / time elapsed).

• NUMBER_PAGES_GET

The number of logical read requests.

• HIT_RATE

The buffer pool hit rate.

• YOUNG_MAKE_PER_THOUSAND_GETS

The number of pages made young per thousand gets.

• NOT_YOUNG_MAKE_PER_THOUSAND_GETS

The number of pages not made young per thousand gets.

• NUMBER_PAGES_READ_AHEAD

The number of pages read ahead.

• NUMBER_READ_AHEAD_EVICTED

The number of pages read into the InnoDB buffer pool by the read-ahead background thread that
were subsequently evicted without having been accessed by queries.

• READ_AHEAD_RATE

The read-ahead rate per second (pages read ahead since the last printout / time elapsed).

• READ_AHEAD_EVICTED_RATE

The number of read-ahead pages evicted without access per second (read-ahead pages not
accessed since the last printout / time elapsed).

• LRU_IO_TOTAL

Total LRU I/O.

• LRU_IO_CURRENT

LRU I/O for the current interval.

• UNCOMPRESS_TOTAL

The total number of pages decompressed.

• UNCOMPRESS_CURRENT

The number of pages decompressed in the current interval.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_POOL_STATS\G
*************************** 1. row ***************************
 POOL_ID: 0

5084

The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table

 POOL_SIZE: 8192
 FREE_BUFFERS: 1
 DATABASE_PAGES: 8085
 OLD_DATABASE_PAGES: 2964
 MODIFIED_DATABASE_PAGES: 0
 PENDING_DECOMPRESS: 0
 PENDING_READS: 0
 PENDING_FLUSH_LRU: 0
 PENDING_FLUSH_LIST: 0
 PAGES_MADE_YOUNG: 22821
 PAGES_NOT_MADE_YOUNG: 3544303
 PAGES_MADE_YOUNG_RATE: 357.62602199870594
 PAGES_MADE_NOT_YOUNG_RATE: 0
 NUMBER_PAGES_READ: 2389
 NUMBER_PAGES_CREATED: 12385
 NUMBER_PAGES_WRITTEN: 13111
 PAGES_READ_RATE: 0
 PAGES_CREATE_RATE: 0
 PAGES_WRITTEN_RATE: 0
 NUMBER_PAGES_GET: 33322210
 HIT_RATE: 1000
 YOUNG_MAKE_PER_THOUSAND_GETS: 18
NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 0
 NUMBER_PAGES_READ_AHEAD: 2024
 NUMBER_READ_AHEAD_EVICTED: 0
 READ_AHEAD_RATE: 0
 READ_AHEAD_EVICTED_RATE: 0
 LRU_IO_TOTAL: 0
 LRU_IO_CURRENT: 0
 UNCOMPRESS_TOTAL: 0
 UNCOMPRESS_CURRENT: 0

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.5 The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table

The INNODB_CACHED_INDEXES table reports the number of index pages cached in the InnoDB buffer
pool for each index.

For related usage information and examples, see Section 17.15.5, “InnoDB INFORMATION_SCHEMA
Buffer Pool Tables”.

The INNODB_CACHED_INDEXES table has these columns:

• SPACE_ID

The tablespace ID.

• INDEX_ID

An identifier for the index. Index identifiers are unique across all the databases in an instance.

• N_CACHED_PAGES

The total number of index pages cached in the InnoDB buffer pool for a specific index since MySQL
Server last started.

Examples

This query returns the number of index pages cached in the InnoDB buffer pool for a specific index:

5085

The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CACHED_INDEXES WHERE INDEX_ID=65\G
*************************** 1. row ***************************
 SPACE_ID: 4294967294
 INDEX_ID: 65
N_CACHED_PAGES: 45

This query returns the number of index pages cached in the InnoDB buffer pool for each index, using
the INNODB_INDEXES and INNODB_TABLES tables to resolve the table name and index name for
each INDEX_ID value.

SELECT
 tables.NAME AS table_name,
 indexes.NAME AS index_name,
 cached.N_CACHED_PAGES AS n_cached_pages
FROM
 INFORMATION_SCHEMA.INNODB_CACHED_INDEXES AS cached,
 INFORMATION_SCHEMA.INNODB_INDEXES AS indexes,
 INFORMATION_SCHEMA.INNODB_TABLES AS tables
WHERE
 cached.INDEX_ID = indexes.INDEX_ID
 AND indexes.TABLE_ID = tables.TABLE_ID;

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.6 The INFORMATION_SCHEMA INNODB_CMP and
INNODB_CMP_RESET Tables

The INNODB_CMP and INNODB_CMP_RESET tables provide status information on operations related to
compressed InnoDB tables.

The INNODB_CMP and INNODB_CMP_RESET tables have these columns:

• PAGE_SIZE

The compressed page size in bytes.

• COMPRESS_OPS

The number of times a B-tree page of size PAGE_SIZE has been compressed. Pages are
compressed whenever an empty page is created or the space for the uncompressed modification log
runs out.

• COMPRESS_OPS_OK

The number of times a B-tree page of size PAGE_SIZE has been successfully compressed. This
count should never exceed COMPRESS_OPS.

• COMPRESS_TIME

The total time in seconds used for attempts to compress B-tree pages of size PAGE_SIZE.

• UNCOMPRESS_OPS

The number of times a B-tree page of size PAGE_SIZE has been uncompressed. B-tree pages are
uncompressed whenever compression fails or at first access when the uncompressed page does not
exist in the buffer pool.

• UNCOMPRESS_TIME

The total time in seconds used for uncompressing B-tree pages of the size PAGE_SIZE.

5086

The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMP\G
*************************** 1. row ***************************
 page_size: 1024
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 2. row ***************************
 page_size: 2048
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 3. row ***************************
 page_size: 4096
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 4. row ***************************
 page_size: 8192
 compress_ops: 86955
compress_ops_ok: 81182
 compress_time: 27
 uncompress_ops: 26828
uncompress_time: 5
*************************** 5. row ***************************
 page_size: 16384
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For usage information, see Section 17.9.1.4, “Monitoring InnoDB Table Compression at Runtime”
and Section 17.15.1.3, “Using the Compression Information Schema Tables”. For general
information about InnoDB table compression, see Section 17.9, “InnoDB Table and Page
Compression”.

28.4.7 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables provide status information on compressed
pages within the InnoDB buffer pool.

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables have these columns:

• PAGE_SIZE

The block size in bytes. Each record of this table describes blocks of this size.

• BUFFER_POOL_INSTANCE

A unique identifier for the buffer pool instance.

5087

The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables

• PAGES_USED

The number of blocks of size PAGE_SIZE that are currently in use.

• PAGES_FREE

The number of blocks of size PAGE_SIZE that are currently available for allocation. This column
shows the external fragmentation in the memory pool. Ideally, these numbers should be at most 1.

• RELOCATION_OPS

The number of times a block of size PAGE_SIZE has been relocated. The buddy system can relocate
the allocated “buddy neighbor” of a freed block when it tries to form a bigger freed block. Reading
from the INNODB_CMPMEM_RESET table resets this count.

• RELOCATION_TIME

The total time in microseconds used for relocating blocks of size PAGE_SIZE. Reading from the table
INNODB_CMPMEM_RESET resets this count.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMPMEM\G
*************************** 1. row ***************************
 page_size: 1024
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 2. row ***************************
 page_size: 2048
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 3. row ***************************
 page_size: 4096
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 4. row ***************************
 page_size: 8192
buffer_pool_instance: 0
 pages_used: 7673
 pages_free: 15
 relocation_ops: 4638
 relocation_time: 0
*************************** 5. row ***************************
 page_size: 16384
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5088

The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables

• For usage information, see Section 17.9.1.4, “Monitoring InnoDB Table Compression at Runtime”
and Section 17.15.1.3, “Using the Compression Information Schema Tables”. For general
information about InnoDB table compression, see Section 17.9, “InnoDB Table and Page
Compression”.

28.4.8 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables

The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables provide status
information on operations related to compressed InnoDB tables and indexes, with separate statistics
for each combination of database, table, and index, to help you evaluate the performance and
usefulness of compression for specific tables.

For a compressed InnoDB table, both the table data and all the secondary indexes are compressed. In
this context, the table data is treated as just another index, one that happens to contain all the columns:
the clustered index.

The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables have these columns:

• DATABASE_NAME

The schema (database) containing the applicable table.

• TABLE_NAME

The table to monitor for compression statistics.

• INDEX_NAME

The index to monitor for compression statistics.

• COMPRESS_OPS

The number of compression operations attempted. Pages are compressed whenever an empty page
is created or the space for the uncompressed modification log runs out.

• COMPRESS_OPS_OK

The number of successful compression operations. Subtract from the COMPRESS_OPS value to get
the number of compression failures. Divide by the COMPRESS_OPS value to get the percentage of
compression failures.

• COMPRESS_TIME

The total time in seconds used for compressing data in this index.

• UNCOMPRESS_OPS

The number of uncompression operations performed. Compressed InnoDB pages are
uncompressed whenever compression fails, or the first time a compressed page is accessed in the
buffer pool and the uncompressed page does not exist.

• UNCOMPRESS_TIME

The total time in seconds used for uncompressing data in this index.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX\G
*************************** 1. row ***************************
 database_name: employees
 table_name: salaries

5089

The INFORMATION_SCHEMA INNODB_COLUMNS Table

 index_name: PRIMARY
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 23451
uncompress_time: 4
*************************** 2. row ***************************
 database_name: employees
 table_name: salaries
 index_name: emp_no
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 1597
uncompress_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression for specific tables,
indexes, or both.

• You must have the PROCESS privilege to query these tables.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of these tables, including data types and default values.

• Because collecting separate measurements for every index imposes substantial performance
overhead, INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET statistics are not
gathered by default. You must enable the innodb_cmp_per_index_enabled system variable
before performing the operations on compressed tables that you want to monitor.

• For usage information, see Section 17.9.1.4, “Monitoring InnoDB Table Compression at Runtime”
and Section 17.15.1.3, “Using the Compression Information Schema Tables”. For general
information about InnoDB table compression, see Section 17.9, “InnoDB Table and Page
Compression”.

28.4.9 The INFORMATION_SCHEMA INNODB_COLUMNS Table

The INNODB_COLUMNS table provides metadata about InnoDB table columns.

For related usage information and examples, see Section 17.15.3, “InnoDB INFORMATION_SCHEMA
Schema Object Tables”.

The INNODB_COLUMNS table has these columns:

• TABLE_ID

An identifier representing the table associated with the column; the same value as
INNODB_TABLES.TABLE_ID.

• NAME

The name of the column. These names can be uppercase or lowercase depending on the
lower_case_table_names setting. There are no special system-reserved names for columns.

• POS

The ordinal position of the column within the table, starting from 0 and incrementing sequentially.
When a column is dropped, the remaining columns are reordered so that the sequence has no gaps.
The POS value for a virtual generated column encodes the column sequence number and ordinal
position of the column. For more information, see the POS column description in Section 28.4.29,
“The INFORMATION_SCHEMA INNODB_VIRTUAL Table”.

• MTYPE

5090

The INFORMATION_SCHEMA INNODB_COLUMNS Table

Stands for “main type”. A numeric identifier for the column type. 1 = VARCHAR, 2 = CHAR, 3 =
FIXBINARY, 4 = BINARY, 5 = BLOB, 6 = INT, 7 = SYS_CHILD, 8 = SYS, 9 = FLOAT, 10 = DOUBLE,
11 = DECIMAL, 12 = VARMYSQL, 13 = MYSQL, 14 = GEOMETRY.

• PRTYPE

The InnoDB “precise type”, a binary value with bits representing MySQL data type, character set
code, and nullability.

• LEN

The column length, for example 4 for INT and 8 for BIGINT. For character columns in multibyte
character sets, this length value is the maximum length in bytes needed to represent a definition
such as VARCHAR(N); that is, it might be 2*N, 3*N, and so on depending on the character encoding.

• HAS_DEFAULT

A boolean value indicating whether a column that was added instantly using ALTER TABLE ...
ADD COLUMN with ALGORITHM=INSTANT has a default value. All columns added instantly have a
default value, which makes this column an indicator of whether the column was added instantly.

• DEFAULT_VALUE

The initial default value of a column that was added instantly using ALTER TABLE ... ADD
COLUMN with ALGORITHM=INSTANT. If the default value is NULL or was not specified, this column
reports NULL. An explicitly specified non-NULL default value is shown in an internal binary format.
Subsequent modifications of the column default value do not change the value reported by this
column.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_COLUMNS where TABLE_ID = 71\G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: col1
 POS: 0
 MTYPE: 6
 PRTYPE: 1027
 LEN: 4
 HAS_DEFAULT: 0
DEFAULT_VALUE: NULL
*************************** 2. row ***************************
 TABLE_ID: 71
 NAME: col2
 POS: 1
 MTYPE: 2
 PRTYPE: 524542
 LEN: 10
 HAS_DEFAULT: 0
DEFAULT_VALUE: NULL
*************************** 3. row ***************************
 TABLE_ID: 71
 NAME: col3
 POS: 2
 MTYPE: 1
 PRTYPE: 524303
 LEN: 10
 HAS_DEFAULT: 0
DEFAULT_VALUE: NULL

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5091

The INFORMATION_SCHEMA INNODB_DATAFILES Table

28.4.10 The INFORMATION_SCHEMA INNODB_DATAFILES Table

The INNODB_DATAFILES table provides data file path information for InnoDB file-per-table and
general tablespaces.

For related usage information and examples, see Section 17.15.3, “InnoDB INFORMATION_SCHEMA
Schema Object Tables”.

Note

The INFORMATION_SCHEMA FILES table reports metadata for InnoDB
tablespace types including file-per-table tablespaces, general tablespaces, the
system tablespace, the global temporary tablespace, and undo tablespaces.

The INNODB_DATAFILES table has these columns:

• SPACE

The tablespace ID.

• PATH

The tablespace data file path. If a file-per-table tablespace is created in a location outside the
MySQL data directory, the path value is a fully qualified directory path. Otherwise, the path is relative
to the data directory.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_DATAFILES WHERE SPACE = 57\G
*************************** 1. row ***************************
SPACE: 57
 PATH: ./test/t1.ibd

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.11 The INFORMATION_SCHEMA INNODB_FIELDS Table

The INNODB_FIELDS table provides metadata about the key columns (fields) of InnoDB indexes.

For related usage information and examples, see Section 17.15.3, “InnoDB INFORMATION_SCHEMA
Schema Object Tables”.

The INNODB_FIELDS table has these columns:

• INDEX_ID

An identifier for the index associated with this key field; the same value as
INNODB_INDEXES.INDEX_ID.

• NAME

The name of the original column from the table; the same value as INNODB_COLUMNS.NAME.

• POS

The ordinal position of the key field within the index, starting from 0 and incrementing sequentially.
When a column is dropped, the remaining columns are reordered so that the sequence has no gaps.

5092

The INFORMATION_SCHEMA INNODB_FOREIGN Table

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FIELDS WHERE INDEX_ID = 117\G
*************************** 1. row ***************************
INDEX_ID: 117
 NAME: col1
 POS: 0

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.12 The INFORMATION_SCHEMA INNODB_FOREIGN Table

The INNODB_FOREIGN table provides metadata about InnoDB foreign keys.

For related usage information and examples, see Section 17.15.3, “InnoDB INFORMATION_SCHEMA
Schema Object Tables”.

The INNODB_FOREIGN table has these columns:

• ID

The name (not a numeric value) of the foreign key index, preceded by the schema (database) name
(for example, test/products_fk).

• FOR_NAME

The name of the child table in this foreign key relationship.

• REF_NAME

The name of the parent table in this foreign key relationship.

• N_COLS

The number of columns in the foreign key index.

• TYPE

A collection of bit flags with information about the foreign key column, ORed together. 0 = ON
DELETE/UPDATE RESTRICT, 1 = ON DELETE CASCADE, 2 = ON DELETE SET NULL, 4 = ON
UPDATE CASCADE, 8 = ON UPDATE SET NULL, 16 = ON DELETE NO ACTION, 32 = ON UPDATE
NO ACTION.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FOREIGN\G
*************************** 1. row ***************************
 ID: test/fk1
FOR_NAME: test/child
REF_NAME: test/parent
 N_COLS: 1
 TYPE: 1

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5093

The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table

28.4.13 The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table

The INNODB_FOREIGN_COLS table provides status information about InnoDB foreign key columns.

For related usage information and examples, see Section 17.15.3, “InnoDB INFORMATION_SCHEMA
Schema Object Tables”.

The INNODB_FOREIGN_COLS table has these columns:

• ID

The foreign key index associated with this index key field; the same value as INNODB_FOREIGN.ID.

• FOR_COL_NAME

The name of the associated column in the child table.

• REF_COL_NAME

The name of the associated column in the parent table.

• POS

The ordinal position of this key field within the foreign key index, starting from 0.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FOREIGN_COLS WHERE ID = 'test/fk1'\G
*************************** 1. row ***************************
 ID: test/fk1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.14 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table

The INNODB_FT_BEING_DELETED table provides a snapshot of the INNODB_FT_DELETED table;
it is used only during an OPTIMIZE TABLE maintenance operation. When OPTIMIZE TABLE is
run, the INNODB_FT_BEING_DELETED table is emptied, and DOC_ID values are removed from the
INNODB_FT_DELETED table. Because the contents of INNODB_FT_BEING_DELETED typically have
a short lifetime, this table has limited utility for monitoring or debugging. For information about running
OPTIMIZE TABLE on tables with FULLTEXT indexes, see Section 14.9.6, “Fine-Tuning MySQL Full-
Text Search”.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT
index (for example, test/articles). The output appears similar to the example provided for the
INNODB_FT_DELETED table.

For related usage information and examples, see Section 17.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_BEING_DELETED table has these columns:

• DOC_ID

5094

The INFORMATION_SCHEMA INNODB_FT_CONFIG Table

The document ID of the row that is in the process of being deleted. This value might reflect the value
of an ID column that you defined for the underlying table, or it can be a sequence value generated
by InnoDB when the table contains no suitable column. This value is used when you perform
text searches, to skip rows in the INNODB_FT_INDEX_TABLE table before data for deleted rows
is physically removed from the FULLTEXT index by an OPTIMIZE TABLE statement. For more
information, see Optimizing InnoDB Full-Text Indexes.

Notes

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• You must have the PROCESS privilege to query this table.

• For more information about InnoDB FULLTEXT search, see Section 17.6.2.4, “InnoDB Full-Text
Indexes”, and Section 14.9, “Full-Text Search Functions”.

28.4.15 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table

The INNODB_FT_CONFIG table provides metadata about the FULLTEXT index and associated
processing for an InnoDB table.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index (for
example, test/articles).

For related usage information and examples, see Section 17.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_CONFIG table has these columns:

• KEY

The name designating an item of metadata for an InnoDB table containing a FULLTEXT index.

The values for this column might change, depending on the needs for performance tuning and
debugging for InnoDB full-text processing. The key names and their meanings include:

• optimize_checkpoint_limit: The number of seconds after which an OPTIMIZE TABLE run
stops.

• synced_doc_id: The next DOC_ID to be issued.

• stopword_table_name: The database/table name for a user-defined stopword table. The
VALUE column is empty if there is no user-defined stopword table.

• use_stopword: Indicates whether a stopword table is used, which is defined when the
FULLTEXT index is created.

• VALUE

The value associated with the corresponding KEY column, reflecting some limit or current value for
an aspect of a FULLTEXT index for an InnoDB table.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_CONFIG;
+---------------------------+-------------------+
| KEY | VALUE |
+---------------------------+-------------------+

5095

The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table

optimize_checkpoint_limit	180
synced_doc_id	0
stopword_table_name	test/my_stopwords
use_stopword	1
+---------------------------+-------------------+

Notes

• This table is intended only for internal configuration. It is not intended for statistical information
purposes.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 17.6.2.4, “InnoDB Full-Text
Indexes”, and Section 14.9, “Full-Text Search Functions”.

28.4.16 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD
Table

The INNODB_FT_DEFAULT_STOPWORD table holds a list of stopwords that are used by default when
creating a FULLTEXT index on InnoDB tables. For information about the default InnoDB stopword list
and how to define your own stopword lists, see Section 14.9.4, “Full-Text Stopwords”.

For related usage information and examples, see Section 17.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_DEFAULT_STOPWORD table has these columns:

• value

A word that is used by default as a stopword for FULLTEXT indexes on InnoDB
tables. This is not used if you override the default stopword processing with either the
innodb_ft_server_stopword_table or the innodb_ft_user_stopword_table system
variable.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD;
+-------+
| value |
+-------+
| a |
| about |
| an |
| are |
| as |
| at |
| be |
| by |
| com |
| de |
| en |
| for |
| from |
| how |
| i |
| in |
| is |
| it |
| la |
| of |
| on |

5096

The INFORMATION_SCHEMA INNODB_FT_DELETED Table

| or |
| that |
| the |
| this |
| to |
| was |
| what |
| when |
| where |
| who |
| will |
| with |
| und |
| the |
| www |
+-------+
36 rows in set (0.00 sec)

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 17.6.2.4, “InnoDB Full-Text
Indexes”, and Section 14.9, “Full-Text Search Functions”.

28.4.17 The INFORMATION_SCHEMA INNODB_FT_DELETED Table

The INNODB_FT_DELETED table stores rows that are deleted from the FULLTEXT index for an
InnoDB table. To avoid expensive index reorganization during DML operations for an InnoDB
FULLTEXT index, the information about newly deleted words is stored separately, filtered out of search
results when you do a text search, and removed from the main search index only when you issue an
OPTIMIZE TABLE statement for the InnoDB table. For more information, see Optimizing InnoDB Full-
Text Indexes.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index (for
example, test/articles).

For related usage information and examples, see Section 17.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_DELETED table has these columns:

• DOC_ID

The document ID of the newly deleted row. This value might reflect the value of an ID column that
you defined for the underlying table, or it can be a sequence value generated by InnoDB when the
table contains no suitable column. This value is used when you perform text searches, to skip rows
in the INNODB_FT_INDEX_TABLE table before data for deleted rows is physically removed from the
FULLTEXT index by an OPTIMIZE TABLE statement. For more information, see Optimizing InnoDB
Full-Text Indexes.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
+--------+
| DOC_ID |
+--------+
| 6 |
| 7 |
| 8 |

5097

The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table

+--------+

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 17.6.2.4, “InnoDB Full-Text
Indexes”, and Section 14.9, “Full-Text Search Functions”.

28.4.18 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table

The INNODB_FT_INDEX_CACHE table provides token information about newly inserted rows in a
FULLTEXT index. To avoid expensive index reorganization during DML operations, the information
about newly indexed words is stored separately, and combined with the main search index only when
OPTIMIZE TABLE is run, when the server is shut down, or when the cache size exceeds a limit
defined by the innodb_ft_cache_size or innodb_ft_total_cache_size system variable.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index (for
example, test/articles).

For related usage information and examples, see Section 17.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_INDEX_CACHE table has these columns:

• WORD

A word extracted from the text of a newly inserted row.

• FIRST_DOC_ID

The first document ID in which this word appears in the FULLTEXT index.

• LAST_DOC_ID

The last document ID in which this word appears in the FULLTEXT index.

• DOC_COUNT

The number of rows in which this word appears in the FULLTEXT index. The same word can occur
several times within the cache table, once for each combination of DOC_ID and POSITION values.

• DOC_ID

The document ID of the newly inserted row. This value might reflect the value of an ID column that
you defined for the underlying table, or it can be a sequence value generated by InnoDB when the
table contains no suitable column.

• POSITION

The position of this particular instance of the word within the relevant document identified by the
DOC_ID value. The value does not represent an absolute position; it is an offset added to the
POSITION of the previous instance of that word.

Notes

• This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT

5098

The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

index (for example test/articles). The following example demonstrates how to use the
innodb_ft_aux_table system variable to show information about a FULLTEXT index for a
specified table.

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

mysql> SET GLOBAL innodb_ft_aux_table = 'test/articles';

mysql> SELECT WORD, DOC_COUNT, DOC_ID, POSITION
 FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
+------------+-----------+--------+----------+
| WORD | DOC_COUNT | DOC_ID | POSITION |
+------------+-----------+--------+----------+
1001	1	4	0
after	1	2	22
comparison	1	5	44
configured	1	6	20
database	2	1	31
+------------+-----------+--------+----------+

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 17.6.2.4, “InnoDB Full-Text
Indexes”, and Section 14.9, “Full-Text Search Functions”.

28.4.19 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

The INNODB_FT_INDEX_TABLE table provides information about the inverted index used to process
text searches against the FULLTEXT index of an InnoDB table.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index (for
example, test/articles).

For related usage information and examples, see Section 17.15.4, “InnoDB INFORMATION_SCHEMA
FULLTEXT Index Tables”.

The INNODB_FT_INDEX_TABLE table has these columns:

• WORD

A word extracted from the text of the columns that are part of a FULLTEXT.

• FIRST_DOC_ID

The first document ID in which this word appears in the FULLTEXT index.

• LAST_DOC_ID

5099

The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

The last document ID in which this word appears in the FULLTEXT index.

• DOC_COUNT

The number of rows in which this word appears in the FULLTEXT index. The same word can occur
several times within the cache table, once for each combination of DOC_ID and POSITION values.

• DOC_ID

The document ID of the row containing the word. This value might reflect the value of an ID column
that you defined for the underlying table, or it can be a sequence value generated by InnoDB when
the table contains no suitable column.

• POSITION

The position of this particular instance of the word within the relevant document identified by the
DOC_ID value.

Notes

• This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT
index (for example, test/articles). The following example demonstrates how to use the
innodb_ft_aux_table system variable to show information about a FULLTEXT index for a
specified table. Before information for newly inserted rows appears in INNODB_FT_INDEX_TABLE,
the FULLTEXT index cache must be flushed to disk. This is accomplished by running an OPTIMIZE
TABLE operation on the indexed table with the innodb_optimize_fulltext_only system
variable enabled. (The example disables that variable again at the end because it is intended to be
enabled only temporarily.)

mysql> USE test;

mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;

mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');

mysql> SET GLOBAL innodb_optimize_fulltext_only=ON;

mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+

mysql> SET GLOBAL innodb_ft_aux_table = 'test/articles';

mysql> SELECT WORD, DOC_COUNT, DOC_ID, POSITION
 FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 5;
+------------+-----------+--------+----------+
| WORD | DOC_COUNT | DOC_ID | POSITION |
+------------+-----------+--------+----------+
1001	1	4	0
after	1	2	22
comparison	1	5	44

5100

The INFORMATION_SCHEMA INNODB_INDEXES Table

| configured | 1 | 6 | 20 |
| database | 2 | 1 | 31 |
+------------+-----------+--------+----------+

mysql> SET GLOBAL innodb_optimize_fulltext_only=OFF;

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see Section 17.6.2.4, “InnoDB Full-Text
Indexes”, and Section 14.9, “Full-Text Search Functions”.

28.4.20 The INFORMATION_SCHEMA INNODB_INDEXES Table

The INNODB_INDEXES table provides metadata about InnoDB indexes.

For related usage information and examples, see Section 17.15.3, “InnoDB INFORMATION_SCHEMA
Schema Object Tables”.

The INNODB_INDEXES table has these columns:

• INDEX_ID

An identifier for the index. Index identifiers are unique across all the databases in an instance.

• NAME

The name of the index. Most indexes created implicitly by InnoDB have consistent names
but the index names are not necessarily unique. Examples: PRIMARY for a primary key index,
GEN_CLUST_INDEX for the index representing a primary key when one is not specified, and
ID_IND, FOR_IND, and REF_IND for foreign key constraints.

• TABLE_ID

An identifier representing the table associated with the index; the same value as
INNODB_TABLES.TABLE_ID.

• TYPE

A numeric value derived from bit-level information that identifies the index type. 0 = nonunique
secondary index; 1 = automatically generated clustered index (GEN_CLUST_INDEX); 2 = unique
nonclustered index; 3 = clustered index; 32 = full-text index; 64 = spatial index; 128 = secondary
index on a virtual generated column.

• N_FIELDS

The number of columns in the index key. For GEN_CLUST_INDEX indexes, this value is 0 because
the index is created using an artificial value rather than a real table column.

• PAGE_NO

The root page number of the index B-tree. For full-text indexes, the PAGE_NO column is unused and
set to -1 (FIL_NULL) because the full-text index is laid out in several B-trees (auxiliary tables).

• SPACE

An identifier for the tablespace where the index resides. 0 means the InnoDB system tablespace.
Any other number represents a table created with a separate .ibd file in file-per-table mode. This
identifier stays the same after a TRUNCATE TABLE statement. Because all indexes for a table reside
in the same tablespace as the table, this value is not necessarily unique.

5101

The INFORMATION_SCHEMA INNODB_METRICS Table

• MERGE_THRESHOLD

The merge threshold value for index pages. If the amount of data in an index page falls below the
MERGE_THRESHOLD value when a row is deleted or when a row is shortened by an update operation,
InnoDB attempts to merge the index page with the neighboring index page. The default threshold
value is 50%. For more information, see Section 17.8.11, “Configuring the Merge Threshold for Index
Pages”.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_INDEXES WHERE TABLE_ID = 34\G
*************************** 1. row ***************************
 INDEX_ID: 39
 NAME: GEN_CLUST_INDEX
 TABLE_ID: 34
 TYPE: 1
 N_FIELDS: 0
 PAGE_NO: 3
 SPACE: 23
MERGE_THRESHOLD: 50
*************************** 2. row ***************************
 INDEX_ID: 40
 NAME: i1
 TABLE_ID: 34
 TYPE: 0
 N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 23
MERGE_THRESHOLD: 50

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.21 The INFORMATION_SCHEMA INNODB_METRICS Table

The INNODB_METRICS table provides a wide variety of InnoDB performance information,
complementing the specific focus areas of the Performance Schema tables for InnoDB. With simple
queries, you can check the overall health of the system. With more detailed queries, you can diagnose
issues such as performance bottlenecks, resource shortages, and application issues.

Each monitor represents a point within the InnoDB source code that is instrumented to gather counter
information. Each counter can be started, stopped, and reset. You can also perform these actions for a
group of counters using their common module name.

By default, relatively little data is collected. To start, stop, and reset counters, set one of the system
variables innodb_monitor_enable, innodb_monitor_disable, innodb_monitor_reset, or
innodb_monitor_reset_all, using the name of the counter, the name of the module, a wildcard
match for such a name using the “%” character, or the special keyword all.

For usage information, see Section 17.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”.

The INNODB_METRICS table has these columns:

• NAME

A unique name for the counter.

• SUBSYSTEM

The aspect of InnoDB that the metric applies to.

5102

The INFORMATION_SCHEMA INNODB_METRICS Table

• COUNT

The value since the counter was enabled.

• MAX_COUNT

The maximum value since the counter was enabled.

• MIN_COUNT

The minimum value since the counter was enabled.

• AVG_COUNT

The average value since the counter was enabled.

• COUNT_RESET

The counter value since it was last reset. (The _RESET columns act like the lap counter on a
stopwatch: you can measure the activity during some time interval, while the cumulative figures are
still available in COUNT, MAX_COUNT, and so on.)

• MAX_COUNT_RESET

The maximum counter value since it was last reset.

• MIN_COUNT_RESET

The minimum counter value since it was last reset.

• AVG_COUNT_RESET

The average counter value since it was last reset.

• TIME_ENABLED

The timestamp of the last start.

• TIME_DISABLED

The timestamp of the last stop.

• TIME_ELAPSED

The elapsed time in seconds since the counter started.

• TIME_RESET

The timestamp of the last reset.

• STATUS

Whether the counter is still running (enabled) or stopped (disabled).

• TYPE

Whether the item is a cumulative counter, or measures the current value of some resource.

• COMMENT

The counter description.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME='dml_inserts'\G

5103

The INFORMATION_SCHEMA INNODB_SESSION_TEMP_TABLESPACES Table

*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.046153846153846156
 COUNT_RESET: 3
MAX_COUNT_RESET: 3
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 65
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• Transaction counter COUNT values may differ from the number of transaction events reported in
Performance Schema EVENTS_TRANSACTIONS_SUMMARY tables. InnoDB counts only those
transactions that it executes, whereas Performance Schema collects events for all non-aborted
transactions initiated by the server, including empty transactions.

28.4.22 The INFORMATION_SCHEMA
INNODB_SESSION_TEMP_TABLESPACES Table

The INNODB_SESSION_TEMP_TABLESPACES table provides metadata about session temporary
tablespaces used for internal and user-created temporary tables. This table was added in MySQL
8.0.13.

The INNODB_SESSION_TEMP_TABLESPACES table has these columns:

• ID

The process or session ID.

• SPACE

The tablespace ID. A range of 400 thousand space IDs is reserved for session temporary
tablespaces. Session temporary tablespaces are recreated each time the server is started. Space
IDs are not persisted when the server is shut down and may be reused.

• PATH

The tablespace data file path. A session temporary tablespace has an ibt file extension.

• SIZE

The size of the tablespace, in bytes.

• STATE

The state of the tablespace. ACTIVE indicates that the tablespace is currently used by a session.
INACTIVE indicates that the tablespace is in the pool of available session temporary tablespaces.

• PURPOSE

5104

The INFORMATION_SCHEMA INNODB_TABLES Table

The purpose of the tablespace. INTRINSIC indicates that the tablespace is used for optimized
internal temporary tables use by the optimizer. SLAVE indicates that the tablespace is allocated for
storing user-created temporary tables on a replication slave. USER indicates that the tablespace is
used for user-created temporary tables. NONE indicates that the tablespace is not in use.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SESSION_TEMP_TABLESPACES;
+----+------------+----------------------------+-------+----------+-----------+
| ID | SPACE | PATH | SIZE | STATE | PURPOSE |
+----+------------+----------------------------+-------+----------+-----------+
8	4294566162	./#innodb_temp/temp_10.ibt	81920	ACTIVE	INTRINSIC
8	4294566161	./#innodb_temp/temp_9.ibt	98304	ACTIVE	USER
0	4294566153	./#innodb_temp/temp_1.ibt	81920	INACTIVE	NONE
0	4294566154	./#innodb_temp/temp_2.ibt	81920	INACTIVE	NONE
0	4294566155	./#innodb_temp/temp_3.ibt	81920	INACTIVE	NONE
0	4294566156	./#innodb_temp/temp_4.ibt	81920	INACTIVE	NONE
0	4294566157	./#innodb_temp/temp_5.ibt	81920	INACTIVE	NONE
0	4294566158	./#innodb_temp/temp_6.ibt	81920	INACTIVE	NONE
0	4294566159	./#innodb_temp/temp_7.ibt	81920	INACTIVE	NONE
0	4294566160	./#innodb_temp/temp_8.ibt	81920	INACTIVE	NONE
+----+------------+----------------------------+-------+----------+-----------+

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.23 The INFORMATION_SCHEMA INNODB_TABLES Table

The INNODB_TABLES table provides metadata about InnoDB tables.

For related usage information and examples, see Section 17.15.3, “InnoDB INFORMATION_SCHEMA
Schema Object Tables”.

The INNODB_TABLES table has these columns:

• TABLE_ID

An identifier for the InnoDB table. This value is unique across all databases in the instance.

• NAME

The name of the table, preceded by the schema (database) name where appropriate (for example,
test/t1). Names of databases and user tables are in the same case as they were originally
defined, possibly influenced by the lower_case_table_names setting.

• FLAG

A numeric value that represents bit-level information about table format and storage characteristics.

• N_COLS

The number of columns in the table. The number reported includes three hidden columns that are
created by InnoDB (DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR). The number reported also
includes virtual generated columns, if present.

• SPACE

An identifier for the tablespace where the table resides. 0 means the InnoDB system tablespace.
Any other number represents either a file-per-table tablespace or a general tablespace. This

5105

The INFORMATION_SCHEMA INNODB_TABLESPACES Table

identifier stays the same after a TRUNCATE TABLE statement. For file-per-table tablespaces, this
identifier is unique for tables across all databases in the instance.

• ROW_FORMAT

The table's row format (Compact, Redundant, Dynamic, or Compressed).

• ZIP_PAGE_SIZE

The zip page size. Applies only to tables with a row format of Compressed.

• SPACE_TYPE

The type of tablespace to which the table belongs. Possible values include System for
the system tablespace, General for general tablespaces, and Single for file-per-table
tablespaces. Tables assigned to the system tablespace using CREATE TABLE or ALTER TABLE
TABLESPACE=innodb_system have a SPACE_TYPE of General. For more information, see
CREATE TABLESPACE.

• INSTANT_COLS

The number of columns that existed before the first instant column was added using ALTER
TABLE ... ADD COLUMN with ALGORITHM=INSTANT. This column is no longer used as of MySQL
8.0.29 but continues to show information for tables with columns that were added instantly prior to
MySQL 8.0.29.

• TOTAL_ROW_VERSIONS

The number of row versions for the table. The initial value is 0. The value is incremented by ALTER
TABLE ... ALGORITHM=INSTANT operations that add or remove columns. When a table with
instantly added or dropped columns is rebuilt due to a table-rebuilding ALTER TABLE or OPTIMIZE
TABLE operation, the value is reset to 0. For more information, see Column Operations.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLES WHERE TABLE_ID = 214\G
*************************** 1. row ***************************
 TABLE_ID: 1064
 NAME: test/t1
 FLAG: 33
 N_COLS: 6
 SPACE: 3
 ROW_FORMAT: Dynamic
 ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single
 INSTANT_COLS: 0
TOTAL_ROW_VERSIONS: 3

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.24 The INFORMATION_SCHEMA INNODB_TABLESPACES Table

The INNODB_TABLESPACES table provides metadata about InnoDB file-per-table, general, and undo
tablespaces.

For related usage information and examples, see Section 17.15.3, “InnoDB INFORMATION_SCHEMA
Schema Object Tables”.

5106

The INFORMATION_SCHEMA INNODB_TABLESPACES Table

Note

The INFORMATION_SCHEMA FILES table reports metadata for InnoDB
tablespace types including file-per-table tablespaces, general tablespaces, the
system tablespace, the global temporary tablespace, and undo tablespaces.

The INNODB_TABLESPACES table has these columns:

• SPACE

The tablespace ID.

• NAME

The schema (database) and table name.

• FLAG

A numeric value that represents bit-level information about tablespace format and storage
characteristics.

• ROW_FORMAT

The tablespace row format (Compact or Redundant, Dynamic or Compressed, or Undo). The
data in this column is interpreted from the tablespace flag information that resides in the data file.

There is no way to determine from this flag information if the tablespace row format is Redundant or
Compact, which is why one of the possible ROW_FORMAT values is Compact or Redundant.

• PAGE_SIZE

The tablespace page size. The data in this column is interpreted from the tablespace flags
information that resides in the .ibd file.

• ZIP_PAGE_SIZE

The tablespace zip page size. The data in this column is interpreted from the tablespace flags
information that resides in the .ibd file.

• SPACE_TYPE

The type of tablespace. Possible values include General for general tablespaces, Single for file-
per-table tablespaces, System for the system tablespace, and Undo for undo tablespaces.

• FS_BLOCK_SIZE

The file system block size, which is the unit size used for hole punching. This column pertains to the
InnoDB transparent page compression feature.

• FILE_SIZE

The apparent size of the file, which represents the maximum size of the file, uncompressed. This
column pertains to the InnoDB transparent page compression feature.

• ALLOCATED_SIZE

The actual size of the file, which is the amount of space allocated on disk. This column pertains to
the InnoDB transparent page compression feature.

• AUTOEXTEND_SIZE

The auto-extend size of the tablespace. This column was added in MySQL 8.0.23.

• SERVER_VERSION

5107

The INFORMATION_SCHEMA INNODB_TABLESPACES Table

The MySQL version that created the tablespace, or the MySQL version into which the tablespace
was imported, or the version of the last major MySQL version upgrade. The value is unchanged
by a release series upgrade, such as an upgrade from MySQL 8.0.x to 8.0.y. The value can be
considered a “creation” marker or “certified” marker for the tablespace.

• SPACE_VERSION

The tablespace version, used to track changes to the tablespace format.

• ENCRYPTION

Whether the tablespace is encrypted. This column was added in MySQL 8.0.13.

• STATE

The tablespace state. This column was added in MySQL 8.0.14.

For file-per-table and general tablespaces, states include:

• normal: The tablespace is normal and active.

• discarded: The tablespace was discarded by an ALTER TABLE ... DISCARD TABLESPACE
statement.

• corrupted: The tablespace is identified by InnoDB as corrupted.

For undo tablespaces, states include:

• active: Rollback segments in the undo tablespace can be allocated to new transactions.

• inactive: Rollback segments in the undo tablespace are no longer used by new transactions.
The truncate process is in progress. The undo tablespace was either selected by the purge
thread implicitly or was made inactive by an ALTER UNDO TABLESPACE ... SET INACTIVE
statement.

• empty: The undo tablespace was truncated and is no longer active. It is ready to be dropped or
made active again by an ALTER UNDO TABLESPACE ... SET INACTIVE statement.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLESPACES WHERE SPACE = 26\G
*************************** 1. row ***************************
 SPACE: 26
 NAME: test/t1
 FLAG: 0
 ROW_FORMAT: Compact or Redundant
 PAGE_SIZE: 16384
 ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single
 FS_BLOCK_SIZE: 4096
 FILE_SIZE: 98304
ALLOCATED_SIZE: 65536
AUTOEXTEND_SIZE: 0
SERVER_VERSION: 8.0.23
 SPACE_VERSION: 1
 ENCRYPTION: N
 STATE: normal

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5108

The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table

28.4.25 The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF
Table

The INNODB_TABLESPACES_BRIEF table provides space ID, name, path, flag, and space type
metadata for file-per-table, general, undo, and system tablespaces.

INNODB_TABLESPACES provides the same metadata but loads more slowly because other metadata
provided by the table, such as FS_BLOCK_SIZE, FILE_SIZE, and ALLOCATED_SIZE, must be loaded
dynamically.

Space and path metadata is also provided by the INNODB_DATAFILES table.

The INNODB_TABLESPACES_BRIEF table has these columns:

• SPACE

The tablespace ID.

• NAME

The tablespace name. For file-per-table tablespaces, the name is in the form of schema/
table_name.

• PATH

The tablespace data file path. If a file-per-table tablespace is created in a location outside the
MySQL data directory, the path value is a fully qualified directory path. Otherwise, the path is relative
to the data directory.

• FLAG

A numeric value that represents bit-level information about tablespace format and storage
characteristics.

• SPACE_TYPE

The type of tablespace. Possible values include General for InnoDB general tablespaces, Single
for InnoDB file-per-table tablespaces, and System for the InnoDB system tablespace.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLESPACES_BRIEF WHERE SPACE = 7;
+-------+---------+---------------+-------+------------+
| SPACE | NAME | PATH | FLAG | SPACE_TYPE |
+-------+---------+---------------+-------+------------+
| 7 | test/t1 | ./test/t1.ibd | 16417 | Single |
+-------+---------+---------------+-------+------------+

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.26 The INFORMATION_SCHEMA INNODB_TABLESTATS View

The INNODB_TABLESTATS table provides a view of low-level status information about InnoDB tables.
This data is used by the MySQL optimizer to calculate which index to use when querying an InnoDB
table. This information is derived from in-memory data structures rather than data stored on disk. There
is no corresponding internal InnoDB system table.

5109

The INFORMATION_SCHEMA INNODB_TABLESTATS View

InnoDB tables are represented in this view if they have been opened since the last server restart
and have not aged out of the table cache. Tables for which persistent stats are available are always
represented in this view.

Table statistics are updated only for DELETE or UPDATE operations that modify indexed columns.
Statistics are not updated by operations that modify only nonindexed columns.

ANALYZE TABLE clears table statistics and sets the STATS_INITIALIZED column to
Uninitialized. Statistics are collected again the next time the table is accessed.

For related usage information and examples, see Section 17.15.3, “InnoDB INFORMATION_SCHEMA
Schema Object Tables”.

The INNODB_TABLESTATS table has these columns:

• TABLE_ID

An identifier representing the table for which statistics are available; the same value as
INNODB_TABLES.TABLE_ID.

• NAME

The name of the table; the same value as INNODB_TABLES.NAME.

• STATS_INITIALIZED

The value is Initialized if the statistics are already collected, Uninitialized if not.

• NUM_ROWS

The current estimated number of rows in the table. Updated after each DML operation. The value
could be imprecise if uncommitted transactions are inserting into or deleting from the table.

• CLUST_INDEX_SIZE

The number of pages on disk that store the clustered index, which holds the InnoDB table data in
primary key order. This value might be null if no statistics are collected yet for the table.

• OTHER_INDEX_SIZE

The number of pages on disk that store all secondary indexes for the table. This value might be null if
no statistics are collected yet for the table.

• MODIFIED_COUNTER

The number of rows modified by DML operations, such as INSERT, UPDATE, DELETE, and also
cascade operations from foreign keys. This column is reset each time table statistics are recalculated

• AUTOINC

The next number to be issued for any auto-increment-based operation. The rate at which the
AUTOINC value changes depends on how many times auto-increment numbers have been requested
and how many numbers are granted per request.

• REF_COUNT

When this counter reaches zero, the table metadata can be evicted from the table cache.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLESTATS where TABLE_ID = 71\G
*************************** 1. row ***************************
 TABLE_ID: 71

5110

The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table

 NAME: test/t1
STATS_INITIALIZED: Initialized
 NUM_ROWS: 1
 CLUST_INDEX_SIZE: 1
 OTHER_INDEX_SIZE: 0
 MODIFIED_COUNTER: 1
 AUTOINC: 0
 REF_COUNT: 1

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table

The INNODB_TEMP_TABLE_INFO table provides information about user-created InnoDB temporary
tables that are active in an InnoDB instance. It does not provide information about internal InnoDB
temporary tables used by the optimizer. The INNODB_TEMP_TABLE_INFO table is created when first
queried, exists only in memory, and is not persisted to disk.

For usage information and examples, see Section 17.15.7, “InnoDB INFORMATION_SCHEMA
Temporary Table Info Table”.

The INNODB_TEMP_TABLE_INFO table has these columns:

• TABLE_ID

The table ID of the temporary table.

• NAME

The name of the temporary table.

• N_COLS

The number of columns in the temporary table. The number includes three hidden columns created
by InnoDB (DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR).

• SPACE

The ID of the temporary tablespace where the temporary table resides.

Example

mysql> CREATE TEMPORARY TABLE t1 (c1 INT PRIMARY KEY) ENGINE=INNODB;

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
TABLE_ID: 97
 NAME: #sql8c88_43_0
 N_COLS: 4
 SPACE: 76

Notes

• This table is useful primarily for expert-level monitoring.

• You must have the PROCESS privilege to query this table.

5111

The INFORMATION_SCHEMA INNODB_TRX Table

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.28 The INFORMATION_SCHEMA INNODB_TRX Table

The INNODB_TRX table provides information about every transaction currently executing inside
InnoDB, including whether the transaction is waiting for a lock, when the transaction started, and the
SQL statement the transaction is executing, if any.

For usage information, see Section 17.15.2.1, “Using InnoDB Transaction and Locking Information”.

The INNODB_TRX table has these columns:

• TRX_ID

A unique transaction ID number, internal to InnoDB. These IDs are not created for transactions
that are read only and nonlocking. For details, see Section 10.5.3, “Optimizing InnoDB Read-Only
Transactions”.

• TRX_WEIGHT

The weight of a transaction, reflecting (but not necessarily the exact count of) the number of rows
altered and the number of rows locked by the transaction. To resolve a deadlock, InnoDB selects
the transaction with the smallest weight as the “victim” to roll back. Transactions that have changed
nontransactional tables are considered heavier than others, regardless of the number of altered and
locked rows.

• TRX_STATE

The transaction execution state. Permitted values are RUNNING, LOCK WAIT, ROLLING BACK, and
COMMITTING.

• TRX_STARTED

The transaction start time.

• TRX_REQUESTED_LOCK_ID

The ID of the lock the transaction is currently waiting for, if TRX_STATE is LOCK WAIT; otherwise
NULL. To obtain details about the lock, join this column with the ENGINE_LOCK_ID column of the
Performance Schema data_locks table.

• TRX_WAIT_STARTED

The time when the transaction started waiting on the lock, if TRX_STATE is LOCK WAIT; otherwise
NULL.

• TRX_MYSQL_THREAD_ID

The MySQL thread ID. To obtain details about the thread, join this column with the ID column of
the INFORMATION_SCHEMA PROCESSLIST table, but see Section 17.15.2.3, “Persistence and
Consistency of InnoDB Transaction and Locking Information”.

• TRX_QUERY

The SQL statement that is being executed by the transaction.

• TRX_OPERATION_STATE

The transaction's current operation, if any; otherwise NULL.

• TRX_TABLES_IN_USE

5112

The INFORMATION_SCHEMA INNODB_TRX Table

The number of InnoDB tables used while processing the current SQL statement of this transaction.

• TRX_TABLES_LOCKED

The number of InnoDB tables that the current SQL statement has row locks on. (Because these
are row locks, not table locks, the tables can usually still be read from and written to by multiple
transactions, despite some rows being locked.)

• TRX_LOCK_STRUCTS

The number of locks reserved by the transaction.

• TRX_LOCK_MEMORY_BYTES

The total size taken up by the lock structures of this transaction in memory.

• TRX_ROWS_LOCKED

The approximate number or rows locked by this transaction. The value might include delete-marked
rows that are physically present but not visible to the transaction.

• TRX_ROWS_MODIFIED

The number of modified and inserted rows in this transaction.

• TRX_CONCURRENCY_TICKETS

A value indicating how much work the current transaction can do before being swapped out, as
specified by the innodb_concurrency_tickets system variable.

• TRX_ISOLATION_LEVEL

The isolation level of the current transaction.

• TRX_UNIQUE_CHECKS

Whether unique checks are turned on or off for the current transaction. For example, they might be
turned off during a bulk data load.

• TRX_FOREIGN_KEY_CHECKS

Whether foreign key checks are turned on or off for the current transaction. For example, they might
be turned off during a bulk data load.

• TRX_LAST_FOREIGN_KEY_ERROR

The detailed error message for the last foreign key error, if any; otherwise NULL.

• TRX_ADAPTIVE_HASH_LATCHED

Whether the adaptive hash index is locked by the current transaction. When the adaptive hash
index search system is partitioned, a single transaction does not lock the entire adaptive hash index.
Adaptive hash index partitioning is controlled by innodb_adaptive_hash_index_parts, which is
set to 8 by default.

• TRX_ADAPTIVE_HASH_TIMEOUT

Deprecated in MySQL 5.7.8. Always returns 0.

Whether to relinquish the search latch immediately for the adaptive hash index, or reserve it across
calls from MySQL. When there is no adaptive hash index contention, this value remains zero and
statements reserve the latch until they finish. During times of contention, it counts down to zero,
and statements release the latch immediately after each row lookup. When the adaptive hash index

5113

The INFORMATION_SCHEMA INNODB_VIRTUAL Table

search system is partitioned (controlled by innodb_adaptive_hash_index_parts), the value
remains 0.

• TRX_IS_READ_ONLY

A value of 1 indicates the transaction is read only.

• TRX_AUTOCOMMIT_NON_LOCKING

A value of 1 indicates the transaction is a SELECT statement that does not use the FOR UPDATE
or LOCK IN SHARED MODE clauses, and is executing with autocommit enabled so that the
transaction contains only this one statement. When this column and TRX_IS_READ_ONLY are
both 1, InnoDB optimizes the transaction to reduce the overhead associated with transactions that
change table data.

• TRX_SCHEDULE_WEIGHT

The transaction schedule weight assigned by the Contention-Aware Transaction Scheduling (CATS)
algorithm to transactions waiting for a lock. The value is relative to the values of other transactions.
A higher value has a greater weight. A value is computed only for transactions in a LOCK WAIT
state, as reported by the TRX_STATE column. A NULL value is reported for transactions that are
not waiting for a lock. The TRX_SCHEDULE_WEIGHT value is different from the TRX_WEIGHT value,
which is computed by a different algorithm for a different purpose.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX\G
*************************** 1. row ***************************
 trx_id: 1510
 trx_state: RUNNING
 trx_started: 2014-11-19 13:24:40
 trx_requested_lock_id: NULL
 trx_wait_started: NULL
 trx_weight: 586739
 trx_mysql_thread_id: 2
 trx_query: DELETE FROM employees.salaries WHERE salary > 65000
 trx_operation_state: updating or deleting
 trx_tables_in_use: 1
 trx_tables_locked: 1
 trx_lock_structs: 3003
 trx_lock_memory_bytes: 450768
 trx_rows_locked: 1407513
 trx_rows_modified: 583736
 trx_concurrency_tickets: 0
 trx_isolation_level: REPEATABLE READ
 trx_unique_checks: 1
 trx_foreign_key_checks: 1
trx_last_foreign_key_error: NULL
 trx_adaptive_hash_latched: 0
 trx_adaptive_hash_timeout: 10000
 trx_is_read_only: 0
trx_autocommit_non_locking: 0
 trx_schedule_weight: NULL

Notes

• Use this table to help diagnose performance problems that occur during times of heavy concurrent
load. Its contents are updated as described in Section 17.15.2.3, “Persistence and Consistency of
InnoDB Transaction and Locking Information”.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.4.29 The INFORMATION_SCHEMA INNODB_VIRTUAL Table

5114

The INFORMATION_SCHEMA INNODB_VIRTUAL Table

The INNODB_VIRTUAL table provides metadata about InnoDB virtual generated columns and columns
upon which virtual generated columns are based.

A row appears in the INNODB_VIRTUAL table for each column upon which a virtual generated column
is based.

The INNODB_VIRTUAL table has these columns:

• TABLE_ID

An identifier representing the table associated with the virtual column; the same value as
INNODB_TABLES.TABLE_ID.

• POS

The position value of the virtual generated column. The value is large because it encodes the column
sequence number and ordinal position. The formula used to calculate the value uses a bitwise
operation:

((nth virtual generated column for the InnoDB instance + 1) << 16)
+ the ordinal position of the virtual generated column

For example, if the first virtual generated column in the InnoDB instance is the third column of the
table, the formula is (0 + 1) << 16) + 2. The first virtual generated column in the InnoDB
instance is always number 0. As the third column in the table, the ordinal position of the virtual
generated column is 2. Ordinal positions are counted from 0.

• BASE_POS

The ordinal position of the columns upon which a virtual generated column is based.

Example

mysql> CREATE TABLE `t1` (
 `a` int(11) DEFAULT NULL,
 `b` int(11) DEFAULT NULL,
 `c` int(11) GENERATED ALWAYS AS (a+b) VIRTUAL,
 `h` varchar(10) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_VIRTUAL
 WHERE TABLE_ID IN
 (SELECT TABLE_ID FROM INFORMATION_SCHEMA.INNODB_TABLES
 WHERE NAME LIKE "test/t1");
+----------+-------+----------+
| TABLE_ID | POS | BASE_POS |
+----------+-------+----------+
| 98 | 65538 | 0 |
| 98 | 65538 | 1 |
+----------+-------+----------+

Notes

• If a constant value is assigned to a virtual generated column, as in the following table, an entry
for the column does not appear in the INNODB_VIRTUAL table. For an entry to appear, a virtual
generated column must have a base column.

CREATE TABLE `t1` (
 `a` int(11) DEFAULT NULL,
 `b` int(11) DEFAULT NULL,
 `c` int(11) GENERATED ALWAYS AS (5) VIRTUAL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

However, metadata for such a column does appear in the INNODB_COLUMNS table.

• You must have the PROCESS privilege to query this table.

5115

INFORMATION_SCHEMA Thread Pool Tables

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

28.5 INFORMATION_SCHEMA Thread Pool Tables
Note

As of MySQL 8.0.14, the INFORMATION_SCHEMA thread pool tables are also
available as Performance Schema tables. (See Section 29.12.16, “Performance
Schema Thread Pool Tables”.) The INFORMATION_SCHEMA tables are
deprecated; expect them be removed in a future version of MySQL. Applications
should transition away from the old tables to the new tables. For example, if an
application uses this query:

SELECT * FROM INFORMATION_SCHEMA.TP_THREAD_STATE;

The application should use this query instead:

SELECT * FROM performance_schema.tp_thread_state;

The following sections describe the INFORMATION_SCHEMA tables associated with the thread pool
plugin (see Section 7.6.3, “MySQL Enterprise Thread Pool”). They provide information about thread
pool operation:

• TP_THREAD_GROUP_STATE: Information about thread pool thread group states

• TP_THREAD_GROUP_STATS: Thread group statistics

• TP_THREAD_STATE: Information about thread pool thread states

Rows in these tables represent snapshots in time. In the case of TP_THREAD_STATE, all rows for a
thread group comprise a snapshot in time. Thus, the MySQL server holds the mutex of the thread
group while producing the snapshot. But it does not hold mutexes on all thread groups at the same
time, to prevent a statement against TP_THREAD_STATE from blocking the entire MySQL server.

The INFORMATION_SCHEMA thread pool tables are implemented by individual plugins and the decision
whether to load one can be made independently of the others (see Section 7.6.3.2, “Thread Pool
Installation”). However, the content of all the tables depends on the thread pool plugin being enabled.
If a table plugin is enabled but the thread pool plugin is not, the table becomes visible and can be
accessed but is empty.

28.5.1 INFORMATION_SCHEMA Thread Pool Table Reference

The following table summarizes INFORMATION_SCHEMA thread pool tables. For greater detail, see the
individual table descriptions.

Table 28.7 INFORMATION_SCHEMA Thread Pool Tables

Table Name Description

TP_THREAD_GROUP_STATE Thread pool thread group states

TP_THREAD_GROUP_STATS Thread pool thread group statistics

TP_THREAD_STATE Thread pool thread information

28.5.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table

Note

As of MySQL 8.0.14, the thread pool INFORMATION_SCHEMA tables are
also available as Performance Schema tables. (See Section 29.12.16,
“Performance Schema Thread Pool Tables”.) The INFORMATION_SCHEMA

5116

The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table

tables are deprecated; expect them to be removed in a future version of
MySQL. Applications should transition away from the old tables to the new
tables. For example, if an application uses this query:

SELECT * FROM INFORMATION_SCHEMA.TP_THREAD_GROUP_STATE;

The application should use this query instead:

SELECT * FROM performance_schema.tp_thread_group_state;

The TP_THREAD_GROUP_STATE table has one row per thread group in the thread pool. Each row
provides information about the current state of a group.

For descriptions of the columns in the INFORMATION_SCHEMA TP_THREAD_GROUP_STATE
table, see Section 29.12.16.1, “The tp_thread_group_state Table”. The Performance Schema
tp_thread_group_state table has equivalent columns.

28.5.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table

Note

As of MySQL 8.0.14, the thread pool INFORMATION_SCHEMA tables are
also available as Performance Schema tables. (See Section 29.12.16,
“Performance Schema Thread Pool Tables”.) The INFORMATION_SCHEMA
tables are deprecated; expect them to be removed in a future version of
MySQL. Applications should transition away from the old tables to the new
tables. For example, if an application uses this query:

SELECT * FROM INFORMATION_SCHEMA.TP_THREAD_GROUP_STATS;

The application should use this query instead:

SELECT * FROM performance_schema.tp_thread_group_stats;

The TP_THREAD_GROUP_STATS table reports statistics per thread group. There is one row per group.

For descriptions of the columns in the INFORMATION_SCHEMA TP_THREAD_GROUP_STATS
table, see Section 29.12.16.2, “The tp_thread_group_stats Table”. The Performance Schema
tp_thread_group_stats table has equivalent columns.

28.5.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table

Note

As of MySQL 8.0.14, the thread pool INFORMATION_SCHEMA tables are
also available as Performance Schema tables. (See Section 29.12.16,
“Performance Schema Thread Pool Tables”.) The INFORMATION_SCHEMA
tables are deprecated; expect them to be removed in a future version of
MySQL. Applications should transition away from the old tables to the new
tables. For example, if an application uses this query:

SELECT * FROM INFORMATION_SCHEMA.TP_THREAD_STATE;

The application should use this query instead:

SELECT * FROM performance_schema.tp_thread_state;

The TP_THREAD_STATE table has one row per thread created by the thread pool to handle
connections.

For descriptions of the columns in the INFORMATION_SCHEMA TP_THREAD_STATE table, see
Section 29.12.16.3, “The tp_thread_state Table”. The Performance Schema tp_thread_state table
has equivalent columns.

5117

INFORMATION_SCHEMA Connection Control Tables

28.6 INFORMATION_SCHEMA Connection Control Tables

The following sections describe the INFORMATION_SCHEMA tables associated with the
connection_control plugin.

28.6.1 INFORMATION_SCHEMA Connection Control Table Reference

The following table summarizes INFORMATION_SCHEMA connection control tables. For greater detail,
see the individual table descriptions.

Table 28.8 INFORMATION_SCHEMA Connection Control Tables

Table Name Description

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTSCurrent number of consecutive failed connection
attempts per account

28.6.2 The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table

This table provides information about the current number of consecutive failed connection attempts per
account (user/host combination).

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS has these columns:

• USERHOST

The user/host combination indicating an account that has failed connection attempts, in
'user_name'@'host_name' format.

• FAILED_ATTEMPTS

The current number of consecutive failed connection attempts for the USERHOST value. This counts
all failed attempts, regardless of whether they were delayed. The number of attempts for which the
server added a delay to its response is the difference between the FAILED_ATTEMPTS value and
the connection_control_failed_connections_threshold system variable value.

Notes

• The CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS plugin must be activated for this table
to be available, and the CONNECTION_CONTROL plugin must be activated or the table contents are
always empty. See Section 8.4.2, “Connection Control Plugins”.

• The table contains rows only for accounts that have had one or more consecutive failed connection
attempts without a subsequent successful attempt. When an account connects successfully, its
failed-connection count is reset to zero and the server removes any row corresponding to the
account.

• Assigning a value to the connection_control_failed_connections_threshold system
variable at runtime resets all accumulated failed-connection counters to zero, which causes the table
to become empty.

28.7 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables

The following sections describe the INFORMATION_SCHEMA tables associated with MySQL Enterprise
Firewall (see Section 8.4.7, “MySQL Enterprise Firewall”). They provide views into the firewall in-
memory data cache. These tables are available only if the appropriate firewall plugins are enabled.

28.7.1 INFORMATION_SCHEMA Firewall Table Reference

5118

The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table

The following table summarizes INFORMATION_SCHEMA firewall tables. For greater detail, see the
individual table descriptions.

Table 28.9 INFORMATION_SCHEMA Firewall Tables

Table Name Description Deprecated

MYSQL_FIREWALL_USERS Firewall in-memory data for
account profiles

8.0.26

MYSQL_FIREWALL_WHITELIST Firewall in-memory data for
account profile allowlists

8.0.26

28.7.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table

The MYSQL_FIREWALL_USERS table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists names and operational modes of registered firewall account profiles. It is
used in conjunction with the mysql.firewall_users system table that provides persistent storage
of firewall data; see MySQL Enterprise Firewall Tables.

The MYSQL_FIREWALL_USERS table has these columns:

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING,
PROTECTING, RECORDING, and RESET. For details about their meanings, see Firewall Concepts.

As of MySQL 8.0.26, this table is deprecated and subject to removal in a future MySQL version. See
Migrating Account Profiles to Group Profiles.

28.7.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table

The MYSQL_FIREWALL_WHITELIST table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists allowlist rules of registered firewall account profiles. It is used in conjunction
with the mysql.firewall_whitelist system table that provides persistent storage of firewall data;
see MySQL Enterprise Firewall Tables.

The MYSQL_FIREWALL_WHITELIST table has these columns:

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is
the union of its rules.

As of MySQL 8.0.26, this table is deprecated and subject to removal in a future MySQL version. See
Migrating Account Profiles to Group Profiles.

28.8 Extensions to SHOW Statements

Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

5119

Extensions to SHOW Statements

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which
rows to display.

INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW
DATABASES. Similarly, SHOW TABLES can be used with INFORMATION_SCHEMA to obtain a list of its
tables:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_INFORMATION_SCHEMA |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| ENGINES |
| EVENTS |
| FILES |
| KEY_COLUMN_USAGE |
| PARTITIONS |
| PLUGINS |
| PROCESSLIST |
| REFERENTIAL_CONSTRAINTS |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+

SHOW COLUMNS and DESCRIBE can display information about the columns in individual
INFORMATION_SCHEMA tables.

SHOW statements that accept a LIKE clause to limit the rows displayed also permit a WHERE clause that
specifies more general conditions that selected rows must satisfy:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW INDEX
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW TRIGGERS
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW
statement. For example, the SHOW CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1

5120

Extensions to SHOW Statements

...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As
an example, the following statement displays information about character sets for which the default
collation contains the string 'japanese':

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

This statement displays the multibyte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
euckr	EUC-KR Korean	euckr_korean_ci	2
gb18030	China National Standard GB18030	gb18030_chinese_ci	4
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
ucs2	UCS-2 Unicode	ucs2_general_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
utf16	UTF-16 Unicode	utf16_general_ci	4
utf16le	UTF-16LE Unicode	utf16le_general_ci	4
utf32	UTF-32 Unicode	utf32_general_ci	4
utf8mb3	UTF-8 Unicode	utf8mb3_general_ci	3
utf8mb4	UTF-8 Unicode	utf8mb4_0900_ai_ci	4
+---------+---------------------------------+---------------------+--------+

5121

5122

Chapter 29 MySQL Performance Schema

Table of Contents
29.1 Performance Schema Quick Start .. 5125
29.2 Performance Schema Build Configuration ... 5131
29.3 Performance Schema Startup Configuration .. 5131
29.4 Performance Schema Runtime Configuration .. 5133

29.4.1 Performance Schema Event Timing ... 5134
29.4.2 Performance Schema Event Filtering ... 5136
29.4.3 Event Pre-Filtering .. 5137
29.4.4 Pre-Filtering by Instrument .. 5138
29.4.5 Pre-Filtering by Object .. 5140
29.4.6 Pre-Filtering by Thread ... 5141
29.4.7 Pre-Filtering by Consumer ... 5143
29.4.8 Example Consumer Configurations .. 5146
29.4.9 Naming Instruments or Consumers for Filtering Operations 5151
29.4.10 Determining What Is Instrumented ... 5151

29.5 Performance Schema Queries ... 5152
29.6 Performance Schema Instrument Naming Conventions ... 5152
29.7 Performance Schema Status Monitoring ... 5156
29.8 Performance Schema Atom and Molecule Events ... 5159
29.9 Performance Schema Tables for Current and Historical Events .. 5159
29.10 Performance Schema Statement Digests and Sampling ... 5161
29.11 Performance Schema General Table Characteristics ... 5165
29.12 Performance Schema Table Descriptions .. 5166

29.12.1 Performance Schema Table Reference .. 5166
29.12.2 Performance Schema Setup Tables ... 5171
29.12.3 Performance Schema Instance Tables ... 5180
29.12.4 Performance Schema Wait Event Tables ... 5185
29.12.5 Performance Schema Stage Event Tables ... 5190
29.12.6 Performance Schema Statement Event Tables ... 5196
29.12.7 Performance Schema Transaction Tables .. 5207
29.12.8 Performance Schema Connection Tables ... 5214
29.12.9 Performance Schema Connection Attribute Tables ... 5218
29.12.10 Performance Schema User-Defined Variable Tables ... 5222
29.12.11 Performance Schema Replication Tables ... 5223
29.12.12 Performance Schema NDB Cluster Tables ... 5246
29.12.13 Performance Schema Lock Tables ... 5249
29.12.14 Performance Schema System Variable Tables ... 5258
29.12.15 Performance Schema Status Variable Tables ... 5263
29.12.16 Performance Schema Thread Pool Tables ... 5264
29.12.17 Performance Schema Firewall Tables .. 5269
29.12.18 Performance Schema Keyring Tables .. 5271
29.12.19 Performance Schema Clone Tables ... 5272
29.12.20 Performance Schema Summary Tables ... 5275
29.12.21 Performance Schema Miscellaneous Tables ... 5303

29.13 Performance Schema Option and Variable Reference ... 5322
29.14 Performance Schema Command Options ... 5326
29.15 Performance Schema System Variables ... 5327
29.16 Performance Schema Status Variables ... 5346
29.17 The Performance Schema Memory-Allocation Model ... 5349
29.18 Performance Schema and Plugins .. 5350
29.19 Using the Performance Schema to Diagnose Problems ... 5350

29.19.1 Query Profiling Using Performance Schema ... 5351
29.19.2 Obtaining Parent Event Information ... 5353

5123

29.20 Restrictions on Performance Schema ... 5355

The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level.
The Performance Schema has these characteristics:

• The Performance Schema provides a way to inspect internal execution of the server at runtime. It
is implemented using the PERFORMANCE_SCHEMA storage engine and the performance_schema
database. The Performance Schema focuses primarily on performance data. This differs from
INFORMATION_SCHEMA, which serves for inspection of metadata.

• The Performance Schema monitors server events. An “event” is anything the server does that takes
time and has been instrumented so that timing information can be collected. In general, an event
could be a function call, a wait for the operating system, a stage of an SQL statement execution such
as parsing or sorting, or an entire statement or group of statements. Event collection provides access
to information about synchronization calls (such as for mutexes) file and table I/O, table locks, and so
forth for the server and for several storage engines.

• Performance Schema events are distinct from events written to the server's binary log (which
describe data modifications) and Event Scheduler events (which are a type of stored program).

• Performance Schema events are specific to a given instance of the MySQL Server. Performance
Schema tables are considered local to the server, and changes to them are not replicated or written
to the binary log.

• Current events are available, as well as event histories and summaries. This enables you to
determine how many times instrumented activities were performed and how much time they took.
Event information is available to show the activities of specific threads, or activity associated with
particular objects such as a mutex or file.

• The PERFORMANCE_SCHEMA storage engine collects event data using “instrumentation points” in
server source code.

• Collected events are stored in tables in the performance_schema database. These tables can be
queried using SELECT statements like other tables.

• Performance Schema configuration can be modified dynamically by updating tables in the
performance_schema database through SQL statements. Configuration changes affect data
collection immediately.

• Tables in the Performance Schema are in-memory tables that use no persistent on-disk storage. The
contents are repopulated beginning at server startup and discarded at server shutdown.

• Monitoring is available on all platforms supported by MySQL.

Some limitations might apply: The types of timers might vary per platform. Instruments that apply
to storage engines might not be implemented for all storage engines. Instrumentation of each third-
party engine is the responsibility of the engine maintainer. See also Section 29.20, “Restrictions on
Performance Schema”.

• Data collection is implemented by modifying the server source code to add instrumentation. There
are no separate threads associated with the Performance Schema, unlike other features such as
replication or the Event Scheduler.

The Performance Schema is intended to provide access to useful information about server execution
while having minimal impact on server performance. The implementation follows these design goals:

• Activating the Performance Schema causes no changes in server behavior. For example, it does
not cause thread scheduling to change, and it does not cause query execution plans (as shown by
EXPLAIN) to change.

• Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the
Performance Schema does not make the server unusable.

5124

Performance Schema Quick Start

• The parser is unchanged. There are no new keywords or statements.

• Execution of server code proceeds normally even if the Performance Schema fails internally.

• When there is a choice between performing processing during event collection initially or during
event retrieval later, priority is given to making collection faster. This is because collection is ongoing
whereas retrieval is on demand and might never happen at all.

• Most Performance Schema tables have indexes, which gives the optimizer access to execution
plans other than full table scans. For more information, see Section 10.2.4, “Optimizing Performance
Schema Queries”.

• It is easy to add new instrumentation points.

• Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented
code continues to work. This benefits developers of third-party plugins because it is not necessary to
upgrade each plugin to stay synchronized with the latest Performance Schema changes.

Note

 The MySQL sys schema is a set of objects that provides convenient access
to data collected by the Performance Schema. The sys schema is installed by
default. For usage instructions, see Chapter 30, MySQL sys Schema.

29.1 Performance Schema Quick Start
This section briefly introduces the Performance Schema with examples that show how to use it. For
additional examples, see Section 29.19, “Using the Performance Schema to Diagnose Problems”.

The Performance Schema is enabled by default. To enable or disable it explicitly, start the server with
the performance_schema variable set to an appropriate value. For example, use these lines in the
server my.cnf file:

[mysqld]
performance_schema=ON

When the server starts, it sees performance_schema and attempts to initialize the Performance
Schema. To verify successful initialization, use this statement:

mysql> SHOW VARIABLES LIKE 'performance_schema';
+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| performance_schema | ON |
+--------------------+-------+

A value of ON means that the Performance Schema initialized successfully and is ready for use. A
value of OFF means that some error occurred. Check the server error log for information about what
went wrong.

The Performance Schema is implemented as a storage engine, so you can see it listed in the output
from the Information Schema ENGINES table or the SHOW ENGINES statement:

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES
 WHERE ENGINE='PERFORMANCE_SCHEMA'\G
*************************** 1. row ***************************
 ENGINE: PERFORMANCE_SCHEMA
 SUPPORT: YES
 COMMENT: Performance Schema
TRANSACTIONS: NO
 XA: NO
 SAVEPOINTS: NO

mysql> SHOW ENGINES\G
...

5125

Performance Schema Quick Start

 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

The PERFORMANCE_SCHEMA storage engine operates on tables in the performance_schema
database. You can make performance_schema the default database so that references to its tables
need not be qualified with the database name:

mysql> USE performance_schema;

Performance Schema tables are stored in the performance_schema database. Information about the
structure of this database and its tables can be obtained, as for any other database, by selecting from
the INFORMATION_SCHEMA database or by using SHOW statements. For example, use either of these
statements to see what Performance Schema tables exist:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema';
+--+
| TABLE_NAME |
+--+
| accounts |
| cond_instances |
...
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_thread_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_stages_summary_global_by_event_name |
| events_statements_current |
| events_statements_history |
| events_statements_history_long |
...
| file_instances |
| file_summary_by_event_name |
| file_summary_by_instance |
| host_cache |
| hosts |
| memory_summary_by_account_by_event_name |
| memory_summary_by_host_by_event_name |
| memory_summary_by_thread_by_event_name |
| memory_summary_by_user_by_event_name |
| memory_summary_global_by_event_name |
| metadata_locks |
| mutex_instances |
| objects_summary_global_by_type |
| performance_timers |
| replication_connection_configuration |
| replication_connection_status |
| replication_applier_configuration |
| replication_applier_status |
| replication_applier_status_by_coordinator |
| replication_applier_status_by_worker |
| rwlock_instances |
| session_account_connect_attrs |
| session_connect_attrs |
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| socket_instances |
| socket_summary_by_event_name |
| socket_summary_by_instance |
| table_handles |
| table_io_waits_summary_by_index_usage |

5126

Performance Schema Quick Start

| table_io_waits_summary_by_table |
| table_lock_waits_summary_by_table |
| threads |
| users |
+--+

mysql> SHOW TABLES FROM performance_schema;
+--+
| Tables_in_performance_schema |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
...

The number of Performance Schema tables increases over time as implementation of additional
instrumentation proceeds.

The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

To see the structure of individual tables, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE performance_schema.setup_consumers\G
*************************** 1. row ***************************
 Table: setup_consumers
Create Table: CREATE TABLE `setup_consumers` (
 `NAME` varchar(64) NOT NULL,
 `ENABLED` enum('YES','NO') NOT NULL,
 PRIMARY KEY (`NAME`)
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

Table structure is also available by selecting from tables such as INFORMATION_SCHEMA.COLUMNS or
by using statements such as SHOW COLUMNS.

Tables in the performance_schema database can be grouped according to the type of information
in them: Current events, event histories and summaries, object instances, and setup (configuration)
information. The following examples illustrate a few uses for these tables. For detailed information
about the tables in each group, see Section 29.12, “Performance Schema Table Descriptions”.

Initially, not all instruments and consumers are enabled, so the performance schema does not collect
all events. To turn all of these on and enable event timing, execute two statements (the row counts may
differ depending on MySQL version):

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES';
Query OK, 560 rows affected (0.04 sec)
mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES';
Query OK, 10 rows affected (0.00 sec)

To see what the server is doing at the moment, examine the events_waits_current table. It
contains one row per thread showing each thread's most recent monitored event:

mysql> SELECT *
 FROM performance_schema.events_waits_current\G
*************************** 1. row ***************************
 THREAD_ID: 0
 EVENT_ID: 5523
 END_EVENT_ID: 5523
 EVENT_NAME: wait/synch/mutex/mysys/THR_LOCK::mutex
 SOURCE: thr_lock.c:525
 TIMER_START: 201660494489586
 TIMER_END: 201660494576112
 TIMER_WAIT: 86526
 SPINS: NULL

5127

Performance Schema Quick Start

 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 INDEX_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 142270668
 NESTING_EVENT_ID: NULL
 NESTING_EVENT_TYPE: NULL
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: 0
...

This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on
THR_LOCK::mutex, a mutex in the mysys subsystem. The first few columns provide the following
information:

• The ID columns indicate which thread the event comes from and the event number.

• EVENT_NAME indicates what was instrumented and SOURCE indicates which source file contains the
instrumented code.

• The timer columns show when the event started and stopped and how long it took. If an event is
still in progress, the TIMER_END and TIMER_WAIT values are NULL. Timer values are approximate
and expressed in picoseconds. For information about timers and event time collection, see
Section 29.4.1, “Performance Schema Event Timing”.

The history tables contain the same kind of rows as the current-events table but have more rows and
show what the server has been doing “recently” rather than “currently.” The events_waits_history
and events_waits_history_long tables contain the most recent 10 events per thread and most
recent 10,000 events, respectively. For example, to see information for recent events produced by
thread 13, do this:

mysql> SELECT EVENT_ID, EVENT_NAME, TIMER_WAIT
 FROM performance_schema.events_waits_history
 WHERE THREAD_ID = 13
 ORDER BY EVENT_ID;
+----------+---+------------+
| EVENT_ID | EVENT_NAME | TIMER_WAIT |
+----------+---+------------+
86	wait/synch/mutex/mysys/THR_LOCK::mutex	686322
87	wait/synch/mutex/mysys/THR_LOCK_malloc	320535
88	wait/synch/mutex/mysys/THR_LOCK_malloc	339390
89	wait/synch/mutex/mysys/THR_LOCK_malloc	377100
90	wait/synch/mutex/sql/LOCK_plugin	614673
91	wait/synch/mutex/sql/LOCK_open	659925
92	wait/synch/mutex/sql/THD::LOCK_thd_data	494001
93	wait/synch/mutex/mysys/THR_LOCK_malloc	222489
94	wait/synch/mutex/mysys/THR_LOCK_malloc	214947
95	wait/synch/mutex/mysys/LOCK_alarm	312993
+----------+---+------------+

As new events are added to a history table, older events are discarded if the table is full.

Summary tables provide aggregated information for all events over time. The tables in this group
summarize event data in different ways. To see which instruments have been executed the most times
or have taken the most wait time, sort the events_waits_summary_global_by_event_name
table on the COUNT_STAR or SUM_TIMER_WAIT column, which correspond to a COUNT(*) or
SUM(TIMER_WAIT) value, respectively, calculated over all events:

mysql> SELECT EVENT_NAME, COUNT_STAR
 FROM performance_schema.events_waits_summary_global_by_event_name
 ORDER BY COUNT_STAR DESC LIMIT 10;
+---+------------+
| EVENT_NAME | COUNT_STAR |
+---+------------+
| wait/synch/mutex/mysys/THR_LOCK_malloc | 6419 |
| wait/io/file/sql/FRM | 452 |

5128

Performance Schema Quick Start

wait/synch/mutex/sql/LOCK_plugin	337
wait/synch/mutex/mysys/THR_LOCK_open	187
wait/synch/mutex/mysys/LOCK_alarm	147
wait/synch/mutex/sql/THD::LOCK_thd_data	115
wait/io/file/myisam/kfile	102
wait/synch/mutex/sql/LOCK_global_system_variables	89
wait/synch/mutex/mysys/THR_LOCK::mutex	89
wait/synch/mutex/sql/LOCK_open	88
+---+------------+

mysql> SELECT EVENT_NAME, SUM_TIMER_WAIT
 FROM performance_schema.events_waits_summary_global_by_event_name
 ORDER BY SUM_TIMER_WAIT DESC LIMIT 10;
+--+----------------+
| EVENT_NAME | SUM_TIMER_WAIT |
+--+----------------+
wait/io/file/sql/MYSQL_LOG	1599816582
wait/synch/mutex/mysys/THR_LOCK_malloc	1530083250
wait/io/file/sql/binlog_index	1385291934
wait/io/file/sql/FRM	1292823243
wait/io/file/myisam/kfile	411193611
wait/io/file/myisam/dfile	322401645
wait/synch/mutex/mysys/LOCK_alarm	145126935
wait/io/file/sql/casetest	104324715
wait/synch/mutex/sql/LOCK_plugin	86027823
wait/io/file/sql/pid	72591750
+--+----------------+

These results show that the THR_LOCK_malloc mutex is “hot,” both in terms of how often it is used
and amount of time that threads wait attempting to acquire it.

Note

The THR_LOCK_malloc mutex is used only in debug builds. In production
builds it is not hot because it is nonexistent.

Instance tables document what types of objects are instrumented. An instrumented object, when
used by the server, produces an event. These tables provide event names and explanatory notes or
status information. For example, the file_instances table lists instances of instruments for file I/O
operations and their associated files:

mysql> SELECT *
 FROM performance_schema.file_instances\G
*************************** 1. row ***************************
 FILE_NAME: /opt/mysql-log/60500/binlog.000007
EVENT_NAME: wait/io/file/sql/binlog
OPEN_COUNT: 0
*************************** 2. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/tables_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
*************************** 3. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/columns_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
...

Setup tables are used to configure and display monitoring characteristics. For example,
setup_instruments lists the set of instruments for which events can be collected and shows which
of them are enabled:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
| stage/sql/end | NO | NO |
| stage/sql/executing | NO | NO |

5129

Performance Schema Quick Start

| stage/sql/init | NO | NO |
| stage/sql/insert | NO | NO |
...
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...		
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To understand how to interpret instrument names, see Section 29.6, “Performance Schema Instrument
Naming Conventions”.

To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For
example:

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'NO'
 WHERE NAME = 'wait/synch/mutex/sql/LOCK_mysql_create_db';

The Performance Schema uses collected events to update tables in the performance_schema
database, which act as “consumers” of event information. The setup_consumers table lists the
available consumers and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_cpu	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

To control whether the Performance Schema maintains a consumer as a destination for event
information, set its ENABLED value.

For more information about the setup tables and how to use them to control event collection, see
Section 29.4.2, “Performance Schema Event Filtering”.

There are some miscellaneous tables that do not fall into any of the previous groups. For example,
performance_timers lists the available event timers and their characteristics. For information about
timers, see Section 29.4.1, “Performance Schema Event Timing”.

5130

Performance Schema Build Configuration

29.2 Performance Schema Build Configuration
The Performance Schema is mandatory and always compiled in. It is possible to exclude certain
parts of the Performance Schema instrumentation. For example, to exclude stage and statement
instrumentation, do this:

$> cmake . \
 -DDISABLE_PSI_STAGE=1 \
 -DDISABLE_PSI_STATEMENT=1

For more information, see the descriptions of the DISABLE_PSI_XXX CMake options in Section 2.8.7,
“MySQL Source-Configuration Options”.

If you install MySQL over a previous installation that was configured without the Performance Schema
(or with an older version of the Performance Schema that has missing or out-of-date tables). One
indication of this issue is the presence of messages such as the following in the error log:

[ERROR] Native table 'performance_schema'.'events_waits_history'
has the wrong structure
[ERROR] Native table 'performance_schema'.'events_waits_history_long'
has the wrong structure
...

To correct that problem, perform the MySQL upgrade procedure. See Chapter 3, Upgrading MySQL.

Because the Performance Schema is configured into the server at build time, a row for
PERFORMANCE_SCHEMA appears in the output from SHOW ENGINES. This means that the Performance
Schema is available, not that it is enabled. To enable it, you must do so at server startup, as described
in the next section.

29.3 Performance Schema Startup Configuration
To use the MySQL Performance Schema, it must be enabled at server startup to enable event
collection to occur.

The Performance Schema is enabled by default. To enable or disable it explicitly, start the server with
the performance_schema variable set to an appropriate value. For example, use these lines in the
server my.cnf file:

[mysqld]
performance_schema=ON

If the server is unable to allocate any internal buffer during Performance Schema initialization, the
Performance Schema disables itself and sets performance_schema to OFF, and the server runs
without instrumentation.

The Performance Schema also permits instrument and consumer configuration at server startup.

To control an instrument at server startup, use an option of this form:

--performance-schema-instrument='instrument_name=value'

Here, instrument_name is an instrument name such as wait/synch/mutex/sql/LOCK_open,
and value is one of these values:

• OFF, FALSE, or 0: Disable the instrument

• ON, TRUE, or 1: Enable and time the instrument

• COUNTED: Enable and count (rather than time) the instrument

Each --performance-schema-instrument option can specify only one instrument name, but
multiple instances of the option can be given to configure multiple instruments. In addition, patterns
are permitted in instrument names to configure instruments that match the pattern. To configure all
condition synchronization instruments as enabled and counted, use this option:

5131

Performance Schema Startup Configuration

--performance-schema-instrument='wait/synch/cond/%=COUNTED'

To disable all instruments, use this option:

--performance-schema-instrument='%=OFF'

Exception: The memory/performance_schema/% instruments are built in and cannot be disabled at
startup.

Longer instrument name strings take precedence over shorter pattern names, regardless of order. For
information about specifying patterns to select instruments, see Section 29.4.9, “Naming Instruments or
Consumers for Filtering Operations”.

An unrecognized instrument name is ignored. It is possible that a plugin installed later may create the
instrument, at which time the name is recognized and configured.

To control a consumer at server startup, use an option of this form:

--performance-schema-consumer-consumer_name=value

Here, consumer_name is a consumer name such as events_waits_history, and value is one of
these values:

• OFF, FALSE, or 0: Do not collect events for the consumer

• ON, TRUE, or 1: Collect events for the consumer

For example, to enable the events_waits_history consumer, use this option:

--performance-schema-consumer-events-waits-history=ON

The permitted consumer names can be found by examining the setup_consumers table. Patterns
are not permitted. Consumer names in the setup_consumers table use underscores, but for
consumers set at startup, dashes and underscores within the name are equivalent.

The Performance Schema includes several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+---------+
| Variable_name | Value |
+--+---------+
performance_schema	ON
performance_schema_accounts_size	100
performance_schema_digests_size	200
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	100
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	1000
...

The performance_schema variable is ON or OFF to indicate whether the Performance Schema is
enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation
values.

Note

With the Performance Schema enabled, the number of Performance Schema
instances affects the server memory footprint, perhaps to a large extent. The
Performance Schema autoscales many parameters to use memory only as
required; see Section 29.17, “The Performance Schema Memory-Allocation
Model”.

5132

Performance Schema Runtime Configuration

To change the value of Performance Schema system variables, set them at server startup. For
example, put the following lines in a my.cnf file to change the sizes of the history tables for wait
events:

[mysqld]
performance_schema
performance_schema_events_waits_history_size=20
performance_schema_events_waits_history_long_size=15000

The Performance Schema automatically sizes the values of several of its parameters at server
startup if they are not set explicitly. For example, it sizes the parameters that control the sizes of the
events waits tables this way. The Performance Schema allocates memory incrementally, scaling
its memory use to actual server load, instead of allocating all the memory it needs during server
startup. Consequently, many sizing parameters need not be set at all. To see which parameters are
autosized or autoscaled, use mysqld --verbose --help and examine the option descriptions, or
see Section 29.15, “Performance Schema System Variables”.

For each autosized parameter that is not set at server startup, the Performance Schema determines
how to set its value based on the value of the following system values, which are considered as “hints”
about how you have configured your MySQL server:

max_connections
open_files_limit
table_definition_cache
table_open_cache

To override autosizing or autoscaling for a given parameter, set it to a value other than −1 at startup. In
this case, the Performance Schema assigns it the specified value.

At runtime, SHOW VARIABLES displays the actual values that autosized parameters were set to.
Autoscaled parameters display with a value of −1.

If the Performance Schema is disabled, its autosized and autoscaled parameters remain set to −1 and
SHOW VARIABLES displays −1.

29.4 Performance Schema Runtime Configuration
Specific Performance Schema features can be enabled at runtime to control which types of event
collection occur.

Performance Schema setup tables contain information about monitoring configuration:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema'
 AND TABLE_NAME LIKE 'setup%';
+-------------------+
| TABLE_NAME |
+-------------------+
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_threads |
+-------------------+

You can examine the contents of these tables to obtain information about Performance Schema
monitoring characteristics. If you have the UPDATE privilege, you can change Performance Schema
operation by modifying setup tables to affect how monitoring occurs. For additional details about these
tables, see Section 29.12.2, “Performance Schema Setup Tables”.

The setup_instruments and setup_consumers tables list the instruments for which events can
be collected and the types of consumers for which event information actually is collected, respectively.
Other setup tables enable further modification of the monitoring configuration. Section 29.4.2,
“Performance Schema Event Filtering”, discusses how you can modify these tables to affect event
collection.

5133

Performance Schema Event Timing

If there are Performance Schema configuration changes that must be made at runtime using SQL
statements and you would like these changes to take effect each time the server starts, put the
statements in a file and start the server with the init_file system variable set to name the file. This
strategy can also be useful if you have multiple monitoring configurations, each tailored to produce a
different kind of monitoring, such as casual server health monitoring, incident investigation, application
behavior troubleshooting, and so forth. Put the statements for each monitoring configuration into their
own file and specify the appropriate file as the init_file value when you start the server.

29.4.1 Performance Schema Event Timing

Events are collected by means of instrumentation added to the server source code. Instruments time
events, which is how the Performance Schema provides an idea of how long events take. It is also
possible to configure instruments not to collect timing information. This section discusses the available
timers and their characteristics, and how timing values are represented in events.

Performance Schema Timers

Performance Schema timers vary in precision and amount of overhead. To see what timers are
available and their characteristics, check the performance_timers table:

mysql> SELECT * FROM performance_schema.performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168
THREAD_CPU	339101694	1	798
+-------------+-----------------+------------------+----------------+

If the values associated with a given timer name are NULL, that timer is not supported on your platform.

The columns have these meanings:

• The TIMER_NAME column shows the names of the available timers. CYCLE refers to the timer that is
based on the CPU (processor) cycle counter.

• TIMER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency
is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz
processor. The other timers are based on fixed fractions of seconds.

• TIMER_RESOLUTION indicates the number of timer units by which timer values increase at a time. If
a timer has a resolution of 10, its value increases by 10 each time.

• TIMER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given
timer. The overhead per event is twice the value displayed because the timer is invoked at the
beginning and end of the event.

The Performance Schema assigns timers as follows:

• The wait timer uses CYCLE.

• The idle, stage, statement, and transaction timers use NANOSECOND on platforms where the
NANOSECOND timer is available, MICROSECOND otherwise.

At server startup, the Performance Schema verifies that assumptions made at build time about timer
assignments are correct, and displays a warning if a timer is not available.

To time wait events, the most important criterion is to reduce overhead, at the possible expense of the
timer accuracy, so using the CYCLE timer is the best.

The time a statement (or stage) takes to execute is in general orders of magnitude larger than the time
it takes to execute a single wait. To time statements, the most important criterion is to have an accurate

5134

Performance Schema Event Timing

measure, which is not affected by changes in processor frequency, so using a timer which is not based
on cycles is the best. The default timer for statements is NANOSECOND. The extra “overhead” compared
to the CYCLE timer is not significant, because the overhead caused by calling a timer twice (once when
the statement starts, once when it ends) is orders of magnitude less compared to the CPU time used to
execute the statement itself. Using the CYCLE timer has no benefit here, only drawbacks.

The precision offered by the cycle counter depends on processor speed. If the processor runs at 1
GHz (one billion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using
the cycle counter is much cheaper than getting the actual time of day. For example, the standard
gettimeofday() function can take hundreds of cycles, which is an unacceptable overhead for data
gathering that may occur thousands or millions of times per second.

Cycle counters also have disadvantages:

• End users expect to see timings in wall-clock units, such as fractions of a second. Converting from
cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly
rough multiplication operation.

• Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a
CPU slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from
cycles to real-time units is subject to error.

• Cycle counters might be unreliable or unavailable depending on the processor or the operating
system. For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C
instruction) and it is theoretically possible for the operating system to prevent user-mode programs
from using it.

• Some processor details related to out-of-order execution or multiprocessor synchronization might
cause the counter to seem fast or slow by up to 1000 cycles.

MySQL works with cycle counters on x386 (Windows, macOS, Linux, Solaris, and other Unix flavors),
PowerPC, and IA-64.

Performance Schema Timer Representation in Events

Rows in Performance Schema tables that store current events and historical events have three
columns to represent timing information: TIMER_START and TIMER_END indicate when an event
started and finished, and TIMER_WAIT indicates event duration.

The setup_instruments table has an ENABLED column to indicate the instruments for which
to collect events. The table also has a TIMED column to indicate which instruments are timed. If
an instrument is not enabled, it produces no events. If an enabled instrument is not timed, events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer
values. This in turn causes those values to be ignored when calculating aggregate time values in
summary tables (sum, minimum, maximum, and average).

Internally, times within events are stored in units given by the timer in effect when event timing
begins. For display when events are retrieved from Performance Schema tables, times are shown in
picoseconds (trillionths of a second) to normalize them to a standard unit, regardless of which timer is
selected.

The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup.
TIMER_START and TIMER_END values in events represent picoseconds since the baseline.
TIMER_WAIT values are durations in picoseconds.

Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error
associated with conversion from one unit to another. If the CYCLE timer is used and the processor
rate varies, there might be drift. For these reasons, it is not reasonable to look at the TIMER_START
value for an event as an accurate measure of time elapsed since server startup. On the other hand, it
is reasonable to use TIMER_START or TIMER_WAIT values in ORDER BY clauses to order events by
start time or duration.

5135

Performance Schema Event Filtering

The choice of picoseconds in events rather than a value such as microseconds has a performance
basis. One implementation goal was to show results in a uniform time unit, regardless of the timer.
In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other
words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary
to perform a division for every instrumentation. Division is expensive on many platforms. Multiplication
is not expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest
possible TIMER_FREQUENCY value, using a multiplier large enough to ensure that there is no major
precision loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the
decision enables overhead to be minimized.

While a wait, stage, statement, or transaction event is executing, the respective current-event tables
display current-event timing information:

events_waits_current
events_stages_current
events_statements_current
events_transactions_current

To make it possible to determine how long a not-yet-completed event has been running, the timer
columns are set as follows:

• TIMER_START is populated.

• TIMER_END is populated with the current timer value.

• TIMER_WAIT is populated with the time elapsed so far (TIMER_END − TIMER_START).

Events that have not yet completed have an END_EVENT_ID value of NULL. To assess time elapsed
so far for an event, use the TIMER_WAIT column. Therefore, to identify events that have not yet
completed and have taken longer than N picoseconds thus far, monitoring applications can use this
expression in queries:

WHERE END_EVENT_ID IS NULL AND TIMER_WAIT > N

Event identification as just described assumes that the corresponding instruments have ENABLED and
TIMED set to YES and that the relevant consumers are enabled.

29.4.2 Performance Schema Event Filtering

Events are processed in a producer/consumer fashion:

• Instrumented code is the source for events and produces events to be collected. The
setup_instruments table lists the instruments for which events can be collected, whether they
are enabled, and (for enabled instruments) whether to collect timing information:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...

The setup_instruments table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables
may be used as described in Section 29.4.3, “Event Pre-Filtering”.

• Performance Schema tables are the destinations for events and consume events. The
setup_consumers table lists the types of consumers to which event information can be sent and
whether they are enabled:

5136

Event Pre-Filtering

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_cpu	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

Filtering can be done at different stages of performance monitoring:

• Pre-filtering. This is done by modifying Performance Schema configuration so that only certain
types of events are collected from producers, and collected events update only certain consumers.
To do this, enable or disable instruments or consumers. Pre-filtering is done by the Performance
Schema and has a global effect that applies to all users.

Reasons to use pre-filtering:

• To reduce overhead. Performance Schema overhead should be minimal even with all instruments
enabled, but perhaps you want to reduce it further. Or you do not care about timing events and
want to disable the timing code to eliminate timing overhead.

• To avoid filling the current-events or history tables with events in which you have no interest. Pre-
filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If
you enable only file instruments with pre-filtering, no rows are collected for nonfile instruments.
With post-filtering, nonfile events are collected, leaving fewer rows for file events.

• To avoid maintaining some kinds of event tables. If you disable a consumer, the server does not
spend time maintaining destinations for that consumer. For example, if you do not care about
event histories, you can disable the history table consumers to improve performance.

• Post-filtering. This involves the use of WHERE clauses in queries that select information from
Performance Schema tables, to specify which of the available events you want to see. Post-filtering
is performed on a per-user basis because individual users select which of the available events are of
interest.

Reasons to use post-filtering:

• To avoid making decisions for individual users about which event information is of interest.

• To use the Performance Schema to investigate a performance issue when the restrictions to
impose using pre-filtering are not known in advance.

The following sections provide more detail about pre-filtering and provide guidelines for naming
instruments or consumers in filtering operations. For information about writing queries to retrieve
information (post-filtering), see Section 29.5, “Performance Schema Queries”.

29.4.3 Event Pre-Filtering

Pre-filtering is done by the Performance Schema and has a global effect that applies to all users. Pre-
filtering can be applied to either the producer or consumer stage of event processing:

5137

Pre-Filtering by Instrument

• To configure pre-filtering at the producer stage, several tables can be used:

• setup_instruments indicates which instruments are available. An instrument disabled in this
table produces no events regardless of the contents of the other production-related setup tables.
An instrument enabled in this table is permitted to produce events, subject to the contents of the
other tables.

• setup_objects controls whether the Performance Schema monitors particular table and stored
program objects.

• threads indicates whether monitoring is enabled for each server thread.

• setup_actors determines the initial monitoring state for new foreground threads.

• To configure pre-filtering at the consumer stage, modify the setup_consumers table. This
determines the destinations to which events are sent. setup_consumers also implicitly affects
event production. If a given event is not sent to any destination (that is, it is never consumed), the
Performance Schema does not produce it.

Modifications to any of these tables affect monitoring immediately, with the exception that modifications
to the setup_actors table affect only foreground threads created subsequent to the modification, not
existing threads.

When you change the monitoring configuration, the Performance Schema does not flush the history
tables. Events already collected remain in the current-events and history tables until displaced by
newer events. If you disable instruments, you might need to wait a while before events for them are
displaced by newer events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.

After making instrumentation changes, you might want to truncate the summary tables. Generally, the
effect is to reset the summary columns to 0 or NULL, not to remove rows. This enables you to clear
collected values and restart aggregation. That might be useful, for example, after you have made a
runtime configuration change. Exceptions to this truncation behavior are noted in individual summary
table sections.

The following sections describe how to use specific tables to control Performance Schema pre-filtering.

29.4.4 Pre-Filtering by Instrument

The setup_instruments table lists the available instruments:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...		
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES

5138

Pre-Filtering by Instrument

| wait/synch/rwlock/sql/LOCK_sys_init_slave | YES | YES |
...
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To control whether an instrument is enabled, set its ENABLED column to YES or NO. To configure
whether to collect timing information for an enabled instrument, set its TIMED value to YES or NO.
Setting the TIMED column affects Performance Schema table contents as described in Section 29.4.1,
“Performance Schema Event Timing”.

Modifications to most setup_instruments rows affect monitoring immediately. For some
instruments, modifications are effective only at server startup; changing them at runtime has no effect.
This affects primarily mutexes, conditions, and rwlocks in the server, although there may be other
instruments for which this is true.

The setup_instruments table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables may
be used as described in Section 29.4.3, “Event Pre-Filtering”.

The following examples demonstrate possible operations on the setup_instruments table. These
changes, like other pre-filtering operations, affect all users. Some of these queries use the LIKE
operator and a pattern match instrument names. For additional information about specifying patterns to
select instruments, see Section 29.4.9, “Naming Instruments or Consumers for Filtering Operations”.

• Disable all instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO';

Now no events are collected.

• Disable all file instruments, adding them to the current set of disabled instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'wait/io/file/%';

• Disable only file instruments, enable all other instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = IF(NAME LIKE 'wait/io/file/%', 'NO', 'YES');

• Enable all but those instruments in the mysys library:

UPDATE performance_schema.setup_instruments
SET ENABLED = CASE WHEN NAME LIKE '%/mysys/%' THEN 'YES' ELSE 'NO' END;

• Disable a specific instrument:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• To toggle the state of an instrument, “flip” its ENABLED value:

UPDATE performance_schema.setup_instruments
SET ENABLED = IF(ENABLED = 'YES', 'NO', 'YES')
WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• Disable timing for all events:

UPDATE performance_schema.setup_instruments
SET TIMED = 'NO';

5139

Pre-Filtering by Object

29.4.5 Pre-Filtering by Object

The setup_objects table controls whether the Performance Schema monitors particular table and
stored program objects. The initial setup_objects contents look like this:

mysql> SELECT * FROM performance_schema.setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
EVENT	mysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

The OBJECT_TYPE column indicates the type of object to which a row applies. TABLE filtering affects
table I/O events (wait/io/table/sql/handler instrument) and table lock events (wait/lock/
table/sql/handler instrument).

The OBJECT_SCHEMA and OBJECT_NAME columns should contain a literal schema or object name, or
'%' to match any name.

The ENABLED column indicates whether matching objects are monitored, and TIMED indicates whether
to collect timing information. Setting the TIMED column affects Performance Schema table contents as
described in Section 29.4.1, “Performance Schema Event Timing”.

The effect of the default object configuration is to instrument all objects except those in
the mysql, INFORMATION_SCHEMA, and performance_schema databases. (Tables in
the INFORMATION_SCHEMA database are not instrumented regardless of the contents of
setup_objects; the row for information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For rows that match a given OBJECT_TYPE, the Performance Schema checks rows in
this order:

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='literal'.

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='%'.

• Rows with OBJECT_SCHEMA='%' and OBJECT_NAME='%'.

For example, with a table db1.t1, the Performance Schema looks in TABLE rows for a match for
'db1' and 't1', then for 'db1' and '%', then for '%' and '%'. The order in which matching occurs
matters because different matching setup_objects rows can have different ENABLED and TIMED
values.

For table-related events, the Performance Schema combines the contents of setup_objects with
setup_instruments to determine whether to enable instruments and whether to time enabled
instruments:

5140

Pre-Filtering by Thread

• For tables that match a row in setup_objects, table instruments produce events only if ENABLED
is YES in both setup_instruments and setup_objects.

• The TIMED values in the two tables are combined, so that timing information is collected only when
both values are YES.

For stored program objects, the Performance Schema takes the ENABLED and TIMED columns directly
from the setup_objects row. There is no combining of values with setup_instruments.

Suppose that setup_objects contains the following TABLE rows that apply to db1, db2, and db3:

+-------------+---------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+---------------+-------------+---------+-------+
TABLE	db1	t1	YES	YES
TABLE	db1	t2	NO	NO
TABLE	db2	%	YES	YES
TABLE	db3	%	NO	NO
TABLE	%	%	YES	YES
+-------------+---------------+-------------+---------+-------+

If an object-related instrument in setup_instruments has an ENABLED value of NO, events for
the object are not monitored. If the ENABLED value is YES, event monitoring occurs according to the
ENABLED value in the relevant setup_objects row:

• db1.t1 events are monitored

• db1.t2 events are not monitored

• db2.t3 events are monitored

• db3.t4 events are not monitored

• db4.t5 events are monitored

Similar logic applies for combining the TIMED columns from the setup_instruments and
setup_objects tables to determine whether to collect event timing information.

If a persistent table and a temporary table have the same name, matching against setup_objects
rows occurs the same way for both. It is not possible to enable monitoring for one table but not the
other. However, each table is instrumented separately.

29.4.6 Pre-Filtering by Thread

The threads table contains a row for each server thread. Each row contains information about a
thread and indicates whether monitoring is enabled for it. For the Performance Schema to monitor a
thread, these things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

The threads table also indicates for each server thread whether to perform historical event logging.
This includes wait, stage, statement, and transaction events and affects logging to these tables:

events_waits_history
events_waits_history_long
events_stages_history
events_stages_history_long
events_statements_history
events_statements_history_long
events_transactions_history
events_transactions_history_long

5141

Pre-Filtering by Thread

For historical event logging to occur, these things must be true:

• The appropriate history-related consumers in the setup_consumers table must be enabled. For
example, wait event logging in the events_waits_history and events_waits_history_long
tables requires the corresponding events_waits_history and events_waits_history_long
consumers to be YES.

• The threads.HISTORY column must be YES.

• Logging occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

For foreground threads (resulting from client connections), the initial values of the INSTRUMENTED and
HISTORY columns in threads table rows are determined by whether the user account associated
with a thread matches any row in the setup_actors table. The values come from the ENABLED and
HISTORY columns of the matching setup_actors table row.

For background threads, there is no associated user. INSTRUMENTED and HISTORY are YES by default
and setup_actors is not consulted.

The initial setup_actors contents look like this:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

The HOST and USER columns should contain a literal host or user name, or '%' to match any name.

The ENABLED and HISTORY columns indicate whether to enable instrumentation and historical event
logging for matching threads, subject to the other conditions described previously.

When the Performance Schema checks for a match for each new foreground thread in
setup_actors, it tries to find more specific matches first, using the USER and HOST columns (ROLE is
unused):

• Rows with USER='literal' and HOST='literal'.

• Rows with USER='literal' and HOST='%'.

• Rows with USER='%' and HOST='literal'.

• Rows with USER='%' and HOST='%'.

The order in which matching occurs matters because different matching setup_actors rows can
have different USER and HOST values. This enables instrumenting and historical event logging to be
applied selectively per host, user, or account (user and host combination), based on the ENABLED and
HISTORY column values:

• When the best match is a row with ENABLED=YES, the INSTRUMENTED value for the thread
becomes YES. When the best match is a row with HISTORY=YES, the HISTORY value for the thread
becomes YES.

• When the best match is a row with ENABLED=NO, the INSTRUMENTED value for the thread becomes
NO. When the best match is a row with HISTORY=NO, the HISTORY value for the thread becomes NO.

• When no match is found, the INSTRUMENTED and HISTORY values for the thread become NO.

The ENABLED and HISTORY columns in setup_actors rows can be set to YES or NO independent of
one another. This means you can enable instrumentation separately from whether you collect historical
events.

5142

Pre-Filtering by Consumer

By default, monitoring and historical event collection are enabled for all new foreground threads
because the setup_actors table initially contains a row with '%' for both HOST and USER. To
perform more limited matching such as to enable monitoring only for some foreground threads, you
must change this row because it matches any connection, and add rows for more specific HOST/USER
combinations.

Suppose that you modify setup_actors as follows:

UPDATE performance_schema.setup_actors
SET ENABLED = 'NO', HISTORY = 'NO'
WHERE HOST = '%' AND USER = '%';
INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('localhost','joe','%','YES','YES');
INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('hosta.example.com','joe','%','YES','NO');
INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('%','sam','%','NO','YES');

The UPDATE statement changes the default match to disable instrumentation and historical event
collection. The INSERT statements add rows for more specific matches.

Now the Performance Schema determines how to set the INSTRUMENTED and HISTORY values for
new connection threads as follows:

• If joe connects from the local host, the connection matches the first inserted row. The
INSTRUMENTED and HISTORY values for the thread become YES.

• If joe connects from hosta.example.com, the connection matches the second inserted row. The
INSTRUMENTED value for the thread becomes YES and the HISTORY value becomes NO.

• If joe connects from any other host, there is no match. The INSTRUMENTED and HISTORY values
for the thread become NO.

• If sam connects from any host, the connection matches the third inserted row. The INSTRUMENTED
value for the thread becomes NO and the HISTORY value becomes YES.

• For any other connection, the row with HOST and USER set to '%' matches. This row now has
ENABLED and HISTORY set to NO, so the INSTRUMENTED and HISTORY values for the thread
become NO.

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED and HISTORY
columns of threads table rows.

29.4.7 Pre-Filtering by Consumer

The setup_consumers table lists the available consumer types and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_cpu	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO

5143

Pre-Filtering by Consumer

events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

Modify the setup_consumers table to affect pre-filtering at the consumer stage and determine the
destinations to which events are sent. To enable or disable a consumer, set its ENABLED value to YES
or NO.

Modifications to the setup_consumers table affect monitoring immediately.

If you disable a consumer, the server does not spend time maintaining destinations for that consumer.
For example, if you do not care about historical event information, disable the history consumers:

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%history%';

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
The following principles apply:

• Destinations associated with a consumer receive no events unless the Performance Schema checks
the consumer and the consumer is enabled.

• A consumer is checked only if all consumers it depends on (if any) are enabled.

• If a consumer is not checked, or is checked but is disabled, other consumers that depend on it are
not checked.

• Dependent consumers may have their own dependent consumers.

• If an event would not be sent to any destination, the Performance Schema does not produce it.

The following lists describe the available consumer values. For discussion of several representative
consumer configurations and their effect on instrumentation, see Section 29.4.8, “Example Consumer
Configurations”.

• Global and Thread Consumers

• Wait Event Consumers

• Stage Event Consumers

• Statement Event Consumers

• Transaction Event Consumers

• Statement Digest Consumer

Global and Thread Consumers

• global_instrumentation is the highest level consumer. If global_instrumentation is NO,
it disables global instrumentation. All other settings are lower level and are not checked; it does
not matter what they are set to. No global or per thread information is maintained and no individual
events are collected in the current-events or event-history tables. If global_instrumentation
is YES, the Performance Schema maintains information for global states and also checks the
thread_instrumentation consumer.

• thread_instrumentation is checked only if global_instrumentation is YES. Otherwise,
if thread_instrumentation is NO, it disables thread-specific instrumentation and all lower-
level settings are ignored. No information is maintained per thread and no individual events
are collected in the current-events or event-history tables. If thread_instrumentation
is YES, the Performance Schema maintains thread-specific information and also checks
events_xxx_current consumers.

5144

Pre-Filtering by Consumer

Wait Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_waits_current, if NO, disables collection of individual wait events in the
events_waits_current table. If YES, it enables wait event collection and the Performance
Schema checks the events_waits_history and events_waits_history_long consumers.

• events_waits_history is not checked if event_waits_current is NO. Otherwise, an
events_waits_history value of NO or YES disables or enables collection of wait events in the
events_waits_history table.

• events_waits_history_long is not checked if event_waits_current is NO. Otherwise, an
events_waits_history_long value of NO or YES disables or enables collection of wait events in
the events_waits_history_long table.

Stage Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_stages_current, if NO, disables collection of individual stage events in the
events_stages_current table. If YES, it enables stage event collection and the Performance
Schema checks the events_stages_history and events_stages_history_long
consumers.

• events_stages_history is not checked if event_stages_current is NO. Otherwise, an
events_stages_history value of NO or YES disables or enables collection of stage events in the
events_stages_history table.

• events_stages_history_long is not checked if event_stages_current is NO. Otherwise, an
events_stages_history_long value of NO or YES disables or enables collection of stage events
in the events_stages_history_long table.

Statement Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_statements_cpu, if NO, disables measurement of CPU_TIME. If YES, and the
instrumentation is enabled and timed, CPU_TIME is measured.

• events_statements_current, if NO, disables collection of individual statement
events in the events_statements_current table. If YES, it enables statement event
collection and the Performance Schema checks the events_statements_history and
events_statements_history_long consumers.

• events_statements_history is not checked if events_statements_current is NO.
Otherwise, an events_statements_history value of NO or YES disables or enables collection of
statement events in the events_statements_history table.

• events_statements_history_long is not checked if events_statements_current is NO.
Otherwise, an events_statements_history_long value of NO or YES disables or enables
collection of statement events in the events_statements_history_long table.

Transaction Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

5145

Example Consumer Configurations

• events_transactions_current, if NO, disables collection of individual transaction
events in the events_transactions_current table. If YES, it enables transaction event
collection and the Performance Schema checks the events_transactions_history and
events_transactions_history_long consumers.

• events_transactions_history is not checked if events_transactions_current is NO.
Otherwise, an events_transactions_history value of NO or YES disables or enables collection
of transaction events in the events_transactions_history table.

• events_transactions_history_long is not checked if events_transactions_current
is NO. Otherwise, an events_transactions_history_long value of NO or YES disables or
enables collection of transaction events in the events_transactions_history_long table.

Statement Digest Consumer

The statements_digest consumer requires global_instrumentation to be YES or it is not
checked. There is no dependency on the statement event consumers, so you can obtain statistics per
digest without having to collect statistics in events_statements_current, which is advantageous
in terms of overhead. Conversely, you can get detailed statements in events_statements_current
without digests (the DIGEST and DIGEST_TEXT columns are NULL in this case).

For more information about statement digesting, see Section 29.10, “Performance Schema Statement
Digests and Sampling”.

29.4.8 Example Consumer Configurations

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
The following discussion describes how consumers work, showing specific configurations and their
effects as consumer settings are enabled progressively from high to low. The consumer values shown
are representative. The general principles described here apply to other consumer values that may be
available.

The configuration descriptions occur in order of increasing functionality and overhead. If you do not
need the information provided by enabling lower-level settings, disable them so that the Performance
Schema executes less code on your behalf and there is less information to sift through.

The setup_consumers table contains the following hierarchy of values:

global_instrumentation
 thread_instrumentation
 events_waits_current
 events_waits_history
 events_waits_history_long
 events_stages_current
 events_stages_history
 events_stages_history_long
 events_statements_current
 events_statements_history
 events_statements_history_long
 events_transactions_current
 events_transactions_history
 events_transactions_history_long
 statements_digest

Note

In the consumer hierarchy, the consumers for waits, stages, statements,
and transactions are all at the same level. This differs from the event nesting
hierarchy, for which wait events nest within stage events, which nest within
statement events, which nest within transaction events.

If a given consumer setting is NO, the Performance Schema disables the instrumentation associated
with the consumer and ignores all lower-level settings. If a given setting is YES, the Performance

5146

Example Consumer Configurations

Schema enables the instrumentation associated with it and checks the settings at the next lowest level.
For a description of the rules for each consumer, see Section 29.4.7, “Pre-Filtering by Consumer”.

For example, if global_instrumentation is enabled, thread_instrumentation is
checked. If thread_instrumentation is enabled, the events_xxx_current consumers
are checked. If of these events_waits_current is enabled, events_waits_history and
events_waits_history_long are checked.

Each of the following configuration descriptions indicates which setup elements the Performance
Schema checks and which output tables it maintains (that is, for which tables it collects information).

• No Instrumentation

• Global Instrumentation Only

• Global and Thread Instrumentation Only

• Global, Thread, and Current-Event Instrumentation

• Global, Thread, Current-Event, and Event-History instrumentation

No Instrumentation

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, nothing is instrumented.

Setup elements checked:

• Table setup_consumers, consumer global_instrumentation

Output tables maintained:

• None

Global Instrumentation Only

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, instrumentation is maintained only for global states. Per-thread instrumentation is
disabled.

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumer thread_instrumentation

• Table setup_instruments

• Table setup_objects

5147

Example Consumer Configurations

Additional output tables maintained, relative to the preceding configuration:

• mutex_instances

• rwlock_instances

• cond_instances

• file_instances

• users

• hosts

• accounts

• socket_summary_by_event_name

• file_summary_by_instance

• file_summary_by_event_name

• objects_summary_global_by_type

• memory_summary_global_by_event_name

• table_lock_waits_summary_by_table

• table_io_waits_summary_by_index_usage

• table_io_waits_summary_by_table

• events_waits_summary_by_instance

• events_waits_summary_global_by_event_name

• events_stages_summary_global_by_event_name

• events_statements_summary_global_by_event_name

• events_transactions_summary_global_by_event_name

Global and Thread Instrumentation Only

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	NO
...	
events_stages_current	NO
...	
events_statements_current	NO
...	
events_transactions_current	NO
...
+----------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. No individual events are
collected in the current-events or event-history tables.

Additional setup elements checked, relative to the preceding configuration:

5148

Example Consumer Configurations

• Table setup_consumers, consumers events_xxx_current, where xxx is waits, stages,
statements, transactions

• Table setup_actors

• Column threads.instrumented

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_summary_by_yyy_by_event_name, where xxx is waits, stages, statements,
transactions; and yyy is thread, user, host, account

Global, Thread, and Current-Event Instrumentation

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	NO
...
+----------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. Individual events are
collected in the current-events table, but not in the event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Consumers events_xxx_history, where xxx is waits, stages, statements, transactions

• Consumers events_xxx_history_long, where xxx is waits, stages, statements,
transactions

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_current, where xxx is waits, stages, statements, transactions

Global, Thread, Current-Event, and Event-History instrumentation

The preceding configuration collects no event history because the events_xxx_history and
events_xxx_history_long consumers are disabled. Those consumers can be enabled separately
or together to collect event history per thread, globally, or both.

This configuration collects event history per thread, but not globally:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	NO

5149

Example Consumer Configurations

events_stages_current	YES
events_stages_history	YES
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

This configuration collects event history globally, but not per thread:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	YES
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

This configuration collects event history per thread and globally:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	YES
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

5150

Naming Instruments or Consumers for Filtering Operations

29.4.9 Naming Instruments or Consumers for Filtering Operations

Names given for filtering operations can be as specific or general as required. To indicate a single
instrument or consumer, specify its name in full:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME = 'wait/synch/mutex/myisammrg/MYRG_INFO::mutex';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME = 'events_waits_current';

To specify a group of instruments or consumers, use a pattern that matches the group members:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'wait/synch/mutex/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%history%';

If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For
example, to select all file I/O instruments, it is better to use a pattern that includes the entire instrument
name prefix:

... WHERE NAME LIKE 'wait/io/file/%';

A pattern of '%/file/%' matches other instruments that have an element of '/file/' anywhere in
the name. Even less suitable is the pattern '%file%' because it matches instruments with 'file'
anywhere in the name, such as wait/synch/mutex/innodb/file_open_mutex.

To check which instrument or consumer names a pattern matches, perform a simple test:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE 'pattern';

SELECT NAME FROM performance_schema.setup_consumers
WHERE NAME LIKE 'pattern';

For information about the types of names that are supported, see Section 29.6, “Performance Schema
Instrument Naming Conventions”.

29.4.10 Determining What Is Instrumented

It is always possible to determine what instruments the Performance Schema includes by checking
the setup_instruments table. For example, to see what file-related events are instrumented for the
InnoDB storage engine, use this query:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/file/innodb/%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/io/file/innodb/innodb_tablespace_open_file	YES	YES
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
wait/io/file/innodb/innodb_arch_file	YES	YES
wait/io/file/innodb/innodb_clone_file	YES	YES
+---+---------+-------+

An exhaustive description of precisely what is instrumented is not given in this documentation, for
several reasons:

5151

Performance Schema Queries

• What is instrumented is the server code. Changes to this code occur often, which also affects the set
of instruments.

• It is not practical to list all the instruments because there are hundreds of them.

• As described earlier, it is possible to find out by querying the setup_instruments table. This
information is always up to date for your version of MySQL, also includes instrumentation for
instrumented plugins you might have installed that are not part of the core server, and can be used
by automated tools.

29.5 Performance Schema Queries

Pre-filtering limits which event information is collected and is independent of any particular user. By
contrast, post-filtering is performed by individual users through the use of queries with appropriate
WHERE clauses that restrict what event information to select from the events available after pre-filtering
has been applied.

In Section 29.4.3, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the
event tables contain both file and nonfile information, post-filtering is another way to see information
only for file events. Add a WHERE clause to queries to restrict event selection appropriately:

mysql> SELECT THREAD_ID, NUMBER_OF_BYTES
 FROM performance_schema.events_waits_history
 WHERE EVENT_NAME LIKE 'wait/io/file/%'
 AND NUMBER_OF_BYTES IS NOT NULL;
+-----------+-----------------+
| THREAD_ID | NUMBER_OF_BYTES |
+-----------+-----------------+
11	66
11	47
11	139
5	24
5	834
+-----------+-----------------+

Most Performance Schema tables have indexes, which gives the optimizer access to execution
plans other than full table scans. These indexes also improve performance for related objects, such
as sys schema views that use those tables. For more information, see Section 10.2.4, “Optimizing
Performance Schema Queries”.

29.6 Performance Schema Instrument Naming Conventions

An instrument name consists of a sequence of elements separated by '/' characters. Example
names:

wait/io/file/myisam/log
wait/io/file/mysys/charset
wait/lock/table/sql/handler
wait/synch/cond/mysys/COND_alarm
wait/synch/cond/sql/BINLOG::update_cond
wait/synch/mutex/mysys/BITMAP_mutex
wait/synch/mutex/sql/LOCK_delete
wait/synch/rwlock/sql/Query_cache_query::lock
stage/sql/closing tables
stage/sql/Sorting result
statement/com/Execute
statement/com/Query
statement/sql/create_table
statement/sql/lock_tables
errors

The instrument name space has a tree-like structure. The elements of an instrument name from left to
right provide a progression from more general to more specific. The number of elements a name has
depends on the type of instrument.

5152

Top-Level Instrument Elements

The interpretation of a given element in a name depends on the elements to the left of it. For example,
myisam appears in both of the following names, but myisam in the first name is related to file I/O,
whereas in the second it is related to a synchronization instrument:

wait/io/file/myisam/log
wait/synch/cond/myisam/MI_SORT_INFO::cond

Instrument names consist of a prefix with a structure defined by the Performance Schema
implementation and a suffix defined by the developer implementing the instrument code. The top-
level element of an instrument prefix indicates the type of instrument. This element also determines
which event timer in the performance_timers table applies to the instrument. For the prefix part of
instrument names, the top level indicates the type of instrument.

The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may
include levels such as these:

• A name for the major element (a server module such as myisam, innodb, mysys, or sql) or a
plugin name.

• The name of a variable in the code, in the form XXX (a global variable) or CCC::MMM (a member MMM
in class CCC). Examples: COND_thread_cache, THR_LOCK_myisam, BINLOG::LOCK_index.

• Top-Level Instrument Elements

• Idle Instrument Elements

• Error Instrument Elements

• Memory Instrument Elements

• Stage Instrument Elements

• Statement Instrument Elements

• Thread Instrument Elements

• Wait Instrument Elements

Top-Level Instrument Elements

• idle: An instrumented idle event. This instrument has no further elements.

• error: An instrumented error event. This instrument has no further elements.

• memory: An instrumented memory event.

• stage: An instrumented stage event.

• statement: An instrumented statement event.

• transaction: An instrumented transaction event. This instrument has no further elements.

• wait: An instrumented wait event.

Idle Instrument Elements

The idle instrument is used for idle events, which The Performance Schema generates as
discussed in the description of the socket_instances.STATE column in Section 29.12.3.5, “The
socket_instances Table”.

Error Instrument Elements

The error instrument indicates whether to collect information for server errors and warnings. This
instrument is enabled by default. The TIMED column for the error row in the setup_instruments
table is inapplicable because timing information is not collected.

5153

Memory Instrument Elements

Memory Instrument Elements

Memory instrumentation is enabled by default. Memory instrumentation can be enabled or
disabled at startup, or dynamically at runtime by updating the ENABLED column of the relevant
instruments in the setup_instruments table. Memory instruments have names of the form
memory/code_area/instrument_name where code_area is a value such as sql or myisam, and
instrument_name is the instrument detail.

Instruments named with the prefix memory/performance_schema/ expose how much memory is
allocated for internal buffers in the Performance Schema. The memory/performance_schema/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the memory_summary_global_by_event_name table. For more
information, see Section 29.17, “The Performance Schema Memory-Allocation Model”.

Stage Instrument Elements

Stage instruments have names of the form stage/code_area/stage_name, where code_area is
a value such as sql or myisam, and stage_name indicates the stage of statement processing, such
as Sorting result or Sending data. Stages correspond to the thread states displayed by SHOW
PROCESSLIST or that are visible in the Information Schema PROCESSLIST table.

Statement Instrument Elements

• statement/abstract/*: An abstract instrument for statement operations. Abstract instruments
are used during the early stages of statement classification before the exact statement type is
known, then changed to a more specific statement instrument when the type is known. For a
description of this process, see Section 29.12.6, “Performance Schema Statement Event Tables”.

• statement/com: An instrumented command operation. These have names corresponding to
COM_xxx operations (see the mysql_com.h header file and sql/sql_parse.cc. For example,
the statement/com/Connect and statement/com/Init DB instruments correspond to the
COM_CONNECT and COM_INIT_DB commands.

• statement/scheduler/event: A single instrument to track all events executed by the Event
Scheduler. This instrument comes into play when a scheduled event begins executing.

• statement/sp: An instrumented internal instruction executed by a stored program. For example,
the statement/sp/cfetch and statement/sp/freturn instruments are used cursor fetch and
function return instructions.

• statement/sql: An instrumented SQL statement operation. For example, the statement/sql/
create_db and statement/sql/select instruments are used for CREATE DATABASE and
SELECT statements.

Thread Instrument Elements

Instrumented threads are displayed in the setup_threads table, which exposes thread class names
and attributes.

Thread instruments begin with thread (for example, thread/sql/parser_service or thread/
performance_schema/setup).

The names of thread instruments for ndbcluster plugin threads begin with thread/ndbcluster/;
for more information about these, see ndbcluster Plugin Threads.

Wait Instrument Elements

• wait/io

An instrumented I/O operation.

5154

Wait Instrument Elements

• wait/io/file

An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to
complete (for example, a call to fwrite()). Due to caching, the physical file I/O on the disk might
not happen within this call.

• wait/io/socket

An instrumented socket operation. Socket instruments have names of the form wait/io/
socket/sql/socket_type. The server has a listening socket for each network protocol that
it supports. The instruments associated with listening sockets for TCP/IP or Unix socket file
connections have a socket_type value of server_tcpip_socket or server_unix_socket,
respectively. When a listening socket detects a connection, the server transfers the connection to
a new socket managed by a separate thread. The instrument for the new connection thread has a
socket_type value of client_connection.

• wait/io/table

An instrumented table I/O operation. These include row-level accesses to persistent base tables
or temporary tables. Operations that affect rows are fetch, insert, update, and delete. For a view,
waits are associated with base tables referenced by the view.

Unlike most waits, a table I/O wait can include other waits. For example, table I/O might include file
I/O or memory operations. Thus, events_waits_current for a table I/O wait usually has two
rows. For more information, see Section 29.8, “Performance Schema Atom and Molecule Events”.

Some row operations might cause multiple table I/O waits. For example, an insert might activate a
trigger that causes an update.

• wait/lock

An instrumented lock operation.

• wait/lock/table

An instrumented table lock operation.

• wait/lock/metadata/sql/mdl

An instrumented metadata lock operation.

• wait/synch

An instrumented synchronization object. For synchronization objects, the TIMER_WAIT time includes
the amount of time blocked while attempting to acquire a lock on the object, if any.

• wait/synch/cond

A condition is used by one thread to signal to other threads that something they were waiting for
has happened. If a single thread was waiting for a condition, it can wake up and proceed with its
execution. If several threads were waiting, they can all wake up and compete for the resource for
which they were waiting.

• wait/synch/mutex

A mutual exclusion object used to permit access to a resource (such as a section of executable
code) while preventing other threads from accessing the resource.

• wait/synch/prlock

A priority rwlock lock object.

5155

Performance Schema Status Monitoring

• wait/synch/rwlock

A plain read/write lock object used to lock a specific variable for access while preventing its use
by other threads. A shared read lock can be acquired simultaneously by multiple threads. An
exclusive write lock can be acquired by only one thread at a time.

• wait/synch/sxlock

A shared-exclusive (SX) lock is a type of rwlock lock object that provides write access to a
common resource while permitting inconsistent reads by other threads. sxlocks optimize
concurrency and improve scalability for read-write workloads.

29.7 Performance Schema Status Monitoring

There are several status variables associated with the Performance Schema:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_digest_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_memory_classes_lost	0
Performance_schema_metadata_lock_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_nested_statement_lost	0
Performance_schema_program_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_session_connect_attrs_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

The Performance Schema status variables provide information about instrumentation that could not be
loaded or created due to memory constraints. Names for these variables have several forms:

• Performance_schema_xxx_classes_lost indicates how many instruments of type xxx could
not be loaded.

• Performance_schema_xxx_instances_lost indicates how many instances of object type xxx
could not be created.

• Performance_schema_xxx_handles_lost indicates how many instances of object type xxx
could not be opened.

• Performance_schema_locker_lost indicates how many events are “lost” or not recorded.

For example, if a mutex is instrumented in the server source but the server cannot allocate memory
for the instrumentation at runtime, it increments Performance_schema_mutex_classes_lost.

5156

Performance Schema Status Monitoring

The mutex still functions as a synchronization object (that is, the server continues to function normally),
but performance data for it is not collected. If the instrument can be allocated, it can be used for
initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there is only
one instance. Other mutexes have an instance per connection, or per page in various caches and data
buffers, so the number of instances varies over time. Increasing the maximum number of connections
or the maximum size of some buffers increases the maximum number of instances that might be
allocated at once. If the server cannot create a given instrumented mutex instance, it increments
Performance_schema_mutex_instances_lost.

Suppose that the following conditions hold:

• The server was started with the --performance_schema_max_mutex_classes=200 option and
thus has room for 200 mutex instruments.

• 150 mutex instruments have been loaded already.

• The plugin named plugin_a contains 40 mutex instruments.

• The plugin named plugin_b contains 20 mutex instruments.

The server allocates mutex instruments for the plugins depending on how many they need and how
many are available, as illustrated by the following sequence of statements:

INSTALL PLUGIN plugin_a

The server now has 150+40 = 190 mutex instruments.

UNINSTALL PLUGIN plugin_a;

The server still has 190 instruments. All the historical data generated by the plugin code is still
available, but new events for the instruments are not collected.

INSTALL PLUGIN plugin_a;

The server detects that the 40 instruments are already defined, so no new instruments are created, and
previously assigned internal memory buffers are reused. The server still has 190 instruments.

INSTALL PLUGIN plugin_b;

The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the
plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The
Performance_schema_mutex_classes_lost indicates the number of instruments (mutex classes)
lost:

mysql> SHOW STATUS LIKE "perf%mutex_classes_lost";
+---------------------------------------+-------+
| Variable_name | Value |
+---------------------------------------+-------+
| Performance_schema_mutex_classes_lost | 10 |
+---------------------------------------+-------+
1 row in set (0.10 sec)

The instrumentation still works and collects (partial) data for plugin_b.

When the server cannot create a mutex instrument, these results occur:

• No row for the instrument is inserted into the setup_instruments table.

• Performance_schema_mutex_classes_lost increases by 1.

• Performance_schema_mutex_instances_lost does not change. (When the mutex instrument
is not created, it cannot be used to create instrumented mutex instances later.)

The pattern just described applies to all types of instruments, not just mutexes.

A value of Performance_schema_mutex_classes_lost greater than 0 can happen in two cases:

5157

Performance Schema Status Monitoring

• To save a few bytes of memory, you start the server with --
performance_schema_max_mutex_classes=N, where N is less than the default value. The
default value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but
this can be reduced if some plugins are never loaded. For example, you might choose not to load
some of the storage engines in the distribution.

• You load a third-party plugin that is instrumented for the Performance Schema but do not allow for
the plugin's instrumentation memory requirements when you start the server. Because it comes from
a third party, the instrument memory consumption of this engine is not accounted for in the default
value chosen for performance_schema_max_mutex_classes.

If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate
more using --performance_schema_max_mutex_classes=N, loading the plugin leads to
starvation of instruments.

If the value chosen for performance_schema_max_mutex_classes is too small,
no error is reported in the error log and there is no failure at runtime. However, the
content of the tables in the performance_schema database misses events. The
Performance_schema_mutex_classes_lost status variable is the only visible sign to indicate that
some events were dropped internally due to failure to create instruments.

If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting
instances. For example, wait/synch/mutex/sql/LOCK_delete is the name of a mutex instrument
in the setup_instruments table. This single instrument is used when creating a mutex in the
code (in THD::LOCK_delete) however many instances of the mutex are needed as the server
runs. In this case, LOCK_delete is a mutex that is per connection (THD), so if a server has 1000
connections, there are 1000 threads, and 1000 instrumented LOCK_delete mutex instances
(THD::LOCK_delete).

If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes
are created with instrumentation, and some are created without instrumentation. If the server can
create only 800 instances, 200 instances are lost. The server continues to run, but increments
Performance_schema_mutex_instances_lost by 200 to indicate that instances could not be
created.

A value of Performance_schema_mutex_instances_lost greater than 0 can
happen when the code initializes more mutexes at runtime than were allocated for --
performance_schema_max_mutex_instances=N.

The bottom line is that if SHOW STATUS LIKE 'perf%' says that nothing was lost (all values are
zero), the Performance Schema data is accurate and can be relied upon. If something was lost, the
data is incomplete, and the Performance Schema could not record everything given the insufficient
amount of memory it was given to use. In this case, the specific Performance_schema_xxx_lost
variable indicates the problem area.

It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you
do not care about performance data for file I/O, you can start the server with all Performance Schema
parameters related to file I/O set to 0. No memory is allocated for file-related classes, instances, or
handles, and all file events are lost.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the
Performance Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.size
Status: 76
*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.count

5158

Performance Schema Atom and Molecule Events

Status: 10000
*************************** 5. row ***************************
 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600
...

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements. For a description of the field meanings, see Section 15.7.7.15,
“SHOW ENGINE Statement”.

29.8 Performance Schema Atom and Molecule Events

For a table I/O event, there are usually two rows in events_waits_current, not one. For example,
a row fetch might result in rows like this:

Row# EVENT_NAME TIMER_START TIMER_END
---- ---------- ----------- ---------
 1 wait/io/file/myisam/dfile 10001 10002
 2 wait/io/table/sql/handler 10000 NULL

The row fetch causes a file read. In the example, the table I/O fetch event started before the file I/O
event but has not finished (its TIMER_END value is NULL). The file I/O event is “nested” within the table
I/O event.

This occurs because, unlike other “atomic” wait events such as for mutexes or file I/O, table I/O events
are “molecular” and include (overlap with) other events. In events_waits_current, the table I/O
event usually has two rows:

• One row for the most recent table I/O wait event

• One row for the most recent wait event of any kind

Usually, but not always, the “of any kind” wait event differs from the table I/O event. As each subsidiary
event completes, it disappears from events_waits_current. At this point, and until the next
subsidiary event begins, the table I/O wait is also the most recent wait of any kind.

29.9 Performance Schema Tables for Current and Historical
Events

For wait, stage, statement, and transaction events, the Performance Schema can monitor and store
current events. In addition, when events end, the Performance Schema can store them in history
tables. For each event type, the Performance Schema uses three tables for storing current and
historical events. The tables have names of the following forms, where xxx indicates the event type
(waits, stages, statements, transactions):

• events_xxx_current: The “current events” table stores the current monitored event for each
thread (one row per thread).

• events_xxx_history: The “recent history” table stores the most recent events that have ended
per thread (up to a maximum number of rows per thread).

• events_xxx_history_long: The “long history” table stores the most recent events that have
ended globally (across all threads, up to a maximum number of rows per table).

The _current table for each event type contains one row per thread, so there is no system variable
for configuring its maximum size. The Performance Schema autosizes the history tables, or the sizes

5159

Performance Schema Tables for Current and Historical Events

can be configured explicitly at server startup using table-specific system variables, as indicated in the
sections that describe the individual history tables. Typical autosized values are 10 rows per thread for
_history tables, and 10,000 rows total for _history_long tables.

For each event type, the _current, _history, and _history_long tables have the same columns.
The _current and _history tables have the same indexing. The _history_long table has no
indexing.

The _current tables show what is currently happening within the server. When a current event ends,
it is removed from its _current table.

The _history and _history_long tables show what has happened in the recent past. When the
history tables become full, old events are discarded as new events are added. Rows expire from the
_history and _history_long tables in different ways because the tables serve different purposes:

• _history is meant to investigate individual threads, independently of the global server load.

• _history_long is meant to investigate the server globally, not each thread.

The difference between the two types of history tables relates to the data retention policy. Both tables
contains the same data when an event is first seen. However, data within each table expires differently
over time, so that data might be preserved for a longer or shorter time in each table:

• For _history, when the table contains the maximum number of rows for a given thread, the oldest
thread row is discarded when a new row for that thread is added.

• For _history_long, when the table becomes full, the oldest row is discarded when a new row is
added, regardless of which thread generated either row.

When a thread ends, all its rows are discarded from the _history table but not from the
_history_long table.

The following example illustrates the differences in how events are added to and discarded from the
two types of history tables. The principles apply equally to all event types. The example is based on
these assumptions:

• The Performance Schema is configured to retain 10 rows per thread in the _history table and
10,000 rows total in the _history_long table.

• Thread A generates 1 event per second.

Thread B generates 100 events per second.

• No other threads are running.

After 5 seconds of execution:

• A and B have generated 5 and 500 events, respectively.

• _history contains 5 rows for A and 10 rows for B. Because storage per thread is limited to 10
rows, no rows have been discarded for A, whereas 490 rows have been discarded for B.

• _history_long contains 5 rows for A and 500 rows for B. Because the table has a maximum size
of 10,000 rows, no rows have been discarded for either thread.

After 5 minutes (300 seconds) of execution:

• A and B have generated 300 and 30,000 events, respectively.

• _history contains 10 rows for A and 10 rows for B. Because storage per thread is limited to 10
rows, 290 rows have been discarded for A, whereas 29,990 rows have been discarded for B. Rows
for A include data up to 10 seconds old, whereas rows for B include data up to only .1 seconds old.

5160

Performance Schema Statement Digests and Sampling

• _history_long contains 10,000 rows. Because A and B together generate 101 events per
second, the table contains data up to approximately 10,000/101 = 99 seconds old, with a mix of rows
approximately 100 to 1 from B as opposed to A.

29.10 Performance Schema Statement Digests and Sampling

The MySQL server is capable of maintaining statement digest information. The digesting process
converts each SQL statement to normalized form (the statement digest) and computes a SHA-256
hash value (the digest hash value) from the normalized result. Normalization permits statements
that are similar to be grouped and summarized to expose information about the types of statements
the server is executing and how often they occur. For each digest, a representative statement that
produces the digest is stored as a sample. This section describes how statement digesting and
sampling occur and how they can be useful.

Digesting occurs in the parser regardless of whether the Performance Schema is available, so that
other features such as MySQL Enterprise Firewall and query rewrite plugins have access to statement
digests.

• Statement Digest General Concepts

• Statement Digests in the Performance Schema

• Statement Digest Memory Use

• Statement Sampling

Statement Digest General Concepts

When the parser receives an SQL statement, it computes a statement digest if that digest is needed,
which is true if any of the following conditions are true:

• Performance Schema digest instrumentation is enabled

• MySQL Enterprise Firewall is enabled

• A query rewrite plugin is enabled

The parser is also used by the STATEMENT_DIGEST_TEXT() and STATEMENT_DIGEST() functions,
which applications can call to compute a normalized statement digest and a digest hash value,
respectively, from an SQL statement.

The max_digest_length system variable value determines the maximum number of bytes
available per session for computation of normalized statement digests. Once that amount of space
is used during digest computation, truncation occurs: no further tokens from a parsed statement are
collected or figure into its digest value. Statements that differ only after that many bytes of parsed
tokens produce the same normalized statement digest and are considered identical if compared or if
aggregated for digest statistics.

Warning

Setting the max_digest_length system variable to zero disables digest
production, which also disables server functionality that requires digests.

After the normalized statement has been computed, a SHA-256 hash value is computed from it. In
addition:

• If MySQL Enterprise Firewall is enabled, it is called and the digest as computed is available to it.

• If any query rewrite plugin is enabled, it is called and the statement digest and digest value are
available to it.

5161

Statement Digests in the Performance Schema

• If the Performance Schema has digest instrumentation enabled, it makes a copy of the normalized
statement digest, allocating a maximum of performance_schema_max_digest_length
bytes for it. Consequently, if performance_schema_max_digest_length is less than
max_digest_length, the copy is truncated relative to the original. The copy of the normalized
statement digest is stored in the appropriate Performance Schema tables, along with the SHA-256
hash value computed from the original normalized statement. (If the Performance Schema truncates
its copy of the normalized statement digest relative to the original, it does not recompute the
SHA-256 hash value.)

Statement normalization transforms the statement text to a more standardized digest string
representation that preserves the general statement structure while removing information not essential
to the structure:

• Object identifiers such as database and table names are preserved.

• Literal values are converted to parameter markers. A normalized statement does not retain
information such as names, passwords, dates, and so forth.

• Comments are removed and whitespace is adjusted.

Consider these statements:

SELECT * FROM orders WHERE customer_id=10 AND quantity>20
SELECT * FROM orders WHERE customer_id = 20 AND quantity > 100

To normalize these statements, the parser replaces data values by ? and adjusts whitespace. Both
statements yield the same normalized form and thus are considered “the same”:

SELECT * FROM orders WHERE customer_id = ? AND quantity > ?

The normalized statement contains less information but is still representative of the original statement.
Other similar statements that have different data values have the same normalized form.

Now consider these statements:

SELECT * FROM customers WHERE customer_id = 1000
SELECT * FROM orders WHERE customer_id = 1000

In this case, the normalized statements differ because the object identifiers differ:

SELECT * FROM customers WHERE customer_id = ?
SELECT * FROM orders WHERE customer_id = ?

If normalization produces a statement that exceeds the space available in the digest buffer (as
determined by max_digest_length), truncation occurs and the text ends with “...”. Long normalized
statements that differ only in the part that occurs following the “...” are considered the same. Consider
these statements:

SELECT * FROM mytable WHERE cola = 10 AND colb = 20
SELECT * FROM mytable WHERE cola = 10 AND colc = 20

If the cutoff happens to be right after the AND, both statements have this normalized form:

SELECT * FROM mytable WHERE cola = ? AND ...

In this case, the difference in the second column name is lost and both statements are considered the
same.

Statement Digests in the Performance Schema

In the Performance Schema, statement digesting involves these elements:

• A statements_digest consumer in the setup_consumers table controls whether the
Performance Schema maintains digest information. See Statement Digest Consumer.

5162

Statement Digest Memory Use

• The statement event tables (events_statements_current, events_statements_history,
and events_statements_history_long) have columns for storing normalized statement
digests and the corresponding digest SHA-256 hash values:

• DIGEST_TEXT is the text of the normalized statement digest. This is a copy of the original
normalized statement that was computed to a maximum of max_digest_length bytes, further
truncated as necessary to performance_schema_max_digest_length bytes.

• DIGEST is the digest SHA-256 hash value computed from the original normalized statement.

See Section 29.12.6, “Performance Schema Statement Event Tables”.

• The events_statements_summary_by_digest summary table provides aggregated statement
digest information. This table aggregates information for statements per SCHEMA_NAME and DIGEST
combination. The Performance Schema uses SHA-256 hash values for aggregation because
they are fast to compute and have a favorable statistical distribution that minimizes collisions. See
Section 29.12.20.3, “Statement Summary Tables”.

Some Performance Tables have a column that stores original SQL statements from which digests are
computed:

• The SQL_TEXT column of the events_statements_current, events_statements_history,
and events_statements_history_long statement event tables.

• The QUERY_SAMPLE_TEXT column of the events_statements_summary_by_digest summary
table.

The maximum space available for statement display is 1024 bytes by default. To change this value,
set the performance_schema_max_sql_text_length system variable at server startup. Changes
affect the storage required for all the columns just named.

The performance_schema_max_digest_length system variable determines the maximum
number of bytes available per statement for digest value storage in the Performance Schema.
However, the display length of statement digests may be longer than the available buffer size due
to internal encoding of statement elements such as keywords and literal values. Consequently,
values selected from the DIGEST_TEXT column of statement event tables may appear to exceed the
performance_schema_max_digest_length value.

The events_statements_summary_by_digest summary table provides a profile of the statements
executed by the server. It shows what kinds of statements an application is executing and how often.
An application developer can use this information together with other information in the table to assess
the application's performance characteristics. For example, table columns that show wait times, lock
times, or index use may highlight types of queries that are inefficient. This gives the developer insight
into which parts of the application need attention.

The events_statements_summary_by_digest summary table has a fixed size. By default the
Performance Schema estimates the size to use at startup. To specify the table size explicitly, set the
performance_schema_digests_size system variable at server startup. If the table becomes
full, the Performance Schema groups statements that have SCHEMA_NAME and DIGEST values not
matching existing values in the table in a special row with SCHEMA_NAME and DIGEST set to NULL.
This permits all statements to be counted. However, if the special row accounts for a significant
percentage of the statements executed, it might be desirable to increase the summary table size by
increasing performance_schema_digests_size.

Statement Digest Memory Use

For applications that generate very long statements that differ only at the end, increasing
max_digest_length enables computation of digests that distinguish statements that would
otherwise aggregate to the same digest. Conversely, decreasing max_digest_length causes the
server to devote less memory to digest storage but increases the likelihood of longer statements

5163

Statement Digest Memory Use

aggregating to the same digest. Administrators should keep in mind that larger values result in
correspondingly increased memory requirements, particularly for workloads that involve large numbers
of simultaneous sessions (the server allocates max_digest_length bytes per session).

As described previously, normalized statement digests as computed by the parser are constrained
to a maximum of max_digest_length bytes, whereas normalized statement digests stored in the
Performance Schema use performance_schema_max_digest_length bytes. The following
memory-use considerations apply regarding the relative values of max_digest_length and
performance_schema_max_digest_length:

• If max_digest_length is less than performance_schema_max_digest_length:

• Server features other than the Performance Schema use normalized statement digests that take
up to max_digest_length bytes.

• The Performance Schema does not further truncate normalized statement digests that it stores,
but allocates more memory than max_digest_length bytes per digest, which is unnecessary.

• If max_digest_length equals performance_schema_max_digest_length:

• Server features other than the Performance Schema use normalized statement digests that take
up to max_digest_length bytes.

• The Performance Schema does not further truncate normalized statement digests that it stores,
and allocates the same amount of memory as max_digest_length bytes per digest.

• If max_digest_length is greater than performance_schema_max_digest_length:

• Server features other than the Performance Schema use normalized statement digests that take
up to max_digest_length bytes.

• The Performance Schema further truncates normalized statement digests that it stores, and
allocates less memory than max_digest_length bytes per digest.

Because the Performance Schema statement event tables might store many digests, setting
performance_schema_max_digest_length smaller than max_digest_length enables
administrators to balance these factors:

• The need to have long normalized statement digests available to server features outside the
Performance Schema

• Many concurrent sessions, each of which allocates digest-computation memory

• The need to limit memory consumption by the Performance Schema statement event tables when
storing many statement digests

The performance_schema_max_digest_length setting is not per session, it is per statement,
and a session can store multiple statements in the events_statements_history table. A typical
number of statements in this table is 10 per session, so each session consumes 10 times the memory
indicated by the performance_schema_max_digest_length value, for this table alone.

Also, there are many statements (and digests) collected globally, most notably in the
events_statements_history_long table. Here, too, N statements stored consumes N times the
memory indicated by the performance_schema_max_digest_length value.

To assess the amount of memory used for SQL statement storage and digest computation, use the
SHOW ENGINE PERFORMANCE_SCHEMA STATUS statement, or monitor these instruments:

mysql> SELECT NAME
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE '%.sqltext';
+--+
| NAME |

5164

Statement Sampling

+--+
| memory/performance_schema/events_statements_history.sqltext |
| memory/performance_schema/events_statements_current.sqltext |
| memory/performance_schema/events_statements_history_long.sqltext |
+--+

mysql> SELECT NAME
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'memory/performance_schema/%.tokens';
+--+
| NAME |
+--+
| memory/performance_schema/events_statements_history.tokens |
| memory/performance_schema/events_statements_current.tokens |
| memory/performance_schema/events_statements_summary_by_digest.tokens |
| memory/performance_schema/events_statements_history_long.tokens |
+--+

Statement Sampling

The Performance Schema uses statement sampling to collect representative statements that
produce each digest value in the events_statements_summary_by_digest table. These
columns store sample statement information: QUERY_SAMPLE_TEXT (the text of the statement),
QUERY_SAMPLE_SEEN (when the statement was seen), and QUERY_SAMPLE_TIMER_WAIT (the
statement wait or execution time). The Performance Schema updates all three columns each time it
chooses a sample statement.

When a new table row is inserted, the statement that produced the row digest value is stored as
the current sample statement associated with the digest. Thereafter, when the server sees other
statements with the same digest value, it determines whether to use the new statement to replace
the current sample statement (that is, whether to resample). Resampling policy is based on the
comparative wait times of the current sample statement and new statement and, optionally, the age of
the current sample statement:

• Resampling based on wait times: If the new statement wait time has a wait time greater than that of
the current sample statement, it becomes the current sample statement.

• Resampling based on age: If the performance_schema_max_digest_sample_age system
variable has a value greater than zero and the current sample statement is more than that many
seconds old, the current statement is considered “too old” and the new statement replaces it. This
occurs even if the new statement wait time is less than that of the current sample statement.

By default, performance_schema_max_digest_sample_age is 60 seconds (1 minute). To change
how quickly sample statements “expire” due to age, increase or decrease the value. To disable the
age-based part of the resampling policy, set performance_schema_max_digest_sample_age to
0.

29.11 Performance Schema General Table Characteristics
The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Many tables in the performance_schema database are read only and cannot be modified:

mysql> TRUNCATE TABLE performance_schema.setup_instruments;
ERROR 1683 (HY000): Invalid performance_schema usage.

Some of the setup tables have columns that can be modified to affect Performance Schema operation;
some also permit rows to be inserted or deleted. Truncation is permitted to clear collected events, so
TRUNCATE TABLE can be used on tables containing those kinds of information, such as tables named
with a prefix of events_waits_.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the
summary columns to 0 or NULL, not to remove rows. This enables you to clear collected values and

5165

Performance Schema Table Descriptions

restart aggregation. That might be useful, for example, after you have made a runtime configuration
change. Exceptions to this truncation behavior are noted in individual summary table sections.

Privileges are as for other databases and tables:

• To retrieve from performance_schema tables, you must have the SELECT privilege.

• To change those columns that can be modified, you must have the UPDATE privilege.

• To truncate tables that can be truncated, you must have the DROP privilege.

Because only a limited set of privileges apply to Performance Schema tables, attempts to use GRANT
ALL as shorthand for granting privileges at the database or table level fail with an error:

mysql> GRANT ALL ON performance_schema.*
 TO 'u1'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'
mysql> GRANT ALL ON performance_schema.setup_instruments
 TO 'u2'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'

Instead, grant exactly the desired privileges:

mysql> GRANT SELECT ON performance_schema.*
 TO 'u1'@'localhost';
Query OK, 0 rows affected (0.03 sec)

mysql> GRANT SELECT, UPDATE ON performance_schema.setup_instruments
 TO 'u2'@'localhost';
Query OK, 0 rows affected (0.02 sec)

29.12 Performance Schema Table Descriptions
Tables in the performance_schema database can be grouped as follows:

• Setup tables. These tables are used to configure and display monitoring characteristics.

• Current events tables. The events_waits_current table contains the most recent event for
each thread. Other similar tables contain current events at different levels of the event hierarchy:
events_stages_current for stage events, events_statements_current for statement
events, and events_transactions_current for transaction events.

• History tables. These tables have the same structure as the current events tables, but contain more
rows. For example, for wait events, events_waits_history table contains the most recent 10
events per thread. events_waits_history_long contains the most recent 10,000 events. Other
similar tables exist for stage, statement, and transaction histories.

To change the sizes of the history tables, set the appropriate system variables
at server startup. For example, to set the sizes of the wait event history
tables, set performance_schema_events_waits_history_size and
performance_schema_events_waits_history_long_size.

• Summary tables. These tables contain information aggregated over groups of events, including those
that have been discarded from the history tables.

• Instance tables. These tables document what types of objects are instrumented. An instrumented
object, when used by the server, produces an event. These tables provide event names and
explanatory notes or status information.

• Miscellaneous tables. These do not fall into any of the other table groups.

29.12.1 Performance Schema Table Reference

5166

Performance Schema Table Reference

The following table summarizes all available Performance Schema tables. For greater detail, see the
individual table descriptions.

Table 29.1 Performance Schema Tables

Table Name Description Introduced

accounts Connection statistics per client
account

binary_log_transaction_compression_statsBinary log transaction
compression

8.0.20

clone_progress Clone operation progress 8.0.17

clone_status Clone operation status 8.0.17

component_scheduler_tasks Status of scheduled tasks 8.0.34

cond_instances Synchronization object instances

data_lock_waits Data lock wait relationships

data_locks Data locks held and requested

error_log Server error log recent entries 8.0.22

events_errors_summary_by_account_by_errorErrors per account and error
code

events_errors_summary_by_host_by_errorErrors per host and error code

events_errors_summary_by_thread_by_errorErrors per thread and error code

events_errors_summary_by_user_by_errorErrors per user and error code

events_errors_summary_global_by_errorErrors per error code

events_stages_current Current stage events

events_stages_history Most recent stage events per
thread

events_stages_history_longMost recent stage events overall

events_stages_summary_by_account_by_event_nameStage events per account and
event name

events_stages_summary_by_host_by_event_nameStage events per host name and
event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event
name

events_stages_summary_by_user_by_event_nameStage events per user name and
event name

events_stages_summary_global_by_event_nameStage waits per event name

events_statements_current Current statement events

events_statements_histogram_by_digestStatement histograms per
schema and digest value

events_statements_histogram_globalStatement histogram
summarized globally

events_statements_history Most recent statement events
per thread

events_statements_history_longMost recent statement events
overall

events_statements_summary_by_account_by_event_nameStatement events per account
and event name

5167

Performance Schema Table Reference

Table Name Description Introduced

events_statements_summary_by_digestStatement events per schema
and digest value

events_statements_summary_by_host_by_event_nameStatement events per host name
and event name

events_statements_summary_by_programStatement events per stored
program

events_statements_summary_by_thread_by_event_nameStatement events per thread and
event name

events_statements_summary_by_user_by_event_nameStatement events per user name
and event name

events_statements_summary_global_by_event_nameStatement events per event
name

events_transactions_currentCurrent transaction events

events_transactions_historyMost recent transaction events
per thread

events_transactions_history_longMost recent transaction events
overall

events_transactions_summary_by_account_by_event_nameTransaction events per account
and event name

events_transactions_summary_by_host_by_event_nameTransaction events per host
name and event name

events_transactions_summary_by_thread_by_event_nameTransaction events per thread
and event name

events_transactions_summary_by_user_by_event_nameTransaction events per user
name and event name

events_transactions_summary_global_by_event_nameTransaction events per event
name

events_waits_current Current wait events

events_waits_history Most recent wait events per
thread

events_waits_history_long Most recent wait events overall

events_waits_summary_by_account_by_event_nameWait events per account and
event name

events_waits_summary_by_host_by_event_nameWait events per host name and
event name

events_waits_summary_by_instanceWait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event
name

events_waits_summary_by_user_by_event_nameWait events per user name and
event name

events_waits_summary_global_by_event_nameWait events per event name

file_instances File instances

file_summary_by_event_nameFile events per event name

file_summary_by_instance File events per file instance

firewall_group_allowlist Firewall in-memory data for
group profile allowlists

8.0.23

5168

Performance Schema Table Reference

Table Name Description Introduced

firewall_groups Firewall in-memory data for
group profiles

8.0.23

firewall_membership Firewall in-memory data for
group profile members

8.0.23

global_status Global status variables

global_variables Global system variables

host_cache Information from internal host
cache

hosts Connection statistics per client
host name

keyring_component_status Status information for installed
keyring component

8.0.24

keyring_keys Metadata for keyring keys 8.0.16

log_status Information about server logs for
backup purposes

memory_summary_by_account_by_event_nameMemory operations per account
and event name

memory_summary_by_host_by_event_nameMemory operations per host and
event name

memory_summary_by_thread_by_event_nameMemory operations per thread
and event name

memory_summary_by_user_by_event_nameMemory operations per user and
event name

memory_summary_global_by_event_nameMemory operations globally per
event name

metadata_locks Metadata locks and lock
requests

mutex_instances Mutex synchronization object
instances

ndb_sync_excluded_objects NDB objects which cannot be
synchronized

8.0.21

ndb_sync_pending_objects NDB objects waiting for
synchronization

8.0.21

objects_summary_global_by_typeObject summaries

performance_timers Which event timers are available

persisted_variables Contents of mysqld-auto.cnf file

prepared_statements_instancesPrepared statement instances
and statistics

processlist Process list information 8.0.22

replication_applier_configurationConfiguration parameters for
replication applier on replica

replication_applier_filtersChannel-specific replication
filters on current replica

replication_applier_global_filtersGlobal replication filters on
current replica

5169

Performance Schema Table Reference

Table Name Description Introduced

replication_applier_statusCurrent status of replication
applier on replica

replication_applier_status_by_coordinatorSQL or coordinator thread
applier status

replication_applier_status_by_workerWorker thread applier status

replication_asynchronous_connection_failoverSource lists for asynchronous
connection failover mechanism

8.0.22

replication_asynchronous_connection_failover_managedManaged source lists for
asynchronous connection
failover mechanism

8.0.23

replication_connection_configurationConfiguration parameters for
connecting to source

replication_connection_statusCurrent status of connection to
source

replication_group_communication_informationReplication group configuration
options

8.0.27

replication_group_member_statsReplication group member
statistics

replication_group_members Replication group member
network and status

rwlock_instances Lock synchronization object
instances

session_account_connect_attrsConnection attributes per for
current session

session_connect_attrs Connection attributes for all
sessions

session_status Status variables for current
session

session_variables System variables for current
session

setup_actors How to initialize monitoring for
new foreground threads

setup_consumers Consumers for which event
information can be stored

setup_instruments Classes of instrumented objects
for which events can be collected

setup_objects Which objects should be
monitored

setup_threads Instrumented thread names and
attributes

socket_instances Active connection instances

socket_summary_by_event_nameSocket waits and I/O per event
name

socket_summary_by_instanceSocket waits and I/O per
instance

status_by_account Session status variables per
account

5170

Performance Schema Setup Tables

Table Name Description Introduced

status_by_host Session status variables per host
name

status_by_thread Session status variables per
session

status_by_user Session status variables per user
name

table_handles Table locks and lock requests

table_io_waits_summary_by_index_usageTable I/O waits per index

table_io_waits_summary_by_tableTable I/O waits per table

table_lock_waits_summary_by_tableTable lock waits per table

threads Information about server threads

tls_channel_status TLS status for each connection
interface

8.0.21

tp_thread_group_state Thread pool thread group states 8.0.14

tp_thread_group_stats Thread pool thread group
statistics

8.0.14

tp_thread_state Thread pool thread information 8.0.14

user_defined_functions Registered loadable functions

user_variables_by_thread User-defined variables per
thread

users Connection statistics per client
user name

variables_by_thread Session system variables per
session

variables_info How system variables were most
recently set

29.12.2 Performance Schema Setup Tables

The setup tables provide information about the current instrumentation and enable the monitoring
configuration to be changed. For this reason, some columns in these tables can be changed if you
have the UPDATE privilege.

The use of tables rather than individual variables for setup information provides a high degree
of flexibility in modifying Performance Schema configuration. For example, you can use a single
statement with standard SQL syntax to make multiple simultaneous configuration changes.

These setup tables are available:

• setup_actors: How to initialize monitoring for new foreground threads

• setup_consumers: The destinations to which event information can be sent and stored

• setup_instruments: The classes of instrumented objects for which events can be collected

• setup_objects: Which objects should be monitored

• setup_threads: Instrumented thread names and attributes

29.12.2.1 The setup_actors Table

The setup_actors table contains information that determines whether to enable monitoring
and historical event logging for new foreground server threads (threads associated with client

5171

Performance Schema Setup Tables

connections). This table has a maximum size of 100 rows by default. To change the table size, modify
the performance_schema_setup_actors_size system variable at server startup.

For each new foreground thread, the Performance Schema matches the user and host for the thread
against the rows of the setup_actors table. If a row from that table matches, its ENABLED and
HISTORY column values are used to set the INSTRUMENTED and HISTORY columns, respectively, of
the threads table row for the thread. This enables instrumenting and historical event logging to be
applied selectively per host, user, or account (user and host combination). If there is no match, the
INSTRUMENTED and HISTORY columns for the thread are set to NO.

For background threads, there is no associated user. INSTRUMENTED and HISTORY are YES by default
and setup_actors is not consulted.

The initial contents of the setup_actors table match any user and host combination, so monitoring
and historical event collection are enabled by default for all foreground threads:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

For information about how to use the setup_actors table to affect event monitoring, see
Section 29.4.6, “Pre-Filtering by Thread”.

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED and HISTORY
columns of threads table rows.

The setup_actors table has these columns:

• HOST

The host name. This should be a literal name, or '%' to mean “any host.”

• USER

The user name. This should be a literal name, or '%' to mean “any user.”

• ROLE

Unused.

• ENABLED

Whether to enable instrumentation for foreground threads matched by the row. The value is YES or
NO.

• HISTORY

Whether to log historical events for foreground threads matched by the row. The value is YES or NO.

The setup_actors table has these indexes:

• Primary key on (HOST, USER, ROLE)

TRUNCATE TABLE is permitted for the setup_actors table. It removes the rows.

29.12.2.2 The setup_consumers Table

The setup_consumers table lists the types of consumers for which event information can be stored
and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+

5172

Performance Schema Setup Tables

| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
For detailed information about the effect of enabling different consumers, see Section 29.4.7, “Pre-
Filtering by Consumer”.

Modifications to the setup_consumers table affect monitoring immediately.

The setup_consumers table has these columns:

• NAME

The consumer name.

• ENABLED

Whether the consumer is enabled. The value is YES or NO. This column can be modified. If you
disable a consumer, the server does not spend time adding event information to it.

The setup_consumers table has these indexes:

• Primary key on (NAME)

TRUNCATE TABLE is not permitted for the setup_consumers table.

29.12.2.3 The setup_instruments Table

The setup_instruments table lists classes of instrumented objects for which events can be
collected:

mysql> SELECT * FROM performance_schema.setup_instruments\G
*************************** 1. row ***************************
 NAME: wait/synch/mutex/pfs/LOCK_pfs_share_list
 ENABLED: NO
 TIMED: NO
 PROPERTIES: singleton
 FLAGS: NULL
 VOLATILITY: 1
DOCUMENTATION: Components can provide their own performance_schema tables.
This lock protects the list of such tables definitions.
...
*************************** 410. row ***************************
 NAME: stage/sql/executing
 ENABLED: NO
 TIMED: NO
 PROPERTIES:
 FLAGS: NULL
 VOLATILITY: 0
DOCUMENTATION: NULL
...
*************************** 733. row ***************************
 NAME: statement/abstract/Query

5173

Performance Schema Setup Tables

 ENABLED: YES
 TIMED: YES
 PROPERTIES: mutable
 FLAGS: NULL
 VOLATILITY: 0
DOCUMENTATION: SQL query just received from the network.
At this point, the real statement type is unknown, the type
will be refined after SQL parsing.
...
*************************** 737. row ***************************
 NAME: memory/performance_schema/mutex_instances
 ENABLED: YES
 TIMED: NULL
 PROPERTIES: global_statistics
 FLAGS:
 VOLATILITY: 1
DOCUMENTATION: Memory used for table performance_schema.mutex_instances
...
*************************** 823. row ***************************
 NAME: memory/sql/Prepared_statement::infrastructure
 ENABLED: YES
 TIMED: NULL
 PROPERTIES: controlled_by_default
 FLAGS: controlled
 VOLATILITY: 0
DOCUMENTATION: Map infrastructure for prepared statements per session.
...

Each instrument added to the source code provides a row for the setup_instruments table,
even when the instrumented code is not executed. When an instrument is enabled and executed,
instrumented instances are created, which are visible in the xxx_instances tables, such as
file_instances or rwlock_instances.

Modifications to most setup_instruments rows affect monitoring immediately. For some
instruments, modifications are effective only at server startup; changing them at runtime has no effect.
This affects primarily mutexes, conditions, and rwlocks in the server, although there may be other
instruments for which this is true.

For more information about the role of the setup_instruments table in event filtering, see
Section 29.4.3, “Event Pre-Filtering”.

The setup_instruments table has these columns:

• NAME

The instrument name. Instrument names may have multiple parts and form a hierarchy, as discussed
in Section 29.6, “Performance Schema Instrument Naming Conventions”. Events produced from
execution of an instrument have an EVENT_NAME value that is taken from the instrument NAME value.
(Events do not really have a “name,” but this provides a way to associate events with instruments.)

• ENABLED

Whether the instrument is enabled. The value is YES or NO. A disabled instrument produces no
events. This column can be modified, although setting ENABLED has no effect for instruments that
have already been created.

• TIMED

Whether the instrument is timed. The value is YES, NO, or NULL. This column can be modified,
although setting TIMED has no effect for instruments that have already been created.

A TIMED value of NULL indicates that the instrument does not support timing. For example, memory
operations are not timed, so their TIMED column is NULL.

Setting TIMED to NULL for an instrument that supports timing has no effect, as does setting TIMED to
non-NULL for an instrument that does not support timing.

5174

Performance Schema Setup Tables

If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT
timer values. This in turn causes those values to be ignored when calculating the sum, minimum,
maximum, and average time values in summary tables.

• PROPERTIES

The instrument properties. This column uses the SET data type, so multiple flags from the following
list can be set per instrument:

• controlled_by_default: memory is collected by default for this instrument.

• global_statistics: The instrument produces only global summaries. Summaries for finer
levels are unavailable, such as per thread, account, user, or host. For example, most memory
instruments produce only global summaries.

• mutable: The instrument can “mutate” into a more specific one. This property applies only to
statement instruments.

• progress: The instrument is capable of reporting progress data. This property applies only to
stage instruments.

• singleton: The instrument has a single instance. For example, most global mutex locks in the
server are singletons, so the corresponding instruments are as well.

• user: The instrument is directly related to user workload (as opposed to system workload). One
such instrument is wait/io/socket/sql/client_connection.

• FLAGS

Whether the instrument's memory is controlled.

This flag is supported for non-global memory instruments, only, and can be set or unset. For
example:

 SQL> UPDATE PERFORMANCE_SCHEMA.SETUP_INTRUMENTS SET FLAGS="controlled" WHERE NAME='memory/sql/NET::buff';

Note

Attempting to set FLAGS = controlled on non-memory instruments, or on
global memory instruments, fails silently.

• VOLATILITY

The instrument volatility. Volatility values range from low to high. The values correspond to the
PSI_VOLATILITY_xxx constants defined in the mysql/psi/psi_base.h header file:

#define PSI_VOLATILITY_UNKNOWN 0
#define PSI_VOLATILITY_PERMANENT 1
#define PSI_VOLATILITY_PROVISIONING 2
#define PSI_VOLATILITY_DDL 3
#define PSI_VOLATILITY_CACHE 4
#define PSI_VOLATILITY_SESSION 5
#define PSI_VOLATILITY_TRANSACTION 6
#define PSI_VOLATILITY_QUERY 7

5175

Performance Schema Setup Tables

#define PSI_VOLATILITY_INTRA_QUERY 8

The VOLATILITY column is purely informational, to provide users (and the Performance Schema
code) some hint about the instrument runtime behavior.

Instruments with a low volatility index (PERMANENT = 1) are created once at server startup, and
never destroyed or re-created during normal server operation. They are destroyed only during server
shutdown.

For example, the wait/synch/mutex/pfs/LOCK_pfs_share_list mutex is defined with a
volatility of 1, which means it is created once. Possible overhead from the instrumentation itself
(namely, mutex initialization) has no effect for this instrument then. Runtime overhead occurs only
when locking or unlocking the mutex.

Instruments with a higher volatility index (for example, SESSION = 5) are created and destroyed for
every user session. For example, the wait/synch/mutex/sql/THD::LOCK_query_plan mutex
is created each time a session connects, and destroyed when the session disconnects.

This mutex is more sensitive to Performance Schema overhead, because overhead comes not only
from the lock and unlock instrumentation, but also from mutex create and destroy instrumentation,
which is executed more often.

Another aspect of volatility concerns whether and when an update to the ENABLED column actually
has some effect:

• An update to ENABLED affects instrumented objects created subsequently, but has no effect on
instruments already created.

• Instruments that are more “volatile” use new settings from the setup_instruments table sooner.

For example, this statement does not affect the LOCK_query_plan mutex for existing sessions, but
does have an effect on new sessions created subsequent to the update:

UPDATE performance_schema.setup_instruments
SET ENABLED=value
WHERE NAME = 'wait/synch/mutex/sql/THD::LOCK_query_plan';

This statement actually has no effect at all:

UPDATE performance_schema.setup_instruments
SET ENABLED=value
WHERE NAME = 'wait/synch/mutex/pfs/LOCK_pfs_share_list';

This mutex is permanent, and was created already before the update is executed. The mutex is
never created again, so the ENABLED value in setup_instruments is never used. To enable or
disable this mutex, use the mutex_instances table instead.

• DOCUMENTATION

A string describing the instrument purpose. The value is NULL if no description is available.

The setup_instruments table has these indexes:

• Primary key on (NAME)

TRUNCATE TABLE is not permitted for the setup_instruments table.

As of MySQL 8.0.27, to assist monitoring and troubleshooting, the Performance Schema
instrumentation is used to export names of instrumented threads to the operating system. This enables
utilities that display thread names, such as debuggers and the Unix ps command, to display distinct
mysqld thread names rather than “mysqld”. This feature is supported only on Linux, macOS, and
Windows.

5176

Performance Schema Setup Tables

Suppose that mysqld is running on a system that has a version of ps that supports this invocation
syntax:

ps -C mysqld H -o "pid tid cmd comm"

Without export of thread names to the operating system, the command displays output like this, where
most COMMAND values are mysqld:

 PID TID CMD COMMAND
 1377 1377 /usr/sbin/mysqld mysqld
 1377 1528 /usr/sbin/mysqld mysqld
 1377 1529 /usr/sbin/mysqld mysqld
 1377 1530 /usr/sbin/mysqld mysqld
 1377 1531 /usr/sbin/mysqld mysqld
 1377 1534 /usr/sbin/mysqld mysqld
 1377 1535 /usr/sbin/mysqld mysqld
 1377 1588 /usr/sbin/mysqld xpl_worker1
 1377 1589 /usr/sbin/mysqld xpl_worker0
 1377 1590 /usr/sbin/mysqld mysqld
 1377 1594 /usr/sbin/mysqld mysqld
 1377 1595 /usr/sbin/mysqld mysqld

With export of thread names to the operating system, the output looks like this, with threads having a
name similar to their instrument name:

 PID TID CMD COMMAND
27668 27668 /usr/sbin/mysqld mysqld
27668 27671 /usr/sbin/mysqld ib_io_ibuf
27668 27672 /usr/sbin/mysqld ib_io_log
27668 27673 /usr/sbin/mysqld ib_io_rd-1
27668 27674 /usr/sbin/mysqld ib_io_rd-2
27668 27677 /usr/sbin/mysqld ib_io_wr-1
27668 27678 /usr/sbin/mysqld ib_io_wr-2
27668 27699 /usr/sbin/mysqld xpl_worker-2
27668 27700 /usr/sbin/mysqld xpl_accept-1
27668 27710 /usr/sbin/mysqld evt_sched
27668 27711 /usr/sbin/mysqld sig_handler
27668 27933 /usr/sbin/mysqld connection

Different thread instances within the same class are numbered to provide distinct names where that is
feasible. Due to constraints on name lengths with respect to potentially large numbers of connections,
connections are named simply connection.

29.12.2.4 The setup_objects Table

The setup_objects table controls whether the Performance Schema monitors particular objects.
This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schema_setup_objects_size system variable at server startup.

The initial setup_objects contents look like this:

mysql> SELECT * FROM performance_schema.setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
EVENT	mysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO

5177

Performance Schema Setup Tables

TABLE	%	%	YES	YES
TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

For object types listed in setup_objects, the Performance Schema uses the table to how to monitor
them. Object matching is based on the OBJECT_SCHEMA and OBJECT_NAME columns. Objects for
which there is no match are not monitored.

The effect of the default object configuration is to instrument all tables except those in
the mysql, INFORMATION_SCHEMA, and performance_schema databases. (Tables in
the INFORMATION_SCHEMA database are not instrumented regardless of the contents of
setup_objects; the row for information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For example, with a table db1.t1, it looks for a match for 'db1' and 't1', then for
'db1' and '%', then for '%' and '%'. The order in which matching occurs matters because different
matching setup_objects rows can have different ENABLED and TIMED values.

Rows can be inserted into or deleted from setup_objects by users with the INSERT or DELETE
privilege on the table. For existing rows, only the ENABLED and TIMED columns can be modified, by
users with the UPDATE privilege on the table.

For more information about the role of the setup_objects table in event filtering, see Section 29.4.3,
“Event Pre-Filtering”.

The setup_objects table has these columns:

• OBJECT_TYPE

The type of object to instrument. The value is one of 'EVENT' (Event Scheduler event),
'FUNCTION' (stored function), 'PROCEDURE' (stored procedure), 'TABLE' (base table), or
'TRIGGER' (trigger).

TABLE filtering affects table I/O events (wait/io/table/sql/handler instrument) and table lock
events (wait/lock/table/sql/handler instrument).

• OBJECT_SCHEMA

The schema that contains the object. This should be a literal name, or '%' to mean “any schema.”

• OBJECT_NAME

The name of the instrumented object. This should be a literal name, or '%' to mean “any object.”

• ENABLED

Whether events for the object are instrumented. The value is YES or NO. This column can be
modified.

• TIMED

Whether events for the object are timed. This column can be modified.

The setup_objects table has these indexes:

• Index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

TRUNCATE TABLE is permitted for the setup_objects table. It removes the rows.

29.12.2.5 The setup_threads Table

5178

Performance Schema Setup Tables

The setup_threads table lists instrumented thread classes. It exposes thread class names and
attributes:

mysql> SELECT * FROM performance_schema.setup_threads\G
*************************** 1. row ***************************
 NAME: thread/performance_schema/setup
 ENABLED: YES
 HISTORY: YES
 PROPERTIES: singleton
 VOLATILITY: 0
DOCUMENTATION: NULL
...
*************************** 4. row ***************************
 NAME: thread/sql/main
 ENABLED: YES
 HISTORY: YES
 PROPERTIES: singleton
 VOLATILITY: 0
DOCUMENTATION: NULL
*************************** 5. row ***************************
 NAME: thread/sql/one_connection
 ENABLED: YES
 HISTORY: YES
 PROPERTIES: user
 VOLATILITY: 0
DOCUMENTATION: NULL
...
*************************** 10. row ***************************
 NAME: thread/sql/event_scheduler
 ENABLED: YES
 HISTORY: YES
 PROPERTIES: singleton
 VOLATILITY: 0
DOCUMENTATION: NULL

The setup_threads table has these columns:

• NAME

The instrument name. Thread instruments begin with thread (for example, thread/sql/
parser_service or thread/performance_schema/setup).

• ENABLED

Whether the instrument is enabled. The value is YES or NO. This column can be modified, although
setting ENABLED has no effect for threads that are already running.

For background threads, setting the ENABLED value controls whether INSTRUMENTED is set to YES
or NO for threads that are subsequently created for this instrument and listed in the threads table.
For foreground threads, this column has no effect; the setup_actors table takes precedence.

• HISTORY

Whether to log historical events for the instrument. The value is YES or NO. This column can be
modified, although setting HISTORY has no effect for threads that are already running.

For background threads, setting the HISTORY value controls whether HISTORY is set to YES or NO
for threads that are subsequently created for this instrument and listed in the threads table. For
foreground threads, this column has no effect; the setup_actors table takes precedence.

• PROPERTIES

The instrument properties. This column uses the SET data type, so multiple flags from the following
list can be set per instrument:

• singleton: The instrument has a single instance. For example, there is only one thread for the
thread/sql/main instrument.

5179

Performance Schema Instance Tables

• user: The instrument is directly related to user workload (as opposed to system workload). For
example, threads such as thread/sql/one_connection executing a user session have the
user property to differentiate them from system threads.

• VOLATILITY

The instrument volatility. This column has the same meaning as in the setup_instruments table.
See Section 29.12.2.3, “The setup_instruments Table”.

• DOCUMENTATION

A string describing the instrument purpose. The value is NULL if no description is available.

The setup_threads table has these indexes:

• Primary key on (NAME)

TRUNCATE TABLE is not permitted for the setup_threads table.

29.12.3 Performance Schema Instance Tables

Instance tables document what types of objects are instrumented. They provide event names and
explanatory notes or status information:

• cond_instances: Condition synchronization object instances

• file_instances: File instances

• mutex_instances: Mutex synchronization object instances

• rwlock_instances: Lock synchronization object instances

• socket_instances: Active connection instances

These tables list instrumented synchronization objects, files, and connections. There are three types
of synchronization objects: cond, mutex, and rwlock. Each instance table has an EVENT_NAME or
NAME column to indicate the instrument associated with each row. Instrument names may have multiple
parts and form a hierarchy, as discussed in Section 29.6, “Performance Schema Instrument Naming
Conventions”.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for
investigating performance bottlenecks or deadlocks. For examples of how to use them for this purpose,
see Section 29.19, “Using the Performance Schema to Diagnose Problems”

29.12.3.1 The cond_instances Table

The cond_instances table lists all the conditions seen by the Performance Schema while the server
executes. A condition is a synchronization mechanism used in the code to signal that a specific event
has happened, so that a thread waiting for this condition can resume work.

When a thread is waiting for something to happen, the condition name is an indication of what the
thread is waiting for, but there is no immediate way to tell which other thread, or threads, causes the
condition to happen.

The cond_instances table has these columns:

• NAME

The instrument name associated with the condition.

• OBJECT_INSTANCE_BEGIN

5180

Performance Schema Instance Tables

The address in memory of the instrumented condition.

The cond_instances table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (NAME)

TRUNCATE TABLE is not permitted for the cond_instances table.

29.12.3.2 The file_instances Table

The file_instances table lists all the files seen by the Performance Schema when executing file I/O
instrumentation. If a file on disk has never been opened, it is not shown in file_instances. When a
file is deleted from the disk, it is also removed from the file_instances table.

The file_instances table has these columns:

• FILE_NAME

The file name.

• EVENT_NAME

The instrument name associated with the file.

• OPEN_COUNT

The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but
OPEN_COUNT is 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT > 0.

The file_instances table has these indexes:

• Primary key on (FILE_NAME)

• Index on (EVENT_NAME)

TRUNCATE TABLE is not permitted for the file_instances table.

29.12.3.3 The mutex_instances Table

The mutex_instances table lists all the mutexes seen by the Performance Schema while the server
executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at
a given time can have access to some common resource. The resource is said to be “protected” by the
mutex.

When two threads executing in the server (for example, two user sessions executing a query
simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these
two threads compete against each other, so that the first query to obtain a lock on the mutex causes
the other query to wait until the first is done and unlocks the mutex.

The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do
execute this critical section in a serialized way (one at a time), which is a potential bottleneck.

The mutex_instances table has these columns:

• NAME

The instrument name associated with the mutex.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented mutex.

• LOCKED_BY_THREAD_ID

5181

Performance Schema Instance Tables

When a thread currently has a mutex locked, LOCKED_BY_THREAD_ID is the THREAD_ID of the
locking thread, otherwise it is NULL.

The mutex_instances table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (NAME)

• Index on (LOCKED_BY_THREAD_ID)

TRUNCATE TABLE is not permitted for the mutex_instances table.

For every mutex instrumented in the code, the Performance Schema provides the following
information.

• The setup_instruments table lists the name of the instrumentation point, with the prefix wait/
synch/mutex/.

• When some code creates a mutex, a row is added to the mutex_instances table. The
OBJECT_INSTANCE_BEGIN column is a property that uniquely identifies the mutex.

• When a thread attempts to lock a mutex, the events_waits_current table shows a row for that
thread, indicating that it is waiting on a mutex (in the EVENT_NAME column), and indicating which
mutex is waited on (in the OBJECT_INSTANCE_BEGIN column).

• When a thread succeeds in locking a mutex:

• events_waits_current shows that the wait on the mutex is completed (in the TIMER_END and
TIMER_WAIT columns)

• The completed wait event is added to the events_waits_history and
events_waits_history_long tables

• mutex_instances shows that the mutex is now owned by the thread (in the THREAD_ID
column).

• When a thread unlocks a mutex, mutex_instances shows that the mutex now has no owner (the
THREAD_ID column is NULL).

• When a mutex object is destroyed, the corresponding row is removed from mutex_instances.

By performing queries on both of the following tables, a monitoring application or a DBA can detect
bottlenecks or deadlocks between threads that involve mutexes:

• events_waits_current, to see what mutex a thread is waiting for

• mutex_instances, to see which other thread currently owns a mutex

29.12.3.4 The rwlock_instances Table

The rwlock_instances table lists all the rwlock (read write lock) instances seen by the Performance
Schema while the server executes. An rwlock is a synchronization mechanism used in the code to
enforce that threads at a given time can have access to some common resource following certain rules.
The resource is said to be “protected” by the rwlock. The access is either shared (many threads can
have a read lock at the same time), exclusive (only one thread can have a write lock at a given time), or
shared-exclusive (a thread can have a write lock while permitting inconsistent reads by other threads).
Shared-exclusive access is otherwise known as an sxlock and optimizes concurrency and improves
scalability for read-write workloads.

Depending on how many threads are requesting a lock, and the nature of the locks requested, access
can be either granted in shared mode, exclusive mode, shared-exclusive mode or not granted at all,
waiting for other threads to finish first.

5182

Performance Schema Instance Tables

The rwlock_instances table has these columns:

• NAME

The instrument name associated with the lock.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented lock.

• WRITE_LOCKED_BY_THREAD_ID

When a thread currently has an rwlock locked in exclusive (write) mode,
WRITE_LOCKED_BY_THREAD_ID is the THREAD_ID of the locking thread, otherwise it is NULL.

• READ_LOCKED_BY_COUNT

When a thread currently has an rwlock locked in shared (read) mode, READ_LOCKED_BY_COUNT
is incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a
read lock, but it can be used to see whether there is a read contention on an rwlock, and see how
many readers are currently active.

The rwlock_instances table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (NAME)

• Index on (WRITE_LOCKED_BY_THREAD_ID)

TRUNCATE TABLE is not permitted for the rwlock_instances table.

By performing queries on both of the following tables, a monitoring application or a DBA may detect
some bottlenecks or deadlocks between threads that involve locks:

• events_waits_current, to see what rwlock a thread is waiting for

• rwlock_instances, to see which other thread currently owns an rwlock

There is a limitation: The rwlock_instances can be used only to identify the thread holding a write
lock, but not the threads holding a read lock.

29.12.3.5 The socket_instances Table

The socket_instances table provides a real-time snapshot of the active connections to the MySQL
server. The table contains one row per TCP/IP or Unix socket file connection. Information available in
this table provides a real-time snapshot of the active connections to the server. (Additional information
is available in socket summary tables, including network activity such as socket operations and number
of bytes transmitted and received; see Section 29.12.20.9, “Socket Summary Tables”).

mysql> SELECT * FROM performance_schema.socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_unix_socket
OBJECT_INSTANCE_BEGIN: 4316619408
 THREAD_ID: 1
 SOCKET_ID: 16
 IP:
 PORT: 0
 STATE: ACTIVE
*************************** 2. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 4316644608
 THREAD_ID: 21
 SOCKET_ID: 39
 IP: 127.0.0.1
 PORT: 55233
 STATE: ACTIVE

5183

Performance Schema Instance Tables

*************************** 3. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_tcpip_socket
OBJECT_INSTANCE_BEGIN: 4316699040
 THREAD_ID: 1
 SOCKET_ID: 14
 IP: 0.0.0.0
 PORT: 50603
 STATE: ACTIVE

Socket instruments have names of the form wait/io/socket/sql/socket_type and are used like
this:

1. The server has a listening socket for each network protocol that it supports. The instruments
associated with listening sockets for TCP/IP or Unix socket file connections have a socket_type
value of server_tcpip_socket or server_unix_socket, respectively.

2. When a listening socket detects a connection, the server transfers the connection to a new socket
managed by a separate thread. The instrument for the new connection thread has a socket_type
value of client_connection.

3. When a connection terminates, the row in socket_instances corresponding to it is deleted.

The socket_instances table has these columns:

• EVENT_NAME

The name of the wait/io/socket/* instrument that produced the event. This is a NAME value
from the setup_instruments table. Instrument names may have multiple parts and form a
hierarchy, as discussed in Section 29.6, “Performance Schema Instrument Naming Conventions”.

• OBJECT_INSTANCE_BEGIN

This column uniquely identifies the socket. The value is the address of an object in memory.

• THREAD_ID

The internal thread identifier assigned by the server. Each socket is managed by a single thread, so
each socket can be mapped to a thread which can be mapped to a server process.

• SOCKET_ID

The internal file handle assigned to the socket.

• IP

The client IP address. The value may be either an IPv4 or IPv6 address, or blank to indicate a Unix
socket file connection.

• PORT

The TCP/IP port number, in the range from 0 to 65535.

• STATE

The socket status, either IDLE or ACTIVE. Wait times for active sockets are tracked using the
corresponding socket instrument. Wait times for idle sockets are tracked using the idle instrument.

A socket is idle if it is waiting for a request from the client. When a socket becomes idle, the event
row in socket_instances that is tracking the socket switches from a status of ACTIVE to IDLE.
The EVENT_NAME value remains wait/io/socket/*, but timing for the instrument is suspended.
Instead, an event is generated in the events_waits_current table with an EVENT_NAME value of
idle.

When the next request is received, the idle event terminates, the socket instance switches from
IDLE to ACTIVE, and timing of the socket instrument resumes.

5184

Performance Schema Wait Event Tables

The socket_instances table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (THREAD_ID)

• Index on (SOCKET_ID)

• Index on (IP, PORT)

TRUNCATE TABLE is not permitted for the socket_instances table.

The IP:PORT column combination value identifies the connection. This combination value is used in
the OBJECT_NAME column of the events_waits_xxx tables, to identify the connection from which
socket events come:

• For the Unix domain listener socket (server_unix_socket), the port is 0, and the IP is ''.

• For client connections via the Unix domain listener (client_connection), the port is 0, and the IP
is ''.

• For the TCP/IP server listener socket (server_tcpip_socket), the port is always the master port
(for example, 3306), and the IP is always 0.0.0.0.

• For client connections via the TCP/IP listener (client_connection), the port is whatever the
server assigns, but never 0. The IP is the IP of the originating host (127.0.0.1 or ::1 for the local
host)

29.12.4 Performance Schema Wait Event Tables

The Performance Schema instruments waits, which are events that take time. Within the event
hierarchy, wait events nest within stage events, which nest within statement events, which nest within
transaction events.

These tables store wait events:

• events_waits_current: The current wait event for each thread.

• events_waits_history: The most recent wait events that have ended per thread.

• events_waits_history_long: The most recent wait events that have ended globally (across all
threads).

The following sections describe the wait event tables. There are also summary tables that aggregate
information about wait events; see Section 29.12.20.1, “Wait Event Summary Tables”.

For more information about the relationship between the three wait event tables, see Section 29.9,
“Performance Schema Tables for Current and Historical Events”.

Configuring Wait Event Collection

To control whether to collect wait events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with wait. Use these
instruments to enable or disable collection of individual wait event classes.

• The setup_consumers table contains consumer values with names corresponding to the current
and historical wait event table names. Use these consumers to filter collection of wait events.

Some wait instruments are enabled by default; others are disabled. For example:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/file/innodb%';
+---+---------+-------+

5185

Performance Schema Wait Event Tables

| NAME | ENABLED | TIMED |
+---+---------+-------+
wait/io/file/innodb/innodb_tablespace_open_file	YES	YES
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
wait/io/file/innodb/innodb_arch_file	YES	YES
wait/io/file/innodb/innodb_clone_file	YES	YES
+---+---------+-------+
mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/socket/%';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+

The wait consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_waits%';
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
+---------------------------+---------+

To control wait event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='wait/%=ON'
performance-schema-consumer-events-waits-current=ON
performance-schema-consumer-events-waits-history=ON
performance-schema-consumer-events-waits-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='wait/%=OFF'
performance-schema-consumer-events-waits-current=OFF
performance-schema-consumer-events-waits-history=OFF
performance-schema-consumer-events-waits-history-long=OFF

To control wait event collection at runtime, update the setup_instruments and setup_consumers
tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'wait/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_waits%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'wait/%';

UPDATE performance_schema.setup_consumers

5186

Performance Schema Wait Event Tables

SET ENABLED = 'NO'
WHERE NAME LIKE 'events_waits%';

To collect only specific wait events, enable only the corresponding wait instruments. To collect wait
events only for specific wait event tables, enable the wait instruments but only the wait consumers
corresponding to the desired tables.

For additional information about configuring event collection, see Section 29.3, “Performance Schema
Startup Configuration”, and Section 29.4, “Performance Schema Runtime Configuration”.

29.12.4.1 The events_waits_current Table

The events_waits_current table contains current wait events. The table stores one row per thread
showing the current status of the thread's most recent monitored wait event, so there is no system
variable for configuring the table size.

Of the tables that contain wait event rows, events_waits_current is the most fundamental. Other
tables that contain wait event rows are logically derived from the current events. For example, the
events_waits_history and events_waits_history_long tables are collections of the most
recent wait events that have ended, up to a maximum number of rows per thread and globally across
all threads, respectively.

For more information about the relationship between the three wait event tables, see Section 29.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect wait events, see Section 29.12.4, “Performance
Schema Wait Event Tables”.

The events_waits_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have
the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 29.6, “Performance Schema Instrument Naming Conventions”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can
check the context in which this occurs.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time
elapsed so far (TIMER_END − TIMER_START).

5187

Performance Schema Wait Event Tables

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 29.4.1, “Performance Schema Event Timing”.

• SPINS

For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or
spinning is not instrumented.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, OBJECT_INSTANCE_BEGIN

These columns identify the object “being acted on.” What that means depends on the object type.

For a synchronization object (cond, mutex, rwlock):

• OBJECT_SCHEMA, OBJECT_NAME, and OBJECT_TYPE are NULL.

• OBJECT_INSTANCE_BEGIN is the address of the synchronization object in memory.

For a file I/O object:

• OBJECT_SCHEMA is NULL.

• OBJECT_NAME is the file name.

• OBJECT_TYPE is FILE.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a socket object:

• OBJECT_NAME is the IP:PORT value for the socket.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a table I/O object:

• OBJECT_SCHEMA is the name of the schema that contains the table.

• OBJECT_NAME is the table name.

• OBJECT_TYPE is TABLE for a persistent base table or TEMPORARY TABLE for a temporary table.

• OBJECT_INSTANCE_BEGIN is an address in memory.

An OBJECT_INSTANCE_BEGIN value itself has no meaning, except that different values indicate
different objects. OBJECT_INSTANCE_BEGIN can be used for debugging. For example, it can be
used with GROUP BY OBJECT_INSTANCE_BEGIN to see whether the load on 1,000 mutexes (that
protect, say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This
can help you correlate with other sources of information if you see the same object address in a log
file or another debugging or performance tool.

• INDEX_NAME

The name of the index used. PRIMARY indicates the table primary index. NULL means that no index
was used.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

5188

Performance Schema Wait Event Tables

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

• OPERATION

The type of operation performed, such as lock, read, or write.

• NUMBER_OF_BYTES

The number of bytes read or written by the operation. For table I/O waits (events for the wait/
io/table/sql/handler instrument), NUMBER_OF_BYTES indicates the number of rows. If the
value is greater than 1, the event is for a batch I/O operation. The following discussion describes the
difference between exclusively single-row reporting and reporting that reflects batch I/O.

MySQL executes joins using a nested-loop implementation. The job of the Performance Schema
instrumentation is to provide row count and accumulated execution time per table in the join. Assume
a join query of the following form that is executed using a table join order of t1, t2, t3:

SELECT ... FROM t1 JOIN t2 ON ... JOIN t3 ON ...

Table “fanout” is the increase or decrease in number of rows from adding a table during join
processing. If the fanout for table t3 is greater than 1, the majority of row-fetch operations are for
that table. Suppose that the join accesses 10 rows from t1, 20 rows from t2 per row from t1, and
30 rows from t3 per row of table t2. With single-row reporting, the total number of instrumented
operations is:

10 + (10 * 20) + (10 * 20 * 30) = 6210

A significant reduction in the number of instrumented operations is achievable by aggregating them
per scan (that is, per unique combination of rows from t1 and t2). With batch I/O reporting, the
Performance Schema produces an event for each scan of the innermost table t3 rather than for
each row, and the number of instrumented row operations reduces to:

10 + (10 * 20) + (10 * 20) = 410

That is a reduction of 93%, illustrating how the batch-reporting strategy significantly reduces
Performance Schema overhead for table I/O by reducing the number of reporting calls. The tradeoff
is lesser accuracy for event timing. Rather than time for an individual row operation as in per-row
reporting, timing for batch I/O includes time spent for operations such as join buffering, aggregation,
and returning rows to the client.

For batch I/O reporting to occur, these conditions must be true:

• Query execution accesses the innermost table of a query block (for a single-table query, that table
counts as innermost)

• Query execution does not request a single row from the table (so, for example, eq_ref access
prevents use of batch reporting)

• Query execution does not evaluate a subquery containing table access for the table

• FLAGS

Reserved for future use.

The events_waits_current table has these indexes:

• Primary key on (THREAD_ID, EVENT_ID)

TRUNCATE TABLE is permitted for the events_waits_current table. It removes the rows.

29.12.4.2 The events_waits_history Table

5189

Performance Schema Stage Event Tables

The events_waits_history table contains the N most recent wait events that have ended per
thread. Wait events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for
that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the performance_schema_events_waits_history_size system
variable at server startup.

The events_waits_history table has the same columns and indexing as
events_waits_current. See Section 29.12.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the events_waits_history table. It removes the rows.

For more information about the relationship between the three wait event tables, see Section 29.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect wait events, see Section 29.12.4, “Performance
Schema Wait Event Tables”.

29.12.4.3 The events_waits_history_long Table

The events_waits_history_long table contains N the most recent wait events that have ended
globally, across all threads. Wait events are not added to the table until they have ended. When the
table becomes full, the oldest row is discarded when a new row is added, regardless of which thread
generated either row.

The Performance Schema autosizes the value of N during server startup. To set the table size
explicitly, set the performance_schema_events_waits_history_long_size system variable at
server startup.

The events_waits_history_long table has the same columns as events_waits_current.
See Section 29.12.4.1, “The events_waits_current Table”. Unlike events_waits_current,
events_waits_history_long has no indexing.

TRUNCATE TABLE is permitted for the events_waits_history_long table. It removes the rows.

For more information about the relationship between the three wait event tables, see Section 29.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect wait events, see Section 29.12.4, “Performance
Schema Wait Event Tables”.

29.12.5 Performance Schema Stage Event Tables

The Performance Schema instruments stages, which are steps during the statement-execution
process, such as parsing a statement, opening a table, or performing a filesort operation. Stages
correspond to the thread states displayed by SHOW PROCESSLIST or that are visible in the Information
Schema PROCESSLIST table. Stages begin and end when state values change.

Within the event hierarchy, wait events nest within stage events, which nest within statement events,
which nest within transaction events.

These tables store stage events:

• events_stages_current: The current stage event for each thread.

• events_stages_history: The most recent stage events that have ended per thread.

5190

Performance Schema Stage Event Tables

• events_stages_history_long: The most recent stage events that have ended globally (across
all threads).

The following sections describe the stage event tables. There are also summary tables that aggregate
information about stage events; see Section 29.12.20.2, “Stage Summary Tables”.

For more information about the relationship between the three stage event tables, see Section 29.9,
“Performance Schema Tables for Current and Historical Events”.

• Configuring Stage Event Collection

• Stage Event Progress Information

Configuring Stage Event Collection

To control whether to collect stage events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with stage. Use these
instruments to enable or disable collection of individual stage event classes.

• The setup_consumers table contains consumer values with names corresponding to the current
and historical stage event table names. Use these consumers to filter collection of stage events.

Other than those instruments that provide statement progress information, the stage instruments are
disabled by default. For example:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME RLIKE 'stage/sql/[a-c]';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
stage/sql/After create	NO	NO
stage/sql/allocating local table	NO	NO
stage/sql/altering table	NO	NO
stage/sql/committing alter table to storage engine	NO	NO
stage/sql/Changing master	NO	NO
stage/sql/Checking master version	NO	NO
stage/sql/checking permissions	NO	NO
stage/sql/cleaning up	NO	NO
stage/sql/closing tables	NO	NO
stage/sql/Connecting to master	NO	NO
stage/sql/converting HEAP to MyISAM	NO	NO
stage/sql/Copying to group table	NO	NO
stage/sql/Copying to tmp table	NO	NO
stage/sql/copy to tmp table	NO	NO
stage/sql/Creating sort index	NO	NO
stage/sql/creating table	NO	NO
stage/sql/Creating tmp table	NO	NO
+--+---------+-------+

Stage event instruments that provide statement progress information are enabled and timed by default:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE ENABLED='YES' AND NAME LIKE "stage/%";
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
stage/sql/copy to tmp table	YES	YES
stage/sql/Applying batch of row changes (write)	YES	YES
stage/sql/Applying batch of row changes (update)	YES	YES
stage/sql/Applying batch of row changes (delete)	YES	YES
stage/innodb/alter table (end)	YES	YES
stage/innodb/alter table (flush)	YES	YES
stage/innodb/alter table (insert)	YES	YES
stage/innodb/alter table (log apply index)	YES	YES

5191

Performance Schema Stage Event Tables

stage/innodb/alter table (log apply table)	YES	YES
stage/innodb/alter table (merge sort)	YES	YES
stage/innodb/alter table (read PK and internal sort)	YES	YES
stage/innodb/buffer pool load	YES	YES
stage/innodb/clone (file copy)	YES	YES
stage/innodb/clone (redo copy)	YES	YES
stage/innodb/clone (page copy)	YES	YES
+--+---------+-------+

The stage consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_stages%';
+----------------------------+---------+
| NAME | ENABLED |
+----------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
+----------------------------+---------+

To control stage event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='stage/%=ON'
performance-schema-consumer-events-stages-current=ON
performance-schema-consumer-events-stages-history=ON
performance-schema-consumer-events-stages-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='stage/%=OFF'
performance-schema-consumer-events-stages-current=OFF
performance-schema-consumer-events-stages-history=OFF
performance-schema-consumer-events-stages-history-long=OFF

To control stage event collection at runtime, update the setup_instruments and
setup_consumers tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'stage/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_stages%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'stage/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_stages%';

To collect only specific stage events, enable only the corresponding stage instruments. To collect stage
events only for specific stage event tables, enable the stage instruments but only the stage consumers
corresponding to the desired tables.

For additional information about configuring event collection, see Section 29.3, “Performance Schema
Startup Configuration”, and Section 29.4, “Performance Schema Runtime Configuration”.

5192

Performance Schema Stage Event Tables

Stage Event Progress Information

The Performance Schema stage event tables contain two columns that, taken together, provide a stage
progress indicator for each row:

• WORK_COMPLETED: The number of work units completed for the stage

• WORK_ESTIMATED: The number of work units expected for the stage

Each column is NULL if no progress information is provided for an instrument. Interpretation of the
information, if it is available, depends entirely on the instrument implementation. The Performance
Schema tables provide a container to store progress data, but make no assumptions about the
semantics of the metric itself:

• A “work unit” is an integer metric that increases over time during execution, such as the number of
bytes, rows, files, or tables processed. The definition of “work unit” for a particular instrument is left to
the instrumentation code providing the data.

• The WORK_COMPLETED value can increase one or many units at a time, depending on the
instrumented code.

• The WORK_ESTIMATED value can change during the stage, depending on the instrumented code.

Instrumentation for a stage event progress indicator can implement any of the following behaviors:

• No progress instrumentation

This is the most typical case, where no progress data is provided. The WORK_COMPLETED and
WORK_ESTIMATED columns are both NULL.

• Unbounded progress instrumentation

Only the WORK_COMPLETED column is meaningful. No data is provided for the WORK_ESTIMATED
column, which displays 0.

By querying the events_stages_current table for the monitored session, a monitoring
application can report how much work has been performed so far, but cannot report whether the
stage is near completion. Currently, no stages are instrumented like this.

• Bounded progress instrumentation

The WORK_COMPLETED and WORK_ESTIMATED columns are both meaningful.

This type of progress indicator is appropriate for an operation with a defined completion criterion,
such as the table-copy instrument described later. By querying the events_stages_current
table for the monitored session, a monitoring application can report how much work has been
performed so far, and can report the overall completion percentage for the stage, by computing the
WORK_COMPLETED / WORK_ESTIMATED ratio.

The stage/sql/copy to tmp table instrument illustrates how progress indicators work. During
execution of an ALTER TABLE statement, the stage/sql/copy to tmp table stage is used, and
this stage can execute potentially for a long time, depending on the size of the data to copy.

The table-copy task has a defined termination (all rows copied), and the stage/sql/copy to
tmp table stage is instrumented to provided bounded progress information: The work unit used is
number of rows copied, WORK_COMPLETED and WORK_ESTIMATED are both meaningful, and their ratio
indicates task percentage complete.

To enable the instrument and the relevant consumers, execute these statements:

UPDATE performance_schema.setup_instruments
SET ENABLED='YES'
WHERE NAME='stage/sql/copy to tmp table';

5193

Performance Schema Stage Event Tables

UPDATE performance_schema.setup_consumers
SET ENABLED='YES'
WHERE NAME LIKE 'events_stages_%';

To see the progress of an ongoing ALTER TABLE statement, select from the
events_stages_current table.

29.12.5.1 The events_stages_current Table

The events_stages_current table contains current stage events. The table stores one row per
thread showing the current status of the thread's most recent monitored stage event, so there is no
system variable for configuring the table size.

Of the tables that contain stage event rows, events_stages_current is the most fundamental.
Other tables that contain stage event rows are logically derived from the current events. For example,
the events_stages_history and events_stages_history_long tables are collections of the
most recent stage events that have ended, up to a maximum number of rows per thread and globally
across all threads, respectively.

For more information about the relationship between the three stage event tables, see Section 29.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect stage events, see Section 29.12.5, “Performance
Schema Stage Event Tables”.

The events_stages_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have
the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 29.6, “Performance Schema Instrument Naming Conventions”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time
elapsed so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

5194

Performance Schema Stage Event Tables

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 29.4.1, “Performance Schema Event Timing”.

• WORK_COMPLETED, WORK_ESTIMATED

These columns provide stage progress information, for instruments that have been implemented to
produce such information. WORK_COMPLETED indicates how many work units have been completed
for the stage, and WORK_ESTIMATED indicates how many work units are expected for the stage. For
more information, see Stage Event Progress Information.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested. The nesting event for a stage
event is usually a statement event.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

The events_stages_current table has these indexes:

• Primary key on (THREAD_ID, EVENT_ID)

TRUNCATE TABLE is permitted for the events_stages_current table. It removes the rows.

29.12.5.2 The events_stages_history Table

The events_stages_history table contains the N most recent stage events that have ended per
thread. Stage events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for
that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the performance_schema_events_stages_history_size system
variable at server startup.

The events_stages_history table has the same columns and indexing as
events_stages_current. See Section 29.12.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the events_stages_history table. It removes the rows.

For more information about the relationship between the three stage event tables, see Section 29.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect stage events, see Section 29.12.5, “Performance
Schema Stage Event Tables”.

29.12.5.3 The events_stages_history_long Table

The events_stages_history_long table contains the N most recent stage events that have ended
globally, across all threads. Stage events are not added to the table until they have ended. When the
table becomes full, the oldest row is discarded when a new row is added, regardless of which thread
generated either row.

The Performance Schema autosizes the value of N during server startup. To set the table size
explicitly, set the performance_schema_events_stages_history_long_size system variable
at server startup.

The events_stages_history_long table has the same columns as events_stages_current.
See Section 29.12.5.1, “The events_stages_current Table”. Unlike events_stages_current,
events_stages_history_long has no indexing.

5195

Performance Schema Statement Event Tables

TRUNCATE TABLE is permitted for the events_stages_history_long table. It removes the rows.

For more information about the relationship between the three stage event tables, see Section 29.9,
“Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect stage events, see Section 29.12.5, “Performance
Schema Stage Event Tables”.

29.12.6 Performance Schema Statement Event Tables

The Performance Schema instruments statement execution. Statement events occur at a high level of
the event hierarchy. Within the event hierarchy, wait events nest within stage events, which nest within
statement events, which nest within transaction events.

These tables store statement events:

• events_statements_current: The current statement event for each thread.

• events_statements_history: The most recent statement events that have ended per thread.

• events_statements_history_long: The most recent statement events that have ended
globally (across all threads).

• prepared_statements_instances: Prepared statement instances and statistics

The following sections describe the statement event tables. There are also summary tables that
aggregate information about statement events; see Section 29.12.20.3, “Statement Summary Tables”.

For more information about the relationship between the three events_statements_xxx event
tables, see Section 29.9, “Performance Schema Tables for Current and Historical Events”.

• Configuring Statement Event Collection

• Statement Monitoring

Configuring Statement Event Collection

To control whether to collect statement events, set the state of the relevant instruments and
consumers:

• The setup_instruments table contains instruments with names that begin with statement. Use
these instruments to enable or disable collection of individual statement event classes.

• The setup_consumers table contains consumer values with names corresponding to the current
and historical statement event table names, and the statement digest consumer. Use these
consumers to filter collection of statement events and statement digesting.

The statement instruments are enabled by default, and the events_statements_current,
events_statements_history, and statements_digest statement consumers are enabled by
default:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'statement/%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
statement/sql/select	YES	YES
statement/sql/create_table	YES	YES
statement/sql/create_index	YES	YES
...		
statement/sp/stmt	YES	YES

5196

Performance Schema Statement Event Tables

statement/sp/set	YES	YES
statement/sp/set_trigger_field	YES	YES
statement/scheduler/event	YES	YES
statement/com/Sleep	YES	YES
statement/com/Quit	YES	YES
statement/com/Init DB	YES	YES
...		
statement/abstract/Query	YES	YES
statement/abstract/new_packet	YES	YES
statement/abstract/relay_log	YES	YES
+---+---------+-------+

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE '%statements%';
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
statements_digest	YES
+--------------------------------+---------+

To control statement event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='statement/%=ON'
performance-schema-consumer-events-statements-current=ON
performance-schema-consumer-events-statements-history=ON
performance-schema-consumer-events-statements-history-long=ON
performance-schema-consumer-statements-digest=ON

• Disable:

[mysqld]
performance-schema-instrument='statement/%=OFF'
performance-schema-consumer-events-statements-current=OFF
performance-schema-consumer-events-statements-history=OFF
performance-schema-consumer-events-statements-history-long=OFF
performance-schema-consumer-statements-digest=OFF

To control statement event collection at runtime, update the setup_instruments and
setup_consumers tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'statement/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE '%statements%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'statement/%';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%statements%';

To collect only specific statement events, enable only the corresponding statement instruments. To
collect statement events only for specific statement event tables, enable the statement instruments but
only the statement consumers corresponding to the desired tables.

5197

Performance Schema Statement Event Tables

For additional information about configuring event collection, see Section 29.3, “Performance Schema
Startup Configuration”, and Section 29.4, “Performance Schema Runtime Configuration”.

Statement Monitoring

Statement monitoring begins from the moment the server sees that activity is requested on a thread,
to the moment when all activity has ceased. Typically, this means from the time the server gets the
first packet from the client to the time the server has finished sending the response. Statements within
stored programs are monitored like other statements.

When the Performance Schema instruments a request (server command or SQL statement), it uses
instrument names that proceed in stages from more general (or “abstract”) to more specific until it
arrives at a final instrument name.

Final instrument names correspond to server commands and SQL statements:

• Server commands correspond to the COM_xxx codes defined in the mysql_com.h header file
and processed in sql/sql_parse.cc. Examples are COM_PING and COM_QUIT. Instruments for
commands have names that begin with statement/com, such as statement/com/Ping and
statement/com/Quit.

• SQL statements are expressed as text, such as DELETE FROM t1 or SELECT * FROM
t2. Instruments for SQL statements have names that begin with statement/sql, such as
statement/sql/delete and statement/sql/select.

Some final instrument names are specific to error handling:

• statement/com/Error accounts for messages received by the server that are out of band. It
can be used to detect commands sent by clients that the server does not understand. This may be
helpful for purposes such as identifying clients that are misconfigured or using a version of MySQL
more recent than that of the server, or clients that are attempting to attack the server.

• statement/sql/error accounts for SQL statements that fail to parse. It can be used to detect
malformed queries sent by clients. A query that fails to parse differs from a query that parses
but fails due to an error during execution. For example, SELECT * FROM is malformed, and the
statement/sql/error instrument is used. By contrast, SELECT * parses but fails with a No
tables used error. In this case, statement/sql/select is used and the statement event
contains information to indicate the nature of the error.

A request can be obtained from any of these sources:

• As a command or statement request from a client, which sends the request as packets

• As a statement string read from the relay log on a replica

• As an event from the Event Scheduler

The details for a request are not initially known and the Performance Schema proceeds from abstract
to specific instrument names in a sequence that depends on the source of the request.

For a request received from a client:

1. When the server detects a new packet at the socket level, a new statement is started with an
abstract instrument name of statement/abstract/new_packet.

2. When the server reads the packet number, it knows more about the type of request received, and
the Performance Schema refines the instrument name. For example, if the request is a COM_PING
packet, the instrument name becomes statement/com/Ping and that is the final name. If
the request is a COM_QUERY packet, it is known to correspond to an SQL statement but not the
particular type of statement. In this case, the instrument changes from one abstract name to a more
specific but still abstract name, statement/abstract/Query, and the request requires further
classification.

5198

Performance Schema Statement Event Tables

3. If the request is a statement, the statement text is read and given to the parser. After parsing,
the exact statement type is known. If the request is, for example, an INSERT statement, the
Performance Schema refines the instrument name from statement/abstract/Query to
statement/sql/insert, which is the final name.

For a request read as a statement from the relay log on a replica:

1. Statements in the relay log are stored as text and are read as such. There is no network protocol,
so the statement/abstract/new_packet instrument is not used. Instead, the initial instrument
is statement/abstract/relay_log.

2. When the statement is parsed, the exact statement type is known. If the request is, for example,
an INSERT statement, the Performance Schema refines the instrument name from statement/
abstract/Query to statement/sql/insert, which is the final name.

The preceding description applies only for statement-based replication. For row-based replication, table
I/O done on the replica as it processes row changes can be instrumented, but row events in the relay
log do not appear as discrete statements.

For a request received from the Event Scheduler:

The event execution is instrumented using the name statement/scheduler/event. This is the final
name.

Statements executed within the event body are instrumented using statement/sql/* names,
without use of any preceding abstract instrument. An event is a stored program, and stored programs
are precompiled in memory before execution. Consequently, there is no parsing at runtime and the
type of each statement is known by the time it executes.

Statements executed within the event body are child statements. For example, if an event executes
an INSERT statement, execution of the event itself is the parent, instrumented using statement/
scheduler/event, and the INSERT is the child, instrumented using statement/sql/insert.
The parent/child relationship holds between separate instrumented operations. This differs from the
sequence of refinement that occurs within a single instrumented operation, from abstract to final
instrument names.

For statistics to be collected for statements, it is not sufficient to enable only the final statement/
sql/* instruments used for individual statement types. The abstract statement/abstract/*
instruments must be enabled as well. This should not normally be an issue because all statement
instruments are enabled by default. However, an application that enables or disables statement
instruments selectively must take into account that disabling abstract instruments also disables
statistics collection for the individual statement instruments. For example, to collect statistics for
INSERT statements, statement/sql/insert must be enabled, but also statement/abstract/
new_packet and statement/abstract/Query. Similarly, for replicated statements to be
instrumented, statement/abstract/relay_log must be enabled.

No statistics are aggregated for abstract instruments such as statement/abstract/Query because
no statement is ever classified with an abstract instrument as the final statement name.

29.12.6.1 The events_statements_current Table

The events_statements_current table contains current statement events. The table stores one
row per thread showing the current status of the thread's most recent monitored statement event, so
there is no system variable for configuring the table size.

Of the tables that contain statement event rows, events_statements_current
is the most fundamental. Other tables that contain statement event rows are logically
derived from the current events. For example, the events_statements_history and
events_statements_history_long tables are collections of the most recent statement events

5199

Performance Schema Statement Event Tables

that have ended, up to a maximum number of rows per thread and globally across all threads,
respectively.

For more information about the relationship between the three events_statements_xxx event
tables, see Section 29.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect statement events, see Section 29.12.6,
“Performance Schema Statement Event Tables”.

The events_statements_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have
the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 29.6, “Performance Schema Instrument Naming Conventions”.

For SQL statements, the EVENT_NAME value initially is statement/com/Query until the statement
is parsed, then changes to a more appropriate value, as described in Section 29.12.6, “Performance
Schema Statement Event Tables”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time
elapsed so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 29.4.1, “Performance Schema Event Timing”.

• LOCK_TIME

The time spent waiting for table locks. This value is computed in microseconds but normalized to
picoseconds for easier comparison with other Performance Schema timers.

• SQL_TEXT

The text of the SQL statement. For a command not associated with an SQL statement, the value is
NULL.

5200

Performance Schema Statement Event Tables

The maximum space available for statement display is 1024 bytes by default. To change this
value, set the performance_schema_max_sql_text_length system variable at server
startup. (Changing this value affects columns in other Performance Schema tables as well. See
Section 29.10, “Performance Schema Statement Digests and Sampling”.)

• DIGEST

The statement digest SHA-256 value as a string of 64 hexadecimal characters, or NULL if the
statements_digest consumer is no. For more information about statement digesting, see
Section 29.10, “Performance Schema Statement Digests and Sampling”.

• DIGEST_TEXT

The normalized statement digest text, or NULL if the statements_digest consumer is no. For
more information about statement digesting, see Section 29.10, “Performance Schema Statement
Digests and Sampling”.

The performance_schema_max_digest_length system variable determines the
maximum number of bytes available per session for digest value storage. However, the display
length of statement digests may be longer than the available buffer size due to encoding of
statement elements such as keywords and literal values in digest buffer. Consequently, values
selected from the DIGEST_TEXT column of statement event tables may appear to exceed the
performance_schema_max_digest_length value.

• CURRENT_SCHEMA

The default database for the statement, NULL if there is none.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE

For nested statements (stored programs), these columns contain information about the parent
statement. Otherwise they are NULL.

• OBJECT_INSTANCE_BEGIN

This column identifies the statement. The value is the address of an object in memory.

• MYSQL_ERRNO

The statement error number, from the statement diagnostics area.

• RETURNED_SQLSTATE

The statement SQLSTATE value, from the statement diagnostics area.

• MESSAGE_TEXT

The statement error message, from the statement diagnostics area.

• ERRORS

Whether an error occurred for the statement. The value is 0 if the SQLSTATE value begins with 00
(completion) or 01 (warning). The value is 1 is the SQLSTATE value is anything else.

• WARNINGS

The number of warnings, from the statement diagnostics area.

• ROWS_AFFECTED

The number of rows affected by the statement. For a description of the meaning of “affected,” see
mysql_affected_rows().

5201

https://dev.mysql.com/doc/c-api/8.0/en/mysql-affected-rows.html

Performance Schema Statement Event Tables

• ROWS_SENT

The number of rows returned by the statement.

• ROWS_EXAMINED

The number of rows examined by the server layer (not counting any processing internal to storage
engines).

• CREATED_TMP_DISK_TABLES

Like the Created_tmp_disk_tables status variable, but specific to the statement.

• CREATED_TMP_TABLES

Like the Created_tmp_tables status variable, but specific to the statement.

• SELECT_FULL_JOIN

Like the Select_full_join status variable, but specific to the statement.

• SELECT_FULL_RANGE_JOIN

Like the Select_full_range_join status variable, but specific to the statement.

• SELECT_RANGE

Like the Select_range status variable, but specific to the statement.

• SELECT_RANGE_CHECK

Like the Select_range_check status variable, but specific to the statement.

• SELECT_SCAN

Like the Select_scan status variable, but specific to the statement.

• SORT_MERGE_PASSES

Like the Sort_merge_passes status variable, but specific to the statement.

• SORT_RANGE

Like the Sort_range status variable, but specific to the statement.

• SORT_ROWS

Like the Sort_rows status variable, but specific to the statement.

• SORT_SCAN

Like the Sort_scan status variable, but specific to the statement.

• NO_INDEX_USED

1 if the statement performed a table scan without using an index, 0 otherwise.

• NO_GOOD_INDEX_USED

1 if the server found no good index to use for the statement, 0 otherwise. For additional information,
see the description of the Extra column from EXPLAIN output for the Range checked for each
record value in Section 10.8.2, “EXPLAIN Output Format”.

• NESTING_EVENT_ID, NESTING_EVENT_TYPE, NESTING_EVENT_LEVEL

5202

Performance Schema Statement Event Tables

These three columns are used with other columns to provide information as follows for top-level
(unnested) statements and nested statements (executed within a stored program).

For top level statements:

OBJECT_TYPE = NULL
OBJECT_SCHEMA = NULL
OBJECT_NAME = NULL
NESTING_EVENT_ID = the parent transaction EVENT_ID
NESTING_EVENT_TYPE = 'TRANSACTION'
NESTING_LEVEL = 0

For nested statements:

OBJECT_TYPE = the parent statement object type
OBJECT_SCHEMA = the parent statement object schema
OBJECT_NAME = the parent statement object name
NESTING_EVENT_ID = the parent statement EVENT_ID
NESTING_EVENT_TYPE = 'STATEMENT'
NESTING_LEVEL = the parent statement NESTING_LEVEL plus one

• STATEMENT_ID

The query ID maintained by the server at the SQL level. The value is unique for the server instance
because these IDs are generated using a global counter that is incremented atomically. This column
was added in MySQL 8.0.14.

• CPU_TIME

The time spent on CPU for the current thread, expressed in picoseconds. This column was added in
MySQL 8.0.28.

• MAX_CONTROLLED_MEMORY

Reports the maximum amount of controlled memory used by a statement during execution.

This column was added in MySQL 8.0.31.

• MAX_TOTAL_MEMORY

Reports the maximum amount of memory used by a statement during execution.

This column was added in MySQL 8.0.31.

• EXECUTION_ENGINE

The query execution engine. The value is either PRIMARY or SECONDARY. For use with HeatWave
Service and HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY engine is
HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition Server (on-
premise), and HeatWave Service without HeatWave, the value is always PRIMARY. This column was
added in MySQL 8.0.29.

The events_statements_current table has these indexes:

• Primary key on (THREAD_ID, EVENT_ID)

TRUNCATE TABLE is permitted for the events_statements_current table. It removes the rows.

29.12.6.2 The events_statements_history Table

The events_statements_history table contains the N most recent statement events that have
ended per thread. Statement events are not added to the table until they have ended. When the table
contains the maximum number of rows for a given thread, the oldest thread row is discarded when a
new row for that thread is added. When a thread ends, all its rows are discarded.

5203

Performance Schema Statement Event Tables

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the performance_schema_events_statements_history_size system
variable at server startup.

The events_statements_history table has the same columns and indexing as
events_statements_current. See Section 29.12.6.1, “The events_statements_current Table”.

TRUNCATE TABLE is permitted for the events_statements_history table. It removes the rows.

For more information about the relationship between the three events_statements_xxx event
tables, see Section 29.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect statement events, see Section 29.12.6,
“Performance Schema Statement Event Tables”.

29.12.6.3 The events_statements_history_long Table

The events_statements_history_long table contains the N most recent statement events that
have ended globally, across all threads. Statement events are not added to the table until they have
ended. When the table becomes full, the oldest row is discarded when a new row is added, regardless
of which thread generated either row.

The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schema_events_statements_history_long_size system variable at server
startup.

The events_statements_history_long table has the same columns as
events_statements_current. See Section 29.12.6.1, “The events_statements_current Table”.
Unlike events_statements_current, events_statements_history_long has no indexing.

TRUNCATE TABLE is permitted for the events_statements_history_long table. It removes the
rows.

For more information about the relationship between the three events_statements_xxx event
tables, see Section 29.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect statement events, see Section 29.12.6,
“Performance Schema Statement Event Tables”.

29.12.6.4 The prepared_statements_instances Table

The Performance Schema provides instrumentation for prepared statements, for which there are two
protocols:

• The binary protocol. This is accessed through the MySQL C API and maps onto underlying server
commands as shown in the following table.

C API Function Corresponding Server Command

mysql_stmt_prepare() COM_STMT_PREPARE

mysql_stmt_execute() COM_STMT_EXECUTE

mysql_stmt_close() COM_STMT_CLOSE

• The text protocol. This is accessed using SQL statements and maps onto underlying server
commands as shown in the following table.

SQL Statement Corresponding Server Command

PREPARE SQLCOM_PREPARE

EXECUTE SQLCOM_EXECUTE

5204

https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-prepare.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-execute.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-close.html

Performance Schema Statement Event Tables

SQL Statement Corresponding Server Command

DEALLOCATE PREPARE, DROP PREPARE SQLCOM_DEALLOCATE PREPARE

Performance Schema prepared statement instrumentation covers both protocols. The following
discussion refers to the server commands rather than the C API functions or SQL statements.

Information about prepared statements is available in the prepared_statements_instances
table. This table enables inspection of prepared statements used in the server and
provides aggregated statistics about them. To control the size of this table, set the
performance_schema_max_prepared_statements_instances system variable at server
startup.

Collection of prepared statement information depends on the statement instruments shown
in the following table. These instruments are enabled by default. To modify them, update the
setup_instruments table.

Instrument Server Command

statement/com/Prepare COM_STMT_PREPARE

statement/com/Execute COM_STMT_EXECUTE

statement/sql/prepare_sql SQLCOM_PREPARE

statement/sql/execute_sql SQLCOM_EXECUTE

The Performance Schema manages the contents of the prepared_statements_instances table
as follows:

• Statement preparation

A COM_STMT_PREPARE or SQLCOM_PREPARE command creates a prepared statement
in the server. If the statement is successfully instrumented, a new row is added to the
prepared_statements_instances table. If the statement cannot be instrumented,
Performance_schema_prepared_statements_lost status variable is incremented.

• Prepared statement execution

Execution of a COM_STMT_EXECUTE or SQLCOM_PREPARE command for an instrumented prepared
statement instance updates the corresponding prepared_statements_instances table row.

• Prepared statement deallocation

Execution of a COM_STMT_CLOSE or SQLCOM_DEALLOCATE_PREPARE command
for an instrumented prepared statement instance removes the corresponding
prepared_statements_instances table row. To avoid resource leaks, removal occurs even if
the prepared statement instruments described previously are disabled.

The prepared_statements_instances table has these columns:

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented prepared statement.

• STATEMENT_ID

The internal statement ID assigned by the server. The text and binary protocols both use statement
IDs.

• STATEMENT_NAME

For the binary protocol, this column is NULL. For the text protocol, this column is the external
statement name assigned by the user. For example, for the following SQL statement, the name of
the prepared statement is stmt:

5205

Performance Schema Statement Event Tables

PREPARE stmt FROM 'SELECT 1';

• SQL_TEXT

The prepared statement text, with ? placeholder markers.

• OWNER_THREAD_ID, OWNER_EVENT_ID

These columns indicate the event that created the prepared statement.

• OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME

For a prepared statement created by a client session, these columns are NULL. For a prepared
statement created by a stored program, these columns point to the stored program. A typical user
error is forgetting to deallocate prepared statements. These columns can be used to find stored
programs that leak prepared statements:

SELECT
 OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME,
 STATEMENT_NAME, SQL_TEXT
FROM performance_schema.prepared_statements_instances
WHERE OWNER_OBJECT_TYPE IS NOT NULL;

• The query execution engine. The value is either PRIMARY or SECONDARY. For use with HeatWave
Service and HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY engine is
HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition Server (on-
premise), and HeatWave Service without HeatWave, the value is always PRIMARY. This column was
added in MySQL 8.0.29.

• TIMER_PREPARE

The time spent executing the statement preparation itself.

• COUNT_REPREPARE

The number of times the statement was reprepared internally (see Section 10.10.3, “Caching of
Prepared Statements and Stored Programs”). Timing statistics for repreparation are not available
because it is counted as part of statement execution, not as a separate operation.

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

Aggregated statistics for executions of the prepared statement.

• SUM_xxx

The remaining SUM_xxx columns are the same as for the statement summary tables (see
Section 29.12.20.3, “Statement Summary Tables”).

• MAX_CONTROLLED_MEMORY

Reports the maximum amount of controlled memory used by a prepared statement during execution.

This column was added in MySQL 8.0.31.

• MAX_TOTAL_MEMORY

Reports the maximum amount of memory used by a prepared statement during execution.

This column was added in MySQL 8.0.31.

The prepared_statements_instances table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

5206

Performance Schema Transaction Tables

• Index on (STATEMENT_ID)

• Index on (STATEMENT_NAME)

• Index on (OWNER_THREAD_ID, OWNER_EVENT_ID)

• Index on (OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME)

TRUNCATE TABLE resets the statistics columns of the prepared_statements_instances table.

29.12.7 Performance Schema Transaction Tables

The Performance Schema instruments transactions. Within the event hierarchy, wait events nest within
stage events, which nest within statement events, which nest within transaction events.

These tables store transaction events:

• events_transactions_current: The current transaction event for each thread.

• events_transactions_history: The most recent transaction events that have ended per
thread.

• events_transactions_history_long: The most recent transaction events that have ended
globally (across all threads).

The following sections describe the transaction event tables. There are also summary tables that
aggregate information about transaction events; see Section 29.12.20.5, “Transaction Summary
Tables”.

For more information about the relationship between the three transaction event tables, see
Section 29.9, “Performance Schema Tables for Current and Historical Events”.

• Configuring Transaction Event Collection

• Transaction Boundaries

• Transaction Instrumentation

• Transactions and Nested Events

• Transactions and Stored Programs

• Transactions and Savepoints

• Transactions and Errors

Configuring Transaction Event Collection

To control whether to collect transaction events, set the state of the relevant instruments and
consumers:

• The setup_instruments table contains an instrument named transaction. Use this instrument
to enable or disable collection of individual transaction event classes.

• The setup_consumers table contains consumer values with names corresponding to the current
and historical transaction event table names. Use these consumers to filter collection of transaction
events.

The transaction instrument and the events_transactions_current and
events_transactions_history transaction consumers are enabled by default:

mysql> SELECT NAME, ENABLED, TIMED

5207

Performance Schema Transaction Tables

 FROM performance_schema.setup_instruments
 WHERE NAME = 'transaction';
+-------------+---------+-------+
| NAME | ENABLED | TIMED |
+-------------+---------+-------+
| transaction | YES | YES |
+-------------+---------+-------+
mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_transactions%';
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
+----------------------------------+---------+

To control transaction event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='transaction=ON'
performance-schema-consumer-events-transactions-current=ON
performance-schema-consumer-events-transactions-history=ON
performance-schema-consumer-events-transactions-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='transaction=OFF'
performance-schema-consumer-events-transactions-current=OFF
performance-schema-consumer-events-transactions-history=OFF
performance-schema-consumer-events-transactions-history-long=OFF

To control transaction event collection at runtime, update the setup_instruments and
setup_consumers tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'transaction';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_transactions%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'transaction';

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_transactions%';

To collect transaction events only for specific transaction event tables, enable the transaction
instrument but only the transaction consumers corresponding to the desired tables.

For additional information about configuring event collection, see Section 29.3, “Performance Schema
Startup Configuration”, and Section 29.4, “Performance Schema Runtime Configuration”.

Transaction Boundaries

In MySQL Server, transactions start explicitly with these statements:

5208

Performance Schema Transaction Tables

START TRANSACTION | BEGIN | XA START | XA BEGIN

Transactions also start implicitly. For example, when the autocommit system variable is enabled, the
start of each statement starts a new transaction.

When autocommit is disabled, the first statement following a committed transaction marks the start of
a new transaction. Subsequent statements are part of the transaction until it is committed.

Transactions explicitly end with these statements:

COMMIT | ROLLBACK | XA COMMIT | XA ROLLBACK

Transactions also end implicitly, by execution of DDL statements, locking statements, and server
administration statements.

In the following discussion, references to START TRANSACTION also apply to BEGIN, XA START, and
XA BEGIN. Similarly, references to COMMIT and ROLLBACK apply to XA COMMIT and XA ROLLBACK,
respectively.

The Performance Schema defines transaction boundaries similarly to that of the server. The start and
end of a transaction event closely match the corresponding state transitions in the server:

• For an explicitly started transaction, the transaction event starts during processing of the START
TRANSACTION statement.

• For an implicitly started transaction, the transaction event starts on the first statement that uses a
transactional engine after the previous transaction has ended.

• For any transaction, whether explicitly or implicitly ended, the transaction event ends when the server
transitions out of the active transaction state during the processing of COMMIT or ROLLBACK.

There are subtle implications to this approach:

• Transaction events in the Performance Schema do not fully include the statement events associated
with the corresponding START TRANSACTION, COMMIT, or ROLLBACK statements. There is a trivial
amount of timing overlap between the transaction event and these statements.

• Statements that work with nontransactional engines have no effect on the transaction state of the
connection. For implicit transactions, the transaction event begins with the first statement that uses
a transactional engine. This means that statements operating exclusively on nontransactional tables
are ignored, even following START TRANSACTION.

To illustrate, consider the following scenario:

1. SET autocommit = OFF;
2. CREATE TABLE t1 (a INT) ENGINE = InnoDB;
3. START TRANSACTION; -- Transaction 1 START
4. INSERT INTO t1 VALUES (1), (2), (3);
5. CREATE TABLE t2 (a INT) ENGINE = MyISAM; -- Transaction 1 COMMIT
 -- (implicit; DDL forces commit)
6. INSERT INTO t2 VALUES (1), (2), (3); -- Update nontransactional table
7. UPDATE t2 SET a = a + 1; -- ... and again
8. INSERT INTO t1 VALUES (4), (5), (6); -- Write to transactional table
 -- Transaction 2 START (implicit)
9. COMMIT; -- Transaction 2 COMMIT

From the perspective of the server, Transaction 1 ends when table t2 is created. Transaction 2 does
not start until a transactional table is accessed, despite the intervening updates to nontransactional
tables.

From the perspective of the Performance Schema, Transaction 2 starts when the server transitions into
an active transaction state. Statements 6 and 7 are not included within the boundaries of Transaction 2,
which is consistent with how the server writes transactions to the binary log.

5209

Performance Schema Transaction Tables

Transaction Instrumentation

Three attributes define transactions:

• Access mode (read only, read write)

• Isolation level (SERIALIZABLE, REPEATABLE READ, and so forth)

• Implicit (autocommit enabled) or explicit (autocommit disabled)

To reduce complexity of the transaction instrumentation and to ensure that the collected transaction
data provides complete, meaningful results, all transactions are instrumented independently of access
mode, isolation level, or autocommit mode.

To selectively examine transaction history, use the attribute columns in the transaction event tables:
ACCESS_MODE, ISOLATION_LEVEL, and AUTOCOMMIT.

The cost of transaction instrumentation can be reduced various ways, such as enabling or disabling
transaction instrumentation according to user, account, host, or thread (client connection).

Transactions and Nested Events

The parent of a transaction event is the event that initiated the transaction. For an explicitly started
transaction, this includes the START TRANSACTION and COMMIT AND CHAIN statements. For an
implicitly started transaction, it is the first statement that uses a transactional engine after the previous
transaction ends.

In general, a transaction is the top-level parent to all events initiated during the transaction, including
statements that explicitly end the transaction such as COMMIT and ROLLBACK. Exceptions are
statements that implicitly end a transaction, such as DDL statements, in which case the current
transaction must be committed before the new statement is executed.

Transactions and Stored Programs

Transactions and stored program events are related as follows:

• Stored Procedures

Stored procedures operate independently of transactions. A stored procedure can be started within a
transaction, and a transaction can be started or ended from within a stored procedure. If called from
within a transaction, a stored procedure can execute statements that force a commit of the parent
transaction and then start a new transaction.

If a stored procedure is started within a transaction, that transaction is the parent of the stored
procedure event.

If a transaction is started by a stored procedure, the stored procedure is the parent of the transaction
event.

• Stored Functions

Stored functions are restricted from causing an explicit or implicit commit or rollback. Stored function
events can reside within a parent transaction event.

• Triggers

Triggers activate as part of a statement that accesses the table with which it is associated, so the
parent of a trigger event is always the statement that activates it.

Triggers cannot issue statements that cause an explicit or implicit commit or rollback of a transaction.

• Scheduled Events

5210

Performance Schema Transaction Tables

The execution of the statements in the body of a scheduled event takes place in a new connection.
Nesting of a scheduled event within a parent transaction is not applicable.

Transactions and Savepoints

Savepoint statements are recorded as separate statement events. Transaction events include separate
counters for SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements issued
during the transaction.

Transactions and Errors

Errors and warnings that occur within a transaction are recorded in statement events, but not in the
corresponding transaction event. This includes transaction-specific errors and warnings, such as a
rollback on a nontransactional table or GTID consistency errors.

29.12.7.1 The events_transactions_current Table

The events_transactions_current table contains current transaction events. The table stores
one row per thread showing the current status of the thread's most recent monitored transaction event,
so there is no system variable for configuring the table size. For example:

mysql> SELECT *
 FROM performance_schema.events_transactions_current LIMIT 1\G
*************************** 1. row ***************************
 THREAD_ID: 26
 EVENT_ID: 7
 END_EVENT_ID: NULL
 EVENT_NAME: transaction
 STATE: ACTIVE
 TRX_ID: NULL
 GTID: 3E11FA47-71CA-11E1-9E33-C80AA9429562:56
 XID: NULL
 XA_STATE: NULL
 SOURCE: transaction.cc:150
 TIMER_START: 420833537900000
 TIMER_END: NULL
 TIMER_WAIT: NULL
 ACCESS_MODE: READ WRITE
 ISOLATION_LEVEL: REPEATABLE READ
 AUTOCOMMIT: NO
 NUMBER_OF_SAVEPOINTS: 0
NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0
 NUMBER_OF_RELEASE_SAVEPOINT: 0
 OBJECT_INSTANCE_BEGIN: NULL
 NESTING_EVENT_ID: 6
 NESTING_EVENT_TYPE: STATEMENT

Of the tables that contain transaction event rows, events_transactions_current
is the most fundamental. Other tables that contain transaction event rows are logically
derived from the current events. For example, the events_transactions_history and
events_transactions_history_long tables are collections of the most recent transaction
events that have ended, up to a maximum number of rows per thread and globally across all threads,
respectively.

For more information about the relationship between the three transaction event tables, see
Section 29.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect transaction events, see Section 29.12.7,
“Performance Schema Transaction Tables”.

The events_transactions_current table has these columns:

• THREAD_ID, EVENT_ID

5211

Performance Schema Transaction Tables

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have
the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Section 29.6, “Performance Schema Instrument Naming Conventions”.

• STATE

The current transaction state. The value is ACTIVE (after START TRANSACTION or BEGIN),
COMMITTED (after COMMIT), or ROLLED BACK (after ROLLBACK).

• TRX_ID

Unused.

• GTID

The GTID column contains the value of gtid_next, which can be one of ANONYMOUS, AUTOMATIC,
or a GTID using the format UUID:NUMBER. For transactions that use gtid_next=AUTOMATIC,
which is all normal client transactions, the GTID column changes when the transaction commits
and the actual GTID is assigned. If gtid_mode is either ON or ON_PERMISSIVE, the GTID column
changes to the transaction's GTID. If gtid_mode is either OFF or OFF_PERMISSIVE, the GTID
column changes to ANONYMOUS.

• XID_FORMAT_ID, XID_GTRID, and XID_BQUAL

The elements of the XA transaction identifier. They have the format described in Section 15.3.8.1,
“XA Transaction SQL Statements”.

• XA_STATE

The state of the XA transaction. The value is ACTIVE (after XA START), IDLE (after XA END),
PREPARED (after XA PREPARE), ROLLED BACK (after XA ROLLBACK), or COMMITTED (after XA
COMMIT).

On a replica, the same XA transaction can appear in the events_transactions_current table
with different states on different threads. This is because immediately after the XA transaction is
prepared, it is detached from the replica's applier thread, and can be committed or rolled back by any
thread on the replica. The events_transactions_current table displays the current status of
the most recent monitored transaction event on the thread, and does not update this status when
the thread is idle. So the XA transaction can still be displayed in the PREPARED state for the original
applier thread, after it has been processed by another thread. To positively identify XA transactions
that are still in the PREPARED state and need to be recovered, use the XA RECOVER statement rather
than the Performance Schema transaction tables.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

5212

Performance Schema Transaction Tables

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time
elapsed so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 29.4.1, “Performance Schema Event Timing”.

• ACCESS_MODE

The transaction access mode. The value is READ WRITE or READ ONLY.

• ISOLATION_LEVEL

The transaction isolation level. The value is REPEATABLE READ, READ COMMITTED, READ
UNCOMMITTED, or SERIALIZABLE.

• AUTOCOMMIT

Whether autocommit mode was enabled when the transaction started.

• NUMBER_OF_SAVEPOINTS, NUMBER_OF_ROLLBACK_TO_SAVEPOINT,
NUMBER_OF_RELEASE_SAVEPOINT

The number of SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements
issued during the transaction.

• OBJECT_INSTANCE_BEGIN

Unused.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT. (TRANSACTION
does not appear because transactions cannot be nested.)

The events_transactions_current table has these indexes:

• Primary key on (THREAD_ID, EVENT_ID)

TRUNCATE TABLE is permitted for the events_transactions_current table. It removes the rows.

29.12.7.2 The events_transactions_history Table

The events_transactions_history table contains the N most recent transaction events that have
ended per thread. Transaction events are not added to the table until they have ended. When the table
contains the maximum number of rows for a given thread, the oldest thread row is discarded when a
new row for that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the performance_schema_events_transactions_history_size
system variable at server startup.

5213

Performance Schema Connection Tables

The events_transactions_history table has the same columns and indexing as
events_transactions_current. See Section 29.12.7.1, “The events_transactions_current Table”.

TRUNCATE TABLE is permitted for the events_transactions_history table. It removes the rows.

For more information about the relationship between the three transaction event tables, see
Section 29.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect transaction events, see Section 29.12.7,
“Performance Schema Transaction Tables”.

29.12.7.3 The events_transactions_history_long Table

The events_transactions_history_long table contains the N most recent transaction events
that have ended globally, across all threads. Transaction events are not added to the table until they
have ended. When the table becomes full, the oldest row is discarded when a new row is added,
regardless of which thread generated either row.

The Performance Schema autosizes the value of N is autosized at server startup. To set the table size
explicitly, set the performance_schema_events_transactions_history_long_size system
variable at server startup.

The events_transactions_history_long table has the same columns as
events_transactions_current. See Section 29.12.7.1, “The events_transactions_current Table”.
Unlike events_transactions_current, events_transactions_history_long has no
indexing.

TRUNCATE TABLE is permitted for the events_transactions_history_long table. It removes
the rows.

For more information about the relationship between the three transaction event tables, see
Section 29.9, “Performance Schema Tables for Current and Historical Events”.

For information about configuring whether to collect transaction events, see Section 29.12.7,
“Performance Schema Transaction Tables”.

29.12.8 Performance Schema Connection Tables

When a client connects to the MySQL server, it does so under a particular user name and from a
particular host. The Performance Schema provides statistics about these connections, tracking them
per account (user and host combination) as well as separately per user name and host name, using
these tables:

• accounts: Connection statistics per client account

• hosts: Connection statistics per client host name

• users: Connection statistics per client user name

The meaning of “account” in the connection tables is similar to its meaning in the MySQL grant tables
in the mysql system database, in the sense that the term refers to a combination of user and host
values. They differ in that, for grant tables, the host part of an account can be a pattern, whereas for
Performance Schema tables, the host value is always a specific nonpattern host name.

Each connection table has CURRENT_CONNECTIONS and TOTAL_CONNECTIONS columns to track
the current and total number of connections per “tracking value” on which its statistics are based. The
tables differ in what they use for the tracking value. The accounts table has USER and HOST columns
to track connections per user and host combination. The users and hosts tables have a USER and
HOST column, respectively, to track connections per user name and host name.

5214

Performance Schema Connection Tables

The Performance Schema also counts internal threads and threads for user sessions that failed to
authenticate, using rows with USER and HOST column values of NULL.

Suppose that clients named user1 and user2 each connect one time from hosta and hostb. The
Performance Schema tracks the connections as follows:

• The accounts table has four rows, for the user1/hosta, user1/hostb, user2/hosta, and
user2/hostb account values, each row counting one connection per account.

• The hosts table has two rows, for hosta and hostb, each row counting two connections per host
name.

• The users table has two rows, for user1 and user2, each row counting two connections per user
name.

When a client connects, the Performance Schema determines which row in each connection table
applies, using the tracking value appropriate to each table. If there is no such row, one is added. Then
the Performance Schema increments by one the CURRENT_CONNECTIONS and TOTAL_CONNECTIONS
columns in that row.

When a client disconnects, the Performance Schema decrements by one the CURRENT_CONNECTIONS
column in the row and leaves the TOTAL_CONNECTIONS column unchanged.

TRUNCATE TABLE is permitted for connection tables. It has these effects:

• Rows are removed for accounts, hosts, or users that have no current connections (rows with
CURRENT_CONNECTIONS = 0).

• Nonremoved rows are reset to count only current connections: For rows with
CURRENT_CONNECTIONS > 0, TOTAL_CONNECTIONS is reset to CURRENT_CONNECTIONS.

• Summary tables that depend on the connection table are implicitly truncated, as described later in
this section.

The Performance Schema maintains summary tables that aggregate connection statistics for
various event types by account, host, or user. These tables have _summary_by_account,
_summary_by_host, or _summary_by_user in the name. To identify them, use this query:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema'
 AND TABLE_NAME REGEXP '_summary_by_(account|host|user)'
 ORDER BY TABLE_NAME;
+--+
| TABLE_NAME |
+--+
| events_errors_summary_by_account_by_error |
| events_errors_summary_by_host_by_error |
| events_errors_summary_by_user_by_error |
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_statements_summary_by_account_by_event_name |
| events_statements_summary_by_host_by_event_name |
| events_statements_summary_by_user_by_event_name |
| events_transactions_summary_by_account_by_event_name |
| events_transactions_summary_by_host_by_event_name |
| events_transactions_summary_by_user_by_event_name |
| events_waits_summary_by_account_by_event_name |
| events_waits_summary_by_host_by_event_name |
| events_waits_summary_by_user_by_event_name |
| memory_summary_by_account_by_event_name |
| memory_summary_by_host_by_event_name |
| memory_summary_by_user_by_event_name |
+--+

For details about individual connection summary tables, consult the section that describes tables for
the summarized event type:

5215

Performance Schema Connection Tables

• Wait event summaries: Section 29.12.20.1, “Wait Event Summary Tables”

• Stage event summaries: Section 29.12.20.2, “Stage Summary Tables”

• Statement event summaries: Section 29.12.20.3, “Statement Summary Tables”

• Transaction event summaries: Section 29.12.20.5, “Transaction Summary Tables”

• Memory event summaries: Section 29.12.20.10, “Memory Summary Tables”

• Error event summaries: Section 29.12.20.11, “Error Summary Tables”

TRUNCATE TABLE is permitted for connection summary tables. It removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows. In
addition, each summary table that is aggregated by account, host, user, or thread is implicitly truncated
by truncation of the connection table on which it depends. The following table describes the relationship
between connection table truncation and implicitly truncated tables.

Table 29.2 Implicit Effects of Connection Table Truncation

Truncated Connection Table Implicitly Truncated Summary Tables

accounts Tables with names containing
_summary_by_account,
_summary_by_thread

hosts Tables with names containing
_summary_by_account, _summary_by_host,
_summary_by_thread

users Tables with names containing
_summary_by_account, _summary_by_user,
_summary_by_thread

Truncating a _summary_global summary table also implicitly truncates its
corresponding connection and thread summary tables. For example, truncating
events_waits_summary_global_by_event_name implicitly truncates the wait event summary
tables that are aggregated by account, host, user, or thread.

29.12.8.1 The accounts Table

The accounts table contains a row for each account that has connected to the MySQL server. For
each account, the table counts the current and total number of connections. The table size is autosized
at server startup. To set the table size explicitly, set the performance_schema_accounts_size
system variable at server startup. To disable account statistics, set this variable to 0.

The accounts table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 29.12.8,
“Performance Schema Connection Tables”.

• USER

The client user name for the connection. This is NULL for an internal thread, or for a user session
that failed to authenticate.

• HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session
that failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the account.

5216

Performance Schema Connection Tables

• TOTAL_CONNECTIONS

The total number of connections for the account.

• MAX_SESSION_CONTROLLED_MEMORY

Reports the maximum amount of controlled memory used by a session belonging to the account.

This column was added in MySQL 8.0.31.

• MAX_SESSION_TOTAL_MEMORY

Reports the maximum amount of memory used by a session belonging to the account.

This column was added in MySQL 8.0.31.

The accounts table has these indexes:

• Primary key on (USER, HOST)

29.12.8.2 The hosts Table

The hosts table contains a row for each host from which clients have connected to the
MySQL server. For each host name, the table counts the current and total number of
connections. The table size is autosized at server startup. To set the table size explicitly, set the
performance_schema_hosts_size system variable at server startup. To disable host statistics, set
this variable to 0.

The hosts table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 29.12.8,
“Performance Schema Connection Tables”.

• HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session
that failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the host.

• TOTAL_CONNECTIONS

The total number of connections for the host.

• MAX_SESSION_CONTROLLED_MEMORY

Reports the maximum amount of controlled memory used by a session belonging to the host.

This column was added in MySQL 8.0.31.

• MAX_SESSION_TOTAL_MEMORY

Reports the maximum amount of memory used by a session belonging to the host.

This column was added in MySQL 8.0.31.

The hosts table has these indexes:

• Primary key on (HOST)

29.12.8.3 The users Table

5217

Performance Schema Connection Attribute Tables

The users table contains a row for each user who has connected to the MySQL server. For each user
name, the table counts the current and total number of connections. The table size is autosized at
server startup. To set the table size explicitly, set the performance_schema_users_size system
variable at server startup. To disable user statistics, set this variable to 0.

The users table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 29.12.8,
“Performance Schema Connection Tables”.

• USER

The client user name for the connection. This is NULL for an internal thread, or for a user session
that failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the user.

• TOTAL_CONNECTIONS

The total number of connections for the user.

• MAX_SESSION_CONTROLLED_MEMORY

Reports the maximum amount of controlled memory used by a session belonging to the user.

This column was added in MySQL 8.0.31.

• MAX_SESSION_TOTAL_MEMORY

Reports the maximum amount of memory used by a session belonging to the user.

This column was added in MySQL 8.0.31.

The users table has these indexes:

• Primary key on (USER)

29.12.9 Performance Schema Connection Attribute Tables

Connection attributes are key-value pairs that application programs can pass to the server at connect
time. For applications based on the C API implemented by the libmysqlclient client library, the
mysql_options() and mysql_options4() functions define the connection attribute set. Other
MySQL Connectors may provide their own attribute-definition methods.

These Performance Schema tables expose attribute information:

• session_account_connect_attrs: Connection attributes for the current session, and other
sessions associated with the session account

• session_connect_attrs: Connection attributes for all sessions

In addition, connect events written to the audit log may include connection attributes. See
Section 8.4.5.4, “Audit Log File Formats”.

Attribute names that begin with an underscore (_) are reserved for internal use and should not be
created by application programs. This convention permits new attributes to be introduced by MySQL
without colliding with application attributes, and enables application programs to define their own
attributes that do not collide with internal attributes.

• Available Connection Attributes

5218

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options4.html

Performance Schema Connection Attribute Tables

• Connection Attribute Limits

Available Connection Attributes

The set of connection attributes visible within a given connection varies depending on factors such as
your platform, MySQL Connector used to establish the connection, or client program.

The libmysqlclient client library sets these attributes:

• _client_name: The client name (libmysql for the client library).

• _client_version: The client library version.

• _os: The operating system (for example, Linux, Win64).

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _thread: The client thread ID (Windows only).

Other MySQL Connectors may define their own connection attributes.

MySQL Connector/C++ 8.0.16 and higher defines these attributes for applications that use X DevAPI or
X DevAPI for C:

• _client_license: The connector license (for example GPL-2.0).

• _client_name: The connector name (mysql-connector-cpp).

• _client_version: The connector version.

• _os: The operating system (for example, Linux, Win64).

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _source_host: The host name of the machine on which the client is running.

• _thread: The client thread ID (Windows only).

MySQL Connector/J defines these attributes:

• _client_name: The client name

• _client_version: The client library version

• _os: The operating system (for example, Linux, Win64)

• _client_license: The connector license type

• _platform: The machine platform (for example, x86_64)

• _runtime_vendor: The Java runtime environment (JRE) vendor

• _runtime_version: The Java runtime environment (JRE) version

MySQL Connector/NET defines these attributes:

• _client_version: The client library version.

• _os: The operating system (for example, Linux, Win64).

5219

Performance Schema Connection Attribute Tables

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _program_name: The client name.

• _thread: The client thread ID (Windows only).

The Connector/Python 8.0.17 and higher implementation defines these attributes; some values and
attributes depend on the Connector/Python implementation (pure python or c-ext):

• _client_license: The license type of the connector; GPL-2.0 or Commercial. (pure python
only)

• _client_name: Set to mysql-connector-python (pure python) or libmysql (c-ext)

• _client_version: The connector version (pure python) or mysqlclient library version (c-ext).

• _os: The operating system with the connector (for example, Linux, Win64).

• _pid: The process identifier on the source machine (for example, 26955)

• _platform: The machine platform (for example, x86_64).

• _source_host: The host name of the machine on which the connector is connecting from.

• _connector_version: The connector version (for example, 8.0.42) (c-ext only).

• _connector_license: The license type of the connector; GPL-2.0 or Commercial (c-ext only).

• _connector_name: Always set to mysql-connector-python (c-ext only).

PHP defines attributes that depend on how it was compiled:

• Compiled using libmysqlclient: The standard libmysqlclient attributes, described
previously.

• Compiled using mysqlnd: Only the _client_name attribute, with a value of mysqlnd.

Many MySQL client programs set a program_name attribute with a value equal to the client name.
For example, mysqladmin and mysqldump set program_name to mysqladmin and mysqldump,
respectively. MySQL Shell sets program_name to mysqlsh.

Some MySQL client programs define additional attributes:

• mysql (as of MySQL 8.0.17):

• os_user: The name of the operating system user running the program. Available on Unix and
Unix-like systems and Windows.

• os_sudouser: The value of the SUDO_USER environment variable. Available on Unix and Unix-
like systems.

mysql connection attributes for which the value is empty are not sent.

• mysqlbinlog:

• _client_role: binary_log_listener

• Replica connections:

• program_name: mysqld

• _client_role: binary_log_listener

5220

Performance Schema Connection Attribute Tables

• _client_replication_channel_name: The channel name.

• FEDERATED storage engine connections:

• program_name: mysqld

• _client_role: federated_storage

Connection Attribute Limits

There are limits on the amount of connection attribute data transmitted from client to server:

• A fixed limit imposed by the client prior to connect time.

• A fixed limit imposed by the server at connect time.

• A configurable limit imposed by the Performance Schema at connect time.

For connections initiated using the C API, the libmysqlclient library imposes a limit of 64KB on the
aggregate size of connection attribute data on the client side: Calls to mysql_options() that cause
this limit to be exceeded produce a CR_INVALID_PARAMETER_NO error. Other MySQL Connectors
may impose their own client-side limits on how much connection attribute data can be transmitted to
the server.

On the server side, these size checks on connection attribute data occur:

• The server imposes a limit of 64KB on the aggregate size of connection attribute data it accepts.
If a client attempts to send more than 64KB of attribute data, the server rejects the connection.
Otherwise, the server considers the attribute buffer valid and tracks the size of the longest such
buffer in the Performance_schema_session_connect_attrs_longest_seen status variable.

• For accepted connections, the Performance Schema checks aggregate attribute size against the
value of the performance_schema_session_connect_attrs_size system variable. If attribute
size exceeds this value, these actions take place:

• The Performance Schema truncates the attribute data and increments the
Performance_schema_session_connect_attrs_lost status variable, which indicates the
number of connections for which attribute truncation occurred.

• The Performance Schema writes a message to the error log if the log_error_verbosity
system variable is greater than 1:

Connection attributes of length N were truncated
(N bytes lost)
for connection N, user user_name@host_name
(as user_name), auth: {yes|no}

The information in the warning message is intended to help DBAs identify clients for which
attribute truncation occurred.

• A _truncated attribute is added to the session attributes with a value indicating how many bytes
were lost, if the attribute buffer has sufficient space. This enables the Performance Schema to
expose per-connection truncation information in the connection attribute tables. This information
can be examined without having to check the error log.

29.12.9.1 The session_account_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 29.12.9, “Performance Schema Connection
Attribute Tables”.

5221

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no

Performance Schema User-Defined Variable Tables

The session_account_connect_attrs table contains connection attributes only for the current
session, and other sessions associated with the session account. To see connection attributes for all
sessions, use the session_connect_attrs table.

The session_account_connect_attrs table has these columns:

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

The session_account_connect_attrs table has these indexes:

• Primary key on (PROCESSLIST_ID, ATTR_NAME)

TRUNCATE TABLE is not permitted for the session_account_connect_attrs table.

29.12.9.2 The session_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 29.12.9, “Performance Schema Connection
Attribute Tables”.

The session_connect_attrs table contains connection attributes for all sessions. To see
connection attributes only for the current session, and other sessions associated with the session
account, use the session_account_connect_attrs table.

The session_connect_attrs table has these columns:

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

The session_connect_attrs table has these indexes:

• Primary key on (PROCESSLIST_ID, ATTR_NAME)

TRUNCATE TABLE is not permitted for the session_connect_attrs table.

29.12.10 Performance Schema User-Defined Variable Tables

5222

Performance Schema Replication Tables

The Performance Schema provides a user_variables_by_thread table that exposes user-defined
variables. These are variables defined within a specific session and include a @ character preceding
the name; see Section 11.4, “User-Defined Variables”.

The user_variables_by_thread table has these columns:

• THREAD_ID

The thread identifier of the session in which the variable is defined.

• VARIABLE_NAME

The variable name, without the leading @ character.

• VARIABLE_VALUE

The variable value.

The user_variables_by_thread table has these indexes:

• Primary key on (THREAD_ID, VARIABLE_NAME)

TRUNCATE TABLE is not permitted for the user_variables_by_thread table.

29.12.11 Performance Schema Replication Tables

The Performance Schema provides tables that expose replication information. This is similar to the
information available from the SHOW REPLICA STATUS statement, but representation in table form is
more accessible and has usability benefits:

• SHOW REPLICA STATUS output is useful for visual inspection, but not so much for programmatic
use. By contrast, using the Performance Schema tables, information about replica status can be
searched using general SELECT queries, including complex WHERE conditions, joins, and so forth.

• Query results can be saved in tables for further analysis, or assigned to variables and thus used in
stored procedures.

• The replication tables provide better diagnostic information. For multithreaded replica
operation, SHOW REPLICA STATUS reports all coordinator and worker thread errors using the
Last_SQL_Errno and Last_SQL_Error fields, so only the most recent of those errors is visible
and information can be lost. The replication tables store errors on a per-thread basis without loss of
information.

• The last seen transaction is visible in the replication tables on a per-worker basis. This is information
not available from SHOW REPLICA STATUS.

• Developers familiar with the Performance Schema interface can extend the replication tables to
provide additional information by adding rows to the tables.

Replication Table Descriptions

The Performance Schema provides the following replication-related tables:

• Tables that contain information about the connection of the replica to the source:

• replication_connection_configuration: Configuration parameters for connecting to the
source

• replication_connection_status: Current status of the connection to the source

• replication_asynchronous_connection_failover: Source lists for the asynchronous
connection failover mechanism

5223

Performance Schema Replication Tables

• Tables that contain general (not thread-specific) information about the transaction applier:

• replication_applier_configuration: Configuration parameters for the transaction applier
on the replica.

• replication_applier_status: Current status of the transaction applier on the replica.

• Tables that contain information about specific threads responsible for applying transactions received
from the source:

• replication_applier_status_by_coordinator: Status of the coordinator thread (empty
unless the replica is multithreaded).

• replication_applier_status_by_worker: Status of the applier thread or worker threads if
the replica is multithreaded.

• Tables that contain information about channel based replication filters:

• replication_applier_filters: Provides information about the replication filters configured
on specific replication channels.

• replication_applier_global_filters: Provides information about global replication filters,
which apply to all replication channels.

• Tables that contain information about Group Replication members:

• replication_group_members: Provides network and status information for group members.

• replication_group_member_stats: Provides statistical information about group members
and transactions in which they participate.

For more information see Section 20.4, “Monitoring Group Replication”.

The following Performance Schema replication tables continue to be populated when the Performance
Schema is disabled:

• replication_connection_configuration

• replication_connection_status

• replication_asynchronous_connection_failover

• replication_applier_configuration

• replication_applier_status

• replication_applier_status_by_coordinator

• replication_applier_status_by_worker

The exception is local timing information (start and end timestamps for
transactions) in the replication tables replication_connection_status,
replication_applier_status_by_coordinator, and
replication_applier_status_by_worker. This information is not collected when the
Performance Schema is disabled.

The following sections describe each replication table in more detail, including the correspondence
between the columns produced by SHOW REPLICA STATUS and the replication table columns in which
the same information appears.

The remainder of this introduction to the replication tables describes how the Performance Schema
populates them and which fields from SHOW REPLICA STATUS are not represented in the tables.

5224

Performance Schema Replication Tables

Replication Table Life Cycle

The Performance Schema populates the replication tables as follows:

• Prior to execution of CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO, the tables are
empty.

• After CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO, the configuration parameters
can be seen in the tables. At this time, there are no active replication threads, so the THREAD_ID
columns are NULL and the SERVICE_STATE columns have a value of OFF.

• After START REPLICA (or before MySQL 8.0.22, START SLAVE), non-NULL THREAD_ID values
can be seen. Threads that are idle or active have a SERVICE_STATE value of ON. The thread that
connects to the source has a value of CONNECTING while it establishes the connection, and ON
thereafter as long as the connection lasts.

• After STOP REPLICA, the THREAD_ID columns become NULL and the SERVICE_STATE columns
for threads that no longer exist have a value of OFF.

• The tables are preserved after STOP REPLICA or threads stopping due to an error.

• The replication_applier_status_by_worker table is nonempty only when the
replica is operating in multithreaded mode. That is, if the replica_parallel_workers or
slave_parallel_workers system variable is greater than 0, this table is populated when START
REPLICA is executed, and the number of rows shows the number of workers.

Replica Status Information Not In the Replication Tables

The information in the Performance Schema replication tables differs somewhat from the information
available from SHOW REPLICA STATUS because the tables are oriented toward use of global
transaction identifiers (GTIDs), not file names and positions, and they represent server UUID values,
not server ID values. Due to these differences, several SHOW REPLICA STATUS columns are not
preserved in the Performance Schema replication tables, or are represented a different way:

• The following fields refer to file names and positions and are not preserved:

Master_Log_File
Read_Master_Log_Pos
Relay_Log_File
Relay_Log_Pos
Relay_Master_Log_File
Exec_Master_Log_Pos
Until_Condition
Until_Log_File
Until_Log_Pos

• The Master_Info_File field is not preserved. It refers to the master.info file used for the
replica's source metadata repository, which has been superseded by the use of crash-safe tables for
the repository.

• The following fields are based on server_id, not server_uuid, and are not preserved:

Master_Server_Id
Replicate_Ignore_Server_Ids

• The Skip_Counter field is based on event counts, not GTIDs, and is not preserved.

• These error fields are aliases for Last_SQL_Errno and Last_SQL_Error, so they are not
preserved:

Last_Errno
Last_Error

In the Performance Schema, this error information is available in the LAST_ERROR_NUMBER and
LAST_ERROR_MESSAGE columns of the replication_applier_status_by_worker table

5225

Performance Schema Replication Tables

(and replication_applier_status_by_coordinator if the replica is multithreaded). Those
tables provide more specific per-thread error information than is available from Last_Errno and
Last_Error.

• Fields that provide information about command-line filtering options is not preserved:

Replicate_Do_DB
Replicate_Ignore_DB
Replicate_Do_Table
Replicate_Ignore_Table
Replicate_Wild_Do_Table
Replicate_Wild_Ignore_Table

• The Replica_IO_State and Replica_SQL_Running_State fields are not preserved. If
needed, these values can be obtained from the process list by using the THREAD_ID column of
the appropriate replication table and joining it with the ID column in the INFORMATION_SCHEMA
PROCESSLIST table to select the STATE column of the latter table.

• The Executed_Gtid_Set field can show a large set with a great deal of text. Instead, the
Performance Schema tables show GTIDs of transactions that are currently being applied by
the replica. Alternatively, the set of executed GTIDs can be obtained from the value of the
gtid_executed system variable.

• The Seconds_Behind_Master and Relay_Log_Space fields are in to-be-decided status and are
not preserved.

Replication Channels

The first column of the replication Performance Schema tables is CHANNEL_NAME. This enables
the tables to be viewed per replication channel. In a non-multisource replication setup there is a
single default replication channel. When you are using multiple replication channels on a replica,
you can filter the tables per replication channel to monitor a specific replication channel. See
Section 19.2.2, “Replication Channels” and Section 19.1.5.8, “Monitoring Multi-Source Replication” for
more information.

29.12.11.1 The binary_log_transaction_compression_stats Table

This table shows statistical information for transaction payloads written to the binary log and relay
log, and can be used to calculate the effects of enabling binary log transaction compression. For
information on binary log transaction compression, see Section 7.4.4.5, “Binary Log Transaction
Compression”.

The binary_log_transaction_compression_stats table is populated only when the server
instance has a binary log, and the system variable binlog_transaction_compression is set to
ON. The statistics cover all transactions written to the binary log and relay log from the time the server
was started or the table was truncated. Compressed transactions are grouped by the compression
algorithm used, and uncompressed transactions are grouped together with the compression algorithm
stated as NONE, so the compression ratio can be calculated.

The binary_log_transaction_compression_stats table has these columns:

• LOG_TYPE

Whether these transactions were written to the binary log or relay log.

• COMPRESSION_TYPE

The compression algorithm used to compress the transaction payloads. NONE means the payloads
for these transactions were not compressed, which is correct in a number of situations (see
Section 7.4.4.5, “Binary Log Transaction Compression”).

• TRANSACTION_COUNTER

5226

Performance Schema Replication Tables

The number of transactions written to this log type with this compression type.

• COMPRESSED_BYTES

The total number of bytes that were compressed and then written to this log type with this
compression type, counted after compression.

• UNCOMPRESSED_BYTES

The total number of bytes before compression for this log type and this compression type.

• COMPRESSION_PERCENTAGE

The compression ratio for this log type and this compression type, expressed as a percentage.

• FIRST_TRANSACTION_ID

The ID of the first transaction that was written to this log type with this compression type.

• FIRST_TRANSACTION_COMPRESSED_BYTES

The total number of bytes that were compressed and then written to the log for the first transaction,
counted after compression.

• FIRST_TRANSACTION_UNCOMPRESSED_BYTES

The total number of bytes before compression for the first transaction.

• FIRST_TRANSACTION_TIMESTAMP

The timestamp when the first transaction was written to the log.

• LAST_TRANSACTION_ID

The ID of the most recent transaction that was written to this log type with this compression type.

• LAST_TRANSACTION_COMPRESSED_BYTES

The total number of bytes that were compressed and then written to the log for the most recent
transaction, counted after compression.

• LAST_TRANSACTION_UNCOMPRESSED_BYTES

The total number of bytes before compression for the most recent transaction.

• LAST_TRANSACTION_TIMESTAMP

The timestamp when the most recent transaction was written to the log.

The binary_log_transaction_compression_stats table has no indexes.

TRUNCATE TABLE is permitted for the binary_log_transaction_compression_stats table.

29.12.11.2 The replication_applier_configuration Table

This table shows the configuration parameters that affect transactions applied by the replica.
Parameters stored in the table can be changed at runtime with the CHANGE REPLICATION SOURCE
TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23).

The replication_applier_configuration table has these columns:

• CHANNEL_NAME

5227

Performance Schema Replication Tables

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 19.2.2, “Replication Channels” for more
information.

• DESIRED_DELAY

The number of seconds that the replica must lag the source. (CHANGE REPLICATION SOURCE
TO option: SOURCE_DELAY, CHANGE MASTER TO option: MASTER_DELAY) See Section 19.4.11,
“Delayed Replication” for more information.

• PRIVILEGE_CHECKS_USER

The user account that provides the security context for the channel (CHANGE REPLICATION
SOURCE TO option: PRIVILEGE_CHECKS_USER, CHANGE MASTER TO option:
PRIVILEGE_CHECKS_USER). This is escaped so that it can be copied into an SQL statement
to execute individual transactions. See Section 19.3.3, “Replication Privilege Checks” for more
information.

• REQUIRE_ROW_FORMAT

Whether the channel accepts only row-based events (CHANGE REPLICATION SOURCE TO
option: REQUIRE_ROW_FORMAT, CHANGE MASTER TO option: REQUIRE_ROW_FORMAT). See
Section 19.3.3, “Replication Privilege Checks” for more information.

• REQUIRE_TABLE_PRIMARY_KEY_CHECK

Whether the channel requires primary keys always, never, or according to the source's setting
(CHANGE REPLICATION SOURCE TO option: REQUIRE_TABLE_PRIMARY_KEY_CHECK, CHANGE
MASTER TO option: REQUIRE_TABLE_PRIMARY_KEY_CHECK). See Section 19.3.3, “Replication
Privilege Checks” for more information.

• ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS_TYPE

Whether the channel assigns a GTID to replicated transactions that do not already have one
(CHANGE REPLICATION SOURCE TO option: ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS,
CHANGE MASTER TO option: ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS). OFF means no
GTIDs are assigned. LOCAL means a GTID is assigned that includes the replica's own UUID (the
server_uuid setting). UUID means a GTID is assigned that includes a manually set UUID. See
Section 19.1.3.6, “Replication From a Source Without GTIDs to a Replica With GTIDs” for more
information.

• ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS_VALUE

The UUID that is used as part of the GTIDs assigned to anonymous transactions (CHANGE
REPLICATION SOURCE TO option: ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, CHANGE
MASTER TO option: ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS). See Section 19.1.3.6,
“Replication From a Source Without GTIDs to a Replica With GTIDs” for more information.

The replication_applier_configuration table has these indexes:

• Primary key on (CHANNEL_NAME)

TRUNCATE TABLE is not permitted for the replication_applier_configuration table.

The following table shows the correspondence between replication_applier_configuration
columns and SHOW REPLICA STATUS columns.

replication_applier_configuration
Column

SHOW REPLICA STATUS Column

DESIRED_DELAY SQL_Delay

5228

Performance Schema Replication Tables

29.12.11.3 The replication_applier_status Table

This table shows the current general transaction execution status on the replica.
The table provides information about general aspects of transaction applier status
that are not specific to any thread involved. Thread-specific status information is
available in the replication_applier_status_by_coordinator table (and
replication_applier_status_by_worker if the replica is multithreaded).

The replication_applier_status table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 19.2.2, “Replication Channels” for more
information.

• SERVICE_STATE

Shows ON when the replication channel's applier threads are active or idle, OFF means that the
applier threads are not active.

• REMAINING_DELAY

If the replica is waiting for DESIRED_DELAY seconds to pass since the source applied a transaction,
this field contains the number of delay seconds remaining. At other times, this field is NULL. (The
DESIRED_DELAY value is stored in the replication_applier_configuration table.) See
Section 19.4.11, “Delayed Replication” for more information.

• COUNT_TRANSACTIONS_RETRIES

Shows the number of retries that were made because the replication SQL thread failed to apply
a transaction. The maximum number of retries for a given transaction is set by the system
variable replica_transaction_retries and slave_transaction_retries. The
replication_applier_status_by_worker table shows detailed information on transaction
retries for a single-threaded or multithreaded replica.

The replication_applier_status table has these indexes:

• Primary key on (CHANNEL_NAME)

TRUNCATE TABLE is not permitted for the replication_applier_status table.

The following table shows the correspondence between replication_applier_status columns
and SHOW REPLICA STATUS columns.

replication_applier_status Column SHOW REPLICA STATUS Column

SERVICE_STATE None

REMAINING_DELAY SQL_Remaining_Delay

29.12.11.4 The replication_applier_status_by_coordinator Table

For a multithreaded replica, the replica uses multiple worker threads and a coordinator thread to
manage them, and this table shows the status of the coordinator thread. For a single-threaded replica,
this table is empty. For a multithreaded replica, the replication_applier_status_by_worker
table shows the status of the worker threads. This table provides information about the last transaction
which was buffered by the coordinator thread to a worker’s queue, as well as the transaction it is
currently buffering. The start timestamp refers to when this thread read the first event of the transaction
from the relay log to buffer it to a worker’s queue, while the end timestamp refers to when the last event
finished buffering to the worker’s queue.

The replication_applier_status_by_coordinator table has these columns:

5229

Performance Schema Replication Tables

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 19.2.2, “Replication Channels” for more
information.

• THREAD_ID

The SQL/coordinator thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the SQL/coordinator
thread to stop. An error number of 0 and message which is an empty string means “no error”. If the
LAST_ERROR_MESSAGE value is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET REPLICA resets the values shown in these columns.

All error codes and messages displayed in the LAST_ERROR_NUMBER and LAST_ERROR_MESSAGE
columns correspond to error values listed in Server Error Message Reference.

• LAST_ERROR_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the most recent
SQL/coordinator error occurred.

• LAST_PROCESSED_TRANSACTION

The global transaction ID (GTID) of the last transaction processed by this coordinator.

• LAST_PROCESSED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last
transaction processed by this coordinator was committed on the original source.

• LAST_PROCESSED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last
transaction processed by this coordinator was committed on the immediate source.

• LAST_PROCESSED_TRANSACTION_START_BUFFER_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when this coordinator
thread started writing the last transaction to the buffer of a worker thread.

• LAST_PROCESSED_TRANSACTION_END_BUFFER_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last
transaction was written to the buffer of a worker thread by this coordinator thread.

• PROCESSING_TRANSACTION

The global transaction ID (GTID) of the transaction that this coordinator thread is currently
processing.

• PROCESSING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the currently
processing transaction was committed on the original source.

5230

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

Performance Schema Replication Tables

• PROCESSING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the currently
processing transaction was committed on the immediate source.

• PROCESSING_TRANSACTION_START_BUFFER_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when this coordinator
thread started writing the currently processing transaction to the buffer of a worker thread.

When the Performance Schema is disabled, local timing information is not collected, so the fields
showing the start and end timestamps for buffered transactions are zero.

The replication_applier_status_by_coordinator table has these indexes:

• Primary key on (CHANNEL_NAME)

• Index on (THREAD_ID)

The following table shows the correspondence between
replication_applier_status_by_coordinator columns and SHOW REPLICA STATUS
columns.

replication_applier_status_by_coordinator
Column

SHOW REPLICA STATUS Column

THREAD_ID None

SERVICE_STATE Replica_SQL_Running

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

29.12.11.5 The replication_applier_status_by_worker Table

This table provides details of the transactions handled by applier threads on a replica or Group
Replication group member. For a single-threaded replica, data is shown for the replica's single applier
thread. For a multithreaded replica, data is shown individually for each applier thread. The applier
threads on a multithreaded replica are sometimes called workers. The number of applier threads
on a replica or Group Replication group member is set by the replica_parallel_workers or
slave_parallel_workers system variable, which is set to zero for a single-threaded replica. A
multithreaded replica also has a coordinator thread to manage the applier threads, and the status of
this thread is shown in the replication_applier_status_by_coordinator table.

All error codes and messages displayed in the columns relating to errors correspond to error values
listed in Server Error Message Reference.

When the Performance Schema is disabled, local timing information is not collected, so the fields
showing the start and end timestamps for applied transactions are zero. The start timestamps in this
table refer to when the worker started applying the first event, and the end timestamps refer to when
the last event of the transaction was applied.

When a replica is restarted by a START REPLICA statement, the columns beginning
APPLYING_TRANSACTION are reset. Before MySQL 8.0.13, these columns were not reset on a replica
that was operating in single-threaded mode, only on a multithreaded replica.

The replication_applier_status_by_worker table has these columns:

• CHANNEL_NAME

5231

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

Performance Schema Replication Tables

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 19.2.2, “Replication Channels” for more
information.

• WORKER_ID

The worker identifier (same value as the id column in the mysql.slave_worker_info table).
After STOP REPLICA, the THREAD_ID column becomes NULL, but the WORKER_ID value is
preserved.

• THREAD_ID

The worker thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the worker thread
to stop. An error number of 0 and message of the empty string mean “no error”. If the
LAST_ERROR_MESSAGE value is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET REPLICA resets the values shown in these columns.

• LAST_ERROR_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the most recent
worker error occurred.

• LAST_APPLIED_TRANSACTION

The global transaction ID (GTID) of the last transaction applied by this worker.

• LAST_APPLIED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last
transaction applied by this worker was committed on the original source.

• LAST_APPLIED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last
transaction applied by this worker was committed on the immediate source.

• LAST_APPLIED_TRANSACTION_START_APPLY_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when this worker
started applying the last applied transaction.

• LAST_APPLIED_TRANSACTION_END_APPLY_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when this worker
finished applying the last applied transaction.

• APPLYING_TRANSACTION

The global transaction ID (GTID) of the transaction this worker is currently applying.

• APPLYING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the transaction
this worker is currently applying was committed on the original source.

5232

Performance Schema Replication Tables

• APPLYING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the transaction
this worker is currently applying was committed on the immediate source.

• APPLYING_TRANSACTION_START_APPLY_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when this worker
started its first attempt to apply the transaction that is currently being applied. Before MySQL 8.0.13,
this timestamp was refreshed when a transaction was retried due to a transient error, so it showed
the timestamp for the most recent attempt to apply the transaction.

• LAST_APPLIED_TRANSACTION_RETRIES_COUNT

The number of times the last applied transaction was retried by the worker after the first attempt. If
the transaction was applied at the first attempt, this number is zero.

• LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_NUMBER

The error number of the last transient error that caused the transaction to be retried.

• LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_MESSAGE

The message text for the last transient error that caused the transaction to be retried.

• LAST_APPLIED_TRANSACTION_LAST_TRANSIENT_ERROR_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format for the last transient error that
caused the transaction to be retried.

• APPLYING_TRANSACTION_RETRIES_COUNT

The number of times the transaction that is currently being applied was retried until this moment. If
the transaction was applied at the first attempt, this number is zero.

• APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_NUMBER

The error number of the last transient error that caused the current transaction to be retried.

• APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_MESSAGE

The message text for the last transient error that caused the current transaction to be retried.

• APPLYING_TRANSACTION_LAST_TRANSIENT_ERROR_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format for the last transient error that
caused the current transaction to be retried.

The replication_applier_status_by_worker table has these indexes:

• Primary key on (CHANNEL_NAME, WORKER_ID)

• Index on (THREAD_ID)

The following table shows the correspondence between
replication_applier_status_by_worker columns and SHOW REPLICA STATUS columns.

replication_applier_status_by_worker
Column

SHOW REPLICA STATUS Column

WORKER_ID None

THREAD_ID None

SERVICE_STATE None

5233

Performance Schema Replication Tables

replication_applier_status_by_worker
Column

SHOW REPLICA STATUS Column

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

29.12.11.6 The replication_applier_filters Table

This table shows the replication channel specific filters configured on this replica. Each row provides
information on a replication channel's configured type of filter. The replication_applier_filters
table has these columns:

• CHANNEL_NAME

The name of replication channel with a replication filter configured.

• FILTER_NAME

The type of replication filter that has been configured for this replication channel.

• FILTER_RULE

The rules configured for the replication filter type using either --replicate-* command options or
CHANGE REPLICATION FILTER.

• CONFIGURED_BY

The method used to configure the replication filter, can be one of:

• CHANGE_REPLICATION_FILTER configured by a global replication filter using a CHANGE
REPLICATION FILTER statement.

• STARTUP_OPTIONS configured by a global replication filter using a --replicate-* option.

• CHANGE_REPLICATION_FILTER_FOR_CHANNEL configured by a channel specific replication filter
using a CHANGE REPLICATION FILTER FOR CHANNEL statement.

• STARTUP_OPTIONS_FOR_CHANNEL configured by a channel specific replication filter using a --
replicate-* option.

• ACTIVE_SINCE

Timestamp of when the replication filter was configured.

• COUNTER

The number of times the replication filter has been used since it was configured.

29.12.11.7 The replication_applier_global_filters Table

This table shows the global replication filters configured on this replica. The
replication_applier_global_filters table has these columns:

• FILTER_NAME

The type of replication filter that has been configured.

• FILTER_RULE

The rules configured for the replication filter type using either --replicate-* command options or
CHANGE REPLICATION FILTER.

5234

Performance Schema Replication Tables

• CONFIGURED_BY

The method used to configure the replication filter, can be one of:

• CHANGE_REPLICATION_FILTER configured by a global replication filter using a CHANGE
REPLICATION FILTER statement.

• STARTUP_OPTIONS configured by a global replication filter using a --replicate-* option.

• ACTIVE_SINCE

Timestamp of when the replication filter was configured.

29.12.11.8 The replication_asynchronous_connection_failover Table

This table holds the replica's source lists for each replication channel for the asynchronous connection
failover mechanism. The asynchronous connection failover mechanism automatically establishes an
asynchronous (source to replica) replication connection to a new source from the appropriate list after
the existing connection from the replica to its source fails. When asynchronous connection failover is
enabled for a group of replicas managed by Group Replication, the source lists are broadcast to all
group members when they join, and also when the lists change.

You set and manage source lists using the asynchronous_connection_failover_add_source
and asynchronous_connection_failover_delete_source functions to add and remove
replication source servers from the source list for a replication channel. To add and remove
managed groups of servers, use the asynchronous_connection_failover_add_managed and
asynchronous_connection_failover_delete_managed functions instead.

For more information, see Section 19.4.9, “Switching Sources and Replicas with Asynchronous
Connection Failover”.

The replication_asynchronous_connection_failover table has these columns:

• CHANNEL_NAME

The replication channel for which this replication source server is part of the source list. If this
channel's connection to its current source fails, this replication source server is one of its potential
new sources.

• HOST

The host name for this replication source server.

• PORT

The port number for this replication source server.

• NETWORK_NAMESPACE

The network namespace for this replication source server. If this value is empty, connections use the
default (global) namespace.

• WEIGHT

The priority of this replication source server in the replication channel's source list. The weight is from
1 to 100, with 100 being the highest, and 50 being the default. When the asynchronous connection
failover mechanism activates, the source with the highest weight setting among the alternative
sources listed in the source list for the channel is chosen for the first connection attempt. If this
attempt does not work, the replica tries with all the listed sources in descending order of weight, then
starts again from the highest weighted source. If multiple sources have the same weight, the replica
orders them randomly.

5235

Performance Schema Replication Tables

• MANAGED_NAME

The identifier for the managed group that the server is a part of. For the GroupReplication
managed service, the identifier is the value of the group_replication_group_name system
variable.

The replication_asynchronous_connection_failover table has these indexes:

• Primary key on (CHANNEL_NAME, HOST, PORT, NETWORK_NAMESPACE, MANAGED_NAME)

TRUNCATE TABLE is not permitted for the replication_asynchronous_connection_failover
table.

29.12.11.9 The replication_asynchronous_connection_failover_managed Table

This table holds configuration information used by the replica's asynchronous connection failover
mechanism to handle managed groups, including Group Replication topologies.

When you add a group member to the source list and define it as part of a managed group,
the asynchronous connection failover mechanism updates the source list to keep it in line with
membership changes, adding and removing group members automatically as they join or leave. When
asynchronous connection failover is enabled for a group of replicas managed by Group Replication, the
source lists are broadcast to all group members when they join, and also when the lists change.

The asynchronous connection failover mechanism fails over the connection if another available server
on the source list has a higher priority (weight) setting. For a managed group, a source’s weight is
assigned depending on whether it is a primary or a secondary server. So assuming that you set up
the managed group to give a higher weight to a primary and a lower weight to a secondary, when the
primary changes, the higher weight is assigned to the new primary, so the replica changes over the
connection to it. The asynchronous connection failover mechanism additionally changes connection
if the currently connected managed source server leaves the managed group, or is no longer in the
majority in the managed group. For more information, see Section 19.4.9, “Switching Sources and
Replicas with Asynchronous Connection Failover”.

The replication_asynchronous_connection_failover_managed table has these columns:

• CHANNEL_NAME

The replication channel where the servers for this managed group operate.

• MANAGED_NAME

The identifier for the managed group. For the GroupReplication managed service, the identifier is
the value of the group_replication_group_name system variable.

• MANAGED_TYPE

The type of managed service that the asynchronous connection failover mechanism provides for this
group. The only value currently available is GroupReplication.

• CONFIGURATION

The configuration information for this managed group. For the GroupReplication managed
service, the configuration shows the weights assigned to the group's primary server and to the
group's secondary servers. For example: {"Primary_weight": 80, "Secondary_weight":
60}

• Primary_weight: Integer between 0 and 100. Default value is 80.

• Secondary_weight: Integer between 0 and 100. Default value is 60.

5236

Performance Schema Replication Tables

The replication_asynchronous_connection_failover_managed table has these indexes:

• Primary key on (CHANNEL_NAME, MANAGED_NAME)

TRUNCATE TABLE is not permitted for the
replication_asynchronous_connection_failover_managed table.

29.12.11.10 The replication_connection_configuration Table

This table shows the configuration parameters used by the replica for connecting to the source.
Parameters stored in the table can be changed at runtime with the CHANGE REPLICATION SOURCE
TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23).

Compared to the replication_connection_status table,
replication_connection_configuration changes less frequently. It contains values that
define how the replica connects to the source and that remain constant during the connection, whereas
replication_connection_status contains values that change during the connection.

The replication_connection_configuration table has the following columns. The column
descriptions indicate the corresponding CHANGE REPLICATION SOURCE TO | CHANGE MASTER
TO options from which the column values are taken, and the table given later in this section shows
the correspondence between replication_connection_configuration columns and SHOW
REPLICA STATUS columns.

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 19.2.2, “Replication Channels” for more
information. (CHANGE REPLICATION SOURCE TO option: FOR CHANNEL, CHANGE MASTER TO
option: FOR CHANNEL)

• HOST

The host name of the source that the replica is connected to. (CHANGE REPLICATION SOURCE TO
option: SOURCE_HOST, CHANGE MASTER TO option: MASTER_HOST)

• PORT

The port used to connect to the source. (CHANGE REPLICATION SOURCE TO option:
SOURCE_PORT, CHANGE MASTER TO option: MASTER_PORT)

• USER

The user name of the replication user account used to connect to the source. (CHANGE
REPLICATION SOURCE TO option: SOURCE_USER, CHANGE MASTER TO option: MASTER_USER)

• NETWORK_INTERFACE

The network interface that the replica is bound to, if any. (CHANGE REPLICATION SOURCE TO
option: SOURCE_BIND, CHANGE MASTER TO option: MASTER_BIND)

• AUTO_POSITION

1 if GTID auto-positioning is in use; otherwise 0. (CHANGE REPLICATION SOURCE TO option:
SOURCE_AUTO_POSITION, CHANGE MASTER TO option: MASTER_AUTO_POSITION)

• SSL_ALLOWED, SSL_CA_FILE, SSL_CA_PATH, SSL_CERTIFICATE, SSL_CIPHER, SSL_KEY,
SSL_VERIFY_SERVER_CERTIFICATE, SSL_CRL_FILE, SSL_CRL_PATH

These columns show the SSL parameters used by the replica to connect to the source, if any.

SSL_ALLOWED has these values:

5237

Performance Schema Replication Tables

• Yes if an SSL connection to the source is permitted

• No if an SSL connection to the source is not permitted

• Ignored if an SSL connection is permitted but the replica does not have SSL support enabled

(CHANGE REPLICATION SOURCE TO options for the other SSL columns: SOURCE_SSL_CA,
SOURCE_SSL_CAPATH, SOURCE_SSL_CERT, SOURCE_SSL_CIPHER, SOURCE_SSL_CRL,
SOURCE_SSL_CRLPATH, SOURCE_SSL_KEY, SOURCE_SSL_VERIFY_SERVER_CERT.

CHANGE MASTER TO options for the other SSL columns: MASTER_SSL_CA, MASTER_SSL_CAPATH,
MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_CRL, MASTER_SSL_CRLPATH,
MASTER_SSL_KEY, MASTER_SSL_VERIFY_SERVER_CERT.

• CONNECTION_RETRY_INTERVAL

The number of seconds between connect retries. (CHANGE REPLICATION SOURCE TO option:
SOURCE_CONNECT_RETRY, CHANGE MASTER TO option: MASTER_CONNECT_RETRY)

• CONNECTION_RETRY_COUNT

The number of times the replica can attempt to reconnect to the source in the event of a lost
connection. (CHANGE REPLICATION SOURCE TO option: SOURCE_RETRY_COUNT, CHANGE
MASTER TO option: MASTER_RETRY_COUNT)

• HEARTBEAT_INTERVAL

The replication heartbeat interval on a replica, measured in seconds. (CHANGE REPLICATION
SOURCE TO option: SOURCE_HEARTBEAT_PERIOD, CHANGE MASTER TO option:
MASTER_HEARTBEAT_PERIOD)

• TLS_VERSION

The list of TLS protocol versions that are permitted by the replica for the replication connection. For
TLS version information, see Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”.
(CHANGE REPLICATION SOURCE TO option: SOURCE_TLS_VERSION, CHANGE MASTER TO
option: MASTER_TLS_VERSION)

• TLS_CIPHERSUITES

The list of ciphersuites that are permitted by the replica for the replication connection. For TLS
ciphersuite information, see Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”.
(CHANGE REPLICATION SOURCE TO option: SOURCE_TLS_CIPHERSUITES, CHANGE MASTER TO
option: MASTER_TLS_CIPHERSUITES)

• PUBLIC_KEY_PATH

The path name to a file containing a replica-side copy of the public key required by the source for
RSA key pair-based password exchange. The file must be in PEM format. This column applies to
replicas that authenticate with the sha256_password or caching_sha2_password authentication
plugin. (CHANGE REPLICATION SOURCE TO option: SOURCE_PUBLIC_KEY_PATH, CHANGE
MASTER TO option: MASTER_PUBLIC_KEY_PATH)

If PUBLIC_KEY_PATH is given and specifies a valid public key file, it takes precedence over
GET_PUBLIC_KEY.

• GET_PUBLIC_KEY

Whether to request from the source the public key required for RSA key pair-based password
exchange. This column applies to replicas that authenticate with the caching_sha2_password
authentication plugin. For that plugin, the source does not send the public key unless requested.

5238

Performance Schema Replication Tables

(CHANGE REPLICATION SOURCE TO option: GET_SOURCE_PUBLIC_KEY, CHANGE MASTER TO
option: GET_MASTER_PUBLIC_KEY)

If PUBLIC_KEY_PATH is given and specifies a valid public key file, it takes precedence over
GET_PUBLIC_KEY.

• NETWORK_NAMESPACE

The network namespace name; empty if the connection uses the default (global) namespace. For
information about network namespaces, see Section 7.1.14, “Network Namespace Support”. This
column was added in MySQL 8.0.22.

• COMPRESSION_ALGORITHM

The permitted compression algorithms for connections to the source. (CHANGE REPLICATION
SOURCE TO option: SOURCE_COMPRESSION_ALGORITHMS, CHANGE MASTER TO option:
MASTER_COMPRESSION_ALGORITHMS)

For more information, see Section 6.2.8, “Connection Compression Control”.

This column was added in MySQL 8.0.18.

• ZSTD_COMPRESSION_LEVEL

The compression level to use for connections to the source that use the zstd compression
algorithm. (CHANGE REPLICATION SOURCE TO option: SOURCE_ZSTD_COMPRESSION_LEVEL,
CHANGE MASTER TO option: MASTER_ZSTD_COMPRESSION_LEVEL)

For more information, see Section 6.2.8, “Connection Compression Control”.

This column was added in MySQL 8.0.18.

• SOURCE_CONNECTION_AUTO_FAILOVER

Whether the asynchronous connection failover mechanism is activated for this replication channel.
(CHANGE REPLICATION SOURCE TO option: SOURCE_CONNECTION_AUTO_FAILOVER, CHANGE
MASTER TO option: SOURCE_CONNECTION_AUTO_FAILOVER)

For more information, see Section 19.4.9, “Switching Sources and Replicas with Asynchronous
Connection Failover”.

This column was added in MySQL 8.0.22.

• GTID_ONLY

Indicates if this channel only uses GTIDs for the transaction queueing and application process
and for recovery, and does not persist binary log and relay log file names and file positions in the
replication metadata repositories. (CHANGE REPLICATION SOURCE TO option: GTID_ONLY,
CHANGE MASTER TO option: GTID_ONLY)

For more information, see Section 20.4.1, “GTIDs and Group Replication”.

This column was added in MySQL 8.0.27.

The replication_connection_configuration table has these indexes:

• Primary key on (CHANNEL_NAME)

TRUNCATE TABLE is not permitted for the replication_connection_configuration table.

The following table shows the correspondence between
replication_connection_configuration columns and SHOW REPLICA STATUS columns.

5239

Performance Schema Replication Tables

replication_connection_configuration
Column

SHOW REPLICA STATUS Column

CHANNEL_NAME Channel_name

HOST Source_Host

PORT Source_Port

USER Source_User

NETWORK_INTERFACE Source_Bind

AUTO_POSITION Auto_Position

SSL_ALLOWED Source_SSL_Allowed

SSL_CA_FILE Source_SSL_CA_File

SSL_CA_PATH Source_SSL_CA_Path

SSL_CERTIFICATE Source_SSL_Cert

SSL_CIPHER Source_SSL_Cipher

SSL_KEY Source_SSL_Key

SSL_VERIFY_SERVER_CERTIFICATE Source_SSL_Verify_Server_Cert

SSL_CRL_FILE Source_SSL_Crl

SSL_CRL_PATH Source_SSL_Crlpath

CONNECTION_RETRY_INTERVAL Source_Connect_Retry

CONNECTION_RETRY_COUNT Source_Retry_Count

HEARTBEAT_INTERVAL None

TLS_VERSION Source_TLS_Version

PUBLIC_KEY_PATH Source_public_key_path

GET_PUBLIC_KEY Get_source_public_key

NETWORK_NAMESPACE Network_Namespace

COMPRESSION_ALGORITHM [None]

ZSTD_COMPRESSION_LEVEL [None]

GTID_ONLY [None]

29.12.11.11 The replication_connection_status Table

This table shows the current status of the I/O thread that handles the replica's connection to the source,
information on the last transaction queued in the relay log, and information on the transaction currently
being queued in the relay log.

Compared to the replication_connection_configuration table,
replication_connection_status changes more frequently. It contains values that change during
the connection, whereas replication_connection_configuration contains values which define
how the replica connects to the source and that remain constant during the connection.

The replication_connection_status table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Section 19.2.2, “Replication Channels” for more
information.

• GROUP_NAME

If this server is a member of a group, shows the name of the group the server belongs to.

5240

Performance Schema Replication Tables

• SOURCE_UUID

The server_uuid value from the source.

• THREAD_ID

The I/O thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle), OFF (thread no longer exists), or CONNECTING (thread exists
and is connecting to the source).

• RECEIVED_TRANSACTION_SET

The set of global transaction IDs (GTIDs) corresponding to all transactions received by this replica.
Empty if GTIDs are not in use. See GTID Sets for more information.

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the LAST_ERROR_MESSAGE
value is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET REPLICA resets the values shown in these columns.

• LAST_ERROR_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the most recent
I/O error took place.

• LAST_HEARTBEAT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the most recent
heartbeat signal was received by a replica.

• COUNT_RECEIVED_HEARTBEATS

The total number of heartbeat signals that a replica received since the last time it was restarted or
reset, or a CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement was issued.

• LAST_QUEUED_TRANSACTION

The global transaction ID (GTID) of the last transaction that was queued to the relay log.

• LAST_QUEUED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last
transaction queued in the relay log was committed on the original source.

• LAST_QUEUED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last
transaction queued in the relay log was committed on the immediate source.

• LAST_QUEUED_TRANSACTION_START_QUEUE_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last
transaction was placed in the relay log queue by this I/O thread.

• LAST_QUEUED_TRANSACTION_END_QUEUE_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the last
transaction was queued to the relay log files.

5241

Performance Schema Replication Tables

• QUEUEING_TRANSACTION

The global transaction ID (GTID) of the currently queueing transaction in the relay log.

• QUEUEING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the currently
queueing transaction was committed on the original source.

• QUEUEING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the currently
queueing transaction was committed on the immediate source.

• QUEUEING_TRANSACTION_START_QUEUE_TIMESTAMP

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the first event of
the currently queueing transaction was written to the relay log by this I/O thread.

When the Performance Schema is disabled, local timing information is not collected, so the fields
showing the start and end timestamps for queued transactions are zero.

The replication_connection_status table has these indexes:

• Primary key on (CHANNEL_NAME)

• Index on (THREAD_ID)

The following table shows the correspondence between replication_connection_status
columns and SHOW REPLICA STATUS columns.

replication_connection_status Column SHOW REPLICA STATUS Column

SOURCE_UUID Master_UUID

THREAD_ID None

SERVICE_STATE Replica_IO_Running

RECEIVED_TRANSACTION_SET Retrieved_Gtid_Set

LAST_ERROR_NUMBER Last_IO_Errno

LAST_ERROR_MESSAGE Last_IO_Error

LAST_ERROR_TIMESTAMP Last_IO_Error_Timestamp

29.12.11.12 The replication_group_communication_information Table

This table shows group configuration options for the whole replication group. The table is available only
when Group Replication is installed.

The replication_group_communication_information table has these columns:

• WRITE_CONCURRENCY

The maximum number of consensus instances that the group can execute in parallel. The default
value is 10. See Section 20.5.1.3, “Using Group Replication Group Write Consensus”.

• PROTOCOL_VERSION

The Group Replication communication protocol version, which determines what messaging
capabilities are used. This is set to accommodate the oldest MySQL Server version that you want the
group to support. See Section 20.5.1.4, “Setting a Group's Communication Protocol Version”.

• WRITE_CONSENSUS_LEADERS_PREFERRED

5242

Performance Schema Replication Tables

The leader or leaders that Group Replication has instructed the group communication
engine to use to drive consensus. For a group in single-primary mode with the
group_replication_paxos_single_leader system variable set to ON and the communication
protocol version set to 8.0.27 or above, the single consensus leader is the group's primary.
Otherwise, all group members are used as leaders, so they are all shown here. See Section 20.7.3,
“Single Consensus Leader”.

• WRITE_CONSENSUS_LEADERS_ACTUAL

The actual leader or leader that the group communication engine is using to drive consensus. If a
single consensus leader is in use for the group, and the primary is currently unhealthy, the group
communication selects an alternative consensus leader. In this situation, the group member specified
here can differ from the preferred group member.

• WRITE_CONSENSUS_SINGLE_LEADER_CAPABLE

Whether the replication group is capable of using a single consensus leader.
1 means that the group was started with the use of a single leader enabled
(group_replication_paxos_single_leader = ON), and this is still shown if the
value of group_replication_paxos_single_leader has since been changed on
this group member. 0 means that the group was started with single leader mode disabled
(group_replication_paxos_single_leader = OFF), or has a Group Replication
communication protocol version that does not support the use of a single consensus leader (below
8.0.27). This information is only returned for group members in ONLINE or RECOVERING state.

The replication_group_communication_information table has no indexes.

TRUNCATE TABLE is not permitted for the replication_group_communication_information
table.

29.12.11.13 The replication_group_configuration_version Table

This table displays the version of the member actions configuration for replication group
members. The table is available only when Group Replication is installed. Whenever a member
action is enabled or disabled using the group_replication_enable_member_action()
and group_replication_disable_member_action() functions, the version
number is incremented. You can reset the member actions configuration using the
group_replication_reset_member_actions() function, which resets the member actions
configuration to the default settings, and resets its version number to 1. For more information, see
Section 20.5.1.5, “Configuring Member Actions”.

The replication_group_configuration_version table has these columns:

• NAME

The name of the configuration.

• VERSION

The version number of the configuration.

The replication_group_configuration_version table has no indexes.

TRUNCATE TABLE is not permitted for the replication_group_configuration_version table.

29.12.11.14 The replication_group_member_actions Table

This table lists the member actions that are included in the member actions configuration for replication
group members. The table is available only when Group Replication is installed. You can reset the
member actions configuration using the group_replication_reset_member_actions()
function. For more information, see Section 20.5.1.5, “Configuring Member Actions”.

5243

Performance Schema Replication Tables

The replication_group_member_actions table has these columns:

• NAME

The name of the member action.

• EVENT

The event that triggers the member action.

• ENABLED

Whether the member action is currently enabled. Member actions can be enabled using
the group_replication_enable_member_action() function and disabled using the
group_replication_disable_member_action() function.

• TYPE

The type of member action. INTERNAL is an action that is provided by the Group Replication plugin.

• PRIORITY

The priority of the member action. Actions with lower priority values are actioned first.

• ERROR_HANDLING

The action that Group Replication takes if an error occurs when the member action is being carried
out. IGNORE means that an error message is logged to say that the member action failed, but no
further action is taken. CRITICAL means that the member moves into ERROR state, and takes the
action specified by the group_replication_exit_state_action system variable.

The replication_group_member_actions table has no indexes.

TRUNCATE TABLE is not permitted for the replication_group_member_actions table.

29.12.11.15 The replication_group_member_stats Table

This table shows statistical information for replication group members. It is populated only when Group
Replication is running.

The replication_group_member_stats table has these columns:

• CHANNEL_NAME

Name of the Group Replication channel

• VIEW_ID

Current view identifier for this group.

• MEMBER_ID

The member server UUID. This has a different value for each member in the group. This also serves
as a key because it is unique to each member.

• COUNT_TRANSACTIONS_IN_QUEUE

The number of transactions in the queue pending conflict detection checks. Once the transactions
have been checked for conflicts, if they pass the check, they are queued to be applied as well.

• COUNT_TRANSACTIONS_CHECKED

The number of transactions that have been checked for conflicts.

5244

Performance Schema Replication Tables

• COUNT_CONFLICTS_DETECTED

The number of transactions that have not passed the conflict detection check.

• COUNT_TRANSACTIONS_ROWS_VALIDATING

Number of transaction rows which can be used for certification, but have not been garbage collected.
Can be thought of as the current size of the conflict detection database against which each
transaction is certified.

• TRANSACTIONS_COMMITTED_ALL_MEMBERS

The transactions that have been successfully committed on all members of the replication group,
shown as GTID Sets. This is updated at a fixed time interval.

• LAST_CONFLICT_FREE_TRANSACTION

The transaction identifier of the last conflict free transaction which was checked.

• COUNT_TRANSACTIONS_REMOTE_IN_APPLIER_QUEUE

The number of transactions that this member has received from the replication group which are
waiting to be applied.

• COUNT_TRANSACTIONS_REMOTE_APPLIED

Number of transactions this member has received from the group and applied.

• COUNT_TRANSACTIONS_LOCAL_PROPOSED

Number of transactions which originated on this member and were sent to the group.

• COUNT_TRANSACTIONS_LOCAL_ROLLBACK

Number of transactions which originated on this member and were rolled back by the group.

The replication_group_member_stats table has no indexes.

TRUNCATE TABLE is not permitted for the replication_group_member_stats table.

29.12.11.16 The replication_group_members Table

This table shows network and status information for replication group members. The network
addresses shown are the addresses used to connect clients to the group, and should
not be confused with the member's internal group communication address specified by
group_replication_local_address.

The replication_group_members table has these columns:

• CHANNEL_NAME

Name of the Group Replication channel.

• MEMBER_ID

The member server UUID. This has a different value for each member in the group. This also serves
as a key because it is unique to each member.

• MEMBER_HOST

Network address of this member (host name or IP address). Retrieved from the member's hostname
variable. This is the address which clients connect to, unlike the group_replication_local_address
which is used for internal group communication.

5245

Performance Schema NDB Cluster Tables

• MEMBER_PORT

Port on which the server is listening. Retrieved from the member's port variable.

• MEMBER_STATE

Current state of this member; can be any one of the following:

• ONLINE: The member is in a fully functioning state.

• RECOVERING: The server has joined a group from which it is retrieving data.

• OFFLINE: The group replication plugin is installed but has not been started.

• ERROR: The member has encountered an error, either during applying transactions or during the
recovery phase, and is not participating in the group's transactions.

• UNREACHABLE: The failure detection process suspects that this member cannot be contacted,
because the group messages have timed out.

See Section 20.4.2, “Group Replication Server States”.

• MEMBER_ROLE

Role of the member in the group, either PRIMARY or SECONDARY.

• MEMBER_VERSION

MySQL version of the member.

• MEMBER_COMMUNICATION_STACK

The communication stack used for the group, either the XCOM communication stack or the MYSQL
communication stack.

This column was added in MySQL 8.0.27.

The replication_group_members table has no indexes.

TRUNCATE TABLE is not permitted for the replication_group_members table.

29.12.12 Performance Schema NDB Cluster Tables

The following table shows all Performance Schema tables relating to the NDBCLUSTER storage engine.

Table 29.3 Performance Schema NDB Tables

Table Name Description Introduced

ndb_sync_excluded_objects NDB objects which cannot be
synchronized

8.0.21

ndb_sync_pending_objects NDB objects waiting for
synchronization

8.0.21

Beginning with NDB 8.0.16, automatic synchronization in NDB attempts to detect and synchronize
automatically all mismatches in metadata between the NDB Cluster's internal dictionary and
the MySQL Server's datadictionary. This is done by default in the background at regular
intervals as determined by the ndb_metadata_check_interval system variable, unless
disabled using ndb_metadata_check or overridden by setting ndb_metadata_sync.
Prior to NDB 8.0.21, the only information readily accessible to users about this process was
in the form of logging messages and object counts available (beginning with NDB 8.0.18) as
the status variables Ndb_metadata_detected_count, Ndb_metadata_synced_count,

5246

Performance Schema NDB Cluster Tables

and Ndb_metadata_excluded_count (prior to NDB 8.0.22, this variable was named
Ndb_metadata_blacklist_size). Beginning with NDB 8.0.21, more detailed information about the
current state of automatic synchronization is exposed by a MySQL server acting as an SQL node in an
NDB Cluster in these two Performance Schema tables:

• ndb_sync_pending_objects: Displays information about NDB database objects for which
mismatches have been detected between the NDB dictionary and the MySQL data dictionary.
When attempting to synchronize such objects, NDB removes the object from the queue awaiting
synchronization, and from this table, and tries to reconcile the mismatch. If synchronization of the
object fails due to a temporary error, it is picked up and added back to the queue (and to this table)
the next time NDB performs mismatch detection; if the attempts fails due a permanent error, the
object is added to the ndb_sync_excluded_objects table.

• ndb_sync_excluded_objects: Shows information about NDB database objects for which
automatic synchronization has failed due to permanent errors resulting from mismatches which
cannot be reconciled without manual intervention; these objects are blocklisted and not considered
again for mismatch detection until this has been done.

The ndb_sync_pending_objects and ndb_sync_excluded_objects tables are present only if
MySQL has support enabled for the NDBCLUSTER storage engine.

These tables are described in more detail in the following two sections.

29.12.12.1 The ndb_sync_pending_objects Table

This table provides information about NDB database objects for which mismatches have been detected
and which are waiting to be synchronized between the NDB dictionary and the MySQL data dictionary.

Example information about NDB database objects awaiting synchronization:

mysql> SELECT * FROM performance_schema.ndb_sync_pending_objects;
+-------------+------+----------------+
| SCHEMA_NAME | NAME | TYPE |
+-------------+------+----------------+
NULL	lg1	LOGFILE GROUP
NULL	ts1	TABLESPACE
db1	NULL	SCHEMA
test	t1	TABLE
test	t2	TABLE
test	t3	TABLE
+-------------+------+----------------+

The ndb_sync_pending_objects table has these columns:

• SCHEMA_NAME: The name of the schema (database) in which the object awaiting synchronization
resides; this is NULL for tablespaces and log file groups

• NAME: The name of the object awaiting synchronization; this is NULL if the object is a schema

• TYPE: The type of the object awaiting synchronization; this is one of LOGFILE GROUP,
TABLESPACE, SCHEMA, or TABLE

The ndb_sync_pending_objects table was added in NDB 8.0.21.

29.12.12.2 The ndb_sync_excluded_objects Table

This table provides information about NDB database objects which cannot be automatically
synchronized between NDB Cluster's dictionary and the MySQL data dictionary.

Example information about NDB database objects which cannot be synchronized with the MySQL data
dictionary:

mysql> SELECT * FROM performance_schema.ndb_sync_excluded_objects\G

5247

Performance Schema NDB Cluster Tables

*************************** 1. row ***************************
SCHEMA_NAME: NULL
 NAME: lg1
 TYPE: LOGFILE GROUP
 REASON: Injected failure
*************************** 2. row ***************************
SCHEMA_NAME: NULL
 NAME: ts1
 TYPE: TABLESPACE
 REASON: Injected failure
*************************** 3. row ***************************
SCHEMA_NAME: db1
 NAME: NULL
 TYPE: SCHEMA
 REASON: Injected failure
*************************** 4. row ***************************
SCHEMA_NAME: test
 NAME: t1
 TYPE: TABLE
 REASON: Injected failure
*************************** 5. row ***************************
SCHEMA_NAME: test
 NAME: t2
 TYPE: TABLE
 REASON: Injected failure
*************************** 6. row ***************************
SCHEMA_NAME: test
 NAME: t3
 TYPE: TABLE
 REASON: Injected failure

The ndb_sync_excluded_objects table has these columns:

• SCHEMA_NAME: The name of the schema (database) in which the object which has failed to
synchronize resides; this is NULL for tablespaces and log file groups

• NAME: The name of the object which has failed to synchronize; this is NULL if the object is a schema

• TYPE: The type of the object has failed to synchronize; this is one of LOGFILE GROUP,
TABLESPACE, SCHEMA, or TABLE

• REASON: The reason for exclusion (blocklisting) of the object; that is, the reason for the failure to
synchronize this object

Possible reasons include the following:

• Injected failure

• Failed to determine if object existed in NDB

• Failed to determine if object existed in DD

• Failed to drop object in DD

• Failed to get undofiles assigned to logfile group

• Failed to get object id and version

• Failed to install object in DD

• Failed to get datafiles assigned to tablespace

• Failed to create schema

• Failed to determine if object was a local table

• Failed to invalidate table references

5248

Performance Schema Lock Tables

• Failed to set database name of NDB object

• Failed to get extra metadata of table

• Failed to migrate table with extra metadata version 1

• Failed to get object from DD

• Definition of table has changed in NDB Dictionary

• Failed to setup binlogging for table

This list is not necessarily exhaustive, and is subject to change in future NDB releases.

The ndb_sync_excluded_objects table was added in NDB 8.0.21.

29.12.13 Performance Schema Lock Tables

The Performance Schema exposes lock information through these tables:

• data_locks: Data locks held and requested

• data_lock_waits: Relationships between data lock owners and data lock requestors blocked by
those owners

• metadata_locks: Metadata locks held and requested

• table_handles: Table locks held and requested

The following sections describe these tables in more detail.

29.12.13.1 The data_locks Table

The data_locks table shows data locks held and requested. For information about which lock
requests are blocked by which held locks, see Section 29.12.13.2, “The data_lock_waits Table”.

Example data lock information:

mysql> SELECT * FROM performance_schema.data_locks\G
*************************** 1. row ***************************
 ENGINE: INNODB
 ENGINE_LOCK_ID: 139664434886512:1059:139664350547912
ENGINE_TRANSACTION_ID: 2569
 THREAD_ID: 46
 EVENT_ID: 12
 OBJECT_SCHEMA: test
 OBJECT_NAME: t1
 PARTITION_NAME: NULL
 SUBPARTITION_NAME: NULL
 INDEX_NAME: NULL
OBJECT_INSTANCE_BEGIN: 139664350547912
 LOCK_TYPE: TABLE
 LOCK_MODE: IX
 LOCK_STATUS: GRANTED
 LOCK_DATA: NULL
*************************** 2. row ***************************
 ENGINE: INNODB
 ENGINE_LOCK_ID: 139664434886512:2:4:1:139664350544872
ENGINE_TRANSACTION_ID: 2569
 THREAD_ID: 46
 EVENT_ID: 12
 OBJECT_SCHEMA: test
 OBJECT_NAME: t1
 PARTITION_NAME: NULL
 SUBPARTITION_NAME: NULL
 INDEX_NAME: GEN_CLUST_INDEX

5249

Performance Schema Lock Tables

OBJECT_INSTANCE_BEGIN: 139664350544872
 LOCK_TYPE: RECORD
 LOCK_MODE: X
 LOCK_STATUS: GRANTED
 LOCK_DATA: supremum pseudo-record

Unlike most Performance Schema data collection, there are no instruments for controlling whether data
lock information is collected or system variables for controlling data lock table sizes. The Performance
Schema collects information that is already available in the server, so there is no memory or CPU
overhead to generate this information or need for parameters that control its collection.

Use the data_locks table to help diagnose performance problems that occur during times of
heavy concurrent load. For InnoDB, see the discussion of this topic at Section 17.15.2, “InnoDB
INFORMATION_SCHEMA Transaction and Locking Information”.

The data_locks table has these columns:

• ENGINE

The storage engine that holds or requested the lock.

• ENGINE_LOCK_ID

The ID of the lock held or requested by the storage engine. Tuples of (ENGINE_LOCK_ID, ENGINE)
values are unique.

Lock ID formats are internal and subject to change at any time. Applications should not rely on lock
IDs having a particular format.

• ENGINE_TRANSACTION_ID

The storage engine internal ID of the transaction that requested the lock. This can be considered
the owner of the lock, although the lock might still be pending, not actually granted yet
(LOCK_STATUS='WAITING').

If the transaction has not yet performed any write operation (is still considered read only), the column
contains internal data that users should not try to interpret. Otherwise, the column is the transaction
ID.

For InnoDB, to obtain details about the transaction, join this column with the TRX_ID column of the
INFORMATION_SCHEMA INNODB_TRX table.

• THREAD_ID

The thread ID of the session that created the lock. To obtain details about the thread, join this
column with the THREAD_ID column of the Performance Schema threads table.

THREAD_ID can be used together with EVENT_ID to determine the event during which the lock data
structure was created in memory. (This event might have occurred before this particular lock request
occurred, if the data structure is used to store multiple locks.)

• EVENT_ID

The Performance Schema event that caused the lock. Tuples of (THREAD_ID, EVENT_ID) values
implicitly identify a parent event in other Performance Schema tables:

• The parent wait event in the events_waits_xxx tables

• The parent stage event in the events_stages_xxx tables

• The parent statement event in the events_statements_xxx tables

• The parent transaction event in the events_transactions_current table

5250

Performance Schema Lock Tables

To obtain details about the parent event, join the THREAD_ID and EVENT_ID columns with the
columns of like name in the appropriate parent event table. See Section 29.19.2, “Obtaining Parent
Event Information”.

• OBJECT_SCHEMA

The schema that contains the locked table.

• OBJECT_NAME

The name of the locked table.

• PARTITION_NAME

The name of the locked partition, if any; NULL otherwise.

• SUBPARTITION_NAME

The name of the locked subpartition, if any; NULL otherwise.

• INDEX_NAME

The name of the locked index, if any; NULL otherwise.

In practice, InnoDB always creates an index (GEN_CLUST_INDEX), so INDEX_NAME is non-NULL for
InnoDB tables.

• OBJECT_INSTANCE_BEGIN

The address in memory of the lock.

• LOCK_TYPE

The type of lock.

The value is storage engine dependent. For InnoDB, permitted values are RECORD for a row-level
lock, TABLE for a table-level lock.

• LOCK_MODE

How the lock is requested.

The value is storage engine dependent. For InnoDB, permitted values are S[,GAP], X[,GAP],
IS[,GAP], IX[,GAP], AUTO_INC, and UNKNOWN. Lock modes other than AUTO_INC and
UNKNOWN indicate gap locks, if present. For information about S, X, IS, IX, and gap locks, refer to
Section 17.7.1, “InnoDB Locking”.

• LOCK_STATUS

The status of the lock request.

The value is storage engine dependent. For InnoDB, permitted values are GRANTED (lock is held)
and WAITING (lock is being waited for).

• LOCK_DATA

The data associated with the lock, if any. The value is storage engine dependent. For InnoDB, a
value is shown if the LOCK_TYPE is RECORD, otherwise the value is NULL. Primary key values of the
locked record are shown for a lock placed on the primary key index. Secondary index values of the
locked record are shown with primary key values appended for a lock placed on a secondary index.
If there is no primary key, LOCK_DATA shows either the key values of a selected unique index or the
unique InnoDB internal row ID number, according to the rules governing InnoDB clustered index

5251

Performance Schema Lock Tables

use (see Section 17.6.2.1, “Clustered and Secondary Indexes”). LOCK_DATA reports “supremum
pseudo-record” for a lock taken on a supremum pseudo-record. If the page containing the locked
record is not in the buffer pool because it was written to disk while the lock was held, InnoDB does
not fetch the page from disk. Instead, LOCK_DATA reports NULL.

The data_locks table has these indexes:

• Primary key on (ENGINE_LOCK_ID, ENGINE)

• Index on (ENGINE_TRANSACTION_ID, ENGINE)

• Index on (THREAD_ID, EVENT_ID)

• Index on (OBJECT_SCHEMA, OBJECT_NAME, PARTITION_NAME, SUBPARTITION_NAME)

TRUNCATE TABLE is not permitted for the data_locks table.

Note

Prior to MySQL 8.0.1, information similar to that in the Performance Schema
data_locks table is available in the INFORMATION_SCHEMA.INNODB_LOCKS
table, which provides information about each lock that an InnoDB transaction
has requested but not yet acquired, and each lock held by a transaction that
is blocking another transaction. INFORMATION_SCHEMA.INNODB_LOCKS is
deprecated and is removed as of MySQL 8.0.1. data_locks should be used
instead.

Differences between INNODB_LOCKS and data_locks:

• If a transaction holds a lock, INNODB_LOCKS displays the lock only if another transaction is waiting
for it. data_locks displays the lock regardless of whether any transaction is waiting for it.

• The data_locks table has no columns corresponding to LOCK_SPACE, LOCK_PAGE, or LOCK_REC.

• The INNODB_LOCKS table requires the global PROCESS privilege. The data_locks table requires
the usual Performance Schema privilege of SELECT on the table to be selected from.

The following table shows the mapping from INNODB_LOCKS columns to data_locks columns. Use
this information to migrate applications from one table to the other.

Table 29.4 Mapping from INNODB_LOCKS to data_locks Columns

INNODB_LOCKS Column data_locks Column

LOCK_ID ENGINE_LOCK_ID

LOCK_TRX_ID ENGINE_TRANSACTION_ID

LOCK_MODE LOCK_MODE

LOCK_TYPE LOCK_TYPE

LOCK_TABLE (combined schema/table names) OBJECT_SCHEMA (schema name), OBJECT_NAME
(table name)

LOCK_INDEX INDEX_NAME

LOCK_SPACE None

LOCK_PAGE None

LOCK_REC None

LOCK_DATA LOCK_DATA

29.12.13.2 The data_lock_waits Table

5252

Performance Schema Lock Tables

The data_lock_waits table implements a many-to-many relationship showing which data lock
requests in the data_locks table are blocked by which held data locks in the data_locks table.
Held locks in data_locks appear in data_lock_waits only if they block some lock request.

This information enables you to understand data lock dependencies between sessions. The table
exposes not only which lock a session or transaction is waiting for, but which session or transaction
currently holds that lock.

Example data lock wait information:

mysql> SELECT * FROM performance_schema.data_lock_waits\G
*************************** 1. row ***************************
 ENGINE: INNODB
 REQUESTING_ENGINE_LOCK_ID: 140211201964816:2:4:2:140211086465800
REQUESTING_ENGINE_TRANSACTION_ID: 1555
 REQUESTING_THREAD_ID: 47
 REQUESTING_EVENT_ID: 5
REQUESTING_OBJECT_INSTANCE_BEGIN: 140211086465800
 BLOCKING_ENGINE_LOCK_ID: 140211201963888:2:4:2:140211086459880
 BLOCKING_ENGINE_TRANSACTION_ID: 1554
 BLOCKING_THREAD_ID: 46
 BLOCKING_EVENT_ID: 12
 BLOCKING_OBJECT_INSTANCE_BEGIN: 140211086459880

Unlike most Performance Schema data collection, there are no instruments for controlling whether data
lock information is collected or system variables for controlling data lock table sizes. The Performance
Schema collects information that is already available in the server, so there is no memory or CPU
overhead to generate this information or need for parameters that control its collection.

Use the data_lock_waits table to help diagnose performance problems that occur during times
of heavy concurrent load. For InnoDB, see the discussion of this topic at Section 17.15.2, “InnoDB
INFORMATION_SCHEMA Transaction and Locking Information”.

Because the columns in the data_lock_waits table are similar to those in the data_locks
table, the column descriptions here are abbreviated. For more detailed column descriptions, see
Section 29.12.13.1, “The data_locks Table”.

The data_lock_waits table has these columns:

• ENGINE

The storage engine that requested the lock.

• REQUESTING_ENGINE_LOCK_ID

The ID of the lock requested by the storage engine. To obtain details about the lock, join this column
with the ENGINE_LOCK_ID column of the data_locks table.

• REQUESTING_ENGINE_TRANSACTION_ID

The storage engine internal ID of the transaction that requested the lock.

• REQUESTING_THREAD_ID

The thread ID of the session that requested the lock.

• REQUESTING_EVENT_ID

The Performance Schema event that caused the lock request in the session that requested the lock.

• REQUESTING_OBJECT_INSTANCE_BEGIN

The address in memory of the requested lock.

5253

Performance Schema Lock Tables

• BLOCKING_ENGINE_LOCK_ID

The ID of the blocking lock. To obtain details about the lock, join this column with the
ENGINE_LOCK_ID column of the data_locks table.

• BLOCKING_ENGINE_TRANSACTION_ID

The storage engine internal ID of the transaction that holds the blocking lock.

• BLOCKING_THREAD_ID

The thread ID of the session that holds the blocking lock.

• BLOCKING_EVENT_ID

The Performance Schema event that caused the blocking lock in the session that holds it.

• BLOCKING_OBJECT_INSTANCE_BEGIN

The address in memory of the blocking lock.

The data_lock_waits table has these indexes:

• Index on (REQUESTING_ENGINE_LOCK_ID, ENGINE)

• Index on (BLOCKING_ENGINE_LOCK_ID, ENGINE)

• Index on (REQUESTING_ENGINE_TRANSACTION_ID, ENGINE)

• Index on (BLOCKING_ENGINE_TRANSACTION_ID, ENGINE)

• Index on (REQUESTING_THREAD_ID, REQUESTING_EVENT_ID)

• Index on (BLOCKING_THREAD_ID, BLOCKING_EVENT_ID)

TRUNCATE TABLE is not permitted for the data_lock_waits table.

Note

Prior to MySQL 8.0.1, information similar to that in the
Performance Schema data_lock_waits table is available in the
INFORMATION_SCHEMA.INNODB_LOCK_WAITS table, which provides
information about each blocked InnoDB transaction, indicating the
lock it has requested and any locks that are blocking that request.
INFORMATION_SCHEMA.INNODB_LOCK_WAITS is deprecated and is removed
as of MySQL 8.0.1. data_lock_waits should be used instead.

The tables differ in the privileges required: The INNODB_LOCK_WAITS table requires the global
PROCESS privilege. The data_lock_waits table requires the usual Performance Schema privilege of
SELECT on the table to be selected from.

The following table shows the mapping from INNODB_LOCK_WAITS columns to data_lock_waits
columns. Use this information to migrate applications from one table to the other.

Table 29.5 Mapping from INNODB_LOCK_WAITS to data_lock_waits Columns

INNODB_LOCK_WAITS Column data_lock_waits Column

REQUESTING_TRX_ID REQUESTING_ENGINE_TRANSACTION_ID

REQUESTED_LOCK_ID REQUESTING_ENGINE_LOCK_ID

BLOCKING_TRX_ID BLOCKING_ENGINE_TRANSACTION_ID

BLOCKING_LOCK_ID BLOCKING_ENGINE_LOCK_ID

5254

Performance Schema Lock Tables

29.12.13.3 The metadata_locks Table

MySQL uses metadata locking to manage concurrent access to database objects and to ensure data
consistency; see Section 10.11.4, “Metadata Locking”. Metadata locking applies not just to tables, but
also to schemas, stored programs (procedures, functions, triggers, scheduled events), tablespaces,
user locks acquired with the GET_LOCK() function (see Section 14.14, “Locking Functions”), and locks
acquired with the locking service described in Section 7.6.9.1, “The Locking Service”.

The Performance Schema exposes metadata lock information through the metadata_locks table:

• Locks that have been granted (shows which sessions own which current metadata locks).

• Locks that have been requested but not yet granted (shows which sessions are waiting for which
metadata locks).

• Lock requests that have been killed by the deadlock detector.

• Lock requests that have timed out and are waiting for the requesting session's lock request to be
discarded.

This information enables you to understand metadata lock dependencies between sessions. You can
see not only which lock a session is waiting for, but which session currently holds that lock.

The metadata_locks table is read only and cannot be updated. It is autosized by default; to
configure the table size, set the performance_schema_max_metadata_locks system variable at
server startup.

Metadata lock instrumentation uses the wait/lock/metadata/sql/mdl instrument, which is
enabled by default.

To control metadata lock instrumentation state at server startup, use lines like these in your my.cnf
file:

• Enable:

[mysqld]
performance-schema-instrument='wait/lock/metadata/sql/mdl=ON'

• Disable:

[mysqld]
performance-schema-instrument='wait/lock/metadata/sql/mdl=OFF'

To control metadata lock instrumentation state at runtime, update the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'wait/lock/metadata/sql/mdl';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'wait/lock/metadata/sql/mdl';

The Performance Schema maintains metadata_locks table content as follows, using the
LOCK_STATUS column to indicate the status of each lock:

• When a metadata lock is requested and obtained immediately, a row with a status of GRANTED is
inserted.

• When a metadata lock is requested and not obtained immediately, a row with a status of PENDING is
inserted.

5255

Performance Schema Lock Tables

• When a metadata lock previously requested is granted, its row status is updated to GRANTED.

• When a metadata lock is released, its row is deleted.

• When a pending lock request is canceled by the deadlock detector to break a deadlock
(ER_LOCK_DEADLOCK), its row status is updated from PENDING to VICTIM.

• When a pending lock request times out (ER_LOCK_WAIT_TIMEOUT), its row status is updated from
PENDING to TIMEOUT.

• When granted lock or pending lock request is killed, its row status is updated from GRANTED or
PENDING to KILLED.

• The VICTIM, TIMEOUT, and KILLED status values are brief and signify that the lock row is about to
be deleted.

• The PRE_ACQUIRE_NOTIFY and POST_RELEASE_NOTIFY status values are brief and signify
that the metadata locking subsubsystem is notifying interested storage engines while entering lock
acquisition operations or leaving lock release operations.

The metadata_locks table has these columns:

• OBJECT_TYPE

The type of lock used in the metadata lock subsystem. The value is one of GLOBAL, SCHEMA, TABLE,
FUNCTION, PROCEDURE, TRIGGER (currently unused), EVENT, COMMIT, USER LEVEL LOCK,
TABLESPACE, BACKUP LOCK, or LOCKING SERVICE.

A value of USER LEVEL LOCK indicates a lock acquired with GET_LOCK(). A value of LOCKING
SERVICE indicates a lock acquired with the locking service described in Section 7.6.9.1, “The
Locking Service”.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented object.

• LOCK_TYPE

The lock type from the metadata lock subsystem. The value is one of INTENTION_EXCLUSIVE,
SHARED, SHARED_HIGH_PRIO, SHARED_READ, SHARED_WRITE, SHARED_UPGRADABLE,
SHARED_NO_WRITE, SHARED_NO_READ_WRITE, or EXCLUSIVE.

• LOCK_DURATION

The lock duration from the metadata lock subsystem. The value is one of STATEMENT,
TRANSACTION, or EXPLICIT. The STATEMENT and TRANSACTION values signify locks that are
released implicitly at statement or transaction end, respectively. The EXPLICIT value signifies locks
that survive statement or transaction end and are released by explicit action, such as global locks
acquired with FLUSH TABLES WITH READ LOCK.

• LOCK_STATUS

The lock status from the metadata lock subsystem. The value is one of PENDING, GRANTED,
VICTIM, TIMEOUT, KILLED, PRE_ACQUIRE_NOTIFY, or POST_RELEASE_NOTIFY. The
Performance Schema assigns these values as described previously.

5256

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_lock_deadlock
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_lock_wait_timeout

Performance Schema Lock Tables

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• OWNER_THREAD_ID

The thread requesting a metadata lock.

• OWNER_EVENT_ID

The event requesting a metadata lock.

The metadata_locks table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

• Index on (OWNER_THREAD_ID, OWNER_EVENT_ID)

TRUNCATE TABLE is not permitted for the metadata_locks table.

29.12.13.4 The table_handles Table

The Performance Schema exposes table lock information through the table_handles table to show
the table locks currently in effect for each opened table handle. table_handles reports what is
recorded by the table lock instrumentation. This information shows which table handles the server has
open, how they are locked, and by which sessions.

The table_handles table is read only and cannot be updated. It is autosized by default; to configure
the table size, set the performance_schema_max_table_handles system variable at server
startup.

Table lock instrumentation uses the wait/lock/table/sql/handler instrument, which is enabled
by default.

To control table lock instrumentation state at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='wait/lock/table/sql/handler=ON'

• Disable:

[mysqld]
performance-schema-instrument='wait/lock/table/sql/handler=OFF'

To control table lock instrumentation state at runtime, update the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'wait/lock/table/sql/handler';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'wait/lock/table/sql/handler';

The table_handles table has these columns:

5257

Performance Schema System Variable Tables

• OBJECT_TYPE

The table opened by a table handle.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The table handle address in memory.

• OWNER_THREAD_ID

The thread owning the table handle.

• OWNER_EVENT_ID

The event which caused the table handle to be opened.

• INTERNAL_LOCK

The table lock used at the SQL level. The value is one of READ, READ WITH SHARED LOCKS, READ
HIGH PRIORITY, READ NO INSERT, WRITE ALLOW WRITE, WRITE CONCURRENT INSERT,
WRITE LOW PRIORITY, or WRITE. For information about these lock types, see the include/
thr_lock.h source file.

• EXTERNAL_LOCK

The table lock used at the storage engine level. The value is one of READ EXTERNAL or WRITE
EXTERNAL.

The table_handles table has these indexes:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

• Index on (OWNER_THREAD_ID, OWNER_EVENT_ID)

TRUNCATE TABLE is not permitted for the table_handles table.

29.12.14 Performance Schema System Variable Tables

The MySQL server maintains many system variables that indicate how it is configured (see
Section 7.1.8, “Server System Variables”). System variable information is available in these
Performance Schema tables:

• global_variables: Global system variables. An application that wants only global values should
use this table.

• session_variables: System variables for the current session. An application that wants all
system variable values for its own session should use this table. It includes the session variables for
its session, as well as the values of global variables that have no session counterpart.

• variables_by_thread: Session system variables for each active session. An application that
wants to know the session variable values for specific sessions should use this table. It includes
session variables only, identified by thread ID.

5258

Performance Schema System Variable Tables

• persisted_variables: Provides a SQL interface to the mysqld-auto.cnf file that stores
persisted global system variable settings. See Section 29.12.14.1, “Performance Schema
persisted_variables Table”.

• variables_info: Shows, for each system variable, the source from which it was most recently set,
and its range of values. See Section 29.12.14.2, “Performance Schema variables_info Table”.

The SENSITIVE_VARIABLES_OBSERVER privilege is required to view the values of sensitive system
variables in these tables.

The session variable tables (session_variables, variables_by_thread) contain information
only for active sessions, not terminated sessions.

The global_variables and session_variables tables have these columns:

• VARIABLE_NAME

The system variable name.

• VARIABLE_VALUE

The system variable value. For global_variables, this column contains the global value. For
session_variables, this column contains the variable value in effect for the current session.

The global_variables and session_variables tables have these indexes:

• Primary key on (VARIABLE_NAME)

The variables_by_thread table has these columns:

• THREAD_ID

The thread identifier of the session in which the system variable is defined.

• VARIABLE_NAME

The system variable name.

• VARIABLE_VALUE

The session variable value for the session named by the THREAD_ID column.

The variables_by_thread table has these indexes:

• Primary key on (THREAD_ID, VARIABLE_NAME)

The variables_by_thread table contains system variable information only about foreground
threads. If not all threads are instrumented by the Performance Schema, this table misses some rows.
In this case, the Performance_schema_thread_instances_lost status variable is greater than
zero.

TRUNCATE TABLE is not supported for Performance Schema system variable tables.

29.12.14.1 Performance Schema persisted_variables Table

The persisted_variables table provides an SQL interface to the mysqld-auto.cnf file
that stores persisted global system variable settings, enabling the file contents to be inspected at
runtime using SELECT statements. Variables are persisted using SET PERSIST or PERSIST_ONLY
statements; see Section 15.7.6.1, “SET Syntax for Variable Assignment”. The table contains a row for
each persisted system variable in the file. Variables not persisted do not appear in the table.

The SENSITIVE_VARIABLES_OBSERVER privilege is required to view the values of sensitive system
variables in this table.

5259

Performance Schema System Variable Tables

For information about persisted system variables, see Section 7.1.9.3, “Persisted System Variables”.

Suppose that mysqld-auto.cnf looks like this (slightly reformatted):

{
 "Version": 1,
 "mysql_server": {
 "max_connections": {
 "Value": "1000",
 "Metadata": {
 "Timestamp": 1.519921706e+15,
 "User": "root",
 "Host": "localhost"
 }
 },
 "autocommit": {
 "Value": "ON",
 "Metadata": {
 "Timestamp": 1.519921707e+15,
 "User": "root",
 "Host": "localhost"
 }
 }
 }
}

Then persisted_variables has these contents:

mysql> SELECT * FROM performance_schema.persisted_variables;
+-----------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+-----------------+----------------+
| autocommit | ON |
| max_connections | 1000 |
+-----------------+----------------+

The persisted_variables table has these columns:

• VARIABLE_NAME

The variable name listed in mysqld-auto.cnf.

• VARIABLE_VALUE

The value listed for the variable in mysqld-auto.cnf.

persisted_variables has these indexes:

• Primary key on (VARIABLE_NAME)

TRUNCATE TABLE is not permitted for the persisted_variables table.

29.12.14.2 Performance Schema variables_info Table

The variables_info table shows, for each system variable, the source from which it was most
recently set, and its range of values.

The variables_info table has these columns:

• VARIABLE_NAME

The variable name.

• VARIABLE_SOURCE

The source from which the variable was most recently set:

• COMMAND_LINE

5260

Performance Schema System Variable Tables

The variable was set on the command line.

• COMPILED

The variable has its compiled-in default value. COMPILED is the value used for variables not set
any other way.

• DYNAMIC

The variable was set at runtime. This includes variables set within files specified using the
init_file system variable.

• EXPLICIT

The variable was set from an option file named with the --defaults-file option.

• EXTRA

The variable was set from an option file named with the --defaults-extra-file option.

• GLOBAL

The variable was set from a global option file. This includes option files not covered by EXPLICIT,
EXTRA, LOGIN, PERSISTED, SERVER, or USER.

• LOGIN

The variable was set from a user-specific login path file (~/.mylogin.cnf).

• PERSISTED

The variable was set from a server-specific mysqld-auto.cnf option file. No row has this value
if the server was started with persisted_globals_load disabled.

• SERVER

The variable was set from a server-specific $MYSQL_HOME/my.cnf option file. For details about
how MYSQL_HOME is set, see Section 6.2.2.2, “Using Option Files”.

• USER

The variable was set from a user-specific ~/.my.cnf option file.

• VARIABLE_PATH

If the variable was set from an option file, VARIABLE_PATH is the path name of that file. Otherwise,
the value is the empty string.

• MIN_VALUE

The minimum permitted value for the variable. For a variable whose type is not numeric, this is
always 0.

• MAX_VALUE

The maximum permitted value for the variable. For a variable whose type is not numeric, this is
always 0.

• SET_TIME

The time at which the variable was most recently set. The default is the time at which the server
initialized global system variables during startup.

5261

Performance Schema System Variable Tables

• SET_USER, SET_HOST

The user name and host name of the client user that most recently set the variable.
If a client connects as user17 from host host34.example.com using the account
'user17'@'%.example.com, SET_USER and SET_HOST are user17 and
host34.example.com, respectively. For proxy user connections, these values correspond to the
external (proxy) user, not the proxied user against which privilege checking is performed. The default
for each column is the empty string, indicating that the variable has not been set since server startup.

The variables_info table has no indexes.

TRUNCATE TABLE is not permitted for the variables_info table.

If a variable with a VARIABLE_SOURCE value other than DYNAMIC is set at runtime,
VARIABLE_SOURCE becomes DYNAMIC and VARIABLE_PATH becomes the empty string.

A system variable that has only a session value (such as debug_sync) cannot be set at startup or
persisted. For session-only system variables, VARIABLE_SOURCE can be only COMPILED or DYNAMIC.

If a system variable has an unexpected VARIABLE_SOURCE value, consider your server startup
method. For example, mysqld_safe reads option files and passes certain options it finds there as part
of the command line that it uses to start mysqld. Consequently, some system variables that you set in
option files might display in variables_info as COMMAND_LINE, rather than as GLOBAL or SERVER
as you might otherwise expect.

Some sample queries that use the variables_info table, with representative output:

• Display variables set on the command line:

mysql> SELECT VARIABLE_NAME
 FROM performance_schema.variables_info
 WHERE VARIABLE_SOURCE = 'COMMAND_LINE'
 ORDER BY VARIABLE_NAME;
+---------------+
| VARIABLE_NAME |
+---------------+
| basedir |
| datadir |
| log_error |
| pid_file |
| plugin_dir |
| port |
+---------------+

• Display variables set from persistent storage:

mysql> SELECT VARIABLE_NAME
 FROM performance_schema.variables_info
 WHERE VARIABLE_SOURCE = 'PERSISTED'
 ORDER BY VARIABLE_NAME;
+--------------------------+
| VARIABLE_NAME |
+--------------------------+
| event_scheduler |
| max_connections |
| validate_password.policy |
+--------------------------+

• Join variables_info with the global_variables table to display the current values of
persisted variables, together with their range of values:

mysql> SELECT
 VI.VARIABLE_NAME, GV.VARIABLE_VALUE,
 VI.MIN_VALUE,VI.MAX_VALUE
 FROM performance_schema.variables_info AS VI
 INNER JOIN performance_schema.global_variables AS GV

5262

Performance Schema Status Variable Tables

 USING(VARIABLE_NAME)
 WHERE VI.VARIABLE_SOURCE = 'PERSISTED'
 ORDER BY VARIABLE_NAME;
+--------------------------+----------------+-----------+-----------+
| VARIABLE_NAME | VARIABLE_VALUE | MIN_VALUE | MAX_VALUE |
+--------------------------+----------------+-----------+-----------+
event_scheduler	ON	0	0
max_connections	200	1	100000
validate_password.policy	STRONG	0	0
+--------------------------+----------------+-----------+-----------+

29.12.15 Performance Schema Status Variable Tables

The MySQL server maintains many status variables that provide information about its operation
(see Section 7.1.10, “Server Status Variables”). Status variable information is available in these
Performance Schema tables:

• global_status: Global status variables. An application that wants only global values should use
this table.

• session_status: Status variables for the current session. An application that wants all status
variable values for its own session should use this table. It includes the session variables for its
session, as well as the values of global variables that have no session counterpart.

• status_by_thread: Session status variables for each active session. An application that wants
to know the session variable values for specific sessions should use this table. It includes session
variables only, identified by thread ID.

There are also summary tables that provide status variable information aggregated by account, host
name, and user name. See Section 29.12.20.12, “Status Variable Summary Tables”.

The session variable tables (session_status, status_by_thread) contain information only for
active sessions, not terminated sessions.

The Performance Schema collects statistics for global status variables only for threads for which the
INSTRUMENTED value is YES in the threads table. Statistics for session status variables are always
collected, regardless of the INSTRUMENTED value.

The Performance Schema does not collect statistics for Com_xxx status variables
in the status variable tables. To obtain global and per-session statement execution
counts, use the events_statements_summary_global_by_event_name and
events_statements_summary_by_thread_by_event_name tables, respectively. For example:

SELECT EVENT_NAME, COUNT_STAR
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%';

The global_status and session_status tables have these columns:

• VARIABLE_NAME

The status variable name.

• VARIABLE_VALUE

The status variable value. For global_status, this column contains the global value. For
session_status, this column contains the variable value for the current session.

The global_status and session_status tables have these indexes:

• Primary key on (VARIABLE_NAME)

The status_by_thread table contains the status of each active thread. It has these columns:

5263

Performance Schema Thread Pool Tables

• THREAD_ID

The thread identifier of the session in which the status variable is defined.

• VARIABLE_NAME

The status variable name.

• VARIABLE_VALUE

The session variable value for the session named by the THREAD_ID column.

The status_by_thread table has these indexes:

• Primary key on (THREAD_ID, VARIABLE_NAME)

The status_by_thread table contains status variable information only about foreground threads. If
the performance_schema_max_thread_instances system variable is not autoscaled (signified by
a value of −1) and the maximum permitted number of instrumented thread objects is not greater than
the number of background threads, the table is empty.

The Performance Schema supports TRUNCATE TABLE for status variable tables as follows:

• global_status: Resets thread, account, host, and user status. Resets global status variables
except those that the server never resets.

• session_status: Not supported.

• status_by_thread: Aggregates status for all threads to the global status and account status, then
resets thread status. If account statistics are not collected, the session status is added to host and
user status, if host and user status are collected.

Account, host, and user statistics are not collected if the performance_schema_accounts_size,
performance_schema_hosts_size, and performance_schema_users_size system
variables, respectively, are set to 0.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

29.12.16 Performance Schema Thread Pool Tables

Note

The Performance Schema tables described here are available as of MySQL
8.0.14. Prior to MySQL 8.0.14, use the corresponding INFORMATION_SCHEMA
tables instead; see Section 28.5, “INFORMATION_SCHEMA Thread Pool
Tables”.

The following sections describe the Performance Schema tables associated with the thread pool plugin
(see Section 7.6.3, “MySQL Enterprise Thread Pool”). They provide information about thread pool
operation:

• tp_thread_group_state: Information about thread pool thread group states.

• tp_thread_group_stats: Thread group statistics.

• tp_thread_state: Information about thread pool thread states.

Rows in these tables represent snapshots in time. In the case of tp_thread_state, all rows for a
thread group comprise a snapshot in time. Thus, the MySQL server holds the mutex of the thread

5264

Performance Schema Thread Pool Tables

group while producing the snapshot. But it does not hold mutexes on all thread groups at the same
time, to prevent a statement against tp_thread_state from blocking the entire MySQL server.

The Performance Schema thread pool tables are implemented by the thread pool plugin and are
loaded and unloaded when that plugin is loaded and unloaded (see Section 7.6.3.2, “Thread Pool
Installation”). No special configuration step for the tables is needed. However, the tables depend on
the thread pool plugin being enabled. If the thread pool plugin is loaded but disabled, the tables are not
created.

29.12.16.1 The tp_thread_group_state Table

Note

The Performance Schema table described here is available as of MySQL
8.0.14. Prior to MySQL 8.0.14, use the corresponding INFORMATION_SCHEMA
table instead; see Section 28.5.2, “The INFORMATION_SCHEMA
TP_THREAD_GROUP_STATE Table”.

The tp_thread_group_state table has one row per thread group in the thread pool. Each row
provides information about the current state of a group.

The tp_thread_group_state table has these columns:

• TP_GROUP_ID

The thread group ID. This is a unique key within the table.

• CONSUMER THREADS

The number of consumer threads. There is at most one thread ready to start executing if the active
threads become stalled or blocked.

• RESERVE_THREADS

The number of threads in the reserved state. This means that they are not started until there is a
need to wake a new thread and there is no consumer thread. This is where most threads end up
when the thread group has created more threads than needed for normal operation. Often a thread
group needs additional threads for a short while and then does not need them again for a while. In
this case, they go into the reserved state and remain until needed again. They take up some extra
memory resources, but no extra computing resources.

• CONNECT_THREAD_COUNT

The number of threads that are processing or waiting to process connection initialization and
authentication. There can be a maximum of four connection threads per thread group; these threads
expire after a period of inactivity.

• CONNECTION_COUNT

The number of connections using this thread group.

• QUEUED_QUERIES

The number of statements waiting in the high-priority queue.

• QUEUED_TRANSACTIONS

The number of statements waiting in the low-priority queue. These are the initial statements for
transactions that have not started, so they also represent queued transactions.

• STALL_LIMIT

5265

Performance Schema Thread Pool Tables

The value of the thread_pool_stall_limit system variable for the thread group. This is the
same value for all thread groups.

• PRIO_KICKUP_TIMER

The value of the thread_pool_prio_kickup_timer system variable for the thread group. This is
the same value for all thread groups.

• ALGORITHM

The value of the thread_pool_algorithm system variable for the thread group. This is the same
value for all thread groups.

• THREAD_COUNT

The number of threads started in the thread pool as part of this thread group.

• ACTIVE_THREAD_COUNT

The number of threads active in executing statements.

• STALLED_THREAD_COUNT

The number of stalled statements in the thread group. A stalled statement could be executing, but
from a thread pool perspective it is stalled and making no progress. A long-running statement quickly
ends up in this category.

• WAITING_THREAD_NUMBER

If there is a thread handling the polling of statements in the thread group, this specifies the thread
number within this thread group. It is possible that this thread could be executing a statement.

• OLDEST_QUEUED

How long in milliseconds the oldest queued statement has been waiting for execution.

• MAX_THREAD_IDS_IN_GROUP

The maximum thread ID of the threads in the group. This is the same as MAX(TP_THREAD_NUMBER)
for the threads when selected from the tp_thread_state table. That is, these two queries are
equivalent:

SELECT TP_GROUP_ID, MAX_THREAD_IDS_IN_GROUP
FROM tp_thread_group_state;

SELECT TP_GROUP_ID, MAX(TP_THREAD_NUMBER)
FROM tp_thread_state GROUP BY TP_GROUP_ID;

The tp_thread_group_state table has these indexes:

• Unique index on (TP_GROUP_ID)

TRUNCATE TABLE is not permitted for the tp_thread_group_state table.

29.12.16.2 The tp_thread_group_stats Table

Note

The Performance Schema table described here is available as of MySQL
8.0.14. Prior to MySQL 8.0.14, use the corresponding INFORMATION_SCHEMA
table instead; see Section 28.5.3, “The INFORMATION_SCHEMA
TP_THREAD_GROUP_STATS Table”.

5266

Performance Schema Thread Pool Tables

The tp_thread_group_stats table reports statistics per thread group. There is one row per group.

The tp_thread_group_stats table has these columns:

• TP_GROUP_ID

The thread group ID. This is a unique key within the table.

• CONNECTIONS_STARTED

The number of connections started.

• CONNECTIONS_CLOSED

The number of connections closed.

• QUERIES_EXECUTED

The number of statements executed. This number is incremented when a statement starts executing,
not when it finishes.

• QUERIES_QUEUED

The number of statements received that were queued for execution. This does not count statements
that the thread group was able to begin executing immediately without queuing, which can happen
under the conditions described in Section 7.6.3.3, “Thread Pool Operation”.

• THREADS_STARTED

The number of threads started.

• PRIO_KICKUPS

The number of statements that have been moved from low-priority queue to high-priority queue
based on the value of the thread_pool_prio_kickup_timer system variable. If this number
increases quickly, consider increasing the value of that variable. A quickly increasing counter means
that the priority system is not keeping transactions from starting too early. For InnoDB, this most
likely means deteriorating performance due to too many concurrent transactions..

• STALLED_QUERIES_EXECUTED

The number of statements that have become defined as stalled due to executing for longer than the
value of the thread_pool_stall_limit system variable.

• BECOME_CONSUMER_THREAD

The number of times thread have been assigned the consumer thread role.

• BECOME_RESERVE_THREAD

The number of times threads have been assigned the reserve thread role.

• BECOME_WAITING_THREAD

The number of times threads have been assigned the waiter thread role. When statements are
queued, this happens very often, even in normal operation, so rapid increases in this value are
normal in the case of a highly loaded system where statements are queued up.

• WAKE_THREAD_STALL_CHECKER

The number of times the stall check thread decided to wake or create a thread to possibly handle
some statements or take care of the waiter thread role.

• SLEEP_WAITS

5267

Performance Schema Thread Pool Tables

The number of THD_WAIT_SLEEP waits. These occur when threads go to sleep (for example, by
calling the SLEEP() function).

• DISK_IO_WAITS

The number of THD_WAIT_DISKIO waits. These occur when threads perform disk I/O that is likely
to not hit the file system cache. Such waits occur when the buffer pool reads and writes data to disk,
not for normal reads from and writes to files.

• ROW_LOCK_WAITS

The number of THD_WAIT_ROW_LOCK waits for release of a row lock by another transaction.

• GLOBAL_LOCK_WAITS

The number of THD_WAIT_GLOBAL_LOCK waits for a global lock to be released.

• META_DATA_LOCK_WAITS

The number of THD_WAIT_META_DATA_LOCK waits for a metadata lock to be released.

• TABLE_LOCK_WAITS

The number of THD_WAIT_TABLE_LOCK waits for a table to be unlocked that the statement needs to
access.

• USER_LOCK_WAITS

The number of THD_WAIT_USER_LOCK waits for a special lock constructed by the user thread.

• BINLOG_WAITS

The number of THD_WAIT_BINLOG_WAITS waits for the binary log to become free.

• GROUP_COMMIT_WAITS

The number of THD_WAIT_GROUP_COMMIT waits. These occur when a group commit must wait for
the other parties to complete their part of a transaction.

• FSYNC_WAITS

The number of THD_WAIT_SYNC waits for a file sync operation.

The tp_thread_group_stats table has these indexes:

• Unique index on (TP_GROUP_ID)

TRUNCATE TABLE is not permitted for the tp_thread_group_stats table.

29.12.16.3 The tp_thread_state Table

Note

The Performance Schema table described here is available as of MySQL
8.0.14. Prior to MySQL 8.0.14, use the corresponding INFORMATION_SCHEMA
table instead; see Section 28.5.4, “The INFORMATION_SCHEMA
TP_THREAD_STATE Table”.

The tp_thread_state table has one row per thread created by the thread pool to handle
connections.

The tp_thread_state table has these columns:

5268

Performance Schema Firewall Tables

• TP_GROUP_ID

The thread group ID.

• TP_THREAD_NUMBER

The ID of the thread within its thread group. TP_GROUP_ID and TP_THREAD_NUMBER together
provide a unique key within the table.

• PROCESS_COUNT

The 10ms interval in which the statement that uses this thread is currently executing. 0 means no
statement is executing, 1 means it is in the first 10ms, and so forth.

• WAIT_TYPE

The type of wait for the thread. NULL means the thread is not blocked. Otherwise, the thread is
blocked by a call to thd_wait_begin() and the value specifies the type of wait. The xxx_WAIT
columns of the tp_thread_group_stats table accumulate counts for each wait type.

The WAIT_TYPE value is a string that describes the type of wait, as shown in the following table.

Table 29.6 tp_thread_state Table WAIT_TYPE Values

Wait Type Meaning

THD_WAIT_SLEEP Waiting for sleep

THD_WAIT_DISKIO Waiting for Disk IO

THD_WAIT_ROW_LOCK Waiting for row lock

THD_WAIT_GLOBAL_LOCK Waiting for global lock

THD_WAIT_META_DATA_LOCK Waiting for metadata lock

THD_WAIT_TABLE_LOCK Waiting for table lock

THD_WAIT_USER_LOCK Waiting for user lock

THD_WAIT_BINLOG Waiting for binlog

THD_WAIT_GROUP_COMMIT Waiting for group commit

THD_WAIT_SYNC Waiting for fsync

• TP_THREAD_TYPE

The type of thread. The value shown in this column is one of
CONNECTION_HANDLER_WORKER_THREAD, LISTENER_WORKER_THREAD,
QUERY_WORKER_THREAD, or TIMER_WORKER_THREAD.

This column was added in MySQL 8.0.32.

• THREAD_ID

This thread's unique identifier. The value is the same as that used in the THREAD_ID column of the
Performance Schema threads table.

This column was added in MySQL 8.0.32.

The tp_thread_state table has these indexes:

• Unique index on (TP_GROUP_ID, TP_THREAD_NUMBER)

TRUNCATE TABLE is not permitted for the tp_thread_state table.

29.12.17 Performance Schema Firewall Tables

5269

Performance Schema Firewall Tables

Note

The Performance Schema tables described here are available as of MySQL
8.0.23. Prior to MySQL 8.0.23, use the corresponding INFORMATION_SCHEMA
tables instead; see MySQL Enterprise Firewall Tables.

The following sections describe the Performance Schema tables associated with MySQL Enterprise
Firewall (see Section 8.4.7, “MySQL Enterprise Firewall”). They provide information about firewall
operation:

• firewall_groups: Information about firewall group profiles.

• firewall_group_allowlist: Allowlist rules of registered firewall group profiles.

• firewall_membership: Members (accounts) of registered firewall group profiles.

29.12.17.1 The firewall_groups Table

The firewall_groups table provides a view into the in-memory data cache for MySQL Enterprise
Firewall. It lists names and operational modes of registered firewall group profiles. It is used in
conjunction with the mysql.firewall_groups system table that provides persistent storage of
firewall data; see MySQL Enterprise Firewall Tables.

The firewall_groups table has these columns:

• NAME

The group profile name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING,
PROTECTING, and RECORDING. For details about their meanings, see Firewall Concepts.

• USERHOST

The training account for the group profile, to be used when the profile is in RECORDING mode. The
value is NULL, or a non-NULL account that has the format user_name@host_name:

• If the value is NULL, the firewall records allowlist rules for statements received from any account
that is a member of the group.

• If the value is non-NULL, the firewall records allowlist rules only for statements received from the
named account (which should be a member of the group).

The firewall_groups table has no indexes.

TRUNCATE TABLE is not permitted for the firewall_groups table.

The firewall_groups table was added in MySQL 8.0.23.

29.12.17.2 The firewall_group_allowlist Table

The firewall_group_allowlist table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists allowlist rules of registered firewall group profiles. It is used in conjunction
with the mysql.firewall_group_allowlist system table that provides persistent storage of
firewall data; see MySQL Enterprise Firewall Tables.

The firewall_group_allowlist table has these columns:

• NAME

5270

Performance Schema Keyring Tables

The group profile name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is
the union of its rules.

The firewall_group_allowlist table has no indexes.

TRUNCATE TABLE is not permitted for the firewall_group_allowlist table.

The firewall_group_allowlist table was added in MySQL 8.0.23.

29.12.17.3 The firewall_membership Table

The firewall_membership table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists the members (accounts) of registered firewall group profiles. It is used in
conjunction with the mysql.firewall_membership system table that provides persistent storage of
firewall data; see MySQL Enterprise Firewall Tables.

The firewall_membership table has these columns:

• GROUP_ID

The group profile name.

• MEMBER_ID

The name of an account that is a member of the profile.

The firewall_membership table has no indexes.

TRUNCATE TABLE is not permitted for the firewall_membership table.

The firewall_membership table was added in MySQL 8.0.23.

29.12.18 Performance Schema Keyring Tables

The following sections describe the Performance Schema tables associated with the MySQL keyring
(see Section 8.4.4, “The MySQL Keyring”). They provide information about keyring operation:

• keyring_component_status: Information about the keyring component in use.

• keyring_keys: Metadata for keys in the MySQL keyring.

29.12.18.1 The keyring_component_status Table

The keyring_component_status table (available as of MySQL 8.0.24) provides status information
about the properties of the keyring component in use, if one is installed. The table is empty if no keyring
component is installed (for example, if the keyring is not being used, or is configured to manage the
keystore using a keyring plugin rather than a keyring component).

There is no fixed set of properties. Each keyring component is free to define its own set.

Example keyring_component_status contents:

mysql> SELECT * FROM performance_schema.keyring_component_status;
+---------------------+---+
| STATUS_KEY | STATUS_VALUE |
+---------------------+---+

5271

Performance Schema Clone Tables

Component_name	component_keyring_file
Author	Oracle Corporation
License	GPL
Implementation_name	component_keyring_file
Version	1.0
Component_status	Active
Data_file	/usr/local/mysql/keyring/component_keyring_file
Read_only	No
+---------------------+---+

The keyring_component_status table has these columns:

• STATUS_KEY

The status item name.

• STATUS_VALUE

The status item value.

The keyring_component_status table has no indexes.

TRUNCATE TABLE is not permitted for the keyring_component_status table.

29.12.18.2 The keyring_keys table

MySQL Server supports a keyring that enables internal server components and plugins to securely
store sensitive information for later retrieval. See Section 8.4.4, “The MySQL Keyring”.

As of MySQL 8.0.16, the keyring_keys table exposes metadata for keys in the keyring. Key
metadata includes key IDs, key owners, and backend key IDs. The keyring_keys table does not
expose any sensitive keyring data such as key contents.

The keyring_keys table has these columns:

• KEY_ID

The key identifier.

• KEY_OWNER

The owner of the key.

• BACKEND_KEY_ID

The ID used for the key by the keyring backend.

The keyring_keys table has no indexes.

TRUNCATE TABLE is not permitted for the keyring_keys table.

29.12.19 Performance Schema Clone Tables

Note

The Performance Schema tables described here are available as of MySQL
8.0.17.

The following sections describe the Performance Schema tables associated with the clone plugin (see
Section 7.6.7, “The Clone Plugin”). The tables provide information about cloning operations.

• clone_status: status information about the current or last executed cloning operation.

5272

Performance Schema Clone Tables

• clone_progress: progress information about the current or last executed cloning operation.

The Performance Schema clone tables are implemented by the clone plugin and are loaded and
unloaded when that plugin is loaded and unloaded (see Section 7.6.7.1, “Installing the Clone Plugin”).
No special configuration step for the tables is needed. However, the tables depend on the clone plugin
being enabled. If the clone plugin is loaded but disabled, the tables are not created.

The Performance Schema clone plugin tables are used only on the recipient MySQL server instance.
The data is persisted across server shutdown and restart.

29.12.19.1 The clone_status Table

Note

The Performance Schema table described here is available as of MySQL
8.0.17.

The clone_status table shows the status of the current or last executed cloning operation only. The
table only ever contains one row of data, or is empty.

The clone_status table has these columns:

• ID

A unique cloning operation identifier in the current MySQL server instance.

• PID

Process list ID of the session executing the cloning operation.

• STATE

Current state of the cloning operation. Values include Not Started, In Progress, Completed,
and Failed.

• BEGIN_TIME

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the cloning
operation started.

• END_TIME

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the cloning
operation finished. Reports NULL if the operation has not ended.

• SOURCE

The donor MySQL server address in 'HOST:PORT' format. The column displays 'LOCAL INSTANCE'
for a local cloning operation.

• DESTINATION

The directory being cloned to.

• ERROR_NO

The error number reported for a failed cloning operation.

• ERROR_MESSAGE

The error message string for a failed cloning operation.

• BINLOG_FILE

5273

Performance Schema Clone Tables

The name of the binary log file up to which data is cloned.

• BINLOG_POSITION

The binary log file offset up to which data is cloned.

• GTID_EXECUTED

The GTID value for the last cloned transaction.

The clone_status table is read-only. DDL, including TRUNCATE TABLE, is not permitted.

29.12.19.2 The clone_progress Table

Note

The Performance Schema table described here is available as of MySQL
8.0.17.

The clone_progress table shows progress information for the current or last executed cloning
operation only.

The stages of a cloning operation include DROP DATA, FILE COPY, PAGE_COPY, REDO_COPY,
FILE_SYNC, RESTART, and RECOVERY. A cloning operation produces a record for each stage. The
table therefore only ever contains seven rows of data, or is empty.

The clone_progress table has these columns:

• ID

A unique cloning operation identifier in the current MySQL server instance.

• STAGE

The name of the current cloning stage. Stages include DROP DATA, FILE COPY, PAGE_COPY,
REDO_COPY, FILE_SYNC, RESTART, and RECOVERY.

• STATE

The current state of the cloning stage. States include Not Started, In Progress, and
Completed.

• BEGIN_TIME

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the cloning
stage started. Reports NULL if the stage has not started.

• END_TIME

A timestamp in 'YYYY-MM-DD hh:mm:ss[.fraction]' format that shows when the cloning
stage finished. Reports NULL if the stage has not ended.

• THREADS

The number of concurrent threads used in the stage.

• ESTIMATE

The estimated amount of data for the current stage, in bytes.

• DATA

5274

Performance Schema Summary Tables

The amount of data transferred in current state, in bytes.

• NETWORK

The amount of network data transferred in the current state, in bytes.

• DATA_SPEED

The current actual speed of data transfer, in bytes per second. This value may differ from the
requested maximum data transfer rate defined by clone_max_data_bandwidth.

• NETWORK_SPEED

The current speed of network transfer in bytes per second.

The clone_progress table is read-only. DDL, including TRUNCATE TABLE, is not permitted.

29.12.20 Performance Schema Summary Tables

Summary tables provide aggregated information for terminated events over time. The tables in this
group summarize event data in different ways.

Each summary table has grouping columns that determine how to group the data to be aggregated,
and summary columns that contain the aggregated values. Tables that summarize events in similar
ways often have similar sets of summary columns and differ only in the grouping columns used to
determine how events are aggregated.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the
summary columns to 0 or NULL, not to remove rows. This enables you to clear collected values and
restart aggregation. That might be useful, for example, after you have made a runtime configuration
change. Exceptions to this truncation behavior are noted in individual summary table sections.

Wait Event Summaries

Table 29.7 Performance Schema Wait Event Summary Tables

Table Name Description

events_waits_summary_by_account_by_event_nameWait events per account and event name

events_waits_summary_by_host_by_event_nameWait events per host name and event name

events_waits_summary_by_instance Wait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event name

events_waits_summary_by_user_by_event_nameWait events per user name and event name

events_waits_summary_global_by_event_nameWait events per event name

Stage Summaries

Table 29.8 Performance Schema Stage Event Summary Tables

Table Name Description

events_stages_summary_by_account_by_event_nameStage events per account and event name

events_stages_summary_by_host_by_event_nameStage events per host name and event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event name

events_stages_summary_by_user_by_event_nameStage events per user name and event name

events_stages_summary_global_by_event_nameStage waits per event name

5275

Performance Schema Summary Tables

Statement Summaries

Table 29.9 Performance Schema Statement Event Summary Tables

Table Name Description

events_statements_histogram_by_digest Statement histograms per schema and digest
value

events_statements_histogram_global Statement histogram summarized globally

events_statements_summary_by_account_by_event_nameStatement events per account and event name

events_statements_summary_by_digest Statement events per schema and digest value

events_statements_summary_by_host_by_event_nameStatement events per host name and event name

events_statements_summary_by_program Statement events per stored program

events_statements_summary_by_thread_by_event_nameStatement events per thread and event name

events_statements_summary_by_user_by_event_nameStatement events per user name and event name

events_statements_summary_global_by_event_nameStatement events per event name

prepared_statements_instances Prepared statement instances and statistics

Transaction Summaries

Table 29.10 Performance Schema Transaction Event Summary Tables

Table Name Description

events_transactions_summary_by_account_by_event_nameTransaction events per account and event name

events_transactions_summary_by_host_by_event_nameTransaction events per host name and event
name

events_transactions_summary_by_thread_by_event_nameTransaction events per thread and event name

events_transactions_summary_by_user_by_event_nameTransaction events per user name and event
name

events_transactions_summary_global_by_event_nameTransaction events per event name

Object Wait Summaries

Table 29.11 Performance Schema Object Event Summary Tables

Table Name Description

objects_summary_global_by_type Object summaries

File I/O Summaries

Table 29.12 Performance Schema File I/O Event Summary Tables

Table Name Description

file_summary_by_event_name File events per event name

file_summary_by_instance File events per file instance

Table I/O and Lock Wait Summaries

Table 29.13 Performance Schema Table I/O and Lock Wait Event Summary Tables

Table Name Description

table_io_waits_summary_by_index_usage Table I/O waits per index

5276

Performance Schema Summary Tables

Table Name Description

table_io_waits_summary_by_table Table I/O waits per table

table_lock_waits_summary_by_table Table lock waits per table

Socket Summaries

Table 29.14 Performance Schema Socket Event Summary Tables

Table Name Description

socket_summary_by_event_name Socket waits and I/O per event name

socket_summary_by_instance Socket waits and I/O per instance

Memory Summaries

Table 29.15 Performance Schema Memory Operation Summary Tables

Table Name Description

memory_summary_by_account_by_event_nameMemory operations per account and event name

memory_summary_by_host_by_event_name Memory operations per host and event name

memory_summary_by_thread_by_event_nameMemory operations per thread and event name

memory_summary_by_user_by_event_name Memory operations per user and event name

memory_summary_global_by_event_name Memory operations globally per event name

Error Summaries

Table 29.16 Performance Schema Error Summary Tables

Table Name Description

events_errors_summary_by_account_by_errorErrors per account and error code

events_errors_summary_by_host_by_errorErrors per host and error code

events_errors_summary_by_thread_by_errorErrors per thread and error code

events_errors_summary_by_user_by_errorErrors per user and error code

events_errors_summary_global_by_error Errors per error code

Status Variable Summaries

Table 29.17 Performance Schema Error Status Variable Summary Tables

Table Name Description

status_by_account Session status variables per account

status_by_host Session status variables per host name

status_by_user Session status variables per user name

29.12.20.1 Wait Event Summary Tables

The Performance Schema maintains tables for collecting current and recent wait events, and
aggregates that information in summary tables. Section 29.12.4, “Performance Schema Wait Event
Tables” describes the events on which wait summaries are based. See that discussion for information
about the content of wait events, the current and recent wait event tables, and how to control wait event
collection, which is disabled by default.

5277

Performance Schema Summary Tables

Example wait event summary information:

mysql> SELECT *
 FROM performance_schema.events_waits_summary_global_by_event_name\G
...
*************************** 6. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/BINARY_LOG::LOCK_index
 COUNT_STAR: 8
SUM_TIMER_WAIT: 2119302
MIN_TIMER_WAIT: 196092
AVG_TIMER_WAIT: 264912
MAX_TIMER_WAIT: 569421
...
*************************** 9. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/hash_filo::lock
 COUNT_STAR: 69
SUM_TIMER_WAIT: 16848828
MIN_TIMER_WAIT: 0
AVG_TIMER_WAIT: 244185
MAX_TIMER_WAIT: 735345
...

Each wait event summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table:

• events_waits_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_waits_summary_by_host_by_event_name has EVENT_NAME and HOST columns.
Each row summarizes events for a given host and event name.

• events_waits_summary_by_instance has EVENT_NAME and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given event name and object. If an instrument is used
to create multiple instances, each instance has a unique OBJECT_INSTANCE_BEGIN value and is
summarized separately in this table.

• events_waits_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_waits_summary_by_user_by_event_name has EVENT_NAME and USER columns.
Each row summarizes events for a given user and event name.

• events_waits_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name. An instrument might be used to create multiple
instances of the instrumented object. For example, if there is an instrument for a mutex that is
created for each connection, there are as many instances as there are connections. The summary
row for the instrument summarizes over all these instances.

Each wait event summary table has these summary columns containing aggregated values:

• COUNT_STAR

The number of summarized events. This value includes all events, whether timed or nontimed.

• SUM_TIMER_WAIT

The total wait time of the summarized timed events. This value is calculated only for timed
events because nontimed events have a wait time of NULL. The same is true for the other
xxx_TIMER_WAIT values.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed events.

5278

Performance Schema Summary Tables

• AVG_TIMER_WAIT

The average wait time of the summarized timed events.

• MAX_TIMER_WAIT

The maximum wait time of the summarized timed events.

The wait event summary tables have these indexes:

• events_waits_summary_by_account_by_event_name:

• Primary key on (USER, HOST, EVENT_NAME)

• events_waits_summary_by_host_by_event_name:

• Primary key on (HOST, EVENT_NAME)

• events_waits_summary_by_instance:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (EVENT_NAME)

• events_waits_summary_by_thread_by_event_name:

• Primary key on (THREAD_ID, EVENT_NAME)

• events_waits_summary_by_user_by_event_name:

• Primary key on (USER, EVENT_NAME)

• events_waits_summary_global_by_event_name:

• Primary key on (EVENT_NAME)

TRUNCATE TABLE is permitted for wait summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each wait summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation
of events_waits_summary_global_by_event_name. For details, see Section 29.12.8,
“Performance Schema Connection Tables”.

29.12.20.2 Stage Summary Tables

The Performance Schema maintains tables for collecting current and recent stage events, and
aggregates that information in summary tables. Section 29.12.5, “Performance Schema Stage Event
Tables” describes the events on which stage summaries are based. See that discussion for information
about the content of stage events, the current and historical stage event tables, and how to control
stage event collection, which is disabled by default.

Example stage event summary information:

mysql> SELECT *
 FROM performance_schema.events_stages_summary_global_by_event_name\G
...
*************************** 5. row ***************************

5279

Performance Schema Summary Tables

 EVENT_NAME: stage/sql/checking permissions
 COUNT_STAR: 57
SUM_TIMER_WAIT: 26501888880
MIN_TIMER_WAIT: 7317456
AVG_TIMER_WAIT: 464945295
MAX_TIMER_WAIT: 12858936792
...
*************************** 9. row ***************************
 EVENT_NAME: stage/sql/closing tables
 COUNT_STAR: 37
SUM_TIMER_WAIT: 662606568
MIN_TIMER_WAIT: 1593864
AVG_TIMER_WAIT: 17907891
MAX_TIMER_WAIT: 437977248
...

Each stage summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_stages_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_stages_summary_by_host_by_event_name has EVENT_NAME and HOST columns.
Each row summarizes events for a given host and event name.

• events_stages_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_stages_summary_by_user_by_event_name has EVENT_NAME and USER columns.
Each row summarizes events for a given user and event name.

• events_stages_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name.

Each stage summary table has these summary columns containing aggregated values: COUNT_STAR,
SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, and MAX_TIMER_WAIT. These
columns are analogous to the columns of the same names in the wait event summary tables (see
Section 29.12.20.1, “Wait Event Summary Tables”), except that the stage summary tables aggregate
events from events_stages_current rather than events_waits_current.

The stage summary tables have these indexes:

• events_stages_summary_by_account_by_event_name:

• Primary key on (USER, HOST, EVENT_NAME)

• events_stages_summary_by_host_by_event_name:

• Primary key on (HOST, EVENT_NAME)

• events_stages_summary_by_thread_by_event_name:

• Primary key on (THREAD_ID, EVENT_NAME)

• events_stages_summary_by_user_by_event_name:

• Primary key on (USER, EVENT_NAME)

• events_stages_summary_global_by_event_name:

• Primary key on (EVENT_NAME)

TRUNCATE TABLE is permitted for stage summary tables. It has these effects:

5280

Performance Schema Summary Tables

• For summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each stage summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_stages_summary_global_by_event_name. For details, see Section 29.12.8,
“Performance Schema Connection Tables”.

29.12.20.3 Statement Summary Tables

The Performance Schema maintains tables for collecting current and recent statement events, and
aggregates that information in summary tables. Section 29.12.6, “Performance Schema Statement
Event Tables” describes the events on which statement summaries are based. See that discussion for
information about the content of statement events, the current and historical statement event tables,
and how to control statement event collection, which is partially disabled by default.

Example statement event summary information:

mysql> SELECT *
 FROM performance_schema.events_statements_summary_global_by_event_name\G
*************************** 1. row ***************************
 EVENT_NAME: statement/sql/select
 COUNT_STAR: 54
 SUM_TIMER_WAIT: 38860400000
 MIN_TIMER_WAIT: 52400000
 AVG_TIMER_WAIT: 719600000
 MAX_TIMER_WAIT: 12631800000
 SUM_LOCK_TIME: 88000000
 SUM_ERRORS: 0
 SUM_WARNINGS: 0
 SUM_ROWS_AFFECTED: 0
 SUM_ROWS_SENT: 60
 SUM_ROWS_EXAMINED: 120
SUM_CREATED_TMP_DISK_TABLES: 0
 SUM_CREATED_TMP_TABLES: 21
 SUM_SELECT_FULL_JOIN: 16
 SUM_SELECT_FULL_RANGE_JOIN: 0
 SUM_SELECT_RANGE: 0
 SUM_SELECT_RANGE_CHECK: 0
 SUM_SELECT_SCAN: 41
 SUM_SORT_MERGE_PASSES: 0
 SUM_SORT_RANGE: 0
 SUM_SORT_ROWS: 0
 SUM_SORT_SCAN: 0
 SUM_NO_INDEX_USED: 22
 SUM_NO_GOOD_INDEX_USED: 0
 SUM_CPU_TIME: 0
 MAX_CONTROLLED_MEMORY: 2028360
 MAX_TOTAL_MEMORY: 2853429
 COUNT_SECONDARY: 0
...

Each statement summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table:

• events_statements_summary_by_account_by_event_name has EVENT_NAME, USER, and
HOST columns. Each row summarizes events for a given account (user and host combination) and
event name.

• events_statements_summary_by_digest has SCHEMA_NAME and DIGEST columns. Each
row summarizes events per schema and digest value. (The DIGEST_TEXT column contains the
corresponding normalized statement digest text, but is neither a grouping nor a summary column.

5281

Performance Schema Summary Tables

The QUERY_SAMPLE_TEXT, QUERY_SAMPLE_SEEN, and QUERY_SAMPLE_TIMER_WAIT columns
also are neither grouping nor summary columns; they support statement sampling.)

The maximum number of rows in the table is autosized at server startup. To set this maximum
explicitly, set the performance_schema_digests_size system variable at server startup.

• events_statements_summary_by_host_by_event_name has EVENT_NAME and HOST
columns. Each row summarizes events for a given host and event name.

• events_statements_summary_by_program has OBJECT_TYPE, OBJECT_SCHEMA, and
OBJECT_NAME columns. Each row summarizes events for a given stored program (stored procedure
or function, trigger, or event).

• events_statements_summary_by_thread_by_event_name has THREAD_ID and
EVENT_NAME columns. Each row summarizes events for a given thread and event name.

• events_statements_summary_by_user_by_event_name has EVENT_NAME and USER
columns. Each row summarizes events for a given user and event name.

• events_statements_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name.

• prepared_statements_instances has an OBJECT_INSTANCE_BEGIN column. Each row
summarizes events for a given prepared statement.

Each statement summary table has these summary columns containing aggregated values (with
exceptions as noted):

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns are analogous to the columns of the same names in the wait event summary tables
(see Section 29.12.20.1, “Wait Event Summary Tables”), except that the statement summary tables
aggregate events from events_statements_current rather than events_waits_current.

The prepared_statements_instances table does not have these columns.

• SUM_xxx

The aggregate of the corresponding xxx column in the events_statements_current table. For
example, the SUM_LOCK_TIME and SUM_ERRORS columns in statement summary tables are the
aggregates of the LOCK_TIME and ERRORS columns in events_statements_current table.

• MAX_CONTROLLED_MEMORY

Reports the maximum amount of controlled memory used by a statement during execution.

This column was added in MySQL 8.0.31.

• MAX_TOTAL_MEMORY

Reports the maximum amount of memory used by a statement during execution.

This column was added in MySQL 8.0.31.

• COUNT_SECONDARY

The number of times a query was processed on the SECONDARY engine. For use with HeatWave
Service and HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY engine is
HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition Server (on-
premise), and HeatWave Service without HeatWave, queries are always processed on the PRIMARY
engine, which means the value is always 0 on these MySQL Servers. The COUNT_SECONDARY
column was added in MySQL 8.0.29.

5282

Performance Schema Summary Tables

The events_statements_summary_by_digest table has these additional summary columns:

• FIRST_SEEN, LAST_SEEN

Timestamps indicating when statements with the given digest value were first seen and most
recently seen.

• QUANTILE_95: The 95th percentile of the statement latency, in picoseconds. This percentile is a
high estimate, computed from the histogram data collected. In other words, for a given digest, 95% of
the statements measured have a latency lower than QUANTILE_95.

For access to the histogram data, use the tables described in Section 29.12.20.4, “Statement
Histogram Summary Tables”.

• QUANTILE_99: Similar to QUANTILE_95, but for the 99th percentile.

• QUANTILE_999: Similar to QUANTILE_95, but for the 99.9th percentile.

The events_statements_summary_by_digest table contains the following columns. These are
neither grouping nor summary columns; they support statement sampling:

• QUERY_SAMPLE_TEXT

A sample SQL statement that produces the digest value in the row. This column enables applications
to access, for a given digest value, a statement actually seen by the server that produces that digest.
One use for this might be to run EXPLAIN on the statement to examine the execution plan for a
representative statement associated with a frequently occurring digest.

When the QUERY_SAMPLE_TEXT column is assigned a value, the QUERY_SAMPLE_SEEN and
QUERY_SAMPLE_TIMER_WAIT columns are assigned values as well.

The maximum space available for statement display is 1024 bytes by default. To change this
value, set the performance_schema_max_sql_text_length system variable at server
startup. (Changing this value affects columns in other Performance Schema tables as well. See
Section 29.10, “Performance Schema Statement Digests and Sampling”.)

For information about statement sampling, see Section 29.10, “Performance Schema Statement
Digests and Sampling”.

• QUERY_SAMPLE_SEEN

A timestamp indicating when the statement in the QUERY_SAMPLE_TEXT column was seen.

• QUERY_SAMPLE_TIMER_WAIT

The wait time for the sample statement in the QUERY_SAMPLE_TEXT column.

The events_statements_summary_by_program table has these additional summary columns:

• COUNT_STATEMENTS, SUM_STATEMENTS_WAIT, MIN_STATEMENTS_WAIT,
AVG_STATEMENTS_WAIT, MAX_STATEMENTS_WAIT

Statistics about nested statements invoked during stored program execution.

The prepared_statements_instances table has these additional summary columns:

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

Aggregated statistics for executions of the prepared statement.

The statement summary tables have these indexes:

5283

Performance Schema Summary Tables

• events_transactions_summary_by_account_by_event_name:

• Primary key on (USER, HOST, EVENT_NAME)

• events_statements_summary_by_digest:

• Primary key on (SCHEMA_NAME, DIGEST)

• events_transactions_summary_by_host_by_event_name:

• Primary key on (HOST, EVENT_NAME)

• events_statements_summary_by_program:

• Primary key on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

• events_statements_summary_by_thread_by_event_name:

• Primary key on (THREAD_ID, EVENT_NAME)

• events_transactions_summary_by_user_by_event_name:

• Primary key on (USER, EVENT_NAME)

• events_statements_summary_global_by_event_name:

• Primary key on (EVENT_NAME)

TRUNCATE TABLE is permitted for statement summary tables. It has these effects:

• For events_statements_summary_by_digest, it removes the rows.

• For other summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

• For other summary tables aggregated by account, host, or user, truncation removes rows for
accounts, hosts, or users with no connections, and resets the summary columns to zero for the
remaining rows.

In addition, each statement summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_statements_summary_global_by_event_name. For details, see Section 29.12.8,
“Performance Schema Connection Tables”.

In addition, truncating events_statements_summary_by_digest implicitly
truncates events_statements_histogram_by_digest, and truncating
events_statements_summary_global_by_event_name implicitly truncates
events_statements_histogram_global.

Statement Digest Aggregation Rules

If the statements_digest consumer is enabled, aggregation into
events_statements_summary_by_digest occurs as follows when a statement completes.
Aggregation is based on the DIGEST value computed for the statement.

• If a events_statements_summary_by_digest row already exists with the digest value for
the statement that just completed, statistics for the statement are aggregated to that row. The
LAST_SEEN column is updated to the current time.

• If no row has the digest value for the statement that just completed, and the table is not full, a new
row is created for the statement. The FIRST_SEEN and LAST_SEEN columns are initialized with the
current time.

5284

Performance Schema Summary Tables

• If no row has the statement digest value for the statement that just completed, and the table is full,
the statistics for the statement that just completed are added to a special “catch-all” row with DIGEST
= NULL, which is created if necessary. If the row is created, the FIRST_SEEN and LAST_SEEN
columns are initialized with the current time. Otherwise, the LAST_SEEN column is updated with the
current time.

The row with DIGEST = NULL is maintained because Performance Schema tables have a maximum
size due to memory constraints. The DIGEST = NULL row permits digests that do not match other rows
to be counted even if the summary table is full, using a common “other” bucket. This row helps you
estimate whether the digest summary is representative:

• A DIGEST = NULL row that has a COUNT_STAR value that represents 5% of all digests shows that
the digest summary table is very representative; the other rows cover 95% of the statements seen.

• A DIGEST = NULL row that has a COUNT_STAR value that represents 50% of all digests shows that
the digest summary table is not very representative; the other rows cover only half the statements
seen. Most likely the DBA should increase the maximum table size so that more of the rows counted
in the DIGEST = NULL row would be counted using more specific rows instead. By default, the table
is autosized, but if this size is too small, set the performance_schema_digests_size system
variable to a larger value at server startup.

Stored Program Instrumentation Behavior

For stored program types for which instrumentation is enabled in the setup_objects table,
events_statements_summary_by_program maintains statistics for stored programs as follows:

• A row is added for an object when it is first used in the server.

• The row for an object is removed when the object is dropped.

• Statistics are aggregated in the row for an object as it executes.

See also Section 29.4.3, “Event Pre-Filtering”.

29.12.20.4 Statement Histogram Summary Tables

The Performance Schema maintains statement event summary tables that contain information about
minimum, maximum, and average statement latency (see Section 29.12.20.3, “Statement Summary
Tables”). Those tables permit high-level assessment of system performance. To permit assessment
at a more fine-grained level, the Performance Schema also collects histogram data for statement
latencies. These histograms provide additional insight into latency distributions.

Section 29.12.6, “Performance Schema Statement Event Tables” describes the events on which
statement summaries are based. See that discussion for information about the content of statement
events, the current and historical statement event tables, and how to control statement event collection,
which is partially disabled by default.

Example statement histogram information:

mysql> SELECT *
 FROM performance_schema.events_statements_histogram_by_digest
 WHERE SCHEMA_NAME = 'mydb' AND DIGEST = 'bb3f69453119b2d7b3ae40673a9d4c7c'
 AND COUNT_BUCKET > 0 ORDER BY BUCKET_NUMBER\G
*************************** 1. row ***************************
 SCHEMA_NAME: mydb
 DIGEST: bb3f69453119b2d7b3ae40673a9d4c7c
 BUCKET_NUMBER: 42
 BUCKET_TIMER_LOW: 66069344
 BUCKET_TIMER_HIGH: 69183097
 COUNT_BUCKET: 1
COUNT_BUCKET_AND_LOWER: 1
 BUCKET_QUANTILE: 0.058824
*************************** 2. row ***************************

5285

Performance Schema Summary Tables

 SCHEMA_NAME: mydb
 DIGEST: bb3f69453119b2d7b3ae40673a9d4c7c
 BUCKET_NUMBER: 43
 BUCKET_TIMER_LOW: 69183097
 BUCKET_TIMER_HIGH: 72443596
 COUNT_BUCKET: 1
COUNT_BUCKET_AND_LOWER: 2
 BUCKET_QUANTILE: 0.117647
*************************** 3. row ***************************
 SCHEMA_NAME: mydb
 DIGEST: bb3f69453119b2d7b3ae40673a9d4c7c
 BUCKET_NUMBER: 44
 BUCKET_TIMER_LOW: 72443596
 BUCKET_TIMER_HIGH: 75857757
 COUNT_BUCKET: 2
COUNT_BUCKET_AND_LOWER: 4
 BUCKET_QUANTILE: 0.235294
*************************** 4. row ***************************
 SCHEMA_NAME: mydb
 DIGEST: bb3f69453119b2d7b3ae40673a9d4c7c
 BUCKET_NUMBER: 45
 BUCKET_TIMER_LOW: 75857757
 BUCKET_TIMER_HIGH: 79432823
 COUNT_BUCKET: 6
COUNT_BUCKET_AND_LOWER: 10
 BUCKET_QUANTILE: 0.625000
...

For example, in row 3, these values indicate that 23.52% of queries run in under 75.86 microseconds:

BUCKET_TIMER_HIGH: 75857757
 BUCKET_QUANTILE: 0.235294

In row 4, these values indicate that 62.50% of queries run in under 79.44 microseconds:

BUCKET_TIMER_HIGH: 79432823
 BUCKET_QUANTILE: 0.625000

Each statement histogram summary table has one or more grouping columns to indicate how the table
aggregates events:

• events_statements_histogram_by_digest has SCHEMA_NAME, DIGEST, and
BUCKET_NUMBER columns:

• The SCHEMA_NAME and DIGEST columns identify a statement digest row in the
events_statements_summary_by_digest table.

• The events_statements_histogram_by_digest rows with the same SCHEMA_NAME and
DIGEST values comprise the histogram for that schema/digest combination.

• Within a given histogram, the BUCKET_NUMBER column indicates the bucket number.

• events_statements_histogram_global has a BUCKET_NUMBER column. This table
summarizes latencies globally across schema name and digest values, using a single histogram.
The BUCKET_NUMBER column indicates the bucket number within this global histogram.

A histogram consists of N buckets, where each row represents one bucket, with the bucket number
indicated by the BUCKET_NUMBER column. Bucket numbers begin with 0.

Each statement histogram summary table has these summary columns containing aggregated values:

• BUCKET_TIMER_LOW, BUCKET_TIMER_HIGH

A bucket counts statements that have a latency, in picoseconds, measured between
BUCKET_TIMER_LOW and BUCKET_TIMER_HIGH:

• The value of BUCKET_TIMER_LOW for the first bucket (BUCKET_NUMBER = 0) is 0.

5286

Performance Schema Summary Tables

• The value of BUCKET_TIMER_LOW for a bucket (BUCKET_NUMBER = k) is the same as
BUCKET_TIMER_HIGH for the previous bucket (BUCKET_NUMBER = k−1)

• The last bucket is a catchall for statements that have a latency exceeding previous buckets in the
histogram.

• COUNT_BUCKET

The number of statements measured with a latency in the interval from BUCKET_TIMER_LOW up to
but not including BUCKET_TIMER_HIGH.

• COUNT_BUCKET_AND_LOWER

The number of statements measured with a latency in the interval from 0 up to but not including
BUCKET_TIMER_HIGH.

• BUCKET_QUANTILE

The proportion of statements that fall into this or a lower bucket. This proportion corresponds
by definition to COUNT_BUCKET_AND_LOWER / SUM(COUNT_BUCKET) and is displayed as a
convenience column.

The statement histogram summary tables have these indexes:

• events_statements_histogram_by_digest:

• Unique index on (SCHEMA_NAME, DIGEST, BUCKET_NUMBER)

• events_statements_histogram_global:

• Primary key on (BUCKET_NUMBER)

TRUNCATE TABLE is permitted for statement histogram summary tables. Truncation sets the
COUNT_BUCKET and COUNT_BUCKET_AND_LOWER columns to 0.

In addition, truncating events_statements_summary_by_digest implicitly
truncates events_statements_histogram_by_digest, and truncating
events_statements_summary_global_by_event_name implicitly truncates
events_statements_histogram_global.

29.12.20.5 Transaction Summary Tables

The Performance Schema maintains tables for collecting current and recent transaction events, and
aggregates that information in summary tables. Section 29.12.7, “Performance Schema Transaction
Tables” describes the events on which transaction summaries are based. See that discussion for
information about the content of transaction events, the current and historical transaction event tables,
and how to control transaction event collection, which is disabled by default.

Example transaction event summary information:

mysql> SELECT *
 FROM performance_schema.events_transactions_summary_global_by_event_name
 LIMIT 1\G
*************************** 1. row ***************************
 EVENT_NAME: transaction
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 19550092000
 MIN_TIMER_WAIT: 2954148000
 AVG_TIMER_WAIT: 3910018000
 MAX_TIMER_WAIT: 5486275000
 COUNT_READ_WRITE: 5
SUM_TIMER_READ_WRITE: 19550092000

5287

Performance Schema Summary Tables

MIN_TIMER_READ_WRITE: 2954148000
AVG_TIMER_READ_WRITE: 3910018000
MAX_TIMER_READ_WRITE: 5486275000
 COUNT_READ_ONLY: 0
 SUM_TIMER_READ_ONLY: 0
 MIN_TIMER_READ_ONLY: 0
 AVG_TIMER_READ_ONLY: 0
 MAX_TIMER_READ_ONLY: 0

Each transaction summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table:

• events_transactions_summary_by_account_by_event_name has USER, HOST, and
EVENT_NAME columns. Each row summarizes events for a given account (user and host
combination) and event name.

• events_transactions_summary_by_host_by_event_name has HOST and EVENT_NAME
columns. Each row summarizes events for a given host and event name.

• events_transactions_summary_by_thread_by_event_name has THREAD_ID and
EVENT_NAME columns. Each row summarizes events for a given thread and event name.

• events_transactions_summary_by_user_by_event_name has USER and EVENT_NAME
columns. Each row summarizes events for a given user and event name.

• events_transactions_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name.

Each transaction summary table has these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns are analogous to the columns of the same names in the wait event summary tables
(see Section 29.12.20.1, “Wait Event Summary Tables”), except that the transaction summary tables
aggregate events from events_transactions_current rather than events_waits_current.
These columns summarize read-write and read-only transactions.

• COUNT_READ_WRITE, SUM_TIMER_READ_WRITE, MIN_TIMER_READ_WRITE,
AVG_TIMER_READ_WRITE, MAX_TIMER_READ_WRITE

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-write
transactions only. The transaction access mode specifies whether transactions operate in read/write
or read-only mode.

• COUNT_READ_ONLY, SUM_TIMER_READ_ONLY, MIN_TIMER_READ_ONLY,
AVG_TIMER_READ_ONLY, MAX_TIMER_READ_ONLY

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-only
transactions only. The transaction access mode specifies whether transactions operate in read/write
or read-only mode.

The transaction summary tables have these indexes:

• events_transactions_summary_by_account_by_event_name:

• Primary key on (USER, HOST, EVENT_NAME)

• events_transactions_summary_by_host_by_event_name:

• Primary key on (HOST, EVENT_NAME)

• events_transactions_summary_by_thread_by_event_name:

5288

Performance Schema Summary Tables

• Primary key on (THREAD_ID, EVENT_NAME)

• events_transactions_summary_by_user_by_event_name:

• Primary key on (USER, EVENT_NAME)

• events_transactions_summary_global_by_event_name:

• Primary key on (EVENT_NAME)

TRUNCATE TABLE is permitted for transaction summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each transaction summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_transactions_summary_global_by_event_name. For details, see Section 29.12.8,
“Performance Schema Connection Tables”.

Transaction Aggregation Rules

Transaction event collection occurs without regard to isolation level, access mode, or autocommit
mode.

Transaction event collection occurs for all non-aborted transactions initiated by the server, including
empty transactions.

Read-write transactions are generally more resource intensive than read-only transactions, therefore
transaction summary tables include separate aggregate columns for read-write and read-only
transactions.

Resource requirements may also vary with transaction isolation level. However, presuming that only
one isolation level would be used per server, aggregation by isolation level is not provided.

29.12.20.6 Object Wait Summary Table

The Performance Schema maintains the objects_summary_global_by_type table for aggregating
object wait events.

Example object wait event summary information:

mysql> SELECT * FROM performance_schema.objects_summary_global_by_type\G
...
*************************** 3. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: test
 OBJECT_NAME: t
 COUNT_STAR: 3
SUM_TIMER_WAIT: 263126976
MIN_TIMER_WAIT: 1522272
AVG_TIMER_WAIT: 87708678
MAX_TIMER_WAIT: 258428280
...
*************************** 10. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: mysql
 OBJECT_NAME: user
 COUNT_STAR: 14
SUM_TIMER_WAIT: 365567592

5289

Performance Schema Summary Tables

MIN_TIMER_WAIT: 1141704
AVG_TIMER_WAIT: 26111769
MAX_TIMER_WAIT: 334783032
...

The objects_summary_global_by_type table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. Each row summarizes
events for the given object.

objects_summary_global_by_type has the same summary columns as the
events_waits_summary_by_xxx tables. See Section 29.12.20.1, “Wait Event Summary Tables”.

The objects_summary_global_by_type table has these indexes:

• Primary key on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

TRUNCATE TABLE is permitted for the object summary table. It resets the summary columns to zero
rather than removing rows.

29.12.20.7 File I/O Summary Tables

The Performance Schema maintains file I/O summary tables that aggregate information about I/O
operations.

Example file I/O event summary information:

mysql> SELECT * FROM performance_schema.file_summary_by_event_name\G
...
*************************** 2. row ***************************
 EVENT_NAME: wait/io/file/sql/binlog
 COUNT_STAR: 31
 SUM_TIMER_WAIT: 8243784888
 MIN_TIMER_WAIT: 0
 AVG_TIMER_WAIT: 265928484
 MAX_TIMER_WAIT: 6490658832
...
mysql> SELECT * FROM performance_schema.file_summary_by_instance\G
...
*************************** 2. row ***************************
 FILE_NAME: /var/mysql/share/english/errmsg.sys
 EVENT_NAME: wait/io/file/sql/ERRMSG
 EVENT_NAME: wait/io/file/sql/ERRMSG
 OBJECT_INSTANCE_BEGIN: 4686193384
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 13990154448
 MIN_TIMER_WAIT: 26349624
 AVG_TIMER_WAIT: 2798030607
 MAX_TIMER_WAIT: 8150662536
...

Each file I/O summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• file_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a
given event name.

• file_summary_by_instance has FILE_NAME, EVENT_NAME, and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given file and event name.

Each file I/O summary table has the following summary columns containing aggregated values. Some
columns are more general and have values that are the same as the sum of the values of more fine-
grained columns. In this way, aggregations at higher levels are available directly without the need for
user-defined views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

5290

Performance Schema Summary Tables

These columns aggregate all I/O operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all read operations, including FGETS, FGETC, FREAD, and READ.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all write operations, including FPUTS, FPUTC, FPRINTF, VFPRINTF,
FWRITE, and PWRITE.

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other I/O operations, including CREATE, DELETE, OPEN, CLOSE,
STREAM_OPEN, STREAM_CLOSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSIZE, RENAME, and SYNC.
There are no byte counts for these operations.

The file I/O summary tables have these indexes:

• file_summary_by_event_name:

• Primary key on (EVENT_NAME)

• file_summary_by_instance:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (FILE_NAME)

• Index on (EVENT_NAME)

TRUNCATE TABLE is permitted for file I/O summary tables. It resets the summary columns to zero
rather than removing rows.

The MySQL server uses several techniques to avoid I/O operations by caching information read from
files, so it is possible that statements you might expect to result in I/O events do not do so. You may be
able to ensure that I/O does occur by flushing caches or restarting the server to reset its state.

29.12.20.8 Table I/O and Lock Wait Summary Tables

The following sections describe the table I/O and lock wait summary tables:

• table_io_waits_summary_by_index_usage: Table I/O waits per index

• table_io_waits_summary_by_table: Table I/O waits per table

• table_lock_waits_summary_by_table: Table lock waits per table

The table_io_waits_summary_by_table Table

The table_io_waits_summary_by_table table aggregates all table I/O wait events, as generated
by the wait/io/table/sql/handler instrument. The grouping is by table.

The table_io_waits_summary_by_table table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have
the same meaning as in the events_waits_current table. They identify the table to which the row
applies.

table_io_waits_summary_by_table has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values

5291

Performance Schema Summary Tables

that are the same as the sum of the values of more fine-grained columns. For example, columns that
aggregate all writes hold the sum of the corresponding columns that aggregate inserts, updates, and
deletes. In this way, aggregations at higher levels are available directly without the need for user-
defined views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read operations. They are the same as the sum of the corresponding
xxx_FETCH columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE

These columns aggregate all write operations. They are the same as the sum of the corresponding
xxx_INSERT, xxx_UPDATE, and xxx_DELETE columns.

• COUNT_FETCH, SUM_TIMER_FETCH, MIN_TIMER_FETCH, AVG_TIMER_FETCH,
MAX_TIMER_FETCH

These columns aggregate all fetch operations.

• COUNT_INSERT, SUM_TIMER_INSERT, MIN_TIMER_INSERT, AVG_TIMER_INSERT,
MAX_TIMER_INSERT

These columns aggregate all insert operations.

• COUNT_UPDATE, SUM_TIMER_UPDATE, MIN_TIMER_UPDATE, AVG_TIMER_UPDATE,
MAX_TIMER_UPDATE

These columns aggregate all update operations.

• COUNT_DELETE, SUM_TIMER_DELETE, MIN_TIMER_DELETE, AVG_TIMER_DELETE,
MAX_TIMER_DELETE

These columns aggregate all delete operations.

The table_io_waits_summary_by_table table has these indexes:

• Unique index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. Truncating this table also truncates the
table_io_waits_summary_by_index_usage table.

The table_io_waits_summary_by_index_usage Table

The table_io_waits_summary_by_index_usage table aggregates all table index I/O wait events,
as generated by the wait/io/table/sql/handler instrument. The grouping is by table index.

The columns of table_io_waits_summary_by_index_usage are nearly identical to
table_io_waits_summary_by_table. The only difference is the additional group column,
INDEX_NAME, which corresponds to the name of the index that was used when the table I/O wait event
was recorded:

• A value of PRIMARY indicates that table I/O used the primary index.

• A value of NULL means that table I/O used no index.

5292

Performance Schema Summary Tables

• Inserts are counted against INDEX_NAME = NULL.

The table_io_waits_summary_by_index_usage table has these indexes:

• Unique index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME, INDEX_NAME)

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. This table is also truncated by truncation of the
table_io_waits_summary_by_table table. A DDL operation that changes the index structure of a
table may cause the per-index statistics to be reset.

The table_lock_waits_summary_by_table Table

The table_lock_waits_summary_by_table table aggregates all table lock wait events, as
generated by the wait/lock/table/sql/handler instrument. The grouping is by table.

This table contains information about internal and external locks:

• An internal lock corresponds to a lock in the SQL layer. This is currently implemented by a call to
thr_lock(). In event rows, these locks are distinguished by the OPERATION column, which has
one of these values:

read normal
read with shared locks
read high priority
read no insert
write allow write
write concurrent insert
write delayed
write low priority
write normal

• An external lock corresponds to a lock in the storage engine layer. This is currently implemented
by a call to handler::external_lock(). In event rows, these locks are distinguished by the
OPERATION column, which has one of these values:

read external
write external

The table_lock_waits_summary_by_table table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have
the same meaning as in the events_waits_current table. They identify the table to which the row
applies.

table_lock_waits_summary_by_table has the following summary columns containing
aggregated values. As indicated in the column descriptions, some columns are more general and have
values that are the same as the sum of the values of more fine-grained columns. For example, columns
that aggregate all locks hold the sum of the corresponding columns that aggregate read and write
locks. In this way, aggregations at higher levels are available directly without the need for user-defined
views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all lock operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read-lock operations. They are the same as the sum
of the corresponding xxx_READ_NORMAL, xxx_READ_WITH_SHARED_LOCKS,
xxx_READ_HIGH_PRIORITY, and xxx_READ_NO_INSERT columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE

5293

Performance Schema Summary Tables

These columns aggregate all write-lock operations. They are the same as the sum of
the corresponding xxx_WRITE_ALLOW_WRITE, xxx_WRITE_CONCURRENT_INSERT,
xxx_WRITE_LOW_PRIORITY, and xxx_WRITE_NORMAL columns.

• COUNT_READ_NORMAL, SUM_TIMER_READ_NORMAL, MIN_TIMER_READ_NORMAL,
AVG_TIMER_READ_NORMAL, MAX_TIMER_READ_NORMAL

These columns aggregate internal read locks.

• COUNT_READ_WITH_SHARED_LOCKS, SUM_TIMER_READ_WITH_SHARED_LOCKS,
MIN_TIMER_READ_WITH_SHARED_LOCKS, AVG_TIMER_READ_WITH_SHARED_LOCKS,
MAX_TIMER_READ_WITH_SHARED_LOCKS

These columns aggregate internal read locks.

• COUNT_READ_HIGH_PRIORITY, SUM_TIMER_READ_HIGH_PRIORITY,
MIN_TIMER_READ_HIGH_PRIORITY, AVG_TIMER_READ_HIGH_PRIORITY,
MAX_TIMER_READ_HIGH_PRIORITY

These columns aggregate internal read locks.

• COUNT_READ_NO_INSERT, SUM_TIMER_READ_NO_INSERT, MIN_TIMER_READ_NO_INSERT,
AVG_TIMER_READ_NO_INSERT, MAX_TIMER_READ_NO_INSERT

These columns aggregate internal read locks.

• COUNT_READ_EXTERNAL, SUM_TIMER_READ_EXTERNAL, MIN_TIMER_READ_EXTERNAL,
AVG_TIMER_READ_EXTERNAL, MAX_TIMER_READ_EXTERNAL

These columns aggregate external read locks.

• COUNT_WRITE_ALLOW_WRITE, SUM_TIMER_WRITE_ALLOW_WRITE,
MIN_TIMER_WRITE_ALLOW_WRITE, AVG_TIMER_WRITE_ALLOW_WRITE,
MAX_TIMER_WRITE_ALLOW_WRITE

These columns aggregate internal write locks.

• COUNT_WRITE_CONCURRENT_INSERT, SUM_TIMER_WRITE_CONCURRENT_INSERT,
MIN_TIMER_WRITE_CONCURRENT_INSERT, AVG_TIMER_WRITE_CONCURRENT_INSERT,
MAX_TIMER_WRITE_CONCURRENT_INSERT

These columns aggregate internal write locks.

• COUNT_WRITE_LOW_PRIORITY, SUM_TIMER_WRITE_LOW_PRIORITY,
MIN_TIMER_WRITE_LOW_PRIORITY, AVG_TIMER_WRITE_LOW_PRIORITY,
MAX_TIMER_WRITE_LOW_PRIORITY

These columns aggregate internal write locks.

• COUNT_WRITE_NORMAL, SUM_TIMER_WRITE_NORMAL, MIN_TIMER_WRITE_NORMAL,
AVG_TIMER_WRITE_NORMAL, MAX_TIMER_WRITE_NORMAL

These columns aggregate internal write locks.

• COUNT_WRITE_EXTERNAL, SUM_TIMER_WRITE_EXTERNAL, MIN_TIMER_WRITE_EXTERNAL,
AVG_TIMER_WRITE_EXTERNAL, MAX_TIMER_WRITE_EXTERNAL

These columns aggregate external write locks.

The table_lock_waits_summary_by_table table has these indexes:

• Unique index on (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

5294

Performance Schema Summary Tables

TRUNCATE TABLE is permitted for table lock summary tables. It resets the summary columns to zero
rather than removing rows.

29.12.20.9 Socket Summary Tables

These socket summary tables aggregate timer and byte count information for socket operations:

• socket_summary_by_event_name: Aggregate timer and byte count statistics generated by the
wait/io/socket/* instruments for all socket I/O operations, per socket instrument.

• socket_summary_by_instance: Aggregate timer and byte count statistics generated by the
wait/io/socket/* instruments for all socket I/O operations, per socket instance. When a
connection terminates, the row in socket_summary_by_instance corresponding to it is deleted.

The socket summary tables do not aggregate waits generated by idle events while sockets are
waiting for the next request from the client. For idle event aggregations, use the wait-event summary
tables; see Section 29.12.20.1, “Wait Event Summary Tables”.

Each socket summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• socket_summary_by_event_name has an EVENT_NAME column. Each row summarizes events
for a given event name.

• socket_summary_by_instance has an OBJECT_INSTANCE_BEGIN column. Each row
summarizes events for a given object.

Each socket summary table has these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all receive operations (RECV, RECVFROM, and RECVMSG).

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all send operations (SEND, SENDTO, and SENDMSG).

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other socket operations, such as CONNECT, LISTEN, ACCEPT, CLOSE,
and SHUTDOWN. There are no byte counts for these operations.

The socket_summary_by_instance table also has an EVENT_NAME column that indicates the class
of the socket: client_connection, server_tcpip_socket, server_unix_socket. This column
can be grouped on to isolate, for example, client activity from that of the server listening sockets.

The socket summary tables have these indexes:

• socket_summary_by_event_name:

• Primary key on (EVENT_NAME)

• socket_summary_by_instance:

• Primary key on (OBJECT_INSTANCE_BEGIN)

• Index on (EVENT_NAME)

5295

Performance Schema Summary Tables

TRUNCATE TABLE is permitted for socket summary tables. Except for
events_statements_summary_by_digest, it resets the summary columns to zero rather than
removing rows.

29.12.20.10 Memory Summary Tables

The Performance Schema instruments memory usage and aggregates memory usage statistics,
detailed by these factors:

• Type of memory used (various caches, internal buffers, and so forth)

• Thread, account, user, host indirectly performing the memory operation

The Performance Schema instruments the following aspects of memory use

• Memory sizes used

• Operation counts

• Low and high water marks

Memory sizes help to understand or tune the memory consumption of the server.

Operation counts help to understand or tune the overall pressure the server is putting on the memory
allocator, which has an impact on performance. Allocating a single byte one million times is not the
same as allocating one million bytes a single time; tracking both sizes and counts can expose the
difference.

Low and high water marks are critical to detect workload spikes, overall workload stability, and possible
memory leaks.

Memory summary tables do not contain timing information because memory events are not timed.

For information about collecting memory usage data, see Memory Instrumentation Behavior.

Example memory event summary information:

mysql> SELECT *
 FROM performance_schema.memory_summary_global_by_event_name
 WHERE EVENT_NAME = 'memory/sql/TABLE'\G
*************************** 1. row ***************************
 EVENT_NAME: memory/sql/TABLE
 COUNT_ALLOC: 1381
 COUNT_FREE: 924
 SUM_NUMBER_OF_BYTES_ALLOC: 2059873
 SUM_NUMBER_OF_BYTES_FREE: 1407432
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 457
 HIGH_COUNT_USED: 461
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 652441
 HIGH_NUMBER_OF_BYTES_USED: 669269

Each memory summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• memory_summary_by_account_by_event_name has USER, HOST, and EVENT_NAME columns.
Each row summarizes events for a given account (user and host combination) and event name.

• memory_summary_by_host_by_event_name has HOST and EVENT_NAME columns. Each row
summarizes events for a given host and event name.

• memory_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME columns.
Each row summarizes events for a given thread and event name.

5296

Performance Schema Summary Tables

• memory_summary_by_user_by_event_name has USER and EVENT_NAME columns. Each row
summarizes events for a given user and event name.

• memory_summary_global_by_event_name has an EVENT_NAME column. Each row summarizes
events for a given event name.

Each memory summary table has these summary columns containing aggregated values:

• COUNT_ALLOC, COUNT_FREE

The aggregated numbers of calls to memory-allocation and memory-free functions.

• SUM_NUMBER_OF_BYTES_ALLOC, SUM_NUMBER_OF_BYTES_FREE

The aggregated sizes of allocated and freed memory blocks.

• CURRENT_COUNT_USED

The aggregated number of currently allocated blocks that have not been freed yet. This is a
convenience column, equal to COUNT_ALLOC − COUNT_FREE.

• CURRENT_NUMBER_OF_BYTES_USED

The aggregated size of currently allocated memory blocks that have not been freed yet. This is a
convenience column, equal to SUM_NUMBER_OF_BYTES_ALLOC − SUM_NUMBER_OF_BYTES_FREE.

• LOW_COUNT_USED, HIGH_COUNT_USED

The low and high water marks corresponding to the CURRENT_COUNT_USED column.

• LOW_NUMBER_OF_BYTES_USED, HIGH_NUMBER_OF_BYTES_USED

The low and high water marks corresponding to the CURRENT_NUMBER_OF_BYTES_USED column.

The memory summary tables have these indexes:

• memory_summary_by_account_by_event_name:

• Primary key on (USER, HOST, EVENT_NAME)

• memory_summary_by_host_by_event_name:

• Primary key on (HOST, EVENT_NAME)

• memory_summary_by_thread_by_event_name:

• Primary key on (THREAD_ID, EVENT_NAME)

• memory_summary_by_user_by_event_name:

• Primary key on (USER, EVENT_NAME)

• memory_summary_global_by_event_name:

• Primary key on (EVENT_NAME)

TRUNCATE TABLE is permitted for memory summary tables. It has these effects:

• In general, truncation resets the baseline for statistics, but does not change the server state. That is,
truncating a memory table does not free memory.

• COUNT_ALLOC and COUNT_FREE are reset to a new baseline, by reducing each counter by the same
value.

5297

Performance Schema Summary Tables

• Likewise, SUM_NUMBER_OF_BYTES_ALLOC and SUM_NUMBER_OF_BYTES_FREE are reset to a new
baseline.

• LOW_COUNT_USED and HIGH_COUNT_USED are reset to CURRENT_COUNT_USED.

• LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED are reset to
CURRENT_NUMBER_OF_BYTES_USED.

In addition, each memory summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
memory_summary_global_by_event_name. For details, see Section 29.12.8, “Performance
Schema Connection Tables”.

Memory Instrumentation Behavior

Memory instruments are listed in the setup_instruments table and have names of the form
memory/code_area/instrument_name. Memory instrumentation is enabled by default.

Instruments named with the prefix memory/performance_schema/ expose how much memory is
allocated for internal buffers in the Performance Schema itself. The memory/performance_schema/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the memory_summary_global_by_event_name table.

To control memory instrumentation state at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='memory/%=ON'

• Disable:

[mysqld]
performance-schema-instrument='memory/%=OFF'

To control memory instrumentation state at runtime, update the ENABLED column of the relevant
instruments in the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES'
WHERE NAME LIKE 'memory/%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'memory/%';

For memory instruments, the TIMED column in setup_instruments is ignored because memory
operations are not timed.

When a thread in the server executes a memory allocation that has been instrumented, these rules
apply:

• If the thread is not instrumented or the memory instrument is not enabled, the memory block
allocated is not instrumented.

• Otherwise (that is, both the thread and the instrument are enabled), the memory block allocated is
instrumented.

For deallocation, these rules apply:

5298

Performance Schema Summary Tables

• If a memory allocation operation was instrumented, the corresponding free operation is instrumented,
regardless of the current instrument or thread enabled status.

• If a memory allocation operation was not instrumented, the corresponding free operation is not
instrumented, regardless of the current instrument or thread enabled status.

For the per-thread statistics, the following rules apply.

When an instrumented memory block of size N is allocated, the Performance Schema makes these
updates to memory summary table columns:

• COUNT_ALLOC: Increased by 1

• CURRENT_COUNT_USED: Increased by 1

• HIGH_COUNT_USED: Increased if CURRENT_COUNT_USED is a new maximum

• SUM_NUMBER_OF_BYTES_ALLOC: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Increased by N

• HIGH_NUMBER_OF_BYTES_USED: Increased if CURRENT_NUMBER_OF_BYTES_USED is a new
maximum

When an instrumented memory block is deallocated, the Performance Schema makes these updates
to memory summary table columns:

• COUNT_FREE: Increased by 1

• CURRENT_COUNT_USED: Decreased by 1

• LOW_COUNT_USED: Decreased if CURRENT_COUNT_USED is a new minimum

• SUM_NUMBER_OF_BYTES_FREE: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Decreased by N

• LOW_NUMBER_OF_BYTES_USED: Decreased if CURRENT_NUMBER_OF_BYTES_USED is a new
minimum

For higher-level aggregates (global, by account, by user, by host), the same rules apply as expected
for low and high water marks.

• LOW_COUNT_USED and LOW_NUMBER_OF_BYTES_USED are lower estimates. The value reported
by the Performance Schema is guaranteed to be less than or equal to the lowest count or size of
memory effectively used at runtime.

• HIGH_COUNT_USED and HIGH_NUMBER_OF_BYTES_USED are higher estimates. The value reported
by the Performance Schema is guaranteed to be greater than or equal to the highest count or size of
memory effectively used at runtime.

For lower estimates in summary tables other than memory_summary_global_by_event_name, it is
possible for values to go negative if memory ownership is transferred between threads.

Here is an example of estimate computation; but note that estimate implementation is subject to
change:

Thread 1 uses memory in the range from 1MB to 2MB during execution, as reported by
the LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED columns of the
memory_summary_by_thread_by_event_name table.

Thread 2 uses memory in the range from 10MB to 12MB during execution, as reported likewise.

5299

Performance Schema Summary Tables

When these two threads belong to the same user account, the per-account summary
estimates that this account used memory in the range from 11MB to 14MB. That
is, the LOW_NUMBER_OF_BYTES_USED for the higher level aggregate is the sum
of each LOW_NUMBER_OF_BYTES_USED (assuming the worst case). Likewise, the
HIGH_NUMBER_OF_BYTES_USED for the higher level aggregate is the sum of each
HIGH_NUMBER_OF_BYTES_USED (assuming the worst case).

11MB is a lower estimate that can occur only if both threads hit the low usage mark at the same time.

14MB is a higher estimate that can occur only if both threads hit the high usage mark at the same time.

The real memory usage for this account could have been in the range from 11.5MB to 13.5MB.

For capacity planning, reporting the worst case is actually the desired behavior, as it shows what can
potentially happen when sessions are uncorrelated, which is typically the case.

29.12.20.11 Error Summary Tables

The Performance Schema maintains summary tables for aggregating statistical information about
server errors (and warnings). For a list of server errors, see Server Error Message Reference.

Collection of error information is controlled by the error instrument, which is enabled by default.
Timing information is not collected.

Each error summary table has three columns that identify the error:

• ERROR_NUMBER is the numeric error value. The value is unique.

• ERROR_NAME is the symbolic error name corresponding to the ERROR_NUMBER value. The value is
unique.

• SQLSTATE is the SQLSTATE value corresponding to the ERROR_NUMBER value. The value is not
necessarily unique.

For example, if ERROR_NUMBER is 1050, ERROR_NAME is ER_TABLE_EXISTS_ERROR and SQLSTATE
is 42S01.

Example error event summary information:

mysql> SELECT *
 FROM performance_schema.events_errors_summary_global_by_error
 WHERE SUM_ERROR_RAISED <> 0\G
*************************** 1. row ***************************
 ERROR_NUMBER: 1064
 ERROR_NAME: ER_PARSE_ERROR
 SQL_STATE: 42000
 SUM_ERROR_RAISED: 1
SUM_ERROR_HANDLED: 0
 FIRST_SEEN: 2016-06-28 07:34:02
 LAST_SEEN: 2016-06-28 07:34:02
*************************** 2. row ***************************
 ERROR_NUMBER: 1146
 ERROR_NAME: ER_NO_SUCH_TABLE
 SQL_STATE: 42S02
 SUM_ERROR_RAISED: 2
SUM_ERROR_HANDLED: 0
 FIRST_SEEN: 2016-06-28 07:34:05
 LAST_SEEN: 2016-06-28 07:36:18
*************************** 3. row ***************************
 ERROR_NUMBER: 1317
 ERROR_NAME: ER_QUERY_INTERRUPTED
 SQL_STATE: 70100
 SUM_ERROR_RAISED: 1
SUM_ERROR_HANDLED: 0
 FIRST_SEEN: 2016-06-28 11:01:49
 LAST_SEEN: 2016-06-28 11:01:49

5300

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_table_exists_error

Performance Schema Summary Tables

Each error summary table has one or more grouping columns to indicate how the table aggregates
errors:

• events_errors_summary_by_account_by_error has USER, HOST, and ERROR_NUMBER
columns. Each row summarizes events for a given account (user and host combination) and error.

• events_errors_summary_by_host_by_error has HOST and ERROR_NUMBER columns. Each
row summarizes events for a given host and error.

• events_errors_summary_by_thread_by_error has THREAD_ID and ERROR_NUMBER
columns. Each row summarizes events for a given thread and error.

• events_errors_summary_by_user_by_error has USER and ERROR_NUMBER columns. Each
row summarizes events for a given user and error.

• events_errors_summary_global_by_error has an ERROR_NUMBER column. Each row
summarizes events for a given error.

Each error summary table has these summary columns containing aggregated values:

• SUM_ERROR_RAISED

This column aggregates the number of times the error occurred.

• SUM_ERROR_HANDLED

This column aggregates the number of times the error was handled by an SQL exception handler.

• FIRST_SEEN, LAST_SEEN

Timestamp indicating when the error was first seen and most recently seen.

A NULL row in each error summary table is used to aggregate statistics for all errors that lie out of
range of the instrumented errors. For example, if MySQL Server errors lie in the range from M to N and
an error is raised with number Q not in that range, the error is aggregated in the NULL row. The NULL
row is the row with ERROR_NUMBER=0, ERROR_NAME=NULL, and SQLSTATE=NULL.

The error summary tables have these indexes:

• events_errors_summary_by_account_by_error:

• Primary key on (USER, HOST, ERROR_NUMBER)

• events_errors_summary_by_host_by_error:

• Primary key on (HOST, ERROR_NUMBER)

• events_errors_summary_by_thread_by_error:

• Primary key on (THREAD_ID, ERROR_NUMBER)

• events_errors_summary_by_user_by_error:

• Primary key on (USER, ERROR_NUMBER)

• events_errors_summary_global_by_error:

• Primary key on (ERROR_NUMBER)

TRUNCATE TABLE is permitted for error summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero or NULL rather than removing rows.

5301

Performance Schema Summary Tables

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero or NULL for the
remaining rows.

In addition, each error summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_errors_summary_global_by_error. For details, see Section 29.12.8, “Performance
Schema Connection Tables”.

29.12.20.12 Status Variable Summary Tables

The Performance Schema makes status variable information available in the tables described in
Section 29.12.15, “Performance Schema Status Variable Tables”. It also makes aggregated status
variable information available in summary tables, described here. Each status variable summary table
has one or more grouping columns to indicate how the table aggregates status values:

• status_by_account has USER, HOST, and VARIABLE_NAME columns to summarize status
variables by account.

• status_by_host has HOST and VARIABLE_NAME columns to summarize status variables by the
host from which clients connected.

• status_by_user has USER and VARIABLE_NAME columns to summarize status variables by client
user name.

Each status variable summary table has this summary column containing aggregated values:

• VARIABLE_VALUE

The aggregated status variable value for active and terminated sessions.

The status variable summary tables have these indexes:

• status_by_account:

• Primary key on (USER, HOST, VARIABLE_NAME)

• status_by_host:

• Primary key on (HOST, VARIABLE_NAME)

• status_by_user:

• Primary key on (USER, VARIABLE_NAME)

The meaning of “account” in these tables is similar to its meaning in the MySQL grant tables in
the mysql system database, in the sense that the term refers to a combination of user and host
values. They differ in that, for grant tables, the host part of an account can be a pattern, whereas for
Performance Schema tables, the host value is always a specific nonpattern host name.

Account status is collected when sessions terminate. The session status counters are added to the
global status counters and the corresponding account status counters. If account statistics are not
collected, the session status is added to host and user status, if host and user status are collected.

Account, host, and user statistics are not collected if the performance_schema_accounts_size,
performance_schema_hosts_size, and performance_schema_users_size system variables,
respectively, are set to 0.

The Performance Schema supports TRUNCATE TABLE for status variable summary tables as follows;
in all cases, status for active sessions is unaffected:

• status_by_account: Aggregates account status from terminated sessions to user and host status,
then resets account status.

5302

Performance Schema Miscellaneous Tables

• status_by_host: Resets aggregated host status from terminated sessions.

• status_by_user: Resets aggregated user status from terminated sessions.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

29.12.21 Performance Schema Miscellaneous Tables

The following sections describe tables that do not fall into the table categories discussed in the
preceding sections:

• component_scheduler_tasks: The current status of each scheduled task.

• error_log: The most recent events written to the error log.

• host_cache: Information from the internal host cache.

• innodb_redo_log_files: Information about InnoDB redo log files.

• log_status: Information about server logs for backup purposes.

• performance_timers: Which event timers are available.

• processlist: Information about server processes.

• threads: Information about server threads.

• tls_channel_status: TLS context properties for connection interfaces.

• user_defined_functions: Loadable functions registered by a component, plugin, or CREATE
FUNCTION statement.

29.12.21.1 The component_scheduler_tasks Table

The component_scheduler_tasks table contains a row for each scheduled task. Each row
contains information about the ongoing progress of a task that applications, components, and
plugins can implement, optionally, using the scheduler component (see Section 7.5.5, “Scheduler
Component”). For example, the audit_log server plugin utilizes the scheduler component to run a
regular, recurring flush of its memory cache:

mysql> select * from performance_schema.component_scheduler_tasks\G
*************************** 1. row ***************************
 NAME: plugin_audit_log_flush_scheduler
 STATUS: WAITING
 COMMENT: Registered by the audit log plugin. Does a periodic refresh of the audit log
 in-memory rules cache by calling audit_log_flush
INTERVAL_SECONDS: 100
 TIMES_RUN: 5
 TIMES_FAILED: 0
1 row in set (0.02 sec)

The component_scheduler_tasks table has the following columns:

• NAME

The name supplied during the registration.

• STATUS

The values are:

• RUNNING if the task is active and being executed.

5303

Performance Schema Miscellaneous Tables

• WAITING if the task is idle and waiting for the background thread to pick it up or waiting for the
next time it needs to be run to arrive.

• COMMENT

A compile-time comment provided by an application, component, or plugin. In the previous example,
MySQL Enterprise Audit provides the comment using a server plugin named audit_log.

• INTERVAL_SECONDS

The time in seconds to run a task, which an application, component, or plugin
provides. MySQL Enterprise Audit enables you to specify this value using the
audit_log_flush_interval_seconds system variable.

• TIMES_RUN

A counter that increments by one every time the task runs successfully. It wraps around.

• TIMES_FAILED

A counter that increments by one every time the execution of the task fails. It wraps around.

29.12.21.2 The error_log Table

Of the logs the MySQL server maintains, one is the error log to which it writes diagnostic messages
(see Section 7.4.2, “The Error Log”). Typically, the server writes diagnostics to a file on the server
host or to a system log service. As of MySQL 8.0.22, depending on error log configuration, the server
can also write the most recent error events to the Performance Schema error_log table. Granting
the SELECT privilege for the error_log table thus gives clients and applications access to error log
contents using SQL queries, enabling DBAs to provide access to the log without the need to permit
direct file system access on the server host.

The error_log table supports focused queries based on its more structured columns. It also includes
the full text of error messages to support more free-form analysis.

The table implementation uses a fixed-size, in-memory ring buffer, with old events automatically
discarded as necessary to make room for new ones.

Example error_log contents:

mysql> SELECT * FROM performance_schema.error_log\G
*************************** 1. row ***************************
 LOGGED: 2020-08-06 09:25:00.338624
 THREAD_ID: 0
 PRIO: System
ERROR_CODE: MY-010116
 SUBSYSTEM: Server
 DATA: mysqld (mysqld 8.0.23) starting as process 96344
*************************** 2. row ***************************
 LOGGED: 2020-08-06 09:25:00.363521
 THREAD_ID: 1
 PRIO: System
ERROR_CODE: MY-013576
 SUBSYSTEM: InnoDB
 DATA: InnoDB initialization has started.
...
*************************** 65. row ***************************
 LOGGED: 2020-08-06 09:25:02.936146
 THREAD_ID: 0
 PRIO: Warning
ERROR_CODE: MY-010068
 SUBSYSTEM: Server
 DATA: CA certificate /var/mysql/sslinfo/cacert.pem is self signed.
...
*************************** 89. row ***************************
 LOGGED: 2020-08-06 09:25:03.112801

5304

Performance Schema Miscellaneous Tables

 THREAD_ID: 0
 PRIO: System
ERROR_CODE: MY-013292
 SUBSYSTEM: Server
 DATA: Admin interface ready for connections, address: '127.0.0.1' port: 33062

The error_log table has the following columns. As indicated in the descriptions, all but the
DATA column correspond to fields of the underlying error event structure, which is described in
Section 7.4.2.3, “Error Event Fields”.

• LOGGED

The event timestamp, with microsecond precision. LOGGED corresponds to the time field of error
events, although with certain potential differences:

• time values in the error log are displayed according to the log_timestamps system variable
setting; see Early-Startup Logging Output Format.

• The LOGGED column stores values using the TIMESTAMP data type, for which values are stored
in UTC but displayed when retrieved in the current session time zone; see Section 13.2.2, “The
DATE, DATETIME, and TIMESTAMP Types”.

To display LOGGED values in the same time zone as displayed in the error log file, first set the
session time zone as follows:

SET @@session.time_zone = @@global.log_timestamps;

If the log_timestamps value is UTC and your system does not have named time zone support
installed (see Section 7.1.15, “MySQL Server Time Zone Support”), set the time zone like this:

SET @@session.time_zone = '+00:00';

• THREAD_ID

The MySQL thread ID. THREAD_ID corresponds to the thread field of error events.

Within the Performance Schema, the THREAD_ID column in the error_log table is most similar to
the PROCESSLIST_ID column of the threads table:

• For foreground threads, THREAD_ID and PROCESSLIST_ID represent a connection identifier.
This is the same value displayed in the ID column of the INFORMATION_SCHEMA PROCESSLIST
table, displayed in the Id column of SHOW PROCESSLIST output, and returned by the
CONNECTION_ID() function within the thread.

• For background threads, THREAD_ID is 0 and PROCESSLIST_ID is NULL.

Many Performance Schema tables other than error_log has a column named THREAD_ID, but in
those tables, the THREAD_ID column is a value assigned internally by the Performance Schema.

• PRIO

The event priority. Permitted values are System, Error, Warning, Note. The PRIO column is
based on the label field of error events, which itself is based on the underlying numeric prio field
value.

• ERROR_CODE

The numeric event error code. ERROR_CODE corresponds to the error_code field of error events.

• SUBSYSTEM

The subsystem in which the event occurred. SUBSYSTEM corresponds to the subsystem field of
error events.

5305

Performance Schema Miscellaneous Tables

• DATA

The text representation of the error event. The format of this value depends on the format produced
by the log sink component that generates the error_log row. For example, if the log sink is
log_sink_internal or log_sink_json, DATA values represent error events in traditional or
JSON format, respectively. (See Section 7.4.2.9, “Error Log Output Format”.)

Because the error log can be reconfigured to change the log sink component that supplies rows to
the error_log table, and because different sinks produce different output formats, it is possible for
rows written to the error_log table at different times to have different DATA formats.

The error_log table has these indexes:

• Primary key on (LOGGED)

• Index on (THREAD_ID)

• Index on (PRIO)

• Index on (ERROR_CODE)

• Index on (SUBSYSTEM)

TRUNCATE TABLE is not permitted for the error_log table.

Implementation and Configuration of the error_log Table

The Performance Schema error_log table is populated by error log sink components that write to the
table in addition to writing formatted error events to the error log. Performance Schema support by log
sinks has two parts:

• A log sink can write new error events to the error_log table as they occur.

• A log sink can provide a parser for extraction of previously written error messages. This enables a
server instance to read messages written to an error log file by the previous instance and store them
in the error_log table. Messages written during shutdown by the previous instance may be useful
for diagnosing why shutdown occurred.

Currently, the traditional-format log_sink_internal and JSON-format log_sink_json sinks
support writing new events to the error_log table and provide a parser for reading previously written
error log files.

The log_error_services system variable controls which log components to enable for error
logging. Its value is a pipeline of log filter and log sink components to be executed in left-to-right order
when error events occur. The log_error_services value pertains to populating the error_log
table as follows:

• At startup, the server examines the log_error_services value and chooses from it the leftmost
log sink that satisfies these conditions:

• A sink that supports the error_log table and provides a parser.

• If none, a sink that supports the error_log table but provides no parser.

If no log sink satisfies those conditions, the error_log table remains empty. Otherwise, if the sink
provides a parser and log configuration enables a previously written error log file to be found, the
server uses the sink parser to read the last part of the file and writes the old events it contains to the
table. The sink then writes new error events to the table as they occur.

• At runtime, if the value of log_error_services changes, the server again examines it, this time
looking for the leftmost enabled log sink that supports the error_log table, regardless of whether it
provides a parser.

5306

Performance Schema Miscellaneous Tables

If no such log sink exists, no additional error events are written to the error_log table. Otherwise,
the newly configured sink writes new error events to the table as they occur.

Any configuration that affects output written to the error log affects error_log table contents. This
includes settings such as those for verbosity, message suppression, and message filtering. It also
applies to information read at startup from a previous log file. For example, messages not written
during a previous server instance configured with low verbosity do not become available if the file is
read by a current instance configured with higher verbosity.

The error_log table is a view on a fixed-size, in-memory ring buffer, with old events automatically
discarded as necessary to make room for new ones. As shown in the following table, several status
variables provide information about ongoing error_log operation.

Status Variable Meaning

Error_log_buffered_bytes Bytes used in table

Error_log_buffered_events Events present in table

Error_log_expired_events Events discarded from table

Error_log_latest_write Time of last write to table

29.12.21.3 The host_cache Table

The MySQL server maintains an in-memory host cache that contains client host name and IP address
information and is used to avoid Domain Name System (DNS) lookups. The host_cache table
exposes the contents of this cache. The host_cache_size system variable controls the size of the
host cache, as well as the size of the host_cache table. For operational and configuration information
about the host cache, see Section 7.1.12.3, “DNS Lookups and the Host Cache”.

Because the host_cache table exposes the contents of the host cache, it can be examined using
SELECT statements. This may help you diagnose the causes of connection problems.

The host_cache table has these columns:

• IP

The IP address of the client that connected to the server, expressed as a string.

• HOST

The resolved DNS host name for that client IP, or NULL if the name is unknown.

• HOST_VALIDATED

Whether the IP-to-host name-to-IP DNS resolution was performed successfully for the client IP.
If HOST_VALIDATED is YES, the HOST column is used as the host name corresponding to the IP
so that additional calls to DNS can be avoided. While HOST_VALIDATED is NO, DNS resolution is
attempted for each connection attempt, until it eventually completes with either a valid result or a
permanent error. This information enables the server to avoid caching bad or missing host names
during temporary DNS failures, which would negatively affect clients forever.

• SUM_CONNECT_ERRORS

The number of connection errors that are deemed “blocking” (assessed against the
max_connect_errors system variable). Only protocol handshake errors are counted, and only for
hosts that passed validation (HOST_VALIDATED = YES).

Once SUM_CONNECT_ERRORS for a given host reaches the value of max_connect_errors,
new connections from that host are blocked. The SUM_CONNECT_ERRORS value can exceed
the max_connect_errors value because multiple connection attempts from a host can occur

5307

Performance Schema Miscellaneous Tables

simultaneously while the host is not blocked. Any or all of them can fail, independently incrementing
SUM_CONNECT_ERRORS, possibly beyond the value of max_connect_errors.

Suppose that max_connect_errors is 200 and SUM_CONNECT_ERRORS for a given host
is 199. If 10 clients attempt to connect from that host simultaneously, none of them are
blocked because SUM_CONNECT_ERRORS has not reached 200. If blocking errors occur for
five of the clients, SUM_CONNECT_ERRORS is increased by one for each client, for a resulting
SUM_CONNECT_ERRORS value of 204. The other five clients succeed and are not blocked because
the value of SUM_CONNECT_ERRORS when their connection attempts began had not reached 200.
New connections from the host that begin after SUM_CONNECT_ERRORS reaches 200 are blocked.

• COUNT_HOST_BLOCKED_ERRORS

The number of connections that were blocked because SUM_CONNECT_ERRORS exceeded the value
of the max_connect_errors system variable.

• COUNT_NAMEINFO_TRANSIENT_ERRORS

The number of transient errors during IP-to-host name DNS resolution.

• COUNT_NAMEINFO_PERMANENT_ERRORS

The number of permanent errors during IP-to-host name DNS resolution.

• COUNT_FORMAT_ERRORS

The number of host name format errors. MySQL does not perform matching of Host column values
in the mysql.user system table against host names for which one or more of the initial components
of the name are entirely numeric, such as 1.2.example.com. The client IP address is used
instead. For the rationale why this type of matching does not occur, see Section 8.2.4, “Specifying
Account Names”.

• COUNT_ADDRINFO_TRANSIENT_ERRORS

The number of transient errors during host name-to-IP reverse DNS resolution.

• COUNT_ADDRINFO_PERMANENT_ERRORS

The number of permanent errors during host name-to-IP reverse DNS resolution.

• COUNT_FCRDNS_ERRORS

The number of forward-confirmed reverse DNS errors. These errors occur when IP-to-host name-to-
IP DNS resolution produces an IP address that does not match the client originating IP address.

• COUNT_HOST_ACL_ERRORS

The number of errors that occur because no users are permitted to connect from the client host. In
such cases, the server returns ER_HOST_NOT_PRIVILEGED and does not even ask for a user name
or password.

• COUNT_NO_AUTH_PLUGIN_ERRORS

The number of errors due to requests for an unavailable authentication plugin. A plugin can be
unavailable if, for example, it was never loaded or a load attempt failed.

• COUNT_AUTH_PLUGIN_ERRORS

The number of errors reported by authentication plugins.

An authentication plugin can report different error codes to indicate the root
cause of a failure. Depending on the type of error, one of these columns is

5308

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_host_not_privileged

Performance Schema Miscellaneous Tables

incremented: COUNT_AUTHENTICATION_ERRORS, COUNT_AUTH_PLUGIN_ERRORS,
COUNT_HANDSHAKE_ERRORS. New return codes are an optional extension to the existing plugin API.
Unknown or unexpected plugin errors are counted in the COUNT_AUTH_PLUGIN_ERRORS column.

• COUNT_HANDSHAKE_ERRORS

The number of errors detected at the wire protocol level.

• COUNT_PROXY_USER_ERRORS

The number of errors detected when proxy user A is proxied to another user B who does not exist.

• COUNT_PROXY_USER_ACL_ERRORS

The number of errors detected when proxy user A is proxied to another user B who does exist but for
whom A does not have the PROXY privilege.

• COUNT_AUTHENTICATION_ERRORS

The number of errors caused by failed authentication.

• COUNT_SSL_ERRORS

The number of errors due to SSL problems.

• COUNT_MAX_USER_CONNECTIONS_ERRORS

The number of errors caused by exceeding per-user connection quotas. See Section 8.2.21, “Setting
Account Resource Limits”.

• COUNT_MAX_USER_CONNECTIONS_PER_HOUR_ERRORS

The number of errors caused by exceeding per-user connections-per-hour quotas. See
Section 8.2.21, “Setting Account Resource Limits”.

• COUNT_DEFAULT_DATABASE_ERRORS

The number of errors related to the default database. For example, the database does not exist or
the user has no privileges to access it.

• COUNT_INIT_CONNECT_ERRORS

The number of errors caused by execution failures of statements in the init_connect system
variable value.

• COUNT_LOCAL_ERRORS

The number of errors local to the server implementation and not related to the network,
authentication, or authorization. For example, out-of-memory conditions fall into this category.

• COUNT_UNKNOWN_ERRORS

The number of other, unknown errors not accounted for by other columns in this table. This column
is reserved for future use, in case new error conditions must be reported, and if preserving the
backward compatibility and structure of the host_cache table is required.

• FIRST_SEEN

The timestamp of the first connection attempt seen from the client in the IP column.

• LAST_SEEN

The timestamp of the most recent connection attempt seen from the client in the IP column.

5309

Performance Schema Miscellaneous Tables

• FIRST_ERROR_SEEN

The timestamp of the first error seen from the client in the IP column.

• LAST_ERROR_SEEN

The timestamp of the most recent error seen from the client in the IP column.

The host_cache table has these indexes:

• Primary key on (IP)

• Index on (HOST)

TRUNCATE TABLE is permitted for the host_cache table. It requires the DROP privilege for the table.
Truncating the table flushes the host cache, which has the effects described in Flushing the Host
Cache.

29.12.21.4 The innodb_redo_log_files Table

The innodb_redo_log_files table contains a row for each active InnoDB redo log file. This table
was introduced in MySQL 8.0.30.

The innodb_redo_log_files table has the following columns:

• FILE_ID

The ID of the redo log file. The value corresponds to the redo log file number.

• FILE_NAME

The path and file name of the redo log file.

• START_LSN

The log sequence number of the first block in the redo log file.

• END_LSN

The log sequence number after the last block in the redo log file.

• SIZE_IN_BYTES

The size of the redo log data in the file, in bytes. Data size is measured from the END_LSN to the
start >START_LSN. The redo log file size on disk is slightly larger due to the file header (2048 bytes),
which is not included in the value reported by this column.

• IS_FULL

Whether the redo log file is full. A value of 0 indicates that free space in the file. A value of 1
indicates that the file is full.

• CONSUMER_LEVEL

Reserved for future use.

29.12.21.5 The log_status Table

The log_status table provides information that enables an online backup tool to copy the required
log files without locking those resources for the duration of the copy process.

When the log_status table is queried, the server blocks logging and related administrative changes
for just long enough to populate the table, then releases the resources. The log_status table informs

5310

Performance Schema Miscellaneous Tables

the online backup which point it should copy up to in the source's binary log and gtid_executed
record, and the relay log for each replication channel. It also provides relevant information for individual
storage engines, such as the last log sequence number (LSN) and the LSN of the last checkpoint taken
for the InnoDB storage engine.

The log_status table has these columns:

• SERVER_UUID

The server UUID for this server instance. This is the generated unique value of the read-only system
variable server_uuid.

• LOCAL

The log position state information from the source, provided as a single JSON object with the
following keys:

binary_log_file The name of the current binary log file.

binary_log_position The current binary log position at the time the log_status table
was accessed.

gtid_executed The current value of the global server variable gtid_executed
at the time the log_status table was accessed. This
information is consistent with the binary_log_file and
binary_log_position keys.

• REPLICATION

A JSON array of channels, each with the following information:

channel_name The name of the replication channel. The default replication
channel's name is the empty string (“”).

relay_log_file The name of the current relay log file for the replication channel.

relay_log_pos The current relay log position at the time the log_status table
was accessed.

• STORAGE_ENGINES

Relevant information from individual storage engines, provided as a JSON object with one key for
each applicable storage engine.

The log_status table has no indexes.

The BACKUP_ADMIN privilege, as well as the SELECT privilege, is required for access to the
log_status table.

TRUNCATE TABLE is not permitted for the log_status table.

29.12.21.6 The performance_timers Table

The performance_timers table shows which event timers are available:

mysql> SELECT * FROM performance_schema.performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168

5311

Performance Schema Miscellaneous Tables

| THREAD_CPU | 339101694 | 1 | 798 |
+-------------+-----------------+------------------+----------------+

If the values associated with a given timer name are NULL, that timer is not supported on your platform.
For an explanation of how event timing occurs, see Section 29.4.1, “Performance Schema Event
Timing”.

The performance_timers table has these columns:

• TIMER_NAME

The timer name.

• TIMER_FREQUENCY

The number of timer units per second. For a cycle timer, the frequency is generally related to
the CPU speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to
2400000000.

• TIMER_RESOLUTION

Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10,
its value increases by 10 each time.

• TIMER_OVERHEAD

The minimal number of cycles of overhead to obtain one timing with the given timer. The
Performance Schema determines this value by invoking the timer 20 times during initialization
and picking the smallest value. The total overhead really is twice this amount because the
instrumentation invokes the timer at the start and end of each event. The timer code is called only for
timed events, so this overhead does not apply for nontimed events.

The performance_timers table has no indexes.

TRUNCATE TABLE is not permitted for the performance_timers table.

29.12.21.7 The processlist Table

The MySQL process list indicates the operations currently being performed by the set of threads
executing within the server. The processlist table is one source of process information. For a
comparison of this table with other sources, see Sources of Process Information.

The processlist table can be queried directly. If you have the PROCESS privilege, you can
see all threads, even those belonging to other users. Otherwise (without the PROCESS privilege),
nonanonymous users have access to information about their own threads but not threads for other
users, and anonymous users have no access to thread information.

Note

If the performance_schema_show_processlist system variable is
enabled, the processlist table also serves as the basis for an alternative
implementation underlying the SHOW PROCESSLIST statement. For details, see
later in this section.

The processlist table contains a row for each server process:

mysql> SELECT * FROM performance_schema.processlist\G
*************************** 1. row ***************************
 ID: 5
 USER: event_scheduler
 HOST: localhost
 DB: NULL
COMMAND: Daemon

5312

Performance Schema Miscellaneous Tables

 TIME: 137
 STATE: Waiting on empty queue
 INFO: NULL
*************************** 2. row ***************************
 ID: 9
 USER: me
 HOST: localhost:58812
 DB: NULL
COMMAND: Sleep
 TIME: 95
 STATE:
 INFO: NULL
*************************** 3. row ***************************
 ID: 10
 USER: me
 HOST: localhost:58834
 DB: test
COMMAND: Query
 TIME: 0
 STATE: executing
 INFO: SELECT * FROM performance_schema.processlist
...

The processlist table has these columns:

• ID

The connection identifier. This is the same value displayed in the Id column of the SHOW
PROCESSLIST statement, displayed in the PROCESSLIST_ID column of the Performance Schema
threads table, and returned by the CONNECTION_ID() function within the thread.

• USER

The MySQL user who issued the statement. A value of system user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an
I/O or SQL thread used on replica hosts. For system user, there is no host specified in the Host
column. unauthenticated user refers to a thread that has become associated with a client
connection but for which authentication of the client user has not yet occurred. event_scheduler
refers to the thread that monitors scheduled events (see Section 27.4, “Using the Event Scheduler”).

Note

A USER value of system user is distinct from the SYSTEM_USER privilege.
The former designates internal threads. The latter distinguishes the system
user and regular user account categories (see Section 8.2.11, “Account
Categories”).

• HOST

The host name of the client issuing the statement (except for system user, for which there is no
host). The host name for TCP/IP connections is reported in host_name:client_port format to
make it easier to determine which client is doing what.

• DB

The default database for the thread, or NULL if none has been selected.

• COMMAND

The type of command the thread is executing on behalf of the client, or Sleep if the session is idle.
For descriptions of thread commands, see Section 10.14, “Examining Server Thread (Process)
Information”. The value of this column corresponds to the COM_xxx commands of the client/server
protocol and Com_xxx status variables. See Section 7.1.10, “Server Status Variables”

• TIME

5313

Performance Schema Miscellaneous Tables

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Section 19.2.3, “Replication Threads”.

• STATE

An action, event, or state that indicates what the thread is doing. For descriptions of STATE values,
see Section 10.14, “Examining Server Thread (Process) Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the INFO value shows the SELECT statement.

• EXECUTION_ENGINE

The query execution engine. The value is either PRIMARY or SECONDARY. For use with HeatWave
Service and HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY engine is
HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition Server (on-
premise), and HeatWave Service without HeatWave, the value is always PRIMARY. This column was
added in MySQL 8.0.29.

The processlist table has these indexes:

• Primary key on (ID)

TRUNCATE TABLE is not permitted for the processlist table.

As mentioned previously, if the performance_schema_show_processlist system variable
is enabled, the processlist table serves as the basis for an alternative implementation of other
process information sources:

• The SHOW PROCESSLIST statement.

• The mysqladmin processlist command (which uses SHOW PROCESSLIST statement).

The default SHOW PROCESSLIST implementation iterates across active threads from within the thread
manager while holding a global mutex. This has negative performance consequences, particularly on
busy systems. The alternative SHOW PROCESSLIST implementation is based on the Performance
Schema processlist table. This implementation queries active thread data from the Performance
Schema rather than the thread manager and does not require a mutex.

MySQL configuration affects processlist table contents as follows:

• Minimum required configuration:

• The MySQL server must be configured and built with thread instrumentation enabled. This is true
by default; it is controlled using the DISABLE_PSI_THREAD CMake option.

• The Performance Schema must be enabled at server startup. This is true by default; it is controlled
using the performance_schema system variable.

With that configuration satisfied, performance_schema_show_processlist enables or disables
the alternative SHOW PROCESSLIST implementation. If the minimum configuration is not satisfied,
the processlist table (and thus SHOW PROCESSLIST) may not return all data.

5314

Performance Schema Miscellaneous Tables

• Recommended configuration:

• To avoid having some threads ignored:

• Leave the performance_schema_max_thread_instances system variable set to its default
or set it at least as great as the max_connections system variable.

• Leave the performance_schema_max_thread_classes system variable set to its default.

• To avoid having some STATE column values be empty, leave the
performance_schema_max_stage_classes system variable set to its default.

The default for those configuration parameters is -1, which causes the Performance Schema to
autosize them at server startup. With the parameters set as indicated, the processlist table (and
thus SHOW PROCESSLIST) produce complete process information.

The preceding configuration parameters affect the contents of the processlist table.
For a given configuration, however, the processlist contents are unaffected by the
performance_schema_show_processlist setting.

The alternative process list implementation does not apply to the INFORMATION_SCHEMA
PROCESSLIST table or the COM_PROCESS_INFO command of the MySQL client/server protocol.

29.12.21.8 The threads Table

The threads table contains a row for each server thread. Each row contains information about a
thread and indicates whether monitoring and historical event logging are enabled for it:

mysql> SELECT * FROM performance_schema.threads\G
*************************** 1. row ***************************
 THREAD_ID: 1
 NAME: thread/sql/main
 TYPE: BACKGROUND
 PROCESSLIST_ID: NULL
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: mysql
 PROCESSLIST_COMMAND: NULL
 PROCESSLIST_TIME: 418094
 PROCESSLIST_STATE: NULL
 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: NULL
 THREAD_OS_ID: 5856
 RESOURCE_GROUP: SYS_default
 EXECUTION_ENGINE: PRIMARY
 CONTROLLED_MEMORY: 1456
MAX_CONTROLLED_MEMORY: 67480
 TOTAL_MEMORY: 1270430
 MAX_TOTAL_MEMORY: 1307317
 TELEMETRY_ACTIVE: NO
...

When the Performance Schema initializes, it populates the threads table based on the threads in
existence then. Thereafter, a new row is added each time the server creates a thread.

The INSTRUMENTED and HISTORY column values for new threads are determined by the contents of
the setup_actors table. For information about how to use the setup_actors table to control these
columns, see Section 29.4.6, “Pre-Filtering by Thread”.

Removal of rows from the threads table occurs when threads end. For a thread associated with a
client session, removal occurs when the session ends. If a client has auto-reconnect enabled and

5315

Performance Schema Miscellaneous Tables

the session reconnects after a disconnect, the session becomes associated with a new row in the
threads table that has a different PROCESSLIST_ID value. The initial INSTRUMENTED and HISTORY
values for the new thread may be different from those of the original thread: The setup_actors table
may have changed in the meantime, and if the INSTRUMENTED or HISTORY value for the original
thread was changed after the row was initialized, the change does not carry over to the new thread.

You can enable or disable thread monitoring (that is, whether events executed by the thread are
instrumented) and historical event logging. To control the initial INSTRUMENTED and HISTORY values
for new foreground threads, use the setup_actors table. To control these aspects of existing
threads, set the INSTRUMENTED and HISTORY columns of threads table rows. (For more information
about the conditions under which thread monitoring and historical event logging occur, see the
descriptions of the INSTRUMENTED and HISTORY columns.)

For a comparison of the threads table columns with names having a prefix of PROCESSLIST_ to
other process information sources, see Sources of Process Information.

Important

For thread information sources other than the threads table, information
about threads for other users is shown only if the current user has the PROCESS
privilege. That is not true of the threads table; all rows are shown to any user
who has the SELECT privilege for the table. Users who should not be able to
see threads for other users by accessing the threads table should not be
given the SELECT privilege for it.

The threads table has these columns:

• THREAD_ID

A unique thread identifier.

• NAME

The name associated with the thread instrumentation code in the server. For example, thread/
sql/one_connection corresponds to the thread function in the code responsible for handling a
user connection, and thread/sql/main stands for the main() function of the server.

• TYPE

The thread type, either FOREGROUND or BACKGROUND. User connection threads are foreground
threads. Threads associated with internal server activity are background threads. Examples are
internal InnoDB threads, “binlog dump” threads sending information to replicas, and replication I/O
and SQL threads.

• PROCESSLIST_ID

For a foreground thread (associated with a user connection), this is the connection identifier. This
is the same value displayed in the ID column of the INFORMATION_SCHEMA PROCESSLIST table,
displayed in the Id column of SHOW PROCESSLIST output, and returned by the CONNECTION_ID()
function within the thread.

For a background thread (not associated with a user connection), PROCESSLIST_ID is NULL, so the
values are not unique.

• PROCESSLIST_USER

The user associated with a foreground thread, NULL for a background thread.

• PROCESSLIST_HOST

The host name of the client associated with a foreground thread, NULL for a background thread.

5316

Performance Schema Miscellaneous Tables

Unlike the HOST column of the INFORMATION_SCHEMA PROCESSLIST table or the Host column of
SHOW PROCESSLIST output, the PROCESSLIST_HOST column does not include the port number for
TCP/IP connections. To obtain this information from the Performance Schema, enable the socket
instrumentation (which is not enabled by default) and examine the socket_instances table:

mysql> SELECT NAME, ENABLED, TIMED
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/socket%';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+
3 rows in set (0.01 sec)

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED='YES'
 WHERE NAME LIKE 'wait/io/socket%';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

mysql> SELECT * FROM performance_schema.socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 140612577298432
 THREAD_ID: 31
 SOCKET_ID: 53
 IP: ::ffff:127.0.0.1
 PORT: 55642
 STATE: ACTIVE
...

• PROCESSLIST_DB

The default database for the thread, or NULL if none has been selected.

• PROCESSLIST_COMMAND

For foreground threads, the type of command the thread is executing on behalf of the client, or
Sleep if the session is idle. For descriptions of thread commands, see Section 10.14, “Examining
Server Thread (Process) Information”. The value of this column corresponds to the COM_xxx
commands of the client/server protocol and Com_xxx status variables. See Section 7.1.10, “Server
Status Variables”

Background threads do not execute commands on behalf of clients, so this column may be NULL.

• PROCESSLIST_TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Section 19.2.3, “Replication Threads”.

• PROCESSLIST_STATE

An action, event, or state that indicates what the thread is doing. For descriptions of
PROCESSLIST_STATE values, see Section 10.14, “Examining Server Thread (Process) Information”.
If the value if NULL, the thread may correspond to an idle client session or the work it is doing is not
instrumented with stages.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that bears investigation.

• PROCESSLIST_INFO

5317

Performance Schema Miscellaneous Tables

The statement the thread is executing, or NULL if it is executing no statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the PROCESSLIST_INFO value shows the SELECT statement.

• PARENT_THREAD_ID

If this thread is a subthread (spawned by another thread), this is the THREAD_ID value of the
spawning thread.

• ROLE

Unused.

• INSTRUMENTED

Whether events executed by the thread are instrumented. The value is YES or NO.

• For foreground threads, the initial INSTRUMENTED value is determined by whether the user
account associated with the thread matches any row in the setup_actors table. Matching is
based on the values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the threads table row created for
the subthread.

• For background threads, INSTRUMENTED is YES by default. setup_actors is not consulted
because there is no associated user for background threads.

• For any thread, its INSTRUMENTED value can be changed during the lifetime of the thread.

For monitoring of events executed by the thread to occur, these things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the setup_instruments table.

• HISTORY

Whether to log historical events for the thread. The value is YES or NO.

• For foreground threads, the initial HISTORY value is determined by whether the user account
associated with the thread matches any row in the setup_actors table. Matching is based on
the values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the threads table row created for
the subthread.

• For background threads, HISTORY is YES by default. setup_actors is not consulted because
there is no associated user for background threads.

• For any thread, its HISTORY value can be changed during the lifetime of the thread.

For historical event logging for the thread to occur, these things must be true:

• The appropriate history-related consumers in the setup_consumers table must
be enabled. For example, wait event logging in the events_waits_history and
events_waits_history_long tables requires the corresponding events_waits_history
and events_waits_history_long consumers to be YES.

5318

Performance Schema Miscellaneous Tables

• The threads.HISTORY column must be YES.

• Logging occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the setup_instruments table.

• CONNECTION_TYPE

The protocol used to establish the connection, or NULL for background threads. Permitted values
are TCP/IP (TCP/IP connection established without encryption), SSL/TLS (TCP/IP connection
established with encryption), Socket (Unix socket file connection), Named Pipe (Windows named
pipe connection), and Shared Memory (Windows shared memory connection).

• THREAD_OS_ID

The thread or task identifier as defined by the underlying operating system, if there is one:

• When a MySQL thread is associated with the same operating system thread for its lifetime,
THREAD_OS_ID contains the operating system thread ID.

• When a MySQL thread is not associated with the same operating system thread for its lifetime,
THREAD_OS_ID contains NULL. This is typical for user sessions when the thread pool plugin is
used (see Section 7.6.3, “MySQL Enterprise Thread Pool”).

For Windows, THREAD_OS_ID corresponds to the thread ID visible in Process Explorer (https://
technet.microsoft.com/en-us/sysinternals/bb896653.aspx).

For Linux, THREAD_OS_ID corresponds to the value of the gettid() function. This value
is exposed, for example, using the perf or ps -L commands, or in the proc file system (/
proc/[pid]/task/[tid]). For more information, see the perf-stat(1), ps(1), and proc(5)
man pages.

• RESOURCE_GROUP

The resource group label. This value is NULL if resource groups are not supported on the current
platform or server configuration (see Resource Group Restrictions).

• EXECUTION_ENGINE

The query execution engine. The value is either PRIMARY or SECONDARY. For use with HeatWave
Service and HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY engine is
HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition Server (on-
premise), and HeatWave Service without HeatWave, the value is always PRIMARY. This column was
added in MySQL 8.0.29.

• CONTROLLED_MEMORY

Amount of controlled memory used by the thread.

This column was added in MySQL 8.0.31.

• MAX_CONTROLLED_MEMORY

Maximum value of CONTROLLED_MEMORY seen during the thread execution.

This column was added in MySQL 8.0.31.

• TOTAL_MEMORY

The current amount of memory, controlled or not, used by the thread.

This column was added in MySQL 8.0.31.

5319

https://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
https://technet.microsoft.com/en-us/sysinternals/bb896653.aspx

Performance Schema Miscellaneous Tables

• MAX_TOTAL_MEMORY

The maximum value of TOTAL_MEMORY seen during the thread execution.

This column was added in MySQL 8.0.31.

• TELEMETRY_ACTIVE

Whether the thread has an active telemetry seesion attached. The value is YES or NO.

This column was added in MySQL 8.0.33.

The threads table has these indexes:

• Primary key on (THREAD_ID)

• Index on (NAME)

• Index on (PROCESSLIST_ID)

• Index on (PROCESSLIST_USER, PROCESSLIST_HOST)

• Index on (PROCESSLIST_HOST)

• Index on (THREAD_OS_ID)

• Index on (RESOURCE_GROUP)

TRUNCATE TABLE is not permitted for the threads table.

29.12.21.9 The tls_channel_status Table

Connection interface TLS properties are set at server startup, and can be updated at runtime using the
ALTER INSTANCE RELOAD TLS statement. See Server-Side Runtime Configuration and Monitoring
for Encrypted Connections.

The tls_channel_status table (available as of MySQL 8.0.21) provides information about
connection interface TLS properties:

mysql> SELECT * FROM performance_schema.tls_channel_status\G
*************************** 1. row ***************************
 CHANNEL: mysql_main
PROPERTY: Enabled
 VALUE: Yes
*************************** 2. row ***************************
 CHANNEL: mysql_main
PROPERTY: ssl_accept_renegotiates
 VALUE: 0
*************************** 3. row ***************************
 CHANNEL: mysql_main
PROPERTY: Ssl_accepts
 VALUE: 2
...
*************************** 29. row ***************************
 CHANNEL: mysql_admin
PROPERTY: Enabled
 VALUE: No
*************************** 30. row ***************************
 CHANNEL: mysql_admin
PROPERTY: ssl_accept_renegotiates
 VALUE: 0
*************************** 31. row ***************************
 CHANNEL: mysql_admin
PROPERTY: Ssl_accepts
 VALUE: 0
...

The tls_channel_status table has these columns:

5320

Performance Schema Miscellaneous Tables

• CHANNEL

The name of the connection interface to which the TLS property row applies. mysql_main and
mysql_admin are the channel names for the main and administrative connection interfaces,
respectively. For information about the different interfaces, see Section 7.1.12.1, “Connection
Interfaces”.

• PROPERTY

The TLS property name. The row for the Enabled property indicates overall interface status, where
the interface and its status are named in the CHANNEL and VALUE columns, respectively. Other
property names indicate particular TLS properties. These often correspond to the names of TLS-
related status variables.

• VALUE

The TLS property value.

The properties exposed by this table are not fixed and depend on the instrumentation implemented by
each channel.

For each channel, the row with a PROPERTY value of Enabled indicates whether the channel supports
encrypted connections, and other channel rows indicate TLS context properties:

• For mysql_main, the Enabled property is yes or no to indicate whether the main interface
supports encrypted connections. Other channel rows display TLS context properties for the main
interface.

For the main interface, similar status information can be obtained using these statements:

SHOW GLOBAL STATUS LIKE 'current_tls%';
SHOW GLOBAL STATUS LIKE 'ssl%';

• For mysql_admin, the Enabled property is no if the administrative interface is not enabled or it is
enabled but does not support encrypted connections. Enabled is yes if the interface is enabled and
supports encrypted connections.

When Enabled is yes, the other mysql_admin rows indicate channel properties for the
administrative interface TLS context only if some nondefault TLS parameter value is configured for
that interface. (This is the case if any admin_tls_xxx or admin_ssl_xxx system variable is set to
a value different from its default.) Otherwise, the administrative interface uses the same TLS context
as the main interface.

The tls_channel_status table has no indexes.

TRUNCATE TABLE is not permitted for the tls_channel_status table.

29.12.21.10 The user_defined_functions Table

The user_defined_functions table contains a row for each loadable function registered
automatically by a component or plugin, or manually by a CREATE FUNCTION statement. For
information about operations that add or remove table rows, see Section 7.7.1, “Installing and
Uninstalling Loadable Functions”.

Note

The name of the user_defined_functions table stems from the
terminology used at its inception for the type of function now known as a
loadable function (that is, user-defined function, or UDF).

The user_defined_functions table has these columns:

• UDF_NAME

5321

Performance Schema Option and Variable Reference

The function name as referred to in SQL statements. The value is NULL if the function was registered
by a CREATE FUNCTION statement and is in the process of unloading.

• UDF_RETURN_TYPE

The function return value type. The value is one of int, decimal, real, char, or row.

• UDF_TYPE

The function type. The value is one of function (scalar) or aggregate.

• UDF_LIBRARY

The name of the library file containing the executable function code. The file is located in the
directory named by the plugin_dir system variable. The value is NULL if the function was
registered by a component or plugin rather than by a CREATE FUNCTION statement.

• UDF_USAGE_COUNT

The current function usage count. This is used to tell whether statements currently are accessing the
function.

The user_defined_functions table has these indexes:

• Primary key on (UDF_NAME)

TRUNCATE TABLE is not permitted for the user_defined_functions table.

The mysql.func system table also lists installed loadable functions, but only those installed using
CREATE FUNCTION. The user_defined_functions table lists loadable functions installed using
CREATE FUNCTION as well as loadable functions installed automatically by components or plugins.
This difference makes user_defined_functions preferable to mysql.func for checking which
loadable functions are installed.

29.13 Performance Schema Option and Variable Reference
Table 29.18 Performance Schema Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schemaYes Yes Yes Global No

Performance_schema_accounts_lost Yes Global No

performance_schema_accounts_sizeYes Yes Yes Global No

Performance_schema_cond_classes_lost Yes Global No

Performance_schema_cond_instances_lost Yes Global No

performance-
schema-
consumer-
events-
stages-
current

Yes Yes

performance-
schema-
consumer-
events-
stages-
history

Yes Yes

performance-
schema-

Yes Yes

5322

Performance Schema Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic
consumer-
events-
stages-
history-long

performance-
schema-
consumer-
events-
statements-
cpu

Yes Yes

performance-
schema-
consumer-
events-
statements-
current

Yes Yes

performance-
schema-
consumer-
events-
statements-
history

Yes Yes

performance-
schema-
consumer-
events-
statements-
history-long

Yes Yes

performance-
schema-
consumer-
events-
transactions-
current

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history

Yes Yes

performance-
schema-
consumer-
events-
transactions-
history-long

Yes Yes

performance-
schema-
consumer-
events-waits-
current

Yes Yes

performance-
schema-

Yes Yes

5323

Performance Schema Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic
consumer-
events-waits-
history

performance-
schema-
consumer-
events-waits-
history-long

Yes Yes

performance-
schema-
consumer-
global-
instrumentation

Yes Yes

performance-
schema-
consumer-
statements-
digest

Yes Yes

performance-
schema-
consumer-
thread-
instrumentation

Yes Yes

Performance_schema_digest_lost Yes Global No

performance_schema_digests_sizeYes Yes Yes Global No

performance_schema_events_stages_history_long_sizeYes Yes Yes Global No

performance_schema_events_stages_history_sizeYes Yes Yes Global No

performance_schema_events_statements_history_long_sizeYes Yes Yes Global No

performance_schema_events_statements_history_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_long_sizeYes Yes Yes Global No

performance_schema_events_transactions_history_sizeYes Yes Yes Global No

performance_schema_events_waits_history_long_sizeYes Yes Yes Global No

performance_schema_events_waits_history_sizeYes Yes Yes Global No

Performance_schema_file_classes_lost Yes Global No

Performance_schema_file_handles_lost Yes Global No

Performance_schema_file_instances_lost Yes Global No

Performance_schema_hosts_lost Yes Global No

performance_schema_hosts_sizeYes Yes Yes Global No

performance-
schema-
instrument

Yes Yes

Performance_schema_locker_lost Yes Global No

performance_schema_max_cond_classesYes Yes Yes Global No

performance_schema_max_cond_instancesYes Yes Yes Global No

performance_schema_max_digest_lengthYes Yes Yes Global No

performance_schema_max_file_classesYes Yes Yes Global No

5324

Performance Schema Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schema_max_file_handlesYes Yes Yes Global No

performance_schema_max_file_instancesYes Yes Yes Global No

performance_schema_max_memory_classesYes Yes Yes Global No

performance_schema_max_metadata_locksYes Yes Yes Global No

performance_schema_max_mutex_classesYes Yes Yes Global No

performance_schema_max_mutex_instancesYes Yes Yes Global No

performance_schema_max_prepared_statements_instancesYes Yes Yes Global No

performance_schema_max_program_instancesYes Yes Yes Global No

performance_schema_max_rwlock_classesYes Yes Yes Global No

performance_schema_max_rwlock_instancesYes Yes Yes Global No

performance_schema_max_socket_classesYes Yes Yes Global No

performance_schema_max_socket_instancesYes Yes Yes Global No

performance_schema_max_stage_classesYes Yes Yes Global No

performance_schema_max_statement_classesYes Yes Yes Global No

performance_schema_max_statement_stackYes Yes Yes Global No

performance_schema_max_table_handlesYes Yes Yes Global No

performance_schema_max_table_instancesYes Yes Yes Global No

performance_schema_max_thread_classesYes Yes Yes Global No

performance_schema_max_thread_instancesYes Yes Yes Global No

Performance_schema_memory_classes_lost Yes Global No

Performance_schema_metadata_lock_lost Yes Global No

Performance_schema_mutex_classes_lost Yes Global No

Performance_schema_mutex_instances_lost Yes Global No

Performance_schema_nested_statement_lost Yes Global No

Performance_schema_prepared_statements_lost Yes Global No

Performance_schema_program_lost Yes Global No

Performance_schema_rwlock_classes_lost Yes Global No

Performance_schema_rwlock_instances_lost Yes Global No

Performance_schema_session_connect_attrs_lost Yes Global No

performance_schema_session_connect_attrs_sizeYes Yes Yes Global No

performance_schema_setup_actors_sizeYes Yes Yes Global No

performance_schema_setup_objects_sizeYes Yes Yes Global No

Performance_schema_socket_classes_lost Yes Global No

Performance_schema_socket_instances_lost Yes Global No

Performance_schema_stage_classes_lost Yes Global No

Performance_schema_statement_classes_lost Yes Global No

Performance_schema_table_handles_lost Yes Global No

Performance_schema_table_instances_lost Yes Global No

Performance_schema_thread_classes_lost Yes Global No

Performance_schema_thread_instances_lost Yes Global No

Performance_schema_users_lost Yes Global No

5325

Performance Schema Command Options

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

performance_schema_users_sizeYes Yes Yes Global No

29.14 Performance Schema Command Options
Performance Schema parameters can be specified at server startup on the command line or in option
files to configure Performance Schema instruments and consumers. Runtime configuration is also
possible in many cases (see Section 29.4, “Performance Schema Runtime Configuration”), but startup
configuration must be used when runtime configuration is too late to affect instruments that have
already been initialized during the startup process.

Performance Schema consumers and instruments can be configured at startup using the following
syntax. For additional details, see Section 29.3, “Performance Schema Startup Configuration”.

• --performance-schema-consumer-consumer_name=value

Configure a Performance Schema consumer. Consumer names in the setup_consumers table
use underscores, but for consumers set at startup, dashes and underscores within the name are
equivalent. Options for configuring individual consumers are detailed later in this section.

• --performance-schema-instrument=instrument_name=value

Configure a Performance Schema instrument. The name may be given as a pattern to configure
instruments that match the pattern.

The following items configure individual consumers:

• --performance-schema-consumer-events-stages-current=value

Configure the events-stages-current consumer.

• --performance-schema-consumer-events-stages-history=value

Configure the events-stages-history consumer.

• --performance-schema-consumer-events-stages-history-long=value

Configure the events-stages-history-long consumer.

• --performance-schema-consumer-events-statements-cpu=value

Configure the events-statements-cpu consumer.

• --performance-schema-consumer-events-statements-current=value

Configure the events-statements-current consumer.

• --performance-schema-consumer-events-statements-history=value

Configure the events-statements-history consumer.

• --performance-schema-consumer-events-statements-history-long=value

Configure the events-statements-history-long consumer.

• --performance-schema-consumer-events-transactions-current=value

Configure the Performance Schema events-transactions-current consumer.

• --performance-schema-consumer-events-transactions-history=value

Configure the Performance Schema events-transactions-history consumer.

5326

Performance Schema System Variables

• --performance-schema-consumer-events-transactions-history-long=value

Configure the Performance Schema events-transactions-history-long consumer.

• --performance-schema-consumer-events-waits-current=value

Configure the events-waits-current consumer.

• --performance-schema-consumer-events-waits-history=value

Configure the events-waits-history consumer.

• --performance-schema-consumer-events-waits-history-long=value

Configure the events-waits-history-long consumer.

• --performance-schema-consumer-global-instrumentation=value

Configure the global-instrumentation consumer.

• --performance-schema-consumer-statements-digest=value

Configure the statements-digest consumer.

• --performance-schema-consumer-thread-instrumentation=value

Configure the thread-instrumentation consumer.

29.15 Performance Schema System Variables

The Performance Schema implements several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+-------+
| Variable_name | Value |
+--+-------+
performance_schema	ON
performance_schema_accounts_size	-1
performance_schema_digests_size	10000
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_transactions_history_long_size	10000
performance_schema_events_transactions_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	-1
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	-1
performance_schema_max_digest_length	1024
performance_schema_max_file_classes	50
performance_schema_max_file_handles	32768
performance_schema_max_file_instances	-1
performance_schema_max_index_stat	-1
performance_schema_max_memory_classes	320
performance_schema_max_metadata_locks	-1
performance_schema_max_mutex_classes	350
performance_schema_max_mutex_instances	-1
performance_schema_max_prepared_statements_instances	-1
performance_schema_max_program_instances	-1
performance_schema_max_rwlock_classes	40
performance_schema_max_rwlock_instances	-1
performance_schema_max_socket_classes	10
performance_schema_max_socket_instances	-1
performance_schema_max_sql_text_length	1024
performance_schema_max_stage_classes	150

5327

Performance Schema System Variables

performance_schema_max_statement_classes	192
performance_schema_max_statement_stack	10
performance_schema_max_table_handles	-1
performance_schema_max_table_instances	-1
performance_schema_max_table_lock_stat	-1
performance_schema_max_thread_classes	50
performance_schema_max_thread_instances	-1
performance_schema_session_connect_attrs_size	512
performance_schema_setup_actors_size	-1
performance_schema_setup_objects_size	-1
performance_schema_users_size	-1
+--+-------+

Performance Schema system variables can be set at server startup on the command line or in option
files, and many can be set at runtime. See Section 29.13, “Performance Schema Option and Variable
Reference”.

The Performance Schema automatically sizes the values of several of its parameters at server startup
if they are not set explicitly. For more information, see Section 29.3, “Performance Schema Startup
Configuration”.

Performance Schema system variables have the following meanings:

• performance_schema

Command-Line Format --performance-schema[={OFF|ON}]

System Variable performance_schema

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By
default, the value is ON. At server startup, you can specify this variable with no value or a value of ON
or 1 to enable it, or with a value of OFF or 0 to disable it.

Even when the Performance Schema is disabled, it continues to populate the global_variables,
session_variables, global_status, and session_status tables. This occurs as necessary
to permit the results for the SHOW VARIABLES and SHOW STATUS statements to be drawn from
those tables. The Performance Schema also populates some of the replication tables when disabled.

• performance_schema_accounts_size

Command-Line Format --performance-schema-accounts-size=#

System Variable performance_schema_accounts_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

5328

Performance Schema System Variables

The number of rows in the accounts table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the accounts table or status variable information in the
status_by_account table.

• performance_schema_digests_size

Command-Line Format --performance-schema-digests-size=#

System Variable performance_schema_digests_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of rows in the events_statements_summary_by_digest table. If
this maximum is exceeded such that a digest cannot be instrumented, the Performance Schema
increments the Performance_schema_digest_lost status variable.

For more information about statement digesting, see Section 29.10, “Performance Schema
Statement Digests and Sampling”.

• performance_schema_error_size

Command-Line Format --performance-schema-error-size=#

System Variable performance_schema_error_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value number of server error codes

Minimum Value 0

Maximum Value 1048576

The number of instrumented server error codes. The default value is the actual number of server
error codes. Although the value can be set anywhere from 0 to its maximum, the intended use is to
set it to either its default (to instrument all errors) or 0 (to instrument no errors).

Error information is aggregated in summary tables; see Section 29.12.20.11, “Error Summary
Tables”. If an error occurs that is not instrumented, information for the occurrence is
aggregated to the NULL row in each summary table; that is, to the row with ERROR_NUMBER=0,
ERROR_NAME=NULL, and SQLSTATE=NULL.

• performance_schema_events_stages_history_long_size

Command-Line Format --performance-schema-events-stages-
history-long-size=#

System Variable performance_schema_events_stages_history_long_size

5329

Performance Schema System Variables

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_stages_history_long table.

• performance_schema_events_stages_history_size

Command-Line Format --performance-schema-events-stages-
history-size=#

System Variable performance_schema_events_stages_history_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_stages_history table.

• performance_schema_events_statements_history_long_size

Command-Line Format --performance-schema-events-
statements-history-long-size=#

System Variable performance_schema_events_statements_history_long_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_statements_history_long table.

• performance_schema_events_statements_history_size

Command-Line Format --performance-schema-events-
statements-history-size=#

5330

Performance Schema System Variables

System Variable performance_schema_events_statements_history_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_statements_history table.

• performance_schema_events_transactions_history_long_size

Command-Line Format --performance-schema-events-
transactions-history-long-size=#

System Variable performance_schema_events_transactions_history_long_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_transactions_history_long table.

• performance_schema_events_transactions_history_size

Command-Line Format --performance-schema-events-
transactions-history-size=#

System Variable performance_schema_events_transactions_history_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_transactions_history table.

5331

Performance Schema System Variables

• performance_schema_events_waits_history_long_size

Command-Line Format --performance-schema-events-waits-
history-long-size=#

System Variable performance_schema_events_waits_history_long_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_waits_history_long table.

• performance_schema_events_waits_history_size

Command-Line Format --performance-schema-events-waits-
history-size=#

System Variable performance_schema_events_waits_history_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_waits_history table.

• performance_schema_hosts_size

Command-Line Format --performance-schema-hosts-size=#

System Variable performance_schema_hosts_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

5332

Performance Schema System Variables

Maximum Value 1048576

The number of rows in the hosts table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the hosts table or status variable information in the
status_by_host table.

• performance_schema_max_cond_classes

Command-Line Format --performance-schema-max-cond-
classes=#

System Variable performance_schema_max_cond_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27) 150

Default Value (≥ 8.0.13, ≤ 8.0.26) 100

Default Value (≤ 8.0.12) 80

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of condition instruments. For information about how to set and use this
variable, see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_cond_instances

Command-Line Format --performance-schema-max-cond-
instances=#

System Variable performance_schema_max_cond_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented condition objects. For information about how to set and use
this variable, see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_digest_length

Command-Line Format --performance-schema-max-digest-
length=#

System Variable performance_schema_max_digest_length

Scope Global

Dynamic No

5333

Performance Schema System Variables

SET_VAR Hint Applies No

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes of memory reserved per statement for computation of
normalized statement digest values in the Performance Schema. This variable is related to
max_digest_length; see the description of that variable in Section 7.1.8, “Server System
Variables”.

For more information about statement digesting, including considerations regarding memory use, see
Section 29.10, “Performance Schema Statement Digests and Sampling”.

• performance_schema_max_digest_sample_age

Command-Line Format --performance-schema-max-digest-
sample-age=#

System Variable performance_schema_max_digest_sample_age

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

Minimum Value 0

Maximum Value 1048576

Unit seconds

This variable affects statement sampling for the events_statements_summary_by_digest
table. When a new table row is inserted, the statement that produced the row digest value is stored
as the current sample statement associated with the digest. Thereafter, when the server sees other
statements with the same digest value, it determines whether to use the new statement to replace
the current sample statement (that is, whether to resample). Resampling policy is based on the
comparative wait times of the current sample statement and new statement and, optionally, the age
of the current sample statement:

• Resampling based on wait times: If the new statement wait time has a wait time greater than that
of the current sample statement, it becomes the current sample statement.

• Resampling based on age: If the performance_schema_max_digest_sample_age system
variable has a value greater than zero and the current sample statement is more than that many
seconds old, the current statement is considered “too old” and the new statement replaces it. This
occurs even if the new statement wait time is less than that of the current sample statement.

For information about statement sampling, see Section 29.10, “Performance Schema Statement
Digests and Sampling”.

• performance_schema_max_file_classes

Command-Line Format --performance-schema-max-file-
classes=#

System Variable performance_schema_max_file_classes
5334

Performance Schema System Variables

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 80

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of file instruments. For information about how to set and use this variable, see
Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_file_handles

Command-Line Format --performance-schema-max-file-
handles=#

System Variable performance_schema_max_file_handles

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 32768

Minimum Value 0

Maximum Value 1048576

The maximum number of opened file objects. For information about how to set and use this variable,
see Section 29.7, “Performance Schema Status Monitoring”.

The value of performance_schema_max_file_handles should be greater than the value of
open_files_limit: open_files_limit affects the maximum number of open file handles the
server can support and performance_schema_max_file_handles affects how many of these
file handles can be instrumented.

• performance_schema_max_file_instances

Command-Line Format --performance-schema-max-file-
instances=#

System Variable performance_schema_max_file_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented file objects. For information about how to set and use this
variable, see Section 29.7, “Performance Schema Status Monitoring”.

5335

Performance Schema System Variables

• performance_schema_max_index_stat

Command-Line Format --performance-schema-max-index-
stat=#

System Variable performance_schema_max_index_stat

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of indexes for which the Performance Schema maintains statistics. If this
maximum is exceeded such that index statistics are lost, the Performance Schema increments the
Performance_schema_index_stat_lost status variable. The default value is autosized using
the value of performance_schema_max_table_instances.

• performance_schema_max_memory_classes

Command-Line Format --performance-schema-max-memory-
classes=#

System Variable performance_schema_max_memory_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 450

Minimum Value 0

Maximum Value 1024

The maximum number of memory instruments. For information about how to set and use this
variable, see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_metadata_locks

Command-Line Format --performance-schema-max-metadata-
locks=#

System Variable performance_schema_max_metadata_locks

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

5336

Performance Schema System Variables

Maximum Value 10485760

The maximum number of metadata lock instruments. This value controls the
size of the metadata_locks table. If this maximum is exceeded such that a
metadata lock cannot be instrumented, the Performance Schema increments the
Performance_schema_metadata_lock_lost status variable.

• performance_schema_max_mutex_classes

Command-Line Format --performance-schema-max-mutex-
classes=#

System Variable performance_schema_max_mutex_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27) 350

Default Value (≥ 8.0.12, ≤ 8.0.26) 300

Default Value (8.0.11) 250

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of mutex instruments. For information about how to set and use this variable,
see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_mutex_instances

Command-Line Format --performance-schema-max-mutex-
instances=#

System Variable performance_schema_max_mutex_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 104857600

The maximum number of instrumented mutex objects. For information about how to set and use this
variable, see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_prepared_statements_instances

Command-Line Format --performance-schema-max-prepared-
statements-instances=#

System Variable performance_schema_max_prepared_statements_instances

Scope Global 5337

Performance Schema System Variables

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 4194304

The maximum number of rows in the prepared_statements_instances table. If this maximum
is exceeded such that a prepared statement cannot be instrumented, the Performance Schema
increments the Performance_schema_prepared_statements_lost status variable. For
information about how to set and use this variable, see Section 29.7, “Performance Schema Status
Monitoring”.

The default value of this variable is autosized based on the value of the
max_prepared_stmt_count system variable.

• performance_schema_max_rwlock_classes

Command-Line Format --performance-schema-max-rwlock-
classes=#

System Variable performance_schema_max_rwlock_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.12) 100

Default Value (8.0.11) 60

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of rwlock instruments. For information about how to set and use this variable,
see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_program_instances

Command-Line Format --performance-schema-max-program-
instances=#

System Variable performance_schema_max_program_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

5338

Performance Schema System Variables

Maximum Value 1048576

The maximum number of stored programs for which the Performance Schema maintains
statistics. If this maximum is exceeded, the Performance Schema increments the
Performance_schema_program_lost status variable. For information about how to set and use
this variable, see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_rwlock_instances

Command-Line Format --performance-schema-max-rwlock-
instances=#

System Variable performance_schema_max_rwlock_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 104857600

The maximum number of instrumented rwlock objects. For information about how to set and use this
variable, see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_socket_classes

Command-Line Format --performance-schema-max-socket-
classes=#

System Variable performance_schema_max_socket_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of socket instruments. For information about how to set and use this variable,
see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_socket_instances

Command-Line Format --performance-schema-max-socket-
instances=#

System Variable performance_schema_max_socket_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No 5339

Performance Schema System Variables

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented socket objects. For information about how to set and use this
variable, see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_sql_text_length

Command-Line Format --performance-schema-max-sql-text-
length=#

System Variable performance_schema_max_sql_text_length

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes used to store SQL statements. The value applies to storage required
for these columns:

• The SQL_TEXT column of the events_statements_current,
events_statements_history, and events_statements_history_long statement event
tables.

• The QUERY_SAMPLE_TEXT column of the events_statements_summary_by_digest
summary table.

Any bytes in excess of performance_schema_max_sql_text_length are discarded and do not
appear in the column. Statements differing only after that many initial bytes are indistinguishable in
the column.

Decreasing the performance_schema_max_sql_text_length value reduces memory use but
causes more statements to become indistinguishable if they differ only at the end. Increasing the
value increases memory use but permits longer statements to be distinguished.

• performance_schema_max_stage_classes

Command-Line Format --performance-schema-max-stage-
classes=#

System Variable performance_schema_max_stage_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.13) 175

5340

Performance Schema System Variables

Default Value (≤ 8.0.12) 150

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of stage instruments. For information about how to set and use this variable,
see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_statement_classes

Command-Line Format --performance-schema-max-statement-
classes=#

System Variable performance_schema_max_statement_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Minimum Value 0

Maximum Value 256

The maximum number of statement instruments. For information about how to set and use this
variable, see Section 29.7, “Performance Schema Status Monitoring”.

The default value is calculated at server build time based on the number of commands in the client/
server protocol and the number of SQL statement types supported by the server.

This variable should not be changed, unless to set it to 0 to disable all statement instrumentation and
save all memory associated with it. Setting the variable to nonzero values other than the default has
no benefit; in particular, values larger than the default cause more memory to be allocated then is
needed.

• performance_schema_max_statement_stack

Command-Line Format --performance-schema-max-statement-
stack=#

System Variable performance_schema_max_statement_stack

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 1

Maximum Value 256

The maximum depth of nested stored program calls for which the Performance Schema
maintains statistics. When this maximum is exceeded, the Performance Schema increments the
Performance_schema_nested_statement_lost status variable for each stored program
statement executed.

5341

Performance Schema System Variables

• performance_schema_max_table_handles

Command-Line Format --performance-schema-max-table-
handles=#

System Variable performance_schema_max_table_handles

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of opened table objects. This value controls the size of the table_handles
table. If this maximum is exceeded such that a table handle cannot be instrumented, the
Performance Schema increments the Performance_schema_table_handles_lost status
variable. For information about how to set and use this variable, see Section 29.7, “Performance
Schema Status Monitoring”.

• performance_schema_max_table_instances

Command-Line Format --performance-schema-max-table-
instances=#

System Variable performance_schema_max_table_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented table objects. For information about how to set and use this
variable, see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_table_lock_stat

Command-Line Format --performance-schema-max-table-lock-
stat=#

System Variable performance_schema_max_table_lock_stat

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

5342

Performance Schema System Variables

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of tables for which the Performance Schema maintains lock statistics. If this
maximum is exceeded such that table lock statistics are lost, the Performance Schema increments
the Performance_schema_table_lock_stat_lost status variable.

• performance_schema_max_thread_classes

Command-Line Format --performance-schema-max-thread-
classes=#

System Variable performance_schema_max_thread_classes

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 100

Minimum Value 0

Maximum Value (≥ 8.0.12) 1024

Maximum Value (8.0.11) 256

The maximum number of thread instruments. For information about how to set and use this variable,
see Section 29.7, “Performance Schema Status Monitoring”.

• performance_schema_max_thread_instances

Command-Line Format --performance-schema-max-thread-
instances=#

System Variable performance_schema_max_thread_instances

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented thread objects. The value controls the size of the threads
table. If this maximum is exceeded such that a thread cannot be instrumented, the Performance
Schema increments the Performance_schema_thread_instances_lost status variable. For
information about how to set and use this variable, see Section 29.7, “Performance Schema Status
Monitoring”.

The max_connections system variable affects how many threads can run in the server.
performance_schema_max_thread_instances affects how many of these running threads can
be instrumented.

The variables_by_thread and status_by_thread tables contain system
and status variable information only about foreground threads. If not all threads are

5343

Performance Schema System Variables

instrumented by the Performance Schema, this table misses some rows. In this case, the
Performance_schema_thread_instances_lost status variable is greater than zero.

• performance_schema_session_connect_attrs_size

Command-Line Format --performance-schema-session-
connect-attrs-size=#

System Variable performance_schema_session_connect_attrs_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

Unit bytes

The amount of preallocated memory per thread reserved to hold connection attribute key-
value pairs. If the aggregate size of connection attribute data sent by a client is larger
than this amount, the Performance Schema truncates the attribute data, increments the
Performance_schema_session_connect_attrs_lost status variable, and writes a message
to the error log indicating that truncation occurred if the log_error_verbosity system variable is
greater than 1. A _truncated attribute is also added to the session attributes with a value indicating
how many bytes were lost, if the attribute buffer has sufficient space. This enables the Performance
Schema to expose per-connection truncation information in the connection attribute tables. This
information can be examined without having to check the error log.

The default value of performance_schema_session_connect_attrs_size
is autosized at server startup. This value may be small, so if truncation occurs
(Performance_schema_session_connect_attrs_lost becomes nonzero), you may wish to
set performance_schema_session_connect_attrs_size explicitly to a larger value.

Although the maximum permitted performance_schema_session_connect_attrs_size value
is 1MB, the effective maximum is 64KB because the server imposes a limit of 64KB on the aggregate
size of connection attribute data it accepts. If a client attempts to send more than 64KB of attribute
data, the server rejects the connection. For more information, see Section 29.12.9, “Performance
Schema Connection Attribute Tables”.

• performance_schema_setup_actors_size

Command-Line Format --performance-schema-setup-actors-
size=#

System Variable performance_schema_setup_actors_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

5344

Performance Schema System Variables

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the setup_actors table.

• performance_schema_setup_objects_size

Command-Line Format --performance-schema-setup-objects-
size=#

System Variable performance_schema_setup_objects_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the setup_objects table.

• performance_schema_show_processlist

Command-Line Format --performance-schema-show-
processlist[={OFF|ON}]

Introduced 8.0.22

Deprecated 8.0.35

System Variable performance_schema_show_processlist

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

The SHOW PROCESSLIST statement provides process information by collecting thread data from all
active threads. The performance_schema_show_processlist variable determines which SHOW
PROCESSLIST implementation to use:

• The default implementation iterates across active threads from within the thread manager while
holding a global mutex. This has negative performance consequences, particularly on busy
systems.

• The alternative SHOW PROCESSLIST implementation is based on the Performance Schema
processlist table. This implementation queries active thread data from the Performance
Schema rather than the thread manager and does not require a mutex.

To enable the alternative implementation, enable the performance_schema_show_processlist
system variable. To ensure that the default and alternative implementations yield the same
information, certain configuration requirements must be met; see Section 29.12.21.7, “The
processlist Table”.

5345

Performance Schema Status Variables

• performance_schema_users_size

Command-Line Format --performance-schema-users-size=#

System Variable performance_schema_users_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the users table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the users table or status variable information in the
status_by_user table.

29.16 Performance Schema Status Variables
The Performance Schema implements several status variables that provide information about
instrumentation that could not be loaded or created due to memory constraints:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

For information on using these variables to check Performance Schema status, see Section 29.7,
“Performance Schema Status Monitoring”.

Performance Schema status variables have the following meanings:

• Performance_schema_accounts_lost

The number of times a row could not be added to the accounts table because it was full.

• Performance_schema_cond_classes_lost

How many condition instruments could not be loaded.

5346

Performance Schema Status Variables

• Performance_schema_cond_instances_lost

How many condition instrument instances could not be created.

• Performance_schema_digest_lost

The number of digest instances that could not be instrumented in the
events_statements_summary_by_digest table. This can be nonzero if the value of
performance_schema_digests_size is too small.

• Performance_schema_file_classes_lost

How many file instruments could not be loaded.

• Performance_schema_file_handles_lost

How many file instrument instances could not be opened.

• Performance_schema_file_instances_lost

How many file instrument instances could not be created.

• Performance_schema_hosts_lost

The number of times a row could not be added to the hosts table because it was full.

• Performance_schema_index_stat_lost

The number of indexes for which statistics were lost. This can be nonzero if the value of
performance_schema_max_index_stat is too small.

• Performance_schema_locker_lost

How many events are “lost” or not recorded, due to the following conditions:

• Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).

• The depth of the nested events stack is greater than the limit imposed by the implementation.

Events recorded by the Performance Schema are not recursive, so this variable should always be 0.

• Performance_schema_memory_classes_lost

The number of times a memory instrument could not be loaded.

• Performance_schema_metadata_lock_lost

The number of metadata locks that could not be instrumented in the metadata_locks table. This
can be nonzero if the value of performance_schema_max_metadata_locks is too small.

• Performance_schema_mutex_classes_lost

How many mutex instruments could not be loaded.

• Performance_schema_mutex_instances_lost

How many mutex instrument instances could not be created.

• Performance_schema_nested_statement_lost

The number of stored program statements for which statistics were lost. This can be nonzero if the
value of performance_schema_max_statement_stack is too small.

• Performance_schema_prepared_statements_lost

5347

Performance Schema Status Variables

The number of prepared statements that could not be instrumented in the
prepared_statements_instances table. This can be nonzero if the value of
performance_schema_max_prepared_statements_instances is too small.

• Performance_schema_program_lost

The number of stored programs for which statistics were lost. This can be nonzero if the value of
performance_schema_max_program_instances is too small.

• Performance_schema_rwlock_classes_lost

How many rwlock instruments could not be loaded.

• Performance_schema_rwlock_instances_lost

How many rwlock instrument instances could not be created.

• Performance_schema_session_connect_attrs_longest_seen

In addition to the connection attribute size-limit check performed by the Performance Schema
against the value of the performance_schema_session_connect_attrs_size
system variable, the server performs a preliminary check, imposing a limit of 64KB on
the aggregate size of connection attribute data it accepts. If a client attempts to send
more than 64KB of attribute data, the server rejects the connection. Otherwise, the server
considers the attribute buffer valid and tracks the size of the longest such buffer in the
Performance_schema_session_connect_attrs_longest_seen status variable. If this value
is larger than performance_schema_session_connect_attrs_size, DBAs may wish to
increase the latter value, or, alternatively, investigate which clients are sending large amounts of
attribute data.

For more information about connection attributes, see Section 29.12.9, “Performance Schema
Connection Attribute Tables”.

• Performance_schema_session_connect_attrs_lost

The number of connections for which connection attribute truncation has occurred.
For a given connection, if the client sends connection attribute key-value pairs
for which the aggregate size is larger than the reserved storage permitted by the
value of the performance_schema_session_connect_attrs_size system
variable, the Performance Schema truncates the attribute data and increments
Performance_schema_session_connect_attrs_lost. If this value is nonzero, you may wish
to set performance_schema_session_connect_attrs_size to a larger value.

For more information about connection attributes, see Section 29.12.9, “Performance Schema
Connection Attribute Tables”.

• Performance_schema_socket_classes_lost

How many socket instruments could not be loaded.

• Performance_schema_socket_instances_lost

How many socket instrument instances could not be created.

• Performance_schema_stage_classes_lost

How many stage instruments could not be loaded.

• Performance_schema_statement_classes_lost

How many statement instruments could not be loaded.

5348

The Performance Schema Memory-Allocation Model

• Performance_schema_table_handles_lost

How many table instrument instances could not be opened. This can be nonzero if the value of
performance_schema_max_table_handles is too small.

• Performance_schema_table_instances_lost

How many table instrument instances could not be created.

• Performance_schema_table_lock_stat_lost

The number of tables for which lock statistics were lost. This can be nonzero if the value of
performance_schema_max_table_lock_stat is too small.

• Performance_schema_thread_classes_lost

How many thread instruments could not be loaded.

• Performance_schema_thread_instances_lost

The number of thread instances that could not be instrumented in the threads table. This can be
nonzero if the value of performance_schema_max_thread_instances is too small.

• Performance_schema_users_lost

The number of times a row could not be added to the users table because it was full.

29.17 The Performance Schema Memory-Allocation Model

The Performance Schema uses this memory allocation model:

• May allocate memory at server startup

• May allocate additional memory during server operation

• Never free memory during server operation (although it might be recycled)

• Free all memory used at shutdown

The result is to relax memory constraints so that the Performance Schema can be used with less
configuration, and to decrease the memory footprint so that consumption scales with server load.
Memory used depends on the load actually seen, not the load estimated or explicitly configured for.

Several Performance Schema sizing parameters are autoscaled and need not be configured explicitly
unless you want to establish an explicit limit on memory allocation:

performance_schema_accounts_size
performance_schema_hosts_size
performance_schema_max_cond_instances
performance_schema_max_file_instances
performance_schema_max_index_stat
performance_schema_max_metadata_locks
performance_schema_max_mutex_instances
performance_schema_max_prepared_statements_instances
performance_schema_max_program_instances
performance_schema_max_rwlock_instances
performance_schema_max_socket_instances
performance_schema_max_table_handles
performance_schema_max_table_instances
performance_schema_max_table_lock_stat
performance_schema_max_thread_instances
performance_schema_users_size

For an autoscaled parameter, configuration works like this:

5349

Performance Schema and Plugins

• With the value set to -1 (the default), the parameter is autoscaled:

• The corresponding internal buffer is empty initially and no memory is allocated.

• As the Performance Schema collects data, memory is allocated in the corresponding buffer. The
buffer size is unbounded, and may grow with the load.

• With the value set to 0:

• The corresponding internal buffer is empty initially and no memory is allocated.

• With the value set to N > 0:

• The corresponding internal buffer is empty initially and no memory is allocated.

• As the Performance Schema collects data, memory is allocated in the corresponding buffer, until
the buffer size reaches N.

• Once the buffer size reaches N, no more memory is allocated. Data collected by the Performance
Schema for this buffer is lost, and any corresponding “lost instance” counters are incremented.

To see how much memory the Performance Schema is using, check the instruments designed
for that purpose. The Performance Schema allocates memory internally and associates each
buffer with a dedicated instrument so that memory consumption can be traced to individual buffers.
Instruments named with the prefix memory/performance_schema/ expose how much memory
is allocated for these internal buffers. The buffers are global to the server, so the instruments
are displayed only in the memory_summary_global_by_event_name table, and not in other
memory_summary_by_xxx_by_event_name tables.

This query shows the information associated with the memory instruments:

SELECT * FROM performance_schema.memory_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'memory/performance_schema/%';

29.18 Performance Schema and Plugins

Removing a plugin with UNINSTALL PLUGIN does not affect information already collected for code
in that plugin. Time spent executing the code while the plugin was loaded was still spent even if the
plugin is unloaded later. The associated event information, including aggregate information, remains
readable in performance_schema database tables. For additional information about the effect of
plugin installation and removal, see Section 29.7, “Performance Schema Status Monitoring”.

A plugin implementor who instruments plugin code should document its instrumentation characteristics
to enable those who load the plugin to account for its requirements. For example, a third-party storage
engine should include in its documentation how much memory the engine needs for mutex and other
instruments.

29.19 Using the Performance Schema to Diagnose Problems

The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements
instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema
for this purpose. The discussion here relies on the use of event filtering, which is described in
Section 29.4.2, “Performance Schema Event Filtering”.

The following example provides one methodology that you can use to analyze a repeatable problem,
such as investigating a performance bottleneck. To begin, you should have a repeatable use
case where performance is deemed “too slow” and needs optimization, and you should enable all
instrumentation (no pre-filtering at all).

1. Run the use case.

5350

Query Profiling Using Performance Schema

2. Using the Performance Schema tables, analyze the root cause of the performance problem. This
analysis relies heavily on post-filtering.

3. For problem areas that are ruled out, disable the corresponding instruments. For example, if
analysis shows that the issue is not related to file I/O in a particular storage engine, disable the file
I/O instruments for that engine. Then truncate the history and summary tables to remove previously
collected events.

4. Repeat the process at step 1.

With each iteration, the Performance Schema output, particularly the
events_waits_history_long table, contains less and less “noise” caused by nonsignificant
instruments, and given that this table has a fixed size, contains more and more data relevant to the
analysis of the problem at hand.

With each iteration, investigation should lead closer and closer to the root cause of the problem, as
the “signal/noise” ratio improves, making analysis easier.

5. Once a root cause of performance bottleneck is identified, take the appropriate corrective action,
such as:

• Tune the server parameters (cache sizes, memory, and so forth).

• Tune a query by writing it differently,

• Tune the database schema (tables, indexes, and so forth).

• Tune the code (this applies to storage engine or server developers only).

6. Start again at step 1, to see the effects of the changes on performance.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for
investigating performance bottlenecks or deadlocks. This is made possible by Performance Schema
instrumentation as follows:

1. Suppose that thread 1 is stuck waiting for a mutex.

2. You can determine what the thread is waiting for:

SELECT * FROM performance_schema.events_waits_current
WHERE THREAD_ID = thread_1;

Say the query result identifies that the thread is waiting for mutex A, found in
events_waits_current.OBJECT_INSTANCE_BEGIN.

3. You can determine which thread is holding mutex A:

SELECT * FROM performance_schema.mutex_instances
WHERE OBJECT_INSTANCE_BEGIN = mutex_A;

Say the query result identifies that it is thread 2 holding mutex A, as found in
mutex_instances.LOCKED_BY_THREAD_ID.

4. You can see what thread 2 is doing:

SELECT * FROM performance_schema.events_waits_current
WHERE THREAD_ID = thread_2;

29.19.1 Query Profiling Using Performance Schema

The following example demonstrates how to use Performance Schema statement events and stage
events to retrieve data comparable to profiling information provided by SHOW PROFILES and SHOW
PROFILE statements.

5351

Query Profiling Using Performance Schema

The setup_actors table can be used to limit the collection of historical events by host, user, or
account to reduce runtime overhead and the amount of data collected in history tables. The first step of
the example shows how to limit collection of historical events to a specific user.

Performance Schema displays event timer information in picoseconds (trillionths of a second) to
normalize timing data to a standard unit. In the following example, TIMER_WAIT values are divided
by 1000000000000 to show data in units of seconds. Values are also truncated to 6 decimal places to
display data in the same format as SHOW PROFILES and SHOW PROFILE statements.

1. Limit the collection of historical events to the user that runs the query. By default, setup_actors
is configured to allow monitoring and historical event collection for all foreground threads:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

Update the default row in the setup_actors table to disable historical event collection and
monitoring for all foreground threads, and insert a new row that enables monitoring and historical
event collection for the user that runs the query:

mysql> UPDATE performance_schema.setup_actors
 SET ENABLED = 'NO', HISTORY = 'NO'
 WHERE HOST = '%' AND USER = '%';

mysql> INSERT INTO performance_schema.setup_actors
 (HOST,USER,ROLE,ENABLED,HISTORY)
 VALUES('localhost','test_user','%','YES','YES');

Data in the setup_actors table should now appear similar to the following:

mysql> SELECT * FROM performance_schema.setup_actors;
+-----------+-----------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+-----------+-----------+------+---------+---------+
| % | % | % | NO | NO |
| localhost | test_user | % | YES | YES |
+-----------+-----------+------+---------+---------+

2. Ensure that statement and stage instrumentation is enabled by updating the setup_instruments
table. Some instruments may already be enabled by default.

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES'
 WHERE NAME LIKE '%statement/%';

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES'
 WHERE NAME LIKE '%stage/%';

3. Ensure that events_statements_* and events_stages_* consumers are enabled. Some
consumers may already be enabled by default.

mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_statements_%';

mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_stages_%';

4. Under the user account you are monitoring, run the statement that you want to profile. For example:

mysql> SELECT * FROM employees.employees WHERE emp_no = 10001;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |

5352

Obtaining Parent Event Information

+--------+------------+------------+-----------+--------+------------+
| 10001 | 1953-09-02 | Georgi | Facello | M | 1986-06-26 |
+--------+------------+------------+-----------+--------+------------+

5. Identify the EVENT_ID of the statement by querying the events_statements_history_long
table. This step is similar to running SHOW PROFILES to identify the Query_ID. The following
query produces output similar to SHOW PROFILES:

mysql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT
 FROM performance_schema.events_statements_history_long WHERE SQL_TEXT like '%10001%';
+----------+----------+--+
| event_id | duration | sql_text |
+----------+----------+--+
| 31 | 0.028310 | SELECT * FROM employees.employees WHERE emp_no = 10001 |
+----------+----------+--+

6. Query the events_stages_history_long table to retrieve the statement's stage events. Stages
are linked to statements using event nesting. Each stage event record has a NESTING_EVENT_ID
column that contains the EVENT_ID of the parent statement.

mysql> SELECT event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration
 FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID=31;
+--------------------------------+----------+
| Stage | Duration |
+--------------------------------+----------+
stage/sql/starting	0.000080
stage/sql/checking permissions	0.000005
stage/sql/Opening tables	0.027759
stage/sql/init	0.000052
stage/sql/System lock	0.000009
stage/sql/optimizing	0.000006
stage/sql/statistics	0.000082
stage/sql/preparing	0.000008
stage/sql/executing	0.000000
stage/sql/Sending data	0.000017
stage/sql/end	0.000001
stage/sql/query end	0.000004
stage/sql/closing tables	0.000006
stage/sql/freeing items	0.000272
stage/sql/cleaning up	0.000001
+--------------------------------+----------+

29.19.2 Obtaining Parent Event Information

The data_locks table shows data locks held and requested. Rows of this table have a THREAD_ID
column indicating the thread ID of the session that owns the lock, and an EVENT_ID column indicating
the Performance Schema event that caused the lock. Tuples of (THREAD_ID, EVENT_ID) values
implicitly identify a parent event in other Performance Schema tables:

• The parent wait event in the events_waits_xxx tables

• The parent stage event in the events_stages_xxx tables

• The parent statement event in the events_statements_xxx tables

• The parent transaction event in the events_transactions_current table

To obtain details about the parent event, join the THREAD_ID and EVENT_ID columns with the
columns of like name in the appropriate parent event table. The relation is based on a nested set data
model, so the join has several clauses. Given parent and child tables represented by parent and
child, respectively, the join looks like this:

WHERE
 parent.THREAD_ID = child.THREAD_ID /* 1 */
 AND parent.EVENT_ID < child.EVENT_ID /* 2 */
 AND (
 child.EVENT_ID <= parent.END_EVENT_ID /* 3a */

5353

Obtaining Parent Event Information

 OR parent.END_EVENT_ID IS NULL /* 3b */
)

The conditions for the join are:

1. The parent and child events are in the same thread.

2. The child event begins after the parent event, so its EVENT_ID value is greater than that of the
parent.

3. The parent event has either completed or is still running.

To find lock information, data_locks is the table containing child events.

The data_locks table shows only existing locks, so these considerations apply regarding which table
contains the parent event:

• For transactions, the only choice is events_transactions_current. If a transaction is
completed, it may be in the transaction history tables, but the locks are gone already.

• For statements, it all depends on whether the statement that took a lock is a statement in a
transaction that has already completed (use events_statements_history) or the statement is
still running (use events_statements_current).

• For stages, the logic is similar to that for statements; use events_stages_history or
events_stages_current.

• For waits, the logic is similar to that for statements; use events_waits_history or
events_waits_current. However, so many waits are recorded that the wait that caused a lock is
most likely gone from the history tables already.

Wait, stage, and statement events disappear quickly from the history. If a statement that executed a
long time ago took a lock but is in a still-open transaction, it might not be possible to find the statement,
but it is possible to find the transaction.

This is why the nested set data model works better for locating parent events. Following links in a
parent/child relationship (data lock -> parent wait -> parent stage -> parent transaction) does not work
well when intermediate nodes are already gone from the history tables.

The following scenario illustrates how to find the parent transaction of a statement in which a lock was
taken:

Session A:

[1] START TRANSACTION;
[2] SELECT * FROM t1 WHERE pk = 1;
[3] SELECT 'Hello, world';

Session B:

SELECT ...
FROM performance_schema.events_transactions_current AS parent
 INNER JOIN performance_schema.data_locks AS child
WHERE
 parent.THREAD_ID = child.THREAD_ID
 AND parent.EVENT_ID < child.EVENT_ID
 AND (
 child.EVENT_ID <= parent.END_EVENT_ID
 OR parent.END_EVENT_ID IS NULL
);

The query for session B should show statement [2] as owning a data lock on the record with pk=1.

If session A executes more statements, [2] fades out of the history table.

5354

Restrictions on Performance Schema

The query should show the transaction that started in [1], regardless of how many statements, stages,
or waits were executed.

To see more data, you can also use the events_xxx_history_long tables, except for transactions,
assuming no other query runs in the server (so that history is preserved).

29.20 Restrictions on Performance Schema

The Performance Schema avoids using mutexes to collect or produce data, so there are no guarantees
of consistency and results can sometimes be incorrect. Event values in performance_schema tables
are nondeterministic and nonrepeatable.

If you save event information in another table, you should not assume that the original events remain
available later. For example, if you select events from a performance_schema table into a temporary
table, intending to join that table with the original table later, there might be no matches.

mysqldump and BACKUP DATABASE ignore tables in the performance_schema database.

Tables in the performance_schema database cannot be locked with LOCK TABLES, except the
setup_xxx tables.

Tables in the performance_schema database cannot be indexed.

Tables in the performance_schema database are not replicated.

The types of timers might vary per platform. The performance_timers table shows which event
timers are available. If the values in this table for a given timer name are NULL, that timer is not
supported on your platform.

Instruments that apply to storage engines might not be implemented for all storage engines.
Instrumentation of each third-party engine is the responsibility of the engine maintainer.

5355

5356

Chapter 30 MySQL sys Schema

Table of Contents
30.1 Prerequisites for Using the sys Schema ... 5357
30.2 Using the sys Schema ... 5358
30.3 sys Schema Progress Reporting .. 5359
30.4 sys Schema Object Reference ... 5360

30.4.1 sys Schema Object Index ... 5360
30.4.2 sys Schema Tables and Triggers .. 5365
30.4.3 sys Schema Views ... 5367
30.4.4 sys Schema Stored Procedures .. 5407
30.4.5 sys Schema Stored Functions ... 5425

MySQL 8.0 includes the sys schema, a set of objects that helps DBAs and developers interpret
data collected by the Performance Schema. sys schema objects can be used for typical tuning and
diagnosis use cases. Objects in this schema include:

• Views that summarize Performance Schema data into more easily understandable form.

• Stored procedures that perform operations such as Performance Schema configuration and
generating diagnostic reports.

• Stored functions that query Performance Schema configuration and provide formatting services.

For new installations, the sys schema is installed by default during data directory initialization if you
use mysqld with the --initialize or --initialize-insecure option. If this is not desired, you
can drop the sys schema manually after initialization if it is unneeded.

The MySQL upgrade procedure produces an error if a sys schema exists but has no version view,
on the assumption that absence of this view indicates a user-created sys schema. To upgrade in this
case, remove or rename the existing sys schema first.

sys schema objects have a DEFINER of 'mysql.sys'@'localhost'. Use of the dedicated
mysql.sys account avoids problems that occur if a DBA renames or removes the root account.

30.1 Prerequisites for Using the sys Schema
Before using the sys schema, the prerequisites described in this section must be satisfied.

Because the sys schema provides an alternative means of accessing the Performance Schema, the
Performance Schema must be enabled for the sys schema to work. See Section 29.3, “Performance
Schema Startup Configuration”.

For full access to the sys schema, a user must have these privileges:

• SELECT on all sys tables and views

• EXECUTE on all sys stored procedures and functions

• INSERT and UPDATE for the sys_config table, if changes are to be made to it

• Additional privileges for certain sys schema stored procedures and functions, as noted in their
descriptions (for example, the ps_setup_save() procedure)

It is also necessary to have privileges for the objects underlying the sys schema objects:

• SELECT on any Performance Schema tables accessed by sys schema objects, and UPDATE for any
tables to be updated using sys schema objects

• PROCESS for the INFORMATION_SCHEMA INNODB_BUFFER_PAGE table

5357

Using the sys Schema

Certain Performance Schema instruments and consumers must be enabled and (for instruments) timed
to take full advantage of sys schema capabilities:

• All wait instruments

• All stage instruments

• All statement instruments

• xxx_current and xxx_history_long consumers for all events

You can use the sys schema itself to enable all of the additional instruments and consumers:

CALL sys.ps_setup_enable_instrument('wait');
CALL sys.ps_setup_enable_instrument('stage');
CALL sys.ps_setup_enable_instrument('statement');
CALL sys.ps_setup_enable_consumer('current');
CALL sys.ps_setup_enable_consumer('history_long');

Note

For many uses of the sys schema, the default Performance Schema is
sufficient for data collection. Enabling all the instruments and consumers just
mentioned has a performance impact, so it is preferable to enable only the
additional configuration you need. Also, remember that if you enable additional
configuration, you can easily restore the default configuration like this:

CALL sys.ps_setup_reset_to_default(TRUE);

30.2 Using the sys Schema
You can make the sys schema the default schema so that references to its objects need not be
qualified with the schema name:

mysql> USE sys;
Database changed
mysql> SELECT * FROM version;
+-------------+---------------+
| sys_version | mysql_version |
+-------------+---------------+
| 2.1.1 | 8.0.26-debug |
+-------------+---------------+

(The version view shows the sys schema and MySQL server versions.)

To access sys schema objects while a different schema is the default (or simply to be explicit), qualify
object references with the schema name:

mysql> SELECT * FROM sys.version;
+-------------+---------------+
| sys_version | mysql_version |
+-------------+---------------+
| 2.1.1 | 8.0.26-debug |
+-------------+---------------+

The sys schema contains many views that summarize Performance Schema tables in various ways.
Most of these views come in pairs, such that one member of the pair has the same name as the other
member, plus a x$ prefix. For example, the host_summary_by_file_io view summarizes file I/
O grouped by host and displays latencies converted from picoseconds to more readable values (with
units);

mysql> SELECT * FROM sys.host_summary_by_file_io;
+------------+-------+------------+
| host | ios | io_latency |
+------------+-------+------------+
| localhost | 67570 | 5.38 s |
| background | 3468 | 4.18 s |
+------------+-------+------------+

5358

sys Schema Progress Reporting

The x$host_summary_by_file_io view summarizes the same data but displays unformatted
picosecond latencies:

mysql> SELECT * FROM sys.x$host_summary_by_file_io;
+------------+-------+---------------+
| host | ios | io_latency |
+------------+-------+---------------+
| localhost | 67574 | 5380678125144 |
| background | 3474 | 4758696829416 |
+------------+-------+---------------+

The view without the x$ prefix is intended to provide output that is more user friendly and easier for
humans to read. The view with the x$ prefix that displays the same values in raw form is intended more
for use with other tools that perform their own processing on the data. For additional information about
the differences between non-x$ and x$ views, see Section 30.4.3, “sys Schema Views”.

To examine sys schema object definitions, use the appropriate SHOW statement or
INFORMATION_SCHEMA query. For example, to examine the definitions of the session view and
format_bytes() function, use these statements:

mysql> SHOW CREATE VIEW sys.session;
mysql> SHOW CREATE FUNCTION sys.format_bytes;

However, those statements display the definitions in relatively unformatted form. To view object
definitions with more readable formatting, access the individual .sql files found under the scripts/
sys_schema in MySQL source distributions. Prior to MySQL 8.0.18, the sources are maintained in a
separate distribution available from the sys schema development website at https://github.com/mysql/
mysql-sys.

Neither mysqldump nor mysqlpump dump the sys schema by default. To generate a dump file, name
the sys schema explicitly on the command line using either of these commands:

mysqldump --databases --routines sys > sys_dump.sql
mysqlpump sys > sys_dump.sql

To reinstall the schema from the dump file, use this command:

mysql < sys_dump.sql

30.3 sys Schema Progress Reporting
The following sys schema views provide progress reporting for long-running transactions:

processlist
session
x$processlist
x$session

Assuming that the required instruments and consumers are enabled, the progress column of these
views shows the percentage of work completed for stages that support progress reporting.

Stage progress reporting requires that the events_stages_current consumer be enabled, as well
as the instruments for which progress information is desired. Instruments for these stages currently
support progress reporting:

stage/sql/Copying to tmp table
stage/innodb/alter table (end)
stage/innodb/alter table (flush)
stage/innodb/alter table (insert)
stage/innodb/alter table (log apply index)
stage/innodb/alter table (log apply table)
stage/innodb/alter table (merge sort)
stage/innodb/alter table (read PK and internal sort)
stage/innodb/buffer pool load

For stages that do not support estimated and completed work reporting, or if the required instruments
or consumers are not enabled, the progress column is NULL.

5359

https://github.com/mysql/mysql-sys
https://github.com/mysql/mysql-sys

sys Schema Object Reference

30.4 sys Schema Object Reference

The sys schema includes tables and triggers, views, and stored procedures and functions. The
following sections provide details for each of these objects.

30.4.1 sys Schema Object Index

The following tables list sys schema objects and provide a short description of each one.

Table 30.1 sys Schema Tables and Triggers

Table or Trigger Name Description

sys_config sys schema configuration options table

sys_config_insert_set_user sys_config insert trigger

sys_config_update_set_user sys_config update trigger

Table 30.2 sys Schema Views

View Name Description Deprecated

host_summary, x
$host_summary

Statement activity, file I/O, and
connections, grouped by host

host_summary_by_file_io,
x
$host_summary_by_file_io

File I/O, grouped by host

host_summary_by_file_io_type,
x
$host_summary_by_file_io_type

File I/O, grouped by host and
event type

host_summary_by_stages, x
$host_summary_by_stages

Statement stages, grouped by
host

host_summary_by_statement_latency,
x
$host_summary_by_statement_latency

Statement statistics, grouped by
host

host_summary_by_statement_type,
x
$host_summary_by_statement_type

Statements executed, grouped
by host and statement

innodb_buffer_stats_by_schema,
x
$innodb_buffer_stats_by_schema

InnoDB buffer information,
grouped by schema

innodb_buffer_stats_by_table,
x
$innodb_buffer_stats_by_table

InnoDB buffer information,
grouped by schema and table

innodb_lock_waits, x
$innodb_lock_waits

InnoDB lock information

io_by_thread_by_latency,
x
$io_by_thread_by_latency

I/O consumers, grouped by
thread

io_global_by_file_by_bytes,
x
$io_global_by_file_by_bytes

Global I/O consumers, grouped
by file and bytes

io_global_by_file_by_latency,
x
$io_global_by_file_by_latency

Global I/O consumers, grouped
by file and latency

5360

sys Schema Object Index

View Name Description Deprecated

io_global_by_wait_by_bytes,
x
$io_global_by_wait_by_bytes

Global I/O consumers, grouped
by bytes

io_global_by_wait_by_latency,
x
$io_global_by_wait_by_latency

Global I/O consumers, grouped
by latency

latest_file_io, x
$latest_file_io

Most recent I/O, grouped by file
and thread

memory_by_host_by_current_bytes,
x
$memory_by_host_by_current_bytes

Memory use, grouped by host

memory_by_thread_by_current_bytes,
x
$memory_by_thread_by_current_bytes

Memory use, grouped by thread

memory_by_user_by_current_bytes,
x
$memory_by_user_by_current_bytes

Memory use, grouped by user

memory_global_by_current_bytes,
x
$memory_global_by_current_bytes

Memory use, grouped by
allocation type

memory_global_total, x
$memory_global_total

Total memory use

metrics Server metrics

processlist, x
$processlist

Processlist information

ps_check_lost_instrumentationVariables that have lost
instruments

schema_auto_increment_columnsAUTO_INCREMENT column
information

schema_index_statistics,
x
$schema_index_statistics

Index statistics

schema_object_overview Types of objects within each
schema

schema_redundant_indexes Duplicate or redundant indexes

schema_table_lock_waits,
x
$schema_table_lock_waits

Sessions waiting for metadata
locks

schema_table_statistics,
x
$schema_table_statistics

Table statistics

schema_table_statistics_with_buffer,
x
$schema_table_statistics_with_buffer

Table statistics, including InnoDB
buffer pool statistics

schema_tables_with_full_table_scans,
x
$schema_tables_with_full_table_scans

Tables being accessed with full
scans

schema_unused_indexes Indexes not in active use

5361

sys Schema Object Index

View Name Description Deprecated

session, x$session Processlist information for user
sessions

session_ssl_status Connection SSL information

statement_analysis, x
$statement_analysis

Statement aggregate statistics

statements_with_errors_or_warnings,
x
$statements_with_errors_or_warnings

Statements that have produced
errors or warnings

statements_with_full_table_scans,
x
$statements_with_full_table_scans

Statements that have done full
table scans

statements_with_runtimes_in_95th_percentile,
x
$statements_with_runtimes_in_95th_percentile

Statements with highest average
runtime

statements_with_sorting,
x
$statements_with_sorting

Statements that performed sorts

statements_with_temp_tables,
x
$statements_with_temp_tables

Statements that used temporary
tables

user_summary, x
$user_summary

User statement and connection
activity

user_summary_by_file_io,
x
$user_summary_by_file_io

File I/O, grouped by user

user_summary_by_file_io_type,
x
$user_summary_by_file_io_type

File I/O, grouped by user and
event

user_summary_by_stages, x
$user_summary_by_stages

Stage events, grouped by user

user_summary_by_statement_latency,
x
$user_summary_by_statement_latency

Statement statistics, grouped by
user

user_summary_by_statement_type,
x
$user_summary_by_statement_type

Statements executed, grouped
by user and statement

version Current sys schema and MySQL
server versions

8.0.18

wait_classes_global_by_avg_latency,
x
$wait_classes_global_by_avg_latency

Wait class average latency,
grouped by event class

wait_classes_global_by_latency,
x
$wait_classes_global_by_latency

Wait class total latency, grouped
by event class

waits_by_host_by_latency,
x
$waits_by_host_by_latency

Wait events, grouped by host
and event

5362

sys Schema Object Index

View Name Description Deprecated

waits_by_user_by_latency,
x
$waits_by_user_by_latency

Wait events, grouped by user
and event

waits_global_by_latency,
x
$waits_global_by_latency

Wait events, grouped by event

x
$ps_digest_95th_percentile_by_avg_us

Helper view for 95th-percentile
views

x
$ps_digest_avg_latency_distribution

Helper view for 95th-percentile
views

x
$ps_schema_table_statistics_io

Helper view for table-statistics
views

x$schema_flattened_keys Helper view for
schema_redundant_indexes

Table 30.3 sys Schema Stored Procedures

Procedure Name Description

create_synonym_db() Create synonym for schema

diagnostics() Collect system diagnostic information

execute_prepared_stmt() Execute prepared statement

ps_setup_disable_background_threads() Disable background thread instrumentation

ps_setup_disable_consumer() Disable consumers

ps_setup_disable_instrument() Disable instruments

ps_setup_disable_thread() Disable instrumentation for thread

ps_setup_enable_background_threads() Enable background thread instrumentation

ps_setup_enable_consumer() Enable consumers

ps_setup_enable_instrument() Enable instruments

ps_setup_enable_thread() Enable instrumentation for thread

ps_setup_reload_saved() Reload saved Performance Schema configuration

ps_setup_reset_to_default() Reset saved Performance Schema configuration

ps_setup_save() Save Performance Schema configuration

ps_setup_show_disabled() Display disabled Performance Schema
configuration

ps_setup_show_disabled_consumers() Display disabled Performance Schema consumers

ps_setup_show_disabled_instruments() Display disabled Performance Schema
instruments

ps_setup_show_enabled() Display enabled Performance Schema
configuration

ps_setup_show_enabled_consumers() Display enabled Performance Schema consumers

ps_setup_show_enabled_instruments() Display enabled Performance Schema
instruments

ps_statement_avg_latency_histogram() Display statement latency histogram

ps_trace_statement_digest() Trace Performance Schema instrumentation for
digest

ps_trace_thread() Dump Performance Schema data for thread

5363

sys Schema Object Index

Procedure Name Description

ps_truncate_all_tables() Truncate Performance Schema summary tables

statement_performance_analyzer() Report of statements running on server

table_exists() Whether a table exists

Table 30.4 sys Schema Stored Functions

Function Name Description Deprecated

extract_schema_from_file_name()Extract schema name part of file
name

extract_table_from_file_name()Extract table name part of file
name

format_bytes() Convert byte count to value with
units

8.0.16

format_path() Replace directories in path name
with symbolic system variable
names

format_statement() Truncate long statement to fixed
length

format_time() Convert picoseconds time to
value with units

8.0.16

list_add() Add item to list

list_drop() Remove item from list

ps_is_account_enabled() Whether Performance Schema
instrumentation for account is
enabled

ps_is_consumer_enabled() Whether Performance Schema
consumer is enabled

ps_is_instrument_default_enabled()Whether Performance Schema
instrument is enabled by default

ps_is_instrument_default_timed()Whether Performance Schema
instrument is timed by default

ps_is_thread_instrumented()Whether Performance Schema
instrumentation for connection ID
is enabled

ps_thread_account() Account associated with
Performance Schema thread ID

ps_thread_id() Performance Schema thread ID
associated with connection ID

8.0.16

ps_thread_stack() Event information for connection
ID

ps_thread_trx_info() Transaction information for
thread ID

quote_identifier() Quote string as identifier

sys_get_config() sys schema configuration option
value

version_major() MySQL server major version
number

5364

sys Schema Tables and Triggers

Function Name Description Deprecated

version_minor() MySQL server minor version
number

version_patch() MySQL server patch release
version number

30.4.2 sys Schema Tables and Triggers

The following sections describe sys schema tables and triggers.

30.4.2.1 The sys_config Table

This table contains sys schema configuration options, one row per option. Configuration changes
made by updating this table persist across client sessions and server restarts.

The sys_config table has these columns:

• variable

The configuration option name.

• value

The configuration option value.

• set_time

The timestamp of the most recent modification to the row.

• set_by

The account that made the most recent modification to the row. The value is NULL if the row has not
been changed since the sys schema was installed.

As an efficiency measure to minimize the number of direct reads from the sys_config table,
sys schema functions that use a value from this table check for a user-defined variable with a
corresponding name, which is the user-defined variable having the same name plus a @sys.
prefix. (For example, the variable corresponding to the diagnostics.include_raw option is
@sys.diagnostics.include_raw.) If the user-defined variable exists in the current session
and is non-NULL, the function uses its value in preference to the value in the sys_config table.
Otherwise, the function reads and uses the value from the table. In the latter case, the calling function
conventionally also sets the corresponding user-defined variable to the table value so that further
references to the configuration option within the same session use the variable and need not read the
table again.

For example, the statement_truncate_len option controls the maximum length of statements
returned by the format_statement() function. The default is 64. To temporarily change the value
to 32 for your current session, set the corresponding @sys.statement_truncate_len user-defined
variable:

mysql> SET @stmt = 'SELECT variable, value, set_time, set_by FROM sys_config';
mysql> SELECT sys.format_statement(@stmt);
+--+
| sys.format_statement(@stmt) |
+--+
| SELECT variable, value, set_time, set_by FROM sys_config |
+--+
mysql> SET @sys.statement_truncate_len = 32;
mysql> SELECT sys.format_statement(@stmt);
+-----------------------------------+
| sys.format_statement(@stmt) |
+-----------------------------------+

5365

sys Schema Tables and Triggers

| SELECT variabl ... ROM sys_config |
+-----------------------------------+

Subsequent invocations of format_statement() within the session continue to use the user-defined
variable value (32), rather than the value stored in the table (64).

To stop using the user-defined variable and revert to using the value in the table, set the variable to
NULL within your session:

mysql> SET @sys.statement_truncate_len = NULL;
mysql> SELECT sys.format_statement(@stmt);
+--+
| sys.format_statement(@stmt) |
+--+
| SELECT variable, value, set_time, set_by FROM sys_config |
+--+

Alternatively, end your current session (causing the user-defined variable to no longer exist) and begin
a new session.

The conventional relationship just described between options in the sys_config table and user-
defined variables can be exploited to make temporary configuration changes that end when your
session ends. However, if you set a user-defined variable and then subsequently change the
corresponding table value within the same session, the changed table value is not used in that session
as long as the user-defined variable exists with a non-NULL value. (The changed table value is used in
other sessions in which the user-defined variable is not assigned.)

The following list describes the options in the sys_config table and the corresponding user-defined
variables:

• diagnostics.allow_i_s_tables, @sys.diagnostics.allow_i_s_tables

If this option is ON, the diagnostics() procedure is permitted to perform table scans on the
Information Schema TABLES table. This can be expensive if there are many tables. The default is
OFF.

• diagnostics.include_raw, @sys.diagnostics.include_raw

If this option is ON, the diagnostics() procedure includes the raw output from querying the
metrics view. The default is OFF.

• ps_thread_trx_info.max_length, @sys.ps_thread_trx_info.max_length

The maximum length for JSON output produced by the ps_thread_trx_info() function. The
default is 65535.

• statement_performance_analyzer.limit,
@sys.statement_performance_analyzer.limit

The maximum number of rows to return for views that have no built-in limit. (For example, the
statements_with_runtimes_in_95th_percentile view has a built-in limit in the sense that it
returns only statements with average execution time in the 95th percentile.) The default is 100.

• statement_performance_analyzer.view,
@sys.statement_performance_analyzer.view

The custom query or view to be used by the statement_performance_analyzer() procedure
(which is itself invoked by the diagnostics() procedure). If the option value contains a space,
it is interpreted as a query. Otherwise, it must be the name of an existing view that queries the
Performance Schema events_statements_summary_by_digest table. There cannot be any
LIMIT clause in the query or view definition if the statement_performance_analyzer.limit
configuration option is greater than 0. The default is NULL (no custom view defined).

5366

sys Schema Views

• statement_truncate_len, @sys.statement_truncate_len

The maximum length of statements returned by the format_statement() function. Longer
statements are truncated to this length. The default is 64.

Other options can be added to the sys_config table. For example, the diagnostics() and
execute_prepared_stmt() procedures use the debug option if it exists, but this option is not part
of the sys_config table by default because debug output normally is enabled only temporarily, by
setting the corresponding @sys.debug user-defined variable. To enable debug output without having
to set that variable in individual sessions, add the option to the table:

mysql> INSERT INTO sys.sys_config (variable, value) VALUES('debug', 'ON');

To change the debug setting in the table, do two things. First, modify the value in the table itself:

mysql> UPDATE sys.sys_config
 SET value = 'OFF'
 WHERE variable = 'debug';

Second, to also ensure that procedure invocations within the current session use the changed value
from the table, set the corresponding user-defined variable to NULL:

mysql> SET @sys.debug = NULL;

30.4.2.2 The sys_config_insert_set_user Trigger

For rows added to the sys_config table by INSERT statements, the
sys_config_insert_set_user trigger sets the set_by column to the current user.

30.4.2.3 The sys_config_update_set_user Trigger

The sys_config_update_set_user trigger for the sys_config table is similar to the
sys_config_insert_set_user trigger, but for UPDATE statements.

30.4.3 sys Schema Views

The following sections describe sys schema views.

The sys schema contains many views that summarize Performance Schema tables in various ways.
Most of these views come in pairs, such that one member of the pair has the same name as the other
member, plus a x$ prefix. For example, the host_summary_by_file_io view summarizes file I/
O grouped by host and displays latencies converted from picoseconds to more readable values (with
units);

mysql> SELECT * FROM sys.host_summary_by_file_io;
+------------+-------+------------+
| host | ios | io_latency |
+------------+-------+------------+
| localhost | 67570 | 5.38 s |
| background | 3468 | 4.18 s |
+------------+-------+------------+

The x$host_summary_by_file_io view summarizes the same data but displays unformatted
picosecond latencies:

mysql> SELECT * FROM sys.x$host_summary_by_file_io;
+------------+-------+---------------+
| host | ios | io_latency |
+------------+-------+---------------+
| localhost | 67574 | 5380678125144 |
| background | 3474 | 4758696829416 |
+------------+-------+---------------+

The view without the x$ prefix is intended to provide output that is more user friendly and easier to
read. The view with the x$ prefix that displays the same values in raw form is intended more for use
with other tools that perform their own processing on the data.

5367

sys Schema Views

Views without the x$ prefix differ from the corresponding x$ views in these ways:

• Byte counts are formatted with size units using format_bytes().

• Time values are formatted with temporal units using format_time().

• SQL statements are truncated to a maximum display width using format_statement().

• Path name are shortened using format_path().

30.4.3.1 The host_summary and x$host_summary Views

These views summarize statement activity, file I/O, and connections, grouped by host.

The host_summary and x$host_summary views have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• statements

The total number of statements for the host.

• statement_latency

The total wait time of timed statements for the host.

• statement_avg_latency

The average wait time per timed statement for the host.

• table_scans

The total number of table scans for the host.

• file_ios

The total number of file I/O events for the host.

• file_io_latency

The total wait time of timed file I/O events for the host.

• current_connections

The current number of connections for the host.

• total_connections

The total number of connections for the host.

• unique_users

The number of distinct users for the host.

• current_memory

The current amount of allocated memory for the host.

• total_memory_allocated

5368

sys Schema Views

The total amount of allocated memory for the host.

30.4.3.2 The host_summary_by_file_io and x$host_summary_by_file_io Views

These views summarize file I/O, grouped by host. By default, rows are sorted by descending total file I/
O latency.

The host_summary_by_file_io and x$host_summary_by_file_io views have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• ios

The total number of file I/O events for the host.

• io_latency

The total wait time of timed file I/O events for the host.

30.4.3.3 The host_summary_by_file_io_type and x$host_summary_by_file_io_type
Views

These views summarize file I/O, grouped by host and event type. By default, rows are sorted by host
and descending total I/O latency.

The host_summary_by_file_io_type and x$host_summary_by_file_io_type views have
these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• event_name

The file I/O event name.

• total

The total number of occurrences of the file I/O event for the host.

• total_latency

The total wait time of timed occurrences of the file I/O event for the host.

• max_latency

The maximum single wait time of timed occurrences of the file I/O event for the host.

30.4.3.4 The host_summary_by_stages and x$host_summary_by_stages Views

These views summarize statement stages, grouped by host. By default, rows are sorted by host and
descending total latency.

The host_summary_by_stages and x$host_summary_by_stages views have these columns:

• host

5369

sys Schema Views

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• event_name

The stage event name.

• total

The total number of occurrences of the stage event for the host.

• total_latency

The total wait time of timed occurrences of the stage event for the host.

• avg_latency

The average wait time per timed occurrence of the stage event for the host.

30.4.3.5 The host_summary_by_statement_latency and x
$host_summary_by_statement_latency Views

These views summarize overall statement statistics, grouped by host. By default, rows are sorted by
descending total latency.

The host_summary_by_statement_latency and x$host_summary_by_statement_latency
views have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• total

The total number of statements for the host.

• total_latency

The total wait time of timed statements for the host.

• max_latency

The maximum single wait time of timed statements for the host.

• lock_latency

The total time waiting for locks by timed statements for the host.

• cpu_latency

The time spent on CPU for the current thread.

• rows_sent

The total number of rows returned by statements for the host.

• rows_examined

The total number of rows read from storage engines by statements for the host.

5370

sys Schema Views

• rows_affected

The total number of rows affected by statements for the host.

• full_scans

The total number of full table scans by statements for the host.

30.4.3.6 The host_summary_by_statement_type and x
$host_summary_by_statement_type Views

These views summarize information about statements executed, grouped by host and statement type.
By default, rows are sorted by host and descending total latency.

The host_summary_by_statement_type and x$host_summary_by_statement_type views
have these columns:

• host

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• statement

The final component of the statement event name.

• total

The total number of occurrences of the statement event for the host.

• total_latency

The total wait time of timed occurrences of the statement event for the host.

• max_latency

The maximum single wait time of timed occurrences of the statement event for the host.

• lock_latency

The total time waiting for locks by timed occurrences of the statement event for the host.

• cpu_latency

The time spent on CPU for the current thread.

• rows_sent

The total number of rows returned by occurrences of the statement event for the host.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement event for the
host.

• rows_affected

The total number of rows affected by occurrences of the statement event for the host.

• full_scans

The total number of full table scans by occurrences of the statement event for the host.

5371

sys Schema Views

30.4.3.7 The innodb_buffer_stats_by_schema and x$innodb_buffer_stats_by_schema
Views

These views summarize the information in the INFORMATION_SCHEMA INNODB_BUFFER_PAGE table,
grouped by schema. By default, rows are sorted by descending buffer size.

Warning

Querying views that access the INNODB_BUFFER_PAGE table can affect
performance. Do not query these views on a production system unless you are
aware of the performance impact and have determined it to be acceptable. To
avoid impacting performance on a production system, reproduce the issue you
want to investigate and query buffer pool statistics on a test instance.

The innodb_buffer_stats_by_schema and x$innodb_buffer_stats_by_schema views have
these columns:

• object_schema

The schema name for the object, or InnoDB System if the table belongs to the InnoDB storage
engine.

• allocated

The total number of bytes allocated for the schema.

• data

The total number of data bytes allocated for the schema.

• pages

The total number of pages allocated for the schema.

• pages_hashed

The total number of hashed pages allocated for the schema.

• pages_old

The total number of old pages allocated for the schema.

• rows_cached

The total number of cached rows for the schema.

30.4.3.8 The innodb_buffer_stats_by_table and x$innodb_buffer_stats_by_table Views

These views summarize the information in the INFORMATION_SCHEMA INNODB_BUFFER_PAGE table,
grouped by schema and table. By default, rows are sorted by descending buffer size.

Warning

Querying views that access the INNODB_BUFFER_PAGE table can affect
performance. Do not query these views on a production system unless you are
aware of the performance impact and have determined it to be acceptable. To
avoid impacting performance on a production system, reproduce the issue you
want to investigate and query buffer pool statistics on a test instance.

The innodb_buffer_stats_by_table and x$innodb_buffer_stats_by_table views have
these columns:

• object_schema

5372

sys Schema Views

The schema name for the object, or InnoDB System if the table belongs to the InnoDB storage
engine.

• object_name

The table name.

• allocated

The total number of bytes allocated for the table.

• data

The number of data bytes allocated for the table.

• pages

The total number of pages allocated for the table.

• pages_hashed

The number of hashed pages allocated for the table.

• pages_old

The number of old pages allocated for the table.

• rows_cached

The number of cached rows for the table.

30.4.3.9 The innodb_lock_waits and x$innodb_lock_waits Views

These views summarize the InnoDB locks that transactions are waiting for. By default, rows are sorted
by descending lock age.

The innodb_lock_waits and x$innodb_lock_waits views have these columns:

• wait_started

The time at which the lock wait started.

• wait_age

How long the lock has been waited for, as a TIME value.

• wait_age_secs

How long the lock has been waited for, in seconds.

• locked_table_schema

The schema that contains the locked table.

• locked_table_name

The name of the locked table.

• locked_table_partition

The name of the locked partition, if any; NULL otherwise.

• locked_table_subpartition

5373

sys Schema Views

The name of the locked subpartition, if any; NULL otherwise.

• locked_index

The name of the locked index.

• locked_type

The type of the waiting lock.

• waiting_trx_id

The ID of the waiting transaction.

• waiting_trx_started

The time at which the waiting transaction started.

• waiting_trx_age

How long the waiting transaction has been waiting, as a TIME value.

• waiting_trx_rows_locked

The number of rows locked by the waiting transaction.

• waiting_trx_rows_modified

The number of rows modified by the waiting transaction.

• waiting_pid

The processlist ID of the waiting transaction.

• waiting_query

The statement that is waiting for the lock.

• waiting_lock_id

The ID of the waiting lock.

• waiting_lock_mode

The mode of the waiting lock.

• blocking_trx_id

The ID of the transaction that is blocking the waiting lock.

• blocking_pid

The processlist ID of the blocking transaction.

• blocking_query

The statement the blocking transaction is executing. This field reports NULL if the session that
issued the blocking query becomes idle. For more information, see Identifying a Blocking Query After
the Issuing Session Becomes Idle.

• blocking_lock_id

The ID of the lock that is blocking the waiting lock.

5374

sys Schema Views

• blocking_lock_mode

The mode of the lock that is blocking the waiting lock.

• blocking_trx_started

The time at which the blocking transaction started.

• blocking_trx_age

How long the blocking transaction has been executing, as a TIME value.

• blocking_trx_rows_locked

The number of rows locked by the blocking transaction.

• blocking_trx_rows_modified

The number of rows modified by the blocking transaction.

• sql_kill_blocking_query

The KILL statement to execute to kill the blocking statement.

• sql_kill_blocking_connection

The KILL statement to execute to kill the session running the blocking statement.

30.4.3.10 The io_by_thread_by_latency and x$io_by_thread_by_latency Views

These views summarize I/O consumers to display time waiting for I/O, grouped by thread. By default,
rows are sorted by descending total I/O latency.

The io_by_thread_by_latency and x$io_by_thread_by_latency views have these columns:

• user

For foreground threads, the account associated with the thread. For background threads, the thread
name.

• total

The total number of I/O events for the thread.

• total_latency

The total wait time of timed I/O events for the thread.

• min_latency

The minimum single wait time of timed I/O events for the thread.

• avg_latency

The average wait time per timed I/O event for the thread.

• max_latency

The maximum single wait time of timed I/O events for the thread.

• thread_id

The thread ID.

5375

sys Schema Views

• processlist_id

For foreground threads, the processlist ID of the thread. For background threads, NULL.

30.4.3.11 The io_global_by_file_by_bytes and x$io_global_by_file_by_bytes Views

These views summarize global I/O consumers to display amount of I/O, grouped by file. By default,
rows are sorted by descending total I/O (bytes read and written).

The io_global_by_file_by_bytes and x$io_global_by_file_by_bytes views have these
columns:

• file

The file path name.

• count_read

The total number of read events for the file.

• total_read

The total number of bytes read from the file.

• avg_read

The average number of bytes per read from the file.

• count_write

The total number of write events for the file.

• total_written

The total number of bytes written to the file.

• avg_write

The average number of bytes per write to the file.

• total

The total number of bytes read and written for the file.

• write_pct

The percentage of total bytes of I/O that were writes.

30.4.3.12 The io_global_by_file_by_latency and x$io_global_by_file_by_latency Views

These views summarize global I/O consumers to display time waiting for I/O, grouped by file. By
default, rows are sorted by descending total latency.

The io_global_by_file_by_latency and x$io_global_by_file_by_latency views have
these columns:

• file

The file path name.

• total

The total number of I/O events for the file.

5376

sys Schema Views

• total_latency

The total wait time of timed I/O events for the file.

• count_read

The total number of read I/O events for the file.

• read_latency

The total wait time of timed read I/O events for the file.

• count_write

The total number of write I/O events for the file.

• write_latency

The total wait time of timed write I/O events for the file.

• count_misc

The total number of other I/O events for the file.

• misc_latency

The total wait time of timed other I/O events for the file.

30.4.3.13 The io_global_by_wait_by_bytes and x$io_global_by_wait_by_bytes Views

These views summarize global I/O consumers to display amount of I/O and time waiting for I/O,
grouped by event. By default, rows are sorted by descending total I/O (bytes read and written).

The io_global_by_wait_by_bytes and x$io_global_by_wait_by_bytes views have these
columns:

• event_name

The I/O event name, with the wait/io/file/ prefix stripped.

• total

The total number of occurrences of the I/O event.

• total_latency

The total wait time of timed occurrences of the I/O event.

• min_latency

The minimum single wait time of timed occurrences of the I/O event.

• avg_latency

The average wait time per timed occurrence of the I/O event.

• max_latency

The maximum single wait time of timed occurrences of the I/O event.

• count_read

The number of read requests for the I/O event.

5377

sys Schema Views

• total_read

The number of bytes read for the I/O event.

• avg_read

The average number of bytes per read for the I/O event.

• count_write

The number of write requests for the I/O event.

• total_written

The number of bytes written for the I/O event.

• avg_written

The average number of bytes per write for the I/O event.

• total_requested

The total number of bytes read and written for the I/O event.

30.4.3.14 The io_global_by_wait_by_latency and x$io_global_by_wait_by_latency Views

These views summarize global I/O consumers to display amount of I/O and time waiting for I/O,
grouped by event. By default, rows are sorted by descending total latency.

The io_global_by_wait_by_latency and x$io_global_by_wait_by_latency views have
these columns:

• event_name

The I/O event name, with the wait/io/file/ prefix stripped.

• total

The total number of occurrences of the I/O event.

• total_latency

The total wait time of timed occurrences of the I/O event.

• avg_latency

The average wait time per timed occurrence of the I/O event.

• max_latency

The maximum single wait time of timed occurrences of the I/O event.

• read_latency

The total wait time of timed read occurrences of the I/O event.

• write_latency

The total wait time of timed write occurrences of the I/O event.

• misc_latency

The total wait time of timed other occurrences of the I/O event.

5378

sys Schema Views

• count_read

The number of read requests for the I/O event.

• total_read

The number of bytes read for the I/O event.

• avg_read

The average number of bytes per read for the I/O event.

• count_write

The number of write requests for the I/O event.

• total_written

The number of bytes written for the I/O event.

• avg_written

The average number of bytes per write for the I/O event.

30.4.3.15 The latest_file_io and x$latest_file_io Views

These views summarize file I/O activity, grouped by file and thread. By default, rows are sorted with
most recent I/O first.

The latest_file_io and x$latest_file_io views have these columns:

• thread

For foreground threads, the account associated with the thread (and port number for TCP/IP
connections). For background threads, the thread name and thread ID

• file

The file path name.

• latency

The wait time of the file I/O event.

• operation

The type of operation.

• requested

The number of data bytes requested for the file I/O event.

30.4.3.16 The memory_by_host_by_current_bytes and x
$memory_by_host_by_current_bytes Views

These views summarize memory use, grouped by host. By default, rows are sorted by descending
amount of memory used.

The memory_by_host_by_current_bytes and x$memory_by_host_by_current_bytes views
have these columns:

• host

5379

sys Schema Views

The host from which the client connected. Rows for which the HOST column in the underlying
Performance Schema table is NULL are assumed to be for background threads and are reported with
a host name of background.

• current_count_used

The current number of allocated memory blocks that have not been freed yet for the host.

• current_allocated

The current number of allocated bytes that have not been freed yet for the host.

• current_avg_alloc

The current number of allocated bytes per memory block for the host.

• current_max_alloc

The largest single current memory allocation in bytes for the host.

• total_allocated

The total memory allocation in bytes for the host.

30.4.3.17 The memory_by_thread_by_current_bytes and x
$memory_by_thread_by_current_bytes Views

These views summarize memory use, grouped by thread. By default, rows are sorted by descending
amount of memory used.

The memory_by_thread_by_current_bytes and x$memory_by_thread_by_current_bytes
views have these columns:

• thread_id

The thread ID.

• user

The thread user or thread name.

• current_count_used

The current number of allocated memory blocks that have not been freed yet for the thread.

• current_allocated

The current number of allocated bytes that have not been freed yet for the thread.

• current_avg_alloc

The current number of allocated bytes per memory block for the thread.

• current_max_alloc

The largest single current memory allocation in bytes for the thread.

• total_allocated

The total memory allocation in bytes for the thread.

30.4.3.18 The memory_by_user_by_current_bytes and x
$memory_by_user_by_current_bytes Views

5380

sys Schema Views

These views summarize memory use, grouped by user. By default, rows are sorted by descending
amount of memory used.

The memory_by_user_by_current_bytes and x$memory_by_user_by_current_bytes views
have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• current_count_used

The current number of allocated memory blocks that have not been freed yet for the user.

• current_allocated

The current number of allocated bytes that have not been freed yet for the user.

• current_avg_alloc

The current number of allocated bytes per memory block for the user.

• current_max_alloc

The largest single current memory allocation in bytes for the user.

• total_allocated

The total memory allocation in bytes for the user.

30.4.3.19 The memory_global_by_current_bytes and x
$memory_global_by_current_bytes Views

These views summarize memory use, grouped by allocation type (that is, by event). By default, rows
are sorted by descending amount of memory used.

The memory_global_by_current_bytes and x$memory_global_by_current_bytes views
have these columns:

• event_name

The memory event name.

• current_count

The total number of occurrences of the event.

• current_alloc

The current number of allocated bytes that have not been freed yet for the event.

• current_avg_alloc

The current number of allocated bytes per memory block for the event.

• high_count

The high-water mark for number of memory blocks allocated for the event.

• high_alloc

5381

sys Schema Views

The high-water mark for number of bytes allocated for the event.

• high_avg_alloc

The high-water mark for average number of bytes per memory block allocated for the event.

30.4.3.20 The memory_global_total and x$memory_global_total Views

These views summarize total memory use within the server.

The memory_global_total and x$memory_global_total views have these columns:

• total_allocated

The total bytes of memory allocated within the server.

30.4.3.21 The metrics View

This view summarizes MySQL server metrics to show variable names, values, types, and whether they
are enabled. By default, rows are sorted by variable type and name.

The metrics view includes this information:

• Global status variables from the Performance Schema global_status table

• InnoDB metrics from the INFORMATION_SCHEMA INNODB_METRICS table

• Current and total memory allocation, based on the Performance Schema memory instrumentation

• The current time (human readable and Unix timestamp formats)

There is some duplication of information between the global_status and INNODB_METRICS tables,
which the metrics view eliminates.

The metrics view has these columns:

• Variable_name

The metric name. The metric type determines the source from which the name is taken:

• For global status variables: The VARIABLE_NAME column of the global_status table

• For InnoDB metrics: The NAME column of the INNODB_METRICS table

• For other metrics: A view-provided descriptive string

• Variable_value

The metric value. The metric type determines the source from which the value is taken:

• For global status variables: The VARIABLE_VALUE column of the global_status table

• For InnoDB metrics: The COUNT column of the INNODB_METRICS table

• For memory metrics: The relevant column from the Performance Schema
memory_summary_global_by_event_name table

• For the current time: The value of NOW(3) or UNIX_TIMESTAMP(NOW(3))

• Type

The metric type:

5382

sys Schema Views

• For global status variables: Global Status

• For InnoDB metrics: InnoDB Metrics - %, where % is replaced by the value of the SUBSYSTEM
column of the INNODB_METRICS table

• For memory metrics: Performance Schema

• For the current time: System Time

• Enabled

Whether the metric is enabled:

• For global status variables: YES

• For InnoDB metrics: YES if the STATUS column of the INNODB_METRICS table is enabled, NO
otherwise

• For memory metrics: NO, YES, or PARTIAL (currently, PARTIAL occurs only for memory metrics
and indicates that not all memory/% instruments are enabled; Performance Schema memory
instruments are always enabled)

• For the current time: YES

30.4.3.22 The processlist and x$processlist Views

The MySQL process list indicates the operations currently being performed by the set of threads
executing within the server. The processlist and x$processlist views summarize process
information. They provide more complete information than the SHOW PROCESSLIST statement and the
INFORMATION_SCHEMA PROCESSLIST table, and are also nonblocking. By default, rows are sorted by
descending process time and descending wait time. For a comparison of process information sources,
see Sources of Process Information.

The column descriptions here are brief. For additional information, see the description of the
Performance Schema threads table at Section 29.12.21.8, “The threads Table”.

The processlist and x$processlist views have these columns:

• thd_id

The thread ID.

• conn_id

The connection ID.

• user

The thread user or thread name.

• db

The default database for the thread, or NULL if there is none.

• command

For foreground threads, the type of command the thread is executing on behalf of the client, or
Sleep if the session is idle.

• state

An action, event, or state that indicates what the thread is doing.

5383

sys Schema Views

• time

The time in seconds that the thread has been in its current state.

• current_statement

The statement the thread is executing, or NULL if it is not executing any statement.

• execution_engine

The query execution engine. The value is either PRIMARY or SECONDARY. For use with HeatWave
Service and HeatWave, where the PRIMARY engine is InnoDB and SECONDARY engine is HeatWave
(RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition Server (on-premise),
and HeatWave Service without HeatWave, the value is always PRIMARY. This column was added in
MySQL 8.0.29.

• statement_latency

How long the statement has been executing.

• progress

The percentage of work completed for stages that support progress reporting. See Section 30.3, “sys
Schema Progress Reporting”.

• lock_latency

The time spent waiting for locks by the current statement.

• cpu_latency

The time spent on CPU for the current thread.

• rows_examined

The number of rows read from storage engines by the current statement.

• rows_sent

The number of rows returned by the current statement.

• rows_affected

The number of rows affected by the current statement.

• tmp_tables

The number of internal in-memory temporary tables created by the current statement.

• tmp_disk_tables

The number of internal on-disk temporary tables created by the current statement.

• full_scan

The number of full table scans performed by the current statement.

• last_statement

The last statement executed by the thread, if there is no currently executing statement or wait.

• last_statement_latency

How long the last statement executed.

5384

sys Schema Views

• current_memory

The number of bytes allocated by the thread.

• last_wait

The name of the most recent wait event for the thread.

• last_wait_latency

The wait time of the most recent wait event for the thread.

• source

The source file and line number containing the instrumented code that produced the event.

• trx_latency

The wait time of the current transaction for the thread.

• trx_state

The state for the current transaction for the thread.

• trx_autocommit

Whether autocommit mode was enabled when the current transaction started.

• pid

The client process ID.

• program_name

The client program name.

30.4.3.23 The ps_check_lost_instrumentation View

This view returns information about lost Performance Schema instruments, to indicate whether the
Performance Schema is unable to monitor all runtime data.

The ps_check_lost_instrumentation view has these columns:

• variable_name

The Performance Schema status variable name indicating which type of instrument was lost.

• variable_value

The number of instruments lost.

30.4.3.24 The schema_auto_increment_columns View

This view indicates which tables have AUTO_INCREMENT columns and provides information about
those columns, such as the current and maximum column values and the usage ratio (ratio of used to
possible values). By default, rows are sorted by descending usage ratio and maximum column value.

Tables in these schemas are excluded from view output: mysql, sys, INFORMATION_SCHEMA,
performance_schema.

The schema_auto_increment_columns view has these columns:

• table_schema

5385

sys Schema Views

The schema that contains the table.

• table_name

The table that contains the AUTO_INCREMENT column.

• column_name

The name of the AUTO_INCREMENT column.

• data_type

The data type of the column.

• column_type

The column type of the column, which is the data type plus possibly other information. For example,
for a column with a bigint(20) unsigned column type, the data type is just bigint.

• is_signed

Whether the column type is signed.

• is_unsigned

Whether the column type is unsigned.

• max_value

The maximum permitted value for the column.

• auto_increment

The current AUTO_INCREMENT value for the column.

• auto_increment_ratio

The ratio of used to permitted values for the column. This indicates how much of the sequence of
values is “used up.”

30.4.3.25 The schema_index_statistics and x$schema_index_statistics Views

These views provide index statistics. By default, rows are sorted by descending total index latency.

The schema_index_statistics and x$schema_index_statistics views have these columns:

• table_schema

The schema that contains the table.

• table_name

The table that contains the index.

• index_name

The name of the index.

• rows_selected

The total number of rows read using the index.

• select_latency

5386

sys Schema Views

The total wait time of timed reads using the index.

• rows_inserted

The total number of rows inserted into the index.

• insert_latency

The total wait time of timed inserts into the index.

• rows_updated

The total number of rows updated in the index.

• update_latency

The total wait time of timed updates in the index.

• rows_deleted

The total number of rows deleted from the index.

• delete_latency

The total wait time of timed deletes from the index.

30.4.3.26 The schema_object_overview View

This view summarizes the types of objects within each schema. By default, rows are sorted by schema
and object type.

Note

For MySQL instances with a large number of objects, this view might take a
long time to execute.

The schema_object_overview view has these columns:

• db

The schema name.

• object_type

The object type: BASE TABLE, INDEX (index_type), EVENT, FUNCTION, PROCEDURE, TRIGGER,
VIEW.

• count

The number of objects in the schema of the given type.

30.4.3.27 The schema_redundant_indexes and x$schema_flattened_keys Views

The schema_redundant_indexes view displays indexes that duplicate other indexes or
are made redundant by them. The x$schema_flattened_keys view is a helper view for
schema_redundant_indexes.

In the following column descriptions, the dominant index is the one that makes the redundant index
redundant.

The schema_redundant_indexes view has these columns:

• table_schema

5387

sys Schema Views

The schema that contains the table.

• table_name

The table that contains the index.

• redundant_index_name

The name of the redundant index.

• redundant_index_columns

The names of the columns in the redundant index.

• redundant_index_non_unique

The number of nonunique columns in the redundant index.

• dominant_index_name

The name of the dominant index.

• dominant_index_columns

The names of the columns in the dominant index.

• dominant_index_non_unique

The number of nonunique columns in the dominant index.

• subpart_exists

Whether the index indexes only part of a column.

• sql_drop_index

The statement to execute to drop the redundant index.

The x$schema_flattened_keys view has these columns:

• table_schema

The schema that contains the table.

• table_name

The table that contains the index.

• index_name

An index name.

• non_unique

The number of nonunique columns in the index.

• subpart_exists

Whether the index indexes only part of a column.

• index_columns

The name of the columns in the index.

5388

sys Schema Views

30.4.3.28 The schema_table_lock_waits and x$schema_table_lock_waits Views

These views display which sessions are blocked waiting on metadata locks, and what is blocking them.

The column descriptions here are brief. For additional information, see the description of the
Performance Schema metadata_locks table at Section 29.12.13.3, “The metadata_locks Table”.

The schema_table_lock_waits and x$schema_table_lock_waits views have these columns:

• object_schema

The schema containing the object to be locked.

• object_name

The name of the instrumented object.

• waiting_thread_id

The thread ID of the thread that is waiting for the lock.

• waiting_pid

The processlist ID of the thread that is waiting for the lock.

• waiting_account

The account associated with the session that is waiting for the lock.

• waiting_lock_type

The type of the waiting lock.

• waiting_lock_duration

How long the waiting lock has been waiting.

• waiting_query

The statement that is waiting for the lock.

• waiting_query_secs

How long the statement has been waiting, in seconds.

• waiting_query_rows_affected

The number of rows affected by the statement.

• waiting_query_rows_examined

The number of rows read from storage engines by the statement.

• blocking_thread_id

The thread ID of the thread that is blocking the waiting lock.

• blocking_pid

The processlist ID of the thread that is blocking the waiting lock.

• blocking_account

The account associated with the thread that is blocking the waiting lock.

5389

sys Schema Views

• blocking_lock_type

The type of lock that is blocking the waiting lock.

• blocking_lock_duration

How long the blocking lock has been held.

• sql_kill_blocking_query

The KILL statement to execute to kill the blocking statement.

• sql_kill_blocking_connection

The KILL statement to execute to kill the session running the blocking statement.

30.4.3.29 The schema_table_statistics and x$schema_table_statistics Views

These views summarize table statistics. By default, rows are sorted by descending total wait time
(tables with most contention first).

These views user a helper view, x$ps_schema_table_statistics_io.

The schema_table_statistics and x$schema_table_statistics views have these columns:

• table_schema

The schema that contains the table.

• table_name

The table name.

• total_latency

The total wait time of timed I/O events for the table.

• rows_fetched

The total number of rows read from the table.

• fetch_latency

The total wait time of timed read I/O events for the table.

• rows_inserted

The total number of rows inserted into the table.

• insert_latency

The total wait time of timed insert I/O events for the table.

• rows_updated

The total number of rows updated in the table.

• update_latency

The total wait time of timed update I/O events for the table.

• rows_deleted

The total number of rows deleted from the table.

5390

sys Schema Views

• delete_latency

The total wait time of timed delete I/O events for the table.

• io_read_requests

The total number of read requests for the table.

• io_read

The total number of bytes read from the table.

• io_read_latency

The total wait time of reads from the table.

• io_write_requests

The total number of write requests for the table.

• io_write

The total number of bytes written to the table.

• io_write_latency

The total wait time of writes to the table.

• io_misc_requests

The total number of miscellaneous I/O requests for the table.

• io_misc_latency

The total wait time of miscellaneous I/O requests for the table.

30.4.3.30 The schema_table_statistics_with_buffer and x
$schema_table_statistics_with_buffer Views

These views summarize table statistics, including InnoDB buffer pool statistics. By default, rows are
sorted by descending total wait time (tables with most contention first).

These views user a helper view, x$ps_schema_table_statistics_io.

The schema_table_statistics_with_buffer and x
$schema_table_statistics_with_buffer views have these columns:

• table_schema

The schema that contains the table.

• table_name

The table name.

• rows_fetched

The total number of rows read from the table.

• fetch_latency

The total wait time of timed read I/O events for the table.

• rows_inserted

5391

sys Schema Views

The total number of rows inserted into the table.

• insert_latency

The total wait time of timed insert I/O events for the table.

• rows_updated

The total number of rows updated in the table.

• update_latency

The total wait time of timed update I/O events for the table.

• rows_deleted

The total number of rows deleted from the table.

• delete_latency

The total wait time of timed delete I/O events for the table.

• io_read_requests

The total number of read requests for the table.

• io_read

The total number of bytes read from the table.

• io_read_latency

The total wait time of reads from the table.

• io_write_requests

The total number of write requests for the table.

• io_write

The total number of bytes written to the table.

• io_write_latency

The total wait time of writes to the table.

• io_misc_requests

The total number of miscellaneous I/O requests for the table.

• io_misc_latency

The total wait time of miscellaneous I/O requests for the table.

• innodb_buffer_allocated

The total number of InnoDB buffer bytes allocated for the table.

• innodb_buffer_data

The total number of InnoDB data bytes allocated for the table.

• innodb_buffer_free

5392

sys Schema Views

The total number of InnoDB nondata bytes allocated for the table (innodb_buffer_allocated −
innodb_buffer_data).

• innodb_buffer_pages

The total number of InnoDB pages allocated for the table.

• innodb_buffer_pages_hashed

The total number of InnoDB hashed pages allocated for the table.

• innodb_buffer_pages_old

The total number of InnoDB old pages allocated for the table.

• innodb_buffer_rows_cached

The total number of InnoDB cached rows for the table.

30.4.3.31 The schema_tables_with_full_table_scans and x
$schema_tables_with_full_table_scans Views

These views display which tables are being accessed with full table scans. By default, rows are sorted
by descending rows scanned.

The schema_tables_with_full_table_scans and x
$schema_tables_with_full_table_scans views have these columns:

• object_schema

The schema name.

• object_name

The table name.

• rows_full_scanned

The total number of rows scanned by full scans of the table.

• latency

The total wait time of full scans of the table.

30.4.3.32 The schema_unused_indexes View

These views display indexes for which there are no events, which indicates that they are not being
used. By default, rows are sorted by schema and table.

This view is most useful when the server has been up and processing long enough that its workload is
representative. Otherwise, presence of an index in this view may not be meaningful.

The schema_unused_indexes view has these columns:

• object_schema

The schema name.

• object_name

The table name.

5393

sys Schema Views

• index_name

The unused index name.

30.4.3.33 The session and x$session Views

These views are similar to processlist and x$processlist, but they filter out background
processes to display only user sessions. For descriptions of the columns, see Section 30.4.3.22, “The
processlist and x$processlist Views”.

30.4.3.34 The session_ssl_status View

For each connection, this view displays the SSL version, cipher, and count of reused SSL sessions.

The session_ssl_status view has these columns:

• thread_id

The thread ID for the connection.

• ssl_version

The version of SSL used for the connection.

• ssl_cipher

The SSL cipher used for the connection.

• ssl_sessions_reused

The number of reused SSL sessions for the connection.

30.4.3.35 The statement_analysis and x$statement_analysis Views

These views list normalized statements with aggregated statistics. The content mimics the MySQL
Enterprise Monitor Query Analysis view. By default, rows are sorted by descending total latency.

The statement_analysis and x$statement_analysis views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• full_scan

The total number of full table scans performed by occurrences of the statement.

• exec_count

The total number of times the statement has executed.

• err_count

The total number of errors produced by occurrences of the statement.

• warn_count

The total number of warnings produced by occurrences of the statement.

• total_latency

5394

sys Schema Views

The total wait time of timed occurrences of the statement.

• max_latency

The maximum single wait time of timed occurrences of the statement.

• avg_latency

The average wait time per timed occurrence of the statement.

• lock_latency

The total time waiting for locks by timed occurrences of the statement.

• cpu_latency

The time spent on CPU for the current thread.

• rows_sent

The total number of rows returned by occurrences of the statement.

• rows_sent_avg

The average number of rows returned per occurrence of the statement.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement.

• rows_examined_avg

The average number of rows read from storage engines per occurrence of the statement.

• rows_affected

The total number of rows affected by occurrences of the statement.

• rows_affected_avg

The average number of rows affected per occurrence of the statement.

• tmp_tables

The total number of internal in-memory temporary tables created by occurrences of the statement.

• tmp_disk_tables

The total number of internal on-disk temporary tables created by occurrences of the statement.

• rows_sorted

The total number of rows sorted by occurrences of the statement.

• sort_merge_passes

The total number of sort merge passes by occurrences of the statement.

• max_controlled_memory

The maximum amount of controlled memory (bytes) used by the statement.

This column was added in MySQL 8.0.31

5395

sys Schema Views

• max_total_memory

The maximum amount of memory (bytes) used by the statement.

This column was added in MySQL 8.0.31

• digest

The statement digest.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

30.4.3.36 The statements_with_errors_or_warnings and x
$statements_with_errors_or_warnings Views

These views display normalized statements that have produced errors or warnings. By default, rows
are sorted by descending error and warning counts.

The statements_with_errors_or_warnings and x
$statements_with_errors_or_warnings views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

The total number of times the statement has executed.

• errors

The total number of errors produced by occurrences of the statement.

• error_pct

The percentage of statement occurrences that produced errors.

• warnings

The total number of warnings produced by occurrences of the statement.

• warning_pct

The percentage of statement occurrences that produced warnings.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

• digest

5396

sys Schema Views

The statement digest.

30.4.3.37 The statements_with_full_table_scans and x
$statements_with_full_table_scans Views

These views display normalized statements that have done full table scans. By default, rows are sorted
by descending percentage of time a full scan was done and descending total latency.

The statements_with_full_table_scans and x$statements_with_full_table_scans
views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

The total number of times the statement has executed.

• total_latency

The total wait time of timed statement events for the statement.

• no_index_used_count

The total number of times no index was used to scan the table.

• no_good_index_used_count

The total number of times no good index was used to scan the table.

• no_index_used_pct

The percentage of the time no index was used to scan the table.

• rows_sent

The total number of rows returned from the table.

• rows_examined

The total number of rows read from the storage engine for the table.

• rows_sent_avg

The average number of rows returned from the table.

• rows_examined_avg

The average number of rows read from the storage engine for the table.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

5397

sys Schema Views

• digest

The statement digest.

30.4.3.38 The statements_with_runtimes_in_95th_percentile and x
$statements_with_runtimes_in_95th_percentile Views

These views list statements with runtimes in the 95th percentile. By default, rows are sorted by
descending average latency.

Both views use two helper views, x$ps_digest_avg_latency_distribution and x
$ps_digest_95th_percentile_by_avg_us.

The statements_with_runtimes_in_95th_percentile and x
$statements_with_runtimes_in_95th_percentile views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• full_scan

The total number of full table scans performed by occurrences of the statement.

• exec_count

The total number of times the statement has executed.

• err_count

The total number of errors produced by occurrences of the statement.

• warn_count

The total number of warnings produced by occurrences of the statement.

• total_latency

The total wait time of timed occurrences of the statement.

• max_latency

The maximum single wait time of timed occurrences of the statement.

• avg_latency

The average wait time per timed occurrence of the statement.

• rows_sent

The total number of rows returned by occurrences of the statement.

• rows_sent_avg

The average number of rows returned per occurrence of the statement.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement.

5398

sys Schema Views

• rows_examined_avg

The average number of rows read from storage engines per occurrence of the statement.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

• digest

The statement digest.

30.4.3.39 The statements_with_sorting and x$statements_with_sorting Views

These views list normalized statements that have performed sorts. By default, rows are sorted by
descending total latency.

The statements_with_sorting and x$statements_with_sorting views have these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

The total number of times the statement has executed.

• total_latency

The total wait time of timed occurrences of the statement.

• sort_merge_passes

The total number of sort merge passes by occurrences of the statement.

• avg_sort_merges

The average number of sort merge passes per occurrence of the statement.

• sorts_using_scans

The total number of sorts using table scans by occurrences of the statement.

• sort_using_range

The total number of sorts using range accesses by occurrences of the statement.

• rows_sorted

The total number of rows sorted by occurrences of the statement.

• avg_rows_sorted

The average number of rows sorted per occurrence of the statement.

• first_seen

5399

sys Schema Views

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

• digest

The statement digest.

30.4.3.40 The statements_with_temp_tables and x$statements_with_temp_tables Views

These views list normalized statements that have used temporary tables. By default, rows are sorted
by descending number of on-disk temporary tables used and descending number of in-memory
temporary tables used.

The statements_with_temp_tables and x$statements_with_temp_tables views have
these columns:

• query

The normalized statement string.

• db

The default database for the statement, or NULL if there is none.

• exec_count

The total number of times the statement has executed.

• total_latency

The total wait time of timed occurrences of the statement.

• memory_tmp_tables

The total number of internal in-memory temporary tables created by occurrences of the statement.

• disk_tmp_tables

The total number of internal on-disk temporary tables created by occurrences of the statement.

• avg_tmp_tables_per_query

The average number of internal temporary tables created per occurrence of the statement.

• tmp_tables_to_disk_pct

The percentage of internal in-memory temporary tables that were converted to on-disk tables.

• first_seen

The time at which the statement was first seen.

• last_seen

The time at which the statement was most recently seen.

• digest

The statement digest.

5400

sys Schema Views

30.4.3.41 The user_summary and x$user_summary Views

These views summarize statement activity, file I/O, and connections, grouped by user. By default, rows
are sorted by descending total latency.

The user_summary and x$user_summary views have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• statements

The total number of statements for the user.

• statement_latency

The total wait time of timed statements for the user.

• statement_avg_latency

The average wait time per timed statement for the user.

• table_scans

The total number of table scans for the user.

• file_ios

The total number of file I/O events for the user.

• file_io_latency

The total wait time of timed file I/O events for the user.

• current_connections

The current number of connections for the user.

• total_connections

The total number of connections for the user.

• unique_hosts

The number of distinct hosts from which connections for the user have originated.

• current_memory

The current amount of allocated memory for the user.

• total_memory_allocated

The total amount of allocated memory for the user.

30.4.3.42 The user_summary_by_file_io and x$user_summary_by_file_io Views

These views summarize file I/O, grouped by user. By default, rows are sorted by descending total file I/
O latency.

The user_summary_by_file_io and x$user_summary_by_file_io views have these columns:

5401

sys Schema Views

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• ios

The total number of file I/O events for the user.

• io_latency

The total wait time of timed file I/O events for the user.

30.4.3.43 The user_summary_by_file_io_type and x$user_summary_by_file_io_type
Views

These views summarize file I/O, grouped by user and event type. By default, rows are sorted by user
and descending total latency.

The user_summary_by_file_io_type and x$user_summary_by_file_io_type views have
these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• event_name

The file I/O event name.

• total

The total number of occurrences of the file I/O event for the user.

• latency

The total wait time of timed occurrences of the file I/O event for the user.

• max_latency

The maximum single wait time of timed occurrences of the file I/O event for the user.

30.4.3.44 The user_summary_by_stages and x$user_summary_by_stages Views

These views summarize stages, grouped by user. By default, rows are sorted by user and descending
total stage latency.

The user_summary_by_stages and x$user_summary_by_stages views have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• event_name

The stage event name.

• total

5402

sys Schema Views

The total number of occurrences of the stage event for the user.

• total_latency

The total wait time of timed occurrences of the stage event for the user.

• avg_latency

The average wait time per timed occurrence of the stage event for the user.

30.4.3.45 The user_summary_by_statement_latency and x
$user_summary_by_statement_latency Views

These views summarize overall statement statistics, grouped by user. By default, rows are sorted by
descending total latency.

The user_summary_by_statement_latency and x$user_summary_by_statement_latency
views have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• total

The total number of statements for the user.

• total_latency

The total wait time of timed statements for the user.

• max_latency

The maximum single wait time of timed statements for the user.

• lock_latency

The total time waiting for locks by timed statements for the user.

• cpu_latency

The time spent on CPU for the current thread.

• rows_sent

The total number of rows returned by statements for the user.

• rows_examined

The total number of rows read from storage engines by statements for the user.

• rows_affected

The total number of rows affected by statements for the user.

• full_scans

The total number of full table scans by statements for the user.

30.4.3.46 The user_summary_by_statement_type and x
$user_summary_by_statement_type Views

5403

sys Schema Views

These views summarize information about statements executed, grouped by user and statement type.
By default, rows are sorted by user and descending total latency.

The user_summary_by_statement_type and x$user_summary_by_statement_type views
have these columns:

• user

The client user name. Rows for which the USER column in the underlying Performance Schema
table is NULL are assumed to be for background threads and are reported with a host name of
background.

• statement

The final component of the statement event name.

• total

The total number of occurrences of the statement event for the user.

• total_latency

The total wait time of timed occurrences of the statement event for the user.

• max_latency

The maximum single wait time of timed occurrences of the statement event for the user.

• lock_latency

The total time waiting for locks by timed occurrences of the statement event for the user.

• cpu_latency

The time spent on CPU for the current thread.

• rows_sent

The total number of rows returned by occurrences of the statement event for the user.

• rows_examined

The total number of rows read from storage engines by occurrences of the statement event for the
user.

• rows_affected

The total number of rows affected by occurrences of the statement event for the user.

• full_scans

The total number of full table scans by occurrences of the statement event for the user.

30.4.3.47 The version View

This view provides the current sys schema and MySQL server versions.

Note

As of MySQL 8.0.18, this view is deprecated and subject to removal in a future
MySQL version. Applications that use it should be migrated to use an alternative
instead. For example, use the VERSION() function to retrieve the MySQL
server version.

5404

sys Schema Views

The version view has these columns:

• sys_version

The sys schema version.

• mysql_version

The MySQL server version.

30.4.3.48 The wait_classes_global_by_avg_latency and x
$wait_classes_global_by_avg_latency Views

These views summarize wait class average latencies, grouped by event class. By default, rows are
sorted by descending average latency. Idle events are ignored.

An event class is determined by stripping from the event name everything after the first three
components. For example, the class for wait/io/file/sql/slow_log is wait/io/file.

The wait_classes_global_by_avg_latency and x
$wait_classes_global_by_avg_latency views have these columns:

• event_class

The event class.

• total

The total number of occurrences of events in the class.

• total_latency

The total wait time of timed occurrences of events in the class.

• min_latency

The minimum single wait time of timed occurrences of events in the class.

• avg_latency

The average wait time per timed occurrence of events in the class.

• max_latency

The maximum single wait time of timed occurrences of events in the class.

30.4.3.49 The wait_classes_global_by_latency and x$wait_classes_global_by_latency
Views

These views summarize wait class total latencies, grouped by event class. By default, rows are sorted
by descending total latency. Idle events are ignored.

An event class is determined by stripping from the event name everything after the first three
components. For example, the class for wait/io/file/sql/slow_log is wait/io/file.

The wait_classes_global_by_latency and x$wait_classes_global_by_latency views
have these columns:

• event_class

The event class.

• total

5405

sys Schema Views

The total number of occurrences of events in the class.

• total_latency

The total wait time of timed occurrences of events in the class.

• min_latency

The minimum single wait time of timed occurrences of events in the class.

• avg_latency

The average wait time per timed occurrence of events in the class.

• max_latency

The maximum single wait time of timed occurrences of events in the class.

30.4.3.50 The waits_by_host_by_latency and x$waits_by_host_by_latency Views

These views summarize wait events, grouped by host and event. By default, rows are sorted by host
and descending total latency. Idle events are ignored.

The waits_by_host_by_latency and x$waits_by_host_by_latency views have these
columns:

• host

The host from which the connection originated.

• event

The event name.

• total

The total number of occurrences of the event for the host.

• total_latency

The total wait time of timed occurrences of the event for the host.

• avg_latency

The average wait time per timed occurrence of the event for the host.

• max_latency

The maximum single wait time of timed occurrences of the event for the host.

30.4.3.51 The waits_by_user_by_latency and x$waits_by_user_by_latency Views

These views summarize wait events, grouped by user and event. By default, rows are sorted by user
and descending total latency. Idle events are ignored.

The waits_by_user_by_latency and x$waits_by_user_by_latency views have these
columns:

• user

The user associated with the connection.

• event

5406

sys Schema Stored Procedures

The event name.

• total

The total number of occurrences of the event for the user.

• total_latency

The total wait time of timed occurrences of the event for the user.

• avg_latency

The average wait time per timed occurrence of the event for the user.

• max_latency

The maximum single wait time of timed occurrences of the event for the user.

30.4.3.52 The waits_global_by_latency and x$waits_global_by_latency Views

These views summarize wait events, grouped by event. By default, rows are sorted by descending total
latency. Idle events are ignored.

The waits_global_by_latency and x$waits_global_by_latency views have these columns:

• events

The event name.

• total

The total number of occurrences of the event.

• total_latency

The total wait time of timed occurrences of the event.

• avg_latency

The average wait time per timed occurrence of the event.

• max_latency

The maximum single wait time of timed occurrences of the event.

30.4.4 sys Schema Stored Procedures

The following sections describe sys schema stored procedures.

30.4.4.1 The create_synonym_db() Procedure

Given a schema name, this procedure creates a synonym schema containing views that refer to all the
tables and views in the original schema. This can be used, for example, to create a shorter name by
which to refer to a schema with a long name (such as info rather than INFORMATION_SCHEMA).

Parameters

• in_db_name VARCHAR(64): The name of the schema for which to create the synonym.

• in_synonym VARCHAR(64): The name to use for the synonym schema. This schema must not
already exist.

5407

sys Schema Stored Procedures

Example

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
| world |
+--------------------+
mysql> CALL sys.create_synonym_db('INFORMATION_SCHEMA', 'info');
+---------------------------------------+
| summary |
+---------------------------------------+
| Created 63 views in the info database |
+---------------------------------------+
mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| info |
| mysql |
| performance_schema |
| sys |
| world |
+--------------------+
mysql> SHOW FULL TABLES FROM info;
+---------------------------------------+------------+
| Tables_in_info | Table_type |
+---------------------------------------+------------+
character_sets	VIEW
collation_character_set_applicability	VIEW
collations	VIEW
column_privileges	VIEW
columns	VIEW
...

30.4.4.2 The diagnostics() Procedure

Creates a report of the current server status for diagnostic purposes.

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable Privileges”.

Data collected for diagnostics() includes this information:

• Information from the metrics view (see Section 30.4.3.21, “The metrics View”)

• Information from other relevant sys schema views, such as the one that determines queries in the
95th percentile

• Information from the ndbinfo schema, if the MySQL server is part of NDB Cluster

• Replication status (both source and replica)

Some of the sys schema views are calculated as initial (optional), overall, and delta values:

• The initial view is the content of the view at the start of the diagnostics() procedure. This
output is the same as the start values used for the delta view. The initial view is included if the
diagnostics.include_raw configuration option is ON.

• The overall view is the content of the view at the end of the diagnostics() procedure. This output
is the same as the end values used for the delta view. The overall view is always included.

5408

sys Schema Stored Procedures

• The delta view is the difference from the beginning to the end of procedure execution. The minimum
and maximum values are the minimum and maximum values from the end view, respectively. They
do not necessarily reflect the minimum and maximum values in the monitored period. Except for the
metrics view, the delta is calculated only between the first and last outputs.

Parameters

• in_max_runtime INT UNSIGNED: The maximum data collection time in seconds. Use NULL to
collect data for the default of 60 seconds. Otherwise, use a value greater than 0.

• in_interval INT UNSIGNED: The sleep time between data collections in seconds. Use NULL to
sleep for the default of 30 seconds. Otherwise, use a value greater than 0.

• in_auto_config ENUM('current', 'medium', 'full'): The Performance Schema
configuration to use. Permitted values are:

• current: Use the current instrument and consumer settings.

• medium: Enable some instruments and consumers.

• full: Enable all instruments and consumers.

Note

The more instruments and consumers enabled, the more impact on MySQL
server performance. Be careful with the medium setting and especially the
full setting, which has a large performance impact.

Use of the medium or full setting requires the SUPER privilege.

If a setting other than current is chosen, the current settings are restored at the end of the
procedure.

Configuration Options

diagnostics() operation can be modified using the following configuration options or their
corresponding user-defined variables (see Section 30.4.2.1, “The sys_config Table”):

• debug, @sys.debug

If this option is ON, produce debugging output. The default is OFF.

• diagnostics.allow_i_s_tables, @sys.diagnostics.allow_i_s_tables

If this option is ON, the diagnostics() procedure is permitted to perform table scans on the
Information Schema TABLES table. This can be expensive if there are many tables. The default is
OFF.

• diagnostics.include_raw, @sys.diagnostics.include_raw

If this option is ON, the diagnostics() procedure output includes the raw output from querying the
metrics view. The default is OFF.

• statement_truncate_len, @sys.statement_truncate_len

The maximum length of statements returned by the format_statement() function. Longer
statements are truncated to this length. The default is 64.

Example

Create a diagnostics report that starts an iteration every 30 seconds and runs for at most 120 seconds
using the current Performance Schema settings:

5409

sys Schema Stored Procedures

mysql> CALL sys.diagnostics(120, 30, 'current');

To capture the output from the diagnostics() procedure in a file as it runs, use the mysql client
tee filename and notee commands (see Section 6.5.1.2, “mysql Client Commands”):

mysql> tee diag.out;
mysql> CALL sys.diagnostics(120, 30, 'current');
mysql> notee;

30.4.4.3 The execute_prepared_stmt() Procedure

Given an SQL statement as a string, executes it as a prepared statement. The prepared statement
is deallocated after execution, so it is not subject to reuse. Thus, this procedure is useful primarily for
executing dynamic statements on a one-time basis.

This procedure uses sys_execute_prepared_stmt as the prepared statement name. If that
statement name exists when the procedure is called, its previous content is destroyed.

Parameters

• in_query LONGTEXT CHARACTER SET utf8mb3: The statement string to execute.

Configuration Options

execute_prepared_stmt() operation can be modified using the following configuration options or
their corresponding user-defined variables (see Section 30.4.2.1, “The sys_config Table”):

• debug, @sys.debug

If this option is ON, produce debugging output. The default is OFF.

Example

mysql> CALL sys.execute_prepared_stmt('SELECT COUNT(*) FROM mysql.user');
+----------+
| COUNT(*) |
+----------+
| 15 |
+----------+

30.4.4.4 The ps_setup_disable_background_threads() Procedure

Disables Performance Schema instrumentation for all background threads. Produces a result set
indicating how many background threads were disabled. Already disabled threads do not count.

Parameters

None.

Example

mysql> CALL sys.ps_setup_disable_background_threads();
+--------------------------------+
| summary |
+--------------------------------+
| Disabled 24 background threads |
+--------------------------------+

30.4.4.5 The ps_setup_disable_consumer() Procedure

Disables Performance Schema consumers with names that contain the argument. Produces a result
set indicating how many consumers were disabled. Already disabled consumers do not count.

5410

sys Schema Stored Procedures

Parameters

• consumer VARCHAR(128): The value used to match consumer names, which are identified by
using %consumer% as an operand for a LIKE pattern match.

A value of '' matches all consumers.

Example

Disable all statement consumers:

mysql> CALL sys.ps_setup_disable_consumer('statement');
+----------------------+
| summary |
+----------------------+
| Disabled 4 consumers |
+----------------------+

30.4.4.6 The ps_setup_disable_instrument() Procedure

Disables Performance Schema instruments with names that contain the argument. Produces a result
set indicating how many instruments were disabled. Already disabled instruments do not count.

Parameters

• in_pattern VARCHAR(128): The value used to match instrument names, which are identified by
using %in_pattern% as an operand for a LIKE pattern match.

A value of '' matches all instruments.

Example

Disable a specific instrument:

mysql> CALL sys.ps_setup_disable_instrument('wait/lock/metadata/sql/mdl');
+-----------------------+
| summary |
+-----------------------+
| Disabled 1 instrument |
+-----------------------+

Disable all mutex instruments:

mysql> CALL sys.ps_setup_disable_instrument('mutex');
+--------------------------+
| summary |
+--------------------------+
| Disabled 177 instruments |
+--------------------------+

30.4.4.7 The ps_setup_disable_thread() Procedure

Given a connection ID, disables Performance Schema instrumentation for the thread. Produces a result
set indicating how many threads were disabled. Already disabled threads do not count.

Parameters

• in_connection_id BIGINT: The connection ID. This is a value of the type given in the
PROCESSLIST_ID column of the Performance Schema threads table or the Id column of SHOW
PROCESSLIST output.

Example

Disable a specific connection by its connection ID:

5411

sys Schema Stored Procedures

mysql> CALL sys.ps_setup_disable_thread(225);
+-------------------+
| summary |
+-------------------+
| Disabled 1 thread |
+-------------------+

Disable the current connection:

mysql> CALL sys.ps_setup_disable_thread(CONNECTION_ID());
+-------------------+
| summary |
+-------------------+
| Disabled 1 thread |
+-------------------+

30.4.4.8 The ps_setup_enable_background_threads() Procedure

Enables Performance Schema instrumentation for all background threads. Produces a result set
indicating how many background threads were enabled. Already enabled threads do not count.

Parameters

None.

Example

mysql> CALL sys.ps_setup_enable_background_threads();
+-------------------------------+
| summary |
+-------------------------------+
| Enabled 24 background threads |
+-------------------------------+

30.4.4.9 The ps_setup_enable_consumer() Procedure

Enables Performance Schema consumers with names that contain the argument. Produces a result set
indicating how many consumers were enabled. Already enabled consumers do not count.

Parameters

• consumer VARCHAR(128): The value used to match consumer names, which are identified by
using %consumer% as an operand for a LIKE pattern match.

A value of '' matches all consumers.

Example

Enable all statement consumers:

mysql> CALL sys.ps_setup_enable_consumer('statement');
+---------------------+
| summary |
+---------------------+
| Enabled 4 consumers |
+---------------------+

30.4.4.10 The ps_setup_enable_instrument() Procedure

Enables Performance Schema instruments with names that contain the argument. Produces a result
set indicating how many instruments were enabled. Already enabled instruments do not count.

5412

sys Schema Stored Procedures

Parameters

• in_pattern VARCHAR(128): The value used to match instrument names, which are identified by
using %in_pattern% as an operand for a LIKE pattern match.

A value of '' matches all instruments.

Example

Enable a specific instrument:

mysql> CALL sys.ps_setup_enable_instrument('wait/lock/metadata/sql/mdl');
+----------------------+
| summary |
+----------------------+
| Enabled 1 instrument |
+----------------------+

Enable all mutex instruments:

mysql> CALL sys.ps_setup_enable_instrument('mutex');
+-------------------------+
| summary |
+-------------------------+
| Enabled 177 instruments |
+-------------------------+

30.4.4.11 The ps_setup_enable_thread() Procedure

Given a connection ID, enables Performance Schema instrumentation for the thread. Produces a result
set indicating how many threads were enabled. Already enabled threads do not count.

Parameters

• in_connection_id BIGINT: The connection ID. This is a value of the type given in the
PROCESSLIST_ID column of the Performance Schema threads table or the Id column of SHOW
PROCESSLIST output.

Example

Enable a specific connection by its connection ID:

mysql> CALL sys.ps_setup_enable_thread(225);
+------------------+
| summary |
+------------------+
| Enabled 1 thread |
+------------------+

Enable the current connection:

mysql> CALL sys.ps_setup_enable_thread(CONNECTION_ID());
+------------------+
| summary |
+------------------+
| Enabled 1 thread |
+------------------+

30.4.4.12 The ps_setup_reload_saved() Procedure

Reloads a Performance Schema configuration saved earlier within the same session using
ps_setup_save(). For more information, see the description of ps_setup_save().

5413

sys Schema Stored Procedures

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable Privileges”.

Parameters

None.

30.4.4.13 The ps_setup_reset_to_default() Procedure

Resets the Performance Schema configuration to its default settings.

Parameters

• in_verbose BOOLEAN: Whether to display information about each setup stage during procedure
execution. This includes the SQL statements executed.

Example

mysql> CALL sys.ps_setup_reset_to_default(TRUE)\G
*************************** 1. row ***************************
status: Resetting: setup_actors
DELETE
FROM performance_schema.setup_actors
WHERE NOT (HOST = '%' AND USER = '%' AND ROLE = '%')

*************************** 1. row ***************************
status: Resetting: setup_actors
INSERT IGNORE INTO performance_schema.setup_actors
VALUES ('%', '%', '%')

...

30.4.4.14 The ps_setup_save() Procedure

Saves the current Performance Schema configuration. This enables you to alter the configuration
temporarily for debugging or other purposes, then restore it to the previous state by invoking the
ps_setup_reload_saved() procedure.

To prevent other simultaneous calls to save the configuration, ps_setup_save() acquires an
advisory lock named sys.ps_setup_save by calling the GET_LOCK() function. ps_setup_save()
takes a timeout parameter to indicate how many seconds to wait if the lock already exists (which
indicates that some other session has a saved configuration outstanding). If the timeout expires without
obtaining the lock, ps_setup_save() fails.

It is intended you call ps_setup_reload_saved() later within the same session as
ps_setup_save() because the configuration is saved in TEMPORARY tables. ps_setup_save()
drops the temporary tables and releases the lock. If you end your session without invoking
ps_setup_save(), the tables and lock disappear automatically.

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable Privileges”.

Parameters

• in_timeout INT: How many seconds to wait to obtain the sys.ps_setup_save lock. A negative
timeout value means infinite timeout.

Example

mysql> CALL sys.ps_setup_save(10);

5414

sys Schema Stored Procedures

... make Performance Schema configuration changes ...

mysql> CALL sys.ps_setup_reload_saved();

30.4.4.15 The ps_setup_show_disabled() Procedure

Displays all currently disabled Performance Schema configuration.

Parameters

• in_show_instruments BOOLEAN: Whether to display disabled instruments. This might be a long
list.

• in_show_threads BOOLEAN: Whether to display disabled threads.

Example

mysql> CALL sys.ps_setup_show_disabled(TRUE, TRUE);
+----------------------------+
| performance_schema_enabled |
+----------------------------+
| 1 |
+----------------------------+

+---------------+
| enabled_users |
+---------------+
| '%'@'%' |
+---------------+

+-------------+----------------------+---------+-------+
| object_type | objects | enabled | timed |
+-------------+----------------------+---------+-------+
EVENT	mysql.%	NO	NO
EVENT	performance_schema.%	NO	NO
EVENT	information_schema.%	NO	NO
FUNCTION	mysql.%	NO	NO
FUNCTION	performance_schema.%	NO	NO
FUNCTION	information_schema.%	NO	NO
PROCEDURE	mysql.%	NO	NO
PROCEDURE	performance_schema.%	NO	NO
PROCEDURE	information_schema.%	NO	NO
TABLE	mysql.%	NO	NO
TABLE	performance_schema.%	NO	NO
TABLE	information_schema.%	NO	NO
TRIGGER	mysql.%	NO	NO
TRIGGER	performance_schema.%	NO	NO
TRIGGER	information_schema.%	NO	NO
+-------------+----------------------+---------+-------+

...

30.4.4.16 The ps_setup_show_disabled_consumers() Procedure

Displays all currently disabled Performance Schema consumers.

Parameters

None.

Example

mysql> CALL sys.ps_setup_show_disabled_consumers();
+----------------------------------+
| disabled_consumers |
+----------------------------------+
| events_stages_current |
| events_stages_history |

5415

sys Schema Stored Procedures

| events_stages_history_long |
| events_statements_history |
| events_statements_history_long |
| events_transactions_history |
| events_transactions_history_long |
| events_waits_current |
| events_waits_history |
| events_waits_history_long |
+----------------------------------+

30.4.4.17 The ps_setup_show_disabled_instruments() Procedure

Displays all currently disabled Performance Schema instruments. This might be a long list.

Parameters

None.

Example

mysql> CALL sys.ps_setup_show_disabled_instruments()\G
*************************** 1. row ***************************
disabled_instruments: wait/synch/mutex/sql/TC_LOG_MMAP::LOCK_tc
 timed: NO
*************************** 2. row ***************************
disabled_instruments: wait/synch/mutex/sql/THD::LOCK_query_plan
 timed: NO
*************************** 3. row ***************************
disabled_instruments: wait/synch/mutex/sql/MYSQL_BIN_LOG::LOCK_commit
 timed: NO
...

30.4.4.18 The ps_setup_show_enabled() Procedure

Displays all currently enabled Performance Schema configuration.

Parameters

• in_show_instruments BOOLEAN: Whether to display enabled instruments. This might be a long
list.

• in_show_threads BOOLEAN: Whether to display enabled threads.

Example

mysql> CALL sys.ps_setup_show_enabled(FALSE, FALSE);
+----------------------------+
| performance_schema_enabled |
+----------------------------+
| 1 |
+----------------------------+
1 row in set (0.01 sec)

+---------------+
| enabled_users |
+---------------+
| '%'@'%' |
+---------------+
1 row in set (0.01 sec)

+-------------+---------+---------+-------+
| object_type | objects | enabled | timed |
+-------------+---------+---------+-------+
EVENT	%.%	YES	YES
FUNCTION	%.%	YES	YES
PROCEDURE	%.%	YES	YES
TABLE	%.%	YES	YES
TRIGGER	%.%	YES	YES

5416

sys Schema Stored Procedures

+-------------+---------+---------+-------+
5 rows in set (0.02 sec)

+-----------------------------+
| enabled_consumers |
+-----------------------------+
| events_statements_current |
| events_statements_history |
| events_transactions_current |
| events_transactions_history |
| global_instrumentation |
| statements_digest |
| thread_instrumentation |
+-----------------------------+

30.4.4.19 The ps_setup_show_enabled_consumers() Procedure

Displays all currently enabled Performance Schema consumers.

Parameters

None.

Example

mysql> CALL sys.ps_setup_show_enabled_consumers();
+-----------------------------+
| enabled_consumers |
+-----------------------------+
| events_statements_current |
| events_statements_history |
| events_transactions_current |
| events_transactions_history |
| global_instrumentation |
| statements_digest |
| thread_instrumentation |
+-----------------------------+

30.4.4.20 The ps_setup_show_enabled_instruments() Procedure

Displays all currently enabled Performance Schema instruments. This might be a long list.

Parameters

None.

Example

mysql> CALL sys.ps_setup_show_enabled_instruments()\G
*************************** 1. row ***************************
enabled_instruments: wait/io/file/sql/map
 timed: YES
*************************** 2. row ***************************
enabled_instruments: wait/io/file/sql/binlog
 timed: YES
*************************** 3. row ***************************
enabled_instruments: wait/io/file/sql/binlog_cache
 timed: YES
...

30.4.4.21 The ps_statement_avg_latency_histogram() Procedure

Displays a textual histogram graph of the average latency values across all normalized statements
tracked within the Performance Schema events_statements_summary_by_digest table.

This procedure can be used to display a very high-level picture of the latency distribution of statements
running within this MySQL instance.

5417

sys Schema Stored Procedures

Parameters

None.

Example

The histogram output in statement units. For example, * = 2 units in the histogram legend means
that each * character represents 2 statements.

mysql> CALL sys.ps_statement_avg_latency_histogram()\G
*************************** 1. row ***************************
Performance Schema Statement Digest Average Latency Histogram:

 . = 1 unit
 * = 2 units
 # = 3 units

(0 - 66ms) 88 | #############################
(66 - 133ms) 14 |
(133 - 199ms) 4 |
(199 - 265ms) 5 | **
(265 - 332ms) 1 | .
(332 - 398ms) 0 |
(398 - 464ms) 1 | .
(464 - 531ms) 0 |
(531 - 597ms) 0 |
(597 - 663ms) 0 |
(663 - 730ms) 0 |
(730 - 796ms) 0 |
(796 - 863ms) 0 |
(863 - 929ms) 0 |
(929 - 995ms) 0 |
(995 - 1062ms) 0 |

 Total Statements: 114; Buckets: 16; Bucket Size: 66 ms;

30.4.4.22 The ps_trace_statement_digest() Procedure

Traces all Performance Schema instrumentation for a specific statement digest.

If you find a statement of interest within the Performance Schema
events_statements_summary_by_digest table, specify its DIGEST column MD5 value to this
procedure and indicate the polling duration and interval. The result is a report of all statistics tracked
within Performance Schema for that digest for the interval.

The procedure also attempts to execute EXPLAIN for the longest running example of the digest during
the interval. This attempt might fail because the Performance Schema truncates long SQL_TEXT
values. Consequently, EXPLAIN fails, due to parse errors.

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable Privileges”.

Parameters

• in_digest VARCHAR(32): The statement digest identifier to analyze.

• in_runtime INT: How long to run the analysis in seconds.

• in_interval DECIMAL(2,2): The analysis interval in seconds (which can be fractional) at which
to try to take snapshots.

• in_start_fresh BOOLEAN: Whether to truncate the Performance Schema
events_statements_history_long and events_stages_history_long tables before
starting.

• in_auto_enable BOOLEAN: Whether to automatically enable required consumers.

5418

sys Schema Stored Procedures

Example

mysql> CALL sys.ps_trace_statement_digest('891ec6860f98ba46d89dd20b0c03652c', 10, 0.1, TRUE, TRUE);
+--------------------+
| SUMMARY STATISTICS |
+--------------------+
| SUMMARY STATISTICS |
+--------------------+
1 row in set (9.11 sec)

+------------+-----------+-----------+-----------+---------------+------------+------------+
| executions | exec_time | lock_time | rows_sent | rows_examined | tmp_tables | full_scans |
+------------+-----------+-----------+-----------+---------------+------------+------------+
| 21 | 4.11 ms | 2.00 ms | 0 | 21 | 0 | 0 |
+------------+-----------+-----------+-----------+---------------+------------+------------+
1 row in set (9.11 sec)

+--+-------+-----------+
| event_name | count | latency |
+--+-------+-----------+
stage/sql/statistics	16	546.92 us
stage/sql/freeing items	18	520.11 us
stage/sql/init	51	466.80 us
...		
stage/sql/cleaning up	18	11.92 us
stage/sql/executing	16	6.95 us
+--+-------+-----------+
17 rows in set (9.12 sec)

+---------------------------+
| LONGEST RUNNING STATEMENT |
+---------------------------+
| LONGEST RUNNING STATEMENT |
+---------------------------+
1 row in set (9.16 sec)

+-----------+-----------+-----------+-----------+---------------+------------+-----------+
| thread_id | exec_time | lock_time | rows_sent | rows_examined | tmp_tables | full_scan |
+-----------+-----------+-----------+-----------+---------------+------------+-----------+
| 166646 | 618.43 us | 1.00 ms | 0 | 1 | 0 | 0 |
+-----------+-----------+-----------+-----------+---------------+------------+-----------+
1 row in set (9.16 sec)

Truncated for clarity...
+---+
| sql_text |
+---+
| select hibeventhe0_.id as id1382_, hibeventhe0_.createdTime ... |
+---+
1 row in set (9.17 sec)

+--+-----------+
| event_name | latency |
+--+-----------+
| stage/sql/init | 8.61 us |
| stage/sql/init | 331.07 ns |
...
| stage/sql/freeing items | 30.46 us |
| stage/sql/cleaning up | 662.13 ns |
+--+-----------+
18 rows in set (9.23 sec)

+----+-------------+--------------+-------+---------------+-----------+---------+-------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------------+-------+---------------+-----------+---------+-------------+------+-------+
| 1 | SIMPLE | hibeventhe0_ | const | fixedTime | fixedTime | 775 | const,const | 1 | NULL |
+----+-------------+--------------+-------+---------------+-----------+---------+-------------+------+-------+
1 row in set (9.27 sec)

Query OK, 0 rows affected (9.28 sec)

30.4.4.23 The ps_trace_thread() Procedure

5419

sys Schema Stored Procedures

Dumps all Performance Schema data for an instrumented thread to a .dot formatted graph file (for the
DOT graph description language). Each result set returned from the procedure should be used for a
complete graph.

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable Privileges”.

Parameters

• in_thread_id INT: The thread to trace.

• in_outfile VARCHAR(255): The name to use for the .dot output file.

• in_max_runtime DECIMAL(20,2): The maximum number of seconds (which can be fractional) to
collect data. Use NULL to collect data for the default of 60 seconds.

• in_interval DECIMAL(20,2): The number of seconds (which can be fractional) to sleep
between data collections. Use NULL to sleep for the default of 1 second.

• in_start_fresh BOOLEAN: Whether to reset all Performance Schema data before tracing.

• in_auto_setup BOOLEAN: Whether to disable all other threads and enable all instruments and
consumers. This also resets the settings at the end of the run.

• in_debug BOOLEAN: Whether to include file:lineno information in the graph.

Example

mysql> CALL sys.ps_trace_thread(25, CONCAT('/tmp/stack-', REPLACE(NOW(), ' ', '-'), '.dot'), NULL, NULL, TRUE, TRUE, TRUE);
+-------------------+
| summary |
+-------------------+
| Disabled 1 thread |
+-------------------+
1 row in set (0.00 sec)

+---+
| Info |
+---+
| Data collection starting for THREAD_ID = 25 |
+---+
1 row in set (0.03 sec)

+---+
| Info |
+---+
| Stack trace written to /tmp/stack-2014-02-16-21:18:41.dot |
+---+
1 row in set (60.07 sec)

+---+
| Convert to PDF |
+---+
| dot -Tpdf -o /tmp/stack_25.pdf /tmp/stack-2014-02-16-21:18:41.dot |
+---+
1 row in set (60.07 sec)

+---+
| Convert to PNG |
+---+
| dot -Tpng -o /tmp/stack_25.png /tmp/stack-2014-02-16-21:18:41.dot |
+---+
1 row in set (60.07 sec)

+------------------+
| summary |
+------------------+

5420

sys Schema Stored Procedures

| Enabled 1 thread |
+------------------+
1 row in set (60.32 sec)

30.4.4.24 The ps_truncate_all_tables() Procedure

Truncates all Performance Schema summary tables, resetting all aggregated instrumentation as a
snapshot. Produces a result set indicating how many tables were truncated.

Parameters

• in_verbose BOOLEAN: Whether to display each TRUNCATE TABLE statement before executing it.

Example

mysql> CALL sys.ps_truncate_all_tables(FALSE);
+---------------------+
| summary |
+---------------------+
| Truncated 49 tables |
+---------------------+

30.4.4.25 The statement_performance_analyzer() Procedure

Creates a report of the statements running on the server. The views are calculated based on the
overall and/or delta activity.

This procedure disables binary logging during its execution by manipulating the session value of the
sql_log_bin system variable. That is a restricted operation, so the procedure requires privileges
sufficient to set restricted session variables. See Section 7.1.9.1, “System Variable Privileges”.

Parameters

• in_action ENUM('snapshot', 'overall', 'delta', 'create_tmp',
'create_table', 'save', 'cleanup'): The action to take. These values are permitted:

• snapshot: Store a snapshot. The default is to make a snapshot of the current content of the
Performance Schema events_statements_summary_by_digest table. By setting in_table,
this can be overwritten to copy the content of the specified table. The snapshot is stored in the sys
schema tmp_digests temporary table.

• overall: Generate an analysis based on the content of the table specified by in_table.
For the overall analysis, in_table can be NOW() to use a fresh snapshot. This overwrites
an existing snapshot. Use NULL for in_table to use the existing snapshot. If in_table is
NULL and no snapshot exists, a new snapshot is created. The in_views parameter and the
statement_performance_analyzer.limit configuration option affect the operation of this
procedure.

• delta: Generate a delta analysis. The delta is calculated between the reference table
specified by in_table and the snapshot, which must exist. This action uses the sys
schema tmp_digests_delta temporary table. The in_views parameter and the
statement_performance_analyzer.limit configuration option affect the operation of this
procedure.

• create_table: Create a regular table suitable for storing the snapshot for later use (for example,
for calculating deltas).

• create_tmp: Create a temporary table suitable for storing the snapshot for later use (for
example, for calculating deltas).

• save: Save the snapshot in the table specified by in_table. The table must exist and have the
correct structure. If no snapshot exists, a new snapshot is created.

5421

sys Schema Stored Procedures

• cleanup: Remove the temporary tables used for the snapshot and delta.

• in_table VARCHAR(129): The table parameter used for some of the actions specified by the
in_action parameter. Use the format db_name.tbl_name or tbl_name without using any
backtick (`) identifier-quoting characters. Periods (.) are not supported in database and table
names.

The meaning of the in_table value for each in_action value is detailed in the individual
in_action value descriptions.

• in_views SET ('with_runtimes_in_95th_percentile', 'analysis',
'with_errors_or_warnings', 'with_full_table_scans', 'with_sorting',
'with_temp_tables', 'custom'): Which views to include. This parameter is a SET value, so
it can contain multiple view names, separated by commas. The default is to include all views except
custom. The following values are permitted:

• with_runtimes_in_95th_percentile: Use the
statements_with_runtimes_in_95th_percentile view.

• analysis: Use the statement_analysis view.

• with_errors_or_warnings: Use the statements_with_errors_or_warnings view.

• with_full_table_scans: Use the statements_with_full_table_scans view.

• with_sorting: Use the statements_with_sorting view.

• with_temp_tables: Use the statements_with_temp_tables view.

• custom: Use a custom view. This view must be specified using the
statement_performance_analyzer.view configuration option to name a query or an
existing view.

Configuration Options

statement_performance_analyzer() operation can be modified using the following configuration
options or their corresponding user-defined variables (see Section 30.4.2.1, “The sys_config Table”):

• debug, @sys.debug

If this option is ON, produce debugging output. The default is OFF.

• statement_performance_analyzer.limit,
@sys.statement_performance_analyzer.limit

The maximum number of rows to return for views that have no built-in limit. The default is 100.

• statement_performance_analyzer.view,
@sys.statement_performance_analyzer.view

The custom query or view to be used. If the option value contains a space, it is interpreted as a
query. Otherwise, it must be the name of an existing view that queries the Performance Schema
events_statements_summary_by_digest table. There cannot be any LIMIT clause in the
query or view definition if the statement_performance_analyzer.limit configuration option
is greater than 0. If specifying a view, use the same format as for the in_table parameter. The
default is NULL (no custom view defined).

Example

To create a report with the queries in the 95th percentile since the last truncation of
events_statements_summary_by_digest and with a one-minute delta period:

5422

sys Schema Stored Procedures

1. Create a temporary table to store the initial snapshot.

2. Create the initial snapshot.

3. Save the initial snapshot in the temporary table.

4. Wait one minute.

5. Create a new snapshot.

6. Perform analysis based on the new snapshot.

7. Perform analysis based on the delta between the initial and new snapshots.

mysql> CALL sys.statement_performance_analyzer('create_tmp', 'mydb.tmp_digests_ini', NULL);
Query OK, 0 rows affected (0.08 sec)

mysql> CALL sys.statement_performance_analyzer('snapshot', NULL, NULL);
Query OK, 0 rows affected (0.02 sec)

mysql> CALL sys.statement_performance_analyzer('save', 'mydb.tmp_digests_ini', NULL);
Query OK, 0 rows affected (0.00 sec)

mysql> DO SLEEP(60);
Query OK, 0 rows affected (1 min 0.00 sec)

mysql> CALL sys.statement_performance_analyzer('snapshot', NULL, NULL);
Query OK, 0 rows affected (0.02 sec)

mysql> CALL sys.statement_performance_analyzer('overall', NULL, 'with_runtimes_in_95th_percentile');
+---+
| Next Output |
+---+
| Queries with Runtime in 95th Percentile |
+---+
1 row in set (0.05 sec)

...

mysql> CALL sys.statement_performance_analyzer('delta', 'mydb.tmp_digests_ini', 'with_runtimes_in_95th_percentile');
+---+
| Next Output |
+---+
| Queries with Runtime in 95th Percentile |
+---+
1 row in set (0.03 sec)

...

Create an overall report of the 95th percentile queries and the top 10 queries with full table scans:

mysql> CALL sys.statement_performance_analyzer('snapshot', NULL, NULL);
Query OK, 0 rows affected (0.01 sec)

mysql> SET @sys.statement_performance_analyzer.limit = 10;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL sys.statement_performance_analyzer('overall', NULL, 'with_runtimes_in_95th_percentile,with_full_table_scans');
+---+
| Next Output |
+---+
| Queries with Runtime in 95th Percentile |
+---+
1 row in set (0.01 sec)

...

+-------------------------------------+
| Next Output |
+-------------------------------------+
| Top 10 Queries with Full Table Scan |

5423

sys Schema Stored Procedures

+-------------------------------------+
1 row in set (0.09 sec)

...

Use a custom view showing the top 10 queries sorted by total execution time, refreshing the view every
minute using the watch command in Linux:

mysql> CREATE OR REPLACE VIEW mydb.my_statements AS
 SELECT sys.format_statement(DIGEST_TEXT) AS query,
 SCHEMA_NAME AS db,
 COUNT_STAR AS exec_count,
 sys.format_time(SUM_TIMER_WAIT) AS total_latency,
 sys.format_time(AVG_TIMER_WAIT) AS avg_latency,
 ROUND(IFNULL(SUM_ROWS_SENT / NULLIF(COUNT_STAR, 0), 0)) AS rows_sent_avg,
 ROUND(IFNULL(SUM_ROWS_EXAMINED / NULLIF(COUNT_STAR, 0), 0)) AS rows_examined_avg,
 ROUND(IFNULL(SUM_ROWS_AFFECTED / NULLIF(COUNT_STAR, 0), 0)) AS rows_affected_avg,
 DIGEST AS digest
 FROM performance_schema.events_statements_summary_by_digest
 ORDER BY SUM_TIMER_WAIT DESC;
Query OK, 0 rows affected (0.10 sec)

mysql> CALL sys.statement_performance_analyzer('create_table', 'mydb.digests_prev', NULL);
Query OK, 0 rows affected (0.10 sec)

$> watch -n 60 "mysql sys --table -e \"
> SET @sys.statement_performance_analyzer.view = 'mydb.my_statements';
> SET @sys.statement_performance_analyzer.limit = 10;
> CALL statement_performance_analyzer('snapshot', NULL, NULL);
> CALL statement_performance_analyzer('delta', 'mydb.digests_prev', 'custom');
> CALL statement_performance_analyzer('save', 'mydb.digests_prev', NULL);
> \""

Every 60.0s: mysql sys --table -e " ... Mon Dec 22 10:58:51 2014

+----------------------------------+
| Next Output |
+----------------------------------+
| Top 10 Queries Using Custom View |
+----------------------------------+
+-------------------+-------+------------+---------------+-------------+---------------+-------------------+-------------------+----------------------------------+
| query | db | exec_count | total_latency | avg_latency | rows_sent_avg | rows_examined_avg | rows_affected_avg | digest |
+-------------------+-------+------------+---------------+-------------+---------------+-------------------+-------------------+----------------------------------+
...

30.4.4.26 The table_exists() Procedure

Tests whether a given table exists as a regular table, a TEMPORARY table, or a view. The procedure
returns the table type in an OUT parameter. If both a temporary and a permanent table exist with the
given name, TEMPORARY is returned.

Parameters

• in_db VARCHAR(64): The name of the database in which to check for table existence.

• in_table VARCHAR(64): The name of the table to check the existence of.

• out_exists ENUM('', 'BASE TABLE', 'VIEW', 'TEMPORARY'): The return value. This
is an OUT parameter, so it must be a variable into which the table type can be stored. When the
procedure returns, the variable has one of the following values to indicate whether the table exists:

• '': The table name does not exist as a base table, TEMPORARY table, or view.

• BASE TABLE: The table name exists as a base (permanent) table.

• VIEW: The table name exists as a view.

• TEMPORARY: The table name exists as a TEMPORARY table.

5424

sys Schema Stored Functions

Example

mysql> CREATE DATABASE db1;
Query OK, 1 row affected (0.01 sec)

mysql> USE db1;
Database changed

mysql> CREATE TABLE t1 (id INT PRIMARY KEY);
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TABLE t2 (id INT PRIMARY KEY);
Query OK, 0 rows affected (0.20 sec)

mysql> CREATE view v_t1 AS SELECT * FROM t1;
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TEMPORARY TABLE t1 (id INT PRIMARY KEY);
Query OK, 0 rows affected (0.00 sec)

mysql> CALL sys.table_exists('db1', 't1', @exists); SELECT @exists;
Query OK, 0 rows affected (0.01 sec)

+-----------+
| @exists |
+-----------+
| TEMPORARY |
+-----------+
1 row in set (0.00 sec)

mysql> CALL sys.table_exists('db1', 't2', @exists); SELECT @exists;
Query OK, 0 rows affected (0.02 sec)

+------------+
| @exists |
+------------+
| BASE TABLE |
+------------+
1 row in set (0.00 sec)

mysql> CALL sys.table_exists('db1', 'v_t1', @exists); SELECT @exists;
Query OK, 0 rows affected (0.02 sec)

+---------+
| @exists |
+---------+
| VIEW |
+---------+
1 row in set (0.00 sec)

mysql> CALL sys.table_exists('db1', 't3', @exists); SELECT @exists;
Query OK, 0 rows affected (0.00 sec)

+---------+
| @exists |
+---------+
| |
+---------+
1 row in set (0.00 sec)

30.4.5 sys Schema Stored Functions

The following sections describe sys schema stored functions.

30.4.5.1 The extract_schema_from_file_name() Function

Given a file path name, returns the path component that represents the schema name. This function
assumes that the file name lies within the schema directory. For this reason, it does not work with
partitions or tables defined using their own DATA_DIRECTORY table option.

5425

sys Schema Stored Functions

This function is useful when extracting file I/O information from the Performance Schema that includes
file path names. It provides a convenient way to display schema names, which can be more easily
understood than full path names, and can be used in joins against object schema names.

Parameters

• path VARCHAR(512): The full path to a data file from which to extract the schema name.

Return Value

A VARCHAR(64) value.

Example

mysql> SELECT sys.extract_schema_from_file_name('/usr/local/mysql/data/world/City.ibd');
+---+
| sys.extract_schema_from_file_name('/usr/local/mysql/data/world/City.ibd') |
+---+
| world |
+---+

30.4.5.2 The extract_table_from_file_name() Function

Given a file path name, returns the path component that represents the table name.

This function is useful when extracting file I/O information from the Performance Schema that includes
file path names. It provides a convenient way to display table names, which can be more easily
understood than full path names, and can be used in joins against object table names.

Parameters

• path VARCHAR(512): The full path to a data file from which to extract the table name.

Return Value

A VARCHAR(64) value.

Example

mysql> SELECT sys.extract_table_from_file_name('/usr/local/mysql/data/world/City.ibd');
+--+
| sys.extract_table_from_file_name('/usr/local/mysql/data/world/City.ibd') |
+--+
| City |
+--+

30.4.5.3 The format_bytes() Function

Note

As of MySQL 8.0.16, format_bytes() is deprecated and subject to removal
in a future MySQL version. Applications that use it should be migrated to
use the built-in FORMAT_BYTES() function instead. See Section 14.21,
“Performance Schema Functions”

Given a byte count, converts it to human-readable format and returns a string consisting of a value
and a units indicator. Depending on the size of the value, the units part is bytes, KiB (kibibytes), MiB
(mebibytes), GiB (gibibytes), TiB (tebibytes), or PiB (pebibytes).

Parameters

• bytes TEXT: The byte count to format.

5426

sys Schema Stored Functions

Return Value

A TEXT value.

Example

mysql> SELECT sys.format_bytes(512), sys.format_bytes(18446644073709551615);
+-----------------------+--+
| sys.format_bytes(512) | sys.format_bytes(18446644073709551615) |
+-----------------------+--+
| 512 bytes | 16383.91 PiB |
+-----------------------+--+

30.4.5.4 The format_path() Function

Given a path name, returns the modified path name after replacing subpaths that match the values of
the following system variables, in order:

datadir
tmpdir
slave_load_tmpdir or replica_load_tmpdir
innodb_data_home_dir
innodb_log_group_home_dir
innodb_undo_directory
basedir

A value that matches the value of system variable sysvar is replaced with the string
@@GLOBAL.sysvar.

Parameters

• path VARCHAR(512): The path name to format.

Return Value

A VARCHAR(512) CHARACTER SET utf8mb3 value.

Example

mysql> SELECT sys.format_path('/usr/local/mysql/data/world/City.ibd');
+---+
| sys.format_path('/usr/local/mysql/data/world/City.ibd') |
+---+
| @@datadir/world/City.ibd |
+---+

30.4.5.5 The format_statement() Function

Given a string (normally representing an SQL statement), reduces it to the length given by the
statement_truncate_len configuration option, and returns the result. No truncation occurs if the
string is shorter than statement_truncate_len. Otherwise, the middle part of the string is replaced
by an ellipsis (...).

This function is useful for formatting possibly lengthy statements retrieved from Performance Schema
tables to a known fixed maximum length.

Parameters

• statement LONGTEXT: The statement to format.

Configuration Options

format_statement() operation can be modified using the following configuration options or their
corresponding user-defined variables (see Section 30.4.2.1, “The sys_config Table”):

5427

sys Schema Stored Functions

• statement_truncate_len, @sys.statement_truncate_len

The maximum length of statements returned by the format_statement() function. Longer
statements are truncated to this length. The default is 64.

Return Value

A LONGTEXT value.

Example

By default, format_statement() truncates statements to be no more than 64 characters. Setting
@sys.statement_truncate_len changes the truncation length for the current session:

mysql> SET @stmt = 'SELECT variable, value, set_time, set_by FROM sys_config';
mysql> SELECT sys.format_statement(@stmt);
+--+
| sys.format_statement(@stmt) |
+--+
| SELECT variable, value, set_time, set_by FROM sys_config |
+--+
mysql> SET @sys.statement_truncate_len = 32;
mysql> SELECT sys.format_statement(@stmt);
+-----------------------------------+
| sys.format_statement(@stmt) |
+-----------------------------------+
| SELECT variabl ... ROM sys_config |
+-----------------------------------+

30.4.5.6 The format_time() Function

Note

As of MySQL 8.0.16, format_time() is deprecated and subject to removal
in a future MySQL version. Applications that use it should be migrated to
use the built-in FORMAT_PICO_TIME() function instead. See Section 14.21,
“Performance Schema Functions”

Given a Performance Schema latency or wait time in picoseconds, converts it to human-readable
format and returns a string consisting of a value and a units indicator. Depending on the size of the
value, the units part is ps (picoseconds), ns (nanoseconds), us (microseconds), ms (milliseconds), s
(seconds), m (minutes), h (hours), d (days), or w (weeks).

Parameters

• picoseconds TEXT: The picoseconds value to format.

Return Value

A TEXT value.

Example

mysql> SELECT sys.format_time(3501), sys.format_time(188732396662000);
+-----------------------+----------------------------------+
| sys.format_time(3501) | sys.format_time(188732396662000) |
+-----------------------+----------------------------------+
| 3.50 ns | 3.15 m |
+-----------------------+----------------------------------+

30.4.5.7 The list_add() Function

Adds a value to a comma-separated list of values and returns the result.

5428

sys Schema Stored Functions

This function and list_drop() can be useful for manipulating the value of system variables such as
sql_mode and optimizer_switch that take a comma-separated list of values.

Parameters

• in_list TEXT: The list to be modified.

• in_add_value TEXT: The value to add to the list.

Return Value

A TEXT value.

Example

mysql> SELECT @@sql_mode;
+--+
| @@sql_mode |
+--+
| ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES |
+--+
mysql> SET @@sql_mode = sys.list_add(@@sql_mode, 'NO_ENGINE_SUBSTITUTION');
mysql> SELECT @@sql_mode;
+---+
| @@sql_mode |
+---+
| ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION |
+---+
mysql> SET @@sql_mode = sys.list_drop(@@sql_mode, 'ONLY_FULL_GROUP_BY');
mysql> SELECT @@sql_mode;
+--+
| @@sql_mode |
+--+
| STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION |
+--+

30.4.5.8 The list_drop() Function

Removes a value from a comma-separated list of values and returns the result. For more information,
see the description of list_add()

Parameters

• in_list TEXT: The list to be modified.

• in_drop_value TEXT: The value to drop from the list.

Return Value

A TEXT value.

30.4.5.9 The ps_is_account_enabled() Function

Returns YES or NO to indicate whether Performance Schema instrumentation for a given account is
enabled.

Parameters

• in_host VARCHAR(60): The host name of the account to check.

• in_user VARCHAR(32): The user name of the account to check.

Return Value

An ENUM('YES','NO') value.

5429

sys Schema Stored Functions

Example

mysql> SELECT sys.ps_is_account_enabled('localhost', 'root');
+--+
| sys.ps_is_account_enabled('localhost', 'root') |
+--+
| YES |
+--+

30.4.5.10 The ps_is_consumer_enabled() Function

Returns YES or NO to indicate whether a given Performance Schema consumer is enabled, or NULL if
the argument is NULL. If the argument is not a valid consumer name, an error occurs. (Prior to MySQL
8.0.18, the function returns NULL if the argument is not a valid consumer name.)

This function accounts for the consumer hierarchy, so a consumer is not considered enabled unless
all consumers on which depends are also enabled. For information about the consumer hierarchy, see
Section 29.4.7, “Pre-Filtering by Consumer”.

Parameters

• in_consumer VARCHAR(64): The name of the consumer to check.

Return Value

An ENUM('YES','NO') value.

Example

mysql> SELECT sys.ps_is_consumer_enabled('thread_instrumentation');
+--+
| sys.ps_is_consumer_enabled('thread_instrumentation') |
+--+
| YES |
+--+

30.4.5.11 The ps_is_instrument_default_enabled() Function

Returns YES or NO to indicate whether a given Performance Schema instrument is enabled by default.

Parameters

• in_instrument VARCHAR(128): The name of the instrument to check.

Return Value

An ENUM('YES','NO') value.

Example

mysql> SELECT sys.ps_is_instrument_default_enabled('memory/innodb/row_log_buf');
+---+
| sys.ps_is_instrument_default_enabled('memory/innodb/row_log_buf') |
+---+
| NO |
+---+
mysql> SELECT sys.ps_is_instrument_default_enabled('statement/sql/alter_user');
+--+
| sys.ps_is_instrument_default_enabled('statement/sql/alter_user') |
+--+
| YES |
+--+

30.4.5.12 The ps_is_instrument_default_timed() Function

5430

sys Schema Stored Functions

Returns YES or NO to indicate whether a given Performance Schema instrument is timed by default.

Parameters

• in_instrument VARCHAR(128): The name of the instrument to check.

Return Value

An ENUM('YES','NO') value.

Example

mysql> SELECT sys.ps_is_instrument_default_timed('memory/innodb/row_log_buf');
+---+
| sys.ps_is_instrument_default_timed('memory/innodb/row_log_buf') |
+---+
| NO |
+---+
mysql> SELECT sys.ps_is_instrument_default_timed('statement/sql/alter_user');
+--+
| sys.ps_is_instrument_default_timed('statement/sql/alter_user') |
+--+
| YES |
+--+

30.4.5.13 The ps_is_thread_instrumented() Function

Returns YES or NO to indicate whether Performance Schema instrumentation for a given connection ID
is enabled, UNKNOWN if the ID is unknown, or NULL if the ID is NULL.

Parameters

• in_connection_id BIGINT UNSIGNED: The connection ID. This is a value of the type given
in the PROCESSLIST_ID column of the Performance Schema threads table or the Id column of
SHOW PROCESSLIST output.

Return Value

An ENUM('YES','NO','UNKNOWN') value.

Example

mysql> SELECT sys.ps_is_thread_instrumented(43);
+-----------------------------------+
| sys.ps_is_thread_instrumented(43) |
+-----------------------------------+
| UNKNOWN |
+-----------------------------------+
mysql> SELECT sys.ps_is_thread_instrumented(CONNECTION_ID());
+--+
| sys.ps_is_thread_instrumented(CONNECTION_ID()) |
+--+
| YES |
+--+

30.4.5.14 The ps_thread_account() Function

Given a Performance Schema thread ID, returns the user_name@host_name account associated with
the thread.

Parameters

• in_thread_id BIGINT UNSIGNED: The thread ID for which to return the account. The value
should match the THREAD_ID column from some Performance Schema threads table row.

5431

sys Schema Stored Functions

Return Value

A TEXT value.

Example

mysql> SELECT sys.ps_thread_account(sys.ps_thread_id(CONNECTION_ID()));
+--+
| sys.ps_thread_account(sys.ps_thread_id(CONNECTION_ID())) |
+--+
| root@localhost |
+--+

30.4.5.15 The ps_thread_id() Function

Note

As of MySQL 8.0.16, ps_thread_id() is deprecated and subject to removal
in a future MySQL version. Applications that use it should be migrated to use
the built-in PS_THREAD_ID() and PS_CURRENT_THREAD_ID() functions
instead. See Section 14.21, “Performance Schema Functions”

Returns the Performance Schema thread ID assigned to a given connection ID, or the thread ID for the
current connection if the connection ID is NULL.

Parameters

• in_connection_id BIGINT UNSIGNED: The ID of the connection for which to return the thread
ID. This is a value of the type given in the PROCESSLIST_ID column of the Performance Schema
threads table or the Id column of SHOW PROCESSLIST output.

Return Value

A BIGINT UNSIGNED value.

Example

mysql> SELECT sys.ps_thread_id(260);
+-----------------------+
| sys.ps_thread_id(260) |
+-----------------------+
| 285 |
+-----------------------+

30.4.5.16 The ps_thread_stack() Function

Returns a JSON formatted stack of all statements, stages, and events within the Performance Schema
for a given thread ID.

Parameters

• in_thread_id BIGINT: The ID of the thread to trace. The value should match the THREAD_ID
column from some Performance Schema threads table row.

• in_verbose BOOLEAN: Whether to include file:lineno information in the events.

Return Value

A LONGTEXT CHARACTER SET latin1 value.

Example

mysql> SELECT sys.ps_thread_stack(37, FALSE) AS thread_stack\G

5432

sys Schema Stored Functions

*************************** 1. row ***************************
thread_stack: {"rankdir": "LR","nodesep": "0.10",
"stack_created": "2014-02-19 13:39:03", "mysql_version": "8.0.2-dmr-debug-log",
"mysql_user": "root@localhost","events": [{"nesting_event_id": "0",
"event_id": "10", "timer_wait": 256.35, "event_info": "sql/select",
"wait_info": "select @@version_comment limit 1\nerrors: 0\nwarnings: 0\nlock time:
...

30.4.5.17 The ps_thread_trx_info() Function

Returns a JSON object containing information about a given thread. The information includes the
current transaction, and the statements it has already executed, derived from the Performance Schema
events_transactions_current and events_statements_history tables. (The consumers for
those tables must be enabled to obtain full data in the JSON object.)

If the output exceeds the truncation length (65535 by default), a JSON error object is returned, such as:

{ "error": "Trx info truncated: Row 6 was cut by GROUP_CONCAT()" }

Similar error objects are returned for other warnings and exceptions raised during function execution.

Parameters

• in_thread_id BIGINT UNSIGNED: The thread ID for which to return transaction information. The
value should match the THREAD_ID column from some Performance Schema threads table row.

Configuration Options

ps_thread_trx_info() operation can be modified using the following configuration options or their
corresponding user-defined variables (see Section 30.4.2.1, “The sys_config Table”):

• ps_thread_trx_info.max_length, @sys.ps_thread_trx_info.max_length

The maximum length of the output. The default is 65535.

Return Value

A LONGTEXT value.

Example

mysql> SELECT sys.ps_thread_trx_info(48)\G
*************************** 1. row ***************************
sys.ps_thread_trx_info(48): [
 {
 "time": "790.70 us",
 "state": "COMMITTED",
 "mode": "READ WRITE",
 "autocommitted": "NO",
 "gtid": "AUTOMATIC",
 "isolation": "REPEATABLE READ",
 "statements_executed": [
 {
 "sql_text": "INSERT INTO info VALUES (1, \'foo\')",
 "time": "471.02 us",
 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 1,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,
 "sort_merge_passes": 0
 },
 {
 "sql_text": "COMMIT",
 "time": "254.42 us",

5433

sys Schema Stored Functions

 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 0,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,
 "sort_merge_passes": 0
 }
]
 },
 {
 "time": "426.20 us",
 "state": "COMMITTED",
 "mode": "READ WRITE",
 "autocommitted": "NO",
 "gtid": "AUTOMATIC",
 "isolation": "REPEATABLE READ",
 "statements_executed": [
 {
 "sql_text": "INSERT INTO info VALUES (2, \'bar\')",
 "time": "107.33 us",
 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 1,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,
 "sort_merge_passes": 0
 },
 {
 "sql_text": "COMMIT",
 "time": "213.23 us",
 "schema": "trx",
 "rows_examined": 0,
 "rows_affected": 0,
 "rows_sent": 0,
 "tmp_tables": 0,
 "tmp_disk_tables": 0,
 "sort_rows": 0,
 "sort_merge_passes": 0
 }
]
 }
]

30.4.5.18 The quote_identifier() Function

Given a string argument, this function produces a quoted identifier suitable for inclusion in SQL
statements. This is useful when a value to be used as an identifier is a reserved word or contains
backtick (`) characters.

Parameters

in_identifier TEXT: The identifier to quote.

Return Value

A TEXT value.

Example

mysql> SELECT sys.quote_identifier('plain');
+-------------------------------+
| sys.quote_identifier('plain') |
+-------------------------------+
| `plain` |
+-------------------------------+

5434

sys Schema Stored Functions

mysql> SELECT sys.quote_identifier('trick`ier');
+-----------------------------------+
| sys.quote_identifier('trick`ier') |
+-----------------------------------+
| `trick``ier` |
+-----------------------------------+
mysql> SELECT sys.quote_identifier('integer');
+---------------------------------+
| sys.quote_identifier('integer') |
+---------------------------------+
| `integer` |
+---------------------------------+

30.4.5.19 The sys_get_config() Function

Given a configuration option name, returns the option value from the sys_config table, or the
provided default value (which may be NULL) if the option does not exist in the table.

If sys_get_config() returns the default value and that value is NULL, it is expected that the caller is
able to handle NULL for the given configuration option.

By convention, routines that call sys_get_config() first check whether the corresponding user-
defined variable exists and is non-NULL. If so, the routine uses the variable value without reading the
sys_config table. If the variable does not exist or is NULL, the routine reads the option value from
the table and sets the user-defined variable to that value. For more information about the relationship
between configuration options and their corresponding user-defined variables, see Section 30.4.2.1,
“The sys_config Table”.

If you want to check whether the configuration option has already been set and, if not, use the return
value of sys_get_config(), you can use IFNULL(...) (see example later). However, this should
not be done inside a loop (for example, for each row in a result set) because for repeated calls where
the assignment is needed only in the first iteration, using IFNULL(...) is expected to be significantly
slower than using an IF (...) THEN ... END IF; block (see example later).

Parameters

• in_variable_name VARCHAR(128): The name of the configuration option for which to return the
value.

• in_default_value VARCHAR(128): The default value to return if the configuration option is not
found in the sys_config table.

Return Value

A VARCHAR(128) value.

Example

Get a configuration value from the sys_config table, falling back to 128 as the default if the option is
not present in the table:

mysql> SELECT sys.sys_get_config('statement_truncate_len', 128) AS Value;
+-------+
| Value |
+-------+
| 64 |
+-------+

One-liner example: Check whether the option is already set; if not, assign the IFNULL(...) result
(using the value from the sys_config table):

mysql> SET @sys.statement_truncate_len =
 IFNULL(@sys.statement_truncate_len,
 sys.sys_get_config('statement_truncate_len', 64));

5435

sys Schema Stored Functions

IF (...) THEN ... END IF; block example: Check whether the option is already set; if not,
assign the value from the sys_config table:

IF (@sys.statement_truncate_len IS NULL) THEN
 SET @sys.statement_truncate_len = sys.sys_get_config('statement_truncate_len', 64);
END IF;

30.4.5.20 The version_major() Function

This function returns the major version of the MySQL server.

Parameters

None.

Return Value

A TINYINT UNSIGNED value.

Example

mysql> SELECT VERSION(), sys.version_major();
+--------------+---------------------+
| VERSION() | sys.version_major() |
+--------------+---------------------+
| 8.0.26-debug | 8 |
+--------------+---------------------+

30.4.5.21 The version_minor() Function

This function returns the minor version of the MySQL server.

Parameters

None.

Return Value

A TINYINT UNSIGNED value.

Example

mysql> SELECT VERSION(), sys.version_minor();
+--------------+---------------------+
| VERSION() | sys.version_minor() |
+--------------+---------------------+
| 8.0.26-debug | 0 |
+--------------+---------------------+

30.4.5.22 The version_patch() Function

This function returns the patch release version of the MySQL server.

Parameters

None.

Return Value

A TINYINT UNSIGNED value.

Example

mysql> SELECT VERSION(), sys.version_patch();

5436

sys Schema Stored Functions

+--------------+---------------------+
| VERSION() | sys.version_patch() |
+--------------+---------------------+
| 8.0.26-debug | 26 |
+--------------+---------------------+

5437

5438

Chapter 31 Connectors and APIs

Table of Contents
31.1 MySQL Connector/C++ .. 5441
31.2 MySQL Connector/J .. 5442
31.3 MySQL Connector/NET ... 5442
31.4 MySQL Connector/ODBC .. 5442
31.5 MySQL Connector/Python .. 5442
31.6 MySQL Connector/Node.js ... 5442
31.7 MySQL C API ... 5442
31.8 MySQL PHP API ... 5442
31.9 MySQL Perl API .. 5442
31.10 MySQL Python API .. 5443
31.11 MySQL Ruby APIs .. 5443

31.11.1 The MySQL/Ruby API ... 5444
31.11.2 The Ruby/MySQL API ... 5444

31.12 MySQL Tcl API ... 5444
31.13 MySQL Eiffel Wrapper ... 5444

MySQL Connectors provide connectivity to the MySQL server for client programs. APIs provide
low-level access to MySQL resources using either the classic MySQL protocol or X Protocol. Both
Connectors and the APIs enable you to connect and execute MySQL statements from another
language or environment, including ODBC, Java (JDBC), C++, Python, Node.js, PHP, Perl, Ruby, and
C.

MySQL Connectors

Oracle develops a number of connectors:

• Connector/C++ enables C++ applications to connect to MySQL.

• Connector/J provides driver support for connecting to MySQL from Java applications using the
standard Java Database Connectivity (JDBC) API.

• Connector/NET enables developers to create .NET applications that connect to MySQL. Connector/
NET implements a fully functional ADO.NET interface and provides support for use with ADO.NET
aware tools. Applications that use Connector/NET can be written in any supported .NET language.

• Connector/ODBC provides driver support for connecting to MySQL using the Open Database
Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix, and
macOS platforms.

• Connector/Python provides driver support for connecting to MySQL from Python applications using
an API that is compliant with the Python DB API version 2.0. No additional Python modules or
MySQL client libraries are required.

• Connector/Node.js provides an asynchronous API for connecting to MySQL from Node.js
applications using X Protocol. Connector/Node.js supports managing database sessions and
schemas, working with MySQL Document Store collections and using raw SQL statements.

The MySQL C API

For direct access to using MySQL natively within a C application, the C API provides low-level access
to the MySQL client/server protocol through the libmysqlclient client library. This is the primary
method used to connect to an instance of the MySQL server, and is used both by MySQL command-
line clients and many of the MySQL Connectors and third-party APIs detailed here.

5439

https://dev.mysql.com/doc/connector-cpp/9.3/en/
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-python/en/
http://www.python.org/dev/peps/pep-0249/
https://dev.mysql.com/doc/c-api/8.0/en/

Third-Party MySQL APIs

libmysqlclient is included in MySQL distributions distributions.

See also MySQL C API Implementations.

To access MySQL from a C application, or to build an interface to MySQL for a language not supported
by the Connectors or APIs in this chapter, the C API is where to start. A number of programmer's
utilities are available to help with the process; see Section 6.7, “Program Development Utilities”.

Third-Party MySQL APIs

The remaining APIs described in this chapter provide an interface to MySQL from specific application
languages. These third-party solutions are not developed or supported by Oracle. Basic information on
their usage and abilities is provided here for reference purposes only.

All the third-party language APIs are developed using one of two methods, using libmysqlclient or
by implementing a native driver. The two solutions offer different benefits:

• Using libmysqlclient offers complete compatibility with MySQL because it uses the same
libraries as the MySQL client applications. However, the feature set is limited to the implementation
and interfaces exposed through libmysqlclient and the performance may be lower as data is
copied between the native language, and the MySQL API components.

• Native drivers are an implementation of the MySQL network protocol entirely within the host
language or environment. Native drivers are fast, as there is less copying of data between
components, and they can offer advanced functionality not available through the standard MySQL
API. Native drivers are also easier for end users to build and deploy because no copy of the MySQL
client libraries is needed to build the native driver components.

Table 31.1, “MySQL APIs and Interfaces” lists many of the libraries and interfaces available for MySQL.

Table 31.1 MySQL APIs and Interfaces

Environment API Type Notes

Ada GNU Ada MySQL
Bindings

libmysqlclient See MySQL Bindings for
GNU Ada

C C API libmysqlclient See MySQL 8.0 C API
Developer Guide.

C++ Connector/C++ libmysqlclient See MySQL Connector/
C++ 9.3 Developer
Guide.

MySQL++ libmysqlclient See MySQL++ website.

MySQL wrapped libmysqlclient See MySQL wrapped.

Cocoa MySQL-Cocoa libmysqlclient Compatible with
the Objective-C
Cocoa environment.
See http://mysql-
cocoa.sourceforge.net/

D MySQL for D libmysqlclient See MySQL for D.

Eiffel Eiffel MySQL libmysqlclient See Section 31.13,
“MySQL Eiffel Wrapper”.

Erlang erlang-mysql-
driver

libmysqlclient See erlang-mysql-
driver.

Haskell Haskell MySQL
Bindings

Native Driver See Brian O'Sullivan's
pure Haskell MySQL
bindings.

5440

https://dev.mysql.com/doc/c-api/8.0/en/c-api-implementations.html
https://dev.mysql.com/doc/c-api/8.0/en/
http://gnade.sourceforge.net/
http://gnade.sourceforge.net/
https://dev.mysql.com/doc/c-api/8.0/en/
https://dev.mysql.com/doc/c-api/8.0/en/
https://dev.mysql.com/doc/connector-cpp/9.3/en/
https://dev.mysql.com/doc/connector-cpp/9.3/en/
https://dev.mysql.com/doc/connector-cpp/9.3/en/
http://tangentsoft.net/mysql++/doc/
http://www.alhem.net/project/mysql/
http://mysql-cocoa.sourceforge.net/
http://mysql-cocoa.sourceforge.net/
http://www.steinmole.de/d/
http://code.google.com/p/erlang-mysql-driver/
http://code.google.com/p/erlang-mysql-driver/
http://www.serpentine.com/blog/software/mysql/
http://www.serpentine.com/blog/software/mysql/
http://www.serpentine.com/blog/software/mysql/

MySQL Connector/C++

Environment API Type Notes

hsql-mysql libmysqlclient See MySQL driver for
Haskell.

Java/JDBC Connector/J Native Driver See MySQL Connector/
J Developer Guide.

Kaya MyDB libmysqlclient See MyDB.

Lua LuaSQL libmysqlclient See LuaSQL.

.NET/Mono Connector/NET Native Driver See MySQL Connector/
NET Developer Guide.

Objective Caml OBjective Caml MySQL
Bindings

libmysqlclient See MySQL Bindings for
Objective Caml.

Octave Database bindings for
GNU Octave

libmysqlclient See Database bindings
for GNU Octave.

ODBC Connector/ODBC libmysqlclient See MySQL Connector/
ODBC Developer Guide.

Perl DBI/DBD::mysql libmysqlclient See Section 31.9,
“MySQL Perl API”.

Net::MySQL Native Driver See Net::MySQL at
CPAN

PHP mysql, ext/mysql
interface (deprecated)

libmysqlclient See MySQL and PHP.

mysqli, ext/mysqli
interface

libmysqlclient See MySQL and PHP.

PDO_MYSQL libmysqlclient See MySQL and PHP.

PDO mysqlnd Native Driver

Python Connector/Python Native Driver See MySQL Connector/
Python Developer
Guide.

Python Connector/Python C
Extension

libmysqlclient See MySQL Connector/
Python Developer
Guide.

MySQLdb libmysqlclient See Section 31.10,
“MySQL Python API”.

Ruby mysql2 libmysqlclient Uses
libmysqlclient. See
Section 31.11, “MySQL
Ruby APIs”.

Scheme Myscsh libmysqlclient See Myscsh.

SPL sql_mysql libmysqlclient See sql_mysql for
SPL.

Tcl MySQLtcl libmysqlclient See Section 31.12,
“MySQL Tcl API”.

31.1 MySQL Connector/C++

The MySQL Connector/C++ manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/C++ 9.3 Developer Guide

5441

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hsql-mysql-1.7
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hsql-mysql-1.7
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/connector-j/en/
http://kayalang.org/library/latest/MyDB
http://keplerproject.github.io/luasql/doc/us/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/connector-net/en/
http://raevnos.pennmush.org/code/ocaml-mysql/
http://raevnos.pennmush.org/code/ocaml-mysql/
http://octave.sourceforge.net/database/index.html
http://octave.sourceforge.net/database/index.html
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-odbc/en/
http://search.cpan.org/dist/Net-MySQL/MySQL.pm
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/connector-python/en/
https://github.com/aehrisch/myscsh
http://www.clifford.at/spl/spldoc/sql_mysql.html
http://www.clifford.at/spl/spldoc/sql_mysql.html
https://dev.mysql.com/doc/connector-cpp/9.3/en/

MySQL Connector/J

• Release notes: MySQL Connector/C++ Release Notes

31.2 MySQL Connector/J

The MySQL Connector/J manual is published in standalone form, not as part of the MySQL Reference
Manual. For information, see these documents:

• Main manual: MySQL Connector/J Developer Guide

• Release notes: MySQL Connector/J Release Notes

31.3 MySQL Connector/NET

The MySQL Connector/NET manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/NET Developer Guide

• Release notes: MySQL Connector/NET Release Notes

31.4 MySQL Connector/ODBC

The MySQL Connector/ODBC manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/ODBC Developer Guide

• Release notes: MySQL Connector/ODBC Release Notes

31.5 MySQL Connector/Python

The MySQL Connector/Python manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/Python Developer Guide

• Release notes: MySQL Connector/Python Release Notes

31.6 MySQL Connector/Node.js

The MySQL Connector/Node.js manual is published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Release notes: MySQL Connector/Node.js Release Notes

31.7 MySQL C API

The MySQL C API Developer Guide is published in standalone form, not as part of the MySQL
Reference Manual. See MySQL 8.0 C API Developer Guide.

31.8 MySQL PHP API

The MySQL PHP API manual is now published in standalone form, not as part of the MySQL
Reference Manual. See MySQL and PHP.

31.9 MySQL Perl API

5442

https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/relnotes/connector-j/en/
https://dev.mysql.com/doc/connector-net/en/
https://dev.mysql.com/doc/relnotes/connector-net/en/
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/relnotes/connector-odbc/en/
https://dev.mysql.com/doc/connector-python/en/
https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/relnotes/connector-nodejs/en/
https://dev.mysql.com/doc/c-api/8.0/en/
https://dev.mysql.com/doc/apis-php/en/

MySQL Python API

The Perl DBI module provides a generic interface for database access. You can write a DBI script
that works with many different database engines without change. To use DBI with MySQL, install the
following:

1. The DBI module.

2. The DBD::mysql module. This is the DataBase Driver (DBD) module for Perl.

3. Optionally, the DBD module for any other type of database server you want to access.

Perl DBI is the recommended Perl interface. It replaces an older interface called mysqlperl, which
should be considered obsolete.

These sections contain information about using Perl with MySQL and writing MySQL applications in
Perl:

• For installation instructions for Perl DBI support, see Section 2.10, “Perl Installation Notes”.

• For an example of reading options from option files, see Section 7.8.4, “Using Client Programs in a
Multiple-Server Environment”.

• For secure coding tips, see Section 8.1.1, “Security Guidelines”.

• For debugging tips, see Section 7.9.1.4, “Debugging mysqld under gdb”.

• For some Perl-specific environment variables, see Section 6.9, “Environment Variables”.

• For considerations for running on macOS, see Section 2.4, “Installing MySQL on macOS”.

• For ways to quote string literals, see Section 11.1.1, “String Literals”.

DBI information is available at the command line, online, or in printed form:

• Once you have the DBI and DBD::mysql modules installed, you can get information about them at
the command line with the perldoc command:

$> perldoc DBI
$> perldoc DBI::FAQ
$> perldoc DBD::mysql

You can also use pod2man, pod2html, and so on to translate this information into other formats.

• For online information about Perl DBI, visit the DBI website, http://dbi.perl.org/. That site hosts a
general DBI mailing list.

• For printed information, the official DBI book is Programming the Perl DBI (Alligator Descartes and
Tim Bunce, O'Reilly & Associates, 2000). Information about the book is available at the DBI website,
http://dbi.perl.org/.

31.10 MySQL Python API

MySQLdb is a third-party driver that provides MySQL support for Python, compliant with the Python DB
API version 2.0. It can be found at http://sourceforge.net/projects/mysql-python/.

The new MySQL Connector/Python component provides an interface to the same Python API, and is
built into the MySQL Server and supported by Oracle. See MySQL Connector/Python Developer Guide
for details on the Connector, as well as coding guidelines for Python applications and sample Python
code.

31.11 MySQL Ruby APIs

5443

http://dbi.perl.org/
http://dbi.perl.org/
http://sourceforge.net/projects/mysql-python/
https://dev.mysql.com/doc/connector-python/en/

The MySQL/Ruby API

The mysql2 Ruby gem provides an API for connecting to MySQL, performing queries, and iterating
through results; it is intended to support MySQL 5.7 and MySQL 8.0. For more information, see the
mysql2 page at RubyGems.org or the project's GitHub page.

For background and syntax information about the Ruby language, see Ruby Programming Language.

31.11.1 The MySQL/Ruby API

The MySQL/Ruby module provides access to MySQL databases using Ruby through
libmysqlclient.

For information on installing the module, and the functions exposed, see MySQL/Ruby.

31.11.2 The Ruby/MySQL API

The Ruby/MySQL module provides access to MySQL databases using Ruby through a native driver
interface using the MySQL network protocol.

For information on installing the module, and the functions exposed, see Ruby/MySQL.

31.12 MySQL Tcl API

MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming
language. It can be found at http://www.xdobry.de/mysqltcl/.

31.13 MySQL Eiffel Wrapper

Eiffel MySQL is an interface to the MySQL database server using the Eiffel programming language,
written by Michael Ravits. It can be found at http://efsa.sourceforge.net/archive/ravits/mysql.htm.

5444

https://rubygems.org/gems/mysql2/
https://github.com/brianmario/mysql2
http://www.ruby-lang.org
http://tmtm.org/en/mysql/ruby/
http://tmtm.org/en/ruby/mysql/README_en.html
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Tcl
http://www.xdobry.de/mysqltcl/
http://en.wikipedia.org/wiki/Eiffel_(programming_language)
http://efsa.sourceforge.net/archive/ravits/mysql.htm

Chapter 32 MySQL Enterprise Edition

Table of Contents
32.1 MySQL Enterprise Backup Overview .. 5445
32.2 MySQL Enterprise Security Overview ... 5446
32.3 MySQL Enterprise Encryption Overview ... 5446
32.4 MySQL Enterprise Audit Overview ... 5447
32.5 MySQL Enterprise Firewall Overview .. 5447
32.6 MySQL Enterprise Thread Pool Overview ... 5447
32.7 MySQL Enterprise Data Masking and De-Identification Overview 5447
32.8 MySQL Enterprise Monitor Overview .. 5448
32.9 MySQL Telemetry .. 5449

MySQL Enterprise Edition is a commercial product. Like MySQL Community Edition, MySQL
Enterprise Edition includes MySQL Server, a fully integrated transaction-safe, ACID-compliant
database with full commit, rollback, crash-recovery, and row-level locking capabilities. In addition,
MySQL Enterprise Edition includes the following components designed to provide monitoring and
online backup, as well as improved security and scalability:

The following sections briefly discuss each of these components and indicate where to find more
detailed information. To learn more about commercial products, see https://www.mysql.com/products/.

• MySQL Enterprise Backup

• MySQL Enterprise Security

• MySQL Enterprise Encryption

• MySQL Enterprise Audit

• MySQL Enterprise Firewall

• MySQL Enterprise Thread Pool

• MySQL Enterprise Data Masking and De-Identification

• MySQL Enterprise Monitor

32.1 MySQL Enterprise Backup Overview
MySQL Enterprise Backup performs hot backup operations for MySQL databases. The product is
architected for efficient and reliable backups of tables created by the InnoDB storage engine. For
completeness, it can also back up tables from MyISAM and other storage engines.

The following discussion briefly summarizes MySQL Enterprise Backup. For more information, see the
MySQL Enterprise Backup manual, available at https://dev.mysql.com/doc/mysql-enterprise-backup/
en/.

Hot backups are performed while the database is running and applications are reading and writing
to it. This type of backup does not block normal database operations, and it captures even changes
that occur while the backup is happening. For these reasons, hot backups are desirable when your
database “grows up” -- when the data is large enough that the backup takes significant time, and when
your data is important enough to your business that you must capture every last change, without taking
your application, website, or web service offline.

MySQL Enterprise Backup does a hot backup of all tables that use the InnoDB storage engine. For
tables using MyISAM or other non-InnoDB storage engines, it does a “warm” backup, where the
database continues to run, but those tables cannot be modified while being backed up. For efficient

5445

https://www.mysql.com/products/
https://dev.mysql.com/doc/mysql-enterprise-backup/en/
https://dev.mysql.com/doc/mysql-enterprise-backup/en/

MySQL Enterprise Security Overview

backup operations, you can designate InnoDB as the default storage engine for new tables, or convert
existing tables to use the InnoDB storage engine.

32.2 MySQL Enterprise Security Overview
MySQL Enterprise Edition provides plugins that implement security features using external services:

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use
LDAP (Lightweight Directory Access Protocol) to authenticate MySQL users. LDAP Authentications
supports user name and password, SASL, and GSSAPI/Kerberos authentication methods to LDAP
services. For more information, see Section 8.4.1.7, “LDAP Pluggable Authentication”.

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use
Native Kerberos to authenticate MySQL users using there Kerberos Principals. For more information,
see Section 8.4.1.8, “Kerberos Pluggable Authentication”.

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use PAM
(Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a
standard interface to access various kinds of authentication methods, such as Unix passwords or an
LDAP directory. For more information, see Section 8.4.1.5, “PAM Pluggable Authentication”.

• MySQL Enterprise Edition includes an authentication plugin that performs external authentication
on Windows, enabling MySQL Server to use native Windows services to authenticate client
connections. Users who have logged in to Windows can connect from MySQL client programs to the
server based on the information in their environment without specifying an additional password. For
more information, see Section 8.4.1.6, “Windows Pluggable Authentication”.

• MySQL Enterprise Edition includes a suite of masking and de-identification functions that perform
subsetting, random generation, and dictionary replacement to de-identify strings, numerics, phone
numbers, emails and more. These functions enable masking existing data using several methods
such as obfuscation (removing identifying characteristics), generation of formatted random data, and
data replacement or substitution. For more information, see Section 8.5, “MySQL Enterprise Data
Masking and De-Identification”.

• MySQL Enterprise Edition includes a set of encryption functions based on the OpenSSL library that
expose OpenSSL capabilities at the SQL level. For more information, see Section 32.3, “MySQL
Enterprise Encryption Overview”.

• MySQL Enterprise Edition 5.7 and higher includes a keyring plugin that uses Oracle Key Vault as a
backend for keyring storage. For more information, see Section 8.4.4, “The MySQL Keyring”.

• MySQL Transparent Data Encryption (TDE) provides at-rest encryption for MySQL Server for all files
that might contain sensitive data. For more information, see Section 17.13, “InnoDB Data-at-Rest
Encryption”, Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”, and Encrypting Audit
Log Files.

For other related Enterprise security features, see Section 32.3, “MySQL Enterprise Encryption
Overview”.

32.3 MySQL Enterprise Encryption Overview
MySQL Enterprise Edition includes a set of encryption functions based on the OpenSSL library that
expose OpenSSL capabilities at the SQL level. These functions enable Enterprise applications to
perform the following operations:

• Implement added data protection using public-key asymmetric cryptography

• Create public and private keys and digital signatures

• Perform asymmetric encryption and decryption

5446

MySQL Enterprise Audit Overview

• Use cryptographic hashing for digital signing and data verification and validation

For more information, see Section 8.6, “MySQL Enterprise Encryption”.

For other related Enterprise security features, see Section 32.2, “MySQL Enterprise Security
Overview”.

32.4 MySQL Enterprise Audit Overview

MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin.
MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based monitoring
and logging of connection and query activity executed on specific MySQL servers. Designed to meet
the Oracle audit specification, MySQL Enterprise Audit provides an out of box, easy to use auditing
and compliance solution for applications that are governed by both internal and external regulatory
guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

For more information, see Section 8.4.5, “MySQL Enterprise Audit”.

32.5 MySQL Enterprise Firewall Overview

MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-level firewall that
enables database administrators to permit or deny SQL statement execution based on matching
against allowlists of accepted statement patterns. This helps harden MySQL Server against attacks
such as SQL injection or attempts to exploit applications by using them outside of their legitimate query
workload characteristics.

Each MySQL account registered with the firewall has its own statement allowlist, enabling protection to
be tailored per account. For a given account, the firewall can operate in recording or protecting mode,
for training in the accepted statement patterns or protection against unacceptable statements.

For more information, see Section 8.4.7, “MySQL Enterprise Firewall”.

32.6 MySQL Enterprise Thread Pool Overview

MySQL Enterprise Edition includes MySQL Enterprise Thread Pool, implemented using a server
plugin. The default thread-handling model in MySQL Server executes statements using one thread per
client connection. As more clients connect to the server and execute statements, overall performance
degrades. In MySQL Enterprise Edition, a thread pool plugin provides an alternative thread-handling
model designed to reduce overhead and improve performance. The plugin implements a thread pool
that increases server performance by efficiently managing statement execution threads for large
numbers of client connections.

For more information, see Section 7.6.3, “MySQL Enterprise Thread Pool”.

32.7 MySQL Enterprise Data Masking and De-Identification
Overview

MySQL Enterprise Edition 5.7 and higher includes MySQL Enterprise Data Masking and De-
Identification, implemented as a plugin library containing a plugin and several loadable functions. Data
masking hides sensitive information by replacing real values with substitutes. MySQL Enterprise Data
Masking and De-Identification functions enable masking existing data using several methods such
as obfuscation (removing identifying characteristics), generation of formatted random data, and data
replacement or substitution.

5447

MySQL Enterprise Monitor Overview

For more information, see Section 8.5, “MySQL Enterprise Data Masking and De-Identification”.

32.8 MySQL Enterprise Monitor Overview

For information about MySQL Enterprise Monitor behavior, see the MySQL Enterprise Monitor manual:
https://dev.mysql.com/doc/mysql-monitor/en/.

Important

MySQL Enterprise Monitor will be end of life and deprecated with obsolescence
as of January 1, 2025.

After this date, MySQL Enterprise Monitor will no longer receive security updates, non-security
updates, bug fixes, or online technical content updates. It will transition to the Sustaining Support
model.

What to expect when MySQL Enterprise Monitor reaches the end of life (EOL):

• MySQL will cease all bug fix activities for the product

• MySQL will cease all security fix activities for the product

• MySQL will cease all new feature work for the product

Sustaining Support does not include:

• New program updates, fixes, security alerts, and critical patch updates

• New tax, legal, or regulatory updates

• New upgrade scripts

• Certification with new third-party products/versions

• 24 hour commitment and response guidelines for Severity 1 service requests as defined in "Section 9
- Severity Definitions" in the document titled "Oracle Software Technical Support Policies"

• Previously released fixes or updates that Oracle has withdrawn from publication. Older or existing
published software bundles will remain available as archived content.

For the set of Oracle Technical Support Policies, visit: https://www.oracle.com/support/policies.html

For an explanation of the different support models (like Sustaining Support), visit: https://
www.oracle.com/support/lifetime-support/

For customers that are currently using earlier versions of MySQL Enterprise Monitor, your options
include:

• Use Enterprise Manager for MySQL. This is a free product for customers with a valid Oracle Support
Contract. For more information, visit Comprehensive Monitoring and Compliance Management for
MySQL Databases using Enterprise Manager.

• Use the database monitoring capabilities of the OCI Database Management service. For MySQL
on-premises customers, this is a paid feature that will be released soon. For more information, visit
Database Management for MySQL HeatWave.

Affected deployments

• MySQL Enterprise Monitor Service Manager for Linux x86 (64-bit)

• MySQL Enterprise Monitor Agent for Linux x86 (64-bit)

5448

https://dev.mysql.com/doc/mysql-monitor/en/
https://www.oracle.com/support/policies.html
https://www.oracle.com/support/lifetime-support/
https://www.oracle.com/support/lifetime-support/
https://blogs.oracle.com/observability/post/comprehensive-monitoring-and-compliance-management-for-mysql-databases-using-enterprise-manager
https://blogs.oracle.com/observability/post/comprehensive-monitoring-and-compliance-management-for-mysql-databases-using-enterprise-manager
https://blogs.oracle.com/mysql/post/database-management-for-mysql-heatwave

MySQL Telemetry

• MySQL Enterprise Monitor Service Manager for Windows x86 (64-bit)

• MySQL Enterprise Monitor Agent for Microsoft Windows x86 (64-bit)

• MySQL Enterprise Monitor Service Manager for Mac OS X x86 (64-bit)

• MySQL Enterprise Monitor Agent for Mac OS X x86 (64-bit)

32.9 MySQL Telemetry

The MySQL telemetry component is based on the OpenTelemetry (OTel) project, an open-source,
vendor-neutral observability framework providing a common observability standard. It enables users
to instrument their applications in order to export observability data: traces, metrics and logs, enabling
increased granularity of debugging and testing.

For more information, see Telemetry.

5449

https://dev.mysql.com/doc/refman/8.4/en/telemetry.html

5450

Chapter 33 MySQL Workbench
MySQL Workbench provides a graphical tool for working with MySQL servers and databases. MySQL
Workbench is developed and tested with MySQL Server 8.0. MySQL Workbench may connect to
MySQL Server 8.4 and higher but some MySQL Workbench features may not function with those
newer server versions.

The following discussion briefly describes MySQL Workbench capabilities. For more information, see
the MySQL Workbench manual, available at https://dev.mysql.com/doc/workbench/en/.

MySQL Workbench provides five main areas of functionality:

• SQL Development: Enables you to create and manage connections to database servers. As well
as enabling you to configure connection parameters, MySQL Workbench provides the capability to
execute SQL queries on the database connections using the built-in SQL Editor. This functionality
replaces that previously provided by the Query Browser standalone application.

• Data Modeling: Enables you to create models of your database schema graphically, reverse and
forward engineer between a schema and a live database, and edit all aspects of your database using
the comprehensive Table Editor. The Table Editor provides easy-to-use facilities for editing Tables,
Columns, Indexes, Triggers, Partitioning, Options, Inserts and Privileges, Routines and Views.

• Server Administration: Enables you to create and administer server instances.

• Data Migration: Allows you to migrate from Microsoft SQL Server, Sybase ASE, SQLite, SQL
Anywhere, PostreSQL, and other RDBMS tables, objects and data to MySQL. Migration also
supports migrating from earlier versions of MySQL to the latest releases.

• MySQL Enterprise Support: Support for Enterprise products such as MySQL Enterprise Backup
and MySQL Audit.

MySQL Workbench is available in two editions, the Community Edition and the Commercial Edition.
The Community Edition is available free of charge. The Commercial Edition provides additional
Enterprise features, such as database documentation generation, at low cost.

5451

https://dev.mysql.com/doc/workbench/en/

5452

Chapter 34 MySQL on OCI Marketplace

Table of Contents
34.1 Prerequisites to Deploying MySQL EE on Oracle Cloud Infrastructure 5453
34.2 Deploying MySQL EE on Oracle Cloud Infrastructure .. 5453
34.3 Configuring Network Access .. 5455
34.4 Connecting .. 5455
34.5 Maintenance .. 5456

This chapter describes how to deploy MySQL Enterprise Edition as an Oracle Cloud Infrastructure
(OCI) Marketplace Application. This is a BYOL product.

Note

For more information on OCI marketplace, see Overview of Marketplace.

The MySQL Enterprise Edition Marketplace Application is an OCI compute instance, running Oracle
Linux 7.9, with MySQL EE 8.0. The MySQL EE installation on the deployed image is similar to the
RPM installation, as described in Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from
Oracle”.

For more information on MySQL Enterprise Edition, see Chapter 32, MySQL Enterprise Edition.

For more information on MySQL advanced configuration, see Secure Deployment Guide.

For more information on Oracle Linux 7, see Oracle Linux Documentation

This product is user-managed, meaning you are responsible for upgrades and maintenance.

34.1 Prerequisites to Deploying MySQL EE on Oracle Cloud
Infrastructure

The following assumptions are made:

• You are familiar with OCI terminology. If you are new to OCI, see Getting Started.

• You have access to a properly configured Virtual Cloud Network (VCN) and subnet. For more
information, see Virtual Networking.

• You have the permissions required to deploy OCI Marketplace applications in a compartment of your
tenancy. For more information, see How Policies Work.

34.2 Deploying MySQL EE on Oracle Cloud Infrastructure
To deploy MySQL EE on Oracle Cloud Infrastructure, do the following:

1. Open the OCI Marketplace and select MySQL.

The MySQL listing is displayed.

2. Click Launch Instance to begin the application launch process.

The Create Compute Instance dialog is displayed.

See To create a Linux instance for information on how to complete the fields.

By default, the MySQL server listens on port 3306 and is configured with a single user, root.

5453

https://docs.cloud.oracle.com/iaas/Content/Marketplace/Concepts/marketoverview.htm
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/
https://docs.cloud.oracle.com/iaas/Content/GSG/Concepts/baremetalintro.htm
https://docs.cloud.oracle.com/iaas/Content/Network/Tasks/quickstartnetworking.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policies.htm
https://docs.cloud.oracle.com/iaas/Content/Compute/Tasks/launchinginstance.htm

MySQL Configuration

Important

When the deployment is complete, and the MySQL server is started, you must
connect to the compute instance and retrieve the default root password which
was written to the MySQL log file.

See Connecting with SSH for more information.

The following MySQL software is installed:

• MySQL Server EE

• MySQL Enterprise Backup

• MySQL Shell

• MySQL Router

MySQL Configuration

For security, the following are enabled:

• SELinux: for more information, see Configuring and Using SELinux

• firewalld: for more information, see Controlling the firewalld Firewall Service

The following MySQL plugins are enabled:

• thread_pool

• validate_password

On startup, the following occurs:

• MySQL Server reads /etc/my.cnf and all files named *.cnf in /etc/my.cnf.d/.

• /etc/my.cnf.d/perf-tuning.cnf is created by /usr/bin/mkcnf based on the selected OCI
shape.

Note

To disable this mechanism, remove /etc/systemd/system/
mysqld.service.d/perf-tuning.conf.

Performance tuning is configured for the following shapes:

• VM.Standard2.1

• VM.Standard2.2

• VM.Standard2.4

• VM.Standard2.8

• VM.Standard2.16

• VM.Standard2.24

• VM.Standard.E2.1

• VM.Standard.E2.2

• VM.Standard.E2.4

5454

https://docs.oracle.com/en/operating-systems/oracle-linux/7/admin/ol7-s1-syssec.html
https://docs.oracle.com/en/operating-systems/oracle-linux/7/security/ol7-implement-sec.html#ol7-firewalld-cfg

Configuring Network Access

• VM.Standard.E2.8

• VM.Standard.E3.Flex

• VM.Standard.E4.Flex

• BM.Standard2.52

For all other shapes, the tuning for VM.Standard2.1 is used.

34.3 Configuring Network Access

For information on OCI Security Rules, see Security Rules.

Important

You must enable ingress on the following ports:

• 22: SSH

• 3306: MySQL

• 33060: (optional) MySQL X Protocol. Used by MySQL Shell.

34.4 Connecting

This section describes the various connection methods for connecting to the deployed MySQL server
on the OCI Compute Instance.

Connecting with SSH

This section gives some detail on connecting from a UNIX-like platform to the OCI Compute. For
more information on connecting with SSH, see Accessing an Oracle Linux Instance Using SSH and
Connecting to Your Instance.

To connect to the Oracle Linux running on the Compute Instance with SSH, run the following
command:

ssh opc@computeIP

where opc is the compute user and computeIP is the IP address of your Compute Instance.

To find the temporary root password created for the root user, run the following command:

sudo grep 'temporary password' /var/log/mysqld.log

To change your default password, log in to the server using the generated, temporary password, using
the following command: mysql -uroot -p. Then run the following:

ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass4!';

Connecting with MySQL Client

Note

To connect from your local MySQL client, you must first create on the MySQL
server a user which allows remote login.

To connect to the MySQL Server from your local MySQL client, run the following command from your
shell session:

5455

https://docs.cloud.oracle.com/iaas/Content/Network/Concepts/securityrules.htm
https://docs.oracle.com/en/cloud/iaas/compute-iaas-cloud/stcsg/accessing-oracle-linux-instance-using-ssh.html#GUID-D947E2CC-0D4C-43F4-B2A9-A517037D6C11
https://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/testingconnection.htm

Connecting with MySQL Shell

mysql -uroot -p -hcomputeIP

where computeIP is the IP address of your Compute Instance.

Connecting with MySQL Shell

To connect to the MySQL Server from your local MySQL Shell, run the following command to start your
shell session:

mysqlsh \connect root@computeIP

where computeIP is the IP address of your Compute Instance.

For more information on MySQL Shell connections, see MySQL Shell Connections.

Connecting with Workbench

To connect to the MySQL Server from MySQL Workbench, see Connections in MySQL Workbench.

34.5 Maintenance

This product is user-managed, meaning you are responsible for upgrades and maintenance.

Upgrading MySQL

The existing installation is RPM-based, to upgrade the MySQL server, see Section 3.7, “Upgrading
MySQL Binary or Package-based Installations on Unix/Linux”.

You can use scp to copy the required RPM to the OCI Compute Instance, or copy it from OCI Object
Storage, if you have configured access to it. File Storage is also an option. For more information, see
File Storage and NFS.

Backup and Restore

MySQL Enterprise Backup is the preferred backup and restore solution. For more information, see
Backing Up to Cloud Storage.

For information on MySQL Enterprise Backup, see Getting Started with MySQL Enterprise Backup.

For information on the default MySQL backup and restore, see Chapter 9, Backup and Recovery.

5456

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-connections.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-connections.html
https://docs.cloud.oracle.com/iaas/Content/File/Concepts/filestorageoverview.htm
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/meb-backup-cloud.html
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/meb-getting-started.html

Appendix A MySQL 8.0 Frequently Asked Questions

Table of Contents
A.1 MySQL 8.0 FAQ: General ... 5457
A.2 MySQL 8.0 FAQ: Storage Engines .. 5459
A.3 MySQL 8.0 FAQ: Server SQL Mode .. 5460
A.4 MySQL 8.0 FAQ: Stored Procedures and Functions ... 5461
A.5 MySQL 8.0 FAQ: Triggers ... 5464
A.6 MySQL 8.0 FAQ: Views .. 5466
A.7 MySQL 8.0 FAQ: INFORMATION_SCHEMA .. 5467
A.8 MySQL 8.0 FAQ: Migration ... 5468
A.9 MySQL 8.0 FAQ: Security ... 5468
A.10 MySQL 8.0 FAQ: NDB Cluster .. 5470
A.11 MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 5483
A.12 MySQL 8.0 FAQ: Connectors & APIs ... 5493
A.13 MySQL 8.0 FAQ: C API, libmysql .. 5493
A.14 MySQL 8.0 FAQ: Replication ... 5494
A.15 MySQL 8.0 FAQ: MySQL Enterprise Thread Pool ... 5498
A.16 MySQL 8.0 FAQ: InnoDB Change Buffer ... 5499
A.17 MySQL 8.0 FAQ: InnoDB Data-at-Rest Encryption .. 5501
A.18 MySQL 8.0 FAQ: Virtualization Support .. 5503

A.1 MySQL 8.0 FAQ: General

A.1.1 Which version of MySQL is production-ready (GA)? ... 5457
A.1.2 Why did MySQL version numbering skip versions 6 and 7 and go straight to 8.0? 5458
A.1.3 Can MySQL do subqueries? ... 5458
A.1.4 Can MySQL perform multiple-table inserts, updates, and deletes? 5458
A.1.5 Does MySQL have Sequences? ... 5458
A.1.6 Does MySQL have a NOW() function with fractions of seconds? 5458
A.1.7 Does MySQL work with multi-core processors? ... 5458
A.1.8 Why do I see multiple processes for mysqld? .. 5459
A.1.9 Can MySQL perform ACID transactions? .. 5459

A.1.1. Which version of MySQL is production-ready (GA)?

MySQL 9.3, 8.4, and 8.0 are actively supported for production use.

The MySQL 9 Innovation series began with the MySQL 9.0.0 release on 01 July 2024.

The MySQL 8.4 LTS series began with the MySQL 8.4.0 release on 30 April 2024.

The MySQL 8 Innovation series began with the MySQL 8.1.0 release on 18 July 2023. Active
development ended on 2024-01-16 with the MySQL 8.3.0 release.

MySQL 8.0 achieved General Availability (GA) status with MySQL 8.0.11, which was released
for production use on 19 April 2018. It became a bugfix series as of MySQL 8.0.34 with the
introduction of the Innovation and LTS release model.

MySQL 5.7 achieved General Availability (GA) status with MySQL 5.7.9, which was released for
production use on 21 October 2015. Active development for MySQL 5.7 ended on 25 October
2023 with the MySQL 5.7.44 release.

MySQL 5.6 achieved General Availability (GA) status with MySQL 5.6.10, which was released
for production use on 5 February 2013. Active development for MySQL 5.6 has ended.

5457

https://dev.mysql.com/doc/refman/8.4/en/mysql-releases.html

MySQL 8.0 FAQ: General

MySQL 5.5 achieved General Availability (GA) status with MySQL 5.5.8, which was released for
production use on 3 December 2010. Active development for MySQL 5.5 has ended.

MySQL 5.1 achieved General Availability (GA) status with MySQL 5.1.30, which was released
for production use on 14 November 2008. Active development for MySQL 5.1 has ended.

MySQL 5.0 achieved General Availability (GA) status with MySQL 5.0.15, which was released
for production use on 19 October 2005. Active development for MySQL 5.0 has ended.

A.1.2. Why did MySQL version numbering skip versions 6 and 7 and go straight to 8.0?

Due to the many new and important features we were introducing in this MySQL version, we
decided to start a fresh new series. As the series numbers 6 and 7 had actually been used
before by MySQL, we went to 8.0.

A.1.3. Can MySQL do subqueries?

Yes. See Section 15.2.15, “Subqueries”.

A.1.4. Can MySQL perform multiple-table inserts, updates, and deletes?

Yes. For the syntax required to perform multiple-table updates, see Section 15.2.17, “UPDATE
Statement”; for that required to perform multiple-table deletes, see Section 15.2.2, “DELETE
Statement”.

A multiple-table insert can be accomplished using a trigger whose FOR EACH ROW clause
contains multiple INSERT statements within a BEGIN ... END block. See Section 27.3, “Using
Triggers”.

A.1.5. Does MySQL have Sequences?

No. However, MySQL has an AUTO_INCREMENT system, which can also handle inserts
in a multi-source replication setup. With the auto_increment_increment and
auto_increment_offset system variables, you can set each server to generate auto-
increment values that don't conflict with other servers. The auto_increment_increment
value should be greater than the number of servers, and each server should have a unique
offset.

A.1.6. Does MySQL have a NOW() function with fractions of seconds?

Yes, see Section 13.2.6, “Fractional Seconds in Time Values”.

A.1.7. Does MySQL work with multi-core processors?

Yes. MySQL is fully multithreaded, and makes use of all CPUs made available to it. Not all
CPUs may be available; modern operating systems should be able to utilize all underlying
CPUs, but also make it possible to restrict a process to a specific CPU or sets of CPUs.

On Windows, there is currently a limit to the number of (logical) processors that mysqld can
use: a single processor group, which is limited to a maximum of 64 logical processors.

Use of multiple cores may be seen in these ways:

• A single core is usually used to service the commands issued from one session.

• A few background threads make limited use of extra cores; for example, to keep background I/
O tasks moving.

• If the database is I/O-bound (indicated by CPU consumption less than capacity), adding more
CPUs is futile. If the database is partitioned into an I/O-bound part and a CPU-bond part,
adding CPUs may still be useful.

5458

MySQL 8.0 FAQ: Storage Engines

A.1.8. Why do I see multiple processes for mysqld?

mysqld is a single-process program, not a multi-process program, and does not fork or launch
other processes. However, mysqld is multithreaded and some process-reporting system utilities
display separate entries for each thread of multithreaded processes, which may lead to the
appearance of multiple mysqld processes when in fact there is only one.

A.1.9. Can MySQL perform ACID transactions?

Yes. All current MySQL versions support transactions. The InnoDB storage engine offers full
ACID transactions with row-level locking, multi-versioning, nonlocking repeatable reads, and all
four SQL standard isolation levels.

The NDB storage engine supports the READ COMMITTED transaction isolation level only.

A.2 MySQL 8.0 FAQ: Storage Engines
A.2.1 Where can I obtain complete documentation for MySQL storage engines? 5459
A.2.2 Are there any new storage engines in MySQL 8.0? ... 5459
A.2.3 Have any storage engines been removed in MySQL 8.0? .. 5459
A.2.4 Can I prevent the use of a particular storage engine? .. 5459
A.2.5 Is there an advantage to using the InnoDB storage engine exclusively, as opposed to a

combination of InnoDB and non-InnoDB storage engines? .. 5459
A.2.6 What are the unique benefits of the ARCHIVE storage engine? ... 5460

A.2.1. Where can I obtain complete documentation for MySQL storage engines?

See Chapter 18, Alternative Storage Engines. That chapter contains information about all
MySQL storage engines except for the InnoDB storage engine and the NDB storage engine
(used for MySQL Cluster). InnoDB is covered in Chapter 17, The InnoDB Storage Engine. NDB
is covered in Chapter 25, MySQL NDB Cluster 8.0.

A.2.2. Are there any new storage engines in MySQL 8.0?

No. InnoDB is the default storage engine for new tables. See Section 17.1, “Introduction to
InnoDB” for details.

A.2.3. Have any storage engines been removed in MySQL 8.0?

The PARTITION storage engine plugin which provided partitioning support is replaced by a
native partitioning handler. As part of this change, the server can no longer be built using -
DWITH_PARTITION_STORAGE_ENGINE. partition is also no longer displayed in the output
of SHOW PLUGINS, or shown in the INFORMATION_SCHEMA.PLUGINS table.

In order to support partitioning of a given table, the storage engine used for the table must now
provide its own (“native”) partitioning handler. InnoDB is the only storage engine supported in
MySQL 8.0 that includes a native partitioning handler. An attempt to create partitioned tables
in MySQL 8.0 using any other storage engine fails. (The NDB storage engine used by MySQL
Cluster also provides its own partitioning handler, but is currently not supported by MySQL 8.0.)

A.2.4. Can I prevent the use of a particular storage engine?

Yes. The disabled_storage_engines configuration option defines which storage engines
cannot be used to create tables or tablespaces. By default, disabled_storage_engines
is empty (no engines disabled), but it can be set to a comma-separated list of one or more
engines.

A.2.5. Is there an advantage to using the InnoDB storage engine exclusively, as opposed to a
combination of InnoDB and non-InnoDB storage engines?

Yes. Using InnoDB tables exclusively can simplify backup and recovery operations. MySQL
Enterprise Backup does a hot backup of all tables that use the InnoDB storage engine. For

5459

MySQL 8.0 FAQ: Server SQL Mode

tables using MyISAM or other non-InnoDB storage engines, it does a “warm” backup, where
the database continues to run, but those tables cannot be modified while being backed up. See
Section 32.1, “MySQL Enterprise Backup Overview”.

A.2.6. What are the unique benefits of the ARCHIVE storage engine?

The ARCHIVE storage engine stores large amounts of data without indexes; it has a small
footprint, and performs selects using table scans. See Section 18.5, “The ARCHIVE Storage
Engine”, for details.

A.3 MySQL 8.0 FAQ: Server SQL Mode
A.3.1 What are server SQL modes? .. 5460
A.3.2 How many server SQL modes are there? ... 5460
A.3.3 How do you determine the server SQL mode? .. 5460
A.3.4 Is the mode dependent on the database or connection? ... 5460
A.3.5 Can the rules for strict mode be extended? ... 5460
A.3.6 Does strict mode impact performance? ... 5460
A.3.7 What is the default server SQL mode when MySQL 8.0 is installed? 5460

A.3.1. What are server SQL modes?

Server SQL modes define what SQL syntax MySQL should support and what kind of data
validation checks it should perform. This makes it easier to use MySQL in different environments
and to use MySQL together with other database servers. The MySQL Server apply these modes
individually to different clients. For more information, see Section 7.1.11, “Server SQL Modes”.

A.3.2. How many server SQL modes are there?

Each mode can be independently switched on and off. See Section 7.1.11, “Server SQL
Modes”, for a complete list of available modes.

A.3.3. How do you determine the server SQL mode?

You can set the default SQL mode (for mysqld startup) with the --sql-mode option. Using the
statement SET [GLOBAL|SESSION] sql_mode='modes', you can change the settings from
within a connection, either locally to the connection, or to take effect globally. You can retrieve
the current mode by issuing a SELECT @@sql_mode statement.

A.3.4. Is the mode dependent on the database or connection?

A mode is not linked to a particular database. Modes can be set locally to the session
(connection), or globally for the server. you can change these settings using SET [GLOBAL|
SESSION] sql_mode='modes'.

A.3.5. Can the rules for strict mode be extended?

When we refer to strict mode, we mean a mode where at least one of the modes TRADITIONAL,
STRICT_TRANS_TABLES, or STRICT_ALL_TABLES is enabled. Options can be combined,
so you can add restrictions to a mode. See Section 7.1.11, “Server SQL Modes”, for more
information.

A.3.6. Does strict mode impact performance?

The intensive validation of input data that some settings requires more time than if the validation
is not done. While the performance impact is not that great, if you do not require such validation
(perhaps your application already handles all of this), then MySQL gives you the option of
leaving strict mode disabled. However, if you do require it, strict mode can provide such
validation.

A.3.7. What is the default server SQL mode when MySQL 8.0 is installed?

5460

MySQL 8.0 FAQ: Stored Procedures and Functions

The default SQL mode in MySQL 8.0 includes these modes: ONLY_FULL_GROUP_BY,
STRICT_TRANS_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE,
ERROR_FOR_DIVISION_BY_ZERO, and NO_ENGINE_SUBSTITUTION.

For information about all available modes and default MySQL behavior, see Section 7.1.11,
“Server SQL Modes”.

A.4 MySQL 8.0 FAQ: Stored Procedures and Functions
A.4.1 Does MySQL support stored procedures and functions? .. 5461
A.4.2 Where can I find documentation for MySQL stored procedures and stored functions? 5461
A.4.3 Is there a discussion forum for MySQL stored procedures? .. 5461
A.4.4 Where can I find the ANSI SQL 2003 specification for stored procedures? 5461
A.4.5 How do you manage stored routines? ... 5461
A.4.6 Is there a way to view all stored procedures and stored functions in a given database? 5462
A.4.7 Where are stored procedures stored? ... 5462
A.4.8 Is it possible to group stored procedures or stored functions into packages? 5462
A.4.9 Can a stored procedure call another stored procedure? ... 5462
A.4.10 Can a stored procedure call a trigger? .. 5462
A.4.11 Can a stored procedure access tables? .. 5462
A.4.12 Do stored procedures have a statement for raising application errors? 5462
A.4.13 Do stored procedures provide exception handling? .. 5462
A.4.14 Can MySQL stored routines return result sets? .. 5462
A.4.15 Is WITH RECOMPILE supported for stored procedures? ... 5463
A.4.16 Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly

to a stored procedure in the database? .. 5463
A.4.17 Can I pass an array as input to a stored procedure? .. 5463
A.4.18 Can I pass a cursor as an IN parameter to a stored procedure? 5463
A.4.19 Can I return a cursor as an OUT parameter from a stored procedure? 5463
A.4.20 Can I print out a variable's value within a stored routine for debugging purposes? 5463
A.4.21 Can I commit or roll back transactions inside a stored procedure? 5463
A.4.22 Do MySQL stored procedures and functions work with replication? 5463
A.4.23 Are stored procedures and functions created on a replication source server replicated to a

replica? ... 5463
A.4.24 How are actions that take place inside stored procedures and functions replicated? 5463
A.4.25 Are there special security requirements for using stored procedures and functions together

with replication? .. 5463
A.4.26 What limitations exist for replicating stored procedure and function actions? 5464
A.4.27 Do the preceding limitations affect the ability of MySQL to do point-in-time recovery? 5464
A.4.28 What is being done to correct the aforementioned limitations? .. 5464

A.4.1. Does MySQL support stored procedures and functions?

Yes. MySQL supports two types of stored routines, stored procedures, and stored functions.

A.4.2. Where can I find documentation for MySQL stored procedures and stored functions?

See Section 27.2, “Using Stored Routines”.

A.4.3. Is there a discussion forum for MySQL stored procedures?

Yes. See https://forums.mysql.com/list.php?98.

A.4.4. Where can I find the ANSI SQL 2003 specification for stored procedures?

Unfortunately, the official specifications are not freely available (ANSI makes them available for
purchase). However, there are books, such as SQL-99 Complete, Really by Peter Gulutzan and
Trudy Pelzer, that provide a comprehensive overview of the standard, including coverage of
stored procedures.

A.4.5. How do you manage stored routines?

5461

https://forums.mysql.com/list.php?98

MySQL 8.0 FAQ: Stored Procedures and Functions

It is always good practice to use a clear naming scheme for your stored routines. You can
manage stored procedures with CREATE [FUNCTION|PROCEDURE], ALTER [FUNCTION|
PROCEDURE], DROP [FUNCTION|PROCEDURE], and SHOW CREATE [FUNCTION|
PROCEDURE]. You can obtain information about existing stored procedures using the
ROUTINES table in the INFORMATION_SCHEMA database (see Section 28.3.30, “The
INFORMATION_SCHEMA ROUTINES Table”).

A.4.6. Is there a way to view all stored procedures and stored functions in a given database?

Yes. For a database named dbname, use this query on the INFORMATION_SCHEMA.ROUTINES
table:

SELECT ROUTINE_TYPE, ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_SCHEMA='dbname';

For more information, see Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”.

The body of a stored routine can be viewed using SHOW CREATE FUNCTION (for a stored
function) or SHOW CREATE PROCEDURE (for a stored procedure). See Section 15.7.7.9, “SHOW
CREATE PROCEDURE Statement”, for more information.

A.4.7. Where are stored procedures stored?

Stored procedures are stored in the mysql.routines and mysql.parameters
tables, which are part of the data dictionary. You cannot access these tables directly.
Instead, query the INFORMATION_SCHEMA ROUTINES and PARAMETERS tables. See
Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”, and Section 28.3.20, “The
INFORMATION_SCHEMA PARAMETERS Table”.

You can also use SHOW CREATE FUNCTION to obtain information about stored functions,
and SHOW CREATE PROCEDURE to obtain information about stored procedures. See
Section 15.7.7.9, “SHOW CREATE PROCEDURE Statement”.

A.4.8. Is it possible to group stored procedures or stored functions into packages?

No. This is not supported in MySQL.

A.4.9. Can a stored procedure call another stored procedure?

Yes.

A.4.10.Can a stored procedure call a trigger?

A stored procedure can execute an SQL statement, such as an UPDATE, that causes a trigger to
activate.

A.4.11.Can a stored procedure access tables?

Yes. A stored procedure can access one or more tables as required.

A.4.12.Do stored procedures have a statement for raising application errors?

Yes. MySQL implements the SQL standard SIGNAL and RESIGNAL statements. See
Section 15.6.7, “Condition Handling”.

A.4.13.Do stored procedures provide exception handling?

MySQL implements HANDLER definitions according to the SQL standard. See Section 15.6.7.2,
“DECLARE ... HANDLER Statement”, for details.

A.4.14.Can MySQL stored routines return result sets?

Stored procedures can, but stored functions cannot. If you perform an ordinary SELECT inside a
stored procedure, the result set is returned directly to the client. You need to use the MySQL 4.1

5462

MySQL 8.0 FAQ: Stored Procedures and Functions

(or higher) client/server protocol for this to work. This means that, for example, in PHP, you need
to use the mysqli extension rather than the old mysql extension.

A.4.15.Is WITH RECOMPILE supported for stored procedures?

No.

A.4.16.Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to a
stored procedure in the database?

There is no equivalent in MySQL.

A.4.17.Can I pass an array as input to a stored procedure?

No.

A.4.18.Can I pass a cursor as an IN parameter to a stored procedure?

Cursors are only available inside stored procedures.

A.4.19.Can I return a cursor as an OUT parameter from a stored procedure?

Cursors are only available inside stored procedures. However, if you do not open a cursor on
a SELECT, the result is sent directly to the client. You can also SELECT INTO variables. See
Section 15.2.13, “SELECT Statement”.

A.4.20.Can I print out a variable's value within a stored routine for debugging purposes?

Yes, you can do this in a stored procedure, but not in a stored function. If you perform an
ordinary SELECT inside a stored procedure, the result set is returned directly to the client. You
must use the MySQL 4.1 (or above) client/server protocol for this to work. This means that, for
example, in PHP, you need to use the mysqli extension rather than the old mysql extension.

A.4.21.Can I commit or roll back transactions inside a stored procedure?

Yes. However, you cannot perform transactional operations within a stored function.

A.4.22.Do MySQL stored procedures and functions work with replication?

Yes, standard actions carried out in stored procedures and functions are replicated from a
replication source server to a replica. There are a few limitations that are described in detail in
Section 27.7, “Stored Program Binary Logging”.

A.4.23.Are stored procedures and functions created on a replication source server replicated to a
replica?

Yes, creation of stored procedures and functions carried out through normal DDL statements on
a replication source server are replicated to a replica, so that the objects exist on both servers.
ALTER and DROP statements for stored procedures and functions are also replicated.

A.4.24.How are actions that take place inside stored procedures and functions replicated?

MySQL records each DML event that occurs in a stored procedure and replicates those
individual actions to a replica. The actual calls made to execute stored procedures are not
replicated.

Stored functions that change data are logged as function invocations, not as the DML events
that occur inside each function.

A.4.25.Are there special security requirements for using stored procedures and functions together with
replication?

Yes. Because a replica has authority to execute any statement read from a source's binary
log, special security constraints exist for using stored functions with replication. If replication or

5463

MySQL 8.0 FAQ: Triggers

binary logging in general (for the purpose of point-in-time recovery) is active, then MySQL DBAs
have two security options open to them:

1. Any user wishing to create stored functions must be granted the SUPER privilege.

2. Alternatively, a DBA can set the log_bin_trust_function_creators system variable
to 1, which enables anyone with the standard CREATE ROUTINE privilege to create stored
functions.

A.4.26.What limitations exist for replicating stored procedure and function actions?

Nondeterministic (random) or time-based actions embedded in stored procedures may not
replicate properly. By their very nature, randomly produced results are not predictable and
cannot be exactly reproduced; therefore, random actions replicated to a replica do not mirror
those performed on a source. Declaring stored functions to be DETERMINISTIC or setting
the log_bin_trust_function_creators system variable to 0 keeps random operations
producing random values from being invoked.

In addition, time-based actions cannot be reproduced on a replica because the timing of such
actions in a stored procedure is not reproducible through the binary log used for replication. It
records only DML events and does not factor in timing constraints.

Finally, nontransactional tables for which errors occur during large DML actions (such as bulk
inserts) may experience replication issues in that a source may be partially updated from
DML activity, but no updates are done to the replica because of the errors that occurred. A
workaround is for a function's DML actions to be carried out with the IGNORE keyword so that
updates on the source that cause errors are ignored and updates that do not cause errors are
replicated to the replica.

A.4.27.Do the preceding limitations affect the ability of MySQL to do point-in-time recovery?

The same limitations that affect replication do affect point-in-time recovery.

A.4.28.What is being done to correct the aforementioned limitations?

You can choose either statement-based replication or row-based replication. The original
replication implementation is based on statement-based binary logging. Row-based binary
logging resolves the limitations mentioned earlier.

Mixed replication is also available (by starting the server with --binlog-format=mixed). This
hybrid form of replication “knows” whether statement-level replication can safely be used, or
row-level replication is required.

For additional information, see Section 19.2.1, “Replication Formats”.

A.5 MySQL 8.0 FAQ: Triggers
A.5.1 Where can I find the documentation for MySQL 8.0 triggers? ... 5465
A.5.2 Is there a discussion forum for MySQL Triggers? .. 5465
A.5.3 Does MySQL have statement-level or row-level triggers? ... 5465
A.5.4 Are there any default triggers? ... 5465
A.5.5 How are triggers managed in MySQL? .. 5465
A.5.6 Is there a way to view all triggers in a given database? .. 5465
A.5.7 Where are triggers stored? ... 5465
A.5.8 Can a trigger call a stored procedure? .. 5465
A.5.9 Can triggers access tables? ... 5465
A.5.10 Can a table have multiple triggers with the same trigger event and action time? 5465
A.5.11 Is it possible for a trigger to update tables on a remote server? 5466
A.5.12 Do triggers work with replication? ... 5466
A.5.13 How are actions carried out through triggers on a source replicated to a replica? 5466

5464

MySQL 8.0 FAQ: Triggers

A.5.1. Where can I find the documentation for MySQL 8.0 triggers?

See Section 27.3, “Using Triggers”.

A.5.2. Is there a discussion forum for MySQL Triggers?

Yes. It is available at https://forums.mysql.com/list.php?99.

A.5.3. Does MySQL have statement-level or row-level triggers?

All triggers are FOR EACH ROW; that is, the trigger is activated for each row that is inserted,
updated, or deleted. MySQL does not support triggers using FOR EACH STATEMENT.

A.5.4. Are there any default triggers?

Not explicitly. MySQL does have specific special behavior for some TIMESTAMP columns, as
well as for columns which are defined using AUTO_INCREMENT.

A.5.5. How are triggers managed in MySQL?

Triggers can be created using the CREATE TRIGGER statement, and dropped using DROP
TRIGGER. See Section 15.1.22, “CREATE TRIGGER Statement”, and Section 15.1.34, “DROP
TRIGGER Statement”, for more about these statements.

Information about triggers can be obtained by querying the INFORMATION_SCHEMA.TRIGGERS
table. See Section 28.3.45, “The INFORMATION_SCHEMA TRIGGERS Table”.

A.5.6. Is there a way to view all triggers in a given database?

Yes. You can obtain a listing of all triggers defined on database dbname using a query on the
INFORMATION_SCHEMA.TRIGGERS table such as the one shown here:

SELECT TRIGGER_NAME, EVENT_MANIPULATION, EVENT_OBJECT_TABLE, ACTION_STATEMENT
 FROM INFORMATION_SCHEMA.TRIGGERS
 WHERE TRIGGER_SCHEMA='dbname';

For more information about this table, see Section 28.3.45, “The INFORMATION_SCHEMA
TRIGGERS Table”.

You can also use the SHOW TRIGGERS statement, which is specific to MySQL. See
Section 15.7.7.40, “SHOW TRIGGERS Statement”.

A.5.7. Where are triggers stored?

Triggers are stored in the mysql.triggers system table, which is part of the data dictionary.

A.5.8. Can a trigger call a stored procedure?

Yes.

A.5.9. Can triggers access tables?

A trigger can access both old and new data in its own table. A trigger can also affect other
tables, but it is not permitted to modify a table that is already being used (for reading or writing)
by the statement that invoked the function or trigger.

A.5.10.Can a table have multiple triggers with the same trigger event and action time?

In MySQL 8.0, it is possible to define multiple triggers for a given table that have the same
trigger event and action time. For example, you can have two BEFORE UPDATE triggers for a
table. By default, triggers that have the same trigger event and action time activate in the order
they were created. To affect trigger order, specify a clause after FOR EACH ROW that indicates
FOLLOWS or PRECEDES and the name of an existing trigger that also has the same trigger
event and action time. With FOLLOWS, the new trigger activates after the existing trigger. With
PRECEDES, the new trigger activates before the existing trigger.

5465

https://forums.mysql.com/list.php?99

MySQL 8.0 FAQ: Views

A.5.11.Is it possible for a trigger to update tables on a remote server?

Yes. A table on a remote server could be updated using the FEDERATED storage engine. (See
Section 18.8, “The FEDERATED Storage Engine”).

A.5.12.Do triggers work with replication?

Yes. However, the way in which they work depends whether you are using MySQL's “classic”
statement-based or row-based replication format.

When using statement-based replication, triggers on the replica are executed by statements that
are executed on the source (and replicated to the replica).

When using row-based replication, triggers are not executed on the replica due to statements
that were run on the source and then replicated to the replica. Instead, when using row-based
replication, the changes caused by executing the trigger on the source are applied on the
replica.

For more information, see Section 19.5.1.36, “Replication and Triggers”.

A.5.13.How are actions carried out through triggers on a source replicated to a replica?

Again, this depends on whether you are using statement-based or row-based replication.

Statement-based replication. First, the triggers that exist on a source must be re-created
on the replica server. Once this is done, the replication flow works as any other standard DML
statement that participates in replication. For example, consider a table EMP that has an AFTER
insert trigger, which exists on a replication source server. The same EMP table and AFTER insert
trigger exist on the replica server as well. The replication flow would be:

1. An INSERT statement is made to EMP.

2. The AFTER trigger on EMP activates.

3. The INSERT statement is written to the binary log.

4. The replica picks up the INSERT statement to EMP and executes it.

5. The AFTER trigger on EMP that exists on the replica activates.

Row-based replication. When you use row-based replication, the changes caused by
executing the trigger on the source are applied on the replica. However, the triggers themselves
are not actually executed on the replica under row-based replication. This is because, if both the
source and the replica applied the changes from the source and, in addition, the trigger causing
these changes were applied on the replica, the changes would in effect be applied twice on the
replica, leading to different data on the source and the replica.

In most cases, the outcome is the same for both row-based and statement-based replication.
However, if you use different triggers on the source and replica, you cannot use row-based
replication. (This is because the row-based format replicates the changes made by triggers
executing on the source to the replicas, rather than the statements that caused the triggers
to execute, and the corresponding triggers on the replica are not executed.) Instead, any
statements causing such triggers to be executed must be replicated using statement-based
replication.

For more information, see Section 19.5.1.36, “Replication and Triggers”.

A.6 MySQL 8.0 FAQ: Views
A.6.1 Where can I find documentation covering MySQL Views? .. 5467
A.6.2 Is there a discussion forum for MySQL Views? .. 5467

5466

MySQL 8.0 FAQ: INFORMATION_SCHEMA

A.6.3 What happens to a view if an underlying table is dropped or renamed? 5467
A.6.4 Does MySQL have table snapshots? .. 5467
A.6.5 Does MySQL have materialized views? ... 5467
A.6.6 Can you insert into views that are based on joins? .. 5467

A.6.1. Where can I find documentation covering MySQL Views?

See Section 27.5, “Using Views”.

You may also find the MySQL User Forums to be helpful.

A.6.2. Is there a discussion forum for MySQL Views?

See the MySQL User Forums.

A.6.3. What happens to a view if an underlying table is dropped or renamed?

After a view has been created, it is possible to drop or alter a table or view to which the definition
refers. To check a view definition for problems of this kind, use the CHECK TABLE statement.
(See Section 15.7.3.2, “CHECK TABLE Statement”.)

A.6.4. Does MySQL have table snapshots?

No.

A.6.5. Does MySQL have materialized views?

No.

A.6.6. Can you insert into views that are based on joins?

It is possible, provided that your INSERT statement has a column list that makes it clear there is
only one table involved.

You cannot insert into multiple tables with a single insert on a view.

A.7 MySQL 8.0 FAQ: INFORMATION_SCHEMA

A.7.1 Where can I find documentation for the MySQL INFORMATION_SCHEMA database? 5467
A.7.2 Is there a discussion forum for INFORMATION_SCHEMA? ... 5467
A.7.3 Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA? 5467
A.7.4 What is the difference between the Oracle Data Dictionary and MySQL

INFORMATION_SCHEMA? ... 5468
A.7.5 Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database? 5468

A.7.1. Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

See Chapter 28, INFORMATION_SCHEMA Tables.

You may also find the MySQL User Forums to be helpful.

A.7.2. Is there a discussion forum for INFORMATION_SCHEMA?

See the MySQL User Forums.

A.7.3. Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

Unfortunately, the official specifications are not freely available. (ANSI makes them available
for purchase.) However, there are books available, such as SQL-99 Complete, Really by Peter
Gulutzan and Trudy Pelzer, that provide a comprehensive overview of the standard, including
INFORMATION_SCHEMA.

5467

https://forums.mysql.com/list.php?20
https://forums.mysql.com/list.php?20
https://forums.mysql.com/list.php?20
https://forums.mysql.com/list.php?20

MySQL 8.0 FAQ: Migration

A.7.4. What is the difference between the Oracle Data Dictionary and MySQL
INFORMATION_SCHEMA?

Both Oracle and MySQL provide metadata in tables. However, Oracle and MySQL use different
table names and column names. The MySQL implementation is more similar to those found
in DB2 and SQL Server, which also support INFORMATION_SCHEMA as defined in the SQL
standard.

A.7.5. Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

No. Since applications may rely on a certain standard structure, this should not be modified.
For this reason, we cannot support bugs or other issues which result from modifying
INFORMATION_SCHEMA tables or data.

A.8 MySQL 8.0 FAQ: Migration

A.8.1 Where can I find information on how to upgrade or downgrade MySQL? 5468

A.8.1. Where can I find information on how to upgrade or downgrade MySQL?

For detailed upgrade information, see Chapter 3, Upgrading MySQL. Do not skip a major
version when upgrading, but rather complete the process in steps, upgrading from one major
version to the next in each step. This may seem more complicated, but ultimately saves time
and trouble. If you encounter problems during the upgrade, their origin is easier to identify, either
by you or, if you have a MySQL Enterprise subscription, by MySQL support.

A.9 MySQL 8.0 FAQ: Security

A.9.1 Where can I find documentation that addresses security issues for MySQL? 5468
A.9.2 What is the default authentication plugin in MySQL 8.0? .. 5469
A.9.3 Does MySQL have native support for SSL? .. 5469
A.9.4 Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it? 5469
A.9.5 Does MySQL have built-in authentication against LDAP directories? 5469
A.9.6 Does MySQL include support for Roles Based Access Control (RBAC)? 5469
A.9.7 Does MySQL support TLS 1.0 and 1.1? .. 5469

A.9.1. Where can I find documentation that addresses security issues for MySQL?

The best place to start is Chapter 8, Security.

Other portions of the MySQL Documentation which you may find useful with regard to specific
security concerns include the following:

• Section 8.1.1, “Security Guidelines”.

• Section 8.1.3, “Making MySQL Secure Against Attackers”.

• Section B.3.3.2, “How to Reset the Root Password”.

• Section 8.1.5, “How to Run MySQL as a Normal User”.

• Section 8.1.4, “Security-Related mysqld Options and Variables”.

• Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”.

• Section 2.9, “Postinstallation Setup and Testing”.

• Section 8.3, “Using Encrypted Connections”.

• Loadable Function Security Precautions.

5468

https://dev.mysql.com/doc/extending-mysql/8.0/en/adding-loadable-function.html#loadable-function-security

MySQL 8.0 FAQ: Security

There is also the Secure Deployment Guide, which provides procedures for deploying a generic
binary distribution of MySQL Enterprise Edition Server with features for managing the security of
your MySQL installation.

A.9.2. What is the default authentication plugin in MySQL 8.0?

The default authentication plugin as of MySQL 8.0 is caching_sha2_password. For
information about this plugin, see Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”.

The caching_sha2_password plugin provides more secure password encryption than
the deprecated mysql_native_password plugin (the default plugin in MySQL versions
before MySQL 8.0). For information about the implications of this change of default plugin
for server operation and compatibility of the server with clients and connectors, see
caching_sha2_password as the Preferred Authentication Plugin.

For general information about pluggable authentication and other available authentication
plugins, see Section 8.2.17, “Pluggable Authentication”, and Section 8.4.1, “Authentication
Plugins”.

A.9.3. Does MySQL have native support for SSL?

Yes, the binaries have support for SSL connections between the client and server. See
Section 8.3, “Using Encrypted Connections”.

You can also tunnel a connection using SSH, if (for example) the client application does not
support SSL connections. For an example, see Section 8.3.4, “Connecting to MySQL Remotely
from Windows with SSH”.

A.9.4. Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it?

Yes, the binaries have SSL enabled for client/server connections that are secured,
authenticated, or both. See Section 8.3, “Using Encrypted Connections”.

A.9.5. Does MySQL have built-in authentication against LDAP directories?

The Enterprise edition includes a PAM Authentication Plugin that supports authentication
against an LDAP directory.

A.9.6. Does MySQL include support for Roles Based Access Control (RBAC)?

Not at this time.

A.9.7. Does MySQL support TLS 1.0 and 1.1?

Support for the TLSv1 and TLSv1.1 connection protocols is removed as of MySQL 8.0.28. The
protocols were deprecated from MySQL 8.0.26. For the consequences of that removal, see
Removal of Support for the TLSv1 and TLSv1.1 Protocols.

Support for TLS versions 1.0 and 1.1 is removed because those protocol versions are old,
released in 1996 and 2006, respectively. The algorithms used are weak and outdated.

Unless you are using very old versions of MySQL Server or connectors, you are unlikely to have
connections using TLS 1.0 or 1.1. MySQL connectors and clients select the highest TLS version
available by default.

When was support for TLS 1.2 added to MySQL Server? MySQL Community Server added
TLS 1.2 support when the community server switched to OpenSSL for MySQL 5.6, 5.7, and 8.0
in 2019. For MySQL Enterprise Edition, OpenSSL added TLS 1.2 support in 2015, in MySQL
Server 5.7.10.

How can one view which TLS versions are in active use? For MySQL 5.7 or 8.0, review whether
TLS 1.0 or 1.1 is in use by running this query:

5469

https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/

MySQL 8.0 FAQ: NDB Cluster

SELECT
 `session_ssl_status`.`thread_id`, `session_ssl_status`.`ssl_version`,
 `session_ssl_status`.`ssl_cipher`, `session_ssl_status`.`ssl_sessions_reused`
FROM `sys`.`session_ssl_status`
WHERE ssl_version NOT IN ('TLSv1.3','TLSv1.2');

If a thread using TLSv1.0 or TLSv1.1 is listed, you can determine where this connection is
coming from by running this query:

SELECT thd_id,conn_id, user, db, current_statement, program_name
FROM sys.processlist
WHERE thd_id IN (
 SELECT `session_ssl_status`.`thread_id`
 FROM `sys`.`session_ssl_status`
 WHERE ssl_version NOT IN ('TLSv1.3','TLSv1.2')
);

Alternatively, you can run this query:

SELECT *
FROM sys.session
WHERE thd_id IN (
 SELECT `session_ssl_status`.`thread_id`
 FROM `sys`.`session_ssl_status`
 WHERE ssl_version NOT IN ('TLSv1.3','TLSv1.2')
);

These queries provide details needed to determine which application is not supporting TLS 1.2
or 1.3, and target upgrades for those.

Are there other options for testing for TLS 1.0 or 1.1? Yes, you can disable those versions
prior to upgrading your server to a newer version. Explicitly specify which version to use,
either in mysql.cnf (or mysql.ini) or by using SET PERSIST, for example: --tls-
version=TLSv12.

Do all MySQL Connectors (5.7 and 8.0) support TLS 1.2 and higher? What about C and
C++ applications using libmysql? For C and C++ applications using the community
libmysqlclient library, use an OpenSSL-based library (that is, do not use YaSSL). Usage of
OpenSSL was unified in 2018 (in MySQL 8.0.4 and 5.7.28, respectively). The same applies for
Connector/ODBC and Connector/C++. To determine what library dependencies are used, run
the following commands to see if OpenSSL is listed. On Linux, use this command:

$> sudo ldd usr/local/mysql/lib/libmysqlclient.a | grep -i openssl

On MacOS, use this command:

$> sudo otool -l /usr/local/mysql/lib/libmysqlclient.a | grep -i openssl

Check the documentation for each connector, but they do support TLS 1.2 and TLS 1.3.

A.10 MySQL 8.0 FAQ: NDB Cluster

In the following section, we answer questions that are frequently asked about MySQL NDB Cluster and
the NDB storage engine.

A.10.1 Which versions of the MySQL software support NDB Cluster? Do I have to compile from
source? ... 5471

A.10.2 What do “NDB” and “NDBCLUSTER” mean? ... 5472
A.10.3 What is the difference between using NDB Cluster versus using MySQL Replication? 5472
A.10.4 Do I need any special networking to run NDB Cluster? How do computers in a cluster

communicate? ... 5472

5470

MySQL 8.0 FAQ: NDB Cluster

A.10.5 How many computers do I need to run an NDB Cluster, and why? 5473
A.10.6 What do the different computers do in an NDB Cluster? ... 5473
A.10.7 When I run the SHOW command in the NDB Cluster management client, I see a line of

output that looks like this: .. 5473
A.10.8 With which operating systems can I use NDB Cluster? ... 5474
A.10.9 What are the hardware requirements for running NDB Cluster? 5474
A.10.10 How much RAM do I need to use NDB Cluster? Is it possible to use disk memory at all? . 5474
A.10.11 What file systems can I use with NDB Cluster? What about network file systems or

network shares? .. 5475
A.10.12 Can I run NDB Cluster nodes inside virtual machines (such as those created by VMWare,

VirtualBox, Parallels, or Xen)? ... 5476
A.10.13 I am trying to populate an NDB Cluster database. The loading process terminates

prematurely and I get an error message like this one: ... 5476
A.10.14 NDB Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or

more nodes in remote locations? ... 5476
A.10.15 Do I have to learn a new programming or query language to use NDB Cluster? 5476
A.10.16 What programming languages and APIs are supported by NDB Cluster? 5477
A.10.17 Does NDB Cluster include any management tools? .. 5477
A.10.18 How do I find out what an error or warning message means when using NDB Cluster? ... 5477
A.10.19 Is NDB Cluster transaction-safe? What isolation levels are supported? 5477
A.10.20 What storage engines are supported by NDB Cluster? ... 5477
A.10.21 In the event of a catastrophic failure— for example, the whole city loses power and my

UPS fails—would I lose all my data? ... 5478
A.10.22 Is it possible to use FULLTEXT indexes with NDB Cluster? ... 5478
A.10.23 Can I run multiple nodes on a single computer? .. 5478
A.10.24 Can I add data nodes to an NDB Cluster without restarting it? 5478
A.10.25 Are there any limitations that I should be aware of when using NDB Cluster? 5479
A.10.26 Does NDB Cluster support foreign keys? ... 5479
A.10.27 How do I import an existing MySQL database into an NDB Cluster? 5479
A.10.28 How do NDB Cluster nodes communicate with one another? .. 5479
A.10.29 What is an arbitrator? ... 5480
A.10.30 What data types are supported by NDB Cluster? ... 5480
A.10.31 How do I start and stop NDB Cluster? ... 5480
A.10.32 What happens to NDB Cluster data when the cluster is shut down? 5481
A.10.33 Is it a good idea to have more than one management node for an NDB Cluster? 5481
A.10.34 Can I mix different kinds of hardware and operating systems in one NDB Cluster? 5481
A.10.35 Can I run two data nodes on a single host? Two SQL nodes? 5482
A.10.36 Can I use host names with NDB Cluster? .. 5482
A.10.37 Does NDB Cluster support IPv6? .. 5482
A.10.38 How do I handle MySQL users in an NDB Cluster having multiple MySQL servers? 5482
A.10.39 How do I continue to send queries in the event that one of the SQL nodes fails? 5482
A.10.40 How do I back up and restore an NDB Cluster? ... 5482
A.10.41 What is an “angel process”? ... 5482

A.10.1.Which versions of the MySQL software support NDB Cluster? Do I have to compile from
source?

NDB Cluster is not supported in standard MySQL Server releases. Instead, MySQL NDB Cluster
is provided as a separate product. Available NDB Cluster release series include the following:

• NDB Cluster 7.3 / NDB Cluster 7.4. These two series are no longer maintained or
supported for new deployments. Users of NDB Cluster 7.3 or 7.4 should upgrade to NDB
7.5 or newer as soon as possible. We recommend that new deployments use the latest NDB
Cluster 8.0 release.

• NDB Cluster 7.5. This series is a previous General Availability (GA) version of NDB
Cluster, still available for production use, although we recommend that new deployments use
the latest NDB Cluster 8.0 release. The latest NDB Cluster 7.5 releases can be obtained from
https://dev.mysql.com/downloads/cluster/.

5471

https://dev.mysql.com/downloads/cluster/

MySQL 8.0 FAQ: NDB Cluster

• NDB Cluster 7.6. This series is a previous General Availability (GA) version of NDB
Cluster, still available for production use, although we recommend that new deployments use
the latest NDB Cluster 8.0 release. The latest NDB Cluster 7.6 releases can be obtained from
https://dev.mysql.com/downloads/cluster/.

• NDB Cluster 8.0. This series is the most recent General Availability (GA) version of NDB
Cluster, based on version 8.0 of the NDB storage engine and MySQL Server 8.0. NDB Cluster
8.0 is available for production use; new deployments intended for production should use the
latest GA release in this series, which is currently NDB Cluster 8.0.42. You can obtain the
most recent NDB Cluster 8.0 release from https://dev.mysql.com/downloads/cluster/. For
information about new features and other important changes in this series, see Section 25.2.4,
“What is New in MySQL NDB Cluster 8.0”.

You can obtain and compile NDB Cluster from source (see Section 25.3.1.4, “Building NDB
Cluster from Source on Linux”, and Section 25.3.2.2, “Compiling and Installing NDB Cluster
from Source on Windows”), but for all but the most specialized cases, we recommend using one
of the following installers provided by Oracle that is appropriate to your operating platform and
circumstances:

• Linux binary release (tar.gz file)

• Linux RPM package

• Linux .deb file

• Windows binary “no-install” release

• Windows MSI Installer

Installation packages may also be available from your platform's package management system.

You can determine whether your MySQL Server has NDB support using one of the statements
SHOW VARIABLES LIKE 'have_%', SHOW ENGINES, or SHOW PLUGINS.

A.10.2.What do “NDB” and “NDBCLUSTER” mean?

“NDB” stands for “Network Database”. NDB and NDBCLUSTER are both names for the storage
engine that enables clustering support with MySQL. NDB is preferred, but either name is correct.

A.10.3.What is the difference between using NDB Cluster versus using MySQL Replication?

In traditional MySQL replication, a source MySQL server updates one or more replicas.
Transactions are committed sequentially, and a slow transaction can cause the replica to lag
behind the source. This means that if the source fails, it is possible that the replica might not
have recorded the last few transactions. If a transaction-safe engine such as InnoDB is being
used, a transaction is either completed on the replica or not applied at all, but replication does
not guarantee that all data on the source and the replica remains consistent at all times. In NDB
Cluster, all data nodes are kept in synchrony, and a transaction committed by any one data
node is committed for all data nodes. In the event of a data node failure, all remaining data
nodes remain in a consistent state.

In short, whereas standard MySQL replication is asynchronous, NDB Cluster is synchronous.

Asynchronous replication is also available in NDB Cluster. NDB Cluster Replication (also
sometimes known as “geo-replication”) includes the capability to replicate both between two
NDB Clusters, and from an NDB Cluster to a non-Cluster MySQL server. See Section 25.7,
“NDB Cluster Replication”.

A.10.4.Do I need any special networking to run NDB Cluster? How do computers in a cluster
communicate?

5472

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/

MySQL 8.0 FAQ: NDB Cluster

NDB Cluster is intended to be used in a high-bandwidth environment, with computers
connecting using TCP/IP. Its performance depends directly upon the connection speed between
the cluster's computers. The minimum connectivity requirements for NDB Cluster include
a typical 100-megabit Ethernet network or the equivalent. We recommend you use gigabit
Ethernet whenever available.

A.10.5.How many computers do I need to run an NDB Cluster, and why?

A minimum of three computers is required to run a viable cluster. However, the minimum
recommended number of computers in an NDB Cluster is four: one each to run the management
and SQL nodes, and two computers to serve as data nodes. The purpose of the two data nodes
is to provide redundancy; the management node must run on a separate machine to guarantee
continued arbitration services in the event that one of the data nodes fails.

To provide increased throughput and high availability, you should use multiple SQL nodes
(MySQL Servers connected to the cluster). It is also possible (although not strictly necessary) to
run multiple management servers.

A.10.6.What do the different computers do in an NDB Cluster?

An NDB Cluster has both a physical and logical organization, with computers being the physical
elements. The logical or functional elements of a cluster are referred to as nodes, and a
computer housing a cluster node is sometimes referred to as a cluster host. There are three
types of nodes, each corresponding to a specific role within the cluster. These are:

• Management node. This node provides management services for the cluster as a whole,
including startup, shutdown, backups, and configuration data for the other nodes. The
management node server is implemented as the application ndb_mgmd; the management
client used to control NDB Cluster is ndb_mgm. See Section 25.5.4, “ndb_mgmd — The NDB
Cluster Management Server Daemon”, and Section 25.5.5, “ndb_mgm — The NDB Cluster
Management Client”, for information about these programs.

• Data node. This type of node stores and replicates data. Data node functionality is handled
by instances of the NDB data node process ndbd. For more information, see Section 25.5.1,
“ndbd — The NDB Cluster Data Node Daemon”.

• SQL node. This is simply an instance of MySQL Server (mysqld) that is built with support
for the NDBCLUSTER storage engine and started with the --ndb-cluster option to enable
the engine and the --ndb-connectstring option to enable it to connect to an NDB Cluster
management server. For more about these options, see MySQL Server Options for NDB
Cluster.

Note

An API node is any application that makes direct use of Cluster
data nodes for data storage and retrieval. An SQL node can thus be
considered a type of API node that uses a MySQL Server to provide
an SQL interface to the Cluster. You can write such applications (that
do not depend on a MySQL Server) using the NDB API, which supplies
a direct, object-oriented transaction and scanning interface to NDB
Cluster data; see NDB Cluster API Overview: The NDB API, for more
information.

A.10.7.When I run the SHOW command in the NDB Cluster management client, I see a line of output that
looks like this:

id=2 @10.100.10.32 (Version: 8.0.42-ndb-8.0.42 Nodegroup: 0, *)

What does the * mean? How is this node different from the others?

5473

https://dev.mysql.com/doc/ndbapi/en/overview-ndb-api.html

MySQL 8.0 FAQ: NDB Cluster

The simplest answer is, “It's not something you can control, and it's nothing that you need to
worry about in any case, unless you're a software engineer writing or analyzing the NDB Cluster
source code”.

If you don't find that answer satisfactory, here's a longer and more technical version:

A number of mechanisms in NDB Cluster require distributed coordination among the data
nodes. These distributed algorithms and protocols include global checkpointing, DDL (schema)
changes, and node restart handling. To make this coordination simpler, the data nodes “elect”
one of their number to act as leader. There is no user-facing mechanism for influencing this
selection, which is completely automatic; the fact that it is automatic is a key part of NDB
Cluster's internal architecture.

When a node acts as the “leader” for any of these mechanisms, it is usually the point of
coordination for the activity, and the other nodes act as “followers”, carrying out their parts of the
activity as directed by the leader. If the node acting as leader fails, then the remaining nodes
elect a new leader. Tasks in progress that were being coordinated by the old leader may either
fail or be continued by the new leader, depending on the actual mechanism involved.

It is possible for some of these different mechanisms and protocols to have different leader
nodes, but in general the same leader is chosen for all of them. The node indicated as the
leader in the output of SHOW in the management client is known internally as the DICT manager,
responsible for coordinating DDL and metadata activity.

NDB Cluster is designed in such a way that the choice of leader has no discernible effect
outside the cluster itself. For example, the current leader does not have significantly higher
CPU or resource usage than the other data nodes, and failure of the leader should not have a
significantly different impact on the cluster than the failure of any other data node.

A.10.8.With which operating systems can I use NDB Cluster?

NDB Cluster is supported on most Unix-like operating systems. NDB Cluster is also supported in
production settings on Microsoft Windows operating systems.

For more detailed information concerning the level of support which is offered for NDB Cluster
on various operating system versions, operating system distributions, and hardware platforms,
please refer to https://www.mysql.com/support/supportedplatforms/cluster.html.

A.10.9.What are the hardware requirements for running NDB Cluster?

NDB Cluster should run on any platform for which NDB-enabled binaries are available. For data
nodes and API nodes, faster CPUs and more memory are likely to improve performance, and
64-bit CPUs are likely to be more effective than 32-bit processors. There must be sufficient
memory on machines used for data nodes to hold each node's share of the database (see How
much RAM do I Need? for more information). For a computer which is used only for running the
NDB Cluster management server, the requirements are minimal; a common desktop PC (or the
equivalent) is generally sufficient for this task. Nodes can communicate through the standard
TCP/IP network and hardware. They can also use the high-speed SCI protocol; however,
special networking hardware and software are required to use SCI (see Section 25.4.4, “Using
High-Speed Interconnects with NDB Cluster”).

A.10.10.How much RAM do I need to use NDB Cluster? Is it possible to use disk memory at all?

NDB Cluster was originally implemented as in-memory only, but all versions currently available
also provide the ability to store NDB Cluster on disk. See Section 25.6.11, “NDB Cluster Disk
Data Tables”, for more information.

For in-memory NDB tables, you can use the following formula for obtaining a rough estimate of
how much RAM is needed for each data node in the cluster:

(SizeofDatabase × NumberOfReplicas × 1.1) / NumberOfDataNodes

5474

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://www.mysql.com/support/supportedplatforms/cluster.html

MySQL 8.0 FAQ: NDB Cluster

To calculate the memory requirements more exactly requires determining, for each table
in the cluster database, the storage space required per row (see Section 13.7, “Data Type
Storage Requirements”, for details), and multiplying this by the number of rows. You must also
remember to account for any column indexes as follows:

• Each primary key or hash index created for an NDBCLUSTER table requires 21−25 bytes per
record. These indexes use IndexMemory.

• Each ordered index requires 10 bytes storage per record, using DataMemory.

• Creating a primary key or unique index also creates an ordered index, unless this index is
created with USING HASH. In other words:

• A primary key or unique index on a Cluster table normally takes up 31 to 35 bytes per
record.

• However, if the primary key or unique index is created with USING HASH, then it requires
only 21 to 25 bytes per record.

Creating NDB Cluster tables with USING HASH for all primary keys and unique indexes
generally causes table updates to run more quickly—in some cases by a much as 20 to 30
percent faster than updates on tables where USING HASH was not used in creating primary and
unique keys. This is due to the fact that less memory is required (because no ordered indexes
are created), and that less CPU must be utilized (because fewer indexes must be read and
possibly updated). However, it also means that queries that could otherwise use range scans
must be satisfied by other means, which can result in slower selects.

When calculating Cluster memory requirements, you may find useful the ndb_size.pl utility
which is available in recent MySQL 8.0 releases. This Perl script connects to a current (non-
Cluster) MySQL database and creates a report on how much space that database would
require if it used the NDBCLUSTER storage engine. For more information, see Section 25.5.28,
“ndb_size.pl — NDBCLUSTER Size Requirement Estimator”.

It is especially important to keep in mind that every NDB Cluster table must have a primary key.
The NDB storage engine creates a primary key automatically if none is defined; this primary key
is created without USING HASH.

You can determine how much memory is being used for storage of NDB Cluster data and
indexes at any given time using the REPORT MEMORYUSAGE command in the ndb_mgm client;
see Section 25.6.1, “Commands in the NDB Cluster Management Client”, for more information.
In addition, warnings are written to the cluster log when 80% of available DataMemory or (prior
to NDB 7.6) IndexMemory is in use, and again when usage reaches 90%, 99%, and 100%.

A.10.11.What file systems can I use with NDB Cluster? What about network file systems or network
shares?

Generally, any file system that is native to the host operating system should work well with NDB
Cluster. If you find that a given file system works particularly well (or not so especially well) with
NDB Cluster, we invite you to discuss your findings in the NDB Cluster Forums.

For Windows, we recommend that you use NTFS file systems for NDB Cluster, just as we do for
standard MySQL. We do not test NDB Cluster with FAT or VFAT file systems. Because of this,
we do not recommend their use with MySQL or NDB Cluster.

NDB Cluster is implemented as a shared-nothing solution; the idea behind this is that the failure
of a single piece of hardware should not cause the failure of multiple cluster nodes, or possibly
even the failure of the cluster as a whole. For this reason, the use of network shares or network
file systems is not supported for NDB Cluster. This also applies to shared storage devices such
as SANs.

5475

https://forums.mysql.com/list.php?25

MySQL 8.0 FAQ: NDB Cluster

A.10.12.Can I run NDB Cluster nodes inside virtual machines (such as those created by VMWare,
VirtualBox, Parallels, or Xen)?

NDB Cluster is supported for use in virtual machines. We currently support and test using Oracle
VM.

Some NDB Cluster users have successfully deployed NDB Cluster using other virtualization
products; in such cases, Oracle can provide NDB Cluster support, but issues specific to the
virtual environment must be referred to that product's vendor.

A.10.13.I am trying to populate an NDB Cluster database. The loading process terminates prematurely
and I get an error message like this one:

ERROR 1114: The table 'my_cluster_table' is full

Why is this happening?

The cause is very likely to be that your setup does not provide sufficient RAM for all table data
and all indexes, including the primary key required by the NDB storage engine and automatically
created in the event that the table definition does not include the definition of a primary key.

It is also worth noting that all data nodes should have the same amount of RAM, since no data
node in a cluster can use more memory than the least amount available to any individual data
node. For example, if there are four computers hosting Cluster data nodes, and three of these
have 3GB of RAM available to store Cluster data while the remaining data node has only 1GB
RAM, then each data node can devote at most 1GB to NDB Cluster data and indexes.

In some cases it is possible to get Table is full errors in MySQL client applications even
when ndb_mgm -e "ALL REPORT MEMORYUSAGE" shows significant free DataMemory. You
can force NDB to create extra partitions for NDB Cluster tables and thus have more memory
available for hash indexes by using the MAX_ROWS option for CREATE TABLE. In general,
setting MAX_ROWS to twice the number of rows that you expect to store in the table should be
sufficient.

For similar reasons, you can also sometimes encounter problems with data node restarts on
nodes that are heavily loaded with data. The MinFreePct parameter can help with this issue
by reserving a portion (5% by default) of DataMemory and (prior to NDB 7.6) IndexMemory for
use in restarts. This reserved memory is not available for storing NDB tables or data.

A.10.14.NDB Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or more
nodes in remote locations?

It is very unlikely that a cluster would perform reliably under such conditions, as NDB Cluster
was designed and implemented with the assumption that it would be run under conditions
guaranteeing dedicated high-speed connectivity such as that found in a LAN setting using 100
Mbps or gigabit Ethernet—preferably the latter. We neither test nor warrant its performance
using anything slower than this.

Also, it is extremely important to keep in mind that communications between the nodes in an
NDB Cluster are not secure; they are neither encrypted nor safeguarded by any other protective
mechanism. The most secure configuration for a cluster is in a private network behind a firewall,
with no direct access to any Cluster data or management nodes from outside. (For SQL nodes,
you should take the same precautions as you would with any other instance of the MySQL
server.) For more information, see Section 25.6.20, “NDB Cluster Security Issues”.

A.10.15.Do I have to learn a new programming or query language to use NDB Cluster?

No. Although some specialized commands are used to manage and configure the cluster itself,
only standard (My)SQL statements are required for the following operations:

• Creating, altering, and dropping tables

5476

http://www.oracle.com/technetwork/server-storage/vm/index.html
http://www.oracle.com/technetwork/server-storage/vm/index.html

MySQL 8.0 FAQ: NDB Cluster

• Inserting, updating, and deleting table data

• Creating, changing, and dropping primary and unique indexes

Some specialized configuration parameters and files are required to set up an NDB Cluster—
see Section 25.4.3, “NDB Cluster Configuration Files”, for information about these.

A few simple commands are used in the NDB Cluster management client (ndb_mgm) for tasks
such as starting and stopping cluster nodes. See Section 25.6.1, “Commands in the NDB
Cluster Management Client”.

A.10.16.What programming languages and APIs are supported by NDB Cluster?

NDB Cluster supports the same programming APIs and languages as the standard MySQL
Server, including ODBC, .Net, the MySQL C API, and numerous drivers for popular scripting
languages such as PHP, Perl, and Python. NDB Cluster applications written using these APIs
behave similarly to other MySQL applications; they transmit SQL statements to a MySQL Server
(in the case of NDB Cluster, an SQL node), and receive responses containing rows of data. For
more information about these APIs, see Chapter 31, Connectors and APIs.

NDB Cluster also supports application programming using the NDB API, which provides a low-
level C++ interface to NDB Cluster data without needing to go through a MySQL Server. See
The NDB API. In addition, many NDBCLUSTER management functions are exposed by the C-
language MGM API; see The MGM API, for more information.

NDB Cluster also supports Java application programming using ClusterJ, which supports a
domain object model of data using sessions and transactions. See Java and NDB Cluster, for
more information.

NDB Cluster 8.0 also includes adapters supporting NoSQL applications written against
Node.js, with NDB Cluster as the data store. See MySQL NoSQL Connector for JavaScript, for
more information.

A.10.17.Does NDB Cluster include any management tools?

NDB Cluster includes a command line client for performing basic management functions. See
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”, and Section 25.6.1,
“Commands in the NDB Cluster Management Client”.

NDB Cluster is also supported by MySQL Cluster Manager, a separate product providing an
advanced command line interface that can automate many NDB Cluster management tasks
such as rolling restarts and configuration changes. For more information about MySQL Cluster
Manager, see MySQL Cluster Manager 8.0.42 User Manual.

A.10.18.How do I find out what an error or warning message means when using NDB Cluster?

There are two ways in which this can be done:

• From within the mysql client, use SHOW ERRORS or SHOW WARNINGS immediately upon
being notified of the error or warning condition.

• From a system shell prompt, use perror --ndb error_code.

A.10.19.Is NDB Cluster transaction-safe? What isolation levels are supported?

Yes. For tables created with the NDB storage engine, transactions are supported. Currently, NDB
Cluster supports only the READ COMMITTED transaction isolation level.

A.10.20.What storage engines are supported by NDB Cluster?

5477

https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/mysql-cluster-manager/8.0/en/

MySQL 8.0 FAQ: NDB Cluster

NDB Cluster requires the NDB storage engine. That is, in order for a table to be shared between
nodes in an NDB Cluster, the table must be created using ENGINE=NDB (or the equivalent
option ENGINE=NDBCLUSTER).

It is possible to create tables using other storage engines (such as InnoDB or MyISAM) on a
MySQL server being used with NDB Cluster, but since these tables do not use NDB, they do not
participate in clustering; each such table is strictly local to the individual MySQL server instance
on which it is created.

NDB Cluster is quite different from InnoDB clustering with regard to architecture, requirements,
and implementation; despite any similarity in their names, the two are not compatible. For more
information about InnoDB clustering, see MySQL AdminAPI. See also Section 25.2.6, “MySQL
Server Using InnoDB Compared with NDB Cluster”, for information about the differences
between the NDB and InnoDB storage engines.

A.10.21.In the event of a catastrophic failure— for example, the whole city loses power and my UPS fails
—would I lose all my data?

All committed transactions are logged. Therefore, although it is possible that some data could be
lost in the event of a catastrophe, this should be quite limited. Data loss can be further reduced
by minimizing the number of operations per transaction. (It is not a good idea to perform large
numbers of operations per transaction in any case.)

A.10.22.Is it possible to use FULLTEXT indexes with NDB Cluster?

FULLTEXT indexing is currently supported only by the InnoDB and MyISAM storage engines.
See Section 14.9, “Full-Text Search Functions”, for more information.

A.10.23.Can I run multiple nodes on a single computer?

It is possible but not always advisable. One of the chief reasons to run a cluster is to provide
redundancy. To obtain the full benefits of this redundancy, each node should reside on a
separate machine. If you place multiple nodes on a single machine and that machine fails, you
lose all of those nodes. For this reason, if you do run multiple data nodes on a single machine, it
is extremely important that they be set up in such a way that the failure of this machine does not
cause the loss of all the data nodes in a given node group.

Given that NDB Cluster can be run on commodity hardware loaded with a low-cost (or even no-
cost) operating system, the expense of an extra machine or two is well worth it to safeguard
mission-critical data. It also worth noting that the requirements for a cluster host running a
management node are minimal. This task can be accomplished with a 300 MHz Pentium or
equivalent CPU and sufficient RAM for the operating system, plus a small amount of overhead
for the ndb_mgmd and ndb_mgm processes.

It is acceptable to run multiple cluster data nodes on a single host that has multiple CPUs, cores,
or both. The NDB Cluster distribution also provides a multithreaded version of the data node
binary intended for use on such systems. For more information, see Section 25.5.3, “ndbmtd —
The NDB Cluster Data Node Daemon (Multi-Threaded)”.

It is also possible in some cases to run data nodes and SQL nodes concurrently on the same
machine; how well such an arrangement performs is dependent on a number of factors such
as number of cores and CPUs as well as the amount of disk and memory available to the data
node and SQL node processes, and you must take these factors into account when planning
such a configuration.

A.10.24.Can I add data nodes to an NDB Cluster without restarting it?

It is possible to add new data nodes to a running NDB Cluster without taking the cluster offline.
For more information, see Section 25.6.7, “Adding NDB Cluster Data Nodes Online”.

5478

https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

MySQL 8.0 FAQ: NDB Cluster

For other types of NDB Cluster nodes, a rolling restart is all that is required (see Section 25.6.5,
“Performing a Rolling Restart of an NDB Cluster”).

A.10.25.Are there any limitations that I should be aware of when using NDB Cluster?

Limitations on NDB tables in MySQL NDB Cluster include the following:

• Temporary tables are not supported; a CREATE TEMPORARY TABLE statement using
ENGINE=NDB or ENGINE=NDBCLUSTER fails with an error.

• The only types of user-defined partitioning supported for NDBCLUSTER tables are KEY and
LINEAR KEY. Trying to create an NDB table using any other partitioning type fails with an
error.

• FULLTEXT indexes are not supported.

• Index prefixes are not supported. Only complete columns may be indexed.

• Spatial indexes are not supported (although spatial columns can be used). See Section 13.4,
“Spatial Data Types”.

• Support for partial transactions and partial rollbacks is comparable to that of other
transactional storage engines such as InnoDB that can roll back individual statements.

• The maximum number of attributes allowed per table is 512. Attribute names cannot be any
longer than 31 characters. For each table, the maximum combined length of the table and
database names is 122 characters.

• Priot to NDB 8.0, the maximum size for a table row is 14 kilobytes, not counting BLOB
values. In NDB 8.0, this maximum is increased to 30000 bytes. See Section 25.2.7.5, “Limits
Associated with Database Objects in NDB Cluster”, for more information.

There is no set limit for the number of rows per NDB table. Limits on table size depend on a
number of factors, in particular on the amount of RAM available to each data node.

For a complete listing of limitations in NDB Cluster, see Section 25.2.7, “Known Limitations
of NDB Cluster”. See also Section 25.2.7.11, “Previous NDB Cluster Issues Resolved in NDB
Cluster 8.0”.

A.10.26.Does NDB Cluster support foreign keys?

NDB Cluster provides support for foreign key constraints which is comparable to that found
in the InnoDB storage engine; see Section 1.6.3.2, “FOREIGN KEY Constraints”, for more
detailed information, as well as Section 15.1.20.5, “FOREIGN KEY Constraints”. Applications
requiring foreign key support should use NDB Cluster 7.3, 7.4, 7.5, or later.

A.10.27.How do I import an existing MySQL database into an NDB Cluster?

You can import databases into NDB Cluster much as you would with any other version of
MySQL. Other than the limitations mentioned elsewhere in this FAQ, the only other special
requirement is that any tables to be included in the cluster must use the NDB storage engine.
This means that the tables must be created with ENGINE=NDB or ENGINE=NDBCLUSTER.

It is also possible to convert existing tables that use other storage engines to NDBCLUSTER
using one or more ALTER TABLE statement. However, the definition of the table must be
compatible with the NDBCLUSTER storage engine prior to making the conversion. In MySQL
8.0, an additional workaround is also required; see Section 25.2.7, “Known Limitations of NDB
Cluster”, for details.

A.10.28.How do NDB Cluster nodes communicate with one another?

5479

MySQL 8.0 FAQ: NDB Cluster

Cluster nodes can communicate through any of three different transport mechanisms: TCP/
IP, SHM (shared memory), and SCI (Scalable Coherent Interface). Where available, SHM is
used by default between nodes residing on the same cluster host; however, this is considered
experimental. SCI is a high-speed (1 gigabit per second and higher), high-availability protocol
used in building scalable multi-processor systems; it requires special hardware and drivers. See
Section 25.4.4, “Using High-Speed Interconnects with NDB Cluster”, for more about using SCI
as a transport mechanism for NDB Cluster.

A.10.29.What is an arbitrator?

If one or more data nodes in a cluster fail, it is possible that not all cluster data nodes are able
to “see” one another. In fact, it is possible that two sets of data nodes might become isolated
from one another in a network partitioning, also known as a “split-brain” scenario. This type of
situation is undesirable because each set of data nodes tries to behave as though it is the entire
cluster. An arbitrator is required to decide between the competing sets of data nodes.

When all data nodes in at least one node group are alive, network partitioning is not an issue,
because no single subset of the cluster can form a functional cluster on its own. The real
problem arises when no single node group has all its nodes alive, in which case network
partitioning (the “split-brain” scenario) becomes possible. Then an arbitrator is required. All
cluster nodes recognize the same node as the arbitrator, which is normally the management
server; however, it is possible to configure any of the MySQL Servers in the cluster to act as
the arbitrator instead. The arbitrator accepts the first set of cluster nodes to contact it, and tells
the remaining set to shut down. Arbitrator selection is controlled by the ArbitrationRank
configuration parameter for MySQL Server and management server nodes. You can also use
the ArbitrationRank configuration parameter to control the arbitrator selection process.
For more information about these parameters, see Section 25.4.3.5, “Defining an NDB Cluster
Management Server”.

The role of arbitrator does not in and of itself impose any heavy demands upon the host so
designated, and thus the arbitrator host does not need to be particularly fast or to have extra
memory especially for this purpose.

A.10.30.What data types are supported by NDB Cluster?

NDB Cluster supports all of the usual MySQL data types, including those associated with
MySQL's spatial extensions; however, the NDB storage engine does not support spatial indexes.
(Spatial indexes are supported only by MyISAM; see Section 13.4, “Spatial Data Types”, for
more information.) In addition, there are some differences with regard to indexes when used with
NDB tables.

Note

NDB Cluster Disk Data tables (that is, tables created with
TABLESPACE ... STORAGE DISK ENGINE=NDB or
TABLESPACE ... STORAGE DISK ENGINE=NDBCLUSTER) have only
fixed-width rows. This means that (for example) each Disk Data table
record containing a VARCHAR(255) column requires space for 255
characters (as required for the character set and collation being used for
the table), regardless of the actual number of characters stored therein.

See Section 25.2.7, “Known Limitations of NDB Cluster”, for more information about these
issues.

A.10.31.How do I start and stop NDB Cluster?

It is necessary to start each node in the cluster separately, in the following order:

5480

MySQL 8.0 FAQ: NDB Cluster

1. Start the management node, using the ndb_mgmd command.

When starting the cluster for the first time, you must include the -f or --config-file
option to tell the management node where its configuration file can be found.

2. Start each data node with the ndbd command.

Each data node must be started with the -c or --ndb-connectstring option so that the
data node knows how to connect to the management server.

3. Start each MySQL Server (SQL node) using your preferred startup script, such as
mysqld_safe.

Each MySQL Server must be started with the --ndbcluster and --ndb-connectstring
options. These options cause mysqld to enable NDBCLUSTER storage engine support and
how to connect to the management server.

Each of these commands must be run from a system shell on the machine housing the
affected node. (You do not have to be physically present at the machine—a remote login shell
can be used for this purpose.) You can verify that the cluster is running by starting the NDB
management client ndb_mgm on the machine housing the management node and issuing the
SHOW or ALL STATUS command.

To shut down a running cluster, issue the command SHUTDOWN in the management client.
Alternatively, you may enter the following command in a system shell:

$> ndb_mgm -e "SHUTDOWN"

(The quotation marks in this example are optional, since there are no spaces in the command
string following the -e option; in addition, the SHUTDOWN command, like other management
client commands, is not case-sensitive.)

Either of these commands causes the ndb_mgm, ndb_mgm, and any ndbd processes to
terminate gracefully. MySQL servers running as SQL nodes can be stopped using mysqladmin
shutdown.

For more information, see Section 25.6.1, “Commands in the NDB Cluster Management Client”,
and Section 25.3.6, “Safe Shutdown and Restart of NDB Cluster”.

MySQL Cluster Manager provides additional ways to handle starting ansd stopping of NDB
Cluster nodes. See MySQL Cluster Manager 8.0.42 User Manual, for more information about
this tool.

A.10.32.What happens to NDB Cluster data when the cluster is shut down?

The data that was held in memory by the cluster's data nodes is written to disk, and is reloaded
into memory the next time that the cluster is started.

A.10.33.Is it a good idea to have more than one management node for an NDB Cluster?

It can be helpful as a fail-safe. Only one management node controls the cluster at any given
time, but it is possible to configure one management node as primary, and one or more
additional management nodes to take over in the event that the primary management node fails.

See Section 25.4.3, “NDB Cluster Configuration Files”, for information on how to configure NDB
Cluster management nodes.

A.10.34.Can I mix different kinds of hardware and operating systems in one NDB Cluster?

Yes, as long as all machines and operating systems have the same “endianness” (all big-endian
or all little-endian).

5481

https://dev.mysql.com/doc/mysql-cluster-manager/8.0/en/

MySQL 8.0 FAQ: NDB Cluster

It is also possible to use software from different NDB Cluster releases on different nodes.
However, we support such use only as part of a rolling upgrade procedure (see Section 25.6.5,
“Performing a Rolling Restart of an NDB Cluster”).

A.10.35.Can I run two data nodes on a single host? Two SQL nodes?

Yes, it is possible to do this. In the case of multiple data nodes, it is advisable (but not required)
for each node to use a different data directory. If you want to run multiple SQL nodes on one
machine, each instance of mysqld must use a different TCP/IP port.

Running data nodes and SQL nodes together on the same host is possible, but you should be
aware that the ndbd or ndbmtd processes may compete for memory with mysqld.

A.10.36.Can I use host names with NDB Cluster?

Yes, it is possible to use DNS and DHCP for cluster hosts. However, if your application
requires “five nines” availability, you should use fixed (numeric) IP addresses, since making
communication between Cluster hosts dependent on services such as DNS and DHCP
introduces additional potential points of failure.

A.10.37.Does NDB Cluster support IPv6?

Prior to NDB 8.0.22. IPv6 is supported for connections between SQL nodes (MySQL
servers), but connections between all other types of NDB Cluster nodes must use IPv4.

In practical terms, this means that you can use IPv6 for replication between NDB Clusters, but
connections between nodes in the same NDB Cluster must use IPv4. For more information, see
Section 25.7.3, “Known Issues in NDB Cluster Replication”.

NDB 8.0.22 and later. All types of NDB Cluster nodes support IPv6; this includes
management nodes, data nodes, and API or SQL nodes.

A.10.38.How do I handle MySQL users in an NDB Cluster having multiple MySQL servers?

MySQL user accounts and privileges are normally not automatically propagated between
different MySQL servers accessing the same NDB Cluster. MySQL NDB Cluster provides
support for shared and synchronized users and privileges using the NDB_STORED_USER
privilege; see Distributed Privileges Using Shared Grant Tables, for more information. You
should be aware that this implementation was introduced in NDB 8.0, and is not compatible
with the shared privileges mechanism employed in earlier versions of NDB Cluster. The older
implementation is no longer supported in NDB 8.0.

A.10.39.How do I continue to send queries in the event that one of the SQL nodes fails?

MySQL NDB Cluster does not provide any sort of automatic failover between SQL nodes. Your
application must be prepared to handle the loss of SQL nodes and to fail over between them.

A.10.40.How do I back up and restore an NDB Cluster?

You can use the NDB Cluster native backup and restore functionality in the NDB management
client and the ndb_restore program. See Section 25.6.8, “Online Backup of NDB Cluster”,
and Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”.

You can also use the traditional functionality provided for this purpose in mysqldump and the
MySQL server. See Section 6.5.4, “mysqldump — A Database Backup Program”, for more
information.

A.10.41.What is an “angel process”?

This process monitors and, if necessary, attempts to restart the data node process. If you check
the list of active processes on your system after starting ndbd, you can see that there are

5482

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html

MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

actually 2 processes running by that name, as shown here (we omit the output from ndb_mgmd
and ndbd for brevity):

$> ./ndb_mgmd

$> ps aux | grep ndb
me 23002 0.0 0.0 122948 3104 ? Ssl 14:14 0:00 ./ndb_mgmd
me 23025 0.0 0.0 5284 820 pts/2 S+ 14:14 0:00 grep ndb

$> ./ndbd -c 127.0.0.1 --initial

$> ps aux | grep ndb
me 23002 0.0 0.0 123080 3356 ? Ssl 14:14 0:00 ./ndb_mgmd
me 23096 0.0 0.0 35876 2036 ? Ss 14:14 0:00 ./ndbmtd -c 127.0.0.1 --initial
me 23097 1.0 2.4 524116 91096 ? Sl 14:14 0:00 ./ndbmtd -c 127.0.0.1 --initial
me 23168 0.0 0.0 5284 812 pts/2 R+ 14:15 0:00 grep ndb

The ndbd process showing 0.0 for both memory and CPU usage is the angel process (although
it actually does use a very small amount of each). This process merely checks to see if the main
ndbd or ndbmtd process (the primary data node process which actually handles the data) is
running. If permitted to do so (for example, if the StopOnError configuration parameter is set
to false), the angel process tries to restart the primary data node process.

A.11 MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean
Character Sets

This set of Frequently Asked Questions derives from the experience of MySQL's Support and
Development groups in handling many inquiries about CJK (Chinese-Japanese-Korean) issues.

A.11.1 What CJK character sets are available in MySQL? .. 5483
A.11.2 I have inserted CJK characters into my table. Why does SELECT display them as “?”

characters? ... 5485
A.11.3 What problems should I be aware of when working with the Big5 Chinese character set? .. 5486
A.11.4 Why do Japanese character set conversions fail? .. 5486
A.11.5 What should I do if I want to convert SJIS 81CA to cp932? .. 5488
A.11.6 How does MySQL represent the Yen (¥) sign? .. 5488
A.11.7 Of what issues should I be aware when working with Korean character sets in MySQL? 5488
A.11.8 Why do I get Incorrect string value error messages? ... 5488
A.11.9 Why does my GUI front end or browser display CJK characters incorrectly in my

application using Access, PHP, or another API? ... 5489
A.11.10 I've upgraded to MySQL 8.0. How can I revert to behavior like that in MySQL 4.0 with

regard to character sets? .. 5490
A.11.11 Why do some LIKE and FULLTEXT searches with CJK characters fail? 5491
A.11.12 How do I know whether character X is available in all character sets? 5491
A.11.13 Why do CJK strings sort incorrectly in Unicode? (I) .. 5492
A.11.14 Why do CJK strings sort incorrectly in Unicode? (II) ... 5492
A.11.15 Why are my supplementary characters rejected by MySQL? ... 5492
A.11.16 Should “CJK” be “CJKV”? ... 5493
A.11.17 Does MySQL permit CJK characters to be used in database and table names? 5493
A.11.18 Where can I find translations of the MySQL Manual into Chinese, Japanese, and

Korean? .. 5493
A.11.19 Where can I get help with CJK and related issues in MySQL? 5493

A.11.1.What CJK character sets are available in MySQL?

The list of CJK character sets may vary depending on your MySQL version. For example,
the gb18030 character set is not supported prior to MySQL 5.7.4. However, since the name
of the applicable language appears in the DESCRIPTION column for every entry in the
INFORMATION_SCHEMA.CHARACTER_SETS table, you can obtain a current list of all the non-
Unicode CJK character sets using this query:

mysql> SELECT CHARACTER_SET_NAME, DESCRIPTION

5483

MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

 FROM INFORMATION_SCHEMA.CHARACTER_SETS
 WHERE DESCRIPTION LIKE '%Chin%'
 OR DESCRIPTION LIKE '%Japanese%'
 OR DESCRIPTION LIKE '%Korean%'
 ORDER BY CHARACTER_SET_NAME;
+--------------------+---------------------------------+
| CHARACTER_SET_NAME | DESCRIPTION |
+--------------------+---------------------------------+
big5	Big5 Traditional Chinese
cp932	SJIS for Windows Japanese
eucjpms	UJIS for Windows Japanese
euckr	EUC-KR Korean
gb18030	China National Standard GB18030
gb2312	GB2312 Simplified Chinese
gbk	GBK Simplified Chinese
sjis	Shift-JIS Japanese
ujis	EUC-JP Japanese
+--------------------+---------------------------------+

(For more information, see Section 28.3.4, “The INFORMATION_SCHEMA
CHARACTER_SETS Table”.)

MySQL supports three variants of the GB (Guojia Biaozhun, or National Standard, or Simplified
Chinese) character sets which are official in the People's Republic of China: gb2312, gbk, and
(as of MySQL 5.7.4) gb18030.

Sometimes people try to insert gbk characters into gb2312, and it works most of the time
because gbk is a superset of gb2312. But eventually they try to insert a rarer Chinese character
and it does not work. (For an example, see Bug #16072).

Here, we try to clarify exactly what characters are legitimate in gb2312 or gbk, with reference to
the official documents. Please check these references before reporting gb2312 or gbk bugs:

• The MySQL gbk character set is in reality “Microsoft code page 936”. This differs from the
official gbk for characters A1A4 (middle dot), A1AA (em dash), A6E0-A6F5, and A8BB-A8C0.

• For a listing of gbk/Unicode mappings, see http://www.unicode.org/Public/MAPPINGS/
VENDORS/MICSFT/WINDOWS/CP936.TXT.

It is also possible to store CJK characters in Unicode character sets, although the available
collations may not sort characters quite as you expect:

• The utf8 and ucs2 character sets support the characters from Unicode Basic Multilingual
Plane (BMP). These characters have code point values between U+0000 and U+FFFF.

• The utf8mb4, utf16, utf16le, and utf32 character sets support BMP characters, as well
as supplementary characters that lie outside the BMP. Supplementary characters have code
point values between U+10000 and U+10FFFF.

The collation used for a Unicode character set determines the ability to sort (that is, distinguish)
characters in the set:

• Collations based on Unicode Collation Algorithm (UCA) 4.0.0 distinguish only BMP
characters.

• Collations based on UCA 5.2.0 or 9.0.0 distinguish BMP and supplementary characters.

• Non-UCA collations may not distinguish all Unicode characters. For example, the utf8mb4
default collation is utf8mb4_general_ci, which distinguishes only BMP characters.

Moreover, distinguishing characters is not the same as ordering them per the conventions
of a given CJK language. Currently, MySQL has only one CJK-specific UCA collation,
gb18030_unicode_520_ci (which requires use of the non-Unicode gb18030 character set).

5484

http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT

MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

For information about Unicode collations and their differentiating properties, including collation
properties for supplementary characters, see Section 12.10.1, “Unicode Character Sets”.

A.11.2.I have inserted CJK characters into my table. Why does SELECT display them as “?” characters?

This problem is usually due to a setting in MySQL that does not match the settings for the
application program or the operating system. Here are some common steps for correcting these
types of issues:

• Be certain of what MySQL version you are using.

Use the statement SELECT VERSION(); to determine this.

• Make sure that the database is actually using the desired character set.

People often think that the client character set is always the same as either the server
character set or the character set used for display purposes. However, both of these are
false assumptions. You can make sure by checking the result of SHOW CREATE TABLE
tablename or, better yet, by using this statement:

SELECT character_set_name, collation_name
 FROM information_schema.columns
 WHERE table_schema = your_database_name
 AND table_name = your_table_name
 AND column_name = your_column_name;

• Determine the hexadecimal value of the character or characters that are not being displayed
correctly.

You can obtain this information for a column column_name in the table table_name using
the following query:

SELECT HEX(column_name)
FROM table_name;

3F is the encoding for the ? character; this means that ? is the character actually stored in the
column. This most often happens because of a problem converting a particular character from
your client character set to the target character set.

• Make sure that a round trip is possible. When you select literal (or _introducer
hexadecimal-value), do you obtain literal as a result?

For example, the Japanese Katakana character Pe (ペ') exists in all CJK character sets, and
has the code point value (hexadecimal coding) 0x30da. To test a round trip for this character,
use this query:

SELECT 'ペ' AS `ペ`; /* or SELECT _ucs2 0x30da; */

If the result is not also ペ, the round trip failed.

For bug reports regarding such failures, we might ask you to follow up with SELECT
HEX('ペ');. Then we can determine whether the client encoding is correct.

5485

MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

• Make sure that the problem is not with the browser or other application, rather than with
MySQL.

Use the mysql client program to accomplish this task. If mysql displays characters correctly
but your application does not, your problem is probably due to system settings.

To determine your settings, use the SHOW VARIABLES statement, whose output should
resemble what is shown here:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+

These are typical character-set settings for an international-oriented client (notice the use of
utf8 Unicode) connected to a server in the West (latin1 is a West Europe character set).

Although Unicode (usually the utf8 variant on Unix, and the ucs2 variant on Windows) is
preferable to Latin, it is often not what your operating system utilities support best. Many
Windows users find that a Microsoft character set, such as cp932 for Japanese Windows, is
suitable.

If you cannot control the server settings, and you have no idea what setting your underlying
computer uses, try changing to a common character set for the country that you're in (euckr
= Korea; gb18030, gb2312 or gbk = People's Republic of China; big5 = Taiwan; sjis,
ujis, cp932, or eucjpms = Japan; ucs2 or utf8 = anywhere). Usually it is necessary
to change only the client and connection and results settings. The SET NAMES. statement
changes all three at once. For example:

SET NAMES 'big5';

Once the setting is correct, you can make it permanent by editing my.cnf or my.ini. For
example you might add lines looking like these:

[mysqld]
character-set-server=big5
[client]
default-character-set=big5

It is also possible that there are issues with the API configuration setting being used in
your application; see Why does my GUI front end or browser not display CJK characters
correctly...? for more information.

A.11.3.What problems should I be aware of when working with the Big5 Chinese character set?

MySQL supports the Big5 character set which is common in Hong Kong and Taiwan (Republic
of China). The MySQL big5 character set is in reality Microsoft code page 950, which is very
similar to the original big5 character set.

A feature request for adding HKSCS extensions has been filed. People who need this extension
may find the suggested patch for Bug #13577 to be of interest.

A.11.4.Why do Japanese character set conversions fail?

5486

MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

MySQL supports the sjis, ujis, cp932, and eucjpms character sets, as well as Unicode. A
common need is to convert between character sets. For example, there might be a Unix server
(typically with sjis or ujis) and a Windows client (typically with cp932).

In the following conversion table, the ucs2 column represents the source, and the sjis, cp932,
ujis, and eucjpms columns represent the destinations; that is, the last 4 columns provide the
hexadecimal result when we use CONVERT(ucs2) or we assign a ucs2 column containing the
value to an sjis, cp932, ujis, or eucjpms column.

Character
Name

ucs2 sjis cp932 ujis eucjpms

BROKEN BAR 00A6 3F 3F 8FA2C3 3F

FULLWIDTH
BROKEN BAR

FFE4 3F FA55 3F 8FA2

YEN SIGN 00A5 3F 3F 20 3F

FULLWIDTH
YEN SIGN

FFE5 818F 818F A1EF 3F

TILDE 007E 7E 7E 7E 7E

OVERLINE 203E 3F 3F 20 3F

HORIZONTAL
BAR

2015 815C 815C A1BD A1BD

EM DASH 2014 3F 3F 3F 3F

REVERSE
SOLIDUS

005C 815F 5C 5C 5C

FULLWIDTH
REVERSE
SOLIDUS

FF3C 3F 815F 3F A1C0

WAVE DASH 301C 8160 3F A1C1 3F

FULLWIDTH
TILDE

FF5E 3F 8160 3F A1C1

DOUBLE
VERTICAL
LINE

2016 8161 3F A1C2 3F

PARALLEL
TO

2225 3F 8161 3F A1C2

MINUS SIGN 2212 817C 3F A1DD 3F

FULLWIDTH
HYPHEN-
MINUS

FF0D 3F 817C 3F A1DD

CENT SIGN 00A2 8191 3F A1F1 3F

FULLWIDTH
CENT SIGN

FFE0 3F 8191 3F A1F1

POUND SIGN 00A3 8192 3F A1F2 3F

FULLWIDTH
POUND SIGN

FFE1 3F 8192 3F A1F2

NOT SIGN 00AC 81CA 3F A2CC 3F

FULLWIDTH
NOT SIGN

FFE2 3F 81CA 3F A2CC

Now consider the following portion of the table.

5487

MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

ucs2 sjis cp932

NOT SIGN 00AC 81CA 3F

FULLWIDTH NOT
SIGN

FFE2 3F 81CA

This means that MySQL converts the NOT SIGN (Unicode U+00AC) to sjis code point 0x81CA
and to cp932 code point 3F. (3F is the question mark (“?”. This is what is always used when the
conversion cannot be performed.)

A.11.5.What should I do if I want to convert SJIS 81CA to cp932?

Our answer is: “?”. There are disadvantages to this, and many people would prefer a “loose”
conversion, so that 81CA (NOT SIGN) in sjis becomes 81CA (FULLWIDTH NOT SIGN) in
cp932.

A.11.6.How does MySQL represent the Yen (¥) sign?

A problem arises because some versions of Japanese character sets (both sjis and euc) treat
5C as a reverse solidus (\, also known as a backslash), whereas others treat it as a yen sign
(¥).

MySQL follows only one version of the JIS (Japanese Industrial Standards) standard
description. In MySQL, 5C is always the reverse solidus (\).

A.11.7.Of what issues should I be aware when working with Korean character sets in MySQL?

In theory, while there have been several versions of the euckr (Extended Unix Code Korea)
character set, only one problem has been noted. We use the “ASCII” variant of EUC-KR, in
which the code point 0x5c is REVERSE SOLIDUS, that is \, instead of the “KS-Roman” variant
of EUC-KR, in which the code point 0x5c is WON SIGN (₩). This means that you cannot convert
Unicode U+20A9 to euckr:

mysql> SELECT
 CONVERT('₩' USING euckr) AS euckr,

 HEX(CONVERT('₩' USING euckr)) AS hexeuckr;
+-------+----------+
| euckr | hexeuckr |
+-------+----------+
| ? | 3F |
+-------+----------+

A.11.8.Why do I get Incorrect string value error messages?

To see the problem, create a table with one Unicode (ucs2) column and one Chinese (gb2312)
column.

mysql> CREATE TABLE ch
 (ucs2 CHAR(3) CHARACTER SET ucs2,
 gb2312 CHAR(3) CHARACTER SET gb2312);

In nonstrict SQL mode, try to place the rare character 汌 in both columns.

mysql> SET sql_mode = '';
mysql> INSERT INTO ch VALUES ('A汌B','A汌B');
Query OK, 1 row affected, 1 warning (0.00 sec)

The INSERT produces a warning. Use the following statement to see what it is:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1366
Message: Incorrect string value: '\xE6\xB1\x8CB' for column 'gb2312' at row 1

5488

MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

So it is a warning about the gb2312 column only.

mysql> SELECT ucs2,HEX(ucs2),gb2312,HEX(gb2312) FROM ch;
+-------+--------------+--------+-------------+
| ucs2 | HEX(ucs2) | gb2312 | HEX(gb2312) |
+-------+--------------+--------+-------------+
| A汌B | 00416C4C0042 | A?B | 413F42 |
+-------+--------------+--------+-------------+

Several things need explanation here:

1. The 汌 character is not in the gb2312 character set, as described earlier.

2. If you are using an old version of MySQL, you may see a different message.

3. A warning occurs rather than an error because MySQL is not set to use strict SQL mode. In
nonstrict mode, MySQL tries to do what it can, to get the best fit, rather than give up. With
strict SQL mode, the Incorrect string value message occurs as an error rather than
a warning, and the INSERT fails.

A.11.9.Why does my GUI front end or browser display CJK characters incorrectly in my application
using Access, PHP, or another API?

Obtain a direct connection to the server using the mysql client, and try the same query
there. If mysql responds correctly, the trouble may be that your application interface requires
initialization. Use mysql to tell you what character set or sets it uses with the statement SHOW
VARIABLES LIKE 'char%';. If you are using Access, you are most likely connecting with
Connector/ODBC. In this case, you should check Configuring Connector/ODBC. If, for example,
you use big5, you would enter SET NAMES 'big5'. (In this case, no ; character is required.)
If you are using ASP, you might need to add SET NAMES in the code. Here is an example that
has worked in the past:

<%
Session.CodePage=0
Dim strConnection
Dim Conn
strConnection="driver={MySQL ODBC 3.51 Driver};server=server;uid=username;" \
 & "pwd=password;database=database;stmt=SET NAMES 'big5';"
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open strConnection
%>

In much the same way, if you are using any character set other than latin1 with Connector/
NET, you must specify the character set in the connection string. See Connector/NET
Connections, for more information.

If you are using PHP, try this:

<?php
 $link = new mysqli($host, $usr, $pwd, $db);

 if(mysqli_connect_errno())
 {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
 }

 $link->query("SET NAMES 'utf8'");
?>

In this case, we used SET NAMES to change character_set_client,
character_set_connection, and character_set_results.

5489

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration.html
https://dev.mysql.com/doc/connector-net/en/connector-net-connections.html
https://dev.mysql.com/doc/connector-net/en/connector-net-connections.html

MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

Another issue often encountered in PHP applications has to do with assumptions made by
the browser. Sometimes adding or changing a <meta> tag suffices to correct the problem: for
example, to insure that the user agent interprets page content as UTF-8, include <meta http-
equiv="Content-Type" content="text/html; charset=utf-8"> in the <head>
section of the HTML page.

If you are using Connector/J, see Using Character Sets and Unicode.

A.11.10.I've upgraded to MySQL 8.0. How can I revert to behavior like that in MySQL 4.0 with regard to
character sets?

In MySQL Version 4.0, there was a single “global” character set for both server and client,
and the decision as to which character to use was made by the server administrator. This
changed starting with MySQL Version 4.1. What happens now is a “handshake”, as described in
Section 12.4, “Connection Character Sets and Collations”:

When a client connects, it sends to the server the name of the character set that
it wants to use. The server uses the name to set the character_set_client,
character_set_results, and character_set_connection system
variables. In effect, the server performs a SET NAMES operation using the
character set name.

The effect of this is that you cannot control the client character set by starting mysqld with
--character-set-server=utf8. However, some Asian customers prefer the MySQL
4.0 behavior. To make it possible to retain this behavior, we added a mysqld switch, --
character-set-client-handshake, which can be turned off with --skip-character-
set-client-handshake. If you start mysqld with --skip-character-set-client-
handshake, then, when a client connects, it sends to the server the name of the character set
that it wants to use. However, the server ignores this request from the client.

By way of example, suppose that your favorite server character set is latin1. Suppose further
that the client uses utf8 because this is what the client's operating system supports. Start the
server with latin1 as its default character set:

mysqld --character-set-server=latin1

And then start the client with the default character set utf8:

mysql --default-character-set=utf8

The resulting settings can be seen by viewing the output of SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+

Now stop the client, and stop the server using mysqladmin. Then start the server again, but
this time tell it to skip the handshake like so:

mysqld --character-set-server=utf8 --skip-character-set-client-handshake

Start the client with utf8 once again as the default character set, then display the resulting
settings:

5490

https://dev.mysql.com/doc/connector-j/en/connector-j-reference-charsets.html

MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_filesystem	binary
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+

As you can see by comparing the differing results from SHOW VARIABLES, the server ignores
the client's initial settings if the --skip-character-set-client-handshake option is used.

A.11.11.Why do some LIKE and FULLTEXT searches with CJK characters fail?

For LIKE searches, there is a very simple problem with binary string column types such as
BINARY and BLOB: we must know where characters end. With multibyte character sets, different
characters might have different octet lengths. For example, in utf8, A requires one byte but ペ
requires three bytes, as shown here:

+-------------------------+---------------------------+
| OCTET_LENGTH(_utf8 'A') | OCTET_LENGTH(_utf8 'ペ') |
+-------------------------+---------------------------+
| 1 | 3 |
+-------------------------+---------------------------+

If we do not know where the first character in a string ends, we do not know where the second
character begins, in which case even very simple searches such as LIKE '_A%' fail. The
solution is to use a nonbinary string column type defined to have the proper CJK character set.
For example: mycol TEXT CHARACTER SET sjis. Alternatively, convert to a CJK character
set before comparing.

This is one reason why MySQL cannot permit encodings of nonexistent characters. If it is not
strict about rejecting bad input, it has no way of knowing where characters end.

For FULLTEXT searches, we must know where words begin and end. With Western languages,
this is rarely a problem because most (if not all) of these use an easy-to-identify word boundary:
the space character. However, this is not usually the case with Asian writing. We could use
arbitrary halfway measures, like assuming that all Han characters represent words, or (for
Japanese) depending on changes from Katakana to Hiragana due to grammatical endings.
However, the only sure solution requires a comprehensive word list, which means that we would
have to include a dictionary in the server for each Asian language supported. This is simply not
feasible.

A.11.12.How do I know whether character X is available in all character sets?

The majority of simplified Chinese and basic nonhalfwidth Japanese Kana characters appear
in all CJK character sets. The following stored procedure accepts a UCS-2 Unicode character,
converts it to other character sets, and displays the results in hexadecimal.

DELIMITER //

CREATE PROCEDURE p_convert(ucs2_char CHAR(1) CHARACTER SET ucs2)
BEGIN

CREATE TABLE tj
 (ucs2 CHAR(1) character set ucs2,
 utf8 CHAR(1) character set utf8,
 big5 CHAR(1) character set big5,
 cp932 CHAR(1) character set cp932,
 eucjpms CHAR(1) character set eucjpms,

5491

MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

 euckr CHAR(1) character set euckr,
 gb2312 CHAR(1) character set gb2312,
 gbk CHAR(1) character set gbk,
 sjis CHAR(1) character set sjis,
 ujis CHAR(1) character set ujis);

INSERT INTO tj (ucs2) VALUES (ucs2_char);

UPDATE tj SET utf8=ucs2,
 big5=ucs2,
 cp932=ucs2,
 eucjpms=ucs2,
 euckr=ucs2,
 gb2312=ucs2,
 gbk=ucs2,
 sjis=ucs2,
 ujis=ucs2;

/* If there are conversion problems, UPDATE produces warnings. */

SELECT hex(ucs2) AS ucs2,
 hex(utf8) AS utf8,
 hex(big5) AS big5,
 hex(cp932) AS cp932,
 hex(eucjpms) AS eucjpms,
 hex(euckr) AS euckr,
 hex(gb2312) AS gb2312,
 hex(gbk) AS gbk,
 hex(sjis) AS sjis,
 hex(ujis) AS ujis
FROM tj;

DROP TABLE tj;

END//

DELIMITER ;

The input can be any single ucs2 character, or it can be the code value (hexadecimal
representation) of that character. For example, from Unicode's list of ucs2 encodings and
names (http://www.unicode.org/Public/UNIDATA/UnicodeData.txt), we know that the Katakana
character Pe appears in all CJK character sets, and that its code value is X'30DA'. If we use
this value as the argument to p_convert(), the result is as shown here:

mysql> CALL p_convert(X'30DA');
+------+--------+------+-------+---------+-------+--------+------+------+------+
| ucs2 | utf8 | big5 | cp932 | eucjpms | euckr | gb2312 | gbk | sjis | ujis |
+------+--------+------+-------+---------+-------+--------+------+------+------+
| 30DA | E3839A | C772 | 8379 | A5DA | ABDA | A5DA | A5DA | 8379 | A5DA |
+------+--------+------+-------+---------+-------+--------+------+------+------+

Since none of the column values is 3F (that is, the question mark character, ?), we know that
every conversion worked.

A.11.13.Why do CJK strings sort incorrectly in Unicode? (I)

CJK sorting problems that occurred in older MySQL versions can be solved as of MySQL 8.0 by
using the utf8mb4 character set and the utf8mb4_ja_0900_as_cs collation.

A.11.14.Why do CJK strings sort incorrectly in Unicode? (II)

CJK sorting problems that occurred in older MySQL versions can be solved as of MySQL 8.0 by
using the utf8mb4 character set and the utf8mb4_ja_0900_as_cs collation.

A.11.15.Why are my supplementary characters rejected by MySQL?

Supplementary characters lie outside the Unicode Basic Multilingual Plane / Plane 0. BMP
characters have code point values between U+0000 and U+FFFF. Supplementary characters
have code point values between U+10000 and U+10FFFF.

5492

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

MySQL 8.0 FAQ: Connectors & APIs

To store supplementary characters, you must use a character set that permits them:

• The utf8 and ucs2 character sets support BMP characters only.

The utf8 character set permits only UTF-8 characters that take up to three bytes. This has
led to reports such as that found in Bug #12600, which we rejected as “not a bug”. With utf8,
MySQL must truncate an input string when it encounters bytes that it does no understand.
Otherwise, it is unknown how long the bad multibyte character is.

One possible workaround is to use ucs2 instead of utf8, in which case the “bad” characters
are changed to question marks. However, no truncation takes place. You can also change the
data type to BLOB or BINARY, which perform no validity checking.

• The utf8mb4, utf16, utf16le, and utf32 character sets support BMP characters, as well
as supplementary characters outside the BMP.

A.11.16.Should “CJK” be “CJKV”?

No. The term “CJKV” (Chinese Japanese Korean Vietnamese) refers to Vietnamese character
sets which contain Han (originally Chinese) characters. MySQL supports the modern
Vietnamese script with Western characters, but does not support the old Vietnamese script
using Han characters.

As of MySQL 5.6, there are Vietnamese collations for Unicode character sets, as described in
Section 12.10.1, “Unicode Character Sets”.

A.11.17.Does MySQL permit CJK characters to be used in database and table names?

Yes.

A.11.18.Where can I find translations of the MySQL Manual into Chinese, Japanese, and Korean?

The Japanese translation of the MySQL 5.6 manual can be downloaded from https://
dev.mysql.com/doc/.

A.11.19.Where can I get help with CJK and related issues in MySQL?

The following resources are available:

• A listing of MySQL user groups can be found at https://wikis.oracle.com/display/mysql/List+of
+MySQL+User+Groups.

• View feature requests relating to character set issues at http://tinyurl.com/y6xcuf.

• Visit the MySQL Character Sets, Collation, Unicode Forum. http://forums.mysql.com/ also
provides foreign-language forums.

A.12 MySQL 8.0 FAQ: Connectors & APIs
For common questions, issues, and answers relating to the MySQL Connectors and other APIs, see
the following areas of the Manual:

• Using C API Features

• Connector/ODBC Notes and Tips

• Connector/NET Programming

• MySQL Connector/J Developer Guide

A.13 MySQL 8.0 FAQ: C API, libmysql

5493

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/
https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
http://tinyurl.com/y6xcuf
https://forums.mysql.com/list.php?103
http://forums.mysql.com/
https://dev.mysql.com/doc/c-api/8.0/en/c-api-features.html
https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes.html
https://dev.mysql.com/doc/connector-net/en/connector-net-programming.html
https://dev.mysql.com/doc/connector-j/en/

MySQL 8.0 FAQ: Replication

Frequently asked questions about MySQL C API and libmysql.

A.13.1 What is “MySQL Native C API”? What are typical benefits and use cases? 5494
A.13.2 Which version of libmysql should I use? .. 5494
A.13.3 What if I want to use the “NoSQL” X DevAPI? ... 5494
A.13.4 How to I download libmysql? .. 5494
A.13.5 Where is the documentation? ... 5494
A.13.6 How do I report bugs? ... 5494
A.13.7 Is it possible to compile the library myself? .. 5494

A.13.1.What is “MySQL Native C API”? What are typical benefits and use cases?

libmysql is a C-based API that you can use in C applications to connect with the MySQL
database server. It is also itself used as the foundation for drivers for standard database APIs
like ODBC, Perl's DBI, and Python's DB API.

A.13.2.Which version of libmysql should I use?

For MySQL 8.0 and 5.7 we recommend libmysql 8.0.

A.13.3.What if I want to use the “NoSQL” X DevAPI?

For C-language and X DevApi Document Store for MySQL, we recommend MySQL Connector/
C++. Connector/C++ has compatible C headers. (This is not applicable to MySQL 5.7 or before.)

A.13.4.How to I download libmysql?

• Linux: The Client Utilities Package is available from the MySQL Community Server download
page.

• Repos: The Client Utilities Package is available from the Yum, APT, SuSE repositories.

• Windows: The Client Utilities Package is available from Windows Installer.

A.13.5.Where is the documentation?

See MySQL 8.0 C API Developer Guide.

A.13.6.How do I report bugs?

Please report any bugs or inconsistencies you observe to our Bugs Database. Select the C API
Client as shown.

A.13.7.Is it possible to compile the library myself?

Compiling MySQL Server also compiles libmysqlclient; there is not a way to only compile
libmysqlclient. For related information, see MySQL C API Implementations.

A.14 MySQL 8.0 FAQ: Replication
In the following section, we provide answers to questions that are most frequently asked about MySQL
Replication.

A.14.1 Must the replica be connected to the source all the time? ... 5495
A.14.2 Must I enable networking on my source and replica to enable replication? 5495
A.14.3 How do I know how late a replica is compared to the source? In other words, how do I

know the date of the last statement replicated by the replica? ... 5495
A.14.4 How do I force the source to block updates until the replica catches up? 5495
A.14.5 What issues should I be aware of when setting up two-way replication? 5496
A.14.6 How can I use replication to improve performance of my system? 5496
A.14.7 What should I do to prepare client code in my own applications to use performance-

enhancing replication? ... 5496
A.14.8 When and how much can MySQL replication improve the performance of my system? 5496

5494

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/installer/
https://dev.mysql.com/doc/c-api/8.0/en/
https://bugs.mysql.com/
https://dev.mysql.com/doc/c-api/8.0/en/c-api-implementations.html

MySQL 8.0 FAQ: Replication

A.14.9 How can I use replication to provide redundancy or high availability? 5497
A.14.10 How do I tell whether a replication source server is using statement-based or row-based

binary logging format? ... 5497
A.14.11 How do I tell a replica to use row-based replication? .. 5498
A.14.12 How do I prevent GRANT and REVOKE statements from replicating to replica machines? .. 5498
A.14.13 Does replication work on mixed operating systems (for example, the source runs on

Linux while replicas run on macOS and Windows)? .. 5498
A.14.14 Does replication work on mixed hardware architectures (for example, the source runs on

a 64-bit machine while replicas run on 32-bit machines)? .. 5498

A.14.1.Must the replica be connected to the source all the time?

No, it does not. The replica can go down or stay disconnected for hours or even days, and then
reconnect and catch up on updates. For example, you can set up a source/replica relationship
over a dial-up link where the link is up only sporadically and for short periods of time. The
implication of this is that, at any given time, the replica is not guaranteed to be in synchrony with
the source unless you take some special measures.

To ensure that catchup can occur for a replica that has been disconnected, you must not
remove binary log files from the source that contain information that has not yet been replicated
to the replicas. Asynchronous replication can work only if the replica is able to continue reading
the binary log from the point where it last read events.

A.14.2.Must I enable networking on my source and replica to enable replication?

Yes, networking must be enabled on the source and replica. If networking is not enabled,
the replica cannot connect to the source and transfer the binary log. Verify that the
skip_networking system variable has not been enabled in the configuration file for either
server.

A.14.3.How do I know how late a replica is compared to the source? In other words, how do I know the
date of the last statement replicated by the replica?

Check the Seconds_Behind_Master column in the output from SHOW REPLICA | SLAVE
STATUS. See Section 19.1.7.1, “Checking Replication Status”.

When the replication SQL thread executes an event read from the source, it modifies its own
time to the event timestamp. (This is why TIMESTAMP is well replicated.) In the Time column
in the output of SHOW PROCESSLIST, the number of seconds displayed for the replication SQL
thread is the number of seconds between the timestamp of the last replicated event and the
real time of the replica machine. You can use this to determine the date of the last replicated
event. Note that if your replica has been disconnected from the source for one hour, and then
reconnects, you may immediately see large Time values such as 3600 for the replication SQL
thread in SHOW PROCESSLIST. This is because the replica is executing statements that are one
hour old. See Section 19.2.3, “Replication Threads”.

A.14.4.How do I force the source to block updates until the replica catches up?

Use the following procedure:

1. On the source, execute these statements:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Record the replication coordinates (the current binary log file name and position) from the
output of the SHOW statement.

2. On the replica, issue the following statement, where the arguments to the
SOURCE_POS_WAIT() or MASTER_POS_WAIT() function are the replication coordinate
values obtained in the previous step:

5495

MySQL 8.0 FAQ: Replication

mysql> SELECT MASTER_POS_WAIT('log_name', log_pos);

Or from MySQL 8.0.26:
mysql> SELECT SOURCE_POS_WAIT('log_name', log_pos);

The SELECT statement blocks until the replica reaches the specified log file and position. At
that point, the replica is in synchrony with the source and the statement returns.

3. On the source, issue the following statement to enable the source to begin processing
updates again:

mysql> UNLOCK TABLES;

A.14.5.What issues should I be aware of when setting up two-way replication?

MySQL replication currently does not support any locking protocol between source and replica
to guarantee the atomicity of a distributed (cross-server) update. In other words, it is possible
for client A to make an update to co-source 1, and in the meantime, before it propagates to co-
source 2, client B could make an update to co-source 2 that makes the update of client A work
differently than it did on co-source 1. Thus, when the update of client A makes it to co-source
2, it produces tables that are different from what you have on co-source 1, even after all the
updates from co-source 2 have also propagated. This means that you should not chain two
servers together in a two-way replication relationship unless you are sure that your updates can
safely happen in any order, or unless you take care of mis-ordered updates somehow in the
client code.

You should also realize that two-way replication actually does not improve performance very
much (if at all) as far as updates are concerned. Each server must do the same number of
updates, just as you would have a single server do. The only difference is that there is a little
less lock contention because the updates originating on another server are serialized in one
replication thread. Even this benefit might be offset by network delays.

A.14.6.How can I use replication to improve performance of my system?

Set up one server as the source and direct all writes to it. Then configure as many replicas
as you have the budget and rackspace for, and distribute the reads among the source
and the replicas. You can also start the replicas with the --skip-innodb option, enable
the low_priority_updates system variable, and set the delay_key_write system
variable to ALL to get speed improvements on the replica end. In this case, the replica uses
nontransactional MyISAM tables instead of InnoDB tables to get more speed by eliminating
transactional overhead.

A.14.7.What should I do to prepare client code in my own applications to use performance-enhancing
replication?

See the guide to using replication as a scale-out solution, Section 19.4.5, “Using Replication for
Scale-Out”.

A.14.8.When and how much can MySQL replication improve the performance of my system?

MySQL replication is most beneficial for a system that processes frequent reads and infrequent
writes. In theory, by using a single-source/multiple-replica setup, you can scale the system by
adding more replicas until you either run out of network bandwidth, or your update load grows to
the point that the source cannot handle it.

To determine how many replicas you can use before the added benefits begin to level out, and
how much you can improve performance of your site, you must know your query patterns, and
determine empirically by benchmarking the relationship between the throughput for reads and
writes on a typical source and a typical replica. The example here shows a rather simplified
calculation of what you can get with replication for a hypothetical system. Let reads and
writes denote the number of reads and writes per second, respectively.

5496

MySQL 8.0 FAQ: Replication

Let's say that system load consists of 10% writes and 90% reads, and we have determined
by benchmarking that reads is 1200 - 2 * writes. In other words, the system can do 1,200
reads per second with no writes, the average write is twice as slow as the average read, and the
relationship is linear. Suppose that the source and each replica have the same capacity, and
that we have one source and N replicas. Then we have for each server (source or replica):

reads = 1200 - 2 * writes

reads = 9 * writes / (N + 1) (reads are split, but writes replicated to all replicas)

9 * writes / (N + 1) + 2 * writes = 1200

writes = 1200 / (2 + 9/(N + 1))

The last equation indicates the maximum number of writes for N replicas, given a maximum
possible read rate of 1,200 per second and a ratio of nine reads per write.

This analysis yields the following conclusions:

• If N = 0 (which means we have no replication), our system can handle about 1200/11 = 109
writes per second.

• If N = 1, we get up to 184 writes per second.

• If N = 8, we get up to 400 writes per second.

• If N = 17, we get up to 480 writes per second.

• Eventually, as N approaches infinity (and our budget negative infinity), we can get very close
to 600 writes per second, increasing system throughput about 5.5 times. However, with only
eight servers, we increase it nearly four times.

These computations assume infinite network bandwidth and neglect several other factors
that could be significant on your system. In many cases, you may not be able to perform a
computation similar to the one just shown that accurately predicts what happens on your system
if you add N replicas. However, answering the following questions should help you decide
whether and by how much replication may improve the performance of your system:

• What is the read/write ratio on your system?

• How much more write load can one server handle if you reduce the reads?

• For how many replicas do you have bandwidth available on your network?

A.14.9.How can I use replication to provide redundancy or high availability?

How you implement redundancy is entirely dependent on your application and circumstances.
High-availability solutions (with automatic failover) require active monitoring and either custom
scripts or third party tools to provide the failover support from the original MySQL server to the
replica.

To handle the process manually, you should be able to switch from a failed source to a pre-
configured replica by altering your application to talk to the new server or by adjusting the DNS
for the MySQL server from the failed server to the new server.

For more information and some example solutions, see Section 19.4.8, “Switching Sources
During Failover”.

A.14.10.How do I tell whether a replication source server is using statement-based or row-based binary
logging format?

5497

MySQL 8.0 FAQ: MySQL Enterprise Thread Pool

Check the value of the binlog_format system variable:

mysql> SHOW VARIABLES LIKE 'binlog_format';

The value shown is always one of STATEMENT, ROW, or MIXED. For MIXED mode, statement-
based logging is used by default but replication switches automatically to row-based logging
under certain conditions, such as unsafe statements. For information about when this may
occur, see Section 7.4.4.3, “Mixed Binary Logging Format”.

A.14.11.How do I tell a replica to use row-based replication?

Replicas automatically know which format to use.

A.14.12.How do I prevent GRANT and REVOKE statements from replicating to replica machines?

Start the server with the --replicate-wild-ignore-table=mysql.% option to ignore
replication for tables in the mysql database.

A.14.13.Does replication work on mixed operating systems (for example, the source runs on Linux while
replicas run on macOS and Windows)?

Yes.

A.14.14.Does replication work on mixed hardware architectures (for example, the source runs on a 64-bit
machine while replicas run on 32-bit machines)?

Yes.

A.15 MySQL 8.0 FAQ: MySQL Enterprise Thread Pool
A.15.1 What is the Thread Pool and what problem does it solve? .. 5498
A.15.2 How does the Thread Pool limit and manage concurrent sessions and transactions for

optimal performance and throughput? .. 5498
A.15.3 How is the Thread Pool different from the client side Connection Pool? 5499
A.15.4 When should I use the Thread Pool? .. 5499
A.15.5 Are there recommended Thread Pool configurations? .. 5499

A.15.1.What is the Thread Pool and what problem does it solve?

The MySQL Thread Pool is a MySQL server plugin that extends the default connection-handling
capabilities of the MySQL server to limit the number of concurrently executing statements/
queries and transactions to ensure that each has sufficient CPU and memory resources to fulfill
its task. For MySQL 8.0, the Thread Pool plugin is included in MySQL Enterprise Edition, a
commercial product.

The default thread-handling model in MySQL Server executes statements using one thread
per client connection. As more clients connect to the server and execute statements, overall
performance degrades. The Thread Pool plugin provides an alternative thread-handling model
designed to reduce overhead and improve performance. The Thread Pool plugin increases
server performance by efficiently managing statement execution threads for large numbers of
client connections, especially on modern multi-CPU/Core systems.

For more information, see Section 7.6.3, “MySQL Enterprise Thread Pool”.

A.15.2.How does the Thread Pool limit and manage concurrent sessions and transactions for optimal
performance and throughput?

The Thread Pool uses a “divide and conquer” approach to limiting and balancing concurrency.
Unlike the default connection handling of the MySQL Server, the Thread Pool separates
connections and threads, so there is no fixed relationship between connections and the threads
that execute statements received from those connections. The Thread Pool then manages client
connections within configurable thread groups, where they are prioritized and queued based on
the nature of the work they were submitted to accomplish.

5498

MySQL 8.0 FAQ: InnoDB Change Buffer

For more information, see Section 7.6.3.3, “Thread Pool Operation”.

A.15.3.How is the Thread Pool different from the client side Connection Pool?

The MySQL Connection Pool operates on the client side to ensure that a MySQL client does
not constantly connect to and disconnect from the MySQL server. It is designed to cache idle
connections in the MySQL client for use by other users as they are needed. This minimizes the
overhead and expense of establishing and tearing down connections as queries are submitted
to the MySQL server. The MySQL Connection Pool has no visibility as to the query handling
capabilities or load of the back-end MySQL server. By contrast, the Thread Pool operates on the
MySQL server side and is designed to manage the execution of inbound concurrent connections
and queries as they are received from the client connections accessing the back-end MySQL
database. Because of the separation of duties, the MySQL Connection Pool and Thread Pool
are orthogonal and can be used independent of each other.

MySQL Connection Pooling via the MySQL Connectors is covered in Chapter 31, Connectors
and APIs.

A.15.4.When should I use the Thread Pool?

There are a few rules of thumb to consider for optimal Thread Pool use cases:

The MySQL Threads_running variable keeps track of the number of concurrent statements
currently executing in the MySQL Server. If this variable consistently exceeds a region where
the server won't operate optimally (usually going beyond 40 for InnoDB workloads), the Thread
Pool should be beneficial, especially in extreme parallel overload situations.

If you are using the innodb_thread_concurrency to limit the number of concurrently
executing statements, you should find that the Thread Pool solves the same problem,
only better, by assigning connections to thread groups, then queuing executions based on
transactional content, user defined designations, and so forth.

Lastly, if your workload comprises mainly short queries, the Thread Pool should be beneficial.

To learn more, see Section 7.6.3.4, “Thread Pool Tuning”.

A.15.5.Are there recommended Thread Pool configurations?

The Thread Pool has a number of user case driven configuration parameters that affect its
performance. To learn about these and tips on tuning, see Section 7.6.3.4, “Thread Pool
Tuning”.

A.16 MySQL 8.0 FAQ: InnoDB Change Buffer

A.16.1 What types of operations modify secondary indexes and result in change buffering? 5499
A.16.2 What is the benefit of the InnoDB change buffer? ... 5500
A.16.3 Does the change buffer support other types of indexes? .. 5500
A.16.4 How much space does InnoDB use for the change buffer? .. 5500
A.16.5 How do I determine the current size of the change buffer? ... 5500
A.16.6 When does change buffer merging occur? .. 5500
A.16.7 When is the change buffer flushed? .. 5501
A.16.8 When should the change buffer be used? ... 5501
A.16.9 When should the change buffer not be used? .. 5501
A.16.10 Where can I find additional information about the change buffer? 5501

A.16.1.What types of operations modify secondary indexes and result in change buffering?

INSERT, UPDATE, and DELETE operations can modify secondary indexes. If an affected index
page is not in the buffer pool, the changes can be buffered in the change buffer.

5499

MySQL 8.0 FAQ: InnoDB Change Buffer

A.16.2.What is the benefit of the InnoDB change buffer?

Buffering secondary index changes when secondary index pages are not in the buffer pool
avoids expensive random access I/O operations that would be required to immediately read in
affected index pages from disk. Buffered changes can be applied later, in batches, as pages are
read into the buffer pool by other read operations.

A.16.3.Does the change buffer support other types of indexes?

No. The change buffer only supports secondary indexes. Clustered indexes, full-text indexes,
and spatial indexes are not supported. Full-text indexes have their own caching mechanism.

A.16.4.How much space does InnoDB use for the change buffer?

Prior to the introduction of the innodb_change_buffer_max_size configuration option in
MySQL 5.6, the maximum size of the on-disk change buffer in the system tablespace was 1/3 of
the InnoDB buffer pool size.

In MySQL 5.6 and later, the innodb_change_buffer_max_size configuration option defines
the maximum size of the change buffer as a percentage of the total buffer pool size. By default,
innodb_change_buffer_max_size is set to 25. The maximum setting is 50.

InnoDB does not buffer an operation if it would cause the on-disk change buffer to exceed the
defined limit.

Change buffer pages are not required to persist in the buffer pool and may be evicted by LRU
operations.

A.16.5.How do I determine the current size of the change buffer?

The current size of the change buffer is reported by SHOW ENGINE INNODB STATUS \G,
under the INSERT BUFFER AND ADAPTIVE HASH INDEX heading. For example:

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges

Relevant data points include:

• size: The number of pages used within the change buffer. Change buffer size is equal to
seg size - (1 + free list len). The 1 + value represents the change buffer header
page.

• seg size: The size of the change buffer, in pages.

For information about monitoring change buffer status, see Section 17.5.2, “Change Buffer”.

A.16.6.When does change buffer merging occur?

• When a page is read into the buffer pool, buffered changes are merged upon completion of
the read, before the page is made available.

• Change buffer merging is performed as a background task. The innodb_io_capacity
parameter sets an upper limit on the I/O activity performed by InnoDB background tasks such
as merging data from the change buffer.

• A change buffer merge is performed during crash recovery. Changes are applied from the
change buffer (in the system tablespace) to leaf pages of secondary indexes as index pages
are read into the buffer pool.

• The change buffer is fully durable and can survive a system crash. Upon restart, change
buffer merge operations resume as part of normal operations.

5500

MySQL 8.0 FAQ: InnoDB Data-at-Rest Encryption

• A full merge of the change buffer can be forced as part of a slow server shutdown using --
innodb-fast-shutdown=0.

A.16.7.When is the change buffer flushed?

Updated pages are flushed by the same flushing mechanism that flushes the other pages that
occupy the buffer pool.

A.16.8.When should the change buffer be used?

The change buffer is a feature designed to reduce random I/O to secondary indexes as indexes
grow larger and no longer fit in the InnoDB buffer pool. Generally, the change buffer should be
used when the entire data set does not fit into the buffer pool, when there is substantial DML
activity that modifies secondary index pages, or when there are lots of secondary indexes that
are regularly changed by DML activity.

A.16.9.When should the change buffer not be used?

You might consider disabling the change buffer if the entire data set fits within the InnoDB buffer
pool, if you have relatively few secondary indexes, or if you are using solid-state storage, where
random reads are about as fast as sequential reads. Before making configuration changes, it is
recommended that you run tests using a representative workload to determine if disabling the
change buffer provides any benefit.

A.16.10.Where can I find additional information about the change buffer?

See Section 17.5.2, “Change Buffer”.

A.17 MySQL 8.0 FAQ: InnoDB Data-at-Rest Encryption

A.17.1 Is data decrypted for users who are authorized to see it? ... 5501
A.17.2 What is the overhead associated with InnoDB data-at-rest encryption? 5501
A.17.3 What are the encryption algorithms used with InnoDB data-at-rest encryption? 5502
A.17.4 Is it possible to use 3rd party encryption algorithms in place of the one provided by the

InnoDB data-at-rest encryption feature? .. 5502
A.17.5 Can indexed columns be encrypted? ... 5502
A.17.6 What data types and data lengths does InnoDB data-at-rest encryption support? 5502
A.17.7 Does data remain encrypted on the network? .. 5502
A.17.8 Does database memory contain cleartext or encrypted data? .. 5502
A.17.9 How do I know which data to encrypt? .. 5502
A.17.10 How is InnoDB data-at-rest encryption different from encryption functions MySQL

already provides? .. 5502
A.17.11 Does the transportable tablespaces feature work with InnoDB data-at-rest encryption? .. 5502
A.17.12 Does compression work with InnoDB data-at-rest encryption? 5503
A.17.13 Can I use mysqldump with encrypted tables? ... 5503
A.17.14 How do I change (rotate, re-key) the master encryption key? .. 5503
A.17.15 How do I migrate data from a cleartext InnoDB tablespace to an encrypted InnoDB

tablespace? ... 5503

A.17.1.Is data decrypted for users who are authorized to see it?

Yes. InnoDB data-at-rest encryption is designed to transparently apply encryption within the
database without impacting existing applications. Returning data in encrypted format would
break most existing applications. InnoDB data-at-rest encryption provides the benefit of
encryption without the overhead associated with traditional database encryption solutions, which
would typically require expensive and substantial changes to applications, database triggers,
and views.

A.17.2.What is the overhead associated with InnoDB data-at-rest encryption?

5501

MySQL 8.0 FAQ: InnoDB Data-at-Rest Encryption

There is no additional storage overhead. According to internal benchmarks, performance
overhead amounts to a single digit percentage difference.

A.17.3.What are the encryption algorithms used with InnoDB data-at-rest encryption?

InnoDB data-at-rest encryption supports the Advanced Encryption Standard (AES256) block-
based encryption algorithm. It uses Electronic Codebook (ECB) block encryption mode for
tablespace key encryption and Cipher Block Chaining (CBC) block encryption mode for data
encryption.

A.17.4.Is it possible to use 3rd party encryption algorithms in place of the one provided by the InnoDB
data-at-rest encryption feature?

No, it is not possible to use other encryption algorithms. The provided encryption algorithm is
broadly accepted.

A.17.5.Can indexed columns be encrypted?

InnoDB data-at-rest encryption supports all indexes transparently.

A.17.6.What data types and data lengths does InnoDB data-at-rest encryption support?

InnoDB data-at-rest encryption supports all supported data types. There is no data length
limitation.

A.17.7.Does data remain encrypted on the network?

Data encrypted by the InnoDB data-at-rest feature is decrypted when it is read from the
tablespace file. Thus, if the data is on the network, it is in cleartext form. However, data on the
network can be encrypted using MySQL network encryption, which encrypts data traveling to
and from a database using SSL/TLS.

A.17.8.Does database memory contain cleartext or encrypted data?

With InnoDB data-at-rest encryption, in-memory data is decrypted, which provides complete
transparency.

A.17.9.How do I know which data to encrypt?

Compliance with the PCI-DSS standard requires that credit card numbers (Primary Account
Number, or 'PAN') be stored in encrypted form. Breach Notification Laws (for example, CA
SB 1386, CA AB 1950, and similar laws in 43+ more US states) require encryption of first
name, last name, driver license number, and other PII data. In early 2008, CA AB 1298 added
medical and health insurance information to PII data. Additionally, industry specific privacy
and security standards may require encryption of certain assets. For example, assets such as
pharmaceutical research results, oil field exploration results, financial contracts, or personal data
of law enforcement informants may require encryption. In the health care industry, the privacy of
patient data, health records and X-ray images is of the highest importance.

A.17.10.How is InnoDB data-at-rest encryption different from encryption functions MySQL already
provides?

There are symmetric and asymmetric encryption APIs in MySQL that can be used to manually
encrypt data within the database. However, the application must manage encryption keys and
perform required encryption and decryption operations by calling API functions. InnoDB data-
at-rest encryption requires no application changes, is transparent to end users, and provides
automated, built-in key management.

A.17.11.Does the transportable tablespaces feature work with InnoDB data-at-rest encryption?

Yes. It is supported for encrypted file-per-table tablespaces. For more information, see Exporting
Encrypted Tablespaces.

5502

MySQL 8.0 FAQ: Virtualization Support

A.17.12.Does compression work with InnoDB data-at-rest encryption?

Customers using InnoDB data-at-rest encryption receive the full benefit of compression
because compression is applied before data blocks are encrypted.

A.17.13.Can I use mysqldump with encrypted tables?

Yes. Because these utilities create logical backups, the data dumped from encrypted tables is
not encrypted.

A.17.14.How do I change (rotate, re-key) the master encryption key?

InnoDB data-at-rest encryption uses a two tier key mechanism. When data-at-rest encryption
is used, individual tablespace keys are stored in the header of the underlying tablespace data
file. Tablespace keys are encrypted using the master encryption key. The master encryption key
is generated when tablespace encryption is enabled, and is stored outside the database. The
master encryption key is rotated using the ALTER INSTANCE ROTATE INNODB MASTER KEY
statement, which generates a new master encryption key, stores the key, and rotates the key
into use.

A.17.15.How do I migrate data from a cleartext InnoDB tablespace to an encrypted InnoDB tablespace?

Transferring data from one tablespace to another is not required. To encrypt data in an InnoDB
file-per-table tablespace, run ALTER TABLE tbl_name ENCRYPTION = 'Y'. To encrypt a
general tablespace or the mysql tablespace, run ALTER TABLESPACE tablespace_name
ENCRYPTION = 'Y'. Encryption support for general tablespaces was introduced in MySQL
8.0.13. Encryption support for the mysql system tablespace is available as of MySQL 8.0.16.

A.18 MySQL 8.0 FAQ: Virtualization Support

A.18.1 Is MySQL supported on virtualized environments such as Oracle VM, VMWare, Docker,
Microsoft Hyper-V, or others? .. 5503

A.18.1.Is MySQL supported on virtualized environments such as Oracle VM, VMWare, Docker,
Microsoft Hyper-V, or others?

MySQL is supported on virtualized environments, but is certified only for Oracle VM. Contact
Oracle Support for more information.

Be aware of potential problems when using virtualization software. The usual ones are related to
performance, performance degradations, slowness, or unpredictability of disk, I/O, network, and
memory.

5503

http://www.oracle.com/technetwork/server-storage/vm/index.html

5504

Appendix B Error Messages and Common Problems

Table of Contents
B.1 Error Message Sources and Elements ... 5505
B.2 Error Information Interfaces ... 5507
B.3 Problems and Common Errors .. 5509

B.3.1 How to Determine What Is Causing a Problem .. 5509
B.3.2 Common Errors When Using MySQL Programs ... 5510
B.3.3 Administration-Related Issues ... 5521
B.3.4 Query-Related Issues ... 5529
B.3.5 Optimizer-Related Issues .. 5535
B.3.6 Table Definition-Related Issues ... 5536
B.3.7 Known Issues in MySQL .. 5537

This appendix describes the types of error information MySQL provides and how to obtain information
about them. The final section is for troubleshooting. It describes common problems and errors that may
occur and potential resolutions.

Additional Resources

Other error-related documentation includes:

• Information about configuring where and how the server writes the error log: Section 7.4.2, “The
Error Log”

• Information about the character set used for error messages: Section 12.6, “Error Message
Character Set”

• Information about the language used for error messages: Section 12.12, “Setting the Error Message
Language”

• Information about errors related to InnoDB: Section 17.21.5, “InnoDB Error Handling”

• Information about errors specific to NDB Cluster: NDB Cluster API Errors; see also NDB API Errors
and Error Handling, and MGM API Errors

• Descriptions of the error messages that the MySQL server and client programs generate: MySQL 8.0
Error Message Reference

B.1 Error Message Sources and Elements
This section discusses how error messages originate within MySQL and the elements they contain.

• Error Message Sources

• Error Message Elements

• Error Code Ranges

Error Message Sources

Error messages can originate on the server side or the client side:

• On the server side, error messages may occur during the startup and shutdown processes, as a
result of issues that occur during SQL statement execution, and so forth.

• The MySQL server writes some error messages to its error log. These indicate issues of interest to
database administrators or that require DBA action.

5505

https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html
https://dev.mysql.com/doc/ndbapi/en/ndb-api-errors.html
https://dev.mysql.com/doc/ndbapi/en/ndb-api-errors.html
https://dev.mysql.com/doc/ndbapi/en/mgm-errors.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/
https://dev.mysql.com/doc/mysql-errors/8.0/en/

Error Message Elements

• The server sends other error messages to client programs. These indicate issues pertaining only
to a particular client. The MySQL client library takes errors received from the server and makes
them available to the host client program.

• Client-side error messages are generated from within the MySQL client library, usually involving
problems communicating with the server.

Example server-side error messages written to the error log:

• This message produced during the startup process provides a status or progress indicator:

2018-10-28T13:01:32.735983Z 0 [Note] [MY-010303] [Server] Skipping
generation of SSL certificates as options related to SSL are specified.

• This message indicates an issue that requires DBA action:

2018-10-02T03:20:39.410387Z 768 [ERROR] [MY-010045] [Server] Event Scheduler:
[evtuser@localhost][myschema.e_daily] Unknown database 'mydb'

Example server-side error message sent to client programs, as displayed by the mysql client:

mysql> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Example client-side error message originating from within the client library, as displayed by the mysql
client:

$> mysql -h no-such-host
ERROR 2005 (HY000): Unknown MySQL server host 'no-such-host' (-2)

Whether an error originates from within the client library or is received from the server, a MySQL client
program may respond in varying ways. As just illustrated, the client may display the error message so
the user can take corrective measures. The client may instead internally attempt to resolve or retry a
failed operation, or take other action.

Error Message Elements

When an error occurs, error information includes several elements: an error code, SQLSTATE value,
and message string. These elements have the following characteristics:

• Error code: This value is numeric. It is MySQL-specific and is not portable to other database
systems.

Each error number has a corresponding symbolic value. Examples:

• The symbol for server error number 1146 is ER_NO_SUCH_TABLE.

• The symbol for client error number 2005 is CR_UNKNOWN_HOST.

The set of error codes used in error messages is partitioned into distinct ranges; see Error Code
Ranges.

Error codes are stable across General Availability (GA) releases of a given MySQL series. Before a
series reaches GA status, new codes may still be under development and are subject to change.

• SQLSTATE value: This value is a five-character string (for example, '42S02'). SQLSTATE values
are taken from ANSI SQL and ODBC and are more standardized than the numeric error codes. The
first two characters of an SQLSTATE value indicate the error class:

• Class = '00' indicates success.

• Class = '01' indicates a warning.

5506

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_no_such_table
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_host

Error Code Ranges

• Class = '02' indicates “not found.” This is relevant within the context of cursors and is used to
control what happens when a cursor reaches the end of a data set. This condition also occurs for
SELECT ... INTO var_list statements that retrieve no rows.

• Class > '02' indicates an exception.

For server-side errors, not all MySQL error numbers have corresponding SQLSTATE values. In
these cases, 'HY000' (general error) is used.

For client-side errors, the SQLSTATE value is always 'HY000' (general error), so it is not
meaningful for distinguishing one client error from another.

• Message string: This string provides a textual description of the error.

Error Code Ranges

The set of error codes used in error messages is partitioned into distinct ranges, each with its own
purpose:

• 1 to 999: Global error codes. This error code range is called “global” because it is a shared range
that is used by the server as well as by clients.

When an error in this range originates on the server side, the server writes it to the error log, padding
the error code with leading zeros to six digits and adding a prefix of MY-.

When an error in this range originates on the client side, the client library makes it available to the
client program with no zero-padding or prefix.

• 1,000 to 1,999: Server error codes reserved for messages sent to clients.

• 2,000 to 2,999: Client error codes reserved for use by the client library.

• 3,000 to 4,999: Server error codes reserved for messages sent to clients.

• 5,000 to 5,999: Error codes reserved for use by X Plugin for messages sent to clients.

• 10,000 to 49,999: Server error codes reserved for messages to be written to the error log (not sent to
clients).

When an error in this range occurs, the server writes it to the error log, padding the error code with
leading zeros to six digits and adding a prefix of MY-.

• 50,000 to 51,999: Error codes reserved for use by third parties.

The server handles error messages written to the error log differently from error messages sent to
clients:

• When the server writes a message to the error log, it pads the error code with leading zeros to six
digits and adds a prefix of MY- (examples: MY-000022, MY-010048).

• When the server sends a message to a client program, it adds no zero-padding or prefix to the error
code (examples: 1036, 3013).

B.2 Error Information Interfaces
Error messages can originate on the server side or the client side, and each error message includes
an error code, SQLSTATE value, and message string, as described in Section B.1, “Error Message
Sources and Elements”. For lists of server-side, client-side, and global (shared between server and
clients) errors, see MySQL 8.0 Error Message Reference.

For error checking from within programs, use error code numbers or symbols, not error message
strings. Message strings do not change often, but it is possible. Also, if the database administrator

5507

https://dev.mysql.com/doc/mysql-errors/8.0/en/global-error-reference.html#error_ee_unknown_charset
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_scheduler_stopped
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_open_as_readonly
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_invalid_field_size
https://dev.mysql.com/doc/mysql-errors/8.0/en/

Error Log

changes the language setting, that affects the language of message strings; see Section 12.12,
“Setting the Error Message Language”.

Error information in MySQL is available in the server error log, at the SQL level, from within client
programs, and at the command line.

• Error Log

• SQL Error Message Interface

• Client Error Message Interface

• Command-Line Error Message Interface

Error Log

On the server side, some messages are intended for the error log. For information about configuring
where and how the server writes the log, see Section 7.4.2, “The Error Log”.

Other server error messages are intended to be sent to client programs and are available as described
in Client Error Message Interface.

The range within which a particular error code lies determines whether the server writes an error
message to the error log or sends it to clients. For information about these ranges, see Error Code
Ranges.

SQL Error Message Interface

At the SQL level, there are several sources of error information in MySQL:

• SQL statement warning and error information is available through the SHOW WARNINGS and
SHOW ERRORS statements. The warning_count system variable indicates the number of errors,
warnings, and notes (with notes excluded if the sql_notes system variable is disabled). The
error_count system variable indicates the number of errors. Its value excludes warnings and
notes.

• The GET DIAGNOSTICS statement may be used to inspect the diagnostic information in the
diagnostics area. See Section 15.6.7.3, “GET DIAGNOSTICS Statement”.

• SHOW SLAVE STATUS statement output includes information about replication errors occurring on
replica servers.

• SHOW ENGINE INNODB STATUS statement output includes information about the most recent
foreign key error if a CREATE TABLE statement for an InnoDB table fails.

Client Error Message Interface

Client programs receive errors from two sources:

• Errors that originate on the client side from within the MySQL client library.

• Errors that originate on the server side and are sent to the client by the server. These are received
within the client library, which makes them available to the host client program.

The range within which a particular error code lies determines whether it originated from within the
client library or was received by the client from the server. For information about these ranges, see
Error Code Ranges.

Regardless of whether an error originates from within the client library or is received from the server,
a MySQL client program obtains the error code, SQLSTATE value, message string, and other related
information by calling C API functions in the client library:

5508

Command-Line Error Message Interface

• mysql_errno() returns the MySQL error code.

• mysql_sqlstate() returns the SQLSTATE value.

• mysql_error() returns the message string.

• mysql_stmt_errno(), mysql_stmt_sqlstate(), and mysql_stmt_error() are the
corresponding error functions for prepared statements.

• mysql_warning_count() returns the number of errors, warnings, and notes for the most recent
statement.

For descriptions of the client library error functions, see MySQL 8.0 C API Developer Guide.

A MySQL client program may respond to an error in varying ways. The client may display the error
message so the user can take corrective measures, internally attempt to resolve or retry a failed
operation, or take other action. For example, (using the mysql client), a failure to connect to the server
might result in this message:

$> mysql -h no-such-host
ERROR 2005 (HY000): Unknown MySQL server host 'no-such-host' (-2)

Command-Line Error Message Interface

The perror program provides information from the command line about error numbers. See
Section 6.8.2, “perror — Display MySQL Error Message Information”.

$> perror 1231
MySQL error code MY-001231 (ER_WRONG_VALUE_FOR_VAR): Variable '%-.64s'
can't be set to the value of '%-.200s'

For MySQL NDB Cluster errors, use ndb_perror. See Section 25.5.16, “ndb_perror — Obtain NDB
Error Message Information”.

$> ndb_perror 323
NDB error code 323: Invalid nodegroup id, nodegroup already existing:
Permanent error: Application error

B.3 Problems and Common Errors
This section lists some common problems and error messages that you may encounter. It describes
how to determine the causes of the problems and what to do to solve them.

B.3.1 How to Determine What Is Causing a Problem

When you run into a problem, the first thing you should do is to find out which program or piece of
equipment is causing it:

• If you have one of the following symptoms, then it is probably a hardware problems (such as
memory, motherboard, CPU, or hard disk) or kernel problem:

• The keyboard does not work. This can normally be checked by pressing the Caps Lock key. If
the Caps Lock light does not change, you have to replace your keyboard. (Before doing this, you
should try to restart your computer and check all cables to the keyboard.)

• The mouse pointer does not move.

• The machine does not answer to a remote machine's pings.

• Other programs that are not related to MySQL do not behave correctly.

• Your system restarted unexpectedly. (A faulty user-level program should never be able to take
down your system.)

5509

https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-sqlstate.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-error.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-errno.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-sqlstate.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-stmt-error.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-warning-count.html
https://dev.mysql.com/doc/c-api/8.0/en/

Common Errors When Using MySQL Programs

In this case, you should start by checking all your cables and run some diagnostic tool to check your
hardware! You should also check whether there are any patches, updates, or service packs for your
operating system that could likely solve your problem. Check also that all your libraries (such as
glibc) are up to date.

It is always good to use a machine with ECC memory to discover memory problems early.

• If your keyboard is locked up, you may be able to recover by logging in to your machine from another
machine and executing kbd_mode -a.

• Please examine your system log file (/var/log/messages or similar) for reasons for your problem.
If you think the problem is in MySQL, you should also examine MySQL's log files. See Section 7.4,
“MySQL Server Logs”.

• If you do not think you have hardware problems, you should try to find out which program is causing
problems. Try using top, ps, Task Manager, or some similar program, to check which program is
taking all CPU or is locking the machine.

• Use top, df, or a similar program to check whether you are out of memory, disk space, file
descriptors, or some other critical resource.

• If the problem is some runaway process, you can always try to kill it. If it does not want to die, there
is probably a bug in the operating system.

If you have examined all other possibilities and concluded that the MySQL server or a MySQL client
is causing the problem, it is time to create a bug report, see Section 1.5, “How to Report Bugs or
Problems”. In the bug report, try to give a complete description of how the system is behaving and
what you think is happening. Also state why you think that MySQL is causing the problem. Take into
consideration all the situations described in this chapter. State any problems exactly how they appear
when you examine your system. Use the “copy and paste” method for any output and error messages
from programs and log files.

Try to describe in detail which program is not working and all symptoms you see. We have in the
past received many bug reports that state only “the system does not work.” This provides us with no
information about what could be the problem.

If a program fails, it is always useful to know the following information:

• Has the program in question made a segmentation fault (did it dump core)?

• Is the program taking up all available CPU time? Check with top. Let the program run for a while, it
may simply be evaluating something computationally intensive.

• If the mysqld server is causing problems, can you get any response from it with mysqladmin -u
root ping or mysqladmin -u root processlist?

• What does a client program say when you try to connect to the MySQL server? (Try with mysql, for
example.) Does the client jam? Do you get any output from the program?

When sending a bug report, you should follow the outline described in Section 1.5, “How to Report
Bugs or Problems”.

B.3.2 Common Errors When Using MySQL Programs

This section lists some errors that users frequently encounter when running MySQL programs.
Although the problems show up when you try to run client programs, the solutions to many of the
problems involves changing the configuration of the MySQL server.

B.3.2.1 Access denied

5510

Common Errors When Using MySQL Programs

An Access denied error can have many causes. Often the problem is related to the MySQL
accounts that the server permits client programs to use when connecting. See Section 8.2, “Access
Control and Account Management”, and Section 8.2.22, “Troubleshooting Problems Connecting to
MySQL”.

B.3.2.2 Can't connect to [local] MySQL server

A MySQL client on Unix can connect to the mysqld server in two different ways: By using a Unix
socket file to connect through a file in the file system (default /tmp/mysql.sock), or by using TCP/IP,
which connects through a port number. A Unix socket file connection is faster than TCP/IP, but can be
used only when connecting to a server on the same computer. A Unix socket file is used if you do not
specify a host name or if you specify the special host name localhost.

If the MySQL server is running on Windows, you can connect using TCP/IP. If the server is started with
the named_pipe system variable enabled, you can also connect with named pipes if you run the client
on the host where the server is running. The name of the named pipe is MySQL by default. If you do
not give a host name when connecting to mysqld, a MySQL client first tries to connect to the named
pipe. If that does not work, it connects to the TCP/IP port. You can force the use of named pipes on
Windows by using . as the host name.

The error (2002) Can't connect to ... normally means that there is no MySQL server running
on the system or that you are using an incorrect Unix socket file name or TCP/IP port number when
trying to connect to the server. You should also check that the TCP/IP port you are using has not been
blocked by a firewall or port blocking service.

The error (2003) Can't connect to MySQL server on 'server' (10061) indicates that the
network connection has been refused. You should check that there is a MySQL server running, that it
has network connections enabled, and that the network port you specified is the one configured on the
server.

Start by checking whether there is a process named mysqld running on your server host. (Use ps xa
| grep mysqld on Unix or the Task Manager on Windows.) If there is no such process, you should
start the server. See Section 2.9.2, “Starting the Server”.

If a mysqld process is running, you can check it by trying the following commands. The port number
or Unix socket file name might be different in your setup. host_ip represents the IP address of the
machine where the server is running.

$> mysqladmin version
$> mysqladmin variables
$> mysqladmin -h `hostname` version variables
$> mysqladmin -h `hostname` --port=3306 version
$> mysqladmin -h host_ip version
$> mysqladmin --protocol=SOCKET --socket=/tmp/mysql.sock version

Note the use of backticks rather than forward quotation marks with the hostname command; these
cause the output of hostname (that is, the current host name) to be substituted into the mysqladmin
command. If you have no hostname command or are running on Windows, you can manually type
the host name of your machine (without backticks) following the -h option. You can also try -h
127.0.0.1 to connect with TCP/IP to the local host.

Make sure that the server has not been configured to ignore network connections or (if you are
attempting to connect remotely) that it has not been configured to listen only locally on its network
interfaces. If the server was started with the skip_networking system variable enabled, it cannot
accept TCP/IP connections at all. If the server was started with the bind_address system variable
set to 127.0.0.1, it listens for TCP/IP connections only locally on the loopback interface and does not
accept remote connections.

Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be
configured on the basis of the application being executed, or the port number used by MySQL for
communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration

5511

Common Errors When Using MySQL Programs

to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or
Windows Firewall may need to be configured not to block the MySQL port.

Here are some reasons the Can't connect to local MySQL server error might occur:

• mysqld is not running on the local host. Check your operating system's process list to ensure the
mysqld process is present.

• You're running a MySQL server on Windows with many TCP/IP connections to it. If you're
experiencing that quite often your clients get that error, you can find a workaround here: Connection
to MySQL Server Failing on Windows.

• Someone has removed the Unix socket file that mysqld uses (/tmp/mysql.sock by default). For
example, you might have a cron job that removes old files from the /tmp directory. You can always
run mysqladmin version to check whether the Unix socket file that mysqladmin is trying to use
really exists. The fix in this case is to change the cron job to not remove mysql.sock or to place
the socket file somewhere else. See Section B.3.3.6, “How to Protect or Change the MySQL Unix
Socket File”.

• You have started the mysqld server with the --socket=/path/to/socket option, but forgotten
to tell client programs the new name of the socket file. If you change the socket path name for the
server, you must also notify the MySQL clients. You can do this by providing the same --socket
option when you run client programs. You also need to ensure that clients have permission to access
the mysql.sock file. To find out where the socket file is, you can do:

$> netstat -ln | grep mysql

See Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”.

• You are using Linux and one server thread has died (dumped core). In this case, you must kill the
other mysqld threads (for example, with kill) before you can restart the MySQL server. See
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

• The server or client program might not have the proper access privileges for the directory that holds
the Unix socket file or the socket file itself. In this case, you must either change the access privileges
for the directory or socket file so that the server and clients can access them, or restart mysqld with
a --socket option that specifies a socket file name in a directory where the server can create it and
where client programs can access it.

If you get the error message Can't connect to MySQL server on some_host, you can try the
following things to find out what the problem is:

• Check whether the server is running on that host by executing telnet some_host 3306 and
pressing the Enter key a couple of times. (3306 is the default MySQL port number. Change the value
if your server is listening to a different port.) If there is a MySQL server running and listening to the
port, you should get a response that includes the server's version number. If you get an error such as
telnet: Unable to connect to remote host: Connection refused, then there is no
server running on the given port.

• If the server is running on the local host, try using mysqladmin -h localhost variables to
connect using the Unix socket file. Verify the TCP/IP port number that the server is configured to
listen to (it is the value of the port variable.)

• If you are running under Linux and Security-Enhanced Linux (SELinux) is enabled, see Section 8.7,
“SELinux”.

Connection to MySQL Server Failing on Windows

When you're running a MySQL server on Windows with many TCP/IP connections to it, and you're
experiencing that quite often your clients get a Can't connect to MySQL server error, the
reason might be that Windows does not allow for enough ephemeral (short-lived) ports to serve those
connections.

5512

Common Errors When Using MySQL Programs

The purpose of TIME_WAIT is to keep a connection accepting packets even after the connection has
been closed. This is because Internet routing can cause a packet to take a slow route to its destination
and it may arrive after both sides have agreed to close. If the port is in use for a new connection, that
packet from the old connection could break the protocol or compromise personal information from the
original connection. The TIME_WAIT delay prevents this by ensuring that the port cannot be reused
until after some time has been permitted for those delayed packets to arrive.

It is safe to reduce TIME_WAIT greatly on LAN connections because there is little chance of packets
arriving at very long delays, as they could through the Internet with its comparatively large distances
and latencies.

Windows permits ephemeral (short-lived) TCP ports to the user. After any port is closed, it remains in a
TIME_WAIT status for 120 seconds. The port is not available again until this time expires. The default
range of port numbers depends on the version of Windows, with a more limited number of ports in older
versions:

• Windows through Server 2003: Ports in range 1025–5000

• Windows Vista, Server 2008, and newer: Ports in range 49152–65535

With a small stack of available TCP ports (5000) and a high number of TCP ports being open and
closed over a short period of time along with the TIME_WAIT status you have a good chance for
running out of ports. There are two ways to address this problem:

• Reduce the number of TCP ports consumed quickly by investigating connection pooling or persistent
connections where possible

• Tune some settings in the Windows registry (see below)

Important

The following procedure involves modifying the Windows registry. Before
you modify the registry, make sure to back it up and make sure that you
understand how to restore it if a problem occurs. For information about how to
back up, restore, and edit the registry, view the following article in the Microsoft
Knowledge Base: http://support.microsoft.com/kb/256986/EN-US/.

1. Start Registry Editor (Regedt32.exe).

2. Locate the following key in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

3. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: MaxUserPort
Data Type: REG_DWORD
Value: 65534

This sets the number of ephemeral ports available to any user. The valid range is between 5000
and 65534 (decimal). The default value is 0x1388 (5000 decimal).

4. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: TcpTimedWaitDelay
Data Type: REG_DWORD
Value: 30

This sets the number of seconds to hold a TCP port connection in TIME_WAIT state before closing.
The valid range is between 30 and 300 decimal, although you may wish to check with Microsoft for
the latest permitted values. The default value is 0x78 (120 decimal).

5. Quit Registry Editor.

5513

http://support.microsoft.com/kb/256986/EN-US/

Common Errors When Using MySQL Programs

6. Reboot the machine.

Note: Undoing the above should be as simple as deleting the registry entries you've created.

B.3.2.3 Lost connection to MySQL server

There are three likely causes for this error message.

Usually it indicates network connectivity trouble and you should check the condition of your network if
this error occurs frequently. If the error message includes “during query,” this is probably the case you
are experiencing.

Sometimes the “during query” form happens when millions of rows are being sent as part of one or
more queries. If you know that this is happening, you should try increasing net_read_timeout from
its default of 30 seconds to 60 seconds or longer, sufficient for the data transfer to complete.

More rarely, it can happen when the client is attempting the initial connection to the server. In this case,
if your connect_timeout value is set to only a few seconds, you may be able to resolve the problem
by increasing it to ten seconds, perhaps more if you have a very long distance or slow connection.
You can determine whether you are experiencing this more uncommon cause by using SHOW GLOBAL
STATUS LIKE 'Aborted_connects'. It increases by one for each initial connection attempt that
the server aborts. You may see “reading authorization packet” as part of the error message; if so, that
also suggests that this is the solution that you need.

If the cause is none of those just described, you may be experiencing a problem with BLOB values
that are larger than max_allowed_packet, which can cause this error with some clients. Sometime
you may see an ER_NET_PACKET_TOO_LARGE error, and that confirms that you need to increase
max_allowed_packet.

B.3.2.4 Password Fails When Entered Interactively

MySQL client programs prompt for a password when invoked with a --password or -p option that has
no following password value:

$> mysql -u user_name -p
Enter password:

On some systems, you may find that your password works when specified in an option file or on the
command line, but not when you enter it interactively at the Enter password: prompt. This occurs
when the library provided by the system to read passwords limits password values to a small number of
characters (typically eight). That is a problem with the system library, not with MySQL. To work around
it, change your MySQL password to a value that is eight or fewer characters long, or put your password
in an option file.

B.3.2.5 Too many connections

If clients encounter Too many connections errors when attempting to connect to the mysqld
server, all available connections are in use by other clients.

The permitted number of connections is controlled by the max_connections system variable. To
support more connections, set max_connections to a larger value.

mysqld actually permits max_connections + 1 client connections. The extra connection is reserved
for use by accounts that have the CONNECTION_ADMIN privilege (or the deprecated SUPER privilege).
By granting the privilege to administrators and not to normal users (who should not need it), an
administrator can connect to the server and use SHOW PROCESSLIST to diagnose problems even
if the maximum number of unprivileged clients are connected. See Section 15.7.7.29, “SHOW
PROCESSLIST Statement”.

The server also permits administrative connections on a dedicated interface. For more information
about how the server handles client connections, see Section 7.1.12.1, “Connection Interfaces”.

5514

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_net_packet_too_large

Common Errors When Using MySQL Programs

B.3.2.6 Out of memory

If you issue a query using the mysql client program and receive an error like the following one, it
means that mysql does not have enough memory to store the entire query result:

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

To remedy the problem, first check whether your query is correct. Is it reasonable that it should return
so many rows? If not, correct the query and try again. Otherwise, you can invoke mysql with the --
quick option. This causes it to use the mysql_use_result() C API function to retrieve the result
set, which places less of a load on the client (but more on the server).

B.3.2.7 MySQL server has gone away

This section also covers the related Lost connection to server during query error.

The most common reason for the MySQL server has gone away error is that the server timed out
and closed the connection. In this case, you normally get one of the following error codes (which one
you get is operating system-dependent).

Error Code Description

CR_SERVER_GONE_ERROR The client couldn't send a question to the server.

CR_SERVER_LOST The client didn't get an error when writing to
the server, but it didn't get a full answer (or any
answer) to the question.

By default, the server closes the connection after eight hours if nothing has happened. You can change
the time limit by setting the wait_timeout variable when you start mysqld. See Section 7.1.8,
“Server System Variables”.

If you have a script, you just have to issue the query again for the client to do an automatic
reconnection. This assumes that you have automatic reconnection in the client enabled (which is the
default for the mysql command-line client).

Some other common reasons for the MySQL server has gone away error are:

• You (or the db administrator) has killed the running thread with a KILL statement or a mysqladmin
kill command.

• You tried to run a query after closing the connection to the server. This indicates a logic error in the
application that should be corrected.

• A client application running on a different host does not have the necessary privileges to connect to
the MySQL server from that host.

• You got a timeout from the TCP/IP connection on the client side. This may happen if you have
been using the commands: mysql_options(..., MYSQL_OPT_READ_TIMEOUT,...) or
mysql_options(..., MYSQL_OPT_WRITE_TIMEOUT,...). In this case increasing the timeout
may help solve the problem.

• You have encountered a timeout on the server side and the automatic reconnection in the client is
disabled (the reconnect flag in the MYSQL structure is equal to 0).

• You are using a Windows client and the server had dropped the connection (probably because
wait_timeout expired) before the command was issued.

The problem on Windows is that in some cases MySQL does not get an error from the OS when
writing to the TCP/IP connection to the server, but instead gets the error when trying to read the
answer from the connection.

5515

https://dev.mysql.com/doc/c-api/8.0/en/mysql-use-result.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Common Errors When Using MySQL Programs

The solution to this is to either do a mysql_ping() on the connection if there has been a long time
since the last query (this is what Connector/ODBC does) or set wait_timeout on the mysqld
server so high that it in practice never times out.

• You can also get these errors if you send a query to the server that is incorrect or too large. If
mysqld receives a packet that is too large or out of order, it assumes that something has gone
wrong with the client and closes the connection. If you need big queries (for example, if you
are working with big BLOB columns), you can increase the query limit by setting the server's
max_allowed_packet variable, which has a default value of 64MB. You may also need to increase
the maximum packet size on the client end. More information on setting the packet size is given in
Section B.3.2.8, “Packet Too Large”.

An INSERT or REPLACE statement that inserts a great many rows can also cause these sorts of
errors. Either one of these statements sends a single request to the server irrespective of the number
of rows to be inserted; thus, you can often avoid the error by reducing the number of rows sent per
INSERT or REPLACE.

• It is also possible to see this error if host name lookups fail (for example, if the DNS server on which
your server or network relies goes down). This is because MySQL is dependent on the host system
for name resolution, but has no way of knowing whether it is working—from MySQL's point of view
the problem is indistinguishable from any other network timeout.

You may also see the MySQL server has gone away error if MySQL is started with the
skip_networking system variable enabled.

Another networking issue that can cause this error occurs if the MySQL port (default 3306) is blocked
by your firewall, thus preventing any connections at all to the MySQL server.

• You can also encounter this error with applications that fork child processes, all of which try to use
the same connection to the MySQL server. This can be avoided by using a separate connection for
each child process.

• You have encountered a bug where the server died while executing the query.

You can check whether the MySQL server died and restarted by executing mysqladmin version
and examining the server's uptime. If the client connection was broken because mysqld crashed
and restarted, you should concentrate on finding the reason for the crash. Start by checking whether
issuing the query again kills the server again. See Section B.3.3.3, “What to Do If MySQL Keeps
Crashing”.

You can obtain more information about lost connections by starting mysqld with the
log_error_verbosity system variable set to 3. This logs some of the disconnection messages in
the hostname.err file. See Section 7.4.2, “The Error Log”.

If you want to create a bug report regarding this problem, be sure that you include the following
information:

• Indicate whether the MySQL server died. You can find information about this in the server error log.
See Section B.3.3.3, “What to Do If MySQL Keeps Crashing”.

• If a specific query kills mysqld and the tables involved were checked with CHECK TABLE before you
ran the query, can you provide a reproducible test case? See Section 7.9, “Debugging MySQL”.

• What is the value of the wait_timeout system variable in the MySQL server? (mysqladmin
variables gives you the value of this variable.)

• Have you tried to run mysqld with the general query log enabled to determine whether the problem
query appears in the log? (See Section 7.4.3, “The General Query Log”.)

See also Section B.3.2.9, “Communication Errors and Aborted Connections”, and Section 1.5, “How to
Report Bugs or Problems”.

5516

https://dev.mysql.com/doc/c-api/8.0/en/mysql-ping.html

Common Errors When Using MySQL Programs

B.3.2.8 Packet Too Large

A communication packet is a single SQL statement sent to the MySQL server, a single row that is sent
to the client, or a binary log event sent from a replication source server to a replica.

The largest possible packet that can be transmitted to or from a MySQL 8.0 server or client is 1GB.

When a MySQL client or the mysqld server receives a packet bigger than max_allowed_packet
bytes, it issues an ER_NET_PACKET_TOO_LARGE error and closes the connection. With some
clients, you may also get a Lost connection to MySQL server during query error if the
communication packet is too large.

Both the client and the server have their own max_allowed_packet variable, so if you want to handle
big packets, you must increase this variable both in the client and in the server.

If you are using the mysql client program, its default max_allowed_packet variable is 16MB. To set
a larger value, start mysql like this:

$> mysql --max_allowed_packet=32M

That sets the packet size to 32MB.

The server's default max_allowed_packet value is 64MB. You can increase this if the server needs
to handle big queries (for example, if you are working with big BLOB columns). For example, to set the
variable to 128MB, start the server like this:

$> mysqld --max_allowed_packet=128M

You can also use an option file to set max_allowed_packet. For example, to set the size for the
server to 128MB, add the following lines in an option file:

[mysqld]
max_allowed_packet=128M

It is safe to increase the value of this variable because the extra memory is allocated only when
needed. For example, mysqld allocates more memory only when you issue a long query or when
mysqld must return a large result row. The small default value of the variable is a precaution to catch
incorrect packets between the client and server and also to ensure that you do not run out of memory
by using large packets accidentally.

You can also get strange problems with large packets if you are using large BLOB values but have not
given mysqld access to enough memory to handle the query. If you suspect this is the case, try adding
ulimit -d 256000 to the beginning of the mysqld_safe script and restarting mysqld.

B.3.2.9 Communication Errors and Aborted Connections

If connection problems occur such as communication errors or aborted connections, use these sources
of information to diagnose problems:

• The error log. See Section 7.4.2, “The Error Log”.

• The general query log. See Section 7.4.3, “The General Query Log”.

• The Aborted_xxx and Connection_errors_xxx status variables. See Section 7.1.10, “Server
Status Variables”.

• The host cache, which is accessible using the Performance Schema host_cache table. See
Section 7.1.12.3, “DNS Lookups and the Host Cache”, and Section 29.12.21.3, “The host_cache
Table”.

If the log_error_verbosity system variable is set to 3, you might find messages like this in your
error log:

5517

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_net_packet_too_large

Common Errors When Using MySQL Programs

[Note] Aborted connection 854 to db: 'employees' user: 'josh'

If a client is unable even to connect, the server increments the Aborted_connects status variable.
Unsuccessful connection attempts can occur for the following reasons:

• A client attempts to access a database but has no privileges for it.

• A client uses an incorrect password.

• A connection packet does not contain the right information.

• It takes more than connect_timeout seconds to obtain a connect packet. See Section 7.1.8,
“Server System Variables”.

If these kinds of things happen, it might indicate that someone is trying to break into your server! If the
general query log is enabled, messages for these types of problems are logged to it.

If a client successfully connects but later disconnects improperly or is terminated, the server increments
the Aborted_clients status variable, and logs an Aborted connection message to the error log.
The cause can be any of the following:

• The client program did not call mysql_close() before exiting.

• The client had been sleeping more than wait_timeout or interactive_timeout seconds
without issuing any requests to the server. See Section 7.1.8, “Server System Variables”.

• The client program ended abruptly in the middle of a data transfer.

Other reasons for problems with aborted connections or aborted clients:

• The max_allowed_packet variable value is too small or queries require more memory than you
have allocated for mysqld. See Section B.3.2.8, “Packet Too Large”.

• Use of Ethernet protocol with Linux, both half and full duplex. Some Linux Ethernet drivers have this
bug. You should test for this bug by transferring a huge file using FTP between the client and server
machines. If a transfer goes in burst-pause-burst-pause mode, you are experiencing a Linux duplex
syndrome. Switch the duplex mode for both your network card and hub/switch to either full duplex or
to half duplex and test the results to determine the best setting.

• A problem with the thread library that causes interrupts on reads.

• Badly configured TCP/IP.

• Faulty Ethernets, hubs, switches, cables, and so forth. This can be diagnosed properly only by
replacing hardware.

See also Section B.3.2.7, “MySQL server has gone away”.

B.3.2.10 The table is full

If a table-full error occurs, it may be that the disk is full or that the table has reached its maximum size.
The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. See Section 10.4.6, “Limits on Table Size”.

B.3.2.11 Can't create/write to file

If you get an error of the following type for some queries, it means that MySQL cannot create a
temporary file for the result set in the temporary directory:

Can't create/write to file '\\sqla3fe_0.ism'.

The preceding error is a typical message for Windows; the Unix message is similar.

5518

https://dev.mysql.com/doc/c-api/8.0/en/mysql-close.html

Common Errors When Using MySQL Programs

One fix is to start mysqld with the --tmpdir option or to add the option to the [mysqld] section of
your option file. For example, to specify a directory of C:\temp, use these lines:

[mysqld]
tmpdir=C:/temp

The C:\temp directory must exist and have sufficient space for the MySQL server to write to. See
Section 6.2.2.2, “Using Option Files”.

Another cause of this error can be permissions issues. Make sure that the MySQL server can write to
the tmpdir directory.

Check also the error code that you get with perror. One reason the server cannot write to a table is
that the file system is full:

$> perror 28
OS error code 28: No space left on device

If you get an error of the following type during startup, it indicates that the file system or directory used
for storing data files is write protected. Provided that the write error is to a test file, the error is not
serious and can be safely ignored.

Can't create test file /usr/local/mysql/data/master.lower-test

B.3.2.12 Commands out of sync

If you get Commands out of sync; you can't run this command now in your client code,
you are calling client functions in the wrong order.

This can happen, for example, if you are using mysql_use_result() and try to execute a new query
before you have called mysql_free_result(). It can also happen if you try to execute two queries
that return data without calling mysql_use_result() or mysql_store_result() in between.

B.3.2.13 Ignoring user

If you get the following error, it means that when mysqld was started or when it reloaded the grant
tables, it found an account in the user table that had an invalid password.

Found wrong password for user 'some_user'@'some_host'; ignoring user

As a result, the account is simply ignored by the permission system. To fix this problem, assign a new,
valid password to the account.

B.3.2.14 Table 'tbl_name' doesn't exist

If you get either of the following errors, it usually means that no table exists in the default database with
the given name:

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

In some cases, it may be that the table does exist but that you are referring to it incorrectly:

• Because MySQL uses directories and files to store databases and tables, database and table names
are case-sensitive if they are located on a file system that has case-sensitive file names.

• Even for file systems that are not case-sensitive, such as on Windows, all references to a given table
within a query must use the same lettercase.

You can check which tables are in the default database with SHOW TABLES. See Section 15.7.7,
“SHOW Statements”.

B.3.2.15 Can't initialize character set

5519

https://dev.mysql.com/doc/c-api/8.0/en/mysql-use-result.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-free-result.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-use-result.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-store-result.html

Common Errors When Using MySQL Programs

You might see an error like this if you have character set problems:

MySQL Connection Failed: Can't initialize character set charset_name

This error can have any of the following causes:

• The character set is a multibyte character set and you have no support for the character
set in the client. In this case, you need to recompile the client by running CMake with the -
DDEFAULT_CHARSET=charset_name option. See Section 2.8.7, “MySQL Source-Configuration
Options”.

All standard MySQL binaries are compiled with support for all multibyte character sets.

• The character set is a simple character set that is not compiled into mysqld, and the character set
definition files are not in the place where the client expects to find them.

In this case, you need to use one of the following methods to solve the problem:

• Recompile the client with support for the character set. See Section 2.8.7, “MySQL Source-
Configuration Options”.

• Specify to the client the directory where the character set definition files are located. For many
clients, you can do this with the --character-sets-dir option.

• Copy the character definition files to the path where the client expects them to be.

B.3.2.16 File Not Found and Similar Errors

If you get ERROR 'file_name' not found (errno: 23), Can't open file: file_name
(errno: 24), or any other error with errno 23 or errno 24 from MySQL, it means that you have
not allocated enough file descriptors for the MySQL server. You can use the perror utility to get a
description of what the error number means:

$> perror 23
OS error code 23: File table overflow
$> perror 24
OS error code 24: Too many open files
$> perror 11
OS error code 11: Resource temporarily unavailable

The problem here is that mysqld is trying to keep open too many files simultaneously. You can either
tell mysqld not to open so many files at once or increase the number of file descriptors available to
mysqld.

To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by reducing
the value of the table_open_cache system variable (the default value is 64). This may not entirely
prevent running out of file descriptors because in some circumstances the server may attempt to
extend the cache size temporarily, as described in Section 10.4.3.1, “How MySQL Opens and Closes
Tables”. Reducing the value of max_connections also reduces the number of open files (the default
value is 100).

To change the number of file descriptors available to mysqld, you can use the --open-files-
limit option to mysqld_safe or set the open_files_limit system variable. See Section 7.1.8,
“Server System Variables”. The easiest way to set these values is to add an option to your option file.
See Section 6.2.2.2, “Using Option Files”. If you have an old version of mysqld that does not support
setting the open files limit, you can edit the mysqld_safe script. There is a commented-out line
ulimit -n 256 in the script. You can remove the # character to uncomment this line, and change
the number 256 to set the number of file descriptors to be made available to mysqld.

--open-files-limit and ulimit can increase the number of file descriptors, but only up to the
limit imposed by the operating system. There is also a “hard” limit that can be overridden only if you
start mysqld_safe or mysqld as root (just remember that you also need to start the server with the

5520

Administration-Related Issues

--user option in this case so that it does not continue to run as root after it starts up). If you need to
increase the operating system limit on the number of file descriptors available to each process, consult
the documentation for your system.

Note

If you run the tcsh shell, ulimit does not work! tcsh also reports incorrect
values when you ask for the current limits. In this case, you should start
mysqld_safe using sh.

B.3.2.17 Table-Corruption Issues

If you have started mysqld with the myisam_recover_options system variable set, MySQL
automatically checks and tries to repair MyISAM tables if they are marked as 'not closed properly' or
'crashed'. If this happens, MySQL writes an entry in the hostname.err file 'Warning: Checking
table ...' which is followed by Warning: Repairing table if the table needs to be repaired. If
you get a lot of these errors, without mysqld having died unexpectedly just before, then something is
wrong and needs to be investigated further.

When the server detects MyISAM table corruption, it writes additional information to the error log, such
as the name and line number of the source file, and the list of threads accessing the table. Example:
Got an error from thread_id=1, mi_dynrec.c:368. This is useful information to include in
bug reports.

See also Section 7.1.7, “Server Command Options”, and Section 7.9.1.7, “Making a Test Case If You
Experience Table Corruption”.

B.3.3 Administration-Related Issues

B.3.3.1 Problems with File Permissions

If you have problems with file permissions, the UMASK or UMASK_DIR environment variable might be
set incorrectly when mysqld starts. For example, mysqld might issue the following error message
when you create a table:

ERROR: Can't find file: 'path/with/file_name' (Errcode: 13)

The default UMASK and UMASK_DIR values are 0640 and 0750, respectively. mysqld assumes that
the value for UMASK or UMASK_DIR is in octal if it starts with a zero. For example, setting UMASK=0600
is equivalent to UMASK=384 because 0600 octal is 384 decimal.

Assuming that you start mysqld using mysqld_safe, change the default UMASK value as follows:

UMASK=384 # = 600 in octal
export UMASK
mysqld_safe &

Note

An exception applies for the error log file if you start mysqld using
mysqld_safe, which does not respect UMASK: mysqld_safe may create the
error log file if it does not exist prior to starting mysqld, and mysqld_safe
uses a umask set to a strict value of 0137. If this is unsuitable, create the error
file manually with the desired access mode prior to executing mysqld_safe.

By default, mysqld creates database directories with an access permission value of 0750. To modify
this behavior, set the UMASK_DIR variable. If you set its value, new directories are created with the
combined UMASK and UMASK_DIR values. For example, to give group access to all new directories,
start mysqld_safe as follows:

UMASK_DIR=504 # = 770 in octal
export UMASK_DIR

5521

Administration-Related Issues

mysqld_safe &

For additional details, see Section 6.9, “Environment Variables”.

B.3.3.2 How to Reset the Root Password

If you have never assigned a root password for MySQL, the server does not require a password at
all for connecting as root. However, this is insecure. For instructions on assigning a password, see
Section 2.9.4, “Securing the Initial MySQL Account”.

If you know the root password and want to change it, see Section 15.7.1.1, “ALTER USER
Statement”, and Section 15.7.1.10, “SET PASSWORD Statement”.

If you assigned a root password previously but have forgotten it, you can assign a new password. The
following sections provide instructions for Windows and Unix and Unix-like systems, as well as generic
instructions that apply to any system.

Resetting the Root Password: Windows Systems

On Windows, use the following procedure to reset the password for the MySQL
'root'@'localhost' account. To change the password for a root account with a different host
name part, modify the instructions to use that host name.

1. Log on to your system as Administrator.

2. Stop the MySQL server if it is running. For a server that is running as a Windows service, go to the
Services manager: From the Start menu, select Control Panel, then Administrative Tools, then
Services. Find the MySQL service in the list and stop it.

If your server is not running as a service, you may need to use the Task Manager to force it to stop.

3. Create a text file containing the password-assignment statement on a single line. Replace the
password with the password that you want to use.

ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass';

4. Save the file. This example assumes that you name the file C:\mysql-init.txt.

5. Open a console window to get to the command prompt: From the Start menu, select Run, then
enter cmd as the command to be run.

6. Start the MySQL server with the init_file system variable set to name the file (notice that the
backslash in the option value is doubled):

C:\> cd "C:\Program Files\MySQL\MySQL Server 8.0\bin"
C:\> mysqld --init-file=C:\\mysql-init.txt

If you installed MySQL to a different location, adjust the cd command accordingly.

The server executes the contents of the file named by the init_file system variable at startup,
changing the 'root'@'localhost' account password.

To have server output to appear in the console window rather than in a log file, add the --console
option to the mysqld command.

If you installed MySQL using the MySQL Installation Wizard, you may need to specify a --
defaults-file option. For example:

C:\> mysqld
 --defaults-file="C:\\ProgramData\\MySQL\\MySQL Server 8.0\\my.ini"
 --init-file=C:\\mysql-init.txt

The appropriate --defaults-file setting can be found using the Services Manager: From the
Start menu, select Control Panel, then Administrative Tools, then Services. Find the MySQL

5522

Administration-Related Issues

service in the list, right-click it, and choose the Properties option. The Path to executable
field contains the --defaults-file setting.

7. After the server has started successfully, delete C:\mysql-init.txt.

You should now be able to connect to the MySQL server as root using the new password. Stop the
MySQL server and restart it normally. If you run the server as a service, start it from the Windows
Services window. If you start the server manually, use whatever command you normally use.

Resetting the Root Password: Unix and Unix-Like Systems

On Unix, use the following procedure to reset the password for the MySQL 'root'@'localhost'
account. To change the password for a root account with a different host name part, modify the
instructions to use that host name.

The instructions assume that you start the MySQL server from the Unix login account that you normally
use for running it. For example, if you run the server using the mysql login account, you should log
in as mysql before using the instructions. Alternatively, you can log in as root, but in this case you
must start mysqld with the --user=mysql option. If you start the server as root without using --
user=mysql, the server may create root-owned files in the data directory, such as log files, and
these may cause permission-related problems for future server startups. If that happens, you must
either change the ownership of the files to mysql or remove them.

1. Log on to your system as the Unix user that the MySQL server runs as (for example, mysql).

2. Stop the MySQL server if it is running. Locate the .pid file that contains the server's process ID.
The exact location and name of this file depend on your distribution, host name, and configuration.
Common locations are /var/lib/mysql/, /var/run/mysqld/, and /usr/local/mysql/
data/. Generally, the file name has an extension of .pid and begins with either mysqld or your
system's host name.

Stop the MySQL server by sending a normal kill (not kill -9) to the mysqld process. Use the
actual path name of the .pid file in the following command:

$> kill `cat /mysql-data-directory/host_name.pid`

Use backticks (not forward quotation marks) with the cat command. These cause the output of
cat to be substituted into the kill command.

3. Create a text file containing the password-assignment statement on a single line. Replace the
password with the password that you want to use.

ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass';

4. Save the file. This example assumes that you name the file /home/me/mysql-init. The file
contains the password, so do not save it where it can be read by other users. If you are not logged
in as mysql (the user the server runs as), make sure that the file has permissions that permit
mysql to read it.

5. Start the MySQL server with the init_file system variable set to name the file:

$> mysqld --init-file=/home/me/mysql-init &

The server executes the contents of the file named by the init_file system variable at startup,
changing the 'root'@'localhost' account password.

Other options may be necessary as well, depending on how you normally start your server. For
example, --defaults-file may be needed before the init_file argument.

6. After the server has started successfully, delete /home/me/mysql-init.

You should now be able to connect to the MySQL server as root using the new password. Stop the
server and restart it normally.

5523

Administration-Related Issues

Resetting the Root Password: Generic Instructions

The preceding sections provide password-resetting instructions specifically for Windows and Unix and
Unix-like systems. Alternatively, on any platform, you can reset the password using the mysql client
(but this approach is less secure):

1. Stop the MySQL server if necessary, then restart it with the --skip-grant-tables option.
This enables anyone to connect without a password and with all privileges, and disables account-
management statements such as ALTER USER and SET PASSWORD. Because this is insecure, if
the server is started with the --skip-grant-tables option, it also disables remote connections
by enabling skip_networking. On Windows platforms, this means you must also enable
shared_memory or named_pipe; otherwise the server cannot start.

2. Connect to the MySQL server using the mysql client; no password is necessary because the
server was started with --skip-grant-tables:

$> mysql

3. In the mysql client, tell the server to reload the grant tables so that account-management
statements work:

mysql> FLUSH PRIVILEGES;

Then change the 'root'@'localhost' account password. Replace the password with the
password that you want to use. To change the password for a root account with a different host
name part, modify the instructions to use that host name.

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass';

You should now be able to connect to the MySQL server as root using the new password. Stop the
server and restart it normally (without the --skip-grant-tables option and without enabling the
skip_networking system variable).

B.3.3.3 What to Do If MySQL Keeps Crashing

Each MySQL version is tested on many platforms before it is released. This does not mean that there
are no bugs in MySQL, but if there are bugs, they should be very few and can be hard to find. If you
have a problem, it always helps if you try to find out exactly what crashes your system, because you
have a much better chance of getting the problem fixed quickly.

First, you should try to find out whether the problem is that the mysqld server dies or whether your
problem has to do with your client. You can check how long your mysqld server has been up by
executing mysqladmin version. If mysqld has died and restarted, you may find the reason by
looking in the server's error log. See Section 7.4.2, “The Error Log”.

On some systems, you can find in the error log a stack trace of where mysqld died. Note that the
variable values written in the error log may not always be 100% correct.

If you find that mysqld fails at startup during InnoDB recovery, refer to Section 17.21.2,
“Troubleshooting Recovery Failures”.

Many unexpected server exits are caused by corrupted data files or index files. MySQL updates the
files on disk with the write() system call after every SQL statement and before the client is notified
about the result. (This is not true if you are running with the delay_key_write system variable
enabled, in which case data files are written but not index files.) This means that data file contents are
safe even if mysqld crashes, because the operating system ensures that the unflushed data is written
to disk. You can force MySQL to flush everything to disk after every SQL statement by starting mysqld
with the --flush option.

The preceding means that normally you should not get corrupted tables unless one of the following
happens:

5524

Administration-Related Issues

• The MySQL server or the server host was killed in the middle of an update.

• You have found a bug in mysqld that caused it to die in the middle of an update.

• Some external program is manipulating data files or index files at the same time as mysqld without
locking the table properly.

• You are running many mysqld servers using the same data directory on a system that does not
support good file system locks (normally handled by the lockd lock manager), or you are running
multiple servers with external locking disabled.

• You have a crashed data file or index file that contains very corrupt data that confused mysqld.

• You have found a bug in the data storage code. This is not likely, but it is at least possible. In this
case, you can try to change the storage engine to another engine by using ALTER TABLE on a
repaired copy of the table.

Because it is very difficult to know why something is crashing, first try to check whether things that work
for others result in an unexpected exit for you. Try the following things:

• Stop the mysqld server with mysqladmin shutdown, run myisamchk --silent --force */
*.MYI from the data directory to check all MyISAM tables, and restart mysqld. This ensures that you
are running from a clean state. See Chapter 7, MySQL Server Administration.

• Start mysqld with the general query log enabled (see Section 7.4.3, “The General Query Log”).
Then try to determine from the information written to the log whether some specific query kills the
server. About 95% of all bugs are related to a particular query. Normally, this is one of the last
queries in the log file just before the server restarts. See Section 7.4.3, “The General Query Log”.
If you can repeatedly kill MySQL with a specific query, even when you have checked all tables
just before issuing it, then you have isolated the bug and should submit a bug report for it. See
Section 1.5, “How to Report Bugs or Problems”.

• Try to make a test case that we can use to repeat the problem. See Section 7.9, “Debugging
MySQL”.

• Try the fork_big.pl script. (It is located in the tests directory of source distributions.)

• Configuring MySQL for debugging makes it much easier to gather information about possible errors
if something goes wrong. Reconfigure MySQL with the -DWITH_DEBUG=1 option to CMake and then
recompile. See Section 7.9, “Debugging MySQL”.

• Make sure that you have applied the latest patches for your operating system.

• Use the --skip-external-locking option to mysqld. On some systems, the lockd lock
manager does not work properly; the --skip-external-locking option tells mysqld not to use
external locking. (This means that you cannot run two mysqld servers on the same data directory
and that you must be careful if you use myisamchk. Nevertheless, it may be instructive to try the
option as a test.)

• If mysqld appears to be running but not responding, try mysqladmin -u root processlist.
Sometimes mysqld is not hung even though it seems unresponsive. The problem may be that
all connections are in use, or there may be some internal lock problem. mysqladmin -u root
processlist usually is able to make a connection even in these cases, and can provide useful
information about the current number of connections and their status.

• Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status in a separate
window to produce statistics while running other queries.

• Try the following:

1. Start mysqld from gdb (or another debugger). See Section 7.9, “Debugging MySQL”.

2. Run your test scripts.

5525

Administration-Related Issues

3. Print the backtrace and the local variables at the three lowest levels. In gdb, you can do this with
the following commands when mysqld has crashed inside gdb:

backtrace
info local
up
info local
up
info local

With gdb, you can also examine which threads exist with info threads and switch to a
specific thread with thread N, where N is the thread ID.

• Try to simulate your application with a Perl script to force MySQL to exit or misbehave.

• Send a normal bug report. See Section 1.5, “How to Report Bugs or Problems”. Be even more
detailed than usual. Because MySQL works for many people, the crash might result from something
that exists only on your computer (for example, an error that is related to your particular system
libraries).

• If you have a problem with tables containing dynamic-length rows and you are using only VARCHAR
columns (not BLOB or TEXT columns), you can try to change all VARCHAR to CHAR with ALTER
TABLE. This forces MySQL to use fixed-size rows. Fixed-size rows take a little extra space, but are
much more tolerant to corruption.

The current dynamic row code has been in use for several years with very few problems, but
dynamic-length rows are by nature more prone to errors, so it may be a good idea to try this strategy
to see whether it helps.

• Consider the possibility of hardware faults when diagnosing problems. Defective hardware can be
the cause of data corruption. Pay particular attention to your memory and disk subsystems when
troubleshooting hardware.

B.3.3.4 How MySQL Handles a Full Disk

This section describes how MySQL responds to disk-full errors (such as “no space left on device”), and
to quota-exceeded errors (such as “write failed” or “user block limit reached”).

This section is relevant for writes to MyISAM tables. It also applies for writes to binary log files and
binary log index file, except that references to “row” and “record” should be understood to mean
“event.”

When a disk-full condition occurs, MySQL does the following:

• It checks once every minute to see whether there is enough space to write the current row. If there is
enough space, it continues as if nothing had happened.

• Every 10 minutes it writes an entry to the log file, warning about the disk-full condition.

To alleviate the problem, take the following actions:

• To continue, you only have to free enough disk space to insert all records.

• Alternatively, to abort the thread, use mysqladmin kill. The thread is aborted the next time it
checks the disk (in one minute).

• Other threads might be waiting for the table that caused the disk-full condition. If you have several
“locked” threads, killing the one thread that is waiting on the disk-full condition enables the other
threads to continue.

Exceptions to the preceding behavior are when you use REPAIR TABLE or OPTIMIZE TABLE or
when the indexes are created in a batch after LOAD DATA or after an ALTER TABLE statement. All of

5526

Administration-Related Issues

these statements may create large temporary files that, if left to themselves, would cause big problems
for the rest of the system. If the disk becomes full while MySQL is doing any of these operations,
it removes the big temporary files and mark the table as crashed. The exception is that for ALTER
TABLE, the old table is left unchanged.

B.3.3.5 Where MySQL Stores Temporary Files

On Unix, MySQL uses the value of the TMPDIR environment variable as the path name of the directory
in which to store temporary files. If TMPDIR is not set, MySQL uses the system default, which is usually
/tmp, /var/tmp, or /usr/tmp.

On Windows, MySQL checks in order the values of the TMPDIR, TEMP, and TMP environment variables.
For the first one found to be set, MySQL uses it and does not check those remaining. If none of
TMPDIR, TEMP, or TMP are set, MySQL uses the Windows system default, which is usually C:
\windows\temp\.

If the file system containing your temporary file directory is too small, you can use the mysqld --
tmpdir option to specify a directory in a file system where you have enough space.

The --tmpdir option can be set to a list of several paths that are used in round-robin fashion. Paths
should be separated by colon characters (:) on Unix and semicolon characters (;) on Windows.

Note

To spread the load effectively, these paths should be located on different
physical disks, not different partitions of the same disk.

If the MySQL server is acting as a replica, you can set the system variable replica_load_tmpdir
(from MySQL 8.0.26) or slave_load_tmpdir (before MySQL 8.0.26) to specify a separate directory
for holding temporary files when replicating LOAD DATA statements. This directory should be in a
disk-based file system (not a memory-based file system) so that the temporary files used to replicate
LOAD DATA can survive machine restarts. The directory also should not be one that is cleared by the
operating system during the system startup process. However, replication can now continue after a
restart if the temporary files have been removed.

MySQL arranges that temporary files are removed if mysqld is terminated. On platforms that support
it (such as Unix), this is done by unlinking the file after opening it. The disadvantage of this is that the
name does not appear in directory listings and you do not see a big temporary file that fills up the file
system in which the temporary file directory is located. (In such cases, lsof +L1 may be helpful in
identifying large files associated with mysqld.)

When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files. The
maximum disk space required is determined by the following expression:

(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2

The row pointer size is usually four bytes, but may grow in the future for really big tables.

For some statements, MySQL creates temporary SQL tables that are not hidden and have names that
begin with #sql.

Some SELECT queries creates temporary SQL tables to hold intermediate results.

DDL operations that rebuild the table and are not performed online using the ALGORITHM=INPLACE
technique create a temporary copy of the original table in the same directory as the original table.

Online DDL operations may use temporary log files for recording concurrent DML, temporary sort files
when creating an index, and temporary intermediate tables files when rebuilding the table. For more
information, see Section 17.12.3, “Online DDL Space Requirements”.

5527

Administration-Related Issues

InnoDB user-created temporary tables and on-disk internal temporary tables are created in a
temporary tablespace file named ibtmp1 in the MySQL data directory. For more information, see
Section 17.6.3.5, “Temporary Tablespaces”.

See also Section 17.15.7, “InnoDB INFORMATION_SCHEMA Temporary Table Info Table”.

The optional EXTENDED modifier causes SHOW TABLES to list hidden tables created by failed ALTER
TABLE statements. See Section 15.7.7.39, “SHOW TABLES Statement”.

B.3.3.6 How to Protect or Change the MySQL Unix Socket File

The default location for the Unix socket file that the server uses for communication with local clients is
/tmp/mysql.sock. (For some distribution formats, the directory might be different, such as /var/
lib/mysql for RPMs.)

On some versions of Unix, anyone can delete files in the /tmp directory or other similar directories
used for temporary files. If the socket file is located in such a directory on your system, this might cause
problems.

On most versions of Unix, you can protect your /tmp directory so that files can be deleted only by their
owners or the superuser (root). To do this, set the sticky bit on the /tmp directory by logging in as
root and using the following command:

$> chmod +t /tmp

You can check whether the sticky bit is set by executing ls -ld /tmp. If the last permission
character is t, the bit is set.

Another approach is to change the place where the server creates the Unix socket file. If you do this,
you should also let client programs know the new location of the file. You can specify the file location in
several ways:

• Specify the path in a global or local option file. For example, put the following lines in /etc/my.cnf:

[mysqld]
socket=/path/to/socket

[client]
socket=/path/to/socket

See Section 6.2.2.2, “Using Option Files”.

• Specify a --socket option on the command line to mysqld_safe and when you run client
programs.

• Set the MYSQL_UNIX_PORT environment variable to the path of the Unix socket file.

• Recompile MySQL from source to use a different default Unix socket file location. Define the path
to the file with the MYSQL_UNIX_ADDR option when you run CMake. See Section 2.8.7, “MySQL
Source-Configuration Options”.

You can test whether the new socket location works by attempting to connect to the server with this
command:

$> mysqladmin --socket=/path/to/socket version

B.3.3.7 Time Zone Problems

If you have a problem with SELECT NOW() returning values in UTC and not your local time, you
have to tell the server your current time zone. The same applies if UNIX_TIMESTAMP() returns
the wrong value. This should be done for the environment in which the server runs (for example, in
mysqld_safe or mysql.server). See Section 6.9, “Environment Variables”.

5528

Query-Related Issues

You can set the time zone for the server with the --timezone=timezone_name option to
mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld.

The permissible values for --timezone or TZ are system dependent. Consult your operating system
documentation to see what values are acceptable.

B.3.4 Query-Related Issues

B.3.4.1 Case Sensitivity in String Searches

For nonbinary strings (CHAR, VARCHAR, TEXT), string searches use the collation of the comparison
operands. For binary strings (BINARY, VARBINARY, BLOB), comparisons use the numeric values of the
bytes in the operands; this means that for alphabetic characters, comparisons are case-sensitive.

A comparison between a nonbinary string and binary string is treated as a comparison of binary strings.

Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each
character's “sort value.” Characters with the same sort value are treated as the same character. For
example, if e and é have the same sort value in a given collation, they compare as equal.

The default character set and collation are utf8mb4 and utf8mb4_0900_ai_ci, so nonbinary string
comparisons are case-insensitive by default. This means that if you search with col_name LIKE 'a
%', you get all column values that start with A or a. To make this search case-sensitive, make sure
that one of the operands has a case-sensitive or binary collation. For example, if you are comparing a
column and a string that both have the utf8mb4 character set, you can use the COLLATE operator to
cause either operand to have the utf8mb4_0900_as_cs or utf8mb4_bin collation:

col_name COLLATE utf8mb4_0900_as_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE utf8mb4_0900_as_cs
col_name COLLATE utf8mb4_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE utf8mb4_bin

If you want a column always to be treated in case-sensitive fashion, declare it with a case-sensitive or
binary collation. See Section 15.1.20, “CREATE TABLE Statement”.

To cause a case-sensitive comparison of nonbinary strings to be case-insensitive, use COLLATE to
name a case-insensitive collation. The strings in the following example normally are case-sensitive, but
COLLATE changes the comparison to be case-insensitive:

mysql> SET NAMES 'utf8mb4';
mysql> SET @s1 = 'MySQL' COLLATE utf8mb4_bin,
 @s2 = 'mysql' COLLATE utf8mb4_bin;
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
mysql> SELECT @s1 COLLATE utf8mb4_0900_ai_ci = @s2;
+--------------------------------------+
| @s1 COLLATE utf8mb4_0900_ai_ci = @s2 |
+--------------------------------------+
| 1 |
+--------------------------------------+

A binary string is case-sensitive in comparisons. To compare the string as case-insensitive, convert it
to a nonbinary string and use COLLATE to name a case-insensitive collation:

mysql> SET @s = BINARY 'MySQL';
mysql> SELECT @s = 'mysql';
+--------------+
| @s = 'mysql' |
+--------------+
| 0 |

5529

Query-Related Issues

+--------------+
mysql> SELECT CONVERT(@s USING utf8mb4) COLLATE utf8mb4_0900_ai_ci = 'mysql';
+--+
| CONVERT(@s USING utf8mb4) COLLATE utf8mb4_0900_ai_ci = 'mysql' |
+--+
| 1 |
+--+

To determine whether a value is compared as a nonbinary or binary string, use the COLLATION()
function. This example shows that VERSION() returns a string that has a case-insensitive collation, so
comparisons are case-insensitive:

mysql> SELECT COLLATION(VERSION());
+----------------------+
| COLLATION(VERSION()) |
+----------------------+
| utf8mb3_general_ci |
+----------------------+

For binary strings, the collation value is binary, so comparisons are case sensitive. One context in
which you can expect to see binary is for compression functions, which return binary strings as a
general rule: string:

mysql> SELECT COLLATION(COMPRESS('x'));
+--------------------------+
| COLLATION(COMPRESS('x')) |
+--------------------------+
| binary |
+--------------------------+

To check the sort value of a string, the WEIGHT_STRING() may be helpful. See Section 14.8, “String
Functions and Operators”.

B.3.4.2 Problems Using DATE Columns

The format of a DATE value is 'YYYY-MM-DD'. According to standard SQL, no other format is
permitted. You should use this format in UPDATE expressions and in the WHERE clause of SELECT
statements. For example:

SELECT * FROM t1 WHERE date >= '2003-05-05';

As a convenience, MySQL automatically converts a date to a number if the date is used in numeric
context and vice versa. MySQL also permits a “relaxed” string format when updating and in a WHERE
clause that compares a date to a DATE, DATETIME, or TIMESTAMP column. “Relaxed” format
means that any punctuation character may be used as the separator between parts. For example,
'2004-08-15' and '2004#08#15' are equivalent. MySQL can also convert a string containing no
separators (such as '20040815'), provided it makes sense as a date.

When you compare a DATE, TIME, DATETIME, or TIMESTAMP to a constant string with the <, <=, =,
>=, >, or BETWEEN operators, MySQL normally converts the string to an internal long integer for faster
comparison (and also for a bit more “relaxed” string checking). However, this conversion is subject to
the following exceptions:

• When you compare two columns

• When you compare a DATE, TIME, DATETIME, or TIMESTAMP column to an expression

• When you use any comparison method other than those just listed, such as IN or STRCMP().

For those exceptions, the comparison is done by converting the objects to strings and performing a
string comparison.

To be on the safe side, assume that strings are compared as strings and use the appropriate string
functions if you want to compare a temporal value to a string.

5530

Query-Related Issues

The special “zero” date '0000-00-00' can be stored and retrieved as '0000-00-00'. When a
'0000-00-00' date is used through Connector/ODBC, it is automatically converted to NULL because
ODBC cannot handle that kind of date.

Because MySQL performs the conversions just described, the following statements work (assume that
idate is a DATE column):

INSERT INTO t1 (idate) VALUES (19970505);
INSERT INTO t1 (idate) VALUES ('19970505');
INSERT INTO t1 (idate) VALUES ('97-05-05');
INSERT INTO t1 (idate) VALUES ('1997.05.05');
INSERT INTO t1 (idate) VALUES ('1997 05 05');
INSERT INTO t1 (idate) VALUES ('0000-00-00');

SELECT idate FROM t1 WHERE idate >= '1997-05-05';
SELECT idate FROM t1 WHERE idate >= 19970505;
SELECT MOD(idate,100) FROM t1 WHERE idate >= 19970505;
SELECT idate FROM t1 WHERE idate >= '19970505';

However, the following statement does not work:

SELECT idate FROM t1 WHERE STRCMP(idate,'20030505')=0;

STRCMP() is a string function, so it converts idate to a string in 'YYYY-MM-DD' format and performs
a string comparison. It does not convert '20030505' to the date '2003-05-05' and perform a date
comparison.

If you enable the ALLOW_INVALID_DATES SQL mode, MySQL permits you to store dates that are
given only limited checking: MySQL requires only that the day is in the range from 1 to 31 and the
month is in the range from 1 to 12. This makes MySQL very convenient for Web applications where
you obtain year, month, and day in three different fields and you want to store exactly what the user
inserted (without date validation).

MySQL permits you to store dates where the day or month and day are zero. This is convenient if you
want to store a birthdate in a DATE column and you know only part of the date. To disallow zero month
or day parts in dates, enable the NO_ZERO_IN_DATE mode.

MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some
cases more convenient than using NULL values. If a date to be stored in a DATE column cannot be
converted to any reasonable value, MySQL stores '0000-00-00'. To disallow '0000-00-00',
enable the NO_ZERO_DATE mode.

To have MySQL check all dates and accept only legal dates (unless overridden by IGNORE), set the
sql_mode system variable to "NO_ZERO_IN_DATE,NO_ZERO_DATE".

B.3.4.3 Problems with NULL Values

The concept of the NULL value is a common source of confusion for newcomers to SQL, who often
think that NULL is the same thing as an empty string ''. This is not the case. For example, the
following statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

Both statements insert a value into the phone column, but the first inserts a NULL value and the
second inserts an empty string. The meaning of the first can be regarded as “phone number is not
known” and the meaning of the second can be regarded as “the person is known to have no phone,
and thus no phone number.”

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the
IFNULL() function.

In SQL, the NULL value is never true in comparison to any other value, even NULL. An expression that
contains NULL always produces a NULL value unless otherwise indicated in the documentation for the
operators and functions involved in the expression. All columns in the following example return NULL:

5531

Query-Related Issues

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

To search for column values that are NULL, you cannot use an expr = NULL test. The following
statement returns no rows, because expr = NULL is never true for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

To look for NULL values, you must use the IS NULL test. The following statements show how to find
the NULL phone number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

See Section 5.3.4.6, “Working with NULL Values”, for additional information and examples.

You can add an index on a column that can have NULL values if you are using the MyISAM, InnoDB,
or MEMORY storage engine. Otherwise, you must declare an indexed column NOT NULL, and you
cannot insert NULL into the column.

When reading data with LOAD DATA, empty or missing columns are updated with ''. To load a NULL
value into a column, use \N in the data file. The literal word NULL may also be used under some
circumstances. See Section 15.2.9, “LOAD DATA Statement”.

When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in
descending order.

Aggregate (group) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The exception
to this is COUNT(*), which counts rows and not individual column values. For example, the following
statement produces two counts. The first is a count of the number of rows in the table, and the second
is a count of the number of non-NULL values in the age column:

mysql> SELECT COUNT(*), COUNT(age) FROM person;

For some data types, MySQL handles NULL values in special ways. For example, if you insert
NULL into an integer or floating-point column that has the AUTO_INCREMENT attribute, the
next number in the sequence is inserted. Under certain conditions, if you insert NULL into a
TIMESTAMP column, the current date and time is inserted; this behavior depends in part on
the server SQL mode (see Section 7.1.11, “Server SQL Modes”) as well as the value of the
explicit_defaults_for_timestamp system variable.

B.3.4.4 Problems with Column Aliases

An alias can be used in a query select list to give a column a different name. You can use the alias in
GROUP BY, ORDER BY, or HAVING clauses to refer to the column:

SELECT SQRT(a*b) AS root FROM tbl_name
 GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name
 GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;

Standard SQL disallows references to column aliases in a WHERE clause. This restriction is imposed
because when the WHERE clause is evaluated, the column value may not yet have been determined.
For example, the following query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name
 WHERE cnt > 0 GROUP BY id;

The WHERE clause determines which rows should be included in the GROUP BY clause, but it refers to
the alias of a column value that is not known until after the rows have been selected, and grouped by
the GROUP BY.

5532

Query-Related Issues

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

SELECT 1 AS `one`, 2 AS 'two';

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference
is treated as a string literal. For example, this statement groups by the values in column id, referenced
using the alias `a`:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY `a`;

This statement groups by the literal string 'a' and does not work as you may expect:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY 'a';

B.3.4.5 Rollback Failure for Nontransactional Tables

If you receive the following message when trying to perform a ROLLBACK, it means that one or more of
the tables you used in the transaction do not support transactions:

Warning: Some non-transactional changed tables couldn't be rolled back

These nontransactional tables are not affected by the ROLLBACK statement.

If you were not deliberately mixing transactional and nontransactional tables within the transaction, the
most likely cause for this message is that a table you thought was transactional actually is not. This
can happen if you try to create a table using a transactional storage engine that is not supported by
your mysqld server (or that was disabled with a startup option). If mysqld does not support a storage
engine, it instead creates the table as a MyISAM table, which is nontransactional.

You can check the storage engine for a table by using either of these statements:

SHOW TABLE STATUS LIKE 'tbl_name';
SHOW CREATE TABLE tbl_name;

See Section 15.7.7.38, “SHOW TABLE STATUS Statement”, and Section 15.7.7.10, “SHOW CREATE
TABLE Statement”.

To check which storage engines your mysqld server supports, use this statement:

SHOW ENGINES;

See Section 15.7.7.16, “SHOW ENGINES Statement” for full details.

B.3.4.6 Deleting Rows from Related Tables

If the total length of the DELETE statement for related_table is more than the default value
of the max_allowed_packet system variable, you should split it into smaller parts and execute
multiple DELETE statements. You probably get the fastest DELETE by specifying only 100 to 1,000
related_column values per statement if the related_column is indexed. If the related_column
is not indexed, the speed is independent of the number of arguments in the IN clause.

B.3.4.7 Solving Problems with No Matching Rows

If you have a complicated query that uses many tables but that returns no rows, you should use the
following procedure to find out what is wrong:

1. Test the query with EXPLAIN to check whether you can find something that is obviously wrong. See
Section 15.8.2, “EXPLAIN Statement”.

2. Select only those columns that are used in the WHERE clause.

5533

Query-Related Issues

3. Remove one table at a time from the query until it returns some rows. If the tables are large, it is a
good idea to use LIMIT 10 with the query.

4. Issue a SELECT for the column that should have matched a row against the table that was last
removed from the query.

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you cannot use
equality (=) comparisons. This problem is common in most computer languages because not all
floating-point values can be stored with exact precision. In some cases, changing the FLOAT to a
DOUBLE fixes this. See Section B.3.4.8, “Problems with Floating-Point Values”.

6. If you still cannot figure out what is wrong, create a minimal test that can be run with mysql test
< query.sql that shows your problems. You can create a test file by dumping the tables with
mysqldump --quick db_name tbl_name_1 ... tbl_name_n > query.sql. Open the file
in an editor, remove some insert lines (if there are more than needed to demonstrate the problem),
and add your SELECT statement at the end of the file.

Verify that the test file demonstrates the problem by executing these commands:

$> mysqladmin create test2
$> mysql test2 < query.sql

Attach the test file to a bug report, which you can file using the instructions in Section 1.5, “How to
Report Bugs or Problems”.

B.3.4.8 Problems with Floating-Point Values

Floating-point numbers sometimes cause confusion because they are approximate and not stored as
exact values. A floating-point value as written in an SQL statement may not be the same as the value
represented internally. Attempts to treat floating-point values as exact in comparisons may lead to
problems. They are also subject to platform or implementation dependencies. The FLOAT and DOUBLE
data types are subject to these issues. For DECIMAL columns, MySQL performs operations with a
precision of 65 decimal digits, which should solve most common inaccuracy problems.

The following example uses DOUBLE to demonstrate how calculations that are done using floating-point
operations are subject to floating-point error.

mysql> CREATE TABLE t1 (i INT, d1 DOUBLE, d2 DOUBLE);
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),
 -> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
 -> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
 -> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
 -> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
 -> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
 -> FROM t1 GROUP BY i HAVING a <> b;

+------+-------+------+
| i | a | b |
+------+-------+------+
1	21.4	21.4
2	76.8	76.8
3	7.4	7.4
4	15.4	15.4
5	7.2	7.2
6	-51.4	0
+------+-------+------+

The result is correct. Although the first five records look like they should not satisfy the comparison
(the values of a and b do not appear to be different), they may do so because the difference between
the numbers shows up around the tenth decimal or so, depending on factors such as computer
architecture or the compiler version or optimization level. For example, different CPUs may evaluate
floating-point numbers differently.

5534

Optimizer-Related Issues

If columns d1 and d2 had been defined as DECIMAL rather than DOUBLE, the result of the SELECT
query would have contained only one row—the last one shown above.

The correct way to do floating-point number comparison is to first decide on an acceptable tolerance
for differences between the numbers and then do the comparison against the tolerance value. For
example, if we agree that floating-point numbers should be regarded the same if they are same within
a precision of one in ten thousand (0.0001), the comparison should be written to find differences larger
than the tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) > 0.0001;
+------+-------+------+
| i | a | b |
+------+-------+------+
| 6 | -51.4 | 0 |
+------+-------+------+
1 row in set (0.00 sec)

Conversely, to get rows where the numbers are the same, the test should find differences within the
tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) <= 0.0001;
+------+------+------+
| i | a | b |
+------+------+------+
1	21.4	21.4
2	76.8	76.8
3	7.4	7.4
4	15.4	15.4
5	7.2	7.2
+------+------+------+
5 rows in set (0.03 sec)

Floating-point values are subject to platform or implementation dependencies. Suppose that you
execute the following statements:

CREATE TABLE t1(c1 FLOAT(53,0), c2 FLOAT(53,0));
INSERT INTO t1 VALUES('1e+52','-1e+52');
SELECT * FROM t1;

On some platforms, the SELECT statement returns inf and -inf. On others, it returns 0 and -0.

An implication of the preceding issues is that if you attempt to create a replica by dumping table
contents with mysqldump on the source and reloading the dump file into the replica, tables containing
floating-point columns might differ between the two hosts.

B.3.5 Optimizer-Related Issues

MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many cases,
MySQL can calculate the best possible query plan, but sometimes MySQL does not have enough
information about the data at hand and has to make “educated” guesses about the data.

For the cases when MySQL does not do the "right" thing, tools that you have available to help MySQL
are:

• Use the EXPLAIN statement to get information about how MySQL processes a query. To use it, just
add the keyword EXPLAIN to the front of your SELECT statement:

mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

EXPLAIN is discussed in more detail in Section 15.8.2, “EXPLAIN Statement”.

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 15.7.3.1, “ANALYZE TABLE Statement”.

5535

Table Definition-Related Issues

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive
compared to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

USE INDEX and IGNORE INDEX may also be useful. See Section 10.9.4, “Index Hints”.

• Global and table-level STRAIGHT_JOIN. See Section 15.2.13, “SELECT Statement”.

• You can tune global or thread-specific system variables. For example, start mysqld with the --max-
seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the optimizer to
assume that no key scan causes more than 1,000 key seeks. See Section 7.1.8, “Server System
Variables”.

B.3.6 Table Definition-Related Issues

B.3.6.1 Problems with ALTER TABLE

If you get a duplicate-key error when using ALTER TABLE to change the character set or collation of a
character column, the cause is either that the new column collation maps two keys to the same value
or that the table is corrupted. In the latter case, you should run REPAIR TABLE on the table. REPAIR
TABLE works for MyISAM, ARCHIVE, and CSV tables.

If you use ALTER TABLE on a transactional table or if you are using Windows, ALTER TABLE unlocks
the table if you had done a LOCK TABLE on it. This is done because InnoDB and these operating
systems cannot drop a table that is in use.

B.3.6.2 TEMPORARY Table Problems

Temporary tables created with CREATE TEMPORARY TABLE have the following limitations:

• TEMPORARY tables are supported only by the InnoDB, MEMORY, MyISAM, and MERGE storage
engines.

• Temporary tables are not supported for NDB Cluster.

• The SHOW TABLES statement does not list TEMPORARY tables.

• To rename TEMPORARY tables, RENAME TABLE does not work. Use ALTER TABLE instead:

ALTER TABLE old_name RENAME new_name;

• You cannot refer to a TEMPORARY table more than once in the same query. For example, the
following does not work:

SELECT * FROM temp_table JOIN temp_table AS t2;

The statement produces this error:

ERROR 1137: Can't reopen table: 'temp_table'

You can work around this issue if your query permits use of a common table expression (CTE) rather
than a TEMPORARY table. For example, this fails with the Can't reopen table error:

CREATE TEMPORARY TABLE t SELECT 1 AS col_a, 2 AS col_b;
SELECT * FROM t AS t1 JOIN t AS t2;

To avoid the error, use a WITH clause that defines a CTE, rather than the TEMPORARY table:

WITH cte AS (SELECT 1 AS col_a, 2 AS col_b)
SELECT * FROM cte AS t1 JOIN cte AS t2;

5536

Known Issues in MySQL

• The Can't reopen table error also occurs if you refer to a temporary table multiple times in a
stored function under different aliases, even if the references occur in different statements within the
function. It may occur for temporary tables created outside stored functions and referred to across
multiple calling and callee functions.

• If a TEMPORARY is created with the same name as an existing non-TEMPORARY table, the
non-TEMPORARY table is hidden until the TEMPORARY table is dropped, even if the tables use
different storage engines.

• There are known issues in using temporary tables with replication. See Section 19.5.1.31,
“Replication and Temporary Tables”, for more information.

B.3.7 Known Issues in MySQL

This section lists known issues in recent versions of MySQL.

For information about platform-specific issues, see the installation and debugging instructions in
Section 2.1, “General Installation Guidance”, and Section 7.9, “Debugging MySQL”.

The following problems are known:

• Subquery optimization for IN is not as effective as for =.

• Even if you use lower_case_table_names=2 (which enables MySQL to remember the case used
for databases and table names), MySQL does not remember the case used for database names for
the function DATABASE() or within the various logs (on case-insensitive systems).

• Dropping a FOREIGN KEY constraint does not work in replication because the constraint may have
another name on the replica.

• REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.

• DISTINCT with ORDER BY does not work inside GROUP_CONCAT() if you do not use all and only
those columns that are in the DISTINCT list.

• When inserting a big integer value (between 263 and 264−1) into a decimal or string column, it is
inserted as a negative value because the number is evaluated in signed integer context.

• With statement-based binary logging, the source server writes the executed queries to the binary
log. This is a very fast, compact, and efficient logging method that works perfectly in most cases.
However, it is possible for the data on the source and replica to become different if a query is
designed in such a way that the data modification is nondeterministic (generally not a recommended
practice, even outside of replication).

For example:

• CREATE TABLE ... SELECT or INSERT ... SELECT statements that insert zero or NULL
values into an AUTO_INCREMENT column.

• DELETE if you are deleting rows from a table that has foreign keys with ON DELETE CASCADE
properties.

• REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values in the
inserted data.

If and only if the preceding queries have no ORDER BY clause guaranteeing a deterministic
order.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows in a
different order (which results in a row having different ranks, hence getting a different number in the
AUTO_INCREMENT column), depending on the choices made by the optimizers on the source and
replica.

5537

Known Issues in MySQL

A query is optimized differently on the source and replica only if:

• The table is stored using a different storage engine on the source than on the replica. (It is
possible to use different storage engines on the source and replica. For example, you can use
InnoDB on the source, but MyISAM on the replica if the replica has less available disk space.)

• MySQL buffer sizes (key_buffer_size, and so on) are different on the source and replica.

• The source and replica run different MySQL versions, and the optimizer code differs between
these versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

The easiest way to avoid this problem is to add an ORDER BY clause to the aforementioned
nondeterministic queries to ensure that the rows are always stored or modified in the same order.
Using row-based or mixed logging format also avoids the problem.

• Log file names are based on the server host name if you do not specify a file name with the startup
option. To retain the same log file names if you change your host name to something else, you
must explicitly use options such as --log-bin=old_host_name-bin. See Section 7.1.7, “Server
Command Options”. Alternatively, rename the old files to reflect your host name change. If these are
binary logs, you must edit the binary log index file and fix the binary log file names there as well. (The
same is true for the relay logs on a replica.)

• mysqlbinlog does not delete temporary files left after a LOAD DATA statement. See Section 6.6.9,
“mysqlbinlog — Utility for Processing Binary Log Files”.

• RENAME does not work with TEMPORARY tables or tables used in a MERGE table.

• When using SET CHARACTER SET, you cannot use translated characters in database, table, and
column names.

• Prior to MySQL 8.0.17, you cannot use _ or % with ESCAPE in LIKE ... ESCAPE.

• The server uses only the first max_sort_length bytes when comparing data values. This means
that values cannot reliably be used in GROUP BY, ORDER BY, or DISTINCT if they differ only after
the first max_sort_length bytes. To work around this, increase the variable value. The default
value of max_sort_length is 1024 and can be changed at server startup time or at runtime.

• Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long). Which
precision you get depends on the function. The general rule is that bit functions are performed with
BIGINT precision, IF() and ELT() with BIGINT or DOUBLE precision, and the rest with DOUBLE
precision. You should try to avoid using unsigned long long values if they resolve to be larger than 63
bits (9223372036854775807) for anything other than bit fields.

• You can have up to 255 ENUM and SET columns in one table.

• In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET
columns by their string value rather than by the string's relative position in the set.

• In an UPDATE statement, columns are updated from left to right. If you refer to an updated column,
you get the updated value instead of the original value. For example, the following statement
increments KEY by 2, not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

• You can refer to multiple temporary tables in the same query, but you cannot refer to any given
temporary table more than once. For example, the following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

5538

Known Issues in MySQL

• The optimizer may handle DISTINCT differently when you are using “hidden” columns in a join than
when you are not. In a join, hidden columns are counted as part of the result (even if they are not
shown), whereas in normal queries, hidden columns do not participate in the DISTINCT comparison.

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
 WHERE userid = 9 ORDER BY id DESC;

and

SELECT DISTINCT band_downloads.mp3id
 FROM band_downloads,band_mp3
 WHERE band_downloads.userid = 9
 AND band_mp3.id = band_downloads.mp3id
 ORDER BY band_downloads.id DESC;

In the second case, you may get two identical rows in the result set (because the values in the
hidden id column may differ).

Note that this happens only for queries that do not have the ORDER BY columns in the result.

• If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCEDURE
does not transform the columns.

• Creation of a table of type MERGE does not check whether the underlying tables are compatible
types.

• If you use ALTER TABLE to add a UNIQUE index to a table used in a MERGE table and then add
a normal index on the MERGE table, the key order is different for the tables if there was an old,
non-UNIQUE key in the table. This is because ALTER TABLE puts UNIQUE indexes before normal
indexes to be able to detect duplicate keys as early as possible.

• An UPDATE statement involving a temporary table with a join on a non-temporary table having a
trigger defined on it can result in an error, even though the update statement reads only the non-
temporary table, in the following cases:

• With read-only mode enabled (by using SET GLOBAL read_only = 1).

• With the transaction level set to READ_ONLY (that is, using SET GLOBAL TRANSACTION READ
ONLY or SET SESSION TRANSACTION READ ONLY).

5539

5540

Appendix C Indexes

Table of Contents
General Index ... 5541
C Function Index ... 5835
Command Index .. 5838
Function Index .. 5884
INFORMATION_SCHEMA Index .. 5933
Join Types Index ... 5947
Operator Index .. 5949
Option Index ... 5959
Privileges Index ... 6073
SQL Modes Index ... 6091
Statement/Syntax Index ... 6094
Status Variable Index .. 6196
System Variable Index .. 6232
Transaction Isolation Level Index ... 6338

General Index

Symbols
!

deprecated features, 50
! (logical NOT), 2318
!= (not equal), 2313
", 2061
%, 2327
% (modulo), 2331
% (wildcard character), 2051
& (bitwise AND), 2440
&&

deprecated features, 50
&& (logical AND), 2319
() (parentheses), 2311
(Control+Z) \Z, 2050, 2837
* (multiplication), 2326
+ (addition), 2326
- (subtraction), 2326
- (unary minus), 2326
--abort-slave-event-count

deprecated features, 52
--bootstrap

removed features, 58
--compress

deprecated features, 51
--des-key-file

removed features, 57
--disconnect-slave-event-count

deprecated features, 52
--fix-db-names

removed features, 58
--fix-table-names

removed features, 58
--ignore-db-dir

5541

removed features, 56
--log-warnings

removed features, 56
--master-info-file

deprecated features, 51
--no-dd-upgrade

deprecated features, 51
--old-style-user-limits

deprecated features, 53
--partition

removed features, 58
--password option, 1292
--secure-auth

removed features, 56
--skip-host-cache

deprecated features, 53
--skip-partition

removed features, 58
--ssl

removed features, 58
--ssl-fips-mode client option

deprecated features, 49
--ssl-verify-server-cert

removed features, 58
--temp-pool

removed features, 58
->, 2529
->>, 2531
-c option (ndb_mgmd) (OBSOLETE), 4482
-d option

ndb_index_stat, 4558
ndb_mgmd, 4484

-e option
ndb_mgm, 4493

-f option
ndb_mgmd, 4482

-l option
ndbinfo_select_all, 4476

-myisam_repair_threads
removed features, 62

-n option
ndbd, 4470
ndbmtd, 4470

-p option, 1292
-P option

ndb_mgmd, 4488
-v option

ndb_mgmd, 4489
.ibd file, 2752
.my.cnf option file, 371, 372, 397, 1273, 1293, 1397
.MYD file, 2752
.MYI file, 2752
.mylogin.cnf option file, 371, 683
.mysql_history file, 492, 1293
.pid (process ID) file, 1817
.sdi file, 2817
/ (division), 2326
/etc/passwd, 1296, 2862

5542

1FA (see multifactor authentication)
2FA (see multifactor authentication)
3306 port, 254, 856
33060 port, 253
3FA (see multifactor authentication)
:= (assignment operator), 2320
:= (assignment), 2105
< (less than), 2314
<< (left shift), 357, 2441
<= (less than or equal), 2314
<=> (equal to), 2313
<> (not equal), 2313
= (assignment operator), 2321
= (assignment), 2105
= (equal), 2313
> (greater than), 2314
>= (greater than or equal), 2314
>> (right shift), 2441
[api] (NDB Cluster), 4240
[computer] (NDB Cluster), 4242
[mgm] (NDB Cluster), 4239
[mysqld] (NDB Cluster), 4240
[ndbd default] (NDB Cluster), 4232
[ndbd] (NDB Cluster), 4232
[ndb_mgmd] (NDB Cluster), 4239
[shm] (NDB Cluster), 4242
[tcp] (NDB Cluster), 4242
\" (double quote), 2050, 2550
\' (single quote), 2050
\. (mysql client command), 352, 495
\0 (ASCII NUL), 2050, 2837
\b (backspace), 2050, 2550, 2837
\f (formfeed), 2550
\n (linefeed), 2050, 2550, 2837
\n (newline), 2050, 2550, 2837
\N (NULL), 2837
\N as NULL

removed features, 57
\r (carriage return), 2050, 2550, 2837
\t (tab), 2050, 2550, 2837
\u (Unicode character), 2550
\Z (Control+Z) ASCII 26, 2050, 2837
\\ (escape), 2051, 2550
^ (bitwise XOR), 2440
_ (wildcard character), 2051
_ai collation sufffix, 2125
_as collation sufffix, 2125
_bin collation sufffix, 2125, 2146
_ci collation sufffix, 2125
_cs collation sufffix, 2125
_ks collation sufffix, 2125
_rowid

SELECT statements, 2705, 2734, 2734
`, 2061
| (bitwise OR), 2440
||

deprecated features, 50
|| (logical OR), 2319

5543

~ (invert bits), 2442

A
abort-on-error option

ndb_import, 4543
ndb_move_data, 4564

abort-slave-event-count option
mysqld, 3696

aborted clients, 5517
aborted connection, 5517
Aborted_clients status variable, 1064
Aborted_connects status variable, 1064
ABS(), 2328
abstract-numbers option

mysqldumpslow, 733
access control, 1303, 1337
access denied errors, 5510
access privileges, 1303
account

default, 279
root, 279

account attributes
ALTER USER, 3033
CREATE USER statement, 3046

account categories, 1352
account comments

ALTER USER, 3033
CREATE USER statement, 3046

account locking, 1329, 1393
ALTER USER, 3034
CREATE USER statement, 3048
Locked_connects status variable, 1079

account management, 1303
account names, 1334
accounts

adding privileges, 1342
creating, 1342
deleting, 1345
reserved, 1345

accounts table
performance_schema, 5216

account_locked column
user table, 1329

ACID, 3186, 3190, 6341
ACLs, 1303
Acl_cache_items_count status variable, 1065, 1065
ACOS(), 2328
activate_all_roles_on_login system variable, 868
activating plugins, 1195
ActiveState Perl, 282
adaptive flushing, 6341
adaptive hash index, 3201, 6341
add-drop-database option

mysqldump, 549
mysqlpump, 593

add-drop-table option
mysqldump, 550
mysqlpump, 594

5544

add-drop-trigger option
mysqldump, 550

add-drop-user option
mysqlpump, 594

add-locks option
mysqldump, 568
mysqlpump, 594

add-missing option
ndb_blob_tool, 4497

ADDDATE(), 2339
adding

character sets, 2178
new account privileges, 1342
new user privileges, 1342

addition (+), 2326
ADDTIME(), 2339
ADD_GDB_INDEX option

CMake, 249
admin-ssl option

mysqld, 841
ADMINISTRABLE_ROLE_AUTHORIZATIONS

INFORMATION_SCHEMA table, 5016
administration

server, 500
administration of NDB Cluster, 4490
administrative connection interface, 1104, 1106
administrative programs, 366
admin_address system variable, 869
admin_port system variable, 870
admin_ssl_ca system variable, 871
admin_ssl_capath system variable, 871
admin_ssl_cert system variable, 871
admin_ssl_cipher system variable, 872
admin_ssl_crl system variable, 872
admin_ssl_crlpath system variable, 872
admin_ssl_key system variable, 873
admin_tls_ciphersuites system variable, 873
admin_tls_version system variable, 873
ADO.NET, 6342
AES_DECRYPT(), 2452
AES_ENCRYPT(), 2452
After create

thread state, 2022
age

calculating, 341
aggregate functions, 2586
ai-increment option

ndb_import, 4543
ai-offset option

ndb_import, 4543
ai-prefetch-sz option

ndb_import, 4544
AIO, 6342
alias names

case sensitivity, 2065
aliases

for expressions, 2605
for tables, 2856

5545

in GROUP BY clauses, 2605
names, 2061
on expressions, 2856

ALL, 2877
SELECT modifier, 2860

ALL join type
optimizer, 1946

ALL privilege, 1309
ALL PRIVILEGES privilege, 1309
all-databases option

mysqlcheck, 521
mysqldump, 563
mysqlpump, 594

all-in-1 option
mysqlcheck, 521

all-tablespaces option
mysqldump, 550

Alliance Key Manager
keyring_okv keyring plugin, 1558

allow-keywords option
mysqldump, 551

allow-mismatches option
innochecksum, 652

allow-pk-changes option
ndb_restore, 4587

allow-suspicious-udfs option
mysqld, 841

AllowSpinOverhead, 4340
AllowUnresolvedHostNames, 4442
ALLOW_INVALID_DATES SQL mode, 1093
ALTER COLUMN, 2680
ALTER DATABASE, 2658

removed features, 58
ALTER EVENT, 2663

and replication, 3865
ALTER FUNCTION, 2665
ALTER INSTANCE, 2665
ALTER LOGFILE GROUP, 2667

(see also NDB Cluster Disk Data)
ALTER privilege, 1309
ALTER PROCEDURE, 2668
ALTER RESOURCE GROUP statement, 3071
ALTER ROUTINE privilege, 1309
ALTER SCHEMA, 2658
ALTER SERVER, 2669
ALTER TABLE, 2669, 2680, 5536

and replication metadata repositories, 3799
monitoring, 3517
ROW_FORMAT, 3354

ALTER TABLE ... UPGRADE PARTITIONING
removed features, 62

ALTER TABLESPACE
general tablespace, 2692
NDB Cluster Disk Data, 2692
undo tablespace, 2692

ALTER USER statement, 1363, 3019
ALTER VIEW, 2694
altering

5546

database, 2658
schema, 2658

altering table
thread state, 2022

altering user accounts, 3019
MySQL Enterprise Backup, 6344
analyze option

myisamchk, 668
mysqlcheck, 521

ANALYZE TABLE
and partitioning, 4943

ANALYZE TABLE statement, 3074
Analyzing

thread state, 2023
AND

bitwise, 2440
logical, 2319

anonymous user, 1337, 1340
ANSI, 6342
ANSI mode

running, 95
ansi option

mysqld, 842
ANSI SQL mode, 1093, 1098
ANSI_QUOTES SQL mode, 1094
ANY, 2877
ANY_VALUE(), 2629
Apache, 360
API, 6342
API node (NDB Cluster)

defined, 4140
API nodes (see SQL nodes)
ApiFailureHandlingTimeout, 4323
APIs, 5439

Perl, 5442
append option

ndb_restore, 4588
APPLICABLE_ROLES

INFORMATION_SCHEMA table, 5017
application error handling, 1302
application programming interface (API), 6342
APPLICATION_PASSWORD_ADMIN privilege, 1315
apply, 6342
apply-replica-statements option

mysqldump, 554
apply-slave-statements option

mysqldump, 554
apply_status table (OBSOLETE), 4853

(see also NDB Cluster replication)
approximate-value literals, 2642
approximate-value numeric literals, 2052, 2643
Arbitration, 4324
ArbitrationDelay, 4268, 4373
ArbitrationRank, 4267, 4373
ArbitrationTimeout, 4324
arbitrator_validity_detail

ndbinfo table, 4744
arbitrator_validity_summary

5547

ndbinfo table, 4744
ARCHIVE storage engine, 3575, 3593
Area()

removed features, 57
arithmetic expressions, 2326
arithmetic functions, 2439
arithmetic operators, 2439
.ARM file, 6341
array

JSON, 2253
.ARZ file, 6341
AS, 2856, 2863, 6342
AsBinary()

removed features, 57
ASCII

deprecated features, 50
ASCII(), 2361
ASIN(), 2328
ASP.net, 6342
assembly, 6342
assigning roles, 3070
assignment operator

:=, 2320
=, 2321

assignment operators, 2320
AsText()

removed features, 57
AsWKB()

removed features, 57
AsWKT()

removed features, 57
asymmetric_decrypt(), 1778
asymmetric_decrypt() legacy function, 1782
asymmetric_derive() legacy function, 1782
asymmetric_encrypt(), 1778
asymmetric_encrypt() legacy function, 1783
asymmetric_sign(), 1779
asymmetric_sign() legacy function, 1784
asymmetric_verify(), 1779
asymmetric_verify() legacy function, 1784
asynchronous I/O, 3313, 6342
asynchronous replication (see NDB Cluster replication)
asynchronous_connection_failover_add_managed() function, 2581
asynchronous_connection_failover_add_source() function, 2582
asynchronous_connection_failover_delete_managed() function, 2583
asynchronous_connection_failover_delete_source() function, 2583
asynchronous_connection_failover_reset() function, 2584
ATAN(), 2329
ATAN2(), 2329
atomic, 6343
atomic DDL, 2652, 6343

new features, 9
atomic instruction, 6343
attackers

security against, 1295
attribute demotion

replication, 3860
attribute promotion

5548

replication, 3860
attributes

resource groups, 1126
audit API functions

audit_api_message_emit_udf(), 1697
audit log encryption functions

audit_log_encryption_password_get(), 1639, 1675
audit_log_encryption_password_set(), 1639, 1676

audit log filtering
event field replacement, 1666
legacy mode, 1651, 1662, 1672
rule based, 1649

audit log filtering functions
audit_log_filter_flush(), 1676
audit_log_filter_remove_filter(), 1677
audit_log_filter_remove_user(), 1677
audit_log_filter_set_filter(), 1678
audit_log_filter_set_user(), 1679

audit log reading functions
audit_log_read(), 1646, 1679
audit_log_read_bookmark(), 1646, 1681

audit log rotate functions
audit_log_rotate(), 1681

audit plugin
sha2_cache_cleaner, 1437

audit-log option
mysqld, 1682

AUDIT_ABORT_EXEMPT privilege, 1315
AUDIT_ADMIN privilege, 1315
audit_api_message_emit_udf() audit API function, 1697
audit_log plugin, 1611

installing, 1612
audit_log_buffer_size system variable, 1683
audit_log_compression system variable, 1684
audit_log_connection_policy

deprecated features, 48
audit_log_connection_policy system variable, 1684
audit_log_current_session system variable, 1685
Audit_log_current_size status variable, 1695
audit_log_database system variable, 1685
audit_log_disable variable, 1685
audit_log_encryption system variable, 1686
audit_log_encryption_password_get() audit log encryption function, 1639, 1675
audit_log_encryption_password_set() audit log encryption function, 1639, 1676
Audit_log_events status variable, 1695
Audit_log_events_filtered status variable, 1696
Audit_log_events_lost status variable, 1696
Audit_log_events_written status variable, 1696
Audit_log_event_max_drop_size status variable, 1695
audit_log_exclude_accounts

deprecated features, 48
audit_log_exclude_accounts system variable, 1686
audit_log_file system variable, 1645, 1686
audit_log_filter table

system table, 1141
audit_log_filter_flush() audit log filtering function, 1676
audit_log_filter_id system variable, 1687
audit_log_filter_remove_filter() audit log filtering function, 1677

5549

audit_log_filter_remove_user() audit log filtering function, 1677
audit_log_filter_set_filter() audit log filtering function, 1678
audit_log_filter_set_user() audit log filtering function, 1679
audit_log_flush system variable, 1687
audit_log_flush_interval_seconds system variable, 1688
audit_log_format system variable, 1688
audit_log_format_unix_timestamp system variable, 1689
audit_log_include_accounts

deprecated features, 48
audit_log_include_accounts system variable, 1689
audit_log_max_size system variable, 1690
audit_log_password_history_keep_days system variable, 1690
audit_log_policy

deprecated features, 48
audit_log_policy system variable, 1692
audit_log_prune_seconds system variable, 1692
audit_log_read() audit log reading function, 1646, 1679
audit_log_read_bookmark() audit log reading function, 1646, 1681
audit_log_read_buffer_size system variable, 1649, 1693
audit_log_rotate() audit log rotate function, 1681
audit_log_rotate_on_size system variable, 1693
audit_log_statement_policy

deprecated features, 48
audit_log_statement_policy system variable, 1694
audit_log_strategy system variable, 1695
Audit_log_total_size status variable, 1696
audit_log_user table

system table, 1141
Audit_log_write_waits status variable, 1696
authentication

FIDO, 1494
for the InnoDB memcached interface, 3544
Kerberos, 1478
LDAP, 1458
multifactor, 1382
SASL, 1458

authentication plugin
authentication_fido, 1494
authentication_fido_client, 1494
authentication_kerberos, 1478
authentication_kerberos_client, 1478
authentication_ldap_sasl, 1458
authentication_ldap_sasl_client, 1458
authentication_ldap_simple, 1458
authentication_pam, 1443
authentication_windows, 1453
authentication_windows_client, 1453
auth_socket, 1492
auth_test_plugin, 1500
caching_sha2_password, 1433
mysql_clear_password, 1442
mysql_clear_plugin, 1458
mysql_native_password, 1432
mysql_no_login, 1489
sha256_password, 1438
test_plugin_server, 1500

authentication plugins
client/server compatibility, 1380

5550

client/server protocol, 1380
default plugin, 1379

authentication server, 6343
authentication_fido authentication plugin, 1494
authentication_fido_client authentication plugin, 1494
authentication_fido_rp_id system variable, 1503
authentication_kerberos authentication plugin, 1478
authentication_kerberos_client authentication plugin, 1478
AUTHENTICATION_KERBEROS_CLIENT_LOG environment variable, 738, 1489
authentication_kerberos_service_key_tab system variable, 1503
authentication_kerberos_service_principal system variable, 1504
AUTHENTICATION_LDAP_CLIENT_LOG environment variable, 738, 1510
authentication_ldap_sasl_auth_method_name system variable, 1504
authentication_ldap_sasl_bind_base_dn system variable, 1505
authentication_ldap_sasl_bind_root_dn system variable, 1506
authentication_ldap_sasl_bind_root_pwd system variable, 1507
authentication_ldap_sasl_ca_path system variable, 1507
authentication_ldap_sasl_group_search_attr system variable, 1507
authentication_ldap_sasl_group_search_filter system variable, 1508
authentication_ldap_sasl_init_pool_size system variable, 1508
authentication_ldap_sasl_log_status system variable, 1509
authentication_ldap_sasl_max_pool_size system variable, 1510
authentication_ldap_sasl_referral system variable, 1510
authentication_ldap_sasl_server_host system variable, 1511
authentication_ldap_sasl_server_port system variable, 1511
Authentication_ldap_sasl_supported_methods status variable, 1065
authentication_ldap_sasl_tls system variable, 1511
authentication_ldap_sasl_user_search_attr system variable, 1512
authentication_ldap_simple_auth_method_name system variable, 1512
authentication_ldap_simple_bind_base_dn system variable, 1513
authentication_ldap_simple_bind_root_dn system variable, 1513
authentication_ldap_simple_bind_root_pwd system variable, 1514
authentication_ldap_simple_ca_path system variable, 1514
authentication_ldap_simple_group_search_attr system variable, 1515
authentication_ldap_simple_group_search_filter system variable, 1515
authentication_ldap_simple_init_pool_size system variable, 1516
authentication_ldap_simple_log_status system variable, 1516
authentication_ldap_simple_max_pool_size system variable, 1517
authentication_ldap_simple_referral system variable, 1517
authentication_ldap_simple_server_host system variable, 1518
authentication_ldap_simple_server_port system variable, 1519
authentication_ldap_simple_tls system variable, 1520
authentication_ldap_simple_user_search_attr system variable, 1520
authentication_pam authentication plugin, 1443
AUTHENTICATION_PAM_LOG environment variable, 738, 1453
authentication_policy system variable, 874, 1379
AUTHENTICATION_POLICY_ADMIN privilege, 1315
authentication_windows authentication plugin, 1453
authentication_windows_client authentication plugin, 1453
authentication_windows_log_level system variable, 877
authentication_windows_use_principal_name system variable, 877
auth_socket authentication plugin, 1492
auth_test_plugin authentication plugin, 1500
auto-generate-sql option

mysqlslap, 631
auto-generate-sql-add-autoincrement option

mysqlslap, 631
auto-generate-sql-execute-number option

5551

mysqlslap, 631
auto-generate-sql-guid-primary option

mysqlslap, 631
auto-generate-sql-load-type option

mysqlslap, 632
auto-generate-sql-secondary-indexes option

mysqlslap, 632
auto-generate-sql-unique-query-number option

mysqlslap, 632
auto-generate-sql-unique-write-number option

mysqlslap, 632
auto-generate-sql-write-number option

mysqlslap, 632
auto-inc lock, 3266
auto-inc option

ndb_desc, 4525
auto-increment, 3219, 3219, 3225, 3226, 6343
auto-increment locking, 6343
auto-rehash option

mysql, 460
auto-repair option

mysqlcheck, 521
auto-vertical-output option

mysql, 461
auto.cnf file, 3663

and SHOW REPLICAS statement, 3136
autocommit, 6344
autocommit mode, 3273
autocommit system variable, 878
AutomaticThreadConfig, 4342
automatic_sp_privileges system variable, 878
AutoReconnect

API and SQL nodes, 4376
autowrapped JSON values, 2256
auto_generate_certs system variable, 879
AUTO_INCREMENT, 358, 2205

and NULL values, 5532
and replication, 3855

auto_increment_increment system variable, 3673
auto_increment_offset system variable, 3675
availability, 6344
AVG(), 2587
AVG(DISTINCT), 2587
avoid_temporal_upgrade system variable, 879

B
B-tree, 6344
B-tree indexes, 1901, 3227
background threads, 3313

read, 3312
write, 3312

backslash
escape character, 2049

backspace (\b), 2050, 2550, 2837
backticks, 6344
backup, 6344
BACKUP Events (NDB Cluster), 4687
backup identifiers

5552

native backup and restore, 4708
backup lock

new features, 30
backup option

myisamchk, 665
myisampack, 678

backup-key option
ndb_print_backup_file, 4572

backup-key-from-stdin option
ndb_print_backup_file, 4572

backup-password option
ndb_print_backup_file, 4572
ndb_restore, 4588

backup-password-from-stdin option
ndb_mgm, 4492
ndb_print_backup_file, 4573
ndb_restore, 4589

backup-path option
ndb_restore, 4588

BackupDataBufferSize, 4333, 4710
BackupDataDir, 4277
BackupDiskWriteSpeedPct, 4333
backupid option

ndb_restore, 4589
BackupLogBufferSize, 4334, 4710
BackupMaxWriteSize, 4335, 4710
BackupMemory, 4334, 4710
BackupReportFrequency, 4335
backups, 1795, 5445

databases and tables, 532, 586
in NDB Cluster, 4582, 4705, 4706, 4706, 4710
in NDB Cluster replication, 4867
InnoDB, 3529
with mysqldump, 1804

backups, troubleshooting
in NDB Cluster, 4711

BackupWriteSize, 4335, 4710
BACKUP_ADMIN privilege, 1315
back_log system variable, 880
base column, 6345
base64-output option

mysqlbinlog, 706
basedir option

mysql.server, 423
mysqld, 842
mysqld_safe, 415

basedir system variable, 880
batch mode, 351
batch option

mysql, 461
batch SQL files, 454
BatchByteSize, 4374
Batched Key Access

optimization, 1853, 1855
batched updates (NDB Cluster Replication), 4863
BatchSize, 4374
BatchSizePerLocalScan, 4290
BEGIN, 2911, 2983

5553

labels, 2983
XA transactions, 2926

BENCHMARK(), 2462
benchmarks, 2018
beta, 6345
BETWEEN ... AND, 2314
bidirectional replication

in NDB Cluster, 4873
NDB Cluster, 4881

big5, 5483
BIGINT data type, 2202
big_tables system variable, 881
BIN(), 2361
BINARY, 2416

deprecated features, 50, 52
binary collation, 2146
BINARY data type, 2222, 2225
binary distributions

installing, 125
binary log, 1167, 6345

event groups, 3784
invisible columns, 2776

binary log encryption, 3818
binary logging

ALTER USER, 3034
and NDB Cluster, 4193
CREATE USER, 3048

binary-as-hex option
mysql, 461

binary-mode option
mysql, 462

binary_log_transaction_compression_stats
performance_schema, 5226

bind-address option
mysql, 462
mysqladmin, 506
mysqlbinlog, 706
mysqlcheck, 521
mysqldump, 542
mysqlimport, 576
mysqlpump, 595
mysqlshow, 617
mysql_upgrade, 445
ndb_mgmd, 4481

bind_address system variable, 881
binlog, 6345
Binlog Dump

thread command, 2020
BINLOG statement, 3155

mysqlbinlog output, 725
binlog-checksum option

mysqld, 3743
binlog-do-db option

mysqld, 3741
binlog-ignore-db option

mysqld, 3743
binlog-row-event-max-size option

mysqlbinlog, 706

5554

mysqld, 3739
BINLOG_ADMIN privilege, 1315
Binlog_cache_disk_use status variable, 1065
binlog_cache_size system variable, 3744
Binlog_cache_use status variable, 1065
binlog_checksum system variable, 3745
binlog_direct_non_transactional_updates system variable, 3745
binlog_encryption system variable, 3746
BINLOG_ENCRYPTION_ADMIN privilege, 1315
binlog_error_action system variable, 3747
binlog_expire_logs_auto_purge system variable, 3748
binlog_expire_logs_seconds, 3747
binlog_format

BLACKHOLE, 3856
deprecated features, 53

binlog_format system variable, 3749
binlog_group_commit_sync_delay, 3751
binlog_group_commit_sync_no_delay_count, 3751
binlog_gtid_simple_recovery, 3771
binlog_index table (OBSOLETE) (see NDB Cluster replication)
binlog_max_flush_queue_time system variable, 3752
binlog_order_commits system variable, 3752
binlog_rotate_encryption_master_key_at_startup system variable, 3753
binlog_rows_query_log_events system variable, 3757
binlog_row_event_max_size system variable, 3753
binlog_row_image system variable, 3754
binlog_row_metadata system variable, 3755
binlog_row_value_options system variable, 3756
Binlog_stmt_cache_disk_use status variable, 1065
binlog_stmt_cache_size system variable, 3757
Binlog_stmt_cache_use status variable, 1065
binlog_transaction_compression system variable, 3758
binlog_transaction_compression_level_zstd system variable, 3759
binlog_transaction_dependency_history_size system variable, 3761
binlog_transaction_dependency_tracking system variable, 3759
BIN_TO_UUID(), 2630
BIT data type, 2201
bit functions, 2439

example, 357
bit operations

bit-value literals, 2061
hexadecimal literals, 2059

bit operators, 2439
bit-value literal introducer, 2060
bit-value literals, 2059

bit operations, 2061
BIT_AND(), 2587
BIT_COUNT, 357
BIT_COUNT(), 2442
BIT_LENGTH(), 2361
BIT_OR, 357
BIT_OR(), 2588
BIT_XOR(), 2589
BLACKHOLE

binlog_format, 3856
replication, 3856

BLACKHOLE storage engine, 3575, 3595
blind query expansion, 2398, 6345

5555

BLOB, 6345
BLOB columns

default values, 2227
indexing, 1897, 2731
inserting binary data, 2051
size, 2272

BLOB data type, 2223, 2227
blob-info option

ndb_desc, 4525
blobs

ndbinfo table, 4746
BLOB_INLINE_SIZE, 2780
Block Nested-Loop

optimization, 1853, 1854
Block Nested-Loop join algorithm, 1841
block-search option

myisamchk, 668
blocked hosts

unblocking, 1111
blocks

ndbinfo table, 4747
block_encryption_mode system variable, 883
BOOL data type, 2201
BOOLEAN data type, 2201
boolean literals, 2061
boolean options, 378
Boolean search, 2393
bottleneck, 6345
bounce, 6346
brackets

square, 2200
buddy allocator, 3483, 6346
buffer, 6346
buffer pool, 1991, 3297, 3302, 3303, 3304, 3305, 3307, 6346

and compressed tables, 3342
monitoring, 3195, 3300, 3309

buffer pool instance, 6346
buffer sizes, 1991, 3297

client, 5439
Buffer()

removed features, 57
Bugfix

MySQL releases, 108
bugs

known, 5537
NDB Cluster

reporting, 4537
reporting, 1, 90

bugs database, 90
bugs.mysql.com, 90
BuildIndexThreads, 4337
BUILD_CONFIG option

CMake, 244
build_id system variable, 883
built-in, 6346
built-in functions

reference, 2279
built-in operators

5556

reference, 2279
bulk loading

for InnoDB tables, 1927
for MyISAM tables, 1936

bulk_insert_buffer_size system variable, 884, 3582
BUNDLE_RUNTIME_LIBRARIES option

CMake, 245
business rules, 6346
Bytes_received status variable, 1065
Bytes_sent status variable, 1065

C
C, 6347
C API, 5439, 5442, 6347

FAQ, 5493
new features, 31

C#, 6347
C++, 5441, 6347
C:\my.cnf option file, 1273
cache, 6347
CACHE INDEX statement, 3155
caches

clearing, 3157
cache_policies table, 3562
caching_sha2_password

authentication method unknown to the client error, 294
cannot be loaded error, 294
is not supported error, 294

caching_sha2_password authentication plugin, 1433
compatibility, 293

caching_sha2_password_auto_generate_rsa_keys system variable, 885
caching_sha2_password_digest_rounds system variable, 884
caching_sha2_password_private_key_path system variable, 885
caching_sha2_password_public_key_path system variable, 886
Caching_sha2_password_rsa_public_key status variable, 1065
calculating

aggregate value for a set of rows, 2586
cardinality, 3124
dates, 341

calendar, 2218
CALL, 2808
can't create/write to file, 5518
Can't reopen table

error message, 5536
CAN_ACCESS_COLUMN(), 2627
CAN_ACCESS_DATABASE(), 2627
CAN_ACCESS_TABLE(), 2628
CAN_ACCESS_USER(), 2628
CAN_ACCESS_VIEW(), 2628
cardinality, 1873, 6347
carriage return (\r), 2050, 2550, 2837
CASE, 2321, 2986
case sensitivity

access checking, 1333
account names, 1335
in identifiers, 2065
in names, 2065
in searches, 5529

5557

in string comparisons, 2374
of database names, 96
of replication filtering options, 3807
of table names, 96

CAST, 2417
cast functions, 2415

new features, 32
cast operators, 2415
casts, 2305, 2312, 2415
catalogs table

data dictionary table, 1136
CC environment variable, 266, 738
CEIL(), 2329
CEILING(), 2329
Centroid()

removed features, 57
.cfg file, 6347
cflags option

mysql_config, 734
change buffer, 3198, 6348

monitoring, 3200
change buffering, 6348

disabling, 3199
CHANGE MASTER TO, 2934

in NDB Cluster, 4860
CHANGE REPLICATION FILTER, 2950
CHANGE REPLICATION SOURCE TO, 2952

in NDB Cluster, 4860
Change user

thread command, 2020
changes to privileges, 1362
changing

column, 2678
field, 2678
socket location, 422, 5528
table, 2669, 2680, 5536

Changing master
thread state, 2032

Changing replication source
thread state, 2033

channel, 3793
commands, 3794

CHAR data type, 2220, 2222
CHAR VARYING data type, 2222
CHAR(), 2361
CHARACTER data type, 2222
character set introducer, 2131
character set repertoire, 2155
character sets, 2118

adding, 2178
and replication, 3856
Asian, 2172
Baltic, 2171
binary, 2176
Central European, 2169
Cyrillic, 2171
Middle East, 2170
new features, 24

5558

repertoire, 2121
restrictions, 2177
South European, 2170
Unicode, 2160
West European, 2168

CHARACTER VARYING data type, 2222
character-set-client-handshake option

mysqld, 842
character-sets-dir option

myisamchk, 666
myisampack, 678
mysql, 462
mysqladmin, 506
mysqlbinlog, 706
mysqlcheck, 522
mysqldump, 553
mysqlimport, 576
mysqlpump, 595
mysqlshow, 617
mysql_upgrade, 445
ndbd, 4464
ndbinfo_select_all, 4474
ndb_blob_tool, 4498
ndb_config, 4512
ndb_delete_all, 4516
ndb_desc, 4525
ndb_drop_index, 4529
ndb_drop_table, 4534
ndb_import, 4544
ndb_index_stat, 4558
ndb_mgm, 4492
ndb_mgmd, 4481
ndb_move_data, 4564
ndb_restore, 4589
ndb_select_all, 4618
ndb_select_count, 4624
ndb_show_tables, 4628
ndb_waiter, 4642

characters
multibyte, 2181

CHARACTER_LENGTH(), 2363
CHARACTER_SETS

INFORMATION_SCHEMA table, 5017
character_sets table

data dictionary table, 1137
character_sets_dir system variable, 889
character_set_client system variable, 886
character_set_connection system variable, 887
character_set_database system variable, 887
character_set_filesystem system variable, 887
character_set_results system variable, 888
character_set_server system variable, 888
character_set_system system variable, 888
charset command

mysql, 486
charset option

comp_err, 429
CHARSET(), 2463

5559

CHAR_LENGTH(), 2362
CHECK constraints

ALTER TABLE, 2682
CREATE TABLE, 2765
RENAME TABLE, 2807
SHOW CREATE TABLE, 3108
with JSON_SCHEMA_VALID(), 2560

check option
myisamchk, 664
mysqlcheck, 522

check options
myisamchk, 664

CHECK TABLE
and partitioning, 4943

CHECK TABLE statement, 3079
check-missing option

ndb_blob_tool, 4498
check-only-changed option

myisamchk, 664
mysqlcheck, 522

check-orphans option
ndb_blob_tool, 4498

check-table-functions option
mysqld, 842

check-upgrade option
mysqlcheck, 522

checking
tables for errors, 1814

Checking master version
thread state, 2030

checking permissions
thread state, 2023

Checking source version
thread state, 2030

Checking table
thread state, 2023

checkpoint, 6348
CHECKPOINT Events (NDB Cluster), 4682
Checksum, 4442
checksum, 6348
Checksum (NDB Cluster), 4451
checksum errors, 222
CHECKSUM TABLE

and replication, 3856
CHECKSUM TABLE statement, 3083
CHECK_CONSTRAINTS

INFORMATION_SCHEMA table, 5018
check_constraints table

data dictionary table, 1137
check_proxy_users system variable, 889, 1392
child table, 6349
Chinese, Japanese, Korean character sets

frequently asked questions, 5483
choosing

a MySQL version, 107
data types, 2274

chroot option
mysqld, 843

5560

CIDR notation
in account names, 1336

circular replication
in NDB Cluster, 4846, 4873, 4881

CJK (Chinese, Japanese, Korean)
Access, PHP, etc., 5483
availability of specific characters, 5483
big5, 5483
character sets available, 5483
characters displayed as question marks, 5483
CJKV, 5483
collations, 5483, 5483
conversion problems with Japanese character sets, 5483
data truncation, 5483
Database and table names, 5483
documentation in Chinese, 5483
documentation in Japanese, 5483
documentation in Korean, 5483
FAQ, 5483
gb2312, gbk, 5483
Japanese character sets, 5483
Korean character set, 5483
LIKE and FULLTEXT, 5483
MySQL 4.0 behavior, 5483
ORDER BY treatment, 5483, 5483
problems with Access, PHP, etc., 5483
problems with Big5 character sets (Chinese), 5483
problems with data truncation, 5483
problems with euckr character set (Korean), 5483
problems with GB character sets (Chinese), 5483
problems with LIKE and FULLTEXT, 5483
problems with Yen sign (Japanese), 5483
rejected characters, 5483
sort order problems, 5483, 5483
sorting problems, 5483, 5483
testing availability of characters, 5483
Unicode collations, 5483
Vietnamese, 5483
Yen sign, 5483

ClassicFragmentation
ndbmtd, 4343

clean page, 6349
clean shutdown, 1134, 1269, 3871, 6349
cleaning up

thread state, 2023
clear command

mysql, 486
Clearing

thread state, 2034
clearing

caches, 3157
client, 6349

signal handling, 742
client connections, 1104
client libraries, 6349
client programs, 365
client tools, 5439
client-side prepared statement, 6349

5561

clients
debugging, 1279

CLOB, 6349
CLONE, 3094
clone plugin, 1231

clone_progress table, 1245
clone_status table, 1245
cloning compressed data, 1240
cloning data locally, 1233
cloning encrypted data, 1240
cloning for replication, 1241
cloning remote data, 1234, 1237
cloning to a named directory, 1238
Com_clone status variable, 1248
configuring an encrypted connection, 1238
directories and files, 1243
failure handling, 1243
installing, 1232
limitations, 1256
monitoring, 1244
monitoring stage events, 1246
new features, 33
performance schema instruments, 1247
remote cloning prerequisites, 1235
stopping a cloning operation, 1249
system variables, 1249

CLONE_ADMIN privilege, 1316
clone_autotune_concurrency system variable, 1250
clone_block_ddl system variable, 1251
clone_buffer_size system variable, 1250
clone_ddl_timeout system variable, 1252
clone_delay_after_data_drop system variable, 1251
clone_donor_timeout_after_network_failure variable, 1252
clone_enable_compression system variable, 1253
clone_max_concurrency system variable, 1253
clone_max_data_bandwidth system variable, 1253
clone_max_network_bandwidth system variable, 1254
clone_progress table, 1245

performance_schema, 5274
clone_ssl_ca system variable, 1254
clone_ssl_cert system variable, 1255
clone_ssl_key system variable, 1255
clone_status table, 1245

performance_schema, 5273
clone_valid_donor_list system variable, 1255
cloning data, 1231
cloning tables, 2753
CLOSE, 2991
Close stmt

thread command, 2021
closing

tables, 1914
closing tables

thread state, 2023
cluster database (OBSOLETE) (see NDB Cluster replication)
cluster logs, 4679, 4680
cluster-config-suffix option

ndb_config, 4504

5562

ndb_mgmd, 4481
clustered index, 6349

InnoDB, 3226
Clustering (see NDB Cluster)
CLUSTERLOG commands (NDB Cluster), 4680
CLUSTERLOG STATISTICS command (NDB Cluster), 4688
cluster_locks

ndbinfo table, 4747
cluster_operations

ndbinfo table, 4748
cluster_replication database (OBSOLETE) (see NDB Cluster replication)
cluster_transactions

ndbinfo table, 4750
CMake

ADD_GDB_INDEX option, 249
BUILD_CONFIG option, 244
BUNDLE_RUNTIME_LIBRARIES option, 245
CMAKE_BUILD_TYPE option, 245
CMAKE_CXX_FLAGS option, 263
CMAKE_C_FLAGS option, 263
CMAKE_INSTALL_PREFIX option, 245
COMPILATION_COMMENT option, 249
COMPILATION_COMMENT_SERVER option, 249
COMPRESS_DEBUG_SECTIONS option, 249
CPACK_MONOLITHIC_INSTALL option, 245
DEFAULT_CHARSET option, 250
DEFAULT_COLLATION option, 250
DISABLE_PSI_COND option, 250
DISABLE_PSI_DATA_LOCK option, 251
DISABLE_PSI_ERROR option, 251
DISABLE_PSI_FILE option, 250
DISABLE_PSI_IDLE option, 250
DISABLE_PSI_MEMORY option, 250
DISABLE_PSI_METADATA option, 250
DISABLE_PSI_MUTEX option, 250
DISABLE_PSI_PS option, 251
DISABLE_PSI_RWLOCK option, 250
DISABLE_PSI_SOCKET option, 250
DISABLE_PSI_SP option, 250
DISABLE_PSI_STAGE option, 250
DISABLE_PSI_STATEMENT option, 250
DISABLE_PSI_STATEMENT_DIGEST option, 251
DISABLE_PSI_TABLE option, 251
DISABLE_PSI_THREAD option, 251
DISABLE_PSI_TRANSACTION option, 251
DISABLE_SHARED option, 251
DOWNLOAD_BOOST option, 251
DOWNLOAD_BOOST_TIMEOUT option, 251
ENABLED_LOCAL_INFILE option, 252, 1299
ENABLED_PROFILING option, 252
ENABLE_DOWNLOADS option, 251
ENABLE_EXPERIMENTAL_SYSVARS option, 252
ENABLE_GCOV option, 252
ENABLE_GPROF option, 252
FORCE_COLORED_OUTPUT option, 245
FORCE_INSOURCE_BUILD option, 245
FORCE_UNSUPPORTED_COMPILER option, 252
FPROFILE_GENERATE option, 252

5563

FPROFILE_USE option, 252
HAVE_PSI_MEMORY_INTERFACE option, 253
IGNORE_AIO_CHECK option, 253
INSTALL_BINDIR option, 245
INSTALL_DOCDIR option, 245
INSTALL_DOCREADMEDIR option, 246
INSTALL_INCLUDEDIR option, 246
INSTALL_INFODIR option, 246
INSTALL_LAYOUT option, 246
INSTALL_LIBDIR option, 246
INSTALL_MANDIR option, 246
INSTALL_MYSQLKEYRINGDIR option, 246
INSTALL_MYSQLSHAREDIR option, 246
INSTALL_MYSQLTESTDIR option, 246
INSTALL_PKGCONFIGDIR option, 246
INSTALL_PLUGINDIR option, 247
INSTALL_PRIV_LIBDIR option, 247
INSTALL_SBINDIR option, 247
INSTALL_SECURE_FILE_PRIVDIR option, 247
INSTALL_SHAREDIR option, 247
INSTALL_STATIC_LIBRARIES option, 247
INSTALL_SUPPORTFILESDIR option, 247
LINK_RANDOMIZE option, 247
LINK_RANDOMIZE_SEED option, 247
MAX_INDEXES option, 253
MEMCACHED_HOME option, 264
MSVC_CPPCHECK option, 259
MUTEX_TYPE option, 253
MYSQLX_TCP_PORT option, 253
MYSQLX_UNIX_ADDR option, 253
MYSQL_DATADIR option, 247
MYSQL_MAINTAINER_MODE option, 253
MYSQL_PROJECT_NAME option, 253
MYSQL_TCP_PORT option, 254
MYSQL_UNIX_ADDR option, 254
MYSQL_VERSION file, 267
NDB_UTILS_LINK_DYNAMIC, 264
ODBC_INCLUDES option, 248
ODBC_LIB_DIR option, 248
OPTIMIZER_TRACE option, 254
OPTIMIZE_SANITIZER_BUILDS option, 263
options, 233
REPRODUCIBLE_BUILD option, 254
running after prior invocation, 229, 265
SHOW_SUPPRESSED_COMPILER_WARNINGS option, 254
SYSCONFDIR option, 248
SYSTEMD_PID_DIR option, 248
SYSTEMD_SERVICE_NAME option, 248
TMPDIR option, 248
USE_LD_GOLD option, 254
USE_LD_LLD option, 254
WIN_DEBUG_NO_INLINE option, 254
WITHOUT_SERVER option, 263
WITH_ANT option, 254
WITH_ASAN option, 254
WITH_ASAN_SCOPE option, 254
WITH_AUTHENTICATION_CLIENT_PLUGINS option, 255
WITH_AUTHENTICATION_LDAP option, 255

5564

WITH_AUTHENTICATION_PAM option, 255
WITH_AWS_SDK option, 255
WITH_BOOST option, 255
WITH_BUILD_ID option, 244
WITH_BUNDLED_LIBEVENT option, 264
WITH_BUNDLED_MEMCACHED option, 264
WITH_CLASSPATH option, 264
WITH_CLIENT_PROTOCOL_TRACING option, 256
WITH_CURL option, 256
WITH_DEBUG option, 256
WITH_DEFAULT_COMPILER_OPTIONS option, 263
WITH_DEFAULT_FEATURE_SET option, 256
WITH_DEVELOPER_ENTITLEMENTS option, 253
WITH_EDITLINE option, 256
WITH_ERROR_INSERT option, 264
WITH_FIDO option, 257
WITH_GMOCK option, 257
WITH_ICU option, 257
WITH_INNODB_EXTRA_DEBUG option, 257
WITH_INNODB_MEMCACHED option, 257
WITH_JEMALLOC option, 258
WITH_KEYRING_TEST option, 258
WITH_LIBEVENT option, 258
WITH_LIBWRAP option, 258
WITH_LOCK_ORDER option, 258
WITH_LSAN option, 258
WITH_LTO option, 258
WITH_LZ4 option, 258
WITH_LZMA option, 258
WITH_MECAB option, 259
WITH_MSAN option, 259
WITH_MSCRT_DEBUG option, 259
WITH_MYSQLX option, 259
WITH_NDB option, 264
WITH_NDBAPI_EXAMPLES option, 264
WITH_NDBCLUSTER option, 265
WITH_NDBCLUSTER_STORAGE_ENGINE option, 265
WITH_NDBMTD option, 265
WITH_NDB_DEBUG option, 265
WITH_NDB_JAVA option, 265
WITH_NDB_PORT option, 265
WITH_NDB_TEST option, 265
WITH_NUMA option, 259
WITH_PACKAGE_FLAGS option, 259
WITH_PLUGIN_NDBCLUSTER option, 265
WITH_PROTOBUF option, 260
WITH_RAPID option, 260
WITH_RAPIDJSON option, 260
WITH_RE2 option, 260
WITH_ROUTER option, 260
WITH_SASL option, 260
WITH_SSL option, 260
WITH_SYSTEMD option, 261
WITH_SYSTEMD_DEBUG option, 261
WITH_SYSTEM_LIBS option, 261
WITH_TCMALLOC option, 261
WITH_TEST_TRACE_PLUGIN option, 262
WITH_TSAN option, 262

5565

WITH_UBSAN option, 262
WITH_UNIT_TESTS option, 262
WITH_UNIXODBC option, 262
WITH_VALGRIND option, 262
WITH_WIN_JEMALLOC option, 262
WITH_ZLIB option, 262
WITH_ZSTD option, 263

CMakeCache.txt file, 265
CMAKE_BUILD_TYPE option

CMake, 245
CMAKE_CXX_FLAGS option

CMake, 263
CMAKE_C_FLAGS option

CMake, 263
CMAKE_INSTALL_PREFIX option

CMake, 245
COALESCE(), 2315
code injection

XPath, 2438
coercibility

collation, 2145
COERCIBILITY(), 2463
cold backup, 6350
collating

strings, 2181
collation

adding, 2181
coercibility, 2145
INFORMATION_SCHEMA, 2150
modifying, 2182

COLLATION(), 2463
collations, 2118

Asian, 2172
Baltic, 2171
binary, 2146, 2176
Central European, 2169
Cyrillic, 2171
Middle East, 2170
naming conventions, 2124
NO PAD, 2148, 2162, 2225
PAD SPACE, 2148, 2162, 2225
South European, 2170
Unicode, 2160
West European, 2168
_ai suffix, 2125
_as suffix, 2125
_bin suffix, 2125, 2146
_ci suffix, 2125
_ks suffix, 2125
_ss suffix, 2125

COLLATIONS
INFORMATION_SCHEMA table, 5018

collations table
data dictionary table, 1137

COLLATION_CHARACTER_SET_APPLICABILITY
INFORMATION_SCHEMA table, 5019

collation_connection system variable, 889
collation_database system variable, 890

5566

collation_server system variable, 890
color option

ndb_top, 4636
column, 6350

changing, 2678
types, 2199

column alias
problems, 5532
quoting, 2062, 5532

column comment options (NDB), 2779
column comments, 2732
column format, 2732
column index, 6350
column index prefixes and partition by KEY

deprecated features, 52
column names

case sensitivity, 2065
column prefix, 6350
column storage, 2733
column-names option

mysql, 462
column-statistics option

mysqldump, 566
mysqlpump, 595

column-type-info option
mysql, 462

columns
displaying, 613
indexes, 1897
names, 2061
other types, 2274
selecting, 339
storage requirements, 2269

COLUMNS
INFORMATION_SCHEMA table, 5019

columns option
mysqlimport, 576

columns partitioning, 4911
columns per table

maximum, 1921
columns table

data dictionary table, 1137
COLUMNS_EXTENSIONS

INFORMATION_SCHEMA table, 5022
columns_priv table

system table, 1139, 1325
COLUMN_PRIVILEGES

INFORMATION_SCHEMA table, 5023
COLUMN_STATISTICS

INFORMATION_SCHEMA table, 5023
column_statistics table

system table, 1137, 1988
column_type_elements table

data dictionary table, 1137
comma-separated values data, reading, 2836, 2863
command interceptor, 6350
command option precedence, 369
command options

5567

mysql, 454
mysqladmin, 503
mysqld, 839

command options (NDB Cluster)
mysqld, 4381
ndbd, 4462
ndbinfo_select_all, 4473
ndb_mgm, 4490
ndb_mgmd, 4479

command syntax, 4
command-line history

mysql, 492
command-line tool, 153, 454
commands

for binary distribution, 127
commands option

mysql, 464
commands out of sync, 5519
comment syntax, 2115
comments

adding, 2115
starting, 101

comments option
mysql, 465
mysqldump, 551

COMMIT, 2911
XA transactions, 2926

commit, 6350
commit option

mysqlslap, 633
committing alter table to storage engine

thread state, 2023
Committing events to binlog

thread state, 2033
common table expressions, 354, 2899

new features, 29
optimization, 1874, 1883

compact option
mysqldump, 559

compact row format, 3352, 6350
comparison operators, 2311
comparisons

access checking, 1333
account names, 1335
trailing spaces, 2148

compatibility
with ODBC, 997, 2203, 2306, 2317, 2732, 2866
with Oracle, 96, 2595, 2678, 3169
with PostgreSQL, 97
with standard SQL, 94

compatible option
mysqldump, 559

COMPILATION_COMMENT option
CMake, 249

COMPILATION_COMMENT_SERVER option
CMake, 249

compiling MySQL server
problems, 265

5568

complete-insert option
mysqldump, 560
mysqlpump, 595

completion_type system variable, 890
component

log_filter_dragnet, 1191
log_filter_internal, 1191
log_sink_internal, 1192
log_sink_json, 1192
log_sink_syseventlog, 1192
log_sink_test, 1193
query_attributes, 1193
scheduler, 1193

component installing
component_keyring_encrypted_file, 1541
component_keyring_file, 1541
component_masking, 1729
component_masking_functions, 1729
validate_password, 1528

component table
system table, 1139

component uninstalling
Data Masking, 1729
validate_password, 1528

component-dir option
mysql_migrate_keyring, 693

components, 1189
installing, 1189, 3090
security, 1431
uninstalling, 1189, 3093

component_keyring_encrypted_file component, 3383
installing, 1541

component_keyring_encrypted_file keyring component, 1548
component_keyring_file component, 3383

installing, 1541
component_keyring_file keyring component, 1546
component_keyring_oci keyring component, 1569
component_masking component

installing, 1729
component_masking_functions component

installing, 1729
component_scheduler.enabled system variable, 891
component_scheduler_tasks table

performance_schema, 5303
composite index, 6351
composite partitioning, 4923
compound statements, 2983
compress option, 394

mysql, 465
mysqladmin, 507
mysqlbinlog, 707
mysqlcheck, 522
mysqldump, 542
mysqlimport, 576
mysqlpump, 595
mysqlshow, 617
mysqlslap, 633
mysql_upgrade, 446

5569

ndbxfrm, 4648
COMPRESS(), 2456
compress-output option

mysqlpump, 596
compressed backup, 6351
compressed row format, 3354, 6351
compressed table, 6351
compressed tables, 677, 3585
CompressedBackup, 4336
CompressedLCP, 4306
compression, 3333, 3347, 6351

algorithms, 3340
application and schema design, 3338
BLOBs, VARCHAR and TEXT, 3342
buffer pool considerations, 3342
compressed page size, 3339
configuration characteristics, 3339
connection, 408, 4105
data and indexes, 3341
data characteristics, 3336
enabling for a table, 3334
implementation, 3340
information schema, 3483
KEY_BLOCK_SIZE, 3339
log file format, 3343
modification log, 3341
monitoring, 3339
overflow pages, 3342
overview, 3333
tuning, 3336
workload characteristics, 3338

compression failure, 6351
Compression status variable, 1066
compression-algorithms option, 395

mysql, 466
mysqladmin, 507
mysqlbinlog, 707
mysqlcheck, 523
mysqldump, 542
mysqlimport, 577
mysqlpump, 596
mysqlshow, 617
mysqlslap, 633
mysql_upgrade, 446

Compression_algorithm status variable, 1066
Compression_level status variable, 1067
COMPRESS_DEBUG_SECTIONS option

CMake, 249
comp_err, 364, 428

charset option, 429
debug option, 429
debug-info option, 429
errmsg-file option, 430
header-file option, 430
help option, 429
in-file option, 430
in-file-errlog option, 430
in-file-toclient option, 430

5570

name-file option, 431
out-dir option, 431
out-file option, 431
version option, 431

Com_alter_db_upgrade
removed features, 58

CONCAT(), 2363
concatenation

string, 2049, 2363
CONCAT_WS(), 2363
concurrency, 3186, 6352

of commits, 3418
of threads, 3476
tickets, 3420

concurrency option
mysqlslap, 633

concurrent inserts, 1999, 2001
concurrent_insert system variable, 892
condition handling

INOUT parameters, 3018
OUT parameters, 3018

Conditions, 2992
conditions, 3117, 3153
cond_instances table

performance_schema, 5180
config-binary-file option

ndb_config, 4505
config-cache option

ndb_mgmd, 4482
config-file option

my_print_defaults, 735
ndb_config, 4506
ndb_mgmd, 4482

config.ini (NDB Cluster), 4217, 4253, 4254, 4490
configdir option

ndb_mgmd, 4483
ConfigGenerationNumber, 4380
configinfo option

ndb_config, 4504
configuration

NDB Cluster, 4232
new features, 31
server, 747

configuration file, 6352
configuration files, 1397
configure action

MySQLInstallerConsole, 155
configuring backups

in NDB Cluster, 4710
configuring NDB Cluster, 4196, 4229, 4490, 4713
Configuring NDB Cluster (concepts), 4140
config_from_node option

ndb_config, 4506
config_nodes

ndbinfo table, 4751
config_options table, 3562
config_params

ndbinfo table, 4752

5571

config_values
ndbinfo table, 4752

conflict detection status variables
NDB Cluster Replication, 4890

conflict resolution
enabling, 4882
NDB Cluster Replication, 4881
ndb_replication table, 4856

Connect
thread command, 2021

connect command
mysql, 486

CONNECT command (NDB Cluster), 4655
connect option

ndb_restore, 4589
Connect Out

thread command, 2021
connect-delay option

ndbd, 4464
ndbmtd, 4464

connect-expired-password option
mysql, 466

connect-retries option
ndbd, 4464
ndbinfo_select_all, 4474
ndbmtd, 4464
ndb_blob_tool, 4498
ndb_config, 4513
ndb_delete_all, 4516
ndb_desc, 4525
ndb_drop_index, 4530
ndb_drop_table, 4534
ndb_import, 4544
ndb_index_stat, 4558
ndb_mgm, 4492
ndb_mgmd, 4483
ndb_move_data, 4565
ndb_restore, 4589
ndb_select_all, 4618
ndb_select_count, 4624
ndb_show_tables, 4628
ndb_waiter, 4642

connect-retry-delay option
ndbd, 4465
ndbinfo_select_all, 4475
ndbmtd, 4465
ndb_blob_tool, 4498
ndb_config, 4513
ndb_delete_all, 4516
ndb_desc, 4525
ndb_drop_index, 4530
ndb_drop_table, 4534
ndb_import, 4544
ndb_index_stat, 4558
ndb_mgm, 4492
ndb_mgmd, 4483
ndb_move_data, 4564
ndb_restore, 4590

5572

ndb_select_all, 4618
ndb_select_count, 4624
ndb_show_tables, 4628
ndb_waiter, 4643

connect-string option
ndbd, 4465
ndbinfo_select_all, 4475
ndb_blob_tool, 4498
ndb_config, 4512
ndb_delete_all, 4516
ndb_desc, 4526
ndb_drop_index, 4530
ndb_drop_table, 4535
ndb_import, 4545
ndb_index_stat, 4558
ndb_mgm, 4493
ndb_mgmd, 4483
ndb_move_data, 4565
ndb_restore, 4590
ndb_select_all, 4618
ndb_select_count, 4624
ndb_show_tables, 4629
ndb_waiter, 4643

connect-timeout option
mysql, 466
mysqladmin, 507

ConnectBackoffMaxTime, 4378
ConnectCheckIntervalDelay, 4316
connecting

parameters, 398
remotely with SSH, 1428
to the server, 329, 395
using a DNS SRV record, 405
using a URI-like connection string, 398, 402
using key-value pairs, 398, 404
verification, 1337

Connecting to master
thread state, 2030

Connecting to source
thread state, 2030

connection, 6352
aborted, 5517

connection compression
classic MySQL protocol, 408
X Protocol, 4105

connection control table reference
INFORMATION_SCHEMA, 5118

CONNECTION Events (NDB Cluster), 4682
connection interface

administrative, 1104
main, 1104

connection management, 1103
new features, 31

connection pool, 6352
connection string, 6352 (see NDB Cluster)
connection-server-id option

mysqlbinlog, 707
connection-timeout option

5573

ndb_error_reporter, 4537
ConnectionMap, 4370
connections option

ndb_config, 4506
ndb_import, 4544

Connections status variable, 1067
CONNECTION_ADMIN privilege, 1316
CONNECTION_CONTROL plugin

installing, 1521
status variables, 1526
system variables, 1525

Connection_control_delay_generated status variable, 1526
connection_control_failed_connections_threshold system variable, 1525
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS

INFORMATION_SCHEMA table, 5118
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS plugin

installing, 1521
connection_control_max_connection_delay system variable, 1525
connection_control_min_connection_delay system variable, 1526
Connection_errors_accept status variable, 1067
Connection_errors_internal status variable, 1067
Connection_errors_max_connections status variable, 1067
Connection_errors_peer_address status variable, 1067
Connection_errors_select status variable, 1067
Connection_errors_tcpwrap status variable, 1067
CONNECTION_ID(), 2463
connection_memory_chunk_size system variable, 893
connection_memory_limit system variable, 893
connector, 6352
Connector/C++, 5439, 5441, 6352
Connector/J, 5439, 5442, 6353
Connector/NET, 5439, 5442, 6353
Connector/Node.js, 5439, 5442
Connector/ODBC, 5439, 5442, 6353
Connector/PHP, 6353
Connector/Python, 5439, 5442
Connectors, 5439
connect_timeout system variable, 892
consistent read, 6353
consistent reads, 3274
console option

mysqld, 843
const table

optimizer, 1944, 2860
constant table, 1824
constraint, 6353
constraints, 101

foreign keys, 2758
containers table, 3562
Contains()

removed features, 57
context option

ndb_desc, 4526
continue option

ndb_import, 4545
Control+C

statement termination, 454, 480, 2906
control-directory-number option

5574

ndb_print_backup_file, 4573
CONV(), 2329
conventions

syntax, 2
typographical, 2

CONVERT, 2421
CONVERT TO, 2683
converting HEAP to ondisk

thread state, 2023
CONVERT_TZ(), 2339
ConvexHull()

removed features, 57
copy to tmp table

thread state, 2023
copying databases, 324
copying tables, 2754
Copying to group table

thread state, 2023
Copying to tmp table

thread state, 2023
Copying to tmp table on disk

thread state, 2023
core-file option, 3310

mysqld, 843
ndbd, 4465
ndbinfo_select_all, 4474
ndb_blob_tool, 4498
ndb_config, 4512
ndb_delete_all, 4516
ndb_desc, 4526
ndb_drop_index, 4530
ndb_drop_table, 4535
ndb_import, 4545
ndb_index_stat, 4558
ndb_mgm, 4493
ndb_mgmd, 4484
ndb_move_data, 4565
ndb_restore, 4590
ndb_select_all, 4618
ndb_select_count, 4625
ndb_show_tables, 4629
ndb_waiter, 4643

core-file-size option
mysqld_safe, 415

core_file system variable, 894, 3310
correct-checksum option

myisamchk, 666
correlated subqueries, 2880
corruption, 3569

InnoDB, 3530
COS(), 2329
cost model

optimizer, 1985
COT(), 2329
count option

innochecksum, 650
myisam_ftdump, 656
mysqladmin, 507

5575

mysqlshow, 618
COUNT(), 2590
COUNT(DISTINCT), 2591
counter, 6353
counters

ndbinfo table, 4755
counting

table rows, 346
covering index, 6354
CPACK_MONOLITHIC_INSTALL option

CMake, 245
CPU-bound, 6354
cpudata

ndbinfo table, 4757
cpudata_1sec

ndbinfo table, 4757
cpudata_20sec

ndbinfo table, 4758
cpudata_50ms

ndbinfo table, 4759
cpuinfo

ndbinfo table, 4760
cpustat

ndbinfo table, 4760
cpustat_1sec

ndbinfo table, 4762
cpustat_20sec

ndbinfo table, 4763
cpustat_50ms

ndbinfo table, 4761
crash, 1273, 6354

recovery, 1813
repeated, 5524
replication, 3871

crash recovery, 6354
InnoDB, 3530, 3532

crash-safe replication, 3703, 3832
CrashOnCorruptedTuple, 4306
CRC32(), 2330
CREATE ... IF NOT EXISTS

and replication, 3856
CREATE DATABASE, 2694
Create DB

thread command, 2021
CREATE EVENT, 2695

and replication, 3865
CREATE FUNCTION, 2715
CREATE FUNCTION statement, 3089
CREATE INDEX, 2700
CREATE LOGFILE GROUP, 2714

(see also NDB Cluster Disk Data)
CREATE NODEGROUP command (NDB Cluster), 4655
create option

mysqlslap, 633
CREATE privilege, 1309
CREATE PROCEDURE, 2715
CREATE RESOURCE GROUP statement, 3072
CREATE ROLE privilege, 1309

5576

CREATE ROLE statement, 3035
CREATE ROUTINE privilege, 1309
CREATE SCHEMA, 2694
CREATE SERVER, 2721
CREATE SPATIAL REFERENCE SYSTEM, 2722
CREATE TABLE, 2726

DIRECTORY options
and replication, 3862

KEY_BLOCK_SIZE, 3339
NDB_COLUMN options, 2780
NDB_TABLE options, 2783
options for table compression, 3334
ROW_FORMAT, 3354

CREATE TABLE ... SELECT
and replication, 3857

CREATE TABLESPACE, 2786
general tablespace, 2786
undo tablespace, 2786

CREATE TABLESPACE privilege, 1309
CREATE TEMPORARY TABLE

deprecated features, 50
CREATE TEMPORARY TABLES privilege, 1309
CREATE TRIGGER, 2793
CREATE USER privilege, 1309
CREATE USER statement, 1342, 1363, 3035
CREATE VIEW, 2795
CREATE VIEW privilege, 1309
create-options option

mysqldump, 560
create-schema option

mysqlslap, 634
Created_tmp_disk_tables status variable, 1067
Created_tmp_files status variable, 1068
Created_tmp_tables status variable, 1068
create_admin_listener_thread system variable, 894
create_asymmetric_priv_key(), 1780
create_asymmetric_priv_key() legacy function, 1785
create_asymmetric_pub_key(), 1781
create_asymmetric_pub_key() legacy function, 1785
create_dh_parameters() legacy function, 1785
create_digest(), 1781
create_digest() legacy function, 1786
create_synonym_db() procedure

sys schema, 5407
creating

bug reports, 90
database, 2694
databases, 333
default startup options, 371
loadable function, 3089
schema, 2694
tables, 335

Creating index
thread state, 2023

creating roles, 3035
Creating sort index

thread state, 2023
creating table

5577

thread state, 2023
Creating tmp table

thread state, 2024
creating user accounts, 3035
CROSS JOIN, 2863
Crosses()

removed features, 57
CRUD, 6354
CR_SERVER_GONE_ERROR, 5515
CR_SERVER_LOST_ERROR, 5515
CSV data, reading, 2836, 2863
csv option

mysqlslap, 634
CSV storage engine, 3575, 3592
csvopt option

ndb_import, 4545
cte_max_recursion_depth system variable, 894
CUME_DIST(), 2609
CURDATE(), 2340
current row

window functions, 2616
CURRENT_DATE, 2340
CURRENT_ROLE(), 2464
CURRENT_TIME, 2340
CURRENT_TIMESTAMP, 2340
Current_tls_ca status variable, 1068
Current_tls_capath status variable, 1068
Current_tls_cert status variable, 1068
Current_tls_cipher status variable, 1068
Current_tls_ciphersuites status variable, 1069
Current_tls_crl status variable, 1069
Current_tls_crlpath status variable, 1069
Current_tls_key status variable, 1069
Current_tls_version status variable, 1069
CURRENT_USER(), 2464
cursor, 6354
Cursors, 2990
CURTIME(), 2340
CXX environment variable, 266, 738
cxxflags option

mysql_config, 734

D
Daemon

thread command, 2021
daemon option

ndb_mgmd, 4484
daemonize option

mysqld, 844
daemon_keyring_proxy_plugin plugin, 1256
daemon_memcached_enable_binlog system variable, 3400
daemon_memcached_engine_lib_name system variable, 3401
daemon_memcached_engine_lib_path system variable, 3401
daemon_memcached_option system variable, 3401
daemon_memcached_r_batch_size system variable, 3402
daemon_memcached_w_batch_size system variable, 3402
data

importing, 495, 572

5578

loading into tables, 336
retrieving, 337
size, 1911

data dictionary, 3177, 6354
benefits, 3177
dictionary object cache, 3179
INFORMATION_SCHEMA integration, 3180
limitations, 3184
metadata file removal, 3178
new features, 9
operational implications, 3182
schema, 3177
transactional storage, 3179

data dictionary tables
catalogs table, 1136
character_sets table, 1137
check_constraints table, 1137
collations table, 1137
columns table, 1137
column_type_elements table, 1137
dd_properties table, 1137
events table, 1137
foreign_keys table, 1137
foreign_key_column_usage table, 1137
indexes table, 1137
index_column_usage table, 1137
index_partitions table, 1137
index_stats table, 1137
innodb_ddl_log table, 1137
parameters table, 1137
parameter_type_elements table, 1137
resource_groups table, 1137
routines table, 1137
schemata table, 1137
st_spatial_reference_systems table, 1137
tables table, 1137
tablespaces table, 1137
tablespace_files table, 1137
table_partitions table, 1137
table_partition_values table, 1137
table_stats table, 1137
triggers table, 1137
view_routine_usage table, 1138
view_table_usage table, 1138

data directory, 6355
mysql_upgrade_info file, 292, 442

DATA DIRECTORY
and replication, 3862

data encryption, 3383
data files, 6355
data masking components

installing, 1729
Data Masking components

uninstalling, 1729
Data Masking plugin

installing, 1753
uninstalling, 1753

data node (NDB Cluster)

5579

defined, 4140
data nodes

memory allocation, 4338
data nodes (NDB Cluster), 4461, 4477
Data on disk (NDB Cluster)

and INFORMATION_SCHEMA.FILES table, 5029
Data truncation with CJK characters, 5483
data type

BIGINT, 2202
BINARY, 2222, 2225
BIT, 2201
BLOB, 2223, 2227
BOOL, 2201, 2274
BOOLEAN, 2201, 2274
CHAR, 2220, 2222
CHAR VARYING, 2222
CHARACTER, 2222
CHARACTER VARYING, 2222
DATE, 2210, 2211
DATETIME, 2210, 2211
DEC, 2203
DECIMAL, 2202, 2642
DOUBLE, 2203
DOUBLE PRECISION, 2204
ENUM, 2224, 2228
FIXED, 2203
FLOAT, 2203, 2203, 2203
GEOMETRY, 2235
GEOMETRYCOLLECTION, 2235
INT, 2202
INTEGER, 2202
LINESTRING, 2235
LONG, 2227
LONGBLOB, 2223
LONGTEXT, 2223
MEDIUMBLOB, 2223
MEDIUMINT, 2202
MEDIUMTEXT, 2223
MULTILINESTRING, 2235
MULTIPOINT, 2235
MULTIPOLYGON, 2235
NATIONAL CHAR, 2222
NATIONAL VARCHAR, 2222
NCHAR, 2222
NUMERIC, 2203
NVARCHAR, 2222
POINT, 2235
POLYGON, 2235
REAL, 2204
SET, 2224, 2231
SMALLINT, 2202
TEXT, 2223, 2227
TIME, 2211, 2213
TIMESTAMP, 2210, 2211
TINYBLOB, 2223
TINYINT, 2201
TINYTEXT, 2223
VARBINARY, 2223, 2225

5580

VARCHAR, 2220, 2222
VARCHARACTER, 2222
YEAR, 2211, 2213

data types, 2199
date and time, 2208
deprecated features, 50, 50, 50
new features, 26
numeric, 2200
string, 2220

data warehouse, 6355
data-at-rest encryption, 3383
data-file-length option

myisamchk, 666
database, 6355

altering, 2658
creating, 2694
deleting, 2799
renaming, 2806

Database information
obtaining, 3100

database metadata, 5006
database names

case sensitivity, 96, 2065
database objects

metadata, 2123
database option

mysql, 466
mysqlbinlog, 708
ndb_blob_tool, 4499
ndb_delete_all, 4516
ndb_desc, 4526
ndb_drop_index, 4530
ndb_drop_table, 4535
ndb_index_stat, 4558
ndb_move_data, 4565
ndb_show_tables, 4629

DATABASE(), 2465
databases

backups, 1795
copying, 324
creating, 333, 2694
defined, 4
displaying, 613
dumping, 532, 586
information about, 350
names, 2061
replicating, 3611
selecting, 334, 3176
symbolic links, 2008
using, 333

databases option
mysqlcheck, 523
mysqldump, 563
mysqlpump, 596

DataDir, 4268, 4276
datadir option

mysql.server, 423
mysqld, 844

5581

mysqld_safe, 415
mysql_ssl_rsa_setup, 439

datadir system variable, 895
DataMemory, 4278
data_locks table

performance_schema, 5249, 5353
data_lock_waits table

performance_schema, 5253
DATE, 5530
date and time data types, 2208
date and time functions, 2336
date calculations, 341
DATE columns

problems, 5530
DATE data type, 2210, 2211
date data types

storage requirements, 2271
date literals, 2052
date values

problems, 2212
DATE(), 2340
DATEDIFF(), 2341
dates

used with partitioning, 4903
used with partitioning (examples), 4906, 4918, 4923, 4947

DATETIME data type, 2210, 2211
datetime_format

removed features, 56
DATE_ADD(), 2341
date_format

removed features, 56
DATE_FORMAT(), 2342
DATE_SUB(), 2341, 2343
DAY(), 2344
Daylight Saving Time, 1123, 1909, 2356
DAYNAME(), 2344
DAYOFMONTH(), 2344
DAYOFWEEK(), 2344
DAYOFYEAR(), 2344
db table

sorting, 1341
system table, 279, 1139, 1325

db-workers option
ndb_import, 4545

DB2
removed features, 56

DBI interface, 5443
DBI->quote, 2051
DBI->trace, 1277
DBI/DBD interface, 5443
DBI_TRACE environment variable, 738, 1277
DBI_USER environment variable, 738
DBUG package, 1285
DCL, 3050, 3064, 6355
DDEX provider, 6355
DDL, 2652, 2652, 6356
ddl-rewriter option

mysqld, 1219

5582

ddl_rewriter plugin, 1217
installing, 1218

dd_properties table
data dictionary table, 1137

deadlock, 1998, 2919, 3279, 3283, 3283, 3287, 3287, 3459, 5350, 6356
deadlock detection, 6356
DEALLOCATE PREPARE, 2977, 2982
deb file

MySQL APT Repository, 195
MySQL SLES Repository, 196

Debug
thread command, 2021

debug option
comp_err, 429
ibd2sdi, 645
myisamchk, 661
myisampack, 678
mysql, 466
mysqladmin, 508
mysqlbinlog, 709
mysqlcheck, 523
mysqld, 844
mysqldump, 551
mysqldumpslow, 732
mysqlimport, 577
mysqlpump, 597
mysqlshow, 618
mysqlslap, 634
mysql_config_editor, 687
mysql_upgrade, 446
my_print_defaults, 736

debug system variable, 895
debug-check option

mysql, 466
mysqladmin, 508
mysqlbinlog, 709
mysqlcheck, 523
mysqldump, 551
mysqlimport, 577
mysqlpump, 597
mysqlshow, 618
mysqlslap, 634
mysql_upgrade, 446

debug-info option
comp_err, 429
mysql, 467
mysqladmin, 508
mysqlbinlog, 709
mysqlcheck, 523
mysqldump, 551
mysqlimport, 577
mysqlpump, 597
mysqlshow, 618
mysqlslap, 635
mysql_upgrade, 447

debug-sync-timeout option
mysqld, 845

debugging

5583

client, 1279
MySQL, 1273
server, 1273

debugging support, 233
debug_sync system variable, 896
dec

deprecated features, 49
DEC data type, 2203
decimal arithmetic, 2642
DECIMAL data type, 2202, 2642
decimal point, 2200
DECLARE, 2984
DECODE()

removed features, 57
decode_bits myisamchk variable, 663
decrypt option

ndb_restore, 4590
decrypt-key option

ndbxfrm, 4649
decrypt-key-from-stdin option

ndbxfrm, 4649
decrypt-password option

ndbxfrm, 4649
decrypt-password-from-stdin option

ndbxfrm, 4649
Dedicated

API node, 4372
data node, 4272
management server, 4265

default
privileges, 279

default account, 279
default authentication plugin, 1379
default host name, 395
default installation location, 125
default options, 371
default proxy user, 1390
default role

ALTER USER, 3027
CREATE USER statement, 3041

default roles, 3067
DEFAULT value clause, 2266, 2731
default values, 2266, 2731, 2821

BLOB and TEXT columns, 2227
explicit, 2266
implicit, 2266

DEFAULT(), 2631
default-auth option, 383

mysql, 467
mysqladmin, 508
mysqlbinlog, 709
mysqlcheck, 525
mysqldump, 543
mysqlimport, 578
mysqlpump, 597
mysqlshow, 619
mysqlslap, 635
mysql_upgrade, 447

5584

default-character-set option
mysql, 467
mysqladmin, 508
mysqlcheck, 524
mysqldump, 553
mysqlimport, 577
mysqlpump, 597
mysqlshow, 618
mysql_upgrade, 447

default-parallelism option
mysqlpump, 598

default-time-zone option
mysqld, 845

DefaultHashMapSize, 4294, 4377
DefaultOperationRedoProblemAction

API and SQL nodes, 4376
defaults-extra-file option, 376

myisamchk, 661
mysql, 467
mysqladmin, 508
mysqlbinlog, 710
mysqlcheck, 524
mysqld, 845
mysqldump, 548
mysqld_multi, 424
mysqld_safe, 415
mysqlimport, 578
mysqlpump, 598
mysqlshow, 619
mysqlslap, 635
mysql_migrate_keyring, 693
mysql_secure_installation, 433
mysql_upgrade, 447
my_print_defaults, 736
ndbd, 4466
ndbinfo_select_all, 4475
ndbxfrm, 4649
ndb_blob_tool, 4499
ndb_config, 4511
ndb_delete_all, 4517
ndb_desc, 4526
ndb_drop_index, 4530
ndb_drop_table, 4535
ndb_import, 4546
ndb_index_stat, 4559
ndb_mgm, 4493
ndb_mgmd, 4484
ndb_move_data, 4565
ndb_perror, 4569
ndb_print_backup_file, 4573
ndb_restore, 4590
ndb_secretsfile_reader, 4614
ndb_select_all, 4619
ndb_select_count, 4625
ndb_show_tables, 4629
ndb_top, 4636
ndb_waiter, 4643

defaults-file option, 376

5585

myisamchk, 661
mysql, 468
mysqladmin, 509
mysqlbinlog, 710
mysqlcheck, 524
mysqld, 845
mysqldump, 548
mysqld_multi, 424
mysqld_safe, 415
mysqlimport, 578
mysqlpump, 598
mysqlshow, 619
mysqlslap, 635
mysql_migrate_keyring, 693
mysql_secure_installation, 434
mysql_upgrade, 447
my_print_defaults, 735
ndbd, 4466
ndbinfo_select_all, 4475
ndbxfrm, 4649
ndb_blob_tool, 4499
ndb_config, 4511
ndb_delete_all, 4517
ndb_desc, 4526
ndb_drop_index, 4531
ndb_drop_table, 4535
ndb_import, 4546
ndb_index_stat, 4559
ndb_mgm, 4493
ndb_mgmd, 4484
ndb_move_data, 4565
ndb_perror, 4569
ndb_print_backup_file, 4573
ndb_restore, 4590
ndb_secretsfile_reader, 4614
ndb_select_all, 4619
ndb_select_count, 4625
ndb_show_tables, 4629
ndb_top, 4637
ndb_waiter, 4643

defaults-group-suffix option, 377
myisamchk, 661
mysql, 468
mysqladmin, 509
mysqlbinlog, 710
mysqlcheck, 524
mysqld, 845
mysqldump, 549
mysqlimport, 578
mysqlpump, 598
mysqlshow, 619
mysqlslap, 635
mysql_migrate_keyring, 693
mysql_secure_installation, 434
mysql_upgrade, 447
my_print_defaults, 736
ndbd, 4466
ndbinfo_select_all, 4475

5586

ndbxfrm, 4650
ndb_blob_tool, 4499
ndb_config, 4511
ndb_delete_all, 4517
ndb_desc, 4526
ndb_drop_index, 4531
ndb_drop_table, 4535
ndb_import, 4546
ndb_index_stat, 4559
ndb_mgm, 4493
ndb_mgmd, 4484
ndb_move_data, 4566
ndb_perror, 4569
ndb_print_backup_file, 4573
ndb_restore, 4591
ndb_secretsfile_reader, 4615
ndb_select_all, 4619
ndb_select_count, 4625
ndb_show_tables, 4629
ndb_top, 4637
ndb_waiter, 4643

default_authentication_plugin
deprecated features, 52

default_authentication_plugin system variable, 896, 1379
DEFAULT_CHARSET option

CMake, 250
DEFAULT_COLLATION option

CMake, 250
default_collation_for_utf8mb4 system variable, 897
default_password_lifetime system variable, 898
default_roles table

system table, 1139, 1325
default_storage_engine system variable, 899
default_table_encryption, 3385
default_table_encryption variable, 899
default_tmp_storage_engine system variable, 900
default_week_format system variable, 900
defer-table-indexes option

mysqlpump, 598
DEFINER privileges, 3121, 4989
DEGREES(), 2330
delay option

ndbinfo_select_all, 4475
DELAYED, 2829

INSERT modifier, 2824
Delayed insert

thread command, 2021
delayed replication, 3852
Delayed_errors status variable, 1069
delayed_insert_limit system variable, 901
Delayed_insert_threads status variable, 1069
delayed_insert_timeout system variable, 902
delayed_queue_size system variable, 902
Delayed_writes status variable, 1069
delay_key_write system variable, 900, 3582
DELETE, 2810

and NDB Cluster, 4188
delete, 6356

5587

delete buffering, 6356
delete option

mysqlimport, 578
ndb_index_stat, 4559

DELETE privilege, 1310
delete-master-logs option

mysqldump, 554
delete-orphans option

ndb_blob_tool, 4499
delete-source-logs option

mysqldump, 554
deleting

accounts, 1345
database, 2799
foreign key, 2681, 2762
function, 3090
index, 2680, 2800
primary key, 2680
rows, 5533
schema, 2799
table, 2803
user, 3049
users, 3049

deleting from main table
thread state, 2024

deleting from reference tables
thread state, 2024

deletion
mysql.sock, 5528

delimiter command
mysql, 486

delimiter option
mysql, 468
mysqlslap, 636
ndb_select_all, 4619

demo_test table, 3537
denormalized, 6356
DENSE_RANK(), 2610
deprecated features, 48

!, 50
&&, 50
--abort-slave-event-count, 52
--compress, 51
--disconnect-slave-event-count, 52
--master-info-file, 51
--no-dd-upgrade, 51
--old-style-user-limits, 53
--skip-host-cache, 53
--ssl-fips-mode client option, 49
ASCII, 50
audit_log_connection_policy, 48
audit_log_exclude_accounts, 48
audit_log_include_accounts, 48
audit_log_policy, 48
audit_log_statement_policy, 48
BINARY, 50, 52
binlog_format, 53
column index prefixes and partition by KEY, 52

5588

CREATE TEMPORARY TABLE, 50
data types, 50, 50, 50
dec, 49
default_authentication_plugin, 52
ENGINE, 50
FOUND_ROWS(), 50
hp8, 49
InnoDB memcached plugin, 52
innodb_log_files_in_group, 53
innodb_log_file_size, 53
INSERT ... ON DUPLICATE KEY UPDATE, 51
INTO, 51
JSON_MERGE(), 50
JSON_TABLE() syntax, 51
keyring_encrypted_file plugin, 49
keyring_file plugin, 49
literal values, 52
log_bin_trust_function_creators, 53
log_statements_unsafe_for_binlog, 53
lz4_decompress, 53
macce, 49
macroman, 49
max_length_for_sort_data, 51
myisamchk --parallel-recover, 52
myisam_repair_threads, 52
mysqlpump, 53
mysql_native_password, 49
MYSQL_OPT_COMPRESS, 51
MYSQL_OPT_SSL_FIPS_MODE, 49
MYSQL_PWD, 51
mysql_upgrade, 51
mysql_upgrade_info file, 51
PAD_CHAR_TO_FULL_LENGTH, 50
relay_log_info_file, 51
replica_parallel_type, 52
replica_parallel_workers, 53
sha256_password, 50
slave_compressed_protocol, 51
SQL_CALC_FOUND_ROWS, 50
ssl_fips_mode server system variable, 49
sync_relay_log_info, 54
temporal values, 52
temptable_use_mmap, 52
The keyring_oci plugin, 49
ucs2, 49
UNICODE, 50
UNION, 51
utf8mb3, 49
validate_password plugin, 50
VALUES(), 51
wildcards in account names, 1335
zlib_decompress, 53
||, 50

derived condition pushdown, 1886
derived tables, 2881

lateral, 1949, 2885
materialization prevention, 1884
optimization, 1874, 1883

5589

updatable views, 4985
DESC, 3168
descending index, 6356
descending indexes, 1908
descending option

ndb_select_all, 4619
DESCRIBE, 350, 3168
description option

myisamchk, 668
design

issues, 5537
destination-keyring option

mysql_migrate_keyring, 694
destination-keyring-configuration-dir option

mysql_migrate_keyring, 694
destroy_tickets parameter

Kerberos authentication, 1488
DES_DECRYPT()

removed features, 57
DES_ENCRYPT()

removed features, 57
DES_KEY_FILE

removed features, 57
detach option

mysqlslap, 636
detailed-info option

ndbxfrm, 4650
development of NDB Cluster, 4147
development source tree, 231
diagnostics() procedure

sys schema, 5408
dictionary collation, German, 2169, 2169
dictionary object cache, 3179, 6357
dictionary_columns

ndbinfo table, 4764
dictionary_tables

ndbinfo table, 4765
DictTrace, 4332
dict_obj_info

ndbinfo table, 4767, 4767
dict_obj_types

ndbinfo table, 4770
diff-default option

ndb_config, 4507
digits, 2200
Dimension()

removed features, 57
directory structure

default, 125
dirty page, 3403, 6357
dirty read, 6357
disable named command

mysql, 468
--disable option prefix, 378
disable-indexes option

ndb_restore, 4591
disable-keys option

mysqldump, 566

5590

disable-log-bin option
mysqlbinlog, 710

disabled_storage_engines system variable, 902
DISABLE_PSI_COND option

CMake, 250
DISABLE_PSI_DATA_LOCK option

CMake, 251
DISABLE_PSI_ERROR option

CMake, 251
DISABLE_PSI_FILE option

CMake, 250
DISABLE_PSI_IDLE option

CMake, 250
DISABLE_PSI_MEMORY option

CMake, 250
DISABLE_PSI_METADATA option

CMake, 250
DISABLE_PSI_MUTEX option

CMake, 250
DISABLE_PSI_PS option

CMake, 251
DISABLE_PSI_RWLOCK option

CMake, 250
DISABLE_PSI_SOCKET option

CMake, 250
DISABLE_PSI_SP option

CMake, 250
DISABLE_PSI_STAGE option

CMake, 250
DISABLE_PSI_STATEMENT option

CMake, 250
DISABLE_PSI_STATEMENT_DIGEST option

CMake, 251
DISABLE_PSI_TABLE option

CMake, 251
DISABLE_PSI_THREAD option

CMake, 251
DISABLE_PSI_TRANSACTION option

CMake, 251
DISABLE_SHARED

removed features, 62
DISABLE_SHARED option

CMake, 251
DISCARD TABLESPACE, 2684, 3214
discard_or_import_tablespace

thread state, 2024
disconnect-slave-event-count option

mysqld, 3697
disconnecting

from the server, 329
disconnect_on_expired_password system variable, 903
Disjoint()

removed features, 57
Disk Data tables (NDB Cluster) (see NDB Cluster Disk Data)
disk failure

InnoDB, 3530
disk full, 5526
disk I/O, 1929

5591

disk option
ndb_select_all, 4619

disk performance, 2006
disk-based, 6357
disk-bound, 6357
DiskDataUsingSameDisk, 4363
DiskIOThreadPool, 4358, 4363
Diskless, 4307
diskpagebuffer

ndbinfo table, 4773
DiskPageBufferEntries, 4356
DiskPageBufferMemory, 4357, 4363
disks

splitting data across, 2009
diskscan option

ndb_delete_all, 4517
diskstat

ndbinfo table, 4774
diskstats_1sec

ndbinfo table, 4775
DiskSyncSize, 4321
disk_write_speed_aggregate

ndbinfo table, 4771
disk_write_speed_aggregate_node

ndbinfo table, 4772
disk_write_speed_base

ndbinfo table, 4771
display size, 2200
display triggers, 3149
display width, 2200
displaying

database information, 613
information

Cardinality, 3124
Collation, 3124
SHOW, 3100, 3104, 3149
SHOW statement, 3123, 3125

table status, 3146
Distance()

removed features, 57
DISTINCT, 340, 1866

AVG(), 2587
COUNT(), 2591
MAX(), 2595
MIN(), 2595
SELECT modifier, 2860
SUM(), 2596

DISTINCTROW
SELECT modifier, 2860

distinguished name
LDAP authentication, 1461

DIV, 2327
division (/), 2326
div_precision_increment system variable, 904
DML, 2808, 6357

DELETE statement, 2810
INSERT statement, 2820
TABLE statement, 2890

5592

UPDATE statement, 2893
VALUES statement, 2897

DN (see distinguished name)
DNS, 1108
DNS SRV records, 405, 468, 1518
dns-srv-name option

mysql, 468
DO, 2814
DocBook XML

documentation source format, 4
Docker, 322
Docker images

on Windows, 214
document id, 6357
document store, 4061

MySQL as a, 4061
Documentation

in Chinese, 5483
in Japanese, 5483
in Korean, 5483

dont-ignore-systab-0 option
ndb_restore, 4591

DOUBLE data type, 2203
DOUBLE PRECISION data type, 2204
double quote (\"), 2050, 2550
doublewrite buffer, 1075, 3357, 3425, 6357
downgrades

NDB Cluster, 4223, 4692
downgrading, 327
downloading, 108
DOWNLOAD_BOOST option

CMake, 251
DOWNLOAD_BOOST_TIMEOUT option

CMake, 251
dragnet.log_error_filter_rules system variable, 904
dragnet.Status status variable, 1070, 1070
drop, 6358
DROP ... IF EXISTS

and replication, 3862
DROP DATABASE, 2799
Drop DB

thread command, 2021
DROP EVENT, 2800
DROP FOREIGN KEY, 2681, 2762
DROP FUNCTION, 2801
DROP FUNCTION statement, 3090
DROP INDEX, 2680, 2800
DROP LOGFILE GROUP, 2801

(see also NDB Cluster Disk Data)
DROP NODEGROUP command (NDB Cluster), 4655
DROP PREPARE, 2982
DROP PRIMARY KEY, 2680
DROP privilege, 1310
DROP PROCEDURE, 2801
DROP RESOURCE GROUP statement, 3073
DROP ROLE privilege, 1310
DROP ROLE statement, 3048
DROP SCHEMA, 2799

5593

DROP SERVER, 2802
DROP SPATIAL REFERENCE SYSTEM, 2802
DROP TABLE, 2803

and NDB Cluster, 4188
DROP TABLESPACE

general tablespace, 2803
NDB Cluster Disk Data, 2803
undo tablespace, 2803

DROP TRIGGER, 2805
DROP USER statement, 1342, 3049
DROP VIEW, 2805
drop-source option

ndb_move_data, 4566
dropping

accounts, 1345
user, 3049

dropping roles, 3048
dry-scp option

ndb_error_reporter, 4538
DSN, 6358
DTrace

removed features, 61
DUAL, 2855
dual passwords, 1371
dump option

myisam_ftdump, 656
ndb_index_stat, 4559
ndb_redo_log_reader, 4580

dump-date option
mysqldump, 552

dump-file option
ibd2sdi, 645
ndb_blob_tool, 4499

dump-replica option
mysqldump, 555

dump-slave option
mysqldump, 556

DUMPFILE, 2863
dumping

databases and tables, 532, 586
Duplicate Weedout

semijoin strategy, 1876
duplicate-key error, 3226
dynamic cursor, 6358
dynamic privileges, 1322
dynamic row format, 3353, 6358
dynamic SQL, 6358
dynamic statement, 6358
dynamic table characteristics, 3584

E
early adopter, 6358
early-plugin-load option

mysqld, 846
edit command

mysql, 487
ego command

mysql, 487

5594

Eiffel, 6359
Eiffel Wrapper, 5444
ELT(), 2363
embedded, 6359
embedded server library

removed features, 59
--enable option prefix, 378
enable-cleartext-plugin option

mysql, 469
mysqladmin, 509
mysqlcheck, 525
mysqldump, 543
mysqlimport, 579
mysqlshow, 619
mysqlslap, 636

EnableAdaptiveSpinning, 4340
ENABLED_LOCAL_INFILE option

CMake, 252, 1299
ENABLED_PROFILING option

CMake, 252
ENABLED_ROLES

INFORMATION_SCHEMA table, 5024
EnableMultithreadedBackup

ndbmtd, 4343
EnablePartialLcp, 4296
EnableRedoControl, 4301
ENABLE_DOWNLOADS option

CMake, 251
ENABLE_EXPERIMENTAL_SYSVARS option

CMake, 252
ENABLE_GCOV option

CMake, 252
ENABLE_GPROF option

CMake, 252
ENCODE()

removed features, 57
ENCRYPT()

removed features, 57
encrypt-backup option

ndb_mgm, 4493
encrypt-block-size option

ndbxfrm, 4651
encrypt-cipher option

ndbxfrm, 4651
encrypt-kdf-iter-count option

ndbxfrm, 4651
encrypt-key option

ndbxfrm, 4652
encrypt-key-from-stdin option

ndbxfrm, 4652
encrypt-password option

ndbxfrm, 4652
encrypt-password-from-stdin option

ndbxfrm, 4652
encrypted connections, 1402

as mandatory, 1409
command options, 386

encryption, 1295, 1402, 3383

5595

binary log files, 3818
encryption functions, 2451
ENCRYPTION_KEY_ADMIN privilege, 1316
end

thread state, 2024
END, 2983
end-page option

innochecksum, 651
EndPoint()

removed features, 57
end_markers_in_json system variable, 906
enforce_gtid_consistency system variable, 3772
ENGINE

deprecated features, 50
engine condition pushdown, 1837
engine option

mysqlslap, 636
ENGINES

INFORMATION_SCHEMA table, 5024
engine_cost

system table, 1986
engine_cost table

system table, 1141
ENTER SINGLE USER MODE command (NDB Cluster), 4656
entering

queries, 330
enterprise components

MySQL Enterprise Audit, 5447
MySQL Enterprise Backup, 5445
MySQL Enterprise Data Masking and De-Identification, 5447
MySQL Enterprise Encryption, 5446
MySQL Enterprise Firewall, 5447
MySQL Enterprise Monitor, 5448
MySQL Enterprise Security, 5446
MySQL Enterprise Thread Pool, 5447
telemetry, 5449

enterprise extensions
MySQL Enterprise Audit, 1611
MySQL Enterprise Data Masking and De-Identification, 1727
MySQL Enterprise Encryption, 1770
MySQL Enterprise Firewall, 1699
MySQL Enterprise Security, 1382, 1443, 1453, 1458, 1478, 1494
MySQL Enterprise Thread Pool, 1200

enterprise_encryption.maximum_rsa_key_size system variable, 905
enterprise_encryption.rsa_support_legacy_padding system variable, 906
Entrust KeyControl

keyring_okv keyring plugin, 1558
ENUM

size, 2273
ENUM data type, 2224, 2228
Envelope()

removed features, 57
environment variable

AUTHENTICATION_KERBEROS_CLIENT_LOG, 738, 1489
AUTHENTICATION_LDAP_CLIENT_LOG, 738, 1510
AUTHENTICATION_PAM_LOG, 738, 1453
CC, 266, 738
CXX, 266, 738

5596

DBI_TRACE, 738, 1277
DBI_USER, 738
HOME, 492, 738
LDAPNOINIT, 1464
LD_LIBRARY_PATH, 283
LD_PRELOAD, 219
LD_RUN_PATH, 283, 738
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN, 738
LIBMYSQL_PLUGINS, 738
LIBMYSQL_PLUGIN_DIR, 738
MYSQLD_OPTS, 219
MYSQLX_TCP_PORT, 738
MYSQLX_UNIX_PORT, 738
MYSQL_DEBUG, 367, 738, 1279
MYSQL_GROUP_SUFFIX, 738
MYSQL_HISTFILE, 492, 738
MYSQL_HISTIGNORE, 492, 738
MYSQL_HOME, 738
MYSQL_HOST, 398, 738
MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD, 738, 1775
MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD, 738, 1775
MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD, 738, 1775
MYSQL_PS1, 738
MYSQL_PWD, 738
MYSQL_TCP_PORT, 367, 738, 1272, 1273
MYSQL_TEST_LOGIN_FILE, 377, 684, 738
MYSQL_TEST_TRACE_CRASH, 738
MYSQL_TEST_TRACE_DEBUG, 738
MYSQL_UNIX_PORT, 367, 738, 1272, 1273
NOTIFY_SOCKET, 219, 738
PATH, 166, 172, 277, 368, 738
PKG_CONFIG_PATH, 738
SUDO_USER, 5220
TMPDIR, 367, 738, 5527
TZ, 219, 738, 1120, 5528
UMASK, 738, 5521
UMASK_DIR, 738, 5521
USER, 398, 738

environment variables, 367, 411, 1397
list of, 738

epoch, 1164, 2210
equal (=), 2313
Equals()

removed features, 57
eq_ref join type

optimizer, 1945
Errcode, 737
errins-delay option

ndb_import, 4546
errins-type option

ndb_import, 4546
errmsg-file option

comp_err, 430
errno, 737
Error

thread command, 2021
error codes

removed features, 59

5597

ERROR Events (NDB Cluster), 4687
error handling

application, 1302
error log, 6359
error logs (NDB Cluster), 4471
error messages

can't find file, 5521
Can't reopen table, 5536
displaying, 737
languages, 2177, 2177
Loading local data is disabled; this must be enabled on both the client and server side, 1299

error-insert option
ndb_move_data, 4566

errors
access denied, 5510
and replication, 3872
checking tables for, 1814
common, 5509
directory checksum, 222
in subqueries, 2887
known, 5537
list of, 5510
lost connection, 5514
reporting, 90, 90
sources of information, 5507

error_count system variable, 907
ERROR_FOR_DIVISION_BY_ZERO SQL mode, 1094
error_log table

performance_schema, 5304
Error_log_buffered_bytes status variable, 1070
Error_log_buffered_events status variable, 1070
Error_log_expired_events status variable, 1070
Error_log_latest_write status variable, 1070
error_messages

ndbinfo table, 4776
escape (\\), 2051, 2550
escape sequences

option files, 373
strings, 2049

establishing encrypted connections, 1403
estimating

query performance, 1957
event field replacement

audit log filtering, 1666
event groups, 3784
event log format (NDB Cluster), 4682
event logs (NDB Cluster), 4679, 4680, 4681
EVENT privilege, 1310
event scheduler, 4967

thread states, 2034
Event Scheduler, 4976

altering events, 2663
and MySQL privileges, 4981
and mysqladmin debug, 4981
and replication, 3865, 3865
and SHOW PROCESSLIST, 4978
concepts, 4977
creating events, 2695

5598

dropping events, 2800
enabling and disabling, 4978
event metadata, 4980
obtaining status information, 4981
SQL statements, 4980
starting and stopping, 4978
time representation, 4980

event severity levels (NDB Cluster), 4681
event types (NDB Cluster), 4679, 4682
EventLogBufferSize, 4327
events, 4967, 4976

altering, 2663
creating, 2695
dropping, 2800
metadata, 4980
ndbinfo table, 4778
restrictions, 4999
status variables, 4983

EVENTS
INFORMATION_SCHEMA table, 4982, 5025

events option
mysqldump, 564
mysqlpump, 599

events table
data dictionary table, 1137

events_errors_summary_by_account_by_error table
performance_schema, 5300

events_errors_summary_by_host_by_error table
performance_schema, 5300

events_errors_summary_by_thread_by_error table
performance_schema, 5300

events_errors_summary_by_user_by_error table
performance_schema, 5300

events_errors_summary_global_by_error table
performance_schema, 5300

events_stages_current table
performance_schema, 5194

events_stages_history table
performance_schema, 5195

events_stages_history_long table
performance_schema, 5195

events_stages_summary_by_account_by_event_name table
performance_schema, 5279

events_stages_summary_by_host_by_event_name table
performance_schema, 5279

events_stages_summary_by_thread_by_event_name table
performance_schema, 5279

events_stages_summary_by_user_by_event_name table
performance_schema, 5279

events_stages_summary_global_by_event_name table
performance_schema, 5279

events_statements_current table
performance_schema, 5199

events_statements_histogram_by_digest table
performance_schema, 5285

events_statements_histogram_global table
performance_schema, 5285

events_statements_history table

5599

performance_schema, 5203
events_statements_history_long table

performance_schema, 5204
events_statements_summary_by_account_by_event_name table

performance_schema, 5281
events_statements_summary_by_digest table

performance_schema, 5281
events_statements_summary_by_host_by_event_name table

performance_schema, 5281
events_statements_summary_by_program table

performance_schema, 5281
events_statements_summary_by_thread_by_event_name table

performance_schema, 5281
events_statements_summary_by_user_by_event_name table

performance_schema, 5281
events_statements_summary_global_by_event_name table

performance_schema, 5281
events_transactions_current table

performance_schema, 5211
events_transactions_history table

performance_schema, 5213
events_transactions_history_long table

performance_schema, 5214
events_transactions_summary_by_account_by_event table

performance_schema, 5287
events_transactions_summary_by_host_by_event_name table

performance_schema, 5287
events_transactions_summary_by_thread_by_event_name table

performance_schema, 5287
events_transactions_summary_by_user_by_event_name table

performance_schema, 5287
events_transactions_summary_global_by_event_name table

performance_schema, 5287
events_waits_current table

performance_schema, 5187
events_waits_history table

performance_schema, 5190
events_waits_history_long table

performance_schema, 5190
events_waits_summary_by_account_by_event_name table

performance_schema, 5277
events_waits_summary_by_host_by_event_name table

performance_schema, 5277
events_waits_summary_by_instance table

performance_schema, 5277
events_waits_summary_by_thread_by_event_name table

performance_schema, 5277
events_waits_summary_by_user_by_event_name table

performance_schema, 5277
events_waits_summary_global_by_event_name table

performance_schema, 5277
event_scheduler system variable, 907
eviction, 6359
exact-value literals, 2642
exact-value numeric literals, 2052, 2643
example option

mysqld_multi, 425
EXAMPLE storage engine, 3575, 3607

5600

examples
compressed tables, 679
myisamchk output, 669
queries, 352

EXCEPT, 2814
parenthesized query expressions, 2849
set operations, 2869

exception interceptor, 6359
exceptions table

NDB Cluster Replication, 4888
exclude-databases option

mysqlpump, 599
ndb_restore, 4591

exclude-events option
mysqlpump, 599

exclude-gtids option
mysqlbinlog, 711

exclude-intermediate-sql-tables option
ndb_restore, 4591

exclude-missing-columns option
ndb_move_data, 4566
ndb_restore, 4592

exclude-missing-tables option
ndb_restore, 4592

exclude-routines option
mysqlpump, 599

exclude-tables option
mysqlpump, 600
ndb_restore, 4592

exclude-triggers option
mysqlpump, 600

exclude-users option
mysqlpump, 600

exclusive lock, 3266, 6359
Execute

thread command, 2021
EXECUTE, 2977, 2982
execute option

mysql, 469
ndb_mgm, 4493

EXECUTE privilege, 1310
ExecuteOnComputer, 4264, 4272, 4371
execute_prepared_stmt() procedure

sys schema, 5410
executing

thread state, 2024
executing SQL statements from text files, 351, 495
Execution of init_command

thread state, 2024
execution threads (NDB Cluster), 4343
EXISTS

with subqueries, 2879
EXISTS() operator, 2315
exit command

mysql, 487
EXIT command (NDB Cluster), 4657
EXIT SINGLE USER MODE command (NDB Cluster), 4656
exit-info option

5601

mysqld, 846
EXP(), 2330
experimental system variables, 252
expired password

resetting, 1366
expired passwords, 1375
expire_logs_days system variable, 3761
EXPLAIN, 1940, 3168, 4944, 4945

window functions, 1872
EXPLAIN ANALYZE

new features, 34
EXPLAIN EXTENDED

removed features, 57
EXPLAIN PARTITIONS

removed features, 57
EXPLAIN used with partitioned tables, 4944
explain_format system variable, 908
explicit default values, 2266
explicit_defaults_for_timestamp system variable, 909
EXPORT_SET(), 2363
expression aliases, 2605, 2856
expression syntax, 2108
expressions

extended, 344
extend-check option

myisamchk, 664, 666
extended option

mysqlcheck, 524
extended-insert option

mysqldump, 566
mysqlpump, 600

extensions
to standard SQL, 94

extent, 6359
ExteriorRing()

removed features, 57
external locking, 847, 993, 1813, 2005, 2027
external-locking option

mysqld, 847
external_user system variable, 910
extra-file option

my_print_defaults, 736
extra-node-info option

ndb_desc, 4526
extra-partition-info option

ndb_desc, 4527
EXTRACT(), 2344
extracting

dates, 341
ExtractValue(), 2431
extract_schema_from_file_name() function

sys schema, 5425
extract_table_from_file_name() function

sys schema, 5426
ExtraSendBufferMemory

API nodes, 4374
data nodes, 4364
management nodes, 4269

5602

F
failover, 6360

in NDB Cluster replication, 4865
Java clients, 4141

failure detection
Group Replication, 3900

FALSE, 2052, 2061
testing for, 2316, 2316

false literal
JSON, 2253

FAQs
C API, 5493
Connectors and APIs, 5493
InnoDB Data-at-Rest Encryption, 5501
libmysql, 5493
NDB Cluster, 5470
replication, 5494
Virtualization Support, 5503

Fast Index Creation, 6360
fast option

myisamchk, 665
mysqlcheck, 525

fast shutdown, 6360
features of MySQL, 5
features, deprecated (see deprecated features)
features, new (see new features)
features, removed (see removed features)
FEDERATED storage engine, 3575, 3602
Fetch

thread command, 2021
FETCH, 2991
FIDO

authentication, 1494
fido-register-factor option

mysql, 470
field

changing, 2678
Field List

thread command, 2021
FIELD(), 2364
fields option

ndb_config, 4507
fields-enclosed-by option

mysqldump, 560, 579
ndb_import, 4547
ndb_restore, 4593

fields-escaped-by option
mysqldump, 560, 579
ndb_import, 4547

fields-optionally-enclosed-by option
mysqldump, 560, 579
ndb_import, 4547
ndb_restore, 4593

fields-terminated-by option
mysqldump, 560, 579
ndb_import, 4547
ndb_restore, 4593

5603

FILE, 2366
file descriptors

innodb_open_files, 3455
log tables, 1143
MERGE, 3600
open_files_limit, 713, 958, 1914
sockets, 883
table_definition_cache, 1012
table_open_cache, 1013, 1914
too many open files, 5520

file format, 6360
FILE privilege, 1310
file-key option

ndb_print_file, 4576
ndb_redo_log_reader, 4580

file-key-from-stdin option
ndb_print_file, 4577
ndb_redo_log_reader, 4580

file-per-table, 3206, 6360
files

binary log, 1167
created by CREATE TABLE, 2752
error messages, 2177
general query log, 1165
log, 1187
ndbinfo table, 4778
not found message, 5521
permissions, 5521
repairing, 665
script, 351
size limits, 1920
slow query log, 1183
text, 495, 572

FILES
INFORMATION_SCHEMA table, 5029

filesort optimization, 1863, 1987
filesystem-password option

ndbd, 4466
ndb_secretsfile_reader, 4615

filesystem-password-from-stdin option
ndbd, 4466
ndb_secretsfile_reader, 4615

FileSystemPath, 4276
FileSystemPathDataFiles, 4359
FileSystemPathDD, 4359
FileSystemPathUndoFiles, 4360
FILE_FORMAT

removed features, 61
file_instances table

performance_schema, 5181
file_summary_by_event_name table

performance_schema, 5290
file_summary_by_instance table

performance_schema, 5290
fill factor, 3227, 6361
fill_help_tables.sql, 1130
FIND_IN_SET(), 2364
Finished reading one binlog; switching to next binlog

5604

thread state, 2029
FIPS mode, 1791
firewall table reference

INFORMATION_SCHEMA, 5119
firewalls (software)

and NDB Cluster, 4837, 4839
Firewall_access_denied status variable, 1726
Firewall_access_granted status variable, 1726
Firewall_access_suspicious status variable, 1726
FIREWALL_ADMIN privilege, 1316
Firewall_cached_entries status variable, 1727
FIREWALL_EXEMPT privilege, 1316
firewall_groups MySQL Enterprise Firewall table, 1718
firewall_groups table

performance_schema, 5270
system table, 1141

firewall_group_allowlist MySQL Enterprise Firewall table, 1718
firewall_group_allowlist table

performance_schema, 5270
system table, 1141

firewall_group_delist() MySQL Enterprise Firewall function, 1723
firewall_group_enlist() MySQL Enterprise Firewall function, 1723
firewall_membership MySQL Enterprise Firewall table, 1718
firewall_membership table

performance_schema, 5271
system table, 1141

FIREWALL_USER privilege, 1316
firewall_users MySQL Enterprise Firewall table, 1719
firewall_users table

system table, 1141
firewall_whitelist MySQL Enterprise Firewall table, 1719
firewall_whitelist table

system table, 1141
FirstMatch

semijoin strategy, 1876
FIRST_VALUE(), 2610
FIXED data type, 2203
fixed row format, 6361
fixed-point arithmetic, 2642
FLOAT data type, 2203, 2203, 2203
floating-point number, 2203
floating-point values

and replication, 3862
floats, 2052
FLOOR(), 2330
flow control functions, 2321
FLUSH

and replication, 3863
flush, 6361
flush list, 6361
flush option

mysqld, 847
FLUSH QUERY CACHE

removed features, 56
FLUSH statement, 3157
flush system variable, 910
flush tables, 503
flush-logs option

5605

mysqldump, 568
flush-privileges option

mysqldump, 568
flushing, 3305
Flush_commands status variable, 1070
FLUSH_OPTIMIZER_COSTS privilege, 1316
flush_rewrite_rules() Rewriter function, 1216
FLUSH_STATUS privilege, 1316
FLUSH_TABLES privilege, 1317
flush_time system variable, 911
FLUSH_USER_RESOURCES privilege, 1317
FOR SHARE, 2859
FOR UPDATE, 2859
FORCE

plugin activation option, 1198
FORCE INDEX, 1982, 5536
FORCE KEY, 1982
force option

myisamchk, 665, 666
myisampack, 678
mysql, 470
mysqladmin, 509
mysqlcheck, 525
mysqldump, 552
mysqlimport, 579
mysql_upgrade, 448

force-if-open option
mysqlbinlog, 711

force-read option
mysqlbinlog, 711

FORCE_COLORED_OUTPUT option
CMake, 245

FORCE_INSOURCE_BUILD option
CMake, 245

FORCE_PLUS_PERMANENT
plugin activation option, 1198

FORCE_UNSUPPORTED_COMPILER option
CMake, 252

foreign key, 6361
constraint, 102, 102
deleting, 2681, 2762

FOREIGN KEY constraint, 6361
foreign key constraints, 2758
FOREIGN KEY constraints

and online DDL, 3383
foreign keys, 98, 355, 2681

metadata locking, 2004
foreign_keys

ndbinfo table, 4779
foreign_keys table

data dictionary table, 1137
foreign_key_checks system variable, 911
foreign_key_column_usage table

data dictionary table, 1137
FORMAT(), 2364
FORMAT_BYTES() function, 2624
format_bytes() function

sys schema, 5426

5606

format_path() function
sys schema, 5427

FORMAT_PICO_TIME() function, 2625
format_statement() function

sys schema, 5427
format_time() function

sys schema, 5428
formfeed (\f), 2550
FOUND_ROWS(), 2466

deprecated features, 50
FPROFILE_GENERATE option

CMake, 252
FPROFILE_USE option

CMake, 252
fractional seconds

and replication, 3865
fractional seconds precision, 2200, 2210
fragment replicas (NDB Cluster), 4143
fragment-id option

ndb_print_backup_file, 4573
FragmentLogFileSize, 4295
FRAGMENT_COUNT_TYPE (NDB_TABLE) (OBSOLETE)

NDB Cluster, 2784
frame

window functions, 2619, 2619
FreeBSD troubleshooting, 266
freeing items

thread state, 2024
.frm file, 6360
FROM, 2856
FROM_BASE64(), 2364
FROM_DAYS(), 2344
FROM_UNIXTIME(), 2344
fs option

ndb_error_reporter, 4538
FTS, 6362
ft_boolean_syntax system variable, 912
ft_max_word_len myisamchk variable, 663
ft_max_word_len system variable, 912
ft_min_word_len myisamchk variable, 663
ft_min_word_len system variable, 913
ft_query_expansion_limit system variable, 913
ft_stopword_file myisamchk variable, 663
ft_stopword_file system variable, 913
full backup, 6362
full disk, 5526
full table scan, 6362
full table scans

avoiding, 1873
full-text index

InnoDB, 3229
monitoring, 3233

full-text queries
optimization, 1897

full-text search, 2388, 6362
FULLTEXT, 2388
fulltext

stopword list, 2402

5607

FULLTEXT index, 6362
FULLTEXT initialization

thread state, 2024
fulltext join type

optimizer, 1945
FULLY_REPLICATED (NDB_TABLE)

NDB Cluster, 2785
func table

system table, 1139, 1266
function

creating, 3089
deleting, 3090

function installation
keyring, 1584

function names
parsing, 2069
resolving ambiguity, 2069

functional dependence, 1097, 2602, 2606
functions, 2278

aggregate, 2586
and replication, 3863
arithmetic, 2439
bit, 2439
cast, 2415
date and time, 2336
encryption, 2451
flow control, 2321
for SELECT and WHERE clauses, 2278
GROUP BY, 2586
group replication, 2570
grouping, 2311
GTIDs, 2578
information, 2461
internal, 2627
loadable, 3089, 3090
locking, 2459
mathematical, 2328
miscellaneous, 2628
Performance Schema, 2624
replication, 2569
stored, 4969
string, 2359
string comparison, 2374

fuzzy checkpointing, 6362

G
GA, 6362

MySQL releases, 108
GAC, 6362
gap, 6362
gap event, 4846
gap lock, 3266, 6363

InnoDB, 3282
gb2312, gbk, 5483
gci option

ndb_select_all, 4619
gci64 option

ndb_select_all, 4619

5608

GCP Stop errors (NDB Cluster), 4363
gdb

using, 1276
gdb option

mysqld, 847
Gemalto SafeNet KeySecure Applicance

keyring_okv keyring plugin, 1556
general information, 1
General Public License, 5
general query log, 1165, 6363
general table reference

INFORMATION_SCHEMA, 5014
general tablespace, 6363
general_log system variable, 914
general_log table

system table, 1140
general_log_file system variable, 914
generated column, 6363
generated columns

ALTER TABLE, 2689
CREATE TABLE, 2767
CREATE TRIGGER, 2795
CREATE VIEW, 2799
INFORMATION_SCHEMA.COLUMNS table, 5021
INSERT, 2822
REPLACE, 2852
secondary indexes, 2770
SHOW COLUMNS statement, 3106, 5021
UPDATE, 2894
views, 4986

generated_random_password_length system variable, 914
gen_blacklist() MySQL Enterprise Data Masking and De-Identification function, 1767
gen_blocklist() MySQL Enterprise Data Masking and De-Identification function, 1752, 1767
gen_dictionary() MySQL Enterprise Data Masking and De-Identification function, 1753, 1768
gen_dictionary_drop() MySQL Enterprise Data Masking and De-Identification function, 1769
gen_dictionary_load() MySQL Enterprise Data Masking and De-Identification function, 1770
gen_range() MySQL Enterprise Data Masking and De-Identification function, 1745, 1765
gen_rnd_canada_sin() MySQL Enterprise Data Masking and De-Identification function, 1746
gen_rnd_email() MySQL Enterprise Data Masking and De-Identification function, 1746, 1765
gen_rnd_iban() MySQL Enterprise Data Masking and De-Identification function, 1747
gen_rnd_pan() MySQL Enterprise Data Masking and De-Identification function, 1747, 1765
gen_rnd_ssn() MySQL Enterprise Data Masking and De-Identification function, 1748, 1767
gen_rnd_uk_nin() MySQL Enterprise Data Masking and De-Identification function, 1749
gen_rnd_us_phone() MySQL Enterprise Data Masking and De-Identification function, 1749, 1767
gen_rnd_uuid() MySQL Enterprise Data Masking and De-Identification function, 1750
geographic feature, 2234
GeomCollection(), 2481
GeomCollFromText()

removed features, 57
GeomCollFromWKB()

removed features, 57
geometrically valid

GIS values, 2244
spatial values, 2244

geometry, 2234
GEOMETRY data type, 2235
geometry values

internal storage format, 2243

5609

WKB format, 2243
WKT format, 2242

GEOMETRYCOLLECTION data type, 2235
GeometryCollection(), 2481
GeometryCollectionFromText()

removed features, 57
GeometryCollectionFromWKB()

removed features, 57
GeometryFromText()

removed features, 57
GeometryFromWKB()

removed features, 57
GeometryN()

removed features, 57
GeometryType()

removed features, 57
GeomFromText()

removed features, 57
GeomFromWKB()

removed features, 57
geospatial feature, 2234
German dictionary collation, 2169, 2169
German phone book collation, 2169, 2169
GET DIAGNOSTICS, 2997
get-server-public-key option, 387

mysql, 471
mysqladmin, 509
mysqlbinlog, 711
mysqlcheck, 525
mysqldump, 543
mysqlimport, 579
mysqlpump, 600
mysqlshow, 620
mysqlslap, 636
mysql_migrate_keyring, 694
mysql_upgrade, 448

getting MySQL, 108
GET_DD_COLUMN_PRIVILEGES(), 2628
GET_DD_CREATE_OPTIONS(), 2628
GET_DD_INDEX_SUB_PART_LENGTH(), 2628
GET_FORMAT(), 2345
GET_LOCK(), 2459
GIS, 2233
GIS data types

storage requirements, 2273
GIS values

geometrically valid, 2244
Git tree, 231
Glassfish, 6363
GLength()

removed features, 57
GLOBAL

SET statement, 3095
global privileges, 3050, 3064
global temporary tablespace, 6363
global transaction, 6364
Global_connection_memory status variable, 1070
global_connection_memory_limit system variable, 915

5610

global_connection_memory_tracking system variable, 915
global_grants table

system table, 1139, 1323, 1325
GLOBAL_STATUS

removed features, 59
GLOBAL_VARIABLES

removed features, 59
go command

mysql, 487
Google Test, 251
GRANT

removed features, 55
GRANT OPTION privilege, 1310
GRANT statement, 1342, 3050

privilege restrictions, 3061
grant tables

columns_priv table, 1139, 1325
db table, 279, 1139, 1325
default_roles table, 1139, 1325
global_grants table, 1139, 1323, 1325
password_history table, 1139, 1325
procs_priv table, 1139, 1325
proxies_priv, 1389
proxies_priv table, 279, 1139, 1325
role_edges table, 1139, 1325
sorting, 1339, 1341
structure, 1324
tables_priv table, 1139, 1325
user table, 279, 1139, 1325

granting
privileges, 3050

granting roles, 3050
grants

display, 3120
graph option

ndb_top, 4637
greater than (>), 2314
greater than or equal (>=), 2314
greatest timestamp wins (conflict resolution), 4883
greatest timestamp, delete wins (conflict resolution), 4884
GREATEST(), 2315
grep option

mysqldumpslow, 732
Group (NDB Cluster), 4452
GROUP BY

aliases in, 2605
extensions to standard SQL, 2602, 2857
implicit sorting, 1862
maximum sort length, 2857
WITH ROLLUP, 2596

GROUP BY functions, 2586
GROUP BY optimizing, 1864
GROUP BY sorting

removed features, 57
group commit, 6364
group preferences

LDAP authentication, 1469
Group Replication, 3889

5611

adding a second instance, 3912
adding additional instances, 3914
adding instances, 3912
allowlist, 3974
asynchronous replication, 3891
background, 3890
change to multi-primary mode, 3930
change to single-primary mode, 3929
changing group mode, 3929
changing primary, 3928
choosing mode, 3895
combining versions, 4003
communication protocol, 3930
configuring a group's write concurrency, 3930
configuring consistency guarantees, 3937
configuring distributed recovery, 3949
configuring instances, 3904
configuring online group, 3927
consistency guarantees, 3935
consistency guarantees and data flow, 3936
consistency guarantees choose a level, 3938
consistency guarantees impact on primary election, 3940
consistency guarantees impacts, 3939
consistency guarantees synchronization points, 3936
data definition language statements, 3898
deploying in single primary mode, 3903
deploying instances, 3904
details, 3899
distributed recovery, 3941
election process, 3895
examples use case scenarios, 3894
failure detection, 3900, 3984
find primary, 3897
fine tuning the group communication thread, 3977
flow control, 3977
frequently asked questions, 4054
functions, 3927, 3928, 3929, 3930, 3930, 3930
getting started, 3903
Group Communication System, 3902
group communication thread (GCT), 3977
group membership, 3899
group write consensus, 3930
group_replication_get_write_concurrency() function, 3930
group_replication_ip_allowlist, 3974
group_replication_ip_whitelist, 3974
group_replication_set_as_primary() function, 3928
group_replication_set_write_concurrency() function, 3930
group_replication_switch_to_multi_primary_mode() function, 3930
group_replication_switch_to_single_primary_mode() function, 3929
GTIDs, 3924
inspecting a group's write concurrency, 3930
ip address permissions, 3974
ipv6, 3956
launching, 3910
limitations, 3920
member actions configuration, 3932
message compression, 3979
mixed ipv4 and ipv6, 3956

5612

modes, 3895
monitoring, 3923
multi-primary and single-primary modes, 3895
multi-primary mode, 3897
MySQL Enterprise Backup, 3958
network partition, 3984
network partitioning, 3990
observability, 3901
offline upgrade, 4005
online upgrade, 4006
online upgrade considerations, 4006
online upgrade methods, 4007
operations, 3927
Paxos, 3902
performance, 3976
performance message fragmentation, 3981
performance xcom cache, 3982
plugin architecture, 3902
primary failover, 3935
primary secondary replication, 3891
probes and statistics, 3978
recovering from a point in time, 3951
replication group member stats, 3927
replication technologies, 3891
replication_group_members table, 3926
requirements, 3917
requirements and limitations, 3917
responses to failure detection, 3984
restarting, 3933
secure socket layer support, 3967
security, 3964
server states, 3925
server variables, 4009
single-primary mode, 3895
ssl support, 3967
status variables, 4054
summary, 3892
system variables, 4011
the group, 3899
throttling, 3978
transaction consistency guarantees, 3935
troubleshooting, 3976
understanding transaction consistency guarantees, 3935
upgrading, 4003
upgrading member, 4006
use cases, 3894
user credentials, 3908
view, 3899
view changes, 3951

group replication
performance schema instruments, 3994

group replication functions, 2570
asynchronous_connection_failover_reset(), 2584
group_replication_disable_member_action(), 2576
group_replication_enable_member_action(), 2577
group_replication_get_communication_protocol(), 2574
group_replication_get_write_concurrency(), 2573
group_replication_reset_member_actions(), 2577

5613

group_replication_set_as_primary(), 2572
group_replication_set_communication_protocol(), 2575
group_replication_set_write_concurrency(), 2573
group_replication_switch_to_multi_primary_mode(), 2572
group_replication_switch_to_single_primary_mode(), 2573

group write consensus, 3930
grouping

expressions, 2311
GROUPING(), 2596, 2631
GROUP_CONCAT(), 2591
group_concat_max_len system variable, 916
GROUP_INDEX, 1975
GROUP_REPLICATION_ADMIN privilege, 1317
group_replication_advertise_recovery_endpoints, 4013
group_replication_allow_local_lower_version_join system variable, 4014
group_replication_autorejoin_tries system variable, 4016
group_replication_auto_increment_increment system variable, 4015
group_replication_bootstrap_group system variable, 4017
group_replication_clone_threshold system variable, 4017
group_replication_communication_debug_options system variable, 4018
group_replication_communication_max_message_size system variable, 4019
group_replication_communication_stack system variable, 4020
group_replication_components_stop_timeout system variable, 4021
group_replication_compression_threshold system variable, 4022
group_replication_consistency system variable, 4022
group_replication_disable_member_action() function, 2576
group_replication_enable_member_action() function, 2577
group_replication_enforce_update_everywhere_checks system variable, 4024
group_replication_exit_state_action system variable, 4025
group_replication_flow_control_applier_threshold system variable, 4026
group_replication_flow_control_certifier_threshold system variable, 4027
group_replication_flow_control_hold_percent system variable, 4027
group_replication_flow_control_max_quota system variable, 4027
group_replication_flow_control_member_quota_percent system variable, 4028
group_replication_flow_control_min_quota system variable, 4028
group_replication_flow_control_min_recovery_quota system variable, 4029
group_replication_flow_control_mode system variable, 4029
group_replication_flow_control_period system variable, 4030
group_replication_flow_control_release_percent system variable, 4030
group_replication_force_members system variable, 4030
group_replication_get_communication_protocol() function, 2574
group_replication_get_write_concurrency() function, 2573, 3930
group_replication_group_name system variable, 4031
group_replication_group_seeds system variable, 4032
group_replication_gtid_assignment_block_size system variable, 4032
group_replication_ip_allowlist, 4033
group_replication_ip_whitelist, 4035
group_replication_local_address system variable, 4035
group_replication_member_expel_timeout system variable, 4037
group_replication_member_weight system variable, 4038
group_replication_message_cache_size system variable, 4038
group_replication_paxos_single_leader system variable, 4039
group_replication_poll_spin_loops system variable, 4040
group_replication_recovery_complete_at system variable, 4041
group_replication_recovery_compression_algorithms system variable, 4041
group_replication_recovery_get_public_key system variable, 4042
group_replication_recovery_public_key_path system variable, 4042
group_replication_recovery_reconnect_interval system variable, 4043

5614

group_replication_recovery_retry_count system variable, 4043
group_replication_recovery_ssl_ca system variable, 4044
group_replication_recovery_ssl_capath system variable, 4044
group_replication_recovery_ssl_cert system variable, 4045
group_replication_recovery_ssl_cipher system variable, 4045
group_replication_recovery_ssl_crl system variable, 4045
group_replication_recovery_ssl_crlpath system variable, 4046
group_replication_recovery_ssl_key system variable, 4046
group_replication_recovery_ssl_verify_server_cert system variable, 4047
group_replication_recovery_tls_ciphersuites system variable, 4047
group_replication_recovery_tls_version system variable, 4048
group_replication_recovery_use_ssl system variable, 4049
group_replication_recovery_zstd_compression_level system variable, 4049
group_replication_reset_member_actions() function, 2577
group_replication_set_as_primary() function, 2572, 3928
group_replication_set_communication_protocol() function, 2575
group_replication_set_write_concurrency() function, 2573, 3930
group_replication_single_primary_mode system variable, 4050
group_replication_ssl_mode system variable, 4050
group_replication_start_on_boot system variable, 4051
GROUP_REPLICATION_STREAM privilege, 1317
group_replication_switch_to_multi_primary_mode() function, 2572, 3930
group_replication_switch_to_single_primary_mode() function, 2573, 3929
group_replication_tls_source system variable, 4052
group_replication_transaction_size_limit system variable, 4052
group_replication_unreachable_majority_timeout, 4053
group_replication_view_change_uuid system variable, 4053
GSSAPI authentication method

LDAP authentication, 1472, 1472
GSSAPI mode on Windows clients

Kerberos authentication, 1487
GTID functions, 2578
GTID sets

representation, 3627
GTIDs, 3625

and failover, 3639
and scaleout, 3639
assigning to transactions, 3642
auto-positioning, 3635
concepts, 3626
gtid_purged, 3633
life cycle, 3630
logging, 3628
replication with, 3636
restrictions, 3643

gtid_executed system variable, 3773
gtid_executed table

system table, 1140, 3628
gtid_executed_compression_period, 3774
gtid_executed_compression_period system variable

mysql.gtid_executed table, 3629
gtid_mode system variable, 3774
gtid_next system variable, 3775
gtid_owned system variable, 3776
gtid_purged, 3633
gtid_purged system variable, 3776
GTID_SUBSET(), 2578
GTID_SUBTRACT(), 2579

5615

GUID, 6364

H
HANDLER, 2816
Handlers, 2993
Handler_commit status variable, 1070
Handler_delete status variable, 1071
Handler_discover status variable, 4420
Handler_external_lock status variable, 1071
Handler_mrr_init status variable, 1071
Handler_prepare status variable, 1071
Handler_read_first status variable, 1071
Handler_read_key status variable, 1071
Handler_read_last status variable, 1071
Handler_read_next status variable, 1071
Handler_read_prev status variable, 1071
Handler_read_rnd status variable, 1071
Handler_read_rnd_next status variable, 1071
Handler_rollback status variable, 1072
Handler_savepoint status variable, 1072
Handler_savepoint_rollback status variable, 1072
Handler_update status variable, 1072
Handler_write status variable, 1072
hash index, 6364
hash indexes, 1901
hash join

new features, 33
hash partitioning, 4918
hash partitions

managing, 4935
splitting and merging, 4935

HashiCorp Vault
configuring, 1564

HashiCorp Vault certificate and key files
configuring, 1562

hash_maps
ndbinfo table, 4780

have_compress system variable, 916
have_crypt

removed features, 57
HAVE_CRYPT

removed features, 57
have_dynamic_loading system variable, 916
have_geometry system variable, 916
have_openssl system variable, 916
have_profiling system variable, 916
HAVE_PSI_MEMORY_INTERFACE option

CMake, 253
have_query_cache system variable, 916
have_rtree_keys system variable, 916
have_ssl system variable, 917
have_statement_timeout system variable, 917
have_symlink system variable, 917
HAVING clause, 2857
HDD, 6364
header file

keyword_list.h, 5038
header option

5616

ndb_select_all, 4620
header-file option

comp_err, 430
HEAP storage engine, 3575, 3587
heartbeat, 6364
HeartbeatIntervalDbApi, 4314
HeartbeatIntervalDbDb, 4314
HeartbeatIntervalMgmdMgmd

management nodes, 4270
HeartbeatOrder, 4315
HeartbeatThreadPriority, 4269, 4375
help action

MySQLInstallerConsole, 155
help command

mysql, 486
HELP command (NDB Cluster), 4656
help option

comp_err, 429
ibd2sdi, 644
innochecksum, 649
myisamchk, 660
myisampack, 677
myisam_ftdump, 656
mysql, 460
mysqladmin, 506
mysqlbinlog, 705
mysqlcheck, 521
mysqld, 840
mysqldump, 553
mysqldumpslow, 732
mysqld_multi, 425
mysqld_safe, 414
mysqlimport, 576
mysqlpump, 593
mysqlshow, 616
mysqlslap, 631
mysql_config_editor, 686
mysql_migrate_keyring, 692
mysql_secure_installation, 433
mysql_ssl_rsa_setup, 439
mysql_upgrade, 445
my_print_defaults, 735
ndbd, 4467
ndbinfo_select_all, 4476
ndbxfrm, 4652
ndb_blob_tool, 4499
ndb_config, 4512
ndb_delete_all, 4517
ndb_desc, 4527
ndb_drop_index, 4531
ndb_drop_table, 4535
ndb_error_reporter, 4538
ndb_import, 4547
ndb_index_stat, 4559
ndb_mgm, 4494
ndb_mgmd, 4484
ndb_move_data, 4566
ndb_perror, 4569

5617

ndb_print_backup_file, 4574
ndb_print_file, 4577
ndb_restore, 4594
ndb_secretsfile_reader, 4615
ndb_select_all, 4619
ndb_select_count, 4625
ndb_show_tables, 4629
ndb_top, 4637
ndb_waiter, 4644
perror, 737

HELP option
myisamchk, 661

HELP statement, 3174
help tables

system tables, 1140
help_category table

system table, 1140
help_keyword table

system table, 1140
help_relation table

system table, 1140
help_topic table

system table, 1140
hex option

ndb_restore, 4594
HEX(), 2330, 2365
hex-blob option

mysqldump, 560
mysqlpump, 601

hexadecimal literal introducer, 2058
hexadecimal literals, 2057

bit operations, 2059
hexdump option

mysqlbinlog, 711
high-water mark, 6364
HIGH_NOT_PRECEDENCE SQL mode, 1094
HIGH_PRIORITY

INSERT modifier, 2824
SELECT modifier, 2860

hintable
system variable, 1980

hints, 95
index, 1982, 2856
optimizer, 1968

histignore option
mysql, 471

histogram_generation_max_mem_size system variable, 917
history list, 6364
history of MySQL, 8
hole punching, 6365
HOME environment variable, 492, 738
host, 6365
host cache, 1108
host name

default, 395
host name caching, 1108
host name resolution, 1108
host names, 395

5618

in account names, 1334
in default account, 279
in role names, 1336
maximum length, 31

host option, 383
mysql, 471
mysqladmin, 510
mysqlbinlog, 712
mysqlcheck, 525
mysqldump, 543
mysqldumpslow, 732
mysqlimport, 580
mysqlpump, 601
mysqlshow, 620
mysqlslap, 637
mysql_migrate_keyring, 694
mysql_secure_installation, 434
mysql_upgrade, 448
ndb_config, 4507
ndb_top, 4637

HostName, 4265, 4273, 4372
HostName (NDB Cluster), 4836
hostname system variable, 919
HostName1, 4443, 4452
HostName2, 4443, 4452
hosts table

performance_schema, 5217
host_cache table

performance_schema, 1108, 5307
host_summary view

sys schema, 5368
host_summary_by_file_io view

sys schema, 5369
host_summary_by_file_io_type view

sys schema, 5369
host_summary_by_stages view

sys schema, 5369
host_summary_by_statement_latency view

sys schema, 5370
host_summary_by_statement_type view

sys schema, 5371
hot, 6365
hot backup, 6365
HOUR(), 2346
hp8

deprecated features, 49
html option

mysql, 471
hwinfo

ndbinfo table, 4781

I
i-am-a-dummy option

mysql, 479
ib-file set, 6366
ibbackup_logfile, 6366
.ibd file, 6365
ibd2sdi, 644

5619

debug option, 645
dump-file option, 645
help option, 644
id option, 646
no-check option, 648
pretty option, 648
skip-data option, 646
strict-check option, 648
type option, 647
version option, 645

ibdata file, 2752, 6366
ibtmp file, 6366
.ibz file, 6365
ib_logfile, 6366
icc

MySQL builds, 125
ICU_VERSION(), 2467
Id, 4263, 4370
id option

ibd2sdi, 646
idempotent option

mysqlbinlog, 712
IDENTIFIED BY PASSWORD

removed features, 55
identifiers, 2061

case sensitivity, 2065
quoting, 2061

identity system variable, 919
idlesleep option

ndb_import, 4547
idlespin option

ndb_import, 4548
IF, 2987
IF(), 2323
IFNULL(), 2323
IGNORE

DELETE modifier, 2812
INSERT modifier, 2824
LOAD DATA modifier, 2834
UPDATE modifier, 2894
with partitioned tables, 1102, 2824

IGNORE INDEX, 1982
IGNORE KEY, 1982
ignore option

mysqlimport, 580
ignore-error option

mysqldump, 564
ignore-extended-pk-updates option

ndb_restore, 4594
ignore-lines option

mysqlimport, 580
ndb_import, 4548

ignore-spaces option
mysql, 471

ignore-table option
mysqldump, 564

IGNORE_AIO_CHECK option
CMake, 253

5620

ignore_builtin_innodb
removed features, 58

ignore_db_dirs
removed features, 56

IGNORE_SPACE SQL mode, 1094
ilist, 6366
immediate_commit_timestamp, 3852
immediate_server_version system variable, 3676
implicit default values, 2266
implicit GROUP BY sorting, 1862
implicit row lock, 6366
IMPORT TABLE, 2817
IMPORT TABLESPACE, 2684, 3214
importing

data, 495, 572
importing data

NDB Cluster, 4712
IN, 2877
IN(), 2315
in-file option

comp_err, 430
in-file-errlog option

comp_err, 430
in-file-toclient option

comp_err, 430
in-memory database, 6366
include option

mysql_config, 734
include-databases option

mysqlpump, 601
ndb_restore, 4594

include-events option
mysqlpump, 601

include-gtids option
mysqlbinlog, 712

include-master-host-port option
mysqldump, 556

include-routines option
mysqlpump, 601

include-source-host-port option
mysqldump, 556

include-stored-grants option
ndb_restore, 4594

include-tables option
mysqlpump, 601
ndb_restore, 4595

include-triggers option
mysqlpump, 602

include-users option
mysqlpump, 602

increasing with replication
speed, 3611

incremental backup, 6367
incremental recovery, 1810

using NDB Cluster replication, 4872
index, 6367

deleting, 2680, 2800
rebuilding, 323

5621

sorted index builds, 3227
INDEX, 1975
index cache, 6367
index condition pushdown, 6367
INDEX DIRECTORY

and replication, 3862
index dives

range optimization, 1829
index dives (for statistics estimation), 3325
index extensions, 1902
index hint, 6367
index hints, 1982, 2856
index join type

optimizer, 1946
index prefix, 6368
index prefixes

partitioning, 4958
INDEX privilege, 1310
index statistics

NDB, 4366
index-record lock

InnoDB, 3282
indexed temporary table

semijoin strategy, 1876
indexes, 2700

and BLOB columns, 1897, 2731
and IS NULL, 1902
and LIKE, 1901
and ndb_restore, 4602
and NULL values, 2731
and TEXT columns, 1897, 2731
assigning to key cache, 3155
BLOB columns, 2701
block size, 925
column prefixes, 1897
columns, 1897
descending, 1908
leftmost prefix of, 1895, 1899
multi-column, 1898
multiple-part, 2700
names, 2061
TEXT columns, 2701
TIMESTAMP lookups, 1909
use of, 1894

indexes table
data dictionary table, 1137

IndexMemory, 4279
IndexStatAutoCreate

data nodes, 4366
IndexStatAutoUpdate

data nodes, 4366
IndexStatSaveScale

data nodes, 4367
IndexStatSaveSize

data nodes, 4367
IndexStatTriggerPct

data nodes, 4368
IndexStatTriggerScale

5622

data nodes, 4368
IndexStatUpdateDelay

data nodes, 4369
index_columns

ndbinfo table, 4781
index_column_usage table

data dictionary table, 1137
INDEX_MERGE, 1975
index_merge join type

optimizer, 1945
index_partitions table

data dictionary table, 1137
index_stats

ndbinfo table, 4782
index_stats table

data dictionary table, 1137
index_subquery join type

optimizer, 1946
indirect indexes

NDB Cluster, 2772
INET6_ATON(), 2635
INET6_NTOA(), 2636
INET_ATON(), 2634
INET_NTOA(), 2634
infimum record, 6368
INFO Events (NDB Cluster), 4687
info option

innochecksum, 649
ndbxfrm, 4652

information functions, 2461
information option

myisamchk, 665
INFORMATION SCHEMA

InnoDB tables, 3482
INFORMATION_SCHEMA, 5006, 6368

and security issues, 4841
collation and searching, 2150
connection control table reference, 5118
connection control tables, 5118
firewall table reference, 5118
general table reference, 5014
general tables, 5014
InnoDB table reference, 5074
InnoDB tables, 5074
INNODB_CMP table, 3483
INNODB_CMPMEM table, 3483
INNODB_CMPMEM_RESET table, 3483
INNODB_CMP_RESET table, 3483
INNODB_TRX table, 3485
MySQL Enterprise Firewall tables, 5118
table reference, 5009
thread pool table reference, 5116
Thread pool tables, 5116

INFORMATION_SCHEMA queries
optimization, 1888

INFORMATION_SCHEMA.ENGINES table
and NDB Cluster, 4829

INFORMATION_SCHEMA.PLUGINS table

5623

and NDB Cluster, 4835
information_schema_stats

removed features, 54
information_schema_stats_expiry system variable, 920
INFO_BIN file

binary distribution configuration options, 92, 224
init

thread state, 2024
Init DB

thread command, 2021
init-command option

mysql, 472
InitFragmentLogFiles, 4296
initial option

ndbd, 4467
ndbmtd, 4467
ndb_mgmd, 4484

initial-start option
ndbd, 4468
ndbmtd, 4468

initialize option
mysqld, 847

initialize-insecure option
mysqld, 848

Initialized
thread state, 2034

InitialLogFileGroup, 4360
InitialNoOfOpenFiles, 4295
InitialTablespace, 4361
init_connect system variable, 919
init_file system variable, 921
init_replica system variable, 3697
init_slave system variable, 3697
injection

SQL, 1301, 1699, 2438, 2977
XPath code, 2438

INNER JOIN, 2863
innochecksum, 366, 649

allow-mismatches option, 652
count option, 650
end-page option, 651
help option, 649
info option, 649
log option, 654
no-check option, 652
page option, 651
page-type-dump option, 654
page-type-summary option, 653
read from standard in option, 654
start-page option, 651
strict-check option, 652
verbose option, 650
version option, 649
write option, 653

InnoDB, 3186, 6368
adaptive hash index, 3201
and application feature requirements, 4184
application performance, 3219

5624

applications supported, 4183
architecture, 3193
asynchronous I/O, 3313
auto-inc lock, 3266
auto-increment columns, 3219
autocommit mode, 3273, 3273
availability, 4182
backups, 3529
buffer pool, 3310
change buffer, 3198
checkpoints, 3359
clustered index, 3226
COMPACT row format, 3352
compared to NDB Cluster, 4181, 4182, 4183, 4184
configuration parameters, 3392
consistent reads, 3274
corruption, 3530
crash recovery, 3530, 3530, 3532
creating tables, 3202
data files, 3234
deadlock detection, 3287
deadlock example, 3283
deadlocks, 3216, 3283, 3287
disk failure, 3530
disk I/O, 3357
disk I/O optimization, 1929
DYNAMIC row format, 3354, 3354
exclusive lock, 3266
file space management, 3357
file-per-table tablespace, 3236
files, 3219
full-text indexes, 3229
gap lock, 3266, 3282
in-memory structures, 3193
index-record lock, 3282
insert-intention lock, 3266
intention lock, 3266
limitations, 3574
limits, 3572
Linux, 3313
lock modes, 3266
locking, 3265, 3266, 3279
locking reads, 3276
memory usage, 3215
migrating tables, 3213
Monitors, 3568
multi-versioning, 3191
new features, 12
next-key lock, 3266, 3282
NFS, 3290
on-disk structures, 3202
online DDL, 3360
page size, 3227
physical index structure, 3227
point-in-time recovery, 3530
primary keys, 3203, 3218
raw partitions, 3235
record-level locks, 3282

5625

recovery, 3530
redo log, 3257, 3258, 3260
REDUNDANT row format, 3352
replication, 3532
restrictions, 3574
row format, 3203, 3356
secondary index, 3226
shared lock, 3266
Solaris issues, 222
sorted index builds, 3227
storage, 3218
storage layout, 3216
system variables, 3392
table properties, 3203
tables, 3202

converting from other storage engines, 3215
transaction model, 3265, 3270
transactions, 3215
transferring data, 3217
troubleshooting, 3568

cannot open datafile, 3571
data dictionary problems, 3571
deadlocks, 3283, 3287
defragmenting tables, 3359
I/O problems, 3569
online DDL, 3383
performance problems, 1923
recovery problems, 3569
restoring orphan ibd files, 3571
SQL errors, 3572

InnoDB buffer pool, 1991, 3195, 3297, 3302, 3303, 3304, 3307
InnoDB Cluster

introduction, 4131
InnoDB compressed temporary tables

removed features, 61
InnoDB memcached plugin

deprecated features, 52
InnoDB Monitors, 3522

enabling, 3523
output, 3524

innodb option
mysqld, 3399

InnoDB predicate locks, 3270
InnoDB remote tablespaces

removed features, 61
InnoDB ReplicaSet

introduction, 4133
InnoDB shared tablespaces

removed features, 62
InnoDB storage engine, 3186, 3575
InnoDB table reference

INFORMATION_SCHEMA, 5074
InnoDB tables

storage requirements, 2270
innodb-dedicated-server mysqld

option, 3399
innodb-status-file option

mysqld, 3400

5626

innodb_adaptive_flushing system variable, 3403
innodb_adaptive_flushing_lwm system variable, 3403
innodb_adaptive_hash_index

and innodb_thread_concurrency, 3311
innodb_adaptive_hash_index system variable, 3403
innodb_adaptive_hash_index_parts variable, 3404
innodb_adaptive_max_sleep_delay system variable, 3404
innodb_api_bk_commit_interval system variable, 3405
innodb_api_disable_rowlock system variable, 3405
innodb_api_enable_binlog system variable, 3406
innodb_api_enable_mdl system variable, 3406
innodb_api_trx_level system variable, 3406
innodb_autoextend_increment system variable, 3407
innodb_autoinc_lock_mode, 6368
innodb_autoinc_lock_mode system variable, 3407
Innodb_available_undo_logs

removed features, 62
innodb_background_drop_list_empty system variable, 3408
INNODB_BUFFER_PAGE

INFORMATION_SCHEMA table, 5075
INNODB_BUFFER_PAGE_LRU

INFORMATION_SCHEMA table, 5079
Innodb_buffer_pool_bytes_data status variable, 1072
Innodb_buffer_pool_bytes_dirty status variable, 1072
innodb_buffer_pool_chunk_size system variable, 3408
innodb_buffer_pool_debug, 3409
innodb_buffer_pool_dump_at_shutdown system variable, 3409
innodb_buffer_pool_dump_now system variable, 3410
innodb_buffer_pool_dump_pct system variable, 3410
Innodb_buffer_pool_dump_status status variable, 1072
innodb_buffer_pool_filename system variable, 3410
innodb_buffer_pool_instances system variable, 3411
innodb_buffer_pool_in_core_file option, 3310
innodb_buffer_pool_in_core_file system variable, 3411
innodb_buffer_pool_load_abort system variable, 3412
innodb_buffer_pool_load_at_startup system variable, 3412
innodb_buffer_pool_load_now system variable, 3413
Innodb_buffer_pool_load_status status variable, 1072
Innodb_buffer_pool_pages_data status variable, 1072
Innodb_buffer_pool_pages_dirty status variable, 1072
Innodb_buffer_pool_pages_flushed status variable, 1072
Innodb_buffer_pool_pages_free status variable, 1073
Innodb_buffer_pool_pages_latched status variable, 1073
Innodb_buffer_pool_pages_misc status variable, 1073
Innodb_buffer_pool_pages_total status variable, 1073
Innodb_buffer_pool_reads status variable, 1073
Innodb_buffer_pool_read_ahead status variable, 1073
Innodb_buffer_pool_read_ahead_evicted status variable, 1073
Innodb_buffer_pool_read_ahead_rnd status variable, 1073
Innodb_buffer_pool_read_requests status variable, 1073
Innodb_buffer_pool_resize_status status variable, 1073
Innodb_buffer_pool_resize_status_code variable, 1073
Innodb_buffer_pool_resize_status_progress variable, 1074
innodb_buffer_pool_size system variable, 3413
INNODB_BUFFER_POOL_STATS

INFORMATION_SCHEMA table, 5082
Innodb_buffer_pool_wait_free status variable, 1074
Innodb_buffer_pool_write_requests status variable, 1074

5627

innodb_buffer_stats_by_schema view
sys schema, 5372

innodb_buffer_stats_by_table view
sys schema, 5372

INNODB_CACHED_INDEXES
INFORMATION_SCHEMA table, 5085

innodb_change_buffering, 3199
innodb_change_buffering system variable, 3415
innodb_change_buffering_debug, 3415
innodb_change_buffer_max_size system variable, 3414
innodb_checkpoint_disabled system variable, 3416
innodb_checksum_algorithm system variable, 3416
INNODB_CMP

INFORMATION_SCHEMA table, 5086
INNODB_CMPMEM

INFORMATION_SCHEMA table, 5087
INNODB_CMPMEM_RESET

INFORMATION_SCHEMA table, 5087
INNODB_CMP_PER_INDEX

INFORMATION_SCHEMA table, 5089
innodb_cmp_per_index_enabled system variable, 3418
INNODB_CMP_PER_INDEX_RESET

INFORMATION_SCHEMA table, 5089
INNODB_CMP_RESET

INFORMATION_SCHEMA table, 5086
INNODB_COLUMNS

INFORMATION_SCHEMA table, 5090
innodb_commit_concurrency system variable, 3418
innodb_compression_failure_threshold_pct system variable, 3419
innodb_compression_level system variable, 3419
innodb_compression_pad_pct_max system variable, 3420
innodb_compress_debug, 3418
innodb_concurrency_tickets, 3311
innodb_concurrency_tickets system variable, 3420
INNODB_DATAFILES

INFORMATION_SCHEMA table, 5092
innodb_data_file_path system variable, 3421
Innodb_data_fsyncs status variable, 1074
innodb_data_home_dir system variable, 3421
Innodb_data_pending_fsyncs status variable, 1074
Innodb_data_pending_reads status variable, 1074
Innodb_data_pending_writes status variable, 1074
Innodb_data_read status variable, 1075
Innodb_data_reads status variable, 1075
Innodb_data_writes status variable, 1075
Innodb_data_written status variable, 1075
Innodb_dblwr_pages_written status variable, 1075
Innodb_dblwr_writes status variable, 1075
innodb_ddl_buffer_size system variable, 3422
innodb_ddl_log table

data dictionary table, 1137
innodb_ddl_log_crash_reset_debug system variable, 3422
innodb_ddl_threads system variable, 3422
innodb_deadlock_detect

new features, 13
innodb_deadlock_detect system variable, 3423
innodb_default_row_format, 3354
innodb_default_row_format system variable, 3423

5628

innodb_directories system variable, 3424
innodb_disable_sort_file_cache system variable, 3425
innodb_doublewrite system variable, 3425
innodb_doublewrite_batch_size, 3426
innodb_doublewrite_dir, 3426
innodb_doublewrite_files, 3426
innodb_doublewrite_pages, 3427
innodb_dynamic_metadata table

system table, 1141
innodb_extend_and_initialize, 3253
innodb_extend_and_initialize system variable, 3427
innodb_fast_shutdown system variable, 3428
INNODB_FIELDS

INFORMATION_SCHEMA table, 5092
innodb_file_format

removed features, 61
innodb_file_format_check

removed features, 61
innodb_file_format_max

removed features, 61
innodb_file_per_table, 3334, 6369
innodb_file_per_table system variable, 3428
innodb_fill_factor system variable, 3429
innodb_fil_make_page_dirty_debug, 3428
innodb_flushing_avg_loops system variable, 3434
innodb_flush_log_at_timeout system variable, 3430
innodb_flush_log_at_trx_commit system variable, 3430
innodb_flush_method system variable, 3431
innodb_flush_neighbors system variable, 3433
innodb_flush_sync system variable, 3434
innodb_force_load_corrupted system variable, 3434
innodb_force_recovery system variable, 3435

DROP TABLE, 2803
INNODB_FOREIGN

INFORMATION_SCHEMA table, 5093
INNODB_FOREIGN_COLS

INFORMATION_SCHEMA table, 5094
innodb_fsync_threshold system variable, 3435
innodb_ft_aux_table system variable, 3436
INNODB_FT_BEING_DELETED

INFORMATION_SCHEMA table, 5094
innodb_ft_cache_size system variable, 3436
INNODB_FT_CONFIG

INFORMATION_SCHEMA table, 5095
INNODB_FT_DEFAULT_STOPWORD

INFORMATION_SCHEMA table, 5096
INNODB_FT_DELETED

INFORMATION_SCHEMA table, 5097
innodb_ft_enable_diag_print system variable, 3437
innodb_ft_enable_stopword system variable, 3437
INNODB_FT_INDEX_CACHE

INFORMATION_SCHEMA table, 5098
INNODB_FT_INDEX_TABLE

INFORMATION_SCHEMA table, 5099
innodb_ft_max_token_size system variable, 3438
innodb_ft_min_token_size system variable, 3438
innodb_ft_num_word_optimize system variable, 3438
innodb_ft_result_cache_limit system variable, 3439

5629

innodb_ft_server_stopword_table system variable, 3439
innodb_ft_sort_pll_degree system variable, 3440
innodb_ft_total_cache_size system variable, 3440
innodb_ft_user_stopword_table system variable, 3441
Innodb_have_atomic_builtins status variable, 1075
innodb_idle_flush_pct system variable, 3441
INNODB_INDEXES

INFORMATION_SCHEMA table, 5101
innodb_index_stats table

system table, 1141, 3318
innodb_io_capacity, 3313
innodb_io_capacity system variable, 3441
innodb_io_capacity_max system variable, 3442
innodb_large_prefix

removed features, 61
innodb_limit_optimistic_insert_debug, 3442
INNODB_LOCKS

INFORMATION_SCHEMA table, 5252
removed features, 61

innodb_locks_unsafe_for_binlog
removed features, 54

INNODB_LOCK_WAITS
INFORMATION_SCHEMA table, 5254
removed features, 61

innodb_lock_waits view
sys schema, 5373

innodb_lock_wait_timeout, 6369
innodb_lock_wait_timeout system variable, 3443
innodb_log_buffer_size system variable, 3443
innodb_log_checkpoint_fuzzy_now system variable, 3444
innodb_log_checkpoint_now system variable, 3444
innodb_log_checksums system variable, 3444
innodb_log_compressed_pages system variable, 3445
innodb_log_files_in_group

deprecated features, 53
innodb_log_files_in_group system variable, 3446
innodb_log_file_size

deprecated features, 53
innodb_log_file_size system variable, 3445
innodb_log_group_home_dir system variable, 3447
innodb_log_spin_cpu_abs_lwm system variable, 3447
innodb_log_spin_cpu_pct_hwm system variable, 3447
Innodb_log_waits status variable, 1075
innodb_log_wait_for_flush_spin_hwm system variable, 3448
innodb_log_writer_threads system variable, 3449
Innodb_log_writes status variable, 1075
innodb_log_write_ahead_size system variable, 3448
Innodb_log_write_requests status variable, 1075
innodb_lru_scan_depth system variable, 3449
innodb_max_dirty_pages_pct system variable, 3450
innodb_max_dirty_pages_pct_lwm system variable, 3450
innodb_max_purge_lag system variable, 3451
innodb_max_purge_lag_delay system variable, 3451
innodb_max_undo_log_size system variable, 3451
innodb_memcache database, 3537, 3562
innodb_memcached_config.sql script, 3537
innodb_merge_threshold_set_all_debug, 3452
INNODB_METRICS

5630

INFORMATION_SCHEMA table, 5102
innodb_monitor_disable system variable, 3452
innodb_monitor_enable system variable, 3452
innodb_monitor_reset system variable, 3453
innodb_monitor_reset_all system variable, 3453
innodb_numa_interleave variable, 3454
Innodb_num_open_files status variable, 1075
innodb_old_blocks_pct, 3303
innodb_old_blocks_pct system variable, 3454
innodb_old_blocks_time, 3303
innodb_old_blocks_time system variable, 3454
innodb_online_alter_log_max_size system variable, 3455
innodb_open_files system variable, 3455
innodb_optimize_fulltext_only system variable, 3456
Innodb_os_log_fsyncs status variable, 1075
Innodb_os_log_pending_fsyncs status variable, 1075
Innodb_os_log_pending_writes status variable, 1075
Innodb_os_log_written status variable, 1075
Innodb_pages_created status variable, 1076
Innodb_pages_read status variable, 1076
Innodb_pages_written status variable, 1076
innodb_page_cleaners system variable, 3457
Innodb_page_size status variable, 1075
innodb_page_size system variable, 3458
innodb_parallel_read_threads system variable, 3459
innodb_print_all_deadlocks system variable, 3459

innodb_print_all_deadlocks, 3459
innodb_print_ddl_logs system variable, 3460
innodb_purge_batch_size system variable, 3460
innodb_purge_rseg_truncate_frequency system variable, 3461
innodb_purge_threads system variable, 3460
innodb_random_read_ahead system variable, 3461
innodb_read_ahead_threshold, 3304
innodb_read_ahead_threshold system variable, 3461
innodb_read_io_threads, 3312
innodb_read_io_threads system variable, 3462
innodb_read_only system variable, 3463
INNODB_REDO_LOG_ARCHIVE privilege, 1317
innodb_redo_log_archive_dirs system variable, 3463
innodb_redo_log_capacity system variable, 3464
Innodb_redo_log_capacity_resized status variable, 1076
Innodb_redo_log_checkpoint_lsn status variable, 1076
Innodb_redo_log_current_lsn status variable, 1076
INNODB_REDO_LOG_ENABLE privilege, 1317
Innodb_redo_log_enabled status variable, 1076
innodb_redo_log_encrypt system variable, 3465
innodb_redo_log_files table

performance_schema, 5310
Innodb_redo_log_flushed_to_disk_lsn status variable, 1076
Innodb_redo_log_logical_size status variable, 1077
Innodb_redo_log_physical_size status variable, 1077
Innodb_redo_log_read_only status variable, 1077
Innodb_redo_log_resize_status status variable, 1077
Innodb_redo_log_uuid status variable, 1077
innodb_replication_delay system variable, 3465
innodb_rollback_on_timeout system variable, 3465
innodb_rollback_segments system variable, 3465
Innodb_rows_deleted status variable, 1077

5631

Innodb_rows_inserted status variable, 1078
Innodb_rows_read status variable, 1078
Innodb_rows_updated status variable, 1078
Innodb_row_lock_current_waits status variable, 1077
Innodb_row_lock_time status variable, 1077
Innodb_row_lock_time_avg status variable, 1077
Innodb_row_lock_time_max status variable, 1077
Innodb_row_lock_waits status variable, 1077
innodb_saved_page_number_debug, 3466
innodb_segment_reserve_factor system variable, 3466
INNODB_SESSION_TEMP_TABLESPACES

INFORMATION_SCHEMA table, 5104
innodb_sort_buffer_size system variable, 3467
innodb_spin_wait_delay, 3315
innodb_spin_wait_delay system variable, 3467
innodb_spin_wait_pause_multiplier, 3315
innodb_spin_wait_pause_multiplier system variable, 3468
innodb_stats_auto_recalc system variable, 3468
innodb_stats_include_delete_marked system variable, 3320, 3468
innodb_stats_method system variable, 3469
innodb_stats_on_metadata system variable, 3469
innodb_stats_persistent system variable

innodb_stats_persistent, 3470
innodb_stats_persistent_sample_pages system variable, 3470
innodb_stats_transient_sample_pages, 3325
innodb_stats_transient_sample_pages system variable, 3471
innodb_status_output system variable, 3471
innodb_status_output_locks system variable, 3472
innodb_stat_persistent system variable, 3470
innodb_strict_mode, 6369
innodb_strict_mode system variable, 3472
innodb_support_xa

removed features, 61
innodb_sync_array_size system variable, 3473
innodb_sync_debug, 3473
innodb_sync_spin_loops system variable, 3473
Innodb_system_rows_deleted status variable, 1078
Innodb_system_rows_inserted status variable, 1078
Innodb_system_rows_read status variable, 1078
Innodb_system_rows_updated status variable, 1078
INNODB_SYS_COLUMNS

removed features, 55
INNODB_SYS_DATAFILES

removed features, 55
INNODB_SYS_FIELDS

removed features, 55
INNODB_SYS_FOREIGN

removed features, 55
INNODB_SYS_FOREIGN_COLS

removed features, 55
INNODB_SYS_INDEXES

removed features, 55
INNODB_SYS_TABLES

removed features, 55
INNODB_SYS_TABLESPACES

removed features, 55
INNODB_SYS_TABLESTATS

removed features, 55

5632

INNODB_SYS_VIRTUAL
removed features, 55

INNODB_TABLES
INFORMATION_SCHEMA table, 5105

INNODB_TABLESPACES
INFORMATION_SCHEMA table, 5106

INNODB_TABLESPACES_BRIEF
INFORMATION_SCHEMA table, 5109

INNODB_TABLESTATS
INFORMATION_SCHEMA table, 5109

innodb_table_locks system variable, 3474
innodb_table_stats table

system table, 1141, 3318
innodb_temp_data_file_path system variable, 3474
innodb_temp_tablespaces_dir system variable, 3475
INNODB_TEMP_TABLE_INFO

INFORMATION_SCHEMA table, 5111
innodb_thread_concurrency, 3311
innodb_thread_concurrency system variable, 3476
innodb_thread_sleep_delay, 3311
innodb_thread_sleep_delay system variable, 3477
innodb_tmpdir system variable, 3477
Innodb_truncated_status_writes status variable, 1078
INNODB_TRX

INFORMATION_SCHEMA table, 5112
innodb_trx_purge_view_update_only_debug, 3478
innodb_trx_rseg_n_slots_debug, 3478
innodb_undo_directory system variable, 3479
innodb_undo_logs

removed features, 62
innodb_undo_log_encrypt system variable, 3479
innodb_undo_log_truncate system variable, 3480
innodb_undo_tablespaces

removed features, 62
innodb_undo_tablespaces system variable, 3480
Innodb_undo_tablespaces_active status variable, 1078
Innodb_undo_tablespaces_explicit status variable, 1078
Innodb_undo_tablespaces_implicit status variable, 1078
Innodb_undo_tablespaces_total status variable, 1078
innodb_use_fdatasync system variable, 3480
innodb_use_native_aio, 3313
innodb_use_native_aio system variable, 3481
innodb_validate_tablespace_paths system variable, 3481
innodb_version system variable, 3482
INNODB_VIRTUAL

INFORMATION_SCHEMA table, 5114
innodb_write_io_threads, 3312
innodb_write_io_threads system variable, 3482
Innovation

MySQL releases, 108
Innovation Series, 6369
INOUT parameter

condition handling, 3018
input-type option

ndb_import, 4548
input-workers option

ndb_import, 4548
INSERT, 1892, 2820

5633

insert, 6369
INSERT ... ON DUPLICATE KEY UPDATE

deprecated features, 51
INSERT ... SELECT, 2824
INSERT ... TABLE, 2824
insert buffer, 6369
insert buffering, 6369

disabling, 3199
INSERT DELAYED, 2829, 2829
insert intention lock, 6369
INSERT privilege, 1311
INSERT(), 2365
insert-ignore option

mysqldump, 566
mysqlpump, 602

insert-intention lock, 3266
insertable views

insertable, 4985
inserting

speed of, 1892
InsertRecoveryWork, 4300
inserts

concurrent, 1999, 2001
insert_id system variable, 922
install action

MySQLInstallerConsole, 156
INSTALL COMPONENT statement, 3090
install option

mysqld, 848
ndbd, 4468
ndbmtd, 4468
ndb_mgmd, 4485

INSTALL PLUGIN statement, 3092
install-manual option

mysqld, 849
Installation, 153
installation layouts, 125
installation overview, 224
installing

binary distribution, 125
Linux RPM packages, 196
macOS DMG packages, 175
overview, 106
Perl, 281
Perl on Windows, 282
Solaris PKG packages, 222
source distribution, 224

installing components, 1189, 3090
installing loadable functions, 1265
installing NDB Cluster, 4196

Debian Linux, 4205
Docker, 4207
Linux, 4198
Linux binary release, 4199
Linux RPM, 4201
Linux source release, 4205
Ubuntu Linux, 4205
Windows, 4208

5634

Windows binary release, 4208
Windows source, 4212

installing plugins, 1195, 3092
INSTALL_BINDIR option

CMake, 245
INSTALL_DOCDIR option

CMake, 245
INSTALL_DOCREADMEDIR option

CMake, 246
INSTALL_INCLUDEDIR option

CMake, 246
INSTALL_INFODIR option

CMake, 246
INSTALL_LAYOUT option

CMake, 246
INSTALL_LIBDIR option

CMake, 246
INSTALL_MANDIR option

CMake, 246
INSTALL_MYSQLKEYRINGDIR option

CMake, 246
INSTALL_MYSQLSHAREDIR option

CMake, 246
INSTALL_MYSQLTESTDIR option

CMake, 246
INSTALL_PKGCONFIGDIR option

CMake, 246
INSTALL_PLUGINDIR option

CMake, 247
INSTALL_PRIV_LIBDIR option

CMake, 247
INSTALL_SBINDIR option

CMake, 247
INSTALL_SCRIPTDIR

removed features, 58
INSTALL_SECURE_FILE_PRIVDIR option

CMake, 247
INSTALL_SHAREDIR option

CMake, 247
INSTALL_STATIC_LIBRARIES option

CMake, 247
INSTALL_SUPPORTFILESDIR option

CMake, 247
instance, 6370
instance option

mysqldumpslow, 733
INSTR(), 2365
instrumentation, 6370
INT data type, 2202
integer arithmetic, 2642
INTEGER data type, 2202
integers, 2052
intention lock, 3266, 6370
interactive option

ndb_mgmd, 4485
interactive_timeout system variable, 922
interceptor, 6370
InteriorRingN()

5635

removed features, 57
internal functions, 2627
internal locking, 1997
internal storage format

geometry values, 2243
internal temporary tables

new features, 30
INTERNAL_AUTO_INCREMENT(), 2628
INTERNAL_AVG_ROW_LENGTH(), 2628
INTERNAL_CHECKSUM(), 2628
INTERNAL_CHECK_TIME(), 2628
INTERNAL_DATA_FREE(), 2628
INTERNAL_DATA_LENGTH(), 2628
INTERNAL_DD_CHAR_LENGTH(), 2628
INTERNAL_GET_COMMENT_OR_ERROR(), 2628
INTERNAL_GET_ENABLED_ROLE_JSON() function, 2628
INTERNAL_GET_HOSTNAME() function, 2628
INTERNAL_GET_USERNAME() function, 2628
INTERNAL_GET_VIEW_WARNING_OR_ERROR(), 2628
INTERNAL_INDEX_COLUMN_CARDINALITY(), 2628
INTERNAL_INDEX_LENGTH(), 2628
INTERNAL_IS_ENABLED_ROLE() function, 2628
INTERNAL_IS_MANDATORY_ROLE() function, 2628
INTERNAL_KEYS_DISABLED(), 2628
INTERNAL_MAX_DATA_LENGTH(), 2628
INTERNAL_TABLE_ROWS(), 2628
internal_tmp_disk_storage_engine

removed features, 62
internal_tmp_disk_storage_engine system variable, 922
internal_tmp_mem_storage_engine system variable, 923
INTERNAL_UPDATE_TIME(), 2628
INTERSECT, 2829

parenthesized query expressions, 2849
set operations, 2869

Intersects()
removed features, 57

INTERVAL
temporal interval syntax, 2110

interval syntax, 2110
INTERVAL(), 2316
INTO

deprecated features, 51
parenthesized query expressions, 2849
SELECT, 2860
TABLE statement, 2861
VALUES statement, 2861

INTO OUTFILE
with TABLE statement, 2862

intrinsic temporary table, 6370
introducer

binary character set, 2177
bit-value literal, 2060
character set, 2131
hexadecimal literal, 2058
string literal, 2050, 2129

invalid data
constraint, 103

inverted index, 6370

5636

invisible columns, 2731, 2773
binary log, 2776
metadata, 2776

invisible indexes, 1906, 2681, 2713, 2736
metadata, 1906

INVOKER privileges, 3121, 4989
IOPS, 6370
io_by_thread_by_latency view

sys schema, 5375
io_global_by_file_by_bytes view

sys schema, 5376
io_global_by_file_by_latency view

sys schema, 5376
io_global_by_wait_by_bytes view

sys schema, 5377
io_global_by_wait_by_latency view

sys schema, 5378
IP addresses

in account names, 1334
IPv6 addresses

in account names, 1334
IPv6 connections, 994
IS boolean_value, 2316
IS NOT boolean_value, 2316
IS NOT DISTINCT FROM operator, 2313
IS NOT NULL, 2317
IS NULL, 1859, 2317

and indexes, 1902
IsClosed()

removed features, 57
IsEmpty()

removed features, 57
ISNULL(), 2317
ISOLATION LEVEL, 2922
isolation level, 3270, 6370
IsSimple()

removed features, 57
IS_FREE_LOCK(), 2461
IS_IPV4(), 2636
IS_IPV4_COMPAT(), 2636
IS_IPV4_MAPPED(), 2637
IS_IPV6(), 2637
IS_USED_LOCK(), 2461
IS_UUID(), 2637
IS_VISIBLE_DD_OBJECT(), 2628
ITERATE, 2988
iterations option

mysqlslap, 637

J
J2EE, 6371
Japanese character sets

conversion, 5483
Japanese, Korean, Chinese character sets

frequently asked questions, 5483
Java, 5442, 6371
JBoss, 6371
JDBC, 5439, 6371

5637

jdbc:mysql:loadbalance://, 4141
JNDI, 6371
join, 6371

nested-loop algorithm, 1845
JOIN, 2863
join algorithm

Block Nested-Loop, 1841
Nested-Loop, 1841

join option
myisampack, 678

join type
ALL, 1946
const, 1944
eq_ref, 1945
fulltext, 1945
index, 1946
index_merge, 1945
index_subquery, 1946
range, 1946
ref, 1945
ref_or_null, 1945
system, 1944
unique_subquery, 1945

joins
USING versus ON, 2867

join_buffer_size system variable, 923
JOIN_INDEX, 1975
JSON

array, 2253
autowrapped values, 2256
false literal, 2253
NDB Cluster, 2772
new features, 24
normalized values, 2256
null literal, 2253
null, true, and false literals, 2255
object, 2253
quote mark handling, 2255
scalar, 2253
sensible values, 2256
string, 2253
temporal values, 2253
true literal, 2253
valid values, 2253

JSON data type, 2251
JSON functions, 2524, 2524
JSON pointer URI fragment identifiers, 2562
JSON schema CHECK constraints

new features, 36
JSON schema validation, 2558

new features, 32
JSON_APPEND()

removed features, 61
JSON_ARRAY(), 2526
JSON_ARRAYAGG(), 2592
JSON_ARRAY_APPEND(), 2542
JSON_ARRAY_INSERT(), 2543
JSON_CONTAINS(), 2527

5638

JSON_CONTAINS_PATH(), 2528
JSON_DEPTH(), 2551
JSON_EXTRACT(), 2529
JSON_INSERT(), 2544
JSON_KEYS(), 2533
JSON_LENGTH(), 2551
JSON_MERGE(), 2544

deprecated features, 50
JSON_MERGE() (deprecated), 2257
JSON_MERGE_PATCH(), 2257, 2545
JSON_MERGE_PRESERVE(), 2257, 2547
JSON_OBJECT(), 2526
JSON_OBJECTAGG(), 2592
JSON_OVERLAPS(), 2533
JSON_PRETTY(), 2564
JSON_QUOTE(), 2527
JSON_REMOVE(), 2548
JSON_REPLACE(), 2548
JSON_SCHEMA_VALID(), 2559

and CHECK constraints, 2560
JSON_SCHEMA_VALIDATION_REPORT(), 2562
JSON_SEARCH(), 2535
JSON_SET(), 2549
JSON_STORAGE_FREE(), 2565
JSON_STORAGE_SIZE(), 2567
JSON_TABLE(), 2553
JSON_TABLE() syntax

deprecated features, 51
JSON_TYPE(), 2552
JSON_UNQUOTE(), 2550
JSON_VALID(), 2553
JSON_VALUE(), 2538

K
keep-state option

ndb_import, 4548
KeepAliveSendInterval, 4325
keep_files_on_create system variable, 924
Kerberos

authentication, 1478
Kerberos authentication

destroy_tickets parameter, 1488
GSSAPI mode on Windows clients, 1487
krb5.conf file, 1482, 1488

Key cache
MyISAM, 1992

key cache
assigning indexes to, 3155

key distribution center, 6371
key management

keyring, 1583
key migration

keyring, 1577
key partitioning, 4921
key partitions

managing, 4935
splitting and merging, 4935

key space

5639

MyISAM, 3583
key-value store, 1902
KeyControl (Entrust)

keyring_okv keyring plugin, 1558
keyring, 1538

key management, 1583
keyring components

component_keyring_encrypted_file, 1548
component_keyring_file, 1546
component_keyring_oci, 1569

keyring functions
general purpose, 1583
installing, 1584
keyring_key_fetch(), 1588
keyring_key_generate(), 1589
keyring_key_length_fetch(), 1589
keyring_key_remove(), 1589
keyring_key_store(), 1590
keyring_key_type_fetch(), 1590
plugin specific, 1590
uninstalling, 1584
using, 1584

keyring key migration, 1577
keyring plugins

keyring_aws, 1558
keyring_encrypted_file, 1551
keyring_file, 1550
keyring_hashicorp, 1561
keyring_oci, 1573
keyring_okv, 1553

keyring service functions
my_key_fetch(), 1263
my_key_generate(), 1263
my_key_remove(), 1263
my_key_store(), 1264

keyring system variables, 1594
keyring-migration-destination option

mysqld, 1592
keyring-migration-host option

mysqld, 1592
keyring-migration-password option

mysqld, 1593
keyring-migration-port option

mysqld, 1593
keyring-migration-socket option

mysqld, 1593
keyring-migration-source option

mysqld, 1593
keyring-migration-to-component option

mysqld, 1594
keyring-migration-user option

mysqld, 1594
keyring_aws functions

keyring_aws_rotate_cmk(), 1590
keyring_aws_rotate_keys(), 1591

keyring_aws keyring plugin, 1558
keyring_aws plugin, 3383

installing, 1544

5640

keyring_aws_cmk_id system variable, 1594
keyring_aws_conf_file system variable, 1595
keyring_aws_data_file system variable, 1595
keyring_aws_region system variable, 1595
keyring_aws_rotate_cmk() keyring_aws function, 1590
keyring_aws_rotate_keys() keyring_aws function, 1591
keyring_component_status table

performance_schema, 1539, 5271
keyring_encrypted_file keyring plugin, 1551
keyring_encrypted_file plugin, 3383

deprecated features, 49
installing, 1544

keyring_encrypted_file_data system variable, 1597
keyring_encrypted_file_password system variable, 1599
keyring_file keyring plugin, 1550
keyring_file plugin, 3383

deprecated features, 49
installing, 1544

keyring_file_data system variable, 1599
keyring_hashicorp functions

keyring_hashicorp_update_config(), 1591
keyring_hashicorp keyring plugin, 1561

configuring, 1567
keyring_hashicorp plugin, 3383

installing, 1544
keyring_hashicorp_auth_path system variable, 1601
keyring_hashicorp_caching system variable, 1601
keyring_hashicorp_ca_path system variable, 1601
keyring_hashicorp_commit_auth_path system variable, 1602
keyring_hashicorp_commit_caching system variable, 1602
keyring_hashicorp_commit_ca_path system variable, 1602
keyring_hashicorp_commit_role_id system variable, 1603
keyring_hashicorp_commit_server_url system variable, 1603
keyring_hashicorp_commit_store_path system variable, 1603
keyring_hashicorp_role_id system variable, 1603
keyring_hashicorp_secret_id system variable, 1604
keyring_hashicorp_server_url system variable, 1604
keyring_hashicorp_store_path system variable, 1604
keyring_hashicorp_update_config() keyring_hashicorp function, 1591
keyring_keys table

performance_schema, 1539, 1639, 1676, 5272
keyring_key_fetch() keyring function, 1588
keyring_key_generate() keyring function, 1589
keyring_key_length_fetch() keyring function, 1589
keyring_key_remove() keyring function, 1589
keyring_key_store() keyring function, 1590
keyring_key_type_fetch() keyring function, 1590
keyring_oci keyring component

configuring, 1570
keyring_oci keyring plugin, 1573

configuring, 1574
keyring_oci plugin

installing, 1544
keyring_oci_ca_certificate system variable, 1605
keyring_oci_compartment system variable, 1605
keyring_oci_encryption_endpoint system variable, 1605
keyring_oci_key_file system variable, 1606
keyring_oci_key_fingerprint system variable, 1606

5641

keyring_oci_management_endpoint system variable, 1607
keyring_oci_master_key system variable, 1607
keyring_oci_secrets_endpoint system variable, 1608
keyring_oci_tenancy system variable, 1608
keyring_oci_user system variable, 1609
keyring_oci_vaults_endpoint system variable, 1609
keyring_oci_virtual_vault system variable, 1609
keyring_okv keyring plugin, 1553

configuring, 1553
Entrust KeyControl, 1558
Gemalto SafeNet KeySecure Applicance, 1556
Oracle Key Vault, 1554
Townsend Alliance Key Manager, 1558

keyring_okv plugin, 3383
installing, 1544

keyring_okv_conf_dir system variable, 1610
keyring_operations system variable, 1610
keyring_udf plugin

installing, 1584
uninstalling, 1584

keys, 1897
foreign, 98, 355
multi-column, 1898
searching on two, 357

keys option
mysqlshow, 620

keys-used option
myisamchk, 666

keystore, 6372
keytab file

Kerberos authentication, 1480, 1481, 1489, 1503
keywords, 2072
KEYWORDS

INFORMATION_SCHEMA table, 5037
keyword_list.h header file, 5038
Key_blocks_not_flushed status variable, 1079
Key_blocks_unused status variable, 1079
Key_blocks_used status variable, 1079
KEY_BLOCK_SIZE, 3334, 3339, 6372
key_buffer_size myisamchk variable, 663
key_buffer_size system variable, 925
key_cache_age_threshold system variable, 926
key_cache_block_size system variable, 926
key_cache_division_limit system variable, 927
KEY_COLUMN_USAGE

INFORMATION_SCHEMA table, 5036
Key_reads status variable, 1079
Key_read_requests status variable, 1079
Key_writes status variable, 1079
Key_write_requests status variable, 1079
Kill

thread command, 2021
KILL statement, 3163
Killed

thread state, 2024
Killing slave

thread state, 2033
known errors, 5537

5642

Korean, 5483
krb5.conf file

Kerberos authentication, 1482, 1488
LDAP authentication, 1473, 1477

L
labels

stored program block, 2983
LAG(), 2611
language option

mysqld, 849
language support

error messages, 2177
lap option

ndb_redo_log_reader, 4581
large page support, 2015
large tables

NDB Cluster, 2742
large-pages option

mysqld, 849
large_files_support system variable, 927
large_pages system variable, 927
large_page_size system variable, 928
LAST_DAY(), 2346
last_insert_id system variable, 928
LAST_INSERT_ID(), 2467, 2823

and replication, 3855
and stored routines, 4971
and triggers, 4971

Last_query_cost status variable, 1079
Last_query_partial_plans status variable, 1079
LAST_VALUE(), 2612
latch, 6372
LateAlloc, 4308
lateral derived tables, 1949, 2885

new features, 29
latest_file_io view

sys schema, 5379
layout of installation, 125
lc-messages option

mysqld, 850
lc-messages-dir option

mysqld, 850
LCASE(), 2365
LcpScanProgressTimeout, 4297
lcp_simulator.cc (test program), 4300
lc_messages system variable, 928
lc_messages_dir system variable, 928
lc_time_names system variable, 929
LDAP

authentication, 1458
LDAP authentication

client-side logging, 1510
GSSAPI authentication method, 1472
Kerberos authentication method, 1472
krb5.conf file, 1473, 1477
ldap_destroy_tgt parameter, 1477
ldap_server_host parameter, 1477

5643

server-side logging, 1509, 1517
WITH_AUTHENTICATION_LDAP CMake option, 255

ldap.conf configuration file, 1464
LDAPNOINIT environment variable, 1464
ldap_destroy_tgt parameter

LDAP authentication, 1477
ldap_server_host parameter

LDAP authentication, 1477
LDML syntax, 2189
LD_LIBRARY_PATH environment variable, 283
LD_PRELOAD environment variable, 219
LD_RUN_PATH environment variable, 283, 738
LEAD(), 2613
LEAST(), 2318
LEAVE, 2988
ledir option

mysqld_safe, 415
LEFT JOIN, 1848, 2863
LEFT OUTER JOIN, 2863
LEFT(), 2365
leftmost prefix of indexes, 1895, 1899
legal names, 2061
length option

myisam_ftdump, 657
LENGTH(), 2366
less than (<), 2314
less than or equal (<=), 2314
libaio, 126, 201, 253
libmysql, 6372

FAQ, 5493
libmysqlclient, 6372
libmysqlclient library, 5439
libmysqld, 6372

removed features, 59
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable, 738
LIBMYSQL_PLUGINS environment variable, 738
LIBMYSQL_PLUGIN_DIR environment variable, 738
library

libmysqlclient, 5439
libs option

mysql_config, 734
libs_r option

mysql_config, 734
license system variable, 929
lifecycle interceptor, 6372
LIKE, 2374

and indexes, 1901
and wildcards, 1901

LIMIT, 2466, 2858
and replication, 3867
optimizations, 1867
parenthesized query expressions, 2849

limitations
InnoDB, 3574
replication, 3855
resource groups, 1128

limitations of NDB Cluster, 4184
limits

5644

file-size, 1920
InnoDB, 3572
maximum columns per table, 1921
maximum number of databases, 1920, 2695
maximum number of tables, 1920, 2729
maximum row size, 1921
maximum tables per join, 2865
maximum tables per view, 5002
table size, 1920

line-numbers option
mysql, 472

linear hash partitioning, 4920
linear key partitioning, 4922
linefeed (\n), 2050, 2550, 2837
LineFromText()

removed features, 57
LineFromWKB()

removed features, 57
lines-terminated-by option

mysqldump, 560, 580
ndb_import, 4549
ndb_restore, 4596

LINESTRING data type, 2235
LineString(), 2481
LineStringFromText()

removed features, 57
LineStringFromWKB()

removed features, 57
links

symbolic, 2007
LINK_RANDOMIZE option

CMake, 247
LINK_RANDOMIZE_SEED option

CMake, 247
list, 6372
list action

MySQLInstallerConsole, 159
list partitioning, 4908, 4911
list partitions

adding and dropping, 4929
managing, 4929

list_add() function
sys schema, 5428

list_drop() function
sys schema, 5429

literal values
deprecated features, 52

literals, 2049
bit value, 2059
boolean, 2061
date, 2052
hexadecimal, 2057
numeric, 2052
string, 2049
time, 2052

LN(), 2330
load balancing, 6372
LOAD DATA, 2831, 5532

5645

and replication, 3867
LOCAL loading, 1298

load emulation, 625
LOAD XML, 2842
load-data-local-dir option

mysql, 472, 1300
loadable function

creating, 3089
deleting, 3090

loadable functions, 1264
API, 1265
installing, 1265
reference, 2300
uninstalling, 1265

loading
tables, 336

Loading local data is disabled; this must be enabled on both the client and server side
error message, 1299

LOAD_FILE(), 2366
load_rewrite_rules() Rewriter function, 1216
local option

mysqlimport, 580, 1299
local-infile option

mysql, 473, 1299
local-load option

mysqlbinlog, 712, 1300
local-service option

mysqld, 850
localhost, 6373

special treatment of, 396
LOCALTIME, 2346
LOCALTIMESTAMP, 2346
local_infile system variable, 929, 1299
LOCATE(), 2366
LocationDomainId (API nodes), 4372
LocationDomainId (data nodes), 4274
LocationDomainId (management nodes), 4265
lock, 6373
lock escalation, 6373
LOCK IN SHARE MODE, 2859
LOCK INSTANCE FOR BACKUP, 2916
lock mode, 6373
Lock Monitor, 3522, 3524
lock option

mysqldumpslow, 733
ndb_select_all, 4620

LOCK TABLES, 2916
LOCK TABLES privilege, 1311
lock-all-tables option

mysqldump, 569
lock-tables option

mysqldump, 569
mysqlimport, 580

Locked_connects status variable, 1079
locked_in_memory system variable, 930
LockExecuteThreadToCPU, 4337
locking, 3265, 6373

external, 847, 993, 1813, 2005, 2027

5646

information schema, 3484
InnoDB, 3266
internal, 1998
metadata, 2002
Performance Schema, 3484
row-level, 1998
table-level, 1998

locking functions, 2459
locking methods, 1998
locking read, 3277, 6373

NOWAIT, 3277
SKIP LOCKED, 3277

locking service
installing, 1259
mysql_acquire_locking_service_locks() C function, 1258
mysql_release_locking_service_locks() C function, 1258
service_get_read_locks() function, 1262
service_get_write_locks() function, 1262
service_release_locks() function, 1262
uninstalling, 1259

Locking system tables
thread state, 2024

locking_service service, 1257
LockMaintThreadsToCPU, 4338
LockPagesInMainMemory, 4308
locks_per_fragment

ndbinfo table, 4782
lock_order system variable, 1281
LOCK_ORDER tool, 1279
lock_order_debug_loop system variable, 1281
lock_order_debug_missing_arc system variable, 1281
lock_order_debug_missing_key system variable, 1282
lock_order_debug_missing_unlock system variable, 1282
lock_order_dependencies system variable, 1282
lock_order_extra_dependencies system variable, 1283
lock_order_output_directory system variable, 1283
lock_order_print_txt system variable, 1283
lock_order_trace_loop system variable, 1284
lock_order_trace_missing_arc system variable, 1284
lock_order_trace_missing_key system variable, 1284
lock_order_trace_missing_unlock system variable, 1284
lock_wait_timeout system variable, 930
log, 6373
log buffer, 6374
log component

log_filter_dragnet, 1191
log_filter_internal, 1191
log_sink_internal, 1192
log_sink_json, 1192
log_sink_syseventlog, 1192
log_sink_test, 1193

log file, 6374
log files

maintaining, 1187
log files (NDB Cluster), 4471

ndbmtd, 4478
log group, 6374
log option

5647

innochecksum, 654
mysqld_multi, 425

LOG(), 2331
log-bin option

mysqld, 3740
log-bin-index option

mysqld, 3741
log-error option

mysqld, 850
mysqldump, 552
mysqld_safe, 416

log-error-file option
mysqlpump, 602

log-isam option
mysqld, 851

log-level option
ndb_import, 4549

log-name option
ndb_mgmd, 4485

log-raw option
mysqld, 851

log-short-format option
mysqld, 851

log-tc option
mysqld, 852

log-tc-size option
mysqld, 852

LOG10(), 2331
LOG2(), 2331
logbuffer-size option

ndbd, 4468
ndbmtd, 4468

logbuffers
ndbinfo table, 4784

LogDestination, 4266
logging

new features, 30
passwords, 1294

logging commands (NDB Cluster), 4680
logging slow query

thread state, 2025
logical, 6374
logical backup, 6374
logical operators, 2318
login

thread state, 2025
login-path option, 377

mysql, 473
mysqladmin, 510
mysqlbinlog, 713
mysqlcheck, 526
mysqldump, 543
mysqlimport, 581
mysqlpump, 602
mysqlshow, 620
mysqlslap, 637
mysql_migrate_keyring, 695
mysql_upgrade, 448

5648

my_print_defaults, 736
ndbd, 4469
ndbinfo_select_all, 4476
ndbxfrm, 4653
ndb_blob_tool, 4499
ndb_config, 4512
ndb_delete_all, 4517
ndb_desc, 4527
ndb_drop_index, 4531
ndb_drop_table, 4536
ndb_import, 4549
ndb_index_stat, 4559
ndb_mgm, 4494
ndb_mgmd, 4485
ndb_move_data, 4566
ndb_perror, 4570
ndb_print_backup_file, 4574
ndb_restore, 4596
ndb_secretsfile_reader, 4615
ndb_select_all, 4620
ndb_select_count, 4625
ndb_show_tables, 4630
ndb_top, 4637
ndb_waiter, 4643

LogLevelCheckpoint, 4329
LogLevelCongestion, 4330
LogLevelConnection, 4329
LogLevelError, 4330
LogLevelInfo, 4330
LogLevelNodeRestart, 4329
LogLevelShutdown, 4328
LogLevelStartup, 4328
LogLevelStatistic, 4328
logs

flushing, 1141
server, 1141

logspaces
ndbinfo table, 4785

log_bin system variable, 3762
log_bin_basename system variable, 3763
log_bin_index system variable, 3763
log_bin_trust_function_creators

deprecated features, 53
log_bin_trust_function_creators system variable, 3763
log_bin_use_v1_row_events system variable, 3764
log_builtin_as_identified_by_password

removed features, 55
log_error system variable, 930
log_error_services system variable, 931
log_error_suppression_list system variable, 931
log_error_verbosity system variable, 932
log_filter_dragnet log component, 1191
log_filter_internal log component, 1191
log_output system variable, 932
log_queries_not_using_indexes system variable, 933
log_raw system variable, 933
log_replica_updates system variable, 3764
log_sink_internal log component, 1192

5649

log_sink_json log component, 1192
log_sink_syseventlog log component, 1192
log_sink_test log component, 1192
log_slave_updates system variable, 3765
log_slow_admin_statements system variable

mysqld, 933
log_slow_extra system variable, 934
log_slow_replica_statements system variable, 3698
log_slow_slave_statements system variable, 3699
log_statements_unsafe_for_binlog

deprecated features, 53
log_statements_unsafe_for_binlog system variable, 3765
log_status table

performance_schema, 5310
log_syslog system variable, 934
log_syslog_facility system variable, 934
log_syslog_include_pid system variable, 935
log_syslog_tag system variable, 935
log_throttle_queries_not_using_indexes system variable, 936
log_timestamps system variable, 935
log_warnings

removed features, 56
Long Data

thread command, 2021
LONG data type, 2227
LONGBLOB data type, 2223
LongMessageBuffer, 4291
LONGTEXT data type, 2223
long_query_time system variable, 936
LOOP, 2988

labels, 2983
loops option

ndbinfo_select_all, 4476
ndb_index_stat, 4560
ndb_show_tables, 4630

Loose Index Scan
GROUP BY optimizing, 1865

--loose option prefix, 378
LooseScan

semijoin strategy, 1876
loose_, 6374
lossy-conversions option

ndb_move_data, 4566
ndb_restore, 4596

lost connection errors, 5514
low-priority option

mysqlimport, 581
low-water mark, 6374
LOWER(), 2366
lower_case_file_system system variable, 937

GRANT, 3058
lower_case_table_names system variable, 937
LOW_PRIORITY

DELETE modifier, 2812
INSERT modifier, 2823
UPDATE modifier, 2894

low_priority_updates system variable, 937
LPAD(), 2367

5650

LRU, 6374
LRU page replacement, 3303
LSN, 6374
LTRIM(), 2367
LTS Series, 6375
lz4_decompress, 367, 736

deprecated features, 53

M
macce

deprecated features, 49
macOS

installation, 175
macroman

deprecated features, 49
main connection interface, 1104
main features of MySQL, 5
maintaining

log files, 1187
tables, 1817

maintenance
tables, 516

MAKEDATE(), 2346
MAKETIME(), 2347
MAKE_SET(), 2367
Making temporary file (append) before replaying LOAD DATA INFILE

thread state, 2031
Making temporary file (create) before replaying LOAD DATA INFILE

thread state, 2031
malicious SQL statements

and NDB Cluster, 4840
manage keys

thread state, 2025
management

resource groups, 1126
management client (NDB Cluster), 4490

(see also mgm)
management node (NDB Cluster)

defined, 4140
management nodes (NDB Cluster), 4478

(see also mgmd)
managing NDB Cluster, 4654
managing NDB Cluster processes, 4461
mandatory_roles system variable, 938
manual

available formats, 2
online location, 2
syntax conventions, 2
typographical conventions, 2

MASKING_DICTIONARIES_ADMIN privilege, 1317
masking_dictionary_remove MySQL Enterprise Data Masking and De-Identification function, 1750
masking_dictionary_term_add() MySQL Enterprise Data Masking and De-Identification function, 1750
masking_dictionary_term_remove() MySQL Enterprise Data Masking and De-Identification function, 1752
mask_canada_sin() MySQL Enterprise Data Masking and De-Identification function, 1739
mask_iban() MySQL Enterprise Data Masking and De-Identification function, 1740
mask_inner() MySQL Enterprise Data Masking and De-Identification function, 1740, 1762
mask_outer() MySQL Enterprise Data Masking and De-Identification function, 1741, 1762
mask_pan() MySQL Enterprise Data Masking and De-Identification function, 1742, 1763

5651

mask_pan_relaxed() MySQL Enterprise Data Masking and De-Identification function, 1743, 1764
mask_ssn() MySQL Enterprise Data Masking and De-Identification function, 1743, 1764
mask_uk_nin() MySQL Enterprise Data Masking and De-Identification function, 1744
mask_uuid() MySQL Enterprise Data Masking and De-Identification function, 1745
Master has sent all binlog to slave; waiting for more updates

thread state, 2029
master thread, 6375
master-data option

mysqldump, 557
master-info-file option

mysqld, 3685
master-retry-count option

mysqld, 3685
master_info_repository system variable, 3699, 3799
MASTER_POS_WAIT(), 2584
master_verify_checksum system variable, 3766
MATCH ... AGAINST(), 2388
matching

patterns, 344
materialization

common table expressions, 1883, 1974
derived tables, 1883, 1974
subqueries, 1878
view references, 1883, 1974

math, 2642
mathematical functions, 2328
MAX(), 2595
MAX(DISTINCT), 2595
max-allowed-packet option

mysql, 473
mysqldump, 566
mysqlpump, 602
mysql_upgrade, 449

max-binlog-dump-events option
mysqld, 3744

max-join-size option
mysql, 473

max-record-length option
myisamchk, 666

max-relay-log-size option
mysqld, 3685

max-rows option
ndb_import, 4549

MaxAllocate, 4294
MaxBufferedEpochBytes, 4319
MaxBufferedEpochs, 4319
MAXDB

removed features, 56
MaxDiskDataLatency, 4362
MaxDiskWriteSpeed, 4322
MaxDiskWriteSpeedOtherNodeRestart, 4322
MaxDiskWriteSpeedOwnRestart, 4322
MaxDMLOperationsPerTransaction, 4285
MaxFKBuildBatchSize, 4291
--maximum option prefix, 378
maximums

maximum columns per table, 1921
maximum number of databases, 1920, 2695

5652

maximum number of tables, 1920, 2729
maximum row size, 1921
maximum tables per join, 2865
maximum tables per view, 5002
table size, 1920

MaxLCPStartDelay, 4298
MaxNoOfAttributes, 4302
MaxNoOfConcurrentIndexOperations, 4285
MaxNoOfConcurrentOperations, 4283
MaxNoOfConcurrentScans, 4291
MaxNoOfConcurrentSubOperations, 4305
MaxNoOfConcurrentTransactions, 4282
MaxNoOfExecutionThreads

ndbmtd, 4343
MaxNoOfFiredTriggers, 4286
MaxNoOfLocalOperations, 4284
MaxNoOfLocalScans, 4292
MaxNoOfOpenFiles, 4297
MaxNoOfOrderedIndexes, 4303
MaxNoOfSavedMessages, 4298
MaxNoOfSubscribers, 4305
MaxNoOfSubscriptions, 4304
MaxNoOfTables, 4302
MaxNoOfTriggers, 4304
MaxNoOfUniqueHashIndexes, 4304
MaxParallelCopyInstances, 4292
MaxParallelScansPerFragment, 4293
MaxReorgBuildBatchSize, 4293
MaxScanBatchSize, 4375
MaxSendDelay, 4347
MaxStartFailRetries, 4366
MaxUIBuildBatchSize, 4293
max_allowed_packet

and replication, 3867
max_allowed_packet system variable, 939
max_binlog_cache_size system variable, 3766
max_binlog_size system variable, 3767
max_binlog_stmt_cache_size system variable, 3767
MAX_BLOB_PART_SIZE, 2780
max_connections system variable, 940
MAX_CONNECTIONS_PER_HOUR, 1394
max_connect_errors system variable, 940
max_delayed_threads system variable, 941
max_digest_length system variable, 941
max_error_count system variable, 942
max_execution_time system variable, 942
Max_execution_time_exceeded status variable, 1079
Max_execution_time_set status variable, 1080
Max_execution_time_set_failed status variable, 1080
max_heap_table_size system variable, 943
MAX_INDEXES option

CMake, 253
max_insert_delayed_threads system variable, 943
max_join_size system variable, 498, 944
max_length_for_sort_data

deprecated features, 51
max_length_for_sort_data system variable, 944
max_points_in_geometry system variable, 945

5653

max_prepared_stmt_count system variable, 945
MAX_QUERIES_PER_HOUR, 1394
max_relay_log_size system variable, 3700
MAX_ROWS

and NDB Cluster, 4902
NDB Cluster, 2742

max_seeks_for_key system variable, 945
max_sort_length system variable, 946
max_sp_recursion_depth system variable, 946
max_tmp_tables

removed features, 56
MAX_UPDATES_PER_HOUR, 1394
Max_used_connections status variable, 1080
Max_used_connections_time status variable, 1080
MAX_USER_CONNECTIONS, 1394
max_user_connections system variable, 947
max_write_lock_count system variable, 947
MBR, 2509
MBRContains(), 2510
MBRCoveredBy(), 2511
MBRCovers(), 2511
MBRDisjoint(), 2511
MBREquals(), 2512
MBRIntersects(), 2512
MBROverlaps(), 2513
MBRTouches(), 2513
MBRWithin(), 2513
MD5(), 2456
MDL, 6375
measured-load option

ndb_top, 4637
mecab_charset status variable, 1080
mecab_rc_file system variable, 948
medium trust, 6375
medium-check option

myisamchk, 665
mysqlcheck, 526

MEDIUMBLOB data type, 2223
MEDIUMINT data type, 2202
MEDIUMTEXT data type, 2223
MEMBER OF(), 2541
membership

ndbinfo table, 4785
memcached, 3534, 6375
MEMCACHED_HOME option

CMake, 264
MEMCACHED_SASL_PWDB environment variable, 3544
memcapable command, 3535
memlock option

mysqld, 852
memory allocation library, 219, 417
MEMORY storage engine, 3575, 3587

and replication, 3868
optimization, 1898

memory usage
myisamchk, 675

memory use, 2010
in NDB Cluster, 4188

5654

monitoring, 2013
Performance Schema, 5132

memoryusage
ndbinfo table, 4787

memory_by_host_by_current_bytes view
sys schema, 5379

memory_by_thread_by_current_bytes view
sys schema, 5380

memory_by_user_by_current_bytes view
sys schema, 5380

memory_global_by_current_bytes view
sys schema, 5381

memory_global_total view
sys schema, 5382

memory_per_fragment
ndbinfo table, 4788

memory_summary_by_account_by_event_name table
performance_schema, 5296

memory_summary_by_host_by_event_name table
performance_schema, 5296

memory_summary_by_thread_by_event_name table
performance_schema, 5296

memory_summary_by_user_by_event_name table
performance_schema, 5296

memory_summary_global_by_event_name table
performance_schema, 5296

MemReportFrequency, 4331
merge, 6376
MERGE storage engine, 3575, 3597
MERGE tables

defined, 3597
merging

common table expressions, 1883
derived tables, 1883
view references, 1883

merging JSON values, 2257
metadata

database, 5006
database object, 2123
InnoDB, 5074
invisible columns, 2776
invisible indexes, 1906
stored routines, 4971
triggers, 4976
views, 4989

metadata lock, 6376
metadata locking, 2002, 5255
metadata_locks table

performance_schema, 5255
metadata_locks_cache_size

removed features, 56
metadata_locks_cache_size system variable, 948
metadata_locks_hash_instances

removed features, 56
metadata_locks_hash_instances system variable, 948
methods

locking, 1998
metrics counter, 6376

5655

metrics view
sys schema, 5382

MFA (see multifactor authentication)
mgmd (NDB Cluster)

defined, 4140
(see also management node (NDB Cluster))

MICROSECOND(), 2347
MID(), 2367
midpoint insertion, 3303
midpoint insertion strategy, 6376
MIN(), 2595
MIN(DISTINCT), 2595
MinDiskWriteSpeed, 4323
MinFreePct, 4281
mini-transaction, 6376
minimum bounding rectangle, 2509
minus

unary (-), 2326
MINUS (EXCEPT)

set operations, 2869
MINUTE(), 2347
min_examined_row_limit system variable, 949
mirror sites, 108
miscellaneous functions, 2628
missing-ai-column option

ndb_import, 4549
mixed statements (Replication), 3877
mixed-mode insert, 6376
MLineFromText()

removed features, 57
MLineFromWKB()

removed features, 57
MM.MySQL, 6376
MOD (modulo), 2331
MOD(), 2331
modes

batch, 351
modify action

MySQLInstallerConsole, 159
modulo (%), 2331
modulo (MOD), 2331
monitor

terminal, 329
monitor option

ndb_import, 4550
monitoring, 1244, 2013, 3195, 3200, 3233, 3300, 3309, 3339, 3390, 3517, 3519, 5448

multi-source replication, 3660
threads, 2018

Monitors, 3522
enabling, 3523
InnoDB, 3568
output, 3524

Mono, 6376
MONTH(), 2347
MONTHNAME(), 2347
MPointFromText()

removed features, 57
MPointFromWKB()

5656

removed features, 57
MPolyFromText()

removed features, 57
MPolyFromWKB()

removed features, 57
.MRG file, 6375
MRR, 1975
MSSQL

removed features, 56
MSVC_CPPCHECK option

CMake, 259
multi mysqld, 423
multi-column indexes, 1898
multi-core, 6377
Multi-Range Read

optimization, 1852
multi-source replication, 3655

adding binary log source, 3659
adding GTID source, 3658
configuring, 3656
error messages, 3655
in NDB Cluster, 4881
monitoring, 3660
overview, 3655
performance schema, 3661
provisioning, 3656
resetting replica, 3660
starting replica, 3659
stopping replica, 3659
tutorials, 3655

multi-valued indexes, 2705
new features, 32

multibyte character sets, 5519
multibyte characters, 2181
multifactor authentication, 1382
MULTILINESTRING data type, 2235
MultiLineString(), 2482
MultiLineStringFromText()

removed features, 57
MultiLineStringFromWKB()

removed features, 57
multiple buffer pools, 3302
multiple servers, 1266
multiple-part index, 2700
multiplication (*), 2326
MULTIPOINT data type, 2235
MultiPoint(), 2482
MultiPointFromText()

removed features, 57
MultiPointFromWKB()

removed features, 57
MULTIPOLYGON data type, 2235
MultiPolygon(), 2482
MultiPolygonFromText()

removed features, 57
MultiPolygonFromWKB()

removed features, 57
multi_range_count

5657

removed features, 56
mutex, 6377
mutex wait

monitoring, 3519
mutex_instances table

performance_schema, 5181
MUTEX_TYPE option

CMake, 253
MVCC, 6377
MVCC (multi-version concurrency control), 3191
My

derivation, 8
my.cnf, 6377

and NDB Cluster, 4217, 4253, 4254
in NDB Cluster, 4713

my.cnf option file, 3855
my.ini, 6377
mycnf option

ndb_config, 4507
ndb_mgmd, 4486

.MYD file, 6375

.MYI file, 6375
MyISAM

compressed tables, 677, 3585
converting tables to InnoDB, 3215

MyISAM key cache, 1992
MyISAM storage engine, 3575, 3579
myisam-block-size option

mysqld, 853
myisamchk, 366, 657

analyze option, 668
backup option, 665
block-search option, 668
character-sets-dir option, 666
check option, 664
check-only-changed option, 664
correct-checksum option, 666
data-file-length option, 666
debug option, 661
defaults-extra-file option, 661
defaults-file option, 661
defaults-group-suffix option, 661
description option, 668
example output, 669
extend-check option, 664, 666
fast option, 665
force option, 665, 666
help option, 660
HELP option, 661
information option, 665
keys-used option, 666
max-record-length option, 666
medium-check option, 665
no-defaults option, 662
options, 660
parallel-recover option, 667
print-defaults option, 662
quick option, 667

5658

read-only option, 665
recover option, 667
safe-recover option, 667
set-auto-increment[option, 668
set-collation option, 667
silent option, 662
sort-index option, 668
sort-records option, 669
sort-recover option, 667
tmpdir option, 668
unpack option, 668
update-state option, 665
verbose option, 662
version option, 662
wait option, 662

myisamchk --parallel-recover
deprecated features, 52

myisamlog, 366, 676
myisampack, 366, 677, 2767, 3585

backup option, 678
character-sets-dir option, 678
debug option, 678
force option, 678
help option, 677
join option, 678
silent option, 678
test option, 679
tmpdir option, 679
verbose option, 679
version option, 679
wait option, 679

myisam_block_size myisamchk variable, 663
myisam_data_pointer_size system variable, 949
myisam_ftdump, 366, 655

count option, 656
dump option, 656
help option, 656
length option, 656
stats option, 657
verbose option, 657

myisam_max_sort_file_size system variable, 949, 3582
myisam_mmap_size system variable, 950
myisam_recover_options system variable, 950, 3582
myisam_repair_threads

deprecated features, 52
myisam_repair_threads system variable, 951
myisam_sort_buffer_size myisamchk variable, 663
myisam_sort_buffer_size system variable, 952, 3582
myisam_stats_method system variable, 952
myisam_use_mmap system variable, 953
MyODBC drivers, 6377
MySQL

debugging, 1273
defined, 4
introduction, 4
pronunciation, 5
upgrading, 440

mysql, 365, 454, 6377

5659

auto-rehash option, 460
auto-vertical-output option, 461
batch option, 461
binary-as-hex option, 461
binary-mode option, 462
bind-address option, 462
character-sets-dir option, 462
charset command, 486
clear command, 486
column-names option, 462
column-type-info option, 462
commands option, 464
comments option, 465
compress option, 465
compression-algorithms option, 466
connect command, 486
connect-expired-password option, 466
connect-timeout option, 466
database option, 466
debug option, 466
debug-check option, 466
debug-info option, 467
default-auth option, 467
default-character-set option, 467
defaults-extra-file option, 467
defaults-file option, 468
defaults-group-suffix option, 468
delimiter command, 486
delimiter option, 468
disable named commands, 468
dns-srv-name option, 468
edit command, 487
ego command, 487
enable-cleartext-plugin option, 469
execute option, 469
exit command, 487
fido-register-factor option, 470
force option, 470
get-server-public-key option, 471
go command, 487
help command, 486
help option, 460
histignore option, 471
host option, 471
html option, 471
i-am-a-dummy option, 479
ignore-spaces option, 471
init-command option, 472
line-numbers option, 472
load-data-local-dir option, 472, 1300
local-infile option, 473, 1299
login-path option, 473
max-allowed-packet option, 473
max-join-size option, 473
named-commands option, 473
net-buffer-length option, 474
network-namespace option, 474
no-auto-rehash option, 474

5660

no-beep option, 474
no-defaults option, 474
nopager command, 487
notee command, 487
nowarning command, 487
one-database option, 475
pager command, 487
pager option, 475
password option, 475
pipe option, 476
plugin-authentication-kerberos-client-mode option, 477
plugin-dir option, 477
port option, 477
print command, 488
print-defaults option, 477
prompt command, 488
prompt option, 477
protocol option, 478
query_attributes command, 488
quick option, 478
quit command, 488
raw option, 478
reconnect option, 479
rehash command, 488
resetconnection command, 488
safe-updates option, 479
select-limit option, 479
server-public-key-path option, 480
shared-memory-base-name option, 480
show-warnings option, 480
sigint-ignore option, 480
silent option, 480
skip-column-names option, 481
skip-line-numbers option, 481
skip-system-command option, 481
socket option, 481
source command, 489
SSL options, 481
ssl-fips-mode option, 482
ssl_session_data_print command, 489
status command, 489
syslog option, 482
system command, 489
system-command option, 483
table option, 483
tee command, 489
tee option, 483
tls-ciphersuites option, 483
tls-version option, 483
unbuffered option, 484
use command, 490
user option, 484
verbose option, 484
version option, 484
vertical option, 484
wait option, 484
warnings command, 490
xml option, 484

5661

zstd-compression-level option, 485
MySQL APT Repository, 195, 320
MySQL binary distribution, 107
MySQL C API, 5442
mysql client parser

versus mysqld parser, 499
MySQL Cluster Manager

and ndb_mgm, 4655
mysql command options, 454
mysql commands

list of, 485
MySQL Data Dictionary, 3177
mysql database

gtid_executed table, 3628
MySQL Dolphin name, 8
MySQL Enterprise Audit, 1611, 5447
MySQL Enterprise Backup, 5445

Group Replication, 3958
MySQL Enterprise Data Masking and De-Identification, 1727, 5447
MySQL Enterprise Data Masking and De-Identification components

elements, 1728
MySQL Enterprise Data Masking and De-Identification functions

gen_blacklist(), 1767
gen_blocklist(), 1752, 1767
gen_dictionary(), 1753, 1768
gen_dictionary_drop(), 1769
gen_dictionary_load(), 1770
gen_range(), 1745, 1765
gen_rnd_canada_sin(), 1746
gen_rnd_email(), 1746, 1765
gen_rnd_iban(), 1747
gen_rnd_pan(), 1747, 1765
gen_rnd_ssn(), 1748, 1767
gen_rnd_uk_nin(), 1749
gen_rnd_us_phone(), 1749, 1767
gen_rnd_uuid(), 1750
masking_dictionary_remove, 1750
masking_dictionary_term_add(), 1750
masking_dictionary_term_remove(), 1752
mask_canada_sin(), 1739
mask_iban(), 1740
mask_inner(), 1740, 1762
mask_outer(), 1741, 1762
mask_pan(), 1742, 1763
mask_pan_relaxed(), 1743, 1764
mask_ssn(), 1743, 1764
mask_uk_nin(), 1744
mask_uuid(), 1745

MySQL Enterprise Data Masking and De-Identification plugin
elements, 1728

MySQL Enterprise Encryption, 1770, 5446
MySQL Enterprise Firewall, 1699, 5447

installing, 1701
using, 1703

MySQL Enterprise Firewall functions
firewall_group_delist(), 1723
firewall_group_enlist(), 1723
mysql_firewall_flush_status(), 1725

5662

normalize_statement(), 1725
read_firewall_groups(), 1724
read_firewall_group_allowlist(), 1723
read_firewall_users(), 1724
read_firewall_whitelist(), 1725
set_firewall_group_mode(), 1724
set_firewall_mode(), 1725

MySQL Enterprise Firewall stored procedures
sp_firewall_group_delist(), 1719
sp_firewall_group_enlist(), 1720
sp_migrate_firewall_user_to_group(), 1722
sp_reload_firewall_group_rules(), 1720
sp_reload_firewall_rules(), 1721
sp_set_firewall_group_mode(), 1720
sp_set_firewall_group_mode_and_user(), 1721
sp_set_firewall_mode(), 1722

MySQL Enterprise Firewall tables
firewall_groups, 1718
firewall_group_allowlist, 1718
firewall_membership, 1718
firewall_users, 1719
firewall_whitelist, 1719

MySQL Enterprise Monitor, 5448
MySQL Enterprise Security, 1382, 1443, 1453, 1458, 1478, 1494, 5446
MySQL Enterprise Thread Pool, 1200, 5447

elements, 1200
installing, 1201

MySQL Enterprise Transparent Data Encryption, 3383
MySQL history, 8
mysql history file, 492
MySQL Installer, 133
MySQL name, 8
MySQL privileges

and NDB Cluster, 4840
mysql prompt command, 490
MySQL server

mysqld, 412, 746
MySQL Shell, 4059

NoSQL, 4059
MySQL Shell JavaScript tutorial, 4063

add documents, 4068
append insert delete, 4074
collection operations, 4067
confirm schema, 4067
create collections, 4067
delete all records, 4082
delete first record, 4081
delete records using conditions, 4081
documents and collections, 4066
documents in tables, 4082
drop collections, 4068
drop index, 4076
drop table, 4082
filter searches, 4078
find all documents, 4069
find documents, 4069
find documents with filter search, 4070
get collections, 4068

5663

help in MySQL Shell, 4065
index documents, 4076
insert complete record, 4077
insert partial record, 4078
insert record, 4082
limit, order, offset results, 4080
limit, sort, and skip results, 4072
modify documents, 4073
nonunique index, 4076
project results, 4072, 4079
quit MySQL Shell, 4065
relational tables, 4076
remove all documents, 4075
remove documents, 4075
remove documents by condition, 4075
remove first document, 4075
remove last document, 4075
select all records, 4078
select records, 4082
select tables, 4078
set and unset fields, 4073
table insert records, 4077
unique index, 4076
update table records, 4081
using MySQL Shell, 4064
world x, 4065

MySQL Shell Python tutorial, 4083
add documents, 4088
append insert delete, 4094
collection operations, 4087
collections create, 4087
collections drop, 4087
collections get, 4087
confirm schema, 4087
delete all records, 4101
delete first record, 4101
delete records using conditions, 4101
documents and collections, 4085
documents in tables, 4102
documents index, 4095
documents remove, 4095
drop index, 4096
drop table, 4102
filter searches, 4098
find all documents, 4089
find documents, 4089
find documents with filter search, 4089
help in MySQL Shell, 4084
insert complete record, 4097
insert partial record, 4097
insert record, 4102
limit order offset results, 4100
limit, sort, and skip results, 4092
modify documents, 4093
nonunique index, 4096
project results, 4092, 4099
quit MySQL Shell, 4085
relational tables, 4096

5664

remove all documents, 4095
remove documents by condition, 4095
remove first document, 4095
remove last document, 4095
select all records, 4098
select records, 4102
set and unset fields, 4093
table insert, 4097
table select, 4098
unique index, 4096
update table records, 4101
using MySQL Shell, 4083
world x, 4085

MySQL SLES Repository, 196, 320
mysql source (command for reading from text files), 352, 495
MySQL source distribution, 107
MySQL storage engines, 3575
MySQL system tables

and NDB Cluster, 4840
and replication, 3869

MySQL version, 108
MySQL Yum Repository, 191, 318
mysql \. (command for reading from text files), 352, 495
mysql.gtid_executed table, 3628, 3628

compression, 3629
thread/sql/compress_gtid_table, 3629

mysql.server, 364, 421
basedir option, 423
datadir option, 423
pid-file option, 423
service-startup-timeout option, 423

mysql.slave_master_info table, 3799
mysql.slave_relay_log_info table, 3799
mysql.sock

protection, 5528
MYSQL323

removed features, 56
MYSQL40

removed features, 56
mysqladmin, 365, 500, 2695, 2800, 3145, 3151, 3157, 3163

bind-address option, 506
character-sets-dir option, 506
compress option, 507
compression-algorithms option, 507
connect-timeout option, 507
count option, 507
debug option, 508
debug-check option, 508
debug-info option, 508
default-auth option, 508
default-character-set option, 508
defaults-extra-file option, 508
defaults-file option, 509
defaults-group-suffix option, 509
enable-cleartext-plugin option, 509
force option, 509
get-server-public-key option, 509
help option, 506

5665

host option, 510
login-path option, 510
no-beep option, 510
no-defaults option, 510
password option, 511
pipe option, 511
plugin-dir option, 512
port option, 512
print-defaults option, 512
protocol option, 512
relative option, 512
server-public-key-path option, 513
shared-memory-base-name option, 513
show-warnings option, 513
shutdown-timeout option, 513
silent option, 513
sleep option, 514
socket option, 514
SSL options, 514
ssl-fips-mode option, 514
tls-ciphersuites option, 515
tls-version option, 515
user option, 515
verbose option, 515
version option, 515
vertical option, 516
wait option, 516
zstd-compression-level option, 516

mysqladmin command options, 503
mysqladmin option

mysqld_multi, 425
mysqlbackup command, 6377
mysqlbinlog, 366, 699

base64-output option, 706
bind-address option, 706
binlog-row-event-max-size option, 706
character-sets-dir option, 706
compress option, 707
compression-algorithms option, 707
connection-server-id option, 707
database option, 708
debug option, 709
debug-check option, 709
debug-info option, 709
default-auth option, 709
defaults-extra-file option, 710
defaults-file option, 710
defaults-group-suffix option, 710
disable-log-bin option, 710
exclude-gtids option, 711
force-if-open option, 711
force-read option, 711
get-server-public-key option, 711
help option, 705
hexdump option, 711
host option, 712
idempotent option, 712
include-gtids option, 712

5666

local-load option, 712, 1300
login-path option, 713
no-defaults option, 713
offset option, 713
open-files-limit option, 713
password option, 713
plugin-dir option, 714
port option, 714
print-defaults option, 714
print-table-metadata option, 714
protocol option, 715
raw option, 715
read-from-remote-master option, 715
read-from-remote-server option, 716
read-from-remote-source option, 715
require-row-format option, 716
result-file option, 716
rewrite-db option, 717
server-id option, 717
server-id-bits option, 717
server-public-key-path option, 718
set-charset option, 718
shared-memory-base-name option, 718
short-form option, 718
skip-gtids option, 718
socket option, 719
SSL options, 719
ssl-fips-mode option, 719
start-datetime option, 720
start-position option, 720
stop-datetime option, 720
stop-never option, 721
stop-never-slave-server-id option, 721
stop-position option, 721
tls-ciphersuites option, 721
tls-version option, 722
to-last-log option, 722
user option, 722
verbose option, 722
verify-binlog-checksum option, 722
version option, 723
zstd-compression-level option, 723

mysqlcheck, 365, 516
all-databases option, 521
all-in-1 option, 521
analyze option, 521
auto-repair option, 521
bind-address option, 521
character-sets-dir option, 522
check option, 522
check-only-changed option, 522
check-upgrade option, 522
compress option, 522
compression-algorithms option, 523
databases option, 523
debug option, 523
debug-check option, 523
debug-info option, 523

5667

default-auth option, 525
default-character-set option, 524
defaults-extra-file option, 524
defaults-file option, 524
defaults-group-suffix option, 524
enable-cleartext-plugin option, 525
extended option, 524
fast option, 525
force option, 525
get-server-public-key option, 525
help option, 521
host option, 525
login-path option, 526
medium-check option, 526
no-defaults option, 526
optimize option, 526
password option, 526
pipe option, 527
plugin-dir option, 527
port option, 528
print-defaults option, 528
protocol option, 528
quick option, 528
repair option, 528
server-public-key-path option, 529
shared-memory-base-name option, 529
silent option, 529
skip-database option, 529
socket option, 529
SSL options, 530
ssl-fips-mode option, 530
tables option, 530
tls-ciphersuites option, 530
tls-version option, 531
use-frm option, 531
user option, 531
verbose option, 531
version option, 531
write-binlog option, 531
zstd-compression-level option, 532

mysqlclient, 6377
mysqld, 364, 6377

abort-slave-event-count option, 3696
admin-ssl option, 841
allow-suspicious-udfs option, 841
ansi option, 842
as NDB Cluster process, 4381, 4712
audit-log option, 1682
basedir option, 842
binlog-checksum option, 3743
binlog-do-db option, 3741
binlog-ignore-db option, 3743
binlog-row-event-max-size option, 3739
character-set-client-handshake option, 842
check-table-functions option, 842
chroot option, 843
command options, 839
console option, 843

5668

core-file option, 843
daemonize option, 844
datadir option, 844
ddl-rewriter option, 1219
debug option, 844
debug-sync-timeout option, 845
default-time-zone option, 845
defaults-extra-file option, 845
defaults-file option, 845
defaults-group-suffix option, 845
disconnect-slave-event-count option, 3697
early-plugin-load option, 846
exit codes, 1135
exit-info option, 846
external-locking option, 847
flush option, 847
gdb option, 847
help option, 840
initialize option, 847
initialize-insecure option, 848
innodb option, 3399
innodb-dedicated-server option, 3399
innodb-status-file option, 3400
install option, 848
install-manual option, 849
keyring-migration-destination option, 1592
keyring-migration-host option, 1592
keyring-migration-password option, 1593
keyring-migration-port option, 1593
keyring-migration-socket option, 1593
keyring-migration-source option, 1593
keyring-migration-to-component option, 1594
keyring-migration-user option, 1594
language option, 849
large-pages option, 849
lc-messages option, 850
lc-messages-dir option, 850
local-service option, 850
log-bin option, 3740
log-bin-index option, 3741
log-error option, 850
log-isam option, 851
log-raw option, 851
log-short-format option, 851
log-tc option, 852
log-tc-size option, 852
log_slow_admin_statements system variable, 933
master-info-file option, 3685
master-retry-count option, 3685
max-binlog-dump-events option, 3744
max-relay-log-size option, 3685
memlock option, 852
myisam-block-size option, 853
MySQL server, 412, 746
ndb-allow-copying-alter-table option, 4382
ndb-applier-allow-skip-epoch option, 4382
ndb-batch-size option, 4382
ndb-blob-read-batch-bytes option, 4384

5669

ndb-blob-write-batch-bytes option, 4384
ndb-cluster-connection-pool option, 4383
ndb-cluster-connection-pool-nodeids option, 4383
ndb-connectstring option, 4385
ndb-log-apply-status, 4386
ndb-log-empty-epochs, 4387
ndb-log-empty-update, 4387
ndb-log-exclusive-reads, 4388
ndb-log-fail-terminate, 4388
ndb-log-orig, 4388
ndb-log-transaction-dependency, 4389
ndb-log-transaction-id, 4389
ndb-nodeid, 4391
ndb-optimization-delay option, 4392
ndb-optimized-node-selection option, 4392
ndb-schema-dist-timeout option, 4386
ndb-transid-mysql-connection-map option, 4393
ndb-wait-connected option, 4393
ndb-wait-setup option, 4393
ndbcluster option, 4381
ndbinfo option, 4392
no-dd-upgrade option, 853
no-defaults option, 853
no-monitor option, 854
old-style-user-limits option, 854
performance-schema-consumer-events-stages-current option, 5326
performance-schema-consumer-events-stages-history option, 5326
performance-schema-consumer-events-stages-history-long option, 5326
performance-schema-consumer-events-statements-cpu option, 5326
performance-schema-consumer-events-statements-current option, 5326
performance-schema-consumer-events-statements-history option, 5326
performance-schema-consumer-events-statements-history-long option, 5326
performance-schema-consumer-events-transactions-current option, 5326
performance-schema-consumer-events-transactions-history option, 5326
performance-schema-consumer-events-transactions-history-long option, 5327
performance-schema-consumer-events-waits-current option, 5327
performance-schema-consumer-events-waits-history option, 5327
performance-schema-consumer-events-waits-history-long option, 5327
performance-schema-consumer-global-instrumentation option, 5327
performance-schema-consumer-statements-digest option, 5327
performance-schema-consumer-thread-instrumentation option, 5327
performance-schema-consumer-xxx option, 5326
performance-schema-instrument option, 5326
plugin option prefix, 856
plugin-load option, 854
plugin-load-add option, 855
port option, 856
port-open-timeout option, 857
print-defaults option, 857
relay-log-purge option, 3686
relay-log-space-limit option, 3686
remove option, 857
replicate-do-db option, 3686
replicate-do-table option, 3689
replicate-ignore-db option, 3688
replicate-ignore-table option, 3690
replicate-rewrite-db option, 3691
replicate-same-server-id option, 3692

5670

replicate-wild-do-table option, 3692
replicate-wild-ignore-table option, 3693
role in NDB Cluster (see SQL Node (NDB Cluster))
safe-user-create option, 857
server_uuid variable, 3662
show-replica-auth-info option, 3672
show-slave-auth-info option, 3672
skip-admin-ssl option, 841
skip-grant-tables option, 857
skip-host-cache option, 858
skip-innodb option, 859, 3400
skip-ndbcluster option, 4394
skip-new option, 859
skip-replica-start option, 3694
skip-show-database option, 859
skip-slave-start option, 3695
skip-ssl option, 861
skip-stack-trace option, 859
skip-symbolic-links option, 862
slave-skip-errors option, 3695
slave-sql-verify-checksum option, 3696
slow-start-timeout option, 859
socket option, 860
sporadic-binlog-dump-fail option, 3744
sql-mode option, 860
ssl option, 861
standalone option, 862
starting, 1297
super-large-pages option, 862
symbolic-links option, 862
sysdate-is-now option, 863
tc-heuristic-recover option, 863
tmpdir option, 864
transaction-isolation option, 863
transaction-read-only option, 864
upgrade option, 864
user option, 866
validate-config option, 866
validate-password option, 1534
validate-user-plugins option, 867
verbose option, 867
version option, 867

mysqld (NDB Cluster), 4461
mysqld option

malloc-lib, 417
mysqld_multi, 425
mysqld_safe, 417

mysqld options, 747
mysqld options and variables

NDB Cluster, 4381
mysqld parser

versus mysql client parser, 499
mysqld system variables, 747
mysqld threads

observability, 5176
mysqld-auto.cnf option file, 369, 371, 969, 1033, 1035, 1055, 1059, 1691, 3095, 3166, 5259
mysqld-long-query-time option

mysqldump, 567

5671

mysqld-safe-log-timestamps option
mysqld_safe, 416

mysqld-version option
mysqld_safe, 418

MySQLdb, 6378
mysqldump, 325, 365, 532, 6378

add-drop-database option, 549
add-drop-table option, 550
add-drop-trigger option, 550
add-locks option, 568
all-databases option, 563
all-tablespaces option, 550
allow-keywords option, 551
apply-replica-statements option, 554
apply-slave-statements option, 554
bind-address option, 542
character-sets-dir option, 553
column-statistics option, 566
comments option, 551
compact option, 559
compatible option, 559
complete-insert option, 560
compress option, 542
compression-algorithms option, 542
create-options option, 560
databases option, 563
debug option, 551
debug-check option, 551
debug-info option, 551
default-auth option, 543
default-character-set option, 553
defaults-extra-file option, 548
defaults-file option, 548
defaults-group-suffix option, 549
delete-master-logs option, 554
delete-source-logs option, 554
disable-keys option, 566
dump-date option, 552
dump-replica option, 555
dump-slave option, 556
enable-cleartext-plugin option, 543
events option, 564
extended-insert option, 566
fields-enclosed-by option, 560, 579
fields-escaped-by option, 560, 579
fields-optionally-enclosed-by option, 560, 579
fields-terminated-by option, 560, 579
flush-logs option, 568
flush-privileges option, 568
force option, 552
get-server-public-key option, 543
help option, 553
hex-blob option, 560
host option, 543
ignore-error option, 564
ignore-table option, 564
include-master-host-port option, 556
include-source-host-port option, 556

5672

insert-ignore option, 566
lines-terminated-by option, 560, 580
lock-all-tables option, 569
lock-tables option, 569
log-error option, 552
login-path option, 543
master-data option, 557
max-allowed-packet option, 566
mysqld-long-query-time option, 567
net-buffer-length option, 567
network-timeout option, 567
no-autocommit option, 569
no-create-db option, 550
no-create-info option, 550
no-data option, 564
no-defaults option, 549
no-set-names option, 553
no-tablespaces option, 550
opt option, 567
order-by-primary option, 569
password option, 544
pipe option, 545
plugin-authentication-kerberos-client-mode option, 545
plugin-dir option, 545
port option, 545
print-defaults option, 549
problems, 571, 5003
protocol option, 546
quick option, 568
quote-names option, 561
replace option, 551
result-file option, 561
routines option, 564
server-public-key-path option, 546
set-charset option, 553
set-gtid-purged option, 557
shared-memory-base-name option, 569
show-create-skip-secondary-engine option, 561
single-transaction option, 570
skip-comments option, 552
skip-generated-invisible-primary-key option, 565
skip-opt option, 568
socket option, 546
source-data option, 556
SSL options, 546
ssl-fips-mode option, 547
tab option, 561
tables option, 565
tls-ciphersuites option, 547
tls-version option, 547
triggers option, 565
tz-utc option, 562
user option, 548
using for backups, 1804
verbose option, 552
version option, 553
views, 571, 5003
where option, 565

5673

workarounds, 571, 5003
xml option, 562
zstd-compression-level option, 548

mysqldumpslow, 367, 731
abstract-numbers option, 733
debug option, 732
grep option, 732
help option, 732
host option, 732
instance option, 733
lock option, 733
reverse option, 733
sort option, 733
top option, 733
verbose option, 733

mysqld_multi, 364, 423
defaults-extra-file option, 424
defaults-file option, 424
example option, 425
help option, 425
log option, 425
mysqladmin option, 425
mysqld option, 425
no-defaults option, 424
no-log option, 426
password option, 426
silent option, 426
tcp-ip option, 426
user option, 426
verbose option, 427
version option, 427

MYSQLD_OPTS environment variable, 219
mysqld_safe, 364, 413

basedir option, 414
core-file-size option, 415
datadir option, 415
defaults-extra-file option, 415
defaults-file option, 415
help option, 414
ledir option, 415
log-error option, 416
malloc-lib option, 417
mysqld option, 417
mysqld-safe-log-timestamps option, 416
mysqld-version option, 418
nice option, 418
no-defaults option, 418
open-files-limit option, 418
pid-file option, 418
plugin-dir option, 419
port option, 419
skip-kill-mysqld option, 419
skip-syslog option, 419
socket option, 419
syslog option, 419
syslog-tag option, 420
timezone option, 420
user option, 420

5674

mysqlimport, 325, 365, 572, 2831
bind-address option, 576
character-sets-dir option, 576
columns option, 576
compress option, 576
compression-algorithms option, 577
debug option, 577
debug-check option, 577
debug-info option, 577
default-auth option, 578
default-character-set option, 577
defaults-extra-file option, 578
defaults-file option, 578
defaults-group-suffix option, 578
delete option, 578
enable-cleartext-plugin option, 579
force option, 579
get-server-public-key option, 579
help option, 576
host option, 580
ignore option, 580
ignore-lines option, 580
local option, 580, 1299
lock-tables option, 580
login-path option, 581
low-priority option, 581
no-defaults option, 581
password option, 581
pipe option, 582
plugin-dir option, 582
port option, 582
print-defaults option, 582
protocol option, 583
replace option, 583
server-public-key-path option, 583
shared-memory-base-name option, 584
silent option, 584
socket option, 584
SSL options, 584
ssl-fips-mode option, 584
tls-ciphersuites option, 585
tls-version option, 585
use-threads option, 586
user option, 585
verbose option, 586
version option, 586
zstd-compression-level option, 586

MySQLInstallerConsole, 153
configure action, 155
help action, 155
install action, 156
list action, 159
modify action, 159
remove action, 160
set action, 160
status action, 161
update action, 162
upgrade action, 162

5675

mysqlpump, 365, 586
add-drop-database option, 593
add-drop-table option, 594
add-drop-user option, 594
add-locks option, 594
all-databases option, 594
bind-address option, 595
character-sets-dir option, 595
column-statistics option, 595
complete-insert option, 595
compress option, 595
compress-output option, 596
compression-algorithms option, 596
databases option, 596
debug option, 597
debug-check option, 597
debug-info option, 597
default-auth option, 597
default-character-set option, 597
default-parallelism option, 598
defaults-extra-file option, 598
defaults-file option, 598
defaults-group-suffix option, 598
defer-table-indexes option, 598
deprecated features, 53
events option, 599
exclude-databases option, 599
exclude-events option, 599
exclude-routines option, 599
exclude-tables option, 600
exclude-triggers option, 600
exclude-users option, 600
extended-insert option, 600
get-server-public-key option, 600
help option, 593
hex-blob option, 601
host option, 601
include-databases option, 601
include-events option, 601
include-routines option, 601
include-tables option, 601
include-triggers option, 602
include-users option, 602
insert-ignore option, 602
log-error-file option, 602
login-path option, 602
max-allowed-packet option, 602
net-buffer-length option, 603
no-create-db option, 603
no-create-info option, 603
no-defaults option, 603
object selection, 611
parallel-schemas option, 603
parallelism, 612
password option, 603
plugin-dir option, 604
port option, 604
print-defaults option, 605

5676

protocol option, 605
replace option, 605
restrictions, 613
result-file option, 605
routines option, 606
server-public-key-path option, 606
set-charset option, 606
set-gtid-purged option, 606
single-transaction option, 607
skip-definer option, 607
skip-dump-rows option, 608
skip-generated-invisible-primary-key option, 608
socket option, 608
SSL options, 608
ssl-fips-mode option, 608
tls-ciphersuites option, 609
tls-version option, 609
triggers option, 609
tz-utc option, 610
user option, 610
users option, 610
version option, 610
watch-progress option, 610
zstd-compression-level option, 611

mysqlsh, 366
mysqlshow, 366, 613

bind-address option, 617
character-sets-dir option, 617
compress option, 617
compression-algorithms option, 617
count option, 618
debug option, 618
debug-check option, 618
debug-info option, 618
default-auth option, 619
default-character-set option, 618
defaults-extra-file option, 619
defaults-file option, 619
defaults-group-suffix option, 619
enable-cleartext-plugin option, 619
get-server-public-key option, 620
help option, 616
host option, 620
keys option, 620
login-path option, 620
no-defaults option, 620
password option, 621
pipe option, 622
plugin-dir option, 622
port option, 622
print-defaults option, 622
protocol option, 622
server-public-key-path option, 623
shared-memory-base-name option, 623
show-table-type option, 623
socket option, 623
SSL options, 623
ssl-fips-mode option, 624

5677

status option, 624
tls-ciphersuites option, 624
tls-version option, 625
user option, 625
verbose option, 625
version option, 625
zstd-compression-level option, 625

mysqlslap, 366, 625
auto-generate-sql option, 631
auto-generate-sql-add-autoincrement option, 631
auto-generate-sql-execute-number option, 631
auto-generate-sql-guid-primary option, 631
auto-generate-sql-load-type option, 632
auto-generate-sql-secondary-indexes option, 632
auto-generate-sql-unique-query-number option, 632
auto-generate-sql-unique-write-number option, 632
auto-generate-sql-write-number option, 632
commit option, 633
compress option, 633
compression-algorithms option, 633
concurrency option, 633
create option, 633
create-schema option, 634
csv option, 634
debug option, 634
debug-check option, 634
debug-info option, 635
default-auth option, 635
defaults-extra-file option, 635
defaults-file option, 635
defaults-group-suffix option, 635
delimiter option, 636
detach option, 636
enable-cleartext-plugin option, 636
engine option, 636
get-server-public-key option, 636
help option, 631
host option, 637
iterations option, 637
login-path option, 637
no-defaults option, 637
no-drop option, 637
number-char-cols option, 637
number-int-cols option, 638
number-of-queries option, 638
only-print option, 638
password option, 638
pipe option, 639
plugin-dir option, 639
port option, 639
post-query option, 640
post-system option, 640
pre-query option, 640
pre-system option, 640
print-defaults option, 640
protocol option, 640
query option, 641
server-public-key-path option, 641

5678

shared-memory-base-name option, 641
silent option, 641
socket option, 642
sql-mode option, 642
SSL options, 642
ssl-fips-mode option, 642
tls-ciphersuites option, 643
tls-version option, 643
user option, 643
verbose option, 643
version option, 643
zstd-compression-level option, 644

mysqlx X Plugin option, 4111
mysqlx_bind_address system variable, 4111
mysqlx_compression_algorithms system variable, 4113
mysqlx_connect_timeout system variable, 4114
mysqlx_deflate_default_compression_level system variable, 4114
mysqlx_deflate_max_client_compression_level system variable, 4114
mysqlx_document_id_unique_prefix system variable, 4115
mysqlx_enable_hello_notice system variable, 4115
mysqlx_idle_worker_thread_timeout system variable, 4115
mysqlx_interactive_timeout system variable, 4116
mysqlx_lz4_default_compression_level system variable, 4116
mysqlx_lz4_max_client_compression_level system variable, 4116
mysqlx_max_allowed_packet system variable, 4117
mysqlx_max_connections system variable, 4117
mysqlx_min_worker_threads system variable, 4117
mysqlx_port system variable, 4118
mysqlx_port_open_timeout system variable, 4118
mysqlx_read_timeout system variable, 4118
mysqlx_socket system variable, 4119
mysqlx_ssl_ca system variable, 4119
mysqlx_ssl_capath system variable, 4120
mysqlx_ssl_cert system variable, 4120
mysqlx_ssl_cipher system variable, 4120
mysqlx_ssl_crl system variable, 4121
mysqlx_ssl_crlpath system variable, 4121
mysqlx_ssl_key system variable, 4121
MYSQLX_TCP_PORT environment variable, 738
MYSQLX_TCP_PORT option

CMake, 253
MYSQLX_UNIX_ADDR option

CMake, 253
MYSQLX_UNIX_PORT environment variable, 738
mysqlx_wait_timeout system variable, 4121
mysqlx_write_timeout system variable, 4122
mysqlx_zstd_default_compression_level system variable, 4122
mysqlx_zstd_max_client_compression_level system variable, 4123
mysql_acquire_locking_service_locks() C function

locking service, 1258
mysql_clear_password authentication plugin, 1442
mysql_config, 734

cflags option, 734
cxxflags option, 734
include option, 734
libs option, 734
libs_r option, 734
plugindir option, 734

5679

port option, 734
socket option, 735
variable option, 735
version option, 735

mysql_config_editor, 366, 683
debug option, 687
help option, 686
verbose option, 687
version option, 687

mysql_config_server, 734
MYSQL_DATADIR option

CMake, 247
MYSQL_DEBUG environment variable, 367, 738, 1279
mysql_firewall_flush_status() MySQL Enterprise Firewall function, 1725
mysql_firewall_mode system variable, 1726
mysql_firewall_trace system variable, 1726
MYSQL_FIREWALL_USERS

INFORMATION_SCHEMA table, 5119
MYSQL_FIREWALL_WHITELIST

INFORMATION_SCHEMA table, 5119
MYSQL_GROUP_SUFFIX environment variable, 738
MYSQL_HISTFILE environment variable, 492, 738
MYSQL_HISTIGNORE environment variable, 492, 738
MYSQL_HOME environment variable, 738
MYSQL_HOST environment variable, 398, 738
mysql_info(), 2671, 2823, 2841, 2894
mysql_insert_id(), 2823
mysql_install_db

removed features, 58
mysql_keyring service, 1262
MYSQL_MAINTAINER_MODE option

CMake, 253
mysql_migrate_keyring, 366, 690

component-dir option, 693
defaults-extra-file option, 693
defaults-file option, 693
defaults-group-suffix option, 693
destination-keyring option, 694
destination-keyring-configuration-dir option, 694
get-server-public-key option, 694
help option, 692
host option, 694
login-path option, 695
no-defaults option, 695
online-migration option, 695
password option, 695
port option, 696
print-defaults option, 696
server-public-key-path option, 696
socket option, 697
source-keyring option, 697
source-keyring-configuration-dir option, 697
SSL options, 697
ssl-fips-mode option, 697
tls-ciphersuites option, 698
tls-version option, 698
user option, 698
verbose option, 699

5680

version option, 699
mysql_native_password

deprecated features, 49
mysql_native_password authentication plugin, 1432
mysql_native_password_proxy_users system variable, 953, 1392
mysql_no_login authentication plugin, 1489
MYSQL_OPENSSL_UDF_DH_BITS_THRESHOLD environment variable, 738, 1775
MYSQL_OPENSSL_UDF_DSA_BITS_THRESHOLD environment variable, 738, 1775
MYSQL_OPENSSL_UDF_RSA_BITS_THRESHOLD environment variable, 738, 1775
mysql_options()

MYSQL_OPT_LOAD_DATA_LOCAL_DIR, 1299
MYSQL_OPT_LOCAL_INFILE, 1299, 1299

MYSQL_OPT_COMPRESS
deprecated features, 51

MYSQL_OPT_SSL_ENFORCE
removed features, 58

MYSQL_OPT_SSL_FIPS_MODE
deprecated features, 49

MYSQL_OPT_SSL_VERIFY_SERVER_CERT
removed features, 58

mysql_plugin
removed features, 59

MYSQL_PROJECT_NAME option
CMake, 253

MYSQL_PS1 environment variable, 738
MYSQL_PWD

deprecated features, 51
MYSQL_PWD environment variable, 738
mysql_query_attribute_string() function, 2114
mysql_real_escape_string_quote(), 2051, 2368
mysql_release_locking_service_locks() C function

locking service, 1258
MYSQL_SECURE_AUTH

removed features, 56
mysql_secure_installation, 364, 431

defaults-extra-file option, 433
defaults-file option, 434
defaults-group-suffix option, 434
help option, 433
host option, 434
no-defaults option, 434
password option, 434
port option, 435
print-defaults option, 435
protocol option, 435
socket option, 435
SSL options, 435
ssl-fips-mode option, 436
tls-ciphersuites option, 436
tls-version option, 437
use-default option, 437
user option, 437

mysql_session_track_get_first() C API function, 1132
mysql_session_track_get_next() C API function, 1132
mysql_ssl_rsa_setup, 365, 437

datadir option, 439
help option, 439
suffix option, 439

5681

uid option, 440
verbose option, 440
version option, 440

MYSQL_TCP_PORT environment variable, 367, 738, 1272, 1273
MYSQL_TCP_PORT option

CMake, 254
MYSQL_TEST_LOGIN_FILE environment variable, 377, 684, 738
MYSQL_TEST_TRACE_CRASH environment variable, 738
MYSQL_TEST_TRACE_DEBUG environment variable, 738
mysql_tzinfo_to_sql, 365, 440
MYSQL_UNIX_ADDR option

CMake, 254
MYSQL_UNIX_PORT environment variable, 367, 738, 1272, 1273
mysql_upgrade, 365, 440

bind-address option, 445
character-sets-dir option, 445
compress option, 446
compression-algorithms option, 446
debug option, 446
debug-check option, 446
debug-info option, 447
default-auth option, 447
default-character-set option, 447
defaults-extra-file option, 447
defaults-file option, 447
defaults-group-suffix option, 447
deprecated features, 51
force option, 448
get-server-public-key option, 448
help option, 445
host option, 448
login-path option, 448
max-allowed-packet option, 449
mysql_upgrade_info file, 292, 442
net-buffer-length option, 449
no-defaults option, 449
password option, 449
pipe option, 450
plugin-dir option, 450
port option, 450
print-defaults option, 450
protocol option, 450
server-public-key-path option, 450
shared-memory-base-name option, 451
skip-sys-schema option, 451
socket option, 451
SSL options, 451
ssl-fips-mode option, 452
tls-ciphersuites option, 452
tls-version option, 452
upgrade-system-tables option, 453
user option, 453
verbose option, 453
version-check option, 453
write-binlog option, 453
zstd-compression-level option, 453

mysql_upgrade_info file
deprecated features, 51

5682

mysql_upgrade, 292, 442
MYSQL_VERSION file

CMake, 267
my_key_fetch() keyring service function, 1263
my_key_generate() keyring service function, 1263
my_key_remove() keyring service function, 1263
my_key_store() keyring service function, 1264
my_print_defaults, 367, 735

config-file option, 735
debug option, 736
defaults-extra-file option, 736
defaults-file option, 735
defaults-group-suffix option, 736
extra-file option, 736
help option, 735
login-path option, 736
no-defaults option, 736
show option, 736
verbose option, 736
version option, 736

N
Name, 4380
name-file option

comp_err, 431
named pipes, 165, 170
named time zone support

Unknown or incorrect time zone, 1121
named windows

window functions, 2622
named-commands option

mysql, 473
named_pipe system variable, 953
named_pipe_full_access_group system variable, 954
names, 2061

case sensitivity, 2065
variables, 2105

namespaces
network, 1115

NAME_CONST(), 2638, 4997
naming

releases of MySQL, 108
NATIONAL CHAR data type, 2222
NATIONAL VARCHAR data type, 2222
native backup and restore

backup identifiers, 4708
native C API, 6378
native functions

reference, 2279
native operators

reference, 2279
NATURAL INNER JOIN, 2863
NATURAL JOIN, 2863
natural key, 6378
NATURAL LEFT JOIN, 2863
NATURAL LEFT OUTER JOIN, 2863
NATURAL RIGHT JOIN, 2863
NATURAL RIGHT OUTER JOIN, 2863

5683

NCHAR data type, 2222
NDB API counters (NDB Cluster), 4727

scope, 4732
status variables associated with, 4734
types, 4732

NDB API database objects
and NDB Cluster replication, 4845

NDB API replica status variables
and NDB Cluster Replication, 4844

NDB Cluster, 4136
"quick" configuration, 4229
administration, 4381, 4462, 4479, 4490, 4490, 4654, 4688
and application feature requirements, 4184
and DNS, 4197
and INFORMATION_SCHEMA, 4841
and IP addressing, 4197
and MySQL privileges, 4840
and MySQL root user, 4840, 4842
and networking, 4146
and transactions, 4278
API node, 4140, 4369
applications supported, 4183
availability, 4182
available platforms, 4137
BACKUP Events, 4687
backups, 4582, 4705, 4706, 4706, 4710, 4711
CHECKPOINT Events, 4682
cluster logs, 4679, 4680
CLUSTERLOG commands, 4680
CLUSTERLOG STATISTICS command, 4688
commands, 4381, 4462, 4479, 4490, 4654
compared to InnoDB, 4181, 4182, 4183, 4184
compared to standalone MySQL Server, 4181, 4182, 4183, 4184
concepts, 4140
configuration, 4196, 4229, 4229, 4261, 4262, 4271, 4369, 4490, 4713
configuration (example), 4254
configuration changes, 4692
configuration files, 4217, 4253
configuration parameters, 4231, 4232, 4239, 4240, 4242
configuring, 4710
CONNECT command, 4655
CONNECTION Events, 4682
connection string, 4260
CREATE NODEGROUP command, 4655
data node, 4140, 4271
data nodes, 4461, 4477
defining node hosts, 4261
direct connections between nodes, 4449
Disk Data tables (see NDB Cluster Disk Data)
DROP NODEGROUP command, 4655
ENTER SINGLE USER MODE command, 4656
ERROR Events, 4687
error logs, 4471
event log format, 4682
event logging thresholds, 4681
event logs, 4679, 4680
event severity levels, 4681
event types, 4679, 4682

5684

execution threads, 4343
EXIT command, 4657
EXIT SINGLE USER MODE command, 4656
FAQ, 5470
fragment replicas, 4143
FULLY_REPLICATED (NDB_TABLE), 2785
GCP Stop errors, 4363
general description, 4139
HELP command, 4656
HostName parameter

and security, 4836
importing data, 4712
indirect indexes, 2772
INFO Events, 4687
information sources, 4138
insecurity of communication protocols, 4836
installation, 4196
installation (Docker), 4207
installation (Linux), 4198
installation (Windows), 4208
installing .deb file (Linux), 4205
installing binary (Windows), 4208
installing binary release (Linux), 4199
installing from source (Linux), 4205
installing from source (Windows), 4212
installing RPM (Linux), 4201
interconnects, 4143, 4461
Java clients, 4141
JSON, 2772
large tables, 2742
log files, 4471, 4478
logging commands, 4680
management client (ndb_mgm), 4490
management commands, 4688
management node, 4140, 4262
management nodes, 4478
managing, 4654
MAX_ROWS, 2742
memory usage and recovery, 4188, 4693
mgm client, 4654
mgm management client, 4688
mgm process, 4490
mgmd process, 4479
monitoring, 4727
multiple management servers, 4694
mysqld options and variables for, 4381
mysqld process, 4381, 4712
ndbd, 4461
ndbd process, 4462, 4690
ndbinfo_select_all, 4472
ndbmtd, 4477
ndb_mgm, 4219, 4490
ndb_mgmd process, 4478
network configuration

and security, 4836
networking, 4449, 4449
node failure (single user mode), 4695
node identifiers, 4453, 4453

5685

node logs, 4679
NODELOG DEBUG command, 4656
NODERESTART Events, 4684
nodes and node groups, 4143
nodes and types, 4140
NOLOGGING (NDB_TABLE), 2784
partitioning support, 4187
partitions, 4143
PARTITION_BALANCE (NDB_TABLE), 2784
Performance Schema, 4828
performing queries, 4219
preparing for replication, 4860
process management, 4461
PROMPT command, 4656
QUIT command, 4657
READ_BACKUP (NDB_TABLE), 2784
replication, 4842

(see also NDB Cluster replication)
REPORT command, 4657
requirements, 4146
resetting, 4693
RESTART command, 4658
restarting, 4222
restoring backups, 4582
rolling restarts (multiple management servers), 4694
runtime statistics, 4688
SCHEMA Events, 4686
security, 4835

and firewalls, 4837, 4839
and HostName parameter, 4836
and network configuration, 4836
and network ports, 4839
and remote administration, 4839
networking, 4836

security procedures, 4841
shared memory transport, 4449
SHOW command, 4658
SHUTDOWN command, 4659
shutting down, 4222
single user mode, 4656, 4694
SINGLEUSER Events, 4687
SQL node, 4140, 4369
SQL nodes, 4712
SQL statements for monitoring, 4829
START BACKUP command, 4867
START command, 4659
start phases (summary), 4690
starting, 4229
starting nodes, 4212, 4218
starting or restarting, 4690
STARTUP Events, 4683
STATISTICS Events, 4686
STATUS command, 4659
status variables, 4420
STOP command, 4660
storage requirements, 2270
thread states, 2033
trace files, 4471

5686

transaction handling, 4191
transaction isolation level, 4189
transporters, 4143, 4461

shared memory (SHM), 4449
TCP/IP, 4449

troubleshooting backups, 4711
upgrades and downgrades, 4223, 4692
USING HASH, 2711
using tables and data, 4219

NDB Cluster 8.0, 4147
NDB Cluster Auto-Installer (NO LONGER SUPPORTED), 4229
NDB Cluster Disk Data, 4714

creating log file groups, 4715
creating tables, 4715, 4716
creating tablespaces, 4716
dropping Disk Data objects, 4719
storage requirements, 4719

NDB Cluster How-To, 4196
NDB Cluster limitations, 4184

and differences from standard MySQL limits, 4188
binary logging, 4193
database objects, 4191
Disk Data storage, 4194
error handling and reporting, 4191
geometry data types, 4187
implementation, 4193
imposed by configuration, 4188
JSON columns, 4187
memory usage and transaction handling, 4191
multiple management servers, 4195
multiple MySQL servers, 4195
partitioning, 4187
performance, 4193
resolved in current version from previous versions, 4195
syntax, 4185
transactions, 4189
unsupported features, 4192

NDB Cluster processes, 4461
NDB Cluster programs, 4461
NDB Cluster replication, 4843

and --initial option, 4850
and circular replication, 4846
and NDB API database objects, 4845
and primary key, 4849
and single point of failure, 4864
and unique keys, 4849
backups, 4867
bidirectional replication, 4873
circular replication, 4873
concepts, 4844, 4845
conflict resolution, 4881
failover, 4864, 4865
gap event, 4846
known issues, 4846
loss of connection, 4846
point-in-time recovery, 4872
preparing, 4860
read conflict detection and resolution, 4892

5687

requirements, 4845
reset-replica.pl backup automation script, 4869
restoring from backup, 4867
starting, 4862
storage engines other than NDB on replica, 4850
synchronization of source and replica, 4869
system tables used, 4853

NDB Cluster Replication
and NDB API replica status variables, 4844

NDB Cluster replication conflict resolution
exceptions table, 4888

NDB comment options, 2779
ndb option

ndb_perror, 4570
perror, 737

NDB statistics variables
and NDB API counters, 4734

NDB statistics variables (NDB Cluster), 4727
scope, 4732
types, 4732

NDB storage engine (see NDB Cluster)
FAQ, 5470

NDB tables
and MySQL root user, 4840

NDB utilities
security issues, 4842

NDB$CFT_CAUSE, 4889
NDB$EPOCH(), 4885

limitations, 4886
NDB$EPOCH2(), 4887
NDB$EPOCH2_TRANS(), 4887
NDB$EPOCH_TRANS(), 4885, 4887
NDB$MAX(), 4883
NDB$MAX_DELETE_WIN(), 4883
NDB$MAX_DEL_WIN_INS(), 4884
NDB$MAX_INS(), 4884
NDB$OLD, 4883
NDB$OP_TYPE, 4889
NDB$ORIG_TRANSID, 4889
ndb-allow-copying-alter-table option

mysqld, 4382
ndb-applier-allow-skip-epoch option

mysqld, 4382
ndb-batch-size option

mysqld, 4382
ndb-blob-read-batch-bytes option

mysqld, 4384
ndb-blob-write-batch-bytes option

mysqld, 4384
ndb-cluster-connection-pool option

mysqld, 4383
ndb-cluster-connection-pool-nodeids option

mysqld, 4383
ndb-connectstring option

mysqld, 4385
ndbd, 4469
ndbinfo_select_all, 4476
ndb_blob_tool, 4500

5688

ndb_config, 4507
ndb_delete_all, 4517
ndb_desc, 4527
ndb_drop_index, 4531
ndb_drop_table, 4536
ndb_import, 4550
ndb_index_stat, 4560
ndb_mgm, 4494
ndb_mgmd, 4486
ndb_move_data, 4566
ndb_restore, 4597
ndb_select_all, 4620
ndb_select_count, 4625
ndb_show_tables, 4630
ndb_waiter, 4644

ndb-default-column-format option (NDB Cluster), 4385
ndb-deferred-constraints option (NDB Cluster), 4385
ndb-distribution option (NDB Cluster), 4386
ndb-log-apply-status option

mysqld, 4386
ndb-log-empty-epochs option

mysqld, 4387
ndb-log-empty-update option

mysqld, 4387
ndb-log-exclusive-reads option

mysqld, 4388
ndb-log-fail-terminate option

mysqld, 4388
ndb-log-orig option

mysqld, 4388
ndb-log-transaction-dependency option

mysqld, 4389
ndb-log-transaction-id option

mysqld, 4389
ndb-log-update-as-write

conflict resolution, 4882
ndb-log-update-as-write option (NDB Cluster), 4389
ndb-log-update-minimal option (NDB Cluster), 4390
ndb-log-update-write, 4859
ndb-log-updated-only, 4859
ndb-log-updated-only option (NDB Cluster), 4390
ndb-mgmd-host option

ndbd, 4469
ndbinfo_select_all, 4476
ndb_blob_tool, 4500
ndb_config, 4512
ndb_delete_all, 4518
ndb_desc, 4527
ndb_drop_index, 4531
ndb_drop_table, 4536
ndb_import, 4550
ndb_index_stat, 4560
ndb_mgm, 4494
ndb_mgmd, 4486
ndb_move_data, 4567
ndb_restore, 4597
ndb_select_all, 4620
ndb_select_count, 4625

5689

ndb_show_tables, 4630
ndb_waiter, 4644

ndb-mgmd-host option (NDB Cluster), 4391
ndb-nodegroup-map option

ndb_restore, 4597
ndb-nodeid option

mysqld, 4391
ndbd, 4469
ndbinfo_select_all, 4476
ndb_blob_tool, 4500
ndb_config, 4512
ndb_delete_all, 4518
ndb_desc, 4527
ndb_drop_index, 4531
ndb_drop_table, 4536
ndb_import, 4550
ndb_index_stat, 4560
ndb_mgm, 4494
ndb_mgmd, 4486
ndb_move_data, 4567
ndb_restore, 4597
ndb_select_all, 4620
ndb_select_count, 4626
ndb_show_tables, 4630
ndb_waiter, 4644

ndb-optimization-delay option
mysqld, 4392

ndb-optimized-node-selection option
mysqld, 4392
ndbd, 4469
ndbinfo_select_all, 4476
ndb_blob_tool, 4500
ndb_config, 4513
ndb_delete_all, 4518
ndb_desc, 4527
ndb_drop_index, 4532
ndb_drop_table, 4536
ndb_import, 4550
ndb_index_stat, 4560
ndb_mgm, 4495
ndb_mgmd, 4486
ndb_move_data, 4567
ndb_restore, 4597
ndb_select_all, 4621
ndb_select_count, 4626
ndb_show_tables, 4630
ndb_waiter, 4644

ndb-schema-dist-timeout option
mysqld, 4386

ndb-transid-mysql-connection-map option
mysqld, 4393

ndb-wait-connected option
mysqld, 4393

ndb-wait-setup option
mysqld, 4393

ndbcluster option
mysqld, 4381

ndbcluster plugin threads, 4828

5690

NDBCLUSTER storage engine (see NDB Cluster)
ndbd, 4461, 4461

-n option, 4470
character-sets-dir option, 4464
connect-delay option, 4464
connect-retries option, 4464
connect-retry-delay option, 4465
connect-string option, 4465
core-file option, 4465
defaults-extra-file option, 4466
defaults-file option, 4466
defaults-group-suffix option, 4466
filesystem-password option, 4466
filesystem-password-from-stdin option, 4466
help option, 4467
initial option, 4467
initial-start option, 4468
install option, 4468
logbuffer-size option, 4468
login-path option, 4469
ndb-connectstring option, 4469
ndb-mgmd-host option, 4469
ndb-nodeid option, 4469
ndb-optimized-node-selection option, 4469
no-defaults option, 4469
nostart option, 4470
nowait-nodes option, 4470
print-defaults option, 4470
remove option, 4470
usage option, 4470
verbose option, 4471
version option, 4471

ndbd (NDB Cluster)
defined, 4140

(see also data node (NDB Cluster))
ndbinfo database, 4739

and query cache, 4742
basic usage, 4743
determining support for, 4739

ndbinfo option
mysqld, 4392

ndbinfo_database system variable, 4418
ndbinfo_max_bytes system variable, 4418
ndbinfo_max_rows system variable, 4418
ndbinfo_offline system variable, 4419
ndbinfo_select_all, 4461, 4472

-l option, 4476
character-sets-dir option, 4474
connect-retries option, 4474
connect-retry-delay option, 4475
connect-string option, 4475
core-file option, 4474
defaults-extra-file option, 4475
defaults-file option, 4475
defaults-group-suffix option, 4475
delay option, 4475
help option, 4476
login-path option, 4476

5691

loops option, 4476
ndb-connectstring option, 4476
ndb-mgmd-host option, 4476
ndb-nodeid option, 4476
ndb-optimized-node-selection option, 4476
no-defaults option, 4477
print-defaults option, 4477
usage option, 4477
version option, 4477

ndbinfo_show_hidden system variable, 4419
ndbinfo_table_prefix system variable, 4419
ndbinfo_version system variable, 4420, 4420
ndbmtd, 4461, 4477

-n option, 4470
ClassicFragmentation, 4343
configuration, 4347, 4347, 4349
connect-delay option, 4464
connect-retries option, 4464
connect-retry-delay option, 4465
EnableMultithreadedBackup, 4343
initial option, 4467
initial-start option, 4468
install option, 4468
logbuffer-size option, 4468
MaxNoOfExecutionThreads, 4343
nostart option, 4470
nowait-nodes option, 4470
remove option, 4470
trace files, 4478, 4478
verbose option, 4471

ndbxfrm, 4461, 4647
compress option, 4648
decrypt-key option, 4649
decrypt-key-from-stdin option, 4649
decrypt-password option, 4649
decrypt-password-from-stdin option, 4649
defaults-extra-file option, 4649
defaults-file option, 4649
defaults-group-suffix option, 4650
detailed-info option, 4650
encrypt-block-size option, 4651
encrypt-cipher option, 4651
encrypt-kdf-iter-count option, 4651
encrypt-key option, 4652
encrypt-key-from-stdin option, 4652
encrypt-password option, 4652
encrypt-password-from-stdin option, 4652
help option, 4652
info option, 4652
login-path option, 4653
no-defaults option, 4653
print-defaults option, 4653
usage option, 4653
version option, 4653

Ndb_api_adaptive_send_deferred_count status variable, 4420
Ndb_api_adaptive_send_deferred_count_replica status variable, 4420
Ndb_api_adaptive_send_deferred_count_session status variable, 4420
Ndb_api_adaptive_send_deferred_count_slave status variable, 4420

5692

Ndb_api_adaptive_send_forced_count status variable, 4420
Ndb_api_adaptive_send_forced_count_replica status variable, 4421
Ndb_api_adaptive_send_forced_count_session status variable, 4421
Ndb_api_adaptive_send_forced_count_slave status variable, 4421
Ndb_api_adaptive_send_unforced_count status variable, 4421
Ndb_api_adaptive_send_unforced_count_replica status variable, 4421
Ndb_api_adaptive_send_unforced_count_slave session variable, 4421
Ndb_api_adaptive_send_unforced_count_slave status variable, 4421
Ndb_api_bytes_received_count status variable, 4423
Ndb_api_bytes_received_count_replica status variable, 4422
Ndb_api_bytes_received_count_session status variable, 4422
Ndb_api_bytes_received_count_slave status variable, 4422
Ndb_api_bytes_sent_count status variable, 4422
Ndb_api_bytes_sent_count_replica status variable, 4422
Ndb_api_bytes_sent_count_session status variable, 4422
Ndb_api_bytes_sent_count_slave status variable, 4422
Ndb_api_event_bytes_count status variable, 4424
Ndb_api_event_bytes_count_injector status variable, 4424
Ndb_api_event_data_count status variable, 4423
Ndb_api_event_data_count_injector status variable, 4423
Ndb_api_event_nondata_count status variable, 4423
Ndb_api_event_nondata_count_injector status variable, 4423
Ndb_api_pk_op_count status variable, 4424
Ndb_api_pk_op_count_replica status variable, 4424
Ndb_api_pk_op_count_session status variable, 4424
Ndb_api_pk_op_count_slave status variable, 4424
Ndb_api_pruned_scan_count status variable, 4425
Ndb_api_pruned_scan_count_replica status variable, 4425
Ndb_api_pruned_scan_count_session status variable, 4425
Ndb_api_pruned_scan_count_slave status variable, 4425
Ndb_api_range_scan_count status variable, 4426
Ndb_api_range_scan_count_replica status variable, 4426
Ndb_api_range_scan_count_session status variable, 4425
Ndb_api_range_scan_count_slave status variable, 4426
Ndb_api_read_row_count status variable, 4427
Ndb_api_read_row_count_replica status variable, 4426
Ndb_api_read_row_count_session status variable, 4426
Ndb_api_read_row_count_slave status variable, 4427
Ndb_api_scan_batch_count status variable, 4428
Ndb_api_scan_batch_count_replica status variable, 4427
Ndb_api_scan_batch_count_session status variable, 4427
Ndb_api_scan_batch_count_slave status variable, 4428
Ndb_api_table_scan_count status variable, 4429
Ndb_api_table_scan_count_replica status variable, 4428
Ndb_api_table_scan_count_session status variable, 4428
Ndb_api_table_scan_count_slave status variable, 4428
Ndb_api_trans_abort_count status variable, 4429
Ndb_api_trans_abort_count_replica status variable, 4429
Ndb_api_trans_abort_count_session status variable, 4429
Ndb_api_trans_abort_count_slave status variable, 4429
Ndb_api_trans_close_count status variable, 4430
Ndb_api_trans_close_count_replica status variable, 4430
Ndb_api_trans_close_count_session status variable, 4429
Ndb_api_trans_close_count_slave status variable, 4430
Ndb_api_trans_commit_count status variable, 4431
Ndb_api_trans_commit_count_replica status variable, 4430
Ndb_api_trans_commit_count_session status variable, 4430
Ndb_api_trans_commit_count_slave status variable, 4431

5693

Ndb_api_trans_local_read_row_count status variable, 4432
Ndb_api_trans_local_read_row_count_replica status variable, 4431
Ndb_api_trans_local_read_row_count_session status variable, 4431
Ndb_api_trans_local_read_row_count_slave status variable, 4431
Ndb_api_trans_start_count status variable, 4432
Ndb_api_trans_start_count_replica status variable, 4432
Ndb_api_trans_start_count_session status variable, 4432
Ndb_api_trans_start_count_slave status variable, 4432
Ndb_api_uk_op_count status variable, 4433
Ndb_api_uk_op_count_replica status variable, 4433
Ndb_api_uk_op_count_session status variable, 4432
Ndb_api_uk_op_count_slave status variable, 4433
Ndb_api_wait_exec_complete_count status variable, 4434
Ndb_api_wait_exec_complete_count_replica status variable, 4433
Ndb_api_wait_exec_complete_count_session status variable, 4433
Ndb_api_wait_exec_complete_count_slave status variable, 4433
Ndb_api_wait_meta_request_count status variable, 4435
Ndb_api_wait_meta_request_count_replica status variable, 4434
Ndb_api_wait_meta_request_count_session status variable, 4434
Ndb_api_wait_meta_request_count_slave status variable, 4434
Ndb_api_wait_nanos_count status variable, 4435
Ndb_api_wait_nanos_count_replica status variable, 4435
Ndb_api_wait_nanos_count_session status variable, 4435
Ndb_api_wait_nanos_count_slave status variable, 4435
Ndb_api_wait_scan_result_count status variable, 4436
Ndb_api_wait_scan_result_count_replica status variable, 4436
Ndb_api_wait_scan_result_count_session status variable, 4436
Ndb_api_wait_scan_result_count_slave status variable, 4436
ndb_apply_status table (NDB Cluster replication), 4853, 4865

(see also NDB Cluster replication)
ndb_autoincrement_prefetch_sz system variable, 4394
ndb_binlog_index table

system table, 1140
ndb_binlog_index table (NDB Cluster replication), 4854, 4866

(see also NDB Cluster replication)
ndb_blob_tool, 4461, 4495

add-missing option, 4497
character-sets-dir option, 4498
check-missing option, 4498
check-orphans option, 4498
connect-retries option, 4498
connect-retry-delay option, 4498
connect-string option, 4498
core-file option, 4498
database option, 4499
defaults-extra-file option, 4499
defaults-file option, 4499
defaults-group-suffix option, 4499
delete-orphans option, 4499
dump-file option, 4499
help option, 4499
login-path option, 4499
ndb-connectstring option, 4500
ndb-mgmd-host option, 4500
ndb-nodeid option, 4500
ndb-optimized-node-selection option, 4500
no-defaults option, 4500
print-defaults option, 4500

5694

usage option, 4500
verbose option, 4501
version option, 4501

ndb_clear_apply_status system variable, 4395
Ndb_cluster_node_id status variable, 4436
NDB_COLUMN, 2780
ndb_config, 4461, 4501

character-sets-dir option, 4512
cluster-config-suffix option, 4504
config-binary-file option, 4505
config-file option, 4506
configinfo option, 4504
config_from_node option, 4506
connect-retries option, 4513
connect-retry-delay option, 4513
connect-string option, 4512
connections option, 4506
core-file option, 4512
defaults-extra-file option, 4511
defaults-file option, 4511
defaults-group-suffix option, 4511
diff-default option, 4507
fields option, 4507
help option, 4512
host option, 4507
login-path option, 4512
mycnf option, 4507
ndb-connectstring option, 4507
ndb-mgmd-host option, 4512
ndb-nodeid option, 4512
ndb-optimized-node-selection option, 4513
no-defaults option, 4508
nodeid option, 4508
nodes option, 4508
print-defaults option, 4511
query option, 4508, 4508
query-all option, 4508
rows option, 4509
system option, 4509
type option, 4509
usage option, 4509
version option, 4509
xml option, 4509

Ndb_config_from_host status variable, 4436
Ndb_config_from_port status variable, 4436
Ndb_config_generation status variable, 4437
Ndb_conflict_fn_epoch status variable, 4437
Ndb_conflict_fn_epoch2 status variable, 4437
Ndb_conflict_fn_epoch2_trans status variable, 4437
Ndb_conflict_fn_epoch_trans status variable, 4437
Ndb_conflict_fn_max status variable, 4437
Ndb_conflict_fn_max_del_win status variable, 4437
Ndb_conflict_fn_max_del_win_ins status variable, 4438
Ndb_conflict_fn_max_ins status variable, 4438
Ndb_conflict_fn_old status variable, 4438
Ndb_conflict_last_conflict_epoch status variable, 4438
Ndb_conflict_last_stable_epoch status variable, 4438
Ndb_conflict_reflected_op_discard_count status variable, 4438

5695

Ndb_conflict_reflected_op_prepare_count status variable, 4438
Ndb_conflict_refresh_op_count status variable, 4438
ndb_conflict_role system variable, 4395
Ndb_conflict_trans_conflict_commit_count status variable, 4439
Ndb_conflict_trans_detect_iter_count status variable, 4439
Ndb_conflict_trans_reject_count status variable, 4439
Ndb_conflict_trans_row_conflict_count status variable, 4439
Ndb_conflict_trans_row_reject_count status variable, 4439
ndb_cpcd, 4461
ndb_data_node_neighbour system variable, 4395
ndb_dbg_check_shares system variable, 4396
ndb_default_column_format system variable, 4396
ndb_deferred_constraints system variable, 4397
ndb_delete_all, 4461, 4514

character-sets-dir option, 4516
connect-retries option, 4516
connect-retry-delay option, 4516
connect-string option, 4516
core-file option, 4516
database option, 4516
defaults-extra-file option, 4517
defaults-file option, 4517
defaults-group-suffix option, 4517
diskscan option, 4517
help option, 4517
login-path option, 4517
ndb-connectstring option, 4517
ndb-mgmd-host option, 4518
ndb-nodeid option, 4518
ndb-optimized-node-selection option, 4518
no-defaults option, 4518
print-defaults option, 4518
transactional option, 4518
tupscan option, 4518
usage option, 4518
version option, 4518

ndb_desc, 4461, 4519
auto-inc option, 4525
blob-info option, 4525
character-sets-dir option, 4525
connect-retries option, 4525
connect-retry-delay option, 4525
connect-string option, 4526
context option, 4526
core-file option, 4526
database option, 4526
defaults-extra-file option, 4526
defaults-file option, 4526
defaults-group-suffix option, 4526
extra-node-info option, 4526
extra-partition-info option, 4527
help option, 4527
login-path option, 4527
ndb-connectstring option, 4527
ndb-mgmd-host option, 4527
ndb-nodeid option, 4527
ndb-optimized-node-selection option, 4527
no-defaults option, 4527

5696

print-defaults option, 4528
retries option, 4528
table option, 4528
unqualified option, 4528
usage option, 4528
version option, 4528

ndb_distribution system variable, 4397
ndb_drop_index, 4461, 4528

character-sets-dir option, 4529
connect-retries option, 4530
connect-retry-delay option, 4530
connect-string option, 4530
core-file option, 4530
database option, 4530
defaults-extra-file option, 4530
defaults-file option, 4531
defaults-group-suffix option, 4531
help option, 4531
login-path option, 4531
ndb-connectstring option, 4531
ndb-mgmd-host option, 4531
ndb-nodeid option, 4531
ndb-optimized-node-selection option, 4532
no-defaults option, 4532
print-defaults option, 4532
usage option, 4532
version option, 4532

ndb_drop_table, 4461, 4533
character-sets-dir option, 4534
connect-retries option, 4534
connect-retry-delay option, 4534
connect-string option, 4535
core-file option, 4535
database option, 4535
defaults-extra-file option, 4535
defaults-file option, 4535
defaults-group-suffix option, 4535
help option, 4535
login-path option, 4536
ndb-connectstring option, 4536
ndb-mgmd-host option, 4536
ndb-nodeid option, 4536
ndb-optimized-node-selection option, 4536
no-defaults option, 4536
print-defaults option, 4536
usage option, 4537
version option, 4537

Ndb_epoch_delete_delete_count status variable, 4439
ndb_error_reporter, 4461, 4537

connection-timeout option, 4537
dry-scp option, 4538
fs option, 4538
help option, 4538
options, 4537
skip-nodegroup option, 4538

ndb_eventbuffer_free_percent system variable, 4397
ndb_eventbuffer_max_alloc system variable, 4398
Ndb_execute_count status variable, 4439

5697

ndb_extra_logging system variable, 4398
Ndb_fetch_table_stats status variable, 4439
ndb_force_send system variable, 4398
ndb_fully_replicated system variable, 4399
ndb_import, 4461, 4538

abort-on-error option, 4543
ai-increment option, 4543
ai-offset option, 4543
ai-prefetch-sz option, 4544
character-sets-dir option, 4544
connect-retries option, 4544
connect-retry-delay option, 4544
connect-string option, 4545
connections option, 4544
continue option, 4545
core-file option, 4545
csvopt option, 4545
db-workers option, 4545
defaults-extra-file option, 4546
defaults-file option, 4546
defaults-group-suffix option, 4546
errins-delay option, 4546
errins-type option, 4546
fields-enclosed-by option, 4547
fields-escaped-by option, 4547
fields-optionally-enclosed-by option, 4547
fields-terminated-by option, 4547
help option, 4547
idlesleep option, 4547
idlespin option, 4548
ignore-lines option, 4548
input-type option, 4548
input-workers option, 4548
keep-state option, 4548
lines-terminated-by option, 4549
log-level option, 4549
login-path option, 4549
max-rows option, 4549
missing-ai-column option, 4549
monitor option, 4550
ndb-connectstring option, 4550
ndb-mgmd-host option, 4550
ndb-nodeid option, 4550
ndb-optimized-node-selection option, 4550
no-asynch option, 4551
no-defaults option, 4551
no-hint option, 4551
opbatch option, 4551
opbytes option, 4551
output-type option, 4551
output-workers option, 4551
pagecnt option, 4552
pagesize option, 4552
polltimeout option, 4552
print-defaults option, 4552
rejects option, 4552
resume option, 4553
rowbatch option, 4553

5698

rowbytes option, 4553
state-dir option, 4553
stats option, 4553
table option, 4554
tempdelay option, 4554
temperrors option, 4554
usage option, 4554
verbose option, 4554
version option, 4554

ndb_index_stat, 4461, 4555
-d option, 4558
character-sets-dir option, 4558
connect-retries option, 4558
connect-retry-delay option, 4558
connect-string option, 4558
core-file option, 4558
database option, 4558
defaults-extra-file option, 4559
defaults-file option, 4559
defaults-group-suffix option, 4559
delete option, 4559
dump option, 4559
example, 4555
help option, 4559
interpreting output, 4555
login-path option, 4559
loops option, 4560
ndb-connectstring option, 4560
ndb-mgmd-host option, 4560
ndb-nodeid option, 4560
ndb-optimized-node-selection option, 4560
no-defaults option, 4560
print-defaults option, 4560
query option, 4561
sys-check option, 4561
sys-create option, 4561
sys-create-if-not-exist option, 4561
sys-create-if-not-valid option, 4561
sys-drop option, 4561
sys-skip-events option, 4561
sys-skip-tables option, 4561
update option, 4561
usage option, 4562
verbose option, 4562
version option, 4562

ndb_index_stat_enable system variable, 4399
ndb_index_stat_option system variable, 4399
ndb_join_pushdown system variable, 4401
Ndb_last_commit_epoch_server status variable, 4439
Ndb_last_commit_epoch_session status variable, 4440
ndb_log_apply_status system variable, 4403
ndb_log_apply_status variable (NDB Cluster replication), 4865
ndb_log_bin system variable, 4403
ndb_log_binlog_index system variable, 4403
ndb_log_cache_size system variable, 4403
ndb_log_empty_epochs system variable, 4404
ndb_log_empty_update system variable, 4404
ndb_log_exclusive_reads (system variable), 4893

5699

ndb_log_exclusive_reads system variable, 4404
ndb_log_orig system variable, 4405
ndb_log_transaction_compression system variable, 4405
ndb_log_transaction_compression_level_zstd system variable, 4406
ndb_log_transaction_id system variable, 4405
Ndb_metadata_blacklist_size status variable (OBSOLETE), 4440
ndb_metadata_check system variable, 4407
ndb_metadata_check_interval system variable, 4407
Ndb_metadata_detected_count status variable, 4440
Ndb_metadata_excluded_count status variable, 4440
ndb_metadata_sync system variable, 4407
Ndb_metadata_synced_count status variable, 4440
ndb_mgm, 4461, 4490 (see mgm)

-e option, 4493
backup-password-from-stdin option, 4492
character-sets-dir option, 4492
connect-retries option, 4492
connect-retry-delay option, 4492
connect-string option, 4493
core-file option, 4493
defaults-extra-file option, 4493
defaults-file option, 4493
defaults-group-suffix option, 4493
encrypt-backup option, 4493
execute option, 4493
help option, 4494
login-path option, 4494
ndb-connectstring option, 4494
ndb-mgmd-host option, 4494
ndb-nodeid option, 4494
ndb-optimized-node-selection option, 4495
no-defaults option, 4495
print-defaults option, 4495
usage option, 4495
using with MySQL Cluster Manager, 4655
version option, 4495

ndb_mgm (NDB Cluster management node client), 4219
ndb_mgmd, 4461 (see mgmd)

-d option, 4484
-f option, 4482
-P option, 4488
-v option, 4489
bind-address option, 4481
character-sets-dir option, 4481
cluster-config-suffix option, 4481
config-cache option, 4482
config-file option, 4482
configdir option, 4483
connect-retries option, 4483
connect-retry-delay option, 4483
connect-string option, 4483
core-file option, 4484
daemon option, 4484
defaults-extra-file option, 4484
defaults-file option, 4484
defaults-group-suffix option, 4484
help option, 4484
initial option, 4484

5700

install option, 4485
interactive option, 4485
log-name option, 4485
login-path option, 4485
mycnf option, 4486
ndb-connectstring option, 4486
ndb-mgmd-host option, 4486
ndb-nodeid option, 4486
ndb-optimized-node-selection option, 4486
no-defaults option, 4487
no-nodeid-checks option, 4486
nodaemon option, 4487
nowait-nodes option, 4487
print-defaults option, 4488
print-full-config option, 4488
reload option, 4488
remove option, 4489
skip-config-file option, 4489
usage option, 4489
verbose option, 4489
version option, 4489

ndb_mgmd (NDB Cluster process), 4478
ndb_mgmd (NDB Cluster)

defined, 4140
(see also management node (NDB Cluster))

ndb_move_data, 4461, 4562
abort-on-error option, 4564
character-sets-dir option, 4564
connect-retries option, 4565
connect-retry-delay option, 4564
connect-string option, 4565
core-file option, 4565
database option, 4565
defaults-extra-file option, 4565
defaults-file option, 4565
defaults-group-suffix option, 4566
drop-source option, 4566
error-insert option, 4566
exclude-missing-columns option, 4566
help option, 4566
login-path option, 4566
lossy-conversions option, 4566
ndb-connectstring option, 4566
ndb-mgmd-host option, 4567
ndb-nodeid option, 4567
ndb-optimized-node-selection option, 4567
no-defaults option, 4567
print-defaults option, 4567
promote-attributes option, 4567
staging-tries option, 4567
usage option, 4567
verbose option, 4568
version option, 4568

Ndb_number_of_data_nodes status variable, 4440
ndb_optimized_node_selection system variable, 4408
ndb_perror, 4568

defaults-extra-file option, 4569
defaults-file option, 4569

5701

defaults-group-suffix option, 4569
help option, 4569
login-path option, 4570
ndb option, 4570
no-defaults option, 4570
print-defaults option, 4570
silent option, 4570
verbose option, 4570
version option, 4570

ndb_print_backup_file, 4461, 4570
backup-key option, 4572
backup-key-from-stdin option, 4572
backup-password option, 4572
backup-password-from-stdin option, 4573
control-directory-number option, 4573
defaults-extra-file option, 4573
defaults-file option, 4573
defaults-group-suffix option, 4573
fragment-id option, 4573
help option, 4574
login-path option, 4574
no-defaults option, 4574
no-print-rows option, 4574
print-defaults option, 4574
print-header-words option, 4574
print-restored-rows option, 4574
print-rows option, 4574
print-rows-per-page option, 4575
rowid-file option, 4575
show-ignored-rows option, 4575
table-id option, 4575
usage option, 4575
verbose option, 4575
version option, 4576

ndb_print_file, 4461, 4576
file-key option, 4576
file-key-from-stdin option, 4577
help option, 4577
quiet option, 4577
usage option, 4577
verbose option, 4577
version option, 4577

ndb_print_frag_file, 4461, 4577
ndb_print_schema_file, 4461, 4578
ndb_print_sys_file, 4461, 4578
Ndb_pruned_scan_count status variable, 4440
Ndb_pushed_queries_defined status variable, 4440
Ndb_pushed_queries_dropped status variable, 4440
Ndb_pushed_queries_executed status variable, 4440
Ndb_pushed_reads status variable, 4440
ndb_read_backup

and NDB_TABLE, 2784
ndb_read_backup system variable, 4409
ndb_recv_thread_activation_threshold system variable, 4409
ndb_recv_thread_cpu_mask system variable, 4409
ndb_redo_log_reader, 4579

dump option, 4580
file-key option, 4580

5702

file-key-from-stdin option, 4580
lap option, 4581
twiddle option, 4581

ndb_replication table, 4856
ndb_replica_batch_size system variable, 4415
ndb_replica_blob_write_batch_bytes system variable, 4416
Ndb_replica_max_replicated_epoch status variable, 4441
ndb_report_thresh_binlog_epoch_slip system variable, 4410
ndb_report_thresh_binlog_mem_usage system variable, 4410
ndb_restore, 4582

allow-pk-changes option, 4587
and circular replication, 4875
append option, 4588
backup-password option, 4588
backup-password-from-stdin option, 4589
backup-path option, 4588
backupid option, 4589
character-sets-dir option, 4589
connect option, 4589
connect-retries option, 4589
connect-retry-delay option, 4590
connect-string option, 4590
core-file option, 4590
decrypt option, 4590
defaults-extra-file option, 4590
defaults-file option, 4590
defaults-group-suffix option, 4591
disable-indexes option, 4591
dont-ignore-systab-0 option, 4591
errors, 4608
exclude-databases option, 4591
exclude-intermediate-sql-tables option, 4591
exclude-missing-columns option, 4592
exclude-missing-tables option, 4592
exclude-tables option, 4592
fields-enclosed-by option, 4593
fields-optionally-enclosed-by option, 4593
fields-terminated-by option, 4593
help option, 4594
hex option, 4594
ignore-extended-pk-updates option, 4594
include-databases option, 4594
include-stored-grants option, 4594
include-tables option, 4595
lines-terminated-by option, 4596
login-path option, 4596
lossy-conversions option, 4596
ndb-connectstring option, 4597
ndb-mgmd-host option, 4597
ndb-nodegroup-map option, 4597
ndb-nodeid option, 4597
ndb-optimized-node-selection option, 4597
no-binlog option, 4596
no-defaults option, 4597
no-restore-disk-objects option, 4596
no-upgrade option, 4596
nodeid option, 4597
num-slices option, 4598

5703

parallelism option, 4599
preserve-trailing-spaces option, 4600
print option, 4600
print-data option, 4600
print-defaults option, 4600
print-log option, 4601
print-meta option, 4601
print-sql-log option, 4601
progress-frequency option, 4601
promote-attributes option, 4601
rebuild-indexes option, 4602
remap-column option, 4602
restore-data option, 4604
restore-epoch option, 4604
restore-meta option, 4604
restore-privilege-tables option, 4604
rewrite-database option, 4604
skip-broken-objects option, 4605
skip-table-check option, 4605
skip-unknown-objects option, 4606
slice-id option, 4606
tab option, 4606
timestamp-printouts option, 4606
typical and required options, 4607
usage option, 4607
verbose option, 4607
version option, 4607
with-apply-status option, 4607

ndb_row_checksum system variable, 4411
Ndb_scan_count status variable, 4441
ndb_schema_dist_lock_wait_timeout system variable, 4411
ndb_schema_dist_timeout system variable, 4411
ndb_schema_dist_upgrade_allowed system variable, 4412
Ndb_schema_participant_count status variable, 4441
ndb_secretsfile_reader, 4613

defaults-extra-file option, 4614
defaults-file option, 4614
defaults-group-suffix option, 4615
filesystem-password option, 4615
filesystem-password-from-stdin option, 4615
help option, 4615
login-path option, 4615
no-defaults option, 4615
print-defaults option, 4615
usage option, 4615
version option, 4616

ndb_select_all, 4461, 4616
character-sets-dir option, 4618
connect-retries option, 4618
connect-retry-delay option, 4618
connect-string option, 4618
core-file option, 4618
database option, 4619
defaults-extra-file option, 4619
defaults-file option, 4619
defaults-group-suffix option, 4619
delimiter option, 4619
descending option, 4619

5704

disk option, 4619
gci option, 4619
gci64 option, 4619
header option, 4620
help option, 4619
lock option, 4620
login-path option, 4620
ndb-connectstring option, 4620
ndb-mgmd-host option, 4620
ndb-nodeid option, 4620
ndb-optimized-node-selection option, 4621
no-defaults option, 4621
nodata option, 4620
order option, 4621
parallelism option, 4621
print-defaults option, 4621
rowid option, 4621
tupscan option, 4621
usage option, 4621
useHexFormat option, 4621
version option, 4621

ndb_select_count, 4461, 4622
character-sets-dir option, 4624
connect-retries option, 4624
connect-retry-delay option, 4624
connect-string option, 4624
core-file option, 4625
defaults-extra-file option, 4625
defaults-file option, 4625
defaults-group-suffix option, 4625
help option, 4625
login-path option, 4625
ndb-connectstring option, 4625
ndb-mgmd-host option, 4625
ndb-nodeid option, 4626
ndb-optimized-node-selection option, 4626
no-defaults option, 4626
print-defaults option, 4626
usage option, 4626
version option, 4626

ndb_setup.py (NO LONGER SUPPORTED), 4461
ndb_show_foreign_key_mock_tables system variable, 4412
ndb_show_tables, 4461, 4626

character-sets-dir option, 4628
connect-retries option, 4628
connect-retry-delay option, 4628
connect-string option, 4629
core-file option, 4629
database option, 4629
defaults-extra-file option, 4629
defaults-file option, 4629
defaults-group-suffix option, 4629
help option, 4629
login-path option, 4630
loops option, 4630
ndb-connectstring option, 4630
ndb-mgmd-host option, 4630
ndb-nodeid option, 4630

5705

ndb-optimized-node-selection option, 4630
no-defaults option, 4631
parsable option, 4631
print-defaults option, 4631
show-temp-status option, 4631
type option, 4631
unqualified option, 4631
usage option, 4631
version option, 4631

ndb_size.pl, 4461, 4631
ndb_size.pl script, 2270
ndb_slave_conflict_role system variable, 4412
Ndb_slave_max_replicated_epoch status variable, 4441
NDB_STORED_USER, 1317, 4723
Ndb_system_name status variable, 4441
NDB_TABLE, 2739, 2783
ndb_table_no_logging system variable, 4413
ndb_table_temporary system variable, 4413
ndb_top, 4461, 4634

color option, 4636
defaults-extra-file option, 4636
defaults-file option, 4637
defaults-group-suffix option, 4637
graph option, 4637
help option, 4637
host option, 4637
login-path option, 4637
measured-load option, 4637
no-defaults option, 4637
node-id option, 4638
os-load option, 4638
password option, 4638
port option, 4638
print-defaults option, 4638
sleep-time option, 4638
socket option, 4638
sort option, 4639
text option, 4639
usage option, 4639
user option, 4639

ndb_transid_mysql_connection_map
INFORMATION_SCHEMA table, 5038

Ndb_trans_hint_count_session status variable, 4441
ndb_use_copying_alter_table system variable, 4413
ndb_use_exact_count system variable, 4414
ndb_use_transactions system variable, 4414
NDB_UTILS_LINK_DYNAMIC

CMake, 264
ndb_version system variable, 4414
ndb_version_string system variable, 4414
ndb_waiter, 4461, 4640

character-sets-dir option, 4642
connect-retries option, 4642
connect-retry-delay option, 4643
connect-string option, 4643
core-file option, 4643
defaults-extra-file option, 4643
defaults-file option, 4643

5706

defaults-group-suffix option, 4643
help option, 4644
login-path option, 4643
ndb-connectstring option, 4644
ndb-mgmd-host option, 4644
ndb-nodeid option, 4644
ndb-optimized-node-selection option, 4644
no-contact option, 4644
no-defaults option, 4644
not-started option, 4645
nowait-nodes option, 4645
print-defaults option, 4645
single-user option, 4645
timeout option, 4645
usage option, 4645
verbose option, 4645
version option, 4646
wait-nodes option, 4646

negative values, 2052
neighbor page, 6378
nested queries, 2874
Nested-Loop join algorithm, 1841
nested-loop join algorithm, 1845
.NET, 6378
net-buffer-length option

mysql, 474
mysqldump, 567
mysqlpump, 603
mysql_upgrade, 449

netmask notation
in account names, 1335

network namespaces, 1115
network ports

and NDB Cluster, 4839
network-namespace option

mysql, 474
network-timeout option

mysqldump, 567
net_buffer_length system variable, 954
net_read_timeout system variable, 955
net_retry_count system variable, 955
net_write_timeout system variable, 955
new features, 9

atomic DDL, 9
backup lock, 30
C API, 31
cast functions, 32
character sets, 24
clone plugin, 33
common table expressions, 29
configuration, 31
connection management, 31
data dictionary, 9
data types, 26
EXPLAIN ANALYZE, 34
hash join, 33
InnoDB, 12
innodb_deadlock_detect, 13

5707

internal temporary tables, 30
JSON, 24
JSON schema CHECK constraints, 36
JSON schema validation, 32
lateral derived tables, 29
logging, 30
multi-valued indexes, 32
ON DUPLICATE KEY UPDATE, 36
optimizer, 27
plugins, 31
query cast injection, 34
redo log archiving, 32
regular expressions, 30
replication, 31
resource management, 12
security, 9
table aliases and DELETE, 30
table encryption, 12
TABLE statement, 36
time zone support, 36
time_zone, 32
upgrading, 9
VALUES statement, 36
window functions, 29

new features in NDB Cluster, 4147
new system variable, 956
newline (\n), 2050, 2550, 2837
next-key lock, 3266, 6378

InnoDB, 3282
NFS

InnoDB, 3290
ngram_token_size system variable, 956
nice option

mysqld_safe, 418
no matching rows, 5533
NO PAD collations, 2148, 2162, 2225
no-asynch option

ndb_import, 4551
no-auto-rehash option

mysql, 474
no-autocommit option

mysqldump, 569
no-beep option

mysql, 474
mysqladmin, 510

no-binlog option
ndb_restore, 4596

no-check option
ibd2sdi, 648
innochecksum, 652

no-contact option
ndb_waiter, 4644

no-create-db option
mysqldump, 550
mysqlpump, 603

no-create-info option
mysqldump, 550
mysqlpump, 603

5708

no-data option
mysqldump, 564

no-dd-upgrade option
mysqld, 853

no-defaults option, 377
myisamchk, 662
mysql, 474
mysqladmin, 510
mysqlbinlog, 713
mysqlcheck, 526
mysqld, 853
mysqldump, 549
mysqld_multi, 424
mysqld_safe, 418
mysqlimport, 581
mysqlpump, 603
mysqlshow, 620
mysqlslap, 637
mysql_migrate_keyring, 695
mysql_secure_installation, 434
mysql_upgrade, 449
my_print_defaults, 736
ndbd, 4469
ndbinfo_select_all, 4477
ndbxfrm, 4653
ndb_blob_tool, 4500
ndb_config, 4508
ndb_delete_all, 4518
ndb_desc, 4527
ndb_drop_index, 4532
ndb_drop_table, 4536
ndb_import, 4551
ndb_index_stat, 4560
ndb_mgm, 4495
ndb_mgmd, 4487
ndb_move_data, 4567
ndb_perror, 4570
ndb_print_backup_file, 4574
ndb_restore, 4597
ndb_secretsfile_reader, 4615
ndb_select_all, 4621
ndb_select_count, 4626
ndb_show_tables, 4631
ndb_top, 4637
ndb_waiter, 4644

no-drop option
mysqlslap, 637

no-hint option
ndb_import, 4551

no-log option
mysqld_multi, 426

no-monitor option
mysqld, 854

no-nodeid-checks option
ndb_mgmd, 4486

no-print-rows option
ndb_print_backup_file, 4574

no-restore-disk-objects option

5709

ndb_restore, 4596
no-set-names option

mysqldump, 553
no-tablespaces option

mysqldump, 550
no-upgrade option

ndb_restore, 4596
nodaemon option

ndb_mgmd, 4487
nodata option

ndb_select_all, 4620
node groups (NDB Cluster), 4143
node logs (NDB Cluster), 4679
node-id option

ndb_top, 4638
Node.js, 5442
NodeGroup, 4274
NodeGroupTransporters, 4294
NodeId, 4263, 4271, 4371
nodeid option

ndb_config, 4508
ndb_restore, 4597

NodeId1, 4443, 4453
NodeId2, 4444, 4453
NodeIdServer, 4444, 4453
NODELOG DEBUG command (NDB Cluster), 4656
NODERESTART Events (NDB Cluster), 4684
nodes

ndbinfo table, 4799
nodes option

ndb_config, 4508
NOLOGGING, 2783
NOLOGGING (NDB_TABLE)

NDB Cluster, 2784
non-locking read, 6378
non-repeatable read, 6379
nonblocking I/O, 6379
nondelimited strings, 2055
nondeterministic functions

optimization, 1870
replication, 1870

nonlogging tables
NDB Cluster, 2784, 4413

Nontransactional tables, 5533
NoOfFragmentLogFiles, 4299
NoOfFragmentLogParts, 4347
NoOfReplicas, 4275
nopager command

mysql, 487
normalized, 6379
normalized JSON values, 2256
normalize_statement() MySQL Enterprise Firewall function, 1725
NoSQL, 4059, 6379
NoSQL database

MySQL as a, 4061
nostart option

ndbd, 4470
ndbmtd, 4470

5710

NOT
logical, 2318

NOT BETWEEN, 2315
not equal (!=), 2313
not equal (<>), 2313
NOT EXISTS

with subqueries, 2879
NOT EXISTS() operator, 2315
NOT IN, 2316
NOT LIKE, 2377
NOT NULL constraint, 6379
NOT REGEXP, 2378
not-started option

ndb_waiter, 4645
notee command

mysql, 487
NOTIFY_SOCKET environment variable, 219, 738
Not_flushed_delayed_rows status variable, 1080
NOW(), 2347
NOWAIT, 2859
NOWAIT (START BACKUP command), 4708
nowait-nodes option

ndbd, 4470
ndbmtd, 4470
ndb_mgmd, 4487
ndb_waiter, 4645

nowarning command
mysql, 487

NO_AUTO_VALUE_ON_ZERO SQL mode, 1095
NO_BACKSLASH_ESCAPES SQL mode, 1095
NO_DIR_IN_CREATE SQL mode, 1095
NO_ENGINE_SUBSTITUTION SQL mode, 1095
NO_FIELD_OPTIONS

removed features, 56
NO_GROUP_INDEX, 1975
NO_ICP, 1975
NO_INDEX, 1975
NO_INDEX_MERGE, 1975
NO_JOIN_INDEX, 1975
NO_KEY_OPTIONS

removed features, 56
NO_MRR, 1975
NO_ORDER_INDEX, 1976
NO_RANGE_OPTIMIZATION, 1975
NO_SKIP_SCAN, 1976
NO_TABLE_OPTIONS

removed features, 56
NO_UNSIGNED_SUBTRACTION SQL mode, 1095
NO_ZERO_DATE SQL mode, 1096
NO_ZERO_IN_DATE SQL mode, 1097
NTH_VALUE(), 2613
NTILE(), 2614
NUL, 2050, 2837
NULL, 343, 5531, 6379

ORDER BY, 1862
testing for null, 2313, 2315, 2317, 2317, 2323

null literal
JSON, 2253

5711

NULL value, 343, 2061
ORDER BY, 2061

NULL values
and AUTO_INCREMENT columns, 5532
and indexes, 2731
and TIMESTAMP columns, 5532
vs. empty values, 5531

NULL-complemented row, 1846, 1850
null-rejected condition, 1850
NULLIF(), 2324
num-slices option

ndb_restore, 4598
Numa, 4338
number-char-cols option

mysqlslap, 637
number-int-cols option

mysqlslap, 638
number-of-queries option

mysqlslap, 638
numbers, 2052
NumCPUs, 4348
NUMERIC data type, 2203
numeric data types, 2200

storage requirements, 2270
numeric literals

approximate-value, 2052, 2643
exact-value, 2052, 2643

numeric precision, 2200
numeric scale, 2200
NumGeometries()

removed features, 57
NumInteriorRings()

removed features, 57
NumPoints()

removed features, 57
NVARCHAR data type, 2222

O
object

JSON, 2253
objects

stored, 4967
objects_summary_global_by_type table

performance_schema, 5289
obtaining information about partitions, 4944
OCT(), 2367
OCTET_LENGTH(), 2368
ODBC, 6380
ODBC compatibility, 997, 2203, 2306, 2317, 2732, 2866
ODBC_INCLUDES option

CMake, 248
ODBC_LIB_DIR option

CMake, 248
ODirect, 4309
ODirectSyncFlag, 4309
OFF

plugin activation option, 1198
off-page column, 6380

5712

offline_mode system variable, 957
offset option

mysqlbinlog, 713
OGC (see Open Geospatial Consortium)
OLAP, 2596
old system variable, 957
old-style-user-limits option

mysqld, 854
old_alter_table system variable, 958
old_passwords

removed features, 55
OLTP, 6380
ON

plugin activation option, 1198
ON DUPLICATE KEY

INSERT modifier, 2824
ON DUPLICATE KEY UPDATE, 2820

new features, 36
ON versus USING

joins, 2867
one-database option

mysql, 475
one-factor authentication (see multifactor authentication)
Ongoing_anonymous_gtid_violating_transaction_count status variable, 1080
Ongoing_anonymous_transaction_count status variable, 1080
Ongoing_automatic_gtid_violating_transaction_count status variable, 1080
online, 6380
online DDL, 3360, 3361, 6380

concurrency, 3377
limitations, 3383

online location of manual, 2
online upgrades and downgrades (NDB Cluster), 4692

order of node updates, 4693
online-migration option

mysql_migrate_keyring, 695
only-print option

mysqlslap, 638
ONLY_FULL_GROUP_BY

SQL mode, 2602
ONLY_FULL_GROUP_BY SQL mode, 1097
opbatch option

ndb_import, 4551
opbytes option

ndb_import, 4551
OPEN, 2991
Open Geospatial Consortium, 2233
Open Source

defined, 5
open tables, 503, 1914
open-files-limit option

mysqlbinlog, 713
mysqld_safe, 418

Opened_files status variable, 1081
Opened_tables status variable, 1081
Opened_table_definitions status variable, 1081
OpenGIS, 2233
opening

tables, 1914

5713

Opening master dump table
thread state, 2033

Opening mysql.ndb_apply_status
thread state, 2033

Opening system tables
thread state, 2025

Opening tables
thread state, 2025

OpenLDAP configuration
ldap.conf file, 1464

opens, 503
OpenSSL, 232, 1402

FIPS mode, 1791
OpenSSL FIPS Object Module, 1791
Open_files status variable, 1080
open_files_limit system variable, 958
Open_streams status variable, 1080
Open_tables status variable, 1080
Open_table_definitions status variable, 1080
operating systems

file-size limits, 1920
supported, 107, 107

operations
arithmetic, 2326

operations_per_fragment
ndbinfo table, 4801

operators, 2278
arithmetic, 2439
assignment, 2105, 2320
bit, 2439
cast, 2325, 2415
logical, 2318
precedence, 2311
string, 2359
string comparison, 2374

.OPT file, 6380
opt option

mysqldump, 567
optimistic, 6381
optimization, 1820, 1886, 1929

Batched Key Access, 1853, 1855
benchmarking, 2017
BLOB types, 1914
Block Nested-Loop, 1853, 1854
character and string types, 1913
common table expressions, 1874
data change statements, 1892
data size, 1911
DELETE statements, 1893
derived tables, 1874
disk I/O, 2006
foreign keys, 1896
full table scans, 1873
full-text queries, 1897
indexes, 1894
INFORMATION_SCHEMA queries, 1888
InnoDB tables, 1923
INSERT statements, 1892

5714

many tables, 1914
MEMORY storage engine, 1898
MEMORY tables, 1939
memory usage, 2010
Multi-Range Read, 1852
MyISAM tables, 1935
nondeterministic functions, 1870
numeric types, 1913
Performance Schema queries, 1891
PERFORMANCE_SCHEMA, 2018
primary keys, 1896
REPAIR TABLE statements, 1938
SELECT statements, 1822
SPATIAL indexes, 1896
spatial queries, 1898
SQL statements, 1822
subqueries, 1874
subquery, 1879
subquery materialization, 1878
tips, 1894
UPDATE statements, 1893
views, 1874
WHERE clauses, 1823
window functions, 1871

optimization (NDB), 1838, 4401
optimizations, 1832

LIMIT clause, 1867
row constructors, 1872

optimize option
mysqlcheck, 526

OPTIMIZE TABLE
and partitioning, 4943

OPTIMIZE TABLE statement, 3084
optimizer, 6381

and replication, 3869
controlling, 1957
cost model, 1985
new features, 27
query plan evaluation, 1957
switchable optimizations, 1958

optimizer hints, 1968
optimizer statistics

for InnoDB tables, 3318
Optimizer Statistics, 3325
optimizer_prune_level system variable, 959
optimizer_search_depth system variable, 960
optimizer_switch system variable, 960, 1958

use_invisible_indexes flag, 1907
OPTIMIZER_TRACE

INFORMATION_SCHEMA table, 5039
OPTIMIZER_TRACE option

CMake, 254
optimizer_trace system variable, 964
optimizer_trace_features system variable, 964
optimizer_trace_limit system variable, 965
optimizer_trace_max_mem_size system variable, 965
optimizer_trace_offset system variable, 965
OPTIMIZE_SANITIZER_BUILDS option

5715

CMake, 263
optimizing

DISTINCT, 1866
filesort, 1863, 1987
GROUP BY, 1864
LEFT JOIN, 1848
ORDER BY, 1860
outer joins, 1848
RIGHT JOIN, 1848
tables, 1817
thread state, 2025

option, 6381
option file, 6381
option files, 371, 1397

.my.cnf, 371, 372, 397, 1273, 1293, 1397

.mylogin.cnf, 371, 683
C:\my.cnf, 1273
escape sequences, 373
my.cnf, 3855
mysqld-auto.cnf, 369, 371, 969, 1033, 1035, 1055, 1059, 1691, 3095, 3166, 5259

option prefix
--disable, 378
--enable, 378
--loose, 378
--maximum, 378
--skip, 378

options
boolean, 378
CMake, 233
command-line

mysql, 454
mysqladmin, 503

myisamchk, 660
mysqld, 747
provided by MySQL, 329
replication, 3855

OR, 357, 1832
bitwise, 2440
logical, 2319

OR Index Merge optimization, 1832
ORACLE

removed features, 56
Oracle compatibility, 96, 2595, 2678, 3169
Oracle Key Vault, 3383

keyring_okv keyring plugin, 1554
ORD(), 2368
ORDER BY, 340, 2684, 2856

maximum sort length, 2857
NULL, 1862
NULL value, 2061
parenthesized query expressions, 2849
window functions, 2619
WITH ROLLUP, 2857

ORDER BY optimization, 1860
order option

ndb_select_all, 4621
order-by-primary option

mysqldump, 569

5716

ORDER_INDEX, 1976
original_commit_timestamp, 3852
original_commit_timestamp system variable, 3768
original_server_version system variable, 3676
orphan stored objects, 4990
os-load option

ndb_top, 4638
Out of resources error

and partitioned tables, 4957
OUT parameter

condition handling, 3018
out-dir option

comp_err, 431
out-file option

comp_err, 431
out-of-range handling, 2207
outer joins

optimizing, 1848
OUTFILE, 2862
output-type option

ndb_import, 4551
output-workers option

ndb_import, 4551
OVER clause

window functions, 2616
over-aligned type storage, 253
overflow handling, 2207
overflow page, 6381
Overlaps()

removed features, 57
OverloadLimit, 4444, 4453
overview, 1

P
pad attribute

collations, 2148, 2225, 2375
PAD SPACE collations, 2148, 2162, 2225
PAD_CHAR_TO_FULL_LENGTH

deprecated features, 50
PAD_CHAR_TO_FULL_LENGTH SQL mode, 1097
page, 6382
page cleaner, 6382
page compression, 3347
page option

innochecksum, 651
page size, 6382

InnoDB, 3227
page-type-dump option

innochecksum, 654
page-type-summary option

innochecksum, 653
pagecnt option

ndb_import, 4552
pager command

mysql, 487
pager option

mysql, 475
pagesize option

5717

ndb_import, 4552
PAM

pluggable authentication, 1443
.par file, 6381
parallel-recover option

myisamchk, 667
parallel-schemas option

mysqlpump, 603
parallelism option

ndb_restore, 4599
parameters

server, 747
PARAMETERS

INFORMATION_SCHEMA table, 5040
parameters table

data dictionary table, 1137
parameter_type_elements table

data dictionary table, 1137
parent events

performance_schema, 5353
parent table, 6382
parentheses (and), 2311
parenthesized query expressions, 2849
parsable option

ndb_show_tables, 4631
parser_max_mem_size system variable, 966
partial backup, 6382
partial index, 6382
partial revokes, 1340, 1356
partial trust, 6383
partial updates

and replication, 3872
partial_revokes system variable, 966
PARTITION, 4899
PARTITION BY

window functions, 2618
PARTITION BY LIST COLUMNS, 4911
PARTITION BY RANGE COLUMNS, 4911
partition management, 4928
partition pruning, 4946
partitioning, 4899

advantages, 4902
and dates, 4903
and foreign keys, 4957
and FULLTEXT indexes, 4957
and replication, 3869, 3873
and SQL mode, 3873, 4955
and subqueries, 4958
and temporary tables, 4958, 4961
by hash, 4918
by key, 4921
by linear hash, 4920
by linear key, 4922
by list, 4908
by range, 4904
COLUMNS, 4911
concepts, 4900
data type of partitioning key, 4958

5718

enabling, 4899
functions allowed in partitioning expressions, 4965
index prefixes, 4958
keys, 4902
limitations, 4955
operators not permitted in partitioning expressions, 4955
operators supported in partitioning expressions, 4955
optimization, 4945, 4946
partitioning expression, 4902
resources, 4900
storage engines (limitations), 4964
subpartitioning, 4959
support, 4899
support in NDB Cluster, 4187
tables, 4899
types, 4903
window functions, 2618

Partitioning
maximum number of partitions, 4957

partitioning information statements, 4944
partitioning keys and primary keys, 4961
partitioning keys and unique keys, 4961
partitions

adding and dropping, 4928
analyzing, 4943
checking, 4943
managing, 4928
modifying, 4928
optimizing, 4943
repairing, 4943
splitting and merging, 4928
truncating, 4928

PARTITIONS
INFORMATION_SCHEMA table, 5041

partitions (NDB Cluster), 4143
PartitionsPerNode, 4348
PARTITION_BALANCE, 2783
PARTITION_BALANCE (NDB_TABLE)

NDB Cluster, 2784
password

resetting expired, 1366
root user, 279

password management, 1364
password option, 383

mysql, 475
mysqladmin, 511
mysqlbinlog, 713
mysqlcheck, 526
mysqldump, 544
mysqld_multi, 426
mysqlimport, 581
mysqlpump, 604
mysqlshow, 621
mysqlslap, 638
mysql_migrate_keyring, 695
mysql_secure_installation, 434
mysql_upgrade, 449
ndb_top, 4638

5719

password policy, 1526
password validation, 1526
PASSWORD()

removed features, 55
password1 option, 384, 476, 511, 527, 544, 581, 604, 621, 638
password2 option, 384, 476, 511, 527, 544, 582, 604, 621, 639
password3 option, 384, 476, 511, 527, 544, 582, 604, 621, 639
PASSWORDLESS_USER_ADMIN privilege, 1318
passwords

administrator guidelines, 1293
expiration, 1375
for the InnoDB memcached interface, 3544
for users, 1304
forgotten, 5522
logging, 1294
lost, 5522
resetting, 1375, 5522
security, 1292, 1303
setting, 1363, 3068
user guidelines, 1292

password_history system variable, 967
password_history table

system table, 1139, 1325
password_require_current system variable, 968
password_reuse_interval system variable, 968
PATH environment variable, 166, 172, 277, 368, 738
path name separators

Windows, 374
pattern matching, 344, 2378
peer row

window functions, 2619
PERCENT_RANK(), 2614
performance, 1820

benchmarks, 2018
disk I/O, 2006
estimating, 1957

Performance Schema, 3515, 5124, 6383
data_locks table, 3485
data_lock_waits table, 3485
event filtering, 5136
keyring tables, 5271
memory use, 5132
MySQL Enterprise Firewall tables, 5269
NDB Cluster, 4828
table reference, 5166
Thread pool tables, 5264

Performance Schema functions, 2624
Performance Schema queries

optimization, 1891
performance-schema-consumer-events-stages-current option

mysqld, 5326
performance-schema-consumer-events-stages-history option

mysqld, 5326
performance-schema-consumer-events-stages-history-long option

mysqld, 5326
performance-schema-consumer-events-statements-cpu option

mysqld, 5326
performance-schema-consumer-events-statements-current option

5720

mysqld, 5326
performance-schema-consumer-events-statements-history option

mysqld, 5326
performance-schema-consumer-events-statements-history-long option

mysqld, 5326
performance-schema-consumer-events-transactions-current option

mysqld, 5326
performance-schema-consumer-events-transactions-history option

mysqld, 5326
performance-schema-consumer-events-transactions-history-long option

mysqld, 5327
performance-schema-consumer-events-waits-current option

mysqld, 5327
performance-schema-consumer-events-waits-history option

mysqld, 5327
performance-schema-consumer-events-waits-history-long option

mysqld, 5327
performance-schema-consumer-global-instrumentation option

mysqld, 5327
performance-schema-consumer-statements-digest option

mysqld, 5327
performance-schema-consumer-thread-instrumentation option

mysqld, 5327
performance-schema-consumer-xxx option

mysqld, 5326
performance-schema-instrument option

mysqld, 5326
performance_schema

accounts table, 5216
binary_log_transaction_compression_stats, 5226
clone_progress table, 5274
clone_status table, 5273
component_scheduler_tasks table, 5303
cond_instances table, 5180
data_locks table, 5249, 5353
data_lock_waits table, 5252
error_log table, 5304
events_errors_summary_by_account_by_error table, 5300
events_errors_summary_by_host_by_error table, 5300
events_errors_summary_by_thread_by_error table, 5300
events_errors_summary_by_user_by_error table, 5300
events_errors_summary_global_by_error table, 5300
events_stages_current table, 5194
events_stages_history table, 5195
events_stages_history_long table, 5195
events_stages_summary_by_account_by_event_name table, 5279
events_stages_summary_by_host_by_event_name table, 5279
events_stages_summary_by_thread_by_event_name table, 5279
events_stages_summary_by_user_by_event_name table, 5279
events_stages_summary_global_by_event_name table, 5279
events_statements_current table, 5199
events_statements_histogram_by_digest table, 5285
events_statements_histogram_global table, 5285
events_statements_history table, 5203
events_statements_history_long table, 5204
events_statements_summary_by_account_by_event_name table, 5281
events_statements_summary_by_digest table, 5281
events_statements_summary_by_host_by_event_name table, 5281

5721

events_statements_summary_by_program table, 5281
events_statements_summary_by_thread_by_event_name table, 5281
events_statements_summary_by_user_by_event_name table, 5281
events_statements_summary_global_by_event_name table, 5281
events_transactions_current table, 5211
events_transactions_history table, 5213
events_transactions_history_long table, 5214
events_transactions_summary_by_account_by_event table, 5287
events_transactions_summary_by_host_by_event_name table, 5287
events_transactions_summary_by_thread_by_event_name table, 5287
events_transactions_summary_by_user_by_event_name table, 5287
events_transactions_summary_global_by_event_name table, 5287
events_waits_current table, 5187
events_waits_history table, 5189
events_waits_history_long table, 5190
events_waits_summary_by_account_by_event_name table, 5277
events_waits_summary_by_host_by_event_name table, 5277
events_waits_summary_by_instance table, 5277
events_waits_summary_by_thread_by_event_name table, 5277
events_waits_summary_by_user_by_event_name table, 5277
events_waits_summary_global_by_event_name table, 5277
file_instances table, 5181
file_summary_by_event_name table, 5290
file_summary_by_instance table, 5290
firewall_groups table, 5270
firewall_group_allowlist table, 5270
firewall_membership table, 5271
hosts table, 5217
host_cache table, 1108, 5307
innodb_redo_log_files table, 5310
keyring_component_status table, 1539, 5271
keyring_keys table, 1539, 1639, 1676, 5272
log_status table, 5310
memory_summary_by_account_by_event_name table, 5296
memory_summary_by_host_by_event_name table, 5296
memory_summary_by_thread_by_event_name table, 5296
memory_summary_by_user_by_event_name table, 5296
memory_summary_global_by_event_name table, 5296
metadata_locks table, 5255
mutex_instances table, 5181
objects_summary_global_by_type table, 5289
parent events, 5353
performance_timers table, 5311
prepared_statements_instances table, 5281
processlist table, 5312
replication_applier_configuration, 5227
replication_applier_filters, 5234
replication_applier_global_filters, 5234
replication_applier_status, 5229
replication_applier_status_by_coordinator, 5229
replication_applier_status_by_worker, 5231
replication_asynchronous_connection_failover, 5235
replication_asynchronous_connection_failover_managed, 5236
replication_connection_configuration, 5237
replication_connection_status, 5240
replication_group_communication_information, 5242
replication_group_configuration_version, 5243
replication_group_members, 5245

5722

replication_group_member_actions, 5243
replication_group_member_stats, 5244
rwlock_instances table, 5182
session_account_connect_attrs table, 5221
session_connect_attrs table, 5222
setup_actors table, 5171
setup_consumers table, 5172
setup_instruments table, 5173
setup_objects table, 5177
setup_threads table, 5178
socket_instances table, 5183
socket_summary_by_event_name table, 5295
socket_summary_by_instance table, 5295
table_handles table, 5257
table_io_waits_summary_by_index_usage table, 5292
table_io_waits_summary_by_table table, 5291
table_lock_waits_summary_by_table table, 5293
thread table, 5315
tls_channel_status table, 5320
tp_thread_group_state table, 5265
tp_thread_group_stats table, 5266
tp_thread_state table, 5268
users table, 5217
user_defined_functions table, 1266, 5321
user_variables_by_thread table, 5222

performance_schema database, 5124
restrictions, 5355
TRUNCATE TABLE, 5165, 5355

PERFORMANCE_SCHEMA storage engine, 5124
performance_schema system variable, 5328
performance_schema.global_status table

and NDB Cluster, 4835
performance_schema.global_variables table

and NDB Cluster, 4831
Performance_schema_accounts_lost status variable, 5346
performance_schema_accounts_size system variable, 5328
Performance_schema_cond_classes_lost status variable, 5346
Performance_schema_cond_instances_lost status variable, 5347
performance_schema_digests_size system variable, 5329
Performance_schema_digest_lost status variable, 5347
performance_schema_error_size system variable, 5329
performance_schema_events_stages_history_long_size system variable, 5329
performance_schema_events_stages_history_size system variable, 5330
performance_schema_events_statements_history_long_size system variable, 5330
performance_schema_events_statements_history_size system variable, 5330
performance_schema_events_transactions_history_long_size system variable, 5331
performance_schema_events_transactions_history_size system variable, 5331
performance_schema_events_waits_history_long_size system variable, 5332
performance_schema_events_waits_history_size system variable, 5332
Performance_schema_file_classes_lost status variable, 5347
Performance_schema_file_handles_lost status variable, 5347
Performance_schema_file_instances_lost status variable, 5347
Performance_schema_hosts_lost status variable, 5347
performance_schema_hosts_size system variable, 5332
Performance_schema_index_stat_lost status variable, 5347
Performance_schema_locker_lost status variable, 5347
performance_schema_max_cond_classes system variable, 5333
performance_schema_max_cond_instances system variable, 5333

5723

performance_schema_max_digest_length system variable, 5333
performance_schema_max_digest_sample_age system variable, 5334
performance_schema_max_file_classes system variable, 5334
performance_schema_max_file_handles system variable, 5335
performance_schema_max_file_instances system variable, 5335
performance_schema_max_index_stat system variable, 5336
performance_schema_max_memory_classes system variable, 5336
performance_schema_max_metadata_locks system variable, 5336
performance_schema_max_mutex_classes system variable, 5337
performance_schema_max_mutex_instances system variable, 5337
performance_schema_max_prepared_statements_instances system variable, 5337
performance_schema_max_program_instances system variable, 5338
performance_schema_max_rwlock_classes system variable, 5338
performance_schema_max_rwlock_instances system variable, 5339
performance_schema_max_socket_classes system variable, 5339
performance_schema_max_socket_instances system variable, 5339
performance_schema_max_sql_text_length system variable, 5340
performance_schema_max_stage_classes system variable, 5340
performance_schema_max_statement_classes system variable, 5341
performance_schema_max_statement_stack system variable, 5341
performance_schema_max_table_handles system variable, 5342
performance_schema_max_table_instances system variable, 5342
performance_schema_max_table_lock_stat system variable, 5342
performance_schema_max_thread_classes system variable, 5343
performance_schema_max_thread_instances system variable, 5343
Performance_schema_memory_classes_lost status variable, 5347
Performance_schema_metadata_lock_lost status variable, 5347
Performance_schema_mutex_classes_lost status variable, 5347
Performance_schema_mutex_instances_lost status variable, 5347
Performance_schema_nested_statement_lost status variable, 5347
Performance_schema_prepared_statements_lost status variable, 5348
Performance_schema_program_lost status variable, 5348
Performance_schema_rwlock_classes_lost status variable, 5348
Performance_schema_rwlock_instances_lost status variable, 5348
Performance_schema_session_connect_attrs_longest_seen status variable, 5348
Performance_schema_session_connect_attrs_lost status variable, 5348
performance_schema_session_connect_attrs_size system variable, 5344
performance_schema_setup_actors_size system variable, 5344
performance_schema_setup_objects_size system variable, 5345
performance_schema_show_processlist system variable, 5345
Performance_schema_socket_classes_lost status variable, 5348
Performance_schema_socket_instances_lost status variable, 5348
Performance_schema_stage_classes_lost status variable, 5348
Performance_schema_statement_classes_lost status variable, 5348
Performance_schema_table_handles_lost status variable, 5349
Performance_schema_table_instances_lost status variable, 5349
Performance_schema_table_lock_stat_lost status variable, 5349
Performance_schema_thread_classes_lost status variable, 5349
Performance_schema_thread_instances_lost status variable, 5349
Performance_schema_users_lost status variable, 5349
performance_schema_users_size system variable, 5346
performance_timers

removed features, 59
performance_timers table

performance_schema, 5311
PERIOD_ADD(), 2348
PERIOD_DIFF(), 2348
Perl, 6383

5724

installing, 281
installing on Windows, 282

Perl API, 5443, 6383
Perl DBI/DBD

installation problems, 283
permission checks

effect on speed, 1893
perror, 367, 737

help option, 737
ndb option, 737
removed features, 62
silent option, 737
verbose option, 738
version option, 738

PERSIST
SET statement, 1055, 3095

persisted_globals_load system variable, 968, 1055
persistent statistics, 6383
PERSIST_ONLY

SET statement, 1055, 3095
persist_only_admin_x509_subject system variable, 969
PERSIST_RO_VARIABLES_ADMIN privilege, 1318
persist_sensitive_variables_in_plaintext system variable, 969
pessimistic, 6383
pgman_time_track_stats

ndbinfo table, 4805
phantom, 6383
phantom rows, 3282
phone book collation, German, 2169, 2169
PHP, 6383
PHP API, 6384
physical, 6384
physical backup, 6384
PI(), 2332
pid-file option

mysql.server, 423
mysqld_safe, 418

pid_file system variable, 970
Ping

thread command, 2021
pipe option, 384

mysql, 476, 527
mysqladmin, 511
mysqldump, 545
mysqlimport, 582
mysqlshow, 622
mysqlslap, 639
mysql_upgrade, 450

PIPES_AS_CONCAT SQL mode, 1098
PITR, 6384
PKG_CONFIG_PATH environment variable, 738
plan stability, 6384
platforms

supported, 107
pluggable authentication

PAM, 1443
restrictions, 1381
Windows, 1453

5725

plugin
audit_log, 1611

plugin activation options
FORCE, 1198
FORCE_PLUS_PERMANENT, 1198
OFF, 1198
ON, 1198

plugin API, 1194
plugin installing

audit_log, 1612
Clone, 1232
CONNECTION_CONTROL, 1521
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS, 1521
Data Masking, 1753
ddl_rewriter, 1218
keyring_aws, 1544
keyring_encrypted_file, 1544
keyring_file, 1544
keyring_hashicorp, 1544
keyring_oci, 1544
keyring_okv, 1544
keyring_udf, 1584
MySQL Enterprise Firewall plugins, 1701
MySQL Enterprise Thread Pool, 1201
Rewriter query rewrite plugin, 1209
Version Tokens, 1220

plugin option prefix
mysqld, 856

plugin service
locking_service, 1257
mysql_keyring, 1262

plugin services, 1257
plugin table

system table, 1140
plugin uninstalling

Data Masking, 1753
Rewriter query rewrite plugin, 1209
Version Tokens, 1220

plugin-authentication-kerberos-client-mode option
mysql, 477
mysqldump, 545

plugin-dir option, 384
mysql, 477
mysqladmin, 512
mysqlbinlog, 714
mysqlcheck, 527
mysqldump, 545
mysqld_safe, 419
mysqlimport, 582
mysqlpump, 604
mysqlshow, 622
mysqlslap, 639
mysql_upgrade, 450

plugin-load option
mysqld, 854

plugin-load-add option
mysqld, 855

plugindir option

5726

mysql_config, 734
plugins

activating, 1195
clone, 1231
daemon_keyring_proxy_plugin, 1256
installing, 1195, 3092
new features, 31
security, 1431
server, 1194
uninstalling, 1195, 3093

PLUGINS
INFORMATION_SCHEMA table, 5044

plugin_dir system variable, 970
POINT data type, 2235
Point(), 2482
point-in-time recovery, 1810, 6384

InnoDB, 3530
using NDB Cluster replication, 4872

PointFromText()
removed features, 57

PointFromWKB()
removed features, 57

PointN()
removed features, 57

polltimeout option
ndb_import, 4552

PolyFromText()
removed features, 57

PolyFromWKB()
removed features, 57

POLYGON data type, 2235
Polygon(), 2482
PolygonFromText()

removed features, 57
PolygonFromWKB()

removed features, 57
port, 6384
port option, 385

mysql, 477
mysqladmin, 512
mysqlbinlog, 714
mysqlcheck, 528
mysqld, 856
mysqldump, 545
mysqld_safe, 419
mysqlimport, 582
mysqlpump, 604
mysqlshow, 622
mysqlslap, 639
mysql_config, 734
mysql_migrate_keyring, 696
mysql_secure_installation, 435
mysql_upgrade, 450
ndb_top, 4638

port system variable, 971
port-open-timeout option

mysqld, 857
portability, 1822

5727

types, 2274
PortNumber, 4264
PortNumberStats, 4268
ports, 253, 254, 275, 395, 714, 738, 1271, 1290, 1396, 1428, 5183, 5511
POSITION(), 2368
post-filtering

Performance Schema, 5136
post-query option

mysqlslap, 640
post-system option

mysqlslap, 640
POSTGRESQL

removed features, 56
PostgreSQL compatibility, 97
postinstall

multiple servers, 1266
postinstallation

setup and testing, 268
POW(), 2332
POWER(), 2332
pre-5.1 database name conversion

removed features, 58
pre-filtering

Performance Schema, 5136
pre-query option

mysqlslap, 640
pre-system option

mysqlslap, 640
precedence

command options, 369
operator, 2311

precision
arithmetic, 2642
fractional seconds, 2200, 2210
numeric, 2200

precision math, 2642
PreferIPVersion, 4445
preload_buffer_size system variable, 971
Prepare

thread command, 2021
PREPARE, 2977, 2980

XA transactions, 2926
prepared backup, 6384
prepared statement, 6384
prepared statements, 2977, 2980, 2982, 2982

repreparation, 1996
prepared_statements_instances table

performance_schema, 5281
Prepared_stmt_count status variable, 1081
preparing

thread state, 2025
preparing for alter table

thread state, 2025
PreSendChecksum, 4445, 4454
preserve-trailing-spaces option

ndb_restore, 4600
pretty option

ibd2sdi, 648

5728

primary key, 6385
constraint, 102
deleting, 2680

PRIMARY KEY, 2680, 2734
primary keys

and partitioning keys, 4961
primary passwords, 1371
PrimaryMGMNode, 4381
principal, 6385
print command

mysql, 488
print option

ndb_restore, 4600
print-data option

ndb_restore, 4600
print-defaults option, 378

myisamchk, 662
mysql, 477
mysqladmin, 512
mysqlbinlog, 714
mysqlcheck, 528
mysqld, 857
mysqldump, 549
mysqlimport, 582
mysqlpump, 605
mysqlshow, 622
mysqlslap, 640
mysql_migrate_keyring, 696
mysql_secure_installation, 435
mysql_upgrade, 450
ndbd, 4470
ndbinfo_select_all, 4477
ndbxfrm, 4653
ndb_blob_tool, 4500
ndb_config, 4511
ndb_delete_all, 4518
ndb_desc, 4528
ndb_drop_index, 4532
ndb_drop_table, 4536
ndb_import, 4552
ndb_index_stat, 4560
ndb_mgm, 4495
ndb_mgmd, 4488
ndb_move_data, 4567
ndb_perror, 4570
ndb_print_backup_file, 4574
ndb_restore, 4600
ndb_secretsfile_reader, 4615
ndb_select_all, 4621
ndb_select_count, 4626
ndb_show_tables, 4631
ndb_top, 4638
ndb_waiter, 4645

print-full-config option
ndb_mgmd, 4488

print-header-words option
ndb_print_backup_file, 4574

print-log option

5729

ndb_restore, 4601
print-meta option

ndb_restore, 4601
print-restored-rows option

ndb_print_backup_file, 4574
print-rows option

ndb_print_backup_file, 4574
print-rows-per-page option

ndb_print_backup_file, 4575
print-sql-log option

ndb_restore, 4601
print-table-metadata option

mysqlbinlog, 714
print_identified_with_as_hex system variable, 971
privilege

changes, 1362
privilege checks

effect on speed, 1893
privilege information

location, 1324
privilege restrictions

GRANT statement, 3061
partial revokes, 1356

privilege synchronization (NDB Cluster), 4723
privilege system, 1303
privileges

access, 1303
adding, 1342
ALL, 1309
ALL PRIVILEGES, 1309
ALTER, 1309
ALTER ROUTINE, 1309
and replication, 3869
APPLICATION_PASSWORD_ADMIN, 1315
AUDIT_ABORT_EXEMPT, 1315
AUDIT_ADMIN, 1315
AUTHENTICATION_POLICY_ADMIN, 1315
BACKUP_ADMIN, 1315
BINLOG_ADMIN, 1315
BINLOG_ENCRYPTION_ADMIN, 1315
checking, 1344
CLONE_ADMIN, 1316
CONNECTION_ADMIN, 1316
CREATE, 1309
CREATE ROLE, 1309
CREATE ROUTINE, 1309
CREATE TABLESPACE, 1309
CREATE TEMPORARY TABLES, 1309
CREATE USER, 1309
CREATE VIEW, 1309
default, 278
DEFINER, 3121, 4989
DELETE, 1310
deleting, 3049
display, 3120
DROP, 1310
DROP ROLE, 1310
dropping, 3049

5730

ENCRYPTION_KEY_ADMIN, 1316
EVENT, 1310
EXECUTE, 1310
FILE, 1310
FIREWALL_ADMIN, 1316
FIREWALL_EXEMPT, 1316
FIREWALL_USER, 1316
FLUSH_OPTIMIZER_COSTS, 1316
FLUSH_STATUS, 1316
FLUSH_TABLES, 1317
FLUSH_USER_RESOURCES, 1317
GRANT OPTION, 1310
granting, 3050
GROUP_REPLICATION_ADMIN, 1317
GROUP_REPLICATION_STREAM, 1317
INDEX, 1310
INNODB_REDO_LOG_ARCHIVE, 1317
INNODB_REDO_LOG_ENABLE, 1317
INSERT, 1311
INVOKER, 3121, 4989
LOCK TABLES, 1311
MASKING_DICTIONARIES_ADMIN, 1317
NDB_STORED_USER, 1317
PASSWORDLESS_USER_ADMIN, 1318
PERSIST_RO_VARIABLES_ADMIN, 1318
PROCESS, 1311
PROXY, 1311
REFERENCES, 1311
RELOAD, 1311
REPLICATION CLIENT, 1312
REPLICATION SLAVE, 1312
REPLICATION_APPLIER, 1318
REPLICATION_SLAVE_ADMIN, 1318
RESOURCE_GROUP_ADMIN, 1318
RESOURCE_GROUP_USER, 1319
revoking, 1344, 3064
ROLE_ADMIN, 1319
SELECT, 1312
SENSITIVE_VARIABLES_OBSERVER, 1319
SERVICE_CONNECTION_ADMIN, 1319
SESSION_VARIABLES_ADMIN, 1319
SET_USER_ID, 1319
SHOW DATABASES, 1312
SHOW VIEW, 1312
SHOW_ROUTINE, 1320
SHUTDOWN, 1312
SKIP_QUERY_REWRITE, 1320
SQL SECURITY, 4989
static versus dynamic, 1322
stored objects, 4989
SUPER, 1312
SYSTEM_USER, 1320, 1352
SYSTEM_VARIABLES_ADMIN, 1321
TABLE_ENCRYPTION_ADMIN, 1321
TELEMETRY_LOG_ADMIN, 1321
TEMPORARY tables, 1309, 2753, 3059
TP_CONNECTION_ADMIN, 1321
TRIGGER, 1314

5731

UPDATE, 1314
USAGE, 1314
VERSION_TOKEN_ADMIN, 1321
XA_RECOVER_ADMIN, 1322

problems
access denied errors, 5510
common errors, 5509
compiling MySQL server, 265
DATE columns, 5530
date values, 2212
installing on Solaris, 222
installing Perl, 283
lost connection errors, 5514
reporting, 1, 90
starting the server, 275
table locking, 2000
time zone, 5528

PROCEDURE ANALYSE()
removed features, 57

procedures
stored, 4969

process, 6385
process management (NDB Cluster), 4461
PROCESS privilege, 1311
processes

display, 3129
monitoring, 2018
ndbinfo table, 4805

Processing events
thread state, 2033

Processing events from schema table
thread state, 2033

Processlist
thread command, 2022

PROCESSLIST, 3129
INFORMATION_SCHEMA table, 5045
possible inconsistency with INFORMATION_SCHEMA tables, 3491

processlist
monitoring, 5312

processlist table
performance_schema, 5312

processlist view
sys schema, 5383

procs_priv table
system table, 1139, 1325

PROFILING
INFORMATION_SCHEMA table, 5047

profiling system variable, 972
profiling_history_size system variable, 972
program variables

setting, 378
program-development utilities, 367
programs

administrative, 366
client, 365
stored, 2983, 4967
utility, 366

progress-frequency option

5732

ndb_restore, 4601
promote-attributes option

ndb_move_data, 4567
ndb_restore, 4601

prompt command
mysql, 488

PROMPT command (NDB Cluster), 4656
prompt option

mysql, 477
prompts

meanings, 332
pronunciation

MySQL, 5
protocol option, 385

mysql, 478
mysqladmin, 512
mysqlbinlog, 715
mysqlcheck, 528
mysqldump, 546
mysqlimport, 583
mysqlpump, 605
mysqlshow, 622
mysqlslap, 640
mysql_secure_installation, 435
mysql_upgrade, 450

protocol_compression_algorithms system variable, 972
protocol_version system variable, 973
proxies_priv

grant table, 1389
proxies_priv table

system table, 279, 1139, 1325
proximity search, 2393
Proxy, 4445
PROXY privilege, 1311
proxy user mapping

LDAP authentication, 1469
proxy users, 1386

conflict with anonymous users, 1391
default proxy user, 1390
LDAP authentication, 1467
PAM authentication, 1450
PROXY privilege, 1389
server user mapping, 1392
system variables, 1393
Windows authentication, 1457

proxy_user system variable, 973
pseudo-record, 6385
pseudo_replica_mode system variable, 973
pseudo_slave_mode system variable, 974
pseudo_thread_id system variable, 975
ps_check_lost_instrumentation view

sys schema, 5385
PS_CURRENT_THREAD_ID() function, 2626
ps_is_account_enabled() function

sys schema, 5429
ps_is_consumer_enabled() function

sys schema, 5430
ps_is_instrument_default_enabled() function

5733

sys schema, 5430
ps_is_instrument_default_timed() function

sys schema, 5430
ps_is_thread_instrumented() function

sys schema, 5431
ps_setup_disable_background_threads() procedure

sys schema, 5410
ps_setup_disable_consumer() procedure

sys schema, 5410
ps_setup_disable_instrument() procedure

sys schema, 5411
ps_setup_disable_thread() procedure

sys schema, 5411
ps_setup_enable_background_threads() procedure

sys schema, 5412
ps_setup_enable_consumer() procedure

sys schema, 5412
ps_setup_enable_instrument() procedure

sys schema, 5412
ps_setup_enable_thread() procedure

sys schema, 5413
ps_setup_reload_saved() procedure

sys schema, 5413
ps_setup_reset_to_default() procedure

sys schema, 5414
ps_setup_save() procedure

sys schema, 5414
ps_setup_show_disabled() procedure

sys schema, 5415
ps_setup_show_disabled_consumers() procedure

sys schema, 5415
ps_setup_show_disabled_instruments() procedure

sys schema, 5416
ps_setup_show_enabled() procedure

sys schema, 5416
ps_setup_show_enabled_consumers() procedure

sys schema, 5417
ps_setup_show_enabled_instruments() procedure

sys schema, 5417
ps_statement_avg_latency_histogram() procedure

sys schema, 5417
ps_thread_account() function

sys schema, 5431
PS_THREAD_ID() function, 2626
ps_thread_id() function

sys schema, 5432
ps_thread_stack() function

sys schema, 5432
ps_thread_trx_info() function

sys schema, 5433
ps_trace_statement_digest() procedure

sys schema, 5418
ps_trace_thread() procedure

sys schema, 5419
ps_truncate_all_tables() procedure

sys schema, 5421
Pthreads, 6385
purge, 3316, 6385

5734

PURGE BINARY LOGS, 2931
purge buffering, 6385
purge configuration, 3316
purge lag, 6385
PURGE MASTER LOGS, 2931
purge scheduling, 3316
purge thread, 6385
Purging old relay logs

thread state, 2025
pushdown joins (NDB), 4401
Python, 5442, 6386

third-party driver, 5443
Python API, 6386

Q
Qcache_free_blocks

removed features, 56
Qcache_free_memory

removed features, 56
Qcache_inserts

removed features, 56, 56
Qcache_lowmem_prunes

removed features, 56
Qcache_not_cached

removed features, 56
Qcache_queries_in_cache

removed features, 56
Qcache_total_blocks

removed features, 56
QUARTER(), 2348
queries

entering, 330
estimating performance, 1957
examples, 352
speed of, 1822

Queries status variable, 1081
Query

thread command, 2022
query, 6386
query attributes, 2112
query cache

and ndbinfo database tables, 4742
removed features, 56

query cast injection
new features, 34

query end
thread state, 2025

query execution plan, 6386
query expansion, 2398
query option

mysqlslap, 641
ndb_config, 4508, 4508
ndb_index_stat, 4561

query rewrite plugins
ddl_rewriter, 1217
Rewriter, 1208

query-all option
ndb_config, 4508

5735

query_alloc_block_size system variable, 975
query_attributes command

mysql, 488
query_attributes component, 1193
query_cache_limit

removed features, 56
query_cache_min_res_unit

removed features, 56
query_cache_size

removed features, 56
query_cache_type

removed features, 56
query_cache_wlock_invalidate

removed features, 56
query_prealloc_size system variable, 976
questions, 503
Questions status variable, 1081
Queueing master event to the relay log

thread state, 2030
Queueing source event to the relay log

thread state, 2030
QUICK

DELETE modifier, 2812
quick option

myisamchk, 667
mysql, 478
mysqlcheck, 528
mysqldump, 568

quiesce, 6386
quiet option

ndb_print_file, 4577
Quit

thread command, 2022
quit command

mysql, 488
QUIT command (NDB Cluster), 4657
quotation marks

in strings, 2051
QUOTE(), 2051, 2368
quote-names option

mysqldump, 561
quote_identifier() function

sys schema, 5434
quoting, 2051

account names, 1334
column alias, 2062, 5532
host names in account names, 1334
schema objects, 3052
user names in account names, 1334

quoting binary data, 2051
quoting of identifiers, 2061

R
R-tree, 6386
RADIANS(), 2332
RAID, 6386
RAND(), 2333
random dive, 6386

5736

RANDOM_BYTES(), 2457
rand_seed1 system variable, 976
rand_seed2 system variable, 977
range join type

optimizer, 1946
range partitioning, 4904, 4911
range partitions

adding and dropping, 4929
managing, 4929

range_alloc_block_size system variable, 977
range_optimizer_max_mem_size system variable, 977
RANK(), 2615
raw backup, 6387
raw option

mysql, 478
mysqlbinlog, 715

raw partitions, 3235
rbr_exec_mode system variable, 978
READ COMMITTED, 6387

implementation in NDB Cluster, 4189
transaction isolation level, 3271

read conflict detection and resolution
in NDB Cluster Replication, 4892

read from standard in
innochecksum, 654

read phenomena, 6387
READ UNCOMMITTED, 6387

transaction isolation level, 3273
read view, 6387
read-ahead, 6387

linear, 3304
random, 3304

read-from-remote-master option
mysqlbinlog, 715

read-from-remote-server option
mysqlbinlog, 716

read-from-remote-source option
mysqlbinlog, 715

read-only database
ALTER DATABASE, 2659

read-only option
myisamchk, 665

read-only transaction, 6387
Reading event from the relay log

thread state, 2031
Reading master dump table data

thread state, 2033
READ_BACKUP, 2783
READ_BACKUP (NDB_TABLE)

NDB Cluster, 2784
read_buffer_size myisamchk variable, 663
read_buffer_size system variable, 978
read_firewall_groups() MySQL Enterprise Firewall function, 1724
read_firewall_group_allowlist() MySQL Enterprise Firewall function, 1723
read_firewall_users() MySQL Enterprise Firewall function, 1724
read_firewall_whitelist() MySQL Enterprise Firewall function, 1725
read_only system variable, 979
read_rnd_buffer_size system variable, 980

5737

REAL data type, 2204
RealtimeScheduler, 4339
REAL_AS_FLOAT SQL mode, 1098
rebuild-indexes option

ndb_restore, 4602
Rebuilding the index on master dump table

thread state, 2033
ReceiveBufferMemory, 4446
Receiving from client

thread state, 2025
reconfiguring, 265
reconnect option

mysql, 479
Reconnecting after a failed binlog dump request

thread state, 2030
Reconnecting after a failed master event read

thread state, 2030
Reconnecting after a failed source event read

thread state, 2030
reconnection

automatic, 5315
record lock, 6388
record-level locks

InnoDB, 3282
RECOVER

XA transactions, 2926
recover option

myisamchk, 667
recovery

from crash, 1813
incremental, 1810
InnoDB, 3530
point in time, 1810

RecoveryWork, 4299
redo, 6388
redo log, 3257, 3258, 3260, 6388
redo log archiving, 3260, 6388

new features, 32
RedoBuffer, 4326
RedoOverCommitCounter

data nodes, 4364
RedoOverCommitLimit

data nodes, 4365
reducing

data size, 1911
redundant row format, 3351, 6388
ref join type

optimizer, 1945
references, 2681
REFERENCES privilege, 1311
referential integrity, 3186, 6388
REFERENTIAL_CONSTRAINTS

INFORMATION_SCHEMA table, 5048
Refresh

thread command, 2022
ref_or_null, 1859
ref_or_null join type

optimizer, 1945

5738

REGEXP, 2378
REGEXP operator, 2378
REGEXP_INSTR(), 2379
REGEXP_LIKE(), 2379
REGEXP_REPLACE(), 2381
regexp_stack_limit system variable, 981
REGEXP_SUBSTR(), 2382
regexp_time_limit system variable, 981
Register Slave

thread command, 2022
Registering replica on source

thread state, 2030
Registering slave on master

thread state, 2030
regular account

account categories, 1352
regular expression syntax, 2378
regular expressions

in JSON schemas, 2561
new features, 30

regular session
session categories, 1354

rehash command
mysql, 488

rejects option
ndb_import, 4552

relational, 6388
relational databases

defined, 5
relative option

mysqladmin, 512
relay log (replication), 3799
relay-log-purge option

mysqld, 3686
relay-log-space-limit option

mysqld, 3686
relay_log system variable, 3700
relay_log_basename system variable, 3701
relay_log_index system variable, 3701
relay_log_info_file

deprecated features, 51
relay_log_info_file system variable, 3702
relay_log_info_repository system variable, 3702, 3799
relay_log_purge system variable, 3703
relay_log_recovery system variable, 3703
relay_log_space_limit system variable, 3704
release numbers, 107
RELEASE SAVEPOINT, 2915
releases

GA, 108
naming scheme, 108

RELEASE_ALL_LOCKS(), 2461
RELEASE_LOCK(), 2461
relevance, 6389
reload option

ndb_mgmd, 4488
RELOAD privilege, 1311
remap-column option

5739

ndb_restore, 4602
remote administration (NDB Cluster)

and security issues, 4839
remove action

MySQLInstallerConsole, 160
remove option

mysqld, 857
ndbd, 4470
ndbmtd, 4470
ndb_mgmd, 4489

removed features, 54
--bootstrap, 58
--des-key-file, 57
--fix-db-names, 58
--fix-table-names, 58
--ignore-db-dir, 56
--log-warnings, 56
--partition, 58
--secure-auth, 56
--skip-partition, 58
--ssl, 58
--ssl-verify-server-cert, 58
--temp-pool, 58
ALTER DATABASE, 58
ALTER TABLE ... UPGRADE PARTITIONING, 62
Area(), 57
AsBinary(), 57
AsText(), 57
AsWKB(), 57
AsWKT(), 57
Buffer(), 57
Centroid(), 57
Com_alter_db_upgrade, 58
Contains(), 57
ConvexHull(), 57
Crosses(), 57
datetime_format, 56
date_format, 56
DB2, 56
DECODE(), 57
DES_DECRYPT(), 57
DES_ENCRYPT(), 57
DES_KEY_FILE, 57
Dimension(), 57
DISABLE_SHARED, 62
Disjoint(), 57
Distance(), 57
DTrace, 61
embedded server library, 59
ENCODE(), 57
ENCRYPT(), 57
EndPoint(), 57
Envelope(), 57
Equals(), 57
error codes, 59
EXPLAIN EXTENDED, 57
EXPLAIN PARTITIONS, 57
ExteriorRing(), 57

5740

FILE_FORMAT, 61
FLUSH QUERY CACHE, 56
GeomCollFromText(), 57
GeomCollFromWKB(), 57
GeometryCollectionFromText(), 57
GeometryCollectionFromWKB(), 57
GeometryFromText(), 57
GeometryFromWKB(), 57
GeometryN(), 57
GeometryType(), 57
GeomFromText(), 57
GeomFromWKB(), 57
GLength(), 57
GLOBAL_STATUS, 59
GLOBAL_VARIABLES, 59
GRANT, 55
GROUP BY sorting, 57
have_crypt, 57
HAVE_CRYPT, 57
IDENTIFIED BY PASSWORD, 55
ignore_builtin_innodb, 58
ignore_db_dirs, 56
information_schema_stats, 54
InnoDB compressed temporary tables, 61
InnoDB remote tablespaces, 61
InnoDB shared tablespaces, 62
Innodb_available_undo_logs, 62
innodb_file_format, 61
innodb_file_format_check, 61
innodb_file_format_max, 61
innodb_large_prefix, 61
INNODB_LOCKS, 61
innodb_locks_unsafe_for_binlog, 54
INNODB_LOCK_WAITS, 61
innodb_support_xa, 61
INNODB_SYS_COLUMNS, 55
INNODB_SYS_DATAFILES, 55
INNODB_SYS_FIELDS, 55
INNODB_SYS_FOREIGN, 55
INNODB_SYS_FOREIGN_COLS, 55
INNODB_SYS_INDEXES, 55
INNODB_SYS_TABLES, 55
INNODB_SYS_TABLESPACES, 55
INNODB_SYS_TABLESTATS, 55
INNODB_SYS_VIRTUAL, 55
innodb_undo_logs, 62
innodb_undo_tablespaces, 62
INSTALL_SCRIPTDIR, 58
InteriorRingN(), 57
internal_tmp_disk_storage_engine, 62
Intersects(), 57
IsClosed(), 57
IsEmpty(), 57
IsSimple(), 57
JSON_APPEND(), 61
libmysqld, 59
LineFromText(), 57
LineFromWKB(), 57

5741

LineStringFromText(), 57
LineStringFromWKB(), 57
log_builtin_as_identified_by_password, 55
log_warnings, 56
MAXDB, 56
max_tmp_tables, 56
metadata_locks_cache_size, 56
metadata_locks_hash_instances, 56
MLineFromText(), 57
MLineFromWKB(), 57
MPointFromText(), 57
MPointFromWKB(), 57
MPolyFromText(), 57
MPolyFromWKB(), 57
MSSQL, 56
MultiLineStringFromText(), 57
MultiLineStringFromWKB(), 57
MultiPointFromText(), 57
MultiPointFromWKB(), 57
MultiPolygonFromText(), 57
MultiPolygonFromWKB(), 57
multi_range_count, 56
myisam_repair_threads, 62
MYSQL323, 56
MYSQL40, 56
mysql_install_db, 58
MYSQL_OPT_SSL_ENFORCE, 58
MYSQL_OPT_SSL_VERIFY_SERVER_CERT, 58
mysql_plugin, 59
MYSQL_SECURE_AUTH, 56
NO_FIELD_OPTIONS, 56
NO_KEY_OPTIONS, 56
NO_TABLE_OPTIONS, 56
NumGeometries(), 57
NumInteriorRings(), 57
NumPoints(), 57
old_passwords, 55
ORACLE, 56
Overlaps(), 57
PASSWORD(), 55
performance_timers, 59
perror, 62
PointFromText(), 57
PointFromWKB(), 57
PointN(), 57
PolyFromText(), 57
PolyFromWKB(), 57
PolygonFromText(), 57
PolygonFromWKB(), 57
POSTGRESQL, 56
pre-5.1 database name conversion, 58
PROCEDURE ANALYSE(), 57
Qcache_free_blocks, 56
Qcache_free_memory, 56
Qcache_inserts, 56, 56
Qcache_lowmem_prunes, 56
Qcache_not_cached, 56
Qcache_queries_in_cache, 56

5742

Qcache_total_blocks, 56
query cache, 56
query_cache_limit, 56
query_cache_min_res_unit, 56
query_cache_size, 56
query_cache_type, 56
query_cache_wlock_invalidate, 56
RESET QUERY CACHE, 56
resolveip, 59
resolve_stack_dump, 59
secure_auth, 56
SESSION_STATUS, 59
SESSION_VARIABLES, 59
setup_timers, 59
show_compatibility_56, 59
Slave_heartbeat_period, 59
Slave_last_heartbeat, 59
Slave_received_heartbeats, 59
Slave_retried_transactions, 59
Slave_running, 59
spatial functions, 57
SQL mode, 56
SQL_CACHE, 56
sql_log_bin, 56
SRID(), 57
StartPoint(), 57
sync_frm, 56
thread states, 56
time_format, 56
Touches(), 57
tx_isolation, 56
tx_read_only, 56
user variables, 62
Within(), 57
X(), 57
Y(), 57
\N as NULL, 57

Removing duplicates
thread state, 2025

removing tmp table
thread state, 2025

rename
thread state, 2025

rename database, 2806
rename result table

thread state, 2026
RENAME TABLE, 2805
RENAME USER statement, 3063
renaming user accounts, 3063
Reopen tables

thread state, 2026
repair

tables, 516
Repair by sorting

thread state, 2026
Repair done

thread state, 2026
repair option

5743

mysqlcheck, 528
repair options

myisamchk, 665
REPAIR TABLE

and partitioning, 4943
and replication, 3870

REPAIR TABLE statement, 3086
and replication, 3087
options, 3087
output, 3088
partitioning support, 3087
storage engine support, 3087

Repair with keycache
thread state, 2026

repairing
tables, 1815

REPEAT, 2989
labels, 2983

REPEAT(), 2368
REPEATABLE READ, 6389

transaction isolation level, 3270
repertoire, 6389

character set, 2121, 2155
string, 2121

REPLACE, 2851
LOAD DATA modifier, 2834

replace option
mysqldump, 551
mysqlimport, 583
mysqlpump, 605

REPLACE(), 2368
replica, 6389
Replica has read all relay log; waiting for more updates

thread state, 2032
replicas

statements, 2933
replicate-do-db option

mysqld, 3686
replicate-do-table option

mysqld, 3689
replicate-ignore-db option

mysqld, 3688
replicate-ignore-table option

mysqld, 3690
replicate-rewrite-db option

mysqld, 3691
replicate-same-server-id option

mysqld, 3692
replicate-wild-do-table option

mysqld, 3692
replicate-wild-ignore-table option

mysqld, 3693
replication, 3611, 6389

and AUTO_INCREMENT, 3855
and character sets, 3856
and CHECKSUM TABLE statement, 3856
and CREATE ... IF NOT EXISTS, 3856
and CREATE TABLE ... SELECT, 3857

5744

and DATA DIRECTORY, 3862
and DROP ... IF EXISTS, 3862
and errors on replica, 3872
and floating-point values, 3862
and FLUSH, 3863
and fractional seconds, 3865
and functions, 3863
and INDEX DIRECTORY, 3862
and invoked features, 3865
and LAST_INSERT_ID(), 3855
and LIMIT, 3867
and LOAD DATA, 3867
and max_allowed_packet, 3867
and MEMORY tables, 3868
and mysql (system) schema, 3869
and partial updates, 3872
and partitioned tables, 3869
and partitioning, 3873
and privileges, 3869
and query optimizer, 3869
and REPAIR TABLE statement, 3087, 3870
and reserved words, 3870
and scheduled events, 3865, 3865
and SQL mode, 3873
and stored routines, 3865
and temporary tables, 3873
and time zones, 3874
and TIMESTAMP, 3855
and transactions, 3874, 3877
and triggers, 3865, 3878
and TRUNCATE TABLE, 3879
and user name length, 3880
and variables, 3880
and views, 3881
attribute demotion, 3860
attribute promotion, 3860
BLACKHOLE, 3856
circular, 4846
crashes, 3871
delayed, 3852
group, 3889
in NDB Cluster, 4843

(see also NDB Cluster replication)
new features, 31
nondeterministic functions, 1870
relay log, 3799
replication metadata repositories, 3799
resource groups, 1128
row-based vs statement-based, 3787
safe and unsafe statements, 3791
semisynchronous, 3846
shutdown and restart, 3871, 3873
statements incompatible with STATEMENT format, 3787
thread states, 2029, 2031, 2032
timeouts, 3874
unexpected halt, 3832
with differing tables on source and replica, 3858

replication channel

5745

commands, 3794
compatibility, 3794
naming conventions, 3796
startup options, 3795

replication channel based filters, 3812
replication channels, 3793
REPLICATION CLIENT privilege, 1312
replication filtering options

and case sensitivity, 3807
replication formats

compared, 3787
replication functions, 2569

asynchronous_connection_failover_add_managed(), 2581
asynchronous_connection_failover_add_source(), 2582
asynchronous_connection_failover_delete_managed(), 2583
asynchronous_connection_failover_delete_source(), 2583

replication implementation, 3785
replication limitations, 3855
replication metadata repositories, 3799
replication mode, 3649

concepts, 3649
disabling online, 3653
enabling online, 3651
verifying anonymous transactions, 3654

replication options, 3855
replication server

statements, 2975
REPLICATION SLAVE privilege, 1312
replication source

thread states, 2029
replication sources

statements, 2930
replication technologies, 3891
replication, asynchronous (see NDB Cluster replication)
REPLICATION_APPLIER privilege, 1318
replication_applier_configuration

performance_schema, 5227
replication_applier_filters

performance_schema, 5234
replication_applier_global_filters

performance_schema, 5234
replication_applier_status

performance_schema, 5229
replication_applier_status_by_coordinator

performance_schema, 5229
replication_applier_status_by_worker

performance_schema, 5231
replication_asynchronous_connection_failover

performance_schema, 5235
replication_asynchronous_connection_failover_managed

performance_schema, 5236
replication_connection_configuration

performance_schema, 5237
replication_connection_status

performance_schema, 5240
replication_group_communication_information

performance_schema, 5242
replication_group_configuration_version

5746

performance_schema, 5243
replication_group_members

performance_schema, 5245
replication_group_member_actions

performance_schema, 5243
replication_group_member_stats

performance_schema, 5244
replication_optimize_for_static_plugin_config system variable, 3715
replication_sender_observe_commit_only system variable, 3716
REPLICATION_SLAVE_ADMIN privilege, 1318
replica_allow_batching, 4864
replica_allow_batching system variable, 4415
replica_checkpoint_group system variable, 3704
replica_checkpoint_period system variable, 3705
replica_compressed_protocol system variable, 3706
replica_exec_mode system variable, 3706
replica_load_tmpdir system variable, 3707
replica_max_allowed_packet system variable, 3708
replica_net_timeout system variable, 3708
Replica_open_temp_tables status variable, 1081
replica_parallel_type

deprecated features, 52
replica_parallel_type system variable, 3709
replica_parallel_workers

deprecated features, 53
replica_parallel_workers system variable, 3710
replica_pending_jobs_size_max system variable, 3711
replica_preserve_commit_order, 3712
Replica_rows_last_search_algorithm_used status variable, 1081
replica_skip_errors system variable, 3732
replica_sql_verify_checksum system variable, 3714
replica_transaction_retries system variable, 3714
replica_type_conversions system variable, 3715
REPORT command (NDB Cluster), 4657
reporting

bugs, 1, 90
errors, 90
problems, 1

report_host system variable, 3716
report_password system variable, 3717
report_port system variable, 3717
report_user system variable, 3717
REPRODUCIBLE_BUILD option

CMake, 254
Requesting binlog dump

thread state, 2030
REQUIRE option

ALTER USER, 3028
CREATE USER statement, 3042

require-row-format option
mysqlbinlog, 716

RequireEncryptedBackup, 4336
require_row_format system variable, 981
require_secure_transport system variable, 982
reserved user accounts, 1345
reserved words, 2073

and replication, 3870
ReservedConcurrentIndexOperations, 4287

5747

ReservedConcurrentOperations, 4287
ReservedConcurrentScans, 4288
ReservedConcurrentTransactions, 4288
ReservedFiredTriggers, 4288
ReservedLocalScans, 4289
ReservedTransactionBufferMemory, 4289
RESET MASTER, 2932
RESET MASTER statement, 3165
RESET PERSIST statement, 1035, 1055, 3166
RESET QUERY CACHE

removed features, 56
RESET REPLICA, 2966
RESET REPLICA ALL, 2966
RESET REPLICA statement, 3165
RESET SLAVE, 2968
RESET SLAVE ALL, 2968
Reset stmt

thread command, 2022
reset-replica.pl

NDB Cluster replication, 4869
resetconnection command

mysql, 488
resetting expired password, 1366
RESIGNAL, 3002
resolveip

removed features, 59
resolve_stack_dump

removed features, 59
resource group names

case sensitivity, 2065
resource groups, 1125

names, 2061
resource limits

user accounts, 947, 1394, 3029, 3043
resource management

new features, 12
resources

ndbinfo table, 4807
RESOURCE_GROUPS

INFORMATION_SCHEMA table, 5049
resource_groups table

data dictionary table, 1137, 3071
RESOURCE_GROUP_ADMIN privilege, 1318
Resource_group_supported status variable, 1082
RESOURCE_GROUP_USER privilege, 1319
RESTART command (NDB Cluster), 4658
RESTART statement, 3166
restarting

the server, 277
RestartOnErrorInsert, 4310
RestartSubscriberConnectTimeout, 4325
restart_info

ndbinfo table, 4808
restore, 6389
restore-data option

ndb_restore, 4604
restore-epoch option

ndb_restore, 4604

5748

restore-meta option
ndb_restore, 4604

restore-privilege-tables option
ndb_restore, 4604

restoring backups
in NDB Cluster, 4582

restoring from backup
in NDB Cluster replication, 4867

restoring NDB backups
between NDB release series, 4608
to earlier versions of NDB, 4608
to later versions of NDB, 4609

restricted keywords, 2073
restrictions

character sets, 2177
events, 4999
InnoDB, 3574
performance_schema database, 5355
pluggable authentication, 1381
resource groups, 1128
server-side cursors, 2992
signals, 3018
stored routines, 4999
subqueries, 2889
triggers, 4999
views, 5002
window functions, 2623
XA transactions, 2929

result-file option
mysqlbinlog, 716
mysqldump, 561
mysqlpump, 605

resultset_metadata system variable, 982
resume option

ndb_import, 4553
retries option

ndb_desc, 4528
retrieving

data from tables, 337
RETURN, 2989
return (\r), 2050, 2550, 2837
reverse option

mysqldumpslow, 733
REVERSE(), 2368
REVOKE statement, 1342, 3064
revoking

privileges, 3064
revoking roles, 3064
rewrite-database option

ndb_restore, 4604
rewrite-db option

mysqlbinlog, 717
Rewriter functions

flush_rewrite_rules(), 1216
load_rewrite_rules(), 1216

Rewriter query rewrite plugin, 1208
installing, 1209
uninstalling, 1209

5749

rewriter_enabled system variable, 1216
rewriter_enabled_for_threads_without_privilege_checks, 1216
Rewriter_number_loaded_rules status variable, 1217
Rewriter_number_reloads status variable, 1217
Rewriter_number_rewritten_queries status variable, 1217
Rewriter_reload_error status variable, 1217
rewriter_verbose system variable, 1217
RIGHT JOIN, 1848, 2863
RIGHT OUTER JOIN, 2863
RIGHT(), 2369
RLIKE, 2378
role names, 1336
roles, 1345

assigning, 3070
creating, 3035
default, 3067
dropping, 3048
granting, 3050
revoking, 3064
stored programs, 1350
views, 1350

ROLES_GRAPHML(), 2470
ROLE_ADMIN privilege, 1319
ROLE_COLUMN_GRANTS

INFORMATION_SCHEMA table, 5049
role_edges table

system table, 1139, 1325
ROLE_ROUTINE_GRANTS

INFORMATION_SCHEMA table, 5050
ROLE_TABLE_GRANTS

INFORMATION_SCHEMA table, 5051
ROLLBACK, 2911

XA transactions, 2926
rollback, 6390
rollback segment, 3243, 3247, 6390
ROLLBACK TO SAVEPOINT, 2915
Rolling back

thread state, 2026
rolling restart (NDB Cluster), 4692
ROLLUP, 2596
root password, 279
root user, 1290

password resetting, 5522
ROUND(), 2334
rounding, 2642
rounding errors, 2202
routines

stored, 4967, 4969
ROUTINES

INFORMATION_SCHEMA table, 5052
routines option

mysqldump, 564
mysqlpump, 606

routines table
data dictionary table, 1137

ROW, 2878
row, 6390
row constructors, 2878

5750

optimizations, 1872
row format, 6390
row lock, 6390
row size

maximum, 1921
row subqueries, 2878
row-based replication, 6390

advantages, 3788
disadvantages, 3789

row-level locking, 1998, 6390
rowbatch option

ndb_import, 4553
rowbytes option

ndb_import, 4553
rowid option

ndb_select_all, 4621
rowid-file option

ndb_print_backup_file, 4575
rows

counting, 346
deleting, 5533
matching problems, 5533
selecting, 338
sorting, 340

rows option
ndb_config, 4509

ROW_COUNT(), 2471
ROW_FORMAT

COMPACT, 3352
COMPRESSED, 3334, 3354
DYNAMIC, 3353
REDUNDANT, 3351

ROW_NUMBER(), 2615
RPAD(), 2369
rpl_read_size system variable, 3718
Rpl_semi_sync_master_clients status variable, 1082
rpl_semi_sync_master_enabled system variable, 3677
Rpl_semi_sync_master_net_avg_wait_time status variable, 1082
Rpl_semi_sync_master_net_waits status variable, 1082
Rpl_semi_sync_master_net_wait_time status variable, 1082
Rpl_semi_sync_master_no_times status variable, 1082
Rpl_semi_sync_master_no_tx status variable, 1083
Rpl_semi_sync_master_status status variable, 1083
Rpl_semi_sync_master_timefunc_failures status variable, 1083
rpl_semi_sync_master_timeout system variable, 3677
rpl_semi_sync_master_trace_level system variable, 3678
Rpl_semi_sync_master_tx_avg_wait_time status variable, 1083
Rpl_semi_sync_master_tx_waits status variable, 1083
Rpl_semi_sync_master_tx_wait_time status variable, 1083
rpl_semi_sync_master_wait_for_slave_count system variable, 3678
rpl_semi_sync_master_wait_no_slave system variable, 3679
rpl_semi_sync_master_wait_point system variable, 3679
Rpl_semi_sync_master_wait_pos_backtraverse status variable, 1083
Rpl_semi_sync_master_wait_sessions status variable, 1084
Rpl_semi_sync_master_yes_tx status variable, 1084
rpl_semi_sync_replica_enabled system variable, 3718
Rpl_semi_sync_replica_status status variable, 1086
rpl_semi_sync_replica_trace_level system variable, 3719

5751

rpl_semi_sync_slave_enabled system variable, 3719
Rpl_semi_sync_slave_status status variable, 1086
rpl_semi_sync_slave_trace_level system variable, 3720
Rpl_semi_sync_source_clients status variable, 1084
rpl_semi_sync_source_enabled system variable, 3680
Rpl_semi_sync_source_net_avg_wait_time status variable, 1084
Rpl_semi_sync_source_net_waits status variable, 1084
Rpl_semi_sync_source_net_wait_time status variable, 1084
Rpl_semi_sync_source_no_times status variable, 1085
Rpl_semi_sync_source_no_tx status variable, 1085
Rpl_semi_sync_source_status status variable, 1085
Rpl_semi_sync_source_timefunc_failures status variable, 1085
rpl_semi_sync_source_timeout system variable, 3681
rpl_semi_sync_source_trace_level system variable, 3681
Rpl_semi_sync_source_tx_avg_wait_time status variable, 1085
Rpl_semi_sync_source_tx_waits status variable, 1086
Rpl_semi_sync_source_tx_wait_time status variable, 1085
rpl_semi_sync_source_wait_for_replica_count system variable, 3682
rpl_semi_sync_source_wait_no_replica system variable, 3683
rpl_semi_sync_source_wait_point system variable, 3683
Rpl_semi_sync_source_wait_pos_backtraverse status variable, 1086
Rpl_semi_sync_source_wait_sessions status variable, 1086
Rpl_semi_sync_source_yes_tx status variable, 1086
rpl_stop_replica_timeout system variable, 3720
rpl_stop_slave_timeout system variable, 3721
RPM file, 191, 196
RPM Package Manager, 196
Rsa_public_key status variable, 1087
RTRIM(), 2369
Ruby, 6390
Ruby API, 5443, 6391
running

ANSI mode, 95
batch mode, 351
multiple servers, 1266
queries, 330

running CMake after prior invocation, 229, 265
rw-lock, 6391
rwlock_instances table

performance_schema, 5182

S
safe statement (replication)

defined, 3791
safe-recover option

myisamchk, 667
safe-updates mode, 498
safe-updates option

mysql, 479, 498
safe-user-create option

mysqld, 857
SafeNet KeySecure Applicance

keyring_okv keyring plugin, 1556
Sakila, 8
same value wins (conflict resolution), 4883
sampling

statement, 5283
sandbox mode

5752

for expired-password accounts, 1375
SASL, 3544

authentication, 1458
SAVEPOINT, 2915
savepoint, 6391
Saving state

thread state, 2026
scalability, 6391
Scalable Coherent Interface (NDB Cluster) (OBSOLETE), 4461
scalar

JSON, 2253
scale

arithmetic, 2642
numeric, 2200

scale out, 6391
scale up, 6391
scheduler component, 1193
SchedulerExecutionTimer, 4339
SchedulerResponsiveness, 4340
SchedulerSpinTimer, 4340
schema, 6392

altering, 2658
creating, 2694
deleting, 2799

SCHEMA Events (NDB Cluster), 4686
SCHEMA(), 2471
SCHEMATA

INFORMATION_SCHEMA table, 5054
schemata table

data dictionary table, 1137
SCHEMATA_EXTENSIONS

INFORMATION_SCHEMA table, 2659, 5055
schema_auto_increment_columns view

sys schema, 5385
schema_definition_cache system variable, 983
schema_index_statistics view

sys schema, 5386
schema_object_overview view

sys schema, 5387
SCHEMA_PRIVILEGES

INFORMATION_SCHEMA table, 5056
schema_redundant_indexes view

sys schema, 5387
schema_tables_with_full_table_scans view

sys schema, 5393
schema_table_lock_waits view

sys schema, 5389
schema_table_statistics view

sys schema, 5390
schema_table_statistics_with_buffer view

sys schema, 5391
schema_unused_indexes view

sys schema, 5393
SCI (NDB Cluster) (OBSOLETE), 4461
script files, 351
scripts, 413, 423

SQL, 454
SDI, 644, 2817, 6392, 6392

5753

search index, 6392
searching

and case sensitivity, 5529
full-text, 2388
MySQL Web pages, 90
two keys, 357

Searching rows for update
thread state, 2026

SECOND(), 2348
secondary index, 6392

InnoDB, 3226
secondary passwords, 1371
secondary_engine_cost_threshold system variable, 983
Secondary_engine_execution_count status variable, 1087
secure connections, 1402

command options, 386
secure_auth

removed features, 56
secure_file_priv system variable, 983
securing an NDB Cluster, 4841
security

against attackers, 1295
and malicious SQL statements, 4840
and NDB utilities, 4842
components, 1431
for the InnoDB memcached interface, 3544
new features, 9
plugins, 1431

security system, 1303
SEC_TO_TIME(), 2349
segment, 6392
SELECT

INTO, 2860
LIMIT, 2854
optimizing, 1940, 3168

SELECT INTO TABLE, 98
SELECT privilege, 1312
select-limit option

mysql, 479
selecting

databases, 334
selectivity, 6392
Select_full_join status variable, 1087
Select_full_range_join status variable, 1087
select_into_buffer_size, 984
select_into_disk_sync, 985
select_into_disk_sync_delay, 985
Select_range status variable, 1087
Select_range_check status variable, 1087
Select_scan status variable, 1087
SELinux, 1786

Document Store TCP port context, 1790
error log file context, 1788
file context, 1787
Group Replication TCP port context, 1789
LDAP authentication, 1463
mode, 1787
MySQL data directory context, 1788

5754

MySQL feature TCP port context, 1789
MySQL Router TCP port context, 1790
MySQL Server policies, 1787
mysqld TCP port context, 1789
PID file context, 1788
secure_file_priv directory context, 1788
status, 1786
TCP port context, 1789
troubleshooting, 1790
Unix domain file context, 1788

semi-consistent read, 6393
semijoins, 1874
semisynchronous replication, 3846

configuration, 3848
configuring, 3850
installation, 3848
monitoring, 3851

SendBufferMemory, 4446, 4454
Sending binlog event to replica

thread state, 2029
Sending binlog event to slave

thread state, 2029
Sending to client

thread state, 2026
SendSignalId, 4447, 4454
sensible JSON values, 2256
SENSITIVE_VARIABLES_OBSERVER privilege, 1319
SEQUENCE, 358
sequence emulation, 2470
sequences, 358
SERIAL, 2200, 2202
SERIAL DEFAULT VALUE, 2266
SERIALIZABLE, 6393

transaction isolation level, 3273
serialized dictionary information (see SDI)
serialized dictionary information (SDI), 6393
server, 6393

connecting, 329, 395
debugging, 1273
disconnecting, 329
logs, 1141
restart, 277
shutdown, 277
signal handling, 741
starting, 269
starting and stopping, 280
starting problems, 275

server administration, 500
server configuration, 747
server connections

command options, 382
server plugins, 1194
server variables, 3151 (see system variables)

Group Replication, 4009
server-id option

mysqlbinlog, 717
server-id-bits option

mysqlbinlog, 717

5755

server-public-key-path option, 388
mysql, 480
mysqladmin, 513
mysqlbinlog, 718
mysqlcheck, 529
mysqldump, 546
mysqlimport, 583
mysqlpump, 606
mysqlshow, 623
mysqlslap, 641
mysql_migrate_keyring, 696
mysql_upgrade, 450

server-side cursors
restrictions, 2992

server-side prepared statement, 6393
ServerPort, 4273
servers

multiple, 1266
servers table

system table, 1141
server_cost

system table, 1986
server_cost table

system table, 1141
server_id system variable, 3662
server_id_bits system variable, 4416, 4416
server_locks

ndbinfo table, 4811
server_operations

ndbinfo table, 4812
server_transactions

ndbinfo table, 4814
server_uuid system variable

mysqld, 3662
service principal name, 6393
service ticket, 6393
service-startup-timeout option

mysql.server, 423
services

for plugins, 1257
SERVICE_CONNECTION_ADMIN privilege, 1319
service_get_read_locks() function

locking service, 1262
service_get_write_locks() function

locking service, 1262
service_release_locks() function

locking service, 1262
servlet, 6393
SESSION

SET statement, 3095
session categories, 1354
session state

change tracking, 1130
session state information, 986, 986, 987, 988
session temporary tablespace, 6394
session track gtids, 986
session trackers

SESSION_TRACK_GTIDS, 1132

5756

SESSION_TRACK_SCHEMA, 1132
SESSION_TRACK_STATE_CHANGE, 1132
SESSION_TRACK_SYSTEM_VARIABLES, 1132
SESSION_TRACK_TRANSACTION_CHARACTERISTICS, 1132
SESSION_TRACK_TRANSACTION_STATE, 1132

session variables
and replication, 3880

session view
sys schema, 5394

session_account_connect_attrs table
performance_schema, 5221

session_connect_attrs table
performance_schema, 5222

session_ssl_status view
sys schema, 5394

SESSION_STATUS
removed features, 59

SESSION_TRACK_GTIDS session tracker, 1132
session_track_gtids system variable, 986, 1131
SESSION_TRACK_SCHEMA session tracker, 1132
session_track_schema system variable, 986, 1131
SESSION_TRACK_STATE_CHANGE session tracker, 1132
session_track_state_change system variable, 987, 1131
SESSION_TRACK_SYSTEM_VARIABLES session tracker, 1132
session_track_system_variables system variable, 988, 1131
SESSION_TRACK_TRANSACTION_CHARACTERISTICS session tracker, 1132
session_track_transaction_info system variable, 988
SESSION_TRACK_TRANSACTION_STATE session tracker, 1132
SESSION_USER(), 2472
SESSION_VARIABLES

removed features, 59
SESSION_VARIABLES_ADMIN privilege, 1319
SET

CHARACTER SET, 2134
NAMES, 2134
size, 2273

set action
MySQLInstallerConsole, 160

SET CHARACTER SET statement, 3099
SET CHARSET statement, 3100
SET data type, 2224, 2231
SET DEFAULT ROLE statement, 3067
SET GLOBAL sql_slave_skip_counter, 3784
SET GLOBAL statement, 1035
SET NAMES, 2140
SET NAMES statement, 3100
set operations

SQL, 2869
Set option

thread command, 2022
SET PASSWORD statement, 3068
SET PERSIST statement, 1035
SET PERSIST_ONLY statement, 1035
SET RESOURCE GROUP statement, 3073
SET ROLE statement, 3070
SET SESSION statement, 1035
SET sql_log_bin, 2933
SET statement

5757

assignment operator, 2321
CHARACTER SET, 3100
CHARSET, 3100
NAMES, 3100
variable assignment, 1055, 3095

SET TRANSACTION, 2922
set-auto-increment[option

myisamchk, 668
set-charset option

mysqlbinlog, 718
mysqldump, 553
mysqlpump, 606

set-collation option
myisamchk, 667

set-gtid-purged option
mysqldump, 557
mysqlpump, 606

setting
passwords, 1363

setting passwords, 3068
setting program variables, 379
setup

postinstallation, 268
thread state, 2026

setup_actors table
performance_schema, 5171

setup_consumers table
performance_schema, 5172

setup_instruments table
performance_schema, 5173

setup_objects table
performance_schema, 5177

setup_threads table
performance_schema, 5178

setup_timers
removed features, 59

set_firewall_group_mode() MySQL Enterprise Firewall function, 1724
set_firewall_mode() MySQL Enterprise Firewall function, 1725
SET_USER_ID privilege, 1319

orphan stored objects, 4990
stored object creation, 4990

SET_VAR optimizer hint, 1979
SFA (see multifactor authentication)
SHA(), 2457
SHA1(), 2457
SHA2(), 2457
sha256_password

deprecated features, 50
sha256_password authentication plugin, 1438
sha256_password_auto_generate_rsa_keys system variable, 989
sha256_password_private_key_path system variable, 990
sha256_password_proxy_users system variable, 990, 1392
sha256_password_public_key_path system variable, 990
sha2_cache_cleaner audit plugin, 1437
shared lock, 3266, 6394
shared memory transporter (see NDB Cluster)
shared tablespace, 6394
shared-memory-base-name option, 386

5758

mysql, 480
mysqladmin, 513
mysqlbinlog, 718
mysqlcheck, 529
mysqldump, 569
mysqlimport, 584
mysqlshow, 623
mysqlslap, 641
mysql_upgrade, 451

SharedGlobalMemory, 4357
shared_memory system variable, 991
shared_memory_base_name system variable, 991
sharp checkpoint, 6394
shell syntax, 4
ShmKey, 4455
ShmSize, 4455
ShmSpinTime, 4455
short-form option

mysqlbinlog, 718
SHOW

in NDB Cluster management client, 4231
SHOW BINARY LOGS statement, 3100, 3101
SHOW BINLOG EVENTS statement, 3100, 3102
SHOW CHARACTER SET statement, 3100, 3102
SHOW COLLATION statement, 3100, 3103
SHOW COLUMNS statement, 3100, 3104
SHOW command (NDB Cluster), 4658
SHOW CREATE DATABASE statement, 3100, 3106
SHOW CREATE EVENT statement, 3100
SHOW CREATE FUNCTION statement, 3100, 3107
SHOW CREATE PROCEDURE statement, 3100, 3107
SHOW CREATE SCHEMA statement, 3100, 3106
SHOW CREATE TABLE statement, 3100, 3108
SHOW CREATE TRIGGER statement, 3100, 3109
SHOW CREATE USER statement, 3110
SHOW CREATE VIEW statement, 3100, 3110
SHOW DATABASES privilege, 1312
SHOW DATABASES statement, 3100, 3111
SHOW ENGINE

and NDB Cluster, 4829
SHOW ENGINE INNODB STATUS statement, 3112
SHOW ENGINE NDB STATUS, 4829
SHOW ENGINE NDBCLUSTER STATUS, 4829
SHOW ENGINE statement, 3100, 3112
SHOW ENGINES

and NDB Cluster, 4829
SHOW ENGINES statement, 3100, 3115
SHOW ERRORS statement, 3100, 3117
SHOW EVENTS statement, 3100, 3118
SHOW extensions, 5119
SHOW FIELDS statement, 3100, 3104
SHOW FUNCTION CODE statement, 3100, 3120
SHOW FUNCTION STATUS statement, 3100, 3120
SHOW GRANTS statement, 3100, 3120
SHOW INDEX statement, 3100, 3123
SHOW KEYS statement, 3100, 3123
SHOW MASTER LOGS statement, 3100, 3101
SHOW MASTER STATUS statement, 3100, 3125

5759

SHOW OPEN TABLES statement, 3100, 3125
show option

my_print_defaults, 736
SHOW PLUGINS statement, 3100, 3126
SHOW PRIVILEGES statement, 3100, 3127
SHOW PROCEDURE CODE statement, 3100, 3127
SHOW PROCEDURE STATUS statement, 3100, 3128
SHOW PROCESSLIST statement, 3100, 3129
SHOW PROFILE statement, 3100, 3131
SHOW PROFILES statement, 3100, 3131, 3134
SHOW RELAYLOG EVENTS statement, 3100, 3134
SHOW REPLICA STATUS statement, 3100, 3136
SHOW REPLICAS statement, 3100, 3135
SHOW SCHEDULER STATUS, 4981
SHOW SCHEMAS statement, 3111
SHOW SLAVE HOSTS | SHOW REPLICAS statement, 3136
SHOW SLAVE | REPLICA STATUS statement, 3144
SHOW STATUS

and NDB Cluster, 4832
SHOW STATUS statement, 3100, 3145
SHOW STORAGE ENGINES statement, 3115
SHOW TABLE STATUS statement, 3100, 3146
SHOW TABLES statement, 3100, 3149
SHOW TRIGGERS statement, 3100, 3149
SHOW VARIABLES

and NDB Cluster, 4830
SHOW VARIABLES statement, 3100, 3151
SHOW VIEW privilege, 1312
SHOW WARNINGS statement, 3100, 3153
SHOW with WHERE, 5006, 5119
show-create-skip-secondary-engine option

mysqldump, 561
show-ignored-rows option

ndb_print_backup_file, 4575
show-replica-auth-info option

mysqld, 3672
show-slave-auth-info option

mysqld, 3672
show-table-type option

mysqlshow, 623
show-temp-status option

ndb_show_tables, 4631
show-warnings option

mysql, 480
mysqladmin, 513

showing
database information, 613

show_compatibility_56
removed features, 59

show_create_table_skip_secondary_engine system variable, 991
show_create_table_verbosity system variable, 992
show_gipk_in_create_table_and_information_schema system variable, 992
show_old_temporals system variable, 993
SHOW_ROUTINE privilege, 1320
SHOW_SUPPRESSED_COMPILER_WARNINGS option

CMake, 254
shutdown, 6394

server, 1134

5760

Shutdown
thread command, 2022

SHUTDOWN command (NDB Cluster), 4659
SHUTDOWN privilege, 1312
SHUTDOWN statement, 3168
shutdown-timeout option

mysqladmin, 513
shutting down

the server, 277
Shutting down

thread state, 2033
SIGHUP signal

log maintenance, 1188
server response, 741, 3158

SIGINT signal
client response, 742
mysql client, 480
server response, 741, 1276

sigint-ignore option
mysql, 480

SIGN(), 2335
SIGNAL, 3007
signal handling, 740
signals

client response, 742
restrictions, 3018
server response, 741

SigNum, 4456
SIGPIPE signal

client response, 742
SIGTERM signal

server response, 741, 3168
SIGUSR1 signal

log maintenance, 1188
server response, 741, 3158

silent column changes, 2767
silent option

myisamchk, 662
myisampack, 678
mysql, 480
mysqladmin, 513
mysqlcheck, 529
mysqld_multi, 426
mysqlimport, 584
mysqlslap, 641
ndb_perror, 4570
perror, 737

SIN(), 2335
single quote (\'), 2050
single user mode (NDB Cluster), 4656, 4694

and ndb_restore, 4582
single-factor authentication (see multifactor authentication)
single-transaction option

mysqldump, 570
mysqlpump, 607

single-user option
ndb_waiter, 4645

SINGLEUSER Events (NDB Cluster), 4687

5761

size of tables, 1920
sizes

display, 2200
SKIP LOCKED, 2859
--skip option prefix, 378
skip-admin-ssl option

mysqld, 841
skip-broken-objects option

ndb_restore, 4605
skip-column-names option

mysql, 481
skip-comments option

mysqldump, 552
skip-config-file option

ndb_mgmd, 4489
skip-data option

ibd2sdi, 646
skip-database option

mysqlcheck, 529
skip-definer option

mysqlpump, 607
skip-dump-rows option

mysqlpump, 608
skip-generated-invisible-primary-key option

mysqldump, 565
mysqlpump, 608

skip-grant-tables option
mysqld, 857

skip-gtids option
mysqlbinlog, 718

skip-host-cache option
mysqld, 858

skip-innodb option
mysqld, 859, 3400

skip-kill-mysqld option
mysqld_safe, 419

skip-line-numbers option
mysql, 481

skip-ndbcluster option
mysqld, 4394

skip-new option
mysqld, 859

skip-nodegroup option
ndb_error_reporter, 4538

skip-opt option
mysqldump, 568

skip-replica-start option
mysqld, 3694

skip-show-database option
mysqld, 859

skip-slave-start option
mysqld, 3695

skip-ssl option
mysqld, 861

skip-stack-trace option
mysqld, 859

skip-symbolic-links option
mysqld, 862

5762

skip-sys-schema option
mysql_upgrade, 451

skip-syslog option
mysqld_safe, 419

skip-system-command option
mysql, 481

skip-table-check option
ndb_restore, 4605

skip-unknown-objects option
ndb_restore, 4606

skip_external_locking system variable, 993
skip_name_resolve system variable, 994
skip_networking system variable, 994
SKIP_QUERY_REWRITE privilege, 1320
skip_replica_start system variable, 3722
SKIP_SCAN, 1976
skip_show_database system variable, 995
skip_slave_start system variable, 3722
Slave has read all relay log; waiting for more updates

thread state, 2032
slave-skip-errors option

mysqld, 3695
slave-sql-verify-checksum option

mysqld, 3696
slave_allow_batching, 4864
slave_allow_batching system variable, 4417
slave_checkpoint_group system variable, 3722
slave_checkpoint_period system variable, 3723
slave_compressed_protocol

deprecated features, 51
slave_compressed_protocol system variable, 3724
slave_exec_mode system variable, 3724
Slave_heartbeat_period

removed features, 59
Slave_last_heartbeat

removed features, 59
slave_load_tmpdir system variable, 3725
slave_master_info table

system table, 1140
slave_max_allowed_packet system variable, 3726
slave_net_timeout system variable, 3726
Slave_open_temp_tables status variable, 1087
slave_parallel_type system variable, 3727
slave_parallel_workers system variable, 3728
slave_pending_jobs_size_max system variable, 3729
slave_preserve_commit_order, 3730
Slave_received_heartbeats

removed features, 59
slave_relay_log_info table

system table, 1140
Slave_retried_transactions

removed features, 59
Slave_rows_last_search_algorithm_used status variable, 1087
slave_rows_search_algorithms system variable, 3731
Slave_running

removed features, 59
slave_skip_errors system variable, 3732
slave_sql_verify_checksum system variable, 3733

5763

slave_transaction_retries system variable, 3733
slave_type_conversions system variable, 3734
slave_worker_info table

system table, 1140
Sleep

thread command, 2022
sleep option

mysqladmin, 514
SLEEP(), 2639
sleep-time option

ndb_top, 4638
slice-id option

ndb_restore, 4606
slow queries, 503
slow query log, 1183, 6394
slow shutdown, 6394
slow-start-timeout option

mysqld, 859
Slow_launch_threads status variable, 1088
slow_launch_time system variable, 995
slow_log table

system table, 1140
Slow_queries status variable, 1088
slow_query_log system variable, 995
slow_query_log_file system variable, 996
SMALLINT data type, 2202
snapshot, 6394
SNAPSHOTEND (START BACKUP command), 4708
SNAPSHOTSTART (START BACKUP command), 4708
socket option, 386

mysql, 481
mysqladmin, 514
mysqlbinlog, 719
mysqlcheck, 529
mysqld, 860
mysqldump, 546
mysqld_safe, 419
mysqlimport, 584
mysqlpump, 608
mysqlshow, 623
mysqlslap, 642
mysql_config, 735
mysql_migrate_keyring, 697
mysql_secure_installation, 435
mysql_upgrade, 451
ndb_top, 4638

socket system variable, 996
socket_instances table

performance_schema, 5183
socket_summary_by_event_name table

performance_schema, 5295
socket_summary_by_instance table

performance_schema, 5295
Solaris

installation, 222
Solaris installation problems, 222
Solaris troubleshooting, 266
Solaris x86_64 issues, 1929

5764

SOME, 2877
sort buffer, 6394
sort option

mysqldumpslow, 733
ndb_top, 4639

sort-index option
myisamchk, 669

sort-records option
myisamchk, 669

sort-recover option
myisamchk, 667

sorting
data, 340
grant tables, 1339, 1341
table rows, 340

Sorting for group
thread state, 2026

Sorting for order
thread state, 2026

Sorting index
thread state, 2026

Sorting result
thread state, 2027

sort_buffer_size myisamchk variable, 663
sort_buffer_size system variable, 996
sort_key_blocks myisamchk variable, 663
Sort_merge_passes status variable, 1088
Sort_range status variable, 1088
Sort_rows status variable, 1088
Sort_scan status variable, 1088
SOUNDEX(), 2369
SOUNDS LIKE, 2369
source, 6394
source (mysql client command), 352, 495
source command

mysql, 489
source distribution

installing, 224
Source has sent all binlog to replica; waiting for more updates

thread state, 2029
source-data option

mysqldump, 556
source-keyring option

mysql_migrate_keyring, 697
source-keyring-configuration-dir option

mysql_migrate_keyring, 697
SOURCE_POS_WAIT(), 2585
source_verify_checksum system variable, 3768
space ID, 6395
SPACE(), 2370
sparse file, 6395
spatial data type

SRID attribute, 2235
spatial data types, 2233

storage requirements, 2273
spatial extensions in MySQL, 2233
spatial functions, 2473

removed features, 57

5765

SPATIAL index
InnoDB predicate locks, 3270

SPATIAL indexes
optimization, 1896

spatial queries
optimization, 1898

spatial values
syntactically well-formed, 2244

spatial window functions, 2517
speed

increasing with replication, 3611
inserting, 1892
of queries, 1822

spin, 6395
spin lock polling, 3315
SpinMethod, 4340
sporadic-binlog-dump-fail option

mysqld, 3744
Spring, 6395
sp_firewall_group_delist() MySQL Enterprise Firewall stored procedure, 1719
sp_firewall_group_enlist() MySQL Enterprise Firewall stored procedure, 1720
sp_migrate_firewall_user_to_group() MySQL Enterprise Firewall stored procedure, 1722
sp_reload_firewall_group_rules() MySQL Enterprise Firewall stored procedure, 1720
sp_reload_firewall_rules() MySQL Enterprise Firewall stored procedure, 1721
sp_set_firewall_group_mode() MySQL Enterprise Firewall stored procedure, 1720
sp_set_firewall_group_mode_and_user() MySQL Enterprise Firewall stored procedure, 1721
sp_set_firewall_mode() MySQL Enterprise Firewall stored procedure, 1722
SQL, 6395

defined, 5
SQL injection, 1301, 1699, 2438, 2977
SQL mode, 1092

ALLOW_INVALID_DATES, 1093
and partitioning, 3873, 4955
and replication, 3873
ANSI, 1093, 1098
ANSI_QUOTES, 1094
ERROR_FOR_DIVISION_BY_ZERO, 1094
HIGH_NOT_PRECEDENCE, 1094
IGNORE_SPACE, 1094
NO_AUTO_VALUE_ON_ZERO, 1095
NO_BACKSLASH_ESCAPES, 1095
NO_DIR_IN_CREATE, 1095
NO_ENGINE_SUBSTITUTION, 1095
NO_UNSIGNED_SUBTRACTION, 1095
NO_ZERO_DATE, 1096
NO_ZERO_IN_DATE, 1097
ONLY_FULL_GROUP_BY, 1097, 2602
PAD_CHAR_TO_FULL_LENGTH, 1097
PIPES_AS_CONCAT, 1098
REAL_AS_FLOAT, 1098
removed features, 56
strict, 1093
STRICT_ALL_TABLES, 1098
STRICT_TRANS_TABLES, 1093, 1098
TIME_TRUNCATE_FRACTIONAL, 1098
TRADITIONAL, 1093, 1099

SQL node (NDB Cluster)
defined, 4140

5766

SQL nodes (NDB Cluster), 4712
SQL scripts, 454
SQL SECURITY

effect on privileges, 4989
SQL statements

replicas, 2933
replication server, 2975
replication sources, 2930

SQL statements relating to NDB Cluster, 4829
SQL-92

extensions to, 94
sql-mode option

mysqld, 860
mysqlslap, 642

SQLState, 6395
sql_auto_is_null system variable, 997
SQL_BIG_RESULT

SELECT modifier, 2860
sql_big_selects system variable, 998
SQL_BUFFER_RESULT

SELECT modifier, 2860
sql_buffer_result system variable, 998
SQL_CACHE

removed features, 56
SELECT modifier, 2860

SQL_CALC_FOUND_ROWS, 1867
deprecated features, 50
SELECT modifier, 2860

sql_generate_invisible_primary_key, 998
sql_log_bin

removed features, 56
sql_log_bin system variable, 3769
sql_log_off system variable, 999
sql_mode system variable, 999
sql_notes system variable, 1000
SQL_NO_CACHE

SELECT modifier, 2860
sql_quote_show_create system variable, 1000
sql_replica_skip_counter system variable, 3735
sql_require_primary_key system variable, 1001
sql_safe_updates system variable, 498, 1002
sql_select_limit system variable, 498, 1002
sql_slave_skip_counter, 3784
sql_slave_skip_counter system variable, 3735
SQL_SMALL_RESULT

SELECT modifier, 2860
sql_warnings system variable, 1002
SQRT(), 2335
square brackets, 2200
SRID attribute

spatial data type, 2235
SRID values

handling by spatial functions, 2476
SRID()

removed features, 57
SSD, 3333, 6395
SSH, 1295, 1428
SSL, 1402, 6395

5767

command options, 386
establishing connections, 1403
X.509 Basics, 1402

SSL library
configuring, 232

ssl option
mysqld, 861

SSL options
mysql, 481
mysqladmin, 514
mysqlbinlog, 719
mysqlcheck, 530
mysqldump, 546
mysqlimport, 584
mysqlpump, 608
mysqlshow, 623
mysqlslap, 642
mysql_migrate_keyring, 697
mysql_secure_installation, 435
mysql_upgrade, 451

SSL related options
ALTER USER, 3028
CREATE USER statement, 3042

ssl session cache
enable session reuse, 1428

ssl session data
enable session reuse, 1428

ssl-ca option, 388
ssl-capath option, 388
ssl-cert option, 388
ssl-cipher option, 389
ssl-crl option, 389
ssl-crlpath option, 389
ssl-fips-mode option, 390

mysql, 482
mysqladmin, 514
mysqlbinlog, 719
mysqlcheck, 530
mysqldump, 547
mysqlimport, 584
mysqlpump, 608
mysqlshow, 624
mysqlslap, 642
mysql_migrate_keyring, 697
mysql_secure_installation, 436
mysql_upgrade, 452

ssl-key option, 390
ssl-mode option, 391
ssl-session-data option, 392
ssl-session-data-continue-on-failed-reuse option, 392
Ssl_accepts status variable, 1088
Ssl_accept_renegotiates status variable, 1088
ssl_ca system variable, 1003
Ssl_callback_cache_hits status variable, 1088
ssl_capath system variable, 1003
ssl_cert system variable, 1004
Ssl_cipher status variable, 1088
ssl_cipher system variable, 1004

5768

Ssl_cipher_list status variable, 1088
Ssl_client_connects status variable, 1088
Ssl_connect_renegotiates status variable, 1089
ssl_crl system variable, 1005
ssl_crlpath system variable, 1005
Ssl_ctx_verify_depth status variable, 1089
Ssl_ctx_verify_mode status variable, 1089
Ssl_default_timeout status variable, 1089
Ssl_finished_accepts status variable, 1089
Ssl_finished_connects status variable, 1089
ssl_fips_mode server system variable

deprecated features, 49
ssl_fips_mode system variable, 1006
ssl_key system variable, 1006
Ssl_server_not_after status variable, 1089
Ssl_server_not_before status variable, 1089
Ssl_sessions_reused status variable, 1090
Ssl_session_cache_hits status variable, 1089
Ssl_session_cache_misses status variable, 1089
Ssl_session_cache_mode status variable, 1089
ssl_session_cache_mode system variable, 1007
Ssl_session_cache_overflows status variable, 1089
Ssl_session_cache_size status variable, 1089
Ssl_session_cache_timeout status variable, 1089
ssl_session_cache_timeout system variable, 1007
Ssl_session_cache_timeouts status variable, 1090
ssl_session_data_print command

mysql, 489
Ssl_used_session_cache_entries status variable, 1090
Ssl_verify_depth status variable, 1090
Ssl_verify_mode status variable, 1090
Ssl_version status variable, 1090
staging-tries option

ndb_move_data, 4567
standalone option

mysqld, 862
Standard Monitor, 3522, 3524, 3527
Standard SQL

differences from, 98, 3063
extensions to, 94, 95

standards compatibility, 94
START

XA transactions, 2926
START BACKUP

NOWAIT, 4708
SNAPSHOTEND, 4708
SNAPSHOTSTART, 4708
syntax, 4706
WAIT COMPLETED, 4708
WAIT STARTED, 4708

START command (NDB Cluster), 4659
START GROUP_REPLICATION, 2975
START REPLICA, 2968
START SLAVE, 2972
START TRANSACTION, 2911
start-datetime option

mysqlbinlog, 720
start-page option

5769

innochecksum, 651
start-position option

mysqlbinlog, 720
StartConnectBackoffMaxTime, 4378
StartFailRetryDelay, 4365
StartFailureTimeout, 4313
starting

comments, 101
mysqld, 1297
the server, 269
the server automatically, 280
thread state, 2027

Starting many servers, 1266
StartNoNodeGroupTimeout, 4313
StartPartialTimeout, 4312
StartPartitionedTimeout, 4312
StartPoint()

removed features, 57
startup, 6396
STARTUP Events (NDB Cluster), 4683
startup options

default, 371
replication channel, 3795

startup parameters, 747
mysql, 454
mysqladmin, 503

StartupStatusReportFrequency, 4331
state-dir option

ndb_import, 4553
statement interceptor, 6396
statement sampling, 5283
statement termination

Control+C, 454, 480, 2906
statement-based replication, 6396

advantages, 3787
disadvantages, 3787
unsafe statements, 3787

statements
compound, 2983
CREATE USER, 1342
DROP USER, 1342
GRANT, 1342
replicas, 2933
replication server, 2975
replication sources, 2930
REVOKE, 1342

statements_with_errors_or_warnings view
sys schema, 5396

statements_with_full_table_scans view
sys schema, 5397

statements_with_runtimes_in_95th_percentile view
sys schema, 5398

statements_with_sorting view
sys schema, 5399

statements_with_temp_tables view
sys schema, 5400

statement_analysis view
sys schema, 5394

5770

STATEMENT_DIGEST(), 2458
STATEMENT_DIGEST_TEXT(), 2458
statement_id system variable, 1008
statement_performance_analyzer() procedure

sys schema, 5421
static privileges, 1322
Statistics

thread command, 2022
statistics, 6396

thread state, 2027
STATISTICS

INFORMATION_SCHEMA table, 5056
STATISTICS Events (NDB Cluster), 4686
stats option

myisam_ftdump, 657
ndb_import, 4553

stats_method myisamchk variable, 663
status

tables, 3146
status action

MySQLInstallerConsole, 161
status command

mysql, 489
results, 502

STATUS command (NDB Cluster), 4659
status option

mysqlshow, 624
status variable

Aborted_clients, 1064
Aborted_connects, 1064
Acl_cache_items_count, 1065, 1065
Audit_log_current_size, 1695
Audit_log_events, 1695
Audit_log_events_filtered, 1696
Audit_log_events_lost, 1696
Audit_log_events_written, 1696
Audit_log_event_max_drop_size, 1695
Audit_log_total_size, 1696
Audit_log_write_waits, 1696
Authentication_ldap_sasl_supported_methods, 1065
Binlog_cache_disk_use, 1065
Binlog_cache_use, 1065
Binlog_stmt_cache_disk_use, 1065
Binlog_stmt_cache_use, 1065
Bytes_received, 1065
Bytes_sent, 1065
Caching_sha2_password_rsa_public_key, 1065
Compression, 1066
Compression_algorithm, 1066
Compression_level, 1067
Connections, 1067
Connection_control_delay_generated, 1526
Connection_errors_accept, 1067
Connection_errors_internal, 1067
Connection_errors_max_connections, 1067
Connection_errors_peer_address, 1067
Connection_errors_select, 1067
Connection_errors_tcpwrap, 1067

5771

Created_tmp_disk_tables, 1067
Created_tmp_files, 1068
Created_tmp_tables, 1068
Current_tls_ca, 1068
Current_tls_capath, 1068
Current_tls_cert, 1068
Current_tls_cipher, 1068
Current_tls_ciphersuites, 1069
Current_tls_crl, 1069
Current_tls_crlpath, 1069
Current_tls_key, 1069
Current_tls_version, 1069
Delayed_errors, 1069
Delayed_insert_threads, 1069
Delayed_writes, 1069
dragnet.Status, 1070, 1070
Error_log_buffered_bytes, 1070
Error_log_buffered_events, 1070
Error_log_expired_events, 1070
Error_log_latest_write, 1070
Firewall_access_denied, 1726
Firewall_access_granted, 1726
Firewall_access_suspicious, 1726
Firewall_cached_entries, 1727
Flush_commands, 1070
Global_connection_memory, 1070
Handler_commit, 1070
Handler_delete, 1071
Handler_discover, 4420
Handler_external_lock, 1071
Handler_mrr_init, 1071
Handler_prepare, 1071
Handler_read_first, 1071
Handler_read_key, 1071
Handler_read_last, 1071
Handler_read_next, 1071
Handler_read_prev, 1071
Handler_read_rnd, 1071
Handler_read_rnd_next, 1071
Handler_rollback, 1072
Handler_savepoint, 1072
Handler_savepoint_rollback, 1072
Handler_update, 1072
Handler_write, 1072
Innodb_buffer_pool_bytes_data, 1072
Innodb_buffer_pool_bytes_dirty, 1072
Innodb_buffer_pool_dump_status, 1072
Innodb_buffer_pool_load_status, 1072
Innodb_buffer_pool_pages_data, 1072
Innodb_buffer_pool_pages_dirty, 1072
Innodb_buffer_pool_pages_flushed, 1072
Innodb_buffer_pool_pages_free, 1073
Innodb_buffer_pool_pages_latched, 1073
Innodb_buffer_pool_pages_misc, 1073
Innodb_buffer_pool_pages_total, 1073
Innodb_buffer_pool_reads, 1073
Innodb_buffer_pool_read_ahead, 1073
Innodb_buffer_pool_read_ahead_evicted, 1073

5772

Innodb_buffer_pool_read_ahead_rnd, 1073
Innodb_buffer_pool_read_requests, 1073
Innodb_buffer_pool_resize_status, 1073
Innodb_buffer_pool_resize_status_code, 1073
Innodb_buffer_pool_resize_status_progress, 1074
Innodb_buffer_pool_wait_free, 1074
Innodb_buffer_pool_write_requests, 1074
Innodb_data_fsyncs, 1074
Innodb_data_pending_fsyncs, 1074
Innodb_data_pending_reads, 1074
Innodb_data_pending_writes, 1074
Innodb_data_read, 1075
Innodb_data_reads, 1075
Innodb_data_writes, 1075
Innodb_data_written, 1075
Innodb_dblwr_pages_written, 1075
Innodb_dblwr_writes, 1075
Innodb_have_atomic_builtins, 1075
Innodb_log_waits, 1075
Innodb_log_writes, 1075
Innodb_log_write_requests, 1075
Innodb_num_open_files, 1075
Innodb_os_log_fsyncs, 1075
Innodb_os_log_pending_fsyncs, 1075
Innodb_os_log_pending_writes, 1075
Innodb_os_log_written, 1075
Innodb_pages_created, 1076
Innodb_pages_read, 1076
Innodb_pages_written, 1076
Innodb_page_size, 1075
Innodb_redo_log_capacity_resized, 1076
Innodb_redo_log_checkpoint_lsn, 1076
Innodb_redo_log_current_lsn, 1076
Innodb_redo_log_enabled, 1076
Innodb_redo_log_flushed_to_disk_lsn, 1076
Innodb_redo_log_logical_size, 1077
Innodb_redo_log_physical_size, 1077
Innodb_redo_log_read_only, 1077
Innodb_redo_log_resize_status, 1077
Innodb_redo_log_uuid, 1077
Innodb_rows_deleted, 1077
Innodb_rows_inserted, 1078
Innodb_rows_read, 1078
Innodb_rows_updated, 1078
Innodb_row_lock_current_waits, 1077
Innodb_row_lock_time, 1077
Innodb_row_lock_time_avg, 1077
Innodb_row_lock_time_max, 1077
Innodb_row_lock_waits, 1077
Innodb_system_rows_deleted, 1078
Innodb_system_rows_inserted, 1078
Innodb_system_rows_read, 1078
Innodb_system_rows_updated, 1078
Innodb_truncated_status_writes, 1078
Innodb_undo_tablespaces_active, 1078
Innodb_undo_tablespaces_explicit, 1078
Innodb_undo_tablespaces_implicit, 1078
Innodb_undo_tablespaces_total, 1078

5773

Key_blocks_not_flushed, 1079
Key_blocks_unused, 1079
Key_blocks_used, 1079
Key_reads, 1079
Key_read_requests, 1079
Key_writes, 1079
Key_write_requests, 1079
Last_query_cost, 1079
Last_query_partial_plans, 1079
Locked_connects, 1079
Max_execution_time_exceeded, 1079
Max_execution_time_set, 1080
Max_execution_time_set_failed, 1080
Max_used_connections, 1080
Max_used_connections_time, 1080
mecab_charset, 1080
Ndb_api_adaptive_send_deferred_count, 4420
Ndb_api_adaptive_send_deferred_count_replica, 4420
Ndb_api_adaptive_send_deferred_count_session, 4420
Ndb_api_adaptive_send_deferred_count_slave, 4420
Ndb_api_adaptive_send_forced_count, 4420
Ndb_api_adaptive_send_forced_count_replica, 4421
Ndb_api_adaptive_send_forced_count_session, 4421
Ndb_api_adaptive_send_forced_count_slave, 4421
Ndb_api_adaptive_send_unforced_count, 4421
Ndb_api_adaptive_send_unforced_count_replica, 4421
Ndb_api_adaptive_send_unforced_count_session, 4421
Ndb_api_adaptive_send_unforced_count_slave, 4421
Ndb_api_bytes_received_count, 4423
Ndb_api_bytes_received_count_replica, 4422
Ndb_api_bytes_received_count_session, 4422
Ndb_api_bytes_received_count_slave, 4422
Ndb_api_bytes_sent_count, 4422
Ndb_api_bytes_sent_count_replica, 4422
Ndb_api_bytes_sent_count_session, 4422
Ndb_api_bytes_sent_count_slave, 4422
Ndb_api_event_bytes_count, 4424
Ndb_api_event_bytes_count_injector, 4424
Ndb_api_event_data_count, 4423
Ndb_api_event_data_count_injector, 4423
Ndb_api_event_nondata_count, 4423
Ndb_api_event_nondata_count_injector, 4423
Ndb_api_pk_op_count, 4424
Ndb_api_pk_op_count_replica, 4424
Ndb_api_pk_op_count_session, 4424
Ndb_api_pk_op_count_slave, 4424
Ndb_api_pruned_scan_count, 4425
Ndb_api_pruned_scan_count_replica, 4425
Ndb_api_pruned_scan_count_session, 4425
Ndb_api_pruned_scan_count_slave, 4425
Ndb_api_range_scan_count, 4426
Ndb_api_range_scan_count_replica, 4426
Ndb_api_range_scan_count_session, 4425
Ndb_api_range_scan_count_slave, 4426
Ndb_api_read_row_count, 4427
Ndb_api_read_row_count_replica, 4426
Ndb_api_read_row_count_session, 4426
Ndb_api_read_row_count_slave, 4427

5774

Ndb_api_scan_batch_count, 4428
Ndb_api_scan_batch_count_replica, 4427
Ndb_api_scan_batch_count_session, 4427
Ndb_api_scan_batch_count_slave, 4428
Ndb_api_table_scan_count, 4429
Ndb_api_table_scan_count_replica, 4428
Ndb_api_table_scan_count_session, 4428
Ndb_api_table_scan_count_slave, 4428
Ndb_api_trans_abort_count, 4429
Ndb_api_trans_abort_count_replica, 4429
Ndb_api_trans_abort_count_session, 4429
Ndb_api_trans_abort_count_slave, 4429
Ndb_api_trans_close_count, 4430
Ndb_api_trans_close_count_replica, 4430
Ndb_api_trans_close_count_session, 4429
Ndb_api_trans_close_count_slave, 4430
Ndb_api_trans_commit_count, 4431
Ndb_api_trans_commit_count_replica, 4430
Ndb_api_trans_commit_count_session, 4430
Ndb_api_trans_commit_count_slave, 4431
Ndb_api_trans_local_read_row_count, 4432
Ndb_api_trans_local_read_row_count_replica, 4431
Ndb_api_trans_local_read_row_count_session, 4431
Ndb_api_trans_local_read_row_count_slave, 4431
Ndb_api_trans_start_count, 4432
Ndb_api_trans_start_count_replica, 4432
Ndb_api_trans_start_count_session, 4432
Ndb_api_trans_start_count_slave, 4432
Ndb_api_uk_op_count, 4433
Ndb_api_uk_op_count_replica, 4433
Ndb_api_uk_op_count_session, 4432
Ndb_api_uk_op_count_slave, 4433
Ndb_api_wait_exec_complete_count, 4434
Ndb_api_wait_exec_complete_count_replica, 4433
Ndb_api_wait_exec_complete_count_session, 4433
Ndb_api_wait_exec_complete_count_slave, 4433
Ndb_api_wait_meta_request_count, 4435
Ndb_api_wait_meta_request_count_replica, 4434
Ndb_api_wait_meta_request_count_session, 4434
Ndb_api_wait_meta_request_count_slave, 4434
Ndb_api_wait_nanos_count, 4435
Ndb_api_wait_nanos_count_replica, 4435
Ndb_api_wait_nanos_count_session, 4435
Ndb_api_wait_nanos_count_slave, 4435
Ndb_api_wait_scan_result_count, 4436
Ndb_api_wait_scan_result_count_replica, 4436
Ndb_api_wait_scan_result_count_session, 4436
Ndb_api_wait_scan_result_count_slave, 4436
Ndb_cluster_node_id, 4436
Ndb_config_from_host, 4436
Ndb_config_from_port, 4436
Ndb_config_generation, 4437
Ndb_conflict_fn_epoch, 4437
Ndb_conflict_fn_epoch2, 4437
Ndb_conflict_fn_epoch2_trans, 4437
Ndb_conflict_fn_epoch_trans, 4437
Ndb_conflict_fn_max, 4437
Ndb_conflict_fn_max_del_win, 4437

5775

Ndb_conflict_fn_max_del_win_ins, 4438
Ndb_conflict_fn_max_ins, 4438
Ndb_conflict_fn_old, 4438
Ndb_conflict_last_conflict_epoch, 4438
Ndb_conflict_last_stable_epoch, 4438
Ndb_conflict_reflected_op_discard_count, 4438
Ndb_conflict_reflected_op_prepare_count, 4438
Ndb_conflict_refresh_op_count, 4438
Ndb_conflict_trans_conflict_commit_count, 4439
Ndb_conflict_trans_detect_iter_count, 4439
Ndb_conflict_trans_reject_count, 4439
Ndb_conflict_trans_row_conflict_count, 4439
Ndb_conflict_trans_row_reject_count, 4439
Ndb_epoch_delete_delete_count, 4439
Ndb_execute_count, 4439
Ndb_fetch_table_stats, 4439
Ndb_last_commit_epoch_server, 4439
Ndb_last_commit_epoch_session, 4440
Ndb_metadata_blacklist_size (OBSOLETE), 4440
Ndb_metadata_detected_count, 4440
Ndb_metadata_excluded_count, 4440
Ndb_metadata_synced_count, 4440
Ndb_number_of_data_nodes, 4440
Ndb_pruned_scan_count, 4440
Ndb_pushed_queries_defined, 4440
Ndb_pushed_queries_dropped, 4440
Ndb_pushed_queries_executed, 4440
Ndb_pushed_reads, 4440
Ndb_replica_max_replicated_epoch, 4441
Ndb_scan_count, 4441
Ndb_schema_participant_count, 4441
Ndb_slave_max_replicated_epoch, 4441
Ndb_system_name, 4441
Ndb_trans_hint_count_session, 4441
Not_flushed_delayed_rows, 1080
Ongoing_anonymous_gtid_violating_transaction_count, 1080
Ongoing_anonymous_transaction_count, 1080
Ongoing_automatic_gtid_violating_transaction_count, 1080
Opened_files, 1081
Opened_tables, 1081
Opened_table_definitions, 1081
Open_files, 1080
Open_streams, 1080
Open_tables, 1080
Open_table_definitions, 1080
Performance_schema_accounts_lost, 5346
Performance_schema_cond_classes_lost, 5346
Performance_schema_cond_instances_lost, 5347
Performance_schema_digest_lost, 5347
Performance_schema_file_classes_lost, 5347
Performance_schema_file_handles_lost, 5347
Performance_schema_file_instances_lost, 5347
Performance_schema_hosts_lost, 5347
Performance_schema_index_stat_lost, 5347
Performance_schema_locker_lost, 5347
Performance_schema_memory_classes_lost, 5347
Performance_schema_metadata_lock_lost, 5347
Performance_schema_mutex_classes_lost, 5347

5776

Performance_schema_mutex_instances_lost, 5347
Performance_schema_nested_statement_lost, 5347
Performance_schema_prepared_statements_lost, 5348
Performance_schema_program_lost, 5348
Performance_schema_rwlock_classes_lost, 5348
Performance_schema_rwlock_instances_lost, 5348
Performance_schema_session_connect_attrs_longest_seen, 5348
Performance_schema_session_connect_attrs_lost, 5348
Performance_schema_socket_classes_lost, 5348
Performance_schema_socket_instances_lost, 5348
Performance_schema_stage_classes_lost, 5348
Performance_schema_statement_classes_lost, 5348
Performance_schema_table_handles_lost, 5349
Performance_schema_table_instances_lost, 5349
Performance_schema_table_lock_stat_lost, 5349
Performance_schema_thread_classes_lost, 5349
Performance_schema_thread_instances_lost, 5349
Performance_schema_users_lost, 5349
Prepared_stmt_count, 1081
Queries, 1081
Questions, 1081
Replica_open_temp_tables, 1081
Replica_rows_last_search_algorithm_used, 1081
Resource_group_supported, 1082
Rewriter_number_loaded_rules, 1217
Rewriter_number_reloads, 1217
Rewriter_number_rewritten_queries, 1217
Rewriter_reload_error, 1217
Rpl_semi_sync_master_clients, 1082
Rpl_semi_sync_master_net_avg_wait_time, 1082
Rpl_semi_sync_master_net_waits, 1082
Rpl_semi_sync_master_net_wait_time, 1082
Rpl_semi_sync_master_no_times, 1082
Rpl_semi_sync_master_no_tx, 1083
Rpl_semi_sync_master_status, 1083
Rpl_semi_sync_master_timefunc_failures, 1083
Rpl_semi_sync_master_tx_avg_wait_time, 1083
Rpl_semi_sync_master_tx_waits, 1083
Rpl_semi_sync_master_tx_wait_time, 1083
Rpl_semi_sync_master_wait_pos_backtraverse, 1083
Rpl_semi_sync_master_wait_sessions, 1084
Rpl_semi_sync_master_yes_tx, 1084
Rpl_semi_sync_replica_status, 1086
Rpl_semi_sync_slave_status, 1086
Rpl_semi_sync_source_clients, 1084
Rpl_semi_sync_source_net_avg_wait_time, 1084
Rpl_semi_sync_source_net_waits, 1084
Rpl_semi_sync_source_net_wait_time, 1084
Rpl_semi_sync_source_no_times, 1085
Rpl_semi_sync_source_no_tx, 1085
Rpl_semi_sync_source_status, 1085
Rpl_semi_sync_source_timefunc_failures, 1085
Rpl_semi_sync_source_tx_avg_wait_time, 1085
Rpl_semi_sync_source_tx_waits, 1086
Rpl_semi_sync_source_tx_wait_time, 1085
Rpl_semi_sync_source_wait_pos_backtraverse, 1086
Rpl_semi_sync_source_wait_sessions, 1086
Rpl_semi_sync_source_yes_tx, 1086

5777

Rsa_public_key, 1087
Secondary_engine_execution_count, 1087
Select_full_join, 1087
Select_full_range_join, 1087
Select_range, 1087
Select_range_check, 1087
Select_scan, 1087
Slave_open_temp_tables, 1087
Slave_rows_last_search_algorithm_used, 1087
Slow_launch_threads, 1088
Slow_queries, 1088
Sort_merge_passes, 1088
Sort_range, 1088
Sort_rows, 1088
Sort_scan, 1088
Ssl_accepts, 1088
Ssl_accept_renegotiates, 1088
Ssl_callback_cache_hits, 1088
Ssl_cipher, 1088
Ssl_cipher_list, 1088
Ssl_client_connects, 1088
Ssl_connect_renegotiates, 1089
Ssl_ctx_verify_depth, 1089
Ssl_ctx_verify_mode, 1089
Ssl_default_timeout, 1089
Ssl_finished_accepts, 1089
Ssl_finished_connects, 1089
Ssl_server_not_after, 1089
Ssl_server_not_before, 1089
Ssl_sessions_reused, 1090
Ssl_session_cache_hits, 1089
Ssl_session_cache_misses, 1089
Ssl_session_cache_mode, 1089
Ssl_session_cache_overflows, 1089
Ssl_session_cache_size, 1089
Ssl_session_cache_timeout, 1089
Ssl_session_cache_timeouts, 1090
Ssl_used_session_cache_entries, 1090
Ssl_verify_depth, 1090
Ssl_verify_mode, 1090
Ssl_version, 1090
Table_locks_immediate, 1090
Table_locks_waited, 1090
Table_open_cache_hits, 1090
Table_open_cache_misses, 1090
Table_open_cache_overflows, 1090
Tc_log_max_pages_used, 1091
Tc_log_page_siz, 1091
Tc_log_page_waits, 1091
Telemetry_traces_supported, 1091
Threads_cached, 1091
Threads_connected, 1091
Threads_created, 1091
Threads_running, 1091
Tls_library_version, 1091
Uptime, 1091
Uptime_since_flush_status, 1092
validate_password.dictionary_file_last_parsed, 1534

5778

validate_password.dictionary_file_words_count, 1534
validate_password_dictionary_file_last_parsed, 1537
validate_password_dictionary_file_words_count, 1537

status variables, 1064, 3145
Group Replication, 4054
NDB Cluster, 4420
NDB Cluster replication conflict detection, 4890

STD(), 2595
STDDEV(), 2595
STDDEV_POP(), 2596
STDDEV_SAMP(), 2596
stemming, 6396
STOP command (NDB Cluster), 4660
STOP GROUP_REPLICATION, 2976
STOP REPLICA, 2973
STOP SLAVE, 2975
stop-datetime option

mysqlbinlog, 720
stop-never option

mysqlbinlog, 721
stop-never-slave-server-id option

mysqlbinlog, 721
stop-position option

mysqlbinlog, 721
StopOnError, 4310
stopping

the server, 280
stopword, 6396
stopword list

user-defined, 2402
stopwords, 2399
storage engine, 6397

ARCHIVE, 3593
InnoDB, 3186
PERFORMANCE_SCHEMA, 5124

storage engines
and application feature requirements, 4184
applications supported, 4183
availability, 4182
choosing, 3575
differences between NDB and InnoDB, 4182
usage scenarios, 4184

storage nodes - see data nodes, ndbd (see data nodes, ndbd)
storage nodes - see data nodes, ndbd, ndbmtd (see data nodes, ndbd, ndbmtd)
storage requirements

data types, 2269
date data types, 2271
InnoDB tables, 2270
NDB Cluster, 2270
numeric data types, 2270
spatial data types, 2273
string data types, 2272
time data types, 2271

storage space
minimizing, 1911

stored functions, 4969
stored generated column, 6397
stored object, 6397

5779

stored object privileges, 4989
stored objects, 4967

orphan, 4990
stored procedures, 4969
stored program, 6397
stored programs, 2983, 4967

reparsing, 1996
roles, 1350

stored routine, 6397
stored routines, 4967, 4969

and replication, 3865
LAST_INSERT_ID(), 4971
metadata, 4971
restrictions, 4999

stored_program_cache system variable, 1008
stored_program_definition_cache system variable, 1009
STRAIGHT_JOIN, 1849, 1940, 1954, 2863, 3171

join type, 1876
SELECT modifier, 1876, 2860

STRCMP(), 2377
strict mode, 6397

default, 103
strict SQL mode, 1093
strict-check option

ibd2sdi, 648
innochecksum, 652

STRICT_ALL_TABLES SQL mode, 1098
STRICT_TRANS_TABLES SQL mode, 1093, 1098
string

JSON, 2253
string collating, 2181
string comparison functions, 2374
string comparison operators, 2374
string comparisons

case sensitivity, 2374
string concatenation, 2049, 2363
string data types, 2220

storage requirements, 2272
string functions, 2359
string literal introducer, 2050, 2129
string literals, 2049
string operators, 2359
string types, 2220
StringMemory, 4280
strings

defined, 2049
escape sequences, 2049
nondelimited, 2055
repertoire, 2121

striping
defined, 2006

STR_TO_DATE(), 2349
ST_Area(), 2493
ST_AsBinary(), 2483
ST_AsGeoJSON(), 2516
ST_AsText(), 2483
ST_Buffer(), 2497
ST_Buffer_Strategy(), 2498

5780

ST_Centroid(), 2494
ST_Collect(), 2518
ST_Contains(), 2505
ST_ConvexHull(), 2499
ST_Crosses(), 2505
ST_Difference(), 2499
ST_Dimension(), 2484
ST_Disjoint(), 2506
ST_Distance(), 2506
ST_Distance_Sphere(), 2520
ST_EndPoint(), 2489
ST_Envelope(), 2485
ST_Equals(), 2507
ST_ExteriorRing(), 2495
ST_FrechetDistance(), 2507
ST_GeoHash(), 2514
ST_GeomCollFromText(), 2478
ST_GeomCollFromWKB(), 2480
ST_GeometryCollectionFromText(), 2478
ST_GeometryCollectionFromWKB(), 2480
ST_GeometryFromText(), 2478
ST_GeometryFromWKB(), 2480
ST_GeometryN(), 2496
ST_GeometryType(), 2485
ST_GEOMETRY_COLUMNS

INFORMATION_SCHEMA table, 5059
ST_GeomFromGeoJSON(), 2516
ST_GeomFromText(), 2478
ST_GeomFromWKB(), 2480
ST_HausdorffDistance(), 2508
ST_InteriorRingN(), 2495
ST_Intersection(), 2500
ST_Intersects(), 2508
ST_IsClosed(), 2489
ST_IsEmpty(), 2485
ST_IsSimple(), 2485
ST_IsValid(), 2521
ST_LatFromGeoHash(), 2515
ST_Latitude(), 2487
ST_Length(), 2491
ST_LineFromText(), 2478
ST_LineFromWKB(), 2480
ST_LineInterpolatePoint(), 2500, 2501
ST_LineInterpolatePoints(), 2500
ST_LineStringFromText(), 2478
ST_LineStringFromWKB(), 2480
ST_LongFromGeoHash(), 2515
ST_Longitude(), 2488
ST_MakeEnvelope(), 2522
ST_MLineFromText(), 2479
ST_MLineFromWKB(), 2480
ST_MPointFromText(), 2479
ST_MPointFromWKB(), 2480
ST_MPolyFromText(), 2479
ST_MPolyFromWKB(), 2480
ST_MultiLineStringFromText(), 2479
ST_MultiLineStringFromWKB(), 2480
ST_MultiPointFromText(), 2479

5781

ST_MultiPointFromWKB(), 2480
ST_MultiPolygonFromText(), 2479
ST_MultiPolygonFromWKB(), 2480
ST_NumGeometries(), 2496
ST_NumInteriorRing(), 2495
ST_NumInteriorRings(), 2495
ST_NumPoints(), 2492
ST_Overlaps(), 2509
ST_PointFromGeoHash(), 2515
ST_PointFromText(), 2479
ST_PointFromWKB(), 2481
ST_PointN(), 2492
ST_PolyFromText(), 2479
ST_PolyFromWKB(), 2481
ST_PolygonFromText(), 2479
ST_PolygonFromWKB(), 2481
ST_Simplify(), 2522
ST_SPATIAL_REFERENCE_SYSTEMS

INFORMATION_SCHEMA table, 5059
st_spatial_reference_systems table

data dictionary table, 1137
ST_SRID(), 2486
ST_StartPoint(), 2492
ST_SwapXY(), 2484
ST_SymDifference(), 2502
ST_Touches(), 2509
ST_Transform(), 2502
ST_Union(), 2503
ST_UNITS_OF_MEASURE

INFORMATION_SCHEMA table, 5061
ST_Validate(), 2523
ST_Within(), 2509
ST_X(), 2488
ST_Y(), 2489
SUBDATE(), 2350
sublist, 6397
SUBPARTITION BY KEY

known issues, 4960
subpartitioning, 4922
subpartitions, 4922

known issues, 4959
subqueries, 2874

correlated, 2880
errors, 2887
in FROM clause (see derived tables)
optimization, 1874, 1879
restrictions, 2889
with ALL, 2877
with ANY, IN, SOME, 2876
with EXISTS, 2879
with NOT EXISTS, 2879
with row constructors, 2878

subquery (see subqueries)
subquery materialization, 1878
subselects, 2874
SUBSTR(), 2370
SUBSTRING(), 2370
SUBSTRING_INDEX(), 2370

5782

SUBTIME(), 2351
subtraction (-), 2326
SUDO_USER environment variable, 5220
suffix option

mysql_ssl_rsa_setup, 439
SUM(), 2596
SUM(DISTINCT), 2596
SUPER privilege, 1312
super-large-pages option

mysqld, 862
superuser, 279
super_read_only system variable, 1009
support

for operating systems, 107, 107
for platforms, 107

supremum record, 6397
surrogate key, 6397
symbolic links, 2007, 2009

databases, 2008
tables, 2008
Windows, 2009

symbolic-links option
mysqld, 862

synchronization of source and replica
in NDB Cluster Replication, 4869

Syncing ndb table schema operation and binlog
thread state, 2033

sync_binlog system variable, 3769
sync_frm

removed features, 56
sync_master_info system variable, 3736
sync_relay_log system variable, 3736
sync_relay_log_info

deprecated features, 54
sync_relay_log_info system variable, 3737
sync_source_info system variable, 3737
syntactically well-formed

GIS values, 2244
spatial values, 2244

syntax
regular expression, 2378

syntax conventions, 2
synthetic key, 6397
sys schema, 5125

create_synonym_db() procedure, 5407
diagnostics() procedure, 5408
execute_prepared_stmt() procedure, 5410
extract_schema_from_file_name() function, 5425
extract_table_from_file_name() function, 5426
format_bytes() function, 5426
format_path() function, 5427
format_statement() function, 5427
format_time() function, 5428
host_summary view, 5368
host_summary_by_file_io view, 5369
host_summary_by_file_io_type view, 5369
host_summary_by_stages view, 5369
host_summary_by_statement_latency view, 5370

5783

host_summary_by_statement_type view, 5371
innodb_buffer_stats_by_schema view, 5372
innodb_buffer_stats_by_table view, 5372
innodb_lock_waits view, 5373
io_by_thread_by_latency view, 5375
io_global_by_file_by_bytes view, 5376
io_global_by_file_by_latency view, 5376
io_global_by_wait_by_bytes view, 5377
io_global_by_wait_by_latency view, 5378
latest_file_io view, 5379
list_add() function, 5428
list_drop() function, 5429
memory_by_host_by_current_bytes view, 5379
memory_by_thread_by_current_bytes view, 5380
memory_by_user_by_current_bytes view, 5381
memory_global_by_current_bytes view, 5381
memory_global_total view, 5382
metrics view, 5382
object ownership, 5357
processlist view, 5383
ps_check_lost_instrumentation view, 5385
ps_is_account_enabled() function, 5429
ps_is_consumer_enabled() function, 5430
ps_is_instrument_default_enabled() function, 5430
ps_is_instrument_default_timed() function, 5431
ps_is_thread_instrumented() function, 5431
ps_setup_disable_background_threads() procedure, 5410
ps_setup_disable_consumer() procedure, 5410
ps_setup_disable_instrument() procedure, 5411
ps_setup_disable_thread() procedure, 5411
ps_setup_enable_background_threads() procedure, 5412
ps_setup_enable_consumer() procedure, 5412
ps_setup_enable_instrument() procedure, 5412
ps_setup_enable_thread() procedure, 5413
ps_setup_reload_saved() procedure, 5413
ps_setup_reset_to_default() procedure, 5414
ps_setup_save() procedure, 5414
ps_setup_show_disabled() procedure, 5415
ps_setup_show_disabled_consumers() procedure, 5415
ps_setup_show_disabled_instruments() procedure, 5416
ps_setup_show_enabled() procedure, 5416
ps_setup_show_enabled_consumers() procedure, 5417
ps_setup_show_enabled_instruments() procedure, 5417
ps_statement_avg_latency_histogram() procedure, 5417
ps_thread_account() function, 5431
ps_thread_id() function, 5432
ps_thread_stack() function, 5432
ps_thread_trx_info() function, 5433
ps_trace_statement_digest() procedure, 5418
ps_trace_thread() procedure, 5419
ps_truncate_all_tables() procedure, 5421
quote_identifier() function, 5434
schema_auto_increment_columns view, 5385
schema_index_statistics view, 5386
schema_object_overview view, 5387
schema_redundant_indexes view, 5387
schema_tables_with_full_table_scans view, 5393
schema_table_lock_waits view, 5389

5784

schema_table_statistics view, 5390
schema_table_statistics_with_buffer view, 5391
schema_unused_indexes view, 5393
session view, 5394
session_ssl_status view, 5394
statements_with_errors_or_warnings view, 5396
statements_with_full_table_scans view, 5397
statements_with_runtimes_in_95th_percentile view, 5398
statements_with_sorting view, 5399
statements_with_temp_tables view, 5400
statement_analysis view, 5394
statement_performance_analyzer() procedure, 5421
sys_config table, 5365
sys_get_config() function, 5435
table_exists() procedure, 5424
user_summary view, 5401
user_summary_by_file_io view, 5401
user_summary_by_file_io_type view, 5402
user_summary_by_stages view, 5402
user_summary_by_statement_latency view, 5403
user_summary_by_statement_type view, 5403
version view, 5404
version_major() function, 5436
version_minor() function, 5436
version_patch() function, 5436
waits_by_host_by_latency view, 5406
waits_by_user_by_latency view, 5406
waits_global_by_latency view, 5407
wait_classes_global_by_avg_latency view, 5405
wait_classes_global_by_latency view, 5405
x$ views, 5367
x$host_summary view, 5368
x$host_summary_by_file_io view, 5369
x$host_summary_by_file_io_type view, 5369
x$host_summary_by_stages view, 5369
x$host_summary_by_statement_latency view, 5370
x$host_summary_by_statement_type view, 5371
x$innodb_buffer_stats_by_schema view, 5372
x$innodb_buffer_stats_by_table view, 5372
x$innodb_lock_waits view, 5373
x$io_by_thread_by_latency view, 5375
x$io_global_by_file_by_bytes view, 5376
x$io_global_by_file_by_latency view, 5376
x$io_global_by_wait_by_bytes view, 5377
x$io_global_by_wait_by_latency view, 5378
x$latest_file_io view, 5379
x$memory_by_host_by_current_bytes view, 5379
x$memory_by_thread_by_current_bytes view, 5380
x$memory_by_user_by_current_bytes view, 5381
x$memory_global_by_current_bytes view, 5381
x$memory_global_total view, 5382
x$processlist view, 5383
x$schema_flattened_keys view, 5387
x$schema_index_statistics view, 5386
x$schema_tables_with_full_table_scans view, 5393
x$schema_table_lock_waits view, 5389
x$schema_table_statistics view, 5390
x$schema_table_statistics_with_buffer view, 5391

5785

x$session view, 5394
x$statements_with_errors_or_warnings view, 5396
x$statements_with_full_table_scans view, 5397
x$statements_with_runtimes_in_95th_percentile view, 5398
x$statements_with_sorting view, 5399
x$statements_with_temp_tables view, 5400
x$statement_analysis view, 5394
x$user_summary view, 5401
x$user_summary_by_file_io view, 5401
x$user_summary_by_file_io_type view, 5402
x$user_summary_by_stages view, 5402
x$user_summary_by_statement_latency view, 5403
x$user_summary_by_statement_type view, 5403
x$waits_by_host_by_latency view, 5406
x$waits_by_user_by_latency view, 5406
x$waits_global_by_latency view, 5407
x$wait_classes_global_by_avg_latency view, 5405
x$wait_classes_global_by_latency view, 5405

sys-check option
ndb_index_stat, 4561

sys-create option
ndb_index_stat, 4561

sys-create-if-not-exist option
ndb_index_stat, 4561

sys-create-if-not-valid option
ndb_index_stat, 4561

sys-drop option
ndb_index_stat, 4561

sys-skip-events option
ndb_index_stat, 4561

sys-skip-tables option
ndb_index_stat, 4561

SYSCONFDIR option
CMake, 248

SYSDATE(), 2351
sysdate-is-now option

mysqld, 863
syseventlog.facility system variable, 1010
syseventlog.include_pid system variable, 1010
syseventlog.tag system variable, 1011
syslog option

mysql, 482
mysqld_safe, 419

syslog-tag option
mysqld_safe, 420

system
privilege, 1303
security, 1290

system account
account categories, 1352

system command
mysql, 489

System lock
thread state, 2027

system option
ndb_config, 4509

system session
session categories, 1354

5786

system table
optimizer, 1944, 2860

system tables
audit_log_filter table, 1141
audit_log_user table, 1141
columns_priv table, 1139, 1325
column_statistics table, 1137, 1988
component table, 1139
db table, 279, 1139, 1325
default_roles table, 1139, 1325
engine_cost, 1986
engine_cost table, 1141
firewall_groups table, 1141
firewall_group_allowlist table, 1141
firewall_membership table, 1141
firewall_users table, 1141
firewall_whitelist table, 1141
func table, 1139, 1266
general_log table, 1140
global_grants table, 1139, 1323, 1325
gtid_executed table, 1140, 3628
help tables, 1140
help_category table, 1140
help_keyword table, 1140
help_relation table, 1140
help_topic table, 1140
innodb_dynamic_metadata table, 1141
innodb_index_stats table, 1141, 3318
innodb_table_stats table, 1141, 3318
ndb_binlog_index table, 1140
password_history table, 1139, 1325
plugin table, 1140
procs_priv table, 1139, 1325
proxies_priv table, 279, 1139, 1325
role_edges table, 1139, 1325
servers table, 1141
server_cost, 1986
server_cost table, 1141
slave_master_info table, 1140
slave_relay_log_info table, 1140
slave_worker_info table, 1140
slow_log table, 1140
tables_priv table, 1139, 1325
time zone tables, 1140
time_zone table, 1140
time_zone_leap_second table, 1140
time_zone_name table, 1140
time_zone_transition table, 1140
time_zone_transition_type table, 1140
user table, 279, 1139, 1325

system tablespace, 6398
system variable

activate_all_roles_on_login, 868
admin_address, 869
admin_port, 870
admin_ssl_ca, 871
admin_ssl_capath, 871
admin_ssl_cert, 871

5787

admin_ssl_cipher, 872
admin_ssl_crl, 872
admin_ssl_crlpath, 872
admin_ssl_key, 873
admin_tls_ciphersuites, 873
admin_tls_version, 873
audit_log_buffer_size, 1683
audit_log_compression, 1684
audit_log_connection_policy, 1684
audit_log_current_session, 1685
audit_log_database, 1685
audit_log_disable, 1685
audit_log_encryption, 1686
audit_log_exclude_accounts, 1686
audit_log_file, 1645, 1686
audit_log_filter_id, 1687
audit_log_flush, 1687
audit_log_flush_interval_seconds, 1688
audit_log_format, 1688
audit_log_format_unix_timestamp, 1689
audit_log_include_accounts, 1689
audit_log_max_size, 1690
audit_log_password_history_keep_days, 1690
audit_log_policy, 1692
audit_log_prune_seconds, 1692
audit_log_read_buffer_size, 1649, 1693
audit_log_rotate_on_size, 1693
audit_log_statement_policy, 1694
audit_log_strategy, 1695
authentication_fido_rp_id, 1503
authentication_kerberos_service_key_tab, 1503
authentication_kerberos_service_principal, 1504
authentication_ldap_sasl_auth_method_name, 1504
authentication_ldap_sasl_bind_base_dn, 1505
authentication_ldap_sasl_bind_root_dn, 1506
authentication_ldap_sasl_bind_root_pwd, 1507
authentication_ldap_sasl_ca_path, 1507
authentication_ldap_sasl_group_search_attr, 1507
authentication_ldap_sasl_group_search_filter, 1508
authentication_ldap_sasl_init_pool_size, 1508
authentication_ldap_sasl_log_status, 1509
authentication_ldap_sasl_max_pool_size, 1510
authentication_ldap_sasl_referral, 1510
authentication_ldap_sasl_server_host, 1511
authentication_ldap_sasl_server_port, 1511
authentication_ldap_sasl_tls, 1511
authentication_ldap_sasl_user_search_attr, 1512
authentication_ldap_simple_auth_method_name, 1512
authentication_ldap_simple_bind_base_dn, 1513
authentication_ldap_simple_bind_root_dn, 1513
authentication_ldap_simple_bind_root_pwd, 1514
authentication_ldap_simple_ca_path, 1514
authentication_ldap_simple_group_search_attr, 1515
authentication_ldap_simple_group_search_filter, 1515
authentication_ldap_simple_init_pool_size, 1516
authentication_ldap_simple_log_status, 1516
authentication_ldap_simple_max_pool_size, 1517
authentication_ldap_simple_referral, 1517

5788

authentication_ldap_simple_server_host, 1518
authentication_ldap_simple_server_port, 1519
authentication_ldap_simple_tls, 1520
authentication_ldap_simple_user_search_attr, 1520
authentication_policy, 874, 1379
authentication_windows_log_level, 877
authentication_windows_use_principal_name, 877
autocommit, 878
automatic_sp_privileges, 878
auto_generate_certs, 879
auto_increment_increment, 3673
auto_increment_offset, 3675
avoid_temporal_upgrade, 879
back_log, 880
basedir, 880
big_tables, 881
bind_address, 881
binlog_cache_size, 3744
binlog_checksum, 3745
binlog_direct_non_transactional_updates, 3745
binlog_encryption, 3746
binlog_error_action, 3747
binlog_expire_logs_auto_purge, 3748
binlog_expire_logs_seconds, 3747
binlog_format, 3749
binlog_group_commit_sync_delay, 3751
binlog_group_commit_sync_no_delay_count, 3751
binlog_gtid_simple_recovery, 3771
binlog_max_flush_queue_time, 3752
binlog_order_commits, 3752
binlog_rotate_encryption_master_key_at_startup, 3753
binlog_rows_query_log_events, 3757
binlog_row_event_max_size, 3753
binlog_row_image, 3754
binlog_row_metadata, 3755
binlog_row_value_options, 3756
binlog_stmt_cache_size, 3757
binlog_transaction_compression, 3758
binlog_transaction_compression_level_zstd, 3759
binlog_transaction_dependency_history_size, 3761
binlog_transaction_dependency_tracking, 3759
block_encryption_mode, 883
build_id, 883
bulk_insert_buffer_size, 884, 3582
caching_sha2_password_auto_generate_rsa_keys, 885
caching_sha2_password_digest_rounds, 884
caching_sha2_password_private_key_path, 885
caching_sha2_password_public_key_path, 886
character_sets_dir, 889
character_set_client, 886
character_set_connection, 887
character_set_database, 887
character_set_filesystem, 887
character_set_results, 888
character_set_server, 888
character_set_system, 888
check_proxy_users, 889, 1392
clone_autotune_concurrency, 1250

5789

clone_block_ddl, 1251
clone_buffer_size, 1250
clone_ddl_timeout, 1252
clone_delay_after_data_drop, 1251
clone_donor_timeout_after_network_failure, 1252
clone_enable_compression, 1253
clone_max_concurrency, 1253
clone_max_data_bandwidth, 1253
clone_max_network_bandwidth, 1254
clone_ssl_ca, 1254
clone_ssl_cert, 1255
clone_ssl_key, 1255
clone_valid_donor_list, 1255
collation_connection, 889
collation_database, 890
collation_server, 890
completion_type, 890
component_scheduler.enabled, 891
concurrent_insert, 892
connection_control_failed_connections_threshold, 1525
connection_control_max_connection_delay, 1525
connection_control_min_connection_delay, 1526
connection_memory_chunk_size, 893
connection_memory_limit, 893
connect_timeout, 892
core_file, 894
create_admin_listener_thread, 894
cte_max_recursion_depth, 894
daemon_memcached_enable_binlog, 3400
daemon_memcached_engine_lib_name, 3401
daemon_memcached_engine_lib_path, 3401
daemon_memcached_option, 3401
daemon_memcached_r_batch_size, 3402
daemon_memcached_w_batch_size, 3402
datadir, 895
debug, 895
debug_sync, 896
default_authentication_plugin, 896, 1379
default_collation_for_utf8mb4, 897
default_password_lifetime, 898
default_storage_engine, 899
default_table_encryption, 899
default_tmp_storage_engine, 900
default_week_format, 900
delayed_insert_limit, 901
delayed_insert_timeout, 902
delayed_queue_size, 902
delay_key_write, 900, 3582
disabled_storage_engines, 902
disconnect_on_expired_password, 903
div_precision_increment, 904
dragnet.log_error_filter_rules, 904
end_markers_in_json, 906
enterprise_encryption.maximum_rsa_key_size, 905
enterprise_encryption.rsa_support_legacy_padding, 906
error_count, 907
event_scheduler, 907
expire_logs_days, 3761

5790

explain_format, 908
explicit_defaults_for_timestamp, 909
external_user, 910
flush, 910
flush_time, 911
foreign_key_checks, 911
ft_boolean_syntax, 912
ft_max_word_len, 912
ft_min_word_len, 913
ft_query_expansion_limit, 913
ft_stopword_file, 913
general_log, 914
general_log_file, 914
generated_random_password_length, 914
global_connection_memory_limit, 915
global_connection_memory_tracking, 915
group_concat_max_len, 916
group_replication_advertise_recovery_endpoints, 4013
group_replication_allow_local_lower_version_join, 4014
group_replication_autorejoin_tries, 4016
group_replication_auto_increment_increment, 4015
group_replication_bootstrap_group, 4017
group_replication_clone_threshold, 4017
group_replication_communication_debug_options, 4018
group_replication_communication_max_message_size, 4019
group_replication_communication_stack, 4020
group_replication_components_stop_timeout, 4021
group_replication_compression_threshold, 4022
group_replication_consistency, 4022
group_replication_enforce_update_everywhere_checks, 4024
group_replication_exit_state_action, 4025
group_replication_flow_control_applier_threshold, 4026
group_replication_flow_control_certifier_threshold, 4027
group_replication_flow_control_hold_percent, 4027
group_replication_flow_control_max_quota, 4027
group_replication_flow_control_member_quota_percent, 4028
group_replication_flow_control_min_quota, 4028
group_replication_flow_control_min_recovery_quota, 4029
group_replication_flow_control_mode, 4029
group_replication_flow_control_period, 4030
group_replication_flow_control_release_percent, 4030
group_replication_force_members, 4030
group_replication_group_name, 4031
group_replication_group_seeds, 4032
group_replication_gtid_assignment_block_size, 4032
group_replication_ip_allowlist, 4033
group_replication_ip_whitelist, 4035
group_replication_local_address, 4035
group_replication_member_expel_timeout, 4037
group_replication_member_weight, 4038
group_replication_message_cache_size, 4038
group_replication_paxos_single_leader, 4039
group_replication_poll_spin_loops, 4040
group_replication_recovery_complete_at, 4041
group_replication_recovery_compression_algorithms, 4041
group_replication_recovery_get_public_key, 4042
group_replication_recovery_public_key_path, 4042
group_replication_recovery_reconnect_interval, 4043

5791

group_replication_recovery_retry_count, 4043
group_replication_recovery_ssl_ca, 4044
group_replication_recovery_ssl_capath, 4044
group_replication_recovery_ssl_cert, 4045
group_replication_recovery_ssl_cipher, 4045
group_replication_recovery_ssl_crl, 4045
group_replication_recovery_ssl_crlpath, 4046
group_replication_recovery_ssl_key, 4046
group_replication_recovery_ssl_verify_server_cert, 4047
group_replication_recovery_tls_ciphersuites, 4047
group_replication_recovery_tls_version, 4048
group_replication_recovery_use_ssl, 4049
group_replication_recovery_zstd_compression_level, 4049
group_replication_single_primary_mode, 4050
group_replication_ssl_mode, 4050
group_replication_start_on_boot, 4051
group_replication_tls_source, 4052
group_replication_transaction_size_limit, 4052
group_replication_unreachable_majority_timeout, 4053
group_replication_view_change_uuid, 4053
gtid_executed, 3773
gtid_executed_compression_period, 3774
gtid_purged, 3776
have_compress, 916
have_dynamic_loading, 916
have_geometry, 916
have_openssl, 916
have_profiling, 916
have_query_cache, 916
have_rtree_keys, 916
have_ssl, 917
have_statement_timeout, 917
have_symlink, 917
histogram_generation_max_mem_size, 917
hostname, 919
identity, 919
immediate_server_version, 3676
information_schema_stats_expiry, 920
init_connect, 919
init_file, 921
init_replica, 3697
init_slave, 3697
innodb_adaptive_flushing, 3403
innodb_adaptive_flushing_lwm, 3403
innodb_adaptive_hash_index, 3403
innodb_adaptive_hash_index_parts, 3404
innodb_adaptive_max_sleep_delay, 3404
innodb_api_bk_commit_interval, 3405
innodb_api_disable_rowlock, 3405
innodb_api_enable_binlog, 3406
innodb_api_enable_mdl, 3406
innodb_api_trx_level, 3406
innodb_autoextend_increment, 3407
innodb_autoinc_lock_mode, 3407
innodb_background_drop_list_empty, 3408
innodb_buffer_pool_chunk_size, 3408
innodb_buffer_pool_debug, 3409
innodb_buffer_pool_dump_at_shutdown, 3409

5792

innodb_buffer_pool_dump_now, 3410
innodb_buffer_pool_dump_pct, 3410
innodb_buffer_pool_filename, 3410
innodb_buffer_pool_instances, 3411
innodb_buffer_pool_in_core_file, 3411
innodb_buffer_pool_load_abort, 3412
innodb_buffer_pool_load_at_startup, 3412
innodb_buffer_pool_load_now, 3413
innodb_buffer_pool_size, 3413
innodb_change_buffering, 3415
innodb_change_buffering_debug, 3415
innodb_change_buffer_max_size, 3414
innodb_checkpoint_disabled, 3416
innodb_checksum_algorithm, 3416
innodb_cmp_per_index_enabled, 3418
innodb_commit_concurrency, 3418
innodb_compression_failure_threshold_pct, 3419
innodb_compression_level, 3419
innodb_compression_pad_pct_max, 3420
innodb_compress_debug, 3418
innodb_concurrency_tickets, 3420
innodb_data_file_path, 3421
innodb_data_home_dir, 3421
innodb_ddl_buffer_size, 3422
innodb_ddl_log_crash_reset_debug, 3422
innodb_ddl_threads, 3422
innodb_deadlock_detect, 3423
innodb_default_row_format, 3423
innodb_directories, 3424
innodb_disable_sort_file_cache, 3425
innodb_doublewrite, 3425
innodb_doublewrite_batch_size, 3426
innodb_doublewrite_dir, 3426
innodb_doublewrite_files, 3426
innodb_doublewrite_pages, 3427
innodb_extend_and_initialize, 3427
innodb_fast_shutdown, 3428
innodb_file_per_table, 3428
innodb_fill_factor, 3429
innodb_fil_make_page_dirty_debug, 3428
innodb_flushing_avg_loops, 3434
innodb_flush_log_at_timeout, 3430
innodb_flush_log_at_trx_commit, 3430
innodb_flush_method, 3431
innodb_flush_neighbors, 3433
innodb_flush_sync, 3434
innodb_force_load_corrupted, 3434
innodb_force_recovery, 3435
innodb_fsync_threshold, 3435
innodb_ft_aux_table, 3436
innodb_ft_cache_size, 3436
innodb_ft_enable_diag_print, 3437
innodb_ft_enable_stopword, 3437
innodb_ft_max_token_size, 3438
innodb_ft_min_token_size, 3438
innodb_ft_num_word_optimize, 3438
innodb_ft_result_cache_limit, 3439
innodb_ft_server_stopword_table, 3439

5793

innodb_ft_sort_pll_degree, 3440
innodb_ft_total_cache_size, 3440
innodb_ft_user_stopword_table, 3441
innodb_idle_flush_pct, 3441
innodb_io_capacity, 3441
innodb_io_capacity_max, 3442
innodb_limit_optimistic_insert_debug, 3442
innodb_lock_wait_timeout, 3443
innodb_log_buffer_size, 3443
innodb_log_checkpoint_fuzzy_now, 3444
innodb_log_checkpoint_now, 3444
innodb_log_checksums, 3444
innodb_log_compressed_pages, 3445
innodb_log_files_in_group, 3446
innodb_log_file_size, 3445
innodb_log_group_home_dir, 3447
innodb_log_spin_cpu_abs_lwm, 3447
innodb_log_spin_cpu_pct_hwm, 3447
innodb_log_wait_for_flush_spin_hwm, 3448
innodb_log_writer_threads, 3449
innodb_log_write_ahead_size, 3448
innodb_lru_scan_depth, 3449
innodb_max_dirty_pages_pct, 3450
innodb_max_dirty_pages_pct_lwm, 3450
innodb_max_purge_lag, 3451
innodb_max_purge_lag_delay, 3451
innodb_max_undo_log_size, 3451
innodb_merge_threshold_set_all_debug, 3452
innodb_monitor_disable, 3452
innodb_monitor_enable, 3452
innodb_monitor_reset, 3453
innodb_monitor_reset_all, 3453
innodb_numa_interleave, 3454
innodb_old_blocks_pct, 3454
innodb_old_blocks_time, 3454
innodb_online_alter_log_max_size, 3455
innodb_open_files, 3455
innodb_optimize_fulltext_only, 3456
innodb_page_cleaners, 3457
innodb_page_size, 3458
innodb_parallel_read_threads, 3459
innodb_print_ddl_logs, 3460
innodb_purge_batch_size, 3460
innodb_purge_rseg_truncate_frequency, 3461
innodb_purge_threads, 3460
innodb_random_read_ahead, 3461
innodb_read_ahead_threshold, 3461
innodb_read_io_threads, 3462
innodb_read_only, 3463
innodb_redo_log_archive_dirs, 3463
innodb_redo_log_capacity, 3464
innodb_redo_log_encrypt, 3465
innodb_replication_delay, 3465
innodb_rollback_on_timeout, 3465
innodb_rollback_segments, 3465
innodb_saved_page_number_debug, 3466
innodb_segment_reserve_factor, 3466
innodb_sort_buffer_size, 3467

5794

innodb_spin_wait_delay, 3467
innodb_spin_wait_pause_multiplier, 3468
innodb_stats_auto_recalc, 3468
innodb_stats_include_delete_marked, 3320, 3468
innodb_stats_method, 3469
innodb_stats_on_metadata, 3469
innodb_stats_persistent_sample_pages, 3470
innodb_stats_transient_sample_pages, 3471
innodb_status_output, 3471
innodb_status_output_locks, 3472
innodb_strict_mode, 3472
innodb_sync_array_size, 3473
innodb_sync_debug, 3473
innodb_sync_spin_loops, 3473
innodb_table_locks, 3474
innodb_temp_data_file_path, 3474
innodb_temp_tablespaces_dir, 3475
innodb_thread_concurrency, 3476
innodb_thread_sleep_delay, 3477
innodb_tmpdir, 3477
innodb_trx_purge_view_update_only_debug, 3478
innodb_trx_rseg_n_slots_debug, 3478
innodb_undo_directory, 3479
innodb_undo_log_encrypt, 3479
innodb_undo_log_truncate, 3480
innodb_undo_tablespaces, 3480
innodb_use_fdatasync, 3480
innodb_use_native_aio, 3481
innodb_validate_tablespace_paths, 3481
innodb_version, 3482
innodb_write_io_threads, 3482
insert_id, 922
interactive_timeout, 922
internal_tmp_disk_storage_engine, 922
internal_tmp_mem_storage_engine, 923
join_buffer_size, 923
keep_files_on_create, 924
keyring_aws_cmk_id, 1594
keyring_aws_conf_file, 1595
keyring_aws_data_file, 1595
keyring_aws_region, 1595
keyring_encrypted_file_data, 1597
keyring_encrypted_file_password, 1599
keyring_file_data, 1599
keyring_hashicorp_auth_path, 1601
keyring_hashicorp_caching, 1601
keyring_hashicorp_ca_path, 1601
keyring_hashicorp_commit_auth_path, 1602
keyring_hashicorp_commit_caching, 1602
keyring_hashicorp_commit_ca_path, 1602
keyring_hashicorp_commit_role_id, 1603
keyring_hashicorp_commit_server_url, 1603
keyring_hashicorp_commit_store_path, 1603
keyring_hashicorp_role_id, 1603
keyring_hashicorp_secret_id, 1604
keyring_hashicorp_server_url, 1604
keyring_hashicorp_store_path, 1604
keyring_oci_ca_certificate, 1605

5795

keyring_oci_compartment, 1605
keyring_oci_encryption_endpoint, 1605
keyring_oci_key_file, 1606
keyring_oci_key_fingerprint, 1606
keyring_oci_management_endpoint, 1607
keyring_oci_master_key, 1607
keyring_oci_secrets_endpoint, 1608
keyring_oci_tenancy, 1608
keyring_oci_user, 1609
keyring_oci_vaults_endpoint, 1609
keyring_oci_virtual_vault, 1609
keyring_okv_conf_dir, 1610
keyring_operations, 1610
key_buffer_size, 925
key_cache_age_threshold, 926
key_cache_block_size, 926
key_cache_division_limit, 927
large_files_support, 927
large_pages, 927
large_page_size, 928
last_insert_id, 928
lc_messages, 928
lc_messages_dir, 928
lc_time_names, 929
license, 929
local_infile, 929, 1299
locked_in_memory, 930
lock_order, 1281
lock_order_debug_loop, 1281
lock_order_debug_missing_arc, 1281
lock_order_debug_missing_key, 1282
lock_order_debug_missing_unlock, 1282
lock_order_dependencies, 1282
lock_order_extra_dependencies, 1283
lock_order_output_directory, 1283
lock_order_print_txt, 1283
lock_order_trace_loop, 1284
lock_order_trace_missing_arc, 1284
lock_order_trace_missing_key, 1284
lock_order_trace_missing_unlock, 1284
lock_wait_timeout, 930
log_bin, 3762
log_bin_basename, 3763
log_bin_index, 3763
log_bin_trust_function_creators, 3763
log_bin_use_v1_row_events, 3764
log_error, 930
log_error_services, 931
log_error_suppression_list, 931
log_error_verbosity, 932
log_output, 932
log_queries_not_using_indexes, 933
log_raw, 933
log_replica_updates, 3764
log_slave_updates, 3765
log_slow_extra, 934
log_slow_replica_statements, 3698
log_slow_slave_statements, 3699

5796

log_statements_unsafe_for_binlog, 3765
log_syslog, 934
log_syslog_facility, 934
log_syslog_include_pid, 935
log_syslog_tag, 935
log_throttle_queries_not_using_indexes, 936
log_timestamps, 935
long_query_time, 936
lower_case_file_system, 937
lower_case_table_names, 937
low_priority_updates, 937
mandatory_roles, 938
master_info_repository, 3699
master_verify_checksum, 3766
max_allowed_packet, 939
max_binlog_cache_size, 3766
max_binlog_size, 3767
max_binlog_stmt_cache_size, 3767
max_connections, 940
max_connect_errors, 940
max_delayed_threads, 941
max_digest_length, 941
max_error_count, 942
max_execution_time, 942
max_heap_table_size, 943
max_insert_delayed_threads, 943
max_join_size, 498, 944
max_length_for_sort_data, 944
max_points_in_geometry, 945
max_prepared_stmt_count, 945
max_relay_log_size, 3700
max_seeks_for_key, 945
max_sort_length, 946
max_sp_recursion_depth, 946
max_user_connections, 947
max_write_lock_count, 947
mecab_rc_file, 948
metadata_locks_cache_size, 948
metadata_locks_hash_instances, 948
min_examined_row_limit, 949
myisam_data_pointer_size, 949
myisam_max_sort_file_size, 949, 3582
myisam_mmap_size, 950
myisam_recover_options, 950, 3582
myisam_repair_threads, 951
myisam_sort_buffer_size, 952, 3582
myisam_stats_method, 952
myisam_use_mmap, 953
mysqlx_bind_address, 4111
mysqlx_compression_algorithms, 4113
mysqlx_connect_timeout, 4114
mysqlx_deflate_default_compression_level, 4114
mysqlx_deflate_max_client_compression_level, 4114
mysqlx_document_id_unique_prefix, 4115
mysqlx_enable_hello_notice, 4115
mysqlx_idle_worker_thread_timeout, 4115
mysqlx_interactive_timeout, 4116
mysqlx_lz4_default_compression_level, 4116

5797

mysqlx_lz4_max_client_compression_level, 4116
mysqlx_max_allowed_packet, 4117
mysqlx_max_connections, 4117
mysqlx_min_worker_threads, 4117
mysqlx_port, 4118
mysqlx_port_open_timeout, 4118
mysqlx_read_timeout, 4118
mysqlx_socket, 4119
mysqlx_ssl_ca, 4119
mysqlx_ssl_capath, 4120
mysqlx_ssl_cert, 4120
mysqlx_ssl_cipher, 4120
mysqlx_ssl_crl, 4121
mysqlx_ssl_crlpath, 4121
mysqlx_ssl_key, 4121
mysqlx_wait_timeout, 4121
mysqlx_write_timeout, 4122
mysqlx_zstd_default_compression_level, 4122
mysqlx_zstd_max_client_compression_level, 4123
mysql_firewall_mode, 1726
mysql_firewall_trace, 1726
mysql_native_password_proxy_users, 953, 1392
named_pipe, 953
named_pipe_full_access_group, 954
ndbinfo_database, 4418
ndbinfo_max_bytes, 4418
ndbinfo_max_rows, 4418
ndbinfo_offline, 4419
ndbinfo_show_hidden, 4419
ndbinfo_table_prefix, 4419
ndbinfo_version, 4420, 4420
ndb_autoincrement_prefetch_sz, 4394
ndb_clear_apply_status, 4395
ndb_conflict_role, 4395
ndb_data_node_neighbour, 4395
ndb_dbg_check_shares, 4396
ndb_default_column_format, 4396
ndb_deferred_constraints, 4397
ndb_distribution, 4397
ndb_eventbuffer_free_percent, 4397
ndb_eventbuffer_max_alloc, 4398
ndb_extra_logging, 4398
ndb_force_send, 4398
ndb_fully_replicated, 4399
ndb_index_stat_enable, 4399
ndb_index_stat_option, 4399
ndb_join_pushdown, 4401
ndb_log_apply_status, 4403
ndb_log_bin, 4403
ndb_log_binlog_index, 4403
ndb_log_cache_size, 4403
ndb_log_empty_epochs, 4404
ndb_log_empty_update, 4404
ndb_log_exclusive_reads, 4404
ndb_log_orig, 4405
ndb_log_transaction_compression, 4405
ndb_log_transaction_compression_level_zstd, 4406
ndb_log_transaction_id, 4405

5798

ndb_metadata_check, 4407
ndb_metadata_check_interval, 4407
ndb_metadata_sync, 4407
ndb_optimized_node_selection, 4408
ndb_read_backup, 4409
ndb_recv_thread_activation_threshold, 4409
ndb_recv_thread_cpu_mask, 4409
ndb_replica_batch_size, 4415
ndb_replica_blob_write_batch_bytes, 4416
ndb_report_thresh_binlog_epoch_slip, 4410
ndb_report_thresh_binlog_mem_usage, 4410
ndb_row_checksum, 4411
ndb_schema_dist_lock_wait_timeout, 4411
ndb_schema_dist_timeout, 4411
ndb_schema_dist_upgrade_allowed, 4412
ndb_show_foreign_key_mock_tables, 4412
ndb_slave_conflict_role, 4412
ndb_table_no_logging, 4413
ndb_table_temporary, 4413
ndb_use_copying_alter_table, 4413
ndb_use_exact_count, 4414
ndb_use_transactions, 4414
ndb_version, 4414
ndb_version_string, 4414
net_buffer_length, 954
net_read_timeout, 955
net_retry_count, 955
net_write_timeout, 955
new, 956
ngram_token_size, 956
offline_mode, 957
old, 957
old_alter_table, 958
open_files_limit, 958
optimizer_prune_level, 959
optimizer_search_depth, 960
optimizer_switch, 960
optimizer_trace, 964
optimizer_trace_features, 964
optimizer_trace_limit, 965
optimizer_trace_max_mem_size, 965
optimizer_trace_offset, 965
original_commit_timestamp, 3768
original_server_version, 3676
parser_max_mem_size, 966
partial_revokes, 966
password_history, 967
password_require_current, 968
password_reuse_interval, 968
performance_schema, 5328
performance_schema_accounts_size, 5328
performance_schema_digests_size, 5329
performance_schema_error_size, 5329
performance_schema_events_stages_history_long_size, 5329
performance_schema_events_stages_history_size, 5330
performance_schema_events_statements_history_long_size, 5330
performance_schema_events_statements_history_size, 5330
performance_schema_events_transactions_history_long_size, 5331

5799

performance_schema_events_transactions_history_size, 5331
performance_schema_events_waits_history_long_size, 5332
performance_schema_events_waits_history_size, 5332
performance_schema_hosts_size, 5332
performance_schema_max_cond_classes, 5333
performance_schema_max_cond_instances, 5333
performance_schema_max_digest_length, 5333
performance_schema_max_digest_sample_age, 5334
performance_schema_max_file_classes, 5334
performance_schema_max_file_handles, 5335
performance_schema_max_file_instances, 5335
performance_schema_max_index_stat, 5336
performance_schema_max_memory_classes, 5336
performance_schema_max_metadata_locks, 5336
performance_schema_max_mutex_classes, 5337
performance_schema_max_mutex_instances, 5337
performance_schema_max_prepared_statements_instances, 5337
performance_schema_max_program_instances, 5338
performance_schema_max_rwlock_classes, 5338
performance_schema_max_rwlock_instances, 5339
performance_schema_max_socket_classes, 5339
performance_schema_max_socket_instances, 5339
performance_schema_max_sql_text_length, 5340
performance_schema_max_stage_classes, 5340
performance_schema_max_statement_classes, 5341
performance_schema_max_statement_stack, 5341
performance_schema_max_table_handles, 5342
performance_schema_max_table_instances, 5342
performance_schema_max_table_lock_stat, 5342
performance_schema_max_thread_classes, 5343
performance_schema_max_thread_instances, 5343
performance_schema_session_connect_attrs_size, 5344
performance_schema_setup_actors_size, 5344
performance_schema_setup_objects_size, 5345
performance_schema_show_processlist, 5345
performance_schema_users_size, 5346
persisted_globals_load, 968, 1055
persist_only_admin_x509_subject, 969
persist_sensitive_variables_in_plaintext, 969
pid_file, 970
plugin_dir, 970
port, 971
preload_buffer_size, 971
print_identified_with_as_hex, 971
profiling, 972
profiling_history_size, 972
protocol_compression_algorithms, 972
protocol_version, 973
proxy_user, 973
pseudo_slave_mode, 973, 974
pseudo_thread_id, 975
query_alloc_block_size, 975
query_prealloc_size, 976
rand_seed1, 976
rand_seed2, 977
range_alloc_block_size, 977
range_optimizer_max_mem_size, 977
rbr_exec_mode, 978

5800

read_buffer_size, 978
read_only, 979
read_rnd_buffer_size, 980
regexp_stack_limit, 981
regexp_time_limit, 981
relay_log, 3700
relay_log_basename, 3701
relay_log_index, 3701
relay_log_info_file, 3702
relay_log_info_repository, 3702
relay_log_purge, 3703
relay_log_recovery, 3703
relay_log_space_limit, 3704
replication_optimize_for_static_plugin_config, 3715
replication_sender_observe_commit_only, 3716
replica_allow_batching, 4415
replica_checkpoint_group, 3704
replica_checkpoint_period, 3705
replica_compressed_protocol, 3706
replica_exec_mode, 3706
replica_load_tmpdir, 3707
replica_max_allowed_packet, 3708
replica_net_timeout, 3708
replica_parallel_type, 3709
replica_parallel_workers, 3710
replica_pending_jobs_size_max, 3711
replica_preserve_commit_order, 3712
replica_skip_errors, 3732
replica_sql_verify_checksum, 3714
replica_transaction_retries, 3714
replica_type_conversions, 3715
report_host, 3716
report_password, 3717
report_port, 3717
report_user, 3717
require_row_format, 981
require_secure_transport, 982
resultset_metadata, 982
rewriter_enabled, 1216
rewriter_enabled_for_threads_without_privilege_checks, 1216
rewriter_verbose, 1217
rpl_read_size, 3718
rpl_semi_sync_master_enabled, 3677
rpl_semi_sync_master_timeout, 3677
rpl_semi_sync_master_trace_level, 3678
rpl_semi_sync_master_wait_for_slave_count, 3678
rpl_semi_sync_master_wait_no_slave, 3679
rpl_semi_sync_master_wait_point, 3679
rpl_semi_sync_replica_enabled, 3718
rpl_semi_sync_replica_trace_level, 3719
rpl_semi_sync_slave_enabled, 3719
rpl_semi_sync_slave_trace_level, 3720
rpl_semi_sync_source_enabled, 3680
rpl_semi_sync_source_timeout, 3681
rpl_semi_sync_source_trace_level, 3681
rpl_semi_sync_source_wait_for_replica_count, 3682
rpl_semi_sync_source_wait_no_replica, 3683
rpl_semi_sync_source_wait_point, 3683

5801

rpl_stop_replica_timeout, 3720
rpl_stop_slave_timeout, 3721
schema_definition_cache, 983
secondary_engine_cost_threshold, 983
secure_file_priv, 983
select_into_buffer_size, 984
select_into_disk_sync, 985
select_into_disk_sync_delay, 985
server_id, 3662
server_id_bits, 4416, 4416
session_track_gtids, 986, 1131
session_track_schema, 986, 1131
session_track_state_change, 987, 1131
session_track_system_variables, 988, 1131
session_track_transaction_info, 988
sha256_password_auto_generate_rsa_keys, 989
sha256_password_private_key_path, 990
sha256_password_proxy_users, 990, 1392
sha256_password_public_key_path, 990
shared_memory, 991
shared_memory_base_name, 991
show_create_table_skip_secondary_engine, 991
show_create_table_verbosity, 992
show_gipk_in_create_table_and_information_schema, 992
show_old_temporals, 993
skip_external_locking, 993
skip_name_resolve, 994
skip_networking, 994
skip_replica_start, 3722
skip_show_database, 995
skip_slave_start, 3722
slave_allow_batching, 4417
slave_checkpoint_group, 3722
slave_checkpoint_period, 3723
slave_compressed_protocol, 3724
slave_exec_mode, 3724
slave_load_tmpdir, 3725
slave_max_allowed_packet, 3726
slave_net_timeout, 3726
slave_parallel_type, 3727
slave_parallel_workers, 3728
slave_pending_jobs_size_max, 3729
slave_preserve_commit_order, 3730
slave_rows_search_algorithms, 3731
slave_skip_errors, 3732
slave_sql_verify_checksum, 3733
slave_transaction_retries, 3733
slave_type_conversions, 3734
slow_launch_time, 995
slow_query_log, 995
slow_query_log_file, 996
socket, 996
sort_buffer_size, 996
source_verify_checksum, 3768
sql_auto_is_null, 997
sql_big_selects, 998
sql_buffer_result, 998
sql_generate_invisible_primary_key, 998

5802

sql_log_bin, 3769
sql_log_off, 999
sql_mode, 999
sql_notes, 1000
sql_quote_show_create, 1000
sql_replica_skip_counter, 3735
sql_require_primary_key, 1001
sql_safe_updates, 498, 1002
sql_select_limit, 498, 1002
sql_slave_skip_counter, 3735
sql_warnings, 1002
ssl_ca, 1003
ssl_capath, 1003
ssl_cert, 1004
ssl_cipher, 1004
ssl_crl, 1005
ssl_crlpath, 1005
ssl_fips_mode, 1006
ssl_key, 1006
ssl_session_cache_mode, 1007
ssl_session_cache_timeout, 1007
statement_id, 1008
stored_program_cache, 1008
stored_program_definition_cache, 1009
super_read_only, 1009
sync_binlog, 3769
sync_master_info, 3736
sync_relay_log, 3736
sync_relay_log_info, 3737
sync_source_info, 3737
syseventlog.facility, 1010
syseventlog.include_pid, 1010
syseventlog.tag, 1011
system_time_zone, 1011, 1120
tablespace_definition_cache, 1014
table_definition_cache, 1012
table_encryption_privilege_check, 1013
table_open_cache, 1013
table_open_cache_instances, 1014
temptable_max_mmap, 1014
temptable_max_ram, 1015
temptable_use_mmap, 1015
terminology_use_previous, 3738
thread_cache_size, 1016
thread_handling, 1016
thread_pool_algorithm, 1017
thread_pool_dedicated_listeners, 1017
thread_pool_high_priority_connection, 1017
thread_pool_max_active_query_threads, 1018
thread_pool_max_transactions_limit, 1018
thread_pool_max_unused_threads, 1019
thread_pool_prio_kickup_timer, 1020
thread_pool_query_threads_per_group, 1020
thread_pool_size, 1021
thread_pool_stall_limit, 1021
thread_pool_transaction_delay, 1021
thread_stack, 1022
timestamp, 1023

5803

time_zone, 1022, 1121
tls_ciphersuites, 1023
tls_version, 1024
tmpdir, 1025
tmp_table_size, 1025
transaction_alloc_block_size, 1026
transaction_allow_batching, 4417
transaction_isolation, 1026
transaction_prealloc_size, 1027
transaction_read_only, 1028
transaction_write_set_extraction, 3770
unique_checks, 1029
updatable_views_with_limit, 1030
use_secondary_engine, 1030
validate_password.changed_characters_percentage, 1530
validate_password.check_user_name, 1530
validate_password.dictionary_file, 1531
validate_password.length, 1532
validate_password.mixed_case_count, 1532
validate_password.number_count, 1532
validate_password.policy, 1533
validate_password.special_char_count, 1533
validate_password_check_user_name, 1535
validate_password_dictionary_file, 1535
validate_password_length, 1535
validate_password_mixed_case_count, 1536
validate_password_number_count, 1536
validate_password_policy, 1536
validate_password_special_char_count, 1537
version, 1030
version_comment, 1031
version_compile_machine, 1031
version_compile_os, 1031
version_compile_zlib, 1031
version_tokens_session, 1229
version_tokens_session_number, 1230
wait_timeout, 1031
warning_count, 1032
windowing_use_high_precision, 1032
xa_detach_on_prepare, 1032

system variables, 867, 1033, 3151
and replication, 3880
enforce_gtid_consistency, 3772
Group Replication, 4011
gtid_mode, 3774
gtid_next, 3775
gtid_owned, 3776
hintable, 1980
mysqld, 747
nonpersistible, 1059
persist-restricted, 1059
privileges required, 1035
SET_VAR optimizer hint, 1980

system-command option
mysql, 483

systemd
CMake SYSTEMD_PID_DIR option, 248
CMake SYSTEMD_SERVICE_NAME option, 248

5804

CMake WITH_SYSTEMD option, 261
managing mysqld, 217
mysqld daemonize option, 844
mysqld exit codes, 1135

SYSTEMD_PID_DIR option
CMake, 248

SYSTEMD_SERVICE_NAME option
CMake, 248

system_time_zone system variable, 1011, 1120
SYSTEM_USER privilege, 1320
SYSTEM_USER privileges, 1352
SYSTEM_USER(), 2472
SYSTEM_VARIABLES_ADMIN privilege, 1321
sys_config table

sys schema, 5365
sys_get_config() function

sys schema, 5435

T
tab (\t), 2050, 2550, 2837
tab option

mysqldump, 561
ndb_restore, 4606

table, 6398
changing, 2669, 2680, 5536
deleting, 2803
rebuilding, 323
repair, 323
row size, 2270

TABLE, 2890
table aliases, 2856
table aliases and DELETE

new features, 30
table cache, 1914
table comment options (NDB), 2779
table description

myisamchk, 669
table encryption

new features, 12
table is full, 881, 5518
table lock, 6399
table names

case sensitivity, 96, 2065
table option

mysql, 483
ndb_desc, 4528
ndb_import, 4554

table pullout
semijoin strategy, 1876

table reference
INFORMATION_SCHEMA, 5009
Performance Schema, 5167

table scan, 3303
TABLE statement

new features, 36
with INTO, 2861

table type, 6399
choosing, 3575

5805

table value constructors
TABLE, 2890
VALUES statement, 2897

table-id option
ndb_print_backup_file, 4575

table-level locking, 1998
tables

BLACKHOLE, 3595
checking, 664
cloning, 2753
closing, 1914
compressed, 677
compressed format, 3585
const, 1944
constant, 1824
copying, 2754
counting rows, 346
creating, 335
CSV, 3592
defragment, 3584
defragmenting, 1818, 3084
deleting rows, 5533
displaying, 613
displaying status, 3146
dumping, 532, 586
dynamic, 3584
error checking, 1814
EXAMPLE, 3607
FEDERATED, 3602
flush, 503
fragmentation, 3084
HEAP, 3587
importing, 3206
improving performance, 1911
information, 669
information about, 350
InnoDB, 3186
loading data, 336
maintenance, 516
maintenance schedule, 1817
maximum size, 1920
MEMORY, 3587
MERGE, 3597
merging, 3597
multiple, 348
MyISAM, 3579
names, 2061
open, 1914
opening, 1914
optimizing, 1817
partitioning, 3597
repair, 516
repairing, 1815
retrieving data, 337
selecting columns, 339
selecting rows, 338
sorting rows, 340
symbolic links, 2008

5806

system, 1944
TEMPORARY, 2752
too many, 1916

TABLES
INFORMATION_SCHEMA table, 5061

tables option
mysqlcheck, 530
mysqldump, 565

tables table
data dictionary table, 1137

tablespace, 3236, 6399
tablespace encryption

monitoring, 3390
TABLESPACES

INFORMATION_SCHEMA table, 5065
tablespaces table

data dictionary table, 1137
TABLESPACES_EXTENSIONS

INFORMATION_SCHEMA table, 5066
tablespace_definition_cache system variable, 1014
tablespace_files table

data dictionary table, 1137
TABLES_EXTENSIONS

INFORMATION_SCHEMA table, 5065
tables_priv table

system table, 1139, 1325
TABLE_CONSTRAINTS

INFORMATION_SCHEMA table, 5066
TABLE_CONSTRAINTS_EXTENSIONS

INFORMATION_SCHEMA table, 5067
table_definition_cache system variable, 1012
table_distribution_status

ndbinfo table, 4815
TABLE_ENCRYPTION_ADMIN privilege, 1321
table_encryption_privilege_check variable, 1013
table_exists() procedure

sys schema, 5424
table_fragments

ndbinfo table, 4816
table_handles table

performance_schema, 5257
table_info

ndbinfo table, 4817
table_io_waits_summary_by_index_usage table

performance_schema, 5292
table_io_waits_summary_by_table table

performance_schema, 5291
Table_locks_immediate status variable, 1090
Table_locks_waited status variable, 1090
table_lock_waits_summary_by_table table

performance_schema, 5293
table_open_cache, 1914
table_open_cache system variable, 1013
Table_open_cache_hits status variable, 1090
table_open_cache_instances system variable, 1014
Table_open_cache_misses status variable, 1090
Table_open_cache_overflows status variable, 1090
table_partitions table

5807

data dictionary table, 1137
table_partition_values table

data dictionary table, 1137
TABLE_PRIVILEGES

INFORMATION_SCHEMA table, 5067
table_replicas

ndbinfo table, 4818
table_stats table

data dictionary table, 1137
TAN(), 2336
tar

problems on Solaris, 222, 222
tc-heuristic-recover option

mysqld, 863
Tcl, 6399
Tcl API, 5444
TCP parameters (NDB)

NodeIdServer, 4444
Proxy, 4445

tcp-ip option
mysqld_multi, 426

TCP/IP, 165, 170, 253, 254, 395, 419, 435, 477, 696, 714, 734, 738, 856, 1104, 1267, 1295, 1396, 5183, 5511
TcpSpinTime, 4447
TCP_MAXSEG_SIZE, 4447
TCP_RCV_BUF_SIZE, 4448
TCP_SND_BUF_SIZE, 4448
Tc_log_max_pages_used status variable, 1091
Tc_log_page_size status variable, 1091
Tc_log_page_waits status variable, 1091
tc_time_track_stats

ndbinfo table, 4819
tee command

mysql, 489
tee option

mysql, 483
TELEMETRY_LOG_ADMIN privilege, 1321
Telemetry_traces_supported status variable, 1091
tempdelay option

ndb_import, 4554
temperrors option

ndb_import, 4554
temporal interval syntax, 2110
temporal values

deprecated features, 52
JSON, 2253

temporary files, 5527
temporary table, 6399
TEMPORARY table privileges, 1309, 2753, 3059
temporary tables

and replication, 3873
internal, 1916
problems, 5536

TEMPORARY tables, 2752
renaming, 2807

temporary tablespace, 6400
temptable_max_mmap system variable, 1014
temptable_max_ram system variable, 1015
temptable_use_mmap

5808

deprecated features, 52
temptable_use_mmap system variable, 1015
terminal monitor

defined, 329
terminology_use_previous system variable, 3738
test option

myisampack, 679
testing

connection to the server, 1337
installation, 269
postinstallation, 268

test_plugin_server authentication plugin, 1500
TEXT

size, 2272
text collection, 6400
TEXT columns

default values, 2227
indexes, 2701, 2701
indexing, 1897, 2731

TEXT data type, 2223, 2227
text files

importing, 495, 572, 2831
text option

ndb_top, 4639
TGS, 6400
The keyring_oci plugin

deprecated features, 49
thread, 6400
thread cache, 1104
thread command

Binlog Dump, 2020
Change user, 2020
Close stmt, 2021
Connect, 2021
Connect Out, 2021
Create DB, 2021
Daemon, 2021
Debug, 2021
Delayed insert, 2021
Drop DB, 2021
Error, 2021
Execute, 2021
Fetch, 2021
Field List, 2021
Init DB, 2021
Kill, 2021
Long Data, 2021
Ping, 2021
Prepare, 2021
Processlist, 2022
Query, 2022
Quit, 2022
Refresh, 2022
Register Slave, 2022
Reset stmt, 2022
Set option, 2022
Shutdown, 2022
Sleep, 2022

5809

Statistics, 2022
Time, 2022

thread commands, 2020
thread observability

mysqld, 5176
thread pool plugin

resource groups, 1128
thread pool table reference

INFORMATION_SCHEMA, 5116
thread state

After create, 2022
altering table, 2022
Analyzing, 2023
Changing master, 2032
Changing replication source, 2033
Checking master version, 2030
checking permissions, 2023
Checking source version, 2030
Checking table, 2023
cleaning up, 2023
Clearing, 2034
closing tables, 2023
committing alter table to storage engine, 2023
Committing events to binlog, 2033
Connecting to master, 2030
Connecting to source, 2030
converting HEAP to ondisk, 2023
copy to tmp table, 2023
Copying to group table, 2023
Copying to tmp table, 2023
Copying to tmp table on disk, 2023
Creating index, 2023
Creating sort index, 2023
creating table, 2023
Creating tmp table, 2024
deleting from main table, 2024
deleting from reference tables, 2024
discard_or_import_tablespace, 2024
end, 2024
executing, 2024
Execution of init_command, 2024
Finished reading one binlog; switching to next binlog, 2029
freeing items, 2024
FULLTEXT initialization, 2024
init, 2024
Initialized, 2034
Killed, 2024
Killing slave, 2033
Locking system tables, 2024
logging slow query, 2025
login, 2025
Making temporary file (append) before replaying LOAD DATA INFILE, 2031
Making temporary file (create) before replaying LOAD DATA INFILE, 2031
manage keys, 2025
Master has sent all binlog to slave; waiting for more updates, 2029
Opening master dump table, 2033
Opening mysql.ndb_apply_status, 2033
Opening system tables, 2025

5810

Opening tables, 2025
optimizing, 2025
preparing, 2025
preparing for alter table, 2025
Processing events, 2033
Processing events from schema table, 2033
Purging old relay logs, 2025
query end, 2025
Queueing master event to the relay log, 2030
Queueing source event to the relay log, 2030
Reading event from the relay log, 2031
Reading master dump table data, 2033
Rebuilding the index on master dump table, 2033
Receiving from client, 2025
Reconnecting after a failed binlog dump request, 2030
Reconnecting after a failed master event read, 2030
Reconnecting after a failed source event read, 2030
Registering replica on source, 2030
Registering slave on master, 2030
Removing duplicates, 2025
removing tmp table, 2025
rename, 2025
rename result table, 2026
Reopen tables, 2026
Repair by sorting, 2026
Repair done, 2026
Repair with keycache, 2026
Replica has read all relay log; waiting for more updates, 2032
Requesting binlog dump, 2030
Rolling back, 2026
Saving state, 2026
Searching rows for update, 2026
Sending binlog event to replica, 2029
Sending binlog event to slave, 2029
Sending to client, 2026
setup, 2026
Shutting down, 2033
Slave has read all relay log; waiting for more updates, 2032
Sorting for group, 2026
Sorting for order, 2026
Sorting index, 2026
Sorting result, 2027
Source has sent all binlog to replica; waiting for more updates, 2029
starting, 2027
statistics, 2027
Syncing ndb table schema operation and binlog, 2033
System lock, 2027
update, 2027
Updating, 2027
updating main table, 2027
updating reference tables, 2027
User lock, 2027
User sleep, 2027
Waiting for allowed to take ndbcluster global schema lock, 2033
Waiting for an event from Coordinator, 2032
Waiting for commit lock, 2027
Waiting for event from ndbcluster, 2033
Waiting for first event from ndbcluster, 2033

5811

Waiting for global read lock, 2028
waiting for handler commit, 2027
Waiting for its turn to commit, 2030
Waiting for master to send event, 2030
Waiting for master update, 2030
Waiting for ndbcluster binlog update to reach current position, 2033
Waiting for ndbcluster global schema lock, 2033
Waiting for ndbcluster to start, 2033
Waiting for next activation, 2034
Waiting for replica mutex on exit, 2030, 2032
Waiting for Replica Workers to free pending events, 2032
Waiting for scheduler to stop, 2034
Waiting for schema epoch, 2033
Waiting for schema metadata lock, 2028
Waiting for slave mutex on exit, 2030, 2032
Waiting for Slave Workers to free pending events, 2032
Waiting for source to send event, 2030
Waiting for source update, 2030
Waiting for stored function metadata lock, 2028
Waiting for stored procedure metadata lock, 2028
Waiting for table flush, 2028
Waiting for table level lock, 2028
Waiting for table metadata lock, 2028
Waiting for tables, 2028
Waiting for the next event in relay log, 2032
Waiting for the replica SQL thread to free enough relay log space, 2031
Waiting for the slave SQL thread to free enough relay log space, 2031
Waiting for trigger metadata lock, 2028
Waiting on cond, 2028
Waiting on empty queue, 2034
Waiting to finalize termination, 2029
Waiting to reconnect after a failed binlog dump request, 2031
Waiting to reconnect after a failed master event read, 2031
Waiting to reconnect after a failed source event read, 2031
Waiting until MASTER_DELAY seconds after master executed event, 2032, 2032
Writing to net, 2028

thread states, 2018
event scheduler, 2034
general, 2022
NDB Cluster, 2033
removed features, 56
replication, 2029, 2031, 2032
replication source, 2029

thread table
performance_schema, 5315

thread/sql/compress_gtid_table, 3629
threadblocks

ndbinfo table, 4821
ThreadConfig, 4349
ThreadPool (see DiskIOThreadPool)
threads, 502, 3129

display, 3129
monitoring, 2018, 3129, 5045, 5315
ndbinfo table, 4821

threadstat
ndbinfo table, 4822

Threads_cached status variable, 1091
Threads_connected status variable, 1091

5812

Threads_created status variable, 1091
Threads_running status variable, 1091
thread_cache_size system variable, 1016
thread_handling system variable, 1016
thread_pool_algorithm system variable, 1017
thread_pool_dedicated_listeners system variable, 1017
thread_pool_high_priority_connection system variable, 1017
thread_pool_max_active_query_threads system variable, 1018
thread_pool_max_transactions_limit system variable, 1018
thread_pool_max_unused_threads system variable, 1019
thread_pool_prio_kickup_timer system variable, 1020
thread_pool_query_threads_per_group system variable, 1020
thread_pool_size system variable, 1021
thread_pool_stall_limit system variable, 1021
thread_pool_transaction_delay system variable, 1021
thread_stack system variable, 1022
three-factor authentication (see multifactor authentication)
ticket-granting server, 6400
ticket-granting ticket, 6400
Time

thread command, 2022
TIME data type, 2211, 2213
time data types

storage requirements, 2271
time literals, 2052
time representation

Event Scheduler, 4980
time zone problems, 5528
time zone support

new features, 36
time zone tables, 440

system tables, 1140
time zones

and replication, 3874
leap seconds, 1124
support, 1120
upgrading, 1123

TIME(), 2352
TimeBetweenEpochs, 4318
TimeBetweenEpochsTimeout, 4318
TimeBetweenGlobalCheckpoints, 4317, 4363
TimeBetweenGlobalCheckpointsTimeout, 4318
TimeBetweenInactiveTransactionAbortCheck, 4320
TimeBetweenLocalCheckpoints, 4317
TimeBetweenWatchDogCheck, 4311
TimeBetweenWatchDogCheckInitial, 4311
TIMEDIFF(), 2352
timeout, 892, 2459
timeout option

ndb_waiter, 4645
timeouts (replication), 3874
TIMESTAMP

and NULL values, 5532
and replication, 3855
indexes, 1909
initialization and updating, 2214

TIMESTAMP data type, 2210, 2211
timestamp system variable, 1023

5813

TIMESTAMP(), 2352
timestamp-printouts option

ndb_restore, 4606
TIMESTAMPADD(), 2352
TIMESTAMPDIFF(), 2353
timezone option

mysqld_safe, 420
time_format

removed features, 56
TIME_FORMAT(), 2353
TIME_TO_SEC(), 2353
TIME_TRUNCATE_FRACTIONAL SQL mode, 1098
time_zone

new features, 32
time_zone system variable, 1022, 1121
time_zone table

system table, 1140
time_zone_leap_second table

system table, 1140
time_zone_name table

system table, 1140
time_zone_transition table

system table, 1140
time_zone_transition_type table

system table, 1140
TINYBLOB data type, 2223
TINYINT data type, 2201
TINYTEXT data type, 2223
tips

optimization, 1894
TLS, 1402

command options, 386
establishing connections, 1403

TLS related options
ALTER USER, 3028
CREATE USER statement, 3042

tls-ciphersuites option, 393
mysql, 483
mysqladmin, 515
mysqlbinlog, 721
mysqlcheck, 530
mysqldump, 547
mysqlimport, 585
mysqlpump, 609
mysqlshow, 624
mysqlslap, 643
mysql_migrate_keyring, 698
mysql_secure_installation, 436
mysql_upgrade, 452

tls-version option, 393
mysql, 483
mysqladmin, 515
mysqlbinlog, 722
mysqlcheck, 531
mysqldump, 547
mysqlimport, 585
mysqlpump, 609
mysqlshow, 625

5814

mysqlslap, 643
mysql_migrate_keyring, 698
mysql_secure_installation, 437
mysql_upgrade, 452

tls_channel_status table
performance_schema, 5320

tls_ciphersuites system variable, 1023
Tls_library_version status variable, 1091
tls_version system variable, 1024
TMPDIR environment variable, 367, 738, 5527
TMPDIR option

CMake, 248
tmpdir option

myisamchk, 668
myisampack, 679
mysqld, 864

tmpdir system variable, 1025
tmp_table_size system variable, 1025
to-last-log option

mysqlbinlog, 722
Tomcat, 6400
too many open files, 5520
tools

command-line, 153, 454
mysqld_multi, 423
mysqld_safe, 413

top option
mysqldumpslow, 733

torn page, 3357, 6400
TotalSendBufferMemory

API and SQL nodes, 4376
data nodes, 4364
management nodes, 4270

Touches()
removed features, 57

Townsend Alliance Key Manager
keyring_okv keyring plugin, 1558

TO_BASE64(), 2370
TO_DAYS(), 2353
TO_SECONDS(), 2354
TPS, 6400
TP_CONNECTION_ADMIN privilege, 1321
TP_THREAD_GROUP_STATE

INFORMATION_SCHEMA table, 5116
tp_thread_group_state table

performance_schema, 5265
TP_THREAD_GROUP_STATS

INFORMATION_SCHEMA table, 5117
tp_thread_group_stats table

performance_schema, 5266
TP_THREAD_STATE

INFORMATION_SCHEMA table, 5117
tp_thread_state table

performance_schema, 5268
trace DBI method, 1277
trace files

ndbmtd, 4478
trace files (NDB Cluster), 4471

5815

TRADITIONAL SQL mode, 1093, 1099
trailing spaces

CHAR, 2222, 2224
ENUM, 2230
in comparisons, 2224
SET, 2231
VARCHAR, 2222, 2224

trailing spaces in comparisons, 2148
transaction, 6400
transaction access mode, 2922
transaction consistency guarantees

understanding, 3935
transaction ID, 6401
transaction isolation level, 2922

NDB Cluster, 4189
READ COMMITTED, 3271
READ UNCOMMITTED, 3273
REPEATABLE READ, 3270
SERIALIZABLE, 3273

transaction memory usage
NDB Cluster, 4829

transaction state
change tracking, 1130

transaction-isolation option
mysqld, 863

transaction-read-only option
mysqld, 864

transaction-safe tables, 3186
transactional option

ndb_delete_all, 4518
TransactionBufferMemory, 4286
TransactionDeadlockDetectionTimeout, 4320
TransactionInactiveTimeout, 4320
TransactionMemory, 4289
transactions, 3265

and replication, 3874, 3877
isolation levels, 3270
metadata locking, 2002
support, 3186

transaction_alloc_block_size system variable, 1026
transaction_allow_batching session variable (NDB Cluster), 4417
transaction_isolation system variable, 1026
transaction_prealloc_size system variable, 1027
transaction_read_only system variable, 1028
transaction_write_set_extraction, 3770
transparent data encryption, 3383
transparent page compression, 6401
transportable tablespace, 6401
Transportable Tablespaces, 3206
transporters

ndbinfo table, 4825
transporter_details

ndbinfo table, 4824
TRIGGER privilege, 1314
triggers, 2793, 2805, 3149, 4967, 4971

and replication, 3865, 3878
LAST_INSERT_ID(), 4971
metadata, 4976

5816

restrictions, 4999
TRIGGERS

INFORMATION_SCHEMA table, 5068
triggers option

mysqldump, 565
mysqlpump, 609

triggers table
data dictionary table, 1137

TRIM(), 2371
troubleshooting, 5507, 6401

ALTER TABLE problems, 5536
compiling MySQL server, 265
connection problems, 1396
InnoDB deadlocks, 3283, 3287
InnoDB errors, 3572
InnoDB recovery problems, 3569
InnoDB table fragmentation, 3359
replication, 3885
startup problems, 275
with MySQL Enterprise Monitor, 5448
with MySQL Performance Schema, 5350

TRUE, 2052, 2061
testing for, 2316, 2316

true literal
JSON, 2253

truncate, 6401
TRUNCATE TABLE, 2807

and NDB Cluster, 4188
and replication, 3879
performance_schema database, 5165, 5355

TRUNCATE(), 2336
truststore, 6401
tuning, 1820

InnoDB compressed tables, 3336
tuple, 6401
tupscan option

ndb_delete_all, 4518
ndb_select_all, 4621

tutorial, 329
twiddle option

ndb_redo_log_reader, 4581
two-factor authentication (see multifactor authentication)
two-phase commit, 1071, 1071, 6402
TwoPassInitialNodeRestartCopy, 4341
tx_isolation

removed features, 56
tx_read_only

removed features, 56
type conversions, 2305, 2312
type option

ibd2sdi, 647
ndb_config, 4509
ndb_show_tables, 4631

types
columns, 2199, 2274
data, 2199
date and time, 2208
numeric, 2200

5817

of tables, 3575
portability, 2274
string, 2220

typographical conventions, 2
TZ environment variable, 219, 738, 1120, 5528
tz-utc option

mysqldump, 562
mysqlpump, 610

U
UCASE(), 2371
UCS-2, 2118
ucs2

deprecated features, 49
ucs2 character set, 2156

as client character set, 2135
UDFs (see loadable functions)
uid option

mysql_ssl_rsa_setup, 440
ulimit, 5520
UMASK environment variable, 738, 5521
UMASK_DIR environment variable, 738, 5521
unary minus (-), 2326
unblocking blocked hosts, 1111
unbuffered option

mysql, 484
UNCOMPRESS(), 2458
UNCOMPRESSED_LENGTH(), 2458
undo, 6402
undo log, 3243, 3247, 6402
undo log segment, 6402
undo tablespace, 3247, 6402
undo tablespaces, 3243
UndoDataBuffer, 4326
UndoIndexBuffer, 4326
unexpected halt

replication, 3703, 3832
UNHEX(), 2371
UNICODE

deprecated features, 50
Unicode, 2118, 6402
Unicode character (\U), 2550
Unicode Collation Algorithm, 2161
UNINSTALL COMPONENT statement, 3093
UNINSTALL PLUGIN statement, 3093
uninstalling components, 1189, 3093
uninstalling loadable functions, 1265
uninstalling plugins, 1195, 3093
UNION, 357, 2896

deprecated features, 51
parenthesized query expressions, 2849
set operations, 2869

UNIQUE, 2680
unique constraint, 6403
unique index, 6403
unique key, 6403

constraint, 102
unique keys

5818

and partitioning keys, 4961
unique_checks system variable, 1029
unique_subquery join type

optimizer, 1945
Unix signal handling, 741
UNIX_TIMESTAMP(), 2355
UNKNOWN

testing for, 2316, 2316
Unknown column ... in 'on clause', 2868, 2868
Unknown or incorrect time zone

error, 1121
unloading

tables, 337
UNLOCK INSTANCE, 2916
UNLOCK TABLES, 2916
unnamed views, 2881
unpack option

myisamchk, 668
unqualified option

ndb_desc, 4528
ndb_show_tables, 4631

unsafe statement (replication)
defined, 3791

unsafe statements (replication), 3792
UNSIGNED, 2200, 2205
UNTIL, 2989
updatable views, 4985
updatable_views_with_limit system variable, 1030
UPDATE, 98, 2893
update

thread state, 2027
update action

MySQLInstallerConsole, 162
update option

ndb_index_stat, 4561
UPDATE privilege, 1314
update-state option

myisamchk, 665
UpdateXML(), 2433
Updating

thread state, 2027
updating main table

thread state, 2027
updating reference tables

thread state, 2027
upgrade action

MySQLInstallerConsole, 162
Upgrade Best Practices

Best Practices, 287
upgrade option

mysqld, 864
upgrade-system-tables option

mysql_upgrade, 453
upgrades

NDB Cluster, 4223, 4692
upgrades and downgrades

NDB Cluster, 4223
upgrading, 285

5819

a Docker installation of MySQL, 322
different architecture, 324
new features, 9
with MySQL SLES Repository, 320, 320
with MySQL Yum Repository, 318

upgrading MySQL, 440
UPPER(), 2372
uptime, 502
Uptime status variable, 1091
Uptime_since_flush_status status variable, 1092
URI-like connection string, 398
URLs for downloading MySQL, 108
usage option

ndbd, 4470
ndbinfo_select_all, 4477
ndbxfrm, 4653
ndb_blob_tool, 4500
ndb_config, 4509
ndb_delete_all, 4518
ndb_desc, 4528
ndb_drop_index, 4532
ndb_drop_table, 4537
ndb_import, 4554
ndb_index_stat, 4562
ndb_mgm, 4495
ndb_mgmd, 4489
ndb_move_data, 4567
ndb_print_backup_file, 4575
ndb_print_file, 4577
ndb_restore, 4607
ndb_secretsfile_reader, 4615
ndb_select_all, 4621
ndb_select_count, 4626
ndb_show_tables, 4631
ndb_top, 4639
ndb_waiter, 4645

USAGE privilege, 1314
USE, 3176
use command

mysql, 490
USE INDEX, 1982
USE KEY, 1982
use-default option

mysql_secure_installation, 437
use-frm option

mysqlcheck, 531
use-threads option

mysqlimport, 586
useHexFormat option

ndb_select_all, 4621
user

root, 279
user accounts

altering, 3019
creating, 1342, 3035
dual passwords, 1371
renaming, 3063
reserved, 1345

5820

resource limits, 947, 1394, 3029, 3043
USER environment variable, 398, 738
User lock

thread state, 2027
user management, 1303
user name length

and replication, 3880
user names

and passwords, 1304
in account names, 1334
in default account, 279
in role names, 1336

user option, 386
mysql, 484
mysqladmin, 515
mysqlbinlog, 722
mysqlcheck, 531
mysqld, 866
mysqldump, 548
mysqld_multi, 426
mysqld_safe, 420
mysqlimport, 585
mysqlpump, 610
mysqlshow, 625
mysqlslap, 643
mysql_migrate_keyring, 698
mysql_secure_installation, 437
mysql_upgrade, 453
ndb_top, 4639

user principal name, 6403
user privileges

adding, 1342
checking, 1344
deleting, 3049
dropping, 3049
revoking, 1344

User sleep
thread state, 2027

user table
account_locked column, 1329
sorting, 1339
system table, 279, 1139, 1325

user variables
and replication, 3880
removed features, 62

USER(), 2472
user-defined functions (see loadable functions)
user-defined variables, 2105
users

deleting, 1345, 3049
users option

mysqlpump, 610
users table

performance_schema, 5218
USER_ATTRIBUTES

INFORMATION_SCHEMA table, 5070
user_defined_functions table

performance_schema, 1266, 5321

5821

USER_PRIVILEGES
INFORMATION_SCHEMA table, 5071

user_summary view
sys schema, 5401

user_summary_by_file_io view
sys schema, 5401

user_summary_by_file_io_type view
sys schema, 5402

user_summary_by_stages view
sys schema, 5402

user_summary_by_statement_latency view
sys schema, 5403

user_summary_by_statement_type view
sys schema, 5403

user_variables_by_thread table
performance_schema, 5222

UseShm, 4311
use_invisible_indexes flag

optimizer_switch system variable, 1907
USE_LD_GOLD option

CMake, 254
USE_LD_LLD option

CMake, 254
use_secondary_engine system variable, 1030
USING HASH

with NDB tables, 2711
using multiple disks to start data, 2009
using NDB Cluster programs, 4461
USING versus ON

joins, 2867
UTC_DATE(), 2356
UTC_TIME(), 2357
UTC_TIMESTAMP(), 2357
UTF-8, 2118

database object metadata, 2123
utf16 character set, 2156

as client character set, 2135
utf16le character set, 2157

as client character set, 2135
utf16_bin collation, 2167
utf32 character set, 2157

as client character set, 2135
utf8 character set, 2155

alias for utf8mb3, 2155, 2155
utf8mb3

deprecated features, 49
utf8mb3 character set, 2154

utf8 alias, 2155, 2155
utf8mb4 character set, 2154
utf8mb4 collations, 2163
utf8mb4_0900_bin

versus utf8mb4_bin, 2161
utf8mb4_bin

versus utf8mb4_0900_bin, 2161
utfmb4, 2118
utilities

program-development, 367
utility programs, 366

5822

UUID(), 2639
UUID_SHORT(), 2640
UUID_TO_BIN(), 2640

V
valid

GIS values, 2244
spatial values, 2244

valid JSON values, 2253
valid numbers

examples, 2052
validate-config option

mysqld, 866
validate-password option

mysqld, 1534
validate-user-plugins option

mysqld, 867
validate_password component, 1526

installing, 1528
status variables, 1534
system variables, 1529
uninstalling, 1528

validate_password plugin, 1526
configuring, 1529
deprecated features, 50
options, 1534
status variables, 1537
system variables, 1535
transitioning to validate_password component, 1537

validate_password.changed_characters_percentage system variable, 1530
validate_password.check_user_name system variable, 1530
validate_password.dictionary_file system variable, 1531
validate_password.dictionary_file_last_parsed status variable, 1534
validate_password.dictionary_file_words_count status variable, 1534
validate_password.length system variable, 1532
validate_password.mixed_case_count system variable, 1532
validate_password.number_count system variable, 1532
validate_password.policy system variable, 1533
validate_password.special_char_count system variable, 1533
validate_password_check_user_name system variable, 1535
validate_password_dictionary_file system variable, 1535
validate_password_dictionary_file_last_parsed status variable, 1537
validate_password_dictionary_file_words_count status variable, 1537
validate_password_length system variable, 1535
validate_password_mixed_case_count system variable, 1536
validate_password_number_count system variable, 1536
validate_password_policy system variable, 1536
validate_password_special_char_count system variable, 1537
VALIDATE_PASSWORD_STRENGTH(), 2459
VALUES statement, 2897

new features, 36
with INTO, 2861

VALUES(), 2642
deprecated features, 51

VARBINARY data type, 2223, 2225
VARCHAR

size, 2272
VARCHAR data type, 2220, 2222

5823

VARCHARACTER data type, 2222
variable option

mysql_config, 735
variable-length type, 6403
variables

and replication, 3880
environment, 367
server, 3151
status, 1064, 3145
system, 867, 1033, 3151
user defined, 2105

VARIANCE(), 2596
VAR_POP(), 2596
VAR_SAMP(), 2596
verbose option

innochecksum, 650
myisamchk, 662
myisampack, 679
myisam_ftdump, 657
mysql, 484
mysqladmin, 515
mysqlbinlog, 722
mysqlcheck, 531
mysqld, 867
mysqldump, 552
mysqldumpslow, 733
mysqld_multi, 427
mysqlimport, 586
mysqlshow, 625
mysqlslap, 643
mysql_config_editor, 687
mysql_migrate_keyring, 699
mysql_ssl_rsa_setup, 440
mysql_upgrade, 453
my_print_defaults, 736
ndbd, 4471
ndbmtd, 4471
ndb_blob_tool, 4501
ndb_import, 4554
ndb_index_stat, 4562
ndb_mgmd, 4489
ndb_move_data, 4568
ndb_perror, 4570
ndb_print_backup_file, 4575
ndb_print_file, 4577
ndb_restore, 4607
ndb_waiter, 4645
perror, 738

verify-binlog-checksum option
mysqlbinlog, 722

version
choosing, 107
latest, 108

version option
comp_err, 431
ibd2sdi, 645
innochecksum, 649
myisamchk, 662

5824

myisampack, 679
mysql, 484
mysqladmin, 515
mysqlbinlog, 723
mysqlcheck, 531
mysqld, 867
mysqldump, 553
mysqld_multi, 427
mysqlimport, 586
mysqlpump, 610
mysqlshow, 625
mysqlslap, 643
mysql_config, 735
mysql_config_editor, 687
mysql_migrate_keyring, 699
mysql_ssl_rsa_setup, 440
my_print_defaults, 736
ndbd, 4471
ndbinfo_select_all, 4477
ndbxfrm, 4653
ndb_blob_tool, 4501
ndb_config, 4509
ndb_delete_all, 4518
ndb_desc, 4528
ndb_drop_index, 4532
ndb_drop_table, 4537
ndb_import, 4554
ndb_index_stat, 4562
ndb_mgm, 4495
ndb_mgmd, 4489
ndb_move_data, 4568
ndb_perror, 4570
ndb_print_backup_file, 4576
ndb_print_file, 4577
ndb_restore, 4607
ndb_secretsfile_reader, 4616
ndb_select_all, 4621
ndb_select_count, 4626
ndb_show_tables, 4631
ndb_waiter, 4646
perror, 738

version system variable, 1030
Version Tokens, 1219
Version Tokens functions

version_tokens_delete(), 1227
version_tokens_edit(), 1227
version_tokens_lock_exclusive(), 1228
version_tokens_lock_shared(), 1228
version_tokens_set(), 1228
version_tokens_show(), 1228
version_tokens_unlock(), 1229

Version Tokens plugin
elements, 1220
installing, 1220
reference, 1227
uninstalling, 1220
using, 1221

version view

5825

sys schema, 5404
VERSION(), 2472
version-check option

mysql_upgrade, 453
version_comment system variable, 1031
version_compile_machine system variable, 1031
version_compile_os system variable, 1031
version_compile_zlib system variable, 1031
version_major() function

sys schema, 5436
version_minor() function

sys schema, 5436
version_patch() function

sys schema, 5436
version_tokens_delete() Version Tokens function, 1227
version_tokens_edit() Version Tokens function, 1227
version_tokens_lock_exclusive() Version Tokens function, 1228
version_tokens_lock_shared() Version Tokens function, 1228
version_tokens_session system variable, 1229
version_tokens_session_number system variable, 1230
version_tokens_set() Version Tokens function, 1228
version_tokens_show() Version Tokens function, 1228
version_tokens_unlock() Version Tokens function, 1229
VERSION_TOKEN_ADMIN privilege, 1321
vertical option

mysql, 484
mysqladmin, 516

victim, 6403
Vietnamese, 5483
view, 6403
views, 2795, 4967, 4984

algorithms, 4984
and replication, 3881
limitations, 5003
materialization prevention, 1884
metadata, 4989
optimization, 1874, 1883
privileges, 5003
problems, 5003
restrictions, 5002
roles, 1350
updatable, 2795, 4985

VIEWS
INFORMATION_SCHEMA table, 5071

VIEW_ROUTINE_USAGE
INFORMATION_SCHEMA table, 5073

view_routine_usage table
data dictionary table, 1138

VIEW_TABLE_USAGE
INFORMATION_SCHEMA table, 5073

view_table_usage table
data dictionary table, 1138

virtual generated column, 6403
virtual index, 6404
Visual Studio, 6404

W
wait, 6404

5826

WAIT COMPLETED (START BACKUP command), 4708
wait option

myisamchk, 662
myisampack, 679
mysql, 484
mysqladmin, 516

WAIT STARTED (START BACKUP command), 4708
wait-nodes option

ndb_waiter, 4646
Waiting for allowed to take ndbcluster global schema lock

thread state, 2033
Waiting for an event from Coordinator

thread state, 2032
Waiting for commit lock

thread state, 2027
Waiting for event from ndbcluster

thread state, 2033
Waiting for event metadata lock

thread state, 2028
Waiting for event read lock

thread state, 2028
Waiting for first event from ndbcluster

thread state, 2033
waiting for handler commit

thread state, 2027
Waiting for its turn to commit

thread state, 2030
Waiting for master to send event

thread state, 2030
Waiting for master update

thread state, 2030
Waiting for ndbcluster binlog update to reach current position

thread state, 2033
Waiting for ndbcluster global schema lock

thread state, 2033
Waiting for ndbcluster to start

thread state, 2033
Waiting for next activation

thread state, 2034
Waiting for replica mutex on exit

thread state, 2030, 2032
Waiting for Replica Workers to free pending events

thread state, 2032
Waiting for scheduler to stop

thread state, 2034
Waiting for schema epoch

thread state, 2033
Waiting for schema metadata lock

thread state, 2028
Waiting for slave mutex on exit

thread state, 2030, 2032
Waiting for Slave Workers to free pending events

thread state, 2032
Waiting for source to send event

thread state, 2030
Waiting for source update

thread state, 2030
Waiting for stored function metadata lock

5827

thread state, 2028
Waiting for stored procedure metadata lock

thread state, 2028
Waiting for table flush

thread state, 2028
Waiting for table level lock

thread state, 2028
Waiting for table metadata lock

thread state, 2028
Waiting for tables

thread state, 2028
Waiting for the next event in relay log

thread state, 2032
Waiting for the replica SQL thread to free enough relay log space

thread state, 2031
Waiting for the slave SQL thread to free enough relay log space

thread state, 2031
Waiting for trigger metadata lock

thread state, 2028
Waiting on cond

thread state, 2028
Waiting on empty queue

thread state, 2034
Waiting to finalize termination

thread state, 2029
Waiting to reconnect after a failed binlog dump request

thread state, 2031
Waiting to reconnect after a failed master event read

thread state, 2031
Waiting to reconnect after a failed source event read

thread state, 2031
Waiting until MASTER_DELAY seconds after master executed event

thread state, 2032, 2032
waits_by_host_by_latency view

sys schema, 5406
waits_by_user_by_latency view

sys schema, 5406
waits_global_by_latency view

sys schema, 5407
wait_classes_global_by_avg_latency view

sys schema, 5405
wait_classes_global_by_latency view

sys schema, 5405
WAIT_FOR_EXECUTED_GTID_SET(), 2579
wait_timeout system variable, 1031
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), 2580
Wan, 4269, 4377
warm backup, 6404
warm up, 6404
warnings command

mysql, 490
warning_count system variable, 1032
watch-progress option

mysqlpump, 610
WatchDogImmediateKill, 4332
WEEK(), 2357
WEEKDAY(), 2358
WEEKOFYEAR(), 2358

5828

WEIGHT_STRING(), 2372
well-formed

GIS values, 2244
spatial values, 2244

Well-Known Binary format
geometry values, 2243

Well-Known Text format
geometry values, 2242

WHERE, 1823
with SHOW, 5006, 5119

where option
mysqldump, 565

WHILE, 2990
labels, 2983

widths
display, 2200

Wildcard character (%), 2051
Wildcard character (_), 2051
wildcards

and LIKE, 1901
in account names (deprecated), 1335
in mysql.columns_priv table, 1341
in mysql.db table, 1340
in mysql.procs_priv table, 1341
in mysql.tables_priv table, 1341

window
window functions, 2616

window functions, 354, 2609
EXPLAIN, 1872
named windows, 2622
new features, 29
optimization, 1871
restrictions, 2623
spatial, 2517
syntax, 2615

windowing_use_high_precision system variable, 1032
Windows

interactive history, 497
MySQL restrictions, 174
path name separators, 374
pluggable authentication, 1453
upgrading, 320

WIN_DEBUG_NO_INLINE option
CMake, 254

WITH ROLLUP, 2596
with-apply-status option

ndb_restore, 4607
Within()

removed features, 57
WITHOUT_SERVER option

CMake, 263
WITH_ANT option

CMake, 254
WITH_ASAN option

CMake, 254
WITH_ASAN_SCOPE option

CMake, 254
WITH_AUTHENTICATION_CLIENT_PLUGINS option

5829

CMake, 255
WITH_AUTHENTICATION_LDAP option

CMake, 255
WITH_AUTHENTICATION_PAM option

CMake, 255
WITH_AWS_SDK option

CMake, 255
WITH_BOOST option

CMake, 255
WITH_BUILD_ID option

CMake, 244
WITH_BUNDLED_LIBEVENT option

CMake, 264
WITH_BUNDLED_MEMCACHED option

CMake, 264
WITH_CLASSPATH option

CMake, 264
WITH_CLIENT_PROTOCOL_TRACING option

CMake, 256
WITH_CURL option

CMake, 256
WITH_DEBUG option

CMake, 256
WITH_DEFAULT_COMPILER_OPTIONS option

CMake, 263
WITH_DEFAULT_FEATURE_SET option

CMake, 256
WITH_DEVELOPER_ENTITLEMENTS option

CMake, 253
WITH_EDITLINE option

CMake, 256
WITH_ERROR_INSERT option

CMake, 264
WITH_FIDO option

CMake, 257
WITH_GMOCK option

CMake, 257
WITH_ICU option

CMake, 257
WITH_INNODB_EXTRA_DEBUG option

CMake, 257
WITH_INNODB_MEMCACHED option

CMake, 257
WITH_JEMALLOC option

CMake, 258
WITH_KEYRING_TEST option

CMake, 258
WITH_LIBEVENT option

CMake, 258
WITH_LIBWRAP option

CMake, 258
WITH_LOCK_ORDER option

CMake, 258
WITH_LSAN option

CMake, 258
WITH_LTO option

CMake, 258
WITH_LZ4 option

5830

CMake, 258
WITH_LZMA option

CMake, 258
WITH_MECAB option

CMake, 259
WITH_MSAN option

CMake, 259
WITH_MSCRT_DEBUG option

CMake, 259
WITH_MYSQLX option

CMake, 259
WITH_NDB option

CMake, 264
WITH_NDBAPI_EXAMPLES option

CMake, 264
WITH_NDBCLUSTER option

CMake, 265
WITH_NDBCLUSTER_STORAGE_ENGINE option

CMake, 265
WITH_NDBMTD option

CMake, 265
WITH_NDB_DEBUG option

CMake, 265
WITH_NDB_JAVA option

CMake, 265
WITH_NDB_PORT option

CMake, 265
WITH_NDB_TEST option

CMake, 265
WITH_NUMA option

CMake, 259
WITH_PACKAGE_FLAGS option

CMake, 259
WITH_PLUGIN_NDBCLUSTER option

CMake, 265
WITH_PROTOBUF option

CMake, 260
WITH_RAPID option

CMake, 260
WITH_RAPIDJSON option

CMake, 260
WITH_RE2 option

CMake, 260
WITH_ROUTER option

CMake, 260
WITH_SASL option

CMake, 260
WITH_SSL option

CMake, 260
WITH_SYSTEMD option

CMake, 261
WITH_SYSTEMD_DEBUG option

CMake, 261
WITH_SYSTEM_LIBS option

CMake, 261
WITH_TCMALLOC option

CMake, 261
WITH_TEST_TRACE_PLUGIN option

5831

CMake, 262
WITH_TSAN option

CMake, 262
WITH_UBSAN option

CMake, 262
WITH_UNIT_TESTS option

CMake, 262
WITH_UNIXODBC option

CMake, 262
WITH_VALGRIND option

CMake, 262
WITH_WIN_JEMALLOC option

CMake, 262
WITH_ZLIB option

CMake, 262
WITH_ZSTD option

CMake, 263
WKB format

geometry values, 2243
WKT format

geometry values, 2242
wolfSSL, 1402
workload, 6404
wrappers

Eiffel, 5444
write combining, 6404
write option

innochecksum, 653
write-binlog option

mysqlcheck, 531
mysql_upgrade, 453

write_buffer_size myisamchk variable, 663
Writing to net

thread state, 2028

X
X Plugin, 4103
X Plugin option

mysqlx, 4111
x$ views

sys schema, 5367
x$host_summary view

sys schema, 5368
x$host_summary_by_file_io view

sys schema, 5369
x$host_summary_by_file_io_type view

sys schema, 5369
x$host_summary_by_stages view

sys schema, 5369
x$host_summary_by_statement_latency view

sys schema, 5370
x$host_summary_by_statement_type view

sys schema, 5371
x$innodb_buffer_stats_by_schema view

sys schema, 5372
x$innodb_buffer_stats_by_table view

sys schema, 5372
x$innodb_lock_waits view

5832

sys schema, 5373
x$io_by_thread_by_latency view

sys schema, 5375
x$io_global_by_file_by_bytes view

sys schema, 5376
x$io_global_by_file_by_latency view

sys schema, 5376
x$io_global_by_wait_by_bytes view

sys schema, 5377
x$io_global_by_wait_by_latency view

sys schema, 5378
x$latest_file_io view

sys schema, 5379
x$memory_by_host_by_current_bytes view

sys schema, 5379
x$memory_by_thread_by_current_bytes view

sys schema, 5380
x$memory_by_user_by_current_bytes view

sys schema, 5381
x$memory_global_by_current_bytes view

sys schema, 5381
x$memory_global_total view

sys schema, 5382
x$processlist view

sys schema, 5383
x$schema_flattened_keys view

sys schema, 5387
x$schema_index_statistics view

sys schema, 5386
x$schema_tables_with_full_table_scans view

sys schema, 5393
x$schema_table_lock_waits view

sys schema, 5389
x$schema_table_statistics view

sys schema, 5390
x$schema_table_statistics_with_buffer view

sys schema, 5391
x$session view

sys schema, 5394
x$statements_with_errors_or_warnings view

sys schema, 5396
x$statements_with_full_table_scans view

sys schema, 5397
x$statements_with_runtimes_in_95th_percentile view

sys schema, 5398
x$statements_with_sorting view

sys schema, 5399
x$statements_with_temp_tables view

sys schema, 5400
x$statement_analysis view

sys schema, 5394
x$user_summary view

sys schema, 5401
x$user_summary_by_file_io view

sys schema, 5401
x$user_summary_by_file_io_type view

sys schema, 5402
x$user_summary_by_stages view

5833

sys schema, 5402
x$user_summary_by_statement_latency view

sys schema, 5403
x$user_summary_by_statement_type view

sys schema, 5403
x$waits_by_host_by_latency view

sys schema, 5406
x$waits_by_user_by_latency view

sys schema, 5406
x$waits_global_by_latency view

sys schema, 5407
x$wait_classes_global_by_avg_latency view

sys schema, 5405
x$wait_classes_global_by_latency view

sys schema, 5405
X()

removed features, 57
X.509/Certificate, 1402
XA, 6405
XA BEGIN, 2926
XA COMMIT, 2926
XA PREPARE, 2926
XA RECOVER, 2926
XA ROLLBACK, 2926
XA START, 2926
XA transactions, 2925

restrictions, 2929
transaction identifiers, 2926

xa_detach_on_prepare system variable, 1032
XA_RECOVER_ADMIN privilege, 1322
xid

XA transaction identifier, 2926
xml option

mysql, 484
mysqldump, 562
ndb_config, 4509

XOR
bitwise, 2440
logical, 2319

XPath code injection, 2438

Y
Y()

removed features, 57
YEAR data type, 2211, 2213
YEAR(), 2358
YEARWEEK(), 2359
Yen sign (Japanese), 5483
young, 6405
Your password does not satisfy the current policy requirements

password error, 1527

Z
ZEROFILL, 2200, 2205
zlib_decompress, 367, 738

deprecated features, 53
zstd-compression-level option, 395

5834

mysql, 485
mysqladmin, 516
mysqlbinlog, 723
mysqlcheck, 532
mysqldump, 548
mysqlimport, 586
mysqlpump, 611
mysqlshow, 625
mysqlslap, 644
mysql_upgrade, 453

C Function Index

mysql_affected_rows()
Section 15.2.1, “CALL Statement”
Section 14.15, “Information Functions”
Section 15.2.7, “INSERT Statement”
Section 15.2.12, “REPLACE Statement”

mysql_bind_param()
Section 11.6, “Query Attributes”

mysql_change_user()
Section 6.5.1.2, “mysql Client Commands”

mysql_close()
Section B.3.2.9, “Communication Errors and Aborted Connections”

mysql_errno()
Section 8.4.5.4, “Audit Log File Formats”
Section B.2, “Error Information Interfaces”
Section 15.6.7.5, “SIGNAL Statement”

mysql_error()
Section B.2, “Error Information Interfaces”
Section 15.6.7.5, “SIGNAL Statement”

mysql_escape_string()
Section 8.1.7, “Client Programming Security Guidelines”

mysql_fetch_row()
Section 18.8.1, “FEDERATED Storage Engine Overview”

mysql_free_result()
Section B.3.2.12, “Commands out of sync”

mysql_get_character_set_info()
Section 12.14.2, “Choosing a Collation ID”

mysql_info()
Section 15.1.9, “ALTER TABLE Statement”
Section 15.2.7, “INSERT Statement”
Section 15.2.9, “LOAD DATA Statement”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 15.2.17, “UPDATE Statement”

5835

mysql_insert_id()
Section 15.1.20, “CREATE TABLE Statement”
Section 14.15, “Information Functions”
Section 15.2.7, “INSERT Statement”
Section 7.1.8, “Server System Variables”
Section 5.6.9, “Using AUTO_INCREMENT”

mysql_next_result()
Section 15.2.1, “CALL Statement”

mysql_options()
Section 8.2.1, “Account User Names and Passwords”
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 3.5, “Changes in MySQL 8.0”
Section 8.4.1.4, “Client-Side Cleartext Pluggable Authentication”
Section 12.4, “Connection Character Sets and Collations”
Section 6.2.8, “Connection Compression Control”
Section B.3.2.7, “MySQL server has gone away”
Section 29.12.9, “Performance Schema Connection Attribute Tables”
Section 8.2.17, “Pluggable Authentication”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 8.2.16, “Server Handling of Expired Passwords”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 7.8.4, “Using Client Programs in a Multiple-Server Environment”
Section 1.3, “What Is New in MySQL 8.0”

mysql_options4()
Section 8.2.18, “Multifactor Authentication”
Section 29.12.9, “Performance Schema Connection Attribute Tables”
Section 1.3, “What Is New in MySQL 8.0”

mysql_ping()
Section B.3.2.7, “MySQL server has gone away”

mysql_query()
Section 15.2.1, “CALL Statement”

mysql_real_connect()
Section 15.2.1, “CALL Statement”
Section 6.2.6, “Connecting to the Server Using DNS SRV Records”
Chapter 14, Functions and Operators
Section 14.15, “Information Functions”
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 15.2.7, “INSERT Statement”
Section 6.5.1.1, “mysql Client Options”
Section 15.5, “Prepared Statements”
Section 8.2.16, “Server Handling of Expired Passwords”
Section 7.1.8, “Server System Variables”
Section 27.2.1, “Stored Routine Syntax”
Section 6.10, “Unix Signal Handling in MySQL”
Section 7.8.4, “Using Client Programs in a Multiple-Server Environment”

mysql_real_connect_dns_srv()
Section 6.2.6, “Connecting to the Server Using DNS SRV Records”
Section 6.5.1.1, “mysql Client Options”

5836

mysql_real_escape_string_quote()
Section 8.1.7, “Client Programming Security Guidelines”
Section 13.4.7, “Populating Spatial Columns”
Section 11.1.1, “String Literals”

mysql_real_query()
Section 15.2.1, “CALL Statement”
Section 18.8.1, “FEDERATED Storage Engine Overview”

mysql_session_track_get_first()
Section 7.1.18, “Server Tracking of Client Session State”

mysql_session_track_get_next()
Section 7.1.18, “Server Tracking of Client Session State”

mysql_shutdown()
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.8.9, “SHUTDOWN Statement”

mysql_sqlstate()
Section B.2, “Error Information Interfaces”
Section 15.6.7.5, “SIGNAL Statement”

mysql_stmt_attr_set()
Section 15.6.6.5, “Restrictions on Server-Side Cursors”

mysql_stmt_close()
Section 29.12.6.4, “The prepared_statements_instances Table”

mysql_stmt_errno()
Section B.2, “Error Information Interfaces”

mysql_stmt_error()
Section B.2, “Error Information Interfaces”

mysql_stmt_execute()
Section 29.12.6.4, “The prepared_statements_instances Table”

mysql_stmt_next_result()
Section 15.2.1, “CALL Statement”

mysql_stmt_prepare()
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”
Section 15.5, “Prepared Statements”
Section 29.12.6.4, “The prepared_statements_instances Table”

mysql_stmt_send_long_data()
Section 7.1.8, “Server System Variables”

mysql_stmt_sqlstate()
Section B.2, “Error Information Interfaces”

mysql_store_result()
Section B.3.2.12, “Commands out of sync”

5837

Section 18.8.1, “FEDERATED Storage Engine Overview”
Section 6.5.1, “mysql — The MySQL Command-Line Client”

mysql_use_result()
Section B.3.2.12, “Commands out of sync”
Section 6.5.1, “mysql — The MySQL Command-Line Client”
Section B.3.2.6, “Out of memory”

mysql_warning_count()
Section B.2, “Error Information Interfaces”
Section 15.7.7.42, “SHOW WARNINGS Statement”

Command Index
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | R | S | T | U | V | W | X | Y | Z

A

[index top]

Access
Section 15.2.2, “DELETE Statement”

addgroup
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

addr2line
Section 7.9.1.5, “Using a Stack Trace”

adduser
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

ALTER TABLE
Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”

APF
Section 25.6.20.1, “NDB Cluster Security and Networking Issues”

apt-get
Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”
Section 2.5.5, “Installing MySQL on Linux Using Debian Packages from Oracle”
Section 17.20.5, “Security Considerations for the InnoDB memcached Plugin”

audit2allow
Section 8.7.6, “Troubleshooting SELinux”

B

[index top]

bash
Section 1.1, “About This Manual”
Section 8.1.2.1, “End-User Guidelines for Password Security”
Section 2.4.1, “General Notes on Installing MySQL on macOS”

5838

Section 6.2.1, “Invoking MySQL Programs”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 15.7.8.8, “RESTART Statement”
Section 6.2.9, “Setting Environment Variables”

bison
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 2.8.2, “Source Installation Prerequisites”

C

[index top]

cat
Section 17.14, “InnoDB Startup Options and System Variables”
Section 6.5.1.1, “mysql Client Options”

cd
Resetting the Root Password: Windows Systems

chkconfig
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 6.3.3, “mysql.server — MySQL Server Startup Script”

chmod
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”

chown
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”

clang
Section 2.8.7, “MySQL Source-Configuration Options”

CMake
Section 12.13, “Adding a Character Set”
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”
Section B.3.2.15, “Can't initialize character set”
Section 25.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 12.5, “Configuring Application Character Set and Collation”
Section 2.8.6, “Configuring SSL Library Support”
Section 16.1, “Data Dictionary Schema”
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 6.9, “Environment Variables”
Section 25.1, “General Information”
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 2.8.5, “Installing MySQL Using a Development Source Tree”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 8.4.4.19, “Keyring System Variables”
Section 2.5.9, “Managing MySQL Server with systemd”
Section 25.6.10, “MySQL Server Usage for NDB Cluster”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 29.2, “Performance Schema Build Configuration”
Section 7.8.3, “Running Multiple MySQL Instances on Unix”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 12.3.2, “Server Character Set and Collation”

5839

Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 2.8.2, “Source Installation Prerequisites”
Section 18.5, “The ARCHIVE Storage Engine”
Section 18.6, “The BLACKHOLE Storage Engine”
Section 18.9, “The EXAMPLE Storage Engine”
Section 18.8, “The FEDERATED Storage Engine”
Section 7.9.3, “The LOCK_ORDER Tool”
Section 1.2.2, “The Main Features of MySQL”
Section 29.12.21.7, “The processlist Table”
Section 8.3, “Using Encrypted Connections”
Section 6.2.2.2, “Using Option Files”
Section 1.3, “What Is New in MySQL 8.0”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

Cmake
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”

cmake
Section 2.8.10, “Generating MySQL Doxygen Documentation Content”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 17.20.5, “Security Considerations for the InnoDB memcached Plugin”

cmd
Resetting the Root Password: Windows Systems

cmd.exe
Section 1.1, “About This Manual”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.2.1, “Invoking MySQL Programs”

command.com
Section 1.1, “About This Manual”
Section 6.2.1, “Invoking MySQL Programs”

comp_err
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.1, “Overview of MySQL Programs”

configure
Section 1.1, “About This Manual”
Section 1.5, “How to Report Bugs or Problems”

copy
Creating a Data Snapshot Using Raw Data Files

coreadm
Section 2.7, “Installing MySQL on Solaris”
Section 7.1.7, “Server Command Options”

cp
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 19.4.1.2, “Backing Up Raw Data from a Replica”
Section 9.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”

5840

cron
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 15.7.3.2, “CHECK TABLE Statement”
Section 18.2.1, “MyISAM Startup Options”
Section 7.4.6, “Server Log Maintenance”
Section 9.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 5.5, “Using mysql in Batch Mode”

csh
Section 1.1, “About This Manual”
Section 6.2.1, “Invoking MySQL Programs”
Section 6.2.9, “Setting Environment Variables”

D

[index top]

daemon_memcached
Section 17.20.6.2, “Adapting a memcached Application for the InnoDB memcached Plugin”
Section 17.20.2, “InnoDB memcached Architecture”

date
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

df
Section B.3.1, “How to Determine What Is Causing a Problem”

dig
Section 1.3, “What Is New in MySQL 8.0”

Directory Utility
Section 2.4.1, “General Notes on Installing MySQL on macOS”

dnf
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 3.8, “Upgrading MySQL with the MySQL Yum Repository”

dnf config-manager
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

dnf upgrade
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

docker exec
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”

docker inspect
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

docker logs mysqld-container
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

docker ps
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”

5841

docker pull
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

docker rm
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”

docker run
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

docker stop
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”

dot
Section 2.8.10, “Generating MySQL Doxygen Documentation Content”

doxygen
Section 2.8.10, “Generating MySQL Doxygen Documentation Content”

dpkg
Section 2.5.5, “Installing MySQL on Linux Using Debian Packages from Oracle”

dump
Creating a Data Snapshot Using Raw Data Files

E

[index top]

export
Section 2.8.8, “Dealing with Problems Compiling MySQL”

F

[index top]

flex
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.9.3, “The LOCK_ORDER Tool”

fwbackups
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”

G

[index top]

gcc
Section 2.8.7, “MySQL Source-Configuration Options”
Section 2.10.3, “Problems Using the Perl DBI/DBD Interface”

gcov
Section 2.8.7, “MySQL Source-Configuration Options”

5842

gdb
Section 7.9.1.1, “Compiling MySQL for Debugging”
Section 7.9.1.4, “Debugging mysqld under gdb”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

getcap
Section 7.1.16, “Resource Groups”

getenforce
Section 8.7.2, “Changing the SELinux Mode”

git branch
Section 2.8.5, “Installing MySQL Using a Development Source Tree”

git checkout
Section 2.8.5, “Installing MySQL Using a Development Source Tree”

git log
Section 2.8.5, “Installing MySQL Using a Development Source Tree”

git pull
Section 2.8.5, “Installing MySQL Using a Development Source Tree”

gmake
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.8.2, “Source Installation Prerequisites”

GnuPG
Section 2.1.4.2, “Signature Checking Using GnuPG”

gnutar
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.8.2, “Source Installation Prerequisites”

gogoc
Section 7.1.13.5, “Obtaining an IPv6 Address from a Broker”

gold
Section 2.8.7, “MySQL Source-Configuration Options”

gpg
Section 2.1.4.2, “Signature Checking Using GnuPG”

gprof
Section 2.8.7, “MySQL Source-Configuration Options”

grep
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 5.3.4.7, “Pattern Matching”

groupadd
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

5843

gtar
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.8.2, “Source Installation Prerequisites”

gunzip
Section 8.4.5.5, “Configuring Audit Logging Characteristics”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”

gzip
Section 8.4.5.5, “Configuring Audit Logging Characteristics”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 1.5, “How to Report Bugs or Problems”
Section 2.4, “Installing MySQL on macOS”

H

[index top]

help contents
Section 6.5.1.4, “mysql Client Server-Side Help”

host
Section 1.3, “What Is New in MySQL 8.0”

hostname
Section B.3.2.2, “Can't connect to [local] MySQL server”

I

[index top]

ibd2sdi
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
MySQL Glossary
Section 16.6, “Serialized Dictionary Information (SDI)”
Section 1.3, “What Is New in MySQL 8.0”

icc
Section 2.1.6, “Compiler-Specific Build Characteristics”

ifconfig
Section 7.1.13.1, “Verifying System Support for IPv6”

innochecksum
Section 15.7.3.2, “CHECK TABLE Statement”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
MySQL Glossary
Section 6.1, “Overview of MySQL Programs”

ip
Section 7.1.14, “Network Namespace Support”

iptables
Section 20.10, “Frequently Asked Questions”
Section 25.6.20.1, “NDB Cluster Security and Networking Issues”

5844

J

[index top]

java
Section 8.4.4.8, “Using the keyring_okv KMIP Plugin”

jq
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”

K

[index top]

kill
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 6.10, “Unix Signal Handling in MySQL”

kinit
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.4, “mysqldump — A Database Backup Program”

klist
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.1.7, “LDAP Pluggable Authentication”

ksh
Section 6.2.1, “Invoking MySQL Programs”
Section 6.2.9, “Setting Environment Variables”

kswapd
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”

kswitch
Section 8.4.1.7, “LDAP Pluggable Authentication”

L

[index top]

ldapsearch
Section 8.4.1.7, “LDAP Pluggable Authentication”

less
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”

lld
Section 2.8.7, “MySQL Source-Configuration Options”

ln
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”

5845

logger
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

ls
Section 8.7, “SELinux”

lsof +L1
Section B.3.3.5, “Where MySQL Stores Temporary Files”

lz4
Section 6.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.5.6, “mysqlpump — A Database Backup Program”

lz4_decompress
Section 6.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 8.0”
Section 6.8.3, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”

M

[index top]

m4
Section 2.8.2, “Source Installation Prerequisites”

make
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.10.3, “Problems Using the Perl DBI/DBD Interface”
Section 2.8.2, “Source Installation Prerequisites”

make && make install
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”

make install
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”

make package
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.8.7, “MySQL Source-Configuration Options”

make test
Section 2.8.5, “Installing MySQL Using a Development Source Tree”
Section 2.10.1, “Installing Perl on Unix”

make VERBOSE=1
Section 2.8.8, “Dealing with Problems Compiling MySQL”

md5
Section 2.1.4.1, “Verifying the MD5 Checksum”

5846

md5.exe
Section 2.1.4.1, “Verifying the MD5 Checksum”

md5sum
Section 2.1.4.1, “Verifying the MD5 Checksum”

memcached
Section 17.20.6.2, “Adapting a memcached Application for the InnoDB memcached Plugin”
Section 17.20.6.1, “Adapting an Existing MySQL Schema for the InnoDB memcached Plugin”
Section 17.20.6.5, “Adapting DML Statements to memcached Operations”
Section 17.20.1, “Benefits of the InnoDB memcached Plugin”
Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 17.20.2, “InnoDB memcached Architecture”
Section 17.20.4, “InnoDB memcached Multiple get and Range Query Support”
Section 17.20, “InnoDB memcached Plugin”
Section 17.20.8, “InnoDB memcached Plugin Internals”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.20.6.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 17.20.5, “Security Considerations for the InnoDB memcached Plugin”
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”
Section 17.20.9, “Troubleshooting the InnoDB memcached Plugin”
Section 17.20.6.3, “Tuning InnoDB memcached Plugin Performance”
Section 1.3, “What Is New in MySQL 8.0”
Section 17.20.6, “Writing Applications for the InnoDB memcached Plugin”

memcapable
Section 17.20.2, “InnoDB memcached Architecture”

memslap
Section 17.20.6.3, “Tuning InnoDB memcached Plugin Performance”

mgmd
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 25.3, “NDB Cluster Installation”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

mkdir
Section 15.1.12, “CREATE DATABASE Statement”
Section 16.8, “Data Dictionary Limitations”

mklink
Section 10.12.2.3, “Using Symbolic Links for Databases on Windows”

more
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”

mv
Section 7.4.2.10, “Error Log File Flushing and Renaming”
Section 7.4.6, “Server Log Maintenance”
Section 7.4.3, “The General Query Log”
Section 10.12.2.1, “Using Symbolic Links for Databases on Unix”

5847

my_print_defaults
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.1, “Overview of MySQL Programs”
Section 6.7, “Program Development Utilities”

myisam_ftdump
Section 14.9, “Full-Text Search Functions”
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 6.1, “Overview of MySQL Programs”

myisamchk
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”
Section 15.7.3.2, “CHECK TABLE Statement”
Section 18.2.3.3, “Compressed Table Characteristics”
Section 18.2.4.1, “Corrupted MyISAM Tables”
Section 9.2, “Database Backup Methods”
Section 7.9.1, “Debugging a MySQL Server”
Section 15.2.2, “DELETE Statement”
Section 18.2.3.2, “Dynamic Table Characteristics”
Section 10.8.2, “EXPLAIN Output Format”
Section 10.11.5, “External Locking”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 9.6.2, “How to Check MyISAM Tables for Errors”
Section 9.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 10.3.8, “InnoDB and MyISAM Index Statistics Collection”
Section 10.4.6, “Limits on Table Size”
Section 15.7.8.5, “LOAD INDEX INTO CACHE Statement”
Section 7.9.1.7, “Making a Test Case If You Experience Table Corruption”
Section 18.2.1, “MyISAM Startup Options”
Section 9.6, “MyISAM Table Maintenance and Crash Recovery”
Section 9.6.4, “MyISAM Table Optimization”
Section 18.2.3, “MyISAM Table Storage Formats”
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.4.6, “myisamchk Memory Usage”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.4, “myisamchk — MyISAM Table-Maintenance Utility”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.6.4.5, “Obtaining Table Information with myisamchk”
Section 10.6.1, “Optimizing MyISAM Queries”
Section 10.6.3, “Optimizing REPAIR TABLE Statements”
Section 6.6.4.4, “Other myisamchk Options”
Section 6.1, “Overview of MySQL Programs”
Section 18.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 15.7.3.5, “REPAIR TABLE Statement”
Section 7.1.8, “Server System Variables”
Section 9.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 15.7.7.22, “SHOW INDEX Statement”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 18.2.3.1, “Static (Fixed-Length) Table Characteristics”
Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”
Section 1.2.2, “The Main Features of MySQL”
Section 18.2, “The MyISAM Storage Engine”
Section 9.6.1, “Using myisamchk for Crash Recovery”

5848

Section 7.9.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 1.3, “What Is New in MySQL 8.0”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

myisamchk *.MYI
Section 9.6.3, “How to Repair MyISAM Tables”

myisamchk tbl_name
Section 9.6.2, “How to Check MyISAM Tables for Errors”

myisamlog
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.1, “Overview of MySQL Programs”

myisampack
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”
Section 18.2.3.3, “Compressed Table Characteristics”
Section 15.1.20, “CREATE TABLE Statement”
Section 10.11.5, “External Locking”
Section 10.4.6, “Limits on Table Size”
Section 18.7.1, “MERGE Table Advantages and Disadvantages”
Section 18.2.3, “MyISAM Table Storage Formats”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.6.4.5, “Obtaining Table Information with myisamchk”
Section 10.4.1, “Optimizing Data Size”
Section 6.1, “Overview of MySQL Programs”
Section 15.1.20.7, “Silent Column Specification Changes”
Section 18.7, “The MERGE Storage Engine”
Section 18.2, “The MyISAM Storage Engine”

mysql
Section 1.1, “About This Manual”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 19.1.5.4, “Adding Binary Log Based Replication Sources to a Multi-Source Replica”
Section 19.1.5.3, “Adding GTID-Based Sources to a Multi-Source Replica”
Section 25.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 25.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 14.19.1, “Aggregate Function Descriptions”
Section 15.7.1.1, “ALTER USER Statement”
Section 8.4.5.11, “Audit Log Reference”
Section 9.1, “Backup and Recovery Types”
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 15.6.1, “BEGIN ... END Compound Statement”
Section 14.12, “Bit Functions and Operators”
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 14.10, “Cast Functions and Operators”
Section 3.5, “Changes in MySQL 8.0”
Section 8.4.1.4, “Client-Side Cleartext Pluggable Authentication”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 11.7, “Comments”
Section 25.4, “Configuration of NDB Cluster”
Section 12.5, “Configuring Application Character Set and Collation”

5849

Section 19.1.5.1, “Configuring Multi-Source Replication”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 5.1, “Connecting to and Disconnecting from the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.2.6, “Connecting to the Server Using DNS SRV Records”
Section 6.2.5, “Connecting to the Server Using URI-Like Strings or Key-Value Pairs”
Section 7.1.13.4, “Connecting Using IPv6 Nonlocal Host Addresses”
Section 7.1.13.3, “Connecting Using the IPv6 Local Host Address”
Section 12.4, “Connection Character Sets and Collations”
Section 6.2.8, “Connection Compression Control”
Section 6.2.7, “Connection Transport Protocols”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 3.15, “Copying MySQL Databases to Another Machine”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 5.3.1, “Creating and Selecting a Database”
Section 2.3.4.7, “Customizing the PATH for MySQL Tools”
Section 16.1, “Data Dictionary Schema”
Section 7.9.2, “Debugging a MySQL Client”
Section 25.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 27.1, “Defining Stored Programs”
Section 10.15.13, “Displaying Traces in Other Applications”
Section 17.17.2, “Enabling InnoDB Monitors”
Section 14.13, “Encryption and Compression Functions”
Section 8.1.2.1, “End-User Guidelines for Password Security”
Section 5.2, “Entering Queries”
Section 6.9, “Environment Variables”
Section B.2, “Error Information Interfaces”
Section B.1, “Error Message Sources and Elements”
Section 25.6.2.3, “Event Buffer Reporting in the Cluster Log”
Section 27.4.2, “Event Scheduler Configuration”
Section 9.3, “Example Backup and Recovery Strategy”
Section 5.6, “Examples of Common Queries”
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 6.5.1.5, “Executing SQL Statements from a Text File”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Chapter 14, Functions and Operators
Section 14.17.3, “Functions That Search JSON Values”
Section 25.1, “General Information”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section 15.6.7.3, “GET DIAGNOSTICS Statement”
Section 15.7.1.6, “GRANT Statement”
Section B.3.1, “How to Determine What Is Causing a Problem”
Section 17.7.5.3, “How to Minimize and Handle Deadlocks”
Section 1.5, “How to Report Bugs or Problems”
Section 8.1.5, “How to Run MySQL as a Normal User”
Section 15.2.6, “IMPORT TABLE Statement”
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section 14.15, “Information Functions”
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 17.18.2, “InnoDB Recovery”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 6.2.1, “Invoking MySQL Programs”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 20.2.1.4, “Launching Group Replication”

5850

Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 10.2.1.19, “LIMIT Query Optimization”
Section 15.2.9, “LOAD DATA Statement”
Section 15.2.10, “LOAD XML Statement”
Section 9.4.5.1, “Making a Copy of a Database”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 25.6, “Management of NDB Cluster”
Section 10.13.1, “Measuring the Speed of Expressions and Functions”
Section 14.23, “Miscellaneous Functions”
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”
Section 8.2.18, “Multifactor Authentication”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.3, “mysql Client Logging”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.4, “mysql Client Server-Side Help”
Section 6.5.1.6, “mysql Client Tips”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
MySQL Glossary
Section 2.3.3.1, “MySQL Installer Initial Setup”
Section 7.1.15, “MySQL Server Time Zone Support”
Section 25.6.10, “MySQL Server Usage for NDB Cluster”
Chapter 21, MySQL Shell
Section 6.5.1, “mysql — The MySQL Command-Line Client”
Section 6.3.3, “mysql.server — MySQL Server Startup Script”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.4.4, “mysql_tzinfo_to_sql — Load the Time Zone Tables”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 25.6.15, “NDB API Statistics Counters and Variables”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 25.3.5, “NDB Cluster Example with Tables and Data”
Section 25.7, “NDB Cluster Replication”
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 7.1.14, “Network Namespace Support”
Section 6.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section B.3.2.6, “Out of memory”
Section 6.1, “Overview of MySQL Programs”
Section B.3.2.8, “Packet Too Large”
Section 8.4.1.5, “PAM Pluggable Authentication”
Section 29.12.9, “Performance Schema Connection Attribute Tables”

5851

Section 8.2.17, “Pluggable Authentication”
Section 9.5.1, “Point-in-Time Recovery Using Binary Log”
Section 15.5, “Prepared Statements”
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 25.6.13, “Privilege Synchronization and NDB_STORED_USER”
Section 6.2.2.4, “Program Option Modifiers”
Section 19.1.5.2, “Provisioning a Multi-Source Replica for GTID-Based Replication”
Section 11.6, “Query Attributes”
Section 26.2.3.1, “RANGE COLUMNS partitioning”
Section 8.4.5.6, “Reading Audit Log Files”
Section 3.14, “Rebuilding or Repairing Tables or Indexes”
Section 9.4.4, “Reloading Delimited-Text Format Backups”
Section 9.4.2, “Reloading SQL-Format Backups”
Resetting the Root Password: Generic Instructions
Restoring an NDB backup to a later version of NDB Cluster
Restoring to More Nodes Than the Original
Section 8.3.5, “Reusing SSL Sessions”
Section 15.7.1.8, “REVOKE Statement”
Section 2.9.4, “Securing the Initial MySQL Account”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 8.2.16, “Server Handling of Expired Passwords”
Section 7.1.8, “Server System Variables”
Section 7.1.17, “Server-Side Help Support”
Section 15.2.14, “Set Operations with UNION, INTERSECT, and EXCEPT”
Section 15.1.20.12, “Setting NDB Comment Options”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 15.6.7.5, “SIGNAL Statement”
Section 8.4.1.10, “Socket Peer-Credential Pluggable Authentication”
Section 6.2.2, “Specifying Program Options”
Section 19.1.5.5, “Starting Multi-Source Replicas”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 14.8.1, “String Comparison Functions and Operators”
Section 14.8, “String Functions and Operators”
Section 11.1.1, “String Literals”
Section 2.9.3, “Testing the Server”
Section 13.3.3, “The BINARY and VARBINARY Types”
Section 12.10.8, “The Binary Character Set”
Section 13.3.4, “The BLOB and TEXT Types”
Section 30.4.4.2, “The diagnostics() Procedure”
Section 25.6.16.3, “The ndbinfo backup_id Table”
Section 25.6.16.46, “The ndbinfo memory_per_fragment Table”
Section 25.6.16.65, “The ndbinfo transporters Table”
Section 27.3.1, “Trigger Syntax and Examples”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Chapter 5, Tutorial
Section 6.10, “Unix Signal Handling in MySQL”
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”
Chapter 3, Upgrading MySQL
Section 9.3.2, “Using Backups for Recovery”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”
Section 5.5, “Using mysql in Batch Mode”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 9.4, “Using mysqldump for Backups”

5852

Section 6.2.2.2, “Using Option Files”
Section 6.2.2.1, “Using Options on the Command Line”
Section 6.2.2.5, “Using Options to Set Program Variables”
Section 7.9.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 10.12.2.3, “Using Symbolic Links for Databases on Windows”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 2.3.6, “Windows Postinstallation Procedures”
Section 15.2.20, “WITH (Common Table Expressions)”
Section 14.11, “XML Functions”

mysql ...
Section 7.9.1.1, “Compiling MySQL for Debugging”

mysql-test-run.pl
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 7.9.3, “The LOCK_ORDER Tool”
Section 6.2.2.2, “Using Option Files”

mysql.exe
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 6.5.1.6, “mysql Client Tips”

mysql.server
Section 2.5, “Installing MySQL on Linux”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 6.3.3, “mysql.server — MySQL Server Startup Script”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.1, “Overview of MySQL Programs”
Section 7.1.7, “Server Command Options”
Section 2.9.5, “Starting and Stopping MySQL Automatically”
Section B.3.3.7, “Time Zone Problems”

mysql.server stop
Section 6.3.3, “mysql.server — MySQL Server Startup Script”

mysql_client_test_embedded
Section 1.3, “What Is New in MySQL 8.0”

mysql_config
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”
Section 6.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 8.0”

mysql_config_editor
Section 6.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 8.1.2.1, “End-User Guidelines for Password Security”
Section 6.9, “Environment Variables”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.4.1, “myisamchk General Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”

5853

Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 6.1, “Overview of MySQL Programs”
Section 6.2.2.2, “Using Option Files”

mysql_install_db
Section 1.3, “What Is New in MySQL 8.0”

mysql_migrate_keyring
Section 8.4.4.18, “Keyring Command Options”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.1, “Overview of MySQL Programs”
Section 8.3.5, “Reusing SSL Sessions”

mysql_plugin
Section 1.3, “What Is New in MySQL 8.0”

mysql_secure_installation
Section 2.9.1, “Initializing the Data Directory”
Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”
Section 2.5.5, “Installing MySQL on Linux Using Debian Packages from Oracle”
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.1, “Overview of MySQL Programs”
Section 8.3.5, “Reusing SSL Sessions”
Section 2.9.4, “Securing the Initial MySQL Account”

mysql_ssl_rsa_setup
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.3.3, “Creating RSA Keys Using openssl”
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 8.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 2.9.1, “Initializing the Data Directory”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 6.1, “Overview of MySQL Programs”

mysql_stmt_execute()
Section 7.1.10, “Server Status Variables”

mysql_stmt_prepare()
Section 7.1.10, “Server Status Variables”

mysql_tzinfo_to_sql
Section 7.1.15, “MySQL Server Time Zone Support”
Section 6.4.4, “mysql_tzinfo_to_sql — Load the Time Zone Tables”

5854

Section 6.1, “Overview of MySQL Programs”

mysql_upgrade
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 20.2.1.2, “Configuring an Instance for Group Replication”
Section 6.2.8, “Connection Compression Control”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.1, “Overview of MySQL Programs”
Section 3.14, “Rebuilding or Repairing Tables or Indexes”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 8.3.5, “Reusing SSL Sessions”
Section 7.1.8, “Server System Variables”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 19.5.3, “Upgrading a Replication Topology”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 3.11, “Upgrading MySQL on Windows”
Section 3.8, “Upgrading MySQL with the MySQL Yum Repository”
Section 1.3, “What Is New in MySQL 8.0”
Section 3.4, “What the MySQL Upgrade Process Upgrades”

mysqladmin
Section 8.2.14, “Assigning Account Passwords”
Section 19.4.1.1, “Backing Up a Replica Using mysqldump”
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 3.5, “Changes in MySQL 8.0”
Section 8.4.1.4, “Client-Side Cleartext Pluggable Authentication”
Section 7.1.1, “Configuring the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 12.4, “Connection Character Sets and Collations”
Section 6.2.8, “Connection Compression Control”
Section 15.1.12, “CREATE DATABASE Statement”
Section 2.3.4.7, “Customizing the PATH for MySQL Tools”
Section 7.9.1, “Debugging a MySQL Server”
Section 15.1.24, “DROP DATABASE Statement”
Section 15.7.8.3, “FLUSH Statement”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section B.3.1, “How to Determine What Is Causing a Problem”
Section 9.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 20.4, “Monitoring Group Replication”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 2.3.3.1, “MySQL Installer Initial Setup”
Section 7.4, “MySQL Server Logs”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.1, “Overview of MySQL Programs”
Section 29.12.9, “Performance Schema Connection Attribute Tables”
Section 8.2.17, “Pluggable Authentication”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.3.5, “Reusing SSL Sessions”
Section 7.8.3, “Running Multiple MySQL Instances on Unix”
Section 2.9.4, “Securing the Initial MySQL Account”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”

5855

Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 2.9.3, “Testing the Server”
Section 1.2.2, “The Main Features of MySQL”
Section 7.1.19, “The Server Shutdown Process”
Section 3.11, “Upgrading MySQL on Windows”
Section 6.2.2.2, “Using Option Files”
Section 6.2.2.1, “Using Options on the Command Line”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

mysqladmin debug
Section 7.9.1, “Debugging a MySQL Server”
Section 27.4.5, “Event Scheduler Status”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

mysqladmin extended-status
Section 15.7.7.37, “SHOW STATUS Statement”

mysqladmin flush-hosts
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”

mysqladmin flush-logs
Section 9.3.3, “Backup Strategy Summary”
Section 7.4.2.10, “Error Log File Flushing and Renaming”
Section 9.3.1, “Establishing a Backup Policy”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 7.4.6, “Server Log Maintenance”
Section 19.2.4.1, “The Relay Log”

mysqladmin flush-logs binary
Section 7.4.4, “The Binary Log”

mysqladmin flush-privileges
Section 3.15, “Copying MySQL Databases to Another Machine”
Section 8.2.3, “Grant Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 19.3.3.3, “Recovering From Failed Replication Privilege Checks”
Section 19.3.3, “Replication Privilege Checks”
Section 7.1.7, “Server Command Options”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 8.2.13, “When Privilege Changes Take Effect”

mysqladmin flush-tables
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”
Section 10.11.5, “External Locking”
Section 10.4.3.1, “How MySQL Opens and Closes Tables”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 9.6.1, “Using myisamchk for Crash Recovery”

mysqladmin flush-xxx
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”

5856

mysqladmin kill
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 15.7.8.4, “KILL Statement”
Section 14.14, “Locking Functions”
Section B.3.2.7, “MySQL server has gone away”
Section 8.2.2, “Privileges Provided by MySQL”

mysqladmin password
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

mysqladmin processlist
Section 10.14.1, “Accessing the Process List”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 15.7.8.4, “KILL Statement”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 8.2.2, “Privileges Provided by MySQL”
Section 29.12.21.7, “The processlist Table”

mysqladmin processlist status
Section 7.9.1, “Debugging a MySQL Server”

mysqladmin refresh
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 10.4.3.1, “How MySQL Opens and Closes Tables”
Section 7.4.6, “Server Log Maintenance”

mysqladmin reload
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 8.2.3, “Grant Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 19.3.3.3, “Recovering From Failed Replication Privilege Checks”
Section 19.3.3, “Replication Privilege Checks”
Section 7.1.7, “Server Command Options”
Section 8.2.21, “Setting Account Resource Limits”
Section 8.2.13, “When Privilege Changes Take Effect”

mysqladmin reload version
Section 1.5, “How to Report Bugs or Problems”

mysqladmin shutdown
Section 8.2.7, “Access Control, Stage 2: Request Verification”
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 7.9.1.2, “Creating Trace Files”
Section 15.7.1.6, “GRANT Statement”
Section 9.6.3, “How to Repair MyISAM Tables”
Section 8.1.5, “How to Run MySQL as a Normal User”
Section 2.4.2, “Installing MySQL on macOS Using Native Packages”
Section 7.9.1.7, “Making a Test Case If You Experience Table Corruption”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 6.3.3, “mysql.server — MySQL Server Startup Script”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 25.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 15.7.8.9, “SHUTDOWN Statement”

5857

Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 7.1.19, “The Server Shutdown Process”
Section 20.8.3.2, “Upgrading a Group Replication Member”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

mysqladmin status
Section 10.4.3.1, “How MySQL Opens and Closes Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

mysqladmin variables
Section B.3.2.7, “MySQL server has gone away”
Section 15.7.7.41, “SHOW VARIABLES Statement”

mysqladmin variables extended-status processlist
Section 1.5, “How to Report Bugs or Problems”

mysqladmin ver
Section 7.9.1.1, “Compiling MySQL for Debugging”

mysqladmin version
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 1.5, “How to Report Bugs or Problems”
Section B.3.2.7, “MySQL server has gone away”
Section 2.9.3, “Testing the Server”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

mysqlanalyze
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

mysqlbackup
Section 9.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files
Section 20.8.3.4, “Group Replication Upgrade with mysqlbackup”
Section 17.18.1, “InnoDB Backup”
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”
MySQL Glossary
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”

mysqlbinlog
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 7.4.4.5, “Binary Log Transaction Compression”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.7.8.1, “BINLOG Statement”
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 6.2.8, “Connection Compression Control”
Section 19.4.11, “Delayed Replication”
Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”
Section 19.1.3.1, “GTID Format and Storage”
Section 19.1.3.2, “GTID Life Cycle”
Section 19.5.5, “How to Report Replication Bugs or Problems”
Section 17.18.2, “InnoDB Recovery”
Section 15.1.20.10, “Invisible Columns”
Section B.3.7, “Known Issues in MySQL”
Section 14.23, “Miscellaneous Functions”
Monitoring Binary Log Transaction Compression

5858

Section 6.5.1.1, “mysql Client Options”
MySQL Glossary
Section 6.6.9.1, “mysqlbinlog Hex Dump Format”
Section 6.6.9.2, “mysqlbinlog Row Event Display”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 25.7.11, “NDB Cluster Replication Using the Multithreaded Applier”
NDB Cluster System Variables
Section 26.3.5, “Obtaining Information About Partitions”
Section 6.1, “Overview of MySQL Programs”
Section 29.12.9, “Performance Schema Connection Attribute Tables”
Section 9.5.1, “Point-in-Time Recovery Using Binary Log”
Section 9.5.2, “Point-in-Time Recovery Using Event Positions”
Section 25.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.3.3.3, “Recovering From Failed Replication Privilege Checks”
Section 19.5.1.19, “Replication and LOAD DATA”
Section 19.5.1.39, “Replication and Variables”
Section 19.3.3, “Replication Privilege Checks”
Section 8.3.5, “Reusing SSL Sessions”
Section 19.3.2.1, “Scope of Binary Log Encryption”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 7.1.8, “Server System Variables”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 15.7.7.2, “SHOW BINLOG EVENTS Statement”
Section 15.7.7.32, “SHOW RELAYLOG EVENTS Statement”
Section 19.1.7.3, “Skipping Transactions”
Section 6.6.9.4, “Specifying the mysqlbinlog Server ID”
Section 15.4.2.6, “START REPLICA Statement”
Section 7.4.4, “The Binary Log”
Section 7.4.3, “The General Query Log”
Section 19.2.4.1, “The Relay Log”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”
Section 9.3.2, “Using Backups for Recovery”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”

mysqlbinlog binary-log-file | mysql
Section 7.9.1.7, “Making a Test Case If You Experience Table Corruption”

mysqlbinlog|mysql
Section B.3.7, “Known Issues in MySQL”

mysqlcheck
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 3.5, “Changes in MySQL 8.0”
Section 8.4.1.4, “Client-Side Cleartext Pluggable Authentication”
Section 12.4, “Connection Character Sets and Collations”
Section 6.2.8, “Connection Compression Control”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 9.6, “MyISAM Table Maintenance and Crash Recovery”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.1, “Overview of MySQL Programs”
Section 3.6, “Preparing Your Installation for Upgrade”
Section 3.14, “Rebuilding or Repairing Tables or Indexes”
Section 8.3.5, “Reusing SSL Sessions”

5859

Section 7.1.8, “Server System Variables”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 1.2.2, “The Main Features of MySQL”
Section 18.2, “The MyISAM Storage Engine”
Section 1.3, “What Is New in MySQL 8.0”

mysqld
Section 1.1, “About This Manual”
Section 15.1.2, “ALTER DATABASE Statement”
Section 10.2.1.23, “Avoiding Full Table Scans”
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 7.4.4.5, “Binary Log Transaction Compression”
Section 7.4.4.1, “Binary Logging Formats”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section B.3.2.11, “Can't create/write to file”
Section B.3.2.15, “Can't initialize character set”
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 3.5, “Changes in MySQL 8.0”
Section 6.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 11.7, “Comments”
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 7.9.1.1, “Compiling MySQL for Debugging”
Section 25.4, “Configuration of NDB Cluster”
Section 2.8.6, “Configuring SSL Library Support”
Section 7.1.1, “Configuring the Server”
Section 7.1.12.1, “Connection Interfaces”
Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 18.2.4.1, “Corrupted MyISAM Tables”
Section 15.1.20, “CREATE TABLE Statement”
Section 7.9.1.2, “Creating Trace Files”
Section 16.1, “Data Dictionary Schema”
Section 17.7.5, “Deadlocks in InnoDB”
Section 7.9.1, “Debugging a MySQL Server”
Section 7.9.1.4, “Debugging mysqld under gdb”
Section 7.4.2.2, “Default Error Log Destination Configuration”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 17.6.4, “Doublewrite Buffer”
Section 17.17.2, “Enabling InnoDB Monitors”
Section 10.12.3.3, “Enabling Large Page Support”
Section 10.2.1.5, “Engine Condition Pushdown Optimization”
Section 6.9, “Environment Variables”
Section 7.4.2.3, “Error Event Fields”
Section 7.4.2.10, “Error Log File Flushing and Renaming”
Section 7.4.2.9, “Error Log Output Format”
Section 7.4.2.8, “Error Logging to the System Log”
Section 25.6.2.3, “Event Buffer Reporting in the Cluster Log”
Section 17.8.3.7, “Excluding Buffer Pool Pages from Core Files”
Section 10.11.5, “External Locking”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 17.6.3.2, “File-Per-Table Tablespaces”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 17.21.3, “Forcing InnoDB Recovery”

5860

Section 25.1, “General Information”
Section 25.7.2, “General Requirements for NDB Cluster Replication”
Section 10.14.3, “General Thread States”
Section 10.12.3.1, “How MySQL Uses Memory”
Section B.3.1, “How to Determine What Is Causing a Problem”
Section 9.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 8.1.5, “How to Run MySQL as a Normal User”
Section B.3.2.13, “Ignoring user”
Section 25.7.8, “Implementing Failover with NDB Cluster Replication”
Section 14.15, “Information Functions”
Section 25.3.3, “Initial Configuration of NDB Cluster”
Section 25.3.4, “Initial Startup of NDB Cluster”
Section 2.9.1, “Initializing the Data Directory”
Section 17.18.1, “InnoDB Backup”
Section 17.11.1, “InnoDB Disk I/O”
Section 17.20.2, “InnoDB memcached Architecture”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.21, “InnoDB Troubleshooting”
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 15.2.7, “INSERT Statement”
Section 25.3.1, “Installation of NDB Cluster on Linux”
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.4.2, “Installing MySQL on macOS Using Native Packages”
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 8.4.4.2, “Keyring Component Installation”
Section 15.7.8.4, “KILL Statement”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 15.2.9, “LOAD DATA Statement”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.14, “Locking Functions”
Section 7.9.1.7, “Making a Test Case If You Experience Table Corruption”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 25.6, “Management of NDB Cluster”
Section 2.5.9, “Managing MySQL Server with systemd”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 14.23, “Miscellaneous Functions”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 17.6.1.4, “Moving or Copying InnoDB Tables”
Section 18.2.1, “MyISAM Startup Options”
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.4, “myisamchk — MyISAM Table-Maintenance Utility”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section A.1, “MySQL 8.0 FAQ: General”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section A.3, “MySQL 8.0 FAQ: Server SQL Mode”
Section 6.5.1.6, “mysql Client Tips”
MySQL Glossary

5861

Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”
Chapter 7, MySQL Server Administration
Section B.3.2.7, “MySQL server has gone away”
Section 7.4, “MySQL Server Logs”
MySQL Server Options for NDB Cluster
Section 7.1.15, “MySQL Server Time Zone Support”
Section 25.6.10, “MySQL Server Usage for NDB Cluster”
Section 25.2.6, “MySQL Server Using InnoDB Compared with NDB Cluster”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 1.6, “MySQL Standards Compliance”
Chapter 30, MySQL sys Schema
Section 6.3.3, “mysql.server — MySQL Server Startup Script”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.1, “mysqld — The MySQL Server”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.6.15, “NDB API Statistics Counters and Variables”
Section 25.6.20.3, “NDB Cluster and MySQL Security Procedures”
Section 25.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 25.2.1, “NDB Cluster Core Concepts”
Section 25.3, “NDB Cluster Installation”
Section 25.4.2.5, “NDB Cluster mysqld Option and Variable Reference”
Section 25.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 25.2, “NDB Cluster Overview”
Section 25.5, “NDB Cluster Programs”
Section 25.7, “NDB Cluster Replication”
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 25.7.11, “NDB Cluster Replication Using the Multithreaded Applier”
Section 25.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
NDB Cluster Status Variables
NDB Cluster System Variables
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 7.1.14, “Network Namespace Support”
Section 25.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 15.7.3.4, “OPTIMIZE TABLE Statement”
Section B.3.5, “Optimizer-Related Issues”
Section 10.5.4, “Optimizing InnoDB Redo Logging”
Section 25.2.5, “Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0”
Section 6.1, “Overview of MySQL Programs”
Section 25.4.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section B.3.2.8, “Packet Too Large”
Section 29.3, “Performance Schema Startup Configuration”
Section 29.12.14.2, “Performance Schema variables_info Table”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 18.2.4.2, “Problems from Tables Not Being Closed Properly”
Section B.3.3.1, “Problems with File Permissions”
Section 6.2.2.4, “Program Option Modifiers”
Section 15.7.3.5, “REPAIR TABLE Statement”

5862

Section 19.1.6.1, “Replication and Binary Logging Option and Variable Reference”
Section 19.1.6, “Replication and Binary Logging Options and Variables”
Section 19.5.1.28, “Replication and Source or Replica Shutdowns”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 19.2.4.2, “Replication Metadata Repositories”
Section 19.3.3, “Replication Privilege Checks”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 15.4.2.4, “RESET REPLICA Statement”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 7.1.16, “Resource Groups”
Section 15.7.8.8, “RESTART Statement”
Restoring an NDB backup to a later version of NDB Cluster
Restoring an NDB backup to a previous version of NDB Cluster
Restoring to More Nodes Than the Original
Section B.3.4.5, “Rollback Failure for Nontransactional Tables”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 2.9.4, “Securing the Initial MySQL Account”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 8.1.4, “Security-Related mysqld Options and Variables”
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 8.7, “SELinux”
Section 6.3, “Server and Server-Startup Programs”
Section 12.3.2, “Server Character Set and Collation”
Section 7.1.7, “Server Command Options”
Section 7.4.6, “Server Log Maintenance”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 12.12, “Setting the Error Message Language”
Section 8.7.5.2, “Setting the TCP Port Context for MySQL Features”
Section 8.7.5.1, “Setting the TCP Port Context for mysqld”
Section 9.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”
Section 15.7.7.15, “SHOW ENGINE Statement”
Section 6.2.2, “Specifying Program Options”
Section 15.4.2.6, “START REPLICA Statement”
Section 2.9.5, “Starting and Stopping MySQL Automatically”
Section 7.8.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 7.8.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 19.2.2.3, “Startup Options and Replication Channels”
Section 19.4.8, “Switching Sources During Failover”
Section 10.11.2, “Table Locking Issues”
Section B.3.2.17, “Table-Corruption Issues”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 2.9.3, “Testing the Server”
Section 7.4.4, “The Binary Log”
Section 18.6, “The BLACKHOLE Storage Engine”
Section 7.9.4, “The DBUG Package”
Section 7.4.2, “The Error Log”
Section 7.4.3, “The General Query Log”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”
Section 18.2, “The MyISAM Storage Engine”
Section 7.1, “The MySQL Server”

5863

Section 25.6.16.48, “The ndbinfo operations_per_fragment Table”
Section 25.6.16.53, “The ndbinfo server_locks Table”
Section 29.12.2.3, “The setup_instruments Table”
Section 7.4.5, “The Slow Query Log”
Section B.3.3.7, “Time Zone Problems”
Section B.3.2.5, “Too many connections”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 17.21.1, “Troubleshooting InnoDB I/O Problems”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 6.10, “Unix Signal Handling in MySQL”
Section 3.13, “Upgrade Troubleshooting”
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 3.11, “Upgrading MySQL on Windows”
Section 7.9.1.5, “Using a Stack Trace”
Section 9.6.1, “Using myisamchk for Crash Recovery”
Section 6.2.2.2, “Using Option Files”
Section 7.9.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 10.12.2.3, “Using Symbolic Links for Databases on Windows”
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 25.7.7, “Using Two Replication Channels for NDB Cluster Replication”
Section 7.9.1.3, “Using WER with PDB to create a Windows crashdump”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 3.4, “What the MySQL Upgrade Process Upgrades”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”
Section 8.2.13, “When Privilege Changes Take Effect”
Section B.3.3.5, “Where MySQL Stores Temporary Files”
Section 2.1.2, “Which MySQL Version and Distribution to Install”

mysqld mysqld.trace
Section 7.9.1.2, “Creating Trace Files”

mysqld-auto.cnf
Section 6.2.2, “Specifying Program Options”

mysqld-debug
Section 7.9.1.2, “Creating Trace Files”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 6.3.1, “mysqld — The MySQL Server”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 2.3.4.3, “Selecting a MySQL Server Type”

mysqld.exe
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”

mysqld_multi
Section 2.5.9, “Managing MySQL Server with systemd”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.1, “Overview of MySQL Programs”
Section 7.8.3, “Running Multiple MySQL Instances on Unix”

mysqld_multi.server
Section 2.5.9, “Managing MySQL Server with systemd”

5864

mysqld_safe
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 7.9.1.1, “Compiling MySQL for Debugging”
Section 7.1.1, “Configuring the Server”
Section 7.4.2.2, “Default Error Log Destination Configuration”
Section B.3.2.16, “File Not Found and Similar Errors”
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 17.21, “InnoDB Troubleshooting”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 2.5.9, “Managing MySQL Server with systemd”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 7.1.15, “MySQL Server Time Zone Support”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.3.3, “mysql.server — MySQL Server Startup Script”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 25.6.20.3, “NDB Cluster and MySQL Security Procedures”
Section 6.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 6.1, “Overview of MySQL Programs”
Section B.3.2.8, “Packet Too Large”
Section 29.12.14.2, “Performance Schema variables_info Table”
Section B.3.3.1, “Problems with File Permissions”
Section 15.7.8.8, “RESTART Statement”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.8.3, “Running Multiple MySQL Instances on Unix”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 2.9.5, “Starting and Stopping MySQL Automatically”
Section 2.9.2, “Starting the Server”
Section 2.9.3, “Testing the Server”
Section 7.4.2, “The Error Log”
Section B.3.3.7, “Time Zone Problems”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 6.2.2.2, “Using Option Files”

mysqldump
Section 15.1.2, “ALTER DATABASE Statement”
Section 19.4.1.1, “Backing Up a Replica Using mysqldump”
Section 19.4.1.3, “Backing Up a Source or Replica by Making It Read Only”
Chapter 9, Backup and Recovery
Section 9.1, “Backup and Recovery Types”
Section 9.3.3, “Backup Strategy Summary”
Section 17.5.1, “Buffer Pool”
Section 10.5.5, “Bulk Data Loading for InnoDB Tables”
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 3.5, “Changes in MySQL 8.0”
Section 19.1.2.5, “Choosing a Method for Data Snapshots”
Section 8.4.1.4, “Client-Side Cleartext Pluggable Authentication”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.2.5, “Connecting to the Server Using URI-Like Strings or Key-Value Pairs”
Section 6.2.8, “Connection Compression Control”
Section 6.2.7, “Connection Transport Protocols”
Section 12.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 9.4.5.2, “Copy a Database from one Server to Another”
Section 3.15, “Copying MySQL Databases to Another Machine”

5865

Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Creating a Data Snapshot Using mysqldump
Section 2.3.4.7, “Customizing the PATH for MySQL Tools”
Section 16.7, “Data Dictionary Usage Differences”
Section 9.2, “Database Backup Methods”
Section 17.11.4, “Defragmenting a Table”
Section 9.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 9.4.1, “Dumping Data in SQL Format with mysqldump”
Section 9.4.5.3, “Dumping Stored Programs”
Section 9.4.5.4, “Dumping Table Definitions and Content Separately”
Section 9.3.1, “Establishing a Backup Policy”
Section 9.3, “Example Backup and Recovery Strategy”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 1.5, “How to Report Bugs or Problems”
Section 15.2.6, “IMPORT TABLE Statement”
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 17.18.1, “InnoDB Backup”
Section 2.6, “Installing MySQL Using Unbreakable Linux Network (ULN)”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 15.1.20.10, “Invisible Columns”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 15.2.9, “LOAD DATA Statement”
Section 15.2.10, “LOAD XML Statement”
Section 9.4.5.1, “Making a Copy of a Database”
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”
Section 17.6.1.4, “Moving or Copying InnoDB Tables”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 6.5.1.1, “mysql Client Options”
Section 7.4, “MySQL Server Logs”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 9.4.5, “mysqldump Tips”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.3.5, “NDB Cluster Example with Tables and Data”
Section 25.2, “NDB Cluster Overview”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 19.1.2.4, “Obtaining the Replication Source Binary Log Coordinates”
Section 25.6.8, “Online Backup of NDB Cluster”
Section 6.1, “Overview of MySQL Programs”
Section 29.12.9, “Performance Schema Connection Attribute Tables”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 25.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 8.2.2, “Privileges Provided by MySQL”
Section B.3.4.8, “Problems with Floating-Point Values”
Section 19.1.5.2, “Provisioning a Multi-Source Replica for GTID-Based Replication”
Section 17.8.9, “Purge Configuration”
Section 3.14, “Rebuilding or Repairing Tables or Indexes”
Section 9.4.4, “Reloading Delimited-Text Format Backups”
Section 9.4.2, “Reloading SQL-Format Backups”
Section 19.4.6, “Replicating Different Databases to Different Replicas”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Restoring an NDB backup to a later version of NDB Cluster

5866

Restoring an NDB backup to a previous version of NDB Cluster
Restoring to More Nodes Than the Original
Section 29.20, “Restrictions on Performance Schema”
Section 27.9, “Restrictions on Views”
Section 8.3.5, “Reusing SSL Sessions”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.4.6, “Server Log Maintenance”
Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”
Section 15.4.1.3, “SET sql_log_bin Statement”
Setting Up Replication with Existing Data
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section B.3.4.7, “Solving Problems with No Matching Rows”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 19.1.3.8, “Stored Function Examples to Manipulate GTIDs”
Section 13.3.4, “The BLOB and TEXT Types”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”
Section 1.2.2, “The Main Features of MySQL”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 15.7.4.6, “UNINSTALL PLUGIN Statement”
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 9.4, “Using mysqldump for Backups”
Section 6.2.2.2, “Using Option Files”
Section 19.4.1, “Using Replication for Backups”
Section 19.4.4, “Using Replication with Different Source and Replica Storage Engines”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 30.2, “Using the sys Schema”
Section 1.3, “What Is New in MySQL 8.0”
Section 14.11, “XML Functions”

mysqldump mysql
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”

mysqldump's
Section 3.15, “Copying MySQL Databases to Another Machine”

mysqldumpslow
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.1, “Overview of MySQL Programs”
Section 7.4.5, “The Slow Query Log”

mysqlimport
Section 9.1, “Backup and Recovery Types”
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 12.4, “Connection Character Sets and Collations”
Section 6.2.8, “Connection Compression Control”
Section 3.15, “Copying MySQL Databases to Another Machine”
Section 9.2, “Database Backup Methods”
Section 15.2.9, “LOAD DATA Statement”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.1, “Overview of MySQL Programs”
Section 9.4.4, “Reloading Delimited-Text Format Backups”
Section 8.3.5, “Reusing SSL Sessions”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”

5867

Section 8.4.1.3, “SHA-256 Pluggable Authentication”

MySQLInstallerConsole
Section 2.3.3.5, “MySQL Installer Console Reference”

MySQLInstallerConsole.exe
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 2.3.3.1, “MySQL Installer Initial Setup”

mysqloptimize
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

mysqlpump
Section 15.1.2, “ALTER DATABASE Statement”
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 6.2.8, “Connection Compression Control”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 16.7, “Data Dictionary Usage Differences”
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section 2.6, “Installing MySQL Using Unbreakable Linux Network (ULN)”
Section 6.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.1, “Overview of MySQL Programs”
Section 8.3.5, “Reusing SSL Sessions”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 30.2, “Using the sys Schema”
Section 1.3, “What Is New in MySQL 8.0”
Section 6.8.3, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”

mysqlrepair
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

mysqlsh
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 22.3.1, “MySQL Shell”
Section 22.4.1, “MySQL Shell”
Section 6.1, “Overview of MySQL Programs”

mysqlshow
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 8.4.1.4, “Client-Side Cleartext Pluggable Authentication”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 12.4, “Connection Character Sets and Collations”
Section 6.2.8, “Connection Compression Control”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.1, “Overview of MySQL Programs”
Section 8.3.5, “Reusing SSL Sessions”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 15.7.7.14, “SHOW DATABASES Statement”
Section 15.7.7.22, “SHOW INDEX Statement”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 2.3.4.9, “Testing The MySQL Installation”

5868

Section 2.9.3, “Testing the Server”
Section 2.3.6, “Windows Postinstallation Procedures”

mysqlshow db_name
Section 15.7.7.39, “SHOW TABLES Statement”

mysqlshow db_name tbl_name
Section 15.7.7.5, “SHOW COLUMNS Statement”

mysqlslap
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 8.4.1.4, “Client-Side Cleartext Pluggable Authentication”
Section 6.2.8, “Connection Compression Control”
Section 17.16.2, “Monitoring InnoDB Mutex Waits Using Performance Schema”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 6.1, “Overview of MySQL Programs”
Section 8.3.5, “Reusing SSL Sessions”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 10.13.2, “Using Your Own Benchmarks”

mysqltest
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 6.2.8, “Connection Compression Control”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 8.3.5, “Reusing SSL Sessions”
Section 7.1.18, “Server Tracking of Client Session State”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 1.3, “What Is New in MySQL 8.0”

mysqltest_embedded
Section 1.3, “What Is New in MySQL 8.0”

mysqlxtest
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.1.14, “Network Namespace Support”

N

[index top]

nbdmtd
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”

NDB
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_blob_tool
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_config
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 25.5, “NDB Cluster Programs”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

5869

ndb_delete_all
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_desc
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 26.2.5, “KEY Partitioning”
Section 25.6.20.3, “NDB Cluster and MySQL Security Procedures”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 15.1.20.12, “Setting NDB Comment Options”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”
Section 28.3.21, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 25.6.16.7, “The ndbinfo cluster_operations Table”
Section 25.6.16.54, “The ndbinfo server_operations Table”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_drop_index
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_drop_table
Section 2.8.7, “MySQL Source-Configuration Options”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_error_reporter
Section 25.5.12, “ndb_error_reporter — NDB Error-Reporting Utility”

ndb_import
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_index_stat
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.6.16.40, “The ndbinfo index_stats Table”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_mgm
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 25.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.3.1.5, “Deploying NDB Cluster with Docker Containers”
Section 25.6.3, “Event Reports Generated in NDB Cluster”
Section 25.1, “General Information”
Section 25.3.4, “Initial Startup of NDB Cluster”
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 25.3.1, “Installation of NDB Cluster on Linux”
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”

5870

Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 25.3.1.3, “Installing NDB Cluster Using .deb Files”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 25.2.1, “NDB Cluster Core Concepts”
Section 25.6.3.1, “NDB Cluster Logging Management Commands”
Section 25.5, “NDB Cluster Programs”
Section 25.6.20.1, “NDB Cluster Security and Networking Issues”
Section 25.6.6, “NDB Cluster Single User Mode”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.6.8, “Online Backup of NDB Cluster”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 25.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Restoring an NDB backup to a later version of NDB Cluster
Restoring to More Nodes Than the Original
Section 25.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 25.6.16.1, “The ndbinfo arbitrator_validity_detail Table”
Section 25.6.16.3, “The ndbinfo backup_id Table”
Section 25.6.16.44, “The ndbinfo membership Table”
Section 25.6.16.45, “The ndbinfo memoryusage Table”
Section 25.6.16.47, “The ndbinfo nodes Table”
Section 25.6.16.65, “The ndbinfo transporters Table”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_mgm.exe
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”

ndb_mgmd
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 25.4.3.5, “Defining an NDB Cluster Management Server”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.3.4, “Initial Startup of NDB Cluster”
Section 25.3.1, “Installation of NDB Cluster on Linux”
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 25.3.1.3, “Installing NDB Cluster Using .deb Files”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 25.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 25.4.3.3, “NDB Cluster Connection Strings”
Section 25.2.1, “NDB Cluster Core Concepts”
Section 25.6.3.1, “NDB Cluster Logging Management Commands”
Section 25.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 25.5, “NDB Cluster Programs”
Section 25.4.3.10, “NDB Cluster TCP/IP Connections”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 25.4.1, “Quick Test Setup of NDB Cluster”

5871

Section 25.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 25.6.4, “Summary of NDB Cluster Start Phases”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_mgmd.exe
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”

ndb_move_data
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_perror
Section B.2, “Error Information Interfaces”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 6.8.2, “perror — Display MySQL Error Message Information”
Section 25.6.16.33, “The ndbinfo error_messages Table”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_print_backup
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

ndb_print_backup_file
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.19, “ndb_print_frag_file — Print NDB Fragment List File Contents”
Section 25.5.20, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 25.5.21, “ndb_print_sys_file — Print NDB System File Contents”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_print_file
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”

ndb_print_frag_file
Section 25.5.19, “ndb_print_frag_file — Print NDB Fragment List File Contents”

ndb_print_schema_file
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.19, “ndb_print_frag_file — Print NDB Fragment List File Contents”
Section 25.5.20, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 25.5.21, “ndb_print_sys_file — Print NDB System File Contents”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

ndb_print_sys_file
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.19, “ndb_print_frag_file — Print NDB Fragment List File Contents”
Section 25.5.20, “ndb_print_schema_file — Print NDB Schema File Contents”
Section 25.5.21, “ndb_print_sys_file — Print NDB System File Contents”

ndb_redo_log_reader
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

5872

ndb_restore
Section 9.1, “Backup and Recovery Types”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 25.2.1, “NDB Cluster Core Concepts”
Section 25.2, “NDB Cluster Overview”
Section 25.5, “NDB Cluster Programs”
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 25.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 25.6.6, “NDB Cluster Single User Mode”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 25.6.8, “Online Backup of NDB Cluster”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 25.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Restoring a parallel backup in parallel
Restoring a parallel backup serially
Restoring an NDB backup to a later version of NDB Cluster
Restoring an NDB backup to a previous version of NDB Cluster
Restoring to Fewer Nodes Than the Original
Restoring to More Nodes Than the Original
Section 25.6.8.5, “Taking an NDB Backup with Parallel Data Nodes”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_secretsfile_reader
Section 25.6.14.2, “NDB File System Encryption Implementation”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_select_all
Section 25.6.20.3, “NDB Cluster and MySQL Security Procedures”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.6.13, “Privilege Synchronization and NDB_STORED_USER”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_select_count
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_setup.py
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_show_table
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_show_tables
Section 25.6.20.3, “NDB Cluster and MySQL Security Procedures”
Section 25.5, “NDB Cluster Programs”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.6.16.6, “The ndbinfo cluster_locks Table”
Section 25.6.16.7, “The ndbinfo cluster_operations Table”
Section 25.6.16.41, “The ndbinfo locks_per_fragment Table”

5873

Section 25.6.16.48, “The ndbinfo operations_per_fragment Table”
Section 25.6.16.53, “The ndbinfo server_locks Table”
Section 25.6.16.54, “The ndbinfo server_operations Table”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_size.pl
Section 13.7, “Data Type Storage Requirements”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

ndb_top
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_waiter
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndbd
Section 25.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.3.4, “Initial Startup of NDB Cluster”
Section 25.3.1, “Installation of NDB Cluster on Linux”
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 25.3.1.3, “Installing NDB Cluster Using .deb Files”
Section 25.6, “Management of NDB Cluster”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 25.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 25.2.1, “NDB Cluster Core Concepts”
Section 25.4.2.1, “NDB Cluster Data Node Configuration Parameters”
Section 25.3, “NDB Cluster Installation”
Section 25.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 25.5, “NDB Cluster Programs”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 25.4.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 25.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 25.4.1, “Quick Test Setup of NDB Cluster”
Section 25.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Section 25.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 25.6.4, “Summary of NDB Cluster Start Phases”
Section 25.6.8.5, “Taking an NDB Backup with Parallel Data Nodes”
Section 25.6.16.47, “The ndbinfo nodes Table”
Section 25.6.3.3, “Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndbd.exe
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”

5874

Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”

ndbinfo_select_all
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndbmtd
Section 25.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.3.1, “Installation of NDB Cluster on Linux”
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 25.2.1, “NDB Cluster Core Concepts”
Section 25.4.2.1, “NDB Cluster Data Node Configuration Parameters”
Section 25.2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”
Section 25.5, “NDB Cluster Programs”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 25.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 25.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Section 25.5.23.3, “Restoring from a backup taken in parallel”
Restoring to Fewer Nodes Than the Original
Section 25.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 25.6.8.5, “Taking an NDB Backup with Parallel Data Nodes”
Section 25.6.16.47, “The ndbinfo nodes Table”
Section 25.6.16.51, “The ndbinfo resources Table”
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndbmtd.exe
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”

ndbxfrm
Section 25.6.14.2, “NDB File System Encryption Implementation”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

NET
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

NET START
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 7.8.2.2, “Starting Multiple MySQL Instances as Windows Services”

5875

NET START mysqld_service_name
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 3.11, “Upgrading MySQL on Windows”

NET STOP
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 7.8.2.2, “Starting Multiple MySQL Instances as Windows Services”

NET STOP mysqld_service_name
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 3.11, “Upgrading MySQL on Windows”

NET STOP service_name
Section 25.3.6, “Safe Shutdown and Restart of NDB Cluster”

nslookup
Section 1.3, “What Is New in MySQL 8.0”

nsupdate
Section 19.4.8, “Switching Sources During Failover”

numactl
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”

O

[index top]

okvutil
Section 8.4.4.8, “Using the keyring_okv KMIP Plugin”

openssl
Section 8.4.5.5, “Configuring Audit Logging Characteristics”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.3.3, “Creating RSA Keys Using openssl”
Section 8.3.3, “Creating SSL and RSA Certificates and Keys”
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 8.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 7.1.9.4, “Nonpersistible and Persist-Restricted System Variables”
Section 8.4.4.8, “Using the keyring_okv KMIP Plugin”

openssl md5 package_name
Section 2.1.4.1, “Verifying the MD5 Checksum”

openssl zlib
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.8.3, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”

P

[index top]

5876

patchelf
Section 2.8.7, “MySQL Source-Configuration Options”

perf
Section 29.12.21.8, “The threads Table”

perror
Section B.3.2.11, “Can't create/write to file”
Section B.2, “Error Information Interfaces”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 9.6.3, “How to Repair MyISAM Tables”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 6.1, “Overview of MySQL Programs”
Section 6.8.2, “perror — Display MySQL Error Message Information”
Section 7.4.2.6, “Rule-Based Error Log Filtering (log_filter_dragnet)”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

pfexec
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

PGP
Section 2.1.4.2, “Signature Checking Using GnuPG”

ping6
Section 7.1.13.5, “Obtaining an IPv6 Address from a Broker”

pkg-config
Section 6.9, “Environment Variables”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”

pkgadd
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”

pkgrm
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”

ppm
Section 2.10, “Perl Installation Notes”

ps
Section 8.2.14, “Assigning Account Passwords”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 8.1.2.1, “End-User Guidelines for Password Security”
Section 6.9, “Environment Variables”
Section 10.12.3.1, “How MySQL Uses Memory”
Section B.3.1, “How to Determine What Is Causing a Problem”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 8.7, “SELinux”
Section 29.12.2.3, “The setup_instruments Table”
Section 29.12.21.8, “The threads Table”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”

5877

ps xa | grep mysqld
Section B.3.2.2, “Can't connect to [local] MySQL server”

R

[index top]

rename
Section 7.4.2.10, “Error Log File Flushing and Renaming”
Section 7.4.6, “Server Log Maintenance”
Section 7.4.3, “The General Query Log”

resolve_stack_dump
Section 1.3, “What Is New in MySQL 8.0”

resolveip
Section 1.3, “What Is New in MySQL 8.0”

restart
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

rm
Section 15.4.1.1, “PURGE BINARY LOGS Statement”

rpm
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.1.4.4, “Signature Checking Using RPM”

rpmbuild
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.8.2, “Source Installation Prerequisites”

rsync
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 9.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”

S

[index top]

SC
Section 2.3.4.8, “Starting MySQL as a Windows Service”

SC DELETE
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”

SC DELETE mysqld_service_name
Section 7.8.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

5878

SC DELETE service_name
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”

SC START
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 7.8.2.2, “Starting Multiple MySQL Instances as Windows Services”

SC START mysqld_service_name
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 3.11, “Upgrading MySQL on Windows”

sc start mysqld_service_name
Section 2.3.4.8, “Starting MySQL as a Windows Service”

SC STOP
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 7.8.2.2, “Starting Multiple MySQL Instances as Windows Services”

SC STOP mysqld_service_name
Section 2.3.4.8, “Starting MySQL as a Windows Service”

sc stop mysqld_service_name
Section 2.3.4.8, “Starting MySQL as a Windows Service”

SC STOP service_name
Section 25.3.6, “Safe Shutdown and Restart of NDB Cluster”

scp
Section 9.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files

sed
Section 5.3.4.7, “Pattern Matching”

SELECT
Section 25.3.5, “NDB Cluster Example with Tables and Data”

semanage
Section 8.7.6, “Troubleshooting SELinux”

semodule
Section 8.7.3, “MySQL Server SELinux Policies”

service
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 2.5.9, “Managing MySQL Server with systemd”

Service Control Manager
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

5879

Services
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

sestatus
Section 8.7.2, “Changing the SELinux Mode”
Section 8.7.1, “Check if SELinux is Enabled”
Section 20.10, “Frequently Asked Questions”

setcap
Section 7.1.14, “Network Namespace Support”
Section 7.1.16, “Resource Groups”

setenforce
Section 8.7.2, “Changing the SELinux Mode”
Section 8.7.6, “Troubleshooting SELinux”

setenv
Section 6.2.9, “Setting Environment Variables”

sh
Section 1.1, “About This Manual”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 6.2.1, “Invoking MySQL Programs”
Section 6.2.9, “Setting Environment Variables”

SHOW
Section 25.4.1, “Quick Test Setup of NDB Cluster”

SHOW ERRORS
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”

SHOW WARNINGS
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”

sleep
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

ssh
Section 25.6.20.1, “NDB Cluster Security and Networking Issues”

ssl_session_data_print
Section 8.3.5, “Reusing SSL Sessions”

start
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

Start>Run>cmd.exe
Section 8.3.3.2, “Creating SSL Certificates and Keys Using openssl”

status
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”

5880

Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

stop
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

strings
Section 8.1.1, “Security Guidelines”

su root
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”

sudo
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 7.1.14, “Network Namespace Support”
Section 7.1.16, “Resource Groups”

sudo ip
Section 7.1.14, “Network Namespace Support”

sudo setcap
Section 7.1.14, “Network Namespace Support”

sysctl
Section 10.12.3.3, “Enabling Large Page Support”

systemctl
Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 2.5.9, “Managing MySQL Server with systemd”

systemd
Section 2.8.7, “MySQL Source-Configuration Options”

T

[index top]

tar
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 19.4.1.2, “Backing Up Raw Data from a Replica”
Section 9.1, “Backup and Recovery Types”
Creating a Data Snapshot Using Raw Data Files
Section 5.3, “Creating and Using a Database”
Section 1.5, “How to Report Bugs or Problems”
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.4, “Installing MySQL on macOS”
Section 2.7, “Installing MySQL on Solaris”
Section 2.7.1, “Installing MySQL on Solaris Using a Solaris PKG”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 25.3.1.2, “Installing NDB Cluster from RPM”

5881

Section 2.10.1, “Installing Perl on Unix”
Section 2.8.1, “Source Installation Methods”
Section 2.8.2, “Source Installation Prerequisites”
Section 10.12.2.1, “Using Symbolic Links for Databases on Unix”
Section 8.4.4.8, “Using the keyring_okv KMIP Plugin”
Section 2.1.2, “Which MySQL Version and Distribution to Install”

tcpdump
Section 8.1.1, “Security Guidelines”

tcsh
Section 1.1, “About This Manual”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section 6.2.1, “Invoking MySQL Programs”
Section 6.2.9, “Setting Environment Variables”

tee
Section 6.5.1.2, “mysql Client Commands”

telnet
Section 8.1.1, “Security Guidelines”
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”

Terminal
Section 2.4, “Installing MySQL on macOS”

Text in this style
Section 1.1, “About This Manual”

top
Section B.3.1, “How to Determine What Is Causing a Problem”
Section 25.6.16.50, “The ndbinfo processes Table”

U

[index top]

u
Section 15.7.1.6, “GRANT Statement”

ulimit
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section B.3.2.8, “Packet Too Large”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

unix_chkpwd
Section 8.4.1.5, “PAM Pluggable Authentication”

update-rc.d
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”

5882

useradd
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Section 2.7, “Installing MySQL on Solaris”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

util.checkForServerUpgrade()
Section 3.3, “Upgrade Best Practices”

V

[index top]

vault
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

vault server
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

vi
Section 25.3.3, “Initial Configuration of NDB Cluster”
Section 6.5.1.2, “mysql Client Commands”
Section 5.3.4.7, “Pattern Matching”

W

[index top]

watch
Section 30.4.4.25, “The statement_performance_analyzer() Procedure”

WinDbg
Section 7.9.1.3, “Using WER with PDB to create a Windows crashdump”

windbg.exe
Section 7.9.1.3, “Using WER with PDB to create a Windows crashdump”

winMd5Sum
Section 2.1.4.1, “Verifying the MD5 Checksum”

WinZip
Section 19.4.1.2, “Backing Up Raw Data from a Replica”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 2.8.2, “Source Installation Prerequisites”

WMIC.exe os get version
Section 2.8.2, “Source Installation Prerequisites”

WordPad
Section 15.2.9, “LOAD DATA Statement”

X

[index top]

5883

xz
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”

Y

[index top]

yacc
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 11.3, “Keywords and Reserved Words”

yum
Section 2.5.7, “Installing MySQL on Linux from the Native Software Repositories”
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”
Section 25.3.1.2, “Installing NDB Cluster from RPM”
Section 3.8, “Upgrading MySQL with the MySQL Yum Repository”

yum install
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”

yum update
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

yum-config-manager
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

Z

[index top]

zip
Creating a Data Snapshot Using Raw Data Files
Section 1.5, “How to Report Bugs or Problems”

zlib_decompress
Section 6.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.1, “Overview of MySQL Programs”
Section 1.3, “What Is New in MySQL 8.0”
Section 6.8.3, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”

zsh
Section 6.2.9, “Setting Environment Variables”

zypper
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”

Function Index

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | Y

5884

Symbols

[index top]

%
Section 1.6.1, “MySQL Extensions to Standard SQL”

A

[index top]

ABS()
Section 15.7.4.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 14.6.2, “Mathematical Functions”
Section 10.9.6, “Optimizer Statistics”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

ACOS()
Section 14.6.2, “Mathematical Functions”

ADDDATE()
Section 14.7, “Date and Time Functions”

addslashes()
Section 8.1.7, “Client Programming Security Guidelines”

ADDTIME()
Section 14.7, “Date and Time Functions”

AES_DECRYPT()
Section 14.13, “Encryption and Compression Functions”
Section 8.6.3, “MySQL Enterprise Encryption Usage and Examples”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

AES_ENCRYPT()
Section 14.13, “Encryption and Compression Functions”
Section 8.6.3, “MySQL Enterprise Encryption Usage and Examples”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

ANY_VALUE()
Section 14.19.2, “GROUP BY Modifiers”
Section 14.23, “Miscellaneous Functions”
Section 14.19.3, “MySQL Handling of GROUP BY”

ASCII()
Section 15.8.3, “HELP Statement”
Section 14.8, “String Functions and Operators”

ASIN()
Section 14.6.2, “Mathematical Functions”

asymmetric_decrypt()
Section 8.6.5, “MySQL Enterprise Encryption Component Function Descriptions”

5885

Section 8.6.6, “MySQL Enterprise Encryption Legacy Function Descriptions”

asymmetric_derive()
Section 8.6.1, “MySQL Enterprise Encryption Installation and Upgrading”
Section 8.6.6, “MySQL Enterprise Encryption Legacy Function Descriptions”

asymmetric_encrypt()
Section 8.6.5, “MySQL Enterprise Encryption Component Function Descriptions”
Section 8.6.1, “MySQL Enterprise Encryption Installation and Upgrading”

asymmetric_sign()
Section 8.6.5, “MySQL Enterprise Encryption Component Function Descriptions”
Section 8.6.6, “MySQL Enterprise Encryption Legacy Function Descriptions”

asymmetric_verify()
Section 8.6.5, “MySQL Enterprise Encryption Component Function Descriptions”

asynchronous_connection_failover_add_managed
Section 19.4.9.1, “Asynchronous Connection Failover for Sources”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 29.12.11.8, “The replication_asynchronous_connection_failover Table”

asynchronous_connection_failover_add_managed()
Section 19.4.9.2, “Asynchronous Connection Failover for Replicas”
Section 14.18.3, “Asynchronous Replication Channel Failover Functions”

asynchronous_connection_failover_add_source
Section 19.4.9.1, “Asynchronous Connection Failover for Sources”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 29.12.11.8, “The replication_asynchronous_connection_failover Table”

asynchronous_connection_failover_add_source()
Section 19.4.9.2, “Asynchronous Connection Failover for Replicas”
Section 14.18.3, “Asynchronous Replication Channel Failover Functions”

asynchronous_connection_failover_delete_managed
Section 19.4.9.1, “Asynchronous Connection Failover for Sources”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 29.12.11.8, “The replication_asynchronous_connection_failover Table”

asynchronous_connection_failover_delete_managed()
Section 19.4.9.2, “Asynchronous Connection Failover for Replicas”
Section 14.18.3, “Asynchronous Replication Channel Failover Functions”

asynchronous_connection_failover_delete_source
Section 19.4.9.1, “Asynchronous Connection Failover for Sources”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 29.12.11.8, “The replication_asynchronous_connection_failover Table”

asynchronous_connection_failover_delete_source()
Section 19.4.9.2, “Asynchronous Connection Failover for Replicas”

5886

Section 14.18.3, “Asynchronous Replication Channel Failover Functions”

asynchronous_connection_failover_reset()
Section 14.18.3, “Asynchronous Replication Channel Failover Functions”

ATAN()
Section 14.6.2, “Mathematical Functions”

ATAN2()
Section 14.6.2, “Mathematical Functions”

audit_api_message_emit_udf()
Section 8.4.6, “The Audit Message Component”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_encryption_password_get()
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_encryption_password_set()
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_filter_flush()
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”

audit_log_filter_remove_filter()
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”

audit_log_filter_remove_user()
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”

audit_log_filter_set_filter()
Section 8.4.5.4, “Audit Log File Formats”
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_filter_set_user()
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”

audit_log_read()
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”
Section 8.4.5.6, “Reading Audit Log Files”

audit_log_read_bookmark()
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.6, “Reading Audit Log Files”

5887

audit_log_rotate()
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

AVG(
Section 14.19.1, “Aggregate Function Descriptions”

AVG()
Section 14.19.1, “Aggregate Function Descriptions”
Section 13.2.1, “Date and Time Data Type Syntax”
Section 10.2.1.17, “GROUP BY Optimization”
Section 13.3.5, “The ENUM Type”
Section 1.2.2, “The Main Features of MySQL”
Section 13.3.6, “The SET Type”
Section 1.3, “What Is New in MySQL 8.0”
Section 14.20.3, “Window Function Frame Specification”

B

[index top]

BENCHMARK()
Section 14.15, “Information Functions”
Section 10.13.1, “Measuring the Speed of Expressions and Functions”

BIN()
Section 11.1.5, “Bit-Value Literals”
Section 14.8, “String Functions and Operators”

BIN_TO_UUID()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.23, “Miscellaneous Functions”

BIT_AND()
Section 14.19.1, “Aggregate Function Descriptions”
Section 14.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

BIT_COUNT()
Section 14.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

BIT_LENGTH()
Section 14.8, “String Functions and Operators”

BIT_OR()
Section 14.19.1, “Aggregate Function Descriptions”
Section 14.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

BIT_XOR()
Section 14.19.1, “Aggregate Function Descriptions”
Section 14.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

5888

C

[index top]

CAN_ACCESS_COLUMN()
Section 14.22, “Internal Functions”

CAN_ACCESS_DATABASE()
Section 14.22, “Internal Functions”

CAN_ACCESS_TABLE()
Section 14.22, “Internal Functions”

CAN_ACCESS_USER()
Section 14.22, “Internal Functions”

CAN_ACCESS_VIEW()
Section 14.22, “Internal Functions”

CAST()
Section 14.12, “Bit Functions and Operators”
Section 11.1.5, “Bit-Value Literals”
Section 14.10, “Cast Functions and Operators”
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.4.2, “Comparison Functions and Operators”
Section 13.2.8, “Conversion Between Date and Time Types”
Section 15.1.15, “CREATE INDEX Statement”
Section 14.7, “Date and Time Functions”
Section 11.5, “Expressions”
Section 14.17.2, “Functions That Create JSON Values”
Section 14.17.3, “Functions That Search JSON Values”
Section 11.1.4, “Hexadecimal Literals”
Section 1.6.2, “MySQL Differences from Standard SQL”
Section 15.5.1, “PREPARE Statement”
Section 13.2.2, “The DATE, DATETIME, and TIMESTAMP Types”
Section 13.5, “The JSON Data Type”
Section 14.3, “Type Conversion in Expression Evaluation”
Section 11.4, “User-Defined Variables”
Section 1.3, “What Is New in MySQL 8.0”
Section 15.2.20, “WITH (Common Table Expressions)”

CAST(expr AS type
Section 14.10, “Cast Functions and Operators”

CEIL()
Section 14.6.2, “Mathematical Functions”

CEILING()
Section 26.2.4.1, “LINEAR HASH Partitioning”
Section 14.6.2, “Mathematical Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

CHAR()
Section 6.5.1.1, “mysql Client Options”

5889

Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.8, “String Functions and Operators”

CHAR_LENGTH()
Section 14.8, “String Functions and Operators”
Section 12.10.1, “Unicode Character Sets”

CHARACTER_LENGTH()
Section 14.8, “String Functions and Operators”

CHARSET()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.15, “Information Functions”

COALESCE
Section 15.5.1, “PREPARE Statement”

COALESCE()
Section 14.4.2, “Comparison Functions and Operators”
Section 15.2.13.2, “JOIN Clause”
Section 15.5.1, “PREPARE Statement”
Section 15.2.20, “WITH (Common Table Expressions)”

COERCIBILITY()
Section 12.8.4, “Collation Coercibility in Expressions”
Section 14.15, “Information Functions”

COLLATION()
Section B.3.4.1, “Case Sensitivity in String Searches”
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.15, “Information Functions”

COMPRESS()
Section 14.13, “Encryption and Compression Functions”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.1.8, “Server System Variables”

CONCAT()
Section 14.19.1, “Aggregate Function Descriptions”
Section 14.10, “Cast Functions and Operators”
Section 14.8.3, “Character Set and Collation of Function Results”
Section 12.2.1, “Character Set Repertoire”
Section 12.8.4, “Collation Coercibility in Expressions”
Section 15.7.4.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 14.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 7.1.11, “Server SQL Modes”
Section 15.7.7.13, “SHOW CREATE VIEW Statement”
Section 14.8, “String Functions and Operators”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”
Section 14.3, “Type Conversion in Expression Evaluation”
Section 14.11, “XML Functions”

CONCAT_WS()
Section 14.19.1, “Aggregate Function Descriptions”

5890

Section 14.8, “String Functions and Operators”

CONNECTION_ID()
Section 8.4.5.4, “Audit Log File Formats”
Section 15.1.20.6, “CHECK Constraints”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 14.15, “Information Functions”
Section 15.7.8.4, “KILL Statement”
Section 6.5.1.3, “mysql Client Logging”
Section 14.21, “Performance Schema Functions”
Section 7.1.8, “Server System Variables”
Section 15.7.7.29, “SHOW PROCESSLIST Statement”
Section 29.12.21.2, “The error_log Table”
Section 28.3.23, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 29.12.21.7, “The processlist Table”
Section 29.12.21.8, “The threads Table”

CONV()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.6.2, “Mathematical Functions”
Section 14.8, “String Functions and Operators”

CONVERT()
Section 14.10, “Cast Functions and Operators”
Section 3.5, “Changes in MySQL 8.0”
Section 12.3.8, “Character Set Introducers”
Section 12.3.6, “Character String Literal Character Set and Collation”
Section 14.4.2, “Comparison Functions and Operators”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 6.5.1.1, “mysql Client Options”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”
Section 1.3, “What Is New in MySQL 8.0”

CONVERT_TZ()
Section 14.7, “Date and Time Functions”
Section 10.3.14, “Indexed Lookups from TIMESTAMP Columns”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 7.1.8, “Server System Variables”
Section 7.4.3, “The General Query Log”
Section 7.4.5, “The Slow Query Log”
Section 1.3, “What Is New in MySQL 8.0”

COS()
Section 14.6.2, “Mathematical Functions”

COT()
Section 14.6.2, “Mathematical Functions”

COUNT()
Section 14.19.1, “Aggregate Function Descriptions”
Section 15.2.15.7, “Correlated Subqueries”
Section 5.3.4.8, “Counting Rows”
Section 15.7.4.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 10.2.1.17, “GROUP BY Optimization”

5891

Section 14.15, “Information Functions”
Section 17.23, “InnoDB Restrictions and Limitations”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 14.23, “Miscellaneous Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
NDB Cluster Status Variables
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section B.3.4.3, “Problems with NULL Values”
Section 7.1.11, “Server SQL Modes”
Section 1.2.2, “The Main Features of MySQL”
Section 27.5.3, “Updatable and Insertable Views”
Section 10.2.1.1, “WHERE Clause Optimization”

CRC32()
Section 14.6.2, “Mathematical Functions”

create_asymmetric_priv_key()
Section 6.9, “Environment Variables”
Section 8.6.5, “MySQL Enterprise Encryption Component Function Descriptions”

create_asymmetric_pub_key()
Section 8.6.5, “MySQL Enterprise Encryption Component Function Descriptions”

create_dh_parameters()
Section 6.9, “Environment Variables”
Section 8.6.1, “MySQL Enterprise Encryption Installation and Upgrading”
Section 8.6.6, “MySQL Enterprise Encryption Legacy Function Descriptions”

create_digest()
Section 8.6.5, “MySQL Enterprise Encryption Component Function Descriptions”
Section 8.6.6, “MySQL Enterprise Encryption Legacy Function Descriptions”

CUME_DIST()
Section 14.20.1, “Window Function Descriptions”

CURDATE()
Section 14.7, “Date and Time Functions”
Section 5.3.4.5, “Date Calculations”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

CURRENT_DATE
Section 13.6, “Data Type Default Values”
Section 14.7, “Date and Time Functions”

CURRENT_DATE()
Section 13.2.8, “Conversion Between Date and Time Types”
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

CURRENT_ROLE()
Section 14.15, “Information Functions”
Section 8.2.10, “Using Roles”

5892

CURRENT_TIME
Section 14.7, “Date and Time Functions”

CURRENT_TIME()
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

CURRENT_TIMESTAMP
Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 15.1.13, “CREATE EVENT Statement”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 13.6, “Data Type Default Values”
Section 14.7, “Date and Time Functions”
Section 7.1.8, “Server System Variables”

CURRENT_TIMESTAMP()
Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

CURRENT_USER
Section 15.7.1.1, “ALTER USER Statement”
Section 15.1.13, “CREATE EVENT Statement”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 14.15, “Information Functions”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.14, “Replication and System Functions”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 15.7.7.12, “SHOW CREATE USER Statement”
Section 8.2.4, “Specifying Account Names”
Section 27.6, “Stored Object Access Control”

CURRENT_USER()
Section 8.2.6, “Access Control, Stage 1: Connection Verification”
Section 15.7.1.1, “ALTER USER Statement”
Section 8.4.5.4, “Audit Log File Formats”
Section 15.1.20.6, “CHECK Constraints”
Section 8.4.2.1, “Connection Control Plugin Installation”
Section 15.1.13, “CREATE EVENT Statement”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”
Section 15.7.1.6, “GRANT Statement”
Section 14.15, “Information Functions”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 8.2.15, “Password Management”
Section 8.4.3.2, “Password Validation Options and Variables”
Section 8.2.19, “Proxy Users”
Section 19.5.1.14, “Replication and System Functions”

5893

Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 15.7.1.10, “SET PASSWORD Statement”
Section 15.7.7.12, “SHOW CREATE USER Statement”
Section 8.2.4, “Specifying Account Names”
Section 8.2.5, “Specifying Role Names”
Section 8.2.23, “SQL-Based Account Activity Auditing”
Section 27.6, “Stored Object Access Control”
Section 7.6.9.2, “The Keyring Service”
Section 12.2.2, “UTF-8 for Metadata”

CURTIME()
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 7.1.15, “MySQL Server Time Zone Support”

D

[index top]

DATABASE()
Section 5.3.1, “Creating and Selecting a Database”
Section 15.1.24, “DROP DATABASE Statement”
Section 5.4, “Getting Information About Databases and Tables”
Section 14.15, “Information Functions”
Section B.3.7, “Known Issues in MySQL”
Section 12.2.2, “UTF-8 for Metadata”

DATE()
Section 14.7, “Date and Time Functions”

DATE_ADD()
Section 14.6.1, “Arithmetic Operators”
Section 13.2, “Date and Time Data Types”
Section 14.7, “Date and Time Functions”
Section 5.3.4.5, “Date Calculations”
Section 11.5, “Expressions”
Section 14.20.3, “Window Function Frame Specification”

DATE_FORMAT()
Section 14.10, “Cast Functions and Operators”
Section 14.7, “Date and Time Functions”
Section 12.16, “MySQL Server Locale Support”
Section 7.1.8, “Server System Variables”

DATE_SUB()
Section 13.2, “Date and Time Data Types”
Section 14.7, “Date and Time Functions”
Section 11.5, “Expressions”

DATEDIFF()
Section 14.7, “Date and Time Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

DAY()
Section 14.7, “Date and Time Functions”

5894

Section 26.6.3, “Partitioning Limitations Relating to Functions”

DAYNAME()
Section 14.7, “Date and Time Functions”
Section 12.16, “MySQL Server Locale Support”
Section 7.1.8, “Server System Variables”

DAYOFMONTH()
Section 14.7, “Date and Time Functions”
Section 5.3.4.5, “Date Calculations”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

DAYOFWEEK()
Section 14.7, “Date and Time Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

DAYOFYEAR()
Section 14.7, “Date and Time Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”
Section 26.2, “Partitioning Types”

DEFAULT()
Section 15.1.9.2, “ALTER TABLE and Generated Columns”
Section 13.6, “Data Type Default Values”
Section 15.2.7, “INSERT Statement”
Section 14.23, “Miscellaneous Functions”
Section 15.2.12, “REPLACE Statement”

DEGREES()
Section 14.6.2, “Mathematical Functions”

DENSE_RANK()
Section 14.20.1, “Window Function Descriptions”

E

[index top]

ELT()
Section 14.8.3, “Character Set and Collation of Function Results”
Section B.3.7, “Known Issues in MySQL”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.8, “String Functions and Operators”

EXP()
Section 15.1.20, “CREATE TABLE Statement”
Section 14.6.2, “Mathematical Functions”

EXPORT_SET()
Section 14.8, “String Functions and Operators”

EXTRACT()
Section 14.10, “Cast Functions and Operators”
Section 14.7, “Date and Time Functions”
Section 11.5, “Expressions”

5895

Section 26.6.3, “Partitioning Limitations Relating to Functions”

ExtractValue()
Section 14.11, “XML Functions”

F

[index top]

FIELD()
Section 14.8, “String Functions and Operators”

FIND_IN_SET()
Section 14.8, “String Functions and Operators”
Section 13.3.6, “The SET Type”

firewall_group_delist()
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

firewall_group_enlist()
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

FIRST_VALUE()
Section 14.20.1, “Window Function Descriptions”
Section 14.20.3, “Window Function Frame Specification”

FLOOR()
Section 14.6.2, “Mathematical Functions”
Section 14.19.3, “MySQL Handling of GROUP BY”
Section 10.9.6, “Optimizer Statistics”
Section 26.6.3, “Partitioning Limitations Relating to Functions”
Section 7.1.8, “Server System Variables”

FORMAT()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.6.2, “Mathematical Functions”
Section 14.23, “Miscellaneous Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 12.16, “MySQL Server Locale Support”
Section 14.8, “String Functions and Operators”

FORMAT_BYTES()
Section 10.12.3.2, “Monitoring MySQL Memory Usage”
Section 14.21, “Performance Schema Functions”
Section 30.4.5.3, “The format_bytes() Function”

FORMAT_PICO_TIME()
Section 14.21, “Performance Schema Functions”
Section 30.4.5.6, “The format_time() Function”

FOUND_ROWS()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 14.15, “Information Functions”
Section 7.4.4.3, “Mixed Binary Logging Format”

5896

Section 19.5.1.14, “Replication and System Functions”
Section 15.2.13, “SELECT Statement”
Section 1.3, “What Is New in MySQL 8.0”

FROM_BASE64()
Section 14.8, “String Functions and Operators”

FROM_DAYS()
Section 14.7, “Date and Time Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

FROM_UNIXTIME()
Section 14.7, “Date and Time Functions”
Section 10.3.14, “Indexed Lookups from TIMESTAMP Columns”
Section 19.5.1.33, “Replication and Time Zones”
Section 1.3, “What Is New in MySQL 8.0”

G

[index top]

gen_blacklist()
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”

gen_blocklist()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

gen_dictionary()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

gen_dictionary_drop()
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”

gen_dictionary_load()
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

gen_range()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

gen_rnd_canada_sin()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”

5897

gen_rnd_email()
Section 8.5.1, “Data-Masking Components Versus the Data-Masking Plugin”
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

gen_rnd_iban()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”

gen_rnd_pan()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

gen_rnd_ssn()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

gen_rnd_uk_nin()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”

gen_rnd_us_phone()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

gen_rnd_uuid()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”

GeomCollection()
Section 14.16.5, “MySQL-Specific Functions That Create Geometry Values”

GeometryCollection()
Section 14.16.6, “Geometry Format Conversion Functions”
Section 14.16.5, “MySQL-Specific Functions That Create Geometry Values”

GET_DD_COLUMN_PRIVILEGES()
Section 14.22, “Internal Functions”

GET_DD_CREATE_OPTIONS()
Section 14.22, “Internal Functions”

5898

GET_DD_INDEX_SUB_PART_LENGTH()
Section 14.22, “Internal Functions”

GET_FORMAT()
Section 14.7, “Date and Time Functions”
Section 12.16, “MySQL Server Locale Support”

GET_LOCK()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 15.1.13, “CREATE EVENT Statement”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 27.4.1, “Event Scheduler Overview”
Section 10.14.3, “General Thread States”
Section 20.3.2, “Group Replication Limitations”
Section 10.11.1, “Internal Locking Methods”
Section 15.7.8.4, “KILL Statement”
Section 25.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.14, “Locking Functions”
Section 10.11.4, “Metadata Locking”
Section 19.5.1.14, “Replication and System Functions”
Section 7.6.9.1, “The Locking Service”
The Locking Service Function Interface
Section 29.12.13.3, “The metadata_locks Table”
Section 30.4.4.14, “The ps_setup_save() Procedure”

getrusage()
Section 25.6.16.63, “The ndbinfo threadstat Table”

gettimeofday()
Section 25.6.16.63, “The ndbinfo threadstat Table”

GREATEST()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.4.2, “Comparison Functions and Operators”
Section 13.5, “The JSON Data Type”

GROUP_CONCAT()
Section 14.19.1, “Aggregate Function Descriptions”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section B.3.7, “Known Issues in MySQL”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 7.1.8, “Server System Variables”
Section 13.5, “The JSON Data Type”
Section 1.2.2, “The Main Features of MySQL”

group_replication_disable_member_action
Section 19.4.9.2, “Asynchronous Connection Failover for Replicas”
Section 14.18.3, “Asynchronous Replication Channel Failover Functions”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 20.5.1.5, “Configuring Member Actions”
Section 14.18.1.5, “Functions to Set and Reset Group Replication Member Actions”
Section 19.4.9, “Switching Sources and Replicas with Asynchronous Connection Failover”

group_replication_disable_member_action()
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”

5899

Section 14.18.1.5, “Functions to Set and Reset Group Replication Member Actions”
Section 29.12.11.13, “The replication_group_configuration_version Table”
Section 29.12.11.14, “The replication_group_member_actions Table”

group_replication_enable_member_action
Section 20.5.1.5, “Configuring Member Actions”
Section 14.18.1.5, “Functions to Set and Reset Group Replication Member Actions”

group_replication_enable_member_action()
Section 14.18.1.5, “Functions to Set and Reset Group Replication Member Actions”
Section 29.12.11.13, “The replication_group_configuration_version Table”
Section 29.12.11.14, “The replication_group_member_actions Table”

group_replication_get_communication_protocol()
Section 14.18.1.4, “Functions to Inspect and Set the Group Replication Communication Protocol
Version”
Section 20.8.1.2, “Group Replication Communication Protocol Version”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.5, “Message Fragmentation”
Section 20.5.1.4, “Setting a Group's Communication Protocol Version”
Section 20.7.3, “Single Consensus Leader”

group_replication_get_write_concurrency()
Section 14.18.1.3, “Functions to Inspect and Configure the Maximum Consensus Instances of a Group”
Section 20.5.1.3, “Using Group Replication Group Write Consensus”

group_replication_reset_member_actions
Section 20.5.1.5, “Configuring Member Actions”
Section 14.18.1.5, “Functions to Set and Reset Group Replication Member Actions”

group_replication_reset_member_actions()
Section 14.18.1.5, “Functions to Set and Reset Group Replication Member Actions”
Section 29.12.11.13, “The replication_group_configuration_version Table”
Section 29.12.11.14, “The replication_group_member_actions Table”

group_replication_set_as_primary()
Section 20.5.1.1, “Changing the Primary”
Section 14.18.1.1, “Function which Configures Group Replication Primary”
Section 20.8.3.3, “Group Replication Online Upgrade Methods”
Section 20.8.1.1, “Member Versions During Upgrades”
Section 20.1.3.1, “Single-Primary Mode”
Section 20.5.3.1, “Understanding Transaction Consistency Guarantees”

group_replication_set_communication_protocol()
Section 14.18.1.4, “Functions to Inspect and Set the Group Replication Communication Protocol
Version”
Section 20.8.1.2, “Group Replication Communication Protocol Version”
Section 20.8.2, “Group Replication Offline Upgrade”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.5, “Message Fragmentation”
Section 8.2.2, “Privileges Provided by MySQL”
Section 20.5.1.4, “Setting a Group's Communication Protocol Version”
Section 20.7.3, “Single Consensus Leader”

group_replication_set_write_concurrency()
Section 14.18.1.3, “Functions to Inspect and Configure the Maximum Consensus Instances of a Group”

5900

Section 8.2.2, “Privileges Provided by MySQL”
Section 20.5.1.3, “Using Group Replication Group Write Consensus”

group_replication_switch_to_multi_primary_mode()
Section 20.5.1.2, “Changing the Group Mode”
Section 20.8.1, “Combining Different Member Versions in a Group”
Section 14.18.1.2, “Functions which Configure the Group Replication Mode”
Section 20.9.1, “Group Replication System Variables”
Section 20.1.3, “Multi-Primary and Single-Primary Modes”
Version Compatibility

group_replication_switch_to_single_primary_mode()
Section 20.5.1.2, “Changing the Group Mode”
Section 14.18.1.2, “Functions which Configure the Group Replication Mode”
Section 20.9.1, “Group Replication System Variables”
Section 20.1.3, “Multi-Primary and Single-Primary Modes”
Section 20.1.3.1, “Single-Primary Mode”

GROUPING()
Section 14.19.2, “GROUP BY Modifiers”
Section 14.23, “Miscellaneous Functions”
Section 14.20.2, “Window Function Concepts and Syntax”

GTID_SUBSET()
Section 14.18.2, “Functions Used with Global Transaction Identifiers (GTIDs)”
Section 19.1.3.1, “GTID Format and Storage”
Section 19.1.3.8, “Stored Function Examples to Manipulate GTIDs”

GTID_SUBTRACT()
Section 14.18.2, “Functions Used with Global Transaction Identifiers (GTIDs)”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.3.1, “GTID Format and Storage”
Section 19.1.3.8, “Stored Function Examples to Manipulate GTIDs”

H

[index top]

HEX()
Section 11.1.5, “Bit-Value Literals”
Section 14.8.3, “Character Set and Collation of Function Results”
Section 12.3.6, “Character String Literal Character Set and Collation”
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”
Section 11.1.4, “Hexadecimal Literals”
Section 14.6.2, “Mathematical Functions”
Section 14.23, “Miscellaneous Functions”
Section 14.8, “String Functions and Operators”

HOUR()
Section 14.7, “Date and Time Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

I

[index top]

5901

ICU_VERSION()
Section 14.15, “Information Functions”

IF
Section 15.5.1, “PREPARE Statement”

IF()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.5, “Flow Control Functions”
Section 15.6.5.2, “IF Statement”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section B.3.7, “Known Issues in MySQL”
Section 1.6.1, “MySQL Extensions to Standard SQL”

IFNULL
Section 15.5.1, “PREPARE Statement”

IFNULL()
Section 3.5, “Changes in MySQL 8.0”
Section 14.5, “Flow Control Functions”
Section B.3.4.3, “Problems with NULL Values”

INET6_ATON()
Section 14.12, “Bit Functions and Operators”
Section 7.1.13, “IPv6 Support”
Section 14.23, “Miscellaneous Functions”

INET6_NTOA()
Section 7.1.13, “IPv6 Support”
Section 14.23, “Miscellaneous Functions”

INET_ATON()
Section 7.1.13, “IPv6 Support”
Section 14.23, “Miscellaneous Functions”

INET_NTOA()
Section 7.1.13, “IPv6 Support”
Section 14.23, “Miscellaneous Functions”

INSERT()
Section 14.8, “String Functions and Operators”

INSTR()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”

INTERNAL_AUTO_INCREMENT()
Section 14.22, “Internal Functions”

INTERNAL_AVG_ROW_LENGTH()
Section 14.22, “Internal Functions”

INTERNAL_CHECK_TIME()
Section 14.22, “Internal Functions”

5902

INTERNAL_CHECKSUM()
Section 14.22, “Internal Functions”

INTERNAL_DATA_FREE()
Section 14.22, “Internal Functions”

INTERNAL_DATA_LENGTH()
Section 14.22, “Internal Functions”

INTERNAL_DD_CHAR_LENGTH()
Section 14.22, “Internal Functions”

INTERNAL_GET_COMMENT_OR_ERROR()
Section 14.22, “Internal Functions”

INTERNAL_GET_ENABLED_ROLE_JSON()
Section 14.22, “Internal Functions”

INTERNAL_GET_HOSTNAME()
Section 14.22, “Internal Functions”

INTERNAL_GET_USERNAME()
Section 14.22, “Internal Functions”

INTERNAL_GET_VIEW_WARNING_OR_ERROR()
Section 14.22, “Internal Functions”

INTERNAL_INDEX_COLUMN_CARDINALITY()
Section 14.22, “Internal Functions”

INTERNAL_INDEX_LENGTH()
Section 14.22, “Internal Functions”

INTERNAL_IS_ENABLED_ROLE()
Section 14.22, “Internal Functions”

INTERNAL_IS_MANDATORY_ROLE()
Section 14.22, “Internal Functions”

INTERNAL_KEYS_DISABLED()
Section 14.22, “Internal Functions”

INTERNAL_MAX_DATA_LENGTH()
Section 14.22, “Internal Functions”

INTERNAL_TABLE_ROWS()
Section 14.22, “Internal Functions”

INTERNAL_UPDATE_TIME()
Section 14.22, “Internal Functions”

INTERVAL()
Section 14.4.2, “Comparison Functions and Operators”

5903

IS_FREE_LOCK()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 14.14, “Locking Functions”
Section 19.5.1.14, “Replication and System Functions”

IS_IPV4()
Section 14.23, “Miscellaneous Functions”

IS_IPV4_COMPAT()
Section 14.23, “Miscellaneous Functions”

IS_IPV4_MAPPED()
Section 14.23, “Miscellaneous Functions”

IS_IPV6()
Section 14.23, “Miscellaneous Functions”

IS_USED_LOCK()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 14.14, “Locking Functions”
Section 19.5.1.14, “Replication and System Functions”

IS_UUID()
Section 14.23, “Miscellaneous Functions”

IS_VISIBLE_DD_OBJECT()
Section 14.22, “Internal Functions”

ISNULL()
Section 14.4.2, “Comparison Functions and Operators”

J

[index top]

JSON_ARRAY()
Section 14.17.2, “Functions That Create JSON Values”
Section 14.17.3, “Functions That Search JSON Values”
Section 13.5, “The JSON Data Type”

JSON_ARRAY_APPEND()
Section 14.17.4, “Functions That Modify JSON Values”
Section 1.3, “What Is New in MySQL 8.0”

JSON_ARRAY_INSERT()
Section 14.17.4, “Functions That Modify JSON Values”

JSON_ARRAYAGG()
Section 14.19.1, “Aggregate Function Descriptions”
Section 14.17.2, “Functions That Create JSON Values”
Section 14.17.1, “JSON Function Reference”

5904

Section 1.3, “What Is New in MySQL 8.0”

JSON_CONTAINS()
Section 15.1.15, “CREATE INDEX Statement”
Section 14.17.3, “Functions That Search JSON Values”
Section 1.3, “What Is New in MySQL 8.0”

JSON_CONTAINS_PATH()
Section 14.17.3, “Functions That Search JSON Values”
Section 13.5, “The JSON Data Type”

JSON_DEPTH()
Section 14.17.5, “Functions That Return JSON Value Attributes”

JSON_EXTRACT()
Section 14.17.3, “Functions That Search JSON Values”
Section 14.17.7, “JSON Schema Validation Functions”
Section 15.1.20.9, “Secondary Indexes and Generated Columns”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

JSON_INSERT()
Section 14.17.4, “Functions That Modify JSON Values”
Section 13.5, “The JSON Data Type”

JSON_KEYS()
Section 14.17.3, “Functions That Search JSON Values”
Section 8.2.3, “Grant Tables”

JSON_LENGTH()
Section 14.17.5, “Functions That Return JSON Value Attributes”

JSON_MERGE()
Section 14.17.4, “Functions That Modify JSON Values”
Section 1.3, “What Is New in MySQL 8.0”

JSON_MERGE_PATCH()
Section 15.7.1.1, “ALTER USER Statement”
Section 14.17.4, “Functions That Modify JSON Values”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

JSON_MERGE_PRESERVE()
Section 14.17.4, “Functions That Modify JSON Values”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

JSON_OBJECT()
Section 14.17.2, “Functions That Create JSON Values”
Section 14.17.3, “Functions That Search JSON Values”
Section 13.5, “The JSON Data Type”

JSON_OBJECTAGG()
Section 14.19.1, “Aggregate Function Descriptions”

5905

Section 14.17.2, “Functions That Create JSON Values”
Section 14.17.1, “JSON Function Reference”
Section 1.3, “What Is New in MySQL 8.0”

JSON_OVERLAPS()
Section 15.1.15, “CREATE INDEX Statement”
Section 14.17.3, “Functions That Search JSON Values”
Section 1.3, “What Is New in MySQL 8.0”

JSON_PRETTY()
Section 14.17.1, “JSON Function Reference”
Section 14.17.7, “JSON Schema Validation Functions”
Section 14.17.8, “JSON Utility Functions”
Section 1.3, “What Is New in MySQL 8.0”

JSON_QUOTE()
Section 14.17.2, “Functions That Create JSON Values”
Section 14.17.8, “JSON Utility Functions”

JSON_REMOVE()
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 14.17.4, “Functions That Modify JSON Values”
Section 14.17.8, “JSON Utility Functions”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

JSON_REPLACE()
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 14.17.4, “Functions That Modify JSON Values”
Section 14.17.8, “JSON Utility Functions”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

JSON_SCHEMA_VALID()
Section 14.17.7, “JSON Schema Validation Functions”
Section 1.3, “What Is New in MySQL 8.0”

JSON_SCHEMA_VALIDATION_REPORT()
Section 14.17.7, “JSON Schema Validation Functions”
Section 1.3, “What Is New in MySQL 8.0”

JSON_SEARCH()
Section 14.17.3, “Functions That Search JSON Values”
Section 13.5, “The JSON Data Type”

JSON_SET()
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 14.17.4, “Functions That Modify JSON Values”
Section 14.17.8, “JSON Utility Functions”
Section 8.4.5.6, “Reading Audit Log Files”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

JSON_STORAGE_FREE()
Section 14.17.1, “JSON Function Reference”

5906

Section 14.17.8, “JSON Utility Functions”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

JSON_STORAGE_SIZE()
Section 14.17.1, “JSON Function Reference”
Section 14.17.8, “JSON Utility Functions”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

JSON_TABLE()
Section 15.2.15.8, “Derived Tables”
Section 14.17.6, “JSON Table Functions”
Section 15.2.15.9, “Lateral Derived Tables”
Section 1.3, “What Is New in MySQL 8.0”

JSON_TYPE()
Section 14.17.5, “Functions That Return JSON Value Attributes”
Section 14.17.3, “Functions That Search JSON Values”
Section 13.5, “The JSON Data Type”

JSON_UNQUOTE(
Section 14.17.3, “Functions That Search JSON Values”

JSON_UNQUOTE()
Section 15.1.15, “CREATE INDEX Statement”
Section 14.17.4, “Functions That Modify JSON Values”
Section 10.3.11, “Optimizer Use of Generated Column Indexes”
Section 15.1.20.9, “Secondary Indexes and Generated Columns”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

JSON_VALID()
Section 14.17.5, “Functions That Return JSON Value Attributes”

JSON_VALUE()
Section 14.10, “Cast Functions and Operators”
Section 14.17.3, “Functions That Search JSON Values”
Section 15.1.20.9, “Secondary Indexes and Generated Columns”
Section 1.3, “What Is New in MySQL 8.0”

K

[index top]

keyring_aws_rotate_cmk()
Section 8.4.4.16, “Plugin-Specific Keyring Key-Management Functions”
Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”

keyring_aws_rotate_keys()
Section 8.4.4.16, “Plugin-Specific Keyring Key-Management Functions”
Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”

keyring_hashicorp_update_config()
Section 8.4.4.16, “Plugin-Specific Keyring Key-Management Functions”

5907

Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

keyring_key_fetch()
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”

keyring_key_generate()
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”

keyring_key_length_fetch()
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”

keyring_key_remove()
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”

keyring_key_store()
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”

keyring_key_type_fetch()
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”

L

[index top]

LAG()
Section 1.3, “What Is New in MySQL 8.0”
Section 14.20.1, “Window Function Descriptions”

LAST_DAY()
Section 14.7, “Date and Time Functions”

LAST_INSERT_ID()
Section 14.4.2, “Comparison Functions and Operators”
Section 15.1.20, “CREATE TABLE Statement”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 14.15, “Information Functions”
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 15.2.7, “INSERT Statement”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 19.5.1.1, “Replication and AUTO_INCREMENT”
Section 7.1.8, “Server System Variables”
Section 27.2.4, “Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()”
Section 19.5.4, “Troubleshooting Replication”
Section 27.5.3, “Updatable and Insertable Views”
Section 5.6.9, “Using AUTO_INCREMENT”

LAST_VALUE()
Section 14.20.1, “Window Function Descriptions”
Section 14.20.3, “Window Function Frame Specification”

LCASE()
Section 14.8.3, “Character Set and Collation of Function Results”

5908

Section 14.8, “String Functions and Operators”

LEAD()
Section 1.3, “What Is New in MySQL 8.0”
Section 14.20.1, “Window Function Descriptions”

LEAST()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.4.2, “Comparison Functions and Operators”
Section 13.5, “The JSON Data Type”

LEFT()
Section 14.8, “String Functions and Operators”

LENGTH
Section 7.1.8, “Server System Variables”

LENGTH()
Section 13.7, “Data Type Storage Requirements”
Section 14.8, “String Functions and Operators”
Section 13.4.3, “Supported Spatial Data Formats”

LineString()
Section 14.16.5, “MySQL-Specific Functions That Create Geometry Values”

LN()
Section 14.6.2, “Mathematical Functions”

LOAD_FILE()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 15.2.10, “LOAD XML Statement”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 8.6.3, “MySQL Enterprise Encryption Usage and Examples”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.14, “Replication and System Functions”
Section 7.1.8, “Server System Variables”
Section 14.8, “String Functions and Operators”

load_rewrite_rules()
Rewriter Query Rewrite Plugin Procedures and Functions
Section 7.6.4, “The Rewriter Query Rewrite Plugin”

LOCALTIME
Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 14.7, “Date and Time Functions”

LOCALTIME()
Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

LOCALTIMESTAMP
Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”

5909

Section 14.7, “Date and Time Functions”

LOCALTIMESTAMP()
Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

LOCATE()
Section 14.8, “String Functions and Operators”

LOG()
Section 26.2.4.1, “LINEAR HASH Partitioning”
Section 14.6.2, “Mathematical Functions”

LOG10()
Section 14.6.2, “Mathematical Functions”

LOG2()
Section 14.6.2, “Mathematical Functions”

LOWER()
Section 14.10, “Cast Functions and Operators”
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”
Section 12.10.1, “Unicode Character Sets”
Section 12.8.7, “Using Collation in INFORMATION_SCHEMA Searches”

LPAD()
Section 14.12, “Bit Functions and Operators”
Section 13.1.1, “Numeric Data Type Syntax”
Section 13.1.6, “Numeric Type Attributes”
Section 14.8, “String Functions and Operators”
Section 1.3, “What Is New in MySQL 8.0”

LTRIM()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”

M

[index top]

MAKE_SET()
Section 14.8, “String Functions and Operators”

MAKEDATE()
Section 14.7, “Date and Time Functions”

MAKETIME()
Section 14.7, “Date and Time Functions”

mask_canada_sin()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”

5910

Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”

mask_iban()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”

mask_inner
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”

mask_inner()
Section 8.5.1, “Data-Masking Components Versus the Data-Masking Plugin”
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

mask_outer
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”

mask_outer()
Section 8.5.1, “Data-Masking Components Versus the Data-Masking Plugin”
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

mask_pan()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

mask_pan_relaxed()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

mask_ssn()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

mask_uk_nin()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”

5911

Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”

mask_uuid()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.2.2, “Using MySQL Enterprise Data Masking and De-Identification Components”

masking_dictionary_remove()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.2.2, “Privileges Provided by MySQL”

masking_dictionary_term_add()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.2.2, “Privileges Provided by MySQL”

masking_dictionary_term_remove()
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.2.2, “Privileges Provided by MySQL”

MASTER_POS_WAIT()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Behaviors When Binary Log Transaction Compression is Enabled
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 19.2.2.2, “Compatibility with Previous Replication Statements”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section A.14, “MySQL 8.0 FAQ: Replication”
Section 14.18.4, “Position-Based Synchronization Functions”

MATCH
Section 11.5, “Expressions”

MATCH ()
Section 14.9, “Full-Text Search Functions”

MATCH()
Section 14.9.2, “Boolean Full-Text Searches”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.9.5, “Full-Text Restrictions”
Section 14.9, “Full-Text Search Functions”
Section 14.19.2, “GROUP BY Modifiers”
Section 17.6.2.4, “InnoDB Full-Text Indexes”
MySQL Glossary
Section 14.9.1, “Natural Language Full-Text Searches”

MAX(
Section 14.19.1, “Aggregate Function Descriptions”

MAX()
Section 13.2.9, “2-Digit Years in Dates”
Section 14.19.1, “Aggregate Function Descriptions”
Section 10.3.13, “Descending Indexes”
Section 10.2.1.17, “GROUP BY Optimization”

5912

Section 10.3.1, “How MySQL Uses Indexes”
Section B.3.7, “Known Issues in MySQL”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 13.1.1, “Numeric Data Type Syntax”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section 7.1.11, “Server SQL Modes”
Section 10.9.2, “Switchable Optimizations”
Section 13.5, “The JSON Data Type”
Section 1.2.2, “The Main Features of MySQL”
Section 29.12.16.1, “The tp_thread_group_state Table”
Section 27.5.3, “Updatable and Insertable Views”
Section 10.3.10, “Use of Index Extensions”
Section 5.6.9, “Using AUTO_INCREMENT”
Section 10.2.1.21, “Window Function Optimization”
Section 15.2.20, “WITH (Common Table Expressions)”

MBRContains()
Section 14.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”
Section 13.4.11, “Using Spatial Indexes”

MBRCoveredBy()
Section 14.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBRCovers()
Section 14.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBRDisjoint()
Section 14.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBREquals()
Section 14.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBRIntersects()
Section 14.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBROverlaps()
Section 14.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBRTouches()
Section 14.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”

MBRWithin()
Section 14.16.9.2, “Spatial Relation Functions That Use Minimum Bounding Rectangles”
Section 13.4.11, “Using Spatial Indexes”

MD5()
Section 14.13, “Encryption and Compression Functions”
Section 26.2.5, “KEY Partitioning”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 11.2, “Schema Object Names”

MICROSECOND()
Section 14.7, “Date and Time Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

5913

MID()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”

MIN(
Section 14.19.1, “Aggregate Function Descriptions”

MIN()
Section 13.2.9, “2-Digit Years in Dates”
Section 14.19.1, “Aggregate Function Descriptions”
Section 10.3.13, “Descending Indexes”
Section 10.2.1.17, “GROUP BY Optimization”
Section 10.3.1, “How MySQL Uses Indexes”
Section B.3.7, “Known Issues in MySQL”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 13.1.1, “Numeric Data Type Syntax”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section B.3.4.3, “Problems with NULL Values”
Section 10.9.2, “Switchable Optimizations”
Section 13.5, “The JSON Data Type”
Section 1.2.2, “The Main Features of MySQL”
Section 27.5.3, “Updatable and Insertable Views”
Section 10.3.10, “Use of Index Extensions”
Section 10.2.1.1, “WHERE Clause Optimization”
Section 10.2.1.21, “Window Function Optimization”

MINUTE()
Section 14.7, “Date and Time Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

MOD()
Section 14.6.1, “Arithmetic Operators”
Section 5.3.4.5, “Date Calculations”
Section 14.6.2, “Mathematical Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 26.6.3, “Partitioning Limitations Relating to Functions”
Section 7.1.11, “Server SQL Modes”

MONTH()
Section 14.7, “Date and Time Functions”
Section 5.3.4.5, “Date Calculations”
Section 26.6.3, “Partitioning Limitations Relating to Functions”
Section 26.2, “Partitioning Types”

MONTHNAME()
Section 14.7, “Date and Time Functions”
Section 12.16, “MySQL Server Locale Support”
Section 7.1.8, “Server System Variables”

MultiLineString()
Section 14.16.5, “MySQL-Specific Functions That Create Geometry Values”

MultiPoint()
Section 14.16.5, “MySQL-Specific Functions That Create Geometry Values”

5914

MultiPolygon()
Section 14.16.5, “MySQL-Specific Functions That Create Geometry Values”

my_open()
Section 7.1.10, “Server Status Variables”

mysql_firewall_flush_status()
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

mysql_query_attribute_string()
Section 7.5.4, “Query Attribute Components”
Section 11.6, “Query Attributes”

N

[index top]

NAME_CONST()
Section 14.23, “Miscellaneous Functions”
Section 27.7, “Stored Program Binary Logging”

normalize_statement()
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

NOW()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 15.1.20.6, “CHECK Constraints”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 13.6, “Data Type Default Values”
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 13.2.6, “Fractional Seconds in Time Values”
Section A.1, “MySQL 8.0 FAQ: General”
Section 7.1.15, “MySQL Server Time Zone Support”
Section 19.5.1.14, “Replication and System Functions”
Section 19.5.1.33, “Replication and Time Zones”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 30.4.3.21, “The metrics View”
Section 30.4.4.25, “The statement_performance_analyzer() Procedure”
Section 13.2.4, “The YEAR Type”

NTH_VALUE()
Section 1.3, “What Is New in MySQL 8.0”
Section 14.20.1, “Window Function Descriptions”
Section 14.20.3, “Window Function Frame Specification”

NTILE()
Section 1.3, “What Is New in MySQL 8.0”
Section 14.20.1, “Window Function Descriptions”

NULLIF
Section 15.5.1, “PREPARE Statement”

5915

NULLIF()
Section 14.5, “Flow Control Functions”

O

[index top]

OCT()
Section 14.8, “String Functions and Operators”

OCTET_LENGTH()
Section 14.8, “String Functions and Operators”

ORD()
Section 14.8, “String Functions and Operators”

P

[index top]

PERCENT_RANK()
Section 14.20.1, “Window Function Descriptions”

PERIOD_ADD()
Section 14.7, “Date and Time Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

PERIOD_DIFF()
Section 14.7, “Date and Time Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”

PI()
Section 11.2.5, “Function Name Parsing and Resolution”
Section 14.6.2, “Mathematical Functions”

Point()
Section 14.16.5, “MySQL-Specific Functions That Create Geometry Values”
Section 13.4.3, “Supported Spatial Data Formats”

Polygon()
Section 14.16.5, “MySQL-Specific Functions That Create Geometry Values”

POSITION()
Section 14.8, “String Functions and Operators”

POW()
Section 10.2.1.20, “Function Call Optimization”
Section 26.2.4, “HASH Partitioning”
Section 14.6.2, “Mathematical Functions”

POWER()
Section 26.2.4.1, “LINEAR HASH Partitioning”

5916

Section 14.6.2, “Mathematical Functions”

PS_CURRENT_THREAD_ID()
Section 14.21, “Performance Schema Functions”
Section 30.4.5.15, “The ps_thread_id() Function”

PS_THREAD_ID()
Section 14.21, “Performance Schema Functions”
Section 30.4.5.15, “The ps_thread_id() Function”

Q

[index top]

QUARTER()
Section 14.7, “Date and Time Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

QUOTE()
Section 14.8, “String Functions and Operators”
Section 11.1.1, “String Literals”

R

[index top]

RADIANS()
Section 14.6.2, “Mathematical Functions”

RAND()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 10.2.1.20, “Function Call Optimization”
Section 14.6.2, “Mathematical Functions”
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 19.5.1.14, “Replication and System Functions”
Section 7.1.8, “Server System Variables”
Section 10.9.2, “Switchable Optimizations”

RANDOM_BYTES()
Section 14.13, “Encryption and Compression Functions”

RANK()
Section 1.3, “What Is New in MySQL 8.0”
Section 14.20.1, “Window Function Descriptions”

read_firewall_group_allowlist()
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

read_firewall_groups()
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

5917

read_firewall_users()
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

read_firewall_whitelist()
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

REGEXP_INSTR()
Section 14.8.2, “Regular Expressions”
Section 1.3, “What Is New in MySQL 8.0”

REGEXP_LIKE()
Section 5.3.4.7, “Pattern Matching”
Section 14.8.2, “Regular Expressions”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

REGEXP_REPLACE()
Section 14.8.2, “Regular Expressions”
Section 1.3, “What Is New in MySQL 8.0”

REGEXP_SUBSTR()
Section 14.8.2, “Regular Expressions”
Section 1.3, “What Is New in MySQL 8.0”

RELEASE_ALL_LOCKS()
Section 14.14, “Locking Functions”

RELEASE_LOCK()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 15.2.3, “DO Statement”
Section 10.11.1, “Internal Locking Methods”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 14.14, “Locking Functions”
Section 19.5.1.14, “Replication and System Functions”

REPEAT()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”

REPLACE()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”

REVERSE()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”

RIGHT()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”

ROLES_GRAPHML()
Section 14.15, “Information Functions”

5918

Section 8.2.2, “Privileges Provided by MySQL”

ROUND()
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 14.6.2, “Mathematical Functions”
Section 14.24, “Precision Math”
Section 14.24.5, “Precision Math Examples”
Section 14.24.4, “Rounding Behavior”

ROW_COUNT()
Section 15.2.1, “CALL Statement”
Section 15.2.2, “DELETE Statement”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 14.15, “Information Functions”
Section 15.2.7, “INSERT Statement”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.14, “Replication and System Functions”
Section 7.1.10, “Server Status Variables”
Section 15.6.7.7, “The MySQL Diagnostics Area”

ROW_NUMBER()
Section 14.20.2, “Window Function Concepts and Syntax”
Section 14.20.1, “Window Function Descriptions”

RPAD()
Section 14.12, “Bit Functions and Operators”
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”

RTRIM()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”

S

[index top]

SCHEMA()
Section 14.15, “Information Functions”

SEC_TO_TIME()
Section 14.7, “Date and Time Functions”

SECOND()
Section 14.7, “Date and Time Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

service_get_read_locks()
The Locking Service Function Interface

service_get_write_locks()
The Locking Service Function Interface

service_release_locks()
The Locking Service Function Interface

5919

SESSION_USER()
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 14.15, “Information Functions”
Section 12.2.2, “UTF-8 for Metadata”

set_firewall_group_mode()
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

set_firewall_mode()
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

setrlimit()
Section 7.1.8, “Server System Variables”

SHA()
Section 14.13, “Encryption and Compression Functions”

SHA1()
Section 14.13, “Encryption and Compression Functions”

SHA2()
Section 14.13, “Encryption and Compression Functions”
Section 8.1.1, “Security Guidelines”
Section 1.3, “What Is New in MySQL 8.0”

SIGN()
Section 14.6.2, “Mathematical Functions”

SIN()
Section 14.6.2, “Mathematical Functions”

SLEEP()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 10.14.3, “General Thread States”
Section 14.23, “Miscellaneous Functions”
Section 29.12.16.2, “The tp_thread_group_stats Table”

SOUNDEX()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”

SOURCE_POS_WAIT()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Behaviors When Binary Log Transaction Compression is Enabled
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 19.2.2.2, “Compatibility with Previous Replication Statements”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section A.14, “MySQL 8.0 FAQ: Replication”
Section 14.18.4, “Position-Based Synchronization Functions”

SPACE()
Section 14.8.3, “Character Set and Collation of Function Results”

5920

Section 14.8, “String Functions and Operators”

SQRT()
Section 14.6.2, “Mathematical Functions”

ST_Area()
Section 14.16.7, “Geometry Property Functions”
Section 14.16.7.4, “Polygon and MultiPolygon Property Functions”

ST_AsBinary()
Section 13.4.8, “Fetching Spatial Data”
Section 14.16.6, “Geometry Format Conversion Functions”

ST_AsGeoJSON()
Section 14.16.11, “Spatial GeoJSON Functions”
Section 13.5, “The JSON Data Type”

ST_AsText()
Section 13.4.8, “Fetching Spatial Data”
Section 14.16.6, “Geometry Format Conversion Functions”

ST_AsWKB()
Section 14.16.6, “Geometry Format Conversion Functions”

ST_AsWKT()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”
Section 14.16.6, “Geometry Format Conversion Functions”

ST_Buffer()
Section 14.16.8, “Spatial Operator Functions”

ST_Buffer_Strategy()
Section 7.1.8, “Server System Variables”
Section 14.16.8, “Spatial Operator Functions”

ST_Centroid()
Section 14.16.7.4, “Polygon and MultiPolygon Property Functions”

ST_Collect(
Section 14.16.12, “Spatial Aggregate Functions”

ST_Collect()
Section 14.16.12, “Spatial Aggregate Functions”

ST_Contains()
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_ConvexHull()
Section 14.16.8, “Spatial Operator Functions”

ST_Crosses()
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”

5921

ST_Difference()
Section 14.16.8, “Spatial Operator Functions”

ST_Dimension()
Section 14.16.7.1, “General Geometry Property Functions”

ST_Disjoint()
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_Distance()
Section 14.16.13, “Spatial Convenience Functions”
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”
Section 28.3.37, “The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table”

ST_Distance_Sphere()
Section 14.16.13, “Spatial Convenience Functions”
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_EndPoint()
Section 14.16.7.3, “LineString and MultiLineString Property Functions”
Section 14.16.8, “Spatial Operator Functions”

ST_Envelope()
Section 14.16.7.1, “General Geometry Property Functions”
Section 14.16.8, “Spatial Operator Functions”

ST_Equals()
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_ExteriorRing()
Section 14.16.7.4, “Polygon and MultiPolygon Property Functions”
Section 14.16.8, “Spatial Operator Functions”

ST_FrechetDistance()
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_GeoHash()
Section 14.16.10, “Spatial Geohash Functions”

ST_GeomCollFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_GeomCollFromTxt()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_GeomCollFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_GeometryCollectionFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_GeometryCollectionFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

5922

ST_GeometryFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_GeometryFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_GeometryN()
Section 14.16.7.5, “GeometryCollection Property Functions”
Section 14.16.8, “Spatial Operator Functions”

ST_GeometryType()
Section 14.16.7.1, “General Geometry Property Functions”

ST_GeomFromGeoJSON()
Section 14.16.11, “Spatial GeoJSON Functions”
Section 13.5, “The JSON Data Type”

ST_GeomFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”
Section 14.16.6, “Geometry Format Conversion Functions”
Section 14.16.5, “MySQL-Specific Functions That Create Geometry Values”
Section 13.4.7, “Populating Spatial Columns”
Section 13.4.3, “Supported Spatial Data Formats”

ST_GeomFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_HausdorffDistance()
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_InteriorRingN()
Section 14.16.7.4, “Polygon and MultiPolygon Property Functions”
Section 14.16.8, “Spatial Operator Functions”

ST_Intersection()
Section 14.16.8, “Spatial Operator Functions”

ST_Intersects()
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_IsClosed()
Section 14.16.7.3, “LineString and MultiLineString Property Functions”

ST_IsEmpty()
Section 14.16.7.1, “General Geometry Property Functions”

ST_IsSimple()
Section 14.16.7.1, “General Geometry Property Functions”

ST_IsValid()
Section 13.4.4, “Geometry Well-Formedness and Validity”
Section 14.16.13, “Spatial Convenience Functions”

5923

ST_LatFromGeoHash()
Section 14.16.10, “Spatial Geohash Functions”

ST_Latitude()
Section 14.16.7.2, “Point Property Functions”

ST_Length()
Section 14.16.7.3, “LineString and MultiLineString Property Functions”
Section 14.16.8, “Spatial Operator Functions”
Section 14.8, “String Functions and Operators”
Section 1.3, “What Is New in MySQL 8.0”

ST_LineFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_LineFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_LineInterpolatePoint()
Section 14.16.8, “Spatial Operator Functions”

ST_LineInterpolatePoints()
Section 14.16.8, “Spatial Operator Functions”

ST_LineStringFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_LineStringFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_LongFromGeoHash()
Section 14.16.10, “Spatial Geohash Functions”

ST_Longitude()
Section 14.16.7.2, “Point Property Functions”

ST_MakeEnvelope()
Section 14.16.13, “Spatial Convenience Functions”

ST_MLineFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_MLineFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_MPointFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”
Section 13.4.3, “Supported Spatial Data Formats”

ST_MPointFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_MPolyFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

5924

ST_MPolyFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_MultiLineStringFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_MultiLineStringFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_MultiPointFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_MultiPointFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_MultiPolygonFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_MultiPolygonFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_NumGeometries()
Section 14.16.7.5, “GeometryCollection Property Functions”

ST_NumInteriorRing()
Section 14.16.7.4, “Polygon and MultiPolygon Property Functions”

ST_NumInteriorRings()
Section 14.16.7.4, “Polygon and MultiPolygon Property Functions”

ST_NuminteriorRings()
Section 14.16.7.4, “Polygon and MultiPolygon Property Functions”

ST_NumPoints()
Section 14.16.7.3, “LineString and MultiLineString Property Functions”

ST_Overlaps()
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_PointAtDistance()
Section 14.16.8, “Spatial Operator Functions”

ST_PointFromGeoHash()
Section 14.16.10, “Spatial Geohash Functions”

ST_PointFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_PointFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_PointN()
Section 14.16.7.3, “LineString and MultiLineString Property Functions”

5925

Section 14.16.8, “Spatial Operator Functions”

ST_PolyFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_PolyFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_PolygonFromText()
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”

ST_PolygonFromWKB()
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”

ST_Simplify()
Section 14.16.13, “Spatial Convenience Functions”

ST_SRID()
Section 14.16.7.1, “General Geometry Property Functions”
Section 14.16.8, “Spatial Operator Functions”

ST_StartPoint()
Section 14.16.7.3, “LineString and MultiLineString Property Functions”
Section 14.16.8, “Spatial Operator Functions”

ST_SwapXY()
Section 14.16.6, “Geometry Format Conversion Functions”

ST_SymDifference()
Section 14.16.8, “Spatial Operator Functions”

ST_Touches()
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_TRANSFORM()
Section 1.3, “What Is New in MySQL 8.0”

ST_Transform()
Section 14.16.7.1, “General Geometry Property Functions”
Section 14.16.8, “Spatial Operator Functions”

ST_Union()
Section 14.16.8, “Spatial Operator Functions”

ST_Validate()
Section 14.16.13, “Spatial Convenience Functions”

ST_Within()
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”

ST_X()
Section 14.16.7.2, “Point Property Functions”

5926

Section 13.4.3, “Supported Spatial Data Formats”

ST_Y()
Section 14.16.7.2, “Point Property Functions”

STATEMENT_DIGEST()
Section 14.13, “Encryption and Compression Functions”
Section 29.10, “Performance Schema Statement Digests and Sampling”

STATEMENT_DIGEST_TEXT()
Section 14.13, “Encryption and Compression Functions”
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”
Section 29.10, “Performance Schema Statement Digests and Sampling”
Section 7.1.8, “Server System Variables”

STD()
Section 14.19.1, “Aggregate Function Descriptions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 1.2.2, “The Main Features of MySQL”

STDDEV()
Section 14.19.1, “Aggregate Function Descriptions”

STDDEV_POP()
Section 14.19.1, “Aggregate Function Descriptions”
Section 10.2.1.21, “Window Function Optimization”

STDDEV_SAMP()
Section 14.19.1, “Aggregate Function Descriptions”
Section 10.2.1.21, “Window Function Optimization”

STR_TO_DATE()
Section 13.2, “Date and Time Data Types”
Section 14.7, “Date and Time Functions”
Section 12.16, “MySQL Server Locale Support”

STRCMP()
Section B.3.4.2, “Problems Using DATE Columns”
Section 14.8.1, “String Comparison Functions and Operators”

SUBDATE()
Section 14.7, “Date and Time Functions”

SUBSTR()
Section 14.12, “Bit Functions and Operators”
Section 14.8, “String Functions and Operators”

SUBSTRING()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 15.1.15, “CREATE INDEX Statement”
Section 14.8, “String Functions and Operators”

SUBSTRING_INDEX()
Section 8.2.23, “SQL-Based Account Activity Auditing”

5927

Section 14.8, “String Functions and Operators”

SUBTIME()
Section 14.7, “Date and Time Functions”

SUM(
Section 14.19.1, “Aggregate Function Descriptions”

SUM()
Section 14.19.1, “Aggregate Function Descriptions”
Section 15.7.4.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 13.2.1, “Date and Time Data Type Syntax”
Section 10.2.1.17, “GROUP BY Optimization”
Section 14.23, “Miscellaneous Functions”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section B.3.4.3, “Problems with NULL Values”
Section 13.3.5, “The ENUM Type”
Section 1.2.2, “The Main Features of MySQL”
Section 13.3.6, “The SET Type”
Section 27.5.3, “Updatable and Insertable Views”
Section 1.3, “What Is New in MySQL 8.0”
Section 14.20.2, “Window Function Concepts and Syntax”
Section 14.20.3, “Window Function Frame Specification”

SYSDATE()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 19.5.1.14, “Replication and System Functions”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

SYSTEM_USER()
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 14.15, “Information Functions”
Section 12.2.2, “UTF-8 for Metadata”

T

[index top]

TAN()
Section 14.6.2, “Mathematical Functions”

TIME()
Section 14.7, “Date and Time Functions”

TIME_FORMAT()
Section 14.10, “Cast Functions and Operators”
Section 14.7, “Date and Time Functions”

TIME_TO_SEC()
Section 14.7, “Date and Time Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

5928

TIMEDIFF()
Section 14.7, “Date and Time Functions”

TIMESTAMP()
Section 14.7, “Date and Time Functions”

TIMESTAMPADD()
Section 14.7, “Date and Time Functions”

TIMESTAMPDIFF()
Section 14.7, “Date and Time Functions”
Section 5.3.4.5, “Date Calculations”

TO_BASE64()
Section 14.8, “String Functions and Operators”

TO_DAYS()
Section 14.7, “Date and Time Functions”
Section 26.2.4, “HASH Partitioning”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 26.4, “Partition Pruning”
Section 26.6.3, “Partitioning Limitations Relating to Functions”
Section 26.2, “Partitioning Types”

TO_SECONDS()
Section 14.7, “Date and Time Functions”
Section 26.4, “Partition Pruning”
Section 26.6.3, “Partitioning Limitations Relating to Functions”
Section 26.2, “Partitioning Types”

TRIM()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 12.7, “Column Character Set Conversion”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.8, “String Functions and Operators”

TRUNCATE()
Section 14.6.2, “Mathematical Functions”

U

[index top]

UCASE()
Section 14.8.3, “Character Set and Collation of Function Results”
Section 14.8, “String Functions and Operators”

UNCOMPRESS()
Section 14.13, “Encryption and Compression Functions”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.1.8, “Server System Variables”

UNCOMPRESSED_LENGTH()
Section 14.13, “Encryption and Compression Functions”

5929

UNHEX()
Section 14.13, “Encryption and Compression Functions”
Section 6.5.1.1, “mysql Client Options”
Section 14.8, “String Functions and Operators”

UNIX_TIMESTAMP()
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 10.3.14, “Indexed Lookups from TIMESTAMP Columns”
Section 26.6.3, “Partitioning Limitations Relating to Functions”
Section 26.2.1, “RANGE Partitioning”
Section 7.1.8, “Server System Variables”
Section 30.4.3.21, “The metrics View”
Section B.3.3.7, “Time Zone Problems”
Section 1.3, “What Is New in MySQL 8.0”

UpdateXML()
Section 14.11, “XML Functions”

UPPER()
Section 14.10, “Cast Functions and Operators”
Section 14.8.3, “Character Set and Collation of Function Results”
Section 12.2.1, “Character Set Repertoire”
Section 14.8, “String Functions and Operators”
Section 12.10.1, “Unicode Character Sets”
Section 12.8.7, “Using Collation in INFORMATION_SCHEMA Searches”

USER()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 15.7.1.1, “ALTER USER Statement”
Section 12.8.4, “Collation Coercibility in Expressions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 14.15, “Information Functions”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 7.1.14, “Network Namespace Support”
Section 8.2.15, “Password Management”
Section 8.4.3.2, “Password Validation Options and Variables”
Section 8.2.19, “Proxy Users”
Section 19.5.1.14, “Replication and System Functions”
Section 8.2.23, “SQL-Based Account Activity Auditing”
Section 12.2.2, “UTF-8 for Metadata”

UTC_DATE
Section 14.7, “Date and Time Functions”

UTC_DATE()
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

UTC_TIME
Section 14.7, “Date and Time Functions”

UTC_TIME()
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”

5930

UTC_TIMESTAMP
Section 14.7, “Date and Time Functions”

UTC_TIMESTAMP()
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 7.1.15, “MySQL Server Time Zone Support”

UUID()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 10.2.1.20, “Function Call Optimization”
Section 14.23, “Miscellaneous Functions”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.14, “Replication and System Functions”
Section 27.7, “Stored Program Binary Logging”

UUID_SHORT()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 14.23, “Miscellaneous Functions”

UUID_TO_BIN()
Section 14.12, “Bit Functions and Operators”
Section 14.23, “Miscellaneous Functions”

V

[index top]

VALIDATE_PASSWORD_STRENGTH()
Section 14.13, “Encryption and Compression Functions”
Section 8.4.3.2, “Password Validation Options and Variables”
Section 8.4.3, “The Password Validation Component”

VALUES()
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 14.23, “Miscellaneous Functions”
Section 15.2.19, “VALUES Statement”
Section 1.3, “What Is New in MySQL 8.0”

VAR_POP()
Section 14.19.1, “Aggregate Function Descriptions”
Section 10.2.1.21, “Window Function Optimization”

VAR_SAMP()
Section 14.19.1, “Aggregate Function Descriptions”
Section 10.2.1.21, “Window Function Optimization”

VARIANCE()
Section 14.19.1, “Aggregate Function Descriptions”

VERSION()
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”

5931

Section 8.4.5.4, “Audit Log File Formats”
Section B.3.4.1, “Case Sensitivity in String Searches”
Section 12.8.4, “Collation Coercibility in Expressions”
Section 14.15, “Information Functions”
Section 19.5.1.14, “Replication and System Functions”
Section 30.4.3.47, “The version View”
Section 12.2.2, “UTF-8 for Metadata”

version_tokens_delete()
Section 7.6.6.3, “Using Version Tokens”
Section 7.6.6.4, “Version Tokens Reference”

version_tokens_edit()
Section 7.6.6.3, “Using Version Tokens”
Section 7.6.6.4, “Version Tokens Reference”

version_tokens_lock_exclusive()
Section 7.6.6.3, “Using Version Tokens”
Section 7.6.6.4, “Version Tokens Reference”

version_tokens_lock_shared()
Section 7.6.6.3, “Using Version Tokens”
Section 7.6.6.4, “Version Tokens Reference”

version_tokens_set()
Section 7.6.6.3, “Using Version Tokens”
Section 7.6.6.4, “Version Tokens Reference”

version_tokens_show()
Section 7.6.6.3, “Using Version Tokens”
Section 7.6.6.4, “Version Tokens Reference”

version_tokens_unlock()
Section 7.6.6.3, “Using Version Tokens”
Section 7.6.6.4, “Version Tokens Reference”

W

[index top]

WAIT_FOR_EXECUTED_GTID_SET()
Section 14.18.2, “Functions Used with Global Transaction Identifiers (GTIDs)”
Section 19.1.4.1, “Replication Mode Concepts”

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()
Section 14.18.2, “Functions Used with Global Transaction Identifiers (GTIDs)”
Section 15.4.2.6, “START REPLICA Statement”

WEEK()
Section 14.7, “Date and Time Functions”
Section 7.1.8, “Server System Variables”

WEEKDAY()
Section 14.7, “Date and Time Functions”

5932

Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 26.6.3, “Partitioning Limitations Relating to Functions”
Section 26.2, “Partitioning Types”

WEEKOFYEAR()
Section 14.7, “Date and Time Functions”

WEIGHT_STRING()
Section 12.14, “Adding a Collation to a Character Set”
Section B.3.4.1, “Case Sensitivity in String Searches”
Section 14.8, “String Functions and Operators”
Section 12.10.1, “Unicode Character Sets”

Y

[index top]

YEAR()
Section 14.7, “Date and Time Functions”
Section 5.3.4.5, “Date Calculations”
Section 26.2.4, “HASH Partitioning”
Section 26.2.7, “How MySQL Partitioning Handles NULL”
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 26.4, “Partition Pruning”
Section 26.6.3, “Partitioning Limitations Relating to Functions”
Section 26.2, “Partitioning Types”
Section 26.2.1, “RANGE Partitioning”

YEARWEEK()
Section 14.7, “Date and Time Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”

INFORMATION_SCHEMA Index
A | C | E | F | I | K | M | N | O | P | R | S | T | U | V

A

[index top]

ADMINISTRABLE_ROLE_AUTHORIZATIONS
Section 28.3.2, “The INFORMATION_SCHEMA ADMINISTRABLE_ROLE_AUTHORIZATIONS Table”

APPLICABLE_ROLES
Section 28.3.3, “The INFORMATION_SCHEMA APPLICABLE_ROLES Table”

C

[index top]

CHARACTER_SETS
Section 12.3.8, “Character Set Introducers”
Section 12.2, “Character Sets and Collations in MySQL”
Section 12.3.6, “Character String Literal Character Set and Collation”
Section 12.3.5, “Column Character Set and Collation”

5933

Section 12.3.3, “Database Character Set and Collation”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 15.7.7.3, “SHOW CHARACTER SET Statement”
Section 12.10, “Supported Character Sets and Collations”
Section 12.3.4, “Table Character Set and Collation”
Section 28.3.4, “The INFORMATION_SCHEMA CHARACTER_SETS Table”

CHECK_CONSTRAINTS
Section 15.1.20.6, “CHECK Constraints”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 28.3.5, “The INFORMATION_SCHEMA CHECK_CONSTRAINTS Table”

COLLATION_CHARACTER_SET_APPLICABILITY
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 28.3.7, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table”

COLLATIONS
Section 12.15, “Character Set Configuration”
Section 12.2, “Character Sets and Collations in MySQL”
Section 12.14.2, “Choosing a Collation ID”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 10.9.6, “Optimizer Statistics”
Section 15.7.7.4, “SHOW COLLATION Statement”
Section 12.8.5, “The binary Collation Compared to _bin Collations”
Section 13.3.2, “The CHAR and VARCHAR Types”
Section 28.3.6, “The INFORMATION_SCHEMA COLLATIONS Table”
Section 12.10.1, “Unicode Character Sets”

COLUMN_PRIVILEGES
Section 28.3.10, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”

COLUMN_STATISTICS
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 10.9.6, “Optimizer Statistics”
Section 28.3.11, “The INFORMATION_SCHEMA COLUMN_STATISTICS Table”
Section 1.3, “What Is New in MySQL 8.0”

COLUMNS
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 28.1, “Introduction”
Section 15.1.20.10, “Invisible Columns”
Section 7.1.8, “Server System Variables”
Section 15.7.7.5, “SHOW COLUMNS Statement”
Section 28.3.8, “The INFORMATION_SCHEMA COLUMNS Table”
Section 28.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 28.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 28.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 28.4.5, “The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table”
Section 28.4.6, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 28.4.8, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”

5934

Section 28.4.7, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 28.4.9, “The INFORMATION_SCHEMA INNODB_COLUMNS Table”
Section 28.4.10, “The INFORMATION_SCHEMA INNODB_DATAFILES Table”
Section 28.4.11, “The INFORMATION_SCHEMA INNODB_FIELDS Table”
Section 28.4.12, “The INFORMATION_SCHEMA INNODB_FOREIGN Table”
Section 28.4.13, “The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table”
Section 28.4.14, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 28.4.15, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 28.4.16, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”
Section 28.4.17, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 28.4.18, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 28.4.19, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 28.4.20, “The INFORMATION_SCHEMA INNODB_INDEXES Table”
Section 28.4.21, “The INFORMATION_SCHEMA INNODB_METRICS Table”
Section 28.4.22, “The INFORMATION_SCHEMA INNODB_SESSION_TEMP_TABLESPACES Table”
Section 28.4.23, “The INFORMATION_SCHEMA INNODB_TABLES Table”
Section 28.4.24, “The INFORMATION_SCHEMA INNODB_TABLESPACES Table”
Section 28.4.25, “The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table”
Section 28.4.26, “The INFORMATION_SCHEMA INNODB_TABLESTATS View”
Section 28.4.27, “The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table”
Section 28.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 28.4.29, “The INFORMATION_SCHEMA INNODB_VIRTUAL Table”
Section 28.3.35, “The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 1.3, “What Is New in MySQL 8.0”

COLUMNS_EXTENSIONS
Section 28.3.9, “The INFORMATION_SCHEMA COLUMNS_EXTENSIONS Table”

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
Section 8.4.2.1, “Connection Control Plugin Installation”
Section 8.4.2.2, “Connection Control Plugin System and Status Variables”
Section 28.6.2, “The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table”

E

[index top]

ENABLED_ROLES
Section 28.3.12, “The INFORMATION_SCHEMA ENABLED_ROLES Table”

ENGINES
Section 29.1, “Performance Schema Quick Start”
Section 25.6.19, “Quick Reference: NDB Cluster SQL Statements”
Section 7.1.8, “Server System Variables”
Section 15.7.7.16, “SHOW ENGINES Statement”
Section 28.3.13, “The INFORMATION_SCHEMA ENGINES Table”
Section 17.1.3, “Verifying that InnoDB is the Default Storage Engine”

EVENTS
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 27.4.4, “Event Metadata”
Section 27.4.2, “Event Scheduler Configuration”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 19.5.1.16, “Replication of Invoked Features”

5935

Section 27.8, “Restrictions on Stored Programs”
Setting Up Replication with Existing Data
Section 15.7.7.18, “SHOW EVENTS Statement”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”
Section 28.3.14, “The INFORMATION_SCHEMA EVENTS Table”

F

[index top]

FILES
Section 15.1.6, “ALTER LOGFILE GROUP Statement”
Section 15.1.10, “ALTER TABLESPACE Statement”
Section 3.5, “Changes in MySQL 8.0”
Section 7.6.7.3, “Cloning Remote Data”
Section 15.1.16, “CREATE LOGFILE GROUP Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 25.6.17, “INFORMATION_SCHEMA Tables for NDB Cluster”
Section 17.6.3.6, “Moving Tablespace Files While the Server is Offline”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 25.6.11.2, “NDB Cluster Disk Data Storage Requirements”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 8.2.2, “Privileges Provided by MySQL”
Section 17.15.8, “Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES”
Section 17.6.3.5, “Temporary Tablespaces”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”
Section 28.4.10, “The INFORMATION_SCHEMA INNODB_DATAFILES Table”
Section 28.4.24, “The INFORMATION_SCHEMA INNODB_TABLESPACES Table”
Section 28.3.40, “The INFORMATION_SCHEMA TABLESPACES Table”
Section 25.6.16.24, “The ndbinfo dict_obj_info Table”
Section 25.6.16.25, “The ndbinfo dict_obj_tree Table”
Section 25.6.16.42, “The ndbinfo logbuffers Table”
Section 25.6.16.43, “The ndbinfo logspaces Table”
Section 17.6.3.4, “Undo Tablespaces”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

I

[index top]

INFORMATION_SCHEMA
Section 3.5, “Changes in MySQL 8.0”
Section 16.1, “Data Dictionary Schema”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 25.6.17, “INFORMATION_SCHEMA Tables for NDB Cluster”
Section 17.15, “InnoDB INFORMATION_SCHEMA Tables”
Chapter 16, MySQL Data Dictionary
MySQL Glossary
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”
Section 17.12.1, “Online DDL Operations”
Section 8.2.9, “Reserved Accounts”
Section 7.2, “The MySQL Data Directory”
Section 12.9.3, “The utf8 Character Set (Deprecated alias for utf8mb3)”
Section 30.2, “Using the sys Schema”
Section 1.3, “What Is New in MySQL 8.0”

5936

Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 3.4, “What the MySQL Upgrade Process Upgrades”

INFORMATION_SCHEMA.CHARACTER_SETS
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”

INFORMATION_SCHEMA.COLUMN_STATISTICS
Section 10.9, “Controlling the Query Optimizer”
Section 10.9.6, “Optimizer Statistics”

INFORMATION_SCHEMA.COLUMNS
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 29.1, “Performance Schema Quick Start”

INFORMATION_SCHEMA.EVENTS
Section 19.5.1.16, “Replication of Invoked Features”

INFORMATION_SCHEMA.FILES
Section 7.6.7.3, “Cloning Remote Data”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 25.6.16.25, “The ndbinfo dict_obj_tree Table”
Section 17.6.3.4, “Undo Tablespaces”

INFORMATION_SCHEMA.INNODB_CMP
MySQL Glossary
Section 17.9.1.3, “Tuning Compression for InnoDB Tables”
Section 17.15.1.3, “Using the Compression Information Schema Tables”

INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX
Section 17.9.1.3, “Tuning Compression for InnoDB Tables”

INFORMATION_SCHEMA.INNODB_CMPMEM
Section 17.15.1.3, “Using the Compression Information Schema Tables”

INFORMATION_SCHEMA.INNODB_TABLES
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”

INFORMATION_SCHEMA.INNODB_TABLESPACES
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”

INFORMATION_SCHEMA.INNODB_TABLESTATS
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”

INFORMATION_SCHEMA.OPTIMIZER_TRACE
Section 10.15, “Tracing the Optimizer”
Section 10.15.1, “Typical Usage”

INFORMATION_SCHEMA.PARTITIONS
Section 26.2.7, “How MySQL Partitioning Handles NULL”

INFORMATION_SCHEMA.PLUGINS
Section A.2, “MySQL 8.0 FAQ: Storage Engines”

5937

INFORMATION_SCHEMA.PROCESSLIST
Section 28.3.23, “The INFORMATION_SCHEMA PROCESSLIST Table”

INFORMATION_SCHEMA.ROUTINES
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”

INFORMATION_SCHEMA.STATISTICS
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 7.3, “The mysql System Schema”

INFORMATION_SCHEMA.TABLES
Section 17.13, “InnoDB Data-at-Rest Encryption”

INFORMATION_SCHEMA.TRIGGERS
Section A.5, “MySQL 8.0 FAQ: Triggers”

INNODB_BUFFER_PAGE
Section 17.5.2, “Change Buffer”
Section 17.15.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 30.1, “Prerequisites for Using the sys Schema”
Section 28.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 28.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 30.4.3.7, “The innodb_buffer_stats_by_schema and x$innodb_buffer_stats_by_schema Views”
Section 30.4.3.8, “The innodb_buffer_stats_by_table and x$innodb_buffer_stats_by_table Views”

INNODB_BUFFER_PAGE_LRU
Section 17.15.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”
Section 28.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”

INNODB_BUFFER_POOL_STATS
Section 17.5.1, “Buffer Pool”
Section 17.15.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 28.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”

INNODB_CACHED_INDEXES
Section 28.4.5, “The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table”
Section 1.3, “What Is New in MySQL 8.0”

INNODB_CMP
Section 17.15.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 17.15.1.1, “INNODB_CMP and INNODB_CMP_RESET”
Section 17.15.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 17.9.1.4, “Monitoring InnoDB Table Compression at Runtime”
Section 28.4.6, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 17.9.1.3, “Tuning Compression for InnoDB Tables”
Section 17.15.1.3, “Using the Compression Information Schema Tables”

INNODB_CMP_PER_INDEX
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.9.1.4, “Monitoring InnoDB Table Compression at Runtime”
Section 28.4.8, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 17.9.1.3, “Tuning Compression for InnoDB Tables”

5938

Section 17.15.1.3, “Using the Compression Information Schema Tables”

INNODB_CMP_PER_INDEX_RESET
Section 28.4.8, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”

INNODB_CMP_RESET
Section 17.15.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 17.15.1.1, “INNODB_CMP and INNODB_CMP_RESET”
Section 17.15.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 28.4.6, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”

INNODB_CMPMEM
Section 17.15.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 17.15.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 28.4.7, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 17.15.1.3, “Using the Compression Information Schema Tables”

INNODB_CMPMEM_RESET
Section 17.15.1, “InnoDB INFORMATION_SCHEMA Tables about Compression”
Section 17.15.1.2, “INNODB_CMPMEM and INNODB_CMPMEM_RESET”
Section 28.4.7, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”

INNODB_COLUMNS
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 28.4.9, “The INFORMATION_SCHEMA INNODB_COLUMNS Table”
Section 28.4.29, “The INFORMATION_SCHEMA INNODB_VIRTUAL Table”

INNODB_DATAFILES
Section 3.5, “Changes in MySQL 8.0”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 17.15.8, “Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”
Section 28.4.10, “The INFORMATION_SCHEMA INNODB_DATAFILES Table”
Section 28.4.25, “The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table”
Section 28.3.40, “The INFORMATION_SCHEMA TABLESPACES Table”

INNODB_FIELDS
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 28.4.11, “The INFORMATION_SCHEMA INNODB_FIELDS Table”

INNODB_FOREIGN
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 28.4.12, “The INFORMATION_SCHEMA INNODB_FOREIGN Table”

INNODB_FOREIGN_COLS
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 15.1.20.5, “FOREIGN KEY Constraints”

5939

Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 28.4.13, “The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table”

INNODB_FT_BEING_DELETED
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.4.14, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”

INNODB_FT_CONFIG
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.4.15, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”

INNODB_FT_DEFAULT_STOPWORD
Section 14.9.4, “Full-Text Stopwords”
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 28.4.16, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”

INNODB_FT_DELETED
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.4.14, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 28.4.17, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”

INNODB_FT_INDEX_CACHE
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 14.9.9, “MeCab Full-Text Parser Plugin”
Section 14.9.8, “ngram Full-Text Parser”
Section 28.4.18, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”

INNODB_FT_INDEX_TABLE
Section 14.9.4, “Full-Text Stopwords”
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.4.14, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 28.4.17, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 28.4.19, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”

INNODB_INDEXES
Section 17.8.11, “Configuring the Merge Threshold for Index Pages”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 28.4.5, “The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table”
Section 28.4.20, “The INFORMATION_SCHEMA INNODB_INDEXES Table”

INNODB_METRICS
Section 15.7.3.1, “ANALYZE TABLE Statement”

5940

Section 17.5.2, “Change Buffer”
Section 17.8.11, “Configuring the Merge Threshold for Index Pages”
Section 17.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 28.4.21, “The INFORMATION_SCHEMA INNODB_METRICS Table”
Section 30.4.3.21, “The metrics View”
Section 17.7.6, “Transaction Scheduling”
Section 17.6.3.4, “Undo Tablespaces”
Section 1.3, “What Is New in MySQL 8.0”

INNODB_SESSION_TEMP_TABLESPACES
Section 17.6.3.5, “Temporary Tablespaces”
Section 28.4.22, “The INFORMATION_SCHEMA INNODB_SESSION_TEMP_TABLESPACES Table”
Section 1.3, “What Is New in MySQL 8.0”

INNODB_TABLES
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 17.10, “InnoDB Row Formats”
Section 11.2.4, “Mapping of Identifiers to File Names”
Section 28.4.5, “The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table”
Section 28.4.23, “The INFORMATION_SCHEMA INNODB_TABLES Table”
Section 1.3, “What Is New in MySQL 8.0”

INNODB_TABLESPACES
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 17.9.2, “InnoDB Page Compression”
Section 17.15.8, “Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 17.6.3.9, “Tablespace AUTOEXTEND_SIZE Configuration”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”
Section 28.4.24, “The INFORMATION_SCHEMA INNODB_TABLESPACES Table”
Section 28.4.25, “The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”
Section 28.3.40, “The INFORMATION_SCHEMA TABLESPACES Table”
Section 17.6.3.4, “Undo Tablespaces”
Section 1.3, “What Is New in MySQL 8.0”

INNODB_TABLESPACES_BRIEF
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 28.4.25, “The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table”
Section 1.3, “What Is New in MySQL 8.0”

INNODB_TABLESTATS
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 28.4.26, “The INFORMATION_SCHEMA INNODB_TABLESTATS View”

INNODB_TEMP_TABLE_INFO
Section 17.15.7, “InnoDB INFORMATION_SCHEMA Temporary Table Info Table”

5941

Section 17.6.3.5, “Temporary Tablespaces”
Section 28.4.27, “The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table”

INNODB_TRX
Section 17.15.2, “InnoDB INFORMATION_SCHEMA Transaction and Locking Information”
Section 17.15.2.2, “InnoDB Lock and Lock-Wait Information”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.15.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 29.12.13.1, “The data_locks Table”
Section 28.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 17.7.6, “Transaction Scheduling”
Section 17.15.2.1, “Using InnoDB Transaction and Locking Information”

INNODB_VIRTUAL
Section 28.4.29, “The INFORMATION_SCHEMA INNODB_VIRTUAL Table”

K

[index top]

KEY_COLUMN_USAGE
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 28.3.16, “The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table”
Section 7.3, “The mysql System Schema”

KEYWORDS
Section 28.3.17, “The INFORMATION_SCHEMA KEYWORDS Table”

M

[index top]

MYSQL_FIREWALL_USERS
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”
Section 28.7.2, “The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”

MYSQL_FIREWALL_WHITELIST
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”
Section 28.7.3, “The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table”

N

[index top]

NDB_TRANSID_MYSQL_CONNECTION_MAP
Section 25.6.16.54, “The ndbinfo server_operations Table”
Section 25.6.16.55, “The ndbinfo server_transactions Table”

ndb_transid_mysql_connection_map
Section 25.6.17, “INFORMATION_SCHEMA Tables for NDB Cluster”
MySQL Server Options for NDB Cluster

5942

Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”

O

[index top]

OPTIMIZER_TRACE
Section 10.2.1.2, “Range Optimization”
Section 28.3.19, “The INFORMATION_SCHEMA OPTIMIZER_TRACE Table”
Section 10.15.4, “Tuning Trace Purging”

P

[index top]

PARAMETERS
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”
Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”
Section 28.3.20, “The INFORMATION_SCHEMA PARAMETERS Table”
Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”

PARTITIONS
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 26.2.7, “How MySQL Partitioning Handles NULL”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 26.2.5, “KEY Partitioning”
Section 26.3.5, “Obtaining Information About Partitions”
Chapter 26, Partitioning
Section 26.2.3.1, “RANGE COLUMNS partitioning”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 28.3.21, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”

PLUGINS
Section 7.6.7.3, “Cloning Remote Data”
Section 8.4.2.1, “Connection Control Plugin Installation”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 15.7.4.4, “INSTALL PLUGIN Statement”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 7.6.5.1, “Installing or Uninstalling ddl_rewriter”
Section 8.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”
Section 19.4.10.1, “Installing Semisynchronous Replication”
Section 7.6.7.1, “Installing the Clone Plugin”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.4.17, “Keyring Metadata”
Section 8.4.4.3, “Keyring Plugin Installation”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.9, “No-Login Pluggable Authentication”
Section 7.6.2, “Obtaining Server Plugin Information”
Section 8.4.1.5, “PAM Pluggable Authentication”
Section 25.6.19, “Quick Reference: NDB Cluster SQL Statements”
Section 7.1.7, “Server Command Options”
Section 8.4.1.10, “Socket Peer-Credential Pluggable Authentication”
Section 8.4.1.12, “Test Pluggable Authentication”
Section 28.3.22, “The INFORMATION_SCHEMA PLUGINS Table”
Section 7.6.3.2, “Thread Pool Installation”

5943

Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.1.6, “Windows Pluggable Authentication”

PROCESSLIST
Section 10.14.1, “Accessing the Process List”
Section 14.15, “Information Functions”
Section 15.7.8.4, “KILL Statement”
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 29.6, “Performance Schema Instrument Naming Conventions”
Section 29.12.11, “Performance Schema Replication Tables”
Section 29.12.5, “Performance Schema Stage Event Tables”
Section 17.15.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.29, “SHOW PROCESSLIST Statement”
Section 7.6.7.11, “Stopping a Cloning Operation”
Section 29.12.21.2, “The error_log Table”
Section 28.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 28.3.23, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 30.4.3.22, “The processlist and x$processlist Views”
Section 29.12.21.7, “The processlist Table”
Section 29.12.21.8, “The threads Table”
Section 17.15.2.1, “Using InnoDB Transaction and Locking Information”

PROFILING
Section 15.7.7.30, “SHOW PROFILE Statement”
Section 28.3.24, “The INFORMATION_SCHEMA PROFILING Table”

R

[index top]

REFERENTIAL_CONSTRAINTS
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 28.3.25, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”
Section 7.3, “The mysql System Schema”

RESOURCE_GROUPS
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 7.1.16, “Resource Groups”
Section 28.3.26, “The INFORMATION_SCHEMA RESOURCE_GROUPS Table”

ROLE_COLUMN_GRANTS
Section 28.3.27, “The INFORMATION_SCHEMA ROLE_COLUMN_GRANTS Table”

ROLE_ROUTINE_GRANTS
Section 28.3.28, “The INFORMATION_SCHEMA ROLE_ROUTINE_GRANTS Table”

ROLE_TABLE_GRANTS
Section 28.3.29, “The INFORMATION_SCHEMA ROLE_TABLE_GRANTS Table”

ROUTINES
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 28.1, “Introduction”
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”
Section 8.2.2, “Privileges Provided by MySQL”

5944

Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”
Section 27.6, “Stored Object Access Control”
Section 27.2.3, “Stored Routine Metadata”
Section 27.2.2, “Stored Routines and MySQL Privileges”
Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”

S

[index top]

SCHEMA_PRIVILEGES
Section 28.3.33, “The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table”

SCHEMATA
Section 12.3.3, “Database Character Set and Collation”
Section 8.2.3, “Grant Tables”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”
Section 15.7.7.14, “SHOW DATABASES Statement”
Section 28.3.31, “The INFORMATION_SCHEMA SCHEMATA Table”
Section 28.3.32, “The INFORMATION_SCHEMA SCHEMATA_EXTENSIONS Table”

SCHEMATA_EXTENSIONS
Section 15.1.2, “ALTER DATABASE Statement”
Section 28.3.31, “The INFORMATION_SCHEMA SCHEMATA Table”
Section 28.3.32, “The INFORMATION_SCHEMA SCHEMATA_EXTENSIONS Table”

ST_GEOMETRY_COLUMNS
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 28.3.8, “The INFORMATION_SCHEMA COLUMNS Table”
Section 28.3.35, “The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table”

ST_SPATIAL_REFERENCE_SYSTEMS
Section 15.1.19, “CREATE SPATIAL REFERENCE SYSTEM Statement”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 13.4.5, “Spatial Reference System Support”
Section 28.3.36, “The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS Table”

ST_UNITS_OF_MEASURE
Section 14.16.7.3, “LineString and MultiLineString Property Functions”
Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes”
Section 28.3.37, “The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table”

STATISTICS
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 16.7, “Data Dictionary Usage Differences”
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 10.9.4, “Index Hints”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.1, “Introduction”
Section 10.3.12, “Invisible Indexes”
Section 15.7.7.22, “SHOW INDEX Statement”

5945

Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”
Section 1.3, “What Is New in MySQL 8.0”

T

[index top]

TABLE_CONSTRAINTS
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.12.1, “Online DDL Operations”
Section 28.3.25, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”
Section 28.3.42, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”

TABLE_CONSTRAINTS_EXTENSIONS
Section 28.3.43, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS_EXTENSIONS Table”

TABLE_PRIVILEGES
Section 28.3.44, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”

TABLES
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 15.1.9, “ALTER TABLE Statement”
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 15.1.20, “CREATE TABLE Statement”
Section 16.7, “Data Dictionary Usage Differences”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.9.2, “InnoDB Page Compression”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.1, “Introduction”
Section 11.2.4, “Mapping of Identifiers to File Names”
NDB Cluster System Variables
Section 16.2, “Removal of File-based Metadata Storage”
Section 15.1.20.12, “Setting NDB Comment Options”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 15.7.7.39, “SHOW TABLES Statement”
Section 30.4.4.2, “The diagnostics() Procedure”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”
Section 30.4.2.1, “The sys_config Table”
Section 7.6.3.2, “Thread Pool Installation”

TABLES_EXTENSIONS
Section 28.3.39, “The INFORMATION_SCHEMA TABLES_EXTENSIONS Table”

TABLESPACES_EXTENSIONS
Section 28.3.41, “The INFORMATION_SCHEMA TABLESPACES_EXTENSIONS Table”

TP_THREAD_GROUP_STATE
Section 28.5, “INFORMATION_SCHEMA Thread Pool Tables”

TP_THREAD_GROUP_STATS
Section 28.5, “INFORMATION_SCHEMA Thread Pool Tables”

TP_THREAD_STATE
Section 28.5, “INFORMATION_SCHEMA Thread Pool Tables”
Section 7.6.3.2, “Thread Pool Installation”

5946

TRIGGERS
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 3.6, “Preparing Your Installation for Upgrade”
Section 15.7.7.11, “SHOW CREATE TRIGGER Statement”
Section 15.7.7.40, “SHOW TRIGGERS Statement”
Section 28.3.45, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 27.3.2, “Trigger Metadata”

U

[index top]

USER_ATTRIBUTES
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.2.3, “Grant Tables”
Section 28.3.46, “The INFORMATION_SCHEMA USER_ATTRIBUTES Table”
Section 1.3, “What Is New in MySQL 8.0”

USER_PRIVILEGES
Section 8.2.2, “Privileges Provided by MySQL”
Section 28.3.47, “The INFORMATION_SCHEMA USER_PRIVILEGES Table”

V

[index top]

VIEW_ROUTINE_USAGE
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 28.3.49, “The INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Table”

VIEW_TABLE_USAGE
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 28.3.50, “The INFORMATION_SCHEMA VIEW_TABLE_USAGE Table”

VIEWS
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 3.6, “Preparing Your Installation for Upgrade”
Section 15.7.7.13, “SHOW CREATE VIEW Statement”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”
Section 27.5.3, “Updatable and Insertable Views”
Section 27.5.5, “View Metadata”

Join Types Index
A | C | E | F | I | R | S | U

A

[index top]

ALL
Section 10.2.1.23, “Avoiding Full Table Scans”
Section 10.2.1.12, “Block Nested-Loop and Batched Key Access Joins”
Section 10.8.2, “EXPLAIN Output Format”

5947

Section 10.2.1.7, “Nested-Loop Join Algorithms”

C

[index top]

const
Section 10.8.2, “EXPLAIN Output Format”
Section 10.8.3, “Extended EXPLAIN Output Format”
NDB Cluster System Variables
Section 10.9.3, “Optimizer Hints”
Section 10.2.1.16, “ORDER BY Optimization”
Section 10.2.1.2, “Range Optimization”
Section 15.2.13, “SELECT Statement”

E

[index top]

eq_ref
Section 10.2.1.12, “Block Nested-Loop and Batched Key Access Joins”
Section 10.8.2, “EXPLAIN Output Format”
Section 10.2.1.6, “Index Condition Pushdown Optimization”
Section 18.7.1, “MERGE Table Advantages and Disadvantages”
NDB Cluster System Variables
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 29.12.4.1, “The events_waits_current Table”

F

[index top]

fulltext
Section 10.8.2, “EXPLAIN Output Format”

I

[index top]

index
Section 10.2.1.12, “Block Nested-Loop and Batched Key Access Joins”
Section 10.8.2, “EXPLAIN Output Format”
Section 10.2.1.7, “Nested-Loop Join Algorithms”

index_merge
Section 10.8.2, “EXPLAIN Output Format”
Section 10.2.1.3, “Index Merge Optimization”

index_subquery
Section 10.8.2, “EXPLAIN Output Format”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

R

[index top]

5948

range
Section 10.2.1.12, “Block Nested-Loop and Batched Key Access Joins”
Section 10.8.2, “EXPLAIN Output Format”
Section 10.2.1.17, “GROUP BY Optimization”
Section 10.2.1.6, “Index Condition Pushdown Optimization”
Section 10.2.1.3, “Index Merge Optimization”
Section 10.2.1.7, “Nested-Loop Join Algorithms”
Section 10.9.3, “Optimizer Hints”
Section 10.2.1.2, “Range Optimization”

ref
Section 10.2.1.12, “Block Nested-Loop and Batched Key Access Joins”
Section 10.8.2, “EXPLAIN Output Format”
Section 10.8.3, “Extended EXPLAIN Output Format”
Section 10.2.1.6, “Index Condition Pushdown Optimization”
Section 10.3.8, “InnoDB and MyISAM Index Statistics Collection”
Section 18.7.1, “MERGE Table Advantages and Disadvantages”
NDB Cluster System Variables
Section 10.9.3, “Optimizer Hints”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

ref_or_null
Section 10.8.2, “EXPLAIN Output Format”
Section 10.2.1.6, “Index Condition Pushdown Optimization”
Section 10.2.1.15, “IS NULL Optimization”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

S

[index top]

system
Section 10.8.2, “EXPLAIN Output Format”
Section 10.8.3, “Extended EXPLAIN Output Format”
Section 10.2.1.2, “Range Optimization”
Section 15.2.13, “SELECT Statement”

U

[index top]

unique_subquery
Section 10.8.2, “EXPLAIN Output Format”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”

Operator Index
Symbols | A | B | C | D | E | I | L | M | N | O | R | V | X

Symbols

[index top]

5949

-
Section 14.6.1, “Arithmetic Operators”
Section 14.10, “Cast Functions and Operators”
Section 11.5, “Expressions”
Section 13.1.1, “Numeric Data Type Syntax”
Section 26.6, “Restrictions and Limitations on Partitioning”

!
Section 11.5, “Expressions”
Section 14.4.3, “Logical Operators”
Section 14.4.1, “Operator Precedence”
Section 1.3, “What Is New in MySQL 8.0”

!=
Section 14.4.2, “Comparison Functions and Operators”
Section 14.4.1, “Operator Precedence”
Section 10.2.1.2, “Range Optimization”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

%
Section 14.6.1, “Arithmetic Operators”

&
Section 14.12, “Bit Functions and Operators”
Section 15.1.20, “CREATE TABLE Statement”
Section 26.6, “Restrictions and Limitations on Partitioning”

&&
Section 14.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 1.3, “What Is New in MySQL 8.0”

>
Section 14.4.2, “Comparison Functions and Operators”
Section 10.3.9, “Comparison of B-Tree and Hash Indexes”
Section 10.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.4.1, “Operator Precedence”
Section 10.3.11, “Optimizer Use of Generated Column Indexes”
Section 10.2.1.2, “Range Optimization”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

->
Section 14.17.3, “Functions That Search JSON Values”
Section 15.1.20.9, “Secondary Indexes and Generated Columns”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

>>
Section 14.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”

5950

Section 26.6, “Restrictions and Limitations on Partitioning”

->>
Section 15.1.15, “CREATE INDEX Statement”
Section 15.1.20.9, “Secondary Indexes and Generated Columns”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

>=
Section 14.4.2, “Comparison Functions and Operators”
Section 10.3.9, “Comparison of B-Tree and Hash Indexes”
Section 10.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.4.1, “Operator Precedence”
Section 10.3.11, “Optimizer Use of Generated Column Indexes”
Section 10.2.1.2, “Range Optimization”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

<
Section 14.4.2, “Comparison Functions and Operators”
Section 10.3.9, “Comparison of B-Tree and Hash Indexes”
Section 10.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.4.1, “Operator Precedence”
Section 10.3.11, “Optimizer Use of Generated Column Indexes”
Section 10.2.1.2, “Range Optimization”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 5.3.4.6, “Working with NULL Values”

<>
Section 14.4.2, “Comparison Functions and Operators”
Section 10.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.4.1, “Operator Precedence”
Section 10.2.1.2, “Range Optimization”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 5.3.4.6, “Working with NULL Values”

<<
Section 14.12, “Bit Functions and Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 26.6, “Restrictions and Limitations on Partitioning”

<=
Section 14.4.2, “Comparison Functions and Operators”
Section 10.3.9, “Comparison of B-Tree and Hash Indexes”
Section 10.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.4.1, “Operator Precedence”
Section 10.3.11, “Optimizer Use of Generated Column Indexes”

5951

Section 10.2.1.2, “Range Optimization”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

<=>
Section 14.4.2, “Comparison Functions and Operators”
Section 15.2.15.7, “Correlated Subqueries”
Section 10.15.12, “Example”
Section 10.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.4.1, “Operator Precedence”
Section 10.2.1.2, “Range Optimization”
Section 13.5, “The JSON Data Type”
Section 14.3, “Type Conversion in Expression Evaluation”
Section 1.3, “What Is New in MySQL 8.0”

*
Section 14.6.1, “Arithmetic Operators”
Section 13.1.1, “Numeric Data Type Syntax”
Section 26.6, “Restrictions and Limitations on Partitioning”

+
Section 14.6.1, “Arithmetic Operators”
Section 14.10, “Cast Functions and Operators”
Section 11.5, “Expressions”
Section 13.1.1, “Numeric Data Type Syntax”
Section 26.6, “Restrictions and Limitations on Partitioning”

/
Section 14.6.1, “Arithmetic Operators”
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 7.1.8, “Server System Variables”

:=
Section 14.4.4, “Assignment Operators”
Section 14.4.1, “Operator Precedence”
Section 15.7.6.1, “SET Syntax for Variable Assignment”
Section 11.4, “User-Defined Variables”

=
Section 14.4.4, “Assignment Operators”
Section 14.4.2, “Comparison Functions and Operators”
Section 10.3.9, “Comparison of B-Tree and Hash Indexes”
Section 15.2.15.7, “Correlated Subqueries”
Section 10.8.2, “EXPLAIN Output Format”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.4.1, “Operator Precedence”
Section 10.3.11, “Optimizer Use of Generated Column Indexes”
Section 10.2.1.2, “Range Optimization”
Section 15.2.15.12, “Restrictions on Subqueries”
Section 15.7.6.1, “SET Syntax for Variable Assignment”
Section 14.8.1, “String Comparison Functions and Operators”
Section 13.5, “The JSON Data Type”
Section 11.4, “User-Defined Variables”
Section 1.3, “What Is New in MySQL 8.0”

5952

Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 5.3.4.6, “Working with NULL Values”

^
Section 14.12, “Bit Functions and Operators”
Section 11.5, “Expressions”
Section 14.4.1, “Operator Precedence”
Section 26.6, “Restrictions and Limitations on Partitioning”

|
Section 14.12, “Bit Functions and Operators”
Section 26.6, “Restrictions and Limitations on Partitioning”

||
Section 14.8.3, “Character Set and Collation of Function Results”
Section 12.8.2, “COLLATE Clause Precedence”
Section 11.5, “Expressions”
Section 14.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.4.1, “Operator Precedence”
Section 7.1.11, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 8.0”

~
Section 14.12, “Bit Functions and Operators”
Section 26.6, “Restrictions and Limitations on Partitioning”

A

[index top]

AND
Section 10.3.9, “Comparison of B-Tree and Hash Indexes”
Section 15.1.20, “CREATE TABLE Statement”
Section 10.2.1.3, “Index Merge Optimization”
Section 14.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 10.2.1.2, “Range Optimization”
Section 15.2.15.12, “Restrictions on Subqueries”
Section 10.2.1.22, “Row Constructor Expression Optimization”
Section 5.6.7, “Searching on Two Keys”
Section 22.3.4.2, “Select Tables”
Section 22.4.4.2, “Select Tables”
Section 5.3.4.2, “Selecting Particular Rows”
Section 14.8.1, “String Comparison Functions and Operators”
Section 27.5.2, “View Processing Algorithms”
Section 1.3, “What Is New in MySQL 8.0”

B

[index top]

BETWEEN
Section 14.4.2, “Comparison Functions and Operators”

5953

Section 10.3.9, “Comparison of B-Tree and Hash Indexes”
Section 10.2.1.13, “Condition Filtering”
Section 10.8.2, “EXPLAIN Output Format”
Section 10.3.11, “Optimizer Use of Generated Column Indexes”
Section 15.5.1, “PREPARE Statement”
Section 10.2.1.2, “Range Optimization”
Section 13.5, “The JSON Data Type”
Section 14.3, “Type Conversion in Expression Evaluation”

BINARY
Section 14.12, “Bit Functions and Operators”
Section 14.10, “Cast Functions and Operators”
Section 10.4.2.2, “Optimizing for Character and String Types”
Section 5.3.4.7, “Pattern Matching”
Section 5.3.4.4, “Sorting Rows”
Section 1.3, “What Is New in MySQL 8.0”

C

[index top]

CASE
Section 15.6.5.1, “CASE Statement”
Section 11.5, “Expressions”
Section 14.5, “Flow Control Functions”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 15.5.1, “PREPARE Statement”

CASE value WHEN compare_value THEN result END
Section 14.5, “Flow Control Functions”

CASE WHEN condition THEN result END
Section 14.5, “Flow Control Functions”

CASE WHEN expr1 = expr2 THEN NULL ELSE expr1 END
Section 14.5, “Flow Control Functions”

CASE()
Section 3.5, “Changes in MySQL 8.0”

column->>path
Section 14.17.3, “Functions That Search JSON Values”

column->path
Section 14.17.3, “Functions That Search JSON Values”
Section 13.5, “The JSON Data Type”

D

[index top]

DIV
Section 14.6.1, “Arithmetic Operators”
Section 26.6, “Restrictions and Limitations on Partitioning”

5954

E

[index top]

EXISTS()
Section 14.4.2, “Comparison Functions and Operators”

expr BETWEEN min AND max
Section 14.4.2, “Comparison Functions and Operators”

expr IN ()
Section 14.4.2, “Comparison Functions and Operators”

expr LIKE pat
Section 14.8.1, “String Comparison Functions and Operators”

expr NOT BETWEEN min AND max
Section 14.4.2, “Comparison Functions and Operators”

expr NOT IN ()
Section 14.4.2, “Comparison Functions and Operators”

expr NOT LIKE pat
Section 14.8.1, “String Comparison Functions and Operators”

expr NOT REGEXP pat
Section 14.8.2, “Regular Expressions”

expr NOT RLIKE pat
Section 14.8.2, “Regular Expressions”

expr REGEXP pat
Section 14.8.2, “Regular Expressions”

expr RLIKE pat
Section 14.8.2, “Regular Expressions”

expr1 SOUNDS LIKE expr2
Section 14.8, “String Functions and Operators”

I

[index top]

IN()
Section 10.8.2, “EXPLAIN Output Format”
Section 14.4.1, “Operator Precedence”
Section 10.3.11, “Optimizer Use of Generated Column Indexes”
Section 10.2.1.2, “Range Optimization”
Section 10.2.1.22, “Row Constructor Expression Optimization”
Section 13.5, “The JSON Data Type”
Section 14.3, “Type Conversion in Expression Evaluation”

5955

IS
Section 14.4.1, “Operator Precedence”

IS boolean_value
Section 14.4.2, “Comparison Functions and Operators”

IS NOT boolean_value
Section 14.4.2, “Comparison Functions and Operators”

IS NOT NULL
Section 14.4.2, “Comparison Functions and Operators”
Section B.3.4.3, “Problems with NULL Values”
Section 10.2.1.2, “Range Optimization”
Section 5.3.4.6, “Working with NULL Values”

IS NULL
Section 14.4.2, “Comparison Functions and Operators”
Section 10.8.2, “EXPLAIN Output Format”
Section 10.2.1.15, “IS NULL Optimization”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section B.3.4.3, “Problems with NULL Values”
Section 10.2.1.2, “Range Optimization”
Section 7.1.8, “Server System Variables”
Section 5.3.4.6, “Working with NULL Values”

L

[index top]

LIKE
Section 8.2.7, “Access Control, Stage 2: Request Verification”
Section 14.10, “Cast Functions and Operators”
Section 12.2, “Character Sets and Collations in MySQL”
Section 10.3.9, “Comparison of B-Tree and Hash Indexes”
Section 10.8.2, “EXPLAIN Output Format”
Section 28.8, “Extensions to SHOW Statements”
Section 14.17.3, “Functions That Search JSON Values”
Section 15.8.3, “HELP Statement”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 6.5.1.4, “mysql Client Server-Side Help”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 14.4.1, “Operator Precedence”
Section 5.3.4.7, “Pattern Matching”
Section 29.4.4, “Pre-Filtering by Instrument”
Section 25.6.19, “Quick Reference: NDB Cluster SQL Statements”
Section 10.2.1.2, “Range Optimization”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.5.4, “Replication Channel Based Filters”
Section 7.1.11, “Server SQL Modes”
Section 15.7.7.3, “SHOW CHARACTER SET Statement”
Section 15.7.7.4, “SHOW COLLATION Statement”
Section 15.7.7.5, “SHOW COLUMNS Statement”
Section 15.7.7.14, “SHOW DATABASES Statement”
Section 15.7.7.18, “SHOW EVENTS Statement”
Section 15.7.7.24, “SHOW OPEN TABLES Statement”

5956

Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”
Section 15.7.7.37, “SHOW STATUS Statement”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 15.7.7.39, “SHOW TABLES Statement”
Section 15.7.7.40, “SHOW TRIGGERS Statement”
Section 15.7.7.41, “SHOW VARIABLES Statement”
Section 8.2.4, “Specifying Account Names”
Section 14.8.1, “String Comparison Functions and Operators”
Section 11.1.1, “String Literals”
Section 7.1.9.5, “Structured System Variables”
Section 12.8.5, “The binary Collation Compared to _bin Collations”
Section 30.4.4.5, “The ps_setup_disable_consumer() Procedure”
Section 30.4.4.6, “The ps_setup_disable_instrument() Procedure”
Section 30.4.4.9, “The ps_setup_enable_consumer() Procedure”
Section 30.4.4.10, “The ps_setup_enable_instrument() Procedure”
Section 13.3.6, “The SET Type”
Section 7.1.9, “Using System Variables”

LIKE '_A%'
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”

LIKE 'pattern'
Section 10.2.1.2, “Range Optimization”
Section 15.7.7, “SHOW Statements”

LIKE ... ESCAPE
Section B.3.7, “Known Issues in MySQL”

M

[index top]

MEMBER OF()
Section 15.1.15, “CREATE INDEX Statement”
Section 14.17.3, “Functions That Search JSON Values”
Section 1.3, “What Is New in MySQL 8.0”

N

[index top]

N % M
Section 14.6.1, “Arithmetic Operators”
Section 14.6.2, “Mathematical Functions”

N MOD M
Section 14.6.1, “Arithmetic Operators”
Section 14.6.2, “Mathematical Functions”

NOT
Section 14.4.3, “Logical Operators”
Section 7.1.11, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 8.0”

NOT EXISTS()
Section 14.4.2, “Comparison Functions and Operators”

5957

NOT IN()
Section 10.2.1.2, “Range Optimization”

NOT LIKE
Section 5.3.4.7, “Pattern Matching”
Section 14.8.1, “String Comparison Functions and Operators”

NOT REGEXP
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.8.1, “String Comparison Functions and Operators”

NOT RLIKE
Section 14.8.1, “String Comparison Functions and Operators”

O

[index top]

OR
Section 11.5, “Expressions”
Section 15.7.1.6, “GRANT Statement”
Section 10.2.1.3, “Index Merge Optimization”
Section 14.4.3, “Logical Operators”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.4.1, “Operator Precedence”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 10.2.1.2, “Range Optimization”
Section 10.2.1.22, “Row Constructor Expression Optimization”
Section 5.6.7, “Searching on Two Keys”
Section 22.3.4.2, “Select Tables”
Section 22.4.4.2, “Select Tables”
Section 5.3.4.2, “Selecting Particular Rows”
Section 7.1.11, “Server SQL Modes”
Section 14.8.1, “String Comparison Functions and Operators”
Section 1.3, “What Is New in MySQL 8.0”

R

[index top]

REGEXP
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 14.4.1, “Operator Precedence”
Section 5.3.4.7, “Pattern Matching”
Section 14.8.2, “Regular Expressions”
Section 12.11, “Restrictions on Character Sets”
Section 1.3, “What Is New in MySQL 8.0”

RLIKE
Section 5.3.4.7, “Pattern Matching”
Section 14.8.2, “Regular Expressions”
Section 12.11, “Restrictions on Character Sets”
Section 1.3, “What Is New in MySQL 8.0”

V

[index top]

5958

value MEMBER OF()
Section 14.17.3, “Functions That Search JSON Values”

X

[index top]

XOR
Section 14.19.1, “Aggregate Function Descriptions”
Section 14.4.3, “Logical Operators”

Option Index
Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Symbols

[index top]

--
Section 1.6.2.4, “'--' as the Start of a Comment”

-#
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 7.1.7, “Server Command Options”
Section 7.9.4, “The DBUG Package”

-1
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

1231
Section 6.8.2, “perror — Display MySQL Error Message Information”

-?
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 6.6.4.1, “myisamchk General Options”

5959

Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.12, “ndb_error_reporter — NDB Error-Reporting Utility”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 6.8.2, “perror — Display MySQL Error Message Information”
Section 7.1.7, “Server Command Options”
Section 1.2.2, “The Main Features of MySQL”
Section 6.2.2.1, “Using Options on the Command Line”

?
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”

A

[index top]

-A
Section 6.5.1.1, “mysql Client Options”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”

5960

Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 6.6.4.4, “Other myisamchk Options”

-a
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 9.6.4, “MyISAM Table Optimization”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 6.6.4.4, “Other myisamchk Options”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--abort-on-error
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”

--abort-slave-event-count
Section 19.1.6.3, “Replica Server Options and Variables”
Section 1.3, “What Is New in MySQL 8.0”

--add-drop-database
Section 9.4.1, “Dumping Data in SQL Format with mysqldump”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--add-drop-table
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--add-drop-trigger
Section 6.5.4, “mysqldump — A Database Backup Program”

--add-drop-user
Section 6.5.6, “mysqlpump — A Database Backup Program”

--add-locks
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--add-missing
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--admin-ssl
Section 7.1.12.2, “Administrative Connection Management”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.7, “Server Command Options”

--ai-increment
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

5961

--ai-offset
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--ai-prefetch-sz
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--all
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”

--all-databases
Creating a Data Snapshot Using mysqldump
Section 16.7, “Data Dictionary Usage Differences”
Section 9.4.1, “Dumping Data in SQL Format with mysqldump”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 3.14, “Rebuilding or Repairing Tables or Indexes”
Section 9.4.2, “Reloading SQL-Format Backups”
Section 7.1.8, “Server System Variables”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

--all-in-1
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

--all-tablespaces
Section 6.5.4, “mysqldump — A Database Backup Program”

--allow-keywords
Section 6.5.4, “mysqldump — A Database Backup Program”

--allow-mismatches
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”

--allow-pk-changes
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--allow-suspicious-udfs
Section 7.1.7, “Server Command Options”

--analyze
Section 9.6.4, “MyISAM Table Optimization”
Section 6.6.4.1, “myisamchk General Options”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.6.4.4, “Other myisamchk Options”
Section 7.1.8, “Server System Variables”

--ansi
Section 1.6, “MySQL Standards Compliance”
Section 7.1.7, “Server Command Options”

antonio
Section 8.4.1.5, “PAM Pluggable Authentication”

5962

--append
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--apply-replica-statements
Section 6.5.4, “mysqldump — A Database Backup Program”

--apply-slave-statements
Section 6.5.4, “mysqldump — A Database Backup Program”

--audit-log
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”

--auto-generate-sql
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-add-autoincrement
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-execute-number
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-guid-primary
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-load-type
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-secondary-indexes
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-unique-query-number
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-unique-write-number
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--auto-generate-sql-write-number
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--auto-inc
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--auto-rehash
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”

auto-rehash
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”

--auto-repair
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

5963

--auto-vertical-output
Section 6.5.1.1, “mysql Client Options”

--autocommit
Section 7.1.8, “Server System Variables”

B

[index top]

-B
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

-b
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 6.6.4.4, “Other myisamchk Options”
Section 7.1.7, “Server Command Options”

--back_log
Section 2.7, “Installing MySQL on Solaris”

--backup
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

--backup-key
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

--backup-key-from-stdin
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

--backup-password
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--backup-password-from-stdin
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--backup-path
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Restoring a parallel backup in parallel
Restoring a parallel backup serially

5964

Restoring to Fewer Nodes Than the Original

backup-path
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

backup-to-image
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

--backupid
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Restoring to Fewer Nodes Than the Original
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--base64-output
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 6.6.9.2, “mysqlbinlog Row Event Display”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”

--basedir
Section 2.9.1, “Initializing the Data Directory”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 25.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.1.7, “Server Command Options”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”

basedir
Section 2.3.4.2, “Creating an Option File”
Section 6.3.3, “mysql.server — MySQL Server Startup Script”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”

--batch
Section 6.5.1.3, “mysql Client Logging”
Section 6.5.1.1, “mysql Client Options”

--binary-as-hex
Section 14.19.1, “Aggregate Function Descriptions”
Section 8.4.5.11, “Audit Log Reference”
Section 14.12, “Bit Functions and Operators”
Section 14.10, “Cast Functions and Operators”
Section 14.13, “Encryption and Compression Functions”
Section 14.23, “Miscellaneous Functions”
Section 6.5.1.1, “mysql Client Options”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.4.5.6, “Reading Audit Log Files”
Section 14.8.1, “String Comparison Functions and Operators”
Section 14.8, “String Functions and Operators”
Section 11.1.1, “String Literals”
Section 13.3.3, “The BINARY and VARBINARY Types”
Section 12.10.8, “The Binary Character Set”
Section 13.3.4, “The BLOB and TEXT Types”

--binary-mode
Section 11.7, “Comments”

5965

Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 9.5.1, “Point-in-Time Recovery Using Binary Log”

--bind-address
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--binlog-checksum
Section 19.1.6.4, “Binary Logging Options and Variables”

--binlog-do-db
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.4.4, “The Binary Log”

--binlog-format
Section 7.4.4.1, “Binary Logging Formats”
Section 25.7.2, “General Requirements for NDB Cluster Replication”
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”
Section 7.4.4.2, “Setting The Binary Log Format”
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 25.2.7.6, “Unsupported or Missing Features in NDB Cluster”

--binlog-ignore-db
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.4.4, “The Binary Log”

--binlog-row-event-max-size
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.4.4.2, “Setting The Binary Log Format”

--binlog-transaction-compression
Section 7.4.4.5, “Binary Log Transaction Compression”

5966

Section 19.1.6.4, “Binary Logging Options and Variables”
NDB Cluster System Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--binlog-transaction-dependency-tracking
Section 1.3, “What Is New in MySQL 8.0”

--blob-info
Section 25.5.9, “ndb_desc — Describe NDB Tables”

--block-search
Section 6.6.4.4, “Other myisamchk Options”

--bootstrap
Section 7.1.7, “Server Command Options”
Section 1.3, “What Is New in MySQL 8.0”

C

[index top]

-C
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.6.4.2, “myisamchk Check Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

-c
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”

5967

Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Restoring to Fewer Nodes Than the Original
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

--cflags
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”

--character-set-client-handshake
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 7.1.7, “Server Command Options”
Section 12.10.7.1, “The cp932 Character Set”
Section 1.3, “What Is New in MySQL 8.0”

--character-set-server
Section 3.5, “Changes in MySQL 8.0”
Section 12.15, “Character Set Configuration”
Section 12.5, “Configuring Application Character Set and Collation”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 12.3.2, “Server Character Set and Collation”
Section 1.3, “What Is New in MySQL 8.0”

--character-sets-dir
Section B.3.2.15, “Can't initialize character set”
Section 12.15, “Character Set Configuration”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

5968

Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--charset
Section 6.4.1, “comp_err — Compile MySQL Error Message File”

--check
Section 6.6.4.2, “myisamchk Check Options”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

--check-missing
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--check-only-changed
Section 6.6.4.2, “myisamchk Check Options”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

--check-orphans
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

--check-table-functions
Section 7.1.7, “Server Command Options”

--check-upgrade
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

--chroot
Section 7.1.7, “Server Command Options”

--clone
Section 7.6.7.1, “Installing the Clone Plugin”

--cluster-config-suffix
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

cluster-config-suffix
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

5969

Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

CMAKE_BUILD_TYPE
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS
Section 7.9.1.1, “Compiling MySQL for Debugging”
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS_build_type
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_C_FLAGS_RELWITHDEBINFO
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS
Section 7.9.1.1, “Compiling MySQL for Debugging”
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_build_type
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_CXX_FLAGS_RELWITHDEBINFO
Section 2.8.7, “MySQL Source-Configuration Options”

CMAKE_INSTALL_PREFIX
Section 2.8.5, “Installing MySQL Using a Development Source Tree”
Section 8.4.4.19, “Keyring System Variables”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.8.3, “Running Multiple MySQL Instances on Unix”
Section 7.1.8, “Server System Variables”

CMAKE_PREFIX_PATH
Section 2.8.7, “MySQL Source-Configuration Options”

--collation-server
Section 12.14, “Adding a Collation to a Character Set”
Section 14.9.7, “Adding a User-Defined Collation for Full-Text Indexing”
Section 3.5, “Changes in MySQL 8.0”
Section 12.15, “Character Set Configuration”
Section 12.5, “Configuring Application Character Set and Collation”
Section 12.3.2, “Server Character Set and Collation”
Section 1.3, “What Is New in MySQL 8.0”

--collation_server
Section 2.8.7, “MySQL Source-Configuration Options”

--color
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--column-names
Section 6.5.1.1, “mysql Client Options”

5970

Section 6.2.2.4, “Program Option Modifiers”

--column-statistics
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--column-type-info
Section 10.2.1.19, “LIMIT Query Optimization”
Section 6.5.1.1, “mysql Client Options”

--columns
Section 6.5.5, “mysqlimport — A Data Import Program”

--commands
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”
Section 1.3, “What Is New in MySQL 8.0”

--comments
Section 6.5.1.1, “mysql Client Options”
Section 6.5.4, “mysqldump — A Database Backup Program”

--commit
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--compact
Section 6.5.4, “mysqldump — A Database Backup Program”

--compatible
Section 3.5, “Changes in MySQL 8.0”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 1.3, “What Is New in MySQL 8.0”

COMPILATION_COMMENT
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.1.8, “Server System Variables”

COMPILATION_COMMENT_SERVER
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.1.8, “Server System Variables”

--complete-insert
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--component-dir
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”

--compress
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.8, “Connection Compression Control”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”

5971

Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 1.3, “What Is New in MySQL 8.0”

--compress-output
Section 6.5.6, “mysqlpump — A Database Backup Program”

--compression-algorithms
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.8, “Connection Compression Control”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--concurrency
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--config-binary-file
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--config-cache
Section 25.4.3, “NDB Cluster Configuration Files”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--config-dir
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--config-file
Section 25.3.4, “Initial Startup of NDB Cluster”
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 25.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--config-from-node
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

5972

--config_from_node
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--configdir
Section 25.4.3, “NDB Cluster Configuration Files”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--configinfo
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

configure
Section 2.3.3.5, “MySQL Installer Console Reference”

--connect
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--connect-delay
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--connect-expired-password
Section 6.5.1.1, “mysql Client Options”
Section 8.2.16, “Server Handling of Expired Passwords”

--connect-retries
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--connect-retry-delay
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”

5973

Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--connect-string
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--connect-timeout
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

--connection-control
Section 8.4.2.1, “Connection Control Plugin Installation”

--connection-control-failed-login-attempts
Section 8.4.2.1, “Connection Control Plugin Installation”

--connection-server-id
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.6.9.4, “Specifying the mysqlbinlog Server ID”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

--connection-timeout
Section 25.5.12, “ndb_error_reporter — NDB Error-Reporting Utility”

--connections
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--console
Section 7.4.2.2, “Default Error Log Destination Configuration”
Section 17.17.2, “Enabling InnoDB Monitors”
Section 7.4.2.1, “Error Log Configuration”
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”

5974

Section 2.9.1, “Initializing the Data Directory”
Section 17.21, “InnoDB Troubleshooting”
Resetting the Root Password: Windows Systems
Section 7.1.7, “Server Command Options”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 2.3.4.5, “Starting the Server for the First Time”

--context
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--continue
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--control-directory-number
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

copy-back-and-apply-log
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

--core-file
Section 7.9.1.4, “Debugging mysqld under gdb”
Section 17.8.3.7, “Excluding Buffer Pool Pages from Core Files”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

core-file
Section 7.9.1.3, “Using WER with PDB to create a Windows crashdump”

--core-file-size
Section 2.5.9, “Managing MySQL Server with systemd”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 7.1.7, “Server Command Options”

--correct-checksum
Section 6.6.4.3, “myisamchk Repair Options”

5975

--count
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”

--create
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--create-options
Section 6.5.4, “mysqldump — A Database Backup Program”

--create-schema
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--csv
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--csvopt
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--cxxflags
Section 2.8.8, “Dealing with Problems Compiling MySQL”
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”

D

[index top]

-D
Section 12.13, “Adding a Character Set”
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”
Section B.3.2.15, “Can't initialize character set”
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 25.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 7.9.1.1, “Compiling MySQL for Debugging”
Section 2.8.6, “Configuring SSL Library Support”
Section 7.9.2, “Debugging a MySQL Client”
Section 22.5.2, “Disabling X Plugin”
Section 25.1, “General Information”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 2.8.4, “Installing MySQL Using a Standard Source Distribution”
Section 6.8.1, “lz4_decompress — Decompress mysqlpump LZ4-Compressed Output”
Section 2.5.9, “Managing MySQL Server with systemd”
Section 6.6.4.3, “myisamchk Repair Options”
Section A.2, “MySQL 8.0 FAQ: Storage Engines”
Section 6.5.1.1, “mysql Client Options”
Section 25.6.10, “MySQL Server Usage for NDB Cluster”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

5976

Section 17.20.3, “Setting Up the InnoDB memcached Plugin”
Section 18.5, “The ARCHIVE Storage Engine”
Section 18.6, “The BLACKHOLE Storage Engine”
Section 18.9, “The EXAMPLE Storage Engine”
Section 18.8, “The FEDERATED Storage Engine”
Section 7.9.3, “The LOCK_ORDER Tool”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”
Section 2.1.2, “Which MySQL Version and Distribution to Install”
Section 6.8.3, “zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output”

-d
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 6.6.4.4, “Other myisamchk Options”
Section 7.1.8, “Server System Variables”
Section 8.4.4.8, “Using the keyring_okv KMIP Plugin”

--daemon
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--daemonize
Section 7.1.7, “Server Command Options”

--data-file-length
Section 6.6.4.3, “myisamchk Repair Options”

--database
Section 6.5.1.1, “mysql Client Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”

5977

Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--databases
Section 9.4.5.2, “Copy a Database from one Server to Another”
Creating a Data Snapshot Using mysqldump
Section 9.4.1, “Dumping Data in SQL Format with mysqldump”
Section 9.4.5.1, “Making a Copy of a Database”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 3.14, “Rebuilding or Repairing Tables or Indexes”
Section 9.4.2, “Reloading SQL-Format Backups”

--datadir
Section 2.3.4.2, “Creating an Option File”
Section 2.9.1, “Initializing the Data Directory”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 25.6.20.3, “NDB Cluster and MySQL Security Procedures”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.8.3, “Running Multiple MySQL Instances on Unix”
Section 7.1.7, “Server Command Options”
Section 7.8.1, “Setting Up Multiple Data Directories”
Section 7.2, “The MySQL Data Directory”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 6.2.2.2, “Using Option Files”

datadir
Section 2.3.4.2, “Creating an Option File”
Section 2.4.1, “General Notes on Installing MySQL on macOS”
Section 6.3.3, “mysql.server — MySQL Server Startup Script”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 2.3.7, “Windows Platform Restrictions”

--db-workers
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--ddl-rewriter
Section 7.6.5.2, “ddl_rewriter Plugin Options”
Section 7.6.5.1, “Installing or Uninstalling ddl_rewriter”

--debug
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 7.9.1.1, “Compiling MySQL for Debugging”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.4.1, “myisamchk General Options”

5978

Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 7.9.4, “The DBUG Package”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”

debug
Section 16.1, “Data Dictionary Schema”

--debug-check
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--debug-info
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--debug-sync-timeout
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

--decrypt
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”

5979

Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--decrypt-key
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--decrypt-key-from-stdin
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--decrypt-password
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--decrypt-password-from-stdin
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--default-auth
Section 3.5, “Changes in MySQL 8.0”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 8.4.1.1, “Native Pluggable Authentication”
Section 8.2.17, “Pluggable Authentication”

--default-authentication-plugin
Section 3.5, “Changes in MySQL 8.0”

--default-character-set
Section 8.2.1, “Account User Names and Passwords”
Section 12.15, “Character Set Configuration”
Section 12.5, “Configuring Application Character Set and Collation”
Section 12.4, “Connection Character Sets and Collations”
Section 6.5.1.5, “Executing SQL Statements from a Text File”
Section 15.2.9, “LOAD DATA Statement”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”

5980

Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 7.1.8, “Server System Variables”

--default-parallelism
Section 6.5.6, “mysqlpump — A Database Backup Program”

--default-storage-engine
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.7, “Server Command Options”

--default-time-zone
Section 7.1.15, “MySQL Server Time Zone Support”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

--default-tmp-storage-engine
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.7, “Server Command Options”

--default.key_buffer_size
Section 7.1.9.5, “Structured System Variables”

DEFAULT_CHARSET
Section 12.5, “Configuring Application Character Set and Collation”
Section 12.3.2, “Server Character Set and Collation”

DEFAULT_COLLATION
Section 12.5, “Configuring Application Character Set and Collation”
Section 12.3.2, “Server Character Set and Collation”

--defaults-extra-file
Section 6.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 2.9.1, “Initializing the Data Directory”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.4.1, “myisamchk General Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”

5981

Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 29.12.14.2, “Performance Schema variables_info Table”
Section 7.1.7, “Server Command Options”
Section 6.2.2.2, “Using Option Files”

--defaults-file
Section 3.5, “Changes in MySQL 8.0”
Section 6.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 8.1.2.1, “End-User Guidelines for Password Security”
Section 2.9.1, “Initializing the Data Directory”
Section 17.8.1, “InnoDB Startup Configuration”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.4.1, “myisamchk General Options”
Section 6.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”

5982

Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 29.12.14.2, “Performance Schema variables_info Table”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.8.3, “Running Multiple MySQL Instances on Unix”
Section 7.1.7, “Server Command Options”
Section 7.1.3, “Server Configuration Validation”
Section 7.8.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 7.8.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

--defaults-group-suffix
Section 6.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 6.9, “Environment Variables”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.4.1, “myisamchk General Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”

5983

Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 7.1.7, “Server Command Options”

--defer-table-indexes
Section 6.5.6, “mysqlpump — A Database Backup Program”

--delay
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--delay-key-write
Section 10.11.5, “External Locking”

delay_key_write
Section 18.2.1, “MyISAM Startup Options”

--delete
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--delete-master-logs
Section 6.5.4, “mysqldump — A Database Backup Program”

--delete-orphans
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

--delete-source-logs
Section 6.5.4, “mysqldump — A Database Backup Program”

--delimiter
Section 6.5.1.1, “mysql Client Options”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--des-key-file
Section 1.3, “What Is New in MySQL 8.0”

--descending
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--description
Section 6.6.4.4, “Other myisamchk Options”

--destination-keyring
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”

--destination-keyring-configuration-dir
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”

5984

--detach
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--detailed-info
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--diff-default
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--disable
Section 6.2.2.4, “Program Option Modifiers”

--disable-admin-ssl
Section 7.1.7, “Server Command Options”

--disable-auto-rehash
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 6.5.1.1, “mysql Client Options”

--disable-indexes
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Restoring to More Nodes Than the Original
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--disable-keys
Section 6.5.4, “mysqldump — A Database Backup Program”

--disable-log-bin
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 3.5, “Changes in MySQL 8.0”
Section 19.1.3.1, “GTID Format and Storage”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 7.4.4.2, “Setting The Binary Log Format”
Section 27.7, “Stored Program Binary Logging”
Section 7.4.4, “The Binary Log”

--disable-named-commands
Section 6.5.1.1, “mysql Client Options”

--disable-plugin_name
Section 7.6.1, “Installing and Uninstalling Plugins”

--disable-ssl
Section 7.1.7, “Server Command Options”
Section 1.3, “What Is New in MySQL 8.0”

DISABLE_PSI_THREAD
Section 29.12.21.7, “The processlist Table”

DISABLE_SHARED
Section 1.3, “What Is New in MySQL 8.0”

5985

--disconnect-slave-event-count
Section 19.1.6.3, “Replica Server Options and Variables”
Section 1.3, “What Is New in MySQL 8.0”

--disk
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--diskscan
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”

--dns-srv-name
Section 6.2.6, “Connecting to the Server Using DNS SRV Records”
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”

do-*
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”

--dont-ignore-systab-0
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--drop-source
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”

--dry-scp
Section 25.5.12, “ndb_error_reporter — NDB Error-Reporting Utility”

--dump
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--dump-date
Section 6.5.4, “mysqldump — A Database Backup Program”

--dump-file
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”

--dump-replica
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”

--dump-slave
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”

E

[index top]

-E
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

5986

Section 6.5.4, “mysqldump — A Database Backup Program”

-e
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 9.6.2, “How to Check MyISAM Tables for Errors”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 15.2.10, “LOAD XML Statement”
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.4.3, “myisamchk Repair Options”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 6.6.4.5, “Obtaining Table Information with myisamchk”
Section 25.3.6, “Safe Shutdown and Restart of NDB Cluster”
Section 6.2.2.1, “Using Options on the Command Line”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”

--early-plugin-load
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 2.4.3, “Installing and Using the MySQL Launch Daemon”
Section 8.4.4.2, “Keyring Component Installation”
Section 8.4.4.1, “Keyring Components Versus Keyring Plugins”
Section 8.4.4.3, “Keyring Plugin Installation”
Section 7.1.7, “Server Command Options”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”
Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”
Section 8.4.4.7, “Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin”
Section 8.4.4.6, “Using the keyring_file File-Based Keyring Plugin”
Section 8.4.4.8, “Using the keyring_okv KMIP Plugin”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

--embedded
Section 1.3, “What Is New in MySQL 8.0”

--embedded-libs
Section 1.3, “What Is New in MySQL 8.0”

--embedded-server
Section 1.3, “What Is New in MySQL 8.0”

--enable-cleartext-plugin
Section 8.4.1.4, “Client-Side Cleartext Pluggable Authentication”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”

5987

Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 8.4.1.5, “PAM Pluggable Authentication”

--enable-plugin_name
Section 7.6.1, “Installing and Uninstalling Plugins”

--enable-ssl
Section 1.3, “What Is New in MySQL 8.0”

ENABLE_DOWNLOADS
Section 2.8.7, “MySQL Source-Configuration Options”

enabled
Section 2.5.1, “Installing MySQL on Linux Using the MySQL Yum Repository”

ENABLED_LOCAL_INFILE
Section 2.8.7, “MySQL Source-Configuration Options”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”

--encrypt-backup
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--encrypt-block-size
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--encrypt-cipher
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--encrypt-kdf-iter-count
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--encrypt-key
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--encrypt-key-from-stdin
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--encrypt-password
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--encrypt-password-from-stdin
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

5988

--end-page
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”

--enforce-gtid-consistency
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”

--engine
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--env
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

--errins-delay
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--errins-type
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--errmsg-file
Section 6.4.1, “comp_err — Compile MySQL Error Message File”

--error-insert
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”

--event-scheduler
Section 27.4.2, “Event Scheduler Configuration”

event-scheduler
Section 27.4.2, “Event Scheduler Configuration”

--events
Section 16.7, “Data Dictionary Usage Differences”
Section 9.4.5.3, “Dumping Stored Programs”
Section 9.4.5.4, “Dumping Table Definitions and Content Separately”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

--example
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--exclude-*
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-databases
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-events
Section 6.5.6, “mysqlpump — A Database Backup Program”

--exclude-gtids
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

5989

--exclude-intermediate-sql-tables
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-missing-columns
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-missing-tables
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-routines
Section 6.5.6, “mysqlpump — A Database Backup Program”

--exclude-tables
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--exclude-triggers
Section 6.5.6, “mysqlpump — A Database Backup Program”

--exclude-users
Section 6.5.6, “mysqlpump — A Database Backup Program”

--excludedbs
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--excludetables
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--execute
Section 6.5.1.3, “mysql Client Logging”
Section 6.5.1.1, “mysql Client Options”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 6.2.2.1, “Using Options on the Command Line”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--exit-info
Section 7.1.7, “Server Command Options”

expire_logs_days
Section 3.5, “Changes in MySQL 8.0”

--extend-check
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.4.3, “myisamchk Repair Options”

--extended
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

--extended-insert
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

5990

--external-locking
Section 10.11.5, “External Locking”
Section 18.2.1, “MyISAM Startup Options”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

--extra-file
Section 6.7.2, “my_print_defaults — Display Options from Option Files”

--extra-node-info
Section 25.5.9, “ndb_desc — Describe NDB Tables”

--extra-partition-info
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.6.16.7, “The ndbinfo cluster_operations Table”
Section 25.6.16.54, “The ndbinfo server_operations Table”

F

[index top]

-F
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.5.1.2, “mysql Client Commands”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

-f
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 25.3.4, “Initial Startup of NDB Cluster”
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 7.9.1.5, “Using a Stack Trace”

--fast
Section 6.6.4.2, “myisamchk Check Options”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

5991

--federated
Section 18.8, “The FEDERATED Storage Engine”

--fido-register-factor
Section 15.7.1.1, “ALTER USER Statement”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 6.5.1.1, “mysql Client Options”

--fields
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--fields-enclosed-by
Section 9.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--fields-escaped-by
Section 9.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--fields-optionally-enclosed-by
Section 9.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--fields-terminated-by
Section 9.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--fields-xxx
Section 6.5.4, “mysqldump — A Database Backup Program”

--file-key
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

--file-key-from-stdin
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”

--filesystem-password
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.6.14.1, “NDB File System Encryption Setup and Usage”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

5992

--filesystem-password-from-stdin
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.6.14.1, “NDB File System Encryption Setup and Usage”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--fix-db-names
Section 1.3, “What Is New in MySQL 8.0”

--fix-table-names
Section 1.3, “What Is New in MySQL 8.0”

--flush
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

--flush-logs
Section 9.3.1, “Establishing a Backup Policy”
Section 7.4, “MySQL Server Logs”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”

--flush-privileges
Section 6.5.4, “mysqldump — A Database Backup Program”

--force
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 5.5, “Using mysql in Batch Mode”
Section 3.4, “What the MySQL Upgrade Process Upgrades”

--force-if-open
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--force-read
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--foreground
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--format
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

FPROFILE_GENERATE
Section 2.8.7, “MySQL Source-Configuration Options”

5993

FPROFILE_USE
Section 2.8.7, “MySQL Source-Configuration Options”

--fragment-id
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

--fs
Section 25.5.12, “ndb_error_reporter — NDB Error-Reporting Utility”

G

[index top]

-G
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”

-g
Section 7.9.1.1, “Compiling MySQL for Debugging”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--gci
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--gci64
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--gdb
Section 7.9.1.4, “Debugging mysqld under gdb”
Section 15.7.8.8, “RESTART Statement”
Section 7.1.7, “Server Command Options”
Section 6.10, “Unix Signal Handling in MySQL”

--general-log
Section 6.2.2.1, “Using Options on the Command Line”
Section 7.1.9, “Using System Variables”

--general_log
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.4.3, “The General Query Log”
Section 6.2.2.1, “Using Options on the Command Line”
Section 7.1.9, “Using System Variables”

--general_log_file
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.1.8, “Server System Variables”
Section 7.4.3, “The General Query Log”

--get-server-public-key
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.5.1.1, “mysql Client Options”

5994

Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--graph
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

H

[index top]

-H
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.6.4.1, “myisamchk General Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

-h
Section 1.1, “About This Manual”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.2.1, “Invoking MySQL Programs”
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 7.1.7, “Server Command Options”
Section 6.2.2.1, “Using Options on the Command Line”

HAVE_CRYPT
Section 1.3, “What Is New in MySQL 8.0”

--header
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

5995

--header-file
Section 6.4.1, “comp_err — Compile MySQL Error Message File”

--HELP
Section 6.6.4.1, “myisamchk General Options”

--help
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.12, “ndb_error_reporter — NDB Error-Reporting Utility”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

5996

Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 6.1, “Overview of MySQL Programs”
Section 6.8.2, “perror — Display MySQL Error Message Information”
Section 7.1.7, “Server Command Options”
Section 2.9.3, “Testing the Server”
Section 1.2.2, “The Main Features of MySQL”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Chapter 5, Tutorial
Section 6.2.2.2, “Using Option Files”
Section 6.2.2.1, “Using Options on the Command Line”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

help
Section 2.3.3.5, “MySQL Installer Console Reference”

--hex
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--hex-blob
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--hexdump
Section 6.6.9.1, “mysqlbinlog Hex Dump Format”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--histignore
Section 6.5.1.3, “mysql Client Logging”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”

--host
Section 1.1, “About This Manual”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 2.9.1, “Initializing the Data Directory”
Section 6.2.1, “Invoking MySQL Programs”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 6.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”

5997

Section 7.1.8, “Server System Variables”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 7.8.4, “Using Client Programs in a Multiple-Server Environment”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 6.2.2.2, “Using Option Files”
Section 6.2.2.1, “Using Options on the Command Line”
Section 22.5.6.2, “X Plugin Options and System Variables”

host
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.2.2.2, “Using Option Files”

--hostname
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--html
Section 6.5.1.1, “mysql Client Options”

I

[index top]

-I
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.8.2, “perror — Display MySQL Error Message Information”
Section 7.1.7, “Server Command Options”

-i
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 9.6.2, “How to Check MyISAM Tables for Errors”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--i-am-a-dummy
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”

--id
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”

--idempotent
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.1.8, “Server System Variables”

5998

--idlesleep
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--idlespin
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--ignore
Section 6.5.5, “mysqlimport — A Data Import Program”

ignore-*
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”

--ignore-db-dir
Section 3.6, “Preparing Your Installation for Upgrade”
Section 1.3, “What Is New in MySQL 8.0”

--ignore-error
Section 6.5.4, “mysqldump — A Database Backup Program”

--ignore-extended-pk-updates
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--ignore-lines
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--ignore-spaces
Section 6.5.1.1, “mysql Client Options”

--ignore-table
Creating a Data Snapshot Using mysqldump
Section 6.5.4, “mysqldump — A Database Backup Program”

--in-file
Section 6.4.1, “comp_err — Compile MySQL Error Message File”

--in-file-errlog
Section 6.4.1, “comp_err — Compile MySQL Error Message File”

--in-file-toclient
Section 6.4.1, “comp_err — Compile MySQL Error Message File”

--include
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”

--include-*
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--include-databases
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--include-events
Section 6.5.6, “mysqlpump — A Database Backup Program”

5999

--include-gtids
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--include-master-host-port
Section 6.5.4, “mysqldump — A Database Backup Program”

--include-routines
Section 6.5.6, “mysqlpump — A Database Backup Program”

--include-source-host-port
Section 6.5.4, “mysqldump — A Database Backup Program”

--include-stored-grants
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--include-tables
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--include-triggers
Section 6.5.6, “mysqlpump — A Database Backup Program”

--include-users
Section 6.5.6, “mysqlpump — A Database Backup Program”

--info
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 6.8.2, “perror — Display MySQL Error Message Information”

--information
Section 6.6.4.2, “myisamchk Check Options”

--init-command
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section 6.5.1.1, “mysql Client Options”

--init_connect
Section 12.5, “Configuring Application Character Set and Collation”

--initial
Section 25.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 25.4.3.5, “Defining an NDB Cluster Management Server”
Section 25.4.3.4, “Defining Computers in an NDB Cluster”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 25.4.3.8, “Defining the System”
Section 25.3.4, “Initial Startup of NDB Cluster”
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 25.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”

6000

Section 25.4.3, “NDB Cluster Configuration Files”
Section 25.6.11.2, “NDB Cluster Disk Data Storage Requirements”
Section 25.4.3.12, “NDB Cluster Shared-Memory Connections”
Section 25.4.3.10, “NDB Cluster TCP/IP Connections”
Section 25.6.14.1, “NDB File System Encryption Setup and Usage”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”
Section 25.4.2, “Overview of NDB Cluster Configuration Parameters, Options, and Variables”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 25.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Restoring to Fewer Nodes Than the Original
Section 25.6.4, “Summary of NDB Cluster Start Phases”
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--initial-start
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--initialize
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 3.5, “Changes in MySQL 8.0”
Section 2.3.4.2, “Creating an Option File”
Section 2.9.1, “Initializing the Data Directory”
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
MySQL Server Options for NDB Cluster
Chapter 30, MySQL sys Schema
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 7.4.4, “The Binary Log”
Section 17.6.3.1, “The System Tablespace”
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”
Section 1.3, “What Is New in MySQL 8.0”

--initialize-insecure
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 3.5, “Changes in MySQL 8.0”
Section 2.3.4.2, “Creating an Option File”
Section 2.9.1, “Initializing the Data Directory”
Section 25.3.1.1, “Installing an NDB Cluster Binary Release on Linux”
Chapter 30, MySQL sys Schema
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 7.4.4, “The Binary Log”
Section 17.6.3.1, “The System Tablespace”
Section 1.3, “What Is New in MySQL 8.0”

--innodb
Section 17.14, “InnoDB Startup Options and System Variables”

--innodb-adaptive-hash-index
Section 17.14, “InnoDB Startup Options and System Variables”

--innodb-dedicated-server
Section 3.5, “Changes in MySQL 8.0”

6001

Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.5, “Redo Log”
Section 1.3, “What Is New in MySQL 8.0”

--innodb-file-per-table
Section 7.1.7, “Server Command Options”

innodb-file-per-table
Section 7.1.7, “Server Command Options”

--innodb-rollback-on-timeout
Section 17.21.5, “InnoDB Error Handling”
Section 17.14, “InnoDB Startup Options and System Variables”

--innodb-status-file
Section 17.17.2, “Enabling InnoDB Monitors”
Section 17.14, “InnoDB Startup Options and System Variables”

--innodb-xxx
Section 7.1.7, “Server Command Options”

innodb_file_per_table
Creating a Data Snapshot Using Raw Data Files

--input-type
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--input-workers
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--insert-ignore
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--install
Section 6.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 7.1.7, “Server Command Options”
Section 7.8.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

install
Section 2.3.3.5, “MySQL Installer Console Reference”

--install-manual
Section 7.1.7, “Server Command Options”
Section 7.8.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

INSTALL_LAYOUT
Section 8.4.4.19, “Keyring System Variables”
Section 2.8.7, “MySQL Source-Configuration Options”

6002

Section 7.1.8, “Server System Variables”

INSTALL_LIBDIR
Section 2.8.7, “MySQL Source-Configuration Options”

INSTALL_MYSQLKEYRINGDIR
Section 8.4.4.19, “Keyring System Variables”

INSTALL_PRIV_LIBDIR
Section 2.8.7, “MySQL Source-Configuration Options”

INSTALL_SCRIPTDIR
Section 1.3, “What Is New in MySQL 8.0”

INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR
Section 1.3, “What Is New in MySQL 8.0”

INSTALL_SECURE_FILE_PRIVDIR
Section 7.1.8, “Server System Variables”

--interactive
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--iterations
Section 6.5.8, “mysqlslap — A Load Emulation Client”

J

[index top]

-j
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--join
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

K

[index top]

-K
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

-k
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”

6003

Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--keep-state
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--keep_files_on_create
Section 15.1.20, “CREATE TABLE Statement”

--keyring-migration-destination
Section 8.4.4.18, “Keyring Command Options”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”

--keyring-migration-host
Section 8.4.4.18, “Keyring Command Options”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”

--keyring-migration-password
Section 8.4.4.18, “Keyring Command Options”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”

--keyring-migration-port
Section 8.4.4.18, “Keyring Command Options”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”

--keyring-migration-socket
Section 8.4.4.18, “Keyring Command Options”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”

--keyring-migration-source
Section 8.4.4.18, “Keyring Command Options”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”

--keyring-migration-to-component
Section 8.4.4.18, “Keyring Command Options”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”

--keyring-migration-user
Section 8.4.4.18, “Keyring Command Options”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”

--keys
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”

--keys-used
Section 6.6.4.3, “myisamchk Repair Options”

L

[index top]

-L
Section 6.5.1.1, “mysql Client Options”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

6004

Section 2.10.3, “Problems Using the Perl DBI/DBD Interface”

-l
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--language
Section 7.1.7, “Server Command Options”

--large-pages
Section 10.12.3.3, “Enabling Large Page Support”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

--lc-messages
Section 7.1.7, “Server Command Options”

--lc-messages-dir
Section 7.1.7, “Server Command Options”

--ledir
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

--length
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”

--libmysqld-libs
Section 1.3, “What Is New in MySQL 8.0”

--libs
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”

--libs_r
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”

--line-numbers
Section 6.5.1.1, “mysql Client Options”

--lines-terminated-by
Section 9.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

6005

LINK_RANDOMIZE
Section 2.8.7, “MySQL Source-Configuration Options”

list
Section 2.3.3.5, “MySQL Installer Console Reference”

--load-data-local-dir
Section 6.5.1.1, “mysql Client Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”

--loadqueries
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--local
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”

--local-infile
Section 15.2.10, “LOAD XML Statement”
Section 6.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”

--local-load
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”

--local-service
Section 7.1.7, “Server Command Options”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

--lock
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”

--lock-all-tables
Section 6.5.4, “mysqldump — A Database Backup Program”

--lock-order
Section 7.9.3, “The LOCK_ORDER Tool”

--lock-tables
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”

--log
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--log-bin
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 9.3.1, “Establishing a Backup Policy”
Section B.3.7, “Known Issues in MySQL”

6006

Section 17.6.3.6, “Moving Tablespace Files While the Server is Offline”
Section 25.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 9.5.1, “Point-in-Time Recovery Using Binary Log”
Section 15.4.1.1, “PURGE BINARY LOGS Statement”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 19.1.2.1, “Setting the Replication Source Configuration”
Section 19.4.8, “Switching Sources During Failover”
Section 7.4.4, “The Binary Log”
Section 9.3.2, “Using Backups for Recovery”
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”
Section 6.2.2.1, “Using Options on the Command Line”

--log-bin-index
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 25.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.4.4, “The Binary Log”

--log-error
Section 7.4.2.2, “Default Error Log Destination Configuration”
Section 7.4.2.1, “Error Log Configuration”
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.1.7, “Server Command Options”
Section 7.4.6, “Server Log Maintenance”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 2.3.4.5, “Starting the Server for the First Time”

--log-error-file
Section 6.5.6, “mysqlpump — A Database Backup Program”

--log-error-verbosity
Section 7.1.7, “Server Command Options”

--log-isam
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 7.1.7, “Server Command Options”

--log-level
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--log-name
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--log-raw
Section 8.1.2.3, “Passwords and Logging”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 7.4.3, “The General Query Log”

--log-replica-updates
Section 19.1.6.4, “Binary Logging Options and Variables”

6007

Section 19.1.2.2, “Setting the Replica Configuration”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”

--log-short-format
Section 7.1.7, “Server Command Options”
Section 7.4.5, “The Slow Query Log”

--log-slave-updates
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 19.5.5, “How to Report Replication Bugs or Problems”
Section 19.4.7, “Improving Replication Performance”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.2.2, “Setting the Replica Configuration”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 19.4.8, “Switching Sources During Failover”
Section 7.4.4, “The Binary Log”

--log-tc
Section 7.1.7, “Server Command Options”

--log-tc-size
Section 7.1.7, “Server Command Options”
Section 7.1.10, “Server Status Variables”

--log-warnings
Section 1.3, “What Is New in MySQL 8.0”

--log_bin
Section 6.2.2.1, “Using Options on the Command Line”

--log_output
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”

--log_timestamps
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

--logbuffer-size
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--login-path
Section 6.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

6008

Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 6.2.2.2, “Using Option Files”

--loops
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--loose
Section 6.2.2.4, “Program Option Modifiers”

--loose-opt_name
Section 6.2.2.2, “Using Option Files”

--lossy-conversions
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--low-priority
Section 6.5.5, “mysqlimport — A Data Import Program”

--low-priority-updates
Section 10.11.3, “Concurrent Inserts”
Section 15.2.7, “INSERT Statement”
Section 10.11.2, “Table Locking Issues”

--lower-case-table-names
Section 11.2.3, “Identifier Case Sensitivity”

M

[index top]

6009

-M
Section 6.5.4, “mysqldump — A Database Backup Program”

-m
Section 6.6.4.2, “myisamchk Check Options”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Restoring to More Nodes Than the Original

--malloc-lib
Section 2.5.9, “Managing MySQL Server with systemd”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

--master-data
Creating a Data Snapshot Using mysqldump
Section 9.3.1, “Establishing a Backup Policy”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

--master-info-file
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.4.2, “Replication Metadata Repositories”
Section 1.3, “What Is New in MySQL 8.0”

--master-retry-count
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”

--max-allowed-packet
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--max-binlog-dump-events
Section 19.1.6.4, “Binary Logging Options and Variables”

--max-binlog-size
Section 19.1.6.3, “Replica Server Options and Variables”

--max-join-size
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”

--max-record-length
Section 6.6.4.3, “myisamchk Repair Options”
Section 15.7.3.5, “REPAIR TABLE Statement”

6010

--max-relay-log-size
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.2.3, “Startup Options and Replication Channels”

--max-rows
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--max-seeks-for-key
Section 10.2.1.23, “Avoiding Full Table Scans”
Section B.3.5, “Optimizer-Related Issues”

--maximum
Section 6.2.2.4, “Program Option Modifiers”

--maximum-back_log
Section 6.2.2.4, “Program Option Modifiers”

--maximum-max_heap_table_size
Section 6.2.2.4, “Program Option Modifiers”

--maximum-sort-buffer-size
Section 7.1.9, “Using System Variables”

--maximum-var_name
Section 7.1.7, “Server Command Options”
Section 7.1.9, “Using System Variables”

--measured-load
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--medium-check
Section 6.6.4.2, “myisamchk Check Options”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

--memlock
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 17.6.3.1, “The System Tablespace”

--missing-ai-column
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

modify
Section 2.3.3.5, “MySQL Installer Console Reference”

--monitor
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--mount
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

--my-plugin
Section 7.6.1, “Installing and Uninstalling Plugins”

6011

--my_plugin
Section 7.6.1, “Installing and Uninstalling Plugins”

--mycnf
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--myisam-block-size
Section 10.10.2.5, “Key Cache Block Size”
Section 7.1.7, “Server Command Options”

--myisam_sort_buffer_size
Section 6.6.4.6, “myisamchk Memory Usage”

MYSQL_ALLOW_EMPTY_PASSWORD
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_DATABASE
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_LOG_CONSOLE
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_MAINTAINER_MODE
Section 2.8.8, “Dealing with Problems Compiling MySQL”

MYSQL_ONETIME_PASSWORD
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_OPT_USER_PASSWORD
Section 1.3, “What Is New in MySQL 8.0”

MYSQL_PASSWORD
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_RANDOM_ROOT_PASSWORD
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_ROOT_HOST
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_ROOT_PASSWORD
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

MYSQL_TCP_PORT
Section 2.8.5, “Installing MySQL Using a Development Source Tree”
Section 2.8.7, “MySQL Source-Configuration Options”

MYSQL_UNIX_ADDR
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 2.8.5, “Installing MySQL Using a Development Source Tree”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 22.5.6.2, “X Plugin Options and System Variables”

6012

MYSQL_USER
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

--mysqladmin
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--mysqld
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

--mysqld-long-query-time
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 7.1.8, “Server System Variables”

--mysqld-safe-log-timestamps
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

--mysqld-version
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

--mysqlx
Section 22.5.2, “Disabling X Plugin”
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx
Section 22.5.2, “Disabling X Plugin”

MYSQLX_UNIX_ADDR
Section 22.5.6.2, “X Plugin Options and System Variables”

N

[index top]

-N
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.4, “mysqldump — A Database Backup Program”

-n
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”

6013

--name
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”

--name-file
Section 6.4.1, “comp_err — Compile MySQL Error Message File”

--named-commands
Section 6.5.1.1, “mysql Client Options”

--ndb
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 6.8.2, “perror — Display MySQL Error Message Information”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--ndb-allow-copying-alter-table
MySQL Server Options for NDB Cluster

--ndb-applier-allow-skip-epoch
MySQL Server Options for NDB Cluster
Section 19.1.6.3, “Replica Server Options and Variables”

--ndb-batch-size
MySQL Server Options for NDB Cluster
NDB Cluster System Variables
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--ndb-blob-read-batch-bytes
MySQL Server Options for NDB Cluster

--ndb-blob-write-batch-bytes
MySQL Server Options for NDB Cluster
NDB Cluster System Variables
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb-blob-write-batch-bytes
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--ndb-cluster
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”

--ndb-cluster-connection-pool
MySQL Server Options for NDB Cluster

--ndb-cluster-connection-pool-nodeids
MySQL Server Options for NDB Cluster

--ndb-connectstring
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
MySQL Server Options for NDB Cluster
Section 25.6.10, “MySQL Server Usage for NDB Cluster”
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”

6014

Section 25.2.1, “NDB Cluster Core Concepts”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 25.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Restoring to Fewer Nodes Than the Original
Restoring to More Nodes Than the Original
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb-connectstring
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--ndb-default-column-format
MySQL Server Options for NDB Cluster

--ndb-deferred-constraints
MySQL Server Options for NDB Cluster

--ndb-distribution
MySQL Server Options for NDB Cluster

--ndb-index-stat-enable
NDB Cluster System Variables

--ndb-log-apply-status
MySQL Server Options for NDB Cluster
NDB Cluster System Variables

--ndb-log-bin
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”

--ndb-log-empty-epochs
MySQL Server Options for NDB Cluster
Section 25.7.4, “NDB Cluster Replication Schema and Tables”

--ndb-log-empty-update
MySQL Server Options for NDB Cluster

--ndb-log-exclusive-reads
MySQL Server Options for NDB Cluster

6015

--ndb-log-fail-terminate
MySQL Server Options for NDB Cluster
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--ndb-log-orig
MySQL Server Options for NDB Cluster
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster System Variables

--ndb-log-transaction-compression
Section 7.4.4.5, “Binary Log Transaction Compression”
NDB Cluster System Variables

--ndb-log-transaction-dependency
Section 25.7.3, “Known Issues in NDB Cluster Replication”
MySQL Server Options for NDB Cluster
Section 25.7.11, “NDB Cluster Replication Using the Multithreaded Applier”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--ndb-log-transaction-id
MySQL Server Options for NDB Cluster
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables

--ndb-log-update-as-write
Section 25.7.3, “Known Issues in NDB Cluster Replication”
MySQL Server Options for NDB Cluster
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 25.7.11, “NDB Cluster Replication Using the Multithreaded Applier”

--ndb-log-update-minimal
MySQL Server Options for NDB Cluster
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 25.7.11, “NDB Cluster Replication Using the Multithreaded Applier”

--ndb-log-updated-only
MySQL Server Options for NDB Cluster
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 25.7.11, “NDB Cluster Replication Using the Multithreaded Applier”

--ndb-mgmd-host
MySQL Server Options for NDB Cluster
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

6016

Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--ndb-nodegroup-map
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--ndb-nodeid
MySQL Server Options for NDB Cluster
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--ndb-optimization-delay
MySQL Server Options for NDB Cluster
Section 15.7.3.4, “OPTIMIZE TABLE Statement”

--ndb-optimized-node-selection
MySQL Server Options for NDB Cluster
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

6017

--ndb-replica-batch-size
Section 25.7.5, “Preparing the NDB Cluster for Replication”

--ndb-replica-blob-write-batch-bytes
Section 25.7.5, “Preparing the NDB Cluster for Replication”

--ndb-schema-dist-timeout
MySQL Server Options for NDB Cluster
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--ndb-schema-dist-upgrade-allowed
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”

--ndb-transid-mysql-connection-map
MySQL Server Options for NDB Cluster
Section 28.3.18, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”

--ndb-wait-connected
MySQL Server Options for NDB Cluster

--ndb-wait-setup
MySQL Server Options for NDB Cluster

--ndbcluster
Section 25.4, “Configuration of NDB Cluster”
Section 25.3.2.1, “Installing NDB Cluster on Windows from a Binary Release”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
MySQL Server Options for NDB Cluster
Section 25.6.10, “MySQL Server Usage for NDB Cluster”
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”
Section 25.2.1, “NDB Cluster Core Concepts”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 25.4.3.2, “Recommended Starting Configuration for NDB Cluster”
Section 7.1.7, “Server Command Options”
Section 15.7.7.16, “SHOW ENGINES Statement”
Section 28.3.13, “The INFORMATION_SCHEMA ENGINES Table”

--ndbinfo
MySQL Server Options for NDB Cluster

--net-buffer-length
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

net_retry_count
Section 19.2.3.1, “Monitoring Replication Main Threads”

net_write_timeout
Section 19.2.3.1, “Monitoring Replication Main Threads”

--network
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

6018

--network-namespace
Section 6.5.1.1, “mysql Client Options”
Section 7.1.14, “Network Namespace Support”

--network-timeout
Section 6.5.4, “mysqldump — A Database Backup Program”

--nice
Section 2.5.9, “Managing MySQL Server with systemd”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

--no-asynch
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--no-auto-rehash
Section 6.5.1.1, “mysql Client Options”

--no-autocommit
Section 6.5.4, “mysqldump — A Database Backup Program”

--no-beep
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

--no-binlog
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--no-check
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”

--no-contact
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--no-create-db
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--no-create-info
Section 9.4.5.4, “Dumping Table Definitions and Content Separately”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--no-data
Section 9.4.5.4, “Dumping Table Definitions and Content Separately”
Section 6.5.4, “mysqldump — A Database Backup Program”

--no-dd-upgrade
Section 16.1, “Data Dictionary Schema”
Section 7.1.7, “Server Command Options”
Section 1.3, “What Is New in MySQL 8.0”
Section 3.4, “What the MySQL Upgrade Process Upgrades”

--no-defaults
Section 6.2.2.3, “Command-Line Options that Affect Option-File Handling”

6019

Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.4.1, “myisamchk General Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 7.1.9.3, “Persisted System Variables”
Section 7.1.7, “Server Command Options”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 6.2.2.2, “Using Option Files”

--no-drop
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--no-hint
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--no-history-logging
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”

--no-log
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

6020

--no-login-paths
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”

--no-monitor
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 15.7.8.8, “RESTART Statement”
Section 7.1.7, “Server Command Options”

--no-nodeid-checks
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--no-print-rows
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

--no-restore-disk-objects
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--no-set-names
Section 6.5.4, “mysqldump — A Database Backup Program”

--no-tablespaces
Section 6.5.4, “mysqldump — A Database Backup Program”

--no-upgrade
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--nodaemon
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--nodata
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--node-id
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--nodeid
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Restoring to Fewer Nodes Than the Original
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--nodes
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--nostart
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--not-started
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--nowait-nodes
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”

6021

Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”

--num-slices
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--number-char-cols
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--number-int-cols
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--number-of-queries
Section 6.5.8, “mysqlslap — A Load Emulation Client”

O

[index top]

-O
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 2.8.7, “MySQL Source-Configuration Options”

-o
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 10.12.1, “Optimizing Disk I/O”

--offset
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--old-style-user-limits
Section 7.1.7, “Server Command Options”
Section 8.2.21, “Setting Account Resource Limits”
Section 1.3, “What Is New in MySQL 8.0”

old_passwords
Section 3.5, “Changes in MySQL 8.0”

--oldpackage
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”

ON
Section 5.3.4.9, “Using More Than one Table”

--one-database
Section 6.5.1.1, “mysql Client Options”

6022

--online-migration
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”

--only-print
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--opbatch
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--opbytes
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--open-files-limit
Section B.3.2.16, “File Not Found and Similar Errors”
Section 2.5.9, “Managing MySQL Server with systemd”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 7.1.8, “Server System Variables”

--opt
Section 10.5.5, “Bulk Data Loading for InnoDB Tables”
Section 6.5.4, “mysqldump — A Database Backup Program”

--opt_name
Section 6.2.2.2, “Using Option Files”

--optimize
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

options
Section 14.16.4, “Functions That Create Geometry Values from WKB Values”
Section 14.16.3, “Functions That Create Geometry Values from WKT Values”
Section 14.16.6, “Geometry Format Conversion Functions”

--order
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--order-by-primary
Section 6.5.4, “mysqldump — A Database Backup Program”

--os-load
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--out-dir
Section 6.4.1, “comp_err — Compile MySQL Error Message File”

--out-file
Section 6.4.1, “comp_err — Compile MySQL Error Message File”

--output-type
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--output-workers
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

6023

P

[index top]

-P
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.2.1, “Invoking MySQL Programs”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 7.1.7, “Server Command Options”
Section 25.6.8.2, “Using The NDB Cluster Management Client to Create a Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

-p
Section 8.2.1, “Account User Names and Passwords”
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 8.1.2.1, “End-User Guidelines for Password Security”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.2.1, “Invoking MySQL Programs”
Section 26.2.5, “KEY Partitioning”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

6024

Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section B.3.2.4, “Password Fails When Entered Interactively”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 2.9.3, “Testing the Server”
Section 25.6.16.7, “The ndbinfo cluster_operations Table”
Section 25.6.16.54, “The ndbinfo server_operations Table”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Chapter 3, Upgrading MySQL
Section 3.11, “Upgrading MySQL on Windows”
Section 6.2.2.1, “Using Options on the Command Line”
Section 2.3.6, “Windows Postinstallation Procedures”

--page
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”

--page-type-dump
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”

--page-type-summary
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”

--pagecnt
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--pager
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”

--pagesize
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--parallel-recover
Section 6.6.4.3, “myisamchk Repair Options”
Section 1.3, “What Is New in MySQL 8.0”

--parallel-schemas
Section 6.5.6, “mysqlpump — A Database Backup Program”

--parallelism
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

parallelism
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--parsable
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”

6025

--partition
Section 1.3, “What Is New in MySQL 8.0”

--passwd
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--password
Section 8.2.1, “Account User Names and Passwords”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 8.1.2.1, “End-User Guidelines for Password Security”
Section 9.3, “Example Backup and Recovery Strategy”
Section 6.2.1, “Invoking MySQL Programs”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 8.2.18, “Multifactor Authentication”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section B.3.2.4, “Password Fails When Entered Interactively”
Restoring to More Nodes Than the Original
Section 8.4.1.12, “Test Pluggable Authentication”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 6.2.2.1, “Using Options on the Command Line”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

password
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.2.2.2, “Using Option Files”

--password1
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.2.18, “Multifactor Authentication”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

6026

Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 1.3, “What Is New in MySQL 8.0”

--password2
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.2.18, “Multifactor Authentication”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 1.3, “What Is New in MySQL 8.0”

--password3
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.2.18, “Multifactor Authentication”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 1.3, “What Is New in MySQL 8.0”

--performance-schema-consumer-consumer_name
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-stages-current
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-stages-history
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-stages-history-long
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-statements-cpu
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-statements-current
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-statements-history
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-statements-history-long
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-transactions-current
Section 29.14, “Performance Schema Command Options”

6027

--performance-schema-consumer-events-transactions-history
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-transactions-history-
long
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-waits-current
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-waits-history
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-events-waits-history-long
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-global-instrumentation
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-statements-digest
Section 29.14, “Performance Schema Command Options”

--performance-schema-consumer-thread-instrumentation
Section 29.14, “Performance Schema Command Options”

--performance-schema-instrument
Section 29.14, “Performance Schema Command Options”
Section 29.3, “Performance Schema Startup Configuration”

--performance-schema-xxx
Section 7.1.7, “Server Command Options”

--performance_schema_max_mutex_classes
Section 29.7, “Performance Schema Status Monitoring”

--performance_schema_max_mutex_instances
Section 29.7, “Performance Schema Status Monitoring”

--pid-file
Section 7.4.2.2, “Default Error Log Destination Configuration”
Section 7.4.2.1, “Error Log Configuration”
Section 2.5.9, “Managing MySQL Server with systemd”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.1.7, “Server Command Options”

pid-file
Section 6.3.3, “mysql.server — MySQL Server Startup Script”

--pipe
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.5.1.1, “mysql Client Options”

6028

Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 2.3.4.9, “Testing The MySQL Installation”

--plugin
Section 7.1.7, “Server Command Options”

--plugin-authentication-kerberos-client-mode
Section 6.5.1.1, “mysql Client Options”
Section 6.5.4, “mysqldump — A Database Backup Program”

--plugin-dir
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 8.2.17, “Pluggable Authentication”

--plugin-innodb-file-per-table
Section 7.1.7, “Server Command Options”

--plugin-load
Section 8.4.5.11, “Audit Log Reference”
Section 7.6.5.2, “ddl_rewriter Plugin Options”
Section 15.7.4.4, “INSTALL PLUGIN Statement”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 8.4.4.18, “Keyring Command Options”
Section 8.4.4.3, “Keyring Plugin Installation”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.1.7, “Server Command Options”
Section 8.4.3.3, “Transitioning to the Password Validation Component”
Section 1.3, “What Is New in MySQL 8.0”

--plugin-load-add
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.2.1, “Connection Control Plugin Installation”
Section 7.6.5.2, “ddl_rewriter Plugin Options”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 7.6.7.1, “Installing the Clone Plugin”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.4.3, “Keyring Plugin Installation”

6029

Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.9, “No-Login Pluggable Authentication”
Section 8.4.1.5, “PAM Pluggable Authentication”
Section 8.4.3.2, “Password Validation Options and Variables”
Section 7.1.7, “Server Command Options”
Section 8.4.1.10, “Socket Peer-Credential Pluggable Authentication”
Section 8.4.1.12, “Test Pluggable Authentication”
Section 7.6.3.2, “Thread Pool Installation”
Section 8.4.3.3, “Transitioning to the Password Validation Component”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.1.6, “Windows Pluggable Authentication”

plugin-load-add
Section 20.2.1.2, “Configuring an Instance for Group Replication”
Section 7.6.7.1, “Installing the Clone Plugin”

--plugin-sql-mode
Section 7.1.7, “Server Command Options”

--plugin-xxx
Section 7.1.7, “Server Command Options”

--plugin_dir
Section 2.8.7, “MySQL Source-Configuration Options”

--plugin_name
Section 7.6.1, “Installing and Uninstalling Plugins”

PLUGIN_OPT_ALLOW_EARLY
Section 7.1.7, “Server Command Options”

--plugindir
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”

--polltimeout
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--port
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.2.1, “Invoking MySQL Programs”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 6.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”

6030

Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.8.3, “Running Multiple MySQL Instances on Unix”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 7.8.4, “Using Client Programs in a Multiple-Server Environment”

port
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.2.2.2, “Using Option Files”

--port-open-timeout
Section 7.1.7, “Server Command Options”

--post-query
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--post-system
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--pre-query
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--pre-system
Section 6.5.8, “mysqlslap — A Load Emulation Client”

PREFIX
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”

--preserve-trailing-spaces
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--pretty
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”

--print
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--print-data
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--print-defaults
Section 6.2.2.3, “Command-Line Options that Affect Option-File Handling”
Section 6.6.4.1, “myisamchk General Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

6031

Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 7.1.7, “Server Command Options”
Section 3.13, “Upgrade Troubleshooting”

--print-full-config
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--print-header-words
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

--print-log
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--print-meta
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--print-restored-rows
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

--print-rows
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

--print-rows-per-page
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

--print-sql-log
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

6032

print-sql-log
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--print-table-metadata
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--print_*
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--progress-frequency
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--promote-attributes
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--prompt
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”

--protocol
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.2.7, “Connection Transport Protocols”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 7.8.3, “Running Multiple MySQL Instances on Unix”
Section 2.3.4.5, “Starting the Server for the First Time”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 1.2.2, “The Main Features of MySQL”
Section 7.8.4, “Using Client Programs in a Multiple-Server Environment”

Q

[index top]

-Q
Section 6.5.4, “mysqldump — A Database Backup Program”

-q
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

6033

Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”

--query
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--query-all
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--quick
Section 6.6.4.6, “myisamchk Memory Usage”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1, “mysql — The MySQL Command-Line Client”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section B.3.2.6, “Out of memory”
Section 9.6.1, “Using myisamchk for Crash Recovery”
Section 6.2.2.2, “Using Option Files”

--quiet
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”

--quote-names
Section 6.5.4, “mysqldump — A Database Backup Program”

R

[index top]

-R
Section 9.6.4, “MyISAM Table Optimization”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.4.4, “Other myisamchk Options”
Section 8.2.2, “Privileges Provided by MySQL”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

-r
Section 9.6.3, “How to Repair MyISAM Tables”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.9, “ndb_desc — Describe NDB Tables”

6034

Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 7.1.7, “Server Command Options”

--raw
Section 6.5.1.1, “mysql Client Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

--read-from-remote-master
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”

--read-from-remote-server
Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 9.5.1, “Point-in-Time Recovery Using Binary Log”
Section 8.2.2, “Privileges Provided by MySQL”
Section 6.6.9.4, “Specifying the mysqlbinlog Server ID”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

--read-from-remote-source
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”

--read-only
Section 6.6.4.2, “myisamchk Check Options”

--real_table_name
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--rebuild-indexes
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--reconnect
Section 6.5.1.1, “mysql Client Options”

--recover
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.4.6, “myisamchk Memory Usage”
Section 6.6.4.3, “myisamchk Repair Options”

--rejects
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--relative
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

6035

--relay-log
Section 19.2.2.3, “Startup Options and Replication Channels”
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”

--relay-log-index
Section 19.2.2.3, “Startup Options and Replication Channels”

--relay-log-purge
Section 19.1.6.3, “Replica Server Options and Variables”

--relay-log-recovery
Section 19.4.2, “Handling an Unexpected Halt of a Replica”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 7.1.19, “The Server Shutdown Process”

--relay-log-space-limit
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.2.3, “Startup Options and Replication Channels”

--reload
Section 25.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 25.3.4, “Initial Startup of NDB Cluster”
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 25.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 25.4.3, “NDB Cluster Configuration Files”
Section 25.6.14.1, “NDB File System Encryption Setup and Usage”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”

--remap-column
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--remove
Section 25.3.2.4, “Installing NDB Cluster Processes as Windows Services”
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 7.1.7, “Server Command Options”
Section 7.8.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”

remove
Section 2.3.3.5, “MySQL Installer Console Reference”

--repair
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

--replace
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

6036

--replica-net-timeout
Section 19.2.2.3, “Startup Options and Replication Channels”

--replica-parallel-type
Section 1.3, “What Is New in MySQL 8.0”

--replica-parallel-workers
Section 19.2.2.3, “Startup Options and Replication Channels”

--replica-skip-counter
Section 19.2.2.3, “Startup Options and Replication Channels”

--replicate-*
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.5.4, “Replication Channel Based Filters”
Section 29.12.11.6, “The replication_applier_filters Table”
Section 29.12.11.7, “The replication_applier_global_filters Table”

--replicate-*-db
Section 19.1.6.3, “Replica Server Options and Variables”
Section 27.8, “Restrictions on Stored Programs”

--replicate-do-*
Section 25.7.3, “Known Issues in NDB Cluster Replication”

--replicate-do-db
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 19.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.4.6, “Replicating Different Databases to Different Replicas”
Section 19.5.1.26, “Replication and Reserved Words”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 19.2.5.4, “Replication Channel Based Filters”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 7.4.4, “The Binary Log”
Section 1.3, “What Is New in MySQL 8.0”
Section 15.3.8.1, “XA Transaction SQL Statements”

--replicate-do-db:channel_1:db_name
Section 19.1.6.3, “Replica Server Options and Variables”

--replicate-do-table
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 19.2.5.2, “Evaluation of Table-Level Replication Options”
Section 19.2.5.3, “Interactions Between Replication Filtering Options”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.26, “Replication and Reserved Words”
Section 19.5.1.31, “Replication and Temporary Tables”

6037

Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 18.6, “The BLACKHOLE Storage Engine”

--replicate-do-table:channel_1:db_name.tbl_name
Section 19.1.6.3, “Replica Server Options and Variables”

--replicate-ignore-*
Section 25.7.3, “Known Issues in NDB Cluster Replication”

--replicate-ignore-db
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 19.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 19.2.5.3, “Interactions Between Replication Filtering Options”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.26, “Replication and Reserved Words”
Section 19.2.5.4, “Replication Channel Based Filters”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 7.4.4, “The Binary Log”
Section 1.3, “What Is New in MySQL 8.0”
Section 15.3.8.1, “XA Transaction SQL Statements”

--replicate-ignore-db:channel_1:db_name
Section 19.1.6.3, “Replica Server Options and Variables”

--replicate-ignore-table
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 19.2.5.2, “Evaluation of Table-Level Replication Options”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.26, “Replication and Reserved Words”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 18.6, “The BLACKHOLE Storage Engine”

--replicate-ignore-table:channel_1:db_name.tbl_name
Section 19.1.6.3, “Replica Server Options and Variables”

--replicate-rewrite-db
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 19.1.6.3, “Replica Server Options and Variables”

--replicate-same-server-id
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.6, “Replication and Binary Logging Options and Variables”

--replicate-wild-*-table
Section 19.2.5.4, “Replication Channel Based Filters”

6038

--replicate-wild-do-table
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 19.2.5.2, “Evaluation of Table-Level Replication Options”
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.4.6, “Replicating Different Databases to Different Replicas”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 19.2.5.4, “Replication Channel Based Filters”
Section 27.8, “Restrictions on Stored Programs”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”

--replicate-wild-do-table:channel_1:db_name.tbl_name
Section 19.1.6.3, “Replica Server Options and Variables”

--replicate-wild-ignore-table
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 19.2.5.2, “Evaluation of Table-Level Replication Options”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section A.14, “MySQL 8.0 FAQ: Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”

--replicate-wild-ignore:channel_1:db_name.tbl_name
Section 19.1.6.3, “Replica Server Options and Variables”

replication-ignore-table
Section 19.5.1.40, “Replication and Views”

--report-host
Section 19.1.7.1, “Checking Replication Status”
Section 20.10, “Frequently Asked Questions”
Section 15.7.7.33, “SHOW REPLICAS Statement”

--report-password
Section 19.1.6.2, “Replication Source Options and Variables”
Section 15.7.7.33, “SHOW REPLICAS Statement”

--report-port
Section 15.7.7.33, “SHOW REPLICAS Statement”

--report-user
Section 19.1.6.2, “Replication Source Options and Variables”
Section 15.7.7.33, “SHOW REPLICAS Statement”

--require-row-format
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 19.3.3, “Replication Privilege Checks”

--restart
Section 2.5.6.1, “Basic Steps for MySQL Server Deployment with Docker”

--restore-data
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

6039

Restoring an NDB backup to a previous version of NDB Cluster
Restoring to Fewer Nodes Than the Original
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--restore-epoch
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--restore-meta
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Restoring an NDB backup to a later version of NDB Cluster
Restoring to More Nodes Than the Original

--restore-privilege-tables
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--result-file
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

--resume
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--retries
Section 25.5.9, “ndb_desc — Describe NDB Tables”

--rewrite-database
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--rewrite-db
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--rm
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”

--routines
Section 16.7, “Data Dictionary Usage Differences”
Section 9.4.5.3, “Dumping Stored Programs”
Section 9.4.5.4, “Dumping Table Definitions and Content Separately”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

--rowbatch
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--rowbytes
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

6040

--rowid
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--rowid-file
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

--rows
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

S

[index top]

-S
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.2.1, “Invoking MySQL Programs”
Section 9.6.4, “MyISAM Table Optimization”
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 6.6.4.4, “Other myisamchk Options”

-s
Section 9.6.2, “How to Check MyISAM Tables for Errors”
Section 9.6.3, “How to Repair MyISAM Tables”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 2.2, “Installing MySQL on Unix/Linux Using Generic Binaries”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 6.8.2, “perror — Display MySQL Error Message Information”

6041

Section 9.6.5, “Setting Up a MyISAM Table Maintenance Schedule”

--safe-recover
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.4.6, “myisamchk Memory Usage”
Section 6.6.4.3, “myisamchk Repair Options”

--safe-updates
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”
Section 7.1.8, “Server System Variables”

--safe-user-create
Section 7.1.7, “Server Command Options”

--savequeries
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”

--secure-auth
Section 8.2.17, “Pluggable Authentication”
Section 1.3, “What Is New in MySQL 8.0”

--select-limit
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”

--server-arg
Section 1.3, “What Is New in MySQL 8.0”

--server-file
Section 1.3, “What Is New in MySQL 8.0”

--server-id
Section 25.7.2, “General Requirements for NDB Cluster Replication”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 15.7.7.33, “SHOW REPLICAS Statement”

--server-id-bits
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--server-public-key-path
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”

6042

service-startup-timeout
Section 6.3.3, “mysql.server — MySQL Server Startup Script”

--set
Section 2.3.3.5, “MySQL Installer Console Reference”

set
Section 2.3.3.5, “MySQL Installer Console Reference”

--set-auto-increment
Section 6.6.4.4, “Other myisamchk Options”

--set-charset
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--set-collation
Section 6.6.4.3, “myisamchk Repair Options”

--set-gtid-purged
Section 3.15, “Copying MySQL Databases to Another Machine”
Creating a Data Snapshot Using mysqldump
Section 9.4.1, “Dumping Data in SQL Format with mysqldump”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 19.1.3.8, “Stored Function Examples to Manipulate GTIDs”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”

--shared-memory-base-name
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.8.4, “Using Client Programs in a Multiple-Server Environment”

--short-form
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--show
Section 6.7.2, “my_print_defaults — Display Options from Option Files”

--show-create-skip-secondary-engine
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 7.1.8, “Server System Variables”

--show-ignored-rows
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

6043

--show-replica-auth-info
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 15.7.7.33, “SHOW REPLICAS Statement”

--show-slave-auth-info
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 15.7.7.33, “SHOW REPLICAS Statement”

--show-table-type
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”

--show-temp-status
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”

--show-warnings
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

--shutdown-timeout
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

--sigint-ignore
Section 6.5.1.1, “mysql Client Options”
Section 6.10, “Unix Signal Handling in MySQL”

--silent
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 6.8.2, “perror — Display MySQL Error Message Information”
Section 9.6.5, “Setting Up a MyISAM Table Maintenance Schedule”

--single-transaction
Section 9.2, “Database Backup Methods”
Section 9.3.1, “Establishing a Backup Policy”
Section 17.18.1, “InnoDB Backup”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 17.8.9, “Purge Configuration”

--single-user
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--skip
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.2.2.4, “Program Option Modifiers”
Section 7.1.7, “Server Command Options”

6044

--skip-add-drop-table
Section 6.5.4, “mysqldump — A Database Backup Program”

--skip-add-locks
Section 6.5.4, “mysqldump — A Database Backup Program”

--skip-admin-ssl
Section 7.1.7, “Server Command Options”

--skip-auto-rehash
Section 6.5.1.1, “mysql Client Options”

--skip-binary-as-hex
Section 14.13, “Encryption and Compression Functions”
Section 6.5.1.1, “mysql Client Options”

--skip-binlog
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”

--skip-broken-objects
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--skip-character-set-client-handshake
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 12.10.7.1, “The cp932 Character Set”

--skip-color
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--skip-colors
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--skip-column-names
Section 6.5.1.1, “mysql Client Options”

--skip-commands
Section 1.3, “What Is New in MySQL 8.0”

--skip-comments
Section 6.5.1.1, “mysql Client Options”
Section 6.5.4, “mysqldump — A Database Backup Program”

--skip-config-cache
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--skip-config-file
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”

--skip-data
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”

--skip-database
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

6045

--skip-defer-table-indexes
Section 6.5.6, “mysqlpump — A Database Backup Program”

--skip-definer
Section 6.5.6, “mysqlpump — A Database Backup Program”

--skip-disable-keys
Section 6.5.4, “mysqldump — A Database Backup Program”

--skip-dump-date
Section 6.5.4, “mysqldump — A Database Backup Program”

--skip-dump-rows
Section 6.5.6, “mysqlpump — A Database Backup Program”

--skip-engine_name
Section 15.7.7.16, “SHOW ENGINES Statement”
Section 28.3.13, “The INFORMATION_SCHEMA ENGINES Table”

--skip-events
Section 9.4.5.3, “Dumping Stored Programs”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--skip-extended-insert
Section 6.5.4, “mysqldump — A Database Backup Program”

--skip-external-locking
Section 10.11.5, “External Locking”
Section 10.14.3, “General Thread States”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

--skip-federated
Section 19.4.4, “Using Replication with Different Source and Replica Storage Engines”

--skip-generated-invisible-primary-key
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 1.3, “What Is New in MySQL 8.0”

--skip-grant-tables
Section 15.7.4.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 27.4.2, “Event Scheduler Configuration”
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.4.3, “INSTALL COMPONENT Statement”
Section 15.7.4.4, “INSTALL PLUGIN Statement”
Section 7.5.1, “Installing and Uninstalling Components”
Section 7.7.1, “Installing and Uninstalling Loadable Functions”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 8.2.15, “Password Management”
Section 8.2.17, “Pluggable Authentication”
Section 8.2.2, “Privileges Provided by MySQL”

6046

Resetting the Root Password: Generic Instructions
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 28.3.46, “The INFORMATION_SCHEMA USER_ATTRIBUTES Table”
Section 7.3, “The mysql System Schema”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 6.2.2.1, “Using Options on the Command Line”
Section 8.2.13, “When Privilege Changes Take Effect”

--skip-graphs
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--skip-gtids
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--skip-host-cache
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 1.3, “What Is New in MySQL 8.0”

--skip-innodb
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section A.14, “MySQL 8.0 FAQ: Replication”
Section 7.1.7, “Server Command Options”

--skip-innodb-adaptive-hash-index
Section 17.14, “InnoDB Startup Options and System Variables”

--skip-kill-mysqld
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

--skip-line-numbers
Section 6.5.1.1, “mysql Client Options”

--skip-lock-tables
Section 6.5.4, “mysqldump — A Database Backup Program”

--skip-log-bin
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 3.5, “Changes in MySQL 8.0”
Section 19.1.3.1, “GTID Format and Storage”
Section 7.4.4.2, “Setting The Binary Log Format”
Section 19.1.2.2, “Setting the Replica Configuration”
Section 19.1.2.1, “Setting the Replication Source Configuration”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 27.7, “Stored Program Binary Logging”
Section 7.4.4, “The Binary Log”
Section 19.5.4, “Troubleshooting Replication”
Section 19.5.3, “Upgrading a Replication Topology”

--skip-mysqlx
Section 22.5.2, “Disabling X Plugin”

6047

--skip-named-commands
Section 6.5.1.1, “mysql Client Options”

--skip-ndb-optimized-node-selection
MySQL Server Options for NDB Cluster
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”

--skip-ndbcluster
MySQL Server Options for NDB Cluster
Section 25.4.2.5, “NDB Cluster mysqld Option and Variable Reference”

--skip-network-timeout
Section 6.5.4, “mysqldump — A Database Backup Program”

--skip-new
Section 7.9.1, “Debugging a MySQL Server”
Section 15.7.3.4, “OPTIMIZE TABLE Statement”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

--skip-nodegroup
Section 25.5.12, “ndb_error_reporter — NDB Error-Reporting Utility”

--skip-opt
Section 6.5.4, “mysqldump — A Database Backup Program”

--skip-pager
Section 6.5.1.1, “mysql Client Options”

--skip-partition
Section 1.3, “What Is New in MySQL 8.0”

--skip-password
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

6048

Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--skip-password1
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--skip-plugin-innodb-file-per-table
Section 7.1.7, “Server Command Options”

--skip-plugin_name
Section 7.6.1, “Installing and Uninstalling Plugins”

--skip-quick
Section 6.5.4, “mysqldump — A Database Backup Program”

--skip-quote-names
Section 6.5.4, “mysqldump — A Database Backup Program”

--skip-reconnect
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”

--skip-relaylog
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”

--skip-replica-start
Section 19.4.9.2, “Asynchronous Connection Failover for Replicas”
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 19.2.2.3, “Startup Options and Replication Channels”

--skip-routines
Section 9.4.5.3, “Dumping Stored Programs”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--skip-safe-updates
Section 6.5.1.1, “mysql Client Options”

--skip-set-charset
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

6049

--skip-show-database
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.7, “Server Command Options”
Section 15.7.7.14, “SHOW DATABASES Statement”

--skip-slave-preserve-commit-order
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 7.4.4, “The Binary Log”

--skip-slave-start
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Setting Up Replication with Existing Data
Section 15.4.2.6, “START REPLICA Statement”
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 19.2.2.3, “Startup Options and Replication Channels”
Section 19.5.4, “Troubleshooting Replication”
Section 19.5.3, “Upgrading a Replication Topology”

--skip-sort
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--skip-ssl
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 7.1.7, “Server Command Options”
Section 1.3, “What Is New in MySQL 8.0”

--skip-stack-trace
Section 7.9.1.4, “Debugging mysqld under gdb”
Section 7.1.7, “Server Command Options”

--skip-super-large-pages
Section 10.12.3.3, “Enabling Large Page Support”
Section 7.1.7, “Server Command Options”

--skip-symbolic-links
Section 15.1.20, “CREATE TABLE Statement”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 10.12.2.3, “Using Symbolic Links for Databases on Windows”
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”

--skip-sys-schema
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 3.4, “What the MySQL Upgrade Process Upgrades”

--skip-syslog
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

--skip-system-command
Section 6.5.1.2, “mysql Client Commands”

6050

Section 6.5.1.1, “mysql Client Options”
Section 1.3, “What Is New in MySQL 8.0”

--skip-table-check
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--skip-triggers
Section 9.4.5.3, “Dumping Stored Programs”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--skip-tz-utc
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--skip-unknown-objects
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--skip-version-check
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”

--skip-warn
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”

--skip-watch-progress
Section 6.5.6, “mysqlpump — A Database Backup Program”

--skip-write-binlog
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

--skip_grant_tables
Section 6.2.2.1, “Using Options on the Command Line”

--slave-net-timeout
Section 19.2.2.3, “Startup Options and Replication Channels”

--slave-parallel-workers
Section 19.2.2.3, “Startup Options and Replication Channels”

--slave-preserve-commit-order
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 7.4.4, “The Binary Log”

--slave-skip-counter
Section 19.2.2.3, “Startup Options and Replication Channels”

--slave-skip-errors
Section 25.7.8, “Implementing Failover with NDB Cluster Replication”
MySQL Server Options for NDB Cluster
Section 19.5.1.29, “Replica Errors During Replication”
Section 19.1.6.3, “Replica Server Options and Variables”

--slave-sql-verify-checksum
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.1.6.3, “Replica Server Options and Variables”

6051

--sleep
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

--sleep-time
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--slice-id
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

slice-id
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--slow-start-timeout
Section 7.1.7, “Server Command Options”

--slow_query_log
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.4.5, “The Slow Query Log”

--slow_query_log_file
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.4.5, “The Slow Query Log”

--socket
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 2.5.6.3, “Deploying MySQL on Windows and Other Non-Linux Platforms with Docker”
Section B.3.3.6, “How to Protect or Change the MySQL Unix Socket File”
Section 6.2.1, “Invoking MySQL Programs”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 6.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.8.3, “Running Multiple MySQL Instances on Unix”
Section 7.1.7, “Server Command Options”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 7.8.4, “Using Client Programs in a Multiple-Server Environment”

6052

socket
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.2.2.2, “Using Option Files”

--sort
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--sort-index
Section 9.6.4, “MyISAM Table Optimization”
Section 6.6.4.4, “Other myisamchk Options”

--sort-records
Section 9.6.4, “MyISAM Table Optimization”
Section 6.6.4.4, “Other myisamchk Options”

--sort-recover
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.4.6, “myisamchk Memory Usage”
Section 6.6.4.3, “myisamchk Repair Options”

--sort_buffer_size
Section 7.1.7, “Server Command Options”

--source-data
Section 6.5.4, “mysqldump — A Database Backup Program”

--source-keyring
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”

--source-keyring-configuration-dir
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”

--sporadic-binlog-dump-fail
Section 19.1.6.4, “Binary Logging Options and Variables”

--sql-mode
Chapter 14, Functions and Operators
Section A.3, “MySQL 8.0 FAQ: Server SQL Mode”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 7.1.7, “Server Command Options”
Section 7.1.11, “Server SQL Modes”

sql-mode
Section 7.1.11, “Server SQL Modes”

--ssl
Section 7.1.12.2, “Administrative Connection Management”
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”

6053

Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

--ssl*
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--ssl-ca
Section 15.7.1.1, “ALTER USER Statement”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 7.1.9.4, “Nonpersistible and Persist-Restricted System Variables”
Section 7.1.7, “Server Command Options”

--ssl-capath
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.7, “Server Command Options”

--ssl-cert
Section 15.7.1.1, “ALTER USER Statement”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 7.1.9.4, “Nonpersistible and Persist-Restricted System Variables”

--ssl-cipher
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”

--ssl-crl
Section 6.2.3, “Command Options for Connecting to the Server”

6054

Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”

--ssl-crlpath
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”

--ssl-fips-mode
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.8, “FIPS Support”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 1.3, “What Is New in MySQL 8.0”

--ssl-key
Section 15.7.1.1, “ALTER USER Statement”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 7.1.9.4, “Nonpersistible and Persist-Restricted System Variables”

--ssl-mode
Section 15.7.1.1, “ALTER USER Statement”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.2.5, “Connecting to the Server Using URI-Like Strings or Key-Value Pairs”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 1.3, “What Is New in MySQL 8.0”

--ssl-session-data
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.5, “Reusing SSL Sessions”

--ssl-session-data-continue-on-failed-reuse
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.5, “Reusing SSL Sessions”

ssl-session-data-continue-on-failed-reuse
Section 6.2.3, “Command Options for Connecting to the Server”

--ssl-verify-server-cert
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 1.3, “What Is New in MySQL 8.0”

6055

--ssl-xxx
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 2.8.6, “Configuring SSL Library Support”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”

--staging-tries
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”

--standalone
Section 7.9.1.2, “Creating Trace Files”
Section 7.1.7, “Server Command Options”
Section 2.3.4.6, “Starting MySQL from the Windows Command Line”

--start-datetime
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 9.5.2, “Point-in-Time Recovery Using Event Positions”

--start-page
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”

--start-position
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 9.5.2, “Point-in-Time Recovery Using Event Positions”

--state-dir
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--stats
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--status
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”

status
Section 2.3.3.5, “MySQL Installer Console Reference”

--stop-datetime
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 9.5.2, “Point-in-Time Recovery Using Event Positions”

6056

--stop-never
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.6.9.4, “Specifying the mysqlbinlog Server ID”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

--stop-never-slave-server-id
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--stop-position
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 9.5.2, “Point-in-Time Recovery Using Event Positions”

--strict-check
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”

--suffix
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”

--super-large-pages
Section 10.12.3.3, “Enabling Large Page Support”
Section 7.1.7, “Server Command Options”

--symbolic-links
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”

--sync-relay-log-info
Section 1.3, “What Is New in MySQL 8.0”

--sys-*
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-check
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-create
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-create-if-not-exist
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-create-if-not-valid
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-drop
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-skip-events
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

--sys-skip-tables
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

6057

SYSCONFDIR
Section 6.2.2.2, “Using Option Files”

--sysdate-is-now
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.7, “Date and Time Functions”
Section 19.5.1.14, “Replication and System Functions”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

--syslog
Section 6.9, “Environment Variables”
Section 2.5.9, “Managing MySQL Server with systemd”
Section 6.5.1.3, “mysql Client Logging”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

--syslog-tag
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”

--system
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”

--system-command
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”
Section 1.3, “What Is New in MySQL 8.0”

T

[index top]

-T
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.6.4.2, “myisamchk Check Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 7.1.7, “Server Command Options”

-t
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”

6058

Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.22, “ndb_redo_log_reader — Check and Print Content of Cluster Redo Log”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 7.1.7, “Server Command Options”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--tab
Section 9.1, “Backup and Recovery Types”
Section 9.2, “Database Backup Methods”
Section 9.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 9.4, “Using mysqldump for Backups”

--table
Section 6.5.1.1, “mysql Client Options”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--table-id
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

--tables
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”

--tc-heuristic-recover
Section 7.1.7, “Server Command Options”

--tcp-ip
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”

--tee
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”

--temp-pool
Section 1.3, “What Is New in MySQL 8.0”

--tempdelay
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--temperrors
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

--test
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

6059

Text
Section 1.1, “About This Manual”

--text
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

--thread-pool-size
Section 7.6.3.4, “Thread Pool Tuning”

--thread_cache_size
Section 7.9.1.4, “Debugging mysqld under gdb”

--timeout
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--timestamp-printouts
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--timestamp-printouts{
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”

--timezone
Section 7.1.15, “MySQL Server Time Zone Support”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 7.1.8, “Server System Variables”
Section B.3.3.7, “Time Zone Problems”

--tls-ciphersuites
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--tls-version
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

6060

Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

--tls-xxx
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”

--tmpdir
Section B.3.2.11, “Can't create/write to file”
Section 6.6.4.6, “myisamchk Memory Usage”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.1.7, “Server Command Options”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section B.3.3.5, “Where MySQL Stores Temporary Files”

tmpdir
Section 2.3, “Installing MySQL on Microsoft Windows”

--to-last-log
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.6.9.4, “Specifying the mysqlbinlog Server ID”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

--transaction-isolation
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 15.3.7, “SET TRANSACTION Statement”
Section 17.7.2.1, “Transaction Isolation Levels”

--transaction-read-only
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 15.3.7, “SET TRANSACTION Statement”

--transactional
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”

--triggers
Section 9.4.5.3, “Dumping Stored Programs”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

--try-reconnect
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”

--tupscan
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--type
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”

6061

Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”

--tz-utc
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

U

[index top]

-U
Section 6.6.4.2, “myisamchk Check Options”
Section 6.5.1.1, “mysql Client Options”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”

-u
Section 8.2.1, “Account User Names and Passwords”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.1, “Invoking MySQL Programs”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 7.1.7, “Server Command Options”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 2.9.3, “Testing the Server”
Chapter 3, Upgrading MySQL
Section 2.3.6, “Windows Postinstallation Procedures”

--uid
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”

--unbuffered
Section 6.5.1.1, “mysql Client Options”

--unpack
Section 18.2.3, “MyISAM Table Storage Formats”
Section 6.6.4.3, “myisamchk Repair Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”

6062

--unqualified
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”

--update
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”

update
Section 2.3.3.5, “MySQL Installer Console Reference”

--update-state
Section 9.6.3, “How to Repair MyISAM Tables”
Section 6.6.4.2, “myisamchk Check Options”
Section 18.2, “The MyISAM Storage Engine”

--upgrade
Section 3.5, “Changes in MySQL 8.0”
Section 2.3.3.5, “MySQL Installer Console Reference”
Section 2.3.3.4, “MySQL Installer Product Catalog and Dashboard”
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 7.1.7, “Server Command Options”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 1.3, “What Is New in MySQL 8.0”
Section 3.4, “What the MySQL Upgrade Process Upgrades”

upgrade
Section 2.3.3.5, “MySQL Installer Console Reference”

--upgrade-system-tables
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 3.4, “What the MySQL Upgrade Process Upgrades”

--uri
Section 6.2.5, “Connecting to the Server Using URI-Like Strings or Key-Value Pairs”

--usage
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”

6063

Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”

--use-default
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”

--use-frm
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”

--use-threads
Section 6.5.5, “mysqlimport — A Data Import Program”

--useHexFormat
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--user
Section 8.2.1, “Account User Names and Passwords”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 9.3, “Example Backup and Recovery Strategy”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 8.1.5, “How to Run MySQL as a Normal User”
Section 2.9.1, “Initializing the Data Directory”
Section 6.2.1, “Invoking MySQL Programs”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 6.5.1.3, “mysql Client Logging”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.6.20.3, “NDB Cluster and MySQL Security Procedures”
Section 25.5.28, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 6.2.2.6, “Option Defaults, Options Expecting Values, and the = Sign”
Resetting the Root Password: Unix and Unix-Like Systems
Restoring to More Nodes Than the Original
Section 7.1.7, “Server Command Options”
Section 8.4.1.10, “Socket Peer-Credential Pluggable Authentication”
Section 6.2.2, “Specifying Program Options”
Section 2.9.2, “Starting the Server”
Section 8.4.1.12, “Test Pluggable Authentication”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

6064

Section 6.2.2.2, “Using Option Files”

user
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.2.2.2, “Using Option Files”

--users
Section 6.5.6, “mysqlpump — A Database Backup Program”

V

[index top]

-V
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 6.8.2, “perror — Display MySQL Error Message Information”

6065

Section 7.1.7, “Server Command Options”
Section 6.2.2.1, “Using Options on the Command Line”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

-v
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 9.6.2, “How to Check MyISAM Tables for Errors”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9.2, “mysqlbinlog Row Event Display”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 6.6.4.5, “Obtaining Table Information with myisamchk”
Section 6.8.2, “perror — Display MySQL Error Message Information”
Section 7.1.7, “Server Command Options”
Section 6.2.2.1, “Using Options on the Command Line”
Section 8.4.4.8, “Using the keyring_okv KMIP Plugin”

--validate-config
Section 7.1.7, “Server Command Options”
Section 7.1.3, “Server Configuration Validation”

--validate-password
Section 8.4.3.2, “Password Validation Options and Variables”
Section 8.4.3.3, “Transitioning to the Password Validation Component”

--validate-user-plugins
Section 7.1.7, “Server Command Options”

--var_name
Section 17.14, “InnoDB Startup Options and System Variables”
Section 6.6.4.1, “myisamchk General Options”
Section 7.1.7, “Server Command Options”

6066

--variable
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”

--verbose
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 6.5.1.5, “Executing SQL Statements from a Text File”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Monitoring Binary Log Transaction Compression
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.3, “myisam_ftdump — Display Full-Text Index information”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9.2, “mysqlbinlog Row Event Display”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 6.6.4.4, “Other myisamchk Options”
Section 6.8.2, “perror — Display MySQL Error Message Information”
Section 7.1.7, “Server Command Options”
Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”
Section 6.2.2.2, “Using Option Files”
Section 6.2.2.1, “Using Options on the Command Line”

--verify-binlog-checksum
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

--version
Section 6.4.1, “comp_err — Compile MySQL Error Message File”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.7.2, “my_print_defaults — Display Options from Option Files”
Section 6.6.4.1, “myisamchk General Options”

6067

Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.7.1, “mysql_config — Display Options for Compiling Clients”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 25.5.5, “ndb_mgm — The NDB Cluster Management Client”
Section 25.5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”
Section 25.5.15, “ndb_move_data — NDB Data Copy Utility”
Section 25.5.16, “ndb_perror — Obtain NDB Error Message Information”
Section 25.5.17, “ndb_print_backup_file — Print NDB Backup File Contents”
Section 25.5.18, “ndb_print_file — Print NDB Disk Data File Contents”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.24, “ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.26, “ndb_select_count — Print Row Counts for NDB Tables”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”
Section 25.5.1, “ndbd — The NDB Cluster Data Node Daemon”
Section 25.5.2, “ndbinfo_select_all — Select From ndbinfo Tables”
Section 25.5.31, “ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
Cluster”
Section 6.8.2, “perror — Display MySQL Error Message Information”
Section 7.1.7, “Server Command Options”
Section 6.2.2.1, “Using Options on the Command Line”

--version-check
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”

--vertical
Section 1.5, “How to Report Bugs or Problems”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

W

[index top]

-W
Section 6.2.3, “Command Options for Connecting to the Server”

6068

Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

-w
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.5, “myisamlog — Display MyISAM Log File Contents”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--wait
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”

--wait-nodes
Section 25.5.30, “ndb_waiter — Wait for NDB Cluster to Reach a Given Status”

--warn
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”

--watch-progress
Section 6.5.6, “mysqlpump — A Database Backup Program”

--where
Section 6.5.4, “mysqldump — A Database Backup Program”

--with-apply-status
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

WITH_ANT
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_BOOST
Section 2.8.7, “MySQL Source-Configuration Options”
Section 2.8.2, “Source Installation Prerequisites”

WITH_CLASSPATH
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”
Section 25.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”

WITH_CLIENT_PROTOCOL_TRACING
Section 2.8.7, “MySQL Source-Configuration Options”

6069

WITH_CURL
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_DEBUG
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.6, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 6.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.6.7, “mysql_config_editor — MySQL Configuration Utility”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.6.10, “mysqldumpslow — Summarize Slow Query Log Files”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

WITH_EDITLINE
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_EMBEDDED_SERVER
Section 1.3, “What Is New in MySQL 8.0”

WITH_EMBEDDED_SHARED_LIBRARY
Section 1.3, “What Is New in MySQL 8.0”

WITH_FIDO
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_GMOCK
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_ICU
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_JEMALLOC
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_LIBEVENT
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_LOCK_ORDER
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.9.3, “The LOCK_ORDER Tool”

WITH_LTO
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_LZ4
Section 2.8.7, “MySQL Source-Configuration Options”

6070

WITH_LZMA
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_MECAB
Section 14.9.9, “MeCab Full-Text Parser Plugin”

WITH_NDB
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”
Section 25.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

WITH_NDB_JAVA
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”
Section 25.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”

WITH_NDBCLUSTER
Section 25.3.1.4, “Building NDB Cluster from Source on Linux”
Section 25.3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

WITH_NDBCLUSTER_STORAGE_ENGINE
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

WITH_NUMA
Section 17.14, “InnoDB Startup Options and System Variables”
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_PLUGIN_NDBCLUSTER
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

WITH_PROTOBUF
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_RE2
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_SSL
Section 2.8.6, “Configuring SSL Library Support”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 2.8.2, “Source Installation Prerequisites”
Section 8.3, “Using Encrypted Connections”

WITH_SYSTEMD
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_TCMALLOC
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_TEST_TRACE_PLUGIN
Section 2.8.7, “MySQL Source-Configuration Options”

WITH_ZLIB
Section 2.8.7, “MySQL Source-Configuration Options”

6071

WITH_ZSTD
Section 2.8.7, “MySQL Source-Configuration Options”

--write
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”

--write-binlog
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 19.5.3, “Upgrading a Replication Topology”

X

[index top]

-X
Section 6.5.1.2, “mysql Client Commands”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.4, “mysqldump — A Database Backup Program”

-x
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.5.29, “ndb_top — View CPU usage information for NDB threads”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

--xml
Section 15.2.10, “LOAD XML Statement”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.5.7, “ndb_config — Extract NDB Cluster Configuration Information”
Section 14.11, “XML Functions”

Y

[index top]

-Y
Section 6.5.4, “mysqldump — A Database Backup Program”

-y
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

Z

[index top]

-z
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”

--zstd-compression-level
Section 6.2.3, “Command Options for Connecting to the Server”

6072

Section 6.2.8, “Connection Compression Control”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”

Privileges Index
A | B | C | D | E | F | G | I | L | M | N | P | R | S | T | U | V | X

A

[index top]

ALL
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

ALL PRIVILEGES
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.21, “SHOW GRANTS Statement”

ALTER
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.9, “ALTER TABLE Statement”
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.1.36, “RENAME TABLE Statement”

ALTER ROUTINE
Section 15.1.4, “ALTER FUNCTION Statement”
Section 15.1.7, “ALTER PROCEDURE Statement”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.29, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”
Section 15.7.7.9, “SHOW CREATE PROCEDURE Statement”
Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”
Section 27.7, “Stored Program Binary Logging”
Section 27.2.2, “Stored Routines and MySQL Privileges”
Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”

APPLICATION_PASSWORD_ADMIN
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.15, “Password Management”
Section 8.2.2, “Privileges Provided by MySQL”

6073

Section 15.7.1.10, “SET PASSWORD Statement”

AUDIT_ABORT_EXEMPT
Section 8.2.11, “Account Categories”
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.1, “Elements of MySQL Enterprise Audit”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

AUDIT_ADMIN
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.9, “Disabling Audit Logging”
Section 8.4.5.1, “Elements of MySQL Enterprise Audit”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

AUTHENTICATION_POLICY_ADMIN
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.18, “Multifactor Authentication”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”

B

[index top]

BACKUP_ADMIN
Section 3.5, “Changes in MySQL 8.0”
Section 7.6.7.2, “Cloning Data Locally”
Section 20.5.4.2, “Cloning for Distributed Recovery”
Section 7.6.7.3, “Cloning Remote Data”
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 15.7.1.6, “GRANT Statement”
Section 15.3.5, “LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements”
Prerequisites for Cloning
Section 8.2.2, “Privileges Provided by MySQL”
Section 20.2.1.3, “User Credentials For Distributed Recovery”
Section 1.3, “What Is New in MySQL 8.0”

BINLOG_ADMIN
Section 15.7.8.1, “BINLOG Statement”
Section 15.7.1.6, “GRANT Statement”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.4.1.1, “PURGE BINARY LOGS Statement”

BINLOG_ENCRYPTION_ADMIN
Section 15.1.5, “ALTER INSTANCE Statement”
Section 19.3.2.3, “Binary Log Master Key Rotation”
Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”
Section 15.7.1.6, “GRANT Statement”

6074

Section 8.2.2, “Privileges Provided by MySQL”

C

[index top]

CLONE_ADMIN
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.3, “Cloning Remote Data”
Section 15.7.1.6, “GRANT Statement”
Prerequisites for Cloning
Section 8.2.2, “Privileges Provided by MySQL”

CONNECTION_ADMIN
Section 8.2.11, “Account Categories”
Section 15.7.1, “Account Management Statements”
Section 7.1.12.2, “Administrative Connection Management”
Section 15.1.5, “ALTER INSTANCE Statement”
Section 15.7.1.1, “ALTER USER Statement”
Section 8.2.14, “Assigning Account Passwords”
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 12.5, “Configuring Application Character Set and Collation”
Section 20.5.1.5, “Configuring Member Actions”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.12.1, “Connection Interfaces”
Section 15.7.1.2, “CREATE ROLE Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 15.7.1.4, “DROP ROLE Statement”
Section 15.7.1.5, “DROP USER Statement”
Section 20.7.7.4, “Exit Action”
Section 14.18.1.5, “Functions to Set and Reset Group Replication Member Actions”
Section 15.7.1.6, “GRANT Statement”
Section 20.9.1, “Group Replication System Variables”
Section 15.7.8.4, “KILL Statement”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.1.7, “RENAME USER Statement”
Section 8.3.5, “Reusing SSL Sessions”
Section 15.7.1.8, “REVOKE Statement”
Section 7.1.8, “Server System Variables”
Section 15.7.1.10, “SET PASSWORD Statement”
Section 15.3.7, “SET TRANSACTION Statement”
Section 15.7.7.29, “SHOW PROCESSLIST Statement”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section B.3.2.5, “Too many connections”
Section 20.2.1.3, “User Credentials For Distributed Recovery”

CREATE
Section 15.1.9, “ALTER TABLE Statement”
Section 15.1.12, “CREATE DATABASE Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 15.7.1.6, “GRANT Statement”
Section 15.2.6, “IMPORT TABLE Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.1.36, “RENAME TABLE Statement”

6075

CREATE ROLE
Section 15.7.1.2, “CREATE ROLE Statement”
Section 15.7.1.6, “GRANT Statement”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.2.10, “Using Roles”

CREATE ROUTINE
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.7.1.6, “GRANT Statement”
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.9, “SHOW CREATE PROCEDURE Statement”
Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”
Section 27.7, “Stored Program Binary Logging”
Section 27.2.2, “Stored Routines and MySQL Privileges”
Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”

CREATE TABLESPACE
Section 15.1.10, “ALTER TABLESPACE Statement”
Section 17.6.3.3, “General Tablespaces”
Section 15.7.1.6, “GRANT Statement”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 8.2.2, “Privileges Provided by MySQL”

CREATE TEMPORARY TABLES
Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

CREATE USER
Section 8.2.11, “Account Categories”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 15.7.1.1, “ALTER USER Statement”
Section 8.2.14, “Assigning Account Passwords”
Section 15.7.1.2, “CREATE ROLE Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 15.7.1.4, “DROP ROLE Statement”
Section 15.7.1.5, “DROP USER Statement”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.15, “Password Management”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.1.7, “RENAME USER Statement”
Section 15.7.1.8, “REVOKE Statement”
Section 15.7.1.9, “SET DEFAULT ROLE Statement”
Section 15.7.1.10, “SET PASSWORD Statement”
Section 28.3.46, “The INFORMATION_SCHEMA USER_ATTRIBUTES Table”
Section 8.2.10, “Using Roles”

CREATE VIEW
Section 15.1.11, “ALTER VIEW Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

6076

Section 27.9, “Restrictions on Views”

D

[index top]

DELETE
Section 8.2.7, “Access Control, Stage 2: Request Verification”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.2.2, “DELETE Statement”
Section 15.7.4.2, “DROP FUNCTION Statement for Loadable Functions”
Section 15.7.1.5, “DROP USER Statement”
Section 15.7.1.6, “GRANT Statement”
Section 7.7.1, “Installing and Uninstalling Loadable Functions”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 17.7.2.4, “Locking Reads”
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.2.12, “REPLACE Statement”
Section 18.7, “The MERGE Storage Engine”
Section 29.12.2.4, “The setup_objects Table”
Section 15.7.4.5, “UNINSTALL COMPONENT Statement”
Section 15.7.4.6, “UNINSTALL PLUGIN Statement”
Section 8.2.10, “Using Roles”

DROP
Section 8.2, “Access Control and Account Management”
Section 15.1.9, “ALTER TABLE Statement”
Section 15.1.11, “ALTER VIEW Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 15.1.24, “DROP DATABASE Statement”
Section 15.1.32, “DROP TABLE Statement”
Section 15.1.35, “DROP VIEW Statement”
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 8.6.1, “MySQL Enterprise Encryption Installation and Upgrading”
Section 29.11, “Performance Schema General Table Characteristics”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.1.36, “RENAME TABLE Statement”
Section 29.12.21.3, “The host_cache Table”
Section 15.1.37, “TRUNCATE TABLE Statement”
Section 1.3, “What Is New in MySQL 8.0”

DROP ROLE
Section 15.7.1.4, “DROP ROLE Statement”
Section 15.7.1.6, “GRANT Statement”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.2.10, “Using Roles”

E

[index top]

6077

ENCRYPTION_KEY_ADMIN
Section 15.1.5, “ALTER INSTANCE Statement”
Section 15.7.1.6, “GRANT Statement”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 8.2.2, “Privileges Provided by MySQL”

EVENT
Section 15.1.3, “ALTER EVENT Statement”
Section 15.1.13, “CREATE EVENT Statement”
Section 15.1.25, “DROP EVENT Statement”
Section 27.4.1, “Event Scheduler Overview”
Section 27.4.3, “Event Syntax”
Section 15.7.1.6, “GRANT Statement”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.7, “SHOW CREATE EVENT Statement”
Section 15.7.7.18, “SHOW EVENTS Statement”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”

EXECUTE
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.29, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”
Section 15.7.1.6, “GRANT Statement”
Section 7.6.7.10, “Monitoring Cloning Operations”
Section 30.1, “Prerequisites for Using the sys Schema”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”
Section 15.7.7.9, “SHOW CREATE PROCEDURE Statement”
Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”
Section 27.6, “Stored Object Access Control”
Section 27.2.2, “Stored Routines and MySQL Privileges”
Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”

F

[index top]

FILE
Section 15.1.20, “CREATE TABLE Statement”
Section 9.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 15.2.6, “IMPORT TABLE Statement”
Section 15.2.9, “LOAD DATA Statement”
Section 15.2.10, “LOAD XML Statement”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 8.6.3, “MySQL Enterprise Encryption Usage and Examples”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.19, “Replication and LOAD DATA”

6078

Section 15.2.13.1, “SELECT ... INTO Statement”
Section 7.1.8, “Server System Variables”
Section 14.8, “String Functions and Operators”
Section 13.3.4, “The BLOB and TEXT Types”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 1.3, “What Is New in MySQL 8.0”

FIREWALL_ADMIN
Section 8.4.7.1, “Elements of MySQL Enterprise Firewall”
Section 15.7.1.6, “GRANT Statement”
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”

FIREWALL_EXEMPT
Section 8.4.7.1, “Elements of MySQL Enterprise Firewall”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”

FIREWALL_USER
Section 8.4.7.1, “Elements of MySQL Enterprise Firewall”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”

FLUSH_OPTIMIZER_COSTS
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

FLUSH_STATUS
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

FLUSH_TABLES
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”

FLUSH_USER_RESOURCES
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

G

[index top]

GRANT OPTION
Section 15.7.1.6, “GRANT Statement”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.1.8, “REVOKE Statement”
Section 15.7.7.21, “SHOW GRANTS Statement”

6079

Section 28.3.10, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 28.3.33, “The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table”
Section 28.3.44, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 28.3.47, “The INFORMATION_SCHEMA USER_PRIVILEGES Table”

GROUP_REPLICATION_ADMIN
Section 20.5.1.5, “Configuring Member Actions”
Section 14.18.1.3, “Functions to Inspect and Configure the Maximum Consensus Instances of a Group”
Section 14.18.1.4, “Functions to Inspect and Set the Group Replication Communication Protocol
Version”
Section 14.18.1.5, “Functions to Set and Reset Group Replication Member Actions”
Section 15.7.1.6, “GRANT Statement”
Section 20.9.1, “Group Replication System Variables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 20.5.1.4, “Setting a Group's Communication Protocol Version”
Section 15.4.3.1, “START GROUP_REPLICATION Statement”
Section 15.4.3.2, “STOP GROUP_REPLICATION Statement”
Section 20.5.1.3, “Using Group Replication Group Write Consensus”

GROUP_REPLICATION_STREAM
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 8.2.2, “Privileges Provided by MySQL”
Replication User With SSL
Section 20.2.1.3, “User Credentials For Distributed Recovery”

I

[index top]

INDEX
Section 15.1.9, “ALTER TABLE Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

INNODB_REDO_LOG_ARCHIVE
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 17.6.5, “Redo Log”

INNODB_REDO_LOG_ENABLE
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 17.6.5, “Redo Log”
Section 1.3, “What Is New in MySQL 8.0”

INSERT
Section 8.2.7, “Access Control, Stage 2: Request Verification”
Section 15.1.9, “ALTER TABLE Statement”
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 8.2.14, “Assigning Account Passwords”
Section 15.7.4.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 15.7.1.3, “CREATE USER Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 15.7.1.6, “GRANT Statement”

6080

Section 15.2.7, “INSERT Statement”
Section 15.7.4.3, “INSTALL COMPONENT Statement”
Section 15.7.4.4, “INSTALL PLUGIN Statement”
Section 7.7.1, “Installing and Uninstalling Loadable Functions”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 8.6.1, “MySQL Enterprise Encryption Installation and Upgrading”
Section 15.7.3.4, “OPTIMIZE TABLE Statement”
Section 18.11.1, “Pluggable Storage Engine Architecture”
Section 30.1, “Prerequisites for Using the sys Schema”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.1.36, “RENAME TABLE Statement”
Section 15.7.3.5, “REPAIR TABLE Statement”
Section 15.2.12, “REPLACE Statement”
Section 19.3.3, “Replication Privilege Checks”
Section 7.1.7, “Server Command Options”
Section 27.6, “Stored Object Access Control”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”
Section 29.12.2.4, “The setup_objects Table”
Section 8.2.10, “Using Roles”

L

[index top]

LOCK TABLES
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 17.7.2.4, “Locking Reads”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”

M

[index top]

MASKING_DICTIONARIES_ADMIN
Section 8.5.2.4, “MySQL Enterprise Data Masking and De-Identification Component Function
Descriptions”
Section 8.5.2.1, “MySQL Enterprise Data Masking and De-Identification Component Installation”
Section 8.5.2, “MySQL Enterprise Data Masking and De-Identification Components”
Section 8.2.2, “Privileges Provided by MySQL”

N

[index top]

NDB_STORED_USER
Section 15.7.1.6, “GRANT Statement”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”
Section 25.6.13, “Privilege Synchronization and NDB_STORED_USER”
Section 8.2.2, “Privileges Provided by MySQL”
Restoring an NDB backup to a previous version of NDB Cluster
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

6081

P

[index top]

PASSWORDLESS_USER_ADMIN
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.18, “Multifactor Authentication”
Section 8.2.2, “Privileges Provided by MySQL”

PERSIST_RO_VARIABLES_ADMIN
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.8.7, “RESET PERSIST Statement”
Section 7.1.9.1, “System Variable Privileges”

PROCESS
Section 10.14.1, “Accessing the Process List”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 17.17.2, “Enabling InnoDB Monitors”
Section 27.4.2, “Event Scheduler Configuration”
Section 15.8.2, “EXPLAIN Statement”
Section 15.7.1.6, “GRANT Statement”
Section 28.1, “Introduction”
Section 15.7.8.4, “KILL Statement”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 25.6.10, “MySQL Server Usage for NDB Cluster”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 30.1, “Prerequisites for Using the sys Schema”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.15, “SHOW ENGINE Statement”
Section 15.7.7.29, “SHOW PROCESSLIST Statement”
Section 29.12.13.2, “The data_lock_waits Table”
Section 29.12.13.1, “The data_locks Table”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”
Section 28.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 28.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 28.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 28.4.5, “The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table”
Section 28.4.6, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 28.4.8, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 28.4.7, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 28.4.9, “The INFORMATION_SCHEMA INNODB_COLUMNS Table”
Section 28.4.10, “The INFORMATION_SCHEMA INNODB_DATAFILES Table”
Section 28.4.11, “The INFORMATION_SCHEMA INNODB_FIELDS Table”
Section 28.4.12, “The INFORMATION_SCHEMA INNODB_FOREIGN Table”
Section 28.4.13, “The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table”
Section 28.4.14, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 28.4.15, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 28.4.16, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”
Section 28.4.17, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 28.4.18, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”

6082

Section 28.4.19, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 28.4.20, “The INFORMATION_SCHEMA INNODB_INDEXES Table”
Section 28.4.21, “The INFORMATION_SCHEMA INNODB_METRICS Table”
Section 28.4.22, “The INFORMATION_SCHEMA INNODB_SESSION_TEMP_TABLESPACES Table”
Section 28.4.23, “The INFORMATION_SCHEMA INNODB_TABLES Table”
Section 28.4.24, “The INFORMATION_SCHEMA INNODB_TABLESPACES Table”
Section 28.4.25, “The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table”
Section 28.4.26, “The INFORMATION_SCHEMA INNODB_TABLESTATS View”
Section 28.4.27, “The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table”
Section 28.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 28.4.29, “The INFORMATION_SCHEMA INNODB_VIRTUAL Table”
Section 28.3.23, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 29.12.21.7, “The processlist Table”
Section 29.12.21.8, “The threads Table”

PROXY
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.5, “PAM Pluggable Authentication”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.2.19, “Proxy Users”
Section 2.9.4, “Securing the Initial MySQL Account”
Section 29.12.21.3, “The host_cache Table”
Section 8.4.1.6, “Windows Pluggable Authentication”

PROXY ... WITH GRANT OPTION
Section 8.2.19, “Proxy Users”

R

[index top]

REFERENCES
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

RELOAD
Section 8.2.7, “Access Control, Stage 2: Request Verification”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 3.5, “Changes in MySQL 8.0”
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 15.3.5, “LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.4.1.2, “RESET MASTER Statement”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 15.7.8.6, “RESET Statement”
Section 7.4.6, “Server Log Maintenance”

REPLICATION CLIENT
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

6083

Section 15.7.7.1, “SHOW BINARY LOGS Statement”
Section 15.7.7.23, “SHOW MASTER STATUS Statement”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”

REPLICATION SLAVE
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 19.1.5.1, “Configuring Multi-Source Replication”
Section 19.1.2.3, “Creating a User for Replication”
Section 15.7.1.6, “GRANT Statement”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 15.7.7.2, “SHOW BINLOG EVENTS Statement”
Section 15.7.7.32, “SHOW RELAYLOG EVENTS Statement”
Section 15.7.7.33, “SHOW REPLICAS Statement”
Section 20.2.1.3, “User Credentials For Distributed Recovery”

REPLICATION_APPLIER
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.7.8.1, “BINLOG Statement”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 15.7.1.6, “GRANT Statement”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.3.3, “Replication Privilege Checks”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 7.1.8, “Server System Variables”

REPLICATION_SLAVE_ADMIN
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 15.7.1.6, “GRANT Statement”
Section 19.4.10.1, “Installing Semisynchronous Replication”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.4.2.6, “START REPLICA Statement”
Section 15.4.2.8, “STOP REPLICA Statement”

RESOURCE_GROUP_ADMIN
Section 15.7.2.1, “ALTER RESOURCE GROUP Statement”
Section 15.7.2.2, “CREATE RESOURCE GROUP Statement”
Section 15.7.2.3, “DROP RESOURCE GROUP Statement”
Section 15.7.1.6, “GRANT Statement”
Section 10.9.3, “Optimizer Hints”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.16, “Resource Groups”
Section 15.7.2.4, “SET RESOURCE GROUP Statement”

RESOURCE_GROUP_USER
Section 15.7.1.6, “GRANT Statement”
Section 10.9.3, “Optimizer Hints”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.16, “Resource Groups”
Section 15.7.2.4, “SET RESOURCE GROUP Statement”

6084

ROLE_ADMIN
Section 15.7.1.6, “GRANT Statement”
Section 14.15, “Information Functions”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”
Section 8.2.10, “Using Roles”

S

[index top]

SELECT
Section 8.2, “Access Control and Account Management”
Section 8.2.7, “Access Control, Stage 2: Request Verification”
Section 8.2.11, “Account Categories”
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 15.7.3.3, “CHECKSUM TABLE Statement”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.20.3, “CREATE TABLE ... LIKE Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 16.7, “Data Dictionary Usage Differences”
Section 15.2.2, “DELETE Statement”
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 15.2.7, “INSERT Statement”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 17.7.2.4, “Locking Reads”
Section 7.6.7.10, “Monitoring Cloning Operations”
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”
Section 15.7.3.4, “OPTIMIZE TABLE Statement”
Section 29.11, “Performance Schema General Table Characteristics”
Section 30.1, “Prerequisites for Using the sys Schema”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.3.5, “REPAIR TABLE Statement”
Section 27.9, “Restrictions on Views”
Section 15.7.1.8, “REVOKE Statement”
Section 15.7.7.9, “SHOW CREATE PROCEDURE Statement”
Section 15.7.7.12, “SHOW CREATE USER Statement”
Section 15.7.7.13, “SHOW CREATE VIEW Statement”
Section 15.7.7.21, “SHOW GRANTS Statement”
Section 15.7.7.27, “SHOW PROCEDURE CODE Statement”
Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”
Section 27.6, “Stored Object Access Control”
Section 27.2.2, “Stored Routines and MySQL Privileges”
Section 29.12.13.2, “The data_lock_waits Table”
Section 29.12.13.1, “The data_locks Table”
Section 29.12.21.2, “The error_log Table”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”
Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”
Section 28.3.46, “The INFORMATION_SCHEMA USER_ATTRIBUTES Table”
Section 18.7, “The MERGE Storage Engine”

6085

Section 29.12.21.8, “The threads Table”
Section 27.3.1, “Trigger Syntax and Examples”
Section 15.2.17, “UPDATE Statement”

SENSITIVE_VARIABLES_OBSERVER
Section 29.12.14.1, “Performance Schema persisted_variables Table”
Section 29.12.14, “Performance Schema System Variable Tables”
Section 7.1.9.3, “Persisted System Variables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.18, “Server Tracking of Client Session State”

SERVICE_CONNECTION_ADMIN
Section 7.1.12.2, “Administrative Connection Management”
Section 8.2.2, “Privileges Provided by MySQL”
Selecting addresses for distributed recovery endpoints

SESSION_VARIABLES_ADMIN
Section 3.5, “Changes in MySQL 8.0”
Section 15.7.1.6, “GRANT Statement”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”
Section 7.1.9.1, “System Variable Privileges”

SET_USER_ID
Section 8.2.11, “Account Categories”
Section 15.1.11, “ALTER VIEW Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 15.7.1.5, “DROP USER Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.1.7, “RENAME USER Statement”
Section 27.6, “Stored Object Access Control”
Section 27.7, “Stored Program Binary Logging”

SHOW DATABASES
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”
Section 15.7.7.14, “SHOW DATABASES Statement”

SHOW VIEW
Section 15.8.2, “EXPLAIN Statement”
Section 15.7.1.6, “GRANT Statement”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”
Section 27.9, “Restrictions on Views”
Section 15.7.7.13, “SHOW CREATE VIEW Statement”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”

SHOW_ROUTINE
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.9, “SHOW CREATE PROCEDURE Statement”
Section 15.7.7.27, “SHOW PROCEDURE CODE Statement”

6086

Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”
Section 27.2.2, “Stored Routines and MySQL Privileges”
Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”

SHUTDOWN
Section 8.2.7, “Access Control, Stage 2: Request Verification”
Section 7.6.7.3, “Cloning Remote Data”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.8.8, “RESTART Statement”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 15.7.8.9, “SHUTDOWN Statement”
Section 7.1.19, “The Server Shutdown Process”
Section 6.10, “Unix Signal Handling in MySQL”

SKIP_QUERY_REWRITE
Section 15.7.1.6, “GRANT Statement”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.3.3, “Replication Privilege Checks”
Section 7.6.4, “The Rewriter Query Rewrite Plugin”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 1.3, “What Is New in MySQL 8.0”

SUPER
Section 8.2.11, “Account Categories”
Section 15.7.1, “Account Management Statements”
Section 7.1.12.2, “Administrative Connection Management”
Section 15.1.4, “ALTER FUNCTION Statement”
Section 15.1.5, “ALTER INSTANCE Statement”
Section 15.1.8, “ALTER SERVER Statement”
Section 15.7.1.1, “ALTER USER Statement”
Section 15.1.11, “ALTER VIEW Statement”
Section 8.2.14, “Assigning Account Passwords”
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.7.8.1, “BINLOG Statement”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 7.6.7.13, “Clone System Variables”
Section 12.5, “Configuring Application Character Set and Collation”
Section 20.5.1.5, “Configuring Member Actions”
Section 7.1.12.1, “Connection Interfaces”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.7.1.2, “CREATE ROLE Statement”
Section 15.1.18, “CREATE SERVER Statement”
Section 15.1.19, “CREATE SPATIAL REFERENCE SYSTEM Statement”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.4.5.9, “Disabling Audit Logging”

6087

Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 15.7.1.4, “DROP ROLE Statement”
Section 15.1.30, “DROP SERVER Statement”
Section 15.1.31, “DROP SPATIAL REFERENCE SYSTEM Statement”
Section 15.7.1.5, “DROP USER Statement”
Section 20.7.7.4, “Exit Action”
Section 14.18.1.5, “Functions to Set and Reset Group Replication Member Actions”
Section 15.7.1.6, “GRANT Statement”
Section 20.9.1, “Group Replication System Variables”
Section 14.15, “Information Functions”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 19.4.10.1, “Installing Semisynchronous Replication”
Section 8.4.4.19, “Keyring System Variables”
Section 15.7.8.4, “KILL Statement”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”
Section 8.5.3, “MySQL Enterprise Data Masking and De-Identification Plugin”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”
Section 7.1.15, “MySQL Server Time Zone Support”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 8.4.4.16, “Plugin-Specific Keyring Key-Management Functions”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.1.7, “RENAME USER Statement”
Section 15.7.8.7, “RESET PERSIST Statement”
Section 15.7.1.8, “REVOKE Statement”
Rewriter Query Rewrite Plugin System Variables
Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”
Section 15.7.1.10, “SET PASSWORD Statement”
Section 15.3.7, “SET TRANSACTION Statement”
Section 19.1.2, “Setting Up Binary Log File Position Based Replication”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 15.7.7.1, “SHOW BINARY LOGS Statement”
Section 15.7.7.23, “SHOW MASTER STATUS Statement”
Section 15.7.7.29, “SHOW PROCESSLIST Statement”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 15.4.3.1, “START GROUP_REPLICATION Statement”
Section 15.4.2.6, “START REPLICA Statement”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 15.4.3.2, “STOP GROUP_REPLICATION Statement”
Section 15.4.2.8, “STOP REPLICA Statement”
Section 27.6, “Stored Object Access Control”
Section 27.7, “Stored Program Binary Logging”
Section 7.1.9.1, “System Variable Privileges”
Section 30.4.4.2, “The diagnostics() Procedure”
Section B.3.2.5, “Too many connections”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”
Section 8.2.10, “Using Roles”
Section 7.6.6.3, “Using Version Tokens”
Section 7.6.6.1, “Version Tokens Elements”
Section 7.6.6.4, “Version Tokens Reference”

SYSTEM_USER
Section 8.2.11, “Account Categories”
Section 8.4.5.7, “Audit Log Filtering”

6088

Section 15.1.29, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 15.7.1.6, “GRANT Statement”
Section 14.15, “Information Functions”
Section 15.7.8.4, “KILL Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”
Section 15.7.7.29, “SHOW PROCESSLIST Statement”
Section 27.6, “Stored Object Access Control”
Section 28.3.23, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 28.3.46, “The INFORMATION_SCHEMA USER_ATTRIBUTES Table”
Section 29.12.21.7, “The processlist Table”
Section 8.2.10, “Using Roles”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

SYSTEM_VARIABLES_ADMIN
Section 8.4.5.11, “Audit Log Reference”
Section 3.5, “Changes in MySQL 8.0”
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.3, “Cloning Remote Data”
Section 8.4.5.9, “Disabling Audit Logging”
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 7.1.15, “MySQL Server Time Zone Support”
Section 8.4.4.16, “Plugin-Specific Keyring Key-Management Functions”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.8.7, “RESET PERSIST Statement”
Rewriter Query Rewrite Plugin System Variables
Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”
Section 7.1.9.1, “System Variable Privileges”
Section 8.2.10, “Using Roles”

T

[index top]

TABLE_ENCRYPTION_ADMIN
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.9, “ALTER TABLE Statement”
Section 15.1.10, “ALTER TABLESPACE Statement”
Section 15.1.12, “CREATE DATABASE Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 15.7.1.6, “GRANT Statement”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.1.36, “RENAME TABLE Statement”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

TELEMETRY_LOG_ADMIN
Section 15.7.1.6, “GRANT Statement”

6089

Section 8.2.2, “Privileges Provided by MySQL”

TP_CONNECTION_ADMIN
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.6.3.3, “Thread Pool Operation”

TRIGGER
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.1.34, “DROP TRIGGER Statement”
Section 15.7.1.6, “GRANT Statement”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.11, “SHOW CREATE TRIGGER Statement”
Section 15.7.7.40, “SHOW TRIGGERS Statement”
Section 28.3.45, “The INFORMATION_SCHEMA TRIGGERS Table”

U

[index top]

UPDATE
Section 8.2.11, “Account Categories”
Section 15.7.1.1, “ALTER USER Statement”
Section 8.2.14, “Assigning Account Passwords”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.7.1.6, “GRANT Statement”
Section 15.2.7, “INSERT Statement”
Section 17.7.2.4, “Locking Reads”
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”
Section 8.2.15, “Password Management”
Section 29.11, “Performance Schema General Table Characteristics”
Section 29.4, “Performance Schema Runtime Configuration”
Section 29.12.2, “Performance Schema Setup Tables”
Section 30.1, “Prerequisites for Using the sys Schema”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.1.7, “RENAME USER Statement”
Section 15.7.1.8, “REVOKE Statement”
Section 7.1.8, “Server System Variables”
Section 15.7.1.9, “SET DEFAULT ROLE Statement”
Section 15.7.1.10, “SET PASSWORD Statement”
Section 27.6, “Stored Object Access Control”
Section 28.3.46, “The INFORMATION_SCHEMA USER_ATTRIBUTES Table”
Section 18.7, “The MERGE Storage Engine”
Section 29.12.2.4, “The setup_objects Table”
Section 27.3.1, “Trigger Syntax and Examples”
Section 15.2.17, “UPDATE Statement”
Section 8.2.10, “Using Roles”

USAGE
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”

6090

V

[index top]

VERSION_TOKEN_ADMIN
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.6.6.3, “Using Version Tokens”
Section 7.6.6.1, “Version Tokens Elements”
Section 7.6.6.4, “Version Tokens Reference”

X

[index top]

XA_RECOVER_ADMIN
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”
Section 15.3.8.1, “XA Transaction SQL Statements”

SQL Modes Index
A | E | H | I | N | O | P | R | S | T

A

[index top]

ALLOW_INVALID_DATES
Section 13.2, “Date and Time Data Types”
Section 14.7, “Date and Time Functions”
Section B.3.4.2, “Problems Using DATE Columns”
Section 7.1.11, “Server SQL Modes”
Section 13.2.2, “The DATE, DATETIME, and TIMESTAMP Types”

ANSI
Section 11.2.5, “Function Name Parsing and Resolution”
Section 7.1.11, “Server SQL Modes”
Section 15.7.7.13, “SHOW CREATE VIEW Statement”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”

ANSI_QUOTES
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 6.5.1.6, “mysql Client Tips”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 10.9.3, “Optimizer Hints”
Section 11.2, “Schema Object Names”
Section 7.1.11, “Server SQL Modes”
Section 11.1.1, “String Literals”

E

[index top]

6091

ERROR_FOR_DIVISION_BY_ZERO
Section 14.24.3, “Expression Handling”
Section A.3, “MySQL 8.0 FAQ: Server SQL Mode”
Section 14.24.5, “Precision Math Examples”
Section 7.1.11, “Server SQL Modes”

H

[index top]

HIGH_NOT_PRECEDENCE
Section 11.5, “Expressions”
Section 14.4.1, “Operator Precedence”
Section 7.1.11, “Server SQL Modes”

I

[index top]

IGNORE_SPACE
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 11.2.5, “Function Name Parsing and Resolution”
Section 6.5.1.1, “mysql Client Options”
Section 7.1.11, “Server SQL Modes”

N

[index top]

NO_AUTO_VALUE_ON_ZERO
Section 15.1.20, “CREATE TABLE Statement”
Section 13.1.6, “Numeric Type Attributes”
Section 7.1.11, “Server SQL Modes”
Section 5.6.9, “Using AUTO_INCREMENT”

NO_BACKSLASH_ESCAPES
Section 14.17.4, “Functions That Modify JSON Values”
Section 14.8.2, “Regular Expressions”
Section 7.1.11, “Server SQL Modes”
Section 14.8.1, “String Comparison Functions and Operators”
Section 11.1.1, “String Literals”
Section 13.5, “The JSON Data Type”

NO_DIR_IN_CREATE
Section 15.1.20, “CREATE TABLE Statement”
Section 19.5.1.10, “Replication and DIRECTORY Table Options”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.11, “Server SQL Modes”
Section 7.4.4, “The Binary Log”

NO_ENGINE_SUBSTITUTION
Section 15.1.9, “ALTER TABLE Statement”
Section 15.1.20, “CREATE TABLE Statement”

6092

Section 7.6.1, “Installing and Uninstalling Plugins”
Section A.3, “MySQL 8.0 FAQ: Server SQL Mode”
Section 7.1.11, “Server SQL Modes”
Section 18.1, “Setting the Storage Engine”
Section 19.4.4, “Using Replication with Different Source and Replica Storage Engines”

NO_UNSIGNED_SUBTRACTION
Section 14.6.1, “Arithmetic Operators”
Section 14.10, “Cast Functions and Operators”
Section 13.1.1, “Numeric Data Type Syntax”
Section 13.1.7, “Out-of-Range and Overflow Handling”
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 7.1.11, “Server SQL Modes”

NO_ZERO_DATE
Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 14.10, “Cast Functions and Operators”
Section 15.1.20, “CREATE TABLE Statement”
Section 13.2, “Date and Time Data Types”
Section 14.7, “Date and Time Functions”
Section 15.2.9, “LOAD DATA Statement”
Section A.3, “MySQL 8.0 FAQ: Server SQL Mode”
Section B.3.4.2, “Problems Using DATE Columns”
Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”
Section 13.2.2, “The DATE, DATETIME, and TIMESTAMP Types”

NO_ZERO_IN_DATE
Section 15.1.20, “CREATE TABLE Statement”
Section 13.2, “Date and Time Data Types”
Section 15.2.9, “LOAD DATA Statement”
Section A.3, “MySQL 8.0 FAQ: Server SQL Mode”
Section B.3.4.2, “Problems Using DATE Columns”
Section 7.1.11, “Server SQL Modes”

O

[index top]

ONLY_FULL_GROUP_BY
Section 5.3.4.8, “Counting Rows”
Section 14.19.2, “GROUP BY Modifiers”
Section 14.23, “Miscellaneous Functions”
Section A.3, “MySQL 8.0 FAQ: Server SQL Mode”
Section 14.19.3, “MySQL Handling of GROUP BY”
Section 7.1.11, “Server SQL Modes”

P

[index top]

PAD_CHAR_TO_FULL_LENGTH
Section 7.1.11, “Server SQL Modes”
Section 13.3.1, “String Data Type Syntax”
Section 13.3.2, “The CHAR and VARCHAR Types”
Section 1.3, “What Is New in MySQL 8.0”

6093

PIPES_AS_CONCAT
Section 11.5, “Expressions”
Section 14.4.3, “Logical Operators”
Section 14.4.1, “Operator Precedence”
Section 7.1.11, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 8.0”

R

[index top]

REAL_AS_FLOAT
Section 14.10, “Cast Functions and Operators”
Section 13.1.1, “Numeric Data Type Syntax”
Section 13.1, “Numeric Data Types”
Section 7.1.11, “Server SQL Modes”

S

[index top]

STRICT_ALL_TABLES
Section 14.24.3, “Expression Handling”
Section A.3, “MySQL 8.0 FAQ: Server SQL Mode”
Section 7.1.11, “Server SQL Modes”
Section 19.5.3, “Upgrading a Replication Topology”

STRICT_TRANS_TABLES
Section 14.24.3, “Expression Handling”
Section A.3, “MySQL 8.0 FAQ: Server SQL Mode”
Section 7.1.11, “Server SQL Modes”
Section 19.5.3, “Upgrading a Replication Topology”

T

[index top]

TIME_TRUNCATE_FRACTIONAL
Section 13.2.6, “Fractional Seconds in Time Values”
Section 7.1.11, “Server SQL Modes”

TRADITIONAL
Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 14.24.3, “Expression Handling”
Section A.3, “MySQL 8.0 FAQ: Server SQL Mode”
Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”

Statement/Syntax Index
A | B | C | D | E | F | G | H | I | J | K | L | O | P | R | S | T | U | V | W | X

A

[index top]

6094

ADD PARTITION
Section 17.12.1, “Online DDL Operations”

ALTER DATABASE
Section 15.1.2, “ALTER DATABASE Statement”
Section 12.5, “Configuring Application Character Set and Collation”
Section 12.3.3, “Database Character Set and Collation”
Section 19.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ALTER EVENT
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.3, “ALTER EVENT Statement”
Section 15.1.13, “CREATE EVENT Statement”
Section 27.4.4, “Event Metadata”
Section 27.4.1, “Event Scheduler Overview”
Section 27.4.3, “Event Syntax”
Section 14.15, “Information Functions”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 19.5.1.16, “Replication of Invoked Features”
Section 27.8, “Restrictions on Stored Programs”
Setting Up Replication with Existing Data
Section 15.7.7.18, “SHOW EVENTS Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.6, “Stored Object Access Control”
Section 27.7, “Stored Program Binary Logging”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”
Section 28.3.14, “The INFORMATION_SCHEMA EVENTS Table”

ALTER EVENT event_name ENABLE
Section 19.5.1.16, “Replication of Invoked Features”

ALTER FUNCTION
Section 15.1.4, “ALTER FUNCTION Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.7, “Stored Program Binary Logging”
Section 27.2.1, “Stored Routine Syntax”

ALTER IGNORE TABLE
Section 26.3.4, “Maintenance of Partitions”

ALTER INSTANCE
Section 15.1.5, “ALTER INSTANCE Statement”
Section 17.6.5, “Redo Log”

ALTER INSTANCE DISABLE INNODB REDO_LOG
Section 17.6.5, “Redo Log”

6095

ALTER INSTANCE INNODB REDO_LOG
Section 15.1.5, “ALTER INSTANCE Statement”
Section 17.6.5, “Redo Log”

ALTER INSTANCE RELOAD KEYRING
Section 15.1.5, “ALTER INSTANCE Statement”
Section 8.4.4.2, “Keyring Component Installation”
Section 8.4.4.11, “Using the Oracle Cloud Infrastructure Vault Keyring Component”

ALTER INSTANCE RELOAD TLS
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.5, “Reusing SSL Sessions”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Section 7.1.7, “Server Command Options”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 29.12.21.9, “The tls_channel_status Table”

ALTER INSTANCE ROTATE BINLOG MASTER KEY
Section 19.3.2.3, “Binary Log Master Key Rotation”

ALTER INSTANCE ROTATE INNODB MASTER KEY
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section A.17, “MySQL 8.0 FAQ: InnoDB Data-at-Rest Encryption”

ALTER INSTANCE {ENABLE|DISABLE} INNODB REDO_LOG
Section 10.5.5, “Bulk Data Loading for InnoDB Tables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 1.3, “What Is New in MySQL 8.0”

ALTER LOGFILE GROUP
Section 15.1.6, “ALTER LOGFILE GROUP Statement”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”

ALTER PROCEDURE
Section 15.1.7, “ALTER PROCEDURE Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.7, “Stored Program Binary Logging”
Section 27.2.1, “Stored Routine Syntax”

ALTER RESOURCE GROUP
Section 15.7.2.1, “ALTER RESOURCE GROUP Statement”
Section 7.1.16, “Resource Groups”

ALTER SCHEMA
Section 15.1.2, “ALTER DATABASE Statement”
Section 17.13, “InnoDB Data-at-Rest Encryption”

ALTER SERVER
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.5, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”

6096

Section 15.3.3, “Statements That Cause an Implicit Commit”

ALTER TABLE
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.9.2, “ALTER TABLE and Generated Columns”
Section 15.1.9.3, “ALTER TABLE Examples”
Section 15.1.9.1, “ALTER TABLE Partition Operations”
Section 15.1.9, “ALTER TABLE Statement”
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 14.10, “Cast Functions and Operators”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 3.5, “Changes in MySQL 8.0”
Section 15.7.3.2, “CHECK TABLE Statement”
Section 12.3.5, “Column Character Set and Collation”
Section 12.7, “Column Character Set Conversion”
Section 10.3.5, “Column Indexes”
Section 17.8.10, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 17.8.11, “Configuring the Merge Threshold for Index Pages”
Section 17.7.2.3, “Consistent Nonlocking Reads”
Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 12.9.8, “Converting Between 3-Byte and 4-Byte Unicode Character Sets”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 15.1.15, “CREATE INDEX Statement”
Section 15.1.20.4, “CREATE TABLE ... SELECT Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 5.3.2, “Creating a Table”
Section 17.9.1.2, “Creating Compressed Tables”
Section 17.6.1.1, “Creating InnoDB Tables”
Section 13.4.6, “Creating Spatial Columns”
Section 13.4.10, “Creating Spatial Indexes”
Section 13.6, “Data Type Default Values”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 17.11.4, “Defragmenting a Table”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 15.1.27, “DROP INDEX Statement”
Section 17.8.10.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 10.8.2, “EXPLAIN Output Format”
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 17.6.3.2, “File-Per-Table Tablespaces”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 17.21.3, “Forcing InnoDB Recovery”
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 14.9, “Full-Text Search Functions”
Section 17.6.3.3, “General Tablespaces”
Section 10.14.3, “General Thread States”
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 15.7.1.6, “GRANT Statement”
Section 17.9.1.5, “How Compression Works for InnoDB Tables”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 9.6.3, “How to Repair MyISAM Tables”
Section 14.15, “Information Functions”

6097

Section 25.3.3, “Initial Configuration of NDB Cluster”
Section 10.3.8, “InnoDB and MyISAM Index Statistics Collection”
Section 17.12, “InnoDB and Online DDL”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.16, “InnoDB Integration with MySQL Performance Schema”
Section 17.9.2, “InnoDB Page Compression”
Section 17.10, “InnoDB Row Formats”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.9.1, “InnoDB Table Compression”
Section 15.1.20.10, “Invisible Columns”
Section 10.3.12, “Invisible Indexes”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 15.7.8.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 25.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 25.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 10.4.6, “Limits on Table Size”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 26.3.4, “Maintenance of Partitions”
Section 26.3.2, “Management of HASH and KEY Partitions”
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 14.9.9, “MeCab Full-Text Parser Plugin”
Section 18.7.2, “MERGE Table Problems”
Section 17.16.1, “Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema”
Section 17.6.1.4, “Moving or Copying InnoDB Tables”
Section 18.2.1, “MyISAM Startup Options”
Section 18.2.3, “MyISAM Table Storage Formats”
Section 6.6.4.1, “myisamchk General Options”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
MySQL Server Options for NDB Cluster
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 25.3.5, “NDB Cluster Example with Tables and Data”
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster System Variables
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 14.9.8, “ngram Full-Text Parser”
Section 25.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 17.12.7, “Online DDL Failure Conditions”
Section 17.12.8, “Online DDL Limitations”
Section 17.12.1, “Online DDL Operations”
Section 17.12.2, “Online DDL Performance and Concurrency”
Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 15.7.3.4, “OPTIMIZE TABLE Statement”
Section 10.4.1, “Optimizing Data Size”
Section 13.1.7, “Out-of-Range and Overflow Handling”
Section 26.1, “Overview of Partitioning in MySQL”
Section 17.9.1.1, “Overview of Table Compression”
Section 26.3, “Partition Management”
Section 26.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”
Section 26.6.2, “Partitioning Limitations Relating to Storage Engines”

6098

Section 29.12.5, “Performance Schema Stage Event Tables”
Section 3.6, “Preparing Your Installation for Upgrade”
Section 8.2.2, “Privileges Provided by MySQL”
Section B.3.6.1, “Problems with ALTER TABLE”
Section 26.2.3.1, “RANGE COLUMNS partitioning”
Section 26.2.1, “RANGE Partitioning”
Section 3.14, “Rebuilding or Repairing Tables or Indexes”
Section 16.2, “Removal of File-based Metadata Storage”
Section 15.1.36, “RENAME TABLE Statement”
Section 19.5.1.1, “Replication and AUTO_INCREMENT”
Section 19.5.1.26, “Replication and Reserved Words”
Replication with More Columns on Source or Replica
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 27.9, “Restrictions on Views”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.7, “Server Command Options”
Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”
Section 15.1.20.12, “Setting NDB Comment Options”
Section 7.4.4.2, “Setting The Binary Log Format”
Section 18.1, “Setting the Storage Engine”
Section 15.7.7.15, “SHOW ENGINE Statement”
Section 15.7.7.22, “SHOW INDEX Statement”
Section 15.7.7.39, “SHOW TABLES Statement”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 15.1.20.7, “Silent Column Specification Changes”
Section 17.12.6, “Simplifying DDL Statements with Online DDL”
Section 17.9.1.7, “SQL Compression Syntax Warnings and Errors”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 13.3.1, “String Data Type Syntax”
Section 12.3.4, “Table Character Set and Collation”
Section 17.6.3.9, “Tablespace AUTOEXTEND_SIZE Configuration”
Section B.3.6.2, “TEMPORARY Table Problems”
Section 28.4.23, “The INFORMATION_SCHEMA INNODB_TABLES Table”
Section 28.3.21, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”
Section 18.3, “The MEMORY Storage Engine”
Section 18.2, “The MyISAM Storage Engine”
Section 25.6.16.4, “The ndbinfo blobs Table”
Section 7.4.5, “The Slow Query Log”
Section 25.2.7.6, “Unsupported or Missing Features in NDB Cluster”
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”
Section 5.6.9, “Using AUTO_INCREMENT”
Section 19.4.4, “Using Replication with Different Source and Replica Storage Engines”
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section B.3.3.3, “What to Do If MySQL Keeps Crashing”
Section B.3.3.5, “Where MySQL Stores Temporary Files”

ALTER TABLE ... ADD COLUMN
Section 28.4.9, “The INFORMATION_SCHEMA INNODB_COLUMNS Table”

ALTER TABLE ... ADD COLUMN ... ALGORITHM=INSTANT
Section 26.6, “Restrictions and Limitations on Partitioning”

6099

ALTER TABLE ... ADD FOREIGN KEY
Section 15.1.9, “ALTER TABLE Statement”

ALTER TABLE ... ADD PARTITION
Section 26.3.1, “Management of RANGE and LIST Partitions”

ALTER TABLE ... ALGORITHM=COPY
Section 15.1.9, “ALTER TABLE Statement”
Section 15.1.20.5, “FOREIGN KEY Constraints”

ALTER TABLE ... ALGORITHM=DEFAULT|INPLACE|COPY
Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”

ALTER TABLE ... ALGORITHM=INPLACE
Section 15.1.9, “ALTER TABLE Statement”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 17.12.8, “Online DDL Limitations”

ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE
PARTITION
Section 25.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”

ALTER TABLE ... ALGORITHM=INSTANT
Section 17.12.1, “Online DDL Operations”
Section 28.4.23, “The INFORMATION_SCHEMA INNODB_TABLES Table”

ALTER TABLE ... ALTER INDEX ... INVISIBLE
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ALTER TABLE ... AUTO_INCREMENT = N
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”

ALTER TABLE ... COMPRESSION
Section 17.9.2, “InnoDB Page Compression”

ALTER TABLE ... COMPRESSION=None
Section 17.9.2, “InnoDB Page Compression”

ALTER TABLE ... CONVERT TO CHARACTER SET
Section 15.7.3.1, “ANALYZE TABLE Statement”

ALTER TABLE ... DISABLE KEYS
Section 15.2.9, “LOAD DATA Statement”

ALTER TABLE ... DISCARD PARTITION ... TABLESPACE
Section 17.6.1.3, “Importing InnoDB Tables”

ALTER TABLE ... DISCARD TABLESPACE
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 17.6.3.3, “General Tablespaces”
Section 17.6.1.3, “Importing InnoDB Tables”
MySQL Glossary

6100

Section 28.4.24, “The INFORMATION_SCHEMA INNODB_TABLESPACES Table”

ALTER TABLE ... DROP COLUMN
Section 1.3, “What Is New in MySQL 8.0”

ALTER TABLE ... DROP FOREIGN KEY
Section 15.1.9, “ALTER TABLE Statement”

ALTER TABLE ... DROP PARTITION
Section 19.5.1.24, “Replication and Partitioning”

ALTER TABLE ... ENABLE KEYS
Section 15.2.9, “LOAD DATA Statement”

ALTER TABLE ... ENCRYPTION
Section 15.1.5, “ALTER INSTANCE Statement”

ALTER TABLE ... ENGINE
Section 7.1.8, “Server System Variables”

ALTER TABLE ... ENGINE = MEMORY
Section 19.5.1.21, “Replication and MEMORY Tables”

ALTER TABLE ... ENGINE permitted_engine
Section 7.1.8, “Server System Variables”

ALTER TABLE ... ENGINE=INNODB
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 1.3, “What Is New in MySQL 8.0”

ALTER TABLE ... ENGINE=NDB
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

ALTER TABLE ... EXCHANGE PARTITION
Section 15.1.9, “ALTER TABLE Statement”
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”

ALTER TABLE ... FORCE
Section 15.7.3.4, “OPTIMIZE TABLE Statement”

ALTER TABLE ... IMPORT PARTITION ... TABLESPACE
Section 17.6.1.3, “Importing InnoDB Tables”

ALTER TABLE ... IMPORT TABLESPACE
Section 17.6.1.3, “Importing InnoDB Tables”
Section 17.6.1.4, “Moving or Copying InnoDB Tables”
MySQL Glossary

ALTER TABLE ... OPTIMIZE PARTITION
Section 26.3.4, “Maintenance of Partitions”
Section 26.6.2, “Partitioning Limitations Relating to Storage Engines”

ALTER TABLE ... PARTITION BY
Section 26.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”

6101

ALTER TABLE ... PARTITION BY ...
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 26.6, “Restrictions and Limitations on Partitioning”

ALTER TABLE ... REMOVE PARTITIONING
Section 1.3, “What Is New in MySQL 8.0”

ALTER TABLE ... RENAME
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”

ALTER TABLE ... RENAME COLUMN
Section 1.3, “What Is New in MySQL 8.0”

ALTER TABLE ... REORGANIZE PARTITION
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 25.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 3.6, “Preparing Your Installation for Upgrade”

ALTER TABLE ... REPAIR PARTITION
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 26.3.4, “Maintenance of Partitions”

ALTER TABLE ... TABLESPACE
Section 15.1.21, “CREATE TABLESPACE Statement”

ALTER TABLE ... TRUNCATE PARTITION
Section 26.3.4, “Maintenance of Partitions”
Section 26.3, “Partition Management”

ALTER TABLE ... TRUNCATE PARTITION ALL
Section 26.3.4, “Maintenance of Partitions”

ALTER TABLE ...IMPORT TABLESPACE
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 17.6.3.3, “General Tablespaces”

ALTER TABLE EXCHANGE PARTITION
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”

ALTER TABLE mysql.ndb_apply_status ENGINE=MyISAM
Section 25.7.3, “Known Issues in NDB Cluster Replication”

ALTER TABLE ndb_table ... ALGORITHM=INPLACE,
TABLESPACE=new_tablespace
Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”

ALTER TABLE t TRUNCATE PARTITION ()
Section 15.2.2, “DELETE Statement”

ALTER TABLE table ENGINE = NDB
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

6102

ALTER TABLE table FORCE
Section 3.5, “Changes in MySQL 8.0”

ALTER TABLE table_name ENGINE=InnoDB;
Section 17.1.4, “Testing and Benchmarking with InnoDB”

ALTER TABLE table_name REORGANIZE PARTITION
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”

ALTER TABLE tbl_name ENCRYPTION = 'Y'
Section A.17, “MySQL 8.0 FAQ: InnoDB Data-at-Rest Encryption”

ALTER TABLE tbl_name ENGINE=engine_name
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 16.7, “Data Dictionary Usage Differences”
Section 17.14, “InnoDB Startup Options and System Variables”

ALTER TABLE tbl_name ENGINE=INNODB
Section 15.1.9, “ALTER TABLE Statement”
Section 17.11.4, “Defragmenting a Table”

ALTER TABLE tbl_name FORCE
Section 15.1.9, “ALTER TABLE Statement”
Section 17.11.4, “Defragmenting a Table”

ALTER TABLE tbl_name TABLESPACE tablespace_name
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 17.6.3.3, “General Tablespaces”
MySQL Glossary

ALTER TABLESPACE
Section 15.1.10, “ALTER TABLESPACE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 15.1.33, “DROP TABLESPACE Statement”
Section 17.6.3.3, “General Tablespaces”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 17.6.3.9, “Tablespace AUTOEXTEND_SIZE Configuration”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”
Section 1.3, “What Is New in MySQL 8.0”

ALTER TABLESPACE ... ADD DATAFILE
Section 15.1.21, “CREATE TABLESPACE Statement”

ALTER TABLESPACE ... DROP DATAFILE
Section 15.1.33, “DROP TABLESPACE Statement”

ALTER TABLESPACE ... DROP DATATFILE
Section 15.1.21, “CREATE TABLESPACE Statement”

ALTER TABLESPACE ... ENCRYPTION
Section 17.12.1, “Online DDL Operations”

6103

ALTER TABLESPACE ... ENGINE
Section 7.1.8, “Server System Variables”

ALTER TABLESPACE ... RENAME TO
Section 17.6.3.3, “General Tablespaces”
Section 17.12.1, “Online DDL Operations”
Section 1.3, “What Is New in MySQL 8.0”

ALTER TABLESPACE tablespace_name ENCRYPTION = 'Y'
Section A.17, “MySQL 8.0 FAQ: InnoDB Data-at-Rest Encryption”

ALTER UNDO TABLESPACE
Section 3.5, “Changes in MySQL 8.0”
Section 17.6.3.4, “Undo Tablespaces”
Section 1.3, “What Is New in MySQL 8.0”

ALTER UNDO TABLESPACE ... SET INACTIVE
Section 28.4.24, “The INFORMATION_SCHEMA INNODB_TABLESPACES Table”

ALTER UNDO TABLESPACE tablespace_name SET ACTIVE
Section 17.6.3.4, “Undo Tablespaces”

ALTER UNDO TABLESPACE tablespace_name SET INACTIVE
Section 17.6.3.4, “Undo Tablespaces”

ALTER USER
Section 8.2.6, “Access Control, Stage 1: Connection Verification”
Section 8.2.20, “Account Locking”
Section 15.7.1.1, “ALTER USER Statement”
Section 8.2.14, “Assigning Account Passwords”
Section 3.5, “Changes in MySQL 8.0”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 15.7.1.2, “CREATE ROLE Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.1.2.1, “End-User Guidelines for Password Security”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 8.8, “FIPS Support”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 2.9.1, “Initializing the Data Directory”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 8.2.18, “Multifactor Authentication”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 8.2.15, “Password Management”
Section 8.4.3.2, “Password Validation Options and Variables”
Section 8.2.17, “Pluggable Authentication”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.2.19, “Proxy Users”
Resetting the Root Password: Generic Instructions
Section 8.2.16, “Server Handling of Expired Passwords”
Section 7.1.8, “Server System Variables”
Section 15.7.1.9, “SET DEFAULT ROLE Statement”

6104

Section 15.7.1.10, “SET PASSWORD Statement”
Section 8.2.21, “Setting Account Resource Limits”
Section 8.4.1.10, “Socket Peer-Credential Pluggable Authentication”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 28.3.46, “The INFORMATION_SCHEMA USER_ATTRIBUTES Table”
Section 8.4.3, “The Password Validation Component”
Section 8.2.10, “Using Roles”
Section 1.3, “What Is New in MySQL 8.0”

ALTER USER ... ACCOUNT UNLOCK
Section 15.7.1.1, “ALTER USER Statement”

ALTER USER ... DEFAULT ROLE
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.9, “SET DEFAULT ROLE Statement”

ALTER USER ... MODIFY
Section 8.2.2, “Privileges Provided by MySQL”

ALTER USER ... UNLOCK
Section 8.2.20, “Account Locking”
Section 8.2.15, “Password Management”

ALTER USER user ADD factor
Section 8.2.18, “Multifactor Authentication”

ALTER USER user DROP factor
Section 8.2.18, “Multifactor Authentication”

ALTER USER user MODIFY factor
Section 8.2.18, “Multifactor Authentication”

ALTER VIEW
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.11, “ALTER VIEW Statement”
Section 14.15, “Information Functions”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 27.8, “Restrictions on Stored Programs”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.6, “Stored Object Access Control”
Section 27.5.2, “View Processing Algorithms”
Section 27.5.1, “View Syntax”

ANALYZE PARTITION
Section 17.12.1, “Online DDL Operations”

ANALYZE TABLE
Section 15.1.9, “ALTER TABLE Statement”
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 3.5, “Changes in MySQL 8.0”
Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 17.8.10, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables

6105

Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 10.9, “Controlling the Query Optimizer”
Section 15.1.15, “CREATE INDEX Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 16.7, “Data Dictionary Usage Differences”
Section 17.8.10.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 10.8.2, “EXPLAIN Output Format”
Section 15.8.2, “EXPLAIN Statement”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 10.14.3, “General Thread States”
Including Delete-marked Records in Persistent Statistics Calculations
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 10.3.8, “InnoDB and MyISAM Index Statistics Collection”
InnoDB Persistent Statistics Tables
InnoDB Persistent Statistics Tables Example
Section 17.14, “InnoDB Startup Options and System Variables”
Section 26.3.4, “Maintenance of Partitions”
Section 18.7.2, “MERGE Table Problems”
Section 9.6, “MyISAM Table Maintenance and Crash Recovery”
Section 6.6.4.1, “myisamchk General Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 10.9.6, “Optimizer Statistics”
Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 10.6.1, “Optimizing MyISAM Queries”
Section 10.8.1, “Optimizing Queries with EXPLAIN”
Section 10.2.1, “Optimizing SELECT Statements”
Section 8.2.2, “Privileges Provided by MySQL”
Section 10.2.1.2, “Range Optimization”
Section 19.5.1.13, “Replication and FLUSH”
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 7.1.8, “Server System Variables”
Section 15.7.7.22, “SHOW INDEX Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 28.4.26, “The INFORMATION_SCHEMA INNODB_TABLESTATS View”
Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”
Section 7.3, “The mysql System Schema”
Section 7.4.5, “The Slow Query Log”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

B

[index top]

BEGIN
Section 17.7.2.2, “autocommit, Commit, and Rollback”
Section 15.6.1, “BEGIN ... END Compound Statement”
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
Section 29.12.7, “Performance Schema Transaction Tables”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.35, “Replication and Transactions”
Section 27.8, “Restrictions on Stored Programs”
Section 7.1.8, “Server System Variables”

6106

Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.7, “Stored Program Binary Logging”
Section 29.12.7.1, “The events_transactions_current Table”

BEGIN ... END
Section 15.6.1, “BEGIN ... END Compound Statement”
Section 15.6.5.1, “CASE Statement”
Section 15.6, “Compound Statement Syntax”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.6.6.1, “Cursor CLOSE Statement”
Section 15.6.6.3, “Cursor FETCH Statement”
Section 15.6.7.2, “DECLARE ... HANDLER Statement”
Section 15.6.3, “DECLARE Statement”
Section 27.1, “Defining Stored Programs”
Section 27.4.1, “Event Scheduler Overview”
Section 15.6.5.4, “LEAVE Statement”
Section 15.6.4.1, “Local Variable DECLARE Statement”
Section 15.6.4.2, “Local Variable Scope and Resolution”
Section 27.8, “Restrictions on Stored Programs”
Section 15.6.7.6, “Scope Rules for Handlers”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 15.6.2, “Statement Labels”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.3.1, “Trigger Syntax and Examples”

BINLOG
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.7.8.1, “BINLOG Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 6.6.9.2, “mysqlbinlog Row Event Display”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.3.3, “Replication Privilege Checks”
Section 7.1.8, “Server System Variables”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”

C

[index top]

CACHE INDEX
Section 15.7.8.2, “CACHE INDEX Statement”
Section 10.10.2.4, “Index Preloading”
Section 15.7.8.5, “LOAD INDEX INTO CACHE Statement”
Section 10.10.2.2, “Multiple Key Caches”
Section 15.3.3, “Statements That Cause an Implicit Commit”

CALL
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.2.1, “CALL Statement”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.5, “Prepared Statements”
Section 27.6, “Stored Object Access Control”
Chapter 27, Stored Objects
Section 27.7, “Stored Program Binary Logging”
Section 27.2.1, “Stored Routine Syntax”

6107

Section 10.15.3, “Traceable Statements”
Section 27.3.1, “Trigger Syntax and Examples”

CALL p()
Section 15.6.7.4, “RESIGNAL Statement”

CASE
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”
Section 15.6.5.1, “CASE Statement”
Section 14.5, “Flow Control Functions”
Section 15.6.5, “Flow Control Statements”
Section 10.15.3, “Traceable Statements”

CHANGE MASTER TO
Adding a Second Instance
Adding Additional Instances
Section 19.1.5.4, “Adding Binary Log Based Replication Sources to a Multi-Source Replica”
Section 19.1.5.3, “Adding GTID-Based Sources to a Multi-Source Replica”
Section 8.2.14, “Assigning Account Passwords”
Section 19.4.9.1, “Asynchronous Connection Failover for Sources”
Section 19.4.1.2, “Backing Up Raw Data from a Replica”
Section 19.1.1, “Binary Log File Position Based Replication Configuration Overview”
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 3.5, “Changes in MySQL 8.0”
Section 19.1.7.1, “Checking Replication Status”
Section 7.6.7.7, “Cloning for Replication”
Cloning Operations
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 19.2.2.2, “Compatibility with Previous Replication Statements”
Section 6.2.8, “Connection Compression Control”
Creating a Data Snapshot Using mysqldump
Section 19.1.2.3, “Creating a User for Replication”
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 20.10, “Frequently Asked Questions”
Section 15.7.1.6, “GRANT Statement”
Section 20.3.1, “Group Replication Requirements”
Section 20.9.1, “Group Replication System Variables”
Section 19.1.3.3, “GTID Auto-Positioning”
Section 19.4.2, “Handling an Unexpected Halt of a Replica”
Section 25.7.8, “Implementing Failover with NDB Cluster Replication”
Monitoring Binary Log Transaction Compression
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 25.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 7.1.14, “Network Namespace Support”
Section 29.12.11, “Performance Schema Replication Tables”
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Prerequisites for Cloning
Section 19.3.3.2, “Privilege Checks For Group Replication Channels”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Providing Replication User Credentials Securely
Section 19.1.6.3, “Replica Server Options and Variables”

6108

Section 19.1.6, “Replication and Binary Logging Options and Variables”
Section 19.5.1.28, “Replication and Source or Replica Shutdowns”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 10.14.7, “Replication Connection Thread States”
Section 10.14.5, “Replication I/O (Receiver) Thread States”
Section 19.2.4.2, “Replication Metadata Repositories”
Section 19.3.3, “Replication Privilege Checks”
Section 19.3, “Replication Security”
Section 10.14.6, “Replication SQL Thread States”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 7.1.8, “Server System Variables”
Section 19.1.2.7, “Setting the Source Configuration on the Replica”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Setting Up Replication with Existing Data
Setting Up Replication with New Source and Replicas
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 19.1.7.3, “Skipping Transactions”
Skipping Transactions With CHANGE MASTER TO
Skipping Transactions Without GTIDs
Section 15.4.3.1, “START GROUP_REPLICATION Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 15.4.2.8, “STOP REPLICA Statement”
Section 19.4.9, “Switching Sources and Replicas with Asynchronous Connection Failover”
Section 19.4.8, “Switching Sources During Failover”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”
Section 29.12.11.2, “The replication_applier_configuration Table”
Section 29.12.11.10, “The replication_connection_configuration Table”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”
Section 20.2.1.3, “User Credentials For Distributed Recovery”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 1.3, “What Is New in MySQL 8.0”

CHANGE REPLICATION FILTER
Section 19.1.5.4, “Adding Binary Log Based Replication Sources to a Multi-Source Replica”
Section 19.1.5.3, “Adding GTID-Based Sources to a Multi-Source Replica”
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.2.5.4, “Replication Channel Based Filters”
Section 7.1.10, “Server Status Variables”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 29.12.11.6, “The replication_applier_filters Table”
Section 29.12.11.7, “The replication_applier_global_filters Table”

CHANGE REPLICATION FILTER REPLICATE_DO_DB
Section 19.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION FILTER REPLICATE_DO_TABLE
Section 19.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION FILTER REPLICATE_IGNORE_DB
Section 19.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION FILTER REPLICATE_IGNORE_TABLE
Section 19.1.6.3, “Replica Server Options and Variables”

6109

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB
Section 19.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE
Section 19.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION FILTER
REPLICATE_WILD_IGNORE_TABLE
Section 19.1.6.3, “Replica Server Options and Variables”

CHANGE REPLICATION SOURCE TO
Adding a Second Instance
Adding Additional Instances
Section 19.1.5.4, “Adding Binary Log Based Replication Sources to a Multi-Source Replica”
Section 19.1.5.3, “Adding GTID-Based Sources to a Multi-Source Replica”
Section 8.2.14, “Assigning Account Passwords”
Section 19.4.9.2, “Asynchronous Connection Failover for Replicas”
Section 19.4.9.1, “Asynchronous Connection Failover for Sources”
Section 19.4.1.2, “Backing Up Raw Data from a Replica”
Section 19.1.1, “Binary Log File Position Based Replication Configuration Overview”
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 7.6.7.7, “Cloning for Replication”
Cloning Operations
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 19.2.2.2, “Compatibility with Previous Replication Statements”
Section 6.2.8, “Connection Compression Control”
Creating a Data Snapshot Using mysqldump
Section 19.1.2.3, “Creating a User for Replication”
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 20.10, “Frequently Asked Questions”
Section 14.18.1.5, “Functions to Set and Reset Group Replication Member Actions”
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 15.7.1.6, “GRANT Statement”
Section 20.3.1, “Group Replication Requirements”
Section 20.9.1, “Group Replication System Variables”
Section 19.1.3.3, “GTID Auto-Positioning”
Section 20.4.1, “GTIDs and Group Replication”
Section 19.4.2, “Handling an Unexpected Halt of a Replica”
Section 25.7.8, “Implementing Failover with NDB Cluster Replication”
Monitoring Binary Log Transaction Compression
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 25.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 7.1.14, “Network Namespace Support”
Section 29.12.11, “Performance Schema Replication Tables”
Section 14.18.4, “Position-Based Synchronization Functions”
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Prerequisites for Cloning
Section 19.3.3.2, “Privilege Checks For Group Replication Channels”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”

6110

Providing Replication User Credentials Securely
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.6, “Replication and Binary Logging Options and Variables”
Section 19.5.1.28, “Replication and Source or Replica Shutdowns”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 10.14.7, “Replication Connection Thread States”
Section 19.1.3.6, “Replication From a Source Without GTIDs to a Replica With GTIDs”
Section 10.14.5, “Replication I/O (Receiver) Thread States”
Section 19.2.4.2, “Replication Metadata Repositories”
Section 19.1.4.1, “Replication Mode Concepts”
Section 19.3.3, “Replication Privilege Checks”
Section 19.3, “Replication Security”
Section 10.14.6, “Replication SQL Thread States”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 7.1.8, “Server System Variables”
Section 19.1.2.7, “Setting the Source Configuration on the Replica”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Setting Up Replication with Existing Data
Setting Up Replication with New Source and Replicas
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 19.1.7.3, “Skipping Transactions”
Skipping Transactions With CHANGE MASTER TO
Skipping Transactions With GTIDs
Skipping Transactions Without GTIDs
Section 15.4.3.1, “START GROUP_REPLICATION Statement”
Section 15.4.2.6, “START REPLICA Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 15.4.2.8, “STOP REPLICA Statement”
Section 19.4.9, “Switching Sources and Replicas with Asynchronous Connection Failover”
Section 19.4.8, “Switching Sources During Failover”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”
Section 29.12.11.2, “The replication_applier_configuration Table”
Section 29.12.11.10, “The replication_connection_configuration Table”
Section 29.12.11.11, “The replication_connection_status Table”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”
Section 20.2.1.3, “User Credentials For Distributed Recovery”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”

CHANGE REPLICATION SOURCE TO ...
REQUIRE_TABLE_PRIMARY_KEY_CHECK = GENERATE
Section 1.3, “What Is New in MySQL 8.0”

CHANGE REPLICATION SOURCE TO SOURCE_DELAY=N
Section 19.4.11, “Delayed Replication”

CHECK PARTITION
Section 17.12.1, “Online DDL Operations”

CHECK TABLE
Section 15.1.9.1, “ALTER TABLE Partition Operations”
Section 15.7.3.2, “CHECK TABLE Statement”
Section 18.2.4.1, “Corrupted MyISAM Tables”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”

6111

Section 15.1.23, “CREATE VIEW Statement”
Section 10.11.5, “External Locking”
Section 9.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 17.18.2, “InnoDB Recovery”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.21, “InnoDB Troubleshooting”
Section 26.3.4, “Maintenance of Partitions”
Section 9.6, “MyISAM Table Maintenance and Crash Recovery”
Section 6.6.4, “myisamchk — MyISAM Table-Maintenance Utility”
Section A.6, “MySQL 8.0 FAQ: Views”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section B.3.2.7, “MySQL server has gone away”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 18.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 3.14, “Rebuilding or Repairing Tables or Indexes”
Section 18.4.1, “Repairing and Checking CSV Tables”
Restoring an NDB backup to a later version of NDB Cluster
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 15.6.6.5, “Restrictions on Server-Side Cursors”
Section 27.8, “Restrictions on Stored Programs”
Section 27.9, “Restrictions on Views”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 9.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 18.5, “The ARCHIVE Storage Engine”
Section 18.7, “The MERGE Storage Engine”
Section 7.4.5, “The Slow Query Log”
Section 1.3, “What Is New in MySQL 8.0”
Section 3.4, “What the MySQL Upgrade Process Upgrades”

CHECK TABLE ... EXTENDED
Section 15.7.3.2, “CHECK TABLE Statement”

CHECK TABLE ... FOR UPGRADE
Section 15.7.3.2, “CHECK TABLE Statement”
Section 15.7.3.5, “REPAIR TABLE Statement”

CHECK TABLE FOR UPGRADE
Section 16.6, “Serialized Dictionary Information (SDI)”

CHECK TABLE QUICK
Section 15.7.3.2, “CHECK TABLE Statement”

CHECKSUM TABLE
Section 15.7.3.3, “CHECKSUM TABLE Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 19.5.1.4, “Replication and CHECKSUM TABLE”

CHECKSUM TABLE ... QUICK
Section 15.7.3.3, “CHECKSUM TABLE Statement”

CLONE
Section 15.7.5, “CLONE Statement”

6112

Section 7.6.7.2, “Cloning Data Locally”
Section 7.6.7.3, “Cloning Remote Data”
Section 7.6.7.10, “Monitoring Cloning Operations”

CLONE INSTANCE
Section 7.6.7.14, “Clone Plugin Limitations”
Section 15.7.5, “CLONE Statement”
Section 7.6.7.5, “Cloning Encrypted Data”
Section 7.6.7.3, “Cloning Remote Data”
Section 7.6.7.10, “Monitoring Cloning Operations”
Section 7.6.7.9, “Remote Cloning Operation Failure Handling”

CLONE LOCAL
Section 7.6.7.10, “Monitoring Cloning Operations”

CLONE LOCAL DATA DIRECTORY
Section 15.7.5, “CLONE Statement”
Section 7.6.7.2, “Cloning Data Locally”

COALESCE PARTITION
Section 17.12.1, “Online DDL Operations”

COMMIT
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 17.7.2.2, “autocommit, Commit, and Rollback”
Section 10.5.5, “Bulk Data Loading for InnoDB Tables”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.20, “CREATE TABLE Statement”
Data Definition Statements
Section 17.2, “InnoDB and the ACID Model”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 6.5.4, “mysqldump — A Database Backup Program”
NDB Cluster System Variables
Section 19.1.2.4, “Obtaining the Replication Source Binary Log Coordinates”
Section 10.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 29.12.7, “Performance Schema Transaction Tables”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.35, “Replication and Transactions”
Rewriter Query Rewrite Plugin Procedures and Functions
Section 15.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 7.1.18, “Server Tracking of Client Session State”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.7, “Stored Program Binary Logging”
Section 7.4.4, “The Binary Log”
Section 29.12.7.1, “The events_transactions_current Table”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”
Section 15.3, “Transactional and Locking Statements”
Section 27.3.1, “Trigger Syntax and Examples”

COMMIT AND CHAIN
Section 29.12.7, “Performance Schema Transaction Tables”

6113

Section 7.1.18, “Server Tracking of Client Session State”

COMPRESSION
Section 17.13, “InnoDB Data-at-Rest Encryption”

CREATE DATABASE
Section 15.1.2, “ALTER DATABASE Statement”
Section 9.1, “Backup and Recovery Types”
Section 12.5, “Configuring Application Character Set and Collation”
Section 9.4.5.2, “Copy a Database from one Server to Another”
Section 15.1.12, “CREATE DATABASE Statement”
Section 12.3.3, “Database Character Set and Collation”
Section 9.4.1, “Dumping Data in SQL Format with mysqldump”
Section 19.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 11.2.3, “Identifier Case Sensitivity”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 29.6, “Performance Schema Instrument Naming Conventions”
Section 9.4.2, “Reloading SQL-Format Backups”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 12.3.2, “Server Character Set and Collation”
Section 7.1.8, “Server System Variables”
Section 15.7.7.6, “SHOW CREATE DATABASE Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 10.12.2.1, “Using Symbolic Links for Databases on Unix”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

CREATE DATABASE IF NOT EXISTS
Section 19.5.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE EVENT
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.3, “ALTER EVENT Statement”
Section 15.1.5, “ALTER INSTANCE Statement”
Section 19.3.2.3, “Binary Log Master Key Rotation”
Section 15.1.13, “CREATE EVENT Statement”
Section 27.4.4, “Event Metadata”
Section 27.4.3, “Event Syntax”
Section 11.5, “Expressions”
Section 14.15, “Information Functions”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 19.5.1.16, “Replication of Invoked Features”
Section 27.8, “Restrictions on Stored Programs”
Section 7.1.7, “Server Command Options”
Section 15.7.7.7, “SHOW CREATE EVENT Statement”
Section 15.7.7.18, “SHOW EVENTS Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Chapter 27, Stored Objects
Section 27.7, “Stored Program Binary Logging”

6114

Section 27.4.6, “The Event Scheduler and MySQL Privileges”
Section 28.3.14, “The INFORMATION_SCHEMA EVENTS Table”
Section 1.3, “What Is New in MySQL 8.0”

CREATE EVENT IF NOT EXISTS
Section 19.5.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE FULLTEXT INDEX
Section 10.5.5, “Bulk Data Loading for InnoDB Tables”

CREATE FUNCTION
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.4, “ALTER FUNCTION Statement”
Section 15.1.14, “CREATE FUNCTION Statement”
Section 15.7.4.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.7.4.2, “DROP FUNCTION Statement for Loadable Functions”
Section 11.2.5, “Function Name Parsing and Resolution”
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”
Section 14.15, “Information Functions”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.7.1, “Installing and Uninstalling Loadable Functions”
Section 7.6.6.2, “Installing or Uninstalling Version Tokens”
Section 8.5.3.1, “MySQL Enterprise Data Masking and De-Identification Plugin Installation”
Section 8.6.1, “MySQL Enterprise Encryption Installation and Upgrading”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 7.7.2, “Obtaining Information About Loadable Functions”
Section 29.12.21, “Performance Schema Miscellaneous Tables”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 19.5.1.16, “Replication of Invoked Features”
Section 27.8, “Restrictions on Stored Programs”
Section 7.1.7, “Server Command Options”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.6, “Stored Object Access Control”
Chapter 27, Stored Objects
Section 27.7, “Stored Program Binary Logging”
Section 27.2.1, “Stored Routine Syntax”
The Locking Service Function Interface
Section 7.3, “The mysql System Schema”
Section 29.12.21.10, “The user_defined_functions Table”
Section 3.13, “Upgrade Troubleshooting”
Section 1.3, “What Is New in MySQL 8.0”

CREATE FUNCTION IF NOT EXISTS
Section 19.5.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE INDEX
Section 15.1.2, “ALTER DATABASE Statement”
Section 14.10, “Cast Functions and Operators”
Section 10.3.5, “Column Indexes”
Section 17.8.11, “Configuring the Merge Threshold for Index Pages”
Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 15.1.15, “CREATE INDEX Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 13.4.10, “Creating Spatial Indexes”
Section 14.9, “Full-Text Search Functions”

6115

Section 17.9.1.5, “How Compression Works for InnoDB Tables”
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 10.3.12, “Invisible Indexes”
Section 14.9.9, “MeCab Full-Text Parser Plugin”
MySQL Glossary
Section 14.9.8, “ngram Full-Text Parser”
Section 17.12.1, “Online DDL Operations”
Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 10.7, “Optimizing for MEMORY Tables”
Section 7.1.8, “Server System Variables”
Section 15.7.7.22, “SHOW INDEX Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”
Section 7.4.5, “The Slow Query Log”
Section 25.2.7.6, “Unsupported or Missing Features in NDB Cluster”

CREATE LOGFILE GROUP
Section 15.1.6, “ALTER LOGFILE GROUP Statement”
Section 15.1.16, “CREATE LOGFILE GROUP Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 25.4.3.13, “Data Node Memory Management”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”
Section 25.6.16.51, “The ndbinfo resources Table”

CREATE OR REPLACE VIEW
Section 15.1.23, “CREATE VIEW Statement”
Section 27.9, “Restrictions on Views”

CREATE PROCEDURE
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.7, “ALTER PROCEDURE Statement”
Section 15.2.1, “CALL Statement”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 14.15, “Information Functions”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 19.5.1.16, “Replication of Invoked Features”
Section 27.8, “Restrictions on Stored Programs”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.6, “Stored Object Access Control”
Chapter 27, Stored Objects
Section 27.7, “Stored Program Binary Logging”
Section 27.2.1, “Stored Routine Syntax”
Section 1.3, “What Is New in MySQL 8.0”

CREATE PROCEDURE IF NOT EXISTS
Section 19.5.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE RESOURCE GROUP
Section 15.7.2.1, “ALTER RESOURCE GROUP Statement”
Section 15.7.2.2, “CREATE RESOURCE GROUP Statement”
Section 7.1.16, “Resource Groups”

6116

CREATE ROLE
Section 15.7.1.2, “CREATE ROLE Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 8.2.10, “Using Roles”

CREATE SCHEMA
Section 15.1.12, “CREATE DATABASE Statement”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”

CREATE SERVER
Section 15.1.8, “ALTER SERVER Statement”
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 18.8.2.2, “Creating a FEDERATED Table Using CREATE SERVER”
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 15.7.8.3, “FLUSH Statement”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 18.8.2, “How to Create FEDERATED Tables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.5, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 15.3.3, “Statements That Cause an Implicit Commit”

CREATE SPATIAL REFERENCE SYSTEM
Section 15.1.19, “CREATE SPATIAL REFERENCE SYSTEM Statement”
Section 13.4.5, “Spatial Reference System Support”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 28.3.36, “The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS Table”

CREATE TABLE
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.9.3, “ALTER TABLE Examples”
Section 15.1.9.1, “ALTER TABLE Partition Operations”
Section 15.1.9, “ALTER TABLE Statement”
Chapter 18, Alternative Storage Engines
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 9.1, “Backup and Recovery Types”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 14.10, “Cast Functions and Operators”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 3.5, “Changes in MySQL 8.0”
Section 15.1.20.6, “CHECK Constraints”
Section 12.3.5, “Column Character Set and Collation”
Section 10.3.5, “Column Indexes”
Section 17.8.10, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 17.8.11, “Configuring the Merge Threshold for Index Pages”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 15.1.13, “CREATE EVENT Statement”
Section 15.1.15, “CREATE INDEX Statement”
Section 15.1.18, “CREATE SERVER Statement”
Section 15.1.20.3, “CREATE TABLE ... LIKE Statement”
Section 15.1.20.4, “CREATE TABLE ... SELECT Statement”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”

6117

Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”
Section 18.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 5.3.2, “Creating a Table”
Section 17.9.1.2, “Creating Compressed Tables”
Section 17.6.1.1, “Creating InnoDB Tables”
Section 13.4.6, “Creating Spatial Columns”
Section 13.4.10, “Creating Spatial Indexes”
Section 9.2, “Database Backup Methods”
Section 12.3.3, “Database Character Set and Collation”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 9.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section B.2, “Error Information Interfaces”
Section 17.8.10.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 17.6.3.2, “File-Per-Table Tablespaces”
Section 1.6.3.2, “FOREIGN KEY Constraints”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 14.9, “Full-Text Search Functions”
Section 17.6.3.3, “General Tablespaces”
Section 5.4, “Getting Information About Databases and Tables”
Section 19.1.3.1, “GTID Format and Storage”
Section 19.1.3.2, “GTID Life Cycle”
Section 26.2.4, “HASH Partitioning”
Section 15.8.3, “HELP Statement”
Section 17.9.1.5, “How Compression Works for InnoDB Tables”
Section 26.2.7, “How MySQL Partitioning Handles NULL”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 11.2.3, “Identifier Case Sensitivity”
Section 17.6.1.3, “Importing InnoDB Tables”
Section 14.15, “Information Functions”
Section 25.3.3, “Initial Configuration of NDB Cluster”
Section 17.19, “InnoDB and MySQL Replication”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 17.9.2, “InnoDB Page Compression”
Section 17.10, “InnoDB Row Formats”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.9.1, “InnoDB Table Compression”
Section 19.2.5.3, “Interactions Between Replication Filtering Options”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 17.1, “Introduction to InnoDB”
Section 15.1.20.10, “Invisible Columns”
Section 10.3.12, “Invisible Indexes”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 14.17.6, “JSON Table Functions”
Section 26.2.5, “KEY Partitioning”
Section 25.2.7.5, “Limits Associated with Database Objects in NDB Cluster”
Section 10.4.6, “Limits on Table Size”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 26.2.2, “LIST Partitioning”
Section 15.2.10, “LOAD XML Statement”
Section 5.3.3, “Loading Data into a Table”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 14.9.9, “MeCab Full-Text Parser Plugin”
Section 18.2.3, “MyISAM Table Storage Formats”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”

6118

Section 6.5.1.1, “mysql Client Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.6.15, “NDB API Statistics Counters and Variables”
Section 25.4.3.1, “NDB Cluster Configuration: Basic Example”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
NDB Cluster System Variables
Section 25.5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables”
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 14.9.8, “ngram Full-Text Parser”
Section 25.2.7.1, “Noncompliance with SQL Syntax in NDB Cluster”
Section 17.12.1, “Online DDL Operations”
Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 10.4.1, “Optimizing Data Size”
Section 10.5.7, “Optimizing InnoDB DDL Operations”
Section 26.1, “Overview of Partitioning in MySQL”
Section 17.9.1.1, “Overview of Table Compression”
Section 26.3, “Partition Management”
Section 26.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”
Section 26.6.3, “Partitioning Limitations Relating to Functions”
Section 26.6.2, “Partitioning Limitations Relating to Storage Engines”
Section 26.2, “Partitioning Types”
Section 8.2.2, “Privileges Provided by MySQL”
Section 26.2.3.1, “RANGE COLUMNS partitioning”
Section 26.2.1, “RANGE Partitioning”
Section 9.4.4, “Reloading Delimited-Text Format Backups”
Section 15.2.12, “REPLACE Statement”
Section 19.5.1.1, “Replication and AUTO_INCREMENT”
Section 19.5.1.3, “Replication and Character Sets”
Section 19.5.1.10, “Replication and DIRECTORY Table Options”
Section 19.5.1.14, “Replication and System Functions”
Section 19.5.1.7, “Replication of CREATE TABLE ... SELECT Statements”
Replication with More Columns on Source or Replica
Restoring an NDB backup to a previous version of NDB Cluster
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.7, “Server Command Options”
Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”
Section 7.4.4.2, “Setting The Binary Log Format”
Section 18.1, “Setting the Storage Engine”
Section 15.7.7.5, “SHOW COLUMNS Statement”
Section 15.7.7.10, “SHOW CREATE TABLE Statement”
Section 15.7.7.15, “SHOW ENGINE Statement”
Section 15.7.7.22, “SHOW INDEX Statement”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 15.1.20.7, “Silent Column Specification Changes”
Section 17.9.1.7, “SQL Compression Syntax Warnings and Errors”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 13.3.1, “String Data Type Syntax”
Section 26.2.6, “Subpartitioning”
Section 12.3.4, “Table Character Set and Collation”
Section 17.6.3.9, “Tablespace AUTOEXTEND_SIZE Configuration”
Section 17.1.4, “Testing and Benchmarking with InnoDB”
Section 18.5, “The ARCHIVE Storage Engine”

6119

Section 7.6.5, “The ddl_rewriter Plugin”
Section 13.3.5, “The ENUM Type”
Section 28.3.5, “The INFORMATION_SCHEMA CHECK_CONSTRAINTS Table”
Section 28.4.23, “The INFORMATION_SCHEMA INNODB_TABLES Table”
Section 28.3.21, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”
Section 18.3, “The MEMORY Storage Engine”
Section 18.2, “The MyISAM Storage Engine”
Section 25.6.16.4, “The ndbinfo blobs Table”
Section 15.2.15.1, “The Subquery as Scalar Operand”
Section 15.1.37, “TRUNCATE TABLE Statement”
Section 15.7.4.6, “UNINSTALL PLUGIN Statement”
Section 25.2.7.6, “Unsupported or Missing Features in NDB Cluster”
Section 5.6.9, “Using AUTO_INCREMENT”
Section 5.3.4.9, “Using More Than one Table”
Section 9.4, “Using mysqldump for Backups”
Section 19.4.4, “Using Replication with Different Source and Replica Storage Engines”
Section 10.12.2, “Using Symbolic Links”
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 2.3.7, “Windows Platform Restrictions”
Section 15.2.20, “WITH (Common Table Expressions)”

CREATE TABLE ... DATA DIRECTORY
Section 17.6.3.6, “Moving Tablespace Files While the Server is Offline”

CREATE TABLE ... ENCRYPTION
Section 15.1.5, “ALTER INSTANCE Statement”

CREATE TABLE ... LIKE
Section 15.1.15, “CREATE INDEX Statement”
Section 15.1.20.3, “CREATE TABLE ... LIKE Statement”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 13.6, “Data Type Default Values”
Section 15.1.20.10, “Invisible Columns”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 19.5.1.1, “Replication and AUTO_INCREMENT”
Section 18.7, “The MERGE Storage Engine”

CREATE TABLE ... ROW_FORMAT=COMPRESSED
Section 3.5, “Changes in MySQL 8.0”

CREATE TABLE ... SELECT
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 14.10, “Cast Functions and Operators”
Section 17.7.2.3, “Consistent Nonlocking Reads”
Section 15.1.20.4, “CREATE TABLE ... SELECT Statement”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 15.1.23, “CREATE VIEW Statement”
Section 13.6, “Data Type Default Values”
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.3.2, “GTID Life Cycle”
Section 15.1.20.10, “Invisible Columns”

6120

Section B.3.7, “Known Issues in MySQL”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 19.5.1.7, “Replication of CREATE TABLE ... SELECT Statements”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 7.1.11, “Server SQL Modes”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.7, “Stored Program Binary Logging”
Section 15.2.16, “TABLE Statement”
Section 14.3, “Type Conversion in Expression Evaluation”
Section 15.2.19, “VALUES Statement”
Section 1.3, “What Is New in MySQL 8.0”

CREATE TABLE ... SELECT ...
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

CREATE TABLE ... TABLESPACE
Section 15.1.9, “ALTER TABLE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 17.6.1.1, “Creating InnoDB Tables”
Section 17.6.1.2, “Creating Tables Externally”

CREATE TABLE dst_tbl LIKE src_tbl
Section 16.7, “Data Dictionary Usage Differences”

CREATE TABLE IF NOT EXISTS
Section 19.5.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE TABLE IF NOT EXISTS ... LIKE
Section 19.5.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE TABLE IF NOT EXISTS ... SELECT
Section 19.5.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE TABLE LIKE
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

CREATE TABLE new_table SELECT ... FROM old_table ...
Section 15.1.20.4, “CREATE TABLE ... SELECT Statement”
Section 15.2.13, “SELECT Statement”

CREATE TABLE tbl_name ... TABLESPACE tablespace_name
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 17.6.3.3, “General Tablespaces”
MySQL Glossary

CREATE TABLE ts VALUES ROW()
Section 15.2.15, “Subqueries”

CREATE TABLE...AS SELECT
Section 10.2.1, “Optimizing SELECT Statements”

CREATE TABLESPACE
Section 15.1.10, “ALTER TABLESPACE Statement”

6121

Section 15.1.1, “Atomic Data Definition Statement Support”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 15.1.33, “DROP TABLESPACE Statement”
Section 17.11.2, “File Space Management”
Section 17.6.3.3, “General Tablespaces”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
MySQL Glossary
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 7.1.8, “Server System Variables”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 17.6.3.9, “Tablespace AUTOEXTEND_SIZE Configuration”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”
Section 28.4.23, “The INFORMATION_SCHEMA INNODB_TABLES Table”
Section 1.3, “What Is New in MySQL 8.0”

CREATE TABLESPACE ... ADD DATAFILE
Section 3.5, “Changes in MySQL 8.0”
Section 17.6.3.6, “Moving Tablespace Files While the Server is Offline”

CREATE TEMPORARY TABLE
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”
Section 17.9.1.2, “Creating Compressed Tables”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 15.7.1.6, “GRANT Statement”
Section 15.2.6, “IMPORT TABLE Statement”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 7.1.8, “Server System Variables”
Section 18.1, “Setting the Storage Engine”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section B.3.6.2, “TEMPORARY Table Problems”
Section 1.3, “What Is New in MySQL 8.0”

CREATE TRIGGER
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 14.15, “Information Functions”
Section A.5, “MySQL 8.0 FAQ: Triggers”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 19.5.1.16, “Replication of Invoked Features”
Section 27.8, “Restrictions on Stored Programs”
Section 15.7.7.11, “SHOW CREATE TRIGGER Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Chapter 27, Stored Objects
Section 27.7, “Stored Program Binary Logging”
Section 27.3.1, “Trigger Syntax and Examples”
Section 1.3, “What Is New in MySQL 8.0”

6122

CREATE TRIGGER IF NOT EXISTS
Section 19.5.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”

CREATE UNDO TABLESPACE
Section 15.1.33, “DROP TABLESPACE Statement”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.6.3.4, “Undo Tablespaces”
Section 1.3, “What Is New in MySQL 8.0”

CREATE USER
Section 8.2, “Access Control and Account Management”
Section 8.2.6, “Access Control, Stage 1: Connection Verification”
Section 8.2.11, “Account Categories”
Section 8.2.20, “Account Locking”
Section 8.2.1, “Account User Names and Passwords”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 8.2.14, “Assigning Account Passwords”
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.13.3, “Connecting Using the IPv6 Local Host Address”
Section 15.7.1.3, “CREATE USER Statement”
Section 19.1.2.3, “Creating a User for Replication”
Section 8.1.2.1, “End-User Guidelines for Password Security”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 8.8, “FIPS Support”
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 2.9.1, “Initializing the Data Directory”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.13, “IPv6 Support”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 8.2.18, “Multifactor Authentication”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”
Section 8.4.1.9, “No-Login Pluggable Authentication”
Section 8.4.1.5, “PAM Pluggable Authentication”
Section 8.2.15, “Password Management”
Section 8.1.2.3, “Passwords and Logging”
Section 8.2.17, “Pluggable Authentication”
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 25.6.13, “Privilege Synchronization and NDB_STORED_USER”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.2.19, “Proxy Users”
Section 19.5.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”
Section 19.3.3, “Replication Privilege Checks”
Section 7.1.8, “Server System Variables”
Section 8.2.21, “Setting Account Resource Limits”

6123

Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 15.7.7.12, “SHOW CREATE USER Statement”
Section 8.4.1.10, “Socket Peer-Credential Pluggable Authentication”
Section 8.2.4, “Specifying Account Names”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.6, “Stored Object Access Control”
Section 28.3.46, “The INFORMATION_SCHEMA USER_ATTRIBUTES Table”
Section 7.3, “The mysql System Schema”
Section 8.4.3, “The Password Validation Component”
Section 8.3, “Using Encrypted Connections”
Section 22.5.3, “Using Encrypted Connections with X Plugin”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”
Section 8.2.10, “Using Roles”
Section 1.3, “What Is New in MySQL 8.0”
Section 3.4, “What the MySQL Upgrade Process Upgrades”
Section 8.4.1.6, “Windows Pluggable Authentication”

CREATE USER ... REQUIRE SUBJECT
Section 7.1.9.4, “Nonpersistible and Persist-Restricted System Variables”

CREATE VIEW
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.11, “ALTER VIEW Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 10.14.3, “General Thread States”
Section 11.2.1, “Identifier Length Limits”
Section 14.15, “Information Functions”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 27.9, “Restrictions on Views”
Section 15.7.7.13, “SHOW CREATE VIEW Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Chapter 27, Stored Objects
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”
Section 27.5.3, “Updatable and Insertable Views”
Section 27.5.2, “View Processing Algorithms”
Section 27.5.1, “View Syntax”

CREATE VIEW ... SELECT
Section 15.2.16, “TABLE Statement”
Section 15.2.19, “VALUES Statement”

D

[index top]

DEALLOCATE PREPARE
Section 15.5.3, “DEALLOCATE PREPARE Statement”
Section 15.5.1, “PREPARE Statement”
Section 15.5, “Prepared Statements”
Section 27.8, “Restrictions on Stored Programs”
Section 7.1.10, “Server Status Variables”
Section 29.12.6.4, “The prepared_statements_instances Table”

6124

DECLARE
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.6.3, “DECLARE Statement”
Section 15.6.7.3, “GET DIAGNOSTICS Statement”
Section 15.6.7.5, “SIGNAL Statement”
Section 10.15.3, “Traceable Statements”
Section 15.6.4, “Variables in Stored Programs”

DECLARE ... CONDITION
Section 15.6.7, “Condition Handling”
Section 15.6.7.1, “DECLARE ... CONDITION Statement”
Section 15.6.7.2, “DECLARE ... HANDLER Statement”
Section 15.6.7.5, “SIGNAL Statement”

DECLARE ... HANDLER
Section 15.6.7, “Condition Handling”
Section 15.6.7.1, “DECLARE ... CONDITION Statement”
Section 15.6.7.2, “DECLARE ... HANDLER Statement”
Section 15.6.7.5, “SIGNAL Statement”

DEFAULT ENCRYPTION
Section 15.1.10, “ALTER TABLESPACE Statement”

DEFAULT ENCRYPTION='N'
Section 15.1.10, “ALTER TABLESPACE Statement”

DEFAULT ENCRYPTION='Y'
Section 15.1.10, “ALTER TABLESPACE Statement”

DELETE
Section 8.2, “Access Control and Account Management”
Section 17.20.6.5, “Adapting DML Statements to memcached Operations”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.9.1, “ALTER TABLE Partition Operations”
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”
Section 17.1.2, “Best Practices for InnoDB Tables”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”
Section 17.5.2, “Change Buffer”
Section 17.9.1.6, “Compression for OLTP Workloads”
Section 17.7.2.3, “Consistent Nonlocking Reads”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 15.2.2, “DELETE Statement”
Section B.3.4.6, “Deleting Rows from Related Tables”
Section 10.8.2, “EXPLAIN Output Format”
Section 15.8.2, “EXPLAIN Statement”
Section 10.8.3, “Extended EXPLAIN Output Format”
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 17.21.3, “Forcing InnoDB Recovery”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 14.9.5, “Full-Text Restrictions”

6125

Chapter 14, Functions and Operators
Section 10.14.3, “General Thread States”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section 10.9.4, “Index Hints”
Section 14.15, “Information Functions”
Section 17.19, “InnoDB and MySQL Replication”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.11.1, “Internal Locking Methods”
Section 28.1, “Introduction”
Section 15.2.13.2, “JOIN Clause”
Section 11.3, “Keywords and Reserved Words”
Section 15.7.8.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 25.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 26.2.2, “LIST Partitioning”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 18.7.2, “MERGE Table Problems”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 25.6.20.3, “NDB Cluster and MySQL Security Procedures”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 17.12.1, “Online DDL Operations”
Section 10.9.3, “Optimizer Hints”
Section 10.2.5, “Optimizing Data Change Statements”
Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations”
Section 10.8.1, “Optimizing Queries with EXPLAIN”
Section 10.2.1, “Optimizing SELECT Statements”
Section 10.2.2.2, “Optimizing Subqueries with Materialization”
Section 10.2.2, “Optimizing Subqueries, Derived Tables, View References, and Common Table
Expressions”
Section 26.1, “Overview of Partitioning in MySQL”
Section 26.4, “Partition Pruning”
Section 26.5, “Partition Selection”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 8.2.2, “Privileges Provided by MySQL”
Section 17.8.9, “Purge Configuration”
Section 10.2.1.2, “Range Optimization”
Section 26.2.1, “RANGE Partitioning”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.18, “Replication and LIMIT”
Section 19.5.1.21, “Replication and MEMORY Tables”
Section 19.5.1.27, “Replication and Row Searches”
Section 19.5.1.23, “Replication and the Query Optimizer”
Section 19.5.1.36, “Replication and Triggers”
Section 5.3.4.1, “Selecting All Data”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.11, “Server SQL Modes”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

6126

Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 10.3.3, “SPATIAL Index Optimization”
Section 15.2.15, “Subqueries”
Section 10.11.2, “Table Locking Issues”
Section 18.5, “The ARCHIVE Storage Engine”
Section 7.4.4, “The Binary Log”
Section 18.6, “The BLACKHOLE Storage Engine”
Section 28.4.26, “The INFORMATION_SCHEMA INNODB_TABLESTATS View”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.2.2, “The Main Features of MySQL”
Section 18.3, “The MEMORY Storage Engine”
Section 18.7, “The MERGE Storage Engine”
Section 7.6.4, “The Rewriter Query Rewrite Plugin”
Section 10.15.3, “Traceable Statements”
Section 17.7.2.1, “Transaction Isolation Levels”
Section 27.3.1, “Trigger Syntax and Examples”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 15.1.37, “TRUNCATE TABLE Statement”
Section 17.6.6, “Undo Logs”
Section 27.5.3, “Updatable and Insertable Views”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 8.2.13, “When Privilege Changes Take Effect”
Section 10.2.1.1, “WHERE Clause Optimization”
Section 14.20.5, “Window Function Restrictions”
Section 15.2.20, “WITH (Common Table Expressions)”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

DELETE FROM ... WHERE ...
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”

DESCRIBE
Section 5.3.2, “Creating a Table”
Section 15.8.1, “DESCRIBE Statement”
Section 15.8.2, “EXPLAIN Statement”
Section 28.8, “Extensions to SHOW Statements”
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”
Section 5.4, “Getting Information About Databases and Tables”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 15.7.7.5, “SHOW COLUMNS Statement”
Section 15.1.20.7, “Silent Column Specification Changes”
Section 12.2.2, “UTF-8 for Metadata”

DISCARD PARTITION
Section 17.12.1, “Online DDL Operations”

DISCARD PARTITION ... TABLESPACE
Section 15.1.9.1, “ALTER TABLE Partition Operations”

DO
Section 15.1.3, “ALTER EVENT Statement”
Section 20.5.3.2, “Configuring Transaction Consistency Guarantees”
Section 15.1.13, “CREATE EVENT Statement”
Section 15.2.3, “DO Statement”

6127

Section 14.14, “Locking Functions”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 27.8, “Restrictions on Stored Programs”
Section 27.7, “Stored Program Binary Logging”
Section 15.2.15, “Subqueries”
Section 28.3.14, “The INFORMATION_SCHEMA EVENTS Table”
Section 10.15.3, “Traceable Statements”

DROP DATABASE
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 15.1.24, “DROP DATABASE Statement”
Section 15.1.33, “DROP TABLESPACE Statement”
Section 9.4.1, “Dumping Data in SQL Format with mysqldump”
Section 19.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 17.6.3.3, “General Tablespaces”
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 3.6, “Preparing Your Installation for Upgrade”
Section 25.6.13, “Privilege Synchronization and NDB_STORED_USER”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 2.3.7, “Windows Platform Restrictions”

DROP DATABASE IF EXISTS
Section 19.5.1.11, “Replication of DROP ... IF EXISTS Statements”

DROP EVENT
Section 15.1.2, “ALTER DATABASE Statement”
Section 27.4.3, “Event Syntax”
Section 19.5.1.16, “Replication of Invoked Features”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.7, “Stored Program Binary Logging”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”

DROP FUNCTION
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.4, “ALTER FUNCTION Statement”
Section 15.7.4.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 15.1.26, “DROP FUNCTION Statement”
Section 15.7.4.2, “DROP FUNCTION Statement for Loadable Functions”
Section 15.1.29, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 11.2.5, “Function Name Parsing and Resolution”
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.7.1, “Installing and Uninstalling Loadable Functions”
Section 7.6.6.2, “Installing or Uninstalling Version Tokens”
Section 8.5.3.1, “MySQL Enterprise Data Masking and De-Identification Plugin Installation”
Section 8.6.1, “MySQL Enterprise Encryption Installation and Upgrading”

6128

Section 19.5.1.16, “Replication of Invoked Features”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.7, “Stored Program Binary Logging”
Section 27.2.1, “Stored Routine Syntax”
The Locking Service Function Interface
Section 3.13, “Upgrade Troubleshooting”
Section 1.3, “What Is New in MySQL 8.0”

DROP INDEX
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.9, “ALTER TABLE Statement”
Section 13.4.10, “Creating Spatial Indexes”
Section 15.1.27, “DROP INDEX Statement”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 17.12.1, “Online DDL Operations”
Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 7.1.8, “Server System Variables”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 7.4.5, “The Slow Query Log”

DROP LOGFILE GROUP
Section 15.1.28, “DROP LOGFILE GROUP Statement”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”

DROP PARTITION
Section 17.12.1, “Online DDL Operations”

DROP PREPARE
Section 29.12.6.4, “The prepared_statements_instances Table”

DROP PROCEDURE
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.7, “ALTER PROCEDURE Statement”
Section 19.5.1.16, “Replication of Invoked Features”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.7, “Stored Program Binary Logging”
Section 27.2.1, “Stored Routine Syntax”
Section 1.3, “What Is New in MySQL 8.0”

DROP RESOURCE GROUP
Section 15.7.2.3, “DROP RESOURCE GROUP Statement”
Section 7.1.16, “Resource Groups”

DROP ROLE
Section 15.7.1.4, “DROP ROLE Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 8.2.10, “Using Roles”

DROP SCHEMA
Section 15.1.24, “DROP DATABASE Statement”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 7.1.8, “Server System Variables”

6129

DROP SERVER
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 15.7.8.3, “FLUSH Statement”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.5, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 15.3.3, “Statements That Cause an Implicit Commit”

DROP SPATIAL REFERENCE SYSTEM
Section 15.1.31, “DROP SPATIAL REFERENCE SYSTEM Statement”
Section 13.4.5, “Spatial Reference System Support”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 28.3.36, “The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS Table”

DROP TABLE
Section 25.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.9, “ALTER TABLE Statement”
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 8.4.5.4, “Audit Log File Formats”
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 17.7.2.3, “Consistent Nonlocking Reads”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.1.32, “DROP TABLE Statement”
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 17.6.3.2, “File-Per-Table Tablespaces”
Section 17.21.3, “Forcing InnoDB Recovery”
Section 17.6.3.3, “General Tablespaces”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.3.2, “GTID Life Cycle”
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section 14.15, “Information Functions”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 25.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 18.7.2, “MERGE Table Problems”
Section 6.5.1.1, “mysql Client Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.5.10, “ndb_drop_index — Drop Index from an NDB Table”
Section 25.5.11, “ndb_drop_table — Drop an NDB Table”
Section 10.5.7, “Optimizing InnoDB DDL Operations”
Section 25.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 8.2.2, “Privileges Provided by MySQL”
Section 16.2, “Removal of File-based Metadata Storage”
Section 27.9, “Restrictions on Views”
Section 15.6.7.6, “Scope Rules for Handlers”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 7.4.4.2, “Setting The Binary Log Format”
Section 15.7.7.39, “SHOW TABLES Statement”
Section 15.6.7.5, “SIGNAL Statement”

6130

Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 18.3, “The MEMORY Storage Engine”
Section 18.7, “The MERGE Storage Engine”
Section 15.6.7.7, “The MySQL Diagnostics Area”
Section 17.21.4, “Troubleshooting InnoDB Data Dictionary Operations”
Section 15.1.37, “TRUNCATE TABLE Statement”
Section 15.7.4.6, “UNINSTALL PLUGIN Statement”

DROP TABLE IF EXISTS
Section 19.5.1.11, “Replication of DROP ... IF EXISTS Statements”

DROP TABLESPACE
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 17.6.3.3, “General Tablespaces”
Section 25.2.7.8, “Issues Exclusive to NDB Cluster”
Section 7.1.8, “Server System Variables”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 1.3, “What Is New in MySQL 8.0”

DROP TABLESPACE tablespace_name
Section 17.6.3.3, “General Tablespaces”

DROP TEMPORARY TABLE
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”

DROP TRIGGER
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.34, “DROP TRIGGER Statement”
Section A.5, “MySQL 8.0 FAQ: Triggers”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 19.5.1.16, “Replication of Invoked Features”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.3.1, “Trigger Syntax and Examples”
Section 1.3, “What Is New in MySQL 8.0”

DROP UNDO TABALESPACE
Section 17.6.3.4, “Undo Tablespaces”

DROP UNDO TABLESPACE
Section 3.5, “Changes in MySQL 8.0”
Section 1.3, “What Is New in MySQL 8.0”

DROP USER
Section 8.2.1, “Account User Names and Passwords”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 15.7.1.5, “DROP USER Statement”
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 14.15, “Information Functions”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”
Section 25.6.13, “Privilege Synchronization and NDB_STORED_USER”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.8, “Replication of CURRENT_USER()”

6131

Section 15.7.1.8, “REVOKE Statement”
Section 7.1.8, “Server System Variables”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.6, “Stored Object Access Control”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”
Section 8.2.10, “Using Roles”
Section 1.3, “What Is New in MySQL 8.0”
Section 3.4, “What the MySQL Upgrade Process Upgrades”

DROP VIEW
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 15.1.35, “DROP VIEW Statement”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 27.9, “Restrictions on Views”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.5.1, “View Syntax”

DROP VIEW IF EXISTS
Section 19.5.1.11, “Replication of DROP ... IF EXISTS Statements”

E

[index top]

ENCRYPTION
Section 17.13, “InnoDB Data-at-Rest Encryption”

EXCEPT
Section 15.2.4, “EXCEPT Clause”
Section 15.2.8, “INTERSECT Clause”
Section 15.2.11, “Parenthesized Query Expressions”
Section 15.2.13, “SELECT Statement”
Section 15.2.14, “Set Operations with UNION, INTERSECT, and EXCEPT”
Section 15.2.19, “VALUES Statement”
Section 1.3, “What Is New in MySQL 8.0”

EXCHANGE PARTITION
Section 17.12.1, “Online DDL Operations”

EXECUTE
Section 15.2.1, “CALL Statement”
Section 15.5.2, “EXECUTE Statement”
Section 15.5.1, “PREPARE Statement”
Section 15.5, “Prepared Statements”
Section 27.8, “Restrictions on Stored Programs”
Section 7.1.10, “Server Status Variables”
Section 29.12.6.4, “The prepared_statements_instances Table”

EXPLAIN
Section 15.1.9, “ALTER TABLE Statement”
Section 10.2.1.23, “Avoiding Full Table Scans”
Section 10.2.1.12, “Block Nested-Loop and Batched Key Access Joins”
Section 10.3.5, “Column Indexes”
Section 10.2.1.13, “Condition Filtering”
Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 15.1.15, “CREATE INDEX Statement”

6132

Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 7.9.1, “Debugging a MySQL Server”
Section 10.2.2.5, “Derived Condition Pushdown Optimization”
Section 15.2.15.8, “Derived Tables”
Section 10.3.13, “Descending Indexes”
Section 15.8.1, “DESCRIBE Statement”
Section 10.2.1.18, “DISTINCT Optimization”
Section 10.2.1.5, “Engine Condition Pushdown Optimization”
Section 10.15.12, “Example”
Section 10.8.2, “EXPLAIN Output Format”
Section 15.8.2, “EXPLAIN Statement”
Section 10.8.3, “Extended EXPLAIN Output Format”
Section 14.17.3, “Functions That Search JSON Values”
Section 10.2.1.17, “GROUP BY Optimization”
Section 10.2.1.4, “Hash Join Optimization”
Section 10.2.1.6, “Index Condition Pushdown Optimization”
Section 10.9.4, “Index Hints”
Section 10.2.1.3, “Index Merge Optimization”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 28.1, “Introduction”
Section 10.3.12, “Invisible Indexes”
Section 10.2.1.15, “IS NULL Optimization”
Section 10.2.1.19, “LIMIT Query Optimization”
Section 14.23, “Miscellaneous Functions”
Section 10.2.1.11, “Multi-Range Read Optimization”
Section 6.5.1.6, “mysql Client Tips”
Chapter 29, MySQL Performance Schema
NDB Cluster Status Variables
NDB Cluster System Variables
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 26.3.5, “Obtaining Information About Partitions”
Section 10.9.3, “Optimizer Hints”
Section 10.9.6, “Optimizer Statistics”
Section 10.3.11, “Optimizer Use of Generated Column Indexes”
Section B.3.5, “Optimizer-Related Issues”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations”
Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 10.2.4, “Optimizing Performance Schema Queries”
Section 10.8.1, “Optimizing Queries with EXPLAIN”
Section 10.2.1, “Optimizing SELECT Statements”
Section 10.2.2.2, “Optimizing Subqueries with Materialization”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 10.2.1.16, “ORDER BY Optimization”
Section 26.4, “Partition Pruning”
Section 8.2.2, “Privileges Provided by MySQL”
Section 10.2.1.2, “Range Optimization”
Section 27.8, “Restrictions on Stored Programs”
Section 15.1.20.9, “Secondary Indexes and Generated Columns”
Section 15.2.13, “SELECT Statement”
Section 10.15.10, “Selecting Optimizer Features to Trace”
Section 7.1.8, “Server System Variables”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section B.3.4.7, “Solving Problems with No Matching Rows”
Section 29.12.20.3, “Statement Summary Tables”
Section 10.9.2, “Switchable Optimizations”
Section 1.2.2, “The Main Features of MySQL”

6133

Section 30.4.4.22, “The ps_trace_statement_digest() Procedure”
Section 10.15.3, “Traceable Statements”
Section 10.8, “Understanding the Query Execution Plan”
Section 10.3.10, “Use of Index Extensions”
Section 7.9.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 13.4.11, “Using Spatial Indexes”
Section 10.3.7, “Verifying Index Usage”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 10.2.1.21, “Window Function Optimization”
Section 15.2.20, “WITH (Common Table Expressions)”

EXPLAIN ... FOR CONNECTION
Section 15.8.2, “EXPLAIN Statement”

EXPLAIN ANALYZE
Section 10.2.1.4, “Hash Join Optimization”
Section 15.7.8.4, “KILL Statement”
Section 1.3, “What Is New in MySQL 8.0”

EXPLAIN FOR CONNECTION
Section 10.8.2, “EXPLAIN Output Format”
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 10.2.1.2, “Range Optimization”
Section 7.1.10, “Server Status Variables”

EXPLAIN FORMAT=JSON
Section 10.15.2, “System Variables Controlling Tracing”
Section 10.2.1.21, “Window Function Optimization”

EXPLAIN FORMAT=TREE
Section 1.3, “What Is New in MySQL 8.0”

EXPLAIN SELECT
Section 15.2.15.8, “Derived Tables”
Section 10.8.2, “EXPLAIN Output Format”
Section 17.7.5.3, “How to Minimize and Handle Deadlocks”
Section 1.5, “How to Report Bugs or Problems”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 26.3.5, “Obtaining Information About Partitions”

EXPLAIN SELECT COUNT()
Section 26.2.1, “RANGE Partitioning”

EXPLAIN tbl_name
Section 10.8.1, “Optimizing Queries with EXPLAIN”

F

[index top]

FETCH
Section 15.6.6.2, “Cursor DECLARE Statement”
Section 15.6.6.3, “Cursor FETCH Statement”

6134

Section 27.8, “Restrictions on Stored Programs”

FETCH ... INTO var_list
Section 15.6.4, “Variables in Stored Programs”

FLUSH
Section 9.3.1, “Establishing a Backup Policy”
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.13, “Replication and FLUSH”
Section 15.7.8.6, “RESET Statement”
Section 27.8, “Restrictions on Stored Programs”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 6.10, “Unix Signal Handling in MySQL”
Section 1.3, “What Is New in MySQL 8.0”

FLUSH BINARY LOGS
Section 15.7.8.3, “FLUSH Statement”
Section 7.4.6, “Server Log Maintenance”

FLUSH ENGINE LOGS
Section 15.7.8.3, “FLUSH Statement”

FLUSH ERROR LOGS
Section 7.4.2.10, “Error Log File Flushing and Renaming”
Section 15.7.8.3, “FLUSH Statement”

FLUSH GENERAL LOGS
Section 15.7.8.3, “FLUSH Statement”

FLUSH HOSTS
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 15.7.8.3, “FLUSH Statement”
Section 1.3, “What Is New in MySQL 8.0”

FLUSH LOGS
Section 9.3.3, “Backup Strategy Summary”
Section 9.2, “Database Backup Methods”
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 19.1.4.2, “Enabling GTID Transactions Online”
Section 7.4.2.10, “Error Log File Flushing and Renaming”
Section 9.3.1, “Establishing a Backup Policy”
Section 15.7.8.3, “FLUSH Statement”
Section 7.4, “MySQL Server Logs”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 19.5.1.13, “Replication and FLUSH”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.4.6, “Server Log Maintenance”
Section 7.1.10, “Server Status Variables”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 19.2.4.1, “The Relay Log”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

6135

FLUSH OPTIMIZER_COSTS
Section 15.7.8.3, “FLUSH Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 10.9.5, “The Optimizer Cost Model”

FLUSH PRIVILEGES
Section 1.1, “About This Manual”
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 15.7.8.3, “FLUSH Statement”
Section 8.2.3, “Grant Tables”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.6.20.3, “NDB Cluster and MySQL Security Procedures”
Section 8.2.15, “Password Management”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.3.3.3, “Recovering From Failed Replication Privilege Checks”
Section 19.5.1.13, “Replication and FLUSH”
Section 19.3.3, “Replication Privilege Checks”
Section 7.1.7, “Server Command Options”
Section 8.2.21, “Setting Account Resource Limits”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 8.2.10, “Using Roles”
Section 8.2.13, “When Privilege Changes Take Effect”

FLUSH RELAY LOGS
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 15.7.8.3, “FLUSH Statement”

FLUSH RELAY LOGS FOR CHANNEL channel
Section 15.7.8.3, “FLUSH Statement”

FLUSH SLOW LOGS
Section 15.7.8.3, “FLUSH Statement”

FLUSH STATUS
Section 15.7.8.3, “FLUSH Statement”
Section 20.4, “Monitoring Group Replication”
Section 29.12.15, “Performance Schema Status Variable Tables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 29.12.20.12, “Status Variable Summary Tables”
Section 10.3.10, “Use of Index Extensions”

FLUSH TABLE
Section 15.7.8.3, “FLUSH Statement”

FLUSH TABLES
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”
Section 15.7.8.3, “FLUSH Statement”
Section 10.14.3, “General Thread States”
Section 15.2.5, “HANDLER Statement”
Section 10.4.3.1, “How MySQL Opens and Closes Tables”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 18.7.2, “MERGE Table Problems”

6136

Section 6.6.4, “myisamchk — MyISAM Table-Maintenance Utility”
Section 19.1.2.4, “Obtaining the Replication Source Binary Log Coordinates”
Section 8.2.2, “Privileges Provided by MySQL”
Section 18.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 19.5.1.13, “Replication and FLUSH”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 10.3.10, “Use of Index Extensions”

FLUSH TABLES ... FOR EXPORT
Section 17.6.1.2, “Creating Tables Externally”
Section 15.7.8.3, “FLUSH Statement”
Section 17.6.1.3, “Importing InnoDB Tables”
MySQL Glossary

FLUSH TABLES ...FOR EXPORT
Section 15.7.8.3, “FLUSH Statement”

FLUSH TABLES tbl_name ...
Section 15.7.8.3, “FLUSH Statement”

FLUSH TABLES tbl_name ... FOR EXPORT
Section 15.7.8.3, “FLUSH Statement”

FLUSH TABLES tbl_name ... WITH READ LOCK
Section 15.7.8.3, “FLUSH Statement”
Section 15.3.5, “LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements”

FLUSH TABLES tbl_name WITH READ LOCK
Section 15.2.5, “HANDLER Statement”

FLUSH TABLES WITH READ LOCK
Section 15.1.10, “ALTER TABLESPACE Statement”
Section 9.2, “Database Backup Methods”
Section 9.3.1, “Establishing a Backup Policy”
Section 15.7.8.3, “FLUSH Statement”
Section 17.6.3.3, “General Tablespaces”
Section 10.14.3, “General Thread States”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 19.1.2.4, “Obtaining the Replication Source Binary Log Coordinates”
Section 19.5.1.13, “Replication and FLUSH”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 29.12.13.3, “The metadata_locks Table”

FLUSH USER_RESOURCES
Section 15.7.8.3, “FLUSH Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.2.21, “Setting Account Resource Limits”

G

[index top]

6137

GET DIAGNOSTICS
Section 15.6.7, “Condition Handling”
Section B.2, “Error Information Interfaces”
Section 15.6.7.3, “GET DIAGNOSTICS Statement”
Section 15.6.7.4, “RESIGNAL Statement”
Section 15.6.8, “Restrictions on Condition Handling”
Section 27.8, “Restrictions on Stored Programs”
Section 7.1.8, “Server System Variables”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 15.6.7.5, “SIGNAL Statement”
Section 15.6.7.7, “The MySQL Diagnostics Area”

GET STACKED DIAGNOSTICS
Section 15.6.7.3, “GET DIAGNOSTICS Statement”
Section 15.6.7.7, “The MySQL Diagnostics Area”

GRANT
Section 8.2, “Access Control and Account Management”
Section 8.2.7, “Access Control, Stage 2: Request Verification”
Section 8.2.11, “Account Categories”
Section 8.2.1, “Account User Names and Passwords”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 3.5, “Changes in MySQL 8.0”
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 7.1.13.3, “Connecting Using the IPv6 Local Host Address”
Section 15.7.1.3, “CREATE USER Statement”
Section 19.1.2.3, “Creating a User for Replication”
Section 19.2.5.2, “Evaluation of Table-Level Replication Options”
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 14.15, “Information Functions”
Section 2.9.1, “Initializing the Data Directory”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.13, “IPv6 Support”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section A.14, “MySQL 8.0 FAQ: Replication”
MySQL Glossary
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”
Section 10.2.6, “Optimizing Database Privileges”
Section 8.1.2.3, “Passwords and Logging”
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 25.6.13, “Privilege Synchronization and NDB_STORED_USER”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.2.19, “Proxy Users”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.13, “Replication and FLUSH”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 19.5.1.22, “Replication of the mysql System Schema”
Section 19.3.3, “Replication Privilege Checks”
Section 15.7.1.8, “REVOKE Statement”

6138

Section 8.1.1, “Security Guidelines”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 15.7.7.21, “SHOW GRANTS Statement”
Section 8.2.4, “Specifying Account Names”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 7.1.9.1, “System Variable Privileges”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”
Section 7.3, “The mysql System Schema”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”
Section 8.2.10, “Using Roles”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 8.2.13, “When Privilege Changes Take Effect”
Section 8.4.1.6, “Windows Pluggable Authentication”

GRANT ALL
Section 15.7.1.6, “GRANT Statement”

GRANT EVENT
Section 27.4.6, “The Event Scheduler and MySQL Privileges”

GRANT PROXY
Section 8.4.1.7, “LDAP Pluggable Authentication”

GROUP BY
Section 17.1.1, “Benefits of Using InnoDB Tables”

H

[index top]

HANDLER
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 15.7.8.3, “FLUSH Statement”
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”
Section 1.6, “MySQL Standards Compliance”
Section 7.1.8, “Server System Variables”

HANDLER ... CLOSE
Section 15.7.7.24, “SHOW OPEN TABLES Statement”

HANDLER ... OPEN
Section 15.7.7.24, “SHOW OPEN TABLES Statement”

HANDLER ... READ
Section 27.8, “Restrictions on Stored Programs”

HANDLER OPEN
Section 15.2.5, “HANDLER Statement”
Section 15.1.37, “TRUNCATE TABLE Statement”

HELP
Section 15.8.3, “HELP Statement”
Section 2.9.1, “Initializing the Data Directory”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 7.1.17, “Server-Side Help Support”

6139

I

[index top]

IF
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”
Section 15.6.7.2, “DECLARE ... HANDLER Statement”
Section 14.5, “Flow Control Functions”
Section 15.6.5, “Flow Control Statements”
Section 15.6.5.2, “IF Statement”
Section 10.15.3, “Traceable Statements”

IMPORT PARTITION
Section 17.12.1, “Online DDL Operations”

IMPORT PARTITION ... TABLESPACE
Section 15.1.9.1, “ALTER TABLE Partition Operations”

IMPORT TABLE
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.2.6, “IMPORT TABLE Statement”
Section 15.2.9, “LOAD DATA Statement”
MySQL Glossary
Section 16.6, “Serialized Dictionary Information (SDI)”

INSERT
Section 8.2, “Access Control and Account Management”
Section 8.2.7, “Access Control, Stage 2: Request Verification”
Section 8.2.11, “Account Categories”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 15.1.2, “ALTER DATABASE Statement”
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 17.7.2.2, “autocommit, Commit, and Rollback”
Section 9.1, “Backup and Recovery Types”
Section 17.1.2, “Best Practices for InnoDB Tables”
Section 10.5.5, “Bulk Data Loading for InnoDB Tables”
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”
Section 17.5.2, “Change Buffer”
Section 3.5, “Changes in MySQL 8.0”
Section 15.1.20.6, “CHECK Constraints”
Section 12.7, “Column Character Set Conversion”
Section 17.9.1.6, “Compression for OLTP Workloads”
Section 10.11.3, “Concurrent Inserts”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 15.1.15, “CREATE INDEX Statement”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 18.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 13.6, “Data Type Default Values”
Section 13.2.1, “Date and Time Data Type Syntax”

6140

Section 15.6.7.2, “DECLARE ... HANDLER Statement”
Section 15.2.2, “DELETE Statement”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 9.3.1, “Establishing a Backup Policy”
Section 10.8.2, “EXPLAIN Output Format”
Section 15.8.2, “EXPLAIN Statement”
Section 14.24.3, “Expression Handling”
Section 10.8.3, “Extended EXPLAIN Output Format”
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 17.21.3, “Forcing InnoDB Recovery”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 14.9.5, “Full-Text Restrictions”
Section 10.14.3, “General Thread States”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 14.15, “Information Functions”
Section 17.7.1, “InnoDB Locking”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 15.2.7.1, “INSERT ... SELECT Statement”
Section 15.2.7.3, “INSERT DELAYED Statement”
Section 15.2.7, “INSERT Statement”
Section 19.2.5.3, “Interactions Between Replication Filtering Options”
Section 10.11.1, “Internal Locking Methods”
Section 28.1, “Introduction”
Section 15.1.20.10, “Invisible Columns”
Section 14.17.7, “JSON Schema Validation Functions”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 26.2.2, “LIST Partitioning”
Section 15.2.9, “LOAD DATA Statement”
Section 5.3.3, “Loading Data into a Table”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 18.7.2, “MERGE Table Problems”
Section 10.11.4, “Metadata Locking”
Section 14.23, “Miscellaneous Functions”
Section A.1, “MySQL 8.0 FAQ: General”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.5, “MySQL 8.0 FAQ: Triggers”
Section A.6, “MySQL 8.0 FAQ: Views”
Section 6.5.1.1, “mysql Client Options”
Section 8.6.3, “MySQL Enterprise Encryption Usage and Examples”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section B.3.2.7, “MySQL server has gone away”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.6.15, “NDB API Statistics Counters and Variables”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 25.3.5, “NDB Cluster Example with Tables and Data”
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 17.12.1, “Online DDL Operations”
Section 15.7.3.4, “OPTIMIZE TABLE Statement”
Section 10.9.3, “Optimizer Hints”

6141

Section 10.2.5, “Optimizing Data Change Statements”
Section 10.2.5.1, “Optimizing INSERT Statements”
Section 10.6.1, “Optimizing MyISAM Queries”
Section 10.8.1, “Optimizing Queries with EXPLAIN”
Section 13.1.7, “Out-of-Range and Overflow Handling”
Section 26.1, “Overview of Partitioning in MySQL”
Section 26.4, “Partition Pruning”
Section 26.5, “Partition Selection”
Section 8.1.2.3, “Passwords and Logging”
Section 29.12.6, “Performance Schema Statement Event Tables”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 13.4.7, “Populating Spatial Columns”
Section 29.4.6, “Pre-Filtering by Thread”
Section 15.5.1, “PREPARE Statement”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 8.2.2, “Privileges Provided by MySQL”
Section 17.8.9, “Purge Configuration”
Section 26.2.1, “RANGE Partitioning”
Section 15.2.12, “REPLACE Statement”
Section 19.5.1.29, “Replica Errors During Replication”
Section 19.5.1.1, “Replication and AUTO_INCREMENT”
Section 19.5.1.30, “Replication and Server SQL Mode”
Section 19.5.1.14, “Replication and System Functions”
Section 19.5.1.36, “Replication and Triggers”
Section 19.5.1.39, “Replication and Variables”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 15.1.20.9, “Secondary Indexes and Generated Columns”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”
Section 15.7.7.27, “SHOW PROCEDURE CODE Statement”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 10.3.3, “SPATIAL Index Optimization”
Section 27.7, “Stored Program Binary Logging”
Section 15.2.15, “Subqueries”
Section 10.11.2, “Table Locking Issues”
Section 15.2.16, “TABLE Statement”
Section 18.5, “The ARCHIVE Storage Engine”
Section 12.8.5, “The binary Collation Compared to _bin Collations”
Section 7.4.4, “The Binary Log”
Section 18.6, “The BLACKHOLE Storage Engine”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”
Section 1.2.2, “The Main Features of MySQL”
Section 18.7, “The MERGE Storage Engine”
Section 18.2, “The MyISAM Storage Engine”
Section 7.6.4, “The Rewriter Query Rewrite Plugin”
Section 7.1.19, “The Server Shutdown Process”
Section 10.15.3, “Traceable Statements”
Section 17.7.2.1, “Transaction Isolation Levels”
Section 27.3.1, “Trigger Syntax and Examples”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 17.20.9, “Troubleshooting the InnoDB memcached Plugin”
Section 17.6.6, “Undo Logs”
Section 27.5.3, “Updatable and Insertable Views”
Section 15.2.17, “UPDATE Statement”

6142

Section 17.15.2.1, “Using InnoDB Transaction and Locking Information”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 27.3, “Using Triggers”
Section 15.2.19, “VALUES Statement”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 8.2.13, “When Privilege Changes Take Effect”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

INSERT ... ON DUPLICATE KEY UPDATE
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.15, “Information Functions”
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 15.2.7, “INSERT Statement”
Section 15.1.20.10, “Invisible Columns”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 18.7.2, “MERGE Table Problems”
Section 14.23, “Miscellaneous Functions”
MySQL Glossary
Section 15.2.19, “VALUES Statement”
Section 1.3, “What Is New in MySQL 8.0”

INSERT ... SELECT
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 10.11.3, “Concurrent Inserts”
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 15.2.7.1, “INSERT ... SELECT Statement”
Section 15.2.7, “INSERT Statement”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section B.3.7, “Known Issues in MySQL”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
NDB Cluster System Variables
Section 26.5, “Partition Selection”
Section 19.5.1.18, “Replication and LIMIT”
Section 7.1.8, “Server System Variables”
Section 7.4.4, “The Binary Log”
Section 1.3, “What Is New in MySQL 8.0”

INSERT ... SELECT ON DUPLICATE KEY UPDATE
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 15.2.7.1, “INSERT ... SELECT Statement”

INSERT ... SET
Section 15.2.7, “INSERT Statement”

INSERT ... TABLE
Section 15.2.7, “INSERT Statement”

INSERT ... VALUES
Section 15.2.7, “INSERT Statement”

INSERT ... VALUES ROW()
Section 15.2.7, “INSERT Statement”

6143

INSERT DELAYED
Section 15.2.7.3, “INSERT DELAYED Statement”
Section 15.2.7, “INSERT Statement”

INSERT IGNORE
Section 15.1.20.6, “CHECK Constraints”
Section 1.6.3.4, “ENUM and SET Constraints”
Section 14.15, “Information Functions”
Section 15.2.7, “INSERT Statement”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 7.1.11, “Server SQL Modes”

INSERT IGNORE ... SELECT
Section 15.2.7.1, “INSERT ... SELECT Statement”

INSERT INTO ... SELECT
Section 8.2.7, “Access Control, Stage 2: Request Verification”
Section 17.7.2.3, “Consistent Nonlocking Reads”
Section 15.1.13, “CREATE EVENT Statement”
Section 15.2.7, “INSERT Statement”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 18.3, “The MEMORY Storage Engine”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

INSERT INTO ... SELECT *
Section 15.1.20.10, “Invisible Columns”

INSERT INTO ... SELECT FROM memory_table
Section 19.5.1.21, “Replication and MEMORY Tables”

INSERT INTO...SELECT
Section 10.2.1, “Optimizing SELECT Statements”

INSTALL COMPONENT
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 3.5, “Changes in MySQL 8.0”
Section 7.5.3, “Error Log Components”
Section 7.4.2.1, “Error Log Configuration”
Section 15.7.4.3, “INSTALL COMPONENT Statement”
Section 7.5.1, “Installing and Uninstalling Components”
Section 8.4.4.2, “Keyring Component Installation”
Section 8.5.2.1, “MySQL Enterprise Data Masking and De-Identification Component Installation”
Section 8.6.1, “MySQL Enterprise Encryption Installation and Upgrading”
Section 7.5.2, “Obtaining Component Information”
Section 8.4.3.1, “Password Validation Component Installation and Uninstallation”
Section 8.2.2, “Privileges Provided by MySQL”
Section 11.6, “Query Attributes”
Section 7.1.8, “Server System Variables”
Section 8.4.6, “The Audit Message Component”
Section 7.3, “The mysql System Schema”
Section 15.7.4.5, “UNINSTALL COMPONENT Statement”
Section 1.3, “What Is New in MySQL 8.0”

INSTALL PLUGIN
Section 15.1.1, “Atomic Data Definition Statement Support”

6144

Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 8.4.2.1, “Connection Control Plugin Installation”
Section 7.6.5.2, “ddl_rewriter Plugin Options”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 15.7.8.3, “FLUSH Statement”
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.7.4.4, “INSTALL PLUGIN Statement”
Section 7.5.1, “Installing and Uninstalling Components”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 7.6.5.1, “Installing or Uninstalling ddl_rewriter”
Section 8.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”
Section 8.4.7.2, “Installing or Uninstalling MySQL Enterprise Firewall”
Section 7.6.6.2, “Installing or Uninstalling Version Tokens”
Section 19.4.10.1, “Installing Semisynchronous Replication”
Section 7.6.7.1, “Installing the Clone Plugin”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.4.3, “Keyring Plugin Installation”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 14.9.9, “MeCab Full-Text Parser Plugin”
Section 8.5.3.1, “MySQL Enterprise Data Masking and De-Identification Plugin Installation”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 8.4.1.9, “No-Login Pluggable Authentication”
Section 7.6.2, “Obtaining Server Plugin Information”
Section 8.4.1.5, “PAM Pluggable Authentication”
Section 8.4.3.2, “Password Validation Options and Variables”
Section 18.11.1, “Pluggable Storage Engine Architecture”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”
Section 15.7.7.25, “SHOW PLUGINS Statement”
Section 8.4.1.10, “Socket Peer-Credential Pluggable Authentication”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 8.4.1.12, “Test Pluggable Authentication”
Section 28.3.22, “The INFORMATION_SCHEMA PLUGINS Table”
Section 7.3, “The mysql System Schema”
Section 17.20.9, “Troubleshooting the InnoDB memcached Plugin”
Section 15.7.4.6, “UNINSTALL PLUGIN Statement”
Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.1.6, “Windows Pluggable Authentication”

INTERSECT
Section 15.2.4, “EXCEPT Clause”
Section 15.2.11, “Parenthesized Query Expressions”
Section 15.2.13, “SELECT Statement”
Section 15.2.14, “Set Operations with UNION, INTERSECT, and EXCEPT”
Section 15.2.19, “VALUES Statement”
Section 1.3, “What Is New in MySQL 8.0”

ITERATE
Section 15.6.7.2, “DECLARE ... HANDLER Statement”
Section 15.6.5, “Flow Control Statements”
Section 15.6.5.3, “ITERATE Statement”

6145

Section 15.6.2, “Statement Labels”

J

[index top]

JOIN
Section 15.2.15.7, “Correlated Subqueries”

K

[index top]

KILL
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 10.14, “Examining Server Thread (Process) Information”
Section 10.14.3, “General Thread States”
Section 15.7.1.6, “GRANT Statement”
Section 19.1.3.2, “GTID Life Cycle”
Section 15.7.8.4, “KILL Statement”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section B.3.2.7, “MySQL server has gone away”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 15.7.7.29, “SHOW PROCESSLIST Statement”
Section 15.4.2.8, “STOP REPLICA Statement”
Section 30.4.3.9, “The innodb_lock_waits and x$innodb_lock_waits Views”
Section 30.4.3.28, “The schema_table_lock_waits and x$schema_table_lock_waits Views”

KILL CONNECTION
Section 15.7.8.4, “KILL Statement”
Section 15.4.2.8, “STOP REPLICA Statement”
Section 7.1.19, “The Server Shutdown Process”

KILL QUERY
Section 15.8.2, “EXPLAIN Statement”
Section 15.7.8.4, “KILL Statement”
Section 14.23, “Miscellaneous Functions”
Section 15.4.2.8, “STOP REPLICA Statement”
Section 7.1.19, “The Server Shutdown Process”
Section 15.2.20, “WITH (Common Table Expressions)”

KILL QUERY processlist_id
Section 7.6.7.11, “Stopping a Cloning Operation”

L

[index top]

LEAVE
Section 15.6.7.2, “DECLARE ... HANDLER Statement”
Section 15.6.5, “Flow Control Statements”
Section 15.6.5.4, “LEAVE Statement”
Section 15.6.5.5, “LOOP Statement”
Section 27.8, “Restrictions on Stored Programs”
Section 15.6.5.7, “RETURN Statement”

6146

Section 15.6.2, “Statement Labels”

LOAD DATA
Section 15.1.2, “ALTER DATABASE Statement”
Section 8.4.5.4, “Audit Log File Formats”
Section 8.4.5.12, “Audit Log Restrictions”
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 19.4.1.2, “Backing Up Raw Data from a Replica”
Section 9.1, “Backup and Recovery Types”
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”
Section 15.1.20.6, “CHECK Constraints”
Section 10.11.3, “Concurrent Inserts”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 9.2, “Database Backup Methods”
Section 12.3.3, “Database Character Set and Collation”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 15.2.6, “IMPORT TABLE Statement”
Section 14.15, “Information Functions”
Section 15.1.20.10, “Invisible Columns”
Section B.3.7, “Known Issues in MySQL”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 15.2.9, “LOAD DATA Statement”
Section 15.2.10, “LOAD XML Statement”
Section 5.3.3, “Loading Data into a Table”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 18.2.1, “MyISAM Startup Options”
Section 6.5.1.1, “mysql Client Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.5.27, “ndb_show_tables — Display List of NDB Tables”
Section 11.1.7, “NULL Values”
Section 10.2.5.1, “Optimizing INSERT Statements”
Section 13.1.7, “Out-of-Range and Overflow Handling”
Section 6.1, “Overview of MySQL Programs”
Section 26.1, “Overview of Partitioning in MySQL”
Section 26.5, “Partition Selection”
Section 25.6.5, “Performing a Rolling Restart of an NDB Cluster”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section B.3.4.3, “Problems with NULL Values”
Section 9.4.4, “Reloading Delimited-Text Format Backups”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.19, “Replication and LOAD DATA”
Section 10.14.6, “Replication SQL Thread States”
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 12.11, “Restrictions on Character Sets”
Section 27.8, “Restrictions on Stored Programs”
Section 19.3.2.1, “Scope of Binary Log Encryption”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 5.3.4.1, “Selecting All Data”
Section 7.1.7, “Server Command Options”

6147

Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 13.3.5, “The ENUM Type”
Section 18.3, “The MEMORY Storage Engine”
Section 15.2.15.1, “The Subquery as Scalar Operand”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 11.4, “User-Defined Variables”
Section 27.3, “Using Triggers”
Section 1.3, “What Is New in MySQL 8.0”
Section B.3.3.5, “Where MySQL Stores Temporary Files”
Section 2.3.7, “Windows Platform Restrictions”

LOAD DATA ... IGNORE
Section 15.1.20.6, “CHECK Constraints”

LOAD DATA ... REPLACE
Section 15.2.12, “REPLACE Statement”

LOAD DATA INFILE
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

LOAD DATA LOCAL
Section 15.2.9, “LOAD DATA Statement”
Section 6.5.1.1, “mysql Client Options”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 7.1.8, “Server System Variables”

LOAD DATA LOCAL INFILE
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”

LOAD INDEX INTO CACHE
Section 15.7.8.2, “CACHE INDEX Statement”
Section 10.10.2.4, “Index Preloading”
Section 15.7.8.5, “LOAD INDEX INTO CACHE Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”

LOAD INDEX INTO CACHE ... IGNORE LEAVES
Section 15.7.8.5, “LOAD INDEX INTO CACHE Statement”

LOAD XML
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.20.6, “CHECK Constraints”
Section 15.1.20.10, “Invisible Columns”
Section 15.2.10, “LOAD XML Statement”
Section 26.1, “Overview of Partitioning in MySQL”
Section 26.5, “Partition Selection”
Section 27.8, “Restrictions on Stored Programs”
Section 7.1.11, “Server SQL Modes”
Section 1.3, “What Is New in MySQL 8.0”

LOAD XML ... IGNORE
Section 15.1.20.6, “CHECK Constraints”

6148

LOAD XML LOCAL
Section 15.2.10, “LOAD XML Statement”

LOCK INSTANCE FOR BACKUP
Section 15.3.5, “LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.4.1.1, “PURGE BINARY LOGS Statement”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

LOCK TABLE
Section 10.11.3, “Concurrent Inserts”
Section 10.14.3, “General Thread States”
Section B.3.6.1, “Problems with ALTER TABLE”

LOCK TABLES
Section 15.1.10, “ALTER TABLESPACE Statement”
Section 17.1.2, “Best Practices for InnoDB Tables”
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”
Section 15.1.12, “CREATE DATABASE Statement”
Section 15.1.20.3, “CREATE TABLE ... LIKE Statement”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 17.7.5.2, “Deadlock Detection”
Section 17.7.5, “Deadlocks in InnoDB”
Section 15.7.8.3, “FLUSH Statement”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 17.6.3.3, “General Tablespaces”
Section 10.14.3, “General Thread States”
Section 15.7.1.6, “GRANT Statement”
Section 17.7.5.3, “How to Minimize and Handle Deadlocks”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.11.1, “Internal Locking Methods”
Section 25.2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 18.7.2, “MERGE Table Problems”
Section 10.11.4, “Metadata Locking”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”
Section 18.2.4.2, “Problems from Tables Not Being Closed Properly”
Section 15.1.36, “RENAME TABLE Statement”
Section 27.8, “Restrictions on Stored Programs”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 10.11.2, “Table Locking Issues”

LOCK TABLES ... READ
Section 15.7.8.3, “FLUSH Statement”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 10.11.4, “Metadata Locking”

LOCK TABLES ... WRITE
Section 17.7.1, “InnoDB Locking”

6149

Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”

LOCK TABLES READ
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”

LOCK TABLES WRITE
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”

LOOP
Section 15.6.5, “Flow Control Statements”
Section 15.6.5.3, “ITERATE Statement”
Section 15.6.5.4, “LEAVE Statement”
Section 15.6.5.5, “LOOP Statement”
Section 15.6.2, “Statement Labels”

O

[index top]

OPTIMIZE PARTITION
Section 17.12.1, “Online DDL Operations”

OPTIMIZE TABLE
Section 25.6.7.2, “Adding NDB Cluster Data Nodes Online: Basic procedure”
Section 25.6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”
Section 7.9.1, “Debugging a MySQL Server”
Section 15.2.2, “DELETE Statement”
Section 18.2.3.2, “Dynamic Table Characteristics”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 10.14.3, “General Thread States”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 17.6.1.3, “Importing InnoDB Tables”
Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 17.9.2, “InnoDB Page Compression”
Section 17.10, “InnoDB Row Formats”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.7.8.4, “KILL Statement”
Section 25.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 15.3.5, “LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements”
Section 26.3.4, “Maintenance of Partitions”
Section 18.7.2, “MERGE Table Problems”
Section 9.6, “MyISAM Table Maintenance and Crash Recovery”
Section 9.6.4, “MyISAM Table Optimization”
Section 6.6.4.1, “myisamchk General Options”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Server Options for NDB Cluster
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 25.6.11.2, “NDB Cluster Disk Data Storage Requirements”
Section 17.12.8, “Online DDL Limitations”
Section 17.12.1, “Online DDL Operations”
Section 25.6.12, “Online Operations with ALTER TABLE in NDB Cluster”
Section 15.7.3.4, “OPTIMIZE TABLE Statement”
Section 10.6.1, “Optimizing MyISAM Queries”
Section 10.2.5.2, “Optimizing UPDATE Statements”

6150

Section 10.2.7, “Other Optimization Tips”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.13, “Replication and FLUSH”
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 9.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 18.2.3.1, “Static (Fixed-Length) Table Characteristics”
Section 18.5, “The ARCHIVE Storage Engine”
Section 28.4.14, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 28.4.15, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 28.4.17, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 28.4.18, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 28.4.19, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 28.4.23, “The INFORMATION_SCHEMA INNODB_TABLES Table”
Section 25.6.16.46, “The ndbinfo memory_per_fragment Table”
Section 7.1.19, “The Server Shutdown Process”
Section 7.4.5, “The Slow Query Log”
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”

ORDER BY
Section 17.1.1, “Benefits of Using InnoDB Tables”

P

[index top]

PARTITION BY
Section 17.12.1, “Online DDL Operations”

PREPARE
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”
Section 15.2.1, “CALL Statement”
Section 15.5.3, “DEALLOCATE PREPARE Statement”
Section 15.5.2, “EXECUTE Statement”
Section 11.2.3, “Identifier Case Sensitivity”
Section 10.11.4, “Metadata Locking”
Section 15.5.1, “PREPARE Statement”
Section 15.5, “Prepared Statements”
Section 11.6, “Query Attributes”
Section 27.8, “Restrictions on Stored Programs”
Section 7.1.10, “Server Status Variables”
Section 29.12.6.4, “The prepared_statements_instances Table”
Section 1.3, “What Is New in MySQL 8.0”

PURGE BINARY LOGS
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 9.3.1, “Establishing a Backup Policy”
Section 15.7.1.6, “GRANT Statement”
Section 15.3.5, “LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.4.1.1, “PURGE BINARY LOGS Statement”
Section 15.4.1.2, “RESET MASTER Statement”
Section 7.4.6, “Server Log Maintenance”
Section 7.4.4, “The Binary Log”

6151

Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 1.3, “What Is New in MySQL 8.0”

R

[index top]

REBUILD PARTITION
Section 17.12.1, “Online DDL Operations”

RELEASE SAVEPOINT
Section 29.12.7, “Performance Schema Transaction Tables”
Section 15.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”
Section 29.12.7.1, “The events_transactions_current Table”

REMOVE PARTITIONING
Section 17.12.1, “Online DDL Operations”

RENAME TABLE
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.9, “ALTER TABLE Statement”
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 15.2.2, “DELETE Statement”
Section 10.14.3, “General Thread States”
Section 10.11.4, “Metadata Locking”
Section 17.6.1.4, “Moving or Copying InnoDB Tables”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 17.12.1, “Online DDL Operations”
Section 3.6, “Preparing Your Installation for Upgrade”
Section 15.1.36, “RENAME TABLE Statement”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”

RENAME USER
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 15.7.1.6, “GRANT Statement”
Section 14.15, “Information Functions”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.1.7, “RENAME USER Statement”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.6, “Stored Object Access Control”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”
Section 8.2.10, “Using Roles”
Section 3.4, “What the MySQL Upgrade Process Upgrades”
Section 8.2.13, “When Privilege Changes Take Effect”

REORGANIZE PARTITION
Section 17.12.1, “Online DDL Operations”

REPAIR PARTITION
Section 17.12.1, “Online DDL Operations”

6152

REPAIR TABLE
Section 15.1.9.1, “ALTER TABLE Partition Operations”
Section 15.1.9, “ALTER TABLE Statement”
Section 15.7.3.2, “CHECK TABLE Statement”
Section 18.2.4.1, “Corrupted MyISAM Tables”
Section 9.2, “Database Backup Methods”
Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 10.11.5, “External Locking”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 10.14.3, “General Thread States”
Section B.3.3.4, “How MySQL Handles a Full Disk”
Section 9.6.3, “How to Repair MyISAM Tables”
Section 1.5, “How to Report Bugs or Problems”
Section 15.2.6, “IMPORT TABLE Statement”
Section 15.7.8.4, “KILL Statement”
Section 15.2.9, “LOAD DATA Statement”
Section 15.3.5, “LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements”
Section 26.3.4, “Maintenance of Partitions”
Section 18.7.2, “MERGE Table Problems”
Section 18.2.1, “MyISAM Startup Options”
Section 9.6, “MyISAM Table Maintenance and Crash Recovery”
Section 6.6.4.1, “myisamchk General Options”
Section 6.6.4, “myisamchk — MyISAM Table-Maintenance Utility”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 10.6.3, “Optimizing REPAIR TABLE Statements”
Section 3.6, “Preparing Your Installation for Upgrade”
Section 8.2.2, “Privileges Provided by MySQL”
Section 18.2.4.2, “Problems from Tables Not Being Closed Properly”
Section B.3.6.1, “Problems with ALTER TABLE”
Section 3.14, “Rebuilding or Repairing Tables or Indexes”
Section 15.7.3.5, “REPAIR TABLE Statement”
Section 18.4.1, “Repairing and Checking CSV Tables”
Section 19.5.1.13, “Replication and FLUSH”
Section 19.5.1.25, “Replication and REPAIR TABLE”
Restoring an NDB backup to a later version of NDB Cluster
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 7.1.8, “Server System Variables”
Section 9.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 18.5, “The ARCHIVE Storage Engine”
Section 7.1.19, “The Server Shutdown Process”
Section 7.4.5, “The Slow Query Log”
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”

REPEAT
Section 15.6.7.2, “DECLARE ... HANDLER Statement”
Section 27.1, “Defining Stored Programs”
Section 15.6.5, “Flow Control Statements”
Section 15.6.5.3, “ITERATE Statement”
Section 15.6.5.4, “LEAVE Statement”
Section 15.6.5.6, “REPEAT Statement”
Section 15.6.2, “Statement Labels”

REPLACE
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 15.1.2, “ALTER DATABASE Statement”

6153

Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 15.1.20.6, “CHECK Constraints”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 13.6, “Data Type Default Values”
Section 10.8.2, “EXPLAIN Output Format”
Section 15.8.2, “EXPLAIN Statement”
Section 10.8.3, “Extended EXPLAIN Output Format”
Section 14.15, “Information Functions”
Section 15.2.7, “INSERT Statement”
Section 15.1.20.10, “Invisible Columns”
Section B.3.7, “Known Issues in MySQL”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 18.7.2, “MERGE Table Problems”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section B.3.2.7, “MySQL server has gone away”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 10.9.3, “Optimizer Hints”
Section 10.8.1, “Optimizing Queries with EXPLAIN”
Section 26.1, “Overview of Partitioning in MySQL”
Section 26.5, “Partition Selection”
Section 8.4.3.2, “Password Validation Options and Variables”
Section 15.2.12, “REPLACE Statement”
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 15.2.16, “TABLE Statement”
Section 18.5, “The ARCHIVE Storage Engine”
Section 1.2.2, “The Main Features of MySQL”
Section 25.6.16.48, “The ndbinfo operations_per_fragment Table”
Section 7.6.4, “The Rewriter Query Rewrite Plugin”
Section 10.15.3, “Traceable Statements”
Section 15.2.17, “UPDATE Statement”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 15.2.19, “VALUES Statement”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

REPLACE ... SELECT
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section B.3.7, “Known Issues in MySQL”

REPLACE INTO ... SELECT *
Section 15.1.20.10, “Invisible Columns”

RESET
Section 15.7.8.3, “FLUSH Statement”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 15.7.8.7, “RESET PERSIST Statement”
Section 15.7.8.6, “RESET Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”

RESET MASTER
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.3.1, “GTID Format and Storage”
Section 19.1.3.2, “GTID Life Cycle”

6154

Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.1.5.2, “Provisioning a Multi-Source Replica for GTID-Based Replication”
Section 15.4.1.2, “RESET MASTER Statement”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 15.7.8.6, “RESET Statement”
Section 19.1.5.7, “Resetting Multi-Source Replicas”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 19.4.8, “Switching Sources During Failover”
Section 7.4.4, “The Binary Log”
Section 29.12.11.4, “The replication_applier_status_by_coordinator Table”
Section 29.12.11.5, “The replication_applier_status_by_worker Table”
Section 29.12.11.11, “The replication_connection_status Table”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

RESET PERSIST
Section 20.5.3.2, “Configuring Transaction Consistency Guarantees”
Section 7.4.2.1, “Error Log Configuration”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 7.1.9.3, “Persisted System Variables”
Section 15.7.8.7, “RESET PERSIST Statement”
Section 15.7.8.6, “RESET Statement”
Section 7.1.8, “Server System Variables”
Section 15.7.6.1, “SET Syntax for Variable Assignment”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 7.1.9.1, “System Variable Privileges”

RESET PERSIST var_name
Section 7.6.1, “Installing and Uninstalling Plugins”

RESET REPLICA
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 19.2.2.2, “Compatibility with Previous Replication Statements”
Section 19.4.11, “Delayed Replication”
Section 19.1.3.2, “GTID Life Cycle”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.1.6, “Replication and Binary Logging Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 19.1.3.6, “Replication From a Source Without GTIDs to a Replica With GTIDs”
Section 19.2.4.2, “Replication Metadata Repositories”
Section 19.3.3, “Replication Privilege Checks”
Section 15.4.1.2, “RESET MASTER Statement”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 15.4.2.5, “RESET SLAVE Statement”
Section 15.7.8.6, “RESET Statement”
Section 19.1.5.7, “Resetting Multi-Source Replicas”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 29.12.11.4, “The replication_applier_status_by_coordinator Table”
Section 29.12.11.5, “The replication_applier_status_by_worker Table”
Section 29.12.11.11, “The replication_connection_status Table”

RESET REPLICA ALL
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”

6155

Section 19.2.5.4, “Replication Channel Based Filters”
Section 19.1.3.6, “Replication From a Source Without GTIDs to a Replica With GTIDs”
Section 19.1.5.7, “Resetting Multi-Source Replicas”

RESET SLAVE
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
NDB Cluster System Variables
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 15.4.2.5, “RESET SLAVE Statement”

RESIGNAL
Section 15.6.7, “Condition Handling”
Section 15.6.7.8, “Condition Handling and OUT or INOUT Parameters”
Section 15.6.7.1, “DECLARE ... CONDITION Statement”
Section 15.6.7.2, “DECLARE ... HANDLER Statement”
Section 15.6.7.3, “GET DIAGNOSTICS Statement”
Section 15.6.7.4, “RESIGNAL Statement”
Section 15.6.8, “Restrictions on Condition Handling”
Section 27.8, “Restrictions on Stored Programs”
Section 15.6.7.6, “Scope Rules for Handlers”
Section 15.6.7.5, “SIGNAL Statement”
Section 15.6.7.7, “The MySQL Diagnostics Area”

RESTART
Section 7.6.7.3, “Cloning Remote Data”
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 7.1.9.3, “Persisted System Variables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.8.8, “RESTART Statement”
Section 7.1.7, “Server Command Options”
Section 7.1.10, “Server Status Variables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

RETURN
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.6.5, “Flow Control Statements”
Section 15.6.5.5, “LOOP Statement”
Section 27.8, “Restrictions on Stored Programs”
Section 15.6.5.7, “RETURN Statement”
Section 15.6.7.5, “SIGNAL Statement”
Section 15.6.7.7, “The MySQL Diagnostics Area”
Section 10.15.3, “Traceable Statements”

REVOKE
Section 8.2, “Access Control and Account Management”
Section 8.2.1, “Account User Names and Passwords”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 15.7.8.3, “FLUSH Statement”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 10.12.3.1, “How MySQL Uses Memory”

6156

Section 14.15, “Information Functions”
Section 7.1.13, “IPv6 Support”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section A.14, “MySQL 8.0 FAQ: Replication”
Section 1.6.2, “MySQL Differences from Standard SQL”
MySQL Glossary
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 25.6.13, “Privilege Synchronization and NDB_STORED_USER”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.2.19, “Proxy Users”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Section 19.5.1.22, “Replication of the mysql System Schema”
Section 15.7.1.8, “REVOKE Statement”
Section 8.1.1, “Security Guidelines”
Section 7.1.8, “Server System Variables”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 7.1.9.1, “System Variable Privileges”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”
Section 8.2.10, “Using Roles”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.2.13, “When Privilege Changes Take Effect”

REVOKE ALL PRIVILEGES
Section 15.7.1.6, “GRANT Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 8.2.10, “Using Roles”

ROLLBACK
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 17.7.2.2, “autocommit, Commit, and Rollback”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 15.1.20, “CREATE TABLE Statement”
Section 6.6.1, “ibd2sdi — InnoDB Tablespace SDI Extraction Utility”
Section 14.15, “Information Functions”
Section 17.2, “InnoDB and the ACID Model”
Section 17.21.5, “InnoDB Error Handling”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 29.12.7, “Performance Schema Transaction Tables”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.35, “Replication and Transactions”
Section B.3.4.5, “Rollback Failure for Nontransactional Tables”
Section 15.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”
Section 7.1.8, “Server System Variables”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 15.3.2, “Statements That Cannot Be Rolled Back”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 27.7, “Stored Program Binary Logging”
Section 7.4.4, “The Binary Log”
Section 29.12.7.1, “The events_transactions_current Table”
Section 15.3, “Transactional and Locking Statements”
Section 27.3.1, “Trigger Syntax and Examples”
Section 1.3, “What Is New in MySQL 8.0”

ROLLBACK TO SAVEPOINT
Section 29.12.7, “Performance Schema Transaction Tables”
Section 15.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”

6157

Section 29.12.7.1, “The events_transactions_current Table”

ROLLBACK to SAVEPOINT
Section 27.3.1, “Trigger Syntax and Examples”

S

[index top]

SAVEPOINT
Section 29.12.7, “Performance Schema Transaction Tables”
Section 15.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements”
Section 29.12.7.1, “The events_transactions_current Table”

SELECT
Section 1.1, “About This Manual”
Section 8.2, “Access Control and Account Management”
Section 14.19.1, “Aggregate Function Descriptions”
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.9, “ALTER TABLE Statement”
Section 15.1.11, “ALTER VIEW Statement”
Section 14.4.4, “Assignment Operators”
Section 8.4.5.4, “Audit Log File Formats”
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 17.7.2.2, “autocommit, Commit, and Rollback”
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”
Section 8.1.7, “Client Programming Security Guidelines”
Section 14.4.2, “Comparison Functions and Operators”
Section 10.3.9, “Comparison of B-Tree and Hash Indexes”
Section 10.11.3, “Concurrent Inserts”
Section 20.5.1, “Configuring an Online Group”
Section 20.5.3.2, “Configuring Transaction Consistency Guarantees”
Section 12.4, “Connection Character Sets and Collations”
Section 17.7.2.3, “Consistent Nonlocking Reads”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 15.2.15.7, “Correlated Subqueries”
Section 15.1.13, “CREATE EVENT Statement”
Section 15.1.15, “CREATE INDEX Statement”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.20.4, “CREATE TABLE ... SELECT Statement”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 18.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 5.3.1, “Creating and Selecting a Database”
Section 15.6.6.2, “Cursor DECLARE Statement”
Section 15.6.6.3, “Cursor FETCH Statement”
Section 15.2.2, “DELETE Statement”
Section 15.2.15.8, “Derived Tables”
Section 10.4.3.2, “Disadvantages of Creating Many Tables in the Same Database”
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 15.2.3, “DO Statement”
Section 5.2, “Entering Queries”
Section 27.4.2, “Event Scheduler Configuration”
Section 12.8.6, “Examples of the Effect of Collation”
Section 15.2.4, “EXCEPT Clause”

6158

Section 10.8.2, “EXPLAIN Output Format”
Section 15.8.2, “EXPLAIN Statement”
Section 10.8.3, “Extended EXPLAIN Output Format”
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 17.21.3, “Forcing InnoDB Recovery”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 10.2.1.20, “Function Call Optimization”
Chapter 14, Functions and Operators
Section 14.17.3, “Functions That Search JSON Values”
Section 10.14.3, “General Thread States”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 15.2.5, “HANDLER Statement”
Section 26.2.7, “How MySQL Partitioning Handles NULL”
Section 17.7.5.3, “How to Minimize and Handle Deadlocks”
Section 1.5, “How to Report Bugs or Problems”
Section 10.9.4, “Index Hints”
Section 14.15, “Information Functions”
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 15.2.7.1, “INSERT ... SELECT Statement”
Section 15.2.7, “INSERT Statement”
Section 10.11.1, “Internal Locking Methods”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 28.1, “Introduction”
Section 15.1.20.10, “Invisible Columns”
Section 15.2.13.2, “JOIN Clause”
Section 11.3, “Keywords and Reserved Words”
Section 15.7.8.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 15.2.15.9, “Lateral Derived Tables”
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 15.2.10, “LOAD XML Statement”
Section 15.6.4.2, “Local Variable Scope and Resolution”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 17.7.2.4, “Locking Reads”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 18.7.2, “MERGE Table Problems”
Section 10.3.6, “Multiple-Column Indexes”
Section 9.6.4, “MyISAM Table Optimization”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section A.14, “MySQL 8.0 FAQ: Replication”
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”
Section 8.6.3, “MySQL Enterprise Encryption Usage and Examples”
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 14.19.3, “MySQL Handling of GROUP BY”
Chapter 29, MySQL Performance Schema
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 14.9.1, “Natural Language Full-Text Searches”

6159

Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 25.3.5, “NDB Cluster Example with Tables and Data”
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
NDB Cluster Status Variables
NDB Cluster System Variables
Section 25.5.25, “ndb_select_all — Print Rows from an NDB Table”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 26.3.5, “Obtaining Information About Partitions”
Section 17.12.2, “Online DDL Performance and Concurrency”
Section 10.3, “Optimization and Indexes”
Section 10.9.3, “Optimizer Hints”
Section B.3.5, “Optimizer-Related Issues”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations”
Section 10.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 10.5.2, “Optimizing InnoDB Transaction Management”
Section 10.6.1, “Optimizing MyISAM Queries”
Section 10.8.1, “Optimizing Queries with EXPLAIN”
Section 10.2.1, “Optimizing SELECT Statements”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 10.2.5.2, “Optimizing UPDATE Statements”
Section 6.6.4.4, “Other myisamchk Options”
Section 15.2.11, “Parenthesized Query Expressions”
Section 26.4, “Partition Pruning”
Section 26.5, “Partition Selection”
Section 29.6, “Performance Schema Instrument Naming Conventions”
Section 29.12.14.1, “Performance Schema persisted_variables Table”
Section 29.12.11, “Performance Schema Replication Tables”
Section 7.1.9.3, “Persisted System Variables”
Section 17.15.2.3, “Persistence and Consistency of InnoDB Transaction and Locking Information”
Section 17.7.4, “Phantom Rows”
Section 15.5.1, “PREPARE Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section B.3.4.2, “Problems Using DATE Columns”
Section B.3.4.8, “Problems with Floating-Point Values”
Section 17.8.9, “Purge Configuration”
Section 25.6.19, “Quick Reference: NDB Cluster SQL Statements”
Section 26.2.3.1, “RANGE COLUMNS partitioning”
Section 10.2.1.2, “Range Optimization”
Section 15.2.12, “REPLACE Statement”
Section 19.2, “Replication Implementation”
Section 19.5.1.6, “Replication of CREATE ... IF NOT EXISTS Statements”
Section 19.5.1.16, “Replication of Invoked Features”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 27.8, “Restrictions on Stored Programs”
Section 5.3.4, “Retrieving Information from a Table”
Section 5.6.7, “Searching on Two Keys”
Section 15.1.20.9, “Secondary Indexes and Generated Columns”
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 15.2.13, “SELECT Statement”
Section 5.3.4.1, “Selecting All Data”
Section 5.3.4.2, “Selecting Particular Rows”
Section 7.1.11, “Server SQL Modes”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

6160

Section 15.2.14, “Set Operations with UNION, INTERSECT, and EXCEPT”
Section 15.7.6.1, “SET Syntax for Variable Assignment”
Section 15.7.7.2, “SHOW BINLOG EVENTS Statement”
Section 15.7.7.13, “SHOW CREATE VIEW Statement”
Section 15.7.7.17, “SHOW ERRORS Statement”
Section 15.7.7.29, “SHOW PROCESSLIST Statement”
Section 15.7.7.32, “SHOW RELAYLOG EVENTS Statement”
Section 15.7.7, “SHOW Statements”
Section 15.7.7.41, “SHOW VARIABLES Statement”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section B.3.4.7, “Solving Problems with No Matching Rows”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 27.7, “Stored Program Binary Logging”
Section 27.2.1, “Stored Routine Syntax”
Section 11.1.1, “String Literals”
Section 15.2.15, “Subqueries”
Section 15.2.15.6, “Subqueries with EXISTS or NOT EXISTS”
Section 10.11.2, “Table Locking Issues”
Section 15.2.16, “TABLE Statement”
Section 18.5, “The ARCHIVE Storage Engine”
Section 7.4.4, “The Binary Log”
Section 13.3.5, “The ENUM Type”
Section 29.12.21.3, “The host_cache Table”
Section 28.3.8, “The INFORMATION_SCHEMA COLUMNS Table”
Section 28.3.14, “The INFORMATION_SCHEMA EVENTS Table”
Section 28.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 28.3.23, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”
Section 13.5, “The JSON Data Type”
Section 1.2.2, “The Main Features of MySQL”
Section 18.7, “The MERGE Storage Engine”
Section 7.3, “The mysql System Schema”
Section 25.6.16.47, “The ndbinfo nodes Table”
Section 29.12.21.7, “The processlist Table”
Section 7.6.4, “The Rewriter Query Rewrite Plugin”
Section 15.2.15.1, “The Subquery as Scalar Operand”
Section 29.12.21.8, “The threads Table”
Section 10.15.3, “Traceable Statements”
Section 17.7.2.1, “Transaction Isolation Levels”
Section 27.3.1, “Trigger Syntax and Examples”
Section 10.15.4, “Tuning Trace Purging”
Section 14.3, “Type Conversion in Expression Evaluation”
Section 15.2.18, “UNION Clause”
Section 15.2.17, “UPDATE Statement”
Section 11.4, “User-Defined Variables”
Section 17.15.2.1, “Using InnoDB Transaction and Locking Information”
Section 6.2.2.1, “Using Options on the Command Line”
Section 7.9.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 13.4.11, “Using Spatial Indexes”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 12.2.2, “UTF-8 for Metadata”
Section 15.2.19, “VALUES Statement”
Section 7.6.6.4, “Version Tokens Reference”
Section 27.5.1, “View Syntax”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 10.2.1.1, “WHERE Clause Optimization”
Section B.3.3.5, “Where MySQL Stores Temporary Files”

6161

Section 14.20.5, “Window Function Restrictions”
Section 15.2.20, “WITH (Common Table Expressions)”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

SELECT *
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 15.2.16, “TABLE Statement”
Section 13.3.4, “The BLOB and TEXT Types”

SELECT * FROM t AS m JOIN t AS n ON m.x >= n.y
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

SELECT * FROM t PARTITION ()
Section 26.1, “Overview of Partitioning in MySQL”

SELECT * INTO OUTFILE 'file_name' FROM tbl_name
Section 9.2, “Database Backup Methods”

SELECT ... FOR SHARE
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 8.2.3, “Grant Tables”
Section 17.7.5.3, “How to Minimize and Handle Deadlocks”
Section 17.7.1, “InnoDB Locking”
Section 17.7.2.4, “Locking Reads”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 17.7.2.1, “Transaction Isolation Levels”
Section 1.3, “What Is New in MySQL 8.0”

SELECT ... FOR UPDATE
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 17.1.2, “Best Practices for InnoDB Tables”
Section 17.7.5, “Deadlocks in InnoDB”
Section 17.7.5.3, “How to Minimize and Handle Deadlocks”
Section 17.7.1, “InnoDB Locking”
Section 17.7.2.4, “Locking Reads”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”

SELECT ... FROM
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”

SELECT ... INTO
Section 15.1.13, “CREATE EVENT Statement”
Section 15.6.4.2, “Local Variable Scope and Resolution”
Section 19.5.1.14, “Replication and System Functions”
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 15.2.13, “SELECT Statement”

SELECT ... INTO DUMPFILE
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 7.1.8, “Server System Variables”

SELECT ... INTO OUTFILE
Section 1.1, “About This Manual”
Section 9.1, “Backup and Recovery Types”
Section 9.4.3, “Dumping Data in Delimited-Text Format with mysqldump”

6162

Section 17.21.3, “Forcing InnoDB Recovery”
Section 15.2.9, “LOAD DATA Statement”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 11.1.7, “NULL Values”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 1.6.2.1, “SELECT INTO TABLE Differences”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 1.3, “What Is New in MySQL 8.0”
Section 2.3.7, “Windows Platform Restrictions”

SELECT ... INTO OUTFILE 'file_name'
Section 15.2.13.1, “SELECT ... INTO Statement”

SELECT ... INTO var_list
Section 27.8, “Restrictions on Stored Programs”
Section 15.6.4, “Variables in Stored Programs”

SELECT ... LOCK IN SHARE MODE
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”

SELECT @@ssl_fips_mode
Section 8.8, “FIPS Support”

SELECT DISTINCT
Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 10.14.3, “General Thread States”
Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations”

SELECT FROM table
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

SELECT INTO ... OUTFILE
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”

SELECT INTO DUMPFILE
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

SELECT INTO OUTFILE
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 7.1.8, “Server System Variables”

SELECT SLEEP()
Section 7.1.11, “Server SQL Modes”

SET
Section 14.4.4, “Assignment Operators”
Section 8.4.5.11, “Audit Log Reference”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 14.1, “Built-In Function and Operator Reference”
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.4, “Cloning and Concurrent DDL”

6163

Section 20.6.1, “Communication Stack for Connection Security Management”
Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 17.8.7, “Configuring InnoDB I/O Capacity”
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 20.5.3.2, “Configuring Transaction Consistency Guarantees”
Section 12.4, “Connection Character Sets and Collations”
Section 17.9.1.2, “Creating Compressed Tables”
Section 16.1, “Data Dictionary Schema”
Section 27.1, “Defining Stored Programs”
Section 8.4.5.9, “Disabling Audit Logging”
Section 27.4.2, “Event Scheduler Configuration”
Section 17.8.3.7, “Excluding Buffer Pool Pages from Core Files”
Section 17.11.2, “File Space Management”
Chapter 14, Functions and Operators
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section 14.15, “Information Functions”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.7.4.3, “INSTALL COMPONENT Statement”
Section 6.5.1.6, “mysql Client Tips”
Section 8.6.3, “MySQL Enterprise Encryption Usage and Examples”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
Section 14.4, “Operators”
Section 10.9.3, “Optimizer Hints”
Section 7.1.9.3, “Persisted System Variables”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 7.1.7, “Server Command Options”
Section 8.2.16, “Server Handling of Expired Passwords”
Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”
Section 15.7.6, “SET Statements”
Section 15.7.6.1, “SET Syntax for Variable Assignment”
Section 15.3.7, “SET TRANSACTION Statement”
Section 15.7.7.41, “SHOW VARIABLES Statement”
Section 27.7, “Stored Program Binary Logging”
Section 15.2.15, “Subqueries”
Section 7.1.9.1, “System Variable Privileges”
Section 15.6.7.7, “The MySQL Diagnostics Area”
Section 7.4.5, “The Slow Query Log”
Section 10.15.3, “Traceable Statements”
Section 27.3.1, “Trigger Syntax and Examples”
Section 10.15.4, “Tuning Trace Purging”
Section 10.15.1, “Typical Usage”
Section 17.6.3.4, “Undo Tablespaces”
Section 11.4, “User-Defined Variables”
Section 6.2.2.1, “Using Options on the Command Line”
Section 6.2.2.5, “Using Options to Set Program Variables”
Section 7.1.9, “Using System Variables”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”
Section 15.6.4, “Variables in Stored Programs”
Section 1.3, “What Is New in MySQL 8.0”

SET @@GLOBAL.gtid_purged
Section 19.1.6.5, “Global Transaction ID System Variables”

6164

Section 6.5.6, “mysqlpump — A Database Backup Program”

SET @@GLOBAL.ndb_slave_conflict_role = 'NONE'
NDB Cluster System Variables

SET @x=2, @y=4, @z=8
Section 15.2.13.1, “SELECT ... INTO Statement”

SET autocommit
Section 10.5.5, “Bulk Data Loading for InnoDB Tables”
Section 15.3, “Transactional and Locking Statements”

SET autocommit = 0
Section 19.4.10, “Semisynchronous Replication”

SET CHARACTER SET
Section 12.4, “Connection Character Sets and Collations”
Section 15.7.6.2, “SET CHARACTER SET Statement”
Section 15.7.6, “SET Statements”
Section 12.9, “Unicode Support”

SET CHARACTER SET 'charset_name'
Section 12.4, “Connection Character Sets and Collations”

SET CHARACTER SET charset_name
Section 12.4, “Connection Character Sets and Collations”

SET DEFAULT ROLE
Section 15.7.1.1, “ALTER USER Statement”
Section 7.1.8, “Server System Variables”
Section 15.7.1.9, “SET DEFAULT ROLE Statement”
Section 15.7.1.11, “SET ROLE Statement”
Section 15.7.6, “SET Statements”
Section 8.2.10, “Using Roles”

SET GLOBAL
Section 17.5.2, “Change Buffer”
Section 17.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 17.8.7, “Configuring InnoDB I/O Capacity”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 17.8.8, “Configuring Spin Lock Polling”
Section 17.6.3.2, “File-Per-Table Tablespaces”
Section 15.7.1.6, “GRANT Statement”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 19.4.10.1, “Installing Semisynchronous Replication”
Section 17.8.3.3, “Making the Buffer Pool Scan Resistant”
Section 8.2.18, “Multifactor Authentication”
Section 10.10.2.2, “Multiple Key Caches”
Section 7.1.9.3, “Persisted System Variables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 17.6.5, “Redo Log”
Section 7.4.2.6, “Rule-Based Error Log Filtering (log_filter_dragnet)”
Section 15.7.6.1, “SET Syntax for Variable Assignment”
Section 7.1.9.1, “System Variable Privileges”
Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”

6165

SET GLOBAL host_cache_size = 0
Section 7.1.7, “Server Command Options”

SET GLOBAL TRANSACTION READ ONLY
Section B.3.7, “Known Issues in MySQL”

SET NAMES
Section 12.3.6, “Character String Literal Character Set and Collation”
Section 12.5, “Configuring Application Character Set and Collation”
Section 12.4, “Connection Character Sets and Collations”
Section 12.6, “Error Message Character Set”
Section 15.2.9, “LOAD DATA Statement”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 6.5.1.2, “mysql Client Commands”
Section 12.16, “MySQL Server Locale Support”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 7.1.8, “Server System Variables”
Section 15.7.6.3, “SET NAMES Statement”
Section 15.7.6, “SET Statements”
Section 12.10.7.2, “The gb18030 Character Set”
Section 14.3, “Type Conversion in Expression Evaluation”
Section 12.9, “Unicode Support”
Section 12.2.2, “UTF-8 for Metadata”
Section 1.3, “What Is New in MySQL 8.0”

SET NAMES 'charset_name'
Section 12.4, “Connection Character Sets and Collations”

SET NAMES 'cp1251'
Section 12.4, “Connection Character Sets and Collations”

SET NAMES charset_name
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

SET NAMES default_character_set
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”

SET PASSWORD
Section 8.2.3, “Grant Tables”
Section 14.15, “Information Functions”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 8.2.15, “Password Management”
Section 8.4.3.2, “Password Validation Options and Variables”
Section 8.1.2.3, “Passwords and Logging”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.39, “Replication and Variables”
Section 19.5.1.8, “Replication of CURRENT_USER()”
Resetting the Root Password: Generic Instructions
Section 8.2.16, “Server Handling of Expired Passwords”
Section 7.1.8, “Server System Variables”
Section 15.7.1.10, “SET PASSWORD Statement”
Section 15.7.6, “SET Statements”
Section 8.2.4, “Specifying Account Names”
Section 15.3.3, “Statements That Cause an Implicit Commit”

6166

Section 8.4.3, “The Password Validation Component”
Section 8.2.13, “When Privilege Changes Take Effect”

SET PASSWORD ... = PASSWORD()
Section 1.3, “What Is New in MySQL 8.0”

SET PERSIST
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.2.8, “Connection Compression Control”
Section 8.4.2.1, “Connection Control Plugin Installation”
Section 7.4.2.1, “Error Log Configuration”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section A.9, “MySQL 8.0 FAQ: Security”
Section 7.1.9.4, “Nonpersistible and Persist-Restricted System Variables”
Section 8.2.15, “Password Management”
Section 29.12.14.1, “Performance Schema persisted_variables Table”
Section 7.1.9.3, “Persisted System Variables”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.4.2.6, “Rule-Based Error Log Filtering (log_filter_dragnet)”
Section 7.1.8, “Server System Variables”
Section 15.7.6.1, “SET Syntax for Variable Assignment”
Section 7.1.9.1, “System Variable Privileges”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”
Section 6.2.2.2, “Using Option Files”
Section 8.2.10, “Using Roles”
Section 1.3, “What Is New in MySQL 8.0”

SET PERSIST ONLY
Section 7.1.9.3, “Persisted System Variables”

SET PERSIST_ONLY
Section 7.1.9.4, “Nonpersistible and Persist-Restricted System Variables”
Section 7.1.9.3, “Persisted System Variables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.8.8, “RESTART Statement”
Section 7.1.8, “Server System Variables”
Section 7.1.9.1, “System Variable Privileges”
Section 6.2.2.2, “Using Option Files”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

SET RESOURCE GROUP
Section 10.9.3, “Optimizer Hints”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.16, “Resource Groups”
Section 15.7.2.4, “SET RESOURCE GROUP Statement”

SET ROLE
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 14.15, “Information Functions”
Section 7.1.8, “Server System Variables”
Section 15.7.1.11, “SET ROLE Statement”
Section 15.7.6, “SET Statements”
Section 15.7.7.21, “SHOW GRANTS Statement”
Section 27.6, “Stored Object Access Control”
Section 8.2.10, “Using Roles”

6167

Section 8.2.13, “When Privilege Changes Take Effect”

SET ROLE DEFAULT
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 15.7.1.9, “SET DEFAULT ROLE Statement”
Section 15.7.1.11, “SET ROLE Statement”
Section 7.3, “The mysql System Schema”

SET SESSION
Section 7.1.9.1, “System Variable Privileges”

SET SESSION TRANSACTION ISOLATION LEVEL
Section 7.1.8, “Server System Variables”

SET SESSION TRANSACTION {READ WRITE | READ ONLY}
Section 7.1.8, “Server System Variables”

SET sql_log_bin = 0
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

SET sql_log_bin=OFF
Section 7.4.4, “The Binary Log”

SET sql_mode='modes'
Section A.3, “MySQL 8.0 FAQ: Server SQL Mode”

SET TIMESTAMP = value
Section 10.14.1, “Accessing the Process List”

SET TRANSACTION
Section 17.2, “InnoDB and the ACID Model”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 7.1.18, “Server Tracking of Client Session State”
Section 15.3.7, “SET TRANSACTION Statement”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 17.7.2.1, “Transaction Isolation Levels”

SET TRANSACTION ISOLATION LEVEL
Section 7.1.8, “Server System Variables”
Section 15.7.6, “SET Statements”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
Section 17.20.7, “The InnoDB memcached Plugin and Replication”

SET TRANSACTION {READ WRITE | READ ONLY}
Section 7.1.8, “Server System Variables”

SET var_name = value
Section 15.7.6, “SET Statements”

SHOW
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 20.5.3.2, “Configuring Transaction Consistency Guarantees”

6168

Section 15.1.13, “CREATE EVENT Statement”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 5.3, “Creating and Using a Database”
Section 15.6.6.2, “Cursor DECLARE Statement”
Section 16.1, “Data Dictionary Schema”
Section 28.8, “Extensions to SHOW Statements”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 28.1, “Introduction”
Section A.14, “MySQL 8.0 FAQ: Replication”
Section 1.6.1, “MySQL Extensions to Standard SQL”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 29.1, “Performance Schema Quick Start”
Section 27.8, “Restrictions on Stored Programs”
Section 7.1.8, “Server System Variables”
Setting Up Replication with Existing Data
Section 15.7.7.5, “SHOW COLUMNS Statement”
Section 15.7.7, “SHOW Statements”
Section 15.7.7.39, “SHOW TABLES Statement”
Section 8.2.4, “Specifying Account Names”
Section 15.4.1, “SQL Statements for Controlling Source Servers”
Section 7.4.4, “The Binary Log”
Section 1.2.2, “The Main Features of MySQL”
Section 12.9.3, “The utf8 Character Set (Deprecated alias for utf8mb3)”
Section 30.2, “Using the sys Schema”
Section 12.2.2, “UTF-8 for Metadata”

SHOW BINARY LOGS
Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.4.1.1, “PURGE BINARY LOGS Statement”
Section 15.7.7.1, “SHOW BINARY LOGS Statement”
Section 15.4.1, “SQL Statements for Controlling Source Servers”
Section 6.6.9.3, “Using mysqlbinlog to Back Up Binary Log Files”

SHOW BINLOG EVENTS
Behaviors When Binary Log Transaction Compression is Enabled
Section 7.4.4.5, “Binary Log Transaction Compression”
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.6.6.5, “Restrictions on Server-Side Cursors”
Section 15.7.7.2, “SHOW BINLOG EVENTS Statement”
Section 19.1.7.3, “Skipping Transactions”
Skipping Transactions With GTIDs
Section 15.4.1, “SQL Statements for Controlling Source Servers”
Section 15.4.2.6, “START REPLICA Statement”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

SHOW CHARACTER SET
Section 15.1.2, “ALTER DATABASE Statement”
Section 12.3.8, “Character Set Introducers”
Section 12.2, “Character Sets and Collations in MySQL”
Section 12.3.6, “Character String Literal Character Set and Collation”
Section 12.3.5, “Column Character Set and Collation”
Section 15.1.12, “CREATE DATABASE Statement”
Section 12.3.3, “Database Character Set and Collation”
Section 28.8, “Extensions to SHOW Statements”

6169

Section 7.1.8, “Server System Variables”
Section 15.7.7.3, “SHOW CHARACTER SET Statement”
Section 12.10, “Supported Character Sets and Collations”
Section 12.3.4, “Table Character Set and Collation”
Section 28.3.4, “The INFORMATION_SCHEMA CHARACTER_SETS Table”

SHOW COLLATION
Section 15.1.2, “ALTER DATABASE Statement”
Section 12.15, “Character Set Configuration”
Section 12.2, “Character Sets and Collations in MySQL”
Section 12.14.2, “Choosing a Collation ID”
Section 15.1.12, “CREATE DATABASE Statement”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.1.8, “Server System Variables”
Section 15.7.7.4, “SHOW COLLATION Statement”
Section 28.3.7, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table”
Section 28.3.6, “The INFORMATION_SCHEMA COLLATIONS Table”

SHOW COLUMNS
Section 15.8.2, “EXPLAIN Statement”
Section 28.8, “Extensions to SHOW Statements”
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 15.1.20.10, “Invisible Columns”
Section 29.1, “Performance Schema Quick Start”
Section 15.7.7.5, “SHOW COLUMNS Statement”
Section 28.3.8, “The INFORMATION_SCHEMA COLUMNS Table”
Section 28.4.2, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table”
Section 28.4.3, “The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table”
Section 28.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 28.4.5, “The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table”
Section 28.4.6, “The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables”
Section 28.4.8, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 28.4.7, “The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables”
Section 28.4.9, “The INFORMATION_SCHEMA INNODB_COLUMNS Table”
Section 28.4.10, “The INFORMATION_SCHEMA INNODB_DATAFILES Table”
Section 28.4.11, “The INFORMATION_SCHEMA INNODB_FIELDS Table”
Section 28.4.12, “The INFORMATION_SCHEMA INNODB_FOREIGN Table”
Section 28.4.13, “The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table”
Section 28.4.14, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 28.4.15, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 28.4.16, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”
Section 28.4.17, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 28.4.18, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 28.4.19, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
Section 28.4.20, “The INFORMATION_SCHEMA INNODB_INDEXES Table”
Section 28.4.21, “The INFORMATION_SCHEMA INNODB_METRICS Table”
Section 28.4.22, “The INFORMATION_SCHEMA INNODB_SESSION_TEMP_TABLESPACES Table”
Section 28.4.23, “The INFORMATION_SCHEMA INNODB_TABLES Table”
Section 28.4.24, “The INFORMATION_SCHEMA INNODB_TABLESPACES Table”
Section 28.4.25, “The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table”
Section 28.4.26, “The INFORMATION_SCHEMA INNODB_TABLESTATS View”
Section 28.4.27, “The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table”
Section 28.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”

6170

Section 28.4.29, “The INFORMATION_SCHEMA INNODB_VIRTUAL Table”

SHOW COLUMNS FROM tbl_name LIKE 'enum_col'
Section 13.3.5, “The ENUM Type”

SHOW COUNT()
Section 15.7.7.17, “SHOW ERRORS Statement”
Section 15.7.7.42, “SHOW WARNINGS Statement”

SHOW CREATE DATABASE
Section 15.1.2, “ALTER DATABASE Statement”
Section 7.1.8, “Server System Variables”
Section 15.7.7.6, “SHOW CREATE DATABASE Statement”

SHOW CREATE EVENT
Section 27.4.4, “Event Metadata”
Section 15.7.7.18, “SHOW EVENTS Statement”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”

SHOW CREATE FUNCTION
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 1.5, “How to Report Bugs or Problems”
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.9, “SHOW CREATE PROCEDURE Statement”
Section 27.2.3, “Stored Routine Metadata”
Section 27.2.2, “Stored Routines and MySQL Privileges”

SHOW CREATE PROCEDURE
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 1.5, “How to Report Bugs or Problems”
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.8, “SHOW CREATE FUNCTION Statement”
Section 27.2.3, “Stored Routine Metadata”
Section 27.2.2, “Stored Routines and MySQL Privileges”

SHOW CREATE SCHEMA
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 15.7.7.6, “SHOW CREATE DATABASE Statement”

SHOW CREATE TABLE
Section 15.1.9, “ALTER TABLE Statement”
Section 17.8.11, “Configuring the Merge Threshold for Index Pages”
Section 15.1.20, “CREATE TABLE Statement”
Section 17.9.1.2, “Creating Compressed Tables”
Section 16.1, “Data Dictionary Schema”
Section 13.6, “Data Type Default Values”
Section 15.8.2, “EXPLAIN Statement”
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 5.4, “Getting Information About Databases and Tables”
Section 18.8.2, “How to Create FEDERATED Tables”
Section 9.6.3, “How to Repair MyISAM Tables”
Section 17.6.1.3, “Importing InnoDB Tables”

6171

Section 17.9.2, “InnoDB Page Compression”
Section 26.2.5, “KEY Partitioning”
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
NDB Cluster System Variables
Section 25.5.9, “ndb_desc — Describe NDB Tables”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 26.3.5, “Obtaining Information About Partitions”
Section 10.2.4, “Optimizing Performance Schema Queries”
Section 29.1, “Performance Schema Quick Start”
Section 3.14, “Rebuilding or Repairing Tables or Indexes”
Section 7.1.8, “Server System Variables”
Section 15.1.20.12, “Setting NDB Comment Options”
Section 15.7.7.5, “SHOW COLUMNS Statement”
Section 15.7.7.10, “SHOW CREATE TABLE Statement”
Section 15.1.20.7, “Silent Column Specification Changes”
Section 17.6.3.9, “Tablespace AUTOEXTEND_SIZE Configuration”
Section 25.6.16.25, “The ndbinfo dict_obj_tree Table”
Section 1.3, “What Is New in MySQL 8.0”

SHOW CREATE TRIGGER
Section 15.7.7.11, “SHOW CREATE TRIGGER Statement”
Section 27.3.2, “Trigger Metadata”

SHOW CREATE USER
Section 8.2.20, “Account Locking”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.2.3, “Grant Tables”
Section 8.2.18, “Multifactor Authentication”
Section 8.2.17, “Pluggable Authentication”
Section 7.1.8, “Server System Variables”
Section 15.7.7.12, “SHOW CREATE USER Statement”
Section 15.7.7.21, “SHOW GRANTS Statement”

SHOW CREATE VIEW
Section 15.7.1.6, “GRANT Statement”
Section 3.6, “Preparing Your Installation for Upgrade”
Section 8.2.2, “Privileges Provided by MySQL”
Section 27.9, “Restrictions on Views”
Section 15.7.7.13, “SHOW CREATE VIEW Statement”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”
Section 27.5.5, “View Metadata”

SHOW DATABASES
Section 5.3, “Creating and Using a Database”
Section 28.8, “Extensions to SHOW Statements”
Section 5.4, “Getting Information About Databases and Tables”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 11.2.3, “Identifier Case Sensitivity”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 28.1, “Introduction”
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 8.2.2, “Privileges Provided by MySQL”

6172

Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 15.7.7.14, “SHOW DATABASES Statement”
Section 28.3.31, “The INFORMATION_SCHEMA SCHEMATA Table”

SHOW ENGINE
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.15, “SHOW ENGINE Statement”

SHOW ENGINE INNODB MUTEX
Section 17.17.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.7.7.15, “SHOW ENGINE Statement”

SHOW ENGINE INNODB STATUS
Section 17.5.3, “Adaptive Hash Index”
Section 17.5.1, “Buffer Pool”
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 17.7.5, “Deadlocks in InnoDB”
Section 17.17.2, “Enabling InnoDB Monitors”
Section B.2, “Error Information Interfaces”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 17.7.5.3, “How to Minimize and Handle Deadlocks”
Section 17.15.5, “InnoDB INFORMATION_SCHEMA Buffer Pool Tables”
Section 17.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 17.15.3, “InnoDB INFORMATION_SCHEMA Schema Object Tables”
Section 17.7.1, “InnoDB Locking”
Section 17.17.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.1.4, “Moving or Copying InnoDB Tables”
MySQL Glossary
Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 10.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 17.8.9, “Purge Configuration”
Section 15.7.7.15, “SHOW ENGINE Statement”
Section 28.4.4, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”

SHOW ENGINE NDB STATUS
Section 25.3.2.3, “Initial Startup of NDB Cluster on Windows”
Section 25.6, “Management of NDB Cluster”
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 25.6.19, “Quick Reference: NDB Cluster SQL Statements”

SHOW ENGINE NDBCLUSTER STATUS
MySQL Server Options for NDB Cluster
Section 25.6.19, “Quick Reference: NDB Cluster SQL Statements”

SHOW ENGINE PERFORMANCE_SCHEMA STATUS
Section 29.10, “Performance Schema Statement Digests and Sampling”
Section 29.7, “Performance Schema Status Monitoring”
Section 15.7.7.15, “SHOW ENGINE Statement”

SHOW ENGINES
Chapter 18, Alternative Storage Engines
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”

6173

Section 25.6.10, “MySQL Server Usage for NDB Cluster”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 29.2, “Performance Schema Build Configuration”
Section 29.1, “Performance Schema Quick Start”
Section 25.6.19, “Quick Reference: NDB Cluster SQL Statements”
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 7.1.8, “Server System Variables”
Section 15.7.7.16, “SHOW ENGINES Statement”
Section 18.5, “The ARCHIVE Storage Engine”
Section 18.6, “The BLACKHOLE Storage Engine”
Section 28.3.13, “The INFORMATION_SCHEMA ENGINES Table”
Section 17.1.3, “Verifying that InnoDB is the Default Storage Engine”

SHOW ERRORS
Section B.2, “Error Information Interfaces”
Section 15.6.7.3, “GET DIAGNOSTICS Statement”
Section 15.6.7.4, “RESIGNAL Statement”
Section 7.1.8, “Server System Variables”
Section 15.7.7.17, “SHOW ERRORS Statement”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 15.6.7.5, “SIGNAL Statement”
Section 15.6.7.7, “The MySQL Diagnostics Area”

SHOW EVENTS
Section 27.4.4, “Event Metadata”
Section 19.5.1.16, “Replication of Invoked Features”
Section 15.7.7.18, “SHOW EVENTS Statement”
Section 27.4.6, “The Event Scheduler and MySQL Privileges”
Section 28.3.14, “The INFORMATION_SCHEMA EVENTS Table”

SHOW FULL COLUMNS
Section 15.1.20, “CREATE TABLE Statement”
Section 28.3.10, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”

SHOW FULL PROCESSLIST
Section 10.14.1, “Accessing the Process List”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 17.12.2, “Online DDL Performance and Concurrency”

SHOW FULL TABLES
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”

SHOW FUNCTION CODE
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.27, “SHOW PROCEDURE CODE Statement”
Section 27.2.3, “Stored Routine Metadata”
Section 27.2.2, “Stored Routines and MySQL Privileges”

SHOW FUNCTION STATUS
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”
Section 27.2.3, “Stored Routine Metadata”
Section 27.2.2, “Stored Routines and MySQL Privileges”

SHOW GLOBAL STATUS
NDB Cluster Status Variables

6174

Section 7.1.8, “Server System Variables”

SHOW GRANTS
Section 8.2, “Access Control and Account Management”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 25.6.13, “Privilege Synchronization and NDB_STORED_USER”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.1.8, “REVOKE Statement”
Section 8.1.1, “Security Guidelines”
Section 7.1.8, “Server System Variables”
Section 15.7.7.12, “SHOW CREATE USER Statement”
Section 15.7.7.21, “SHOW GRANTS Statement”
Section 15.7.7.26, “SHOW PRIVILEGES Statement”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 8.2.10, “Using Roles”

SHOW GRANTS FOR CURRENT_USER
Section 15.7.7.21, “SHOW GRANTS Statement”

SHOW GRANTS FOR user
Section 15.7.7.21, “SHOW GRANTS Statement”

SHOW INDEX
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 17.8.11, “Configuring the Merge Threshold for Index Pages”
Section 10.8.2, “EXPLAIN Output Format”
Section 15.8.2, “EXPLAIN Statement”
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 10.9.4, “Index Hints”
Section 10.3.8, “InnoDB and MyISAM Index Statistics Collection”
Section 10.3.12, “Invisible Indexes”
Section 25.5.14, “ndb_index_stat — NDB Index Statistics Utility”
Section 10.9.3, “Optimizer Hints”
Section 10.2.4, “Optimizing Performance Schema Queries”
Section 6.6.4.4, “Other myisamchk Options”
Section 15.7.7.5, “SHOW COLUMNS Statement”
Section 15.7.7.22, “SHOW INDEX Statement”
Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”
Section 28.3.42, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”
Section 1.3, “What Is New in MySQL 8.0”

SHOW MASTER LOGS
Section 15.7.7.1, “SHOW BINARY LOGS Statement”

SHOW MASTER STATUS
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.5.5, “How to Report Replication Bugs or Problems”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 19.1.2.4, “Obtaining the Replication Source Binary Log Coordinates”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”

6175

Section 15.4.1, “SQL Statements for Controlling Source Servers”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”
Section 19.5.4, “Troubleshooting Replication”

SHOW OPEN TABLES
Section 15.7.7.24, “SHOW OPEN TABLES Statement”

SHOW PLUGINS
Section 7.6.7.3, “Cloning Remote Data”
Section 8.4.2.1, “Connection Control Plugin Installation”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 15.7.4.4, “INSTALL PLUGIN Statement”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 7.6.5.1, “Installing or Uninstalling ddl_rewriter”
Section 8.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”
Section 19.4.10.1, “Installing Semisynchronous Replication”
Section 7.6.7.1, “Installing the Clone Plugin”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.4.17, “Keyring Metadata”
Section 8.4.4.3, “Keyring Plugin Installation”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 14.9.9, “MeCab Full-Text Parser Plugin”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section A.2, “MySQL 8.0 FAQ: Storage Engines”
MySQL Server Options for NDB Cluster
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 8.4.1.9, “No-Login Pluggable Authentication”
Section 7.6.2, “Obtaining Server Plugin Information”
Section 8.4.1.5, “PAM Pluggable Authentication”
Section 25.6.19, “Quick Reference: NDB Cluster SQL Statements”
Section 7.1.7, “Server Command Options”
Section 15.7.7.25, “SHOW PLUGINS Statement”
Section 8.4.1.10, “Socket Peer-Credential Pluggable Authentication”
Section 8.4.1.12, “Test Pluggable Authentication”
Section 28.3.18, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”
Section 28.3.22, “The INFORMATION_SCHEMA PLUGINS Table”
Section 7.6.3.2, “Thread Pool Installation”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.1.6, “Windows Pluggable Authentication”

SHOW plugins
Section 22.5.1, “Checking X Plugin Installation”

SHOW PRIVILEGES
Section 15.7.7.26, “SHOW PRIVILEGES Statement”

SHOW PROCEDURE CODE
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.19, “SHOW FUNCTION CODE Statement”
Section 27.2.3, “Stored Routine Metadata”
Section 27.2.2, “Stored Routines and MySQL Privileges”

SHOW PROCEDURE STATUS
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.20, “SHOW FUNCTION STATUS Statement”
Section 27.2.3, “Stored Routine Metadata”

6176

Section 27.2.2, “Stored Routines and MySQL Privileges”

SHOW PROCESSLIST
Section 10.14.1, “Accessing the Process List”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.1.7.1, “Checking Replication Status”
Section 7.1.12.1, “Connection Interfaces”
Section 19.4.11, “Delayed Replication”
Section 27.4.2, “Event Scheduler Configuration”
Section 15.7.1.6, “GRANT Statement”
Section 19.1.3.1, “GTID Format and Storage”
Section 14.15, “Information Functions”
Section 17.21.5, “InnoDB Error Handling”
Section 15.7.8.4, “KILL Statement”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 19.2.3.1, “Monitoring Replication Main Threads”
Section A.14, “MySQL 8.0 FAQ: Replication”
Section 25.6.10, “MySQL Server Usage for NDB Cluster”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 14.21, “Performance Schema Functions”
Section 29.6, “Performance Schema Instrument Naming Conventions”
Section 29.12.5, “Performance Schema Stage Event Tables”
Section 29.15, “Performance Schema System Variables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.2.3, “Replication Threads”
Section 15.7.7.29, “SHOW PROCESSLIST Statement”
Section 15.7.7.30, “SHOW PROFILE Statement”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 15.4.2.6, “START REPLICA Statement”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 7.6.7.11, “Stopping a Cloning Operation”
Section 19.4.8, “Switching Sources During Failover”
Section 29.12.21.2, “The error_log Table”
Section 28.3.18, “The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table”
Section 28.3.23, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 25.6.16.53, “The ndbinfo server_locks Table”
Section 25.6.16.54, “The ndbinfo server_operations Table”
Section 25.6.16.55, “The ndbinfo server_transactions Table”
Section 30.4.3.22, “The processlist and x$processlist Views”
Section 29.12.21.7, “The processlist Table”
Section 30.4.5.13, “The ps_is_thread_instrumented() Function”
Section 30.4.4.7, “The ps_setup_disable_thread() Procedure”
Section 30.4.4.11, “The ps_setup_enable_thread() Procedure”
Section 30.4.5.15, “The ps_thread_id() Function”
Section 29.12.21.8, “The threads Table”
Section B.3.2.5, “Too many connections”
Section 19.5.4, “Troubleshooting Replication”
Section 1.3, “What Is New in MySQL 8.0”

SHOW PROFILE
Section 10.14.3, “General Thread States”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 29.19.1, “Query Profiling Using Performance Schema”
Section 7.1.8, “Server System Variables”
Section 15.7.7.30, “SHOW PROFILE Statement”

6177

Section 15.7.7.31, “SHOW PROFILES Statement”
Section 28.3.24, “The INFORMATION_SCHEMA PROFILING Table”

SHOW PROFILES
Section 2.8.7, “MySQL Source-Configuration Options”
Section 29.19.1, “Query Profiling Using Performance Schema”
Section 7.1.8, “Server System Variables”
Section 15.7.7.30, “SHOW PROFILE Statement”
Section 15.7.7.31, “SHOW PROFILES Statement”
Section 28.3.24, “The INFORMATION_SCHEMA PROFILING Table”

SHOW RELAYLOG EVENTS
Behaviors When Binary Log Transaction Compression is Enabled
Section 7.4.4.5, “Binary Log Transaction Compression”
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 19.2.2.2, “Compatibility with Previous Replication Statements”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.7.2, “SHOW BINLOG EVENTS Statement”
Section 15.7.7.32, “SHOW RELAYLOG EVENTS Statement”
Section 19.1.7.3, “Skipping Transactions”
Skipping Transactions With GTIDs
Section 15.4.2, “SQL Statements for Controlling Replica Servers”

SHOW REPLICA STATUS
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.1.7.1, “Checking Replication Status”
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 19.2.2.2, “Compatibility with Previous Replication Statements”
Section 19.4.11, “Delayed Replication”
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.5.5, “How to Report Replication Bugs or Problems”
Section 25.7.8, “Implementing Failover with NDB Cluster Replication”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.2.3.1, “Monitoring Replication Main Threads”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 7.1.14, “Network Namespace Support”
Section 29.12.11, “Performance Schema Replication Tables”
Section 14.18.4, “Position-Based Synchronization Functions”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.4.1.1, “PURGE BINARY LOGS Statement”
Section 19.5.1.29, “Replica Errors During Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.6, “Replication and Binary Logging Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 10.14.5, “Replication I/O (Receiver) Thread States”
Section 19.2.4.2, “Replication Metadata Repositories”
Section 19.1.4.1, “Replication Mode Concepts”
Section 19.2.3, “Replication Threads”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 15.7.7.23, “SHOW MASTER STATUS Statement”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 15.7.7.36, “SHOW SLAVE | REPLICA STATUS Statement”
Section 15.4.2, “SQL Statements for Controlling Replica Servers”

6178

Section 15.4.2.6, “START REPLICA Statement”
Section 19.1.5.5, “Starting Multi-Source Replicas”
Section 29.12.11.2, “The replication_applier_configuration Table”
Section 29.12.11.3, “The replication_applier_status Table”
Section 29.12.11.4, “The replication_applier_status_by_coordinator Table”
Section 29.12.11.5, “The replication_applier_status_by_worker Table”
Section 29.12.11.10, “The replication_connection_configuration Table”
Section 29.12.11.11, “The replication_connection_status Table”
Section 19.5.4, “Troubleshooting Replication”

SHOW REPLICA | SLAVE STATUS
Section A.14, “MySQL 8.0 FAQ: Replication”

SHOW REPLICAS
Section 19.1.7.1, “Checking Replication Status”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.6, “Replication and Binary Logging Options and Variables”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 15.7.7.33, “SHOW REPLICAS Statement”
Section 15.7.7.34, “SHOW SLAVE HOSTS | SHOW REPLICAS Statement”
Section 15.4.1, “SQL Statements for Controlling Source Servers”

SHOW SCHEMAS
Section 15.7.7.14, “SHOW DATABASES Statement”

SHOW SESSION STATUS
NDB Cluster Status Variables

SHOW SLAVE HOSTS
Section 19.1.7.1, “Checking Replication Status”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.1.6, “Replication and Binary Logging Options and Variables”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 15.7.7.33, “SHOW REPLICAS Statement”
Section 15.7.7.34, “SHOW SLAVE HOSTS | SHOW REPLICAS Statement”
Section 15.4.1, “SQL Statements for Controlling Source Servers”

SHOW SLAVE STATUS
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 19.1.7.1, “Checking Replication Status”
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section B.2, “Error Information Interfaces”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 7.1.14, “Network Namespace Support”
Section 19.5.1.29, “Replica Errors During Replication”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 15.7.7.23, “SHOW MASTER STATUS Statement”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 15.7.7.36, “SHOW SLAVE | REPLICA STATUS Statement”

SHOW STATUS
Section 25.4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”
Section 25.6, “Management of NDB Cluster”
MySQL Server Options for NDB Cluster
Section 25.6.15, “NDB API Statistics Counters and Variables”

6179

Section 25.7, “NDB Cluster Replication”
Section 29.15, “Performance Schema System Variables”
Section 25.6.19, “Quick Reference: NDB Cluster SQL Statements”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 27.8, “Restrictions on Stored Programs”
Section 19.4.10.3, “Semisynchronous Replication Monitoring”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 15.7.7.37, “SHOW STATUS Statement”
Section 10.3.10, “Use of Index Extensions”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

SHOW STATUS LIKE 'perf%'
Section 29.7, “Performance Schema Status Monitoring”

SHOW TABLE STATUS
Section 14.19.1, “Aggregate Function Descriptions”
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 15.1.20, “CREATE TABLE Statement”
Section 17.6.1.1, “Creating InnoDB Tables”
Section 15.8.2, “EXPLAIN Statement”
Section 17.11.2, “File Space Management”
Section 17.23, “InnoDB Restrictions and Limitations”
Section 17.10, “InnoDB Row Formats”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 26.3.5, “Obtaining Information About Partitions”
Section 15.7.7.5, “SHOW COLUMNS Statement”
Section 15.7.7.10, “SHOW CREATE TABLE Statement”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 18.5, “The ARCHIVE Storage Engine”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”

SHOW TABLES
Section 5.3.2, “Creating a Table”
Section 16.1, “Data Dictionary Schema”
Section 28.8, “Extensions to SHOW Statements”
Section 11.2.3, “Identifier Case Sensitivity”
Section 17.15, “InnoDB INFORMATION_SCHEMA Tables”
Section 28.1, “Introduction”
MySQL Glossary
Section 25.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 15.7.7.39, “SHOW TABLES Statement”
Section B.3.2.14, “Table 'tbl_name' doesn't exist”
Section B.3.6.2, “TEMPORARY Table Problems”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”
Section 7.3, “The mysql System Schema”
Section 7.6.3.2, “Thread Pool Installation”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”
Section B.3.3.5, “Where MySQL Stores Temporary Files”

SHOW TABLES FROM some_ndb_database
Section 25.6.20.2, “NDB Cluster and MySQL Privileges”

6180

SHOW TRIGGERS
Section A.5, “MySQL 8.0 FAQ: Triggers”
Section 3.6, “Preparing Your Installation for Upgrade”
Section 15.7.7.40, “SHOW TRIGGERS Statement”
Section 28.3.45, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 27.3.2, “Trigger Metadata”

SHOW VARIABLES
Section 7.6.7.3, “Cloning Remote Data”
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 27.4.2, “Event Scheduler Configuration”
Section 17.6.1.3, “Importing InnoDB Tables”
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”
Section 19.1.5.8, “Monitoring Multi-Source Replication”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 29.3, “Performance Schema Startup Configuration”
Section 29.15, “Performance Schema System Variables”
Section 25.6.19, “Quick Reference: NDB Cluster SQL Statements”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 15.7.6.1, “SET Syntax for Variable Assignment”
Section 15.7.7.41, “SHOW VARIABLES Statement”
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 7.1.9, “Using System Variables”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

SHOW VARIABLES LIKE '%fips%'
Section 8.8, “FIPS Support”

SHOW WARNINGS
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 15.1.9, “ALTER TABLE Statement”
Section 12.14.4.3, “Diagnostics During Index.xml Parsing”
Section 15.1.29, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 15.1.32, “DROP TABLE Statement”
Section B.2, “Error Information Interfaces”
Section 10.8.2, “EXPLAIN Output Format”
Section 15.8.2, “EXPLAIN Statement”
Section 10.8.3, “Extended EXPLAIN Output Format”
Section 11.2.5, “Function Name Parsing and Resolution”
Section 15.6.7.3, “GET DIAGNOSTICS Statement”
Section 14.17.7, “JSON Schema Validation Functions”
Section 15.2.9, “LOAD DATA Statement”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 6.5.1.6, “mysql Client Tips”
Section 10.9.3, “Optimizer Hints”
Section 10.3.11, “Optimizer Use of Generated Column Indexes”
Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations”
Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 10.8.1, “Optimizing Queries with EXPLAIN”
Section 10.2.2.2, “Optimizing Subqueries with Materialization”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 14.24.4, “Rounding Behavior”
Section 15.1.20.9, “Secondary Indexes and Generated Columns”

6181

Section 7.1.8, “Server System Variables”
Section 15.7.7.17, “SHOW ERRORS Statement”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 15.6.7.5, “SIGNAL Statement”
Section 10.9.2, “Switchable Optimizations”
Section 15.6.7.7, “The MySQL Diagnostics Area”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 1.3, “What Is New in MySQL 8.0”

SHUTDOWN
Section 20.5.3.2, “Configuring Transaction Consistency Guarantees”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.10, “Server Status Variables”
Section 15.7.8.9, “SHUTDOWN Statement”
Section 6.10, “Unix Signal Handling in MySQL”
Section 20.8.3.2, “Upgrading a Group Replication Member”

SIGNAL
Section 15.6.7, “Condition Handling”
Section 15.6.7.1, “DECLARE ... CONDITION Statement”
Section 15.6.7.2, “DECLARE ... HANDLER Statement”
Section 14.15, “Information Functions”
Section 15.6.7.4, “RESIGNAL Statement”
Section 15.6.8, “Restrictions on Condition Handling”
Section 27.8, “Restrictions on Stored Programs”
Section 15.6.7.6, “Scope Rules for Handlers”
Section 15.6.7.5, “SIGNAL Statement”
Section 15.6.7.7, “The MySQL Diagnostics Area”

START GROUP REPLICATION
Section 8.2.2, “Privileges Provided by MySQL”

START GROUP_REPLICATION
Adding a Second Instance
Adding Additional Instances
Section 20.2.1.5, “Bootstrapping the Group”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 7.6.7.7, “Cloning for Replication”
Cloning Operations
Section 20.8.1, “Combining Different Member Versions in a Group”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 20.5.4, “Distributed Recovery”
Section 20.7.7.4, “Exit Action”
Section 20.10, “Frequently Asked Questions”
Section 20.6.4, “Group Replication IP Address Permissions”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.8, “Handling a Network Partition and Loss of Quorum”
Section 8.1.2.3, “Passwords and Logging”
Prerequisites for Cloning
Providing Replication User Credentials Securely
Section 19.2.4.2, “Replication Metadata Repositories”
Section 20.5.2, “Restarting a Group”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Selecting addresses for distributed recovery endpoints
Section 15.4.3.2, “STOP GROUP_REPLICATION Statement”
Section 20.8.3.2, “Upgrading a Group Replication Member”

6182

Section 20.2.1.3, “User Credentials For Distributed Recovery”

START REPLICA
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 19.4.9.1, “Asynchronous Connection Failover for Sources”
Behaviors When Binary Log Transaction Compression is Enabled
Section 7.4.4.5, “Binary Log Transaction Compression”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 19.2.2.2, “Compatibility with Previous Replication Statements”
Section 19.4.11, “Delayed Replication”
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 19.1.3.1, “GTID Format and Storage”
Section 25.7.8, “Implementing Failover with NDB Cluster Replication”
Section 19.4.10.1, “Installing Semisynchronous Replication”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
Section 8.1.2.3, “Passwords and Logging”
Section 19.1.7.2, “Pausing Replication on the Replica”
Section 29.12.11, “Performance Schema Replication Tables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.3.3.3, “Recovering From Failed Replication Privilege Checks”
Section 19.5.1.29, “Replica Errors During Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.4.6, “Replicating Different Databases to Different Replicas”
Section 19.1.6, “Replication and Binary Logging Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 19.1.3.6, “Replication From a Source Without GTIDs to a Replica With GTIDs”
Section 19.2.4.2, “Replication Metadata Repositories”
Section 19.3.3, “Replication Privilege Checks”
Section 19.2.3, “Replication Threads”
Section 15.4.2.4, “RESET REPLICA Statement”
Setting Up Replication with Existing Data
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 19.1.7.3, “Skipping Transactions”
Skipping Transactions With GTIDs
Skipping Transactions With SET GLOBAL sql_slave_skip_counter
Section 15.4.2.6, “START REPLICA Statement”
Section 15.4.2.7, “START SLAVE Statement”
Section 19.1.5.5, “Starting Multi-Source Replicas”
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 15.4.2.8, “STOP REPLICA Statement”
Section 19.4.8, “Switching Sources During Failover”
Section 29.12.11.5, “The replication_applier_status_by_worker Table”
Section 19.5.4, “Troubleshooting Replication”
Section 19.5.3, “Upgrading a Replication Topology”
Section 25.7.7, “Using Two Replication Channels for NDB Cluster Replication”

START REPLICA SQL_THREAD
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”

START REPLICA UNTIL SQL_AFTER_MTS_GAPS
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.4.2, “Handling an Unexpected Halt of a Replica”

6183

Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”

START SLAVE
Behaviors When Binary Log Transaction Compression is Enabled
Section 7.4.4.5, “Binary Log Transaction Compression”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 19.1.3.1, “GTID Format and Storage”
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 8.1.2.3, “Passwords and Logging”
Section 19.1.7.2, “Pausing Replication on the Replica”
Section 29.12.11, “Performance Schema Replication Tables”
Section 19.5.1.29, “Replica Errors During Replication”
Setting Up Replication with Existing Data
Section 15.4.2.6, “START REPLICA Statement”
Section 15.4.2.7, “START SLAVE Statement”
Section 19.1.5.5, “Starting Multi-Source Replicas”
Section 19.5.3, “Upgrading a Replication Topology”

START SLAVE UNTIL SQL_AFTER_MTS_GAPS
Section 15.4.2.1, “CHANGE MASTER TO Statement”

START TRANSACTION
Section 17.7.2.2, “autocommit, Commit, and Rollback”
Section 15.6.1, “BEGIN ... END Compound Statement”
Section 15.7.8.3, “FLUSH Statement”
Section 17.7.5.3, “How to Minimize and Handle Deadlocks”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 17.7.2.4, “Locking Reads”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 10.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 29.12.7, “Performance Schema Transaction Tables”
Section 27.8, “Restrictions on Stored Programs”
Section 19.4.10, “Semisynchronous Replication”
Section 7.1.8, “Server System Variables”
Section 7.1.18, “Server Tracking of Client Session State”
Section 15.3.7, “SET TRANSACTION Statement”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 29.12.7.1, “The events_transactions_current Table”
Section 15.3, “Transactional and Locking Statements”
Section 27.3.1, “Trigger Syntax and Examples”
Section 15.3.8.2, “XA Transaction States”

START TRANSACTION ... COMMIT
Section 15.1.1, “Atomic Data Definition Statement Support”
Data Definition Statements

START TRANSACTION READ ONLY
MySQL Glossary
Section 10.5.3, “Optimizing InnoDB Read-Only Transactions”

6184

START TRANSACTION WITH CONSISTENT SNAPSHOT
Section 17.7.2.3, “Consistent Nonlocking Reads”

STATS_PERSISTENT=0
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”

STATS_PERSISTENT=1
Section 17.8.10.1, “Configuring Persistent Optimizer Statistics Parameters”

STOP GROUP REPLICATION
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.4.2.4, “RESET REPLICA Statement”

STOP GROUP_REPLICATION
Section 20.7.7.3, “Auto-Rejoin”
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 20.5.3.2, “Configuring Transaction Consistency Guarantees”
Section 20.10, “Frequently Asked Questions”
Section 20.1.4.1, “Group Membership”
Section 20.6.4, “Group Replication IP Address Permissions”
Section 20.9.1, “Group Replication System Variables”
Providing Replication User Credentials Securely
Section 20.5.2, “Restarting a Group”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Section 15.4.3.2, “STOP GROUP_REPLICATION Statement”
Section 20.7.7.2, “Unreachable Majority Timeout”
Section 20.8.3.2, “Upgrading a Group Replication Member”
Section 20.2.1.3, “User Credentials For Distributed Recovery”

STOP REPLICA
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 19.4.9.1, “Asynchronous Connection Failover for Sources”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.1.7.1, “Checking Replication Status”
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 19.2.2.2, “Compatibility with Previous Replication Statements”
Section 19.4.11, “Delayed Replication”
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 19.1.3.2, “GTID Life Cycle”
Section 19.4.10.1, “Installing Semisynchronous Replication”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 19.1.7.2, “Pausing Replication on the Replica”
Section 29.12.11, “Performance Schema Replication Tables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.6, “Replication and Binary Logging Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 19.3.3, “Replication Privilege Checks”
Section 15.4.1.2, “RESET MASTER Statement”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 15.4.3.2, “STOP GROUP_REPLICATION Statement”
Section 15.4.2.8, “STOP REPLICA Statement”

6185

Section 15.4.2.9, “STOP SLAVE Statement”
Section 19.1.5.6, “Stopping Multi-Source Replicas”
Section 19.4.8, “Switching Sources During Failover”
Section 29.12.11.5, “The replication_applier_status_by_worker Table”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”

STOP REPLICA SQL_THREAD
Section 15.4.2.2, “CHANGE REPLICATION FILTER Statement”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”

STOP SLAVE
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 19.2.2.1, “Commands for Operations on a Single Channel”
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 19.1.7.2, “Pausing Replication on the Replica”
Section 19.3.3, “Replication Privilege Checks”
Section 15.4.2.8, “STOP REPLICA Statement”
Section 15.4.2.9, “STOP SLAVE Statement”

STOP slave
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”

STOP SLAVE SQL_THREAD
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”

T

[index top]

TABLE
Section 15.1.20.4, “CREATE TABLE ... SELECT Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 15.2.4, “EXCEPT Clause”
Section 15.8.2, “EXPLAIN Statement”
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 15.2.7.1, “INSERT ... SELECT Statement”
Section 15.2.7, “INSERT Statement”
Section 15.2.8, “INTERSECT Clause”
Section 26.2.2, “LIST Partitioning”
Section 15.2.11, “Parenthesized Query Expressions”
Section 15.2.12, “REPLACE Statement”
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 15.2.14, “Set Operations with UNION, INTERSECT, and EXCEPT”
Section 15.2.15, “Subqueries”
Section 15.2.15.4, “Subqueries with ALL”
Section 15.2.15.3, “Subqueries with ANY, IN, or SOME”
Section 15.2.15.6, “Subqueries with EXISTS or NOT EXISTS”
Section 15.2.15.10, “Subquery Errors”
Section 15.2.16, “TABLE Statement”
Section 25.6.16.46, “The ndbinfo memory_per_fragment Table”
Section 15.2.15.1, “The Subquery as Scalar Operand”
Section 15.2.19, “VALUES Statement”
Section 1.3, “What Is New in MySQL 8.0”

TABLE t1
Section 15.1.20.10, “Invisible Columns”

6186

TRUNCATE PARTITION
Section 17.12.1, “Online DDL Operations”

TRUNCATE TABLE
Section 17.20.6.5, “Adapting DML Statements to memcached Operations”
Section 25.6.7.1, “Adding NDB Cluster Data Nodes Online: General Issues”
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 7.6.7.14, “Clone Plugin Limitations”
Section 7.6.7.4, “Cloning and Concurrent DDL”
Section 25.6.1, “Commands in the NDB Cluster Management Client”
Section 18.2.3.3, “Compressed Table Characteristics”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.2.2, “DELETE Statement”
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 29.12.20.11, “Error Summary Tables”
Section 29.4.3, “Event Pre-Filtering”
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 29.12.20.7, “File I/O Summary Tables”
Section 17.6.3.2, “File-Per-Table Tablespaces”
Section 15.7.8.3, “FLUSH Statement”
Section 15.2.5, “HANDLER Statement”
Section 17.20.8, “InnoDB memcached Plugin Internals”
Section 25.2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 15.3.5, “LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 26.3.4, “Maintenance of Partitions”
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 29.12.20.10, “Memory Summary Tables”
Section 18.7.2, “MERGE Table Problems”
MySQL Glossary
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.5.8, “ndb_delete_all — Delete All Rows from an NDB Table”
Section 29.12.20.6, “Object Wait Summary Table”
Section 10.5.7, “Optimizing InnoDB DDL Operations”
Section 29.12.8, “Performance Schema Connection Tables”
Section 29.11, “Performance Schema General Table Characteristics”
Section 29.12.14.1, “Performance Schema persisted_variables Table”
Section 29.12.15, “Performance Schema Status Variable Tables”
Section 29.12.20, “Performance Schema Summary Tables”
Section 29.12.14, “Performance Schema System Variable Tables”
Section 29.12.10, “Performance Schema User-Defined Variable Tables”
Section 29.12.14.2, “Performance Schema variables_info Table”
Section 25.7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.5.1.21, “Replication and MEMORY Tables”
Section 19.5.1.37, “Replication and TRUNCATE TABLE”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 29.12.20.9, “Socket Summary Tables”
Section 29.12.20.2, “Stage Summary Tables”
Section 29.12.20.4, “Statement Histogram Summary Tables”
Section 29.12.20.3, “Statement Summary Tables”

6187

Section 15.3.3, “Statements That Cause an Implicit Commit”
Section 29.12.20.12, “Status Variable Summary Tables”
Section 29.12.8.1, “The accounts Table”
Section 29.12.11.1, “The binary_log_transaction_compression_stats Table”
Section 29.12.19.2, “The clone_progress Table”
Section 29.12.19.1, “The clone_status Table”
Section 29.12.3.1, “The cond_instances Table”
Section 29.12.13.2, “The data_lock_waits Table”
Section 29.12.13.1, “The data_locks Table”
Section 29.12.21.2, “The error_log Table”
Section 29.12.5.1, “The events_stages_current Table”
Section 29.12.5.2, “The events_stages_history Table”
Section 29.12.5.3, “The events_stages_history_long Table”
Section 29.12.6.1, “The events_statements_current Table”
Section 29.12.6.2, “The events_statements_history Table”
Section 29.12.6.3, “The events_statements_history_long Table”
Section 29.12.7.1, “The events_transactions_current Table”
Section 29.12.7.2, “The events_transactions_history Table”
Section 29.12.7.3, “The events_transactions_history_long Table”
Section 29.12.4.1, “The events_waits_current Table”
Section 29.12.4.2, “The events_waits_history Table”
Section 29.12.4.3, “The events_waits_history_long Table”
Section 29.12.3.2, “The file_instances Table”
Section 29.12.17.2, “The firewall_group_allowlist Table”
Section 29.12.17.1, “The firewall_groups Table”
Section 29.12.17.3, “The firewall_membership Table”
Section 29.12.21.3, “The host_cache Table”
Section 29.12.8.2, “The hosts Table”
Section 28.4.20, “The INFORMATION_SCHEMA INNODB_INDEXES Table”
Section 28.4.23, “The INFORMATION_SCHEMA INNODB_TABLES Table”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”
Section 29.12.18.1, “The keyring_component_status Table”
Section 29.12.18.2, “The keyring_keys table”
Section 29.12.21.5, “The log_status Table”
Section 18.3, “The MEMORY Storage Engine”
Section 29.12.13.3, “The metadata_locks Table”
Section 29.12.3.3, “The mutex_instances Table”
Section 29.12.21.6, “The performance_timers Table”
Section 29.12.6.4, “The prepared_statements_instances Table”
Section 29.12.21.7, “The processlist Table”
Section 30.4.4.24, “The ps_truncate_all_tables() Procedure”
Section 29.12.11.2, “The replication_applier_configuration Table”
Section 29.12.11.3, “The replication_applier_status Table”
Section 29.12.11.8, “The replication_asynchronous_connection_failover Table”
Section 29.12.11.9, “The replication_asynchronous_connection_failover_managed Table”
Section 29.12.11.10, “The replication_connection_configuration Table”
Section 29.12.11.12, “The replication_group_communication_information Table”
Section 29.12.11.13, “The replication_group_configuration_version Table”
Section 29.12.11.14, “The replication_group_member_actions Table”
Section 29.12.11.15, “The replication_group_member_stats Table”
Section 29.12.11.16, “The replication_group_members Table”
Section 29.12.3.4, “The rwlock_instances Table”
Section 29.12.9.1, “The session_account_connect_attrs Table”
Section 29.12.9.2, “The session_connect_attrs Table”
Section 29.12.2.1, “The setup_actors Table”
Section 29.12.2.2, “The setup_consumers Table”
Section 29.12.2.3, “The setup_instruments Table”
Section 29.12.2.4, “The setup_objects Table”

6188

Section 29.12.2.5, “The setup_threads Table”
Section 29.12.3.5, “The socket_instances Table”
Section 29.12.13.4, “The table_handles Table”
The table_io_waits_summary_by_index_usage Table
The table_io_waits_summary_by_table Table
The table_lock_waits_summary_by_table Table
Section 29.12.21.8, “The threads Table”
Section 29.12.21.9, “The tls_channel_status Table”
Section 29.12.16.1, “The tp_thread_group_state Table”
Section 29.12.16.2, “The tp_thread_group_stats Table”
Section 29.12.16.3, “The tp_thread_state Table”
Section 29.12.21.10, “The user_defined_functions Table”
Section 29.12.8.3, “The users Table”
Section 29.12.20.5, “Transaction Summary Tables”
Section 15.1.37, “TRUNCATE TABLE Statement”
Section 29.12.20.1, “Wait Event Summary Tables”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

U

[index top]

UNINSTALL COMPONENT
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 7.5.3, “Error Log Components”
Section 7.4.2.1, “Error Log Configuration”
Section 7.5.1, “Installing and Uninstalling Components”
Section 8.5.2.1, “MySQL Enterprise Data Masking and De-Identification Component Installation”
Section 8.6.1, “MySQL Enterprise Encryption Installation and Upgrading”
Section 7.5.2, “Obtaining Component Information”
Section 8.4.3.1, “Password Validation Component Installation and Uninstallation”
Section 8.2.2, “Privileges Provided by MySQL”
Section 11.6, “Query Attributes”
Section 8.4.6, “The Audit Message Component”
Section 15.7.4.5, “UNINSTALL COMPONENT Statement”

UNINSTALL PLUGIN
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”
Section 15.7.8.3, “FLUSH Statement”
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.7.4.4, “INSTALL PLUGIN Statement”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 7.6.5.1, “Installing or Uninstalling ddl_rewriter”
Section 7.6.6.2, “Installing or Uninstalling Version Tokens”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.5.3.1, “MySQL Enterprise Data Masking and De-Identification Plugin Installation”
Section 8.4.1.9, “No-Login Pluggable Authentication”
Section 8.4.1.5, “PAM Pluggable Authentication”
Section 29.18, “Performance Schema and Plugins”
Section 18.11.1, “Pluggable Storage Engine Architecture”
Section 15.7.7.25, “SHOW PLUGINS Statement”
Section 8.4.1.10, “Socket Peer-Credential Pluggable Authentication”
Section 15.3.3, “Statements That Cause an Implicit Commit”

6189

Section 8.4.1.12, “Test Pluggable Authentication”
Section 28.3.22, “The INFORMATION_SCHEMA PLUGINS Table”
Section 15.7.4.6, “UNINSTALL PLUGIN Statement”
Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”
Section 8.4.1.6, “Windows Pluggable Authentication”

UNION
Section 14.8.3, “Character Set and Collation of Function Results”
Section 15.2.15.7, “Correlated Subqueries”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 10.2.2.5, “Derived Condition Pushdown Optimization”
Section 15.2.4, “EXCEPT Clause”
Section 10.8.2, “EXPLAIN Output Format”
Section 14.15, “Information Functions”
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 15.2.8, “INTERSECT Clause”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 13.1.6, “Numeric Type Attributes”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations”
Section 15.2.11, “Parenthesized Query Expressions”
Section 10.2.1.2, “Range Optimization”
Section 5.6.7, “Searching on Two Keys”
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 15.2.13, “SELECT Statement”
Section 7.1.10, “Server Status Variables”
Section 15.2.14, “Set Operations with UNION, INTERSECT, and EXCEPT”
Section 15.2.15, “Subqueries”
Section 15.2.16, “TABLE Statement”
Section 18.7, “The MERGE Storage Engine”
Section 15.2.18, “UNION Clause”
Section 27.5.3, “Updatable and Insertable Views”
Section 15.2.19, “VALUES Statement”
Section 27.5.1, “View Syntax”
Section 1.3, “What Is New in MySQL 8.0”
Section 15.2.20, “WITH (Common Table Expressions)”
Section 14.11, “XML Functions”

UNION ALL
Section 14.15, “Information Functions”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section 27.5.3, “Updatable and Insertable Views”
Section 15.2.20, “WITH (Common Table Expressions)”

UNION DISTINCT
Section 15.2.20, “WITH (Common Table Expressions)”

UNLOCK INSTANCE
Section 1.3, “What Is New in MySQL 8.0”

UNLOCK TABLES
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”

6190

Section 9.2, “Database Backup Methods”
Section 15.7.8.3, “FLUSH Statement”
Section 17.7.5.3, “How to Minimize and Handle Deadlocks”
Section 17.6.1.3, “Importing InnoDB Tables”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 27.8, “Restrictions on Stored Programs”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 15.3.3, “Statements That Cause an Implicit Commit”

UPDATE
Section 8.2, “Access Control and Account Management”
Section 8.2.7, “Access Control, Stage 2: Request Verification”
Section 8.2.11, “Account Categories”
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 15.1.2, “ALTER DATABASE Statement”
Section 14.4.4, “Assignment Operators”
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 17.1.2, “Best Practices for InnoDB Tables”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 14.1, “Built-In Function and Operator Reference”
Section 10.5.5, “Bulk Data Loading for InnoDB Tables”
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”
Section 17.5.2, “Change Buffer”
Section 3.5, “Changes in MySQL 8.0”
Section 15.1.20.6, “CHECK Constraints”
Section 15.7.3.2, “CHECK TABLE Statement”
Section 12.7, “Column Character Set Conversion”
Section 17.9.1.6, “Compression for OLTP Workloads”
Section 17.8.11, “Configuring the Merge Threshold for Index Pages”
Section 17.7.2.3, “Consistent Nonlocking Reads”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 18.8.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 13.6, “Data Type Default Values”
Section 13.2.1, “Date and Time Data Type Syntax”
Section 17.7.5, “Deadlocks in InnoDB”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 10.8.2, “EXPLAIN Output Format”
Section 15.8.2, “EXPLAIN Statement”
Section 10.8.3, “Extended EXPLAIN Output Format”
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 17.21.3, “Forcing InnoDB Recovery”
Section 1.6.2.3, “FOREIGN KEY Constraint Differences”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 14.9.5, “Full-Text Restrictions”
Section 10.2.1.20, “Function Call Optimization”
Chapter 14, Functions and Operators
Section 10.14.3, “General Thread States”

6191

Section 15.7.1.6, “GRANT Statement”
Section 8.2.3, “Grant Tables”
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section 10.9.4, “Index Hints”
Section 14.15, “Information Functions”
Section 17.7.1, “InnoDB Locking”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.2.7.2, “INSERT ... ON DUPLICATE KEY UPDATE Statement”
Section 15.2.7, “INSERT Statement”
Section 19.2.5.3, “Interactions Between Replication Filtering Options”
Section 10.11.1, “Internal Locking Methods”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 28.1, “Introduction”
Section 15.1.20.10, “Invisible Columns”
Section 15.2.13.2, “JOIN Clause”
Section 14.17.8, “JSON Utility Functions”
Section 15.7.8.4, “KILL Statement”
Section B.3.7, “Known Issues in MySQL”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 15.2.9, “LOAD DATA Statement”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 17.7.2.4, “Locking Reads”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 14.23, “Miscellaneous Functions”
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”
Section 6.5.1.1, “mysql Client Options”
Section 6.5.1.6, “mysql Client Tips”
Section 1.6.1, “MySQL Extensions to Standard SQL”
MySQL Glossary
Section 6.6.9.2, “mysqlbinlog Row Event Display”
Section 25.6.11.1, “NDB Cluster Disk Data Objects”
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
Section 10.8.4, “Obtaining Execution Plan Information for a Named Connection”
Section 17.12.1, “Online DDL Operations”
Section 14.4, “Operators”
Section 10.9.3, “Optimizer Hints”
Section 10.2.5, “Optimizing Data Change Statements”
Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations”
Section 10.8.1, “Optimizing Queries with EXPLAIN”
Section 10.2.2.2, “Optimizing Subqueries with Materialization”
Section 10.2.2, “Optimizing Subqueries, Derived Tables, View References, and Common Table
Expressions”
Section 13.1.7, “Out-of-Range and Overflow Handling”
Section 26.1, “Overview of Partitioning in MySQL”
Section 26.4, “Partition Pruning”
Section 26.5, “Partition Selection”
Section 8.1.2.3, “Passwords and Logging”
Section 29.4.6, “Pre-Filtering by Thread”
Section 15.5.1, “PREPARE Statement”
Section 1.6.3.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 8.2.2, “Privileges Provided by MySQL”
Section B.3.4.2, “Problems Using DATE Columns”
Section 17.8.9, “Purge Configuration”
Section 10.2.1.2, “Range Optimization”
Section 19.5.1.29, “Replica Errors During Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.18, “Replication and LIMIT”

6192

Section 19.5.1.27, “Replication and Row Searches”
Section 19.5.1.23, “Replication and the Query Optimizer”
Section 19.5.1.36, “Replication and Triggers”
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 15.1.20.9, “Secondary Indexes and Generated Columns”
Section 5.3.4.1, “Selecting All Data”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.11, “Server SQL Modes”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 15.7.7.38, “SHOW TABLE STATUS Statement”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 10.3.3, “SPATIAL Index Optimization”
Section 15.2.15, “Subqueries”
Section 10.11.2, “Table Locking Issues”
Section 18.5, “The ARCHIVE Storage Engine”
Section 12.8.5, “The binary Collation Compared to _bin Collations”
Section 7.4.4, “The Binary Log”
Section 18.6, “The BLACKHOLE Storage Engine”
Section 28.4.26, “The INFORMATION_SCHEMA INNODB_TABLESTATS View”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”
Section 13.5, “The JSON Data Type”
Section 1.2.2, “The Main Features of MySQL”
Section 18.7, “The MERGE Storage Engine”
Section 18.2, “The MyISAM Storage Engine”
Section 7.6.4, “The Rewriter Query Rewrite Plugin”
Section 7.1.19, “The Server Shutdown Process”
Section 30.4.2.3, “The sys_config_update_set_user Trigger”
Section 10.15.3, “Traceable Statements”
Section 17.7.2.1, “Transaction Isolation Levels”
Section 27.3.1, “Trigger Syntax and Examples”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 17.6.6, “Undo Logs”
Section 27.5.3, “Updatable and Insertable Views”
Section 1.6.2.2, “UPDATE Differences”
Section 15.2.17, “UPDATE Statement”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”
Section 8.2.13, “When Privilege Changes Take Effect”
Section 10.2.1.1, “WHERE Clause Optimization”
Section 14.20.5, “Window Function Restrictions”
Section 15.2.20, “WITH (Common Table Expressions)”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

UPDATE ... ()
Section 17.7.2.3, “Consistent Nonlocking Reads”

UPDATE ... WHERE
Section 17.7.5, “Deadlocks in InnoDB”

UPDATE ... WHERE ...
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”

6193

UPDATE IGNORE
Section 15.1.20.6, “CHECK Constraints”
Section 7.1.11, “Server SQL Modes”
Section 15.2.17, “UPDATE Statement”

USE
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 20.5.3.2, “Configuring Transaction Consistency Guarantees”
Section 9.4.5.2, “Copy a Database from one Server to Another”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 5.3.1, “Creating and Selecting a Database”
Section 5.3, “Creating and Using a Database”
Section 9.4.1, “Dumping Data in SQL Format with mysqldump”
Section 19.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 19.2.5.3, “Interactions Between Replication Filtering Options”
Section 28.1, “Introduction”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 9.4.2, “Reloading SQL-Format Backups”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 27.2.1, “Stored Routine Syntax”
Section 15.8.4, “USE Statement”

USE db2
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

USE db_name
Section 6.5.1.1, “mysql Client Options”

USE test
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

V

[index top]

VALUES
Section 15.1.20.4, “CREATE TABLE ... SELECT Statement”
Section 15.1.23, “CREATE VIEW Statement”
Section 15.2.4, “EXCEPT Clause”
Section 15.2.11, “Parenthesized Query Expressions”
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 15.2.14, “Set Operations with UNION, INTERSECT, and EXCEPT”
Section 15.2.15, “Subqueries”
Section 15.2.16, “TABLE Statement”
Section 15.2.19, “VALUES Statement”
Section 1.3, “What Is New in MySQL 8.0”

VALUES ROW()
Section 15.2.7, “INSERT Statement”
Section 15.1.20.10, “Invisible Columns”
Section 15.2.12, “REPLACE Statement”

6194

W

[index top]

WHERE
Section 17.1.1, “Benefits of Using InnoDB Tables”

WHILE
Section 15.6.5, “Flow Control Statements”
Section 15.6.5.3, “ITERATE Statement”
Section 15.6.5.4, “LEAVE Statement”
Section 15.6.2, “Statement Labels”
Section 15.6.5.8, “WHILE Statement”

WITH
Section 15.2.2, “DELETE Statement”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section 15.2.13, “SELECT Statement”
Section 15.2.14, “Set Operations with UNION, INTERSECT, and EXCEPT”
Section B.3.6.2, “TEMPORARY Table Problems”
Section 15.2.17, “UPDATE Statement”
Section 1.3, “What Is New in MySQL 8.0”
Section 15.2.20, “WITH (Common Table Expressions)”

X

[index top]

XA BEGIN
Section 29.12.7, “Performance Schema Transaction Tables”

XA COMMIT
Section 10.11.4, “Metadata Locking”
Section 29.12.7, “Performance Schema Transaction Tables”
Section 7.1.8, “Server System Variables”
Section 29.12.7.1, “The events_transactions_current Table”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 15.3.8.2, “XA Transaction States”

XA COMMIT ... ONE PHASE
Section 15.3.8.3, “Restrictions on XA Transactions”

XA END
Section 15.3.8.3, “Restrictions on XA Transactions”
Section 29.12.7.1, “The events_transactions_current Table”
Section 15.3.8.1, “XA Transaction SQL Statements”
Section 15.3.8.2, “XA Transaction States”

XA PREPARE
Section 20.3.1, “Group Replication Requirements”
Section 7.1.8, “Server System Variables”
Section 29.12.7.1, “The events_transactions_current Table”
Section 1.3, “What Is New in MySQL 8.0”
Section 15.3.8.2, “XA Transaction States”

6195

XA RECOVER
Section 15.7.1.6, “GRANT Statement”
Section 20.3.1, “Group Replication Requirements”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.3.8.3, “Restrictions on XA Transactions”
Section 29.12.7.1, “The events_transactions_current Table”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 15.3.8.1, “XA Transaction SQL Statements”
Section 15.3.8.2, “XA Transaction States”

XA ROLLBACK
Section 10.11.4, “Metadata Locking”
Section 29.12.7, “Performance Schema Transaction Tables”
Section 7.1.8, “Server System Variables”
Section 29.12.7.1, “The events_transactions_current Table”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 15.3.8.2, “XA Transaction States”

XA START
Section 29.12.7, “Performance Schema Transaction Tables”
Section 15.3.8.3, “Restrictions on XA Transactions”
Section 7.1.8, “Server System Variables”
Section 29.12.7.1, “The events_transactions_current Table”
Section 1.3, “What Is New in MySQL 8.0”
Section 15.3.8.1, “XA Transaction SQL Statements”
Section 15.3.8.2, “XA Transaction States”

XA START xid
Section 15.3.8.1, “XA Transaction SQL Statements”

Status Variable Index
A | B | C | D | E | F | G | H | I | K | L | M | N | O | P | Q | R | S | T | U | V

A

[index top]

Aborted_clients
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 7.1.10, “Server Status Variables”

Aborted_connects
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 7.1.10, “Server Status Variables”

Acl_cache_items_count
Section 7.1.10, “Server Status Variables”

Audit_log_current_size
Section 8.4.5.11, “Audit Log Reference”

Audit_log_event_max_drop_size
Section 8.4.5.11, “Audit Log Reference”

6196

Audit_log_events
Section 8.4.5.11, “Audit Log Reference”

Audit_log_events_filtered
Section 8.4.5.11, “Audit Log Reference”

Audit_log_events_lost
Section 8.4.5.11, “Audit Log Reference”

Audit_log_events_written
Section 8.4.5.11, “Audit Log Reference”

Audit_log_total_size
Section 8.4.5.11, “Audit Log Reference”

Audit_log_write_waits
Section 8.4.5.11, “Audit Log Reference”

Authentication_ldap_sasl_supported_methods
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 7.1.10, “Server Status Variables”

B

[index top]

Binlog_cache_disk_use
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 7.1.10, “Server Status Variables”
Section 7.4.4, “The Binary Log”

Binlog_cache_use
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 7.1.10, “Server Status Variables”
Section 7.4.4, “The Binary Log”

Binlog_stmt_cache_disk_use
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 7.1.10, “Server Status Variables”

Binlog_stmt_cache_use
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 7.1.10, “Server Status Variables”

Bytes_received
Section 7.1.10, “Server Status Variables”
Section 7.4.5, “The Slow Query Log”

Bytes_sent
Section 7.1.10, “Server Status Variables”
Section 7.4.5, “The Slow Query Log”

C

[index top]

6197

Caching_sha2_password_rsa_public_key
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 7.1.10, “Server Status Variables”

Com_flush
Section 7.1.10, “Server Status Variables”

Com_restart
Section 15.7.8.8, “RESTART Statement”

Com_shutdown
Section 15.7.8.9, “SHUTDOWN Statement”

Com_stmt_reprepare
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”

Compression
Section 6.2.8, “Connection Compression Control”
Section 7.1.10, “Server Status Variables”

Compression_algorithm
Section 6.2.8, “Connection Compression Control”
Section 7.1.10, “Server Status Variables”

Compression_level
Section 6.2.8, “Connection Compression Control”
Section 7.1.10, “Server Status Variables”

Connection_control_delay_generated
Section 8.4.2.1, “Connection Control Plugin Installation”
Section 8.4.2.2, “Connection Control Plugin System and Status Variables”

Connection_errors_accept
Section 7.1.10, “Server Status Variables”

Connection_errors_internal
Section 7.1.10, “Server Status Variables”

Connection_errors_max_connections
Section 7.1.12.1, “Connection Interfaces”
Section 7.1.10, “Server Status Variables”

Connection_errors_peer_address
Section 7.1.10, “Server Status Variables”

Connection_errors_select
Section 7.1.10, “Server Status Variables”

Connection_errors_tcpwrap
Section 7.1.10, “Server Status Variables”

Connection_errors_xxx
Section 7.1.12.3, “DNS Lookups and the Host Cache”

6198

Section 7.1.10, “Server Status Variables”

Connections
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

Created_tmp_disk_tables
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 29.12.6.1, “The events_statements_current Table”
Section 7.4.5, “The Slow Query Log”

Created_tmp_files
Section 7.1.10, “Server Status Variables”

Created_tmp_tables
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 15.7.7.37, “SHOW STATUS Statement”
Section 29.12.6.1, “The events_statements_current Table”
Section 7.4.5, “The Slow Query Log”

Current_tls_ca
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.10, “Server Status Variables”

Current_tls_capath
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.10, “Server Status Variables”

Current_tls_cert
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.10, “Server Status Variables”

Current_tls_cipher
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.10, “Server Status Variables”

Current_tls_ciphersuites
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.10, “Server Status Variables”

Current_tls_crl
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.10, “Server Status Variables”

Current_tls_crlpath
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.10, “Server Status Variables”

Current_tls_key
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.10, “Server Status Variables”

6199

Current_tls_version
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 7.1.10, “Server Status Variables”

D

[index top]

Delayed_errors
Section 7.1.10, “Server Status Variables”

Delayed_insert_threads
Section 7.1.10, “Server Status Variables”

Delayed_writes
Section 7.1.10, “Server Status Variables”

dragnet.Status
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

E

[index top]

Error_log_buffered_bytes
Section 7.1.10, “Server Status Variables”
Section 29.12.21.2, “The error_log Table”

Error_log_buffered_events
Section 7.1.10, “Server Status Variables”
Section 29.12.21.2, “The error_log Table”

Error_log_expired_events
Section 7.1.10, “Server Status Variables”
Section 29.12.21.2, “The error_log Table”

Error_log_latest_write
Section 7.1.10, “Server Status Variables”
Section 29.12.21.2, “The error_log Table”

F

[index top]

Firewall_access_denied
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

Firewall_access_granted
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”

Firewall_access_suspicious
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

6200

Firewall_cached_entries
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”

Flush_commands
Section 7.1.10, “Server Status Variables”

G

[index top]

Global_connection_memory
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

group_replication_primary_member
Section 20.5.1.1, “Changing the Primary”
Finding the Primary
Section 14.18.1.1, “Function which Configures Group Replication Primary”
Section 20.9.2, “Group Replication Status Variables”

H

[index top]

Handler_commit
Section 7.1.10, “Server Status Variables”

Handler_delete
Section 7.1.10, “Server Status Variables”

Handler_discover
NDB Cluster Status Variables

Handler_external_lock
Section 7.1.10, “Server Status Variables”

Handler_mrr_init
Section 7.1.10, “Server Status Variables”

Handler_prepare
Section 7.1.10, “Server Status Variables”

Handler_read_first
Section 7.1.10, “Server Status Variables”
Section 7.4.5, “The Slow Query Log”

Handler_read_key
Section 7.1.10, “Server Status Variables”
Section 7.4.5, “The Slow Query Log”

Handler_read_last
Section 7.1.10, “Server Status Variables”
Section 7.4.5, “The Slow Query Log”

6201

Handler_read_next
Section 7.1.10, “Server Status Variables”
Section 7.4.5, “The Slow Query Log”
Section 10.3.10, “Use of Index Extensions”

Handler_read_prev
Section 7.1.10, “Server Status Variables”
Section 7.4.5, “The Slow Query Log”

Handler_read_rnd
Section 7.1.10, “Server Status Variables”
Section 7.4.5, “The Slow Query Log”

Handler_read_rnd_next
Section 7.1.10, “Server Status Variables”
Section 7.4.5, “The Slow Query Log”

Handler_rollback
Section 7.1.10, “Server Status Variables”

Handler_savepoint
Section 7.1.10, “Server Status Variables”

Handler_savepoint_rollback
Section 7.1.10, “Server Status Variables”

Handler_update
Section 7.1.10, “Server Status Variables”

Handler_write
Section 7.1.10, “Server Status Variables”

I

[index top]

Innodb_buffer_pool_bytes_data
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_bytes_dirty
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_dump_status
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_load_status
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_pages_data
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_pages_dirty
Section 7.1.10, “Server Status Variables”

6202

Innodb_buffer_pool_pages_flushed
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_pages_free
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_pages_latched
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_pages_misc
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_pages_total
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_read_ahead
Section 17.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_read_ahead_evicted
Section 17.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_read_ahead_rnd
Section 17.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_read_requests
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_reads
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_resize_status
Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_resize_status_code
Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 7.1.10, “Server Status Variables”
Section 1.3, “What Is New in MySQL 8.0”

Innodb_buffer_pool_resize_status_progress
Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 7.1.10, “Server Status Variables”
Section 1.3, “What Is New in MySQL 8.0”

Innodb_buffer_pool_wait_free
Section 7.1.10, “Server Status Variables”

Innodb_buffer_pool_write_requests
Section 7.1.10, “Server Status Variables”

6203

Innodb_data_fsyncs
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.10, “Server Status Variables”

Innodb_data_pending_fsyncs
Section 7.1.10, “Server Status Variables”

Innodb_data_pending_reads
Section 7.1.10, “Server Status Variables”

Innodb_data_pending_writes
Section 7.1.10, “Server Status Variables”

Innodb_data_read
Section 7.1.10, “Server Status Variables”

Innodb_data_reads
Section 7.1.10, “Server Status Variables”

Innodb_data_writes
Section 7.1.10, “Server Status Variables”

Innodb_data_written
Section 7.1.10, “Server Status Variables”

Innodb_dblwr_pages_written
Section 7.1.10, “Server Status Variables”

Innodb_dblwr_writes
Section 7.1.10, “Server Status Variables”

Innodb_have_atomic_builtins
Section 7.1.10, “Server Status Variables”

Innodb_log_waits
Section 7.1.10, “Server Status Variables”

Innodb_log_write_requests
Section 7.1.10, “Server Status Variables”

Innodb_log_writes
Section 7.1.10, “Server Status Variables”

Innodb_num_open_files
Section 7.1.10, “Server Status Variables”

Innodb_os_log_fsyncs
Section 7.1.10, “Server Status Variables”

Innodb_os_log_pending_fsyncs
Section 7.1.10, “Server Status Variables”

Innodb_os_log_pending_writes
Section 7.1.10, “Server Status Variables”

6204

Innodb_os_log_written
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.10, “Server Status Variables”

Innodb_page_size
Section 7.1.10, “Server Status Variables”

Innodb_pages_created
Section 7.1.10, “Server Status Variables”

Innodb_pages_read
Section 7.1.10, “Server Status Variables”

Innodb_pages_written
Section 7.1.10, “Server Status Variables”

Innodb_redo_log_capacity_resized
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.5, “Redo Log”
Section 7.1.10, “Server Status Variables”

Innodb_redo_log_checkpoint_lsn
Section 17.6.5, “Redo Log”
Section 7.1.10, “Server Status Variables”

Innodb_redo_log_current_lsn
Section 17.6.5, “Redo Log”
Section 7.1.10, “Server Status Variables”

Innodb_redo_log_enabled
Section 17.6.5, “Redo Log”
Section 7.1.10, “Server Status Variables”
Section 1.3, “What Is New in MySQL 8.0”

Innodb_redo_log_flushed_to_disk_lsn
Section 17.6.5, “Redo Log”
Section 7.1.10, “Server Status Variables”

Innodb_redo_log_logical_size
Section 17.6.5, “Redo Log”
Section 7.1.10, “Server Status Variables”

Innodb_redo_log_physical_size
Section 17.6.5, “Redo Log”
Section 7.1.10, “Server Status Variables”

Innodb_redo_log_read_only
Section 17.6.5, “Redo Log”
Section 7.1.10, “Server Status Variables”

Innodb_redo_log_resize_status
Section 17.6.5, “Redo Log”

6205

Section 7.1.10, “Server Status Variables”

Innodb_redo_log_uuid
Section 17.6.5, “Redo Log”
Section 7.1.10, “Server Status Variables”

Innodb_row_lock_current_waits
Section 7.1.10, “Server Status Variables”

Innodb_row_lock_time
Section 7.1.10, “Server Status Variables”

Innodb_row_lock_time_avg
Section 7.1.10, “Server Status Variables”

Innodb_row_lock_time_max
Section 7.1.10, “Server Status Variables”

Innodb_row_lock_waits
Section 7.1.10, “Server Status Variables”

Innodb_rows_deleted
Section 7.1.10, “Server Status Variables”

Innodb_rows_inserted
Section 7.1.10, “Server Status Variables”

Innodb_rows_read
Section 7.1.10, “Server Status Variables”

Innodb_rows_updated
Section 7.1.10, “Server Status Variables”

Innodb_system_rows_deleted
Section 7.1.10, “Server Status Variables”

Innodb_system_rows_inserted
Section 7.1.10, “Server Status Variables”

Innodb_system_rows_read
Section 7.1.10, “Server Status Variables”

Innodb_system_rows_updated
Section 7.1.10, “Server Status Variables”

Innodb_truncated_status_writes
Section 7.1.10, “Server Status Variables”

Innodb_undo_tablespaces_active
Section 7.1.10, “Server Status Variables”

Innodb_undo_tablespaces_explicit
Section 7.1.10, “Server Status Variables”

6206

Innodb_undo_tablespaces_implicit
Section 7.1.10, “Server Status Variables”

Innodb_undo_tablespaces_total
Section 7.1.10, “Server Status Variables”

K

[index top]

Key_blocks_not_flushed
Section 7.1.10, “Server Status Variables”

Key_blocks_unused
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

Key_blocks_used
Section 7.1.10, “Server Status Variables”

Key_read_requests
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

Key_reads
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

Key_write_requests
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

Key_writes
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

L

[index top]

Last_query_cost
Section 7.1.10, “Server Status Variables”

Last_query_partial_plans
Section 7.1.10, “Server Status Variables”

Locked_connects
Section 8.2.20, “Account Locking”
Section 7.1.10, “Server Status Variables”

M

[index top]

6207

Max_execution_time_exceeded
Section 7.1.10, “Server Status Variables”

Max_execution_time_set
Section 7.1.10, “Server Status Variables”

Max_execution_time_set_failed
Section 7.1.10, “Server Status Variables”

Max_used_connections
Section 15.7.8.3, “FLUSH Statement”
Section 7.1.10, “Server Status Variables”
Section 7.6.3.4, “Thread Pool Tuning”

Max_used_connections_time
Section 7.1.10, “Server Status Variables”

mecab_charset
Section 14.9.9, “MeCab Full-Text Parser Plugin”
Section 7.1.10, “Server Status Variables”

Mysqlx_aborted_clients
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_address
Section 22.5.6.2, “X Plugin Options and System Variables”
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_bytes_received
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_bytes_received_compressed_payload
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_bytes_received_uncompressed_frame
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_bytes_sent
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_bytes_sent_compressed_payload
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_bytes_sent_uncompressed_frame
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_compression_algorithm
Section 22.5.5, “Connection Compression with X Plugin”

6208

Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_compression_level
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_connection_accept_errors
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_connection_errors
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_connections_accepted
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_connections_closed
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_connections_rejected
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_crud_create_view
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_crud_delete
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_crud_drop_view
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_crud_find
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_crud_insert
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_crud_modify_view
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_crud_update
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_cursor_close
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_cursor_fetch
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_cursor_open
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_errors_sent
Section 22.5.6.3, “X Plugin Status Variables”

6209

Mysqlx_errors_unknown_message_type
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_expect_close
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_expect_open
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_init_error
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_messages_sent
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_notice_global_sent
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_notice_other_sent
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_notice_warning_sent
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_notified_by_group_replication
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_port
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_prep_deallocate
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_prep_execute
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_prep_prepare
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_rows_sent
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_sessions
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_sessions_accepted
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_sessions_closed
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_sessions_fatal_error
Section 22.5.6.3, “X Plugin Status Variables”

6210

Mysqlx_sessions_killed
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_sessions_rejected
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_socket
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_accept_renegotiates
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_accepts
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_active
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_cipher
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_cipher_list
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_ctx_verify_depth
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_ctx_verify_mode
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_finished_accepts
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_server_not_after
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_server_not_before
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_verify_depth
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_verify_mode
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_ssl_version
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_create_collection
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_create_collection_index
Section 22.5.6.3, “X Plugin Status Variables”

6211

Mysqlx_stmt_disable_notices
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_drop_collection
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_drop_collection_index
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_enable_notices
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_ensure_collection
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_execute_mysqlx
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_execute_sql
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_execute_xplugin
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_get_collection_options
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_kill_client
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_list_clients
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_list_notices
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_list_objects
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_modify_collection_options
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_stmt_ping
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_worker_threads
Section 22.5.6.3, “X Plugin Status Variables”

Mysqlx_worker_threads_active
Section 22.5.6.3, “X Plugin Status Variables”

N

[index top]

6212

Ndb_api_adaptive_send_deferred_count
NDB Cluster Status Variables

Ndb_api_adaptive_send_deferred_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_adaptive_send_deferred_count_session
NDB Cluster Status Variables

Ndb_api_adaptive_send_deferred_count_slave
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_adaptive_send_forced_count
NDB Cluster Status Variables

Ndb_api_adaptive_send_forced_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_adaptive_send_forced_count_session
NDB Cluster Status Variables

Ndb_api_adaptive_send_forced_count_slave
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_adaptive_send_unforced_count
NDB Cluster Status Variables

Ndb_api_adaptive_send_unforced_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_adaptive_send_unforced_count_session
NDB Cluster Status Variables

Ndb_api_adaptive_send_unforced_count_slave
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_bytes_received_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_received_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_bytes_received_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”

6213

NDB Cluster Status Variables

Ndb_api_bytes_received_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_bytes_sent_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_sent_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_bytes_sent_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_bytes_sent_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_event_bytes_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_bytes_count_injector
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_data_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_data_count_injector
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_nondata_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_event_nondata_count_injector
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pk_op_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pk_op_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

6214

Ndb_api_pk_op_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pk_op_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_pruned_scan_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pruned_scan_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_pruned_scan_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_pruned_scan_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_range_scan_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_range_scan_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_range_scan_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_range_scan_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_read_row_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_read_row_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_read_row_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

6215

Ndb_api_read_row_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_scan_batch_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_scan_batch_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_scan_batch_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_scan_batch_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_table_scan_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_table_scan_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_table_scan_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_table_scan_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_trans_abort_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_abort_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_trans_abort_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_abort_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

6216

Ndb_api_trans_close_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_close_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_trans_close_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_close_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_trans_commit_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_commit_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_trans_commit_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_commit_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_trans_local_read_row_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_local_read_row_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_trans_local_read_row_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_local_read_row_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_trans_start_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

6217

Ndb_api_trans_start_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_trans_start_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_trans_start_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_uk_op_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_uk_op_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_uk_op_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_uk_op_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_wait_exec_complete_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_exec_complete_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_wait_exec_complete_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_exec_complete_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_wait_meta_request_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_meta_request_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

6218

Ndb_api_wait_meta_request_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_meta_request_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_wait_nanos_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_nanos_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_wait_nanos_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_nanos_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_wait_scan_result_count
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_scan_result_count_replica
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_api_wait_scan_result_count_session
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables

Ndb_api_wait_scan_result_count_slave
Section 25.6.15, “NDB API Statistics Counters and Variables”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_cluster_node_id
NDB Cluster Status Variables

Ndb_config_from_host
NDB Cluster Status Variables

Ndb_config_from_port
NDB Cluster Status Variables

Ndb_config_generation
NDB Cluster Status Variables

6219

Ndb_conflict_fn_epoch
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_epoch2
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_epoch2_trans
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_epoch_trans
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_max
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_conflict_fn_max_del_win
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_max_del_win_ins
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_max_ins
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_fn_old
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_conflict_last_conflict_epoch
NDB Cluster Status Variables

Ndb_conflict_last_stable_epoch
NDB Cluster Status Variables

Ndb_conflict_reflected_op_discard_count
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_reflected_op_prepare_count
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_conflict_refresh_op_count
NDB Cluster Status Variables

6220

Ndb_conflict_trans_conflict_commit_count
NDB Cluster Status Variables

Ndb_conflict_trans_detect_iter_count
NDB Cluster Status Variables

Ndb_conflict_trans_reject_count
NDB Cluster Status Variables

Ndb_conflict_trans_row_conflict_count
NDB Cluster Status Variables

Ndb_conflict_trans_row_reject_count
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster Status Variables

Ndb_epoch_delete_delete_count
NDB Cluster Status Variables

Ndb_execute_count
NDB Cluster Status Variables

Ndb_fetch_table_stats
NDB Cluster Status Variables

Ndb_last_commit_epoch_server
NDB Cluster Status Variables

Ndb_last_commit_epoch_session
NDB Cluster Status Variables

Ndb_metadata_detected_count
NDB Cluster Status Variables
Section 29.12.12, “Performance Schema NDB Cluster Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_metadata_excluded_count
NDB Cluster Status Variables
Section 29.12.12, “Performance Schema NDB Cluster Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_metadata_synced_count
NDB Cluster Status Variables
Section 29.12.12, “Performance Schema NDB Cluster Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_number_of_data_nodes
NDB Cluster Status Variables

Ndb_pruned_scan_count
NDB Cluster Status Variables

Ndb_pushed_queries_defined
NDB Cluster Status Variables
NDB Cluster System Variables

6221

Ndb_pushed_queries_dropped
NDB Cluster Status Variables
NDB Cluster System Variables

Ndb_pushed_queries_executed
NDB Cluster Status Variables
NDB Cluster System Variables

Ndb_pushed_reads
NDB Cluster Status Variables
NDB Cluster System Variables

Ndb_replica_max_replicated_epoch
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_scan_count
NDB Cluster Status Variables

Ndb_schema_participant_count
NDB Cluster Status Variables

Ndb_slave_max_replicated_epoch
NDB Cluster Status Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

Ndb_system_name
Section 25.4.3.8, “Defining the System”
NDB Cluster Status Variables

Ndb_trans_hint_count_session
NDB Cluster Status Variables

Not_flushed_delayed_rows
Section 7.1.10, “Server Status Variables”

O

[index top]

Ongoing_anonymous_gtid_violating_transaction_count
Section 7.1.10, “Server Status Variables”

Ongoing_anonymous_transaction_count
Section 7.1.10, “Server Status Variables”

Ongoing_automatic_gtid_violating_transaction_count
Section 7.1.10, “Server Status Variables”

Open_files
Section 7.1.10, “Server Status Variables”

Open_streams
Section 7.1.10, “Server Status Variables”

6222

Open_table_definitions
Section 7.1.10, “Server Status Variables”

Open_tables
Section 7.1.10, “Server Status Variables”

Opened_files
Section 7.1.10, “Server Status Variables”

Opened_table_definitions
Section 7.1.10, “Server Status Variables”

Opened_tables
Section 10.4.3.1, “How MySQL Opens and Closes Tables”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

P

[index top]

Performance_schema_accounts_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_cond_classes_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_cond_instances_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_digest_lost
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

Performance_schema_file_classes_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_file_handles_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_file_instances_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_hosts_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_index_stat_lost
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

Performance_schema_locker_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_memory_classes_lost
Section 29.16, “Performance Schema Status Variables”

6223

Performance_schema_metadata_lock_lost
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

Performance_schema_mutex_classes_lost
Section 29.7, “Performance Schema Status Monitoring”
Section 29.16, “Performance Schema Status Variables”

Performance_schema_mutex_instances_lost
Section 29.7, “Performance Schema Status Monitoring”
Section 29.16, “Performance Schema Status Variables”

Performance_schema_nested_statement_lost
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

Performance_schema_prepared_statements_lost
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”
Section 29.12.6.4, “The prepared_statements_instances Table”

Performance_schema_program_lost
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

Performance_schema_rwlock_classes_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_rwlock_instances_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_session_connect_attrs_longest_seen
Section 29.12.9, “Performance Schema Connection Attribute Tables”
Section 29.16, “Performance Schema Status Variables”

Performance_schema_session_connect_attrs_lost
Section 29.12.9, “Performance Schema Connection Attribute Tables”
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

Performance_schema_socket_classes_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_socket_instances_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_stage_classes_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_statement_classes_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_table_handles_lost
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

6224

Performance_schema_table_instances_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_table_lock_stat_lost
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

Performance_schema_thread_classes_lost
Section 29.16, “Performance Schema Status Variables”

Performance_schema_thread_instances_lost
Section 14.21, “Performance Schema Functions”
Section 29.16, “Performance Schema Status Variables”
Section 29.12.14, “Performance Schema System Variable Tables”
Section 29.15, “Performance Schema System Variables”

Performance_schema_users_lost
Section 29.16, “Performance Schema Status Variables”

Prepared_stmt_count
Section 7.1.10, “Server Status Variables”

Q

[index top]

Queries
Section 7.1.10, “Server Status Variables”

Questions
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 7.1.10, “Server Status Variables”

R

[index top]

Replica_open_temp_tables
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 7.1.10, “Server Status Variables”
Section 15.4.2.8, “STOP REPLICA Statement”

Replica_rows_last_search_algorithm_used
Section 7.1.10, “Server Status Variables”

Resource_group_supported
Section 7.1.10, “Server Status Variables”

Rewriter_number_loaded_rules
Rewriter Query Rewrite Plugin Status Variables

Rewriter_number_reloads
Rewriter Query Rewrite Plugin Status Variables

6225

Rewriter_number_rewritten_queries
Rewriter Query Rewrite Plugin Status Variables

Rewriter_reload_error
Rewriter Query Rewrite Plugin Procedures and Functions
Rewriter Query Rewrite Plugin Rules Table
Rewriter Query Rewrite Plugin Status Variables
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”

Rpl_semi_sync_master_clients
Section 19.4.10.3, “Semisynchronous Replication Monitoring”
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_net_avg_wait_time
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_net_wait_time
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_net_waits
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_no_times
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_no_tx
Section 19.4.10.3, “Semisynchronous Replication Monitoring”
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_status
Section 19.4.10.3, “Semisynchronous Replication Monitoring”
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_timefunc_failures
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_tx_avg_wait_time
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_tx_wait_time
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_tx_waits
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_wait_pos_backtraverse
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_wait_sessions
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_master_yes_tx
Section 19.4.10.3, “Semisynchronous Replication Monitoring”
Section 7.1.10, “Server Status Variables”

6226

Rpl_semi_sync_replica_status
Section 19.4.10.3, “Semisynchronous Replication Monitoring”
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_slave_status
Section 19.4.10.3, “Semisynchronous Replication Monitoring”
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_clients
Section 19.4.10.3, “Semisynchronous Replication Monitoring”
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_net_avg_wait_time
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_net_wait_time
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_net_waits
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_no_times
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_no_tx
Section 19.4.10.3, “Semisynchronous Replication Monitoring”
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_status
Section 19.4.10.3, “Semisynchronous Replication Monitoring”
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_timefunc_failures
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_tx_avg_wait_time
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_tx_wait_time
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_tx_waits
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_wait_pos_backtraverse
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_wait_sessions
Section 7.1.10, “Server Status Variables”

Rpl_semi_sync_source_yes_tx
Section 19.4.10.3, “Semisynchronous Replication Monitoring”
Section 7.1.10, “Server Status Variables”

6227

Rsa_public_key
Section 7.1.10, “Server Status Variables”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”

S

[index top]

Secondary_engine_execution_count
Section 7.1.10, “Server Status Variables”

Select_full_join
Section 7.1.10, “Server Status Variables”
Section 29.12.6.1, “The events_statements_current Table”

Select_full_range_join
Section 7.1.10, “Server Status Variables”
Section 29.12.6.1, “The events_statements_current Table”

Select_range
Section 7.1.10, “Server Status Variables”
Section 29.12.6.1, “The events_statements_current Table”

Select_range_check
Section 7.1.10, “Server Status Variables”
Section 29.12.6.1, “The events_statements_current Table”

Select_scan
Section 7.1.10, “Server Status Variables”
Section 29.12.6.1, “The events_statements_current Table”

Slave_open_temp_tables
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 7.1.10, “Server Status Variables”
Section 15.4.2.8, “STOP REPLICA Statement”

Slave_rows_last_search_algorithm_used
Section 7.1.10, “Server Status Variables”

Slow_launch_threads
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

Slow_queries
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

Sort_merge_passes
Section 10.2.1.16, “ORDER BY Optimization”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 29.12.6.1, “The events_statements_current Table”
Section 7.4.5, “The Slow Query Log”

6228

Sort_range
Section 7.1.10, “Server Status Variables”
Section 29.12.6.1, “The events_statements_current Table”
Section 7.4.5, “The Slow Query Log”

Sort_rows
Section 7.1.10, “Server Status Variables”
Section 29.12.6.1, “The events_statements_current Table”
Section 7.4.5, “The Slow Query Log”

Sort_scan
Section 7.1.10, “Server Status Variables”
Section 29.12.6.1, “The events_statements_current Table”
Section 7.4.5, “The Slow Query Log”

Ssl_accept_renegotiates
Section 7.1.10, “Server Status Variables”

Ssl_accepts
Section 7.1.10, “Server Status Variables”

Ssl_callback_cache_hits
Section 7.1.10, “Server Status Variables”

Ssl_cipher
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 7.1.10, “Server Status Variables”

Ssl_cipher_list
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 7.1.10, “Server Status Variables”

Ssl_client_connects
Section 7.1.10, “Server Status Variables”

Ssl_connect_renegotiates
Section 7.1.10, “Server Status Variables”

Ssl_ctx_verify_depth
Section 7.1.10, “Server Status Variables”

Ssl_ctx_verify_mode
Section 7.1.10, “Server Status Variables”

Ssl_default_timeout
Section 7.1.10, “Server Status Variables”

Ssl_finished_accepts
Section 7.1.10, “Server Status Variables”

Ssl_finished_connects
Section 7.1.10, “Server Status Variables”

6229

Ssl_server_not_after
Section 7.1.10, “Server Status Variables”

Ssl_server_not_before
Section 7.1.10, “Server Status Variables”

Ssl_session_cache_hits
Section 7.1.10, “Server Status Variables”

Ssl_session_cache_misses
Section 7.1.10, “Server Status Variables”

Ssl_session_cache_mode
Section 8.3.5, “Reusing SSL Sessions”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

Ssl_session_cache_overflows
Section 7.1.10, “Server Status Variables”

Ssl_session_cache_size
Section 7.1.10, “Server Status Variables”

Ssl_session_cache_timeout
Section 8.3.5, “Reusing SSL Sessions”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

Ssl_session_cache_timeouts
Section 7.1.10, “Server Status Variables”

Ssl_sessions_reused
Section 7.1.10, “Server Status Variables”

Ssl_used_session_cache_entries
Section 7.1.10, “Server Status Variables”

Ssl_verify_depth
Section 7.1.10, “Server Status Variables”

Ssl_verify_mode
Section 7.1.10, “Server Status Variables”

Ssl_version
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 7.1.10, “Server Status Variables”

T

[index top]

Table_locks_immediate
Section 10.11.1, “Internal Locking Methods”

6230

Section 7.1.10, “Server Status Variables”

Table_locks_waited
Section 10.11.1, “Internal Locking Methods”
Section 7.1.10, “Server Status Variables”

Table_open_cache_hits
Section 7.1.10, “Server Status Variables”

Table_open_cache_misses
Section 7.1.10, “Server Status Variables”

Table_open_cache_overflows
Section 7.1.10, “Server Status Variables”

Tc_log_max_pages_used
Section 7.1.10, “Server Status Variables”

Tc_log_page_size
Section 7.1.10, “Server Status Variables”

Tc_log_page_waits
Section 7.1.10, “Server Status Variables”

Telemetry_traces_supported
Section 7.1.10, “Server Status Variables”

Threads_cached
Section 7.1.12.1, “Connection Interfaces”
Section 7.1.10, “Server Status Variables”

Threads_connected
Section 7.1.10, “Server Status Variables”

Threads_created
Section 7.1.12.1, “Connection Interfaces”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

Threads_running
Section A.15, “MySQL 8.0 FAQ: MySQL Enterprise Thread Pool”
Section 7.1.10, “Server Status Variables”

Tls_library_version
Section 7.1.10, “Server Status Variables”
Section 8.3, “Using Encrypted Connections”

U

[index top]

Uptime
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 7.1.10, “Server Status Variables”

6231

Uptime_since_flush_status
Section 7.1.10, “Server Status Variables”

V

[index top]

validate_password.dictionary_file_last_parsed
Section 8.4.3.2, “Password Validation Options and Variables”

validate_password.dictionary_file_words_count
Section 8.4.3.2, “Password Validation Options and Variables”

validate_password_dictionary_file_last_parsed
Section 8.4.3.2, “Password Validation Options and Variables”

validate_password_dictionary_file_words_count
Section 8.4.3.2, “Password Validation Options and Variables”

System Variable Index
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X

A

[index top]

activate_all_roles_on_login
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 19.3.3, “Replication Privilege Checks”
Section 7.1.8, “Server System Variables”
Section 15.7.1.11, “SET ROLE Statement”
Section 15.7.7.21, “SHOW GRANTS Statement”
Section 27.6, “Stored Object Access Control”
Section 8.2.10, “Using Roles”

admin
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”

admin_address
Section 7.1.12.2, “Administrative Connection Management”
Section 7.1.14, “Network Namespace Support”
Selecting addresses for distributed recovery endpoints
Section 7.1.8, “Server System Variables”

admin_port
Section 7.1.12.2, “Administrative Connection Management”
Section 20.9.1, “Group Replication System Variables”
Selecting addresses for distributed recovery endpoints
Section 7.1.8, “Server System Variables”

admin_ssl_ca
Section 7.1.8, “Server System Variables”

admin_ssl_capath
Section 7.1.8, “Server System Variables”

6232

admin_ssl_cert
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

admin_ssl_cipher
Section 7.1.8, “Server System Variables”

admin_ssl_crl
Section 7.1.8, “Server System Variables”

admin_ssl_crlpath
Section 7.1.8, “Server System Variables”

admin_ssl_key
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

admin_tls_ciphersuites
Section 7.1.8, “Server System Variables”

admin_tls_version
Section 7.1.12.2, “Administrative Connection Management”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

audit_log_buffer_size
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_compression
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_connection_policy
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_current_session
Section 8.4.5.11, “Audit Log Reference”

audit_log_database
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.1, “Elements of MySQL Enterprise Audit”
Section 8.4.5, “MySQL Enterprise Audit”
Section 1.3, “What Is New in MySQL 8.0”

audit_log_disable
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.9, “Disabling Audit Logging”

audit_log_encryption
Section 8.4.5.11, “Audit Log Reference”

6233

Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_exclude_accounts
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_file
Section 8.4.5.4, “Audit Log File Formats”
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”
Section 8.4.5, “MySQL Enterprise Audit”
Section 8.4.5.3, “MySQL Enterprise Audit Security Considerations”
Section 8.4.5.6, “Reading Audit Log Files”

audit_log_filter_id
Section 8.4.5.7, “Audit Log Filtering”
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_flush
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_flush_interval_seconds
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”
Section 29.12.21.1, “The component_scheduler_tasks Table”

audit_log_format
Section 8.4.5.4, “Audit Log File Formats”
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”
Section 8.4.5, “MySQL Enterprise Audit”
Section 8.4.6, “The Audit Message Component”

audit_log_format_unix_timestamp
Section 8.4.5.4, “Audit Log File Formats”
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_include_accounts
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_max_size
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_password_history_keep_days
Section 8.4.5.11, “Audit Log Reference”

6234

Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_policy
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”
Section 7.1.9, “Using System Variables”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_prune_seconds
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_read_buffer_size
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.6, “Reading Audit Log Files”

audit_log_rotate_on_size
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

audit_log_statement_policy
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.10, “Legacy Mode Audit Log Filtering”
Section 1.3, “What Is New in MySQL 8.0”
Section 8.4.5.8, “Writing Audit Log Filter Definitions”

audit_log_strategy
Section 8.4.5.11, “Audit Log Reference”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”

authentication_fido_rp_id
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 6.5.1.1, “mysql Client Options”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_kerberos_service_key_tab
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_kerberos_service_principal
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_auth_method_name
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_bind_base_dn
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_bind_root_dn
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

6235

authentication_ldap_sasl_bind_root_pwd
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_ca_path
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_group_search_attr
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_group_search_filter
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_init_pool_size
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_log_status
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_max_pool_size
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_referral
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_server_host
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_server_port
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_tls
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_sasl_user_search_attr
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_auth_method_name
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_bind_base_dn
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_bind_root_dn
Section 8.4.1.13, “Pluggable Authentication System Variables”

6236

authentication_ldap_simple_bind_root_pwd
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_ca_path
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_group_search_attr
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_group_search_filter
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_init_pool_size
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_log_status
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_max_pool_size
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_referral
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_server_host
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_server_port
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_tls
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_ldap_simple_user_search_attr
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.4.1.13, “Pluggable Authentication System Variables”

authentication_policy
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 8.2.18, “Multifactor Authentication”
Section 8.2.17, “Pluggable Authentication”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

authentication_windows_log_level
Section 7.1.8, “Server System Variables”

6237

Section 8.4.1.6, “Windows Pluggable Authentication”

authentication_windows_use_principal_name
Section 7.1.8, “Server System Variables”
Section 8.4.1.6, “Windows Pluggable Authentication”

auto_generate_certs
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 7.1.8, “Server System Variables”

auto_increment_increment
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 20.10, “Frequently Asked Questions”
Section 20.9.1, “Group Replication System Variables”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section A.1, “MySQL 8.0 FAQ: General”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 19.5.1.39, “Replication and Variables”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 5.6.9, “Using AUTO_INCREMENT”

auto_increment_offset
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 20.10, “Frequently Asked Questions”
Section 20.9.1, “Group Replication System Variables”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section A.1, “MySQL 8.0 FAQ: General”
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 19.5.1.39, “Replication and Variables”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 5.6.9, “Using AUTO_INCREMENT”

AUTOCOMMIT
Section 19.5.1.35, “Replication and Transactions”

autocommit
Section 15.1.10, “ALTER TABLESPACE Statement”
Section 17.7.2.2, “autocommit, Commit, and Rollback”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 17.7.5.2, “Deadlock Detection”
Section 15.2.2, “DELETE Statement”
Section 17.6.3.3, “General Tablespaces”
Section 17.2, “InnoDB and the ACID Model”
Section 17.7, “InnoDB Locking and Transaction Model”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 17.7.2.4, “Locking Reads”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 17.6.1.4, “Moving or Copying InnoDB Tables”
NDB Cluster System Variables
Section 10.5.3, “Optimizing InnoDB Read-Only Transactions”
Section 29.12.7, “Performance Schema Transaction Tables”
Section 17.8.9, “Purge Configuration”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 19.5.1.35, “Replication and Transactions”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 7.1.8, “Server System Variables”

6238

Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 28.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”
Section 7.6.3.3, “Thread Pool Operation”
Section 17.7.2.1, “Transaction Isolation Levels”

automatic_sp_privileges
Section 15.1.7, “ALTER PROCEDURE Statement”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.29, “DROP PROCEDURE and DROP FUNCTION Statements”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 27.2.2, “Stored Routines and MySQL Privileges”

avoid_temporal_upgrade
Section 15.7.3.2, “CHECK TABLE Statement”
Section 15.7.3.5, “REPAIR TABLE Statement”
Section 7.1.8, “Server System Variables”

B

[index top]

back_log
Section 3.5, “Changes in MySQL 8.0”
Section 7.1.8, “Server System Variables”

basedir
Section 15.7.4.4, “INSTALL PLUGIN Statement”
Section 2.4.3, “Installing and Using the MySQL Launch Daemon”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

big_tables
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 7.1.8, “Server System Variables”

bind_address
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 7.1.13.2, “Configuring the MySQL Server to Permit IPv6 Connections”
Section 7.1.13.4, “Connecting Using IPv6 Nonlocal Host Addresses”
Section 7.1.13.3, “Connecting Using the IPv6 Local Host Address”
Section 20.6.4, “Group Replication IP Address Permissions”
Section 20.9.1, “Group Replication System Variables”
Section 7.1.13, “IPv6 Support”
Section 6.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 7.1.14, “Network Namespace Support”
Section 7.1.9.4, “Nonpersistible and Persist-Restricted System Variables”
Section 7.1.13.5, “Obtaining an IPv6 Address from a Broker”
Section 7.8, “Running Multiple MySQL Instances on One Machine”
Selecting addresses for distributed recovery endpoints
Section 7.1.8, “Server System Variables”
Section 20.5.5, “Support For IPv6 And For Mixed IPv6 And IPv4 Groups”
Section 25.6.16.50, “The ndbinfo processes Table”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 22.5.6.2, “X Plugin Options and System Variables”

6239

binlog
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

binlog_cache_size
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 7.1.10, “Server Status Variables”
Section 7.4.4, “The Binary Log”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

binlog_checksum
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 20.3.2, “Group Replication Limitations”
Section 20.3.1, “Group Replication Requirements”
MySQL Glossary
Section 19.5.1.35, “Replication and Transactions”
Section 7.4.4, “The Binary Log”

binlog_direct_non_transactional_updates
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.5.1.35, “Replication and Transactions”

binlog_encryption
Section 15.1.5, “ALTER INSTANCE Statement”
Section 19.3.2.3, “Binary Log Master Key Rotation”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.3.2, “Encrypting Binary Log Files and Relay Log Files”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.3, “Replication Security”
Section 15.7.7.1, “SHOW BINARY LOGS Statement”
Section 7.4.4, “The Binary Log”

binlog_error_action
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.3.1, “GTID Format and Storage”
Section 7.4.4, “The Binary Log”

binlog_expire_logs_auto_purge
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 1.3, “What Is New in MySQL 8.0”

binlog_expire_logs_seconds
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.1.3.3, “GTID Auto-Positioning”
Section 15.4.1.1, “PURGE BINARY LOGS Statement”
Section 7.4.6, “Server Log Maintenance”
Section 1.3, “What Is New in MySQL 8.0”

binlog_format
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 13.6, “Data Type Default Values”
Section 14.7, “Date and Time Functions”
Section 19.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 19.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”

6240

Section 19.2.5.2, “Evaluation of Table-Level Replication Options”
Section 8.2.3, “Grant Tables”
Section 20.3.1, “Group Replication Requirements”
Section 19.1.3.2, “GTID Life Cycle”
Section 14.15, “Information Functions”
Section 19.2.5.3, “Interactions Between Replication Filtering Options”
Section 15.2.9, “LOAD DATA Statement”
Section 14.14, “Locking Functions”
Section 7.4.4.4, “Logging Format for Changes to mysql Database Tables”
Section 14.6.2, “Mathematical Functions”
Section 14.23, “Miscellaneous Functions”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section A.14, “MySQL 8.0 FAQ: Replication”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 26.3.5, “Obtaining Information About Partitions”
Section 14.18.4, “Position-Based Synchronization Functions”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.2, “Replication and BLACKHOLE Tables”
Section 19.5.1.19, “Replication and LOAD DATA”
Section 19.5.1.21, “Replication and MEMORY Tables”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 19.5.1.35, “Replication and Transactions”
Section 19.2.1, “Replication Formats”
Section 19.5.1.22, “Replication of the mysql System Schema”
Section 19.3.3, “Replication Privilege Checks”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 15.3.8.3, “Restrictions on XA Transactions”
Section 19.3.2.1, “Scope of Binary Log Encryption”
Section 7.4.4.2, “Setting The Binary Log Format”
Section 27.7, “Stored Program Binary Logging”
Section 7.1.9.1, “System Variable Privileges”
Section 18.6, “The BLACKHOLE Storage Engine”
Section 7.4.3, “The General Query Log”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”
Section 7.4.5, “The Slow Query Log”
Section 17.7.2.1, “Transaction Isolation Levels”
Section 19.5.3, “Upgrading a Replication Topology”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”
Section 1.3, “What Is New in MySQL 8.0”

binlog_group_commit_sync_delay
Section 19.1.6.4, “Binary Logging Options and Variables”

binlog_group_commit_sync_no_delay_count
Section 19.1.6.4, “Binary Logging Options and Variables”

binlog_gtid_simple_recovery
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.3.2, “GTID Life Cycle”

binlog_max_flush_queue_time
Section 19.1.6.4, “Binary Logging Options and Variables”

binlog_order_commits
Section 19.1.6.4, “Binary Logging Options and Variables”

6241

binlog_rotate_encryption_master_key_at_startup
Section 19.3.2.3, “Binary Log Master Key Rotation”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 8.2.2, “Privileges Provided by MySQL”

binlog_row_event_max_size
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 7.4.4.2, “Setting The Binary Log Format”

binlog_row_image
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.1.20.10, “Invisible Columns”
Section 10.5.8, “Optimizing InnoDB Disk I/O”

binlog_row_metadata
Section 19.1.6.4, “Binary Logging Options and Variables”

binlog_row_value_options
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.5.1.17, “Replication of JSON Documents”
Section 13.5, “The JSON Data Type”
Section 1.3, “What Is New in MySQL 8.0”

binlog_rows_query_log_events
Section 19.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 19.4.3, “Monitoring Row-based Replication”
Section 6.6.9.2, “mysqlbinlog Row Event Display”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”

binlog_stmt_cache_size
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 7.1.10, “Server Status Variables”

binlog_transaction_compression
Section 7.4.4.5, “Binary Log Transaction Compression”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Combining Compressed and Uncompressed Transaction Payloads
Section 20.7.4, “Message Compression”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 29.12.11.1, “The binary_log_transaction_compression_stats Table”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

binlog_transaction_compression_level_zstd
Section 7.4.4.5, “Binary Log Transaction Compression”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

binlog_transaction_dependency_history_size
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 25.7.11, “NDB Cluster Replication Using the Multithreaded Applier”

6242

binlog_transaction_dependency_tracking
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 20.3.1, “Group Replication Requirements”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 25.7.11, “NDB Cluster Replication Using the Multithreaded Applier”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

block_encryption_mode
Section 14.13, “Encryption and Compression Functions”
Section 7.1.8, “Server System Variables”

build_id
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

bulk_insert_buffer_size
Section 18.2.1, “MyISAM Startup Options”
Section 10.2.5.1, “Optimizing INSERT Statements”
Section 7.1.8, “Server System Variables”

C

[index top]

caching_sha
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

character_set_client
Section 12.15, “Character Set Configuration”
Section 12.4, “Connection Character Sets and Collations”
Section 15.2.9, “LOAD DATA Statement”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 11.6, “Query Attributes”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”
Section 15.7.6.2, “SET CHARACTER SET Statement”
Section 15.7.6.3, “SET NAMES Statement”
Section 15.7.7.7, “SHOW CREATE EVENT Statement”
Section 15.7.7.9, “SHOW CREATE PROCEDURE Statement”
Section 15.7.7.11, “SHOW CREATE TRIGGER Statement”
Section 15.7.7.13, “SHOW CREATE VIEW Statement”
Section 15.7.7.18, “SHOW EVENTS Statement”
Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”
Section 15.7.7.40, “SHOW TRIGGERS Statement”
Section 7.4.4, “The Binary Log”
Section 28.3.14, “The INFORMATION_SCHEMA EVENTS Table”
Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”
Section 28.3.45, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”

6243

Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”

character_set_connection
Section 14.10, “Cast Functions and Operators”
Section 14.8.3, “Character Set and Collation of Function Results”
Section 12.3.8, “Character Set Introducers”
Section 12.2.1, “Character Set Repertoire”
Section 12.3.6, “Character String Literal Character Set and Collation”
Section 12.8.4, “Collation Coercibility in Expressions”
Section 12.4, “Connection Character Sets and Collations”
Section 14.7, “Date and Time Functions”
Section 14.13, “Encryption and Compression Functions”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 12.16, “MySQL Server Locale Support”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”
Section 15.7.6.2, “SET CHARACTER SET Statement”
Section 15.7.6.3, “SET NAMES Statement”
Section 11.1.1, “String Literals”
Section 14.3, “Type Conversion in Expression Evaluation”

character_set_database
Section 15.1.9, “ALTER TABLE Statement”
Section 3.5, “Changes in MySQL 8.0”
Section 12.4, “Connection Character Sets and Collations”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 12.3.3, “Database Character Set and Collation”
Section 15.2.9, “LOAD DATA Statement”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”
Section 15.7.6.2, “SET CHARACTER SET Statement”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

character_set_filesystem
Section 15.2.9, “LOAD DATA Statement”
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 7.1.8, “Server System Variables”
Section 14.8, “String Functions and Operators”

character_set_results
Section 12.4, “Connection Character Sets and Collations”
Section 12.6, “Error Message Character Set”
Section A.11, “MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”
Section 7.1.8, “Server System Variables”
Section 15.7.6.2, “SET CHARACTER SET Statement”
Section 15.7.6.3, “SET NAMES Statement”
Section 12.2.2, “UTF-8 for Metadata”

character_set_server
Section 3.5, “Changes in MySQL 8.0”
Section 12.15, “Character Set Configuration”
Section 12.4, “Connection Character Sets and Collations”
Section 12.3.3, “Database Character Set and Collation”
Section 14.9.4, “Full-Text Stopwords”
Section 7.4.4.3, “Mixed Binary Logging Format”

6244

Section 19.5.1.3, “Replication and Character Sets”
Section 19.5.1.39, “Replication and Variables”
Section 12.3.2, “Server Character Set and Collation”
Section 7.1.8, “Server System Variables”

character_set_system
Section 12.15, “Character Set Configuration”
Section 7.1.8, “Server System Variables”
Section 12.2.2, “UTF-8 for Metadata”

character_sets_dir
Section 12.14.3, “Adding a Simple Collation to an 8-Bit Character Set”
Section 12.14.4.1, “Defining a UCA Collation Using LDML Syntax”
Section 7.1.8, “Server System Variables”

check_proxy_users
Section 8.2.19, “Proxy Users”
Section 7.1.8, “Server System Variables”

clone_autotune_concurrency
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.10, “Monitoring Cloning Operations”

clone_block_ddl
Section 3.5, “Changes in MySQL 8.0”
Section 7.6.7.14, “Clone Plugin Limitations”
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.4, “Cloning and Concurrent DDL”
Section 7.6.7.9, “Remote Cloning Operation Failure Handling”
Section 1.3, “What Is New in MySQL 8.0”

clone_buffer_size
Section 7.6.7.13, “Clone System Variables”

clone_ddl_timeout
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.4, “Cloning and Concurrent DDL”
Section 7.6.7.9, “Remote Cloning Operation Failure Handling”

clone_delay_after_data_drop
Section 7.6.7.13, “Clone System Variables”
Section 1.3, “What Is New in MySQL 8.0”

clone_donor_timeout_after_network_failure
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.9, “Remote Cloning Operation Failure Handling”

clone_enable_compression
Section 7.6.7.13, “Clone System Variables”
Compression for Distributed Recovery
Section 20.9.1, “Group Replication System Variables”
Prerequisites for Cloning

clone_max_concurrency
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.10, “Monitoring Cloning Operations”

6245

clone_max_data_bandwidth
Section 7.6.7.13, “Clone System Variables”
Section 29.12.19.2, “The clone_progress Table”

clone_max_network_bandwidth
Section 7.6.7.13, “Clone System Variables”

clone_ssl_ca
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.3, “Cloning Remote Data”
Section 20.9.1, “Group Replication System Variables”
Prerequisites for Cloning
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”
SSL and Authentication for Distributed Recovery

clone_ssl_cert
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.3, “Cloning Remote Data”
Section 20.9.1, “Group Replication System Variables”
Prerequisites for Cloning
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”
SSL and Authentication for Distributed Recovery

clone_ssl_key
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.3, “Cloning Remote Data”
Section 20.9.1, “Group Replication System Variables”
Prerequisites for Cloning
SSL and Authentication for Distributed Recovery

clone_valid_donor_list
Section 7.6.7.13, “Clone System Variables”
Section 7.6.7.3, “Cloning Remote Data”
Prerequisites for Cloning

collation_connection
Section 14.10, “Cast Functions and Operators”
Section 14.8.3, “Character Set and Collation of Function Results”
Section 12.3.8, “Character Set Introducers”
Section 12.3.6, “Character String Literal Character Set and Collation”
Section 12.8.4, “Collation Coercibility in Expressions”
Section 12.4, “Connection Character Sets and Collations”
Section 14.7, “Date and Time Functions”
Section 14.13, “Encryption and Compression Functions”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 15.5.1, “PREPARE Statement”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”
Section 15.7.6.3, “SET NAMES Statement”
Section 15.7.7.7, “SHOW CREATE EVENT Statement”
Section 15.7.7.9, “SHOW CREATE PROCEDURE Statement”
Section 15.7.7.11, “SHOW CREATE TRIGGER Statement”
Section 15.7.7.13, “SHOW CREATE VIEW Statement”
Section 15.7.7.18, “SHOW EVENTS Statement”
Section 15.7.7.28, “SHOW PROCEDURE STATUS Statement”
Section 15.7.7.40, “SHOW TRIGGERS Statement”

6246

Section 7.4.4, “The Binary Log”
Section 28.3.14, “The INFORMATION_SCHEMA EVENTS Table”
Section 28.3.30, “The INFORMATION_SCHEMA ROUTINES Table”
Section 28.3.45, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”
Section 14.3, “Type Conversion in Expression Evaluation”
Section 1.3, “What Is New in MySQL 8.0”

collation_database
Section 3.5, “Changes in MySQL 8.0”
Section 12.4, “Connection Character Sets and Collations”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 12.3.3, “Database Character Set and Collation”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”
Section 7.4.4, “The Binary Log”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

collation_server
Section 3.5, “Changes in MySQL 8.0”
Section 12.4, “Connection Character Sets and Collations”
Section 12.3.3, “Database Character Set and Collation”
Section 14.9.4, “Full-Text Stopwords”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.39, “Replication and Variables”
Section 12.3.2, “Server Character Set and Collation”
Section 7.1.8, “Server System Variables”
Section 7.4.4, “The Binary Log”
Section 1.3, “What Is New in MySQL 8.0”

completion_type
Section 7.1.8, “Server System Variables”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”

component_scheduler
Section 8.4.5.5, “Configuring Audit Logging Characteristics”
Section 7.5.5, “Scheduler Component”
Section 7.1.8, “Server System Variables”

concurrent_insert
Section 10.11.3, “Concurrent Inserts”
Section 10.11.1, “Internal Locking Methods”
Section 10.6.1, “Optimizing MyISAM Queries”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

connect_timeout
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section B.3.2.3, “Lost connection to MySQL server”
Section 7.1.8, “Server System Variables”
Section 22.5.6.2, “X Plugin Options and System Variables”

connection_control_failed_connections_threshold
Section 8.4.2.1, “Connection Control Plugin Installation”

6247

Section 8.4.2.2, “Connection Control Plugin System and Status Variables”
Section 28.6.2, “The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table”

connection_control_max_connection_delay
Section 8.4.2.1, “Connection Control Plugin Installation”
Section 8.4.2.2, “Connection Control Plugin System and Status Variables”

connection_control_min_connection_delay
Section 8.4.2.1, “Connection Control Plugin Installation”
Section 8.4.2.2, “Connection Control Plugin System and Status Variables”

connection_memory_chunk_size
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

connection_memory_limit
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

core_file
Section 17.8.3.7, “Excluding Buffer Pool Pages from Core Files”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

create_admin_listener_thread
Section 7.1.12.2, “Administrative Connection Management”
Section 7.1.8, “Server System Variables”

cte_max_recursion_depth
Section 7.1.8, “Server System Variables”
Section 15.2.20, “WITH (Common Table Expressions)”

D

[index top]

daemon_memcached_enable_binlog
Section 17.14, “InnoDB Startup Options and System Variables”

daemon_memcached_engine_lib_name
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”

daemon_memcached_engine_lib_path
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”

daemon_memcached_option
Section 17.20.2, “InnoDB memcached Architecture”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.20.5, “Security Considerations for the InnoDB memcached Plugin”
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”

6248

Section 17.20.9, “Troubleshooting the InnoDB memcached Plugin”

daemon_memcached_r_batch_size
Section 17.20.2, “InnoDB memcached Architecture”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.20.6.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”
Section 17.20.6.3, “Tuning InnoDB memcached Plugin Performance”

daemon_memcached_w_batch_size
Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 17.20.2, “InnoDB memcached Architecture”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.20.6.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”
Section 17.20.6.3, “Tuning InnoDB memcached Plugin Performance”

datadir
Section 3.5, “Changes in MySQL 8.0”
Section 17.6.1.2, “Creating Tables Externally”
Section 17.6.3.3, “General Tablespaces”
Section 17.18.2, “InnoDB Recovery”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 2.4.3, “Installing and Using the MySQL Launch Daemon”
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 17.6.3.6, “Moving Tablespace Files While the Server is Offline”
MySQL Glossary
Section 17.6.5, “Redo Log”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”
Section 15.1.37, “TRUNCATE TABLE Statement”
Section 17.6.3.4, “Undo Tablespaces”
Section 1.3, “What Is New in MySQL 8.0”

debug
Section 7.1.8, “Server System Variables”
Section 7.9.4, “The DBUG Package”

debug_sync
Section 29.12.14.2, “Performance Schema variables_info Table”
Section 7.1.8, “Server System Variables”

default
Section 18.1, “Setting the Storage Engine”
Section 17.1.4, “Testing and Benchmarking with InnoDB”

default_authentication_plugin
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 3.5, “Changes in MySQL 8.0”
Section 2.4.2, “Installing MySQL on macOS Using Native Packages”
Section 8.2.17, “Pluggable Authentication”
Section 7.1.8, “Server System Variables”

6249

Section 8.4.1.3, “SHA-256 Pluggable Authentication”
Section 1.3, “What Is New in MySQL 8.0”

default_collation_for_utf
Section 7.1.8, “Server System Variables”

default_password_lifetime
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.2.3, “Grant Tables”
Section 8.2.15, “Password Management”
Section 7.1.8, “Server System Variables”

default_storage_engine
Section 15.1.16, “CREATE LOGFILE GROUP Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 15.1.33, “DROP TABLESPACE Statement”
Section 17.6.3.3, “General Tablespaces”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 26.2.2, “LIST Partitioning”
Section 26.1, “Overview of Partitioning in MySQL”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”
Section 18.1, “Setting the Storage Engine”
Section 19.4.4, “Using Replication with Different Source and Replica Storage Engines”

default_table_encryption
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.10, “ALTER TABLESPACE Statement”
Section 15.1.12, “CREATE DATABASE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 20.3.1, “Group Replication Requirements”
Section 20.9.1, “Group Replication System Variables”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 7.1.8, “Server System Variables”
Section 7.1.9.1, “System Variable Privileges”
Section 1.3, “What Is New in MySQL 8.0”

default_tmp_storage_engine
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 7.1.8, “Server System Variables”
Section 18.1, “Setting the Storage Engine”

default_week_format
Section 14.7, “Date and Time Functions”
Section 26.6.3, “Partitioning Limitations Relating to Functions”
Section 7.1.8, “Server System Variables”

delay_key_write
Section 15.1.20, “CREATE TABLE Statement”
Section 10.11.5, “External Locking”
Section A.14, “MySQL 8.0 FAQ: Replication”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

6250

Section B.3.3.3, “What to Do If MySQL Keeps Crashing”

delayed_insert_limit
Section 7.1.8, “Server System Variables”

delayed_insert_timeout
Section 7.1.8, “Server System Variables”

delayed_queue_size
Section 7.1.8, “Server System Variables”

disabled_storage_engines
Section 20.2.1.2, “Configuring an Instance for Group Replication”
Section 20.3.1, “Group Replication Requirements”
Section A.2, “MySQL 8.0 FAQ: Storage Engines”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

disconnect_on_expired_password
Section 8.2.16, “Server Handling of Expired Passwords”
Section 7.1.8, “Server System Variables”

div_precision_increment
Section 14.6.1, “Arithmetic Operators”
Section 7.1.8, “Server System Variables”

dragnet
Section 7.5.3, “Error Log Components”
Section 7.5, “MySQL Components”
Section 7.4.2.6, “Rule-Based Error Log Filtering (log_filter_dragnet)”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 7.4.2.4, “Types of Error Log Filtering”
Section 7.1.9, “Using System Variables”

E

[index top]

end_markers_in_json
Section 10.15.13, “Displaying Traces in Other Applications”
Section 15.8.2, “EXPLAIN Statement”
Section 7.1.8, “Server System Variables”
Section 10.15.2, “System Variables Controlling Tracing”
Section 10.15.9, “The end_markers_in_json System Variable”

enforce_gtid_consistency
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 20.3.1, “Group Replication Requirements”
Section 20.4.1, “GTIDs and Group Replication”
Section 19.5.1.31, “Replication and Temporary Tables”
Section 19.1.4.1, “Replication Mode Concepts”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”

6251

Section 19.1.3.4, “Setting Up Replication Using GTIDs”

enterprise_encryption
Section 8.6.2, “Configuring MySQL Enterprise Encryption”
Section 8.6.5, “MySQL Enterprise Encryption Component Function Descriptions”
Section 8.6.1, “MySQL Enterprise Encryption Installation and Upgrading”
Section 7.1.8, “Server System Variables”

eq_range_index_dive_limit
Section 10.2.1.2, “Range Optimization”
Section 7.1.8, “Server System Variables”

error_count
Section B.2, “Error Information Interfaces”
Section 15.5, “Prepared Statements”
Section 7.1.8, “Server System Variables”
Section 15.7.7.17, “SHOW ERRORS Statement”
Section 15.6.7.7, “The MySQL Diagnostics Area”

event
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”

event_scheduler
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 3.5, “Changes in MySQL 8.0”
Section 27.4.2, “Event Scheduler Configuration”
Section 7.1.8, “Server System Variables”
Setting Up Replication with Existing Data
Section 27.4.6, “The Event Scheduler and MySQL Privileges”

expire_logs_days
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 3.5, “Changes in MySQL 8.0”

explain_format
Section 15.8.2, “EXPLAIN Statement”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

explicit_defaults_for_timestamp
Section 13.2.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 3.5, “Changes in MySQL 8.0”
Section 15.1.20.8, “CREATE TABLE and Generated Columns”
Section 13.6, “Data Type Default Values”
Section 13.2.1, “Date and Time Data Type Syntax”
Section B.3.4.3, “Problems with NULL Values”
Section 7.1.8, “Server System Variables”

external_user
Section 8.4.5.4, “Audit Log File Formats”
Section 8.2.19, “Proxy Users”
Section 7.1.8, “Server System Variables”

F

[index top]

6252

flush
Section 7.1.8, “Server System Variables”

flush_time
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

foreign_key_checks
Section 15.1.9, “ALTER TABLE Statement”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 25.6.9, “Importing Data Into MySQL Cluster”
Section 17.6.1.3, “Importing InnoDB Tables”
Section 7.4.4.3, “Mixed Binary Logging Format”
NDB Cluster System Variables
Section 17.12.1, “Online DDL Operations”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”
Section 7.4.4, “The Binary Log”

ft_boolean_syntax
Section 14.9.2, “Boolean Full-Text Searches”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 7.1.8, “Server System Variables”

ft_max_word_len
Section 14.9.2, “Boolean Full-Text Searches”
Creating a Data Snapshot Using Raw Data Files
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.9.8, “ngram Full-Text Parser”
Section 7.1.8, “Server System Variables”

ft_min_word_len
Section 14.9.2, “Boolean Full-Text Searches”
Creating a Data Snapshot Using Raw Data Files
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.9.9, “MeCab Full-Text Parser Plugin”
Section 14.9.1, “Natural Language Full-Text Searches”
Section 14.9.8, “ngram Full-Text Parser”
Section 7.1.8, “Server System Variables”

ft_query_expansion_limit
Section 7.1.8, “Server System Variables”

ft_stopword_file
Section 14.9.2, “Boolean Full-Text Searches”
Creating a Data Snapshot Using Raw Data Files
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.9.4, “Full-Text Stopwords”
Section 14.9.1, “Natural Language Full-Text Searches”
Section 7.1.8, “Server System Variables”

G

[index top]

6253

general_log
MySQL Glossary
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 7.4.3, “The General Query Log”

general_log_file
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 7.4.3, “The General Query Log”
Section 1.3, “What Is New in MySQL 8.0”

generated_random_password_length
Section 8.2.15, “Password Management”
Section 7.1.8, “Server System Variables”

global_connection_memory_limit
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

global_connection_memory_tracking
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

group_concat_max_len
Section 14.19.1, “Aggregate Function Descriptions”
Section 7.1.8, “Server System Variables”

group_replication_advertise_recovery_endpoints
Section 20.5.4.1, “Connections for Distributed Recovery”
Section 20.9.1, “Group Replication System Variables”
Selecting addresses for distributed recovery endpoints
Section 20.5.5, “Support For IPv6 And For Mixed IPv6 And IPv4 Groups”

group_replication_allow_local_lower_version_join
Section 20.9.1, “Group Replication System Variables”
Section 20.8.1.1, “Member Versions During Upgrades”

group_replication_auto_increment_increment
Section 20.10, “Frequently Asked Questions”
Section 20.9.1, “Group Replication System Variables”
Section 19.1.6.2, “Replication Source Options and Variables”

group_replication_autorejoin_tries
Section 20.7.7.3, “Auto-Rejoin”
Section 3.5, “Changes in MySQL 8.0”
Section 20.7.7.4, “Exit Action”
Section 20.7.7.1, “Expel Timeout”
Section 20.10, “Frequently Asked Questions”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.7.2, “Unreachable Majority Timeout”

group_replication_bootstrap_group
Adding a Second Instance

6254

Section 20.2.1.5, “Bootstrapping the Group”
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 20.2.1.2, “Configuring an Instance for Group Replication”
Section 20.9.1, “Group Replication System Variables”
Section 20.1.3, “Multi-Primary and Single-Primary Modes”
Section 20.5.2, “Restarting a Group”

group_replication_clone_threshold
Section 20.5.4.2, “Cloning for Distributed Recovery”
Section 20.9.1, “Group Replication System Variables”
Section 20.5.4.5, “How Distributed Recovery Works”
Threshold for Cloning

group_replication_communication_debug_options
Section 20.9.1, “Group Replication System Variables”

group_replication_communication_max_message_size
Section 20.3.2, “Group Replication Limitations”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.5, “Message Fragmentation”

group_replication_communication_stack
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 20.6.4, “Group Replication IP Address Permissions”
Section 20.9.1, “Group Replication System Variables”
Section 8.2.2, “Privileges Provided by MySQL”
Replication User With SSL
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”
Section 20.6.3.1, “Secure User Credentials for Distributed Recovery”
Section 20.6.3, “Securing Distributed Recovery Connections”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”

group_replication_components_stop_timeout
Section 20.9.1, “Group Replication System Variables”
Section 15.4.3.2, “STOP GROUP_REPLICATION Statement”

group_replication_compression_threshold
Section 20.3.2, “Group Replication Limitations”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.4, “Message Compression”
Monitoring Binary Log Transaction Compression

group_replication_consistency
Section 20.5.3.2, “Configuring Transaction Consistency Guarantees”
Section 20.9.1, “Group Replication System Variables”
Section 20.1.3.2, “Multi-Primary Mode”
Section 8.2.2, “Privileges Provided by MySQL”
Section 20.1.3.1, “Single-Primary Mode”
Section 20.5.3.1, “Understanding Transaction Consistency Guarantees”

group_replication_enforce_update_everywhere_checks
Section 20.5.1.2, “Changing the Group Mode”
Section 14.18.1.2, “Functions which Configure the Group Replication Mode”
Section 20.3.2, “Group Replication Limitations”
Section 20.9.1, “Group Replication System Variables”
Section 20.1.3.1, “Single-Primary Mode”

6255

Transaction Checks

group_replication_exit_state_action
Section 20.7.7.3, “Auto-Rejoin”
Section 3.5, “Changes in MySQL 8.0”
Section 20.5.1.5, “Configuring Member Actions”
Section 20.7.7.4, “Exit Action”
Section 20.7.7.1, “Expel Timeout”
Section 20.5.4.4, “Fault Tolerance for Distributed Recovery”
Section 20.4.2, “Group Replication Server States”
Section 20.9.1, “Group Replication System Variables”
Section 29.12.11.14, “The replication_group_member_actions Table”
Section 20.7.7.2, “Unreachable Majority Timeout”

group_replication_flow_control_applier_threshold
Section 20.9.1, “Group Replication System Variables”

group_replication_flow_control_certifier_threshold
Section 20.9.1, “Group Replication System Variables”

group_replication_flow_control_hold_percent
Section 20.9.1, “Group Replication System Variables”

group_replication_flow_control_max_quota
Section 20.9.1, “Group Replication System Variables”

group_replication_flow_control_member_quota_percent
Section 20.9.1, “Group Replication System Variables”

group_replication_flow_control_min_quota
Section 20.9.1, “Group Replication System Variables”

group_replication_flow_control_min_recovery_quota
Section 20.9.1, “Group Replication System Variables”

group_replication_flow_control_mode
Section 20.9.1, “Group Replication System Variables”

group_replication_flow_control_period
Section 20.9.1, “Group Replication System Variables”
Section 20.4.4, “The replication_group_member_stats Table”

group_replication_flow_control_release_percent
Section 20.9.1, “Group Replication System Variables”

group_replication_force_members
Section 20.9.1, “Group Replication System Variables”
Section 20.7.8, “Handling a Network Partition and Loss of Quorum”

group_replication_group_name
Section 19.4.9.1, “Asynchronous Connection Failover for Sources”
Section 14.18.3, “Asynchronous Replication Channel Failover Functions”
Section 20.2.1.2, “Configuring an Instance for Group Replication”
Section 20.9.1, “Group Replication System Variables”

6256

Section 20.4.1, “GTIDs and Group Replication”
Section 29.12.11.8, “The replication_asynchronous_connection_failover Table”
Section 29.12.11.9, “The replication_asynchronous_connection_failover_managed Table”

group_replication_group_seeds
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 20.2.1.2, “Configuring an Instance for Group Replication”
Section 20.5.4.1, “Connections for Distributed Recovery”
Section 20.2.2, “Deploying Group Replication Locally”
Section 20.6.4, “Group Replication IP Address Permissions”
Section 20.9.1, “Group Replication System Variables”
Section 20.5.5, “Support For IPv6 And For Mixed IPv6 And IPv4 Groups”

group_replication_gtid_assignment_block_size
Section 20.9.1, “Group Replication System Variables”
Section 20.4.1, “GTIDs and Group Replication”

group_replication_ip_allowlist
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 20.6.4, “Group Replication IP Address Permissions”
Section 20.9.1, “Group Replication System Variables”
Selecting addresses for distributed recovery endpoints
Section 20.5.5, “Support For IPv6 And For Mixed IPv6 And IPv4 Groups”

group_replication_ip_whitelist
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 20.6.4, “Group Replication IP Address Permissions”
Section 20.9.1, “Group Replication System Variables”
Selecting addresses for distributed recovery endpoints
Section 20.5.5, “Support For IPv6 And For Mixed IPv6 And IPv4 Groups”

group_replication_local_address
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 20.2.1.2, “Configuring an Instance for Group Replication”
Section 20.5.4.1, “Connections for Distributed Recovery”
Section 20.2.2, “Deploying Group Replication Locally”
Section 20.10, “Frequently Asked Questions”
Section 20.6.4, “Group Replication IP Address Permissions”
Section 20.9.1, “Group Replication System Variables”
Selecting addresses for distributed recovery endpoints
Section 8.7.5.2, “Setting the TCP Port Context for MySQL Features”
Section 20.5.5, “Support For IPv6 And For Mixed IPv6 And IPv4 Groups”
Section 29.12.11.16, “The replication_group_members Table”

group_replication_member_expel_timeout
Section 3.5, “Changes in MySQL 8.0”
Section 20.7.7.4, “Exit Action”
Section 20.7.7.1, “Expel Timeout”
Section 20.1.4.2, “Failure Detection”
Section 20.10, “Frequently Asked Questions”
Section 20.1.4.1, “Group Membership”
Section 20.3.2, “Group Replication Limitations”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.6.1, “Increasing the cache size”
Section 20.7.5, “Message Fragmentation”
Section 20.7.7, “Responses to Failure Detection and Network Partitioning”
Section 20.7.6, “XCom Cache Management”

6257

group_replication_member_weight
Section 20.9.1, “Group Replication System Variables”
Primary Election Algorithm

group_replication_message_cache_size
Section 20.7.7.1, “Expel Timeout”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.6.1, “Increasing the cache size”
Section 20.7.6.2, “Reducing the cache size”
Section 20.7.6, “XCom Cache Management”

group_replication_paxos_single_leader
Section 14.18.1.4, “Functions to Inspect and Set the Group Replication Communication Protocol
Version”
Section 20.9.1, “Group Replication System Variables”
Section 20.5.1.4, “Setting a Group's Communication Protocol Version”
Section 20.7.3, “Single Consensus Leader”
Section 29.12.11.12, “The replication_group_communication_information Table”

group_replication_poll_spin_loops
Section 20.7.1, “Fine Tuning the Group Communication Thread”
Section 20.9.1, “Group Replication System Variables”

group_replication_recovery_complete_at
Section 20.5.4.3, “Configuring Distributed Recovery”
Section 20.9.1, “Group Replication System Variables”

group_replication_recovery_compression_algorithms
Compression for Distributed Recovery
Section 6.2.8, “Connection Compression Control”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.4, “Message Compression”
Monitoring Binary Log Transaction Compression

group_replication_recovery_get_public_key
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 20.9.1, “Group Replication System Variables”
Replication User With The Caching SHA-2 Authentication Plugin
Section 8.4.1.3, “SHA-256 Pluggable Authentication”
SSL and Authentication for Distributed Recovery

group_replication_recovery_public_key_path
Section 8.4.1.2, “Caching SHA-2 Pluggable Authentication”
Section 20.9.1, “Group Replication System Variables”
Replication User With The Caching SHA-2 Authentication Plugin
SSL and Authentication for Distributed Recovery

group_replication_recovery_reconnect_interval
Section 20.5.4.3, “Configuring Distributed Recovery”
Section 20.9.1, “Group Replication System Variables”

group_replication_recovery_retry_count
Section 20.5.4.3, “Configuring Distributed Recovery”
Section 20.5.4.4, “Fault Tolerance for Distributed Recovery”
Section 20.9.1, “Group Replication System Variables”

6258

group_replication_recovery_ssl_ca
Section 20.9.1, “Group Replication System Variables”
Prerequisites for Cloning
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”
SSL and Authentication for Distributed Recovery

group_replication_recovery_ssl_capath
Section 20.9.1, “Group Replication System Variables”
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”

group_replication_recovery_ssl_cert
Section 20.9.1, “Group Replication System Variables”
Prerequisites for Cloning
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”
SSL and Authentication for Distributed Recovery

group_replication_recovery_ssl_cipher
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 20.9.1, “Group Replication System Variables”
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”

group_replication_recovery_ssl_crl
Section 20.9.1, “Group Replication System Variables”
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”

group_replication_recovery_ssl_crlpath
Section 20.9.1, “Group Replication System Variables”
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”

group_replication_recovery_ssl_key
Section 20.9.1, “Group Replication System Variables”
Prerequisites for Cloning
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”
SSL and Authentication for Distributed Recovery

group_replication_recovery_ssl_verify_server_cert
Section 20.9.1, “Group Replication System Variables”
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”

group_replication_recovery_tls_ciphersuites
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 20.3.2, “Group Replication Limitations”
Section 20.9.1, “Group Replication System Variables”
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”

group_replication_recovery_tls_version
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 20.3.2, “Group Replication Limitations”
Section 20.9.1, “Group Replication System Variables”
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”

group_replication_recovery_use_ssl
Section 20.6.1, “Communication Stack for Connection Security Management”

6259

Section 20.9.1, “Group Replication System Variables”
Prerequisites for Cloning
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”
SSL and Authentication for Distributed Recovery

group_replication_recovery_zstd_compression_level
Compression for Distributed Recovery
Section 6.2.8, “Connection Compression Control”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.4, “Message Compression”
Monitoring Binary Log Transaction Compression

group_replication_single_primary_mode
Section 20.3.2, “Group Replication Limitations”
Section 20.9.1, “Group Replication System Variables”
Section 20.1.3, “Multi-Primary and Single-Primary Modes”
Section 20.1.3.2, “Multi-Primary Mode”
Section 20.1.3.1, “Single-Primary Mode”

group_replication_ssl_mode
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 20.9.1, “Group Replication System Variables”
Replication User With SSL
Section 20.6.3.2, “Secure Socket Layer (SSL) Connections for Distributed Recovery”
Section 20.6.3.1, “Secure User Credentials for Distributed Recovery”
Section 20.6.3, “Securing Distributed Recovery Connections”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
SSL and Authentication for Distributed Recovery

group_replication_start_on_boot
Cloning Operations
Section 20.2.1.2, “Configuring an Instance for Group Replication”
Section 20.7.7.4, “Exit Action”
Section 20.7.7.1, “Expel Timeout”
Section 20.10, “Frequently Asked Questions”
Section 20.9.1, “Group Replication System Variables”
Prerequisites for Cloning
Providing Replication User Credentials Securely
Section 20.5.2, “Restarting a Group”
Section 15.4.3.1, “START GROUP_REPLICATION Statement”
Section 20.8.3.2, “Upgrading a Group Replication Member”
Section 20.2.1.3, “User Credentials For Distributed Recovery”

group_replication_tls_source
Section 20.9.1, “Group Replication System Variables”

group_replication_transaction_size_limit
Section 20.3.2, “Group Replication Limitations”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.5, “Message Fragmentation”

group_replication_unreachable_majority_timeout
Section 3.5, “Changes in MySQL 8.0”
Section 20.7.7.4, “Exit Action”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.8, “Handling a Network Partition and Loss of Quorum”

6260

Section 20.7.7.2, “Unreachable Majority Timeout”

group_replication_view_change_uuid
Section 20.9.1, “Group Replication System Variables”
Section 20.4.1, “GTIDs and Group Replication”

gtid_executed
Section 7.6.7.7, “Cloning for Replication”
Section 3.15, “Copying MySQL Databases to Another Machine”
Creating a Data Snapshot Using mysqldump
Section 9.4.1, “Dumping Data in SQL Format with mysqldump”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.3.3, “GTID Auto-Positioning”
Section 19.1.3.1, “GTID Format and Storage”
Section 19.1.3.2, “GTID Life Cycle”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 29.12.11, “Performance Schema Replication Tables”
Section 19.1.5.2, “Provisioning a Multi-Source Replica for GTID-Based Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.5.4, “Replication Channel Based Filters”
Section 19.1.3.6, “Replication From a Source Without GTIDs to a Replica With GTIDs”
Section 19.1.4.1, “Replication Mode Concepts”
Section 15.4.1.2, “RESET MASTER Statement”
Section 20.5.2, “Restarting a Group”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 7.1.8, “Server System Variables”
Section 15.7.7.23, “SHOW MASTER STATUS Statement”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 19.1.3.8, “Stored Function Examples to Manipulate GTIDs”
Section 29.12.21.5, “The log_status Table”
Threshold for Cloning
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”

gtid_executed_compression_period
Section 3.5, “Changes in MySQL 8.0”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.3.1, “GTID Format and Storage”

GTID_MODE
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.1.3.3, “GTID Auto-Positioning”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”

gtid_mode
Section 19.1.5.3, “Adding GTID-Based Sources to a Multi-Source Replica”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 7.6.7.7, “Cloning for Replication”
Section 3.15, “Copying MySQL Databases to Another Machine”
Creating a Data Snapshot Using mysqldump
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 9.4.1, “Dumping Data in SQL Format with mysqldump”
Section 19.1.4.2, “Enabling GTID Transactions Online”

6261

Section 14.18.2, “Functions Used with Global Transaction Identifiers (GTIDs)”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 20.3.1, “Group Replication Requirements”
Section 19.1.3.1, “GTID Format and Storage”
Section 20.4.1, “GTIDs and Group Replication”
Section 19.4.2, “Handling an Unexpected Halt of a Replica”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.3.6, “Replication From a Source Without GTIDs to a Replica With GTIDs”
Section 19.1.4.1, “Replication Mode Concepts”
Section 15.4.1.2, “RESET MASTER Statement”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 19.1.7.3, “Skipping Transactions”
Skipping Transactions With GTIDs
Skipping Transactions With SET GLOBAL sql_slave_skip_counter
Skipping Transactions Without GTIDs
Section 19.4.9, “Switching Sources and Replicas with Asynchronous Connection Failover”
Section 29.12.7.1, “The events_transactions_current Table”
Section 19.5.3, “Upgrading a Replication Topology”
Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”

gtid_next
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.3.1, “GTID Format and Storage”
Section 19.1.3.2, “GTID Life Cycle”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 19.1.4.1, “Replication Mode Concepts”
Section 7.1.10, “Server Status Variables”
Section 15.4.2.8, “STOP REPLICA Statement”
Section 29.12.7.1, “The events_transactions_current Table”

gtid_owned
Section 19.1.4.3, “Disabling GTID Transactions Online”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.3.2, “GTID Life Cycle”

gtid_purged
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Creating a Data Snapshot Using mysqldump
Section 9.4.1, “Dumping Data in SQL Format with mysqldump”
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 20.3.1, “Group Replication Requirements”
Section 19.1.3.3, “GTID Auto-Positioning”
Section 19.1.3.1, “GTID Format and Storage”
Section 19.1.3.2, “GTID Life Cycle”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 19.1.5.2, “Provisioning a Multi-Source Replica for GTID-Based Replication”
Section 19.1.4.1, “Replication Mode Concepts”
Section 15.4.1.2, “RESET MASTER Statement”
Section 19.1.3.8, “Stored Function Examples to Manipulate GTIDs”
Threshold for Cloning
Section 19.1.3.5, “Using GTIDs for Failover and Scaleout”

6262

H

[index top]

have_compress
Section 7.1.8, “Server System Variables”

have_dynamic_loading
Section 19.4.10.1, “Installing Semisynchronous Replication”
Section 7.1.8, “Server System Variables”

have_geometry
Section 7.1.8, “Server System Variables”

have_openssl
Section 7.1.8, “Server System Variables”

have_profiling
Section 7.1.8, “Server System Variables”

have_query_cache
Section 7.1.8, “Server System Variables”

have_rtree_keys
Section 7.1.8, “Server System Variables”

have_ssl
Section 2.8.6, “Configuring SSL Library Support”
Section 7.1.8, “Server System Variables”

have_statement_timeout
Section 7.1.8, “Server System Variables”

have_symlink
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 10.12.2.3, “Using Symbolic Links for Databases on Windows”
Section 10.12.2.2, “Using Symbolic Links for MyISAM Tables on Unix”

histogram_generation_max_mem_size
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 7.1.8, “Server System Variables”

host_cache_size
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 29.12.21.3, “The host_cache Table”
Section 1.3, “What Is New in MySQL 8.0”

hostname
Section 15.7.5, “CLONE Statement”
Section 7.6.7.3, “Cloning Remote Data”
Section 20.2.1.2, “Configuring an Instance for Group Replication”
Section 20.5.4.1, “Connections for Distributed Recovery”

6263

Section 20.10, “Frequently Asked Questions”
Section 20.9.1, “Group Replication System Variables”
Section 20.6.3, “Securing Distributed Recovery Connections”
Section 7.1.8, “Server System Variables”
Section 29.12.11.16, “The replication_group_members Table”

I

[index top]

identity
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”

immediate_server_version
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 19.5.2, “Replication Compatibility Between MySQL Versions”
Section 19.1.6.2, “Replication Source Options and Variables”

information_schema_stats_expiry
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 16.7, “Data Dictionary Usage Differences”
Section 16.5, “INFORMATION_SCHEMA and Data Dictionary Integration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 7.1.8, “Server System Variables”
Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”
Section 1.3, “What Is New in MySQL 8.0”

init_connect
Section 12.5, “Configuring Application Character Set and Collation”
Section 8.2.2, “Privileges Provided by MySQL”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.1.8, “Server System Variables”
Section 29.12.21.3, “The host_cache Table”

init_file
Section 15.1.2, “ALTER DATABASE Statement”
Section 2.9.1, “Initializing the Data Directory”
Section 10.10.2.2, “Multiple Key Caches”
Section 29.4, “Performance Schema Runtime Configuration”
Section 29.12.14.2, “Performance Schema variables_info Table”
Section 19.5.1.21, “Replication and MEMORY Tables”
Resetting the Root Password: Unix and Unix-Like Systems
Resetting the Root Password: Windows Systems
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 18.3, “The MEMORY Storage Engine”

init_replica
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 19.1.6.3, “Replica Server Options and Variables”

init_slave
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”

6264

Section 19.1.6.3, “Replica Server Options and Variables”

innodb
Section 3.5, “Changes in MySQL 8.0”
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 17.8.3.7, “Excluding Buffer Pool Pages from Core Files”
Section A.16, “MySQL 8.0 FAQ: InnoDB Change Buffer”

innodb_adaptive_flushing
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_adaptive_flushing_lwm
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_adaptive_hash_index
Section 17.5.3, “Adaptive Hash Index”
Section 17.8.4, “Configuring Thread Concurrency for InnoDB”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 10.5.9, “Optimizing InnoDB Configuration Variables”
Section 15.1.37, “TRUNCATE TABLE Statement”

innodb_adaptive_hash_index_parts
Section 17.5.3, “Adaptive Hash Index”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”

innodb_adaptive_max_sleep_delay
Section 17.8.4, “Configuring Thread Concurrency for InnoDB”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_api_bk_commit_interval
Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 17.20.2, “InnoDB memcached Architecture”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_api_disable_rowlock
Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_api_enable_binlog
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”

innodb_api_enable_mdl
Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 17.20.2, “InnoDB memcached Architecture”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_api_trx_level
Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 17.20.2, “InnoDB memcached Architecture”
Section 17.14, “InnoDB Startup Options and System Variables”

6265

innodb_autoextend_increment
Section 17.6.3.2, “File-Per-Table Tablespaces”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.6.3.1, “The System Tablespace”

innodb_autoinc_lock_mode
Section 17.6.1.6, “AUTO_INCREMENT Handling in InnoDB”
Section 10.5.5, “Bulk Data Loading for InnoDB Tables”
Section 3.5, “Changes in MySQL 8.0”
Section 14.15, “Information Functions”
Section 17.7.1, “InnoDB Locking”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
MySQL Glossary
Section 1.3, “What Is New in MySQL 8.0”

innodb_background_drop_list_empty
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_buffer_pool_chunk_size
Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 10.12.3.3, “Enabling Large Page Support”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_buffer_pool_debug
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_buffer_pool_dump_at_shutdown
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”

innodb_buffer_pool_dump_now
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”

innodb_buffer_pool_dump_pct
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”

innodb_buffer_pool_filename
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”

innodb_buffer_pool_in_core_file
Section 17.8.3.7, “Excluding Buffer Pool Pages from Core Files”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 7.1.7, “Server Command Options”

innodb_buffer_pool_instances
Section 17.8.3.5, “Configuring Buffer Pool Flushing”

6266

Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 17.8.3.2, “Configuring Multiple Buffer Pool Instances”
Section 17.6.4, “Doublewrite Buffer”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.20.6.3, “Tuning InnoDB memcached Plugin Performance”

innodb_buffer_pool_load_abort
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.10, “Server Status Variables”

innodb_buffer_pool_load_at_startup
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”
Section 7.1.10, “Server Status Variables”

innodb_buffer_pool_load_now
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”
Section 7.1.10, “Server Status Variables”

innodb_buffer_pool_size
Section 3.5, “Changes in MySQL 8.0”
Section 17.9.1.6, “Compression for OLTP Workloads”
Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 17.8.3.2, “Configuring Multiple Buffer Pool Instances”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server”
Section 10.12.3.3, “Enabling Large Page Support”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 7.1.10, “Server Status Variables”
Section 17.20.6.3, “Tuning InnoDB memcached Plugin Performance”
Section 1.3, “What Is New in MySQL 8.0”

innodb_change_buffer_max_size
Section 17.5.2, “Change Buffer”
Section 17.14, “InnoDB Startup Options and System Variables”
Section A.16, “MySQL 8.0 FAQ: InnoDB Change Buffer”
MySQL Glossary

innodb_change_buffering
Section 17.5.2, “Change Buffer”
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 10.5.2, “Optimizing InnoDB Transaction Management”

innodb_change_buffering_debug
Section 17.14, “InnoDB Startup Options and System Variables”

6267

innodb_checkpoint_disabled
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_checksum_algorithm
Section 17.1.1, “Benefits of Using InnoDB Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 10.5.8, “Optimizing InnoDB Disk I/O”

innodb_cmp_per_index_enabled
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.9.1.4, “Monitoring InnoDB Table Compression at Runtime”
Section 28.4.8, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables”
Section 17.9.1.3, “Tuning Compression for InnoDB Tables”

innodb_commit_concurrency
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_compress_debug
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_compression_failure_threshold_pct
Section 17.9.1.6, “Compression for OLTP Workloads”
Section 17.9.1.5, “How Compression Works for InnoDB Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.9.1.3, “Tuning Compression for InnoDB Tables”

innodb_compression_level
Section 17.9.1.6, “Compression for OLTP Workloads”
Section 17.9.1.5, “How Compression Works for InnoDB Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.9.1.3, “Tuning Compression for InnoDB Tables”

innodb_compression_pad_pct_max
Section 17.9.1.6, “Compression for OLTP Workloads”
Section 17.9.1.5, “How Compression Works for InnoDB Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.9.1.3, “Tuning Compression for InnoDB Tables”

innodb_concurrency_tickets
Section 17.8.4, “Configuring Thread Concurrency for InnoDB”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.9, “Optimizing InnoDB Configuration Variables”
Section 28.4.28, “The INFORMATION_SCHEMA INNODB_TRX Table”

innodb_data_file_path
Section 7.6.7.3, “Cloning Remote Data”
Section 17.11.2, “File Space Management”
Section 2.9.1, “Initializing the Data Directory”
Section 6.6.2, “innochecksum — Offline InnoDB File Checksum Utility”
Section 17.8.1, “InnoDB Startup Configuration”

6268

Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”
Section 17.6.3.1, “The System Tablespace”
Section 17.21.1, “Troubleshooting InnoDB I/O Problems”

innodb_data_home_dir
Section 3.5, “Changes in MySQL 8.0”
Section 7.6.7.3, “Cloning Remote Data”
Section 17.6.1.2, “Creating Tables Externally”
Section 17.6.4, “Doublewrite Buffer”
Section 17.6.3.3, “General Tablespaces”
Section 2.9.1, “Initializing the Data Directory”
Section 17.18.2, “InnoDB Recovery”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.3.6, “Moving Tablespace Files While the Server is Offline”
Section 17.6.5, “Redo Log”
Section 17.6.3.5, “Temporary Tablespaces”
Section 17.21.1, “Troubleshooting InnoDB I/O Problems”
Section 15.1.37, “TRUNCATE TABLE Statement”
Section 17.6.3.4, “Undo Tablespaces”
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”
Section 1.3, “What Is New in MySQL 8.0”

innodb_ddl_buffer_size
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.12.4, “Online DDL Memory Management”

innodb_ddl_log_crash_reset_debug
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_ddl_threads
Section 17.12.5, “Configuring Parallel Threads for Online DDL Operations”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.12.4, “Online DDL Memory Management”

innodb_deadlock_detect
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 17.7.5.2, “Deadlock Detection”
Section 17.7.5, “Deadlocks in InnoDB”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.11.1, “Internal Locking Methods”
MySQL Glossary
Section 1.3, “What Is New in MySQL 8.0”

innodb_default_row_format
Section 15.1.20, “CREATE TABLE Statement”
Section 17.6.1.1, “Creating InnoDB Tables”
Section 17.6.1.3, “Importing InnoDB Tables”
Section 17.10, “InnoDB Row Formats”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 10.4.1, “Optimizing Data Size”

innodb_directories
Section 3.5, “Changes in MySQL 8.0”

6269

Section 15.1.21, “CREATE TABLESPACE Statement”
Section 17.6.1.2, “Creating Tables Externally”
Section 17.6.3.7, “Disabling Tablespace Path Validation”
Section 17.6.3.3, “General Tablespaces”
Section 17.18.2, “InnoDB Recovery”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.3.6, “Moving Tablespace Files While the Server is Offline”
Section 17.6.5, “Redo Log”
Section 15.1.37, “TRUNCATE TABLE Statement”
Section 17.6.3.4, “Undo Tablespaces”
Section 1.3, “What Is New in MySQL 8.0”

innodb_disable_sort_file_cache
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_doublewrite
Section 17.6.4, “Doublewrite Buffer”
Section 17.11.1, “InnoDB Disk I/O”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.20.6.3, “Tuning InnoDB memcached Plugin Performance”
Section 1.3, “What Is New in MySQL 8.0”

innodb_doublewrite_batch_size
Section 17.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 8.0”

innodb_doublewrite_dir
Section 17.6.4, “Doublewrite Buffer”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 8.0”

innodb_doublewrite_files
Section 17.6.4, “Doublewrite Buffer”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 8.0”

innodb_doublewrite_pages
Section 17.6.4, “Doublewrite Buffer”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 1.3, “What Is New in MySQL 8.0”

innodb_extend_and_initialize
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.3.8, “Optimizing Tablespace Space Allocation on Linux”
Section 1.3, “What Is New in MySQL 8.0”

innodb_fast_shutdown
Section 17.18.2, “InnoDB Recovery”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 3.6, “Preparing Your Installation for Upgrade”
Section 7.1.19, “The Server Shutdown Process”
Section 3.13, “Upgrade Troubleshooting”

6270

Section 3.7, “Upgrading MySQL Binary or Package-based Installations on Unix/Linux”

innodb_fil_make_page_dirty_debug
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_file_per
Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_file_per_table
Section 17.1.2, “Best Practices for InnoDB Tables”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 15.1.20.3, “CREATE TABLE ... LIKE Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 17.9.1.2, “Creating Compressed Tables”
Section 17.6.1.1, “Creating InnoDB Tables”
Section 17.6.1.2, “Creating Tables Externally”
Section 17.11.2, “File Space Management”
Section 17.6.3.2, “File-Per-Table Tablespaces”
Section 15.1.20.1, “Files Created by CREATE TABLE”
Section 15.7.8.3, “FLUSH Statement”
Section 17.9.1.5, “How Compression Works for InnoDB Tables”
Section 17.6.1.3, “Importing InnoDB Tables”
Section 17.2, “InnoDB and the ACID Model”
Section 17.10, “InnoDB Row Formats”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 15.7.3.4, “OPTIMIZE TABLE Statement”
Section 17.11.5, “Reclaiming Disk Space with TRUNCATE TABLE”
Section 19.4.6, “Replicating Different Databases to Different Replicas”
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 17.9.1.7, “SQL Compression Syntax Warnings and Errors”
Section 17.21.4, “Troubleshooting InnoDB Data Dictionary Operations”

innodb_fill_factor
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.2.3, “Sorted Index Builds”
Section 17.6.2.2, “The Physical Structure of an InnoDB Index”

innodb_flush_log_at_timeout
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.5.4, “Log Buffer”

innodb_flush_log_at_trx_commit
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.4.2, “Handling an Unexpected Halt of a Replica”
Section 17.2, “InnoDB and the ACID Model”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.5.4, “Log Buffer”
Section 10.5.2, “Optimizing InnoDB Transaction Management”
Section 19.5.1.28, “Replication and Source or Replica Shutdowns”
Section 17.20.6.3, “Tuning InnoDB memcached Plugin Performance”

innodb_flush_method
Section 3.5, “Changes in MySQL 8.0”

6271

Section 17.6.4, “Doublewrite Buffer”
Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server”
Section 17.6.3.2, “File-Per-Table Tablespaces”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 7.1.10, “Server Status Variables”
Section 17.20.6.3, “Tuning InnoDB memcached Plugin Performance”
Section 1.3, “What Is New in MySQL 8.0”

innodb_flush_neighbors
Section 3.5, “Changes in MySQL 8.0”
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 10.5.8, “Optimizing InnoDB Disk I/O”

innodb_flush_sync
Section 17.8.7, “Configuring InnoDB I/O Capacity”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_flushing_avg_loops
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_force_load_corrupted
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_force_recovery
Section 15.1.32, “DROP TABLE Statement”
Section 17.21.3, “Forcing InnoDB Recovery”
Section 1.5, “How to Report Bugs or Problems”
Section 17.18.2, “InnoDB Recovery”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.2, “Optimizing InnoDB Transaction Management”
Section 3.14, “Rebuilding or Repairing Tables or Indexes”
Section 17.21.2, “Troubleshooting Recovery Failures”

innodb_fsync_threshold
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.8, “Optimizing InnoDB Disk I/O”

innodb_ft_aux_table
Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.4.14, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 28.4.15, “The INFORMATION_SCHEMA INNODB_FT_CONFIG Table”
Section 28.4.17, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 28.4.18, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 28.4.19, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”

innodb_ft_cache_size
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 28.4.18, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”

6272

innodb_ft_enable_diag_print
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_ft_enable_stopword
Section 14.9.2, “Boolean Full-Text Searches”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 14.9.1, “Natural Language Full-Text Searches”

innodb_ft_max_token_size
Section 14.9.2, “Boolean Full-Text Searches”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.9.4, “Full-Text Stopwords”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 14.9.8, “ngram Full-Text Parser”

innodb_ft_min_token_size
Section 14.9.2, “Boolean Full-Text Searches”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.9.4, “Full-Text Stopwords”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 14.9.9, “MeCab Full-Text Parser Plugin”
Section 14.9.1, “Natural Language Full-Text Searches”
Section 14.9.8, “ngram Full-Text Parser”

innodb_ft_num_word_optimize
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.7.3.4, “OPTIMIZE TABLE Statement”

innodb_ft_result_cache_limit
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_ft_server_stopword_table
Section 14.9.2, “Boolean Full-Text Searches”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.9.4, “Full-Text Stopwords”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 14.9.1, “Natural Language Full-Text Searches”
Section 28.4.16, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”

innodb_ft_sort_pll_degree
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_ft_total_cache_size
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.4.18, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”

innodb_ft_user_stopword_table
Section 14.9.2, “Boolean Full-Text Searches”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.9.4, “Full-Text Stopwords”

6273

Section 17.14, “InnoDB Startup Options and System Variables”
Section 14.9.1, “Natural Language Full-Text Searches”
Section 28.4.16, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”

innodb_idle_flush_pct
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 1.3, “What Is New in MySQL 8.0”

innodb_io_capacity
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.8.7, “Configuring InnoDB I/O Capacity”
Section 17.14, “InnoDB Startup Options and System Variables”
Section A.16, “MySQL 8.0 FAQ: InnoDB Change Buffer”
Section 10.5.8, “Optimizing InnoDB Disk I/O”

innodb_io_capacity_max
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.8.7, “Configuring InnoDB I/O Capacity”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.8, “Optimizing InnoDB Disk I/O”

innodb_limit_optimistic_insert_debug
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_lock_wait_timeout
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 17.7.5.2, “Deadlock Detection”
Section 17.7.5, “Deadlocks in InnoDB”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.11.1, “Internal Locking Methods”
MySQL Glossary
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.32, “Replication Retries and Timeouts”
Section 1.3, “What Is New in MySQL 8.0”

innodb_log_buffer_size
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.5.4, “Log Buffer”
MySQL Glossary
Section 10.5.4, “Optimizing InnoDB Redo Logging”
Section 1.3, “What Is New in MySQL 8.0”

innodb_log_checkpoint_fuzzy_now
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_log_checkpoint_now
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_log_checksums
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_log_compressed_pages
Section 17.9.1.6, “Compression for OLTP Workloads”

6274

Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.8, “Optimizing InnoDB Disk I/O”

innodb_log_file_size
Section 3.5, “Changes in MySQL 8.0”
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server”
Section 2.9.1, “Initializing the Data Directory”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 10.5.4, “Optimizing InnoDB Redo Logging”
Section 17.6.5, “Redo Log”
Section 1.3, “What Is New in MySQL 8.0”

innodb_log_files_in_group
Section 3.5, “Changes in MySQL 8.0”
Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.4, “Optimizing InnoDB Redo Logging”
Section 17.6.5, “Redo Log”
Section 1.3, “What Is New in MySQL 8.0”

innodb_log_group_home_dir
Section 7.6.7.3, “Cloning Remote Data”
Section 2.9.1, “Initializing the Data Directory”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.5, “Redo Log”
Section 17.6.3.4, “Undo Tablespaces”
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”

innodb_log_spin_cpu_abs_lwm
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.4, “Optimizing InnoDB Redo Logging”
Section 1.3, “What Is New in MySQL 8.0”

innodb_log_spin_cpu_pct_hwm
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.4, “Optimizing InnoDB Redo Logging”
Section 1.3, “What Is New in MySQL 8.0”

innodb_log_wait_for_flush_spin_hwm
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.4, “Optimizing InnoDB Redo Logging”
Section 1.3, “What Is New in MySQL 8.0”

innodb_log_write_ahead_size
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.4, “Optimizing InnoDB Redo Logging”

innodb_log_writer_threads
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.4, “Optimizing InnoDB Redo Logging”

6275

innodb_lru_scan_depth
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_max_dirty_pages_pct
Section 3.5, “Changes in MySQL 8.0”
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 1.3, “What Is New in MySQL 8.0”

innodb_max_dirty_pages_pct_lwm
Section 3.5, “Changes in MySQL 8.0”
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 8.0”

innodb_max_purge_lag
Section 17.3, “InnoDB Multi-Versioning”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.8.9, “Purge Configuration”

innodb_max_purge_lag_delay
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.8.9, “Purge Configuration”

innodb_max_undo_log_size
Section 3.5, “Changes in MySQL 8.0”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.3.4, “Undo Tablespaces”

innodb_merge_threshold_set_all_debug
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_monitor_disable
Section 17.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.7.7.15, “SHOW ENGINE Statement”
Section 28.4.21, “The INFORMATION_SCHEMA INNODB_METRICS Table”

innodb_monitor_enable
Section 17.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.7.7.15, “SHOW ENGINE Statement”
Section 28.4.21, “The INFORMATION_SCHEMA INNODB_METRICS Table”

innodb_monitor_reset
Section 17.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.4.21, “The INFORMATION_SCHEMA INNODB_METRICS Table”

innodb_monitor_reset_all
Section 17.15.6, “InnoDB INFORMATION_SCHEMA Metrics Table”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 28.4.21, “The INFORMATION_SCHEMA INNODB_METRICS Table”

6276

innodb_numa_interleave
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_old_blocks_pct
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.8.3.3, “Making the Buffer Pool Scan Resistant”
MySQL Glossary

innodb_old_blocks_time
Section 17.5.1, “Buffer Pool”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.8.3.3, “Making the Buffer Pool Scan Resistant”

innodb_online_alter_log_max_size
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.12.7, “Online DDL Failure Conditions”
Section 17.12.3, “Online DDL Space Requirements”

innodb_open_files
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

innodb_optimize_fulltext_only
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 17.6.2.4, “InnoDB Full-Text Indexes”
Section 17.15.4, “InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 15.7.3.4, “OPTIMIZE TABLE Statement”
Section 28.4.19, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”

innodb_page_cleaners
Section 17.8.3.5, “Configuring Buffer Pool Flushing”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_page_size
Section 7.6.7.3, “Cloning Remote Data”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 17.9.1.2, “Creating Compressed Tables”
Section 17.8.10.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 17.8.3.7, “Excluding Buffer Pool Pages from Core Files”
Section 17.11.2, “File Space Management”
Section 17.6.3.3, “General Tablespaces”
Section 17.9.1.5, “How Compression Works for InnoDB Tables”
Section 17.6.1.3, “Importing InnoDB Tables”
Section 17.22, “InnoDB Limits”
Section 17.9.2, “InnoDB Page Compression”
Section 17.23, “InnoDB Restrictions and Limitations”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.4.7, “Limits on Table Column Count and Row Size”
MySQL Glossary

6277

Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 10.5.4, “Optimizing InnoDB Redo Logging”
Section 17.9.1.1, “Overview of Table Compression”
Section 17.6.3.9, “Tablespace AUTOEXTEND_SIZE Configuration”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”
Section 17.6.2.2, “The Physical Structure of an InnoDB Index”
Section 17.20.9, “Troubleshooting the InnoDB memcached Plugin”
Section 17.6.3.4, “Undo Tablespaces”

innodb_parallel_read_threads
Section 15.7.3.2, “CHECK TABLE Statement”
Section 17.12.5, “Configuring Parallel Threads for Online DDL Operations”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 8.0”

innodb_print_all_deadlocks
Section 17.7.5.1, “An InnoDB Deadlock Example”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 17.7.5, “Deadlocks in InnoDB”
Section 17.7.5.3, “How to Minimize and Handle Deadlocks”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.21, “InnoDB Troubleshooting”

innodb_print_ddl_logs
Section 15.1.1, “Atomic Data Definition Statement Support”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_purge_batch_size
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.8.9, “Purge Configuration”

innodb_purge_rseg_truncate_frequency
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.8.9, “Purge Configuration”
Section 17.6.3.4, “Undo Tablespaces”

innodb_purge_threads
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.8.9, “Purge Configuration”

innodb_random_read_ahead
Section 17.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_read_ahead_threshold
Section 17.8.3.4, “Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_read_io_threads
Section 17.8.5, “Configuring the Number of Background InnoDB I/O Threads”
Section 17.17.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.8.6, “Using Asynchronous I/O on Linux”

6278

innodb_read_only
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 16.7, “Data Dictionary Usage Differences”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 7.1.8, “Server System Variables”
Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”
Section 28.3.38, “The INFORMATION_SCHEMA TABLES Table”

innodb_redo_log_archive_dirs
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.5, “Redo Log”

innodb_redo_log_capacity
Section 3.5, “Changes in MySQL 8.0”
Section 17.8.12, “Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 10.5.4, “Optimizing InnoDB Redo Logging”
Section 17.6.5, “Redo Log”
Section 7.1.10, “Server Status Variables”
Section 1.3, “What Is New in MySQL 8.0”

innodb_redo_log_encrypt
Section 7.6.7.5, “Cloning Encrypted Data”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_replication_delay
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_rollback_on_timeout
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_rollback_segments
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.6, “Undo Logs”
Section 17.6.3.4, “Undo Tablespaces”
Section 1.3, “What Is New in MySQL 8.0”

innodb_saved_page_number_debug
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_segment_reserve_factor
Section 17.11.2, “File Space Management”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 8.0”

innodb_sort_buffer_size
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.12.4, “Online DDL Memory Management”
Section 17.12.3, “Online DDL Space Requirements”

6279

innodb_spin_wait_delay
Section 17.8.8, “Configuring Spin Lock Polling”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_spin_wait_pause_multiplier
Section 17.8.8, “Configuring Spin Lock Polling”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 8.0”

innodb_stats_auto_recalc
Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics
Section 17.8.10, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 15.1.20, “CREATE TABLE Statement”
InnoDB Persistent Statistics Tables Example
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_stats_include_delete_marked
Including Delete-marked Records in Persistent Statistics Calculations
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_stats_method
Section 10.3.8, “InnoDB and MyISAM Index Statistics Collection”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary

innodb_stats_on_metadata
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_stats_persistent
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”
Section 17.8.10, “Configuring Optimizer Statistics for InnoDB”
Configuring Optimizer Statistics Parameters for Individual Tables
Section 17.8.10.1, “Configuring Persistent Optimizer Statistics Parameters”
Section 15.1.15, “CREATE INDEX Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 17.8.10.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.10, “Optimizing InnoDB for Systems with Many Tables”

innodb_stats_persistent_sample_pages
Section 15.7.3.1, “ANALYZE TABLE Statement”
Configuring Optimizer Statistics Parameters for Individual Tables
Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
Section 17.8.10.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_stats_sample_pages
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_stats_transient_sample_pages
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 17.8.10.2, “Configuring Non-Persistent Optimizer Statistics Parameters”

6280

Section 17.8.10.3, “Estimating ANALYZE TABLE Complexity for InnoDB Tables”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_status_output
Section 17.17.2, “Enabling InnoDB Monitors”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_status_output_locks
Section 17.17.2, “Enabling InnoDB Monitors”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_strict_mode
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 15.1.20.2, “CREATE TEMPORARY TABLE Statement”
Section 17.9.1.2, “Creating Compressed Tables”
Section 17.9.1.5, “How Compression Works for InnoDB Tables”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 7.1.11, “Server SQL Modes”
Section 17.9.1.7, “SQL Compression Syntax Warnings and Errors”
Section 1.3, “What Is New in MySQL 8.0”

innodb_sync_array_size
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_sync_debug
Section 17.14, “InnoDB Startup Options and System Variables”
Section 2.8.7, “MySQL Source-Configuration Options”

innodb_sync_spin_loops
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_table_locks
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”

innodb_temp_data_file_path
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.6.3.5, “Temporary Tablespaces”
Section 28.3.15, “The INFORMATION_SCHEMA FILES Table”

innodb_temp_tablespaces_dir
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.5, “Redo Log”
Section 17.6.3.5, “Temporary Tablespaces”
Section 1.3, “What Is New in MySQL 8.0”

innodb_thread_concurrency
Section 17.8.4, “Configuring Thread Concurrency for InnoDB”
Section 17.17.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 17.14, “InnoDB Startup Options and System Variables”

6281

Section A.15, “MySQL 8.0 FAQ: MySQL Enterprise Thread Pool”
Section 10.5.9, “Optimizing InnoDB Configuration Variables”

innodb_thread_sleep_delay
Section 17.8.4, “Configuring Thread Concurrency for InnoDB”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_tmpdir
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.12.7, “Online DDL Failure Conditions”
Section 17.12.3, “Online DDL Space Requirements”
Section 17.6.5, “Redo Log”

innodb_trx_purge_view_update_only_debug
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_trx_rseg_n_slots_debug
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_undo_directory
Section 3.5, “Changes in MySQL 8.0”
Section 7.6.7.3, “Cloning Remote Data”
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 17.6.1.2, “Creating Tables Externally”
Section 17.6.3.3, “General Tablespaces”
Section 17.18.2, “InnoDB Recovery”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.3.6, “Moving Tablespace Files While the Server is Offline”
Section 17.6.5, “Redo Log”
Section 17.6.3.4, “Undo Tablespaces”
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”
Section 1.3, “What Is New in MySQL 8.0”

innodb_undo_log_encrypt
Section 7.6.7.5, “Cloning Encrypted Data”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_undo_log_truncate
Section 3.5, “Changes in MySQL 8.0”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 17.6.3.4, “Undo Tablespaces”
Section 1.3, “What Is New in MySQL 8.0”

innodb_undo_tablespaces
Section 3.5, “Changes in MySQL 8.0”
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 17.6.3.4, “Undo Tablespaces”
Section 1.3, “What Is New in MySQL 8.0”

innodb_use_fdatasync
Section 17.14, “InnoDB Startup Options and System Variables”

6282

Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 7.1.10, “Server Status Variables”
Section 1.3, “What Is New in MySQL 8.0”

innodb_use_native_aio
Section 3.5, “Changes in MySQL 8.0”
Section 17.14, “InnoDB Startup Options and System Variables”
MySQL Glossary
Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 17.8.6, “Using Asynchronous I/O on Linux”

innodb_validate_tablespace_paths
Section 17.6.3.7, “Disabling Tablespace Path Validation”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 1.3, “What Is New in MySQL 8.0”

innodb_version
Section 17.14, “InnoDB Startup Options and System Variables”

innodb_write_io_threads
Section 17.8.5, “Configuring the Number of Background InnoDB I/O Threads”
Section 17.6.4, “Doublewrite Buffer”
Section 17.17.3, “InnoDB Standard Monitor and Lock Monitor Output”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.5.8, “Optimizing InnoDB Disk I/O”
Section 17.8.6, “Using Asynchronous I/O on Linux”

insert_id
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 7.1.8, “Server System Variables”

interactive_timeout
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 7.1.8, “Server System Variables”

internal_tmp_disk_storage_engine
Section 10.12.3.1, “How MySQL Uses Memory”
Section 17.8.1, “InnoDB Startup Configuration”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section 7.1.8, “Server System Variables”
Section 17.6.3.5, “Temporary Tablespaces”
Section 1.3, “What Is New in MySQL 8.0”

internal_tmp_mem_storage_engine
Section 3.5, “Changes in MySQL 8.0”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

J

[index top]

6283

join_buffer_size
Section 10.2.1.12, “Block Nested-Loop and Batched Key Access Joins”
Section 10.2.1.4, “Hash Join Optimization”
Section 10.2.1.7, “Nested-Loop Join Algorithms”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

K

[index top]

keep_files_on_create
Section 7.1.8, “Server System Variables”

key_buffer_size
Section 10.6.2, “Bulk Data Loading for MyISAM Tables”
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 10.8.5, “Estimating Query Performance”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 9.6.3, “How to Repair MyISAM Tables”
Section 17.8.1, “InnoDB Startup Configuration”
Section B.3.7, “Known Issues in MySQL”
Section 10.10.2.2, “Multiple Key Caches”
Section 10.2.5.3, “Optimizing DELETE Statements”
Section 10.6.3, “Optimizing REPAIR TABLE Statements”
Section 10.10.2.6, “Restructuring a Key Cache”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 7.1.9.5, “Structured System Variables”
Section 10.10.2, “The MyISAM Key Cache”

key_cache_age_threshold
Section 10.10.2.3, “Midpoint Insertion Strategy”
Section 7.1.8, “Server System Variables”
Section 7.1.9.5, “Structured System Variables”

key_cache_block_size
Section 10.10.2.5, “Key Cache Block Size”
Section 10.10.2.6, “Restructuring a Key Cache”
Section 7.1.8, “Server System Variables”
Section 7.1.9.5, “Structured System Variables”

key_cache_division_limit
Section 10.10.2.3, “Midpoint Insertion Strategy”
Section 7.1.8, “Server System Variables”
Section 7.1.9.5, “Structured System Variables”

keyring_aws_cmk_id
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.16, “Plugin-Specific Keyring Key-Management Functions”
Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”

keyring_aws_conf_file
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”

6284

keyring_aws_data_file
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.16, “Plugin-Specific Keyring Key-Management Functions”
Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”

keyring_aws_region
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”

keyring_encrypted_file_data
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 8.4.4.19, “Keyring System Variables”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 8.4.4.7, “Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin”

keyring_encrypted_file_password
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.7, “Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin”

keyring_file_data
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 2.4.3, “Installing and Using the MySQL Launch Daemon”
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 8.4.4.6, “Using the keyring_file File-Based Keyring Plugin”

keyring_hashicorp_auth_path
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

keyring_hashicorp_ca_path
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

keyring_hashicorp_caching
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

keyring_hashicorp_commit_auth_path
Section 8.4.4.19, “Keyring System Variables”

keyring_hashicorp_commit_ca_path
Section 8.4.4.19, “Keyring System Variables”

keyring_hashicorp_commit_caching
Section 8.4.4.19, “Keyring System Variables”

keyring_hashicorp_commit_role_id
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

keyring_hashicorp_commit_server_url
Section 8.4.4.19, “Keyring System Variables”

6285

keyring_hashicorp_commit_store_path
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

keyring_hashicorp_role_id
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

keyring_hashicorp_secret_id
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

keyring_hashicorp_server_url
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

keyring_hashicorp_store_path
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.10, “Using the HashiCorp Vault Keyring Plugin”

keyring_oci_ca_certificate
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

keyring_oci_compartment
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

keyring_oci_encryption_endpoint
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

keyring_oci_key_file
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

keyring_oci_key_fingerprint
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

keyring_oci_management_endpoint
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

keyring_oci_master_key
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

keyring_oci_secrets_endpoint
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

keyring_oci_tenancy
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

6286

keyring_oci_user
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

keyring_oci_vaults_endpoint
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

keyring_oci_virtual_vault
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

keyring_okv_conf_dir
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.8, “Using the keyring_okv KMIP Plugin”

keyring_operations
Section 8.4.4.19, “Keyring System Variables”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”

L

[index top]

large_files_support
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 7.1.8, “Server System Variables”

large_page_size
Section 7.1.8, “Server System Variables”

large_pages
Section 7.1.8, “Server System Variables”

last_insert_id
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”

lc_messages
Section 7.1.8, “Server System Variables”
Section 12.12, “Setting the Error Message Language”

lc_messages_dir
Section 7.1.8, “Server System Variables”
Section 12.12, “Setting the Error Message Language”

lc_time_names
Section 14.7, “Date and Time Functions”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 12.16, “MySQL Server Locale Support”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”
Section 14.8, “String Functions and Operators”

6287

license
Section 7.1.8, “Server System Variables”

local
Section 15.2.10, “LOAD XML Statement”

local_infile
Section 3.5, “Changes in MySQL 8.0”
Section 15.2.9, “LOAD DATA Statement”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 8.1.6, “Security Considerations for LOAD DATA LOCAL”
Section 7.1.8, “Server System Variables”

lock_order
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_debug_loop
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_debug_missing_arc
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_debug_missing_key
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_debug_missing_unlock
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_dependencies
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_extra_dependencies
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_output_directory
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_print_txt
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_trace_loop
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_trace_missing_arc
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_trace_missing_key
Section 7.9.3, “The LOCK_ORDER Tool”

lock_order_trace_missing_unlock
Section 7.9.3, “The LOCK_ORDER Tool”

lock_wait_timeout
Section 15.3.5, “LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements”
Section 7.1.8, “Server System Variables”

6288

locked_in_memory
Section 7.1.8, “Server System Variables”

log
Section 3.5, “Changes in MySQL 8.0”
Section 17.8.3.1, “Configuring InnoDB Buffer Pool Size”
Section 20.3.1, “Group Replication Requirements”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 19.2.2.3, “Startup Options and Replication Channels”
Section 17.20.7, “The InnoDB memcached Plugin and Replication”

log_bin
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 3.5, “Changes in MySQL 8.0”
Section 19.5.5, “How to Report Replication Bugs or Problems”
NDB Cluster System Variables
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 15.4.1.2, “RESET MASTER Statement”
Section 7.4.4.2, “Setting The Binary Log Format”
Section 19.1.2.1, “Setting the Replication Source Configuration”
Section 7.4.4, “The Binary Log”
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”

log_bin_basename
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 7.4.4, “The Binary Log”

log_bin_index
Section 19.1.6.4, “Binary Logging Options and Variables”

log_bin_trust_function_creators
Section 19.1.6.4, “Binary Logging Options and Variables”
Section A.4, “MySQL 8.0 FAQ: Stored Procedures and Functions”
Section 27.7, “Stored Program Binary Logging”
Section 1.3, “What Is New in MySQL 8.0”

log_bin_use_v
Section 19.1.6.4, “Binary Logging Options and Variables”
MySQL Server Options for NDB Cluster
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”

log_error
Section 7.4.2.2, “Default Error Log Destination Configuration”
Section 7.5.3, “Error Log Components”
Section 7.4.2.7, “Error Logging in JSON Format”
Section 2.4.3, “Installing and Using the MySQL Launch Daemon”
Section 2.5.6.2, “More Topics on Deploying MySQL Server with Docker”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

log_error_services
Section 3.5, “Changes in MySQL 8.0”
Section 7.4.2.2, “Default Error Log Destination Configuration”
Section 7.5.3, “Error Log Components”

6289

Section 7.4.2.1, “Error Log Configuration”
Section 7.4.2.7, “Error Logging in JSON Format”
Section 7.4.2.8, “Error Logging to the System Log”
Section 7.4.2.6, “Rule-Based Error Log Filtering (log_filter_dragnet)”
Section 7.1.8, “Server System Variables”
Section 29.12.21.2, “The error_log Table”
Section 1.3, “What Is New in MySQL 8.0”

log_error_suppression_list
Section 7.5.3, “Error Log Components”
Section 7.4.2.1, “Error Log Configuration”
Section 7.4.2.5, “Priority-Based Error Log Filtering (log_filter_internal)”
Section 7.4.2.6, “Rule-Based Error Log Filtering (log_filter_dragnet)”
Section 7.1.8, “Server System Variables”
Section 7.4.2.4, “Types of Error Log Filtering”

log_error_verbosity
Section 3.5, “Changes in MySQL 8.0”
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”
Section 17.6.3.7, “Disabling Tablespace Path Validation”
Section 7.5.3, “Error Log Components”
Section 7.4.2.1, “Error Log Configuration”
Section 7.4.2.9, “Error Log Output Format”
Section 7.4.2.8, “Error Logging to the System Log”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 20.4, “Monitoring Group Replication”
Section B.3.2.7, “MySQL server has gone away”
Section 29.12.9, “Performance Schema Connection Attribute Tables”
Section 29.15, “Performance Schema System Variables”
Section 7.4.2.5, “Priority-Based Error Log Filtering (log_filter_internal)”
Section 7.4.2.6, “Rule-Based Error Log Filtering (log_filter_dragnet)”
Section 7.1.7, “Server Command Options”
Section 7.1.3, “Server Configuration Validation”
Section 7.1.8, “Server System Variables”
Section 7.4.2.4, “Types of Error Log Filtering”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”
Section 1.3, “What Is New in MySQL 8.0”

log_output
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 7.4.3, “The General Query Log”
Section 7.4.5, “The Slow Query Log”

log_queries_not_using_indexes
Section 7.1.8, “Server System Variables”
Section 7.4.5, “The Slow Query Log”

log_raw
Section 7.1.8, “Server System Variables”

log_replica_updates
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 20.3.1, “Group Replication Requirements”
Section 19.1.3.1, “GTID Format and Storage”

6290

Section 19.4.7, “Improving Replication Performance”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
MySQL Server Options for NDB Cluster
Section 25.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
NDB Cluster System Variables
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 19.1.2.2, “Setting the Replica Configuration”
Section 19.1.3.8, “Stored Function Examples to Manipulate GTIDs”
Section 7.4.4, “The Binary Log”

log_slave_updates
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 20.3.1, “Group Replication Requirements”
Section 19.1.3.1, “GTID Format and Storage”
Section 19.4.7, “Improving Replication Performance”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
MySQL Server Options for NDB Cluster
Section 25.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
NDB Cluster System Variables
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 19.1.2.2, “Setting the Replica Configuration”
Section 7.4.4, “The Binary Log”

log_slow_admin_statements
Section 7.1.8, “Server System Variables”
Section 7.4.5, “The Slow Query Log”

log_slow_extra
Section 8.4.5.4, “Audit Log File Formats”
Section 8.4.5.5, “Configuring Audit Logging Characteristics”
Section 7.1.8, “Server System Variables”
Section 7.4.5, “The Slow Query Log”

log_slow_replica_statements
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.4.5, “The Slow Query Log”

log_slow_slave_statements
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.4.5, “The Slow Query Log”

log_statements_unsafe_for_binlog
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 1.3, “What Is New in MySQL 8.0”

log_syslog
Section 7.1.8, “Server System Variables”

log_syslog_facility
Section 7.4.2.8, “Error Logging to the System Log”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 7.1.8, “Server System Variables”

log_syslog_include_pid
Section 7.4.2.8, “Error Logging to the System Log”

6291

Section 7.1.8, “Server System Variables”

log_syslog_tag
Section 7.4.2.8, “Error Logging to the System Log”
Section 6.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 7.1.8, “Server System Variables”

log_throttle_queries_not_using_indexes
Section 7.1.8, “Server System Variables”
Section 7.4.5, “The Slow Query Log”

log_timestamps
Section 7.4.2.9, “Error Log Output Format”
Section 7.1.8, “Server System Variables”
Section 29.12.21.2, “The error_log Table”
Section 7.4.3, “The General Query Log”
Section 7.4.5, “The Slow Query Log”

long_query_time
Section 7.4, “MySQL Server Logs”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 7.4.5, “The Slow Query Log”

low_priority_updates
Section A.14, “MySQL 8.0 FAQ: Replication”
Section 7.1.8, “Server System Variables”
Section 10.11.2, “Table Locking Issues”

lower_case_file_system
Section 7.1.8, “Server System Variables”

lower_case_table_names
Advanced Options
Section 3.5, “Changes in MySQL 8.0”
Section 15.1.20.5, “FOREIGN KEY Constraints”
Section 15.7.1.6, “GRANT Statement”
Section 20.3.1, “Group Replication Requirements”
Section 20.9.1, “Group Replication System Variables”
Section 19.2.5, “How Servers Evaluate Replication Filtering Rules”
Section 1.5, “How to Report Bugs or Problems”
Section 11.2.3, “Identifier Case Sensitivity”
Section 15.2.6, “IMPORT TABLE Statement”
Section 17.6.1.3, “Importing InnoDB Tables”
Section 17.6.1.4, “Moving or Copying InnoDB Tables”
Section 20.8.3.1, “Online Upgrade Considerations”
Section 3.6, “Preparing Your Installation for Upgrade”
Section 19.5.1.39, “Replication and Variables”
Section 15.7.1.8, “REVOKE Statement”
Section 7.1.8, “Server System Variables”
Section 15.7.7.39, “SHOW TABLES Statement”
Section 28.4.9, “The INFORMATION_SCHEMA INNODB_COLUMNS Table”
Section 28.4.23, “The INFORMATION_SCHEMA INNODB_TABLES Table”

6292

Section 12.8.7, “Using Collation in INFORMATION_SCHEMA Searches”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

M

[index top]

mandatory_roles
Section 8.2.11, “Account Categories”
Section 15.7.1.4, “DROP ROLE Statement”
Section 15.7.1.5, “DROP USER Statement”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.1.8, “REVOKE Statement”
Section 7.1.8, “Server System Variables”
Section 15.7.1.11, “SET ROLE Statement”
Section 15.7.7.21, “SHOW GRANTS Statement”
Section 7.1.9.1, “System Variable Privileges”
Section 8.2.10, “Using Roles”

master
Section 3.5, “Changes in MySQL 8.0”

master_info_repository
Section 3.5, “Changes in MySQL 8.0”
Section 7.6.7.7, “Cloning for Replication”
Section 20.3.1, “Group Replication Requirements”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.4.2, “Replication Metadata Repositories”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 19.2.2.3, “Startup Options and Replication Channels”
Section 1.3, “What Is New in MySQL 8.0”

master_verify_checksum
Section 19.1.6.4, “Binary Logging Options and Variables”
MySQL Glossary
Section 7.4.4, “The Binary Log”

max_allowed_packet
Section 14.19.1, “Aggregate Function Descriptions”
Behaviors When Binary Log Transaction Compression is Enabled
Section 3.5, “Changes in MySQL 8.0”
Section 7.6.7.3, “Cloning Remote Data”
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 14.4.2, “Comparison Functions and Operators”
Section 13.7, “Data Type Storage Requirements”
Section B.3.4.6, “Deleting Rows from Related Tables”
Section 10.12.3.1, “How MySQL Uses Memory”
Section B.3.2.3, “Lost connection to MySQL server”
Section B.3.2.7, “MySQL server has gone away”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
Section B.3.2.8, “Packet Too Large”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.20, “Replication and max_allowed_packet”
Section 7.1.8, “Server System Variables”
Section 14.8, “String Functions and Operators”

6293

Section 13.3.4, “The BLOB and TEXT Types”
Section 13.5, “The JSON Data Type”
Section 7.6.6.3, “Using Version Tokens”
Section 22.5.6.2, “X Plugin Options and System Variables”

max_binlog_cache_size
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 7.4.4, “The Binary Log”

max_binlog_size
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.1.3.1, “GTID Format and Storage”
Section 7.4, “MySQL Server Logs”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.4.6, “Server Log Maintenance”
Section 7.4.4, “The Binary Log”
Section 19.2.4.1, “The Relay Log”

max_binlog_stmt_cache_size
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 10.12.3.1, “How MySQL Uses Memory”

max_connect_errors
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 7.1.8, “Server System Variables”
Section 29.12.21.3, “The host_cache Table”

max_connections
Section 7.1.12.2, “Administrative Connection Management”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 3.5, “Changes in MySQL 8.0”
Section 7.1.12.1, “Connection Interfaces”
Section 7.9.1.4, “Debugging mysqld under gdb”
Section 16.4, “Dictionary Object Cache”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 10.4.3.1, “How MySQL Opens and Closes Tables”
Section 29.15, “Performance Schema System Variables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 29.12.21.7, “The processlist Table”
Section 7.6.3.3, “Thread Pool Operation”
Section B.3.2.5, “Too many connections”
Section 1.3, “What Is New in MySQL 8.0”
Section 22.5.6.2, “X Plugin Options and System Variables”

max_delayed_threads
Section 7.1.8, “Server System Variables”

max_digest_length
Section 14.13, “Encryption and Compression Functions”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 29.10, “Performance Schema Statement Digests and Sampling”
Section 29.15, “Performance Schema System Variables”
Section 7.1.8, “Server System Variables”

6294

Section 8.4.7.3, “Using MySQL Enterprise Firewall”

max_error_count
Section 3.5, “Changes in MySQL 8.0”
Section 15.2.9, “LOAD DATA Statement”
Section 15.6.7.4, “RESIGNAL Statement”
Section 7.1.8, “Server System Variables”
Section 15.7.7.17, “SHOW ERRORS Statement”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 15.6.7.7, “The MySQL Diagnostics Area”

max_execution_time
Section 10.9.3, “Optimizer Hints”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 15.2.20, “WITH (Common Table Expressions)”

max_heap_table_size
Section 10.12.3.1, “How MySQL Uses Memory”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 10.4.6, “Limits on Table Size”
Section 19.5.1.21, “Replication and MEMORY Tables”
Section 19.5.1.39, “Replication and Variables”
Section 15.6.6.5, “Restrictions on Server-Side Cursors”
Section 7.1.8, “Server System Variables”
Section 18.3, “The MEMORY Storage Engine”

max_insert_delayed_threads
Section 7.1.8, “Server System Variables”

max_join_size
Section 10.8.2, “EXPLAIN Output Format”
Section 6.5.1.6, “mysql Client Tips”
Section 7.1.8, “Server System Variables”
Section 15.7.6.1, “SET Syntax for Variable Assignment”

max_length_for_sort_data
Section 10.2.1.16, “ORDER BY Optimization”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

max_points_in_geometry
Section 7.1.8, “Server System Variables”
Section 14.16.8, “Spatial Operator Functions”

max_prepared_stmt_count
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”
Section 15.5.3, “DEALLOCATE PREPARE Statement”
Section 29.15, “Performance Schema System Variables”
Section 15.5, “Prepared Statements”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

max_relay_log_size
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.1.6.3, “Replica Server Options and Variables”

6295

Section 19.2.4.1, “The Relay Log”

max_seeks_for_key
Section 15.7.3.1, “ANALYZE TABLE Statement”
Section 7.1.8, “Server System Variables”

max_sort_length
Section B.3.7, “Known Issues in MySQL”
Section 10.2.1.16, “ORDER BY Optimization”
Section 15.2.13, “SELECT Statement”
Section 7.1.8, “Server System Variables”
Section 13.3.4, “The BLOB and TEXT Types”
Section 13.5, “The JSON Data Type”

max_sp_recursion_depth
Section 7.1.8, “Server System Variables”
Section 27.2.1, “Stored Routine Syntax”

max_user_connections
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 15.7.8.3, “FLUSH Statement”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 7.1.8, “Server System Variables”
Section 8.2.21, “Setting Account Resource Limits”

max_write_lock_count
Section 15.3.6, “LOCK TABLES and UNLOCK TABLES Statements”
Section 10.11.4, “Metadata Locking”
Section 7.1.8, “Server System Variables”
Section 10.11.2, “Table Locking Issues”

mecab_rc_file
Section 14.9.9, “MeCab Full-Text Parser Plugin”
Section 7.1.8, “Server System Variables”

metadata_locks_cache_size
Section 7.1.8, “Server System Variables”

metadata_locks_hash_instances
Section 7.1.8, “Server System Variables”

min_examined_row_limit
Section 7.1.8, “Server System Variables”
Section 7.4.5, “The Slow Query Log”

myisam_data_pointer_size
Section 15.1.20, “CREATE TABLE Statement”
Section 10.4.6, “Limits on Table Size”
Section 7.1.8, “Server System Variables”

myisam_max_sort_file_size
Section 18.2.1, “MyISAM Startup Options”
Section 10.6.3, “Optimizing REPAIR TABLE Statements”
Section 7.1.8, “Server System Variables”

6296

myisam_mmap_size
Section 7.1.8, “Server System Variables”

myisam_recover_options
Section 18.2.1, “MyISAM Startup Options”
Section 10.6.1, “Optimizing MyISAM Queries”
Section 7.1.8, “Server System Variables”
Section 9.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section B.3.2.17, “Table-Corruption Issues”
Section 18.2, “The MyISAM Storage Engine”
Section 7.9.1.6, “Using Server Logs to Find Causes of Errors in mysqld”

myisam_repair_threads
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

myisam_sort_buffer_size
Section 15.1.9, “ALTER TABLE Statement”
Section 18.2.1, “MyISAM Startup Options”
Section 10.6.3, “Optimizing REPAIR TABLE Statements”
Section 7.1.8, “Server System Variables”

myisam_stats_method
Section 10.3.8, “InnoDB and MyISAM Index Statistics Collection”
Section 7.1.8, “Server System Variables”

myisam_use_mmap
Section 10.12.3.1, “How MySQL Uses Memory”
Section 7.1.8, “Server System Variables”

mysql_firewall_mode
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”

mysql_firewall_trace
Section 8.4.7.4, “MySQL Enterprise Firewall Reference”
Section 8.4.7.3, “Using MySQL Enterprise Firewall”

mysql_native_password_proxy_users
Section 8.2.19, “Proxy Users”
Section 7.1.8, “Server System Variables”

mysqlx_bind_address
Section 7.1.14, “Network Namespace Support”
Section 22.5.6.2, “X Plugin Options and System Variables”
Section 22.5.6.3, “X Plugin Status Variables”

mysqlx_compression_algorithms
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.2, “X Plugin Options and System Variables”
Section 22.5.6.3, “X Plugin Status Variables”

mysqlx_connect_timeout
Section 22.5.6.2, “X Plugin Options and System Variables”

6297

mysqlx_deflate_default_compression_level
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_deflate_max_client_compression_level
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_document_id_unique_prefix
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_enable_hello_notice
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_idle_worker_thread_timeout
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_interactive_timeout
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_lz
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_max_allowed_packet
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_max_connections
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_min_worker_threads
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_port
Section 7.6.7.14, “Clone Plugin Limitations”
Section 15.7.5, “CLONE Statement”
Section 7.6.7.3, “Cloning Remote Data”
Section 22.3.1, “MySQL Shell”
Section 22.4.1, “MySQL Shell”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 8.7.5.2, “Setting the TCP Port Context for MySQL Features”
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_port_open_timeout
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_read_timeout
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_socket
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_ssl_ca
Section 22.5.6.2, “X Plugin Options and System Variables”

6298

mysqlx_ssl_capath
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_ssl_cert
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_ssl_cipher
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_ssl_crl
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_ssl_crlpath
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_ssl_key
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_wait_timeout
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_write_timeout
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_zstd_default_compression_level
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.2, “X Plugin Options and System Variables”

mysqlx_zstd_max_client_compression_level
Section 22.5.5, “Connection Compression with X Plugin”
Section 22.5.6.2, “X Plugin Options and System Variables”

N

[index top]

named_pipe
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Resetting the Root Password: Generic Instructions
Section 2.3.4.3, “Selecting a MySQL Server Type”

6299

Section 7.1.8, “Server System Variables”
Section 1.2.2, “The Main Features of MySQL”
Type and Networking

named_pipe_full_access_group
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.2.7, “Connection Transport Protocols”
Section 6.5.1.1, “mysql Client Options”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 6.4.2, “mysql_secure_installation — Improve MySQL Installation Security”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

ndb_autoincrement_prefetch_sz
NDB Cluster System Variables
Section 25.5.13, “ndb_import — Import CSV Data Into NDB”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_clear_apply_status
NDB Cluster System Variables
Section 15.4.2.4, “RESET REPLICA Statement”

ndb_conflict_role
NDB Cluster System Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_data_node_neighbour
NDB Cluster System Variables
Section 15.1.20.12, “Setting NDB Comment Options”

ndb_dbg_check_shares
NDB Cluster System Variables

ndb_default_column_format
NDB Cluster System Variables

ndb_deferred_constraints
NDB Cluster System Variables

ndb_distribution
NDB Cluster System Variables

ndb_eventbuffer_free_percent
Section 25.6.2.3, “Event Buffer Reporting in the Cluster Log”
NDB Cluster System Variables

6300

ndb_eventbuffer_max_alloc
Section 25.6.2.3, “Event Buffer Reporting in the Cluster Log”
NDB Cluster System Variables

ndb_extra_logging
NDB Cluster System Variables

ndb_force_send
NDB Cluster System Variables

ndb_fully_replicated
NDB Cluster System Variables

ndb_index_stat_enable
NDB Cluster System Variables

ndb_index_stat_option
NDB Cluster System Variables

ndb_join_pushdown
Section 10.8.2, “EXPLAIN Output Format”
NDB Cluster System Variables

ndb_log_apply_status
Section 25.7.8, “Implementing Failover with NDB Cluster Replication”
Section 25.7.10, “NDB Cluster Replication: Bidirectional and Circular Replication”
NDB Cluster System Variables

ndb_log_bin
NDB Cluster System Variables
Section 25.3.7, “Upgrading and Downgrading NDB Cluster”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_log_binlog_index
NDB Cluster System Variables

ndb_log_cache_size
NDB Cluster System Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_log_empty_epochs
NDB Cluster System Variables

ndb_log_empty_update
NDB Cluster System Variables

ndb_log_exclusive_reads
MySQL Server Options for NDB Cluster
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables

ndb_log_orig
NDB Cluster System Variables

6301

ndb_log_transaction_compression
Section 7.4.4.5, “Binary Log Transaction Compression”
Section 19.1.6.4, “Binary Logging Options and Variables”
NDB Cluster System Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_log_transaction_compression_level_zstd
Section 7.4.4.5, “Binary Log Transaction Compression”
Section 19.1.6.4, “Binary Logging Options and Variables”
NDB Cluster System Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_log_transaction_id
NDB Cluster System Variables

ndb_metadata_check
NDB Cluster System Variables
Section 25.5.23, “ndb_restore — Restore an NDB Cluster Backup”
Section 29.12.12, “Performance Schema NDB Cluster Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_metadata_check_interval
NDB Cluster System Variables
Section 29.12.12, “Performance Schema NDB Cluster Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_metadata_sync
NDB Cluster System Variables
Section 29.12.12, “Performance Schema NDB Cluster Tables”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_optimized_node_selection
NDB Cluster System Variables
Section 25.4.3.10, “NDB Cluster TCP/IP Connections”
Section 25.6.3.3, “Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client”

ndb_read_backup
NDB Cluster System Variables
Section 15.1.20.12, “Setting NDB Comment Options”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_recv_thread_activation_threshold
NDB Cluster System Variables

ndb_recv_thread_cpu_mask
NDB Cluster System Variables

ndb_replica_batch_size
NDB Cluster System Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_replica_blob_write_batch_bytes
NDB Cluster System Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

6302

ndb_report_thresh_binlog_epoch_slip
Section 25.6.2.3, “Event Buffer Reporting in the Cluster Log”
NDB Cluster System Variables

ndb_report_thresh_binlog_mem_usage
Section 25.6.2.3, “Event Buffer Reporting in the Cluster Log”
NDB Cluster System Variables

ndb_row_checksum
NDB Cluster System Variables

ndb_schema_dist_lock_wait_timeout
NDB Cluster System Variables

ndb_schema_dist_timeout
NDB Cluster System Variables

ndb_schema_dist_upgrade_allowed
NDB Cluster System Variables

ndb_show_foreign_key_mock_tables
NDB Cluster System Variables

ndb_slave_conflict_role
Section 25.7.12, “NDB Cluster Replication Conflict Resolution”
NDB Cluster System Variables
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

ndb_table_no_logging
NDB Cluster System Variables
Section 15.1.20.12, “Setting NDB Comment Options”

ndb_table_temporary
NDB Cluster System Variables

ndb_use_copying_alter_table
NDB Cluster System Variables

ndb_use_exact_count
NDB Cluster System Variables

ndb_use_transactions
Section 25.6.9, “Importing Data Into MySQL Cluster”
NDB Cluster System Variables

ndb_version
NDB Cluster System Variables

ndb_version_string
NDB Cluster System Variables

ndbinfo_database
NDB Cluster System Variables

6303

ndbinfo_max_bytes
NDB Cluster System Variables

ndbinfo_max_rows
NDB Cluster System Variables

ndbinfo_offline
NDB Cluster System Variables

ndbinfo_show_hidden
NDB Cluster System Variables
Section 25.6.16, “ndbinfo: The NDB Cluster Information Database”
Section 25.6.16.7, “The ndbinfo cluster_operations Table”
Section 25.6.16.8, “The ndbinfo cluster_transactions Table”
Section 25.6.16.54, “The ndbinfo server_operations Table”
Section 25.6.16.55, “The ndbinfo server_transactions Table”

ndbinfo_table_prefix
NDB Cluster System Variables

ndbinfo_version
NDB Cluster System Variables

net_buffer_length
Section 10.12.3.1, “How MySQL Uses Memory”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 7.1.8, “Server System Variables”

net_read_timeout
Section B.3.2.3, “Lost connection to MySQL server”
Section 7.1.8, “Server System Variables”

net_retry_count
Section 7.1.8, “Server System Variables”

net_write_timeout
Section 7.1.8, “Server System Variables”

new
Section 26.6.2, “Partitioning Limitations Relating to Storage Engines”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

ngram_token_size
Section 14.9.2, “Boolean Full-Text Searches”
Section 14.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.9.4, “Full-Text Stopwords”
Section 14.9.1, “Natural Language Full-Text Searches”
Section 14.9.8, “ngram Full-Text Parser”
Section 7.1.8, “Server System Variables”

O

[index top]

6304

offline_mode
Section 20.7.7.4, “Exit Action”
Section 20.4.2, “Group Replication Server States”
Section 20.9.1, “Group Replication System Variables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”

old
Section 10.9.4, “Index Hints”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

old_alter_table
Section 15.1.9, “ALTER TABLE Statement”
Section 17.12, “InnoDB and Online DDL”
Section 26.3.1, “Management of RANGE and LIST Partitions”
Section 17.12.1, “Online DDL Operations”
Section 17.12.2, “Online DDL Performance and Concurrency”
Section 15.7.3.4, “OPTIMIZE TABLE Statement”
Section 7.1.8, “Server System Variables”
Section 17.12.6, “Simplifying DDL Statements with Online DDL”
Section 1.3, “What Is New in MySQL 8.0”

open_files_limit
Section 7.1.12.1, “Connection Interfaces”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 10.2.1.4, “Hash Join Optimization”
Section 10.4.3.1, “How MySQL Opens and Closes Tables”
Section 2.5.9, “Managing MySQL Server with systemd”
Section 29.15, “Performance Schema System Variables”
Section 26.6, “Restrictions and Limitations on Partitioning”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

optimizer_prune_level
Section 10.9.1, “Controlling Query Plan Evaluation”
Section 10.9.3, “Optimizer Hints”
Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations”
Section 7.1.8, “Server System Variables”

optimizer_search_depth
Section 10.9.1, “Controlling Query Plan Evaluation”
Section 7.1.8, “Server System Variables”

optimizer_switch
Section 10.2.1.12, “Block Nested-Loop and Batched Key Access Joins”
Section 10.2.1.13, “Condition Filtering”
Section 15.2.15.7, “Correlated Subqueries”
Section 10.2.2.5, “Derived Condition Pushdown Optimization”
Section 10.2.1.5, “Engine Condition Pushdown Optimization”
Section 10.2.1.4, “Hash Join Optimization”
Section 10.2.1.6, “Index Condition Pushdown Optimization”
Section 10.2.1.3, “Index Merge Optimization”
Section 10.3.12, “Invisible Indexes”

6305

Section 10.2.1.19, “LIMIT Query Optimization”
Section 10.2.1.11, “Multi-Range Read Optimization”
Section 10.9.3, “Optimizer Hints”
Section 10.9.6, “Optimizer Statistics”
Section 10.2.2.4, “Optimizing Derived Tables, View References, and Common Table Expressions with
Merging or Materialization”
Section 10.2.2.1, “Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations”
Section 10.2.2.2, “Optimizing Subqueries with Materialization”
Section 10.2.2.3, “Optimizing Subqueries with the EXISTS Strategy”
Section 10.2.1.2, “Range Optimization”
Section 7.1.8, “Server System Variables”
Section 10.9.2, “Switchable Optimizations”
Section 30.4.5.7, “The list_add() Function”
Section 15.2.17, “UPDATE Statement”
Section 10.3.10, “Use of Index Extensions”
Section 27.5.2, “View Processing Algorithms”
Section 1.3, “What Is New in MySQL 8.0”

optimizer_trace
Section 7.1.8, “Server System Variables”
Section 10.15.2, “System Variables Controlling Tracing”
Section 28.3.19, “The INFORMATION_SCHEMA OPTIMIZER_TRACE Table”
Section 10.15.1, “Typical Usage”

optimizer_trace_features
Section 10.15.10, “Selecting Optimizer Features to Trace”
Section 7.1.8, “Server System Variables”
Section 10.15.2, “System Variables Controlling Tracing”

optimizer_trace_limit
Section 7.1.8, “Server System Variables”
Section 10.15.2, “System Variables Controlling Tracing”
Section 10.15.4, “Tuning Trace Purging”

optimizer_trace_max_mem_size
Section 3.5, “Changes in MySQL 8.0”
Section 7.1.8, “Server System Variables”
Section 10.15.2, “System Variables Controlling Tracing”
Section 28.3.19, “The INFORMATION_SCHEMA OPTIMIZER_TRACE Table”
Section 10.15.5, “Tracing Memory Usage”

optimizer_trace_offset
Section 7.1.8, “Server System Variables”
Section 10.15.2, “System Variables Controlling Tracing”
Section 10.15.4, “Tuning Trace Purging”

original_commit_timestamp
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”

original_server_version
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 19.5.2, “Replication Compatibility Between MySQL Versions”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 7.1.8, “Server System Variables”

6306

P

[index top]

parser_max_mem_size
Section 7.1.8, “Server System Variables”

partial_revokes
Section 8.2.11, “Account Categories”
Section 15.7.1.6, “GRANT Statement”
Section 8.2.12, “Privilege Restriction Using Partial Revokes”
Section 7.1.8, “Server System Variables”
Section 8.2.4, “Specifying Account Names”
Section 1.3, “What Is New in MySQL 8.0”

password_history
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.2.15, “Password Management”
Section 7.1.8, “Server System Variables”

password_require_current
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.2.15, “Password Management”
Section 7.1.8, “Server System Variables”

password_reuse_interval
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 8.2.15, “Password Management”
Section 7.1.8, “Server System Variables”

performance_schema
Section 29.1, “Performance Schema Quick Start”
Section 29.3, “Performance Schema Startup Configuration”
Section 29.15, “Performance Schema System Variables”
Section 29.12.21.7, “The processlist Table”

performance_schema_accounts_size
Section 29.12.15, “Performance Schema Status Variable Tables”
Section 29.15, “Performance Schema System Variables”
Section 29.12.20.12, “Status Variable Summary Tables”
Section 29.12.8.1, “The accounts Table”

performance_schema_digests_size
Section 29.10, “Performance Schema Statement Digests and Sampling”
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”
Section 29.12.20.3, “Statement Summary Tables”

performance_schema_error_size
Section 29.15, “Performance Schema System Variables”

performance_schema_events_stages_history_long_size
Section 29.15, “Performance Schema System Variables”

6307

Section 29.12.5.3, “The events_stages_history_long Table”

performance_schema_events_stages_history_size
Section 29.15, “Performance Schema System Variables”
Section 29.12.5.2, “The events_stages_history Table”

performance_schema_events_statements_history_long_size
Section 29.15, “Performance Schema System Variables”
Section 29.12.6.3, “The events_statements_history_long Table”

performance_schema_events_statements_history_size
Section 29.15, “Performance Schema System Variables”
Section 29.12.6.2, “The events_statements_history Table”

performance_schema_events_transactions_history_long_size
Section 29.15, “Performance Schema System Variables”
Section 29.12.7.3, “The events_transactions_history_long Table”

performance_schema_events_transactions_history_size
Section 29.15, “Performance Schema System Variables”
Section 29.12.7.2, “The events_transactions_history Table”

performance_schema_events_waits_history_long_size
Section 29.15, “Performance Schema System Variables”
Section 29.12, “Performance Schema Table Descriptions”
Section 15.7.7.15, “SHOW ENGINE Statement”
Section 29.12.4.3, “The events_waits_history_long Table”

performance_schema_events_waits_history_size
Section 29.15, “Performance Schema System Variables”
Section 29.12, “Performance Schema Table Descriptions”
Section 15.7.7.15, “SHOW ENGINE Statement”
Section 29.12.4.2, “The events_waits_history Table”

performance_schema_hosts_size
Section 29.12.15, “Performance Schema Status Variable Tables”
Section 29.15, “Performance Schema System Variables”
Section 29.12.20.12, “Status Variable Summary Tables”
Section 29.12.8.2, “The hosts Table”

performance_schema_max_cond_classes
Section 29.15, “Performance Schema System Variables”

performance_schema_max_cond_instances
Section 29.15, “Performance Schema System Variables”

performance_schema_max_digest_length
Section 29.10, “Performance Schema Statement Digests and Sampling”
Section 29.15, “Performance Schema System Variables”
Section 7.1.8, “Server System Variables”
Section 29.12.6.1, “The events_statements_current Table”

performance_schema_max_digest_sample_age
Section 29.10, “Performance Schema Statement Digests and Sampling”
Section 29.15, “Performance Schema System Variables”

6308

performance_schema_max_file_classes
Section 29.15, “Performance Schema System Variables”

performance_schema_max_file_handles
Section 29.15, “Performance Schema System Variables”

performance_schema_max_file_instances
Section 29.15, “Performance Schema System Variables”

performance_schema_max_index_stat
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

performance_schema_max_memory_classes
Section 29.15, “Performance Schema System Variables”

performance_schema_max_metadata_locks
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”
Section 29.12.13.3, “The metadata_locks Table”

performance_schema_max_mutex_classes
Section 29.7, “Performance Schema Status Monitoring”
Section 29.15, “Performance Schema System Variables”

performance_schema_max_mutex_instances
Section 29.15, “Performance Schema System Variables”

performance_schema_max_prepared_statements_instances
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”
Section 29.12.6.4, “The prepared_statements_instances Table”

performance_schema_max_program_instances
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

performance_schema_max_rwlock_classes
Section 29.15, “Performance Schema System Variables”

performance_schema_max_rwlock_instances
Section 29.15, “Performance Schema System Variables”

performance_schema_max_socket_classes
Section 29.15, “Performance Schema System Variables”

performance_schema_max_socket_instances
Section 29.15, “Performance Schema System Variables”

performance_schema_max_sql_text_length
Section 29.10, “Performance Schema Statement Digests and Sampling”
Section 29.15, “Performance Schema System Variables”
Section 29.12.20.3, “Statement Summary Tables”
Section 29.12.6.1, “The events_statements_current Table”

6309

performance_schema_max_stage_classes
Section 29.15, “Performance Schema System Variables”
Section 29.12.21.7, “The processlist Table”

performance_schema_max_statement_classes
Section 29.15, “Performance Schema System Variables”

performance_schema_max_statement_stack
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

performance_schema_max_table_handles
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”
Section 29.12.13.4, “The table_handles Table”

performance_schema_max_table_instances
Section 29.15, “Performance Schema System Variables”

performance_schema_max_table_lock_stat
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

performance_schema_max_thread_classes
Section 29.15, “Performance Schema System Variables”
Section 29.12.21.7, “The processlist Table”

performance_schema_max_thread_instances
Section 14.21, “Performance Schema Functions”
Section 29.12.15, “Performance Schema Status Variable Tables”
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”
Section 15.7.7.15, “SHOW ENGINE Statement”
Section 29.12.21.7, “The processlist Table”

performance_schema_session_connect_attrs_size
Section 29.12.9, “Performance Schema Connection Attribute Tables”
Section 29.16, “Performance Schema Status Variables”
Section 29.15, “Performance Schema System Variables”

performance_schema_setup_actors_size
Section 29.15, “Performance Schema System Variables”
Section 29.12.2.1, “The setup_actors Table”

performance_schema_setup_objects_size
Section 29.15, “Performance Schema System Variables”
Section 29.12.2.4, “The setup_objects Table”

performance_schema_show_processlist
Section 29.15, “Performance Schema System Variables”
Section 29.12.21.7, “The processlist Table”

performance_schema_users_size
Section 29.12.15, “Performance Schema Status Variable Tables”

6310

Section 29.15, “Performance Schema System Variables”
Section 29.12.20.12, “Status Variable Summary Tables”
Section 29.12.8.3, “The users Table”

persist_only_admin_x
Section 7.1.9.4, “Nonpersistible and Persist-Restricted System Variables”
Section 7.1.8, “Server System Variables”
Section 7.1.9.1, “System Variable Privileges”

persist_sensitive_variables_in_plaintext
Section 7.1.9.3, “Persisted System Variables”
Section 7.1.8, “Server System Variables”

persisted_globals_load
Section 7.1.9.4, “Nonpersistible and Persist-Restricted System Variables”
Section 29.12.14.2, “Performance Schema variables_info Table”
Section 7.1.9.3, “Persisted System Variables”
Section 15.7.8.7, “RESET PERSIST Statement”
Section 7.1.8, “Server System Variables”
Section 6.2.2.2, “Using Option Files”

pid
Section 17.8.2, “Configuring InnoDB for Read-Only Operation”

pid_file
Section 2.4.3, “Installing and Using the MySQL Launch Daemon”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

plugin_dir
Section 8.1.2.2, “Administrator Guidelines for Password Security”
Section 8.4.2.1, “Connection Control Plugin Installation”
Section 15.7.4.1, “CREATE FUNCTION Statement for Loadable Functions”
Section 8.4.1.11, “FIDO Pluggable Authentication”
Section 8.4.4.15, “General-Purpose Keyring Key-Management Functions”
Section 15.7.4.3, “INSTALL COMPONENT Statement”
Section 15.7.4.4, “INSTALL PLUGIN Statement”
Section 7.6.1, “Installing and Uninstalling Plugins”
Section 2.4.3, “Installing and Using the MySQL Launch Daemon”
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 7.6.5.1, “Installing or Uninstalling ddl_rewriter”
Section 8.4.5.2, “Installing or Uninstalling MySQL Enterprise Audit”
Section 7.6.6.2, “Installing or Uninstalling Version Tokens”
Section 19.4.10.1, “Installing Semisynchronous Replication”
Section 7.6.7.1, “Installing the Clone Plugin”
Section 8.4.1.8, “Kerberos Pluggable Authentication”
Section 8.4.4.18, “Keyring Command Options”
Section 8.4.4.2, “Keyring Component Installation”
Section 8.4.4.3, “Keyring Plugin Installation”
Section 8.4.1.7, “LDAP Pluggable Authentication”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 8.4.4.14, “Migrating Keys Between Keyring Keystores”
Section 8.5.3.1, “MySQL Enterprise Data Masking and De-Identification Plugin Installation”
Section 8.6.1, “MySQL Enterprise Encryption Installation and Upgrading”
Section 6.6.8, “mysql_migrate_keyring — Keyring Key Migration Utility”
Section 8.4.1.9, “No-Login Pluggable Authentication”
Section 8.4.1.5, “PAM Pluggable Authentication”

6311

Section 8.4.3.1, “Password Validation Component Installation and Uninstallation”
Section 8.2.17, “Pluggable Authentication”
Section 18.11.1, “Pluggable Storage Engine Architecture”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 17.20.3, “Setting Up the InnoDB memcached Plugin”
Section 15.7.7.25, “SHOW PLUGINS Statement”
Section 8.4.1.10, “Socket Peer-Credential Pluggable Authentication”
Section 8.4.1.12, “Test Pluggable Authentication”
Section 8.4.6, “The Audit Message Component”
Section 28.3.22, “The INFORMATION_SCHEMA PLUGINS Table”
The Locking Service Function Interface
Section 29.12.21.10, “The user_defined_functions Table”
Section 7.6.3.2, “Thread Pool Installation”
Section 8.4.1.6, “Windows Pluggable Authentication”

port
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 15.7.5, “CLONE Statement”
Section 7.6.7.3, “Cloning Remote Data”
Section 20.2.1.2, “Configuring an Instance for Group Replication”
Section 20.5.4.1, “Connections for Distributed Recovery”
Section 20.10, “Frequently Asked Questions”
Section 20.9.1, “Group Replication System Variables”
Section 22.3.1, “MySQL Shell”
Section 22.4.1, “MySQL Shell”
Section 20.6.3, “Securing Distributed Recovery Connections”
Selecting addresses for distributed recovery endpoints
Section 7.1.8, “Server System Variables”
Section 8.7.5.1, “Setting the TCP Port Context for mysqld”
Section 29.12.11.16, “The replication_group_members Table”
Section 22.5.6.2, “X Plugin Options and System Variables”

preload_buffer_size
Section 7.1.8, “Server System Variables”

print_identified_with_as_hex
Section 8.2.8, “Adding Accounts, Assigning Privileges, and Dropping Accounts”
Section 15.7.1.1, “ALTER USER Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 7.1.8, “Server System Variables”
Section 15.7.7.12, “SHOW CREATE USER Statement”

profiling
Section 7.1.8, “Server System Variables”
Section 15.7.7.30, “SHOW PROFILE Statement”
Section 28.3.24, “The INFORMATION_SCHEMA PROFILING Table”

profiling_history_size
Section 7.1.8, “Server System Variables”
Section 15.7.7.30, “SHOW PROFILE Statement”

protocol_compression_algorithms
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.8, “Connection Compression Control”

6312

Section 22.5.5, “Connection Compression with X Plugin”
Section 20.9.1, “Group Replication System Variables”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

protocol_version
Section 7.1.9.4, “Nonpersistible and Persist-Restricted System Variables”
Section 7.1.8, “Server System Variables”

proxy_user
Section 8.2.19, “Proxy Users”
Section 7.1.8, “Server System Variables”

pseudo_replica_mode
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 7.1.8, “Server System Variables”

pseudo_slave_mode
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 7.1.8, “Server System Variables”

pseudo_thread_id
Section 14.15, “Information Functions”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.39, “Replication and Variables”
Section 19.3.3, “Replication Privilege Checks”
Section 7.1.8, “Server System Variables”

Q

[index top]

query_alloc_block_size
Section 7.1.8, “Server System Variables”

query_prealloc_size
Section 7.1.8, “Server System Variables”

R

[index top]

rand_seed
Section 7.1.8, “Server System Variables”

6313

range_alloc_block_size
Section 7.1.8, “Server System Variables”

range_optimizer_max_mem_size
Section 6.5.1.6, “mysql Client Tips”
Section 10.2.1.2, “Range Optimization”
Section 7.1.8, “Server System Variables”

rbr_exec_mode
Section 7.1.8, “Server System Variables”

read_buffer_size
Section 10.12.3.1, “How MySQL Uses Memory”
Section 10.6.3, “Optimizing REPAIR TABLE Statements”
Section 7.1.8, “Server System Variables”

read_only
Section 15.7.1, “Account Management Statements”
Section 15.7.1.1, “ALTER USER Statement”
Section 8.2.14, “Assigning Account Passwords”
Section 19.4.1.3, “Backing Up a Source or Replica by Making It Read Only”
Section 20.5.1.5, “Configuring Member Actions”
Section 15.7.1.2, “CREATE ROLE Statement”
Section 15.7.1.3, “CREATE USER Statement”
Section 15.7.1.4, “DROP ROLE Statement”
Section 15.7.1.5, “DROP USER Statement”
Section 15.7.8.3, “FLUSH Statement”
Section 14.18.1.5, “Functions to Set and Reset Group Replication Member Actions”
Section 15.7.1.6, “GRANT Statement”
Section B.3.7, “Known Issues in MySQL”
Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.7.1.7, “RENAME USER Statement”
Section 19.5.1.39, “Replication and Variables”
Section 15.7.1.8, “REVOKE Statement”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 15.7.1.10, “SET PASSWORD Statement”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”

read_rnd_buffer_size
Section 10.12.3.1, “How MySQL Uses Memory”
Section 10.2.1.11, “Multi-Range Read Optimization”
Section 10.2.1.16, “ORDER BY Optimization”
Section 7.1.8, “Server System Variables”

regexp_stack_limit
Section 14.8.2, “Regular Expressions”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

regexp_time_limit
Section 14.8.2, “Regular Expressions”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

6314

relay
Section 3.5, “Changes in MySQL 8.0”
Section 19.2.2.3, “Startup Options and Replication Channels”

relay_log
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 20.10, “Frequently Asked Questions”
Section 19.4.7, “Improving Replication Performance”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.2.4, “Replication Channel Naming Conventions”
Section 19.2.4.1, “The Relay Log”
Section 1.3, “What Is New in MySQL 8.0”

relay_log_basename
Section 19.1.6.3, “Replica Server Options and Variables”

relay_log_index
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.4.1, “The Relay Log”

relay_log_info_file
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.4.2, “Replication Metadata Repositories”

relay_log_info_repository
Section 3.5, “Changes in MySQL 8.0”
Section 7.6.7.7, “Cloning for Replication”
Section 20.3.1, “Group Replication Requirements”
Section 19.4.2, “Handling an Unexpected Halt of a Replica”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.4.2, “Replication Metadata Repositories”
Section 15.4.2.4, “RESET REPLICA Statement”
Section 19.2.2.3, “Startup Options and Replication Channels”
Section 1.3, “What Is New in MySQL 8.0”

relay_log_purge
Section 19.4.2, “Handling an Unexpected Halt of a Replica”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”

relay_log_recovery
Section 19.4.2, “Handling an Unexpected Halt of a Replica”
Section 19.1.6.3, “Replica Server Options and Variables”

relay_log_space_limit
Section 19.1.6.3, “Replica Server Options and Variables”
Section 10.14.5, “Replication I/O (Receiver) Thread States”
Section 19.2.2.3, “Startup Options and Replication Channels”

replica
Section 19.2.2.3, “Startup Options and Replication Channels”

replica_allow_batching
NDB Cluster System Variables

6315

Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

replica_checkpoint_group
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 14.18.4, “Position-Based Synchronization Functions”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.2.3, “Startup Options and Replication Channels”

replica_checkpoint_period
Section 14.18.4, “Position-Based Synchronization Functions”
Section 19.1.6.3, “Replica Server Options and Variables”

replica_compressed_protocol
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 6.2.8, “Connection Compression Control”
Monitoring Binary Log Transaction Compression
Section 19.1.6.3, “Replica Server Options and Variables”

replica_exec_mode
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.21, “Replication and MEMORY Tables”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”

replica_load_tmpdir
Section 19.4.1.2, “Backing Up Raw Data from a Replica”
Section 9.2, “Database Backup Methods”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section B.3.3.5, “Where MySQL Stores Temporary Files”

replica_max_allowed_packet
Behaviors When Binary Log Transaction Compression is Enabled
Section 20.3.2, “Group Replication Limitations”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.5, “Message Fragmentation”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.20, “Replication and max_allowed_packet”

replica_net_timeout
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.1.7.1, “Checking Replication Status”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.28, “Replication and Source or Replica Shutdowns”
Section 10.14.5, “Replication I/O (Receiver) Thread States”
Section 7.1.8, “Server System Variables”

replica_parallel_type
Behaviors When Binary Log Transaction Compression is Enabled
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 20.3.1, “Group Replication Requirements”

6316

Section 19.2.3.2, “Monitoring Replication Applier Worker Threads”
Section 25.7.11, “NDB Cluster Replication Using the Multithreaded Applier”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 1.3, “What Is New in MySQL 8.0”

replica_parallel_workers
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 7.6.7.7, “Cloning for Replication”
Section 20.3.1, “Group Replication Requirements”
Section 19.1.3.2, “GTID Life Cycle”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.1.5, “MySQL Multi-Source Replication”
Section 25.7.11, “NDB Cluster Replication Using the Multithreaded Applier”
Section 29.12.11, “Performance Schema Replication Tables”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.20, “Replication and max_allowed_packet”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 19.2.2, “Replication Channels”
Section 10.14.6, “Replication SQL Thread States”
Section 19.2.3, “Replication Threads”
Section 15.4.2.6, “START REPLICA Statement”
Section 15.4.2.8, “STOP REPLICA Statement”
Section 29.12.11.5, “The replication_applier_status_by_worker Table”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

replica_pending_jobs_size_max
Section 10.12.3.1, “How MySQL Uses Memory”
Section 19.2.3.2, “Monitoring Replication Applier Worker Threads”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.20, “Replication and max_allowed_packet”
Section 10.14.6, “Replication SQL Thread States”

replica_preserve_commit_order
Section 20.3.1, “Group Replication Requirements”
Section 19.1.3.2, “GTID Life Cycle”
Section 25.7.11, “NDB Cluster Replication Using the Multithreaded Applier”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 10.14.5, “Replication I/O (Receiver) Thread States”
Section 15.4.2.6, “START REPLICA Statement”

replica_skip_errors
Section 19.1.6.3, “Replica Server Options and Variables”

replica_sql_verify_checksum
MySQL Glossary
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.4.4, “The Binary Log”

replica_transaction_retries
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.32, “Replication Retries and Timeouts”

6317

Section 29.12.11.3, “The replication_applier_status Table”

replica_type_conversions
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.1.6.3, “Replica Server Options and Variables”

replication_optimize_for_static_plugin_config
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.4.10, “Semisynchronous Replication”

replication_sender_observe_commit_only
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.4.10, “Semisynchronous Replication”

report_host
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 20.2.1.2, “Configuring an Instance for Group Replication”
Section 20.5.4.1, “Connections for Distributed Recovery”
Section 20.2.2, “Deploying Group Replication Locally”
Section 19.1.6.3, “Replica Server Options and Variables”

report_password
Section 19.1.6.3, “Replica Server Options and Variables”

report_port
Section 20.5.4.1, “Connections for Distributed Recovery”
Section 20.10, “Frequently Asked Questions”
Section 20.9.1, “Group Replication System Variables”
Section 19.1.6.3, “Replica Server Options and Variables”
Selecting addresses for distributed recovery endpoints

report_user
Section 19.1.6.3, “Replica Server Options and Variables”

require_row_format
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

require_secure_transport
Section 20.6.1, “Communication Stack for Connection Security Management”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 6.2.7, “Connection Transport Protocols”
Section 8.8, “FIPS Support”
Section 7.1.8, “Server System Variables”
Section 8.3, “Using Encrypted Connections”
Section 22.5.3, “Using Encrypted Connections with X Plugin”

resultset_metadata
Section 7.1.8, “Server System Variables”

rewriter_enabled
Rewriter Query Rewrite Plugin System Variables
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”

6318

rewriter_enabled_for_threads_without_privilege_checks
Rewriter Query Rewrite Plugin System Variables
Section 7.6.4.2, “Using the Rewriter Query Rewrite Plugin”
Section 1.3, “What Is New in MySQL 8.0”

rewriter_verbose
Rewriter Query Rewrite Plugin System Variables

rpl_read_size
Section 10.12.3.1, “How MySQL Uses Memory”
Section 19.4.7, “Improving Replication Performance”
Section 19.1.6.3, “Replica Server Options and Variables”

rpl_semi_sync_master_enabled
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 19.4.10.3, “Semisynchronous Replication Monitoring”

rpl_semi_sync_master_timeout
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 19.1.6.2, “Replication Source Options and Variables”

rpl_semi_sync_master_trace_level
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.6.2, “Replication Source Options and Variables”

rpl_semi_sync_master_wait_for_slave_count
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 19.1.6.2, “Replication Source Options and Variables”

rpl_semi_sync_master_wait_no_slave
Section 19.1.6.2, “Replication Source Options and Variables”

rpl_semi_sync_master_wait_point
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 19.4.10, “Semisynchronous Replication”

rpl_semi_sync_replica_enabled
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 19.1.6.3, “Replica Server Options and Variables”

rpl_semi_sync_replica_trace_level
Section 19.1.6.3, “Replica Server Options and Variables”

rpl_semi_sync_slave_enabled
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 19.1.6.3, “Replica Server Options and Variables”

rpl_semi_sync_slave_trace_level
Section 19.1.6.3, “Replica Server Options and Variables”

rpl_semi_sync_source_enabled
Section 19.4.10.2, “Configuring Semisynchronous Replication”

6319

Section 19.1.6.2, “Replication Source Options and Variables”
Section 19.4.10.3, “Semisynchronous Replication Monitoring”

rpl_semi_sync_source_timeout
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 19.1.6.2, “Replication Source Options and Variables”

rpl_semi_sync_source_trace_level
Section 19.1.6.2, “Replication Source Options and Variables”

rpl_semi_sync_source_wait_for_replica_count
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 19.1.6.2, “Replication Source Options and Variables”

rpl_semi_sync_source_wait_no_replica
Section 19.1.6.2, “Replication Source Options and Variables”

rpl_semi_sync_source_wait_point
Section 19.4.10.2, “Configuring Semisynchronous Replication”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 19.4.10, “Semisynchronous Replication”

rpl_stop_replica_timeout
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 15.4.2.8, “STOP REPLICA Statement”

rpl_stop_slave_timeout
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 15.4.2.8, “STOP REPLICA Statement”

S

[index top]

schema_definition_cache
Section 16.4, “Dictionary Object Cache”
Section 7.1.8, “Server System Variables”

secondary_engine_cost_threshold
Section 7.1.8, “Server System Variables”

secure_file_priv
Section 15.2.6, “IMPORT TABLE Statement”
Section 2.9.1, “Initializing the Data Directory”
Section 2.5.4, “Installing MySQL on Linux Using RPM Packages from Oracle”
Section 15.2.9, “LOAD DATA Statement”
Section 8.1.3, “Making MySQL Secure Against Attackers”
Section 8.5.3.4, “MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 8.2.2, “Privileges Provided by MySQL”
Section 17.6.5, “Redo Log”
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 8.7.4, “SELinux File Context”
Section 7.1.8, “Server System Variables”

6320

Section 14.8, “String Functions and Operators”
Section 8.5.3.2, “Using the MySQL Enterprise Data Masking and De-Identification Plugin”

select_into_buffer_size
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

select_into_disk_sync
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

select_into_disk_sync_delay
Section 15.2.13.1, “SELECT ... INTO Statement”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

server
Section 3.5, “Changes in MySQL 8.0”

server_id
Adding a Second Instance
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Advanced Options
Section 8.4.5.4, “Audit Log File Formats”
Section 19.1.1, “Binary Log File Position Based Replication Configuration Overview”
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 3.5, “Changes in MySQL 8.0”
Section 20.3.1, “Group Replication Requirements”
Section 14.23, “Miscellaneous Functions”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
NDB Cluster System Variables
Section 29.12.11, “Performance Schema Replication Tables”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.6, “Replication and Binary Logging Options and Variables”
Section 19.1.6.2, “Replication Source Options and Variables”
Section 19.1.2.2, “Setting the Replica Configuration”
Section 19.1.2.1, “Setting the Replication Source Configuration”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 7.4.4, “The Binary Log”
Section 19.5.4, “Troubleshooting Replication”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”

server_id_bits
NDB Cluster System Variables

server_uuid
Section 19.3.2.2, “Binary Log Encryption Keys”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 20.5.1.2, “Changing the Group Mode”
Section 20.5.1.1, “Changing the Primary”
Section 19.1.3.1, “GTID Format and Storage”
Section 29.12.11, “Performance Schema Replication Tables”

6321

Primary Election Algorithm
Section 19.1.6, “Replication and Binary Logging Options and Variables”
Section 19.1.3.6, “Replication From a Source Without GTIDs to a Replica With GTIDs”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Section 19.1.3.8, “Stored Function Examples to Manipulate GTIDs”
Section 29.12.21.5, “The log_status Table”
Section 29.12.11.2, “The replication_applier_configuration Table”
Section 29.12.11.11, “The replication_connection_status Table”
Section 20.4.3, “The replication_group_members Table”
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”

session_track_gtids
Section 19.1.6.5, “Global Transaction ID System Variables”
Section 19.1.4.1, “Replication Mode Concepts”
Section 7.1.8, “Server System Variables”
Section 7.1.18, “Server Tracking of Client Session State”

session_track_schema
Section 7.1.8, “Server System Variables”
Section 7.1.18, “Server Tracking of Client Session State”

session_track_state_change
Section 7.1.8, “Server System Variables”
Section 7.1.18, “Server Tracking of Client Session State”

session_track_system_variables
Section 7.1.8, “Server System Variables”
Section 7.1.18, “Server Tracking of Client Session State”

session_track_transaction_info
Section 7.1.8, “Server System Variables”
Section 7.1.18, “Server Tracking of Client Session State”

sha
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 8.2.19, “Proxy Users”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 8.4.1.3, “SHA-256 Pluggable Authentication”

shared_memory
Section 6.2.3, “Command Options for Connecting to the Server”
Section 6.2.4, “Connecting to the MySQL Server Using Command Options”
Section 6.5.1.1, “mysql Client Options”
Section 6.4.5, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.5.2, “mysqladmin — A MySQL Server Administration Program”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.5.3, “mysqlcheck — A Table Maintenance Program”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.5, “mysqlimport — A Data Import Program”
Section 6.5.7, “mysqlshow — Display Database, Table, and Column Information”
Section 6.5.8, “mysqlslap — A Load Emulation Client”
Resetting the Root Password: Generic Instructions
Section 7.1.8, “Server System Variables”
Section 7.8.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.5, “Starting the Server for the First Time”

6322

Section 1.2.2, “The Main Features of MySQL”
Type and Networking

shared_memory_base_name
Section 7.1.8, “Server System Variables”
Section 7.8.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”

show_create_table_skip_secondary_engine
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 7.1.8, “Server System Variables”

show_create_table_verbosity
Section 7.1.8, “Server System Variables”

show_gipk_in_create_table_and_information_schema
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 28.1, “Introduction”
Section 7.1.8, “Server System Variables”
Section 15.7.7.5, “SHOW COLUMNS Statement”
Section 15.7.7.10, “SHOW CREATE TABLE Statement”
Section 15.7.7.22, “SHOW INDEX Statement”
Section 28.3.8, “The INFORMATION_SCHEMA COLUMNS Table”
Section 28.3.34, “The INFORMATION_SCHEMA STATISTICS Table”
Section 1.3, “What Is New in MySQL 8.0”

show_old_temporals
Section 7.1.8, “Server System Variables”

skip_external_locking
Section 10.11.5, “External Locking”
Section 7.1.8, “Server System Variables”

skip_name_resolve
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section 20.10, “Frequently Asked Questions”
Section 2.9.1, “Initializing the Data Directory”
Section 7.1.14, “Network Namespace Support”
Section 7.1.8, “Server System Variables”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”

skip_networking
Section B.3.2.2, “Can't connect to [local] MySQL server”
Section 7.1.12.3, “DNS Lookups and the Host Cache”
Section A.14, “MySQL 8.0 FAQ: Replication”
Section B.3.2.7, “MySQL server has gone away”
Section 8.2.17, “Pluggable Authentication”
Resetting the Root Password: Generic Instructions
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 19.1.2.1, “Setting the Replication Source Configuration”
Section 25.6.16.50, “The ndbinfo processes Table”
Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”
Section 19.5.4, “Troubleshooting Replication”
Section 19.5.3, “Upgrading a Replication Topology”
Section 22.5.6.3, “X Plugin Status Variables”

6323

skip_replica_start
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Section 15.4.3.1, “START GROUP_REPLICATION Statement”
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 19.2.2.3, “Startup Options and Replication Channels”

skip_show_database
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

skip_slave_start
Section 19.1.2.8, “Adding Replicas to a Replication Environment”
Section 25.7.9, “NDB Cluster Backups With NDB Cluster Replication”
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.3.4, “Setting Up Replication Using GTIDs”
Setting Up Replication with Existing Data
Section 15.4.2.6, “START REPLICA Statement”
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 19.2.2.3, “Startup Options and Replication Channels”
Section 19.5.4, “Troubleshooting Replication”
Section 19.5.3, “Upgrading a Replication Topology”

slave
Section 19.1.3.6, “Replication From a Source Without GTIDs to a Replica With GTIDs”
Section 19.2.2.3, “Startup Options and Replication Channels”

slave_allow_batching
NDB Cluster System Variables
Section 25.7.5, “Preparing the NDB Cluster for Replication”
Section 25.7.6, “Starting NDB Cluster Replication (Single Replication Channel)”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

slave_checkpoint_group
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 14.18.4, “Position-Based Synchronization Functions”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.2.2.3, “Startup Options and Replication Channels”

slave_checkpoint_period
Section 14.18.4, “Position-Based Synchronization Functions”
Section 19.1.6.3, “Replica Server Options and Variables”

slave_compressed_protocol
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 6.2.8, “Connection Compression Control”
Monitoring Binary Log Transaction Compression
Section 19.1.6.3, “Replica Server Options and Variables”
Section 1.3, “What Is New in MySQL 8.0”

slave_exec_mode
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.1.6.3, “Replica Server Options and Variables”

6324

Section 19.5.1.21, “Replication and MEMORY Tables”
Section 19.2.1.2, “Usage of Row-Based Logging and Replication”

slave_load_tmpdir
Section 19.4.1.2, “Backing Up Raw Data from a Replica”
Section 9.2, “Database Backup Methods”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section B.3.3.5, “Where MySQL Stores Temporary Files”

slave_max_allowed_packet
Behaviors When Binary Log Transaction Compression is Enabled
Section 20.3.2, “Group Replication Limitations”
Section 20.9.1, “Group Replication System Variables”
Section 20.7.5, “Message Fragmentation”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.20, “Replication and max_allowed_packet”

slave_net_timeout
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 19.1.7.1, “Checking Replication Status”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.28, “Replication and Source or Replica Shutdowns”
Section 10.14.5, “Replication I/O (Receiver) Thread States”
Section 7.1.8, “Server System Variables”

slave_parallel_type
Behaviors When Binary Log Transaction Compression is Enabled
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 20.3.1, “Group Replication Requirements”
Section 19.2.3.2, “Monitoring Replication Applier Worker Threads”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”

slave_parallel_workers
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 7.6.7.7, “Cloning for Replication”
Section 20.3.1, “Group Replication Requirements”
Section 19.1.3.2, “GTID Life Cycle”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.1.5, “MySQL Multi-Source Replication”
Section 29.12.11, “Performance Schema Replication Tables”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.20, “Replication and max_allowed_packet”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 19.2.2, “Replication Channels”
Section 10.14.6, “Replication SQL Thread States”
Section 19.2.3, “Replication Threads”
Section 15.4.2.6, “START REPLICA Statement”
Section 15.4.2.8, “STOP REPLICA Statement”
Section 29.12.11.5, “The replication_applier_status_by_worker Table”

slave_pending_jobs_size_max
Section 3.5, “Changes in MySQL 8.0”

6325

Section 10.12.3.1, “How MySQL Uses Memory”
Section 19.2.3.2, “Monitoring Replication Applier Worker Threads”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.20, “Replication and max_allowed_packet”
Section 10.14.6, “Replication SQL Thread States”

slave_preserve_commit_order
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 20.3.1, “Group Replication Requirements”
Section 19.1.3.2, “GTID Life Cycle”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.34, “Replication and Transaction Inconsistencies”
Section 10.14.5, “Replication I/O (Receiver) Thread States”
Section 15.4.2.6, “START REPLICA Statement”

slave_rows_search_algorithms
Section 3.5, “Changes in MySQL 8.0”
Section 15.1.20.10, “Invisible Columns”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.27, “Replication and Row Searches”
Section 7.1.10, “Server Status Variables”

slave_skip_errors
Section 19.1.6.3, “Replica Server Options and Variables”

slave_sql_verify_checksum
MySQL Glossary
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.4.4, “The Binary Log”

slave_transaction_retries
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.32, “Replication Retries and Timeouts”
Section 29.12.11.3, “The replication_applier_status Table”

slave_type_conversions
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 19.1.6.3, “Replica Server Options and Variables”

slow_launch_time
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

slow_query_log
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 7.4.5, “The Slow Query Log”

slow_query_log_file
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 7.4.5, “The Slow Query Log”
Section 1.3, “What Is New in MySQL 8.0”

socket
Section 7.1.8, “Server System Variables”

6326

Section 22.5.6.2, “X Plugin Options and System Variables”

sort_buffer_size
Section 9.6.3, “How to Repair MyISAM Tables”
Section 10.2.1.16, “ORDER BY Optimization”
Section 7.1.7, “Server Command Options”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 15.7.6.1, “SET Syntax for Variable Assignment”
Section 7.1.9, “Using System Variables”

source_verify_checksum
Section 19.1.6.4, “Binary Logging Options and Variables”
MySQL Glossary
Section 7.4.4, “The Binary Log”

sql_auto_is_null
Section 14.4.2, “Comparison Functions and Operators”
Section 15.1.20, “CREATE TABLE Statement”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”
Section 7.4.4, “The Binary Log”

sql_big_selects
Section 7.1.8, “Server System Variables”

sql_buffer_result
Section 7.1.8, “Server System Variables”

sql_generate_invisible_primary_key
Section 15.1.20.11, “Generated Invisible Primary Keys”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

sql_log_bin
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 20.4.1, “GTIDs and Group Replication”
Section 25.7.3, “Known Issues in NDB Cluster Replication”
Section 6.6.9, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 25.7.4, “NDB Cluster Replication Schema and Tables”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.4.1.3, “SET sql_log_bin Statement”
Section 7.1.9.1, “System Variable Privileges”
Section 30.4.4.2, “The diagnostics() Procedure”
Section 30.4.4.12, “The ps_setup_reload_saved() Procedure”
Section 30.4.4.14, “The ps_setup_save() Procedure”
Section 30.4.4.22, “The ps_trace_statement_digest() Procedure”
Section 30.4.4.23, “The ps_trace_thread() Procedure”
Section 30.4.4.25, “The statement_performance_analyzer() Procedure”
Section 19.5.3, “Upgrading a Replication Topology”
Section 1.3, “What Is New in MySQL 8.0”

sql_log_off
MySQL Glossary

6327

Section 8.2.2, “Privileges Provided by MySQL”
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.8, “Server System Variables”
Section 7.4.3, “The General Query Log”

SQL_MODE
Section 17.12.1, “Online DDL Operations”

sql_mode
Section 17.1.2, “Best Practices for InnoDB Tables”
Section 3.5, “Changes in MySQL 8.0”
Section 15.1.13, “CREATE EVENT Statement”
Section 15.1.17, “CREATE PROCEDURE and CREATE FUNCTION Statements”
Section 15.1.22, “CREATE TRIGGER Statement”
Section 14.24.3, “Expression Handling”
Section 1.5, “How to Report Bugs or Problems”
Section 15.2.9, “LOAD DATA Statement”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 1.6, “MySQL Standards Compliance”
Section 3.6, “Preparing Your Installation for Upgrade”
Section B.3.4.2, “Problems Using DATE Columns”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.11, “Server SQL Modes”
Section 7.1.8, “Server System Variables”
Section 15.7.7.13, “SHOW CREATE VIEW Statement”
Section 15.6.7.5, “SIGNAL Statement”
Section 7.4.4, “The Binary Log”
Section 28.3.48, “The INFORMATION_SCHEMA VIEWS Table”
Section 30.4.5.7, “The list_add() Function”
Section 6.2.2.2, “Using Option Files”
Section 7.1.9, “Using System Variables”

sql_notes
Section B.2, “Error Information Interfaces”
Section 7.1.8, “Server System Variables”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 15.6.7.7, “The MySQL Diagnostics Area”

sql_quote_show_create
Section 14.15, “Information Functions”
Section 7.1.8, “Server System Variables”
Section 15.7.7.6, “SHOW CREATE DATABASE Statement”
Section 15.7.7.10, “SHOW CREATE TABLE Statement”

sql_replica_skip_counter
Behaviors When Binary Log Transaction Compression is Enabled
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Skipping Transactions With SET GLOBAL sql_slave_skip_counter

sql_require_primary_key
Section 15.1.9, “ALTER TABLE Statement”
Section 15.4.2.1, “CHANGE MASTER TO Statement”
Section 15.4.2.3, “CHANGE REPLICATION SOURCE TO Statement”
Section 20.3.1, “Group Replication Requirements”
Section 19.3.3.2, “Privilege Checks For Group Replication Channels”

6328

Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 19.3.3, “Replication Privilege Checks”
Section 7.1.8, “Server System Variables”
Section 20.5.6, “Using MySQL Enterprise Backup with Group Replication”

sql_safe_updates
Section 6.5.1.6, “mysql Client Tips”
Section 10.2.1.2, “Range Optimization”
Section 7.1.8, “Server System Variables”

sql_select_limit
Section 6.5.1.6, “mysql Client Tips”
Section 7.1.8, “Server System Variables”

sql_slave_skip_counter
Behaviors When Binary Log Transaction Compression is Enabled
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.1.3.7, “Restrictions on Replication with GTIDs”
Section 15.7.7.35, “SHOW REPLICA STATUS Statement”
Skipping Transactions With SET GLOBAL sql_slave_skip_counter

sql_warnings
Section 7.1.8, “Server System Variables”

ssl
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”

ssl_ca
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 8.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 22.5.6.2, “X Plugin Options and System Variables”

ssl_capath
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 22.5.6.2, “X Plugin Options and System Variables”

ssl_cert
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 8.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Section 7.1.7, “Server Command Options”
Section 7.1.10, “Server Status Variables”

6329

Section 7.1.8, “Server System Variables”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 22.5.6.2, “X Plugin Options and System Variables”

ssl_cipher
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 6.4.3, “mysql_ssl_rsa_setup — Create SSL/RSA Files”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 22.5.6.2, “X Plugin Options and System Variables”

ssl_crl
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 22.5.6.2, “X Plugin Options and System Variables”

ssl_crlpath
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 22.5.6.2, “X Plugin Options and System Variables”

ssl_fips_mode
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.8, “FIPS Support”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

ssl_key
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”
Section 8.3.3.2, “Creating SSL Certificates and Keys Using openssl”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Section 7.1.7, “Server Command Options”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 22.5.6.2, “X Plugin Options and System Variables”

ssl_session_cache_mode
Section 8.3.5, “Reusing SSL Sessions”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

ssl_session_cache_timeout
Section 8.3.5, “Reusing SSL Sessions”
Section 7.1.8, “Server System Variables”

6330

statement_id
Section 7.1.8, “Server System Variables”

stored_program_cache
Section 10.10.3, “Caching of Prepared Statements and Stored Programs”
Section 16.4, “Dictionary Object Cache”
Section 7.1.8, “Server System Variables”

stored_program_definition_cache
Section 16.4, “Dictionary Object Cache”
Section 7.1.8, “Server System Variables”

super_read_only
Adding a Second Instance
Section 27.4.2, “Event Scheduler Configuration”
Section 20.7.7.4, “Exit Action”
Section 15.7.8.3, “FLUSH Statement”
Section 20.8.3.3, “Group Replication Online Upgrade Methods”
Section 20.4.2, “Group Replication Server States”
Section 20.9.1, “Group Replication System Variables”
Section 20.8.1.1, “Member Versions During Upgrades”
Section 20.8.3.1, “Online Upgrade Considerations”
Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 7.1.8, “Server System Variables”
Section 20.1.3.1, “Single-Primary Mode”
Section 15.4.3.1, “START GROUP_REPLICATION Statement”
Section 15.4.3.2, “STOP GROUP_REPLICATION Statement”
Section 20.8.3.2, “Upgrading a Group Replication Member”

sync_binlog
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 19.1.3.3, “GTID Auto-Positioning”
Section 17.2, “InnoDB and the ACID Model”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 19.5.1.28, “Replication and Source or Replica Shutdowns”
Section 7.4.4, “The Binary Log”

sync_master_info
Section 19.1.6.3, “Replica Server Options and Variables”

sync_relay_log
Section 19.4.2, “Handling an Unexpected Halt of a Replica”
Section 19.1.6.3, “Replica Server Options and Variables”

sync_relay_log_info
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.1.28, “Replication and Source or Replica Shutdowns”
Section 1.3, “What Is New in MySQL 8.0”

sync_source_info
Section 19.1.6.3, “Replica Server Options and Variables”

syseventlog
Section 7.4.2.8, “Error Logging to the System Log”
Section 7.1.8, “Server System Variables”

6331

system_time_zone
Section 7.1.15, “MySQL Server Time Zone Support”
Section 19.5.1.33, “Replication and Time Zones”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”

T

[index top]

table_definition_cache
Section 16.4, “Dictionary Object Cache”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 7.1.8, “Server System Variables”

table_encryption_privilege_check
Section 15.1.2, “ALTER DATABASE Statement”
Section 15.1.9, “ALTER TABLE Statement”
Section 15.1.10, “ALTER TABLESPACE Statement”
Section 15.1.12, “CREATE DATABASE Statement”
Section 15.1.20, “CREATE TABLE Statement”
Section 15.1.21, “CREATE TABLESPACE Statement”
Section 17.13, “InnoDB Data-at-Rest Encryption”
Section 19.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account”
Section 8.2.2, “Privileges Provided by MySQL”
Section 15.1.36, “RENAME TABLE Statement”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

table_open_cache
Section 3.5, “Changes in MySQL 8.0”
Section B.3.2.16, “File Not Found and Similar Errors”
Section 10.14.3, “General Thread States”
Section 10.4.3.1, “How MySQL Opens and Closes Tables”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

table_open_cache_instances
Section 7.4.1, “Selecting General Query Log and Slow Query Log Output Destinations”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

tablespace_definition_cache
Section 16.4, “Dictionary Object Cache”
Section 7.1.8, “Server System Variables”

temptable_max_mmap
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

temptable_max_ram
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 7.1.8, “Server System Variables”

6332

Section 1.3, “What Is New in MySQL 8.0”

temptable_use_mmap
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”

terminology_use_previous
Section 19.1.6.3, “Replica Server Options and Variables”
Section 19.5.2, “Replication Compatibility Between MySQL Versions”
Section 10.14.7, “Replication Connection Thread States”
Section 10.14.5, “Replication I/O (Receiver) Thread States”
Section 10.14.4, “Replication Source Thread States”
Section 10.14.6, “Replication SQL Thread States”

thread_cache_size
Section 7.1.12.1, “Connection Interfaces”
Section 7.9.1.4, “Debugging mysqld under gdb”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

thread_handling
Section 7.1.8, “Server System Variables”
Section 7.6.3.1, “Thread Pool Elements”

thread_pool_algorithm
Section 7.1.8, “Server System Variables”
Section 29.12.16.1, “The tp_thread_group_state Table”
Section 7.6.3.3, “Thread Pool Operation”
Section 7.6.3.4, “Thread Pool Tuning”

thread_pool_dedicated_listeners
Section 7.1.8, “Server System Variables”
Section 7.6.3.3, “Thread Pool Operation”

thread_pool_high_priority_connection
Section 7.1.8, “Server System Variables”
Section 7.6.3.3, “Thread Pool Operation”

thread_pool_max_active_query_threads
Section 7.1.8, “Server System Variables”
Section 7.6.3.3, “Thread Pool Operation”

thread_pool_max_transactions_limit
Section 8.2.2, “Privileges Provided by MySQL”
Section 7.1.8, “Server System Variables”
Section 7.6.3.3, “Thread Pool Operation”
Section 7.6.3.4, “Thread Pool Tuning”

thread_pool_max_unused_threads
Section 7.1.8, “Server System Variables”
Section 7.6.3.3, “Thread Pool Operation”

thread_pool_prio_kickup_timer
Section 7.1.8, “Server System Variables”

6333

Section 29.12.16.1, “The tp_thread_group_state Table”
Section 29.12.16.2, “The tp_thread_group_stats Table”
Section 7.6.3.3, “Thread Pool Operation”
Section 7.6.3.4, “Thread Pool Tuning”

thread_pool_query_threads_per_group
Section 7.1.8, “Server System Variables”
Section 7.6.3.3, “Thread Pool Operation”
Section 7.6.3.4, “Thread Pool Tuning”

thread_pool_size
Section 7.1.8, “Server System Variables”
Section 7.6.3.3, “Thread Pool Operation”

thread_pool_stall_limit
Section 7.1.8, “Server System Variables”
Section 29.12.16.1, “The tp_thread_group_state Table”
Section 29.12.16.2, “The tp_thread_group_stats Table”
Section 7.6.3.3, “Thread Pool Operation”
Section 7.6.3.4, “Thread Pool Tuning”

thread_pool_transaction_delay
Section 7.1.8, “Server System Variables”
Section 7.6.3.3, “Thread Pool Operation”

thread_stack
Section 7.1.12.1, “Connection Interfaces”
Section 10.12.3.1, “How MySQL Uses Memory”
Section 7.1.8, “Server System Variables”
Section 27.2.1, “Stored Routine Syntax”
Section 14.20.5, “Window Function Restrictions”

time_zone
Section 15.1.13, “CREATE EVENT Statement”
Section 14.7, “Date and Time Functions”
Section 11.1.3, “Date and Time Literals”
Section 27.4.4, “Event Metadata”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 7.1.15, “MySQL Server Time Zone Support”
Section 19.5.1.33, “Replication and Time Zones”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 13.2.2, “The DATE, DATETIME, and TIMESTAMP Types”
Section 7.4.3, “The General Query Log”
Section 7.4.5, “The Slow Query Log”
Section 1.3, “What Is New in MySQL 8.0”

timestamp
Section 18.8.3, “FEDERATED Storage Engine Notes and Tips”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”

tls
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”

6334

Section A.9, “MySQL 8.0 FAQ: Security”

tls_ciphersuites
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”

tls_version
Section 6.2.3, “Command Options for Connecting to the Server”
Section 8.3.1, “Configuring MySQL to Use Encrypted Connections”
Section 8.3.2, “Encrypted Connection TLS Protocols and Ciphers”
Section 20.6.2, “Securing Group Communication Connections with Secure Socket Layer (SSL)”
Section 7.1.7, “Server Command Options”
Section 7.1.10, “Server Status Variables”
Section 7.1.8, “Server System Variables”
Section 19.3.1, “Setting Up Replication to Use Encrypted Connections”
Section 22.5.3, “Using Encrypted Connections with X Plugin”

tmp_table_size
Section 10.12.3.1, “How MySQL Uses Memory”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 15.6.6.5, “Restrictions on Server-Side Cursors”
Section 7.1.8, “Server System Variables”
Type and Networking
Section 1.3, “What Is New in MySQL 8.0”

tmpdir
Section 19.4.1.2, “Backing Up Raw Data from a Replica”
Section B.3.2.11, “Can't create/write to file”
Section 9.2, “Database Backup Methods”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 10.4.4, “Internal Temporary Table Use in MySQL”
Section 2.8.7, “MySQL Source-Configuration Options”
Section 17.12.7, “Online DDL Failure Conditions”
Section 17.12.3, “Online DDL Space Requirements”
Section 10.2.1.16, “ORDER BY Optimization”
Section 19.1.6.3, “Replica Server Options and Variables”
Section 7.1.8, “Server System Variables”

transaction
Section 3.5, “Changes in MySQL 8.0”

transaction_alloc_block_size
Section 7.1.8, “Server System Variables”

transaction_allow_batching
NDB Cluster System Variables

transaction_isolation
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 7.1.18, “Server Tracking of Client Session State”
Section 15.3.7, “SET TRANSACTION Statement”

6335

transaction_prealloc_size
Section 7.1.8, “Server System Variables”

transaction_read_only
Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 7.1.18, “Server Tracking of Client Session State”
Section 15.3.7, “SET TRANSACTION Statement”

transaction_write_set_extraction
Section 19.1.6.4, “Binary Logging Options and Variables”
Section 20.3.1, “Group Replication Requirements”
Section 20.9.1, “Group Replication System Variables”

U

[index top]

unique_checks
Section 17.6.1.5, “Converting Tables from MyISAM to InnoDB”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 19.5.1.39, “Replication and Variables”
Section 7.1.8, “Server System Variables”
Section 7.4.4, “The Binary Log”

updatable_views_with_limit
Section 7.1.8, “Server System Variables”
Section 27.5.3, “Updatable and Insertable Views”

use_secondary_engine
Section 7.1.8, “Server System Variables”

V

[index top]

validate_password
Section 14.13, “Encryption and Compression Functions”
Section 8.4.3.2, “Password Validation Options and Variables”
Section 8.4.3, “The Password Validation Component”
Section 1.3, “What Is New in MySQL 8.0”

validate_password_check_user_name
Section 3.5, “Changes in MySQL 8.0”
Section 8.4.3.2, “Password Validation Options and Variables”

validate_password_dictionary_file
Section 8.4.3.2, “Password Validation Options and Variables”

validate_password_length
Section 8.4.3.2, “Password Validation Options and Variables”

validate_password_mixed_case_count
Section 8.4.3.2, “Password Validation Options and Variables”

6336

validate_password_number_count
Section 8.4.3.2, “Password Validation Options and Variables”

validate_password_policy
Section 8.4.3.2, “Password Validation Options and Variables”

validate_password_special_char_count
Section 8.4.3.2, “Password Validation Options and Variables”

version
Section 8.4.5.4, “Audit Log File Formats”
Section 14.15, “Information Functions”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 7.1.8, “Server System Variables”

version_comment
Section 2.8.7, “MySQL Source-Configuration Options”
Section 7.1.8, “Server System Variables”
Section 15.7.7.41, “SHOW VARIABLES Statement”

version_compile_machine
Section 7.1.8, “Server System Variables”

version_compile_os
Section 7.1.8, “Server System Variables”

version_compile_zlib
Section 7.1.8, “Server System Variables”

version_tokens_session
Section 7.6.6.3, “Using Version Tokens”
Section 7.6.6.4, “Version Tokens Reference”

version_tokens_session_number
Section 7.6.6.4, “Version Tokens Reference”

W

[index top]

wait_timeout
Section B.3.2.9, “Communication Errors and Aborted Connections”
Section 20.5.3.2, “Configuring Transaction Consistency Guarantees”
Section B.3.2.7, “MySQL server has gone away”
Section 7.6.7.9, “Remote Cloning Operation Failure Handling”
Section 7.1.8, “Server System Variables”

warning_count
Section B.2, “Error Information Interfaces”
Section 15.5, “Prepared Statements”
Section 7.1.8, “Server System Variables”
Section 15.7.7.17, “SHOW ERRORS Statement”
Section 15.7.7.42, “SHOW WARNINGS Statement”
Section 15.6.7.5, “SIGNAL Statement”

6337

Section 15.6.7.7, “The MySQL Diagnostics Area”

windowing_use_high_precision
Section 7.1.8, “Server System Variables”
Section 10.2.1.21, “Window Function Optimization”

X

[index top]

xa_detach_on_prepare
Section 20.3.1, “Group Replication Requirements”
Section 7.1.8, “Server System Variables”
Section 1.3, “What Is New in MySQL 8.0”
Section 15.3.8.2, “XA Transaction States”

Transaction Isolation Level Index
R | S

R

[index top]

READ COMMITTED
Section 17.7.2.3, “Consistent Nonlocking Reads”
Section 25.4.3.6, “Defining NDB Cluster Data Nodes”
Section 25.2.6.1, “Differences Between the NDB and InnoDB Storage Engines”
Section 20.3.2, “Group Replication Limitations”
Section 17.7.5.3, “How to Minimize and Handle Deadlocks”
Section 17.7.1, “InnoDB Locking”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section A.1, “MySQL 8.0 FAQ: General”
Section A.10, “MySQL 8.0 FAQ: NDB Cluster”
Section 25.2.6.3, “NDB and InnoDB Feature Usage Summary”
Section 10.5.2, “Optimizing InnoDB Transaction Management”
Section 15.3.7, “SET TRANSACTION Statement”
Section 7.4.4.2, “Setting The Binary Log Format”
Section 29.12.7.1, “The events_transactions_current Table”
Section 17.7.2.1, “Transaction Isolation Levels”
Section 1.3, “What Is New in MySQL 8.0”
Section 25.2.4, “What is New in MySQL NDB Cluster 8.0”

READ UNCOMMITTED
Section 17.7.2.3, “Consistent Nonlocking Reads”
Including Delete-marked Records in Persistent Statistics Calculations
Section 17.20.2, “InnoDB memcached Architecture”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 17.20.6.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 15.3.7, “SET TRANSACTION Statement”
Section 7.4.4.2, “Setting The Binary Log Format”
Section 29.12.7.1, “The events_transactions_current Table”
Section 17.7.2.1, “Transaction Isolation Levels”

6338

READ-COMMITTED
Section 7.1.7, “Server Command Options”
Section 15.3.7, “SET TRANSACTION Statement”

READ-UNCOMMITTED
Section 7.1.7, “Server Command Options”
Section 15.3.7, “SET TRANSACTION Statement”

REPEATABLE READ
Section 17.7.2.3, “Consistent Nonlocking Reads”
Section 17.20.6.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 20.3.2, “Group Replication Limitations”
Section 17.7.1, “InnoDB Locking”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 6.5.4, “mysqldump — A Database Backup Program”
Section 6.5.6, “mysqlpump — A Database Backup Program”
Section 10.5.2, “Optimizing InnoDB Transaction Management”
Section 29.12.7, “Performance Schema Transaction Tables”
Section 15.3.7, “SET TRANSACTION Statement”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 29.12.7.1, “The events_transactions_current Table”
Section 17.7.2.1, “Transaction Isolation Levels”
Section 1.3, “What Is New in MySQL 8.0”
Section 15.3.8, “XA Transactions”

REPEATABLE-READ
Section 7.1.7, “Server Command Options”
Section 7.1.8, “Server System Variables”
Section 15.3.7, “SET TRANSACTION Statement”

S

[index top]

SERIALIZABLE
Section 8.2.3, “Grant Tables”
Section 20.3.2, “Group Replication Limitations”
Section 17.7.1, “InnoDB Locking”
Section 17.14, “InnoDB Startup Options and System Variables”
Section 25.2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”
Section 17.7.3, “Locks Set by Different SQL Statements in InnoDB”
Section 7.4.4.3, “Mixed Binary Logging Format”
Section 29.12.7, “Performance Schema Transaction Tables”
Section 7.1.7, “Server Command Options”
Section 15.3.7, “SET TRANSACTION Statement”
Section 15.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Statements”
Section 29.12.7.1, “The events_transactions_current Table”
Section 17.7.2.1, “Transaction Isolation Levels”
Section 15.3.8, “XA Transactions”

6339

6340

MySQL Glossary

These terms are commonly used in information about the MySQL database server.

A

.ARM file
 Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in
backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARZ file, MySQL Enterprise Backup, mysqlbackup command.

.ARZ file
 Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARM file, MySQL Enterprise Backup, mysqlbackup command.

ACID
 An acronym standing for atomicity, consistency, isolation, and durability. These properties are all desirable
in a database system, and are all closely tied to the notion of a transaction. The transactional features of
InnoDB adhere to the ACID principles.

Transactions are atomic units of work that can be committed or rolled back. When a transaction makes
multiple changes to the database, either all the changes succeed when the transaction is committed, or all the
changes are undone when the transaction is rolled back.

The database remains in a consistent state at all times — after each commit or rollback, and while
transactions are in progress. If related data is being updated across multiple tables, queries see either all old
values or all new values, not a mix of old and new values.

Transactions are protected (isolated) from each other while they are in progress; they cannot interfere with
each other or see each other's uncommitted data. This isolation is achieved through the locking mechanism.
Experienced users can adjust the isolation level, trading off less protection in favor of increased performance
and concurrency, when they can be sure that the transactions really do not interfere with each other.

The results of transactions are durable: once a commit operation succeeds, the changes made by that
transaction are safe from power failures, system crashes, race conditions, or other potential dangers that
many non-database applications are vulnerable to. Durability typically involves writing to disk storage, with a
certain amount of redundancy to protect against power failures or software crashes during write operations.
(In InnoDB, the doublewrite buffer assists with durability.)
See Also atomic, commit, concurrency, doublewrite buffer, isolation level, locking, rollback, transaction.

adaptive flushing
 An algorithm for InnoDB tables that smooths out the I/O overhead introduced by checkpoints. Instead of
flushing all modified pages from the buffer pool to the data files at once, MySQL periodically flushes small
sets of modified pages. The adaptive flushing algorithm extends this process by estimating the optimal rate to
perform these periodic flushes, based on the rate of flushing and how fast redo information is generated.
See Also buffer pool, checkpoint, data files, flush, InnoDB, page, redo log.

adaptive hash index
 An optimization for InnoDB tables that can speed up lookups using = and IN operators, by constructing
a hash index in memory. MySQL monitors index searches for InnoDB tables, and if queries could
benefit from a hash index, it builds one automatically for index pages that are frequently accessed.
In a sense, the adaptive hash index configures MySQL at runtime to take advantage of ample main
memory, coming closer to the architecture of main-memory databases. This feature is controlled by the
innodb_adaptive_hash_index configuration option. Because this feature benefits some workloads
and not others, and the memory used for the hash index is reserved in the buffer pool, typically you should
benchmark with this feature both enabled and disabled.

6341

The hash index is always built based on an existing B-tree index on the table. MySQL can build a hash index
on a prefix of any length of the key defined for the B-tree, depending on the pattern of searches against the
index. A hash index can be partial; the whole B-tree index does not need to be cached in the buffer pool.
See Also B-tree, buffer pool, hash index, page, secondary index.

ADO.NET
 An object-relational mapping (ORM) framework for applications built using .NET technologies such as
ASP.NET. Such applications can interface with MySQL through the Connector/NET component.
See Also .NET, ASP.net, Connector/NET, Mono, Visual Studio.

AIO
 Acronym for asynchronous I/O. You might see this acronym in InnoDB messages or keywords.
See Also asynchronous I/O.

ANSI
 In ODBC, an alternative method of supporting character sets and other internationalization aspects. Contrast
with Unicode. Connector/ODBC 3.51 is an ANSI driver, while Connector/ODBC 5.1 is a Unicode driver.
See Also Connector/ODBC, ODBC, Unicode.

API
 APIs provide low-level access to the MySQL protocol and MySQL resources from client programs. Contrast
with the higher-level access provided by a Connector.
See Also C API, client, connector, native C API, Perl API, PHP API, Python API, Ruby API.

application programming interface (API)
 A set of functions or procedures. An API provides a stable set of names and types for functions, procedures,
parameters, and return values.

apply
 When a backup produced by the MySQL Enterprise Backup product does not include the most recent
changes that occurred while the backup was underway, the process of updating the backup files to include
those changes is known as the apply step. It is specified by the apply-log option of the mysqlbackup
command.

Before the changes are applied, we refer to the files as a raw backup. After the changes are applied, we refer
to the files as a prepared backup. The changes are recorded in the ibbackup_logfile file; once the apply
step is finished, this file is no longer necessary.
See Also hot backup, ibbackup_logfile, MySQL Enterprise Backup, prepared backup, raw backup.

AS
 A Kerberos authentication server. AS can also refer to the authentication service provided by an
authentication server.
See Also authentication server.

ASP.net
 A framework for developing web-based applications using .NET technologies and languages. Such
applications can interface with MySQL through the Connector/NET component.

Another technology for writing server-side web pages with MySQL is PHP.
See Also .NET, ADO.NET, Connector/NET, Mono, PHP, Visual Studio.

assembly
 A library of compiled code in a .NET system, accessed through Connector/NET. Stored in the GAC to allow
versioning without naming conflicts.
See Also .NET, GAC.

asynchronous I/O
 A type of I/O operation that allows other processing to proceed before the I/O is completed. Also known as
nonblocking I/O and abbreviated as AIO. InnoDB uses this type of I/O for certain operations that can run in
parallel without affecting the reliability of the database, such as reading pages into the buffer pool that have
not actually been requested, but might be needed soon.

6342

Historically, InnoDB used asynchronous I/O on Windows systems only. Starting with the InnoDB Plugin 1.1
and MySQL 5.5, InnoDB uses asynchronous I/O on Linux systems. This change introduces a dependency
on libaio. Asynchronous I/O on Linux systems is configured using the innodb_use_native_aio option,
which is enabled by default. On other Unix-like systems, InnoDB uses synchronous I/O only.
See Also buffer pool, nonblocking I/O.

atomic
 In the SQL context, transactions are units of work that either succeed entirely (when committed) or have
no effect at all (when rolled back). The indivisible ("atomic") property of transactions is the “A” in the acronym
ACID.
See Also ACID, commit, rollback, transaction.

atomic DDL
 An atomic DDL statement is one that combines the data dictionary updates, storage engine operations, and
binary log writes associated with a DDL operation into a single, atomic transaction. The transaction is either
fully committed or rolled back, even if the server halts during the operation. Atomic DDL support was added in
MySQL 8.0. For more information, see Section 15.1.1, “Atomic Data Definition Statement Support”.
See Also binary log, data dictionary, DDL, storage engine.

atomic instruction
 Special instructions provided by the CPU, to ensure that critical low-level operations cannot be interrupted.

authentication server
 In Kerberos, a service that provides the initial ticket needed to obtain a ticket-granting ticket (TGT) that is
needed to obtain other tickets from the ticket-granting server (TGS). The authentication server (AS) combined
with a TGS make up a key distribution center (KDC).
See Also key distribution center, ticket-granting server.

auto-increment
 A property of a table column (specified by the AUTO_INCREMENT keyword) that automatically adds an
ascending sequence of values in the column.

It saves work for the developer, not to have to produce new unique values when inserting new rows. It
provides useful information for the query optimizer, because the column is known to be not null and with
unique values. The values from such a column can be used as lookup keys in various contexts, and because
they are auto-generated there is no reason to ever change them; for this reason, primary key columns are
often specified as auto-incrementing.

Auto-increment columns can be problematic with statement-based replication, because replaying the
statements on a replica might not produce the same set of column values as on the source, due to timing
issues. When you have an auto-incrementing primary key, you can use statement-based replication only
with the setting innodb_autoinc_lock_mode=1. If you have innodb_autoinc_lock_mode=2, which
allows higher concurrency for insert operations, use row-based replication rather than statement-based
replication. The setting innodb_autoinc_lock_mode=0 should not be used except for compatibility
purposes.

Consecutive lock mode (innodb_autoinc_lock_mode=1) is the default setting prior to MySQL 8.0.3. As
of MySQL 8.0.3, interleaved lock mode (innodb_autoinc_lock_mode=2) is the default, which reflects the
change from statement-based to row-based replication as the default replication type.
See Also auto-increment locking, innodb_autoinc_lock_mode, primary key, row-based replication, statement-
based replication.

auto-increment locking
 The convenience of an auto-increment primary key involves some tradeoff with concurrency. In the simplest
case, if one transaction is inserting values into the table, any other transactions must wait to do their own
inserts into that table, so that rows inserted by the first transaction receive consecutive primary key values.
InnoDB includes optimizations and the innodb_autoinc_lock_mode option so that you can configure and
optimal balance between predictable sequences of auto-increment values and maximum concurrency for
insert operations.
See Also auto-increment, concurrency, innodb_autoinc_lock_mode.

6343

autocommit
 A setting that causes a commit operation after each SQL statement. This mode is not recommended for
working with InnoDB tables with transactions that span several statements. It can help performance for
read-only transactions on InnoDB tables, where it minimizes overhead from locking and generation of
undo data, especially in MySQL 5.6.4 and up. It is also appropriate for working with MyISAM tables, where
transactions are not applicable.
See Also commit, locking, read-only transaction, SQL, transaction, undo.

availability
 The ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL, the
operating system, or the hardware and maintenance activity that may otherwise cause downtime. Often paired
with scalability as critical aspects of a large-scale deployment.
See Also scalability.

MySQL Enterprise Backup
 A licensed product that performs hot backups of MySQL databases. It offers the most efficiency and
flexibility when backing up InnoDB tables, but can also back up MyISAM and other kinds of tables.
See Also hot backup, InnoDB.

B
B-tree

 A tree data structure that is popular for use in database indexes. The structure is kept sorted at all times,
enabling fast lookup for exact matches (equals operator) and ranges (for example, greater than, less than,
and BETWEEN operators). This type of index is available for most storage engines, such as InnoDB and
MyISAM.

Because B-tree nodes can have many children, a B-tree is not the same as a binary tree, which is limited to 2
children per node.

Contrast with hash index, which is only available in the MEMORY storage engine. The MEMORY storage engine
can also use B-tree indexes, and you should choose B-tree indexes for MEMORY tables if some queries use
range operators.

The use of the term B-tree is intended as a reference to the general class of index design. B-tree structures
used by MySQL storage engines may be regarded as variants due to sophistications not present in a classic
B-tree design. For related information, refer to the InnoDB Page Structure Fil Header section of the MySQL
Internals Manual.
See Also hash index.

backticks
 Identifiers within MySQL SQL statements must be quoted using the backtick character (`) if they contain
special characters or reserved words. For example, to refer to a table named FOO#BAR or a column named
SELECT, you would specify the identifiers as `FOO#BAR` and `SELECT`. Since the backticks provide an
extra level of safety, they are used extensively in program-generated SQL statements, where the identifier
names might not be known in advance.

Many other database systems use double quotation marks (") around such special names. For portability, you
can enable ANSI_QUOTES mode in MySQL and use double quotation marks instead of backticks to qualify
identifier names.
See Also SQL.

backup
 The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can
also refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore
operation.

With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical
backups are performed by the mysqldump command. These techniques have different characteristics in
terms of size and representation of the backup data, and speed (especially speed of the restore operation).

6344

https://dev.mysql.com/doc/internals/en/innodb-fil-header.html
https://dev.mysql.com/doc/internals/en/index.html
https://dev.mysql.com/doc/internals/en/index.html

Backups are further classified as hot, warm, or cold depending on how much they interfere with normal
database operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, MySQL Enterprise Backup, mysqldump, physical backup,
warm backup.

base column
 A non-generated table column upon which a stored generated column or virtual generated column is based.
In other words, a base column is a non-generated table column that is part of a generated column definition.
See Also generated column, stored generated column, virtual generated column.

beta
 An early stage in the life of a software product, when it is available only for evaluation, typically without a
definite release number or a number less than 1. InnoDB does not use the beta designation, preferring an
early adopter phase that can extend over several point releases, leading to a GA release.
See Also early adopter, GA.

binary log
 A file containing a record of all statements or row changes that attempt to change table data. The contents of
the binary log can be replayed to bring replicas up to date in a replication scenario, or to bring a database up
to date after restoring table data from a backup. The binary logging feature can be turned on and off, although
Oracle recommends always enabling it if you use replication or perform backups.

You can examine the contents of the binary log, or replay it during replication or recovery, by using the
mysqlbinlog command. For full information about the binary log, see Section 7.4.4, “The Binary Log”. For
MySQL configuration options related to the binary log, see Section 19.1.6.4, “Binary Logging Options and
Variables”.

For the MySQL Enterprise Backup product, the file name of the binary log and the current position within
the file are important details. To record this information for the source when taking a backup in a replication
context, you can specify the --slave-info option.

Prior to MySQL 5.0, a similar capability was available, known as the update log. In MySQL 5.0 and higher, the
binary log replaces the update log.
See Also binlog, MySQL Enterprise Backup, replication.

binlog
 An informal name for the binary log file. For example, you might see this abbreviation used in e-mail
messages or forum discussions.
See Also binary log.

blind query expansion
 A special mode of full-text search enabled by the WITH QUERY EXPANSION clause. It performs the search
twice, where the search phrase for the second search is the original search phrase concatenated with the
few most highly relevant documents from the first search. This technique is mainly applicable for short search
phrases, perhaps only a single word. It can uncover relevant matches where the precise search term does not
occur in the document.
See Also full-text search.

BLOB
 An SQL data type (TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB) for objects containing any kind of
binary data, of arbitrary size. Used for storing documents, images, sound files, and other kinds of information
that cannot easily be decomposed to rows and columns within a MySQL table. The techniques for handling
BLOBs within a MySQL application vary with each Connector and API. MySQL Connector/ODBC defines
BLOB values as LONGVARBINARY. For large, free-form collections of character data, the industry term is
CLOB, represented by the MySQL TEXT data types.
See Also API, CLOB, connector, Connector/ODBC.

bottleneck
 A portion of a system that is constrained in size or capacity, that has the effect of limiting overall throughput.
For example, a memory area might be smaller than necessary; access to a single required resource might

6345

prevent multiple CPU cores from running simultaneously; or waiting for disk I/O to complete might prevent the
CPU from running at full capacity. Removing bottlenecks tends to improve concurrency. For example, the
ability to have multiple InnoDB buffer pool instances reduces contention when multiple sessions read from
and write to the buffer pool simultaneously.
See Also buffer pool, concurrency.

bounce
 A shutdown operation immediately followed by a restart. Ideally with a relatively short warmup period so
that performance and throughput quickly return to a high level.
See Also shutdown.

buddy allocator
 A mechanism for managing different-sized pages in the InnoDB buffer pool.
See Also buffer pool, page, page size.

buffer
 A memory or disk area used for temporary storage. Data is buffered in memory so that it can be written
to disk efficiently, with a few large I/O operations rather than many small ones. Data is buffered on disk for
greater reliability, so that it can be recovered even when a crash or other failure occurs at the worst possible
time. The main types of buffers used by InnoDB are the buffer pool, the doublewrite buffer, and the change
buffer.
See Also buffer pool, change buffer, crash, doublewrite buffer.

buffer pool
 The memory area that holds cached InnoDB data for both tables and indexes. For efficiency of high-volume
read operations, the buffer pool is divided into pages that can potentially hold multiple rows. For efficiency of
cache management, the buffer pool is implemented as a linked list of pages; data that is rarely used is aged
out of the cache, using a variation of the LRU algorithm. On systems with large memory, you can improve
concurrency by dividing the buffer pool into multiple buffer pool instances.

Several InnoDB status variables, INFORMATION_SCHEMA tables, and performance_schema tables
help to monitor the internal workings of the buffer pool. Starting in MySQL 5.6, you can avoid a lengthy
warmup period after restarting the server, particularly for instances with large buffer pools, by saving the
buffer pool state at server shutdown and restoring the buffer pool to the same state at server startup. See
Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”.
See Also buffer pool instance, LRU, page, warm up.

buffer pool instance
 Any of the multiple regions into which the buffer pool can be divided, controlled by the
innodb_buffer_pool_instances configuration option. The total memory size specified by
innodb_buffer_pool_size is divided among all buffer pool instances. Typically, having multiple buffer
pool instances is appropriate for systems that allocate multiple gigabytes to the InnoDB buffer pool, with each
instance being one gigabyte or larger. On systems loading or looking up large amounts of data in the buffer
pool from many concurrent sessions, having multiple buffer pool instances reduces contention for exclusive
access to data structures that manage the buffer pool.
See Also buffer pool.

built-in
 The built-in InnoDB storage engine within MySQL is the original form of distribution for the storage engine.
Contrast with the InnoDB Plugin. Starting with MySQL 5.5, the InnoDB Plugin is merged back into the
MySQL code base as the built-in InnoDB storage engine (known as InnoDB 1.1).

This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin
but not the built-in InnoDB, or vice versa.
See Also InnoDB.

business rules
 The relationships and sequences of actions that form the basis of business software, used to run a
commercial company. Sometimes these rules are dictated by law, other times by company policy. Careful

6346

planning ensures that the relationships encoded and enforced by the database, and the actions performed
through application logic, accurately reflect the real policies of the company and can handle real-life situations.

For example, an employee leaving a company might trigger a sequence of actions from the human resources
department. The human resources database might also need the flexibility to represent data about a person
who has been hired, but not yet started work. Closing an account at an online service might result in data
being removed from a database, or the data might be moved or flagged so that it could be recovered if the
account is re-opened. A company might establish policies regarding salary maximums, minimums, and
adjustments, in addition to basic sanity checks such as the salary not being a negative number. A retail
database might not allow a purchase with the same serial number to be returned more than once, or might not
allow credit card purchases above a certain value, while a database used to detect fraud might allow these
kinds of things.
See Also relational.

C
.cfg file

 A metadata file used with the InnoDB transportable tablespace feature. It is produced by the command
FLUSH TABLES ... FOR EXPORT, puts one or more tables in a consistent state that can be copied to
another server. The .cfg file is copied along with the corresponding .ibd file, and used to adjust the internal
values of the .ibd file, such as the space ID, during the ALTER TABLE ... IMPORT TABLESPACE step.
See Also .ibd file, space ID, transportable tablespace.

C
 A programming language that combines portability with performance and access to low-level hardware
features, making it a popular choice for writing operating systems, drivers, and other kinds of system software.
Many complex applications, languages, and reusable modules feature pieces written in C, tied together with
high-level components written in other languages. Its core syntax is familiar to C++, Java, and C# developers.
See Also C API, C++, C#, Java.

C API
 The C API code is distributed with MySQL. It is included in the libmysqlclient library and enables C
programs to access a database.
See Also API, C, libmysqlclient.

C#
 A programming language combining strong typing and object-oriented features, running within the Microsoft
.NET framework or its open-source counterpart Mono. Often used for creating applications with the ASP.net
framework. Its syntax is familiar to C, C++ and Java developers.
See Also .NET, ASP.net, C, Connector/NET, C++, Java, Mono.

C++
 A programming language with core syntax familiar to C developers. Provides access to low-level operations
for performance, combined with higher-level data types, object-oriented features, and garbage collection. To
write C++ applications for MySQL, you use the Connector/C++ component.
See Also C, Connector/C++.

cache
 The general term for any memory area that stores copies of data for frequent or high-speed retrieval. In
InnoDB, the primary kind of cache structure is the buffer pool.
See Also buffer, buffer pool.

cardinality
 The number of different values in a table column. When queries refer to columns that have an associated
index, the cardinality of each column influences which access method is most efficient. For example, for a
column with a unique constraint, the number of different values is equal to the number of rows in the table. If
a table has a million rows but only 10 different values for a particular column, each value occurs (on average)
100,000 times. A query such as SELECT c1 FROM t1 WHERE c1 = 50; thus might return 1 row or a huge

6347

number of rows, and the database server might process the query differently depending on the cardinality of
c1.

If the values in a column have a very uneven distribution, the cardinality might not be a good way to determine
the best query plan. For example, SELECT c1 FROM t1 WHERE c1 = x; might return 1 row when x=50
and a million rows when x=30. In such a case, you might need to use index hints to pass along advice about
which lookup method is more efficient for a particular query.

Cardinality can also apply to the number of distinct values present in multiple columns, as in a composite
index.
See Also column, composite index, index, index hint, persistent statistics, random dive, selectivity, unique
constraint.

change buffer
 A special data structure that records changes to pages in secondary indexes. These values could result
from SQL INSERT, UPDATE, or DELETE statements (DML). The set of features involving the change buffer
is known collectively as change buffering, consisting of insert buffering, delete buffering, and purge
buffering.

Changes are only recorded in the change buffer when the relevant page from the secondary index is not in
the buffer pool. When the relevant index page is brought into the buffer pool while associated changes are
still in the change buffer, the changes for that page are applied in the buffer pool (merged) using the data
from the change buffer. Periodically, the purge operation that runs during times when the system is mostly
idle, or during a slow shutdown, writes the new index pages to disk. The purge operation can write the disk
blocks for a series of index values more efficiently than if each value were written to disk immediately.

Physically, the change buffer is part of the system tablespace, so that the index changes remain buffered
across database restarts. The changes are only applied (merged) when the pages are brought into the buffer
pool due to some other read operation.

The kinds and amount of data stored in the change buffer are governed by the innodb_change_buffering
and innodb_change_buffer_max_size configuration options. To see information about the current data
in the change buffer, issue the SHOW ENGINE INNODB STATUS command.

Formerly known as the insert buffer.
See Also buffer pool, change buffering, delete buffering, DML, insert buffer, insert buffering, merge, page,
purge, purge buffering, secondary index, system tablespace.

change buffering
 The general term for the features involving the change buffer, consisting of insert buffering, delete
buffering, and purge buffering. Index changes resulting from SQL statements, which could normally
involve random I/O operations, are held back and performed periodically by a background thread.
This sequence of operations can write the disk blocks for a series of index values more efficiently than
if each value were written to disk immediately. Controlled by the innodb_change_buffering and
innodb_change_buffer_max_size configuration options.
See Also change buffer, delete buffering, insert buffering, purge buffering.

checkpoint
 As changes are made to data pages that are cached in the buffer pool, those changes are written to the
data files sometime later, a process known as flushing. The checkpoint is a record of the latest changes
(represented by an LSN value) that have been successfully written to the data files.
See Also buffer pool, data files, flush, fuzzy checkpointing, LSN.

checksum
 In InnoDB, a validation mechanism to detect corruption when a page in a tablespace is read
from disk into the InnoDB buffer pool. This feature is controlled by the innodb_checksums
configuration option in MySQL 5.5. innodb_checksums is deprecated in MySQL 5.6.3, replaced by
innodb_checksum_algorithm.

The innochecksum command helps diagnose corruption problems by testing the checksum values for a
specified tablespace file while the MySQL server is shut down.

6348

MySQL also uses checksums for replication purposes. For details, see the configuration options
binlog_checksum, source_verify_checksum or master_verify_checksum, and
replica_sql_verify_checksum or slave_sql_verify_checksum.
See Also buffer pool, page, tablespace.

child table
 In a foreign key relationship, a child table is one whose rows refer (or point) to rows in another table with an
identical value for a specific column. This is the table that contains the FOREIGN KEY ... REFERENCES
clause and optionally ON UPDATE and ON DELETE clauses. The corresponding row in the parent table
must exist before the row can be created in the child table. The values in the child table can prevent delete or
update operations on the parent table, or can cause automatic deletion or updates in the child table, based on
the ON CASCADE option used when creating the foreign key.
See Also foreign key, parent table.

clean page
 A page in the InnoDB buffer pool where all changes made in memory have also been written (flushed) to
the data files. The opposite of a dirty page.
See Also buffer pool, data files, dirty page, flush, page.

clean shutdown
 A shutdown that completes without errors and applies all changes to InnoDB tables before finishing, as
opposed to a crash or a fast shutdown. Synonym for slow shutdown.
See Also crash, fast shutdown, shutdown, slow shutdown.

client
 A program that runs outside the database server, communicating with the database by sending requests
through a Connector, or an API made available through client libraries. It can run on the same physical
machine as the database server, or on a remote machine connected over a network. It can be a special-
purpose database application, or a general-purpose program like the mysql command-line processor.
See Also API, client libraries, connector, mysql, server.

client libraries
 Files containing collections of functions for working with databases. By compiling your program with these
libraries, or installing them on the same system as your application, you can run a database application
(known as a client) on a machine that does not have the MySQL server installed; the application accesses
the database over a network. With MySQL, you can use the libmysqlclient library from the MySQL server
itself.
See Also client, libmysqlclient.

client-side prepared statement
 A type of prepared statement where the caching and reuse are managed locally, emulating the functionality
of server-side prepared statements. Historically, used by some Connector/J, Connector/ODBC, and
Connector/PHP developers to work around issues with server-side stored procedures. With modern MySQL
server versions, server-side prepared statements are recommended for performance, scalability, and memory
efficiency.
See Also Connector/J, Connector/ODBC, Connector/PHP, prepared statement.

CLOB
 An SQL data type (TINYTEXT, TEXT, MEDIUMTEXT, or LONGTEXT) for objects containing any kind of
character data, of arbitrary size. Used for storing text-based documents, with associated character set and
collation order. The techniques for handling CLOBs within a MySQL application vary with each Connector
and API. MySQL Connector/ODBC defines TEXT values as LONGVARCHAR. For storing binary data, the
equivalent is the BLOB type.
See Also API, BLOB, connector, Connector/ODBC.

clustered index
 The InnoDB term for a primary key index. InnoDB table storage is organized based on the values of the
primary key columns, to speed up queries and sorts involving the primary key columns. For best performance,
choose the primary key columns carefully based on the most performance-critical queries. Because modifying

6349

the columns of the clustered index is an expensive operation, choose primary columns that are rarely or never
updated.

In the Oracle Database product, this type of table is known as an index-organized table.
See Also index, primary key, secondary index.

cold backup
 A backup taken while the database is shut down. For busy applications and websites, this might not be
practical, and you might prefer a warm backup or a hot backup.
See Also backup, hot backup, warm backup.

column
 A data item within a row, whose storage and semantics are defined by a data type. Each table and index is
largely defined by the set of columns it contains.

Each column has a cardinality value. A column can be the primary key for its table, or part of the primary
key. A column can be subject to a unique constraint, a NOT NULL constraint, or both. Values in different
columns, even across different tables, can be linked by a foreign key relationship.

In discussions of MySQL internal operations, sometimes field is used as a synonym.
See Also cardinality, foreign key, index, NOT NULL constraint, primary key, row, table, unique constraint.

column index
 An index on a single column.
See Also composite index, index.

column prefix
 When an index is created with a length specification, such as CREATE INDEX idx ON t1 (c1(N)), only
the first N characters of the column value are stored in the index. Keeping the index prefix small makes the
index compact, and the memory and disk I/O savings help performance. (Although making the index prefix too
small can hinder query optimization by making rows with different values appear to the query optimizer to be
duplicates.)

For columns containing binary values or long text strings, where sorting is not a major consideration and
storing the entire value in the index would waste space, the index automatically uses the first N (typically 768)
characters of the value to do lookups and sorts.
See Also index.

command interceptor
 Synonym for statement interceptor. One aspect of the interceptor design pattern available for both
Connector/NET and Connector/J. What Connector/NET calls a command, Connector/J refers to as a
statement. Contrast with exception interceptor.
See Also Connector/J, Connector/NET, exception interceptor, interceptor, statement interceptor.

commit
 A SQL statement that ends a transaction, making permanent any changes made by the transaction. It is the
opposite of rollback, which undoes any changes made in the transaction.

InnoDB uses an optimistic mechanism for commits, so that changes can be written to the data files before
the commit actually occurs. This technique makes the commit itself faster, with the tradeoff that more work is
required in case of a rollback.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement.
See Also autocommit, optimistic, rollback, SQL, transaction.

compact row format
 A row format for InnoDB tables. It was the default row format from MySQL 5.0.3 to MySQL 5.7.8. In MySQL
8.0, the default row format is defined by the innodb_default_row_format configuration option, which has
a default setting of DYNAMIC. The COMPACT row format provides a more compact representation for nulls
and variable-length columns than the REDUNDANT row format.

6350

For additional information about InnoDB COMPACT row format, see Section 17.10, “InnoDB Row Formats”.
See Also dynamic row format, file format, redundant row format, row format.

composite index
 An index that includes multiple columns.
See Also index.

compressed backup
 The compression feature of the MySQL Enterprise Backup product makes a compressed copy of each
tablespace, changing the extension from .ibd to .ibz. Compressing backup data allows you to keep more
backups on hand, and reduces the time to transfer backups to a different server. The data is uncompressed
during the restore operation. When a compressed backup operation processes a table that is already
compressed, it skips the compression step for that table, because compressing again would result in little or
no space savings.

A set of files produced by the MySQL Enterprise Backup product, where each tablespace is compressed.
The compressed files are renamed with a .ibz file extension.

Applying compression at the start of the backup process helps to avoid storage overhead during the
compression process, and to avoid network overhead when transferring the backup files to another server.
The process of applying the binary log takes longer, and requires uncompressing the backup files.
See Also apply, binary log, compression, hot backup, MySQL Enterprise Backup, tablespace.

compressed row format
 A row format that enables data and index compression for InnoDB tables. Large fields are stored
away from the page that holds the rest of the row data, as in dynamic row format. Both index pages and
the large fields are compressed, yielding memory and disk savings. Depending on the structure of the
data, the decrease in memory and disk usage might or might not outweigh the performance overhead of
uncompressing the data as it is used. See Section 17.9, “InnoDB Table and Page Compression” for usage
details.

For additional information about InnoDB COMPRESSED row format, see DYNAMIC Row Format.
See Also compression, dynamic row format, row format.

compressed table
 A table for which the data is stored in compressed form. For InnoDB, it is a table created with
ROW_FORMAT=COMPRESSED. See Section 17.9, “InnoDB Table and Page Compression” for more information.
See Also compressed row format, compression.

compression
 A feature with wide-ranging benefits from using less disk space, performing less I/O, and using less memory
for caching.

InnoDB supports both table-level and page-level compression. InnoDB page compression is also referred
to as transparent page compression. For more information about InnoDB compression, see Section 17.9,
“InnoDB Table and Page Compression”.

Another type of compression is the compressed backup feature of the MySQL Enterprise Backup product.
See Also buffer pool, compressed backup, compressed row format, DML, transparent page compression.

compression failure
 Not actually an error, rather an expensive operation that can occur when using compression in
combination with DML operations. It occurs when: updates to a compressed page overflow the area
on the page reserved for recording modifications; the page is compressed again, with all changes
applied to the table data; the re-compressed data does not fit on the original page, requiring MySQL
to split the data into two new pages and compress each one separately. To check the frequency
of this condition, query the INFORMATION_SCHEMA.INNODB_CMP table and check how much the
value of the COMPRESS_OPS column exceeds the value of the COMPRESS_OPS_OK column. Ideally,
compression failures do not occur often; when they do, you can adjust the innodb_compression_level,
innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max
configuration options.

6351

See Also compression, DML, page.

concatenated index
See composite index.

concurrency
 The ability of multiple operations (in database terminology, transactions) to run simultaneously, without
interfering with each other. Concurrency is also involved with performance, because ideally the protection
for multiple simultaneous transactions works with a minimum of performance overhead, using efficient
mechanisms for locking.
See Also ACID, locking, transaction.

configuration file
 The file that holds the option values used by MySQL at startup. Traditionally, on Linux and Unix this file is
named my.cnf, and on Windows it is named my.ini. You can set a number of options related to InnoDB
under the [mysqld] section of the file.

See Section 6.2.2.2, “Using Option Files” for information about where MySQL searches for configuration files.

When you use the MySQL Enterprise Backup product, you typically use two configuration files: one that
specifies where the data comes from and how it is structured (which could be the original configuration file for
your server), and a stripped-down one containing only a small set of options that specify where the backup
data goes and how it is structured. The configuration files used with the MySQL Enterprise Backup product
must contain certain options that are typically left out of regular configuration files, so you might need to add
options to your existing configuration file for use with MySQL Enterprise Backup.
See Also my.cnf, MySQL Enterprise Backup, option, option file.

connection
 The communication channel between an application and a MySQL server. The performance and scalability
of a database applications is influenced by on how quickly a database connection can be established, how
many can be made simultaneously, and how long they persist. The parameters such as host, port, and so on
are represented as a connection string in Connector/NET, and as a DSN in Connector/ODBC. High-traffic
systems make use of an optimization known as the connection pool.
See Also connection pool, connection string, Connector/NET, Connector/ODBC, DSN, host, port.

connection pool
 A cache area that allows database connections to be reused within the same application or across different
applications, rather than setting up and tearing down a new connection for every database operation. This
technique is common with J2EE application servers. Java applications using Connector/J can use the
connection pool features of Tomcat and other application servers. The reuse is transparent to applications;
the application still opens and closes the connection as usual.
See Also connection, Connector/J, J2EE, Tomcat.

connection string
 A representation of the parameters for a database connection, encoded as a string literal so that it can be
used in program code. The parts of the string represent connection parameters such as host and port. A
connection string contains several key-value pairs, separated by semicolons. Each key-value pair is joined
with an equal sign. Frequently used with Connector/NET applications; see Creating a Connector/NET
Connection String for details.
See Also connection, Connector/NET, host, port.

connector
 MySQL Connectors provide connectivity to the MySQL server for client programs. Several programming
languages and frameworks each have their own associated Connector. Contrast with the lower-level access
provided by an API.
See Also API, client, Connector/C++, Connector/J, Connector/NET, Connector/ODBC.

Connector/C++
 Connector/C++ 8.0 can be used to access MySQL servers that implement a document store, or in a
traditional way using SQL queries. It enables development of C++ applications using X DevAPI, or plain

6352

https://dev.mysql.com/doc/connector-net/en/connector-net-connections-string.html
https://dev.mysql.com/doc/connector-net/en/connector-net-connections-string.html

C applications using X DevAPI for C. It also enables development of C++ applications that use the legacy
JDBC-based API from Connector/C++ 1.1. For more information, see MySQL Connector/C++ 9.3 Developer
Guide.
See Also client, connector, JDBC.

Connector/J
 A JDBC driver that provides connectivity for client applications developed in the Java programming
language. MySQL Connector/J is a JDBC Type 4 driver: a pure-Java implementation of the MySQL protocol
that does not rely on the MySQL client libraries. For full details, see MySQL Connector/J Developer Guide.
See Also client, client libraries, connector, Java, JDBC.

Connector/NET
 A MySQL connector for developers writing applications using languages, technologies, and frameworks
such as C#, .NET, Mono, Visual Studio, ASP.net, and ADO.net.
See Also ADO.NET, ASP.net, connector, C#, Mono, Visual Studio.

Connector/ODBC
 The family of MySQL ODBC drivers that provide access to a MySQL database using the industry standard
Open Database Connectivity (ODBC) API. Formerly called MyODBC drivers. For full details, see MySQL
Connector/ODBC Developer Guide.
See Also connector, ODBC.

Connector/PHP
 A version of the mysql and mysqli APIs for PHP optimized for the Windows operating system.
See Also connector, PHP, PHP API.

consistent read
 A read operation that uses snapshot information to present query results based on a point in time,
regardless of changes performed by other transactions running at the same time. If queried data has been
changed by another transaction, the original data is reconstructed based on the contents of the undo log.
This technique avoids some of the locking issues that can reduce concurrency by forcing transactions to
wait for other transactions to finish.

With REPEATABLE READ isolation level, the snapshot is based on the time when the first read operation is
performed. With READ COMMITTED isolation level, the snapshot is reset to the time of each consistent read
operation.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED
and REPEATABLE READ isolation levels. Because a consistent read does not set any locks on the tables
it accesses, other sessions are free to modify those tables while a consistent read is being performed on the
table.

For technical details about the applicable isolation levels, see Section 17.7.2.3, “Consistent Nonlocking
Reads”.
See Also concurrency, isolation level, locking, READ COMMITTED, REPEATABLE READ, snapshot,
transaction, undo log.

constraint
 An automatic test that can block database changes to prevent data from becoming inconsistent. (In computer
science terms, a kind of assertion related to an invariant condition.) Constraints are a crucial component of
the ACID philosophy, to maintain data consistency. Constraints supported by MySQL include FOREIGN KEY
constraints and unique constraints.
See Also ACID, foreign key, unique constraint.

counter
 A value that is incremented by a particular kind of InnoDB operation. Useful for measuring how busy a
server is, troubleshooting the sources of performance issues, and testing whether changes (for example,
to configuration settings or indexes used by queries) have the desired low-level effects. Different kinds
of counters are available through Performance Schema tables and INFORMATION_SCHEMA tables,
particularly INFORMATION_SCHEMA.INNODB_METRICS.
See Also INFORMATION_SCHEMA, metrics counter, Performance Schema.

6353

https://dev.mysql.com/doc/connector-cpp/9.3/en/
https://dev.mysql.com/doc/connector-cpp/9.3/en/
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/connector-odbc/en/
https://dev.mysql.com/doc/connector-odbc/en/

covering index
 An index that includes all the columns retrieved by a query. Instead of using the index values as pointers to
find the full table rows, the query returns values from the index structure, saving disk I/O. InnoDB can apply
this optimization technique to more indexes than MyISAM can, because InnoDB secondary indexes also
include the primary key columns. InnoDB cannot apply this technique for queries against tables modified by
a transaction, until that transaction ends.

Any column index or composite index could act as a covering index, given the right query. Design your
indexes and queries to take advantage of this optimization technique wherever possible.
See Also column index, composite index, index, primary key, secondary index.

CPU-bound
 A type of workload where the primary bottleneck is CPU operations in memory. Typically involves read-
intensive operations where the results can all be cached in the buffer pool.
See Also bottleneck, buffer pool, workload.

crash
 MySQL uses the term “crash” to refer generally to any unexpected shutdown operation where the server
cannot do its normal cleanup. For example, a crash could happen due to a hardware fault on the database
server machine or storage device; a power failure; a potential data mismatch that causes the MySQL server to
halt; a fast shutdown initiated by the DBA; or many other reasons. The robust, automatic crash recovery for
InnoDB tables ensures that data is made consistent when the server is restarted, without any extra work for
the DBA.
See Also crash recovery, fast shutdown, InnoDB, shutdown.

crash recovery
 The cleanup activities that occur when MySQL is started again after a crash. For InnoDB tables, changes
from incomplete transactions are replayed using data from the redo log. Changes that were committed
before the crash, but not yet written into the data files, are reconstructed from the doublewrite buffer. When
the database is shut down normally, this type of activity is performed during shutdown by the purge operation.

During normal operation, committed data can be stored in the change buffer for a period of time before being
written to the data files. There is always a tradeoff between keeping the data files up-to-date, which introduces
performance overhead during normal operation, and buffering the data, which can make shutdown and crash
recovery take longer.
See Also change buffer, commit, crash, data files, doublewrite buffer, InnoDB, purge, redo log.

CRUD
 Acronym for “create, read, update, delete”, a common sequence of operations in database applications.
Often denotes a class of applications with relatively simple database usage (basic DDL, DML and query
statements in SQL) that can be implemented quickly in any language.
See Also DDL, DML, query, SQL.

cursor
 An internal MySQL data structure that represents the result set of an SQL statement. Often used with
prepared statements and dynamic SQL. It works like an iterator in other high-level languages, producing
each value from the result set as requested.

Although SQL usually handles the processing of cursors for you, you might delve into the inner workings when
dealing with performance-critical code.
See Also dynamic SQL, prepared statement, query.

D
data definition language

See DDL.

data dictionary
 Metadata that keeps track of database objects such as tables, indexes, and table columns. For the MySQL
data dictionary, introduced in MySQL 8.0, metadata is physically located in InnoDB file-per-table tablespace

6354

files in the mysql database directory. For the InnoDB data dictionary, metadata is physically located in the
InnoDB system tablespace.

Because the MySQL Enterprise Backup product always backs up the InnoDB system tablespace, all
backups include the contents of the InnoDB data dictionary.
See Also column, file-per-table, .frm file, index, MySQL Enterprise Backup, system tablespace, table.

data directory
 The directory under which each MySQL instance keeps the data files for InnoDB and the directories
representing individual databases. Controlled by the datadir configuration option.
See Also data files, instance.

data files
 The files that physically contain table and index data.

The InnoDB system tablespace, which holds the InnoDB data dictionary and is capable of holding data for
multiple InnoDB tables, is represented by one or more .ibdata data files.

File-per-table tablespaces, which hold data for a single InnoDB table, are represented by a .ibd data file.

General tablespaces (introduced in MySQL 5.7.6), which can hold data for multiple InnoDB tables, are also
represented by a .ibd data file.
See Also data dictionary, file-per-table, general tablespace, .ibd file, ibdata file, index, system tablespace,
table, tablespace.

data manipulation language
See DML.

data warehouse
 A database system or application that primarily runs large queries. The read-only or read-mostly data might
be organized in denormalized form for query efficiency. Can benefit from the optimizations for read-only
transactions in MySQL 5.6 and higher. Contrast with OLTP.
See Also denormalized, OLTP, query, read-only transaction.

database
 Within the MySQL data directory, each database is represented by a separate directory. The InnoDB
system tablespace, which can hold table data from multiple databases within a MySQL instance, is kept
in data files that reside outside of individual database directories. When file-per-table mode is enabled, the
.ibd files representing individual InnoDB tables are stored inside the database directories unless created
elsewhere using the DATA DIRECTORY clause. General tablespaces, introduced in MySQL 5.7.6, also hold
table data in .ibd files. Unlike file-per-table .ibd files, general tablespace .ibd files can hold table data from
multiple databases within a MySQL instance, and can be assigned to directories relative to or independent of
the MySQL data directory.

For long-time MySQL users, a database is a familiar notion. Users coming from an Oracle Database
background may find that the MySQL meaning of a database is closer to what Oracle Database calls a
schema.
See Also data files, file-per-table, .ibd file, instance, schema, system tablespace.

DCL
 Data control language, a set of SQL statements for managing privileges. In MySQL, consists of the GRANT
and REVOKE statements. Contrast with DDL and DML.
See Also DDL, DML, SQL.

DDEX provider
 A feature that lets you use the data design tools within Visual Studio to manipulate the schema and objects
within a MySQL database. For MySQL applications using Connector/NET, the MySQL Visual Studio Plugin
acts as a DDEX provider with MySQL 5.0 and later.
See Also Visual Studio.

6355

DDL
 Data definition language, a set of SQL statements for manipulating the database itself rather than individual
table rows. Includes all forms of the CREATE, ALTER, and DROP statements. Also includes the TRUNCATE
statement, because it works differently than a DELETE FROM table_name statement, even though the
ultimate effect is similar.

DDL statements automatically commit the current transaction; they cannot be rolled back.

The InnoDB online DDL feature enhances performance for CREATE INDEX, DROP INDEX, and many types
of ALTER TABLE operations. See Section 17.12, “InnoDB and Online DDL” for more information. Also, the
InnoDB file-per-table setting can affect the behavior of DROP TABLE and TRUNCATE TABLE operations.

Contrast with DML and DCL.
See Also commit, DCL, DML, file-per-table, rollback, SQL, transaction.

deadlock
 A situation where different transactions are unable to proceed, because each holds a lock that the other
needs. Because both transactions are waiting for a resource to become available, neither one ever releases
the locks it holds.

A deadlock can occur when the transactions lock rows in multiple tables (through statements such as UPDATE
or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when such statements
lock ranges of index records and gaps, with each transaction acquiring some locks but not others due to a
timing issue.

For background information on how deadlocks are automatically detected and handled, see Section 17.7.5.2,
“Deadlock Detection”. For tips on avoiding and recovering from deadlock conditions, see Section 17.7.5.3,
“How to Minimize and Handle Deadlocks”.
See Also gap, lock, transaction.

deadlock detection
 A mechanism that automatically detects when a deadlock occurs, and automatically rolls back
one of the transactions involved (the victim). Deadlock detection can be disabled using the
innodb_deadlock_detect configuration option.
See Also deadlock, rollback, transaction, victim.

delete
 When InnoDB processes a DELETE statement, the rows are immediately marked for deletion and no longer
are returned by queries. The storage is reclaimed sometime later, during the periodic garbage collection
known as the purge operation. For removing large quantities of data, related operations with their own
performance characteristics are TRUNCATE and DROP.
See Also drop, purge, truncate.

delete buffering
 The technique of storing changes to secondary index pages, resulting from DELETE operations, in the
change buffer rather than writing the changes immediately, so that the physical writes can be performed to
minimize random I/O. (Because delete operations are a two-step process, this operation buffers the write that
normally marks an index record for deletion.) It is one of the types of change buffering; the others are insert
buffering and purge buffering.
See Also change buffer, change buffering, insert buffer, insert buffering, purge buffering.

denormalized
 A data storage strategy that duplicates data across different tables, rather than linking the tables with foreign
keys and join queries. Typically used in data warehouse applications, where the data is not updated
after loading. In such applications, query performance is more important than making it simple to maintain
consistent data during updates. Contrast with normalized.
See Also data warehouse, foreign key, join, normalized.

descending index
 A type of index where index storage is optimized to process ORDER BY column DESC clauses.

6356

See Also index.

dictionary object cache
 The dictionary object cache stores previously accessed data dictionary objects in memory to enable object
reuse and minimize disk I/O. An LRU-based eviction strategy is used to evict least recently used objects from
memory. The cache is comprised of several partitions that store different object types.

For more information, see Section 16.4, “Dictionary Object Cache”.
See Also data dictionary, LRU.

dirty page
 A page in the InnoDB buffer pool that has been updated in memory, where the changes are not yet written
(flushed) to the data files. The opposite of a clean page.
See Also buffer pool, clean page, data files, flush, page.

dirty read
 An operation that retrieves unreliable data, data that was updated by another transaction but not yet
committed. It is only possible with the isolation level known as read uncommitted.

This kind of operation does not adhere to the ACID principle of database design. It is considered very risky,
because the data could be rolled back, or updated further before being committed; then, the transaction
doing the dirty read would be using data that was never confirmed as accurate.

Its opposite is consistent read, where InnoDB ensures that a transaction does not read information updated
by another transaction, even if the other transaction commits in the meantime.
See Also ACID, commit, consistent read, isolation level, READ UNCOMMITTED, rollback.

disk-based
 A kind of database that primarily organizes data on disk storage (hard drives or equivalent). Data is brought
back and forth between disk and memory to be operated upon. It is the opposite of an in-memory database.
Although InnoDB is disk-based, it also contains features such as he buffer pool, multiple buffer pool
instances, and the adaptive hash index that allow certain kinds of workloads to work primarily from memory.
See Also adaptive hash index, buffer pool, in-memory database.

disk-bound
 A type of workload where the primary bottleneck is disk I/O. (Also known as I/O-bound.) Typically involves
frequent writes to disk, or random reads of more data than can fit into the buffer pool.
See Also bottleneck, buffer pool, workload.

DML
 Data manipulation language, a set of SQL statements for performing INSERT, UPDATE, and DELETE
operations. The SELECT statement is sometimes considered as a DML statement, because the SELECT ...
FOR UPDATE form is subject to the same considerations for locking as INSERT, UPDATE, and DELETE.

DML statements for an InnoDB table operate in the context of a transaction, so their effects can be
committed or rolled back as a single unit.

Contrast with DDL and DCL.
See Also commit, DCL, DDL, locking, rollback, SQL, transaction.

document id
 In the InnoDB full-text search feature, a special column in the table containing the FULLTEXT index,
to uniquely identify the document associated with each ilist value. Its name is FTS_DOC_ID (uppercase
required). The column itself must be of BIGINT UNSIGNED NOT NULL type, with a unique index named
FTS_DOC_ID_INDEX. Preferably, you define this column when creating the table. If InnoDB must add the
column to the table while creating a FULLTEXT index, the indexing operation is considerably more expensive.
See Also full-text search, FULLTEXT index, ilist.

doublewrite buffer
 InnoDB uses a file flush technique called doublewrite. Before writing pages to the data files, InnoDB
first writes them to a storage area called the doublewrite buffer. Only after the write and the flush to the

6357

doublewrite buffer have completed, does InnoDB write the pages to their proper positions in the data file.
If there is an operating system, storage subsystem or mysqld process crash in the middle of a page write,
InnoDB can find a good copy of the page from the doublewrite buffer during crash recovery.

Although data is always written twice, the doublewrite buffer does not require twice as much I/O overhead
or twice as many I/O operations. Data is written to the buffer itself as a large sequential chunk, with a single
fsync() call to the operating system.
See Also crash recovery, data files, page, purge.

drop
 A kind of DDL operation that removes a schema object, through a statement such as DROP TABLE
or DROP INDEX. It maps internally to an ALTER TABLE statement. From an InnoDB perspective, the
performance considerations of such operations involve the time that the data dictionary is locked to ensure
that interrelated objects are all updated, and the time to update memory structures such as the buffer pool.
For a table, the drop operation has somewhat different characteristics than a truncate operation (TRUNCATE
TABLE statement).
See Also buffer pool, data dictionary, DDL, table, truncate.

DSN
 Acronym for “Database Source Name”. It is the encoding for connection information within Connector/
ODBC. See Configuring a Connector/ODBC DSN on Windows for full details. It is the equivalent of the
connection string used by Connector/NET.
See Also connection, connection string, Connector/NET, Connector/ODBC.

dynamic cursor
 A type of cursor supported by ODBC that can pick up new and changed results when the rows are read
again. Whether and how quickly the changes are visible to the cursor depends on the type of table involved
(transactional or non-transactional) and the isolation level for transactional tables. Support for dynamic
cursors must be explicitly enabled.
See Also cursor, ODBC.

dynamic row format
 An InnoDB row format. Because long variable-length column values are stored outside of the page that
holds the row data, it is very efficient for rows that include large objects. Since the large fields are typically not
accessed to evaluate query conditions, they are not brought into the buffer pool as often, resulting in fewer I/
O operations and better utilization of cache memory.

As of MySQL 5.7.9, the default row format is defined by innodb_default_row_format, which has a
default value of DYNAMIC.

For additional information about InnoDB DYNAMIC row format, see DYNAMIC Row Format.
See Also buffer pool, file format, row format.

dynamic SQL
 A feature that lets you create and execute prepared statements using more robust, secure, and efficient
methods to substitute parameter values than the naive technique of concatenating the parts of the statement
into a string variable.
See Also prepared statement.

dynamic statement
 A prepared statement created and executed through dynamic SQL.
See Also dynamic SQL, prepared statement.

E

early adopter
 A stage similar to beta, when a software product is typically evaluated for performance, functionality, and
compatibility in a non-mission-critical setting.

6358

https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration-dsn-windows.html

See Also beta.

Eiffel
 A programming language including many object-oriented features. Some of its concepts are familiar to Java
and C# developers. For the open-source Eiffel API for MySQL, see Section 31.13, “MySQL Eiffel Wrapper”.
See Also API, C#, Java.

embedded
 The embedded MySQL server library (libmysqld) makes it possible to run a full-featured MySQL server
inside a client application. The main benefits are increased speed and more simple management for
embedded applications.
See Also client, libmysqld.

error log
 A type of log showing information about MySQL startup and critical runtime errors and crash information. For
details, see Section 7.4.2, “The Error Log”.
See Also crash, log.

eviction
 The process of removing an item from a cache or other temporary storage area, such as the InnoDB buffer
pool. Often, but not always, uses the LRU algorithm to determine which item to remove. When a dirty page
is evicted, its contents are flushed to disk, and any dirty neighbor pages might be flushed also.
See Also buffer pool, dirty page, flush, LRU, neighbor page.

exception interceptor
 A type of interceptor for tracing, debugging, or augmenting SQL errors encountered by a database
application. For example, the interceptor code could issue a SHOW WARNINGS statement to retrieve additional
information, and add descriptive text or even change the type of the exception returned to the application.
Because the interceptor code is only called when SQL statements return errors, it does not impose any
performance penalty on the application during normal (error-free) operation.

In Java applications using Connector/J, setting up this type of interceptor involves implementing the
com.mysql.jdbc.ExceptionInterceptor interface, and adding a exceptionInterceptors property
to the connection string.

In Visual Studio applications using Connector/NET, setting up this type of interceptor involves defining a
class that inherits from the BaseExceptionInterceptor class and specifying that class name as part of
the connection string.
See Also Connector/J, Connector/NET, interceptor, Java, Visual Studio.

exclusive lock
 A kind of lock that prevents any other transaction from locking the same row. Depending on the transaction
isolation level, this kind of lock might block other transactions from writing to the same row, or might also
block other transactions from reading the same row. The default InnoDB isolation level, REPEATABLE
READ, enables higher concurrency by allowing transactions to read rows that have exclusive locks, a
technique known as consistent read.
See Also concurrency, consistent read, isolation level, lock, REPEATABLE READ, shared lock, transaction.

extent
 A group of pages within a tablespace. For the default page size of 16KB, an extent contains 64 pages.
In MySQL 5.6, the page size for an InnoDB instance can be 4KB, 8KB, or 16KB, controlled by the
innodb_page_size configuration option. For 4KB, 8KB, and 16KB pages sizes, the extent size is always
1MB (or 1048576 bytes).

Support for 32KB and 64KB InnoDB page sizes was added in MySQL 5.7.6. For a 32KB page size, the extent
size is 2MB. For a 64KB page size, the extent size is 4MB.

InnoDB features such as segments, read-ahead requests and the doublewrite buffer use I/O operations
that read, write, allocate, or free data one extent at a time.

6359

See Also doublewrite buffer, page, page size, read-ahead, segment, tablespace.

F
.frm file

 A file containing the metadata, such as the table definition, of a MySQL table. .frm files were removed in
MySQL 8.0 but are still used in earlier MySQL releases. In MySQL 8.0, data previously stored in .frm files is
stored in data dictionary tables.
See Also data dictionary, MySQL Enterprise Backup, system tablespace.

failover
 The ability to automatically switch to a standby server in the event of a failure. In the MySQL context, failover
involves a standby database server. Often supported within J2EE environments by the application server or
framework.
See Also Connector/J, J2EE.

Fast Index Creation
 A capability first introduced in the InnoDB Plugin, now part of MySQL in 5.5 and higher, that speeds up
creation of InnoDB secondary indexes by avoiding the need to completely rewrite the associated table. The
speedup applies to dropping secondary indexes also.

Because index maintenance can add performance overhead to many data transfer operations, consider doing
operations such as ALTER TABLE ... ENGINE=INNODB or INSERT INTO ... SELECT * FROM ...
without any secondary indexes in place, and creating the indexes afterward.

In MySQL 5.6, this feature becomes more general. You can read and write to tables while an index is being
created, and many more kinds of ALTER TABLE operations can be performed without copying the table,
without blocking DML operations, or both. Thus in MySQL 5.6 and higher, this set of features is referred to as
online DDL rather than Fast Index Creation.

For related information, see Section 17.12, “InnoDB and Online DDL”.
See Also DML, index, online DDL, secondary index.

fast shutdown
 The default shutdown procedure for InnoDB, based on the configuration setting
innodb_fast_shutdown=1. To save time, certain flush operations are skipped. This type of shutdown
is safe during normal usage, because the flush operations are performed during the next startup, using the
same mechanism as in crash recovery. In cases where the database is being shut down for an upgrade or
downgrade, do a slow shutdown instead to ensure that all relevant changes are applied to the data files
during the shutdown.
See Also crash recovery, data files, flush, shutdown, slow shutdown.

file format
 The file format for InnoDB tables.
See Also file-per-table, .ibd file, ibdata file, row format.

file-per-table
 A general name for the setting controlled by the innodb_file_per_table option, which is an
important configuration option that affects aspects of InnoDB file storage, availability of features, and I/O
characteristics. As of MySQL 5.6.7, innodb_file_per_table is enabled by default.

With the innodb_file_per_table option enabled, you can create a table in its own .ibd file rather than
in the shared ibdata files of the system tablespace. When table data is stored in an individual .ibd file,
you have more flexibility to choose row formats required for features such as data compression. The
TRUNCATE TABLE operation is also faster, and reclaimed space can be used by the operating system rather
than remaining reserved for InnoDB.

The MySQL Enterprise Backup product is more flexible for tables that are in their own files. For example,
tables can be excluded from a backup, but only if they are in separate files. Thus, this setting is suitable for
tables that are backed up less frequently or on a different schedule.

6360

See Also compressed row format, compression, file format, .ibd file, ibdata file, innodb_file_per_table, MySQL
Enterprise Backup, row format, system tablespace.

fill factor
 In an InnoDB index, the proportion of a page that is taken up by index data before the page is split. The
unused space when index data is first divided between pages allows for rows to be updated with longer
string values without requiring expensive index maintenance operations. If the fill factor is too low, the index
consumes more space than needed, causing extra I/O overhead when reading the index. If the fill factor
is too high, any update that increases the length of column values can cause extra I/O overhead for index
maintenance. See Section 17.6.2.2, “The Physical Structure of an InnoDB Index” for more information.
See Also index, page.

fixed row format
 This row format is used by the MyISAM storage engine, not by InnoDB. If you create an InnoDB table with
the option ROW_FORMAT=FIXED in MySQL 5.7.6 or earlier, InnoDB uses the compact row format instead,
although the FIXED value might still show up in output such as SHOW TABLE STATUS reports. As of MySQL
5.7.7, InnoDB returns an error if ROW_FORMAT=FIXED is specified.
See Also compact row format, row format.

flush
 To write changes to the database files, that had been buffered in a memory area or a temporary disk storage
area. The InnoDB storage structures that are periodically flushed include the redo log, the undo log, and the
buffer pool.

Flushing can happen because a memory area becomes full and the system needs to free some space,
because a commit operation means the changes from a transaction can be finalized, or because a slow
shutdown operation means that all outstanding work should be finalized. When it is not critical to flush all
the buffered data at once, InnoDB can use a technique called fuzzy checkpointing to flush small batches of
pages to spread out the I/O overhead.
See Also buffer pool, commit, fuzzy checkpointing, redo log, slow shutdown, undo log.

flush list
 An internal InnoDB data structure that tracks dirty pages in the buffer pool: that is, pages that have been
changed and need to be written back out to disk. This data structure is updated frequently by InnoDB internal
mini-transactions, and so is protected by its own mutex to allow concurrent access to the buffer pool.
See Also buffer pool, dirty page, LRU, mini-transaction, mutex, page, page cleaner.

foreign key
 A type of pointer relationship, between rows in separate InnoDB tables. The foreign key relationship is
defined on one column in both the parent table and the child table.

In addition to enabling fast lookup of related information, foreign keys help to enforce referential integrity,
by preventing any of these pointers from becoming invalid as data is inserted, updated, and deleted. This
enforcement mechanism is a type of constraint. A row that points to another table cannot be inserted if
the associated foreign key value does not exist in the other table. If a row is deleted or its foreign key value
changed, and rows in another table point to that foreign key value, the foreign key can be set up to prevent
the deletion, cause the corresponding column values in the other table to become null, or automatically delete
the corresponding rows in the other table.

One of the stages in designing a normalized database is to identify data that is duplicated, separate that data
into a new table, and set up a foreign key relationship so that the multiple tables can be queried like a single
table, using a join operation.
See Also child table, FOREIGN KEY constraint, join, normalized, NULL, parent table, referential integrity,
relational.

FOREIGN KEY constraint
 The type of constraint that maintains database consistency through a foreign key relationship. Like other
kinds of constraints, it can prevent data from being inserted or updated if data would become inconsistent; in
this case, the inconsistency being prevented is between data in multiple tables. Alternatively, when a DML

6361

operation is performed, FOREIGN KEY constraints can cause data in child rows to be deleted, changed to
different values, or set to null, based on the ON CASCADE option specified when creating the foreign key.
See Also child table, constraint, DML, foreign key, NULL.

FTS
 In most contexts, an acronym for full-text search. Sometimes in performance discussions, an acronym for
full table scan.
See Also full table scan, full-text search.

full backup
 A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance.
Contrast with partial backup.
See Also backup, database, instance, partial backup, table.

full table scan
 An operation that requires reading the entire contents of a table, rather than just selected portions using an
index. Typically performed either with small lookup tables, or in data warehousing situations with large tables
where all available data is aggregated and analyzed. How frequently these operations occur, and the sizes of
the tables relative to available memory, have implications for the algorithms used in query optimization and
managing the buffer pool.

The purpose of indexes is to allow lookups for specific values or ranges of values within a large table, thus
avoiding full table scans when practical.
See Also buffer pool, index.

full-text search
 The MySQL feature for finding words, phrases, Boolean combinations of words, and so on within table data,
in a faster, more convenient, and more flexible way than using the SQL LIKE operator or writing your own
application-level search algorithm. It uses the SQL function MATCH() and FULLTEXT indexes.
See Also FULLTEXT index.

FULLTEXT index
 The special kind of index that holds the search index in the MySQL full-text search mechanism.
Represents the words from values of a column, omitting any that are specified as stopwords. Originally, only
available for MyISAM tables. Starting in MySQL 5.6.4, it is also available for InnoDB tables.
See Also full-text search, index, InnoDB, search index, stopword.

fuzzy checkpointing
 A technique that flushes small batches of dirty pages from the buffer pool, rather than flushing all dirty
pages at once which would disrupt database processing.
See Also buffer pool, dirty page, flush.

G
GA

 “Generally available”, the stage when a software product leaves beta and is available for sale, official
support, and production use.
See Also beta.

GAC
 Acronym for “Global Assembly Cache”. A central area for storing libraries (assemblies) on a .NET system.
Physically consists of nested folders, treated as a single virtual folder by the .NET CLR.
See Also .NET, assembly.

gap
 A place in an InnoDB index data structure where new values could be inserted. When you lock a set of rows
with a statement such as SELECT ... FOR UPDATE, InnoDB can create locks that apply to the gaps as
well as the actual values in the index. For example, if you select all values greater than 10 for update, a gap
lock prevents another transaction from inserting a new value that is greater than 10. The supremum record

6362

and infimum record represent the gaps containing all values greater than or less than all the current index
values.
See Also concurrency, gap lock, index, infimum record, isolation level, supremum record.

gap lock
 A lock on a gap between index records, or a lock on the gap before the first or after the last index record.
For example, SELECT c1 FROM t WHERE c1 BETWEEN 10 and 20 FOR UPDATE; prevents other
transactions from inserting a value of 15 into the column t.c1, whether or not there was already any such
value in the column, because the gaps between all existing values in the range are locked. Contrast with
record lock and next-key lock.

Gap locks are part of the tradeoff between performance and concurrency, and are used in some transaction
isolation levels and not others.
See Also gap, infimum record, lock, next-key lock, record lock, supremum record.

general log
See general query log.

general query log
 A type of log used for diagnosis and troubleshooting of SQL statements processed by the MySQL server.
Can be stored in a file or in a database table. You must enable this feature through the general_log
configuration option to use it. You can disable it for a specific connection through the sql_log_off
configuration option.

Records a broader range of queries than the slow query log. Unlike the binary log, which is used for
replication, the general query log contains SELECT statements and does not maintain strict ordering. For more
information, see Section 7.4.3, “The General Query Log”.
See Also binary log, log, slow query log.

general tablespace
 A shared InnoDB tablespace created using CREATE TABLESPACE syntax. General tablespaces can be
created outside of the MySQL data directory, are capable of holding multiple tables, and support tables of all
row formats. General tablespaces were introduced in MySQL 5.7.6.

Tables are added to a general tablespace using CREATE TABLE tbl_name ... TABLESPACE [=]
tablespace_name or ALTER TABLE tbl_name TABLESPACE [=] tablespace_name syntax.

Contrast with system tablespace and file-per-table tablespace.

For more information, see Section 17.6.3.3, “General Tablespaces”.
See Also file-per-table, system tablespace, table, tablespace.

generated column
 A column whose values are computed from an expression included in the column definition. A generated
column can be virtual or stored.
See Also base column, stored generated column, virtual generated column.

generated stored column
See stored generated column.

generated virtual column
See virtual generated column.

Glassfish

See Also J2EE.

global temporary tablespace
 A temporary tablespace that stores rollback segments for changes made to user-created temporary tables.
See Also temporary tablespace.

6363

global transaction
 A type of transaction involved in XA operations. It consists of several actions that are transactional in
themselves, but that all must either complete successfully as a group, or all be rolled back as a group. In
essence, this extends ACID properties “up a level” so that multiple ACID transactions can be executed in
concert as components of a global operation that also has ACID properties.
See Also ACID, transaction, XA.

group commit
 An InnoDB optimization that performs some low-level I/O operations (log write) once for a set of commit
operations, rather than flushing and syncing separately for each commit.
See Also binary log, commit.

GUID
 Acronym for “globally unique identifier”, an ID value that can be used to associate data across different
databases, languages, operating systems, and so on. (As an alternative to using sequential integers, where
the same values could appear in different tables, databases, and so on referring to different data.) Older
MySQL versions represented it as BINARY(16). Currently, it is represented as CHAR(36). MySQL has a
UUID() function that returns GUID values in character format, and a UUID_SHORT() function that returns
GUID values in integer format. Because successive GUID values are not necessarily in ascending sort order,
it is not an efficient value to use as a primary key for large InnoDB tables.

H
hash index

 A type of index intended for queries that use equality operators, rather than range operators such as greater-
than or BETWEEN. It is available for MEMORY tables. Although hash indexes are the default for MEMORY tables
for historic reasons, that storage engine also supports B-tree indexes, which are often a better choice for
general-purpose queries.

MySQL includes a variant of this index type, the adaptive hash index, that is constructed automatically for
InnoDB tables if needed based on runtime conditions.
See Also adaptive hash index, B-tree, index, InnoDB.

HDD
 Acronym for “hard disk drive”. Refers to storage media using spinning platters, usually when comparing and
contrasting with SSD. Its performance characteristics can influence the throughput of a disk-based workload.
See Also disk-based, SSD.

heartbeat
 A periodic message that is sent to indicate that a system is functioning properly. In a replication context, if
the source stops sending such messages, one of the replicas can take its place. Similar techniques can be
used between the servers in a cluster environment, to confirm that all of them are operating properly.
See Also replication, source.

high-water mark
 A value representing an upper limit, either a hard limit that should not be exceeded at runtime, or a record of
the maximum value that was actually reached. Contrast with low-water mark.
See Also low-water mark.

history list
 A list of transactions with delete-marked records scheduled to be processed by the InnoDB purge
operation. Recorded in the undo log. The length of the history list is reported by the command SHOW
ENGINE INNODB STATUS. If the history list grows longer than the value of the innodb_max_purge_lag
configuration option, each DML operation is delayed slightly to allow the purge operation to finish flushing the
deleted records.

Also known as purge lag.
See Also DML, flush, purge, purge lag, rollback segment, transaction, undo log.

6364

hole punching
 Releasing empty blocks from a page. The InnoDB transparent page compression feature relies on hole
punching support. For more information, see Section 17.9.2, “InnoDB Page Compression”.
See Also sparse file, transparent page compression.

host
 The network name of a database server, used to establish a connection. Often specified in conjunction with
a port. In some contexts, the IP address 127.0.0.1 works better than the special name localhost for
accessing a database on the same server as the application.
See Also connection, localhost, port.

hot
 A condition where a row, table, or internal data structure is accessed so frequently, requiring some form of
locking or mutual exclusion, that it results in a performance or scalability issue.

Although “hot” typically indicates an undesirable condition, a hot backup is the preferred type of backup.
See Also hot backup.

hot backup
 A backup taken while the database is running and applications are reading and writing to it. The backup
involves more than simply copying data files: it must include any data that was inserted or updated while the
backup was in process; it must exclude any data that was deleted while the backup was in process; and it
must ignore any changes that were not committed.

The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and
other storage engines, is known as MySQL Enterprise Backup.

The hot backup process consists of two stages. The initial copying of the data files produces a raw backup.
The apply step incorporates any changes to the database that happened while the backup was running.
Applying the changes produces a prepared backup; these files are ready to be restored whenever necessary.
See Also apply, MySQL Enterprise Backup, prepared backup, raw backup.

I
.ibd file

 The data file for file-per-table tablespaces and general tablespaces. File-per-table tablespace .ibd files
contain a single table and associated index data. General tablespace .ibd files may contain table and index
data for multiple tables.

The .ibd file extension does not apply to the system tablespace, which consists of one or more ibdata
files.

If a file-per-table tablespace or general tablespace is created with the DATA DIRECTORY = clause, the .ibd
file is located at the specified path, outside the normal data directory.

When a .ibd file is included in a compressed backup by the MySQL Enterprise Backup product, the
compressed equivalent is a .ibz file.
See Also database, file-per-table, general tablespace, ibdata file, .ibz file, innodb_file_per_table, MySQL
Enterprise Backup, system tablespace.

.ibz file
 When the MySQL Enterprise Backup product performs a compressed backup, it transforms each
tablespace file that is created using the file-per-table setting from a .ibd extension to a .ibz extension.

The compression applied during backup is distinct from the compressed row format that keeps table data
compressed during normal operation. A compressed backup operation skips the compression step for a
tablespace that is already in compressed row format, as compressing a second time would slow down the
backup but produce little or no space savings.
See Also compressed backup, compressed row format, file-per-table, .ibd file, MySQL Enterprise Backup,
tablespace.

6365

I/O-bound
See disk-bound.

ib-file set
 The set of files managed by InnoDB within a MySQL database: the system tablespace, file-per-table
tablespace files, and redo log files. Depending on MySQL version and InnoDB configuration, may also
include general tablespace, temporary tablespace, and undo tablespace files. This term is sometimes
used in detailed discussions of InnoDB file structures and formats to refer to the set of files managed by
InnoDB within a MySQL database.
See Also database, file-per-table, general tablespace, redo log, system tablespace, temporary tablespace,
undo tablespace.

ibbackup_logfile
 A supplemental backup file created by the MySQL Enterprise Backup product during a hot backup
operation. It contains information about any data changes that occurred while the backup was running. The
initial backup files, including ibbackup_logfile, are known as a raw backup, because the changes that
occurred during the backup operation are not yet incorporated. After you perform the apply step to the raw
backup files, the resulting files do include those final data changes, and are known as a prepared backup. At
this stage, the ibbackup_logfile file is no longer necessary.
See Also apply, hot backup, MySQL Enterprise Backup, prepared backup, raw backup.

ibdata file
 A set of files with names such as ibdata1, ibdata2, and so on, that make up the InnoDB system
tablespace. For information about the structures and data that reside in the system tablespace ibdata files,
see Section 17.6.3.1, “The System Tablespace”.

Growth of the ibdata files is influenced by the innodb_autoextend_increment configuration option.
See Also change buffer, data dictionary, doublewrite buffer, file-per-table, .ibd file, innodb_file_per_table,
system tablespace, undo log.

ibtmp file
 The InnoDB temporary tablespace data file for non-compressed InnoDB temporary tables and related
objects. The configuration file option, innodb_temp_data_file_path, allows users to define a relative
path for the temporary tablespace data file. If innodb_temp_data_file_path is not specified, the default
behavior is to create a single auto-extending 12MB data file named ibtmp1 in the data directory, alongside
ibdata1.
See Also data files, temporary table, temporary tablespace.

ib_logfile
 A set of files, typically named ib_logfile0 and ib_logfile1, that form the redo log. Also sometimes
referred to as the log group. These files record statements that attempt to change data in InnoDB tables.
These statements are replayed automatically to correct data written by incomplete transactions, on startup
following a crash.

This data cannot be used for manual recovery; for that type of operation, use the binary log.
See Also binary log, log group, redo log.

ilist
 Within an InnoDB FULLTEXT index, the data structure consisting of a document ID and positional
information for a token (that is, a particular word).
See Also FULLTEXT index.

implicit row lock
 A row lock that InnoDB acquires to ensure consistency, without you specifically requesting it.
See Also row lock.

in-memory database
 A type of database system that maintains data in memory, to avoid overhead due to disk I/O and translation
between disk blocks and memory areas. Some in-memory databases sacrifice durability (the “D” in the ACID

6366

design philosophy) and are vulnerable to hardware, power, and other types of failures, making them more
suitable for read-only operations. Other in-memory databases do use durability mechanisms such as logging
changes to disk or using non-volatile memory.

MySQL features that address the same kinds of memory-intensive processing include the InnoDB buffer
pool, adaptive hash index, and read-only transaction optimization, the MEMORY storage engine, the
MyISAM key cache, and the MySQL query cache.
See Also ACID, adaptive hash index, buffer pool, disk-based, read-only transaction.

incremental backup
 A type of hot backup, performed by the MySQL Enterprise Backup product, that only saves data changed
since some point in time. Having a full backup and a succession of incremental backups lets you reconstruct
backup data over a long period, without the storage overhead of keeping several full backups on hand. You
can restore the full backup and then apply each of the incremental backups in succession, or you can keep
the full backup up-to-date by applying each incremental backup to it, then perform a single restore operation.

The granularity of changed data is at the page level. A page might actually cover more than one row. Each
changed page is included in the backup.
See Also hot backup, MySQL Enterprise Backup, page.

index
 A data structure that provides a fast lookup capability for rows of a table, typically by forming a tree structure
(B-tree) representing all the values of a particular column or set of columns.

InnoDB tables always have a clustered index representing the primary key. They can also have one or
more secondary indexes defined on one or more columns. Depending on their structure, secondary indexes
can be classified as partial, column, or composite indexes.

Indexes are a crucial aspect of query performance. Database architects design tables, queries, and indexes
to allow fast lookups for data needed by applications. The ideal database design uses a covering index
where practical; the query results are computed entirely from the index, without reading the actual table
data. Each foreign key constraint also requires an index, to efficiently check whether values exist in both the
parent and child tables.

Although a B-tree index is the most common, a different kind of data structure is used for hash indexes, as
in the MEMORY storage engine and the InnoDB adaptive hash index. R-tree indexes are used for spatial
indexing of multi-dimensional information.
See Also adaptive hash index, B-tree, child table, clustered index, column index, composite index, covering
index, foreign key, hash index, parent table, partial index, primary key, query, R-tree, row, secondary index,
table.

index cache
 A memory area that holds the token data for InnoDB full-text search. It buffers the data to minimize disk I/
O when data is inserted or updated in columns that are part of a FULLTEXT index. The token data is written
to disk when the index cache becomes full. Each InnoDB FULLTEXT index has its own separate index cache,
whose size is controlled by the configuration option innodb_ft_cache_size.
See Also full-text search, FULLTEXT index.

index condition pushdown
 Index condition pushdown (ICP) is an optimization that pushes part of a WHERE condition down to the
storage engine if parts of the condition can be evaluated using fields from the index. ICP can reduce the
number of times the storage engine must access the base table and the number of times the MySQL server
must access the storage engine. For more information, see Section 10.2.1.6, “Index Condition Pushdown
Optimization”.
See Also index, storage engine.

index hint
 Extended SQL syntax for overriding the indexes recommended by the optimizer. For example, the FORCE
INDEX, USE INDEX, and IGNORE INDEX clauses. Typically used when indexed columns have unevenly
distributed values, resulting in inaccurate cardinality estimates.

6367

See Also cardinality, index.

index prefix
 In an index that applies to multiple columns (known as a composite index), the initial or leading columns of
the index. A query that references the first 1, 2, 3, and so on columns of a composite index can use the index,
even if the query does not reference all the columns in the index.
See Also composite index, index.

index statistics
See statistics.

infimum record
 A pseudo-record in an index, representing the gap below the smallest value in that index. If a transaction
has a statement such as SELECT ... FROM ... WHERE col < 10 FOR UPDATE;, and the smallest
value in the column is 5, it is a lock on the infimum record that prevents other transactions from inserting even
smaller values such as 0, -10, and so on.
See Also gap, index, pseudo-record, supremum record.

INFORMATION_SCHEMA
 The name of the database that provides a query interface to the MySQL data dictionary. (This name is
defined by the ANSI SQL standard.) To examine information (metadata) about the database, you can query
tables such as INFORMATION_SCHEMA.TABLES and INFORMATION_SCHEMA.COLUMNS, rather than using
SHOW commands that produce unstructured output.

The INFORMATION_SCHEMA database also contains tables specific to InnoDB that provide a query interface
to the InnoDB data dictionary. You use these tables not to see how the database is structured, but to get
real-time information about the workings of InnoDB tables to help with performance monitoring, tuning, and
troubleshooting.
See Also data dictionary, database, InnoDB.

InnoDB
 A MySQL component that combines high performance with transactional capability for reliability, robustness,
and concurrent access. It embodies the ACID design philosophy. Represented as a storage engine; it
handles tables created or altered with the ENGINE=INNODB clause. See Chapter 17, The InnoDB Storage
Engine for architectural details and administration procedures, and Section 10.5, “Optimizing for InnoDB
Tables” for performance advice.

In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables and the ENGINE=INNODB
clause is not required.

InnoDB tables are ideally suited for hot backups. See Section 32.1, “MySQL Enterprise Backup Overview”
for information about the MySQL Enterprise Backup product for backing up MySQL servers without
interrupting normal processing.
See Also ACID, hot backup, MySQL Enterprise Backup, storage engine, transaction.

innodb_autoinc_lock_mode
 The innodb_autoinc_lock_mode option controls the algorithm used for auto-increment locking.
When you have an auto-incrementing primary key, you can use statement-based replication only
with the setting innodb_autoinc_lock_mode=1. This setting is known as consecutive lock mode,
because multi-row inserts within a transaction receive consecutive auto-increment values. If you have
innodb_autoinc_lock_mode=2, which allows higher concurrency for insert operations, use row-based
replication rather than statement-based replication. This setting is known as interleaved lock mode, because
multiple multi-row insert statements running at the same time can receive auto-increment values that are
interleaved. The setting innodb_autoinc_lock_mode=0 should not be used except for compatibility
purposes.

Consecutive lock mode (innodb_autoinc_lock_mode=1) is the default setting prior to MySQL 8.0.3. As
of MySQL 8.0.3, interleaved lock mode (innodb_autoinc_lock_mode=2) is the default, which reflects the
change from statement-based to row-based replication as the default replication type.

6368

See Also auto-increment, auto-increment locking, mixed-mode insert, primary key.

innodb_file_per_table
 An important configuration option that affects many aspects of InnoDB file storage, availability of features,
and I/O characteristics. In MySQL 5.6.7 and higher, it is enabled by default. The innodb_file_per_table
option turns on file-per-table mode. With this mode enabled, a newly created InnoDB table and associated
indexes can be stored in a file-per-table .ibd file, outside the system tablespace.

This option affects the performance and storage considerations for a number of SQL statements, such as
DROP TABLE and TRUNCATE TABLE.

Enabling the innodb_file_per_table option allows you to take advantage of features such as table
compression and named-table backups in MySQL Enterprise Backup.

For more information, see innodb_file_per_table, and Section 17.6.3.2, “File-Per-Table Tablespaces”.
See Also compression, file-per-table, .ibd file, MySQL Enterprise Backup, system tablespace.

innodb_lock_wait_timeout
 The innodb_lock_wait_timeout option sets the balance between waiting for shared resources to
become available, or giving up and handling the error, retrying, or doing alternative processing in your
application. Rolls back any InnoDB transaction that waits more than a specified time to acquire a lock.
Especially useful if deadlocks are caused by updates to multiple tables controlled by different storage
engines; such deadlocks are not detected automatically.
See Also deadlock, deadlock detection, lock, wait.

innodb_strict_mode
 The innodb_strict_mode option controls whether InnoDB operates in strict mode, where conditions that
are normally treated as warnings, cause errors instead (and the underlying statements fail).
See Also strict mode.

Innovation Series
 Innovation releases with the same major version form an Innovation series. For example, MySQL 8.1 through
8.3 form the MySQL 8 Innovation series.
See Also LTS Series.

insert
 One of the primary DML operations in SQL. The performance of inserts is a key factor in data warehouse
systems that load millions of rows into tables, and OLTP systems where many concurrent connections might
insert rows into the same table, in arbitrary order. If insert performance is important to you, you should learn
about InnoDB features such as the insert buffer used in change buffering, and auto-increment columns.
See Also auto-increment, change buffering, data warehouse, DML, InnoDB, insert buffer, OLTP, SQL.

insert buffer
 The former name of the change buffer. In MySQL 5.5, support was added for buffering changes to
secondary index pages for DELETE and UPDATE operations. Previously, only changes resulting from INSERT
operations were buffered. The preferred term is now change buffer.
See Also change buffer, change buffering.

insert buffering
 The technique of storing changes to secondary index pages, resulting from INSERT operations, in the
change buffer rather than writing the changes immediately, so that the physical writes can be performed to
minimize random I/O. It is one of the types of change buffering; the others are delete buffering and purge
buffering.

Insert buffering is not used if the secondary index is unique, because the uniqueness of new values cannot
be verified before the new entries are written out. Other kinds of change buffering do work for unique indexes.
See Also change buffer, change buffering, delete buffering, insert buffer, purge buffering, unique index.

insert intention lock
 A type of gap lock that is set by INSERT operations prior to row insertion. This type of lock signals the intent
to insert in such a way that multiple transactions inserting into the same index gap need not wait for each

6369

other if they are not inserting at the same position within the gap. For more information, see Section 17.7.1,
“InnoDB Locking”.
See Also gap lock, lock, next-key lock.

instance
 A single mysqld daemon managing a data directory representing one or more databases with a set of
tables. It is common in development, testing, and some replication scenarios to have multiple instances on
the same server machine, each managing its own data directory and listening on its own port or socket. With
one instance running a disk-bound workload, the server might still have extra CPU and memory capacity to
run additional instances.
See Also data directory, database, disk-bound, mysqld, replication, server, table.

instrumentation
 Modifications at the source code level to collect performance data for tuning and debugging. In MySQL, data
collected by instrumentation is exposed through an SQL interface using the INFORMATION_SCHEMA and
PERFORMANCE_SCHEMA databases.
See Also INFORMATION_SCHEMA, Performance Schema.

intention exclusive lock
See intention lock.

intention lock
 A kind of lock that applies to the table, used to indicate the kind of lock the transaction intends to acquire
on rows in the table. Different transactions can acquire different kinds of intention locks on the same table,
but the first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions from
acquiring any S or X locks on the table. Conversely, the first transaction to acquire an intention shared (IS)
lock on a table prevents other transactions from acquiring any X locks on the table. The two-phase process
allows the lock requests to be resolved in order, without blocking locks and corresponding operations that are
compatible. For more information about this locking mechanism, see Section 17.7.1, “InnoDB Locking”.
See Also lock, lock mode, locking, transaction.

intention shared lock
See intention lock.

interceptor
 Code for instrumenting or debugging some aspect of an application, which can be enabled without
recompiling or changing the source of the application itself.
See Also command interceptor, Connector/J, Connector/NET, exception interceptor.

intrinsic temporary table
 An optimized internal InnoDB temporary table used by the optimizer.
See Also optimizer.

inverted index
 A data structure optimized for document retrieval systems, used in the implementation of InnoDB full-text
search. The InnoDB FULLTEXT index, implemented as an inverted index, records the position of each word
within a document, rather than the location of a table row. A single column value (a document stored as a text
string) is represented by many entries in the inverted index.
See Also full-text search, FULLTEXT index, ilist.

IOPS
 Acronym for I/O operations per second. A common measurement for busy systems, particularly OLTP
applications. If this value is near the maximum that the storage devices can handle, the application can
become disk-bound, limiting scalability.
See Also disk-bound, OLTP, scalability.

isolation level
 One of the foundations of database processing. Isolation is the I in the acronym ACID; the isolation level is
the setting that fine-tunes the balance between performance and reliability, consistency, and reproducibility of
results when multiple transactions are making changes and performing queries at the same time.

6370

From highest amount of consistency and protection to the least, the isolation levels supported by InnoDB are:
SERIALIZABLE, REPEATABLE READ, READ COMMITTED, and READ UNCOMMITTED.

With InnoDB tables, many users can keep the default isolation level (REPEATABLE READ) for all operations.
Expert users might choose the READ COMMITTED level as they push the boundaries of scalability with
OLTP processing, or during data warehousing operations where minor inconsistencies do not affect
the aggregate results of large amounts of data. The levels on the edges (SERIALIZABLE and READ
UNCOMMITTED) change the processing behavior to such an extent that they are rarely used.
See Also ACID, OLTP, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE,
transaction.

J
J2EE

 Java Platform, Enterprise Edition: Oracle's enterprise Java platform. It consists of an API and a runtime
environment for enterprise-class Java applications. For full details, see http://www.oracle.com/technetwork/
java/javaee/overview/index.html. With MySQL applications, you typically use Connector/J for database
access, and an application server such as Tomcat or JBoss to handle the middle-tier work, and optionally a
framework such as Spring. Database-related features often offered within a J2EE stack include a connection
pool and failover support.
See Also connection pool, Connector/J, failover, Java, JBoss, Spring, Tomcat.

Java
 A programming language combining high performance, rich built-in features and data types, object-oriented
mechanisms, extensive standard library, and wide range of reusable third-party modules. Enterprise
development is supported by many frameworks, application servers, and other technologies. Much of its
syntax is familiar to C and C++ developers. To write Java applications with MySQL, you use the JDBC driver
known as Connector/J.
See Also C, Connector/J, C++, JDBC.

JBoss

See Also J2EE.

JDBC
 Abbreviation for “Java Database Connectivity”, an API for database access from Java applications. Java
developers writing MySQL applications use the Connector/J component as their JDBC driver.
See Also API, Connector/J, J2EE, Java.

JNDI

See Also Java.

join
 A query that retrieves data from more than one table, by referencing columns in the tables that hold identical
values. Ideally, these columns are part of an InnoDB foreign key relationship, which ensures referential
integrity and that the join columns are indexed. Often used to save space and improve query performance
by replacing repeated strings with numeric IDs, in a normalized data design.
See Also foreign key, index, normalized, query, referential integrity.

K
KDC

See key distribution center.

key distribution center
 In Kerberos, the key distribution center comprises an authentication server (AS) and a ticket-granting server
(TGS).

6371

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

See Also authentication server, ticket-granting ticket.

keystore

See Also SSL.

KEY_BLOCK_SIZE
 An option to specify the size of data pages within an InnoDB table that uses compressed row format. The
default is 8 kilobytes. Lower values risk hitting internal limits that depend on the combination of row size and
compression percentage.

For MyISAM tables, KEY_BLOCK_SIZE optionally specifies the size in bytes to use for index key blocks. The
value is treated as a hint; a different size could be used if necessary. A KEY_BLOCK_SIZE value specified for
an individual index definition overrides a table-level KEY_BLOCK_SIZE value.
See Also compressed row format.

L
latch

 A lightweight structure used by InnoDB to implement a lock for its own internal memory structures,
typically held for a brief time measured in milliseconds or microseconds. A general term that includes both
mutexes (for exclusive access) and rw-locks (for shared access). Certain latches are the focus of InnoDB
performance tuning. Statistics about latch use and contention are available through the Performance
Schema interface.
See Also lock, locking, mutex, Performance Schema, rw-lock.

libmysql
 Informal name for the libmysqlclient library.
See Also libmysqlclient.

libmysqlclient
 The library file, named libmysqlclient.a or libmysqlclient.so, that is typically linked into client
programs written in C. Sometimes known informally as libmysql or the mysqlclient library.
See Also client, libmysql, mysqlclient.

libmysqld
 This embedded MySQL server library makes it possible to run a full-featured MySQL server inside a client
application. The main benefits are increased speed and more simple management for embedded applications.
You link with the libmysqld library rather than libmysqlclient. The API is identical between all three of
these libraries.
See Also client, embedded, libmysql, libmysqlclient.

lifecycle interceptor
 A type of interceptor supported by Connector/J. It involves implementing the interface
com.mysql.jdbc.ConnectionLifecycleInterceptor.
See Also Connector/J, interceptor.

list
 The InnoDB buffer pool is represented as a list of memory pages. The list is reordered as new pages are
accessed and enter the buffer pool, as pages within the buffer pool are accessed again and are considered
newer, and as pages that are not accessed for a long time are evicted from the buffer pool. The buffer pool is
divided into sublists, and the replacement policy is a variation of the familiar LRU technique.
See Also buffer pool, eviction, LRU, page, sublist.

load balancing
 A technique for scaling read-only connections by sending query requests to different slave servers
in a replication or Cluster configuration. With Connector/J, load balancing is enabled through the
com.mysql.jdbc.ReplicationDriver class and controlled by the configuration property
loadBalanceStrategy.
See Also Connector/J, J2EE.

6372

localhost

See Also connection.

lock
 The high-level notion of an object that controls access to a resource, such as a table, row, or internal data
structure, as part of a locking strategy. For intensive performance tuning, you might delve into the actual
structures that implement locks, such as mutexes and latches.
See Also latch, lock mode, locking, mutex.

lock escalation
 An operation used in some database systems that converts many row locks into a single table lock, saving
memory space but reducing concurrent access to the table. InnoDB uses a space-efficient representation for
row locks, so that lock escalation is not needed.
See Also locking, row lock, table lock.

lock mode
 A shared (S) lock allows a transaction to read a row. Multiple transactions can acquire an S lock on that
same row at the same time.

An exclusive (X) lock allows a transaction to update or delete a row. No other transaction can acquire any kind
of lock on that same row at the same time.

Intention locks apply to the table, and are used to indicate what kind of lock the transaction intends to
acquire on rows in the table. Different transactions can acquire different kinds of intention locks on the same
table, but the first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions
from acquiring any S or X locks on the table. Conversely, the first transaction to acquire an intention shared
(IS) lock on a table prevents other transactions from acquiring any X locks on the table. The two-phase
process allows the lock requests to be resolved in order, without blocking locks and corresponding operations
that are compatible.
See Also intention lock, lock, locking, transaction.

locking
 The system of protecting a transaction from seeing or changing data that is being queried or changed by
other transactions. The locking strategy must balance reliability and consistency of database operations (the
principles of the ACID philosophy) against the performance needed for good concurrency. Fine-tuning the
locking strategy often involves choosing an isolation level and ensuring all your database operations are safe
and reliable for that isolation level.
See Also ACID, concurrency, isolation level, locking, transaction.

locking read
 A SELECT statement that also performs a locking operation on an InnoDB table. Either SELECT ... FOR
UPDATE or SELECT ... LOCK IN SHARE MODE. It has the potential to produce a deadlock, depending on
the isolation level of the transaction. The opposite of a non-locking read. Not allowed for global tables in a
read-only transaction.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.

See Section 17.7.2.4, “Locking Reads”.
See Also deadlock, isolation level, locking, non-locking read, read-only transaction.

log
 In the InnoDB context, “log” or “log files” typically refers to the redo log represented by the ib_logfileN files.
Another type of InnoDB log is the undo log, which is a storage area that holds copies of data modified by
active transactions.

Other kinds of logs that are important in MySQL are the error log (for diagnosing startup and runtime
problems), binary log (for working with replication and performing point-in-time restores), the general query
log (for diagnosing application problems), and the slow query log (for diagnosing performance problems).
See Also binary log, error log, general query log, ib_logfile, redo log, slow query log, undo log.

6373

log buffer
 The memory area that holds data to be written to the log files that make up the redo log. It is controlled by
the innodb_log_buffer_size configuration option.
See Also log file, redo log.

log file
 One of the ib_logfileN files that make up the redo log. Data is written to these files from the log buffer
memory area.
See Also ib_logfile, log buffer, redo log.

log group
 The set of files that make up the redo log, typically named ib_logfile0 and ib_logfile1. (For that
reason, sometimes referred to collectively as ib_logfile.)
See Also ib_logfile, redo log.

logical
 A type of operation that involves high-level, abstract aspects such as tables, queries, indexes, and other
SQL concepts. Typically, logical aspects are important to make database administration and application
development convenient and usable. Contrast with physical.
See Also logical backup, physical.

logical backup
 A backup that reproduces table structure and data, without copying the actual data files. For example, the
mysqldump command produces a logical backup, because its output contains statements such as CREATE
TABLE and INSERT that can re-create the data. Contrast with physical backup. A logical backup offers
flexibility (for example, you could edit table definitions or insert statements before restoring), but can take
substantially longer to restore than a physical backup.
See Also backup, mysqldump, physical backup, restore.

loose_
 A prefix added to InnoDB configuration options after server startup, so any new configuration options not
recognized by the current level of MySQL do not cause a startup failure. MySQL processes configuration
options that start with this prefix, but gives a warning rather than a failure if the part after the prefix is not a
recognized option.
See Also startup.

low-water mark
 A value representing a lower limit, typically a threshold value at which some corrective action begins or
becomes more aggressive. Contrast with high-water mark.
See Also high-water mark.

LRU
 An acronym for “least recently used”, a common method for managing storage areas. The items that have
not been used recently are evicted when space is needed to cache newer items. InnoDB uses the LRU
mechanism by default to manage the pages within the buffer pool, but makes exceptions in cases where a
page might be read only a single time, such as during a full table scan. This variation of the LRU algorithm is
called the midpoint insertion strategy. For more information, see Section 17.5.1, “Buffer Pool”.
See Also buffer pool, eviction, full table scan, midpoint insertion strategy, page.

LSN
 Acronym for “log sequence number”. This arbitrary, ever-increasing value represents a point in time
corresponding to operations recorded in the redo log. (This point in time is regardless of transaction
boundaries; it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash
recovery and for managing the buffer pool.

Prior to MySQL 5.6.3, the LSN was a 4-byte unsigned integer. The LSN became an 8-byte unsigned integer in
MySQL 5.6.3 when the redo log file size limit increased from 4GB to 512GB, as additional bytes were required
to store extra size information. Applications built on MySQL 5.6.3 or later that use LSN values should use 64-
bit rather than 32-bit variables to store and compare LSN values.

6374

In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which
to take an incremental backup. The relevant LSN is displayed by the output of the mysqlbackup command.
Once you have the LSN corresponding to the time of a full backup, you can specify that value to take a
subsequent incremental backup, whose output contains another LSN for the next incremental backup.
See Also buffer pool, crash recovery, incremental backup, MySQL Enterprise Backup, redo log, transaction.

LTS Series
 LTS releases with the same major version number form an LTS series. For example, all MySQL 8.4.x
releases form the MySQL 8.4 LTS series.

Note: MySQL 8.0 is a Bugfix series that preceded the LTS release model.
See Also Innovation Series.

M
.MRG file

 A file containing references to other tables, used by the MERGE storage engine. Files with this extension are
always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup
product.
See Also MySQL Enterprise Backup, mysqlbackup command.

.MYD file
 A file that MySQL uses to store data for a MyISAM table.
See Also .MYI file, MySQL Enterprise Backup, mysqlbackup command.

.MYI file
 A file that MySQL uses to store indexes for a MyISAM table.
See Also .MYD file, MySQL Enterprise Backup, mysqlbackup command.

master
See source.

master thread
 An InnoDB thread that performs various tasks in the background. Most of these tasks are I/O related, such
as writing changes from the change buffer to the appropriate secondary indexes.

To improve concurrency, sometimes actions are moved from the master thread to separate background
threads. For example, in MySQL 5.6 and higher, dirty pages are flushed from the buffer pool by the page
cleaner thread rather than the master thread.
See Also buffer pool, change buffer, concurrency, dirty page, flush, page cleaner, thread.

MDL
 Acronym for “metadata lock”.
See Also metadata lock.

medium trust
 Synonym for partial trust. Because the range of trust settings is so broad, “partial trust” is preferred, to avoid
the implication that there are only three levels (low, medium, and full).
See Also Connector/NET, partial trust.

memcached
 A popular component of many MySQL and NoSQL software stacks, allowing fast reads and writes for single
values and caching the results entirely in memory. Traditionally, applications required extra logic to write the
same data to a MySQL database for permanent storage, or to read data from a MySQL database when it
was not cached yet in memory. Now, applications can use the simple memcached protocol, supported by
client libraries for many languages, to communicate directly with MySQL servers using InnoDB or NDB tables.
These NoSQL interfaces to MySQL tables allow applications to achieve higher read and write performance
than by issuing SQL statements directly, and can simplify application logic and deployment configurations for
systems that already incorporate memcached for in-memory caching.
See Also NoSQL.

6375

merge
 To apply changes to data cached in memory, such as when a page is brought into the buffer pool, and any
applicable changes recorded in the change buffer are incorporated into the page in the buffer pool. The
updated data is eventually written to the tablespace by the flush mechanism.
See Also buffer pool, change buffer, flush, tablespace.

metadata lock
 A type of lock that prevents DDL operations on a table that is being used at the same time by another
transaction. For details, see Section 10.11.4, “Metadata Locking”.

Enhancements to online operations, particularly in MySQL 5.6 and higher, are focused on reducing the
amount of metadata locking. The objective is for DDL operations that do not change the table structure
(such as CREATE INDEX and DROP INDEX for InnoDB tables) to proceed while the table is being queried,
updated, and so on by other transactions.
See Also DDL, lock, online, transaction.

metrics counter
 A feature implemented by the INNODB_METRICS table in the INFORMATION_SCHEMA, in MySQL 5.6
and higher. You can query counts and totals for low-level InnoDB operations, and use the results for
performance tuning in combination with data from the Performance Schema.
See Also counter, INFORMATION_SCHEMA, Performance Schema.

midpoint insertion strategy
 The technique of initially bringing pages into the InnoDB buffer pool not at the “newest” end of the list,
but instead somewhere in the middle. The exact location of this point can vary, based on the setting of the
innodb_old_blocks_pct option. The intent is that pages that are only read once, such as during a full
table scan, can be aged out of the buffer pool sooner than with a strict LRU algorithm. For more information,
see Section 17.5.1, “Buffer Pool”.
See Also buffer pool, full table scan, LRU, page.

mini-transaction
 An internal phase of InnoDB processing, when making changes at the physical level to internal data
structures during DML operations. A mini-transaction (mtr) has no notion of rollback; multiple mini-
transactions can occur within a single transaction. Mini-transactions write information to the redo log that is
used during crash recovery. A mini-transaction can also happen outside the context of a regular transaction,
for example during purge processing by background threads.
See Also commit, crash recovery, DML, physical, purge, redo log, rollback, transaction.

mixed-mode insert
 An INSERT statement where auto-increment values are specified for some but not all of the new rows.
For example, a multi-value INSERT could specify a value for the auto-increment column in some cases and
NULL in other cases. InnoDB generates auto-increment values for the rows where the column value was
specified as NULL. Another example is an INSERT ... ON DUPLICATE KEY UPDATE statement, where
auto-increment values might be generated but not used, for any duplicate rows that are processed as UPDATE
rather than INSERT statements.

Can cause consistency issues between source and replica servers in a replication configuration. Can
require adjusting the value of the innodb_autoinc_lock_mode configuration option.
See Also auto-increment, innodb_autoinc_lock_mode, replica, replication, source.

MM.MySQL
 An older JDBC driver for MySQL that evolved into Connector/J when it was integrated with the MySQL
product.
See Also Connector/J.

Mono
 An Open Source framework developed by Novell, that works with Connector/NET and C# applications on
Linux platforms.
See Also Connector/NET, C#.

6376

mtr
See mini-transaction.

multi-core
 A type of processor that can take advantage of multithreaded programs, such as the MySQL server.

multiversion concurrency control
See MVCC.

mutex
 Informal abbreviation for “mutex variable”. (Mutex itself is short for “mutual exclusion”.) The low-level object
that InnoDB uses to represent and enforce exclusive-access locks to internal in-memory data structures.
Once the lock is acquired, any other process, thread, and so on is prevented from acquiring the same lock.
Contrast with rw-locks, which InnoDB uses to represent and enforce shared-access locks to internal in-
memory data structures. Mutexes and rw-locks are known collectively as latches.
See Also latch, lock, Performance Schema, Pthreads, rw-lock.

MVCC
 Acronym for “multiversion concurrency control”. This technique lets InnoDB transactions with certain
isolation levels perform consistent read operations; that is, to query rows that are being updated by other
transactions, and see the values from before those updates occurred. This is a powerful technique to increase
concurrency, by allowing queries to proceed without waiting due to locks held by the other transactions.

This technique is not universal in the database world. Some other database products, and some other MySQL
storage engines, do not support it.
See Also ACID, concurrency, consistent read, isolation level, lock, transaction.

my.cnf
 The name, on Unix or Linux systems, of the MySQL option file.
See Also my.ini, option file.

my.ini
 The name, on Windows systems, of the MySQL option file.
See Also my.cnf, option file.

MyODBC drivers
 Obsolete name for Connector/ODBC.
See Also Connector/ODBC.

mysql
 The mysql program is the command-line interpreter for the MySQL database. It processes SQL statements,
and also MySQL-specific commands such as SHOW TABLES, by passing requests to the mysqld daemon.
See Also mysqld, SQL.

mysqlbackup command
 A command-line tool of the MySQL Enterprise Backup product. It performs a hot backup operation
for InnoDB tables, and a warm backup for MyISAM and other kinds of tables. See Section 32.1, “MySQL
Enterprise Backup Overview” for more information about this command.
See Also hot backup, MySQL Enterprise Backup, warm backup.

mysqlclient
 The informal name for the library that is implemented by the file libmysqlclient, with extension .a or .so.
See Also libmysqlclient.

mysqld
 mysqld, also known as MySQL Server, is a single multithreaded program that does most of the work in a
MySQL installation. It does not spawn additional processes. MySQL Server manages access to the MySQL
data directory that contains databases, tables, and other information such as log files and status files.

mysqld runs as a Unix daemon or Windows service, constantly waiting for requests and performing
maintenance work in the background.

6377

See Also instance, mysql.

MySQLdb
 The name of the open-source Python module that forms the basis of the MySQL Python API.
See Also Python, Python API.

mysqldump
 A command that performs a logical backup of some combination of databases, tables, and table data. The
results are SQL statements that reproduce the original schema objects, data, or both. For substantial amounts
of data, a physical backup solution such as MySQL Enterprise Backup is faster, particularly for the restore
operation.
See Also logical backup, MySQL Enterprise Backup, physical backup, restore.

N
.NET

See Also ADO.NET, ASP.net, Connector/NET, Mono, Visual Studio.

native C API
 Synonym for libmysqlclient.
See Also libmysql.

natural key
 An indexed column, typically a primary key, where the values have some real-world significance. Usually
advised against because:

• If the value should ever change, there is potentially a lot of index maintenance to re-sort the clustered
index and update the copies of the primary key value that are repeated in each secondary index.

• Even seemingly stable values can change in unpredictable ways that are difficult to represent correctly
in the database. For example, one country can change into two or several, making the original country
code obsolete. Or, rules about unique values might have exceptions. For example, even if taxpayer IDs
are intended to be unique to a single person, a database might have to handle records that violate that
rule, such as in cases of identity theft. Taxpayer IDs and other sensitive ID numbers also make poor
primary keys, because they may need to be secured, encrypted, and otherwise treated differently than other
columns.

Thus, it is typically better to use arbitrary numeric values to form a synthetic key, for example using an auto-
increment column.
See Also auto-increment, clustered index, primary key, secondary index, synthetic key.

neighbor page
 Any page in the same extent as a particular page. When a page is selected to be flushed, any neighbor
pages that are dirty are typically flushed as well, as an I/O optimization for traditional hard disks. In MySQL
5.6 and up, this behavior can be controlled by the configuration variable innodb_flush_neighbors; you
might turn that setting off for SSD drives, which do not have the same overhead for writing smaller batches of
data at random locations.
See Also dirty page, extent, flush, page.

next-key lock
 A combination of a record lock on the index record and a gap lock on the gap before the index record.
See Also gap lock, locking, record lock.

non-locking read
 A query that does not use the SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE
clauses. The only kind of query allowed for global tables in a read-only transaction. The opposite of a
locking read. See Section 17.7.2.3, “Consistent Nonlocking Reads”.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.

6378

See Also locking read, query, read-only transaction.

non-repeatable read
 The situation when a query retrieves data, and a later query within the same transaction retrieves what
should be the same data, but the queries return different results (changed by another transaction committing
in the meantime).

This kind of operation goes against the ACID principle of database design. Within a transaction, data should
be consistent, with predictable and stable relationships.

Among different isolation levels, non-repeatable reads are prevented by the serializable read and
repeatable read levels, and allowed by the consistent read, and read uncommitted levels.
See Also ACID, consistent read, isolation level, READ UNCOMMITTED, REPEATABLE READ,
SERIALIZABLE, transaction.

nonblocking I/O
 An industry term that means the same as asynchronous I/O.
See Also asynchronous I/O.

normalized
 A database design strategy where data is split into multiple tables, and duplicate values condensed into
single rows represented by an ID, to avoid storing, querying, and updating redundant or lengthy values. It is
typically used in OLTP applications.

For example, an address might be given a unique ID, so that a census database could represent the
relationship lives at this address by associating that ID with each member of a family, rather than storing
multiple copies of a complex value such as 123 Main Street, Anytown, USA.

For another example, although a simple address book application might store each phone number in the
same table as a person's name and address, a phone company database might give each phone number a
special ID, and store the numbers and IDs in a separate table. This normalized representation could simplify
large-scale updates when area codes split apart.

Normalization is not always recommended. Data that is primarily queried, and only updated by deleting
entirely and reloading, is often kept in fewer, larger tables with redundant copies of duplicate values. This data
representation is referred to as denormalized, and is frequently found in data warehousing applications.
See Also denormalized, foreign key, OLTP, relational.

NoSQL
 A broad term for a set of data access technologies that do not use the SQL language as their primary
mechanism for reading and writing data. Some NoSQL technologies act as key-value stores, only accepting
single-value reads and writes; some relax the restrictions of the ACID methodology; still others do not require
a pre-planned schema. MySQL users can combine NoSQL-style processing for speed and simplicity with
SQL operations for flexibility and convenience, by using the memcached API to directly access some kinds of
MySQL tables.
See Also ACID, memcached, schema, SQL.

NOT NULL constraint
 A type of constraint that specifies that a column cannot contain any NULL values. It helps to preserve
referential integrity, as the database server can identify data with erroneous missing values. It also helps
in the arithmetic involved in query optimization, allowing the optimizer to predict the number of entries in an
index on that column.
See Also column, constraint, NULL, primary key, referential integrity.

NULL
 A special value in SQL, indicating the absence of data. Any arithmetic operation or equality test involving a
NULL value, in turn produces a NULL result. (Thus it is similar to the IEEE floating-point concept of NaN, “not
a number”.) Any aggregate calculation such as AVG() ignores rows with NULL values, when determining how
many rows to divide by. The only test that works with NULL values uses the SQL idioms IS NULL or IS NOT
NULL.

6379

NULL values play a part in index operations, because for performance a database must minimize the
overhead of keeping track of missing data values. Typically, NULL values are not stored in an index, because
a query that tests an indexed column using a standard comparison operator could never match a row with a
NULL value for that column. For the same reason, unique indexes do not prevent NULL values; those values
simply are not represented in the index. Declaring a NOT NULL constraint on a column provides reassurance
that there are no rows left out of the index, allowing for better query optimization (accurate counting of rows
and estimation of whether to use the index).

Because the primary key must be able to uniquely identify every row in the table, a single-column primary
key cannot contain any NULL values, and a multi-column primary key cannot contain any rows with NULL
values in all columns.

Although the Oracle database allows a NULL value to be concatenated with a string, InnoDB treats the result
of such an operation as NULL.
See Also index, primary key, SQL.

O

.OPT file
 A file containing database configuration information. Files with this extension are included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.

ODBC
 Acronym for Open Database Connectivity, an industry-standard API. Typically used with Windows-based
servers, or applications that require ODBC to communicate with MySQL. The MySQL ODBC driver is called
Connector/ODBC.
See Also Connector/ODBC.

off-page column
 A column containing variable-length data (such as BLOB and VARCHAR) that is too long to fit on a B-tree
page. The data is stored in overflow pages. The DYNAMIC row format is more efficient for such storage than
the older COMPACT row format.
See Also B-tree, compact row format, dynamic row format, overflow page.

OLTP
 Acronym for “Online Transaction Processing”. A database system, or a database application, that runs a
workload with many transactions, with frequent writes as well as reads, typically affecting small amounts of
data at a time. For example, an airline reservation system or an application that processes bank deposits. The
data might be organized in normalized form for a balance between DML (insert/update/delete) efficiency and
query efficiency. Contrast with data warehouse.

With its row-level locking and transactional capability, InnoDB is the ideal storage engine for MySQL tables
used in OLTP applications.
See Also data warehouse, DML, InnoDB, query, row lock, transaction.

online
 A type of operation that involves no downtime, blocking, or restricted operation for the database. Typically
applied to DDL. Operations that shorten the periods of restricted operation, such as fast index creation, have
evolved into a wider set of online DDL operations in MySQL 5.6.

In the context of backups, a hot backup is an online operation and a warm backup is partially an online
operation.
See Also DDL, Fast Index Creation, hot backup, online DDL, warm backup.

online DDL
 A feature that improves the performance, concurrency, and availability of InnoDB tables during DDL
(primarily ALTER TABLE) operations. See Section 17.12, “InnoDB and Online DDL” for details.

6380

The details vary according to the type of operation. In some cases, the table can be modified concurrently
while the ALTER TABLE is in progress. The operation might be able to be performed without a table copy, or
using a specially optimized type of table copy. DML log space usage for in-place operations is controlled by
the innodb_online_alter_log_max_size configuration option.

This feature is an enhancement of the Fast Index Creation feature in MySQL 5.5.
See Also DDL, Fast Index Creation, online.

optimistic
 A methodology that guides low-level implementation decisions for a relational database system. The
requirements of performance and concurrency in a relational database mean that operations must be started
or dispatched quickly. The requirements of consistency and referential integrity mean that any operation
could fail: a transaction might be rolled back, a DML operation could violate a constraint, a request for a lock
could cause a deadlock, a network error could cause a timeout. An optimistic strategy is one that assumes
most requests or attempts succeed, so that relatively little work is done to prepare for the failure case. When
this assumption is true, the database does little unnecessary work; when requests do fail, extra work must be
done to clean up and undo changes.

InnoDB uses optimistic strategies for operations such as locking and commits. For example, data changed
by a transaction can be written to the data files before the commit occurs, making the commit itself very fast,
but requiring more work to undo the changes if the transaction is rolled back.

The opposite of an optimistic strategy is a pessimistic one, where a system is optimized to deal with
operations that are unreliable and frequently unsuccessful. This methodology is rare in a database system,
because so much care goes into choosing reliable hardware, networks, and algorithms.
See Also commit, concurrency, DML, locking, pessimistic, referential integrity.

optimizer
 The MySQL component that determines the best indexes and join order to use for a query, based on
characteristics and data distribution of the relevant tables.
See Also index, join, query, table.

option
 A configuration parameter for MySQL, either stored in the option file or passed on the command line.

For the options that apply to InnoDB tables, each option name starts with the prefix innodb_.
See Also InnoDB, option, option file.

option file
 The file that holds the configuration options for the MySQL instance. Traditionally, on Linux and Unix this file
is named my.cnf, and on Windows it is named my.ini.
See Also configuration file, my.cnf, my.ini, option.

overflow page
 Separately allocated disk pages that hold variable-length columns (such as BLOB and VARCHAR) that are too
long to fit on a B-tree page. The associated columns are known as off-page columns.
See Also B-tree, off-page column, page.

P
.par file

 A file containing partition definitions. Files with this extension are included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.

With the introduction of native partitioning support for InnoDB tables in MySQL 5.7.6, .par files are no longer
created for partitioned InnoDB tables. Partitioned MyISAM tables continue to use .par files in MySQL 5.7. In
MySQL 8.0, partitioning support is only provided by the InnoDB storage engine. As such, .par files are no
longer used as of MySQL 8.0.
See Also MySQL Enterprise Backup, mysqlbackup command.

6381

page
 A unit representing how much data InnoDB transfers at any one time between disk (the data files) and
memory (the buffer pool). A page can contain one or more rows, depending on how much data is in each
row. If a row does not fit entirely into a single page, InnoDB sets up additional pointer-style data structures so
that the information about the row can be stored in one page.

One way to fit more data in each page is to use compressed row format. For tables that use BLOBs or large
text fields, compact row format allows those large columns to be stored separately from the rest of the row,
reducing I/O overhead and memory usage for queries that do not reference those columns.

When InnoDB reads or writes sets of pages as a batch to increase I/O throughput, it reads or writes an
extent at a time.

All the InnoDB disk data structures within a MySQL instance share the same page size.
See Also buffer pool, compact row format, compressed row format, data files, extent, page size, row.

page cleaner
 An InnoDB background thread that flushes dirty pages from the buffer pool. Prior to MySQL 5.6, this
activity was performed by the master thread. The number of page cleaner threads is controlled by the
innodb_page_cleaners configuration option, introduced in MySQL 5.7.4.
See Also buffer pool, dirty page, flush, master thread, thread.

page size
 For releases up to and including MySQL 5.5, the size of each InnoDB page is fixed at 16 kilobytes. This
value represents a balance: large enough to hold the data for most rows, yet small enough to minimize the
performance overhead of transferring unneeded data to memory. Other values are not tested or supported.

Starting in MySQL 5.6, the page size for an InnoDB instance can be either 4KB, 8KB, or 16KB, controlled
by the innodb_page_size configuration option. As of MySQL 5.7.6, InnoDB also supports 32KB and 64KB
page sizes. For 32KB and 64KB page sizes, ROW_FORMAT=COMPRESSED is not supported and the maximum
record size is 16KB.

Page size is set when creating the MySQL instance, and it remains constant afterward. The same page
size applies to all InnoDB tablespaces, including the system tablespace, file-per-table tablespaces, and
general tablespaces.

Smaller page sizes can help performance with storage devices that use small block sizes, particularly for SSD
devices in disk-bound workloads, such as for OLTP applications. As individual rows are updated, less data is
copied into memory, written to disk, reorganized, locked, and so on.
See Also disk-bound, file-per-table, general tablespace, instance, OLTP, page, SSD, system tablespace,
tablespace.

parent table
 The table in a foreign key relationship that holds the initial column values pointed to from the child table.
The consequences of deleting, or updating rows in the parent table depend on the ON UPDATE and ON
DELETE clauses in the foreign key definition. Rows with corresponding values in the child table could be
automatically deleted or updated in turn, or those columns could be set to NULL, or the operation could be
prevented.
See Also child table, foreign key.

partial backup
 A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL
instance. Contrast with full backup.
See Also backup, full backup, table.

partial index
 An index that represents only part of a column value, typically the first N characters (the prefix) of a long
VARCHAR value.
See Also index, index prefix.

6382

partial trust
 An execution environment typically used by hosting providers, where applications have some permissions
but not others. For example, applications might be able to access a database server over a network, but be
“sandboxed” with regard to reading and writing local files.
See Also Connector/NET.

Performance Schema
 The performance_schema schema, in MySQL 5.5 and up, presents a set of tables that you can query to
get detailed information about the performance characteristics of many internal parts of the MySQL server.
See Chapter 29, MySQL Performance Schema.
See Also INFORMATION_SCHEMA, latch, mutex, rw-lock.

Perl
 A programming language with roots in Unix scripting and report generation. Incorporates high-performance
regular expressions and file I/O. Large collection of reusable modules available through repositories such as
CPAN.
See Also Perl API.

Perl API
 An open-source API for MySQL applications written in the Perl language. Implemented through the DBI and
DBD::mysql modules. For details, see Section 31.9, “MySQL Perl API”.
See Also API, Perl.

persistent statistics
 A feature that stores index statistics for InnoDB tables on disk, providing better plan stability for queries.
For more information, see Section 17.8.10.1, “Configuring Persistent Optimizer Statistics Parameters”.
See Also index, optimizer, plan stability, query, table.

pessimistic
 A methodology that sacrifices performance or concurrency in favor of safety. It is appropriate if a high
proportion of requests or attempts might fail, or if the consequences of a failed request are severe. InnoDB
uses what is known as a pessimistic locking strategy, to minimize the chance of deadlocks. At the
application level, you might avoid deadlocks by using a pessimistic strategy of acquiring all locks needed by a
transaction at the very beginning.

Many built-in database mechanisms use the opposite optimistic methodology.
See Also deadlock, locking, optimistic.

phantom
 A row that appears in the result set of a query, but not in the result set of an earlier query. For example, if a
query is run twice within a transaction, and in the meantime, another transaction commits after inserting a
new row or updating a row so that it matches the WHERE clause of the query.

This occurrence is known as a phantom read. It is harder to guard against than a non-repeatable read,
because locking all the rows from the first query result set does not prevent the changes that cause the
phantom to appear.

Among different isolation levels, phantom reads are prevented by the serializable read level, and allowed
by the repeatable read, consistent read, and read uncommitted levels.
See Also consistent read, isolation level, non-repeatable read, READ UNCOMMITTED, REPEATABLE
READ, SERIALIZABLE, transaction.

PHP
 A programming language originating with web applications. The code is typically embedded as blocks within
the source of a web page, with the output substituted into the page as it is transmitted by the web server. This
is in contrast to applications such as CGI scripts that print output in the form of an entire web page. The PHP
style of coding is used for highly interactive and dynamic web pages. Modern PHP programs can also be run
as command-line or GUI applications.

MySQL applications are written using one of the PHP APIs. Reusable modules can be written in C and called
from PHP.

6383

Another technology for writing server-side web pages with MySQL is ASP.net.
See Also ASP.net, C, PHP API.

PHP API
 Several APIs are available for writing MySQL applications in the PHP language: the original MySQL API
(Mysql) the MySQL Improved Extension (Mysqli) the MySQL Native Driver (Mysqlnd) the MySQL functions
(PDO_MYSQL), and Connector/PHP. For details, see MySQL and PHP.
See Also API, PHP.

physical
 A type of operation that involves hardware-related aspects such as disk blocks, memory pages, files, bits,
disk reads, and so on. Typically, physical aspects are important during expert-level performance tuning and
problem diagnosis. Contrast with logical.
See Also logical, physical backup.

physical backup
 A backup that copies the actual data files. For example, the mysqlbackup command of the MySQL
Enterprise Backup product produces a physical backup, because its output contains data files that can be
used directly by the mysqld server, resulting in a faster restore operation. Contrast with logical backup.
See Also backup, logical backup, MySQL Enterprise Backup, restore.

PITR
 Acronym for point-in-time recovery.
See Also point-in-time recovery.

plan stability
 A property of a query execution plan, where the optimizer makes the same choices each time for a given
query, so that performance is consistent and predictable.
See Also query, query execution plan.

point-in-time recovery
 The process of restoring a backup to recreate the state of the database at a specific date and time.
Commonly abbreviated “PITR”. Because it is unlikely that the specified time corresponds exactly to the time
of a backup, this technique usually requires a combination of a physical backup and a logical backup. For
example, with the MySQL Enterprise Backup product, you restore the last backup that you took before the
specified point in time, then replay changes from the binary log between the time of the backup and the PITR
time.
See Also backup, binary log, logical backup, MySQL Enterprise Backup, physical backup.

port
 The number of the TCP/IP socket the database server listens on, used to establish a connection. Often
specified in conjunction with a host. Depending on your use of network encryption, there might be one port for
unencrypted traffic and another port for SSL connections.
See Also connection, host, SSL.

prefix
See index prefix.

prepared backup
 A set of backup files, produced by the MySQL Enterprise Backup product, after all the stages of applying
binary logs and incremental backups are finished. The resulting files are ready to be restored. Prior to the
apply steps, the files are known as a raw backup.
See Also binary log, hot backup, incremental backup, MySQL Enterprise Backup, raw backup, restore.

prepared statement
 An SQL statement that is analyzed in advance to determine an efficient execution plan. It can be executed
multiple times, without the overhead for parsing and analysis each time. Different values can be substituted
for literals in the WHERE clause each time, through the use of placeholders. This substitution technique
improves security, protecting against some kinds of SQL injection attacks. You can also reduce the overhead
for converting and copying return values to program variables.

6384

https://dev.mysql.com/doc/apis-php/en/

Although you can use prepared statements directly through SQL syntax, the various Connectors have
programming interfaces for manipulating prepared statements, and these APIs are more efficient than going
through SQL.
See Also client-side prepared statement, connector, server-side prepared statement.

primary key
 A set of columns—and by implication, the index based on this set of columns—that can uniquely identify
every row in a table. As such, it must be a unique index that does not contain any NULL values.

InnoDB requires that every table has such an index (also called the clustered index or cluster index), and
organizes the table storage based on the column values of the primary key.

When choosing primary key values, consider using arbitrary values (a synthetic key) rather than relying on
values derived from some other source (a natural key).
See Also clustered index, index, natural key, synthetic key.

principal
 The Kerberos term for a named entity, such as a user or server.
See Also service principal name, user principal name.

process
 An instance of an executing program. The operating system switches between multiple running processes,
allowing for a certain degree of concurrency. On most operating systems, processes can contain multiple
threads of execution that share resources. Context-switching between threads is faster than the equivalent
switching between processes.
See Also concurrency, thread.

pseudo-record
 An artificial record in an index, used for locking key values or ranges that do not currently exist.
See Also infimum record, locking, supremum record.

Pthreads
 The POSIX threads standard, which defines an API for threading and locking operations on Unix and Linux
systems. On Unix and Linux systems, InnoDB uses this implementation for mutexes.
See Also mutex.

purge
 A type of garbage collection performed by one or more separate background threads (controlled by
innodb_purge_threads) that runs on a periodic schedule. Purge parses and processes undo log pages
from the history list for the purpose of removing clustered and secondary index records that were marked
for deletion (by previous DELETE statements) and are no longer required for MVCC or rollback. Purge frees
undo log pages from the history list after processing them.
See Also history list, MVCC, rollback, undo log.

purge buffering
 The technique of storing changes to secondary index pages, resulting from DELETE operations, in the
change buffer rather than writing the changes immediately, so that the physical writes can be performed to
minimize random I/O. (Because delete operations are a two-step process, this operation buffers the write that
normally purges an index record that was previously marked for deletion.) It is one of the types of change
buffering; the others are insert buffering and delete buffering.
See Also change buffer, change buffering, delete buffering, insert buffer, insert buffering.

purge lag
 Another name for the InnoDB history list. Related to the innodb_max_purge_lag configuration option.
See Also history list, purge.

purge thread
 A thread within the InnoDB process that is dedicated to performing the periodic purge operation. In MySQL
5.6 and higher, multiple purge threads are enabled by the innodb_purge_threads configuration option.
See Also purge, thread.

6385

Python
 A programming language used in a broad range of fields, from Unix scripting to large-scale applications.
Includes runtime typing, built-in high-level data types, object-oriented features, and an extensive standard
library. Often used as a “glue” language between components written in other languages. The MySQL Python
API is the open-source MySQLdb module.
See Also MySQLdb, Python API.

Python API

See Also API, Python.

Q
query

 In SQL, an operation that reads information from one or more tables. Depending on the organization of data
and the parameters of the query, the lookup might be optimized by consulting an index. If multiple tables are
involved, the query is known as a join.

For historical reasons, sometimes discussions of internal processing for statements use “query” in a broader
sense, including other types of MySQL statements such as DDL and DML statements.
See Also DDL, DML, index, join, SQL, table.

query execution plan
 The set of decisions made by the optimizer about how to perform a query most efficiently, including which
index or indexes to use, and the order in which to join tables. Plan stability involves the same choices being
made consistently for a given query.
See Also index, join, plan stability, query.

query log
See general query log.

quiesce
 To reduce the amount of database activity, often in preparation for an operation such as an ALTER TABLE,
a backup, or a shutdown. Might or might not involve doing as much flushing as possible, so that InnoDB
does not continue doing background I/O.

In MySQL 5.6 and higher, the syntax FLUSH TABLES ... FOR EXPORT writes some data to disk for
InnoDB tables that make it simpler to back up those tables by copying the data files.
See Also backup, flush, InnoDB, shutdown.

R
R-tree

 A tree data structure used for spatial indexing of multi-dimensional data such as geographical coordinates,
rectangles or polygons.
See Also B-tree.

RAID
 Acronym for “Redundant Array of Inexpensive Drives”. Spreading I/O operations across multiple drives
enables greater concurrency at the hardware level, and improves the efficiency of low-level write operations
that otherwise would be performed in sequence.
See Also concurrency.

random dive
 A technique for quickly estimating the number of different values in a column (the column's cardinality).
InnoDB samples pages at random from the index and uses that data to estimate the number of different
values.
See Also cardinality.

6386

raw backup
 The initial set of backup files produced by the MySQL Enterprise Backup product, before the changes
reflected in the binary log and any incremental backups are applied. At this stage, the files are not ready to
restore. After these changes are applied, the files are known as a prepared backup.
See Also binary log, hot backup, ibbackup_logfile, incremental backup, MySQL Enterprise Backup, prepared
backup, restore.

READ COMMITTED
 An isolation level that uses a locking strategy that relaxes some of the protection between transactions,
in the interest of performance. Transactions cannot see uncommitted data from other transactions, but they
can see data that is committed by another transaction after the current transaction started. Thus, a transaction
never sees any bad data, but the data that it does see may depend to some extent on the timing of other
transactions.

When a transaction with this isolation level performs UPDATE ... WHERE or DELETE ... WHERE
operations, other transactions might have to wait. The transaction can perform SELECT ... FOR UPDATE,
and LOCK IN SHARE MODE operations without making other transactions wait.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.
See Also ACID, isolation level, locking, REPEATABLE READ, SERIALIZABLE, transaction.

read phenomena
 Phenomena such as dirty reads, non-repeatable reads, and phantom reads which can occur when a
transaction reads data that another transaction has modified.
See Also dirty read, non-repeatable read, phantom.

READ UNCOMMITTED
 The isolation level that provides the least amount of protection between transactions. Queries employ
a locking strategy that allows them to proceed in situations where they would normally wait for another
transaction. However, this extra performance comes at the cost of less reliable results, including data that has
been changed by other transactions and not committed yet (known as dirty read). Use this isolation level with
great caution, and be aware that the results might not be consistent or reproducible, depending on what other
transactions are doing at the same time. Typically, transactions with this isolation level only do queries, not
insert, update, or delete operations.
See Also ACID, dirty read, isolation level, locking, transaction.

read view
 An internal snapshot used by the MVCC mechanism of InnoDB. Certain transactions, depending on their
isolation level, see the data values as they were at the time the transaction (or in some cases, the statement)
started. Isolation levels that use a read view are REPEATABLE READ, READ COMMITTED, and READ
UNCOMMITTED.
See Also isolation level, MVCC, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ,
transaction.

read-ahead
 A type of I/O request that prefetches a group of pages (an entire extent) into the buffer pool
asynchronously, in case these pages are needed soon. The linear read-ahead technique prefetches all the
pages of one extent based on access patterns for pages in the preceding extent. The random read-ahead
technique prefetches all the pages for an extent once a certain number of pages from the same extent are in
the buffer pool. Random read-ahead is not part of MySQL 5.5, but is re-introduced in MySQL 5.6 under the
control of the innodb_random_read_ahead configuration option.
See Also buffer pool, extent, page.

read-only transaction
 A type of transaction that can be optimized for InnoDB tables by eliminating some of the bookkeeping
involved with creating a read view for each transaction. Can only perform non-locking read queries. It can
be started explicitly with the syntax START TRANSACTION READ ONLY, or automatically under certain
conditions. See Section 10.5.3, “Optimizing InnoDB Read-Only Transactions” for details.

6387

See Also non-locking read, read view, transaction.

record lock
 A lock on an index record. For example, SELECT c1 FROM t WHERE c1 = 10 FOR UPDATE; prevents
any other transaction from inserting, updating, or deleting rows where the value of t.c1 is 10. Contrast with
gap lock and next-key lock.
See Also gap lock, lock, next-key lock.

redo
 The data, in units of records, recorded in the redo log when DML statements make changes to InnoDB
tables. It is used during crash recovery to correct data written by incomplete transactions. The ever-
increasing LSN value represents the cumulative amount of redo data that has passed through the redo log.
See Also crash recovery, DML, LSN, redo log, transaction.

redo log
 A disk-based data structure used during crash recovery, to correct data written by incomplete transactions.
During normal operation, it encodes requests to change InnoDB table data, which result from SQL
statements or low-level API calls. Modifications that did not finish updating the data files before an
unexpected shutdown are replayed automatically.

The redo log is physically represented on disk as a set of redo log files. Redo log data is encoded in terms
of records affected; this data is collectively referred to as redo. The passage of data through the redo log is
represented by an ever-increasing LSN value.

For more information, see Section 17.6.5, “Redo Log”
See Also crash recovery, data files, ib_logfile, log buffer, LSN, redo, shutdown, transaction.

redo log archiving
 An InnoDB feature that, when enabled, sequentially writes redo log records to an archive file to avoid
potential loss of data than can occur when a backup utility fails to keep pace with redo log generation while a
backup operation is in progress. For more information, see Redo Log Archiving.
See Also redo log.

redundant row format
 The oldest InnoDB row format. Prior to MySQL 5.0.3, it was the only row format available in InnoDB. From
MySQL 5.0.3 to MySQL 5.7.8, the default row format is COMPACT. As of MySQL 5.7.9, the default row
format is defined by the innodb_default_row_format configuration option, which has a default setting of
DYNAMIC. You can still specify the REDUNDANT row format for compatibility with older InnoDB tables.

For more information, see Section 17.10, “InnoDB Row Formats”.
See Also compact row format, dynamic row format, row format.

referential integrity
 The technique of maintaining data always in a consistent format, part of the ACID philosophy. In particular,
data in different tables is kept consistent through the use of foreign key constraints, which can prevent
changes from happening or automatically propagate those changes to all related tables. Related mechanisms
include the unique constraint, which prevents duplicate values from being inserted by mistake, and the NOT
NULL constraint, which prevents blank values from being inserted by mistake.
See Also ACID, FOREIGN KEY constraint, NOT NULL constraint, unique constraint.

relational
 An important aspect of modern database systems. The database server encodes and enforces relationships
such as one-to-one, one-to-many, many-to-one, and uniqueness. For example, a person might have zero,
one, or many phone numbers in an address database; a single phone number might be associated with
several family members. In a financial database, a person might be required to have exactly one taxpayer ID,
and any taxpayer ID could only be associated with one person.

The database server can use these relationships to prevent bad data from being inserted, and to find efficient
ways to look up information. For example, if a value is declared to be unique, the server can stop searching as
soon as the first match is found, and it can reject attempts to insert a second copy of the same value.

6388

At the database level, these relationships are expressed through SQL features such as columns within a
table, unique and NOT NULL constraints, foreign keys, and different kinds of join operations. Complex
relationships typically involve data split between more than one table. Often, the data is normalized, so that
duplicate values in one-to-many relationships are stored only once.

In a mathematical context, the relations within a database are derived from set theory. For example, the OR
and AND operators of a WHERE clause represent the notions of union and intersection.
See Also ACID, column, constraint, foreign key, normalized.

relevance
 In the full-text search feature, a number signifying the similarity between the search string and the data in
the FULLTEXT index. For example, when you search for a single word, that word is typically more relevant
for a row where it occurs several times in the text than a row where it appears only once.
See Also full-text search, FULLTEXT index.

REPEATABLE READ
 The default isolation level for InnoDB. It prevents any rows that are queried from being changed by other
transactions, thus blocking non-repeatable reads but not phantom reads. It uses a moderately strict
locking strategy so that all queries within a transaction see data from the same snapshot, that is, the data as
it was at the time the transaction started.

When a transaction with this isolation level performs UPDATE ... WHERE, DELETE ... WHERE,
SELECT ... FOR UPDATE, and LOCK IN SHARE MODE operations, other transactions might have to wait.

SELECT ... FOR SHARE replaces SELECT ... LOCK IN SHARE MODE in MySQL 8.0.1, but LOCK IN
SHARE MODE remains available for backward compatibility.
See Also ACID, consistent read, isolation level, locking, phantom, transaction.

repertoire
 Repertoire is a term applied to character sets. A character set repertoire is the collection of characters in the
set. See Section 12.2.1, “Character Set Repertoire”.

replica
 A database server machine in a replication topology that receives changes from another server (the
source) and applies those same changes. Thus it maintains the same contents as the source, although it
might lag somewhat behind.

In MySQL, replicas are commonly used in disaster recovery, to take the place of a source that fails. They are
also commonly used for testing software upgrades and new settings, to ensure that database configuration
changes do not cause problems with performance or reliability.

Replicas typically have high workloads, because they process all the DML (write) operations relayed from the
source, as well as user queries. To ensure that replicas can apply changes from the source fast enough, they
frequently have fast I/O devices and sufficient CPU and memory to run multiple database instances on the
same server. For example, the source might use hard drive storage while the replicas use SSDs.
See Also DML, replication, server, source, SSD.

replication
 The practice of sending changes from a source, to one or more replicas, so that all databases have the
same data. This technique has a wide range of uses, such as load-balancing for better scalability, disaster
recovery, and testing software upgrades and configuration changes. The changes can be sent between the
databases by methods called row-based replication and statement-based replication.
See Also replica, row-based replication, source, statement-based replication.

restore
 The process of putting a set of backup files from the MySQL Enterprise Backup product in place for use
by MySQL. This operation can be performed to fix a corrupted database, to return to some earlier point in
time, or (in a replication context) to set up a new replica. In the MySQL Enterprise Backup product, this
operation is performed by the copy-back option of the mysqlbackup command.
See Also hot backup, MySQL Enterprise Backup, mysqlbackup command, prepared backup, replica,
replication.

6389

rollback
 A SQL statement that ends a transaction, undoing any changes made by the transaction. It is the opposite
of commit, which makes permanent any changes made in the transaction.

By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL
statement. You must change this setting before you can use the rollback technique.
See Also ACID, autocommit, commit, SQL, transaction.

rollback segment
 The storage area containing the undo logs. Rollback segments have traditionally resided in the system
tablespace. As of MySQL 5.6, rollback segments can reside in undo tablespaces. As of MySQL 5.7, rollback
segments are also allocated to the global temporary tablespace.
See Also global temporary tablespace, system tablespace, undo log, undo tablespace.

row
 The logical data structure defined by a set of columns. A set of rows makes up a table. Within InnoDB data
files, each page can contain one or more rows.

Although InnoDB uses the term row format for consistency with MySQL syntax, the row format is a property
of each table and applies to all rows in that table.
See Also column, data files, page, row format, table.

row format
 The disk storage format for rows of an InnoDB table. As InnoDB gains new capabilities such as
compression, new row formats are introduced to support the resulting improvements in storage efficiency
and performance.

The row format of an InnoDB table is specified by the ROW_FORMAT option or by the
innodb_default_row_format configuration option (introduced in MySQL 5.7.9). Row formats include
REDUNDANT, COMPACT, COMPRESSED, and DYNAMIC. To view the row format of an InnoDB table, issue the
SHOW TABLE STATUS statement or query InnoDB table metadata in the INFORMATION_SCHEMA.
See Also compact row format, compressed row format, compression, dynamic row format, redundant row
format, row, table.

row lock
 A lock that prevents a row from being accessed in an incompatible way by another transaction. Other rows
in the same table can be freely written to by other transactions. This is the type of locking done by DML
operations on InnoDB tables.

Contrast with table locks used by MyISAM, or during DDL operations on InnoDB tables that cannot be done
with online DDL; those locks block concurrent access to the table.
See Also DDL, DML, InnoDB, lock, locking, online DDL, table lock, transaction.

row-based replication
 A form of replication where events are propagated from the source specifying how to change individual
rows on the replica. It is safe to use for all settings of the innodb_autoinc_lock_mode option.
See Also auto-increment locking, innodb_autoinc_lock_mode, replica, replication, source, statement-based
replication.

row-level locking
 The locking mechanism used for InnoDB tables, relying on row locks rather than table locks. Multiple
transactions can modify the same table concurrently. Only if two transactions try to modify the same row
does one of the transactions wait for the other to complete (and release its row locks).
See Also InnoDB, locking, row lock, table lock, transaction.

Ruby
 A programming language that emphasizes dynamic typing and object-oriented programming. Some syntax is
familiar to Perl developers.
See Also API, Perl, Ruby API.

6390

Ruby API
 mysql2, based based on the libmysqlclient API library, is available for Ruby programmers developing
MySQL applications. For more information, see Section 31.11, “MySQL Ruby APIs”.
See Also libmysql, Ruby.

rw-lock
 The low-level object that InnoDB uses to represent and enforce shared-access locks to internal in-memory
data structures following certain rules. Contrast with mutexes, which InnoDB uses to represent and enforce
exclusive access to internal in-memory data structures. Mutexes and rw-locks are known collectively as
latches.

rw-lock types include s-locks (shared locks), x-locks (exclusive locks), and sx-locks (shared-
exclusive locks).

• An s-lock provides read access to a common resource.

• An x-lock provides write access to a common resource while not permitting inconsistent reads by other
threads.

• An sx-lock provides write access to a common resource while permitting inconsistent reads by other
threads. sx-locks were introduced in MySQL 5.7 to optimize concurrency and improve scalability for read-
write workloads.

The following matrix summarizes rw-lock type compatibility.

S SX X

S Compatible Compatible Conflict

SX Compatible Conflict Conflict

X Conflict Conflict Conflict

See Also latch, lock, mutex, Performance Schema.

S
savepoint

 Savepoints help to implement nested transactions. They can be used to provide scope to operations on
tables that are part of a larger transaction. For example, scheduling a trip in a reservation system might
involve booking several different flights; if a desired flight is unavailable, you might roll back the changes
involved in booking that one leg, without rolling back the earlier flights that were successfully booked.
See Also rollback, transaction.

scalability
 The ability to add more work and issue more simultaneous requests to a system, without a sudden drop in
performance due to exceeding the limits of system capacity. Software architecture, hardware configuration,
application coding, and type of workload all play a part in scalability. When the system reaches its maximum
capacity, popular techniques for increasing scalability are scale up (increasing the capacity of existing
hardware or software) and scale out (adding new servers and more instances of MySQL). Often paired with
availability as critical aspects of a large-scale deployment.
See Also availability, scale out, scale up.

scale out
 A technique for increasing scalability by adding new servers and more instances of MySQL. For example,
setting up replication, NDB Cluster, connection pooling, or other features that spread work across a group of
servers. Contrast with scale up.
See Also scalability, scale up.

scale up
 A technique for increasing scalability by increasing the capacity of existing hardware or software.
For example, increasing the memory on a server and adjusting memory-related parameters such as
innodb_buffer_pool_size and innodb_buffer_pool_instances. Contrast with scale out.

6391

See Also scalability, scale out.

schema
 Conceptually, a schema is a set of interrelated database objects, such as tables, table columns, data types
of the columns, indexes, foreign keys, and so on. These objects are connected through SQL syntax, because
the columns make up the tables, the foreign keys refer to tables and columns, and so on. Ideally, they are
also connected logically, working together as part of a unified application or flexible framework. For example,
the INFORMATION_SCHEMA and performance_schema databases use “schema” in their names to
emphasize the close relationships between the tables and columns they contain.

In MySQL, physically, a schema is synonymous with a database. You can substitute the keyword SCHEMA
instead of DATABASE in MySQL SQL syntax, for example using CREATE SCHEMA instead of CREATE
DATABASE.

Some other database products draw a distinction. For example, in the Oracle Database product, a schema
represents only a part of a database: the tables and other objects owned by a single user.
See Also database, INFORMATION_SCHEMA, Performance Schema.

SDI
 Acronym for “serialized dictionary information”.
See Also serialized dictionary information (SDI).

search index
 In MySQL, full-text search queries use a special kind of index, the FULLTEXT index. In MySQL 5.6.4 and
up, InnoDB and MyISAM tables both support FULLTEXT indexes; formerly, these indexes were only available
for MyISAM tables.
See Also full-text search, FULLTEXT index.

secondary index
 A type of InnoDB index that represents a subset of table columns. An InnoDB table can have zero, one, or
many secondary indexes. (Contrast with the clustered index, which is required for each InnoDB table, and
stores the data for all the table columns.)

A secondary index can be used to satisfy queries that only require values from the indexed columns. For more
complex queries, it can be used to identify the relevant rows in the table, which are then retrieved through
lookups using the clustered index.

Creating and dropping secondary indexes has traditionally involved significant overhead from copying all the
data in the InnoDB table. The fast index creation feature makes both CREATE INDEX and DROP INDEX
statements much faster for InnoDB secondary indexes.
See Also clustered index, Fast Index Creation, index.

segment
 A division within an InnoDB tablespace. If a tablespace is analogous to a directory, the segments are
analogous to files within that directory. A segment can grow. New segments can be created.

For example, within a file-per-table tablespace, table data is in one segment and each associated index is
in its own segment. The system tablespace contains many different segments, because it can hold many
tables and their associated indexes. Prior to MySQL 8.0, the system tablespace also includes one or more
rollback segments used for undo logs.

Segments grow and shrink as data is inserted and deleted. When a segment needs more room, it is extended
by one extent (1 megabyte) at a time. Similarly, a segment releases one extent's worth of space when all the
data in that extent is no longer needed.
See Also extent, file-per-table, rollback segment, system tablespace, tablespace, undo log.

selectivity
 A property of data distribution, the number of distinct values in a column (its cardinality) divided by the
number of records in the table. High selectivity means that the column values are relatively unique, and can
retrieved efficiently through an index. If you (or the query optimizer) can predict that a test in a WHERE clause

6392

only matches a small number (or proportion) of rows in a table, the overall query tends to be efficient if it
evaluates that test first, using an index.
See Also cardinality, query.

semi-consistent read
 A type of read operation used for UPDATE statements, that is a combination of READ COMMITTED and
consistent read. When an UPDATE statement examines a row that is already locked, InnoDB returns the
latest committed version to MySQL so that MySQL can determine whether the row matches the WHERE
condition of the UPDATE. If the row matches (must be updated), MySQL reads the row again, and this
time InnoDB either locks it or waits for a lock on it. This type of read operation can only happen when the
transaction has the READ COMMITTED isolation level.
See Also consistent read, isolation level, READ COMMITTED.

SERIALIZABLE
 The isolation level that uses the most conservative locking strategy, to prevent any other transactions from
inserting or changing data that was read by this transaction, until it is finished. This way, the same query can
be run over and over within a transaction, and be certain to retrieve the same set of results each time. Any
attempt to change data that was committed by another transaction since the start of the current transaction,
cause the current transaction to wait.

This is the default isolation level specified by the SQL standard. In practice, this degree of strictness is rarely
needed, so the default isolation level for InnoDB is the next most strict, REPEATABLE READ.
See Also ACID, consistent read, isolation level, locking, REPEATABLE READ, transaction.

serialized dictionary information (SDI)
 Dictionary object metadata in serialized form. SDI is stored in JSON format.

As of MySQL 8.0.3, SDI is present in all InnoDB tablespace files except for temporary tablespace and undo
tablespace files. The presence of SDI in tablespace files provides metadata redundancy. For example,
dictionary object metadata can be extracted from tablespace files using the ibd2sdi utility if the data
dictionary becomes unavailable.

For a MyISAM table, SDI is stored in a .sdi metadata file in the schema directory. An SDI metadata file is
required to perform an IMPORT TABLE operation.
See Also file-per-table, general tablespace, system tablespace, tablespace.

server
 A type of program that runs continuously, waiting to receive and act upon requests from another program
(the client). Because often an entire computer is dedicated to running one or more server programs (such as
a database server, a web server, an application server, or some combination of these), the term server can
also refer to the computer that runs the server software.
See Also client, mysqld.

server-side prepared statement
 A prepared statement managed by the MySQL server. Historically, issues with server-side prepared
statements led Connector/J and Connector/PHP developers to sometimes use client-side prepared
statements instead. With modern MySQL server versions, server-side prepared statements are
recommended for performance, scalability, and memory efficiency.
See Also client-side prepared statement, Connector/J, Connector/PHP, prepared statement.

service principal name
 The name for a Kerberos named entity that represents a service.
See Also principal.

service ticket
 A Kerberos ticket that provides access to an application service, such as the service provided by a web or
database server.

servlet

6393

See Also Connector/J.

session temporary tablespace
 A temporary tablespace that stores user-created temporary tables and internal temporary tables created by
the optimizer when InnoDB is configured as the on-disk storage engine for internal temporary tables.
See Also optimizer, temporary table, temporary tablespace.

shared lock
 A kind of lock that allows other transactions to read the locked object, and to also acquire other shared
locks on it, but not to write to it. The opposite of exclusive lock.
See Also exclusive lock, lock, transaction.

shared tablespace
 Another way of referring to the system tablespace or a general tablespace. General tablespaces were
introduced in MySQL 5.7. More than one table can reside in a shared tablespace. Only a single table can
reside in a file-per-table tablespace.
See Also general tablespace, system tablespace.

sharp checkpoint
 The process of flushing to disk all dirty buffer pool pages whose redo entries are contained in certain
portion of the redo log. Occurs before InnoDB reuses a portion of a log file; the log files are used in a circular
fashion. Typically occurs with write-intensive workloads.
See Also dirty page, flush, redo log, workload.

shutdown
 The process of stopping the MySQL server. By default, this process cleans up operations for InnoDB tables,
so InnoDB can be slow to shut down, but fast to start up later. If you skip the cleanup operations, it is fast to
shut down but the cleanup must be performed during the next restart.

The shutdown mode for InnoDB is controlled by the innodb_fast_shutdown option.
See Also fast shutdown, InnoDB, slow shutdown, startup.

slave
See replica.

slow query log
 A type of log used for performance tuning of SQL statements processed by the MySQL server. The log
information is stored in a file. You must enable this feature to use it. You control which categories of “slow”
SQL statements are logged. For more information, see Section 7.4.5, “The Slow Query Log”.
See Also general query log, log.

slow shutdown
 A type of shutdown that does additional InnoDB flushing operations before completing. Also known as a
clean shutdown. Specified by the configuration parameter innodb_fast_shutdown=0 or the command
SET GLOBAL innodb_fast_shutdown=0;. Although the shutdown itself can take longer, that time should
be saved on the subsequent startup.
See Also clean shutdown, fast shutdown, shutdown.

snapshot
 A representation of data at a particular time, which remains the same even as changes are committed by
other transactions. Used by certain isolation levels to allow consistent reads.
See Also commit, consistent read, isolation level, transaction.

sort buffer
 The buffer used for sorting data during creation of an InnoDB index. Sort buffer size is configured using the
innodb_sort_buffer_size configuration option.

source
 A database server machine in a replication scenario that processes the initial insert, update, and delete
requests for data. These changes are propagated to, and repeated on, other servers known as replicas.

6394

See Also replica, replication.

space ID
 An identifier used to uniquely identify an InnoDB tablespace within a MySQL instance. The space ID for the
system tablespace is always zero; this same ID applies to all tables within the system tablespace or within a
general tablespace. Each file-per-table tablespace and general tablespace has its own space ID.

Prior to MySQL 5.6, this hardcoded value presented difficulties in moving InnoDB tablespace files between
MySQL instances. Starting in MySQL 5.6, you can copy tablespace files between instances by using the
transportable tablespace feature involving the statements FLUSH TABLES ... FOR EXPORT, ALTER
TABLE ... DISCARD TABLESPACE, and ALTER TABLE ... IMPORT TABLESPACE. The information
needed to adjust the space ID is conveyed in the .cfg file which you copy along with the tablespace. See
Section 17.6.1.3, “Importing InnoDB Tables” for details.
See Also .cfg file, file-per-table, general tablespace, .ibd file, system tablespace, tablespace, transportable
tablespace.

sparse file
 A type of file that uses file system space more efficiently by writing metadata representing empty blocks to
disk instead of writing the actual empty space. The InnoDB transparent page compression feature relies on
sparse file support. For more information, see Section 17.9.2, “InnoDB Page Compression”.
See Also hole punching, transparent page compression.

spin
 A type of wait operation that continuously tests whether a resource becomes available. This technique is
used for resources that are typically held only for brief periods, where it is more efficient to wait in a “busy
loop” than to put the thread to sleep and perform a context switch. If the resource does not become available
within a short time, the spin loop ceases and another wait technique is used.
See Also latch, lock, mutex, wait.

SPN
See service principal name.

Spring
 A Java-based application framework designed for assisting in application design by providing a way to
configure components.
See Also J2EE.

SQL
 The Structured Query Language that is standard for performing database operations. Often divided into
the categories DDL, DML, and queries. MySQL includes some additional statement categories such as
replication. See Chapter 11, Language Structure for the building blocks of SQL syntax, Chapter 13, Data
Types for the data types to use for MySQL table columns, Chapter 15, SQL Statements for details about
SQL statements and their associated categories, and Chapter 14, Functions and Operators for standard and
MySQL-specific functions to use in queries.
See Also DDL, DML, query, replication.

SQLState
 An error code defined by the JDBC standard, for exception handling by applications using Connector/J.
See Also Connector/J, JDBC.

SSD
 Acronym for “solid-state drive”. A type of storage device with different performance characteristics than a
traditional hard disk drive (HDD): smaller storage capacity, faster for random reads, no moving parts, and with
a number of considerations affecting write performance. Its performance characteristics can influence the
throughput of a disk-bound workload.
See Also disk-bound, HDD.

SSL
 Acronym for “secure sockets layer”. Provides the encryption layer for network communication between an
application and a MySQL database server.

6395

See Also keystore, truststore.

ST
See service ticket.

startup
 The process of starting the MySQL server. Typically done by one of the programs listed in Section 6.3,
“Server and Server-Startup Programs”. The opposite of shutdown.
See Also shutdown.

statement interceptor
 A type of interceptor for tracing, debugging, or augmenting SQL statements issued by a database
application. Sometimes also known as a command interceptor.

In Java applications using Connector/J, setting up this type of interceptor involves implementing the
com.mysql.jdbc.StatementInterceptorV2 interface, and adding a statementInterceptors
property to the connection string.

In Visual Studio applications using Connector/NET, setting up this type of interceptor involves defining a
class that inherits from the BaseCommandInterceptor class and specifying that class name as part of the
connection string.
See Also command interceptor, connection string, Connector/J, Connector/NET, interceptor, Java, Visual
Studio.

statement-based replication
 A form of replication where SQL statements are sent from the source and replayed on the replica. It
requires some care with the setting for the innodb_autoinc_lock_mode option, to avoid potential timing
problems with auto-increment locking.
See Also auto-increment locking, innodb_autoinc_lock_mode, replica, replication, row-based replication,
source.

statistics
 Estimated values relating to each InnoDB table and index, used to construct an efficient query execution
plan. The main values are the cardinality (number of distinct values) and the total number of table rows
or index entries. The statistics for the table represent the data in its primary key index. The statistics for a
secondary index represent the rows covered by that index.

The values are estimated rather than counted precisely because at any moment, different transactions can
be inserting and deleting rows from the same table. To keep the values from being recalculated frequently,
you can enable persistent statistics, where the values are stored in InnoDB system tables, and refreshed
only when you issue an ANALYZE TABLE statement.

You can control how NULL values are treated when calculating statistics through the
innodb_stats_method configuration option.

Other types of statistics are available for database objects and database activity through the
INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables.
See Also cardinality, index, INFORMATION_SCHEMA, NULL, Performance Schema, persistent statistics,
primary key, query execution plan, secondary index, table, transaction.

stemming
 The ability to search for different variations of a word based on a common root word, such as singular and
plural, or past, present, and future verb tense. This feature is currently supported in MyISAM full-text search
feature but not in FULLTEXT indexes for InnoDB tables.
See Also full-text search, FULLTEXT index.

stopword
 In a FULLTEXT index, a word that is considered common or trivial enough that it is omitted from the search
index and ignored in search queries. Different configuration settings control stopword processing for InnoDB
and MyISAM tables. See Section 14.9.4, “Full-Text Stopwords” for details.

6396

See Also FULLTEXT index, search index.

storage engine
 A component of the MySQL database that performs the low-level work of storing, updating, and querying
data. In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables, superceding MyISAM.
Different storage engines are designed with different tradeoffs between factors such as memory usage versus
disk usage, read speed versus write speed, and speed versus robustness. Each storage engine manages
specific tables, so we refer to InnoDB tables, MyISAM tables, and so on.

The MySQL Enterprise Backup product is optimized for backing up InnoDB tables. It can also back up
tables handled by MyISAM and other storage engines.
See Also InnoDB, MySQL Enterprise Backup, table type.

stored generated column
 A column whose values are computed from an expression included in the column definition. Column values
are evaluated and stored when rows are inserted or updated. A stored generated column requires storage
space and can be indexed.

Contrast with virtual generated column.
See Also base column, generated column, virtual generated column.

stored object
 A stored program or view.

stored program
 A stored routine (procedure or function), trigger, or Event Scheduler event.

stored routine
 A stored procedure or function.

strict mode
 The general name for the setting controlled by the innodb_strict_mode option. Turning on this setting
causes certain conditions that are normally treated as warnings, to be considered errors. For example, certain
invalid combinations of options related to file format and row format, that normally produce a warning and
continue with default values, now cause the CREATE TABLE operation to fail. innodb_strict_mode is
enabled by default in MySQL 5.7.

MySQL also has something called strict mode. See Section 7.1.11, “Server SQL Modes”.
See Also file format, innodb_strict_mode, row format.

sublist
 Within the list structure that represents the buffer pool, pages that are relatively old and relatively new are
represented by different portions of the list. A set of parameters control the size of these portions and the
dividing point between the new and old pages.
See Also buffer pool, eviction, list, LRU.

supremum record
 A pseudo-record in an index, representing the gap above the largest value in that index. If a transaction has
a statement such as SELECT ... FROM ... WHERE col > 10 FOR UPDATE;, and the largest value
in the column is 20, it is a lock on the supremum record that prevents other transactions from inserting even
larger values such as 50, 100, and so on.
See Also gap, infimum record, pseudo-record.

surrogate key
 Synonym name for synthetic key.
See Also synthetic key.

synthetic key
 An indexed column, typically a primary key, where the values are assigned arbitrarily. Often done using
an auto-increment column. By treating the value as completely arbitrary, you can avoid overly restrictive

6397

rules and faulty application assumptions. For example, a numeric sequence representing employee numbers
might have a gap if an employee was approved for hiring but never actually joined. Or employee number 100
might have a later hiring date than employee number 500, if they left the company and later rejoined. Numeric
values also produce shorter values of predictable length. For example, storing numeric codes meaning
“Road”, “Boulevard”, “Expressway”, and so on is more space-efficient than repeating those strings over and
over.

Also known as a surrogate key. Contrast with natural key.
See Also auto-increment, natural key, primary key, surrogate key.

system tablespace
 One or more data files (ibdata files) containing the metadata for InnoDB-related objects, and the storage
areas for the change buffer, and the doublewrite buffer. It may also contain table and index data
for InnoDB tables if tables were created in the system tablespace instead of file-per-table or general
tablespaces. The data and metadata in the system tablespace apply to all databases in a MySQL instance.

Prior to MySQL 5.6.7, the default was to keep all InnoDB tables and indexes inside the system tablespace,
often causing this file to become very large. Because the system tablespace never shrinks, storage problems
could arise if large amounts of temporary data were loaded and then deleted. In MySQL 8.0, the default is
file-per-table mode, where each table and its associated indexes are stored in a separate .ibd file. This
default makes it easier to use InnoDB features that rely on DYNAMIC and COMPRESSED row formats, such as
table compression, efficient storage of off-page columns, and large index key prefixes.

Keeping all table data in the system tablespace or in separate .ibd files has implications for storage
management in general. The MySQL Enterprise Backup product might back up a small set of large files, or
many smaller files. On systems with thousands of tables, the file system operations to process thousands of
.ibd files can cause bottlenecks.

InnoDB introduced general tablespaces in MySQL 5.7.6, which are also represented by .ibd files. General
tablespaces are shared tablespaces created using CREATE TABLESPACE syntax. They can be created
outside of the data directory, are capable of holding multiple tables, and support tables of all row formats.
See Also change buffer, compression, data dictionary, database, doublewrite buffer, dynamic row format, file-
per-table, general tablespace, .ibd file, ibdata file, innodb_file_per_table, instance, MySQL Enterprise Backup,
off-page column, tablespace, undo log.

T
table

 Each MySQL table is associated with a particular storage engine. InnoDB tables have particular physical
and logical characteristics that affect performance, scalability, backup, administration, and application
development.

In terms of file storage, an InnoDB table belongs to one of the following tablespace types:

• The shared InnoDB system tablespace, which is comprised of one or more ibdata files.

• A file-per-table tablespace, comprised of an individual .ibd file.

• A shared general tablespace, comprised of an individual .ibd file. General tablespaces were introduced
in MySQL 5.7.6.

.ibd data files contain both table and index data.

InnoDB tables created in file-per-table tablespaces can use DYNAMIC or COMPRESSED row format. These
row formats enable InnoDB features such as compression, efficient storage of off-page columns, and large
index key prefixes. General tablespaces support all row formats.

The system tablespace supports tables that use REDUNDANT, COMPACT, and DYNAMIC row formats.
System tablespace support for the DYNAMIC row format was added in MySQL 5.7.6.

6398

The rows of an InnoDB table are organized into an index structure known as the clustered index, with
entries sorted based on the primary key columns of the table. Data access is optimized for queries that
filter and sort on the primary key columns, and each index contains a copy of the associated primary key
columns for each entry. Modifying values for any of the primary key columns is an expensive operation. Thus
an important aspect of InnoDB table design is choosing a primary key with columns that are used in the most
important queries, and keeping the primary key short, with rarely changing values.
See Also backup, clustered index, compact row format, compressed row format, compression, dynamic row
format, Fast Index Creation, file-per-table, .ibd file, index, off-page column, primary key, redundant row format,
row, system tablespace, tablespace.

table lock
 A lock that prevents any other transaction from accessing a table. InnoDB makes considerable effort to
make such locks unnecessary, by using techniques such as online DDL, row locks and consistent reads
for processing DML statements and queries. You can create such a lock through SQL using the LOCK
TABLE statement; one of the steps in migrating from other database systems or MySQL storage engines is to
remove such statements wherever practical.
See Also consistent read, DML, lock, locking, online DDL, query, row lock, table, transaction.

table scan
See full table scan.

table statistics
See statistics.

table type
 Obsolete synonym for storage engine. We refer to InnoDB tables, MyISAM tables, and so on.
See Also InnoDB, storage engine.

tablespace
 A data file that can hold data for one or more InnoDB tables and associated indexes.

The system tablespace contains the InnoDB data dictionary, and prior to MySQL 5.6 holds all other
InnoDB tables by default.

The innodb_file_per_table option, enabled by default in MySQL 5.6 and higher, allows tables to be
created in their own tablespaces. File-per-table tablespaces support features such as efficient storage of off-
page columns, table compression, and transportable tablespaces. See Section 17.6.3.2, “File-Per-Table
Tablespaces” for details.

InnoDB introduced general tablespaces in MySQL 5.7.6. General tablespaces are shared tablespaces
created using CREATE TABLESPACE syntax. They can be created outside of the MySQL data directory, are
capable of holding multiple tables, and support tables of all row formats.

MySQL NDB Cluster also groups its tables into tablespaces. See Section 25.6.11.1, “NDB Cluster Disk Data
Objects” for details.
See Also compressed row format, data dictionary, data files, file-per-table, general tablespace, index,
innodb_file_per_table, system tablespace, table.

Tcl
 A programming language originating in the Unix scripting world. Sometimes extended by code written in C, C
++, or Java. For the open-source Tcl API for MySQL, see Section 31.12, “MySQL Tcl API”.
See Also API.

temporary table
 A table whose data does not need to be truly permanent. For example, temporary tables might be used as
storage areas for intermediate results in complicated calculations or transformations; this intermediate data
would not need to be recovered after a crash. Database products can take various shortcuts to improve the
performance of operations on temporary tables, by being less scrupulous about writing data to disk and other
measures to protect the data across restarts.

6399

Sometimes, the data itself is removed automatically at a set time, such as when the transaction ends or when
the session ends. With some database products, the table itself is removed automatically too.
See Also table.

temporary tablespace
 InnoDB uses two types of temporary tablespace. Session temporary tablespaces store user-created
temporary tables and internal temporary tables created by the optimizer. The global temporary tablespace
stores rollback segments for changes made to user-created temporary tables.
See Also global temporary tablespace, session temporary tablespace, temporary table.

text collection
 The set of columns included in a FULLTEXT index.
See Also FULLTEXT index.

TGS
 A Kerberos ticket-granting server. TGS can also refer to the ticket-granting service provided by a ticket-
granting server.
See Also ticket-granting server.

TGT
See ticket-granting ticket.

thread
 A unit of processing that is typically more lightweight than a process, allowing for greater concurrency.
See Also concurrency, master thread, process, Pthreads.

ticket-granting server
 In Kerberos, a server that provides tickets. The ticket-granting server (TGS) combined with an authentication
server (AS) make up a key distribution center (KDC).

TGS can also refer to the ticket-granting service provided by the ticket-granting server.
See Also authentication server, key distribution center.

ticket-granting ticket
 In Kerberos, a ticket-granting ticket is presented to the ticket-granting server (TGS) to obtain service tickets
for service access.
See Also ticket-granting server.

Tomcat
 An open source J2EE application server, implementing the Java Servlet and JavaServer Pages programming
technologies. Consists of a web server and Java servlet container. With MySQL, typically used in conjunction
with Connector/J.
See Also J2EE.

torn page
 An error condition that can occur due to a combination of I/O device configuration and hardware failure.
If data is written out in chunks smaller than the InnoDB page size (by default, 16KB), a hardware failure
while writing could result in only part of a page being stored to disk. The InnoDB doublewrite buffer guards
against this possibility.
See Also doublewrite buffer.

TPS
 Acronym for “transactions per second”, a unit of measurement sometimes used in benchmarks. Its value
depends on the workload represented by a particular benchmark test, combined with factors that you control
such as the hardware capacity and database configuration.
See Also transaction, workload.

transaction
 Transactions are atomic units of work that can be committed or rolled back. When a transaction makes
multiple changes to the database, either all the changes succeed when the transaction is committed, or all the
changes are undone when the transaction is rolled back.

6400

Database transactions, as implemented by InnoDB, have properties that are collectively known by the
acronym ACID, for atomicity, consistency, isolation, and durability.
See Also ACID, commit, isolation level, lock, rollback.

transaction ID
 An internal field associated with each row. This field is physically changed by INSERT, UPDATE, and DELETE
operations to record which transaction has locked the row.
See Also implicit row lock, row, transaction.

transparent page compression
 A feature added in MySQL 5.7.8 that permits page-level compression for InnoDB tables that reside in file-
per-table tablespaces. Page compression is enabled by specifying the COMPRESSION attribute with CREATE
TABLE or ALTER TABLE. For more information, see Section 17.9.2, “InnoDB Page Compression”.
See Also file-per-table, hole punching, sparse file.

transportable tablespace
 A feature that allows a tablespace to be moved from one instance to another. Traditionally, this has not
been possible for InnoDB tablespaces because all table data was part of the system tablespace. In MySQL
5.6 and higher, the FLUSH TABLES ... FOR EXPORT syntax prepares an InnoDB table for copying to
another server; running ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ... IMPORT
TABLESPACE on the other server brings the copied data file into the other instance. A separate .cfg file,
copied along with the .ibd file, is used to update the table metadata (for example the space ID) as the
tablespace is imported. See Section 17.6.1.3, “Importing InnoDB Tables” for usage information.
See Also .cfg file, .ibd file, space ID, system tablespace, tablespace.

troubleshooting
 The process of determining the source of a problem. Some of the resources for troubleshooting MySQL
problems include:

• Section 2.9.2.1, “Troubleshooting Problems Starting the MySQL Server”

• Section 8.2.22, “Troubleshooting Problems Connecting to MySQL”

• Section B.3.3.2, “How to Reset the Root Password”

• Section B.3.2, “Common Errors When Using MySQL Programs”

• Section 17.21, “InnoDB Troubleshooting”.

truncate
 A DDL operation that removes the entire contents of a table, while leaving the table and related indexes
intact. Contrast with drop. Although conceptually it has the same result as a DELETE statement with no
WHERE clause, it operates differently behind the scenes: InnoDB creates a new empty table, drops the old
table, then renames the new table to take the place of the old one. Because this is a DDL operation, it cannot
be rolled back.

If the table being truncated contains foreign keys that reference another table, the truncation operation uses
a slower method of operation, deleting one row at a time so that corresponding rows in the referenced table
can be deleted as needed by any ON DELETE CASCADE clause. (MySQL 5.5 and higher do not allow this
slower form of truncate, and return an error instead if foreign keys are involved. In this case, use a DELETE
statement instead.
See Also DDL, drop, foreign key, rollback.

truststore

See Also SSL.

tuple
 A technical term designating an ordered set of elements. It is an abstract notion, used in formal discussions
of database theory. In the database field, tuples are usually represented by the columns of a table row. They

6401

could also be represented by the result sets of queries, for example, queries that retrieved only some columns
of a table, or columns from joined tables.
See Also cursor.

two-phase commit
 An operation that is part of a distributed transaction, under the XA specification. (Sometimes abbreviated as
2PC.) When multiple databases participate in the transaction, either all databases commit the changes, or all
databases roll back the changes.
See Also commit, rollback, transaction, XA.

U
undo

 Data that is maintained throughout the life of a transaction, recording all changes so that they can be
undone in case of a rollback operation. It is stored in undo logs either within the system tablespace
(in MySQL 5.7 or earlier) or in separate undo tablespaces. As of MySQL 8.0, undo logs reside in undo
tablespaces by default.
See Also rollback, rollback segment, system tablespace, transaction, undo log, undo tablespace.

undo buffer
See undo log.

undo log
 A storage area that holds copies of data modified by active transactions. If another transaction needs to see
the original data (as part of a consistent read operation), the unmodified data is retrieved from this storage
area.

In MySQL 5.6 and MySQL 5.7, you can use the innodb_undo_tablespaces variable have undo logs
reside in undo tablespaces, which can be placed on another storage device such as an SSD. In MySQL 8.0,
undo logs reside in two default undo tablespaces that are created when MySQL is initialized, and additional
undo tablespaces can be created using CREATE UNDO TABLESPACE syntax.

The undo log is split into separate portions, the insert undo buffer and the update undo buffer.
See Also consistent read, rollback segment, SSD, system tablespace, transaction, undo tablespace.

undo log segment
 A collection of undo logs. Undo log segments exists within rollback segments. An undo log segment might
contain undo logs from multiple transactions. An undo log segment can only be used by one transaction at a
time but can be reused after it is released at transaction commit or rollback. May also be referred to as an
“undo segment”.
See Also commit, rollback, rollback segment, undo log.

undo tablespace
 An undo tablespace contains undo logs. Undo logs exist within undo log segments, which are contained
within rollback segments. Rollback segments have traditionally resided in the system tablespace. As of
MySQL 5.6, rollback segments can reside in undo tablespaces. In MySQL 5.6 and MySQL 5.7, the number of
undo tablespaces is controlled by the innodb_undo_tablespaces configuration option. In MySQL 8.0, two
default undo tablespaces are created when the MySQL instance is initialized, and additional undo tablespaces
can be created using CREATE UNDO TABLESPACE syntax.

For more information, see Section 17.6.3.4, “Undo Tablespaces”.
See Also rollback segment, system tablespace, undo log, undo log segment.

Unicode
 A system for supporting national characters, character sets, code pages, and other internationalization
aspects in a flexible and standardized way.

Unicode support is an important aspect of the ODBC standard. Connector/ODBC 5.1 is a Unicode driver, as
opposed to Connector/ODBC 3.51, which is an ANSI driver.
See Also ANSI, Connector/ODBC, ODBC.

6402

unique constraint
 A kind of constraint that asserts that a column cannot contain any duplicate values. In terms of relational
algebra, it is used to specify 1-to-1 relationships. For efficiency in checking whether a value can be inserted
(that is, the value does not already exist in the column), a unique constraint is supported by an underlying
unique index.
See Also constraint, relational, unique index.

unique index
 An index on a column or set of columns that have a unique constraint. Because the index is known not
to contain any duplicate values, certain kinds of lookups and count operations are more efficient than in the
normal kind of index. Most of the lookups against this type of index are simply to determine if a certain value
exists or not. The number of values in the index is the same as the number of rows in the table, or at least the
number of rows with non-null values for the associated columns.

Change buffering optimization does not apply to unique indexes. As a workaround, you can temporarily set
unique_checks=0 while doing a bulk data load into an InnoDB table.
See Also cardinality, change buffering, unique constraint, unique key.

unique key
 The set of columns (one or more) comprising a unique index. When you can define a WHERE condition that
matches exactly one row, and the query can use an associated unique index, the lookup and error handling
can be performed very efficiently.
See Also cardinality, unique constraint, unique index.

UPN
See user principal name.

user principal name
 The name for a Kerberos named entity that represents a user.
See Also principal.

V
variable-length type

 A data type of variable length. VARCHAR, VARBINARY, and BLOB and TEXT types are variable-length types.

InnoDB treats fixed-length fields greater than or equal to 768 bytes in length as variable-length fields, which
can be stored off-page. For example, a CHAR(255) column can exceed 768 bytes if the maximum byte
length of the character set is greater than 3, as it is with utf8mb4.
See Also off-page column, overflow page.

victim
 The transaction that is automatically chosen to be rolled back when a deadlock is detected. InnoDB rolls
back the transaction that has updated the fewest rows.

Deadlock detection can be disabled using the innodb_deadlock_detect configuration option.
See Also deadlock, deadlock detection, innodb_lock_wait_timeout, transaction.

view
 A stored query that when invoked produces a result set. A view acts as a virtual table.

virtual column
See virtual generated column.

virtual generated column
 A column whose values are computed from an expression included in the column definition. Column values
are not stored, but are evaluated when rows are read, immediately after any BEFORE triggers. A virtual
generated column takes no storage. InnoDB supports secondary indexes on virtual generated columns.

Contrast with stored generated column.

6403

See Also base column, generated column, stored generated column.

virtual index
 A virtual index is a secondary index on one or more virtual generated columns or on a combination of
virtual generated columns and regular columns or stored generated columns. For more information, see
Section 15.1.20.9, “Secondary Indexes and Generated Columns”.
See Also secondary index, stored generated column, virtual generated column.

Visual Studio
 For supported versions of Visual Studio, see the following references:

• Connector/NET: Connector/NET Versions

• Connector/C++ 8.0: Platform Support and Prerequisites

See Also Connector/C++, Connector/NET.

W
wait

 When an operation, such as acquiring a lock, mutex, or latch, cannot be completed immediately, InnoDB
pauses and tries again. The mechanism for pausing is elaborate enough that this operation has its own name,
the wait. Individual threads are paused using a combination of internal InnoDB scheduling, operating system
wait() calls, and short-duration spin loops.

On systems with heavy load and many transactions, you might use the output from the SHOW INNODB
STATUS command or Performance Schema to determine whether threads are spending too much time
waiting, and if so, how you can improve concurrency.
See Also concurrency, latch, lock, mutex, Performance Schema, spin.

warm backup
 A backup taken while the database is running, but that restricts some database operations during the backup
process. For example, tables might become read-only. For busy applications and websites, you might prefer a
hot backup.
See Also backup, cold backup, hot backup.

warm up
 To run a system under a typical workload for some time after startup, so that the buffer pool and other
memory regions are filled as they would be under normal conditions. This process happens naturally over
time when a MySQL server is restarted or subjected to a new workload.

Typically, you run a workload for some time to warm up the buffer pool before running performance tests, to
ensure consistent results across multiple runs; otherwise, performance might be artificially low during the first
run.

In MySQL 5.6, you can speed up the warmup process by enabling the
innodb_buffer_pool_dump_at_shutdown and innodb_buffer_pool_load_at_startup
configuration options, to bring the contents of the buffer pool back into memory after a restart. These options
are enabled by default in MySQL 5.7. See Section 17.8.3.6, “Saving and Restoring the Buffer Pool State”.
See Also buffer pool, workload.

workload
 The combination and volume of SQL and other database operations, performed by a database application
during typical or peak usage. You can subject the database to a particular workload during performance
testing to identify bottlenecks, or during capacity planning.
See Also bottleneck, CPU-bound, disk-bound, SQL.

write combining
 An optimization technique that reduces write operations when dirty pages are flushed from the InnoDB
buffer pool. If a row in a page is updated multiple times, or multiple rows on the same page are updated, all
of those changes are stored to the data files in a single write operation rather than one write for each change.

6404

https://dev.mysql.com/doc/connector-net/en/connector-net-versions.html
https://dev.mysql.com/doc/connector-cpp/9.3/en/connector-cpp-introduction.html#connector-cpp-prerequisites

See Also buffer pool, dirty page, flush.

X
XA

 A standard interface for coordinating distributed transactions, allowing multiple databases to participate in a
transaction while maintaining ACID compliance. For full details, see Section 15.3.8, “XA Transactions”.

XA Distributed Transaction support is enabled by default.
See Also ACID, binary log, commit, transaction, two-phase commit.

Y
young

 A characteristic of a page in the InnoDB buffer pool meaning that it has been accessed recently, and so is
moved within the buffer pool data structure, so that it is not flushed too soon by the LRU algorithm. This term
is used in some INFORMATION_SCHEMA column names of tables related to the buffer pool.
See Also buffer pool, flush, INFORMATION_SCHEMA, LRU, page.

6405

6406

	MySQL 8.0 Reference Manual
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 About This Manual
	1.2 Overview of the MySQL Database Management System
	1.2.1 What is MySQL?
	1.2.2 The Main Features of MySQL
	1.2.3 History of MySQL

	1.3 What Is New in MySQL 8.0
	1.4 Server and Status Variables and Options Added, Deprecated, or Removed in MySQL 8.0
	1.5 How to Report Bugs or Problems
	1.6 MySQL Standards Compliance
	1.6.1 MySQL Extensions to Standard SQL
	1.6.2 MySQL Differences from Standard SQL
	1.6.2.1 SELECT INTO TABLE Differences
	1.6.2.2 UPDATE Differences
	1.6.2.3 FOREIGN KEY Constraint Differences
	1.6.2.4 '--' as the Start of a Comment

	1.6.3 How MySQL Deals with Constraints
	1.6.3.1 PRIMARY KEY and UNIQUE Index Constraints
	1.6.3.2 FOREIGN KEY Constraints
	1.6.3.3 Enforced Constraints on Invalid Data
	1.6.3.4 ENUM and SET Constraints

	Chapter 2 Installing MySQL
	2.1 General Installation Guidance
	2.1.1 Supported Platforms
	2.1.2 Which MySQL Version and Distribution to Install
	2.1.3 How to Get MySQL
	2.1.4 Verifying Package Integrity Using MD5 Checksums or GnuPG
	2.1.4.1 Verifying the MD5 Checksum
	2.1.4.2 Signature Checking Using GnuPG
	2.1.4.3 Signature Checking Using Gpg4win for Windows
	2.1.4.4 Signature Checking Using RPM
	2.1.4.5 GPG Public Build Key for Archived Packages

	2.1.5 Installation Layouts
	2.1.6 Compiler-Specific Build Characteristics

	2.2 Installing MySQL on Unix/Linux Using Generic Binaries
	2.3 Installing MySQL on Microsoft Windows
	2.3.1 MySQL Installation Layout on Microsoft Windows
	2.3.2 Choosing an Installation Package
	2.3.3 MySQL Installer for Windows
	2.3.3.1 MySQL Installer Initial Setup
	2.3.3.2 Setting Alternative Server Paths with MySQL Installer
	2.3.3.3 Installation Workflows with MySQL Installer
	MySQL Server Configuration with MySQL Installer
	Type and Networking
	Authentication Method
	Accounts and Roles
	Windows Service
	Server File Permissions
	Logging Options
	Advanced Options
	Apply Server Configuration

	MySQL Router Configuration with MySQL Installer

	2.3.3.4 MySQL Installer Product Catalog and Dashboard
	2.3.3.5 MySQL Installer Console Reference

	2.3.4 Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive
	2.3.4.1 Extracting the Install Archive
	2.3.4.2 Creating an Option File
	2.3.4.3 Selecting a MySQL Server Type
	2.3.4.4 Initializing the Data Directory
	2.3.4.5 Starting the Server for the First Time
	2.3.4.6 Starting MySQL from the Windows Command Line
	2.3.4.7 Customizing the PATH for MySQL Tools
	2.3.4.8 Starting MySQL as a Windows Service
	2.3.4.9 Testing The MySQL Installation

	2.3.5 Troubleshooting a Microsoft Windows MySQL Server Installation
	2.3.6 Windows Postinstallation Procedures
	2.3.7 Windows Platform Restrictions

	2.4 Installing MySQL on macOS
	2.4.1 General Notes on Installing MySQL on macOS
	2.4.2 Installing MySQL on macOS Using Native Packages
	2.4.3 Installing and Using the MySQL Launch Daemon
	2.4.4 Installing and Using the MySQL Preference Pane

	2.5 Installing MySQL on Linux
	2.5.1 Installing MySQL on Linux Using the MySQL Yum Repository
	2.5.2 Installing MySQL on Linux Using the MySQL APT Repository
	2.5.3 Installing MySQL on Linux Using the MySQL SLES Repository
	2.5.4 Installing MySQL on Linux Using RPM Packages from Oracle
	2.5.5 Installing MySQL on Linux Using Debian Packages from Oracle
	2.5.6 Deploying MySQL on Linux with Docker Containers
	2.5.6.1 Basic Steps for MySQL Server Deployment with Docker
	2.5.6.2 More Topics on Deploying MySQL Server with Docker
	2.5.6.3 Deploying MySQL on Windows and Other Non-Linux Platforms with Docker

	2.5.7 Installing MySQL on Linux from the Native Software Repositories
	2.5.8 Installing MySQL on Linux with Juju
	2.5.9 Managing MySQL Server with systemd

	2.6 Installing MySQL Using Unbreakable Linux Network (ULN)
	2.7 Installing MySQL on Solaris
	2.7.1 Installing MySQL on Solaris Using a Solaris PKG

	2.8 Installing MySQL from Source
	2.8.1 Source Installation Methods
	2.8.2 Source Installation Prerequisites
	2.8.3 MySQL Layout for Source Installation
	2.8.4 Installing MySQL Using a Standard Source Distribution
	2.8.5 Installing MySQL Using a Development Source Tree
	2.8.6 Configuring SSL Library Support
	2.8.7 MySQL Source-Configuration Options
	2.8.8 Dealing with Problems Compiling MySQL
	2.8.9 MySQL Configuration and Third-Party Tools
	2.8.10 Generating MySQL Doxygen Documentation Content

	2.9 Postinstallation Setup and Testing
	2.9.1 Initializing the Data Directory
	2.9.2 Starting the Server
	2.9.2.1 Troubleshooting Problems Starting the MySQL Server

	2.9.3 Testing the Server
	2.9.4 Securing the Initial MySQL Account
	2.9.5 Starting and Stopping MySQL Automatically

	2.10 Perl Installation Notes
	2.10.1 Installing Perl on Unix
	2.10.2 Installing ActiveState Perl on Windows
	2.10.3 Problems Using the Perl DBI/DBD Interface

	Chapter 3 Upgrading MySQL
	3.1 Before You Begin
	3.2 Upgrade Paths
	3.3 Upgrade Best Practices
	3.4 What the MySQL Upgrade Process Upgrades
	3.5 Changes in MySQL 8.0
	3.6 Preparing Your Installation for Upgrade
	3.7 Upgrading MySQL Binary or Package-based Installations on Unix/Linux
	3.8 Upgrading MySQL with the MySQL Yum Repository
	3.9 Upgrading MySQL with the MySQL APT Repository
	3.10 Upgrading MySQL with the MySQL SLES Repository
	3.11 Upgrading MySQL on Windows
	3.12 Upgrading a Docker Installation of MySQL
	3.13 Upgrade Troubleshooting
	3.14 Rebuilding or Repairing Tables or Indexes
	3.15 Copying MySQL Databases to Another Machine

	Chapter 4 Downgrading MySQL
	Chapter 5 Tutorial
	5.1 Connecting to and Disconnecting from the Server
	5.2 Entering Queries
	5.3 Creating and Using a Database
	5.3.1 Creating and Selecting a Database
	5.3.2 Creating a Table
	5.3.3 Loading Data into a Table
	5.3.4 Retrieving Information from a Table
	5.3.4.1 Selecting All Data
	5.3.4.2 Selecting Particular Rows
	5.3.4.3 Selecting Particular Columns
	5.3.4.4 Sorting Rows
	5.3.4.5 Date Calculations
	5.3.4.6 Working with NULL Values
	5.3.4.7 Pattern Matching
	5.3.4.8 Counting Rows
	5.3.4.9 Using More Than one Table

	5.4 Getting Information About Databases and Tables
	5.5 Using mysql in Batch Mode
	5.6 Examples of Common Queries
	5.6.1 The Maximum Value for a Column
	5.6.2 The Row Holding the Maximum of a Certain Column
	5.6.3 Maximum of Column per Group
	5.6.4 The Rows Holding the Group-wise Maximum of a Certain Column
	5.6.5 Using User-Defined Variables
	5.6.6 Using Foreign Keys
	5.6.7 Searching on Two Keys
	5.6.8 Calculating Visits Per Day
	5.6.9 Using AUTO_INCREMENT

	5.7 Using MySQL with Apache

	Chapter 6 MySQL Programs
	6.1 Overview of MySQL Programs
	6.2 Using MySQL Programs
	6.2.1 Invoking MySQL Programs
	6.2.2 Specifying Program Options
	6.2.2.1 Using Options on the Command Line
	6.2.2.2 Using Option Files
	6.2.2.3 Command-Line Options that Affect Option-File Handling
	6.2.2.4 Program Option Modifiers
	6.2.2.5 Using Options to Set Program Variables
	6.2.2.6 Option Defaults, Options Expecting Values, and the = Sign

	6.2.3 Command Options for Connecting to the Server
	6.2.4 Connecting to the MySQL Server Using Command Options
	6.2.5 Connecting to the Server Using URI-Like Strings or Key-Value Pairs
	6.2.6 Connecting to the Server Using DNS SRV Records
	6.2.7 Connection Transport Protocols
	6.2.8 Connection Compression Control
	6.2.9 Setting Environment Variables

	6.3 Server and Server-Startup Programs
	6.3.1 mysqld — The MySQL Server
	6.3.2 mysqld_safe — MySQL Server Startup Script
	6.3.3 mysql.server — MySQL Server Startup Script
	6.3.4 mysqld_multi — Manage Multiple MySQL Servers

	6.4 Installation-Related Programs
	6.4.1 comp_err — Compile MySQL Error Message File
	6.4.2 mysql_secure_installation — Improve MySQL Installation Security
	6.4.3 mysql_ssl_rsa_setup — Create SSL/RSA Files
	6.4.4 mysql_tzinfo_to_sql — Load the Time Zone Tables
	6.4.5 mysql_upgrade — Check and Upgrade MySQL Tables

	6.5 Client Programs
	6.5.1 mysql — The MySQL Command-Line Client
	6.5.1.1 mysql Client Options
	6.5.1.2 mysql Client Commands
	6.5.1.3 mysql Client Logging
	6.5.1.4 mysql Client Server-Side Help
	6.5.1.5 Executing SQL Statements from a Text File
	6.5.1.6 mysql Client Tips

	6.5.2 mysqladmin — A MySQL Server Administration Program
	6.5.3 mysqlcheck — A Table Maintenance Program
	6.5.4 mysqldump — A Database Backup Program
	6.5.5 mysqlimport — A Data Import Program
	6.5.6 mysqlpump — A Database Backup Program
	6.5.7 mysqlshow — Display Database, Table, and Column Information
	6.5.8 mysqlslap — A Load Emulation Client

	6.6 Administrative and Utility Programs
	6.6.1 ibd2sdi — InnoDB Tablespace SDI Extraction Utility
	6.6.2 innochecksum — Offline InnoDB File Checksum Utility
	6.6.3 myisam_ftdump — Display Full-Text Index information
	6.6.4 myisamchk — MyISAM Table-Maintenance Utility
	6.6.4.1 myisamchk General Options
	6.6.4.2 myisamchk Check Options
	6.6.4.3 myisamchk Repair Options
	6.6.4.4 Other myisamchk Options
	6.6.4.5 Obtaining Table Information with myisamchk
	6.6.4.6 myisamchk Memory Usage

	6.6.5 myisamlog — Display MyISAM Log File Contents
	6.6.6 myisampack — Generate Compressed, Read-Only MyISAM Tables
	6.6.7 mysql_config_editor — MySQL Configuration Utility
	6.6.8 mysql_migrate_keyring — Keyring Key Migration Utility
	6.6.9 mysqlbinlog — Utility for Processing Binary Log Files
	6.6.9.1 mysqlbinlog Hex Dump Format
	6.6.9.2 mysqlbinlog Row Event Display
	6.6.9.3 Using mysqlbinlog to Back Up Binary Log Files
	6.6.9.4 Specifying the mysqlbinlog Server ID

	6.6.10 mysqldumpslow — Summarize Slow Query Log Files

	6.7 Program Development Utilities
	6.7.1 mysql_config — Display Options for Compiling Clients
	6.7.2 my_print_defaults — Display Options from Option Files

	6.8 Miscellaneous Programs
	6.8.1 lz4_decompress — Decompress mysqlpump LZ4-Compressed Output
	6.8.2 perror — Display MySQL Error Message Information
	6.8.3 zlib_decompress — Decompress mysqlpump ZLIB-Compressed Output

	6.9 Environment Variables
	6.10 Unix Signal Handling in MySQL

	Chapter 7 MySQL Server Administration
	7.1 The MySQL Server
	7.1.1 Configuring the Server
	7.1.2 Server Configuration Defaults
	7.1.3 Server Configuration Validation
	7.1.4 Server Option, System Variable, and Status Variable Reference
	7.1.5 Server System Variable Reference
	7.1.6 Server Status Variable Reference
	7.1.7 Server Command Options
	7.1.8 Server System Variables
	7.1.9 Using System Variables
	7.1.9.1 System Variable Privileges
	7.1.9.2 Dynamic System Variables
	7.1.9.3 Persisted System Variables
	7.1.9.4 Nonpersistible and Persist-Restricted System Variables
	7.1.9.5 Structured System Variables

	7.1.10 Server Status Variables
	7.1.11 Server SQL Modes
	7.1.12 Connection Management
	7.1.12.1 Connection Interfaces
	7.1.12.2 Administrative Connection Management
	7.1.12.3 DNS Lookups and the Host Cache

	7.1.13 IPv6 Support
	7.1.13.1 Verifying System Support for IPv6
	7.1.13.2 Configuring the MySQL Server to Permit IPv6 Connections
	7.1.13.3 Connecting Using the IPv6 Local Host Address
	7.1.13.4 Connecting Using IPv6 Nonlocal Host Addresses
	7.1.13.5 Obtaining an IPv6 Address from a Broker

	7.1.14 Network Namespace Support
	7.1.15 MySQL Server Time Zone Support
	7.1.16 Resource Groups
	7.1.17 Server-Side Help Support
	7.1.18 Server Tracking of Client Session State
	7.1.19 The Server Shutdown Process

	7.2 The MySQL Data Directory
	7.3 The mysql System Schema
	7.4 MySQL Server Logs
	7.4.1 Selecting General Query Log and Slow Query Log Output Destinations
	7.4.2 The Error Log
	7.4.2.1 Error Log Configuration
	7.4.2.2 Default Error Log Destination Configuration
	7.4.2.3 Error Event Fields
	7.4.2.4 Types of Error Log Filtering
	7.4.2.5 Priority-Based Error Log Filtering (log_filter_internal)
	7.4.2.6 Rule-Based Error Log Filtering (log_filter_dragnet)
	7.4.2.7 Error Logging in JSON Format
	7.4.2.8 Error Logging to the System Log
	7.4.2.9 Error Log Output Format
	7.4.2.10 Error Log File Flushing and Renaming

	7.4.3 The General Query Log
	7.4.4 The Binary Log
	7.4.4.1 Binary Logging Formats
	7.4.4.2 Setting The Binary Log Format
	7.4.4.3 Mixed Binary Logging Format
	7.4.4.4 Logging Format for Changes to mysql Database Tables
	7.4.4.5 Binary Log Transaction Compression
	Behaviors When Binary Log Transaction Compression is Enabled
	Combining Compressed and Uncompressed Transaction Payloads
	Monitoring Binary Log Transaction Compression

	7.4.5 The Slow Query Log
	7.4.6 Server Log Maintenance

	7.5 MySQL Components
	7.5.1 Installing and Uninstalling Components
	7.5.2 Obtaining Component Information
	7.5.3 Error Log Components
	7.5.4 Query Attribute Components
	7.5.5 Scheduler Component

	7.6 MySQL Server Plugins
	7.6.1 Installing and Uninstalling Plugins
	7.6.2 Obtaining Server Plugin Information
	7.6.3 MySQL Enterprise Thread Pool
	7.6.3.1 Thread Pool Elements
	7.6.3.2 Thread Pool Installation
	7.6.3.3 Thread Pool Operation
	7.6.3.4 Thread Pool Tuning

	7.6.4 The Rewriter Query Rewrite Plugin
	7.6.4.1 Installing or Uninstalling the Rewriter Query Rewrite Plugin
	7.6.4.2 Using the Rewriter Query Rewrite Plugin
	7.6.4.3 Rewriter Query Rewrite Plugin Reference
	Rewriter Query Rewrite Plugin Rules Table
	Rewriter Query Rewrite Plugin Procedures and Functions
	Rewriter Query Rewrite Plugin System Variables
	Rewriter Query Rewrite Plugin Status Variables

	7.6.5 The ddl_rewriter Plugin
	7.6.5.1 Installing or Uninstalling ddl_rewriter
	7.6.5.2 ddl_rewriter Plugin Options

	7.6.6 Version Tokens
	7.6.6.1 Version Tokens Elements
	7.6.6.2 Installing or Uninstalling Version Tokens
	7.6.6.3 Using Version Tokens
	7.6.6.4 Version Tokens Reference

	7.6.7 The Clone Plugin
	7.6.7.1 Installing the Clone Plugin
	7.6.7.2 Cloning Data Locally
	7.6.7.3 Cloning Remote Data
	7.6.7.4 Cloning and Concurrent DDL
	7.6.7.5 Cloning Encrypted Data
	7.6.7.6 Cloning Compressed Data
	7.6.7.7 Cloning for Replication
	7.6.7.8 Directories and Files Created During a Cloning Operation
	7.6.7.9 Remote Cloning Operation Failure Handling
	7.6.7.10 Monitoring Cloning Operations
	7.6.7.11 Stopping a Cloning Operation
	7.6.7.12 Clone System Variable Reference
	7.6.7.13 Clone System Variables
	7.6.7.14 Clone Plugin Limitations

	7.6.8 The Keyring Proxy Bridge Plugin
	7.6.9 MySQL Plugin Services
	7.6.9.1 The Locking Service
	The Locking Service C Interface
	The Locking Service Function Interface

	7.6.9.2 The Keyring Service

	7.7 MySQL Server Loadable Functions
	7.7.1 Installing and Uninstalling Loadable Functions
	7.7.2 Obtaining Information About Loadable Functions

	7.8 Running Multiple MySQL Instances on One Machine
	7.8.1 Setting Up Multiple Data Directories
	7.8.2 Running Multiple MySQL Instances on Windows
	7.8.2.1 Starting Multiple MySQL Instances at the Windows Command Line
	7.8.2.2 Starting Multiple MySQL Instances as Windows Services

	7.8.3 Running Multiple MySQL Instances on Unix
	7.8.4 Using Client Programs in a Multiple-Server Environment

	7.9 Debugging MySQL
	7.9.1 Debugging a MySQL Server
	7.9.1.1 Compiling MySQL for Debugging
	7.9.1.2 Creating Trace Files
	7.9.1.3 Using WER with PDB to create a Windows crashdump
	7.9.1.4 Debugging mysqld under gdb
	7.9.1.5 Using a Stack Trace
	7.9.1.6 Using Server Logs to Find Causes of Errors in mysqld
	7.9.1.7 Making a Test Case If You Experience Table Corruption

	7.9.2 Debugging a MySQL Client
	7.9.3 The LOCK_ORDER Tool
	7.9.4 The DBUG Package

	Chapter 8 Security
	8.1 General Security Issues
	8.1.1 Security Guidelines
	8.1.2 Keeping Passwords Secure
	8.1.2.1 End-User Guidelines for Password Security
	8.1.2.2 Administrator Guidelines for Password Security
	8.1.2.3 Passwords and Logging

	8.1.3 Making MySQL Secure Against Attackers
	8.1.4 Security-Related mysqld Options and Variables
	8.1.5 How to Run MySQL as a Normal User
	8.1.6 Security Considerations for LOAD DATA LOCAL
	8.1.7 Client Programming Security Guidelines

	8.2 Access Control and Account Management
	8.2.1 Account User Names and Passwords
	8.2.2 Privileges Provided by MySQL
	8.2.3 Grant Tables
	8.2.4 Specifying Account Names
	8.2.5 Specifying Role Names
	8.2.6 Access Control, Stage 1: Connection Verification
	8.2.7 Access Control, Stage 2: Request Verification
	8.2.8 Adding Accounts, Assigning Privileges, and Dropping Accounts
	8.2.9 Reserved Accounts
	8.2.10 Using Roles
	8.2.11 Account Categories
	8.2.12 Privilege Restriction Using Partial Revokes
	8.2.13 When Privilege Changes Take Effect
	8.2.14 Assigning Account Passwords
	8.2.15 Password Management
	8.2.16 Server Handling of Expired Passwords
	8.2.17 Pluggable Authentication
	8.2.18 Multifactor Authentication
	8.2.19 Proxy Users
	8.2.20 Account Locking
	8.2.21 Setting Account Resource Limits
	8.2.22 Troubleshooting Problems Connecting to MySQL
	8.2.23 SQL-Based Account Activity Auditing

	8.3 Using Encrypted Connections
	8.3.1 Configuring MySQL to Use Encrypted Connections
	8.3.2 Encrypted Connection TLS Protocols and Ciphers
	8.3.3 Creating SSL and RSA Certificates and Keys
	8.3.3.1 Creating SSL and RSA Certificates and Keys using MySQL
	8.3.3.2 Creating SSL Certificates and Keys Using openssl
	8.3.3.3 Creating RSA Keys Using openssl

	8.3.4 Connecting to MySQL Remotely from Windows with SSH
	8.3.5 Reusing SSL Sessions

	8.4 Security Components and Plugins
	8.4.1 Authentication Plugins
	8.4.1.1 Native Pluggable Authentication
	8.4.1.2 Caching SHA-2 Pluggable Authentication
	8.4.1.3 SHA-256 Pluggable Authentication
	8.4.1.4 Client-Side Cleartext Pluggable Authentication
	8.4.1.5 PAM Pluggable Authentication
	8.4.1.6 Windows Pluggable Authentication
	8.4.1.7 LDAP Pluggable Authentication
	8.4.1.8 Kerberos Pluggable Authentication
	8.4.1.9 No-Login Pluggable Authentication
	8.4.1.10 Socket Peer-Credential Pluggable Authentication
	8.4.1.11 FIDO Pluggable Authentication
	8.4.1.12 Test Pluggable Authentication
	8.4.1.13 Pluggable Authentication System Variables

	8.4.2 Connection Control Plugins
	8.4.2.1 Connection Control Plugin Installation
	8.4.2.2 Connection Control Plugin System and Status Variables

	8.4.3 The Password Validation Component
	8.4.3.1 Password Validation Component Installation and Uninstallation
	8.4.3.2 Password Validation Options and Variables
	8.4.3.3 Transitioning to the Password Validation Component

	8.4.4 The MySQL Keyring
	8.4.4.1 Keyring Components Versus Keyring Plugins
	8.4.4.2 Keyring Component Installation
	8.4.4.3 Keyring Plugin Installation
	8.4.4.4 Using the component_keyring_file File-Based Keyring Component
	8.4.4.5 Using the component_keyring_encrypted_file Encrypted File-Based Keyring Component
	8.4.4.6 Using the keyring_file File-Based Keyring Plugin
	8.4.4.7 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin
	8.4.4.8 Using the keyring_okv KMIP Plugin
	8.4.4.9 Using the keyring_aws Amazon Web Services Keyring Plugin
	8.4.4.10 Using the HashiCorp Vault Keyring Plugin
	8.4.4.11 Using the Oracle Cloud Infrastructure Vault Keyring Component
	8.4.4.12 Using the Oracle Cloud Infrastructure Vault Keyring Plugin
	8.4.4.13 Supported Keyring Key Types and Lengths
	8.4.4.14 Migrating Keys Between Keyring Keystores
	8.4.4.15 General-Purpose Keyring Key-Management Functions
	8.4.4.16 Plugin-Specific Keyring Key-Management Functions
	8.4.4.17 Keyring Metadata
	8.4.4.18 Keyring Command Options
	8.4.4.19 Keyring System Variables

	8.4.5 MySQL Enterprise Audit
	8.4.5.1 Elements of MySQL Enterprise Audit
	8.4.5.2 Installing or Uninstalling MySQL Enterprise Audit
	8.4.5.3 MySQL Enterprise Audit Security Considerations
	8.4.5.4 Audit Log File Formats
	8.4.5.5 Configuring Audit Logging Characteristics
	8.4.5.6 Reading Audit Log Files
	8.4.5.7 Audit Log Filtering
	8.4.5.8 Writing Audit Log Filter Definitions
	8.4.5.9 Disabling Audit Logging
	8.4.5.10 Legacy Mode Audit Log Filtering
	8.4.5.11 Audit Log Reference
	8.4.5.12 Audit Log Restrictions

	8.4.6 The Audit Message Component
	8.4.7 MySQL Enterprise Firewall
	8.4.7.1 Elements of MySQL Enterprise Firewall
	8.4.7.2 Installing or Uninstalling MySQL Enterprise Firewall
	8.4.7.3 Using MySQL Enterprise Firewall
	8.4.7.4 MySQL Enterprise Firewall Reference

	8.5 MySQL Enterprise Data Masking and De-Identification
	8.5.1 Data-Masking Components Versus the Data-Masking Plugin
	8.5.2 MySQL Enterprise Data Masking and De-Identification Components
	8.5.2.1 MySQL Enterprise Data Masking and De-Identification Component Installation
	8.5.2.2 Using MySQL Enterprise Data Masking and De-Identification Components
	8.5.2.3 MySQL Enterprise Data Masking and De-Identification Component Function Reference
	8.5.2.4 MySQL Enterprise Data Masking and De-Identification Component Function Descriptions

	8.5.3 MySQL Enterprise Data Masking and De-Identification Plugin
	8.5.3.1 MySQL Enterprise Data Masking and De-Identification Plugin Installation
	8.5.3.2 Using the MySQL Enterprise Data Masking and De-Identification Plugin
	8.5.3.3 MySQL Enterprise Data Masking and De-Identification Plugin Function Reference
	8.5.3.4 MySQL Enterprise Data Masking and De-Identification Plugin Function Descriptions

	8.6 MySQL Enterprise Encryption
	8.6.1 MySQL Enterprise Encryption Installation and Upgrading
	8.6.2 Configuring MySQL Enterprise Encryption
	8.6.3 MySQL Enterprise Encryption Usage and Examples
	8.6.4 MySQL Enterprise Encryption Function Reference
	8.6.5 MySQL Enterprise Encryption Component Function Descriptions
	8.6.6 MySQL Enterprise Encryption Legacy Function Descriptions

	8.7 SELinux
	8.7.1 Check if SELinux is Enabled
	8.7.2 Changing the SELinux Mode
	8.7.3 MySQL Server SELinux Policies
	8.7.4 SELinux File Context
	8.7.5 SELinux TCP Port Context
	8.7.5.1 Setting the TCP Port Context for mysqld
	8.7.5.2 Setting the TCP Port Context for MySQL Features

	8.7.6 Troubleshooting SELinux

	8.8 FIPS Support

	Chapter 9 Backup and Recovery
	9.1 Backup and Recovery Types
	9.2 Database Backup Methods
	9.3 Example Backup and Recovery Strategy
	9.3.1 Establishing a Backup Policy
	9.3.2 Using Backups for Recovery
	9.3.3 Backup Strategy Summary

	9.4 Using mysqldump for Backups
	9.4.1 Dumping Data in SQL Format with mysqldump
	9.4.2 Reloading SQL-Format Backups
	9.4.3 Dumping Data in Delimited-Text Format with mysqldump
	9.4.4 Reloading Delimited-Text Format Backups
	9.4.5 mysqldump Tips
	9.4.5.1 Making a Copy of a Database
	9.4.5.2 Copy a Database from one Server to Another
	9.4.5.3 Dumping Stored Programs
	9.4.5.4 Dumping Table Definitions and Content Separately
	9.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

	9.5 Point-in-Time (Incremental) Recovery
	9.5.1 Point-in-Time Recovery Using Binary Log
	9.5.2 Point-in-Time Recovery Using Event Positions

	9.6 MyISAM Table Maintenance and Crash Recovery
	9.6.1 Using myisamchk for Crash Recovery
	9.6.2 How to Check MyISAM Tables for Errors
	9.6.3 How to Repair MyISAM Tables
	9.6.4 MyISAM Table Optimization
	9.6.5 Setting Up a MyISAM Table Maintenance Schedule

	Chapter 10 Optimization
	10.1 Optimization Overview
	10.2 Optimizing SQL Statements
	10.2.1 Optimizing SELECT Statements
	10.2.1.1 WHERE Clause Optimization
	10.2.1.2 Range Optimization
	10.2.1.3 Index Merge Optimization
	10.2.1.4 Hash Join Optimization
	10.2.1.5 Engine Condition Pushdown Optimization
	10.2.1.6 Index Condition Pushdown Optimization
	10.2.1.7 Nested-Loop Join Algorithms
	10.2.1.8 Nested Join Optimization
	10.2.1.9 Outer Join Optimization
	10.2.1.10 Outer Join Simplification
	10.2.1.11 Multi-Range Read Optimization
	10.2.1.12 Block Nested-Loop and Batched Key Access Joins
	10.2.1.13 Condition Filtering
	10.2.1.14 Constant-Folding Optimization
	10.2.1.15 IS NULL Optimization
	10.2.1.16 ORDER BY Optimization
	10.2.1.17 GROUP BY Optimization
	10.2.1.18 DISTINCT Optimization
	10.2.1.19 LIMIT Query Optimization
	10.2.1.20 Function Call Optimization
	10.2.1.21 Window Function Optimization
	10.2.1.22 Row Constructor Expression Optimization
	10.2.1.23 Avoiding Full Table Scans

	10.2.2 Optimizing Subqueries, Derived Tables, View References, and Common Table Expressions
	10.2.2.1 Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations
	10.2.2.2 Optimizing Subqueries with Materialization
	10.2.2.3 Optimizing Subqueries with the EXISTS Strategy
	10.2.2.4 Optimizing Derived Tables, View References, and Common Table Expressions with Merging or Materialization
	10.2.2.5 Derived Condition Pushdown Optimization

	10.2.3 Optimizing INFORMATION_SCHEMA Queries
	10.2.4 Optimizing Performance Schema Queries
	10.2.5 Optimizing Data Change Statements
	10.2.5.1 Optimizing INSERT Statements
	10.2.5.2 Optimizing UPDATE Statements
	10.2.5.3 Optimizing DELETE Statements

	10.2.6 Optimizing Database Privileges
	10.2.7 Other Optimization Tips

	10.3 Optimization and Indexes
	10.3.1 How MySQL Uses Indexes
	10.3.2 Primary Key Optimization
	10.3.3 SPATIAL Index Optimization
	10.3.4 Foreign Key Optimization
	10.3.5 Column Indexes
	10.3.6 Multiple-Column Indexes
	10.3.7 Verifying Index Usage
	10.3.8 InnoDB and MyISAM Index Statistics Collection
	10.3.9 Comparison of B-Tree and Hash Indexes
	10.3.10 Use of Index Extensions
	10.3.11 Optimizer Use of Generated Column Indexes
	10.3.12 Invisible Indexes
	10.3.13 Descending Indexes
	10.3.14 Indexed Lookups from TIMESTAMP Columns

	10.4 Optimizing Database Structure
	10.4.1 Optimizing Data Size
	10.4.2 Optimizing MySQL Data Types
	10.4.2.1 Optimizing for Numeric Data
	10.4.2.2 Optimizing for Character and String Types
	10.4.2.3 Optimizing for BLOB Types

	10.4.3 Optimizing for Many Tables
	10.4.3.1 How MySQL Opens and Closes Tables
	10.4.3.2 Disadvantages of Creating Many Tables in the Same Database

	10.4.4 Internal Temporary Table Use in MySQL
	10.4.5 Limits on Number of Databases and Tables
	10.4.6 Limits on Table Size
	10.4.7 Limits on Table Column Count and Row Size

	10.5 Optimizing for InnoDB Tables
	10.5.1 Optimizing Storage Layout for InnoDB Tables
	10.5.2 Optimizing InnoDB Transaction Management
	10.5.3 Optimizing InnoDB Read-Only Transactions
	10.5.4 Optimizing InnoDB Redo Logging
	10.5.5 Bulk Data Loading for InnoDB Tables
	10.5.6 Optimizing InnoDB Queries
	10.5.7 Optimizing InnoDB DDL Operations
	10.5.8 Optimizing InnoDB Disk I/O
	10.5.9 Optimizing InnoDB Configuration Variables
	10.5.10 Optimizing InnoDB for Systems with Many Tables

	10.6 Optimizing for MyISAM Tables
	10.6.1 Optimizing MyISAM Queries
	10.6.2 Bulk Data Loading for MyISAM Tables
	10.6.3 Optimizing REPAIR TABLE Statements

	10.7 Optimizing for MEMORY Tables
	10.8 Understanding the Query Execution Plan
	10.8.1 Optimizing Queries with EXPLAIN
	10.8.2 EXPLAIN Output Format
	10.8.3 Extended EXPLAIN Output Format
	10.8.4 Obtaining Execution Plan Information for a Named Connection
	10.8.5 Estimating Query Performance

	10.9 Controlling the Query Optimizer
	10.9.1 Controlling Query Plan Evaluation
	10.9.2 Switchable Optimizations
	10.9.3 Optimizer Hints
	10.9.4 Index Hints
	10.9.5 The Optimizer Cost Model
	10.9.6 Optimizer Statistics

	10.10 Buffering and Caching
	10.10.1 InnoDB Buffer Pool Optimization
	10.10.2 The MyISAM Key Cache
	10.10.2.1 Shared Key Cache Access
	10.10.2.2 Multiple Key Caches
	10.10.2.3 Midpoint Insertion Strategy
	10.10.2.4 Index Preloading
	10.10.2.5 Key Cache Block Size
	10.10.2.6 Restructuring a Key Cache

	10.10.3 Caching of Prepared Statements and Stored Programs

	10.11 Optimizing Locking Operations
	10.11.1 Internal Locking Methods
	10.11.2 Table Locking Issues
	10.11.3 Concurrent Inserts
	10.11.4 Metadata Locking
	10.11.5 External Locking

	10.12 Optimizing the MySQL Server
	10.12.1 Optimizing Disk I/O
	10.12.2 Using Symbolic Links
	10.12.2.1 Using Symbolic Links for Databases on Unix
	10.12.2.2 Using Symbolic Links for MyISAM Tables on Unix
	10.12.2.3 Using Symbolic Links for Databases on Windows

	10.12.3 Optimizing Memory Use
	10.12.3.1 How MySQL Uses Memory
	10.12.3.2 Monitoring MySQL Memory Usage
	10.12.3.3 Enabling Large Page Support

	10.13 Measuring Performance (Benchmarking)
	10.13.1 Measuring the Speed of Expressions and Functions
	10.13.2 Using Your Own Benchmarks
	10.13.3 Measuring Performance with performance_schema

	10.14 Examining Server Thread (Process) Information
	10.14.1 Accessing the Process List
	10.14.2 Thread Command Values
	10.14.3 General Thread States
	10.14.4 Replication Source Thread States
	10.14.5 Replication I/O (Receiver) Thread States
	10.14.6 Replication SQL Thread States
	10.14.7 Replication Connection Thread States
	10.14.8 NDB Cluster Thread States
	10.14.9 Event Scheduler Thread States

	10.15 Tracing the Optimizer
	10.15.1 Typical Usage
	10.15.2 System Variables Controlling Tracing
	10.15.3 Traceable Statements
	10.15.4 Tuning Trace Purging
	10.15.5 Tracing Memory Usage
	10.15.6 Privilege Checking
	10.15.7 Interaction with the --debug Option
	10.15.8 The optimizer_trace System Variable
	10.15.9 The end_markers_in_json System Variable
	10.15.10 Selecting Optimizer Features to Trace
	10.15.11 Trace General Structure
	10.15.12 Example
	10.15.13 Displaying Traces in Other Applications
	10.15.14 Preventing the Use of Optimizer Trace
	10.15.15 Testing Optimizer Trace
	10.15.16 Optimizer Trace Implementation

	Chapter 11 Language Structure
	11.1 Literal Values
	11.1.1 String Literals
	11.1.2 Numeric Literals
	11.1.3 Date and Time Literals
	11.1.4 Hexadecimal Literals
	11.1.5 Bit-Value Literals
	11.1.6 Boolean Literals
	11.1.7 NULL Values

	11.2 Schema Object Names
	11.2.1 Identifier Length Limits
	11.2.2 Identifier Qualifiers
	11.2.3 Identifier Case Sensitivity
	11.2.4 Mapping of Identifiers to File Names
	11.2.5 Function Name Parsing and Resolution

	11.3 Keywords and Reserved Words
	11.4 User-Defined Variables
	11.5 Expressions
	11.6 Query Attributes
	11.7 Comments

	Chapter 12 Character Sets, Collations, Unicode
	12.1 Character Sets and Collations in General
	12.2 Character Sets and Collations in MySQL
	12.2.1 Character Set Repertoire
	12.2.2 UTF-8 for Metadata

	12.3 Specifying Character Sets and Collations
	12.3.1 Collation Naming Conventions
	12.3.2 Server Character Set and Collation
	12.3.3 Database Character Set and Collation
	12.3.4 Table Character Set and Collation
	12.3.5 Column Character Set and Collation
	12.3.6 Character String Literal Character Set and Collation
	12.3.7 The National Character Set
	12.3.8 Character Set Introducers
	12.3.9 Examples of Character Set and Collation Assignment
	12.3.10 Compatibility with Other DBMSs

	12.4 Connection Character Sets and Collations
	12.5 Configuring Application Character Set and Collation
	12.6 Error Message Character Set
	12.7 Column Character Set Conversion
	12.8 Collation Issues
	12.8.1 Using COLLATE in SQL Statements
	12.8.2 COLLATE Clause Precedence
	12.8.3 Character Set and Collation Compatibility
	12.8.4 Collation Coercibility in Expressions
	12.8.5 The binary Collation Compared to _bin Collations
	12.8.6 Examples of the Effect of Collation
	12.8.7 Using Collation in INFORMATION_SCHEMA Searches

	12.9 Unicode Support
	12.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)
	12.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding)
	12.9.3 The utf8 Character Set (Deprecated alias for utf8mb3)
	12.9.4 The ucs2 Character Set (UCS-2 Unicode Encoding)
	12.9.5 The utf16 Character Set (UTF-16 Unicode Encoding)
	12.9.6 The utf16le Character Set (UTF-16LE Unicode Encoding)
	12.9.7 The utf32 Character Set (UTF-32 Unicode Encoding)
	12.9.8 Converting Between 3-Byte and 4-Byte Unicode Character Sets

	12.10 Supported Character Sets and Collations
	12.10.1 Unicode Character Sets
	12.10.2 West European Character Sets
	12.10.3 Central European Character Sets
	12.10.4 South European and Middle East Character Sets
	12.10.5 Baltic Character Sets
	12.10.6 Cyrillic Character Sets
	12.10.7 Asian Character Sets
	12.10.7.1 The cp932 Character Set
	12.10.7.2 The gb18030 Character Set

	12.10.8 The Binary Character Set

	12.11 Restrictions on Character Sets
	12.12 Setting the Error Message Language
	12.13 Adding a Character Set
	12.13.1 Character Definition Arrays
	12.13.2 String Collating Support for Complex Character Sets
	12.13.3 Multi-Byte Character Support for Complex Character Sets

	12.14 Adding a Collation to a Character Set
	12.14.1 Collation Implementation Types
	12.14.2 Choosing a Collation ID
	12.14.3 Adding a Simple Collation to an 8-Bit Character Set
	12.14.4 Adding a UCA Collation to a Unicode Character Set
	12.14.4.1 Defining a UCA Collation Using LDML Syntax
	12.14.4.2 LDML Syntax Supported in MySQL
	12.14.4.3 Diagnostics During Index.xml Parsing

	12.15 Character Set Configuration
	12.16 MySQL Server Locale Support

	Chapter 13 Data Types
	13.1 Numeric Data Types
	13.1.1 Numeric Data Type Syntax
	13.1.2 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
	13.1.3 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC
	13.1.4 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE
	13.1.5 Bit-Value Type - BIT
	13.1.6 Numeric Type Attributes
	13.1.7 Out-of-Range and Overflow Handling

	13.2 Date and Time Data Types
	13.2.1 Date and Time Data Type Syntax
	13.2.2 The DATE, DATETIME, and TIMESTAMP Types
	13.2.3 The TIME Type
	13.2.4 The YEAR Type
	13.2.5 Automatic Initialization and Updating for TIMESTAMP and DATETIME
	13.2.6 Fractional Seconds in Time Values
	13.2.7 What Calendar Is Used By MySQL?
	13.2.8 Conversion Between Date and Time Types
	13.2.9 2-Digit Years in Dates

	13.3 String Data Types
	13.3.1 String Data Type Syntax
	13.3.2 The CHAR and VARCHAR Types
	13.3.3 The BINARY and VARBINARY Types
	13.3.4 The BLOB and TEXT Types
	13.3.5 The ENUM Type
	13.3.6 The SET Type

	13.4 Spatial Data Types
	13.4.1 Spatial Data Types
	13.4.2 The OpenGIS Geometry Model
	13.4.2.1 The Geometry Class Hierarchy
	13.4.2.2 Geometry Class
	13.4.2.3 Point Class
	13.4.2.4 Curve Class
	13.4.2.5 LineString Class
	13.4.2.6 Surface Class
	13.4.2.7 Polygon Class
	13.4.2.8 GeometryCollection Class
	13.4.2.9 MultiPoint Class
	13.4.2.10 MultiCurve Class
	13.4.2.11 MultiLineString Class
	13.4.2.12 MultiSurface Class
	13.4.2.13 MultiPolygon Class

	13.4.3 Supported Spatial Data Formats
	13.4.4 Geometry Well-Formedness and Validity
	13.4.5 Spatial Reference System Support
	13.4.6 Creating Spatial Columns
	13.4.7 Populating Spatial Columns
	13.4.8 Fetching Spatial Data
	13.4.9 Optimizing Spatial Analysis
	13.4.10 Creating Spatial Indexes
	13.4.11 Using Spatial Indexes

	13.5 The JSON Data Type
	13.6 Data Type Default Values
	13.7 Data Type Storage Requirements
	13.8 Choosing the Right Type for a Column
	13.9 Using Data Types from Other Database Engines

	Chapter 14 Functions and Operators
	14.1 Built-In Function and Operator Reference
	14.2 Loadable Function Reference
	14.3 Type Conversion in Expression Evaluation
	14.4 Operators
	14.4.1 Operator Precedence
	14.4.2 Comparison Functions and Operators
	14.4.3 Logical Operators
	14.4.4 Assignment Operators

	14.5 Flow Control Functions
	14.6 Numeric Functions and Operators
	14.6.1 Arithmetic Operators
	14.6.2 Mathematical Functions

	14.7 Date and Time Functions
	14.8 String Functions and Operators
	14.8.1 String Comparison Functions and Operators
	14.8.2 Regular Expressions
	14.8.3 Character Set and Collation of Function Results

	14.9 Full-Text Search Functions
	14.9.1 Natural Language Full-Text Searches
	14.9.2 Boolean Full-Text Searches
	14.9.3 Full-Text Searches with Query Expansion
	14.9.4 Full-Text Stopwords
	14.9.5 Full-Text Restrictions
	14.9.6 Fine-Tuning MySQL Full-Text Search
	14.9.7 Adding a User-Defined Collation for Full-Text Indexing
	14.9.8 ngram Full-Text Parser
	14.9.9 MeCab Full-Text Parser Plugin

	14.10 Cast Functions and Operators
	14.11 XML Functions
	14.12 Bit Functions and Operators
	14.13 Encryption and Compression Functions
	14.14 Locking Functions
	14.15 Information Functions
	14.16 Spatial Analysis Functions
	14.16.1 Spatial Function Reference
	14.16.2 Argument Handling by Spatial Functions
	14.16.3 Functions That Create Geometry Values from WKT Values
	14.16.4 Functions That Create Geometry Values from WKB Values
	14.16.5 MySQL-Specific Functions That Create Geometry Values
	14.16.6 Geometry Format Conversion Functions
	14.16.7 Geometry Property Functions
	14.16.7.1 General Geometry Property Functions
	14.16.7.2 Point Property Functions
	14.16.7.3 LineString and MultiLineString Property Functions
	14.16.7.4 Polygon and MultiPolygon Property Functions
	14.16.7.5 GeometryCollection Property Functions

	14.16.8 Spatial Operator Functions
	14.16.9 Functions That Test Spatial Relations Between Geometry Objects
	14.16.9.1 Spatial Relation Functions That Use Object Shapes
	14.16.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles

	14.16.10 Spatial Geohash Functions
	14.16.11 Spatial GeoJSON Functions
	14.16.12 Spatial Aggregate Functions
	14.16.13 Spatial Convenience Functions

	14.17 JSON Functions
	14.17.1 JSON Function Reference
	14.17.2 Functions That Create JSON Values
	14.17.3 Functions That Search JSON Values
	14.17.4 Functions That Modify JSON Values
	14.17.5 Functions That Return JSON Value Attributes
	14.17.6 JSON Table Functions
	14.17.7 JSON Schema Validation Functions
	14.17.8 JSON Utility Functions

	14.18 Replication Functions
	14.18.1 Group Replication Functions
	14.18.1.1 Function which Configures Group Replication Primary
	14.18.1.2 Functions which Configure the Group Replication Mode
	14.18.1.3 Functions to Inspect and Configure the Maximum Consensus Instances of a Group
	14.18.1.4 Functions to Inspect and Set the Group Replication Communication Protocol Version
	14.18.1.5 Functions to Set and Reset Group Replication Member Actions

	14.18.2 Functions Used with Global Transaction Identifiers (GTIDs)
	14.18.3 Asynchronous Replication Channel Failover Functions
	14.18.4 Position-Based Synchronization Functions

	14.19 Aggregate Functions
	14.19.1 Aggregate Function Descriptions
	14.19.2 GROUP BY Modifiers
	14.19.3 MySQL Handling of GROUP BY
	14.19.4 Detection of Functional Dependence

	14.20 Window Functions
	14.20.1 Window Function Descriptions
	14.20.2 Window Function Concepts and Syntax
	14.20.3 Window Function Frame Specification
	14.20.4 Named Windows
	14.20.5 Window Function Restrictions

	14.21 Performance Schema Functions
	14.22 Internal Functions
	14.23 Miscellaneous Functions
	14.24 Precision Math
	14.24.1 Types of Numeric Values
	14.24.2 DECIMAL Data Type Characteristics
	14.24.3 Expression Handling
	14.24.4 Rounding Behavior
	14.24.5 Precision Math Examples

	Chapter 15 SQL Statements
	15.1 Data Definition Statements
	15.1.1 Atomic Data Definition Statement Support
	15.1.2 ALTER DATABASE Statement
	15.1.3 ALTER EVENT Statement
	15.1.4 ALTER FUNCTION Statement
	15.1.5 ALTER INSTANCE Statement
	15.1.6 ALTER LOGFILE GROUP Statement
	15.1.7 ALTER PROCEDURE Statement
	15.1.8 ALTER SERVER Statement
	15.1.9 ALTER TABLE Statement
	15.1.9.1 ALTER TABLE Partition Operations
	15.1.9.2 ALTER TABLE and Generated Columns
	15.1.9.3 ALTER TABLE Examples

	15.1.10 ALTER TABLESPACE Statement
	15.1.11 ALTER VIEW Statement
	15.1.12 CREATE DATABASE Statement
	15.1.13 CREATE EVENT Statement
	15.1.14 CREATE FUNCTION Statement
	15.1.15 CREATE INDEX Statement
	15.1.16 CREATE LOGFILE GROUP Statement
	15.1.17 CREATE PROCEDURE and CREATE FUNCTION Statements
	15.1.18 CREATE SERVER Statement
	15.1.19 CREATE SPATIAL REFERENCE SYSTEM Statement
	15.1.20 CREATE TABLE Statement
	15.1.20.1 Files Created by CREATE TABLE
	15.1.20.2 CREATE TEMPORARY TABLE Statement
	15.1.20.3 CREATE TABLE ... LIKE Statement
	15.1.20.4 CREATE TABLE ... SELECT Statement
	15.1.20.5 FOREIGN KEY Constraints
	15.1.20.6 CHECK Constraints
	15.1.20.7 Silent Column Specification Changes
	15.1.20.8 CREATE TABLE and Generated Columns
	15.1.20.9 Secondary Indexes and Generated Columns
	15.1.20.10 Invisible Columns
	15.1.20.11 Generated Invisible Primary Keys
	15.1.20.12 Setting NDB Comment Options

	15.1.21 CREATE TABLESPACE Statement
	15.1.22 CREATE TRIGGER Statement
	15.1.23 CREATE VIEW Statement
	15.1.24 DROP DATABASE Statement
	15.1.25 DROP EVENT Statement
	15.1.26 DROP FUNCTION Statement
	15.1.27 DROP INDEX Statement
	15.1.28 DROP LOGFILE GROUP Statement
	15.1.29 DROP PROCEDURE and DROP FUNCTION Statements
	15.1.30 DROP SERVER Statement
	15.1.31 DROP SPATIAL REFERENCE SYSTEM Statement
	15.1.32 DROP TABLE Statement
	15.1.33 DROP TABLESPACE Statement
	15.1.34 DROP TRIGGER Statement
	15.1.35 DROP VIEW Statement
	15.1.36 RENAME TABLE Statement
	15.1.37 TRUNCATE TABLE Statement

	15.2 Data Manipulation Statements
	15.2.1 CALL Statement
	15.2.2 DELETE Statement
	15.2.3 DO Statement
	15.2.4 EXCEPT Clause
	15.2.5 HANDLER Statement
	15.2.6 IMPORT TABLE Statement
	15.2.7 INSERT Statement
	15.2.7.1 INSERT ... SELECT Statement
	15.2.7.2 INSERT ... ON DUPLICATE KEY UPDATE Statement
	15.2.7.3 INSERT DELAYED Statement

	15.2.8 INTERSECT Clause
	15.2.9 LOAD DATA Statement
	15.2.10 LOAD XML Statement
	15.2.11 Parenthesized Query Expressions
	15.2.12 REPLACE Statement
	15.2.13 SELECT Statement
	15.2.13.1 SELECT ... INTO Statement
	15.2.13.2 JOIN Clause

	15.2.14 Set Operations with UNION, INTERSECT, and EXCEPT
	15.2.15 Subqueries
	15.2.15.1 The Subquery as Scalar Operand
	15.2.15.2 Comparisons Using Subqueries
	15.2.15.3 Subqueries with ANY, IN, or SOME
	15.2.15.4 Subqueries with ALL
	15.2.15.5 Row Subqueries
	15.2.15.6 Subqueries with EXISTS or NOT EXISTS
	15.2.15.7 Correlated Subqueries
	15.2.15.8 Derived Tables
	15.2.15.9 Lateral Derived Tables
	15.2.15.10 Subquery Errors
	15.2.15.11 Optimizing Subqueries
	15.2.15.12 Restrictions on Subqueries

	15.2.16 TABLE Statement
	15.2.17 UPDATE Statement
	15.2.18 UNION Clause
	15.2.19 VALUES Statement
	15.2.20 WITH (Common Table Expressions)

	15.3 Transactional and Locking Statements
	15.3.1 START TRANSACTION, COMMIT, and ROLLBACK Statements
	15.3.2 Statements That Cannot Be Rolled Back
	15.3.3 Statements That Cause an Implicit Commit
	15.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Statements
	15.3.5 LOCK INSTANCE FOR BACKUP and UNLOCK INSTANCE Statements
	15.3.6 LOCK TABLES and UNLOCK TABLES Statements
	15.3.7 SET TRANSACTION Statement
	15.3.8 XA Transactions
	15.3.8.1 XA Transaction SQL Statements
	15.3.8.2 XA Transaction States
	15.3.8.3 Restrictions on XA Transactions

	15.4 Replication Statements
	15.4.1 SQL Statements for Controlling Source Servers
	15.4.1.1 PURGE BINARY LOGS Statement
	15.4.1.2 RESET MASTER Statement
	15.4.1.3 SET sql_log_bin Statement

	15.4.2 SQL Statements for Controlling Replica Servers
	15.4.2.1 CHANGE MASTER TO Statement
	15.4.2.2 CHANGE REPLICATION FILTER Statement
	15.4.2.3 CHANGE REPLICATION SOURCE TO Statement
	15.4.2.4 RESET REPLICA Statement
	15.4.2.5 RESET SLAVE Statement
	15.4.2.6 START REPLICA Statement
	15.4.2.7 START SLAVE Statement
	15.4.2.8 STOP REPLICA Statement
	15.4.2.9 STOP SLAVE Statement

	15.4.3 SQL Statements for Controlling Group Replication
	15.4.3.1 START GROUP_REPLICATION Statement
	15.4.3.2 STOP GROUP_REPLICATION Statement

	15.5 Prepared Statements
	15.5.1 PREPARE Statement
	15.5.2 EXECUTE Statement
	15.5.3 DEALLOCATE PREPARE Statement

	15.6 Compound Statement Syntax
	15.6.1 BEGIN ... END Compound Statement
	15.6.2 Statement Labels
	15.6.3 DECLARE Statement
	15.6.4 Variables in Stored Programs
	15.6.4.1 Local Variable DECLARE Statement
	15.6.4.2 Local Variable Scope and Resolution

	15.6.5 Flow Control Statements
	15.6.5.1 CASE Statement
	15.6.5.2 IF Statement
	15.6.5.3 ITERATE Statement
	15.6.5.4 LEAVE Statement
	15.6.5.5 LOOP Statement
	15.6.5.6 REPEAT Statement
	15.6.5.7 RETURN Statement
	15.6.5.8 WHILE Statement

	15.6.6 Cursors
	15.6.6.1 Cursor CLOSE Statement
	15.6.6.2 Cursor DECLARE Statement
	15.6.6.3 Cursor FETCH Statement
	15.6.6.4 Cursor OPEN Statement
	15.6.6.5 Restrictions on Server-Side Cursors

	15.6.7 Condition Handling
	15.6.7.1 DECLARE ... CONDITION Statement
	15.6.7.2 DECLARE ... HANDLER Statement
	15.6.7.3 GET DIAGNOSTICS Statement
	15.6.7.4 RESIGNAL Statement
	15.6.7.5 SIGNAL Statement
	15.6.7.6 Scope Rules for Handlers
	15.6.7.7 The MySQL Diagnostics Area
	15.6.7.8 Condition Handling and OUT or INOUT Parameters

	15.6.8 Restrictions on Condition Handling

	15.7 Database Administration Statements
	15.7.1 Account Management Statements
	15.7.1.1 ALTER USER Statement
	15.7.1.2 CREATE ROLE Statement
	15.7.1.3 CREATE USER Statement
	15.7.1.4 DROP ROLE Statement
	15.7.1.5 DROP USER Statement
	15.7.1.6 GRANT Statement
	15.7.1.7 RENAME USER Statement
	15.7.1.8 REVOKE Statement
	15.7.1.9 SET DEFAULT ROLE Statement
	15.7.1.10 SET PASSWORD Statement
	15.7.1.11 SET ROLE Statement

	15.7.2 Resource Group Management Statements
	15.7.2.1 ALTER RESOURCE GROUP Statement
	15.7.2.2 CREATE RESOURCE GROUP Statement
	15.7.2.3 DROP RESOURCE GROUP Statement
	15.7.2.4 SET RESOURCE GROUP Statement

	15.7.3 Table Maintenance Statements
	15.7.3.1 ANALYZE TABLE Statement
	15.7.3.2 CHECK TABLE Statement
	15.7.3.3 CHECKSUM TABLE Statement
	15.7.3.4 OPTIMIZE TABLE Statement
	15.7.3.5 REPAIR TABLE Statement

	15.7.4 Component, Plugin, and Loadable Function Statements
	15.7.4.1 CREATE FUNCTION Statement for Loadable Functions
	15.7.4.2 DROP FUNCTION Statement for Loadable Functions
	15.7.4.3 INSTALL COMPONENT Statement
	15.7.4.4 INSTALL PLUGIN Statement
	15.7.4.5 UNINSTALL COMPONENT Statement
	15.7.4.6 UNINSTALL PLUGIN Statement

	15.7.5 CLONE Statement
	15.7.6 SET Statements
	15.7.6.1 SET Syntax for Variable Assignment
	15.7.6.2 SET CHARACTER SET Statement
	15.7.6.3 SET NAMES Statement

	15.7.7 SHOW Statements
	15.7.7.1 SHOW BINARY LOGS Statement
	15.7.7.2 SHOW BINLOG EVENTS Statement
	15.7.7.3 SHOW CHARACTER SET Statement
	15.7.7.4 SHOW COLLATION Statement
	15.7.7.5 SHOW COLUMNS Statement
	15.7.7.6 SHOW CREATE DATABASE Statement
	15.7.7.7 SHOW CREATE EVENT Statement
	15.7.7.8 SHOW CREATE FUNCTION Statement
	15.7.7.9 SHOW CREATE PROCEDURE Statement
	15.7.7.10 SHOW CREATE TABLE Statement
	15.7.7.11 SHOW CREATE TRIGGER Statement
	15.7.7.12 SHOW CREATE USER Statement
	15.7.7.13 SHOW CREATE VIEW Statement
	15.7.7.14 SHOW DATABASES Statement
	15.7.7.15 SHOW ENGINE Statement
	15.7.7.16 SHOW ENGINES Statement
	15.7.7.17 SHOW ERRORS Statement
	15.7.7.18 SHOW EVENTS Statement
	15.7.7.19 SHOW FUNCTION CODE Statement
	15.7.7.20 SHOW FUNCTION STATUS Statement
	15.7.7.21 SHOW GRANTS Statement
	15.7.7.22 SHOW INDEX Statement
	15.7.7.23 SHOW MASTER STATUS Statement
	15.7.7.24 SHOW OPEN TABLES Statement
	15.7.7.25 SHOW PLUGINS Statement
	15.7.7.26 SHOW PRIVILEGES Statement
	15.7.7.27 SHOW PROCEDURE CODE Statement
	15.7.7.28 SHOW PROCEDURE STATUS Statement
	15.7.7.29 SHOW PROCESSLIST Statement
	15.7.7.30 SHOW PROFILE Statement
	15.7.7.31 SHOW PROFILES Statement
	15.7.7.32 SHOW RELAYLOG EVENTS Statement
	15.7.7.33 SHOW REPLICAS Statement
	15.7.7.34 SHOW SLAVE HOSTS | SHOW REPLICAS Statement
	15.7.7.35 SHOW REPLICA STATUS Statement
	15.7.7.36 SHOW SLAVE | REPLICA STATUS Statement
	15.7.7.37 SHOW STATUS Statement
	15.7.7.38 SHOW TABLE STATUS Statement
	15.7.7.39 SHOW TABLES Statement
	15.7.7.40 SHOW TRIGGERS Statement
	15.7.7.41 SHOW VARIABLES Statement
	15.7.7.42 SHOW WARNINGS Statement

	15.7.8 Other Administrative Statements
	15.7.8.1 BINLOG Statement
	15.7.8.2 CACHE INDEX Statement
	15.7.8.3 FLUSH Statement
	15.7.8.4 KILL Statement
	15.7.8.5 LOAD INDEX INTO CACHE Statement
	15.7.8.6 RESET Statement
	15.7.8.7 RESET PERSIST Statement
	15.7.8.8 RESTART Statement
	15.7.8.9 SHUTDOWN Statement

	15.8 Utility Statements
	15.8.1 DESCRIBE Statement
	15.8.2 EXPLAIN Statement
	15.8.3 HELP Statement
	15.8.4 USE Statement

	Chapter 16 MySQL Data Dictionary
	16.1 Data Dictionary Schema
	16.2 Removal of File-based Metadata Storage
	16.3 Transactional Storage of Dictionary Data
	16.4 Dictionary Object Cache
	16.5 INFORMATION_SCHEMA and Data Dictionary Integration
	16.6 Serialized Dictionary Information (SDI)
	16.7 Data Dictionary Usage Differences
	16.8 Data Dictionary Limitations

	Chapter 17 The InnoDB Storage Engine
	17.1 Introduction to InnoDB
	17.1.1 Benefits of Using InnoDB Tables
	17.1.2 Best Practices for InnoDB Tables
	17.1.3 Verifying that InnoDB is the Default Storage Engine
	17.1.4 Testing and Benchmarking with InnoDB

	17.2 InnoDB and the ACID Model
	17.3 InnoDB Multi-Versioning
	17.4 InnoDB Architecture
	17.5 InnoDB In-Memory Structures
	17.5.1 Buffer Pool
	17.5.2 Change Buffer
	17.5.3 Adaptive Hash Index
	17.5.4 Log Buffer

	17.6 InnoDB On-Disk Structures
	17.6.1 Tables
	17.6.1.1 Creating InnoDB Tables
	17.6.1.2 Creating Tables Externally
	17.6.1.3 Importing InnoDB Tables
	17.6.1.4 Moving or Copying InnoDB Tables
	17.6.1.5 Converting Tables from MyISAM to InnoDB
	17.6.1.6 AUTO_INCREMENT Handling in InnoDB

	17.6.2 Indexes
	17.6.2.1 Clustered and Secondary Indexes
	17.6.2.2 The Physical Structure of an InnoDB Index
	17.6.2.3 Sorted Index Builds
	17.6.2.4 InnoDB Full-Text Indexes

	17.6.3 Tablespaces
	17.6.3.1 The System Tablespace
	17.6.3.2 File-Per-Table Tablespaces
	17.6.3.3 General Tablespaces
	17.6.3.4 Undo Tablespaces
	17.6.3.5 Temporary Tablespaces
	17.6.3.6 Moving Tablespace Files While the Server is Offline
	17.6.3.7 Disabling Tablespace Path Validation
	17.6.3.8 Optimizing Tablespace Space Allocation on Linux
	17.6.3.9 Tablespace AUTOEXTEND_SIZE Configuration

	17.6.4 Doublewrite Buffer
	17.6.5 Redo Log
	17.6.6 Undo Logs

	17.7 InnoDB Locking and Transaction Model
	17.7.1 InnoDB Locking
	17.7.2 InnoDB Transaction Model
	17.7.2.1 Transaction Isolation Levels
	17.7.2.2 autocommit, Commit, and Rollback
	17.7.2.3 Consistent Nonlocking Reads
	17.7.2.4 Locking Reads

	17.7.3 Locks Set by Different SQL Statements in InnoDB
	17.7.4 Phantom Rows
	17.7.5 Deadlocks in InnoDB
	17.7.5.1 An InnoDB Deadlock Example
	17.7.5.2 Deadlock Detection
	17.7.5.3 How to Minimize and Handle Deadlocks

	17.7.6 Transaction Scheduling

	17.8 InnoDB Configuration
	17.8.1 InnoDB Startup Configuration
	17.8.2 Configuring InnoDB for Read-Only Operation
	17.8.3 InnoDB Buffer Pool Configuration
	17.8.3.1 Configuring InnoDB Buffer Pool Size
	17.8.3.2 Configuring Multiple Buffer Pool Instances
	17.8.3.3 Making the Buffer Pool Scan Resistant
	17.8.3.4 Configuring InnoDB Buffer Pool Prefetching (Read-Ahead)
	17.8.3.5 Configuring Buffer Pool Flushing
	17.8.3.6 Saving and Restoring the Buffer Pool State
	17.8.3.7 Excluding Buffer Pool Pages from Core Files

	17.8.4 Configuring Thread Concurrency for InnoDB
	17.8.5 Configuring the Number of Background InnoDB I/O Threads
	17.8.6 Using Asynchronous I/O on Linux
	17.8.7 Configuring InnoDB I/O Capacity
	17.8.8 Configuring Spin Lock Polling
	17.8.9 Purge Configuration
	17.8.10 Configuring Optimizer Statistics for InnoDB
	17.8.10.1 Configuring Persistent Optimizer Statistics Parameters
	Configuring Automatic Statistics Calculation for Persistent Optimizer Statistics
	Configuring Optimizer Statistics Parameters for Individual Tables
	Configuring the Number of Sampled Pages for InnoDB Optimizer Statistics
	Including Delete-marked Records in Persistent Statistics Calculations
	InnoDB Persistent Statistics Tables
	InnoDB Persistent Statistics Tables Example
	Retrieving Index Size Using the innodb_index_stats Table

	17.8.10.2 Configuring Non-Persistent Optimizer Statistics Parameters
	17.8.10.3 Estimating ANALYZE TABLE Complexity for InnoDB Tables

	17.8.11 Configuring the Merge Threshold for Index Pages
	17.8.12 Enabling Automatic InnoDB Configuration for a Dedicated MySQL Server

	17.9 InnoDB Table and Page Compression
	17.9.1 InnoDB Table Compression
	17.9.1.1 Overview of Table Compression
	17.9.1.2 Creating Compressed Tables
	17.9.1.3 Tuning Compression for InnoDB Tables
	17.9.1.4 Monitoring InnoDB Table Compression at Runtime
	17.9.1.5 How Compression Works for InnoDB Tables
	17.9.1.6 Compression for OLTP Workloads
	17.9.1.7 SQL Compression Syntax Warnings and Errors

	17.9.2 InnoDB Page Compression

	17.10 InnoDB Row Formats
	17.11 InnoDB Disk I/O and File Space Management
	17.11.1 InnoDB Disk I/O
	17.11.2 File Space Management
	17.11.3 InnoDB Checkpoints
	17.11.4 Defragmenting a Table
	17.11.5 Reclaiming Disk Space with TRUNCATE TABLE

	17.12 InnoDB and Online DDL
	17.12.1 Online DDL Operations
	17.12.2 Online DDL Performance and Concurrency
	17.12.3 Online DDL Space Requirements
	17.12.4 Online DDL Memory Management
	17.12.5 Configuring Parallel Threads for Online DDL Operations
	17.12.6 Simplifying DDL Statements with Online DDL
	17.12.7 Online DDL Failure Conditions
	17.12.8 Online DDL Limitations

	17.13 InnoDB Data-at-Rest Encryption
	17.14 InnoDB Startup Options and System Variables
	17.15 InnoDB INFORMATION_SCHEMA Tables
	17.15.1 InnoDB INFORMATION_SCHEMA Tables about Compression
	17.15.1.1 INNODB_CMP and INNODB_CMP_RESET
	17.15.1.2 INNODB_CMPMEM and INNODB_CMPMEM_RESET
	17.15.1.3 Using the Compression Information Schema Tables

	17.15.2 InnoDB INFORMATION_SCHEMA Transaction and Locking Information
	17.15.2.1 Using InnoDB Transaction and Locking Information
	17.15.2.2 InnoDB Lock and Lock-Wait Information
	17.15.2.3 Persistence and Consistency of InnoDB Transaction and Locking Information

	17.15.3 InnoDB INFORMATION_SCHEMA Schema Object Tables
	17.15.4 InnoDB INFORMATION_SCHEMA FULLTEXT Index Tables
	17.15.5 InnoDB INFORMATION_SCHEMA Buffer Pool Tables
	17.15.6 InnoDB INFORMATION_SCHEMA Metrics Table
	17.15.7 InnoDB INFORMATION_SCHEMA Temporary Table Info Table
	17.15.8 Retrieving InnoDB Tablespace Metadata from INFORMATION_SCHEMA.FILES

	17.16 InnoDB Integration with MySQL Performance Schema
	17.16.1 Monitoring ALTER TABLE Progress for InnoDB Tables Using Performance Schema
	17.16.2 Monitoring InnoDB Mutex Waits Using Performance Schema

	17.17 InnoDB Monitors
	17.17.1 InnoDB Monitor Types
	17.17.2 Enabling InnoDB Monitors
	17.17.3 InnoDB Standard Monitor and Lock Monitor Output

	17.18 InnoDB Backup and Recovery
	17.18.1 InnoDB Backup
	17.18.2 InnoDB Recovery

	17.19 InnoDB and MySQL Replication
	17.20 InnoDB memcached Plugin
	17.20.1 Benefits of the InnoDB memcached Plugin
	17.20.2 InnoDB memcached Architecture
	17.20.3 Setting Up the InnoDB memcached Plugin
	17.20.4 InnoDB memcached Multiple get and Range Query Support
	17.20.5 Security Considerations for the InnoDB memcached Plugin
	17.20.6 Writing Applications for the InnoDB memcached Plugin
	17.20.6.1 Adapting an Existing MySQL Schema for the InnoDB memcached Plugin
	17.20.6.2 Adapting a memcached Application for the InnoDB memcached Plugin
	17.20.6.3 Tuning InnoDB memcached Plugin Performance
	17.20.6.4 Controlling Transactional Behavior of the InnoDB memcached Plugin
	17.20.6.5 Adapting DML Statements to memcached Operations
	17.20.6.6 Performing DML and DDL Statements on the Underlying InnoDB Table

	17.20.7 The InnoDB memcached Plugin and Replication
	17.20.8 InnoDB memcached Plugin Internals
	17.20.9 Troubleshooting the InnoDB memcached Plugin

	17.21 InnoDB Troubleshooting
	17.21.1 Troubleshooting InnoDB I/O Problems
	17.21.2 Troubleshooting Recovery Failures
	17.21.3 Forcing InnoDB Recovery
	17.21.4 Troubleshooting InnoDB Data Dictionary Operations
	17.21.5 InnoDB Error Handling

	17.22 InnoDB Limits
	17.23 InnoDB Restrictions and Limitations

	Chapter 18 Alternative Storage Engines
	18.1 Setting the Storage Engine
	18.2 The MyISAM Storage Engine
	18.2.1 MyISAM Startup Options
	18.2.2 Space Needed for Keys
	18.2.3 MyISAM Table Storage Formats
	18.2.3.1 Static (Fixed-Length) Table Characteristics
	18.2.3.2 Dynamic Table Characteristics
	18.2.3.3 Compressed Table Characteristics

	18.2.4 MyISAM Table Problems
	18.2.4.1 Corrupted MyISAM Tables
	18.2.4.2 Problems from Tables Not Being Closed Properly

	18.3 The MEMORY Storage Engine
	18.4 The CSV Storage Engine
	18.4.1 Repairing and Checking CSV Tables
	18.4.2 CSV Limitations

	18.5 The ARCHIVE Storage Engine
	18.6 The BLACKHOLE Storage Engine
	18.7 The MERGE Storage Engine
	18.7.1 MERGE Table Advantages and Disadvantages
	18.7.2 MERGE Table Problems

	18.8 The FEDERATED Storage Engine
	18.8.1 FEDERATED Storage Engine Overview
	18.8.2 How to Create FEDERATED Tables
	18.8.2.1 Creating a FEDERATED Table Using CONNECTION
	18.8.2.2 Creating a FEDERATED Table Using CREATE SERVER

	18.8.3 FEDERATED Storage Engine Notes and Tips
	18.8.4 FEDERATED Storage Engine Resources

	18.9 The EXAMPLE Storage Engine
	18.10 Other Storage Engines
	18.11 Overview of MySQL Storage Engine Architecture
	18.11.1 Pluggable Storage Engine Architecture
	18.11.2 The Common Database Server Layer

	Chapter 19 Replication
	19.1 Configuring Replication
	19.1.1 Binary Log File Position Based Replication Configuration Overview
	19.1.2 Setting Up Binary Log File Position Based Replication
	19.1.2.1 Setting the Replication Source Configuration
	19.1.2.2 Setting the Replica Configuration
	19.1.2.3 Creating a User for Replication
	19.1.2.4 Obtaining the Replication Source Binary Log Coordinates
	19.1.2.5 Choosing a Method for Data Snapshots
	Creating a Data Snapshot Using mysqldump
	Creating a Data Snapshot Using Raw Data Files

	19.1.2.6 Setting Up Replicas
	Setting Up Replication with New Source and Replicas
	Setting Up Replication with Existing Data

	19.1.2.7 Setting the Source Configuration on the Replica
	19.1.2.8 Adding Replicas to a Replication Environment

	19.1.3 Replication with Global Transaction Identifiers
	19.1.3.1 GTID Format and Storage
	19.1.3.2 GTID Life Cycle
	19.1.3.3 GTID Auto-Positioning
	19.1.3.4 Setting Up Replication Using GTIDs
	19.1.3.5 Using GTIDs for Failover and Scaleout
	19.1.3.6 Replication From a Source Without GTIDs to a Replica With GTIDs
	19.1.3.7 Restrictions on Replication with GTIDs
	19.1.3.8 Stored Function Examples to Manipulate GTIDs

	19.1.4 Changing GTID Mode on Online Servers
	19.1.4.1 Replication Mode Concepts
	19.1.4.2 Enabling GTID Transactions Online
	19.1.4.3 Disabling GTID Transactions Online
	19.1.4.4 Verifying Replication of Anonymous Transactions

	19.1.5 MySQL Multi-Source Replication
	19.1.5.1 Configuring Multi-Source Replication
	19.1.5.2 Provisioning a Multi-Source Replica for GTID-Based Replication
	19.1.5.3 Adding GTID-Based Sources to a Multi-Source Replica
	19.1.5.4 Adding Binary Log Based Replication Sources to a Multi-Source Replica
	19.1.5.5 Starting Multi-Source Replicas
	19.1.5.6 Stopping Multi-Source Replicas
	19.1.5.7 Resetting Multi-Source Replicas
	19.1.5.8 Monitoring Multi-Source Replication
	Monitoring Channels Using Performance Schema Tables

	19.1.6 Replication and Binary Logging Options and Variables
	19.1.6.1 Replication and Binary Logging Option and Variable Reference
	19.1.6.2 Replication Source Options and Variables
	19.1.6.3 Replica Server Options and Variables
	19.1.6.4 Binary Logging Options and Variables
	19.1.6.5 Global Transaction ID System Variables

	19.1.7 Common Replication Administration Tasks
	19.1.7.1 Checking Replication Status
	19.1.7.2 Pausing Replication on the Replica
	19.1.7.3 Skipping Transactions
	Skipping Transactions With GTIDs
	Skipping Transactions Without GTIDs
	Skipping Transactions With SET GLOBAL sql_slave_skip_counter
	Skipping Transactions With CHANGE MASTER TO

	19.2 Replication Implementation
	19.2.1 Replication Formats
	19.2.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication
	19.2.1.2 Usage of Row-Based Logging and Replication
	19.2.1.3 Determination of Safe and Unsafe Statements in Binary Logging

	19.2.2 Replication Channels
	19.2.2.1 Commands for Operations on a Single Channel
	19.2.2.2 Compatibility with Previous Replication Statements
	19.2.2.3 Startup Options and Replication Channels
	19.2.2.4 Replication Channel Naming Conventions

	19.2.3 Replication Threads
	19.2.3.1 Monitoring Replication Main Threads
	19.2.3.2 Monitoring Replication Applier Worker Threads

	19.2.4 Relay Log and Replication Metadata Repositories
	19.2.4.1 The Relay Log
	19.2.4.2 Replication Metadata Repositories

	19.2.5 How Servers Evaluate Replication Filtering Rules
	19.2.5.1 Evaluation of Database-Level Replication and Binary Logging Options
	19.2.5.2 Evaluation of Table-Level Replication Options
	19.2.5.3 Interactions Between Replication Filtering Options
	19.2.5.4 Replication Channel Based Filters

	19.3 Replication Security
	19.3.1 Setting Up Replication to Use Encrypted Connections
	19.3.2 Encrypting Binary Log Files and Relay Log Files
	19.3.2.1 Scope of Binary Log Encryption
	19.3.2.2 Binary Log Encryption Keys
	19.3.2.3 Binary Log Master Key Rotation

	19.3.3 Replication Privilege Checks
	19.3.3.1 Privileges For The Replication PRIVILEGE_CHECKS_USER Account
	19.3.3.2 Privilege Checks For Group Replication Channels
	19.3.3.3 Recovering From Failed Replication Privilege Checks

	19.4 Replication Solutions
	19.4.1 Using Replication for Backups
	19.4.1.1 Backing Up a Replica Using mysqldump
	19.4.1.2 Backing Up Raw Data from a Replica
	19.4.1.3 Backing Up a Source or Replica by Making It Read Only

	19.4.2 Handling an Unexpected Halt of a Replica
	19.4.3 Monitoring Row-based Replication
	19.4.4 Using Replication with Different Source and Replica Storage Engines
	19.4.5 Using Replication for Scale-Out
	19.4.6 Replicating Different Databases to Different Replicas
	19.4.7 Improving Replication Performance
	19.4.8 Switching Sources During Failover
	19.4.9 Switching Sources and Replicas with Asynchronous Connection Failover
	19.4.9.1 Asynchronous Connection Failover for Sources
	19.4.9.2 Asynchronous Connection Failover for Replicas

	19.4.10 Semisynchronous Replication
	19.4.10.1 Installing Semisynchronous Replication
	19.4.10.2 Configuring Semisynchronous Replication
	19.4.10.3 Semisynchronous Replication Monitoring

	19.4.11 Delayed Replication

	19.5 Replication Notes and Tips
	19.5.1 Replication Features and Issues
	19.5.1.1 Replication and AUTO_INCREMENT
	19.5.1.2 Replication and BLACKHOLE Tables
	19.5.1.3 Replication and Character Sets
	19.5.1.4 Replication and CHECKSUM TABLE
	19.5.1.5 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER
	19.5.1.6 Replication of CREATE ... IF NOT EXISTS Statements
	19.5.1.7 Replication of CREATE TABLE ... SELECT Statements
	19.5.1.8 Replication of CURRENT_USER()
	19.5.1.9 Replication with Differing Table Definitions on Source and Replica
	Replication with More Columns on Source or Replica
	Replication of Columns Having Different Data Types

	19.5.1.10 Replication and DIRECTORY Table Options
	19.5.1.11 Replication of DROP ... IF EXISTS Statements
	19.5.1.12 Replication and Floating-Point Values
	19.5.1.13 Replication and FLUSH
	19.5.1.14 Replication and System Functions
	19.5.1.15 Replication and Fractional Seconds Support
	19.5.1.16 Replication of Invoked Features
	19.5.1.17 Replication of JSON Documents
	19.5.1.18 Replication and LIMIT
	19.5.1.19 Replication and LOAD DATA
	19.5.1.20 Replication and max_allowed_packet
	19.5.1.21 Replication and MEMORY Tables
	19.5.1.22 Replication of the mysql System Schema
	19.5.1.23 Replication and the Query Optimizer
	19.5.1.24 Replication and Partitioning
	19.5.1.25 Replication and REPAIR TABLE
	19.5.1.26 Replication and Reserved Words
	19.5.1.27 Replication and Row Searches
	19.5.1.28 Replication and Source or Replica Shutdowns
	19.5.1.29 Replica Errors During Replication
	19.5.1.30 Replication and Server SQL Mode
	19.5.1.31 Replication and Temporary Tables
	19.5.1.32 Replication Retries and Timeouts
	19.5.1.33 Replication and Time Zones
	19.5.1.34 Replication and Transaction Inconsistencies
	19.5.1.35 Replication and Transactions
	19.5.1.36 Replication and Triggers
	19.5.1.37 Replication and TRUNCATE TABLE
	19.5.1.38 Replication and User Name Length
	19.5.1.39 Replication and Variables
	19.5.1.40 Replication and Views

	19.5.2 Replication Compatibility Between MySQL Versions
	19.5.3 Upgrading a Replication Topology
	19.5.4 Troubleshooting Replication
	19.5.5 How to Report Replication Bugs or Problems

	Chapter 20 Group Replication
	20.1 Group Replication Background
	20.1.1 Replication Technologies
	20.1.1.1 Source to Replica Replication
	20.1.1.2 Group Replication

	20.1.2 Group Replication Use Cases
	20.1.3 Multi-Primary and Single-Primary Modes
	20.1.3.1 Single-Primary Mode
	Primary Election Algorithm
	Finding the Primary

	20.1.3.2 Multi-Primary Mode
	Transaction Checks
	Data Definition Statements
	Version Compatibility

	20.1.4 Group Replication Services
	20.1.4.1 Group Membership
	20.1.4.2 Failure Detection
	20.1.4.3 Fault-tolerance
	20.1.4.4 Observability

	20.1.5 Group Replication Plugin Architecture

	20.2 Getting Started
	20.2.1 Deploying Group Replication in Single-Primary Mode
	20.2.1.1 Deploying Instances for Group Replication
	20.2.1.2 Configuring an Instance for Group Replication
	20.2.1.3 User Credentials For Distributed Recovery
	20.2.1.4 Launching Group Replication
	20.2.1.5 Bootstrapping the Group
	20.2.1.6 Adding Instances to the Group
	Adding a Second Instance
	Adding Additional Instances

	20.2.2 Deploying Group Replication Locally

	20.3 Requirements and Limitations
	20.3.1 Group Replication Requirements
	20.3.2 Group Replication Limitations

	20.4 Monitoring Group Replication
	20.4.1 GTIDs and Group Replication
	20.4.2 Group Replication Server States
	20.4.3 The replication_group_members Table
	20.4.4 The replication_group_member_stats Table

	20.5 Group Replication Operations
	20.5.1 Configuring an Online Group
	20.5.1.1 Changing the Primary
	20.5.1.2 Changing the Group Mode
	20.5.1.3 Using Group Replication Group Write Consensus
	20.5.1.4 Setting a Group's Communication Protocol Version
	20.5.1.5 Configuring Member Actions

	20.5.2 Restarting a Group
	20.5.3 Transaction Consistency Guarantees
	20.5.3.1 Understanding Transaction Consistency Guarantees
	20.5.3.2 Configuring Transaction Consistency Guarantees

	20.5.4 Distributed Recovery
	20.5.4.1 Connections for Distributed Recovery
	Selecting addresses for distributed recovery endpoints
	Compression for Distributed Recovery
	Replication User for Distributed Recovery
	SSL and Authentication for Distributed Recovery

	20.5.4.2 Cloning for Distributed Recovery
	Prerequisites for Cloning
	Threshold for Cloning
	Cloning Operations
	Cloning for Other Purposes

	20.5.4.3 Configuring Distributed Recovery
	20.5.4.4 Fault Tolerance for Distributed Recovery
	20.5.4.5 How Distributed Recovery Works

	20.5.5 Support For IPv6 And For Mixed IPv6 And IPv4 Groups
	20.5.6 Using MySQL Enterprise Backup with Group Replication

	20.6 Group Replication Security
	20.6.1 Communication Stack for Connection Security Management
	20.6.2 Securing Group Communication Connections with Secure Socket Layer (SSL)
	20.6.3 Securing Distributed Recovery Connections
	20.6.3.1 Secure User Credentials for Distributed Recovery
	Replication User With The Caching SHA-2 Authentication Plugin
	Replication User With SSL
	Providing Replication User Credentials Securely

	20.6.3.2 Secure Socket Layer (SSL) Connections for Distributed Recovery

	20.6.4 Group Replication IP Address Permissions

	20.7 Group Replication Performance and Troubleshooting
	20.7.1 Fine Tuning the Group Communication Thread
	20.7.2 Flow Control
	20.7.2.1 Probes and Statistics
	20.7.2.2 Group Replication Throttling

	20.7.3 Single Consensus Leader
	20.7.4 Message Compression
	20.7.5 Message Fragmentation
	20.7.6 XCom Cache Management
	20.7.6.1 Increasing the cache size
	20.7.6.2 Reducing the cache size

	20.7.7 Responses to Failure Detection and Network Partitioning
	20.7.7.1 Expel Timeout
	20.7.7.2 Unreachable Majority Timeout
	20.7.7.3 Auto-Rejoin
	20.7.7.4 Exit Action

	20.7.8 Handling a Network Partition and Loss of Quorum
	20.7.9 Monitoring Group Replication Memory Usage with Performance Schema Memory Instrumentation
	20.7.9.1 Enabling or Disabling Group Replication Instrumentation
	20.7.9.2 Example Queries

	20.8 Upgrading Group Replication
	20.8.1 Combining Different Member Versions in a Group
	20.8.1.1 Member Versions During Upgrades
	20.8.1.2 Group Replication Communication Protocol Version

	20.8.2 Group Replication Offline Upgrade
	20.8.3 Group Replication Online Upgrade
	20.8.3.1 Online Upgrade Considerations
	20.8.3.2 Upgrading a Group Replication Member
	20.8.3.3 Group Replication Online Upgrade Methods
	20.8.3.4 Group Replication Upgrade with mysqlbackup

	20.9 Group Replication Variables
	20.9.1 Group Replication System Variables
	20.9.2 Group Replication Status Variables

	20.10 Frequently Asked Questions

	Chapter 21 MySQL Shell
	Chapter 22 Using MySQL as a Document Store
	22.1 Interfaces to a MySQL Document Store
	22.2 Document Store Concepts
	22.3 JavaScript Quick-Start Guide: MySQL Shell for Document Store
	22.3.1 MySQL Shell
	22.3.2 Download and Import world_x Database
	22.3.3 Documents and Collections
	22.3.3.1 Create, List, and Drop Collections
	22.3.3.2 Working with Collections
	22.3.3.3 Find Documents
	22.3.3.4 Modify Documents
	22.3.3.5 Remove Documents
	22.3.3.6 Create and Drop Indexes

	22.3.4 Relational Tables
	22.3.4.1 Insert Records into Tables
	22.3.4.2 Select Tables
	22.3.4.3 Update Tables
	22.3.4.4 Delete Tables

	22.3.5 Documents in Tables

	22.4 Python Quick-Start Guide: MySQL Shell for Document Store
	22.4.1 MySQL Shell
	22.4.2 Download and Import world_x Database
	22.4.3 Documents and Collections
	22.4.3.1 Create, List, and Drop Collections
	22.4.3.2 Working with Collections
	22.4.3.3 Find Documents
	22.4.3.4 Modify Documents
	22.4.3.5 Remove Documents
	22.4.3.6 Create and Drop Indexes

	22.4.4 Relational Tables
	22.4.4.1 Insert Records into Tables
	22.4.4.2 Select Tables
	22.4.4.3 Update Tables
	22.4.4.4 Delete Tables

	22.4.5 Documents in Tables

	22.5 X Plugin
	22.5.1 Checking X Plugin Installation
	22.5.2 Disabling X Plugin
	22.5.3 Using Encrypted Connections with X Plugin
	22.5.4 Using X Plugin with the Caching SHA-2 Authentication Plugin
	22.5.5 Connection Compression with X Plugin
	22.5.6 X Plugin Options and Variables
	22.5.6.1 X Plugin Option and Variable Reference
	22.5.6.2 X Plugin Options and System Variables
	22.5.6.3 X Plugin Status Variables

	22.5.7 Monitoring X Plugin

	Chapter 23 InnoDB Cluster
	Chapter 24 InnoDB ReplicaSet
	Chapter 25 MySQL NDB Cluster 8.0
	25.1 General Information
	25.2 NDB Cluster Overview
	25.2.1 NDB Cluster Core Concepts
	25.2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions
	25.2.3 NDB Cluster Hardware, Software, and Networking Requirements
	25.2.4 What is New in MySQL NDB Cluster 8.0
	25.2.5 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0
	25.2.6 MySQL Server Using InnoDB Compared with NDB Cluster
	25.2.6.1 Differences Between the NDB and InnoDB Storage Engines
	25.2.6.2 NDB and InnoDB Workloads
	25.2.6.3 NDB and InnoDB Feature Usage Summary

	25.2.7 Known Limitations of NDB Cluster
	25.2.7.1 Noncompliance with SQL Syntax in NDB Cluster
	25.2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits
	25.2.7.3 Limits Relating to Transaction Handling in NDB Cluster
	25.2.7.4 NDB Cluster Error Handling
	25.2.7.5 Limits Associated with Database Objects in NDB Cluster
	25.2.7.6 Unsupported or Missing Features in NDB Cluster
	25.2.7.7 Limitations Relating to Performance in NDB Cluster
	25.2.7.8 Issues Exclusive to NDB Cluster
	25.2.7.9 Limitations Relating to NDB Cluster Disk Data Storage
	25.2.7.10 Limitations Relating to Multiple NDB Cluster Nodes
	25.2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0

	25.3 NDB Cluster Installation
	25.3.1 Installation of NDB Cluster on Linux
	25.3.1.1 Installing an NDB Cluster Binary Release on Linux
	25.3.1.2 Installing NDB Cluster from RPM
	25.3.1.3 Installing NDB Cluster Using .deb Files
	25.3.1.4 Building NDB Cluster from Source on Linux
	25.3.1.5 Deploying NDB Cluster with Docker Containers

	25.3.2 Installing NDB Cluster on Windows
	25.3.2.1 Installing NDB Cluster on Windows from a Binary Release
	25.3.2.2 Compiling and Installing NDB Cluster from Source on Windows
	25.3.2.3 Initial Startup of NDB Cluster on Windows
	25.3.2.4 Installing NDB Cluster Processes as Windows Services

	25.3.3 Initial Configuration of NDB Cluster
	25.3.4 Initial Startup of NDB Cluster
	25.3.5 NDB Cluster Example with Tables and Data
	25.3.6 Safe Shutdown and Restart of NDB Cluster
	25.3.7 Upgrading and Downgrading NDB Cluster
	25.3.8 The NDB Cluster Auto-Installer (NO LONGER SUPPORTED)

	25.4 Configuration of NDB Cluster
	25.4.1 Quick Test Setup of NDB Cluster
	25.4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables
	25.4.2.1 NDB Cluster Data Node Configuration Parameters
	25.4.2.2 NDB Cluster Management Node Configuration Parameters
	25.4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters
	25.4.2.4 Other NDB Cluster Configuration Parameters
	25.4.2.5 NDB Cluster mysqld Option and Variable Reference

	25.4.3 NDB Cluster Configuration Files
	25.4.3.1 NDB Cluster Configuration: Basic Example
	25.4.3.2 Recommended Starting Configuration for NDB Cluster
	25.4.3.3 NDB Cluster Connection Strings
	25.4.3.4 Defining Computers in an NDB Cluster
	25.4.3.5 Defining an NDB Cluster Management Server
	25.4.3.6 Defining NDB Cluster Data Nodes
	25.4.3.7 Defining SQL and Other API Nodes in an NDB Cluster
	25.4.3.8 Defining the System
	25.4.3.9 MySQL Server Options and Variables for NDB Cluster
	MySQL Server Options for NDB Cluster
	NDB Cluster System Variables
	NDB Cluster Status Variables

	25.4.3.10 NDB Cluster TCP/IP Connections
	25.4.3.11 NDB Cluster TCP/IP Connections Using Direct Connections
	25.4.3.12 NDB Cluster Shared-Memory Connections
	25.4.3.13 Data Node Memory Management
	25.4.3.14 Configuring NDB Cluster Send Buffer Parameters

	25.4.4 Using High-Speed Interconnects with NDB Cluster

	25.5 NDB Cluster Programs
	25.5.1 ndbd — The NDB Cluster Data Node Daemon
	25.5.2 ndbinfo_select_all — Select From ndbinfo Tables
	25.5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)
	25.5.4 ndb_mgmd — The NDB Cluster Management Server Daemon
	25.5.5 ndb_mgm — The NDB Cluster Management Client
	25.5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables
	25.5.7 ndb_config — Extract NDB Cluster Configuration Information
	25.5.8 ndb_delete_all — Delete All Rows from an NDB Table
	25.5.9 ndb_desc — Describe NDB Tables
	25.5.10 ndb_drop_index — Drop Index from an NDB Table
	25.5.11 ndb_drop_table — Drop an NDB Table
	25.5.12 ndb_error_reporter — NDB Error-Reporting Utility
	25.5.13 ndb_import — Import CSV Data Into NDB
	25.5.14 ndb_index_stat — NDB Index Statistics Utility
	25.5.15 ndb_move_data — NDB Data Copy Utility
	25.5.16 ndb_perror — Obtain NDB Error Message Information
	25.5.17 ndb_print_backup_file — Print NDB Backup File Contents
	25.5.18 ndb_print_file — Print NDB Disk Data File Contents
	25.5.19 ndb_print_frag_file — Print NDB Fragment List File Contents
	25.5.20 ndb_print_schema_file — Print NDB Schema File Contents
	25.5.21 ndb_print_sys_file — Print NDB System File Contents
	25.5.22 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log
	25.5.23 ndb_restore — Restore an NDB Cluster Backup
	25.5.23.1 Restoring an NDB Backup to a Different Version of NDB Cluster
	Restoring an NDB backup to a previous version of NDB Cluster
	Restoring an NDB backup to a later version of NDB Cluster

	25.5.23.2 Restoring to a different number of data nodes
	Restoring to Fewer Nodes Than the Original
	Restoring to More Nodes Than the Original

	25.5.23.3 Restoring from a backup taken in parallel
	Restoring a parallel backup in parallel
	Restoring a parallel backup serially

	25.5.24 ndb_secretsfile_reader — Obtain Key Information from an Encrypted NDB Data File
	25.5.25 ndb_select_all — Print Rows from an NDB Table
	25.5.26 ndb_select_count — Print Row Counts for NDB Tables
	25.5.27 ndb_show_tables — Display List of NDB Tables
	25.5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator
	25.5.29 ndb_top — View CPU usage information for NDB threads
	25.5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status
	25.5.31 ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster

	25.6 Management of NDB Cluster
	25.6.1 Commands in the NDB Cluster Management Client
	25.6.2 NDB Cluster Log Messages
	25.6.2.1 NDB Cluster: Messages in the Cluster Log
	25.6.2.2 NDB Cluster Log Startup Messages
	25.6.2.3 Event Buffer Reporting in the Cluster Log
	25.6.2.4 NDB Cluster: NDB Transporter Errors

	25.6.3 Event Reports Generated in NDB Cluster
	25.6.3.1 NDB Cluster Logging Management Commands
	25.6.3.2 NDB Cluster Log Events
	25.6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

	25.6.4 Summary of NDB Cluster Start Phases
	25.6.5 Performing a Rolling Restart of an NDB Cluster
	25.6.6 NDB Cluster Single User Mode
	25.6.7 Adding NDB Cluster Data Nodes Online
	25.6.7.1 Adding NDB Cluster Data Nodes Online: General Issues
	25.6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedure
	25.6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Example

	25.6.8 Online Backup of NDB Cluster
	25.6.8.1 NDB Cluster Backup Concepts
	25.6.8.2 Using The NDB Cluster Management Client to Create a Backup
	25.6.8.3 Configuration for NDB Cluster Backups
	25.6.8.4 NDB Cluster Backup Troubleshooting
	25.6.8.5 Taking an NDB Backup with Parallel Data Nodes

	25.6.9 Importing Data Into MySQL Cluster
	25.6.10 MySQL Server Usage for NDB Cluster
	25.6.11 NDB Cluster Disk Data Tables
	25.6.11.1 NDB Cluster Disk Data Objects
	25.6.11.2 NDB Cluster Disk Data Storage Requirements

	25.6.12 Online Operations with ALTER TABLE in NDB Cluster
	25.6.13 Privilege Synchronization and NDB_STORED_USER
	25.6.14 File System Encryption for NDB Cluster
	25.6.14.1 NDB File System Encryption Setup and Usage
	25.6.14.2 NDB File System Encryption Implementation
	25.6.14.3 NDB File System Encryption Limitations

	25.6.15 NDB API Statistics Counters and Variables
	25.6.16 ndbinfo: The NDB Cluster Information Database
	25.6.16.1 The ndbinfo arbitrator_validity_detail Table
	25.6.16.2 The ndbinfo arbitrator_validity_summary Table
	25.6.16.3 The ndbinfo backup_id Table
	25.6.16.4 The ndbinfo blobs Table
	25.6.16.5 The ndbinfo blocks Table
	25.6.16.6 The ndbinfo cluster_locks Table
	25.6.16.7 The ndbinfo cluster_operations Table
	25.6.16.8 The ndbinfo cluster_transactions Table
	25.6.16.9 The ndbinfo config_nodes Table
	25.6.16.10 The ndbinfo config_params Table
	25.6.16.11 The ndbinfo config_values Table
	25.6.16.12 The ndbinfo counters Table
	25.6.16.13 The ndbinfo cpudata Table
	25.6.16.14 The ndbinfo cpudata_1sec Table
	25.6.16.15 The ndbinfo cpudata_20sec Table
	25.6.16.16 The ndbinfo cpudata_50ms Table
	25.6.16.17 The ndbinfo cpuinfo Table
	25.6.16.18 The ndbinfo cpustat Table
	25.6.16.19 The ndbinfo cpustat_50ms Table
	25.6.16.20 The ndbinfo cpustat_1sec Table
	25.6.16.21 The ndbinfo cpustat_20sec Table
	25.6.16.22 The ndbinfo dictionary_columns Table
	25.6.16.23 The ndbinfo dictionary_tables Table
	25.6.16.24 The ndbinfo dict_obj_info Table
	25.6.16.25 The ndbinfo dict_obj_tree Table
	25.6.16.26 The ndbinfo dict_obj_types Table
	25.6.16.27 The ndbinfo disk_write_speed_base Table
	25.6.16.28 The ndbinfo disk_write_speed_aggregate Table
	25.6.16.29 The ndbinfo disk_write_speed_aggregate_node Table
	25.6.16.30 The ndbinfo diskpagebuffer Table
	25.6.16.31 The ndbinfo diskstat Table
	25.6.16.32 The ndbinfo diskstats_1sec Table
	25.6.16.33 The ndbinfo error_messages Table
	25.6.16.34 The ndbinfo events Table
	25.6.16.35 The ndbinfo files Table
	25.6.16.36 The ndbinfo foreign_keys Table
	25.6.16.37 The ndbinfo hash_maps Table
	25.6.16.38 The ndbinfo hwinfo Table
	25.6.16.39 The ndbinfo index_columns Table
	25.6.16.40 The ndbinfo index_stats Table
	25.6.16.41 The ndbinfo locks_per_fragment Table
	25.6.16.42 The ndbinfo logbuffers Table
	25.6.16.43 The ndbinfo logspaces Table
	25.6.16.44 The ndbinfo membership Table
	25.6.16.45 The ndbinfo memoryusage Table
	25.6.16.46 The ndbinfo memory_per_fragment Table
	25.6.16.47 The ndbinfo nodes Table
	25.6.16.48 The ndbinfo operations_per_fragment Table
	25.6.16.49 The ndbinfo pgman_time_track_stats Table
	25.6.16.50 The ndbinfo processes Table
	25.6.16.51 The ndbinfo resources Table
	25.6.16.52 The ndbinfo restart_info Table
	25.6.16.53 The ndbinfo server_locks Table
	25.6.16.54 The ndbinfo server_operations Table
	25.6.16.55 The ndbinfo server_transactions Table
	25.6.16.56 The ndbinfo table_distribution_status Table
	25.6.16.57 The ndbinfo table_fragments Table
	25.6.16.58 The ndbinfo table_info Table
	25.6.16.59 The ndbinfo table_replicas Table
	25.6.16.60 The ndbinfo tc_time_track_stats Table
	25.6.16.61 The ndbinfo threadblocks Table
	25.6.16.62 The ndbinfo threads Table
	25.6.16.63 The ndbinfo threadstat Table
	25.6.16.64 The ndbinfo transporter_details Table
	25.6.16.65 The ndbinfo transporters Table

	25.6.17 INFORMATION_SCHEMA Tables for NDB Cluster
	25.6.18 NDB Cluster and the Performance Schema
	25.6.19 Quick Reference: NDB Cluster SQL Statements
	25.6.20 NDB Cluster Security Issues
	25.6.20.1 NDB Cluster Security and Networking Issues
	25.6.20.2 NDB Cluster and MySQL Privileges
	25.6.20.3 NDB Cluster and MySQL Security Procedures

	25.7 NDB Cluster Replication
	25.7.1 NDB Cluster Replication: Abbreviations and Symbols
	25.7.2 General Requirements for NDB Cluster Replication
	25.7.3 Known Issues in NDB Cluster Replication
	25.7.4 NDB Cluster Replication Schema and Tables
	25.7.5 Preparing the NDB Cluster for Replication
	25.7.6 Starting NDB Cluster Replication (Single Replication Channel)
	25.7.7 Using Two Replication Channels for NDB Cluster Replication
	25.7.8 Implementing Failover with NDB Cluster Replication
	25.7.9 NDB Cluster Backups With NDB Cluster Replication
	25.7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the Source Binary Log
	25.7.9.2 Point-In-Time Recovery Using NDB Cluster Replication

	25.7.10 NDB Cluster Replication: Bidirectional and Circular Replication
	25.7.11 NDB Cluster Replication Using the Multithreaded Applier
	25.7.12 NDB Cluster Replication Conflict Resolution

	25.8 NDB Cluster Release Notes

	Chapter 26 Partitioning
	26.1 Overview of Partitioning in MySQL
	26.2 Partitioning Types
	26.2.1 RANGE Partitioning
	26.2.2 LIST Partitioning
	26.2.3 COLUMNS Partitioning
	26.2.3.1 RANGE COLUMNS partitioning
	26.2.3.2 LIST COLUMNS partitioning

	26.2.4 HASH Partitioning
	26.2.4.1 LINEAR HASH Partitioning

	26.2.5 KEY Partitioning
	26.2.6 Subpartitioning
	26.2.7 How MySQL Partitioning Handles NULL

	26.3 Partition Management
	26.3.1 Management of RANGE and LIST Partitions
	26.3.2 Management of HASH and KEY Partitions
	26.3.3 Exchanging Partitions and Subpartitions with Tables
	26.3.4 Maintenance of Partitions
	26.3.5 Obtaining Information About Partitions

	26.4 Partition Pruning
	26.5 Partition Selection
	26.6 Restrictions and Limitations on Partitioning
	26.6.1 Partitioning Keys, Primary Keys, and Unique Keys
	26.6.2 Partitioning Limitations Relating to Storage Engines
	26.6.3 Partitioning Limitations Relating to Functions

	Chapter 27 Stored Objects
	27.1 Defining Stored Programs
	27.2 Using Stored Routines
	27.2.1 Stored Routine Syntax
	27.2.2 Stored Routines and MySQL Privileges
	27.2.3 Stored Routine Metadata
	27.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

	27.3 Using Triggers
	27.3.1 Trigger Syntax and Examples
	27.3.2 Trigger Metadata

	27.4 Using the Event Scheduler
	27.4.1 Event Scheduler Overview
	27.4.2 Event Scheduler Configuration
	27.4.3 Event Syntax
	27.4.4 Event Metadata
	27.4.5 Event Scheduler Status
	27.4.6 The Event Scheduler and MySQL Privileges

	27.5 Using Views
	27.5.1 View Syntax
	27.5.2 View Processing Algorithms
	27.5.3 Updatable and Insertable Views
	27.5.4 The View WITH CHECK OPTION Clause
	27.5.5 View Metadata

	27.6 Stored Object Access Control
	27.7 Stored Program Binary Logging
	27.8 Restrictions on Stored Programs
	27.9 Restrictions on Views

	Chapter 28 INFORMATION_SCHEMA Tables
	28.1 Introduction
	28.2 INFORMATION_SCHEMA Table Reference
	28.3 INFORMATION_SCHEMA General Tables
	28.3.1 INFORMATION_SCHEMA General Table Reference
	28.3.2 The INFORMATION_SCHEMA ADMINISTRABLE_ROLE_AUTHORIZATIONS Table
	28.3.3 The INFORMATION_SCHEMA APPLICABLE_ROLES Table
	28.3.4 The INFORMATION_SCHEMA CHARACTER_SETS Table
	28.3.5 The INFORMATION_SCHEMA CHECK_CONSTRAINTS Table
	28.3.6 The INFORMATION_SCHEMA COLLATIONS Table
	28.3.7 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	28.3.8 The INFORMATION_SCHEMA COLUMNS Table
	28.3.9 The INFORMATION_SCHEMA COLUMNS_EXTENSIONS Table
	28.3.10 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	28.3.11 The INFORMATION_SCHEMA COLUMN_STATISTICS Table
	28.3.12 The INFORMATION_SCHEMA ENABLED_ROLES Table
	28.3.13 The INFORMATION_SCHEMA ENGINES Table
	28.3.14 The INFORMATION_SCHEMA EVENTS Table
	28.3.15 The INFORMATION_SCHEMA FILES Table
	28.3.16 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	28.3.17 The INFORMATION_SCHEMA KEYWORDS Table
	28.3.18 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table
	28.3.19 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
	28.3.20 The INFORMATION_SCHEMA PARAMETERS Table
	28.3.21 The INFORMATION_SCHEMA PARTITIONS Table
	28.3.22 The INFORMATION_SCHEMA PLUGINS Table
	28.3.23 The INFORMATION_SCHEMA PROCESSLIST Table
	28.3.24 The INFORMATION_SCHEMA PROFILING Table
	28.3.25 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
	28.3.26 The INFORMATION_SCHEMA RESOURCE_GROUPS Table
	28.3.27 The INFORMATION_SCHEMA ROLE_COLUMN_GRANTS Table
	28.3.28 The INFORMATION_SCHEMA ROLE_ROUTINE_GRANTS Table
	28.3.29 The INFORMATION_SCHEMA ROLE_TABLE_GRANTS Table
	28.3.30 The INFORMATION_SCHEMA ROUTINES Table
	28.3.31 The INFORMATION_SCHEMA SCHEMATA Table
	28.3.32 The INFORMATION_SCHEMA SCHEMATA_EXTENSIONS Table
	28.3.33 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	28.3.34 The INFORMATION_SCHEMA STATISTICS Table
	28.3.35 The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table
	28.3.36 The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS Table
	28.3.37 The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table
	28.3.38 The INFORMATION_SCHEMA TABLES Table
	28.3.39 The INFORMATION_SCHEMA TABLES_EXTENSIONS Table
	28.3.40 The INFORMATION_SCHEMA TABLESPACES Table
	28.3.41 The INFORMATION_SCHEMA TABLESPACES_EXTENSIONS Table
	28.3.42 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	28.3.43 The INFORMATION_SCHEMA TABLE_CONSTRAINTS_EXTENSIONS Table
	28.3.44 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	28.3.45 The INFORMATION_SCHEMA TRIGGERS Table
	28.3.46 The INFORMATION_SCHEMA USER_ATTRIBUTES Table
	28.3.47 The INFORMATION_SCHEMA USER_PRIVILEGES Table
	28.3.48 The INFORMATION_SCHEMA VIEWS Table
	28.3.49 The INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Table
	28.3.50 The INFORMATION_SCHEMA VIEW_TABLE_USAGE Table

	28.4 INFORMATION_SCHEMA InnoDB Tables
	28.4.1 INFORMATION_SCHEMA InnoDB Table Reference
	28.4.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
	28.4.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table
	28.4.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table
	28.4.5 The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table
	28.4.6 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
	28.4.7 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
	28.4.8 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables
	28.4.9 The INFORMATION_SCHEMA INNODB_COLUMNS Table
	28.4.10 The INFORMATION_SCHEMA INNODB_DATAFILES Table
	28.4.11 The INFORMATION_SCHEMA INNODB_FIELDS Table
	28.4.12 The INFORMATION_SCHEMA INNODB_FOREIGN Table
	28.4.13 The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table
	28.4.14 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table
	28.4.15 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table
	28.4.16 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table
	28.4.17 The INFORMATION_SCHEMA INNODB_FT_DELETED Table
	28.4.18 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table
	28.4.19 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table
	28.4.20 The INFORMATION_SCHEMA INNODB_INDEXES Table
	28.4.21 The INFORMATION_SCHEMA INNODB_METRICS Table
	28.4.22 The INFORMATION_SCHEMA INNODB_SESSION_TEMP_TABLESPACES Table
	28.4.23 The INFORMATION_SCHEMA INNODB_TABLES Table
	28.4.24 The INFORMATION_SCHEMA INNODB_TABLESPACES Table
	28.4.25 The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table
	28.4.26 The INFORMATION_SCHEMA INNODB_TABLESTATS View
	28.4.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table
	28.4.28 The INFORMATION_SCHEMA INNODB_TRX Table
	28.4.29 The INFORMATION_SCHEMA INNODB_VIRTUAL Table

	28.5 INFORMATION_SCHEMA Thread Pool Tables
	28.5.1 INFORMATION_SCHEMA Thread Pool Table Reference
	28.5.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table
	28.5.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table
	28.5.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table

	28.6 INFORMATION_SCHEMA Connection Control Tables
	28.6.1 INFORMATION_SCHEMA Connection Control Table Reference
	28.6.2 The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table

	28.7 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables
	28.7.1 INFORMATION_SCHEMA Firewall Table Reference
	28.7.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table
	28.7.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table

	28.8 Extensions to SHOW Statements

	Chapter 29 MySQL Performance Schema
	29.1 Performance Schema Quick Start
	29.2 Performance Schema Build Configuration
	29.3 Performance Schema Startup Configuration
	29.4 Performance Schema Runtime Configuration
	29.4.1 Performance Schema Event Timing
	29.4.2 Performance Schema Event Filtering
	29.4.3 Event Pre-Filtering
	29.4.4 Pre-Filtering by Instrument
	29.4.5 Pre-Filtering by Object
	29.4.6 Pre-Filtering by Thread
	29.4.7 Pre-Filtering by Consumer
	29.4.8 Example Consumer Configurations
	29.4.9 Naming Instruments or Consumers for Filtering Operations
	29.4.10 Determining What Is Instrumented

	29.5 Performance Schema Queries
	29.6 Performance Schema Instrument Naming Conventions
	29.7 Performance Schema Status Monitoring
	29.8 Performance Schema Atom and Molecule Events
	29.9 Performance Schema Tables for Current and Historical Events
	29.10 Performance Schema Statement Digests and Sampling
	29.11 Performance Schema General Table Characteristics
	29.12 Performance Schema Table Descriptions
	29.12.1 Performance Schema Table Reference
	29.12.2 Performance Schema Setup Tables
	29.12.2.1 The setup_actors Table
	29.12.2.2 The setup_consumers Table
	29.12.2.3 The setup_instruments Table
	29.12.2.4 The setup_objects Table
	29.12.2.5 The setup_threads Table

	29.12.3 Performance Schema Instance Tables
	29.12.3.1 The cond_instances Table
	29.12.3.2 The file_instances Table
	29.12.3.3 The mutex_instances Table
	29.12.3.4 The rwlock_instances Table
	29.12.3.5 The socket_instances Table

	29.12.4 Performance Schema Wait Event Tables
	29.12.4.1 The events_waits_current Table
	29.12.4.2 The events_waits_history Table
	29.12.4.3 The events_waits_history_long Table

	29.12.5 Performance Schema Stage Event Tables
	29.12.5.1 The events_stages_current Table
	29.12.5.2 The events_stages_history Table
	29.12.5.3 The events_stages_history_long Table

	29.12.6 Performance Schema Statement Event Tables
	29.12.6.1 The events_statements_current Table
	29.12.6.2 The events_statements_history Table
	29.12.6.3 The events_statements_history_long Table
	29.12.6.4 The prepared_statements_instances Table

	29.12.7 Performance Schema Transaction Tables
	29.12.7.1 The events_transactions_current Table
	29.12.7.2 The events_transactions_history Table
	29.12.7.3 The events_transactions_history_long Table

	29.12.8 Performance Schema Connection Tables
	29.12.8.1 The accounts Table
	29.12.8.2 The hosts Table
	29.12.8.3 The users Table

	29.12.9 Performance Schema Connection Attribute Tables
	29.12.9.1 The session_account_connect_attrs Table
	29.12.9.2 The session_connect_attrs Table

	29.12.10 Performance Schema User-Defined Variable Tables
	29.12.11 Performance Schema Replication Tables
	29.12.11.1 The binary_log_transaction_compression_stats Table
	29.12.11.2 The replication_applier_configuration Table
	29.12.11.3 The replication_applier_status Table
	29.12.11.4 The replication_applier_status_by_coordinator Table
	29.12.11.5 The replication_applier_status_by_worker Table
	29.12.11.6 The replication_applier_filters Table
	29.12.11.7 The replication_applier_global_filters Table
	29.12.11.8 The replication_asynchronous_connection_failover Table
	29.12.11.9 The replication_asynchronous_connection_failover_managed Table
	29.12.11.10 The replication_connection_configuration Table
	29.12.11.11 The replication_connection_status Table
	29.12.11.12 The replication_group_communication_information Table
	29.12.11.13 The replication_group_configuration_version Table
	29.12.11.14 The replication_group_member_actions Table
	29.12.11.15 The replication_group_member_stats Table
	29.12.11.16 The replication_group_members Table

	29.12.12 Performance Schema NDB Cluster Tables
	29.12.12.1 The ndb_sync_pending_objects Table
	29.12.12.2 The ndb_sync_excluded_objects Table

	29.12.13 Performance Schema Lock Tables
	29.12.13.1 The data_locks Table
	29.12.13.2 The data_lock_waits Table
	29.12.13.3 The metadata_locks Table
	29.12.13.4 The table_handles Table

	29.12.14 Performance Schema System Variable Tables
	29.12.14.1 Performance Schema persisted_variables Table
	29.12.14.2 Performance Schema variables_info Table

	29.12.15 Performance Schema Status Variable Tables
	29.12.16 Performance Schema Thread Pool Tables
	29.12.16.1 The tp_thread_group_state Table
	29.12.16.2 The tp_thread_group_stats Table
	29.12.16.3 The tp_thread_state Table

	29.12.17 Performance Schema Firewall Tables
	29.12.17.1 The firewall_groups Table
	29.12.17.2 The firewall_group_allowlist Table
	29.12.17.3 The firewall_membership Table

	29.12.18 Performance Schema Keyring Tables
	29.12.18.1 The keyring_component_status Table
	29.12.18.2 The keyring_keys table

	29.12.19 Performance Schema Clone Tables
	29.12.19.1 The clone_status Table
	29.12.19.2 The clone_progress Table

	29.12.20 Performance Schema Summary Tables
	29.12.20.1 Wait Event Summary Tables
	29.12.20.2 Stage Summary Tables
	29.12.20.3 Statement Summary Tables
	29.12.20.4 Statement Histogram Summary Tables
	29.12.20.5 Transaction Summary Tables
	29.12.20.6 Object Wait Summary Table
	29.12.20.7 File I/O Summary Tables
	29.12.20.8 Table I/O and Lock Wait Summary Tables
	The table_io_waits_summary_by_table Table
	The table_io_waits_summary_by_index_usage Table
	The table_lock_waits_summary_by_table Table

	29.12.20.9 Socket Summary Tables
	29.12.20.10 Memory Summary Tables
	29.12.20.11 Error Summary Tables
	29.12.20.12 Status Variable Summary Tables

	29.12.21 Performance Schema Miscellaneous Tables
	29.12.21.1 The component_scheduler_tasks Table
	29.12.21.2 The error_log Table
	29.12.21.3 The host_cache Table
	29.12.21.4 The innodb_redo_log_files Table
	29.12.21.5 The log_status Table
	29.12.21.6 The performance_timers Table
	29.12.21.7 The processlist Table
	29.12.21.8 The threads Table
	29.12.21.9 The tls_channel_status Table
	29.12.21.10 The user_defined_functions Table

	29.13 Performance Schema Option and Variable Reference
	29.14 Performance Schema Command Options
	29.15 Performance Schema System Variables
	29.16 Performance Schema Status Variables
	29.17 The Performance Schema Memory-Allocation Model
	29.18 Performance Schema and Plugins
	29.19 Using the Performance Schema to Diagnose Problems
	29.19.1 Query Profiling Using Performance Schema
	29.19.2 Obtaining Parent Event Information

	29.20 Restrictions on Performance Schema

	Chapter 30 MySQL sys Schema
	30.1 Prerequisites for Using the sys Schema
	30.2 Using the sys Schema
	30.3 sys Schema Progress Reporting
	30.4 sys Schema Object Reference
	30.4.1 sys Schema Object Index
	30.4.2 sys Schema Tables and Triggers
	30.4.2.1 The sys_config Table
	30.4.2.2 The sys_config_insert_set_user Trigger
	30.4.2.3 The sys_config_update_set_user Trigger

	30.4.3 sys Schema Views
	30.4.3.1 The host_summary and x$host_summary Views
	30.4.3.2 The host_summary_by_file_io and x$host_summary_by_file_io Views
	30.4.3.3 The host_summary_by_file_io_type and x$host_summary_by_file_io_type Views
	30.4.3.4 The host_summary_by_stages and x$host_summary_by_stages Views
	30.4.3.5 The host_summary_by_statement_latency and x$host_summary_by_statement_latency Views
	30.4.3.6 The host_summary_by_statement_type and x$host_summary_by_statement_type Views
	30.4.3.7 The innodb_buffer_stats_by_schema and x$innodb_buffer_stats_by_schema Views
	30.4.3.8 The innodb_buffer_stats_by_table and x$innodb_buffer_stats_by_table Views
	30.4.3.9 The innodb_lock_waits and x$innodb_lock_waits Views
	30.4.3.10 The io_by_thread_by_latency and x$io_by_thread_by_latency Views
	30.4.3.11 The io_global_by_file_by_bytes and x$io_global_by_file_by_bytes Views
	30.4.3.12 The io_global_by_file_by_latency and x$io_global_by_file_by_latency Views
	30.4.3.13 The io_global_by_wait_by_bytes and x$io_global_by_wait_by_bytes Views
	30.4.3.14 The io_global_by_wait_by_latency and x$io_global_by_wait_by_latency Views
	30.4.3.15 The latest_file_io and x$latest_file_io Views
	30.4.3.16 The memory_by_host_by_current_bytes and x$memory_by_host_by_current_bytes Views
	30.4.3.17 The memory_by_thread_by_current_bytes and x$memory_by_thread_by_current_bytes Views
	30.4.3.18 The memory_by_user_by_current_bytes and x$memory_by_user_by_current_bytes Views
	30.4.3.19 The memory_global_by_current_bytes and x$memory_global_by_current_bytes Views
	30.4.3.20 The memory_global_total and x$memory_global_total Views
	30.4.3.21 The metrics View
	30.4.3.22 The processlist and x$processlist Views
	30.4.3.23 The ps_check_lost_instrumentation View
	30.4.3.24 The schema_auto_increment_columns View
	30.4.3.25 The schema_index_statistics and x$schema_index_statistics Views
	30.4.3.26 The schema_object_overview View
	30.4.3.27 The schema_redundant_indexes and x$schema_flattened_keys Views
	30.4.3.28 The schema_table_lock_waits and x$schema_table_lock_waits Views
	30.4.3.29 The schema_table_statistics and x$schema_table_statistics Views
	30.4.3.30 The schema_table_statistics_with_buffer and x$schema_table_statistics_with_buffer Views
	30.4.3.31 The schema_tables_with_full_table_scans and x$schema_tables_with_full_table_scans Views
	30.4.3.32 The schema_unused_indexes View
	30.4.3.33 The session and x$session Views
	30.4.3.34 The session_ssl_status View
	30.4.3.35 The statement_analysis and x$statement_analysis Views
	30.4.3.36 The statements_with_errors_or_warnings and x$statements_with_errors_or_warnings Views
	30.4.3.37 The statements_with_full_table_scans and x$statements_with_full_table_scans Views
	30.4.3.38 The statements_with_runtimes_in_95th_percentile and x$statements_with_runtimes_in_95th_percentile Views
	30.4.3.39 The statements_with_sorting and x$statements_with_sorting Views
	30.4.3.40 The statements_with_temp_tables and x$statements_with_temp_tables Views
	30.4.3.41 The user_summary and x$user_summary Views
	30.4.3.42 The user_summary_by_file_io and x$user_summary_by_file_io Views
	30.4.3.43 The user_summary_by_file_io_type and x$user_summary_by_file_io_type Views
	30.4.3.44 The user_summary_by_stages and x$user_summary_by_stages Views
	30.4.3.45 The user_summary_by_statement_latency and x$user_summary_by_statement_latency Views
	30.4.3.46 The user_summary_by_statement_type and x$user_summary_by_statement_type Views
	30.4.3.47 The version View
	30.4.3.48 The wait_classes_global_by_avg_latency and x$wait_classes_global_by_avg_latency Views
	30.4.3.49 The wait_classes_global_by_latency and x$wait_classes_global_by_latency Views
	30.4.3.50 The waits_by_host_by_latency and x$waits_by_host_by_latency Views
	30.4.3.51 The waits_by_user_by_latency and x$waits_by_user_by_latency Views
	30.4.3.52 The waits_global_by_latency and x$waits_global_by_latency Views

	30.4.4 sys Schema Stored Procedures
	30.4.4.1 The create_synonym_db() Procedure
	30.4.4.2 The diagnostics() Procedure
	30.4.4.3 The execute_prepared_stmt() Procedure
	30.4.4.4 The ps_setup_disable_background_threads() Procedure
	30.4.4.5 The ps_setup_disable_consumer() Procedure
	30.4.4.6 The ps_setup_disable_instrument() Procedure
	30.4.4.7 The ps_setup_disable_thread() Procedure
	30.4.4.8 The ps_setup_enable_background_threads() Procedure
	30.4.4.9 The ps_setup_enable_consumer() Procedure
	30.4.4.10 The ps_setup_enable_instrument() Procedure
	30.4.4.11 The ps_setup_enable_thread() Procedure
	30.4.4.12 The ps_setup_reload_saved() Procedure
	30.4.4.13 The ps_setup_reset_to_default() Procedure
	30.4.4.14 The ps_setup_save() Procedure
	30.4.4.15 The ps_setup_show_disabled() Procedure
	30.4.4.16 The ps_setup_show_disabled_consumers() Procedure
	30.4.4.17 The ps_setup_show_disabled_instruments() Procedure
	30.4.4.18 The ps_setup_show_enabled() Procedure
	30.4.4.19 The ps_setup_show_enabled_consumers() Procedure
	30.4.4.20 The ps_setup_show_enabled_instruments() Procedure
	30.4.4.21 The ps_statement_avg_latency_histogram() Procedure
	30.4.4.22 The ps_trace_statement_digest() Procedure
	30.4.4.23 The ps_trace_thread() Procedure
	30.4.4.24 The ps_truncate_all_tables() Procedure
	30.4.4.25 The statement_performance_analyzer() Procedure
	30.4.4.26 The table_exists() Procedure

	30.4.5 sys Schema Stored Functions
	30.4.5.1 The extract_schema_from_file_name() Function
	30.4.5.2 The extract_table_from_file_name() Function
	30.4.5.3 The format_bytes() Function
	30.4.5.4 The format_path() Function
	30.4.5.5 The format_statement() Function
	30.4.5.6 The format_time() Function
	30.4.5.7 The list_add() Function
	30.4.5.8 The list_drop() Function
	30.4.5.9 The ps_is_account_enabled() Function
	30.4.5.10 The ps_is_consumer_enabled() Function
	30.4.5.11 The ps_is_instrument_default_enabled() Function
	30.4.5.12 The ps_is_instrument_default_timed() Function
	30.4.5.13 The ps_is_thread_instrumented() Function
	30.4.5.14 The ps_thread_account() Function
	30.4.5.15 The ps_thread_id() Function
	30.4.5.16 The ps_thread_stack() Function
	30.4.5.17 The ps_thread_trx_info() Function
	30.4.5.18 The quote_identifier() Function
	30.4.5.19 The sys_get_config() Function
	30.4.5.20 The version_major() Function
	30.4.5.21 The version_minor() Function
	30.4.5.22 The version_patch() Function

	Chapter 31 Connectors and APIs
	31.1 MySQL Connector/C++
	31.2 MySQL Connector/J
	31.3 MySQL Connector/NET
	31.4 MySQL Connector/ODBC
	31.5 MySQL Connector/Python
	31.6 MySQL Connector/Node.js
	31.7 MySQL C API
	31.8 MySQL PHP API
	31.9 MySQL Perl API
	31.10 MySQL Python API
	31.11 MySQL Ruby APIs
	31.11.1 The MySQL/Ruby API
	31.11.2 The Ruby/MySQL API

	31.12 MySQL Tcl API
	31.13 MySQL Eiffel Wrapper

	Chapter 32 MySQL Enterprise Edition
	32.1 MySQL Enterprise Backup Overview
	32.2 MySQL Enterprise Security Overview
	32.3 MySQL Enterprise Encryption Overview
	32.4 MySQL Enterprise Audit Overview
	32.5 MySQL Enterprise Firewall Overview
	32.6 MySQL Enterprise Thread Pool Overview
	32.7 MySQL Enterprise Data Masking and De-Identification Overview
	32.8 MySQL Enterprise Monitor Overview
	32.9 MySQL Telemetry

	Chapter 33 MySQL Workbench
	Chapter 34 MySQL on OCI Marketplace
	34.1 Prerequisites to Deploying MySQL EE on Oracle Cloud Infrastructure
	34.2 Deploying MySQL EE on Oracle Cloud Infrastructure
	34.3 Configuring Network Access
	34.4 Connecting
	34.5 Maintenance

	Appendix A MySQL 8.0 Frequently Asked Questions
	A.1 MySQL 8.0 FAQ: General
	A.2 MySQL 8.0 FAQ: Storage Engines
	A.3 MySQL 8.0 FAQ: Server SQL Mode
	A.4 MySQL 8.0 FAQ: Stored Procedures and Functions
	A.5 MySQL 8.0 FAQ: Triggers
	A.6 MySQL 8.0 FAQ: Views
	A.7 MySQL 8.0 FAQ: INFORMATION_SCHEMA
	A.8 MySQL 8.0 FAQ: Migration
	A.9 MySQL 8.0 FAQ: Security
	A.10 MySQL 8.0 FAQ: NDB Cluster
	A.11 MySQL 8.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
	A.12 MySQL 8.0 FAQ: Connectors & APIs
	A.13 MySQL 8.0 FAQ: C API, libmysql
	A.14 MySQL 8.0 FAQ: Replication
	A.15 MySQL 8.0 FAQ: MySQL Enterprise Thread Pool
	A.16 MySQL 8.0 FAQ: InnoDB Change Buffer
	A.17 MySQL 8.0 FAQ: InnoDB Data-at-Rest Encryption
	A.18 MySQL 8.0 FAQ: Virtualization Support

	Appendix B Error Messages and Common Problems
	B.1 Error Message Sources and Elements
	B.2 Error Information Interfaces
	B.3 Problems and Common Errors
	B.3.1 How to Determine What Is Causing a Problem
	B.3.2 Common Errors When Using MySQL Programs
	B.3.2.1 Access denied
	B.3.2.2 Can't connect to [local] MySQL server
	Connection to MySQL Server Failing on Windows

	B.3.2.3 Lost connection to MySQL server
	B.3.2.4 Password Fails When Entered Interactively
	B.3.2.5 Too many connections
	B.3.2.6 Out of memory
	B.3.2.7 MySQL server has gone away
	B.3.2.8 Packet Too Large
	B.3.2.9 Communication Errors and Aborted Connections
	B.3.2.10 The table is full
	B.3.2.11 Can't create/write to file
	B.3.2.12 Commands out of sync
	B.3.2.13 Ignoring user
	B.3.2.14 Table 'tbl_name' doesn't exist
	B.3.2.15 Can't initialize character set
	B.3.2.16 File Not Found and Similar Errors
	B.3.2.17 Table-Corruption Issues

	B.3.3 Administration-Related Issues
	B.3.3.1 Problems with File Permissions
	B.3.3.2 How to Reset the Root Password
	Resetting the Root Password: Windows Systems
	Resetting the Root Password: Unix and Unix-Like Systems
	Resetting the Root Password: Generic Instructions

	B.3.3.3 What to Do If MySQL Keeps Crashing
	B.3.3.4 How MySQL Handles a Full Disk
	B.3.3.5 Where MySQL Stores Temporary Files
	B.3.3.6 How to Protect or Change the MySQL Unix Socket File
	B.3.3.7 Time Zone Problems

	B.3.4 Query-Related Issues
	B.3.4.1 Case Sensitivity in String Searches
	B.3.4.2 Problems Using DATE Columns
	B.3.4.3 Problems with NULL Values
	B.3.4.4 Problems with Column Aliases
	B.3.4.5 Rollback Failure for Nontransactional Tables
	B.3.4.6 Deleting Rows from Related Tables
	B.3.4.7 Solving Problems with No Matching Rows
	B.3.4.8 Problems with Floating-Point Values

	B.3.5 Optimizer-Related Issues
	B.3.6 Table Definition-Related Issues
	B.3.6.1 Problems with ALTER TABLE
	B.3.6.2 TEMPORARY Table Problems

	B.3.7 Known Issues in MySQL

	Appendix C Indexes
	General Index
	C Function Index
	Command Index
	Function Index
	INFORMATION_SCHEMA Index
	Join Types Index
	Operator Index
	Option Index
	Privileges Index
	SQL Modes Index
	Statement/Syntax Index
	Status Variable Index
	System Variable Index
	Transaction Isolation Level Index

	MySQL Glossary

